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Résumé

La préhension et la manipulation sont des composantes essentielles de la robotique : le
préhenseur est à l’interface entre le robot et l’objet d’intérêt. La manipulation nécessite
une capacité de préhension, et fait référence à la réorientation et au repositionnement d’un
objet saisi par rapport à un repère de référence donné. Les capacités de préhension
et de manipulation sont nécessaires dans la plupart des processus de fabri-
cation industrielle, car ils impliquent souvent, à un stade ou à un autre, des tâches
de pick-and-place, d’assemblage ou de dévracage. Les robots sont principalement
introduits dans le processus de fabrication pour éviter les accidents du tra-
vail, le travail monotone et la charge mentale des opérateurs. Plus précisément,
certaines applications possibles de la préhension robotique dans l’industrie manufactu-
rière sont par exemple : l’approvisionnement de machines-outils à commande numérique
par ordinateur (CNC) pour une utilisation sans personnel, la palettisation, le levage et
la manutention d’objets pour des raisons d’ergonomie, de propreté (pour les industries
alimentaires, pharmaceutiques ou des semi-conducteurs) ou de sécurité [1].

Historiquement, dans l’industrie manufacturière, les robots ont été développés
pour remplacer les humains pour des tâches simples, répétitives et difficiles.
Les robots ont d’abord été introduits dans ce type de tâches car ce sont généralement
les plus faciles à automatiser, celles qui présentent le plus de risques pour la sécurité
et la santé de l’opérateur, et celles qui bénéficient le plus de l’augmentation de cadence
permise par la substitution de l’humain par le système robotique. Dans ce contexte, les
robots ont été spécialisés en fonction de la tâche. Cette stratégie de spécialisation
a été utilisée dans de multiples composants et aspects du système robotique. Elle est
également visible pour les robots utilisés dans les tâches de préhension et de
manipulation, dans le choix et la conception de l’architecture mécanique des
préhenseurs et des logiciels associés.

En effet, les préhenseurs robotiques et les algorithmes de planification de prises sont
conçus spécifiquement pour la tâche cible, compte tenu des propriétés physiques de l’ob-
jet et des incertitudes concernant sa localisation et sa géométrie [1, 2]. Les robots sont
placés dans un environnement hautement contrôlé, et l’exécution correcte de
la tâche de préhension repose sur des hypothèses fortes concernant l’objet à
saisir. Un changement dans les propriétés physiques de l’objet ou dans la disposition
spatiale de la cellule robotique peut nécessiter des modifications de l’architecture du pré-
henseur ou de son planificateur de prises par un expert humain. Il s’agit d’un inconvénient
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RÉSUMÉ

important qui empêche une utilisation plus large des robots dans les tâches industrielles
nécessitant des capacités de préhension ou de manipulation.

Récemment, l’industrie 5.0 tend à remettre en question cette stratégie de spécialisa-
tion. En effet, l’objectif de ce concept est de promouvoir une industrie plus durable, plus
centrée sur l’humain (à la fois les utilisateurs finaux et les opérateurs) et plus résiliente
[3, 4]. En particulier, elle met en avant le concept de personnalisation de masse, qui vise
à adapter chaque produit aux besoins de chaque client. Elle place également l’opérateur
humain au centre de la chaîne de valeur, en utilisant, entre autres, des cobots (robots
collaboratifs) conçus pour travailler de manière transparente en coopération avec un hu-
main [5]. Pour atteindre les objectifs de l’industrie 5.0, une approche plus versatile de
la robotique est nécessaire. Ce besoin de versatilité (Définition 1) est également
présent dans le cas particulier des préhenseurs robotiques et des algorithmes
de planification de prises :

• D’une part, les préhenseurs actuels ont du mal à gérer la grande variabilité des
propriétés physiques de l’objet (telles que sa forme) ou de son attitude par rapport
à un repère donné. Lorsque ce type de versatilité est requis, la capacité de pré-
hension et la dextérité (Définition 2) de l’humain restent inégalées. C’est souvent
le cas lorsqu’un niveau élevé de personnalisation est nécessaire dans le produit.
Cependant, en fonction de la tâche et de la nature de l’objet, cela peut entraîner
certains risques corporels pour l’opérateur humain, tels qu’une probabilité accrue
de développer des troubles musculo-squelettiques ou un taux plus élevé d’accidents
du travail. Pour atténuer ce problème, il est possible d’utiliser des cobots. Pour
assister plus efficacement et de manière plus transparente l’opérateur
humain lors d’une tâche de préhension qui nécessite une manipulation
fine de l’objet, il faut des préhenseurs versatiles et des stratégies de pla-
nification de prises dont les capacités de manipulation sont proches de
celles de la main humaine.

• D’autre part, pour chaque tâche, le préhenseur correspondant doit être choisi parmi
les préhenseurs existants, ou conçu de toutes pièces, de même que l’algorithme de
planification de prises qui lui est associé. Cela peut représenter un coût important
lors du développement d’une ligne de production pour un nouveau produit. Possé-
der des préhenseurs polyvalents pourrait aider à réduire le temps et le
coût d’intégration lors de la création de nouvelles lignes de fabrication
ou de la réaffectation de lignes existantes [6]. Comme pour le matériel, un
besoin majeur est également d’apporter plus de versatilité dans la stratégie de pla-
nification de prises. Ces améliorations permettent de s’adapter plus facilement aux
perturbations de la chaîne d’approvisionnement ou aux changements des besoins
des clients.

Pour obtenir un robot doté de capacités de préhension versatiles, l’architecture mé-
canique du préhenseur doit être soigneusement conçue. Il doit offrir un nombre suf-
fisant de degrés de liberté pour produire une grande variété de prises pour
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RÉSUMÉ

diverses géométries d’objets. Dans ce contexte, une architecture pluridigitale est sou-
vent choisie. Cependant, l’architecture doit rester aussi simple que possible pour
des contraintes de coût et de complexité du contrôleur. Un moyen possible d’y
parvenir est d’introduire un sous-actionnement (Définition 3) dans certaines parties de
l’architecture mécanique du préhenseur. La capacité de préhension du robot est
également déterminée par son algorithme de planification de prises, qui dé-
pend lui-même fortement de l’architecture mécanique choisie. En effet, le but de
l’algorithme de planification de prises est de choisir parmi différentes prises possibles, et
de décider comment un objet donné doit être saisi dans une situation donnée. Les prises
disponibles dépendent à la fois de l’objet et de l’architecture du préhenseur, ainsi que des
contraintes de l’environnement ou de la tâche. Pour choisir une prises appropriée à
la situation parmi toutes les prises possibles, l’espace des prises (Définition 4)
doit être exploré.

ð Définition 1 (Versatilité). Dans le cadre de la préhension robotique, définit
la capacité du préhenseur à réaliser une grande variété de tâches différentes,
et à s’adapter à diverses géométries d’objets. Cette définition est dérivée de
celle donnée dans Gazeau [2].

Définition 2 (Dextérité). Capacité à déplacer un objet saisi par rapport
au repère du préhenseur ou de la main selon une trajectoire donnée, tout en
maintenant la stabilité de l’objet. Cette définition provient de Gazeau [2].

Définition 3 (Sous-actionnement). Propriété d’un système d’avoir un vec-
teur d’entrée de plus petite dimension que le vecteur de sortie. Dans un
contexte robotique, cela signifie avoir moins d’actionneurs que de degrés de
liberté. Cette définition est donnée par Birglen et al. [7].

Définition 4 (Espace des prises). Dans ces travaux, ce concept fait référence
à l’ensemble de toutes les prises possibles qu’un préhenseur donné peut pro-
duire sur un objet donné. Cet espace est un sous-ensemble de l’ensemble des
configurations du préhenseur.

Cette thèse rassemble plusieurs contributions publiées qui conduisent à la proposition
d’un outil logiciel pour explorer l’espace des prises d’un préhenseur robotique,
particulièrement efficace dans le cas d’architectures pluridigitales et sous-
actionnées. Il utilise des Auto-Encodeurs Variationnels (VAE) pour générer des prises,
ainsi qu’une prédiction de leur qualité, en s’inspirant de prises primitives spécifiées par
démonstration par un opérateur.

La structure de ce manuscrit est divisée comme suit :

• chapitre 1 : Les architectures de préhenseur et les algorithmes de planification
de prises les plus utilisés sont rappelés. Tout d’abord, les différentes architectures
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de préhenseur utilisées dans l’industrie ainsi que leurs principes physiques et leurs
limites sont brièvement décrits. La capacité de préhension de la main humaine
est abordée, ainsi que les architectures de préhenseur de la littérature qui tentent
d’imiter sa versatilité, en particulier les architectures sous-actionnées. Ensuite, les
principes et les limites des algorithmes de planification de prises les plus utilisés
sont présentés. Enfin, les défis représentés par la conception de planificateurs de
prises versatiles sont également introduits pour aider à positionner nos propres
contributions dans ce domaine.

• chapitre 2 : Le formalisme nécessaire à la description d’une prise est expliqué,
notamment les matrices Jacobienne et Grasp Map, en mettant l’accent sur le cas
du sous-actionnement. Diverses propriétés souhaitables de la prise sont présentées,
et l’effet du sous-actionnement sur ces propriétés est mis en évidence. Il apparaît
notamment que le sous-actionnement empêche de contrôler pleinement les torseurs
d’efforts et les torseurs cinématiques aux points de contacts, et rend plus complexe
l’évaluation du critère de force-closure. Certaines métriques de qualité de la prise
sont décrites, ainsi que leurs avantages et leurs limites. La métrique de qualité
choisie pour ce travail, la valeur singulière minimale de la Grasp Map, est également
présentée et justifiée.

• chapitre 3 : Le raisonnement à l’origine de notre contribution principale est pré-
sentée : les hypothèses envisagées, ainsi que les entrées et sorties attendues de l’algo-
rithme. Ensuite, les principes et techniques concernant les représentations d’espaces
latents et les modèles génératifs sont rappelés, avec un focus sur les Auto-Encodeur
Variationnels (Variationnal Auto-Encoders, VAE), l’outil principal utilisé dans ce
travail. Enfin, la méthode d’exploration de l’espace des prises elle-même est décrite.
Cette méthode est objet-dépendante, et utilise des prises primitives spécifiées par
démonstration pour guider l’exploration de l’espace des prises.

• chapitre 4 : La méthodologie précédente a été spécifiquement ajustée et implémen-
tée dans le cas d’un bras manipulateur équipé d’un préhenseur sous-actionné. Les
valeurs des hyperparamètres du VAE, en particulier la dimension de l’espace latent,
sont sélectionnés grâce à plusieurs essais d’apprentissage et expériences simulées.
Enfin, les résultats d’expériences de planification de prises menées en simulation
ainsi que sur le robot réel sont présentés.

• chapitre 5 : Une variante de la méthode proposée, utilisant des informations is-
sues de la géométrie de l’objet, est proposée. En effet, le principal inconvénient
de la solution initialement décrite est qu’un VAE distinct doit être entraîné pour
chaque objet. L’utilisation des informations de la géométrie de l’objet devrait per-
mettre d’utiliser un seul VAE pour plusieurs objets appris, et pourrait également
ouvrir des perspectives pour une extension aux objets sans prise primitive. Dans
un premier temps, le formalisme concernant la représentation de la géométrie des
objets est décrit. Ensuite, l’approche choisie pour intégrer ces informations à la
méthode décrite précédemment est expliquée, et les différentes méthodes explorées
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pour extraire efficacement les informations de la géométrie de l’objet sont présen-
tées. Enfin, la méthode d’extraction d’informations choisie est décrite et évaluée,
ainsi que la solution complète de génération de prises qui en résulte.
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brevet :

C. Rolinat, M. Grossard, S. Aloui et C. Godin. “Human Initiated Grasp Space
Exploration Algorithm for an Underactuated Robot Gripper Using Variational Autoen-
coder”. In : 2021 IEEE International Conference on Robotics and Automation (ICRA).
2021, p. 2598-2604. doi : 10.1109/ICRA48506.2021.9561765
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Introduction

Context

Grasping and manipulation are essential components in robotics: the gripper is at the
interface between the robot and the object of interest. Manipulation requires grasping ca-
pability, and refers to the reorientation and repositioning of a grasped object relative to a
given reference frame. Grasping and manipulation abilities are required in most
industrial manufacturing processes as they often involve pick-and-place, assembly
or bin picking tasks at one stage or another. Robots are primarily introduced in the
manufacturing process to avoid occupational incident, monotonous work and
psychological strain for operators. More specifically, some possible applications of
robotic grasping in manufacturing industry are for example: tending of CNC (Computer
Numerical Control) machine tools for workerless shift, palletizing, and object lifting and
handling for ergonomic, cleanliness (for food, pharmaceutical or semiconductor indus-
tries), or safety reasons [1].

Historically, in manufacturing industry, robots have been developed to replace
humans for simple, repetitive and difficult tasks. Robots have been introduced
firstly to these types of tasks as they generally are the easiest ones to automatize, repre-
sent the greatest risk for the safety and health of the operator, and benefit the most from
the cadence increase allowed by the substitution of the human by the robotic device. In
this context, robots have been specialized depending on the task. This special-
ization strategy has been used in multiple components and aspects of the robotic setup.
For example, regarding the robot mechanical architecture, delta robots, also known as
parallel link robots, are designed for tasks requiring high precision and high execution
speed, while serial manipulators are more fitted to tasks that requires a large workspace.
Another example relates to the instrumentation of the robotic cell: different sensors can
be required depending on the task. The same specialization strategy is also visible
for robots used in grasping and manipulation tasks, in the choose and design
of gripper mechanical architecture and associated software.

Indeed, robot grippers and grasp planning algorithms are designed specifically for the
target task, given the physical properties of the object and uncertainties concerning its
location and geometry [1, 2]. Some examples are given in Figure 1. In these examples,
the robots are placed in a highly controlled environment, and the correct
execution of the grasping task relies on strong hypotheses about the object
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INTRODUCTION

(a) Grasping of a railway sleeper with a mul-
tipoints gripper designed to fit its shape [12].
Picture: copyright ©2021, KUKA

(b) Handling of metal railings with a mag-
netic gripper [13]. Picture: copyright ©2021,
Goudsmit

(c) Robot used in a palletizing system equipped
with a suction gripper with four suckers [14].
Picture: copyright ©2021, KUKA

(d) Gripper constituted of two jaws used to pick
battery cells [15]. Picture: copyright ©2021,
ABB

Figure 1 – Examples of task specific industrial grippers, that use different physical prin-
ciples to produce the grasp.

to be grasped. A change in the object physical properties or in the spatial arrangement
of the robotic cell may need changes of the gripper architecture or its grasp planner by
a human expert. This is an important drawback that prevents robots from being more
widely used in industrial tasks requiring grasping or manipulation capabilities.

Recently, the framework of Industry 5.0 tends to question this specialization strategy.
Indeed, the goal of this concept is to promote a more sustainable, human-centric (toward
both end-users and workers), and resilient industry [3, 4]. In particular, it puts forward
the concept of mass-personalisation, that aims at tailoring each product to each customer
needs. It also puts the human operator at the center of the value chain, using among
others, cobots (collaborative robots) designed to work seamlessly in cooperation with a
human [5]. An example of such cooperation is shown on Figure 2. To achieve industry
5.0 goals, a more versatile approach of robotics is needed. This need for versatility
(Definition 1) is also present in the particular case of robotic grippers and
grasp planning algorithms:

• On one hand, current grippers struggle to manage high variability in the object
physics properties (such as its shape) or expected pose relative to a given known

14



CONTEXT

Figure 2 – A cobot collaborating with an operator for a small parts assembly task [16].
Picture: copyright ©2021, ABB

frame. When this kind of versatility is required, the human grasping ability and
dexterity (Definition 2) remain unrivalled. This is often the case when a high level
of personalisation is needed in the product. However, depending on the task and on
the nature of the object, this can bring some corporal risks for the human operator,
such as a higher chance to develop musculoskeletal disorders, or an increased rate of
occupational accidents. To mitigate this issue, cobots can be used. To assist more
efficiently and seamlessly the human operator during a grasping task
which requires fine object manipulation, they need versatile grippers
and grasp planning strategies that have manipulation abilities close to
the human hand. A dexterous robotic gripper can also be helpful to perform
object manipulation, even if it is not mandatory, as the robotic arm can be used
to perform a manipulation task.

• On the other hand, for each task, the corresponding gripper needs to be chosen
among existing grippers, or designed from scratch, and likewise for its associated
grasp planning algorithm. This can represent a significant cost when developing
a production line for a new product. Having versatile grippers could help
reducing the integration time and cost when creating new manufacturing
lines, or when re-purposing existing ones [6]. Like Hardware, a major need
is also to bring more versatility into grasp planning strategy. These improvements
allow to adapt more easily to supply chain disruptions or changes in customers’
needs.

Having a robot with versatile grasping ability requires the gripper mechanical archi-
tecture to be carefully designed. It has to offer a sufficient number of degrees of
freedom to produce a wide variety of grasps for various object geometries.
In this context, a pluri-digital architecture is often chosen. However, the architecture
needs to be kept as simple as possible for cost and controller complexity

15
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constraints. One possible way to achieve this is to introduce underactuation (Defini-
tion 3) in some parts of the gripper mechanical architecture. The grasping ability
of the robot is also determined by its grasp planning algorithm, which itself
highly depends on the chosen gripper architecture. Indeed, the grasp planning
algorithm goal is to choose from different possible grasps, and decides how a given object
should be grasped in a given situation. The available grasps depend both on the object
and on the gripper architecture, and on environment or task constraints. To choose a
grasp appropriate to the situation among all possible grasps, the grasp space
(Definition 4) needs to be explored.

ð Definition 1 (Versatility). In the framework of robotic grasping, defines the
gripper ability to perform a wide variety of different tasks, and to adapt to
various object geometries. This definition is derived from the one given in
Gazeau [2].

Definition 2 (Dexterity). Ability to move a grasped object relative to the
gripper or hand frame along a given trajectory, while maintaining the object
stability. This definition comes from Gazeau [2].

Definition 3 (Underactuation). Property of a system to have an input
vector of smaller dimension than the output vector. In a robotic context, it
means having fewer actuators than degrees of freedom. This is the definition
given by Birglen et al. [7].

Definition 4 (Grasp space). In this work, this concept refers to the set of
all possible grasps that a given gripper can produce on a given object. This
space is a subset of the gripper configuration set.

Outlines & Contributions

This thesis brings several published contributions that leads to the proposition of a gen-
eral software framework for exploring the grasp space of robotic gripper, that is
particularly efficient in the case of pluridigital and underactuated architec-
tures. It uses Variational Auto-Encoders to generate grasps, together with a prediction
of their quality, taking inspiration from human-provided primitive grasps.

The structure of this manuscript, shown in Figure 3, is divided as follows:

• chapter 1: Commonly used state-of-the-art gripper architectures and grasp plan-
ning algorithms are recalled. First, the different gripper architectures used in the
industry along with their physical principles and limitations are shortly described.
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OUTLINES & CONTRIBUTIONS

chapter 1
Robotic Grasping: Principle

and Techniques

chapter 2
Grasp Modeling Framework

chapter 3
Human Initiated Grasp Space

Exploration Approach

chapter 4
Method Qualification

chapter 5
Extension Towards Object
Geometry Information

Figure 3 – Organisation chart of the manuscript.

The grasping ability of the human hand is discussed, together with state-of-the-art
gripper architectures that attempt to imitate its versatility. Then, the principles
and limitations of most used grasp planning algorithms are presented. Finally, the
challenges represented by the design of versatile grasp planners are also introduced
to help positioning our own contributions in the field.

• chapter 2: The formalism needed for the description of a grasp is explained, with a
focus on the underactuated case. Various grasp desirable properties are presented,
and the effect of the underactuation on these properties is highlighted. Some grasp
quality metrics are described, together with their benefits and limitations. The
quality metric chosen for this work is also presented and justified.

• chapter 3: The rationale behind our main contribution is presented: the consid-
ered hypotheses, and the expected input and output of the presented algorithm.
Then, principles and techniques regarding latent space representations and gener-
ative models are recalled, with a focus on VAE, the main tool used in this work.
Finally, the method itself is described.

• chapter 4: Previous methodology has been specifically tuned and implemented in
the case of an underactuated picking station. Specifications for the VAE hyper-
parameters, in particular the latent space dimension, are drawn thanks to several
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learning trials and simulated experiments. Finally, the results of grasp planning
experiments conducted in simulation as well as on the real robot are given.

• chapter 5: A variant of the proposed method, using information from the object
geometry, is presented. Indeed, the main drawback of the proposed framework is
that a distinct VAE needs to be trained for each object. The use of object ge-
ometry information should allow to use a single VAE for multiple learned objects,
and might also open up perspectives for an extension to object without primitive
grasps. First, the formalism regarding object geometry representation is described.
Then, the chosen approach to integrate this information to the method previously
described is explained, and the various explored methods to efficiently extract in-
formation from the object geometry are presented. Finally, the chosen information
extraction method is described and evaluated, along with the resulting complete
grasp generation workflow.

This thesis resulted in two publications in international conferences, one submission
to an international journal (still being reviewed), and one patent application:

C. Rolinat, M. Grossard, S. Aloui, and C. Godin. “Human Initiated Grasp Space
Exploration Algorithm for an Underactuated Robot Gripper Using Variational Autoen-
coder”. In: 2021 IEEE International Conference on Robotics and Automation (ICRA).
2021, pp. 2598–2604. doi: 10.1109/ICRA48506.2021.9561765

C. Rolinat, M. Grossard, S. Aloui, and C. Godin. “Learning to Model the Grasp
Space of an Underactuated Robot Gripper Using Variational Autoencoder”. In: IFAC-
PapersOnLine. 19th IFAC Symposium on System Identification SYSID 2021 54.7 (2021),
pp. 523–528. issn: 2405-8963. doi: 10.1016/j.ifacol.2021.08.413

C. Rolinat, M. Grossard, S. Aloui, and C. Godin. “Grasp Space Exploration Method
for an Underactuated Gripper Using Human Initiated Primitive Grasps”. Submitted to
International Journal of Intelligent Robotics and Applications, under review

C. Rolinat, M. Grossard, S. Aloui, and C. Godin. “Méthode de génération de données
pour la commande d’un préhenseur d’un système robotisé”. Pat. FR2011310. CEA.
Nov. 4, 2020
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Chapter 1

Robotic Grasping: Principle and
Techniques

In this chapter, grasp planning techniques are discussed after an introductory part
on the gripper architecture, since existing planning approaches are strongly hardware-
dependent. First, existing industrial architectures for grasping are described, and the
need for versatility is discussed. Then, the grasp planning topic is introduced, and vari-
ous techniques are presented. Finally, a focus is made on one of the key component for
versatile grasp planning: the grasp space exploration. The issue that it represents for
underactuated gripper is also discussed.
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CHAPTER 1. ROBOTIC GRASPING: PRINCIPLE AND TECHNIQUES

1.1 Grasping in Industry: Overview

1.1.1 Generalities

Grasping abilities can be useful for a wide variety of applications, which lead to the
development of numerous grippers and associated robotic environment.

Applications

In a manufacturing process, grasping can be required at multiple stages. Indeed, various
objects need to be grasped and handled to go from raw materials to end products.

• First, grasping is needed right before and right after the production line itself, that
is for intralogistic operations. More specifically, grasping is required for bin picking,
bin packing, palletizing and order picking.

– Palletizing refers to stacking (or unstacking) boxes on a pallet (Figure 1.1a).
The stacking process occurs at the end of the production line, before shipment
or storage in a pallet racking. For the unstacking case, it occurs mostly when
receiving raw materials, and may be followed by a bin picking stage.

– Bin packing is the process of putting items in a box, before palletizing it for
example (Figure 1.1b).

– Conversely, bin picking refers to grasping objects having random and a priori
unknown poses out of a bin (Figure 1.1c). This is typically the case for raw
materials or parts: they may be received loose in a storage box. In order to
supply properly the production line, they need to be picked out of the box
one by one.

– Order picking is a process that has known an important development with the
growth of the e-shopping sector. The goal is to fulfill a customer’s order, by
picking individual items from their storage locations, gather them, and ship
them to the customer (Figure 1.1d).

• Then, grasping is also needed during the production process itself. Indeed, a pro-
duction line can contain a significant number of pick-and-place tasks:

– handling objects from one pose to an other,

– tending of a CNC (Computer Numerical Control) machine tool or special
machine [17],

– assembly tasks.

Most of the times, the different required parts are moved in the production line by
conveyor belts or similar systems. However, some re-positioning or re-orientation
can be difficult or impossible to achieve with a conveyor, and the parts need to
be handled. Regarding CNC machine tools, even if they do not require any live
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1.1. GRASPING IN INDUSTRY: OVERVIEW

manipulation to control them, the part still needs to be set in place in the ma-
chine, and get back once the process is finished. Concerning assembly tasks, it
requires advanced grasping abilities so that the part can be handled properly and
fit correctly in its place.

(a) Example of a robotized palletizing station.
Picture: CC BY-SA license, adapted from [18]

(b) Bin packing system. Picture: copyright
©2022, RECMI Industrie [19]

(c) Example of a bin picking task. Picture:
copyright ©2022, romi-is.com [20]

customers’
orders

required products
from shelves

(d) Robotized order picking station commer-
cialized by EXOTEC [21]. Picture: adapted
from [22], copyright ©2020, L.A.C. Conveyors
& Automation

Figure 1.1 – Various intralogistic operations that require grasping abilities.

When these tasks are performed by a human operator, they can represent a signif-
icant risk for his health. Indeed, their repetitiveness can be a ground that favors the
development of musculoskeletal disorder or psychological strain [23, 24]. Both issues can
cause occupational accident, or non-quality in the production due to human error. Re-
garding issues linked to mental fatigue, techniques are developed to monitor an operator
fatigue state, such as in Charbonnier et al. [25], to prevent incident or accident linked to
a lack of vigilance. However, the best way to limit mental fatigue is still to avoid as much
as possible any repetitive and tedious tasks. Thus, robotizing theses grasping tasks can
help to solve these issues.
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Some manufacturing sectors can take even more advantages from the automation
of grasping tasks. In particular, industries that require a high level of cleanliness, for
example food [26, 27], pharmaceutical, or semiconductor [28], and industries that involve
the handling of toxic and dangerous materials, like chemical or nuclear industries [29]
(see Figure 1.2). Indeed, cleaning, clothing and more generally safety procedures are
constraining and prone to human errors, that can provoke quality or safety issues which
can put worker’s or customer’s health at stake. Robotic grasping can help to isolate the
product from the human, or at least take them away from each other.

Figure 1.2 – RoMaNS European project [30]. It aims at developing robotic solution
for nuclear waste sorting and segregation. One of the proposed solution is a bi-manual
master-slave tele-operated system.

Robotic Architecture for Grasping

In a manufacturing context, robots are implemented through robotic cells. In addition to
robotic manipulators, several other automated components can be installed to fulfill the
task requirement, such as conveyor belts, CNC machine tools, or any other automated
special machines. A wide variety of sensors can also be present in the robotic cell.
Examples of robotic cells are shown on Figure 1.

Sensors can be divided in two main categories: proprioceptive and exteroceptive
sensors.

• Proprioceptive sensors can measure information about the internal state of the
system, for example, the position or velocity of a given actuator or joint. Torque
sensors can also be used on the joints, allowing safe interaction with humans for
cobots.

• Exteroceptive sensors can measure the state of the environment. One of the sim-
plest example are optoelectronic sensors. They can detect the presence or absence
of an object in front of them, and can be used to trigger simple processes when the
environment is well known. 2D and 3D cameras can give way richer information:
it is often used to determine the object pose when it is not fully known, thanks
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1.1. GRASPING IN INDUSTRY: OVERVIEW

to object detection or segmentation algorithms, coupled with pose estimation al-
gorithms [31, 32] (see Figures 1.3a and 1.3b). The camera can be installed on the
robotic arm, in a eye in hand configuration, or fixed in the robotic cell, in a eye
to hand configuration. An other example of exteroceptive sensor are force-torque
sensors. Such sensors can be useful for example in assembly tasks, when the pieces
need to be put together with a given force or torque. Various other sensors can be
installed in the robotic cell, for quality control for example.

(a) Integrated vision system proposed by an in-
dustrial robot manufacturer for part location,
inspection and identification. The system in-
cludes image processing algorithms that are ex-
ecuted directly by the robot controller. Picture:
copyright ©2021, ABB

(b) Multispectral 3D camera for object pose es-
timation and quality control. It is shipped with
its own controller and image processing algo-
rithms. Picture: copyright ©2021, Tridimeo

Figure 1.3 – Examples of vision sensors that can be used for grasping applications.

tool changer
master-side

tool changer
tool-sides

Figure 1.4 – Example of a tool changer. Picture: copyright ©2021, DESTACO

Gripper mechanical architectures are chosen depending on the task, and are often
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highly specialized, as it is shown in subsection 1.1.2. When several objects with different
geometries and physical properties need to be handled in the same task, finding a gripper
suitable for all objects may be impossible. In that case, two possibilities remain: using
several robots, each one with a different gripper, or using one robot with a tool changer.
The first possibility is by far the most complex and expansive, but may allow the highest
production rate. The second option is cheaper, but also slower, as each tool change can
take several seconds. Their main working principle involves the following components
(see Figure 1.4): a master-side, fixed on the robot flange, and several tool-sides, each one
fixed to a different tool, the master-side being able to connect with any tool-side.

1.1.2 Gripper Classification

To grasp an object, a sufficient effort needs to be applied on it, first to overcome gravity,
and also any dynamic wrenches that can be produced during the execution of the task.
Several physical principles are used to achieve this, and the various types of existing
gripper architectures can be divided based on their principle of operation [33]:

• astrictive group: a non-contact force is applied in one direction to grasp the object;

• impactive group: contact forces in at least two directions are used to perform the
grasp;

• ingressive group: the grasp is achieved by permeation of the object surface;

• contigutive group: the grasp is performed by applying a contact force in one single
direction.

Astrictive Grippers

This type of grippers is widely used for pick-and-place, palletizing, bin picking or bin
packing tasks. There are three main categories: suction, magnetic and electrostatic
grippers.

Suction Grippers The grasping effort is produced by creating a depression between a
suction element on the gripper and the object. Those grippers are constituted of one or
several suckers depending of the object characteristics (an example on a palletizing task
is shown on Figure 1c).

The depression can be produced by two mechanisms [2]:

• Venturi effect, where compressed air go through a conical nozzle which increases
the air flow velocity, and thus create a depression. An example of sucker using
Venturi effect is displayed in Figure 1.5a.

• Bernoulli effect, where a depression is created thanks to an increased air flow ve-
locity in the space separating the sucker from the object, caused by the injection
of compressed air along the sucker. Such sucker is shown in Figure 1.5b. With this
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venturi system

compressedair input

depression
Pa − Pv

(a) Suction gripper using Venturi effect. Pic-
ture: copyright ©2021, Schmalz

air flow

compressed
air input

depression
Pa − Pv

(b) Suction gripper using Bernoulli effect. Pic-
ture: copyright ©2021, Festo

Figure 1.5 – Examples of suction grippers. For a suction element, the grasping force is
given by F = (Pa −Pv)A, with A the contact surface, and Pa −Pv the depression. Pa is
the atmospheric pressure, and Pv the working pressure (a negative relative pressure).

technique, there is very little contact surface between the object and the sucker,
which is suitable for fragile objects.

In both cases, the created working pressure Pv, that produces the depression, depends
on the compressed air input pressure: the higher the input pressure is, the lower the
working pressure. Suction grippers allow very fast grasping, as the time needed for
object adhesion is under 10 ms. Moreover, the produced suction force allows to lift
relatively heavy object, with around 50 kN/m² [34].

Magnetic Grippers This type of grippers can only work on ferromagnetic materials,
such as iron, nickel, cobalt and their alloys, and to a smaller extent on paramagnetic
materials, such as aluminium and lithium. They use a magnetic field to produce an
electromagnetic force that lifts the object. They are often used to handle large or heavy
metal pieces, or metal pieces with a lot of holes. Indeed, contrary to suction grippers,
the attraction force of magnetic grippers does not depend on object surface, but on its
magnetization property, which is a volumetric property. Moreover, the produced force
can be very strong, around 100 kN/m² [34]. An example of such gripper is displayed in
Figure 1b. They are divided in two main categories [2]:

• Permanent magnet grippers, that are themselves divided in two sub-categories,
depending on the type of power needed for activation:

– electric commutation permanent magnet grippers use two identical permanent
magnets that rotate relative to each other to commute. A scheme of this
mechanism is shown in Figure 1.6a.
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– Pneumatic commutation permanent magnet grippers use compressed air to
move a permanent magnet inside a cavity. A scheme of this type of commu-
tation is displayed in Figure 1.6b.

These types of systems allow unpowered attraction, which is an advantage in terms
of safety.

• electromagnet grippers, that use an electromagnet to generate the magnetic field
needed to create electromagnetic force. This type of gripper allows only powered
attraction: this can represent a risk in case of power failure, and an additional
locking system is often needed.

Electrostatic Grippers This type of grippers use electrodes charged at high voltage
to generate an intense electric field. The surface of surrounding conductive materials
becomes charged, while the surface of surrounding insulated materials becomes polarized.
In both cases, an attractive force appears between the gripper electrodes and the object
surface [34]. This force is significantly smaller than for suction or magnetic gripper, at
around 100 N/m². For that reason, it is mainly used to handle very light objects, such
as paper sheets or textile fabrics, or also for micro or nano materials manipulation.

These three types of grippers work in an all or none manner, and do not allow to detect
the correct grasping of the object without additional sensors [2], even if smart Venturi
systems developed recently allow such detection by integrating the required sensors and
electronics.

magnets
opposed:

OFF (unload)

magnets
aligned:

ON (grasp)

gripper

N

S

S

N

object

gripper

N

N

S

S

object

(a) Scheme of an electric commutation
permanent magnet gripper.

gripper

N S

object

compressed
air

magnet down:
ON (grasp)

gripper

N S

object

compressed
air

magnet up:
OFF (unload)

(b) Scheme of a pneumatic commutation permanent
magnet gripper.

Figure 1.6 – Schemes of permanent magnet gripper principles.
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Impactive Grippers

Those grippers rely on contact mechanics, and are well suited for custom grasping and
handling tasks of objects with complex shapes. They can be divided into two main
categories:

• Parallel grippers that are constituted of two symmetric fingers, and exploits the
friction existing between the object and the fingers (see on Figure 1d for example).
The grasp is produced by closing the fingers on the object and exerting a sufficient
tightening force on it to overcome weight and inertial forces. These grippers work
best on objects having polyhedral or prismatic geometries, with some parallel faces
where the gripper fingers can fit.

• Multipoint grippers, that have more than two fingers, or are constituted of one or
several jaws designed to fit the shape of the object (an example is displayed on
Figure 1a). This way, the grasp depends less on friction forces, as the object can
be geometrically locked in the gripper. These grippers rely less on the presence of
parallel faces on the object, and can be designed to fit an arbitrary geometries.

A more in depth description of the physics of grasps using contact mechanics is given
in chapter 2. These grippers can be powered by pneumatic, electric, or hydraulic energy:

• Hydraulic energy allows very high tightening efforts, but is used in grasping tasks
almost exclusively in the construction industry or other specific industrial sectors
requiring high efforts, and not in manufacturing robotics. This is due to the com-
plexity of such systems, and the limited efforts typically required in manufacturing
tasks.

• Grippers using pneumatic energy use linear or rotary actuator supplied with com-
pressed air. The tightening effort is controlled by adjusting the compressed air
input pressure. Thus, this effort is adjusted when setting up the robotic cell, and
is usually not modified during the task cycle. Grippers powered by compressed air
operate in an all or none manner, and cannot detect correct grasping without sup-
plementary instrumentation. As suction grippers, they allow fast grasping, thanks
to very short closing and opening times of around 10 ms [2].

• Electric grippers can be divided in two categories: classic mechanically actuated
grippers, or piezoelectric grippers.

– Mechanically actuated grippers allow to control precisely the velocity and
position of the fingers during closing or opening, thanks to one or several
actuators. An effort control is also possible if the transmission system is
transparent enough. The object grasping can be detected without additional
sensors as a disturbance on the position of the jaws. However, compared to
pneumatic grippers, electric ones are generally bulkier, heavier, and slower
(with an opening/closing time between 50 and 500 ms [2]).
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– Piezoelectric grippers use piezoelectric actuators, that exploit the property
of some materials to deform themselves when surrounded by an electric field.
These grippers are cheaper, simpler and lighter than classic ones, but generally
cannot produce as high grasping forces as them. They are well suited for
handling micro and nano parts. However, the control of such grippers is more
complex, as piezoelectric actuators can exhibit unstable behaviors [35].

Ingressive Grippers

The main application of ingressive grippers is for grasping fabrics or in the handling
of carbon fibers [35]. These grippers grasp fabrics by penetrating them with a spiked
wheel, or with straight or bent needles. Indeed, most textile materials are too soft to be
efficiently grasped with impactive grippers, and often cannot be grasped with astrictive
gripper either, while they can be penetrated and moved without damaging the woven
structure.

Contigutive Grippers

These grippers are based on chemical or thermal adhesion, and need a contact between the
object and the gripper to be established beforhand, contrary to astrictive grippers. When
based on chemical adhesion, the gripper uses glue or sticky adhesive to grasp the object.
For thermal adhesion, a surface can be melted to adhere to the object, or conversely, a
thin water layer between the object and the gripper can be frozen. Contigutive grippers
are mainly used for fabrics handling, or for micro and nano parts manipulation [35].

The main use cases of these different gripper categories (astrictive, impactive, ingres-
sive, contigutive) are summarized in Table 1.1.

Type of Grippers

Types of Objects Impactive Ingressive Astrictive Contigutive

Solid Flat Objects      

Solid Curved Objects     

Solid Irregular Shapes   

Flexible Sheets      

Rigid Sheets     

Fragile Objects    

Micro and Nano Objects      

Table 1.1 – Comparison of the ability of grippers to pick up different types of objects
(  : commonly used,  : sometime used) [35].
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1.1.3 Limitations

As shown in subsection 1.1.1, robotic grasping has multiple applications in a wide range
of industries, and the implementation of a robotic cell involves various components.

The various gripper architectures presented in subsection 1.1.2 shows a high degree
of specialization to the targeted grasping task, as summarized in Table 1.1. The more
versatile (Definition 1) are impactive and astrictive gripper, but they both have their
limits.

A typical manufacturing process may require several different grippers, each special-
ized in a given task. This is a major issue for the resilience of the whole system. For
example, numerous different spare parts need to be stored, and maintenance operators
need to have a various set of skills and knowledge about the different grippers involved,
in order to be robust to gripper failures [6]. Moreover, the high degrees of specialization
of each gripper limits and complicates any evolution or improvement of the production
process, or of the produced parts. Thus, versatile grippers can lead to a more resilient
manufacturing industry.

The high specialization of existing grippers also prevents them from being used in a
small batches or personalized manufacturing context, which will become more and more
widespread with industry 5.0 [4]. Indeed, the object may vary too much between batches
to find a gripper suitable for any possible variation. In such case, a human operator
would be needed, as the human hand is the universal gripper par excellence. Thus, there
is a need for grippers with increased versatility to automatize those tasks.

1.2 Toward More Versatile Grippers

1.2.1 The Human Hand Example

ð
Recall the definitions of dexterity and versatility:

Definition 1 (Versatility). In the framework of robotic grasping, defines the
gripper ability to perform a wide variety of different tasks, and to adapt to
various object geometries. This definition is derived from the one given in
Gazeau [2].

Definition 2 (Dexterity). Ability to move a grasped object relative to the
gripper or hand frame along a given trajectory, while maintaining the object
stability. This definition comes from Gazeau [2].

The main issue of current grippers is their lack of dexterity, and the limited number
of possible grasps they offer, that is their lack of versatility.

The most versatile and dexterous multifingered gripper to date is the human hand.
It is very versatile, as we are not only able to grasp a vast variety of objects, but also to
perform various grasps for each of them. It is also dexterous, as for almost any object
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of reasonable size, we are able to reorient it inside our hand very precisely and robustly.
The human hand is also the most complex gripper to date, as it has between 21 and 25
degrees of freedom, distributed on 18 joints, controlled by 39 muscles and supported by
27 bones [38]. Human produced grasps have been classified in the literature in several
grasp taxonomies. They show the ability of the human hand to produce a wide variety
of different grasps [2]. An example of such taxonomy is displayed in Figure 1.8. Two
main grasp categories described in Napier et al. [36] are common to most existing ones:

• power grasps, that have large contact surfaces between the hand and the object.
They do not allow in hand manipulation, but are very stable and versatile (left
side of Figure 1.8). In this type of grasp, the whole fingers and the palm are used
to constrain the object as much as possible. An example of such grasp is shown in
Figure 1.7b.

• precision grasps, that involve only the fingertips. This kind of grasps allows dex-
terous manipulation of the grasped object (right side of Figure 1.8). In this type of
grasp, two or more fingers are placed on the object, and apply the required effort
to maintain it in the hand. Typically, the thumb is placed in opposition with one
or more fingers. A hand performing this type of grasp is displayed in Figure 1.7a.

The human-inspired taxonomy presented in Figure 1.8 is driven by the idea that the
choice of a grasp depends both on the object geometry and on the task requirements. This
specific taxonomy is not exhaustive, as it is focused on grasps found in a manufacturing
context, and does not include some everyday grasps, such as writing with a pencil, or
holding a key for example. Other taxonomies exist and does not focus on grasp used in
a manufacturing context, for example the ones suggested by Bullock and Dollar [40] or
Feix et al. [41].

(a) Hand performing a precision grasp. This
grasp corresponds to the number 14 of the tax-
onomy in Figure 1.8.

(b) Hand performing a power grasp. This grasp
corresponds to the number 1 or 2 of the taxon-
omy in Figure 1.8.

Figure 1.7 – Example of the two main grasp categories described in Napier et al. [36].
Pictures: copyright ©2016, Springer-Verlag Berlin Heidelberg [37]
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Figure 1.8 – Partial taxonomy of grasps encountered in a manufacturing context [39].
copyright ©1989, IEEE

It is worth noting that for a given object and task, the grasp chosen by a human is not
static, but may evolve during the task execution. Indeed, we adapt the grasp depending
on the trade-off between force/torque and dexterity required by the task. For example,
when using a tool, an operator can start with grasp No. 3 when a lot of force/torque
are needed, and change afterward to grasp No. 5 or even No. 6 when the required
force/torque decreases, and if more dexterity is needed [39]. Moreover, humans have the
possibility to use both hands, when additional force/torque is required, or to improve the
dexterity of the grasp. This ability to change the chosen grasp during the task execution,
or to produce bi-manual grasps, makes the human hand even more versatile.

From a control perspective, studies have been conducted to determine how our brain
is able to manage such a complex system. First, a large portion of the human motor
cortex, around 30% - 40%, is reserved to the control of the hand. Studies revealed that
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it is controlled following principal motions, that are combined and mixed together to
produce a wide variety of grasp types, some of which are shown in the taxonomy in
Figure 1.8. Actually, the brain controls the hand in a configuration space much smaller
than the 39 dimensional space of the hand muscles.

The concept of postural hand synergies has been introduced to describe this mech-
anism [38, 42]. This means that to execute a grasp, one does not need to control inde-
pendently each degree of freedom of his hand. On the contrary, the numerous degrees
of freedom allowed by the complex mechanical architecture of the hand are highly inter-
dependant in the postural hand synergies space.

1.2.2 Dexterous and Versatile Multifingered Grippers

In the literature, more than a hundred multifingered grippers have been developed [2], but
to our knowledge, none of them has been commercialized and used in a real manufacturing
process yet. Some examples of existing multifingered grippers are displayed in Figure 1.9.
Existing multifingered grippers have from three to five fingers, and up to 24 actuated
degrees of freedom.

The main issue with multifingered grippers is the complexity of such grippers [43]:
each controllable degree of freedom requires at least one actuator and its associated
transmission system, as well as a suitable control algorithm. Nevertheless, such grippers
can be better than the human hand at producing independent motion of their different
joints. For example, for most humans, the second, third, fourth and fifth fingers cannot be
moved completely independently, and likewise for the intermediate and distal phalanges
of a given finger, whereas it may not be an issue for a fully actuated multifingered gripper
[7].

From a mechanical point of view, the bulk and cost of such system is still an issue.
Indeed, a high number of degrees of freedom means a high mechanical complexity, and
a high number of actuators, both factors increasing the cost of the system. Moreover,
each actuator and its transmission chain needs to be integrated in the system.

To minimize the complexity of the transmission chain, it is easier to have the actuator
as close as possible to the controlled joint with a transmission constituted of as few gears
as possible. This is the choice made for the DLR-HIT gripper for example (Figure 1.9c).
However, in case of grippers, the available space is limited inside the fingers or the palm,
unless one increases the gripper size, which limits its potential applications. Therefore,
integrating the actuators here allows to place only very limited number of them, which
in turn allows to drive only a few degrees of freedom. Integration in a exiguous area also
require to use small actuators, that can exert a limited amount of force on the joints [48].

To drive more degrees of freedom, and to exert higher forces, it is necessary to place
the actuators in the wrist, for example as in the RoBioSS gripper (Figure 1.9d), or even
farther away in the forearm, as in the ShadowHand or Dexmart grippers (Figures 1.9a
and 1.9b). This comes at the cost of a more complex drive chain, often based on tendons
[2, 7, 48]. Different implementations of this actuation exist, and two main schemes can
be identified:
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(a) ShadowHand gripper: 5 fingered gripper
with 24 degrees of freedom. Picture: CC BY-
SA license [44]

(b) Dexmart gripper: 5 fingered gripper with
17 degrees of freedom [45]. Picture: copyright
©2014, SAGE Publications

(c) DLR-HIT gripper: 4 fingered gripper with
13 degrees of freedom [46]. Picture: copyright
©2006, Elsevier

(d) RoBioSS gripper: 4 fingered gripper with
16 degrees of freedom [47]. Picture: copyright
©2018, Cambridge University Press

Figure 1.9 – Examples of dexterous and versatile multifingered robotic grippers in the
literature.

• The simple effect scheme, where an actuator can transmit an unidirectional force
to a joint. In this case, there are one actuator for each degree of freedom. Each
joint has one side of its tendon linked to an actuator, and the other side attached to
a passive return spring, which allows the return motion of the joint (Figure 1.10a).
A drawback of this system is that a portion of the actuation power is stored in
the spring, and not available to the joint. An other configuration is also possible,
with two actuators for each degree of freedom. In this configuration, there is an
actuator on both ends of the tendon of a joint, which enables an active return
motion (Figure 1.10b). It is very expensive, and poses a compactness problem, but
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allows to control joint stiffness by adjusting the tension force created by the two
actuators [2, 48].

• The double effect scheme, which allows an actuator to transmit a force to the joint
in both directions. In this case, there is one actuator for each degree of freedom, and
both sides of the tendon of each joint are linked to the same actuator (Figure 1.10c).
In that case, the preload of the system is essential. Indeed, there is always a slack
side and a tight side. A too loose tendon can be an issue for the cable routing, and
can lead to the appearing of hysteresis (dead zone phenomena created when the
actuator changes direction) [2, 48]. Conversely, a too tightened tendon can create
unnecessary mechanical stress and friction. It has been shown that a configuration
with one more actuator than degrees of freedom allows to maintain tension on
all tendons, similarly to the simple effect scheme, while preserving a double effect
scheme [49].

Such transmission system has the advantage of being light-weighted and flexible to use
compared to rigid elements, but also can brings several issues: friction, hysteresis, elastic
behavior due to the use of finitely-rigid cables, or undesired kinematic coupling between
joints due to the tendons routing [2, 7, 48]. Regarding internal friction and undesired
joint coupling, significant improvements can be obtained by an appropriate design of the
cable routing, such as in the RoBioSS gripper for example [47].

actuator joint

passive
spring

(a) Simple effect with passive return motion.

actuators

joint

(b) Simple effect with active return motion.
actuator joint

(c) Double effect.

Figure 1.10 – Summary of the main tendon-based actuation schemes. The forces and
torques transmitted from the actuator(s) (or spring in case of the passive return motion)
to the joint in both directions are represented in green and orange respectively.

From a control point of view, the aforementioned friction and coupling issues need
to be taken into account, which make the controller more complex. The high number of
degrees of freedom also contributes to this increased complexity: the trajectories of the
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numerous joints of the gripper need to be planned (and then controlled) simultaneously
to grasp and manipulate an object. A possible way to simplify the controller is by taking
inspiration from human postural hand synergies, which allow to control the hand in a
smaller space than the actuation space. However, transferring such synergies on a robotic
gripper is not trivial: the human hand kinematics admits interpersonal variations, and
the robotic gripper kinematics can present important dissimilarities with it [38, 42, 45].

Palli et al. [45] and Monforte et al. [38] proposed a postural synergy based controller
for anthropomorphic hands. The process is summarized in Figure 1.11. First, it requires
to capture human hand movements when grasping various objects (step 1b), which can
be done by instrumenting the hand or using image processing (or both), to retrieve
the pose of the hand palm and fingertips (step 2). The full hand configuration can be
retrieved using an inverse kinematics algorithm (step 3b) that use a rescaled version of the
anthropomorphic gripper as the reference kinematic model. The rescaling is computed
beforehand (step 3a) from measurements of the subject’s hand that performed the grasps
(step 1a). Then, human postural hand synergies themselves need to be computed, with
dimension reduction tools, such as Principal Component Analysis (PCA), applied on
the hand configurations corresponding to the registered grasps (step 4). Finally, the
computed postural synergies can be used to replicate with the robotic gripper the grasps
and/or the in hand manipulation performed by the human.

1b. Subject
grasp objects
with his hand

1a. Measure
subject’s hand
dimensions

2. Identify pose
of hand keypoints

3b. Retrieve hand
configuration using
the rescaled gripper
kinematic model

3a. Compute
gripper rescaling

that fit human hand

4. Compute
postural synergies

5. Use synergies
to grasp objects

with robotic gripper

image
processing

inverse
kinematics

dimension
reduction

(such as PCA)

Figure 1.11 – Scheme summarizing a human-cognition inspired multifingered gripper
controller proposed in [38, 45].

If the gripper is not anthropomorphic, such methods based on joint space synergies
cannot be used. The postural synergies principle can still be used, but in the task space
instead (that is the space of object trajectory and wrench), such as proposed by Gioioso et
al. [50]. The authors identified a set of task space synergies from a paradigmatic human
hand and mapped them to a robotic gripper, without any constraints on the gripper
architecture. An other approach to control non-anthropomorphic gripper that does not
use postural synergies is proposed by Romero [42]: gripper preshapes corresponding
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to different human grasp types (for examples from the taxonomy in Figure 1.8) are
handcrafted beforehand, and triggered depending on the object. However this later
approach is limited to grasping task, and does not allow dexterous manipulation.

An other issue with complex multifingered grippers is that they might be overdesigned
when considering independently the grasping issue. Their complexity allows them to
perform a dexterous manipulation of the object, but can also bring robustness issues,
from both the mechanical structure and the controller. They are still able to grasp
objects efficiently, but it can be more straightforward and robust to perform a grasp
using simpler grippers, such as for example the ones presented in subsection 1.1.2. This
is known as the grasping vs manipulating dilemma: a gripper designed for grasping will
be, in general, unable to manipulate an object, while a gripper conceived for manipulation
might not be the optimal choice for a grasping task that does not requires fine in-hand
manipulation [7].

1.2.3 Underactuated Grippers

ð
Recall the definition of underaction:

Definition 3 (Underactuation). Property of a system to have an input
vector of smaller dimension than the output vector. In a robotic context, it
means having fewer actuators than degrees of freedom. This is the definition
given by Birglen et al. [7].

There exists grasping tasks that involve little or no fine manipulation abilities. For
these tasks, a dexterous gripper may not be mandatory. To retain the versatile behavior
inherent to multifingered grippers, while avoiding the complexity of a high degree of
actuation, two techniques are predominantly used: joint coupling and underactuation.
Both techniques can be found in several part of a given gripper, and come as a trade-off
between dexterity and simplicity, while retaining versatility.

The concept of joint coupling is not limited to grippers, and refers to a mechanism
where some joints are not independently controlled by a given actuator. Mainly two
forms of coupling can be identified:

• a joint is driven by several actuators;

• an actuator drives several joints. It allows a mechanism to produce complex tra-
jectories, with less degrees of freedom than joints.

Joint coupling often appears as an undesirable byproduct of a transmission system, but
can also be a useful feature.

In a gripper, the second type of joint coupling can be used to reduce the number
of actuators by removing unnecessary degrees of freedom, while retaining the complex
kinematic allowed by a high number of joints. It can be used for example to mimic the
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coupled movement of the intermediate and distal phalanges of the human’s fingers (as
in the Dexmart gripper, shown in Figure 1.9b). It can also be used to create a coupled
abduction-adduction motion of several fingers, such as for example in the SARAH gripper
[51], where one actuator is used to move in a coupled way two fingers relative to the palm.

(a) Examples of differential mechanisms. θa is
the input variable, θi the output variables, and
θai

the internal actuation variables. Picture:
copyright ©2008, Springer-Verlag Berlin Hei-
delberg [7]

(b) The SARAH Gripper, an underactuated
gripper based on differential mechanisms [51].
Picture: copyright ©2022 Université Laval [52]

(c) The RBO Hand 2 gripper, that imple-
ments underactuation through compliant ma-
terials [53]. Picture: copyright ©2016, SAGE
Publications

(d) The BarrettHand [6], an underactuated
gripper using triggered mechanisms. Picture:
CC-BY license [54].

Figure 1.12 – Different types of underactuation.

Likewise, underactuated systems are not used only in grippers, and can be divided
mainly in three categories: differential mechanisms, compliant mechanisms, and triggered
mechanisms [55]. Underactuation not only reduces the number of actuators, but also
gives the gripper an adaptive behavior, which makes it able to comply with the object
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geometry.

• Differential mechanisms are mechanisms having two degrees of freedom, and which
need two inputs to produce an output or conversely, can produce two outputs from
a single input. Concretely, they can consist of gears, four bar linkages, seesaws, or
special arrangement of pulleys and cables. Examples of such systems are shown
in Figure 1.12a. For the specific case of grippers, these mechanisms use springs
and mechanical stops to create a defined rest position. For example, the SARAH
gripper use such mechanisms, and is displayed in Figure 1.12b.

• Compliant mechanisms use non-rigid bodies, for example soft or elastic materials.
For example Deimel and Brock [53] designed a gripper made of silicone rubber and
other soft materials, and actuated thanks to compressed air. It is displayed in
Figure 1.12c.

• Triggered mechanisms usually use complicated mechanical designs relying on fric-
tion to switch the actuation from one output to the other [6, 7]. The mechanical
principle used is close to the one used in clutches. An example of gripper using
such mechanism is the BarrettHand, displayed in Figure 1.12d.

It is worth noting that this classification is not exhaustive, and that different types of
underactuation can coexist in the same system.

In a gripper, underactuation can be found in two different places: in the fingers
themselves, and between the fingers [7]. In the fingers, the underactuation allows the
phalanges to adapt to the object shape, by distributing the torque between the finger
joints: this enables grippers with less actuators than phalanges, and potentially only one
actuator by finger. Between the fingers, underactuation allows to dispatch the torque
between them: here, the adaptive behavior is extended to the whole gripper. Using
underactuation both inside the fingers and between them allows to design a gripper with
less actuators than fingers, and even grippers with only one actuator, independently from
the number of fingers and phalanges.

Thus, by combining the joint coupling and underactuation mechanisms, one can
design grippers able to adapt to various object geometries and to produce robust grasps
with very few actuators, while still allowing precision grasps using only the fingertips.
For example, the SARAH gripper [51] uses both underactuation and joint coupling, the
underactuation being based on differential mechanism, both in the fingers and between
them. It has three three-phalanx fingers, with a total of ten degrees of freedom and
eleven joints, but is driven by only two actuators. This gripper can perform cylindrical,
spherical or planar grasps, for both power and precision grasps.

Multifingered underactuated grippers can be seen as an intermediate mechanical ar-
chitecture between simple grippers as described in subsection 1.1.2, and complex dex-
terous grippers as presented in the previous subsection. On one hand, fully actuated
multifingered grippers and anthropomorphic grippers aims at achieving versatile and
dexterous behavior through bio-mimicry. On the other hand, underactuated grippers
aim at achieving versatility through simplicity and mechanical intelligence, and often set
dexterity aside.
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1.3 Grasp Planning Principles

The versatile ability of a robotic setup does not depends only on the mechanical archi-
tecture of the gripper: the chosen grasp planning approach is a determining factor.

1.3.1 Problem statement

ð Definition 5 (Grasp planning). Process by which the configuration of the
gripper (the finger configuration in case of a multifingered gripper) is chosen
as well as the approach trajectory allowing to grasp an object. This process
takes into account any available information related to the characteristics of
the object, of the task to be realized and of the environment.

Humans are able to perform grasp planning effortlessly and instantly: when we need
to grasp an object, we immediately know where we should place our hand in a efficient
way in relation to the task to be executed, how to position our fingers relative to the object
to ensure its stability, how to avoid collisions with our environment when approaching
our hand and when handling the object... The functioning of our brain is the legacy of
millions of years of evolution, and we spent most of our infancy and childhood learning
how to interact with our environment and perfecting our sensorimotor skills. Our ability
to plan grasps easily is the result of these two factors.

Replicating this seamless grasp planning process on a robotic system is an open
research topic. It can be seen as an optimization problem, that admits input and output
data, hypotheses, and constraints.

Input Data Information about the object needs to be gathered: its pose and its phys-
ical properties for instance. Then, the task requirements and its environment need to
be known too. In addition, the grasp planning process also depends on the gripper
properties and abilities.

Output Data Given all these information, a grasp needs to be determined, that is a
gripper configuration, as well as its pre-grasp position and approach trajectory.

Hypotheses To reduce the number of unknowns, and thus reduce the number of re-
quired sensors, simplifying assumptions can be made on each of the elements required as
input data. For instance, knowing the gripper is not a strong hypothesis. Regarding the
task requirements and object properties, the grasp planner can be designed for a given
target task and target object, for which some hypotheses can be made regarding its prop-
erties (weight, friction coefficient,...). Concerning the object pose and environment, it is
a stronger hypothesis, but not impracticable in most cases. These hypotheses allow to
design a simpler robotic setup and grasp planner, by giving versatility up.
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Constraints Independently from the assumptions made, several conditions need to be
taken into account when choosing how to grasp the object, in order for the grasp to
succeed. From a geometrical point of view, the chosen gripper configuration needs to be
kinematically reachable and collision-free with respect to the environment for the gripper-
arm system, while, from a control point of view, the grasp needs to ensure object stability
and resistance against external perturbations [56]. Thus, grasp planning is simultane-
ously object dependent, robot hardware dependent, task dependent and environment
dependent. Taking into account those constraints to select a gripper configuration is
not straightforward, as objects can exhibit sophisticated shapes, gripper-arm combina-
tion can have complex or redundant kinematics, environment can be imperfectly known,
and the task can have complex and contradictory requirements. The less simplifying
assumptions are made, the more complex it becomes.

The versatile grasp planning question is still an open issue and an active research
topic [31, 32]. It aims at finding a gripper configuration that allows to grasp an object
reliably, with limited a priori knowledge of this object and its environment. The stake
is to tend towards the human ability to find efficient grasps for various tasks, even for
unseen objects or in an unknown environment.

1.3.2 Overview of Grasp Planning Approaches

A wide variety of grasp planning algorithms exists. They can be differentiated by their
level of versatility and complexity, as summarized in Figure 1.13. Most existing methods
assume a known task, or consider a generic grasping task with no specific target applica-
tion. Concerning the gripper, the vast majority of works are made with a given gripper
architecture, but some works try to generalize to several gripper architectures [57].

The simplest grasp planners have the most assumptions (approach 1. in Figure 1.13),
and were predominantly used before the increasing use of vision systems in robotic cell.
It is assumed that the object geometry and position are known, as well as its surrounding
environment. The object location is hard-coded in the algorithm, as well as the grasp
configuration, which may be found by trial and error when setting up the robotic cell.
The grasping process can be triggered after ensuring that the object is at its expected
place, with for example optoelectronic sensor. The repeatability of the part positioning
before the grasp is of capital importance, as it conditions the validity of the known object
location assumption. This can be done by using special carriers or magazines, or special
vibrating conveyors that allow the parts to settle into a predictable orientation [1].

A first layer of complexity and machine intelligence can be added by removing the
assumption of a known object pose (approach 2. in Figure 1.13). This is typically the
case for bin picking tasks: the object geometry and physical properties are known, but
it can have any pose in a given area of the workspace. In that case, vision systems, that
is a 2D or 3D camera (as shown in Figures 1.3a and 1.3b), or a laser sensor, is needed to
locate the object. Typically, the grasp planning process is divided in the following steps
[1]:
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1. hard-coded approach:
known object character-
istics, object pose and

environment and task specific

2. typical bin-picking
approach: known object
characteristics and en-
vironment, task specific,
but unknown object pose

3. analytic approaches:
prior assumptions on the
object characteristics

and on the environment,
adaptable to various tasks

4. 2D data-driven ap-
proaches: unknown object
characteristics and pose,
prior assumptions on the
environment, limited to
top-down grasping tasks

5. 3D data-driven ap-
proaches: unknown object
characteristics and pose,
prior assumptions on the
environment and task

6. ideal versatile approach:
unknown object character-
istics and pose, possibly
unknown environment,

adaptable to various task

v
e
rsa

tility

c
o
m
p
le
x
ity

Figure 1.13 – Scheme of grasp planning approaches and their relative complexity and
versatility.

1. initial data acquisition: the vision sensor captures a point cloud, an RGB-D (depth-
map) or an RGB image.

2. object detection: the goal is to find and isolate in the 2D or 3D input data the
known model(s) of the object(s) of interest. This can be done thanks to bounding
box or segmentation techniques. Variants exist for both 2D or 3D inputs [31].
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3. object pose estimation: this phase aims at determining the pose of the known
object in a reference coordinate frame, from the information gathered in the object
detection phase. In case of planar grasp, when objects are not expected to be piled
on each other, the pose can be expressed as a 2D position in a plane, and a rotation
angle relatively to that plane. This can be solved by matching feature points or
contour curves [31]. When object can be piled up, a depth information is needed,
and the full 6D pose needs to be retrieved. This can be solved by mainly three
methods [31]: correspondence-based [58], template-based [59] or voting-based [60].

4. grasp configuration choice: once the object pose is known, a grasp configuration
needs to be chosen. As for grasp planners assuming a known object pose, the grasp
configuration needs to be specified in the object frame beforehand by an operator
[1]. As the object pose was determined in the previous step, a frame transformation
allows to express the chosen grasp in the reference frame. Specifying several grasp
configurations, in a discrete or continuous manner, can increase the ability to handle
various object poses [61], the choice between them being made on a reachability
criterion for example.

5. path planning: a collision-free path needs to be found to reach the chosen grasp
configuration [1]. For that, the environment needs to be known, or be monitored
with vision systems or other sensors.

Finally, grasp planning approaches that do not expect a single known object model,
that is approaches 3, 4 and 5 in Figure 1.13, are the most complex to date. Currently
in an industrial context, tasks where the object is unknown or frequently changing are
still typically performed by a human or with human supervision, and the automation
potential is very high. These applications are for example assembly or handling tasks
in a small batch or personalized manufacturing context, bin picking tasks with various
objects in the bin, or order picking tasks.

In that case, the grasp planner should be able to find autonomously and for
any object a configuration that fulfills a given criterion, for example a grasp
quality one, as described in section 2.2. There are two main ways to achieve this:
analytic approaches (approach 3 in Figure 1.13) and data-driven approaches (approaches
4 and 5 in Figure 1.13) [56]. Both type of approaches have a common structure, with
offline and online phases. Their general principle stays the same, and is schematized on
Figure 1.14. In particular, they both rely on a grasp space exploration step, explained
in further details in section 1.4, this step being the main focus of this thesis. The main
principle of analytic and data-driven approaches is described in the following.

• analytic approaches (approach 3 in Figure 1.13): those approaches rely on an
analytic description of the grasping problem [62–67]. They are often suited for
multifingered gripper architectures, which allows these approaches to be applied to
various tasks.

– Offline phase: for a set of objects with known characteristics (geometry, fric-
tion, etc...), an analytic quality metric (grasp quality or task-oriented criterion
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Offline Phase Online Phase

for various objects:

grasp space exploration

1. grasp candidate
generation

2. grasp quality
assessment

3. grasp set
constitution

4. known objects dataset
with associated grasps &

grasp quality

5. extraction of
object features

6. grasp candidates
with their

grasp quality

7. reachability &
collision check

8. execution of an
admissible grasp

Figure 1.14 – General principle of grasp planners. The main focus and contribution of
this thesis is boxed in red.

for instance, that will be further explained in section 2.2) is computed for a
set of possible grasps (step 1 and 2 in Figure 1.14). Those possible grasps are
found in a grasp space exploration step. This exploration relies on sampling
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[62–64], heuristics [65], or optimization techniques [66] for selecting grasp con-
figurations. Finally, grasps with high quality are stored in a dataset (step 3
and 4).

– Online Phase: it is assumed that the object exists in the dataset constituted
offline and can be recognized. This recognition can be made using vision
system and image processing algorithm [58–60] for example (step 5). The
corresponding precomputed grasps are retrieved from the dataset, and ordered
by grasp quality (step 6). The best grasp is executed if it is kinematically
reachable and collision free (step 7 and 8 in Figure 1.14). Otherwise, an other
grasp is selected until a valid one is found.

There exist also methods that do not rely on an explicit dataset of precomputed
grasps, but rather analyze the object geometry and directly perform the grasp space
exploration online using a set of heuristics, such as in Recatalá et al. [67].

• data-driven approaches (approaches 4 and 5 in Figure 1.13): those approaches
depend on machine learning methods to predict grasps [57, 68–74]. They are often
applied on bi-digital grippers, an architecture choice that limits the versatility of
the approach.

– Offline phase: in a similar way as for the analytic approaches, a grasp dataset
for known objects is constituted in a grasp space exploration phase (step 3 and
4 in Figure 1.14). The grasp quality is often an empirical metric [57, 68–71],
that is whether the object is successfully grasped or not, but a few approaches
using an analytic grasp quality metric have also been reported [72–74] (step
2). Then, from the dataset constituted in step 4, a machine learning algorithm
uses object RGB images [70], depth images [68, 69, 74], point clouds [57, 71,
72], or analytic representation (for example superquadrics) [73] as inputs to
learn to predict corresponding grasps and grasp quality.

– Online phase: object features are captured, corresponding to the ones used for
the training of the machine learning algorithm (point cloud, RBG image...),
thanks to a vision system (step 5).The trained model uses this input to predict
grasp candidates with their quality [68, 69, 71–73], or to predict grasp quality
for grasps generated by an other method [57, 70, 74] (step 6). If the objects in
the training dataset are diversified enough, the learnt model can have decent
performances on unknown objects. The rest of the online process is similar to
the analytic one (step 7 and 8).

It is worth noting that this general overview is not exhaustive, as many variations
around the above description have been developed in the literature.

1.3.3 Limitations

The lack of versatility is the main issue of grasp planners using simplifying hypotheses
on the object, the task or the environment.
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Grasp planning with hard-coded object characteristics and pose (approach 1 in Fig-
ure 1.13) requires a potentially long and tedious tuning phase when setting up the robotic
cell to ensure the proper grasping of the part, which have to be done almost from scratch
if any component of the grasping task is modified. Moreover, ensuring a reproducible
object pose can be challenging or impossible for some object geometries, and in any cases
requires specialized carriers or vibrating conveyors that need to be carefully designed,
and that may also need a tuning phase. Designing and setting up such process is over-
all time consuming. This can be profitable only for some specific use cases, mainly for
mass-produced parts.

Introduction of vision sensors to allow some variability in the part location can solve
some of these limitations (approach 2 in Figure 1.13). Indeed, having a not fully repro-
ducible object pose corresponds to a wide range of possible applications. However, the
grasp synthesis, that is the choice of possible grasp in the object frame, is still made
beforehand by a human, and will most likely be task specific. It is time consuming,
as the specified grasp robustness need to be tested and eventually tuned for each new
object, and it may have to be done again if the specified grasp of a given object needs
to be changed for a new task.

Methods that tackle the grasp planning issue for unknown objects and unknown poses
(approaches 4 and 5 in Figure 1.13) are the most likely to show versatile behavior. How-
ever, the grasp planning algorithm is dependent on the gripper architecture considered.
A lot of works consider a parallel gripper [57, 68–71, 74], which has its limitations in
term of versatility as shown in subsection 1.1.2: the planning algorithm will not be able
to overstep them. The main advantage of bi-digital gripper is their simplicity of use.
However, this simplicity prevents such grippers to adapt their configuration to the object
or to the task. Moreover, they offer a minimal number of contact points, which can be
an issue for the grasp robustness. On the contrary, analytic methods (approach 3 in
Figure 1.13) use multifingered grippers that are more versatile and adaptable, but these
methods are often limited to objects with known characteristics [62–66].

Finally, the actual versatile skill of the grasp planner and gripper architecture com-
bination is conditioned by the grasp space exploration method used to create the grasp
dataset (step 1 in Figure 1.14). Indeed, the grasps produced online by the analytic
methods are found in this step, and the ones produced by the data-driven methods are
generated by a machine learning algorithm that uses as training data the grasps found
in this step. Thus, the versatility and success rate of the grasp planner depends directly
on the ability of the grasp space exploration to find a wide variety of high quality grasps.
The grasp space exploration issue is detailed in the following section.

1.4 Grasp Space Exploration Issue

1.4.1 Definition

An issue shared by all versatile grasp planning methods is the grasp dataset creation,
that is the grasp space exploration (step 1 in Figure 1.14). A variety of grasps needs to
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be discovered by exploring the space of possible grasp configurations.

ð
recall the definition of grasp space:

Definition 4 (Grasp space). In this work, this concept refers to the set of
all possible grasps that a given gripper can produce on a given object. This
space is a subset of the gripper configuration set.

The grasp space has two main features that make its exploration a complex issue and
a potentially time consuming step: the high dimensionality of the configuration space in
which it is embedded, and the high number of constraints it is subject to.

The gripper configuration space, of dimension dconf = dspace + dint , is constituted
of the spacial configuration space of the arm end-effecor, of dimension dspace , plus the
internal configuration space of the gripper itself, of dimension dint . Generally, grasping
task are performed in the euclidean space SE(3). For its part, the gripper has an internal
configuration space if it has reconfigurable fingers, or if the fingers have multiple actuated
phalanges. Actually, the internal configuration space is constituted by every gripper
internal degrees of freedom that allow the reconfiguration of fingers in relation to each
other. Thus, for a simple parallel gripper, dconf = 6, with dspace = 6 and dint = 0. In this
case, the internal configuration space has zero dimensions as the only degree of freedom
associated with the finger closing does not allow them to change their configuration: the
closing trajectory is always the same relative to the palm. The configuration space can
reach easily more than a dozen dimensions in case of a multi-fingered hand, due to the
increasing size of the internal configuration space.

The grasp space is a subset of this high dimensional gripper configuration space, and
it is probably also a set of submanifolds of the gripper configuration space: indeed, for
a gripper configuration to belong to the grasp space, it must respect several non linear
constraints, that define the topology of the grasp space.

• The configuration is subject to geometric constraints produced by the contacts
between the object and the gripper. Indeed, the gripper and the object need to be
in contact, but without interpenetrating.

• In case the previous constraint is validated, the produced contacts have to allow the
grasp to resist external disturbances to a certain extent. In particular, the grasp
needs to resist at least to the object own weight.

• The configuration needs to be compatible with the gripper-arm system kinematics.
Actually, for a given robot arm manipulator, some Cartesian poses are unreachable
due to kinematics singularities or joint limits. Thus, depending on the object pose
relative to the robot base, some part of the grasp space may not be admissible.

• To be able to grasp the object, the configuration needs to avoid collision between the
gripper-arm system and the environment, as stated previously. Thus, depending
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admissible gripper configuration space

non-admissible gripper configuration space
due to the environment and kinematic constraints

admissible grasp space

non-admissible grasp space
due to the environment and kinematic constraints

Figure 1.15 – Scheme of an hypothetical two dimensional gripper configuration space,
with the grasp space of a given object at a given position in the workspace.

on the environment and on the object pose relative to it, some parts of the grasp
space are not admissible.

These constraints make the grasp space relatively small compared to the gripper config-
uration space. However, it can still be of high dimension, depending on the dimension
of the gripper configuration space. A simplified representation of an object grasp space
in the hypothetical case of a two dimensional gripper configuration space is shown in
Figure 1.15. In a real case, building such representation is extremely complex due to the
high dimensionality of the gripper configuration space, and the fact that the nature of
the constraints defining the grasp space topology makes it difficult to have an analytic
description of it.

There are two main approaches to explore the grasp space, depending on which
constraint is given priority [64]:

• Contact point approaches, where the grasp space exploration comes down to test
various combinations of contact point locations on the object surface [63, 65, 66,
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Object

grasp n°1

grasp n°2

grasp n°3

(a) Scheme of three grasps expressed with the
contact point approach on a two dimensional
object, in a particular case where the grasps
have three contacts each.

Object

grasp
n°1

grasp n°2

grasp n°3

(b) Scheme of three grasps expressed with the
gripper configuration approach on a two dimen-
sional object, in the particular case of a parallel
gripper, where the rectangle small sides repre-
sent the jaws, and the wide sides the jaw closing
directions.

Figure 1.16 – Scheme of the contact point and gripper configuration approaches for grasp
space exploration.

72]. This approach is displayed in Figure 1.16a. Here, the priority is given to
compliance with geometric constraints caused by the grasp, as contact points are
by definition on the object surface. The main advantage is that it allows to check
easily if the chosen contact points can produce a valid grasp and withstand external
perturbation. However there is no guarantee that a given combination is a priori
kinematically admissible for a given gripper: each contact point requires the inverse
kinematics to be computed, to check if the gripper can achieve it. Likewise, if the
contact point locations are admissible for the gripper, the required gripper pose
may be unreachable for the arm. Moreover, the configuration may not be collision-
free with the environment. These constraints need to be tested afterward to ensure
that the tested configuration is truly in the grasp space. The main drawback of
this approach is the limited number of contact points that can be considered: each
contact point requiring two parameters to set its position on the object surface, the
parameter space to be explored can become huge.

• Gripper configuration approaches, where the grasp space is explored by testing
several gripper spatial configurations and internal configurations, before closing the
fingers on the object [57, 68–71, 74]. This approach is shown in Figure 1.16b. One
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of the advantages of this approach is that the kinematic reachability and collision-
free constraints can be verified more easily. Moreover, being already in the gripper
configuration space, this approach is more straightforward than the contact point
approach, and requires less inverse kinematics computations. Nevertheless, there
is no assurance that a given gripper configuration complies with the geometric
and dynamic constraints required to form a grasp: there is no information on the
number and locations of the contacts between the gripper and the object when
closing the fingers, if any, nor on their ability to resist external forces. In that
case, extensive simulation trials need to be realized to check the grasping ability of
each configuration. An other drawback is that this approach struggles to deal with
multifingered grippers having an internal configuration space of high dimension,
due to the increase in the number of parameters to explore.

To circumvent the issue related to the potentially huge size and complexity of the
grasp space, numerous contact point approaches limit their search to fingertip contacts
[63, 65, 66, 72], and gripper configuration approaches often use a parallel gripper and limit
their search to planar grasps [68–70, 74]. Other works using parallel grippers choose to
search gripper configurations in the six dimensional euclidean space, but still have to set
some constraints for the grasp space exploration. Those constraints can be for example
to set the gripper approach vector normal to the object surface [71], or sampling grasps
aligned with some point candidates on a point cloud, which prevents grasp generation on
unrepresented object areas [57]. Those approaches require a significant amount of trials.

1.4.2 Grasp Space Exploration with Underactuated Grippers

Even if underactuated multifingered grippers are well suited for grasping tasks [6, 7],
the grasp space exploration with such grippers is more complex. Indeed, their adaptive
underactuated mechanical systems generate both gripper- and object-dependent grasp
configurations, as visible in Figure 1.17 with an underactuation based on differential
mechanisms.

Figure 1.17 – Grasping sequence of an underactuated finger using differential mechanisms
[7]. Picture: copyright ©2008, Springer-Verlag Berlin Heidelberg

On one hand, the contact point approaches for grasp exploration described in the
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previous subsection (see Figure 1.16b) are inapplicable: the contact point locations are
not controllable, as the final finger configuration depends on the geometry of the object
and on the final force distribution among fingers and phalanges at the end of the grasp.
Indeed, as shown in Figure 1.17, the reaction force at each contact point balance the
joint torque transmitted by the actuator. Then, the differential mechanism allows the
force to be transmitted to the next joint, until the torque at every joint are balanced by
all contact reaction forces.

On the other hand, the gripper configuration approach can become very costly com-
putation wise, due to several limitations.

• The internal configuration space of such grippers can be relatively high, as some
fingers can often be reconfigured.

• Due to the high versatility of such architecture, it would be counterproductive to
reduce drastically the spatial configuration space, as it is done with the planar
grasp hypothesis commonly used with bi-digital parallel grippers.

• The high number of simulation trials generally required by gripper configuration
approaches become itself problematic for underactuated multifingered grippers for
several reasons.

– Such grippers have a lot of links, which complicates and slows down the sim-
ulation, by increasing the number of body to simulate.

– In case of underactuation using differential mechanisms, they often include the
use of springs, which can cause computational instability in case of explicit or
semi-implicit integration, thus requiring to take a smaller timestep.

– In case of underactuation based on compliant mechanisms, such behavior is
even more complex to simulate, and very few simulators are able to handle
properly soft and compliant materials.

Thus, there are few works which tackle the grasp planning issue for un-
deractuated multifingered grippers, probably because of the complexity of the grasp
space exploration in such cases. Often, some hypotheses restricting the grasp space are
chosen, which reduce the versatile potential of the gripper. In Choi et al. [75], the search
space has been limited by discretizing it into 24 different possible combinations of ap-
proach vectors and wrist orientations. This choice was most likely conditioned by the
fact that only real robot trials were conducted, due to the chosen underactuation system,
very difficult to simulate accurately because of the presence of compliant materials. In
Pelossof et al. [73], a gripper configuration approach is used, and the simulation cost
is reduced by considering as object to grasp only superquadrics shapes, which can be
simulated very easily as they are described by few parameters. Moreover, the chosen
gripper uses a triggered underactuation mechanism, which is simpler to simulate than
differential mechanisms using springs.

In some works, a human input is proposed. For example, in Santina et al. [76], a set
of ten global grasp primitives has been identified from human examples, and the grasp
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space has been reduced to those primitives only for any objects. This highly restricts
the grasp space, as it considers that, when grasping any given object, there are only ten
possible grasps to choose from, and that one of them is the one and only way to grasp
this specific object. This approach does not allow to chose a different grasp depending
on the task for example.

1.5 Conclusion

Grasping is a key ability in manufacturing industries. However, grippers currently used
in an industrial context are highly specialized, and cannot adapt easily to different tasks
or objects, which limits the potential for further automation.

The question of the versatile robotic grasping is still open. To achieve this, two
components are needed: a mechanical architecture with sufficient kinematics ability, able
to handle various grasping tasks and objects, and a grasp planning algorithm capable of
leveraging this mechanical architecture to plan versatile grasps.

Regarding the grasp planning algorithms, state-of-the-art approaches are mainly di-
vided in two categories: analytic and data-driven. Both rely on a grasp space exploration
step, that aims at finding various grasps in the potentially large gripper configuration
space, and evaluate their quality, often offline through simulation. To simplify this ex-
ploration, assumptions are often made, such as planar grasps or fingertip contacts, which
limit the versatility of the approach. Moreover, the overall versatility is also determined
by the chosen gripper architecture: a bi-digital parallel gripper is inherently less versatile
than a multifingered one with numerous degrees of freedom.

Underactuated multifingered grippers are a powerful tool to achieve versatile robotic
grasping. Their mechanical intelligence allows them to adapt passively to a wide variety
of objects without the need for numerous actuators and complex controller. However,
the grasp planning for this type of grippers is complex, mainly due to the computational
cost of the required grasp space exploration step. Indeed, such grippers admit a high di-
mensional configuration space, which increases the number of parameters to be explored.
Their underactuation mechanism is also more complex to simulate than classic grippers.

The main contribution of this thesis is to propose an object dependent efficient grasp
space exploration method adapted for underactuated multifingered grippers, based on a
set of human suggested grasps, thus leveraging our ability to find efficient and versatile
grasping strategies. This method also uses an analytic grasp quality criterion to rank the
various grasps generated during the exploration.
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Chapter 2

Grasp Modeling Framework

The existing literature regarding grasp analysis is mainly divided in two categories. Some
authors focus on extracting grasp and gripper properties for fully actuated multifingered
grippers [37, 77–79]. Other authors focus on describing and analysing the specific adap-
tive behavior of an underactuated finger [7, 80–82], but does not study the grasp or
gripper as a whole. A few works at the crossroad between these two categories concen-
trate on the study of grippers having coupled joints [83, 84]. The contribution of this
chapter is methodological: the theoretical knowledge required for this work regarding
multifingered grippers and grasp modeling is given, with a focus on the description of
the influence of underactuation on grasp and gripper properties. First, modeling princi-
ples for grasp and gripper description are introduced, and the underactuation specificity
is highlighted. Then, mathematical tools for grasp characterisation are described, to-
gether with an example showing the effect of underactuation. Finally, some relevant
state-of-the-art grasp quality metrics are presented, along with the rationale behind the
metric choice in our planner framework.
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2.1 Grasp and Gripper Description

Multifingered grippers have tree-like mechanical architecture, made of several polyartic-
ulated serial chains called fingers. The modeling of their behavior when grasping objects
is explained in the following.

ð Definition 6 (Grasp). Refers to the seizure of a given object with a given
gripper, according to given physical and environmental conditions. The re-
sult is a set of contact points between the object and the gripper along with
mathematical and physical properties associated with the produced grip.
The contact points are modeled by adopting some hypotheses on the trans-
mitted forces and velocities.

First, the main contact models are presented. The kinetostatic modeling of multifin-
gered gripper is recalled in the fully-actuated case. Then, the influence of the underac-
tuation on this modeling is highlighted. Finally, the Grasp Map formalism is recalled.

2.1.1 Contact Description

Contacts play an important role in grasping as every motion or effort transmitted from the
gripper to the object go through them. Depending on the chosen model, different wrench
or twist components are transmissible from the contact to the object [37, 77]. Thus, the
contact model choice influences the theoretical grasping and manipulation ability of a
given gripper. Here, it is assumed a grasping task, with no in-hand manipulation, i.e.
the contacts cannot roll or slide, and stay at a given location. A broad presentation of
existing contact models can be found in Kao et al. [85] for example. In the following, a
non-exhaustive introduction of the three mainly used punctual contact models is given,
in the case of a 3D contact.

• The simplest model is the frictionless point contact. This model is obtained when
friction between the object and the finger is not considered. In this model, only the
contact force in the contact normal direction is transmitted. The others contact
wrench components are neglected. The number of transmitted wrench components
at the contact is noted nλ, and in this case nλ = 1. Such contact needs to enforce
the following unilateral constraint:

fn ≥ 0, fn ∈ R (2.1)

with fn the normal force component of the contact wrench. This type of contact
occurs rarely in practice: it can model accurately only a situation where the object
surface is slippery, and where the contact area is very small. Still, the simplicity of
this model is an advantage. Moreover, using this model is conservative in term of
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grasp stability, as the real contact most likely benefits from the additional contact
friction that occurs in reality.

• For its part, the point contact with friction model admits the transmission of tan-
gential forces, so that every translational force wrench components can be applied
at the contact point. The moments are considered null. In this case, nλ = 3. For
this type of contact, the following constraints need to be respected, in the classic
case of a Coulomb friction model:

√
ftx

2 + fty
2 ≤ µfn, fn ≥ 0 | (ftx, fty, fn) ∈ R3 (2.2)

with ftx and fty the tangential force components of the contact wrench, and µ > 0
the friction coefficient, an empirical parameter which is function of the materials
of the object and the finger. This constraint can be represented geometrically as a
cone having its height along the contact normal, where the set of applied contact
forces must lie. The point contact with friction model corresponds to a practical
case where contact friction exists and cannot be neglected, but the contact surface
is sufficiently small to neglect friction moment.

• The last model is the soft-finger contact. In this model, in addition to the wrench
components transmitted by the point contact with friction model, the moment
about the contact normal is also transmitted. The moments about the two other
axes are still considered null. For a contact enforcing this model, nλ = 4. A contact
modeled this way has to enforce the constraints:

√
ftx

2 + fty
2 ≤ µfn, |τn| ≤ γfn, fn ≥ 0, | (ftx, fty, fn, τn) ∈ R4 (2.3)

with τn the normal moment component of the contact wrench, and γ > 0 the coef-
ficient of torsional friction, which is, as µ, an empirical parameter depending on the
materials of the surface involved in the contact. This type of contact corresponds
to situations where the contact area is large, which allows the transmission of a
moment along the contact normal. Such situations are in practice very common,
that is why this model, despite being more complex, is also more realistic. However,
this level of realism is not mandatory for all use case.

The main features of the presented contact models are summarized on Table 2.1. The
constraints on transmitted wrenches also hold for twists.

The wrench or twist effectively transmitted by the contact point w ∈ Rnλ (respec-
tively ξ ∈ Rnλ) can be expressed from w̃ ∈ R6 (respectively ξ̃ ∈ R6) the contact wrench
(or twist) applied at the contact point and the matrix H ∈ Rnλ×6 as follows:

w = Hw̃ ξ = Hξ̃ (2.4)

The total wrench or twist effectively transmitted by a set of nc contacts (for example
during a grasp) is similarly computed withHg a block matrix. With nλ = nλ1+· · ·+nλnc ,
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Hg is expressed as:

Hg =




H1 0
H2

. . .
0 Hnc


 ∈ Rnλ×6nc (2.5)

Contact
types Scheme corresponding H

matrix Constraints

Frictionless
point contact

z
x

y

[
0 0 1 0 0 0

]
fn ≥ 0

Point contact
with friction

z
x

y




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




√
ftx

2 + fty
2 ≤ µf

fn ≥ 0

soft-finger
contact

z
x

y




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1




√
ftx

2 + fty
2 ≤ µf

fn ≥ 0

|τn| ≤ γf

Table 2.1 – Summary of common contact types (in the case of a 3D contact). The contact
wrench is expressed in the contact frame, its z axis being toward the contact normal.
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2.1.2 Kinetostatic Modeling of Multifingered Gripper

The framework for finger and gripper modeling is given in the following, in the generic
case of a fully-actuated finger.

Finger Description

phalanx 1
proximal phalanx

phalanx np

distal phalanx

phalanx 2
1st intermediate phalanx

phalanx np − 1
(np − 2)th intermediate phalanx

q1

q2

qnq

x1

y1

x2
y2

xnq

ynq

Figure 2.1 – Geometric and kinematic description of a planar robotic finger, with all
joints having the same rotation axis. In this particular case, np = nq.

A finger is a polyarticulated serial chain, with np rigid links called phalanges, and nq
joints. These joints are commonly revolutes, but can also be prismatics. nq is also the
number of degrees of freedom of the finger if there is no mechanical coupling. For a fully
actuated finger, the finger has also nq degrees of actuation. The vector of joint angles is
denoted by q:

q =
(
q1, · · · , qnq

)> ∈
nq×
i=1

[qi,min, qi,max] (2.6)

with qi,min and qi,max respectively the minimum and maximum joint limits of the ith
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joint. The input joint torque vector is noted t:

t =
(
t1, · · · , tnq

)> ∈ Rnq (2.7)

The geometry and kinematics of a planar finger with all joints having the same rotation
axis is shown in Figure 2.1. Often, some phalanges can have an additional joint with its
rotation axis along y for an abduction-adduction motion.

When the finger is grasping an object, a set of contact points between the object and
the gripper is formed. nc contacts are involved in a power grasp, and only one at the
distal phalanx in a precision grasp (nc = 1).

The wrench and twist applied by a phalanx at the ith contact expressed in the local
contact frame are noted w̃i and ξ̃i, and the vectors of every contact wrench and twist
components created by the finger are noted w̃f and ξ̃f . These wrenches and twists are
summarized in Table 2.2. All the wrench and twist components of w̃i and ξ̃i may not
be transmitted to the object depending on the chosen contact model, as discussed in
subsection 2.1.1.

w̃f and ξ̃f can be defined as:

w̃f =
(
w̃>1 , w̃

>
2 , · · · , w̃>nc

)>
ξ̃f =

(
ξ̃>1 , ξ̃

>
2 , · · · , ξ̃>nc

)>
(2.8)

object

t1

t2

tnq

fn1

ft1
τ1

(a) Scheme of a finger performing a precision
grasp.

object

t1

t2

tnq

fn1

ft1
τ1

fn2

ft2

τ2

fnnc−1

ftnc−1

τnc−1fnnc

ftnc

τnc

(b) Scheme of a finger performing a power
grasp.

Figure 2.2 – Effort applied by a finger during a grasp in the planar case.
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The Figure 2.2 shows an example of the joint torques and contact wrenches on a finger
executing a precision grasp and a power grasp in the planar case.

Planning a grasp with a finger requires first to find contact point positions allowing
to perform the task at hand. Then, it requires to determine the joint position that
allows to reach these contact point positions. To be maintained, sufficient wrenches
need to be applied on the contact points, these wrenches being controlled by the joint
torques. The relation between finger joint torques t and contact wrenches w̃f is detailed
in subsection 2.1.3.

definition notation 2D 3D

contact wrench w̃i (fti, fni, τi)
> (ftxi, ftyi, fni, τxi, τyi, τni)

>

contact twist ξ̃i (vxi, vyi, ωi)
> (vxi, vyi, vzi, ωxi, ωyi, ωzi)

>

finger contact wrench w̃f ∈ R3nc ∈ R6nc

finger contact twist ξ̃f ∈ R3nc ∈ R6nc

gripper contact wrench w̃g ∈ R3nc ∈ R6nc

gripper contact twist ξ̃g ∈ R3nc ∈ R6nc

Table 2.2 – Summary of the contact wrench and twist vectors in the 2D and 3D cases.

gripper Description

A multifingered gripper can be modeled as a tree-like structure, composed of nf fingers
(nf ≥ 2), fixed on a common mechanical base, called the palm in the following. In
several existing multifingered grippers, some degrees of freedom between the palm and
the proximal phalanx of each finger allow to reposition it relative to the palm. These
repositioning degrees of freedom can be one or several revolute joints with their axis
normal to the axes of the other joints, or one or several prismatic joints, or both. The
displacements and input torques of the supplementary degrees of freedom corresponding
to the ith finger are included respectively in qi and in ti. Let nqg be the total number of
degrees of freedom of the gripper. If the gripper has nf identical fingers (that is having
the same number of degrees of freedom nq), then nqg = nf · nq. The vector of the whole
gripper joint displacements is noted qg ∈ Rnqg . Likewise, the vector of gripper input
joint torques is noted tg ∈ Rnqg .

An example of a gripper having three two-phalanx fingers, with an additional revolute
joint at the base of each finger is displayed on Figure 2.3. In this example for the ith

finger:

qi =
(
qi1, q

i
2, q

i
3

)>
ti =

(
ti1, t

i
2, t

i
3

)> (2.9)
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and:

qg =
(
q1>, q2>, q3>

)>
∈ R9 tg =

(
t1>, t2>, t3>

)>
∈ R9 (2.10)

For clarity, the object, the contacts, and their associated wrenches are not displayed
in Figure 2.3, but the principle stay the same as for a single finger. With nc contacts on
the whole gripper system, the vector of every contact wrench components created by the
gripper is noted w̃g, and similarly for the twist components ξ̃g. In case of a precision
grasp, there is a contact on each distal phalanx, thus nc = nf . The gripper contact
wrench and twist dimension are summarized in Table 2.2.

When grasping an object, the system constituted of the object and the gripper be-
comes a parallel kinematic chain. Thus, the joint configuration of each finger becomes
subject to kinematic constraints which depend on the object geometry and also on the
joint configuration of the other fingers. Not fulfilling these constraints can mean that the
grasp is lost, for example if one of the finger is not anymore in contact with the object.

In the following subsection, the existing relationships between gripper joint displace-
ments qg, gripper joint torques tg, contact twists ξ̃g and contact wrenches w̃g are ex-
plained.
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Figure 2.3 – Kinematic scheme of a robotic gripper with three two-phalanx fingers.
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2.1.3 gripper Jacobian Matrix

To begin with, the relations between the input joint torques, joint angles and contact
wrench are described in the case of a single fully-actuated finger executing a precision
grasp in the planar case, as displayed in Figure 2.4. This simple case can then be extended
to the 3D case, or to the more complex case of a finger power grasp, or also to the case
of a full gripper precision or power grasp. More in depth mathematical development can
be found in Birglen et al. [7], Prattichizzo and Trinkle [37], and Murray et al. [77].

object

t1

t2

tnq

fn1

ft1
τ1

xnq

ynq

r1,1

r2,1

rnq ,1

Figure 2.4 – Scheme of a finger performing a precision grasp in the planar case.

First, equating the joint power and the contact power gives:

t>q̇ = ξ̃1 � w̃1 (2.11)

with ξ̃1 and w̃1 the twist and the wrench of the contact, and � the reciprocal product
of screw. The components of t and w1 are displayed in Figure 2.4. ξ̃1 can be expressed
more precisely as follows:

ξ̃1 =

nq∑

k=1

q̇kξ̃
k
1 (2.12)

with ξ̃k1 the joint twist of the kth joint with respect to the contact point. As each joint
is a revolute joint, one can express it as follows, with rk,1 the vector from the kth joint
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rotation center to the contact point:

ξ̃k1 =




−r>k,1ynq
r>k,1xnq

1


 (2.13)

Thus,

t>q̇ =

nq∑

k=1

q̇k




−r>k,1ynq
r>k,1xnq

1


� w̃1 (2.14)

with w̃1 = w̃f in case of a single contact, and by removing q̇ on both sides of the
equation, one obtains:

t> = w̃>f J̃f (2.15)

with

J̃f =




−r>1,1ynq −r>2,1ynq · · · −r>nq ,1ynq
r>1,1xnq r>2,1xnq · · · r>nq ,1xnq

1 1 · · · 1


 ∈ R3×nq (2.16)

J̃f is called the finger Jacobian. It depends on the geometry of the finger, that is
the length of the phalanges, on the position of the contact on the distal phalanx, and
on q, the finger joint angles. It allows to relate the joint input torques t to the wrench
applied by the finger on the contact point w̃f . By reasoning in terms of finger contact
twist ξ̃f (with ξ̃f = ξ̃1 in case of a single contact) and joint velocities q̇, a similar relation
involving also this Jacobian matrix can be found [37, 77]:

ξ̃f = J̃f q̇ (2.17)

In case of a finger performing a power grasp with nc contacts, the relation still holds,
but the column dimension of J̃f changes to take into account the nc contacts, as summa-
rized in Table 2.3. In that case, J̃f depends also on the position of each contact on the
phalanges, in addition to the other parameters. This case is studied in depth in Birglen
et al. [7].

In order to take into account the contact model and the constraints on transmissible
contact wrench and twist component, the finger Jacobian can be redefined as follows,
using Equations (2.4) and (2.5), with nλ the total number of transmitted twist or wrench
components:

Jf = HgJ̃f ∈ Rnλ×nq (2.18)

For a gripper with nf fingers and nqg degrees of freedom performing a grasp with nc
contacts, the relations become:

t>g = w̃>g J̃g (2.19)

ξ̃g = J̃gq̇g (2.20)
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with J̃g a block matrix defined as follows:

J̃g =




J̃f1 0

J̃f2
. . .

0 J̃fnf


 (2.21)

This case is developed thoroughly in Prattichizzo and Trinkle [37] and Murray et al. [77].
Table 2.3 summarize the dimensions of the gripper and finger Jacobian matrices. The
above gripper Jacobian can also take into account the contact models as follows:

Jg = HgJ̃g ∈ Rnλ×nqg (2.22)

The rows of Jg represent the gripper joint velocity contributions to each transmitted
contact twist components. In turn, each row of J>g corresponds to the transmitted
contact wrench component contributions to each gripper joint torque.

definition notation 2D 3D

finger Jacobian matrix J̃f ∈ R3nc×nq ∈ R6nc×nq

Jf ∈ Rnλ×nq ∈ Rnλ×nq

gripper Jacobian matrix J̃g ∈ R3nc×nqg ∈ R6nc×nqg

Jg ∈ Rnλ×nqg ∈ Rnλ×nqg

Table 2.3 – Summary of the Jacobian matrices in the 2D and 3D cases.

2.1.4 Effect of Underactuation

In the following is studied the influence of underactuation on the previous relation-
ships between the quantities associated to contacts and joints. This theoretical study
is conducted in the particular case of underactuation based on differential mechanisms
as defined in subsection 1.2.3. This specific type of underactuation is chosen because
it corresponds to the underactuation system of the gripper used in the experimental
setup in chapter 4. In the rest of the manuscript, the term underactuation refers to
differential-based mechanisms, unless stated otherwise.

For an underactuated finger using a differential mechanism, one can still relate the
joint torques and displacements to the contact wrenches and twists. However, all the
joint torques are no longer controllable. In a finger, only some joints are still directly
linked to an actuator. For the other joints, the torques are not controllable, and cor-
respond to the elastic forces exerted by the underactuation mechanism. Regarding the
joint positions and velocities, none are directly controllable, only the actuators positions
and velocities are. They are related to every joint positions and velocities through the
underactuation system. These properties and their consequences are explained in the
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following in the case of a planar finger. It is assumed for simplicity that only the first
joint of the underactuated finger is directly connected to an actuator, but the reasoning
can be extended to underactuated fingers with more than one actuator. The considered
underactuated finger is shown in Figure 2.5. This description is inspired from the one
presented in Birglen et al. [7].

object

ta, q1

t2, q2

tnq , qnq

fn1

ft1
τ1

xnq

ynq

r1,1

r2,1

rnq,1

underactuated
system

qa, q2, · · · , qnq

transmission
matrix Tf

Figure 2.5 – Scheme of an underactuated finger performing a precision grasp in the planar
case.

For an underactuated finger, the actuator torque is noted ta, the actuator angle qa,
and the actuator velocity q̇a. t is the concatenation of the actuator torque with the
torques at the joints not directly linked to the actuator, tj . Equation 2.7 becomes:

t =




ta
t2 = −K2∆q2

...
tnq = −Knq∆qnq


 =

[
ta
tj

]
∈ Rnq (2.23)

with Ki being the stiffness coefficient of the spring of the ith joint, and ∆qi the ith joint
distance from its rest position.

ωa is defined as the concatenation of the actuator velocity with the velocities of the
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joints not directly linked to the actuator, q̇j :

ωa =
(
q̇a, q̇2, · · · , q̇nq

)>
=
(
q̇a, q̇

>
j

)>
∈ Rnq (2.24)

with

q̇ = Tfωa

=




X1 X2 X3 · · · Xnq

1 0
1

. . .
0 1



ωa

(2.25)

Tf ∈ Rnq×nq is the finger transmission matrix. This matrix is function of the transmis-
sion mechanism used to propagate the input actuation torque and displacement to the
ith joint. Each coefficient Xi depends on the specific geometry of the transmission mech-
anism, and on the joint positions q. The expression of the coefficient Xi of this matrix is
further developed in Birglen et al. [7]. This matrix describes how q̇a (and indirectly also
qa) is related to the joint velocities and positions by the underactuation mechanism.

Thus, for a single underactuated finger involved in a planar precision grasp, Equa-
tion 2.14 becomes:

t>ωa =

nq∑

k=1

q̇k




−r>k,1ynq
r>k,1xnq

1


� w̃1 (2.26)

and Equation 2.15 becomes:

t>ωa = w̃>f
(
J̃f q̇

)

= w̃>f
(
J̃fTfωa

) (2.27)

finally, by removing ωa on both sides:

t> = w̃>f
(
J̃fTf

)
(2.28)

and by identification from Equations (2.17) and (2.25):

ξ̃f =
(
J̃fTf

)
ωa (2.29)

From Equations (2.16) and (2.25), one obtains:

J̃fTf =


−X1r

>
1,1ynq −X2r

>
1,1ynq − r>2,1ynq · · · −Xnqr

>
1,1ynq − r>nq ,1ynq

X1r
>
1,1xnq X2r

>
1,1xnq + r>2,1xnq · · · Xnqr

>
1,1xnq + r>nq ,1xnq

X1 X2 + 1 · · · Xnq + 1


 ∈ R3×nq (2.30)
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Contrary to the fully actuated case, the finger joint torques and displacements are
not the controllable inputs of the system, only q̇a and ta are. These equations show that
for an underactuated finger, the exerted contact wrench and twist depend heavily on
the geometry of the chosen underactuation system, on the finger configuration, and on
uncontrollable joint torques and velocities: their influence is visible both in t and Tf .
For example, from Equations (2.29) and (2.30), ξ̃f can be expressed as follows:

ξ̃f =


−X1r

>
1,1ynq q̇a −

(
X2r

>
1,1ynq + r>2,1ynq

)
q̇2 − · · · −

(
Xnqr

>
1,1ynq + r>nq ,1ynq

)
q̇nq

X1r
>
1,1xnq q̇a +

(
X2r

>
1,1xnq + r>2,1xnq

)
q̇2 + · · ·+

(
Xnqr

>
1,1xnq + r>nq ,1xnq

)
q̇nq

X1q̇a + (X2 + 1) q̇2 + · · ·+
(
Xnq + 1

)
q̇nq




(2.31)

ξ̃f =


−X1r

>
1,1ynq

X1r
>
1,1xnq
X1


 q̇a

︸ ︷︷ ︸
J̃a q̇a , controlled

+



−X2r

>
1,1ynq − r>2,1ynq · · · −Xnqr

>
1,1ynq − r>nq ,1ynq

X2r
>
1,1xnq + r>2,1xnq · · · Xnqr

>
1,1xnq + r>nq ,1xnq

X2 + 1 · · · Xnq + 1






q̇2
...
q̇nq




︸ ︷︷ ︸
J̃j q̇j , not controlled

(2.32)

This shows that in the underactuated case, the product J̃fTf can be decomposed in
two components: J̃a the actuator Jacobian, and J̃j the underactuated joints Jacobian:

ξ̃f =
[
J̃a J̃j

] [q̇a
q̇j

]
(2.33)

The same reasoning can be applied for the relation between joint torques and contact
wrench:

[
ta
tj

]>
= w̃>f

[
J̃a J̃j

]
(2.34)

From these relationships, it is clear that ξ̃f and w̃f are not fully control-
lable: all the contributions from q̇j or tj can vary independently from the one
depending on q̇a or ta, the only controllable variables. It also shows that the
contact positions are not fully controllable either. With regard to this, underac-
tuated grippers can be considered more like gripper with deformable jaws than as classic
fully actuated multifingered gripper [7].

For an underactuated gripper with nqg degrees of freedom, the previous relationships
also hold. Let q̇ag be the concatenation of the actuator velocities of the whole gripper,
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and q̇jg be the concatenation of the velocities of the joints not directly linked to an
actuator across the whole gripper. ωag is defined as:

ωag =

[
q̇ag
q̇jg

]
∈ Rnqg (2.35)

Likewise, let tag be the concatenation of the actuator torques of the whole gripper, and
tjg be the concatenation of the torques at the joints not directly linked to an actuator
across the whole gripper. tg is defined as:

tg =

[
tag
tjg

]
∈ Rnqg (2.36)

Tg and J̃g can be created by aggregating respectively the transmission matrices and Jaco-
bian matrices corresponding to each fingers, and by reorganizing their rows and columns
to match the joints ordering of ωag and tg. The two matrix J̃ag (gripper actuators Ja-
cobian) and J̃jg (gripper underactuated joints Jacobian) can then be defined as in the
single finger case.

The matrices Ja, Jj , Jag and Jjg can be constructed with Hg similarly to the fully-
actuated case, to take into account the effect of the contact models on transmitted
wrenches and twists.

2.1.5 Grasp Map

To completely describe a grasp, the effect of the contact wrenches and twists on the
object needs to be assessed. Each contact wrench or twist is known at the contact point,
and is expressed in its respective contact frame Ci, as depicted in Figure 2.6. Thus, it
is required to compute the force and twist exerted by each contact point at the object
frame origin, and express it in this frame or any given reference frame (i.e. world frame).

First, let wo be the contact wrench applied at the object frame origin expressed in
the object frame O, and woci be the contact wrench applied at the object frame origin
expressed in the contact frame Ci, with doci = [dx, dy, dz]

> the vector from the object
frame origin to the contact frame origin, and Roci the rotation between the object frame
O and the contact frame Ci. By changing the application point of the contact wrench
from the contact point to the object frame origin, one obtains:

woci =

[
I3 0

d̂oci I3

]
w̃i (2.37)

with d̂oci the cross product matrix associated with doci :

d̂oci =




0 −dz dy
dz 0 −dx
−dy dx 0


 (2.38)
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Figure 2.6 – Scheme of three contacts on an object, produced by a three fingered gripper.
O is the frame associated with the object, for example aligned on its center of mass and
principle inertial axes. Ci is the frame associated with the ith contact point: its origin on
the contact point, and with the z axis along the contact normal and toward the object.

then, by expressing woci and w̃i in the object frame in Equation 2.37, one obtains:

wo =

[
I3 0

d̂oci I3

] [
Roci 0

0 Roci

]
w̃i (2.39)

wo =

[
Roci 0

d̂ociRoci Roci

]
w̃i (2.40)

The contact map is defined as follows:

G̃i =

[
Roci 0

d̂ociRoci Roci

]
∈ R6×6 (2.41)

By reasoning with contact twist ξ̃i expressed in contact frame Ci and object twist ξo
expressed in object frame O, a relation similar to Equation 2.40 exists, and is further
detailed in Prattichizzo and Trinkle [37] and Murray et al. [77]. The contact map G̃i

allows to relate the contact wrench or twist with the object wrench or twist:

wo = G̃iw̃i (2.42)
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ξ̃i = G̃>i ξo (2.43)

For a gripper creating nc contacts on the object, the total object wrench is the sum
of the individual contributions of each contact wrench, thus wo become:

wo = G̃1w̃1 + · · ·+ G̃ncw̃nc =
[
G̃1 · · · G̃nc

]
w̃g (2.44)

The complete grasp map G̃ is defined as follows:

G̃ =
[
G̃1 · · · G̃nc

]
∈ R6×6nc (2.45)

As for the contact map, a relation similar to Equation 2.44 holds between contact twists
ξ̃g and object twist ξo. The grasp map gives the relation between all the wrenches and
twists produced by the gripper at the contact points, and the total object wrench and
twist:

wo = G̃w̃g (2.46)

ξ̃g = G̃>ξo (2.47)

In order to take into account the contact model and the constraints on transmissible
contact wrench and twist component, the contact map can be redefined as follows, using
Equation 2.4:

Gi = G̃iH
>
i ∈ R6×nλi (2.48)

The grasp map can also be redefined this way, with nλ the total number of transmitted
wrench or twist components:

G = G̃H>g ∈ R6×nλ (2.49)

When used in Equations (2.46) and (2.47), this redefinition of the grasp map allows to
relate object wrench wo and twist ξo to transmitted contact wrenches wg and twists ξg
respectively. The rows of G correspond to the transmitted contact wrench component
contributions to each object wrench components. Each row of G> represents the ob-
ject twist component contributions to each transmitted contact twist component. The
relations existing between the different quantities and matrices presented previously are
summarized on Figure 2.7.

The grasp map G and the gripper Jacobian Jg (and for an underactuated gripper,
the actuator Jacobian matrix Jag and underactuated joints Jacobian matrix Jjg) are
sufficient to fully describe the grasping of an object by a gripper with a fixed contact
grasp, provided that the contact wrenches enforce the friction constraints. For a fully
actuated gripper, the fundamental grasping constraint [37, 77] is obtained by equating
Equations (2.20) and (2.47):

Jgq̇g = G>ξo (2.50)

which becomes for an underactuated gripper:

[
Jag Jjg

] [q̇ag
q̇jg

]
= G>ξo (2.51)
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Figure 2.7 – Diagram of the existing relations between quantities linked to the fingers,
the contacts and the object.

This relation allows to relate joint velocities q̇g (or ωag =
[
q̇ag q̇jg

]> for an underactu-
ated gripper) to the object twist ξo. It relies on the fact that for a fixed contact (that is
a contact that cannot slide in directions specified by the matrix Hg), the contact twists
seen by the phalanges are the same as the contact twists seen by the object.

2.2 Grasp Characterisation

The required formalism for grasp modeling has been given in the previous section. From
the grasp description, grasps can be classified, and desirable properties can be extracted.
In the following these properties are presented, together with different grasp quality
metrics. Finally, the rationale behind the grasp quality metric chosen in this work is
presented.

2.2.1 Grasp Classifications & Desirable Properties

Grasp categories having specific features can be determined by studying algebraic prop-
erties of the grasp map G and Jacobian Jg, as well as their transpose.

Grasp Classifications

To qualify a grasp, one of the main information is which set of twists or wrenches the
gripper can apply to the object, and conversely in which conditions the gripper can resist
any disturbing wrench and prevent any unwanted object motions.

Four main grasp categories can be identified from the kernel of the four matrices G,
G>, Jg and J>g . These categories are summarized in Table 2.4 and are further described
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in the following. For an in depth mathematical development of these categories, see
Prattichizzo and Trinkle [37].

A grasp is considered graspable if ker(G) is non-trivial (different from the null vector).
Such grasp admits a set of contact wrenches wg that do not influence the total object
wrench wo. These contact wrenches are called internal object forces. They are the key
factor of the grasp tightness, which make them essential for grasp relying on friction.
Indeed, the ability to change contact wrenches without modifying object wrench allows
to enforce friction constraints more easily.

An indeterminate grasp has a non-trivial ker(G>). For these grasps, there are object
twists ξo that describe object motions, but without any contact twists in their respective
constrained directions ξg. Thus, it is impossible to control or prevent such object motion
with any contact point motions. These object twists are called internal object twists. In
general, the existence of such twists are not desirable when the goal is to manipulate the
object, or if the grasp needs to maintain the object still.

When ker(Jg) is non-trivial, the grasp is said to be redundant. In such grasp, there
are gripper joint velocities q̇g that do not create contact twists ξg. Thus, there is a set of
finger motions which is independent from object motions. These joint velocities are called
internal hand velocities. This property can be used in a similar way to the redundancy
in robotic manipulator arm: the additional degrees of freedom can be used to reposition
fingers during the grasp, for example to avoid collisions with the environment, or to keep
joints as far as possible from their mechanical limits or from any singularity.

If ker(J>g ) is non-trivial, the grasp is called a defective grasp. This category can have
contact wrenches wg that are not related to gripper joint torques tg. These wrenches are
called internal hand forces: they cannot be produced through the gripper joint torques,
however the gripper mechanical structure itself can withstand them. It is preferable to
avoid this case, as a gripper involved in a defective grasp cannot exert arbitrary contact
wrenches, diminishing its ability to successfully manipulate the object or maintain friction
constraints.

Desirable Properties

A grasp has two main desirable properties [37, 86]:

• The ability to resist external disturbances in any direction, that is the ability for
the grasp to withstand any object wrenches or twists. This is done by ensuring
object immobility thanks to the contact position or the friction forces. When the
immobility is ensured by friction forces, the gripper also needs to be able to control
internal forces.

• The ability for the gripper in the given grasp configuration to transmit any motion
to the object. This requires to be able to control all possible object twists and
wrenches. This property depends both on the contacts between the object and
the gripper and on the gripper configuration itself. This property is of particular
interest when the goal is to perform dexterous manipulation of the object, but
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condition on
matrix kernel grasp category many-to-one

relationship

produced
internal twist or

wrench

ker(G) 6= 0 Graspable
ξg → ξo

wg → wo

internal object
forces

ker(G>) 6= 0 Indeterminate
ξo → ξg

wo → wg

internal object
twists





ker(Jg) 6= 0

or
ker(Jag) 6= 0

redundant





q̇g→ ξg

tg→ wg

or
q̇ag→ ξg

tag→ wg

internal hand
velocities





ker(J>g ) 6= 0

or

ker(J>ag) 6= 0

Defective





ξg→ q̇g

wg→ tg

or
ξg→ q̇ag

wg→ tag

internal hand
forces

Table 2.4 – Summary of main grasp categories [37].

less pertinent when considering a grasping task that does not require fine object
manipulation.

Regarding the ability to maintain the object still for any external disruptive wrench,
the grasp needs to be able to enforce any object wrench, in order to resist this disruptive
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wrench. For that, the grasp should not be indeterminate. Indeed, an indeterminate grasp
admits object wrenches that are independent from contact wrenches. Thus, a necessary
condition for a grasp to be able to resist any arbitrary object wrench is ker(G>) = 0,
or also dim(Im(G)) = 6. Any 3D grasp formed with three non-colinear point contacts
with friction, or two soft-finger contacts satisfies this minimum condition that needs to
be fulfilled [37]. Cases with more contacts are preferable in practice.

Once this first necessary condition is met, the object immobility can then be obtained
through two mechanisms: form-closure or force-closure.

• Form-closure is a purely geometric consideration: a grasp is form-closure if the con-
tact positions on the object surface make it strictly impossible to move the object.
An in depth mathematical analysis of this property is available in Prattichizzo and
Trinkle [37].

• Force-closure is a static or dynamic consideration. a grasp is force-closure if for any
external wrench we ∈ R6, there are controllable contact wrenches wg belonging to
the friction cone FC (defined by the constraints described in subsection 2.1.1) such
as [37, 77]:

Gwg = −we, | wg ∈ FC (2.52)

A necessary condition for force-closure is that the grasp has internal object forces,
that is it needs to belong to the graspable category (ker(G) 6= 0). Indeed, the
existence of internal object forces are required to enforce the friction constraints.
Moreover, internal object forces need to be inside the friction cone, that is:

∃wg ∈ ker(G) | wg ∈ FC (2.53)

A grasp that verify this condition and for which ker(G>) = 0 and ker(G) 6= 0 has
frictional form-closure [37].

The last necessary condition for force-closure is to be able to effectively apply the
contact wrenches required to withstand the external disruptive wrench we. For
that, the grasp needs to control all internal object forces. This is true if and only
if:

ker(G) ∩ ker(J>g ) = 0 (2.54)

A frictional form-closure grasp that verify this condition is force-closure [37]. The
internal object forces are in ker(G), and the internal hand forces are in ker(J>g ).
It means that a grasp can be both defective and force-closure: the condition sim-
ply states that internal object forces and internal hand forces must be two non-
overlapping wrench sets.

In the general case, assessing if a grasp is force-closure is a complex task mainly
because of the friction cone constraints, which are quadratic, and require to use
non-linear programming techniques to be solved, or require linearization of the
friction cone to fall down into Linear Programming Problem.
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For an underactuated gripper, the grasp categories and desirable properties presented
above still hold. In particular, the criterion onG andG> null spaces have the same inter-
pretation, whether the grasp is performed by a fully-actuated gripper or an underactuated
one. However, in an underactuated gripper, only actuator velocities and torques are con-
trollable. For the underactuated joints, the joint torques and velocities are determined by
the characteristics of the chosen underactuation mechanism and its configuration, that
is the joint positions. Thus, in this case the interpretation of the null space of Jg and
J>g can be misleading.

Indeed, among the contact twists or wrenches involving some underactuated joints,
some of them are not achievable through actuator commands alone. They can be pro-
duced passively by the underactuated system, but in this case it will be endured and
not controlled. Such situation can be interpreted as a defective grasp. Likewise, if the
grasp is redundant, but this redundancy is only associated to underactuated joints, the
property loses its interest: it cannot be used to purposely reconfigure the gripper. To
take this into account, the defectiveness and redundancy properties can be
evaluated for an underactuated gripper on Jag and J>ag, the grasp actuator
Jacobian, as introduced in subsection 2.1.4. The grasp categories are summarized
in Table 2.4 for both fully-actuated and underactuated grippers. The differences between
the two cases are highlighted in the following example.

Example: Effect of the Underactuation on the Grasp Properties

To highlight the specificities of the underactuation, and its effect on grasp prop-
erties, the null space of the Grasp Map and gripper Jacobian will be computed
on a simple case study, firstly with a fully-actuated gripper, and then with an
underactuated one.

Fully-actuated Gripper

The considered gripper has two fingers and six revolute joints, three on each finger.
It is displayed when grasping a sphere in Figure 2.8. In the current configuration,
both fingers lie in the figure plane. Joints q11 and q21 have their rotation axis along a
vertical direction, allowing an out of plane motion. The other joints have their axis
of rotation perpendicular to the figure plane. Thus, the grasp analysis is made
in 3D. It is assumed that the contact C1 is modeled with a point contact with
friction, and that contact C2 is modeled with a soft-finger contact (for example
due to a difference of material of the phalanx surfaces).

First, lets compute the Grasp Map G:

Roc1 =




1 0 0
0 1 0
0 0 1


 Roc2 =



−1 0 0
0 1 0
0 0 −1


 (2.55)
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Figure 2.8 – A sphere grasped by a fully-actuated two fingered gripper with six
joints.

doc1 = [0, 0,−r]> doc2 = [0, 0, r]> (2.56)

d̂oc1 =




0 r 0
−r 0 0
0 0 0


 d̂oc2 =




0 −r 0
r 0 0
0 0 0


 (2.57)

d̂oc1Roc1 =




0 r 0
−r 0 0
0 0 0


 d̂oc2Roc2 =




0 −r 0
−r 0 0
0 0 0


 (2.58)

Then, by combining Equations (2.55) and (2.58), the contact maps can be
computed:

G̃c1 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 r 0 1 0 0
−r 0 0 0 1 0
0 0 0 0 0 1




G̃c2 =




−1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 −r 0 −1 0 0
−r 0 0 0 1 0
0 0 0 0 0 −1




(2.59)
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The H matrices corresponding to the contacts are:

Hc1 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


 Hc2 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1


 (2.60)

Thus, the Grasp Map is:

G =
[
G̃c1H

>
c1 G̃c2H

>
c2

]
(2.61)

G =




1 0 0 −1 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 −1 0
0 r 0 0 −r 0 0
−r 0 0 −r 0 0 0
0 0 0 0 0 0 −1




(2.62)

Here, ker(G) 6= 0 and dim(ker(G)) = 1, the grasp belong to the graspable cat-
egory: a contact wrench in ker(G) is for example [0, 0, 1, 0, 0, 1, 0]>. This direction
corresponds to the segment connecting the two contact points: the internal object
forces are along this vector. Moreover, ker(G>) = 0, which mean that the grasp is
not indeterminate: every object wrench can be related to some contact wrenches.
Both properties are necessary conditions for force-closure, and can be useful to
maintain the object still.

To compute the gripper Jacobian Jg, the vectors between the kth joint frame
and the corresponding contact frame (rk,i Figure 2.8) need to be expressed in
contact frame. Generally, all their components are function of the configuration
of the gripper joints. Here, they are computed in the specific configuration where
all joints lie on the same plane:

r1,1 = r2,1 = [l1, 0, l3]
> (2.63)

r1,2 = r2,2 = [−l5, 0, l7]> (2.64)

r3,1 = [l2, 0, l4]
> (2.65)

r3,2 = [−l6, 0, l8]> (2.66)

Then, the Jacobian of the two fingers can be computed:

J̃1 =




0 l3 l4
−l3 0 0
0 −l1 −l2
1 0 0
0 1 1
0 0 0




J̃2 =




0 l7 l8
l7 0 0
0 l5 l6
−1 0 0
0 1 1
0 0 0




(2.67)
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Finally, the gripper Jacobian is:

Jg =

[
Hc1J̃f1 0

0 Hc2J̃f2

]
(2.68)

Jg =




0 l3 l4 0 0 0
−l3 0 0 0 0 0
0 −l1 −l2 0 0 0
0 0 0 0 l7 l8
0 0 0 l7 0 0
0 0 0 0 l5 l6
0 0 0 0 0 0




(2.69)

Here, ker(Jg) = 0: the grasp is not redundant. There is no combination of
joint motions that are independent from contact motions.

For this gripper and grasp configuration, ker(J>) 6= 0 and dim(ker(J>)) = 1:
the grasp is defective. A contact wrench belonging to the null space of J>, that
is an internal hand force, is for example [0, 0, 0, 0, 0, 0, 1]>: the gripper is unable
to exert a torque in the normal direction of the contact C2. All the other contact
wrenches can be generated by the gripper, and used to produce an object wrench
able to cancel external disturbances, hence preventing any movement of the object.
Moreover, an external object wrench generating a contact wrench belonging to
the internal hand forces can still be absorbed by the gripper structure, which also
prevents object motion. However, both mechanisms are possible only if the contact
wrenches stay inside the friction cone. For that, the internal object forces, that
are used to tighten the grasp, needs to be inside it. For this grasp, this condition
is met, as the internal object forces are along the normal vector of both contacts.
Finally, the gripper needs to be able to exert contact wrenches in the internal
object forces. Here, this is the case, as ker(G) ∩ ker(J>g ) = 0. Thus, this grasp is
force-closure.

Underactuated Gripper

The considered underactuated gripper has the same architecture than the fully-
actuated one: two identical fingers with three joints each. Joints q11 and q21 are
fully-actuated. Joints q12 and q13 (and respectively joints q22 and q23) are driven
through an underactuation mechanism.

These underactuation mechanisms are defined by the following transmission
matrices and underactuation torques:

T1 =

[
X1

2 X1
3

0 1

]
T2 =

[
X2

2 X2
3

0 1

]
(2.70)
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[
q12
q13

]
= T1

[
q1a
q13

] [
q22
q23

]
= T2

[
q2a
q23

]
(2.71)

t13 = −K1∆q13 t23 = −K2∆q
2
3 (2.72)
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Figure 2.9 – A sphere grasped by an underactuated two fingered gripper with six
joints. the underactuation mechanism acts on the two last joints of each fingers.

The Xk
i coefficients depend on the underactuation mechanism characteristics

and on the joint configuration. Their analytic formulation and computation is
detailed in Birglen et al. [7]. K1 and K2 are the stiffness coefficients of the spring
of the underactuation system of the finger 1 and 2 respectively. ∆q13 and ∆q23 are
the distance from the rest position of the respective joints.

The gripper is displayed when grasping a sphere in Figure 2.9, in the same
configuration as in the fully-actuated case. The same assumptions are made on
the type of contacts: point contact with friction for C1, soft-finger for C2.

in this case, the Grasp Map is identical to the fully-actuated case (Equa-
tion 2.62): the grasp is graspable (ker(G) 6= 0), and not indeterminate (ker(G>) =
0). The internal object forces are along the same vector as in the fully-actuated
case: [0, 0, 1, 0, 0, 1, 0]>. Thus, this grasp also fulfils the necessary conditions for
force-closure.
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The difference with the fully-actuated case comes from the actuator Jacobian
matrix Jag and its associated null spaces. To be computed, it first requires to
express the gripper transmission matrix Tg. It can be expressed from Equation 2.70
as follows:

Tg =




1 0 0 0 0 0
0 X1

2 0 0 X1
3 0

0 0 1 0 0 0
0 0 0 X2

2 0 X2
3

0 0 0 0 1 0
0 0 0 0 0 1




(2.73)

with:
[
q11, q

1
2, q

2
1, q

2
2, q

1
3, q

2
3

]>
= Tg

[
q11, q

1
a, q

2
1, q

2
a, q

1
3, q

2
3

]> (2.74)

This specific joint ordering allows to separate the actuated joints from the joints
that are not directly linked to an actuator in two different vectors as follows:

qag =
[
q11, q

1
a, q

2
1, q

2
a

]>
qjg =

[
q13, q

2
3

]> (2.75)

which gives:

qg = Tg

[
qag
qjg

]
(2.76)

The gripper Jacobian Jg can be computed the same way as in the fully-actuated
case. It corresponds to the matrix given in Equation 2.69, with the columns and
rows ordering adjusted to match the joint ordering of qag and qjg:

Jg =




0 l3 0 0 l4 0
−l3 0 0 0 0 0
0 −l1 0 0 −l2 0
0 0 0 l7 0 l8
0 0 l7 0 0 0
0 0 0 l5 0 l6
0 0 0 0 0 0




(2.77)

Then, the gripper actuator Jacobian matrix Jag can be extracted from the product
JgTg, by selecting the first four columns, corresponding to the four actuated joints:

JgTg =




0 X1
2 l3 0 0 X1

3 l3 + l4 0
−l3 0 0 0 0 0
0 −X1

2 l1 0 0 −X1
3 l1 − l2 0

0 0 0 X2
2 l7 0 X2

3 l7 + l8
0 0 l7 0 0 0
0 0 0 X2

2 l5 0 X2
3 l5 + l6

0 0 0 0 0 0




(2.78)

=
[
Jag Jjg

]
(2.79)
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Jag =




0 X1
2 l3 0 0

−l3 0 0 0
0 −X1

2 l1 0 0
0 0 0 X2

2 l7
0 0 l7 0
0 0 0 X2

2 l5
0 0 0 0




(2.80)

The grasp is not redundant, as ker(Jag) = 0. This is expected, as the fully-
actuated version is not redundant either, and the underactuation mechanism re-
duces the number of controllable joints.

The grasp is defective, as in the fully actuated case, ker(J>ag) 6= 0. Here,
the contact wrench [0, 0, 0, 0, 0, 0, 1]> still belong to the null space of J>ag: the
gripper is unable to exert a torque in the normal direction of C2. However, in
the underactuated case, the null space is of higher dimension: dim(ker(J>ag)) = 3.
Two other contact wrenches belonging to the kernel of J>ag (and that were not in
the kernel of J>g ) are for example:

v1 =

[
1

l3
, 0,

1

l1
, 0, 0, 0, 0

]>
v2 =

[
0, 0, 0,

1

l7
, 0,− 1

l5
, 0

]>
(2.81)

These contact wrenches can be produced only with the contribution of t13 and t23,
and correspond to wrenches along r1,1 and r1,2 respectively. In the underactuated
case, the torques on these joints depend on the underactuation mechanism, are
fixed for a given joint configuration (see Equation 2.72), and thus are not control-
lable. An external contact wrench with a component in one of these directions will
lead to a motion of the underactuated joints, until the joints not directly linked to
an actuator (here q13 and q23) reach a configuration where they produce a torque
that balance the contact wrench.

Thus, the underactuation mechanism generates new dimensions in
the defective space compared to the fully-actuated equivalent.

Regarding the force-closure property, the internal object forces are along the
normal vector of both contacts, as for the fully-actuated gripper, thus they are
inside the friction cone. Moreover, ker(G) ∩ ker(J>ag) = 0: the gripper is able to
exert contact wrenches inside the internal object forces, the grasp is force-closure.

However, the new defective contact wrenches (v1 and v2) depend on l1, l3, l5
and l7, quantities that depend on the gripper joint configuration. In particular,
for the configuration where l1 = l5 = 0, ker(G)∩ker(J>ag) 6= 0: the grasp loses the
force-closure property.

Due to the uncontrollable contribution of t13 and t23 to the contact wrench, it is
not possible to produce any arbitrary internal object forces for every given gripper

80



2.2. GRASP CHARACTERISATION

configuration. The contact wrench wg produced by a given torque vector tg is:

wg =

[
J>ag
J>jg

]+
tg (2.82)

withM+ the pseudo-inverse of a matrixM . Solving this system for wg ∈ ker(G)
allows to find the constraints on joint torques and joint angles that need to be
enforced to produce a contact wrench inside the internal object forces.

grasp tightening

Figure 2.10 – Example of an underactuated gripper with two two-phalanx fingers
grasping a sphere. On the left a grasp configuration at equilibrium with a small
tightening effort, on the right the grasp configuration at equilibrium after increas-
ing the tightening force. The arrows show the contact normals, the dashed lines
the orientation of the internal object forces. Tightening the grasp changes the
orientation of the friction cone relative to the internal object forces.

As long as these conditions are not met, tightening the grasp produces a contact
wrench that has a component outside of the internal object forces, which produces
an object wrench. This object wrench will produce a motion of the object, through
a passive motion of the underactuated joints. This motion stops if q12, q13, q22
and q23 reach a configuration where the produced torques enforce the constraints
mentioned above. It can also stop when the joint limits are reached, or when a
new contact is created with an other phalanx or the palm. However, this motion
changes the position of the gripper phalanges relative to the object. This can
change the contact normal orientations and contact positions through a rolling
motion of the object on the phalanges for example. When it happens, it changes
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the orientation of the friction cone relative to the internal object forces. This is
illustrated in Figure 2.10. A configuration where the internal object forces leave
the friction cone can be reached: in this case, the grasp is no longer force-closure.

Thus, the specific behavior of underactuated grippers makes the
assessment of the force-closure property much more complex than in
the fully-actuated case.

2.2.2 Overview of Existing Grasp Quality Metrics

In the previous section, different desirable grasp properties have been shown. For a given
gripper and object, it is very common to have several grasp configurations that verify
one of the above property about grasp features. Thus, the different possible grasps have
to be ranked according to a quality measure. Some of the main existing metrics are
presented in the following, and are summarized in Table 2.5. A more complete list, with
more in depth metric descriptions is available in Roa and Suárez [86].

Metrics Depending on Contact Point Positions Only

This group of quality measures takes into account object properties, such as its shape,
weight, friction coefficient, and contact positions on it. It can be divided in four sub-
categories:

• Metrics based on the Grasp Map,

• Metrics based on geometric relations between contact positions,

• Metrics assessing the frictional form-closure property,

• Metrics taking into account limits on the contact wrench magnitudes

Using the Grasp Map The main principle of these metrics is to assess if the grasp is
not indeterminate (that is if dim(Im(G)) = 6), and then determine to what extent. These
metrics rely on the computation of the singular values of G, that is the positive square
root of the eigenvalues of GG> [86]. There are three main metrics in this category: the
minimum singular value of G [87, 88], the volume of the ellipsoid in the wrench space
[87], and the grasp isotropy index [88]. For all three metrics, a positive value represents
a necessary condition for force-closure [87], as a null value indicates that the grasp is
indeterminate.

• The minimum singular value ofG is simply expressed as follows, with σi the singular
values of G numbered in descending order [87, 88]:

QMSV = σ6 (2.83)
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It gives an information on a worst case scenario: QMSV indicates how far the grasp is
from loosing the ability to resist wrench in the most unfavorable direction. Indeed,
when QMSV = 0, the grasp is unable to withstand a disruptive wrench in one
direction at least. A larger QMSV corresponds to a smaller maximum transmission
ratio between wo and wf , thus minimizing the maximum contact load required for
a given object wrench [88].

• The volume of the ellipsoid in the wrench space is [87]:

QVEW =
√

det(GG>) =
6∏

n=1

σn (2.84)

A larger QVEW value means that the ellipsoid of admissible object wrench produced
by the contributions of all contact forces is larger. However, it does not take into
account the shape of the ellipsoid, that is the relative contribution of each singular
value. One of them could be very small, which would mean a grasp very close to
lose the ability to withstand wrench in the associated direction.

• The grasp isotropy index is defined as [88], with σi the singular values of G num-
bered in descending order:

QGII =
σ6
σ1

(2.85)

This metric is an evaluation of the shape of the admissible object wrench ellipsoid:
if the ellipsoid is a sphere, the index is maximal, and equal to 1. However, it does
not give any information on the scale of the ellipsoid: an uniformly weak grasp,
that is with all singular values close to each other, but small, will have a high QGII

value.

Using Geometric Relations Between Contact Positions The main idea is to
compute geometric relations between the contact point positions on the boundaries of
the object [86], these geometric relations being correlated with desirable grasp properties.
The main metrics in this category, described further in the following, are: shape of the
grasp polygon [88], area of the grasp polygon [89, 90] and distance between the centroid
of the contact polygon and the object center of mass [91–93].

• To optimize a planar grasp, a pertinent criterion is to tend toward a uniform dis-
tribution of the contact point around the object boundaries [88]. This is the shape
of the grasp polygon metric. It reaches its optimal value when the polygon formed
by the contact points is regular. This metric has a simple interpretation, and is
easy to compute. However, it is designed for planar grasp only, and scaling it to
3D grasp may lead to misleading results: for example, in the case of an elongated
object like a pen, the optimal grasp according to this metric is a polygon around
the object smaller dimension.
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• The robustness of a three-finger grasp is linked to the area of the triangle formed
by the three contact points: the larger the area is, the better the grasp is, both
for 2D and 3D grasps [89, 90]. This metric is known as the area of the grasp
polygon. The extension of this metric to grasp involving more than 3 contacts is
not straightforward, and requires to project additional contact points on a contact
plane formed by three chosen contacts in order to produce a meaningful metric.

• Minimizing the distance between the centroid of the contact polygon and the object
center of mass allows to reduce the influence of inertia and gravity, thus increasing
the stability of the grasp [91–93]. This metric has a simple physical meaning, and
is also simple to compute, provided that the center of mass is known, which is not
always the case. A drawback of this metric is its independence to the number of
contacts.

Determining the frictional form-closure property Two examples of such metrics
are margin of uncertainty in finger positions [94, 95], and independent contact regions
[96, 97].

• Taking into account the uncertainties in finger positioning relies on the concept of
contact space. The contact space is defined as the n dimensional space represent-
ing the possible contact positions of n contacts on the boundary of a 2D object.
The subset of this space allowing to keep the internal object forces inside the fric-
tion cone is called the force-closure space. This space does not take into account
the ability of the gripper to apply the required wrenches, thus it corresponds to
the frictional form-closure given by Prattichizzo and Trinkle [37] and not to the
force-closure property defined in subsection 2.2.1. To minimize the influence of an
uncertainty on contact positions, a good metric is to maximize the distance between
the contact points and the boundaries of the force closure space [94, 95]. This met-
ric can be computationally costly due to the friction cone computation, and subject
to uncertainties regarding the friction coefficient. Moreover, it is cumbersome to
apply to non-polygonal 2D object, or 3D object, due to the high dimensionality
and complexity of the associated contact space.

• The concept of independent contact region is built on the previous concept of force-
closure space. The goal is to find a set of object surface regions such that having
each contact belonging to each independent region enforces the frictional form-
closure condition, independently of the exact contact position in it [96]. Maximizing
the size of the independent contact regions produces a larger set of possible force-
closure grasps. A possible metric is for example to maximize the size of the smallest
independent contact region of the set [97]. However, this metric also requires
computing the friction cone, and is not intended for 3D grasps.

Taking into Account Limits on Contact Wrench Magnitude The metrics pre-
sented above do not take into account an eventual limit on the contact wrench magnitudes
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(due to a limit on the joint torques). Taking into account this limit leads to more complex
metrics, often with a higher computational cost, but makes the metric more realistic. An
example of such metrics is the largest-minimum resisted wrench [98]. This metric relies
on the computation of the grasp wrench space, the set of all admissible object wrenches
given a contact locations and constraints on the contact wrench magnitudes and direc-
tions (due to friction constraints). An other metric conceptually close to the latter is the
reachable wrench space under uncertainties, which takes into account uncertainties on
contact position and orientation when computing the grasp wrench space [99].

There are also metrics having a tasks oriented criterion: if the task is well known, the
most demanding directions in term of disruptive wrenches are also known. This concept
is known as the task wrench space [87]. The metric can then promote a grasp that resists
greater wrenches in these specific directions.

Metrics Depending on gripper Configuration

This type of quality metrics considers information about the gripper configuration, that
is its geometry and joint positions, to assess the quality of a grasp.

A first category of metrics uses algebraic properties of the gripper-object Jacobian
H = (G>)+Jg ∈ R6×nqg (with (G>)+ the pseudoinverse of G>). The main principle is
similar to the metrics associated with algebraic properties of the grasp map G. Here,
the goal is to assess a necessary condition for the manipulability of the grasp, that is the
ability for the gripper to exert any motion on the object. The metrics applied on G can
be extended to H, and keep similar interpretation:

• The distance to singular configuration QDSC (analogue of QMSV for G). This
metric tends to keep the gripper away from its singular configurations [100]. Max-
imizing this metric minimizes the maximum transmission ratio between wo and
th.

• The volume of the manipulability ellipsoid QVME [101] (equivalent to QVEW for
G). A larger metric value means that for the same joint velocities, a larger object
twist can by obtained.

• The uniformity of transformation QUOT corresponds to the condition number of
H [102] (similarly to QGII for G). The metric value is maximum when the joint
velocity contributions to the object twist are the same. This indicates that the
gripper has a good manipulation ability in this configuration, as it is able to move
the object in any directions without requiring disproportionate displacement of any
joints.

An other pertinent metric regarding gripper configuration is related to the position of
the finger joints [86]. With this criterion, a good configuration is obtained when joints are
as far as possible from their mechanical limits, that is as close as possible to the center of
their ranges. The main advantage of this metric is that it has an easy interpretation and
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metric types examples

include
necessary
condition
for force-
closure

assess
friction

constraints

low
computational

cost

include
necessary

condition for
manipulability

contact
position

Grasp Map

minimum singular value [87],

yes no yes no
volume of the ellipsoid in the

wrench space [87],
grasp isotropy index [88]

geometric
relations

shape [88] and area [89] of the grasp
polygon, no no yes no

distance with the center of mass [92]

limitations
on contact

forces

largest-minimum resisted wrench
[98], yes yes no no

reachable wrench space under
uncertainties [99]

frictional
form-closure

tests

margin of uncertainty in finger
positions [95], yes yes no no

independent contact regions [97]

gripper
configuration

gripper-
object

Jacobian

distance to singular configuration
[100],

yes no yes yesvolume of the manipulability
ellipsoid [101],

uniformity of transformation [102]

hand
kinematic
constraints

position of the finger joints [86] no no yes no

Table 2.5 – Summary of the main existing categories of grasp quality metrics.
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computation. However, even if the optimal configuration with regard to this metric has
a good range of possible motion on every joint, it does not mean that it can effectively
transmit these motions to the contact point and to the object.

Finally, in a similar way to metrics depending on contact point positions, metrics
evaluating the task compatibility of the gripper configuration can be assessed through
the gripper-object Jacobian matrix H. Knowing the velocity and force requirements
of the task, these metrics promote gripper configurations able to ensure the maximum
wrench or twist response along these directions [86, 103].

2.2.3 Chosen Grasp Quality Metric

The diversity of existing grasp quality metrics having been presented, the rationale behind
the metric choice for this work can be explained.

First, this work focus on grasping tasks with underactuated multifingered grippers.
It is chosen to make this study object-centric and not make the assumption of a spe-
cific target task. Therefore, task oriented metrics are not selected. Then, the ability
to perform fine in-hand object manipulation will not be considered. Metrics based on
gripper configuration are not pertinent in this case. In particular, metrics related to the
gripper-object Jacobian are not best suited for underactuated grippers. Indeed, these
metrics produce non-zero values only if dim(Im(H)) = 6, with H = (G>)+Jag in the
case of underactuated grippers. This is possible if dim(Im(Jag)) ≥ 6, that is if the grip-
per has six actuated joints at least, and if the defective space is not to large. However,
the goal of using underactuated mechanisms is to reduce the number of actuators: it
is very common for underactuated grippers to have less than six actuators. Moreover,
the defective space associated with the underactuated joints can prevent the grasp to be
manipulable. Applied on such grippers, all metrics based on H would give null values
for every possible grasps, which is not informative.

Thus, the choice is restrained to metrics depending on the contact point positions on
the object surface. More specifically, as force-closure is an important property to have
for a grasping task, metrics that include an assessment of one of its necessary conditions
are preferred. Among these, the ones which are suitable only for 2D objects, although
often simpler to compute, are not ideal, as the approximation of a 2D grasp greatly
restricts the grasping ability of the gripper. An other aspect that needs to be taken
into account is the computational cost of the metric. It needs to handle in a reasonable
time the high number of contact points generated by multifingered grippers, especially
when performing power grasps. With regard to this, metrics that require the evaluation
of the friction cone constraints have a higher computational cost than metrics based on
the Grasp Map only. This evaluation can be even more complex in the underactuated
case, as shown previously in the example. Moreover, the computation of the friction
cone constraints assumes that the friction coefficient between the gripper and the object
is known. In practice, it is generally unknown, and tedious to measure experimentally.
With a wrong value, the risk is to compute a grasp quality that do not matches the
behavior obtained in the real experiments, thus creating simulation-to-real issues.

Considering these elements, the choice is now only between metrics based on the
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Grasp Map G. They provide a necessary condition for force-closure by assessing if
dim(Im(G)) = 6. According to Mnyussiwalla et al. [104], the values of the three metrics
are highly correlated for grasps with three contacts (in particular, QMSV and QGII even
have a correlation coefficient of 1). Thus, even if they have slightly different interpre-
tations, they in fact measure the same physical property. Among them, the minimal
singular value of G, QMSV , has been chosen. Indeed, it ranks grasps according to how
far they are from loosing the ability to resist wrench in the most unfavourable direction
(worst case scenario). It provides a simple and robust information, while guaranteeing
that force-closure may be achievable in this configuration.

2.3 Conclusion

This chapter has presented the formalisms regarding grippers and grasps modeling that
are required to better understand this work. More specifically, the influence of the
underactuation on this modeling has been explained.

Moreover, some important properties of a grasp have been highlighted. These prop-
erties determine to what extent a given grasp configuration allows a gripper to enforce a
given twist or wrench to the object, or allows it to maintain friction constraints. These
properties have been derived in the specific case of underactuation, to show the effect
of this mechanism on the grasping ability of a gripper. Various quality metrics, derived
from these properties, have also been presented.

Finally, the metric used to rank grasps in this work, the minimal singular value of
G, QMSV , has been introduced, and the various factors justifying this choice have been
presented.

88



Chapter 3

Human Initiated Grasp Space
Exploration Approach

The grasp space exploration phase is one of the most critical component in the versatile
grasp planner framework. The efficiency and quality of the grasps found in this phase
will determine the ones of the grasps generated in the planning phase. The specificity of
underactuated grippers, introduced in chapter 1 and further detailed in chapter 2, makes
this phase more challenging than for fully actuated grippers or simpler grippers. In this
chapter, a method to efficiently explore the grasp space of an underactuated gripper is
proposed. First, its main hypotheses are explained. Then, this method is presented. It
relies on a generative model to learn a compact representation of the grasp space.
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CHAPTER 3. HUMAN INITIATED GRASP SPACE EXPLORATION APPROACH

3.1 Problem Statement

An essential step of any grasp planning algorithm is the grasp space exploration phase.
This phase, as well as the grasp planning as a whole, depends highly on the mechanical
architecture and kinematics of the considered gripper.

3.1.1 Considered Hypotheses

camera
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Fobj

object

gripper

robot
arm

x

yz
Fgrip

x
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z

Fcam

x

z

Fworld

Figure 3.1 – Scheme of the considered setup and its associated frames.

As stated in subsection 1.4.2 and further highlighted in chapter 2, underactuated grip-
pers have complex behavior that can make difficult or impossible to control the contact
point locations on the object surface. Indeed, the uncontrollable torques produced by the
passive springs of the underactuation system makes the contact point positions dependent
on the force equilibrium between the gripper and the object. In this conditions, a grasp
space exploration approach based on contact point positions is not suitable. Hence, in
this work, a gripper configuration approach is chosen, where the grasp space is explored
by testing different gripper configurations. As stated in subsection 1.4.1, the gripper
configuration space (of dimension dconf ) is constituted of the spatial configuration space
(of dimension dspace) plus the gripper internal configuration space (of dimension dint).
The gripper spatial configuration space is chosen equal to the Euclidean space SE(3). It
allows to fully leverage the grasping ability and kinematic potential of the gripper, as
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Figure 3.2 – Scheme of the considered underactuated gripper. This gripper has nf un-
deractuated fingers. Each finger has np underactuated phalanges, and ki fully-actuated
degrees of freedom allowing finger repositionning relative to the palm (which can include
abduction-adduction motion or any other degrees of freedom).

opposed for example to a planar spatial configuration space. The choice of parameters
for the gripper internal configuration space is further explained in the following.

The considered robotic setup, displayed in Figure 3.1, is constituted of an underac-
tuated gripper mounted on the end-effector of a robotic arm manipulator. To achieve
an arbitrary gripper pose in the Euclidean space SE(3), the robotic manipulator needs
to have at least six degrees of freedom. The position of the gripper is parameterized
through a frame Fgrip attached to its palm.

For its part, the gripper has nf > 2 fingers attached to a palm. It is assumed that
each finger has the same phalanx architecture and the same number np of phalanges
and underactuated joints. A scheme of the considered gripper architecture is displayed
in Figure 3.2. Each finger has ki actuated joints at its base (with i the index of the
finger), able to reorient it relative to the palm and to the other fingers. These reposition-
ing degrees of freedom (qi1, · · · , qiki) can be translational or rotational, and can include
abduction-adduction joints. They constitute the gripper internal configuration space.
The individual positions of the finger underactuated joints are not considered in the
internal configuration space: the fingers start fully opened, and they are closed simul-
taneously to grasp the object, with the same predetermined target actuator position.
Indeed, the positions of the finger underactuated joints are not individually controllable:
they are only related to the actuator position through the transmission matrix Tf , as
shown in chapter 2. Thus, they depend on the final force equilibrium between the gripper
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and the object, as the contact point positions: each underactuated joint reaches a posi-
tion where its passive spring produces the required torque for static equilibrium. As a
given actuator position can produce an infinity of finger configurations (depending on the
object shape and position relative to the gripper), it would not be pertinent to include
the finger actuator positions in the gripper internal configuration. Thus, the considered
gripper configuration space dimension is:

dconf = dspace + dint = 6 +

nf∑

i=1

ki (3.1)

An object is supposed to be placed on a plan in the workpsace of the considered
robotic setup, as shown in Figure 3.1. It is assumed that the object geometry is known
a priori, as well as the pose in the scene of its associated frame Fobj . The object pose
can be known thanks to exteroceptive sensors and object pose estimation algorithms [31,
58–60]: the pose of the object frame Fobj is retrieved and expressed in the camera frame
Fcam . Then, knowing the pose of the camera frame in the world frame Fworld , one can
express the object frame in it.

Considering the surface holding the object allows to take into account the geometric
and kinematic constraints that it generates during the grasp space exploration proce-
dure. Indeed, this surface can prevent many gripper configurations due to the collision
of the gripper with it. Methods considering a free floating object during the grasp space
exploration exist, but as a result they can generate a significant number of gripper con-
figurations that need to be eliminated afterwards.

3.1.2 Input & Ouput Data

The goal of the grasp space exploration is to build a collection of diversified grasps, so that
it is possible to propose an appropriate grasp to the trajectory planner and controller,
that is with the best quality possible, for as many possible tasks as possible. The goal
of the presented method is to generate gripper configurations with a prediction of their
grasp quality so that such collection can be built and used efficiently.

Outputs

Our method has two outputs:

• The gripper configuration g, composed of two parts:

– The gripper spatial configuration, expressed as the pose of the gripper frame
Fgrip in the object frame Fobj in order to be invariant to object pose:

(x, y, z, qx, qy, qz, qw) ∈ R3 × Sp(1) = SE(3) (3.2)

with x, y, z the Cartesian position of the frame, and qx, qy, qz, qw its orientation
expressed in quaternion convention. The quaternion representation is chosen
for its compactness and easier interpolation compared to matrix representa-
tion, and to avoid singularities that may arise when using Euler convention.
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– The gripper internal configuration space,

(
q11, · · · , q1k1 , · · · , q

nf
1 , · · · , qnfknf

)
∈

nf×
i=1

(
ki×
j=1

[
qij,min, q

i
j,max

]
)

(3.3)

with qij,min and qij,max respectively the minimum and maximum joint limit of
the jth repositioning joint of the ith finger, and× the Cartesian product.

Thus, the gripper configuration space has dconf dimensions, but a gripper config-
uration is described by dconf + 1 non-independent variables due to the choice of a
quaternion representation for the rotation.

• a prediction Q̂MSV of the quality value QMSV (as described in Equation 2.83) of
the grasp produced by this configuration, if any.

Inputs

As explained in the previous subsection, this work takes into account the surface on which
the object is lying. The pose of the object relative to this surface determines partially the
area of the grasp space that are accessible due to geometric and kinematic constraints.
Thus, an input of the grasp exploration should allow to identify in which stable pose the
object is resting, in order to explore only gripper configurations suitable for it.

ð Definition 7 (Stable pose). A stable pose of an object is one of the geo-
metrically distinct pose on which it can rest at static equilibrium when lying
on an horizontal surface. In this work, the stable poses are identified thanks
to the vector e = (a, b, c, d) of the Cartesian equation of the tabletop plane
on which the object is lying, expressed in the object frame Fobj . The vector
(a, b, c) is the tabletop plane normal vector, and d is the distance between
the frame Fobj origin and its projection on the tabletop plane. In case several
representations exist for the same stable pose, one of them is chosen arbi-
trarily. It can happen when the object has symmetries that create several
geometrically equivalent poses corresponding to the same stable pose. An
example is shown for a right cuboid in Figure 3.3.

Grasp Generation Issue

The chosen gripper configuration space is of high dimensions (dconf = 6 +
∑nf

i ki). It
is unlikely that configurations simply generated by sampling values in this huge space
belong to the grasp space, because of the numerous constraints the grasp space is subject
to (namely geometric, static and kinematic constraints), as explained in section 1.4.
However, as mentioned in the same section, and illustrated in Figure 1.15, the grasp
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Figure 3.3 – The three stable poses of a right cuboid. For each stable pose, the two
rows are two geometrically equivalent poses, that are due to symmetries in the object
geometry. The orientation of the top row is chosen to express the Cartesian equation
representing each stable pose.

object

gripper
positions

Figure 3.4 – Examples of successful grasps on an arbitrary 2D object, in the simple case
of a bi-digital gripper with parallel jaws. Here, dconf = 3, and the gripper configuration
space is parameterized by three variables: (x, y, θ).

space can probably be thought of as a set of submanifolds of the gripper configuration
space. To further illustrate this idea, some examples of successful grasps for a bi-digital
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parallel gripper on a 2D object is displayed in Figure 3.4. In this example, it is clear that
the x, y and θ values of successful grasps are highly correlated, and that they only cover
a very small part of the gripper configuration space. In this example, it is very likely that
the grasp space is in a one or two dimensional submanifold of the gripper configuration
space.

Thus, it is possible to assume that the grasp space can be parameterized by a set of
unobserved latent variables, which is smaller than the set of parameters describing the
gripper configuration space. Discovering these latent variables should allow to have an
insight on the structure of the grasp space, and ultimately to generate gripper configura-
tions belonging to it much more reliably. This is the approach chosen in this work, and
it requires two main abilities:

• being able to reduce the dimension of the gripper configuration space to find the
latent variables at the origin of the grasp space,

• being able to reliably generate new grasps from this compressed representation.

3.2 Techniques for Data Generation & Dimensionality Re-
duction

Several techniques have been developed to reduce the dimensionality of the feature space
of a given dataset, or to generate new data resembling it. An overview of some of the
main existing techniques is given in the following.

ð Definition 8 (Dimensionality reduction). It is the transformation of data
from a high-dimensional space into a low-dimensional space so that the low-
dimensional representation retains some meaningful properties of the original
data, ideally close to its intrinsic dimension.

Definition 9 (Generative model). A generative model makes the assump-
tion that the observed data are some samples of a vector of random variables
x following an unknown distribution P (x). It is assumed that there is also
a vector of unobserved (latent) random variables z following a distribution
P (z). The goal is to build a model of the conditional probability distribution
of x given a sample of z, P (x|z). Sampling from this distribution allows to
generate new samples of x.

3.2.1 Dimensionality Reduction Techniques

Dimensionality reduction techniques aim at projecting a high dimensional input space
into a reduced set of features. They are able to create new compressed features from the
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initial set of features. These new features are more representative of the data variability
than the initial ones and encapsulate them. This transformation is done thanks to
algebraic transformation of the input data, and following a given optimization criterion.
Dimensionality reduction techniques can be mainly divided in two categories, linear and
non-linear, based on the type of transformation they use.

Linear Methods

Principal Component Analysis One of the most commonly used linear dimension-
ality reduction technique is the Principal Component Analysis (PCA) [105]. The goal is
to find orthogonal directions in the initial space of m features that explain as much data
variance as possible, these directions being called principal components. This method is
based on algebraic properties of X ∈ Rn×m the centered matrix representing the dataset
of n samples in the feature space of m dimensions. The transformation applied by the
PCA corresponds to the singular value decomposition of X, or equivalently to the diag-
onalization of the empirical sample covariance matrix Q ∈ Rn×n. The empirical sample
covariance matrix of the data matrix X> is proportional to X>X, as Q = 1

n−1X
>X.

Here, the principle is described with the diagonalization of Q, but most PCA implemen-
tation use the singular value decomposition for efficiency. Diagonalizing Q gives:

Q ∝X>X = WΛW> (3.4)

withW ∈ Rm×m a matrix whose columns are the eigenvectors of X>X (or equivalently
the right singular vectors of X), and Λ the diagonal matrix of eigenvalues of X>X (or
equivalently of squared singular values of X). The value of each eigenvalue correspond
to the data variance explained by the corresponding eigenvector, ranked in decreasing
order.

Thus, the matrix W is a transformation matrix that allows to express X in an or-
thogonal base, or equivalently an uncorrelated base, formed by the principal components,
with the explained variance maximized on each axis:

T = XW (3.5)

with T ∈ Rn×m the transformed data matrix.
However, as the eigenvectors corresponding to the higher eigenvalues explain the most

data variance, one does not necessarily need to keep every principal component ofW . A
dimensionality reduction can be obtained by choosing a matrixWf ∈ Rm×f with f < m,
selecting only the eigenvectors corresponding to the f higher eigenvalues. The previous
equation becomes:

Tf = XWf (3.6)

Here, the dimension of Tf is Rn×f : the feature dimension has been reduced after the
transformation. As the preserved dimensions maximize the explained variance, Tf min-
imizes the total squared reconstruction error ε for any choice of f :

ε = ‖X − TfW>
f ‖22 = ‖X −Xf‖22 (3.7)
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Metric Multidimensional Scaling (MDS) It aims at finding a low dimensional
embedding that best preserves the pairwise distance between samples of the dataset
[106]. It is based on algebraic properties of the matrix of similarity between samples,
B ∈ Rn×n. Thus, knowing explicitly the sample matrix X is not required: only a
distance between samples is needed. If the metric used in the similarity matrix B is the
Euclidean distance between samples, MDS applied on B gives the same transformation
as a PCA applied on X. In the general case, any distance can be used and not only the
Euclidean distance. MDS is mostly used to project in a two or three dimensional space
for data visualisation.

These dimensionality reduction techniques can have multiple applications. First, re-
ducing a high dimensional dataset on two dimensions allows to display it in a meaningful
way, in order to visualize if clusters exist in the dataset. More generally, inspecting the
explained variances of the principal components in a scree plot allows to determine the
number of pertinent dimensions of a given dataset. It can also be useful for denoising
purpose, the last eigenvectors being dominated by the dataset noise. Finally, multiple
machine learning algorithms can benefit from a reduced input dimensionality.

The PCA or MDS are not generative, that is, it is not possible to generate new data
reliably. First, MDS uses the similarity matrix B as input, and not the data matrix X
itself. As it works only with the relative positions between data points, it is impossi-
ble to produce an inverse transformation that outputs a data point. Regarding PCA,
an inverse transformation exists, but it can only transform back from the transformed
space points that are very close to dataset points, and only if not too much compression
occurred. Indeed, an arbitrary vector t ∈ Rm lies most likely far from any transformed
dataset points. Thus, applying the inverse transformation tW> = xgen will produce an
arbitrary vector xgen ∈ Rm, which will most likely not be consistent with the original
data contained in X.

The main limitation of these methods is that they can only extract linear relationships
between the features of the dataset. For example, if the dataset lies in a manifold
embedded in the initial space, they will fail to retrieve this information. It will simply
construct the best possible linear subspace maximizing the explained variance for PCA, or
preserving the distance for MDS. For example, if the data is following a one dimensional
circular shape in the initial feature space, they will only be able to reduce the dimension
to the two dimensional plane in which the data lies, and not to the one dimensional
manifold.

Non-Linear Methods

To be able to take into account non linear relationships in the dimensionality reduction,
non-linear methods have been developed.

Kernel-PCA A first example is an extension of PCA to the non-linear case, the kernel
PCA [107]. The main idea behind kernel PCA is to project the dataset X into a very
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high dimensional feature space thanks to an arbitrary function Φ : Rm → RM , m < M .
Applying the PCA in this feature space is equivalent to finding non-linear relationships
in the initial data space. In the feature space, the covariance matrix becomes:

Q ∝ Φ(X)>Φ(X) (3.8)

Performing the PCA in the feature space requires to diagonalize this matrix. However,
Φ is an arbitrary high dimensional function, and it can be intractable to compute Φ(X).
To avoid this computation, the kernel trick can be used, as in Support Vector Machine
[108, 109]. This trick relies on the fact that a kernel function K can be chosen so that
there exists a function Φ following the relation [110]:

K(X) = Φ(X)>Φ(X) (3.9)

With this trick, one does not need to explicitly compute Φ to perform the PCA. Only the
diagonalization of K is required. More in depth mathematical developments are given
in Schölkopf et al. [107].

Compared to classic PCA, kernel PCA computes the projection of the data samples
on the principal components (that is the eigenvectors of K), and not the components
themselves. An other difference is that the eigenvalues of K are not related to the
explained variance of the principal components, and cannot be used in the same way as
classic PCA to select the number of dimensions to keep. Finally, due to the projection of
the data samples in a high dimensional feature space through the function Φ, finding the
inverse transformation is not straightforward: several techniques were developed to find
the pre-image in the initial space of a point in the feature space, for example in Bakır
et al. [111]. Even when the reconstruction of a feature space point in the initial space is
possible, there is an issue similar to classic PCA when trying to generate new data: it
is non-trivial to find a point in feature space that will produce a data point consistent
with the original ones.

Locally Linear Embedding Another non-linear dimensionality reduction method is
the Locally Linear Embedding (LLE) [112]. Let X ∈ Rn×m a data matrix of n samples,
each of dimensionality m, sampled from a manifold. The manifold structure allows to
assume that each data sample and its neighborhood lies in a locally linear area, provided
that the neighborhood size is sufficiently small. Thus, each data sample can be linearly
expressed from its neighbors. The relation between each data sample and its neighbors
can be stored in a matrix W ∈ Rn×n. The matrix W characterize intrinsic geometric
properties regarding the neighborhood of each data samples. If the data are sampled
from a manifold of dimensionnality f < m, there exists a linear transformation that
allows to map the m coordinates of each data sample in the initial space to a new f
dimensional coordinates system on the manifold. The data matrix X is mapped to a
transformed data matrix T ∈ Rn×f , using the knowledge from the matrix W . One of
the interesting feature of LLE is that by computing both local (through the W matrix)
and global (through the T matrix) relations, it is able to capture non-linear relationships
between the data samples, while performing only linear computations.
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Isometric Feature Mapping Another example of non-linear dimensionality reduction
method is isometric feature mapping, or isomap [113]. This technique can be viewed as
an extension of metric MDS using geodesic distances, which enables it to capture the
non-linear structure of a dataset, contrary to the classic Euclidean distance for example.
In a similar way to LLE, isomap merges local information (used to compute geodesic
distances) and global information (the geodesic distances themselves) to represent non-
linear relationships in the dataset.

These algorithms are very effective to create human readable representation in low
dimensions of a dataset having non-linearity, or to preprocess such dataset for a down-
stream machine learning algorithm, for classification or clustering for example. However,
as for kernel PCA, it is not straightforward to select the number of dimensions on which
the projection is performed. Moreover, such methods are unable to reconstruct a point
in the initial space from a point in the reduced space, and thus they cannot generate new
data.

Autoencoders One of the most flexible and powerful techniques for non linear dimen-
sionality reduction is autoencoders. The first occurrences and descriptions of this concept
can be found in Ballard [114], Lecun [115], Bourlard and Kamp [116], and Hinton and
Zemel [117]. The power and flexibility of this technique comes from the fact that it relies
on neural networks to learn a compact representation of an input dataset. It is composed
of two main parts: an encoder, and a decoder. A scheme of the general architecture of
this method is displayed In Figure 3.5.

Input X

Encoder

Latent Space

Decoder

Reconstruction X̂

Figure 3.5 – Structure of an autoencoder.

The goal of an autoencoder is to reconstruct its input X at its output, using a
compressed representation of the data in the latent space [118]. The reconstruction is
denoted X̂. The “hat” notation is to emphasize that it is an estimation made by the
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autoencoder, the goal being to have X = X̂. The encoder and decoder are usually
implemented through feedforward neural networks. The encoder inputs are the rows of
the matrix X, and its outputs are the corresponding values of the latent variables in the
latent space. A data compression occurs if the latent space dimension is smaller than
the number of features of X. The decoder inputs are the latent variable values, and its
outputs are the rows of the matrix X̂, the reconstruction of the encoder inputs.

ð Definition 10 (Artificial neuron). A neuron is an elementary component
of a neural network. It computes its output value y, also called activation,
from its input vector x ∈ Rp as follows:

y(x) = a

(
p∑

i=1

wixi + b

)
(3.10)

with wi the neuron weight corresponding to the ith component of its input,
b the neuron bias, and a a function called the activation function of the
neuron, which is often a non linear function.

Feedforward neural networks are constituted of several layers of artificial neurons
stacked on each other, the jth layer having lj neurons. The output yj ∈ Rlj of layer j
becomes the input xj+1 of layer j + 1. For the first layer, x1 ∈ Rm corresponds to a row
Xk of the data matrixX. For the jth layer of lj neurons, the output yj can be computed
as follows:

yj(xj) = a (Wjxj + bj) (3.11)

with Wj ∈ Rlj×lj−1 the layer weight matrix, bj ∈ Rlj the layer bias vector, and a being
applied componentwise. This matrix representation is very useful for the implementation
of neural networks. A scheme of a simple network is shown in Figure 3.6. In an autoen-
coder, the latent space is in practice the output of the last layer of the encoder. If this
layer has less neurons than the number of features of the dataset, m, the information is
compressed.

The activation function allows to introduce non linearity in the neural network. With-
out it, a neural network outputs only a linear combination of its inputs. Several activation
functions have been described in the literature, the three mainly used being the sigmoid
function asigm, the hyperbolic tangent function atanh, and the rectified linear unit function
arelu. To be used as activation function, a function must necessarily be differentiable,
or at least admit a left and right derivative at any point. In general, hyperbolic tan-
gent is preferred over sigmoid function because it allows a faster convergence [119]. It
has been demonstrated experimentally that for deep networks, the rectified linear unit
perform better than hyperbolic tangent [120]. Their graphs are in Figure 3.7 and their
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Figure 3.6 – Scheme of a feedforward neural network with one hidden layer.

expressions are as follows:

asigm(z) =
1

1 + e−z
atanh(z) =

ez − e−z
ez + e−z

arelu(z) = max(0, z) (3.12)
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Figure 3.7 – Graphs of the three main activation functions.

The weights and biases of the neurons are adjustable parameters, that are optimized
iteratively usually with stochastic gradient descent [121] during a learning phase, the
gradient of a chosen cost function being computed thanks to the back-propagation al-
gorithm [122]. The cost function can be for example the mean squared reconstruction
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error:

ε =
1

n

n∑

k=1

‖Xk − X̂k‖22 (3.13)

The back-propagation method relies on the computation of the partial derivatives of the
cost function with respect to weights and biases. It aims to propagate backward the
gradient descent to the weights and biases of each neuron of each layer, to update them
before the next gradient descent iteration. The gradient descent step size is called the
learning rate. More in depth mathematical development are available in Goodfellow et
al. [118] and Nielsen [123]. Several implementation of gradient descent have been used
to optimize neural networks [124]. They are mainly based on the Stochastic Gradient
Descent method, which is an optimization technique not limited to the field of neural
networks [125]. Variant of this algorithm have been proposed recently by the neural
networks community to improve its performances, as for example adaptive learning rate
methods like RMSProp [126] or Adam [127] algorithms. The main idea of these methods
is to change the learning rate depending on previous values of the gradient.

Neural networks are a very powerful tool: by combining and chaining simple linear
operations with easy to compute non-linear functions, the whole network can represent
complex functions.

ð Theorem 1 (Universal approximation theorem). A feedforward network
with a linear output layer (with a linear activation function) and at least
one non-linear hidden layer (with a non-linear activation function) can ap-
proximate any continuous function on a closed and bounded subset of a finite-
dimensional space, with an arbitrarily small amount of error if the network
has enough neurons in the hidden layers [118].

For more precise and in depth mathematical formulation, see Hornik et al.
[128] and Cybenko [129].

This theorem guarantees that a neural network representing a given function exists,
but it gives no information on the ability of the gradient descent algorithm to find the
correct weights and biases corresponding to it for a given network architecture. Indeed,
the main drawback of the gradient descent is that there is no guarantee to find the global
minimum: it can get stuck in a local minimum, which leads to sub-optimal performances.

During its training, a neural network can encounter two main setbacks: underfitting
and overfitting.
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ð Definition 11 (Underfitting). It occurs when the network does not reach
sufficiently high performances on the training data (measured for example
with the cost function value).

Definition 12 (Overfitting). It occurs when their is a too important per-
formance gap between the performances obtained on training data and the
ones obtained on unseen data. The performance of a network on unseen data
is also called the generalization error.

One way to prevent underfitting is to increase the capacity of the network, that is
its number of trainable parameters. To limit overfitting, several methods have been
developped, called regularization [118]. These methods can for example set penalties on
the trainable parameters norm (L1 or L2 regularizer, also known as weight decay), end
the learning procedure when the performances stop improving during the training process
(early stopping), or prevent the neurons to depend heavily on each other, by randomly
removing some of them during the training (as the dropout method for example).

The autoencoder has several advantages over the other presented dimensionality re-
duction techniques which are mainly due to the neural network framework. Firstly, it
allows to design specialized layers that can take into account a priori knowledge about
the data, as for example Convolutional Neural Networks for image processing [130]. More
generally, the modularity of the neural network framework allows to adapt its layers and
their connectivity to the issue at hand. Moreover, the universal approximation theo-
rem allows an autoencoder, at least theoretically, to both compress and reconstruct any
type of input data, with any compression rate. Indeed, for a given set of data samples,
there exist a line that pass exactly through all data points. This function can be repre-
sented with a neural network. However, it is worth noting that the produced network
will reproduce exactly the training data, but will be unable to generalize to new data:
it will be overfitting. To avoid this, regularization techniques can be used to force the
network to extract only the most pertinent information from the data at the expense of
the reconstruction error, or an appropriate compression rate can be chosen from a priori
knowledge on the data.

The data mapping in the latent space of an autoencoder can have an arbitrary internal
structure: the gradient descent will converge toward the most efficient way to reconstruct
the input data, regardless where the data are mapped in latent space. Thus, areas of the
latent space that correspond to consistent data can be very sparse, and areas that are far
from any data samples are most likely meaningless. Hence, it is not possible to generate
easily new data with an autoencoder.
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3.2.2 Generative Models

The primary goal of generative models is to extract information from the dataset so that
they can generate new samples that could have been in the original dataset. For that,
they can infer the latent variables that describes the underlying structure of the data,
but it is not an explicit goal, contrary to the dimensionality reduction techniques. They
can rely on an explicit probabilistic modeling as stated in Definition 9, but it is not
necessarily the case (for example in Generative Adversarial Network, a model described
later, the probabilistic modeling is only implicit).

In recent years, generative models received a lot of interest, mainly for their potential
use in image and natural language processing [131]. Most of recent works dealing with
generative models are based on the use of various types of neural networks.

First attempts to create generative models involved stochastic neural networks, which
are different from feedforward neural networks presented previously. Such techniques
include for example Restricted Boltzmann Machine [132], Deep Boltzmann Machine [133],
or Deep Belief Network [134]. However, these techniques result in blurry reconstruction
of the target sample [131], thus they are not suitable when a sharp reconstruction is
required, for example in image generation. Moreover, these models need to be designed
carefully, as they require multiple properties to be ensured to maintain tractability [118].

Variational Auto-Encoder

ð Definition 13 (Variational Auto-Encoder (VAE)). It is a generative model
(Definition 9) introduced by Kingma and Welling [135]. It is based on neu-
ral networks, and has an architecture close to classic autoencoders. It aims
at maximizing the probability of generating samples corresponding to the
ones in the dataset. For that, it approximates during its training the two
unknown conditional distributions P (z|x) (the encoder), and P (x|z) (the
decoder), with the assumption that z ∼ N (0, I). More in depth mathemat-
ical developments on this method are given in section 3.3.

Recently, a generative model based on the autoencoder framework has been devel-
oped: the Variational Auto-Encoder (VAE). To generate data from latent variables more
consistently than with classic autoencoder, some assumptions are made on the structure
of the encoder, latent space and decoder. The main advantage is that the standard nor-
mal assumption for the latent space (z ∼ N (0, I)) forces it to be relatively smooth, which
prevents overfitting to some extent. It also pushes the VAE to learn a dense and disen-
tangled representation in its latent space, and encourages it to uses as few dimensions
as possible. Moreover, learning to simultaneously encode and decode this representation
forces the VAE to create a predictable and structured coordinate system in the latent
space. This makes the VAE particularly effective to capture low-dimensional manifolds
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embedded in the data [118].

Generative Adversarial Network

sample z from N (0, I)

x

Generator G

x̂

Discriminator D

p

Discriminator loss:
max
D

V (D,G)
Generator loss:
min
G

V (D,G)

loss function to be optimized

Figure 3.8 – Scheme of a Generative Adversarial Network architecture. In green the
inputs, in blue the outputs and in red the terms of the loss function used to compute the
gradient descent.

An other powerful alternative is the Generative Adversarial Network (GAN) frame-
work, first introduced in Goodfellow et al. [136]. This framework uses two models that
are trained jointly: a discriminator D, and a generator G. The discriminator has to
determine if a given sample comes from the generator or from the dataset. The gen-
erator has to generate new samples that deceive the discriminator. The idea is that a
distribution generating samples able to deceive the discriminator should be close to the
distribution at the origin of the dataset. However, approximating the dataset distribution
is an implicit goal, as opposed to the VAE where it is set explicitly. The GAN general
architecture and data flow is displayed in Figure 3.8.

Let x ∈ X be a random variable and X =
{
x(i)
}n
i=1

a data matrix of samples of
this variable, and assume that x is generated from a distribution P (x). The role of the
generator is to learn this distribution. For that, it takes as input a random variable z
sampled from a given distribution, for example N (0, I), and maps it to the data space,
through a function G(z,θg) parameterized by θg. The function G can be defined by a
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feedforward neural network. The role of the discriminator is to output the probability p
of a given input sample x(i) to belong to the dataset X rather than being generated by
G, through a function D(x,θd) parameterized by θd, which can be a feedforward neural
network. D is trained to maximize its ability to successfully predict the origin of a given
sample, and on the contrary, G is trained so that D labels the generated sample as a
real sample. It corresponds to a two-players minmax game, formally described with the
following objective function V (D,G):

min
G

max
D

V (D,G) = Ex∼X [logD(x,θd)] + Ez∼N (0,I)[log(1−D(G(z,θg),θd))] (3.14)

The main advantage of the GAN framework is that it is able to represent very sharp
distributions. It is an important feature in image generation for example, where a GAN
is able to generate extremely detailed images, an ability difficult to reproduce with other
techniques. However, one of the drawback of this technique is the complexity and po-
tential instability of the training process.

Indeed, the generator and discriminator are trained alternately, but the synchroniza-
tion of this training needs to be carefully tuned. If D is trained too much compared to
G, G may be unable to produce any sample that deceives D. Conversely, if G is trained
too often relatively to D, it may learn to generate only a few samples x(i) for all possible
values that can be sampled from z in order to maximize its ability to deceive D.

Moreover, the generator may learn to generate adversarial examples to deceive the
discriminator, thus making the learning inefficient [136]. Adversarial examples [137] are
examples almost identical to an example present in the database from a human eye,
but not associated to the corresponding class by the neural network, or on the contrary,
examples associated by the neural network with a very high confidence to a given class,
whereas having nothing in common with this class from a human eye.

It is worth noting that a lot of variants of VAE and GAN have been developed, as well
as some hybrid methods that combine elements from both architectures [131].

Transformer

An other generative model that receives a lot of interest recently is the transformer
framework [138]. This framework is designed to predict sequences of elements. It relies
on the Attention mechanism [139]. It has an encoder-decoder structure, with the encoder
learning to map a sequence of inputs (x1, · · · ,xn) to a sequence of latent variables
(z1, · · · , zn). In turn, the decoder learns to map a sequence of latent representation to a
sequence of outputs (y1, · · · ,yn). This process is performed step by step, one element at
a time. The model is also auto-regressive, that is the generated outputs at the previous
step is considered as an input for the current step. This network was initially developed
for natural language processing, and more specifically translation tasks. It has been
extended to image generation, the Attention mechanism allowing to replace convolutional
layers [140]. However, to apply this framework, the problem needs to be formulated as a
sequence generation problem, which is not always adapted.
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3.2.3 Chosen Approach

To extract the grasp space structure and generate new grasps, both dimensionality re-
duction and generative abilities are required. The dimensionality reduction presented
previously are very powerful, but are unable to generate new data, thus they are not
suitable for our use case.

Regarding the generative models, the transformer framework is not adapted: the
grasp generation problem cannot be formulated easily as a sequence generation problem.
GAN is a very powerful tool, but its training instability issues is a drawback that needs
to be taken into account. It is able to perform dimensionality reduction, as one can
choose the dimension of the input noise. However, the obtained performances can vary
significantly depending on the chosen dimension, and there is no clear guidelines for an
optimal choice [141].

In this work, the VAE framework has been chosen. Indeed, It has a simpler train-
ing process than GAN, and does not has its instability issues. Moreover, its ability to
extract low-dimensional manifolds from the data features fits particularly well with our
hypothesis of a grasp space that constitute a submanifold of the gripper configuration
space. In the following, a more in depth description of the Variational Auto-Encoder is
given.

3.3 Variational Auto-Encoder: Principle and Techniques

Variational Auto-Encoder (VAE) has been first introduced in Kingma and Welling [135].
It resembles to classic autoencoder, but is formulated in a probabilistic framework. Recall
that the goal is to have a model able to generate new data samples that resemble original
samples present in a dataset X, from some latent variables. The latent variables are
unobserved variables that describe main characteristics of a sample, and from which it
can be generated. Thus, a necessary condition for the model to give a correct generation
is that for any sample in the dataset X, there exists at least one combination of latent
variables able to generate a new data point very similar to this particular sample. The
following formalism is inspired from the ones developed in Kingma and Welling [135] and
Doersch [142].

3.3.1 Mathematical Principles

Mathematically, a VAE relies on the concept of marginal likelihood, that is a joint prob-
ability in which some parameter variables have been marginalized (integrated).

Decoder

Let X =
{
x(i)
}n
i=1

be a dataset of samples of some random variable vector x ∈ X
following a distribution P (x) defined over X . Let z ∈ Z be the latent variable vector,
that follows a distribution P (z) defined over Z. The VAE needs to build an estimation
of the unknown distribution P (x). A good approximation of P (x) implies that the VAE
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is able to generate samples having a high P (x) value for any latent variables sampled
from P (z). For that, the VAE has to maximise the following equation, called marginal
likelyhood:

P (x) =

∫
P (x|z)P (z) dz (3.15)

However, this equation as expressed here is intractable for three reasons:

• the conditional distribution P (x|z) is unknown,

• the latent variable vector z and its associated distribution P (z) is unknown,

• the integral over z is complex to compute.

Regarding the conditional distribution P (x|z), the VAE framework makes the as-
sumption that it can be approximated by the following gaussian distribution, param-
eterized by θ ∈ Θ: P (x|z,θ) = N (f(z,θ), βI). f is a deterministic function, and
f : Z × Θ → X . β is an hyperparameter whose influence is discussed later. Without
loss of generality, it can be assumed that f is a neural network, with θ its weights and
bias. The distribution P (x|z,θ) corresponds to the decoder side of a classic
autoencoder, as it outputs samples of x given latent variables z. Equation 3.15
becomes:

P (x) =

∫
P (x|z,θ)P (z) dz (3.16)

The goal is to find a vector θ that maximizes this equation.
Regarding the distribution of z, the VAE framework assumes that no specific knowl-

edge is required, and that P (z) = N (0, I). However, with such assumption, it is very
unlikely that P (z) corresponds to the real latent variable distribution. The fact is that
any distribution can be estimated by passing a normal distribution trough the appro-
priate function [143]. In turn, the universal approximation theorem (Theorem 1) states
that such function can be represented by a neural network. Thus, the function f(z,θ)
has two goals:

• map the sampled z to the corresponding “true” latent variables,

• map the latent variables to the corresponding x value.

The last difficulty is the integral over z. This is taken care of by the encoder part of
the VAE.

Encoder

Regarding the integral over z, P (x) also corresponds to an expectation and could be esti-
mated by sampling several vectors z(i) with i from 1 to n, with P (x) ≈ 1

n

∑
i P (x|z(i),θ).

However, it would require a significant number of samples to find θ that maximize P (x),
as for most z, P (x|z,θ) will be zero or very close to zero. The trick used in the VAE
framework to solve this is to only sample z that are likely to produce a valid x, so that
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P (x) can be estimated and maximized faster. This requires the knowledge of the a priori
unknown distribution P (z|x,θ). It is unknown as it represents the distribution of z
values that are able to generate some given x values for a given function f(z,θ).

To approximate this unknown distribution, a new distribution Q(z|x,φ) parameter-
ized by φ is required, that takes as input a sample of x and output a distribution over
z values having high probability to generate the given sample of x. It is assumed that
Q(z|x,φ) = N (µ(x,φ1), diag[Σ(x,φ2)]) with µ and Σ deterministic functions such as
φ1 ∪ φ2 = φ. As f , it can be assumed that they are defined by neural networks. The
distribution Q(z|x,φ) is analog to the encoder of a classic autoencoder, as it
encodes a sample of x in the latent variables z. The goal is to find a parameter
vector φ that makes the two distributions Q(z|x,φ) and P (z|x,θ) as close as possible.

The considered graphical model representing the VAE is displayed in Figure 3.9.

Objective Function

With these assumptions, a lower bound of the marginal likelyhood can then be estimated
as follows [135, 142]:

logP (x)−D[Q(z|x,φ)‖P (z|x,θ)]︸ ︷︷ ︸
lower bound of the marginal likelyhood

= Ez∼Q[logP (x|z,θ)]−D[Q(z|x,φ)‖P (z)] (3.17)

ð Definition 14 (Kullback-Leibler divergence). The Kullback-Leibler diver-
gence (or KL divergence) D[P1‖P2] is a statistical distance: a measure of how
one probability distribution P2 is different from a second, reference probabil-
ity distribution P1. It was firstly introduced by Kullback and Leibler [144].
A simple interpretation of the divergence of P1 from P2 is the expected excess
surprise from using P2 as a model when the actual distribution is P1.

The KL divergence being non-negative, the left term of the equation is a lower bound
of the marginal likelyhood logP (x). Recall that the goal is to maximize the marginal
likelyhood. Thus, an efficient way for that is to maximize its lower bound. To maximize
it, the KL divergence between Q(z|x,φ) and P (z|x,θ) needs to be minimized, but the
distribution P (z|x,θ) is intractable. Instead, the lower bound can be maximized by
maximizing the right hand side of the equation, which can be optimized trough gradient
descent.

As the gradient descent go along, the first term of the right hand side makes Q(z|x,φ)
more likely to produce z samples that maximize P (x|z,θ). This implicitly minimizes
the KL divergence between Q(z|x,φ) and P (z|x,θ), as it gradually makes Q(z|x,φ) a
better approximation of P (z|x,θ). Thus optimizing the right hand side of the equation
will become equivalent to optimizing logP (x).
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Figure 3.9 – Directed graphical model of a VAE [135]. Solid lines describe the generative
model P (x|z,θ)P (z), and dashed lines represent the approximation Q(z|x,φ) of the
intractable distribution P (z|x,θ). The parameter θ and φ are learned simultaneously
by sampling in the dataset X. One can sample n times a x or z with fixed θ and φ.

3.3.2 Training and Generating Samples

Gradient Descent Optimization and Reparameterization Trick

The training process of a VAE together with the reparameterization trick is summarized
in Figure 3.10.

To perform the gradient descent algorithm during the training phase, Equation 3.17
is evaluated for several x values sampled from the dataset X, and the equation becomes:

Ex∼X [logP (x)−D[Q(z|x,φ)‖P (z|x,θ)]] =

Ex∼X [Ez∼Q[logP (x|z,θ)]︸ ︷︷ ︸
reconstruction loss

−D[Q(z|x,φ)‖P (z)]︸ ︷︷ ︸
KL divergence loss

] (3.18)

Reparameterization Trick Computing Ez∼Q[logP (x|z,θ)] requires to sample z val-
ues from the distribution Q(z|x,φ) = N (µ(x,φ1), diag[Σ(x,φ2)]). This sampling oper-
ation does not allow the gradient back-propagation. The reparameterization trick, pro-
posed in Kingma and Welling [135], allows to solve this issue by replacing this sampling
operation by the following:

z = µ(x,φ1) + Σ(x,φ2)
1
2 � ε, ε ∼ N (0, I) (3.19)

with � a componentwise multiplication. After applying the reparameterization trick,
Equation 3.18 becomes:

Ex∼X [logP (x)−D[Q(z|x,φ)‖P (z|x,θ)]] =

Ex∼X [Eε∼N (0,I)[logP (x|z = µ(x,φ1) + Σ(x,φ2)
1
2 � ε,θ)]

−D[Q(z|x,φ)‖P (z)]] (3.20)

With some given samples x and ε, this equation is deterministic and the gradient can
be back-propagated.
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x

Encoder Q(z|x,ϕ)

µ(x,ϕ1) Σ(x,ϕ2)

sample ε from N (0, I)

⊙

+

KL divergence loss:
D[N (µ(x,ϕ1), diag[Σ(x,ϕ2)])∥N (0, I)]

Decoder P (x|z,θ)

f(z,θ)

reconstruction loss:
∥x− f(z,θ)∥22

loss function to be optimized

reparameterization trick

Figure 3.10 – Scheme of the training process of the VAE, with the reparameterization
trick. In green the encoder and decoder inputs, in blue their ouputs, and in red the terms
of the loss function used for the gradient descent.

KL Divergence Loss Component With the chosen hypothesis of a Gaussian distri-
bution for the distribution Q(z|x,φ) and P (z), the KL divergence loss component on
the right side of Equation 3.18 admits a simple form and can be computed as follows:

−D[Q(z|x,φ)‖P (z)] = −D[N (µ(x,φ1), diag[Σ(x,φ2)])‖N (0, I)] (3.21)

=
1

2

dimZ∑

j=1

(log(Σj)− (µj)
2 − Σj) (3.22)

Reconstruction Loss Component The term logP (x|z,θ) of Equation 3.18 can be
seen as a reconstruction loss. Maximizing it is equivalent to minimizing the mean squared
error between the input data and the estimated data, that is minimizing ‖x− f(z,θ)‖22
[118]. In that sense, it is similar to the reconstruction loss of a classic autoencoder.
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Sample z from N (0, I)

Decoder P (x|z,θ)

x = f(z,θ)

Figure 3.11 – Scheme of a VAE after the training, when used to generate new data: only
the decoder part is used, and the latent variables are sampled from P (z) = N (0, I). In
green the decoder input, and in blue its output.

Generating Samples

Once the training is completed, ideally the VAE has captured the distribution P (x).
New samples of x can be generated by sampling z vectors from N (0, I), and using them
as input to the decoder. This is summarized in Figure 3.11.

3.3.3 VAE Variants

β-VAE

An hyperparameter has been introduced in the VAE framework, called β in Higgins
et al. [145]. Depending on authors, this parameter is introduced as a coefficient on
the denominator when computing logP (x|z,θ) [142] or on the numerator of the KL
divergence term [145] on the right side of Equation 3.18. Both point of views have
equivalent interpretation. This parameter can be seen as a regularization parameter,
allowing to change the weight granted to the KL divergence constraint relative to the
reconstruction of the correct sample of x. Indeed, the KL divergence term tends to
reduce the amount of information contained in Q(z|x,φ) to make it as close as possible
to the non-informative P (z).

• Putting more weight on this constraint reduces the encoder ability to output a z
that is likely to produce the required x, and thus reduces the ability of the decoder
to reconstruct correctly x given the misleading z. However, such setup forces the
encoder and decoder to extract the most important features of the samples, and
produces a latent space with each latent variable storing one of these features, each
of them being decorrelated from the others [145, 146].

• If the weight on the KL divergence constraint is reduced, the encoder will be able to
produce very informative z samples, thus allowing the decoder to reconstruct more
accurately the x values. In this case, the main drawback is that the decoder will rely
more on its encoder to produce a meaningful reconstruction. The distribution P (z)
produced by the encoder may move away from the standard normal assumption
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during training. However, at test time, z values are sampled from a standard
normal distribution. The VAE may fail to produce samples consistent with P (x)
when its input is a z sample from P (z) instead of Q(z|x,φ).

It is worth noting that the model learnt by a VAE with β = 0 is equivalent to a classic
autoencoder, as the encoder will learn early in the training to output only punctual
distributions, as it is the best way to maximize the quality of the reconstruction. Thus,
a trade-off needs to be found between the reconstruction abilities, and the regularity
of the latent space. It is this latent space regularity that makes VAE good at learning
low-dimensional manifolds.

Conditional VAE

c

x

Encoder Q(z|x, c,ϕ) sample ε from N (0, I)

µ(x, c,ϕ1) Σ(x, c,ϕ2) ⊙

+

KL divergence loss:
D[N (µ(x, c,ϕ1), diag[Σ(x, c,ϕ2)])∥N (0, I)]

Decoder P (x|z, c,θ)

f(z, c,θ)

reconstruction loss:
∥x− f(z, c,θ)∥22

loss function to be optimized

reparameterization trick

Figure 3.12 – Scheme of the training process of the CVAE, with the reparameterization
trick. In green the encoder and decoder inputs, in blue their ouputs, and in red the terms
of the loss function used for the gradient descent.

A variant of the VAE is the Conditional Variational Auto-Encoder (CVAE) [147].
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cSample z from N (0, I)

Decoder P (x|z, c,θ)

x = f(z, c,θ)

Figure 3.13 – Scheme of a CVAE after the training, when used to generate new data:
only the decoder part is used, and the latent variables are sampled from P (z) = N (0, I).
In green the decoder input, and in blue its output.

The main idea is to condition output generated by the VAE on a supplementary input
c. In this framework, the encoder and decoder distributions are conditioned by c and
become Q(z|x, c,φ) and P (x|z, c,θ). Equation 3.17 can be rewritten as:

logP (x|c)−D[Q(z|x, c,φ)‖P (z|x, c,θ)] =

Ez∼Q[logP (x|z, c,θ)]−D[Q(z|x, c,φ)‖P (z|c)] (3.23)

The training process of a CVAE is displayed in Figure 3.12. It is identical to the classic
VAE one, the information of the condition c simply needs to be added to the encoder
and decoder. At testing time, when generating new samples x, the principle is the same
as for a classic VAE, a vector z sampled from N (0, I) is used as input, but in addition
a conditioning data c needs to be provided. This is summarized in Figure 3.13.

Now that the tool used for grasp generation is presented, the principle of the proposed
method is described in the following.

3.4 Variational Auto-Encoders for Grasp Space Exploration

The method proposed in this work takes advantage from human experience to guide the
grasp space exploration. Indeed, it is easy for a human to find gripper configurations that
are likely to grasp a given object, that is configurations belonging to the grasp space.
However, those primitive grasps do not necessarily have optimal quality metric values.
Actually, it is difficult for a human to assess a priori the relative and absolute quality of
grasp configurations. The aim of the grasp space exploration is to search for grasps by
testing gripper configurations close to the ones proposed by the human and to predict
the quality of each explored grasp. This is done by interpolating and extrapolating new
grasps using VAE. Exploring the grasp space allows to build a collection of grasps with
various quality values, including grasps with higher quality than the primitive ones if
such grasps exist.
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Exploring the grasp space taking inspiration from human-provided grasps allows to
massively reduce the configuration space to be explored compared to exploration meth-
ods based on random sampling, while retaining sufficient exploration potential. Indeed,
classic methods based on random sampling require to cover as much gripper configura-
tion space as possible to find possible grasps, and often produce a high number of failed
grasps. With the proposed method, there is no need to cover the whole gripper configura-
tion space to find suitable grasps, as the exploration is already focused on configurations
with a high success probability from human expertise. Predicting a grasp quality allows
to improve even further the success rate of generated grasps.

The general workflow used to achieve this is summarized on Figure 3.14 and is de-
composed as follows:

1. the constitution of a primitive grasp dataset

2. the training of a Human-initiated Grasp Generator Variational Autoencoder (HGG)

3. a dataset extension & grasp quality estimation phase

4. the training of a Quality-oriented Grasp Generator Variational Autoencoder (QGG)

Each of the above steps is detailed below.

3.4.1 Primitives Dataset

To leverage the human ability to find gripper configurations belonging to the grasp space,
an object dependent primitive grasp dataset is built. A primitive grasp is a handcrafted
gripper configuration, with its pose and gripper internal configuration human-chosen so
that it is collision free and likely to grasp the object from human expertise. In our
case, these primitive grasps are specified thanks to a simulation: the operator moves
the simulated gripper around an object and register the desired pose. This procedure
could also be applied on a real setup, through physical demonstration using a cobot for
example.

For a given object, several grasp types or categories can be identified from human
experience. For example, for a cylinder, two possible grasp types are grasps with the
palm along the cylinder side, and grasps with the palm along one of the cylinder base.
This is illustrated in Figure 3.15. For each of these grasp types, several variations need
to be provided so that the VAE can extract the underlying manifold structure.

The dataset stores the dconf + 1 parameters describing the gripper configuration (see
subsection 3.1.2) of each primitive grasp along with the four parameters of the tabletop
plane Cartesian equation, both in object frame Fobj . Knowing the stable position of the
object is a critical information to avoid collisions. Some grasps may collide with the table
in a given stable position, while being suitable for an other one.

Expressing the grasp configuration in the object frame is still useful as it allows an
invariance to a position change and to a rotation around a vertical axis.
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grasp type 1

grasp type 2

Figure 3.15 – Example of two grasp configurations belonging to two different grasp types
on a cylinder, for a two fingered gripper with two phalanges.

3.4.2 Human-initiated Grasp Generator (HGG)

The goal of the HGG is to infer the correlations existing between the parameters of
different grasp primitives to learn a model of the grasp space. Such correlations exist,
as primitive grasps are in the grasp space, and the grasp space is a subset of the gripper
configuration space. The HGG is able to use those correlations to map the grasp space
in its latent space. This allows the relevant grasps to be densely represented in the latent
space, contrary to the gripper configuration space, in which they are present in a very
sparse way.

Concretely, the HGG is a CVAE, that has to predict the distribution at the origin
of the primitive grasps and by extension of the grasp space, conditioned on the tabletop
plane Cartesian equation. Its training dataflow is shown in Figure 3.16. It is trained for
a given object on the grasp primitive dataset. This model can then be used to generate
efficiently new configurations that have a high probability to be in the grasp space. It is
worth noting that the choice of representing orientation with quaternions allows to ease
the generation process, as a simple linear interpolation between two quaternions can give
a consistent new orientation, which is not the case with euler angles or rotation matrix
representation. Thus, the network will need less capacity to interpolate and extrapolate
new orientations.

3.4.3 Dataset Extension & Grasp Quality Computation

Sampling in the latent space of the HGG allows to explore the grasp space in a efficient
way. Indeed, the HGG takes into account the correlations existing between the parame-
ters of the primitive grasp configurations, and thus is able to extrapolate and interpolate
new grasps that take inspiration from human grasp strategies.

These generated grasps are tested in simulation along with primitive ones to check
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eg

Encoder Q(z|g, e,ϕ) sample ε from N (0, I)

µ(g, e,ϕ1) Σ(g, e,ϕ2) ⊙

+

D[N (µ(g, e,ϕ1), diag[Σ(g, e,ϕ2)])∥N (0, I)]

Decoder P (g|z, e,θ)

f(z, e,θ)

∥g − f(z, e,θ)∥22

Figure 3.16 – Scheme of the training workflow of the HGG, with g the grasp configuration,
and e the tabletop Cartesian equation as defined in subsection 3.1.2. In green the inputs,
in blue the outputs and in red the loss functions used during the training.

their success. A configuration is successful if the following conditions are met:

• it does not collide with the table;

• it successfully lifts the object from the table;

• its QMSV value is greater than 0.

For each successful configuration, the computed QMSV quality value is registered.
For failed configurations, a null value is registered as quality value.

This allows to extend the primitive dataset by exploring extensively the grasp space.
Thus, a collection of grasps with various quality values can be constituted, and if better
grasps than the primitive ones exist, they can be discovered and stored for the following
step.

3.4.4 Quality-oriented Grasp Generator (QGG)

The goal of the QGG is to reliably generate grasps with their corresponding grasp quality.
As the HGG, it is a CVAE, that has to predict the distribution at the origin of the grasp
space, conditioned on the tabetop plane Cartesian equation. The decoder part is slightly
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eg

Encoder Q(z|g, e,ϕ) sample ε from N (0, I)

µ(g, e,ϕ1) Σ(g, e,ϕ2) ⊙

+

D[N (µ(g, e,ϕ1), diag[Σ(g, e,ϕ2)])∥N (0, I)]

Decoder P (g, QMSV |z, e,θ)

f(z, e,θ)

∥(g, QMSV )⊤ − f(z, e,θ)∥22

Figure 3.17 – Scheme of the training workflow of the QGG, with g the grasp configuration
and e the tabletop Cartesian equation as defined in subsection 3.1.2, and QMSV the grasp
quality. In green the inputs, in blue the outputs, and in red the loss functions used during
the training.

modified as it also has to perform a regression on the quality QMSV value. A scheme of
the training architecture is displayed in Figure 3.17.

The QGG is trained for a given object on the extended set formed by merging the
primitive grasp set with the generated grasp set (both successful and failed). Learning
failed grasps together with successful ones allows to identify areas of the configuration
space that are close to the grasp space but unable to produce a successful grasp, to
reduce the risk of predicting a high quality for such configurations. For example, some
configurations can lead to a failed grasp because of collisions or object movements during
the finger closing phase. These configurations are labeled with a null grasp quality. The
QGG can then learn to predict a null or very low grasp quality associated with these bad
configurations. Moreover, the dataset extension allows to represent more accurately and
more reliably the grasp space.

The QGG can be used to explore the grasp space in an even more efficient way than
the HGG. Indeed, the grasp quality prediction allows to filter the generated grasp based
on their expected quality. Grasps having a high quality and a high probability of success
can be generated simply by selecting the ones with a quality prediction above a given
threshold.

119



CHAPTER 3. HUMAN INITIATED GRASP SPACE EXPLORATION APPROACH

3.5 Conclusion

This chapter has introduced a method for an efficient grasp space exploration adapted to
a pluri-digital and underactuated gripper. This method aims at extracting the structure
of the grasp space, from a set of human-provided grasp primitives, in order to generate
efficiently realistic grasps. For that, it uses the VAE framework.

First, the considered hypotheses along with the required inputs and outputs have
been presented. Then, a description of the state of the art regarding dimensionality
reduction and generative model have been made to highlight the various tools available
for these issues. Next, the theoretical knowledge regarding VAE has been explained.
Finally, The different steps of the proposed method have been detailed.

The aim of the next chapter is to present a concrete implementation of this method,
assess its performances, both in simulation and on a real setup, and compare it with
other classic sampling-based methods.
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Chapter 4

Method Qualification

In this chapter, the grasp space exploration method proposed in chapter 3 is detailed,
implemented and qualified. The described workflow is applied on several objects, using
an underactuated gripper having three two-phalanx fingers designed at CEA List. This
setup is described, together with the chosen objects, corresponding primitive grasps, and
VAEs architecture. An in depth analysis of the produced latent space is proposed, and
the VAEs hyperparameter tuning is discussed. Finally, the proposed method is compared
with a grasp space exploration method based on random sampling, and its performances
are assessed, both in simulation and in a real robotic demonstrator.
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4.1 Considered Setup, Objects and Primitives Grasps

The experimental setup on which the method described in section 3.4 is applied is pre-
sented in the following. The objects chosen to test the method are also presented, along
with the selected primitive grasps. Then, some details are given on the training and
architecture of the HGG and QGG.

4.1.1 Considered Gripper and Robot

(a) Picture of the underactuated gripper when
grasping an object.

(b) Scheme of the actuator-to-joint mapping.

Figure 4.1 – Picture and actuation scheme of the CEA three-fingered underactuated
gripper used in this work.

The two-phalanx three-fingered gripper considered in this work was designed at CEA
List. It is displayed in Figure 4.1a. It implements an underactuated and adaptive
behavior based on differential mechanisms as described in subsection 1.2.3 that allows its
natural adaptation to the object geometry, thus increasing the robustness of the grasp,
by forming a power grasps.

This gripper has two joints on each finger and one actuator per finger to control
both joints. A fourth actuator allows to control in a coupled way the spread angle θ
between two fingers, allowing an abduction-adduction motion (see Figure 4.1b for the
actuator-to-joint mapping). In each finger, the underactuation is created by a planar four-
bar linkage together with an integrated passive elastic spring, located in the proximal
phalanx. When the mechanism is at rest, the finger is out straight. The distal phalanx
starts moving when the effort applied by the object on the finger is above a given force
threshold, determined by the passive elastic spring stiffness. More mathematical details
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Figure 4.2 – Gripper and camera mounted on an ABB IRB 4600 industrial robot arm.

are available in Appendix A.
Using notations previously introduced in subsection 3.1.1 (see Figure 3.2), this gripper

has nf = 3 fingers, with np = 2 phalanges for each finger. Fingers 1 and 2 have k1 =
k2 = 1 actuated degree of freedom allowing finger repositioning relative to the palm, with
a mechanical coupling such as q11 = −q21 = θ. Thus, the gripper internal configuration
space has one dimension, and the dimension of the configuration space is then dconf = 7.
For this gripper, a grasp configuration is defined by the following eight parameters:

• the pose of the gripper frame Fgrip in the object frame Fobj , as exposed in subsec-
tion 3.1.2, with the orientation in quaternion convention,

(x, y, z, qx, qy, qz, qw) ∈ SE(3) (4.1)

• The gripper internal configuration, through the spread angle θ, as shown on Fig-
ure 4.3,

θ ∈
[
0,
π

2

]
(4.2)

This gripper is mounted as end effector of a six degrees of freedom industrial robot
arm (ABB IRB 4600 model) together with a 3D camera from Tridimeo [148], as shown
on Figure 4.2. Details on the global control architecture used are given in Appendix A.

As stated in subsection 3.1.1, our method assumes that the object model is known,
as well as its pose. The Tridimeo camera is associated with a software that tries to fit
the known object model to a point cloud captured by the camera, based on algorithms
given in Mayran de Chamisso et al. [149, 150]. When this fitting is successful, it allows
to retrieve the pose of the known object frame in the scene, and express it in the camera
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frame. Then, the camera being fixed on the robot, it is possible to express the pose of
the object in the reference world frame.

4.1.2 Simulation Setup

(a) Pose of the frame Fgrip used to locate the end-effector
relative to the object frame Fobj .

(b) Spread angle θ.

Figure 4.3 – Gripper frame Fgrip relative to the object frame Fobj , and spread angle θ.

Figure 4.4 – Example of a grasp with four contacts: three contacts with the fingertips
c1, c2, c3, and one contact with the palm, not represented as hidden by the object. FCi
is the friction cone of the contact i, and fc−i the contact force for the contact i.

The experimental setup is replicated in simulation using ROS [151] and Gazebo [152].
A picture of this simulated setup is displayed in Figure 4.3.

The underactuation and coupling mechanism are implemented in the Gazebo simu-
lation through a control plugin, which represents low level controllers and converts posi-
tions and velocities setpoints into torques applied on the robot arm and gripper joints.
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The positions and velocities setpoints for the robot arm joints and gripper actuators are
generated by ROS trajectory controllers [153], taking as input the target and current
positions. The robot arm joint target positions are determined from the gripper target
pose through an inverse kinematics algorithm using MoveIt [154], a motion planning
framework integrated with ROS.

The simulation allows to model contacts, in order to compute the grasp quality QMSV

described in Equation 2.83. In the simulation, a point contact with friction model is used.
As an example, a grasp involving four contacts is displayed in Figure 4.4: three on the
fingers, and one on the palm. The contact positions c and frame orientations (through
the directions of the contact normals, that is the axes of the friction cones FC) are
retrieved and allow to express the grasp map G, which in turn allows to compute QMSV .

4.1.3 Objects and Corresponding Primitives Grasps

bent pipe

cinder
block

pulley

Figure 4.5 – The chosen objects and their frame Fobj in their different stable poses.

The method proposed in section 3.4 is applied on three different objects:

• a connector bent pipe
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• a pulley

• a small cinder block

Their CAD model (3D meshes) used in the simulation in their different stable poses are
visible in Figure 4.5. Those objects have been chosen for their relative complexity and
diversity in terms of shapes. Other objects could have been chosen, provided that they
have a size, shape and weight compatible with the gripper workspace and payload.

A set of primitive gripper configurations is determined for each of those objects for
each of their stable pose. These primitive gripper configurations can be sorted in different
grasp types presented in Figure 4.6. Five grasp types can be identified for the bent pipe
and cinder block, and three for the pulley. For each of these grasp types, several variants
are manually created. For the constitution of this primitive grasp dataset, the spread
angle θ is chosen between four discrete values corresponding to main gripper internal
layouts: θ = 0, θ = π/6, θ = π/4, and θ = π/2.

The following number of primitive grasps are gathered for each object:

• bent pipe: 145 samples

• cinder block: 141 samples

• pulley: 118 samples

Around one hour has been required for a human operator to register the primitives
for a given object in the simulated environment. It is worth noting that the required

1 2 3 4 5

bent pipe

1 2 3 4 5

cinder
block

1 2 3

pulley

Figure 4.6 – Primitive grasp types for the three chosen objects.
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amount of time highly depends on the user interface employed to register the primitives.
Here, the interface design is not optimal, and a reduction in the time required can be
expected when using an improved interface, or a virtual reality setup for example.

4.1.4 HGG & QGG Networks Architecture and Training

A distinct HGG is trained on the primitive grasp dataset for each object. Its inputs
and outputs are shown in Figure 4.7 along with its global architecture. For the gradient
descent during the training, a Mean Square Error (MSE) is computed for each gripper
parameter. Each of these errors is averaged on each batch of training data. Then, the
global loss for each batch is computed as the sum of these averaged errors together with
the KL divergence loss. This loss is then used by the RMSprop optimizer implemented
in Keras library [155].

To make sure that the quaternion outputs by the decoder is a unit quaternion, a
custom activation function is used to normalize the quaternion on the output layer of
the decoder.

At first, preliminary tests have been conducted with loss components having a more
physical meaning than MSE for the position and orientation reconstruction:

• the mean Euclidean distance between true and reconstructed positions,

• the mean angle α between true and reconstructed orientations, computed by:

α = cos−1(2(q · q̂)2 − 1) (4.3)

with q the true orientation, q̂ the reconstructed orientation, and · the quaternion
inner product.

Both metrics also allow to compute the reconstruction performances achieved on the
training dataset at the end of the training, in order to make a comparison with training
using classic MSE loss. It appears that a training using Euclidean distance loss for the
position reaches performances equivalent to a training with classic MSE loss. On the
contrary, a training using the mean angle loss for orientation obtains lower performances
than a training with MSE loss. The performance gap for the orientation between MSE
and mean angle loss may be linked to the fact that a given orientation can be repre-
sented by two quaternions, q and −q, which cannot be discriminated by the mean angle
loss. With the mean angle loss, every orientation admit two equivalent representations,
whereas there is always only one possible representation with the MSE loss. With the
mean angle loss, one of the two representations is easier to learn for a given data point,
depending on the network weight initialization, but the easiest representation may differ
from one data point to an other. After a training with a mean angle loss, for q1 and q2
two close orientations, the VAE may output as reconstruction q1 and −q2: the network
looses some of its capacity trying to represent very sharp variations that have no physical
meaning. Thus, it was decided to keep the classic MSE loss for every component.

After the training of the HGGs, 2000 grasps for each stable pose of each object are
generated by sampling in each HGG latent space. These generated grasps are tested
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Figure 4.7 – HGG and QGG architecture. In blue the input layers, in green the hidden Neural Network (NN) and in red
the output layers. The hidden NN inner layers are fully connected layers, with hyperbolic tangent activation functions. The
main encoding and main decoding NN have symmetrical inner architecture. The inputs and outputs NN are small networks
(with much less parameters compared to main encoding and decoding NN) in charge of extracting or reconstructing specific
features associated with position, orientation, spread angle, tabletop equation or quality respectively. The supplementary
input for the tabletop plane Cartesian equation ensures that the generated grasp depends on it [147]. The tabletop input NN
appears both in encoder and decoder: it is the same network in both places (same weights), and not two different networks.
This architecture is implemented with Tensorflow [156] and Keras [155] python libraries. The QGG has the same architecture
and hyperparameters, with an added output to the decoder squared in orange.
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in simulation along with primitive ones to check their success and compute their QMSV

value (Equation 2.83), in order to create the extended dataset for the training of the
QGGs.

A distinct QGG is trained for each object on the extended set formed by merging
the primitive grasp set with the generated grasp set (both successful and failed). The
architecture, hyperparameters and inputs-outputs are the same as the ones used for
the HGG (see on Figure 4.7) with the grasp quality added as a supplementary output
to the decoder. This way, the QGG decoder learns to predict the grasp quality while
reconstructing the other grasp configuration parameters. The loss function and optimizer
are also the same as the ones used for the HGG, with a MSE corresponding to the grasp
quality added to the loss.

4.2 Hyperparameters Tuning and Latent Space Analysis

In the following, an interpretation and visualisation of the latent space of the HGG is
presented. Then, the choice of hyperparameters for optimal grasp space modeling is
discussed.

4.2.1 HGG Latent Space: Illustration in the Case of Two Latent Vari-
ables

The HGG learns to model the grasp space in its latent space. By sampling values in it,
one can generate new gripper configurations that are likely to belong to the grasp space.
To better understand and visualize this, some learning trials have been conducted with
a two dimensional latent space having two latent variables l1 and l2.

The obtained gripper configurations when exploring a two dimensional latent space
for one stable pose of the bent pipe are shown in Figure 4.8. As some configurations may
not lead to successful grasps, or may be in collision with the object or the environment,
only pre-grasp configuration are shown (that is before closing the fingers), with collisions
disabled.

A colormap of the latent space from which the gripper configurations of Figure 4.8
are extracted is displayed in Figure 4.9.

On the top-right corner of Figure 4.8 appears a configuration corresponding to the
bent pipe primitive grasp type 1 (shown in Figure 4.6). The rest of the right side
configurations corresponds to the grasp type 3, and the left side configurations to the
grasp type 2.

It can be deducted by observing Figure 4.8 that the latent variable displayed on the
horizontal axis (that corresponds to l1 in Figure 4.9) encodes mainly the direction from
which the bent pipe will be grasped: the two rearrangeable fingers on the concave side
or on the convex side. The other latent variable (l2 in Figure 4.9) is encoding mainly
translations. This is more visible in Figure 4.9. However, this figure shows that the
variables of the configuration space are strongly entangled in the two latent variables:
for example, the three translations are controlled by both l1 and l2. It may reflect an
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grasp type 2 grasp type 3

grasp type 1

Figure 4.8 – Gripper configurations generated when visiting a two dimensional latent
space of an HGG for the bent pipe. The image inside the red square is the point (0, 0)
in latent space. The images between the red and blue square and the images between
the blue and green square correspond to points evenly distributed on circles of diameter
respectively 0.5 and 1 in latent space. The coordinates of these configurations are shown
with black cross markers on Figure 4.9. Here, translations along the image plan normal
are not visible, which explains some visually almost identical configurations.

intrinsic property of the manifold structure of the grasp space: the translations may be
highly correlated to each other and to the orientation. It may also indicate that this
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Figure 4.9 – Colormap of the latent space of an HGG for the bent pipe object, for one
stable pose, when using a two dimensional latent space (latent variables l1 and l2). The
black cross markers correspond to coordinates of configurations displayed on Figure 4.8.
The color value is the output of the HGG decoder for the corresponding l1 and l2 values.
Values for x, y and z components are in meters (and without dimension for the other
components).

latent space is too small to both reconstruct accurately the training data and find a
disentangled latent representation: the grasp space may be projected into a too small
latent space.

Thus, the latent space dimensions, and other hyperparameters, need to be tuned
carefully to obtain the best grasp space model possible.

4.2.2 HGG Tuning to Model Efficiently the Grasp Space

The HGG has three main hyperparameters that can be tuned to improve the learnt grasp
space model:

• the network size;

• the latent space dimension, that is the number of latent variables;

131



CHAPTER 4. METHOD QUALIFICATION

• the KL divergence loss component coefficient [145].

Several indicators can be monitored to assess the influence of those hyperparameters on
the performances of the HGG:

• the reconstruction error;

• the KL divergence loss component value reached at the end of the training;

• the number of used latent variables, that is the number of latent variables with a
high KL divergence among the available latent variables;

• the proportion of generated successful grasps.

Various learning trials have been conducted with different hyperparameters combi-
nations. A summary of the effects of the hyperparameters is given in the following
subsections.

Trade-Off Between Reconstruction and Regularity

One of the distinctive features of a VAE is that its loss function combines a reconstruction
loss and a regularization loss (the KL divergence), as shown in Equation 3.18. This leads
the training process to converge to a trade-off between reconstruction and regularity as
shown in subsection 3.3.3. Recall that:

• the reconstruction is the ability to accurately reproduce on the output the input
data;

• the regularity is the fact that the input data are homogeneously distributed in each
latent variable (here, following a normal distribution), and that latent variables are
disentangled.

A side effect of the KL divergence constraints is that the network is pushed to use as
few latent variables as possible to represent the data. For the HGG, both terms are
important: a good reconstruction is needed as it allows to capture faithfully all the
primitive data variability, and a good regularity is also needed as it reduces the data
distribution sparsity, and thus the risk of generating inconsistent gripper configurations.
Thus, in our case, the KL divergence coefficient regulates a trade-off between
the accuracy of the primitive grasp reconstruction and the proportion of
successful generated grasps.

Increasing this coefficient will put higher priority on the KL divergence term, and thus
increases the regularity at the expense of the reconstruction. A too high coefficient on this
term can push the network to ignore the data variability along a given axis to homogenize
the data in its latent variables and disentangle them, leading to poor reconstruction.
Conversely, a too low coefficient will allow a very accurate reconstruction, but the latent
variables will be more entangled and their data distribution will be sparser.
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The optimal value of the coefficient depends mainly on the latent space dimension.
In Higgins et al. [145], they recommend a value greater than 1, but they use the VAE
for image generation, which involves a latent space of greater dimension than for the
presented use case. For the HGG, it has been observed that a value below 1 is mandatory
to keep an acceptable reconstruction loss, typically between 10−2 and 10−4.

Network Size

To increase the reconstruction with less impact on the regularity than the KL divergence
coefficient, one can increase the network size, that is the number of neurons in the different
layers, or the number of layers. Indeed, it increases the number of network trainable
parameters, and thus the complexity of the functions that it is able to approximate.
However, it increases the computational cost of both the learning phase and the inference
phase, and the memory required to store the model. Moreover, the more parameters the
network has, the more training data it needs for a proper training. For the HGG use
case, there are very few training data, which limits the size of the network.

For the architecture presented in Figure 4.7, preliminary tests have shown that the
reconstruction starts to improve less significantly beyond a threshold of around 30 000
parameters for the whole VAE, that is both encoder and decoder. More extensive tests
would be required to determine more precisely an optimal trade-off between computa-
tional cost and general performances. In this work, the focus is put more on studying the
influence of the KL divergence coefficient and latent space dimension and finding their
optimal value.

Grasp Space Dimension & Latent Space Dimension

The grasp space is a subset of the gripper configuration space (see subsection 1.4.1).
Thus, it has at most 7 dimensions, but its true size is a priori unknown. As the goal
is to map the grasp space in the HGG latent space, it is important that the number of
latent variables used by the HGG among the available ones is at least equal to the grasp
space dimension. Otherwise, there will be information loss due to the compression caused
by the projection of the grasp space into a smaller space. Although conservative, it is
sub-optimal to let the HGG finds by itself the required number of latent variables needed
to map the grasp space, by letting the latent space dimension be equal to the one of the
gripper configuration space. Indeed, even if the KL divergence term in the cost function
will push the network to use as few latent variables as possible, increasing the number of
available latent variables increases the chances to converge toward a cost function local
minimum where the network uses more latent variables than needed. Using more latent
variables among the available ones also leads to a more sparse data distribution in latent
space, which has the same effect as a too low coefficient on the KL divergence. Thus,
the latent space dimension also have an influence on the trade-off between the
fidelity of the primitive grasp reconstruction and the proportion of successful
generated grasps.

Thus, it is useful to know an approximation of the dimension of the grasp space.
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Here, a dimensional analysis tool has been chosen, the kernel PCA [107], one of the
non-linear dimensionality reduction techniques described in section 3.2. The kernel PCA
implemented in scikit-learn is used [157]. The algorithm is run for each object, taking as
input the list of gripper configurations in the primitive grasp dataset, scaled and centered
beforehand. Determining the smallest number of dimensions required to represent the
data is not as straightforward with kernel PCA as with classic PCA. Indeed, the method
based on eigenvalues cannot be used. To assess the number of dimension to keep, the
kernel PCA reconstruction error is assessed with a number of kept dimensions from
one to seven (the dimensionality of the configuration space). The smallest number of
dimensions allowing to achieve a reconstruction error at most twice the one obtained
with seven dimensions is considered as the smallest number of dimensions required to
represent the data. The goal is to set a limit to the relative amount of information lost
by the compression.

Applied on a classic PCA, this threshold select a number of dimensions corresponding
to 94%, 96%, and 98% of explained variances for the bent pipe, pulley and cinder block
respectively. Thus, the chosen criterion allows to keep the majority of the information.
However, it is worth noting that with kernel PCA, the pre-image of a point (that is the
inverse transform, which allows to compute the reconstruction error) is an approximation,
computed through a ridge regression [111] in the scikit-learn implementation. Thus, this
approximation contributes to the reconstruction error, and it is not trivial to discriminate
between the contribution of the pre-image approximation and the contribution of the
dimension reduction.

PCA kernel PCA

bent pipe 6 5
pulley 5 3
cinder block 7 5

Table 4.1 – Smallest number of dimensions allowing to achieve a reconstruction error at
most twice the one obtained with seven dimensions.

The result of this analysis for the three tested objects is summarized in Table 4.1. The
fact that kernel PCA is able to find a smaller number of dimensions than classic PCA
confirms the non linear nature of the relationships existing between the configuration
space and the grasp space. It can be observed that the number of dimensions depends
on the object: the complexity of the grasp space depends on the chosen primitive grasps,
and then on the object geometry. It is intriguing that the number of dimensions found
with kernel PCA corresponds for each object to their number of primitive grasp types
(respectively 5 primitive grasp types for the bent pipe and cinder block, and 3 for the
pulley). The most straightforward way for kernel PCA to organize that data may be to
dispatch the primitive grasps corresponding to each grasp type along a different principal
component in the feature space. If this interpretation is correct, this representation may
be very sparse and may not be the most compact, as the majority of the produced space
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may not correspond to any data point, such as areas not aligned on a given principal
component.

Therefore, this can serve as an upper bound for the optimal latent space dimension.
Indeed, the HGG, being a generative model, will be forced to find a dense representation,
which may also be more compact than the one found by kernel PCA. Moreover, it has
a supplementary information: the tabletop Cartesian equation, and may use it to better
organize the data in the latent space, and learn a more compact representation.

Overview

Table 4.2 summarizes the influence of the three hyperparameters on the chosen indicators,
assessed through the computation of correlation coefficients between the hyperparame-
ters and the indicators. For this evaluation, trials were conducted with hyperparameter
combinations among the following ranges:

• network size between 12 000 and 30 000 parameters;

• latent space dimension between 2 and 6;

• KL divergence coefficient between 0.0002 and 0.01.

latent space
dimension

KL divergence
coefficient network size

number of used
latent variables 0.12 −0.26 0.55

reconstruction
error −0.18 0.18 −0.21

KL divergence −0.75 −0.62 0.09

proportion of
generated
successful grasps

−0.39 0.25 0.39

Table 4.2 – Spearman correlation coefficients between the hyperparameters and the in-
dicators.

The reconstruction errors corresponding to the set of hyperparameters achieving the
best trade-off between the correct reconstruction of primitive grasps and the proportion
of successful generated grasps are shown in Table 4.3.

Some statistics about primitive grasps and grasps generated with this hyperparameter
set are summarized on Table 4.4. To avoid arm kinematic reachability issues, as gripper
configurations are in object frame, each generated configuration is tested for different
object orientations relative to the robot. The main cases of failing grasps are found when
transitioning between different grasp types, and with the fifth grasp type of the bent pipe

135



CHAPTER 4. METHOD QUALIFICATION

mean position error (m) mean orientation error (degree)

bent pipe 0.004 1.94
pulley 0.005 1.32
cinder block 0.009 1.1

Table 4.3 – performances of the HGG for the selected hyperparameters: 30 000 network
parameters, 3 latent variables (that are all used), and a KL divergence coefficient of
0.0005. The mean errors are measured on the training data.

generated set primitive set

bent
pipe

total number of grasps 4000 145

number of successful grasps 2727 (68.18%) 141

metric
statistics

median 0.0954 0.1018

mean 0.0982 0.1047

maximum 0.2066 0.2257

cinder
block

total number of grasps 6000 141

number of successful grasps 5608 (93.47%) 141

metric
statistics

median 0.0684 0.0670

mean 0.0580 0.0564

maximum 0.1401 0.1041

pulley

total number of grasps 4000 118

number of successful grasps 3367 (84.18%) 111

metric
statistics

median 0.0702 0.0730

mean 0.0652 0.0648

maximum 0.1420 0.1195

Table 4.4 – Information summary about primitive and HGG generated grasps (step 3 of
the workflow in Figure 3.14) for the selected hyperparameters: 30 000 network parame-
ters, 3 latent variables (that are all used), and a KL divergence coefficient of 0.0005. The
metric statistics are taking into account successful grasps only.

(Figure 4.6, top right) where one of the bottom fingers can collide with the table in the
pre-grasp phase for some gripper orientation variations.

The grasp quality mean and median of the primitive and generated grasps are close
to each other. This is expected as the VAE tries to reproduce the underlying distribution
of the learning set.
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For two objects, a quality metric global maximum better than the primi-
tive grasps is found in the generated grasps. Indeed, the VAE learns to interpolate
between the primitive grasps: in case the parameters defining a grasp configuration with
higher metric value are close to parameters of two primitive grasps, it is able to generate
it.

Regarding the bent pipe generated grasps, none of them are better than the best
primitive grasp. As no significant differences were noted at the training step in term of
reconstruction and regularity performances between this object and the others, this is
unlikely to be due to a poor grasp space modeling by the bent pipe HGG. Two possible
explanations remain:

• The global maximum may already be in the primitive dataset, but the random
sampling in latent space may fail to draw a sample sufficiently close to this maxi-
mum when generating new grasps. It is not unlikely, as it is a human-crafted set
of configurations, and humans tend to produce high quality grasps.

• The chosen quality metric may have very little local variations on this particular
object, given its geometry. A small change in the grasp configuration, which occurs
when exploring the grasp space around primitive configurations, may lead to no
significant changes in the metric value. Thus, the maximum found among primitives
may be some kind of outlier (due to the noisiness of the contact simulation) in a
plateau-like area.

4.3 Experiments

To validate the grasp space exploration workflow, the proposed method is compared to
a sampling-based exploration method, and grasp planning trials are conducted firstly in
a simulated environment, and then on a real setup.

4.3.1 Comparison with Classic Sampling-Based Grasp Space Explo-
ration Methods

As stated in section 3.4, the proposed method focuses on the grasp space exploration,
which is a necessary step for any grasp planner algorithm. For learning based grasp
planner for example, the grasp space exploration step corresponds to the constitution of
a grasp dataset that will serve as training data for the learning algorithm. Thus, in this
section, our method is compared to some methods classically used in other works dealing
with grasp planning to create their learning dataset.

For underactuated grippers, the grasp space exploration can be done only with a grip-
per configuration approach, and not with a contact point approach, due to the nature of
the underactuation mechanism as explained in subsection 1.4.2. Gripper configuration
approaches are mainly divided in two categories, depending on the considered configura-
tion space.
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grasp space
exploration
method

hypothesis on
grasp space

target gripper
architecture

reported grasp
sampling success

rate

planar methods,
used for example
in: Pinto and
Gupta [68],
Depierre et al. [69],
Levine et al. [70]

Gripper
configurations
aligned with a
plane, described by
three parameters:
position x, y and
angle θ in the
plane

parallel jaws
grippers

≈ 10% (8.05% in
[68], 10% in [70])

6-DoF methods,
used for example
in: Riedlinger
et al. [57],
Mousavian et al.
[71]

Gripper
configurations
expressed relative
to mesh vertex
normals, by two
[71] or four [57]
parameters

parallel jaws
grippers

≈ 10% (1.49% in
[57], 19.4% in [71])

our method, using
QGG network

gripper
configuration
expressed in the
Euclidean space,
compressed on
three parameters,
taking inspiration
from human grasp
strategies

multifingered and
underactuated

grippers

Depends on the
object and on the
chosen quality

threshold, in the
worst case (no
threshold), the

success rate is the
one of the HGG,

> 68%

Table 4.5 – Comparison of main characteristics of grasp space exploration methods.

• planar methods [68–70]: only vertical pinch grasps are considered, and the gripper
is constrained to stay aligned with a vertical axis. This is a relatively strong
hypothesis, and is suited only for parallel jaws grippers. A gripper configuration is
parameterized in the plane by three variables : the position x,y, and the orientation
θ. Some variations of this approach exist, such as in Levine et al. [70], where the
authors also take into account the gripper trajectory before the grasp in a visual
servoing framework, and model a grasp as a set of gripper motions. For these
methods, grasps are generated by sampling randomly in the parameter space. This
sampling can be constrained using features detected in an image, for example by
sampling configurations only in some region of interests or only near parallel edges.

• 6-Dof methods [57, 71]: a grasp configuration corresponds to a pose in SE(3). In
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practice, this type of method is mainly used for parallel jaw grippers, although in
theory it could be extended to grippers with more degrees of freedom. The main
assumption made by this approach is that valid grasps are more likely to be found
when the grasp direction axis of the gripper is facing the object and aligned with
its surface normal. To sample grasps based on this assumption, a discretized object
representation is used, for example a mesh or a point cloud. The main idea is to
sample vertices on the object surface, and generate gripper configurations relative to
the sampled vertices and their normal vectors. These gripper configurations can be
generated for example by sampling several rotation angles around the normal axis,
and several distance from the object surface [71]. Additional degrees of freedom
can also be added, such as sampling around the vertex normal axis in a conical
fashion [57].

Characteristics of both approaches are summarized in Table 4.5, and compared with our
grasp space exploration method.

However, it is difficult to compare the reported success rate of different methods.
Indeed, other methods are very often applied on parallel jaws grippers, which have a
lower dimensional internal configuration space than multifingered grippers. To better
compare sampling-based grasp space exploration methods with ours, one of them is
implemented and tested on our simulated setup.

Our approach being able to generate grasp in the Euclidean space, it is closer to
6-DoF methods than planar methods. The chosen method for comparison is similar to
the 6-DoF method used in Mousavian et al. [71] to create their training dataset. This
method is chosen because it is simple to implement, and a relatively high success rate is
reported in the original work. With the chosen method, grasps are sampled as follows:

1. sample a vertex of the object mesh

2. align the gripper palm normal with the vertex normal

3. sample a distance between the gripper palm and the object surface

4. sample a rotation around the gripper palm normal

5. sample an abduction-adduction angle

For each stable position of each object, 5000 grasps are sampled and tested in the sim-
ulation, in a similar way as the HGG generated grasp in the step 3 of our workflow. In
Table 4.6 are summarized the results of these simulated trials.

The success rate is lower than the one reported in Mousavian et al. [71] for two
reasons.

• Firstly, in Mousavian et al. [71] grasps are sampled around a floating object. In
our implementation, collisions with the surface on which the object is standing are
considered.
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success rate (%) median quality
metric

mean quality
metric

bent pipe 4.15 0.0668 0.0612
cinder block 5.92 0.0565 0.0500
pulley 4.78 0.0528 0.0488

Table 4.6 – performances summary of a sampling-based grasp space exploration method.
The mean and median quality metric values are computed on the successful grasps only.

• Moreover, in our implementation, a supplementary sampling dimension is added
because of the abduction-adduction degree of freedom, which can reduce even fur-
ther the success rate. Indeed, for a given gripper spatial configuration, only some
abduction-adduction angles are suitable for a proper grasping. This indicates that
this type of grasp space exploration methods is not well suited to grippers with a
high dimensional configuration space.

The grasp success rate of this classic sampling-based method is one order of magnitude
smaller than the grasp success rate of grasps generated by the HGG (see Table 4.4), which
roughly corresponds to the worst case scenario of sampling grasps with the QGG without
filtering grasps based on a threshold on the predicted grasp quality. Moreover, the mean
and median quality metric values of the few successful grasps are also smaller than the
one measured on grasps generated with the HGG (see Table 4.4).

This shows that our approach allows to reduce drastically the number of
simulation trials required to explore the grasp space. It also shows that focus-
ing the search around human provided grasp strategies produces qualitatively
better grasps than searching randomly in the configuration space.

4.3.2 Simulation Trials

Grasp planning trials are conducted in Gazebo on each object. The algorithm used to
choose a grasp is described in Algorithm 1.

This planning procedure is executed on 1000 distinct object poses for each stable
position of each object. The position of the object frame projection on the tabletop
plane is chosen randomly inside a 10× 10 centimeters square, and its orientation relative
to the vertical axis is also drawn randomly between 0 and 2π.

Three metrics are monitored to assess the performances of the presented workflow:

1. the grasp success rate.

2. the number of collision and reachability checking iterations needed to find three
admissible grasps (Algorithm 1 line 5), as it is the most time consuming step.
Indeed, the presented workflow is object-centric. It does not take into account the
arm kinematics and environment, so depending on the object pose in the robot
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Algorithm 1 Grasp planning algorithm.
1: grasp candidate list ← ∅
2: while length(grasp candidate list) < 3 do
3: configuration ← QGG decoding of a sampled value in its latent space
4: if configuration predicted grasp quality > threshold then
5: if configuration is collision free and kinematically reachable then
6: append configuration to grasp candidate list
7: end if
8: end if
9: end while

10: execute the grasp with highest predicted grasp quality among grasp candidate list

workspace, the probability of sampling an admissible configuration in the QGG
latent space varies.

3. the grasp quality prediction relative error.

These performance metrics are shown in Table 4.7.
The grasp quality prediction mean relative error is quite high. Indeed, due to con-

tact points location variability in simulation, the computed grasp quality metric has a
variability and is not fully deterministic for a given configuration, which makes it noisy.
Thus, this parameter is difficult to learn and prone to underfitting or overfitting issues,
especially as each QGG is trained on only 2000 samples for each object stable pose.

The contact points location variability is caused by a slight and constant oscillation
of the simulated finger underactuated joints. This slight finger oscillation also makes
the simulated grasps less stable than in the real world. This oscillation is most likely
caused by a numerical instability in the simulation of the gripper underactuation, more
specifically of its integrated passive spring. Indeed, the amplitude of the oscillations
are correlated with the spring stiffness, and disappear when deactivating the simulation
of the underactuated system. It is suspected that this instability comes directly from
the internal computations of the Gazebo physics engine. Indeed, it uses internally a
semi-explicit integration method, which is known to generate numerical instability with
elastic forces. Finding the exact root cause and fixing it probably requires an in depth

1) success rate
(%)

2) Algorithm 1
line 5 mean
iterations

3) mean quality
prediction error

(%)

bent pipe 99.75 5.7 18.9
cinder block 99.37 4.9 13.8
pulley 99.6 6.8 17.1

Table 4.7 – Performances on simulated grasp planning trials.
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investigation of the physics engine, which is out of the scope of this work.
The low number of collision and reachability checking iterations shows that all grasp

types and their variants are evenly distributed in the latent space. Indeed, some grasp
types or variants within a grasp type are reachable only for some object poses relative to
the robot. This also shows that the majority of configurations colliding with the table
are correctly labeled with a low quality value. Indeed, if these configurations were not
mostly eliminated by the grasp quality threshold at the line 4 of Algorithm 1, they would
be eliminated at line 5, thus would lead to a high number of collision and reachability
checking.

The low failure rate shows that the procedure presented in this work successfully
explores and reproduces the grasp space, as it is able to generate reliably successful
grasps for various object poses, despite a relatively high prediction error on the grasp
quality. The few grasp failures are due to critical grasp quality prediction errors, more
likely to occur on areas of the grasp space that are at the border between successful and
failing grasps. In these areas, very sharp variations of the grasp quality prediction are
required, whereas the trade-off between reconstruction and regularity induced by the KL
divergence prevents such variations.

4.3.3 Physical Trials

Figure 4.10 – Area for object positioning. For each trial, the object pose is chosen
randomly inside the blue rectangle.
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pre-grasp post-grasp pre-grasp post-grasp

1 5

2 6

3 7

4 8

Figure 4.11 – Pictures of eight grasps generated by the QGG and executed on the real
setup after following the grasp planning procedure describer in Algorithm 1.

Grasp planning trials are also conducted on the real setup described in subsec-
tion 4.1.1 on the bent pipe. The grasp planning algorithm used to choose a grasp is
still the one described in Algorithm 1.

About thirty grasp trials have been conducted with an equal distribution between
the two stable pose of the bent pipe. For each trial, the object is placed randomly in an
area of the workspace shown on Figure 4.10 by an operator.

Every generated grasp succeeded to lift the piece from the table, and to maintain it in
the hand. The only failure cases were noted when the camera and associated algorithm
failed to retrieve correctly the object pose. In that case, as the object pose is unknown,
the trial cannot be conducted. This occurs for example when the object is too far from
the camera, or when a significant part of the object is off-camera. This issue can be fixed
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by trying a different camera point of view when the object pose retrieval fails.
Eight examples of grasps conducted on the real setup are displayed in Figure 4.11.

In this figure, the grasps 1 & 2 correspond to primitive grasp type 3 on the top row of
Figure 4.6, the grasp 3 to primitive grasp type 2, the grasp 4 to the primitive grasp type
1, the grasp 5 to primitive grasp type 5 and the grasps 6 & 7 to primitive grasp type
4. The grasp 1 is tilted relative to the tabletop plane. Such a grasp differs significantly
from the primitive grasp variations manually specified for the primitive grasp type 3.
Generating this kind of variations can help the kinematic reachability along for some
unfavorable object poses, or in cluttered environment. The grasp 8 can be seen as a
fusion or an intermediate state between the primitive grasp type 4 and type 5, and does
not correspond to any primitive grasp. This shows that the presented method is able to
find novel and efficient way to grasp an object.

4.4 Conclusion

In this chapter, the performances of the grasp space exploration method proposed in
this work have been assessed. For that, it has been applied on three objects, using a
three-fingered underactuated gripper designed at CEA robotic laboratory.

First, this method has been compared with other grasp space exploration methods
based on random sampling. One of these sampling based exploration methods has been
implemented and tested in simulation to better compare it with ours. This comparison
shows that our method allows to explore the grasp space much more efficiently: our
method produces more than ten times more successful grasps, and the produced grasps
have higher grasp quality metric values on average.

Then, grasp planning tests have been conducted in simulation, as well as in real
conditions. These tests show that the proposed method is able to generate reliably
successful grasps with a correct estimation of their quality, can be transferred successfully
on a real robotic setup, and is able to generate novel grasps that differ from the one
specified as primitives.
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Chapter 5

Extension Towards Object
Geometry Information

This chapter presents a variant of the grasp space exploration method introduced in
chapter 3, and experimentally qualified in chapter 4. The main drawback of the proposed
method is the fact that it requires the training of a separate neural network for each
individual object, and also the use of a set of primitive grasps for each of them. The
variant proposed in the following aims at taking into account the object geometry in the
training. This allows to simplify the workflow, by using a single neural network trained
with grasp data from every known primitive objects. It allows to reach performances
similar to the ones reached with the standard QGGs. Experiments also suggest that
it might be used to generate grasps for deformed versions of known primitives objects,
but with less reliability than for the original objects. First, the chosen approach for
the integration of the object geometry is described. The various attempted approaches
regarding geometry processing are presented: several unsuccessful ones have been tested
before finding a satisfactory method. Finally, some results on grasps generation obtained
by this grasp space exploration variant are presented.

Contents
5.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.1.1 3D Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.1.2 Integration of Object Geometry Information . . . . . . . . . . . 149
5.1.3 Object Geometry Dimension Reduction . . . . . . . . . . . . . 150

5.2 Learning to Compress Object Geometry . . . . . . . . . . . . 159
5.2.1 Network Architecture and Training . . . . . . . . . . . . . . . . 159
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.3 Using Object Geometry to Generate Grasps . . . . . . . . . . 165
5.3.1 Geom-QGG Architecture and training . . . . . . . . . . . . . . 165
5.3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

145



CHAPTER 5. EXTENSION TOWARDS OBJECT GEOMETRY INFORMATION

5.1 Approach

In this section some context on 3D data modeling is given. Then, the rationale behind
the chosen approach for integrating the object geometry in the proposed grasp space
exploration workflow is explained.

5.1.1 3D Data Modeling

The physical world being in 3D, we interact permanently with 3D objects. However, to
be able to reason and perform computations on such structures, they need to be modeled,
in a way compatible with computers. Several modeling frameworks exist, and are able to
represent 3D geometries. In the following, the main existing frameworks are presented,
but this list is not intended to be exhaustive.

• Firstly, Point Clouds can be used to model 3D data. It may be the most simple
and lightweight model possible: the spatial coordinates of points situated on the
surface of the modeled object are stored. Eventually, a normal vector associated
to each point can also be computed from the point cloud and stored.

This type of models is typically output by 3D scanners, 3D cameras or lidars.
However, a point cloud does not model explicitly the geometry itself: it is not
trivial for example to determine if a given point is inside or outside a geometry
modeled by its point cloud.

• Another particular case of 3D data modeling is solid modeling. These types of
models aim at allowing the unambiguous determination of point membership to the
model geometry [158, 159], on the contrary to point cloud model. Solid modeling
can be divided in three main subcategories: Constructive Solid Geometry (CSG),
Boundary representation (Brep), and spatial subdivision representations.

– Constructive Solid Geometry applies a combination of set Boolean operations
(union, intersection, difference) and rigid transformations (rotation, transla-
tion, homothety) on several primitive geometries, to build a more complex

(a) Union. (b) Intersection. (c) Difference.

Figure 5.1 – Examples of set Boolean operations used in CSG on a block and sphere
primitive shapes. pictures: CC-BY-SA license [160]
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structure [161]. An example of set Boolean operations applied on two primi-
tives is displayed in Figure 5.1. The primitive shapes typically used are block,
sphere, cylinder, cone, and torus.
A geometry can be represented by a tree structure that has primitive shapes
as leaves and performed operations as nodes. Most CAD softwares are based
on this representation. The main advantage of this representation is that
it allows an exact representation of the modeled geometry, and that testing
the watertightness of a shape is straightforward. The main drawback is that
for complex shapes, the CSG representation can involve a high number of
operations and primitives, and the tree representing the shape can become
extremely large. Moreover, depending on the considered set of primitives, even
some simple shapes may require a substantially high number of primitives and
operations to be represented accurately.

– The spatial subdivision representation, for its part, partitions a solid into
a set of cells, each having a simple topological and geometrical structure.
This category includes finite-element meshes, voxels and octrees. In finite-
element mesh representation, the volume of an object is modeled as a set
of adjacent simple polyhedras, that approximate the desired geometry. The
voxels representation divides the space with a regular grid, in a similar way
as pixels in a 2D image, each voxel having a value indicating if it is inside or
outside of the modeled geometry. Finally, an octree partitions the space in
height cubes, each cube being also divided recursively until a given cube size
is reached. This subdivision can be represented in a tree structure, each node
having height children. Each cube is labeled black if it is inside the geometry,
white if it is outside, and grey if it contains the geometry boundary.
These representations allow to describe explicitly the volume of the modeled
solid, and implicitly its boundaries. However, the size of these representations
depends directly on the number of cells (mesh elements, voxels, or octree
cubes) used, and thus on the accuracy of the representation. In particular, for
octree and voxel representations, a significant amount of cells represent empty
space, thus such representation is not very compact.

– With Boundary representation (Brep), a solid is represented by its external
surface. Such description is composed of two parts: the topology and the
geometry. The topology is described with faces, edges and vertices, connected
to each other to form the final geometry [162]. To each element is associated
a geometry as follows: a face is characterized as a bounded area of a surface,
an edge is described by a portion of a curve, and a vertex is associated with
a point in space.
On the contrary to spatial subdivision representation, Brep describes explic-
itly the boundaries of a solid, and implicitly its volume. This representation
is also vastly used in CAD softwares. In the general case, Brep allows an
exact representation of the modeled geometry, as CSG. Moreover, it is more
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flexible than CSG, as it does not depend on a limited set of primitive geome-
tries. However, it is a very heavy representation, as it needs to store all the
parameters required to defines the curves and surfaces expressions, together
with their corresponding bounds.
A particular case of Brep is the mesh boundary representation. It is a differ-
ent concept from finite-element mesh. It assumes planar faces, and that all
faces are polygons having the same number of vertices. The mesh boundary
representation can be modeled as an undirected graph, each vertex having
an associated value corresponding to its position in space, as shown in Fig-
ure 5.2. A widely used representation is the triangulated mesh, with all faces
being triangles.
The mesh boundary representation, also called simply mesh, is more compact
than classic Brep, because the geometry of faces and edges is directly inferred
from the position of their vertices: there is no need to store additional param-
eters describing the faces or edges geometries. Every faces having the same
number of vertices, the topological description is also simplified compared to
classic Brep. However, this representation is an approximation of the true
geometry, the quality of the approximation depends on the number of vertices
chosen to model the geometry.

1
(0,0,1)

2
(0,1,1)

3
(1,1,1)

4
(1,0,1)

5
(0,0,0)

6
(0,1,0)

7
(1,1,0)

8
(1,0,0)

8

76

5

2

1

3

4

Figure 5.2 – Example of the graph of a mesh boundary representation of a cube, using
square mesh faces. On the left, the mesh of the cube is depicted, with each vertex
numbered. On the right, each vertex is represented as a blue node, with its corresponding
spatial position between parentheses.
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5.1.2 Integration of Object Geometry Information

For a given gripper, the grasp space depends on the object geometry. In the grasp space
exploration method proposed in section 3.4, this dependence is implicit, as the procedure
is applied separately object by object. It can be impractical for two reasons: first, it can
be inefficient and complex to store and manage several neural networks when one needs
to generate grasps for several objects, and then, this method cannot capitalize on known
primitives to generate grasps for other known objects with unknown primitives, even if
the other object resembles an object with known primitives.

Thus, taking into account object geometry information in the grasp space exploration
should allow to simplify the workflow with a single QGG, that will be called geom-QGG
in the following, and might allow to generalize to a certain extent to objects similar
to the ones with known primitives. To achieve that, recall that the QGG is a CVAE,
conditioned on the tabletop plane Cartesian equation. The grasp dependence on object
geometry can be expressed in this framework as a supplementary condition in the geom-
QGG. A scheme of this architecture is shown in Figure 5.3.

However, as shown in the previous subsection, the description of the geometry of a
solid can be very large in term of number of parameters. Thus, if the geom-QGG is
processing it as is, the risk will be that it will loose a significant part of its capacity

e,og

Encoder Q(z|g, e,o,ϕ) sample ε from N (0, I)

µ(g, e,o,ϕ1) Σ(g, e,o,ϕ2) ⊙

+

D[N (µ(g, e,o,ϕ1),diag[Σ(g, e,o,ϕ2)])∥N (0, I)]

Decoder P (g, QMSV |z, e,o,θ)

f(z, e,o,θ)

∥(g, QMSV )⊤ − f(z, e,o,θ)∥22

Figure 5.3 – Scheme of the training workflow of the geom-QGG, with g the grasp con-
figuration, e the tabletop Cartesian equation, and QMSV the grasp quality as defined in
subsection 3.1.2, and o a representation of the object geometry. In green the inputs, in
blue the outputs, and in red the loss functions used during the training.
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trying to extract information from the geometry representation, or in the worst case, will
fail to extract anything. This risk is amplified by the fact that the dataset of objects
with primitive grasps available is small. Thus, a preprocessing of the object geometry is
required. Its objective is to extract the important features of the object geometries, or,
in other words, compressing these features in a smaller space, that can then be used by
the geom-QGG. The extracted features need to summarize the geometry of the object,
but they should also store information on the geometry orientation and position relative
to its reference frame. Indeed, the grasp configuration and the tabletop plane Cartesian
equation being expressed in the object frame, this is an important information for the
geom-QGG.

In recent years, deep learning approaches based on neural networks have been more
and more used to extract semantic information from 3D data. For this purpose, the
most commonly used input data are point clouds [163–165], meshes [166–173], and voxels
[174–176]. The grid structure of voxel inputs allows to use 3DCNN, in a similar way to
classic CNN used for image processing [130]. Nevertheless, the 3D structure increases the
computational cost of such networks compared to the 2D case. Regarding point clouds,
the lack of structure (the points being unordered) make more complex the information
extraction, and special network architectures have been designed, such as PointNet [164]
for example. The mesh representation for its part raises an other issue: its graph structure
is not straightforward to take into account in a neural network implementation. Recently,
several attempts to implement graph convolution have been published [166, 177–180], but
it is still an ongoing research topic: no method seems to stand out as the established
one, nor is natively available in the main machine learning libraries at the moment. One
can refer to Bronstein et al. [181] for an in depth overview of the subject.

However, regardless the chosen input data representation, these architectures are
often complex, and their main target tasks are object part segmentation [167, 168, 170],
object classification and recognition [170, 171, 174–176] or object generation [163, 165,
166, 169, 172–174]. This does not fit directly our application, and such approaches often
end up by design with an internal representation of the object geometry independent of
the object frame, which is not suitable for our application.

5.1.3 Object Geometry Dimension Reduction

To reduce the dimension of the object geometry representation, one first needs to choose
the type of representation to take as input. Here, it is decided to work with a triangular
mesh. Indeed, it is one of the most commonly available format, and one of the most
compact if the number of vertices is chosen appropriately. For example, some mesh
dataset are available, such as ShapeNet [182].

Then, for the dimension reduction itself, inspiration is taken from works dealing with
geometry generation [163, 165, 166, 169, 172–174] that often use an autoencoder structure
to produce a low dimensional latent space corresponding to object geometries. However,
with these methods, the produced latent space is often very large, on the order of one
hundred latent variables. For the geom-QGG, such additional feature vector would be
significantly larger than the other inputs (the gripper configuration and the tabletop
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Cartesian equation), and may still be an issue for a proper learning.
The proposed architecture is summarized in Figure 5.4. A mesh preprocessing step

(step 1) allowing to reduce the size of the input of the geometry autoencoder (step 2)
is required, so that the geometry autoencoder can produce a lower dimensional latent
space (step 3), that the geom-QGG (step 4) can handle more easily. Moreover, as a mesh
can have an arbitrary number of vertices, the mesh preprocessing must deal with this
possible variation of the number of vertices, so that the geometry autoencoder has an
input of constant size. Regarding this issue, works dealing with mesh generation assumes
a constant number of vertices.

trained separately

raw mesh

1. mesh preprocessing

2a. geometry encoder

3. latent space:
compressed geometry

2b. geometry decoder

tabletop
equation

grasp
configuration

latent values
l1, · · · , ln

4. geom-QGG

Figure 5.4 – Scheme of the proposed workflow to take into account the object geometry
in the grasp space exploration.

Several approaches have been tested and found to be unsuccessful for the mesh pre-
processing step. They are described in the following, together with the approach that
has finally allowed to reach the desired results.

Spectral Clustering Segmentation

The first attempted idea to preprocess the mesh to reduce the size of the representation
was to segment it into a small and fixed number of parts, and then summarize the
segmented geometry with a few parameters. An unsupervised way to perform object part
segmentation from its mesh representation is spectral clustering [183]. It relies on the
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notion of graph Laplacian matrix. There is no strict definition of the graph Laplacian, and
several variants exist. For an arbitrary graph having n nodes, the Laplacian L ∈ Rn×n
can be defined as:

L = D −A (5.1)

with A the adjacency matrix, a symmetric matrix having coefficients aij = 1 if node i
and j share an edge, and aij = 0 otherwise, and D the degree matrix, a diagonal matrix
with coefficients dii =

∑
j aij . In Figure 5.5 is shown an example of Laplacian matrix

computation for a simple graph.

1 2

34

A =




0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0


 D =




2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 1




L =




2 −1 −1 0
−1 2 0 0
−1 −1 3 −1
0 0 −1 1




Figure 5.5 – Adjacency, degree and Laplacian matrices of a graph, noted A, D and L
respectively.

For a mesh, the definition of the Laplacian matrix can be modified so that it becomes
the discrete approximation of the laplace-Beltrami operator over a surface [184]:

L = V −1(D −W ) (5.2)

with V a diagonal matrix with coefficients Vii representing vertex weights defined as the
area of local Voronoi areas, and W is a weighted adjacency matrix, the coefficients wij
of an edge being the mean of the cotangent of its two opposite angles. The geometric
correspondences of these coefficients are described in Figure 5.6.

The spectral clustering requires to perform a eigen decomposition of the matrix L.
Let U ∈ Rn×k be the matrix formed with the k first eigenvectors of L. Then, a spectral
clustering with k clusters is obtained by performing a k-means algorithm on the rows of
the matrix U .

In this work, the Laplacian is computed with the python library robust-laplacian [185],
and the k-means is performed with scikit-learn [157]. Once the mesh is segmented thanks
to spectral clustering, each cluster can be minimally described by twelve parameters:

• three parameters to describe its position;

• nine to describe its shape and orientation.
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vi

vj

Vii

βij

αij

wij =
1
2(cotαij + cotβij)

Figure 5.6 – Scheme of the one-ring triangles of a vertex vi of a mesh. Vii is the area of
the Voronoi area drawn in red.

From that, many cluster descriptions can be derived, but in this work two of them have
been investigated.

• The cluster approximations can be made in a Gaussian way, their positions being
approximated by the means of their datapoints, and their shapes and orientations
by the covariances of their datapoints. It comes down to assume the clusters are
ellipsoids, and that the object can be defined as a set of such ellipsoids.

• Alternatively, it can be assumed that the object can be defined as a set of cuboids.
Each cluster can be approximated by a bounding box aligned with the principal
components of the datapoints. The position of the cluster is approximated by the
bounding box center. Its shape and orientation is approximated by three vectors
aligned with the principal components of the datapoints, that is the bounding box
axes, and having their norms equal to the bounding box dimension along each of
its axis.

Some examples of objects from the dataset ShapeNetCore on which the Laplacian
clustering has been applied with six clusters is displayed in Figure 5.7. The two methods
for cluster description (ellispoid and cuboid) are also performed and can be compared.
The Laplacian clustering is able to find a suitable and sensible object segmentation: for
the mug, the different parts of the handle are separated from the cup, for the monitor,
the base is differentiated from the screen, the different areas of the vase are correctly
separated, and the three piping of the light bulb are in separate clusters.

However, some undesirable behaviors are also visible. First, the relative sizes of the
clusters can vary substantially. For example, the power button of the monitor is identified
by the Laplacian clustering as an individual cluster (in orange), while it represents a very
small area and is constituted of only a few vertices. Likewise on the light bulb, a small
area on its base is identified as an individual cluster (in yellow), whereas it could have
been fused in the wider cluster representing the light bulb base (in purple). Using a
cluster to represent such small areas represents a loss of information, as less clusters are
available to encode the vast majority of the object geometry information. Then, the
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objects clusters ellipsoids cuboids

mug

monitor

vase

light bulb

Figure 5.7 – Four object from the ShapeNetCore dataset, with their spectral clustering
and corresponding approximation with ellipsoids and cuboids.

produced clusters do not preserve the existing symmetries in the object geometry. It is
more visible on the ellipsoid and cuboid produced from the clusters. For example, for the
monitor, it is clear that the clusters representing the screen do not behave well, as the
produced cuboid or ellipsoid do not represent properly the screen geometry. Similarly,
on the light bulb, the three pipings are not represented by equivalent clusters, while their
geometry is identical. Due to these drawbacks of the Laplacian clustering, the produced
cluster approximations does not represent faithfully the object geometry, whether cuboid
or ellipsoid.

Hence, even if the geometry autoencoder would have been able to successfully learn
to compress efficiently these mesh representations, it would not be very helpful as these
mesh representations are not faithful to the true geometry of the object.
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Vertices Sampling

Thus, although at first sight promising, the use of spectral clustering combined with
cuboid or ellipsoid approximations is not satisfactory to build a constant size and com-
pact object representation. An alternative preprocessing is to sample a fixed number of
vertices from the mesh, and use the list of their position, normal vector, and first fifteen
components of the Laplacian as input of the geometry autoencoder. In this case, the
number of features of the geometry encoder input is n = (3 + 3 + 15). The Laplacian
may help to reconstruct the normal and position of the vertices. Here, to keep the feature
vector as small as possible, it is chosen to sample uniformly on the mesh a hundred ver-
tices. Thus, for a given mesh, the feature vector after this preprocessing is of dimension
n×100 = (3 + 3 + 15)×100 = 2100. The main drawback of this approach is that it loses
the graph structure of the mesh, and instead treats it as a point cloud.

As the previous attempt, the considered meshes are from the ShapeNetCore dataset.
Only a subset of 11 502 meshes is considered. This subset is obtained by removing low
quality meshes, for example having too many connected components, too few vertices,
or ill defined vertex normal. To augment this dataset, some geometric transformations
(shearing and isotropic/anisotropic scaling) are applied randomly to each mesh. Some
example of such deformations are shown in Figure 5.8. As the mesh representation
learned by the geometry autoencoder should also take into account the position of the
object frame, the dataset is further augmented with mesh translations and rotations.
This data augmentation allows to increase the number of meshes ten times, to 115 020
meshes. Then, the final dataset for the geometry autoencoder is constituted by applying
twenty times the sampling preprocessing on each mesh, for a final dataset having 2 300 400
training samples.

original
light bulb

deformed
light bulb original mug deformed mug

Figure 5.8 – Example of deformations applied to the mesh to constitute the dataset: here
an anisotropic scaling and a shearing is applied on both mesh.
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The geometry encoder and decoder have symmetrical architectures, and are consti-
tuted of several fully connected layers with leaky Relu [186] activation. The latent space
dimension is set to 64, to stay relatively close to the latent space dimension used in
works dealing with geometry generation [163, 165, 166, 169, 172–174]. The architecture
is displayed in Figure 5.9. The loss function is the mean squared error (MSE) between
the true and reconstructed feature of each input point. Regarding the normalization, as
spatial coordinates share the same unit, they are on the same scale. The same reason-
ing hold for normal components and Laplacian components. Thus, a normalization on
the maximum and minimum value feature by feature is not mandatory. Moreover, such
normalization would destroy some information about the relative point positions and
normal orientations in a given sample. Thus, instead, vertex positions and Laplacian
components are normalized by the global minimum and maximum of all vertex positions
and Laplacian respectively. Regarding vertex normals, as they are already unit vectors,
they do not require normalisation. Before the learning process, the dataset is split be-
tween a training set and a validation set. The later is used to reduce the learning rate
automatically if its loss function does not improve, and stop the training if this situation
last for too long. The training is performed with the RMSProp optimizer implemented
in keras.

However, the training has proven to be unsuccessful, with either an underfitting
problem, or an exploding gradient problem. For a relatively small model with d = 3
(depth parameter in Figure 5.9), the learning and validation losses stop improving after
a few dozen epochs and the reconstruction performances are very poor, with a mean
reconstruction error of several dozen of cm for the vertex positions and an orientation
error of 85 degrees for the vertex normals, when evaluated on a test set, different from
the training and validation set. Given that the objects fit in a cube of around 40 cm,
and that the maximum possible orientation error of the vertex normals is 180 degrees,
these numbers are very high. For larger models for example with d = 6, the learning
encounters an exploding gradient issue after a few epochs, that is the loss value climbing
to infinity. Using regularization methods such as dropout or gradient clipping failed to
mitigate the exploding gradient problem. Some training tests are also conducted with
different input vectors: only vertex positions, or only normals (n = 3 in Figure 5.9).
However, the results are similar, and the network fails to learn properly. Using only the
vertex positions, with d = 3, the mean reconstruction error reaches 8 cm, which is an
improvement compared to the training using the whole feature vector, but is still far
from satisfactory. Using only the vertex normals, the orientation error is still around 85
degrees. Thus, it seems that the vertex normal is particularly difficult to learn.

It is first suspected that the dataset is too complex, with too many different meshes.
To test this hypothesis, a new dataset is built, with only six objects: the three objects
used in chapter 4, and three other objects. The objects chosen for this restricted dataset
are displayed in Figure 5.10.

Before the training, this dataset is augmented the same way as the first one based
on ShapeNet, with random mesh deformations, translations and rotations, with 16 000
transformations applied on each mesh, allowing to obtain a dataset of 96 006 meshes.
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input vector
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nb units: 10
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fully connected layers,
nb units/layer: 64 · 2d−k with k ∈ [0, d− 1]

latent space,
nb units: 64

fully connected layers,
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Figure 5.9 – Architecture of the geometry autoencoder trained on the dataset based on
vertices sampling. In dark blue the input layer, in light blue the processing layers with
no trainable weights, in green the hidden layers, and in red the output layer. d is the
depth of the encoder and the decoder (that is the number of fully connected layers), and
n is the number of features of the input vector.

Then, the sampling preprocessing is applied twenty times on each element to constitute
the final dataset for the geometry autoencoder, the final dataset having 1 920 120 training
samples.

The same architecture as previously is trained in the same way with this new dataset.
However, once again the training is not conclusive, and reach a plateau after a few dozen
of epoch, or encounters the exploding gradient issue for a large network. In particular,
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bent pipe pulley cinder block

tee pipe sleeve cover

Figure 5.10 – Object chosen for the restricted dataset, to test if the failed learning is due
to a too great complexity of the previous dataset based on ShapeNet.

with d = 3 a training test performed with an input vector using only vertex positions
reaches a mean reconstruction error of 5 cm, a small improvement compared to the
performances of the previous dataset, but still insufficient. On the contrary, a training
test using only the vertex normal shows no improvement, with an orientation error still
above 80 degrees. This confirms that the information contained in the vertex normal
seems very difficult to extract and compress. From this point, the hypothesis is that the
sampling is disrupting the learning. Indeed, usually, when training a neural network, each
feature of the input vector has a fixed position. This position is often arbitrary, but does
not change between samples, which allows the network to capture correlations existing
between features. Here, the direct consequence of the vertices sampling is that the feature
values can vary a lot across samples and in an uncorreletad way across features, to a point
that the network seems to capture mostly noise from this dataset.

Object Geometry Remeshing

To avoid issues raised by the vertices sampling, an other technique is tested to reduce
the object geometry representation dimension and to guarantee a fixed size of this repre-
sentation. The proposed approach is to build a new tessellation of the object meshes so
that every object has the same number of vertices. This replicates the assumption made
in works dealing with the mesh generation topic.

To achieve this, each of the six objects previously used in the restricted dataset,
shown in Figure 5.10, are remeshed by hand using Blender [187] to reduce their number
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of vertices to 1 000 vertices. This number is chosen empirically, so that a faithful repre-
sentation of the geometry is allowed with a reasonable number of vertices. In case the
original mesh has less than a thousand vertices (such as the cinder block), the number
of vertices is increased to reach one thousand. This remeshing process may probably be
automated, but one need to keep in mind the following elements. First, the function
provided by Blender acts on the number of faces, and not directly on the number of
vertices. Then, the ratio between the number of faces and the number of vertices is not
fixed and depends on the mesh topology. In particular, the presence of holes or handles
changes this ratio.

Once all meshes have the same number of vertices, the list of their vertex positions is
used for the geometry autoencoder input. As on the previous dataset based on vertices
sampling, the use of Laplacian components and normals did not show any improvement
on the reconstruction, they were dropped to simplify the input vector. Thus, this feature
vector is of dimension n× 1000 = 3× 1000 = 3000. The drawback of this preprocessing
is the same as for the vertices sampling, that is the graph structure of the mesh is lost
and the geometry is treated as a point cloud instead.

This last preprocessing technique allows to reach satisfactory compression perfor-
mances with the geometry autoencoders. The conducted experiments and training trials
are described in the following.

5.2 Learning to Compress Object Geometry

In this section, the methodology used to learn a compressed representation of an object
geometry from the dataset based on object geometry remeshing is described, along with
the obtained results.

5.2.1 Network Architecture and Training

As for the previous datasets, this new dataset based on object geometry remeshing is
augmented with 35 000 random deformations, translations and rotations applied on each
mesh, creating a dataset of 210 006 meshes.

The network architecture used is close to the first architecture used with the vertices
sampling datasets. The main difference is a simplification of the structure by removing
the shared layer at the top and final layers. Its architecture is displayed in Figure 5.11.
As for the previous network, the activation functions are leaky relu, and the loss function
is the mean squared error between the input and the reconstruction. In a similar way
to the previous dataset, the vertex positions are normalized by the global minimum and
maximum of all vertex positions. The dataset is also split between a training set and
a validation set. With this new dataset, the learning is successful and does not get
stuck early on a plateau of the loss function. Several architecture sizes are tested and
compared: a latent space dimension l from 16 to 128 and a depth d from 3 to 5. At first,
the width factor w is kept equal to 1.
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Figure 5.11 – Architecture of the geometry autoencoder trained on the dataset based on
object geometry remeshing. In dark blue the input layer, in light blue the processing
layers with no trainable weights, in green the hidden layers, and in red the output layer.
d is the depth of the encoder and the decoder (that is the number of fully connected
layers), l is the latent space dimension, and w is a width factor of the fully connected
layers of the encoder and decoder.

5.2.2 Results

The conducted learning trials show that very large networks, particularly with a latent
space with 128 dimensions, are more prone to the exploding gradient problem. The best
reconstruction performances, evaluated on a test dataset different from the validation
and training dataset, is obtained with an architecture having a latent space of 32 dimen-
sions, a depth d = 3, and a width factor w = 1. This architecture allows to reach a
mean reconstruction error of 8 mm. In Figure 5.12 is displayed some examples of meshes
reconstructed by this model, compared to the given inputs. These results are exploitable,
but still require some improvements. The ideal for a near perfect object geometry recon-
struction would be a mean reconstruction error around 1 mm. Moreover, a latent space
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(a) Cinder block with a frame translation
transformation applied.

(b) Cinder block with an isotropic scaling
transformation applied.

(c) Pulley with a frame translation trans-
formation applied.

(d) Tee pipe with a shearing transformation
applied.

Figure 5.12 – Comparison between the reconstructed meshes (green) and input meshes
(blue) for a model with l = 32, d = 3 and w = 1. The applied transformations on the
meshes depicted here are different from the one presents in the training, validation and
test sets.

having 32 dimensions is still quite large to be used in the mesh-QGG. A reduction of the
latent space dimension to 16 would be ideal. Reducing further than this the latent space
dimension would lead to overfitting: indeed, the dataset augmentation already implies
the use of 12 variables to encode translation, rotation, shearing, and isotropic/anisotropic
scaling.

The reconstruction loss on the training and validation set of this model during its
training is displayed in Figure 5.13. It is clear that both curves are quite noisy, and
particularly the validation one. The abrupt loss diminution at epoch 165 is due to the
automatic learning rate reduction when the loss function reaches a plateau. The noise
in the loss function value during training may indicate that the loss topology is chaotic,
with a lot of bumps and hollows. Thus, the default learning rate may be too high,
as the gradient descent bounces up and down on the loss function relief. Moreover,
automatically decreasing the learning rate when the validation loss does not improve
may not be optimal with a noisy loss value. Indeed, the loss function may randomly
reach a very low value at a given epoch, which eventually requires a lot more epochs to
be exceeded, without the cost function necessarily being on a plateau. Moreover, the
abruptness of the loss decrease at epoch 165 may indicate that the automatic learning
rate decrease is too steep (by default, a tenfold division) and lead the gradient descent
algorithm to fall in the nearest sub-optimal local minimum.
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Figure 5.13 – Loss value obtained during the learning process of the geometry autoen-
coder, with a latent space dimension l = 32, a depth d = 3, and a width factor w = 1.

To mitigate these issues, further training tests are conducted with an initial learning
rate divided by two compared to the default one, and the deactivation of its automatic
decrease if the loss stop improving. Instead, a learning rate exponential decay is setup,
with a rate of 0.9 and a step of 200 epochs: every 200 epochs, the learning rate is
decreased by ten percents. The dataset augmentation procedure is also adjusted to
reduce the variance in the dataset: the maximum amplitude of translation is limited to
30 cm along each axis compared to 80 cm previously, and the maximum amplitude of the
scaling factor is kept inside the range 2/3 to 3/2, compared to the previous range 1/2 to
2. Finally, the chaotic topology of the loss function may be mitigated by increasing the
width of the network: indeed, the wider a network architecture is, that is the more units
each of its layer has, the more convex its loss function is according to Li et al. [188].

The new tests are focused on architectures with a latent space with 16 dimensions.
The best performances with these new settings are obtained with a depth d = 3 or d = 4
and a width factor w = 2 (the two networks having almost identical performances). These
architectures reach a mean reconstruction error of 0.1 mm, and a median reconstruction
error of 0.08 mm (d = 3) and 0.09 mm (d = 4). The reconstruction loss during training is
displayed in Figure 5.14 for the architecture with d = 3. The graph shows that these new
training settings allow to reduce the noise on the loss value during training. However, the
noise is still present: it may indicate that the learning rate could be further reduced, but
given the obtained performance, it seems unnecessary. The convergence is also faster,
whereas the learning rate is smaller, which is counter-intuitive. This is most probably an
effect of the smaller latent space: even with an increased width ratio, this architecture
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Figure 5.14 – Loss value obtained during the learning process of the geometry autoen-
coder, with a latent space dimension l = 16, a depth d = 3, and a width factor w = 2.
Compared to the training graph shown in Figure 5.13, this training is obtained with
an initial learning rate divised by a factor 2 relative to the default one, an exponential
learning rate decay, and a dataset augmentation with reduced variance on translation
and scaling.

has less trainable parameters than the previous architecture which has a larger latent
space, and small networks generally converge faster than larger ones. The learning rate
exponential decay also allows a steady improvement of the loss value, as the gradient
descent algorithm is gradually allowed to settle on the most attractive local minimum,
and cannot fall abruptly in a sub-optimal one as previously.

The reconstruction performance of this model is satisfactory (under 1 mm), and the
dimension of its latent space is compatible with its use in the geom-QGG. Another aspect
to consider is the regularity of the produced latent space. Indeed, if the compressed
representation of different geometries are spread a lot and in a non-homogeneous way
in the latent space, it could be difficult for the downstream mesh-QGG to extract the
relevant information. Thus, the regularity of the latent space produced by the geometry
autoencoder is important. This criterion can be quantified and compared across models
by observing the non-zero standard deviations of the latent variable values computed
across a given input dataset. Indeed, the smaller the mean of the standard deviations
µσ is and the closer to zero the standard deviation of the standard deviations σσ is, the
more homogeneous the latent space is. For example, for this model with l = 16, d = 3,
w = 2, one obtains µσ = 3.40 and σσ = 0.43.

To achieve a better regularity, some tests are conducted with the network converted

163



CHAPTER 5. EXTENSION TOWARDS OBJECT GEOMETRY INFORMATION

to a VAE, by adding a KL divergence term to the loss function. The goal is to keep
the KL divergence loss coefficient as small as possible so that it does not increase two
much the reconstruction error, but still sufficiently high to have a visible impact on the
latent space regularity. A good trade-off is obtained for example for a latent space of 16
dimensions, a depth d = 4 and a width factor w = 2 with a KL divergence loss coefficient
of 10−7: the mean and median reconstruction error are 0.4 mm, and the regularity
metrics values are µσ = 0.78 and σσ = 0.11. Thus, a great improvement of the latent
space regularity is obtained with a limited impact on the reconstruction. Some examples
of meshes reconstructed by this model compared to the given inputs are displayed in
Figure 5.15.

To further improve the regularity, some attempts to replicate the promising results
presented in Burgess et al. [146] have been made. In this approach, the authors propose
to start the learning with a very strong KL divergence constraint, thus drastically reduc-
ing the network capacity, and then gradually increase this capacity during the training
process. Concretely, the capacity is increased by enlarging during the learning a penalty
term added to the KL divergence loss component. In our tests, several amplitudes and
paces of capacity increases have been tested. However, in all of our tests, although de-
creasing with the increase of capacity, the reconstruction loss value stay at a very high

(a) Cinder block with a frame translation
transformation applied.

(b) Cinder block with an isotropic scaling
transformation applied.

(c) Pulley with a frame translation trans-
formation applied.

(d) Tee pipe with a shearing transformation
applied.

Figure 5.15 – Comparison between the reconstructed meshes (green) and input meshes
(blue) for a model with l = 16, d = 4 and w = 2, and a KL divergence loss coesfficient
of 10−7. The applied transformations on the meshes depicted here are different from the
one presents in the training, validation and test sets.
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value, orders of magnitude higher than loss values obtained with our other training. This
difference may be due to our dataset that may be more difficult to learn compared to
the datasets used for the tests presented in Burgess et al. [146].

5.3 Using Object Geometry to Generate Grasps

In the following, the learnt compressed representation of the geometry is used as input
to train a new version of the QGG, called geom-QGG.

5.3.1 Geom-QGG Architecture and training

The geom-QGG neural network has the same global architecture as the QGG described
in chapter 4, with as a new conditional input the latent variables of the geometry autoen-
coder. This architecture is shown in Figure 5.16. Concretely, the encoder parts of the
geometry autoencoder is placed on top of the geom-QGG, with its trainable parameters
frozen so that the gradient will not back-propagate through them during training. The
value of its latent variables is used as input of the geom-QGG. As the geometry autoen-
coder is variational, its latent variable values are the result of a conditional sampling
(P (z|x)), which has a regularizing effect on the geom-QGG, as the geometry representa-
tion of a given object varies slightly across iterations. The training dataset is constituted
by gathering in a single dataset the three grasp datasets corresponding to the three ob-
jects (bent pipe, cinder block, pulley, displayed in Figure 4.5) on which three QGGs have
been trained in chapter 4.

Several training trials are conducted, with a KL loss coefficient between 4 and 5·10−4,
a number of trainable parameters between 30 000 (the network size of the original QGG)
and 6 700 000, obtained by changing the depth and width of the layers inside the main
encoder and main decoder in the architecture shown in Figure 5.16. Indeed, a capacity
increase is probably required as the function to approximate is more complex: the dataset
includes several objects and a representation of their geometries, contrary to the initial
setup. To improve the learning process, a learning rate decay is added, in a similar way
to the one used for the training of the geometry autoencoder. The latent space dimension
is kept constant to 3, that is the same as the QGG in chapter 4.

The conducted tests show that increasing the number of parameters of the model
above 930 000 does not lead to any significant performances improvements of the re-
construction performances. Regarding the KL divergence loss coefficient, the admissible
range for decent reconstruction performances seems to be the same as for the first version
of QGG, that is the range 10−3 to 10−4. Tests conducted with high coefficient (1 and
above), lead in the same way to very poor reconstruction, with around 3 cm of position
error and around 85° of orientation error. Here, a good trade-off between reconstruction
and regularity can be obtained with a coefficient of 2 · 10−3.

Some comparison are also conducted between hyperbolic tangent and leaky relu acti-
vation function, to verify the influence of the network capacity on the performances with
these two functions. Indeed, hyperbolic tangent is often the default choice, but the relu
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Figure 5.16 – Geom-QGG architecture. In blue the input layers, in green the hidden Neural Network (NN) and in red
the output layers. The hidden NN inner layers are fully connected layers, with hyperbolic tangent or leaky relu activation
functions. The main encoding and main decoding NN have symmetrical inner architecture. The inputs and outputs NN
are small networks (with much less parameters compared to main encoding and decoding NN) in charge of extracting or
reconstructing specific features associated with position, orientation, spread angle, tabletop equation or quality respectively.
The supplementary input for the tabletop plane Cartesian equation and compressed geometry ensures that the generated
grasp depends on them [147]. The tabletop input NN appears both in encoder and decoder: it is the same network in both
places (same weights), and not two different networks. The compressed geometry is obtained through the latent space of the
geometry encoder. This architecture is implemented with Tensorflow [156] and Keras [155] python libraries.
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and leaky relu functions are more suited for larger and deeper architectures. These exper-
iments show that for a model with 3 500 000 parameters, the reconstruction performances
with hyperbolic tangent are significantly worse than for a model with 930 000 parameters,
by a factor between 1.5 and 5, depending on the reconstructed feature and on the used
KL divergence loss coefficient. On the contrary, with the leaky relu, the reconstruction
performances does not change between the two model sizes, and are identical to the one
reached with hyperbolic tangent for the model with 930 000 parameters.

Thus, after these various tests, a network having 930 000 trainable parameters, a KL
divergence loss coefficient of 2·10−3, and using the hyperbolic tangent activation function
is selected. This architecture reaches a mean position reconstruction error of 0.005 m
and a mean orientation reconstruction error of 3.51 degrees.

5.3.2 Experiments

First, the grasp planning procedure presented in subsection 4.3.2 is also applied in sim-
ulation on the three objects used for the geom-QGG training. The grasp planning used
is described in Algorithm 1. As in subsection 4.3.2, the procedure is repeated on 1000
random object poses for each stable position for each object. In the same manner, three
metrics are monitored:

1. the grasp success rate,

2. the number of collision and reachability checking iterations needed to find three
admissible grasps (Algorithm 1 line 5),

3. the grasp quality prediction relative error.

These metrics are summarized in Table 5.1.

1) success rate
(%)

2) Algorithm 1
line 5 mean
iterations

3) mean quality
prediction error

(%)

bent pipe 99.8 6.4 23.9
cinder block 98.2 5.2 18.2
pulley 99.3 5.3 25.5

Table 5.1 – Performances of the geom-QGG on simulated grasp planning trials.

Here, the success rates for the pulley and cinder block are still very high, but slightly
lower than the ones reached with the classic QGG. The bent pipe, for its part, has a
slightly higher success rate than the one achieved by the classic QGG. The mean grasp
quality prediction error on its part is higher than for the original QGG for the three
objects. As this evaluation highly depend on sampling, these differences can be due, at
least in part, to the variance of the evaluation method. An assessment of this variance
could be interesting in future works. An other part of the performance differences can of
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course be explained by the fact that generating grasps and predicting quality metrics in a
multi-object framework, as the geom-QGG, is inherently more complex than generating
grasps and predicting their quality for a single object, as the classic QGG. Finally, the
number of collision and kinematic reachability checking iterations is comparable to the
ones obtained with the classic QGG.

To qualitatively assess the generalization abilities of the geom-QGG, the produced
latent space is manually explored, for non-learnt objects, as well as for a deformed version
of one of the learnt object.

For the non-learnt objects, the three other objects used in the geometry autoencoder
dataset are tested: the tee pipe, the sleeve, and the cover (shown in Figure 5.10). Unfor-

(−0.5,−0.6,−0.9) (−0.7, 0.8,−3.3)

(−0.5,−0.85,−0.9) (0.1,−1.2,−0.2)

(−2.35, 0.7,−2.1)

Figure 5.17 – Examples of gripper configurations with their latent space coordinates,
generated for non-learnt objects in latent space areas that are likely to produce successful
grasps. these areas are found by manual inspection of the latent space.
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tunately, after manually inspecting the latent space, it appears that the great majority
of their latent space produces inconsistent grasps. This is not surprising, as with only
three learnt objects, it is extremely complex to extrapolate grasps for completely different
geometries. However, it is still possible to find latent space areas that produce relevant
grasps: some promising grasp configurations are displayed in Figure 5.17, along with the
corresponding latent variable values. The closer the grasp is from the coordinate (0, 0, 0)
in latent space, the easiest it is to draw it by sampling from a normal distribution.

Regarding the deformed version of one of the learnt object, a scaled version of the
cinder block is used as an example (with an isotropic scaling of 10 %). It is displayed in
Figure 5.18, along with the original cinder block used during learning of the geom-QGG.

original cinder block

modified cinder block
with an isotropic

scaling of factor 1.1

Figure 5.18 – Comparison between the original version of the cinder block, and a version
modified by applying an isotropic scaling of factor 1.1.

When manually exploring the deformed cinder block latent space, it is clear that the
grasps are organized in it in a very similar way to the original object. The primitive
grasps specified for the original cinder block can be retrieved in the latent space of the
deformed one, and often in areas near the same coordinates in latent space. This is
highlighted in Table 5.2, where some grasps are shown with their coordinates in latent
space for both original and deformed cinder blocks. This table is created as follows:

1. some specific grasps are identified in the latent space of the original cinder block
(for example, some that are well aligned and centered relative to the object);

2. their coordinates in latent space are registered;

3. the same coordinates are used to produce a gripper configuration in the latent space
of the deformed cinder block;

169



CHAPTER 5. EXTENSION TOWARDS OBJECT GEOMETRY INFORMATION

4. if the produced gripper configuration does not resemble the initial configuration
produced for the original cinder block, the latent space of the deformed cinder
block is manually explored, starting from the registered coordinates, to find the
closest area that produces gripper configurations similar to the one produced for
the original cinder block.

For two grasps, the same latent space coordinates produce very similar grasps for both
objects. The other grasps need adjustment to the latent space coordinates to be repro-
duced, the greatest displacement being required by the fourth grasp, with a distance of
1.8 in latent space between the two coordinates. Thus, it is likely that for objects that
resemble known primitive objects, relevant grasps may be generated, but in a less reliable
way, depending on how close the object is to its original.

grasps from original
cinder block grasps from deformed cinder block

(0,−0.5, 0) (0,−0.5, 0)

(0, 0.5, 0) (0, 0.5, 0)

→

(0, 1,−1)

(0.5, 0.5,−0.4) (0.5, 0.5,−0.4)

→

(1.2, 0.7,−0.7)
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grasps from original
cinder block grasps from deformed cinder block

(0,−0.5, 0) (0,−0.5, 0)

→

(0.8,−0.6,−1.6)

(1, 0.5, 0) (1, 0.5, 0)

(0,−0.5, 0) (0,−0.5, 0)

→

(1.2,−0.5, 0)

Table 5.2 – Comparison between grasps generated for the original and deformed cinder
blocks. First, grasps are selected in the original cinder block latent space (left). Then,
the goal is to find grasps resembling to them in the deformed cinder block latent space
(right). In the middle is displayed the grasps generated for the deformed cinder block at
the same latent space coordinates as the selected grasp on the left.

5.4 Conclusion

In this chapter, a varient of the QGG, called geom-QGG, has been introduced. It uses
object geometry information to generate potential grasps along with the expected grasp
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quality. The goal is to be able to use a single network to generate grasps for several learned
objects, instead of one network per object. Experiments show that this variant allows
to reach performances comparable to the original QGG implementation when evaluated
on a grasp planning task on learned objects. Preliminary results also suggest that this
variant may produce relevant grasps for deformed versions of the learned objects, but
with a probable loss of reliability, depending on the likeness of the deformed object to the
original one. For entirely different objects, the latent space is mainly filled with irrelevant
grasps, but some consistent ones can still be found. Thus, further developments are still
required to confirm and improve the generalization capability of this variant.

As object geometry descriptions can represent a lot of information, the geom-QGG
takes as input a compressed representation of the object geometry, so that it keeps a
relatively small sized input. This compressed representation is learned with an autoen-
coder network. This network is able to compress a geometry represented by a thousand
points, to a latent space of sixteen dimensions. However, its performances needs to be
confirmed on a dataset with a greater variety of geometries.
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Conclusions

Robotic grasping is a research field that is very active and has promising industrial
application prospects, and more particularly in the complex case of an underactuated
and pluri-digital gripper architecture. Indeed, such architectures are more versatile than
classic grippers currently used in industry.

However, it has been shown that the development of underactuated and pluri-digital
grippers faces several challenges, especially regarding their associated grasp planning
algorithms. The goal of the grasp planning algorithm is to find, for a given gripper and
object, an appropriate gripper configuration, that allows to grasp the object reliably,
and in a way compatible with the task. This requires to explore the space of all possible
grasps for a given object-gripper configuration. In this work, this space is designated as
the grasp space.

For grippers having a low dimensional configuration space, such as bi-digital parallel
grippers, the grasp space exploration can be done by extensive testing of different possible
gripper configurations. It is difficult to extend this approach to more versatile grippers
with a lot of degrees of freedom, as the space to be explored would be too large.

For fully actuated pluri-digital grippers, the grasp space exploration can be done
through exploring kinematically accessible contact positions on the object. Nevertheless,
this approach cannot take into account a high number of contact points, which often
limits it to precision grasps. Moreover, such grippers are costly, and the high number of
degrees of freedom complexify their mechanical architecture and controller.

The constraints of adaptive and underactuated mechanisms aim at simplifying the
controller and lowering the cost of pluri-digital grippers by reducing the number of con-
trolled degrees of freedom. However, it has been shown that the position of the contact
points on the object cannot be determined only based on the knowledge of actuator con-
figurations, as the finger configurations depend on a force equilibrium between the object
and the fingers.

Thus, in the underactuated case, the grasp space exploration can only be done by
testing different gripper configurations, and using dynamics simulation to predict the
resulting grasp configuration. It can be highly inefficient and time consuming due to the
number of controlled degrees of freedom, which is higher than for simpler grippers. In the
literature, there are few works that deal with the grasp planning issue for pluri-digital
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and underactuated grippers. Moreover, they often make simplifying assumptions that
reduce the dimension of the grasp space, which can limit the versatility of the approach.

The main contribution presented in this thesis is a human initiated and object depen-
dant method to efficiently explore the grasp space for an underactuated and pluri-digital
gripper. It is based on three main intuitions:

• human are able to intuitively find pertinent gripper configurations belonging to the
grasp space;

• building a model of the grasp space allows to generate grasps belonging to it with
a high probability;

• the grasp space can be modeled as a set of low-dimensional submanifolds of the
gripper configuration space.

This method uses Variational Auto-Encoders (HGG and QGG) to learn a model of the
grasp space from a set of human-provided grasp primitives, together with a prediction
of the value of an analytic grasp quality metric. It has been demonstrated that this
method allows to produce grasps both in simulation and on a real robotic setup in a very
reliable way. Moreover, the proposed method has a success rate at least ten times higher
than other commonly used grasp space exploration methods that are based on random
sampling. Our method also produces grasps with a higher quality value on average.
Finally, a variant of this method taking into account the object geometry has been
proposed. Still, several improvements can be made on various aspects of the method,
and some of these future research perspectives will be discussed in the following.

Perspectives

1 Intuitive Programming for Specifying Primitive Grasps

The main constraint of the proposed method is the need to provide human-defined grasp
primitives. It allows to produce with a high success rate high quality grasps, however,
the constitution of the primitive grasp set is time consuming, and can be tedious for
the operator. To reduce the tediousness and time-consumption, it is important to give
a special attention to the user interface used to specify primitive grasps, and design it
carefully. It needs to be as efficient and intuitive as possible.

For example, a very intuitive way to proceed can be to use a virtual reality environ-
ment to specify the primitive grasps. The operator would be able to visualize and control
very quickly and intuitively the gripper pose relative to the object, as well as its internal
configuration. This possibility is shown in Figure 4.

An other possible solution is to use the comanipulation abilities of a collaborative
robot. When set in gravity compensation mode, the robot only counteracts the effect of
its own weight, but offer no resistance to any other forces. One can use this mode to
position and orient the gripper in the desired pose by direct physical interactions. The
gripper should also have an equivalent mode to set its internal configuration by moving
its links relative to each other. This is illustrated in Figure 5.
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(a) Example of a virtual reality setup: a head-
set and two controllers with motion tracking.
The controllers allow to interact with the vir-
tual environment, for example to control the
desired pose of the gripper. Picture: CC BY
license [189]

(b) The MoveIt Rviz plugin [154], an example
of simulation environment that could be used
in virtual reality to set the primitive grasps.
The red, green, blue arrows and circles are de-
signed to move the end-effector with the mouse,
but the same functionality could be achieved
through motion tracking.

Figure 4 – Use of virtual reality to specify primitive grasps.

Figure 5 – Use of a collaborative robot to specify primitive grasps. When in gravity
compensation mode, the operator is able to move the robot arm end-effector in any
desired configuration (here with a Kuka iiwa): it could be used to set the primitive
grasps. Picture: copyright ©2022 KUKA.

2 Studying Ways of Reducing the Primitive Grasps Dataset

Another possible improvement related to the human-provided primitive grasps concerns
the required number of primitives. Indeed, as any machine learning algorithm, being
based on data, the initial HGG training requires a reasonable amount of input data,
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namely the primitive grasps. Reducing the size of the training dataset will reduce the
quality of the learned grasp space model. However, a reduction of the number of human-
provided grasps is desirable, to reduce the time investment required by the method.
Here, recall that for a given object the primitive grasps can be divided in several grasp
types. Each of these grasp type can be seen as continuous and bounded area in the
gripper configuration space. Thus, by providing only a few grasp primitives located on
the borders of each grasp type area, it should be possible to interpolate its bounding
surfaces. This interpolation requires to make some assumptions on the shape of the
grasp type area in the gripper configuration space. An example in two dimensions of
such approximation for a grasp type is given in Figure 6. Then, it is possible to sample
new positions in the space bounded by these surfaces.

Object

Grasp type

primitive grasp

Figure 6 – Example in a two dimensional cut of the interpolation of a grasp type area
from six primitive grasps, visible in blue. The blue crosses represents their positions, and
the blue arrows the gripper palm orientation at these positions.

This should allow to create at a lower time cost the training dataset for the HGG:
indeed, one needs to provide only a few primitive grasps, typically no more than a
dozen for each grasp type, instead of around thirty for each grasp type in the current
implementation. Even in this framework where a continuous representation is available
for each grasp type, the HGG is still pertinent: it will be able to extract the complex
relationship existing within each grasp type and between them to map them in a single
low dimensional representation.

3 Towards the Consideration of Task Constraints in the Methodology

The presented grasp space exploration method focuses on the stability of the grasp, and
do not consider other aspects, such as the compatibility of the selected grasp with the
task requirements. Taking into account the task requirements into the grasp planning

176



CONCLUSIONS & PERSPECTIVES

is complex, but also closer to a real use case. In the literature, mainly two approaches
exist.

• One aims at extracting semantic information from the object geometry to produce
grasps on areas specific to a task, for example identifying a handle, so that grasps
can be performed on it [190, 191].

• The other approach expresses the task as a set of disturbing wrenches, and design
metrics measuring how well a grasp is able to resist them [192, 193].

Regarding the first approach, specifying primitive grasps partially fills this function:
indeed, if the object has a part of its geometry clearly dedicated to grasping, the human
operator will very likely specify primitive grasps on this area.

Regarding the second approach, provided that the task is expressed in the object
frame, a task requirement metric could be used instead of the grasp quality metric, or
a fusion of both. However, if the task can be expressed only in a fixed reference frame,
different from the object frame, our method cannot directly take it into account, as the
generated grasps are expressed in the object frame. A supplementary step can still be
added to check the compatibility of the generated grasp with the task requirements, in
the same way as the kinematic reachability check.

Special Case of a Pick & Place Task

In this case, it is important to know if the generated grasp is compatible with the release
pose of the object, that is if there is no collision between the gripper and the tabletop
in the release phase. In the framework of our method, the release pose can be modeled
through the tabletop plane Cartesian equation of the corresponding stable pose er (as
the initial grasp stable pose, e).

If er is identical to e, then any collision free grasp is compatible with the release stable
pose. However, if er is different, the compatibility needs to be ensured. An example of
such situation is displayed in Figure 7. This could be done when testing generated grasps
in simulation to constitute the QGG training dataset. If the tested release stable pose is
not compatible with the tested grasp, the grasp quality metric could be set to zero for
this given grasp and release stable pose. Then, the QGG could learn to generate grasps
and associated quality with two conditions as input: e and er. This change to the QGG
is shown in Figure 8.

4 Improvements of the Methodology Variant Based on Object Geometry
Features

Regarding the proposed variant that takes into account the object geometries, several
improvements can be made to the geometry autoencoder. First, it should be trained
on a wider dataset, to ensure that it can acquire generalisation capabilities. Moreover,
it should be able to take advantage of the progresses that will most likely be made in
the upcoming years by the deep learning research community dealing with geometry
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initial grasp stable pose release stable pose

grasp candidate 1

grasp candidate 2
grasp candidate 1

✓
grasp candidate 2

✗

Figure 7 – Case when the initial grasp stable pose is different from the release stable
pose. Here, the grasp candidate 2 is not compatible with the release stable pose due to
collision with the tabletop surface.

adding condition er:

e, erg

Encoder Q(z|g, e, er,ϕ) sample ε from N (0, I)

µ(g, e, er,ϕ1) Σ(g, e, er,ϕ2) ⊙

+

D[N (µ(g, e, er,ϕ1),diag[Σ(g, e, er,ϕ2)])∥N (0, I)]

Decoder P (g, QMSV |z, e, er,θ)

f(z, e, er,θ)

∥(g, QMSV )⊤ − f(z, e, er,θ)∥22

Figure 8 – Possible implementation of a QGG taking into account the object release
pose. In green the inputs, in blue the outputs, and in red the loss function components.
e is the initial grasp stable pose, and er is the additional condition corresponding to the
release pose.

processing, in order to use the graph structure of mesh representation. Even for the
point cloud representation currently used, some improvements can be made, especially
to be invariant to point ordering. Indeed, the mean squared error loss function currently
used forces the reconstruction to reproduce the point ordering of the input, whereas it
does not matter in a point cloud or in a mesh. In the literature, there exist metrics
allowing to compare two unordered point sets, such as for example the Chamfer distance
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[194], that measures the squared distance between each point in one set to its nearest
neighbor in the other set. Using such distance as loss function should allow to learn a
model that does not depend on the point ordering, although it is more computationally
costly than the mean squared error.

Finally, some improvements could also be made regarding the geom-QGG. The input
grasp dataset could be augmented by applying rotations and translations to the object
frame: this way, it would be easier for the geom-QGG to identify in the geometry autoen-
coder latent space which latent variables represent rotation and translation of the object
frame, and which are related to the object geometry itself. To tackle the problem of
unknown primitive objects, inspiration could be taken from reinforcement learning. The
first step would be, after an initial geom-QGG training, to generate new grasps for a set
of unknown primitive objects. Then, a second step would be to test them in simulation.
If the object is not a deformed version of one of the known primitive object, a lot of the
generated grasps will be failed grasps, but a small proportion will eventually succeed.
Lastly, it would be possible to re-train the geom-QGG with a new dataset including
these new successful grasps corresponding to unknown primitive objects. Repeating this
process several times may improve the performances. Keeping a given proportion of un-
known primitive object failed grasps in the new dataset may also be profitable. This way,
the grasp space exploration procedure may acquire interesting generalisation capabilities.

Possible Applications

If grasps can be generated with the proposed grasp space exploration method for a
sufficiently large set of objects, it is possible to generate optimal grasps that could be
used as training data for a versatile grasp planner. This grasp planner would use a
RGB or depth image as input for example, and output grasps in the camera frame. It
will benefit from the high quality of the grasps generated by our method, compared to
classic grasp space exploration methods based on gripper configuration space sampling.
Provided that it would be trained on a sufficiently large image dataset, it may be able
to produce grasps with unknown object geometry, and without any a priori knowledge
of the object position in the scene.

The proposed method is also well suited to the framework of industry 5.0, in particular
to the small batch manufacturing issue. When the objects to be handled have a complex
shape, and are modified after a few dozen or hundred produced parts, the manufacturing
process can be difficult to automatize. Our method can help to drastically reduce the
time required for the adaptation to a new object geometry: an operator only needs to
provide new primitive grasps. This way, the operators can focus on tasks with high added
value, while letting a robot take care of handling tasks.

Some potential applications are also in assistive robotics. Indeed, there are already
some robotic arms that are adapted for this use case, for example the Jaco arm from
Kinova [195]. Our method could ease the use of such systems, by providing automated
and reliable grasping abilities for a set of common household items for example. This
could help to improve the autonomy and quality of life of disabled persons.
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Appendix A

Details of the Experimental Setup

In Figure 1 is schematized one of the three underactuated fingers of the gripper used in
chapter 4. Kinematically, the proximal joint position θ2 and the distal joint position θ3
are linked to the actuator position θm by the two following relations:

θ2a = β − tan−1
(
Lh
Lv

)
− cos−1

(
r (θm − θm0)

2 − L2
t −D2

2LtD

)
(A.1)

θ2a = θ3 + θ2 (A.2)

with r a reduction factor corresponding to the step of the actuation screw, the other
quantities being annotated in Figure 1b. Regarding the dynamics, the proximal joint
torque τ2 and distal joint torque τ3 are expressed as follows:

τ2 = Fa

√√√√L2
t −

(
L2
t −D2 + ((r (θm − θm0)))

2

2r (θm − θm0)

)2

(A.3)

τ3 =

− k bpLp cos(θ3)√
(bp cos(θ3))

2 + (bp sin(θ3) + Lp)
2

(√
(bp cos(θ3))

2 + (bp sin(θ3) + Lp)
2 − L0

)

(A.4)

with k the stiffness of the spring located in the four bar linkage mechanism in the proximal
phalanx.

The general architecture of the robotic setup is displayed in Figure 2. A supervi-
sion PC running ROS is used to execute the grasp planning algorithm. This planning
algorithm centralize the information from the robot, the camera and the gripper. It is
in charge of generating candidate grasps and checking their reachability using Moveit
[154]). It also sends commands to the robot arm and to the gripper to execute the grasp.
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Faτ2

τ3

(a) Scheme of the elements constituting an underactuated finger of the
considered gripper in chapter 4.

(b) Annotated scheme of an underactuated finger of the considered gripper
in chapter 4, with quantities useful to compute joint torques and kinematic
relations between joints.

Figure 1 – Scheme of a finger of the considered underactuated gripper in chapter 4.
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supervision PC robot arm
Cabinet Controller

(ABB IRC5)

gripper
Cabinet Controller

gripper

robot arm
(ABB IRB 4600)

Tridimeo
vision controller

Tridimeo
camera

Figure 2 – Scheme of the global control architecture used on the real robotic setup.
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Nomenclature

Grasp Modeling

ξ̃f total contact twist applied by a finger

ξ̃g total contact twist applied by a gripper

ξ̃i applied contact twist at contact i

G̃ Grasp Map (not taking into account contact models)

J̃a finger actuator Jacobian matrix (not taking into account contact models)

J̃f finger Jacobian matrix (not taking into account contact models)

J̃g gripper Jacobian matrix (not taking into account contact models)

J̃j finger underactutated joint Jacobian matrix (not taking into account con-
tact models)

J̃ag gripper actuator Jacobian matrix (not taking into account contact models)

J̃jg gripper underactutated joint Jacobian matrix (not taking into account con-
tact models)

w̃f total contact wrench applied by a finger

w̃g total contact wrench applied by a gripper

w̃i applied contact wrench at contact i

ξf total contact twist transmitted by a finger

ξg total contact twist transmitted by a gripper

ξi transmitted contact twist at contact i

ξo object twist

G Grasp Map (taking into account contact models)
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NOMENCLATURE

Ja finger actuator Jacobian matrix (taking into account contact models)

Jf finger Jacobian matrix (taking into account contact models)

Jg gripper Jacobian matrix (taking into account contact models)

Jj finger underactutated joint Jacobian matrix (taking into account contact
models)

Jag gripper actuator Jacobian matrix (taking into account contact models)

Jjg gripper underactutated joint Jacobian matrix (taking into account contact
models)

Tf finger transmission matrix

Tg gripper transmission matrix

wf total contact wrench transmitted by a finger

wg total contact wrench transmitted by a gripper

wi transmitted contact wrench at contact i

wo object wrench

Ki stiffness coefficient of the underactuation mechanism at joint i

nλ total number of twist or wrench component transmitted by the contacts
generated by a finger or a gripper grasping an object

nc number of contacts generated by a finger or a gripper grasping an object

nq number of joints of a finger

nλi number of twist or wrench component transmitted by the contact i

nf number of fingers of a gripper

nqg number of joints of a gripper

Xi coefficient of the transmission matrix relating qi to q1

Grasp Space Exploration

e tabletop plane Cartesian equation corresponding to the object stable pose

er tabletop plane Cartesian equation corresponding to the object release stable
pose (in the variant proposed in Conclusions & Perspectives)

g gripper configuration

186



NOMENCLATURE

o representation of the object geometry information

QMSV minimum singular value grasp quality metric

Variational Auto-Encoder

X ∈ Rn×m data matrix, with n samples of the random variable x having each m fea-
tures

P (x|z) conditional probability distribution of the observed random variable x given
a sample of the random latent variable z

P (x|z,θ) the decoder part of a VAE: approximation of the unknown distribution
P (x|z)

P (x) probability distribution of the observed random variable x

P (z) probability distribution of the latent random variable z

Q(z|x,ψ) the encoder part of a VAE: approximation of the unknown distribution
P (z|x,θ)
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Acronyms

Brep Boundary representation.

CNC Computer Numerical Control.

CNN Convolutional Neural Network.

CSG Constructive Solid Geometry.

CVAE Conditional Variational Auto-Encoder.

GAN Generative Adversarial Network.

HGG Human-initiated Grasp Generator.

LLE Locally Linear Embedding.

MDS Multidimensional Scaling.

NN Neural Network.

PCA Principal Component Analysis.

QGG Quality-oriented Grasp Generator.

VAE Variational Auto-Encoder.
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