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Motivation and background

Machine learning (ML) is a branch of artificial intelligence (AI). Nowadays, ML
is witnessing an explosive growth of research and investments, largely driven by the
success of modern deep neural networks (DNNs). Current industrial applications
include product recommendation, image recognition, time series prediction, medical
diagnosis, natural language processing, and protein folding. The history of artificial
neural networks (ANNs) dates back to the 40’s, with the first models inspired by
the biological learning of the human brain (McCulloch & Pitts, 1943; Hebb, 1949).
Two distinct waves of disillusionment – the decade-long AI winters – hit the field
before convolutional DNNs beated the state-of-the-art image classification methods
at the ImageNet challenge in 2012 (Krizhevsky et al., 2012), setting a milestone for
the new ML age.

For the past ten years, DNNs have brought about a paradigm shift in compu-
tation that resonates at various scales: from a revolution in everyday-life appli-
cations to an entirely new toolbox available to scientific research (LeCun et al.,
2015). Physics is no exception (Zdeborová, 2017; Carleo et al., 2019). These ad-
vances were arguably made possible by the exponential increase in data processing
power brought by the development of highly parallelisable Graphic Processing Unit
(GPU) processors and have been fueled by the availability of huge amounts of data
at unprecedented rates.

However, if on the one hand current DL models have achieved outstanding results
in applications, their design still relies heavily on trial-and-error heuristics, which
sets the key challenge of building a theoretical framework to ensure the reliability
and efficiency of ML systems. This important call has renewed a long-standing
research effort to explore the principles underlying the efficient training of ANNs
in order to provide theoretical guarantees for practical implementations. Yet, the
fundamental open questions that statistician Leo Breiman raised on the theory of
ANNs in 1995 (Breiman, 2018) remain to this day largely unanswered:

Why don’t heavily parameterised neural networks overfit the data?

What is the effective number of parameters?

Why doesn’t backpropagation head for a poor local minima?

When should one stop the backpropagation and use the current parameters?

In order to elucidate the common ground giving rise to the many ML puzzles, in the
following we briefly introduce the basic vocabulary and notions of ML with a focus
on ANNs. We limit our presentation to those concepts that are strictly necessary
to understand the contributions of this thesis. For a thorough overview of the field
methods we refer the reader to the books Bishop & Nasrabadi (2006); Goodfellow
et al. (2016), and to Mehta et al. (2019) for a comprehensive introduction targeted at
a physics audience. In the second section of this chapter, we outline the motivations
for inspecting the mysteries of ML theory with the lens of statistical physics.
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Figure 1 – Pictorial representation of the perceptron model in dimension d = 5.

Machine Learning with Neural Networks 101
The goal of ML is to develop algorithms able to perform a practical task by

extracting the necessary information directly from a set of examples. In other words,
ML algorithms based on ANNs do not follow a rule-based approach where expert
knowledge engineers a list of fixed instructions for the machine, as done instead in
the so-called symbolist approach to AI. Conversely, ML models are trained on large
datasets in order to learn the relevant features underlying a certain task. From an
historical point of view, this perspective refers to the connectionist approach to AI.

First ingredient of ANNs: the architecture — The building block of modern
ANNs is the perceptron, introduced by Rosenblatt (1958) and inspired by the formal
neuron previously proposed by McCulloch & Pitts (1943). The perceptron is a
simple model defined by d learnable parameters w, called weights, that maps an
input x to an output ŷ = φ

(
w>x

)
, where φ : R → R is an (in general non-linear)

activation function acting component-wise. The classical perceptron was conceived
to solve a binary classification task where the output identifies the class membership
of the input. In this case, the input is a d−dimensional vector and the output is
a binary variable, with activation function φ(·) = sign(·). A pictorial sketch of the
perceptron is illustrated in Figure 1.

In modern jargon, the perceptron is a single-layer feed-forward neural network.
Indeed, modern ANNs are built by stacking multiple perceptron units, also called
neurons or nodes, connected by layers of learnable weights.1 The intermediate
layers between input and output are called hidden, while the width is the number of

1The term layer is used in the literature interchangeably to refer either to the weights or to
the nodes, which is sometimes a source of confusion.
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Motivation and background

neurons in a given layer. The term feed-forward refers to the absence of cycles in the
connections, which proceed only in the forward direction, from the input through the
hidden nodes to the output. If every neuron in a layer is connected to every neuron
in the next one, the network is said to be fully-connected. A schematic representation
of a fully-connected feed-forward multi-layer neural network is depicted in Figure 2.
Depth, i.e., the presence of multiple layers of weights, is responsible for the great
expressivity of modern ANNs, so that the very name of the field was redefined as
deep learning (DL). Nevertheless, the powerful scalability of perceptron units could
not be exploited at its origins due to the lack of practical algorithms able to train
such large multi-layer models. A single perceptron machine is instead limited to the
realm of linear models and therefore unable to solve even simple tasks as a XOR
problem. This pitfall was pointed out by Minsky & Papert (1969), whose criticism
dampened the enthusiasm of the first AI research wave, leading to the first of the
above-mentioned winters of AI.

Technology filled this algorithmic gap with the advent of GPUs, popularised
since the 90’s and more than doubling in performance every two years.2 When large
models could finally be trained efficiently, the architecture, i.e., the topology of the
network, emerged as the first crucial ingredient of the ML pipeline. The architecture
of a feed-forward ANN with L layers is expressed by the mapping:

x 7−→ ŷ = φ(L)
(
W (L)φ(L−1)

(
. . . φ(1)

(
W (1)x+ κ(1)

))
· · ·+ κ(L)

)
,

transforming the input x to the (possibly multi-dimensional) output y and parametrised
by the matrices of weights {W (l)}Ll=1 and the thresholds, or biases, {κ(l)}Ll=1. The
zoology of state-of-the-art architectures extends way beyond fully-connected feed-
forward networks, encompassing, for instance, convolutional ANNs (LeCun et al.,
1989, 1998, 1999) and Long Short-Term Memory recurrent ANNs (Hochreiter &
Schmidhuber, 1997). However, in this thesis we only deal with simple feed-forward
fully-connected ANNs, hence we do not discuss further more complicated architec-
tures.

Second ingredient of ANNs: the task — The crucial discriminant for the choice of
the network architecture is the task to be performed. In this regard, as Julius Caesar
would put it, “Ars ML est omnis divisa in partes tres”3: supervised, unsupervised
and reinforcement learning. These categories refer to the possible types of input
data that the network is presented with.

In the case of supervised learning, the dataset D = {(xµ,yµ)}nµ=1 is made of
n pairs of input features xµ ∈ X ⊆ Rd and output labels yµ ∈ Y ⊆ Rk. It
is common to assume that the input data and labels are drawn independent and
identically distributed (i.i.d.) from the joint probability distribution Px,y. The goal
of the ANN is to learn the input-output mapping or, equivalently, the conditional
probability distribution Py|x. Supervised tasks are essentially of two types: either
classification, if the output space Y is discrete, or regression, if Y is continuous. A
pictorial representation of these two types of tasks is depicted in Figure 3. The main

2This rate is faster than the one predicted by the empirical Moore’s law and is sometimes
referred to as Huang’s law.

3The field of ML is divided into three parts.
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Motivation and background

Figure 2 – Pictorial representation of a fully-connected feed-forward neural network
with L layers. At each layer l ∈ {1, . . . , L}, the hidden units are obtained as:
h(l) = φ(l)

(
W (l)h(l−1) + κ(l)

)
, where the activation function acts component-wise

and the output is ŷ = h(L).

drawback of supervised learning is that it requires annotation, i.e., the labeling of
input data, which still largely relies on costly human effort.

On the contrary, unsupervised learning deals with unlabeled datasetsD = {xµ}nµ=1

and aims at extracting relevant information to characterise the underlying probabil-
ity Px. Classical examples of unsupervised learning tasks are clustering, i.e., group-
ing the data according to their similarity, and density estimation, i.e., approximating
Px with the closest among a parametrised family of distributions {Px|w,w ∈ Rdw}.
Recent advanced methods allowing to approximate complex densities are deep gen-
erative models, such as Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) and Variational Auto-Encoders (VAEs) (Kingma & Welling, 2013).

Reinforcement learning refers instead to a learning task where the ANN, called
agent in this context, interacts with the environment via a feedback loop on its
actions. At each time, the agent is in a certain state st and chooses an action at
according to a policy π(a, s) = P (at = a|st = s) and leading to a state st+1 and
a corresponding reward from the interaction with the environment. The goal is to
learn the optimal policy. In this manuscript, we only consider supervised learning
tasks, and therefore we do not discuss further the other types of tasks.

Third ingredient of ANNs: the algorithm — Once we have fixed the task and
the architecture, we enter into the core of the ML pipeline, when the learning takes
place. The algorithm specifies the optimisation procedure to find the best possible
realisation of the architecture, i.e., the optimal weights and biases, associated to the
best performance. In practice, the learning objective measures the degree of error
of a given set of weights and biases. Focusing on supervised learning, this error is

x



Motivation and background

(a) Classification: Two-dimensional
linear classification
ŷ = sign

(
w>x + κ

)
with dimensions d = 2, k = 1, n = 14.

(b) Regression: One dimensional
linear regression ŷ = wx+ κ with
dimensions d = 1, k = 1, n = 9.

Figure 3 – Pictorial representation of two prototypical supervised learning tasks.
Both examples are linear tasks, therefore they can be performed by a perceptron, or
by the readout layer of an ANN, where the inputs x come from the pre-processing
of previous layers.

often formalised as the empirical risk

R̂ (W ,D, `) =
1

n

|D|=n∑
µ=1

` (ŷW (xµ) ,yµ) + λΩ (W ) .

For simplicity, we have incorporated the biases in the weight matrix W . The em-
pirical risk R̂ depends on the choice of the loss function ` : X × Y → R, which
introduces further arbitrariness to the optimisation. It is common to add to the risk
some form of regularisation Ω, an extra penalty that biases the optimisation towards
solutions minising a certain complexity. For instance, typical regularisations act on
the norm of the weights: Ω(·) = ‖ · ‖2

2 or ridge regularisation (Hoerl & Kennard,
1970), Ω(·) = ‖ · ‖1 or lasso regularisation, and a mixture of the two called elastic
net. The regularisation relative strength λ ≥ 0, as all the other parameters not
directly trained together with the ANN weights, is called an hyperparameter.

Empirical risk minimisation (ERM) (Vapnik, 1992) is a widely-common opti-
misation framework for DNN training. The algorithm defines the rules for the
weight updates during the training phase, introducing a discrete-time dynamics to
the learning problem. The work horses of ML methods are a family of first-order
gradient-based algorithms derived as variants of the simple yet effective gradient
descent (GD) algorithm, which can be described as follows:

At time t = 0, initialise W (0), often at random from some prior distribution:
W (0) ∼ P0;

At time 0 < t <max_steps, update the weights with GD on the empirical risk:

W (t+dt) ←W (t) − dt∇W R̂
(
W (t),D, `

)
.

The hyperparameter dt, called learning rate, measures the length of each time step
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Motivation and background

and must be tuned properly.4 Stochastic Gradient Descent (SGD) (Robbins &
Monro, 1951), a widely adopted variant of GD where only a subset of the data is
used at each training step, is extensively discussed in Part 2 of the manuscript. Other
tricks accelerating the optimisation of GD include momentum (Polyak, 1964) and
Nesterov accelerated gradient (Nesterov, 1983). Finally, the back-propagation algo-
rithm introduced by Rumelhart et al. (1986) and based on the chain-rule derivative,
allows to train multi-layer architectures efficiently. For a comprehensive review on
training DNNs, see (Bottou, 2010). Some recently introduced biologically-plausible
alternatives to back-propagation are discussed in the perspectives of the thesis (see
Part 3).

The generalisation problem — What crucially distinguishes learning from opti-
misation is that the latter is only concerned with the minimisation of the objective
function. On the contrary, ERM is just the beginning of the story for the ML
pipeline. Indeed, the true learning objective would be the population risk:

R (W , `) = E(x,y)∼Px,y [` (ŷW (x) ,y)] ,

which is unaccessible in practical situations. Still, the ultimate goal of learning is
not only to perform well on the dataset used for training, but to robustly predict
the output from previously unseen data points, a property known as generalisation.
In other words, we are not looking for any global minima of the empirical risk, but
for those that generalise well.

In order to test the generalisation properties of an algorithm, it is paramount to
allocate a fraction of the data for this purpose. Moreover, given the usually large
number of hyperparameters to be optimised on top of the weights, we should also
keep some data for this purpose. The dataset is then split into training, validation,
and test set, usually of approximately 70%/10%/20% the total size respectively
(Goodfellow et al., 2016). The loss averaged on the test set is then used as a finite-
size proxy for the population risk.

However, the test loss may not be a good measure for the performance, and other
metrics are usually preferred to compute the generalisation error. Common choices
are instead the average misclassification rate (a.k.a. 0/1 error) for classification:

εgen (D) = E(x,y)∼Px,y [1 (ŷD (x) 6= y)] ,

where 1 denotes the indicator function, and the Mean Squared Error (MSE) for
regression:

MSE (D) =
1

2
E(x,y)∼Px,y

[
‖ŷD (x)− y‖2

2

]
,

for a given training dataset D, where the average on previously unseen data points
(x,y) is approximated by the average over the test set. The goal of learning is then

4The learning rate can be either fixed or time dependent, in which case one needs to establish
an appropriate learning rate schedule {(dt)t}t≥0. Celebrated learning rate schedules are Adagrad
(Duchi et al., 2011) and Adam (Kingma & Ba, 2014). Throughout this manuscript, we focus on
constant learning rate.
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Motivation and background

to attain a small generalisation gap, i.e., the difference between the population and
training errors. Interestingly, the empirical risk profile, or loss landscape, navigated
by the algorithm is often highly non-convex. Nevertheless, in practice SGD algo-
rithms are able to find minima that generalise well. This is a key mystery, yet to be
fully understood, that is further discussed in Part 2.

The basic design principles presented above were known long time before the
advent of modern DL (Schmidhuber, 2015) and, despite all the additional complex-
ities of state-of-the-art systems, the building blocks remain the same. However, the
precise interplay of the architecture, the task and the algorithm in determining the
generalisation performance still defies theoretical understanding (Zdeborová, 2020).
The theory is hindered by the huge dimensionality of the problem space where DNNs
typically operate, that defies standard mathematical techniques producing counter-
intuitive phenomena. The origin of this dauntingly high dimensionality is three-fold:
the size of the training set, the dimension of each data point, and most-importantly
the number of learnable parameters. Such large parameter regions that we aim at
describing are impossible to explore directly, since the number of points required
to sample uniformly a given volume grows exponentially with the dimension. This
statistical challenge is called the curse of dimensionality. A comprehensive knowl-
edge of the role played by each component and its translation into implementation
guidelines is the Holy Grail of DL theory, since it would affect dramatically the work
of practitioners by saving precious time now devoted to hyperparameter tuning and
trial-and-error heuristics.

The statistical physics perspective
A long history of cross-fertilisation ties the fields of ML and statistical physics

together, as testified by the ample collection of classical and new references on the
topic (Seung et al., 1992a; Watkin et al., 1993; Opper & Kinzel, 1996; Nishimori,
2001; Engel & Van den Broeck, 2001; Coolen et al., 2005; Bahri et al., 2020; Gabrié,
2020). Indeed, theory and tools from disordered systems and glassy physics are
particularly well-suited to study the statistical properties of data-driven learning.
Moreover, advanced mean-field methods developed in this context (see, for instance,
Opper & Saad (2001) and references therein) offer a good approximation strategy
to face the curse of dimensionality. This line of investigation was started in the
80’s with the Hopfield model for associative memory (Hopfield, 1982; Amit et al.,
1985a,b). The study of feedforward neural networks was pioneered by Gardner with
two influential papers (Gardner, 1987, 1988) paving the way for the study of the
capacity, i.e., the maximum number of training points that can be correctly classified
by a perceptron, and the learning curves, i.e., the loss and the generalisation error
as a function of the training-set size. Gardner and Derrida also initiated the study
of the perceptron beyond the capacity limit (Gardner & Derrida, 1988), a direction
further pursued in the 90’s (Majer et al., 1993; Bouten & Derrida, 1994; Györgyi &
Reimann, 2000; Györgyi, 2001).

Statistical physics looks at learning problems as high-dimensional dynamical sys-
tems of strongly correlated degrees of freedom in a quenched disorder and aims at
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providing a statistical description of the observed macroscopic behaviours. This
perspective fills the existing gap between the often prohibitive mathematical rigor
required by statistical learning theory5 and the product-oriented engineering ap-
proach adopted in applications. The recent advances in DL applications renewed
the physicists interest in the field, leading to a revival of this approach and a number
of interesting new developments that are discussed in the introductions to Parts 1
and 2. Below, we remind some of the crucial ingredients of the statistical physics
approach to learning, that are largely exploited in the rest of the manuscript.

Typical VS worst-case scenario — ANNs with a single hidden layer can repre-
sent any continuous function on a compact subset of Rd. This remarkable universal
approximation result was first derived by Cybenko (1989) for the sigmoid activa-
tion function, and then extended to arbitrary bounded non-constant activations by
Hornik (1991). Similar results for DNNs are also available (Lu et al., 2017). However,
the existence of the solution does not guarantee that it can be easily found by an
algorithm, and another result by Blum & Rivest (1988) indeed states that the train-
ing of even very simple ANNs is NP−hard. Learning is therefore computationally
intractable for worst-case tasks, yet, in practice, simple first-order gradient-based
algorithms can find good solutions.

This open puzzle suggests that the cases of interest lie in a very special subset
of all possible tasks. The statistical physics of learning relies on typical-case analy-
sis, in contrast with the worst-case analysis, which is focused on deriving statistical
worst-case bounds on the generalisation gap. The latter is the approach commonly
adopted in the realm of statistical learning theory and the Probably Approximately
Correct framework introduced by Valiant (1984). These bounds are based on differ-
ent measures of the model capacity6, such as the Vapnkik-Chervonenkis dimension
(Vapnik, 1999b) or the more recent Rademacher complexity (Bartlett & Mendel-
son, 2002). However, these bounds often result in over-pessimistic predictions and
fail to capture the quality of the performance observed in practice while training
DNNs. On the other hand, one can consider the average performance over all possi-
ble realisations of training datasets, similarly as an average over quenched disorder
in statistical mechanics. Computing averages requires the assumption of a known
generative model for the data. These averages are particularly meaningful in the
limit of high dimensions, or thermodynamic limit in the physics language.

Quenched VS annealed averages — Throughout this thesis, we focus on batch
learning settings, where the training set is kept fixed during the whole training
phase, while the weights of the ANN evolve in time. Therefore, the data are drawn
at random and fixed, inducing a loss landscape that the optimisation algorithm has
to navigate. The data thus play the role of frozen or quenched disorder, that does
not change at the time scale of the fast evolving degrees of freedom (the weights),
similarly as impurities trapped in a material under fast cooling, whence the name

5A theoretical framework drawing from statistics and functional analysis to study the properties
of learning algorithms. Classical references are Vapnik (1999a,b).

6The capacity of a model quantifies its expressivity or richness. In other words, it refers to the
ability of a model to fit a large number of functions.
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quenched average. On the contrary, we refer to annealed averages to indicate aver-
ages over random variables that evolve on the fast time scale, on the same footing as
the network weights. In general, quenched disorder introduces frustration to phys-
ical systems, a situation where it is impossible to satisfy all the constraints in the
Hamiltonian (our empirical risk) leading to the coexistence of multiple local minima
at the same energy level, a distinctive feature of glassy systems.

The thermodynamic limit — Training a supervised learning model consists in
minimising a cost function that depends on the parameters of the ANN and on the
dataset. DNNs usually operate in the overparametrised regime, where the number
of parameters can reach the order of 106 − 107 and largely exceeds the number of
training samples, typically around 104 − 105 and going up to 106 − 107 only for
the largest (open) datasets (Wu et al., 2019). In addition, each data point is “fat”,
lying in dimensions up to 106 for large-size images. Thus, the thermodynamic limit
is a good approximation. Crucially, the observables quantifying the performance
– e.g., the empirical risk or the errors – enjoy the self-averaging property in the
thermodynamic limit, meaning that their probability measure concentrates around
its typical value. Therefore, in high dimensions, the average case is representative
of what is observed in practice for a given dataset.

Exactly solvable models — In order to compute these averages we need to intro-
duce the specific form of the distribution that generated the data. The search for
realistic data distributions has been surging in recent years, pointing towards very
interesting directions for modelling the geometry of real data (Chung et al., 2016,
2018; Mézard, 2017; Goldt et al., 2020; Cohen et al., 2020; Gerace et al., 2020).
In parallel, the study of simple models of synthetic tasks is arguably worth per se.
Theoretical physics largely relies on models able to capture the essential features of
a problem while neglecting the details; the Ising model of ML theory is yet to be
found and the hunt for good candidates is currently very active. Solvable models
leading to exact solutions are useful for different reasons. First, they provide a con-
trolled setting where experimental observations can be reproduced and established
on firmer theoretical ground. Second, they allow to identify universal properties cap-
turing general behaviours and possibly offering a unifying look on the proliferation
of experimental observations. Finally, they can help to discriminate between rele-
vant and irrelevant details by revealing missing elements for an accurate description.
Exact solutions can thus orient sequential model improvements and foster the de-
velopment of new analytic tools in a virtuous circle between theory and applications.

In summary, DL is an exploding field of research where outstanding empirical
accomplishments coexist with a myriad of theoretical surprises. The research com-
munity is actively committed to unlock this “black box” inspecting the structural
properties of DNNs (see, e.g., Mallat (2016); Raghu et al. (2017)). In this thesis, we
join this research effort offering the tools of statistical physics to grasp some of the
mechanisms underlying learning. We recall the questions asked by Leo Breiman and
notice that we can identify in them two different points of view. Indeed, while the
first two questions address more general static properties of the network (the final
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performance, the number of parameters), the last two questions directly concern
more specific dynamical properties, regarding the algorithmic training procedure.
This manuscript is organised along these two main directions of investigation.
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Summary of the contributions

This Ph.D. thesis is inscribed in the search for theoretical foundations of machine
learning introduced in the previous chapter. Adopting a statistical physics perspec-
tive, we have investigated the generalisation properties and the training dynamics
of artificial neural networks (ANNs) via exactly solvable models. We provide here a
summary of the main contributions that are covered in this dissertation.

The models — Our study focuses on three simple yet prototypical models. The
first two describe classification tasks:

• Binary classification of Gaussian mixtures: the data are drawn independent
and identically distributed (i.i.d.) from two Gaussian clouds centered at the
d−dimensional vectors ±w∗/

√
d ∈ Rd, while the labels reflect the member-

ships in the clusters. We also refer to this setting as the two-cluster dataset, as
opposed to a slight variant, the three-cluster dataset, that we adopt as a proto-
type of non-linear classification task. The latter is still a binary classification
of Gaussian mixtures, but the two clouds centered at ±w∗/

√
d belong to the

same class, while the other class is represented by a Gaussian cloud centered
at the origin. The three-cluster dataset is therefore non-linearly separable by
definition and allows us to study non-convex loss functions. For both models,
we consider learning via single-layer ANNs with activation functions that are
expressive enough to perform the corresponding classifications.

• Multi-class teacher-student classification: each data sample is drawn i.i.d. from
a standard Gaussian distribution in dimension d, x ∼ N (0, Id), while the cor-
responding label is generated by a teacher matrixW ∗ ∈ Rd×k as the argmax of
the scalar product between the sample and the teacher: y = argmax

l∈{1,...,k}

(
x>W ∗

l

)
.

The goal of the ANN – also called student in this context – is to learn
the teacher’s weights. Historically, the teacher-student perceptron, originally
called “model B”, was introduced in Gardner & Derrida (1989). A compre-
hensive presentation of the teacher-student setting can be found in Nishimori
(2001).

The third one represents a regression task:

• Sign retrieval: each data sample x is drawn i.i.d. from a standard Gaussian
distribution in dimension d, while the corresponding label is the absolute value
of the scalar product between the sample and a teacher vector w∗ ∈ Rd: y =
|x>w∗|/

√
d. This task also belongs to the class of teacher-student problems.

Sign retrieval would amount to a simple linear regression if only the signs of
the labels were known, whence its name.
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The research questions — We aim at contextualising and understanding the lim-
itations of training ANNs in high dimensions. We therefore consider the thermody-
namic limit where both the number of samples n and the data dimension d tend to
infinity, at a fixed rate α = n/d ∼ Od(1) named sample complexity.

On the one hand, we are interested in understanding how the model parameters
(the sample complexity, the data structure, the regularisation strength, ...) impact
learning and whether, as these parameters change, we can identify phase transitions
in the performance, similarly to what observed in statistical mechanics. In par-
ticular, it is useful to compare the performance of ANN models to the benchmark
provided by the information-theoretically optimal one.

On the other hand, we are interested in investigating the learning dynamics
of commonly-used algorithms, such as stochastic gradient descent (SGD). Indeed,
while ANNs trained with SGD have achieved impressive performances, the theory
behind this practical success is largely unexplained. A consensus has arisen that the
answer requires tracking the full trajectory traversed during training, which is highly
nontrivial. Indeed, the high dimension of the parameter space defies standard mathe-
matical techniques. Moreover, SGD navigates a non-convex loss landscape following
an out-of-equilibrium dynamics with a complicated state-dependent noise, whose
characterisation is the subject of intense scrutiny in the ML theory community.

The results — The models presented above are used as prototypical high-dimensional
examples to explore these research questions.

The binary Gaussian mixture model (GMM) presented above serves us as a
working example to discuss and illustrate in a unified fashion many interesting phe-
nomena that are observed in practice. In Article 1, we focus on the static properties
of the GMM problem landscape. We study the performance of regularised convex
classifiers and provide asymptotic expressions for the train and test errors, derived
both from the heuristic replica method and the rigorous Gordon’s inequality tech-
nique. We then apply our theoretical findings to shed light on the role of the different
model parameters on the performance. First, we identify a sharp phase transition
in the sample complexity from linear to non-linear separability of the data, whose
critical threshold depends on the data structure (the variance of the clusters’ noise
and the clusters’ unbalance, i.e., their relative size). At this threshold value, we
observe an interpolation “peak” in the generalisation error, similarly as what is ob-
served in practical applications. We also investigate the role of the regularisation
strength and observe that regularisation smoothens the interpolation peak until it
eventually disappears. We find out that, surprisingly, the information-theoretically
optimal performance can be achieved at infinite regularisation in the case of bal-
anced clusters. We then show that this peculiar behaviour does not hold anymore
as soon as the clusters are unbalanced.

In Article 3, we consider the dynamics of gradient-based training algorithms
performing classification of the GMM. We manage to derive the first analytic de-
scription of the full trajectory of the learning curves of mini-batch SGD, i.e., the
realistic case where the available examples are used more than once. To this end,
we use dynamical mean-field theory (DMFT) from statistical physics. The result
is a closed set of integro-differential equations that must be solved numerically in a
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self-consistent way. Our numerical solution of the DMFT equations shows excellent
agreement with experiments at finite time step, for both convex and non-convex
losses and at relatively low dimension d ≈ 102 − 103, even though the theory is
derived in the thermodynamic limit. A large part of the theory of gradient-based
algorithms focuses on the flow, i.e., continuous-time limit of the algorithm. How-
ever, this limit is not properly defined for SGD, whose flow limit is therefore often
treated under approximations as a Langevin-like process. To overcome this prob-
lem, we also introduce a variant of the sampling procedure, that we call persistent
SGD (p-SGD), since in this case all samples are independently endowed with some
persistence and spend some typical time in the training mini batch. This persistent
variant of SGD admits a well-defined continuous-time limit for the sampling proce-
dure, that is encoded by a two-state Markov process. For all discrete time steps,
SGD can be recovered from p-SGD with a specific choice of the persistence time
without resorting to any approximations. Moreover, p-SGD introduces interesting
features to the sampling noise.

In Article 4, we characterise the late-time dynamics and quantify the noise mag-
nitude of SGD and p-SGD. We choose the simple convex setting provided by the
binary GMM in order to isolate the algorithmic noise from other possible sources
of noise in the dynamics, such as the roughness of the landscape. In the under-
parametrised regime, where the final training error is positive, the SGD dynamics
reaches a stationary state and we define an effective temperature from an effective
fluctuation-dissipation theorem (FDT), computed from DMFT. We use the effective
temperature to quantify the magnitude of SGD noise as a function of the model
parameters. In the overparametrised regime, where the training error vanishes, we
measure the noise magnitude of SGD by computing the average distance between
two replicas of the system with the same initialisation and two different realisations
of the mini-batch sampling. We find that the two noise measures behave similarly
as a function of the model parameters. Moreover, we observe that noisier algorithms
lead to wider decision boundaries of the corresponding constraint satisfaction prob-
lem (CSP).

While SGD seems to outperform its deterministic counterpart (GD) in appli-
cations, clear theoretical boundaries on this statement have not been established
yet. To address this question, in Article 5 we consider an intrinsically hard prob-
lem, the sign retrieval problem presented above, as a benchmark high-dimensional
non-convex task to assess how different sources of algorithmic noise affect the gen-
eralisation properties. Therefore, we consider GD, SGD, p-SGD and the Langevin
algorithm and we perform a series of numerical simulations in order to assess their
performance as a function of the model parameters (mini-batch size, persistence
time, Langevin temperature). Our experimental findings reveal that, in the consid-
ered problem, stochasticity is crucial for generalisation. We also shed light on the
qualitative difference between the sources of noise in the algorithms. In particular,
we notice that (p-)SGD, due to the particular structure of its noise, has a built-
in self-annealing protocol that allows it to outperform GD. We then use informed
initialisations, i.e., “warm” starts close to the signal w∗, to probe the interplay of
the loss landscape with the algorithm. We find that GD can get trapped even very
close to the signal, while perfect recovery can be reached starting from less informed
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initialisations. Moreover, persistence plays a crucial role in avoiding to get stuck in
local minima. We then apply DMFT to provide an analytic characterisation of the
full trajectory of the algorithms in the high-dimensional limit. We use the theoreti-
cal curves as a baseline to show that the observed behaviour is not due to finite-size
or finite-learning-rate effects.

A considerable part of modern machine learning practice concerns multi-class
classification. However, while the generalisation performance of single-layer teacher-
student perceptron on i.i.d. Gaussian inputs and binary labels has been widely stud-
ied in high-dimensional learning theory, an analogous analysis for the corresponding
multi-class teacher-student perceptron was missing. In Article 2, we fill this gap
by deriving and evaluating asymptotic expressions for the errors obtained via ERM
and for the information-theoretically optimal performance in the multi-class teacher-
student model presented above. We first examine a Rademacher prior for the teacher
matrix and we unveil a first-order phase transition in the performance, in analogy
with the two-classes case. We then consider a Gaussian teacher prior and we use our
theoretical results to explore the performance of ridge-regularised ERM with con-
vex losses. In particular, we discuss two widely-used loss functions: the square and
cross-entropy losses. We compare optimally regularised cross-entropy classification
to the information-theoretically optimal classifier, and we conclude that for three
classes the two are extremely close.
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Synthèse en français

Cette thèse s’inscrit dans la recherche des fondements théoriques de l’apprentissage
automatique. Nous avons étudié les propriétés de la généralisation et de la dy-
namique d’entraînement des réseaux de neurones artificiels à travers des modèles
exactement résolubles en utilisant des outils de la physique statistique. Nous présen-
tons ici un résumé des contributions principales qui font l’objet de cette thèse.

Les modèles — Notre étude porte sur trois modèles simples mais prototypiques.
Les deux premiers décrivent des tâches de classification :

• Classification binaire des mélanges gaussiens : les données sont indépen-
dantes et identiquement distribuées (i.i.d.) à partir de deux nuages gaussiens
centrés sur les vecteurs ±w∗/

√
d ∈ Rd, tandis que les étiquettes reflètent

l’appartenances à un des nuages. Nous considerons aussi un mélange gaussien à
trois nuages, que nous adoptons comme prototype de classification non linéaire.
Il s’agit toujours d’une classification binaire, mais les deux nuages centré sur
±w∗/

√
d appartiennent à la même classe, tandis que l’autre classe est représen-

tée par un troisième nuage centré à l’origine. Ce melange à trois nuages est
donc non séparable linéairement par définition et nous permet d’étudier des
fonctions de perte non convexes. Pour les deux modèles, nous considérons
l’apprentissage des réseaux de neurones artificiels monocouches.

• Classification multiclasse dans le modèle enseignant-étudiant : chaque échan-
tillon de données est tiré i.i.d. d’une distribution gaussienne en dimension d,
x ∼ N (0, Id), tandis que l’étiquette correspondante est générée par une ma-
trice “enseignante” W ∗ ∈ Rd×k comme l’argument du maximum du produit
scalaire entre l’échantillon et l’enseignant: y = argmax

l∈{1,...,k}

(
x>W ∗

l

)
. L’objectif du

réseau de neurones artificiels – également appelé “étudiant” dans ce contexte
– est d’apprendre la matriceW ∗ de l’enseignant. Du point de vue historique,
le perceptron enseignant-élève, initialement appelé « modèle B », était intro-
duit par Gardner & Derrida (1989). Une présentation complète du modèle
enseignant-étudiant peut être trouvé dans Nishimori (2001).

Le troisième modèle représente une tâche de régression :

• Récupération des signes : chaque échantillon de données x est tiré i.i.d. à
partir d’une distribution gaussienne de moyenne zéro et covariance identité,
en dimension d, tandis que l’étiquette correspondante est la valeur absolue du
produit scalaire entre l’échantillon et un vecteur enseignant w∗ ∈ Rd : y =
|x>w∗|/

√
d. Cette tâche aussi appartient à la classe des problèmes enseignant-

élève. La récupération des signes reviendrait à une simple régression linéaire
si les signes des étiquettes étaient connus, d’où son nom.
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Les questions scientifiques — Nous visons à comprendre les limites de l’entraînement
des réseaux de neurones artificiels en haute dimension. À cette fin, nous considerons
la limite “thermodynamique” où le nombre d’échantillons n et la dimension de
chaque donnée d tendent vers l’infini, à un taux fixé α = n/d ∼ Od(1).

D’une part, nous visons à comprendre comment les paramètres du modèle (tels
que le nombre d’échantillons, la structure des données, la régularisation, ...) im-
pactent l’apprentissage et si nous pouvons identifier des transitions de phase dans
la performance tout en ajustant ces paramètres, de manière semblable à ce que l’on
observe en mécanique statistique. En particulier, il est utile de comparer les perfor-
mances des modèles de réseaux de neurones à la performance optimale du point de
vue de la théorie de l’information.

D’autre part, nous nous intéressons à l’étude de la dynamique d’apprentissage
des algorithmes tels que la descente de gradient stochastique (SGD). En effet, les
réseaux de neurones artificiels entraînés avec SGD réalisent des performances im-
pressionnantes dans les applications. Toutefois, la théorie derrière ce succès pra-
tique demeure largement inexpliquée. La réponse nécessite de suivre la trajectoire
complète parcourue pendant l’entraînement, ce qui est très compliqué du point de
vue de l’analyse. En effet, la dimension élevée de l’espace des paramètres défie les
techniques mathématiques traditionnelles. De plus, SGD navigue dans un paysage
d’énérgie non convexe suivant une dynamique hors d’équilibre avec un bruit com-
plexe dépendant de sa position.

Les modèles présentés ci-dessus sont utilisés comme exemples prototypiques en
grande dimension pour explorer ces questions de recherche.

Les résultats — Le modèle de classification binaire de mélanges gaussiens présenté
ci-dessus nous sert d’exemple pour discuter de manière unifiée de nombreux phénomènes
intéressants qui sont observés dans la pratique.

Dans l’article 1, nous nous concentrons sur les propriétés statiques du paysage
d’énérgie du problème. Nous étudions les performances des classificateurs convexes
régularisés et calculons des expressions asymptotiques pour les erreurs, dérivées à
la fois de la méthode heuristique des répliques et de la technique rigoureuse de
l’inégalité de Gordon. Nous appliquons ensuite nos découvertes théoriques pour
éclairer le rôle des différents paramètres du modèle. Tout d’abord, nous identifions
une transition de phase de séparabilité linéaire à non-séparabilité linéaire des don-
nées, en augmentant le nombre d’échantillons par rapport á la dimensionnalité du
probléme, dont le seuil critique dépend de la structure des données (la variance du
bruit des nuages gaussiens et leur niveau de déséquilibre, c’est-à-dire leur taille rel-
ative). A cette valeur seuil, nous observons un "pic" d’interpolation dans l’erreur
de généralisation, de la même manière que ce qui est observé dans les applications
pratiques. Nous étudions également le rôle de la régularisation et nous découvrons
que, de façon surprenante, la performance théoriquement optimale peut être atteinte
à une régularisation infinie dans le cas des nuages équilibrés. Nous montrons alors
que ce comportement particulier ne tient plus dès que les clusters sont déséquilibrés.

Dans l’article 3, nous considérons la dynamique des algorithmes d’entraînement
effectuant la classification binaire des mélanges gaussiens décrits ci-dessus. Nous par-
venons à dériver la première description analytique de la trajectoire de l’algorithme
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“multi-pass” SGD, c’est-à-dire le cas réaliste où les exemples disponibles sont utilisés
plusieures fois. À cette fin, nous utilisons la théorie dynamique du champ moyen
(DMFT) de la physique statistique. Le résultat est un ensemble d’équations intégro-
différentielles qui doivent être résolues numériquement de manière auto-cohérente.
Notre solution numérique des équations de DMFT montre un accord excellent avec
les expériences à pas de temps fini, aussi pour des fonctions de perte non-convexes et
en dimension finie (d ≈ 102 − 103). Une grande partie de la théorie des algorithmes
basés sur les gradients se concentre sur le flux de l’algorithme, c’est-à-dire la limite
de temps continu. Cependant, cette limite n’est pas correctement définie pour SGD,
dont la limite de flux est donc souvent traitée sous des approximations comme un
processus de type Langevin. Afin de surpasser ce problème, nous introduisons égale-
ment une variante de la procédure d’échantillonnage, que nous appelons SGD persis-
tant (p-SGD), puisque dans ce cas tous les échantillons sont indépendamment dotés
de persistance et passent un certain temps typique dans le mini-lot d’entraînement.
Cette variante persistante de SGD admet une limite de temps continu bien définie
pour la procédure d’échantillonnage, qui est répresentée par un processus de Markov
à deux états. Pour tous les pas de temps discrets, SGD peut être récupéré à partir
de p-SGD avec un certaine choix du temps de persistance sans recourir à aucune
approximation. De plus, p-SGD introduit des caractéristiques intéressantes dans le
bruit d’échantillonnage de p-SGD.

Dans l’article 4, nous caractérisons la dynamique après longtemps et quan-
tifions l’amplitude du bruit de SGD et p-SGD dans la classification binaire des
mélanges gaussiens. Nous choisissons ce problème au paysage de perte convexe
afin d’isoler le bruit algorithmique des autres sources de bruit possibles dans la dy-
namique, comme la rugosité du paysage d’énérgie. Dans le régime sous-paramétrisé,
où l’erreur d’entraînement finale est positive, la dynamique de SGD atteint un
état stationnaire et on définit une température effective à partir d’un théorème
de fluctuation-dissipation (FDT) effectif, calculé à partir de la DMFT. Nous util-
isons cette température effective pour quantifier l’amplitude du bruit de SGD en
fonction des paramètres du modèle. Dans le régime sur-paramétrisé, où l’erreur
d’apprentissage s’annule, nous mesurons l’amplitude du bruit de SGD en calcu-
lant la distance moyenne entre deux répliques du système avec la même initialisa-
tion et deux réalisations différentes de l’échantillonnage mini-lot. Nous trouvons
que les deux mesures de bruit se comportent de manière similaire en fonction des
paramètres. De plus, nous observons que les algorithmes plus bruyants conduisent
à des solutions plus robustes.

Alors que SGD semble surpasser son homologue déterministe (GD) dans les ap-
plications, les limites de cette déclaration n’ont pas encore été établies du point de
vue théorique. Pour répondre à cette question, dans l’article 5, nous considérons
un problème intrinsèquement difficile, la récupération des signes présentée ci-dessus,
comme prototype de tâche non convexe en grande dimension pour évaluer comment
différentes sources de bruit algorithmique affectent les propriétés de généralisation.
Par conséquent, nous considérons GD, SGD, p-SGD et l’algorithme de Langevin et
nous effectuons une série de simulations afin d’évaluer leurs performances en fonction
des paramètres du modèle (taille du mini-lot, temps de persistance, température de
Langevin). Nos résultats expérimentaux révèlent que, dans le problème considéré,
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la stochasticité est cruciale pour la généralisation. Nous avons également mis en
lumière la différence qualitative entre les sources de bruit dans les algorithmes. En
particulier, nous remarquons que le (p-)SGD, en raison de la structure particulière
de son bruit, possède un protocole d’auto-recuit qui lui permet de surpasser GD.
On utilise alors des initialisations informées, c’est-à-dire, des démarrages proches du
signal,w∗ pour sonder l’interaction du paysage de perte avec l’algorithme. Nous con-
statons que GD peut rester bloqué même très près du signal, alors qu’une récupéra-
tion parfaite est accessible à partir d’initialisations moins renseignées. De plus, la
persistance joue un rôle crucial pour éviter de rester coincé dans les minima locaux.
Nous appliquons ensuite la DMFT pour fournir une caractérisation analytique de
la trajectoire des algorithmes dans la limite de grande dimension. Nous utilisons la
courbe théorique comme ligne de base pour montrer que le comportement observé
n’est pas dû à des effets de taille finie ou de pas de temps finis.

Une partie considérable de la pratique moderne de l’apprentissage automatique
concerne la classification multiclasse. Cependant, alors que la performance de
généralisation du perceptron enseignant-élève à une seule couche sur entrées gaussi-
ennes i.i.d. a été largement étudiée dans le cas binaire, la même analyse du per-
ceptron enseignant-élève dans le cas multiclasse était manquante. Dans l’article 2,
nous comblons cette lacune en dérivant et en évaluant des expressions asympto-
tiques pour les erreurs obtenues par la minimisation du risque empirique et pour les
performances théoriquement optimales dans le modèle enseignant-élève de classifica-
tion multiclasse présenté ci-dessus. Nous examinons d’abord un prior de Rademacher
pour la matrice de l’enseignant et nous dévoilons une transition de phase du premier
ordre dans la performance, en analogie avec le cas des deux classes. Nous considerons
alors un prior gaussien pour l’enseignant et nous utilisons nos résultats théoriques
pour explorer la performance de la minimisation du risque empirique régularisé avec
fonctions de perte convexes. En particulier, nous discutons de deux fonctions de
perte largement utilisées : la cross-entropy et la squared loss. Nous comparons la
cross-entropy régularisée de manière optimale à la performance optimale en théorie
de l’information, et nous concluons que pour trois classes les deux sont extrêmement
proches.
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Organisation of the manuscript

The overview of this thesis has served as a warm-up on the key concepts under-
lying the statistical physics of learning and as an appetizer of some of the relevant
open questions. The following dissertation expands on these points and is organised
in two main parts: on the statics and on the dynamics of learning problems. Al-
though these two perspectives are intertwined and contribute synergistically to our
understanding of ML theory, we have decided to expose them separately in order
to highlight their distinctive methods and questions. This dichotomy deliberately
echoes the long-standing one in the physics of glassy systems. Here, we show the
particular relevance of these complementary approaches in the context of ML theory.

In Part 1 we focus on ANNs at the end of training. Chapter 1.1 reviews the
most common approaches to characterise the properties of the problem landscape
and the different learning regimes encountered according to the region of hyper-
parameter space where the problem lies. In Chapter 1.2, we introduce the binary
Gaussian Mixture Model (GMM) for classification and we derive asymptotic equa-
tions to characterise the performance of regularised convex classifiers as well as the
optimal one. We use this problem as the occasion to introduce the replica method.
We discuss and explain some of the high-dimensional phenomena observed in this
setting. In Chapter 1.3, we turn to multi-class classification in the teacher-student
perceptron model. We derive asymptotic expressions for the errors obtained via
ERM and we discuss its performance in relation to the information-theoretical op-
timum and to the Approximate Message-Passing Algorithm (AMP).

In Part 2, we turn our focus to the study of the dynamics of training algorithms.
In Chapter 2.1, we briefly review the relevant literature on learning dynamics as
well as some useful statistical physics methods to study out-of-equilibrium systems,
such as dynamical mean-field theory (DMFT). In Chapter 2.2, we show how to
track the high-dimensional training dynamics of SGD via DMFT in the GMM for
binary classification. Chapter 2.3 explores some directions to characterise the out-
of-equilibrium noise introduced by the mini-batch sampling procedure of SGD as a
function of the model parameters. In Chapter 2.4, we introduce the sign retrieval
problem as a benchmark task to compare different gradient-based algorithms and in-
vestigate the role played by stochasticity in navigating high-dimensional non-convex
landscapes.

Finally, Part 3 presents some conclusions and perspectives for future work.
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1 - The statics of learning problems
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1.1 - A brief introduction to the statics of learn-
ing

In this chapter, we introduce some useful concepts to understand the static prop-
erties of learning problems. This description amounts to the characterisation of the
problem landscape, induced by the loss function, the architecture and the dataset.
The goal is to study the minima of the lanscape, corresponding to the solutions of
the optimisation problem presented to the ANN. Therefore, we are focusing on all
the possible endpoints of training, regardless the algorithmic trajectory that may
have led there.

This introduction is strongly biased towards the statistical physics approach to
learning theory described in theMotivation and background and by no means aims at
a comprehensive review of all possible approaches to the problem. Instead, we focus
on the theoretical and methodological approaches that are necessary to understand
the results of this thesis. In this regard, the statistical properties of the learning
problem can be discussed in the framework of ensemble equilibrium theory and
the equal probability Boltzmann principle, which laid the foundation of statistical
mechanics. Crucially, as we further discuss in Part 2, such a general principle is still
lacking for non-equilibrium theory, introducing a great challenge to the analysis of
the learning dynamics.

A Bayesian perspective on empirical risk minimisation — The deep connection
between the probabilistic approach of statistical mechanics and the study of in-
ference (or learning) problems is naturally understood in a Bayesian probabilistic
framework. In a statistical estimation (or ML) problem, the goal is to estimate (or
learn) the parameters W from a parametric family of distributions PW (such as
an ANN). To this end, Bayesian statistics (Bayes, 1763) relies on prior information
PW ∗ on the ground truth W ∗. Notice that, in general, this ground truth can be
arbitrarily complicated, but we consider the case in which the parametric family
under consideration is expressive enough to include the ground truth.

For simplicity, from now on we specialise the discussion to the case of supervised
learning problems. In this case, the ground truth generates the correlations between
data and labels.We can therefore write the probability of a certain realisation of the
parameters W given the dataset D = (X,y) = {(xµ,yµ)}nµ=1 making use of Bayes
formula:

P (W |X,y) =
P (y|W ,X)PW ∗(W )

P(X,y)
, (1.1.1)

where P (W |X,y) is called the posterior and P (y|W ,X) the conditional likelihood.
The normalisation factor P(X,y) is called evidence or – in the statistical physics
literature – partition function, also denoted by Z(X,y). The posterior can be
equivalently rewritten as

P (W |X,y) =
1

Z(X,y)
e−βH(W |X,y), (1.1.2)
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where the Hamiltonian H is given by

−βH (W |X,y) = logP (y|W ,X) + logPW ∗(W ), (1.1.3)

so that the posterior clearly corresponds to the Gibbs (or Boltzmann) distribu-
tion of statistical mechanics at inverse temperature β, where each configuration
W is weighted by its Hamiltonian energy rescaled by the temperature T = 1/β.
Tuning the temperature allows us to explore different energy levels, while in the
zero-temperature limit T → 0 the Gibbs measure concentrates on the configura-
tions at lowest energy, i.e., the ground state. The reader is referred to Nishimori
(2001); Grassberger & Nadal (2012); Zdeborová & Krzakala (2016); Advani & Gan-
guli (2016) for a broader overview on the connection between statistical physics and
Bayesian inference.

The empirical risk minimisation (ERM) framework introduced in the background
chapter can be interpreted as the search for the ground state of a system with
Hamiltonian given by the (possibly rescaled) empirical risk R̂, i.e.,

H(W |X,y) =
n∑
µ=1

` (ŷW (xµ),yµ) + λΩ(W ), (1.1.4)

where the loss function plays the role of the log-likelihood and the regularisation of
the log-prior. Note that, in all realistic cases, neither the true likelihood nor the
true prior are known and the empirical risk contains only our best approximations.

This perspective brings useful insights on the design of the estimation (or learn-
ing) procedure. In particular, the crucial role played by the prior has recently
attracted a great research interest, especially in relation to the implicit information
induced by the network design. Indeed, in addition to the explicit regularisation
term appearing in Eq. (1.1.4) that clearly acts as a prior, for instance enforcing
some constraints on the norm of the solution, the specific structure of the archi-
tecture is also known to bias the optimisation acting as a prior (see, e.g., Ulyanov
et al. (2018) and references therein). Moreover, the optimisation algorithm itself
can implicitly bias the dynamics towards solutions that minimise some hidden mea-
sure of complexity. This interesting phenomenon is known as implicit regularisation
(Neyshabur, 2017) and could explain the ability of DNNs to find good solutions
without incurring in overfitting despite fitting the training data.

Training an ANN via ERM is just one of the possible procedures – and in many
practical settings, the most viable one – to solve the estimation problem presented
above. We consider below some other estimators that is of interest for our analysis.

Bayes-optimal estimator — Bayes-optimal (BO) estimation corresponds to the
idealistic setting where the distributions generating the data and the ground truth
are known. Exploiting this additional knowledge, the BO estimator achieves the best
possible performance among all estimators having access to the training dataset and
therefore provides a theoretically-optimal baseline for practical algorithms. The BO
setting enjoys the property that an assignment of W drawn uniformly at random
from the posterior distribution becomes statistically equivalent to an assignment

3
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drawn from the ground truth distribution:

E [f(W1,W2)] = E [f(W ∗,W3)] , (1.1.5)

for all continuous bounded functions f , where W1,W2,W3 are sampled from the
posterior distribution and W ∗ from the ground truth. This is a consequence of
the tower property of conditional expectation and results in a number of interest-
ing properties known as Nishimori conditions (Opper & Haussler, 1991; Iba, 1999;
Nishimori, 2001; Krzakala & Zdeborová, 2011).

Minimum mean squared error — The mean squared error

MSE(Ŵ ) =
1

2
EW |X,y

[
‖Ŵ −W ‖2

F

]
, (1.1.6)

where ‖ · ‖F stands for the Frobenius norm, is a very natural measure of the per-
formance of the estimator Ŵ , where the average is a compromise justified by the
fact that in practice we do not have access to the ground truth parameterW ∗. The
minimum mean squared error (MMSE) estimator is readily obtained by taking the
derivative of Eq. (1.1.6) with respect to Ŵ :

ŴMMSE = argmin
Ŵ

MSE(Ŵ ) = EW |X,y [W ] . (1.1.7)

Unfortunately, computing the average over the posterior is often intractable in high
dimensions and one may resort to Markov-Chain Monte Carlo (MCMC) methods to
sample P(W |X,y). However, sampling methods become prohibitive in very high
dimensions. To overcome this difficulty, statistical physics come to the rescue offering
very powerful heuristic methods to deal with these high-dimensional averages.

Maximum a posteriori — The maximum a posteriori (MAP) is a point-wise esti-
mator maximising directly the posterior distribution

ŴMAP = argmax
W

logP (W |X,y)

= argmin
W

H(W |X,y),
(1.1.8)

where we see from Eq. (1.1.2) that this is exactly equivalent to the ERM problem.

Maximum likelihood — The maximum likelihood estimator (MLE) ŴML is one of
the most popular statistical estimators. In particular, it is central in the frequentist
approach to statistical estimation that, at variance with the Bayesian one, focuses
on the worst-case scenario. The MLE consists in maximising the probability of
observing the given labels, i.e., to restrict the maximisation to the (conditional)
likelihood term in Eq. (1.1.1) without assuming any prior information. Since the n
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samples are taken i.i.d., the estimator can be decomposed as follows:

ŴML = argmax
W

1

n

n∑
µ=1

logP (yµ|xµ,W )

= argmax
W

∫
dx

∫
dy logP (y|x,W )

1

n

n∑
µ=1

δ(y − yµ)δ(x− xµ)

= argmax
W

∫
dx

∫
dy P̂emp(y,x) logP (y|x,W )

= argmax
W

Ex∼P̂emp(x)

∫
dy P̂emp(y|x) logP (y|x,W ) .

(1.1.9)

Therefore, the MLE can be interpreted as closing the average statistical distance
between the model distribution P(y|x,w) and the empirical conditional distribution
P̂emp(y|x) = P̂emp(y,x)/P̂emp(x), where P̂emp(y,x) =

∑n
µ=1 δ(y − yµ)δ(x − xµ)/n

and P̂emp(x) =
∑n

µ=1 δ(x − xµ)/n. Indeed, the maximum conditional likelihood
corresponds to the minimisation with respect to W of the conditional Kullback-
Leibler divergence averaged over the empirical data distribution:

Ex∼P̂emp(x)

[
DKL(P̂emp(y|x)||P(y|x,W ))

]
= Ex∼P̂emp(x),y∼P̂emp(y|x)

[
log P̂emp(y|x)

]
−Ex∼P̂emp(x),y∼P̂emp(y|x) [logP(y|x,W )] ,

(1.1.10)

that is non-negative everywhere and zero if and only if the two distributions coin-
cide. Interestingly, in the regime where the number of data tends to infinity n→∞,
largely exceeding the number of parameters, the MLE is optimal among all estima-
tors. Indeed, under appropriate conditions, the MLE is consistent – i.e., converging
to the true value – and efficient, since it saturates the Cramer-Rao bound (Rao,
1945; Cramer, 1946) meaning that no other consistent estimator has a lower MSE.
However, where the number of data is limited, the MLE incurs in overfitting and
regularised estimators are preferable, as we further discuss in Chapter 1.2.

Mean-field methods — As discussed above, the huge computational complexity
involved in high-dimensional probabilistic modelling calls for alternative methods
leading to efficient approximate computations. Celebrated and extensively used
examples of such approximations are mean-field methods, which have a long history
in the statistical physics literature, in particular regarding the study of spin glass
models.

In a nutshell, mean-field methods are deterministic methods relying on tools such
as Taylor expansions and convex relaxations in order to approximate marginals of
the joint probability distributions of a large-scale system by exploiting the dependen-
cies of its highly-coupled degrees of freedom. The structure of these dependencies
is crucially clarified by a general framework that associates joint probability dis-
tributions with graphs, named probabilistic graphical modeling, where the random
variables are encoded by the nodes of the graph and their interactions by the edges.
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Whenever this graph of interactions is complete, the corresponding model is said to
be fully-connected or mean-field.

The literature on mean-field methods is really vast and the interested reader
can find more details in Mézard et al. (1987); Opper & Saad (2001); Mezard &
Montanari (2009); Gabrié (2020); Montanari & Sen (2022) and references therein.
For an historical overview on spin glass models, we refer the reader to the series of
seven expository articles by Anderson (1988b)–Anderson (1990). In the following,
we limit ourselves to a brief introduction of the replica method, one of the main
mean-field methods, used to study analytically spin glass models.

Self-averaging and the free entropy — The partition function

Zd(X,y; β) =

∫
dW e−βH(W |X,y), (1.1.11)

already introduced in Eq. (1.1.2), is a crucial quantity in statistical mechanics since
it contains the relevant information on the equilibrium distribution of all the pos-
sible configurations of the states of the system. Indeed, Zd(X,y; β) is the moment
generating function of the Gibbs distribution, since its derivatives with respect to
the inverse temperature β give rise to the moments of the distribution.

Since the partition function becomes exponentially peaked around the most prob-
able configurations, large deviation theory is the suitable mathematical framework
to formulate statistical mechanics as a probabilistic theory of high-dimensional cor-
related systems (Ellis, 2006; Touchette, 2009). We therefore take the logarithm of
the partition function, defining the free entropy φd and the free energy fd densities:

φd(β) =
1

d
logZd(X,y; β), fd(β) = − 1

βd
logZd(X,y; β). (1.1.12)

These two quantities are interchangeable and we report both definitions since infor-
mation theory mostly deals with the free entropy while statistical physics usually
refers to the free energy. The free energy and the free entropy densities enjoy the
self-averaging property: in the thermodynamic limit d → ∞, the law of large
numbers kicks in and their probability measure concentrates exponentially around
its expectation, or typical value

φd(β)
d→∞−→ φ(β), fd(β)

d→∞−→ f(β). (1.1.13)
In high dimensions, this key property allows to obtain general results that are inde-
pendent from the specific realisation of the disorder. It is important to notice that
the partition function itself is not self-averaging, and crucially the annealed and
quenched averages of its logarithm do not coincide in general. In particular, due to
Jensen inequality, the annealed average is an upper bound on the quenched one:

EX,y [logZd(X,y; β)] ≤ logEX,y [Zd(X,y; β)] . (1.1.14)
The free entropy (energy) also encodes all the useful information on the system as
it is the cumulant generating function of the Gibbs measure. If we also consider the
entropy density

S(e) = lim
d→∞
−1

d
logP (H(W |X,y) = e) , (1.1.15)
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i.e., the rate function of the Gibbs distribution, the Gartner-Ellis theorem (Gärtner,
1977; Ellis, 1984) states that S is obtained from the free entropy via a Legendre
transformation

S(e) = max
β

(φ(β) + β e) (1.1.16)

Therefore, the existence of the free entropy implies that the Gibbs measure satisfies
a large deviation principle.

The replica method — The replica method (Mézard et al., 1987; Dotsenko, 2000)
is a powerful tool to compute the average quenched free energy of mean-field models
and lies at the heart of this first part of the thesis. The starting point of the
computation relies on the replica trick – an “obvious identity”, as remarked by
Anderson (1988a), known by mathematicians at least since Hardy et al. (1952):

f(β) = − 1

β
lim
d→∞

lim
p→0

EX,y [Zd(X,y; β)p]− 1

p d

= − 1

β
lim
d→∞

lim
p→0

∂pEX,y [Zd(X,y; β)p]

d
.

(1.1.17)

The above expression is perfectly correct, however, at this point we have to proceed
with some weird, but necessary, operations. First, we consider p ∈ N, so that the
computation reduces to the much easier average of an integer power of the partition
function. This power can be seen as the product of p non-interacting copies or
replicas of the system {wa}pa=1. Here, for simplicity, we focus on the case where the
degrees of freedom are encoded by a vector w ∈ Rd. The more general case where
W ∈ Rd×k is a matrix, with k ∼ Od(1), is considered in Chapter 1.3. Note that,
in learning and inference problems where a ground truth w∗ is present, the average
over the ground truth effectively acts as a (p + 1)th replica (with a different prior
distribution, apart from the BO case where the ground truth distribution and the
prior match). The average over the disorder can be easily performed at this point,
with the important effect of decoupling the degrees of freedom of a given system
{waj }dj=1, ∀a = 1, . . . , p, but coupling different replicas of the system through the
order parameters:

Qab =
wa>wb

d
, ma =

wa>w∗

d
, ∀a, b = 1 . . . , p, (1.1.18)

also called overlap variables. At this point, the average replicated partition function
reads

EX,y [Zd(X,y)p] =

∫
dQ dm edS(Q,m), S(Q,m) ∼ Od(1), (1.1.19)

thus, for large d, we can evaluate it at leading exponential order via a saddle-point
method, i.e., extremising the action S with respect to Q andm. However, this step
requires the exchange of the limits p → 0 and d → ∞, which may not commute.
Therefore, in order to compute the limit

f(β) = lim
p→0

1

p
extr
Q,m

S(Q,m), (1.1.20)
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it is necessary to define the infinite dimensional limit of the overlaps in such a way
that it is an analytic function in p. The first guess that comes to mind, motivated
by the symmetry of the action with respect to the permutation of the replicas, is
the replica-symmetric (RS) ansatz:

Qab := q ∀a 6= b, r := Qaa, m := ma, ∀a = 1, . . . , p, (1.1.21)

where the overlaps between every pair of replicas are statistically equivalent.
This procedure allows us to reduce the high-dimensional problem to the simpler

optimisation of the action over a set of few scalar order parameters q, r, m. However,
in many scenarios the RS ansatz is found to be unstable leading to unphysical results
such as negative entropies (Gardner & Derrida, 1988) and more complex replica
symmetry breaking ansatz are required. The general solution was found by Parisi in
a series of works (Parisi, 1979, 1980, 1983), where he proposed a general scheme to
iteratively break the RS in an infinite and continous hierarchy.

A great advantage of the replica method is that its validity extends well beyond
quadratic loss functions, where also random matrix theory techniques can be used
to study the solution space. Moreover, the method is not restricted to convex loss
functions, at variance with currently available rigorous methods such as the Gordon
minimax technique mentioned in Chapter 1.2. The generality of the replica method
arguably compensates for the drawback of its heuristic nature and can pave the way
for the investigation of more and more realistic models of ANNs. We do not dwell
any further into the subtleties of the replica method and its applications, which have
been already extensively reviewed in many venues (see, e.g., Mézard et al. (1987);
Parisi et al. (2020)). For an historical account, see the History of RSB Interview
(Charbonneau, 2021).

Information-theoretical and algorithmic phase transitions — Inspecting the be-
haviour of the free energy, we can detect information theoretical phase transitions
and identify statistical thresholds. Indeed, the overlaps provide a deep interpreta-
tion of the structure of the solution space, capturing the typical distance between
two solutions and between a typical solution and the ground truth.

Focusing on the Bayes-optimal estimator, we can qualitatively identify three
phases:

• Undetectable phase: at very low sample complexity, the ground truth is indis-
tinguishable from any other solution and even the optimal estimator is unable
to correlate with it.

• Weak-recovery phase: above a threshold value of the sample complexity α ≥
αweak, the optimal estimator can only partially correlate with the ground truth.

• Perfect-recovery or easy phase: above the information-theoretical phase tran-
sition α ≥ αIT, the ground truth becomes a global minimum of the free energy
and the optimal estimator can reconstruct it perfectly.

Note that the discussion above only deals with the optimal case, setting thresh-
olds that no algorithm can improve. Indeed, according to the problem, there might
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be a gap between the information-theoretical easy phase and an algorithmic per-
fect reconstruction. This region αIT ≥ α ≥ αalg is called hard phase. These so-
called statistical-to-computational trade-offs are currently broadly studied in high-
dimensional statistics and inference. An example of this situation is treated in
Chapter 1.3. We refer the reader to Percus et al. (2006); Zdeborová & Krzakala
(2016); Ricci-Tersenghi et al. (2019) for more details on the topic.

The teacher-student setting — The teacher-student scenario provides a useful
formulation of inference and learning problems: the teacher generates some ob-
servations by using some ground truth information and a probabilistic model to
generate the data, the student has to recover the ground truth from the data and
the observations handed by the teacher.

Starting with the seminal work of Gardner and Derrida (Gardner & Derrida,
1989) the teacher-student perceptron is a broadly adopted and studied model for
high-dimensional supervised binary (i.e., two-classes) classification. In this model
the input data are Gaussian i.i.d. and a single-layer teacher ANN with weights drawn
i.i.d. from some distribution generates the labels. A student ANN then uses the
input data and labels to learn the teacher function. The corresponding generalisation
error as a function of the number of samples per dimension α = n/d was first derived
using the replica method from statistical physics in the limit n, d→∞ for a range of
teacher weight distributions (Gaussian and Rademacher being the most commonly
considered) and for a range of estimators, e.g., BO or ERM with common losses, see
the review articles by Seung et al. (1992b); Watkin et al. (1993); Engel & Van den
Broeck (2001) and references therein.

Notably, the phase transition in the optimal generalisation error of the teacher-
student perceptron with Rademacher teacher weights (Györgyi, 1990; Sompolinsky
et al., 1990) is possibly one of the earliest examples of statistical-to-computational
trade-off. More recently, these works on the teacher-student perceptron have been
put on rigorous ground in Barbier et al. (2019) for the BO estimation, and in Aubin
et al. (2020) for ERM with convex losses.

Constraint satisfaction problems and the SAT-UNSAT transition — A useful
framework to study learning problems is that of constraint satisfaction problems
(CSPs), such as the k− SAT problem, q− coloring, the traveling salesman problem,
and sphere packing. See, e.g., Mezard & Montanari (2009) for an introduction and
more examples.

CSPs are a special class of optimisation problems where the goal is to find a
configuration of d parameters w that satisfies a given set of constraints {Cµ(w)}nµ=1,
n = αd. The problem is said to be satisfiable (SAT) if there exists at least
one solution respecting all the constraints and unsatisfiable (UNSAT) otherwise. A
special case is that of random CSPs, where the set of constraints is drawn at random
and plays the role of quenched disorder. This analogy has allowed the study of
phase transitions in the solution space of CSPs controlled by the constraint density
α using statistical physics methods. When the constraint density reaches a critical
threshold α∗, the space of solutions shrinks to zero and a so-called SAT-UNSAT
transition occurs from satisfiability to non-satisfiability. The phenomenology of
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phase transitions in the solution space of CSPs is actually much richer, the interested
reader is referred to Krzakała et al. (2007); Gabrié et al. (2017).

The perceptron problem also belongs to the class of random CSPs with contin-
uous degrees of freedom (Franz et al., 2017), where each sample introduces a new
constraint. A crucial point to keep in mind is that the link between constraint-
satisfaction and learning problems is limited to the training phase: indeed, the em-
pirical risk can be associated to a constraint-satisfaction landscape. However, the
ultimate goal of learning is generalisation and in order to model this phenomenon
it is crucial that the constraints involve some correlations between the data and
the labels. This is not the case in general for CSPs, where the perceptron is often
studied as a prototype random landscape with random labels uncorrelated from the
data.

10



1.2 - The learning curves of binary Gaussian
mixture classification

High-dimensional statistics where both the dimensionality and the number of
samples are large displays highly non-intuitive behaviour. A number of the as-
sociated statistical surprises are for example presented in the recent, yet already
rather influential papers (Hastie et al., 2022; Sur & Candès, 2019) that analyse
high-dimensional regression for rather simple models of data. In this chapter, we
focus instead on classification and we introduce one of the simplest models consid-
ered in statistics – the mixture of two Gaussian clusters – as a prototype for this
task. We investigate the performance of different estimators and reveal some of
the interesting behaviours associated to the high-dimensional regime. In particular,
we discuss the surprising effect of the regularisation, that in some cases allows to
reach the Bayes-optimal (BO) performance. The following results are based on Ar-
ticle 1. At the same time, this setting serves us as a working example to present the
application of the replica method in the context of learning theory.

1.2.1 . Introduction to the task
We introduce here the binary Gaussian Mixture Model (GMM) that we also

consider in Chapters 2.2 and 2.3. We consider two centroids localised at ±w∗/
√
d,

with w∗ ∈ Rd, and a synthetic training set

X = (x1, ...,xn)> ∈ Rn×d, with binary labels y = (y1, ..., yn)> ∈ {±1}n, (1.2.1)

where the samples xµ are generated as

xµ = yµ
w∗√
d

+
√

∆ zµ, zµ
i.i.d.∼ N (0, Id), µ ∈ {1, ...n} . (1.2.2)

The labels reflect the memberships in the clusters and are drawn i.i.d. with prob-
ability P(y = +1) = ρ and P(y = −1) = 1 − ρ. Therefore, the clusters contain ρn
and (1 − ρ)n points respectively, on average. If ρ = 0.5, we say that the clusters
are balanced, and unbalanced otherwise. We draw the centroid w∗ either uniformly
on the hypersphere of radius

√
d, w∗ ∈ Sd−1(

√
d), or with i.i.d. standard Gaussian

components w∗j ∼ N (0, 1), ∀j = 1, . . . , d. Note that these two choices become equiv-
alent in infinite dimensions. Moreover, due to the statistical isotropy of the samples,
without loss of generality we can choose a basis where w∗ = (1, 1, ...1) ∈ Rd.

In all what follows, we consider the high-dimensional setting where the dimension
of each point in the dataset is d → ∞ and the size of the training set n = αd, at
fixed sample complexity α ∼ Od(1). Similarly, the noise level ∆ > 0 and the cluster
size parameter ρ are fixed of order one. The factor

√
d in Eq. (1.2.2) ensures that a

classification better than random is possible, yet even the oracle-classifier that knows

11



Chapter 1.2. The learning curves of binary Gaussian mixture classification

exactly the centroid w∗ only achieves a classification error bounded away from zero.
Note that, if the noise level ∆ or the fraction of samples α are small enough, the two
Gaussian clouds are linearly separable by an hyperplane. Therefore, as explained in
the Motivation and background chapter, a single-layer ANN (a perceptron) is enough
to perform this task and we can focus on the simplest linear classification machine
with output:

ŷµ(w) = sgn(w>xµ/
√
d+ κ), (1.2.3)

where both the weights w and the bias κ have to be learned. In other words, at
sufficiently low α(∆, ρ), the perceptron classification problem defined above lies in
the SAT phase (see Chapter 1.1). The constraints to be satisfied to achieve perfect
classification are yµ (w>xµ/

√
d+ κ) ≥ 0, ∀µ = 1, . . . n. Therefore, the loss is only a

function of this product.
We are interested in studying the performance achieved by empirical risk min-

imisation (ERM) in comparison to Bayes-optimal (BO) estimation.

Empirical risk minimisation — We focus on ridge regularised learning performed
by ERM, where the empirical risk is given by:

L(w, b)=
n∑
µ=1

`
(
yµ

(
1√
d
x>µw + κ

))
+

1

2
λ‖w‖2

2, (1.2.4)

w and κ denote, respectively, the weight vector and the bias to be learned, and λ
is the tunable strength of the regularisation. While our result holds for any convex
loss function `(·), we mainly concentrate on the following classic ones:

• the square loss: `(v) = 1
2
(1− v)2,

• the logistic loss: `(v) = log (1 + e−v),

• the hinge loss: `(v) = max
v
{0, 1− v},

that we display in Figure 1.2.1. Note that, for the binary GMM model of Eq. (1.2.2)
under consideration, the unregularised (λ = 0) ERM estimator with the logistic loss
corresponds to the maximum likelihood estimator (MLE) introduced in Chapter 1.1.
This follows directly from the Bayes formula:

logP(y|x) = log
P(x|y)P(y)∑

y=±1 P(x|y)P(y)
= log

(
1 + e−c

)
, (1.2.5)

where c = 2
∆

(
1√
d
x>w∗ + ∆

2
log ρ

1−ρ

)
, therefore a simple redefinition of the variables

leads to the logistic loss function than turns out to correspond to the MLE (or rather
the MAP estimator if one allows the learning of a bias to account for the possibly
different cluster sizes).

12
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Figure 1.2.1 – Loss functions under consideration.

Related works — The unsupervised GMM is a standard problem in statistics
(Friedman et al., 2001). The supervised version of the model has generated a recent
surge of interest as a prototype for classification tasks. Lelarge & Miolane (2019)
have considered the case of balanced clusters and have computed rigorously the BO
estimator. We extend this result to arbitrary cluster size ρ, which serves us as a
baseline for the performance of the estimators obtained via ERM.

The performance of ERM has been studied by Mai & Liao (2019) again for
the balanced case and at zero regularisation, under the assumption that the data
are not linearly separable, i.e., the problem lies in the UNSAT region of parameter
space. The authors have concluded that, in this specific setting, the square loss is
a universally-optimal loss function. Our study of regularised losses in the generic
unbalanced setting shows that the performance of non-regularised square loss can
be drastically improved. The linear separability condition has been studied in the
balanced case at zero regularisation by Deng et al. for the logistic loss and by
Kini & Thrampoulidis (2020) for the square loss. The effect of data structure on
learning a linearly separable rule has been studied already by Marangi et al. (1995)
in a model of two clusters of binary input data labeled by a perceptron teacher. In
the following, we derive the separability condition as a function of all the problem
parameters including arbitrary cluster size.

Our main contribution is the derivation of rigorous asymptotic closed-form ex-
pressions for the generalisation and training error in the noisy high-dimensional
regime, for any convex loss function, including the effect of regularisation, and for
arbitrary cluster size. The proof is based on Gordon’s inequality technique (Gordon,
1985; Thrampoulidis et al., 2015). The same formulas are obtained from the heuris-
tic replica theory of statistical physics. Indeed, closely-related models have been
studied in the literature with this method (Del Giudice et al., 1989; Franz et al.,
1990). We show through numerical simulations that the formulas are extremely
accurate even at moderately small dimensions.

Armed with the exact solution, we proceed with a systematic investigation of
the effects of regularisation and cluster size. In particular, we discuss how far ERM

13



Chapter 1.2. The learning curves of binary Gaussian mixture classification

estimators fall short of the BO one, with surprising conclusions where we illustrate
the effect of weak and strong regularisation. In the SAT region, where data are
linearly separable, Rosset et al. (2004) prove that all monotone non-increasing loss
functions that depend on the margin find a solution maximising the margin. This
is indeed exemplified in our model by the fact that below the linear separability
transition (α < α∗(∆, ρ)) the hinge and logistic losses converge to the same test
error as the regularisation vanishes. This is related to the implicit regularisation of
gradient descent (GD) for the non-regularised minimisation (Soudry et al., 2018b).

The existence of a sharp transition for perfect separability in the model, with
and without bias, is interesting in itself. Recently, Sur & Candès (2019) analysed
the MLE in high-dimensional logistic regression. While they considered Gaussian
data (whereas we study a Gaussian mixture) their results on the existence of the
MLE being related to the separability of the data and displaying a sharp phase
transition are of the same nature as ours, and similar to earlier works in statistical
physics Gardner (1988); Gardner & Derrida (1989); Krauth & Mézard (1989).

All these results show that the binary GMM studied here allows to discuss,
illustrate and clarify in a unified fashion many phenomena that are currently the
subject of intense scrutiny in high-dimensional statistics and ML.

1.2.2 . Generalisation error and Bayes-optimal perfor-
mance

In this section we show how to derive an asymptotic expression for the generalisa-
tion error in high dimensions. As customary in classification tasks, the generalisation
error is defined as the average fraction of mislabeled instances

εgen = Eynew,xnew,X,y [1 (ŷnew 6= ynew)] =
1

4
Eynew,xnew,X,y

[
(ynew − ŷnew)2] , (1.2.6)

where ynew is the label of a new observation xnew, and the estimator ŷnew is computed
as

ŷnew = sign
(
w>xnew√

d
+ κ

)
. (1.2.7)

Eq. (1.2.7) holds for every vector w = w (X,y) and bias κ = κ (X,y) computed
on the training set {X,y}. Using that ynew, ŷnew = ±1, Eq. (1.2.6) can be rewritten
as

εgen =
1

2

(
1− Eynew,xnew,X,y

[
sign

(
w>ynewxnew√

d
+ ynew κ

)])
. (1.2.8)

The term ynew xnew can be rewritten as

ynew xnew = ynew

(
ynew

w∗
√
d

+
√

∆znew

)
=
w∗
√
d

+
√

∆ z′new, (1.2.9)
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where z′new = ynewznew ∼ N (0, Id) is distributed as znew, since ynew and znew are
independent. Therefore, we find

Eynew,xnew,X,y

[
sign

(
w>ynew xnew√

d
+ ynew κ

)]
= Eynew,z′new,w

∗,X,y

[
sign

(
w>w∗

d
+

√
∆

d
w>z′new + ynew κ

)]
.

(1.2.10)

The estimator w only depends on the training set, hence w and z′new are indepen-
dent. We call their rescaled scalar product ς, a random variable distributed as a
standard Gaussian

ς =
1

‖w‖
w>z′new ∼ N (0, 1) . (1.2.11)

By averaging over ς, we obtain

Eynew,w∗,X,y,ς

[
sign

(
w>w∗

d
+

√
∆

d
‖w‖ς + ynew κ

)]

= Eynew,w∗,X,y,ς

[
sign

(
1√
∆

w>

||w||
w∗
√
d

+ ς + ynew κ

√
d√

∆||w||

)]
,

(1.2.12)

where we used that
√

∆
d
‖w‖ > 0 to rescale the argument of the sign function.

Finally, we obtain

εgen =
1

2
(1− Eynew,w∗,X,y [P (ς > −τ)− P (ς < −τ)])

= Eynew,w∗,X,y [Q(τ)] .
(1.2.13)

where Q(x) = 1√
2π

∫∞
x
e−t

2/2dt = 1
2
erfc

(
x√
2

)
is the Gaussian tail function, and we

have defined
τ =

√
d√

∆||w||

(
w>w∗

d
+ ynew κ

)
. (1.2.14)

Due to concentration of measure, the infinite dimensional limits m, q of the overlaps

md :=
w>w∗

d

d→∞−→ m, (1.2.15)

qd :=
||w||2

d

d→∞−→ q, (1.2.16)

are deterministic. Hence the generalisation error reads

εgen = ρQ
(m+ κ√

∆q

)
+ (1− ρ)Q

(m− κ√
∆q

)
, (1.2.17)

where we remind that ρ ∈ (0, 1) is the probability that ynew = +1.
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Bayes-optimal performance — The BO estimator has access to the n training
samples {(yµ,xµ)}nµ=1 and to the generative model of the data, including the con-
stants ρ and ∆. Crucially, it does not have access to the position of the centroid w∗,
that can only be estimated from the data. In order to compute the BO error, we
consider the distribution of a new data point xnew and the corresponding new label
ynew, given the estimate w of the true centroid w∗, that is given by Bayes formula:

P (xnew, ynew|w) ∝ P (xnew|ynew,w)Py(ynew)

∝ exp

(
− 1

2∆

d∑
i=1

(
xinew −

yneww
i

√
d

)2
)

Py(ynew),
(1.2.18)

where the symbol “∝” takes into account the normalisation constant. Similarly, the
posterior on w given the training set is

P (w|X,y) ∝ P (X|w,y)Pw∗ (w)

∝

[
n∏
µ=1

exp

(
− 1

2∆

d∑
i=1

(
xiµ −

yµw
i

√
d

)2
)]

exp

(
−1

2

d∑
i=1

(wi)2

)
,

(1.2.19)

where we have used the fact that w∗ has i.i.d. standard Gaussian components. We
would like to find an explicit expression for

P (ynew|xnew,X,y) ∝ Ew|X,y [P (ynew,xnew|w)] , (1.2.20)

in order to estimate the new label as

ŷnew = argmax
y′=±1

logP (y′|xnew,X,y) . (1.2.21)

Therefore, we have to compute

Ew|X,y [P (ynew,xnew|w)] ∝

Py (ynew)

∫ ( d∏
i=1

dwi e−
1
2

(wi)2

)
n∏
µ=0

e
− 1

2∆

∑d
i=1

(
xiµ−

yµw
i

√
d

)2

,
(1.2.22)

where in the product over µ on the right-hand side we have used the notation
y0 = ynew, x0 = xnew. Let us call Iw the integral over w in Eq. (1.2.22):

Iw =
d∏
i=1

∫
dwi e

− 1
2∆

∑n
µ=0

(
xiµ−

yµw
i

√
d

)2

− 1
2

(wi)2

. (1.2.23)

Computing the integral over wi, we obtain

Iw = C (α,∆, d)
d∏
i=1

n∏
µ=0

e
− 1

2∆(α+∆+ 1
d)

((α+∆)(xiµ)2−α
n
xiµyµ

∑n
ν=0 x

i
νyν)

= C (α,∆, d) e
− 1

2∆(α+∆+ 1
d)
∑d
i=1((α+∆)(xinew)2−α

n
ynewxinew

∑n
ν=1 x

i
νyν−αn (xinew)2)

×e
− 1

2∆(α+∆+ 1
d)
∑n
µ=1

∑d
i=1((α+∆)(xiµ)2−α

n
yµxiµ

∑n
ν=1 x

i
νyν−αn yµx

i
µynewxinew)

= C (α,∆, d) C̃ (X,y,xnew, α,∆, d) e

α

∆(α+∆+ 1
d)
ynewx>new

1
n

∑n
µ=1 yµxµ

,

(1.2.24)
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where the first two factors C and C̃ contain all the terms that do not depend on
ynew. Therefore, we find

ŷnew = argmax
y=±1

[
α

∆
(
α + ∆ + 1

d

)yx>new

1

n

n∑
µ=1

yµxµ + logPy (y)

]
. (1.2.25)

Using the fact that yµxµ = w∗
√
d

+
√

∆zµ, zµ ∼ N (0, Id) and w∗ is the true realisation
of w, the first term in Eq. (1.2.25) in the limit where n, d→∞ can be rewritten as

1

n

n∑
µ=1

x>newyµxµ −→
n,d→∞

ynew +

√
∆

(
1 +

∆

α

)
z′new, (1.2.26)

where z′new ∼ N (0, 1). Therefore, in the large d limit we find that

ŷnew = argmax
y=±1

[
α

∆ (α + ∆)
y

(
ynew +

√
∆

(
1 +

∆

α

)
z′new

)
+ logPy (y)

]
. (1.2.27)

It is useful to rewrite the generalisation error as

εgen =
1

4
EX,y,xnew,ynew

[
(ŷnew − ynew)2

]
=

∑
ynew=−1,1

P (ŷnew 6= ynew)Py(ynew). (1.2.28)

Using Eq. (1.2.27), we can compute

P (ŷnew 6= ynew)

= P
(
ynewz

′
new < −

√
α

∆(α + ∆)

(
1 +

(
1 +

∆

α

)
∆

2
log

Py(ynew)

Py(−ynew)

))
.

(1.2.29)

If ynew = 1, Eq. (1.2.29) gives

P (ŷnew 6= 1) = Q

(
α

∆+α
+ ∆

2
log ρ

1−ρ√
∆ α

∆+α

)
, (1.2.30)

where Q(x) = 1√
2π

∫∞
x
e−t

2/2dt = 1
2
erfc

(
x√
2

)
is the Gaussian tail function. If ynew =

−1, Eq. (1.2.29) gives

P (ŷnew 6= −1) = Q

(
α

∆+α
− ∆

2
log ρ

1−ρ√
∆ α

∆+α

)
. (1.2.31)

Using the fact that ρ = Py(1) and 1− ρ = Py(−1), we obtain

εBO
gen = ρQ

(
α

∆+α
+ ∆

2
log ρ

1−ρ√
∆ α

∆+α

)
+ (1− ρ)Q

(
α

∆+α
− ∆

2
log ρ

1−ρ√
∆ α

∆+α

)
, (1.2.32)

which gives the BO error as a function of the cluster unbalance ρ, the noise variance
∆, and the sample complexity α.
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The Hebb estimator — In the setting under consideration, the BO performance
turns out to be realised efficiently by the following simple estimator, akin to applying
the Hebb’s rule (Hebb, 1949):

ŵHebb =
1

α

n∑
µ=1

yµ
xµ√
d
, (1.2.33)

when plugged into the estimation rule in Eq. (1.2.3), as known for the case of the
teacher-student perceptron (Engel & Van den Broeck, 2001). This result has already
been shown in Lelarge & Miolane (2019) for the case of balanced clusters. Note that,
in the case of balanced clusters, the Hebb estimator is unbiased by definition, since
the noise has zero mean.

In the more interesting case of non-balanced mixture of Gaussians, one further
needs to optimise the intercept κ in the linear fit. Since the minimiser of the gener-
alisation error with respect to the bias is unique, this parameter can be optimised
in a number of ways, including gradient descent or cross validation. The optimal
bias κ̂ is obtained from the minimisation of the generalisation error in Eq. (1.2.17)
with respect to κ, at fixed m, q:

κ̂ = argmin
κ

εgen(q,m, κ) =
q

m

∆

2
log

(
ρ

1− ρ

)
. (1.2.34)

Substituting Eq. (1.2.33) in the definition of q,m in Eq. (1.2.16), we obtain that the
values of m and q associated to the plugin estimator are

m = 1, q =
(
1 + ∆

α

)
. (1.2.35)

Hence, the generalisation error of the plug-in estimator is

εplugin
gen = P

(
ynew

(
1√
d
x>newŵ

Hebb + κ̂

)
< 0

)
= P

(
ynewz

′
new < −

√
α

∆(α + ∆)

(
1 + ynew

(
1 +

∆

α

)
∆

2
log

ρ

1− ρ

))
,

(1.2.36)

where we have used Eq. (1.2.26) in the last equality. The probability in Eq. (1.2.36) is
the same as in Eq. (1.2.29). Thus, the plug-in estimator achieves the BO error. Since
there exists a plug-in estimator that reaches the BO performance, it is particularly
interesting to see how the ones obtained by ERM compare with the optimal result.

1.2.3 . The learning curves of empirical risk minimisa-
tion via the replica method

In this section, we illustrate how to derive the learning curves1 for the binary
GMM of classification via the replica method introduced in Chapter 1.1. This
derivation is based on Franz et al. (2017); Urbani (2018). We refer to Article 1 for
the rigorous derivation obtained via Gordon’s inequality techniques.

1An unpublished variant of this computation has been derived in September 2019 together
with Federica Gerace and Bruno Loureiro.
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The Gibbs measure — We recast the ERM framework in the statistical physics
language, as previously explained in Chapter 1.1, by writing the Gibbs distribution

Pβ (w|X,y) =

1

Zd(X,y)

n∏
µ=1

exp

(
−β`

(
yµ
w>xµ√

d

)
+ κ

) d∏
i=1

exp

(
−βλ

2
w2
i

) (1.2.37)

and recalling that ERM is recovered in the ground-state limit β →∞ (T = 1/β →
0).

Average free energy density — To characterise the typical performance of the
algorithm, we compute the average free energy density fβ in the infinite dimensional
limit:

fβ = − 1

β
lim
d→∞

〈logZd(X,y)〉β
d

, (1.2.38)

where from now on we use the square brackets to indicate the average over the
disorder (the dataset) 〈·〉β = EX,y [·] performed at inverse temperature β. In order
to compute it, we start from the replica trick:

fβ = − 1

β
lim
d→∞

lim
p→0

∂p〈Zd(X,y)p〉β
d

. (1.2.39)

The pth moment of the partition function is
〈Zd (X,y)p〉β =〈∫ ( p∏

a=1

d∏
j=1

dwaj

)
e
−β
∑p
a=1

[∑n
µ=1 `

(
yµ

wa>xµ√
d

+κ

)
+λ

2
‖wa‖2

]〉
β

,
(1.2.40)

where we have replaced the pth−power with a product over p replicas of the system,
indicised by a = 1, . . . p. It is useful to define the auxiliary variables

raµ = wa>xµ/
√
d, ∀µ = 1, . . . n, (1.2.41)

by means of the Fourier representation of the Dirac δ-function: δ(x) =
∫ +∞
−∞

dz
2π
eixz.

We obtain

〈Zd (X,y)p〉β =

〈∫ (∏
a,j

dwaj

)(∏
a,µ

draµdr̂aµ
2π

)

e−β
∑
a,µ `(yµraµ+κ)−βλ2

∑
a,j(w

a
j )2 × exp

(
i
∑
µ,a

r̂aµ

[
raµ −

wa>xµ√
d

])〉
β

.

(1.2.42)

We can now average over the Gaussian vectors zµ, µ = 1, ...n, and find
〈Zd (X,y)p〉β ∝〈∫ (∏

a,j

dwaj

)(∏
a,µ

draµdr̂aµ
2π

)
e
∑
a,µ[ir̂aµraµ−β`(yµraµ+κ)]−βλ2

∑
a,j(w

a
j )2

×
αd∏
µ=1

exp

(
−∆

2

n∑
a,b=1

r̂aµr̂
b
µ

wa>wb

d
−

n∑
a=1

iyµr̂
a
µ

wa>w∗

d

)〉
β

,

(1.2.43)
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where now the brackets 〈·〉β indicate the average over the labels yµ and the ground
truth w∗, and we have used the symbol “∝” to indicate that we are neglecting
multiplicative constant terms. Notice that Eq. (1.2.43) depends on the weights only
through the two order parameters:

Qab =
wa>wb

d
∀a ≤ b, (1.2.44)

ma =
wa>w∗

d
∀a, (1.2.45)

that we have introduced in Chapter 1.1 and that naturally appear from the average
over the disorder, decoupling the degrees of freedom in each system but coupling dif-
ferent replicas. We refer to Qab (Eq. (1.2.44)) as self-overlap and toma (Eq. (1.2.45))
as magnetisation. Therefore, we can transform the integral over w into an integral
over Q, m via the Jacobian:

J (Q,m) = d
p(p+1)

2

∫ (∏
a,j

dwaj e−
βλ
2

(waj )2

)
×
∏
a≤b

δ
(
dQab −wa>wb

)∏
a

δ
(
dma −wa>w∗)

= d
p(p+1)

2

∫ (∏
a,j

dwaj e−
βλ
2

(waj )2

)
×e

∑
a≤b iQ̂ab(dQab−wa>wb)+

∑
a im̂a(dma−wa>w∗).

(1.2.46)

We can now compute the Gaussian integral over the weights w, obtaining

〈Zd (X,y)p〉β ∝〈∫ (∏
a,µ

draµdr̂aµ
2π

)(∏
a≤b

dQabdQ̂ab

2π

)(∏
a

dmadm̂a

2π

)
e
∑
a,µ[ir̂aµraµ−β`(yµraµ+κ)]

×

[
n∏
µ=1

e−
∆
2

∑n
a,b=1 r̂

a
µr̂
b
µQab−

∑n
a=1 iyµr̂aµma

]
exp

(
d
∑
a≤b

iQ̂abQab + d
n∑
a=1

im̂ama

)

× exp

(
−d

2
log det

(
iQ̃+

d

2

∑
a,b

iQ̃−1
ab m̂am̂b

))〉
β

,

(1.2.47)
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where we have defined Q̃ab = (1+δa,b)Q̂ab− iδa,bλ/T (δa,b being the Kronecker delta)
and we have used that ‖w∗‖2 = d. Integrating over m̂, we find

〈Zd (X,y)p〉β ∝

〈∫ (∏
a,µ

draµdr̂aµ
2π

)(∏
a≤b

dQab

)(∏
a

dma

)
e
∑
a,µ[ir̂aµraµ−β`(yµraµ+κ)]

×

[
αd∏
µ=1

exp

(
−∆

2

n∑
a,b=1

r̂aµr̂
b
µQab −

n∑
a=1

iyµr̂
a
µma

)]

×

(∏
a≤b

dQ̂qb

)
exp

(
d
∑
a≤b

iQ̂abQab −
d

2
log det

(
iQ̃
)
− d

2

∑
a,b

iQ̃abmamb

)
︸ ︷︷ ︸

I

〉
β

.

(1.2.48)

Let us consider the integral over Q̂, that we have called I. We can perform a saddle-
point approximation for large d by extremising the exponent in I with respect to
the Q̂ab variables:

∂

∂Q̂ab

{
i

2

∑
a,b

(
Q̃ab + iβλδa,b

)
Qab −

1

2
log det(iQ̃)− i

2

∑
a,b

maQ̃abmb

}
= 0. (1.2.49)

Eq. (1.2.49) implies
iQab − Q̃−1

ab − imamb = 0. (1.2.50)
Hence, the solution of the saddle-point equation is

Q̃ = −iU−1, (1.2.51)

where Uab = Qab −mamb. The average partition function becomes

〈Zd (X,y)p〉β ∝

〈∫ (∏
a≤b

dQab

)(∏
a

dma

)
e
d
2

log det(U)−βλd
2

∑
aQaa

×

(∏
a,µ

draµdr̂aµ
2π

)[
αd∏
µ=1

e−
∆
2

∑n
a,b=1 r̂

a
µr̂
b
µQab+

∑n
a=1[ir̂aµ(raµ−yµma)−β`(yµraµ+κ)]

]〉
.

(1.2.52)

In order to compute the integral over the variables r̂aµ and raµ, it is useful to rewrite
the Gaussian factor F = exp

(
−∆

2

∑
a,b,µ r̂

a
µr̂

b
µQab

)
as a differential operator acting

on the product over the replicas’ index c:

F =
n∏
µ=1

exp

(
∆

2

p∑
a,b=1

Qab
∂2

∂hµa∂h
µ
b

)(
p∏
c=1

exp
(
−ir̂cµh

µ
c

))∣∣∣∣
hµc=0

. (1.2.53)

Hence the integral over r̂aµ, raµ is equal to
n∏
µ=1

exp

(
∆

2

p∑
a,b=1

Qab
∂2

∂hµa∂h
µ
b

)

×

(∫ p∏
c=1

drcµdr̂cµ
2π

exp
(
−β`

(
yµr

c
µ + κ

)
+ ir̂cµ(rcµ − hµc − yµmc)

)∣∣∣∣
hµc=0

)
.

(1.2.54)
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Note that the input-output correlations are only between a training sample and
the corresponding label, i.e., within the same µ, therefore it is possible to factorise
over µ. Finally, we can use the Fourier representation of the Dirac δ−function and
rewrite

〈Zd (X,y)p〉β ∝
∫ (∏

a≤b

dQab

)(∏
a

dma

)
e
d
2

log det(U)−βλd
2

∑
aQaa+αd logZ , (1.2.55)

where

Z = Ey

[
exp

(
∆

2

p∑
a,b=1

Qab
∂2

∂ha∂hb

)(
p∏
c=1

e−β`(yhc+ymc+κ)

∣∣∣∣
hc=0

)]
. (1.2.56)

Therefore, in the large d limit the action is dominated by its saddle point. We can
evaluate it by the Laplace method (Wong, 1989):

〈Zd (X,y)p〉 ' exp (dS ({Q∗ab} , {m∗a})) , (1.2.57)

where we have defined the replicated action S

S ({Qab} , {ma}) =
1

2
log det (U )− βλ

2

∑
a

Qaa + α logZ, (1.2.58)

and {Q∗ab} , {m∗a} are the solutions of the saddle-point equations

∂

∂Qab

S ({Qab}, {ma})
∣∣∣∣
{Q∗ab},{m∗a}

=0 ∀a ≤ b, (1.2.59)

∂

∂ma

S ({Qab}, {ma})
∣∣∣∣
{Q∗ab},{m∗a}

=0 ∀a. (1.2.60)

Replica symmetric ansatz — We look for a subspace of solutions with a symmetry
among all the replicas. To this end, we introduce a replica symmetric (RS) ansatz
defined as follows

Qab = rδab + q(1− δab), ma = m. (1.2.61)

The first term in the action is then

1

2
log detU =

1

2
log det

 r −m2 q −m2 ... q −m2

q −m2 r −m2 ... q −m2

q −m2 ... ... r −m2


=

1

2
log
[
(r − q)p−1(r − q + p(q −m2))

]
,

(1.2.62)

using the matrix determinant lemma. The second term is simply −pβλr/2, and the
third term is

α logZ =

α logEy

[
e

∆q
2 (
∑
a

∂
∂ha

)
2 ∏

c

e
∆(r−q)

2
∂2

∂h2
c exp

(
− 1

T
` (yhc + ymc + κ)

)∣∣∣∣
hc=0

]
.

(1.2.63)

22



Chapter 1.2. The learning curves of binary Gaussian mixture classification

We now use the following two identities (Nishimori, 2001; Urbani, 2018):

exp

(
ω

2

∂2

∂h2

)
g(h) =

∫ +∞

−∞

dz√
2πω

e−
z2

2ω g(h− z) = γω ∗ g(h), (1.2.64)

where γω ∼ N (0, ω), and(
n∑
a=1

∂

∂ha

)τ

g(h1, ..., ht)

∣∣∣∣
{hc=h}

=
∂τ

∂hτ
g(h, ..., h), (1.2.65)

to rewrite

α logZ = α logEy
[
γ∆q ∗

[
γ∆(r−q) ∗ exp

(
− 1

T
` (yh+ ym+ κ)

)]p∣∣∣∣
h=0

]
. (1.2.66)

Under the RS ansatz, the expression of the action is thus

S(r, q,m) =
1

2

[
(p− 1) log(r − q) + log(r − q + p(q −m2))

]
− pβλr

2

+ α logEy
[
γ∆q ∗

[
γ∆(r−q) ∗ exp (−β` (yh+ ym+ κ))

]p∣∣∣∣
h=0

]
.
(1.2.67)

In the limit p→ 0 :

S(r, q,m) ' pS̃(r, q,m) = p

(
1

2
log(r − q) +

q −m2

2(r − q)
− βλr

2

+αEy
[
γ∆q ∗ log

(
γ∆(r−q) ∗ exp (−β` (yh+ ym+ κ))

)∣∣∣∣
h=0

])
.

(1.2.68)

Finally, by setting to zero the derivatives of the action with respect to r, q and m,
we obtain the following saddle-point equations in the RS-ansatz :

1

(r − q)
=

= βλ− α∆

∫ +∞

−∞

dh√
2π∆q

e−h
2/2∆qEy

[
∂2

∂h2
log
(
γ∆(r−q) ∗ e−β`(yh+ym+κ)

)]
,

(1.2.69)

q −m2

(r − q)2
=

α∆

∫ +∞

−∞

dh√
2π∆q

e−h
2/2∆qEy

[(
∂

∂h
log
(
γ∆(r−q) ∗ e−β`(yh+ym+κ)

))2
]
,

(1.2.70)

m

(r − q)
= α

∫ +∞

−∞

dh√
2π∆q

e−h
2/2∆qEy

[
∂

∂m
log
(
γ∆(r−q) ∗ e−β`(yh+ym+κ)

)]
. (1.2.71)
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Low temperature expansion — In this paragraph, we show how to track the per-
formance of ERM by looking at the ground state of the system. In order to compute
Eqs. (1.2.69)–(1.2.71) in the β → ∞ (T = 1/β → 0) limit, we focus on the UN-
SAT phase, where the solution is unique due to the convexity of the loss functions
under consideration. Since in this case the volume of possible solutions shrinks to
zero, we can use the ansatz: q ' r − χT as T → 0, where χ > 0 is constant with
respect to T . This ansatz reflects the fluctuation-dissipation theorem FDT for equi-
librium systems that is further discussed in Chapter 2.3. The inner convolution in
Eqs. (1.2.69)-(1.2.71) can be rewritten as

log

(
γ∆χT ∗ exp

(
− 1

T
` (yh+ κ)

))
'
T→0
− 1

T
Veff (z∗|h,m, χ) , (1.2.72)

where we have changed variable h← yh−m− yκ and Veff and z∗ are respectively,
the Moreau envelope (Parikh et al., 2014; Bauschke et al., 2011):

Veff (z∗|h,m, χ) = min
z

(
1

2χ
(z − h)2 + `(z)

)
, (1.2.73)

and the proximal map:

z∗(h, y, χ) = argminz

(
1

2χ
(z − h)2 + `(z)

)
, (1.2.74)

which is unique since the empirical risk is strictly convex in the UNSAT phase and
given by the implicit relation

z∗ = h− χ`′(z∗). (1.2.75)

We can then rewrite the final equations in the zero-temperature limit:
1

χ
= λ+

α

χ
(1− Ey,h [∂hz

∗(h, y, χ)])

q −m2

χ2
=
α

∆
Ey,h

[
(`′(z∗))2

]
,

m

χ
=
α

∆
Ey,h [`′(z∗)] ,

(1.2.76)

where the dependence on y is hidden in h ∼ N (m + yκ,∆q), and y = ±1, P(y =
+1) = ρ ∈ (0, 1). Finally, noting that at zero temperature the free energy equals the
energy, the equation for the bias can be simply obtained by extremising the action
with respect to κ:

Ey,h [y(z∗ − h)] = 0. (1.2.77)

The above set of equations must be evaluated for each of the losses under consider-
ation, which is done in the appendix of Article 1. In the case of the square loss, the
solution is analytic. However, in general and for instance in the case of logistic and
hinge losses, the above set of equations must be solved self-consistently. Note that,
in this case, given the uniqueness of the solution, the RS ansatz is always stable
(Franz et al., 2017).
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The critical value for the separability phase transition — In order to derive the
separability (SAT-UNSAT) transition from Eqs. (1.2.76), it is convenient to define
the random variable u∗(h, y, χ) = `′(z∗(h, y, χ)), where z∗ is given by Eq. (1.2.75).
Notice that this definition is intuitive if we rewrite the convex loss function ` as a
Legendre transformation:

`(v) = max
u
{vu− ˜̀(u)}, (1.2.78)

where the convex conjugate ˜̀(u) is defined as
˜̀(u) = max

v
{uv − `(v)}. (1.2.79)

It is straightforward to see that ˜̀′(u∗) = h − χu∗ = z∗. Given that h ∼ N (m +
yκ,∆q), it follows that the cumulant distribution function of u∗ is given by

P(u∗ ≤ u) = ρQ

(
˜̀′(u) + χu−m− κ√

∆q

)
+ (1− ρ)Q

(
˜̀′(u) + χu−m+ κ√

∆q

)
,

(1.2.80)

where again Q(·) denotes the distribution function of a standard normal random
variable. We consider convex and monotonically decreasing loss functions, with
`(+∞) = `′(+∞) = 0. It follows that `′(−∞) < u∗ < 0. We can now use the
identity

Ey,h[(u∗)2] = (−2)

∫ 0

`′(−∞)

duuP(u∗ ≤ u) (1.2.81)

to rewrite the second of Eqs. (1.2.76) as

1− m2

q
=

αχ2

∆q

∫ −`′(−∞)

0

du 2u

[
ρQ

(
˜̀′(−u)− χu−m− κ

∆q

)

+(1− ρ)Q

(
˜̀′(−u)− χu−m+ κ

∆q

)]
.

(1.2.82)

We now introduce the following rescaled variables: χ̃ = χ/
√
q, % := m/

√
q, κ̃ =

κ/
√
q, that control the performance as can be easily seen from the generalisation

error in Eq. (1.2.17). With the new definitions and rescaling the integration variable
u by χ̃, we find

1− %2 =
α

∆
S(χ̃, q, %, κ̃), (1.2.83)

where

S(χ̃, q, %, κ̃) =
α

∆

∫ −χ̃`′(−∞)

0

du 2u

[
ρQ

(
˜̀′(−u)

∆q
+
−χ̃u− %− κ̃

∆

)
(1.2.84)

+(1− ρ)Q

(
˜̀′(−u)

∆q
+
−χ̃u− %+ κ̃√

∆

)]
(1.2.85)
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Notice that, for any fixed χ̃ and %, the function S is monotonically decreasing as we
increase q. Moreover,

lim
q→∞
S(χ̃, q, %, κ̃) = S∗(χ̃, %, κ̃) :=

∫ −χ̃`′(−∞)

0

du 2u

[
ρQ

(
−χ̃u− %− κ̃

∆

)
(1.2.86)

+(1− ρ)Q

(
−χ̃u− %+ κ̃√

∆

)]
. (1.2.87)

Clearly, S∗(χ̃, %, κ̃) is monotonic with respect to χ̃, and it has a finite limit as χ̃→∞,
i.e.,

lim
χ̃→∞

S∗(χ̃, %, κ̃) = ∆

∫ ∞
0

duu2

[
ρ f

(
u+

%+ κ̃√
∆

)
+ (1− ρ) f

(
u+

%− κ̃√
∆

)]
,

(1.2.88)

where f is the probability density function of N (0, 1). An implication of this limit
being finite is that the solution χ̃ of Eq. (1.2.83) tends to ∞ as q →∞ if

α <
∆(1− %2)

S∗(∞, %)
. (1.2.89)

Remembering the definition of the ansatz we have used for the UNSAT phase: q =
r−χT , we can already guess that the divergence of χ̃ reveals that the solution is not
unique anymore and Eq. (1.2.89) defines the SAT phase. Moreover, it follows from
the definition of z∗ (Eq. (1.2.75)) that, as χ → ∞, `′(z∗) → 0 and thus `(z∗) → 0.
Consequently,the average training error vanishes in this region. The transition is
thus given by maximising the right-hand side of Eq. (1.2.89):

α∗ = max
0≤%≤1,κ

ζ(%, κ),

ζ(%, b) =
1− %2∫∞

0
duu2

[
ρ f
(
u+ %√

∆
− κ
)

+ (1− ρ) f
(
u+ %√

∆
+ κ
)] .. (1.2.90)

This characterisation can be interpreted as follows: if there exists a % that satisfies
Eq. (1.2.89), then as we move along the “ray” of constant slope % = m/

√
q, the

training loss vanishes.

1.2.4 . The observed high-dimensional phenomena
In this section, we evaluate the above formulas and investigate the dependence

of the test error on the regularisation strength λ, the sample complexity α, the noise
variance ∆ and the cluster size ρ.

Keeping in mind that the minimisation of the non-regularised logistic loss cor-
responds to the MLE in the considered model, we pay particular attention to it as
a benchmark for the performance of the most commonly used method in statistics.
Another important benchmark is the BO performance, that provides a threshold
that no algorithm can improve.
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Weak and strong regularisation — Figure 1.2.2 summarises how the regularisation
strength λ and the cluster size ρ influence the generalisation performance. The left
panel displays the balanced case ρ = 0.5, while the right panel shows the unbalanced
one at ρ = 0.2. Let us recall that α∗ is defined as the value such that for α < α∗(∆, ρ)
the problem lies in the SAT phase, therefore a solution exists and the training loss
vanishes. In other words, the data are linearly separable. In the left panel of
Figure 1.2.2, we depict (in green) the performance of the non-regularised logistic
loss, a.k.a. the MLE. For α > α∗(∆, ρ), the training data are not linearly separable
and the minimum training loss is bounded away from zero. For α < α∗(∆, ρ) the
data are linearly separable, in which case properly speaking the MLE is ill-defined
(Sur & Candès, 2019), the curve that we depict is the limiting value reached as
λ → 0+. The points are the results of simulations with a standard scikit-learn
(Pedregosa et al., 2011) package. As shown by Soudry et al. (2018b), even though the
logistic estimator does not exist, GD actually converges to the max-margin solution
in this case, or equivalently to the minimal norm solution that classifies all samples
correctly, a phenomenon called “implicit regularisation” that is well illustrated here.

Figure 1.2.2 further depicts (in purple) the performance of the BO error given
by Eq. (1.2.32). We have also evaluated the performance of both logistic and square
losses at optimal value of regularisation parameter λ. This is where the balanced
case (left panel) differs crucially from the unbalanced one (right panel). While in
the high-dimensional limit of the balanced case the optimal regularisation diverges
to infinity λopt →∞ and the corresponding error matches exactly the BO one, in the
unbalanced case 0 < λopt < ∞ and the error for both losses is bounded away from
the BO one for any α > 0. We give below a fully analytic argument for the perhaps
unexpected property of achieving Bayes-optimality at λopt → ∞ and ρ = 0.5 valid
for any loss that has finite 2nd derivative at the origin.

On the Bayes-optimality of infinite regularisation in the balanced-clusters case
— We start by considering the square loss. At ρ = 0.5, it is straightforward to
check from Eq. (1.2.33) that the bias κ = 0 and the generalisation error is given by
Eq. (1.2.17) and reads

εgen = Q

(
m√
∆q

)
, (1.2.91)

where m and q are obtained via Eqs. (1.2.76), evaluated at ρ = 0.5. The BO error
for this problem is given by Eq. (1.2.32) and reads

εBO
gen = Q

(
α

∆(∆ + α)

)
. (1.2.92)

Therefore, in order to reach Bayes-optimality we need a weight vector w with an
overlap m and squared norm q such that

m
√
q

=

√
α

∆ + α
(1.2.93)
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Figure 1.2.2 – Generalisation error εgen as a function of the sample complexity α
at optimal and low regularisation (λ = 10−7) and fixed noise variance ∆ = 1. The
dashed vertical lines mark the interpolation thresholds. The error achieved by the
square and logistic losses is compared to the BO one. We compare our theoretical
findings with numerical simulations at dimension d = 1000, marked by the symbols.

By using Eq. (1.2.76) at ρ = 0.5, Eq. (1.2.93) can be rewritten as

∆q

(1−m)2
= 0. (1.2.94)

Eq. (1.2.94) is verified by the fixed point equations only at λ → ∞. Indeed in this
limit we find that:

χ =
∆

λ
+ o

(
λ−1
)
, m =

α

λ
+ o

(
λ−1
)
, q =

α

λ2
(∆ + α) + o

(
λ−2
)
, (1.2.95)

so that

m
√
q

λ→∞−→
√

α

∆ + α
. (1.2.96)

Therefore, as λ grows and the `2−norm of the weight vector goes to zero, the vector
aligns itself optimally to the hidden one and the generalisation error becomes opti-
mal. A similar scaling holds for the hinge loss as can be checked via Eqs. (1.2.76) (in
particular, using Eqs. D.16-18 of Appendix D in Article 1). We can then see why
this remains correct for any twice differentiable loss `(·) with finite second derivative
at the origin. As long as the `2−norm vanishes when λ→∞, we can expand

`
(
yx>w

)
= `(0) + yx>w`′(0) +

1

2

(
x>w

)2
`′′(0) + o(q). (1.2.97)

28



Chapter 1.2. The learning curves of binary Gaussian mixture classification

0.0 0.1 0.2 0.3 0.4 0.5
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ge
n

= 1e-07
= 100000.0
optimal

Bayes-optimal

0.0 0.2 0.4

0.6

0.8

1.0

1.2

ge
n

(a) α = 1.2, ∆ = 1.

0.0 0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

ge
n

= 1e-07
= 100000.0
optimal

Bayes-optimal

0.0 0.2 0.4

0.25

0.50

0.75

1.00

ge
n

(b) α = 7, ∆ = 0.3.

Figure 1.2.3 – Generalisation error εgen as a function of the cluster size ρ for the
square loss, compared to the BO performance. The insets display the same figure
for the hinge loss. The vertical axis is rescaled by ρ for visibility purposes. The
error is computed at low (λ = 10−7), high (λ = 105) and optimal regularisation. We
observe that Bayes-optimality at infinite regularisation holds strictly at ρ = 0.5.

If `′(0) < 0 and `′′(0) > 0, which hold for the logistic loss that is of interest in this
problem, the loss behaves like the square one. This is the origin of the peculiar
behaviour of Bayes-optimality observed at λ → ∞ for the balanced case ρ = 0.5.
We observe numerically that this peculiar behaviour is not valid anymore as soon
as ρ 6= 0.5, as shown in Figure 1.2.3 where the generalisation error is plotted as a
function of ρ at zero, infinite and optimal regularisation for the square and hinge
losses.

Regularisation and the interpolation peak — In Figure 1.2.4 we depict the de-
pendence of the generalisation error on the regularisation strength λ in the balanced
case ρ = 0.5 for the square, hinge, and logistic losses. The curves at small regulari-
sation show the interpolation peak at α∗ = 1 for the square loss and α∗ for all the
losses that go to zero whenever the data are linearly separable. We observe a smooth
disappearance of the peak as regularisation is added, similarly as what has been ob-
served in other models that present the interpolation peak (Hastie et al., 2022; Mei
& Montanari, 2022) in the case of the square loss. Here we thus show that a similar
phenomenon arises with the logistic and hinge losses as well, this is interesting since
the same phenomenon has been observed in DNNs using a logistic/cross-entropy loss
(Geiger et al., 2019; Nakkiran et al., 2021). In fact, as the regularisation increases,
the error gets better in this model with equal-size clusters, and the BO error is
reached at large regularisation.

Max-margin and weak regularisation — Figure 1.2.5a illustrates the generic prop-
erty that all monotone non-increasing loss functions converge to the max-margin
solution for linearly separable data as λ → 0+ (Rosset et al., 2004). Figure 1.2.5a
depicts a very slow convergence towards this result as a function of the regularisa-
tion parameter λ for the logistic loss. While for α > α∗ the performance of both
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Figure 1.2.4 – Generalisation error εgen as a function of the sample complexity α for
different values of the regularisation strength λ, at fixed cluster variance ∆ = 1 and
balanced cluster size ρ = 0.5. The performance of ERM is compared to the BO one.
If the two clusters have the same size,the BO error can be reached by increasing
the regularisation. The regularisation smoothens the curves and makes the “kink”
disappear in all cases.

the hinge and logistic losses is basically indistinguishable from the asymptotic one
already at log λ ≈ −3, for α < α∗ the convergence of the logistic loss still did not
happen even at log λ ≈ 10.

Cluster sizes and regularisation — In Figure 1.2.5b we study in greater detail
the dependence of the generalisation error both on the regularisation λ and ρ, as
ρ→ 0.5. We see that the optimality of λ→∞ holds strictly at ρ = 0.5, and at any
ρ close to 0.5 the error at λ →∞ is very large and there is a well-delimited region
of λ for which the error is close to (but strictly above) the BO error. As ρ → 0.5
this interval is getting longer and longer until it diverges at ρ = 0.5. It needs to be
stressed that this result is asymptotic, holding only when d, n→∞ while α = n/d
is fixed. The finite-size fluctuations cause that the finite size system behaves rather
as if ρ was close but not equal to 0.5, and at finite size if we set λ arbitrarily large
then we reach a high generalisation error. We instead need to optimise the value of
λ for finite sizes, for instance by cross-validation.

Separability phase transition — The position of the interpolation threshold when
data become linearly separable has a well-defined limit in the high-dimensional
regime as a function of the sample complexity. The kink in generalisation indeed
occurs at a value α∗ when the training loss of logistic and hinge losses goes to zero
(while for the square loss the peak appears at α∗ = 1 when the system of n lin-
ear equations with d parameters become solvable). The position of α∗, given by
Eq. (1.2.90), is shown in Figure 1.2.6 as a function of the noise variance ∆ and
for different values of ρ. For very large cluster variance, the data become random
and hence α∗ = 2 for balanced clusters, as famously derived in the classical work
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ρ < 0.5 in the numerics. and the er-
ror always plateaus in simulations.

Figure 1.2.5 – Generalisation error εgen as a function of the regularisation strength
λ.

by Cover (1965). When ρ < 0.5, however, it is easier to separate linearly the data
points and the limiting value of α∗ gets larger and differs from Cover’s. For finite ∆,
the two Gaussian distributions become distinguishable, and the data acquires struc-
ture. Consequently, the critical threshold α∗ is growing as the correlations make
data easier to be linearly separated, similarly as described in Sur & Candès (2019).
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1.3 - The learning curves of multi-class teacher-
student classification

Modern ML classification tasks most often involve multiple classes, e.g., 10 for
classification on the MNIST (Deng, 2012) or CIFAR10 (Krizhevsky et al., 2010)
datasets, or even 1000 for ImageNet (Deng et al., 2009). Multi-class classification
is therefore ubiquitous in practical applications, yet theory most commonly focuses
on binary classification models – such as the one considered in the previous chapter
– that are more easily amenable to exact characterisation.

In this chapter, we consider the teacher-student perceptron – broadly studied as
a high-dimensional model of binary classification since the seminal work by Gardner
& Derrida (1989) – and we generalise it to encompass multi-class classification. The
following presentation is based on Article 2.

1.3.1 . Introduction to the task
We consider a multi-class classification problem where the training data X =

(x1, . . . ,xn)> ∈ Rn×d are composed of n d−dimensional i.i.d. standard Gaussian
samples, where xµj ∼ N (0, 1), ∀j ∈ {1, . . . , d}, ∀µ ∈ {1, . . . , n}. The corresponding
labels are Y = (y1, . . . ,yn)> ∈ {0, 1}n×k, each representing the one-hot1 encoding
of one of k possible classes. In particular, we assume that the labels are generated
by a teacher matrix W ∗ = (w∗

1 , . . . ,w
∗
k) ∈ Rd×k as

yµl =

1 if l = argmax
h∈{1,...,k}

(
x>µw

∗
h

)
0 otherwise

, ∀µ ∈ {1, . . . , n}. (1.3.1)

In the following, we denote the output channel as φout(v) := eargmax
l∈[k]

(vl) ∈ {0, 1}k,

where eh denotes the standard one-hot vector with the hth site equal to 1 and all
other entries equal to zero. The teacher matrixW ∗ is drawn with i.i.d. entries either
from a standard Gaussian w∗il ∼ N (0, 1) or a Rademacher distribution w∗il = ±1 with
equal probability. Note that for k = 2 this problem corresponds to the well-studied
teacher-student perceptron problem with binary labels (Gardner & Derrida, 1989;
Engel & Van den Broeck, 2001).

Similarly as in Chapter 1.2, we are interested in the problem of learning the
teacher-target function in the high-dimensional setting, where n, d → ∞ at a fixed
sample complexity α = n/d, under two estimation procedures: empirical risk min-
imisation (ERM) and Bayes-optimal (BO) estimation.

Prior dimensional reduction — It is useful to notice that the above problem can
be easily mapped from k to k − 1 dimensions. The intuition is exactly the same

1A one-hot vector has all entries equal to zero but one that is equal to one.
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of the binary perceptron: the knowledge of k − 1 components of the one-hot label
representation y is enough to determine the remaining component by exclusion.
Nevertheless, for k > 2 shifting the weights in order to reproduce this structure
introduces additional correlations that must be taken into account.

We recall thatW ∗ is a d× k matrix, and denote by w∗l , 1 ≤ l ≤ k, its columns,
each corresponding to a different class. Notice that the label y = eargmaxl({w∗l

>x}l∈[k])

given by Eq. (1.3.1) of a data point x can be equivalently expressed by taking the
kth−component, i.e. w∗>k x, as a reference for comparison and setting

w̃∗h ← w∗h −w∗k for all 1 ≤ h ≤ k, (1.3.2)

so that w̃∗k = 0, and the problem is reduced to k−1 dimensions. We then replaceW ∗

by W̃ ∗ ∈ Rd×(k−1). Denoting by 1k the k-dimensional vector with all entries equal
to 1, we present schematically in Figure 1.3.1 the prior reduction. For simplicity,
in the following we present all the expressions in the original k−dimensional space.
However, we take into account the above mapping whenever we need to evaluate
explicitly the prior term.

Empirical risk minimisation — In the first case, the statistician (or student) is
given only the training data (X,Y ) and has to learn the teacher weights W ∗ with
a multi-class perceptron model ŷ(x) = φout

(
W>x

)
by ERM over the training set:

Ŵ = argmin
W∈Rd×k

[
H(W |X,Y ) +

λ

2
‖W ‖2

F

]
, (1.3.3)

with H(W |X,Y ) =
∑n

µ=1 `
(
W>xµ,yµ

)
and ridge regularisation of strength λ,

where ‖ · ‖F is the Frobenius norm. The loss function ` accounts for the perfor-
mance of the weight vector W over a single training point. Two widely used loss
functions for multi-class classification are the cross-entropy loss: `(z,y) = −

∑k
l=1 yl·

ln
(
ezl/

∑k
l=1 e

zl

)
and the square loss: `(z,y) = (z − y)>(z − y)/2.

Bayes-optimal estimator — In the BO setting, as explained in Chapters 1.1 and
1.2, the student has access not only to the training data but also on prior knowledge
on the teacher weight distribution PW ∗ and on the model generating the inputs and
the labels as in Eq. (1.3.1). In the teacher-student setting under consideration,
where labels are generated by a noiseless channel, the BO estimator for the label
ynew of a previously unseen data point xnew can be computed directly from the BO
estimator ŴBO of the teacher weights as ŷnew = φout(Ŵ

>
BO xnew). The matrix

ŴBO is the minimiser of the mean-squared error with respect to the ground-truth
W ∗, i.e.,

ŴBO = argmin
W

EX,Y ,W ∗‖W −W ∗‖2
F = EX,Y ,W ∗,W |(X,Y ,W ∗) [W ] . (1.3.4)

Note that computing explicitly the BO estimator requires computing the posterior
distribution,

P (W |X,Y ) =
1

Zd

k∏
l=1

PW ∗ (wl)
n∏
µ=1

δ
(
yµ − φout(W

>xµ)
)
. (1.3.5)
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Figure 1.3.1 –
Schematic representa-
tion of the multi-class
classification problem
defined in Eq. (1.3.1).
The knowledge of k−1
components of the
one-hot label repre-
sentation y is enough
to determine the re-
maining component.
Nevertheless for k > 2,
shifting the weights in
order to reproduce this
structure introduces
additional correlations
that must be taken
into account.

which is in general unfeasible in high dimensions. However, as we shall see, its
performance can be characterised exactly in such limit. A key quantity in our
derivation is the free entropy density:

Φ = lim
d→∞

1

d
EX,W ∗ lnZd, (1.3.6)

where we remind that the partition function Zd is the normalisation of the poste-
rior. In the BO setting, the free entropy density is closely related to the mutual
information density between the labels and the weights, see Barbier et al. (2019) for
an explicit discussion of this connection.

The generalisation performance of different optimisation strategies is measured
via the misclassification rate (a.k.a. 0/1 error), as commonly done for classification
(see also Chapter 1.2):

εgen(α) = Exnew,X,W ∗1
[
ŷ
(
Ŵ (α)

)
6= ynew

]
, (1.3.7)

35



Chapter 1.3. The learning curves of multi-class teacher-student classification

where xnew is a previously unseen data point and ynew the corresponding label,
generated by the teacher as in Eq. (1.3.1). Similarly, the estimator ŷ is generated
by the weight matrix Ŵ , which in turn depends on the training set. We compare
the performance obtained via ERM to the one of the BO estimator from Eq. (1.3.4).
Note that Eq. (1.3.7) for the BO error can be written as

εBO
gen =

1

2
EX,Y ,x,W ∗‖φout(W

∗>x)− φout(〈W>x〉)‖2
2

= 1− EX,Y ,x,W ∗

[
φout(W

∗>x)>φout(Ŵ
>
BO x)

]
,

(1.3.8)

where for brevity x = xnew and 〈·〉 = EW |(X,Y ,W ∗), and we have used that ‖φout(·)‖2
2 ≡

1. Since the distribution of xnew is rotationally invariant, the averaged quantity
ES,xnew,W ∗

[
φout(W

∗> xnew)> φout(Ŵ
>
BO xnew)

]
only depends on the correlation be-

tween W ∗ and ŴBO, which as we show later concentrates to the maximiser of the
free entropy (1.3.6) in the high-dimensional limit.

Closely related settings, such as high-dimensional multi-class classification with
Gaussian mixture data (Loureiro et al., 2021; Wang et al., 2021; Kini & Thram-
poulidis, 2021; Thrampoulidis, 2020) were recently reported, while the generalisa-
tion to multi-class classification for the teacher-student setting is still missing. In
the following we show how to fill this gap.

The main technical difficulty of analysing the teacher-student perceptron with
k > 2 classes is that the corresponding closed-form formulas are given in terms
of a set of coupled self-consistent equations on (k − 1) × (k − 1) dimensional ma-
trix variables (the order parameters introduced in Chapter 1.1), involving (k − 1)-
dimensional integrals. This poses some challenges in both the mathematical proof
and the numerical evaluation of their solution. We can overcome these difficulties
by building on recent works with similar matrix structure, notably the committee
machine (Aubin et al., 2019; Barbier, 2021) and the supervised k-cluster Gaussian
mixture classification (Loureiro et al., 2021).

The heuristic replica method allows to derive a generic set of equations covering
both the BO and the ERM cases. The rigorous proof for the BO case is given in
Aubin et al. (2019); Barbier (2021) based on an interpolation argument. The ERM
case, proven in Article 2, adds the difficulty of non Bayes optimality to the matrix
valued problem. This prevents the use of both interpolation methods as in Aubin
et al. (2019) or convex Gaussian comparison inequalities, see e.g. Thrampoulidis
et al. (2018). Those difficulties are handled by employing a similar proof strategy as
in Loureiro et al. (2021, 2022), which leverages on the rigorous analysis of matrix-
valued approximate message passing (AMP) iterations. Although the planted model
considered here is more elaborate than in Loureiro et al. (2021, 2022), the present
problem is also amenable to a matrix-valued AMP iteration by decomposing the
data matrix into two parts aligned and orthogonal to the subspace spanned by the
columns of the teacher weights. We refer the reader to Article 2 for the details on
the proof, that is not discussed in this manuscript.

1.3.2 . The learning curves via the replica method
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Here we sketch the main points of the derivation of the learning curves via the
replica method. We consider a general setting where the student has access to a
prior distribution Pw over the teacher weights and a model distribution Pout, which
can be the true ones or not. This formulation encompasses both the BO and non
BO settings. As we shall see in the following, ERM can be seen as a special case of
the latter. The posterior distribution of the student weights is given by

P
(
{wl}kl=1|X,Y

)
=

1

Zd

k∏
l=1

Pw(wl)
n∏
µ=1

Pout(yµ|{hµl}kl=1) (1.3.9)

where we have defined hµl = w>l xµ/
√
d. The partition function is then

Zd =

∫
Rd×k

dW
k∏
l=1

Pw(wl)
n∏
µ=1

Pout(yµ|{hµl}kl=1). (1.3.10)

By using the replica trick, we can compute the free entropy in the high-dimensional
limit as

Φ := lim
d→∞

Φd := lim
d→∞

1

d
EX,W ∗ lnZd ≈ lim

d→∞
lim
p→0

1

d
∂pEX,W ∗Z

p
d . (1.3.11)

We can then rewrite the average in Eq. (1.3.11) as

EX,W ∗Z
p
d = EX,W ∗

[∫
Rd×k

dW
k∏
l=1

Pw(wl)
n∏
µ=1

Pout(yµ|{hµl}kl=1)

]p
(1.3.12)

= EX,W ∗

[
p∏
a=1

∫
Rd×k

dW a

k∏
l=1

Pw(wa
l )

n∏
µ=1

Pout
(
yµ|{haµl}kl=1

)]
(1.3.13)

= EX
∫
Rn×k

dY

p∏
a=0

[∫
Rd×k

dW a

k∏
l=1

P a
w(wa

l )
n∏
µ=1

P a
out
(
yµ|{haµl}kl=1

)]
,

(1.3.14)

where above we have renamedW 0 = W ∗. In order to account for both the BO and
non-BO cases, we keep the distinction between teacher and student distributions by
adding an index a to prior and model distributions. In what follows, P 0

w = PW ∗ and
P 0

out = P ∗out refer to the teacher, while P a>0
w = Pw and P a>0

out = Pout to the student.
Let us denote the covariance tensor of the haµl as

E[haµlh
b
νl′ ] = δµνQ

al
bl′ , (1.3.15)

Qal
bl′ =

1

d

d∑
i=1

wailw
b
il′ , (1.3.16)
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with Qb
a ∈ Rk×k. We can rewrite the above as

EX,W ∗Z
p
d = EX

∫
Rn×k

dY

p∏
a=0

[∫
Rd×k

dW a

k∏
l=1

P a
w(wa

l )
n∏
µ=1

P a
out
(
yµ|{haµl}kl=1

)]

=
∏

(a,l);(b,l)

∫
R

dQal
bl′ Iprior({Qal

bl′}) Ichannel({Qal
bl′}),

(1.3.17)

where we have denoted

Iprior({Qal
bl′}) =

p∏
a=0

∫
Rd×k

dW a

[
k∏
l=1

P a
w(wa

l )

] ∏
(a,l);(b,l′)

δ

(
Qal
bl′ −

1

d

d∑
i=1

wailw
b
il′

)
,

(1.3.18)

Ichannel({Qal
bl′}) =

∫
Rn×K

dY

p∏
a=0

∫
Rd×k

dha

[
p∏
a=0

n∏
µ=1

P a
out(yµ|haµ)

]

× exp

(
−n

2
ln detQ− nk(p+ 1)

2
ln 2π − 1

2

n∑
µ=1

∑
a,b

∑
l,l′

haµl(Q
−1)albl′h

b
µl′

)
,

(1.3.19)

and we have introduced both the definitions of the overlaps {Qal
bl′} and the local

fields {haµl}. We can introduce the Fourier representation of the Dirac δ−functions
in the prior term Iprior and rewrite

EZp
d =

∏
(a,l);(b,l′)

∫
R2

dQal
bl′ dQ̂

al
bl′

2π
exp

(
dH(Q, Q̂)

)
, (1.3.20)

where we have defined

H(Q, Q̂) :=
1

2

p∑
a=0

∑
l,l′

Qal
al′Q̂

al
al′ −

1

2

∑
a6=b

∑
l,l′

Qal
bl′Q̂

al
bl′ + ln I({Q̂al

bl′}) + α ln J({Qal
bl′}),

(1.3.21)

and the auxiliary functions:

I({Q̂al
bl′}) =

p∏
a=0

∫
Rk

dwa P a
w(wa) exp

(
−1

2

p∑
a=0

∑
l,l′

wal Q̂
al
al′w

a
l′ +

1

2

∑
a6=b

∑
l,l′

wal Q̂
al
bl′w

b
l′

)
,

(1.3.22)

J({Qal
bl′}) =

∫
Rk

dy

p∏
a=0

∫
Rk

dha

(2π)k(p+1)/2

P a
out(y|ha)√

detQ
exp

(
−1

2

∑
a,b

∑
l,l′

hal (Q
−1)albl′h

b
l′

)
.

(1.3.23)

We observe that, upon exchanging the limits in d and p, the high-dimensional limit
of the free entropy can be computed via a saddle-point method:

Φ = lim
d→∞

EX,W ∗ lnZd = lim
p→0+

extrQ,Q̂

[
H(Q, Q̂)

]
. (1.3.24)
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Replica symmetric ansatz — In order to progress in the calculation, we assume
that the extremum in Eq. (1.3.24) is attained at {Q, Q̂} described by a replica
symmetric (RS) ansatz. We distinguish between the BO and non-BO cases. Note
that in the BO case we can drop the a−index from the prior and model distributions.
In the BO setting we make the following ansatz:

Qal
al′ = Q∗ll′ , Q̂al

al′ = Q̂∗ll′ , ∀a = 0, ..p, ∀l, l′ ≤ k, (1.3.25)
Qal
bl′ = qll′ , Q̂al

bl′ = q̂ll′ , ∀a 6= b,∀l, l′ ≤ k. (1.3.26)

In the non BO setting we make the following ansatz:

Qal
al′ = Q0

ll′ , Q̂al
al′ = Q̂0

ll′ , ∀a = 1, ..p, ∀l, l′ ≤ K (1.3.27)
Qal
bl′ = qll′ , Q̂al

bl′ = q̂ll′ , ∀a 6= b, a, b = 1, ...p, ∀l, l′ ≤ k (1.3.28)
Q0l
al′ = mll′ , Q̂0l

al′ = m̂ll′ , ∀a = 1, ...p, ∀l, l′ ≤ k (1.3.29)
Q0l

0l′ = Q∗ll′ , Q̂0l
0l′ = Q̂∗ll′ , ∀l, l′ ≤ k (1.3.30)

We do not report the derivation of the update equations in the RS ansatz, that can
be found in full detail in Article 2. Here, we only write the final expression of the
saddle-point equations. In the BO setting the update equations are given by:

q = Eξ
[
Z∗w(q̂1/2ξ, q̂)f ∗w(q̂1/2ξ, q̂)f ∗w(q̂1/2ξ, q̂)>

]
,

q̂ = αEy,ξ
[
Z∗out(y; q1/2ξ,Q∗ − q)f ∗out(y; q1/2ξ,Q∗ − q)f ∗out(y; q1/2ξ,Q∗ − q)>

]
,

(1.3.31)

where ξ denotes a k−dimensional standard Gaussian variable ξ ∼ N (0, Ik).
In the non-BO setting, we define for simplicity: V = Q0 − q, V̂ = Q̂0 + q̂,

and we find

m = Eξ
[
Z∗w × f ∗w(m̂q̂−1/2ξ, m̂T q̂−1m̂)fw(q̂1/2ξ, V̂ )>

]
,

q = Eξ
[
Z∗w(m̂q̂−1/2ξ, m̂T q̂−1m̂)fw(q̂1/2ξ, V̂ )fw(q̂1/2ξ, V̂ )>

]
,

V = Eξ
[
Z∗w(m̂q̂−1/2ξ, m̂T q̂−1m̂)∂γfw(q̂1/2ξ, V̂ )

]
,

m̂ = αEy,ξ
[
Z∗out f

∗
out(y,mq

−1/2ξ,Q∗ −m>q−1m)fout(y, q
1/2ξ,V )>

]
,

q̂ = αEy,ξ
[
Z∗out(y,mq

−1/2ξ,Q∗ −m>q−1m)fout(y, q
1/2ξ,V )fout(y, q

1/2ξ,V )>
]
,

V̂ = −αEy,ξ
[
Z∗out(y,mq

−1/2ξ,Q∗ −m>q−1m)∂wfout(y, q
1/2ξ,V )

]
,

(1.3.32)

where in both settings we have made use of the following definitions. For w ∈ Rk,
let

Qw(w;γ,Λ) ≡ Pw(w)

Zw(γ,Λ)
e−

1
2
w>Λw+γ>w , (1.3.33a)

with
fw(γ,Λ) ≡ ∂γ logZw(γ,Λ) = EQw [w] , (1.3.33b)
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and for z ∈ Rk, let

Qout(z;y,ω,V ) ≡ Pout(y|w)

Zout(y,ω,V )

e−
1
2

(z−ω)>V −1(z−ω)√
det(2πV )

, (1.3.33c)

with

fout(y,ω,V ) ≡ ∂ω logZout(y,ω,V ) = V −1EQout [z − ω] , (1.3.33d)

where the definitions of f ∗w,f ∗out are identical, provided that Pw, Pout are replaced by
PW ∗ , P ∗out. The functions Zw and Zout are given by

Zw(γ,Λ) =

∫
Rk

dwPw(w)e−
1
2
w>Λw+γ>w , (1.3.34a)

Zout(y;ω,V ) =

∫
Rk
dz
e−

1
2

(z−ω)>V −1(z−ω)√
det(2πV )

Pout(y|z) , (1.3.34b)

and Z∗w,Z∗out are defined in the exact same way provided that the student distri-
butions Pw, Pout are replaced by the teacher distributions P ∗w, P ∗out. The explicit
expressions of the auxiliary functions depend on the choice of the teacher and stu-
dent distributions. For the evaluation of the expressions in the special cases under
consideration, see Appendix C of Article 2.

Generalisation error — In the high-dimensional limit the asymptotic generali-
sation error associated to the ERM estimator (1.3.3) can be expressed only as a
function of the parameters (m, q) obtained by solving the self-consistent equations
(1.3.32):

εgen = P(ν,µ)∼N (0,Σ) (φout(µ) 6= φout(ν)) , (1.3.35)

where Σ =

[
Q∗ m
m q

]
. As one can expect from the discussion in the previous section,

the BO error is obtained by a similar, but simpler expression depending only on the
overlap q, given by Eqs. (1.3.31):

εgen = Pξ∼N (0,Ik)

(
φout(q

1/2ξ) 6= φout(Q
∗1/2ξ)

)
. (1.3.36)

1.3.3 . The Approximate Message Passing algorithm
In order to illustrate our theoretical results for the performance of the BO

(Eq. (1.3.4)) and ERM (Eq. (1.3.3)) estimators, we would like to compare our
asymptotic expressions for the generalisation error with simulations. On one hand,
the regularised empirical risk defined in Eq. (1.3.3) is strongly convex, and there-
fore it can be readily minimised with any descent-based algorithm such as gradient
descent or stochastic gradient descent. Indeed, in the ERM simulations that follow
we employ out-of-the-box multi-class solvers from scikit-learn (Pedregosa et al.,
2011) to assess our theoretical result from Eqs. (1.3.32). On the other hand, explic-
itly computing the BO estimator requires sampling from the posterior, an operation
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which is prohibitively costly in high-dimensions. Instead, we employ an Approx-
imate Message Passing (AMP) algorithm to efficiently approximate the posterior
marginals. AMP has several interesting properties which make it a popular tool in
the study of random problems. First, it is proven to be optimal among a class of ran-
dom estimation problems by Celentano et al. (2020), and for this reason it is widely
used as a benchmark to assess algorithmic complexity. Second, it admits a set of
scalar state evolution equations allowing to track its performance in high-dimensions
(Javanmard & Montanari, 2013).

For the BO estimation problem considered here, AMP follows the well-known
AMP algorithm for generalised linear estimation Donoho et al. (2009); Rangan
(2011), which takes advantage of the high-dimensional limit d→∞ by approximat-
ing the posterior distribution in Eq. (1.3.5) by a multivariate Gaussian distribution
through a belief propagation procedure expanded in powers of d−1. The difference is
that the estimators ŵj are k-dimensional vectors and their variances Ĉj are k×k di-
mensional matrices, with j = 1, . . . , d. The channel and prior update functions, fout
and fw, respectively, are defined in the previous chapter. For a detailed derivation
of the algorithm, see Article 2 and Aubin (2020).

Several versions of this k-fold AMP and the associated state evolution appeared
in previous works, e.g., Aubin et al. (2019). It can be shown that the state evolution
equations associated to the AMP algorithm for BO estimation coincide exactly with
the self-consistent Eqs. (1.3.31) presented in the previous chapter starting from an
uninformed initialisation q0 ≈ 0 Aubin et al. (2019). This interesting property im-
plies that when the extremisation problem in Eq. (1.3.24) has only one extremiser,
AMP provides an exact approximation to the BO estimator in the high-dimensional
limit. Instead, when there are more than one maxima in Eq. (1.3.24), AMP con-
verges to an estimator with overlap q closest to the uninformed initial condition.
If this is not the global maximum, this corresponds to a situation where AMP dif-
fers from the BO estimator. Since AMP provides a bound on the performance of
first-order algorithms, this situation is an example of an algorithmic hard phase,
where it is conjectured that the statistical optimal performance cannot be achieved
by algorithms running in time ∼ O(d2). We have implemented the AMP algorithm
for k = 3 classes using the mapping presented above, which makes the estimators
(k−1)-dimensional vectors and their variances (k−1)×(k−1) dimensional matrices.
For more details on the algorithmic implementation, see Article 2.

1.3.4 . The results for k = 3 classes
In this section we discuss the consequences of our theoretical results for the

particular case of k = 3 classes and compare them with numerical simulations. We
investigate the dependence of the generalisation error on the sample complexity α.
First, we consider the case of Rademacher teacher weights and show that a first-
order phase transition arises in the BO performance. Then, we turn to the case of
Gaussian teacher weights and explore the role of the regularisation strength λ in
approaching the BO performance with ERM.
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(a) Generalisation error εgen as a func-
tion of the sample complexity α evalu-
ated via Eqs. (1.3.31). The orange points
mark the error that would be asymptoti-
cally reached by the randomly initialised
AMP. The blue points mark the BO er-
ror. The inset depicts the correspond-
ing free entropies as a function of α,
their crossing locating the information-
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tion at αIT

k=3 ≈ 2.45. AMP reaches per-
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2.89.
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(b) Diagonal (q00) and anti-diagonal
(q01) entries of the self-overlap matrix
as a function of α in the BO setting.
The full lines mark the fixed points of
Eqs. (1.3.31), the symbols represent the
result obtained by the AMP algorithm
described in Section 1.3.3 averaged over
20 runs.

Figure 1.3.2 – AMP for Rademacher teacher priot with k = 3 classes.

Bayes-optimal performance for Rademacher teacher — The main difference be-
tween Gaussian and Rademacher teacher is that in the second case perfect gener-
alisation is achievable at finite sample complexity, in line with the results known
for the two-classes case of Györgyi (1990); Sompolinsky et al. (1990); Seung et al.
(1992b). To compute the optimal information-theoretical performance, we have
evaluated the global extremum of the replica free entropy. To this end, we have run
the replica saddle-point iterations Eqs. (1.3.31) with both uninformed and informed
initialisations and computed the free entropy in Eq. (1.3.24) of the fixed points (if
distinct) reached by the two initialisations. In Figure 1.3.2 we report the general-
isation error corresponding to the fixed points reached by the two initialisations,
along with their corresponding free entropy in the inset. We found that indeed,
for Rademacher teacher weights, the generalisation error decreases continuously for
α ≤ αIT

k=3 ≈ 2.45, and then jumps to zero for all α > αIT
k=3. From a statistical physics

perspective, this discontinuous transition in the error corresponds to a first-order
phase transition associated to the discontinuous appearance of a second extremum
associated to perfect learning in the free energy potential.

The state evolution of the AMP algorithm is equivalent to gradient descent
on the free energy potential (Eq. (1.3.24)) starting from an uninformed random
initialisation. Therefore, the appearance of a second extremum away from zero
implies that AMP is not able to achieve the BO statistical performance. Since
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Figure 1.3.3 – AMP for Gaussian teacher prior with k = 3 classes: Gener-
alisation error εgen as a function of the sample complexity α. The performance of
AMP (averaged over 20 runs), computed from Eq. (1.3.36), is marked by the green
symbols (error bars are smaller than the symbols). The dashed black line indicates
the BO error. The inset displays the diagonal (q00) and anti-diagonal (q01) entries of
the self-overlap matrix as a function of α in the BO setting. The full lines mark the
fixed points of Eqs. (1.3.31), while the symbols represent the result obtained from
the AMP algorithm described in Section 1.3.3 averaged over 20 runs.

AMP is conjectured to be optimal among first-order methods (Celentano et al.,
2020), this result is an example of a fundamental statistical-to-algorithmic gap in
this problem. For α > αalg

k=3 ≈ 2.89, we observe that the uninformed minimum
disappears, and we can check that this coincides with the sample complexity at
which AMP is able to achieve zero generalisation error from random initialisation.
This marks the algorithmic threshold, i.e., the sample complexity beyond which
perfect generalisation is reachable algorithmically efficiently.

Our findings thus suggest the existence of an algorithmic hard phase for αIT
k=3 <

α < αalg
k=3, where the theoretically optimal performance is not reachable by effi-

cient algorithms. We note here the comparison with the canonical perceptron with
Rademacher teacher weights and two classes, where the same thresholds are well
known to be αIT

k=2 = 1.249, αalgo
k=2 = 1.493 (Györgyi, 1990; Sompolinsky et al., 1990;

Barbier et al., 2019). Naturally, these values are roughly twice smaller than the
ones for k = 3 since for k classes the teacher has k − 1 independent d-dimensional
binary elements that need to be recovered in order to reach perfect generalisation.
Comparing more precisely the values for k = 3 and also their difference, all are
slightly smaller than the double of the values for k = 2.

Bayes-optimal performance for Gaussian teacher — Figures 1.3.3, 1.3.4 and 1.3.5
summarise our results for the case of Gaussian teacher weights. The BO error,
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optimised ridge regularisation (λ = 0.01
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our theoretical predictions at large α, in
log-log scale for visibility purposes. The
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the symbols mark the error of ERM at
fixed regularisation λ = 1.

Figure 1.3.4 – BO and ERM performances for Gaussian teacher weights.

computed from Eq. (1.3.8), is depicted by the dashed black line in both figures
and is a smooth, monotonically-decreasing function of the sample complexity α.
Interestingly, for Gaussian teacher weights, the BO-AMP algorithm – described
in Section 1.3.3 and marked by the green symbols in Figure 1.3.3 – achieves the
BO performance. This is highly non-trivial: computing the BO estimator usually
requires sampling from the posterior distribution of the weights given the data,
and therefore can be prohibitively costly in the high-dimensional regime considered
here. For Gaussian weights AMP provides an exact approximation of the posterior
marginals in quadratic time in the input dimension.

Approaching Bayes-optimality with ERM — Instead, how does ERM compare
to the BO estimator? Note that the empirical risk in Eq. (1.3.3) is convex, and
therefore, at variance with the posterior estimation, this problem can be readily
simulated using descent-based algorithms such as stochastic gradient descent. The
generalisation error obtained by ERM is plotted in Figure 1.3.4 as a function of the
sample complexity. The full lines depict our theoretical predictions for the learning
curves while the symbols mark the results from numerical simulations performed
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Figure 1.3.5 – The role of regularisation in ERM for k = 3 classes.

at finite dimension d = 1000. We find excellent agreement between the two. For
both cross-entropy and square losses, we show the performance achieved without
regularisation (λ = 0) and with naively-optimised λ, obtained by cross-validation,
in Figure 1.3.5. Interestingly, we find that the optimally-regularised cross-entropy
loss achieves a close-to-optimal performance, while the square loss maintains a finite
gap with respect to the BO error even at fine-tuned regularisation strength. Similar
results were obtained for the two-classes teacher student perceptron Aubin et al.
(2020). The fact that regularised cross-entropy minimisation is so close to optimal
also in multi-class classification is remarkable and the generality of this finding is
worth further investigation.

Large–α behaviour — Figure 1.3.4b considers again a Gaussian teacher prior and
explores the behaviour of the generalisation error at large sample complexity. The
BO performance is depicted in black and decays as 1/α in the large−α regime. On
the other hand, the performance obtained by ERM at fixed λ displays a slower decay
α−1/2. This is again compatible with the behaviour observed in the two-classes case
Aubin et al. (2020). It remains to be analysed whether for k > 2 the optimally
regularised ERM achieves the 1/α rate as it does for the two classes.

The role of regularisation — Figure 1.3.5 further illustrates the role played by
ridge regularisation. We plot the generalisation error as a function of the regularisa-
tion strength λ at fixed sample complexity α for the cross-entropy (1.3.5a) and the
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square loss (1.3.5b). Different curves represent different values of sample complexity.
We observe that the optimal regularisation depends only very mildly on the sample
complexity α for this range of values of α.
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Article 1

The role of regularization in classification of
high-dimensional noisy Gaussian mixture

Francesca Mignacco, Florent Krzakala, Yue M. Lu, and Lenka Zdeborová.
International Conference on Machine Learning, PMLR, 2020. p. 6874-6883.

+ Proceedings of the 37th International Conference on Machine Learning, PMLR
119:6874-6883
+ ArXiv preprint: arXiv:2002.11544

Abstract

We consider a high-dimensional mixture of two Gaussians in the noisy
regime where even an oracle knowing the centers of the clusters misclassifies
a small but finite fraction of the points. We provide a rigorous analysis of the
generalization error of regularized convex classifiers, including ridge, hinge
and logistic regression, in the high-dimensional limit where the number n
of samples and their dimension d go to infinity while their ratio is fixed to
α = n/d. We discuss surprising effects of the regularization that in some
cases allows to reach the Bayes-optimal performances. We also illustrate the
interpolation peak at low regularization, and analyze the role of the respective
sizes of the two clusters.
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Article 2

Learning curves for the multi-class
teacher-student perceptron

Elisabetta Cornacchia, Francesca Mignacco, Rodrigo Veiga, Cédric Gerbelot,
Bruno Loureiro, Lenka Zdeborová.

+ ArXiv preprint arXiv:2203.12094

Abstract

One of the most classical results in high-dimensional learning theory pro-
vides a closed-form expression for the generalisation error of binary classifica-
tion with the single-layer teacher-student perceptron on i.i.d. Gaussian inputs.
Both Bayes-optimal estimation and empirical risk minimisation (ERM) were
extensively analysed for this setting. At the same time, a considerable part of
modern machine learning practice concerns multi-class classification. Yet, an
analogous analysis for the corresponding multi-class teacher-student percep-
tron was missing. In this manuscript we fill this gap by deriving and evaluating
asymptotic expressions for both the Bayes-optimal and ERM generalisation
errors in the high-dimensional regime. For Gaussian teacher weights, we in-
vestigate the performance of ERM with both cross-entropy and square losses,
and explore the role of ridge regularisation in approaching Bayes-optimality.
In particular, we observe that regularised cross-entropy minimisation yields
close-to-optimal accuracy. Instead, for a binary teacher we show that a first-
order phase transition arises in the Bayes-optimal performance.
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2 - The dynamics of learning problems
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2.1 - A brief introduction to the dynamics of
learning

In this chapter, we introduce some useful methods and concepts to investigate
the dynamical properties of learning algorithms. We remind that the goal of the
algorithm is to search for a solution Ŵ that minimises the empirical risk H, given
the dataX and the corresponding labels Y . This is the empirical risk minimisation
(ERM) problem introduced in Motivation and background and Chapter 1.1:

Ŵ = argmin
W

H (W |X,y) = argmin
W

n∑
µ=1

` (ŷW (xµ) ,yµ) + λΩ (W ) , (2.1.1)

where `(·) is a loss function accounting for the per-sample error and Ω is an explicit
regularisation function weighted by the hyperparameter λ ≥ 0.

The simplest way to attack the minimisation in Eq. (2.1.1) is to employ a general-
purpose algorithm such as full-batch gradient descent (GD):

W (0) ∼ P0 , W (t+dt) ←W (t) − dt∇WH
(
W (t)|X,y

)
, (2.1.2)

where dt is the time-step or learning rate and W (t) marks the realisation of the
weights at time t. However, calculating the gradient of the loss function brings a
great computational burden, since it requires the evaluation of the current state of
the weights on the full training set.

An efficient alternative emerged with the introduction of the stochastic gradient
descent (SGD) algorithm (Robbins & Monro, 1951; Bottou, 1999, 2010). SGD, at
variance with GD, approximates the gradient by evaluating it only on a mini batch
– a small subset of the training set – which is changed at each step of the dynamics:

W (0) ∼ P0 , W (t+dt) ←W (t) − dt ∇̃B
WH

(
W (t)|X,y

)
, (2.1.3)

where

∇̃B
WH (W |X,y) =

∑
µ∈B

∇W ` (ŷW (xµ) ,yµ) + λ∇WΩ (W ) (2.1.4)

indicates the approximated gradient computed on the (time-dependent) mini batch
B ⊆ {1, . . . , n} of cardinality B = |B|. The usual practical procedure is to partition
the dataset into mini batches, that are parsed one by one until all have been used. At
this point one training epoch has passed, the samples are shuffled and the procedure
is repeated.

Quite surprisingly, in practical applications simple local optimisation methods –
variants of the SGD algorithm – are able to find near-optimal solutions despite the
non-convexity of the loss landscape and the curse of dimensionality. Indeed, over-
parametrised neural networks trained by SGD, that can perfectly fit even random
data, do not incur in over-fitting on real data. Instead, they can achieve excellent
performances on previously unseen data (Zhang et al., 2017). Therefore, under-
standing how SGD can navigate so efficiently the high-dimensional non-convex loss
landscape is one of the central problems in ML theory.
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Implicit regularisation and the role of initialisation — A popular attempt to ex-
plain the success of SGD consists in showing that the loss landscape itself is simple,
without spurious local minima, i.e., configurations that minimise the empirical risk
but perform poorly on the test set. However, some empirical evidence instead leads
to the conclusion that the loss landscape of state-of-the-art DNNs actually has spu-
rious local (or even global) minima and SGD is able to find them with ad hoc
initialisations (Safran & Shamir, 2017; Liu et al., 2019). Still, the SGD algorithm,
initialised at random and with little use of explicit regularisation, leads to good gen-
eralisation properties in practice, a phenomenon commonly referred to as implicit
bias or implicit regularisation.

Theoretical guarantees on this phenomenon have been derived in the case of sep-
arable data in a linear setup both for GD (Soudry et al., 2018a) and SGD (Nacson
et al., 2019) depending on the loss function. In the case of square loss, both algo-
rithms converge to the global solution that is closer to the initialisation in squared
distance. In the case of logistic loss – and all strictly decreasing loss functions with
exponential tail – the dynamics is biased towards the max-margin classifier regard-
less of the initialisation. The study of implicit bias in GD has been recently extended
to multiplicative parametrisations (Gunasekar et al., 2018), deep linear networks (Ji
& Telgarsky, 2019) and homogeneous networks (Lyu & Li, 2019). Moreover, Wood-
worth et al. (2020) show that the crossover between the “lazy learning” regime of
neural tangent kernel (Jacot et al., 2018), where the features do not change, and the
feature learning regime can be tuned by the scale of initialisation.

In summary, while it has commonly been observed that SGD outperforms GD
in practical applications (Keskar et al., 2017; He et al., 2019), theoretical results in
support of this claim remain sparse (Abbe & Sandon, 2020; HaoChen et al., 2020)
and the machine learning community is actively working to bridge this gap. In the
next section, we provide a non-exhaustive list of some relevant alternative methods
to study the dynamics of gradient-based optimisation methods.

2.1.1 . The theory of gradient-based learning algorithms
A recent stream of works is aiming at characterising the nature of the noise

introduced by SGD and identifying its properties in order to understand how they
correlate with the final generalisation performance. In other words, the purpose
of this line of research is to investigate the implicit bias introduced by the most
commonly adopted gradient-based algorithms to the training of DNNs. The nature
of SGD noise is hard to grasp, due to its complicated structure resulting from the
interplay of the architecture, the data distribution, the loss and the mini-batch
sampling procedure. We briefly list some of the most common alternative approaches
to tackle the problem.

Langevin-like approximations — A very active research direction models SGD
as a discretisation of a stochastic differential equation, i.e., via the Langevin-like
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dynamics

dW (t)

dt
= −∇WH

(
W (t)|X,y

)
+ ξ(t),

ξ(t) =
(
∇W − ∇̃B

W

)
H
(
W (t)|X,y

)
,

(2.1.5)

where the noise ξ(t) has zero mean and is assumed to be Gaussian by invoking
the central-limit theorem (CLT). This type of analysis has been adopted by several
works (Hu et al., 2019; Li et al., 2017; Mandt et al., 2017; Chaudhari & Soatto,
2018; Cheng et al., 2020), with some differences in how to model the structure of
the noise, the finite time step and the batch size. The importance of modeling
anisotropic noise was highlighted in Zhu et al. (2019), while Jastrzebski et al. (2017)
stress that the ratio between learning rate and batch size is an important quantity
controlling the dynamics. The interplay between SGD noise and the loss curvature
has been studied in Wei & Schwab (2019); Thomas et al. (2020). The authors of
Pesme et al. (2021) show that better generalisation properties of SGD in diagonal
linear networks are related to slower convergence.

However, this approach leads to a stochastic differential equation involving a
hybrid, ill-defined continuous-time limit (Yaida, 2018), where the learning rate is
sent to zero dt → 0+ in the dynamics, but at the same time it is kept finite in the
noise variance.

α-stable Lévy process description — The validity of the CLT in this context has
been questioned in Li et al. (2021) and challenged by a set of experiments (Simsekli
et al., 2019; Şimşekli et al., 2019; Martin & Mahoney, 2019) suggesting that in fact
the SGD noise may be responsible for Lévy flights in the phase space of the weights
during training. These results are at the basis of the current search for further
theoretical understanding of the possible motivations underlying the observed “big
jumps” (Hodgkinson & Mahoney, 2021; Gurbuzbalaban et al., 2021).

Wide flat minima and generalisation — The connection between the geometry
of the solution space and generalisation properties is the object of intense investi-
gation in the ML theory community. A line of works in this direction focuses on
the flatness of the loss minima and how it affects the algorithmic bias. Alterna-
tive measures of flatness have been proposed, the two most studied being the local
entropy, measuring the low-loss volume surrounding a minimiser in weight space,
and the average increase in the loss profile around a minimiser, which is related to
the Hessian around a minimiser. Both measures have been found to correlate with
generalisation (Jiang et al., 2019; Baldassi et al., 2019, 2020) and with each other
(Pittorino et al., 2021), and efficient training algorithms that search for flat regions
have been proposed (Baldassi et al., 2016; Chaudhari et al., 2019). On the other
hand, it is known that DNNs trained with ReLU1 activations are invariant with
respect to weight rescaling (Dinh et al., 2017), which complicates the understanding
of generalisation in terms of flatness.

1The Rectified Linear Unit (ReLU) (Nair & Hinton, 2010) is a piece-wise linear function:
ReLU(x) = max{0, x} and is arguably the most popular activation function for DL applications.
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Tracking analytically the whole trajectory of the algorithm without resorting
to approximations on the update rule remains an arduous task, certainly for the
state-of-the-art DNNs trained on real datasets. A detailed description of the whole
trajectory taken by SGD without resorting to approximations has been obtained
only in several special cases.

(Deep) linear networks — First such case are linear networks where the dynamics
of full-batch GD has been analysed using random matrix theory techniques in shal-
low networks already in, e.g., Baldi et al. (1990); Baldi & Chauvin (1991); Le Cun
et al. (1991); Krogh & Hertz (1992); Baldi & Hornik (1995); Bös & Opper (1997);
Bös & Opper (1998) and references therein. The analysis has then been extended to
the case of deep linear networks in Saxe et al. (2013); Advani et al. (2020). It is im-
portant to notice that, despite the linearity of their input-output map, the dynamics
of deep linear networks is still non-linear. This line of works has led to very inter-
esting insights about the dynamics, for instance regarding the role of initialisation,
early stopping and weight decay. However, linear networks lack the expressivity of
the non-linear ones and the large-time behaviour of the algorithm can be obtained
with a simple spectral algorithm.

Online SGD— Another case where the trajectory of the algorithm was understood
in detail is the one-pass or online SGD in the case of shallow neural networks. The
term “online” refers to a sampling procedure where the network uses a fresh example
at each time step to approximate the gradient. Therefore, in this case there is no
notion of landscape and no distinction between training and test error.

A first line of works investigating this limit focuses on two-layer networks with a
finite number k of hidden units, in a teacher-student setting with synthetic Gaussian
input data. The study of single or two-layer networks trained by online SGD has a
long history in the statistical physics literature (Kinzel & Rujan, 1990; Kinouchi &
Caticha, 1992; Copelli & Caticha, 1995; Biehl & Schwarze, 1995; Riegler & Biehl,
1995). In their seminal works, Saad & Solla (1995c,b,a) derived a deterministic
description of the stochastic gradient updates via a set of ODEs for the overlap
variables (already introduced in Chapter 1.1), holding in the infinite dimensional
limit where both the number of samples n and dimensions d diverge at fixed rate
α = n/d and fixed number of hidden units k ∼ Od(1), while crucially the learning
rate scales as 1/d. This result led to a series of important contributions in the
statistical physics literature (see, e.g., Vicente et al. (1998); Saad (2009)).

Recently, Goldt et al. (2019) proved that this description is asymptotically exact
and paved the way for a new stream of works addressing current open questions in
ML theory, e.g., modeling the structure of real data (Goldt et al., 2020, 2022), direct
feedback alignment (Refinetti et al., 2021a), continual learning (Lee et al., 2021,
2022), curriculum learning (Saglietti et al., 2021), shallow autoencoders (Refinetti
& Goldt, 2022).

Another interesting line of research recently provided insights on the behaviour
of online SGD for two-layer ANNs in the limit of infinitely-wide hidden layer (Rot-
skoff & Vanden-Eijnden, 2018; Mei et al., 2018; Chizat & Bach, 2018; Sirignano &
Spiliopoulos, 2020). These works have shown that in this setting the optimisation
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can be mapped to a convex problem in the space of the distributions of the hidden-
layer weights and the dynamics can be written in terms of a closed set of partial
differential equations. This approach is known as mean-field2 or hydrodynamic limit
of neural networks. Remarkably, this result implies that ANNs in the hydrodynamic
limit converge globally to perfect learning as soon as enough data are available and
the learning rate is properly scaled.

The recent work of Veiga et al. (2022) reconciles the two online-learning regimes
described above, considering arbitrary learning rate and a general range of hidden-
layer width.

Dynamical mean-field theory for SGD — Tracking the trajectory of multi-pass
SGD in the realistic case where the training samples are reused multiple times
is a central result of this thesis. We have obtained this characterisation via the
dynamical mean-field theory (DMFT) formalism (Mézard et al., 1987; Georges et al.,
1996; Parisi et al., 2020). It consists in a closed set of integro-differential equations
that track the full trajectory of stochastic gradient-based algorithms in the high-
dimensional limit and for generic non-convex losses. The method will be discussed
in more detail in Chapter 2.2. This derivation extends the one reported in Agoritsas
et al. (2018) for the non-convex perceptron model (Franz et al., 2017) with random
inputs and random labels, motivated there as a model of glassy phases of hard
spheres. Interestingly, the DMFT equations tracking the high-dimensional limit of
GD-flow have been proven rigorously in the recent work of Celentano et al. (2021).
While we relegate the discussion on DMFT for modelling ANN training to the next
chapter, we present a brief overview on the broader applications of this method to
study mean-field spin glasses and high-dimensional statistics problems in the next
section.

2.1.2 . Dynamical mean-field theory in the disordered
systems literature

DMFT has a long history in the disordered systems physics literature, where
it has been applied to study the Langevin dynamics of mean-field spin glasses us-
ing just a small number of relevant order parameters, starting from (Sompolinsky &
Zippelius, 1982; Crisanti & Sompolinsky, 1987; Kirkpatrick & Thirumalai, 1987). In
a nutshell, DMFT allows to reduce the description of a high-dimensional disordered
system of strongly correlated degrees of freedom to a set of integro-differential equa-
tions for low-dimensional overlap parameters, where the disorder has been integrated
out at the price of adding memory to the system via two-time quantities.

The DMFT equations can be derived using at least two equivalent methods:
2The term mean-field has been used in several contexts in machine learning (Poole et al., 2016;

Schoenholz et al., 2017; Yang et al., 2019; Mei et al., 2019; Gilboa et al., 2019; Novak et al., 2019).
Note that the term in the aforementioned works refers to a variety of approximations and concepts.
In this thesis we use it with the same meaning as in Mézard et al. (1987); Georges et al. (1996);
Parisi et al. (2020) as discussed in Chapter 1.1. Most importantly, the term mean-field in our case
has nothing to do with the width of an eventual hidden layer.
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the dynamical cavity approach (Mézard et al., 1987) and the Martin-Siggia-Rose-
Janssen-De Dominicis formalism (Martin et al., 1973; Janssen, 1976; De Dominicis,
1978) for path integrals, that is the one adopted in this thesis in its supersymmetric
(SUSY) version (J. Kurchan, 1992; Kurchan, 2002; Zinn-Justin, 2002). Depend-
ing on the structure of the Hamiltonian, the precise form of the final equations
can differ. For the simplest class of DMFT equations, we start from the dynamics
of a high-dimensional system of d coupled degrees of freedom w(t) = {wj(t)}dj=1

and we end up with a pair of closed integro-differential equations3 for the corre-
lation C(t, t′) = 〈

∑d
j=1wj(t)wj(t

′)〉/d and the linear response function R(t, t′) =

〈
∑d

j=1 δwj(t)/δHj(t
′)|H=0〉, where Hj(t) is a local field coupled to the jth degree of

freedom.
The celebrated p−spin spherical model, described by the disordered long-range

p−body Hamiltonian:

H(w) = −
∑

i1<i2<...<ip

Ji1i2...ip wi1wi2 . . . wip ,
d∑
j=1

w2
j = d, (2.1.6)

falls in this category (see Sompolinsky & Zippelius (1982) for p = 2, Kirkpatrick &
Thirumalai (1987); Crisanti & Sompolinsky (1987) for p > 2). The term Ji1i2...ip in
Eq. (2.1.6) denotes a rank−p symmetric tensor in dimension d whose components
are either drawn i.i.d. from a standard Gaussian distribution (random case) or
generated by an hidden signal w∗: Ji1i2...ip = w∗i1w

∗
i2
. . . w∗ip (planted case). The

mean-field p−spin has served as a prototypical model for the glass transition to
explore the connection between static and dynamic properties (Crisanti & Sommers;
Crisanti et al., 1993). The out-of-equilibrium dynamics of the model was solved by
Cugliandolo & Kurchan (1993a). Their equations resulted in a key development of
the understanding of the relaxation dynamics of glassy systems (Bouchaud et al.,
1996, 1998). Moreover, while in general DMFT is a heuristic statistical physics
method, it has been amenable to a rigorous proof in this case (Arous et al., 1997;
Ben Arous et al., 2006).

In general, and also in the case of the perceptron model considered in this thesis,
the DMFT equations cannot be closed on correlation and response functions and
instead involve memory kernels that must be determined from a one-dimensional4
stochastic process in a self-consistent way (see, e.g., Opper & Diederich (1992);
Maimbourg et al. (2016); Agoritsas et al. (2018); Pearce et al. (2020); Roy et al.
(2020)). This procedure will be further discussed in Chapter 2.2. We also refer the
interested reader to Cugliandolo (2002) for a more comprehensive introduction.

Exploring the connection between statics and dynamics in mixed p−spin models
— Recently, mixed p−spin models, i.e., models described by combinations of the

3Usually referred to as Crisanti-Horner-Sommers-Cugliandolo-Kurchan (CHSCK) equations in
the literature.

4For variants of the problem such as two-layer networks with a finite number k of hidden units
or a system of k coupled replicas, the self-consistent process is k−dimensional.

55



Chapter 2.1. A brief introduction to the dynamics of learning

Hamiltonian in Eq. (2.1.6):

H(w) = −
∑
p∈P

αp
∑

i1<i2<...<ip

Ji1i2...ip wi1wi2 . . . wip , (2.1.7)

controlled by the mixture coefficients {αp}p∈P , have been adopted as prototypes
of hard optimisation problems in order to investigate the interplay of the energy
landscape and the asymptotic gradient-descent dynamics.

In Folena et al. (2020), the authors consider a mixture of random p−spin mod-
els, revealing that the relaxation clearly differs from the pure p−spin model in the
fact that the asymptotic states keep memory of the initial condition and the final
energy is a decreasing function of the temperature at which the initial configuration
thermalises.

Mannelli et al. (2020a) have studied the mixed model: P = {p1 = 2, p2 > 2}
generated by a planted signal, also known as spiked matrix-tensor model, to assess the
performance of the Langevin algorithm at high-dimensional noisy inference, finding
that its algorithmic threshold is suboptimal with respect to the one given by the
AMP algorithm. In Mannelli et al. (2019); Sarao Mannelli et al. (2019), the authors
extend the analysis to gradient flow and develop a quantitative theoretical framework
to explain how GD can find good minima despite the presence of exponentially-many
bad local minima, by combining the dynamical equations with the Kac-Rice analysis
of the stationary points of the landscape.

However, the spiked matrix-tensor model does not offer a natural way to study
the SGD algorithm or to explore the difference between training and test errors.
In particular, this model does not allow for the study of the so-called interpolating
regime, where the loss function is optimised to zero while the test error remains
positive. As such, its landscape is intrinsically different from supervised learning
problems since in the former the spurious minima proliferate at high values of the
loss while the good ones lie at the bottom of the landscape. Instead, DNNs have
both spurious and good minima at 100% training accuracy and their landscape
resembles much more the one of continuous constraint satisfaction problems (Franz
et al., 2017, 2019a).
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2.2 - Dynamical mean-field theory for stochas-
tic gradient descent

In this chapter, we present how to extend the dynamical mean-field theory
(DMFT) to analyse in a closed form the learning dynamics of the multi-pass SGD
algorithm in the high-dimensional Gaussian mixture model (GMM) for binary clas-
sification introduced in Chapter 1.2, and in a non-linearly-separable variant. This
formalism allows us to explore the performance of the algorithm as a function of
the problem parameters in a prototype non-convex loss landscape with interpolating
regimes and a large generalisation gap.

2.2.1 . Introduction to the task
We consider a training set made of n points:

X = (x1, . . . ,xn)> ∈ Rn×d with binary labels y = (y1, . . . , yn)> ∈ {±1}n,
(2.2.1)

and two different GMMs for the data:

• The two-cluster dataset is the same data model introduced in Section 1.2.1
in the special case of balanced clusters, i.e., drawn with equal probability
P(yµ = 1) = P(yµ = −1) = 1/2, ∀µ = 1, . . . , n, and

xµ = yµ
w∗
√
d

+
√

∆zµ . (2.2.2)

As already discussed in Chapter 1.2, if the noise level ∆ and/or the sample
complexity α are small enough, the two Gaussian clouds are linearly sepa-
rable by an hyperplane, and a single-layer ANN is enough to perform the
classification task. We thus consider learning with the simplest prediction rule
ŷµ(w) = sign

(
x>µw

)
.

• The three-cluster dataset is again a binary classification task but on a GMM
that is not linearly separable anymore:

xµ = cµ
w∗
√
d

+
√

∆zµ, with yµ = 2c2
µ − 1, (2.2.3)

and

cµ =


+1 with prob. 1

4

−1 with prob. 1
4

0 with prob. 1
2

, ∀µ = 1, . . . , n. (2.2.4)
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(a) Two-cluster dataset. (b) Three-cluster dataset.

Figure 2.2.1 – Pictorial representation of the Gaussian mixture datasets under con-
sideration.

Therefore, in this case the data come from a mixture of three clouds of Gaus-
sian points, with two external clouds centered at ±w∗/

√
d and one centered

at the origin. In order to fit the data, we consider a single-layer ANN with the
door activation function, defined as

ŷµ(w) = sign

(x>µw√
d

)2

− L2

 . (2.2.5)

For simplicity, we will fix the onset parameter L, that in principle can be
learned as well, for instance by cross-validation.

A pictorial representation of the data models under consideration is shown in Fig-
ure 2.2.1.

Similarly as in previous chapters, we consider the empirical risk minimisation
(ERM) framework, with empirical risk given by

H(w) =
n∑
µ=1

`

(
yµ φ

(
x>µw√
d

))
+
λ

2
‖w‖2

2, (2.2.6)

where we have added a ridge regularisation term of strength λ. The activation
function φ(·) is given by

φ(z) =

{
x linear for the two-cluster dataset
x2 − L2 door for the three-cluster dataset

. (2.2.7)

2.2.2 . The training algorithms
In this section, we introduce the stochastic training algorithms that will be the

object of study of this and the following chapters. We first start by writing the
definitions of the algorithmic updates in discrete time.

58



Chapter 2.2. Dynamical mean-field theory for stochastic gradient descent

Full-batch gradient descent — The discrete dynamics of full-batch GD is given by
the weights update:

wj(t+ dt) = wj(t)− dt
[
∂wjH (w) + λwj(t)

]
= wj(t)− dt

[
n∑
µ=1

Λ′
(
yµ,
w(t)>xµ√

d

)
xµ,j√
d

+ λwj(t)

]
, ∀j = 1, . . . , n,

(2.2.8)

where dt > 0 is the time step and we have introduced the function Λ(y, h) =
` (yφ (h)) with a prime indicating the derivative with respect to h, i.e., Λ′(y, h) =
y`′ (yφ (h))φ′ (h). We consider a Gaussian initialisation of the weight vector w(0) ∼
N (0, R Id), where R > 0 is a parameter that tunes the average norm of the weight
vector at the beginning of the dynamics.

In the following, we consider different ways to add stochasticity to the dynamics.

Multi-pass stochastic gradient descent — We study multi-pass SGD, where the
samples are reused multiple times during training. We consider the case where mini
batches are sampled with replacement with size B = bn, b ∈ (0, 1] at each time
step. If we introduce a set of binary variables sµ(t) ∈ {0, 1}, µ = 1, ..., n, to select
which samples are used compute the approximate gradient, then in the large d limit
the vanilla-SGD algorithm (sampling with replacement) is equivalent to

wj(t+ dt) =

wj(t)− dt

[
n∑
µ=1

sµ(t)Λ′
(
yµ,
w(t)>xµ√

d

)
xµ,j√
d

+ λwj(t)

]
, ∀j = 1, . . . , n,

(2.2.9)

where we draw

sµ(t) =

{
1 with probability b

0 otherwise
(2.2.10)

independently at each time step. However, the continuous-time limit dt→ 0+ is
not well-defined in this case.

Persistent stochastic gradient descent — We define an alternative persistent ver-
sion of the SGD discrete-time process for the variables sµ(t). We call the resulting
algorithm persistent-SGD (p-SGD). In Chapter 5, we will show that this choice of
mini-batch sampling can result in a performance improvement in some cases. The
sampling vector is initialised as

sµ(t = 0) =

{
1 w.p. b

0 otherwise
(2.2.11)

and updated according to
Prob (sµ(t+ dt) = 1|sµ(t) = 0) =

1− Prob (sµ(t+ dt) = 0|sµ(t) = 0) =
dt

τ
,

Prob (sµ(t+ dt) = 0|sµ(t) = 1) =

1− Prob (sµ(t+ dt) = 1|sµ(t) = 1) =
1− b

bτ
dt.

(2.2.12)
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This sampling process has the advantage of being well-defined in the continuous-time
limit. Indeed, each sampling variable sµ(t) follows a two-state Markov jump process
with exponentially-distributed transition times and inhomogeneous switching rates:
r
sµ(t)
0→1 = 1/τ (“activation” rate), rsµ(t)

1→0 = (1− b)/bτ (“deactivation” rate). The value
of τ > 0 indicates the average time spent by each sample out of the training mini-
batch, and we will call it persistence time. The average time spent in the training
mini batch by each sample is τb/(1− b). If we set τ = dt/b, we recover the vanilla-
SGD algorithm. Note that, in this setting, there are two parameters controlling the
stochasticity of the algorithm: the mini-batch size b and the persistence time τ .

Langevin dynamics — A different kind of stochastic dynamics is provided by the
Langevin algorithm at temperature T , widely studied in physics:

wj(t+ dt) = wj(t)− dt
[
∂wjH (w) + λwj(t)

]
+ dt ςj(t), ∀j = 1, ...d. (2.2.13)

The random vector ς(t) is Gaussian white noise:

〈ςj(t)〉 = 0, ∀j = 1, ...d,

〈ςi(t)ςj(t′)〉 = 2T δij δ(t− t′), ∀i, j = 1, ...d.
(2.2.14)

Note that by setting b = 1 in Eq. (2.2.9) or T = 0 in Eq. (2.2.13) we recover the
full-batch GD algorithm.

Stochastic gradient flow — In the following, as done in Article 3, we write the
DMFT equations for the continuous-time dynamics defined by the dt → 0+ limit.
We will then discuss the discrete-time case. For simplicity, the flow dynamics of
SGD and Langevin can be regrouped in the following stochastic gradient flow (SGF)
equations

ẇj(t) = −

[
n∑
µ=1

sµ(t)Λ′
(
yµ,
w(t)>xµ√

d

)
xµ,j√
d

+ λwj(t)

]
+ ςj(t), (2.2.15)

∀j = 1, ...d, where gradient flow – the continuous-time limit of GD – is recovered by
setting b = 1 and T = 0.

2.2.3 . Dynamical mean-field theory for SGD
We will now analyse the SGF in the infinite-size limit n, d→∞ at fixed α = n/d,

b and τ of order one. To this end, we use DMFT from statistical physics of disordered
systems. As already mentioned in Chapter 2.1, there are at least two ways to write
the DMFT equations. One is by using field-theoretical techniques, the other is to
employ a dynamical version of the so-called cavity method (Mézard et al., 1987).
Here we opt for the first option that is generally very compact and immediate.
We use a supersymmetric (SUSY) representation to derive the DMFT equations (J.
Kurchan, 1992; Agoritsas et al., 2018), leading to a computation that resembles very

60



Chapter 2.2. Dynamical mean-field theory for stochastic gradient descent

much a static treatment of the Gibbs measure of the problem (Kurchan, 2002), as
the ones carried out in Chapters 1.2 and 1.3 of this thesis.

The derivation based on the cavity method is detailed in Agoritsas et al. (2018).
The main differences of the present work with respect to Agoritsas et al. (2018)
are that here we consider multi-pass SGD and that our dataset is structured while
in Agoritsas et al. (2018) the derivation was done for full-batch GD, random i.i.d.
inputs and random labels, i.e., a case where learning is impossible and we cannot
investigate the generalisation error and its properties.

The starting point of the DMFT is the dynamical partition function

Zdyn =

∫
w(0)=w(0)

D [w(t)]

×
d∏
j=1

δ

[
−ẇj(t)− λwj(t)−

n∑
µ=1

sµ(t)Λ′
(
yµ,
w(t)>xµ√

d

)
xµ,j√
d

+ ζj(t)

]
,

(2.2.16)

where
∫
w(0) = w(0)D [w(t)] stands for the measure over the dynamical trajectories

starting from w(0) and following the dynamics given by Eq. (2.2.15). Note that we
only fix the initial condition, while the endpoint of the dynamics is free. Therefore,
the trajectory is unique due to the causality of the dynamics. Moreover, in our case
the definition of the discrete-time updates implies the use of the Itô convention.
Thus, the determinant of the Jacobian of the change of variables from ζ to w
is equal to one (Cugliandolo & Lecomte, 2017) and we do not have to introduce
fermionic fields to compute it (Zinn-Justin, 2002; Cugliandolo, 2002).

Since Zdyn = E[Zdyn] = 1 (it is just an integral of a Dirac delta function) (Domini-
cis, 1976) one can average directly Zdyn over the training set, the initial condition,
the Langevin noise and the stochastic processes of sµ(t):

Zdyn =

〈∫ [
dw(0)

(2π)
d
2

e−
1
2
‖w(0)‖22

]∫
Dζ(t)

∫
w(0)=w(0)

Dw(t)

×
d∏
j=1

δ

[
−ẇj(t)− λwj(t)−

n∑
µ=1

sµ(t)Λ′
(
yµ,
w(t)>xµ√

d

)
xµ,j√
d

+ ζj(t)

]〉
,

(2.2.17)

where the brackets 〈·〉 stand for the average over sµ(t), yµ and the realisation of the
noise in the training set. The averages over the initial condition and the Langevin
noise are written explicitly. Note that we choose an initial condition that is Gaussian,
but we could have chosen a different probability measure over the initial configura-
tion of the weights. The equations can be generalised to other initial conditions as
soon as they do not depend on quenched random variables that enter in the SGD
dynamics and their distribution is separable. Since the initial condition is uncorre-
lated with the disorder, there is no need to use the replica trick (Houghton et al.,
1983). After a few steps of algebra, we obtain

Zdyn =

〈∫
Dw(t)Dŵ(t) eSdyn

〉
, (2.2.18)

61



Chapter 2.2. Dynamical mean-field theory for stochastic gradient descent

where we have defined

Sdyn =
d∑
j=1

∫ +∞

0

dt iŵj(t) (−ẇj(t)− λwj(t)

−
n∑
µ=1

sµ(t)Λ′
(
yµ,
w(t)>xµ√

d

)
xµ,j√
d
− iT ŵj(t)

)
.

(2.2.19)

and we have introduced a set of conjugate fields ŵ(t) to produce the integral repre-
sentation of the Dirac δ−function.

SUSY formulation — The dynamical action Sdyn in Eq. (2.2.19) can be rewritten
in a SUSY form, by extending the time coordinate to include two Grassmann co-
ordinates1 θ and θ̄, i.e., ta → a = (ta, θa, θ̄a). The dynamic variable w(ta) and the
auxiliary variable ŵ(ta) are encoded together in a super-field

w(a) = w(ta) + i θaθ̄aŵ(ta). (2.2.20)

In the following, the term “super” refers to any quantity involving both commuting
and anticommuting variables. The introduction of these mathematical objects will
help us in the calculations. From the properties of Grassmann variables (Zinn-Justin,
2002):

θ2 = θ̄2 = θθ̄ + θ̄θ = 0,∫
dθ =

∫
dθ̄ = 0,

∫
dθ θ =

∫
dθ̄ θ̄ = 1,

∂θg(θ) =

∫
dθ g(θ) for a generic function g,

(2.2.21)

it follows that ∫
da f (w(a)) =

∫ +∞

0

dta iŵ(ta)
>∇wf (w(ta)) . (2.2.22)

Note that, as a consequence of the properties of Grassmann algebra, a function of
Grassman variables can only be linear. We can use Eq. (2.2.22) to rewrite Sdyn. We
obtain

Sdyn = −1

2

∫
dadbK(a, b)w(a)>w(b)−

n∑
µ=1

∫
da sµ(a) Λ (yµ, hµ(a)) , (2.2.23)

1Grassmann anticommuting variables were first presented by Herman G. Grassmann (1809-
1877). Supermathematics, i.e., the use of commuting and anticommuting variables on equal footing,
and its important applications to physics were introduced by Felix A. Berezin (1931-1980). His
most important results are the Berezin integral over Grassmann anticommuting variables and the
Berezinian, i.e., the generalisation of the Jacobian. From this construction it follows that the
integral of a Grassman variable is equal to its derivative. An extended introduction and more
examples on the use of Grassmann variables can be found in the physics books Efetov (1983);
Zinn-Justin (2002) and the mathematics books Berezin (1987); DeWitt (1992).
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where we have defined hµ(a) ≡ w(a)>xµ/
√
d and we have defined the kernel K(a, b)

such that

−1

2

∫
dadbK(a, b)w(a)>w(b) =

d∑
j=1

∫ +∞

0

dt iŵj(t) (−ẇj(t)− λwj(t)− iTŵj(t)) ,
(2.2.24)

which is given by

K(a, b) = −2Tδ(ta − tb)− θaθ̄a∂taδ(tb − ta)− θbθ̄b∂tbδ(ta − tb) + λδ(a, b),

δ(a, b) = δ(ta − tb)(θaθ̄a − θbθ̄b).
(2.2.25)

By inserting the definition of hµ(a) in the partition function, we have

Zdyn =

〈∫
Dw(a)Dhµ(a)Dĥµ(a)

exp

[
−1

2

∫
dadbK(a, b)w(a)>w(b)−

n∑
µ=1

∫
da sµ(a) Λ (yµ, hµ(a))

]

exp

[
n∑
µ=1

∫
da i ĥµ(a)

(
hµ(a)− w(a)>xµ√

d

)]〉
.

(2.2.26)

Let us consider the last factor in the integral in (2.2.26). We can perform the average
over the random vectors zµ ∼ N (0, Id), denoted by an overline, as

exp

[
n∑
µ=1

∫
da i ĥµ(a)

(
hµ(a)− w(a)>xµ√

d

)]

= exp

[
n∑
µ=1

∫
da i ĥµ(a)

(
hµ(a)− cµm(a)−

√
∆

d
w(a)>zµ

)]

= exp

[
n∑
µ=1

∫
da i ĥµ(a) (hµ(a)− cµm(a))

−∆

2

n∑
µ=1

∫
da dbQ(a, b)ĥµ(a)ĥµ(b)

]
,

(2.2.27)

where we have defined the dynamical overlap variables

m(a) =
1

d
w(a)>w∗,

Q(a, b) =
1

d
w(a)>w∗(b).

(2.2.28)

By inserting the definitions of m(a) and Q(a, b) in the partition function, we obtain

Zdyn =

∫
DQDm edS(Q,m), (2.2.29)
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where Q = {Q(a, b)}a,b , m = {m(a)}a and

S(Q,m) =
1

2
log det (Q(a, b)−m(a)m(b))− 1

2

∫
dadbK(a, b)Q(a, b) + α logZ,

Z =

〈∫
Dh(a)Dĥ(a) exp

[
−∆

2

∫
dadb Q(a, b)ĥ(a)ĥ(b)

+

∫
da iĥ(a) (h(a)− cm(a))−

∫
da s(a) Λ (y, h(a))

]〉
,

(2.2.30)

where the term log det (Q(a, b)−m(a)m(b)) is due to the change of variables from
w(a) to Q(a, b), m(a), that is analogous to the one performed for the static replica
computation in Chapter 1.2. We have used that the samples are i.i.d. and removed
the index µ = 1, ...n. The brackets denote the average over the random variable
c, that has the same distribution as the cµ, over y, distributed as yµ, and over
the random sampling process of s(t). If we perform the translation Q(a, b) ←
Q(a, b) +m(a)m(b), we obtain

S(Q,m) =
1

2
log detQ(a, b)− 1

2

∫
dadbK(a, b) (Q(a, b) +m(a)m(b)) + α logZ,

Z =

〈∫
Dh(a)Dĥ(a) eSloc

〉
,

(2.2.31)

where the effective local action Sloc is given by

Sloc = −∆

2

∫
dadb Q(a, b)ĥ(a)ĥ(b)− ∆

2

(∫
da ĥ(a)m(a)

)2

+

∫
da iĥ(a) (h(a)− cm(a))−

∫
da s(a) Λ (y, h(a)) .

(2.2.32)

Performing a Hubbard-Stratonovich transformation

exp

[
−∆

2

(∫
da ĥ(a)m(a)

)2
]

=

∫
dh0√

2π
e−

h2
0
2 exp

(
i
√

∆h0

∫
da ĥ(a)m(a)

)
(2.2.33)

and a set of transformations on the fields h(a) and h0:

h(a)← h(a) +m(a)(c+ h0), h(a), h0 ←
√

∆h(a),
√

∆h0, (2.2.34)

we obtain that we can rewrite Z as

Z =

〈∫
dh0√

2π
e−

h2
0
2

∫
Dh(a)Dĥ(a) exp

[
−1

2

∫
dadb Q(a, b)ĥ(a)ĥ(b)

+

∫
da iĥ(a)h(a)−

∫
da s(a) Λ

(
y,
√

∆h(a) +m(a)(c+
√

∆h0)
)]〉

=

〈∫
dh0√

2π
e−

h2
0
2

∫
Dh(a)Dĥ(a)eSloc

〉 (2.2.35)
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Saddle-point equations — We are interested in the large d limit of Zdyn, in which,
according to Eq. (2.2.29), the partition function is dominated by the saddle-point
value of S(Q,m): 

δS(Q,m)

δQ(a, b)

∣∣∣∣
(Q,m)=(Q̃,m̃)

= 0

δS(Q,m)

δm(a)

∣∣∣∣
(Q,m)=(Q̃,m̃)

= 0

. (2.2.36)

The solution for the self-overlap Q̃(a, b) is obtained from the equation

−K(a, b) +Q−1(a, b) +
2α

Z
δZ

δQ(a, b)
= 0. (2.2.37)

The saddle-point equation for m̃(a) is instead

−
∫

dbK(a, b)m(b) +
α

Z
δZ

δm(a)
= 0. (2.2.38)

Self-consistent effective stochastic process — At this point, we have obtained that
the path integral is dominated by the saddle point of the SUSY dynamical action
S(Q,m), computed in Eqs. (2.2.37)-(2.2.38). However, these equations still depend
on the averages over h(a) and h0 contained in Z. The trick to proceed is to write an
effective stochastic process for the variable h(t), such that the corresponding SUSY
dynamical action would be exactly the effective local action Sloc in Eq. (2.2.35).

It can be shown by exploiting the Grassmann structure of Eqs. (2.2.37)-(2.2.38)
that they lead to a self consistent stochastic process described by

ḣ(t) = −λ̃(t)h(t)−
√

∆s(t)Λ′ (y, r(t)) +

∫ t

0

dt′MR(t, t′)h(t′) + ξ(t), (2.2.39)

There are several sources of stochasticity in Eq. (2.2.39). First, one has a dynamical
noise ξ(t) that is Gaussian distributed and characterised by the correlations

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = MC(t, t′) + T . (2.2.40)

Furthermore, the starting point h(0) of the stochastic process is random and dis-
tributed according to

P (h(0)) = e−h(0)2/(2R)/
√

2πR . (2.2.41)
Moreover, one has to introduce a quenched Gaussian random variable h0 with mean
zero and variance one to model the initialisation. We recall that the random variable
c = ±1 with equal probability in the two-cluster model, while c = 0,±1 in the
three-cluster one. The variable y(c) is therefore y(c) = c in the two-cluster case,
and is given by Eq. (2.2.3) in the three-cluster one. Finally, one has a dynamical
stochastic process s(t) whose statistical properties are specified in Eq. (2.2.12). The
magnetisationm(t) is obtained from the following deterministic differential equation

∂tm(t) = −λm(t)− µ(t), m(0) = 0+ . (2.2.42)
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The stochastic process for h(t), the evolution of m(t), as well as the statistical
properties of the dynamical noise ξ(t) depend on a series of auxiliary functions and
kernels that must be computed self-consistently and are given by

λ̃(t) = λ+ λ̂(t), λ̂(t) = α∆ 〈s(t)Λ′′ (y(c), r(t))〉 ,

µ(t) = α
〈
s(t)

(
c+
√

∆h0

)
Λ′ (y(c), r(t))

〉
,

MC(t, t′) = α∆ 〈s(t)s(t′)Λ′ (y(c), r(t)) ′ (y(c), r(t′))〉 ,

MR(t, t′) = α∆
δ

δP (t′)
〈s(t)Λ′(y(c), r(t))〉

∣∣∣∣
P=0

.

(2.2.43)

In Eq. (2.2.43) the brackets denote the average over all the sources of stochasticity
in the self-consistent stochastic process, and thus capture the information about
the interaction of the dynamical weights with .the dataset, the initialisation and
the algorithmic noise. Therefore one needs to solve the stochastic process in a self-
consistent way. Note that P (t) in Eq. (2.2.39) is set to zero and we need it only to
define the kernel MR(t, t′). The memory kernel MR(t, t′) can also be expressed as

MR(t, t′) = α∆〈s(t)Λ′′ (y(c), r(t)) T (t, t′)〉, (2.2.44)

where T (t, t′) = δh(t)/δP (t′) satisfies:

Ṫ (t, t′) = −λ̃(t)T (t, t′)−
√

∆s(t)Λ′′(y, r(t)) (T (t, t′)− δ(t− t′))

+

∫ t

t′
dsMR(t, s)T (s, t′),

(2.2.45)

which is the expression that we use in practice to solve the system. The set of
Eqs. (2.2.39), (2.2.42) and (2.2.43) can be solved by an iterative algorithm, described
below.

Numerical solution of the DMFT equations — To integrate numerically the DMFT
equations, we proceed by iterations:

1. We start from a random guess of the kernels, that we use to sample several
realisations of the stochastic process of Eq. (2.2.39);

2. We compute the averages over these multiple realisations to obtain the up-
dates of the auxiliary functions and kernels in Eq. (2.2.43), along with the
magnetisation (2.2.42);

3. We use these new guesses to sample again multiple realisations of the stochastic
process;

4. We repeat steps 2. and 3. until the kernels reach a fixed point.

As in all iterative solutions of fixed point equations, it is natural to introduce some
damping in the update of the kernels to avoid wild oscillations. Note that the
DMFT fixed point equations are deterministic, hence at given initial condition the
solution is unique. Indeed, the kernels computed by DMFT are causal and a simple
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integration scheme of the equations is just extending them progressively in time
starting from their initial value, which is completely deterministic given the initial
condition for the stochastic process. This procedure has been first implemented in
Eissfeller & Opper (1992, 1994) and recently developed further in other applications
(see, e.g., Roy et al. (2019); Manacorda et al. (2020)). However, DMFT has a long
tradition in condensed matter physics Georges et al. (1996) where more involved
algorithms have been developed.

In order to solve Eqs. (2.2.39), (2.2.42) and (2.2.43), we need to discretise time.
In the following Section 2.2.4, in order to compare our theoretical predictions with
numerical simulations, we will take a simple uniform time grid, with the time step
in the DMFT equal to the learning rate in the simulations. In the time-discretised
DMFT, this allows us to extract the variables s(t) either from SGD or p-SGD. In the
former case this provides an SGD-inspired discretisation of the DMFT equations,
which is exact also in discrete time provided that the weight increments do not have
higher-order terms than O(dt). The convergence of subsequent iterations for the
learning curves obtained with this numerical procedure is illustrated in Figure 2.2.2a
for the average magnetisation and Figure 2.2.2b for the average loss function. Notice
that, since we have taken the thermodynamic limit d → ∞ at fixed time horizon,
the DMFT equations provide theoretical predictions for the finite-time properties of
the infinite-dimensional system.

Correlation and response functions — Once the self-consistent stochastic process
is solved, from the solution Q(a, b) of the saddle-point Eqs. (2.2.36), we can obtain
the equations for the dynamical correlation function C(t, t′) =

∑
j wj(t)wj(t

′)/d
and the response function R(t, t′) =

∑
j δwj(t)/δHj(t

′)/d. We consider the linear
response regime, where R(t, t′) controls the variations of the weights when their
dynamical evolution is affected by an infinitesimal local field Hi(t). Coupling a local
field Hi(t) to each variable wi(t) changes the loss function as follows: H (w(t)) →
H (w(t))−

∑d
i=1 Hi(t)wi(t), resulting in an extra term Hi(t) to the right hand side

of Eq. (2.2.15). We then consider the limit Hi(t) → 0. Indeed, we can write the
closure relation

δ(a, b) =

∫
dcQ−1(a, c)Q(c, b)

=

∫
dc [K(a, c)−M(a, c)]Q(c, b) + λ̂(a)Q(a, b).

(2.2.46)

Now we can express the overlap explicitly in time and Grassmann coordinates

Q(a, b) =
1

d
w(a)>w(b)

= C(ta, tb)−m(ta)m(tb) + θaθ̄aR(tb, ta) + θbθ̄bR(ta, tb),
(2.2.47)

where we remind that we have performed the change of variable Q(a, b)→ Q(a, b)+
m(a)m(b). Plugging the definition of K(a, b) (Eq. (2.2.25)) and Eq. (2.2.43) in Eq.
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(2.2.46), we find

δ(ta − tb)(θaθ̄a − θbθ̄b) =

−2TR(tb, ta) + ∂taC(ta, tb)− ∂tam(ta)m(tb) + λ (C(ta, tb)−m(ta)m(tb))

−
∫

dtc [MC(ta, tc)R(tb, tc) +MR(ta, tc) (C(tb, tc)−m(tb)m(tc))]

+θaθ̄a [∂taR(tb, ta) + λR(tb, ta)]− θaθ̄a
∫

dtcMR(tc, ta)R(tb, tc)

+θbθ̄b

[
∂taR(ta, tb) + λR(ta, tb)−

∫
dtcMR(ta, tc)R(tc, tb)

]
+λ̂(ta)

(
C(ta, tb)−m(ta)m(tb) + θaθ̄aR(tb, ta) + θbθ̄bR(ta, tb)

)
.

(2.2.48)

We can derive the equations for correlation and response from the scalar and Grass-
mann terms (the terms in θaθ̄a and θbθ̄b result in the same contribution):

∂tC(t′, t) =− λ̃(t)C(t, t′) + 2TR(t′, t) +

∫ t

0

dsMR(t, s)C(t′, s) +

∫ t′

0

dsMC(t, s)R(t′, s)

−m(t′)

(∫ t

0

dsMR(t, s)m(s) + µ(t)− λ̂(t)m(t)

)
if t 6= t′,

1

2
∂tC(t, t) =− (̃t)C(t, t) +

∫ t

0

dsMR(t, s)C(t, s) +

∫ t

0

dsMC(t, s)R(t, s)

∂tR(t, t′) =− λ̃(t)R(t, t′) + δ(t− t′) +

∫ t

t′
dsMR(t, s)R(s, t′),

(2.2.49)

where we have used Eq. (2.2.42) in the first of Eqs. (2.2.49) . It is interesting
to note that the second of Eqs. (2.2.49) controls the evolution of the norm of the
weight vector C(t, t) and even if we set λ = 0 we get that it contains an effective
regularisation λ̂(t) that is dynamically self-generated (Soudry et al., 2018a). At
this point, the numerical solution of the equations for correlation and response is
straightforward due to causality: we can integrated them in one forward pass in
time, since at each step the all the required quantities are already known.

Dynamics of the loss and the generalisation error — Once the solution for the
self-consistent stochastic process is found, one can get several interesting quantities.
First, one can look at the training loss, which can be obtained as

e(t) = α〈Λ(y, r(t))〉, (2.2.50)

where again the brackets denote the average over the realisation of the stochastic
process in Eq. (2.2.39). The training accuracy is given by

a(t) = 1− 〈Θ(−yφ(r(t)))〉, (2.2.51)

where Θ(·) is the Heaviside step function and we remind that φ is the activation
function given by Eq. (2.2.7). By definition, the accuracy is equal to one as soon
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(a) Different iterations for the aver-
aged magnetisation computed via Eq.
(2.2.42).
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(b) Different iterations for the averaged
loss computed via Eq. (2.2.50).

Figure 2.2.2 – We plot the time curves for different iterations of the numerical
procedure to compute the DMFT solution. We consider the p-SGD algorithm at
b = 1/τ = 0.3, ∆ = 0.05, α = 3, L = 0.707, and dt = 0.2, for the non-linearly
separable setting of the three-cluster GMM model. Each curve corresponds to an
iteration of the algorithm over a fixed time window. Different iterations are marked
in different colors.

as all vectors in the training set are correctly classified. Finally, one can compute
the generalisation error. At any time step, it is defined as the fraction of mislabeled
instances:

εgen(t) =
1

4
EX,y,xnew,ynew

[
(ynew − ŷnew (w(t)))2] , (2.2.52)

where {X,y} is the training set, xnew is an unseen data point and ŷnew is the
estimator for the new label ynew. The dependence on the training set here is hidden
in the weight vector w(t) = w(t,X,y). In the two-cluster case we have computed
the error in Chapter 1.2:

εgen(t) =
1

2
erfc

(
m(t)√

2∆C(t, t)

)
. (2.2.53)

For the door activation trained on the three-cluster dataset we obtain

εgen(t) =
1

2
erfc

(
L√

2∆C(t, t)

)
+

1

4

(
erf

(
L−m(t)√
2∆C(t, t)

)
+ erf

(
L+m(t)√
2∆C(t, t)

))
.

(2.2.54)
The derivation of the above expression is very similar to that of Eq. (1.2.17) and
can be found in Article 3.

2.2.4 . Results
In this section, we compare the theoretical curves resulting from the solution

of the DMFT equations derived in Section 2.2.3 to numerical simulations. First
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Figure 2.2.3 – Generalisa-
tion error as a function of
the training time for the
vanilla SGD algorithm at
finite learning rate dt =
0.2 and sample complexity
α = 2 for the two-clusters
case. The line marks the
theoretical predictions from
DMFT, while the symbols
mark the numerical simu-
lations, performed at d =
500. We consider different
values of the batch size b =
0.01, 0.1, 0.3, 1 (GD). The
dashed line marks the Bayes-
optimal error from Chapter
1.2. The inset shows the
training accuracy.

of all, this analysis shows that our theory is indeed able to capture the learning
dynamics of SGD even in discrete time and finite dimension. In Figure 2.2.3, we
plot the generalisation error and the training accuracy as a function of time for
SGD, comparing numerical simulations at finite dimension d = 500 and learning
rate dt = 0.2 to the theoretical prediction obtained via DMFT with an analogous
discretisation. We find an excellent agreement between the two. Moreover, we gain
insight into the learning dynamics of SGD and its dependence on the various control
parameters in the two models under consideration.

Figure 2.2.4a shows the learning dynamics of the p-SGD algorithm in the two-
cluster model without regularisation λ = 0. We clearly see a good match between
the numerical simulations and the theoretical curves obtained from DMFT, notably
also for small values of batch size b and dimension d = 500. The figure shows
that there exist regions in control parameter space where p-SGD is able to reach
100% training accuracy, while the generalisation error is bounded away from zero.
Figure 2.2.4b illustrates the role of regularisation in the same model trained with
full-batch gradient descent, presenting that regularisation has a similar influence
on the learning curve as small batch size but without the dynamical slowing down
incurred by p-SGD. The influence of the batch size b and the regularisation λ for
the three-cluster model is shown in Figure 2.2.5. We see an analogous effect as for
the two-clusters. In the inset of Figure 2.2.5, we show the norm of the weights as
a function of the training time. Both with the smaller mini-batch size and larger
regularisation the norm is small, testifying further that the two play a similar role
in this case.

One difference between the two-cluster an the three-cluster models we observe
concerns the behaviour of the generalisation error at small times. Actually, for
the three-cluster model, good generalisation is reached because of finite-size effects.
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(a) p-SGD at fixed λ = 0, 1/τ = 0.6 and
different batch sizes b = 1 (GD) , 0.3, 0.1.
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(b) Full-batch GD (b = 1) at different
regularisation strengths λ = 0, 0.1, 1.

Figure 2.2.4 – Generalisation error εgen as a function of the training time t in the
two-cluster model, with α = 2,∆ = 0.5. The continuous lines mark the numerical
solution of DMFT equations, while the symbols are the results of simulations at
dimension d = 500, learning rate dt = 0.2, and initialisation variance R = 0.01. The
insets show the training accuracy as a function of the training time. The dashed
grey lines mark the BO error from the formula computed in Article 1.
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(b) Full-batch GD (b = 1) at different
regularisation strengths λ = 0.1, 0.2, 0.3.

Figure 2.2.5 – Generalisation error εgen as a function of the training time t in the
three-cluster model, at fixed α = 3,∆ = 0.05, L = 0.7. The continuous lines mark
the numerical solution of DMFT equations, while the symbols represent simulations
at dt = 0.2, R = 0.01, and d = 1000.

Indeed, the corresponding loss function displays a Z2 symmetry according to which
for each local minimumw there is another one −w with exactly the same properties.
Note that this symmetry is inherited from the activation function φ in Eq. (2.2.7),
which is even. This implies that if d→∞, the generalisation error would not move
away from 0.5 in finite time. However, when d is large but finite, at time t = 0
the weight vector has a finite projection on the centroid w∗ which is responsible for
the dynamical symmetry breaking and eventually for a low generalisation error at
long times. In order to obtain an agreement between the theory and simulations,
we initialise m(t) in the DMFT equations with its corresponding finite-d average
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Figure 2.2.6 – Left: Generalisation error as a function of the training time for
full-batch gradient descent and p-SGD with 1/τ = b = 0.3 in the three-cluster
model, at fixed α = 2, ∆ = 0.05, L = 0.7 and λ = 0. The continuous lines mark
the numerical solution of DMFT equations, the symbols represent simulations at
dt = 0.2, R = 1, and increasing dimension d = 500, 1000, 5000, 10000. Error bars
are plotted for d = 10000. The dashed lines mark the oracle error (see supplementary
material). Right: Generalisation error as a function of the training time for p-SGD
with different activation rates 1/τ = 0.15, 0.3, 0.6 and vanilla SGD in the two-
cluster model, both with b = 0.3, α = 2, ∆ = 0.5, λ = 0, dt = 0.2, R = 0.01. The
continuous lines mark the numerical solution of DMFT equations, while the symbols
represent simulations at d = 500. The dashed lines mark the BO error from Chapter
1.2. In each panel, the inset displays the training accuracy as a function of time.
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(a) Two-cluster model at fixed α =
2,∆ = 0.5, λ = 0,dt = 0.2, d = 500.
The dashed line marks the BO error com-
puted in Chapter 1.2. The y−axis is cut
for better visibility.
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(b) Three-cluster model at fixed α =
3,∆ = 0.1, λ = 0,dt = 0.1, d = 1000.
The dashed line marks the oracle error
whose computation can be found in Ar-
ticle 3.

Figure 2.2.7 – Generalisation error εgen as a function of training time t for full-batch
GD at different values of the initialisation variance R. The continuous lines mark
the numerical solution of DMFT equations, while the symbols represent simulations
at finite dimension d.The insets show the training accuracy as a function of time.

value at t = 0. In the left panel of Figure 2.2.6, we show that while this produces a
small discrepancy at intermediate times that diminishes with growing size, at long
times the DMFT tracks perfectly the evolution of the algorithm. The right panel of
Figure 2.2.6 summarises the effect of the characteristic time τ in the p-SGD, related
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to the typical persistence time of each pattern in the training mini-batch. When
τ decreases, the p-SGD algorithm is observed to be getting a better early-stopping
generalisation error and the dynamics gets closer to the usual SGD dynamics. As
expected, the τ → dt/b limit of the p-SGD converges to SGD. The SGD-inspired
discretisation of the DMFT equations shows a perfect agreement with the numerics.

Figure 2.2.7 presents the influence of the weight norm at initialisation R on the
dynamics, for the two-cluster (left) and three-cluster (right) model. For the two-
cluster case, the gradient descent algorithm with all-zeros initialisation “jumps” on
the Bayes-optimal (BO) error at the first iteration as derived in Article 1, and in this
particular setting the generalisation error is monotonically increasing in time. As R
increases the early stopping error gets worse. At large times all the initialisations
converge to the same value of the error, as they must, since this is a full-batch
gradient descent without regularisation that at large times converges to the max-
margin estimator according to Rosset et al. (2004). For the three-cluster model we
observe a qualitatively similar behaviour.
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2.3 - Characterising the algorithmic noise of stochas-
tic gradient descent

In this chapter, we show how to apply DMFT to characterise the late-time dy-
namics of stochastic gradient descent (SGD) and quantify its algorithmic noise. In
order to decouple the effect of the SGD noise on the optimisation process from the
effects of the architecture and the data structure, we focus on a single-layer network
and a simple loss landscape.

In particular, we consider the prototypical supervised-classification problem,
namely the binary classification of two balanced Gaussian clusters, introduced in
Chapter 1.2 and further studied in the previous Chapter 2.2 as the two-cluster set-
ting. We remind that the ANN is presented with a set of n training examples in
dimension d, X = (x1, ..,xn)> ∈ Rn×d, drawn i.i.d. from xµ ∼ N (yµw

∗/
√
d,∆ Id),

w∗ = (1, . . . , 1)> ∈ Rd, and yµ = ±1 with equal probability. We consider the ther-
modynamic limit, where n, d → ∞ at fixed sample complexity α = n/d ∼ Od(1).
We consider a single-layer neural network that estimates the labels according to the
linear rule ŷµ(w) = sign(w>xµ/

√
d). The weight vector w ∈ Rd is learned via ERM

of the loss
H(w) =

n∑
µ=1

`

(
yµ√
d
x>µw

)
+
λ

2
‖w‖2

2. (2.3.1)

In what follows, we will always consider the squared hinge cost function `(h) =
(h − κ)2 Θ(κ − h)/2, with κ > 0 and Θ(·) indicating the Heaviside step function.
We note that this particular loss is zero as soon as all the samples are correctly
classified with a robustness ensured by the threshold κ, i.e., yµx>µw/

√
d > κ for

all the samples µ ∈ {1, . . . n}. This choice is meant to reflect the fact that in real
implementations the dynamics is usually stopped after the training error goes to
zero. As customary in practical applications, we have added a ridge regularisation
of strength λ ≥ 0 that will stay fixed during training.

We study the stochastic dynamics of the SGD and p-SGD algorithms introduced
in Section 2.2.2. We integrate the DMFT equations in this setting up to times when
the dynamics has either reached a stationary state or stopped. We highlight the
difference between these two possible scenarios. Indeed we remind that, following
the analogy with constraint-satisfaction problems (CSPs) introduced in Chapter 1.1,
the parameters space can be split into two regions:

• the under-parametrised or unsatisfiable (UNSAT) phase, where the network
cannot achieve zero training error and the dynamics goes to a stationary state;

• the over-parametrised or satisfiable (SAT) phase, where the dynamics stops at
one solution with zero training error due to Heaviside function in the squared
hinge loss. Note that the SAT phase is realised only at λ = 0.

The SAT-UNSAT transition value α∗ for this problem has been computed in Chapter
1.2.
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Chapter 2.3. Characterising the algorithmic noise of stochastic gradient descent

In the UNSAT phase, computing the correlation and response functions of the
network weights, we characterise the stationary state by defining an effective tem-
perature Teff from the fluctuation-dissipation relation. From this relation, we then
extrapolate numerically the value of Teff , which relates correlation and response at
stationarity and quantifies the magnitude of SGD noise as a function of the problem
hyperparameters.

In the SAT phase, the extrapolated temperature approaches zero at large times.
This result aligns with the intuitive picture that SGD implements a self-annealing
procedure while navigating the loss landscape (Feng & Tu, 2021). In order to assess
the noise magnitude in the SAT phase, we introduce an alternative measure that
we can access both analytically – via DMFT – and from numerical simulations. We
consider the dynamics of two copies of the system, starting from the same initial
condition but subjected to two different realisations of the stochastic noise, i.e., two
different histories of mini-batch sampling. We then track the average distance d(t)
between these two trajectories at time t as they evolve in the weight space and
when they finally land on a border of the zero-training-error region. We use this
distance to quantify the noise of the SGD algorithm as a function of the problem
hyperparameters. Remarkably, we show that a higher noise is associated to a smaller
fraction of support vectors at the end of the training and therefore to a more robust
solution (Xu et al., 2009).

We investigate the role of the various hyperparameters in the SAT and UN-
SAT phase, which could provide theoretically-informed guidance for practical im-
plementation. We find a qualitative agreement in the behaviour of the two different
measures of noise magnitude, Teff and d(t), as a function of the hyperparameters.

2.3.1 . Noise characterisation in the UNSAT phase
We first discuss our results for the UNSAT phase, where the landscape has a

unique minimum in which the SGD noise induces a non-equilibrium steady state.
We use the DMFT equations derived in Chapter 2.2 to track the dynamics of the
SGD, p-SGD, and Langevin algorithm introduced in Section 2.2.2. We integrate the
DMFT equations via the numerical iterative method described in Chapter 2.2. The
main quantities of interest for our analysis are the dynamical correlation function

C(t, t′) =
1

N
w(t)>w(t′), (2.3.2)

and the linear response function

R(t, t′) = lim
{Hj→0}

1

N

N∑
j=1

δwj(t)

δHj(t′)
, (2.3.3)

that have been introduced in the previous chapter. In the high-dimensional limit,
these two-point functions concentrate to a deterministic value. In generic equilib-
rium stochastic processes, correlation and response are related by the fluctuation-
dissipation theorem (FDT) (Cugliandolo, 2011):

R(t, t′) = − 1

T
∂tC(t, t′) Θ(t− t′), (2.3.4)
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Figure 2.3.1 – FDT plot
for vanilla-SGD. Top
panel: the different
curves represent differ-
ent choices of learning
rate dt = 0.1, 0.2, 0.3, 0.4.
The main plot is obtained
in the UNSAT phase
(b = 0.1, α = 6,∆ =
1, λ = 1, tw =), while the
lower inset depicts the
SAT phase (b = 0.5, α =
2,∆ = 0.5, λ = 0). In the
upper inset, we plot the
behaviour of the effective
temperature as extracted
from the main plot. Bottom
panel: the same analysis at
fixed learning rate dt = 0.1
and different batch sizes
b = 0.1, 0.2, 0.4, 0.8, 0.99.
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Figure 2.3.2 – FDT plot
for p-SGD. We consider
α = 8,∆ = 1, λ =
1, where the classification
problem is UNSAT and we
use dt = 0.05. We con-
sider different persistence
times τ = 0.5, 1, 2, 4, 8 and
fixed batch size b = 0.3
(top panel), and different
b = 0.1, 0.2, 0.4, 0.8, 0.99
and fixed τ = 2 (bottom
panel). The insets display
the effective temperature,
numerically estimated, as a
function of the persistence
time (top panel) and batch
size (bottom panel).
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where T indicates the equilibrium temperature that enters in the stationary Gibbs
measure. However, for a generic stochastic process that may be out of equilibrium,
FDT does not hold and the stationary state is not given by the Gibbs measure.
However one can define an effective temperature via FDT, which in general will be
a function of t and t′. This concept has proven useful across a variety of systems,
ranging from glasses Cugliandolo (2011) to active matter Loi et al. (2008); Berthier
& Kurchan (2013) 1.

It is convenient to work with the integrated response:

χ(t, t′) =

∫ t

t′
dsR(s, t′), (2.3.5)

that can be computed from the DMFT equations. By integrating both sides of Eq.
(2.3.4), we obtain, for t ≥ t′,

χ̄(t, t′) =
1

T

(
1− C̄(t, t′)

)
, (2.3.6)

where we have defined χ̄(t, t′) = χ(t, t′)/C(t′, t′) and C̄(t, t′) = C(t, t′)/C(t′, t′).
At equilibrium, (2.3.6) implies that the parametric plot of χ̄ versus (vs) C̄ gives
direct access to the equilibrium temperature. Therefore, we compute the integrated
response χ(t+ tw, tw) and the correlation function C(t+ tw, tw). We let the system
evolve until a waiting time tw such that the stationary state has been reached. Then,
at fixed tw, we display the FDT plot χ̄(t+ tw, tw) vs C̄(t+ tw, tw), parametrised by
the time shift t. Figure 2.3.1 summarises our findings regarding the effective FDT
for the vanilla-SGD algorithm. For large enough tw, the relation between integrated
response and correlation becomes linear and we can extrapolate numerically the
effective temperature via (2.3.6).

Extrapolation of the effective temperature — We define the effective temperature
Teff by plotting parametrically the rescaled integrated response χ̄ vs the rescaled cor-
relation C̄ and measuring the slope of this function in the stationary state, meaning
for large t′ and t and large time difference t− t′. We dub the corresponding plot as
the FDT plot (Cugliandolo, 2011). The procedure that we have used to estimate
the effective temperature is displayed in Figure 2.3.3. We treat the case of SGD
and p-SGD separately since they are characterised by some important differences.
Although SGD is a discrete-time algorithm, we use the definition of Eq. (2.3.6) to
identify the effective temperature.

The integration of the response function is performed numerically from the
DMFT equations, therefore in practice a time-discretisation is always needed. For
SGD the variables sµ(t) encoding the sampling process are i.i.d. at all times t.
Therefore, in the stationary state, the FDT plot is a straight line and the ef-
fective temperature Teff is a constant at all time differences. The most efficient

1We note that the actual meaning of Teff extracted from the FDT theorem as a thermodynamic
temperature is not granted and this is an open question in generic out-of-equilibrium systems, see
(Cugliandolo, 2011) and (Loi et al., 2008) for more details. We do not address this issue here and
use the definition of the effective temperature from FDT as a way to measure the magnitude of
the noise of SGD in the stationary state.
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large tw, then t = tfinal−tw < bτ and the
slope tends to zero as tw goes to tfinal.
We extrapolate the slope at smaller tw,
in the regime where Teff is constant, as
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0.2, τ = 2,dt = 0.05,∆ = 1, λ = 1 and
we obtain Teff ≈ 0.2.

Figure 2.3.3 – FDT plot with different curves representing different values of the
waiting time tw. Later waiting times are depicted with darker colors. Since the
values of tw are such that the system is in the stationary state, all the curves are
almost overlapping. At fixed tw, each curve is a parametric plot with respect to
t ∈ [tw, tfinal − tw].
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Figure 2.3.4 – FDT plot for p-SGD. We consider α = 8,∆ = 1, λ = 1, where
the classification problem is UNSAT and we use dt = 0.01 and look at different
initialisation variances R = 1, 0.1, 0.01 and fixed b = 0.3 and τ = 2. In all cases we
obtain an estimate of the effective temperature Teff ∼ 0.05.
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Figure 2.3.5 – Numerical simulations on the behaviour of GD and SGD at the end of
training, as a function of the learning rate dt. We fix the parameter space such that
the problem lies in the UNSAT phase (α = 6, λ = 1, ∆ = 1). The squares mark the
behaviour of GD while the crosses represent SGD at batch size b = 0.3. Different
colors mark different system sizes: N = 325 (green), N = 750 (teal), N = 1500
(blue). The simulations are averaged over 150 realisations of the input data, the
initialisation and the sampling noise.

way to extrapolate numerically the value of Teff is hence to fit a line to all points
{
(
C̄(t+ tw, t+ w), χ̄(t+ tw, t+ w)

)
}t∈[tw,tfinal−tw] for a collection of large enough wait-

ing times tw and time differences t ranging between tw and the final time tfinal. This
estimate is quite precise as can be seen from the example displayed in the left panel
of Figure 2.3.3. We find that this slope is essentially constant for SGD, meaning
that in the stationary state the algorithm is characterised by an effective FDT with
a well-defined effective temperature that we can compute.

In the case of p-SGD, the autocorrelation between a sampling variable at different
times decays exponentially with the time difference t > 0 at a rate that is given by
the sum of the activation and deactivation rates 1/bτ , i.e., 〈s(tw)s(t + tw)〉 − b2 =
b(1 − b) exp (−t/bτ). This behaviour is reflected by the fact that the effective
temperature Teff is not constant with the time difference. Instead, it is lower at
small t given the higher correlation between samples in the gradient, while it goes
to a constant at t larger than the typical decay time bτ . This behaviour is clearly
seen in the right panel of Figure 2.3.3 and in Figure 2.3.2. Therefore, in the case of
p-SGD one should actually define the effective temperature depending on the time
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difference Teff(t) even in the stationary state. However, for simplicity we will refer
to the constant Teff(t > bτ) as the effective temperature. This is motivated by the
fact that bτ is usually small compared to the observation time and we are always
able to observe this regime.

The procedure through which we estimate Teff for p-SGD is detailed in the right
panel of Figure 2.3.3. Finally, Figure 2.3.4 shows that the effective temperature
does not depend on the initialisation variance R. Indeed, in the UNSAT phase the
solution of the classification problem is unique and therefore the algorithm ends up
rattling in the unique minimum with a noise strength given by Teff .

The FDT plot depends both on the batch size and the learning rate. The top
panel of Figure 2.3.1 shows that for vanishing learning rate the effective tempera-
ture of SGD approaches zero. However, for this particular problem we observe that
the vanishing-learning-rate limit of SGD does not approach GD flow, as further il-
lustrated by numerical simulations in Figure 2.3.5. Interestingly, the discrepancy
between the vanishing−dt limit that we find numerically between GD and SGD in
the classification problem under consideration will disappear in the regression prob-
lem studied in the next Chapter 2.4. This observation suggests that the behaviour
of SGD in approximately-continuous time may depend non trivially on the problem
landscape and is worth further investigation. Increasing the learning rate results
in a noisier dynamics and a higher effective temperature. The behaviour of the
effective temperature with batch size is more intriguing. Indeed, when we fix the
learning rate and vary the batch size we observe a non-monotonic curve. For a batch
size close to one, the dynamics tends to GD flow and the noise shrinks to zero. If
the batch size is small – which here corresponds to the limit of sub-extensive mini
batches – we again observe a decrease in the algorithmic noise. Quite surprisingly,
the highest noise is attained at intermediate extensive batch sizes.

Next, we turn our focus to p-SGD. In Figure 2.3.2, we study the FDT plot
for p-SGD changing the persistence time and the batch size. We observe that Teff

is monotonically increasing with the persistence time. The physical interpretation
of this property is rather clear: if the persistence time is far from the SGD limit,
i.e., τ � dt/b, the system ends up on a local minimum of a partial loss, namely
the loss function evaluated only on the samples belonging to the current mini batch.
Therefore, the system is fitting well such subset of samples. Conversely when t−t′ �
τb/(1 − b) the dynamics has seen many mini-batches beyond the one which was
there at t′. When a mini-batch is renewed the system finds itself in a very atypical,
random-like configuration with a large stochastic gradient. This effect produces
a high effective temperature that stays constant as the FDT plot becomes linear
at large t − t′. Note that, in the SGD limit recovered at τ ≈ dt/b, the system
never has the possibility to equilibrate in the partial loss but this comes with the
effect that the stochastic gradient does not have big jumps as with p-SGD with
finite τ . This idea is similar to what has been done in active systems (Mandal &
Sollich, 2021), which strengthens the connection between SGD and other types of
out-of-equilibrium systems. At fixed persistence time, we observe a non-monotonic
effective temperature as a function of the batch size b, consistently with our results
for vanilla-SGD.
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Figure 2.3.6 – Average final distance d(tfinal) between two copies of the p-SGD dy-
namics. Top panel: We plot d(tfinal) as a function of the persistence time τ at fixed
batch size b = 0.3. In the inset we show the time evolution of the distance d(t) from
numerical simulations at τ = 0.5 (yellow), τ = 2 (cyan), τ = 4 (blue). Bottom panel:
We plot d(tfinal) as a function of the batch size at fixed persistence time τ = 2. In the
inset we show the time evolution of the distance d(t) from numerical simulations at
b = 0.1 (yellow), b = 0.4 (cyan), b = 0.4 (blue). In both panels, the black symbols
in the main plots and the black lines in the insets mark the theoretical prediction
from DMFT. The learning rate is dt = 0.2 in both DMFT and simulations. The
other parameters are fixed such that the classification problem lies in the SAT phase:
α = 0.5,∆ = 0.5, λ = 0, κ = 1.

2.3.2 . Noise characterisation in the SAT phase
We now consider the characterisation of the effective noise in the SAT phase,

which is more interesting for practical applications since artificial feed-forward neural
networks typically lie in this regime. In order to quantify the noise magnitude in
the SAT phase, we consider the rescaled distance (root mean square displacement)
d(t) = ‖w1(t)−w2(t)‖2/

√
d between two realisations (w1 and w2) of the stochastic

dynamics, starting at the same initialisation point w1(t = 0) = w2(t = 0) and
subjected to two different noise realisations s1(t) 6= s2(t). At the end of training, the
distance d(t = tfinal) quantifies the spread of the solutions found by different runs of
the algorithm. This quantity can be computed analytically again via DMFT (see in
particular Sompolinsky et al. (1988); Crisanti & Sompolinsky (2018); Krishnamurthy
et al. (2020), where this procedure gives access to the Lyapunov exponent of the
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Figure 2.3.7 – Average distance d0 between two replicas as a function of the average
fraction of support vectors c0. Each symbol represents a different choice of the
persistence time τ and the batch size b in the p-SGD algorithm. Darker colors
correspond to higher values of b and τ . The learning rate is fixed to dt = 0.2.
The other parameters are fixed such that the problem lies in the SAT phase: α =
0.5,∆ = 0.5, λ = 0, κ = 1.
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Figure 2.3.8 – Fraction of support vectors c as a function of time t. The horizontal
dashed lines mark the stopping times at which we have computed the value of c0.
The average energy has reached 10−9 − 10−10 for all parameter settings. The full
lines correspond to the DMFT solution.

underlying chaotic dynamics in recurrent neural networks).
The starting point of the analysis is the (coupled) dynamical partition function:

Zdyn = Ew(0)

∫
w1,2(0)=w(0)

Dw1(t)Dw2(t)
N∏
j=1

∏
a=1,2

δ
(
ẇaj (t) + ∂̃

sa(t)
waj
H(w(t))

)
, (2.3.7)

that allows to compute the correlation and response functions of the coupled system
of replicas, both initialised at w(0) ∼ N (0, IdR), R > 0. We have denoted by
∂̃
sa(t)
waj

the approximate derivative of the empirical risk with respect to waj , computed
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Figure 2.3.9 – Average final distance d(tfinal) between two copies of the p-SGD
dynamics. The results are obtained by numerical simulations at size N = 750,
averaged over 100 seeds. The other parameters are the same as in Figure 2.3.2, such
that the problem lies in the UNSAT phase: α = 8,∆ = 1, λ = 1. The learning rate
is dt = 0.05.

only on the samples selected by sa(t). The details of this computation do not
differ significantly to the on performed in Chapter 2.2 and can be found in Article
4. The bottom inset of Figure 2.3.1 shows that in the SAT phase the dynamics
implements an automatic self-annealing procedure, and we obtain a zero effective
temperature in the zero-loss region, reached at the end of training. This observation
is obvious in problems where a “lake”, i.e., a large connected set, of solutions is
found at late times so that the dynamics stops. However, the way in which the self
annealing is produced drastically affects the learning trajectory in more complex
problems. Indeed, in problems like phase retrieval (Fienup, 1982) where there is no
such lake of solutions, but just one global minimum (modulo some symmetry) and
a proliferation of local minima, the self-annealing property appears to be crucial to
achieve good generalisation, as we will further discuss in the next Chapter 2.4.

In Figure 2.3.6 we plot the final distance d(t = tfinal) between two replicas of
p-SGD as a function of the batch size and learning rate. We use d(tfinal) to probe
the algorithmic noise. Indeed, we expect that noisier regimes are associated to a
higher degree of landscape exploration, resulting in a greater divergence between
two replicated trajectories. We find that the behaviour of d(tfinal) in the SAT phase
mirrors the one of the effective temperature Teff in the UNSAT phase: the effective
noise increases with the persistence time and is non-monotonic with the batch size.
This is confirmed also by Figure 2.3.9, where the same quantity is computed in the
UNSAT phase. To improve the characterisation of the endpoints of the dynamics
in the SAT phase, we also compute the size of the support vectors set (Boser et al.,
1992) in the following way.

In the case of GD-flow dynamics, defined in continuous time with dt→ 0+, the
endpoint of training lies on the border of the lake of solutions. We consider the
number of unsatisfied constraints, i.e., misclassified samples, as it evolves with time.
The long time limit of this quantity is finite, since all solutionsw lying on this border
marginally classify some samples, i.e., yµw>xµ = κ for some µ ∈ {1, . . . , n}. These
marginally classified samples are called support vectors. We indicate the (rescaled)
size of the set of support vectors as c = |{xµ, µ = 1, . . . , n, such that yµw

>xµ =
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κ}|/n.
In the case of p-SGD, the flow limit remains well defined, since the algorithm

admits a continuous-time description, as also shown in the next Chapter 2.4. We can
therefore apply the same definition as for GD. However, while for the flow limit there
are no ambiguities, in practice, integrating the dynamics requires a finite learning
rate. As done in Hwang & Ikeda (2020), for full-batch GD we fix a threshold on
the stochastic gradient, rescaled by the batch size: ‖ ∇̃B

wH ‖2
2 /bn ≤ 10−10. We

compute the values of c(t) and d(t) as soon as this threshold is reached and we take
them as the proxy for their limiting values c0 = limt→∞ c(t), d0 = limt→∞ d(t). This
procedure is depicted in Figure 2.3.8 and further explained in Article 4.

The physical meaning of the size of the support vectors is related to the descrip-
tion of the local density of solutions at the endpoint of the dynamics. If c(w) is close
to one, the solution w lies in a narrow corner of the solutions space. Conversely, a
low value of c is indicative of a wide region of the solutions space. In other words,
the dynamics has landed on a “shore” with a wide lake of solutions just in front of it.
In the latter case, one may expect the solution to be more robust to perturbations.

In Figure 2.3.7, we illustrate the behaviour of d0 as a function of c0. We observe
that a larger algorithmic noise leads to a smaller c0. Therefore, SGD brings the
system to wider (or flatter) regions of the lake of solutions. Note that this notion of
“flatness” differs from the one proposed in the recent literature on wide minima, see
for instance Pittorino et al. (2021). Indeed, in the present case the lake of solutions
is unique and the width is encoded by the number of support vectors. The smaller
is c, the larger the density of solutions close to the endpoint of the dynamics.

Insights on more complicated architectures and data structures — In more com-
plicated settings, it is reasonable to expect that the under-parametrised regime is
glassy with many local minima. This is well known in non-convex continuous CSPs
(Franz et al., 2017, 2019b), where the high dimensional limit is characterised by
replica symmetry breaking (Mézard et al., 1987). In this case, one naturally ex-
pects that pure GD dynamics goes to a stationary state where the system ages and
drifts on a landscape of marginally stable minima (Cugliandolo & Kurchan, 1993b)
2. The aging dynamics is controlled by an effective temperature that encodes for
the roughness of the underlying landscape.

However, it is well known that driving systems governed by glassy relaxation
stops aging dynamics (Kurchan, 1997; Berthier & Kurchan, 2013). Indeed, aging is
essentially due to the progressive annealing in the landscape. More annealed systems
surf on stationary points that are more and more stable and as a consequence their
dynamics slows down. However, if the system is driven, the dynamics is renewed
and aging stops. Based on the above considerations we may argue that both in
the stationary state of the under-parametrised regime and in the early-time over-
parametrised regime, the noise of SGD is a mixture of the noisy dynamics induced
by the roughness of the underlining loss-landscape and the stochasticity induced
by the algorithm itself. In this setting, it is useful to compare the dynamics to
the one of complex driven systems such as low-temperature amorphous solids under
deformation: the noise induces activated jumps between local minima, which can

2This has been found in numerical simulations in Baity-Jesi et al. (2018).
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get further destabilised resulting in an avalanche dynamics (Nicolas et al., 2018).
This may lead to power-law distributed jumps and connect with recent literature on
Lévy flights (Simsekli et al., 2019). Further investigation on more complex models
is needed to asses this phenomenology.
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2.4 - The interplay of algorithmic noise and land-
scape roughness in the sign-retrieval prob-
lem

As already discussed in previous chapters, algorithms based on gradient descent
(GD) are the workhorses of many machine learning applications involving the op-
timisation of a high-dimensional non-convex loss function. In particular, stochastic
gradient descent (SGD) has proved to be extremely efficient in navigating complex
loss landscapes. However, despite its practical success, the theoretical understanding
of the reasons behind the good generalisation properties of the algorithm remains
sparse. Empirical evidence suggests that the interplay between the optimisation
algorithm and the landscape is crucial to achieve good performances. While the
practical success of SGD compared to GD is rather generally accepted, it is still
far from clear what is really the key factor responsible for this. Cases where the
superiority of SGD with respect to GD was shown theoretically are sparse (Abbe &
Sandon, 2020; HaoChen et al., 2020).

Learning theory and computer science usually proceed in a manner that makes
minimalist assumptions on the data distribution. Statistical physics usually takes
a complementary way of understanding well prototypical settings that capture the
essence of the question (see also the discussion in the Motivation and background
chapter). This is the path we take in this chapter: we compare the behaviour of
GD-based algorithms on a prototypical choice of data and learning model leading
to a high-dimensional and non-convex landscape.

Specifically, we consider the problem of phase retrieval where the task consists
in recovering an unknown signal from a set of observations – the absolute value
of the signal’s projections onto measurement vectors. This problem appears in a
series of applications, including optics Walther (1963); Millane (1990), acoustics
Balan et al. (2006), and quantum mechanics Corbett (2006). We will consider the
real version of the problem – therefore more appropriately named sign retrieval –
where the measurements are i.i.d. Gaussian vectors, and the usual linear sample
complexity regime in the thermodynamic limit, with n measurements in dimension
d and α = n/d ∼ Od(1), n, d→∞.

We view the sign retrieval as a prototypical example of a simple single-layer ANN
where the measurement vectors correspond to the input samples, and the signal
corresponds to the teacher-network weights. The measurements then represent the
output labels. We stress that it is not the goal of this work to provide a competitive
algorithm for the sign retrieval. In the setting considered in this chapter (i.e., i.i.d.
Gaussian inputs and teacher-produced labels) it was conjectured that the AMP
algorithm cannot be beaten in the large size limit Barbier et al. (2019). Instead, the
main goal of this chapter is to study the performance of gradient-based algorithms
and the loss landscape of the sign retrieval problem serves us as a high-dimensional
intrinsically non-convex prototype having multiple spurious minima and only one
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solution (with a Z2 symmetry) leading to perfect generalisation error.
We note that the landscape of the sign retrieval problem is somewhat different

than the one of deep neural networks, that are highly overparametrised and present
entire regions of solutions with zero training error and a good generalisation. Con-
sequences of this difference and thus relevance of the present study for learning
with state-of-the-art DNNs is left for future work. Instead this chapter investigates
the performance of gradient-based algorithms in an archetypal non-convex high-
dimensional setting providing a benchmark to assess the role played by stochasticity
in non-convex optimisation problems in general.

Further related works — The loss landscape complexity of this problem was stud-
ied using the Kac-Rice method in Maillard et al. (2020). However, bringing this
analysis to concrete results seemed to be technically challenging. Signal recovery
in this problem was studied from the information-theoretic point of view and using
AMP algorithms that are considered optimal among all polynomial algorithms for
this case (Barbier et al., 2019; Mondelli & Montanari, 2018; Ma et al., 2019). In
particular it is known that while information-theoretically zero generalisation error
can be reached for α > 1, the AMP algorithm is able to do so for α > 1.13.

The performance of gradient descent for phase retrieval is worse than the one
of AMP in terms of sample complexity and also harder to analyse. In practice,
one often uses GD initialized spectrally (Dong et al., 2019), i.e., in the eigenvector
corresponding to the leading eigenvalue of a suitable matrix constructed from the
labels and the measurement vectors (Luo et al., 2019). Such spectral initialisation
is also motivating our use of warm start that is mimicking it. Concerning ran-
domly initialized gradient descent, Chen et al. (2019) showed that gradient descent
needs a training set of size ∼ O(d poly(log d)) to retrieve the hidden signal. Several
other works in computer science consider gradient descent-type algorithms for phase
retrieval requiring O(dpoly(log d)) samples (Ma et al., 2018).

The analysis carried out in Mannelli et al. (2020b) suggests that the randomly-
initialized algorithm can achieve perfect generalisation with much lower linear sam-
ple complexity. Authors of Cai et al. (2021) then show that linear (with unspecified
large constant) sample complexity is achievable with randomly initialized gradient
descent for a suitably chosen loss function. Finally Mannelli et al. (2020c) have
shown that over-parametrisation can bring the sample complexity of randomly ini-
tialized gradient descent down to α = 2.

While in the present work we will not be considering overparametrisation, we
are interested in performance of gradient-based algorithms for similarly small sample
complexity α. We will be investigating several gradient-based algorithms and judge
their performance by the number of samples they require for recovery of the signal.
The fewer samples the better. This is why we focus on the regime of α = Od(1).

The online SGD for phase retrieval has been studied, e.g., in Tan & Vershynin
(2019). A theoretical understanding of the performance of (multi-pass) SGD at small
sample complexity requires taking into account the full trajectory of the algorithm
which is challenging and done in this chapter. The interested reader is referred to
Dong et al. (2022) for a recent comprehensive review on the phase retrieval problem.
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2.4.1 . Introduction to the task
We study the supervised learning problem of recovering a d−dimensional real-

valued vector w∗ = {w∗1, . . . , w∗N} from a set of n = αd real-valued noiseless mea-
surements xµ = {xµ 1, . . . , xµd} of dimension d. We consider the signal w∗ to be
extracted with the uniform measure on the d-dimensional hyper sphere ‖w∗‖2

2 = N .
We take the components of the vectors xµ to be i.i.d. Gaussian random variables
with zero mean and unit variance. The non-linear measures of the signal vector w∗
are encoded in the labels

yµ =

∣∣∣∣ 1√
d
x>µw

∗
∣∣∣∣, ∀µ = 1, . . . , n. (2.4.1)

We note that in applications the complex-valued phase retrieval is more relevant, yet
for the purpose of our study, which is studying the performance of the gradient-based
algorithms, the real-valued version is sufficiently rich.

We consider learning with a single-layer neural network by the minimisation of
the empirical risk

H (w|X,y) =
n∑
µ=1

`
(
hµ, h

∗
µ

)
, (2.4.2)

where ` is a cost function having a global minimum at hµ = h∗µ and we have defined

hµ =
1√
d
x>µw, h∗µ =

1√
d
x>µw

∗. (2.4.3)

In what follows we consider a loss of the form:

`(h, h0) =
1

4
(h2 − h∗2)2. (2.4.4)

Note that the empirical risk depends on the labels yµ only through h∗µ. We consider
a particular regularisation of the weights where the training dynamics of w(t) is
constrained on the hyper-sphere. In Article 5, we show that our results hold in a
qualitative same manner for the more standard ridge regularisation.

We analyse the dynamics of the training algorithms already introduced in Chap-
ter 2.2, namely GD, SGD, p-SGD, and the Langevin algorithm. In order to explore
the energy landscape more thoroughly we consider here, next to the usual random
initialisation, informed/warm initialisations. We initialize the weight vector as fol-
lows:

w(t = 0) = m0w
(0) + c z ∈ Rd, (2.4.5)

where m0 > 0 is (on average) the initial projection of the weight vector onto the
signal, i.e., the average magnetisation

m(t) =
1

d
w(t) ·w∗ (2.4.6)

at time t = 0. The components of z are i.i.d. standard Gaussian variables and the
coefficient c is such that |w(t = 0)|2 = d. Note that the warm initialisation breaks
the Z2 symmetry of the problem. Therefore, in the following m(t) ∈ (0, 1], ∀t.
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We stress here that while in learning we are usually concerned with the test
error/performance, in the setting considered here (under the spherical constraint)
the test error is monotonic in the magnetisation (see Article 5 for a simple argument).
Thus, in the following we directly use the magnetisation as a measure of accuracy.
This warm initialisation can be thought of as a proxy for algorithms where GD (or
its variants) is run after the weights have been spectrally initialised, i.e. , using the
principal eigenvalue of a given pre-processing matrix as initial guess for the weights.
Spectrally initialised GD is used in a range of applications, see, e.g., Dong et al.
(2019), as well as studied theoretically, see, e.g., Mondelli et al. (2020).

2.4.2 . Discussion on the training dynamics
We apply DMFT to obtain a closed-form characterisation of the flow dynamics

of the training algorithms presented in Section 2.2.2 for the sign retrieval problem in
the high-dimensional limit. The derivation follows the one of Chapter 2.2, with the
only difference that in this case we want to enforce the spherical constraint ‖w‖2 = d
at all times of the dynamics, instead of the ridge regularisation. This is equivalent
to a projection on the sphere at each iteration, which is how we implement the
numerical simulations and can be modeled analytically via a Lagrange multiplier
that plays the exact same role of the ridge strength λ but is now time dependent.
The training dynamics in the sign retrieval therefore is given by

ẇj(t) = −

[
n∑
µ=1

sµ(t)`′ (hµ, hµ∗)
xµ,j√
d

+ λ(t)wj(t)

]
+ ςj(t), ∀j = 1, ...d., (2.4.7)

and we remind that sµ(t) encodes the mini-batch sampling protocol at fixed batch
size b and ζ(t) denotes the Langevin noise at temperature T . Gradient flow is
recovered by setting b = 1 and T = 0. The detailed definition of the stochastic
algorithms is provided in Section 2.2.2. We need an additional equation in the
DMFT to describe the evolution of the Lagrange multiplier, which reads

λ(t) = −α〈s(t)r(t)`′(r(t), h∗)〉+ T, (2.4.8)

obtained enforcing the spherical constraint d
(∑d

j=1 w
2
j

)
/dt = 0 and by applying

Itô’s formula to Eq. (2.4.7). We do not report again the derivation here, we instead
refer to Article 5 for the full computation.

In this section, we discuss our findings on the dynamics of the gradient-based
algorithms under consideration. We compare the results from simulations to the
DMFT theoretical prediction. This analysis sheds light on how stochasticity helps
to navigate the loss landscape and on the impact of the different hyperparame-
ters, notably the batch size b, temperature T , and persistence time τ , on the test
performance.

The trapping landscape — Figure 2.4.1 illustrates the performance of gradient
descent starting from three increasing initialisations: m0 = 0.5 (left), m0 = 0.65
(center), andm0 = 0.8 (right) at α = 2, i.e. , number of samples twice the dimension.
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(a) Average magnetisation as a function of training time t for the full-batch GD
algorithm. We consider α = n/d = 2 and three different initialisations: m0 = 0.5
(left), m0 = 0.65 (center), m0 = 0.8 (right). The grey dots represent numeri-
cal simulations (d = 1000, dt = 0.01), averaged over 1000 seeds (generating a
new dataset and signal for each seed). The full red line marks the theoretical
prediction from DMFT obtained in the high-dimensional limit of gradient-flow.
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(b) We fix the landscape by fixing the dataset and we show 50 instances of the
magnetisation as a function of time, for different realisations of the noise vector z,
at m0 = 0.5 (left), m0 = 0.65 (center), m0 = 0.8 (right). For visibility purposes,
we plot t+ dt on the x−axes.

Figure 2.4.1 – Full-batch GD gets trapped by the roughness of the landscape: theory
VS simulations.

In the lower panels (Figure 2.4.1b), we plot the magnetisation for different seeds
– corresponding to different realisations of the noise vector z defined in Eq. (2.4.5) –
with a dataset drawn at random and fixed. The evolution of different instances from
simulations is thus probing the very same loss-landscape, the figure then highlights
the complexity of the landscape. First, we observe that a warm start is not enough
to reach perfect recovery. This suggests that the landscape is very rough, with
multiple local minima at all heights. Indeed, we see that gradient descent can get
stuck even very close to the global minimum at m = 1. From the right panel of the
figure, we see that at time t ∼ 10 all seeds initialised with magnetisation m0 = 0.8
have achieved perfect recoverym = 1. However, the left and center panels show that
some seeds starting at m0 < 0.8 and reaching m = 0.8 only at t > 0 can get stuck for
long times. Hence we deduce that the topological complexity of the landscape is such
that some regions of the weights space can trap the dynamics even if they are closer
to the signal than other regions that do not trap the dynamics. We observe that a
more informed initialisation does not guarantee a better generalisation. This can be
further seen comparing the left panel to the central one. Indeed, we find that some
seeds initialised at m0 > 0.6 are stuck at m < 1 at time t ∼ 10, while some seeds
starting at m0 < 0.6 have already reached perfect generalisation. Consequently, in
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(a) Average magnetisation (left) and average training loss (right) as a function of
training time, at fixed α = n/d = 3, initial magnetisation m0 = 0.2, input dimension
d = 1000, learning rate dt = 0.01. We show the performance of full-batch GD (red
line), multi-pass vanilla SGD at b = 0.5 (dotted green line), and p-SGD at τ = 1, b =
0.5 (dashed blue line). The averages are computed over 500 seeds (generating a new
instance for each seed). At time t = 1000, the percentages of seeds that have reached
training loss below 10−7 are: 9% (GD), 30% (SGD), 99% (p-SGD). For visibility
purposes, we plot t+ dt on the x−axes.
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(b) We show 50 instances of the magnetisation as a function of training time
for the algorithmic settings considered in the above panel. For each seed, a new
instance is generated. For visibility purposes, we plot t+ dt on the x−axes.

Figure 2.4.2 – Multi-pass SGD has a built-in self-annealing protocol allowing to
outperform GD. The disappearance of the plateaus is a feature of finite persistence
time.

this regime of parameters, the full trajectory of the algorithm is crucial to achieve
perfect recovery.

In the upper panels (Figure 2.4.1a), we compare the average magnetisation from
numerical simulations at finite system size and finite learning rate (grey dots) to the
theoretical prediction (red line) obtained by integrating the DMFT equations derived
in the high-dimensional continuous limit. In this case, we generate a new dataset
for each simulations in order to remove sample-to-sample fluctuations. We find a
very good agreement between asymptotic theory and the average from simulations
already for the used system sizes and learning rates, indicating that the observed
behavior is not a feature of finite size or finite learning rate effects.
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(a) Median magnetisation as a function of the training time.
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(b) Median loss as a function of the training time.

Figure 2.4.3 – We fix the parameters α = n/d = 3, initialisationm0 = 0.2, dimension
d = 1000, learning rate dt = 0.01. The median is computed over 250 seeds, drawing
a new dataset, signal and initialisation for each seed. For visibility purposes, we
plot t + dt on the x−axes. Left. We show p-SGD for increasing values of batch
size b = 0.01, 0.05, 0.1, 0.3, 0.9, 0.95, 1 and fixed persistence time τ = 1. In the case
b = 0.1, the learning rate has been reduced to dt = 0.005, for b = 0.01, 0.05 we have
used dt = 0.0025.

Multi-pass SGD outperforms GD— Figure 2.4.2 shows the average magnetisation
and the average training loss as a function of time for full-batch GD, multi-pass SGD
and its persistent version p-SGD. In the case of multi-pass SGD, we sample (with
replacement) mini batches of size bn at each time step. In Figure 2.4.2b, we depict
different instances of the dynamics, corresponding to different realisations of the
dataset and the noise vector z (Eq. (2.4.5)). We find that SGD and p-SGD with
τ = 1 outperform GD in recovering the hidden signal. Indeed, at time scales at
which p-SGD has already reached magnetisation one and zero loss, gradient descent
is stuck in regions of poorer generalisation. The average magnetisation of SGD lies
between the two. Therefore, a finite batch size is beneficial for the performance.
Furthermore, the behavior of the curves for different seeds unveils an important role
played by the persistence time. Indeed, while the evolution of the magnetisation
for GD is characterised by long plateaus alternated by sudden jumps, p-SGD is not
stuck in the same region for long times. Again, the behavior of SGD is intermediate
between the two: we see from Figure 2.4.2b that the disappearance of the plateaus
is a feature of a finite persistence time. These findings suggest that the interplay
of the finite batch size and the persistence time is crucial to achieve the optimal
performance.
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(a) Average magnetisation (left) and average training loss (right) as a function of time
for the p-SGD algorithm in the spherical setting, at fixed α = n = d = 3, warm start
m0 = 0.7, persistence time τ = 2, batch size b = 0.6. The grey dots represent the
result from numerical simulations, averaged over 500 seeds at learning rate dt = 0.01
and dimension d = 1000. The red curve marks the performance predicted by the
numerical integration of DMFT equations.
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(b) Average magnetisation (left) and average training loss (right) as a function of
time for the Langevin algorithm in the spherical setting, at fixed α = M/N = 3,
warm start m0 = 0.7, temperature T = 1. The grey dots represent the result
from numerical simulations, averaged over 1000 seeds at learning rate dt = 0.01
and dimension N = 1000. The red curve marks the performance predicted by the
numerical integration of DMFT equations.

Figure 2.4.4 – DMFT VS simulations for stochastic training algorithms.

The role of the noise — Figure 2.4.3 illustrates the effect of different sources of
stochasticity on the generalisation performance. In particular, we compare the role
played by the white noise at temperature T in the Langevin algorithm to the double
source of noise in the SGD algorithm: the finite batch size b and the persistence
time τ . In the left panel, we depict the dependence of the SGD algorithm on the
batch size, at fixed persistence time. We find that the generalisation performance is
non-monotonic in the batch size and the optimal value is attained at intermediate
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Figure 2.4.5 – Median magnetisation (main plot) and median loss (inset) as a
function of time from numerical simulation for the spherical setting at fixed
α = n/d = 2.5, learning rate dt = 0.01, 100 seeds, and increasing dimension
d = 100, 500, 1000, 2500 from upper left to lower right. We consider random ini-
tialisation m0 = 0, so the finite initial overlap with the signal is only due to finite
size effects. The full red line marks the performance of full-batch gradient descent,
while the dotted blue line represents the persistent-SGD algorithm at batch size
b = 0.5 and persistence time τ = 2.

b. Therefore, at variance with what observed in deep neural networks trained on
real datasets (Jastrzebski et al., 2017; Keskar et al., 2017), in our case we obtain
that the optimal batch size is an extensive fraction of the total number of samples.

The central panel displays the (median) performance of SGD for different values
of the persistence time τ , at fixed batch size. For times t ≤ τ , the samples used to
compute the gradient (on average) do not change, and thus the dynamics presents
plateaus. However, as soon as t > τ , the mini batch is refreshed. This results in
a sudden increase in performance at times t ∼ τ , that becomes more visible the
larger τ . Moreover, we observe a non-monotonic behavior of the performance as
a function of τ . On the one hand, increasing τ shifts the final plateau at larger
times, delaying the recovery of the signal. On the other hand, if the persistence
time is too small, the dynamics gets trapped close to the signal, displaying plateaus
followed by sudden jumps similarly as for GD (see Figure 2.4.2b). There is therefore
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Figure 2.4.6 – Average magnetisation (right) and average loss (less) as a function
of training time for the three algorithms: GD (full red lines), SGD (dotted green
lines) and p-SGD (dashed blue lines). The numerical simulations are run at fixed
α = n/d = 3, warm start m0 = 0.2 and input dimension N = 1000, over 250 seeds.
The stochastic algorithms are run at fixed batch size b = 0.5. We consider decreasing
values of learning rate dt = 0.01, 0.001, 0.0005, 0.0001, depicted with increasing color
intensity. For visibility purposes, we plot t+ dt on the x-axes.

an intermediate range of persistence times τ for which the performance is the best
(better than vanilla SGD).

Since the literature often compares the SGD noise to the Langevin noise (Cheng
et al., 2020; Li et al., 2017; Jastrzebski et al., 2017; Hu et al., 2019; Zhu et al.,
2018) we compare here to the performance achieved by the Langevin algorithm at
fixed temperature. The right panel of Figure 2.4.3 depicts the performance of the
Langevin algorithm for different values of temperature T . At large times (t = 700 in
the figure) the temperature is switched to zero. We find that the best performance
is again reached for intermediate values of the temperature T .

We underline the qualitative difference between the effective noise introduced
by multi-pass SGD and the white noise of Langevin algorithm. The variance of
the noise in Langevin is fixed by the temperature, therefore – in order to reach a
minimum – an annealing protocol must be implemented and optimised. In contrast,
the noise introduced by SGD is automatically reduced during training and it is zero
at the global minimum. Therefore, multi-pass SGD has a built-in self annealing
protocol, that can be optimised by tuning only two parameters (b and τ) instead of
the whole trajectory of the temperature over time.

More on the analytic characterisation — Figure 2.4.4a shows the comparison
between the average performance of p-SGD obtained from numerical simulations
(grey symbols) with the prediction derived by integrating the DMFT equations
(red line). The left panel depicts the average magnetisation, while the right panel
displays the average training loss as a function of time. Figure 2.4.4b displays the
same comparison for the Langevin algorithm. In both cases, we find a very good
agreement between theory and simulations.
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Figure 2.4.7 – Instances of the magnetisation as a function of time from numerical
simulations for the persistent SGD algorithm at fixed α = n/d = 3, batch size
b = 0.5 and warm initialisation m0 = 0.2. We consider four different values of the
persistence time: τ = 0.05 (upper left), τ = 0.5 (upper right), τ = 2 (lower left),
τ = 5 (lower right). For each panel, we show 50 different seeds, corresponding to
different realisations of the landscape and initial weights. The simulations are run
at dimension d = 1000 and learning rate dt = 0.01.

Random initialisation — Figure 2.4.5 investigates the behavior of full-batch GD
(full red lines) and p-SGD (dashed blue lines) starting from random initialisation
at fixed α = 2.5. p-SGD is run at fixed b = 0.5, τ = 2. We show the median
magnetisation (main plots) and the median loss (insets) as a function of time for
increasing values of the dimension: d = 100 (above-left panel), d = 500 (above-right
panel), d = 1000 (below-left panel). and d = 2500 (below-right panel). In this case
m0 = 0 and the warm start in the four panels is only given by finite size effects. We
clearly see that, at time scales shown here, gradient descent is stuck at a plateau of
height decreasing as the dimension d increases.

As studied in Mannelli et al. (2020b), the recovery transition of gradient descent
starting from random initialisation for comparable system sizes happens at α ≈ 6,
which is few times larger than the value α = 2.5 considered here. However, we
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observe that already at α = 2.5 the persistent-SGD algorithm can reach perfect
recovery for the system sizes under consideration. The time to reach the solution
from random initialisation is, as expected, compatible with logarithmic increase
in the system size. These observations suggest that the recovery transition for
stochastic gradient descent starting from random initialisation is shifted to lower
values of α when compared to gradient descent. This is an interesting direction for
future investigations.

Figure 2.4.6 compares the average magnetisation (left panel) and loss (right
panel) as a function of training time for gradient-descent, SGD and p-SGD for de-
creasing values of the learning rate. We observe that, in the limit of small learning
rate, the learning curves of SGD collapse to the ones of gradient descent. On the con-
trary, the p-SGD algorithm has a well-defined continuous time limit that is different
than the one of full batch gradient descent.

Figure 2.4.7 summarises the effect of increasing the persistence time on the per-
formance of the p-SGD algorihm. We show the instances of the magnetisation as
a function of time – corresponding to 50 different realisations of the problem land-
scape and initialisations of the weight vector. We consider increasing values of the
parameter τ = 0.05 (upper left panel), τ = 0.5 (upper right panel), τ = 2 (lower
left panel), and τ = 5 (lower right panel), at a fixed ratio α = 3 of training samples
over input dimensions, batch size b = 0.5 and warm initialisation m0 = 0.2. On the
one hand, we observe that increasing the persistence time gradually diminishes the
number of seeds that get stuck at intermediate plateau, resulting in an improved
generalisation performance. On the other hand, until time t ∼ τ the samples in the
mini batch have not been reshuffled yet (on average). Therefore, for large values
of τ the plateaus disappear but the magnetisation is stuck at the beginning of the
training and only at training time t > τ it has a sudden increase.
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Dynamical mean-field theory for stochastic
gradient descent in Gaussian mixture

classification

Francesca Mignacco, Florent Krzakala, Pierfrancesco Urbani, and Lenka
Zdeborová.
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+ Advances in Neural Information Processing Systems 33, p. 9540–9550
+ Journal of Statistical Mechanics: Theory and Experiment, Volume 2021, Decem-
ber 2021
+ ArXiv preprint: arXiv:2006.06098

Abstract

We analyze in a closed form the learning dynamics of stochastic gradient
descent (SGD) for a single layer neural network classifying a high-dimensional
Gaussian mixture where each cluster is assigned one of two labels. This prob-
lem provides a prototype of a non-convex loss landscape with interpolating
regimes and a large generalization gap. We define a particular stochastic pro-
cess for which SGD can be extended to a continuous-time limit that we call
stochastic gradient flow. In the full-batch limit we recover the standard gra-
dient flow. We apply dynamical mean-field theory from statistical physics to
track the dynamics of the algorithm in the high-dimensional limit via a self-
consistent stochastic process. We explore the performance of the algorithm as
a function of control parameters shedding light on how it navigates the loss
landscape.
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Article 4

The effective noise of Stochastic Gradient
Descent

Francesca Mignacco, and Pierfrancesco Urbani.
Journal of Statistical Mechanics: Theory and Experiment, Volume 2022, August

2022.

+ J. Stat. Mech. (2022) 083405
+ ArXiv preprint: arXiv:2112.10852

Abstract

Stochastic Gradient Descent (SGD) is the workhorse algorithm of deep
learning technology. At each step of the training phase, a mini batch of sam-
ples is drawn from the training dataset and the weights of the neural network
are adjusted according to the performance on this specific subset of exam-
ples. The mini-batch sampling procedure introduces a stochastic dynamics
to the gradient descent, with a non-trivial state-dependent noise. We charac-
terize the stochasticity of SGD and a recently-introduced variant, persistent
SGD, in a prototypical neural network model. In the under-parametrized
regime, where the final training error is positive, the SGD dynamics reaches a
stationary state and we define an effective temperature from the fluctuation-
dissipation theorem, computed from dynamical mean-field theory. We use the
effective temperature to quantify the magnitude of the SGD noise as a func-
tion of the problem parameters. In the over-parametrized regime, where the
training error vanishes, we measure the noise magnitude of SGD by computing
the average distance between two replicas of the system with the same initial-
ization and two different realizations of SGD noise. We find that the two noise
measures behave similarly as a function of the problem parameters. Moreover,
we observe that noisier algorithms lead to wider decision boundaries of the
corresponding constraint satisfaction problem.
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algorithms in the phase retrieval problem
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+ ArXiv preprint: arXiv:2103.04902

Abstract

Stochastic Gradient Descent (SGD) is the workhorse algorithm of deep
learning technology. At each step of the training phase, a mini batch of sam-
ples is drawn from the training dataset and the weights of the neural network
are adjusted according to the performance on this specific subset of exam-
ples. The mini-batch sampling procedure introduces a stochastic dynamics
to the gradient descent, with a non-trivial state-dependent noise. We charac-
terize the stochasticity of SGD and a recently-introduced variant, persistent
SGD, in a prototypical neural network model. In the under-parametrized
regime, where the final training error is positive, the SGD dynamics reaches a
stationary state and we define an effective temperature from the fluctuation-
dissipation theorem, computed from dynamical mean-field theory. We use the
effective temperature to quantify the magnitude of the SGD noise as a func-
tion of the problem parameters. In the over-parametrized regime, where the
training error vanishes, we measure the noise magnitude of SGD by computing
the average distance between two replicas of the system with the same initial-
ization and two different realizations of SGD noise. We find that the two noise
measures behave similarly as a function of the problem parameters. Moreover,
we observe that noisier algorithms lead to wider decision boundaries of the
corresponding constraint satisfaction problem.
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3.1 - Final remarks on this thesis

In this conclusive chapter, we summarise the contributions of this thesis and
their relation with subsequent research developments, and we discuss some possible
extensions.

Binary Gaussian Mixture Model — The binary Gaussian mixture model (GMM)
introduced in Chapter 1.2 has served us as a prototype classification task to discuss
in a unified fashion different phenomena of interest in ML theory.

In Article 1, we have studied the performance of regularised convex classifiers at
separating the mixture of two Gaussian clusters in the noisy regime where even an
oracle knowing the centers of the clusters would make a finite fraction of mistakes.
We have derived rigorous closed-form formulas for the generalisation and training
errors in the limit where the number of samples and dimensions go to infinity, while
their ratio is a fixed controlled parameter. We have then applied our theoretical find-
ings to shed light on the role of the different model parameters on the generalisation
performance. We have considered the setup with a generic bias κ, two clusters with
generic sizes tuned by ρ ∈ (0, 1), showing that the case κ = 0, ρ = 0.5 is singular,
and the generic case, ρ 6= 0.5, has qualitatively different behaviour when regular-
isation is added. Finally, we have obtained that the linear separability transition
explicitly depends on the cluster size and the noise variance.

Given the full understanding of the static properties of the problem, in Article 3
we have turned our focus to the characterisation of the multi-pass stochastic gradient
descent (SGD) dynamics, where the training dataset is fixed and the samples are
reused multiple times. In particular, we have analysed an SGD algorithm in which,
at each iteration, the mini batch of samples used to approximate the gradient of the
loss is drawn at random, and we have defined a persistent variant of this stochastic
process for which multi-pass SGD can be extended to a continuous-time limit that
we call stochastic gradient flow. We have managed to describe the high-dimensional
limit of the randomly initialised SGD using dynamical mean-field theory (DMFT)
from disordered systems, that leads to a description of the dynamics in terms of a
self-consistent stochastic process. We have integrated numerically the self-consistent
DMFT equations, that notably hold also for non-convex variants of the problem,
and we have found excellent agreement with experiments at finite dimension and
finite time step.

In Article 4, we have analysed the nature of the stochastic noise in SGD-type
algorithms in the setting of binary classification of Gaussian mixtures. We have
shown that this noise can be described by an effective temperature defined through
the fluctuation-dissipation theorem. In the underparametrised regime, where the
loss landscape displays a unique minimum, both vanilla-SGD and p-SGD converge
to a steady state which is driven by the algorithmic noise. We have shown that
the stationary state of vanilla-SGD is characterised by an effective temperature that
tends to zero for vanishing learning rate. For p-SGD, we have shown that the effec-
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tive temperature increases with the persistence time, while it is non-monotonic with
the batch size. In the over-parametrised regime, we have presented an alternative
characterisation of the magnitude of algorithmic noise. In particular, we have found
that the noisier the algorithm, the smaller the fraction of support vectors at the
end of the dynamics. These results have been derived for a simple yet paradigmatic
supervised learning task. In the UNSAT phase, this setting provides the advantage
that the noise captured by our analysis comes entirely from the algorithm itself since
there is no other source of randomness at fixed dataset and initialisation.

Teacher-student multi-class classification — In Article 2, we have extended the
characterisation of the learning curves of the teacher-student perceptron for super-
vised classification to the case where the labels come from more than two classes.
We have derived rigorous asymptotic expressions for the performance of the Bayes-
optimal (BO) estimator as well as for regularised empricial risk minimisation (ERM).
This model provides a theoretical playground where important practical questions
can be quantitatively explored, e.g., the role of regularisation and the optimal tuning
of hyperparameters. Indeed, we have observed that the cross-entropy with optimally-
tuned ridge regularisation can achieve close-to-optimal performance in the case of
Gaussian teacher prior. For binary teacher prior, we have found instead that a
first order transition arises in the BO error. It would be interesting to investigate
how these observations modify in the limit of very large number of classes and to
incorporate a more realistic data structure in the model.

The sign-retrieval problem — In Article 5, we have considered the real-valued
phase retrieval problem as a paradigmatic highly non-convex optimisation problem
to test the generalisation performance of full-batch GD and some of its stochastic
variants: multi-pass SGD, its persistent version p-SGD, and the Langevin algorithm.
We have shown that stochasticity is crucial to achieve perfect recovery of the hidden
signal at low sample complexity so that SGD outperforms GD in this task. We have
observed intriguing features of the loss profile and illustrated how various sources
of noise allow the dynamics to circumvent the traps in the landscape. We have
provided an analytic description of the learning curves in the infinite-dimensional
limit via DMFT, showing that the observed behaviour is not due to finite size effects
or to a finite learning rate.

Article 5 leads to interesting extensions both on the analytic and numerical sides.
On the one hand, the characterisation of the dynamical evolution of the algorithms
via DMFT can be extended to include smart initialisations (e.g., spectral initial-
isation) by means of the replica trick (Houghton et al., 1983), and regularisation
strategies (e.g., trimming) that are commonly applied in practical applications in
this context. On the other hand, it would be interesting to test the persistent variant
of multi-pass SGD and investigate the role of the persistence time on real datasets
and architectures, which we leave for future work.

Related works on GMMs — The binary GMM studied here has been further em-
ployed in subsequent works to understand interesting phenomena from real applica-
tions, for instance regularisation inheritance via knowledge distillation (Saglietti &
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Zdeborová, 2022) and the bias-inheritance mechanism (Mannelli et al., 2022).
GMMs are well-studied in statistical learning theory and their supervised version

has recently triggered a surge of interest in ML theory. Indeed, Seddik et al. (2020)
have shown that realistic data generated by a GAN behave as Gaussian mixtures,
while Papyan et al. (2020) have observed that the cross-entropy loss learns features
that collapse into a mixture of clusters that can be separated by the readout layer.

In Loureiro et al. (2021), the authors have extended our derivation of closed-
form error formulas to the case of multiple clusters with generic covariances and
means. Refinetti et al. (2021b) have studied the online dynamics of Gaussian mixture
classification to investigate the gap between the feature and lazy learning regimes.

Related works on the learning dynamics — The characterisation of the dynam-
ical trajectory of learning algorithms has attracted increasing attention in the last
few years. An interesting development concerns the rigorous proof of the DMFT
equations where the integro-differential system involves an effective self-consistent
stochastic process. This has been achieved in the recent work by Celentano et al.
(2021) in the case of full-batch GD on i.i.d. Gaussian inputs and one-hidden-layer
networks in the limit of infinite dimensional data and samples at finite hidden-layer
size. The proof is based on a mapping between the GD updates and the iterates of
an AMP algorithm.

Bodin & Macris (2021a,b) have leveraged on recent advances in random matrix
theory to derive explicit formulas for the gradient-flow dynamics in rank-one matrix
estimation and random feature regression in the high-dimensional asymptotic limit.

In Bordelon & Pehlevan (2021), the authors have considered linear regression
on random features with arbitrary covariance structure. They have derived exact
formulas for the dynamics of SGD both in the online and batch cases at fixed inputs.
Bordelon & Pehlevan (2022) have also analysed feature learning in infinite-width
shallow neural networks at fixed inputs and have derived self-consistent equations
for the learning curves via a path integral formulation of gradient flow dynamics.

Çakmak et al. (2022) have applied DMFT to characterise the dynamics of a
sequential message-passing algorithm for approximate inference in a teacher-student
Gaussian-latent-variable model. Remarkably, at variance with our DMFT equations
for SGD derived in Chapter 2.2, in Çakmak et al. (2022) there is no memory term
in the effective stochastic process. This allows to obtain a simple recursion formula
for the correlation functions.

In this thesis we have only considered training algorithms with constant learning
rate. The optimal tuning of the learning rate schedule for the Langevin algorithm
has been studied by d’Ascoli et al. (2022) in two planted p−spin models (p = 2 and
the spiked matrix-tensor model introduced in Chapter 2.1).
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In this chapter, we extend the discussion on some possible future directions that
could be inspired by the results of this thesis.

Unveiling the connection between the dynamical evolution of a high-dimensional
system and the underlying energy landscape is a fundamental question in the physics
of glasses, that has been fully understood only in some special cases, as discussed
in Chapter 2.1. This open puzzle actually unifies a wide variety of interdisciplinary
applications in information theory and computer science. The implicit bias of SGD
in supervised learning problems belongs to this category of problems, and is therefore
well-suited to be addressed with the tools developed to study the physics of glassy
systems.

Generalisation and the geometry of the solution space — A crucial step forward
elucidating the missing link between the statics and the dynamics properties of
learning would be a full understanding of the connection between the geometry of
the solution space and the generalisation abilities of the solutions. This perspective
inscribes in the literature investigating the landscape “flatness” properties, that we
have previously discussed in Chapter 2.1.

Our analysis of the SAT phase in Article 4 suggests that the magnitude of the
SGD noise could be connected to the width of the decision boundary of a given
solution of the classification. Interestingly, Baldassi et al. (2021) consider ANNs
with binary weights and show that high-margin – i.e., robust – minima tend to
concentrate in particular regions that are also dense of lower-margin solutions.It
would be relevant to investigate the geometrical properties of the boundary of the
“lake” of solutions in supervised learning problems in the SAT phase with continuous
degrees of freedom and link them to the generalisation abilities. Indeed, for all the
losses with a cutoff and, in practice, whenever the dynamics is stopped as soon as
the training error reaches zero, both GD and SGD (without momentum) stop at
the boundary of the solution space. Therefore, in practice, the zero-error solutions
accessible to gradient-based algorithms lie on a boundary, whose width determines
the solution robustness, as pictorially shown in Figure 3.2.1.

Measuring the effective temperature of SGD in real applications — The defini-
tion of effective temperature Teff that we have introduced for the binary GMM in
Article 4 as a measure of the magnitude of SGD noise is fully general and indepen-
dent of the specifics of the problem. The effective temperature can be computed
analytically for all the synthetic tasks that can be treated via DMFT, including
non-convex losses where an increase in Teff can be also triggered by the roughness
of the underlying landscape, as already discussed in Chapter 2.3.

An interesting future direction of investigation would be to test the violation
of the FDT by measuring correlation and integrated response functions for the dy-
namics of SGD in the overparametrised settings of practical ML applications via
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Figure 3.2.1 – Schematic representation of the different borders of the solution space
that can be reached according to the optimisation procedure. We sketch two reali-
sations of the GD and SGD dynamics starting from the same initial condition and
navigating a non-convex loss landscape with a wide basin, or “lake”, of solutions.
The algorithmic noise can lead the dynamics of SGD to a different endpoint with
respect to the solution found by GD. The geometrical properties of the border of the
solution space, or the classification boundary of a solution in dual representation,
are crucial for the performance and deserve further investigation.
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the numerical procedure that is normally used for glassy systems (see, e.g., Ricci-
Tersenghi (2003) and references therein) in a regime where the dynamics reaches a
stationary state. A number of questions could be investigated in this framework, for
instance the impact of SGD noise on the slowing-down in the algorithmic conver-
gence and the crossover between the feature learning and the lazy learning regimes.

The theory of biologically-plausible training algorithms — Biologically-inspired
alternatives to the backpropagation algorithm used to train multi-layer networks
have recently attracted a surge of interest, first from a practical implementation
perspective and then from a theoretical point of view. Well-known examples are
the feedback alignment algorithm (Lillicrap et al., 2016) and direct feedback align-
ment (DFA) (Nøkland, 2016). Launay et al. (2020) have shown that DFA-based
algorithms can be successfully trained on state-of-the-art models, but still perform
poorly on convolutional layers. Clark et al. (2021) have overcome this issue by
proposing an alternative learning rule that operates on a specific class of ANNs,
while the backward pass has been completely removed and approximated via two
forward passes in Dellaferrera & Kreiman (2022).

These works pave the way for the promising research direction of closing the
gap between artificial and biological learning. However, theoretical understanding
of the success and limitations of these implementations is still sparse. In Refinetti
et al. (2021a), the authors have analysed the online dynamics of DFA unveiling the
presence of two learning phases: the alignment of the approximate gradient with
the true one, followed by a data-fitting phase, biasing the dynamics towards the
solution which maximises gradient alignment. It would be interesting to explore the
interplay of these alternative learning schemes and the multi-pass SGD algorithm,
and to investigate the role of persistence in this framework.

More on the algorithm and the architecture — Another possible research direc-
tion would be to extend the DMFT equations to incorporate more realistic archi-
tectures and data structures, as well as different learning protocols. For instance,
Sarao Mannelli & Urbani (2021) have studied the dynamics of GD with momentum
in the spiked matrix-tensor inference model introduced in Chapter 2.1 and one could
extend their analysis to the case of multi-pass SGD with momentum in supervised
learning models.

Since DMFT equations allow to incorporate time-dependence in the labels and
data, different training protocols with SGD can be further investigated. Some exam-
ples are adversarial initialisation when training with random labels (Liu et al., 2019)
and the mini-batch dynamics of curriculum learning (see, e.g., Saglietti et al. (2021)
for the online case). A number of crucial phenomena take place during the early
phase of training, as summarised by the set of experiments carried out in (Frankle
et al., 2019). This is precisely the time window that is accessible by the DMFT
formalism. It would be thus interesting to explore whether DMFT can shed light
on some of this early-training observations, e.g., emergence of learning sub-phases,
(lack of) robustness to perturbations, fast correlation of the weigths.

Regarding the architecture, a crucial open theoretical question is how to model
depth in an efficient way, beyond the one-hidden-layer cases already discussed in
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Chapter 2.1. Indeed, when multiple layers are added, the correlations introduced
by the training procedure drastically complicate the analytic methods presented in
this thesis and theoretical results have been obtained for deep networks only in very
specific cases (see, e.g., Saxe et al. (2013); Li & Sompolinsky (2021)). Finding ap-
propriate regimes where depth can be efficiently analysed is a fundamental direction
that must be addressed.

Finally, in this thesis we have only considered fully-connected networks, however
it would be relevant to extend the present analysis to convolutional architectures,
where the hidden neurons are connected to only a subset of variables in the previous
layer (a so-called receptive field). A first step in this direction would be to consider
an intermediate regime between a fully connected and a tree-like committee machine
(Franz et al., 2019b), with partially overlapping receptive fields.

Beyond supervised learning — A final extension of the results of this thesis could
be in the direction of devising simple models beyond supervised learning, for instance
exploring self-supervised learning protocols (see, e.g., Grill et al. (2020); Chen & He
(2021) and references therein). This is a much less explored domain where the tools
from disordered systems physics could shed light on new interesting phenomenology.
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Titre: Modélisation physique statistique de la dynamique et de la généralisation dans les réseaux de neu-
rones artificiels ..................................................................................................................................
Mots clés: Réseaux de neurones artificiels, systèmes désordonnés, dynamique d’apprentissage, algo-
rithme du gradient stochastique

Résumé: L’apprentissage machine est une tech-
nologie désormais omniprésente dans notre quoti-
dien. Toutefois, ce domaine reste encore largement
empirique et ses enjeux scientifiques manquent
d’une compréhension théorique profonde. Cette
thèse se penche vers la découverte des mécan-
ismes sous-tendant l’apprentissage dans les réseaux
de neurones artificiels à travers le prisme de la
physique statistique. Dans une première partie,
nous nous intéressons aux propriétés statiques des
problèmes d’apprentissage, que nous introduisons
au chapitre 1.1. Dans le chapitre 1.2, nous con-
sidérons la classification d’un mélange binaire de
nuages gaussiens et nous dérivons des expressions
rigoureuses pour les erreurs en dimension infinie,
que nous appliquons pour éclairer le rôle des dif-
férents paramètres du problème. Dans le chapitre
1.3, nous montrons comment étendre le modèle
de perceptron enseignant-étudiant pour considerer

la classification multi-classes, en dérivant des ex-
pressions asymptotiques pour la performance op-
timale et la performance de la minimisation du
risque empirique règularisè. Dans la deuxième
partie, nous nous concentrons sur la dynamique
de l’apprentissage, que nous introduisons dans le
chapitre 2.1. Dans le chapitre 2.2, nous montrons
comment décrire analytiquement la dynamique de
l’algorithme du gradient stochastique à échantil-
lonage mini-lots (mini-batch SGD) dans la classifi-
cation binaire de mélanges gaussiens, en utilisant la
théorie dynamique du champ moyen. Le chapitre
2.3 présente une analyse du bruit effectif introduit
par SGD. Dans le chapitre 2.4, nous considérons le
problème de la récupération des signes comme ex-
emple d’optimisation hautement non convexe et
montrons que la stochasticité est cruciale pour
la généralisation. La conclusion de la thèse est
présentée dans la troisième partie.

Title: Statistical physics insights on the dynamics and generalisation of artificial neural networks........
Keywords: artificial neural networks, disordered systems, dynamics of learning, stochastic gradient
descent

Abstract: Machine learning technologies have be-
come ubiquitous in our daily lives. However, this
field still remains largely empirical and its scientific
stakes lack a deep theoretical understanding. This
thesis explores the mechanisms underlying learn-
ing in artificial neural networks through the prism
of statistical physics. In the first part, we fo-
cus on the static properties of learning problems,
that we introduce in Chapter 1.1. In Chapter 1.2
we consider the prototype classification of a bi-
nary mixture of Gaussian clusters and we derive
rigorous closed-form expressions for the errors in
the infinite-dimensional regime, that we apply to
shed light on the role of different problem param-
eters. In Chapter 1.3, we show how to extend
the teacher-student perceptron model to encom-
pass multi-class classification deriving asymptotic

expressions for the optimal performance and the
performance of regularised empirical risk minimi-
sation. In the second part, we turn our focus
to the dynamics of learning, that we introduce
in Chapter 2.1. In Chapter 2.2, we show how to
track analytically the training dynamics of multi-
pass stochastic gradient descent (SGD) via dynam-
ical mean-field theory for generic non convex loss
functions and Gaussian mixture data. Chapter 2.3
presents a late-time analysis of the effective noise
introduced by SGD in the underparametrised and
overparametrised regimes. In Chapter 2.4, we take
the sign retrieval problem as a benchmark highly
non-convex optimisation problem and show that
stochasticity is crucial to achieve perfect general-
isation. The third part of the thesis contains the
conclusions and some future perspectives.
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