
HAL Id: tel-03850657
https://theses.hal.science/tel-03850657v1

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Algorithms for Control and Reinforcement
Learning

Eloïse Berthier

To cite this version:
Eloïse Berthier. Efficient Algorithms for Control and Reinforcement Learning. Machine Learning
[cs.LG]. Université PSL (Paris Sciences & Lettres), 2022. English. �NNT : �. �tel-03850657�

https://theses.hal.science/tel-03850657v1
https://hal.archives-ouvertes.fr

Préparée à l’École normale supérieure

Algorithmes efficaces pour le contrôle
et l’apprentissage par renforcement

Efficient Algorithms for Control and Reinforcement Learning

Soutenue par

Eloïse BERTHIER
Le 27 octobre 2022

École doctorale no386
Sciences Mathématiques
de Paris Centre

Spécialité
Informatique

Composition du jury :

Emmanuel TRÉLAT
Professeur, Sorbonne Université Président

Marianne AKIAN
Directeur de recherche, Inria Saclay Rapporteur

Florence d’ALCHÉ-BUC
Professeur, Télécom Paris Rapporteur

Justin CARPENTIER
Chargé de recherche, Inria Paris, ENS Examinateur

Colin JONES
Associate professor, EPFL Examinateur

Francis BACH
Directeur de recherche, Inria Paris, ENS Directeur de thèse

À ma grand-mère
Nicole Berthier,

version du 10/10/2022

Contents

Remerciements ix

Introduction et résumé des contributions 1

Introduction and Summary of the Contributions 7

1 Optimal Control & Reinforcement Learning 13

1.1 Optimal Control . 13

1.1.1 Setting of the Problem . 13

1.1.2 The Maximum Principle . 15

1.1.3 The Hamilton-Jacobi-Bellman Approach . 18

1.1.4 The Linear Quadratic Regulator . 21

1.1.5 Numerical Methods . 23

1.2 Reinforcement Learning . 26

1.2.1 Problem Statement . 26

1.2.2 Dynamic Programming . 29

1.2.3 Dynamic Programming with Estimation . 30

1.2.4 Dynamic Programming with Function Approximation 32

1.2.5 The Linear Programming Formulation . 33

1.3 Comparison . 33

2 Conceptual & Numerical Tools 35

iii

2.1 Rigid-Body Dynamics . 37

2.1.1 The Configuration Space . 37

2.1.2 Inverse and Forward Dynamics . 38

2.2 Polynomial Optimization . 40

2.2.1 Optimization of Polynomials on Semi-algebraic Sets 40

2.2.1.1 Representation of Non-negative Functions as Sums-of-Squares 41

2.2.1.2 Lasserre’s Hierarchy on Moments . 43

2.2.1.3 Duality Between the Moment and SoS Formulations 44

2.2.2 Application to Lyapunov Stability Assessment . 46

2.2.3 Polynomial Optimization for Optimal Control . 48

2.2.3.1 Formulation with Occupation Measures 48

2.2.3.2 Primal and Dual Weak Formulations of Optimal Control 49

2.2.3.3 Relaxation of the Primal . 49

2.2.3.4 Dual of the Relaxation . 50

2.3 Kernel Methods . 52

2.3.1 Representing Functions . 52

2.3.2 Reproducing Kernel Hilbert Spaces . 53

2.3.3 Kernel Methods for Supervised Learning . 55

2.3.4 Non-parametric Stochastic Gradient Descent . 57

2.3.5 Representing Non-negative Functions . 58

2.4 Max-Plus Algebra . 60

2.4.1 The Max-Plus Semiring . 60

2.4.2 Max-Plus Linear Parameterizations . 62

2.4.3 Application to Optimal Control . 63

3 Max-Plus Discretization of Deterministic Markov Decision Processes 65

3.1 Introduction . 66

3.2 Max-Plus Linear Approximations . 67

3.3 Approximate Value Iteration . 68

3.3.1 Projection Method . 69

3.3.2 Variational Method . 69

3.3.3 Basis Functions and Clustered MDP . 70

iv

3.3.4 Oracle Subproblem . 70

3.4 Error Analysis . 71

3.4.1 Error Decomposition . 71

3.4.2 Projection Error . 74

3.5 Comparison with the Method of Akian, Gaubert & Lakhoua for Control Problems 74

3.5.1 Time-Discretization of a Control Problem . 75

3.5.2 Hamiltonian Approximation for the Oracle Subproblem 75

3.6 Adaptive Selection of Basis Functions . 76

3.7 Experiments . 77

3.8 Conclusion . 80

4 Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems 83

4.1 Introduction . 84

4.2 Preliminaries . 85

4.3 First-Order Robustness . 86

4.4 Second-Order Robustness . 89

4.4.1 Condition on the Sublevel Sets . 89

4.4.2 Two Upper Bounds on λ . 90

4.5 Iterative Algorithm . 92

4.5.1 Stability Certificates . 92

4.5.2 Oracle on the Derivatives . 92

4.5.3 Algorithm . 93

4.6 Trajectory Tracking . 93

4.7 Numerical Experiments . 95

4.7.1 Definition of the Systems and Implementation Details 95

4.7.2 Results . 96

4.8 Implementation Summary . 97

4.9 Conclusion . 98

5 Infinite-Dimensional Sums-of-Squares for Optimal Control 103

5.1 Introduction . 104

5.2 Background . 104

5.2.1 Formulation of OCP with Maximal Subsolutions of HJB 105

v

5.2.2 Parameterization of the Value Function . 106

5.2.3 Representing Non-Negative Functions as Sum-of-Squares 106

5.3 Dense Set of Inequality Constraints . 107

5.3.1 Relaxed Formulation by Subsampling . 108

5.3.2 Strengthened Formulation by SoS Representation 108

5.4 Tight Sum-of-Squares Representations . 109

5.4.1 Case 1: Infinite-Horizon Time-Invariant LQR . 109

5.4.2 Sum-of-Squares Decomposition with Smooth Functions 110

5.4.3 Stochastic Smoothing of the Optimal Value Function 112

5.5 SDP Formulation and its Numerical Resolution . 112

5.5.1 Finite-Dimensional Formulation via Subsampling 112

5.5.2 Interior Point Method with the Damped Newton Method 114

5.6 Numerical Example . 115

5.7 Conclusion . 118

6 A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning 119

6.1 Introduction . 120

6.1.1 Contributions . 121

6.1.2 Related Literature . 121

6.2 Problem Formulation and Generic Results . 122

6.2.1 The Non-parametric TD(0) Algorithm . 122

6.2.2 Covariance Operators . 124

6.2.3 Non-Expansiveness of the Bellman Operator . 125

6.3 Analysis of a Continuous-Time Version of the Population TD Algorithm 126

6.3.1 Existence of a Fixed Point for Regularized TD . 126

6.3.2 Convergence of the Regularized Fixed Point to the Optimal Value Function 126

6.3.3 Convergence of Continuous-Time Population TD 127

6.4 Stochastic TD with i.i.d. Sampling . 128

6.5 Stochastic TD with Markovian Sampling . 129

6.6 Experiments on Artificial Data . 131

6.6.1 Setting of the Problem . 131

6.6.2 Qualitative and Quantitative Results . 132

vi

6.7 Conclusion . 134

6.A Proofs and Intermediate Results . 135

6.A.1 Problem Formulation and Generic Results . 135

6.A.2 Analysis of a Continuous-Time Version of the Population TD Algorithm 135

6.A.3 Stochastic TD with i.i.d. Sampling . 141

6.A.4 Stochastic TD with Markovian Sampling . 149

6.B Experimental Design . 157

6.B.1 Geometric Mixing of the Markov Chain . 157

6.B.2 Implementation Details . 158

Conclusion 161

Bibliography 167

vii

viii

Remerciements

Je souhaite d’abord exprimer toute ma reconnaissance à mon directeur de thèse, Francis Bach. Je mesure
l’opportunité que tu m’as offerte en me permettant de réfléchir et de progresser à tes côtés au cours de ces
trois dernières années. Tu m’as fourni un encadrement sans faille, à la fois scientifiquement et humainement.
J’espère continuer à m’inspirer des qualités que j’ai admirées en travaillant avec toi, parmi lesquelles une
certaine sérénité pour aborder les problèmes, toujours mêlée d’humilité.

Je remercie particulièrement les chercheurs avec qui j’ai eu la chance de collaborer, d’abord Justin Carpen-
tier pour son indispensable initiation au contrôle et à la robotique, puis Alessandro Rudi pour sa maîtrise
infaillible des noyaux, et Ziad Kobeissi pour sa remarquable attention aux détails et aux difficultés cachées.

J’adresse mes remerciements à Marianne Akian et à Florence d’Alché-Buc pour avoir accepté de rapporter
ce manuscrit qui touche à différents domaines, et à Colin Jones et Emmanuel Trélat qui me font l’honneur
de l’examiner. Au cours de ma thèse, j’ai eu la chance de pouvoir présenter et obtenir de précieux retours
sur mon travail, grâce aux invitations de Stéphane Gaubert et d’Olivier Bokanowski. Qu’ils en soient ici
remerciés. Merci également à Didier Henrion pour ses échanges sur les SOS, et à Ana Busic d’avoir pris
part à mon comité de suivi doctoral.

Je suis reconnaissante envers la Direction Générale de l’Armement qui m’a permis de réaliser ma thèse dans
les meilleures conditions matérielles, en tant qu’ingénieure de l’armement. Je remercie Alain Droniou pour
son suivi et son conseils, ainsi que David Filliat de m’accueillir à l’ENSTA Paris à l’issue de cette thèse.

Si je suis venue travailler chaque jour avec le sourire, c’est grâce aux membres de l’équipe Sierra, sans
oublier, évidemment, l’inséparable équipe Willow. Je pense d’abord à Oumayma, Etienne et Zerui du bu-
reau C409, le seul bureau au complet avant 9h, qui ont su supporter des températures tantôt polaires, tantôt
tropicales, en plus du doux ronronnement des trains. Ces trois années ont aussi été l’occasion de participer à
des projets parallèles à ma thèse. Je remercie Denis Merigoux avec qui nous avons relancé le Junior Seminar
malgré l’adversité des circonstances, et Gaspard, Théophile et Clémence d’avoir brillamment pris la relève.
Un grand merci à Clémentine Fourrier pour toute son énergie dans la co-organisation de deux éditions des
Rendez-vous des Jeunes Mathématiciennes et Informaticiennes, une cause qui nous tenait à toutes les deux
particulièrement à cœur. À Antoine Bambade, avec qui nous avons animé pendant deux ans un groupe
de lecture sur le contrôle : bravo, nous sommes arrivés au dernier chapitre ! J’ai eu la chance d’avoir pu

ix

Remerciements

échanger avec les membres de l’équipe s’intéressant au contrôle, en particulier Pierre-Cyril Aubin, Marc
Lambert et Philippe Rigollet. Nos longues discussions ont bien sûr influencé mon travail. Merci également à
la team robotique : Yann, Wilson, Thomas, Louis, Fabian, Armand, qui m’ont permis de mieux en appréhen-
der les nombreux aspects. J’ai une pensée particulière pour Jean-Paul Laumond qui a su insuffler sa vision
inspirante de la robotique dans nos équipes.

Ces trois années ont aussi été rythmées par les discussions (pluri)quotidiennes autour de la machine à café,
indispensables pour trouver l’inspiration et garder la motivation. Parmi ceux que je n’ai pas déjà cités, j’ai
eu le plaisir d’y croiser régulièrement, entre autres et dans le désordre : Bertille, Céline, Grégoire, Loucas,
Radu, Raphaël, Rémi, Thomas, Ulysse, Vivien, Yana, Yann... Elles ont aussi été ponctuées par des Ground
Control et autres Friday Beers, ainsi qu’un inoubliable séminaire d’équipe à Avignon. Ces moments, s’ils
ont été un temps trop rares, n’en sont que plus précieux. J’en profite pour remercier le personnel de l’Inria,
qui fait tout le nécessaire et le suffisant pour que le 2 rue Simone Iff soit un environnement si agréable au
quotidien. En particulier, un grand merci à Hélène Bessin-Rousseau pour sa gentillesse et sa disponibilité,
et un clin d’œil à la team piano de l’AGOS et à Marion, grâce à qui cette dernière année a résonné au son de
Ravel, ainsi qu’à Fouzia Bouzid pour son efficacité côté ENS.

J’adresse mes sincères remerciements à mes chers amis Guillaume, Clément, Pierre, Maxime et Marine, qui
ont été particulièrement présents pendant ces trois années. En plus des expos, restos, cinés, dîners, jeux,
et interminables discussions sur le statut des fonctionnaires, j’ai trouvé en vous une oreille attentive et un
soutien indéfectible. Vous n’êtes pas étrangers au mystérieux mathématicien Godalle Marmanthier, toujours
disponible pour chiner des constantes universelles ou des noms d’algorithmes absurdes, optimiser du code
(même écrit depuis gedit), prouver un lemme retors, trouver LA bonne référence, ou relire quelques dizaines
de pages (même de contrôle !) en un week-end.

Je ne saurais terminer sans remercier ma famille. Je pense à mes grands-parents de Dole, qui ont toujours su
me faire découvrir d’autres horizons. À mon frère Antoine et à Manon, qui ont été une présence indispensable
à Paris et dont la porte était toujours ouverte (en même temps j’avais la clef...). Merci à mon père pour
m’avoir appris il y a bien longtemps les principaux prérequis pour cette thèse, à savoir les boucles for en
Basic et la formule de Taylor avec reste intégral. Je n’oublie pas, bien sûr, le rôle des quelques enseignants
de toutes disciplines, en particulier au lycée Gay-Lussac, qui ont su éveiller ma curiosité. Merci à ma mère,
d’avoir toujours répondu présente. Enfin, je dédie ce travail à ma grand-mère Nicole, qui était si fière de moi.

x

Introduction et résumé des contributions

Contrôle et apprentissage

La théorie du contrôle optimal – aussi appelée commande optimale en français – trouve ses origines dans le
calcul des variations (van Brunt, 2004). Il s’agit d’un problème ancien, formulé dès le XVIIème siècle, et que
l’on peut résumer ainsi : quel chemin une onde doit-elle emprunter pour aller d’un point à un autre en temps
minimal ? Le problème du contrôle optimal, qui en est une généralisation, apparaît dans les années 1950 sous
l’impulsion de la cybernétique – l’étude des systèmes complexes (Wiener, 1948) – qui introduit notamment
la notion de rétroaction. Il s’agit de trouver une commande (ou un contrôle) u qui doit être exercé à tout
instant sur un système dynamique x évoluant dans le temps, afin de minimiser un coût L. Formellement, il
s’agit d’un problème d’optimisation :

inf
u(·)

∫ T

0
L(x(t), u(t))dt

s.t. ∀t ∈ [0, T], ẋ(t) = f(x(t), u(t)).

Ce formalisme est flexible et peut s’adapter à des problèmes discrets ou continus, déterministes ou stochas-
tiques, lui permettant ainsi de modéliser un grand nombre de problèmes, comme la recherche d’une trajec-
toire spatiale, la commande d’une machine-outil, le déplacement d’un robot anthropomorphe ou la conduite
autonome. Les années 1960 à 1980 connaissent l’avènement de l’automatique, discipline dédiée à la modéli-
sation et à la commande des systèmes linéaires (Bourlès and Kwan, 2013). Au-delà de l’aspect scientifique,
le contrôle des systèmes linéaires est structurant en ingénierie, qui se consacre largement à la conception
de système asservis – c’est-à-dire régulés par une boucle de rétroaction –, et en particulier à l’étude de leur
stabilité. À partir des années 1980, de nombreux travaux sont consacrés à l’étude des systèmes non-linéaires
et au contrôle robuste (Zames, 1981), c’est-à-dire un ensemble de méthodes pouvant tolérer une spécification
inexacte du modèle.

L’apprentissage par renforcement est un sous-domaine de l’apprentissage automatique. Il s’agit, pour un
agent, d’apprendre à agir dans un environnement, de façon à maximiser les récompenses reçues au cours
du temps. L’environnement réagit de façon stochastique à l’état s de l’agent et à l’action a qu’il vient
d’effectuer, en lui envoyant une récompense r et en modifiant son état. Une formalisation de ce problème

1

Introduction et résumé des contributions

sous forme de processus de décision Markovien a été introduite par Bellman en 1957 (Bellman, 1957b). Il
s’agit d’un problème d’optimisation stochastique :

max
π:S→A

Eπ
+∞∑
t=0

rt .

Une spécificité de l’apprentissage par renforcement est que la façon dont l’environnement réagit est inconnue
pour l’agent. Il ne dispose pas d’un modèle de cet environnement, et se voit contraint d’apprendre à agir
de façon optimale. La formulation de ce problème s’inspire des neurosciences et de la psychologie. En
particulier, la métaphore de la récompense n’est pas sans rappeler les processus de renforcement induits par
les neurotransmetteurs, ou les expériences de conditionnement chez les animaux. En pratique, les méthodes
d’apprentissage par renforcement ont souvent été appliquées pour la résolution des jeux, avec succès pour le
backgammon et les échecs dans les années 1990, puis les jeux vidéos Atari, le jeu de Go, et plus récemment
les jeux en temps réel comme Starcraft. Depuis les années 2010, ces succès s’expliquent en grande partie
par des progrès dans la mise en œuvre de techniques d’apprentissage automatique plus efficaces comme les
réseaux de neurones.

En examinant les problèmes de contrôle optimal et d’apprentissage par renforcement, on notera de nom-
breuses similitudes (Bertsekas, 2019; Meyn, 2022). L’état d’un système – ou d’un agent – évolue dans le
temps, en suivant une certaine dynamique, contrôlée en partie par sa commande – ou son action. Le but est de
minimiser un coût – ou de maximiser une récompense, l’opposé d’un coût – au cours du temps. Néanmoins,
trois différences notables subsistent :

1. le caractère déterministe ou stochastique ;

2. le caractère discret ou continu ;

3. le fait qu’un modèle d’évolution soit connu ou non.

Le formalisme des processus de décision Markoviens est naturellement stochastique, alors que les prob-
lèmes de contrôle optimal sont généralement écrits de façon déterministe, même s’il existe des problèmes
de contrôle stochastique. Ce n’est donc pas une caractéristique qui les distingue fondamentalement, mais la
stochasticité génère souvent des difficultés théoriques et pratiques supplémentaires.

D’autre part, le problème de contrôle optimal est généralement formulé en temps continu et en état continu,
face à l’apprentissage par renforcement en temps discret, et souvent en état discret. Cette différence entre
discret et continu n’est pas aussi bénigne qu’elle n’y paraît. Les problèmes discrets sont par nature com-
binatoires : il n’est pas possible de prévoir localement l’état d’un système au temps suivant en l’observant
à un temps donné. Cela peut rendre leur étude particulièrement complexe quand le nombre d’états aug-
mente. À l’inverse, une évolution continue, comme celle d’une équation différentielle, présente une certaine
régularité : entre deux pas de temps proches, l’état du système est peu modifié. Cette différence explique
par exemple le fait qu’un objet central en apprentissage par renforcement comme la fonction Q, qui sert à
estimer la valeur d’un couple action-état, n’a pas de sens pour des problèmes à temps continu, car l’impact
d’une action individuelle est négligeable. En temps continu, c’est le Hamiltonien qui joue un rôle similaire.
Dans le Chapitre 3, nous explorons la notion de discrétisation en espace d’un problème continu, en étendant
une méthode dédiée aux problèmes à temps continu vers des problèmes à temps discret.

Enfin, pour le contrôle optimal, la dynamique et le coût, qui constituent le modèle, sont des fonctions con-
nues, qui peuvent donc être utilisées pour construire une solution optimale. Ce n’est pas le cas en apprentis-
sage par renforcement : le processus qui génère la dynamique et les récompenses est caché, et n’est observé

2

Introduction et résumé des contributions

qu’à travers un nombre fini d’observations. C’est là la principale difficulté supplémentaire de l’apprentissage
par renforcement par rapport au contrôle optimal, qui justifie l’utilisation de techniques d’estimation. En
somme, on pourrait considérer que l’apprentissage par renforcement est un problème de contrôle, couplé
à un problème d’apprentissage de modèle. Dans la suite de cette thèse, nous relâcherons progressivement
l’hypothèse du modèle connu, pour aller progressivement du paradigme contrôle au paradigme contrôle
+ apprentissage. En effet, si dans le Chapitre 3, nous supposons le modèle parfaitement connu, dans le
Chapitre 4, nous supposons seulement qu’il appartient à un certain ensemble de modèles, i.e., qu’il est connu
jusqu’à un certain ordre, et nous développons des méthodes robustes qui fonctionnent sur toute cette classe
de modèles. Dans le Chapitre 5, le modèle n’est connu qu’à travers un lot de n observations, et enfin, dans
le Chapitre 6, ces observations sont reçues de façon incrémentale.

Vers des algorithmes efficaces

La plupart des problèmes de contrôle et d’apprentissage par renforcement ne peuvent être résolus analy-
tiquement, il faut donc faire appel à des méthodes numériques. Si ces méthodes peuvent résoudre certains
problèmes bien spécifiés et de faible dimension, elles sont d’une efficacité limitée pour des applications plus
ambitieuses comme la robotique. En effet, de telles applications entraînent certaines contraintes :

• les dimensions du système, quoique modérées du point de vue de l’apprentissage automatique (d ' 10
ou 20), sont prohibitives pour la plupart des méthodes numériques pour le contrôle ;

• la dynamique est non-linéaire, empêchant l’utilisation directe des méthodes de contrôle linéaire ;

• le modèle n’est pas connu de façon exacte, rendant inutile la résolution exacte du problème ;

• certains calculs doivent se faire en temps réel, et/ou sur des systèmes embarqués, limitant ainsi l’accès
aux ressources et temps de calculs.

Dans cette thèse, nous chercherons à développer et analyser des méthodes numériques qui tiennent compte
de ces contraintes, et qui seront donc suspectibles d’être appliquées à des problèmes de robotique. De plus,
un certain niveau de certification est souvent requis pour le déploiement d’algorithmes sur des systèmes
physiques. C’est pourquoi nous chercherons si possible à développer des garanties théoriques pour ces
algorithmes, sous forme de certificats ou de taux de convergence.

Résumé des contributions

Dans le Chapitre 1, nous introduisons formellement les problèmes de contrôle optimal et d’apprentissage
par renforcement. Nous présentons d’abord les principaux résultats théoriques : le principe du maximum
de Pontryagin et le principe d’optimalité de Bellman. Puis nous nous intéressons aux méthodes numériques
existantes, dont certaines sont communes au contrôle et à l’apprentissage par renforcement comme la for-
mulation par programmation linéaire. D’autres sont spécifiques au contrôle, comme les méthodes de tir
indirectes, ou à l’apprentissage par renforcement, comme les méthodes de différences temporelles. Nous
insistons sur les atouts et les limites de ces méthodes, dans le cadre d’applications à des problèmes de grande
dimension.

3

Introduction et résumé des contributions

Dans le Chapitre 2, nous présentons successivement plusieurs outils qui seront utilisés dans la suite de la
thèse. Nous décrivons d’abord succinctement la dynamique d’un système robotique articulé et présentons
deux algorithmes permettant de résoudre numériquement les problèmes de dynamique directe et inverse.
Ces algorithmes seront utilisés dans un exemple numérique du Chapitre 4. Puis nous présentons plus en
détail le domaine de l’optimisation polynomiale, ainsi que ses applications au problème de certification de
stabilité (qui servira de méthode de référence dans le Chapitre 4), et à la résolution numérique du problème
de contrôle optimal polynomial (dont nous proposerons une extension aux systèmes lisses non-polynomiaux
dans le Chapitre 5). Nous introduisons ensuite les méthodes à noyaux, une classe d’algorithmes largement
utilisés en apprentissage automatique. Ces méthodes présentent le double avantage d’être à la fois applicables
sur des problèmes de grande dimension, et d’être bien comprises d’un point de vue théorique. Nous utilisons
les méthodes à noyaux dans le Chapitre 5 pour représenter des fonctions positives, et dans le Chapitre 6 nous
analyserons une version adaptée aux méthodes à noyaux de l’algorithme des différences temporelles. Enfin,
nous présenterons brièvement les principes de l’algèbre max-plus, ainsi que son intérêt pour les problèmes
de contrôle, que nous appliquerons ensuite à un processus Markovien déterministe dans le Chapitre 3.

Les deux premiers chapitres sont un état de l’art et ne présentent pas de contribution nouvelle. Les quatre
chapitres suivants sont issus de travaux originaux qui constituent les contributions de cette thèse.

Contribution 1 : Discrétisation max-plus de processus de décision Markoviens déterministes.

Le Chapitre 3 est consacré à l’étude d’une méthode d’approximation max-plus pour les problèmes de con-
trôle à temps et espace continus, d’abord proposée par McEneaney (2003) puis étendue par Akian et al.
(2008). Nous proposons d’adapter cette méthode aux processus de décision Markoviens déterministes. Elle
permet d’approximer la fonction valeur comme une combinaison max-plus linéaire dans une dictionnaire de
fonctions de base. Un algorithme naturel pour obtenir cette approximation est une variante de l’algorithme
d’itération par valeurs : il s’agit d’appliquer de façon alternée l’opérateur de Bellman et un opérateur de pro-
jection max-plus sur l’espace généré par la base de fonctions. Une variante variationnelle de cette méthode
permet de tirer parti de la max-plus linéarité de l’opérateur de Bellman. L’algorithme obtenu peut alors être
décomposé en deux parties : une première étape de calculs préliminaires dont la complexité ne dépend pas
de l’horizon temporel du processus Markovien, suivi d’une version réduite de l’algorithme d’itération par
valeurs dont la complexité ne dépend que de l’horizon et du nombre de fonctions de base.

L’étape de calculs préliminaires est un problème d’optimisation. Dans le cas des processus de décision déter-
ministes à état continu, nous proposons de le résoudre de façon approchée par une méthode de descente de
gradient. D’autre part, nous proposons un dictionnaire de fonctions de bases qui permet de produire une
discrétisation en espace du processus de décision. Nous analysons les erreurs produites par cette méthode
d’approximation max-plus, pour deux dictionnaires de fonctions, en fonction de la régularité Lipschitz de la
fonction valeur. Nous proposons ensuite une stratégie simple pour choisir de manière adaptative les diction-
naires de fonctions, en atténuant ainsi la malédiction de la dimension. Enfin, nous montrons empiriquement
sur deux exemples de faible dimension que cette discrétisation max-plus est plus compacte, en termes de
nombre de paramètres, qu’une discrétisation naïve du problème à état continu.

Ce chapitre est publié dans l’article de journal :

E. Berthier and F. Bach, “Max-Plus Linear Approximations for Deterministic Continuous-State
Markov Decision Processes,” in IEEE Control Systems Letters, vol. 4, no. 3, pp. 767-772, July
2020, doi:10.1109/LCSYS.2020.2973199.

4

https://doi.org/10.1109/LCSYS.2020.2973199

Introduction et résumé des contributions

Contribution 2 : Estimation de régions de stabilité pour les systèmes dynamiques non-linéaires.

Dans le Chapitre 4, on cherche à stabiliser un système dynamique autour d’un de ses points d’équilibre.
Cela peut être effectué à l’aide d’un régulateur linéaire-quadratique (LQR). Il s’agit de linéariser localement
le système, et de construire un contrôle stabilisant en boucle fermée autour de ce point. Si le système dy-
namique est linéaire, le contrôleur LQR calculé au point d’équilibre est valide sur tout l’espace, et le système
ainsi contrôlé sera globalement asymptotiquement stable. Si le système est non-linéaire, cela n’est vrai que
localement, sur une zone appelée région d’attraction ou de stabilité. Un problème important en pratique est
d’estimer la taille de cette région d’attraction, surtout pour les systèmes très non-linéaires. Il s’agit con-
crètement d’exhiber une fonction de Lyapunov valide sur cette région. Pour des systèmes polynomiaux, il
est possible de certifier la stabilité d’une région en faisant appel à l’optimisation polynomiale. Néanmoins,
il en résulte un problème difficile à résoudre numériquement pour des systèmes de grande dimension. En
effet, l’estimation de régions de stabilité n’étant souvent qu’un sous-problème d’un algorithme plus large qui
l’appelle de façon répétée, elle doit pouvoir être effectuée rapidement.

Nous proposons deux certificats de stabilité qui peuvent être calculés efficacement pour des problèmes de
grande dimension. Ils s’appliquent de façon robuste à une classe de systèmes dont les dérivées premières
ou secondes sont bornées. En associant ces certificats à un oracle permettant de calculer des bornes sur les
dérivées, nous proposons un algorithme simple d’estimation de régions de stabilité. Nous l’étendons ensuite
au problème de suivi de trajectoire qui généralise la stabilisation autour d’un point d’équilibre. Enfin, nous
validons expérimentalement cette approche sur des systèmes polynomiaux et non-polynomiaux de dimen-
sions variées, dont un système robotique qui ne peut être traité par la méthode d’optimisation polynomiale.

Ce chapitre est publié dans l’article de conférence :

E. Berthier, J. Carpentier and F. Bach, “Fast and Robust Stability Region Estimation for Non-
linear Dynamical Systems,” 2021 European Control Conference (ECC), 2021, pp. 1412-1419,
doi:10.23919/ECC54610.2021.9655071.

Contribution 3 : Sommes de carrés en dimension infinie pour le contrôle optimal.

Dans le Chapitre 5, nous proposons une nouvelle méthode d’approximation numérique pour les problèmes
de contrôle optimal. Cette méthode s’applique à des problèmes dont la dynamique est inconnue, et n’est
observée qu’à travers un nombre fini d’échantillons. En ce sens, nous nous plaçons dans le paradigme
sans modèle de l’apprentissage par renforcement. Nous considérons la méthode d’optimisation polynomi-
ale développée par Lasserre et al. (2008). Il s’agit d’utiliser le dual Lagrangien de la formulation faible du
problème de contrôle, qui est un programme linéaire en dimension infinie. En particulier, il est nécessaire de
représenter le Hamiltonien comme une fonction positive, c’est-à-dire, dans le cas polynomial, un polynôme
positif. La hiérarchie moment - sommes de carrés fournit une méthode numérique basée sur la programma-
tion semi-définie positive. Cependant, cette méthode est coûteuse en termes de temps de calcul, et ne peut
pas être appliquée à des systèmes de grande dimension.

Nous proposons d’étendre cette méthode à des systèmes non-nécessairement polynomiaux, et connus unique-
ment à partir d’échantillons. Pour cela, nous utilisons une représentation des fonctions positives lisses issue
des méthodes à noyaux, récemment proposée par Marteau-Ferey et al. (2020). Cette représentation est de
dimension infinie, et s’appuie sur l’espace de fonctions des méthodes à noyaux, appelé espace de Hilbert
à noyau reproduisant. Nous prouvons que sous des conditions de régularité, pour les systèmes contrôle-
affine, la représentation du Hamiltonien comme somme de carrés dans un espace de fonctions lisses est
exacte. Après sous-échantillonnage, cette méthode conduit également à un programme semi-défini positif,

5

https://doi.org/10.23919/ECC54610.2021.9655071

Introduction et résumé des contributions

pour lequel nous proposons une résolution par méthode de Newton. Nous illustrons cette approche sur un
problème de contrôle élémentaire. Nous montrons en particulier comment choisir un espace de fonctions
adapté à la structure du problème considéré.

Ce chapitre a été accepté pour publication dans la conférence :

E. Berthier, J. Carpentier, A. Rudi and F. Bach, “Infinite-dimensional Sums-of-Squares for Op-
timal Control,” Conference on Decision and Control, 2022, arXiv:2110.07396.

Contribution 4 : Analyse de l’algorithme non-paramétrique des différences temporelles.

L’algorithme des différences temporelles est un algorithme classique en apprentissage par renforcement qui
permet d’évaluer une politique donnée, de façon incrémentale à partir d’observations. Dans le Chapitre 6,
nous proposons une analyse non-asymptotique de l’algorithme des différences temporelles, dans sa version
non-paramétrique et régularisée. Il s’agit d’une généralisation en dimension infinie de l’algorithme des
différences temporelles avec approximation linéaire. Il a été prouvé que cet algorithme avec approximation
linéaire converge, non pas vers la fonction valeur, mais vers le point fixe de l’opérateur de Bellman projeté,
qui en est général une fonction différente. Cela s’explique par les capacités d’approximation limitées d’une
approximation linéaire en dimension finie.

Nous montrons que si l’algorithme non-paramétrique est utilisé dans un espace de Hilbert à noyau repro-
duisant universel, c’est-à-dire dense dans l’espace des fonctions de carré intégrable, alors les itérés moyennés
convergent vers la fonction valeur, et ce même si elle n’appartient pas à l’espace de Hilbert. Nous fournissons
des taux de convergence explicites qui dépendent de la régularité relative de la fonction valeur par rapport à
l’espace de fonctions. Nous traitons à la fois le cas où les observations sont indépendantes et identiquement
distribuées, et le cas où elles sont issues d’une chaîne de Markov. Nous illustrons cette convergence sur un
exemple numérique de processus Markovien à état continu.

Ce chapitre a été accepté pour publication dans la conférence :

E. Berthier, Z. Kobeissi and F. Bach, “A Non-asymptotic Analysis of Non-parametric Temporal-
Difference Learning,” Advances in Neural Information Processing Systems, 2022, arXiv:2205.11831.

6

https://arxiv.org/abs/2110.07396
https://arxiv.org/abs/2205.11831

Introduction and Summary of the Contributions

Control and Learning

The theory of optimal control has its origins in the calculus of variations (van Brunt, 2004). It is an old
problem, formulated as early as the XVIIth century, and which can be summarized as follows: what path
should a wave take to get from one point to another in minimal time? The problem of optimal control, which
is a generalization of this problem, appeared in the 1950s under the impulse of cybernetics – the study of
complex systems (Wiener, 1948) – which introduced the notion of feedback. It is a question of finding a
command (or control) u which must be applied at any moment to a dynamical system x evolving in time, in
order to minimize a cost L. Formally, it is an optimization problem:

inf
u(·)

∫ T

0
L(x(t), u(t))dt

s.t. ∀t ∈ [0, T], ẋ(t) = f(x(t), u(t)).

This formalism is flexible and can be adapted to discrete or continuous, deterministic or stochastic problems,
thus allowing it to model a large number of problems, such as the search for a spatial trajectory, the control
of an industrial machine, the movement of an anthropomorphic robot or autonomous driving. The 1960s to
1980s saw the advent of automation, or systems theory, a discipline dedicated to the modeling and control
of linear systems (Bourlès and Kwan, 2013). Beyond the scientific aspect, the control of linear systems is
structuring in engineering, which is largely devoted to the design of servo systems – that is, systems regulated
by a feedback loop – and in particular to the study of their stability. From the 1980s onwards, a lot of work
has been devoted to the study of non-linear systems and robust control, i.e., a set of methods that can tolerate
model misspecification.

Reinforcement learning is a sub-field of machine learning. It consists, for an agent, in learning to act in an
environment in order to maximize the rewards received over time. The environment reacts stochastically to
the agent’s state s and to the action a it has just performed, by sending it a reward r and by modifying its
state. A formalization of this problem in the form of a Markov decision process was introduced by Bellman

7

Introduction and Summary of the Contributions

in 1957 (Bellman, 1957b). It is a stochastic optimization problem:

max
π:S→A

Eπ
+∞∑
t=0

rt .

A specificity of reinforcement learning is that the way the environment reacts is unknown to the agent. It does
not have a model of this environment, and is forced to learn how to act in an optimal way. The formulation of
this problem is inspired by neuroscience and psychology. In particular, the reward metaphor is reminiscent of
reinforcement processes induced by neurotransmitters, or conditioning experiments in animals. In practice,
reinforcement learning methods have often been applied to solve games, with success for backgammon and
chess in the 1990s, then for Atari video games, the game of Go, and more recently for real-time games like
Starcraft. Since the 2010s, much of this success has been due to advances in the implementation of more
efficient machine learning techniques such as neural networks.

Looking at optimal control and reinforcement learning problems, one will note many similarities (Bertsekas,
2019; Meyn, 2022). The state of a system – or of an agent – evolves over time, following a certain dynamics,
controlled in part by its control – or action. The goal is to minimize a cost – or maximize a reward, the
opposite of a cost – over time. Nevertheless, three notable differences remain:

1. the deterministic or stochastic character ;

2. the discrete or continuous character;

3. whether a model of evolution is known or not.

The formalism of Markov decision processes is naturally stochastic, whereas optimal control problems are
usually written deterministically, even if stochastic control problems exist. It is therefore not a characteristic
that fundamentally distinguishes the two problems, but stochasticity often generates additional theoretical
and practical difficulties.

On the other hand, the optimal control problem is usually formulated in continuous time and continuous
state, while reinforcement learning is formulated in discrete time and often in discrete state. This difference
between discrete and continuous is not as benign as it seems. Discrete problems are by nature combinatorial:
it is not possible to predict locally the state of a system at the next time by observing it at a given time.
This can make their study particularly complex when the number of states increases. On the other hand, a
continuous evolution, such as that of a differential equation, presents a certain regularity: between two close
time steps, the state of the system is only slightly modified. This difference explains, for example, the fact
that a central object in reinforcement learning, such as the Q function, which is used to estimate the value of
a state-action pair, is meaningless for continuous time problems, because the impact of an individual action
is negligible. In continuous time, it is the Hamiltonian that plays a similar role. In Chapter 3, we explore the
notion of space discretization of a continuous problem, by extending a method dedicated to continuous time
problems to discrete time problems.

Finally, for optimal control, the dynamics and the cost, which constitute the model, are known functions,
which can therefore be used to construct an optimal solution. This is not the case in reinforcement learning:
the process that generates the dynamics and the rewards is hidden, and is only observed through a finite
number of samples. This is the main additional difficulty of reinforcement learning compared to optimal
control, which justifies the use of estimation techniques. In short, reinforcement learning could be considered
as a control problem, coupled with the problem of learning the model. In the rest of this thesis, we will

8

Introduction and Summary of the Contributions

progressively relax the assumption of the known model, to go progressively from the control paradigm to
the control + learning paradigm. Indeed, while in Chapter 3, we assume the model is perfectly known, in
Chapter 4, we only assume that it belongs to a certain set of models, i.e., that it is known up to a certain
order, and we develop robust methods that work over this whole class of models. In Chapter 5, the model
is known only through a batch of n observations, and finally, in Chapter 6, these observations are received
incrementally.

Towards Efficient Algorithms

Most control and reinforcement learning problems cannot be solved analytically, so numerical methods
must be used. While these methods can solve some low-dimensional, well-specified problems, they are
of limited effectiveness for more ambitious applications such as robotics. Indeed, such applications entail
certain constraints:

• the dimensions of the system, although moderate from the viewpoint of machine learning (d ' 10 or
20), are prohibitive for most numerical methods designed for control;

• the dynamics is non-linear, preventing the direct use of linear control methods;

• the model is not known exactly, making it useless to solve the problem exactly;

• some computations must be done in real time, and/or on embedded systems, thus limiting access to
computational resources and time.

In this thesis, we will try to develop and analyze numerical methods that take these constraints into account,
and that can therefore possibly be applied to robotics problems. Moreover, a certain level of certification is
often required for the deployment of algorithms on physical systems. This is why we will try if possible to
develop theoretical guarantees for these algorithms, in the form of certificates or convergence rates.

Summary of the Contributions

In Chapter 1, we formally introduce the optimal control and reinforcement learning problems. We first
present the main theoretical results: Pontryagin’s maximum principle and Bellman’s optimality principle.
Then we focus on existing numerical methods, some of which are common to control and reinforcement
learning such as the linear programming formulation. Others are specific to control, such as indirect shooting
methods, or to reinforcement learning, such as temporal difference methods. We emphasize the strengths
and limitations of these methods in the context of applications to high-dimensional problems.

In Chapter 2, we present successively several tools that will be used in the rest of the thesis. We first
briefly describe the dynamics of an articulated robotic system and present two algorithms to numerically
solve direct and inverse dynamics problems. These algorithms will be used in a numerical example of the
Chapter 4. Then we present in more details the field of polynomial optimization, as well as its applications
to the stability certification problem (which will be used as a reference method in Chapter 4), and to the
numerical solution of the polynomial optimal control problem (of which we will propose an extension to
non-polynomial smooth systems in Chapter 5). We then introduce kernel methods, a class of algorithms

9

Introduction and Summary of the Contributions

widely used in machine learning. These methods have the dual advantage of being both applicable to high-
dimensional problems and well understood from a theoretical point of view. We use kernel methods in
Chapter 5 to represent non-negative functions, and in Chapter 6 we will analyze a version of the temporal
difference algorithm adapted to kernel methods. Finally, we will briefly present the principles of max-plus
algebra, as well as its interest for control problems, which we will then apply to a deterministic Markov
decision process in Chapter 3.

The first two chapters are a state of the art and do not present any new contribution. The next four chapters
are original pieces of work that constitute the contributions of this thesis.

Contribution 1: Max-plus discretization of deterministic Markov decision processes.

Chapter 3 is devoted to the study of a max-plus approximation method for control problems in continuous
time and space, first proposed by McEneaney (2003) and extended by Akian et al. (2008). We propose to
adapt this method to deterministic Markov decision processes. It approximates the value function as a linear
max-plus combination in a dictionary of basis functions. A natural algorithm to obtain this approximation
is a variant of the value iteration algorithm: the Bellman operator and a max-plus projection operator on the
space generated by the basis functions are alternately applied. A variational variant of this method allows
to take advantage of the max-plus linearity of the Bellman operator. The resulting algorithm can then be
decomposed into two parts: a first step of preliminary computations whose complexity does not depend on
the time horizon of the Markov process, followed by a reduced version of the value iteration algorithm whose
complexity only depends on the horizon and the number of basis functions.

The preliminary computation step is an optimization problem. In the case of deterministic continuous state
Markov decision processes, we propose to solve it in an approximate way by a gradient descent method. On
the other hand, we propose a dictionary of basis functions that allows to produce a discretization in space
of the decision process. We analyze the errors produced by this max-plus approximation method, for two
function dictionaries, depending on the Lipschitz regularity of the value function. We then propose a simple
strategy to adaptively choose function dictionaries, thus mitigating the curse of dimensionality. Finally, we
show empirically on two low-dimensional examples that this max-plus discretization is more compact, in
terms of the number of parameters, than a naive discretization of the continuous state problem.

This chapter has been published in the journal article:

E. Berthier and F. Bach, “Max-Plus Linear Approximations for Deterministic Continuous-State
Markov Decision Processes,” in IEEE Control Systems Letters, vol. 4, no. 3, pp. 767-772, July
2020, doi:10.1109/LCSYS.2020.2973199.

Contribution 2: Estimation of stability regions for nonlinear dynamical systems.

In Chapter 4, we want to stabilize a dynamical system around one of its equilibrium points. This can be
done using a linear-quadratic regulator (LQR). It is a matter of linearizing the system locally, and building
a stabilizing closed-loop controller around this point. If the dynamical system is linear, the LQR controller
computed at the equilibrium point is valid over the whole state space, and the system thus controlled will be
globally asymptotically stable. If the system is nonlinear, this is only true locally, over a region called the
region of attraction or stability region. An important problem in practice is to estimate the size of this region
of attraction, especially for highly nonlinear systems. Concretely, this is done by finding a valid Lyapunov

10

https://doi.org/10.1109/LCSYS.2020.2973199

Introduction and Summary of the Contributions

function over this region. For polynomial systems, it is possible to certify the stability of a region by using
polynomial optimization. Nevertheless, this results in a problem that is difficult to solve numerically for high
dimensional systems. Indeed, since the estimation of stability regions is often only a sub-problem of a larger
algorithm that calls it repeatedly, it must be performed quickly.

We propose two stability certificates that can be computed efficiently for high dimensional problems. They
apply robustly to a class of systems whose first or second derivatives are bounded. By associating these
certificates with an oracle allowing to compute bounds on the derivatives, we propose a simple algorithm for
the estimation of stability regions. We then extend it to the trajectory tracking problem which generalizes
stabilization around an equilibrium point. Finally, we experimentally validate this approach on polynomial
and non-polynomial systems of various dimensions, including a robotic system that cannot be treated by the
polynomial optimization method.

This chapter has been published in the conference article:
E. Berthier, J. Carpentier and F. Bach, “Fast and Robust Stability Region Estimation for Non-
linear Dynamical Systems,” 2021 European Control Conference (ECC), 2021, pp. 1412-1419,
doi:10.23919/ECC54610.2021.9655071.

Contribution 3: Infinite dimensional sum-of-squares for optimal control.

In Chapter 5, we propose a new numerical approximation method for optimal control problems. This method
applies to problems whose dynamics is unknown, and is observed only through a finite number of samples.
In this sense, we place ourselves in the model-free paradigm of reinforcement learning. We consider the
polynomial optimization method developed by Lasserre et al. (2008). This involves using the Lagrangian
dual of the weak formulation of the control problem, which is a linear program in infinite dimension. In
particular, it is necessary to represent the Hamiltonian as a non-negative function, i.e., in the polynomial
case, a non-negative polynomial. The moment-sum-of-squares hierarchy provides a numerical method based
on semidefinite programming. However, this method is expensive in terms of computation time, and cannot
be applied to high dimensional systems.

We propose to extend this method to systems that are not necessarily polynomial and are known only from
samples. For this purpose, we use a representation of smooth positive functions derived from kernel methods,
recently proposed by Marteau-Ferey et al. (2020). This representation is of infinite dimension, and is based
on the function space of kernel methods, called a reproducing Hilbert kernel space. We prove that under
regularity conditions, for control-affine systems, the representation of the Hamiltonian as a sum of squares in
a space of smooth functions is exact. After subsampling, this method also leads to a semi-definite program,
which we propose to solve with Newton’s method. We illustrate this approach on an elementary control
problem. We show in particular how to choose a function space adapted to the structure of the problem
considered.

This chapter has been accepted for publication in the conference:
E. Berthier, J. Carpentier, A. Rudi and F. Bach, “Infinite-dimensional Sums-of-Squares for Op-
timal Control,” Conference on Decision and Control, 2022, arXiv:2110.07396.

Contribution 4: Analysis of the non-parametric temporal difference learning algorithm.

The temporal difference learning algorithm is a classical algorithm in reinforcement learning that allows
to evaluate a given policy, incrementally from observations. In Chapter 6, we propose a non-asymptotic

11

https://doi.org/10.23919/ECC54610.2021.9655071
https://arxiv.org/abs/2110.07396

Introduction and Summary of the Contributions

analysis of the temporal difference algorithm, in its non-parametric and regularized version. It is an infinite
dimensional generalization of the temporal difference algorithm with linear function approximation. It has
been proved that this algorithm with linear function approximation converges, not to the value function, but
to the fixed point of the projected Bellman operator, which is in general a different function. This is due to
the limited approximation power of a linear approximation in finite dimension.

We show that if the non-parametric algorithm is used in a universal reproducing kernel Hilbert space, i.e., a
function space that is dense in the space of squared integrable functions, then the averaged iterates converge
to the value function, even if it does not belong to the Hilbert space. We provide explicit convergence rates
that depend on the relative regularity of the value function with respect to the function space. We treat both
the case where the observations are independent and identically distributed, and the case where they come
from a Markov chain. We illustrate this convergence on a numerical example of a continuous state Markov
decision process.

This chapter has been accepted for publication in the conference:

E. Berthier, Z. Kobeissi and F. Bach, “A Non-asymptotic Analysis of Non-parametric Temporal-
Difference Learning,” Advances in Neural Information Processing Systems, 2022, arXiv:2205.11831.

12

https://arxiv.org/abs/2205.11831

Chapter1
Optimal Control & Reinforcement Learning

Abstract. In this chapter, we give a concise introduction to optimal control and reinforcement
learning. We present the main theoretical tools and numerical methods, and insist on some com-
putational challenges that will be further discussed in subsequent chapters. This introduction
is based on the reference books by Trélat (2005) and Liberzon (2011) for optimal control, and
by Sutton and Barto (2018) for reinforcement learning.

Contents
1.1 Optimal Control . 13

1.1.1 Setting of the Problem . 13
1.1.2 The Maximum Principle . 15
1.1.3 The Hamilton-Jacobi-Bellman Approach . 18
1.1.4 The Linear Quadratic Regulator . 21
1.1.5 Numerical Methods . 23

1.2 Reinforcement Learning . 26
1.2.1 Problem Statement . 26
1.2.2 Dynamic Programming . 29
1.2.3 Dynamic Programming with Estimation . 30
1.2.4 Dynamic Programming with Function Approximation 32
1.2.5 The Linear Programming Formulation . 33

1.3 Comparison . 33

1.1 Optimal Control

1.1.1 Setting of the Problem

Let X and U be two sets, respectively called the state set and the control set. The state variable is denoted
by x, and the control variable by u (coming from the Russian word for “control”: управление, pronounced

13

Chapter 1. Optimal Control & Reinforcement Learning

upravlenie). We define a running cost function L : X × U → R (also called the Lagrangian) and a terminal
cost function M : X → R. Let T a positive number called the time-horizon. If the problem is well-defined
(see below), then starting from x0 ∈ X, and using an input (u(t))t∈[0,T] in U, we can define a unique
trajectory (x(t))t∈[0,T] in X, as a solution of the following ordinary differential equation (ODE):

x(0) = x0, and ∀t ∈ [0, T], dx
dt (t) = ẋ(t) = f(x(t), u(t)), (1.1)

where f : X × U → X is called the dynamics. There are different possible sets of assumptions on f and u
such that the trajectory is well-defined, coming from the Cauchy-Lipschitz theorem. A sufficient condition
is that f be continuous in u and continuously differentiable in x, ∂f

∂x continuous in u, and u piecewise
continuous in t (Liberzon, 2011).

Optimal control is an infinite-dimensional optimization problem, namely the problem of finding a piecewise
continuous input function u : [0, T] → U such that, along with the generated trajectory, it minimizes a cost
criterion over time. More precisely, the optimal control problem (OCP) is defined by:

inf
u(·)

∫ T

0
L(x(t), u(t))dt+M(x(T)) (1.2)

s.t. ∀t ∈ [0, T], ẋ(t) = f(x(t), u(t))
x(0) = x0.

There are many variants of this formulation. If M = 0, the problem is said to be in Lagrange form, whereas
if L = 0, it is in Mayer form. In principle, it is possible to rewrite any OCP in Lagrange or Mayer form at
the expense of simple transformations. Furthermore, the cost functions and the dynamics may have an extra
dependence on t, which can be simply recast in the previous form, by replacing the state variable x by (t, x)
with dynamics ṫ = 1. Furthermore, the time-horizon T can be either fixed or free (in which case it is part of
the optimization variables), and finite or infinite (hence requiring extra assumptions to ensure convergence
of the integral cost). Terminal constraints of the form hT (xT) ≤ 0 can be added to specify a fixed target
point or set to the trajectory.

Finally, path constraints play an important role in practical applications, such as modelling collisions in
robotics (Jallet et al., 2022). Each path constraint is typically expressed by:

∀t ∈ [0, T], h(t, x(t), u(t)) ≤ 0. (1.3)

When the constraint is simple and applies to the state or the control only, it can be encoded directly in the
state or control set. For instance, if h(t, x(t), u(t)) = ‖u(t)‖2 − 1, then one can define U = {‖u‖ ≤ 1}
without further constraint. However, some constraints, especially those which couple x and u, can be much
more difficult to deal with, and often require specific attention.

Example 1.1: The double integrator

We model a car whose position x moves along a one-dimensional axis, with a controlled acceleration
ẍ = u, hence the double integrator name. Although the dynamics is a second-order ODE, it can be
modeled by a first-order ODE. Indeed, let x ∈ X = R2 and u ∈ U = [−1, 1], which means that the

14

1.1. Optimal Control

car’s acceleration is bounded. The dynamics can be equivalently defined by:(
ẋ1
ẋ2

)
= f(x, u) =

(
x2
u

)
. (1.4)

We want to find a controller that stops the car at the origin in minimal time. This can be modeled by
L(x, u) = 1, M(x) = 0, with a free time-horizon tf but fixed terminal constraint x(tf) = (0, 0)>.
The time-variable plays the role of a timer that stops at tf as soon as x(tf) = 0. In particular, the
optimal value of the OCP is the optimal time required to stop the car at the origin. Such problems are
commonly encountered and are called minimal time problems.

Sometimes, the state x(t) is not easily observed. For instance, in the above example, we might be able
to measure only the position of the car x1(t), but not its speed x2(t). In this case, the observer variable
y(t) = g(x(t), u(t)) is observed instead of x(t). The behavior of linear systems with linear observations, of
the form: {

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t), (1.5)

has been extensively studied in systems theory (Hespanha, 2018; Kalman, 1960). In particular, observability,
i.e., whether x can be reconstructed from observations of y, is characterized by a condition on the matrices
(A,C). Another property of the system is its controllability, i.e., whether there exists a u which can bring x
to any target point in finite time. It can be evaluated by a similar condition on (A,B), which is why observ-
ability and controllability are sometimes seen as dual notions (Kwakernaak and Sivan, 1969, Chapter 1) (see
also Kailath et al., 2000, Chapter 15). Note that there are extensions of such notions to linear systems
with Gaussian noise, tackled by the field of Kalman filtering (Chui and Chen, 1987). We will present in
more detail how to control fully-observed linear systems in Section 1.1.4. However, for non-linear systems,
controllability and observability are much more challenging problems.

1.1.2 The Maximum Principle

We now assume that X ⊂ Rd and U ⊂ Rp. The Hamiltonian H is defined, for x ∈ X, u ∈ U, p ∈ Rd and
p0 ∈ R, by:

H(x, u, p, p0) = p>f(x, u) + p0L(x, u), (1.6)

where p is called the co-state, and has the same dimension as x.

The maximum principle (Boltyanski et al., 1960) was first established in 1955 (Gamkrelidze, 1999) by Pon-
tryagin and colleagues, hence the name Pontryagin’s Maximum Principle (PMP). The PMP gives a neces-
sary condition for the global optimality of a trajectory. In short, it states that, along optimal trajectories, the
HamiltonianH is maximized by the optimal control (see (1.9) below). More precisely, the optimal trajectory
is characterized by three objects: the state x(t), the control u(t), and the co-state p(t), which plays the role
of a dual variable. In this sense, the PMP can be related to the Karush-Kuhn-Tucker (KKT) conditions for
Lagrangian duality (Boyd and Vandenberghe, 2004), but it applies to the more complex, infinite-dimensional
optimization problem of optimal control.

15

Chapter 1. Optimal Control & Reinforcement Learning

For conciseness, we state the maximum principle in its simplest form, for a free time-horizon, fixed-endpoint
problem, with no terminal cost, as follows:

inf
u(·), tf

∫ tf

0
L(x(t), u(t))dt (1.7)

s.t. ∀t ∈ [0, tf], ẋ(t) = f(x(t), u(t))
x(0) = x0, x(tf) = xf .

Theorem 1 (Maximum Principle (Liberzon, 2011)). Let u∗ : [0, tf] → U be an optimal control and x∗ :
[0, tf] → Rd the corresponding optimal state trajectory in (1.7). Then there exists a function p∗ : [0, tf] →
Rd and a number p∗0 ≤ 0, such that ∀t ∈ [0, tf], (p∗0(t), p∗(t)) 6= (0, 0) and the following properties hold:

(a) x∗ and p∗ satisfy the coupled canonical Hamiltonian equations:

ẋ∗ = ∂H

∂p
(x∗, u∗, p∗, p∗0) (1.8)

ṗ∗ = −∂H
∂x

(x∗, u∗, p∗, p∗0),

with boundary conditions x∗(t0) = x0 and x∗(tf) = xf .

(b) For each fixed t ∈ [0, tf]:

∀u ∈ U, H(x∗(t), u∗(t), p∗(t), p∗0) ≥ H(x∗(t), u, p∗(t), p∗0), (1.9)

and H(x∗(t), u∗(t), p∗(t), p∗0) = 0. (1.10)

Note that for non-degenerate problems (p∗0 6= 0), the abnormal multiplier p∗0 can be set to -1 because the
above properties are invariant to the scaling of the Hamiltonian. Furthermore, if, instead of being fixed,
the terminal state is constrained to lie on a parametric surface, the maximum principle is completed by
transversality conditions, which constrain p∗(tf).

Even though the proof of the maximum principle in its full generality is not straightforward (Pontryagin
et al., 1974; Trélat, 2005), an intuition can be obtained by the following – purely informal – derivation. In
(1.7), let us introduce a dual variable p(t) associated to the constraint ẋ(t) = f(x(t), u(t)). We can write the
Lagrange dual problem. Assuming tf = T is fixed and that strong duality holds, and ignoring the boundary
conditions, the problem is then equivalent to:

sup
p(·)

inf
x(·), u(·)

∫ T

0
L(x(t), u(t))dt+

∫ T

0
p(t)>

(
ẋ(t)− f(x(t), u(t))

)
dt. (1.11)

We recognize the Hamiltonian H(x, u, p) = p>f(x, u) − L(x, u) (with abnormal multiplier p0 = −1), so
that the problem is equivalent to:

sup
p(·)

inf
x(·), u(·)

∫ T

0

(
p(t)>ẋ(t)−H(x(t), u(t), p(t))

)
dt. (1.12)

16

1.1. Optimal Control

Hence we directly see that the optimal u maximizes the Hamiltonian, as in (1.9). Besides, the KKT condi-
tions on p and x are respectively:

ẋ∗ − ∂H

∂p
(x, u, p) = 0 (1.13)

−ṗ∗ − ∂H

∂x
(x, u, p) = 0, (1.14)

using an integration by parts on the first term of (1.12). This recovers the canonical equations (1.8). Note
that the optimality condition on u∗ (1.9) is not written as a first order condition because of the generic form
of the set U. Indeed, the maximum in condition (1.9) can be reached on the boundary of U.

Importantly, the maximum principle only gives necessary conditions for the optimality of a controller. Usu-
ally, this narrows down the search over the infinite-dimensional space of controls, sometimes to a finite-
dimensional search space (Boscain and Piccoli, 2005). In very simple cases like the example below, it gives
enough information to fully determine the optimal controller.

Example 1.2: Application of the maximum principle

We can apply the maximum principle to the double integrator, as defined in Example 1.1. Assuming
that the problem is non-degenerate, the Hamiltonian writes:

H(x, u, p) = p1x2 + p2u− 1. (1.15)

Part (a) of the PMP leads to a system of four scalar differential equations:
ẋ∗1(t) = x∗2(t)
ẋ∗2(t) = u∗(t)
ṗ∗1(t) = 0
ṗ∗2(t) = −p∗1(t),

(1.16)

along with four boundary conditions fixing x∗1(0), x∗2(0), x∗1(tf), and x∗2(tf).
Part (b) of the PMP defines u∗(t) as follows:

u∗(t) = argmax
u∈[−1,1]

H(x∗(t), u, p∗(t)) = sign(p∗2(t)). (1.17)

Because tf is a free variable, we need another equation. It is brought by the condition fixing the value
of the Hamiltonian:

p∗1(t)x∗2(t) + p∗2(t)u∗(t)− 1 = 0. (1.18)

Combining (1.16) and (1.17), we obtain the fact that the trajectories have at most two pieces, de-
pending on the sign of p∗2(t). On each piece, the position of the car x∗1(t) evolves as a polynomial
of degree 2 of t, and the acceleration u∗(t) is constant equal to -1 or 1. The fact that the control is
piecewise constant, and hitting the boundaries of U is called the bang-bang phenomenon. For this
control problem, this is quite intuitive: the optimal controller consists in going full throttle, and then
full brakes (see Figure 1.1).

The bang-bang principle described above is a generic phenomenon for time-optimal control problems with

17

Chapter 1. Optimal Control & Reinforcement Learning

1 2 3

−1

1

2

tf

t

x∗1(t) x∗2(t) u∗(t)

Figure 1.1: Optimal state and controller trajectories of the double integrator, for the initial condition x(0) =
(2, 0)>. The controller is bang-bang, and the optimal value of the OCP is tf = 2

√
2.

bounded control sets. As a consequence, one cannot expect much regularity for the optimal controller t 7→
u∗(t): in general this mapping is not even continuous. Furthermore, it can even switch very fast between
different input values, and in the limit infinitely often (Fuller, 1963). This is called chattering and makes the
theoretically optimal controller impossible to implement on a real system. Some form of regularization is
then required (Caponigro et al., 2018).

1.1.3 The Hamilton-Jacobi-Bellman Approach

We now look at a different approach to optimality conditions for optimal control. It was developed in
the United States, almost concurrently to the maximum principle which originated in the Soviet Union. It
strongly relies on Bellman’s principle of optimality (Bellman, 1954), at the basis of dynamic programming:

“ An optimal policy has the property that whatever the initial state and initial decisions are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from the
first decisions. ”

To exploit this principle, let us introduce the value function V ∗ : [0, T] × X of the optimal control prob-
lem (1.2). It is defined as the optimal value of the OCP, starting from time and initial position, as follows,
for x0 ∈ X and t ∈ [0, T]:

V ∗(t0, x0) = inf
u(·)

∫ T

t0
L(x(t), u(t))dt+M(x(T)) (1.19)

s.t. ∀t ∈ [t0, T], ẋ(t) = f(x(t), u(t))
x(t0) = x0.

The optimal value function is also called the optimal cost-to-go, that is, the remaining cost starting from
(t0, x0). Note that, in particular, for all x ∈ X, V ∗(T, x) = M(x). Bellman’s principle of optimality allows
to compute V ∗ backwards in time from V ∗(T, ·), which is at the core of dynamic programming in discrete-
time settings (Bertsekas, 2011). Such simple ideas can be extended to the continuous-time setting through
infinitesimal changes in time, albeit with greater technical subtleties, as we will see later.

18

1.1. Optimal Control

For now we assume that the optimal value function V ∗ of (1.2) is well-defined, finite and continuously
differentiable in t and x. Let (t0, x0) ∈ [0, T)× X and ∆t ∈ (0, T − t0). Then, by definition, we have:

V ∗(t0, x0) = inf
u:[t0,T]→U

∫ T

t0
L(x(t), u(t))dt+M(x(T)) (1.20)

= inf
u:[t0,T]→U

∫ t0+∆t

t0
L(x(t), u(t))dt+

∫ T

t0+∆t
L(x(t), u(t))dt+M(x(T)). (1.21)

We can separate u into two variables u|[t0,t0+∆t] and u|[t0+∆T]. Using the principle of optimality, this is
equivalent to:

V ∗(t0, x0) = inf
u:[t0,t0+∆t]→U

{∫ t0+∆t

t0
L(x(t), u(t))dt+ V ∗(t0 + ∆t, x(t0 + ∆t))

}
. (1.22)

In the limit ∆t→ 0, we obtain (Lions, 2015)

V ∗(t0, x0) = inf
u∈U

(∆t)L(x0, u) + V ∗(t0, x0) + ∆t∂V
∗

∂t
(t0, x0) (1.23)

+ ∆t∇V ∗(t0, x0)>f(x0, u) + o(∆t),

where ∇V ∗ denotes the gradient of V ∗ with respect to the variable x only. Dividing both sides by ∆t, and
taking the limit as ∆t → 0, this means that the optimal value function V ∗ is a solution of the following
partial differential equation (PDE), called the Hamilton-Jacobi-Bellman (HJB) equation (Evans, 2010):

∀(t, x) ∈ (0, T)× X,
∂V

∂t
(t, x) + inf

u∈U

{
L(x, u) +∇V (t, x)>f(x, u)

}
= 0 (1.24)

∀x ∈ X, V (T, x) = M(x).

The fact that V ∗ is a solution of (1.24) is a necessary and sufficient (although we have not proved it here)
optimality condition, contrary to the maximum principle, which is only a necessary condition. The main
technical difficulty occurring with this approach is that in general V ∗ is not differentiable. Hence we need to
consider weaker solution of (1.24). The right form of weak solutions to consider is viscosity solutions, which
have been defined by Crandall et al. (1984) as follows. Let X = Rd, for some integer d ≥ 1. A bounded,
uniformly continuous function v is a viscosity solution of the HJB equation (1.24) if v(T, ·) = M and for
any φ ∈ C1((0, T)× Rd),

• if v − φ attains a local maximum at (t0, x0) ∈ (0, T)× Rd, then:

∂φ

∂t
(t0, x0) + inf

u∈U

{
L(x0, u) +∇φ(t0, x0)>f(x0, u)

}
≥ 0, (1.25)

• and if v − φ attains a local minimum at (t0, x0) ∈ (0, T)× Rd, then:

∂φ

∂t
(t0, x0) + inf

u∈U

{
L(x0, u) +∇φ(t0, x0)>f(x0, u)

}
≤ 0. (1.26)

The notion of viscosity solution captures the right notion of regularity for the value function of a control
problem, in the sense that the following theorem holds.

19

Chapter 1. Optimal Control & Reinforcement Learning

Theorem 2 (Optimality condition for V ∗ (Evans, 2010)). The value function V ∗ is the unique viscosity
solution of the HJB equation (1.24).

The lack of differentiability of the value function is not anecdotal. It can occur for optimal control problems
as simple as the following one-dimensional example.

Example 1.3: A non-differentiable value function

This example is taken from Liberzon (2011). Consider the following fixed-horizon OCP, for X = R
and t0 ≤ t1:

V (t0, x0) = inf
u:[t0,t1]→[−1,1]

x(t1) (1.27)

s.t. ∀t ∈ [t0, t1], ẋ(t) = x(t)u(t) and x(t0) = x0.

If x0 > 0, the best we can do is to bring x to 0 as fast as possible, by setting u(t) = −1, and then
x(t) = e−(t−t0)x0. If x0 < 0, on the contrary the terminal cost is maximized by sending x to −∞,
that is, setting u(t) = 1 and x(t) = et−t0x0. The value function is then:

V (t0, x0) =

et1−t0x0 if x0 < 0
0 if x0 = 0
e−(t1−t0)x0 if x0 > 0.

(1.28)

This function, which is piecewise affine in the variable x0, is obviously not differentiable at any point
(t0, 0), for t0 < t1.

If we are given the optimal value function of an OCP, then we can recover an optimal controller at each time
as a minimizer in the HJB equation:

u∗(t, x) ∈ argmin
u∈U

{
L(x, u) +∇V ∗(t, x)>f(x, u)

}
. (1.29)

Note that u∗ is expressed as a function of t and x: it is called a closed-loop controller, as opposed to
open-loop controllers obtained by the maximum principle. Having a closed-loop controller is a desirable
property for real-life systems. Indeed, it allows to correct the estimation of the current state before computing
the controller, hence reducing the effect of a possibly imperfect modeling of the dynamics. Conversely,
the maximum principle generates a unique input sequence u∗(t) which must be applied along the whole
trajectory, without an opportunity for correction.

Comparing equations (1.9) and (1.29), the maximum principle and the HJB approach are related by the
following equality:

p∗(t) = −∇V ∗(t, x∗(t)). (1.30)

Importantly, solving the HJB equation is equivalent to solving the optimal control problem for all initial
conditions (t0, x0) at once. In comparison with the maximum principle, which concerns only one initial con-
dition, and only provides necessary conditions of optimality, this is a much more powerful tool. However,
globally solving a PDE is a daunting task: almost no PDE can be solved in closed form, and numerical meth-
ods do not scale beyond small dimensions (LeVeque, 1992). In comparison, the optimality conditions (1.8)
brought by the PMP are ODEs, which are easier to handle numerically.

20

1.1. Optimal Control

1.1.4 The Linear Quadratic Regulator

The linear quadratic regulator (LQR) is an extensively studied control problem at the basis of the theory
of linear control (Kwakernaak and Sivan, 1969). Its solution can be computed explicitly, and hence it is
of particular interest in practical applications. As we will see, it has many desirable properties, in terms
of robustness, stability, ease of use and scalability. One must keep in mind that, even though the LQR
only applies to linear systems, this technique is also ubiquitous in non-linear system theory through local
linearizations of the system, and gave birth to algorithms such as differential dynamic programming (Mayne,
1966) or iterative LQR (Li and Todorov, 2007).

The time-varying, finite-horizon LQR problem is defined as follows. Let X = Rd, U = Rp, T > 0, and
we define the following matrices, for t ∈ [0, T]: A(t) ∈ Rd×d, B(t) ∈ Rd×p, Q(t) ∈ Rd×d such that
Q(t)> = Q(t) � 0, R(t) ∈ Rp×p such that R(t)> = R(t) � 0, and M ∈ Rd×d such that M> = M � 0.
We assume that A, B, Q and R are locally Lipschitz functions. We consider the problem:

inf
u(·)

∫ T

0

(
x(t)>Q(t)x(t) + u(t)>R(t)u(t)

)
dt+ x(T)>Mx(T) (1.31)

s.t. ∀t ∈ [0, T], ẋ(t) = A(t)x(t) +B(t)u(t)
x(0) = x0.

Although they were presented above in the time-invariant case, both the maximum principle and the HJB
optimality conditions can be readily extended to dynamics and costs depending on t. The Hamiltonian
writes:

H(t, x, u, p) = p>(A(t)x+B(t)u)− x>Q(t)x− u>R(t)u. (1.32)

Applying condition (b) of the maximum principle, we have:

u∗(t) ∈ argmax
u

{
p∗(t)>B(t)u− u>R(t)u

}
, (1.33)

hence u∗(t) = 1
2R
−1(t)B(t)>p∗(t). Condition (a) gives the coupled ODEs:{

ẋ∗(t) = A(t)x∗(t) +B(t)u∗(t)
ṗ∗(t) = 2Q(t)x∗(t)−A(t)>p∗(t). (1.34)

Using (1.33), this is equivalent to:{
ẋ∗(t) = A(t)x∗(t) + 1

2B(t)R−1(t)B(t)>p∗(t)
ṗ∗(t) = 2Q(t)x∗(t)−A(t)>p∗(t), (1.35)

which can equivalently be written as: (
ẋ∗(t)
ṗ∗(t)

)
= A(t)

(
x∗(t)
p∗(t)

)
, (1.36)

for a suitable matrix A(t) ∈ R2d×2d, sometimes called the Hamiltonian matrix (Liberzon, 2011), and (1.35)
is the extremal system. Finally, the maximum principle contains an additional transversality condition (not
detailed in Section 1.1.2) corresponding to the terminal cost: p∗(T) = −2Mx∗(T). This suggests looking

21

Chapter 1. Optimal Control & Reinforcement Learning

for a similar linear relation between x∗ and p∗ for all t: p∗(t) = −2P (t)x∗(t). Assuming that this relation
holds, we can inject it back into (1.35), using the fact that ṗ∗(t) = −2Ṗ (t)x∗(t) − 2P (t)ẋ∗(t). After basic
manipulations, we obtain that P (t) must satisfy an ODE:

Ṗ (t) = −Q(t)−A(t)>P (t)− P (t)A(t) + P (t)B(t)R−1(t)B>(t)P (t), (1.37)

called the Riccati differential equation (RDE), with boundary condition P (T) = M . This ODE has a unique
solution, which is such that P (t) � 0, ∀t ∈ [0, T]. The solution of the RDE is not known in closed form
and is typically computed by standard numerical integration methods (Dormand and Prince, 1980), with a
complexity that is polynomial in d. This means that the solution of an LQR can be computed efficiently for
large dimensional problems, and does not suffer from the curse of dimensionality.

One can check that the RDE is also a sufficient optimality condition using the HJB equation. The rela-
tion (1.30) between p∗ and V ∗ suggests to look for the following candidate value function:

V ∗(t, x) = x>P (t)x. (1.38)

The HJB equation is then verified if and only if: ∀(t, x),

x>Ṗ (t)x+ x>Q(t)x+ 2x>P (t)A(t)x+ min
u

(
u>R(t)u+ 2x>P (t)B(t)u

)
︸ ︷︷ ︸
−x>P (t)B(t)R−1(t)B(t)>P (t)x

= 0, (1.39)

which is exactly equivalent to the RDE (1.37). The optimal controller computed by the HJB approach has
the advantage of being expressed in closed-loop as:

u∗(t, x) = −R(t)−1(t)B(t)>P (t)x. (1.40)

A variant of the finite-horizon LQR is the time-invariant, infinite-horizon LQR:

inf
u(·)

∫ +∞

0

(
x(t)>Qx(t) + u(t)>Ru(t)

)
dt (1.41)

s.t. ∀t ≥ 0, ẋ(t) = Ax(t) +Bu(t)
x(0) = x0.

We assume that the pair (A,B) is controllable, i.e., that the linear dynamical system can be brought to any
x in finite time. It is well-known that the controllability of a linear system is equivalent to the Kalman rank
condition (Kwakernaak and Sivan, 1969):

rank(B,AB, . . . , Ad−1B) = d. (1.42)

One can see (1.41) as the limit as T → +∞ of the finite-horizon problem (1.31). Although we state
it informally, this argument can be used to prove that the optimal value function and controller are time
invariant and have the closed form expressions:

V ∗(x) = x>Px, u∗(x) = −R−1B>Px, (1.43)

where P is the unique positive semi-definite solution (whose existence is ensured by the Kalman condition)
of the algebraic Riccati equation (ARE), which is the limit of the solutions of the RDE when T → +∞:

0 = −Q−A>P − PA+ PBR−1B>P. (1.44)

22

1.1. Optimal Control

Therefore the optimal trajectories are of the form:

ẋ(t) = (A−BR−1B>P)x(t), (1.45)

and they all asymptotically converge to 0 regardless of x(0), as soon as all the eigenvalues ofA−BR−1B>P
have negative real parts. This is verified if Q � 0 and the pair (A,Q1/2) is observable (see the precise
statement in (Liberzon, 2011, Theorem 6.1)). The fact that all controlled trajectories converge to 0 is called
global asymptotic stability of the closed-loop system. This property can be asserted by exhibiting a Lyapunov
function, i.e., a non-negative function which decreases to 0 along the trajectories. The role of such functions
will be discussed in more details in Chapter 4. Finally, let us mention that the behavior of the infinite-horizon
LQR being recovered by studying the limit of the finite-horizon LQR when T → +∞ is a form of turnpike
property (Samuelson, 1972). In particular, this effect has been studied by Trélat and Zuazua (2015) in a more
general context, by looking at the limit behavior of the extremal system (1.35).

Beyond its use for control problems with linear dynamics and quadratic cost, the LQR can be used to
model the local behavior of a non-linear system around an equilibrium point, i.e., a point (xe, ue) such
that f(xe, ue) = 0. Indeed, around this point, the dynamics is approximately linear:

f(x, u) ' ∂f

∂x
(xe, ue)(x− xe) + ∂f

∂u
(xe, ue)(u− ue). (1.46)

It is also possible to linearize a non-linear system around a given trajectory. We will come back to this
linearization technique in Chapter 4 and estimate the size of the region where the approximation is valid.
Finally, let us mention that there exists a stochastic extension of the LQR called the linear quadratic Gaussian
(LQG), which involves a Kalman estimator (Chui and Chen, 1987).

1.1.5 Numerical Methods

Beyond basic examples and the LQR, there is no hope to solve optimal control problems exactly. Many
numerical methods have been developed to find approximate solutions. They mainly fall into three cate-
gories (Diehl and Gros, 2011; Rao, 2009; Trélat, 2005):

• direct methods, based on a discretization of the OCP (1.2) followed by solving a non-linear program-
ming problem (NLP);

• indirect methods, solving a boundary value problem obtained by the maximum principle;

• methods solving the HJB partial differential equation.

Direct methods. Such methods (Betts, 2010) directly consider the original control problem (1.2). The
simplest of them is called direct shooting (Diehl et al., 2006). The control is searched for in a finite-dimension
space: it is typically piecewise constant (or parameterized as an affine function, or on a basis of splines...) on
time intervals 0 = t0 < t1 < ... < tN = T , with steps δi = ti+1− ti. The dynamics is discretized with some
numerical scheme (Rao, 2009), e.g., explicit Euler or Runge-Kutta. The problem is a nonlinear program, to
which additional constraints can be added, of the form:

min
ui,xi

∑
i

δiL(ti, xi, ui) +M(xN) (1.47)

23

Chapter 1. Optimal Control & Reinforcement Learning

s.t. ∀i, ui ∈ U and xi+1 = xi + δif(ti, xi, ui).

Problem (1.47) is typically solved with sequential quadratic programming (SQP) (Bonnans et al., 2006). The
co-state p is usually obtained as a side product of solving problem (1.47), from the Lagrange multipliers.
Overall, this approach is simple and does not require any prior knowledge on the problem. Note that only
the time and control are explicitly discretized, not the state. Furthermore, the direct shooting method can be
extended to the direct multiple shooting method which uses a subdivision of the time intervals along with
continuity conditions on x (Bock and Plitt, 1984). An efficient implementation called acados, supporting
algorithmic differentiation (Andersson et al., 2019), has been developed by Verschueren et al. (2022).

Another direct method is direct collocation (Von Stryk, 1993). The control is approximated by a piecewise
linear function:

∀ti ≤ t < ti+1, ucoll(t) = u(ti) + t− ti
ti+1 − tj

(u(ti+1)− u(ti)) . (1.48)

The state is approximated by a cubic spline:

∀ti ≤ t < ti+1, xcoll(t) =
3∑
j=0

ci,j

(
t− ti
hi

)j
. (1.49)

Collocation constraints ensure that the differential equation holds at the ti and at the centers of the inter-
vals. This choice of approximation functions and collocation points is called Lobatto cubic collocation.
Other combinations are possible: pseudospectral methods (Ross and Karpenko, 2012) use orthogonal collo-
cation (Rao, 2009), i.e., roots of Chebyshev, Jacobi, or other orthogonal polynomials as collocation points,
and the state is approximated by a global Legendre polynomial. Importantly, with collocation methods, both
the state and control are discretized, contrary to direct shooting. The consistency of such numerical schemes
is not straightforward and is assessed on a case by case basis. An implementation of direct collocation in
Julia has been developed by Febbo et al. (2020).

All direct methods are based on a discretize, then optimize principle: they first discretize the control and/or
the state, and then solve a non-linear program. Their main advantage is that they are very generic and do not
require prior knowledge on the problem. However, they usually do not produce high-precision approxima-
tions, they can be memory-intensive and they only produce locally optimal solutions, the NLP being a priori
non-convex (Trélat, 2005).

Indirect methods. Indirect methods are based on an optimize, then discretize principle: they derive op-
timality conditions, namely the maximum principle, which are then discretized. The indirect shooting
method (Bonnans, 2019; Trélat, 2005) is defined as follows. Suppose that the time horizon T is fixed.
The second condition of the maximum principle (1.9) usually allows to find the optimal control u∗(t) as a
function of z(t) = (x∗(t), p∗(t)). Injecting this expression into the ODE given by the first condition (1.8),
we obtain an extremal system, of the form ż(t) = F (t, z(t)). Lastly, the boundary conditions given by the
transversality condition on p∗(t) (the additional condition in the maximum principle), and constraints on
x∗(t) can be represented by R(z(0), z(T)) = 0. The optimal state and co-state couple z is a solution of the
boundary value problem: {

∀t ∈ [0, T], ż(t) = F (t, z(t))
R(z(0), z(T)) = 0.

(1.50)

24

1.1. Optimal Control

Assuming that the solution of the Cauchy problem ż(t) = F (t, z(t)), z(0) = z0 is provided by an oracle
z̃(t, z0), then the problem is to find a zero of G(z0) = R(z0, z̃(T, z0)). This can be achieved by Newton
or quasi Newton methods (Bonnans et al., 2006; Boyd and Vandenberghe, 2004). Roughly, one “shoots” an
initial condition z0, integrates it to obtain z̃(T, z0), checks whether the boundary conditions are verified, and
finally corrects z0 if it is not the case. A classical analogy is an archer shooting an arrow, and successively
correcting its angle by looking at the final position of the arrow around the target. Overall, indirect shooting
requires to integrate numerically (LeVeque, 1992) the ODE ż(t) = F (t, z(t)), and to compute the Jacobian
of G. This can be achieved by using a differentiable numerical integrator, i.e., exploiting automatic differen-
tiation to compute ∂z̃

∂z0
(T, z0), as allowed by libraries such as the SciML software ecosystem by Rackauckas

et al. (2020).

The simple indirect shooting method can be refined to the indirect multiple shooting method. The time
interval [0, T] is divided intoN sub-intervals at commutation or junction times (free or fixed), with continuity
conditions on z at these times. This subdivision is known to stabilize the method. We now have to find a zero
of a functionG on a space of dimension proportional to the number of time intervalsN , but the integration of
the first-order ODE can be parallelized. A variant is indirect collocation (Diehl and Gros, 2011), a shooting
method where the state and control are parameterized with piecewise polynomials.

Indirect shooting provides precise approximations, but usually Newton’s method has a small convergence
domain and is very sensitive to boundary conditions misspecification. In practice, indirect shooting can be
used to refine a nearly optimal trajectory, previously computed by a direct method. Newton’s method is also
often associated to a continuation method (Allgower and Georg, 2003), which solves a sequence of problems
of increasing difficulty by varying a parameter, hence providing better initializations if the solution varies
smoothly with the parameter. A drawback of indirect shooting is that the maximization condition defining
u∗ (1.9) must be derived for each particular class of problems. Finally, indirect methods only compute
controls in open-loop (u is expressed as a function of t only). The generated trajectory, sometimes called
nominal, can then be stabilized by computing a local linear-quadratic control feedback around it, as discussed
in Section 1.1.4.

Solving the HJB PDE. A different approach, sometimes classified as a direct method (Trélat, 2005), is
to find approximate solutions to the HJB equation (1.24). Solving PDEs is known to be a hard problem,
especially in large dimensions, and is a field on its own. Methods that compute wavefronts, i.e., level sets of
the value function, are usable in low-dimensional problems (Sethian, 1999).

Other methods are based on various discretization schemes, such as finite differences (Fleming and Soner,
2006), which require a time discretization and space meshing. The space discretization is subject to the
curse of dimensionality, in the sense that the size of the discretization grows exponentially with the dimen-
sion. Another approach is to discretize the state variable with finite elements (Munos, 2000; Munos and
Moore, 2002). This constructs a deterministic Markov decision process (MDP), which can be solved with
dynamic programming (see Section 1.2.2). The max-plus finite element method (Akian et al., 2008) is also
an alternative approach to approximate a solution of HJB (see Chapter 3).

An advantage of the HJB approach is that the optimal control is computed in closed-loop (u is expressed as
a function of t and x, unlike e.g., indirect shooting). On the other hand, the obtained precision is generally
not sufficient for critical applications, since any space discretization is subject to the curse of dimensionality.

25

Chapter 1. Optimal Control & Reinforcement Learning

1.2 Reinforcement Learning

1.2.1 Problem Statement

The field of reinforcement learning (RL) is dedicated to solving a problem which can be defined informally
as follows. An agent must learn how to behave in an unknown environment, in order to maximize a long-
term reward. The agent navigates between different states of the environment (think of different positions on
a map), and the environment sends a reward that depends on the current state and the action taken. The way
that the agent moves between states is also determined by the current state and the action taken, along with
some randomness (see Figure 1.2).

Environment

Agent
atst+1, rt+1

st

Figure 1.2: Description of the interaction with the environment: at time t, the agent is in state st and chooses
the action at. The environment sends back a reward rt+1 and a new state st+1, which will be used by the
agent at time t+ 1.

More formally, we can define the reinforcement learning problem within the framework of discounted
Markov decision processes (MDP) (Sutton and Barto, 2018). An MDP is defined by a tuple (S,A, p, r, γ),
in which:

• S is a finite set of states;

• A is a finite set of actions;

• p : S× S×A→ [0, 1] represents the state-transition probabilities, so that for a ∈ A, (s, s′) ∈ S2:

p(s′|s, a) = P
[
st+1 = s′|st = s, at = a

]
. (1.51)

Since S and A are finite, p can be represented by a tensor P of dimension |A| × |S| × |S|, such that for
all a, P a is a transition matrix of size |S| × |S|, and P ai,j represents the probability of going to state j,
when the agent is in state i and has done action a. All the entries of P a are non-negative and its rows
sum to one.

• r : S × A × S → R is the reward function. r(s, a, s′) is the reward obtained through the transition
from state-action (s, a) to state s′. In particular, the expected reward for the state-action (s, a) is (with
a slight abuse of notations):

r(s, a) = E[rt+1|st = s, at = a] =
∑
s′

p(s′|s, a)r(s, a, s′). (1.52)

Again, since S and A are finite, the values of r can be stored in a tensor of dimension |S|×|A|×|S|. We
generally assume the rewards to be bounded, to ensure convergence of discounted cumulative rewards.

26

1.2. Reinforcement Learning

• γ ∈ [0, 1) is a discount factor. It describes a preference for immediate rewards compared to delayed
rewards. Complete indifference to the future corresponds to γ = 0.

An MDP is Markovian in the sense that the transition probabilities and rewards do not depend on the past
transitions, but only on the current state and action (st, at). Hence the environment is Markovian. Of course,
the agent is not Markovian, in the sense that it has a memory and that it can use all of the past information
it has received to choose its next action. This process can be called “policy synthesis”, that is, building a
policy π : S → A that maps the current state to an action. In full generality, a policy can be stochastic,
but, when looking for optimal policies (see below), we can restrict ourselves to deterministic ones (Bellman,
1957a). Importantly, in the reinforcement learning paradigm, apart from the discount factor, the parameters
of the MPD are unknown to the agent.

Assume that the initial state is fixed to s ∈ S. The aim of the agent is to find a policy which maximizes its
expected discounted cumulative reward:

V π(s) = Eπ

[+∞∑
t=0

γtrt+1
∣∣∣s0 = s

]
. (1.53)

In the finite case with bounded rewards, an optimal memoryless deterministic policy π∗ exists (Bertsekas,
2011), and it is such that:

π∗(s) ∈ argmax
π:S→A

V π(s), (1.54)

and we define the optimal value function of the MDP as:

V ∗(s) = max
π:S→A

V π(s) = V π∗(s).

The optimal policy and the optimal value function are the direct counterparts of the optimal controller and
value function (1.19) in optimal control (see Section 1.1). For any policy π, the function V π is simply called
the value function of π. Similarly, we define the action-value function, or Q-function as follows:

Qπ(s, a) = Eπ

[+∞∑
t=0

γtrt+1
∣∣∣s0 = s, a0 = a

]
, (1.55)

and the optimal Q-function as Q∗(s, a) = maxπ Qπ(s, a). The Q-function computes the expected reward
of choosing a specific action a starting from a state s, and then following the policy π.

A useful property, resulting from the Markov property, is that such functions are invariant to the starting time
from which the cumulative rewards are considered. Indeed, for any t0 ≥ 0 and s ∈ S:

V π(s) = Eπ

[+∞∑
t=0

γtrt+1
∣∣∣s0 = s

]
= Eπ

[+∞∑
t=0

γtrt0+t+1
∣∣∣st0 = s

]
. (1.56)

27

Chapter 1. Optimal Control & Reinforcement Learning

Figure 1.3: A sample state from “Skiing-V4”.

Example 1.4: An MDP modeling a video game

“Skiing-v4” is an environment defined in the gym library (Brockman et al., 2016). It describes a 1980
Atari game with a finite-state and action MDP. The state is the image displayed by the game emulator
(see Figure 1.3). It is a 210×160 picture with 3 color channels, taking integer values in [0, 255]. There
are 3 actions: left, right and neutral, which shift the skier’s lateral direction accordingly. The aim is
to ski downhill, past 20 gates, as fast as possible. Hitting an obstacle or missing a gate gives a time
penalty. The reward is minus the number of seconds spent from the last state (including penalties).
It should be noted that the dynamics of the skier is computed internally by the game emulator, in a
black-box manner. In particular, contrary to many optimal control problems, one cannot access the
dynamics in closed form nor compute its gradients.

Note that we have formally presented discounted, infinite-horizon, discrete MDPs. The MDP formal-
ism is flexible and several variations can be considered as well. This includes undiscounted average-cost
MDPs (Puterman, 2014), episodic MDPs (Sutton and Barto, 2018) (which is the case of Example 1.4),
continuous sets of states or actions (Powell and Ma, 2011), and even continuous-time MDPs (Guo and
Hernández-Lerma, 2009). Therefore, the discrete formulation is not a fundamental difference between opti-
mal control and reinforcement learning. Nor is the stochastic aspect of RL, as one can also consider stochastic
control problems (Fleming and Rishel, 2012). Our claim here is rather that reinforcement learning is a more
general problem than optimal control, precisely because the environment is unknown to the agent.

Link with optimal control. Consider a deterministic MDP, and assume that this MDP is known to the
agent, i.e., all the transitions and rewards are known. Then the problem reduces to an optimal control
problem, in discrete-time, and with discrete state and control. The cost corresponds to the opposite of the
reward, the states coincide, and the controller corresponds to the action. Of course, maximizing the reward
is replaced by minimizing the cost. The dynamic programming approach presented in Section 1.1.3 can be
readily applied to such RL problems. However, the maximum principle approach is usually not applied to
RL problems, because of stochasticity, and the search for closed-loop policies.

28

1.2. Reinforcement Learning

Link with online learning. Consider an MDP, unknown to the agent, and reduced to only one state. This
describes a well-known online learning problem: the multi-armed bandit (Berry and Fristedt, 1985), that
can be briefly described as follows. At each time step, the agent must choose between k possible actions
(k different arms or slot machines). The chosen arm i sends a random reward r, drawn from an unknown
probability distribution pi associated to arm i. The actor must discover which of the k arms has the prob-
ability distribution with the highest expectation Epi [r], only by successively actioning different arms. This
can be modeled by a slight extension (with non-deterministic rewards) of the above MDP framework, with
a degenerate probability transition which loops on only one state, k actions representing the k arms, and
random reward functions r(s, a). Note that the problem can also be represented within the exact presented
MDP framework, by introducing k virtual states and supporting the randomness on the state-transitions. An
important feature of the multi-armed bandit problem is that the agent must, at the same time, maximize its
reward and discover the best arm. In other words, it must exploit, i.e., repeatedly action the arm which it
believes to be the best, and explore, i.e., action the different arms to discover potentially better arms. The
exploration / exploitation trade-off is at the core of the online learning paradigm and, consequently, of re-
inforcement learning. To tackle this issue, online learning offers a set of tools backed by strong theoretical
guarantees, such as ε-greedy strategies, or optimism in the face of uncertainty (see Lattimore and Szepesvári
(2020) for a complete exposition). Yet, one must admit that many RL algorithms move away from this truly
online paradigm. Indeed, it is often assumed that finding the optimal policy is done offline, that is, without
worrying about collecting bad rewards during the training phase.

1.2.2 Dynamic Programming

In this section, we first briefly describe the dynamic programming approach to RL, in the case where the
model is known to the agent. It is similar to the HJB approach presented in Section 1.1.3, except that we
write the same principles in discrete time. As before, using Bellman’s optimality principle, we can split the
search of an optimal policy between the choice of the first action a0, and an optimal policy afterwards:

V ∗(s) = max
π

Eπ

[+∞∑
t=0

γtrt+1
∣∣∣s0 = s

]

= max
a∈A

{
E
[
r1
∣∣∣s0 = s, a0 = a

]
+ Eπ∗

[+∞∑
t=1

γtrt+1
∣∣∣s0 = s, a0 = a

]}
= max

a∈A

{
r(s, a) + γEs′∼p(s′|s,a)V

∗(s′)
}
. (1.57)

The last equation (1.57) is called the Bellman equation. It is the counterpart of the HJB equation in discrete-
time. Many RL algorithms exploit dynamic programming to find exact or approximate solutions of this
equation, or variants thereof. The simplest one is the value iteration algorithm. Let us consider the Bellman
operator T : RS → RS, defined by:

for V ∈ RS, s ∈ S, (TV)(s) = max
a∈A

{
r(s, a) + γEs′∼p(s′|s,a)V (s′)

}
. (1.58)

One can prove that this affine operator is a γ-contraction mapping for the infinity norm, hence it has a unique
fixed point V ∗. The value iteration algorithm computes a sequence with an arbitrary V0 and, for k ≥ 1:

Vk+1 = TVk. (1.59)

29

Chapter 1. Optimal Control & Reinforcement Learning

One can prove that this sequence converges linearly to V ∗ as follows. Exploiting successively the fact that
TV ∗ = V ∗ and the contraction property, then for k ≥ 1:

‖Vk − V ∗‖∞ = ‖T (Vk−1 − V ∗)‖∞
≤ γ‖Vk−1 − V ∗‖∞
≤ γk‖V0 − V ∗‖∞. (1.60)

In practice, this algorithm is simple to implement and exhibits fast convergence. The optimal policy can
be recovered from V ∗, by computing the argmax in (1.57). Note that a variant of value iteration, policy
iteration, exploits the Bellman equation to progressively refine a policy (Sutton and Barto, 2018). Yet,
effectively running the value iteration algorithm requires:

1. knowing the rewards and transition probabilities of the MDP, i.e., being able to express the Bellman
operator (1.58);

2. computing the Bellman operator, i.e., being able to compute efficiently each iteration (1.59).

In many RL problems, both issues should not be taken lightly. First, as discussed above, in general the
rewards and transition probabilities are unknown to the agent. Hence the reward and expectation in (1.57)
must be somehow estimated. Second, each iteration requires to store |S| values (one for each state), and
to make |S| × |A| computations. This can be overwhelming in large MDPs, and in particular in MDPs
issued from a discretization of a continuous control problem. Yet, this cost is unavoidable, as one cannot
expect to solve exactly the MDP in less than |S| × |A| operations, i.e., its reading size. Moreover, if the
MDP has a continuous state space S, such iterations cannot be represented in finite dimension, because they
involve functions with infinite support. Therefore, like in supervised learning (Shalev-Shwartz and Ben-
David, 2014), one must resort to estimation and approximation. We detail both notions in the following two
sections.

1.2.3 Dynamic Programming with Estimation

The dynamics and rewards being unknown, the Bellman operator cannot be computed explicitly and must be
estimated. There are two alternative paradigms to deal with this issue: model-based reinforcement learning,
and model-free reinforcement learning.

Model-based RL. The basic idea is to first learn a model of the state-transitions and rewards, and then solve
an optimal control problem with this model (e.g., with value iteration). Learning the model from observations
of sample transitions and rewards of the MDP is a regression problem. For instance, in Example 1.4, given
many observations of the game, one could learn to predict the next frame given the current frame and the
action. In particular, this would mean uncovering the hidden dynamics of the skier (pressing left makes it go
to the left and so on), and predicting the positions of the next gates. The reward function must be modeled
as well, i.e., learning that hitting the trees or missing gates is harmful. This learning process is feasible
up to a certain precision, and generally only locally, because of the complexity and the randomness of the
environment. This surrogate model of the MDP is then used to solve an optimal control problem. The main
challenge with this approach is to understand the interplay between the surrogate model’s uncertainty and the
performance of the policy planned from this model. This challenging issue is tightly related to the notions of

30

1.2. Reinforcement Learning

robust (orH∞) control (see Safonov (2012) for an historical review), and certainty equivalence (Bar-Shalom
and Tse, 1974) for the stochastic aspect. Model-based RL is a rich subfield of RL that goes way beyond the
simplistic method described above. We refer the reader to the recent survey by Moerland et al. (2020).

Model-free RL. In this paradigm, one tries to solve the RL problem without creating an explicit model
of the MDP. This allows abstracting from the above difficulties, and hence constitutes the most prominent
approach to RL. The main tool of model-free RL is temporal-differences (TD). For simplicity and because
we will study this algorithm in Chapter 6, we present temporal-differences with the TD(0) algorithm (also
called TD-learning). It is an algorithm for policy evaluation, a subproblem of RL which computes the value
function V π of a given (possibly suboptimal) policy π. To compute an optimal policy, it must be combined
with a policy improvement process, such as policy gradient in actor-critic methods (Sutton et al., 1999).
Temporal-differences are ubiquitous in model-free RL: they are also at the basis of other algorithms, among
which Q-learning and SARSA (Sutton and Barto, 2018).

Let π : S → A a given policy. The aim of policy evaluation is to compute V π, the unique solution of the
fixed-point equation:

∀s ∈ S, V π(s) = r(s, π(s)) + γEs′∼p(s′|s,π(s))V
π(s′), (1.61)

i.e., V π = T πV π, where T π is a modified Bellman operator defined by:

for V ∈ RS, s ∈ S, (T πV)(s) = r(s, π(s)) + γEs′∼p(s′|s,π(s))V (s′). (1.62)

An analog of value iteration (1.59) for T π would be:

∀s ∈ S, Vk+1(s) = r(s, π(s)) + γEs′∼p(s′|s,π(s))Vk(s′). (1.63)

However, since r and p are unknown, the update must be estimated from observations. In TD(0), the obser-
vations come from a trajectory generated according to the policy π, thus providing a sequence (sk, rk)k≥1,
where sk+1 ∼ p(s′|sk, π(sk)) and rk = r(sk, π(sk)). At each iteration, instead of computing (1.63), TD(0)
makes an incremental step as follows (Sutton, 1988):

Vk+1(sk) = Vk(sk) + ρk+1
[
rk + γVk(sk+1)− Vk(sk)

]
, (1.64)

and the other entries of Vk+1 are copied from Vk. In this update, contrary to (1.63), only one entry of Vk is
updated at each iteration. The update uses a step ρk > 0, and the term inside the brackets in (1.64) is called
a temporal-difference (TD). In expectation, the temporal-difference is null when V = V ∗. Alternatively, the
same update can be equivalently written as:

Vk+1(sk) = (1− ρk+1)Vk(sk) + ρk+1 (rk + γVk(sk+1)) , (1.65)

highlighting the proximity with (1.63). In particular, if ρk+1 = 1 and the MDP is deterministic, then (1.65) is
just one of the updates of (1.63). Otherwise, the temporal-difference provides an estimate of its expectation,
called the Bellman error.

The convergence of the tabular (i.e., S is a finite set) TD(0) algorithm is proved by Sutton (1988) under
certain sampling schemes, with three central arguments (see Chapter 6 for a more thorough exposition).
First, the step size sequence ρk must satisfy classical conditions for stochastic approximation (Borkar and

31

Chapter 1. Optimal Control & Reinforcement Learning

Meyn, 2000). Second, all states sk must be sampled sufficiently often. Third, one must prove stability of
the scheme, given the fact that the update in (1.65) (the rightmost term in parentheses) contains the previous
approximation Vk. Relying on such previous iterates is usually called bootstrapping. It can be shown that
as soon as γ < 1, this effect is benign and does not damage convergence. Although this method relies on
estimation, asymptotically this is an exact method which converges to the true value function V π.

1.2.4 Dynamic Programming with Function Approximation

When the number of states |S| is large, or when it is infinite (think of S = [0, 1] for example), the tab-
ular methods presented above are not tractable. In particular, if |S| is too large to fit in memory, it is
hopeless to look for an exact solution. Considering Example 1.4, the size of the discrete state-space is
|S| = 256210×160×3 = 2806400. Of course, there are much better modeling options. For instance, one could
model the state space by a vector of real values with d = 210 × 160 × 3 = 100800 entries in [0, 1], i.e.,
S = [0, 1]d, where the [0, 1] interval continuously maps the 256 possible discrete values. The state space can
be even more compressed, e.g. by using a gray-scale image, or by down-sampling the resolution. However,
this is already an approximation, more or less likely to harm the performance of the policy. Similarly, one
could be tempted to transform a control problem of the form (1.2) into an MDP by a naive discretization.
This would also result in a very large |S|, exponential in the state dimension. This phenomenon is known as
the curse of dimensionality, and we will illustrate this issue in Chapter 3.

Overall, when the problem is too hard to solve exactly, one must resort to approximations. Such approx-
imations implicitly assume that the problem has more structure than a purely combinatorial one. In our
example, this could mean e.g., that states where the gates are at similar positions play similar roles. Some
model-free algorithms, originally designed for tabular settings, have been adapted to handle approximations,
such as TD-learning and Q-learning. The value function Vθ is selected in a parametric space, with param-
eter θ ∈ Θ ⊂ Rd̃, with typically d̃ � dim S. One can use linear function approximation, i.e., Vθ = θ>ψ,
for some function ψ : S → Rd̃, or more complicated parameterizations with neural networks (leading to
the deep Q-learning algorithm). However, convergence results are scarce with non-linear parameterizations.
The TD(0) iterations with function approximation only update the parameter θ, and write:

θk+1 = θk + ρk+1
[
rk + γVθk(sk+1)− Vθk(sk)

]
∇θVθk(sk). (1.66)

Such iterations are tractable even with large dimensional parameters θ, including neural networks thanks to
automatic differentiation (Paszke et al., 2019). In the case of linear function approximation, the convergence
of TD(0) is well-understood (Bhandari et al., 2018; Tsitsiklis and Van Roy, 1997). The algorithm converges
to the unique fixed-point of the projected Bellman operator ΠΘ ◦ T π, where ΠΘ is the L2 orthogonal pro-
jection onto FΘ = {θ>ψ | θ ∈ Θ}. This cannot be equal to V π as soon as V π /∈ FΘ, but the quality of
the approximation should improve as the size of FΘ increases. We revisit this question in Chapter 6, where
we study a non-parametric variant of TD(0) with linear function approximation. In particular, we prove that
under generic conditions, this version converges to V π without approximation error.

Our analysis is inspired by the link between TD-learning and stochastic gradient descent (SGD) (Shalev-
Shwartz and Ben-David, 2014). Indeed, when γ = 0 (indifference to the future), the update (1.66) is the
same as a step of SGD on the optimization problem:

min
θ

1
2n

n∑
k=1

(
Vθ(sk)− r(sk, π(sk))

)2
. (1.67)

32

1.3. Comparison

Minimizing this mean squared error with SGD is a well-studied problem. In particular with linear function
approximation, it reduces to a simple least-squares problem, and one can benefit from extensive analy-
ses (Pillaud-Vivien, 2020). By this digression, we have incidentally shown that policy evaluation, a sub-
problem of RL, contains the problem of regression, at the core of supervised learning. Again, this confirms
that RL is a very general paradigm.

1.2.5 The Linear Programming Formulation

The linear programming (LP) formulation of RL (Bertsekas, 2011; Puterman, 2014) was historically one of
the first approaches to be considered. Like direct methods in optimal control (see Section 1.1.5), it directly
converts the original problem into a solvable optimization problem, here, a linear program. Let e the vector
of dimension |S| with all entries equal to one. It can be shown that the RL problem is equivalent to the
following LP formulation:

min
v∈R|S|

e>v (1.68)

s.t. ∀(s, a) ∈ S×A, v(s) ≥ r(s, a) + γEs′∼p(s′|s,a)v(s′).

Note that for simplicity, since S is a finite set, we have used the same notation v for the function and for the
vector representing its |S| values. Hence v is sought as the smallest supersolution of the Bellman equation,
and at optimality it corresponds to V ∗. Of course, this formulation cannot fit in memory when |S| gets very
large, but for reasonable values of |S|, the corresponding LP can be solved efficiently with powerful and
scalable solvers.

There is a similar formulation of optimal control problems (1.2), called the weak formulation of optimal
control. It requires extra convexity assumptions on the dynamics to be equivalent to the original formulation.
We use this weak formulation with the notations of optimal control in Chapter 5, but note that the method
presented in this chapter could indifferently be applied to RL problems.

1.3 Comparison

In the summarizing Table 1.1, we list the main notations and results of optimal control and their counterpart
in reinforcement learning. Note that since Pontryagin’s maximum principle has no direct counterpart in
reinforcement learning, we only list the results related to dynamic programming. For simplicity, we consider
the infinite-horizon, discounted, time-invariant setting for both problems.

33

Chapter 1. Optimal Control & Reinforcement Learning

Optimal Control Reinforcement Learning

Time variable t ∈ R+ t ∈ N

State variable x(t) st

Control / action u(t) at

Closed-loop policy u(t) = ū(x(t)) at ∼ π(a|s = st)

Dynamics ẋ(t) = f(x(t), u(t)) st+1 ∼ p(· | s = st, a = at)

Cost / negative reward L(x(t), u(t)) −r(st, at, st+1)

Discount factor η > 0 γ ∈ [0, 1)

Cumulative cost
∫∞

0 e−ηtL(x(t), u(t))dt −
∑∞
t=0 γ

tr(st, at, st+1)

Optimization problem min
u(·)

∫ ∞
0

e−ηtL(x(t), u(t))dt

s.t. ∀t, ẋ(t) = f(x(t), u(t))

max
π

E

[∞∑
t=0

γtr(st, π(st), st+1)
]

s.t. ∀t, st+1 ∼ p(s′|st, π(st))

Value function V u(x) =
∫ ∞

0
e−ηtL(x(t), u(t))dt

s.t. x(0) = x

V π(s) = E[
∞∑
t=0

γtr(st, at, st+1)|s0 = s]

Optimal value function V ∗(x) = minu V u(x) V ∗(s) = maxπ V π(s)

Bellman’s optimality
principle

ρV ∗(x) = min
u
{L(x, u)+∇V (x)>f(x, u)} V ∗(s) = max

a
r(s, a) + γE[V ∗(s′)]

Hamiltonian /
Q-function

H∗(x, u) = L(x, u) +∇V ∗(x)>f(x, u) Q∗(s, a) = r(s, a) + γE[V ∗(s′)]

Optimal policy ū∗(x) ∈ argminuH∗(x, u) π∗(s) ∈ argmaxaQ∗(s, a)

Value iteration Vk+1 = 1
ρ

min
u
{L(·, u) +∇V >k f(·, u)} Vk+1 = max

a
r(·, a) +γEs′∼p(·,a)[Vk(s′)]

Linear programming
formulation

max
V

ρ

∫
V (x)dµ0(x)

s.t. ∀(x, u), −ρV (x) + L(x, u)

+∇V (x)>f(x, u) ≥ 0

min
V

(1− γ)
∫
V (s)dµ0(s)

s.t. ∀(s, a), V (s) ≥ r(s, a) + γE[V (s′)]

Table 1.1: Correspondence between the main concepts of optimal control and reinforcement learning.

34

Chapter2
Conceptual & Numerical Tools

Abstract. In this chapter, we present different tools that will be used in subsequent chapters.
These tools have not been developed specifically for optimal control or reinforcement learning
applications, but we try to highlight the most obvious connections that will be further developed
in the rest of this thesis. Although we have chosen to present them in the most convenient order,
the four parts of this chapter can be read mostly independently. In the table below, we detail the
tools required in each of the next chapters of the thesis.

Chapter 3 Chapter 4 Chapter 5 Chapter 6
Section 2.1: Rigid-body Dynamics X
Section 2.2: Polynomial Optimization X X
Section 2.3: Kernel Methods X X
Section 2.4: Max-Plus Algebra X

Contents
2.1 Rigid-Body Dynamics . 37

2.1.1 The Configuration Space . 37

2.1.2 Inverse and Forward Dynamics . 38

2.2 Polynomial Optimization . 40
2.2.1 Optimization of Polynomials on Semi-algebraic Sets 40

2.2.2 Application to Lyapunov Stability Assessment 46

2.2.3 Polynomial Optimization for Optimal Control . 48

2.3 Kernel Methods . 52
2.3.1 Representing Functions . 52

2.3.2 Reproducing Kernel Hilbert Spaces . 53

2.3.3 Kernel Methods for Supervised Learning . 55

2.3.4 Non-parametric Stochastic Gradient Descent . 57

2.3.5 Representing Non-negative Functions . 58

2.4 Max-Plus Algebra . 60

35

Chapter 2. Conceptual & Numerical Tools

2.4.1 The Max-Plus Semiring . 60
2.4.2 Max-Plus Linear Parameterizations . 62
2.4.3 Application to Optimal Control . 63

36

2.1. Rigid-Body Dynamics

2.1 Rigid-Body Dynamics

This section is based on the reference book by Siciliano et al. (2008), and in particular on the chapter
dedicated to dynamics by Featherstone and Orin (2008). We use the presented notions in the experiments
of Chapter 4, to apply our stability assessment method to a robotic arm. The visualizations of the robotic
systems are produced using the graphical interface from Lamiraux and Mirabel (2014).

2.1.1 The Configuration Space

In order to model a robotic task within the optimal control or reinforcement learning frameworks, we must
be able to define a state variable representing the current state of the robot, and a dynamics describing its
evolution in time. Describing the position (kinematics) and motion (dynamics) of a robot is often much
more complicated than for basic systems like pendulums. A robot is composed of a collection of rigid
bodies connected by joints, some of the joints being actuated (controlled). The joints between the links
form a graph describing the robot, and most of the time we can assume that it is a tree. There are many
ways to represent the relative positions of each rigid body: they typically involve 6-dimensional vectors (3
dimensions for translations and 3 dimensions for rotations) when the Plücker coordinate system is used, but
other representations involve 4× 4 matrices, or elements of a Lie group (Arnold, 1966; Murray et al., 2017).

The most convenient coordinate system for control tasks is called the configuration space. An element
q ∈ Rd of the configuration space describes every joint variable in the mechanism, i.e., the angle of a
revolute joint (like a door handle) or the displacement of a prismatic joint (like a slider). For instance, the
double pendulum in Figure 2.1 is composed of two rigid bodies and a fixed base (in yellow at the bottom).
There are two revolute joints between the base and the first arm of the pendulum, and between the first and
second arm, each one orthogonal to the same plane. The configuration space is the torus (−π, π]2, and the
displayed position is represented by the configuration q = (π/6,−π/3)>.

Figure 2.1: The double pendulum is a robot with two rigid bodies and two revolute joints.

37

Chapter 2. Conceptual & Numerical Tools

2.1.2 Inverse and Forward Dynamics

The Newton-Euler equation of motion, i.e., Newton’s law for a robot, can be expressed in the configuration
space under the form:

H(q)q̈ + C(q, q̇)q̇ + τg(q) = τ, (2.1)

where q, q̇ and q̈ are the joint position, velocity and acceleration, and τ represents the force (or the torque)
exerted on the joints. For a fully actuated robot, τ can be the controller u. H is the inertia matrix, C is
a matrix containing the Coriolis and centrifugal terms, and τg is the vector of gravity forces. The former
three terms depend on the design of the robot, and on the current position and velocity. Because the robot is
composed of several rigid bodies, closed-form expressions are complicated to obtain.

Let u = τ and x = (q, q̇). The Newton-Euler equation (2.1) is an implicit expression defining the dynamics
of the robot:

ẋ = f(x, u). (2.2)

Going from (2.1) to an analytic expression of (2.2) is not usually feasible, but there are algorithms that
perform such computations numerically. From now on, we assume that the structure of the robot, called its
kinematic graph, is a kinematic tree. This greatly simplifies the implementation of the algorithms presented
below.

Inverse Dynamics. Inverse dynamics is the task of, given a configuration q and velocity q̇, computing
the torque τ required to obtain a given acceleration q̈. This amount to computing the right-hand side of
the Newton-Euler equation (2.1). This is called inverse dynamics because the computation is from the ac-
celeration to the force, contrary to classical dynamics equation which compute the acceleration from the
forces. An efficient implementation of inverse dynamics in robots is the recursive Newton-Euler algorithm
(RNEA) (Luh et al., 1980). This algorithm is recursive in the sense that it makes several passes of computa-
tions on the kinematic tree of the robot.

Forward Dynamics. Forward dynamics is the task of, given a configuration q and velocity q̇, computing
the acceleration q̈ generated by a certain torque τ . This task is achieved by the articulated body algorithm
(ABA) (Featherstone, 1983). Obtaining the acceleration q̈ allows simulating the system with numerical
integration, or computing the dynamics ẋ = f(x, u) at one given x = (q, q̇) and u = q. Accessing the
forward dynamics is at the basis of all control problems.

38

2.1. Rigid-Body Dynamics

Example 2.1: Dynamics of a Humanoid Robot

We consider the TALOS robot (Stasse et al., 2017), an articulated humanoid robot with the corpulence
of an adult (1.75m, 95kg). The configuration space is a subset of R51, representing the articulated
joints. A representation of a random configuration of the robot is shown in Figure 2.2. It corresponds
to the following configuration vector q0:

q0 = [0.05414991, -0.64573404, 0.85573156, -0.71946408, -0.18806232,
-0.2723181 , 0.61061187, 0.87659227, 0.20979564, -0.5873395 ,
1.06451821, 0.33373042, 0.08134467, 0.1984546 , -0.29140879,
0.1109362 , 0.97965779, -0.52531908, -0.42150787, 0.77398604,
0.14491015, 0.18993392, 2.68267067, 1.6946712 , -0.37361567,
1.07785106, 0.37048131, 0.02197035, -0.39305706, 0.52611338,
0.60613105, 0.70355 , 0.03086743, -0.2342755 , 0.62801123,

-0.45788523, -2.45905674, -1.47550817, -0.49455662, 1.73054626,
0.64479222, -0.43015432, -0.34902351, 0.32776189, 0.11055924,
0.93036471, 0.10705843, -0.4993781 , 0.28307897, -0.01074671,

-0.55570481]

The dimension d = 51 of the configuration space can be considered large from the viewpoint of
optimal control. In particular, polynomial optimization methods (see Section 2.2) usually cannot
handle such dimensions, nor can direct shooting methods based on discretizations. However, in
reinforcement learning (and in machine learning in general), this is not considered a particularly
high-dimensional problem.
Because of gravity, in general a robot cannot sustain a particular position without injecting torque in
its joints. This is the case for any humanoid robot or human which would collapse even when standing
on the ground, if no torque or muscle control is used. Given the position q0, a velocity v0 = 0 and
acceleration a0 = 0, we can compute the required torque to stay in position q0 using inverse dynamics.
The RNEA (as well as the ABA used below) is implemented in the pinocchio library (Carpentier
et al., 2019), which provides the following simple command:

u0 = pinocchio.rnea(robot.model, robot.data, q0, v0, a0)

This provides an equilibrium point such that f(x0, u0) = 0, where x0 = (q0, v0). Conversely, one
can check that the acceleration generated by the torque (or control) u0 is indeed equal to zero, using
the ABA algorithm:

a = pinocchio.aba(robot.model, robot.data, q0, v0, u0)
print(max(abs(a)))
>>> 7.815970093361102e-14

In Chapter 4, we will use the RNEA and ABA algorithms to identify equilibrium points. We will
also use the derivatives of the dynamics, i.e., of the ABA algorithm, to compute a local linearization
of the dynamics. This is allowed by the implementation in pinocchio which supports analytical
derivatives and automatic differentiation.

39

Chapter 2. Conceptual & Numerical Tools

Figure 2.2: The randomly sampled configuration q0 of the TALOS robot.

2.2 Polynomial Optimization

Polynomial or semi-algebraic optimization is a relatively recent field with deep theoretical foundations in
algebraic geometry, offering practical numerical optimization methods. We first present the main ideas of
polynomial optimization, applied to constrained optimization in Section 2.2.1, and then present an applica-
tion to stability assessment problems in Section 2.2.2 and optimal control problems in Section 2.2.3. Stability
assessment with polynomial optimization will be used as a baseline method in Chapter 4. The polynomial
optimization approach to solving optimal control problems will be extended to non-polynomial smooth prob-
lems in Chapter 5. The current section is based on the reference books by Lasserre (2010, 2015), and on the
lecture notes by Henrion (2014).

2.2.1 Optimization of Polynomials on Semi-algebraic Sets

Let us first consider the following optimization problem:

f∗ = min
x∈Rn

f(x) s.t. ∀j ∈ {1, ..., nX}, gj(x) ≥ 0, (2.3)

where f and the gj , for j ∈ {1, ..., nX} are polynomials. Let X be a basic semialgebraic set, i.e., a set
defined by polynomial inequalities: X = {x ∈ Rn | ∀j ∈ {1, ..., nX}, gj(x) ≥ 0}. We assume that X
is compact, and look for the global minimum of (2.3). The compactness of X can be enforced by adding
an extra constraint of the form g(x) = R2 − ‖x‖2 ≥ 0. We denote by R[x] the set of polynomials in the
variable x.

40

2.2. Polynomial Optimization

2.2.1.1 Representation of Non-negative Functions as Sums-of-Squares

An equivalent characterization of the global minimum of f on X is:

f∗ = sup{λ | f(x)− λ ≥ 0, ∀x ∈ X}. (2.4)

This formulation is a linear program in the scalar variable λ. However, it requires to handle a dense set
of inequality constraints, or equivalently, to represent the non-negative polynomial function x 7→ f(x) −
λ. Several certificates of positivity are available for polynomials, among which Krivine’s and Putinar’s
Positivstellensätze. The first one involves the resolution of a linear program, however it has some drawbacks
due to ill-conditioning and non-exactness at finite degree. We only present Putinar’s Positivstellensatz, which
leads to a semi-definite program, as follows.

One can construct a non-negative polynomial by taking a sum-of-squares of other polynomials:

∀x ∈ Rn, p(x) =
k∑
i=1

pi(x)2 ≥ 0. (2.5)

If p verifies (2.5) where the pi are polynomials, we say that p is a sum-of-squares (SoS) of polynomials, or
simply a SoS, and p is of course non-negative. Putinar’s Positivstellensatz gives a sufficient condition under
which, conversely, a non-negative polynomial can be represented as a SoS of polynomials.
Theorem 3 (Putinar’s Positivstellensatz (Putinar, 1993)). Assume that for some j ∈ {1, . . . , nX}, the set
{x ∈ Rn | gj(x) ≥ 0} is compact. Let p be a polynomial that is strictly positive on X . Then there
exist (σj)0≤j≤nX , each of which being a SoS of polynomials, such that:

∀x ∈ Rn, p(x) = σ0(x) +
nX∑
j=1

σj(x)gj(x). (2.6)

One can easily check in this expression that for x ∈ X , p(x) ≥ 0. Note that this theorem does not provide
the degree of the SoS polynomials σj , which can be larger than the degree of p, due to possible cancellations.

Let us now apply this representation to the polynomial x 7→ f(x) − λ in our optimization problem (2.4).
For the sake of explanation and insightfulness, we use Putinar’s Positivstellensatz as a justification for the
numerical method presented below. Note that it not a rigorous argument (namely because f − f∗ is not
a strictly positive polynomial), but we refer to Lasserre (2010) for a formal construction with moments.
Assume that one of the sets {x ∈ Rn | gj(x) ≥ 0}, for j ∈ {1, . . . , n} is compact. If f − λ > 0, then, by
Putinar’s Positivstellensatz, there exists SoS polynomials σ0, ..., σnX such that:

f(x)− λ = σ0(x) +
nX∑
j=1

σj(x)gj(x). (2.7)

An important property of SoS polynomials is that they can be represented in a convenient way with a linear
parameterization, using a positive semi-definite matrix. Indeed, suppose that σ is a SoS polynomial of degree
2d (SoS polynomials necessarily have an even degree). Let vd(x) = (1, x1, ..., xn, x

2
1, ..., x

d
n) the vector of

monomials of degree less than d, with an n dimensional variable x. To each polynomial h(x) of degree less
than d, we can associate its vector of coefficients h in the basis vd(x). The vector has size sn(d) := Cn

n+d
and is indexed by Nn

d := {α ∈ Nn : |α| ≤ d}. Then:

σ(x) =
k∑
i=1

hi(x)2 =
k∑
i=1

(h>i vd(x))2

41

Chapter 2. Conceptual & Numerical Tools

=
k∑
i=1

vd(x)>hih>i vd(x) = vd(x)>
k∑
i=1

hih>i︸ ︷︷ ︸
Q�0

vd(x) = vd(x)>Qvd(x). (2.8)

From now on, when there is no ambiguity, we will use the same notation for a polynomial and its coefficients
in a canonical basis adapted to its degree. The coefficients (σα)α∈Nn2d

of the polynomial σ(x) are such that:
σ(x) =

∑
α∈Nn2d

σαx
α. We can compute the real symmetric sn(d)× sn(d) matrices (Bα)α∈Nn2d

such that

vd(x)vd(x)> =
∑
α∈Nn2d

Bαx
α.

Then for all x, σ(x) = vd(x)>Qvd(x) if and only if:

∀x, σ(x) = Tr(vd(x)>Qvd(x)) = Tr(Qvd(x)vd(x)>) = Tr(Q
∑
α∈Nn2d

Bαx
α) (2.9)

⇐⇒ ∀x,
∑
α∈Nn2d

σαx
α =

∑
α∈Nn2d

Tr(QBα)xα (2.10)

⇐⇒ ∀α ∈ Nn
2d, σα = 〈Bα, Q〉. (2.11)

Consequently, checking whether the polynomial σ(x) is SoS is equivalent to the feasibility of the following
SDP:

Find Q � 0 such that ∀α ∈ Nn
2d, σα = 〈Bα, Q〉. (2.12)

The matrix Q in the SDP has size sn(d)× sn(d) and there are sn(2d) constraints.

Going back to the Positivstellensatz, the problem is also an SDP, now involving several matrices correspond-
ing to the SoS polynomials in the decomposition (2.6). For j ∈ {1, ..., nX}, let dj = ddeg(gj)/2e. We want
to check that f(x)−λ (of degree d0) has Putinar’s representation with an a priori upper-bound 2(r− dj) on
the degree of σj , for r ≥ d0/2. This bound ensures that all the polynomials involved in (2.6) have a degree
less than 2r. Let g0(x) = 1, and f(x) =

∑
α fαx

α = f>vd0 . For each j ∈ {0, ..., nX}, we compute the real
symmetric matrices (Cjα)α∈Nn2r

, of size sn(r − dj)× sn(r − dj), such that:

gj(x)vr−dj (x)vr−dj (x)> =
∑
α∈Nn2r

Cjαx
α. (2.13)

With the same computations as above, we obtain the following SDP:

sup
λ, Xj�0, j=0,...,nX

λ

s.t. ∀α ∈ Nn
d0 , fα − λ1α=0 =

nX∑
j=0
〈Cjα, Xj〉

∀α ∈ Nn
2r \ Nn

d0 , 0 =
nX∑
j=0
〈Cjα, Xj〉.

(2.14)

This SDP has nX + 1 matrix variables of sizes sn(r − dj) × sn(r − dj), and there are sn(2r) constraints.
The integer r defines an upper-bound on the degree of the terms in Putinar’s representation. We remind

42

2.2. Polynomial Optimization

that Theorem 3 gives no information on this degree. Let us define as Sr the class of polynomials with the
decomposition described above. The SDP (2.14) can be summarized by:

f sos
r = sup{λ | f − λ ∈ Sr}. (2.15)

It is a tightening of the original problem (2.4):

f∗ = sup{λ | f − λ ≥ 0}. (2.16)

Hence fr is a lower-bound on f∗. The principle of Lasserre’s hierarchy is to solve (2.15) for increasing
values of r. This hierarchy converges to f∗, and for most polynomials the tightening is exact after a fi-
nite rank r. This approach also provides optimality certificates as stopping criteria, based on testing the
rank of matrices (we refer to Lasserre (2015) for a complete exposition). SoS verification tools such as
SOSTOOLS (Papachristodoulou et al., 2021) allow to solve problems of the form (2.15), without having to
model the SDP (2.12) explicitly. Lasserre’s hierarchy is also called the Moment-SoS hierarchy, referring to
both this SoS formulation, and its dual formulation with moments that we present below.

2.2.1.2 Lasserre’s Hierarchy on Moments

Problem (2.3) can be re-written as a linear program in terms of measures (Henrion, 2014):

f∗ = inf
µ

∫
X
f(x)µ(dx)

s.t.
∫
X
µ(dx) = 1, µ ∈M+(X),

(2.17)

where M+(X) denotes the set of measures on the set X . This problem has the same value as (2.3): it is
attained for any µ∗ putting all its mass on minimizers of f on X . For a measure µ ∈M+(X), its moment of
order α ∈ Nn is defined by:

yα =
∫
X
xαµ(dx). (2.18)

Consider a sequence of moments (yα)α∈Nn . The Riesz functional associated to y is the linear functional:

`y :
∑
α

pαx
α ∈ R[x] 7→

∑
α

pαyα. (2.19)

If µ has moments (yα)α∈Nn , i.e., if y represents µ, we have that:

`y(p(x)) =
∑
α

pαyα =
∑
α

pα

∫
X
xαµ(dx) =

∫
X
p(x)µ(dx). (2.20)

The moment matrix of order d associated to y is the symmetric matrix Md(y) such that, if p(x) has degree d,

`y(p(x)2) = p>Md(y)p, (2.21)

where p is the vector of monomials of p(x). The matrixMd(y) has size Cn
n+d×Cn

n+d and is a linear function
of y. In particular, Md(y)α,β = `y(xαxβ) = yα+β . The localizing matrix Md(q, y) is, given a polynomial
q(x), the symmetric matrix such that for p(x) of degree d, `y(q(x)p(x)2) = p>Md(q, y)p. M(q, y) is a

43

Chapter 2. Conceptual & Numerical Tools

bilinear function of (q, y). Finally, M(y) and M(q, y) are the generalized versions of the previous matrices
for polynomials p(x) of infinite degree (d→∞).

Since f is a polynomial, problem (2.17) can be re-written with moments:

f∗ = inf
µ,y

∑
α

fαya

s.t. y0 = 1, y has representing measure µ ∈M+(X).
(2.22)

Under the same conditions as Theorem 3, the dual formulation of Putinar’s theorem (Henrion, 2014) states
that y has a representing measure in M+(X) if and only if

M(y) � 0, and M(gj , y) � 0, ∀j ∈ {1, ..., nX}. (2.23)

Note that the positive semi-definite operators are countably infinite dimensional operators, and must be
interpreted as limits of finite-dimensional matrices. Then, using this result, problem (2.22) is equivalent to:

f∗ = inf
y

∑
α

fαya

s.t. y0 = 1,M(y) � 0, and M(gj , y) � 0, ∀j ∈ {1, ..., nX}.
(2.24)

The decision variable y has infinite dimension, and all the constraints are linear matrix inequalities (LMI)
in y. Lasserre’s LMI hierarchy, or the moment hierarchy, is a series of relaxations of the former LMIs, that
gives increasing lower-bounds fmom

r ≤ fmom
r+1 on f∗. Indeed, when r grows, the problem has more constraints

and hence its optimal value increases. Let dj = ddeg(gj)/2e, for j ∈ {0, ..., rX}. For r ≥ max{maxj dj , 1},
a relaxation of order r is:

fmom
r = inf

y

∑
α

fαya

s.t. y0 = 1,Mr(y) � 0, and

Mr−dj (gj , y) � 0, ∀j ∈ {1, ..., nX}.

(2.25)

Like (2.14), this is solved with an SDP solver. The size of the SDP is the number of monomials of degree
2r, i.e., Cn

n+2r. The sequence of (fmom
r)r converges to f∗, and there is finite convergence for generic data

choices (the set where it does not hold has measure zero), that is, for some r the relaxation is exact and there
is a computable certificate on the rank of the PSD matrices that certifies it. There is also an algorithm using
Cholesky factorization to extract minimizers of f from y∗: the optimal measure is a sum of atoms which are
all global minimizers. All of this is included in the dedicated software GloptiPoly (Henrion et al., 2009).

2.2.1.3 Duality Between the Moment and SoS Formulations

The non-negative formulation (2.4) is the Lagrange dual (Boyd and Vandenberghe, 2004) of the measure
formulation (2.17). This can be shown easily as follows. The primal is an LP on measures:

p∗ = inf
µ
〈f, µ〉

s.t. 〈1, µ〉 = 1, µ ≥ 0.
(2.26)

44

2.2. Polynomial Optimization

The dual is also an LP (with an infinite number of constraints):

d∗ = sup
g≥0, λ

inf
µ
〈f, µ〉+ λ(1− 〈1, µ〉)− 〈g, µ〉

= sup
g≥0, λ

inf
µ
〈f − λ− g, µ〉+ λ

= sup
g≥0, λ

λ s.t. f − λ = g

= sup
f−λ≥0

λ

= sup{λ | ∀x, f(x)− λ ≥ 0}. (2.27)

For this problem, strong duality holds and p∗ = d∗ as soon as one of the problems is feasible. Both problems
are relaxed with a hierarchy of SDPs that use the basis of monomials of size Cn

n+r ≤ min(rn, nr), which
is polynomial in n or r. However, practical computations can be quickly limited in large dimensions (n
large). The finite-dimensional relaxations are also dual to each other: the dual of (2.25) is (2.14). Indeed, let
g0(x) = 1, the relaxed primal at rank r is:

p∗r = inf
y

∑
α

fαya

s.t. y0 = 1,Mr−dj (gj , y) � 0, ∀j ∈ {0, ..., nX}.
(2.28)

Its Lagrange dual writes:

d∗r = sup
Xj�0, λ

inf
y

∑
α

fαya + λ(1− y0)−
∑
j

〈Mr−dj (gj , y), Xj〉

= sup
Xj�0, λ

λ+ inf
y
Lfα,Xj ,λ(y), (2.29)

where Lfα,Xj ,λ is a linear form in y that must necessarily be equal to zero for all y. Let us express the right
constraint for this. By definition of the localizing matrix:

∀β, γ ∈ Nn
2r,

(
Mr−dj (qj , y)

)
β,γ

= `y(gj(x)xβxγ). (2.30)

Remembering that we have already defined matrices Cjα such that:

gj(x)vr−dj (x)vr−dj (x)> =
∑
α∈Nn2r

Cjαx
α, (2.31)

Then, in particular:

∀β, γ ∈ Nn
2r, gj(x)xβxγ =

∑
α∈Nn2r

(Cjα)β,γxα. (2.32)

Applying `y on both sides of (2.32), we get:

∀β, γ ∈ Nn
2r,

(
Mr−dj (qj , y)

)
β,γ

= `y(gj(x)xβxγ) =
∑
α∈Nn2r

(Cjα)β,γyα, (2.33)

45

Chapter 2. Conceptual & Numerical Tools

which, in terms of matrices, is equivalent to:

Mr−dj (qj , y) =
∑
α∈Nn2r

Cjαyα. (2.34)

The linear form appearing in the dual is then:

Lfα,Xj ,λ(y) =
∑
α∈Nn2r

fαyα − λy0 −
nX∑
j=1

∑
α∈Nn2r

〈Cjα, Xj〉yα, (2.35)

which is null everywhere if and only if:

∀α ∈ Nn
2r, fα − λ1α=0 =

∑
j

〈Cjα, Xj〉, (2.36)

with the convention that fα = 0 for α ∈ Nn
2r\Nn

d0
. The Lagrange dual (2.29) of the moment relaxation (2.25)

is then exactly the SoS tightening (2.14):

d∗r = sup
Xj�0, λ

λ

s.t. ∀α ∈ Nn
2r, fα − λ1α=0 =

∑
j

〈Cjα, Xj〉.
(2.37)

2.2.2 Application to Lyapunov Stability Assessment

Consider an ordinary differential equation:

ẋ(t) = f(x(t)), (2.38)

with f(0) = 0. The origin is an equilibrium point of the ODE: as soon as x reaches it, it stays there.
One can study the stability of the ODE, i.e., find a region around the origin where the ODE stays close or
asymptotically converges to 0. For example, a simple pendulum has two equilibrium points: the top and the
bottom positions. The bottom position is stable whereas the top one is unstable. A convenient way to assess
the stability of an ODE is to exhibit a Lyapunov function (Slotine and Li, 1991). J is a Lyapunov function
for the ODE (2.38) over a ball R centered around 0, if it is a scalar function such that J(0) = 0, J(x) > 0
on R\{0}, and ∇J(x)>f(x) < 0 on R. Since ∇J(x)>f(x) = J̇(x), this condition says that the Lyapunov
function is strictly decreasing along the trajectories of the ODE. Lyapunov’s second method (Lyapunov,
1992) states that if one can exhibit a Lyapunov function as above, then the system is asymptotically stable,
i.e., if x(0) ∈ R, then limt→∞ ‖x(t)‖ = 0.

46

2.2. Polynomial Optimization

Example 2.2: Global asymptotic stability

Consider, with x ∈ Rd, the linear ODE:

ẋ(t) = −x(t). (2.39)

The origin is the unique equilibrium point of the ODE. Let us use J(x) = 1
2‖x‖

2 as a candidate
Lyapunov function. J(0) = 0 and J is strictly positive on Rd\{0}. Furthermore:

J̇(x) = ∇J(x)>f(x) = −x>x = −‖x‖2 < 0, (2.40)

for x 6= 0. Using Lyapunov’s theorem, we have proved that the ODE is globally asymptotically stable
at the origin (the stability region R is the whole domain).

For non-linear systems, finding a suitable Lyapunov function can be much more difficult. Even checking
whether a given function is a Lyapunov function can also be hard. Suppose that f is polynomial and that we
have a candidate polynomial Lyapunov function J(x). We want to prove that for any x in a given sublevel
set of J , we have J̇(x) < 0. In practice J̇ is replaced by J̇(x) + ε ≤ 0, for a small parameter ε. A sufficient
condition inspired by Putinar’s theorem is that:

−J̇(x)− ε = σ0(x) + σ1(x)(ρ− J(x)), (2.41)

where σ0 and σ1 are SoS polynomial. Indeed, if (2.41) holds, then on the sublevel set Sρ = {x | J(x) ≤ ρ},
we have J̇(x) + ε ≤ 0. Using the representation of SoS polynomials presented above, a finite-dimensional
relaxation is:

−J̇(x)− ε = vd(x)>H0vd(x) + vd(x)>H1vd(x)(ρ− J(x)), H0, H1 � 0. (2.42)

The feasibility of the SDP (2.42) certifies that the ODE is asymptotically stable on Sρ. We may as well
optimize ρ to find the largest sublevel set that is a stability region:

sup ρ

s.t. − J̇(x)− ε = vd(x)>H0vd(x) + vd(x)>H1vd(x)(ρ− J(x)), (2.43)

H0 � 0, H1 � 0, ρ ≥ 0,

which can be solved numerically with an SDP solver. There exist several variations of this SDP which can
be more computationally efficient. This approach also generalizes to trajectory tracking, with polynomials
now depending on (x, t), and involving a series of SoS feasibility programs, one for each time step (Tedrake
et al., 2010).

47

Chapter 2. Conceptual & Numerical Tools

2.2.3 Polynomial Optimization for Optimal Control

2.2.3.1 Formulation with Occupation Measures

We consider the following fixed-horizon control problem:

inf
u
J(u) =

∫ T

0
L(t, x(t), u(t))dt+K(x(T)) s.t.

∀t ∈ [0, T], ẋ(t) = f(t, x(t), u(t)), x(0) = x0 ∈ X

∀t ∈ [0, T], (x(t), u(t)) ∈ X× U, x(T) ∈ XT .

(2.44)

We suppose that X, XT ⊂ Rn and U ⊂ Rm are compact. Note that the Mayer cost is denoted in this section
by K instead of M to avoid any confusion with moment matrices. Let us define the following two linear
applications, D : C1([0, T]× X)→ C([0, T]× X× U), defined by :

w 7→ D(w)(t, x, u) = ∂w

∂t
+∇xw(t, x)>f(t, x, u), (2.45)

and L : w 7→ (−Dw,wT), where wT (x) = w(T, x).

We define the occupation measure µ ∈ M+([0, T] × X × U), and the terminal occupation measure ν ∈
M+(XT) by:

ν(D) = 1D(x(T)), µ(A×B × C) =
∫
A

1B×C(x(t), u(t))dt, (2.46)

for Borel sets A ⊂ [0, T], B ⊂ X, C ⊂ U, D ⊂ XT . D is a time-differentiation operator: it is such that, for
any continuously differentiable test function w,

wT (x(T))− w(0, x0) =
∫

[0,T]
“ dwt(x(t))

dt ” dt =
∫

[0,T]
Dw(t, x(t), u(t))dt, (2.47)

and we have a similar relation with occupation measures:∫
XT

wTdν = w(0, x0) +
∫

[0,T]×X×U
Dwdµ. (2.48)

This can be written more compactly as:

〈(µ, ν),Lw〉 = 〈(µ, ν), (−Dw,wT)〉 = w(0, x0) = 〈δ(0,x0), w〉, (2.49)

or equivalently, L∗(µ, ν) = δ(0,x0). This last equation is a reformulation of Liouville’s equation, a PDE
which governs the evolution of the occupation measure:

∂µ

∂t
+ div(fµ) = δx0 − ν. (2.50)

The cost can be written with ν and µ as well:

J(u) =
∫

[0,T]×X×U
Ldµ+

∫
XT

Kdν = 〈(µ, ν), (L,K)〉. (2.51)

48

2.2. Polynomial Optimization

2.2.3.2 Primal and Dual Weak Formulations of Optimal Control

We can then define the primal infinite-dimensional LP verified by the occupation measures:

p∗ = inf
µ,ν
〈(µ, ν), (L,K)〉

s.t. L∗(µ, ν) = δ(0,x0)

µ ∈M+([0, T]× X× U), ν ∈M+(XT).

(2.52)

The Lagrange dual can be derived easily:

sup
w

inf
µ≥0, ν≥0

〈(µ, ν), (L,K)〉+ 〈(δ(0,x0) − L∗(µ, ν)), w〉, (2.53)

equivalently written as:

d∗ = sup
w
〈δ(0,x0), w〉

s.t. Lw ≤ (L,K)
w ∈ C1([0, T]×X).

(2.54)

Because Lw ≤ (L,K) ⇐⇒ (Dw + L ≥ 0 and wT ≤ K), the constraint in (2.54) is exactly equivalent
to saying that w is a smooth subsolution of the HJB equation. In the primal (2.52), we allow µ, ν to be
measures instead of deterministic functions. In both cases, this is not exactly equivalent to the original
control problem (2.44), but to a different control problem. This is called the weak formulation of optimal
control, which is known to solve the relaxed control problem where the dynamics is convexified as follows:

ẋ(t) ∈ conv ({f(t, x(t), u), u ∈ U}) . (2.55)

If for example, f(t, x, u) = u and U = {−1, 1}, in this relaxed problem one can choose the control in the
set [−1, 1] instead of {−1, 1}. The primal, the dual and the original control problem coincide under certain
convexity and compactness conditions (see Lasserre et al. (2008) for sufficient conditions). Note that the
dual weak-formulation (2.54) is the continuous counterpart of the LP formulation of reinforcement learning
problems presented in Section 1.2.5.

2.2.3.3 Relaxation of the Primal

We now assume that f , L and K are polynomials, and that X, U and XT are compact basic semi-algebraic
sets. We can then adapt the approach presented above for constrained optimization, to the weak-formulation
of optimal control. First, let us write (2.52) as a moment problem. By density of the polynomials in contin-
uous functions, we have that:

L∗(µ, ν) = δ(0,x0) ⇐⇒ ∀w, 〈(µ, ν),Lw〉 = 〈δ(0,x0), w〉
⇐⇒ ∀(α, β) ∈ Nn × N, 〈(µ, ν),L(xαtβ)〉 = 〈δ(0,x0), x

αtβ〉

⇐⇒ ∀(α, β),−
∫ (

∂(xαtβ)
∂t

+∇x(xαtβ)>f
)

dµ+
∫
xαT βdν = xα0 1β=0

⇐⇒ ∀(α, β),−`z(βxαtβ−1 + tβ(∇xα)>f(t, x, u)) + T βyα = xα0 1β=0, (2.56)

49

Chapter 2. Conceptual & Numerical Tools

where the (yα) and (zα,β) are the respective moments of ν and µ.

Then (2.52) is equivalent to the following LP with countably many linear constraints (Lasserre, 2015):

p∗ = inf
µ,ν
〈(µ, ν), (L,K)〉

s.t. ∀(α, β) ∈ Nn × N, 〈(µ, ν),L(xαtβ)〉 = xα0 1β=0

µ ∈M+([0, T]× X× U), ν ∈M+(XT).

(2.57)

Assume that XT and [0, T] × X × U are respectively described by polynomial inequalities gj(x) ≥ 0 and
hk(t, x, u) ≥ 0, with dj = ddeg(gj)/2e , rk = ddeg(hk)/2e (j ∈ {1, ..., nf}, k ∈ {1, ..., nt}). For
2d ≥ max{deg(L), deg(K),max(dj),max(rk)}, the rank d moment relaxation of (2.57) is:

p∗d = inf
y,z

`z(L) + `y(K)

s.t. Md(y) � 0, Md(z) � 0, Md−dj (y, gj) � 0, ∀j, Md−rk(z, hk) � 0,∀k,
∀(α, β) ∈ Nn × N, |α|, |β| ≤ 2d,−`z(βxαtβ−1 + tβ(∇xα)>f) + T βyα = xα0 1β=0.

(2.58)

2.2.3.4 Dual of the Relaxation

In this final section, we prove that the Lagrange dual of the relaxation (2.58) of the primal problem is also a
natural relaxation of the dual problem (2.54). The computations are a bit tedious and can be skipped without
harm, the main take-away message being summarized in Figure 2.3.

Let us derive the Lagrange dual of (2.58). We assume that L(t, x, u) =
∑
α,β,γ Lα,β,γx

αtβuγ , and K(x) =∑
αKαx

α. Let g0 = h0 = 1. The dual is:

sup
{Yj},{Zk}�0,
{λα,β}

inf
y,z
`z(L) + `y(K)−

nf∑
j=0
〈Md−dj (y, gj), Yj〉 −

nt∑
k=0
〈Md−rr(z, hk), Zk〉 (2.59)

+
∑
α,β

λα,β(xα0 1β=0 + `z(βxαtβ−1 + tβ(∇xα)>f)− T βyα),

or, equivalently:

sup
{Yj},{Zk}�0,
{λα,β}

∑
α,β

λα,βx
α
0 1β=0 s.t. ∀y, `y(K)−

∑
j

〈Md−dj (y, gj), Yj〉 −
∑
α,β

λα,βT
βyα = 0 (2.60)

∀z, `z(L)−
∑
k

〈Md−rk(z, hk), Zk〉+
∑
α,β

λα,β`z(βxαtβ−1 + tβ(∇xα)>f) = 0.

Following Henrion (2014), we define matrices Bj
α, with the following relation with Md−dj (gj , y):{

gj(x)vd−dj (x)vd−dj (x)> =
∑
αB

j
αx

α

Md−dj (gj , y) =
∑
αB

j
αyα,

(2.61)

and similarly: {
hk(t, x, u)vd−rk(t, x, u)vd−rk(t, x, u)> =

∑
α,β,γ C

k
α,β,γx

αtβuγ

Md−rk(hk, z) =
∑
α,β,γ C

k
α,β,γzα,β,γ .

(2.62)

50

2.2. Polynomial Optimization

Expressing the constraints in (2.60) with the matrices Bj
α and Ckα,β,γ , we obtain:

sup
{Yj},{Zk}�0,
{λα,β}

∑
α

λα,0x
α
0 s.t. ∀α,Kα −

∑
β

λα,βT
β =

∑
j

〈Bj
α, Yj〉 (2.63)

∀α, β, γ, Lα,β,γ +
∑
a,b

λa,b(D(xatb))α,β,γ =
∑
k

〈Ckα,β,γ , Zk〉.

Let w(t, x) =
∑
α,β λα,βt

βxα. Multiplying the constraints by xα (resp. by xαtβuγ) and summing on α
(resp. on α, β, γ), we obtain:

sup
{Yj},{Zk}�0,

w(t,x)

w(0, x0) s.t. ∀x,K(x)− w(T, x) =
∑
j

〈
∑
α

Bj
αx

α, Yj〉 (2.64)

∀(t, x, u), L(t, x, u) + D(w)(t, x, u) =
∑
k

〈
∑
α,β,γ

Ckα,β,γt
βuγxα, Zk〉.

Finally, using the definition of Bj
α and Ckα,β,γ , we get:

sup
{Yj},{Zk}�0,

w(t,x)

w(0, x0) s.t. ∀x,K(x)− w(T, x) =
∑
j

gj(x)Tr(vd−dj (x)vd−dj (x)>Yj) (2.65)

∀(t, x, u), L(t, x, u) + D(w)(t, x, u) =
∑
k

hk(t, x, u)Tr(vd−rk(t, x, u)vd−rk(t, x, u)>Zk).

We recognize that the terms inside the traces are SoS polynomials σj(x) and ψk(t, x, u), hence the dual of
the relaxation (2.58) is:

d∗d = sup
{σj},{ψk} SoS,

w(t,x)

w(0, x0)

s.t. K − wT = σ0 +
nf∑
j=1

σjgj

L+ Dw = ψ0 +
nt∑
k=1

ψkhk.

(2.66)

This problem (2.66) is a SoS tightening of the dual (2.54), whose constraints are:{
−Dw ≤ L
wT ≤ K

⇐⇒
{
L+ Dw ≥ 0
K − wT ≥ 0 (2.67)

More precisely, (2.66) tightens (2.54), by replacing non-negative polynomials by SoS polynomials of degree
less than r. To summarize, the diagram of Figure 2.3 commutes.

51

Chapter 2. Conceptual & Numerical Tools

p∗ = infµ,ν≥0〈(µ, ν), (L,K)〉 d∗ = supw〈δ(0,x0), w〉

s.t. L∗(µ, ν) = δ(0,x0) s.t. Lw ≤ (L,K)

p∗d = infy,z `z(L) + `y(K) d∗d = supσj ,ψkSoS,w w(0, x0)

s.t. Md−dj (y, gj),Md−rk(z, hk) � 0 s.t. K − wT = σ0 +
∑
j σjgj

−`z(D(xαtβ)) + T βyα = xα0 1β=0 L+ Dw = ψ0 +
∑
k ψkhk

Duality

Duality

Moment Relaxation SoS Tightening

Figure 2.3: Relations between the primal and dual weak formulations of control, and the Moment-SoS
hierarchy.

2.3 Kernel Methods

Kernel methods are a class of algorithms for machine learning (Mairal and Vert, 2018; Schölkopf and Smola,
2001; Shawe-Taylor and Cristianini, 2004). They exploit similarities between data points to perform a wide
range of tasks, such as classification, clustering or principal component analysis. Kernel methods are inher-
ently sample-based, or data-driven, which makes them particularly suitable for reinforcement learning or
model-free control applications. We will use kernel methods to design a new sample-based algorithm for
optimal control in Chapter 5, and to analyze an existing model-free RL algorithm in Chapter 6.

2.3.1 Representing Functions

Let X an arbitrary set. We consider the problem of representing a function f : X → R so that it can be
stored in memory and used in any computational method. One can think of representing the value function
of a control problem, but the question is much more general. If X is a finite set, we can simply store all of
its values. But as we have seen in Section 1.2, |X| can be so large that any exhaustive storage is intractable.
Furthermore, X can be a dense set like [0, 1], also preventing storage. A simple and fairly generic solution
is to represent f as a linear combination in a basis of functions (ϕ1, . . . ϕk):

f ' fθ =
k∑
j=1

θjϕj , (2.68)

where θ ∈ Rk is a vector representing the function f in the basis. Of course, this representation is not exact
in general. If X = [0, 1] and the ϕj are a finite basis of monomials and f is a continuous function (e.g.,
the sine function), then f does not belong to the span of the ϕj , but the Weierstrass approximation theorem
ensures that f can be uniformly approximated by polynomials. Many other bases can be considered, like
sine and cosine functions forming the Fourier basis, or Chebyshev polynomials (Cheney and Light, 2009).
Note that in Section 2.4, we present a max-plus variant of such linear combinations, that we will use later to
approximate a value function in Chapter 3.

52

2.3. Kernel Methods

Let ϕ = (ϕ1, . . . ϕk)>, then an equivalent expression of fθ in (2.68) is:

∀x ∈ X, fθ(x) = θ>ϕ(x). (2.69)

Kernel methods extend such representations to any Hilbert space (a complete vector space of functions
endowed with an inner product 〈·, ·〉):

∀x ∈ X, fθ(x) = 〈θ, ϕ(x)〉, (2.70)

where θ and ϕ(x) are elements of the Hilbert space.

2.3.2 Reproducing Kernel Hilbert Spaces

A positive-definite kernel is a symmetric function K : X × X → R such that for any integer n ≥ 1, and
for any x1, . . . , xn ∈ X , the kernel (or Gram) matrix K ∈ Rn×n with entries Ki,j = K(xi, xj) is positive
semi-definite (PSD). The kernel function K must be thought of as a way to measure dissimilarity between
two elements of X . We will give concrete examples below.

Consider, for x ∈ X , the function:

Kx : X → R (2.71)

y 7→ K(x, y).

We are going to use such functions as building blocks of a Hilbert space of functions. Let:

H0 = span{Kx, for x ∈ X}. (2.72)

We can define an inner product on H0 by the bilinear form 〈·, ·〉H such that:

〈Kx,Ky〉H = K(x, y). (2.73)

The fact thatK is a positive-definite kernel ensures that this has all the properties of an inner product. Indeed,
for any a ∈ Rn and x1, . . . , xn ∈ X , let K the n× n PSD kernel matrix, then:〈

n∑
j=1

ajKxj ,
n∑
k=1

akKxk

〉
H

=
n∑
j=1

n∑
k=1

ajak〈Kxj ,Kxk〉H

= a>Ka ≥ 0. (2.74)

Yet, the space of functions H0 is not a Hilbert space because it is not complete with respect to the metric
induced by the inner product. Instead, we consider its closure, i.e., the Hilbert space:

H = span{Kx, for x ∈ X}. (2.75)

The property (2.73) extends to H by density. Informally, let f ∈ H, it is the limit of some sequence (fn)n≥0
of elements of H0, which have the reproducing property (by linearity). Then for any x ∈ X:

〈Kx, fn〉H = fn(x)
↓ n→∞ ↓ (2.76)

〈Kx, f〉H = f(x).

53

Chapter 2. Conceptual & Numerical Tools

Note that we have not formally justified the validity of the limits, which would involve using Cauchy se-
quences (see a complete proof in Mairal and Vert (2018)). The latter property (2.76) is called the reproduc-
ing property and is central to kernel methods. A formal justification is provided by the following theorem
by Aronszajn (1950).

Theorem 4 (Moore-Aronszajn). For any positive-definite kernelK, there exists a unique reproducing kernel
Hilbert space (RKHS) (H, 〈·, ·〉H) with reproducing kernel K. It is a Hilbert space of real-valued functions
on X endowed with an inner product 〈·, ·〉H, such that:

• for any x ∈ X , the function Kx belongs to H;

• for any x ∈ X and f ∈ H, the reproducing property holds:

〈Kx, f〉H = f(x). (2.77)

The reproducing property can be seen as an extension of the linear parameterization of a function (2.69).
The expression fθ(x) = θ>ϕ(x) is replaced by:

f(x) = 〈f, φ(x)〉H, (2.78)

for f ∈ H, with φ(x) = Kx ∈ H, called the embedding or feature map of x in H. In this expression,
the representation of f is non-parametric, in the sense that it is not represented by a vector θ ∈ Rd, but
directly by being an element of H, a possibly infinite-dimensional Hilbert space. This could apparently look
like a major drawback to perform practical computations, but as we will see later (see e.g., Sections 2.3.3,
2.3.4 and 2.3.5, and also Chapters 5 and 6), this representation in H is never considered explicitly, and
many computations only involve evaluations of the kernel function. This phenomenon is generically called
a “kernel trick”.

Parametric representations of functions are a particular case of RKHS. Consider the basis of functions
(ϕ1, . . . , ϕk) in (2.68). Let K(x, y) = ϕ(x)>ϕ(y). It is called the linear kernel. Identifying the vectors
of Rk and the linear forms on Rk, the RKHS H = span(ϕ1, . . . , ϕk) is a subset of Rk, associated with the
canonical dot product on Rk. A function f ∈ H is associated to a unique vector θ ∈ Rk, and the reproducing
property writes:

f(x) = 〈f, φ(x)〉H = θ>ϕ(x). (2.79)

Example of kernels. The RKHS framework is much wider than finite-dimensional, parametric spaces of
functions. There are many examples of kernels which lead to different Hilbert spaces. We list just a few
here, and refer to Fasshauer (2011) for other examples. On the underlying space X = Rd, we can consider:

• The polynomial kernelK(x, y) = (1+x>y)p, for p ≥ 1. The associated RKHS is a finite-dimensional
Hilbert space, whose embedding φ(x) corresponds to the monomials of degree less than p (up to some
scaling factors due to binomials coefficients), and has dimension Cd

d+p (see Section 2.2). p = 2 is
commonly used, higher degree polynomial kernels being impractical because of numerical instabili-
ties.

• The Gaussian kernel K(x, y) = exp(−‖x − y‖2/σ2), which leads to an infinite-dimensional Hilbert
space of very smooth C∞ functions. The parameter σ is the bandwidth of the Gaussian filter, also
called the radial basis function.

54

2.3. Kernel Methods

• The Laplace or exponential kernel K(x, y) = exp(−‖x− y‖/σ), for σ > 0, is associated to a Hilbert
space of less smooth functions, i.e., the Sobolev space of functions with d derivatives.

The latter two kernels are translation-invariant kernels of the formK(x, y) = K̃(x−y). The regularity of the
functions in the associated RKHS can be related to the Fourier coefficients of K̃. In particular, other Sobolev
spaces can be obtained using different translation-invariant kernels (see Wahba (1990) and the numerical
examples in Chapter 6).

Finally, let us mention that, apart from the positive-definiteness of the kernel, nothing is assumed about the
underlying space X . It must not necessarily be a Euclidean space, as one can compute positive-definite
kernels on many objects, such as graphs (Borgwardt and Kriegel, 2005; Ralaivola et al., 2005), text se-
quences (Lodhi et al., 2002), biological sequences (Schölkopf et al., 2004), probabilistic models (Jaakkola
and Haussler, 1998), any many others. The RKHS framework can be extended to handle vector-valued
or operator-valued kernels, with interesting connections to dynamical systems (Aubin-Frankowski, 2021b;
Heinonen and d’Alché Buc, 2014).

2.3.3 Kernel Methods for Supervised Learning

We consider the non-parametric least-squares regression problem. Let (xi, yi)1≤i≤n ∈ (X×R)n a collection
of data points. We want to find a regression function f in a given RKHS, such that for all i, f(xi) ' yi.
More formally, we look for a function which minimizes the following regularized mean squared error, for
some λ > 0:

min
f∈H

1
2n

n∑
i=1

(f(xi)− yi)2 + λ

2 ‖f‖
2
H . (2.80)

This problem is usually called kernel ridge regression. The objective is composed of a data fitting term, and
a ridge (also called Tikhonov) regularization term which controls the regularity of f . Indeed, for x, x′ ∈ X ,
we have:

|f(x)− f(x′)| = |〈f,Kx −Kx′〉H|
≤ ‖f‖H‖φ(x)− φ(x′)‖H . (2.81)

In other words, the H-norm of f controls the Lipschitz constant of f with respect to the pseudometric defined
on X by dK(x, x′) = ‖φ(x)− φ(x′)‖H. Apart from this concrete effect, the quadratic regularization term is
crucial from a theoretical viewpoint: it allows to apply the following representer theorem by Schölkopf et al.
(2001). Note that the theorem is slightly more general but we adapt it here to problem (2.80) and succinctly
remind its proof.

Theorem 5 (Representer theorem). Any minimizer f∗ of the optimization problem (2.80) admits a represen-
tation of the form f∗(·) =

∑n
i=1 αiK(xi, ·), for some α ∈ Rn.

Proof. Using the orthogonal projection on span(φ(x1), . . . , φ(xn)), any f ∈ H can be decomposed as:

f =
n∑
i=1

αiφ(xi) + f⊥, (2.82)

55

Chapter 2. Conceptual & Numerical Tools

with, for any i, 〈f⊥, φ(xi)〉H = 0. Then, for any i ∈ {1, . . . , n}:

f(xi) =
〈

n∑
j=1

αjφ(xj) + f⊥, φ(xi)
〉

H

=
n∑
j=1

αj〈φ(xj), φ(xi)〉H, (2.83)

which is independent of f⊥, hence the data-fitting term does not depend on f⊥ either. Then f⊥ only affects
the regularization term. Assume that f⊥ 6= 0. By definition of the orthogonal projection, and using that
λ > 0:

λ

2 ‖
n∑
i=1

αiφ(xi) + f⊥‖2H = λ

2 ‖
n∑
i=1

αiφ(xi)‖2H + λ

2 ‖f⊥‖
2
H

>
λ

2 ‖
n∑
i=1

αiφ(xi)‖2H . (2.84)

Overall, choosing f⊥ 6= 0 strictly increases the objective of (2.80), theorefore any minimizer of (2.80) must
lie on span(φ(x1), . . . , φ(xn)).

The representer theorem ensures that the kernel ridge regression problem (2.80) can be equivalently formu-
lated as the following finite-dimensional optimization problem:

inf
α∈Rn

1
2n‖Kα− y‖

2
H + λ

2α
>Kα . (2.85)

Using the first-order optimality condition, it follows that the unique solution is fλ =
∑n
i=1 α

λ
i φ(xi), with

αλ = (K + nλIn)−1y. The solution is computed from the kernel matrix only: this is a kernel trick.

Example 2.3: Solving non-parametric least-squares in closed-form

We perform kernel ridge regression on a simple one-dimensional example. The data is generated as
follows. Let n = 10, and for i ∈ {1, . . . , n}, xi = i/n and yi = 3x2

i − 2xi + 0.2zi, where the zi are
independent identically distributed (i.i.d.) random variables such that zi ∼ N(0, 1). This can be seen
as a noisy interpolation of the function f∗(x) = 3x2− 2x. We use the Gaussian kernel with σ = 0.5,
and study the effect of the regularization parameter λ.
The obtained regression functions fλ are shown in Figure 2.4 for different values of λ. If it is chosen
too small, fλ is not regular enough: it fits the noise in the data, i.e., it overfits. If λ is too small, the
variations of fλ are almost zero: it underfits the data. Both are likely to perform poorly on unseen data
points. Choosing the right λ can be addressed from a practical (using cross-validation) or theoretical
perspective. Theoretical analyses of convergence rates often prescribe choices of λ to balance bias
and variance terms, as we will also do in Chapter 6.

The complexity of kernel ridge regression boils down to the computation of the kernel matrix K, i.e., a
time and space complexity of O(n2), and then a system inversion (with complexity O(n3)). Low-rank
matrix approximation methods, such as Nyström approximation (Williams and Seeger, 2000) or random
features (Yang et al., 2012) can be applied to reduce the computational and memory loads. They typically
require to compute and store a matrix of size n × q, where q is the rank of the approximate kernel matrix,
without having to first compute the whole n× n kernel matrix.

56

2.3. Kernel Methods

x

y

λ=1e-06
f *

fλ
(xi, yi)

λ=0.01 λ=1

Figure 2.4: Solutions of the kernel ridge regression problem (2.80) for different values of λ.

2.3.4 Non-parametric Stochastic Gradient Descent

If the number of sample points n is too large, the computation of the closed form solution αλ is intractable.
In this case, as is common in machine learning, we can opt for incremental methods which handle one data
point at a time (Bottou and Bousquet, 2007). Let us write again problem (2.80):

min
f∈H

1
2n

n∑
i=1

(
〈f, φ(xi)〉H − yi

)2
+ λ

2 ‖f‖
2
H . (2.86)

Since the objective function of (2.86) appears as a finite sum over the samples, we can apply stochastic
gradient descent (SGD). The subtlety here is that since the variable is f ∈ H, SGD must be carried in the –
possibly infinite-dimensional – RKHS. At step k, we randomly sample a data point (xi(k), yi(k)). Let f0 = 0,
having computed the stochastic gradients, the iterates write, for k ≥ 1 and some step size ρk > 0:

fk = (1− λρk)fk−1 + ρk
(
yi(k) − f(xi(k))

)
φ(xi(k)) . (2.87)

Looking at the iterates (2.87), we can see that fk ∈ span(φ(xi(1)), . . . φ(xi(k))). This is a very simple
form of representer theorem. From that, we can obtain a closed-form, finite-dimensional expression of the
iterations, using an n-dimensional vector αn for the n-th iterate fn =

∑n
k=1 αn,kφ(xi(k)). The expression

of the recursion building the triangular matrix α will be detailed in Chapter 6, for the TD-learning algorithm
which is a generalization of SGD (simply set γ = 0 to recover SGD).

Coming back to Example 2.3, we can apply SGD to this least-squares regression problem. In this experiment,
a fresh random sample (xk, yk) is drawn at each iteration (single-pass SGD). Different iterates of the recur-
sion fn are displayed on Figure 2.5, using λ = 10−2 and a sequence of decreasing step sizes ρk = 1/k. Note
that this choice of step size fulfills the Robbins-Monro conditions which are classical in stochastic approxi-
mation theory (Borkar, 2009). One could also use Polyak-Ruppert averaging and output f̄n =

∑n−1
k=0 fk/n

instead of fn, which theoretically improves the convergence of SGD,

Random design and covariance operators. We have described above the fixed design setting, where
the xi are deterministic. In Chapter 6, we will rather carry out a random design analysis, i.e., we suppose that
the successive samples xi are drawn according to some probability distribution p, and that yi = f∗(xi) + εi
(where the εi are i.i.d. scalar white noise random variables, independent of the xi). Following Borkar and
Meyn (2000), we can use the ODE method to study non-parametric SGD (and non-parametric temporal-

57

Chapter 2. Conceptual & Numerical Tools

x

y
n=5

f *

fn
(xi, yi)i≤ n

n=20 n=100

Figure 2.5: Iterates fn of SGD on problem (2.86), using the Gaussian kernel.

difference in Chapter 6). Equation (2.87) is an instance of stochastic approximation (SA), yet an infinite-
dimensional one. Borkar and Meyn (2000) suggest to study an SA iteration:

Zn = Zn−1 + an[h(Zn−1) + wn], (2.88)

where an > 0 and the wn are uncorrelated with noise terms, by asserting the stability of an averaged
continuous-time version of (2.88), i.e., of the ODE:

ż(t) = h(z(t)). (2.89)

For non-parametric SGD (2.87), this corresponds to the following ODE in H:

dft
dt = −(Σ + λI)ft + Σf∗, (2.90)

where Σ is the covariance operator:

Σ =
∫
X
φ(x)⊗ φ(x)dp(x), (2.91)

where ⊗ denotes the outer product in H defined by g ⊗ h : f 7→ 〈f, h〉Hg. The covariance operator Σ is an
operator from H to H, which plays a central role at the interface between kernel methods and probabilities
(see in particular Bach (2022)).

The main properties of the covariance operator have been studied by Dieuleveut and Bach (2016), high-
lighting the link between the spectrum of Σ and the convergence rate of SGD (see also the related analyses
by Berthier et al. (2020); Pillaud-Vivien et al. (2018b)). Importantly, contrary to the original ODE method
which only proves the asymptotic convergence of SA, such analyses are non-asymptotic and provide finite-
sample convergence rates. Since they deal with non-parametric SGD, the rates are dimensionless and provide
insights on high-dimensional phenomena, e.g. linear regression for d� n. More generally, kernel methods
replace the intrinsic dimension of the data d by the number of data points n, not only in terms of rates but
also in terms of computational complexity. In Chapter 6, we will extend such non-asymptotic analyses of
SGD to non-parametric TD-learning, relying on a second covariance operator.

2.3.5 Representing Non-negative Functions

As we have seen in Section 2.2, it can be useful to represent non-negative functions, be it for global opti-
mization (see Section 2.2.1) or for optimal control (our main focus in this thesis, see Section 2.2.3). We have

58

2.3. Kernel Methods

introduced the sum-of-squares (SoS) representation of non-negative polynomials. In particular, assume that
X = Rd, and let φp(x) the vector of monomials of degree less than p. Then, a SoS polynomial of degree 2p
writes:

σ(x) = φp(x)>Aφp(x), (2.92)

where A is a PSD matrix of appropriate size. This is a parametric representation of the function σ, the
parameter being a matrix in the cone of PSD matrices, instead of a vector θ as we have seen in Section 2.3.1
to model a function without the non-negativity constraint. It turns out that this parametric PSD representation
can be extended to a non-parametric representation of non-negative functions in RKHS. It has been recently
proposed by Marteau-Ferey et al. (2020) to model a non-negative function as an infinite-dimensional SoS:

fA(x) = 〈φ(x),Aφ(x)〉H, (2.93)

where A ∈ S+(H) is a PSD operator, and φ(x) ∈ H is the feature map of x in the RKHS. Clearly, f is a
non-negative function and it is a sum-of-squares of functions on H. This can be seen from an eigenvalue
decomposition of A: assume that it can be decomposed as A =

∑
i≥1 λiui ⊗ ui, with λi ≥ 0, then:

fA(x) =
∑
i≥1

λi〈φ(x), ui ⊗ uiφ(x)〉H =
∑
i≥1

(√
λiui(x)

)2
. (2.94)

This non-parametric representation contains in particular the parametric representation of SoS polynomi-
als (2.92), which can be recovered (up to multiplicative constants) by choosing K as the polynomial kernel
of degree p, i.e., K(x, y) = (1 + x>y)p. The representation (2.93) is not the only possibility to model
a non-negative function, but it has several desirable properties for machine learning applications: linearity
with respect to the parameter, universal approximation, finite-dimensional representation (with a representer
theorem) and differentiability (Marteau-Ferey et al., 2020).

Similarly to polynomial SoS (see Section 2.2), the non-parametric SoS models (or PSD models, or “kernel
SoS”) have been applied to global optimization, leading to a practical algorithm with nearly optimal rates
for optimizing very smooth functions in Sobolev spaces (Rudi et al., 2020). In Chapter 5, we propose
an application to optimal control, hence extending the polynomial method presented in Section 2.2.3. An
important result by Rudi et al. (2020) and in Chapter 5 is to derive the equivalent of a Positivstellensatz:
when can a non-negative function be represented as a SoS of the form (2.93)? In optimization, this is true
for smooth non-negative functions which touch zero at isolated points, in optimal control, we prove a similar
result for the Hamiltonian under some assumptions.

Among other applications (to optimal transport (Vacher et al., 2021), probability modeling (Rudi and Cilib-
erto, 2021),...), we can use a SoS model to do non-parametric regression, where the regression function is
constrained to be non-negative. Indeed, we can solve the regression problem:

min
A∈S+(H)

1
2n

n∑
i=1

(
〈φ(xi),Aφ(xi)〉H − yi

)2
+ λΩ(A), (2.95)

where Ω is a regularization, e.g., Ω(A) = ‖A‖? + 0.01‖A‖2F /2, a combination of the nuclear and Frobenius
norms. For such a problem, Marteau-Ferey et al. (2020) provide a representer theorem, which allows to
replace the infinite-dimensional decision variable (the operator A) by an n × n matrix. The problem then
becomes an SDP which can be solved with a standard SDP solver. In Figure 2.6, we show the obtained non-
negative functions fA for different levels of regularization, on the data of Example 2.3. A more interesting
application of non-negative regression is density estimation.

59

Chapter 2. Conceptual & Numerical Tools

x

−0.25

0.00

0.25

0.50

0.75

1.00

y

λ=1e-05
fA
(xi, yi) | yi≥0
(xi, yi) | yi<0

−0.25

0.00

0.25

0.50

0.75

1.00

λ=0.01

−0.25

0.00

0.25

0.50

0.75

1.00

λ=0.1

Figure 2.6: Non-negative regression functions obtained from solving problem (2.95) for different λ.

2.4 Max-Plus Algebra

In this section, we present basic notions on max-plus (also called tropical) algebra, along with a link with
optimal control. This section is largely based on the introduction by Gaubert and Plus (1997). These notions
will be used in Chapter 3.

2.4.1 The Max-Plus Semiring

The max-plus semiring (Rmax,⊕,⊗) is the set R ∪ {−∞}, equipped with the two operations:{
x⊕ y = max{x, y}
x⊗ y = x+ y.

(2.96)

The relations ⊕ and ⊗ are associative and commutative. The 0 element for ⊕ is −∞, which is such that:

x⊗−∞ = max{x,−∞} = x . (2.97)

The 1 element for ⊗ is 0, such that x ⊗ 0 = x + 0 = x. All non-zero elements (i.e., different from −∞)
have an inverse for ⊗, equal to −x (hence making the structure a semifield):

x⊗−x = x+ (−x) = 0 = 1. (2.98)

Moreover, ⊗ is distributive over ⊕:

x⊗ (y ⊕ z) = x+ max{y, z} = max{x+ y, x+ z} = (x⊗ y)⊕ (x⊗ z) . (2.99)

An interesting property is that the semiring is idempotent:

x⊕ x = max{x, x} = x. (2.100)

Overall, this structure satisfies all the axioms of a ring, except that ⊕ is not invertible. This is an intuitive
phenomenon: taking the maximum of two real numbers is an operation that cannot be inverted, as all the
information contained in the smallest number is lost, except that it is smaller than the first one.

Apart from this phenomenon, all classical algebraic computations can be considered in the max-plus semir-
ing, such as exponentiation: for any positive integer n,

x⊗n = x⊗ · · · ⊗ x︸ ︷︷ ︸
n times

= nx , (2.101)

60

2.4. Max-Plus Algebra

or matrix computations: (
1 3
2 5

)
⊗
(

1
0

)
=
(

1⊗ 1⊕ 3⊗ 0
2⊗ 1⊕ 5⊗ 0

)
=
(

1
3

)
. (2.102)

Example 2.4: A max-plus linear system

Consider the following linear system, with unknown z = (x, y)> ∈ R2
max:(

1 2
−4 1

)
⊗
(
x
y

)
=
(

1
2

)
. (2.103)

Unrolling the max-plus notations, this is equivalent to the following system of equations:{
max{x, y + 2} = 1
max{x− 4, y} = 2. (2.104)

The first line of (2.104) is equivalent to:

(x = 1 and y + 2 ≤ 1) or (x ≤ 1 and y + 2 = 1) , (2.105)

with a similar condition for the second line:

(x− 4 = 2 and y ≤ 2) or (x− 4 ≤ 2 and y = 2) . (2.106)

The solutions (x, y) of (2.105) and (2.106) are plotted in Figure 2.7, respectively in blue and red. In
this example, the two sets do not intersect, therefore the max-plus linear system (2.103) does not have
any solutions in R2

max.

An unpleasant consequence of the non-invertibility of ⊕ is that, in general, like in Example 2.4, a max-plus
linear system Ax = b has no solutions. This is not an anecdotal phenomenon: in fact it is highly unlikely
for a matrix to be surjective or injective in the max-plus sense. A strategy to cope with this issue is called
residuation. Let us define a natural order relation on Rmax:

x � y ⇐⇒ x⊕ y = y. (2.107)

Let us define the residuation operation by:

a\b = max{x | a⊗ x � b}
= max{x | a+ x � b}

=
{
b− a if a 6= 0
+∞ else.

(2.108)

One can see from (2.108) that the residuation operation plays the role of a pseudo-inverse, on the set Rmax
completed by {+∞}, denoted by R̄max.

This construction can be extended to matrices. Let A ∈ R̄n×mmax . The map:

λA : R̄mmax → R̄nmax, x 7→ Ax (2.109)

61

Chapter 2. Conceptual & Numerical Tools

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

y

Figure 2.7: Sets of solutions of equations (2.105) and (2.106), respectively in blue and red. The pink dot is
the solution of the residuation operation.

is residuated, i.e., for any b ∈ R̄nmax, the set {x ∈ R̄mmax | Ax � b} has a maximal element denoted by A\b,
defined by, for j ∈ {1, . . .m}:

(A\b)j = min
1≤i≤n

(−Aij + bi) . (2.110)

Instead of looking for solutions of Ax = b, we can instead look for subsolutions, specifically the largest
solution of Ax � b, i.e., A\b. In Example 2.4, this solution is equal to (x, y) = (1,−1). One can check on
Figure 2.7 that it is the largest point in the intersection of the subsolution sets:{

x ≤ 1 and y + 2 ≤ 1
x− 4 ≤ 2 and y ≤ 2. (2.111)

Furthermore, the equation Ax = b has solutions if and only if A(A\y) = y (Gaubert and Plus, 1997). Note
that in Chapter 3, we will use a different notation, A+b, for the residuation operation. The notation A+ for
the residuation differs from the convention in the max-plus literature (the usual notation being A[), and in
particular, it does not denote the operator ⊕∞k=1A

k like in Baccelli et al. (1992).

2.4.2 Max-Plus Linear Parameterizations

In Section 2.3.1, we have presented a parametric representation of a function as a linear combination of basis
functions (ϕ1, . . . ϕk):

fθ(·) =
k∑
j=1

θjϕj(·). (2.112)

62

2.4. Max-Plus Algebra

One can derive the max-plus counterpart of this linear parameterization as:

fθ(·) =
k⊕
j=1

θj ⊗ ϕj(·)

= max
1≤j≤k

θj + ϕj(·). (2.113)

This generates a max-plus linear space of functions which is stable under linear combinations. Indeed, if
f =

⊕k
j=1 θj ⊗ ϕj and g =

⊕k
j=1 νj ⊗ ϕj , then:

α⊗ f(·)⊕ β ⊗ g(·) = max{α+ f(·), β + g(·)}
= max{max

j
(α+ θj + ϕj(·)),max

j
(β + νj + ϕj(·))}

= max
j

max{α+ θj , β + νj}+ ϕj(·)

=
⊕
j

µj + ϕj(·), (2.114)

where µ = α⊗ θ⊕β⊗ ν. This max-plus linear structure allows defining familiar operations, like projection
onto the max-plus span of the ϕj , whose construction will be detailed in Chapter 3. In particular, one can
study the approximation properties of specific basis of functions ϕ, as is done by Akian et al. (2008) for
functions of the form ϕj(x) = −a‖x− xj‖1, or ϕj(x) = −c/2‖x− xj‖22.

Finally, let us mention that an interesting connection between max-plus function spaces and reproducing ker-
nel Hilbert spaces (which we remind extend linear representations of the form (2.112) in infinite-dimension)
has been made recently by Aubin-Frankowski and Gaubert (2022).

2.4.3 Application to Optimal Control

Beyond its theoretical interest, the max-plus algebra is a powerful tool in a large panel of applications,
including discrete-event systems and synchronization (Baccelli et al., 1992), systems theory (Cohen et al.,
1999), or decision theory (Simon, 1978). Here, we focus on the connection to optimal control, which relies
on the intrinsic max-plus structure of optimal control problems (Akian et al., 2008; McEneaney, 2003).

Consider an optimal control problem (with a supremum to fit the max-plus structure):

V ∗(t0, x0) = sup
u(·)

∫ T

t0
L(x(t), u(t))dt+M(x(T)) (2.115)

s.t. ∀t ∈ [t0, T], ẋ(t) = f(x(t), u(t))
x(t0) = x0.

V ∗ is the optimal value function, and is such that V ∗(T, ·) = M , and V ∗ verifies the HJB equation. We
define, for t ∈ [0, T], the evolution semigroup St of the control problem (or the Lax-Oleinik semigroup),
which, to any terminal cost functionM , associates the solution V ∗(T −t, ·). In particular, S0(M) = M , and
hence S0 = I . The collection {St} has a semigroup structure, directly inherited from Bellman’s optimality
principle:

St ◦ St′ = St+t
′
. (2.116)

63

Chapter 2. Conceptual & Numerical Tools

An interesting property of the semigroup is that it is max-plus linear. This property has been first remarked
by Maslov (1973), as a “superposition principle”, and refered to by Fleming and McEneaney (2000) as
max-plus linearity. Indeed, one can easily check using (2.115) that, for c ∈ R:

St(c⊗M) = St(c+M) = c+ St(M) = c⊗ St(M). (2.117)

Similarly, it can be proved that, for M , M ′ functions from X→ R:

St(M ⊕M ′) = St(M)⊕ St(M ′). (2.118)

This max-plus linearity explains the particular interest of function representations of the form (2.113) for the
optimal value function, as we will see in more details in Chapter 3.

64

Chapter3
Max-Plus Discretization of Deterministic

Markov Decision Processes

Abstract. We consider deterministic continuous-state Markov decision processes (MDPs). We
apply a max-plus linear method to approximate the value function with a specific dictionary of
functions that leads to an adequate state-discretization of the MDP. This is more efficient than
a direct discretization of the state space, typically intractable in high dimension. We propose
a simple strategy to adapt the discretization to a problem instance, thus mitigating the curse of
dimensionality. We provide numerical examples showing that the method works well on simple
MDPs.

This chapter is based on our work Max-Plus Linear Approximations for Deterministic Continuous-State
Markov Decision Processes, with Francis Bach, published in the IEEE Control Systems Letters, 2020.

Contents
3.1 Introduction . 66
3.2 Max-Plus Linear Approximations . 67
3.3 Approximate Value Iteration . 68

3.3.1 Projection Method . 69

3.3.2 Variational Method . 69

3.3.3 Basis Functions and Clustered MDP . 70

3.3.4 Oracle Subproblem . 70

3.4 Error Analysis . 71
3.4.1 Error Decomposition . 71

3.4.2 Projection Error . 74

3.5 Comparison with the Method of Akian, Gaubert & Lakhoua for Control Problems . . 74
3.5.1 Time-Discretization of a Control Problem . 75

3.5.2 Hamiltonian Approximation for the Oracle Subproblem 75

3.6 Adaptive Selection of Basis Functions . 76
3.7 Experiments . 77

65

Chapter 3. Max-Plus Discretization of Deterministic Markov Decision Processes

3.8 Conclusion . 80

3.1 Introduction

Reinforcement learning problems (Sutton and Barto, 2018) are generally formulated as Markov decision
processes (MDPs). Dynamic programming provides simple algorithms, such as value iteration, to compute
the optimal value function and an optimal policy for a discrete MDP, when the model is known.

Yet many problems formalized as MDPs are time- and space-discretizations of control problems, with a
continuous underlying state space. To faithfully reproduce the dynamics of the control problem, one needs to
compute a sharp space-discretization, subject to the curse of dimensionality: for high-dimensional problems,
the space-discretized MDP will not even fit in memory.

Following the method of McEneaney (2003) and Akian et al. (2008), we compute approximations of the
optimal value function for deterministic MDPs, namely max-plus linear approximations within a dictio-
nary of functions. These methods have been developed for optimal control and deal with continuous state
spaces. For certain choices of function dictionaries, they can be viewed as an efficient way to discretize the
state-continuous MDP while preserving its dynamics. Adaptively choosing the basis functions used to ap-
proximate the value function is a way to circumvent the curse of dimensionality when the true value function
has a sparse representation.

Our contributions are the following:

• we propose in Section 3.3.4 a new approximation method to solve subproblems appearing in the max-
plus value iteration algorithm, namely to optimize some objectives over the state-space with gradient
ascent;

• we present a specific dictionary of functions simplifying the method in Section 3.3.3, and show how it
can be used to build an adaptive discretization of the state space in Section 3.6;

• in Section 3.7, we provide numerical simulations on MDPs where this adaptive max-plus approxima-
tion method computes nearly optimal policies with significantly less parameters than discretized value
iteration.

Setting. We consider (Hernández-Lerma and Lasserre, 2012) a deterministic, time-homogeneous, infinite-
horizon, discounted MDP defined by a state space S, an action space A, a bounded reward function r :
S × A → [−R,R] for some R ≥ 0, a dynamics ϕ.(.) : S × A → S and a discount factor 0 ≤ γ < 1, with
the following assumptions:

1. the state space S is a bounded subset of Rd (d ≥ 1);

2. the action space A is finite.

We want to approximate the optimal value function V ∗ : S→ R corresponding to an optimal policy π∗ : S→
A maximizing the cumulative discounted reward. The greedy policy π corresponding to a value function V

66

3.2. Max-Plus Linear Approximations

is obtained by:

π(s) ∈ argmax
a∈A

r(s, a) + γV (ϕa(s)). (3.1)

The value iteration algorithm consists in computing V ∗ as the unique fixed point of the Bellman operator
T : RS → RS (where RS denotes the set of functions from S to R) defined as:

TV (s) := max
a∈A

r(s, a) + γV (ϕa(s)). (3.2)

The value iteration algorithm iteratively computes the recursion Vk+1 = TVk that converges to V ∗, with
linear rate since T is strictly contractive with factor γ < 1. But if S is a finite set, it requires O(|A| · |S|)
computations, and the storage of O(|S|) values of Vk at each step.

From now on, we consider that S is a compact, but potentially not discrete set. In this case, one can directly
look for a discretization of the MDP and perform value iteration, but this will become intractable in high di-
mension, since the size of the discretized state space grows exponentially with the dimension. Alternatively,
one can consider the space-continuous MDP, and compute an approximation of the optimal value function,
without having to discretize the MDP.

3.2 Max-Plus Linear Approximations

Let W be a finite dictionary of functions w : S → R. The value function can be approximated by a “linear”
combination of functions in W, with an adapted definition of linearity. The max-plus semiring (Gaubert and
Plus, 1997) is defined as (R ∪ {−∞},⊕,⊗), where ⊕ represents the maximum operator, and ⊗ represents
the usual sum. Like linear combinations in the usual ring, for α ∈ RW, we define the max-plus linear
combination:

V (s) =
⊕
w∈W

α(w)⊗ w(s) = max
w∈W

α(w) + w(s). (3.3)

The Bellman operator’s structure is naturally compatible with max-plus operations, as it is max-plus additive
and homogeneous: for c, V, V ′ ∈ RS, we have

T (V ⊕ V ′) = T (max{V, V ′}) = max{TV, TV ′} = TV ⊕ TV ′ (3.4)

T (c⊗ V) = T (c+ V) = γc+ TV = c⊗γTV. (3.5)

The basis functions used in Akian et al. (2008) and McEneaney (2003) are smooth (wi(s) := −c‖s − si‖2
for some si ∈ S) or Lipschitz-continuous (wi(s) := −c‖s−si‖). However, the scale c > 0 of such functions
must be chosen according to the regularity of the true value function. Since it is unknown in practice, it
needs to be tuned as a hyperparameter. Other somewhat simpler choices of basis functions can be considered
as well. Let (A(w1), ..., A(wn)) be a partition of the state space, where each wi is defined as the max-plus
indicator of a set A(wi):

wi(s) :=
{

0 if s ∈ A(wi)
−∞ otherwise.

(3.6)

67

Chapter 3. Max-Plus Discretization of Deterministic Markov Decision Processes

Figure 3.1: A function V , its upper-projection onto the dictionary of soft indicators (see Section 3.3.3) in
blue, and the lower-projection of the upper-projection in red.

Then the max-plus linear combinations of (w1, ..., wn) span the set of value functions that are piecewise
constant with respect to the partition (Bach, 2019). This is thus a way to discretize the value function.

Following the notations of Bach (2019), for a given dictionary of functions W, we define the following four
operators:

W : RW → RS, Wα(s) := max
w∈W

α(w) + w(s) (3.7)

W+ : RS → RW, W+V (w) := inf
s∈S

V (s)− w(s) (3.8)

W> : RS → RW, W>V (w) := sup
s∈S

V (s) + w(s) (3.9)

W>+ : RW → RS, W>+α(s) := min
w∈W

α(w)− w(s). (3.10)

W maps a vector α to a function Wα which is the max-plus linear combination of the dictionary W with
coefficient α. W+ is known as the residuation (Cohen et al., 2004) of W and acts as a pseudo-inverse:

Wα ≤ V ⇔ α ≤W+V. (3.11)

The transposed notation for W> comes from the definition of a max-plus dot product (it is only a max-plus
bilinear form) between functions on S, which will be used in the rest of the chapter:

∀z, w ∈ RS, 〈z, w〉 := sup
s∈S

z(s) + w(s). (3.12)

The lower-projection of a function V ∈ RS onto the span of the dictionary is computed as WW+V , and
W>+W>V is its upper-projection (see Figure 3.1). Both projection operators WW+ and W>+W> are
idempotent and non-expansive for the `∞ norm.

3.3 Approximate Value Iteration

These max-plus tools can be used to compute a tractable approximation of the optimal value function of an
MDP.

68

3.3. Approximate Value Iteration

3.3.1 Projection Method

A simple way to approximate the value function has been proposed in Akian et al. (2008), as an extension
of the method of McEneaney (2003), both for control problems. Following Chandrashekar and Bhatnagar
(2014) and Bach (2019), we apply it to MDPs. The idea is to represent the value function as a max-plus linear
combination in a dictionary of functions, and to apply alternatingly the Bellman operator and a projection
onto the span of the dictionary: Vk+1 = WW+TVk. Hence if Vk is represented as Wαk, then αk+1 is given
by αk+1 = W+TWαk, where the operator W+TW : RW → RW is computed by:

αk+1(w) = inf
s∈S

max
w′∈W

γαk(w′) + Tw′(s)− w(s). (3.13)

This computation is a min/max problem, which is not easy to solve in general. If S is finite, this requires to
compute |S| · |W| values at each iteration.

3.3.2 Variational Method

A slightly more involved approximation method has been also proposed by Akian et al. (2008). Let us define
two dictionaries of functions W and Z. W plays the same role as before, while Z is a set of test functions
which can be taken equal to W. The value iteration recursion Vk+1 = TVk is replaced by a variational
formulation:

〈z, Vk+1〉 = 〈z, TVk〉 ∀z ∈ Z, (3.14)

of which we consider the maximal solution in span(W), given by (Akian et al., 2008, Proposition 4): Vk+1 =
WW+Z>+Z>TVk. It can be interpreted as a first projection on the min-plus span generated by Z, before
a second projection on the max-plus span of W. Again if Vk is represented by Wαk, we have the following
recursion:

αk+1 = W+Z>+Z>TWαk. (3.15)

The operator W+Z>+Z>TW : RW → RW decomposes as M ◦ K, with K = Z>TW : RW → RZ and
M = W+Z>+ : RZ → RW. The recursion may be recast as:

βk+1(z) = Kαk(z) = sup
s∈S

z(s) + max
w∈W

γαk(w) + Tw(s)

= max
w∈W

γαk(w) + 〈z, Tw〉 (3.16)

αk+1(w) = Mβk+1(w) = inf
s∈S
−w(s) + min

z∈Z
βk+1(z)− z(s)

= min
z∈Z

βk+1(z)− 〈z, w〉. (3.17)

The operator W+Z>+Z>TW is a γ-contraction, hence the recursion will converge with linear rate to the
unique fixed point. An interesting property is that the |Z| · |W| values 〈z, Tw〉 for (z, w) ∈ Z ×W can
be precomputed at a cost that is independent of the horizon 1/(1 − γ) of the MDP. The main difficulty
here is their prior computation. Unlike in Bach (2019) where S is finite, for a continuous state space these
computations might only be performed approximately.

69

Chapter 3. Max-Plus Discretization of Deterministic Markov Decision Processes

3.3.3 Basis Functions and Clustered MDP

Discrete versions of the MDP can be built from the preceding approximation methods with W a set of max-
plus indicators corresponding to a partition of the state space, as mentioned earlier. Indeed, when W = Z

and the (wi)1≤i≤n are max-plus indicators, the above operator M is the identity and W+W>+W>TW =
W>TW (a max/max problem), to be compared with W+TW (a min/max problem) for the projection
method. Note that with the approximate indicators introduced below, M will not be equal to the identity,
even though W = Z.

With max-plus indicators and the variational method, the approximate value iteration becomes:

αk+1(w) = max
w′∈W

〈w, Tw′〉+ γαk(w′), (3.18)

which we interpret as classical value iteration on the MDP formed with the clusters (A(w))w∈W as states,
and as rewards the maximal achievable reward going from one cluster to the other, that is:

R(w,w′) = 〈w, Tw′〉 = sup
s∈S

w(s) + Tw′(s)

= sup
s∈A(w)

max
a∈A s.t.

ϕa(s)∈A(w′)

r(s, a), (3.19)

withR(w,w′) = −∞ if {(s, ϕa(s)) | s ∈ S, a ∈ A}∩A(w)×A(w′) = ∅. This reduced problem is appeal-
ing but hard to solve in a continuous state space. Even finding if R(w,w′) is finite is both a controllability
and reachability problem (Liberzon, 2011), whose solution is not straightforward. A differentiable version
of the max-plus indicators is the following:

w(s) = −c dist(s,A(w))2, (3.20)

where dist(s,A(w)) is the euclidean distance between s and the set A(w), and c > 0 is a hyperparameter,
typically chosen large compared to the scale of the true value function. We refer to such basis functions as
soft indicators. When c→ +∞, we recover the preceding clustered MDP and elements in the span of W are
almost (asymptotically) piecewise constant with respect to the partition (see Figure 3.1).

3.3.4 Oracle Subproblem

We now take a closer look at the subproblems that must be solved before running the approximate value
iteration recursion, namely 〈z, w〉 and 〈z, Tw〉 for the variational method. First, 〈z, w〉 is independent of the
MDP and can be computed in closed form for general choices of dictionaries, and:

〈z, Tw〉 = sup
s∈S

z(s) + Tw(s)

= sup
s∈S, a∈A

z(s) + r(s, a) + γw(ϕa(s)). (3.21)

This is a discrete-time control problem, easier than the original one (finding the optimal value function)
since its horizon is one time step. As mentioned by Akian et al. (2008), this is a perturbed version of the
computation of 〈z, w〉 as soon as T is close to the identity, that is, in the context of optimal control when the
time-discretization of the MDP is small.

70

3.4. Error Analysis

In Akian et al. (2008), 〈z, Tw〉 is approximated using the Hamiltonian of a control problem. For general
MDPs, we may look at this problem from a different perspective. It is an optimization problem, and, as noted
by Akian et al. (2008), even though computing 〈z, Tw〉 is not a concave maximization problem, choosing
strongly concave basis functions z and w has a regularizing effect.

Hence an approximation of 〈z, Tw〉 can be computed by gradient ascent on

fa(s) := z(s) + r(s, a) + γw(ϕa(s)), (3.22)

for each a ∈ A, and then taking the maximum on a. For differentiable z,w, ϕa and r(., a), fa is differentiable
with:

∇fa(s) = ∇z(s) +∇r(s, a) + γJϕa(s)>∇w(ϕa(s)), (3.23)

where Jϕa denotes the Jacobian of ϕa and∇r is the gradient of r with respect to s. Seeing this problem like
Akian et al. (2008) as a perturbation of 〈z, w〉, an efficient initialization for gradient ascent on this problem
is given by s0 ∈ argmaxs z(s) + w(s). Furthermore, for continuous basis functions, reward function and
dynamics, since S is compact by assumption, the supremum in 〈z, Tw〉 is a maximum attained at some
(s, a) ∈ S×A. The full procedure to obtain the approximate value function is described in Algorithm 1.

As noted in Bach (2019), the Bellman operator T can be replaced by T ρ for some integer ρ ≥ 1, replacing
accordingly γ by γρ. This makes the computation of 〈z, T ρw〉 more complicated, as it requires to run |A|ρ
gradient ascents. A simplification is to consider only sequences of constant actions for ρ steps.

Comparison with existing methods. Approximate value iteration is usually performed by fitted value
iteration (Sutton and Barto, 2018), with a linear parameterization of the value function. With max-plus
parameterizations, the projections are computed efficiently, which spares the repeated use of stochastic opti-
mization, and leads to an explicit error analysis. Nonlinear approximations can be handled with Q-learning
(see Mehta and Meyn (2009) for continuous MDPs), with weaker convergence guarantees (Sutton and Barto,
2018).

Projection method. The projection method (3.13) requires to approximate 〈w,−Tw′〉, a problem which
does not benefit from the same regularizing effect of concave basis functions. Indeed, taking for T the
identity operator, this is not even a concave problem. Numerically, this problem is more challenging than the
previous one. This concern has already been raised by McEneaney (2003) for unbounded S, with the caveat
that the basis functions must be chosen such that 〈w,−Tw′〉 is finite, i.e., such that w − Tw′ has a finite
maximum. In practice this must be checked for each particular dynamics. This is the reason why we prefer
to focus on the variational method, possibly with W = Z.

3.4 Error Analysis

3.4.1 Error Decomposition

The operator T̄ := WW+Z>+Z>T is γ-contractive, since T is γ-contractive and both WW+ and Z>+Z>

are non-expansive. If the 〈z, w〉 and 〈z, Tw〉 are computed exactly, the error of the exact max-plus approx-
imation is controlled only by projection errors. In practice, the values Kz,w := 〈z, Tw〉 are approximated

71

Chapter 3. Max-Plus Discretization of Deterministic Markov Decision Processes

Algorithm 1 Max-plus Approximate Value Iteration

Input: MDP, W and Z, gradient steps k, step size ξ
Output: approximate value function V

Precomputations:
1: for z ∈ Z, w ∈W do
2: s, 〈z, w〉 ← argmax,maxs∈S z(s) + w(s)
3: for a ∈ A do
4: 〈z, Tw〉 ← z(s) + r(s, a) + w(ϕa(s))
5: for i = 1 to k do
6: g ← ∇z(s) +∇r(s, a) + Jϕa(s)>∇w(ϕa(s))
7: s← s+ ξg
8: f ← z(s) + r(s, a) + w(ϕa(s))
9: 〈z, Tw〉 ← max{f, 〈z, Tw〉}

Reduced value iteration:
10: α← 0
11: repeat
12: for z ∈ Z do
13: β(z)← maxw∈W γα(w) + 〈z, Tw〉
14: for w ∈W do
15: α(w)← minz∈Z β(z)− 〈z, w〉
16: until convergence
17: return V = Wα

by some K̂z,w obtained by gradient ascent with some error due to the finite number of iterations and to the
non-concavity of the objective function.

Proposition 1 (Decomposition of errors). Let V ∗ be the optimal value function of the MDP, V̂ = Wα̂,
where α̂ is the fixed point of M ◦ K̂, and

‖K̂ −K‖∞ := sup
z∈Z,w∈W

|K̂z,w −Kz,w|. (3.24)

Then:

‖V̂ − V ∗‖∞ ≤
1

1− γ
(
‖WW+V ∗ − V ∗‖∞

+‖Z>+Z>V ∗ − V ∗‖∞ + ‖K̂ −K‖∞
)
. (3.25)

Proof. Let V∞ be the unique fixed point of T̄ . We have V∞ = T̄ V∞, V ∗ = TV ∗ and T̄ is γ-contractive.
Then, adding and subtracting T̄ V ∗, we get:

‖V∞ − V ∗‖ ≤ ‖T̄ V∞ − T̄ V ∗‖+ ‖T̄ V ∗ − V ∗‖
≤ γ‖V∞ − V ∗‖+ ‖WW+Z>+Z>V ∗ − V ∗‖. (3.26)

Grouping the instances of ‖V∞ − V ∗‖ in (3.26), and adding and subtracting WW+V ∗, we obtain:

(1− γ)‖V∞ − V ∗‖ ≤ ‖WW+Z>+Z>V ∗ −WW+V ∗‖

72

3.4. Error Analysis

+ ‖WW+V ∗ − V ∗‖
≤ ‖Z>+Z>V ∗ − V ∗‖+ ‖WW+V ∗ − V ∗‖, (3.27)

because the projection WW+ is non-expansive.

On the other hand, inserting T̄ V̂ , and using the γ-contractivity of T̄ , we get:

‖V̂ − V∞‖ ≤ ‖V̂ − T̄ V̂ ‖+ γ‖V̂ − V∞‖. (3.28)

Since V̂ = Wα̂ and α̂ = M ◦ K̂α̂, this writes:

(1− γ)‖V̂ − V∞‖ ≤ ‖WW+Z>+K̂α̂−WW+Z>+Kα̂‖
≤ ‖Z>+K̂α̂− Z>+Kα̂‖
≤ ‖K̂α̂−Kα̂‖
≤ ‖K̂ −K‖∞. (3.29)

The last two inequalities result from the reverse triangle inequality for the infinity norm, which writes:

|max
w

φ(w)−max
w

ψ(w)| ≤ |‖φ‖∞ − ‖ψ‖∞| ≤ ‖φ− ψ‖∞. (3.30)

Indeed, for any s ∈ S, and any functions u and v :

|Z>+u(s)− Z>+v(s)| = |min
z
{u(z)− z(s)} −min

z
{v(z)− z(s)}|

= |max
z
{z(s)− u(z)} −max

z
{z(s)− v(z)}|

≤ ‖u− v‖∞. (3.31)

Similarly, from the definitions of K̂ and K, we get:

|K̂α̂(z)−Kα̂(z)| = |max
w
{γα̂(w) + K̂z,w} −max

w
{γα̂(w) +Kz,w}|

≤ ‖K̂ −K‖∞.

The result follows from combining the upper-bound (3.29) on ‖V̂ − V∞‖ with the upper-bound (3.27) on
‖V∞ − V ∗‖.

In numerical implementations, the fact that the reduced value iteration algorithm is stopped after a finite
number of iterations causes a last source of error. Since the convergence is fast (linear), it will often be
negligible compared to the other approximations.

Proposition 2 (Convergence and optimality criterion for reduced value iteration). For α0 ∈ RW, let αk+1 =
MK̂αk for k ≥ 1. Then denoting as α̂ the unique fixed point of M ◦ K̂:

‖Wαk −Wα̂‖∞ ≤ ‖αk − α̂‖∞ ≤ γk‖α0 − α̂‖∞. (3.32)

73

Chapter 3. Max-Plus Discretization of Deterministic Markov Decision Processes

3.4.2 Projection Error

For any V ∈ RS, W>+W>V = −WW+(−V), so we can only consider the projection error for WW+,
i.e., the lower projection.

Proposition 3 (Approximation properties of soft-indicators). Let c1, c2 > 0 and (A1, ..., An) a partition of S
where each Ai is convex, compact and non-empty, and let D = max1≤i≤n diam(Ai), where diam denotes
the diameter diam(Ai) = maxs,s′∈Ai ‖s− s′‖. Let W1 = {w1

1, ..., w
1
n} and W2 = {w2

1, ..., w
2
n} defined by:

∀i ∈ {1, ..., n}, ∀s ∈ S,

{
w1
i (s) = −c1 dist(s,Ai)

w2
i (s) = −c2 dist(s,Ai)2.

(3.33)

If V is Lispchitz continuous with Lipschitz constant L, and c1 ≥ L, c2 ≥ L
4D , then

‖V −W1W
+
1 V ‖∞ ≤ LD (3.34)

‖V −W2W
+
2 V ‖∞ ≤ LD + L2

4c2
≤ 2LD. (3.35)

Proof. For s ∈ S, we have:

WW+V (s) ≤ max
w

w(s) + V (s)− w(s) ≤ V (s). (3.36)

On the other hand, there exists i ∈ {1, ..., n} such that s ∈ Ai. Then:

WW+V (s) = max
w

w(s) + inf
s′
V (s′)− w(s′)

≥ wi(s)︸ ︷︷ ︸
=0

+ inf
s′
V (s′)− wi(s′). (3.37)

The Lipschitz continuity of V implies that for p ∈ {1, 2}:

WW+V (s) ≥ V (s) + inf
s′∈S

{
cp dist(s′, Ai)p − L‖s− s′‖

}
, (3.38)

and the results follow from using that ‖s− s′‖ ≤ diam(Ai) + dist(s′, Ai).

Unlike for smooth or Lipschitz-continuous basis functions (Akian et al., 2008; Bach, 2019), there is no
dependency in c in the bound, for c large enough. This avoids oscillations of the approximation when c is
chosen too large and simplifies parameter selection.

3.5 Comparison with the Method of Akian, Gaubert & Lakhoua for Control
Problems

Deterministic MDPs and optimal control problems are closely related. Applying our method to an MDP that
is a time-discretization of a control problem is similar to directly applying the original method by Akian et al.

74

3.5. Comparison with the Method of Akian, Gaubert & Lakhoua for Control Problems

(2008) to the control problem. Let 0 ≤ η < 1 be a discount factor, r̄ : S× A → [−R,R], f : S× A → Rd

and define the optimal control problem (Fleming and Soner, 2006):

sup
a(.)

∫ +∞

0
ηtr̄(s(t), a(t))dt, (3.39)

with s(0) = s0, and for all t ≥ 0, ṡ(t) = f(s(t), a(t)), (s(t), a(t)) ∈ S×A.

3.5.1 Time-Discretization of a Control Problem

A control problem can be approximated by a state-continuous MDP by time-discretization, using a semi-
Lagragian scheme (Capuzzo Dolcetta, 1983; Falcone, 1987). The corresponding time-discretized MDP with
step τ > 0 and Euler scheme is:

r(s, a) = τ r̄(s, a), ϕa(s) = s+ τf(s, a), γ = ητ . (3.40)

For τ > 0, the continuous- and discrete-time Bellman operators Sτ , Tτ : RS → RS are defined by, for each
u ∈ RS:

(Sτu)(s) := sup
a(.)

∫ τ

0
ηtr̄(s(t), a(t))dt+ ητu(s(τ)) (3.41)

(Tτu)(s) := max
a

τ r̄(s, a) + ητu(s+ τf(s, a)). (3.42)

Under regularity assumptions, the value function of the MDP converges to the value function of the control
problem (Falcone and Ferretti, 2013). This is obtained in a similar way as the Hamilton-Jacobi-Bellman
(HJB) equation (Fleming and Soner, 2006). Let us also mention a recent analysis of time-discretization in
reinforcement learning by Tallec et al. (2019).

3.5.2 Hamiltonian Approximation for the Oracle Subproblem

For a continuous-time control problem, in the max-plus approximation method, the role of T is played by
the continuous Bellman operator Sτ . The HJB equation provides a first order approximation (Akian et al.,
2008) of Sτw with respect to the horizon τ :

Sτw(s) = sup
a(.)

∫ τ

0
ηtr̄(s(t), a(t))dt+ ητw(s(t+ τ))

= sup
a∈A

τ r̄(s, a) + o(τ) + (1 + τ log η + o(τ)) · (w(s) + τ∇w(s) · f(s, a) + o(τ))

= (1 + τ log η)w(s) + τH(s,∇w) + o(τ), (3.43)

where H(s, p) := supa∈A r̄(s, a) + p · f(s, a) is the Hamiltonian of the control problem. Instead of opti-
mizing over S, a second approximation made by Akian et al. (2008) is to consider only

s0 ∈ S(z, w) := argmax
s

z(s) + w(s), (3.44)

since 〈z, Tw〉 is a perturbation of 〈z, w〉 for τ small. The final approximation is:

〈z, Tw〉 ' sup
s∈S(z,w)

z(s) + (1 + τ log η)w(s) + τH(s,∇w). (3.45)

75

Chapter 3. Max-Plus Discretization of Deterministic Markov Decision Processes

This is a valid approximation up to O(τ
√
τ) terms, if the Hamiltonian is Lipschitz-continuous and z + w

is strongly concave. This prevents the use of Lipschitz bases for Z and W at the same time in Akian et al.
(2008). Without these assumptions, the approximation is weaker, in O(τ), breaking the convergence of the
method. In this case, one cannot avoid optimizing on s. McEneaney (2003) and Akian et al. (2008) use the
first order approximation, but τ is a parameter of their method that can be made arbitrarily small. In the
context of MDPs, τ is fixed and in principle it cannot be modified while solving the MDP. Besides, some
MDPs are not natural time-discretizations of control problems.

For control problems, time-discretization and Hamiltonian approximation result in the same approximation
of 〈z, Tw〉, up to o(τ) terms (or O(τ2) assuming more regularity on w):

K̂z,w = sup
s,a

z(s) + τ r̄(s, a) + ητw(s+ τf(s, a))

= sup
s
z(s) + (1 + τ log η)w(s) + τH(s,∇w) + o(τ). (3.46)

If τ is not negligible, the Hamiltonian approximation is no longer valid, nor is the approximate compu-
tation of 〈z, Sτw〉. On the other hand, the computation of 〈z, Tτw〉 is still valid, but the MDP no longer
approximates the control problem.

After convergence of the reduced value iteration algorithm, our method provides an approximation of the
value function of the control problem with an error of order

O
(
D/τ + τ + ‖K̂ −K‖∞/τ

)
, (3.47)

where D is the maximal diameter of the partition, which is similar to Akian et al. (2008). Reaching a fixed
precision requires a number of basis functions exponential in the dimension d. Exploiting the structure of
the problem like Gaubert et al. (2011) may reduce this effect.

Remark on the use of T ρ. As previously mentioned, T ρτ can be used for ρ ≥ 1, instead of Tτ . In the error
bounds, τ is replaced by τρ, which can be advantageous for D fixed. Considering only constant actions
during ρ steps, T ρτ is very close to Tτρ, up to the Euler scheme used to compute the dynamics (ρ steps of size
τ vs. one step of size τρ).

3.6 Adaptive Selection of Basis Functions

From a partition (A1, ..., An) of the state space, we define a dictionary W = Z of soft-indicators wi(.) =
−c dist(., Ai)2. Running Algorithm 1 with this dictionary returns a value function that is almost piecewise
constant with respect to the partition (when c is large). This is a way to discretize the MDP, but the per-
formance of the final policy will depend on the partition (Bernstein and Shimkin, 2008; Munos and Moore,
2002). Typically, a uniform partition of S might not be the best choice for all MDPs. For instance some
areas of S with very low optimal value function are usually not encountered in optimal trajectories, hence
spending computational power there would be useless. On the contrary, a sharper approximation of the value
function in other areas is critical to the performance of the policy.

We propose an algorithm to build the partition adaptively, with a simple greedy heuristic. Starting from a
coarse partition, we compute the approximate value function, and then we select one of the (Ai)1≤i≤n that

76

3.7. Experiments

we want to refine, according to some criterion to be described later. Then, we split this cluster into new sub-
clusters partitioning it, and replace it by them in the partition. If the clusters are rectangular parallelepipeds
in dimension d, a simple splitting strategy is to subdivide it into 2d smaller parallelepipeds, by a middle cut
along each dimension. In a two-dimensional state space, this corresponds to building a quadtree (Finkel and
Bentley, 1974). Formally, a cluster A with a soft-indicator w is split into C1, ..., C2d , such that:

A =
2d⋃
j=1

Cj with ∀i 6= j ∈ {1, ..., 2d}, Ci ∩ Cj = ∅. (3.48)

Criterion for cluster selection. The efficiency of the partition hinges on the strategy used to select the clus-
ter to be split at each step. We maintain a dictionary W of soft-indicators associated to a partition (A1, ..., An)
and another dictionary Z with partition (B1, ..., Bn). Following the idea of matching pursuit (Mallat and
Zhang, 1993), a simple heuristic is to split the cluster with highest Bellman error |TV (s) − V (s)|. Since
two dictionaries are maintained, the origin of this error will be shared between W and Z, which will lead to
a possibly different cluster selected in each dictionary.

We define a gridG = (s1, ..., sp) covering S, on which we evaluate the Bellman error. Assuming the 〈z, Tw〉
are computed exactly, after convergence of reduced value iteration, we obtain fixed points α and β such that:{

β = Kα = Z>TWα

α = Mβ = W+Z>+β.
(3.49)

Let V = Wα and U = Z>+β, we get V = WW+U and Z>+Z>TV = U , and then the decomposition:

V − TV = (V − Z>+Z>TV) + (Z>+Z>TV − TV)
= (V − U) + (U − TV). (3.50)

For s ∈ G, |V (s)− TV (s)| ≤ |V (s)−U(s)|+ |U(s)− TV (s)|. The first term is the difference between U
and its lower projection on the span of W, the second one between TV and its upper projection on the span
of Z. This suggests to:

• select cluster A 3 s ∈ argmaxs∈G U(s)− V (s) in W,

• select cluster B 3 s ∈ argmaxs∈G U(s)− TV (s) in Z.

This strategy greedily targets areas of S where the projection errors should be reduced and locally refines
the dictionaries. One could imagine other selection criteria, such as favoring areas with high value function
or near the initialization of the trajectories if it is fixed. Alternative strategies include using basis functions
depending on a subset of the state variables to capture local lower-dimensional dependencies (Bach, 2019).
Furthermore, online methods could be applied to incorporate exploration, especially techniques based on
upper-confidence bounds, as done by Bernstein and Shimkin (2008) on a similar problem.

3.7 Experiments

Setting. We test our method on two standard deterministic MDPs from the gym library of reinforcement
learning environments (Brockman et al., 2016). Both are time-discretizations of control problems, with

77

Chapter 3. Max-Plus Discretization of Deterministic Markov Decision Processes

(a) An initial state of the Mountain environment. (b) An initial state of the Cartpole environment.

Figure 3.2: The two environments used in our experiments. The aim in Mountain is to bring the car to the
top right corner, although it does not have enough throttle to climb the hill at once. In Cartpole, the aim
is to keep the pole standing upright – an unstable position – by balancing the cart sideways.

Figure 3.3: Average performance of the three approximation methods on Mountain as a function of the
number of parameters.

state dimension 2 in Mountain, 4 in Cartpole. Sample states of the two environments are displayed in
Figure 3.2. We test uniform max-plus partitions and the adaptive basis procedure, with respectively ρ = 5
and ρ = 1 for problems 1 and 2. For comparison, we also run standard value iteration on discretizations of
the MDPs. To ensure differentiability, the reward function is slightly smoothed as a sigmoid function for all
three methods; γ is set identical across methods (γ = 0.999 in problem 1, 0.99 in problem 2).

The optimal value function V ∗ being unknown, the methods cannot be evaluated by ‖V − V ∗‖∞. Instead
we evaluate the performance of the greedy policy π with respect to V on the task. The standard performance
criterion proposed by gym is the cumulative reward averaged on 100 consecutive runs. The randomness
only comes from the initialization of the trajectories drawn from a Gaussian around equilibrium positions.
The results are plotted in Figures 3.3 and 3.4. We give the mean cumulative reward in solid line, as well as
the first and third quartiles in shaded colors. The x-axis represents the number of parameters of the value
function, that is, either the number of basis functions in the dictionaries W or Z, or the number of states in
the direct discretization of the MDP.

78

3.7. Experiments

Figure 3.4: Average performance of the three approximation methods on Cartpole as a function of the
number of parameters.

Results. Value iteration on the discretized MDP requires a very sharp discretization to get an efficient
policy. While it is still achievable for such small MDPs, it is not reliable in higher dimension. The max-plus
approximation computes almost piecewise constant value functions that lead to efficient policies for a much
smaller number of parameters. On Mountain, the number of parameters is reduced from 105 to 102 from
a direct discretization to the max-plus discretization, for similar performances of the policies. Finally, the
adaptive basis selection method further improves the ratio between performance and number of parameters.
It provides compact representations of V , faster to compute and leading to faster online evaluations of π
during inference. However, after a few steps of greedy selection, the behavior of the adaptive approximation
starts to degrade. Empirically, this corresponds to one area of the state space being selected multiple times,
hence leading to small clusters concentrated in only one area. As mentioned in Section 3.6, it may be
necessary to incorporate an exploration term in the selection criterion to prevent this effect.

In Figure 3.6, we plot the value functions obtained on Mountain with the non-adaptive (3.6a) and adap-
tive (3.6b) methods. As expected, the adaptive method produces a discretization whose mesh is not uniform
over the state space. For reference, we also plot in Figure 3.6c the value function obtained with a very fine
discretization of the continuous control problem, which is close to the true value function of the problem.

Interpretation. The fact that, on our two examples, the max-plus discretization is more efficient than a
simple naive discretization – in terms of number of bases of the value function (see Figures 3.3 and 3.4) – can
be interpreted as follows. Imagine a continuous MDP where the reward is uniformly zero on the left half, and
one on the right half (see Figure 3.5). Suppose that the actions can move the state to the left or right by a small
amount. If the discretization is coarse-scaled, e.g., with two clusters, the naive discretization will result in a
trivial dynamics without any movement, because the next state will collapse to the previous one. In contrast,
the max-plus discretization will capture one transition between the left and right clusters, by optimizing over
the state space. Of course, there is an additional computational cost to this optimization. If the discretization
is fine-scaled, the benefits of the max-plus discretization is less obvious, and both methods are expected to
perform similarly. Overall, the basis functions incorporate a notion of local proximity between neighboring
clusters, which is absent from the naive discretized MDP.

79

Chapter 3. Max-Plus Discretization of Deterministic Markov Decision Processes

Ak A k+1

sk sk +1

a

projection

Ak A k+1

sk sk +1s
a

s 'r=0
r=1

A0 A1

sk sk +1

a r=1

.. .

proj.

A0 A1

sk sk +1

a r=1

.. .

s s '

Naive Discretization Max-Plus Discretization

Coarse
Discretization

Tight
Discretization

Figure 3.5: Comparison between the naive and the max-plus discretizations, at coarse and tight scales.

3.8 Conclusion

The max-plus linear approximation method for deterministic continuous-state MDPs with a suitable choice
a basis functions provides an intuitive state-discretization. While it is still subject to the curse of dimension-
ality, the discretization can be adapted to a specific MDP and turns out to be effective in numerical examples.
The same approach can be adapted to the Q-function for deterministic MDPs, although the potential bene-
fits are unclear in a model-based setting. In order to make this method applicable to generic reinforcement
learning problems, two extensions are needed:

• an extension to the model-free setting, based on observations. A first model-free online approach has
been recently proposed by (Gonçalves, 2021);

• an extension to stochastic MDPs. Such an extension has been proposed for stochastic control (in
continuous time) by Akian and Fodjo (2017).

80

3.8. Conclusion

(a) Non-adaptive max-plus discretization.

(b) Adaptive max-plus discretization.

(c) Reference value function computed from a fine discretization.

Figure 3.6: Value functions computed on Mountain, along with a sample trajectory. The goal is on the
upper-right corner (reaching the right hill with sufficient speed), corresponding to larger values of V . 81

Chapter 3. Max-Plus Discretization of Deterministic Markov Decision Processes

82

Chapter4
Fast and Robust Stability Region Estimation

for Nonlinear Dynamical Systems

Abstract. A linear quadratic regulator can stabilize a nonlinear dynamical system with a local
feedback controller around a linearization point, while minimizing a given performance crite-
rion. An important practical problem is to estimate the region of attraction of such a controller,
that is, the region around this point where the controller is certified to be valid. This is especially
important in the context of highly nonlinear dynamical systems. In this chapter, we propose two
stability certificates that are fast to compute and robust when the first, or second derivatives of
the system dynamics are bounded. Associated with an efficient oracle to compute these bounds,
this provides a simple stability region estimation algorithm compared to classical approaches
of the state of the art. We experimentally validate its application to both polynomial and non-
polynomial systems of various dimensions, including standard robotic systems, for estimating
regions of attraction around equilibrium points, as well as for trajectory tracking.

This chapter is based on our work Fast and Robust Stability Region Estimation for Nonlinear Dynamical
Systems, with Justin Carpentier and Francis Bach, published in the European Control Conference, 2021.

Contents
4.1 Introduction . 84
4.2 Preliminaries . 85
4.3 First-Order Robustness . 86
4.4 Second-Order Robustness . 89

4.4.1 Condition on the Sublevel Sets . 89

4.4.2 Two Upper Bounds on λ . 90

4.5 Iterative Algorithm . 92
4.5.1 Stability Certificates . 92

4.5.2 Oracle on the Derivatives . 92

4.5.3 Algorithm . 93

4.6 Trajectory Tracking . 93

83

Chapter 4. Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems

4.7 Numerical Experiments . 95
4.7.1 Definition of the Systems and Implementation Details 95

4.7.2 Results . 96

4.8 Implementation Summary . 97
4.9 Conclusion . 98

4.1 Introduction

Controlling a robot typically involves a global motion planning to steer the system from an initial position
to a target goal, as well as some local feedback corrections to accurately track the planned trajectory. For
instance, the combination of rapidly-exploring random trees (LaValle and Kuffner, 2001) and local trajectory
stabilization led to a fruitful feedback motion planning algorithm named LQR-trees, proposed by Tedrake
et al. (2010). In this algorithm, a locally optimal trajectory is computed between sampled points of the state
space. Each trajectory is then locally stabilized with a linear quadratic regulator (LQR). The aim is to design
a global controller by covering the whole state space with overlapping funnels, i.e., regions of attraction
(ROA) around trajectories. An important subproblem is to estimate such an ROA: a set of initial states that
the controlled dynamics brings back to an equilibrium. Crucially, it must be performed efficiently, as it will
be called repeatedly to cover a potentially large dimensional state space. Ideally, the estimation must be fast
to compute, but not overly conservative.

A controlled dynamical system can be stabilized around an equilibrium point with an adequate closed-loop
controller. It is possible to synthesize an optimal feedback controller for some stability criterion (Glover
et al., 1990), but a simply available candidate is nothing more than the LQR. We show a simple example
of stabilization in Figure 4.1. The stability of a region is commonly assessed with a Lyapunov function,
which again can be optimized (Giesl and Hafstein, 2015; Johansen, 2000), or not. This chapter focuses on
finding the largest estimate of the ROA for a given controller and a given Lyapunov function, both obtained
from LQR. The gold standard technique for this problem is based on sum of squares (SoS) programming
and provides high quality estimates. Yet it is limited to polynomial dynamics, and grows computationally
heavy in large dimensions, hence limiting its applicability in practice, especially in the context of robotics
where fast methods are needed to accurately control and stabilize the motions of the robot such as for legged
locomotion (Carpentier and Mansard, 2018b).

Another stake in robotics is robustness with respect to model misspecification or uncertainties. In particular,
there can be a shift between the behavior of a simulated robotic system and its physical counterpart (Singh
et al., 2018). Robust ROA estimation methods (Chesi, 2004) must account for the uncertainty on the parame-
ters of the dynamics. In particular, we focus on the case where the Jacobian or the Hessian of the dynamics is
known to be bounded. This applies to robust control, but also to perfectly known dynamics that are computa-
tionally hard to handle. Bounding the Jacobian or Hessian is possible analytically for some simple low-order
polynomial systems, or by sampling, taking advantage of automatic differentiation for complicated robotic
systems (Giftthaler et al., 2017). Interestingly, the bounds can be computed offline, in parallel, or experimen-
tally with a real physical system. With such information on the dynamics, our goal is to design fast, robust
ROA estimation methods, practical in large state dimensions.

Our main contribution is to propose a general ROA estimation framework for non-polynomial systems, which
is faster and simpler than SoS-based methods. The chapter is organized as follows. After introducing the

84

4.2. Preliminaries

principle of LQR stabilization in Section 4.2, we adapt in Section 4.3 an existing robust stability certificate
to systems with entry-wise uncertainty bounds on their Jacobians. In Section 4.4, we present stability cer-
tificates for systems with entry-wise bounds on their Hessians, and in Section 4.5, we propose an algorithm
adapting robust certificates to systems with varying derivatives. In Section 4.6, we extend the methods to the
trajectory tracking problem. In Section 4.7, we compare the robust certificates, as well as those provided by
SoS programming, on numerical examples of various dimensions. Finally, in Section 4.8, we summarize the
proposed framework. An implementation in Python is available online.

4.2 Preliminaries

We consider a nonlinear time-invariant control system:

ẋ = f(x, u), (4.1)

where x ∈ Rd, u ∈ Rm, with d,m ≥ 1. Assume there exists an equilibrium, without loss of generality at
(x0, u0) = (0, 0), that is f(0, 0) = 0, and that f is differentiable at the origin:

f(x, u) = ∂f

∂x

∣∣∣∣
0,0︸ ︷︷ ︸

A

x+ ∂f

∂u

∣∣∣∣
0,0︸ ︷︷ ︸

B

u+ o(x) + o(u). (4.2)

We assume that the pair (A,B) is controllable. For Q � 0, R � 0 symmetric matrices respectively of size
d× d and m×m, we define the infinite-horizon LQR cost (Liberzon, 2011):

J(x) :=
∫ +∞

0

(
x>(t)Qx(t) + u>(t)Ru(t)

)
dt, with x(0) = x. (4.3)

The cost-minimizing controller is known to be:

u(x) = −R−1B>Sx =: −Kx, (4.4)

where S is the symmetric positive definite solution of the algebraic Riccati equation (ARE), which exists
because (A,B) is controllable:

A>S + SA− SBR−1B>S = −Q. (4.5)

Under the closed-loop controller u(t) = −Kx(t), the system is autonomous with closed-loop dynamics:

ẋ = f(x,−Kx) =: g(x). (4.6)

In addition, the optimal cost-to-go V (x) := x>Sx is used as a Lyapunov function of the nonlinear system.
V is a Lyapunov function over a region R ⊂ Rd around 0, if V (0) = 0, V (x) > 0 in R \ {0}, and V̇ (x) < 0
in R (Slotine and Li, 1991). This certifies that the sublevel sets of V that are included in R belong to the ROA
of the equilibrium point: every trajectory beginning in this set will asymptotically stabilize to 0. In practice,
it is convenient to choose R as a sublevel set of V , to ensure that a trajectory starting in R remains in R. In
Figure 4.2, we show the ROA and the largest sublevel set included in R on a two-dimensional example.

85

Chapter 4. Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems

x0

Trajectory

3 2 1 0 1 2 3

1

3

2

1

0

1

2

3

2

x0

Phase plot

Figure 4.1: The double pendulum is stabilized from x0 to its bottom position with an LQR controller. Note
that since it is a stable equilibrium point, using a controller is not necessary, but this would be the case if we
wanted to stabilize the system to the – unstable – top position. Here, we have chosen the bottom position for
better readability.

If the dynamics were exactly linear, then one would have:

V̇ (x) = ∇V (x) · g(x) = 2x>Sg(x) = x>(SA+A>S − 2SBK)x
= x>(−Q− SBR−1B>S)x < 0, ∀x 6= 0. (4.7)

Hence in the linear case, the ROA is the whole state space. In this work we will consider variations of this
situation, and see how defects of linearity will affect this statement.

4.3 First-Order Robustness

In this section, we present a robust stability certificate that holds for the class of systems whose Jacobian
matrix is bounded by a known quantity.

A linear differential inclusion (LDI) (Aubin and Cellina, 1984) is the following set-valued control problem:

ẋ ∈ Ωx, x(0) = x0, (4.8)

where Ω is a convex subset of Rd×d, and Ωx := {Ax, A ∈ Ω}. The asymptotic stability of any dynamical
system belonging to the LDI can be expressed as a linear matrix inequality (LMI) for some specific choices
of Ω (Boyd et al., 1994). In particular, for Ω = {A0} we get a linear system, for Ω = Conv(A1, ..., AL) a
polytopic LDI (PLDI). Let C, ∆ and E be matrices of compatible dimensions and ‖.‖ a matrix norm, then
Ω = {A0 + C∆E | ‖∆‖ ≤ 1} represents a norm-bound LDI (NLDI); if in addition ∆ must be diagonal, we
get a diagonal NLDI (DNLDI).

86

4.3. First-Order Robustness

-5.0 -3.4 -1.7 0.0 1.6 3.3 5.0

(a) A modification of the Mountain environment from Brockman et al. (2016) (see also Chapter 3). Intuitively,
depending on the relative strength of the car compared to gravity, stabilization to 0 will be possible except at the
left-hand side.

4 2 0 2 4

x

4

2

0

2

4

x

(b) Phase plot (x and ẋ are the initial position and velocity of the car) showing which initial points can be stabilized
to 0. The points plotted in green are effectively stabilized to 0 in a simulated trajectory. Those in red are not: they
escape to the left. The labels “-” denote points for which a given quadratic function V is decreasing along the whole
trajectory, contrary to those labeled “+”. The points labeled “-” are a subset of the green points: those for which V
is a Lyapunov function. Finally, the light blue ellipse is the largest sublevel set of V where this condition holds. All
methods considered in this chapter are concerned with finding this maximal ellipsoid.

Figure 4.2: Study of the stability of different initial points on a simple two-dimensional system.

87

Chapter 4. Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems

The asymptotic stability of an LDI around 0, i.e., for all initial conditions, the trajectories converge to 0, can
be certified by a Lyapunov function of the form V (x) = x>Px. This amounts to finding:

P � 0 such that A>P + PA ≺ 0, ∀A ∈ Ω. (4.9)

This problem reduces to an LMI and is classically solved by interior-point methods (Nesterov and Ne-
mirovskii, 1994) for general choices of Ω. For example, in a PLDI, it reduces to a finitely constrained LMI,
with one constraint at each of the vertices of the polytope Ω.

LDIs are used to model uncertainty in linear systems. Any differentiable dynamical system with an equilib-
rium at the origin and with bounded Jacobian (including the closed loop system in equation (4.6)) belongs
to a suitable LDI, written as an uncertain linear system:

ẋ = A(x)x, A(x) ∈ Ω. (4.10)

Ω is a convex set of matrices that accounts for nonlinearities, uncertainties or time-variations of the dynamics.
In particular, Ω can bound the deviation of a nonlinear system ẋ = g(x) from its linearization ẋ = Jg(0)x.
This is similar to the problem considered by Topcu and Packard (2007), except that the perturbations lie in a
closed convex set instead of a semialgebraic set.

For i, j ∈ {1, ..., d}, x ∈ Rd, let δij(x) := A(x)ij − (A0)ij , the entrywise deviations of the Jacobian of the
dynamics from a given matrix A0. Suppose we are given individual upper bounds on each deviation:

∀i, j ∈ {1, ..., d}, vij := sup
x∈Rd

|δij(x)|. (4.11)

Such bounds can be computed in closed form in some simple cases, or estimated by sampling, as will be
discussed in Section 4.5.2. Stability is readily studied (Boyd et al., 1994) if Ω is a convex hull (PLDI) or a
matrix ball (NLDI), which we now specify for our problem. Entrywise bounds can be fitted in both settings.
Yet the description of the corresponding PLDI is intractable in large dimension: the number of vertices
required to describe Ω scales as 2d. This is why we opt for the NLDI.

The following description of Ω with a DNLDI has polynomial length. Let 1d := (1 ... 1), 0d := (0 ... 0),

∆ := Diag
(
δ11
v11

, ...,
δ1d
v1d

, ... ,
δd1
vd1

, ...,
δdd
vdd

)
∈ Rd

2×d2
, (4.12)

C :=

1d 0d
0d

. . .
1d

 = Id ⊗ 1d ∈ Rd×d
2
, (4.13)

E :=
[
E1 ... Ed

]>
∈ Rd

2×d, withEi = Diag(vi1, ..., vid). Hence ‖∆‖2 =
√
λmax(∆>∆) = σmax(∆) ≤

1, and the system belongs to the DNLDI defined by

Ω = {A0 + C∆E | ‖∆‖ ≤ 1, ∆ diagonal}. (4.14)

Checking the asymptotic stability of a DNLDI is an LMI feasibility problem derived by applying the S-
procedure (Boyd et al., 1994), resulting in the following proposition.

88

4.4. Second-Order Robustness

Proposition 4. Let ẋ = A(x)x an uncertain linear system with entrywise bounded Jacobian. A sufficient
condition for its global asymptotic stability at 0 is the feasibility of the following LMI, for A0, C,E defined
as above:

Find P � 0 ∈ Rd×d, Λ � 0 ∈ Rd
2×d2

diagonal such that:[
A>0 P + PA0 + E>ΛE PC

C>P −Λ

]
≺ 0. (4.15)

One may optimize both P and Λ to obtain a Lyapunov function, or use a fixed predefined value of P , e.g., S
from the LQR, to check if V (x) = x>Px is a valid Lyapunov function.

4.4 Second-Order Robustness

Let us derive robust stability certificates like in the previous section, except that now, they hold for a class of
systems whose Hessian tensor is bounded by a known quantity.

4.4.1 Condition on the Sublevel Sets

Let ϕ : Rd → Rd, such that each ϕk is twice continuously differentiable with bounded Hessian on a closed
ball B centered around 0. Then, using Taylor’s formula, for any x ∈ Rd, there exists a symmetric matrix
Hk(x) such that for all k ∈ {1, ..., d}:

ϕk(x) = ϕk(0) +∇ϕk(0)>x+ 1
2x
>Hk(x)x, (4.16)

with Hk
ij(x) = 2

∫ 1

0
(1− t) ∂2ϕk

∂xi∂xj
(tx)dt.

Hence ∀i, j, k, ∀x ∈ B, |Hk
ij(x)| ≤ maxy∈B

∣∣∣ ∂2ϕk
∂xi∂xj

(y)
∣∣∣. Note that this is also true if B is an ellipsoid

around 0. This applies to the function g of equation (4.6):

gk(x) = fk(x,−Kx) = (A−BK)k·x+ 1
2x
>Hk(x)x, (4.17)

where Xk· denotes the k-th row-vector of a matrix X . The time derivative of the candidate Lyapunov
function is:

V̇ (x) = 2x>S
(

(A−BK)x+ 1
2(x>Hk(x)x)k∈{1,...,d}

)

= x>(−Q− SBR−1B>S +
d∑

k=1
(Sk·x)Hk(x))x. (4.18)

Let Bρ := {x | x>Sx ≤ ρ} for ρ > 0, a sublevel set of V . A sufficient condition for Bρ to be an ROA around
0 is that −Q− SBR−1B>S +

∑
k(Sk·x)Hk(x) ≺ 0 for all x ∈ Bρ. Let M := Q+ SBR−1B>S � 0, the

condition is equivalent to:

∀x ∈ Bρ,
d∑

k=1
(Sk·x)H̃k(x) ≺ Id, (4.19)

89

Chapter 4. Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems

where H̃k(x) := M−1/2Hk(x)M−1/2. We denote by H̃(x) the tensor composed of the matrices H̃k(x), for
k ∈ {1, ..., d}.

The goal is to find the largest ρ such that condition (4.19) holds, which will in turn prove that Bρ is an ROA
around 0. To simplify this problem, we will decouple the two dependencies in x. On the one hand, the
contribution of Sk·x will be bounded by two different bounds that we present below. On the other hand, the
tensor H̃(x) is bounded globally, independently from ρ. Of course, this is not always possible in general,
and a tighter analysis of the Hessian with local bounds depending on ρ will be discussed in Section 4.5. For
now, assume that we are given an oracle on the magnitude e>i H̃

k(x)ej (ei being the i-th unit vector) of H̃(x)
along d2 directions for each matrix H̃k(x), of the form:

∀x, H̃(x) ∈ Ξ := {T ∈ Rd
3 |∀i, j, k, |T kij | ≤ ukij , (T k)> = T k}, (4.20)

for some d× d× d tensor U of nonnegative real numbers ukij , with (Uk)> = U for all k ∈ {1, ..., d}.

A relaxation of condition (4.19) is then:

sup
x>Sx≤ρ

sup
T∈Ξ

λmax

(
d∑

k=1
(Sk·x)T k

)
< 1. (4.21)

With a simple change of variable and rescaling, the largest ρ fulfilling the above condition is then given by:

ρ = 1
λ2 , where λ := sup

‖y‖2≤1
sup
T∈Ξ

λmax

(
d∑

k=1
(S1/2
k· y)T k

)
. (4.22)

4.4.2 Two Upper Bounds on λ

The first bound is based on the following fact:

sup
‖y‖2≤1

sup
T∈Ξ

‖
d∑

k=1
(S1/2
k· y)T k‖2 ≤ sup

‖y‖2≤1

d∑
k=1
|S1/2
k· y| sup

Tk∈Ξk
‖T k‖2, (4.23)

where Ξk is the projection of Ξ onto its k-th coordinate subspace.

Let Z be a matrix with rows Zk· :=
(
supT∈Ξk ‖T k‖2

)
S

1/2
k· , then

λ ≤ sup
‖y‖2≤1

‖Zy‖1 ≤
√
d sup
‖y‖2≤1

‖Zy‖2 =
√
d‖Z‖2, (4.24)

where ‖.‖2 denotes both the Euclidean norm and the corresponding matrix induced norm. With equation
(4.22), this guarantees that Bρb is an ROA for

ρb := 1
d‖DS1/2‖22

, with D = Diag
(
(sup
Tk∈Ξk

‖T k‖2)k
)
. (4.25)

The following lemma explains how to compute the entries of D.

Lemma 1. Let V be a nonnegative symmetric d× d matrix with entries (vij). Let ξ be the set of symmetric
d× d matrices A such that for all i, j ∈ {1, ..., d}, |Aij | ≤ vij . Then:

max
A∈ξ

‖A‖2 = ‖V ‖2. (4.26)

90

4.4. Second-Order Robustness

Proof. Since ξ is centered around 0, we only look for the largest eigenvalue:

sup
‖x‖2≤1, A∈ξ

x>Ax = sup
‖x‖2≤1

sup
A∈ξ

∑
i

aiix
2
i + 2

∑
i<j

aijxixj . (4.27)

Maximizing with respect to A, we get aii = vii, and

∀i < j, aij =
{
vij if xixj ≥ 0
−vij else.

(4.28)

And then, x>Ax =
∑
i viix

2
i + 2

∑
i<j vij |xixj | = |x|>V |x|. The full problem becomes:

sup
‖x‖2≤1, x�0

x>V x. (4.29)

The Perron-Frobenius theorem ensures that for any nonnegative square matrix, there exists a nonnegative
real eigenvalue with at least one nonnegative eigenvector. Any other eigenvalue’s modulus is smaller than
this eigenvalue. V being symmetric, all its eigenvalues are real, hence the result.

Remark. If the bounds on the entries of A are not centered around 0, it is possible to write A = A′ + Ā,
where the entries of Ā are symmetrically bounded, and use ‖A‖2 ≤ ‖A′‖2 + ‖Ā‖2.

The lemma leads to another bound on λ. If T ∈ Ξ:

∀i, j, k,
∣∣∑
k

(S1/2
k· y)T kij

∣∣ ≤∑
k

|S1/2
k· y|u

k
ij ≤

∑
k

‖S1/2>
k·‖ · ‖y‖u

k
ij . (4.30)

Applying the previous result to the matrix whose entries are the middle term in the inequality above yields:

λ ≤ λmax

(∑
k

√
Sk·S−1S>k·U

k

)
= λmax

(∑
k

√
SkkU

k

)
=: λa. (4.31)

The following theorem states the two stability certificates derived above.
Theorem 1. Consider the control system and the matrices S, K and M defined in Sections 4.2 and 4.4.
Assume that the closed-loop system x 7→ g(x) = f(x,−Kx) is twice continuously differentiable and the
following condition holds:

∀x ∈ Rd,∀i, j, k ∈ {1, ..., d},
∣∣∣∣[M−1/2∇2gk(x)M−1/2

]
ij

∣∣∣∣ ≤ ukij , (4.32)

where for each k, the matrix Uk with entries (ukij)ij is symmetric and nonnegative. Then Bρa and Bρb are
two ROAs of the closed-loop system, for ρa = 1/λ2

a, ρb = 1/λ2
b and

λa = λmax

(∑
k

√
SkkU

k

)
, (4.33)

λb =
√
d‖DS1/2‖2, with D = Diag

(
‖Uk‖2

)
k
. (4.34)

This theorem provides certified ROAs from a given Lyapunov function V (x) = x>Sx, which comes from
the LQR. The elliptical shape of the ROAs is fixed, as opposed to Proposition 4, where the Lyapunov function
x>Px can be optimized. In the rest of the chapter, we will consider P to be fixed in the LMI (4.15).
There does not seem to be a straightforward extension of our second-order certificates with an optimized
Lyapunov function.

91

Chapter 4. Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems

4.5 Iterative Algorithm

4.5.1 Stability Certificates

The bounds introduced in Sections 4.3 and 4.4 readily give robust stability certificates that hold for a whole
class of dynamics with suitably bounded derivatives. It is also possible to apply the same methods to a
single known dynamics, if its derivatives can be bounded efficiently. In general the bounds on the derivatives
depend on where they are computed: the larger the region, the larger the bounds. But such bounds must be
computed on a sufficiently large region containing the sublevel set where the system stability is asserted.

With the notations of the two previous sections, and given equations (4.15,4.25,4.31), we define three stabil-
ity certificates:

C1 : (S, ρup,Ω)→ ρup1LMI (4.15) is feasible (4.35)

C
a,b
2 : (S, ρup,Ξ)→ min(ρa,b, ρup), (4.36)

meaning that {x>Sx ≤ C1(S, ρup,Ω)} is an ROA if the derivatives of the dynamics are bounded by Ω (resp.
Ξ) and if ρup is an upper bound on ρ used to compute Ω (resp. Ξ).

4.5.2 Oracle on the Derivatives

Suppose that we have an oracle O computing, on a domain D, a bound O(D) on the derivatives, correspond-
ing to sets Ω or Ξ above. Our methods compute ρ = C(S, ρup,O(D)). Then Bρ is an ROA if the whole
trajectory to 0 stays inside D (else the assumptions on the derivatives would be violated). A simple way to
ensure that is to choose D as a sublevel set of V containing Bρ, i.e., Bρup for ρup ≥ ρ.

For a quadratic dynamical system, each entry of the Hessian is constant and each entry of the Jacobian is an
affine function. For any c ∈ Rd, the supremum of a linear function x 7→ c>x on an ellipsoid can be computed
in closed-form, as follows:

sup
x>Sx≤ρup

c>x = √ρup ‖S−1/2c‖2. (4.37)

For a third-order polynomial system, the entries of its Hessian are affine, hence the previous formula can
be applied, and those of the Jacobian are polynomials of degree two. The following formula gives an exact
upper bound for a quadratic monomial over an ellipsoid and naturally extends to polynomials of degree two
after an affine change of variable:

sup
x>Sx≤ρup

x>Jx = ρup λmax(S−1/2JS−1/2). (4.38)

In large dimension, manually identifying each coefficient of the derivatives of a second or third order polyno-
mial dynamics might be tedious: the Hessian tensor indeed contains d3 entries. One solution is to define the
polynomial dynamics f with symbolic expressions and to obtain the derivatives with a computed algebra sys-
tem. Another one is to sample derivatives at a few but different points with automatic differentiation (Paszke
et al., 2019), to fit a low order polynomial model, and then to maximize it in closed form.

For generic dynamics, one can sample derivatives, e.g., by automatic differentiation, using analytical deriva-
tives (Carpentier and Mansard, 2018a) for rigid body dynamics, or from direct physical measurements on

92

4.6. Trajectory Tracking

the system. Of course, bounding the samples only provides lower-estimates of the oracle, possibly resulting
in over-optimistic stability certificates. Hence extra caution must be taken to ensure sufficient precision of
the oracles. In particular, samples can be collected offline or in parallel in order to mitigate the computation
times. Besides, maximization by sampling suffers from the curse of dimensionality, yet efficiency improve-
ments can be expected with Bayesian optimization (Mockus, 2012) or other global optimization tools.

4.5.3 Algorithm

A simple ROA estimation algorithm (see Algorithm 2) consists in iteratively bounding the derivatives and
producing stability certificates, i.e., alternating calls of O and C. ρ0 is an initial upper bound on the size of the
ROA. Each step of the loop provides a certificate that Bρ is an ROA, and this region grows at each iteration,
the sequence of ρs being nondecreasing. The number of iterations before the algorithm stops depends on
both the initial guess ρ0 and the step size η. In our experiments, we typically require from 10 up to 20
iterations.

Algorithm 2 Adaptive stability certificates

Input: S, C(), O(), ρ0 > 0, η ∈ (0, 1)
Output: An ROA certificate on {x | x>Sx ≤ ρ}

1: ρup ← ρ0
2: repeat
3: U ← O(Bρup)
4: ρ← C(S, ρup, U)
5: ρup ← ηρup
6: until ρ ≥ ρup
7: return ρ

4.6 Trajectory Tracking

The certificates and the algorithm presented in the previous sections are applied around the equilibrium point
of a dynamical system. They can be extended to the more general problem of trajectory tracking, as described
hereafter.

Let (x0(t), u0(t)), for t ∈ [0, tf] be a reference trajectory with final state xf := x0(tf). For a nearby
trajectory (x(t), u(t)), let x̄(t) := x(t)− x0(t), ū(t) := u(t)− u0(t). The linearized dynamics reads:

˙̄x(t) = A(t)x̄(t) +B(t)ū(t) + o(x̄(t)) + o(ū(t)). (4.39)

Let Bf a target region {x | (x−xf)>Sf (x−xf) ≤ 1}, for some Sf � 0. We define the finite-horizon LQR
problem (Liberzon, 2011) with the following tracking cost:∫ tf

0
(x̄(t)>Qx̄(t) + ū(t)>Rū(t))dt+ x̄>(tf)Sf x̄(tf). (4.40)

For t ∈ [0, tf], the optimal cost-to-go is V (x, t) = x̄>S(t)x̄, S(t) being the solution of the Riccati differen-
tial algebraic equation (RDE):

Ṡ = −Q+ SBR−1B>S − SA−A>S, S(tf) = Sf , (4.41)

93

Chapter 4. Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems

with controller ū(t) = −K(t)x̄(t) := −R−1B>(t)S(t)x̄(t).

We want to estimate the time-varying region (also called “funnel” by Tedrake et al. (2010))

B(t) := {x | F (x, t) ∈ Bf} , (4.42)

where F (x, t) is the integrated closed-loop dynamics with control u(.) from t to tf . In particular, we have
B(tf) = Bf . B(t) is a region where applying u(t) = u0(t)+ ū(t) will make the trajectory reach B(tf) after
time tf . If in addition B(tf) is included in an ROA around 0, the trajectory will finally reach 0 in finite time.

We consider regions B(t) := {x | 0 ≤ V (x, t) ≤ ρ(t)}. A sufficient condition for B(t) to be a funnel
is (Tobenkin et al., 2011):

V (x, t) ≥ 0, ∀x ∈ B(t) and V̇ (x, t) ≤ .
ρ(t), ∀x ∈ ∂B(t). (4.43)

We drop some occurrences of the time variable t to simplify the notations. S(t) being a positive definite
matrix (Liberzon, 2011) for any t ∈ [0, tf], the first condition holds, the second one is:

V̇ (x, t) = 2x̄>S ˙̄x+ x̄>Ṡx̄ ≤ .
ρ, ∀x ∈

{
x | x̄>Sx̄ = ρ

}
. (4.44)

Assume that the closed-loop system is an LDI ˙̄x = Ã(t, x)x̄ in {x | x̄>Sx̄ = ρ}, with Ã ∈ Ω(ρ), for a given
set Ω(ρ). Then, a sufficient condition is:

∀Ã ∈ Ω(ρ), Ã>S + SÃ+ Ṡ −
.
ρ

ρ
S � 0. (4.45)

This can be fit into the LDI framework presented in Section 4.3, just by shifting the set Ω(ρ) to the set

Ω̃(ρ, .
ρ) := {Ã+ 1

2S
−1Ṡ − 1

2
ρ̇

ρ
Id | Ã ∈ Ω(ρ)}. (4.46)

We now deal with the case where the closed-loop system is known up to order two in {x | x̄>Sx̄ = ρ}, say
˙̄x = (A−BK)x̄+ 1

2 x̄
>H(t, x)x̄, with H(t, x) ∈ Ξ(ρ). Using that S(.) is a solution of equation (4.41), we

obtain the following sufficient condition: ∀ y such that ‖y‖2 = 1, ∀H ∈ Ξ(ρ),

−Q− SBR−1B>S − ρ̇

ρ
S +√ρ

d∑
k=1

(S1/2
k· y)Hk � 0 . (4.47)

If N(ρ, ρ̇) = Q + SBR−1B>S + ρ̇
ρS � 0, let Ξ̃(ρ, ρ̇) the shifted set {N−1/2HN−1/2 | H ∈ Ξ(ρ)}, we

must check that:

∀ y s.t. ‖y‖2 = 1, ∀ H̃ ∈ Ξ̃(ρ, .
ρ), √ρ

d∑
k=1

(S1/2
k· y)H̃k � Id . (4.48)

Under such conditions, ρ(.) is built backwards in time through backward integration, starting from ρ(tf) = 1.
At each time step, given ρ, a greedy strategy is to choose ρ̇ as the smallest possible value such that the
sufficient condition is enforced. Since ρ(.) is computed backwards, this maximizes ρ(t− dt), hence locally
the funnel’s volume. Also, for both first and second order cases, the sufficient condition is monotonically
more restrictive as ρ̇ decreases. A simple algorithm is to start with a large positive ρ̇, compute the set Ω̃(ρ, ρ̇)
or Ξ̃(ρ, ρ̇), check that the sufficient condition holds, and progressively decrease ρ̇ until it no longer does
(possibly with ρ̇ < 0 if N � 0 is still enforced, when applicable).

94

4.7. Numerical Experiments

4.7 Numerical Experiments

4.7.1 Definition of the Systems and Implementation Details

The code to reproduce the experiments is available online1. The first two systems, an electrical oscillator
and a floating satellite with commanded torques, are taken from the Matlab material of Tobenkin et al.
(2011). The third one is an underactuated double pendulum, with the actuated joint between the two arms
(also called “acrobot” by Sutton (1996)). The last one corresponds to the UR5 robotic arm from Universal
Robots2, with 6 actuated joints. The dynamics of these dynamical systems are described hereafter.

Vanderpol. d = 2, m = 0 (unactuated), x0 = 0>2 , Q = I2. The dynamics is a polynomial of degree 3:

∀x = (x1, x2) ∈ R2, f(x) = (−x2, x1 + x2(x2
1 − 1))>.

Satellite. d = 6, m = 3, (x0, u0) = (0>6 ,0>3), Q = I6, R = 10× I3, the dynamics is a polynomial of
degree 3. Let J = Diag(5, 3, 2). For x = (ω>, σ>)> ∈ R6, with ω, σ ∈ R3, f(x, u) = (ω̇>, σ̇>)>,

ω̇ = J−1(u− ω × Jω)

σ̇ = 1
4

(1− ‖σ‖2)I3 + 2σσ> − 2

 0 σ3 σ2
σ3 0 σ1
σ2 σ1 0

ω.

Pendulum. d = 4, m = 1, u0 = 0, x0 = 0>4 (for the bottom position, see Figure 4.1) or x0 = (π, π, 0, 0)>
(for the top position), Q = I4, R = 1. Let g = 9.8, ` = 0.5 and µ = 1. For x = (θ1, θ2, p1, p2)>, f(x, u) is
defined by:

θ̇1 = 6
µ`2

2p1 − 3 cos(θ1 − θ2)p2
16− 9 cos2(θ1 − θ2)

θ̇2 = 6
µ`2

8p2 − 3 cos(θ1 − θ2)p1
16− 9 cos2(θ1 − θ2)

ṗ1 = −µ`
2

2

(
θ̇1θ̇2 sin(θ1 − θ2) + 3g

`
sin θ1

)
ṗ2 = −µ`

2

2

(
−θ̇1θ̇2 sin(θ1 − θ2) + g

`
sin θ1

)
+ u.

Robotic arm. Here d = 12, m = 6, x0 = (q>0 ,06)>, with q0 the following initial configuration, displayed
in Figure 4.3:

q0 = (0,−π/5,−3π/5, 0, 0, 0),

Q = I12, R = I6. u0 is such that f(x0, u0) = 0 and is computed by the recursive Newton-Euler algorithm
(RNEA) implemented in the C++ library Pinocchio (Carpentier et al., 2019). The forward dynamics
f(x, u) is computed via the articulated body algorithm (ABA). We refer to Section 2.1 in Chapter 2 for
more details.

1www.github.com/eloiseberthier/Fast-Robust-ROA
2www.universal-robots.com/products/ur5-robot

95

www.github.com/eloiseberthier/Fast-Robust-ROA
www.universal-robots.com/products/ur5-robot

Chapter 4. Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems

Table 4.1: Radius and volume of the certified ROA for the different methods, relative to the values obtained
by sampling for reference.

Dynamics
C1 Ca

2 Cb
2 SoS sampling

ρ/ρs v/vs ρ/ρs v/vs ρ/ρs v/vs ρ/ρs v/vs ρ/ρs v/vs

Vanderpol 0.20 0.20 0.14 0.14 0.10 0.10 1 1 1 1
Satellite 2.9×10−2 2.6×10−5 9.3×10−2 9.4×10−4 7.9×10−2 5.7×10−4 0.93 0.82 1 1
Pend. (bot.) 3.2×10−2 1.1×10−3 3.5×10−2 1.2×10−3 4.2×10−2 1.9×10−3 1.4×10−2 2.0×10−4 1 1
Pend. (top) 5.1×10−3 2.6×10−5 4.5×10−2 2.0×10−3 4.7×10−2 2.2×10−3 N.A. N.A. 1 1
Robot 2.4×10−3 1.8×10−16 7.1×10−3 1.5×10−13 1.5×10−2 1.2×10−11 N.A. N.A. 1 1

Table 4.2: CPU time (s) per iteration, except for SoS (total time).

Dynamics O + C1 O + Ca
2 O + Cb

2 SoS

Vanderpol 1.8×10−3 1.1×10−4 1.6×10−4 0.05
Satellite 1.2 0.17 0.17 32
Pend. (bot.) 2.3 15 15 132
Robot 2.3 32 33 N.A.

The software used for the SoS-based certificates is adapted from the Matlab material of Tobenkin et al.
(2011). The oracles on the derivatives are computed either in closed form, for Vanderpol and the Hessian of
Satellite, using formulas (4.37) and (4.38), or by sampling p derivatives. Using automatic differentiation in
PyTorch (Paszke et al., 2019), we sample p = 104 Jacobians for Satellite, p = 103 Jacobians and Hessians
for Pendulum. For Robot, p = 5 × 104 and the Jacobians of the dynamics are computed analytically (Car-
pentier and Mansard, 2018a), and we use finite differences on the first partial derivatives to approximate the
Hessians. It is important to notice at this stage that more advanced methods to efficiently compute these
Hessians could improve the whole computation time of our methods, for instance by code-generating the
second-order derivatives computed by automatic differentiation. Yet, the proposed solution already provides
competitive timings.

4.7.2 Results

The performances of the certificates are compared in Table 4.1, both in terms of radius of Bρ and volume
v ∝ ρd/2/

√
|S|, the latter exacerbating differences in large dimensions. The volume, divided by the volume

of the state space, is roughly the inverse of the number of ROAs that would have covered it. All the values in
the table are divided by the ground truth ρs, the maximal ρ such that ∀x>Sx ≤ ρ, V̇ (x) < 0, estimated by
sampling a very large number of points. Apart from SoS on the first two problems, all methods are very far
from estimating the true maximal ROA.

For the SoS method on Pendulum, because the dynamics is non polynomial, we substitute the odd function
f by its Taylor expansion around the equilibrium, truncated at order n = 7. The result is sensitive to the
order: for n = 2, f is linear hence ρ = +∞, whereas ρ decreases for higher orders. It is unclear which one
to choose, and the results are no longer certified. At the top position, an utterly unstable position, SoS fails
to provide a positive ρ, regardless of n ≥ 3.

Table 4.2 reports the corresponding CPU running times on a standard laptop. The code, in Python, is not

96

4.8. Implementation Summary

optimized, except the SoS method and the LMI solver for C1 which are in Matlab. Our methods are much
lighter than SoS, yet one must keep in mind that Algorithm 2 typically calls the oracle and the certificate 10
times. Nonetheless, this allows to tackle systems of larger dimensions, like Robot. If the oracle uses sam-
pling, this dominates the running time. Figure 4.4 compares the running times of bounding the derivatives
for C1 and Ca2, depending on the number of samples p, on Satellite. At fixed p, it is of course longer to sam-
ple Hessians than Jacobians. The sampling oracle overestimates ρ, but this tends to stabilize for reasonable
values of p, as seen for ρa2 which can also be computed using a closed-form oracle.

We also experiment trajectory tracking of a given reference trajectory of Vanderpol, with xf = (−1,−1)>,
tf = 2. The target region Bf = {x | x̄>Sf x̄ ≤ 1} is the largest ellipsoid included in R, an ROA around 0
computed by SoS. In Figure 4.6, the state-space is in green, R in light gray and Bf in red. The funnel B(t),
in gray, is computed backwards, with one or two iterations of the SoS-based algorithm of Tobenkin et al.
(2011), and with the methods of Section 4.6. Figure 4.5 shows our certificates lead to competitive values of
ρ(t), with faster computations.

4.8 Implementation Summary

The complete ROA estimation and trajectory tracking frameworks are summarized respectively in Figure 4.7
and 4.8. Each building block used in the diagrams is detailed below.

The first one computes the LQR as in Section 4.2.

• Static LQR: (Q,R, x0, u0, f)→ (S,K).

A = ∂f
∂x (x0, u0), B = ∂f

∂u(x0, u0), S is the positive definite solution of A>S + SA − SBR−1B>S =
−Q, and K = R−1B>S.

The following block computes the LQR for one time step of trajectory tracking and is detailed in Section 4.6.

• Dynamic LQR:
(S(t+ τ), Q,R, x0(t), u0(t), f)→ (S(t),K(t)).

Let S̄ = S(t+ τ), then S(t) = S̄ − τ Ṡ, with A = ∂f
∂x (x0(t), u0(t)), B = ∂f

∂u(x0(t), u0(t)),

Ṡ = −Q− S̄A−A>S̄ + S̄BR−1B>S̄, and K(t) = R−1B>S(t).

The next two blocks compute bounds on the derivatives of the dynamics. They can be implemented arbitrar-
ily.

• First-order oracle: (ρup, S,K, x0, u0, f)→ (A0, V).

Vij := sup
x>Sx≤ρup

|Jij(x)− (A0)ij |,

where J is the Jacobian of x 7→ f(x0 + x, u0 −Kx). A default choice for A0 is J(0) = A−BK.

• Second-order oracle: (ρup, S,K,M, x0, u0, f)→ U.

Ukij := sup
x>Sx≤ρup

[
M−1/2Hk(x)M−1/2

]
ij
,

where H is the Hessian of x 7→ f(x0 + x, u0 −Kx).

97

Chapter 4. Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems

The next two blocks compute stability certificates, as detailed in Sections 4.3 and 4.4.

• First-order certificate:
(ρup, S,A0, V)→ ρ1 = ρup1LMI is feasible.

Let C, E defined as in section 4.3. The LMI feasibility problem is to find Λ � 0 ∈ Rd
2×d2

diagonal such
that: [

A>0 S + SA0 + E>ΛE SC
C>S −Λ

]
≺ 0.

• Second-order certificate: (ρup, S, U)→ ρa,b = 1
λ2
a,b
.

λa = λmax

(∑
k

√
Sk·S−1S>k·U

k

)
,

λb =
√
d‖DS−1/2‖2, with D = Diag

(
‖Uk‖2

)
k
.

The last two blocks are used in Section 4.6.

• First-order shift: (A0, ρ̇, ρ(t+ τ), S(t), Ṡ(t))→ Ã0.

Ã0 = A0 + 1
2S
−1Ṡ − 1

2
ρ̇
ρId, where Ṡ is given by the RDE (equation (4.41)).

• Second-order shift:
(M, ρ̇, ρ(t+ τ), S(t))→ M̃ = M + ρ̇

ρ
S.

4.9 Conclusion

The stability certificates presented in this chapter are both fast to compute, and robust over a class of
bounded-derivatives dynamics. They readily extend to the trajectory tracking problem, with a linear com-
plexity in the number of time steps. Such certificates can be easily implemented and enable handling
non-polynomial, large dimensional control systems that were previously out of reach. The complexity is
transferred from the certificate to a derivative-bounding oracle, which can be estimated efficiently in some
cases, including rigid body dynamic systems in robotics. The certificates for trajectory tracking can in turn
be integrated into the LQR-trees framework for global motion planning. They are more conservative than
competing methods, yet faster, hence repeating calls to these certificates around numerous different trajec-
tories, as done in the LQR-trees algorithm, could be more efficient overall. Providing empirical evidence or
counter-evidence for this trade-off phenomenon in real-world control systems would be an interesting avenue
for future research.

98

4.9. Conclusion

Figure 4.3: Configuration q0 to be stabilized for the UR5 robotic arm.

101 102 103 104

p

0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

ρ(
p)

ρa
2

10−2

10−1

100

101
cp

u
tim

e
(s

) p
er

 it
er

at
io

n1
a2

Figure 4.4: Results of C1, Ca2, and cpu time on Satellite, depending on p.

99

Chapter 4. Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.2

0.4

0.6

0.8

1.0
ρ(
t)

1
a2
SOS itr 1
SOS itr 2

Figure 4.5: ρ(t) with different certificates, around a trajectory of Vanderpol. The total CPU time is 7s for
two iterations of SoS, roughly 1s for C1, Ca2.

f

(t)

Figure 4.6: A funnel B(t) around a trajectory of Vanderpol, obtained with C1. The state-space is in green,
R in light gray is an ROA around 0, and Bf in red is the target region. The reference trajectory is displayed
with arrows.

100

4.9. Conclusion

Static
LQR

1st/2ndord.
Oracle

1st/2ndord.
Certifi-
cate

≤

x0, u0, f

S,K A0, V

U

M = Q+ SBK

Q,R ρup

ρ1
ρa,b

ρup

repeat with decreasing ρup

Figure 4.7: ROA estimation algorithm. Elements specific to the 1st order method are in red, to the 2nd order
in blue. Framed steps are repeated until ρ ≥ ρup.

Dynamic
LQR

1st/2ndord.
Oracle

1st/2ndord.
Certifi-
cate

1st ord.
Shift

2nd

ord.
Shift

≤

x0, u0, f

S(t+ τ)

S,K

ρ̇
A0, V

Ã0, V

U

M̃

M = Q+ SBKρ̇

Q,R ρ(t+ τ)

λmax

repeat with decreasing ρ̇

Figure 4.8: Trajectory tracking algorithm for one time-step. Framed steps are repeated while equations (4.45)
for the 1st order, or (4.48) for the 2nd order, hold.

101

Chapter 4. Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems

102

Chapter5
Infinite-Dimensional Sums-of-Squares for Optimal Control

Abstract. We introduce an approximation method to solve an optimal control problem via the
Lagrange dual of its weak formulation. This method applies to problems with an unknown,
non-necessarily polynomial dynamics, accessed through samples, akin to model-free reinforce-
ment learning. It is based on a sum-of-squares representation of the Hamiltonian, and extends a
previous method from polynomial optimization to the generic case of smooth problems. Such a
representation is infinite-dimensional and relies on a particular space of functions – a reproduc-
ing kernel Hilbert space – chosen to fit the structure of the control problem. After subsampling,
it leads to a practical method that amounts to solving a semi-definite program. We illustrate our
approach by a numerical application on a low-dimensional control problem.

This chapter is based on our work Infinite-Dimensional Sums-of-Squares for Optimal Control, with Justin
Carpentier, Alessandro Rudi and Francis Bach, accepted for publication in the Conference on Decision and
Control, 2022.

Contents
5.1 Introduction . 104
5.2 Background . 104

5.2.1 Formulation of OCP with Maximal Subsolutions of HJB 105

5.2.2 Parameterization of the Value Function . 106

5.2.3 Representing Non-Negative Functions as Sum-of-Squares 106

5.3 Dense Set of Inequality Constraints . 107
5.3.1 Relaxed Formulation by Subsampling . 108

5.3.2 Strengthened Formulation by SoS Representation 108

5.4 Tight Sum-of-Squares Representations . 109
5.4.1 Case 1: Infinite-Horizon Time-Invariant LQR . 109

5.4.2 Sum-of-Squares Decomposition with Smooth Functions 110

5.4.3 Stochastic Smoothing of the Optimal Value Function 112

5.5 SDP Formulation and its Numerical Resolution . 112
5.5.1 Finite-Dimensional Formulation via Subsampling 112

103

Chapter 5. Infinite-Dimensional Sums-of-Squares for Optimal Control

5.5.2 Interior Point Method with the Damped Newton Method 114

5.6 Numerical Example . 115

5.7 Conclusion . 118

5.1 Introduction

The continuous-time optimal control problem (OCP) is a generic formalism modeling a wide variety of non-
linear systems and optimization criteria, with countless industrial applications, including aerospace (Trélat,
2012) or robotics (Murray et al., 2017). Developing efficient numerical methods for solving such a gen-
eral problem is a daunting task, especially for high-dimensional systems. Among current methods, indirect
methods exploit optimality criteria derived from Pontryagin’s maximum principle and give precise results but
need to be initialized properly, while the less accurate direct methods reformulate the problem as a nonlinear
program without specific initialization requirements (Trélat, 2005, Chapter 9).

In this chapter, we focus on a direct method that computes the optimal value function of the problem as
the maximal subsolution of the Hamilton-Jacobi-Bellman (HJB) equation. It is described in Hernández-
Hernández et al. (1996); Lasserre et al. (2008) and is obtained by taking the dual of the weak formulation of
the OCP, involving occupation measures (Vinter, 1993). In Lasserre et al. (2008), the numerical resolution of
this formulation is based on polynomial optimization (Lasserre, 2015), and hence applies to semi-algebraic
dynamics, constraints and cost functions, with a possibly costly extension to smooth functions, involving a
hierarchy of semi-definite programs (SDPs).

Our main contribution is to extend the numerical method of Lasserre et al. (2008) to non-polynomial, smooth
OCPs, when the dynamics and costs are unknown and only accessed through a finite number of samples.
In this sense, our approach is sample-based, or data-driven (Kutz et al., 2016). As a side benefit, it is
gradient-free, hence directly applicable to systems where the dynamics is not known analytically, let alone
polynomial, like soft robots (Della Santina et al., 2021) or contact interactions (Brogliato, 1999), just to
name a few. To this end, we consider a space of smooth functions, called a reproducing kernel Hilbert space
(RKHS) (Aronszajn, 1950), and use representations of non-negative functions in this space with sums-of-
squares (Marteau-Ferey et al., 2020). This is detailed in Sections 5.2 and 5.3. In Section 5.4, we notably
prove that this representation is exact in two particular cases: the time-invariant linear quadratic regulator
(LQR) and smooth control-affine systems. This results in a practical numerical method derived in Sec-
tion 5.5, that requires to solve an SDP to approximate the optimal value function of the OCP. Finally, in
Section 5.6 we illustrate the practical application of this method to a simple two-dimensional OCP, with a
comparison to a sample-based baseline.

5.2 Background

First, we introduce the three building blocks that are then combined in Section 5.3 to design our approxima-
tion method.

104

5.2. Background

5.2.1 Formulation of OCP with Maximal Subsolutions of HJB

Let X and U be compact subsets of Rd and Rp, for integers d, p ≥ 1, and assume that U is convex. We define
the dynamics f : [0, T] × X × U → Rd, the running cost L : [0, T] × X × U → R, and the terminal cost
M : X→ R occurring at the fixed terminal time T > 0. In addition, we assume that optimal state trajectories
remain in the compact set X, and that sampling points from X and U is easy. We do not consider problems
with explicit path-constraints of the form g(t, x, u) ≥ 0 which are left as future work.

We assume the existence of a smooth function V ∗ ∈ C1(XT), meaning that V ∗ is smoothly differentiable on
XT := [0, T]× X, that is a solution of the HJB equation: ∀(t, x) ∈ XT ,

∂V ∗

∂t
(t, x) + inf

u∈U

(
L(t, x, u) +∇V ∗(t, x)>f(t, x, u)

)
= 0 (5.1)

V ∗(T, x) = M(x),

where∇V ∗ refers to the gradient of V ∗ w.r.t. x. For t ∈ [0, T], let Ut the set of admissible controls such that
∀s ∈ [t, T], (x(s), u(s)) ∈ X × U. Then V ∗ is the value function (Liberzon, 2011) of the following OCP:
∀(t0, x0) ∈ XT ,

V ∗(t0, x0) = inf
u∈Ut0

∫ T

t0
L(t, x(t), u(t))dt+M(x(T)) (5.2)

∀t ∈ [t0, T], ẋ(t) = f(t, x(t), u(t)), x(0) = x0.

Let µ0 be a probability measure on X. We are interested in the value of the stochastic initial point problem,
where x0 is drawn according to µ0, that is, Ex0∼µ0 [V ∗(0, x0)] =

∫
V ∗(0, x0)dµ0(x0).

In this chapter, instead of directly looking for solutions of the HJB equation, we will focus on the following
alternative problem (P), namely, finding a maximal subsolution of HJB:

sup
V ∈C1(XT)

∫
V (0, x0)dµ0(x0)

∀(t, x, u), ∂V
∂t

(t, x) + L(t, x, u) +∇V (t, x)>f(t, x, u) ≥ 0 (P)

∀x, V (T, x) ≤M(x).

This is the dual of the weak formulation of the OCP with occupation measures, which is a linear program
over the space of measures (Kamoutsi et al., 2017; Lasserre, 2010; Vinter, 1993). Moreover, subsolutions of
HJB also play a key role in the theory of viscosity solutions (Crandall and Lions, 1983) of partial differential
equations, as well as for approximating reachable sets through dissipativity conditions (Jones and Peet,
2019). The first constraint in (P) is the positivity of a certain Hamiltonian associated to V , namely:

H(t, x, u) := ∂V

∂t
(t, x) + L(t, x, u) +∇V (t, x)>f(t, x, u). (5.3)

If V = V ∗ is the optimal value function, then the optimal controller u = u∗(t, x) minimizes the positivity
constraint and for all (t, x) ∈ XT , H∗(t, x, u∗(t, x)) = 0.

Our goal is to find an approximate solution V of (P). Under some additional assumptions, (P) is equivalent
to the OCP. Such regularity and convexity assumptions were first studied by Vinter (1993) and are detailed

105

Chapter 5. Infinite-Dimensional Sums-of-Squares for Optimal Control

in Lasserre et al. (2008). We refer to Chapter 2, Section 2.2.3 for a more detailed discussion on this point. In
this particular case, the value of problem (P) coincides with the one of the stochastic initial point problem:

supP = Ex0∼µ0 [V ∗(0, x0)] . (5.4)

We always assume that this is the case, and in particular such conditions are met by the numerical example
of Section 5.6.

5.2.2 Parameterization of the Value Function

A first difficulty in problem (P) is searching V in the infinite-dimensional set C1(XT). One option is to
search V in a finitely-parameterized set FΘ. A common practice, notably in approximate dynamic program-
ming and reinforcement learning (Sutton and Barto, 2018, Chapter 9), is to use a linear approximation of V ,
with a feature vector ψ(t, x) ∈ Rm and a parameter θ in a convex subset Θ of Rm, for m ≥ 1.

Since we assumed that V ∗ is a solution of the HJB equation, we can restrict that search space in (P) to
functions V such that V (T, .) = M(.). Then we assume that the parameterization is such that for any θ,
Vθ(T, .) = M(.), so that we can remove the explicit constraint in (P). Hence our parameterized set is:

FΘ := {(t, x) 7→ Vθ(t, x) = θ>ψ(t, x) +M(x) | θ ∈ Θ}, (5.5)

with ψ such that ψ(T, .) = 0. To simplify the evaluations of∇Vθ and ∂Vθ
∂t , it is convenient (but not necessary)

to use a separable feature vector ψ(t, x) = κ(t)ϕ(x), with κ(T) = 0.

5.2.3 Representing Non-Negative Functions as Sum-of-Squares

Problem (P) is constrained by a dense set of inequalities indexed by (t, x, u) ∈ [0, T] × X × U, which
cannot be directly handled by numerical algorithms. Hence we look for a finite – possibly approximate –
representation of the non-negative function (t, x, u) 7→ H(t, x, u) ≥ 0.

If f , L, M are semi-algebraic functions, one way is to use sum-of-squares (SoS) polynomials (Lasserre,
2015), i.e., to represent H(t, x, u) as the sum of the squares of polynomials of a given degree. This is a
sufficient but not necessary condition for being a non-negative polynomial. This technique has been applied
to problem (P) by Lasserre et al. (2008), although it is presented in its dual version using the method of
moments (Henrion, 2014). In any case, this representation is not exact in general and gives a lower approxi-
mation of (P). To numerically solve the problem, one needs to build a hierarchy of SDPs obtained by this SoS
representation with polynomials of increasing degree r. Under generic conditions, this hierarchy converges
to the value of (P), and recent results have brought explicit convergence rates (Baldi and Mourrain, 2021;
Korda et al., 2017). Yet, the size of the SDP at rank r is defined by the number of monomials of degree less
than r in the dimension of (t, x, u), which is

(d+p+1+r
r

)
, a quantity growing exponentially with r.

In this chapter, we opt for another option inspired by recently-introduced machine learning techniques (Rudi
et al., 2020): representing a non-negative function as a SoS in a reproducing kernel Hilbert space (RKHS).
Hereafter, we briefly define an RKHS and mention its main properties, and refer to Paulsen and Raghupathi
(2016) for a thorough description. Consider a set E, a function k : E×E → R is a positive definite kernel if
∀n ∈ N, y1, . . . , yn ∈ E, the matrix K := (k(yi, yj))ni,j=1 is positive semi-definite. Associated to a positive
definite kernel k, there exists a unique RKHS H, a Hilbert space of functions E → R, with an inner product
〈·, ·〉H, such that the following properties hold (the second one is the so-called “reproducing property”):

106

5.3. Dense Set of Inequality Constraints

• ∀y ∈ E, ky := k(y, ·) ∈ H;

• ∀g ∈ H, ∀y ∈ E, 〈g, ky〉H = g(y).

In addition, there exists a feature map Φ : E → H, possibly infinite-dimensional, defined by Φ(y) = ky,
which maps a point in E to a function in H, and in particular we have k(y, y′) = 〈Φ(y),Φ(y′)〉H. Con-
versely, any feature map defines an RKHS associated to the former kernel.

Here we mention two classical kernels from the RKHS literature, which we use later to build our function
representations. Assume that E is a subset of R`, for ` ≥ 1. The polynomial kernel of degree r is defined on
E×E by k(y, y′) = (1 + y>y′)r, and the corresponding embedding Φ(y) is the vector of

(`+r
r

)
multivariate

monomials of degree less than r. In this case H is finite-dimensional. The exponential kernel is defined
by k(y, y′) = exp(−‖y − y′‖2/σ), with σ > 0. If E is bounded and has locally Lipschitz boundary, the
corresponding RKHS is the Sobolev space of functions whose weak-derivatives up to order s = `/2 + 1/2
are square-integrable (Berlinet and Thomas-Agnan, 2011).

Functions that are SoS in an RKHS H can be represented using an infinite-dimensional positive semi-definite
operator (Rudi et al., 2020, Corollary 1). Indeed, assume that a function h ∈ H is written as a sum-of-squares
of functions hj ∈ H:

∀y ∈ E, h(y) =
q∑
j=1

hj(y)2. (5.6)

For any v, w ∈ H, we have:

〈w, (v ⊗ v)w〉 = 〈w, vv∗w〉 = Tr(w∗vv∗w) = (〈v, w〉)2, (5.7)

where ⊗ denotes the outer product. Because of the reproducing property: ∀j ∈ {1, ..., q}, y ∈ E,

hj(y)2 = (〈Φ(y), hj〉H)2 = 〈Φ(y), (hj ⊗ hj)Φ(y)〉. (5.8)

Consequently:

h(y) = 〈Φ(y),AΦ(y)〉H, (5.9)

with A :=
∑q
j=1 hj⊗hj ∈ S+(H) and A has rank at most q, where S+(H) is the set of bounded self-adjoint

positive semi-definite operators on H.

In Marteau-Ferey et al. (2020), this SoS representation in an RKHS is used to model non-negative functions,
e.g., for signal processing or statistics applications. In some cases, e.g., in Sobolev spaces as we will see
hereafter, the representation is exact in the sense that all non-negative functions can be written as a SoS
in H, whereas the polynomial SoS representation is tight only for a restricted class of polynomials (Lasserre,
2010). Besides, SoS polynomials are a particular case of what has just been described, if k is the polynomial
kernel. In the rest of the chapter, we will extend the method of Lasserre et al. (2008) from polynomials to
any RKHS, at the expense of possibly infinite-dimensional representations.

5.3 Dense Set of Inequality Constraints

In this section, we start by providing a basic relaxation of problem (P) which is naturally compatible with a
sample-based approach, and a motivation for preferring a SoS representation of the non-negativity constraints
in (P). Then we present the resulting problem and its main features.

107

Chapter 5. Infinite-Dimensional Sums-of-Squares for Optimal Control

5.3.1 Relaxed Formulation by Subsampling

A straightforward relaxation of (P) is obtained by finitely subsampling the non-negativity constraints. Let
us sample values of (t(i), x(i), u(i))i∈I in [0, T] × X × U, with I a finite set of cardinality n ≥ 1. For
simplicity, assume that µ0 is the mean of n0 Diracs at points {x(i)

0 }i∈{1,...,n0}. Besides, let us use a linear
parameterization of V as described in Section 5.2.2, with Θ = Rm. We then obtain a linear program, with a
possibly unbounded solution in the overparameterized setting (m� n). To circumvent this effect, we add a
quadratic regularizer on θ with parameter λθ ≥ 0, and obtain the following problem:

sup
θ∈Rm

1
n0

n0∑
k=1

θ>ψ(0, x(k)
0) +M(x(k)

0)− λθ‖θ‖22

∀i ∈ I, θ>
∂ψ

∂t
(t(i), x(i)) + L(t(i), x(i), u(i)) (LP)

+
(
θ>∇ψ(t(i), x(i)) +∇M(x(i))

)>
f(t(i), x(i), u(i)) ≥ 0.

Although this is not exactly a linear program if λθ > 0, it can still can be solved easily by standard solvers,
and we will refer to it as the LP problem. A similar finite-dimensional LP formulation has been proposed
by Gaitsgory and Quincampoix (2009) for discounted infinite-horizon control problems. It is part of a long
series of LP formulations for optimal control (see, e.g., Gaitsgory et al. (2017) and references therein), for
dynamic programming and more recently for reinforcement learning (Lu et al., 2021a).

This problem will be used as a baseline in Section 5.6, to be compared with the SoS formulation below.
It is a relaxation that gives an upper-bound on (P), but relating the number of samples n to the quality of
the approximation and ultimately to the performance of the controller is a challenging problem, even for
LQR (Dean et al., 2020). Yet in the example below, this can be evaluated explicitly.

Example 1. Let g : Rp → R be a smooth function with a unique minimizer u∗. With T = 1, L : (t, x, u) 7→
g(u), f = 0 and M = 0, then V ∗(t, x) = (1 − t)g(u∗) and solving the OCP is essentially equivalent to
finding the global minimizer of g. If V is parameterized by Vθ(t, x) = θ(1 − t), the LP formulation with
λθ = 0 writes:

sup θ such that ∀i ∈ I, −θ + g(ui) ≥ 0, (5.10)

which is readily solved by θ = min{g(ui)}i∈I . In general, this method requires O(ε−p) samples to approxi-
mate g(u∗) with precision ε (Novak, 2006), and yet when g is smooth, this is not an optimal way to perform
zero-th order optimization. Indeed, Rudi et al. (2020) use a SoS representation of g − θ to solve this exact
problem, and alleviate the curse of dimensionality when g is sufficiently smooth: the number of samples
reduces to O(ε−p/s) for g ∈ Cs(Rp). In the rest of this chapter, we propose to use the same approach and to
generalize it to any OCP. We expect similar benefits when H is smooth.

5.3.2 Strengthened Formulation by SoS Representation

Consider an RKHS H of real-valued functions on [0, T] × X × U, with positive definite kernel k, and
Φ : E → H the corresponding embedding. We use a SoS representation in H, or “kernel SoS”, for the

108

5.4. Tight Sum-of-Squares Representations

constraint H ≥ 0 in (P):

sup
V ∈C1(XT),
A∈S+(H)

∫
V (0, x0)dµ0(x0)

∀(t, x, u), H(t, x, u) = 〈Φ(t, x, u),AΦ(t, x, u)〉. (KSOS)

This is a strengthening of the constraint in (P), since being SoS is stronger than being non-negative. So
in general, (KSOS) is a lower-approximation of (P). However, in certain cases, (KSOS) can be equivalent
to (P), as we will prove in Section 5.4. A sufficient condition is the existence of A ∈ S+(H) such that, at the
optimal V ∗:

∀(t, x, u), H∗(t, x, u) = 〈Φ(t, x, u),AΦ(t, x, u)〉. (5.11)

5.4 Tight Sum-of-Squares Representations

We study the tightness of problem (KSOS) in two particular cases: the time-invariant LQR and smooth value
functions.

5.4.1 Case 1: Infinite-Horizon Time-Invariant LQR

First we look at a very simple OCP, where every quantity can be computed almost in closed form, and with
infinite-horizon so that there is no dependence in t. Let f(x, u) = A0x+B0u, for A0 ∈ Rd×d, B0 ∈ Rd×p,
with (A0, B0) controllable, L(x, u) = x>Q0x + u>R0u, Q0 ∈ S+(Rd×d), R0 ∈ S+(Rp×p), R0 � 0.
The optimal value function is V ∗(x) = x>S0x, where S0 is the unique positive semi-definite solution of the
algebraic Riccati equation:

0 = −Q0 −A>0 S0 − S0A0 + S0B0R
−1
0 B>0 S0. (5.12)

The optimal controller is u∗(x) = −R−1
0 B>0 S0x =: −K0x.

The Hamiltonian is:

H∗(x, u) = x>Q0x+ u>R0u+ 2x>S0(A0x+B0u)
= u>R0u+ x>S0B0u+ u>B>0 S0x+ x>S0B0K0x. (5.13)

This is a SoS of degree-one polynomials in (x, u):

H∗(x, u) = (u+K0x)>R0(u+K0x)

=
(
x> u>

)(K>0
Ip

)
R0
(
K0 Ip

)(x
u

)
=

p∑
j=1

[qj(x, u)]2, (5.14)

with qj(x, u) := [R1/2
0]j·

(
K0 Ip

)(x
u

)
.

109

Chapter 5. Infinite-Dimensional Sums-of-Squares for Optimal Control

Therefore, an infinite-horizon, time-invariant LQR with unknown parameters can be equivalently expressed by:

sup
V ∈C1(X), N�0

∫
V (x0)dµ0(x0)

∀(x, u), L(x, u) +∇V (x)>f(x, u) =
(
x
u

)>
N

(
x
u

)
. (5.15)

In the next section, we prove that similar SoS constructions exist for sufficiently smooth OCPs, possibly with
an infinite-dimensional embedding (v.s. a (d+ p)-dimensional one here).

5.4.2 Sum-of-Squares Decomposition with Smooth Functions

We show that, for smooth and control-affine OCPs, H∗ is a SoS of smooth functions.

Let Ω2 := Int(U), Ω1 := Int{(t, x) ∈ XT | argminu∈UH∗(t, x, u) ⊂ Ω2}, and Ω := Ω1 × Ω2.

Theorem 6. Let s ∈ N, s ≥ 1. Assume that:

• f is control-affine: ∀(t, x, u) ∈ [0, T]× X× U,

f(t, x, u) = g(t, x) +B(t, x)u. (5.16)

• For all (t, x) ∈ Ω1, u 7→ L(t, x, u) is twice differentiable on Ω2 and strongly convex:

∇2
uL(t, x, u) < ρI, (5.17)

for some ρ > 0, and (t, x, u) 7→ ∇2
uL(t, x, u) ∈ Cs(Ω).

• (t, x, u) 7→ ∇uL(t, x, u) +B(t, x)>∇xV ∗(t, x) ∈ Cs(Ω).

Then there exist p functions (wj)1≤j≤p ∈ Cs(Ω) such that:

∀(t, x, u) ∈ Ω, H∗(t, x, u) =
p∑
j=1

wj(t, x, u)2. (5.18)

Proof. Consider the Hamiltonian with f control-affine:

H∗(t, x, u) =∇V ∗(t, x)>g(t, x) + ∂V ∗

∂t
(t, x)

+ L(t, x, u) +∇V ∗(t, x)>B(t, x)u. (5.19)

Pontryagin’s maximum principle states that:

∀(t, x) ∈ Ω1, inf
u∈U

H∗(t, x, u) = 0. (5.20)

Since L is strongly convex in u, the minimizer is unique and we call it u∗(t, x). By definitions of Ω1 and Ω2,
we have a mapping u∗ : Ω1 → Ω2 and it is characterized by:

∇uH∗(t, x, u) = ∇uL(t, x, u∗(t, x)) +B(t, x)>∇xV ∗(t, x) = 0.

110

5.4. Tight Sum-of-Squares Representations

Since (t, x, u) 7→ ∇2
uL(t, x, u) is continuous on Ω and invertible, and (t, x, u) 7→ ∇uH∗(t, x, u) ∈ Cs(Ω),

then the implicit function theorem ensures that u∗ ∈ Cs(Ω1) (see Schwartz (1981), Chapter 8, Theorems 25
& 31).

For (t, x, u) ∈ Ω, we use Taylor’s formula around u∗(t, x):

H∗(t, x, u) = H∗(t, x, u∗(t, x))
+∇uH∗(t, x, u∗(t, x))>(u− u∗(t, x))

+ (u− u∗(t, x))>R(t, x, u)(u− u∗(t, x)), (5.21)

with

R(t, x, u) :=
∫ 1

0
(1− τ)∇2

uH
∗(t, x, (1− τ)u∗(t, x) + τu)dτ. (5.22)

Since by definition of u∗, we have H∗(t, x, u∗(t, x)) = 0, ∇uH∗(t, x, u∗(t, x)) = 0 , and in addition,
∇2
uH
∗(t, x, ·) = ∇2

uL(t, x, ·), then we have:

H∗(t, x, u) = (u− u∗(t, x))>R(t, x, u)(u− u∗(t, x)), and (5.23)

R(t, x, u) =
∫ 1

0
(1− τ)∇2

uL(t, x, (1− τ)u∗(t, x) + τu)dτ <
ρ

2I. (5.24)

For (t, x, u) ∈ Ω, R(t, x, u) has a positive-definite square root
√
R(t, x, u).

Also, ∀τ ∈ [0, 1], (1− τ)u∗(t, x) + τu ∈ Ω2 because Int(U) is convex like U.

Since ∀i, j, ∂2L
∂ui∂uj

∈ Cs(Ω), u∗ ∈ Cs(Ω1), and
√
· is C∞ on {M | M> = M,M < ρ

2I}, then ri,j :
(t, x, u) 7→ e>i

√
R(t, x, u)ej ∈ Cs(Ω), and we have the decomposition:

H∗(t, x, u) =
p∑
i=1

wi(t, x, u)2, with (5.25)

wi(t, x, u) :=
√
R(t, x, u)

i·(u− u
∗(t, x))

=
p∑
j=1

ri,j(t, x, u)
(
e>j (u− u∗(t, x))

)
, (5.26)

and each wi ∈ Cs(Ω). One can easily check that for a time-varying LQR, we recover this explicit SOS
decomposition with R(t, x, u) = R, u∗(t, x) = −K(t)x, K(t) = R−1B>(t)S(t), and S(.) the positive
definite solution of the Riccati differential equation.

This result motivates the use of exponential kernels, inducing a Sobolev space RKHS, to represent the non-
negativity constraints in (P) for smooth OCPs. When s > d/2 + 1, by applying a technique similar to the
one used under Corollary 2 of Rudi et al. (2020), it is possible to obtain a SoS representation in terms of the
exponential kernel. Then (KSOS) is equivalent to (P).

111

Chapter 5. Infinite-Dimensional Sums-of-Squares for Optimal Control

5.4.3 Stochastic Smoothing of the Optimal Value Function

However in general, V ∗ is not necessarily smooth (e.g., minimal time problems), nor is u∗ (e.g., bang-bang
controllers that are not even continuous), even with differentiable dynamics and cost functions. Here, we
provide a generic technique to give some regularity to V ∗. For η > 0, we can define a perturbed version of
the control system (Fleming and Rishel, 2012), where the state is a random variable Xt:

dXt = f(t,Xt, ut)dt+ (2η)1/2dBt , (5.27)

where Bt is a standard Brownian motion independent of Xt. We define the optimal value function, with
X0 = x0:

V η(t0, x0) = inf
u∈U

E

[∫ T

t0
L(t,Xt, ut)dt+M(XT)

]
. (5.28)

V η is the unique C1,2(XT) (C1 in t, C2 in x) solution (Fleming and Rishel, 2012) of the following regular-
ized HJB equation: ∀(t, x) ∈ XT ,

inf
u∈U
{L(t, x, u) +∇V η(t, x)>f(t, x, u)}

+∂V η

∂t
(t, x) + η∆V η(t, x) = 0 , (5.29)

with V η(T, x) = M(x). ∆V η refers to the Laplacian with respect to x. Contrary to HJB, the solutions
are at least C1,2(XT) because this is a quasilinear parabolic partial differential equation (Lieberman, 1996).
The regularization η∆V is a vanishing viscosity term, and the optimal controller is still in argminu L +
∇V η>f . Generically, V η converges to V ∗ as η → 0, following a reasoning similar to the theory of viscosity
solutions (Crandall and Lions, 1983).

5.5 SDP Formulation and its Numerical Resolution

5.5.1 Finite-Dimensional Formulation via Subsampling

Similarly to the (LP) formulation that relaxes (P), we will now derive a relaxation of problem (KSOS), which
is another relaxation of problem (P) if the SoS representation of H∗ is tight. Going through (KSOS) as an
intermediate step will help to exploit the structure of (P). Using a parameterization of V in FΘ with Θ = Rm,
and a set of sampled points (t(i), x(i), u(i))i∈I in [0, T]× X× U, with |I| = n, we obtain:

supA∈S+(H),θ∈Θ c>θ − λθ‖θ‖22 − λTr(A) + C

such that ∀i ∈ {1, . . . , n}, (5.30)

bi + a>i θ = 〈Φ(t(i), x(i), u(i)),AΦ(t(i), x(i), u(i))〉,

with c :=
∑n
i=1 µ

(i)
0 ψ(0, x(i)), C :=

∑
i µ

(i)
0 M(x(i)),

bi := L(t(i), x(i), u(i)) +∇M(x(i))>f(t(i), x(i), u(i)) + η∆M(x(i)), (5.31)

112

5.5. SDP Formulation and its Numerical Resolution

and

ai := Jψ(t(i), x(i))f(t(i), x(i), u(i)) + ∂ψ

∂t
(t(i), x(i)) + η∆ψ(t(i), x(i)), (5.32)

where Jψ denotes the Jacobian matrix of ψ with respect to x only. Note that we integrate the stochastic
smoothing process in this formulation, with parameter η that can be eventually set to 0.

The regularization parameter λ > 0 controls the trace of the infinite-dimensional operator A, and allows for
subsampling to provably recover the non-subsampled program when n tends to infinity, and λ goes to zero
at the proper rate (see Rudi et al. (2020) for the precise dependence). In the limit λ→ 0, we recover the LP
formulation where we assume nothing about the SoS representation of H∗ in H.

Both the operator A and the Φ(t(i), x(i), u(i)) can be infinite-dimensional, depending on the RKHS H. Yet,
following Rudi et al. (2020), we can reformulate the problem equivalently in finite dimension. Using the
representer theorem in Marteau-Ferey et al. (2020), one can prove that A can be sought in the form: for
D ∈ Rn×n, D � 0,

A =
n∑

i,j=1
DijΦ(t(i), x(i), u(i))⊗ Φ(t(j), x(j), u(j)). (5.33)

Simple computations detailed in Rudi et al. (2020) show that:{
∀i, 〈Φ(t(i), x(i), u(i)),AΦ(t(i), x(i), u(i))〉 = [KDK]ii ,
Tr(A) = Tr(DK), (5.34)

where K is the kernel matrix with entry (i, j) equal to k
(
(t(i), x(i), u(i)), (t(j), x(j), u(j))

)
. Assume that

K � 0. We denote by K = R>R the Cholesky decomposition of K, with R an invertible upper-triangular
matrix.

Let B := RDR> and for 1 ≤ i ≤ n, Φi := R·i. Then:{
Tr(B) = Tr(DK) = Tr(A),
[KDK]ii =

[
R>BR

]
ii

= Φ>i BΦi.
(5.35)

The problem can now be reformulated as a finite-dimensional SDP over the positive semi-definite matrixB ∈
Rn×n:

supB<0,θ∈Rm c>θ − λθ‖θ‖22 − λTr(B) + C (5.36)

such that ∀i ∈ {1, . . . , n}, bi + a>i θ = (Φi)>BΦi .

An important question is to estimate the number of subsampled inequalities sufficient to ensure that (5.36)⇔
(KSOS). If nothing is assumed on the structure of H , as in the LP method, this number is infinite. In
contrast, the kernel SoS representation can reduce it or make it finite. If H is a polynomial of degree 2r,
k is the polynomial kernel of degree r, then n ≥ 2r distinct sampled points are enough to interpolate H ,
and (5.36) ⇔ (KSOS). Another example is global optimization of smooth functions (see Example 1) with
the exponential kernel. We refer to Rudi et al. (2020) for the analysis of the convergence rates, with a
lower dependence in the dimension for the kernel SoS when compared to direct inequality subsampling
(corresponding to the LP approach).

113

Chapter 5. Infinite-Dimensional Sums-of-Squares for Optimal Control

5.5.2 Interior Point Method with the Damped Newton Method

Problem (5.36) can be readily solved by any off-the-shelf SDP solver. However, for large n, this quickly
becomes too computationally demanding. Here, we propose a numerical scheme based on the one pro-
posed by Rudi et al. (2020) that scales better with the number of subsamples n. First, we introduce a slack
variable δ ∈ Rn allowing the constraints to be slightly violated (e.g., because FΘ is not a perfect model),
controlled by a large parameter γ > 0. Second, we introduce a log-barrier term controlled by a small ε > 0,
useful to form the dual of the SDP. We obtain the following problem:

sup
B<0,
θ,δ

c>θ − λTr(B)− λθ‖θ‖22 − γ‖δ‖2 + ε log detB + C

such that ∀i ∈ {1, . . . , n}, bi + a>i θ = (Φi)>BΦi + δi. (5.37)

The Lagrange dual of this problem reads:

infα∈Rn

n∑
i=1

αibi + 1
4λθ

m∑
j=1

(
cj +

n∑
i=1

αiaij

)2

−ε log detU(α) + 1
4γ ‖α‖

2
2 + εn log(ε/e) + C, (5.38)

where U(α) := λIn + Φ>Diag(α)Φ, and Φ := R> is the matrix with rows (Φi)1≤i≤n. Let us call the
objective F (α).

Since F/ε is self-concordant (Boyd and Vandenberghe, 2004), like in Rudi et al. (2020), we propose to use
damped Newton iterations (Nemirovski, 2004) on F/ε:

α← α+ 1
1 + λ(α)∆α , (5.39)

where ∆(α) := −[F ′′(α)]−1F ′(α) is the Newton direction and λ(α) :=
√

∆α>F ′′(α)∆α/ε is the Newton
decrement. The gradient and Hessian of F are computed by:

∂F

∂αi
= bi + 1

2λθ

m∑
j=1

aij

(
cj +

n∑
k=1

akjαk

)
+ 1

2γαi − ε Φ>i U(α)−1Φi. (5.40)

∂2F

∂αi∂αj
= 1

2λθ

n∑
k=1

aikajk + ε
[
Φ>i U(α)−1Φj

]2
+ 1i=j

2γ . (5.41)

At optimum, the value function is recovered by

θ? = 1
2λθ

(
n∑
i=1

α?i ai + c

)
, (5.42)

and the dual variable α? plays a role similar to an occupation measure (Vinter, 1993), although it is not
necessarily non-negative. To improve numerical stability in the experiments hereafter, we used an homotopy
heuristics that progressively decreases the parameters λθ and ε. Moreover, parallel implementations are
possible because no singular value decomposition is needed, only matrix operations and system inversions,
with a computational complexity of O(n3) per iteration.

114

5.6. Numerical Example

5.6 Numerical Example

In this section, we apply the kernel SoS method along with the basic LP method, on a two-dimensional
control problem, namely the double integrator with finite horizon.

Setting. The problem is an LQR, as in Section 5.4.1, but with finite-horizon T = 1, d = 2, p = 1,
M(x) = ‖x‖22,

A0 =
(

0 1
0 0

)
, B0 =

(
0
1

)
, Q0 = I2, R0 = 0.1 . (5.43)

The optimal value function and controller are V ∗(t, x) = x>S(t)x,

u∗(t, x) = −R−1
0 B>0 S(t)x =: −K(t)x, (5.44)

where S(.) is the positive semi-definite solution of S(T) = I2 and:

Ṡ(t) = −Q0 −A>0 S(t)− S(t)A0 + S(t)B0R
−1
0 B>0 S(t). (5.45)

Parameterization of V . Let Vθ(t, x) = θ>ψ(t, x) + M(x), where each entry of ψ is a product of basis
functions on X and [0, T]. Let ϕ(x) := (1, x1, x2, x1x2, x

2
1, x

2
2)>, because we know V ∗ is quadratic in x. For

κ on [0, T], we only know that it is a smooth function, so we use an approximate basis of the Sobolev space
of functions with squared integrable derivatives: a sequence of sines and cosines with decreasing periods
beginning with 2T to avoid constraining V (0, .) = V (T, .), and κ(T) = 0, ensures that V (T, .) = M(.):

κ(t) :=
(1
ω

sin
(
ωπ

2
t− T
T

))>
1≤ω≤mt

. (5.46)

Finally, ψi+6j(t, x) := ϕi(x)κj(t), and θ ∈ Rm, m = 6mt. We choose mt = 10, for which the performance
of the policy of the projection of V ∗ on FΘ is almost perfect.

Evaluation. We give two criteria to evaluate the quality of an approximation V . First, the distance to V ∗:
‖V̄ − V̄ ∗‖2, where V̄ is the vector of its values on a regular grid on [0, T] × [−1, 1]2 with 10 × 10 × 10
points. Second, the cost of the policy on a 10× 10 regular grid of initial points.

Sampling. The set of samples (t(i), x(i), u(i))i∈I is built as follows. The x(i) are nx points in [−1, 1]2
generated by the Sobol sequence (Sobol’, 1967), the (u(i))1≤i≤nu are on a uniform grid on [−10, 10] and
the (t(i))1≤i≤nt on [0, T]. The sample set is the Cartesian product of the three previous ones, and has
n = ntnxnu elements. We also use the same samples as initial points (t(i)0 , x

(i)
0) in the objective function

of problem (P). Note that we have replaced it with
∑n
i=1 V (t(i), x(i))/n, as we found it more efficient in

our experiments to optimize over V at intermediate time steps rather than at t0 only. Indeed, we ultimately
evaluate our approximation by the accuracy of V on the whole XT and not only on {t0} × X. In a discrete
states and actions setting, this effect is analyzed by De Farias and Van Roy (2003), where µ0 is denoted as
“state-relevance weights”.

115

Chapter 5. Infinite-Dimensional Sums-of-Squares for Optimal Control

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Amplitude of the coefficients of V

1
x1
x2

x2
1

x1x2

x2
2

0.0 0.2 0.4 0.6 0.8 1.0
10

8

6

4

2

0
Amplitude of the coefficients of u

1
x1
x2

Figure 5.1: Variation through time of the coefficients of the value function in the basis of monomials of
degree less than two, and of the corresponding controller. The plain lines denote the results obtained with
the kernel SoS method, for nx = nu = 10, λβ = 10−2, λB = 0.1, γ = 10−2, ε = 10−4. The dotted lines
are the coefficients of the true value function V ∗.

Methods. We compare three methods: the LP, the guided SoS and the kernel SoS. The LP method is
detailed in Section 5.3.1, and as for the kernel SoS method, we add a slackness parameter on the constraints,
with a penalization controlled by γ > 0 (γ →∞ recovers the original LP).

The guided SoS method is the same as problem (5.36), except that the embeddings Φi of the samples are
replaced by vectors Ψi of fixed dimension, which are computed explicitly, without a kernel. Motivated by
the fact that:

H∗(t, x, u) = (u+K(t)x)>R(u+K(t)x), (5.47)

we choose the embedding vectors as follows:

Ψi :=
(
u(i)

10 , x
(i),

(
ω−1 sin

(
ωπ

2 (t(i)/T − 1)
)
x(i)

)
1≤ω≤qt

)>
, (5.48)

where the last qt scalar terms (without the vector x) approximately model K(.) as a smooth function of t.
For computational efficiency, we choose qt = 5 and we checked that this basis can approximate the entries
of K(t) well. Then we solve an SDP of size (p+ qtd)× (p+ qtd) = 11× 11 instead of n×n for the kernel
version.

The kernel SoS method is as described in the previous sections, with the following kernel:

k((t, x, u), (t′, x′, u′)) = 〈u, u′〉/100 + 〈x, x′〉 × exp(−|t− t′|). (5.49)

This kernel is also designed to match the shape of H∗, with a smooth term in t modelled by the exponential
kernel. The matrix K can be singular, so we replace it by K + 10−8In.

Results. We compare the performance of the three methods to a baseline: the projection of V ∗ on FΘ,
which is a proxy for the best performance to expect with a fixed FΘ. We keep the best set of hyper-parameters

116

5.6. Numerical Example

5 10 15 20
nx, nu

3

4

5

6

7

Distance to V*
LP
guided SoS
kernel SoS
projection

5 10 15 20
nx, nu

0.80

0.85

0.90

0.95

1.00

1.05
Cost of policy

LP
guided SoS
kernel SoS
projection

Figure 5.2: Comparison of the performances of the value function and the policy of the three methods, as a
function of the number of samples nx = nu.

after a grid search on (λθ, γ) for the LP method, and on (λθ, γ, λ) for the two others, with ε = 10−4. We
keep η = 0 and nt = 20 in all the experiments, and a varying number nx = nu of sample points. For
example, with nx = nu = 20, the dual variable α of the largest problem here has dimension n = 8000, and
solving the numerical problem written in Python takes a few minutes on a standard laptop. In Figure 5.1, we
plot the value function and controller obtained with nx = nu = 10 points.

The results are presented in Figure 5.2. The guided and kernel SoS methods perform similar, and better than
the LP: they better exploit a fixed number of samples than the LP. Note that the kernel SoS tends to the LP
when λ tends to 0, hence using a positive λ improves the results. We believe that the design of a kernel
adapted to prior knowledge on the problem is crucial to benefit from this effect. Finally, the kernel SoS has
the same performance as the guided SoS, but it is computationally more expensive as soon as n > 11. Yet
the kernel version extends way beyond such fixed finite-dimensional embeddings, to infinite-dimensional
embeddings represented by any positive definite kernel, including the exponential kernel, the polynomial
kernel and many others.

117

Chapter 5. Infinite-Dimensional Sums-of-Squares for Optimal Control

5.7 Conclusion

The kernel SoS approximation method generalizes the polynomial SoS method for OCPs. Like the simple
LP method, it is black-box, or sample-based, in the sense that it is based only on function evaluations of
the dynamics and loss, without requiring to compute any gradients. Moreover, it enables to exploit prior
knowledge on the structure of an OCP, by choosing an appropriate kernel. The problem reduces to an
SDP, whose size can be computationally limiting, but parallel implementations are possible. There are
several sources of approximations in this method: the parameterization FΘ of V might not be exact, the SoS
representation of H∗ is not exact in general (although we have proved it is in a few particular cases), and we
subsample a finite number of constraints. In particular, estimating the effect of subsampling in such a way
that the method gives a certified lower-bound on the OCP, like in the method of Lasserre et al. (2008), could
be addressed in future work by extending the technique of Woodworth et al. (2022). For all these reasons,
the method will probably not reach high precision solutions, but can be used to initialize direct shooting
methods, and returns an approximate solution even with very few samples. Furthermore, we believe it is
possible to extend the method to also account for state constraints, similarly to Lasserre et al. (2008). One
could also parameterize the value function directly in an RKHS. Another interesting extension is to apply
the method to Markov decision processes, where we could deal with states that are more complex objects
(graphs, sequences, trajectories,...), or even infinite-dimensional objects like in soft robotics (Della Santina
et al., 2021), with appropriate kernels.

118

Chapter6
A Non-asymptotic Analysis of Non-parametric

Temporal-Difference Learning

Abstract. Temporal-difference learning is a popular algorithm for policy evaluation. In this
chapter, we study the convergence of the regularized non-parametric TD(0) algorithm, in both
the independent and Markovian observation settings. In particular, when TD is performed in a
universal reproducing kernel Hilbert space (RKHS), we prove convergence of the averaged iter-
ates to the optimal value function, even when it does not belong to the RKHS. We provide explicit
convergence rates that depend on a source condition relating the regularity of the optimal value
function to the RKHS. We illustrate this convergence numerically on a simple continuous-state
Markov reward process.

This chapter is based on our work A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learn-
ing, with Ziad Kobeissi and Francis Bach, accepted for publication in the Conference on Neural Information
Processing Systems (NeurIPS), 2022.

Contents
6.1 Introduction . 120

6.1.1 Contributions . 121

6.1.2 Related Literature . 121

6.2 Problem Formulation and Generic Results . 122
6.2.1 The Non-parametric TD(0) Algorithm . 122

6.2.2 Covariance Operators . 124

6.2.3 Non-Expansiveness of the Bellman Operator . 125

6.3 Analysis of a Continuous-Time Version of the Population TD Algorithm 126
6.3.1 Existence of a Fixed Point for Regularized TD 126

6.3.2 Convergence of the Regularized Fixed Point to the Optimal Value Function 126

6.3.3 Convergence of Continuous-Time Population TD 127

6.4 Stochastic TD with i.i.d. Sampling . 128
6.5 Stochastic TD with Markovian Sampling . 129

119

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

6.6 Experiments on Artificial Data . 131
6.6.1 Setting of the Problem . 131

6.6.2 Qualitative and Quantitative Results . 132

6.7 Conclusion . 134
6.A Proofs and Intermediate Results . 135

6.A.1 Problem Formulation and Generic Results . 135

6.A.2 Analysis of a Continuous-Time Version of the Population TD Algorithm 135

6.A.3 Stochastic TD with i.i.d. Sampling . 141

6.A.4 Stochastic TD with Markovian Sampling . 149

6.B Experimental Design . 157
6.B.1 Geometric Mixing of the Markov Chain . 157

6.B.2 Implementation Details . 158

6.1 Introduction

One of the main ingredients of reinforcement learning (RL) is the ability to estimate the long-term effect
on future rewards of employing a given policy. This building block, known as policy evaluation, already
contains crucial features of more complex RL algorithms, such as SARSA or Q-learning (Sutton and Barto,
2018). Temporal-difference learning (TD), proposed by Sutton (1988), is among the simplest algorithms for
policy evaluation. The estimation of the performance of the policy is made through a value function. It is
updated online, after each new observation of a couple composed of a state transition and a reward.

Although the formulation of TD is quite natural, its theoretical analysis has proved more challenging, as it
combines two difficulties. The first one is that TD bootstraps, in the sense that it uses its previous – possibly
inaccurate – predictions to correct its next predictions, because it does not have access to a fixed ground truth.
The second difficulty is that the observations are produced along a trajectory following a fixed policy (on-
policy), hence they are correlated, which calls for more involved stochastic approximation tools compared
to independent identically distributed (i.i.d.) samples. Moreover, using off-policy samples, produced by a
different policy than the one being evaluated, can make the algorithm diverge (Boyan and Moore, 1994).
Off-policy sampling is out of our scope in this chapter.

A third element which is not inherent to TD further complicates the plot: function approximation. While
TD was originally proposed in a tabular setting, its large-scale applicability has been greatly extended by its
combination with parametric function approximation (Bradtke and Barto, 1996). This enables the use of any
linear or non-linear function approximation method to model the value function, including neural networks.
However, one can exhibit unstable diverging behaviors of TD even with simple non-linear approximation
schemes (Tsitsiklis and Van Roy, 1997). This combination of difficulties (even with linear function approx-
imation) has been coined the “deadly triad” by Sutton (2015). We argue that convergence can be obtained
even with non-linear function approximation, by making use of the non-parametric formalism of reproduc-
ing kernel Hilbert spaces (RKHS), involving linear approximation in infinite-dimension. Studying this case
could bring us closer to understanding what happens with other universal approximators used in practice,
like neural networks, in the wake of the recent study of TD with a one-hidden layer neural network by Cai
et al. (2019).

120

6.1. Introduction

6.1.1 Contributions

We study the policy evaluation algorithm TD(0) in the non-parametric case, first when the observations are
sampled i.i.d. from the invariant distribution of the Markov chain resulting from the evaluated policy, and
then when they are collected from a trajectory of the Markov chain with geometric mixing. In that sense we
follow a similar outline as the analysis of Bhandari et al. (2018) which is dedicated to the linear case.

The non-parametric formulation of TD closes the gap between the original tabular formulation and the para-
metric formulation which involves semi-gradients. It allows the use of classical tools and theory from ker-
nel methods (Cristianini and Shawe-Taylor, 2004). In particular, we highlight the central role of infinite-
dimensional covariance operators (Bach, 2022; Baker, 1973) which already appear in the analysis of other
non-parametric algorithms, like least-squares regression. We study a regularized variant of TD, a widely used
way of dealing with misspecification in regression. Importantly, when the regularized TD approximation is
run on an infinite-dimensional RKHS which is dense in the space of square-integrable functions, then there
is no approximation error and the algorithm converges to the true value function. More precisely, we provide
a proof of convergence in expectation of TD without approximation error, even when the true value func-
tion does not belong to the RKHS, under a weaker source condition. Furthermore, we give non-asymptotic
convergence rates related to this source condition, which measures the regularity of the true value function
relative to the RKHS, e.g., its smoothness if the RKHS is a Sobolev space (Novak et al., 2018).

Note that using a universal kernel (Micchelli et al., 2006) to obtain convergence of TD to the true value
function is also interesting from a theoretical point of view. Indeed it exempts us from a possibly tedious
study of the approximation (or projection) error on a given basis, and simply removes an error term which in
general scales linearly with the horizon of the Markov reward process (Mou et al., 2020; Yu and Bertsekas,
2010).

In the rest of this section, we review the related literature. In Section 6.2, we present the algorithm, along with
generic results and notations. In Section 6.3, we analyze a simplified version of the algorithm, namely pop-
ulation TD in continuous time. This allows to catch the main features of the analysis, while postponing the
technicalities related to stochastic approximation. Section 6.4 is dedicated to the analysis of non-parametric
TD with i.i.d. observations, while Section 6.5 consists in a similar analysis for correlated observations sam-
pled from a geometrically mixing Markov chain. Finally, in Section 6.6, we present simple numerical simu-
lations illustrating the convergence results and the role of the main parameters.

6.1.2 Related Literature

Temporal-difference learning. The TD algorithm was introduced in its tabular version by Sutton (1988),
with a first convergence result for linearly independent features, later extended to dependent features by Dayan
(1992). Further stochastic approximation results were proposed by Jaakkola et al. (1993) for the tabular case,
and by Schapire and Warmuth (1996) for the linear approximation case. An exact analysis of the behavior
of tabular TD was recently carried out by Hu and Syed (2019), using the framework of Markov jump linear
systems. Tsitsiklis and Van Roy (1997) provided a thorough asymptotic analysis of TD with linear function
approximation, while failure cases were already known (Baird, 1995). A non-asymptotic analysis was later
proposed by Lakshminarayanan and Szepesvari (2018) in the i.i.d. sampling case with constant step size,
concurrently to another approach extending to Markov sampling by Bhandari et al. (2018). Other problem-
dependent bounds for linear TD were derived around the same period (Dalal et al., 2018; Srikant and Ying,
2019), along with an analysis of variance-reduced TD (Korda and La, 2015; Xu et al., 2020). All of the

121

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

analyses mentioned above focus either on the tabular or on the linear parametric TD algorithm. A recent
work by Duan et al. (2021) deals with the batch counterpart of non-parametric TD, namely the least-squares
TD algorithm (LSTD), but they rather focus on the analysis of the statistical estimation error. Importantly,
LSTD only requires offline computations and is not related to stochastic approximation. Most closely related
to our work is the non-parametric regularized TD setting studied by Koppel et al. (2020). However, their
analysis is limited to the case where the optimal value function belongs to the RKHS. This is not sufficient
to get rid of the approximation error term. Also, we will show later that regularization is not necessary in
this case. Furthermore, their analysis is restricted to the i.i.d. setting, for which we will require fewer regu-
larity assumptions. Finally, let us mention the recent work by Cai et al. (2019) concerning TD with function
approximation using a one-hidden layer neural network with finite-width, called “neural TD”. Since finite-
width neural networks are not universal approximators, there is an approximation error, which vanishes in
the infinite-width limit if the value function belongs to a particular function space.

Kernel methods in RL. To tackle large-dimensional problems, kernel methods have been combined with
various RL algorithms, including approximate dynamic programming (Barreto et al., 2011; Bhat et al.,
2012; Grünewälder et al., 2012; Ormoneit and Sen, 2002), policy evaluation (Dai et al., 2017), policy it-
eration (Farahmand et al., 2016), LSTD (Duan et al., 2021), the linear programming formulation of RL (Di-
etterich and Wang, 2001), upper confidence bound (Domingues et al., 2021), or fitted Q-iteration (Long et al.,
2021). Such kernel methods often come along with practical ways to reduce the computational complexity
that grows with the number of observed transitions and rewards (Barreto et al., 2016; Koppel et al., 2020).

Stochastic approximation. The analysis of TD requires tools from stochastic approximation (Benveniste
et al., 1990), among which the ODE method (Borkar and Meyn, 2000). Such tools are primarily designed for
finite-dimensional problems. Stochastic gradient descent (SGD) (Bottou et al., 2018) is a specific instance
of stochastic approximation that has received extensive attention for supervised learning. In particular, the
role of regularization of SGD for least-squares regression has been studied (Caponnetto and De Vito, 2007;
Cucker and Zhou, 2007), as well as the effect of of sampling data from a Markov chain (Nagaraj et al., 2020).
Finally, we use a formalism which is close to the analyses by Berthier et al. (2020); Dieuleveut and Bach
(2016); Pillaud-Vivien et al. (2018a) of non-parametric SGD for least squares regression.

6.2 Problem Formulation and Generic Results

6.2.1 The Non-parametric TD(0) Algorithm

We consider a Markov reward process (MRP), i.e., a Markov chain with a reward associated to each state.
This is what results from keeping the policy fixed in a Markov decision process (MDP) for policy evaluation.
We consider MRPs in discrete-time, not necessarily with a countable state space X. Specifically, we use the
formalism of Markov chains on a measurable state space, also called Harris chains, which unifies discrete-
and continuous-state Markov chains. Formally, let X ⊂ Rd a measurable set associated with the σ-algebra
A of Lebesgue measurable sets. Let (xn)n≥1 a time-homogeneous Markov chain with Markov kernel κ. A
Markov kernel (Klenke, 2013; Reiss, 2012) is a mapping κ : X × A → [0, 1] that has the following two
properties:

1. for every x ∈ X, κ(x, ·) is a probability measure on A;

122

6.2. Problem Formulation and Generic Results

2. for every A ∈ A, κ(·, A) is A-measurable.

If X is a countable set, κ is represented by a transition matrix Q such that Qi,j := P(j|i) = κ(i, {j}), for
any i, j ∈ X.

We define a reward function r : X→ R uniformly bounded by R <∞, and a discount factor γ ∈ [0, 1). The
aim of policy evaluation is to compute the value function of the MRP:

∀x ∈ X, V ∗(x) = E
[+∞∑
n=0

γnr(xn)
∣∣∣ x0 = x

]
, (6.1)

where the (xn)n≥1 are drawn from the Markov chain. A probability distribution p : A → R is a stationary
distribution for κ if for all A ∈ A,

p(A) =
∫
X
κ(x,A)p(dx). (6.2)

The existence and uniqueness of a stationary distribution p, along with the convergence of the Markov chain
to p in total variation, is ensured by ergodicity conditions. A sufficient condition is that the Markov chain is
Harris ergodic, i.e., it has a regeneration set, and is aperiodic and positively recurrent (see Asmussen (2003)
and Durrett (2019) for an exposition of Harris chains). For discrete-state Markov chains, ergodicity condi-
tions can be expressed somewhat more simply, and any aperiodic and positive recurrent Markov chain has a
unique invariant distribution. Throughout this chapter, we assume that p is the unique invariant distribution
of the Markov chain, and that it has full support on X. Only in Section 6.5, we will in addition assume that
the Markov chain is geometrically mixing.

We define L2(p), the set of squared integrable functions f : X→ R with respect to p, with the norm

‖f‖2L2(p) =
∫
X
f(x)2p(dx) < +∞. (6.3)

We also consider a reproducing kernel Hilbert space H of A-measurable functions, associated to a positive-
definite kernel K : X × X → R. For all x ∈ X, we use the notation Φ(x) := K(x, ·) for the mapping
of x in H, and 〈·, ·〉H for the inner product in H (we sometimes drop the index). We assume that MH :=
supx∈XK(x, x) is finite, which implies that H ⊂ L2(p). More precisely, the H-norm controls the L2(p)-
norm: any sequence converging in H thus converges in L2(p). Indeed, if f ∈ H:

‖f‖2L2(p) =
∫
f(x)2dp(x) =

∫
〈f,Φ(x)〉2Hdp(x) ≤ ‖f‖2H

∫
‖Φ(x)‖2Hdp(x) ≤MH‖f‖2H. (6.4)

We also assume that r ∈ L2(p). The non-parametric TD(0) algorithm in the RKHS H is defined as fol-
lows (Koppel et al., 2020; Ormoneit and Sen, 2002). Draw a sequence (xn)n≥0 according to the Markov
chain with initial distribution p, and collect the corresponding rewards (r(xn))n≥0. Define a sequence of
non-negative step sizes (ρn)n≥1. We build recursively a sequence of approximate value functions (Vn)n≥0
in L2(p). Throughout the chapter, we take V0 = 0 for simplicity, but note that all the results can be adapted
to the case V0 ∈ H. For n ≥ 1:

∀y ∈ X, Vn(y) = Vn−1(y) + ρn
[
r(xn) + γVn−1(x′n)− Vn−1(xn)

]
K(xn, y), (6.5)

where x′n := xn+1. The term in brackets is called a temporal-difference. Equivalently, in the RKHS:

Vn = Vn−1 + ρn
[
r(xn) + γVn−1(x′n)− Vn−1(xn)

]
Φ(xn). (6.6)

123

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

This update has a running time complexity of O(n2), which can be improved to O(n), e.g., using Nyström
approximation or random features (Halko et al., 2011). More details on the implementation are given in
Appendix 6.B.2. This non-parametric formulation is a natural extension of the tabular TD algorithm. Indeed,
if X is a countable set and K(x, y) = 1x=y is a Dirac kernel – a valid positive-definite kernel – then
we exactly recover tabular TD: the update rule (6.5) becomes, after observing a transition (i, i′, ri) :=
(xn, x′n, r(xn)):

Vn(i) = Vn−1(i) + ρn
[
ri + γVn−1(i′)− Vn−1(i)

]
, and ∀j 6= i, Vn(j) = Vn−1(j). (6.7)

This also covers the semi-gradient formulation of TD for linear function approximation (Sutton and Barto,
2018). Suppose H has finite dimension d, then Vn can be identified to ξn ∈ Rd, and we are searching for an
approximation of the form Vn(x) = ξ>n Φ(x). Then (6.6) becomes:

ξn = ξn−1 + ρn
[
r(xn) + γVn−1(x′n)− Vn−1(xn)

]
∇ξVn(xn). (6.8)

Since V0 ∈ H, all the iterates Vn are in the RKHS, in particular Vn ∈ span{Φ(xk)}1≤k≤n. Consequently,
if the sequence (Vn) converges in the topology induced by the L2(p)-norm, it converges in H, the closure
of H with respect to the L2(p)-norm. In particular, for a dense RKHS and because p has full support on X,
H = L2(p), but in general it only holds that H ⊂ L2(p).

To understand the behavior of the algorithm, we will first consider the population version (also called mean-
path by Bhandari et al. (2018)) of the algorithm: set V0 = 0 and for n ≥ 1:

Vn = Vn−1 + ρnE(x,x′)∼q
[(
r(x) + γVn−1(x′)− Vn−1(x)

)
Φ(x)

]
, (6.9)

where the expectation is taken with respect to q(dx, dx′) := p(dx)κ(x,dx′). Since Vn−1 ∈ H, the repro-
ducing property holds: Vn−1(x) = 〈Vn−1,Φ(x)〉H. Hence the update is affine and reads:

Vn = Vn−1 + ρn(AVn−1 + b), (6.10)

with A := Eq [γΦ(x)⊗ Φ(x′)− Φ(x)⊗ Φ(x)] and b := Ep [r(x)Φ(x)], where ⊗ denotes the outer product
in H defined by g ⊗ h : f 7→ 〈f, h〉Hg.

6.2.2 Covariance Operators

Assume that the expectations Σ := Ep[Φ(x)⊗ Φ(x)] and Σ1 := Eq[Φ(x)⊗ Φ(x′)] are well-defined. Σ and
Σ1 are the uncentered auto-covariance operators of order 0 and 1 of the Markov process (xn)n≥1, under the
invariant distribution p. They are operators from H to H, such that, for all f, g ∈ H, using the reproducing
property:

Ep[f(x)g(x)] = Ep[〈f,Φ(x)〉H〈g,Φ(x)〉H] = 〈f,Ep[〈g,Φ(x)〉HΦ(x)]〉H = 〈f,Σg〉H
Eq[f(x)g(x′)] = Eq[〈f,Φ(x)〉H〈g,Φ(x′)〉H] = 〈f,Ep[〈g,Φ(x′)〉HΦ(x)]〉H = 〈f,Σ1g〉H.

(6.11)

In particular, for all y ∈ X and f ∈ H, (Σf)(y) = 〈Φ(y),Σf〉H = Ep[f(x)K(x, y)] and similarly,
(Σ1f)(y) = Eq[f(x′)K(x, y)]. Following Dieuleveut and Bach (2016), Σ and Σ1 can therefore be extended
to operators Σe and Σe

1 from L2(p) to L2(p) defined by:

Σe : f 7→
∫
X
f(x)Φ(x)p(dx), such that ∀y ∈ X, (Σef)(y) = Ep[f(x)K(x, y)]

Σe
1 : f 7→

∫∫
X2
f(x′)Φ(x)q(dx,dx′), such that ∀y ∈ X, (Σe

1f)(y) = Eq[f(x′)K(x, y)].
(6.12)

124

6.2. Problem Formulation and Generic Results

These two operators are the building blocks of the TD iteration (6.9). In particular, A = γΣ1 − Σ and
b = Σer, the latter being valid for r ∈ L2(p). With a slight abuse of notation, we denote simply as Σ, Σ1
the extended operators. Furthermore, Im(Σ) ⊂ H and Σ1/2 is an isometry from L2(p) to H (Dieuleveut and
Bach, 2016):

∀f ∈ H, ‖f‖L2(p) = ‖Σ1/2f‖H. (6.13)

The fact that p is a stationary distribution for κ implies a particular constraint linking Σ and Σ1:
Lemma 1. There exists a unique bounded linear operator Σ̃1 : H→ H such that Σ1 = Σ1/2Σ̃1Σ1/2 on H,
and ‖Σ̃1‖op ≤ 1 (‖ · ‖op is the H-operator norm).

This results from an application of (Baker, 1973, Theorem 1), valid on H and extended by continuity to H.
See also Fukumizu et al. (2004) for an exposition of cross-covariance operators specifically in an RKHS. In
finite dimension, this is retrieved with generic results on positive semi-definite (PSD) matrices. Specifically,
if H ⊂ Rm, the uncentered covariance matrix of the random variable (Φ(x),Φ(x′)), when (x, x′) ∼ q is:(

Σ Σ1
Σ>1 Σ

)
� 0. (6.14)

Using a classical condition on block matrices (Bhatia, 2013, Proposition 1.3.2), this matrix is PSD if and only
if there exists a matrix Σ̃1 such that ‖Σ̃1‖op ≤ 1 and Σ1 = Σ1/2Σ̃1Σ1/2 (‖ · ‖op is also the spectral norm in
this case). This corresponds to the fact that the Schur complement of a PSD block matrix is also PSD.

Assumptions on Σ and V ∗. We assume that x 7→ K(x, x) is uniformly bounded by MH. Therefore,
the eigenvalues of Σ are upper-bounded. However, unlike Tsitsiklis and Van Roy (1997) and Bhandari
et al. (2018), we do not assume them to be lower-bounded, i.e., Σ � 0 is not invertible in general. We
will formulate our convergence results for two sets of assumptions. The first one recovers known results
from Bhandari et al. (2018) for linear function approximation. The second one assumes that V ∗ verifies a
source condition (Dieuleveut, 2017, Chapter 1):

(A1) V ∗ ∈ H, H is finite-dimensional and Σ has full-rank;

(A2) V ∗ ∈ Σθ/2(H) for some θ ∈ (−1, 1] (and consequently, ‖Σ−θ/2V ∗‖H < +∞), and H = L2(p) (i.e.,
K is a universal kernel).

In (A1), H is finite-dimensional because Σ cannot be simultaneously compact (x 7→ K(x, x) being uni-
formly bounded) and invertible in infinite-dimension (Cheney, 2001). Recalling the isometry property (6.13),
the case θ = −1 always holds in (A2) because V ∗ ∈ L2(p) (which we prove in the next subsection).
The case θ = 0 is equivalent to V ∗ ∈ H. For θ > 0, it must be interpreted as: ‖Σ−θ/2V ∗‖2H :=
inf{‖V ‖2H | V s.t. V ∗ = Σθ/2V }, with ‖Σ−θ/2V ∗‖H = +∞ if V ∗ /∈ Σθ/2(H). Using a universal approx-
imation removes the need for a projection operator on H, as typically used for finite-dimensional function
approximation, and hence there will be no projection error (Tsitsiklis and Van Roy, 1997).

6.2.3 Non-Expansiveness of the Bellman Operator

It is known that the value function V ∗ of the MRP is a fixed point of the Bellman operator T . We define
two operators P and T : L2(p) → L2(p) by, for V ∈ L2(p), PV (x) = Ex′∼κ(x,·)V (x′) and TV (x) =

125

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

r(x) + γPV (x). Both operators can be expressed in terms of Σ and Σ1. For V ∈ L2(p):{
ΣPV = Ep[Φ(x)(PV)(x)] = Eq[Φ(x)V (x′)] = Σ1V
ΣTV = Σr + γΣ1V.

(6.15)

Lemma 2. For any V ∈ L2(p): ‖PV ‖L2(p) ≤ ‖V ‖L2(p).

This is a direct reformulation of (Tsitsiklis and Van Roy, 1997, Lemma 1), the proof of which is given in
Appendix 6.A.1. As stressed by Tsitsiklis and Van Roy (1997), this strongly relies on the fact that p is
a stationary distribution of the Markov chain. It implies that T is a γ-contraction mapping on L2(p) and
has as unique fixed point V ∗. One can check that if Σ is non-singular, Lemma 2 is exactly equivalent to
‖Σ−1/2Σ1Σ−1/2‖op ≤ 1, that is, Lemma 1. Moreover, using Lemma 2, we obtain

‖V ∗‖L2(p) ≤ ‖r‖L2(p)/(1− γ), (6.16)

and V ∗ ∈ L2(p).

6.3 Analysis of a Continuous-Time Version of the Population TD Algorithm

Before considering regularized TD with stochastic samples, we look at simplified versions of the algorithm
that momentarily remove the difficulties related to stochastic approximation. Specifically, we consider the
population version of TD to capture a “mean” behavior, and a continuous-time algorithm to avoid choosing
step sizes. Instead, we focus on the role of the regularization parameter.

6.3.1 Existence of a Fixed Point for Regularized TD

For λ ≥ 0, let us consider the regularized population recursion:

Vn = Vn−1 + ρn(Σr + (γΣ1 − Σ− λI)Vn−1). (6.17)

If the TD iterations converge, their limit will be a solution of the regularized fixed-point equation:

Σr + (γΣ1 − Σ− λI)V = 0. (6.18)

Proposition 1. If λ > 0, γΣ1 −Σ− λI is non-singular on H and equation (6.18) admits a unique solution
V ∗λ in L2(p), defined by V ∗λ = (γΣ1 − Σ− λI)−1Σr. Furthermore, V ∗λ ∈ H and:

‖V ∗λ ‖H ≤
‖Σr‖H
λ

≤
√
MH‖r‖L2(p)

λ
. (6.19)

The proof is in Appendix 6.A.2. Hence, for λ > 0, the H-norm of V ∗λ is always bounded, unlike ‖V ∗‖H.

6.3.2 Convergence of the Regularized Fixed Point to the Optimal Value Function

Recalling that V ∗ ∈ L2(p), it satisfies the relation TV ∗ = V ∗, implying that ΣTV ∗ = ΣV ∗, i.e.,

Σr + (γΣ1 − Σ)V ∗ = 0. (6.20)

126

6.3. Analysis of a Continuous-Time Version of the Population TD Algorithm

This unregularized fixed point equation possibly has other solutions, but if K is a universal kernel, as as-
sumed by (A2), then Σ is injective (Steinwart, 2001) and V ∗ is the unique solution. Let us recall that (A2)
does not imply that V ∗ has a bounded H-norm. However, we can control the L2(p)-norm of V ∗λ − V ∗ when
λ is small using the source condition (A2).
Proposition 2. Assume that λ > 0 and assumption (A2). Then:

‖V ∗λ − V ∗‖2L2(p) ≤
λθ+1

(1− γ)2 ‖Σ
−θ/2V ∗‖2H. (6.21)

The proof in Appendix 6.A.2 is inspired by similar results (Caponnetto and De Vito, 2007; Cucker and Zhou,
2007) in the context of ridge regression (recovered for γ = 0). Note that only ‖V ∗λ − V ∗‖L2(p) is controlled,
not ‖V ∗λ − V ∗‖H. Consequently, we obtain the convergence of V ∗λ to V ∗ in L2(p)-norm when λ → 0: the
higher θ is, the faster the rate of convergence.

For universal Mercer kernels (Cucker and Smale, 2002), if we drop the source condition (A2), using only
the fact that V ∗ ∈ L2(p) – corresponding to θ = −1 in (A2) – we can still prove that V ∗λ converges to V ∗ in
L2(p)-norm when λ→ 0, but without an explicit rate. We recall that a Mercer kernel is a continuous kernel
over a compact set (Dieuleveut and Bach, 2016).

Corollary 1. Assume that K is a universal Mercer kernel, and that V ∗ ∈ L2(p) (which holds as soon as
r ∈ L2(p), see Section 6.2.3), then:

‖V ∗λ − V ∗‖L2(p) −−−−→
λ→0+

0 . (6.22)

The proof is given in Appendix 6.A.2.

6.3.3 Convergence of Continuous-Time Population TD

Following the ordinary differential equation (ODE) method (Borkar and Meyn, 2000), we study the continuous-
time counterpart of the population iteration (6.17). At least formally, this consists in defining Ṽt = Vn(t) for

t and n(t) satisfying t =
∑n(t)
i=1 ρi, and letting ρi tend to 0 for any i ≥ 1, where Vn(t) is defined by recur-

sion using (6.17). With a slight abuse of notation, we use the notation Vt instead of Ṽt. We then obtain the
following ODE in H: V0 = 0 and for t ≥ 0:

dVt
dt = (A− λI)Vt + b. (6.23)

We can exhibit a Lyapunov function for this dynamical system, see (Slotine and Li, 1991). This implies
that Vt converges to V ∗λ when t tends to infinity, where V ∗λ is defined in Proposition 1. More precisely, for
β ∈ {−1, 0}, we defineW β , the Lyapunov function, byW β(t) := ‖Σ−β/2(Vt−V ∗λ)‖2H (please note that β’s
role in W β is an index, not a power). W 0(t) strictly decreases with t as follows:

Lemma 3 (Descent Lemma). For λ > 0, for all t ≥ 0, the following holds:

dW 0(t)
dt ≤ −2(1− γ)W−1(t)− 2λW 0(t) . (6.24)

The proof (see Appendix 6.A.2) mainly relies on the contraction property of the Bellman operator as ex-
pressed in Lemma 2. We can then deduce the convergence of the ODE (6.23) to V ∗λ .

127

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

Proposition 3. Under assumption (A1), the solution Vt of the ODE (6.23) with λ = 0 is such that:

For T > 0, ‖V T − V ∗‖2L2(p) ≤
1

2(1− γ)
‖V ∗‖2H
T

, (6.25)

where V T is the Polyak-Ruppert average (Polyak and Juditsky, 1992) of Vt, defined by

V T := 1
T

∫ T

0
Vtdt. (6.26)

Under assumption (A2), the solution Vt of the ODE (6.23) with λ > 0 is such that:

For T ≥ 0, ‖VT − V ∗λ ‖2H ≤ ‖V ∗λ ‖2He−2λT . (6.27)

Under (A1), we recover the same O(1/T) convergence rate as Bhandari et al. (2018). We focus on (A2),
where we get a fast convergence to V ∗λ in H-norm (stronger than L2(p)). However, we are rather interested
in convergence to V ∗. Proposition 2 quantifies how far V ∗λ is from V ∗. Indeed, the error decomposes as:

‖VT − V ∗‖2L2(p) ≤ 2MH‖VT − V ∗λ ‖2H + 2‖V ∗λ − V ∗‖2L2(p). (6.28)

Combining Propositions 1, 2, 3 shows a trade-off on λ:

‖VT − V ∗‖2L2(p) = O
(
e−2λT /λ2 + λθ+1

)
. (6.29)

Taking λ = (3 + θ) log T/(2T) balances the terms up to logarithmic factors:

‖VT − V ∗‖2L2(p) = Õ
(
T−1−θ

)
, (6.30)

where Õ(g(n)) := O(g(n) log(n)`), for some ` ∈ R. In particular, for θ = 0, i.e., V ∗ ∈ H, we recover a
convergence rate Õ (1/T): up to logarithmic factors, it is the same as the unregularized case with averaging,
assuming (A1). In this case, regularization brings no benefits.

6.4 Stochastic TD with i.i.d. Sampling

We now consider stochastic TD iterations (6.6), where the couples (xn, x′n)n≥1 are sampled i.i.d. from the
distribution q(dx,dx′) = p(dx)κ(x,dx′). Such i.i.d. samples can be obtained by running the Markov chain
until it has mixed so that xn ∼ p, collecting a couple (xn, x′n), and restarting.

With An := γΦ(xn)⊗ Φ(x′n)− Φ(xn)⊗ Φ(xn) and bn := r(xn)Φ(xn), we study the recursion:

Vn = Vn−1 + ρn((An − λI)Vn−1 + bn). (6.31)

In particular, Eq[An] = A, Ep[bn] = b, and An and bn are independent of the past (Vk)k<n.

For β ∈ {0, 1}, let W β
n := ‖Σ−β/2(Vn − V ∗λ)‖2H. Adapting the proof of Lemma 3, we exhibit a similar

decreasing behavior of W 0
n in expectation, hence showing that E[‖Vn − V ∗λ ‖2H] → 0 for well-chosen step

sizes ρn. Finally, λ is chosen to balance E[‖Vn−V ∗λ ‖2L2(p)] and ‖V ∗λ −V ∗‖2L2(p). We define V (e)
n and V (t)

n as
the exponentially-weighted and the tail-averaged n-th iterates respectively:

V (e)
n :=

∑n
k=1(1− ρλ)n−kVk−1∑n

k=1(1− ρλ)n−k and V (t)
n := 1

n− bn/2c+ 1

n∑
k=bn/2c

Vk−1. (6.32)

128

6.5. Stochastic TD with Markovian Sampling

Theorem 7. Let n ≥ 9. Under assumption (A2) with −1 < θ ≤ 1, there exists a positive real number λθ
independent of n such that, for λ0 ≥ λθ,

(a) Using λ = λ0n
− 1

3+θ and a constant step size ρ = logn
λn , then:

E
[
‖Vn − V ∗‖2L2(p)

]
= O

(
(logn)n−

1+θ
3+θ

)
. (6.33)

(b) Using λ = λ0n
− 1

2+θ and a constant step size ρ = logn
λn , then:

E
[
‖V (e)

n − V ∗‖2L2(p)

]
= O

(
(logn)n−

1+θ
2+θ

)
. (6.34)

(c) Using λ = λ0n
− 1

2+θ and a constant step size ρ = 2 logn
λn for the first bn/2c − 1 iterates and then a

decreasing step size ρk = 1
λk , then:

E
[
‖V (t)

n − V ∗‖2L2(p)

]
= O

(
(logn)n−

1+θ
2+θ

)
. (6.35)

A similar exponentially-weighted averaging scheme as in (b) has been used by Défossez and Bach (2017)
to study constant step size SGD. When γ = 0, the rates can be compared to existing results for SGD. For
example, for θ ∈ [0, 1], Tarres and Yao (2014) prove almost sure convergence for regularized least-mean-
squares without averaging at rate O(n−

1+θ
2+θ). The dependence in θ is similar to what we obtain. Moreover,

under assumption (A1), we recover the same convergence rate as Bhandari et al. (2018):

Proposition 4. Under assumption (A1), there exists an n0 > 0 such that, for any n ≥ n0, using a constant
step size ρ = 1/

√
n and λ = 0, leads to:

E‖V n − V ∗‖2L2(p) ≤ O(1/
√
n).

Finally, our bounds have a polynomial dependence in the horizon 1/(1 − γ) of the MRP. The proofs are
given in Appendix 6.A.3.

Remark. Because the Bellman operator is also a contraction mapping in L∞-norm, this analysis in L2-
norm might be adapted to the L∞-norm, using a modified Lyapunov function to study the ODE, e.g., follow-
ing Borkar and Soumyanatha (1997). The stochastic case could be handled using the smoothing technique
recently developed by Chen et al. (2020).

6.5 Stochastic TD with Markovian Sampling

We now consider the truly online TD algorithm, where the samples are produced by a Markov chain. In
particular, there is now a correlation between the current samples (xn, x′n) and the previous iterate Vn−1. To
control it, we assume that the Markov chain mixes at uniform geometric rate:

(A3) ∃m > 0, µ ∈ (0, 1) s.t. sup
x∈X

dTV (P(xn ∈ ·|x0 = x), p) ≤ mµn, (6.36)

129

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

where dTV denotes the total variation distance. This is always verified for irreducible, aperiodic finite
Markov chains (Levin and Peres, 2017). Note that the uniform mixing assumption might be relaxed by
a weaker drift condition using the technique developed by Durmus et al. (2021) for linear TD, although its
extension to the infinite-dimensional setting is not straightforward, and out of our scope. We give an example
of continuous-state Markov chain with geometric mixing in Section 6.6. Furthermore, following Bhandari
et al. (2018), in our analysis we need to control the magnitude of the iterates almost surely. To do so, we add
a projection step at each TD iteration:

Vn = ΠB[Vn−1 + ρn((An − λI)Vn−1 + bn)], (6.37)

where ΠB is the projection on the H ball of radius B > 0. If ‖V ∗λ ‖H ≤ B, the convergence of the method is
preserved. In the following theorem, we consider two regimes with different rates of convergence. In the first
one, we assume like Bhandari et al. (2018) that we are given an oracle B upper-bounding ‖V ∗λ ‖H, with B
independent of λ. In the second one, we use the bound of Proposition 1, but this will affect the convergence
rate since in this case B = O(1/λ).

Theorem 8. Assuming (A2) and that the samples are produced by a Markov chain with uniform geometric
mixing (A3), the projected TD iterations (6.37) are such that:

(i) Using λ = n−
1

2+θ , a constant step size ρ = logn
2λn , and using a projection radius B independent of λ

provided by an oracle and such that ‖V ∗λ ‖H ≤ B, then:

E
[
‖V (e)

n − V ∗‖2L2(p)

]
≤ O

(logn)2n−
1+θ
2+θ

log(1/µ)

 . (6.38)

(ii) Using λ = n−
1

4+θ , ρ = logn
2λn , and the projection radius B =

√
MH‖r‖L2(p)/λ, then:

E
[
‖V (e)

n − V ∗‖2L2(p)

]
≤ O

(logn)2n−
1+θ
4+θ

log(1/µ)

 , (6.39)

with V (e)
n =

∑n
k=1(1− 2ρλ)n−kVk−1/

∑n
j=1(1− 2ρλ)n−j .

When an oracle is given for B (i.e., in setting (i)), we recover the same rate as for i.i.d. sampling, up to a
multiplicative factor log(n)/ log(1/µ) which represents the mixing time of the Markov chain. If no oracle
is provided (i.e., in setting (ii)), the convergence will be slower because the bound B is of order 1/λ. Note
that the slight changes in the definitions of ρ, λ, V (e), and the absence of constraint on λ, as compared to
Theorem 7, are implied by the boundedness of the iterates. Following a similar study for SGD (Nagaraj
et al., 2020), we might compare these rates to those of a naive algorithm which we call “τ -Skip-TD”, for
some τ ≥ 1, where only one every τ samples from the Markov chain is used to make TD updates:

Vn = ΠB[Vn−1 + ρn((Anτ − λI)Vn−1 + bnτ)], (6.40)

For τ large enough, of the order of the mixing time of the Markov chain, the new sample (xnτ , x′nτ) is almost
independent from the past ones (xkτ , x′kτ)k<n. Of course, since we need to generate τ times more samples
to make a step, we must look at the distance of Vn/τ to the optimum. Convergence rates for τ -Skip-TD are
derived in the following result:

130

6.6. Experiments on Artificial Data

Corollary 2. Assuming (A2) and that the samples are produced by a Markov chain with uniform geometric
mixing (A3), the projected τ -Skip-TD iterations (6.40) are such that:

(i) Using λ = n−
1

2+θ , a constant step size ρ = logn
2λn , τ = d log(1/ρ)

log(1/µ) + 1e, and a projection radius B which is
provided by an oracle and such that ‖V ∗λ ‖H ≤ B, then the following inequality holds:

E
[
‖V (e)

n/τ − V
∗‖2L2(p)

]
≤ O

(logn)n−
1+θ
2+θ

log(1/µ)

 . (6.41)

(ii) Using λ = n−
1

4+θ , ρ = logn
2λn , τ = d log(1/ρ)

log(1/µ) + 1e, and the projection radius B of Proposition 1, then we
obtain:

E
[
‖V (e)

n/τ − V
∗‖2L2(p)

]
≤ O

(
(logn)n−

1+θ
4+θ

)
, (6.42)

assuming that n is a multiple of τ , with V (e)
n =

∑n
k=1(1− 2ρλ)n−kVk−1/

∑n
j=1(1− 2ρλ)n−j .

In setting (i), they are similar to Theorem 8 up to a log(n) factor. This suggests that making updates at
each sample of the Markov chain is not more efficient than τ -Skip-TD for large τ , at least in our theoretical
analysis. In practice, using all samples seems slightly better, especially for a slowly mixing Markov chain
(see Section 6.6). In setting (ii), we obtain a rate for Skip-TD whose leading term does not depend on
log(1/µ) – which only appears in higher order terms – suggesting that the rate and parameters of Theorem 8,
setting (ii) might be suboptimal.

Remark. The analysis of TD with linear function approximation by Srikant and Ying (2019) does not
require a projection step. Hence the necessity of the projection step might only be an artifact of our proof
technique inspired by Bhandari et al. (2018). In the above experiments, we simply omit the projection step.

6.6 Experiments on Artificial Data

6.6.1 Setting of the Problem

Building a value function. We build a toy model for which the main parameters can be computed in closed
form. We consider the dynamics on the circle X = [0, 1] defined by:

• with probability ε, xn+1 ∼ U([0, 1]),

• with probability 1− ε, xn+1 = xn.

Because the Markov kernel is symmetric, the invariant distribution is p = U([0, 1]). In particular, the mixing
parameter can be bounded explicitly with m = 1 and µ = 1− ε (see Appendix 6.B.1).

Also, simple computations show that V ∗ is an affine transform of r:

V ∗(x) = ar(x) + b, (6.43)

with a = (1 − γ(1 − ε))−1 and b = −a
∫ 1

0 r(u)du. Hence we can build a V ∗ with a given regularity by
choosing an appropriate reward with the same regularity. We consider two rewards: rabs(x) := 2|x − 1/2|
and rcos(x) := (1 + cos(2πx))/2.

131

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

Kernels on the torus. We consider the RKHS of splines on the circle (Wahba, 1990) of regularity s ∈ N∗,
denoted by Hs

per. It is a Sobolev space equipped with the following norm:

‖f‖2Hs
per

=
(∫ 1

0
f(x)dx

)2
+ 1

(2π)2s

∫ 1

0
|f (s)(x)|2dx. (6.44)

Its corresponding reproducing kernel Ks is a translation-invariant kernel defined by:

Ks(x, y) = 1 + (−1)s−1 (2π)2s

(2s)! B2s({x− y}), (6.45)

where {x} := x − bxc and Bj is the j-th Bernoulli polynomial (Olver et al., 2010). Let us recall that the
Fourier series expansion on the torus of a 1-periodic function f ∈ L2(p) is:

f(x) =
∑
ω∈Z

e2iωπxf̂ω , with f̂ω :=
∫ 1

0
f(x)e−2iωπxdx , (6.46)

for ω ∈ Z. The kernel Ks has an embedding in the space of Fourier coefficients:

Φ(x) = (
√
cωe

2iωπx)>m∈Z , (6.47)

with cω := |ω|−2s if ω 6= 0 and c0 := 1. Using Parseval’s theorem in Eqn. (6.44), one can compute the norm
of f from its Fourier coefficients:

‖f‖2Hs
per

=
∑
ω∈Z

|f̂ω|2/cω . (6.48)

The operators Σ and Σ1 can be represented as countably infinite-dimensional matrices Σ = diag(c) and
Σ1 = (1− ε)Σ + ε

√
c(
√
c)>. Hence the source condition states that

|f̂0|2 +
∑
ω 6=0
|ω|2s(1+θ)|f̂ω|2 <∞ . (6.49)

In particular, it holds if f ∈ Hs′
per, for any s′ ≥ s(1 + θ). In our example, we consider two Sobolev spaces

H1
per and H2

per, and our two example functions have Fourier coefficients (r̂abs)ω = 1−(−1)ω
π2ω2 for ω 6= 0, and

(r̂cos)ω = 0 for |ω| > 1. The largest θ ∈ [0, 1] such that the source condition holds are indicated in the first
row of Table 6.1.

6.6.2 Qualitative and Quantitative Results

Convergence rates. We run TD on functions rabs and rcos, with kernels K1 and K2. We use parameters λ
and ρ and exponential averaging as prescribed in Theorem 7 (b). Each experiment is repeated 10 times
and we record the mean ± one standard deviation. The implementation is based on a finite dimensional
representation of the iterates (Vk)k≤n in Rn (see further details in Appendix 6.B.2). This implies computing
the kernel matrix in O(n2) operations. To accelerate this computation when the eigenvalues decrease fast,
we approximate it with the incomplete Cholesky decomposition (Bach and Jordan, 2002).

In Table 6.1, we set ε = 0.8, γ = 0.5 and report the observed convergence rates v.s. the ones expected by
Theorem 8, which are fairly consistent. In Figure 6.1, we plot the obtained value functions with the two
different kernels: the algorithm learns a smoother function when the kernel is itself smoother (s = 2).

In Figure 6.2, we show the respective effects of varying ε and γ. Larger values of ε or γ make the prob-
lem more difficult and slow down convergence, presumably in the constants without affecting the rates, as
predicted by Theorem 8.

132

6.6. Experiments on Artificial Data

x

V(
x)

V *
abs

Sobolev kernel s = 1
Sobolev kernel s = 2

Figure 6.1: Approximate value functions obtained with r = rabs, n = 1000, ε = 0.8, γ = 0.5, with the two
different kernels, and using the values of θ from Table 6.1.

Table 6.1: Predicted and observed convergence rates with different reward functions and kernels.

Sobolev kernel s = 1 Sobolev kernel s = 2

r = rabs r = rcos r = rabs r = rcos

Maximal θ 1/2 1 −1/4 1
Predicted rate −0.6 −0.67 −0.43 −0.67
Observed rate −0.72 −0.64 −0.58 −0.64

Robustness to misspecification of θ. We test the robustness of TD to inexact estimations of θ, hence
resulting in too large or too small λ. If θ is under-estimated, our theorems still guarantee convergence for
θ > −1, but not if it is over-estimated. In Figure 6.3, we plot the convergence of the averaged iterates for
different values of θ, smaller or larger than the optimal θ = −1/4 (standard deviations have been removed
for readability). Figure 6.3 shows that the convergence is quite robust and gives similar results for θ = 0
or θ = −1/2. A strongly overestimated θ = 1 shows a slow convergence (not covered by our theorems).
However, as expected, with θ = −1, the algorithm does not converge. Indeed, the corresponding step size is
unbounded.

Comparison of TD and Skip-TD. Finally, we compare TD and τ -Skip-TD, with τ prescribed by Corol-
lary 2. Computing this τ requires the access to an oracle on the mixing parameter µ (µ = 1 − ε in our
example). We then use τ = d log(1/ρ)

log(1/µ) + 1e. We compare the results of TD and τ -Skip-TD for two differ-
ent values of ε. We expect similar convergence rates, but with different constants. The results are plotted
in Figure 6.4. For the fast mixing chain (ε = 0.8), we get comparable results. For the slowly mixing
chain (ε = 0.2), plain TD seems faster, although maybe the asymptotic regime has not been reached yet for
n = 2000.

133

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

102 103

10−3

10−2

10−1

100

||V
(e

)
n

−
V

* |
|2 L2

n

r= rabs, K=K2
ε= 1
ε= 0.8
ε= 0.5
ε= 0.2

(a) Varying ε (for γ = 0.5 fixed).

102 103

10−3

10−2

10−1

100

||V
(e

)
n

−
V

* |
|2 L2

n

r= rabs, K=K2

γ= 0
γ= 0.5
γ= 0.7
γ= 0.9

(b) Varying γ (for ε = 0.8 fixed).

Figure 6.2: Respective effects of varying ε and γ.

102 103

n

10−3

10−2

10−1

100

||V
(e

)
n

−
V

* |
|2 L2

r= rabs, K=K2

θ= − 1
θ= − 1/2
θ= θmax = − 1/4
θ= 0
θ= 1

Figure 6.3: Convergence of the averaged TD iterates as in Theorem 7(b) with over and underestimated values
of θ.

6.7 Conclusion

We have provided convergence rates for the regularized non-parametric TD algorithm in the i.i.d. and Marko-
vian sampling settings. The rates depend on a source condition that quantifies the relative regularity of
the optimal value function to the RKHS. They are compatible with our empirical observations on a one-
dimensional MRP, but we have not proved optimality of such rates. Interesting directions include the exten-
sion to the TD(λ) algorithm, which we believe can be achieved with similar tools, as well as more challenging
extensions to control counterparts of TD (Q-learning, SARSA,...) for which the policy is optimized.

134

6.A. Proofs and Intermediate Results

102 103

n

10−3

10−2

10−1

100

||V
(e

)
n

−
V

* |
|2 L2

r= rabs, K=K2
plain TD, ε= 0.8
skip TD, ε= 0.8
plain TD, ε= 0.2
skip TD, ε= 0.2

Figure 6.4: TD vs τ -Skip-TD with fast (ε = 0.8) and slowly (ε = 0.2) mixing Markov chains.

Appendix to Chapter 6

6.A Proofs and Intermediate Results

6.A.1 Problem Formulation and Generic Results

Proof of Lemma 2. Let V ∈ L2(p). Then:

‖PV ‖2L2(p) =
∫
X

(Ex′∼κ(x,·)V (x′))2p(dx)

≤
∫
X

Ex′∼κ(x,·)[V (x′)2]p(dx)

=
∫
X

(∫
X
V (x′)2κ(x, dx′)

)
p(dx)

=
∫
X
V (x′)2

(∫
X
κ(x,dx′)p(dx)

)
=
∫
X
V (x′)2p(dx′)

= ‖V ‖2L2(p).

The second line is an application of Jensen’s inequality, with equality if ∀x, V (x′)|x is constant almost surely
(a.s.). The fourth line is an application of Fubini-Tonelli’s theorem. The fifth line results from the stationarity
of p with respect to κ, and κ(·, dx′) being A-measurable.

6.A.2 Analysis of a Continuous-Time Version of the Population TD Algorithm

Proposition 1 is a consequence of the following Lemma 4:

135

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

Lemma 4. For λ > 0, the operator Σ + λI − γΣ1 : H → H is bijective, and the operator norm of its
inverse is bounded as follows:

‖(Σ + λI − γΣ1)−1‖op ≤
1
λ
.

Proof of Lemma 4. From Lemma 1, there exists Σ̃1 with ‖Σ̃1‖op ≤ 1 such that Σ1 = Σ1/2Σ̃1Σ1/2.

For λ > 0, Σ + λI � 0, hence we have the following decomposition,

Σ + λI − γΣ1 = (Σ + λI)1/2
[
I − γ(Σ + λI)−1/2Σ1/2Σ̃1Σ1/2(Σ + λI)−1/2

]
(Σ + λI)1/2. (6.50)

Since the operator norm is an induced norm, we deduce:

‖(Σ + λI)−1/2Σ1/2Σ̃1Σ1/2(Σ + λI)−1/2‖op

≤ ‖(Σ + λI)−1/2Σ1/2‖op · ‖Σ̃1‖op · ‖Σ1/2(Σ + λI)−1/2‖op.

Furthermore, from Σ1/2(Σ + λI)−1/2 � I , we obtain:

‖γ(Σ + λI)−1/2Σ1/2Σ̃1Σ1/2(Σ + λI)−1/2‖op ≤ γ < 1.

We can then apply Theorem 5.11 from Weidmann (2012), showing that the term inside the brackets in
Eqn. (6.50) is invertible, with inverse equal to:

+∞∑
k=0

γk[(Σ + λI)−1/2Σ1/2Σ̃1Σ1/2(Σ + λI)−1/2]k. (6.51)

Hence, Σ + λI − γΣ1 is invertible, with inverse equal to:

(Σ + λI)−1/2
[
I − γ(Σ + λI)−1/2Σ1/2Σ̃1Σ1/2(Σ + λI)−1/2

]−1
(Σ + λI)−1/2.

We will now upper-bound the operator norm of (γΣ1 − Σ − λI)−1. Let us take f, g ∈ H such that g =
(λI + Σ− γΣ1)f and ‖g‖H = 1, we get

1 = ‖(λI + Σ− γΣ1)f‖2H
= λ2‖f‖2H + 2λ〈f,Σf〉H − λγ〈f, (Σ1 + Σ∗1)f〉H + ‖(Σ− γΣ1)f‖2H
≥ λ2‖f‖2H + 2λ〈f,Σf〉H − λγ〈f, (Σ1 + Σ∗1)f〉H.

Moreover, we have:

〈f,Σ1f〉H = Eq[f(x)f(x′)]

≤ Eq

[
f(x)2

2 + f(x′)2

2

]

= Ex∼p

[
f(x)2

2

]
+ Ex′∼p

[
f(x′)2

2

]
= 〈f,Σf〉H, (6.52)

136

6.A. Proofs and Intermediate Results

because p is an invariant distribution. Similarly,

〈f,Σ∗1f〉H = 〈Σ1f, f〉H = 〈f,Σ1f〉H ≤ 〈f,Σf〉H.

Consequently, since γ ≤ 1, we get 1 ≥ λ2‖f‖2 = λ2‖(λI + Σ − γΣ1)−1g‖2H. We conclude by using the
definition of the operator norm, i.e.,

‖(λI + Σ− γΣ1)−1‖op = sup
‖g‖H=1

‖(λI + Σ− γΣ1)−1g‖H ≤ 1/λ.

Proof of Proposition 1. Consider the fixed point equation (6.18). Since λ > 0, it is equivalent to:

V = 1
λ

[Σr + γΣ1V − ΣV] .

As a consequence, any solution of this equation is in H. Using Lemma 4, it is unique and such that:

V = (γΣ1 − Σ− λI)−1Σr.

Proof of Proposition 2. The fixed point equations verified by V ∗λ and V ∗ are respectively:

Σr + (γΣ1 − Σ− λI)V ∗λ = 0. (6.53)

Σr + (γΣ1 − Σ− λI)V ∗ = −λV ∗ (6.54)

Let V̄ ∗ := Σ1/2V ∗, V̄ ∗λ := Σ1/2V ∗λ , and r̄ := Σ1/2r. Then V̄ ∗, V̄ ∗λ and r̄ are all in H. Using Lemma 1,
there exists Σ̃1 : H → H with ‖Σ̃1‖op ≤ 1 such that Σ1 = Σ1/2Σ̃1Σ1/2. Because of assumption (A2), this
equality holds on H = L2(p). In particular, Σ1/2Σ1V

∗ = ΣΣ̃1V̄
∗.

Left multiplying Eqns. (6.53) and (6.54) by Σ1/2, we get:

Σr̄ + (γΣΣ̃1 − Σ− λI)V̄ ∗λ = 0. (6.55)

Σr̄ + (γΣΣ̃1 − Σ− λI)V̄ ∗ = −λV̄ ∗ (6.56)

Subtracting Eqns. (6.55) and (6.56), we get:

(Σ + λI − γΣΣ̃1)(V̄ ∗λ − V̄ ∗) = −λV̄ ∗. (6.57)

Since Σ + λI � 0, then:

(I − γ(Σ + λI)−1ΣΣ̃1)(V̄ ∗λ − V̄ ∗) = −λ(Σ + λI)−1V̄ ∗.

Let Σ̃1,λ := (Σ + λI)−1ΣΣ̃1. Since (Σ + λI)−1Σ � I , we know that ‖γΣ̃1,λ‖op ≤ γ < 1. Hence
(I − γΣ̃1,λ) is invertible and:

V̄ ∗λ − V̄ ∗ = −λ(I − γΣ̃1,λ)−1(Σ + λI)−1V̄ ∗

137

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

= −λ
+∞∑
k=0

γkΣ̃k
1,λ(Σ + λI)−1Σ1/2V ∗.

Taking the H-norm on both sides, and using the isometry property (6.13), valid on H = L2(p) since we are
using a universal kernel:

‖Σ1/2(V ∗λ − V ∗)‖H ≤ λ
+∞∑
k=0

γk‖Σ̃k
1,λ(Σ + λI)−1Σ1/2V ∗‖H (6.58)

‖V ∗λ − V ∗‖L2(p) ≤ λ
+∞∑
k=0

γk‖(Σ + λI)−1Σ1/2V ∗‖H (6.59)

= λ

1− γ ‖(Σ + λI)−1Σ1/2V ∗‖H. (6.60)

Assuming that V ∗ verifies the source condition with constant θ, the norm on the right-hand side can be
bounded as follows:

‖(Σ + λI)−1Σ1/2V ∗‖H = ‖(Σ + λI)−1Σ(1+θ)/2Σ−θ/2V ∗‖H
= ‖(Σ + λI)(θ−1)/2(Σ + λI)−(1+θ)/2Σ(1+θ)/2Σ−θ/2V ∗‖H
≤ λ(θ−1)/2‖(Σ + λI)−(1+θ)/2Σ(1+θ)/2Σ−θ/2V ∗‖H,

because 0 ≺ (Σ + λI)(θ−1)/2 � λ(θ−1)/2I , since (θ − 1)/2 ≤ 0. Also, since (1 + θ)/2 ≥ 0, we have:
(Σ + λI)−(1+θ)/2Σ(1+θ)/2 � I , hence:

‖(Σ + λI)−1Σ1/2V ∗‖H ≤ λ(θ−1)/2‖Σ−θ/2V ∗‖H. (6.61)

Combining Eqns. (6.60) and (6.61), we can then conclude that

‖V ∗λ − V ∗‖L2(p) ≤
λ

1+θ
2

1− γ ‖Σ
−θ/2V ∗‖H.

Proof of Corollary 1. We can reproduce the beginning of the proof of Proposition 2, until Eqn. (6.60):

‖V ∗λ − V ∗‖L2(p) ≤
λ

1− γ ‖(Σ + λI)−1Σ1/2V ∗‖H.

Using the isometry property (6.13) because K is a universal kernel:

‖V ∗λ − V ∗‖L2(p) ≤
λ

1− γ ‖(Σ + λI)−1V ∗‖L2(p).

Because K is a Mercer kernel, there exists a sequence (ψn)n≥1 in L2(p) which is an orthonormal eigenbasis
of H = L2(p) (because K is universal) for the L2(p) inner product, with strictly positive eigenvalues
(λn)n≥1, ordered in decreasing order, such that (Dieuleveut and Bach, 2016):

∀n ≥ 1, Σψn = λnψn.

138

6.A. Proofs and Intermediate Results

Then, since V ∗ =
∑
n≥1〈V ∗, ψn〉L2(p)ψn:

‖V ∗λ − V ∗‖2L2(p) ≤
λ2

(1− γ)2 ‖(Σ + λI)−1V ∗‖2L2(p)

= 1
(1− γ)2

∑
n≥1

λ2

(λ+ λn)2 〈V
∗, ψn〉2L2(p).

For λ > 0, the series on the right-hand side is dominated by∑
n≥1
〈V ∗, ψn〉2L2(p) = ‖V ‖2L2(p) <∞,

and for each n ≥ 1:
λ2

(λ+ λn)2 〈V
∗, ψn〉2L2(p) −−−−→

λ→0+
0,

because each λn is strictly positive. Then by Lebesgue’s dominated convergence theorem (Rudin, 1987):

‖V ∗λ − V ∗‖2L2(p) −−−−→
λ→0+

0.

Remark. This proof can be repeated to prove the same convergence rate as Proposition 2 in the case of
Mercer kernels with assumption (A2). Moreover, we can also obtain convergence rates in Σθ̃/2(H)-norm
(instead of the norm L2(p) = Σ−1/2(H)), for θ̃ ∈ (−1, θ).

Proof of Lemma 3. For β = 0, and λ > 0, Vt − V ∗λ ∈ Σ0/2(H) = H is always true as proved in Propo-
sition 1, hence W 0(t) is finite for all t ≥ 0. Similarly, W−1(t) is finite for all t ≥ 0 because Vt and
V ∗λ ∈ L2(p).

dW 0(t)
dt = 2〈Vt − V ∗λ ,

dVt
dt 〉H

= 2〈Vt − V ∗λ , (A− λI)Vt + b〉H
= 2〈Vt − V ∗λ , (γΣ1 − Σ− λI)Vt) + Σr〉H.

Recalling that V ∗λ is a solution of Eqn. (6.18), we obtain:

dW 0

dt = 2〈Vt − V ∗λ , (γΣ1 − Σ− λI)(Vt − V ∗λ)〉H

= 2γ〈Vt − V ∗λ ,Σ1(Vt − V ∗λ)〉H − 2λ〈Vt − V ∗λ , Vt − V ∗λ 〉H − 2〈Vt − V ∗λ ,Σ(Vt − V ∗λ)〉H
= 2γ〈Vt − V ∗λ ,ΣP (Vt − V ∗λ)〉H − 2λW 0(t)− 2W−1(t)
= 2γ〈Σ1/2(Vt − V ∗λ),Σ1/2P (Vt − V ∗)〉H − 2λW 0(t)− 2W−1(t),

where the third line results from Eqn. (6.15). Using Cauchy-Schwarz inequality for 〈·, ·〉H, the first term is
bounded by:

2γ〈Σ1/2(Vt − V ∗λ),Σ1/2P (Vt − V ∗)〉H ≤ 2γ‖Σ1/2(Vt − V ∗λ)‖H · ‖Σ1/2P (Vt − V ∗λ)‖H

139

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

= 2γ
√
W−1(t) · ‖P (Vt − V ∗λ)‖L2(p)

≤ 2γ
√
W−1(t) · ‖Vt − V ∗λ ‖L2(p)

= 2γW−1(t),

where we have used successively Eqn. (6.13) (on an element of H) and Lemma 2. Note that the same result
could have been obtained directly from applying (6.52) to 〈Vt − V ∗λ ,Σ1(Vt − V ∗λ)〉H.

Finally, we get:

dW 0(t)
dt ≤ 2γW−1(t)− 2λW 0(t)− 2W−1(t),

where all of the above quantities are finite.

Proof of Proposition 3. Let us split the proof in two parts, each one corresponding to a different assumption.

• Under assumption (A1), we define the sequence of Polyak-Ruppert averaged iterates:

V t := 1
t

∫ t

0
V (s)ds, for t ≥ 0.

If Σ � 0 and V ∗ ∈ H, Lemma 3 holds for λ = 0 and the proof is similar, i.e.,

d‖Vt − V ∗‖2H
dt ≤ −2(1− γ)‖Vt − V ∗‖2L2(p).

Let T > 0, we integrate between 0 and T and divide by T , noting that all quantities are finite because ‖V ∗‖H
is finite:

W 0(T)−W 0(0)
T

≤ −2(1− γ) 1
T

∫ T

0
‖Vt − V ∗‖2L2(p)dt.

1
T

∫ T

0
‖Vt − V ∗‖2L2(p)dt ≤

1/2
1− γ

W 0(0)−W 0(T)
T

≤ 1/2
1− γ

W 0(0)
T

.

This and Jensen’s inequality imply:

‖V T − V ∗‖2L2(p) ≤
1
T

∫ T

0
‖Vt − V ∗‖2L2(p)dt,

and then:

‖V T − V ∗‖2L2(p) ≤
1

2(1− γ)
‖V ∗‖2H
T

.

• Under assumption (A2), Lemma 3 gives:

d‖Vt − V ∗λ ‖2H
dt ≤ −2(1− γ)‖Vt − V ∗λ ‖2L2(p) − 2λ‖Vt − V ∗λ ‖2H

≤ −2λ‖Vt − V ∗λ ‖2H.

Using Grönwall’s lemma, we directly get the linear convergence of Vt to V ∗λ in H norm:

‖Vt − V ∗λ ‖2H ≤ ‖V ∗λ ‖2He−2tλ.

140

6.A. Proofs and Intermediate Results

6.A.3 Stochastic TD with i.i.d. Sampling

First, we need to state a technical lemma which will be used several times:

Lemma 5. For any fixed V ∈ L2(p), and n ≥ 1, the following inequality holds:

Eq‖AnV ‖2H ≤ 2MH(1 + γ2)‖Σ1/2V ‖2H.

Proof of Lemma 5. Let us recall that since (xn, x′n) ∼ q, the marginals of xn and x′n are the same, i.e.,
xn ∼ p and x′n ∼ p. In addition, for a fixed realization of (xn, x′n), the operator An must be interpreted
as the extended operator acting on L2(p), in a similar way as in Eqn. (6.12). In particular, for V ∈ L2(p),
AnV = γV (x′n)Φ(xn)− V (xn)Φ(xn) ∈ H. Therefore we get:

Eq‖AnV ‖2H = Eq‖(γV (x′n)− V (xn))Φ(xn)‖2H
= Eq

[
|γV (x′n)− V (xn)|2‖Φ(xn)‖2H

]
≤ 2MH(γ2Ep[V (x′n)2] + Ep[V (xn)2])
= 2MH(1 + γ2)‖V ‖2L2(p),

which concludes the proof.

We now derive the stochastic equivalent of the Descent Lemma 3.

Lemma 6. Let σ2 := 10MH‖r‖2L2(p) +
(

8(1+γ2)
(1−γ)2 + 16(1 + γ2)

)
MH‖V ∗‖2L2(p). The following inequality

holds for n ≥ 1:

EW 0
n ≤ (1− 2ρnλ+ 2ρ2

nλ
2)EW 0

n−1 −
(
2ρn(1− γ)− 8ρ2

n(1 + γ2)MH

)
EW−1

n−1 + 4ρ2
nσ

2.

In particular, for ρn ≤ min
{

1
2λ ,

1−γ
8MH(1+γ2) =: ρ̄

}
, we obtain:

EW 0
n ≤ (1− ρnλ)EW 0

n−1 − ρn(1− γ)EW−1
n−1 + 4ρ2

nσ
2.

Proof of Lemma 6. Almost surely, the following decomposition holds:

W 0
n = 〈Vn − V ∗λ , Vn − V ∗λ 〉H

= 〈Vn−1 + ρn((An − λI)Vn−1 + bn)− V ∗λ , Vn−1 + ρn((An − λI)Vn−1 + bn)− V ∗λ 〉H
= 〈Vn−1 − V ∗λ , Vn−1 − V ∗λ 〉H + 2ρn〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H

+ ρ2
n‖(An − λI)Vn−1 + bn‖2H.

Let zi := (xi, x′i), for i ≥ 1. The zi are i.i.d. with probability distribution q. Taking the expectation in the
latter equality with respect to the filtration Fn := σ(z1, ..., zn), the resulting quantity may be decomposed
into three parts as follows:

EW 0
n = EW 0

n−1 + 2ρnE [〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H]

+ ρ2
nE
[
‖(An − λI)Vn−1 + bn‖2H

]
.

• The second term – the inner product – may be treated as follows:

E [〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H] = E [E [〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H|Fn−1]]

141

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

= E [〈Vn−1 − V ∗λ , (A− λI)Vn−1 + b〉H]
≤ −(1− γ)EW−1

n−1 − λEW 0
n−1,

where the last line is obtained using a similar argument as in the proof of Lemma 3, i.e.,

〈V − V ∗λ , (A− λI)V + b〉H ≤ −(1− γ)‖V − V ∗λ ‖2L2(p) − λ‖V − V
∗
λ ‖2H.

• The third term – the variance term – can be upper-bounded as follows:

E
[
‖(An − λI)Vn−1 + bn‖2H

]
≤ 2E

[
‖λ(Vn−1 − V ∗λ)‖2H

]
+ 2E

[
‖AnVn−1 + bn − λV ∗λ ‖2H

]
≤ 2λ2EW 0

n−1 + 4E
[
‖An(Vn−1 − V ∗λ)‖2H

]
+ 4E

[
‖(An − λI)V ∗λ + bn‖2H

]
≤ 2λ2EW 0

n−1 + 4E
[
E
[
‖An(Vn−1 − V ∗λ)‖2H|Fn−1

]]
+ 4E

[
‖(An − λI)V ∗λ + bn‖2H

]
≤ 2λ2EW 0

n−1 + 8MH(1 + γ2)EW−1
n−1

+ 4E
[
‖(An − λI)V ∗λ + bn‖2H

]
,

where the last inequality comes from applying Lemma 5 to Vn−1 − V ∗λ , since Vn−1 is Fn−1-measurable.

Let us now consider the remaining term E
[
‖(An − λI)V ∗λ + bn‖2H

]
, and prove that it is bounded by σ2. This

is the variance of the updates at the optimum. Using Proposition 1, we get:

E
[
‖(An − λI)V ∗λ + bn‖2H

]
≤ 2λ2‖V ∗λ ‖2H + 2E

[
‖AnV ∗λ + bn‖2H

]
≤ 2MH‖r‖2L2(p) + 2E

[
‖AnV ∗λ + bn‖2H

]
,

where:

2E
[
‖AnV ∗λ + bn‖2H

]
≤ 4E

[
‖An(V ∗λ − V ∗)‖2H

]
+ 4E

[
‖AnV ∗ + bn‖2H

]
≤ 8MH(1 + γ2)‖Σ1/2(V ∗λ − V ∗)‖2H + 4E

[
‖AnV ∗ + bn‖2H

]
,

applying Lemma 5 to V ∗λ − V ∗. Then, using Proposition 2 with θ = −1 (which always holds):

2E
[
‖AnV ∗λ + bn‖2H

]
≤

8MH(1 + γ2)‖V ∗‖2L2(p)
(1− γ)2 + 4E

[
‖AnV ∗ + bn‖2H

]
≤

8MH(1 + γ2)‖V ∗‖2L2(p)
(1− γ)2 + 8E

[
‖AnV ∗‖2H

]
+ 8E

[
‖bn‖2H

]
≤

8MH(1 + γ2)‖V ∗‖2L2(p)
(1− γ)2 + 16MH(1 + γ2)‖V ∗‖2L2(p)

+ 8MH‖r‖2L2(p),

where we have used again Lemma 5 applied to V ∗, and the fact that:

E[‖bn‖2H] = E[r(xn)2‖Φ(xn)‖2H] ≤MHEp[r(xn)2] = MH‖r‖2L2(p).

142

6.A. Proofs and Intermediate Results

Hence the variance E
[
‖(An − λI)V ∗λ + bn‖2H

]
is finally bounded by:

σ2 := 10MH‖r‖2L2(p) +
(

8(1 + γ2)
(1− γ)2 + 16(1 + γ2)

)
MH‖V ∗‖2L2(p).

Back to the main term, we get:

E
[
‖(An − λI)Vn−1 + bn‖2H

]
≤ 2λ2EW 0

n−1 + 8MH(1 + γ2)EW−1
n−1 + 4σ2.

Then, we get the result:

EW 0
n ≤ EW 0

n−1 − 2ρn(1− γ)EW−1
n−1 − 2ρnλEW 0

n−1

+ 2ρ2
nλ

2EW 0
n−1 + 8ρ2

nMH(1 + γ2)EW−1
n−1 + 4ρ2

n−1σ
2.

Proof of Proposition 4. From Lemma 6 with λ = 0 and a constant step size ρ ≤ ρ̄, we obtain:

EW−1
k−1 ≤

EW 0
k−1 − EW 0

k

ρ(1− γ) + 4ρσ2

1− γ .

Summing the latter inequality over k between 1 and n, and dividing by n, we get a telescoping sum:

1
n

n∑
k=1

EW−1
k−1 ≤

EW 0
0 − EW 0

n

nρ(1− γ) + 4ρσ2

1− γ ≤
EW 0

0
nρ(1− γ) + 4ρσ2

1− γ .

Then we use Jensen’s inequality:

E‖V n − V ∗‖2L2(p) ≤
‖V ∗‖2H

(1− γ)ρn + 4ρσ2

1− γ .

Finally, we choose a constant step size ρ = 1/
√
n and n ≥ n0 := 1/ρ̄2. For n ≥ n0, this leads to the desired

bound:
E‖V n − V ∗‖2L2(p) ≤ O(1/

√
n).

Proof of Theorem 7. The three non-asymptotic upper-bounds will be proved one after another. In each case,
we consider a couple (λ, ρn) that might be explicitly defined later, such that the assumptions of Lemma 6
hold. Then we pick particular choices of λ and ρn which balance the terms of the upper-bound, and check
that the assumptions are indeed satisfied.

(a) Let λ > 0 and ρ a constant step size such that ρ ≤ ρ̄ and ρ ≤ 1/(2λ). In this case, Lemma 6 reads, for
each k ∈ {1, ..., n}:

EW 0
k ≤ (1− ρλ)EW 0

k−1 − ρ(1− γ)EW−1
k−1 + 4ρ2σ2,

in particular:

EW 0
k ≤ (1− ρλ)EW 0

k−1 + 4ρ2σ2. (6.62)

143

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

Subtracting the quantity ` = 4ρσ2

λ , which is such that ` = (1 − ρλ)` + 4ρ2σ2, from both sides of the
inequality (6.62), we get:

EW 0
k −

4ρσ2

λ
≤ (1− ρλ)

(
EW 0

k−1 −
4ρσ2

λ

)
. (6.63)

Since ρλ ≤ 1/2, the left-hand side is a geometrically contracting sequence and, applying (6.63) recursively,
we get:

EW 0
n −

4ρσ2

λ
≤ (1− ρλ)n

(
EW 0

0 −
4ρσ2

λ

)
≤ (1− ρλ)nEW 0

0 .

Finally, the latter inequality and Proposition 1 imply:

EW 0
n ≤

4ρσ2

λ
+ (1− ρλ)n

MH‖r‖2L2(p)
λ2 . (6.64)

Let us take (λ, ρ) defined by λ = λ0n
− 1

3+θ and ρ = logn
λn , for some λ0. The conditions of Lemma 6 read:

• ρ ≤ 1/(2λ) if and only if logn
n ≤ 1/2, which is true for all n ≥ 1.

• ρ ≤ ρ̄ if and only if (logn)n
1

3+θ−1/λ0 ≤ ρ̄. Since θ > −1, 1
3+θ − 1 < −1/2, hence

(logn)n
1

3+θ−1/ρ̄→ 0.

In particular it is bounded for all n ≥ 1. Hence if we define:

λ
(0)
θ := max{(logn)n

1
3+θ−1/ρ̄ | n ≥ 1},

then for λ0 ≥ λ(0)
θ , ρ ≤ ρ̄ is satisfied. Note that λ(0)

θ is independent of n.

For this choice of λ and ρ, we get:

EW 0
n ≤

4σ2 logn
λ2

0n
1− 2

3+θ
+
(

1− logn
n

)n MH‖r‖2L2(p)

λ2
0n
− 2

3+θ
.

For n ≥ 1, we recall that log
(
1− logn

n

)
≤ − logn

n , hence
(
1− logn

n

)n
≤ 1/n and:

EW 0
n ≤

4σ2(logn)n−
1+θ
3+θ

λ2
0

+
MH‖r‖2L2(p)

λ2
0

n−
1+θ
3+θ .

From Proposition 2, we finally obtain the following inequalities:

E‖Vn − V ∗‖2L2(p) ≤ 2MHE‖Vn − V ∗λ ‖2H + 2‖V ∗λ − V ∗‖2L2(p)

144

6.A. Proofs and Intermediate Results

≤ 8MHσ
2

λ2
0

(logn)n−
1+θ
3+θ +

2M2
H‖r‖2L2(p)
λ2

0
n−

1+θ
3+θ

+ 2‖Σ−θ/2V ∗‖2Hλ
1+θ
0

(1− γ)2 n−
1+θ
3+θ .

(b) Let λ > 0 and ρ a constant step size such that ρ ≤ ρ̄ and ρ ≤ 1/(2λ). In this case, Lemma 6 reads, for
each k ∈ {1, ..., n}:

EW 0
k ≤ (1− ρλ)EW 0

k−1 − ρ(1− γ)EW−1
k−1 + 4ρ2σ2. (6.65)

Using (6.65) recursively, we obtain:

EW 0
n ≤ (1− ρλ)nEW 0

0 − (1− γ)ρ
n∑
k=1

(1− ρλ)n−kEW−1
k−1 + 4σ2ρ2

n∑
k=1

(1− ρλ)n−k.

Re-arranging the terms, we get:
n∑
k=1

(1− ρλ)n−kEW−1
k−1 ≤

(1− ρλ)n

ρ(1− γ) EW 0
0 −

1
ρ(1− γ)EW 0

n + 4σ2ρ

1− γ

n∑
k=1

(1− ρλ)n−k

n∑
k=1

(1− ρλ)n−kEW−1
k−1 ≤

(1− ρλ)n

ρ(1− γ)
MH‖r‖2L2(p)

λ2 + 4σ2ρ

1− γ

n∑
k=1

(1− ρλ)n−k,

using Proposition 1 on the last line.

Since
∑n
k=1(1− ρλ)n−k = 1−(1−ρλ)n

ρλ , we get:∑n
k=1(1− ρλ)n−kEW−1

k−1∑n
k=1(1− ρλ)n−k ≤ (1− ρλ)n

1− (1− ρλ)n
MH‖r‖2L2(p)
λ(1− γ) + 4σ2ρ

1− γ

Using Jensen’s inequality, we get:

E‖V (e)
n − V ∗λ ‖2L2(p) ≤

(1− ρλ)n

1− (1− ρλ)n
MH‖r‖2L2(p)
λ(1− γ) + 4σ2ρ

1− γ , (6.66)

with V (e)
n :=

∑n

k=1(1−ρλ)n−kVk−1∑n

k=1(1−ρλ)n−k the exponentially weighted average iterate.

Let λ = λ0n
− 1

2+θ , for some λ0 > 0, and ρ = logn
λn . The conditions of Lemma 6 are:

• ρ ≤ 1/(2λ) if and only if logn
n ≤ 1/2, which is true for all n ≥ 1.

• ρ ≤ ρ̄ if and only if (logn)n
1

2+θ−1/λ0 ≤ ρ̄. Since θ > −1, 1
2+θ − 1 < 0, hence

(logn)n
1

2+θ−1/ρ̄→ 0.

In particular it is bounded for all n ≥ 1. Hence defining:

λ(e)
θ := max{(logn)n

1
2+θ−1/ρ̄ | n ≥ 1},

then for λ0 ≥ λ(e)
θ , ρ ≤ ρ̄ is satisfied. Again, λ(e)

θ is independent of n.

145

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

For this choice of parameters, for n ≥ 2, we recall that:

(1− ρλ)n =
(

1− logn
n

)n
= exp

(
n log

(
1− logn

n

))
≤ exp

(
n

(
− logn

n

))
≤ 1
n
≤ 1

2 ,

which implies:

E‖V (e)
n − V ∗λ ‖2L2(p) ≤ 2(1− ρλ)n

n
1

2+θMH‖r‖2L2(p)
λ0(1− γ) + 4σ2(logn)n−

1+θ
2+θ

λ0(1− γ)

≤ 2
n
·
n

1
2+θMH‖r‖2L2(p)
λ0(1− γ) + 4σ2(logn)n−

1+θ
2+θ

λ0(1− γ)

≤
2n−

1+θ
2+θMH‖r‖2L2(p)
λ0(1− γ) + 4σ2(logn)n−

1+θ
2+θ

λ0(1− γ) .

From Proposition 2, we finally obtain the following inequalities:

E‖V (e)
n − V ∗‖2L2(p) ≤ 2E‖V (e)

n − V ∗λ ‖2L2(p) + 2‖V ∗λ − V ∗‖2L2(p)

E‖V (e)
n − V ∗‖2L2(p) ≤

4MH‖r‖2L2(p)
λ0(1− γ) n−

1+θ
2+θ + 8σ2

λ0(1− γ)(logn)n−
1+θ
2+θ

+ 2‖Σ−θ/2V ∗‖2Hλ
1+θ
0

(1− γ)2 n−
1+θ
2+θ .

(c) Let n ≥ 1 and λ > 0. We will consider a different step size schedule: first constant, then decreasing. For
k ∈ {1, ..., bn/2c − 1}, set ρk = 2 logn

λn =: ρ. Then for k ∈ {bn/2c, ..., n}, set ρk = 1
λk .

• We first look at the first bn/2c − 1 iterates.

Assume that λ is chosen such that ρ ≤ min{1/(2λ), ρ̄}. Under this condition, from (6.64) which holds here,
we obtain:

EW 0
bn/2c−1 ≤

4ρσ2

λ
+ (1− ρλ)bn/2c−1MH‖r‖2L2(p)

λ2 . (6.67)

• For the other iterates, we consider ρk = 1
λk . We also assume that λ is chosen such that

ρk ≤ min{1/(2λ), ρ̄}, ∀k ∈ {bn/2c, ..., n}.

Under this condition, for k ∈ {bn/2c, ..., n}, Lemma 6 reads:

EW 0
k ≤ (1− ρkλ)EW 0

k−1 − ρk(1− γ)EW−1
k−1 + 4ρ2

kσ
2.

Re-arranging the terms, we get:

EW−1
k−1 ≤

1
1− γ

(1
ρk
− λ

)
EW 0

k−1 −
1

1− γ
1
ρk

EW 0
k + 4σ2

1− γ ρk. (6.68)

The step size is such that:
1/ρk − λ = λk − λ = λ(k − 1) = 1/ρk−1,

146

6.A. Proofs and Intermediate Results

where the very last equality only holds for k ≤ bn/2c+ 1 (because of overlapping notations).

Summing the above inequalities (6.68) for k ∈ {bn/2c, ..., n}, we obtain a telescoping sum:

n∑
k=bn/2c

EW−1
k−1 ≤

1
1− γ

n∑
k=bn/2c

(
EW 0

k−1
ρk−1

− EW 0
k

ρk

)
+ 4σ2

1− γ

n∑
k=bn/2c

ρk

≤ 1
1− γ λ(bn/2c − 1)EW 0

bn/2c−1 + 4σ2

1− γ

n∑
k=bn/2c

1
λk

≤ λn

2(1− γ)EW 0
bn/2c−1 + 4σ2

1− γ
1 + logn

λ
.

For n ≥ 3, so that 1 + log(n) ≤ 2 logn, from (6.67) and the latter inequality, we obtain:

n∑
k=bn/2c

EW−1
k−1 ≤

λn

2(1− γ)

[
4ρσ2

λ
+ (1− ρλ)bn/2c−1MH‖r‖2L2(p)

λ2

]
+ 8σ2

1− γ
logn
λ

≤ λn

2(1− γ)

[
8(logn)σ2

λ2n
+
(

1− 2 logn
n

)bn/2c−1 MH‖r‖2L2(p)
λ2

]

+ 8σ2

1− γ
logn
λ

.

Let us look at the central term:(
1− 2 logn

n

)bn/2c−1
=
(

1− 2 logn
n

)n/2 (
1− 2 logn

n

)bn/2c−1−n/2
.

Since 2 logn/n ∈ [0, 1] for any n ≥ 1, and bn/2c − n/2− 1 ≥ −2, we have:

(
1− 2 logn

n

)bn/2c−1−n/2
≤
(

1− 2 logn
n

)−2
≤ max

u≥1

[(
1− 2 log u

u

)−2
]
≤ 16.

This implies:

(
1− 2 logn

n

)bn/2c−1
≤ 16

(
1− 2 logn

n

)n/2
≤ 16 exp

(
n/2 log

(
1− 2 logn

n

))
≤ 16 exp

(
−n/2× 2 logn

n

)
≤ 16/n.

Coming back to the telescoping sum, we get:

n∑
k=bn/2c

EW−1
k−1 ≤

λn

2(1− γ)

[
8(logn)σ2

λ2n
+ 16

n

MH‖r‖2L2(p)
λ2

]
+ 8σ2

1− γ
logn
λ

.

147

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

Then we divide by n− bn/2c+ 1 ≥ n/2:

1
n− bn/2c+ 1

n∑
k=bn/2c

EW−1
k−1 ≤

1
(1− γ)

[
8(logn)σ2

λn
+ 16

n

MH‖r‖2L2(p)
λ

]
+ 16σ2

1− γ
logn
λn

,

where all the terms are of order Õ(logn
λn).

Let us consider the n-th tail averaged iterate defined by:

V (t)
n := 1

n− bn/2c+ 1

n∑
k=bn/2c

Vk−1.

Using Jensen’s inequality, we have a bound on its distance to V ∗λ :

E‖V (t)
n − V ∗λ ‖2L2(p) ≤

16
n

MH‖r‖2L2(p)
λ(1− γ) + 24σ2

1− γ
logn
λn

.

Now we need to choose λ such that ρk ≤ min{1/(2λ), ρ̄}, for all k. Let λ = λ0n
− 1

2+θ .

• For the first half of the iterates, we take ρ = 2 logn
λn , and ρ ≤ 1/(2λ) if and only if logn/n ≤ 4, which is

true for n ≥ 9.

Now ρ ≤ ρ̄ is equivalent to 2 logn
λn = (logn)n

1
2+θ−1/λ0 ≤ ρ̄. Since θ > −1, 1

2+θ − 1 < 0 and

(logn)n
1

2+θ−1/ρ̄→ 0. In particular it is bounded for all n ≥ 1. Hence using again:

λ(e)
θ = max{(logn)n

1
2+θ−1/ρ̄ | n ≥ 1},

then for λ0 ≥ λ(e)
θ , ρ ≤ ρ̄ is satisfied.

• For the second half of the iterates, ρk is decreasing with k, hence a sufficient condition is that:

1
λbn/2c = ρbn/2c ≤ min{1/(2λ), ρ̄}.

For n ≥ 4, bn/2c ≥ 2 and ρbn/2c ≤ 1/(2λ) and this condition holds. On the other hand, the second
condition reads:

1
λbn/2c = n

1
2+θ

λ0bn/2c
≤ 4n

1
2+θ−1

λ0
≤ ρ̄,

for n ≥ 2. Since θ > −1, 1
2+θ − 1 < 0 and we get 4n

1
2+θ−1/ρ̄→ 0. In particular, the latter term is bounded

for all n ≥ 1. Hence using:

λ(t)
θ := max{max{4n

1
2+θ−1/ρ̄ | n ≥ 1}, λ(e)

θ },

then for λ0 ≥ λ(t)
θ , ρk ≤ ρ̄ is satisfied for all k.

For this specific choice of λ, we have the final bound:

E‖V (t)
n − V ∗‖2L2(p) ≤ 2E‖V (t)

n − V ∗λ ‖2H + 2‖V ∗λ − V ∗‖2L2(p)

148

6.A. Proofs and Intermediate Results

≤ 32
n

MH‖r‖2L2(p)
λ(1− γ) + 48σ2

1− γ
logn
λn

+ 2‖Σ−θ/2V ∗‖2Hλ
1+θ
0

(1− γ)2 n−
1+θ
2+θ

≤
32MH‖r‖2L2(p)
λ0(1− γ) n−

1+θ
2+θ + 48σ2

λ0(1− γ)(logn)n−
1+θ
2+θ

+ 2‖Σ−θ/2V ∗‖2Hλ
1+θ
0

(1− γ)2 n−
1+θ
2+θ .

Finally, we define λθ := max{λ(0)
θ , λ

(e)
θ , λ

(t)
θ } which is used in the theorem as lower bound on λ0.

6.A.4 Stochastic TD with Markovian Sampling

We begin by reproducing Lemma 9 from Bhandari et al. (2018):

Lemma 7 (Control of couplings). Consider two random variables X and Y such that:

X → xn → xn+τ → Y

forms a Markov chain, for some fixed n ≥ 1 with τ > 0. Assume the Markov chain mixes at uniform
geometric rate, as defined in (6.36). Let X ′ and Y ′ denote independent copies drawn from the marginal
distributions of X and Y , so that

P(X ′ = ·, Y ′ = ·) = P(X = ·)⊗ P(Y = ·).

Then for any bounded function h:

|E[h(X,Y)]− E[h(X ′, Y ′)]| ≤ 2‖h‖∞mµτ .

Note that, here, ⊗ does not refer to the outer product in the RKHS H but to the independent product of
probability distributions.

Then we can state a descent lemma, similar to Lemma 6:

Lemma 8. Assume that ‖V ∗λ ‖H ≤ B and that the Markov chain mixes geometrically (6.36). Let:
G2 := 4M2

HB
2 + λ2B2 +MHR

2/2
L := 12MHB + 2

√
MHR

C := 2MHB + λB +
√
MHR

C ′ := 8MHB
2 + 4

√
MHBR.

Then for n ≥ 1 and τ > 1, the following inequality holds:

EW 0
n ≤ (1− 2ρnλ)EW 0

n−1 − 2ρn(1− γ)EW−1
n−1 + 2ρn

2C ′mµτ + LC
n−1∑

k=n−τ
ρk

+ 4G2ρ2
n. (6.69)

Proof of Lemma 8. Because of correlations between samples, the proof of Lemma 6 breaks here:

E[〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H] 6= E[〈Vn−1 − V ∗λ , (A− λI)Vn−1 + b〉H].

149

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

A similar thing occurs in the variance term, where we cannot apply Lemma 5. An easy fix is to assume that
what is inside the variance remains bounded a.s. This is allowed by our projection step. We can now assume
that a.s., ∀n, ‖Vn‖H ≤ B, implying that a.s.:

‖AnVn−1‖H ≤ ‖An‖opB ≤ 2MHB,

where ‖An‖op ≤ 2MH is induced by the following computation, for f ∈ H:

‖Anf‖H ≤ ‖Φ(xn)⊗ Φ(x′n)f‖H + ‖Φ(xn)⊗ Φ(xn)f‖H
≤
(
|〈f,Φ(x′n)〉H|+ |〈f,Φ(xn)〉H|

)
‖Φ(xn)‖H

≤ 2‖f‖H
√
MH

√
MH = 2MH‖f‖H.

Also, since the reward function is uniformly bounded by R, we get:

‖bn‖2H = ‖r(xn)Φ(xn)‖2H ≤ R2MH.

Finally, the projection step does not impact the proof since ΠB : H → H is 1-Lipschitz continuous (in
H-norm).

Decomposition of errors. Let us now reproduce the beginning of the proof of Lemma 6. We have this
decomposition a.s.:

W 0
n = ‖Vn − V ∗λ ‖2H

= ‖ΠB[Vn−1 + ρn((An − λI)Vn−1 + bn)]−ΠBV
∗
λ ‖2H

≤ ‖Vn−1 + ρn((An − λI)Vn−1 + bn)− V ∗λ ‖2H
= ‖Vn−1 − V ∗λ ‖2H + 2ρn〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H

+ ρ2
n‖(An − λI)Vn−1 + bn‖2H

≤W 0
n−1 + 2ρn〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H

+ 2ρ2
n‖(An − λI)Vn−1‖2 + 2ρ2

n‖bn‖2

≤W 0
n−1 + 2ρn〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H

+ 4ρ2
n(4M2

HB
2 + λ2B2) + 2ρ2

nR
2MH.

Taking the expectation with respect to Fn = σ(z1, ..., zn) (where zi = (xi, x′i)), we get three terms:

EW 0
n ≤ EW 0

n−1 + 2ρnE [〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H]
+ ρ2

n (16M2
HB

2 + 4λ2B2 + 2MHR
2)︸ ︷︷ ︸

:=4G2

.

We then deal with the central expectation.

E [〈Vn−1 − V ∗λ , (An − λI)Vn−1 + bn〉H] = E [〈Vn−1 − V ∗λ , (A− λI)Vn−1 + b〉H]
+ E [〈Vn−1 − V ∗λ , (An −A)Vn−1 + (bn − b)〉H] .

150

6.A. Proofs and Intermediate Results

The first term has already been treated in Lemma 3:

E [〈Vn−1 − V ∗λ , (A− λI)Vn−1 + b〉H] ≤ −(1− γ)EW−1
n−1 − λEW 0

n−1.

To control the remaining expectation (the bias), we must use a coupling argument. We use the notation:

ζ(Vn−1, zn) := 〈Vn−1 − V ∗λ , (An −A)Vn−1 + (bn − b)〉H.

Note that in general:
Eζ(Vn−1, zn) = E[E[ζ(Vn−1, zn)|Fn−1]] 6= 0,

where Fk = σ(z1, ..., zk) = σ(z1, V1, ..., zk, Vk). The dependence between the random variables is summa-
rized in the following diagram.

Markov process : z1 z2 z3 · · · zn−1 zn

TD iterates : V1 V2 V3 · · · Vn−1 Vn

Using the mixing assumption, we can control the deviation between the expectations of a bounded function
of two iterates separated by τ steps, in the coupled v.s. the decoupled case. In other words, if τ is large, we
can almost consider the iterates as being independent. This is achieved using Lemma 7.

Bounding the bias. Our goal here is to find an upper-bound of E[ζ(Vn−1, zn)]. Let τ ∈ N, τ > 1. This
can be done in two steps:

(1) Relate E[ζ(Vn−1, zn)] to E[ζ(Vn−1−τ , zn)], because ζ is Lipschitz in the first variable, as a quadratic
function over a bounded domain. This is true almost surely, hence in expectation.

(2) Relate E[ζ(Vn−1−τ , zn)] to E[ζ(V ′n−1−τ , z
′
n)] = 0, where V ′n−1−τ and z′n are independent copies of

Vn−1−τ and zn that are decoupled.

(1) First we prove that ζ is L-Lipschitz in the first variable on the H ball of radius B: for fixed V, V ′ ∈ H

with norm bounded by B, and zn:

|ζ(V, zn)− ζ(V ′, zn)| =
∣∣∣〈(An −A)V + bn − b, V − V ∗λ 〉H

− 〈(An −A)V ′ + bn − b, V ′ − V ∗λ 〉H
∣∣∣

=
∣∣∣〈(An −A)V + bn − b, V − V ′〉H

+ 〈(An −A)(V − V ′), V ′ − V ∗λ 〉H
∣∣∣,

151

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

where we have used the equality:

〈a, b〉 − 〈c, d〉 = 〈a, b− d〉+ 〈a− c, d〉.

This implies that

|ζ(V, zn)− ζ(V ′, zn)| ≤ ‖(An −A)V + bn − b‖H · ‖V − V ′‖H
+ ‖(An −A)(V − V ′)‖H · ‖V ′ − V ∗λ ‖H

≤ (4MHB + 2
√
MHR)‖V − V ′‖H + 8MHB‖V − V ′‖H

= L‖V − V ′‖H,

for L := 4MHB + 2
√
MHR+ 8MHB.

Then almost surely, since all the Vk are such that ‖Vk‖H ≤ B:

ζ(Vn−1, zn) ≤ ζ(Vn−1−τ , zn) + |ζ(Vn−1, zn)− ζ(Vn−1−τ , zn)|
≤ ζ(Vn−1−τ , zn) + L‖Vn−1 − Vn−1−τ‖H

≤ ζ(Vn−1−τ , zn) + L
n−1∑

k=n−τ
‖Vk − Vk−1‖H

= ζ(Vn−1−τ , zn) + L
n−1∑

k=n−τ
ρk‖AkVk−1 − λVk−1 + bk‖H

≤ ζ(Vn−1−τ , zn) + L
n−1∑

k=n−τ
ρk (2MHB + λB +

√
MHR)︸ ︷︷ ︸

=:C

.

Taking the expectation w.r.t. P(z1, ..., zn), we get:

Eζ(Vn−1, zn) ≤ Eζ(Vn−1−τ , zn) + LC
n−1∑

k=n−τ
ρk.

(2) Then we use a coupling argument with Lemma 7. First, we need to bound ‖ζ‖∞.

For fixed V , zn, with ‖V ‖H ≤ B, almost surely, one may notice that:

|ζ(V, zn)| = |〈(An −A)V + bn − b, V − V ∗λ 〉H|

≤ ‖V − V ∗λ ‖H
(
‖(An −A)V ‖H + ‖bn − b‖H

)
≤ 2B(4MHB + 2

√
MHR) =: C ′.

In Lemma 7, set X = (z1, ..., zn−1−τ) and Y = zn. Since:

X → xn−τ → xn → Y

forms a Markov chain, then let X ′ and Y ′ denote independent copies drawn from the marginal distributions
of X and Y , so that P(X ′ = ·, Y ′ = ·) = P(X = ·) ⊗ P(Y = ·). Then applying Lemma 7 to the function
h : (X,Y)→ ζ(Vn−1−τ , zn) (recalling that Vn−1−τ is fully determined by the values of X):

|E[h(X,Y)]− E[h(X ′, Y ′)]| ≤ 2‖h‖∞mµτ ,

152

6.A. Proofs and Intermediate Results

which, here, reads:
|Eζ(Vn−1−τ , zn)− Eζ(V ′n−1−τ , z

′
n)| ≤ 2C ′mµτ .

By definition of the random variables X ′, Y ′:

Eζ(V ′n−1−τ , z
′
n) = E[E[ζ(V ′n−1−τ , z

′
n)|V ′n−1−τ]] = 0.

Putting everything together, we get:

Eζ(Vn−1, zn) ≤ Eζ(Vn−1−τ , zn) + LC
n−1∑

k=n−τ
ρk

≤ 2C ′mµτ + LC
n−1∑

k=n−τ
ρk.

Using this upper-bound is interesting if mµτ is of the order of
∑n−1
k=n−τ ρk. Else (for small n), one can

always choose τ = n− 1, so that, because V0 is deterministic,

Eζ(Vn−1, zn) ≤ Eζ(V0, zn)︸ ︷︷ ︸
=0

+LC
n−1∑
k=1

ρk.

Proof of Theorem 8. We use a constant step size ρ. From Lemma 8:

EW 0
n ≤ (1− 2ρλ)EW 0

n−1 − 2ρ(1− γ)EW−1
n−1 + 2ρ

(
2C ′mµτ + LCτρ

)
+ 4G2ρ2.

In particular, we choose τ such that µτ = ρ, that is τ = log ρ
logµ = log(1/ρ)

log(1/µ) , and get:

EW 0
n ≤ (1− 2ρλ)EW 0

n−1 − 2ρ(1− γ)EW−1
n−1 + 2ρ

(
2C ′mρ+ LCρ

log(1/ρ)
log(1/µ)

)
+ 4G2ρ2

≤ (1− 2ρλ)EW 0
n−1 − 2ρ(1− γ)EW−1

n−1 + ρ2

4C ′m+ 2LC log(1/ρ)
log(1/µ) + 4G2

︸ ︷︷ ︸
=:4σ̃2

λ,ρ

 .

This expression is similar to (6.65). Adapting the proof of Theorem 7 (b), we obtain:

E‖V (e)
n − V ∗λ ‖2L2(p) ≤

(1− 2ρλ)n

1− (1− 2ρλ)n
MH‖r‖2L2(p)
λ(1− γ) +

2ρσ2
λ,ρ

1− γ ,

with V (e)
n =

∑n

k=1(1−2ρλ)n−kVk−1∑n

k=1(1−2ρλ)n−k the exponentially weighted average iterate.

Finally, we get:

E‖V (e)
n − V ∗‖2L2(p) ≤

2(1− 2ρλ)n

1− (1− 2ρλ)n
MH‖r‖2L2(p)
λ(1− γ) +

4ρσ2
λ,ρ

1− γ + 2‖Σ−θ/2V ∗‖2H
(1− γ)2 λ1+θ.

Note that σ2
λ,ρ depends on λ, ρ, and B. We look at two cases:

153

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

(i) we are given an oracle on B that does not depend on λ.

(ii) we use the bound of order O(1/λ) given by Proposition 1:

B =
√
MH‖r‖L2(p)

λ
.

Case (i): with oracle. For a fixed λ (later chosen to be the optimal one), assume that we know a bound B
on ‖V ∗λ ‖H. Then B = O(1), and assuming λ = O(1), we only keep track of the dependence in µ and put
all the other constants in O(1):

σ2
λ,ρ = O

(log(1/ρ)
log(1/µ)

)
+O(1).

Let us look for λ of the form λ = n−α with α ∈ (0, 1), then:

E‖V (e)
n − V ∗‖2L2(p) ≤ O

((1− 2ρλ)n

1− (1− 2ρλ)n
1
λ

)
+O

(
ρ

log(1/ρ)
log(1/µ)

)
+O(ρ) +O

(
λ1+θ

)
.

Taking ρ = logn
2λn , the latter inequality leads to:

E‖V (e)
n − V ∗‖2L2(p) ≤ O

(1
nλ

)
+O

(logn
λn

log(1/ρ)
log(1/µ)

)
+O(ρ) +O

(
λ1+θ

)
.

Recalling that λ = n−α, we get:

E‖V (e)
n − V ∗‖2L2(p) ≤ O

(
nα−1

)
+O

(
(logn)2nα−1

log(1/µ)

)
+O

(
(logn)nα−1

)
+O

(
n−α(1+θ)

)
.

The first and third terms are smaller than the second one. We can choose α such that: α − 1 = −α(1 + θ),
i.e., α = 1

2+θ , then we get the following inequality:

E
[
‖V (e)

n − V ∗‖2L2(p)

]
≤ O

(logn)2n−
1+θ
2+θ

log(1/µ)

 .
Case (ii): without oracle. Now B = O(1/λ). Let us unroll all the constants to see the full dependencies:

σ2
λ,ρ = C ′m+ 1

2LC
log(1/ρ)
log(1/µ) +G2

= 8mMHB
2 + 4m

√
MHRB

+
(
12MHB + 2

√
MHR

) (
2MHB + λB +

√
MHR

) log(1/ρ)
2 log(1/µ)

+ 4M2
HB

2 + λ2B2 +MHR
2/2

= B2
(

8mMH + 4M2
H + λ2 + 12M2

H

log(1/ρ)
log(1/µ) + 6λMH

log(1/ρ)
log(1/µ)

)
+B

(
4m
√
MHR+ 8M3/2

H R
log(1/ρ)
log(1/µ) + λ

√
MHR

log(1/ρ)
log(1/µ)

)
154

6.A. Proofs and Intermediate Results

+
(
MHR

2/2 +MHR
2 log(1/ρ)
log(1/µ)

)
.

We focus on the case λ = O(1), so this simplifies a bit to:

σ2
λ,ρ = O(B2) +O

(log(1/ρ)
log(1/µ)B

2
)

+O(B) +O

(log(1/ρ)
log(1/µ)B

)
+O(1) +O

(log(1/ρ)
log(1/µ)

)
.

On the other hand, we recall that B = O(1/λ), hence:

σ2
λ,ρ = O(1/λ2) +O

(log(1/ρ)
λ2 log(1/µ)

)
+O

(1
λ

)
+O

(log(1/ρ)
λ log(1/µ)

)
+O(1) +O

(log(1/ρ)
log(1/µ)

)
.

Let us look for λ of the form λ = n−α with α ∈ (0, 1).

In this case, we get σ2
λ,ρ = O(1/λ2) +O

(
log(1/ρ)
log(1/µ)1/λ2

)
and:

E‖V (e)
n − V ∗‖2L2(p) ≤ O

((1− 2ρλ)n

1− (1− 2ρλ)n
1
λ

)
+O

(
ρ

λ2

)
+O

(
ρ

λ2
log(1/ρ)
log(1/µ)

)
+O

(
λ1+θ

)
.

Let us now set ρ = logn
2λn , we obtain:

E‖V (e)
n − V ∗‖2L2(p) ≤ O

(1
nλ

)
+O

(logn
λ3n

)
+O

(logn
λ3n

log(1/ρ)
log(1/µ)

)
+O

(
λ1+θ

)
.

Recalling that λ = n−α, we obtain:

E‖V (e)
n − V ∗‖2L2(p) ≤ O

(
nα−1

)
+O

(
(logn)n3α−1

)
+O

(
(logn)2n3α−1

log(1/µ)

)
+O

(
n−α(1+θ)

)
.

The first and second term are smaller than the third one. We can choose α such that: 3α − 1 = −α(1 + θ),
i.e., α = 1

4+θ , hence we get the convergence rate:

E
[
‖V (e)

n − V ∗‖2L2(p)

]
≤ O

(logn)2n−
1+θ
4+θ

log(1/µ)

 .

Proof of Corollary 2. We consider the iterates (6.40), for some positive integer τ to be chosen later. The
beginning of the proof of Lemma 8 can be reproduced:

EW 0
n ≤ EW 0

n−1 + 2ρnE [〈Vn−1 − V ∗λ , (Anτ − λI)Vn−1 + bnτ 〉H] + 4ρ2
nG

2

≤ (1− 2ρnλ)EW 0
n−1 − 2ρn(1− γ)EW−1

n−1 + 4G2ρ2
n + 2ρnEζ(Vn−1, znτ).

The only difference is that we now consider Eζ(Vn−1, znτ) instead of Eζ(Vn−1, zn). To bound it, we do not
need the step (1) (which exploits the fact that ζ is Lipschitz), and directly go to step (2). The dependencies
between the random variables are now:

155

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

Markov process : zτ(n−1) zτ(n−1)+1 · · · zτn−1 zτn

Skip-TD iterates : Vn−1 Vn

Applying again Lemma 7, we get the upper-bound:

|Eζ(Vn−1, znτ)− Eζ(V ′n−1, z
′
nτ)| ≤ 2C ′mµτ−1,

where V ′n−1, and z′nτ are independent copies such that Eζ(V ′n−1, z
′
nτ) = 0.

Now, using a constant step size ρ, we set τ := d log(1/ρ)
log(1/µ) + 1e, such that µτ−1 ≤ ρ, which implies:

EW 0
n ≤ (1− 2ρλ)EW 0

n−1 − 2ρ(1− γ)EW−1
n−1 + 4G2ρ2 + 4ρ2C ′m.

Now we can do the same proof as for Theorem 8 with σ2
λ,ρ = C ′m+G2, now independent of ρ:

E‖V (e)
n − V ∗‖2L2(p) ≤

2(1− 2ρλ)n

1− (1− 2ρλ)n
MH‖r‖2L2(p)
λ(1− γ) +

4ρσ2
λ,ρ

1− γ + 2‖Σ−θ/2V ∗‖2H
(1− γ)2 λ1+θ.

Case (i): with oracle. Now σ2
λ,ρ = O(1). We look for λ of the form λ = n−α, α ∈ (0, 1):

E‖V (e)
n − V ∗‖2L2(p) ≤ O

((1− 2ρλ)n

1− (1− 2ρλ)n
1
λ

)
+O(ρ) +O

(
λ1+θ

)
.

Let us now set ρ = logn
2λn :

E‖V (e)
n − V ∗‖2L2(p) ≤ O

(1
nλ

)
+O(ρ) +O

(
λ1+θ

)
.

Of course, to compute the n-th iteration, one needs to generate τn samples from the Markov chain. So for a
fair comparison, we must look at the convergence of Vn/τ (assuming n is a multiple of τ for simplicity):

E‖V (e)
n/τ − V

∗‖2L2(p) ≤ O
(
τ

nλ

)
+O(ρ) +O

(
λ1+θ

)
.

τ is such that:

τ = O

(log(1/ρ)
log(1/µ)

)
= O

(logn
log(1/µ)

)
.

Expressing everything with n only, we obtain:

E‖V (e)
n/τ − V

∗‖2L2(p) ≤ O
(logn

log(1/µ)n
α−1

)
+O

(
(logn)nα−1

)
+O

(
n−α(1+θ)

)
.

156

6.B. Experimental Design

Choosing α such that: α− 1 = −α(1 + θ), i.e., α = 1
2+θ , we get:

E
[
‖V (e)

n/τ − V
∗‖2L2(p)

]
≤ O

(logn)n−
1+θ
2+θ

log(1/µ)

 .

Case (ii): without oracle. Using B = O(1/λ), one may notice that:

σ2
λ,ρ = O(1/λ2) +O

(1
λ

)
+O(1).

Let us look for λ of the form λ = n−α with α ∈ (0, 1). We also set ρ = logn
2λn . In this case σ2

λ,ρ = O(1/λ2)
and:

E‖V (e)
n − V ∗‖2L2(p) ≤ O

((1− 2ρλ)n

1− (1− 2ρλ)n
1
λ

)
+O

(
ρ

λ2

)
+O

(
λ1+θ

)
≤ O

(1
nλ

)
+O

(
ρ

λ2

)
+O

(
λ1+θ

)
.

If n is a multiple of τ :

E‖V (e)
n/τ − V

∗‖2L2(p) ≤ O
(
τ

nλ

)
+O

(
ρ

λ2

)
+O

(
λ1+θ

)
.

τ is such that:

τ = O

(log(1/ρ)
log(1/µ)

)
= O

(logn
log(1/µ)

)
.

Expressing everything with n only, we get:

E‖V (e)
n/τ − V

∗‖2L2(p) ≤ O
(logn

log(1/µ)n
α−1

)
+O

(
(logn)n3α−1

)
+O

(
n−α(1+θ)

)
.

Choosing α such that: 3α− 1 = −α(1 + θ) i.e., α = 1
4+θ , we get:

E
[
‖V (e)

n/τ − V
∗‖2L2(p)

]
≤ O

(
(logn)n−

1+θ
4+θ

)
.

6.B Experimental Design

6.B.1 Geometric Mixing of the Markov Chain

Lemma 9. Consider the Markov chain defined on the torus [0, 1] by:

• with probability ε, xn+1 ∼ U([0, 1]);

157

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

• with probability 1− ε, xn+1 = xn.

This Markov chain mixes to the uniform distribution at uniform geometric rate (1− ε):

sup
x∈[0,1]

dTV
(
P(xn ∈ ·|x0 = x),U([0, 1])

)
≤ (1− ε)n.

Proof. Let x ∈ [0, 1], p = U([0, 1]) the uniform distribution, and pn := P(xn ∈ ·|x0 = x).

We will show that:
dTV (pn, p) ≤ (1− ε)n.

For n = 1, we have:

p1 = P(x1 ∈ ·|x0 = x) = εp+ (1− ε)δx.

Then, for n = 2, we obtain:

P(x2 ∈ ·|x0 = x, x1) = εp+ (1− ε)δx1 .

Taking the marginal with respect to x1|x0, we get:

p2 = P(x2 ∈ ·|x0 = x)

p2 =
∫

(εp+ (1− ε)δx1)dp1(x1)

= εp+ (1− ε)
∫
δx1(εp(x1) + (1− ε)δx(x1))dx1

= εp+ ε(1− ε)p+ (1− ε)2δx.

A simple recursion on n shows that, for n ≥ 1:

pn = (ε+ (1− ε)ε+ ...+ (1− ε)n−1ε)p+ (1− ε)nδx
= (1− (1− ε)n)p+ (1− ε)nδx,

which implies:

dTV (pn, p) = sup
A∈A

∣∣∣pn(A)− p(A)
∣∣∣

= (1− ε)n sup
A∈A

∣∣∣δx(A)− p(A)
∣∣∣

≤ (1− ε)n.

6.B.2 Implementation Details

The “kernel trick” enables an implementation of the non-parametric TD algorithm up to iteration n, which
only uses the kernel matrix with entries Ki,j := K(xi, xj), for 1 ≤ i, j ≤ n+ 1.

158

6.B. Experimental Design

Each value function Vk, for 1 ≤ k ≤ n belongs to the span of the basis of functions (Φ(xj))1≤j≤k:

Vk =
k∑
j=1

αk,jΦ(xj).

Hence Vk is represented in memory by the vector (αk,j)1≤j≤k.

The TD iterations are equivalent to filling the lower-triangular matrix α:
α1,1 = ρ1r(x1)
αk,j = (1− ρkλ)αk−1,j for 1 ≤ j < k ≤ n
αk,k = ρkr(xk) + ρk

∑k−1
j=1 αk−1,j (γKj,k+1 −Kj,k) for 1 ≤ k ≤ n.

At inference time, for x ∈ X, Vk(x) can be computed from α and the vector (K(xj , x))1≤j≤k:

Vk(x) =
k∑
j=1

αk,jK(xj , x).

Finally, averaging can be performed by simple operations on α, which correspond to exchanging the indices
of a triangular sum. Indeed, if:

V (e)
n =

n∑
k=1

wk,nVk−1,

for instance with wk,n := (1− ρλ)n−k/
∑n
k=1(1− ρλ)n−k, then, using that V0 = 0:

V (e)
n =

n∑
k=2

wk,n

k−1∑
j=1

αk−1,jΦ(xj)

=
∑

1≤j<k≤n
wk,nαk−1,jΦ(xj)

=
n−1∑
j=1

Φ(xj)
n∑

k=j+1
wk,nαk−1,j

=
n−1∑
j=1

α
(e)
n,jΦ(xj),

with α(e)
n,j :=

∑n
k=j+1wk,nαk−1,j .

This implementation requires the storage of O(n2) values and O(n2) computations to compute Vn. In our
Python implementation, the limiting factor is the computation time of the kernel matrix. When n ≥ 1500
and K2 is used (empirically, the eigenvalues of the kernel matrix have a fast decrease), we use an incomplete
Cholesky decomposition (Bach and Jordan, 2002) with maximal rank 100 to approximate the kernel matrix.
It is computed online with a fast Cython implementation, and does not require the compute the whole kernel
matrix. Overall, the CPU time for computing Vn for n = 2000 is approximately 20 seconds on a standard
laptop. Running all the experiments of this chapter took a few hours.

159

Chapter 6. A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning

160

Conclusion and Research Directions

Summary of the Thesis

Modern applications of control problems, such as polyarticulated robotics, are computationally challeng-
ing. One must deal with uncertainty, model misspecification, and large-dimensional systems, while many
existing numerical methods are subject to the curse of dimensionality. Guided by such constraints, we have
proposed new algorithms, or adapted existing ones, for solving different problems in control and reinforce-
ment learning: assessing the stability of a trajectory, evaluating a policy, or approximating the optimal value
function.

In this manuscript, we have tried to think in the same way about control and reinforcement learning prob-
lems, regardless of the differences in notations. In particular, we have progressively relaxed the degree of
knowledge about the model: from a perfectly known model in Chapter 3, to a model known up to a certain
order in Chapter 4, and finally to a model known only through samples in Chapters 5 and 6. In this sense,
we have moved from a control paradigm to a learning to control paradigm. In the latter, the learning and
control problems are interlaced, from the model-based setting, where the model is first learnt and then used
as is to solve a control problem, to the model-free setting, where no model is explicitly learnt, as is the
case in the last two chapters. In these chapters, we have used kernel methods, a set of tools primarily de-
signed for learning problems, which are well-suited to sample-based algorithms and which often come with
theoretical guarantees. Following the recent works of Diwale (2019) and Aubin-Frankowski (2021a), we
believe kernel methods to be a promising direction for designing theoretically-grounded numerical methods
in sample-based control.

For each algorithm considered, we have provided small-scale numerical examples, showing their potential
merits and limitations. Further work is needed to make these methods readily applicable to large-scale,
real-world applications.

161

Conclusion and Research Directions

Perspectives

Beyond direct generalizations mentioned as in the conclusion of each chapter, we have encountered through-
out this work several open questions that we briefly describe hereafter.

Modeling the value function. The value function is an ubiquitous object in optimal control and reinforce-
ment learning. In large-scale problems, it cannot be represented exactly, and must be somehow approxi-
mated. The most natural representation is probably linear, in some basis of functions or RKHS. However,
contrary to many machine learning applications, the function to be approximated has little regularity. In
particular, it is generally not smooth. This questions the relevance of modeling the value function in a space
of smooth functions, like a Sobolev space. As briefly discussed in Chapter 5, it might be worth exploring the
regularizing effect of a stochastic perturbation of the dynamics. Furthermore, as we have seen in Chapter 3,
a max-plus linear representation might be better suited than a linear representation for the value function,
given its interesting properties of compatibility with the Bellman operator.

Statistical hardness of control problems. When one is provided with n samples of a dynamics and cost,
how hard is it to actually solve the optimal control problem up to a certain precision? And what is the preci-
sion of the approximation produced by a given algorithm? We have encountered this question in Chapter 5.
It should be studied to provably exhibit a potential advantage of the method we proposed over the linear
programming baseline. The number of samples required to reach a certain precision is called the sample
complexity of a problem, and has been recently explored for the linear quadratic regulator by Dean et al.
(2020). On the one hand, it is important to study lower-bounds on the number of observations, i.e., do a
worst-case analysis, depending on the intrinsic complexity of the control problem. This entails describing
classes of statistically easy or hard problems. On the other hand, we want to derive upper-bounds, in or-
der to evaluate a given sample-based method. To achieve this, one must relate the control problem to a
statistical setting.

Relating the quality of the value function and the controller. A recurring question in control and rein-
forcement learning is whether a controller or policy derived from a given approximated value function will
perform well. We have encountered this issue in our numerical experiments, where some apparently good
value functions led to poor controllers or policies. More precisely, what is the relation between the quality
of the value function, e.g., in terms of distance to the optimal value function, or in terms of Bellman error,
and the cost of the corresponding controller? Finding the right metrics is mostly an open problem. For
instance, Lu et al. (2021b) questioned the relevance of the projected Bellman error for generating a good
policy, and Fujimoto et al. (2022) showed that the Bellman error is a poor predictor of the distance to the
optimal value function.

?

? ?

162

This is Major Tom to Ground Control (...)
Though I’m past one hundred thousand miles

I’m feeling very still
And I think my spaceship knows which way to go...

David Bowie, Space Oddity, 1969.

Bibliography

Akian, M. and Fodjo, E. (2017). From a monotone probabilistic scheme to a probabilistic max-plus algorithm
for solving Hamilton-Jacobi-Bellman equations. arXiv preprint arXiv:1709.09049. [Cited on p. 80.]

Akian, M., Gaubert, S., and Lakhoua, A. (2008). The max-plus finite element method for solving determin-
istic optimal control problems: basic properties and convergence analysis. SIAM Journal on Control and
Optimization, 47(2):817–848. [Cited on pp. 4, 10, 25, 63, 66, 67, 69, 70, 71, 74, 75, and 76.]

Allgower, E. L. and Georg, K. (2003). Introduction to Numerical Continuation Methods. SIAM. [Cited on

p. 25.]

Andersson, J. A., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M. (2019). CasADi: a software framework
for nonlinear optimization and optimal control. Mathematical Programming Computation, 11(1):1–36.
[Cited on p. 24.]

Arnold, V. (1966). Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications
à l’hydrodynamique des fluides parfaits. In Annales de l’Institut Fourier, volume 16, pages 319–361. [Cited

on p. 37.]

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society,
68(3):337–404. [Cited on pp. 54 and 104.]

Asmussen, S. (2003). Applied Probability and Queues, volume 2. Springer. [Cited on p. 123.]

Aubin, J.-P. and Cellina, A. (1984). Differential Inclusions: Set-Valued Maps and Viability Theory. Springer.
[Cited on p. 86.]

Aubin-Frankowski, P.-C. (2021a). Estimation and Control under Constraints through Kernel Methods. PhD
thesis, Université Paris Sciences et Lettres. [Cited on p. 161.]

Aubin-Frankowski, P.-C. (2021b). Interpreting the dual Riccati equation through the LQ reproducing kernel.
Comptes Rendus. Mathématique, 359(2):199–204. [Cited on p. 55.]

167

BIBLIOGRAPHY

Aubin-Frankowski, P.-C. and Gaubert, S. (2022). Tropical reproducing kernels and optimization. arXiv
preprint arXiv:2202.11410. [Cited on p. 63.]

Baccelli, F., Cohen, G., Olsder, G. J., and Quadrat, J.-P. (1992). Synchronization and Linearity: An Algebra
for Discrete Event Systems. John Wiley & Sons Ltd. [Cited on pp. 62 and 63.]

Bach, F. (2019). Max-plus matching pursuit for deterministic Markov decision processes. arXiv preprint
arXiv:1906.08524. [Cited on pp. 68, 69, 71, 74, and 77.]

Bach, F. (2022). Information theory with kernel methods. arXiv preprint arXiv:2202.08545. [Cited on pp. 58

and 121.]

Bach, F. and Jordan, M. I. (2002). Kernel independent component analysis. Journal of Machine Learning
Research, 3(Jul):1–48. [Cited on pp. 132 and 159.]

Baird, L. (1995). Residual algorithms: Reinforcement learning with function approximation. In Proceedings
of the International Conference on Machine Learning, pages 30–37. [Cited on p. 121.]

Baker, C. R. (1973). Joint measures and cross-covariance operators. Transactions of the American Mathe-
matical Society, 186:273–289. [Cited on pp. 121 and 125.]

Baldi, L. and Mourrain, B. (2021). On moment approximation and the effective Putinar’s Positivstellensatz.
arXiv preprint arXiv:2111.11258. [Cited on p. 106.]

Bar-Shalom, Y. and Tse, E. (1974). Dual effect, certainty equivalence, and separation in stochastic control.
IEEE Transactions on Automatic Control, 19(5):494–500. [Cited on p. 31.]

Barreto, A., Precup, D., and Pineau, J. (2011). Reinforcement learning using kernel-based stochastic factor-
ization. Advances in Neural Information Processing Systems, 24. [Cited on p. 122.]

Barreto, A., Precup, D., and Pineau, J. (2016). Practical kernel-based reinforcement learning. Journal of
Machine Learning Research, 17(1):2372–2441. [Cited on p. 122.]

Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society,
60(6):503–515. [Cited on p. 18.]

Bellman, R. (1957a). Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1 edition.
[Cited on p. 27.]

Bellman, R. (1957b). A Markovian decision process. Journal of Mathematics and Mechanics, pages 679–
684. [Cited on pp. 2 and 8.]

Benveniste, A., Métivier, M., and Priouret, P. (1990). Adaptive Algorithms and Stochastic Approximations,
volume 22. Springer Science & Business Media. [Cited on p. 122.]

Berlinet, A. and Thomas-Agnan, C. (2011). Reproducing Kernel Hilbert Spaces in Probability and Statistics.
Springer. [Cited on p. 107.]

Bernstein, A. and Shimkin, N. (2008). Adaptive aggregation for reinforcement learning with efficient explo-
ration: Deterministic domains. In COLT, pages 323–334. [Cited on pp. 76 and 77.]

168

BIBLIOGRAPHY

Berry, D. A. and Fristedt, B. (1985). Bandit Problems: Sequential Allocation of Experiments, volume 5.
Springer. [Cited on p. 29.]

Berthier, R., Bach, F., and Gaillard, P. (2020). Tight nonparametric convergence rates for stochastic gradient
descent under the noiseless linear model. Advances in Neural Information Processing Systems, 33:2576–
2586. [Cited on pp. 58 and 122.]

Bertsekas, D. P. (2011). Dynamic Programming and Optimal Control, 3rd edition, volume ii. Belmont, MA:
Athena Scientific. [Cited on pp. 18, 27, and 33.]

Bertsekas, D. P. (2019). Reinforcement Learning and Optimal Control. Athena Scientific. [Cited on pp. 2 and 8.]

Betts, J. T. (2010). Practical Methods for Optimal Control and Estimation Using Nonlinear Programming.
SIAM. [Cited on p. 23.]

Bhandari, J., Russo, D., and Singal, R. (2018). A finite time analysis of temporal difference learning with
linear function approximation. In Conference on Learning Theory, pages 1691–1692. [Cited on pp. 32, 121,

124, 125, 128, 129, 130, 131, and 149.]

Bhat, N., Farias, V., and Moallemi, C. C. (2012). Non-parametric approximate dynamic programming via
the kernel method. Advances in Neural Information Processing Systems, 25. [Cited on p. 122.]

Bhatia, R. (2013). Matrix Analysis, volume 169. Springer Science & Business Media. [Cited on p. 125.]

Bock, H. and Plitt, K. (1984). A multiple shooting algorithm for direct solution of optimal control problems.
IFAC Proceedings Volumes, 17(2):1603–1608. 9th IFAC World Congress: A Bridge Between Control
Science and Technology, Budapest, Hungary, 2-6 July 1984. [Cited on p. 24.]

Boltyanski, V. G., Gamkrelidze, R. V., Mishchenko, E. F., and Pontryagin, L. S. (1960). The maximum
principle in the theory of optimal processes of control. IFAC Proceedings Volumes, 1(1):464–469. [Cited on

p. 15.]

Bonnans, J.-F. (2019). Lecture notes on optimal control. ENSTA Paris Tech and Optimization Master,
Université Paris-Saclay. [Cited on p. 24.]

Bonnans, J.-F., Gilbert, J. C., Lemaréchal, C., and Sagastizábal, C. A. (2006). Numerical Optimization:
Theoretical and Practical Aspects. Springer Science & Business Media. [Cited on pp. 24 and 25.]

Borgwardt, K. M. and Kriegel, H.-P. (2005). Shortest-path kernels on graphs. In Fifth IEEE International
Conference on Data Mining (ICDM’05), pages 8–pp. IEEE. [Cited on p. 55.]

Borkar, V. S. (2009). Stochastic Approximation: a Dynamical Systems Viewpoint, volume 48. Springer. [Cited

on p. 57.]

Borkar, V. S. and Meyn, S. P. (2000). The ODE method for convergence of stochastic approximation and
reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447–469. [Cited on pp. 31, 57, 58,

122, and 127.]

Borkar, V. S. and Soumyanatha, K. (1997). An analog scheme for fixed point computation. IEEE Transac-
tions on Circuits and Systems I: Fundamental Theory and Applications, 44(4):351–355. [Cited on p. 129.]

169

BIBLIOGRAPHY

Boscain, U. and Piccoli, B. (2005). An introduction to optimal control. Contrôle Non Linéaire et Applica-
tions, Herman, Paris, pages 19–66. [Cited on p. 17.]

Bottou, L. and Bousquet, O. (2007). The tradeoffs of large scale learning. Advances in Neural Information
Processing Systems, 20. [Cited on p. 57.]

Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization methods for large-scale machine learning.
SIAM Review, 60(2):223–311. [Cited on p. 122.]

Bourlès, H. and Kwan, G. K. (2013). Linear Systems. John Wiley & Sons. [Cited on pp. 1 and 7.]

Boyan, J. and Moore, A. (1994). Generalization in reinforcement learning: Safely approximating the value
function. Advances in Neural Information Processing Systems, 7. [Cited on p. 120.]

Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and
Control Theory, volume 15. SIAM. [Cited on pp. 86 and 88.]

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press. [Cited on pp. 15, 25,

44, and 114.]

Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares algorithms for temporal difference learning.
Machine Learning, 22(1):33–57. [Cited on p. 120.]

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. (2016).
OpenAI gym. arXiv preprint arXiv:1606.01540. [Cited on pp. 28, 77, and 87.]

Brogliato, B. (1999). Nonsmooth Mechanics, volume 3. Springer. [Cited on p. 104.]

Cai, Q., Yang, Z., Lee, J. D., and Wang, Z. (2019). Neural temporal-difference learning converges to global
optima. Advances in Neural Information Processing Systems, 32. [Cited on pp. 120 and 122.]

Caponigro, M., Ghezzi, R., Piccoli, B., and Trélat, E. (2018). Regularization of chattering phenomena via
bounded variation controls. IEEE Transactions on Automatic Control, 63(7):2046–2060. [Cited on p. 18.]

Caponnetto, A. and De Vito, E. (2007). Optimal rates for the regularized least-squares algorithm. Founda-
tions of Computational Mathematics, 7(3):331–368. [Cited on pp. 122 and 127.]

Capuzzo Dolcetta, I. (1983). On a discrete approximation of the Hamilton-Jacobi equation of dynamic
programming. Applied Mathematics and Optimization, 10(1):367–377. [Cited on p. 75.]

Carpentier, J. and Mansard, N. (2018a). Analytical derivatives of rigid body dynamics algorithms. In
Robotics: Science and Systems. [Cited on pp. 92 and 96.]

Carpentier, J. and Mansard, N. (2018b). Multicontact locomotion of legged robots. IEEE Transactions on
Robotics, 34(6):1441–1460. [Cited on p. 84.]

Carpentier, J., Saurel, G., Buondonno, G., Mirabel, J., Lamiraux, F., Stasse, O., and Mansard, N. (2019).
The Pinocchio C++ library – A fast and flexible implementation of rigid body dynamics algorithms and
their analytical derivatives. In IEEE International Symposium on System Integrations (SII). [Cited on pp. 39

and 95.]

170

BIBLIOGRAPHY

Chandrashekar, L. and Bhatnagar, S. (2014). Approximate dynamic programming with (min;+) linear func-
tion approximation for Markov decision processes. In 53rd IEEE Conference on Decision and Control,
pages 1588–1593. IEEE. [Cited on p. 69.]

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shanmugam, K. (2020). Finite-sample analysis of contractive
stochastic approximation using smooth convex envelopes. Advances in Neural Information Processing
Systems, 33:8223–8234. [Cited on p. 129.]

Cheney, E. W. (2001). Analysis for Applied Mathematics, volume 1. Springer. [Cited on p. 125.]

Cheney, E. W. and Light, W. A. (2009). A Course in Approximation Theory, volume 101. American Mathe-
matical Society. [Cited on p. 52.]

Chesi, G. (2004). Estimating the domain of attraction for uncertain polynomial systems. Automatica,
40(11):1981–1986. [Cited on p. 84.]

Chui, C. K. and Chen, G. (1987). Kalman Filtering with Real-time Applications. Springer Berlin, Heidelberg.
[Cited on pp. 15 and 23.]

Cohen, G., Gaubert, S., and Quadrat, J.-P. (1999). Max-plus algebra and system theory: where we are and
where to go now. Annual Reviews in Control, 23:207–219. [Cited on p. 63.]

Cohen, G., Gaubert, S., and Quadrat, J.-P. (2004). Duality and separation theorems in idempotent semimod-
ules. Linear Algebra and its Applications, 379:395–422. [Cited on p. 68.]

Crandall, M. G., Evans, L. C., and Lions, P.-L. (1984). Some properties of viscosity solutions of Hamilton-
Jacobi equations. Transactions of the American Mathematical Society, 282(2):487–502. [Cited on p. 19.]

Crandall, M. G. and Lions, P.-L. (1983). Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math.
Soc., 277(1):1–42. [Cited on pp. 105 and 112.]

Cristianini, N. and Shawe-Taylor, J. (2004). Kernel Methods for Pattern Analysis, volume 173. Cambridge
University Press. [Cited on p. 121.]

Cucker, F. and Smale, S. (2002). On the mathematical foundations of learning. Bulletin of the American
Mathematical Society, 39(1):1–49. [Cited on p. 127.]

Cucker, F. and Zhou, D. X. (2007). Learning Theory: an Approximation Theory Viewpoint, volume 24.
Cambridge University Press. [Cited on pp. 122 and 127.]

Dai, B., He, N., Pan, Y., Boots, B., and Song, L. (2017). Learning from conditional distributions via dual
embeddings. In Artificial Intelligence and Statistics, pages 1458–1467. [Cited on p. 122.]

Dalal, G., Szörényi, B., Thoppe, G., and Mannor, S. (2018). Finite sample analyses for TD(0) with function
approximation. Proceedings of AAAI’18/IAAI’18/EAAI’18. [Cited on p. 121.]

Dayan, P. (1992). The convergence of TD(λ) for general λ. Machine Learning, 8(3):341–362. [Cited on p. 121.]

De Farias, D. P. and Van Roy, B. (2003). The linear programming approach to approximate dynamic pro-
gramming. Operations Research, 51(6):850–865. [Cited on p. 115.]

171

BIBLIOGRAPHY

Dean, S., Mania, H., Matni, N., Recht, B., and Tu, S. (2020). On the sample complexity of the linear
quadratic regulator. Foundations of Computational Mathematics, 20(4):633–679. [Cited on pp. 108 and 162.]

Défossez, A. and Bach, F. (2017). Adabatch: Efficient gradient aggregation rules for sequential and parallel
stochastic gradient methods. arXiv preprint arXiv:1711.01761. [Cited on p. 129.]

Della Santina, C., Duriez, C., and Rus, D. (2021). Model based control of soft robots: A survey of the state
of the art and open challenges. arXiv preprint arXiv:2110.01358. [Cited on pp. 104 and 118.]

Diehl, M., Bock, H. G., Diedam, H., and Wieber, P.-B. (2006). Fast direct multiple shooting algorithms for
optimal robot control. In Fast Motions in Biomechanics and Robotics, pages 65–93. Springer. [Cited on

p. 23.]

Diehl, M. and Gros, S. (2011). Numerical optimal control. Optimization in Engineering Center (OPTEC).
[Cited on pp. 23 and 25.]

Dietterich, T. and Wang, X. (2001). Batch value function approximation via support vectors. Advances in
Neural Information Processing Systems, 14. [Cited on p. 122.]

Dieuleveut, A. (2017). Stochastic Approximation in Hilbert Spaces. PhD thesis, Paris Sciences et Lettres
(ComUE). [Cited on p. 125.]

Dieuleveut, A. and Bach, F. (2016). Nonparametric stochastic approximation with large step-sizes. The
Annals of Statistics, 44(4):1363–1399. [Cited on pp. 58, 122, 124, 125, 127, and 138.]

Diwale, S. S. (2019). Kernel Methods and Model Predictive Approaches for Learning and Control. PhD
thesis, EPFL. [Cited on p. 161.]

Domingues, O. D., Ménard, P., Pirotta, M., Kaufmann, E., and Valko, M. (2021). Kernel-based reinforcement
learning: A finite-time analysis. In International Conference on Machine Learning, pages 2783–2792.
[Cited on p. 122.]

Dormand, J. R. and Prince, P. J. (1980). A family of embedded Runge-Kutta formulae. Journal of Compu-
tational and Applied Mathematics, 6(1):19–26. [Cited on p. 22.]

Duan, Y., Wang, M., and Wainwright, M. J. (2021). Optimal policy evaluation using kernel-based temporal
difference methods. arXiv preprint arXiv:2109.12002. [Cited on p. 122.]

Durmus, A., Moulines, E., Naumov, A., Samsonov, S., and Wai, H.-T. (2021). On the stability of random
matrix product with Markovian noise: Application to linear stochastic approximation and TD learning. In
Conference on Learning Theory, pages 1711–1752. [Cited on p. 130.]

Durrett, R. (2019). Probability: Theory and Examples, volume 49. Cambridge University Press. [Cited on

p. 123.]

Evans, L. C. (2010). Partial Differential Equations, volume 19. American Mathematical Society. [Cited on pp.

19 and 20.]

Falcone, M. (1987). A numerical approach to the infinite horizon problem of deterministic control theory.
Applied Mathematics and Optimization, 15(1):1–13. [Cited on p. 75.]

172

BIBLIOGRAPHY

Falcone, M. and Ferretti, R. (2013). Semi-Lagrangian Approximation Schemes for Linear and Hamil-
ton—Jacobi Equations. Society for Industrial and Applied Mathematics, Philadelphia, PA. [Cited on p. 75.]

Farahmand, A.-M., Ghavamzadeh, M., Szepesvári, C., and Mannor, S. (2016). Regularized policy iteration
with nonparametric function spaces. Journal of Machine Learning Research, 17(1):4809–4874. [Cited on

p. 122.]

Fasshauer, G. E. (2011). Positive definite kernels: past, present and future. Dolomites Research Notes on
Approximation, 4:21–63. [Cited on p. 54.]

Featherstone, R. (1983). The calculation of robot dynamics using articulated-body inertias. The International
Journal of Robotics Research, 2(1):13–30. [Cited on p. 38.]

Featherstone, R. and Orin, D. E. (2008). Handbook of robotics chapter 3: Dynamics. Handbook of Robotics,
Springer. [Cited on p. 37.]

Febbo, H., Jayakumar, P., Stein, J. L., and Ersal, T. (2020). NLOptControl: A modeling language for solving
optimal control problems. arXiv preprint arXiv:2003.00142. [Cited on p. 24.]

Finkel, R. and Bentley, J. (1974). Quad trees: A data structure for retrieval on composite keys. Acta Inf.,
4:1–9. [Cited on p. 77.]

Fleming, W. H. and McEneaney, W. M. (2000). A max-plus-based algorithm for a Hamilton–Jacobi–Bellman
equation of nonlinear filtering. SIAM Journal on Control and Optimization, 38(3):683–710. [Cited on p. 64.]

Fleming, W. H. and Rishel, R. W. (2012). Deterministic and Stochastic Optimal Control, volume 1. Springer
Science & Business Media. [Cited on pp. 28 and 112.]

Fleming, W. H. and Soner, H. M. (2006). Controlled Markov Processes and Viscosity Solutions, volume 25.
Springer Science & Business Media. [Cited on pp. 25 and 75.]

Fujimoto, S., Meger, D., Precup, D., Nachum, O., and Gu, S. S. (2022). Why should I trust you, Bellman?
the Bellman error is a poor replacement for value error. arXiv preprint arXiv:2201.12417. [Cited on p. 162.]

Fukumizu, K., Bach, F., and Jordan, M. I. (2004). Dimensionality reduction for supervised learning with
reproducing kernel Hilbert spaces. Journal of Machine Learning Research, 5(Jan):73–99. [Cited on p. 125.]

Fuller, A. T. (1963). Study of an optimum non-linear control system. Journal of Electronics and Control,
15(1):63–71. [Cited on p. 18.]

Gaitsgory, V., Parkinson, A., and Shvartsman, I. (2017). Linear programming formulations of deterministic
infinite horizon optimal control problems in discrete time. Discrete & Continuous Dynamical Systems,
22(10):3821–3838. [Cited on p. 108.]

Gaitsgory, V. and Quincampoix, M. (2009). Linear programming approach to deterministic infinite horizon
optimal control problems with discounting. SIAM Journal on Control and Optimization, 48:2480–2512.
[Cited on p. 108.]

Gamkrelidze, R. V. (1999). Discovery of the maximum principle. Journal of Dynamical and Control Systems,
5:437–451. [Cited on p. 15.]

173

BIBLIOGRAPHY

Gaubert, S., McEneaney, W., and Qu, Z. (2011). Curse of dimensionality reduction in max-plus based
approximation methods: Theoretical estimates and improved pruning algorithms. In 2011 50th IEEE
Conference on Decision and Control, pages 1054–1061. IEEE. [Cited on p. 76.]

Gaubert, S. and Plus, M. (1997). Methods and applications of (max,+) linear algebra. In Annual Symposium
on Theoretical Aspects of Computer Science, pages 261–282. Springer. [Cited on pp. 60, 62, and 67.]

Giesl, P. and Hafstein, S. (2015). Review on computational methods for Lyapunov functions. Discrete and
Continuous Dynamical Systems-Series B, 20(8):2291–2331. [Cited on p. 84.]

Giftthaler, M., Neunert, M., Stäuble, M., Frigerio, M., Semini, C., and Buchli, J. (2017). Automatic differen-
tiation of rigid body dynamics for optimal control and estimation. Advanced Robotics, 31(22):1225–1237.
[Cited on p. 84.]

Glover, K., Sefton, J., and McFarlane, D. C. (1990). A tutorial on loop shaping using H-infinity robust
stabilization. IFAC Proceedings Volumes, 23(8):117–126. [Cited on p. 84.]

Gonçalves, V. M. (2021). Max-plus approximation for reinforcement learning. Automatica, 129:109623.
[Cited on p. 80.]

Grünewälder, S., Lever, G., Baldassarre, L., Pontil, M., and Gretton, A. (2012). Modelling transition dy-
namics in MDPs with RKHS embeddings. In International Conference on Machine Learning. [Cited on

p. 122.]

Guo, X. and Hernández-Lerma, O. (2009). Continuous-time Markov decision processes. In Continuous-Time
Markov Decision Processes. Springer. [Cited on p. 28.]

Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011). Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217–288. [Cited on

p. 124.]

Heinonen, M. and d’Alché Buc, F. (2014). Learning nonparametric differential equations with operator-
valued kernels and gradient matching. arXiv preprint arXiv:1411.5172. [Cited on p. 55.]

Henrion, D. (2014). Optimization on linear matrix inequalities for polynomial systems control. Lecture
notes at the 35th International Summer School on Automatic Control, Grenoble, France. [Cited on pp. 40, 43,

44, 50, and 106.]

Henrion, D., Lasserre, J.-B., and Löfberg, J. (2009). Gloptipoly 3: Moments, optimization and semidefinite
programming. Optimization Methods & Software, 24(4-5):761–779. [Cited on p. 44.]

Hernández-Hernández, D., Hernández-Lerma, O., and Taksar, M. (1996). The linear programming approach
to deterministic optimal control problems. Applicationes Mathematicae, 24(1):17–33. [Cited on p. 104.]

Hernández-Lerma, O. and Lasserre, J. B. (2012). Discrete-time Markov Control Processes: Basic Optimality
Criteria, volume 30. Springer Science & Business Media. [Cited on p. 66.]

Hespanha, J. P. (2018). Linear Systems Theory. Princeton Press. [Cited on p. 15.]

Hu, B. and Syed, U. (2019). Characterizing the exact behaviors of temporal difference learning algorithms
using Markov jump linear system theory. Advances in Neural Information Processing Systems, 32. [Cited

on p. 121.]

174

BIBLIOGRAPHY

Jaakkola, T. and Haussler, D. (1998). Exploiting generative models in discriminative classifiers. Advances
in Neural Information Processing Systems, 11. [Cited on p. 55.]

Jaakkola, T., Jordan, M., and Singh, S. (1993). Convergence of stochastic iterative dynamic programming
algorithms. Advances in Neural Information Processing Systems, 6. [Cited on p. 121.]

Jallet, W., Bambade, A., Mansard, N., and Carpentier, J. (2022). Constrained Differential Dynamic Pro-
gramming: A primal-dual augmented Lagrangian approach. hal-03597630. working paper or preprint.
[Cited on p. 14.]

Johansen, T. A. (2000). Computation of Lyapunov functions for smooth nonlinear systems using convex
optimization. Automatica, 36(11):1617–1626. [Cited on p. 84.]

Jones, M. and Peet, M. M. (2019). Relaxing the Hamilton Jacobi Bellman equation to construct inner and
outer bounds on reachable sets. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages
2397–2404. IEEE. [Cited on p. 105.]

Kailath, T., Sayed, A. H., and Hassibi, B. (2000). Linear Estimation. Prentice Hall. [Cited on p. 15.]

Kalman, R. E. (1960). On the general theory of control systems. In Proceedings First International Confer-
ence on Automatic Control, Moscow, USSR, pages 481–492. [Cited on p. 15.]

Kamoutsi, A., Sutter, T., Esfahani, P. M., and Lygeros, J. (2017). On infinite linear programming and the
moment approach to deterministic infinite horizon discounted optimal control problems. IEEE Control
Systems Letters, 1(1):134–139. [Cited on p. 105.]

Klenke, A. (2013). Probability Theory: A Comprehensive Course. Springer Science & Business Media.
[Cited on p. 122.]

Koppel, A., Warnell, G., Stump, E., Stone, P., and Ribeiro, A. (2020). Policy evaluation in continuous
MDPs with efficient kernelized gradient temporal difference. IEEE Transactions on Automatic Control,
66(4):1856–1863. [Cited on pp. 122 and 123.]

Korda, M., Henrion, D., and Jones, C. N. (2017). Convergence rates of moment-sum-of-squares hierarchies
for optimal control problems. Systems & Control Letters, 100:1–5. [Cited on p. 106.]

Korda, N. and La, P. (2015). On TD(0) with function approximation: Concentration bounds and a centered
variant with exponential convergence. In International Conference on Machine Learning, pages 626–634.
[Cited on p. 121.]

Kutz, J. N., Brunton, S. L., Brunton, B. W., and Proctor, J. L. (2016). Dynamic mode decomposition: data-
driven modeling of complex systems. SIAM. [Cited on p. 104.]

Kwakernaak, H. and Sivan, R. (1969). Linear Optimal Control Systems, volume 1072. Wiley. [Cited on pp. 15,

21, and 22.]

Lakshminarayanan, C. and Szepesvari, C. (2018). Linear stochastic approximation: How far does constant
step-size and iterate averaging go? In International Conference on Artificial Intelligence and Statistics,
pages 1347–1355. [Cited on p. 121.]

Lamiraux, F. and Mirabel, J. (2014). Humanoid Path Planner. Available from
https://humanoid-path-planner.github.io/hpp-doc/. [Cited on p. 37.]

175

BIBLIOGRAPHY

Lasserre, J.-B. (2010). Moments, Positive Polynomials and their Applications, volume 1. World Scientific.
[Cited on pp. 40, 41, 105, and 107.]

Lasserre, J.-B. (2015). An Introduction to Polynomial and Semi-Algebraic Optimization, volume 52. Cam-
bridge University Press. [Cited on pp. 40, 43, 50, 104, and 106.]

Lasserre, J.-B., Henrion, D., Prieur, C., and Trélat, E. (2008). Nonlinear optimal control via occupation
measures and lmi-relaxations. SIAM Journal on Control and Optimization, 47(4):1643–1666. [Cited on pp.

5, 11, 49, 104, 106, 107, and 118.]

Lattimore, T. and Szepesvári, C. (2020). Bandit Algorithms. Cambridge University Press. [Cited on p. 29.]

LaValle, S. M. and Kuffner, J. J. (2001). Rapidly-exploring random trees: progress and prospects. Algorith-
mic and Computational Robotics: New Directions, pages 293–308. [Cited on p. 84.]

LeVeque, R. J. (1992). Numerical Methods for Conservation Laws, volume 214. Springer. [Cited on pp. 20

and 25.]

Levin, D. A. and Peres, Y. (2017). Markov Chains and Mixing Times, volume 107. American Mathematical
Society. [Cited on p. 130.]

Li, W. and Todorov, E. (2007). Iterative linear quadratic regulator design for nonlinear biological movement
systems. International Journal of Control, 80(9):1439 – 1453. [Cited on p. 21.]

Liberzon, D. (2011). Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton
University Press. [Cited on pp. 13, 14, 16, 20, 21, 23, 70, 85, 93, 94, and 105.]

Lieberman, G. M. (1996). Second Order Parabolic Differential Equations. World scientific. [Cited on p. 112.]

Lions, P.-L. (2015). Cours sur le contrôle des modèles dynamiques. École polytechnique. [Cited on p. 19.]

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins, C. (2002). Text classification using
string kernels. Journal of Machine Learning Research, 2(Feb):419–444. [Cited on p. 55.]

Long, J., Han, J., and E, W. (2021). An L2 analysis of reinforcement learning in high dimensions with kernel
and neural network approximation. arXiv preprint arXiv:2104.07794. [Cited on p. 122.]

Lu, F., Mehta, P. G., Meyn, S. P., and Neu, G. (2021a). Convex Q-learning. In 2021 American Control
Conference (ACC). [Cited on p. 108.]

Lu, F., Mehta, P. G., Meyn, S. P., and Neu, G. (2021b). Convex Q-learning. In 2021 American Control
Conference (ACC), pages 4749–4756. IEEE. [Cited on p. 162.]

Luh, J. Y. S., Walker, M. W., and Paul, R. P. C. (1980). On-line computational scheme for mechanical
manipulators. Trans. ASME J. Dynamic Syst., Measurement, and Control, 102(2):69–76. [Cited on p. 38.]

Lyapunov, A. M. (1992). The general problem of the stability of motion. International Journal of Control,
55(3):531–534. [Cited on p. 46.]

Mairal, J. and Vert, J.-P. (2018). Machine learning with kernel methods. Lecture Notes, January, 10. [Cited on

pp. 52 and 54.]

176

BIBLIOGRAPHY

Mallat, S. G. and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions
on Signal Processing, 41(12):3397–3415. [Cited on p. 77.]

Marteau-Ferey, U., Bach, F., and Rudi, A. (2020). Non-parametric models for non-negative functions. Ad-
vances in Neural Information Processing Systems, 33:12816–12826. [Cited on pp. 5, 11, 59, 104, 107, and 113.]

Maslov, V. P. (1973). Operational Methods. Mir Publishers Moscow. [Cited on p. 64.]

Mayne, D. (1966). A second-order gradient method for determining optimal trajectories of non-linear
discrete-time systems. International Journal of Control, 3(1):85–95. [Cited on p. 21.]

McEneaney, W. M. (2003). Max-plus eigenvector representations for solution of nonlinear H infinity prob-
lems: basic concepts. IEEE Transactions on Automatic Control, 48(7):1150–1163. [Cited on pp. 4, 10, 63, 66,

67, 69, 71, and 76.]

Mehta, P. and Meyn, S. (2009). Q-learning and pontryagin’s minimum principle. In Proceedings of the 48h
IEEE Conference on Decision and Control, pages 3598–3605. IEEE. [Cited on p. 71.]

Meyn, S. (2022). Control Systems and Reinforcement Learning. Cambridge University Press. [Cited on pp. 2

and 8.]

Micchelli, C. A., Xu, Y., and Zhang, H. (2006). Universal kernels. Journal of Machine Learning Research,
7(12). [Cited on p. 121.]

Mockus, J. (2012). Bayesian Approach to Global Optimization: Theory and Applications, volume 37.
Springer Science & Business Media. [Cited on p. 93.]

Moerland, T. M., Broekens, J., and Jonker, C. M. (2020). Model-based reinforcement learning: A survey.
arXiv preprint arXiv:2006.16712. [Cited on p. 31.]

Mou, W., Pananjady, A., and Wainwright, M. J. (2020). Optimal oracle inequalities for solving projected
fixed-point equations. arXiv preprint arXiv:2012.05299. [Cited on p. 121.]

Munos, R. (2000). A study of reinforcement learning in the continuous case by the means of viscosity
solutions. Machine Learning, 40(3):265–299. [Cited on p. 25.]

Munos, R. and Moore, A. (2002). Variable resolution discretization in optimal control. Machine Learning,
49(2-3):291–323. [Cited on pp. 25 and 76.]

Murray, R. M., Li, Z., and Sastry, S. S. (2017). A Mathematical Introduction to Robotic Manipulation. CRC
press. [Cited on pp. 37 and 104.]

Nagaraj, D., Wu, X., Bresler, G., Jain, P., and Netrapalli, P. (2020). Least squares regression with Markovian
data: Fundamental limits and algorithms. Advances in Neural Information Processing Systems. [Cited on pp.

122 and 130.]

Nemirovski, A. (2004). Interior point polynomial time methods in convex programming. Lecture notes.
[Cited on p. 114.]

Nesterov, Y. and Nemirovskii, A. (1994). Interior-Point Polynomial Algorithms in Convex Programming.
SIAM. [Cited on p. 88.]

177

BIBLIOGRAPHY

Novak, E. (2006). Deterministic and Stochastic Error Bounds in Numerical Analysis. Springer. [Cited on

p. 108.]

Novak, E., Ullrich, M., Woźniakowski, H., and Zhang, S. (2018). Reproducing kernels of Sobolev spaces on
Rd and applications to embedding constants and tractability. Analysis and Applications, 16(05):693–715.
[Cited on p. 121.]

Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W. (2010). NIST Handbook of Mathematical
Functions. Cambridge University Press. [Cited on p. 132.]

Ormoneit, D. and Sen, Ś. (2002). Kernel-based reinforcement learning. Machine Learning, 49(2):161–178.
[Cited on pp. 122 and 123.]

Papachristodoulou, A., Anderson, J., Valmorbida, G., Prajna, S., Seiler, P., Parrilo, P. A., Peet, M. M.,
and Jagt, D. (2021). SOSTOOLS: Sum of squares optimization toolbox for MATLAB. Available from
https://github.com/oxfordcontrol/SOSTOOLS. [Cited on p. 43.]

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. (2019). PyTorch: An imperative style, high-performance deep learning library. Advances
in Neural Information Processing Systems, 32. [Cited on pp. 32, 92, and 96.]

Paulsen, V. I. and Raghupathi, M. (2016). An Introduction to the Theory of Reproducing Kernel Hilbert
Spaces. Cambridge Studies in Advanced Mathematics. Cambridge University Press. [Cited on p. 106.]

Pillaud-Vivien, L. (2020). Apprentissage par Noyaux Reproduisants: Descente de Gradient Stochastique et
Estimation de Laplacien. PhD thesis, Université Paris Sciences et Lettres. [Cited on p. 33.]

Pillaud-Vivien, L., Rudi, A., and Bach, F. (2018a). Exponential convergence of testing error for stochastic
gradient methods. In Conference on Learning Theory, pages 250–296. [Cited on p. 122.]

Pillaud-Vivien, L., Rudi, A., and Bach, F. (2018b). Statistical optimality of stochastic gradient descent on
hard learning problems through multiple passes. Advances in Neural Information Processing Systems, 31.
[Cited on p. 58.]

Polyak, B. T. and Juditsky, A. B. (1992). Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838–855. [Cited on p. 128.]

Pontryagin, L. S., Boltyanski, V. G., and Gamkrelidze, R. V. (1974). Théorie Mathématique des Processus
Optimaux. Éditions Mir. [Cited on p. 16.]

Powell, W. B. and Ma, J. (2011). A review of stochastic algorithms with continuous value function approx-
imation and some new approximate policy iteration algorithms for multidimensional continuous applica-
tions. Journal of Control Theory and Applications, 9(3):336–352. [Cited on p. 28.]

Puterman, M. L. (2014). Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons. [Cited on pp. 28 and 33.]

Putinar, M. (1993). Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics
Journal, 42:969–984. [Cited on p. 41.]

178

BIBLIOGRAPHY

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skinner, D., Ramadhan, A.,
and Edelman, A. (2020). Universal differential equations for scientific machine learning. arXiv preprint
arXiv:2001.04385. [Cited on p. 25.]

Ralaivola, L., Swamidass, S. J., Saigo, H., and Baldi, P. (2005). Graph kernels for chemical informatics.
Neural Networks, 18(8):1093–1110. Neural Networks and Kernel Methods for Structured Domains. [Cited

on p. 55.]

Rao, A. V. (2009). A survey of numerical methods for optimal control. Advances in the Astronautical
Sciences, 135(1):497–528. [Cited on pp. 23 and 24.]

Reiss, R.-D. (2012). A Course on Point Processes. Springer Science & Business Media. [Cited on p. 122.]

Ross, I. M. and Karpenko, M. (2012). A review of pseudospectral optimal control: From theory to flight.
Annual Reviews in Control, 36(2):182–197. [Cited on p. 24.]

Rudi, A. and Ciliberto, C. (2021). PSD representations for effective probability models. Advances in Neural
Information Processing Systems, 34:19411–19422. [Cited on p. 59.]

Rudi, A., Marteau-Ferey, U., and Bach, F. (2020). Finding global minima via kernel approximations. arXiv
preprint arXiv:2012.11978. [Cited on pp. 59, 106, 107, 108, 111, 113, and 114.]

Rudin, W. (1987). Real and Complex Analysis, 3rd Ed. McGraw-Hill, Inc., USA. [Cited on p. 139.]

Safonov, M. G. (2012). Origins of robust control: Early history and future speculations. Annual Reviews in
Control, 36(2):173–181. [Cited on p. 31.]

Samuelson, P. A. (1972). The general saddlepoint property of optimal-control motions. Journal of Economic
Theory, 5(1):102–120. [Cited on p. 23.]

Schapire, R. E. and Warmuth, M. K. (1996). On the worst-case analysis of temporal-difference learning
algorithms. Machine Learning, 22(1):95–121. [Cited on p. 121.]

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). A generalized representer theorem. In International
Conference on Computational Learning Theory, pages 416–426. Springer. [Cited on p. 55.]

Schölkopf, B. and Smola, A. J. (2001). Learning with Kernels. MIT Press. [Cited on p. 52.]

Schölkopf, B., Tsuda, K., and Vert, J.-P. (2004). Kernel Methods in Computational Biology. MIT Press.
[Cited on p. 55.]

Schwartz, L. (1981). Cours d’Analyse, volume 1. Hermann. [Cited on p. 111.]

Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision, and Materials Science, volume 3. Cambridge University
Press. [Cited on p. 25.]

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algo-
rithms. Cambridge University Press. [Cited on pp. 30 and 32.]

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Analysis. Cambridge University
Press. [Cited on p. 52.]

179

BIBLIOGRAPHY

Siciliano, B., Khatib, O., and Kröger, T. (2008). Springer Handbook of Robotics, volume 200. Springer.
[Cited on p. 37.]

Simon, I. (1978). Limited subsets of a free monoid. In 19th Annual Symposium on Foundations of Computer
Science, pages 143–150. IEEE Computer Society. [Cited on p. 63.]

Singh, S., Chen, M., Herbert, S. L., Tomlin, C. J., and Pavone, M. (2018). Robust tracking with model
mismatch for fast and safe planning: an SOS optimization approach. In International Workshop on the
Algorithmic Foundations of Robotics, pages 545–564. Springer. [Cited on p. 84.]

Slotine, J.-J. E. and Li, W. (1991). Applied Nonlinear Control, volume 199. Prentice Hall Englewood Cliffs,
NJ. [Cited on pp. 46, 85, and 127.]

Sobol’, I. M. (1967). On the distribution of points in a cube and the approximate evaluation of integrals.
USSR Comp. Math. Math. Phys. [Cited on p. 115.]

Srikant, R. and Ying, L. (2019). Finite-time error bounds for linear stochastic approximation and TD learn-
ing. In Conference on Learning Theory, pages 2803–2830. [Cited on pp. 121 and 131.]

Stasse, O., Flayols, T., Budhiraja, R., Giraud-Esclasse, K., Carpentier, J., Mirabel, J., Del Prete, A., Souères,
P., Mansard, N., Lamiraux, F., Laumond, J.-P., Marchionni, L., Tome, H., and Ferro, F. (2017). TALOS: A
new humanoid research platform targeted for industrial applications. In 2017 IEEE-RAS 17th International
Conference on Humanoid Robotics (Humanoids), pages 689–695. IEEE. [Cited on p. 39.]

Steinwart, I. (2001). On the influence of the kernel on the consistency of support vector machines. Journal
of Machine Learning Research, 2(Nov):67–93. [Cited on p. 127.]

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3(1):9–
44. [Cited on pp. 31, 120, and 121.]

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples using sparse coarse
coding. In Advances in Neural Information Processing Systems, pages 1038–1044. [Cited on p. 95.]

Sutton, R. S. (2015). Introduction to reinforcement learning with function approximation. In Tutorial at the
Conference on Neural Information Processing Systems, page 33. [Cited on p. 120.]

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press. [Cited on pp. 13,

26, 28, 30, 31, 66, 71, 106, 120, and 124.]

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient methods for reinforcement
learning with function approximation. Advances in Neural Information Processing Systems, 12. [Cited on

p. 31.]

Tallec, C., Blier, L., and Ollivier, Y. (2019). Making deep Q-learning methods robust to time discretization.
In International Conference on Machine Learning, pages 6096–6104. [Cited on p. 75.]

Tarres, P. and Yao, Y. (2014). Online learning as stochastic approximation of regularization paths: Optimality
and almost-sure convergence. IEEE Transactions on Information Theory, 60(9):5716–5735. [Cited on p. 129.]

Tedrake, R., Manchester, I. R., Tobenkin, M., and Roberts, J. W. (2010). LQR-trees: Feedback motion
planning via sums-of-squares verification. The International Journal of Robotics Research, 29(8):1038–
1052. [Cited on pp. 47, 84, and 94.]

180

BIBLIOGRAPHY

Tobenkin, M. M., Manchester, I. R., and Tedrake, R. (2011). Invariant funnels around trajectories using
sum-of-squares programming. IFAC Proceedings Volumes, 44(1):9218–9223. [Cited on pp. 94, 95, 96, and 97.]

Topcu, U. and Packard, A. (2007). Stability region analysis for uncertain nonlinear systems. In IEEE
Conference on Decision and Control, pages 1693–1698. [Cited on p. 88.]

Trélat, E. (2005). Contrôle Optimal: Théorie & Applications, volume 36. Vuibert Paris. [Cited on pp. 13, 16, 23,

24, 25, and 104.]

Trélat, E. (2012). Optimal control and applications to aerospace: some results and challenges. Journal of
Optimization Theory and Applications, 154(3):713–758. [Cited on p. 104.]

Trélat, E. and Zuazua, E. (2015). The turnpike property in finite-dimensional nonlinear optimal control.
Journal of Differential Equations, 258(1):81–114. [Cited on p. 23.]

Tsitsiklis, J. N. and Van Roy, B. (1997). An analysis of temporal-difference learning with function approxi-
mation. IEEE Transactions on Automatic Control, 42(5):674–690. [Cited on pp. 32, 120, 121, 125, and 126.]

Vacher, A., Muzellec, B., Rudi, A., Bach, F., and Vialard, F.-X. (2021). A dimension-free computational
upper-bound for smooth optimal transport estimation. In Conference on Learning Theory, pages 4143–
4173. [Cited on p. 59.]

van Brunt, B. (2004). The Calculus of Variations. Springer New York. [Cited on pp. 1 and 7.]

Verschueren, R., Frison, G., Kouzoupis, D., Frey, J., van Duijkeren, N., Zanelli, A., Novoselnik, B., Albin,
T., Quirynen, R., and Diehl, M. (2022). acados—a modular open-source framework for fast embedded
optimal control. Mathematical Programming Computation, 14(1):147–183. [Cited on p. 24.]

Vinter, R. (1993). Convex duality and nonlinear optimal control. SIAM Journal on Control and Optimization,
31(2):518–538. [Cited on pp. 104, 105, and 114.]

Von Stryk, O. (1993). Numerical solution of optimal control problems by direct collocation. In Optimal
Control, pages 129–143. Springer. [Cited on p. 24.]

Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF Regional Conference Series in
Applied Mathematics. SIAM. [Cited on pp. 55 and 132.]

Weidmann, J. (2012). Linear Operators in Hilbert Spaces, volume 68. Springer Science & Business Media.
[Cited on p. 136.]

Wiener, N. (1948). Cybernetics or Control and Communication in the Animal and the Machine. MIT Press
(2019 re-edition). [Cited on pp. 1 and 7.]

Williams, C. and Seeger, M. (2000). Using the Nyström method to speed up kernel machines. In Advances
in Neural Information Processing Systems, volume 13. MIT Press. [Cited on p. 56.]

Woodworth, B., Bach, F., and Rudi, A. (2022). Non-convex optimization with certificates and fast rates
through kernel sums of squares. arXiv preprint arXiv:2204.04970. [Cited on p. 118.]

Xu, T., Wang, Z., Zhou, Y., and Liang, Y. (2020). Reanalysis of variance reduced temporal difference
learning. arXiv preprint arXiv:2001.01898. [Cited on p. 121.]

181

BIBLIOGRAPHY

Yang, T., Li, Y.-F., Mahdavi, M., Jin, R., and Zhou, Z.-H. (2012). Nyström method vs random Fourier
features: A theoretical and empirical comparison. In Advances in Neural Information Processing Systems,
volume 25. [Cited on p. 56.]

Yu, H. and Bertsekas, D. P. (2010). Error bounds for approximations from projected linear equations. Math-
ematics of Operations Research, 35(2):306–329. [Cited on p. 121.]

Zames, G. (1981). Feedback and optimal sensitivity: Model reference transformations, multiplicative semi-
norms, and approximate inverses. IEEE Transactions on Automatic Control, 26(2):301–320. [Cited on

p. 1.]

182

MOTS CLÉS

contrôle optimal ; apprentissage par renforcement ; méthodes numériques ; approximation max-plus ; fonctions
de Lyapunov ; espaces à noyaux reproduisants ; sommes de carrés ; estimation non-paramétrique.

RÉSUMÉ

L’apprentissage par renforcement désigne pour un agent le fait d’apprendre à agir dans un environnement inconnu, de façon
à maximiser sa récompense sur le long terme. Il trouve son origine dans le domaine du contrôle optimal, ainsi que dans cer-
tains travaux en psychologie. L’augmentation des capacités de calcul et l’utilisation de méthodes d’approximation comme les
réseaux de neurones ont permis des succès récents notamment pour la résolution des jeux, sans pour autant systématique-
ment fournir des garanties théoriques. Quant au domaine du contrôle optimal, pour lequel un modèle de l’environnement
est fourni, il a connu des développements théoriques solides dès les années 1960, avec des outils numériques qui ont fait
leurs preuves dans de nombreuses applications industrielles. Néanmoins, la résolution numérique de problèmes de contrôle
non-linéaires de grande dimension, problèmes qui sont notamment rencontrés en robotique, reste aujourd’hui relativement
ouverte.
Dans cette thèse, nous développons et analysons des algorithmes efficaces, si possible avec des garanties théoriques,
pour le contrôle et l’apprentissage par renforcement. Nous montrons que, même s’ils sont formulés différemment, ces deux
problèmes sont très proches. Nous nous intéressons d’abord à la discrétisation des processus de décision Markoviens
déterministes à état continu, en adaptant une méthode développée pour le contrôle en temps continu. Puis nous proposons
une méthode d’estimation rapide de régions de stabilité applicable à des systèmes dynamiques de grande dimension impar-
faitement connus. Nous généralisons ensuite un algorithme de résolution de problèmes de contrôle issu de l’optimisation
polynomiale, aux systèmes non-polynomiaux et connus à partir d’un nombre fini d’observations. Pour cela, nous utilisons une
représentation comme somme de carrés des fonctions positives lisses issue des méthodes à noyaux. Enfin, nous analysons
un algorithme classique en apprentissage par renforcement, l’algorithme des différences temporelles, dans sa version non-
paramétrique. Nous soulignons ainsi le lien entre l’algorithme des différences temporelles et l’algorithme de descente de
gradient stochastique, pour lequel de nombreux résultats de convergence sont connus.

ABSTRACT

Reinforcement learning describes how an agent can learn to act in an unknown environment in order to maximize its reward
in the long run. It has its origins in the field of optimal control, as well as in some works in psychology. The increase
in computational power and the use of approximation methods such as neural networks have led to recent successes, in
particular in the resolution of games, yet without systematically providing theoretical guarantees. As for the field of optimal
control, for which a model of the environment is provided, it has known solid theoretical developments since the 1960s,
with numerical tools that have proven useful in many industrial applications. Nevertheless, the numerical resolution of high
dimensional nonlinear control problems, which are typically encountered in robotics, remains relatively open today.
In this thesis, we develop and analyze efficient algorithms, when possible with theoretical guarantees, for control and rein-
forcement learning. We show that, even though they are formulated differently, these two problems are very similar. We first
focus on the discretization of continuous state deterministic Markov decision processes, by adapting a method developed for
continuous time control. Then we propose a method for fast estimation of stability regions applicable to imperfectly known
high-dimensional dynamical systems. We then generalize an algorithm for solving control problems derived from polynomial
optimization, to non-polynomial systems known through a finite number of observations. For this, we use a sum-of-squares
representation of smooth positive functions from kernel methods. Finally, we analyze a classical algorithm in reinforcement
learning, the temporal-difference learning algorithm, in its non-parametric version. In particular, we insist on the link between
the temporal-difference learning algorithm and the stochastic gradient descent algorithm, for which many convergence results
are known.

KEYWORDS

optimal control; reinforcement learning; numerical methods; max-plus approximation; Lyapunov functions; re-
producing kernel Hilbert spaces; sums-of-squares; non-parametric estimation.

	Remerciements
	Introduction et résumé des contributions
	Introduction and Summary of the Contributions
	Optimal Control & Reinforcement Learning
	Optimal Control
	Setting of the Problem
	The Maximum Principle
	The Hamilton-Jacobi-Bellman Approach
	The Linear Quadratic Regulator
	Numerical Methods

	Reinforcement Learning
	Problem Statement
	Dynamic Programming
	Dynamic Programming with Estimation
	Dynamic Programming with Function Approximation
	The Linear Programming Formulation

	Comparison

	Conceptual & Numerical Tools
	Rigid-Body Dynamics
	The Configuration Space
	Inverse and Forward Dynamics

	Polynomial Optimization
	Optimization of Polynomials on Semi-algebraic Sets
	Representation of Non-negative Functions as Sums-of-Squares
	Lasserre's Hierarchy on Moments
	Duality Between the Moment and SoS Formulations

	Application to Lyapunov Stability Assessment
	Polynomial Optimization for Optimal Control
	Formulation with Occupation Measures
	Primal and Dual Weak Formulations of Optimal Control
	Relaxation of the Primal
	Dual of the Relaxation

	Kernel Methods
	Representing Functions
	Reproducing Kernel Hilbert Spaces
	Kernel Methods for Supervised Learning
	Non-parametric Stochastic Gradient Descent
	Representing Non-negative Functions

	Max-Plus Algebra
	The Max-Plus Semiring
	Max-Plus Linear Parameterizations
	Application to Optimal Control

	Max-Plus Discretization of Deterministic Markov Decision Processes
	Introduction
	Max-Plus Linear Approximations
	Approximate Value Iteration
	Projection Method
	Variational Method
	Basis Functions and Clustered MDP
	Oracle Subproblem

	Error Analysis
	Error Decomposition
	Projection Error

	Comparison with the Method of Akian, Gaubert & Lakhoua for Control Problems
	Time-Discretization of a Control Problem
	Hamiltonian Approximation for the Oracle Subproblem

	Adaptive Selection of Basis Functions
	Experiments
	Conclusion

	Fast and Robust Stability Region Estimation for Nonlinear Dynamical Systems
	Introduction
	Preliminaries
	First-Order Robustness
	Second-Order Robustness
	Condition on the Sublevel Sets
	Two Upper Bounds on

	Iterative Algorithm
	Stability Certificates
	Oracle on the Derivatives
	Algorithm

	Trajectory Tracking
	Numerical Experiments
	Definition of the Systems and Implementation Details
	Results

	Implementation Summary
	Conclusion

	Infinite-Dimensional Sums-of-Squares for Optimal Control
	Introduction
	Background
	Formulation of OCP with Maximal Subsolutions of HJB
	Parameterization of the Value Function
	Representing Non-Negative Functions as Sum-of-Squares

	Dense Set of Inequality Constraints
	Relaxed Formulation by Subsampling
	Strengthened Formulation by SoS Representation

	Tight Sum-of-Squares Representations
	Case 1: Infinite-Horizon Time-Invariant LQR
	Sum-of-Squares Decomposition with Smooth Functions
	Stochastic Smoothing of the Optimal Value Function

	SDP Formulation and its Numerical Resolution
	Finite-Dimensional Formulation via Subsampling
	Interior Point Method with the Damped Newton Method

	Numerical Example
	Conclusion

	A Non-asymptotic Analysis of Non-parametric Temporal-Difference Learning
	Introduction
	Contributions
	Related Literature

	Problem Formulation and Generic Results
	The Non-parametric TD(0) Algorithm
	Covariance Operators
	Non-Expansiveness of the Bellman Operator

	Analysis of a Continuous-Time Version of the Population TD Algorithm
	Existence of a Fixed Point for Regularized TD
	Convergence of the Regularized Fixed Point to the Optimal Value Function
	Convergence of Continuous-Time Population TD

	Stochastic TD with i.i.d. Sampling
	Stochastic TD with Markovian Sampling
	Experiments on Artificial Data
	Setting of the Problem
	Qualitative and Quantitative Results

	Conclusion
	Proofs and Intermediate Results
	Problem Formulation and Generic Results
	Analysis of a Continuous-Time Version of the Population TD Algorithm
	Stochastic TD with i.i.d. Sampling
	Stochastic TD with Markovian Sampling

	Experimental Design
	Geometric Mixing of the Markov Chain
	Implementation Details

	Conclusion
	Bibliography

