Mathematical Modeling and Numerical Analysis of Electroless Plating Problem in a Microchannel

Po-Yi Wu

- To cite this version:

Po-Yi Wu. Mathematical Modeling and Numerical Analysis of Electroless Plating Problem in a Microchannel. Numerical Analysis [math.NA]. Sorbonne Université; National Taiwan University (Taipei), 2022. English. NNT : 2022SORUS197 . tel-03850696

HAL Id: tel-03850696
https://theses.hal.science/tel-03850696
Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Sorbonne Université
 LJLL

Doctoral School École Doctorale Sciences Mathématiques de Paris Centre University Department Laboratoire Jacques-Louis Lions

Thesis defended by Wu Po-Yi

Defended on February 24, 2022

In order to become Doctor from Sorbonne Université

Academic Field Mathématiques appliquées
Speciality Analyse numérique

Mathematical Modeling and Numerical Analysis of Electroless
 Plating Problem in a Microchannel

Thesis supervised by

Supervisor
Co-Supervisor
Co-Supervisor

Committee members

Referee	Faker Ben Belgacem	Professor at Unisersité de Technologie de Compiégne	
Examiners	Yi-Ju Chou	Professor at National Taiwan University	Committee President
	Vivette Girault	Professor at Sorbonne Unisersité	
	Zakaria Belhachmi	Professor at Unisersité de Haute-Alsace	
	Maxim Solovchuk	Associate Professor at National Health Research	
Supervisors	Frédéric Hecht	Institute	Professor at Sorbonne Unisersité
	Olivier Pironneau	Professor at Sorbonne Unisersité	
	ChengHeng Robert Kao	Professor at National Taiwan University	

Colophon

Doctoral dissertation entitled Mathematical Modeling and Numerical Analysis of Electroless Plating Problem in a Microchannel, written by Wu Po-Yı, completed on February 5, 2022, typeset with the document preparation system $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ and the yathesis class dedicated to theses prepared in France.

Keywords: electroless plating process, numerical analysis, long time existence
Mots clés : dépôt autocatalytique, analyse numérique, existence en temps grand

This thesis has been prepared at

Laboratoire Jacques-Louis Lions

Sorbonne Université
Campus Pierre et Marie Curie
4 place Jussieu
75005 Paris
France
玉 $\quad+33144274298$
Web Site https://ljll.math.upmc.fr/

Remerciement

Je dédie à Linda Chiu

À ma famille

À Prof. Tony Wen-Hann Sheu

Mathematical Modeling and Numerical Analysis of Electroless Plating Problem in a Microchannel

Abstract

Electroless plating process in microchannel is a rising technology in industry. From a physical point of view, it is a multiphysics problem including fluid dynamics, mass transfer, chemical reaction, phase change, etc.. Especially in micrometer scale, more subtle physical phenomena are of interest. In this thesis, electroless plating problem is mostly taken care by mathematical modeling and numerical analysis. There are three chapters in this thesis: A quick review and introduction of electroless plating process are given in Chapter 1. Analysis of an electroless plating problem in a single phase liquid flow is presented Chapter 2. The numerical simulation on the electrolss plating plating problem with gas generation is

 discussed in Chapter 3.- In Chapter 2, the gas generation due to the electroless plating is neglected. Instead, single phase incompressible flow coupled with mass transfer is considered. The small boundary motion owing to the deposited chemical species is modeled by a transpiration approximation. With this simplification, the mathematical model, consists of a Navier-Stokes flow and an equation for the concentration of the plating chemical coupled by non-standard and nonlinear boundary conditions. Existence and uniqueness are proven for the concentration equation. Numerical analysis is carried out and justifies the proposed numerical schemes and nonlinear algorithm.
- In Chapter 3, the gas generation and motion of gaseous phase are taken into account. Since the bubbles are generated randomly and everywhere, a volume averaged two phase flow model is applied. This simplification is coupled with convection-diffusion equations subject to flux boundary conditions satisfying electron balance. A first-order phase volume conservative method and finite element method are carried out for numerical simulation and the well-posedness of numerical scheme is proved. Numerical studies in one and two-dimensional cases with comparison to experiment are performed to justify the proposed model.
- In Appendix B, a further simplified model for chemical species transport in two phase flow is considered. In this case, the convection terms are neglected so that the volume fraction of liquid phase depends only on the concentration of dissolving gas in the electrolyte. Three concentration equations for two chemical species transport and dissolving gas coupling with an ODE for volume fraction of liquid phase are considered. The flux boundary condition on the reacting surface with electron balance is taken care. The existence and uniqueness are proven for the coupling equations. It is shown that the two species case can be generalized to N-species case.

Keywords: electroless plating process, numerical analysis, long time existence

Laboratoire Jacques-Louis Lions

Sorbonne Université - Campus Pierre et Marie Curie - 4 place Jussieu - 75005 Paris - France

Résumé

Le dépôt autocatalytique dans les microcanaux est une technologie en plein essor dans l'industrie. D'un point de vue physique, il s'agit d'un problème multiphysique incluant la dynamique des fluides, le transfert de masse, la réaction chimique, le changement de phase, etc. Surtout à l'échelle micrométrique, des phénomènes physiques plus subtils sont intéressants. Dans cette thèse, le problème du dépôt autocatalytique est principalement traité par la modélisation mathématique et l'analyse numérique. Il y a trois chapitres dans cette thèse : Un examen rapide et une introduction du dépôt autocatalytique sont donnés dans le chapitre 1 . L'analyse d'un problème de dépôt autocatalytique dans un écoulement de liquide monophasique est présentée au chapitre 2 . La simulation numérique du problème de dépôt électrolytique avec la production de gaz est abordée au chapitre 3.

- Dans le chapitre 2, la génération de gaz due au dépôt autocatalytique est négligée. Au lieu de cela, un écoulement incompressible monophasé couplé à un transfert de masse est considéré. Le petit mouvement de frontière dû aux espèces chimiques déposées est modélisé par une approximation de la transpiration. Avec cette simplification, le modèle mathématique se compose d'un écoulement Navier-Stokes et d'une équation pour la concentration du produit chimique de dépôt couplée par des conditions aux limites non standard et non linéaires. L'existence et l'unicité sont prouvées pour l'équation de concentration. Une analyse numérique est réalisée qui justifie les schémas numériques et l'algorithme non linéaire proposés.
- Dans le chapitre 3, la génération de gaz et le mouvement de la phase gazeuse sont pris en compte. Étant donné que les bulles sont générées de manière aléatoire et partout, un modèle d'écoulement à deux phases moyennées en volume est appliqué. Cette simplification est couplée à des équations de convection-diffusion soumises à des conditions aux limites de flux satisfaisant l'équilibre électronique. Une méthode conservatrice de volume de phase du premier ordre et une méthode d'éléments finis sont effectuées pour la simulation numérique et le bien-fondé du schéma numérique est prouvé. Des études numériques dans des cas uni et bidimensionnels avec comparaison à l'expérience sont réalisées pour justifier le modèle proposé.
- Dans l'annexe B , un autre modèle simplifié pour le transport d'espèces chimiques dans un écoulement à deux phases est considéré. Dans ce cas, les termes de convection sont négligés de sorte que la fraction volumique de phase liquide ne dépend que de la concentration en gaz de dissolution dans l'électrolyte. On considère trois équations de concentration pour le transport de deux espèces chimiques et le couplage du gaz de dissolution avec une ODE pour la fraction volumique de la phase liquide. La condition aux limites de flux sur la surface de réaction avec équilibre électronique est prise en compte. L'existence et l'unicité sont prouvées pour les équations de couplage. On montre que le cas des deux espèces peut être généralisé au cas des N-espèces.

Mots clés : dépôt autocatalytique, analyse numérique, existence en temps grand

Contents

Remerciement vii
Abstract xi
Contents
Contents xiii xiii
1 Introduction and state of the art 1
1.1 Electroless plating process 1
1.1.1 Overview 1
1.1.2 Mechanism 1
1.1.3 Mixed potential theory 1
1.1.4 Electroless plating in a microchannel 2
1.2 Mathematical model for electroless plating problem 5
1.2.1 One-dimensional steady state advection-diffusion equations 6
1.2.2 One-dimensional time-dependent diffusion-migration equations 6
1.3 Governing equations of interest in an electroless plating problem 7
1.3.1 Navier-Stokes equations 7
1.3.2 Compressible and incompressible flow 9
1.3.3 Gas-liquid two phase flow 10
1.3.4 Advection-diffusion in an electrolyte 14
2 Single phase problem 15
2.1 Introduction 15
2.2 Modeling of the physical system 16
2.2.1 The fluid flow 16
2.2.2 The metal ion concentration 17
2.2.3 The case $\alpha=0$ 17
2.2.4 Transpiration approximation 17
2.2.5 The final Problem (P) 18
2.2.6 Discussion: 19
2.2.7 Plan 19
2.3 Variational formulation 20
2.3.1 Notations 20
2.3.2 Convexification 21
2.4 Existence for the time-discretized problem 22
2.4.1 Existence of the solution to the time-discretized Problem $\left(P_{c}^{m}\right)$ 24
2.5 Stability of the time-discretized Problem P_{c}^{m} 27
2.6 Passage to the limit $\delta t \rightarrow 0$ 30
2.6.1 On the boundary condition (2.19) which contains $\partial_{t} c$ 36
2.7 Numerical simulations 36
2.7.1 Scalings 37
2.7.2 Numerical algorithm 37
2.7.3 Numerical results at low Reynolds number 39
2.7.4 Numerical results at larger Reynolds number 42
2.7.5 Influence of the term $\partial_{t} c$ in (2.19) 42
2.8 Conclusion 42
2.A Proof of Lemma 2.4.3 42
2.B Error estimates 44
3 Simulation on electroless plating problem with gas generation 51
3.1 Introduction 51
3.2 Modeling equations for liquid-gas flow 52
3.2.1 Volume averaging 52
3.2.2 Mass conservation 53
3.2.3 Equations of motion 54
3.2.4 Boundary conditions 55
3.2.5 Single phase flow 56
3.3 Numerical method 56
3.3.1 Notations 56
3.3.2 Semi-discrete schemes 57
3.3.3 Positivity 58
3.4 Finite element implementation 60
3.4.1 Mesh 60
3.4.2 Spatial discretization 60
3.4.3 Fixed point iterative solution of (3.51), (3.52) 62
3.4.4 Consistence and stability 62
3.4.5 Solvability of the linear system in matrix form 62
3.4.6 Iterative process 63
3.5 Numerical simulation 64
3.5.1 One-dimensional electroless nickel plating problem 64
3.5.2 Two species in a gas-liquid two phase flow 66
3.6 Comparison with experimental results 73
3.6.1 Experimental 79
3.6.2 Results 80
3.6.3 Discussion 82
3.7 Conclusion 82
3.A Estimation of the interfacial terms 82
A Preliminaries and notations 85
A. 1 Lebesgue spaces $L^{p}(\Omega)$ and Sobolev spaces $W^{k, p}(\Omega)$ 85
A.1.1 L^{p} space 85
A.1.2 Sobolev space 85
A.1.3 Traces 86
A.1.4 Bochner space 86
A. 2 Weighted Sobolev space 87
A. 3 Weak convergence in Banach spaces 88
B A simplified model with surface reaction 91
B. 1 Modeling equations 91
B. 2 Time-discrete problem 92
B. 3 Existence of the time-discrete problem 94
B. 4 Stability analysis 99
B. 5 Passage to limit $\delta t \rightarrow 0$ 102
B. 6 Several species case 108
Bibliography 113

Chapter 1

Introduction and state of the art

1.1 Electroless plating process

1.1.1 Overview

Electroless plating is a class of industrial chemical reaction process aimed at forming a film or layer on a base substrate by reducing complex metal cations in a liquid solution [15, 94, 80]. In contrast to electroplating processes, the reduction of metal cations can be achieved without the external current during electroless plating process. The metal coatings is created by autocatalytic chemical reduction of metal cations in a liquid bath. This technique has been widely applied in various industries. For instance, surface decoration, hard-wearing coating, manufacture of hard-disc drive, printed circuit boards, etc.[80, 106].

Recently, electroless process in microfluidic channels has been regarded as a promising micro or nano meter technology. Applications range from chemical etching process for electronic devices, to electrical packaging for food [93, 79]. Compared to the large-scale electroless process, the change of geometry to the micro- or nano-meter scale raises a critical issue for the deposition as the thickness becomes comparable to the dimension of flow channel. For instance, in the copper interconnecting process [67] by electroless plating, the thickness of the deposition layer of copper is large enough to risk a connection of the pillars.

1.1.2 Mechanism

In general, the chemical reaction of electroless plating can be expressed as

$$
M_{(a q)}^{z+}+X_{(a q)}^{z-} \rightarrow M_{(s)}^{0}+Z
$$

where M is the metal, X^{z-} is the reducing agent, and Z is its oxidized by product.
In order to deposit the metal uniformly on a reaction surface, an initiator that is either an additional catalyst or the substrate itself shall be added in advance. Moreover, the reaction must be autocatylic so that it continues after the reaction surface has been covered by the metal. For the setting of the electroless plating process, see also Figure 1.1.

1.1.3 Mixed potential theory

Two assumption is made when the mixed potential theory is applied for the electroless plating process: (i) The overall chemical reaction can be divided into several partial reactions. Each

Figure 1.1: Schematic of electroless plating setup.
partial reaction belongs to either anodic part or cathodic part. Here, the anodic reaction is the decomposition of the reducing agent

$$
\begin{equation*}
R^{0} \rightarrow R^{z+}+z e^{-}, \tag{1.1}
\end{equation*}
$$

and the cathodic reaction the reduction of the metal comples cations

$$
\begin{equation*}
M^{z+}+z e^{-} \rightarrow M^{0} \tag{1.2}
\end{equation*}
$$

(ii) The reaction must satisfy electron balance at all time. Therefore, the sum of the anodic current density and the cathodic current density is zero. That is,

$$
\begin{equation*}
\sum_{j \in \text { anodic }} I_{j}+\sum_{j \in \text { cathodic }} I_{j}=0 \tag{1.3}
\end{equation*}
$$

We denote the equilirium potential for species j by E_{j}, the Butler-Volmer equation (see for example [8]) suggest that the current density I_{j} can be expressed as

$$
\begin{equation*}
I_{j}=i_{j} c_{j}^{\gamma_{j}}:=A_{j}\left[\exp \left(\frac{\alpha_{j} z_{j} F \xi_{j}}{R \theta}\right)-\exp \left(\frac{-\beta_{j} z_{j} F \xi_{j}}{R \theta}\right)\right] c_{j}^{\gamma_{j}} \tag{1.4}
\end{equation*}
$$

where A_{j} is the ratio of the reference current density and the corresponding reference species concentration, α_{j} the anodic transfer coefficient, β_{j} the cathodic transfer coefficient, z_{j} the number of electrons, F the Faraday constant, R the gas constant, θ the temperature, c_{j} the species concentration, and γ_{j} the concentration dependency. In the above, ζ_{j} is the overpotential which can be expressed as

$$
\begin{equation*}
\zeta_{j}=E_{\operatorname{mix}}-E_{j} \tag{1.5}
\end{equation*}
$$

where $E_{m i x}$ is the mixed potential (see also Figure 1.2).

1.1.4 Electroless plating in a microchannel

As the size of channel becomes smaller, more subtle issues influencing the deposition quality shall be taken into account. Those effects that do not play crucial roles in a large size problem become

Figure 1.2: Current-potential curves for the system satisfying the hypotheses of the mixed potential theory.

Figure 1.3: A microchannel of cross section $8 \mathrm{~mm} \times 1 \mathrm{~mm}$ with a copper plate where the electroless copper plating process occurs.
main characters in micro- or nano-scale. Some issues which are worthy of further consideration for electroless plating in a microchannel are listed below.

Gas generation

In a large scale problem, the gas generation in the electroless plating process is not important becuase it takes only slight space in comparison with the size of bath. In contrast, the effect that bubbles prevent the substrate from being plated is serious when the flow channel is of smaller size. Indeed, conducting a electroless copper plating in a microchannel with cross section of size $8 \mathrm{~mm} \times 1 \mathrm{~mm}$ for 2 minutes, the bubbles will have been taken over a large portion of the channel (see Figure 1.3).

Whether the gas generation occurs is determined by the electroless plating system being employed. Electroless nickel and copper plating systems generate hydrogen gas. On the other hand, electroless gold does not generate gas. Given this fact, both single phase and two-phase flow problems for the fluid motion in a electroless plating process play crucial roles.

Seams and voids between microbumbs

Microbump bonding is one of the important applications of electroless plating in microchannels. The geometry effect arising from the shape of microbumps is significant for the plating quality. For example, if two microbumps to be plated are flat-topped (see Figure 1.4a), then seams or voids may appear in the jointed bumps [67, 127]. This is owing to the fact that the region between two bumps is always of the lowest ionic concentration. The deposition rate of the outer region is always higher than the inner region between two bumps. Once the inner region is closed by the deposited metal of outer region, the seam or void remains due to the shortage of fresh electrolyte. On the other hand, if the dome-shaped microbumps (see Figure 1.4b) are adopted for electroless plating process, The bumps can be jointed perfectly.

Figure 1.4: Comparison between flat-topped bump and dome shape microbumps.

Bridging

For a circuit pattern, It is essential to control precisely where to be plated and not to be plated. Let us take the bonding of face-to-face microbump array as an illustration. In most cases, the desired region to be plated is the gap between face-to-face bumps. Conversely, the plane within the bumbs installed on the same substrate are not desired to be deposited since the short circuit will be caused by the connection between to bumbs on the same plane. Such undesired phenomenon is called bridging $[24,126]$. Bridging is due to the instability of the electrolyte which causes a homogeneous decomposition so that the metal particles accumulate everywhere. Indeed, this phenomenon is observed in the low flow velocity region where the ionic concentration is sufficient but the metal particles cannot be moved away.

Uniformity

For many circuit board, there always exists period structure so that the uniformity of plating quality is important. However, many physical conditions in such periodic space may not be uniform. For example, the bubble distribution is in general far from uniform even in a microchannel with simple geometry (see Figure. 1.3)

To see another uniformity issue, we take the bonding of face-to-face microbump arrays as an example again. Considering an face-to-face array of microbumps is placed in a microchannel, we observed that the plating condition is highly nonuniform [126]. The most interesting observation is that the bumps near the flow entrance, which were in the region of higher ionic concentration, were not deposited. A hypothesis is that the metal particles near the entrance was washed away by the fluid flow but deposit behind. Indeed, when the entrance velocity is sufficiently high, None of the microbumps can be plated.

1.2 Mathematical model for electroless plating problem

Electroless plating problem can be regarded as a multiphysics problem which consists of surface reaction, fluid dynamics, heat transfer, chemical potential distribution, etc.. In a large scale deposition, simplified models would be adequate for describing the occuring physical phenomena, especially in a simple geometry case. In what follows, we review two kinds of one-dimensional models which well described the electroless plating process in the special cases.

1.2.1 One-dimensional steady state advection-diffusion equations

Kim and Sohn proposed a model describing the concentration profile of chemical species in the diffusion layer of a plated rotating disk with constant angular velocity [66]. In this situation, the fluid flow near the surface of rotating disk can be approximated by a uniformly disbributed flow directing to the surface. In addition, the thickness of diffusion layer is approximately uniform on the surface. Consequently, the physical domain for modeling can be reduced to be one-dimensional (see Chapter II, Section 11 in [74] for the derivation).

The modeling problem is given as follows: Let c_{j} be the concentration profile of the j-th species. The governing equations for steady state problem is

$$
\begin{equation*}
-D_{j} \frac{\partial^{2} c_{j}}{\partial z^{2}}+v \frac{\partial c_{j}}{\partial z}=0 \tag{1.6}
\end{equation*}
$$

where D_{j} is the diffusion coefficient, v the velocity field given by

$$
\begin{equation*}
v=-a z^{2} \omega^{3 / 2} \nu^{-1 / 2} \tag{1.7}
\end{equation*}
$$

where $a=0.51023, \omega$ is the angular velocity of the rotating disk, and ν the kinematic viscosity of the electrolyte. The boundary conditions are given by

$$
\begin{equation*}
c_{j}=c_{b, j}, \quad z^{2}+r^{2} \rightarrow \infty, \quad-D_{j} \frac{\partial c_{j}}{\partial z}=\sum_{j \in R_{j}} \frac{\left|I_{j}\right|}{z_{j} F}, \quad z=0 \tag{1.8}
\end{equation*}
$$

where $c_{b, j}$ is the bulk concentration of species j, R_{j} the set collecting those species j participating in the reaction related to c_{j}, z_{j} the number of electrons, F the Faraday constant, and I_{j} the current density. We recall that I_{j} can be expressed by (1.4) with the overpotential (1.5).

For numerical simulation, the Dirichlet boundary condition $c_{j}=c_{b, j}$ shall be set at the diffusion layer-bulk interface. The diffusion layer thickness δ_{j} at steady state for a rotating disk can be expressed as

$$
\begin{equation*}
\delta_{j}=1.61 D_{j}^{1 / 3} \omega^{-1 / 2} \nu^{1 / 6} \tag{1.9}
\end{equation*}
$$

Finally, the system of equations can be closed by the electron balance condition (1.3).

1.2.2 One-dimensional time-dependent diffusion-migration equations

To simulate electroless copper plating on a planar substrate, Ramasubramanian et. al. [100] applied a system of time-dependent diffusion-migration equations for solving the concentration profile of each species participating in the electroless process.

Let $c_{j}, j=1, \ldots N$ be the concentration profile of the j-th species. In the diffusion layer, the mass balance implies that

$$
\begin{equation*}
\frac{\partial c_{j}}{\partial t}=-\frac{\partial J_{j}}{\partial z}+Y_{j}, \tag{1.10}
\end{equation*}
$$

where Y_{j} is the rate of homogeneous production or consumption of species j and the flux J_{j} is contributed by diffusion and migration:

$$
\begin{equation*}
J_{j}=-\frac{z_{j} D_{j} F c_{j}}{R \theta} \frac{\partial \Phi}{\partial z}-D_{j} \frac{\partial c_{j}}{\partial z} . \tag{1.11}
\end{equation*}
$$

In the above Φ is the solution potential. In the electrolyte, water equilibrium holds at all times
and therefore we have

$$
\begin{equation*}
\sum_{j} z_{j} c_{j}=0 \tag{1.12}
\end{equation*}
$$

which closes the system with unknowns $\left(c_{1}, \ldots, c_{N}, \Phi\right)$.
The boundary conditions are similar to those proposed by Kim and Sohn [66]. At the diffusion layer-bulk interface, we let

$$
c_{j}=c_{b, j}
$$

At the electrode surface, the Neumann boundary conditions are given similarly the second equation of (1.8) but the current densities take the form

$$
\begin{align*}
& I_{a}=A_{a}\left\{\prod_{k \in R_{a}} c_{k}^{\gamma_{k}}\left(\exp \left(\frac{\alpha_{a} F}{R \theta}\left[V-\Phi-U_{j}^{0}\right)-\exp \left(\frac{-\beta_{a} F}{R \theta}\left[V-\Phi-U_{j}^{0}\right]\right)\right)\right\},\right. \\
& I_{c}=A_{c}\left\{\prod_{k \in R_{c}} c_{k}^{\gamma_{k}}\left(\exp \left(\frac{\alpha_{c} F}{R \theta}\left[V-\Phi-U_{j}^{0}\right]\right)-\exp \left(\frac{-\beta_{c} F}{R \theta}\left[V-\Phi-U_{j}^{0}\right]\right)\right)\right\}, \tag{1.13}
\end{align*}
$$

where R_{a} and R_{c} are the set of species j involving in anodic reaction and cathodic reaction, respectively, V is the electrode potential, and U_{j}^{0} is the open-circuit potential for the j-th species. Here, V plays a similar role as the mixed potential $E_{\text {mix }}$ in (1.5). The full system can be closed by the electron balance on the reacting surface:

$$
\begin{equation*}
I_{a}+I_{c}=0 \tag{1.14}
\end{equation*}
$$

1.3 Governing equations of interest in an electroless plating problem

1.3.1 Navier-Stokes equations

To derive the Navier-Stokes equations, we assume that the fluid is a continuum and all the fields of interest, such as density, flow velocity, pressure, and temperature are differentiable.

Material derivative

Changes of a physical quantity can be measured in two different ways depending on where the observer is: One can measure a physical quantity either (i) on a fixed point (Eulerian), or (ii) by following a parcel of fluid along its streamine (Lagragian). The derivative of a physical quantity with respect to a fixed position in space is called a Eulerian derivatve, while the derivative following the flow velocity is called a Lagragian derivative. Based on the relation between Eulerian and Lagragian derivatve, we define the material derivative which connects these two concept:

$$
\begin{equation*}
\frac{D}{D t}:=\partial_{t}+\boldsymbol{u} \cdot \nabla \tag{1.15}
\end{equation*}
$$

where \boldsymbol{u} is the flow velocity.

Continuity equation

Let ϕ be any physical quantity defined over a control volume Ω, and Γ its boundary. The mass conservation can be expressed as

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \phi d x=\int_{\Gamma} \phi \boldsymbol{u} \cdot \boldsymbol{n} d S-\int_{\Omega} s d x \tag{1.16}
\end{equation*}
$$

where \boldsymbol{u} is the flow velocity of teh field, \boldsymbol{n} is the outward unit normal, and s is the sink or source in the flow. By the divergence theorem, we have

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \phi d x=-\int_{\Omega} \nabla \cdot(\phi \boldsymbol{u}) d x-\int_{\Omega} s d x . \tag{1.17}
\end{equation*}
$$

Applating the Reynolds transport theorem, we have

$$
\begin{equation*}
\int_{\Omega} \partial_{t} \phi d x=-\int_{\Omega} \nabla \cdot(\phi \boldsymbol{u}) d x-\int_{\Omega} s d x . \tag{1.18}
\end{equation*}
$$

The above equation must hold for any control volume. Therefore,

$$
\begin{equation*}
\partial_{t} \phi+\nabla \cdot(\phi \boldsymbol{u})+s=0 \tag{1.19}
\end{equation*}
$$

Conservation of mass

Replacing ϕ by the density ρ in (1.19), and assuming that there is no source or sink of mass, we have

$$
\begin{equation*}
\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})=0 \tag{1.20}
\end{equation*}
$$

Conservation of momentum

Let $\phi=\rho \boldsymbol{u}$ in (1.19), we have

$$
\begin{equation*}
\partial_{t}(\rho \boldsymbol{u})+\nabla \cdot(\rho \boldsymbol{u} \otimes \boldsymbol{u})=\boldsymbol{s}, \tag{1.21}
\end{equation*}
$$

where s is a vector function. The above equation can be split as

$$
\begin{equation*}
\left(\partial_{t} \rho\right) \boldsymbol{u}+\rho \partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla \rho) \boldsymbol{u}+\rho(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}+\rho(\nabla \cdot \boldsymbol{u}) \boldsymbol{u}=\boldsymbol{s} . \tag{1.22}
\end{equation*}
$$

The rearrangement gives

$$
\begin{align*}
& \left(\partial_{t} \rho+\boldsymbol{u} \cdot \nabla \rho+\rho \nabla \cdot \boldsymbol{u}\right) \boldsymbol{u}+\rho\left(\partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\right) \\
& =\left(\partial_{t} \rho+\nabla \cdot(\rho \boldsymbol{u})\right) \boldsymbol{u}+\rho\left(\partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\right)=\boldsymbol{s} \tag{1.23}
\end{align*}
$$

By (1.15) and (1.20), we get

$$
\begin{equation*}
\rho \frac{D \boldsymbol{u}}{D t}=\rho\left(\partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\right)=\boldsymbol{s} \tag{1.24}
\end{equation*}
$$

Cauchy momentum equation

The momentum source s can be split into two terms: one term for internal stresses and another for external forces. The momentum equation can be expressed as

$$
\begin{equation*}
\rho \frac{D \boldsymbol{u}}{D t}=\nabla \cdot \boldsymbol{\sigma}+\boldsymbol{f} \tag{1.25}
\end{equation*}
$$

where $\boldsymbol{\sigma}$ is the Cauchy stress tensor and \boldsymbol{f} is the body force.
In three dimensional space, $\boldsymbol{\sigma}$ is a rank two symmetric tensor which can be explicitly represented as a 3×3 matrix

$$
\boldsymbol{\sigma}=\left(\begin{array}{lll}
\sigma_{x x} & \tau_{x y} & \tau_{x z} \tag{1.26}\\
\tau_{y x} & \sigma_{y y} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z z}
\end{array}\right)
$$

In the above, $\boldsymbol{\sigma}$ can be further split into isotropic part standing for the normal stresses and anisotropic part for shear stresses:

$$
\begin{align*}
\boldsymbol{\sigma} & =\left(\begin{array}{ccc}
\sigma_{x x} & \tau_{x y} & \tau_{x z} \\
\tau_{y x} & \sigma_{y y} & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z z}
\end{array}\right)=-\left(\begin{array}{ccc}
p & 0 & 0 \\
0 & p & 0 \\
0 & 0 & p
\end{array}\right)+\left(\begin{array}{ccc}
\sigma_{x x}+p & \tau_{x y} & \tau_{x z} \\
\tau_{y x} & \sigma_{y y}+p & \tau_{y z} \\
\tau_{z x} & \tau_{z y} & \sigma_{z z}+p
\end{array}\right) \tag{1.27}\\
& =-p I+\boldsymbol{\tau}
\end{align*}
$$

where I is the identity matrix, and $\boldsymbol{\tau}$ is the deviatoric stress tenor. Since the tensor $\boldsymbol{\tau}$ should be zero when the fluid is motionless, we define the mechanical pressure p by

$$
\begin{equation*}
p=-\frac{1}{3}\left(\sigma_{x x}+\sigma_{y y}+\sigma_{z z}\right) . \tag{1.28}
\end{equation*}
$$

Finally, the Cauchy equation can be expressed as

$$
\begin{equation*}
\rho \frac{D \boldsymbol{u}}{D t}=-\nabla p+\nabla \cdot \boldsymbol{\tau}+\boldsymbol{f} \tag{1.29}
\end{equation*}
$$

1.3.2 Compressible and incompressible flow

Compressible flow

We assume that the Cauchy stress tensor $\boldsymbol{\tau}$ in (1.29) satisfying the following assumptions

1. $\boldsymbol{\tau}$ is Galilean invariant: it depends only on the spatial derivatives of the flow velocity. That is, $\boldsymbol{\tau}$ is a function of $\nabla \boldsymbol{u}$.
2. The stress $\boldsymbol{\tau}$ is linear in the variable $\tau(\nabla \boldsymbol{u})=C: \nabla \boldsymbol{u}$ for some fourth-order constant tensor.
3. The fluid is isotropic. By Helmholtz decompositionm $\boldsymbol{\tau}$ can be expressed in terms of two scalar Lamé parameters: the bulk viscosity λ and the dynamic viscosity μ, i.e.

$$
\begin{equation*}
\boldsymbol{\tau}=\lambda(\nabla \cdot \boldsymbol{u}) I+2 \mu \varepsilon \tag{1.30}
\end{equation*}
$$

where I is the identity tensor and $\varepsilon(\nabla \boldsymbol{u})=\frac{1}{2} \nabla \boldsymbol{u}+\frac{1}{2}(\nabla \boldsymbol{u})^{T}$.

In three-dimension, given that $\operatorname{tr}(\varepsilon)=\nabla \cdot \boldsymbol{u}$ and $\operatorname{tr}(\boldsymbol{\tau})=(3 \lambda+2 \mu) \nabla \boldsymbol{u}, \boldsymbol{\tau}$ can be split into isotropic and deviatoric parts:

$$
\begin{equation*}
\boldsymbol{\tau}=\left(\lambda+\frac{2}{3} \mu\right)(\nabla \cdot \boldsymbol{u}) I+\mu\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}-\frac{2}{3}(\nabla \cdot \boldsymbol{u}) I\right) . \tag{1.31}
\end{equation*}
$$

Introducing the second viscosity $\zeta:=\lambda+\frac{2}{3} \mu$, the linear stress constitutive equation can be expressed as

$$
\begin{equation*}
\boldsymbol{\tau}=\zeta(\nabla \cdot \boldsymbol{u}) I+\mu\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}-\frac{2}{3}(\nabla \cdot \boldsymbol{u}) I\right) . \tag{1.32}
\end{equation*}
$$

Let $\bar{p}:=p-\zeta \nabla \boldsymbol{u}$, we obtain the Navier-Stokes momentum equation

$$
\begin{equation*}
\rho\left(\partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\right)=-\nabla \bar{p}+\nabla \cdot\left(\mu\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}-\frac{2}{3}(\nabla \cdot \boldsymbol{u}) I\right)+\boldsymbol{f} .\right. \tag{1.33}
\end{equation*}
$$

Applying the relation $\nabla \cdot(\nabla \boldsymbol{u})^{T}=\nabla(\nabla \cdot \boldsymbol{u})$, we finally get

$$
\begin{equation*}
\rho\left(\partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\right)=-\nabla \bar{p}+\mu \Delta \boldsymbol{u}+\frac{1}{3} \mu \nabla(\nabla \cdot \boldsymbol{u})+\boldsymbol{f} . \tag{1.34}
\end{equation*}
$$

Remark 1.3.1 In two dimension, we have

$$
\begin{equation*}
\rho\left(\partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\right)=-\nabla \bar{p}+\mu \Delta \boldsymbol{u}+\boldsymbol{f} . \tag{1.35}
\end{equation*}
$$

Incompressible flow

The incompressiblity implies that the mateiral derivative of the density is zero, i.e.,

$$
\begin{equation*}
\frac{D \rho}{D t}=0 . \tag{1.36}
\end{equation*}
$$

Combining the above equation with the continuity equation (1.20), we have

$$
\begin{equation*}
\nabla \cdot \boldsymbol{u}=0 \tag{1.37}
\end{equation*}
$$

Therefore, the linear stress constitutive equation for the incompressible flow can be written as

$$
\begin{equation*}
\tau=\mu\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}\right) . \tag{1.38}
\end{equation*}
$$

If μ is constant, divergence of the deviatoric stress is given by

$$
\begin{equation*}
\nabla \cdot \tau=\nabla \cdot\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}\right)=\mu \Delta \boldsymbol{u} \tag{1.39}
\end{equation*}
$$

Furthermore, if ρ is constant, the incompressible Navier-Stokes equation can be expressed as

$$
\begin{equation*}
\partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}-\nu \Delta \boldsymbol{u}=-\nabla \widetilde{p}+\widetilde{\boldsymbol{f}} \tag{1.40}
\end{equation*}
$$

where $\nu=\mu / \rho, \widetilde{p}=\bar{p} / \rho, \widetilde{\boldsymbol{f}}=\frac{1}{\rho} \boldsymbol{f}$.

1.3.3 Gas-liquid two phase flow

In electroless copper and nickel plating system, hydrogen gas generation is a crucial issue, especially in a microchannel, since the volume of gas is comparable to the size of the physical domain. Therefore, the governing equations for gas-liquid two phase flow should be considered.

There are several versions of models describing the two phase flow. They can be roughly divided into two classes: (i) The interfaces of heterogeneous phases can be explicitly captured; (ii) The distribution of phases is somehow stochastic so that the problem can only be described in an average sense. For electroless plating process with gaseous phase generation, the problem at the beginning before a serious aggregation of bubbles is of class (ii). Once some large bubbles has accumulated in the microchannel, the problem becomes class (i) in a sense of approximation. Now we are in a position to introduce some governing equations in the aspect of these two classes.

Diffuse interface models

To formulate the thermodynamics and transport phenomena of multiphase systems, Reyleigh [77] and van der Waals [119] proposed a so-called diffuse interface model which assumes that the heterogeneous interfaces have a non-zero thickness. Based on this idea, several Navier-Stokes/Cahn-Hilliard system were proposed for modeling the multiphase flow [1, 60, 78]. For example, the model H for incompressible two phase flow proposed by Hohenberg and Halperin [60] can be read as

$$
\begin{align*}
& \rho \partial_{t} \boldsymbol{u}+\rho(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}-\nabla \cdot\left(\eta(c)\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}\right)\right)+\nabla p=\widehat{\sigma} \epsilon \nabla \cdot(\nabla c \otimes c), \\
& \nabla \cdot \boldsymbol{u}=0 \\
& \partial_{t} c+\boldsymbol{u} \cdot \nabla c=\nabla \cdot(m \nabla \mu) \tag{1.41}\\
& \mu=\widehat{\sigma} \epsilon^{-1} \Psi^{\prime}(c)-\widehat{\sigma} \epsilon \Delta c .
\end{align*}
$$

In the above, ρ is the density, \boldsymbol{u} is the mean velocity of fluids, ρ is the pressure and c is an order parameter corresponding to the concnetration of the fluids (e.g. concentration of one component or concentration difference between two components), $\eta(c)$ is the viscosity of the mixture, $\widehat{\sigma}$ is the surface energy density ϵ is a parameter related to the thickness of the interface, Ψ is a homogeneous free energy density and μ is the chemical potential.

Another example proposed by Abels [1] is a thermodynaically consistent generalization of (1.41) to the case of non-matched densities based on a divergence-free velocity field \boldsymbol{u}. The governing equations can be expressed as

$$
\begin{align*}
& \partial_{t}(\rho \boldsymbol{u})+\nabla \cdot(\rho \boldsymbol{u} \otimes \boldsymbol{u})+\nabla \cdot\left(\boldsymbol{u} \otimes \frac{\widetilde{\rho}_{1}-\widetilde{\rho}_{2}}{2} m(\varphi) \nabla \mu\right) \\
& -\nabla \cdot\left(\eta(\varphi)\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}\right)+\nabla p=-\widehat{\sigma} \epsilon \nabla \cdot(\nabla \varphi \otimes \nabla \varphi),\right. \\
& \nabla \cdot \boldsymbol{u}=0, \tag{1.42}\\
& \partial_{t} \varphi+\boldsymbol{u} \cdot \nabla \varphi=\nabla \cdot(m(\varphi) \nabla \mu) \\
& \mu=\widehat{\sigma} \epsilon^{-1} \Psi^{\prime}(\varphi)-\widehat{\sigma} \epsilon \Delta \varphi,
\end{align*}
$$

where $\varphi=\varphi_{2}-\varphi_{1}$ is the difference of the volume fracions and $\widetilde{\rho}_{2}-\widetilde{\rho}_{1}$ is the difference of the densities. The above model has been widely used for numerical simulation (e.g. [107, 58, 114]).

Level set model

Unlike the diffuse interface model, the interface between two phases formulated by the level set model is sharp, i.e., the thickness of the interface between two phases is zero. In this case, the equation of motion for incompressible two phase flow is described by [112]

$$
\begin{align*}
& \partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}=\frac{1}{\rho}\left(\nabla \cdot\left(\mu\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}\right)\right)-\nabla p+\sigma \kappa \delta(d) \boldsymbol{n}\right)+\tilde{\boldsymbol{f}} \tag{1.43}\\
& \nabla \cdot \boldsymbol{u}=0
\end{align*}
$$

where $\boldsymbol{u}=\boldsymbol{u}(x, t)$ is the fluid velocity, $\rho=\rho(x, t)$ is the fluid density, $\mu=\mu(x, t)$ is the fluid viscosity, and $\tilde{\boldsymbol{f}}$ is the body force. The surface tension is assumed to be a force exerting only on the interface. We denote by σ the surface tension, κ the curvature of the interface, d the normal distance to the interface, δ the Dirac delta function, and \boldsymbol{n} the unit outward normal at the interface.

For immiscible fluids, the density and viscosity are constant along the path of velocity field. Therefore, we have

$$
\begin{align*}
& \partial_{t} \rho+(\boldsymbol{u} \cdot \nabla) \rho=0 \\
& \partial_{t} \mu+(\boldsymbol{u} \cdot \nabla) \mu=0 . \tag{1.44}
\end{align*}
$$

Let ρ_{1}, μ_{1} denote the density and viscosity of the gaseous phase fluid, respectively, and for liquid phase, ρ_{2}, μ_{2}. The level set ϕ is defined to discriminate the phases. For example, ϕ satisfies the following properties

$$
\rho= \begin{cases}\rho_{2}, & \text { if } \phi>0 \tag{1.45}\\ \rho_{1}, & \text { if } \phi<0 \\ \frac{\rho_{1}+\rho_{2}}{2}, & \text { if } \phi=0\end{cases}
$$

and

$$
\mu= \begin{cases}\mu_{2}, & \text { if } \phi>0 \tag{1.46}\\ \mu_{1}, & \text { if } \phi<0 \\ \frac{\mu_{1}+\mu_{2}}{2}, & \text { if } \phi=0\end{cases}
$$

Moreover, ϕ is carried by the velocity field

$$
\begin{equation*}
\partial_{t} \phi+(\boldsymbol{u} \cdot \nabla) \phi=0 . \tag{1.47}
\end{equation*}
$$

If we initialize ϕ to be the signed distance function from the interface, ϕ is smooth, unlike ρ and μ. This shows the advantage to solve ϕ numerically.

To avoid the instability caused by the sharp changing of density and viscosity at the interface, a smoothing procedure on these two quantities is often applied to modify the governing equation, which leads to a similar idea as the diffuse interface model. Here is a common example of smoothing on the density: the density ρ can be smoothed by acting with a smoothed Heaviside function H_{α} defined by

$$
H_{\alpha}(\phi):= \begin{cases}1, & \text { if } \phi>\alpha \tag{1.48}\\ 0, & \text { if } \phi<-\alpha \\ \frac{1}{2}\left(1+\frac{\phi}{\alpha}+\frac{1}{\pi} \sin \left(\frac{\pi \phi}{\alpha}\right)\right), & \text { otherwise }\end{cases}
$$

Now the smoothed density can be defined by

$$
\begin{equation*}
\rho(\phi)=\rho_{2} H_{\alpha}(\phi)+\rho_{1}\left(1-H_{\alpha}(\phi)\right) . \tag{1.49}
\end{equation*}
$$

It is worth noting that the smoothing in the diffuse interface model is by hypothesis but it is artificially made in the level set model.

Averaged two phase flow model

When the distribution of dispersive phases in a physical domain is stochastic, we may describe it in terms of the volume fraction of each phase at each point of the physical domain. The volume fraction of a phase can be regarded as the expectation that the phase occurs at a given point. This macroscopic aspect to the phase distribution is called volume averaging.

We review the derivation of volume averaging formulae introduced in [85, 41]. Let V_{0} be an elementary volume to be observed in and V_{k} the volume in V_{0} occupied by a single phase k and bounded by the interface A_{k}, which is assumed to be oriented. Let \boldsymbol{n}_{k} be a outer normal to A_{k} and \boldsymbol{w}_{k} the normal velocity of A_{k}.

The volume average of some quantity Ψ in phase k is

$$
\begin{equation*}
\langle\Psi\rangle_{k}=\frac{1}{V_{0}} \int_{V_{0}} \chi_{k} \Psi d x \tag{1.50}
\end{equation*}
$$

where χ_{k} is the indicator function that is 1 of V_{k}. The intrinsic volume average is defined by

$$
\begin{equation*}
\langle\Psi\rangle_{k}^{(k)}=\frac{1}{V_{k}}\langle\Psi\rangle_{k} \text { where } V_{k}=\int_{V_{0}} \chi_{k} d x \tag{1.51}
\end{equation*}
$$

We define the volume fraction $r_{k}=\frac{V_{k}}{V_{0}}$ with the properties $\sum_{k} r_{k}=1$ and

$$
\begin{equation*}
\langle\Psi\rangle_{k}=r_{k}\langle\Psi\rangle_{k}^{(k)} \tag{1.52}
\end{equation*}
$$

Some useful formulae in terms of the averaging are listed below[123, 109]:

$$
\begin{align*}
\left\langle\frac{\partial \Psi}{\partial t}\right\rangle_{k} & =\frac{\partial\langle\Psi\rangle_{k}}{\partial t}-\frac{1}{V_{0}} \int_{A_{k}} \Psi_{k} \boldsymbol{w}_{k} \cdot \boldsymbol{n}_{k} d A, \tag{1.53}\\
\langle\nabla \Psi\rangle_{k} & =\nabla\langle\Psi\rangle_{k}+\frac{1}{V_{0}} \int_{A_{k}} \Psi_{k} \boldsymbol{n}_{k} d A . \tag{1.54}
\end{align*}
$$

If Ψ is a vector, we also have

$$
\begin{equation*}
\langle\nabla \cdot \boldsymbol{\Psi}\rangle_{k}=\nabla \cdot\langle\boldsymbol{\Psi}\rangle_{k}+\frac{1}{V_{0}} \int_{A_{k}} \boldsymbol{\Psi} \cdot \boldsymbol{n}_{k} d A \tag{1.55}
\end{equation*}
$$

Remark 1.3.2 If $\boldsymbol{\Psi}=0$ outside V_{k} then we have

$$
\begin{equation*}
-\frac{1}{V_{0}} \int_{A_{k}} \boldsymbol{\Psi} \cdot \boldsymbol{n}_{k} d A=-\frac{1}{V_{0}} \int_{V_{k}} \nabla \cdot \boldsymbol{\Psi} d V=-\frac{1}{V_{0}} \int_{V_{0}} \chi_{k} \nabla \cdot \boldsymbol{\Psi} d V=-\langle\nabla \cdot \boldsymbol{\Psi}\rangle_{k} . \tag{1.56}
\end{equation*}
$$

This implies that $\nabla \cdot\langle\boldsymbol{\Psi}\rangle_{k}=0$.

By taking the volume averaging to (1.20), we have

$$
\begin{equation*}
\partial_{t}\left(r_{k} \rho_{k}\right)+\nabla \cdot\left(r_{k} \rho_{k}\left\langle\boldsymbol{u}_{k}\right\rangle_{k}^{(k)}\right)=\Gamma_{k}, \tag{1.57}
\end{equation*}
$$

where

$$
\Gamma_{k}=-\frac{1}{V_{0}} \int_{A_{k}} \rho_{k}\left(\boldsymbol{u}_{k}-\boldsymbol{w}_{k}\right) \cdot \boldsymbol{n}_{k} d A .
$$

The interfacial terms Γ_{k} satisfy the conservation

$$
\begin{equation*}
\sum_{k} \Gamma_{k}=0 . \tag{1.58}
\end{equation*}
$$

For averaged equations of motion, we have

$$
\begin{align*}
& \partial_{t}\left(r_{k} \rho_{k}\left\langle\boldsymbol{u}_{k}\right\rangle_{k}^{(k)}\right)+\nabla \cdot\left(r_{k} \rho_{k}\left\langle\boldsymbol{u}_{k}\right\rangle_{k}^{(k)} \otimes\left\langle\boldsymbol{u}_{k}\right\rangle_{k}^{(k)}\right)=-\nabla\left(r_{k}\left\langle p_{k}\right\rangle_{k}^{(k)}\right) \tag{1.59}\\
& +\nabla \cdot\left(\left\langle\boldsymbol{\tau}_{k}\right\rangle_{k}+\left\langle\boldsymbol{\tau}_{k}^{T}\right\rangle_{k}\right)+\boldsymbol{M}_{k}+r_{k}\left\langle\boldsymbol{f}_{k}\right\rangle_{k}^{(k)},
\end{align*}
$$

where

$$
\boldsymbol{M}_{k}=-\frac{1}{V_{0}} \int_{A_{k}} \rho_{k} \boldsymbol{u}_{k}\left(\boldsymbol{u}_{k}-\boldsymbol{w}_{k}\right) \cdot \boldsymbol{n}_{k} d A+\frac{1}{V_{0}} \int_{A_{k}}\left(\boldsymbol{\tau}_{k}-p I\right) \cdot \boldsymbol{n}_{k} d A
$$

and

$$
\left\langle\boldsymbol{\tau}_{k}^{T}\right\rangle=-\left\langle\rho_{k} \widehat{\boldsymbol{u}}_{k} \otimes \widehat{\boldsymbol{u}}_{k}\right\rangle, \quad \widehat{\boldsymbol{u}}_{k}=\left(\boldsymbol{u}_{k}-\left\langle\boldsymbol{u}_{k}\right\rangle_{k}^{(k)}\right) \chi_{k} .
$$

Since the sum of internal forces is zero, we have the interfacial balance condition

$$
\begin{equation*}
\sum_{k} \boldsymbol{M}_{k}+\boldsymbol{M}_{i}=0 . \tag{1.60}
\end{equation*}
$$

In the above, \boldsymbol{M}_{i} is the surfacial force such that

$$
\boldsymbol{M}_{i}=\frac{1}{V_{0}} \int_{A_{i}} \sigma \kappa \boldsymbol{n}_{i} d A
$$

where A_{i} the collection of all the interfaces, σ the surface tension, κ the curvature, and \boldsymbol{n}_{i} the outer normal on the interface.

Remark 1.3.3 If there are only two phases (say phase 1 and phase 2) in the physical domain of interest, then we have

$$
\begin{equation*}
\boldsymbol{M}_{i}=\frac{1}{V_{0}} \int_{A_{i}} \sigma \kappa n_{1} d A=-\sigma \bar{\kappa} \nabla r_{1}, \tag{1.61}
\end{equation*}
$$

where $\bar{\kappa}$ is the mean curvature. The above relation can be obtained by the constitutive relation

$$
\begin{equation*}
r_{1}+r_{2}=1, \quad A_{1}=A_{2}=A_{i} \tag{1.62}
\end{equation*}
$$

1.3.4 Advection-diffusion in an electrolyte

The species transport is the core issue for studying the electroless plating process. We recall that for a concentration profile c_{j} of species j, the general mass conservation equation can be expressed as

$$
\begin{equation*}
\partial_{t} c_{j}+\nabla \cdot \boldsymbol{J}_{j}=R_{j} \tag{1.63}
\end{equation*}
$$

where \boldsymbol{J}_{j} is the overall flux and R_{j} is the source or sink of c_{j}. If advection and diffusion are considered in the system, then there are two sources for J_{j}. First, the advective flux can be expressed as

$$
\begin{equation*}
\boldsymbol{J}_{j, a d v}=\boldsymbol{u} c_{j} \tag{1.64}
\end{equation*}
$$

where \boldsymbol{u} is the velocity field. Second, the diffusive flux can be approximated by the Fick's first law

$$
\begin{equation*}
\boldsymbol{J}_{j, d i f f}=-D_{j} \nabla c_{j}, \tag{1.65}
\end{equation*}
$$

where D_{j} is the diffusion coefficient. Given that the total sum is the summation of these sources, we have

$$
\begin{equation*}
\boldsymbol{J}_{j}=\boldsymbol{J}_{j, a d v}+\boldsymbol{J}_{j, d i f f}=\boldsymbol{u} c_{j}-D_{j} \nabla c_{j} . \tag{1.66}
\end{equation*}
$$

Therefore, the advection-diffusion equation can be expressed as

$$
\begin{equation*}
\partial_{t} c_{j}+\nabla \cdot\left(\boldsymbol{u} c_{j}\right)-\nabla \cdot\left(D_{j} \nabla c_{j}\right)=R_{j} . \tag{1.67}
\end{equation*}
$$

Chapter 2

Single phase problem

2.1 Introduction

In this chapter, the mathematical analysis of the two or three-dimensional electroless plating problem neglecting the gas gneration is investigated. For numerical simulation, multi-dimensional electroless processes in geometrically varying micro- or nano-fluidic channels remain computationally expensive so we have investigated on bidimensional cases.

We consider a single chemical species in the electrolyte. The flux of the chemical species on the reacting surface is described in terms of the exchange current. In our case, the exchange current I_{0} is given by the Butler-Volmer equation (see for example [74, 95]); it is a linear function of the electrolyte concentration c

$$
\begin{equation*}
I_{0}=i_{0} c:=A\left[\exp \left(\frac{\alpha_{0} z F \xi}{R \theta}\right)-\exp \left(\frac{-\beta_{0} z F \xi}{R \theta}\right)\right] c \tag{2.1}
\end{equation*}
$$

where A, α_{0}, β_{0} are physical constants, R is the perfect gas constant, F the Faraday constant and z the atomic number of the electrolyte; θ is the temperature, and ξ is the excess potential related to the interaction with other chemical species which, for our purpose is constant [66, 100]. The temperature is also assumed uniform and constant.

The plating occurs on a boundary $S(t)$ of the electrolyte, causing this interface to move inward the fluid domain but this motion is small because it is only due to plating. The plating being proportional to the concentration c, the velocity of $S(t)$ is normal to itself and given by a linear law

$$
\boldsymbol{u}=-\alpha i_{0} c \boldsymbol{n}
$$

and α is small. On the other hand the flux of metal ion through $S(t)$ is proportional to c

$$
D \frac{\partial c}{\partial \boldsymbol{n}}=-i_{0} c
$$

where D is a diffusion constant.
The concentration of the chemical species c satisfies a convection diffusion equation while the electrolyte flow is modelled by the Navier-Stokes equations.

In order to analyse this coupled problem, we approximate the small displacement of the reaction surface $S(t)$ by a transpiration approximation $[97,103]$ on a fixed mean surface S. It

Figure 2.1: The physical domain is the domain occupied by the flow $\Omega(t)$; the chemical deposit is above the free boundary $S(t)$. The chemicals flow from the left boundary, $\Gamma_{i n}$, to the right $\Gamma_{\text {out }}$. The bottom $\Gamma_{\text {wall }}$ is a solid wall.
leads to an integro-differential condition on S :

$$
\begin{equation*}
-D \frac{\partial c}{\partial n}+i_{0} c\left(1+\frac{\alpha i_{0}^{2}}{D} \int_{0}^{t} c(s) d s\right)=0 \tag{2.2}
\end{equation*}
$$

The mathematical analysis of the Navier-Stokes equations coupled with a convection-diffusion equation for c is somewhat problematic because of the non-homogenous condition on S for the velocity. So we restrict the study to the existence of the weak solution to the convection-diffusion equation with a given fluid velocity \boldsymbol{u} and even this study is not straightforward. First a timediscretized approximation is shown to have a unique solution using a version of Minty-Browder's theorem and the maximum principle to prove that $0 \leqslant c \leqslant 1$. The solution of the time continuous problem is obtained as the weak limit of the of the solution of the time-discretized solutions. Some numerical tests are given to justify the transpiration approximation and the convergence of the backward Euler nonlinear scheme.

2.2 Modeling of the physical system

The plating chemicals flow in a thin channel between a top and a bottom plate. Due to an electro-potential applied between the two plates the chemicals will deposit on the top plate. Hence the depth of the channel varies with time. A vertical cross section of the 3D system is depicted in Figure 2.1.

2.2.1 The fluid flow

The geometry of the fluid part is a two or three-dimensional domain $\Omega(t)$ bounded on the left by an inflow boundary $\Gamma_{i n}$, on the right by an outflow boundary $\Gamma_{\text {out }}$, on the bottom by a flat wall $\Gamma_{\text {wall }}$ and on the top by a time dependent boundary $S(t)$. In the three-dimensional case, the remaining boundaries are assumed to be walls. The fluid is viscous, Newtonian and incompressible, so the flow is governed by the Navier-Stokes equations for the velocity $\boldsymbol{u}(\mathbf{x}, t)$ and pressure $p(\mathbf{x}, t)$:

$$
\begin{equation*}
\partial_{t} \boldsymbol{u}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}-\nu \Delta \boldsymbol{u}+\nabla p=0, \quad \nabla \cdot \boldsymbol{u}=0, \forall \mathbf{x} \in \Omega(t), \forall t \in[0, T] \tag{2.3}
\end{equation*}
$$

where ν is the (constant) kinematic viscosity of the fluid. The initial velocity is given and denoted by \boldsymbol{u}_{0}; the inflow velocity $\boldsymbol{u}_{i n}$ is also given on $\Gamma_{i n}$; a no slip condition holds on $\Gamma_{\text {wall }} \cup S(t)$, and
we impose a traction-free outflow condition at $\Gamma_{\text {out }}$. So at all $t \in[0, T]$ we have:

$$
\begin{equation*}
\boldsymbol{u}=\boldsymbol{u}_{\text {in }} \text { on } \Gamma_{i n}, \quad \boldsymbol{u}=0 \text { on } \Gamma_{\text {wall }}, \quad-\nu \frac{\partial \boldsymbol{u}}{\partial n}+p \boldsymbol{n}=0 \text { on } \Gamma_{\text {out }} . \tag{2.4}
\end{equation*}
$$

We assume that there is no back-flow on $\Gamma_{\text {out }}: \boldsymbol{u} \cdot \boldsymbol{n} \geqslant 0$.
Remark 2.2.1 In general, the traction-free boundary condition on $\Gamma_{\text {out }},-\nu \frac{\partial \boldsymbol{u}}{\partial n}+p \boldsymbol{n}=0$ does not imply $\boldsymbol{u} \cdot \boldsymbol{n} \geqslant 0$. However, for electroless plating process, the fluid velocity field near the outlet is near to a Poiseuille flow. We note that the Poiseuille flow in a fixed cross section domain satisfies $\boldsymbol{u} \cdot \boldsymbol{n} \geqslant 0$ on $\Gamma_{\text {out }}$ and the traction-free condition. For mathematical convenience, the assumption: $\boldsymbol{u} \cdot \boldsymbol{n} \geqslant 0$ on $\Gamma_{\text {out }}$ is made.

2.2.2 The metal ion concentration

The metal ion concentration $c(\mathbf{x}, t)$ solves a convection-diffusion equation

$$
\begin{equation*}
\partial_{t} c+\boldsymbol{u} \cdot \nabla c-D \Delta c=0, \quad \forall \mathbf{x} \in \Omega(t), \quad \forall t \in[0, T] \tag{2.5}
\end{equation*}
$$

with given initial concentration $c_{0} ; D$ is the diffusion constant. The concentration is given on $\Gamma_{i n}$ and a no-flux condition holds on $\Gamma_{\text {wall }}$ and $\Gamma_{\text {out }}$:

$$
\begin{equation*}
c=c_{i n} \text { on } \Gamma_{i n}, \quad \frac{\partial c}{\partial n}=0 \quad \text { on } \Gamma_{\text {wall }} \cup \Gamma_{o u t} . \tag{2.6}
\end{equation*}
$$

On $S(t)$ a reaction condition is written as suggested in $[66,100]$,

$$
\begin{equation*}
-D \frac{\partial c}{\partial n}=i_{0} c, \quad \boldsymbol{u}=-\alpha i_{0} c \boldsymbol{n}, \quad \forall x \in S(t) \tag{2.7}
\end{equation*}
$$

where i_{0} and α are constants. Most important for our study: α is small.
It is also important to remember that c, being a concentration it must be non-negative and less or equal to one. In particular c_{0} and $c_{i n}$ must be chosen in $[0,1]$.

2.2.3 The case $\alpha=0$

When $\alpha=0$, there is no free boundary; consider the case $\Omega=(0, L) \times(0,1)$. With appropriate initial and inflow conditions, the fluid velocity is

$$
\boldsymbol{u}=\left(u_{1}, u_{2}\right)^{T}, \quad u_{1}=y(1-y), \quad u_{2}=0
$$

Similarly, with appropriate initial and inflow conditions, the concentration depends only on time t and $y:=x_{2}$ and solves

$$
\partial_{t} c-D \partial_{y y} c=0, \quad-D \partial_{y} c=i_{0} c \text { at } y=1, \quad \partial_{y} c=0 \text { at } y=0
$$

It has a closed solution $c=e^{-D \lambda^{2} t} \cos (\lambda y)$ provided λ satisfies: $\lambda \tan \lambda=\frac{i_{0}}{D}$.
When $0<\alpha \ll 1, \boldsymbol{u}_{i n}=(y(1-y), 0)^{T}, c_{i n}=e^{-D \lambda^{2} t} \cos (\lambda y), \boldsymbol{u}_{0}=\boldsymbol{u}_{i n}, c_{0}=\left.c_{i n}\right|_{t=0}$, the solution will be a linear perturbation of the above.

2.2.4 Transpiration approximation

Experimental observation show that the evolution of $S(t)$ is small. Following [97, 103], we approximate (2.7) with a transpiration approximation as follows.

Let S be the initial position of $S(t)$ and let η be the distance between $S(t)$ and S normally to S, i.e.

$$
S(t)=\{\mathbf{x}+\eta(\mathbf{x}, t) \boldsymbol{n}(\mathbf{x}): \mathbf{x} \in S\}, \quad \eta(0)=0
$$

where $\eta(0)=0$ is short for $\eta(\mathbf{x}, 0)=0$ for all $\mathbf{x} \in S$. If the radius of curvature of $S(t)$ and the derivative of η along S are not large it can be shown that the difference between the normals of S and $S(t)$ is second order in η (see [97]). By definition of \boldsymbol{u} and by the second equation in (2.7),

$$
\begin{equation*}
\frac{d \eta}{d t}=\boldsymbol{u} \cdot \boldsymbol{n}=-\alpha i_{0} c, \quad \eta(0)=0, \Rightarrow \eta(t)=-\alpha i_{0} \int_{0}^{t} c(s) d s \tag{2.8}
\end{equation*}
$$

By a Taylor expansion, the first equation in (2.7) can be written on S rather than $S(t)$:

$$
\begin{align*}
& -D \frac{\partial c}{\partial n}(\mathbf{x}+\eta(\mathbf{x}, t) \boldsymbol{n}(\mathbf{x}), t)=-D\left(\frac{\partial c}{\partial n}(\mathbf{x}, t)+\eta(\mathbf{x}, t) \frac{\partial^{2} c}{\partial n^{2}}(\mathbf{x}, t)\right)+o(\eta) \\
& =i_{0} c(\mathbf{x}+\eta(\mathbf{x}, t) \boldsymbol{n}(\mathbf{x}), t)=i_{0}\left(c(\mathbf{x}, t)+\eta(\mathbf{x}, t) \frac{\partial c}{\partial n}(\mathbf{x}, t)\right)+o(\eta) \tag{2.9}
\end{align*}
$$

By (2.8), it is rewritten as

$$
\begin{equation*}
-D\left(1-\alpha \frac{i_{0}^{2}}{D} \int_{0}^{t} c(s) d s\right) \frac{\partial c}{\partial n}(\mathbf{x}, t)-i_{0} c(\mathbf{x}, t)=\eta(\mathbf{x}, t) D \frac{\partial^{2} c}{\partial n^{2}}(\mathbf{x}, t)+o(\eta)=O(\eta) \tag{2.10}
\end{equation*}
$$

A first order in α approximation of this condition is

$$
\begin{equation*}
-D \frac{\partial c}{\partial n}(\mathbf{x}, t)-i_{0} c(\mathbf{x}, t)=0 \tag{2.11}
\end{equation*}
$$

Neglecting $o(\eta)$ and using $\frac{1}{1-y} \approx 1+y$ and neglecting $D \frac{\partial^{2} c}{\partial n^{2}}$ leads to

$$
\begin{equation*}
D \frac{\partial c}{\partial n}+i_{0} c\left(1+\frac{\alpha i_{0}^{2}}{D} \int_{0}^{t} c(s) d s\right)=0 \quad \text { on } S . \tag{2.12}
\end{equation*}
$$

In the discussion below we argue in favor of this approximation where $\eta D \frac{\partial^{2} c}{\partial n^{2}}$ is neglected.
The second equation of (2.7) is simply written on S instead of $S(t)$. Indeed a similar Taylor expansion shows that

$$
\begin{equation*}
\boldsymbol{u}+\eta \frac{\partial \boldsymbol{u}}{\partial n}=-\alpha i_{0}\left(c+\eta \frac{\partial c}{\partial n}\right) \boldsymbol{n}+o(\eta \alpha), \tag{2.13}
\end{equation*}
$$

The second equation in (2.7) implies that \boldsymbol{u} is $O(\alpha)$; so when all normal derivatives are bounded

$$
\begin{equation*}
\boldsymbol{u}=-\alpha i_{0} c \boldsymbol{n}+O(\eta \alpha), \quad \text { on } S \tag{2.14}
\end{equation*}
$$

2.2.5 The final Problem (P)

The domain and the top boundary are now fixed and denoted by Ω and S; the boundary of Ω is

$$
\Gamma:=\partial \Omega=\Gamma_{\text {in }} \cup \Gamma_{\text {wall }} \cup \Gamma_{\text {out }} \cup S .
$$

We propose to solve (2.3) and (2.5) in $\Omega \times(0, T)$ subject to initial conditions and boundary conditions (2.4) and (2.6) and

$$
\begin{align*}
D \frac{\partial c}{\partial n}+\left(1+\frac{\alpha i_{0}^{2}}{D} \int_{0}^{t} c(s) d s\right) i_{0} c=0 & \text { on } S \tag{2.15}\\
\boldsymbol{u}=-\alpha i_{0} c \boldsymbol{n} & \text { on } S \tag{2.16}
\end{align*}
$$

2.2.6 Discussion:

If we had kept the term $\eta(\mathbf{x}, t) D \frac{\partial^{2} c}{\partial n^{2}}(\mathbf{x}, t)$ in (2.12), this condition would have been second order. But even without it we expect it to be near second order when c varies slowly and Ω is elongated, because (2.5) will not be far from $-D \frac{\partial^{2} c}{\partial \boldsymbol{n}^{2}} \approx 0$.

One of the purpose of this article is to analyse the additional nonlinear term in (2.15). In the numerical section, it will be compared to the first order condition obtained by setting $\alpha=0$ in (2.15).

A third condition can be obtained as follows. If s denotes arc length on S, the PDE which governs c tells us that near S

$$
\partial_{t} c+\boldsymbol{u} \cdot \boldsymbol{n} \frac{\partial c}{\partial n}=D \frac{\partial^{2} c}{\partial n^{2}}+D \frac{\partial^{2} c}{\partial s^{2}}
$$

Assuming that the variations in s are much smaller than those in n, we obtain

$$
\begin{equation*}
D \frac{\partial^{2} c}{\partial n^{2}}=\partial_{t} c-\alpha i_{0} c \frac{\partial c}{\partial n}=\partial_{t} c+O(\alpha) \tag{2.17}
\end{equation*}
$$

Inserting the above equation into (2.10), we get

$$
\begin{equation*}
-D\left(1-\alpha \frac{i_{0}^{2}}{D} \int_{0}^{t} c(s) d s\right) \frac{\partial c}{\partial n}(\mathbf{x}, t)-i_{0} c(\mathbf{x}, t)=-\left(\alpha i_{0} \int_{0}^{t} c(s) d s\right)\left(\partial_{t} c+O(\alpha)\right) \tag{2.18}
\end{equation*}
$$

As for getting (2.12), by a first order approximation $\left(\frac{1}{1-y} \approx 1+y\right)$ and a discard of the term of order $O\left(\alpha^{2}\right)$, leads to

$$
\begin{equation*}
D \frac{\partial c}{\partial n}+i_{0} c+\alpha i_{0}\left(\frac{i_{0}^{2}}{D} c-\partial_{t} c\right) \int_{0}^{t} c(s) d s=0 \quad \text { on } S . \tag{2.19}
\end{equation*}
$$

2.2.7 Plan

If it wasn't for the boundary conditions, the mathematical analysis of (2.3),(2.5, and (2.11), (2.16) is somewhat classical, so we shall focus on the problem raised by the nonlinear boundary conditions (2.3), (2.5,(2.15),(2.16). Then, at the end we shall argue that there is no essential new difficulty if the term $\partial_{t} c$ is added, namely problem (2.3),(2.5,(2.19),(2.16).

Once more, existence of c will be shown for a given flow \boldsymbol{u}, p. The coupled problem is analysed only in the numerical section.

2.3 Variational formulation

2.3.1 Notations

For convenience, C, C^{\prime} and $C_{i}, i=1,2,3, \ldots$, denote generic constants independent of \boldsymbol{u} and \boldsymbol{c}. We denote $d=2,3$ the dimension.

We use the standard notations: $f^{+}=\max \{f, 0\}$ and $f^{-}=-\min \{f, 0\}$.
We denote by $\|\cdot\|_{s}$ the norm of $H^{s}(\Omega)$ and by $\|\cdot\|_{s, \Gamma}$ the norm of $H^{s}(\Gamma)$ for $\Gamma \subset \partial \Omega$.
If B is a Banach space, B^{\prime} denotes its dual space. The $L^{2}(\Omega)$ inner product is (\cdot, \cdot) and the duality product between B and B^{\prime} is $\langle\cdot, \cdot\rangle_{B, B^{\prime}}$.

We define

$$
W=\left\{w \in H^{1}(\Omega):\left.\quad w\right|_{\Gamma_{i n}}=0\right\} ;
$$

since W is closed in $H^{1}(\Omega)$ and $H^{1}(\Omega)$ is a Hilbert space, then so is W.
We assume that $\boldsymbol{u} \in L^{2}\left(0, T ; \boldsymbol{V}_{\text {div }}\right) \cap L^{\infty}\left(0, T ; L^{2}(\Omega)^{d}\right)$ is given, where

$$
\boldsymbol{V}_{\text {div }}:=\left\{\boldsymbol{v} \in H^{1}(\Omega)^{d}: \quad \nabla \cdot \boldsymbol{v}=0\right\} .
$$

In view of (2.16) with nonnegative concentration c and assuming that there is no back-flow on $\Gamma_{\text {out }}$, we make the following assumptions for \boldsymbol{u} :
(U1) $\boldsymbol{u} \cdot \boldsymbol{n} \leqslant 0$ on S,
(U2) $\boldsymbol{u} \cdot \boldsymbol{n} \geqslant 0$ on $\Gamma_{\text {out }}$.
In variational form (2.5), (2.6), (2.15) is: Let $w(x, t)$ be a sufficiently smooth function defined in $\Omega \times[0, T]$ and vanishing on $\Gamma_{i n}$. Multiplying $w(x, t)$ with (2.5), integrating over Ω, and using (2.6), (2.15), (2.16), we have

$$
\begin{align*}
& \int_{\Omega}\left(\partial_{t} c+\boldsymbol{u} \cdot \nabla c-D \Delta c\right) w d x \\
& =\int_{\Omega}\left(\partial_{t} c\right) w d x+\frac{1}{2} \int_{\Omega}(\boldsymbol{u} \cdot \nabla c) w d x-\frac{1}{2} \int_{\Omega}(\boldsymbol{u} \cdot \nabla w) c d x+\frac{1}{2} \int_{\partial \Omega}(\boldsymbol{u} \cdot \boldsymbol{n}) c w \\
& +\int_{\Omega} D \nabla c \cdot \nabla w d x-\int_{\partial \Omega} D \frac{\partial c}{\partial n} w \tag{2.21}\\
& =\int_{\Omega}\left(\partial_{t} c\right) w d x+\frac{1}{2} \int_{\Omega}[(\boldsymbol{u} \cdot \nabla c) w-(\boldsymbol{u} \cdot \nabla w) c] d x+\int_{\Omega} D \nabla c \cdot \nabla w d x \\
& +\frac{1}{2} \int_{\Gamma_{\text {out }}}(\boldsymbol{u} \cdot \boldsymbol{n}) c w+\int_{S}\left(1-\frac{\alpha c}{2}+\frac{\alpha i_{0}^{2}}{D} \int_{0}^{t} c(s) d s\right) i_{0} c w .
\end{align*}
$$

The resulting variational formulation reads:

Problem (P)

Given $c_{0} \in H^{1}(\Omega), c_{0}(x) \in[0,1], c_{i n} \in H^{1 / 2}\left(\Gamma_{i n}\right), c_{i n}(x) \in[0,1]$, and $\boldsymbol{u} \in L^{2}\left(0, T ; \boldsymbol{V}_{\text {div }}\right)$ satisfying (U1), (U2), find $c \in L^{2}\left(0, T ; H^{1}(\Omega)\right) \partial_{t} c \in L^{2}\left(0, T ; W^{\prime}\right)$, such that, $c(0)=c_{0},\left.c\right|_{\Gamma_{i n}}=$ $c_{i n}$ and, for all $w \in W$,

$$
\begin{align*}
& \left\langle\partial_{t} c, w\right\rangle_{W^{\prime}, W}+\int_{\Omega} D \nabla c \cdot \nabla w d x+\frac{1}{2} \int_{\Omega}[(\boldsymbol{u} \cdot \nabla c) w-(\boldsymbol{u} \cdot \nabla w) c] d x \\
& \quad+\frac{1}{2} \int_{\Gamma_{\text {out }}}(\boldsymbol{u} \cdot \boldsymbol{n}) c w+\int_{S}\left(1-\frac{\alpha c}{2}+\frac{\alpha i_{0}^{2}}{D} \int_{0}^{t} c(s) d s\right) i_{0} c w=0 . \tag{2.22}
\end{align*}
$$

The following result, central to this chapter, shows existence of the concentration profile c when the velocity field \boldsymbol{u}, is known:

Theorem 2.3.1 Given $c_{0} \in H^{1}(\Omega), c_{0}(x) \in[0,1], c_{\text {in }} \in H^{1 / 2}\left(\Gamma_{i n}\right), c_{i n}(x) \in[0,1]$, and $\boldsymbol{u} \in$ $L^{2}\left(0, T ; \boldsymbol{V}_{\text {div }}\right)$ satisfying (U1) and (U2), there exists a unique $c \in L^{2}\left(0, T ; H^{1}(\Omega)\right)$ with $\partial_{t} c \in$ $L^{2}\left(0, T ; W^{\prime}\right)$ such that

$$
\begin{align*}
& \int_{0}^{T}\left\langle\partial_{t} c, w\right\rangle_{W^{\prime}, W} d t+\frac{1}{2}\left(\int_{0}^{T} \int_{\Omega}[(\boldsymbol{u} \cdot \nabla c) w-(\boldsymbol{u} \cdot \nabla w) c] d x d t\right) \\
& +D \int_{0}^{T} \int_{\Omega} \nabla c \cdot \nabla w d x d t+\int_{0}^{T} \int_{S}\left(1-\frac{\alpha c}{2}+\frac{\alpha i_{0}^{2}}{D} \int_{0}^{t} c(s) d s\right) i_{0} c w d t \tag{2.23}\\
& +\int_{0}^{T} \int_{S} \frac{\alpha i_{0}^{3}}{D} c\left(\int_{0}^{t} c(s) d s\right) w d t+\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{\text {out }}}(\boldsymbol{u} \cdot \boldsymbol{n}) c w d t \\
& =0
\end{align*}
$$

for all $w \in L^{2}(0, T ; W)$, and $c(0)=c_{0} \in H^{1}(\Omega)$, and $\left.c\right|_{\Gamma_{i n}}=c_{i n} \in H^{1 / 2}\left(\Gamma_{i n}\right)$.
Remark 2.3.1 The existence and regularity of the coupled problem $\{\boldsymbol{u}, c\}$ will not be studied. Mostly because it would require minute and perhaps hard to obtain estimates due to the corners in the domain as in $[9,68,14]$, the traction-free boundary condition, etc, but also because, \boldsymbol{u} is merely weakly coupled with c only through the boundary condition on S. Furthermore, due to the numerical values of the physical constants, \boldsymbol{u} is small on $\Gamma_{i n}$. Therefore, we focus on the solution to the convection-diffusion equation (2.22), for which, as we shall see, the functional setting is not so simple.

2.3.2 Convexification

The term $c-\frac{\alpha c^{2}}{2}$ in the integral on S is problematic because it is not monotone so it makes the problem non-coercive. Indeed its primitive $\psi(c):=\frac{c^{2}}{2}-\frac{\alpha c^{3}}{6}$ is nonconvex beyond $c>\frac{1}{\alpha}$. But the physics require that $c \in[0,1]$ and the maximum principle will insure it. So any modification of ψ outside $(0,1)$ will not affect the solution; hence to work with a convex potential let us replace ψ by (see Figure 2.2).

$$
\Psi(c)= \begin{cases}\frac{c^{2}}{2}-\frac{\alpha c^{3}}{6} & \text { if } c<\frac{1}{\alpha} \tag{2.24}\\ \frac{c}{2 \alpha}-\frac{1}{6 \alpha^{2}} & \text { otherwise }\end{cases}
$$

Let ρ be any time dependent function defined on $[0, T]$. We define

$$
\begin{equation*}
(\phi(\rho))(t)=i_{0} \dot{\Psi}(\rho(t))+\frac{\alpha i_{0}^{3}}{D} \rho(t) \int_{0}^{t}|\rho(s)| d s, \quad t \in[0, T] \tag{2.25}
\end{equation*}
$$

where $\dot{\Psi}(c)$ is the derivative of Ψ with respect to c :

$$
\dot{\Psi}(c)= \begin{cases}c-\frac{\alpha c^{2}}{2} & \text { if } c<\frac{1}{\alpha} \tag{2.26}\\ \frac{1}{2 \alpha} & \text { otherwise }\end{cases}
$$

Figure 2.2: Graphic showing the modification of the nonconvex function $c \mapsto \frac{c^{2}}{2}-\frac{\alpha c^{3}}{6}$ into a convex one.

Naturally $\dot{\Psi}$ is monotone increasing. Note that Ψ is strictly convex and $\dot{\Psi}$ is strictly increasing in $\left[0, \frac{1}{\alpha}\right]$.

The convexified variational formulation replacing (2.22) is

Problem (P_{c})

Given $c_{0} \in H^{1}(\Omega), c_{0}(x) \in[0,1], c_{i n} \in H^{1 / 2}\left(\Gamma_{i n}\right), c_{\text {in }}(x) \in[0,1]$, and $\boldsymbol{u} \in L^{2}\left(0, T ; \boldsymbol{V}_{\text {div }}\right)$ satisfying (U1), (U2), find $c \in L^{2}\left(0, T ; H^{1}(\Omega)\right)$ satisfying $\left.c\right|_{\Gamma_{i n}}=c_{i n} \in H^{1 / 2}\left(\Gamma_{i n}\right), \partial_{t} c \in L^{2}\left(0, T ; W^{\prime}\right)$, $\phi(c) \in L^{2}\left(0, T ; L^{2}(S)\right)$, and

$$
\begin{array}{r}
\left\langle\partial_{t} c, w\right\rangle_{W^{\prime}, W}+\int_{\Omega} D \nabla c \cdot \nabla w d x+\frac{1}{2} \int_{\Omega}[(\boldsymbol{u} \cdot \nabla c) w-(\boldsymbol{u} \cdot \nabla w) c] d x \\
+\frac{1}{2} \int_{\Gamma_{\text {out }}}(\boldsymbol{u} \cdot \boldsymbol{n}) c w+\int_{S} \phi(c) w=0, \quad \forall w \in W \tag{2.27}
\end{array}
$$

Note that when $0 \leqslant c \leqslant 1$, then both c and $\phi(c) \in L^{\infty}(\Omega \times(0, T))$.
The proof of existence goes by steps. We assume that $\boldsymbol{u} \in L^{2}\left(0, T ; \boldsymbol{V}_{d i v}\right) \cap L^{\infty}\left(0, T ; L^{2}(\Omega)^{d}\right)$, so as to focus on the equation for c with \boldsymbol{u} given. We will first discretize in time, show existence for the time discretized problem and then let the time step tend to zero.

2.4 Existence for the time-discretized problem

Let $N \in \mathbb{N}^{+}$and let $\delta t=\frac{T}{N}$ be the time step.

Discrete velocity field \boldsymbol{u}

Since functions in a Bochner space $L^{p}(0, T ; X)$ for all Banach space $(X,\|\cdot\|)$ can be approximated by step functions on a uniform discretization of $(0, T)$ (see for instance [44, 65]), we define
$\boldsymbol{u}_{\delta}:(0, T] \rightarrow \boldsymbol{V}_{d i v}$ by

$$
\begin{equation*}
\boldsymbol{u}_{\delta}(t)=\sum_{m=0}^{N-1} \boldsymbol{u}^{m+1} \chi_{(m \delta t,(m+1) \delta t]}(t) \tag{2.28}
\end{equation*}
$$

where $\boldsymbol{u}^{j}=\frac{1}{\delta t} \int_{j \delta t}^{(j+1) \delta t} \boldsymbol{u}(s) d s$ for $j=0, \ldots N-1$. For convenience, we further define $\boldsymbol{u}^{0}=$ $\boldsymbol{u}(0) \in \boldsymbol{V}_{d i v}$. Obviously, $\boldsymbol{u}^{j} \in \boldsymbol{V}_{d i v}$ for all $0 \leqslant j \leqslant N$. To show that \boldsymbol{u}_{δ} converges to \boldsymbol{u} strongly in $L^{2}\left(0, T ; H^{1}(\Omega)^{d}\right)$, we need a lemma:

Lemma 2.4.1 Let $f \in L^{2}([a, b])$ for $a, b \in \mathbb{R}, a<b$, and $N>0$ be an integer. Defining $\delta t=\frac{b-a}{N}$, we have

$$
\begin{equation*}
\delta t \sum_{j=0}^{N-1} \int_{a+j \delta t}^{a+(j+1) \delta t} \int_{a+j \delta t}^{a+(j+1) \delta t} \frac{|f(s)-f(t)|^{2}}{\delta t^{2}} d s d t \rightarrow 0, \quad \text { as } \delta t \rightarrow 0 \tag{2.29}
\end{equation*}
$$

Proof. Given $\epsilon_{1}>0$, there exists $g \in C([a, b])$ such that

$$
\int_{a}^{b}|f-g|^{2} d t<\epsilon_{1}
$$

We note that choice of g is independent to δt. With given g in hand, for every $\epsilon_{2}>0$, there exists $\delta>0$ such that for every $s, t \in[a, b]$, we have

$$
|g(s)-g(t)|<\epsilon_{2}, \quad \text { whenever }|s-t|<\delta
$$

Choosing $\delta t<\delta$, we have the estimate:

$$
\begin{align*}
& \sum_{j=0}^{N-1} \int_{a+j \delta t}^{a+(j+1) \delta t} \int_{a+j \delta t}^{a+(j+1) \delta t}|f(s)-f(t)|^{2} d s d t \\
& \leqslant 3 \sum_{j=0}^{N-1} \int_{a+j \delta t}^{a+(j+1) \delta t} \int_{a+j \delta t}^{a+(j+1) \delta t}\left(|f(s)-g(s)|^{2}+|g(s)-g(t)|^{2}+|f(t)-g(t)|^{2}\right) d s d t \\
& \leqslant 6 \sum_{j=0}^{N} \delta t\left(\int_{a+j \delta t}^{a+(j+1) \delta t} \int_{a+j \delta t}^{a+(j+1) \delta t}|f(s)-g(s)|^{2} d s\right)+3 \sum_{j=0}^{N-1} \int_{a+j \delta t}^{a+(j+1) \delta t} \int_{a+j \delta t}^{a+(j+1) \delta t}|g(s)-g(t)|^{2} d s d t \\
& \leqslant 6 \delta t \epsilon_{1}+3(b-a) \delta t \epsilon_{2} \tag{2.30}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\delta t \sum_{j=0}^{N-1} \int_{a+j \delta t}^{a+(j+1) \delta t} \int_{a+j \delta t}^{a+(j+1) \delta t} \frac{|f(s)-f(t)|^{2}}{\delta t^{2}} d s d t \leqslant 6 \epsilon_{1}+3(b-a) \epsilon_{2} . \tag{2.31}
\end{equation*}
$$

By the arbitrariness of ϵ_{1} and ϵ_{2}, the proof is completed. Q.E.D.

Proposition 2.4.1 Let \boldsymbol{u}_{δ} be defined by (2.28), we have the following:

$$
\begin{equation*}
\left\|\boldsymbol{u}-\boldsymbol{u}_{\delta}\right\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right)} \rightarrow 0 \quad \text { as } \delta t \rightarrow 0 \tag{2.32}
\end{equation*}
$$

Proof.

$$
\begin{align*}
& \int_{0}^{T}\left\|\boldsymbol{u}_{\delta}(t)-\boldsymbol{u}(t)\right\|_{1}^{2} d t \\
& =\sum_{j=0}^{N-1} \int_{j \delta t}^{(j+1) \delta t}\left\|\boldsymbol{u}^{j+1}-\boldsymbol{u}(t)\right\|_{1}^{2} d t \\
& =\sum_{j=0}^{N-1} \int_{j \delta t}^{(j+1) \delta t}\left\|\frac{1}{\delta t} \int_{j \delta t}^{(j+1) \delta t}(\boldsymbol{u}(s)-\boldsymbol{u}(t)) d s\right\|_{1}^{2} d t \tag{2.33}\\
& \leqslant \sum_{j=0}^{N-1} \int_{j \delta t}^{(j+1) \delta t}\left(\frac{1}{\delta t} \int_{j \delta t}^{(j+1) \delta t}\|\boldsymbol{u}(s)-\boldsymbol{u}(t)\|_{1}^{2} d s\right) d t \\
& =\delta t \sum_{j=0}^{N-1} \int_{j \delta t}^{(j+1) \delta t} \int_{j \delta t}^{(j+1) \delta t} \frac{\|\boldsymbol{u}(s)-\boldsymbol{u}(t)\|_{1}^{2}}{\delta t^{2}} d s d t
\end{align*}
$$

Defining the function $f:[0, T] \rightarrow \mathbb{R}$ by $s \mapsto\|\boldsymbol{u}(s)\|_{1}^{2}$ and applying Lemma 2.4.1, the proof is completed. Q.E.D.

We observe that \boldsymbol{u}_{δ} is strongly convergent to \boldsymbol{u} in $L^{2}\left(0, T ; H^{1}(\Omega)^{d}\right)$. Thus,
Corollary 2.4.1 There exists a constant C depending only on $\Omega, T, \boldsymbol{u}$ so that

$$
\begin{equation*}
\left\|\boldsymbol{u}_{\delta}\right\|_{L^{2}\left(0, T ; H^{1}(\Omega)^{d}\right)} \leqslant C \quad \forall \delta t \geqslant 0 . \tag{2.34}
\end{equation*}
$$

Problem (P_{c}^{m})

For each integer $m \in(0, N-1)$, given $c^{m} \in H^{1}(\Omega)$, and $\boldsymbol{u}^{m+1}=\boldsymbol{u}_{\delta}((m+1) \delta t)$ satisfying (U1), (U2), find $c^{m+1} \in H^{1}(\Omega)$ such that for all $w \in W$,

$$
\begin{align*}
& \int_{\Omega} \frac{c^{m+1}-c^{m}}{\delta t} w d x+D \int_{\Omega} \nabla c^{m+1} \cdot \nabla w d x \\
& +\frac{1}{2} \int_{\Omega}\left[\left(\boldsymbol{u}^{m+1} \cdot \nabla c^{m+1}\right) w-\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right) c^{m+1}\right] d x \tag{2.35}\\
& +\int_{S} \phi_{m}\left(c^{m+1}\right) w+\frac{1}{2} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right) c^{m+1} w=0
\end{align*}
$$

with $\left.c^{m+1}\right|_{\Gamma_{i n}}=c_{\text {in }} \in H^{1 / 2}\left(\Gamma_{\text {out }}\right)$, where $\phi_{m}\left(c^{m+1}\right)$ is the following time approximation of $\phi(c)$,

$$
\phi_{m}\left(c^{m+1}\right)=i_{0} \dot{\Psi}\left(c^{m+1}\right)+\frac{\alpha i_{0}^{3}}{D}\left(\sum_{j=0}^{m} c^{j} \delta t\right) c^{m+1} .
$$

The boundary condition is given by $\left.c\right|_{\Gamma_{i n}}=c_{i n} \in H^{1 / 2}\left(\Gamma_{i n}\right), 0 \leqslant c_{i n} \leqslant 1$. The initial value is $c^{0}=c_{0}$ with $c_{0} \in H^{1}(\Omega),\left.c_{0}\right|_{\Gamma_{i n}}=c_{i n} \in H^{1 / 2}\left(\Gamma_{i n}\right), 0 \leqslant c_{0} \leqslant 1$.

2.4.1 Existence of the solution to the time-discretized Problem (P_{c}^{m})

To prove the existence, the Minty-Browder Theorem (see Theorem 9.14.1 in [27] and a series of works by Minty and Browder [83, 84, 21]) will be used.

Theorem 2.4.1 (Minty-Browder) Let B be a reflexive Banach space and $\|\cdot\|$ its norm. Let $A: B \rightarrow B^{\prime}$ a continuous mapping such that
(i) $\langle A u-A v, u-v\rangle>0 \quad \forall u, v \in B, \quad u \neq v$
(ii) $\lim _{\|u\| \rightarrow \infty}\|u\|^{-1}\langle A u, u\rangle=+\infty$.

Then, for any $b \in B^{\prime}$, there is a unique u such that $A u=b$.
Remark 2.4.1 The continuity of A in Theorem 2.4.1 can be generalized to hemicontinuity, or demicontinuity.

The theorem will be applied to $c^{m}-\widetilde{c}_{i n}$ where $\widetilde{c}_{i n} \in H^{1}(\Omega)$ is a lift of the boundary conditions defined as the unique solution of

$$
\begin{equation*}
\int_{\Omega} D \nabla \widetilde{c}_{i n} \cdot \nabla w d x=0, \quad \forall w \in W \tag{2.36}
\end{equation*}
$$

such that $\widetilde{c}_{i n}=c_{i n}$ on $\Gamma_{i n}$. With $c_{i n} \in H^{1 / 2}\left(\Gamma_{i n}\right)$, the existence and uniqueness of $\widetilde{c}_{i n}$ can be guaranteed (see Section 7 in [99]).
Lemma 2.4.2 If $0 \leq c_{i n} \leq 1$, then $\widetilde{c}_{i n}$ satisfies $0 \leqslant \widetilde{c}_{i n} \leqslant 1$ a.e.
Proof. The argument is classical; let us recall it for the reader's convenience. Note that $\left(\widetilde{c}_{i n}-1\right)^{+}$and $\left(\widetilde{c}_{i n}\right)^{-}$belong to W. Choosing $w=\left(\widetilde{c}_{i n}\right)^{-}$in (2.36), gives $\left\|\nabla\left(\widetilde{c}_{i n}\right)^{-}\right\|_{0}^{2}=0$. Hence $\left(\widetilde{c}_{i n}\right)^{-}=0$ i.e. $\widetilde{c}_{i n} \geqslant 0$.

Now choosing $w=\left(\widetilde{c}_{i n}-1\right)^{+}$in (2.36) implies $\left\|\nabla\left(\widetilde{c}_{i n}-1\right)^{+}\right\|_{0}^{2}=0$. Hence $\left(\widetilde{c}_{i n}-1\right)^{+}=0$, i.e. $\widetilde{c}_{i n} \leqslant 1$ a.e. in Ω. Q.E.D.

Proposition 2.4.2 Let $m \geqslant 0$. If $0 \leqslant c^{j} \leqslant 1$ a.e. in Ω, $c^{j} \in H^{1}(\Omega)$ for all $j \leqslant m$, then $c^{m+1} \in H^{1}(\Omega)$ and $0 \leqslant c^{m+1} \leqslant 1$ a.e. in Ω.
Proof. Letting $w=\left(c^{m+1}\right)^{-}$in (2.35), gives

$$
\begin{array}{r}
-\frac{1}{\delta t}\left\|\left(c^{m+1}\right)^{-}\right\|_{0}^{2}-D\left\|\nabla\left(c^{m+1}\right)^{-}\right\|_{0}^{2}-\frac{1}{2} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right)\left(c^{m+1}\right)^{-2} \\
+\int_{S} i_{0} \dot{\Psi}\left(c^{m+1}\right)\left(c^{m+1}\right)^{-}-\frac{\alpha i_{0}^{3}}{D} \sum_{j=0}^{m} c^{j} \delta t\left(c^{m+1}\right)^{-2}=\frac{1}{\delta t} \int_{\Omega} c^{m}\left(c^{m+1}\right)^{-} \geqslant 0 \tag{2.37}
\end{array}
$$

All terms on the left are obviously negative except $\dot{\Psi}\left(c^{m+1}\right)\left(c^{m+1}\right)^{-}$. Two cases: if $c \geqslant \frac{1}{\alpha}$ then $c^{-}=0$ and $\dot{\Psi}(c) c^{-}=0$; if $c<\frac{1}{\alpha}$ then $\dot{\Psi}(c) c^{-}=\left(c-\frac{\alpha}{2} c^{2}\right) c^{-}=-\left(c^{-}\right)^{2}-\frac{\alpha}{2} c^{2} c^{-} \leqslant 0$. Hence $\dot{\Psi}\left(c^{m+1}\right)\left(c^{m+1}\right)^{-} \leqslant 0$ always; thus (2.37) leads to $\left\|\left(c^{m+1}\right)^{-}\right\|_{0}^{2}=0$.
Define $\bar{c}^{m+1}=c^{m+1}-1$. It satisfies

$$
\begin{align*}
& \int_{\Omega} \frac{\bar{c}^{m+1}-\bar{c}^{m}}{\delta t} w+\int_{\Omega} D \nabla \bar{c}^{m+1} \cdot \nabla w d x \\
& +\frac{1}{2} \int_{\Omega}\left[\left(\boldsymbol{u}^{m+1} \cdot \nabla \bar{c}^{m+1}\right) w-\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right) \bar{c}^{m+1}\right] d x \\
& -\frac{1}{2} \int_{S \cup \Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right) w+\int_{S} i_{0} \dot{\Psi}\left(c^{m+1}\right) w+\int_{S} \frac{\alpha i_{0}^{3}}{D} \sum_{j=0}^{m} c^{j} \delta t c^{m+1} w \tag{2.38}\\
& +\frac{1}{2} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right)\left(\bar{c}^{m+1}+1\right) w=0
\end{align*}
$$

Testing with $w=\left(\bar{c}^{m+1}\right)^{+}$, gives

$$
\begin{align*}
& \frac{1}{\delta t}\left\|\left(\bar{c}^{m+1}\right)^{+}\right\|_{0}^{2}-\frac{1}{\delta t} \int_{\Omega} \bar{c}^{m}\left(\bar{c}^{m+1}\right)^{+}+D\left\|\nabla\left(\bar{c}^{m+1}\right)^{+}\right\|_{0}^{2}-\frac{1}{2} \int_{S}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right)\left(\bar{c}^{m+1}\right)^{+} \\
& \int_{S} i_{0} \dot{\Psi}\left(c^{m+1}\right)\left(\bar{c}^{m+1}\right)^{+}+\frac{\alpha i_{0}^{3}}{D} \int_{S} \sum_{j=0}^{m} c^{j} \delta t c^{m+1}\left(\bar{c}^{m+1}\right)^{+} \tag{2.39}\\
& +\frac{1}{2} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right)\left(\left(\bar{c}^{m+1}\right)^{+}+1\right)\left(\bar{c}^{m+1}\right)^{+}=0 .
\end{align*}
$$

By the induction hypothesis, \bar{c}^{m} is negative; observe that $\boldsymbol{u}^{m+1} \cdot \boldsymbol{n} \leqslant 0$ on S by (U1), $\boldsymbol{u}^{m+1} \cdot \boldsymbol{n} \geqslant 0$ on $\Gamma_{\text {out }}$ by (U2) and $\dot{\Psi}\left(c^{m+1}\right) \geqslant 0$ because $c^{m+1} \geqslant 0$. So we have that $\left\|\left(c^{m+1}\right)^{+}\right\|_{0}^{2}=0$. Q.E.D.

Let us define

$$
\widetilde{c}^{m}:=c^{m}-\widetilde{c}_{i n} \in W, \quad m=0,1, \ldots, N .
$$

Remark 2.4.2 As $\widetilde{c}^{m} \in[-1,1]$ and $\dot{\Psi}\left(c^{m}\right) \in[0,1]$, therefore $\left|\dot{\Psi}\left(c^{m}\right) \widetilde{c}^{m}\right| \leqslant 1$.
By construction, (2.35), which defines Problem P_{c}^{m}, can be rewritten as
Problem (\widetilde{P}_{c}^{m})
For each integer $m \in(0, N-1)$, given $\widetilde{c}^{m} \in H^{1}(\Omega), \widetilde{c}_{i n} \in H^{1}(\Omega), \widetilde{c}_{i n}(x) \in[0,1]$, and $\boldsymbol{u}^{m+1}=\boldsymbol{u}_{\delta}((m+1) \delta t)$ satisfying (U1), (U2), find $\widetilde{c}^{m+1} \in W$ such that for all $w \in W$,

$$
\begin{align*}
& \frac{1}{\delta t} \int_{\Omega} \widetilde{c}^{m+1} w d x+\frac{1}{2} \int_{\Omega}\left[\left(\boldsymbol{u}^{m+1} \cdot \nabla \widetilde{c}^{m+1}\right) w-\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right) \widetilde{c}^{m+1}\right] d x \\
& +D \int_{\Omega} \nabla \widetilde{c}^{m+1} \cdot \nabla w d x+\int_{S} \phi_{m}\left(c^{m+1}\right) w+\frac{1}{2} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right) \widetilde{c}^{m+1} w \tag{2.40}\\
& =-\frac{1}{2} \int_{\Omega}\left[\left(\boldsymbol{u}^{m+1} \cdot \nabla \widetilde{c}_{\text {in }}\right) w-\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right) \widetilde{c}_{\text {in }}\right] d x+\frac{1}{\delta t} \int_{\Omega} \widetilde{c}^{m} w d x-\frac{1}{2} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \mathbf{n}\right) \widetilde{c}_{\text {in }} w
\end{align*}
$$

Now define the mapping $A: W \rightarrow W^{\prime}$ by

$$
\begin{align*}
& \langle A \rho, w\rangle=\frac{1}{\delta t} \int_{\Omega} \rho w d x+\frac{1}{2} \int_{\Omega}\left[\left(\boldsymbol{u}^{m+1} \cdot \nabla \rho\right) w-\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right) \rho\right] d x \\
& \quad+D \int_{\Omega} \nabla \rho \cdot \nabla w d x+\int_{S} \phi_{m}\left(\rho+\widetilde{c}_{\text {in }}\right) w+\frac{1}{2} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right) \rho w \tag{2.41}
\end{align*}
$$

Since W is closed in $H^{1}(\Omega)$ and $H^{1}(\Omega)$ is a Hilbert space, then so is W.
Lemma 2.4.3 Let $m \geqslant 0$. We suppose that $c_{j} \in H^{1}(\Omega)$ for all $j \leqslant m$, then $A: W \rightarrow W^{\prime}$ defined by (2.41) is locally Lipschitz continuous

The proof is fairly straightforward but long, so it is postponed to Appendix A so as not to break the thread of the proof of existence of $\left(P_{c}^{m}\right)$. From the definition of A by (2.41), there is no essential difficulty to arrive, via a sequence of inequalities, at

$$
\begin{align*}
& \left|\left\langle A \rho_{1}-A \rho_{2}, w\right\rangle\right| \\
& \leqslant\left(C_{1}+C_{2}\left\|\boldsymbol{u}^{m+1}\right\|_{1}+C_{3}\left(\left\|\rho_{1}\right\|_{1}+\left\|\rho_{2}\right\|_{1}\right)+C_{4} \delta t \sum_{j=0}^{m}\left\|c^{j}\right\|_{1}\right)\left\|\rho_{1}-\rho_{2}\right\|_{1}\|w\|_{1}, \tag{2.42}
\end{align*}
$$

Lemma 2.4.4 Let $\rho_{1}, \rho_{2}, \rho \in W$ and $m \geqslant 0$. We suppose that $0 \leqslant c^{j} \leqslant 1$ a.e. in Ω for all $j \leqslant m$. $A: W \rightarrow W^{\prime}$ defined by (2.41) satisfies
(i) $\left\langle A \rho_{1}-A \rho_{2}, \rho_{1}-\rho_{2}\right\rangle>0$ if $\rho_{1} \neq \rho_{2}$
(ii) $\lim _{\|\rho\|_{1} \rightarrow+\infty}\|\rho\|_{1}^{-1}\langle A \rho, \rho\rangle=+\infty$.

Proof. To show (i), we use (2.41) with $\rho_{1}, \rho_{2} \in W$,

$$
\begin{align*}
& \left\langle A \rho_{1}-A \rho_{2}, w\right\rangle=\frac{1}{\delta t} \int_{\Omega}\left(\rho_{1}-\rho_{2}\right) w d x \\
& +\frac{1}{2} \int_{\Omega}\left[\left(\boldsymbol{u}^{m+1} \cdot \nabla\left(\rho_{1}-\rho_{2}\right)\right) w-\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right)\left(\rho_{1}-\rho_{2}\right)\right] d x+D \int_{\Omega} \nabla\left(\rho_{1}-\rho_{2}\right) \cdot \nabla w d x \tag{2.43}\\
& +\int_{S}\left(\phi_{m}\left(\rho_{1}+\widetilde{c}_{\text {in }}\right)-\phi_{m}\left(\rho_{2}+\widetilde{c}_{\text {in }}\right)\right) w+\frac{1}{2} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right)\left(\rho_{1}-\rho_{2}\right) w .
\end{align*}
$$

By the definition of ϕ_{m}, c^{j} are given for $j \leqslant m$ irrespectively of ρ. Let $w=\rho_{1}-\rho_{2}$ in the above equation, one obtain

$$
\begin{align*}
& \left\langle A \rho_{1}-A \rho_{2}, \rho_{1}-\rho_{2}\right\rangle= \\
& \int_{\Omega} \frac{1}{\delta t}\left(\rho_{1}-\rho_{2}\right)^{2} d x+D \int_{\Omega}\left|\nabla\left(\rho_{1}-\rho_{2}\right)\right|^{2} d x+\frac{1}{2} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right)\left(\rho_{1}-\rho_{2}\right)^{2} \tag{2.44}\\
& \int_{S} \frac{\alpha i_{0}^{3}}{D} \sum_{j=0}^{m} c^{j} \delta t\left(\rho_{1}-\rho_{2}\right)^{2}+\int_{S}\left(\dot{\Psi}\left(\rho_{1}+\widetilde{c}_{\text {in }}\right)-\dot{\Psi}\left(\rho_{2}+\widetilde{c}_{\text {in }}\right)\right)\left(\rho_{1}-\rho_{2}\right) .
\end{align*}
$$

Recall that $\boldsymbol{u}^{m+1} \cdot \boldsymbol{n} \geqslant 0$ on $\Gamma_{\text {out }}$. All the terms on the right are obviously positive, except the last one. Without loss of generality, we assume that $\rho_{2}>\rho_{1}$; we know that $\dot{\Psi}$ is strictly increasing. That is, $\dot{\Psi}\left(\rho_{2}+\widetilde{c}_{i n}\right)>\dot{\Psi}\left(\rho_{1}+\widetilde{c}_{i n}\right)$. Hence $\left(\dot{\Psi}\left(\rho_{2}+\widetilde{c}_{i n}\right)-\dot{\Psi}\left(\rho_{1}+\widetilde{c}_{i n}\right)\right)\left(\rho_{2}-\rho_{1}\right)>0$. Hence

$$
\left\langle A \rho_{1}-A \rho_{2}, \rho_{1}-\rho_{2}\right\rangle>\frac{1}{\delta t}\left\|\rho_{1}-\rho_{2}\right\|_{0}^{2}+D\left\|\nabla\left(\rho_{1}-\rho_{2}\right)\right\|_{0}^{2}
$$

Finally (ii) can be proved by taking $\rho_{1}=0$ in (i). Q.E.D.
By Theorem 2.4.1 and Lemmas 2.4.3, 2.4.4, we have
Corollary 2.4.2 There exists a unique solution to Problem $\left(\widetilde{P}_{c}^{m}\right)$ and hence also to $\left(P_{c}^{m}\right)$ defined by (2.35).

2.5 Stability of the time-discretized Problem P_{c}^{m}

Proposition 2.5.1 Let \widetilde{c}^{m+1} be the solution of (2.40) for each integer $m \in(0, N-1)$ with given $\widetilde{c}^{j} \in H^{1}(\Omega), \widetilde{c}^{j}(x) \in[-1,1]$ for $j=0, \ldots, m, \widetilde{c}_{i n} \in H^{1}(\Omega), \widetilde{c}_{i n}(x) \in[0,1]$, and $\boldsymbol{u}^{m+1} \in H^{1}(\Omega)^{d}$ satisfying (U1), (U2). We have

$$
\begin{align*}
\left\|\widetilde{c}^{m+1}\right\|_{0}^{2}+ & \left\|\widetilde{c}^{m+1}-\widetilde{c}^{m}\right\|_{0}^{2}+D \delta t\left\|\nabla \widetilde{c}^{m+1}\right\|_{0}^{2}+\delta t \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right)\left(\widetilde{c}^{m+1}\right)^{2} \\
& \leqslant\left\|\widetilde{c}^{m}\right\|_{0}^{2}+C_{1} \delta t+C_{2} \delta t\left\|\boldsymbol{u}^{m+1}\right\|_{1}^{2}+C_{3} \delta t\left\|\nabla \widetilde{c}_{\text {in }}\right\|_{0}^{2} \tag{2.45}
\end{align*}
$$

Proof. By (2.40) with $w=\widetilde{c}^{m+1}$ we have

$$
\begin{align*}
& \frac{1}{2 \delta t}\left\|\widetilde{c}^{m+1}\right\|_{0}^{2}+\frac{1}{2 \delta t}\left\|\widetilde{c}^{m+1}-\widetilde{c}^{m}\right\|_{0}^{2}+D\left\|\nabla \widetilde{c}^{m+1}\right\|_{0}^{2}+\frac{1}{2} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right)\left(\widetilde{c}^{m+1}\right)^{2} \\
& =-\int_{S} i_{0} \dot{\Psi}\left(c^{m+1}\right) \widetilde{c}^{m+1}-\int_{S} \frac{\alpha i_{0}^{3}}{D} \sum_{j=0}^{m} c^{j} \delta t c^{m+1} \widetilde{c}^{m+1}-\frac{1}{2} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right) \widetilde{c}_{i n} \widetilde{c}^{m+1} \tag{2.46}\\
& -\frac{1}{2} \int_{\Omega}\left(\boldsymbol{u}^{m+1} \cdot \nabla \widetilde{c}^{m+1}\right) \widetilde{c}_{\text {in }} d x+\frac{1}{2} \int_{\Omega}\left(\boldsymbol{u}^{m+1} \cdot \nabla \widetilde{c}_{\text {in }}\right) \widetilde{c}^{m+1} d x+\frac{1}{2 \delta t}\left\|\widetilde{c}^{m}\right\|_{0}^{2}
\end{align*}
$$

We estimate each term of the right hand side

$$
\begin{aligned}
& -\int_{S} i_{0} \dot{\Psi}\left(c^{m+1}\right) \widetilde{c}^{m+1} \leqslant i_{0} \int_{S}\left|\dot{\Psi}\left(c^{m+1}\right) \widetilde{c}^{m+1}\right| \leqslant i_{0}|S| . \\
& -\int_{S} \frac{\alpha i_{0}^{3}}{D}\left(\sum_{j=0}^{m} c^{j} \delta t\right) c^{m+1} \widetilde{c}^{m+1} \leqslant \frac{\alpha i_{0}^{3}}{D} \int_{S}\left(\sum_{j=0}^{m} c^{j} \delta t\right) c^{m+1}\left|\widetilde{c}^{m+1}\right| \leqslant \frac{\alpha i_{0}^{3}}{D} \int_{S} m \delta t \leqslant \frac{\alpha i_{0}^{3} T}{D}|S| . \\
& -\int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right) \widetilde{c}_{i n} \widetilde{c}^{m+1} \leqslant\left|\Gamma_{\text {out }}\right|^{\frac{1}{2}}\left(\int_{\Gamma_{\text {out }}}\left|\boldsymbol{u}^{m+1}\right|^{2}\right)^{\frac{1}{2}} \leqslant C\left\|\boldsymbol{u}^{m+1}\right\|_{1}^{2} . \\
& -\int_{\Omega}\left(\boldsymbol{u}^{m+1} \cdot \nabla \widetilde{c}^{m+1}\right) \widetilde{c}_{\text {in }} d x \leqslant \int_{\Omega}\left|\boldsymbol{u}^{m+1} \cdot \nabla \widetilde{c}^{m+1}\right| d x \leqslant \frac{1}{2 D}\left\|\boldsymbol{u}^{m+1}\right\|_{0}^{2}+\frac{D}{2}\left\|\nabla \widetilde{c}^{m+1}\right\|_{0}^{2} \\
& \int_{\Omega}\left(\boldsymbol{u}^{m+1} \cdot \nabla \widetilde{c}_{i n}\right) \widetilde{c}^{m+1} d x \leqslant \int_{\Omega}\left|\boldsymbol{u}^{m+1} \cdot \nabla \widetilde{c}_{\text {in }}\right| d x \leqslant \frac{1}{2 D}\left\|\boldsymbol{u}^{m+1}\right\|_{0}^{2}+\frac{D}{2}\left\|\nabla \widetilde{c}_{\text {in }}\right\|_{0}^{2} .
\end{aligned}
$$

Collecting all terms leads to

$$
\begin{align*}
\frac{1}{2 \delta t}\left\|\widetilde{c}^{m+1}\right\|_{0}^{2} & +\frac{1}{2 \delta t}\left\|\widetilde{c}^{m+1}-\widetilde{c}^{m}\right\|_{0}^{2}+\frac{D}{2}\left\|\nabla \widetilde{c}^{m+1}\right\|_{0}^{2}+\frac{1}{2} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right)\left(\widetilde{c}^{m+1}\right)^{2} \tag{2.47}\\
& \leqslant \frac{1}{2 \delta t}\left\|\widetilde{c}^{m}\right\|^{2}+C_{1}+C_{2}\left\|\boldsymbol{u}^{m+1}\right\|_{1}^{2}+C_{3}\left\|\nabla \widetilde{c}_{\text {in }}\right\|_{0}^{2}
\end{align*}
$$

Multiplying both sides by $2 \delta t$ completes the proof. Q.E.D.

Summing (2.45) from 0 to m, leasds to the following:

Corollary 2.5.1 Let $\boldsymbol{u}^{j+1} \in H^{1}(\Omega)^{d}$ be given satisfying (U1), (U2) for all $j=0, \ldots, N-1$. If $\widetilde{c}^{0} \in H^{1}(\Omega), \widetilde{c}^{0}(x) \in[-1,1], \widetilde{c}_{i n} \in H^{1}(\Omega), \widetilde{c}_{i n}(x) \in[0,1]$, then (2.40) implies that

$$
\begin{align*}
\left\|\widetilde{c}^{m+1}\right\|_{0}^{2} & +\sum_{j=0}^{m}\left\|\widetilde{c}^{j+1}-\widetilde{c}^{j}\right\|_{0}^{2}+D \delta t \sum_{j=0}^{m}\left\|\nabla \widetilde{c}^{j+1}\right\|_{0}^{2}+\sum_{j=0}^{m} \delta t \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{j+1} \cdot \boldsymbol{n}\right)\left(\widetilde{c}^{j+1}\right)^{2} \tag{2.48}\\
& \leqslant\left\|\widetilde{c}^{0}\right\|_{0}^{2}+C_{1} T+C_{2} \delta t \sum_{j=0}^{m}\left\|\boldsymbol{u}^{j+1}\right\|_{1}^{2}+C_{3} T\left\|\nabla \widetilde{c}_{\text {in }}\right\|_{0}^{2}
\end{align*}
$$

Proposition 2.5.2 Let $\boldsymbol{u}^{j+1} \in H^{1}(\Omega)^{d}$ be given satisfying (U1), (U2) for all $j=0, \ldots, N-1$. If $\widetilde{c}^{0} \in H^{1}(\Omega), \widetilde{c}^{0}(x) \in[-1,1], \widetilde{c}_{i n} \in H^{1}(\Omega), \widetilde{c}_{i n}(x) \in[0,1]$, then (2.40) implies that

$$
\begin{equation*}
\delta t \sum_{j=1}^{m}\left\|\frac{\widetilde{c}^{j+1}-\widetilde{c}^{j}}{\delta t}\right\|_{W^{\prime}}^{2} \quad \text { is uniformly bounded. } \tag{2.49}
\end{equation*}
$$

Proof. By definition

$$
\begin{equation*}
\left\|\frac{\widetilde{c}^{m+1}-\widetilde{c}^{m}}{\delta t}\right\|_{W^{\prime}}=\sup _{w_{0} \in W} \frac{1}{\left\|w_{0}\right\|_{1}}\left\langle\frac{\widetilde{c}^{m+1}-\widetilde{c}^{m}}{\delta t}, w_{0}\right\rangle \tag{2.50}
\end{equation*}
$$

$\operatorname{By}(2.40)$, with $w=\frac{w_{0}}{\left\|w_{0}\right\|_{1}} \in W$,

$$
\begin{align*}
& \left\|\frac{\widetilde{c}^{m+1}-\widetilde{c}^{m}}{\delta t}\right\|_{W^{\prime}}=\sup _{w \in W,\|w\|=1}\left\{-\int_{\Omega} D \nabla \widetilde{c}^{m+1} \cdot \nabla w d x\right. \\
& -\frac{1}{2} \int_{\Omega}\left[\left(\boldsymbol{u}^{m+1} \cdot \nabla \widetilde{c}^{m+1}\right) w-\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right) \widetilde{c}^{m+1}\right] d x-i_{0} \int_{S} \dot{\Psi}\left(c^{m+1}\right) w \\
& -\int_{S} \frac{\alpha i_{0}^{3}}{D}\left(\sum_{j=0}^{m} c^{j} \delta t\right) c^{m+1} w-\frac{1}{2} \int_{\Gamma_{o u t}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right) c^{m+1} w \tag{2.51}\\
& \left.-\frac{1}{2} \int_{\Omega}\left[\left(\boldsymbol{u}^{m+1} \cdot \nabla \widetilde{c}_{i n}\right) w-\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right) \widetilde{c}_{i n}\right] d x\right\}
\end{align*}
$$

We estimate all terms on the right hand side of (2.51)

$$
\begin{gather*}
-D \int_{\Omega} \nabla \widetilde{c}^{m+1} \cdot \nabla w d x \leqslant D\left\|\nabla \widetilde{c}^{m+1}\right\|_{0}\|\nabla w\|_{0} \leqslant D\left\|\widetilde{c}^{m+1}\right\|_{1}\|w\|_{1}=D\left\|\widetilde{c}^{m+1}\right\|_{1} \tag{2.52}\\
\int_{\Omega}\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right) \widetilde{c}^{m+1} d x \leqslant \int_{\Omega}\left|\boldsymbol{u}^{m+1} \cdot \nabla w\right| \leqslant\left\|\boldsymbol{u}^{m+1}\right\|_{0}, \tag{2.53}\\
-\int_{\Omega}\left(\boldsymbol{u}^{m+1} \cdot \nabla \widetilde{c}^{m+1}\right) w d x=\int_{\Omega}\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right) \widetilde{c}^{m+1} d x-\int_{\partial \Omega}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right) \widetilde{c}^{m+1} w \tag{2.54}\\
\leqslant\left\|\boldsymbol{u}^{m+1}\right\|_{0}+\left\|\boldsymbol{u}^{m+1}\right\|_{\partial \Omega}\|w\|_{\partial \Omega} \leqslant C\left\|\boldsymbol{u}^{m+1}\right\|_{1}, \\
-\int_{S} \dot{\Psi}\left(c^{m+1}\right) w \leqslant C|S|^{\frac{1}{2}}\|w\|_{1}=C|S|^{\frac{1}{2}}, \tag{2.55}\\
-\int_{S}\left(\sum_{j=0}^{m} c^{j} \delta t\right) c^{m+1} w \leqslant \int_{S} T|w| \leqslant C T|S|^{\frac{1}{2}}\|w\|_{1}=C T|S|^{\frac{1}{2}}, \tag{2.56}\\
-\int_{\Gamma_{o u t}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right) c^{m+1} w \leqslant\left\|\boldsymbol{u}^{m+1}\right\|_{\Gamma_{o u t}}\|w\|_{\Gamma_{o u t}} \leqslant C\left\|\boldsymbol{u}^{m+1}\right\|_{1}\|w\|_{1}=C\left\|\boldsymbol{u}^{m+1}\right\|_{1}, \tag{2.57}\\
\int_{\Omega}\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right) \widetilde{c}_{i n} d x \leqslant \int_{\Omega}\left|\boldsymbol{u}^{m+1} \cdot \nabla w\right| \leqslant\left\|\boldsymbol{u}^{m+1}\right\|_{0}\|w\|_{1}=\left\|\boldsymbol{u}^{m+1}\right\|_{0}, \tag{2.58}\\
-\int_{\Omega}\left(\boldsymbol{u}^{m+1} \cdot \nabla \widetilde{c}_{i n}\right) w d x \leqslant C\left\|\boldsymbol{u}^{m+1}\right\|_{1}(\text { see }(2.54)) . \tag{2.59}
\end{gather*}
$$

Collecting (2.52)-(2.59) with (2.51), all multiplied by δt, gives

$$
\begin{equation*}
\delta t\left\|\frac{\widetilde{c}^{m+1}-\widetilde{c}^{m}}{\delta t}\right\|_{W^{\prime}}^{2} \leqslant C \delta t\left(1+\left\|\widetilde{c}^{m+1}\right\|_{1}^{2}+\left\|\boldsymbol{u}^{m+1}\right\|_{1}^{2}\right) \tag{2.60}
\end{equation*}
$$

By summing (2.60) from 0 to $N-1$ and the boundedness given by Corollary 2.4.1 and Corollary
2.5.1, the proof is completed. Q.E.D.

2.6 Passage to the limit $\delta t \rightarrow 0$

Let us define

$$
\begin{gather*}
c_{\delta}:[0, T] \rightarrow H^{1}(\Omega), \quad c_{\delta}(t)=c^{j} \quad \text { if } t \in((j-1) \delta t, j \delta t], \tag{2.61}\\
c_{h}:[0, T] \rightarrow H^{1}(\Omega), \quad c_{h}(t)=\frac{t-(j-1) \delta t}{\delta t} c^{j}+\frac{j \delta t-t}{\delta t} c^{j-1} \quad \text { if } t \in((j-1) \delta t, j \delta t], \tag{2.62}\\
c_{\delta-}:[0, T] \rightarrow H^{1}(\Omega), \quad c_{\delta-}(t)=c^{j-1} \quad \text { if } t \in[(j-1) \delta t, j \delta t), \tag{2.63}\\
C_{\delta-}:[0, T] \rightarrow H^{1}(\Omega), \quad C_{\delta-}(t)=\sum_{k=1}^{j} c^{k-1} \delta t \quad \text { if } t \in[(j-1) \delta t, j \delta t), \tag{2.64}
\end{gather*}
$$

for $j=1, \ldots, N$. Note that c_{δ}, c_{h}, and $c_{\delta-}$ are in $L^{2}\left(0, T ; H^{1}(\Omega)\right)$ and $L^{\infty}(\Omega \times(0, T))$. With these notations, problem (P_{c}^{m}) reads

$$
\begin{array}{r}
\left(\partial_{t} c_{h}, w\right)+\frac{1}{2}\left[\left(\boldsymbol{u}_{\delta} \cdot \nabla c_{\delta}, w\right)-\left(\boldsymbol{u}_{\delta} \cdot \nabla w, c_{\delta}\right)\right] \\
+D\left(\nabla c_{\delta}, \nabla w\right)+\int_{S} i_{0} \dot{\Psi}\left(c_{\delta}\right) w+\int_{S} \frac{\alpha i_{0}^{3}}{D} c_{\delta} C_{\delta-} w+\frac{1}{2} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}_{\delta} \cdot \boldsymbol{n}\right) c_{\delta} w=0 . \tag{2.65}
\end{array}
$$

Lemma 2.6.1 $C_{\delta-}$ is in $L^{2}\left(0, T ; H^{1}(\Omega)\right)$.
Proof.

$$
\begin{aligned}
& \int_{T} \int_{\Omega}\left|\partial_{x_{i}} C_{\delta-}(t)\right|^{2} d x d t \leqslant \int_{0}^{T} \int_{\Omega}\left(\delta t \sum_{k=1}^{N}\left|\partial_{x_{i}} c^{k-1}\right|\right)^{2} d x d t \\
& =\int_{0}^{T} \int_{\Omega} \delta t^{2}\left(\sum_{k=1}^{N}\left|\partial x_{i} c^{k-1}\right|\right)^{2} d x d t \leqslant \int_{0}^{T} \delta t^{2} \cdot \frac{T}{\delta t} \sum_{k=1}^{N}\left|\partial_{x_{i}} c^{k-1}\right|^{2} d x \\
& =T^{2} \delta t \sum_{k=1}^{N} \int_{\Omega}\left|\partial_{x_{i}} c^{k-1}\right|^{2} d x \leqslant C
\end{aligned}
$$

The last inequality is due to Corollary 2.5.1.
Lemma 2.6.2

$$
\begin{equation*}
\left\|c_{\delta}-c_{h}\right\|_{L^{2}((0, T) \times \Omega)} \leqslant \sqrt{\frac{\delta t}{3}}\left(\sum_{j=1}^{N}\left\|c^{j+1}-c^{j}\right\|_{0}^{2}\right)^{\frac{1}{2}} \tag{2.66}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& c_{\delta}(t)-c_{h}(t)=\frac{t-j \delta t}{\delta t}\left(c^{j}-c^{j-1}\right) \quad \text { for }(j-1) \delta t<t \leqslant j \delta t, \\
& \int_{(j-1) \delta t}^{j \delta t}\left\|c_{\delta}(t)-c_{h}(t)\right\|_{0}^{2} d t=\frac{\delta t}{3}\left\|c^{j}-c^{j-1}\right\|_{0}^{2} .
\end{aligned}
$$

The proof can be completed by taking summation from $j=1$ to N.
Corollary 2.6.1

$$
\begin{equation*}
c_{\delta}-c_{h} \rightarrow 0 \quad \text { in } L^{2}((0, T) \times \Omega) \quad \text { as } \delta t \rightarrow 0 \tag{2.67}
\end{equation*}
$$

By the boundedness given by Proposition 2.4.2, 2.5.2, and Corollary 2.5.1, there are subsequences of c_{δ} and c_{h} (still denoted by c_{δ} and c_{h}), respectively such that

$$
\begin{array}{cr}
c_{\delta} \rightarrow c & \text { in } L^{2}\left(0, T ; H^{1}(\Omega)\right) \text { weakly }, \\
c_{h} \rightarrow c_{*} & \text { in } L^{2}\left(0, T ; H^{1}(\Omega)\right) \text { weakly }, \\
c_{h} \rightarrow c_{*} & \text { in } L^{\infty}(\Omega \times(0, T)) \text { weak star }, \\
\partial_{t} c_{h} \rightarrow g & \text { in } L^{2}\left(0, T ; W^{\prime}\right) \text { weakly. } \tag{2.71}
\end{array}
$$

By Corollary 2.6.1, we have $c=c_{*}$.
By a classical argument, see for instance [113], we have

$$
\begin{equation*}
g=\partial_{t} c . \tag{2.72}
\end{equation*}
$$

Let

$$
Y=\left\{w \in L^{2}\left(0, T ; H^{1}(\Omega)\right), \partial_{t} w \in L^{2}\left(0, T ; W^{\prime}\right)\right\}
$$

By the Aubin-Lions Lemma, Y is compactly embedded in $L^{2}\left(0, T ; L^{q}(\Omega)\right)$ with $q<6$ when $d=3$ and $q<\infty$ when $d=2$. Therefore, we have in particular

$$
\begin{equation*}
c_{h} \rightarrow c \quad \text { in } L^{2}((0, T) \times \Omega) \text { strongly. } \tag{2.73}
\end{equation*}
$$

Using Corollary 2.6.1 again, we get

$$
\begin{equation*}
c_{\delta} \rightarrow c \quad \text { in } L^{2}((0, T) \times \Omega) \text { strongly. } \tag{2.74}
\end{equation*}
$$

To see the convergence of the boundary term, we need the following lemma:
Lemma 2.6.3 Let X be a normed linear space, D a dense subset of $X^{\prime}, x_{n}, n=1,2, \ldots$ a uniform bounded sequence in X. If $g\left(x_{n}\right) \rightarrow g(x)$ for all $g \in D$, then $x_{n} \rightarrow x$ weakly in X.

The above Lemma can be found in Theorem 10.1 of [72].
Lemma 2.6.4 Given c_{δ} defined by (2.61), there exists a subsequence (still denoted by c_{δ}) satisfying (2.68) and the followings:

$$
\begin{align*}
\dot{\Psi}\left(c_{\delta}\right) \rightarrow \dot{\Psi}(c) & \text { in } L^{2}\left(0, T ; H^{\frac{1}{2}}(S)\right) \text { weakly } \tag{2.75}\\
c_{\delta} \int_{0}^{t} c_{\delta}(s) d s \rightarrow c \int_{0}^{t} c(s) d s & \text { in } L^{2}\left(0, T ; H^{\frac{1}{2}}(S)\right) \text { weakly } \tag{2.76}
\end{align*}
$$

Proof. Let us prove that $\dot{\Psi}\left(c_{\delta}\right)$ tends to $\dot{\Psi}(c)$ weakly in $L^{2}\left(0, T ; H^{1}(\Omega)\right)$. First, we know that $\dot{\Psi}\left(c_{\delta}\right)$ is bounded in $\Omega \times[0, T]$ and we have $\dot{\Psi}\left(c_{\delta}\right)=c_{\delta}-\frac{\alpha c_{\delta}^{2}}{2}$ a.e. since $c_{\delta} \leqslant 1$ a.e.. Moreover, since $\alpha<1$, we have

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left|\partial_{x_{i}} \dot{\Psi}\left(c_{\delta}\right)\right|^{2} d x d t=\int_{0}^{T}\left|\partial_{x_{i}} c_{\delta}-\alpha c_{\delta} \partial_{x_{i}} c_{\delta}\right|^{2} d x d t \\
& =\int_{0}^{T} \int_{\Omega}\left|\left(1-\alpha c_{\delta}\right) \partial_{x_{i}} c_{\delta}\right|^{2} d x d t=\int_{0}^{T} \int_{\Omega}\left|1-\alpha c_{\delta}\right|^{2}\left|\partial_{x_{i}} c_{\delta}\right|^{2} d x d t \\
& \leqslant \int_{0}^{T} \int_{\Omega}\left|\partial_{x_{i}} c_{\delta}\right|^{2} d x d t<\infty
\end{aligned}
$$

Work in progress as of February 5, 2022

Therefore, $\dot{\Psi}$ converges weakly in $L^{2}\left(0, T ; H^{1}(\Omega)\right)$. To identify its limit, let $w \in C([0, T] \times \bar{\Omega})$. Then (2.74) implies that

$$
\int_{0}^{T} \int_{\Omega} \dot{\Psi}\left(c_{\delta}\right) w d x d t \rightarrow \int_{0}^{T} \int_{\Omega} \dot{\Psi}(c) w d x d t
$$

and (2.74) and (2.68) imply that

$$
\int_{0}^{T} \int_{\Omega} \partial_{x_{i}} \dot{\Psi}\left(c_{\delta}\right) w d x d t \rightarrow \int_{0}^{T} \int_{\Omega} \partial_{x_{i}} \dot{\Psi}(c) w d x d t
$$

This gives the desired convergence. By the continuity of the trace mapping

$$
\left.\phi \mapsto \phi\right|_{\partial \Omega}
$$

for the weak topology, we deduce that

$$
\begin{equation*}
\dot{\Psi}\left(c_{\delta}\right) \rightarrow \dot{\Psi}(c) \text { weakly in } L^{2}\left(0, T ; H^{\frac{1}{2}}(S)\right) . \tag{2.77}
\end{equation*}
$$

For (2.76), we define $r\left(t, c_{\delta}\right):=c_{\delta} \int_{0}^{t} c_{\delta}(s) d s$ in $(0, T) \times \Omega$. To begin with, we observe that $\int_{0}^{t} c_{\delta}(s) d s \rightarrow \int_{0}^{t} c(s) d s$ strongly in $L^{2}((0, T) \times \Omega)$. This can be checked by the estimate:

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left|\int_{0}^{t}\left(c_{\delta}(s)-c(s)\right) d s\right|^{2} d x d t \leqslant \int_{0}^{T} \int_{\Omega} t \int_{0}^{t}\left|c_{\delta}(s)-c(s)\right|^{2} d s d x d t \\
& \leqslant \int_{0}^{T} t \int_{0}^{T} \int_{\Omega}\left|c_{\delta}(s)-c(s)\right|^{2} d x d s d t=\frac{1}{2} T^{2} \int_{0}^{T} \int_{\Omega}\left|c_{\delta}(s)-c(s)\right|^{2} d x d s \\
& \rightarrow 0 \text { as } \delta t \rightarrow 0 .
\end{aligned}
$$

Let $w \in C([0, T] \times \bar{\Omega})$. Since c_{δ} strongly converges to c in $L^{2}((0, T) \times \Omega)$, we have

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} r\left(t, c_{\delta}\right) w d x d t \rightarrow \int_{0}^{T} \int_{\Omega} r(t, c) w d x d t \tag{2.78}
\end{equation*}
$$

We differentiate $r\left(t, c_{\delta}\right)$:

$$
\begin{equation*}
\partial_{x_{i}} r\left(t, c_{\delta}\right)=\partial_{x_{i}} c_{\delta} \int_{0}^{t} c_{\delta}(s) d s+c_{\delta} \int_{0}^{t} \partial_{x_{i}} c_{\delta}(s) d s \tag{2.79}
\end{equation*}
$$

We have the boundedness for the first term on the right hand side:

$$
\begin{align*}
& \int_{0}^{T} \int_{\Omega}\left|\partial_{x_{i}} c_{\delta}\right|^{2}\left|\int_{0}^{t} c_{\delta}(s) d s\right|^{2} d x d t \leqslant \int_{0}^{T} \int_{\Omega} t\left|\partial_{x_{i}} c_{\delta}\right|^{2} d x d t \tag{2.80}\\
& \leqslant T \int_{0}^{T} \int_{\Omega}\left|\partial_{x_{i}} c_{\delta}\right|^{2} d x d t<\infty
\end{align*}
$$

Using the fact that both $\partial_{x_{i}} c_{\delta} \rightarrow \partial_{x_{i}} c$ weakly in $L^{2}((0, T) \times \Omega)$ and $\int_{0}^{t} c_{\delta}(s) d s \rightarrow \int_{0}^{t} c(s) d s$
strongly in $L^{2}((0, T) \times \Omega)$, we have

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} \partial_{x_{i}} c_{\delta}\left(\int_{0}^{t} c_{\delta}(s) d s\right) w d x d t \rightarrow \int_{0}^{T} \int_{\Omega} \partial_{x_{i}} c\left(\int_{0}^{t} c(s) d s\right) w d x d t \tag{2.81}
\end{equation*}
$$

The second term is bounded as well:

$$
\begin{align*}
\int_{0}^{T} \int_{\Omega}\left|\int_{0}^{t} \partial_{x_{i}} c_{\delta}(s) d s\right|^{2} d x d t & \leqslant \int_{0}^{T} \int_{\Omega} t \int_{0}^{t}\left|\partial_{x_{i}} c_{\delta}(s)\right|^{2} d s d x d t \\
=\int_{0}^{T} t \int_{0}^{t} \int_{\Omega}\left|\partial_{x_{i}} c_{\delta}(s)\right|^{2} d x d s d t & \leqslant \int_{0}^{T} t \int_{0}^{T} \int_{\Omega}\left|\partial_{x_{i}} c_{\delta}(s)\right|^{2} d x d s d t \tag{2.82}\\
= & \frac{1}{2} T^{2} \int_{0}^{T} \int_{\Omega}\left|\partial_{x_{i}} c_{\delta}(s)\right|^{2} d x d t<\infty
\end{align*}
$$

And we observe that

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left(\int_{0}^{t} \partial_{x_{i}} c_{\delta}(s) d s\right) w d x d t \\
& =\int_{0}^{T} \int_{0}^{t}\left(\int_{\Omega} \partial_{x_{i}} c_{\delta}(s) w d x\right) d s d t \rightarrow \int_{0}^{T}\left(\int_{0}^{t} \int_{\Omega} \partial_{x_{i}} c(s) w d x d s\right) d t
\end{aligned}
$$

because $w(t)$ for fixed t is continuous in Ω. Now, we have $c_{\delta} \rightarrow c$ in $L^{2}((0, T) \times \Omega)$ strongly and $\int_{0}^{t} \partial_{x_{i}} c_{\delta}(s) d s \rightarrow \int_{0}^{t} \partial_{x_{i}} c(s) d s$ weakly in $L^{2}((0, T) \times \Omega)$. This implies that

$$
\int_{0}^{T} \int_{\Omega} c_{\delta}\left(\int_{0}^{t} \partial_{x_{i}} c_{\delta}(s) d s\right) w(t) d x d t \rightarrow \int_{0}^{T} \int_{\Omega} c\left(\int_{0}^{t} \partial_{x_{i}} c(s) d s\right) w d x d t
$$

By (2.82) and Lemma A.3.3 below, we have $c_{\delta} \int_{0}^{t} \partial_{x_{i}} c_{\delta}(s) d s \rightarrow c \int_{0}^{t} \partial_{x_{i}} c(s) d s$ weakly in $L^{2}((0, T) \times$ Ω).

Collecting all the weak convergence results above, we conclude that $r\left(t, c_{\delta}\right) \rightarrow r(t, c)$ in $L^{2}\left(0, T ; H^{1}(\Omega)\right)$ weakly. By the continuity of the trace for the weak topology, we have $r\left(t, c_{\delta}\right) \rightarrow$ $r(t, c)$ in $L^{2}\left(0, T ; H^{\frac{1}{2}}(S)\right)$ weakly. Q.E.D.

Lemma 2.6.5 $C_{\delta-}$ defined in (2.64) satisfies

$$
\begin{equation*}
\left\|C_{\delta-}-\int_{0}^{t} c_{\delta}(s) d s\right\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right)} \leqslant C \delta t \tag{2.83}
\end{equation*}
$$

Proof. For all $t \in[(j-1) \delta t, j \delta t)$,

$$
\begin{aligned}
& C_{\delta-}(t)-\int_{0}^{t} c_{\delta}(s) d s=\sum_{k=1}^{j} c^{k-1} \delta t-\sum_{k=1}^{j-1} c^{k} \delta t-c^{j}(t-(j-1) \delta t) \\
& =c^{0} \delta t-c^{j}(t-(j-1) \delta t)
\end{aligned}
$$

But for $t \in[(j-1) \delta t, j \delta t)$, we have $0 \leqslant t-(j-1) \delta t \leqslant \delta t$. Therefore

$$
\left|C_{\delta-}(t)-\int_{0}^{t} c_{\delta}(s) d s\right| \leqslant \delta t\left|c^{0}+c^{j}\right|
$$

On the other hand,

$$
\begin{array}{r}
\partial_{x_{i}} C_{\delta-}(t)-\partial_{x_{i}} \int_{0}^{t} c_{\delta}(s) d s=\partial_{x_{i}} C_{\delta-}(t)-\int_{0}^{t} \partial_{x_{i}} c_{\delta}(s) d s \\
=\partial_{x_{i}} c^{0} \delta t-\partial_{x_{i}} c^{j}(t-(j-1) \delta t)
\end{array}
$$

Hence, we have

$$
\left|\partial_{x_{i}}\left(C_{\delta-}(t)-\int_{0}^{t} c_{\delta}(s) d s\right)\right| \leqslant \delta t\left|\partial_{x_{i}}\left(c^{0}+c^{j}\right)\right| .
$$

Therefore,

$$
\begin{aligned}
& \left\|C_{\delta-}-\int_{0}^{t} c_{\delta}(s) d s\right\|_{L^{2}\left(0, T ; H^{1}(\Omega)\right)}^{2}=\int_{0}^{T}\left\|C_{\delta t-}(t)-\int_{0}^{t} c_{\delta}(s) d s\right\|_{1}^{2} \\
& \leqslant \sum_{j=1}^{N} \int_{(j-1) \delta t}^{j \delta t}(\delta t)^{2}\left\|c^{0}+c^{j}\right\|_{1}^{2} \\
& \leqslant 2 \sum_{j=1}^{N} \int_{(j-1) \delta t}^{j \delta t}(\delta t)^{2}\left(\left\|c^{0}\right\|_{1}^{2}+\left\|c^{j}\right\|_{1}^{2}\right) \\
& \leqslant 2\left\|c^{0}\right\|_{1}^{2}(\delta t)^{2}+2(\delta t)^{2} \sum_{j=1}^{N} \delta t\left\|c^{j}\right\|_{1}^{2} \\
& \leqslant C(\delta t)^{2}
\end{aligned}
$$

Q.E.D.

Proof of Theorem 2.3.1.

Now, we are in a position to pass to the limit in (2.65). Take any $w=v(x) \lambda(t)$, where $v \in W \cap W^{1, \infty}(\Omega)$ and $\lambda \in W_{0}^{1, \infty}(0, T)$. Then

$$
\begin{aligned}
& -\int_{0}^{T}\left(c_{h}, v\right) \lambda^{\prime}(t) d t+\frac{1}{2} \int_{0}^{T}\left[\left(\boldsymbol{u}_{\delta} \cdot \nabla c_{\delta}, v\right)-\left(\boldsymbol{u}_{\delta} \cdot \nabla v, c_{\delta}\right)\right] \lambda d t \\
& +\int_{0}^{T} D\left(\nabla c_{\delta}, \nabla v\right) \lambda d t+\int_{0}^{T} \int_{S} i_{0} \dot{\Psi}\left(c_{\delta}\right) v \lambda(t) d t+\int_{0}^{T} \int_{S} \frac{\alpha i_{0}^{3}}{D} c_{\delta} C_{\delta-} v \lambda(t) d t \\
& +\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}_{\delta} \cdot \boldsymbol{n}\right) c_{\delta} v \lambda(t) d t=0 .
\end{aligned}
$$

Since $\boldsymbol{u}_{\delta} \rightarrow \boldsymbol{u}$ strongly in $L^{2}(\Omega \times(0, T))$ and $\nabla c_{\delta} \rightarrow \nabla c$ weakly in $L^{2}(\Omega \times(0, T))$, the regularity of v and λ implies that

$$
\begin{gather*}
-\int_{0}^{T}\left(c_{h}, v\right) \lambda^{\prime}(t) d t \rightarrow-\int_{0}^{T}(c, v) \lambda^{\prime}(t) d t=\int_{0}^{T}\left\langle\partial_{t} c, v\right\rangle_{W^{\prime}, W} \lambda d t \tag{2.84}\\
\frac{1}{2} \int_{0}^{T}\left[\left(\boldsymbol{u}_{\delta} \cdot \nabla c_{\delta}, v\right)-\left(\boldsymbol{u}_{\delta} \cdot \nabla v, c_{\delta}\right)\right] \lambda d t \rightarrow \frac{1}{2} \int_{0}^{T}[(\boldsymbol{u} \cdot \nabla c, v)-(\boldsymbol{u} \cdot \nabla v, c)] \lambda d t \tag{2.85}
\end{gather*}
$$

$$
\begin{equation*}
\int_{0}^{T} D\left(\nabla c_{\delta}, \nabla c\right) \lambda d t \rightarrow \int_{0}^{T} D(\nabla c, \nabla v) \lambda d t \tag{2.86}
\end{equation*}
$$

Similarly, the weak convergence of $\dot{\Psi}\left(c_{\delta}\right)$ to $\dot{\Psi}(c)$ in $L^{2}\left(0, T ; H^{\frac{1}{2}}(S)\right)$ implies that

$$
\begin{equation*}
\int_{0}^{T} \int_{S} i_{0} \dot{\Psi}\left(c_{\delta}\right) v \lambda(t) d t \rightarrow \int_{0}^{T} \int_{S} \dot{\Psi}(c) v \lambda(t) d t \tag{2.87}
\end{equation*}
$$

and the weak convergence of $c_{\delta} C_{\delta-}$ to $c \int_{0}^{t} c$ in $L^{2}\left(0, T ; H^{\frac{1}{2}}(S)\right)$ implies that

$$
\begin{equation*}
\int_{0}^{T} \int_{S} c_{\delta} C_{\delta-} v \lambda(t) d t \rightarrow \int_{0}^{T} \int_{S} c\left(\int_{0}^{t} c(s) d s\right) v \lambda(t) d t \tag{2.88}
\end{equation*}
$$

Finally, we consider the last term $\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}_{\delta} \cdot \boldsymbol{n}\right) c_{\delta} v \lambda(t)$. Given the construction of \boldsymbol{u}_{δ} in Section 2.4, we have: $\boldsymbol{u}_{\delta} \rightarrow \boldsymbol{u}$ weakly in $L^{2}\left(0, T ; H^{1}(\Omega)^{d}\right)$ and $\boldsymbol{u}_{\delta} \rightarrow \boldsymbol{u}$ strongly in $L^{2}\left(0, T ; L^{4}(\Omega)^{d}\right)$ (thanks to the strong convergence of \boldsymbol{u}_{δ} by $(2.32), H^{1}(\Omega)^{d}$ can be replaced by any space X so that $H^{1}(\Omega) \subset \subset X$. Here we take $X=L^{4}(\Omega)^{d}$, which is compatible with $d=3$; the exponent has to be less than 6). We use Green's formula:

$$
\begin{equation*}
\int_{0}^{T} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}_{\delta} \cdot \boldsymbol{n}\right) c_{\delta} v \lambda=\int_{0}^{T} \int_{\Omega} \nabla \cdot\left(\boldsymbol{u}_{\delta} c_{\delta}\right) v \lambda+\int_{0}^{T} \int_{\Omega}\left(c_{\delta} \boldsymbol{u}_{\delta} \cdot \nabla v\right) \lambda \tag{2.89}
\end{equation*}
$$

for all $\lambda \in L^{\infty}(0, T)$ and for all smooth v that vanish on $\partial \Omega \backslash \Gamma_{\text {out }}$. It is suffices to prove the convergence of each term to the desired limit.

1) For all $v \in L^{4}(\Omega)$ and for all $\lambda \in L^{\infty}(0, T)$:

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega} \nabla \cdot\left(\boldsymbol{u}_{\delta} c_{\delta}\right) v \lambda=\int_{0}^{T} \int_{\Omega} \boldsymbol{u}_{\delta} \cdot \nabla c_{\delta} v \lambda \\
& =\int_{0}^{T} \int_{\Omega}\left(\boldsymbol{u}_{\delta}-\boldsymbol{u}\right) \cdot \nabla c_{\delta} v \lambda+\int_{0}^{T} \int_{\Omega} \boldsymbol{u} \cdot \nabla c_{\delta} v \lambda \\
& \leqslant\left\|\boldsymbol{u}_{\delta}-\boldsymbol{u}\right\|_{L^{2}\left(0, T ; L^{4}(\Omega)\right)}\left\|\nabla c_{\delta}\right\|_{L^{2}(\Omega \times(0, T))}\|\lambda\|_{L^{\infty}(0, T)}\|v\|_{L^{4}(\Omega)}+\int_{0}^{T} \int_{\Omega} \boldsymbol{u} \cdot \nabla c_{\delta} v \lambda .
\end{aligned}
$$

It is noted that $\boldsymbol{u} v \lambda \in L^{2}\left(0, T ; L^{2}(\Omega)^{d}\right)$ and $\nabla c_{\delta} \rightarrow \nabla c$ weakly in $L^{2}\left(0, T ; L^{2}(\Omega)^{d}\right)$, we have

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} \nabla \cdot\left(\boldsymbol{u}_{\delta} c_{\delta}\right) v \lambda \rightarrow \int_{0}^{T} \int_{\Omega}(\boldsymbol{u} \cdot \nabla c) v \lambda=\int_{0}^{T} \int_{\Omega} \nabla \cdot(\boldsymbol{u} c) v \lambda \tag{2.90}
\end{equation*}
$$

2) For all $v \in H^{1}(\Omega), \lambda \in L^{\infty}(\Omega)$

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left(c_{\delta} \boldsymbol{u}_{\delta} \cdot \nabla v\right) \lambda=\int_{0}^{T} \int_{\Omega} c_{\delta}\left(\boldsymbol{u}_{\delta}-\boldsymbol{u}\right) \cdot \nabla v \lambda+\int_{0}^{T} \int_{\Omega} \boldsymbol{u}\left(c_{\delta}-c\right) \cdot \nabla c \lambda+\int_{0}^{T} \int_{\Omega} c(\boldsymbol{u} \cdot \nabla v) \lambda \\
& \leqslant\left\|\boldsymbol{u}_{\delta}-\boldsymbol{u}\right\|_{L^{2}\left(0, T ; L^{2}(\Omega)^{d}\right)}\left\|c_{\delta}\right\|_{L^{\infty}(\Omega \times(0, T))}\|\nabla v\|_{0}\|\lambda\|_{L^{\infty}(\Omega)} \\
& +\|\boldsymbol{u}\|_{L^{2}\left(0, T ; L^{4}(\Omega)^{d}\right)}\left\|c_{\delta}-c\right\|_{L^{2}\left(0, T ; L^{4}(\Omega)^{d}\right)}\|\nabla v\|_{0}\|\lambda\|_{L^{\infty}(\Omega)}+\int_{0}^{T} \int_{\Omega} c(\boldsymbol{u} \cdot \nabla v) \lambda .
\end{aligned}
$$

Therefore

$$
\begin{align*}
& \int_{0}^{T}\left\langle\partial_{t} c, v\right\rangle_{W^{\prime}, W} \lambda d t+\frac{1}{2} \int_{0}^{T}((\boldsymbol{u} \cdot \nabla c, v)-(\boldsymbol{u} \cdot \nabla v, c)) \lambda d t \\
& +\int_{0}^{T} D(\nabla c, \nabla v) \lambda d t+\int_{0}^{T} \int_{S} i_{0} \dot{\Psi}(c) v \lambda d t+\int_{0}^{T} \int_{S} \frac{\alpha i_{0}^{3}}{D} c\left(\int_{0}^{t} c(s) d s\right) v \lambda d t \tag{2.91}\\
& +\frac{1}{2} \int_{0}^{T} \int_{\Gamma_{\text {out }}}(\boldsymbol{u} \cdot \boldsymbol{n}) c v \lambda d t=0
\end{align*}
$$

for all $\lambda \in W_{0}^{1, \infty}(0, T)$ and for all $v \in W^{1, \infty}(\Omega)$. This gives the equations a.e. in $(0, T)$.
To recover the initial condition, we take $\lambda \in W^{1, \infty}(0, T), \lambda(T)=0, \lambda(0) \neq 0$, and $v \in$ $W^{1, \infty}(\Omega)$. We consider (2.65) such that all terms are identical except the first:

$$
\begin{equation*}
\int_{0}^{T}\left(\partial_{t} c_{h}, v\right) \lambda d t=\int_{0}^{T} \partial_{t}\left(c_{h}, v\right) \lambda d t=-\int_{0}^{T}\left(c_{h}, v\right) \lambda^{\prime}(t)-\left(c^{0}, v\right) \lambda(0) . \tag{2.92}
\end{equation*}
$$

When passing to the limit, we obtain

$$
\begin{align*}
& \int_{0}^{T}\left\langle\partial_{t} c, v\right\rangle_{W^{\prime}, W} \lambda d t=-\int_{0}^{T}(c, v) \lambda^{\prime}(t)-\left(c^{0}, v\right) \lambda(0) \\
& =\int_{0}^{T} \frac{d}{d t}(c, v) \lambda+(c(0), v) \lambda(0)-\left(c^{0} . v\right) \lambda(0) \tag{2.93}\\
& =\int_{0}^{T}\left\langle\partial_{t} c, v\right\rangle_{W^{\prime}, W} \lambda d t+(c(0), v) \lambda(0)-\left(c^{0}, v\right) \lambda(0) .
\end{align*}
$$

Therefore

$$
(c(0), v)=\left(c^{0}, v\right), \quad \forall v \in W \cap W^{1, \infty}(\Omega)
$$

This implies that $c(0)=c^{0}$.
The above shows that Problem $\left(P_{c}\right)$ has a unique solution, which satisfies $0 \leqslant c \leqslant 1$; it is also the solution of (P). Q.E.D.

2.6.1 On the boundary condition (2.19) which contains $\partial_{t} c$

To prove existence a similar strategy is taken: $\partial_{t} c$ is replaced by $\left(c^{m+1}-c^{m}\right) / \delta t$, existence is shown and then convergence when $\delta t \rightarrow 0$.

The proof of existence of the time-discretized problem is exactly the same but with ϕ redefined as

$$
\phi_{m}\left(c^{m+1}\right)=i_{0} \dot{\Psi}\left(c^{m+1}\right)+\alpha i_{0}\left(\frac{i_{0}^{2}}{D}-\frac{1}{\delta t}\right)\left(\sum_{j=0}^{m} c^{j} \delta t\right) c^{m+1} .
$$

Convergence with $\delta t \rightarrow 0$ requires more regularity, which can be obtained from the PDE differentiated in time.

2.7 Numerical simulations

The rectangular domain of size $0.025 \mathrm{~mm} \times 0.005 \mathrm{~mm}$ is the initial physical domain. The electroprocess is simulated up to time $T=5000$.

2.7.1 Scalings

The simulation will be done with dimensionless variables. Let L, C and U be representative length, concentration and velocity of the physical system. Then it is easy to see that the dimensionless equation for c is the same as the original equation but with $\widetilde{D} /(L U)$ instead of D , where \widetilde{D} is the physical molecular diffusion. Similarly because (2.7) becomes

$$
-D \frac{\partial c}{\partial n}=\frac{i_{0}}{U} c, \quad \mathbf{u}=-\alpha C \frac{i_{0}}{U} c \mathbf{n}
$$

the original form holds but with i_{0} / U redefined as i_{0} and αC redefined as α.
It is well known that the dimensionalized Navier-Stokes equation has the inverse Reynolds number $\widetilde{\nu} /(U L)$ redefined as ν, where $\widetilde{\nu}$ being the kinematic viscosity.

The parameters of nickel ion given in [66] are $i_{0}=\widetilde{i_{0}} /(z F)$ with $\widetilde{i_{0}}=0.001 \mathrm{~A} \cdot \mathrm{~mm}^{-2}$, the number of electrons involves in the reaction $z=2$ and the Faraday constant $F=96487 s \cdot A$. $\mathrm{mol}^{-1}, C=3 \times 10^{-7} \mathrm{~mol} \cdot \mathrm{~mm}^{-3}$.

For electrodeless plating we may take $U=1 \mathrm{~mm} \cdot \mathrm{~s}^{-1}, L=0.005 \mathrm{~mm}, \widetilde{D}=1 \times 10^{-4} \mathrm{~mm}^{2} \cdot \mathrm{~s}^{-1}$, $\alpha=6590 \mathrm{~mm}^{3} \cdot \mathrm{~mol}^{-1}$, and $\widetilde{\nu}=1.2 \mathrm{~mm}^{2} \cdot \mathrm{~s}^{-1}$.

So in the end the numerical tests are done on a rescaled domain $\Omega=(0,5) \times(0,1)$ with

$$
\alpha=0.002085, \quad i_{0}=0.017273, \quad D=0.02, \quad \nu=240
$$

2.7.2 Numerical algorithm

The finite element method is used for spacial discretization. Let \mathcal{T}_{h} be a triangulation consisting of K traingles $\left\{T_{k}\right\}_{k=1}^{K}$ with the standard conformity hypothesis. We define the finite element space which will be used in this section:

$$
\begin{align*}
W_{h} & :=\left\{w \in C^{0}(\bar{\Omega}):\left.w\right|_{T_{k}} \in P^{1} \forall T_{k} \in \mathcal{T}_{h},\left.w\right|_{\Gamma_{\text {in }}}=0\right\}, \\
C_{h} & :=\left\{w \in C^{0}(\bar{\Omega}):\left.w\right|_{T_{k}} \in P^{1}, \forall T_{k} \in \mathcal{T}_{h}\right\}, \\
\boldsymbol{V}_{h} & :=\left\{\boldsymbol{v} \in C^{0}(\bar{\Omega})^{2}:\left.\boldsymbol{v}\right|_{T_{k}} \in\left(P^{2}\right)^{2}, \forall T_{k} \in \mathcal{T}_{h}\right\}, \tag{2.94}\\
\boldsymbol{J}_{h} & :=\left\{\boldsymbol{v} \in C^{0}(\bar{\Omega})^{2}:\left.\boldsymbol{v}\right|_{T_{k}} \in\left(P^{2}\right)^{2} \forall T_{k} \in \mathcal{T}_{h},\left.\boldsymbol{v}\right|_{\partial \Omega \backslash \Gamma_{\text {out }}}=0\right\}, \\
Q_{h} & :=C_{h} .
\end{align*}
$$

Solving concentration profile c_{h}^{m+1} with known velocity field \boldsymbol{u}_{h}^{m+1}

We use the P^{1} finite element method for Problem $\left(P_{c}^{m}\right)$ to define $\left\{c_{h}^{m}\right\}_{m>0}$. Given $\boldsymbol{u}_{h}^{m+1} \in \boldsymbol{V}_{h}$, one must solve the finite dimensional problem $\left(P_{h}^{m}\right)$ defined to be $\left(P_{c}^{m}\right)$ with W_{h} instead of W in (2.35): find $c_{h}^{m+1} \in C_{h}$ satisfying, for all $w_{h} \in W_{h}$,

$$
\begin{align*}
& \int_{\Omega} \frac{c_{h}^{m+1}-c_{h}^{m}}{\delta t} w_{h} d x+\int_{\Omega}\left[\left(\boldsymbol{u}_{h}^{m+1} \cdot \nabla c_{h}^{m+1}\right) w_{h}\right. \\
& +D \int_{\Omega} \nabla c_{h}^{m+1} \cdot \nabla w_{h} d x+\int_{S}\left(1+\frac{\alpha i_{0}^{2}}{D}\left(\sum_{j=1}^{m} c_{h}^{j} \delta t\right)\right) i_{0} c_{h}^{m+1} w_{h}=0 \tag{2.95}\\
& \left.c_{h}^{m+1}\right|_{\Gamma_{i n}}=c_{i n h}
\end{align*}
$$

In the above, $c_{i n h}$ is the piecewise linear interpolate of $c_{i n}$.

Since \boldsymbol{u}_{h}^{m+1} and $\left\{c_{h}^{j}\right\}_{j \leqslant m}$ are given, (2.95) leads to a linear system by assigning w_{h} to be the P1 hat functions in a standard way. We apply UMFPACK[32] for solving the linear system at each time step.

Solving velocity field \boldsymbol{u}_{h}^{m+1} with known concentration profile c_{h}^{m+1}

For the Navier-Stokes equation we use the P^{2} / P^{1} triangular Taylor-Hood element [10] and we denote by $\boldsymbol{u}_{h}^{m}, p_{h}^{m}$ the finite element solution and by $\boldsymbol{V}_{h}, Q_{h}$ the corresponding finite element space. The variational formulation is: Find $\boldsymbol{u}_{h}^{m+1} \in V_{h}$ and $p_{h}^{m+1} \in Q_{h}$ satisfying

$$
\begin{align*}
& \int_{\Omega} \frac{\boldsymbol{u}_{h}^{m+1}-\boldsymbol{u}_{h}^{m}}{\delta t} \cdot \boldsymbol{v}_{h} d x+\int_{\Omega}\left[\left(\boldsymbol{u}_{h}^{m} \cdot \nabla\right) \boldsymbol{u}_{h}^{m+1}\right] \cdot \boldsymbol{v}_{h} d x+\nu \int_{\Omega} \nabla \boldsymbol{u}_{h}^{m+1}: \nabla \boldsymbol{v}_{h} d x \\
& -\int_{\Omega}\left(p_{h}^{m+1} \nabla \cdot \boldsymbol{v}_{h}+q_{h} \nabla \cdot \boldsymbol{u}_{h}^{m+1}+\epsilon p_{h}^{m+1} q_{h}\right) d x=0 \tag{2.96}\\
& \boldsymbol{u}_{h}^{m+1}=\boldsymbol{u}_{i n h} \text { on } \Gamma_{i n}, \quad \boldsymbol{u}_{h}^{m+1}=0 \text { on } \Gamma_{\text {wall }}, \quad \boldsymbol{u}_{h}^{m+1}=-\alpha i_{0} c_{h}^{m+1} \boldsymbol{n} \text { on } S
\end{align*}
$$

for all $\boldsymbol{v}_{h} \in \boldsymbol{J}_{h}$ and $q_{h} \in Q_{h} ; \epsilon$ is a small regularization parameter which is taken to be 10^{-12} in our computer implementation. In the above, $\boldsymbol{u}_{\text {inh }}$ is the P^{2} interpolation of $\boldsymbol{u}_{i n}$.

With known \boldsymbol{u}_{h}^{m} and c_{h}^{m+1}, (2.96) leads to a linear system for the degrees of freedom of \boldsymbol{u}_{h}^{m+1} and p_{h}^{m+1} which is solved with the numerical library UMFPACK[32], at each m.

Remark 2.7.1 If mass-lumping is used and the triangulation has no obtuse angle, the positivity of (2.95) can be guaranteed by the same argument in the proof of Proposition 2.4.2. Therefore, the assumption (U1) holds for \boldsymbol{u}_{h}^{m+1}. Again, (U2) does not hold for the system (2.96) in general. In practical numerical implementation, the natural outflow boundary condition

$$
-\nu \frac{\partial \boldsymbol{u}_{h}^{m+1}}{\partial n}+p_{h}^{m+1} \boldsymbol{n}=0
$$

does no harm to (U2) when the velocity field is closed to a Poiseuille flow (for instance, the numerical tests conducted in Sections 7.3 and 7.4).

Iteration algorithm

The coupled system (2.95)-(2.96) is solved iteratively. We replace c_{h}^{m+1} by c^{*} in (2.95) and solve (2.96). We denote the solution by \boldsymbol{u}^{*}. Then we replace \boldsymbol{u}_{h}^{m+1} by \boldsymbol{u}^{*} in order to get the new c^{*}, until $\left\|\boldsymbol{u}_{\text {new }}^{*}-\boldsymbol{u}_{\text {old }}^{*}\right\|_{0}+\left\|c_{\text {new }}^{*}-c_{\text {old }}^{*}\right\|_{0}$ is sufficiently small.

To validate the method we need to compare with the original free boundary problem. It is solved with a similar iterative fixed point like process but the mesh needs to be rebuilt when the free boundary is updated. It is done by a scaling on y-coordinate at each time step t^{j} : $y \mapsto\left(1-\alpha i_{0} c_{h}^{j} \delta t\right) y$.

δt	L^{2} error	δt	H^{1} error	δt	L^{2} error
0.16	1.01723×10^{-5}	0.16	1.03365×10^{-5}	0.16	1.01722×10^{-5}
0.08	4.74704×10^{-6}	0.08	4.82368×10^{-6}	0.08	4.74701×10^{-6}
0.04	2.03444×10^{-6}	0.04	2.06729×10^{-6}	0.04	2.03443×10^{-6}
0.02	6.78147×10^{-7}	0.02	6.89107×10^{-7}	0.02	6.78142×10^{-7}
		δt	H^{1} error		
		0.16	1.03365×10^{-5}		
		0.08	4.82367×10^{-6}		
		0.04	2.06729×10^{-6}		
		0.02	6.89103×10^{-7}		

Table 2.1: Convergence when $\delta t \rightarrow 0: L^{2}$ and H^{1} relative error at $T=100$ for the scheme with the nonlinear transpiration approximation and $\nu=240$ (left columns) and $\nu=0.01$ (right columns). A uniform triangular mesh 150×30 is used.; $c_{\delta t=0.01}$ is used as reference solution.

```
Data : \(\boldsymbol{u}_{h}^{m}, p_{h}^{m}, c_{h}^{m}\), and \(y\)
Set initial data \(\boldsymbol{u}_{0}, c_{0}\);
for \(m\) do
    \(c^{*}=c_{h}^{m} ;\)
    while \(\left\|\boldsymbol{u}_{\text {new }}^{*}-\boldsymbol{u}_{\text {old }}^{*}\right\|_{0}+\left\|c_{\text {new }}^{*}-c_{\text {old }}^{*}\right\|_{0} \geqslant\) tolerance do
        Solve (2.95) to get \(c_{\text {new }}^{*}\);
        Solve (2.96) to get \(\boldsymbol{u}_{\text {new }}^{*}\) and \(p_{\text {new }}^{*}\);
    end
    \(c_{h}^{m+1}=c_{n e w}^{*} ;\)
    \(\boldsymbol{u}_{h}^{m+1}=\boldsymbol{u}_{\text {new }}^{*} ;\)
    For the free boundary case change the mesh by \(y \leftarrow\left(1-\alpha i_{0} c_{h}^{m+1} \delta t\right) y\);
end
```


2.7.3 Numerical results at low Reynolds number

The initial and inflow values are

$$
c_{0}=\cos (\lambda y), \quad \boldsymbol{u}_{0}=y(1-y) ; \quad c_{i n}=\left.c_{0}\right|_{\Gamma_{i n}} \exp \left(-D \lambda^{2} t\right), \quad \boldsymbol{u}_{i n}=\left.\boldsymbol{u}_{0}\right|_{\Gamma_{i n}} .
$$

A uniform triangular mesh 150×30 for the initial domain for each test so that the timediscrete error can be emphasized.

We compare the results obtained using a time dependent domain (Figure 2.3a) with the results using a fixed domain and the linear condition (2.7) (see Figure 2.3b) and finally with the nonlinear condition (2.12) (see Figure 2.3c).

On Figure 2.4 the free boundary and the reconstructed free boundaries are displayed using η given by (2.8).

The convergence with respect to time step size is shown on Table 2.1, computed at an intermediate time $T=100$. Since no exact solution is available, the numerical solution with time step $\delta t=0.01$ is taken as the reference solution. The numerical results in Table 2.1 show a first order convergence in L^{2} error conformed with the estimates given in Appendix B (see Figure 2.5).The weak first order convergence of H^{1} error is also proved in Appendix B. However the numerical results show strong first order H^{1} convergence for this test problem (see Figure 2.6).

Abstract

IsoValue

(a) Intensity map of computed with a free boundary on a moving mesh.

(b) Intensity map of c computed by the linear transpiration approximation.

(c) Intensity map of computed by nonlinear transpiration approximation.

Figure 2.3: The solution profiles of numerical experiments with $\nu=240$.

Figure 2.4: $S(T)$ calculated by 3 experiments at $T=5000$. The red curve is the height of $S(T)$ computed by moving mesh. The blue curve is computed by the displacement $\eta(T)$ with linear condition. The green dash curve is computed by the displacement $\eta(T)$ with nonlinear condition. If the curve of moving mesh is regarded as the reference solution, it is easy to see that the nonlinear approximation does better than the linear approximation. Left figure corresponds to with $\nu=240$ and Right figure to $\nu=0.01$.

Figure 2.5: L^{2} relative error versus δt at Figure 2.6: H^{1} relative error versus δt at $T=100$ $T=100$.

2.7.4 Numerical results at larger Reynolds number

In the previous example, where the values of the parameters correspond to the physical design of [61], we could have neglected the inertial terms and work with the Stokes approximation. In order to validate the algorithm at higher Reynolds number, which may be the case for other plating problems, we keep all parameters given in the end of Section 7.1 but change the Reynolds number to the inverse of $\nu=0.01$. The same experiments are conducted as in Section 7.3. The numerical results obtained for the low Reynolds number and the larger Reynolds number are very similar; no visible changes can be seen (see the right side of Figure 2.4) so we do not display the plots of Figure 2.3 for the high Reynolds number case.

Furthermore, several numerical experiments show no visible change by choosing the Reynolds number between the inverse of 240 and the inverse of 0.01 .

2.7.5 Influence of the term $\partial_{t} c$ in (2.19)

For the geometry considered in these numerical test no visible difference could be observed between (2.12) and (2.19) .

2.8 Conclusion

We have proposed a simplified model which approximates the Electroless process of [61] by replacing the time dependent domain occupied by the reacting chemical by a fixed domain using a transpiration approximation. We have validated the approximation numerically with a finite element method in space and a fully implicit in time approximation. We have constructed an existence proof by using variational convex analysis or fixed point arguments. The proof is technical and long because the nonlinearity is on the boundary condition and because it required a convexification of the energy potential and the maximum principle. However it was worth the effort because it gives a stable ground for the numerical studies and it may be useful for other similar problems. We plan to extend this study to two phase flows to take into account the formation of bubbles.

2.A Proof of Lemma 2.4.3.

Let $\rho_{1}, \rho_{2} \in W$. Formula (2.41) gives

$$
\begin{align*}
& \left\langle A \rho_{1}-A \rho_{2}, w\right\rangle=\frac{1}{\delta t} \int_{\Omega}\left(\rho_{1}-\rho_{2}\right) w d x \\
& +\frac{1}{2} \int_{\Omega}\left[\left(\boldsymbol{u}^{m+1} \cdot \nabla\left(\rho_{1}-\rho_{2}\right)\right) w-\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right)\left(\rho_{1}-\rho_{2}\right)\right] d x+D \int_{\Omega} \nabla\left(\rho_{1}-\rho_{2}\right) \cdot \nabla w d x \tag{2.97}\\
& +\int_{S}\left(\phi_{m}\left(\rho_{1}+\widetilde{c}_{\text {in }}\right)-\phi_{m}\left(\rho_{2}+\widetilde{c}_{\text {in }}\right)\right) w+\frac{1}{2} \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right)\left(\rho_{1}-\rho_{2}\right) w
\end{align*}
$$

We estimate each term on the right hand side of (2.97):

$$
\begin{equation*}
\frac{1}{\delta t} \int_{\Omega}\left(\rho_{1}-\rho_{2}\right) w d x \leqslant \frac{1}{\delta t}\left\|\rho_{1}-\rho_{2}\right\|_{0}\|w\|_{0} \leqslant \frac{1}{\delta t}\left\|\rho_{1}-\rho_{2}\right\|_{1}\|w\|_{1} \tag{2.98}
\end{equation*}
$$

$$
\begin{align*}
& \int_{\Omega}\left(\boldsymbol{u}^{m+1} \cdot \nabla\left(\rho_{1}-\rho_{2}\right)\right) w d x \leqslant\left\|\boldsymbol{u}^{m+1}\right\|_{L^{4}(\Omega)}\left\|\nabla\left(\rho_{1}-\rho_{2}\right)\right\|_{0}\|w\|_{L^{4}(\Omega)} \tag{2.99}\\
& \leqslant C\left\|\boldsymbol{u}^{m+1}\right\|_{1}\left\|\rho_{1}-\rho_{2}\right\|_{1}\|w\|_{1} \\
& \int_{\Omega}\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right)\left(\rho_{1}-\rho_{2}\right) d x \leqslant\left\|\boldsymbol{u}^{m+1}\right\|_{L^{4}(\Omega)}\|\nabla w\|_{0}\left\|\rho_{1}-\rho_{2}\right\|_{L^{4}(\Omega)} \tag{2.100}\\
& \leqslant C\left\|\boldsymbol{u}^{m+1}\right\|_{1}\left\|\rho_{1}-\rho_{2}\right\|_{1}\|w\|_{1} \\
& \int_{\Omega} \nabla\left(\rho_{1}-\rho_{2}\right) \cdot \nabla w d x \leqslant\left\|\nabla\left(\rho_{1}-\rho_{2}\right)\right\|_{0}\|\nabla w\|_{0} \leqslant\left\|\rho_{1}-\rho_{2}\right\|_{1}\|w\|_{1} \tag{2.101}
\end{align*}
$$

Let $x_{1}, x_{2} \in \mathbb{R}$. If $x_{1}+\widetilde{c}_{i n}$, and $x_{2}+\widetilde{c}_{i n}>\frac{1}{2 \alpha}$, then $\left|\bar{\psi}_{, c}\left(x_{1}+\widetilde{c}_{i n}\right)-\bar{\psi}_{, c}\left(x_{2}+\widetilde{c}_{i n}\right)\right|=0$. If $x_{1}+\widetilde{c}_{i n} \leqslant \frac{1}{2 \alpha}$ and $x_{2}+\widetilde{c}_{i n}>\frac{1}{2 \alpha}$, then

$$
\begin{aligned}
& \left|\bar{\psi}_{, c}\left(x_{1}+\widetilde{c}_{i n}\right)-\bar{\psi}_{, c}\left(x_{2}+\widetilde{c}_{i n}\right)\right| \leqslant\left|\bar{\psi}_{, c c}\left(x_{1}+\widetilde{c}_{i n}\right)\right|\left|x_{1}-x_{2}\right| \\
& \quad \leqslant\left|1-\alpha\left(x_{1}+\widetilde{c}_{i n}\right)\right|\left|x_{1}-x_{2}\right| \leqslant\left(1+\alpha+\alpha\left|x_{1}\right|\right)\left|x_{1}-x_{2}\right| .
\end{aligned}
$$

If $x_{1}+\widetilde{c}_{i n}$, and $x_{2}+\widetilde{c}_{i n} \leqslant \frac{1}{2 \alpha}$, then

$$
\begin{aligned}
\left|\bar{\psi}_{, c}\left(x_{1}+\widetilde{c}_{i n}\right)-\bar{\psi}_{, c}\left(x_{2}+\widetilde{c}_{i n}\right)\right| & =\left|x_{1}+\widetilde{c}_{i n}-\frac{\alpha}{2}\left(x_{1}+\widetilde{c}_{i n}\right)^{2}-\left(x_{2}+\widetilde{c}_{i n}\right)+\frac{\alpha}{2}\left(x_{2}+\widetilde{c}_{i n}\right)^{2}\right| \\
& =\left|x_{1}-x_{2}-\frac{\alpha}{2}\left(x_{1}+\widetilde{c}_{i n}\right)^{2}+\frac{\alpha}{2}\left(x_{2}+\widetilde{c}_{i n}\right)^{2}\right| \\
& =\left|x_{1}-x_{2}-\frac{\alpha}{2}\left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)-\alpha \widetilde{c}_{i n}\left(x_{1}-x_{2}\right)\right| \\
& \leqslant\left(1+\alpha+\frac{\alpha}{2}\left|x_{1}\right|+\frac{\alpha}{2}\left|x_{2}\right|\right)\left|x_{1}-x_{2}\right| .
\end{aligned}
$$

Now we can conclude that

$$
\begin{align*}
& \int_{S}\left(\bar{\psi}_{, c}\left(\rho_{1}+\widetilde{c}_{i n}\right)-\bar{\psi}_{, c}\left(\rho_{2}+\widetilde{c}_{i n}\right)\right) w \leqslant \int_{S}\left(1+\alpha+\frac{\alpha}{2}\left|\rho_{1}\right|+\frac{\alpha}{2}\left|\rho_{2}\right|\right)\left|\rho_{1}-\rho_{2} \| w\right| \\
& \leqslant(1+\alpha)\left\|\rho_{1}-\rho_{2}\right\|_{S}\|w\|_{S}+\frac{\alpha}{2}\left(\left\|\rho_{1}\right\|_{L^{3}(S)}+\left\|\rho_{2}\right\|_{L^{3}(S)}\right)\left\|\rho_{1}-\rho_{2}\right\|_{L^{3}(S)}\|w\|_{L^{3}(S)} \tag{2.102}\\
& \leqslant C_{1}\left\|\rho_{1}-\rho_{2}\right\|_{1}\|w\|_{1}+C_{2}\left(\left\|\rho_{1}\right\|_{1}+\left\|\rho_{2}\right\|_{1}\right)\left\|\rho_{1}-\rho_{2}\right\|\left\|_{1}\right\| w \|_{1}
\end{align*}
$$

Now,

$$
\begin{align*}
& \int_{S} \sum_{j=0}^{m} c^{j} \delta t\left(\left(\rho_{1}+\widetilde{c}_{i n}\right)-\left(\rho_{2}+\widetilde{c}_{i n}\right)\right) w \\
& =\int_{S} \sum_{j=0}^{m} c^{j} \delta t\left(\rho_{1}-\rho_{2}\right) w \leqslant \delta t \int_{S} \sum_{j=0}^{m}\left|c^{j}\left\|\rho_{1}-\rho_{2}\right\| w\right| \tag{2.103}\\
& \leqslant \delta t \sum_{j=0}^{m}\left\|c^{j}\right\|_{L^{3}(S)}\left\|\rho_{1}-\rho_{2}\right\|_{L^{3}(S)}\|w\|_{L^{3}(S)} \leqslant C \delta t \sum_{j=0}^{m}\left\|c^{j}\right\|_{1}\left\|\rho_{1}-\rho_{2}\right\|_{1}\|w\|_{1}
\end{align*}
$$

And finally,

$$
\begin{align*}
& \int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right)\left(\rho_{1}-\rho_{2}\right) w \leqslant \int_{\Gamma_{\text {out }}}\left|\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\left\|\rho_{1}-\rho_{2}\right\| w\right| \tag{2.104}\\
& \leqslant\left\|\boldsymbol{u}^{m+1}\right\|_{L^{3}\left(\Gamma_{\text {out }}\right)}\left\|\rho_{1}-\rho_{2}\right\|_{L^{3}\left(\Gamma_{\text {out }}\right)}\|w\|_{L^{3}\left(\Gamma_{\text {out }}\right)} \leqslant C\left\|\boldsymbol{u}^{m+1}\right\|_{1}\left\|\rho_{1}-\rho_{2}\right\|_{1}\|w\|_{1}
\end{align*}
$$

Combining (2.98)-(2.104), we have

$$
\begin{align*}
& \left|\left\langle A \rho_{1}-A \rho_{2}, w\right\rangle\right| \\
& \leqslant\left(C_{1}+C_{2}\left\|\boldsymbol{u}^{m+1}\right\|_{1}+C_{3}\left(\left\|\rho_{1}\right\|_{1}+\left\|\rho_{2}\right\|_{1}\right)+C_{4} \delta t \sum_{j=0}^{m}\left\|c^{j}\right\|_{1}\right)\left\|\rho_{1}-\rho_{2}\right\|_{1}\|w\|_{1} \tag{2.105}
\end{align*}
$$

This completes the proof. Q.E.D.

2.B Error estimates

In this section, we further assume that

For convenience, we define

$$
\begin{align*}
& B(u, v):=\left(1+\frac{\alpha i_{0}^{2}}{D} u\right) i_{0} v, \\
& b(u, v, w):=\int_{S}\left(1+\frac{\alpha i_{0}^{2}}{D} u\right) i_{0} v w, \tag{2.107}\\
& G(u, v, w):=\int_{S} \frac{\alpha i_{0}^{3}}{D} u v w .
\end{align*}
$$

The difference equation for the exact solution of c defined by (2.5) can be expressed as:

$$
\begin{equation*}
\frac{c\left(t^{m+1}\right)-c\left(t^{m}\right)}{\delta t}+\boldsymbol{u}^{m+1} \cdot \nabla c\left(t^{m+1}\right)-D \Delta c\left(t^{m+1}\right)=R^{m}, \tag{2.108}
\end{equation*}
$$

where

$$
\begin{equation*}
R^{m}=\frac{1}{\delta t} \int_{t^{m}}^{t^{m+1}}\left(t-t^{m}\right) \partial_{t t} c(t) d t \tag{2.109}
\end{equation*}
$$

Defining $\epsilon^{j}=c\left(t^{j}\right)-c^{j}$, the error equation can be expressed by

$$
\begin{equation*}
\frac{\epsilon^{m+1}-\epsilon^{m}}{\delta t}+\boldsymbol{u}^{m+1} \cdot \nabla \epsilon^{m+1}-D \Delta \epsilon^{m+1}=R^{m} \tag{2.110}
\end{equation*}
$$

subject to the boundary condition

$$
\begin{array}{r}
\epsilon^{m+1}=0 \text { on } \Gamma_{\text {in }}, \quad \frac{\partial \epsilon^{m+1}}{\partial n}=0 \text { on } \Gamma_{\text {wall }} \cup \Gamma_{\text {out }} \\
D \frac{\partial \epsilon^{m+1}}{\partial n}+B\left(\int_{0}^{t^{m+1}} c(s) d s, c\left(t^{m+1}\right)\right)-B\left(\sum_{j=0}^{m} c_{j} \delta t, c^{m+1}\right)=0 \text { on } S . \tag{2.111}
\end{array}
$$

The symmetrized weak formulation to (2.108) is

$$
\begin{align*}
& \int_{\Omega} \frac{c\left(t^{m+1}\right)-c\left(t^{m}\right)}{\delta t} w+D \int_{\Omega} \nabla c\left(t^{m+1}\right) \cdot \nabla w \\
& +\frac{1}{2} \int_{\Omega}\left[\left(\boldsymbol{u}^{m+1} \cdot \nabla c\left(t^{m+1}\right)\right) w-\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right) c\left(t^{m+1}\right)\right] d x+\int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right) c^{m+1} w \tag{2.112}\\
& +\int_{S}\left(1-\frac{\alpha c^{m+1}}{2}+\frac{\alpha i_{0}^{2}}{D} \sum_{j=0}^{m} c^{j}\right) i_{0} c^{m+1} w=\int_{\Omega} R^{m} w d x
\end{align*}
$$

Subtracting (2.112) by (2.35), we have

$$
\begin{align*}
& \int_{\Omega} \frac{\epsilon^{m+1}-\epsilon^{m}}{\delta t} w d x+D \int_{\Omega} \nabla \epsilon^{m+1} \cdot \nabla w d x \\
& +\frac{1}{2} \int_{\Omega}\left[\left(\boldsymbol{u}^{m+1} \cdot \nabla \epsilon^{m+1}\right) w-\left(\boldsymbol{u}^{m+1} \cdot \nabla w\right) \epsilon^{m+1}\right] d x+\int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right) \epsilon^{m+1} w \\
& -\int_{S} \frac{\alpha i_{0}}{2}\left(c\left(t^{m+1}\right)+c^{m+1}\right) \epsilon^{m+1} w+b\left(\int_{0}^{t^{m+1}} c(s) d s, c\left(t^{m+1}\right), w\right) \tag{2.113}\\
& -b\left(\sum_{j=0}^{m} c^{j} \delta t, c^{m+1}, w\right)=\int_{\Omega} R^{m} w d x
\end{align*}
$$

Before investigating the error estimate, some auxiliary results are needed. We collect them in the Remark below:

Remark 2.B. 1 We have

$$
\begin{align*}
& B\left(\int_{0}^{t^{m+1}} c(s) d s, c\left(t^{m+1}\right)\right)-B\left(\sum_{j=0}^{m} c^{j} \delta t, c^{m+1}\right) \\
& =\left(1+\frac{\alpha i_{0}^{2}}{D} \sum_{j=0}^{m} c^{j} \delta t\right) i_{0} \epsilon^{m+1}+\frac{\alpha i_{0}^{3}}{D}\left[\int_{0}^{t^{m+1}} c(s) d s-\sum_{j=0}^{m} c^{j} \delta t\right] c\left(t^{m+1}\right) \tag{2.114}
\end{align*}
$$

Defining

$$
\begin{equation*}
\xi^{m}=\int_{0}^{t^{m+1}} c(s) d s-\sum_{j=0}^{m} c^{j} \delta t \tag{2.115}
\end{equation*}
$$

we have

$$
\begin{equation*}
\xi^{m}=\sum_{j=0}^{m} \epsilon^{j} \delta t+\phi^{m} \tag{2.116}
\end{equation*}
$$

where $\phi^{m}=\sum_{j=0}^{m} \partial_{t} c\left(\theta^{j}\right) \delta t^{2}$ for some $\theta^{j} \in\left(t^{j}, t^{j+1}\right)$. By (2.114), (2.115), (2.116) and letting $w=\epsilon^{m+1}$ in (2.113), we have

$$
\begin{align*}
& \frac{1}{\delta t}\left\|\epsilon^{m+1}\right\|^{2}-\frac{1}{\delta t} \int_{\Omega} \epsilon^{m+1} \epsilon^{m} d x+D\left\|\nabla \epsilon^{m+1}\right\|^{2}+b\left(\sum_{j=0}^{m} c^{j} \delta t, \epsilon^{m+1}, \epsilon^{m+1}\right) \\
& +G\left(c\left(t^{m+1}\right), \sum_{j=0}^{m} \epsilon^{j} \delta t, \epsilon^{m+1}\right)+G\left(c\left(t^{m+1}\right), \phi^{m}, \epsilon^{m+1}\right)+\int_{\Gamma_{\text {out }}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right)\left(\epsilon^{m+1}\right)^{2} \tag{2.117}\\
& -\int_{S} \frac{\alpha i_{0}}{2}\left(c\left(t^{m+1}\right)+c^{m+1}\right)\left(\epsilon^{m+1}\right)^{2}=\int_{\Omega} R^{m} w d x
\end{align*}
$$

Multiplying the both sides by δt, we get

$$
\begin{align*}
& \left\|\epsilon^{m+1}\right\|^{2}+D \delta t\left\|\nabla \epsilon^{m+1}\right\|^{2}+\delta t b\left(\sum_{j=0}^{m} c^{j} \delta t, \epsilon^{m+1}, \epsilon^{m+1}\right) \\
& +\delta t G\left(c\left(t^{m+1}\right), \sum_{j=0}^{m} \epsilon^{j} \delta t, \epsilon^{m+1}\right)+\delta t G\left(c\left(t^{m+1}\right), \phi^{m}, \epsilon^{m+1}\right)+\delta t \int_{\Gamma_{o u t}}\left(\boldsymbol{u}^{m+1} \cdot \boldsymbol{n}\right)\left(\epsilon^{m+1}\right)^{2} \tag{2.118}\\
& -\delta t \int_{S} \frac{\alpha i_{0}}{2}\left(c\left(t^{m+1}\right)+c^{m+1}\right)\left(\epsilon^{m+1}\right)^{2}=\delta t \int_{\Omega} R^{m} w d x+\int_{\Omega} \epsilon^{m+1} \epsilon^{m} d x
\end{align*}
$$

Q.E.D.

Theorem 2.B. 1 There is a generic constant C such that

$$
\begin{equation*}
\left\|\epsilon^{m+1}\right\| \leqslant C \delta t \quad \forall 0 \leqslant m \leqslant \frac{T}{\delta t}-1 \tag{2.119}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\epsilon^{m+1}\right\|_{1} \leqslant C \delta t^{\frac{1}{2}} \quad \forall 0 \leqslant m \leqslant \frac{T}{\delta t}-1 \tag{2.120}
\end{equation*}
$$

Proof. By a recurrence argument, we are going to show that if the statements (2.119) and (2.120) hold simultaneously for all ϵ^{j} and for all $j \leqslant m$, then they hold as well for ϵ^{m+1}. Notice that it is true when $m=0$.

Defining $G_{1}=\left|G\left(c\left(t^{m+1}\right), \sum_{j=0}^{m} \epsilon^{j} \delta t, \epsilon^{m+1}\right)\right|$ and $G_{2}=\left|G\left(c\left(t^{m+1}\right), \phi^{m}, \epsilon^{m+1}\right)\right|$, we have the estimates:

$$
\begin{align*}
& G_{1} \leqslant \frac{\alpha i_{0}^{3}}{D} \sum_{j=0}^{m} \int_{S}\left|c\left(t^{m+1}\right) \epsilon^{j} \epsilon^{m+1} \delta t\right| \\
& \leqslant \frac{\alpha i_{0}^{3}}{D} \sum_{j=0}^{m} \int_{S}\left|\delta t \epsilon^{j} \epsilon^{m+1}\right| \leqslant \frac{\alpha i_{0}^{3}}{D}\left(\sum_{j=0}^{m}\left\|\epsilon^{j}\right\|_{S} \delta t\right)\left\|\epsilon^{m+1}\right\|_{S} \tag{2.121}\\
& \leqslant C\left(\sum_{j=0}^{m}\left\|\epsilon^{j}\right\|_{1} \delta t\right)\left\|\epsilon^{m+1}\right\|_{1} \leqslant C(m+1) \delta t^{\frac{3}{2}}\left\|\epsilon^{m+1}\right\|_{1} \leqslant C\left\|\epsilon^{m+1}\right\| \delta t^{\frac{1}{2}}
\end{align*}
$$

Using (A2), we have

$$
\begin{align*}
& G_{2} \leqslant \frac{\alpha i_{0}^{3}}{D} \int_{S}\left|c\left(t^{m+1}\right) \phi^{m} \epsilon^{m+1}\right| \leqslant \frac{\alpha i_{0}^{3}}{D} \int_{S}\left|\phi^{m} \epsilon^{m+1}\right| \tag{2.122}\\
& \leqslant \frac{\alpha i_{0}^{3}}{D}\left\|\phi^{m}\right\|_{S}\left\|\epsilon^{m+1}\right\|_{S} \leqslant C\left\|\phi^{m}\right\|_{1}\left\|\epsilon^{m+1}\right\|_{1} \leqslant C \delta t^{2}\left\|\epsilon^{m+1}\right\|_{1} .
\end{align*}
$$

By (A1), we have

$$
\begin{align*}
& \delta t\left|\int_{\Omega} R^{m} \epsilon^{m+1} d x\right| \\
& \leqslant \frac{D}{4} \delta t\left\|\epsilon^{m+1}\right\|_{1}^{2}+C \delta t^{-1}\left\|R^{m}\right\|_{H^{1}(\Omega)^{\prime}}^{2} \\
& =\frac{D}{4}\left\|\epsilon^{m+1}\right\|_{1}^{2}+C \delta t^{-1}\left\|\int_{t^{m}}^{t^{m+1}}\left(t-t^{m}\right) \partial_{t t} c d t\right\|_{H^{1}(\Omega)^{\prime}}^{2} \tag{2.123}\\
& \leqslant \frac{D}{4}\left\|\epsilon^{m+1}\right\|_{1}^{2}+C \delta t^{-1} \int_{t^{m}}^{t^{m+1}}\left\|\partial_{t t} c\right\|_{H^{1}(\Omega)^{\prime}}^{2} d t \int_{t^{m}}^{t^{m+1}}\left(t-t^{m}\right)^{2} d t \\
& \leqslant \frac{D}{4}\left\|\epsilon^{m+1}\right\|_{1}^{2}+C \delta t^{2} \int_{t^{m}}^{t^{m+1}}\left\|\partial_{t t} c\right\|_{H^{1}(\Omega)^{\prime}}^{2} d t \\
& \leqslant \frac{D}{4}\left\|\epsilon^{m+1}\right\|_{1}^{2}+C \delta t^{2} \\
& b\left(\sum_{j=0}^{m} c^{j} \delta t, \epsilon^{m+1}, \epsilon^{m+1}\right)-\int_{S} \frac{\alpha i_{0}}{2}\left(c\left(t^{m+1}\right)+c^{m+1}\right)\left(\epsilon^{m+1}\right)^{2} \\
& \quad \geqslant \int_{S}\left(1+\frac{\alpha i_{0}^{2}}{D} \sum_{j=0}^{m} c^{j} \delta t\right) i_{0}\left(\epsilon^{m+1}\right)^{2}-\int_{S} \alpha i_{0}\left(\epsilon^{m+1}\right)^{2} \tag{2.124}\\
& \geqslant \int_{S}\left((1-\alpha)+\frac{\alpha i_{0}^{2}}{D} \sum_{j=0}^{m} c^{j} \delta t\right) i_{0}\left(\epsilon^{m+1}\right)^{2} \geqslant 0 . \\
& \tag{2.125}
\end{align*}
$$

Combining (2.118), (2.121)-(2.125), and since the boundary term of $\Gamma_{\text {out }}$ in (2.118) is nonnegative, we have

$$
\begin{equation*}
\left(\frac{1}{2}-\frac{1}{4} D \delta t\right)\left\|\epsilon^{m+1}\right\|^{2}+\frac{3}{4} D \delta t\left\|\epsilon^{m+1}\right\|_{1}^{2} \leqslant C\left\|\epsilon^{m+1}\right\|_{1} \delta t^{\frac{3}{2}}+C \delta t^{2} . \tag{2.126}
\end{equation*}
$$

This implies (2.120). Now using (2.126) and (2.120), we get (2.119). Q.E.D.

Theorem 2.B. 2 (Improved estimate) For $0 \leqslant m \leqslant \frac{T}{\delta t}-1$, we have

$$
\begin{equation*}
\delta t \sum_{j=0}^{m}\left\|\epsilon^{j+1}\right\|_{1}^{2} \leqslant C \delta t^{2} \tag{2.127}
\end{equation*}
$$

Proof. Putting $w=2 \epsilon^{m+1}$ in (2.118) and using the estimates in Theorem 2.B.1, we have

$$
\begin{array}{r}
\left\|\epsilon^{m+1}\right\|^{2}+2 D \delta t\left\|\nabla \epsilon^{m+1}\right\|^{2} \leqslant 2 \delta t C_{1}\left\|\epsilon^{m+1}\right\|_{1}\left(\sum_{j=0}^{m}\left\|\epsilon^{j}\right\|_{1} \delta t\right) \tag{2.128}\\
+2 C_{2} \delta t^{3}\left\|\epsilon^{m+1}\right\|_{1}+\frac{D}{4} \delta t\left\|\epsilon^{m+1}\right\|_{1}^{2}+C_{3} \delta t^{2} \int_{t^{m}}^{t^{m+1}}\left\|\partial_{t t} c\right\|_{H^{1}(\Omega)^{\prime}}^{2} d t+\left\|\epsilon^{m}\right\|^{2}
\end{array}
$$

Note that

$$
\left\|\epsilon^{m+1}\right\|^{2}+2 D \delta t\left\|\epsilon^{m+1}\right\|_{1}^{2}=(1-2 D \delta t)\left\|\epsilon^{m+1}\right\|^{2}+2 D \delta t\left\|\epsilon^{m+1}\right\|_{1}^{2}
$$

Taking the sum of (2.128) from 0 to m and using (A1), we have

$$
\begin{align*}
&\left(1-\frac{9}{4} D \delta t\right)\left\|\epsilon^{m+1}\right\|^{2}+\frac{7}{4} \sum_{j=0}^{m} D \delta t\left\|\epsilon^{j+1}\right\|_{1}^{2} \leqslant \sum_{j=0}^{m} \tag{2.129}\\
& 2 \delta t C_{1}\left\|\epsilon^{j+1}\right\|_{1}\left(\sum_{k=0}^{j}\left\|\epsilon^{k}\right\|_{1} \delta t\right) \\
&+\sum_{j=0}^{m} 2 C_{2} \delta t^{3}\left\|\epsilon^{j+1}\right\|_{1}+C_{3} \delta t^{2} .
\end{align*}
$$

The first term on the right hand side of (2.129) can be estimated by

$$
\begin{array}{r}
\sum_{j=0}^{m} 2 \delta t C\left\|\epsilon^{m+1}\right\|_{1}\left(\sum_{k=0}^{k}\left\|\epsilon^{k}\right\|_{1} \delta t\right) \\
\leqslant \sum_{j=0}^{m} \frac{D}{4} \delta t\left\|\epsilon^{j+1}\right\|_{1}^{2}+C \delta t^{2} \sum_{j=0}^{m} \sum_{k=0}^{j}\left\|\epsilon^{k}\right\|_{1}^{2} \tag{2.130}\\
\leqslant \frac{D}{4} \delta t\left\|\epsilon^{m+1}\right\|_{1}^{2}+C \delta t \sum_{j=0}^{m}\left\|\epsilon^{j}\right\|_{1}^{2} .
\end{array}
$$

Similarly, the second term can be estimated by

$$
\begin{align*}
& \sum_{j=0}^{m} 2 C_{2} \delta t^{3}\left\|\epsilon^{m+1}\right\|_{1} \leqslant \sum_{j=0}^{m} 2 C \delta t^{3}\left(\frac{1}{2 \nu}\left\|\epsilon^{m+1}\right\|_{1}^{2}+\frac{\nu}{2}|\Omega|\right) \\
& \leqslant \nu C T|\Omega| \delta t^{2}+\frac{C}{\nu} \delta t^{2} \sum_{j=0}^{m}\left\|\epsilon^{m+1}\right\|_{1}^{2} \tag{2.131}\\
& \leqslant C \delta t^{2}+\frac{D}{4} \delta t \sum_{j=0}^{m}\left\|\epsilon^{j}\right\|_{1}^{2}+\frac{D}{4} \delta t\left\|\epsilon^{m+1}\right\|_{1}^{2}
\end{align*}
$$

for every $\nu>0$.
Finally, employing (2.129)-(2.131), we have

$$
\begin{equation*}
\left(1-\frac{11}{4} D \delta t\right)\left\|\epsilon^{m+1}\right\|^{2}+\frac{5}{4} D \delta t \sum_{j=0}^{m}\left\|\epsilon^{j+1}\right\|_{1}^{2} \leqslant C_{1} \delta t^{2}+C_{2} \delta t \sum_{j=0}^{m}\left\|\epsilon^{j}\right\|_{1}^{2} . \tag{2.132}
\end{equation*}
$$

By induction on m, we can easily show that

$$
\begin{equation*}
\frac{5}{4} D \delta t \sum_{j=0}^{m}\left\|\epsilon^{j+1}\right\|_{1}^{2} \leqslant C \delta t^{2} . \tag{2.133}
\end{equation*}
$$

Q.E.D.

Chapter 3

Simulation on electroless plating problem with gas generation

3.1 Introduction

When emphasizing on micro-scale electroless plating problem, gas generation will be a serious issue. The existence of relatively large bubbles in a microchannel has been an important issue in the study of microfluid[76, 57, 129]. In electroless plating process, the bubbles may prevent electrolyte from going into the region needed to be plated. In view of the trouble caused by bubble generation, we are motivated to understand the mechanism of bubble motion and bubble generation in electroless process. From a theoretical point of view, the physical phenomena for describing electroless process are very complicated. In practical simulation, not all the physical phenomena are of interest. Therefore, for the simulation, we chose a system which includes: gas-liquid two phase flow, chemical species transport, surface reaction, and moving boundary caused by deposition.

Numerous papers about modeling and simulation of gas-liquid two phase flow have been published [116, 115, 2, 33, 45]. In terms of how we resolve the motion of the gaseous phase flows, the working models in most of these papers can be sorted into two classes: (i) phase field or level set models where the gas-liquid interface is tracted[1, 107, 112, 90]; (ii) averaged models [63, 134, 41]. Several reasons support our choice for an averaged model: (i) The bubble generation is random, we only know that there is a higher chance of gas generation occurring in regions of higher concentration of dissolving gas; (ii) Even if the bubble generation can be well predicted, vast amounts of bubbles are generated in a short moment for electroless process; furthermore, the computational cost for capturing each bubble is prohibitive; (iii) Interfacial terms (e.g. terms caused by phase change) can be easily estimated if the averaged model is applied (see Appendix A); (iv) it simplifies substantially the modeling.

Experimentally, the bubbles are seen to get stuck somewhere in the microchannel. This indicates that the velocities of two phases are quite different. To allow a disparity of motion between the liquid phase and gaseous phase, a two velocities model will be used. To our knowledge, such approach is new for incompressible two phase flows in thin microchannels.

A system of linear convection-diffusion equations with additional phase change terms is applied for depicting the concentration profiles of chemical species. We use the mixed potential theory (see for instance [74]) to model the reaction boundary condition describing the electroless process, which is a Robin boundary condition subject to electron balance constraints. We further

Figure 3.1: The computational domain $\Omega(t)$ for the test problem in Section 3.5.2 is initially a rectangle of size $10 \mathrm{~mm} \times 1 \mathrm{~mm}$. We assume a fixed inflow velocity and given chemical concentrations from the left on $\Gamma_{i n}$, a solid wall on the top side with a no-slip condition for the velocity, and a traction-free outflow on $\Gamma_{o u t}$. On the bottom side, $S(t)$ is a free boundary and its motion is given by (3.23). However as the reaction site is active mostly for $x \in(1.5 \mathrm{~mm}, 5.5 \mathrm{~mm})$, we may block the chemical reactions for $x<1 \mathrm{~mm}$ to avoid a corner singularity at the entrance and also for $x>6 \mathrm{~mm}$ because experiments show that almost no plating occurs there. In the regions $x \in(1.0 \mathrm{~mm}, 1.5 \mathrm{~mm}) \cup(5.5 \mathrm{~mm}, 6.0 \mathrm{~mm})$ the numerical simulations may not be accurate due to the singularity caused by the discontinuity in the boundary conditions (see figure 3.17 for details).
consider the boundary motion induced by the chemical species deposition on reaction surface. Combining all with the average model for gas-liquid two phase flow, we propose a set of coupled equations for a system which includes gas-liquid fluid motion, chemical species transport and moving boundary to simulate an electroless plating process. Note that, in absence of bubbles, the proposed model reduces to the usual single phase model (i.e. neglecting the existence of gas) which is compatible with previous studies on electroless process such as [46].

For numerical simulations, the Galerkin characteristic method[98] is applied for time discretization. The Finite element method of degree one is used for space discretization. The well-posedness of the numerical scheme for the coupling system is proved. We reproduce a onedimensional numerical simulation on electroless nickel plating problem to compare with [66]. The numerical code for the full system is implemented as well and we compare the numerical results with a real-world experiment done by one of the authors for this purpose. Unfortunately the numerical experiment is very difficult to make and it gave only qualitative results. So the numerical results are compared qualitatively only with the experiment.

So the numerical simulations seems more reliable than experiment and they give detail information on the free boundary and on the speeds and concentrations of the chemical, highly important for the design of commercial systems.

3.2 Modeling equations for liquid-gas flow

Let $\Omega(t)$ be the time-dependent physical domain which is a thin channel between a top and a bottom plate. The boundary of Ω consists of the inlet $\Gamma_{i n}$, the outlet $\Gamma_{\text {out }}$, the solid wall $\Gamma_{\text {wall }}$ and the reacting surface $S(t)$ (see Figure 3.1).

3.2.1 Volume averaging

We review the derivation proposed by Ni and Beckermann [85].
Let $\Omega_{0}(x, t)$ be an small open set to be observed in $\Omega(t)$ and $\Omega_{k} \subset \Omega_{0}$ the set occupied by phase k and bounded by the interface $\partial \Omega_{k}$, which is assumed to be oriented. Assume that $\cup_{k} \Omega_{k}=\Omega_{0}$ and $\Omega_{k} \cap \Omega_{j}=0, k \neq j$. Let \boldsymbol{n}_{k} be a outer normal to $\partial \Omega_{k}$ and \boldsymbol{w}_{k} the normal velocity of $\partial \Omega_{k}$.

Let Ψ be a function of a slow variable x and a fast variable y due to the phase change. The volume average of Ψ in phase k is $\langle\Psi\rangle_{k}(x, t)=\frac{1}{V_{0}} \int_{\Omega_{0}(x, t)} \chi_{k}(y) \Psi(x, y) d y$, where χ_{k} is the indicator function of the domain of phase k and $V_{0}=\int_{\Omega_{0}} d x$, assumed constant. The intrinsic volume average is defined as

$$
\begin{equation*}
\langle\Psi\rangle_{k}^{(k)}=\frac{V_{0}}{V_{k}}\langle\Psi\rangle_{k} \text { where } V_{k}=\int_{\Omega_{0}} \chi_{k} d y \tag{3.1}
\end{equation*}
$$

The volume fraction $r_{k}=\frac{V_{k}}{V_{0}}$ has the properties $\sum_{k} r_{k}=1$ and $\langle\Psi\rangle_{k}=r_{k}\langle\Psi\rangle_{k}^{(k)}$. Some useful formulas in terms of the averaging are listed below[123, 109]:

$$
\begin{equation*}
\left\langle\frac{\partial \Psi}{\partial t}\right\rangle_{k}=\frac{\partial\langle\Psi\rangle_{k}}{\partial t}-\frac{1}{V_{0}} \int_{\partial \Omega_{k}} \Psi_{k} \boldsymbol{w}_{k} \cdot \boldsymbol{n}_{k} d A, \quad\langle\nabla \Psi\rangle_{k}=\nabla\langle\Psi\rangle_{k}+\frac{1}{V_{0}} \int_{\partial \Omega_{k}} \Psi_{k} \boldsymbol{n}_{k} d A \tag{3.2}
\end{equation*}
$$

In principle one should introduce also fast and slow time variables but it is assumed that spatially averaged functions are no longer varying fast in time.

3.2.2 Mass conservation

We consider a gas and a liquid phase. Let ρ_{g} be the density of gas, ρ_{l} the density of liquid. We have the mass conservation for both phases (l for liquid and g for gas):

$$
\begin{equation*}
\partial_{t}\left(r_{j} \rho_{j}\right)+\nabla \cdot\left(r_{j} \rho_{j} \boldsymbol{u}_{j}\right)=\dot{S}_{j}, \quad l=l, g \tag{3.3}
\end{equation*}
$$

where \dot{S}_{g} is the mass gained owing to the precipitation of dissolved gas, \dot{S}_{l} is the mass loss when liquid is replaced by the gas, and $\boldsymbol{u}_{g}(x, t), \boldsymbol{u}_{l}(x, t)$ are the volume averaged fluid flow of gas and liquid, respectively. Since the mass gained in gas balances the mass loss in liquid, we have

$$
\begin{equation*}
\dot{S}_{g}=-\dot{S}_{l} \tag{3.4}
\end{equation*}
$$

For chemical species, we assume that the ions are transported only by the liquid electrolyte. Let c_{s} be the volume averaged concentration of metallic ions destined to be deposited on the reacting surface, c_{g} the volume averaged concentration of dissolved gas and $c_{k}, k=k_{1}, \ldots, k_{M}$ the volume averaged concentration of other chemical species participating to the chemical reaction. The equations for the concentrations are

$$
\begin{equation*}
\partial_{t}\left(r_{l} \rho_{l} c_{j}\right)+\nabla \cdot\left(r_{l} \rho_{l} c_{j} \boldsymbol{u}_{l}\right)-\nabla \cdot\left(r_{l} \rho_{l} D_{j} \nabla c_{j}\right)-G_{j}=0, \quad j=s, g, k \tag{3.5}
\end{equation*}
$$

where $G_{j}, j=s, k$ are interfacial terms due to the phase change. By (3.3), we can rewrite the above equation by

$$
\begin{equation*}
r_{l} \rho_{l}\left(\partial_{t} c_{j}+\boldsymbol{u}_{l} \cdot \nabla c_{j}\right)-\nabla \cdot\left(r_{l} \rho_{l} D_{j} \nabla c_{j}\right)-G_{j}+\dot{S}_{l} c_{j}=0, \quad j=s, g, k \tag{3.6}
\end{equation*}
$$

where D_{j} are the diffusion coefficients. In particular, since the gas is consumed by the phase change, we have

$$
\begin{equation*}
G_{g}=-\frac{1}{V_{0}} \int_{\partial \Omega_{l}} \rho_{l} c_{g}\left(\boldsymbol{u}_{l}-\boldsymbol{w}_{l}\right) \cdot \boldsymbol{n}_{l} d A-\rho_{l} M_{g} K r_{l}\left(c_{g}-c_{s a t}\right)^{+} \tag{3.7}
\end{equation*}
$$

by assuming the gas precipitation is linearly dependent on the dissolving gas concentration[87, 120].

In the above, \boldsymbol{w}_{l} is the interface velocity of $\partial \Omega_{l}$ and where K is a constant independent of r_{g}, r_{l} and $c_{s a t}$ is the saturated concentration of the gas, M_{g} is the reciprocal of the molar mass of the gas,

$$
\begin{equation*}
\dot{S}_{g}=K r_{l}\left(c_{g}-c_{s a t}\right)^{+} \tag{3.8}
\end{equation*}
$$

Moreover, $G_{j}, j=s, k, g$ can be estimated by (see Appendix A)

$$
\begin{equation*}
G_{j} \approx \dot{S}_{l} c_{j}, \quad j=s, k, \quad G_{g} \approx \dot{S}_{l} c_{g}-\rho_{l} M_{g} K r_{l}\left(c_{g}-c_{s a t}\right)^{+} . \tag{3.9}
\end{equation*}
$$

For incompressible fluids, a volume conservation is derived from (3.3):

$$
\begin{equation*}
\sum_{\alpha=g, l} \frac{1}{\rho_{\alpha}}\left[\partial_{t}\left(r_{\alpha} \rho_{\alpha}\right)+\nabla \cdot\left(r_{\alpha} \rho_{\alpha} \boldsymbol{u}_{\alpha}\right)-\dot{S}_{\alpha}\right]=0 \tag{3.10}
\end{equation*}
$$

By (3.4), the above reduces to

$$
\begin{equation*}
\nabla \cdot\left(r_{g} \boldsymbol{u}_{g}+r_{l} \boldsymbol{u}_{l}\right)=\dot{S}_{g}\left(\frac{1}{\rho_{g}}-\frac{1}{\rho_{l}}\right) . \tag{3.11}
\end{equation*}
$$

Recall that the physical domain is occupied either by gas or liquid, therefore $r_{g}(t)+r_{l}(t)=1$ at all times.

3.2.3 Equations of motion

Let μ_{g}, μ_{l} be the viscosity of the gas and the liquid, respectively. The volume averaged NavierStokes equations are used for momentum balance (see [85]):

$$
\begin{equation*}
\partial_{t}\left(r_{j} \rho_{j} \boldsymbol{u}_{j}\right)+\nabla \cdot\left(r_{j} \rho_{j} \boldsymbol{u}_{j} \otimes \boldsymbol{u}_{j}\right)+r_{j} \nabla p_{j}-\mu_{j} \nabla \cdot\left(r_{j} D\left(\boldsymbol{u}_{j}\right)\right)+M_{D, j}=\boldsymbol{F}_{j}, \quad j=g, l \tag{3.12}
\end{equation*}
$$

where $p_{j}, M_{D, j}, \boldsymbol{F}_{j}, j=l, g$ are pressure, drag force terms[41, 85]

$$
\begin{align*}
& M_{D, g}=C_{D} r_{g}\left|\boldsymbol{u}_{g}-\boldsymbol{u}_{l}\right|\left(\boldsymbol{u}_{g}-\boldsymbol{u}_{l}\right) \tag{3.13}\\
& M_{D, l}=C_{D} r_{g}\left|\boldsymbol{u}_{g}-\boldsymbol{u}_{l}\right|\left(\boldsymbol{u}_{l}-\boldsymbol{u}_{g}\right),
\end{align*}
$$

where C_{D} is drag coefficient, and interfacial terms $\boldsymbol{F}_{j}=-\frac{1}{V_{0}} \int_{\partial \Omega_{j}} \rho_{j} \boldsymbol{u}_{j}\left(\boldsymbol{u}_{j}-\boldsymbol{w}_{j}\right) \cdot \boldsymbol{n}_{j} d A, j=l, g$, $D(\boldsymbol{v})=\nabla \boldsymbol{v}+(\nabla \boldsymbol{v})^{T}$ is the viscous stress tensor for any vector-valued function $\boldsymbol{v} ; \boldsymbol{F}_{j}, j=l, g$ can be estimated by (see Appendix A)

$$
\begin{equation*}
\boldsymbol{F}_{g} \approx \dot{S}_{g} \boldsymbol{u}_{g}, \quad \boldsymbol{F}_{l} \approx \dot{S}_{l} \boldsymbol{u}_{l} \tag{3.14}
\end{equation*}
$$

In view of (3.11), following [18, 19], we assume a constitutive relation $p=p_{l}=p_{g}$ in order to close the system of equations. The velocity fields of both phases are assumed to be 0 outside
their own single phase region, respectively. Consequently, and by (3.3), (3.12), the momentum equations simplify to

$$
\begin{array}{r}
r_{j} \rho_{j}\left(\partial_{t} \boldsymbol{u}_{j}+\left(\boldsymbol{u}_{j} \cdot \nabla\right) \boldsymbol{u}_{j}\right)+r_{j} \nabla p-\mu_{j} \nabla \cdot\left(r_{j} D\left(\boldsymbol{u}_{j}\right)\right)+\gamma_{j} C_{D} r_{g}\left|\boldsymbol{u}_{g}-\boldsymbol{u}_{l}\right|\left(\boldsymbol{u}_{g}-\boldsymbol{u}_{l}\right)=0, \tag{3.15}\\
j=g, l, \quad \text { with } \gamma_{g}=1 \text { and } \gamma_{l}=-1
\end{array}
$$

3.2.4 Boundary conditions

We consider a fluid flow from an input boundary $\Gamma_{i n}$ to an output boundary $\Gamma_{\text {out }}$ with a solid wall at the bottom, $\Gamma_{\text {wall }}$:

$$
\begin{align*}
& \boldsymbol{u}_{j}=\boldsymbol{u}_{\text {in }} \quad \text { on } \Gamma_{i n}, \quad \boldsymbol{u}_{j}=0 \quad \text { on } \Gamma_{\text {wall }}, \\
& -\mu_{j} D\left(\boldsymbol{u}_{j}\right) \cdot \boldsymbol{n}+p \boldsymbol{n}=0 \quad \text { on } \Gamma_{\text {out }}, \quad j=l, g . \tag{3.16}
\end{align*}
$$

The boundary conditions for $r_{j}, j=g, l$ are

$$
\begin{align*}
r_{g} & =\epsilon, \quad r_{l}=1-\epsilon \quad \text { on } \Gamma_{i n} \\
\frac{\partial r_{g}}{\partial n} & =\frac{\partial r_{l}}{\partial n}=0 \quad \text { on } \partial \Omega \backslash \Gamma_{i n} \tag{3.17}
\end{align*}
$$

where ϵ is a fixed positive small constant.
The boundary conditions for the concentrations of chemical species are, with $c_{j, \text { in }}$ given:

$$
\begin{equation*}
c_{j}=c_{j, i n} \quad \text { on } \Gamma_{i n}, \quad \frac{\partial c_{j}}{\partial n}=0 \quad \text { on } \Gamma_{\text {wall }} \cup \Gamma_{\text {out }}, \quad j=s, g, k \tag{3.18}
\end{equation*}
$$

With F the Faraday constant, and z the atomic number of the material.
Referring to Figure 3.2, if $S(t)$ is the reaction surface, we denote $S_{l}(t) \subset S(t)$ the region occupied by the liquid and $S_{g}(t):=S(t) \backslash S_{l}(t)$ the region occupied by gas. Choosing an arbitrary subset $W \subset S(t)$, the surface reaction takes place only on $W \cap S_{l}(t)$. Assuming that the concentration profile is uniform near the small region W, we have: $-\int_{W} \rho_{l} D_{j} \frac{\partial c_{j}}{\partial n} d A=$ $\int_{W \cap S_{l}(t)} \rho_{l} \frac{\left|I_{j}\right|}{z_{j} F} d A$. Therefore by dividing both sides by $\int_{W} 1 d A$:

$$
\begin{equation*}
-D_{j} \frac{\partial c_{j}}{\partial n}=\frac{\left|I_{j}\right|}{z_{j} F}, \quad j=s, k, \quad-D_{g} \frac{\partial c_{g}}{\partial n}=-\frac{\beta\left|I_{s}\right|}{z_{s} F} \tag{3.19}
\end{equation*}
$$

for a positive number β indicating the chemical equivalence for gaseous molecular generation.
In the above, I_{j} is the current density satisfying the Butler-Volmer equation
$I_{j}=i_{j}\left(E_{m i x}\right) c_{j}^{\kappa_{j}}:=L_{j}\left[\exp \left(\frac{\alpha_{j} z_{j} F\left(E_{m i x}-E_{j}\right)}{R \theta}\right)-\exp \left(\frac{-\beta_{j} z_{j} F\left(E_{m i x}-E_{j}\right)}{R \theta}\right)\right] c_{j}^{\kappa_{j}}, \quad j=s, k$,
where R is the gas constant, E_{j} are the chemical potentials of species j, θ is the temperature, $\alpha_{j}, \beta_{j}, L_{j}, \kappa_{j}$ are constants, $E_{\text {mix }}$ is given by writing electrical neutrality :

$$
\begin{equation*}
I_{s}+\sum_{k} I_{k}=0 \tag{3.21}
\end{equation*}
$$

Figure 3.2: The reaction surface.

On $S(t)$, the fluid velocity induced by the deposition is

$$
\begin{equation*}
\boldsymbol{u}_{g}=\boldsymbol{u}_{l}=\frac{r_{l} V_{s}\left|I_{s}\right|}{z_{s} F} \boldsymbol{n} . \tag{3.22}
\end{equation*}
$$

where V_{s} is a constant. Hence $S(t)$ moves according to

$$
\begin{equation*}
\dot{x}(t)=\left.\left(\boldsymbol{u}_{g} \cdot \mathbf{n}\right) \mathbf{n}\right|_{x(t)}, \quad x(t) \in S(t) \tag{3.23}
\end{equation*}
$$

3.2.5 Single phase flow

If there is no gaseous phase in the system and no dissolved gas in liquid, i.e. $r_{g}=c_{g}=0$, then $\boldsymbol{u}=\boldsymbol{u}_{l}$ and $\dot{S}_{g}=0$ and mass conservation reduces to $\nabla \cdot \boldsymbol{u}=0$. The convection-diffusion of chemicals become,

$$
\begin{equation*}
\partial_{t} c_{j}+\boldsymbol{u} \cdot \nabla c_{j}-D_{j} \Delta c_{j}=0, \quad j=s, k, \tag{3.24}
\end{equation*}
$$

and the fluid system reduce to the Navier-Stokes equations:

$$
\begin{equation*}
\rho_{l}\left(\partial_{t} \boldsymbol{u}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\right)-\mu_{l} \Delta \boldsymbol{u}+\nabla p=0, \quad \nabla \cdot \boldsymbol{u}=0 . \tag{3.25}
\end{equation*}
$$

The above system of equations exactly describes the chemical species transported by the fluid flow satisfying the incompressible Navier-Stokes equation.

3.3 Numerical method

3.3.1 Notations

If $f \in \mathbb{R}$, we denote by $f^{+}:=\max (f, 0)$ and by $f^{-}:=-\min (f, 0)$. We denote by $\|\cdot\|_{L^{p}}:=$ $\|\cdot\|_{L^{p}(\Omega(t))}$ the L^{p} norm on $\Omega(t),\|\cdot\|_{W^{k, p}}:=\|\cdot\|_{W^{k, p}(\Omega(t))}$ the $W^{k, p}$ norm on $\Omega(t)$, and $\|\cdot\|_{H^{k}}=\|\cdot\|_{W^{k, 2}}, 0 \leqslant k \leqslant+\infty, 1 \leqslant p \leqslant+\infty$. Remembering that $c_{k}(x, t)$ is a vector, let us denote $C=\left(c_{s}, c_{k}^{T}, c_{g}\right)^{T}$.

We assume the densities ρ_{j} constant and denote $\alpha_{j}=r_{j} \rho_{j}$ and the kinematic viscosities $\nu_{j}=\mu_{j} / \rho_{j}$. The system is

$$
\begin{gather*}
\partial_{t} \alpha_{j}+\boldsymbol{u}_{j} \cdot \nabla \alpha_{j}+\alpha_{j} \nabla \cdot \boldsymbol{u}_{j}-\alpha_{l} \frac{\gamma_{j} K}{\rho_{l}}\left(c_{g}-c_{s a t}\right)^{+}=0, \quad j=l, g \tag{3.26}\\
\alpha_{j}\left(\partial_{t} \boldsymbol{u}_{j}+\boldsymbol{u}_{j} \cdot \nabla \boldsymbol{u}_{j}+\rho_{j}^{-1} \nabla p\right)-\nu_{j} \nabla \cdot\left(\alpha_{j} D\left(\boldsymbol{u}_{j}\right)\right)+\gamma_{j} C_{D} r_{g}\left|\boldsymbol{u}_{g}-\boldsymbol{u}_{l}\right|\left(\boldsymbol{u}_{g}-\boldsymbol{u}_{l}\right)=0, \quad j=g, l \tag{3.27}
\end{gather*}
$$

$$
\begin{equation*}
\alpha_{l}\left(\partial_{t} C+\boldsymbol{u}_{l} \cdot \nabla C\right)-\nabla \cdot\left(\alpha_{l} \boldsymbol{D} \cdot \nabla C\right)+\left(0,0, M_{g} K \alpha_{l}\left(c_{g}-c_{s a t}\right)^{+}\right)^{T}=0, \tag{3.28}
\end{equation*}
$$

where \boldsymbol{D} is the appropriate diffusion matrix compatible with (3.15). In addition as $\dot{S}_{g}=-\dot{S}_{l}=$ $K \alpha_{l}\left(c_{g}-c_{s a t}\right)^{+} / \rho_{l}$, we may use the redundant equation (3.11):

$$
\begin{equation*}
\nabla \cdot\left(\frac{\alpha_{g}}{\rho_{g}} \boldsymbol{u}_{g}+\frac{\alpha_{l}}{\rho_{l}} \boldsymbol{u}_{l}\right)=\dot{S}_{g}\left(\frac{1}{\rho_{g}}-\frac{1}{\rho_{l}}\right) . \tag{3.29}
\end{equation*}
$$

3.3.2 Semi-discrete schemes

Let T be the final time and δt a time step. We denote by $\phi^{m}, m=0,1, \ldots, N:=T / \delta t$ the numerical solution of any physical quantity ϕ at time $m \delta t$. Convection terms are approximated in time by the method of characteristics. Let $X_{j}^{m}(x) \approx x-\boldsymbol{u}_{j}^{m}(x) \delta t$. Then

$$
\left.\left(\partial_{t} \alpha_{j}+\boldsymbol{u}_{j} \cdot \nabla \alpha_{j}\right)\right|_{x, t=t^{m+1}} \approx \frac{1}{\delta t}\left(\alpha_{j}^{m+1}(x)-\alpha^{m}\left(X_{j}^{m}(x)\right)\right) .
$$

Consider the following scheme

$$
\begin{array}{r}
\frac{1}{\delta t}\left(\alpha_{l}^{m+1}-\alpha_{l}^{m} \circ X_{l}^{m}\right)+\alpha_{l}^{m+1}\left(\nabla \cdot \boldsymbol{u}_{l}^{m}+\frac{1}{\rho_{l}} K\left(c_{g}^{m}-c_{s a t}\right)^{+}\right)=0, \\
r_{l}^{m+1}=\alpha_{l}^{m+1} / \rho_{l}, \quad r_{g}^{m+1}=1-r_{l}^{m+1}, \alpha_{g}^{m+1}=\rho_{g} r_{g}^{m+1} \\
\frac{1}{\delta t} \alpha_{j}^{m+1}\left(\boldsymbol{u}_{j}^{m+1}-\boldsymbol{u}_{j}^{m} \circ X_{j}^{m}\right)+\rho_{j}^{-1} \alpha_{j}^{m+1} \nabla p^{m+1}-\nu_{j} \nabla \cdot\left(\alpha_{j}^{m+1} D\left(\boldsymbol{u}_{j}^{m+1}\right)\right) \\
+\gamma_{j} \rho_{g}^{-1} C_{D} \alpha_{g}^{m+1}\left|\boldsymbol{u}_{g}^{m+1}-\boldsymbol{u}_{l}^{m+1}\right|\left(\boldsymbol{u}_{g}^{m+1}-\boldsymbol{u}_{l}^{m+1}\right)=0, \quad j=g, l, \\
\nabla \cdot\left(\rho_{g}^{-1} \alpha_{g}^{m+1} \boldsymbol{u}_{g}^{m+1}+\rho_{l}^{-1} \alpha_{l}^{m+1} \boldsymbol{u}_{l}^{m+1}\right)=\rho_{l}^{-1} K \alpha_{l}^{m+1}\left(c_{g}^{m+1}-c_{s a t}\right)^{+}\left(\rho_{g}^{-1}-\rho_{l}^{-1}\right), \\
\frac{1}{\delta t} \alpha_{l}^{m+1}\left(C^{m+1}-C^{m} \circ X_{j}^{m}\right)-\nabla \cdot\left(\alpha_{l}^{m+1} \boldsymbol{D} \cdot \nabla C^{m+1}\right)+\left(0,0, M_{g} K \alpha_{l}^{m}\left(c_{g}^{m}-c_{s a t}\right)^{+}\right)^{T}=0, \tag{3.34}
\end{array}
$$

For electroless plating the domain is $\Omega^{m}=\left\{(x, y): 0<y<y^{m}(x), x \in(0, L)\right\}$, so it is updated by

$$
y^{m+1}(x)=y^{m}(x)+\delta t u_{g}{ }_{2}^{m+1}(x), \quad x \in(0, L)
$$

Remark 3.3.1 Because of the asymmetrical treatment of α_{g} and α_{l} the scheme (3.30) does not imply that

$$
\begin{equation*}
\frac{1}{\delta t}\left(\alpha_{g}^{m+1}-\alpha_{g}^{m} \circ X_{g}^{m}\right)+\alpha_{g}^{m+1} \nabla \cdot \boldsymbol{u}_{g}^{m}=\rho_{l}^{-1} \alpha_{l}^{m+1} K\left(c_{g}^{m}-c_{s a t}\right)^{+} . \tag{3.35}
\end{equation*}
$$

However, by (3.30),(3.31), (3.33), we have

$$
\begin{align*}
& \frac{1}{\delta t}\left(\alpha_{g}^{m+1}-\alpha_{g}^{m} \circ X_{g}^{m}\right)+\alpha_{g}^{m+1} \nabla \cdot \boldsymbol{u}_{g}^{m}+\frac{\rho_{g}}{\rho_{l}}\left(\alpha_{l}^{m+1}-\alpha_{l}^{m}\right) \nabla \cdot\left(\boldsymbol{u}_{l}^{m}-\boldsymbol{u}_{g}^{m}\right) \\
& +\frac{1}{\delta t}\left(\alpha_{g}^{m} \circ X_{g}^{m}-\alpha_{g}^{m} \circ X_{l}^{m}\right)+\left(\boldsymbol{u}_{g}^{m}-\boldsymbol{u}_{l}^{m}\right) \cdot \nabla \alpha_{g}^{m} \tag{3.36}\\
& =\rho_{l}^{-1} \alpha_{l}^{m+1} K\left(c_{g}^{m}-c_{s a t}\right)^{+}+\rho_{l}^{-1}\left(\frac{\rho_{g}}{\rho_{l}}-1\right)\left(\alpha_{l}^{m+1}-\alpha_{l}^{m}\right) K\left(c_{g}^{m}-c_{s a t}\right)^{+} .
\end{align*}
$$

By a Taylor expansion at x, we obtain

$$
\begin{equation*}
\alpha_{g}^{m}\left(X_{l}^{m}(x)\right)-\alpha_{g}^{m}\left(X_{g}^{m}(x)\right)=\delta t\left(\boldsymbol{u}_{g}^{m}-\boldsymbol{u}_{l}^{m}\right) \cdot \nabla \alpha_{g}^{m}(x)+O\left(\delta t^{2}\right), \tag{3.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{l}^{m+1}-\alpha_{l}^{m}=-\delta t\left(\boldsymbol{u}_{l} \cdot \nabla \alpha_{l}^{m}+\alpha_{l}^{m+1} \nabla \cdot \boldsymbol{u}_{l}^{m}\right)-\delta t K \alpha_{l}^{m+1}\left(c_{g}^{m}-c_{s a t}\right)^{+}+O\left(\delta t^{2}\right) . \tag{3.38}
\end{equation*}
$$

Plugging (3.37) and (3.38) into (3.36), we have

$$
\begin{equation*}
\frac{1}{\delta t}\left(\alpha_{g}^{m+1}-\alpha_{g}^{m} \circ X_{g}^{m}\right)+\alpha_{g}^{m+1} \nabla \cdot \boldsymbol{u}_{g}^{m}=\rho_{l}^{-1} \alpha_{l}^{m+1} K\left(c_{g}^{m}-c_{s a t}\right)^{+}+O(\delta t) . \tag{3.39}
\end{equation*}
$$

So the scheme is consistent with the equation for α_{g}.

3.3.3 Positivity

Positivity of α_{l}^{m+1} holds only if δt is small enough. When positivity is required absolutely, an $O(\delta t)$ modification of (3.30) forces the positivity of α_{l} :

$$
\begin{align*}
\frac{1}{\delta t}\left(\alpha_{l}^{m+1}(x)-\alpha_{l}^{m}\left(X_{l}^{m}(x)\right)\right)+ & \alpha_{l}^{m+1}\left(\nabla \cdot \boldsymbol{u}_{l}^{m}+\frac{1}{\rho_{l}} K\left(c_{g}^{m}-c_{s a t}\right)^{+}\right)^{+} \tag{3.40}\\
& =\alpha_{l}^{m}\left(\nabla \cdot \boldsymbol{u}_{l}^{m}+\frac{1}{\rho_{l}} K\left(c_{g}^{m}-c_{s a t}\right)^{+}\right)^{-}
\end{align*}
$$

Indeed assume that α_{l}^{m} is strictly positive, or more precisely that $\alpha_{l}^{m} \geqslant \epsilon>0$ for all x; then we have

$$
\begin{align*}
\alpha_{l}^{m+1}\left[1+\delta t\left(\nabla \cdot \boldsymbol{u}_{l}^{m}+\frac{1}{\rho_{l}} K\left(c_{g}^{m}-c_{s a t}\right)^{+}\right)^{+}\right]=\alpha_{l}^{m}\left(X_{l}^{m}\right) & +\delta t \alpha_{l}^{m}\left[\nabla \cdot \boldsymbol{u}_{l}^{m}+\frac{1}{\rho_{l}} K\left(c_{g}^{m}-c_{s a t}\right)^{+}\right]^{-} \tag{3.41}\\
\geqslant & \epsilon\left(1+\delta t\left(\nabla \cdot \boldsymbol{u}_{l}^{m}+\frac{1}{\rho_{l}} K\left(c_{g}^{m}-c_{s a t}\right)^{+}\right)^{-}\right) .
\end{align*}
$$

1. Let us show first that (3.30) generates a bounded sequence $\left\{\alpha_{l}^{m}\right\}_{m=1 . . N}$. For clarity we assume homogeneous data at the boundaries. With simplified notations

$$
\frac{1}{\delta t}\left(\alpha^{m+1}-\alpha^{m} \circ X^{m}\right)+\alpha^{m+1}\left(\nabla \cdot \boldsymbol{u}^{m}+\phi^{m}\right)=0
$$

A multiplication by α^{m+1} and an integration on Ω^{m+1} leads to

$$
\left\|\alpha^{m+1}\right\|_{L^{2}}^{2}=\int_{\Omega^{m+1}}\left[\alpha^{m+1}\left(\alpha^{m} \circ X^{m}-\delta t\left(\alpha^{m+1} \nabla \cdot \boldsymbol{u}^{m}+\phi^{m}\right)\right)\right] d x
$$

By the Cauchy-Schwarz inequality and the positivity of ϕ^{m},

$$
\left\|\alpha^{m+1}\right\|_{L^{2}}^{2} \leqslant\left\|\alpha^{m+1}\right\|_{L^{2}}\left(\int_{\Omega^{m+1}}\left[\alpha^{m} \circ X^{m}-\delta t \alpha^{m+1} \nabla \cdot \boldsymbol{u}^{m}\right]^{2} d x\right)^{\frac{1}{2}}
$$

The inverse of the determinant of the Jacobian of the transformation $x \mapsto X^{m}(x)$ is $1+$ $\delta t \nabla \cdot u+O\left(\delta t^{2}\right)$; therefore, for any smooth function f, in particular with $f=\alpha^{m} \circ X^{m}-$ $\delta t \alpha^{m+1} \nabla \cdot \boldsymbol{u}^{m}=\alpha^{m} \circ X^{m}\left(1-\delta t \nabla \cdot \boldsymbol{u}^{m} \circ X^{m}+O\left(\delta t^{2}\right)\right)$,

$$
\begin{aligned}
\int_{\Omega^{m+1}} f^{m} \circ X^{m} & =\int_{\Omega^{m}} f^{m}\left(1+\delta t \nabla \cdot u+O\left(\delta t^{2}\right)\right) d x \\
\Rightarrow \quad\left\|\alpha^{m+1}\right\|_{L^{2}} & \leqslant\left\|\alpha^{m}\right\|_{L^{2}}\left(1+C\left(\left\|\nabla^{2} \boldsymbol{u}^{m}\right\|_{L^{\infty}}\right) \delta t^{2}\right) .
\end{aligned}
$$

where $C()$ is a generic constant bounded by the Hessian of u. Thus $\left\{\alpha_{l}^{m}\right\}_{m=1 . . N}$ is bounded.
2. Stability of the scheme for C is shown by the same argument.
3. Stability of the scheme for \boldsymbol{u}_{g} and \boldsymbol{u}_{l} is a consequence of a similar argument combined with the Ladhyzenskaya-Babuska-Brezzi saddle point theory (LBB) [47].
We denote by (\cdot, \cdot) the L^{2} inner product. For tensor-valued functions such that $\boldsymbol{f}, \boldsymbol{g} \in$ $L^{2}(\Omega(t))^{m n}, m, n \in \mathbb{N}^{+},(\boldsymbol{f}, \boldsymbol{g})=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(f_{i j}, g_{i j}\right)$. With self explanatory notations, the equations for the velocities (3.32),(3.33) are written in variational form as:
Find $\boldsymbol{u}_{g}, \boldsymbol{u}_{l}$ and p satisfying the Dirichlet conditions and such that, $\forall \widehat{\boldsymbol{v}}_{g}, \widehat{\boldsymbol{v}}_{l} \in \boldsymbol{V}_{0}^{m+1}:=$ $\left(H_{0}^{1}\left(\Omega^{m+1}\right)\right)^{2}$ and $\forall \widehat{q} \in P^{m+1}:=L^{2}\left(\Omega^{m+1}\right) / \mathbb{R}$,

$$
\begin{align*}
& \left(\beta_{g} \boldsymbol{u}_{g}, \widehat{\boldsymbol{v}}_{g}\right)+\left(\beta_{l} \boldsymbol{u}_{l}, \widehat{\boldsymbol{v}}_{l}\right)+\frac{1}{2}\left(\alpha_{g} D\left(\boldsymbol{u}_{g}\right), D\left(\widehat{\boldsymbol{v}}_{g}\right)\right)+\frac{1}{2}\left(\alpha_{l} D\left(\boldsymbol{u}_{l}\right), D\left(\widehat{\boldsymbol{v}}_{l}\right)\right) \\
& -\left(p, \nabla \cdot\left(\frac{\alpha_{g}}{\rho_{g}} \widehat{\boldsymbol{v}}_{g}+\frac{\alpha_{l}}{\rho_{l}} \widehat{\boldsymbol{v}}_{l}\right)\right)+\left(\widehat{q}, \nabla \cdot\left(\frac{\alpha_{g}}{\rho_{g}} \boldsymbol{u}_{g}+\frac{\alpha_{l}}{\rho_{l}} \boldsymbol{u}_{l}\right)\right)=\left(\boldsymbol{L}_{g}, \widehat{\boldsymbol{v}}_{g}\right)+\left(\boldsymbol{L}_{l}, \widehat{\boldsymbol{v}}_{l}\right)+(\widehat{q}, f) . \tag{3.42}
\end{align*}
$$

where, for $j=g, l, \alpha_{j}:=\alpha_{j}^{m+1}, \beta_{j}:=\frac{1}{\delta t} \alpha_{j}+\frac{C_{D}}{\rho_{g}} \alpha_{g}\left|\boldsymbol{u}_{g}^{m}-\boldsymbol{u}_{l}^{m}\right|$,
$\boldsymbol{L}_{j}:=\frac{1}{\delta t} \alpha_{j} \boldsymbol{u}_{l}^{m} \circ X_{j}^{m}+\frac{C_{D}}{\rho_{g}} \alpha_{g}\left|\boldsymbol{u}_{g}^{m}-\boldsymbol{u}_{l}^{m}\right| \boldsymbol{u}_{!j}^{m}, \quad f:=\rho_{l}^{-1} K \alpha_{l}\left(c_{g}^{m+1}-c_{s a t}\right)^{+}\left(\rho_{g}^{-1}-\rho_{l}^{-1}\right)$.
and where $!g=l,!l=g$.
Note that the above is a semi-linearization of (3.32),(3.33). However in algorithm 1 below, the nonlinear problem is solved by an iterative fixed point which uses (3.42)-(3.43).
The LBB theorem says that the solution of (3.42) exists and is unique because, for every $p \in P^{m+1}$ there is a (non-unique) $\boldsymbol{w} \in \boldsymbol{V}_{0}^{m+1}$ with

$$
(\nabla \cdot \boldsymbol{w}, \widehat{q})=(f, \widehat{q}), \quad \forall \widehat{q} \in P^{m+1}
$$

provided that $\int_{\Gamma_{i n}} \boldsymbol{u}_{i n} \cdot \boldsymbol{n}=\int_{\Omega^{m+1}} f d x$. Let us show stability in the special case $f=0$ because one can always subtract \boldsymbol{w} from $\frac{\alpha_{g}}{\rho_{g}} \boldsymbol{u}_{g}+\frac{\alpha_{l}}{\rho_{l}} \boldsymbol{u}_{l}$ so as to work with $\boldsymbol{u}_{g, \text { in }}=\boldsymbol{u}_{l, \text { in }}=0$ and $f=0$.
Thus, setting $\widehat{\boldsymbol{v}}_{g}=\boldsymbol{u}_{g}, \widehat{\boldsymbol{v}}_{l}=\boldsymbol{u}_{l}$ and $\widehat{q}=p$ leads to

$$
\begin{equation*}
\frac{1}{\delta t}\left\|\sqrt{\alpha_{g}} \boldsymbol{u}_{g}\right\|_{L^{2}}^{2}+\frac{1}{2}\left\|\sqrt{\alpha_{g}} D\left(\boldsymbol{u}_{g}\right)\right\|_{L^{2}}^{2}+\frac{1}{\delta t}\left\|\sqrt{\alpha_{l}} \boldsymbol{u}_{l}\right\|_{L^{2}}^{2}+\frac{1}{2}\left\|\sqrt{\alpha_{l}} D\left(\boldsymbol{u}_{l}\right)\right\|_{L^{2}}^{2} \leqslant\left(\boldsymbol{L}_{g}, \boldsymbol{u}_{g}\right)+\left(\boldsymbol{L}_{l}, \boldsymbol{u}_{l}\right) . \tag{3.44}
\end{equation*}
$$

By the same argument used above, it implies that $\boldsymbol{u}_{j}, j=g, l$ is bounded. Indeed, assuming $\alpha^{m} \geqslant 0$,

$$
\begin{aligned}
& \delta t\left(\boldsymbol{L}_{j}, \boldsymbol{u}_{j}\right)=\int_{\Omega^{m+1}} \alpha_{j} \boldsymbol{u}_{j}^{m} \circ X_{j}^{m} \cdot \boldsymbol{u}_{j} d x \leqslant\left\|\sqrt{\alpha_{j}} \boldsymbol{u}_{j}\right\|_{L^{2}}\left(\int_{\Omega^{m+1}} \alpha_{j}\left|\boldsymbol{u}_{j}^{m} \circ X_{j}^{m}\right|^{2} d x\right)^{\frac{1}{2}} \\
& =\left\|\sqrt{\alpha_{j}} \boldsymbol{u}_{j}\right\|_{L^{2}}\left(\int_{\Omega^{m+1}}\left(\alpha_{j}^{m} \circ X_{j}^{m}-\alpha \delta t\left(\nabla \cdot \boldsymbol{u}_{l}^{m}+\frac{1}{\rho_{l}} K\left(c_{g}^{m}-c_{s a t}\right)^{+}\right)\right)\left|\boldsymbol{u}_{j}^{m} \circ X_{j}^{m}\right|^{2} d x\right)^{\frac{1}{2}} \\
& \leqslant\left\|\sqrt{\alpha_{j}} \boldsymbol{u}_{j}\right\|_{L^{2}}\left(\int_{\Omega^{m+1}}\left(\alpha_{j}^{m} \circ X_{j}^{m}-\alpha \delta t \nabla \cdot \boldsymbol{u}_{l}^{m}\right)\left|\boldsymbol{u}_{j}^{m} \circ X_{j}^{m}\right|^{2} d x\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{align*}
& \leqslant\left\|\sqrt{\alpha_{j}} \boldsymbol{u}_{j}\right\|_{L^{2}}\left(\int_{\Omega^{m+1}} \alpha_{j}^{m} \circ X_{j}^{m}\left(1-\delta t \nabla \cdot \boldsymbol{u}_{l}^{m}+O\left(\delta t^{2}\right)\right)\left|\boldsymbol{u}_{j}^{m} \circ X_{j}^{m}\right|^{2} d x\right)^{\frac{1}{2}} \\
& =\left\|\sqrt{\alpha_{j}} \boldsymbol{u}_{j}\right\|_{L^{2}}\left(\int_{\Omega^{m}}\left(\alpha_{j}^{m}\left(1+O\left(\delta t^{2}\right)\right)\right)\left|\boldsymbol{u}_{j}^{m}\right|^{2} d x\right)^{\frac{1}{2}} \\
& \leqslant\left\|\sqrt{\alpha_{j}} \boldsymbol{u}_{j}\right\|_{L^{2}}\left(1+\delta t^{2} C\left(\left\|c_{g}^{m}\right\|_{L^{\infty}},\left\|\nabla^{2} \boldsymbol{u}_{l}^{m}\right\|_{L^{\infty}}\right)\right)\left\|\sqrt{\alpha_{j}^{m}} \boldsymbol{u}_{j}^{m}\right\|_{L^{2}} \tag{3.45}
\end{align*}
$$

for some generic constant C depending on $\left\|c_{g}^{m}\right\|_{L^{\infty}}$ and $\left\|\nabla^{2} \boldsymbol{u}_{l}^{m}\right\|_{L^{\infty}}$. Finally, we obtain

$$
\begin{equation*}
\left\|\left|\boldsymbol{u}_{g}^{m+1}, \boldsymbol{u}_{l}^{m+1}\right|\right\|_{m+1} \leqslant\left(1+C \delta t^{2}\right)\left\|\left|\boldsymbol{u}_{g}^{m}, \boldsymbol{u}_{l}^{m}\| \|_{m}+\delta t \frac{C_{D}}{\rho_{g}}\left\|\frac{\alpha_{g}}{\alpha_{j}^{m}}\left(\boldsymbol{u}_{g}^{m}-\boldsymbol{u}_{l}^{m}\right)\right\|_{L^{\infty}}\left\|\mid \boldsymbol{u}_{g}^{m}, \boldsymbol{u}_{l}^{m}\right\| \|_{m}\right.\right. \tag{3.46}
\end{equation*}
$$

where

$$
\left\|\boldsymbol{u}_{g}, \boldsymbol{u}_{l}\right\|\left\|_{m}^{2}:=\sum_{j=g, l}\right\| \sqrt{\alpha_{j, h}^{m}} \boldsymbol{u}_{j}\left\|_{L^{2}}^{2}+\frac{1}{2} \delta t\right\| \sqrt{\alpha_{l, h}^{m}} D\left(\boldsymbol{u}_{j}\right) \|_{L^{2}}^{2}, \quad m=0, \ldots, N
$$

This estimate is optimal, but for the constant C which is the drawback of the characteristic method and for the L^{∞} norm which is consequence of the unsophisticated treatment of the nonlinearity. Nevertheless, would these two be bounded, the scheme would be H^{1} stable.
4. Note that we have swept under the rug the fact that at level m the domain of definition of the functions is Ω^{m} and at level $m+1$ it is Ω^{m+1}. The problem can be solved but at the cost of difficult notations and iterations between y^{m+1} and \boldsymbol{u}^{m+1}; for details see [55].

3.4 Finite element implementation

For simplicity, the physical domain $\Omega(t)$ is assumed to be a two-dimensional polygonal domain.

3.4.1 Mesh

Let $\left\{\mathcal{K}_{h}(t)\right\}_{h>0}$ be an affine, shape regular (in the sense of Ciarlet[28]) family of mesh conforming to $\Omega(t)$. The conforming Lagrange finite element space of degree p on $\Omega(t)$ is

$$
\begin{equation*}
X_{h, t}^{p}=\left\{v \in C^{0}(\Omega(t)):\left.v\right|_{K} \in P^{p}, \forall K \in \mathcal{K}_{h}(t)\right\} \tag{3.47}
\end{equation*}
$$

where P^{p} is the space of polynomials of degree p of \mathbb{R}^{2}.
Let $\left\{\phi_{1}, \ldots \phi_{N_{q}}\right\}$ be the nodal Lagrange basis of $X_{h, t}^{1}$. If the vertices are denoted by $\left\{\boldsymbol{q}^{i}\right\}_{1}^{N_{q}}$, then $\phi_{i}\left(\boldsymbol{q}_{j}\right)=\delta_{i j}$. Let S_{i} be the support of ϕ_{i} and let $S_{i j}:=S_{i} \cap S_{j}$. If E is a union of triangles, define $\mathcal{I}(E):=\left\{i \in\left\{1, \ldots, N_{q}\right\}:\left|S_{i} \cap E\right| \neq 0\right\}$. Finally, the local minimum mesh size of $K \in \mathcal{K}_{h}(t)$ is $h_{K}(t):=1 / \max _{i \in \mathcal{I}(K)}\left\|\nabla \phi_{i}\right\|_{L^{\infty}(K)}$, and the global minimum mesh size is $h(t):=\min _{K \in \mathcal{K}_{h}} h_{K}(t)$.

We assume that the connectivity of the mesh $\mathcal{K}_{h}(t)$ never changes with time.

3.4.2 Spatial discretization

We use the Hood-Taylor element: the velocities are in $\boldsymbol{V}_{h}(t):=\left(X_{h, t}^{2}\right)^{2}$ and the pressure is in $P_{h}(t):=X_{h, t}^{1}$. For the volume fractions and the concentrations we use also $P_{h}(t)$.

Recall that the nodes of $X_{h, t}^{2}$ are the vertices and the middle of the edges. Denote by $\left\{\psi_{1}, \ldots, \psi_{N_{a}}\right\}$ the nodal Lagrange basis of associated with the nodes $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{N_{a}}\right\}$ for $X_{h, t}^{2}$. For convenience, we define $\Omega^{m}:=\Omega\left(t^{m}\right), P_{h}^{m}=X_{h, t^{m}}^{1}$ and $\boldsymbol{V}_{h}^{m}=\left(X_{h, t^{m}}^{2}\right)^{2}$.

On the boundaries where Dirichlet conditions are set, the functions are known. We denote $P_{0 h}^{m}$ and $\boldsymbol{V}_{0 h}^{m}$, the corresponding spaces where basis functions attached to a Dirichlet node are removed.

Volume fractions

Given $\alpha_{l, h}^{m}, c_{g, h}^{m} \in P_{h}^{m}$ and $\boldsymbol{u}_{l, h}^{m} \in \boldsymbol{V}_{h}^{m}$, find $\alpha_{l, h}^{m+1} \in P_{h}^{m+1}$ satisfying the Dirichlet boundary conditions and such that

$$
\begin{equation*}
\frac{1}{\delta t}\left(\alpha_{l, h}^{m+1}-\alpha_{l, h}^{m} \circ X_{l, h}^{m}, \widehat{q}_{h}\right)+\left(\alpha_{l, h}^{m+1}\left(\nabla \cdot \boldsymbol{u}_{l, h}^{m}+\rho_{l}^{-1} K\left(c_{g, h}^{m}-c_{s a t}\right)^{+}\right), \widehat{q}_{h}\right)=0, \forall \widehat{q}_{h} \in P_{0 h}^{m+1} \tag{3.48}
\end{equation*}
$$

where $X_{j, h}^{m}(x)=x-\delta t u_{j, h}^{m}(x)$ for $x \in \Omega^{m}, j=g, l$. Then we let $\alpha_{g, h}^{m+1}=\rho_{g}\left(1-\rho_{l}^{-1} \alpha_{l, h}^{m+1}\right)$.
Remark 3.4.1 A modification similar to (3.40) will insure the positivity of $\alpha_{l, h}^{m+1}$.

Concentration profiles

Given $\alpha_{l, h}^{m+1} \in P_{h}^{m+1}, \alpha_{l, h}^{m} \in P_{h}^{m}, \boldsymbol{u}_{l, h}^{m} \in \boldsymbol{V}_{h}^{m}, C_{h}^{m} \in\left(P_{h}^{m+1}\right)^{2+k_{M}}$, find $C_{h}^{m+1} \in\left(P_{h}^{m+1}\right)^{2+k_{M}}$ such that

$$
\begin{align*}
\frac{1}{\delta t}\left(\alpha_{l, h}^{m+1}\left(C_{h}^{m+1}-C_{h}^{m} \circ X_{l}^{m}\right)\right. & \left., \widehat{w}_{h}\right)+\left(\alpha_{l, h}^{m+1} \boldsymbol{D} \nabla C_{h}^{m+1}, \nabla \widehat{w}_{h}\right)+\left(M_{g} K \alpha_{l, h}^{m}\left(c_{g, h}^{m}-c_{s a t}\right)^{+}, \widehat{w}_{g, h}\right) \tag{3.49}\\
& +\left(I\left(E_{m i x, h}^{m+1}\right)\left(C_{h}^{m+1}\right)^{\kappa}, \widehat{w}_{h}\right)_{L^{2}\left(S\left(t^{m+1}\right)\right)}=0 \forall \widehat{w}_{h} \in\left(P_{0 h}^{m+1}\right)^{2+k_{M}}
\end{align*}
$$

subject to

$$
\begin{equation*}
\sum_{j=s, k} i_{j}\left(E_{m i x, h}^{m+1}\right)\left(c_{j, h}^{m+1}\right)^{\kappa_{j}}\left(\boldsymbol{q}_{i}\right)=0, \text { for each nodal point } \boldsymbol{q}_{i} \text { on } S^{m} \tag{3.50}
\end{equation*}
$$

where $\widehat{w}_{g, h}$ is the last component of \widehat{w}_{h} and

$$
\begin{array}{r}
I\left(E_{m i x, h}^{m+1}\right)=\operatorname{diag}\left(\frac{\left|i_{s}\left(E_{m i x, h}^{m+1}\right)\right|}{z_{s} F}, \frac{\left|i_{k}\left(E_{m i x, h}^{m+1}\right)\right|}{z_{k} F},-\frac{\beta\left|i_{s}\left(E_{m i x, h}^{m+1}\right)\right|}{z_{s} F}\right), \\
\left(C_{h}^{m+1}\right)^{\kappa}=\left(\left(c_{s, h}^{m+1}\right)^{\kappa_{s}},\left(c_{k, h}^{m+1}\right)^{\kappa_{k}},\left(c_{s, h}^{m+1}\right)^{\kappa_{s}}\right)^{T}
\end{array}
$$

for i_{s}, i_{k} defined by (3.20).

Two phase flow

Given $\alpha_{j, h}^{m+1} \in P_{h}^{m+1}, j=g, l, c_{g, h}^{m+1} \in P_{h}^{m+1}$, and $\boldsymbol{u}_{j, h}^{m} \in \boldsymbol{V}_{h}^{m}$, find $\boldsymbol{u}_{j, h}^{m+1} \in \boldsymbol{V}_{h}^{m+1}, j=g, l$ and $p_{h}^{m+1} \in P_{h}^{m+1} / \mathbb{R}$ such that

$$
\begin{align*}
& \sum_{j=g, l}\left\{\frac{1}{\delta t}\left(\alpha_{j, h}^{m+1}\left(\boldsymbol{u}_{j, h}^{m+1}-\boldsymbol{u}_{j}^{m} \circ X_{j, h}^{m}\right), \widehat{\boldsymbol{v}}_{j, h}\right)+\frac{1}{2} \nu_{j}\left(\alpha_{j}^{m+1} D\left(\boldsymbol{u}_{j, h}^{m+1}\right), D\left(\boldsymbol{v}_{j, h}\right)\right)\right. \tag{3.51}\\
& \left.+\gamma_{j} \rho_{g}^{-1} C_{D}\left(\alpha_{g, h}^{m+1}\left|\boldsymbol{u}_{g, h}^{m+1}-\boldsymbol{u}_{l, h}^{m+1}\right|\left(\boldsymbol{u}_{g, h}^{m+1}-\boldsymbol{u}_{l, h}^{m+1}\right), \widehat{\boldsymbol{v}}_{j, h}\right)-\left(p_{h}^{m+1}, \nabla \cdot\left(\rho_{j}^{-1} \alpha_{j, h}^{m+1} \widehat{v}_{j, h}\right)\right)\right\}=0
\end{align*}
$$

$$
\begin{equation*}
\left(\widehat{q}_{h}, \nabla \cdot\left(\rho_{g}^{-1} \alpha_{g, h}^{m+1} \boldsymbol{u}_{g, h}^{m+1}+\rho_{l}^{-1} \alpha_{l, h}^{m+1} \boldsymbol{u}_{l, h}^{m+1}\right)\right)=\left(\widehat{q}_{h}, \frac{K}{\rho_{l}} \alpha_{l, h}^{m+1}\left(c_{g, h}^{m+1}-c_{s a t}\right)^{+}\left(\rho_{g}^{-1}-\rho_{l}^{-1}\right)\right) \tag{3.52}
\end{equation*}
$$

for all $\widehat{\boldsymbol{v}}_{j, h} \in \boldsymbol{V}_{0 h}^{m+1}, j=g, l$ and $\widehat{q}_{h} \in P_{h}^{m+1} / \mathbb{R}$.

3.4.3 Fixed point iterative solution of (3.51), (3.52)

The system (3.51)-(3.52) is nonlinear. An iterative algorithm is described in Algorithm 1.

```
Algorithme 1 : A semi-lineariazation for solving (3.51)-(3.52).
    \({ }_{1}\) Let \(\boldsymbol{L}_{g}, \boldsymbol{L}_{l}, f\) be defined by (3.43).
    Data: Set \(\boldsymbol{u}_{j}=\boldsymbol{u}_{j, h}^{m}, j=g, l\).
    (for \(n=1 \ldots N\) do
        Set \(\beta_{j}=\left(\frac{1}{\delta t} \alpha_{j, h}^{m+1}+\frac{C_{D}}{\rho_{g}} \alpha_{g, h}^{m+1}\left|\boldsymbol{u}_{g}-\boldsymbol{u}_{l}\right|\right)\),
        Find \(\boldsymbol{u}_{g}, \boldsymbol{u}_{l}\) and \(p\) sastifying the Dirichlet conditions and such that, \(\forall \widehat{\boldsymbol{v}}_{g}, \widehat{\boldsymbol{v}}_{l} \in \boldsymbol{V}_{0 h}^{m+1}\) and
        \(\forall \widehat{q} \in P_{h}^{m+1} / \mathbb{R}\)
                                    \(\left(\beta_{g} \boldsymbol{u}_{g}, \widehat{\boldsymbol{v}}_{g}\right)+\left(\beta_{l} \boldsymbol{u}_{l}, \widehat{\boldsymbol{v}}_{l}\right)+\frac{1}{2}\left(\alpha_{g, h}^{m+1} D\left(\boldsymbol{u}_{g}\right), D\left(\widehat{\boldsymbol{v}}_{g}\right)\right)+\frac{1}{2}\left(\alpha_{l, h}^{m+1} D\left(\boldsymbol{u}_{l}\right), D\left(\widehat{\boldsymbol{v}}_{l}\right)\right)\)
    \(-\left(p, \nabla \cdot\left(\frac{\alpha_{g, h}^{m+1}}{\rho_{g}} \widehat{\boldsymbol{v}}_{g}+\frac{\alpha_{l, h}^{m+1}}{\rho_{l}} \widehat{\boldsymbol{v}}_{l}\right)\right)+\left(\widehat{q}, \nabla \cdot\left(\frac{\alpha_{g, h}^{m+1}}{\rho_{g}} \boldsymbol{u}_{g}+\frac{\alpha_{l, h}^{m+1}}{\rho_{l}} \boldsymbol{u}_{l}\right)\right)\)
\(=\left(\boldsymbol{L}_{g}, \widehat{\boldsymbol{v}}_{g}\right)+\left(\boldsymbol{L}_{l}, \widehat{\boldsymbol{v}}_{l}\right)+(\widehat{q}, f)\).
5 end
6 Set \(\boldsymbol{u}_{j}^{n+1}=\boldsymbol{u}_{j}, j=g, l\).
```


3.4.4 Consistence and stability

Variational formulations discretized by finite element methods inherit the stability and consistency of the continuous equations. The LBB theorem applies also to the Hood-Taylor element for velocity pressure problems. Therefore, as in the continuous case, the H^{1} norms of $\alpha_{j}^{m+1}, \boldsymbol{u}_{j}^{m+1}, C_{j}^{m+1}$ are less than $\left(1+C\left(\left\|\nabla^{2} \boldsymbol{u}_{l}^{m}\right\|_{L^{\infty}}\right) \delta t\right)$ times the H^{1} norms of $\alpha_{j}^{m}, \boldsymbol{u}_{j}^{m}, C_{j}^{m}$. If we could show that $C()$ is bounded, then it would imply that the scheme converges when $\delta t \rightarrow 0$.

3.4.5 Solvability of the linear system in matrix form

Let $\boldsymbol{\zeta}=\left(\boldsymbol{\zeta}_{g}, \boldsymbol{\zeta}_{l}\right) \in\left(\boldsymbol{V}_{h}^{m+1}\right)^{2}, \alpha_{j, h}^{m+1} \in P_{h}^{m+1}, \alpha_{j, h} \geqslant \epsilon$ for some constant $\epsilon>0, j=g, l$.
To study the solvability of (3.51)-(3.52), we consider a simpler case with $\boldsymbol{u}_{g}=\boldsymbol{u}_{l}=0$ on $\partial \Omega^{m+1} \backslash \Gamma_{\text {out }}$, and take the linearized approximation on the drag force terms. The problem reads: Find $\boldsymbol{u}_{h}^{m+1}:=\left(\boldsymbol{u}_{g, h}^{m+1}, \boldsymbol{u}_{l, h}^{m+1}\right) \in\left(\boldsymbol{V}_{0 h}^{m+1}\right)^{2}$ and $p_{h}^{m+1} \in \boldsymbol{P}_{h}^{m+1} / \mathbb{R}$ satisfying

$$
\begin{equation*}
a_{\boldsymbol{\zeta}}\left(\boldsymbol{u}_{h}^{m+1}, \widehat{\boldsymbol{v}}_{h}\right)+b\left(p_{h}^{m+1}, \widehat{\boldsymbol{v}}_{h}\right)=F\left(\widehat{\boldsymbol{v}}_{h}\right), \quad b\left(\widehat{q}_{h}, \boldsymbol{u}_{h}^{m+1}\right)=G\left(\widehat{q}_{h}\right), \tag{3.54}
\end{equation*}
$$

where, for $\boldsymbol{u}=\left(\boldsymbol{u}_{g}, \boldsymbol{u}_{l}\right), \boldsymbol{v}=\left(\boldsymbol{v}_{g}, \boldsymbol{v}_{l}\right) \in\left(\boldsymbol{v}_{0 h}^{m+1}\right)^{2}, q \in P_{h}^{m+1}$,

$$
\begin{align*}
a_{\zeta}(\boldsymbol{u}, \boldsymbol{v}) & =\sum_{j=g, l}\left[\frac{1}{\delta t}\left(\alpha_{j, h}^{m+1} \boldsymbol{u}_{j}, \boldsymbol{v}_{j}\right)+\frac{1}{2} \nu_{j}\left(\alpha_{j, h}^{m+1} D\left(\boldsymbol{u}_{j}\right), D\left(\boldsymbol{v}_{j}\right)\right)\right] \\
& +\rho_{g}^{-1} C_{D}\left(\alpha_{g, h}^{m+1}\left|\boldsymbol{\zeta}_{g}-\boldsymbol{\zeta}_{l}\right|\left(\boldsymbol{u}_{g}-\boldsymbol{u}_{l}\right), \boldsymbol{v}_{g}-\boldsymbol{v}_{l}\right) \\
b(q, \boldsymbol{v}) & =-\left(q, \nabla \cdot\left(\rho_{g}^{-1} \alpha_{g, h}^{m+1} \boldsymbol{v}_{g}+\rho_{l}^{-1} \alpha_{l, h}^{m+1} \boldsymbol{v}_{l}\right)\right) \\
F(\boldsymbol{v}) & =\sum_{j=l, g} \frac{1}{\delta t}\left(\alpha_{j, h}^{m+1} \boldsymbol{u}_{j, h}^{m}\left(X_{j, h}^{m}(x)\right), \boldsymbol{v}_{j}\right) \quad G(q)=\left(q, \rho_{l}^{-1} K \alpha_{l, h}^{m+1}\left(c_{g, h}^{m+1}-c_{s a t}\right)^{+}\left(\rho_{g}^{-1}-\rho_{l}^{-1}\right)\right) . \tag{3.55}
\end{align*}
$$

On the basis of \boldsymbol{V}_{h}^{m+1} and P_{h}^{m+1}, we can write

$$
\begin{equation*}
\boldsymbol{u}_{g, h}^{m+1}=\sum_{i=1}^{2 N_{a}} u_{g, i}^{m+1} \boldsymbol{\psi}_{i}, \quad \boldsymbol{u}_{l, h}^{m+1}=\sum_{i=1}^{2 N_{a}} u_{l, i}^{m+1} \boldsymbol{\psi}_{i}, \quad p_{h}^{m+1}=\sum_{i=1}^{N_{q}} p_{i}^{m+1} \phi_{i} \tag{3.56}
\end{equation*}
$$

More precisely $\left\{\boldsymbol{\psi}_{1}, \ldots, \boldsymbol{\psi}_{2 N_{a}}\right\}$ is $\left\{\psi_{1} \boldsymbol{e}_{1}, \ldots, \psi_{N_{a}} \boldsymbol{e}_{1}, \psi_{1} \boldsymbol{e}_{2}, \ldots, \psi_{N_{a}} \boldsymbol{e}_{2}\right\}$ for $\boldsymbol{e}_{1}=(1,0)^{T}$ and $\boldsymbol{e}_{2}=$ $(0,1)^{T}$.

Problem (3.54) can be formally expressed as a system of linear equations:

$$
\begin{equation*}
\boldsymbol{\Phi} \boldsymbol{U}^{m+1}=\boldsymbol{F}^{m} \tag{3.57}
\end{equation*}
$$

where $\boldsymbol{\Phi}$ is a $\left(4 N_{a}+N_{q}\right) \times\left(4 N_{a}+N_{q}\right)$ matrix, \boldsymbol{U}^{m+1} and \boldsymbol{F}^{m} are $\left(4 N_{a}+N_{q}\right)$ vectors. Note that $\boldsymbol{\Phi}$ has the form

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
A & B \tag{3.58}\\
B^{T} & O
\end{array}\right), \text { with } A=\left(\begin{array}{cc}
A_{g} & A_{m i x} \\
A_{m i x} & A_{l}
\end{array}\right)
$$

In the above,
$A_{k}=\left(\frac{1}{\delta t}\left(\alpha_{k, h}^{m+1} \boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right)+\frac{1}{2} \nu_{k}\left(\alpha_{k, h}^{m+1} D\left(\boldsymbol{\psi}_{i}\right), D\left(\boldsymbol{\psi}_{j}\right)\right)+\rho_{g}^{-1} C_{D}\left(\alpha_{g, h}^{m+1}\left|\boldsymbol{\zeta}_{g}-\boldsymbol{\zeta}_{l}\right| \boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right)\right)_{i, j=1, \ldots, 2 N_{a}}, \quad k=g, l$,
$A_{m i x}=\left(-\rho_{g}^{-1} C_{D}\left(\alpha_{g, h}^{m+1}\left|\boldsymbol{\zeta}_{g}-\boldsymbol{\zeta}_{l}\right| \boldsymbol{\psi}_{i}, \boldsymbol{\psi}_{j}\right)\right)_{i, j=1, \ldots, 2 N_{a}}$,
$B=\binom{-\left(\phi_{j}, \nabla \cdot\left(\rho_{g}^{-1} \alpha_{g, h}^{m+1} \psi_{i}\right)\right)}{-\left(\phi_{j}, \nabla \cdot\left(\rho_{l}^{-1} \alpha_{l, h}^{m+1} \psi_{i}\right)\right)}_{i=1, \ldots, 4 N_{a} ; j=1, \ldots, N_{q}}$.
Proposition 3.4.1 The linear system (3.57) is uniquely solvable.
Proof. According to the Ladyzhenskaya-Babuska-Brezzi theorem [47] the saddle point problem (3.53) is well posed when for $p \in P_{h}^{m+1} / \mathbb{R}$, there exists $\boldsymbol{v} \in \boldsymbol{V}_{0 h}^{m+1}$ such that

$$
\begin{equation*}
\frac{(p, \nabla \cdot \boldsymbol{v})}{\|\boldsymbol{v}\|_{H^{1}}} \geqslant c\|p\|_{L^{2} / \mathbb{R}} \text { for some } c>0 \tag{3.59}
\end{equation*}
$$

Therefore $\boldsymbol{\Phi}$ has full rank and is non singular.

3.4.6 Iterative process

At each time step, (3.48), is solved first, then (3.49)-(3.50) is solved iteratively by using a semilinearization of the nonlinear boundary terms. Then (3.51),(3.52) is solved iteratively by a semi-
linearization of the nonlinear terms; each block involves the solution of a well posed symmetric linear system. Finally S^{m} is updated by (3.23). Algorithm 2 summarises the procedure.

Note that the computational domain is $\Omega^{m}=\left\{(x, y), 0<x<L, 0<y<y^{m}(x)\right\}$.

```
Algorithme 2: Algorithm for solving the full system of equations.
    Data : \(\alpha_{g, h}^{m}, \alpha_{l, h}^{m}, \boldsymbol{u}_{g, h}^{m}, \boldsymbol{u}_{l, h}^{m}, p_{h}^{m}, c_{s, h}^{m}, c_{k, h}^{m}, c_{g, h}^{m}, E_{m i x, h}^{m}\), and \(y^{m}\)
    Set initial data \(\alpha_{g, h}^{0}, \alpha_{l, h}^{0}, \boldsymbol{u}_{g, h}^{0}, \boldsymbol{u}_{l, h}^{0}, c_{s, h}^{0}, c_{k, h}^{0}, c_{g, h}^{0}, E_{m i x, h}^{0}\);
    for \(m\) do
        Solve (3.48) to get \(\alpha_{g, h}^{m+1}, \alpha_{l, h}^{m+1}\);
        Initial guess: \(E_{m i x, h}^{m+1,0}=E_{m i x, h}^{m}, C_{h}^{m+1,0}=\) solution to (3.49) when mixed potential is
            \(E_{m i x, h}^{m+1,0}\);
        while \(\left\|C_{h}^{m+1, k+1}-C_{h}^{m+1, k}\right\| \geqslant\) tolerance do
            Initial guess: \(E_{\text {mix }, h}^{m+1, k+1,0}=E_{m i x, h}^{m+1, k}\);
            while \(\left\|E_{m i x, h}^{m+1, k+1, l+1}-E_{m i x, h}^{m+1, k+1, l}\right\|_{L^{2}\left(S^{m}\right)} \geqslant\) tolerance do
                Solve (3.49) to get \(c_{s, h}^{m+1, k+1, l+1}, c_{k, h}^{m+1, k+1, l+1}, c_{g, h}^{m+1, k+1, l+1}\);
                Solve (3.50) to get \(E_{m i x, h}^{m+1, k+1, l^{*}}\);
                \(E_{m i x, h}^{m+1, k+1, l+1}=\xi E_{m i x, h}^{m+1, k+1, l^{*}}+(1-\xi) E_{m i x, h}^{m+1, k+1, l}, \quad 0<\xi<1 ;\)
            end
        end
        Solve (3.51)-(3.52) to get, \(\boldsymbol{u}_{g, h}^{m+1}, \boldsymbol{u}_{l, h}^{m+1}, p_{h}^{m+1}\) (Using Algorithm 1);
        For the free boundary case change the mesh by \(y^{m+1}=y^{m}+\delta t u_{2}{ }_{g, h}^{m+1}\);
    end
```


3.5 Numerical simulation

3.5.1 One-dimensional electroless nickel plating problem

Here we reproduce, with a two dimensional computation, the one-dimensional study by Kim and Sohn [66]. In their work, the electroless nickel plating process on a rotating disk with constant angular velocity is considered. In this situation, the velocity field near the surface of the rotating disk can be approximated by a uniformly distributed flow towards the plating surface. In addition, the thickness of diffusion layer is assumed uniform on the surface. Consequently, for the modeling, the domain becomes one-dimensional. Given that the gas generation is not considered and only the steady state is computed in [66], a single phase recovery $r_{l}=1, c_{g}=0$ is applied. Finally, four partial reactions in the electroless nickel plating process are considered:

$$
\begin{array}{lr}
\mathrm{H}_{2} \mathrm{PO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{PO}_{3}^{-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} & \text {(anodic) } \\
\mathrm{H}_{2} \mathrm{PO}_{2}^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{-}=\mathrm{P}+2 \mathrm{H}_{2} \mathrm{O} & \text { (cathodic) } \\
\mathrm{Ni}^{2+}+2 \mathrm{e}^{-}=\mathrm{Ni} & \text { (cathodic) } \\
2 \mathrm{H}^{+}+2 \mathrm{e}^{-}=\mathrm{H}_{2} & \text { (cathodic) } \tag{3.60d}
\end{array}
$$

All chemical species are labeled as follows: c_{1} is the concentration of the anodic hypophosphite $\left(\mathrm{H}_{2} \mathrm{PO}_{2}^{-}\right), c_{2}$ the concentration of the cathodic hypophosphite, c_{3} the concentration of the nickel ion $\left(\mathrm{Ni}^{2+}\right)$, and c_{4} the concentration of the hydrogen ion $\left(\mathrm{H}^{+}\right)$. Now the two-dimensional analogue can be formulated: Let $\Omega=\left(0, \delta_{3}\right) \times(0, \epsilon)$, where δ_{3} is the thickness of the diffusion layer

Table 3.1: Physical parameters used in the simulation by Kim and Sohn [66], which are valid for $p \mathrm{H}=4.5$ and the concentration of $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}=0.3 \mathrm{M}$

	H^{+}	Ni^{2+}	$\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$(cathodic)	$\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$(anodic)
$i_{0}\left(A / \mathrm{cm}^{2}\right)$	$1.5 \times 10^{-4 a}$	$1.5 \times 10^{-7} b$	6.0×10^{-4}	8.9×10^{-3}
$D\left(\mathrm{~cm}^{2} / \mathrm{s}\right)$	$4.5 \times 10^{-5 a}$	$0.5 \times 10^{-6} c$	1.7×10^{-5}	1.7×10^{-5}
α	0.79^{a}	0.79^{c}	0.2	0.9
β	0.21^{a}	0.21^{c}	0.8	0.1
z	1	2	1	4
γ	1.0^{a}	1.0^{c}	0.3	1.0
$E_{0}(V)^{d}$	-0.101	-0.147	-0.806	-0.878
$c_{0}(M)$	$3.162 \times 10^{-5} e$	0.1	0.3	0.3
subscript j	4	3	2	1

${ }^{a}$ Estimated from the literature [5]. ${ }^{b}$ Assumed in this study. ${ }^{c}$ Taken from the literature [56] . ${ }^{d}$ Calculated based on the literature [31]. all values except $E_{03}\left(\mathrm{Ni}^{2+}\right)$ depend on $p \mathrm{H}$ (see (3.66)). ${ }^{e}$ If $p \mathrm{H}=x$, then $c_{04}=10^{-x}(M)$. i_{0} : Exchange current density, D : Diffusion coefficient. α : Anodic transfer coefficient, β Cathodic transfer coefficient. z : Number of electron transport, γ : Reaction order, E_{0} : Equilibrium potential $\left(90^{\circ} \mathrm{C}\right) c_{0}$ inlet and initial concentration

Table 3.2: Conditions assumed in [66] for performing our simulations

Experimental conditions	
Angular velocity ω	400 rpm
Kinematic viscosity ν	$1.2 \times 10^{-2} \mathrm{~cm}^{2} / \mathrm{s}$
Temperature θ	$90{ }^{\circ} \mathrm{C}$
Composition of electrolytes	0.1 M
NiSO_{4} (nickel sulfate)	0.3 M
$\mathrm{NaH}_{2} \mathrm{PO}_{2}$ (sodium hypophosphite)	$0.0-5.3$
$p \mathrm{pH}$	

for nickel and $\epsilon \ll \delta_{3}$ is a small positive number. The thickness of the diffusion layer for species j is given in [74]:

$$
\begin{equation*}
\delta_{j}=1.61 D_{j}^{1 / 3} \omega^{-1 / 2} \nu^{1 / 6} \tag{3.61}
\end{equation*}
$$

The governing equation for the concentration profile is given by

$$
\begin{equation*}
\partial_{t} c_{j}+\boldsymbol{u} \cdot \nabla c_{j}-D_{j} \Delta c_{j}=0 \quad \text { in } \Omega, \tag{3.62}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{align*}
& c_{j}=c_{0 j} \text { at } x=\delta_{3}, \quad-D_{j} \frac{\partial c_{j}}{\partial n}=0 \text { at } y=0, \epsilon, \\
& -D_{j} \frac{\partial c_{j}}{\partial n}=\frac{\left|i_{1}\left(E_{m i x}\right)\right|}{z_{1} F}\left(\frac{(1-r) c_{1}}{c_{01}}\right)^{\gamma_{1}}+\frac{\left|i_{2}\left(E_{m i x}\right)\right|}{z_{2} F}\left(\frac{r c_{2}}{c_{02}}\right)^{\gamma_{2}} \quad j=1,2, \tag{3.63}\\
& -D_{j} \frac{\partial c_{j}}{\partial n}=\frac{\left|i_{j}\left(E_{m i x}\right)\right|}{z_{j} F}\left(\frac{c_{1}}{c_{01}}\right)^{\gamma_{j}} \quad j=3,4 \text { at } x=0 .
\end{align*}
$$

with the electron balance constraint

$$
\begin{equation*}
\sum_{j=1}^{4} \frac{i_{j}\left(E_{m i x}\right)}{z_{j} F}\left(\frac{c_{j}}{c_{0 j}}\right)^{\gamma_{j}}=0 . \tag{3.64}
\end{equation*}
$$

The velocity field can be expressed as in [74]:

$$
\begin{equation*}
\boldsymbol{u}=\left(-a x^{2} \omega^{3 / 2} \nu^{-1 / 2}, 0\right)^{T} \tag{3.65}
\end{equation*}
$$

where $a=0.51023$ is an experimental constant, $r=0.995$ is the ratio between the hypophosphite anodic part and the cathodic part on the reacting surface. The equilibrium potential $E_{0 j}$ for species j can be approximated by the Nernst equation, with $p \mathrm{H}=\log \left(c_{04}\right)$:

$$
\begin{align*}
& E_{01}=-0.878+\frac{0.25 R \theta}{F} \log \left(10^{4.5} c_{04}\right), \quad E_{02}=-0.806+\frac{0.3 R \theta}{F} \log \left(10^{4.5} c_{04}\right), \\
& E_{03}=-0.147, \quad E_{04}=-0.101+\frac{R \theta}{F} \log \left(10^{4.5} c_{04}\right) \tag{3.66}
\end{align*}
$$

By simulating system (3.62), (3.63), and (3.64), with the physical constants given in Table 3.1,

Figure 3.3: In red, the mixed potential $E_{m i x}$ computed by the one dimensional system (3.63) versus $p \mathrm{H}=\log c_{04}$. In black, the same but computed with the full two dimensional system.
until a steady state is reached, the numerical tests show that the present model agrees well with the previous 1D studies of Kim and Sohn [66]: see Figures 3.3 and 3.4.

Regarding (3.60), atomic nickel and phosphorus are deposited on the surface during the electroless process. The deposition thickness can be estimated in terms of the current densities:

$$
\begin{equation*}
\left(\frac{i_{2}\left(E_{m i x}\right)\left(\left.c_{2}\right|_{x=0} / c_{02}\right) V_{P}}{z_{2} F}+\frac{i_{3}\left(E_{m i x}\right)\left(\left.c_{3}\right|_{x=0} / c_{03}\right) V_{N i}}{z_{3} F}\right) t \tag{3.67}
\end{equation*}
$$

where $V_{P}, V_{N i}$ are molar volumes of phosphorus and nickel, respectively, and t is the deposition time.

3.5.2 Two species in a gas-liquid two phase flow

Let the initial domain Ω be a rectangular of size 0.01×0.001 (in meters). We consider complexed (by tartrate, denoted by L) copper ions, formaldehyde, and hydrogen dissolved in water, which

Figure 3.4: Concentration profiles of three chemical species versus x computed by the one dimensional system (3.63) and compared with the results of the full two dimensional system.
are denoted by the subscriptions s, k, g, respectively, for the chemical species transport equations.
The chemical reaction can be expressed as the following two partial reactions:

$$
\begin{array}{r}
\mathrm{Cu}(\mathrm{OH})_{2} \mathrm{~L}_{2}^{-4}=\mathrm{Cu}+2 \mathrm{OH}^{-}+2 \mathrm{~L}^{-2} \\
2 \mathrm{HCHO}+4 \mathrm{OH}^{-}=2 \mathrm{HCOO}^{-}+\mathrm{H}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \tag{3.68b}
\end{array}
$$

Given the above equations, we also use the subscriptions s and k to represent the quantities corresponding to (3.68a) and (3.68b), respectively.

The values of the physical constants are listed in Table 3.3.

physical quantity	value	physical quantiy	value
$\rho_{l}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	995.65	$\rho_{g}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	1.161
$\rho_{0}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	1.161	$\mu_{g}(\mathrm{~kg} / \mathrm{m} \cdot \mathrm{s})$	1.86×10^{-5}
$\mu_{l}(\mathrm{~kg} / \mathrm{m} \cdot \mathrm{s})$	7.977×10^{-4}	$d_{0}(\mathrm{~m})$	0.001
$u_{0}(\mathrm{~m} / \mathrm{s})$	0.001	$c_{s a t}\left(\mathrm{~mol} / \mathrm{m}^{3}\right)$	0
$i_{g}\left(\mathrm{~A} / \mathrm{m}^{2}\right)$	1.0×10^{-2}	$i_{s}\left(\mathrm{~A} / \mathrm{m}^{2}\right)$	1.0×10^{-2}
$i_{k}\left(\mathrm{~A} / \mathrm{m}^{2}\right)$	10	$R(\mathrm{~J} / \mathrm{K} \cdot \mathrm{mol})$	8.314
$K(\mathrm{~kg} / \mathrm{mol} \cdot \mathrm{s})$	3.87×10^{-4}	$M_{g}(\mathrm{~mol} / \mathrm{kg})$	500
$c_{g, 0}\left(\mathrm{~mol} / \mathrm{m}^{3}\right)$	1	$c_{s, 0}\left(\mathrm{~mol} / \mathrm{m}^{3}\right)$	39.34
$c_{k, 0}\left(\mathrm{~mol} / \mathrm{m}^{3}\right)$	77.58	$D_{g}\left(\mathrm{~m}^{2} / \mathrm{s}\right)$	2×10^{-8}
$D_{s}\left(\mathrm{~m}^{2} / \mathrm{s}\right)$	7×10^{-10}	$D_{k}\left(\mathrm{~m}^{2} / \mathrm{s}\right)$	1.2×10^{-9}
$z_{s}(1)$	2	$z_{k}(1)$	4
$\alpha_{s}(1)$	0.67	$\alpha_{k}(1)$	0.37
$\beta_{s}(1)$	0.33	$\beta_{k}(1)$	0.63
$\theta(K)$	363.15	$E_{s}(V)$	-0.266
$E_{k}(V)$	1.5	$C_{D}(1)$	242220
$\alpha(1)$	0.0005		

Table 3.3: Parameters used in Section 3.5.2.

For convenience, the following scalings are applied:
$L \rightarrow \frac{L}{d_{0}}(L$ is any length $), \quad \rho_{l} \rightarrow \frac{\rho_{l}}{\rho_{0}}, \quad \rho_{g} \rightarrow \frac{\rho_{g}}{\rho_{0}}$,
$\mu_{l} \rightarrow \frac{\mu_{l}}{\rho_{0} d_{0} u_{0}}, \quad \mu_{g} \rightarrow \frac{\mu_{g}}{\rho_{0} d_{0} u_{0}}, \quad c_{g} \rightarrow \frac{c_{g}}{c_{g 0}}, \quad c_{k} \rightarrow \frac{c_{k}}{c_{k 0}}, \quad c_{s} \rightarrow \frac{c_{s}}{c_{s 0}}, \quad K \rightarrow \frac{d_{0} c_{g 0}}{\rho_{0} u_{0}} K$,
$L_{g} \rightarrow \frac{L_{g}}{u_{0} c_{g 0} z_{s} F}, \quad L_{s} \rightarrow \frac{L_{s}}{u_{0} c_{s 0} z_{s} F}, \quad L_{k} \rightarrow \frac{L_{k}}{u_{0} c_{k 0} z_{k} F}, \quad D_{g} \rightarrow \frac{D_{g}}{u_{0} d_{0}}, \quad D_{s} \rightarrow \frac{D_{s}}{u_{0} d_{0}}, \quad D_{k} \rightarrow \frac{D_{k}}{u_{0} d_{k}}$,
$i_{g} \rightarrow \frac{i_{g}}{u_{0} c_{g 0} z_{s} F}, \quad i_{s} \rightarrow \frac{i_{s}}{u_{0} c_{s 0} z_{s} F}, \quad i_{k} \rightarrow \frac{i_{k}}{u_{0} c_{k 0} z_{k} F}$.
The initial conditions are set to: constant phase ratio and Poiseuille flow:

$$
\begin{equation*}
r_{g}^{0}=\epsilon, \quad r_{l}^{0}=1-\epsilon, \quad u_{g}^{0}=\boldsymbol{u}_{l}^{0}=(0.69 y(1-y), 0)^{T}, \tag{3.70}
\end{equation*}
$$

with $\epsilon=0.0001$. Also, let $C^{0}=\left(c_{s}^{0}, c_{k}^{0}, c_{g}^{0}\right)^{T}$ satisfies

$$
\begin{equation*}
-\nabla \cdot\left(r_{l}^{0} \boldsymbol{D} \nabla C^{0}\right)=0,\left.\quad C^{0}\right|_{\Gamma_{i n}}=(1,1,0)^{T},\left.\quad \frac{\partial C^{0}}{\partial n}\right|_{\Gamma_{o u t} \cup \Gamma_{\text {wall }}}=0 \tag{3.71}
\end{equation*}
$$

plus the first equation in (3.73) subject to (3.21). The inflow values are

$$
\begin{equation*}
\left.\boldsymbol{u}_{g}^{m+1}\right|_{\Gamma_{i n}}=\left.\boldsymbol{u}_{l}^{m+1}\right|_{\Gamma_{i n}}=(y(1-y), 0)^{T},\left.\quad c_{g}\right|_{\Gamma_{i n}}=0,\left.\quad c_{s}\right|_{\Gamma_{i n}}=\left.c_{k}\right|_{\Gamma_{i n}}=1,\left.\quad r_{l}\right|_{\Gamma_{i n}}=1-\epsilon . \tag{3.72}
\end{equation*}
$$

The boundary conditions on $S\left(t^{m+1}\right)$ are

$$
\begin{equation*}
-D_{p} \frac{\partial c_{p}^{m+1}}{\partial n}=\chi r_{l}^{m+1}\left|i_{p}^{m+1}\right| c_{p}^{m+1}, \quad p=s, g, k, \quad \boldsymbol{u}_{g}^{m+1}=\boldsymbol{u}_{l}^{m+1}=\alpha \chi r_{l}^{m+1}\left|i_{s}^{m+1}\right| c_{s}^{m+1} \tag{3.73}
\end{equation*}
$$

where $\alpha=0.0005$ and

$$
\chi(x, y)= \begin{cases}x-\frac{3}{4}+\frac{1}{4} \sin \left(2 \pi\left(x-\frac{1}{4}\right)\right), & 1 \leqslant x<1.5 \tag{3.74}\\ 1, & 1.5 \leqslant x<5.5 \\ \frac{17}{4}-x-\frac{1}{4} \sin \left(2 \pi\left(x-\frac{19}{4}\right)\right), & 5.5 \leqslant x<6 \\ 0, & 0 \leqslant x<1 \text { or } 6 \leqslant x \leqslant 10\end{cases}
$$

Boundary conditions on $\Gamma_{\text {out }}$ and $\Gamma_{\text {wall }}$ are as in Section 3.2.4. See also Figure 3.1.
Remark 3.5.1 We note that $\alpha=0.0005$ is much larger than the experimental values; the numerical simulations produce $u_{g_{2}}$ (and $u_{l 2}$) of magnitude in the order $O\left(10^{-4}\right)$. On the other hand, the deposition rate in a typical experiment is of order $1 \mu \mathrm{~m}$ per hours [128], which is not larger than $O\left(10^{-6}\right)$. Yet the numerical test is conducted to validate the numerical method when the evolution of the domain is larger than real life values.

Convergence

First, we conduct the convergence test for different time step with a fixed mesh. To obtain a "reference solution", the system (3.48)-(3.52) is solved with a 50×10 uniform mesh and a small time step $\delta t=0.01$ and $T=10$. The convergence with respect to δt is studied without changing the mesh; results are given in Table 3.4 and the rate of convergence for each variable is presented in Figure 3.5. Numerical tests for solving two phase flow problem and volume fraction problem present a linear decay of L^{2} error with respect to the time step. However, the convergence for

Table 3.4: L^{2} error with respect to the reference solution provided with time step $\delta t=0.01$, 50×10 uniform mesh, and $\alpha=0.0005$ for numerical simulation in Section 3.5.2 at $T=10$.

δt	\boldsymbol{u}_{g}	\boldsymbol{u}_{l}	p	α_{g}	c_{s}	c_{k}	c_{g}
1	5.56×10^{-4}	5.49×10^{-4}	1.45×10^{-3}	9.11×10^{-2}	9.12×10^{-3}	3.77×10^{-4}	1.74×10^{-2}
0.5	2.77×10^{-4}	2.73×10^{-4}	7.17×10^{-4}	4.50×10^{-2}	6.80×10^{-3}	2.64×10^{-4}	8.74×10^{-3}
0.1	4.85×10^{-5}	4.84×10^{-5}	1.28×10^{-4}	8.07×10^{-3}	3.87×10^{-3}	2.01×10^{-4}	1.72×10^{-3}
0.05	2.25×10^{-5}	2.24×10^{-5}	5.75×10^{-5}	3.58×10^{-3}	3.00×10^{-3}	1.55×10^{-4}	8.77×10^{-4}

Table 3.5: L^{2} error with respect to the reference solution provided with time step $\delta t=0.05$, 200×20 uniform mesh, and $\alpha=0.0005$ for numerical simulation in Section 3.5.2 at $T=10$.

$(\delta t$, mesh $)$	\boldsymbol{u}_{g}	\boldsymbol{u}_{l}	p	α_{g}	c_{s}	c_{k}	c_{g}
$(1,25 \times 3)$	2.03×10^{-2}	2.04×10^{-2}	1.72×10^{-2}	6.24×10^{-1}	1.55×10^{-1}	8.73×10^{-2}	8.57×10^{-1}
$(0.5,50 \times 5)$	6.50×10^{-3}	6.45×10^{-3}	5.24×10^{-3}	2.18×10^{-1}	4.54×10^{-2}	3.08×10^{-2}	2.78×10^{-1}
$(0.1,100 \times 10)$	1.47×10^{-3}	1.35×10^{-3}	9.48×10^{-4}	6.09×10^{-2}	1.57×10^{-2}	7.65×10^{-3}	6.58×10^{-2}

solving the concentration profiles does not reach the expectation due to extremely low diffusion coefficients and large current densities.

Second, we conduct the convergence tests for different time step and mesh pairs. The reference solution is obtained with 200×20 uniform mesh and $\delta t=0.05$ at $T=10$. We always keep the time step being proportional to the mesh size. Figure 3.6 and Table 3.5 present a linear decay of L^{2} error with respect to the time step for each variable.

Third, the convergence tests for different time step and mesh pairs are performed until a larger final time. The reference solution is obtained with 200×20 uniform mesh and $\delta t=0.3$ at $T=120$. Same as the second test, we always keep the time step being proportional to the mesh size. Figure 3.7 and Table 3.6 present a nearly linear decay of L^{2} error with respect to the time step for each variable. In this test, r_{g} and c_{k} are of the worst convergence. Their intensity maps are given in Figures 3.8 and 3.9. Except for tests with time step $\delta t=1.2$, the intensity maps for the tests with $\delta t \leqslant 0.6$ present no significant difference with the reference solutions.

Robustness for large time steps

With a large time step $\delta t=1$ and 100×10 uniform mesh, the product of the maximal liquid fluid speed with the time step is around 1.5 times of the mesh size, which is optimal for the Galerkin-Characteristic method. solutions are displayed in Figure 3.10-3.15.

CPU time

With $\delta t=1$ and 100×10 uniform mesh, it took 5832 seconds to reach the final time $T=180$ with an Intel Core $\mathrm{i} 7-8750 \mathrm{H} @ 2.20 \mathrm{GHz}$. During the computation, it took 0.086% of the total

Table 3.6: L^{2} error with respect to the reference solution provided with time step $\delta t=0.3$, 200×20 uniform mesh, and $\alpha=0.0005$ for numerical simulation in Section 3.5.2 at $T=120$.

$(\delta t$, mesh $)$	\boldsymbol{u}_{g}	\boldsymbol{u}_{l}	p	α_{g}	c_{s}	c_{k}	c_{g}
$(1.2,50 \times 5)$	1.73×10^{-2}	1.73×10^{-2}	6.48×10^{-3}	3.71×10^{-1}	3.97×10^{-2}	1.56×10^{-2}	2.73×10^{-1}
$(0.6,100 \times 10)$	1.22×10^{-2}	1.23×10^{-2}	4.07×10^{-3}	2.20×10^{-1}	1.35×10^{-2}	1.18×10^{-2}	2.11×10^{-1}
$(0.4,150 \times 15)$	6.40×10^{-3}	6.41×10^{-3}	2.23×10^{-3}	1.19×10^{-1}	6.60×10^{-3}	6.23×10^{-3}	1.11×10^{-1}

Figure 3.5: Convergence with respect to δt for the case described in Section 3.5.2 with fixed mesh: log-log plot of the error for each unknown; (note that the curves for \boldsymbol{u}_{g} and \boldsymbol{u}_{l} overlap) . R.O.C. means "Rate Of Convergence". The reference solution is a computation with a very small time step.

Figure 3.6: Convergence with respect to δt and mesh size for the case described in Section 3.5.2 (see Table 3.5 for the time step and mesh size pair): log-log plot of the error for each unknown; (note that the curves for \boldsymbol{u}_{l} and \boldsymbol{u}_{l} overlap).

Figure 3.7: Convergence with respect to δt and mesh size for the case described in Section 3.5.2 (see Table 3.5 for the time step and mesh size pair): log-log plot of the error for each unknown; (note that the curves for \boldsymbol{u}_{g} and c_{k} overlap and the curve of \boldsymbol{u}_{l} is closed to them).

(a) Intensity map of r_{g} at $t=120$ with $\delta t=1.2$ and 50×5 uniform mesh.

(b) Intensity map of r_{g} at $t=120$ with $\delta t=0.6$ and 100×10 uniform mesh.

(c) Intensity map of r_{g} at $t=120$ with $\delta t=0.4$ and 150×15 uniform mesh.

(d) Intensity map of r_{g} at $t=120$ with $\delta t=0.3$ and 200×20 uniform mesh.

Figure 3.8: For Section 3.5.2: The intensity maps of r_{g} for different time step and mesh size pairs.

Work in progress as of February 5, 2022

(a) Intensity map of c_{g} at $t=120$ with $\delta t=1.2$ and 50×5 uniform mesh.

(b) Intensity map of c_{g} at $t=120$ with $\delta t=0.6$ and 100×10 uniform mesh.

(c) Intensity map of c_{g} at $t=120$ with $\delta t=0.4$ and 150×15 uniform mesh.

(d) Intensity map of c_{g} at $t=120$ with $\delta t=0.3$ and 200×20 uniform mesh.

Figure 3.9: For Section 3.5.2: The intensity maps of c_{g} for different time step and mesh size pairs.

Figure 3.10: For Section 3.5.2: The velocity magnitudes of \boldsymbol{u}_{g} and \boldsymbol{u}_{l}.

CPU for solving the volume fraction problem, 7.66% for solving the chemical species transport problem and 91.93% for solving the two velocities/pressure flow problem.

The computer program is written using the FreeFEM++ toolkit [53].

Results

On Figure 3.10a and 3.10b the velocity vector fields \boldsymbol{u}_{g} and \boldsymbol{u}_{l} are seen to be almost parabolic in y (Poiseuille flow). but the phase change and moving boundary induce a non-zero asymmetric vertical component $u_{2 g}$ (see Figure 3.14); both play important roles for the bubble distribution. Bubble density can be inferred by analyzing c_{g} and r_{g} (see Figure 3.17). The color maps of Figure 3.11 displays a high gas volume fraction area near the top and bottom plates . Figure 3.12 shows how the steady state is established and how the electrolyte disappears in the plating region due to the plating. Figure 3.13 explains why it is always of the highest volume fraction of gaseous phase near the reacting surface. The deposition-induced movement of S is presented in Figure 3.16. Figure 3.17 b shows that the region of the highest bubble density is moving away from the inlet as the electroless plating proceeds.

3.6 Comparison with experimental results

To validate the numerical method on a real-life problem, an experiment for reproducing the numerical study in Section 3.5.2 is conducted. Here, we shall show that the experimental result can be qualitatively fitted by the numerical simulation.

The experimental setting is described as the following: A micro-channel is enclosed by two sheet glasses of size $8 \mathrm{~mm} \times 8 \mathrm{~mm}$ and another two of size $8 \mathrm{~mm} \times 1 \mathrm{~mm}$, which form a rectangular channel. The electrolyte goes in the channel from the left and exit on the right. One piece of the square sheet glasses is partially glued on a copper plate of size $8 \mathrm{~mm} \times 4 \mathrm{~mm}$, where the longer side of the copper plate coincides with an edge of the inlet (see Figure 3.18 for geometry setting). The inflow is set to be of average velocity $0.115 \mathrm{~mm} / \mathrm{s}$. At inlet, the copper ion concentration is $c_{s 0}=39.34 \mathrm{~mol} / \mathrm{m}^{3}$ and the formaldehyde concentration is $c_{k 0}=$ $77.5883 \mathrm{~mol} / \mathrm{m}^{3}$. Here, the inlet concentrations $c_{g 0}$ and $c_{k 0}$ are the reference concentrations for copper ion and formaldehyde, respectively. We further define the reference concentration of the hydrogen gas to be $c_{g 0}=1 \mathrm{~mol} / \mathrm{m}^{3}$. Other physical parameters are given by Table 3.3. Some

(a) Intensity map of r_{g} at $t=20$.

(b) Intensity map of r_{g} at $t=40$.

(c) Intensity map of r_{g} at $t=100$.

(d) Intensity map of r_{g} at $t=140$.

(e) Intensity map of r_{g} at $t=180$.

Figure 3.11: For Section 3.5.2: intensity maps of the volume fraction of the gas phase r_{g} computed with $\delta t=1$ and a 100×10 uniform mesh.

(e) Intensity map of c_{s} at $t=180$.

Figure 3.12: For Section 3.5.2: intensity maps of the concentration electrolyte ions c_{s} computed with $\delta t=1$ and a 100×10 uniform mesh. The blue zone in the plating region, on the lower plate shows that the electrolyte is absorbed by the plating process.

(a) Intensity map of c_{g} at $t=20$.

(b) Intensity map of c_{g} at $t=40$.

(c) Intensity map of c_{g} at $t=100$.

(d) Intensity map of c_{g} at $t=140$.

(e) Intensity map of c_{g} at $t=180$.

Figure 3.13: For Section 3.5.2: intensity maps of the concentration of dissolved gas.

Figure 3.14: For Section 3.5.2: The vector fields \boldsymbol{u}_{g} and \boldsymbol{u}_{l} are very closed to Poisseuille flow. In this case, phase change and moving boundary contribute to the second component of \boldsymbol{u}_{g} (and $\left.\boldsymbol{u}_{l}\right)$ together. The numerical test is conducted with $\delta t=1$ and 100×10 uniform mesh. The intensity maps indicate the bubble rising in the red region. Indeed, their exists high gas volume fraction region near the top side (see Figure 3.11).

(b) Intensity map of c_{k} at $t=100$.

Figure 3.15: For Section 3.5.2: Intensity maps of $u_{l 2}$ and c_{k} at $t=100$.

Figure 3.16: The thickness of the deposition is given by the motion of $S(t)$, plotted here at 5 instants of time, with respect to x-axis (in mm). Notice that the motion $t \rightarrow S(t)$ is very small; the oscillations are blown-out of proportions by the scaling used in the graphic.

Figure 3.17: Plots of r_{g} and c_{g} versus x on the reaction surface S. The gas bubble density in the plating reaction zone can be observed.
parameters, for example, reference current densities i_{s}, i_{k}, and i_{g}, may not be exactly same as what are given in Table 3.3. Nevertheless, they are acceptably closed to the reality, or at least in a same order.

Figure 3.18: The geometry setting for both experiment and numerical simulation. Here, the yellow region indicates the copper plate glued on the sheet glass.

3.6.1 Experimental

To fabricate the test vehicle, a 4 inch glass wafer was first sputtered with 30 nm chromium and 200 nm copper which served as adhesion layer and seed layer, respectively. The wafer was then diced into each $8 \mathrm{~mm} \times 8 \mathrm{~mm}$ glass dies. To ensure a significant comparison between the regions being plated or not, each test die was half immersed in $\operatorname{SPS}\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}\right)$ solution and hydrochloric acid to remove copper and chromium layer. The glass die turned out half transparent and half coated with copper where the electroless copper plating took place. Thereafter, a fully transparent glass which was identical to the size of test die, was face-to-face aligned and bonded via using flip-chip die-bonder in order to obtain a clear observation view. Two tungsten wire which were 8 mm in length and 2 mm in diameter were glued by UV gel and placed on the periphery of the test die for the purpose of restricting the flow direction and defining the height between the dies (see Figure 3.19).

The test vehicle was then subjected to micro-fluidic system composed of a PDMS mode containing micro-fluidic channel and a bottom glass. Clips were used to sealed the micro-fluidic system and prevented the leakage of electrolyte. A peristatic pump was used to control the flow
and connect the micro-fluidic system with silicone tube. Prior to the electroless plating, the test vehicle was immersed in 10% sulfuric acid to remove copper oxide. Finally, the electroless copper plating was conducted in a water tank controlled at $50^{\circ} \mathrm{C}$ with in-situ recording via stereomicroscope (charged coupled device digital camera CCD). The electrolyte PHE-1 Uyemura possessing the given reference concentrations $c_{s 0}$ of (complexed) copper ion and $c_{k 0}$ of formaldehyde was used for the experiment. A complete equipment setup is described in Figure 3.20.

Figure 3.19: Test vehicle formation.

Figure 3.20: Electroless copper plating via using microfluidic system.

3.6.2 Results

Experimental results (see Figure 3.21) show that the bubbles are not only appearing on the copper plate, but also appearing on the top. In video, one can see that there were several bubbles going to the top from the center or the bottom side of the channel. The region above the glass becomes darker with time. The simulation results (see Figure 3.11) qualitatively arrive at the same conclusion. The experiment indicates that the clustering of bubbles happens on both top side and the bottom side of the channel. Second, the numerical simulation predicts that most bubbles are generated at an early stage and near the inlet. The experiment shows that the bubble generation is more exuberant near the inlet in comparison with other regions at $t=20$. This observation coincides with that of Figs 3.13 and 3.17 a. The region near the inlet at $t=20$ is of the highest concentration of dissolving hydrogen gas. In addition, large bubbles

Figure 3.21: The pictures are taken from the top side and the region near the center between two $8 \mathrm{~mm} \times 1 \mathrm{~mm}$ sheet glasses. The brown region is covered by the copper plate, where the surface reaction occurs.
were observed at the back end of the copper plates (i.e. region near $(\mathrm{x}, \mathrm{y})=(6,0)$ corresponding Figure 3.1), which is also the case in Figure 3.17b.

3.6.3 Discussion

For an electroless plating process accompanying gas generation, the bubble distribution with respect to time, in the micro-channel, is the most important index for evaluating the quality of deposition. To measure it quantitatively, a high-quality optical system installed in the microchannel is indispensable. For example, several types of fiber optical probe have been used to measure the particle (or bubble) size and distribution in a channel flow (or micro-channel flow) $[23,12,62,82]$. However, such optical system is difficult to be installed in our case because there is no appropriate place to setup the light source and the detector in the micro-channel. The signal interference caused by the copper plate or glued gel on two sides is almost inevitable.

3.7 Conclusion

The numerical simulation of an electroless plating is difficult for two reasons: the multi-phase modeling and the nonlinearities. We have proposed a phase averaged liquid-gas two fluid velocities/one pressure system combined with phase densities and chemical concentration equations. The nonlinearities being similar to those of the Navier-Stokes equations, we have used a semiEulerian time discretization leading to a generalized Stokes operator for the two velocities/one pressure system; the inf-sup saddle point theorem has lead to a proof of stability and well posedness of the discretized system by the Hood-Taylor finite element method. The two phase flow model is compatible with single phase models when the volume fraction of gas and the concentration of the gas in the liquid phase are set to zero. The model is also compatible with the one dimensional model proposed in [66]. The numerical results confirm the robustness of the method. To validate the model a real life experiment has been performed. The numerical results agree qualitatively with the experiment for the repartition of bubbles near the plating boundary. We believe that in the future the computer code will be used to design industrial and experimental systems. However, as to the measurement of the deposition rate, It takes at least one hour to obtain an observable thickness of plating. In this case, bubbles have accumulated everywhere in the micro-channel and there is ground for an extension of the present code with a level set or phase field model which tracks the liquid to gas interface. To establish a mathematical model suitable for a larger time simulation is left as a future work.

3.A Estimation of the interfacial terms

Let V_{0} be a local volume to be observed which is occupied by gas and liquid. In a liquid-gas two phase system, we have $A_{l}=A_{g}$ and further $\rho_{l}\left(\boldsymbol{w}_{l}-\boldsymbol{u}_{l}\right) \cdot \boldsymbol{n}_{l}=-\rho_{g}\left(\boldsymbol{w}_{g}-\boldsymbol{u}_{g}\right) \cdot \boldsymbol{n}_{g}$ on the interface. If the size of each single bubble in the electrolyte is small enough, then we can assume that the bubbles are spherical. Assuming that there is a typical radius for all bubbles $R_{B}>0$ such that $1 / R_{B}^{2}$ is the average of $1 / R^{2}$ among all bubbles in the system, the growth rate of bubbles governed by the local mass loss prescribed by Eq. (3.3) can be computed by the relation

$$
\begin{equation*}
4 \pi R_{B}^{2} N_{q} \frac{d R}{d t}=\int_{V_{0}} \frac{\dot{S}_{g}}{\rho_{g}} d V \tag{3.75}
\end{equation*}
$$

where N_{q} is the amount of bubbles in a local volume V_{0}. Therefore, we have the following formulae on A_{g} and A_{l}, respectively

$$
\begin{align*}
\left(\boldsymbol{u}_{g}-\boldsymbol{w}_{g}\right) \cdot \boldsymbol{n}_{g} & =-\frac{1}{4 \pi N_{q} R^{2}} \int_{V_{0}} \frac{\dot{S}_{g}}{\rho_{g}} d V \tag{3.76}\\
\left(\boldsymbol{u}_{l}-\boldsymbol{w}_{l}\right) \cdot \boldsymbol{n}_{l} & =\frac{1}{4 \pi N_{q} R^{2}} \int_{V_{0}} \frac{\dot{S}_{g}}{\rho_{l}} d V \tag{3.77}
\end{align*}
$$

The quantity R_{B} is useful when the fluid velocity is large enough so that each bubble won't stay at the observed physical domain, because every bubble hasn't been far from the state that is just after nucleation.

Given a small cube V_{0} of size $\left|V_{0}\right|=d \times d \times d$ and a typical radius R_{B}, the ratio of its surface area and volume is $\frac{4 \pi N_{q} R_{B}^{2}}{d^{3}}$, where N_{q} can be estimated by

$$
\begin{equation*}
N_{q}=\frac{r_{g} d^{3}}{\frac{4}{3} \pi R_{B}^{3}} \tag{3.78}
\end{equation*}
$$

Therefore, if d is small enough so that the physical quantities in \boldsymbol{F}_{α} defined in Section 3.2.3 can be assumed uniform, then we have the approximation

$$
\begin{equation*}
\boldsymbol{F}_{l} \approx\left(\frac{4 \pi N_{q} R_{B}^{2}}{d^{3}}\right) \cdot \rho_{l} \cdot\left(-\frac{d^{3} \dot{S}_{g}}{4 \pi N_{q} R_{B}^{2} \rho_{l}}\right) \boldsymbol{u}_{l}=-\dot{S}_{g} \boldsymbol{u}_{l}=\dot{S}_{l} \boldsymbol{u}_{l} \tag{3.79}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\boldsymbol{F}_{g} \approx \dot{S}_{g} \boldsymbol{u}_{g} \tag{3.81}
\end{equation*}
$$

The same approximation can be applied to G_{j} occurring at (3.5) and (3.6):

$$
\begin{equation*}
G_{j} \approx \dot{S}_{l} c_{j}, \quad j=s, k, \quad G_{g} \approx \dot{S}_{l} c_{g}-M_{g} K \rho_{l} r_{l}\left(c_{g}-c_{s a t}\right)^{+} \tag{3.82}
\end{equation*}
$$

Appendix A

Preliminaries and notations

A. 1 Lebesgue spaces $L^{p}(\Omega)$ and Sobolev spaces $W^{k, p}(\Omega)$

A.1. $1 L^{p}$ space

Let $1 \leqslant p \leqslant \infty$ and $\Omega \subset \mathbb{R}^{d}$ a bounded domain. We denote by $L^{p}(\Omega)$ the set of all measurable functions from Ω to \mathbb{C} or \mathbb{R} which satisfy

$$
\|f\|_{p}:= \begin{cases}\left(\int_{\Omega}|f|^{p} d x\right)^{1 / p}<\infty & 1 \leqslant p<\infty \tag{A.1}\\ \operatorname{ess~sup}_{x \in \Omega}|f| & p=\infty\end{cases}
$$

In particular, $L^{2}(\Omega)$ is a Hilbert space with the inner product (\cdot, \cdot) defined by

$$
\begin{equation*}
(f, g):=\int_{\Omega} f(x) \overline{g(x)} d x, \quad f, g \in L^{2}(\Omega) \tag{A.2}
\end{equation*}
$$

which induces the norm $\left\|\|_{0}\right.$.

A.1.2 Sobolev space

Let k be a natrual number, $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ a multi-index with norm $|\alpha|=\alpha_{1}+\cdots+\alpha_{d}$. We define

$$
D^{\alpha} f=\frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{d}^{\alpha_{d}}}
$$

The Sobolev space $W^{k, p}(\Omega)$ is defined as

$$
\begin{equation*}
W^{k, p}(\Omega):=\left\{f \in L^{p}(\Omega): D^{\alpha} f \in L^{p}(\Omega) \forall|\alpha| \leqslant k\right\} \tag{A.3}
\end{equation*}
$$

A common way to define the norm of $W^{k, p}(\Omega)$ is

$$
\|f\|_{W^{k, p}(\Omega)}:= \begin{cases}\left(\sum_{\alpha \leqslant k}\left\|D^{\alpha} f\right\|_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}} & 1 \leqslant p<\infty \tag{A.4}\\ \max _{\alpha \leqslant k}\left\|D^{\alpha} f\right\|_{L^{\infty}(\Omega)} & p=\infty\end{cases}
$$

For the particular case $p=2$, the space $H^{k}(\Omega):=W^{k, 2}(\Omega)$ is a Hilbert space. Moreover, we denote by $H_{\Gamma_{D}}^{1}(\Omega)$ the closed subspace of $H^{1}(\Omega)$ defined by

$$
\begin{equation*}
H_{\Gamma_{D}}^{1}(\Omega):=\left\{f \in H^{1}(\Omega):\left.f\right|_{\Gamma_{D}}=0\right\} . \tag{A.5}
\end{equation*}
$$

If the number k is non-integer, we define the fractional Sobolev space in two cases: If $0<k<1$, we define $W^{k, p}$ for $1 \leqslant p<\infty$ by

$$
\begin{equation*}
W^{k, p}(\Omega):=\left\{f \in L^{p}(\Omega): \frac{|f(x)-f(y)|}{|x-y|^{\frac{d}{p}+k}} \in L^{p}(\Omega \times \Omega)\right\} \tag{A.6}
\end{equation*}
$$

which endowed with the norm

$$
\begin{equation*}
\|f\|_{W^{k, p}(\Omega)}:=\left(\int_{\Omega}|f|^{p} d x+\int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|}{|x-y|^{\frac{d}{p}+k}} d x d y\right)^{\frac{1}{p}} \tag{A.7}
\end{equation*}
$$

When $k>1$ and it is not an integer, we write $k=m+s$, where m is an integer and $0<s<1$. The space $W^{k, p}(\Omega)$ is defined by

$$
\begin{equation*}
W^{k, p}(\Omega):=\left\{f \in W^{m, p}: D^{\alpha} f \in W^{s, p} \forall \alpha \text { s.t. }|\alpha|=m\right\} . \tag{A.8}
\end{equation*}
$$

The above space is equipped with the norm

$$
\begin{equation*}
\|f\|_{W^{k, p}(\Omega)}:=\left(\|f\|_{W^{m, p}(\Omega)}^{p}+\sum_{|\alpha|=m}\left\|D^{\alpha} f\right\|_{W^{s, p}(\Omega)}^{p}\right)^{\frac{1}{p}} \tag{A.9}
\end{equation*}
$$

In particular, $H^{k}(\Omega):=W^{k, p}(\Omega)$ is again a Hilbert space when k is non-integer.
For convenience, we denote the norm of $H^{k}(\Omega)$ by $\|\cdot\|_{k}$ for real $k \geqslant 0$.

A.1.3 Traces

Theorem A.1.1 Let $\Omega \subset \mathbb{R}^{d}$ be bounded with Lipschitz boundary. Then there exists a bounded linear operator $T: W^{1, p}(\Omega) \rightarrow L^{p}(\partial \Omega)$ such that

$$
\begin{align*}
T u=\left.u\right|_{\partial \Omega}, & u \in W^{1, p}(\Omega) \cap C(\bar{\Omega}) \\
\|T u\|_{L^{p}(\partial \Omega)} \leqslant c(p, \Omega)\|u\|_{W^{1, p}(\Omega)}, & u \in W^{1, p}(\Omega) \tag{A.10}
\end{align*}
$$

Remark A.1.1 For $1<p<\infty$, the trace operator T maps maps $W^{1, p}(\Omega)$ continuously onto the space $W^{1-\frac{1}{p}, p}(\partial \Omega)$.

A.1.4 Bochner space

Given $I:=[0, T]$ a time interval and a Sobolev space $W^{k, p}(\Omega)$, the Bochner space $L^{r}\left(I ; W^{k, p}(\Omega)\right)$ is the space of all measurable function $u: I \rightarrow W^{k, p}(\Omega)$ such that the associated norm is finite:

$$
\begin{align*}
& \|u\|_{L^{r}\left(I ; W^{1, p}(\Omega)\right)}:=\left(\int_{0}^{T}\|u(t)\|_{W^{k, p}(\Omega)}^{r} d t\right)^{\frac{1}{p}}<+\infty, \quad 1 \leqslant r<\infty \tag{A.11}\\
& \|u\|_{L^{\infty}\left(I ; W^{k, p}(\Omega)\right)}:=\underset{t \in I}{\operatorname{ess} \sup }\|u(t)\|_{W^{k, p}(\Omega)}<+\infty, \quad r=\infty
\end{align*}
$$

A. 2 Weighted Sobolev space

Definition A. 2.1 (Weighted space $L_{\rho}^{p}(\Omega, d, m)$ and $W_{\rho}^{1, p}(\Omega, d, m)$) Let (Ω, d, m) be a metric measure space, where m is a locally finite Borel regular measure on Ω. Let $p>1$ and $\rho: \Omega \rightarrow[0, \infty]$ a Borel function satisfying $\rho^{-1} \in L^{\frac{1}{p-1}} m$; we define the weighted space $L^{p}(\Omega, d, m)$ and sobolev space $W_{\rho}^{1, p}(\Omega, d, m)$ by

$$
\begin{gathered}
L_{\rho}^{p}(m):=\left\{\left.f \in L^{1}(\Omega, d, m)\left|\int_{\Omega}\right| f\right|^{p} \rho d m<+\infty\right\} \\
W_{\rho}^{1, p}(m):=\left\{\left.f \in W^{1,1}(\Omega, d, m)\left|\int_{\Omega}\right| f\right|^{p} \rho d m+\int_{\Omega}|\nabla f|^{p} \rho d m<+\infty\right\},
\end{gathered}
$$

respectively. The above spaces are endowed with the norms

$$
\begin{aligned}
\|f\|_{L_{\rho}^{p}}^{p} & :=\int_{\Omega}|f|^{p} \rho d m+\int_{\Omega}|\nabla f|^{p} \rho d m \\
\|f\|_{W_{\rho}^{1, p}}^{p} & :=\int_{\Omega}|f|^{p} \rho d m+\int_{\Omega}|\nabla f|^{p} \rho d m .
\end{aligned}
$$

If $\Omega \subset \mathbb{R}^{n}$ endowed with standard Euclidean metric, we shorten the notations by $L_{\rho}^{p}(\Omega):=$ $L_{\rho}^{p}(\Omega, d, m), W_{\rho}^{1, p}(\Omega):=W_{\rho}^{1, p}(\Omega, d, m)$, respectively
Proposition A.2.1 $\forall p>1$, the weighted Sobolev space $\left(W_{\rho}^{1, p}(\Omega, d, m),\|\cdot\|_{\rho}\right)$ is a Banach space whenever $\rho^{-1} \in L^{\frac{1}{p-1}}(\Omega)$
Definition A.2.2 (Doubling) A locally finite Borel measure m on (Ω, d) is doubling if it gives finite positive measure to balls and there is a constant $C>0$ such that

$$
m(B(x, 2 r)) \leqslant C m(B(x, r)), \quad \forall x \in \Omega, r>0
$$

Definition A. 2.3 (p-Poincaré) For $p \in[1, \infty$), we say that a p-Poincaré inequality holds for Lipschitz functions if there are constants $\tau, \Lambda>0$ such that $\forall f \in \operatorname{Lip}(\Omega), \forall x \in \operatorname{supp}(m), r>0$, the following inequality holds:

$$
\frac{1}{m(B(x, r))} \int_{B(x, r)}\left|f-f_{B(x, r)}\right| d m \leqslant \tau\left(\frac{1}{m(B(x, \Lambda r))} \int_{B(x, \Lambda r)}|\nabla f|^{p} d m\right)^{\frac{1}{p}}
$$

where

$$
f_{A}:=\frac{1}{m(A)} \int_{A} f d m
$$

Definition A.2.4 A doubling metric measure space satisfying p-Poincaré inequality is called PI_{p} space.
Remark A.2.1 Euclidean space endowed with normal euclidean distancing is PI_{p} for all $p \geqslant 1$.
Theorem A.2.1 [3] Suppose that (Ω, d, m) is a PI_{1} metric measure space, $\rho \in L_{l o c}^{1}(m)$ and $\rho^{-1} \in L^{\frac{1}{p-1}}(m)$. Then $W_{\rho}^{1, p}(\Omega, d, m)$ is reflexive for all $p>1$.

Corollary A.2.1 Let $\Omega \subset \mathbb{R}^{d}$ be a open bounded domain, $W_{\rho}^{1, p}$ is a reflexive Banach space if $p>1, \rho \in L_{l o c}^{1}(\Omega)$, and $\rho^{-1} \in L^{\frac{1}{p-1}}(\Omega)$.

Remark A.2.2 Let $\Omega \subset \mathbb{R}^{d}$ and $p=2$, we denote $W_{\rho}^{1, p}(\Omega)$ by $H_{\rho}^{1}(\Omega)$, which is a Hilbert space endowed with the inner product

$$
(u, v)_{\rho, 1}=\int_{\Omega} u(x) v(x) \rho(x) d x+\int_{\Omega}(\nabla u(x) \cdot \nabla v(x)) \rho(x) d x .
$$

We also denote the inner product for $L_{\rho}^{2}(\Omega)$ by

$$
(u, v)_{\rho, 0}=\int_{\Omega} u(x) v(x) \rho(x) d x .
$$

The norm of $H_{\rho}^{k}(\Omega), k \in \mathbb{N} \cup\{0\}$ is denoted by $\|\cdot\|_{\rho, k}$.
Theorem A. 2.2 (compact embedding) [48] Let $\Omega \subset \mathbb{R}^{d}, 1 \leqslant s \leqslant r<\frac{d q}{d-q}, q \leqslant p, 1<p<$ $+\infty$, and

$$
\begin{equation*}
K(w):=\max \left\{\left\|w^{-\frac{1}{p}}\right\|_{L^{\frac{p q}{p-q}}(\Omega)},\left\|w^{\frac{1}{s}}\right\|_{L^{\frac{r s}{r-s}}(\Omega)}\right\}<+\infty . \tag{A.12}
\end{equation*}
$$

Note that we take $+\infty$ if $p-q=0$ or $r-s=0$ in (A.12). Then the embedding operator

$$
i: W_{w}^{1, p}(\Omega) \hookrightarrow L_{w}^{s}(\Omega)
$$

is a compact operator. For $r=d q /(d-q)$, the embedding operator i is bounded only.

A. 3 Weak convergence in Banach spaces

Lemma A.3.1 Let E be a Banach space, $\|\cdot\|$ its norm, and $f_{n}: E \rightarrow \mathbb{R}$ a sequence of functions for $n=1,2, \ldots$. If f_{n} is equicontinuous and pointwisely convergent on a dense subset $D \subset E$, then f_{n} is pointwisely convergent everywhere.
Proof. Let $a \in E$. Since D is dense in E, there is a $b \in D$ such that for every ϵ there is a δ such that $\|a-b\|<\delta$ and $\left|f_{n}(b)-f_{n}(a)\right|<\frac{\epsilon}{3}$. For any $m>n$, we have

$$
\begin{aligned}
&\left|f_{m}(a)-f_{n}(a)\right| \leqslant\left|f_{m}(a)-f_{m}(b)\right|+\mid f_{m}(b)- f_{n}(b) \mid \\
&+\left|f_{n}(b)-f_{n}(a)\right| \\
&<\frac{2 \epsilon}{3}+\left|f_{m}(b)-f_{n}(b)\right|
\end{aligned}
$$

But $f_{n}(b)$ is convergent, it is shown that $f_{n}(a)$ is a Cauchy sequence. Q.E.D.
Lemma A.3.2 Let E be a normed space, $\|\cdot\|$ its norm and $\|\cdot\|_{E^{\prime}}$ the norm of its dual space. Let x_{n} be a sequence in E for $n=1,2, \ldots, x \in E$. The followings are equivalent:
(i) $x_{n} \rightarrow x$ in E weakly
(ii) x_{n} is bounded and for all $S \subset E^{\prime}$ such that $\overline{\operatorname{span} S}=E^{\prime}$ satisfies $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$ for all $f \in S$.

Proof. (i) \Rightarrow (ii). Assuming that $x_{n} \rightarrow x$ in E weakly, then x_{n} is bounded. Moreover, for all $f \in E^{\prime}$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$. Hence for all $S \subset E^{\prime}$ such that $\overline{\operatorname{span} S}=E^{\prime}$ we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$ for all $f \in S$.
(ii) $\Rightarrow(i)$. Assume that $\left\|x_{n}\right\|$ is bounded by some constant $M>0$ and for all $S \subset E^{\prime}$ such taht span $S=E^{\prime}$ satisfies $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$ for all $f \in S$. Take arbitrary $g \in$ span S, then
$g=\sum_{k=1}^{m} \alpha_{k} f_{k}$ for $\alpha_{k} \in \mathbb{R}$ and $f_{k} \in S$. This gives us $\lim _{n \rightarrow \infty} g\left(x_{n}\right)=g(x)$. Now, take arbitrary $g \in E^{\prime}=\overline{\operatorname{span} S}$, then $g=\lim _{k \rightarrow \infty} g_{k}$ for some sequence g_{k} in span S. Fix $\epsilon>0$. Since $g=\lim _{k \rightarrow \infty} g_{k}$, there is $K \in \mathbb{N}$ such that $\left\|g-g_{k}\right\|_{E^{\prime}} \leqslant \epsilon$ for all $k>K$. Then

$$
\begin{align*}
\left|g\left(x_{n}\right)-g(x)\right| & \leqslant\left|g\left(x_{n}\right)-g_{k}\left(x_{n}\right)\right|+\left|g_{k}\left(x_{n}\right)-g_{k}(x)\right|+\left|g_{k}(x)-g(x)\right| \\
& \leqslant\left\|g-g_{k}\right\|_{E^{\prime}}\left\|x_{n}\right\|+\left|g_{k}\left(x_{n}\right)-g_{k}(x)\right|+\left\|g_{k}-g\right\|\left\|_{E^{\prime}}\right\| x \| \tag{A.13}\\
& \leqslant \epsilon M+\left|g_{k}\left(x_{n}\right)-g_{k}(x)\right|+\epsilon\|x\|
\end{align*}
$$

We take a limit $n \rightarrow \infty$ in the above inequality, then

$$
\limsup _{n \rightarrow \infty}\left|g\left(x_{n}\right)-g(x)\right| \leqslant \epsilon M+\lim _{n \rightarrow \infty}\left|g_{k}\left(x_{n}\right)-g_{k}(x)\right|+\epsilon\|x\|
$$

Since $g_{k} \in \operatorname{span} S$, we have $\lim _{n \rightarrow \infty}\left|g_{k}\left(x_{n}\right)-g_{k}(x)\right|=0$ and we get

$$
\limsup _{n \rightarrow \infty}\left|g\left(x_{n}\right)-g(x)\right| \leqslant \epsilon M+\epsilon\|x\| .
$$

Since $\epsilon>0$ is arbitrary, we obtain $\limsup _{n \rightarrow \infty}\left|g\left(x_{n}\right)-g(x)\right|=0$. This implies that $\lim _{n \rightarrow \infty} g\left(x_{n}\right)=g(x)$.
Since $g \in E^{\prime}$ is arbitrary, the proof is completed. Q.E.D.
Lemma A.3.3 Let X be a Banach space, D a dense subset of $X^{\prime}, x_{n}, n=1,2, \ldots$ the bounded sequence in X. If $g\left(x_{n}\right) \rightarrow g(x)$ for all $g \in D$, then $x_{n} \rightarrow x$ weakly in X.
Proof. If x_{n} is a bounded sequence in X, it is an equicontinuous sequence as a sequence of functions $X^{\prime} \rightarrow \mathbb{R}$. And x_{n} is pointwisely convergent on D by the hypothesis. Using Lemma A.3.1, x_{n} is pointwisely convergent. By Lemma A.3.2, since x_{n} is bounded in norm by the hypothesis, we conclude that x_{n} is weakly convergent to x in X. Q.E.D.

Lemma A.3.4 Let X, Y be two normed space and $T: X \rightarrow Y$ the bounded linear operator. If $x_{n} \rightarrow x$ weakly in X, then $T x_{n} \rightarrow T x$.
Proof. Let $y^{*} \in Y^{\prime}$. We can define $x^{*}=y^{*} T \in X^{\prime}$. So

$$
y^{*}\left(T x_{n}\right)=\left(y^{*} T\right)\left(x_{n}\right)=x^{*}\left(x_{n}\right) \rightarrow x^{*}(x)=\left(y^{*} T\right)(x)=y^{*}(T x) .
$$

Q.E.D.

Corollary A.3.1 Let $\Gamma \subset \partial \Omega$. There is a trace operator $\operatorname{Tr}: L^{2}\left(0, T ; H^{1}(\Omega)\right) \rightarrow L^{2}\left(0, T ; H^{\frac{1}{2}}(S)\right)$ such that: If $x_{n} \rightarrow x$ weakly in $L^{2}\left(0, T ; H^{1}(\Omega)\right)$, then $\operatorname{Tr} x_{n} \rightarrow \operatorname{Tr} x$ weakly in $L^{2}\left(0, T ; H^{\frac{1}{2}}(\Gamma)\right)$. Proof. By Section 5.7 in [117], there exists a trace operator $T r: L^{2}\left(0, T ; H^{1}(\Omega)\right) \rightarrow L^{2}\left(0, T ; H^{\frac{1}{2}}(\Gamma)\right)$ which is linear and bounded. By Lemma A.3.4, the proof is completed. Q.E.D.

Appendix B

A simplified model with surface reaction

We assume that $\Omega \subset \mathbb{R}^{d}$ be a bounded open domain. For Sobolov space, the norm of $W^{k, p}(\Omega)$ space is denoted by $\|\cdot\|_{k, p}$ for $p>0, k \geqslant 0$. If $p=2$, the norm is denoted by $\|\cdot\|_{k}$. For weighted Sobolev space, we denote the norm of $H_{\rho}^{k}(\Omega)$ by $\|\cdot\|_{\rho, k}$ for $k \in \mathbb{N}$, ρ any function satisfying $\rho, \frac{1}{\rho} \in L^{1}(\Omega)$. If $k=0$, we denote the norm of $L_{\rho}^{2}(\Omega)$ by $\|\cdot\|_{\rho}$ for simplicity. We denote the inner product for $L_{\rho}^{2}(\Omega)$ by $(\cdot, \cdot)_{\rho}$. For convenience, we denote the generic constant by C or C_{j}, $j=1,2, \ldots$.

B. 1 Modeling equations

We assume that there are two chemical species s and k involving in the surface reaction in terms of the mixed potential (see (3.20)). Let E_{j} be the constant with subscripts $j=s, k$ representing the ion to be plated and the anodic ion involving in the surface reaction, respectively. Without loss of generality, we assume that $0>E_{s}>E_{k}$. For the physical system, we assume that the chemical reaction satisfying electron balance on the reaction surface $S \subset \partial \Omega$, the convective effect in system (3.26)-(3.26) is negligible, and the densities satisfy $\rho_{l} \gg \rho_{g}>0$. For simplicity, we further assume that the saturation concentration can be neglected. That is, we require that

$$
\begin{equation*}
\boldsymbol{u}_{g}=\boldsymbol{u}_{l}=0, \quad c_{s a t}=0 \tag{B.1}
\end{equation*}
$$

Employing (B.1) into (3.3), we get

$$
\begin{equation*}
\partial_{t} r_{l}=-\frac{K}{\widetilde{\rho_{g}}} r_{l} c_{g}, \tag{B.2}
\end{equation*}
$$

where $\frac{1}{\widetilde{\rho_{g}}}:=\frac{1}{\rho_{g}}-\frac{1}{\rho_{l}}$. The assumption (B.1) tells us that the momentum balance equations (3.27) are dropped. The remaining equations (3.5) with the assumption (B.1) can be rewritten as

$$
\begin{align*}
& r_{l} \partial_{t} c_{j}-D_{j} \nabla \cdot\left(r_{l} \nabla c_{j}\right)=0, \quad j \neq g \\
& r_{l} \partial_{t} c_{g}-D_{g} \nabla \cdot\left(r_{l} \nabla c_{g}\right)+\frac{K_{g} M_{g}}{\rho_{l}} r_{l} c_{g}=0 \tag{B.3}
\end{align*}
$$

Since there are only two chemical species s and k involving in the surface reaction, (B.2), (B.3) and the boundary conditions (3.19)-(3.20) with electrical neutrality assumption lead to the system:

$$
\begin{array}{r}
\partial_{t} r_{l}=-\frac{K}{\rho_{g}} r_{l} c_{g}, \text { in } \Omega \times(0, T], \\
r_{l} \partial_{t} c_{g}-D_{g} \nabla \cdot\left(r_{l} \nabla c_{g}\right)+\frac{K_{g} M_{g}}{\rho_{l}} r_{l} c_{g}=0, \text { in } \Omega \times(0, T], \tag{B.4}\\
r_{l} \partial_{t} c_{s}-D_{s} \nabla \cdot\left(r_{l} \nabla c_{s}\right)=0, \text { in } \Omega \times(0, T], \\
r_{l} \partial_{t} c_{k}-D_{k} \nabla \cdot\left(r_{l} \nabla c_{k}\right)=0, \text { in } \Omega \times(0, T],
\end{array}
$$

subject to the boundary conditions

$$
\begin{align*}
-D_{s} \frac{\partial c_{s}}{\partial \mathbf{n}}=\frac{\left|I_{s}\right|}{z_{s} F},-D_{k} \frac{\partial c_{k}}{\partial \mathbf{n}} & =\frac{\left|I_{k}\right|}{z_{k} F}, \quad-D_{g} \frac{\partial c_{g}}{\partial \mathbf{n}}=-\frac{\beta\left|I_{s}\right|}{z_{s} F} \quad \text { on } S \tag{B.5}\\
\frac{\partial c_{s}}{\partial \mathbf{n}} & =\frac{\partial c_{k}}{\partial \mathbf{n}}=\frac{\partial c_{g}}{\partial \mathbf{n}} 0, \quad \text { on } \partial \Omega \backslash S \times(0, T]
\end{align*}
$$

for some constant $\beta>0$. The initial conditions $r_{l}(0)=r_{l}^{0}, c_{s}(0)=c_{s}^{0}, c_{k}(0)=c_{k}^{0}, c_{g}(0)=c_{g}^{0}$ are all in $H^{1}(\Omega)$ satisfying

$$
\begin{equation*}
0<c_{s}^{0}, c_{k}^{0}, c_{g}^{0} \leqslant 1, \quad 0<\epsilon<r_{l}^{0} \leqslant 1 \text { in } \Omega \tag{B.6}
\end{equation*}
$$

for some constant $\epsilon>0$. In the above, I_{s} and I_{k} satisfy (3.20) with $j=s, k$ respectively and we further assume that $\gamma_{s}=\gamma_{k}=1$. For electron balance, we have the constrain:

$$
\begin{equation*}
I_{s}+I_{k}=0, \quad \text { on } S \tag{B.7}
\end{equation*}
$$

We shall note that we replace $\widetilde{\rho_{g}}$ with ρ_{g} in (B.4) by an abuse of notation.

Remark B.1.1 In (B.4), we employ c_{g} instead of c_{g}^{+}in the second term of the first equation and the third term of the second equation. We will show that c_{g} is nonnegative with a proper initial condition.

B. 2 Time-discrete problem

Let $N>0$ be an integer and $\delta t=T / N$ be the time step. To study the existence and the stability of (B.4)-(B.7), we consider the time-discrete problem:

$$
\begin{aligned}
& \frac{r_{l}^{m+1}-r_{l}^{m}}{\delta t}=-\frac{K_{g}}{\rho_{g}} r_{l}^{m+1} c_{g}^{m} \\
& \frac{r_{l}^{m+1} c_{g}^{m+1}-r_{l}^{m+1} c_{g}^{m}}{\delta t}-\nabla \cdot\left(D_{g} r_{l}^{m+1} \nabla c_{g}^{m+1}\right)+\frac{M_{g} K_{g}}{\rho_{l}} r_{l}^{m+1} c_{g}^{m+1}=0 \\
& \frac{r_{l}^{m+1} c_{s}^{m+1}-r_{l}^{m+1} c_{s}^{m}}{\delta t}-\nabla \cdot\left(D_{s} r_{l}^{m+1} \nabla c_{s}^{m+1}\right)=0 \\
& \frac{r_{l}^{m+1} c_{k}^{m+1}-r_{l}^{m+1} c_{k}^{m}}{\delta t}-\nabla \cdot\left(D_{k} r_{l}^{m+1} \nabla c_{k}^{m+1}\right)=0
\end{aligned}
$$

with boundary conditions on S :
$-D_{s} \frac{\partial c_{s}^{m+1}}{\partial \mathbf{n}}=\frac{1}{z_{s} F}\left|i_{s}\left(E_{m i x}^{m+1}\right)\right| c_{s}^{m+1},-D_{k} \frac{\partial c_{k}^{m+1}}{\partial \mathbf{n}}=\frac{1}{z_{k} F}\left|i_{k}\left(E_{m i x}^{m+1}\right)\right| c_{k}^{m+1},-D_{g} \frac{\partial c_{g}^{m+1}}{\partial \mathbf{n}}=\beta D_{s} \frac{\partial c_{s}^{m+1}}{\partial \mathbf{n}}$
where

$$
\begin{aligned}
& i_{s}\left(E_{m i x}^{m+1}\right)=L_{s}\left(\exp \left(\frac{\alpha_{s} z_{s} F\left(E_{m i x}^{m+1}-E_{s}\right)}{R \theta}\right)-\exp \left(\frac{-\beta_{s} z_{s} F\left(E_{m i x}^{m+1}-E_{s}\right)}{R \theta}\right)\right), \\
& i_{k}\left(E_{m i x}^{m+1}\right)=L_{k}\left(\exp \left(\frac{\alpha_{k} z_{k} F\left(E_{m i x}^{m+1}-E_{k}\right)}{R \theta}\right)-\exp \left(\frac{-\beta_{k} z_{k} F\left(E_{m i x}^{m+1}-E_{k}\right)}{R \theta}\right)\right), \\
& i_{s}\left(E_{m i x}^{m+1}\right) c_{s}^{m+1}+i_{k}\left(E_{m i x}^{m+1}\right) c_{k}^{m+1}=0 .
\end{aligned}
$$

In the following context, we define $i_{s}^{m+1}:=\left|i_{s}\left(E_{m i x}^{m+1}\right)\right|, i_{k}^{m+1}:=\left|i_{k}\left(E_{m i x}^{m+1}\right)\right|$.
Let us begin with the upper bound and the lower bound of r_{l}.
Lemma B.2.1 Assume that $0<\epsilon<r_{l}^{j}<1, c_{g}^{j} \geqslant 0, c_{g}^{j} \in H^{1}(\Omega) \cap L^{\infty}(\Omega)$ and $r_{l}^{j} \in H^{1}(\Omega)$ for all integer $0 \leqslant j \leqslant m$, then
(i) $0<\frac{\epsilon}{1+K \delta t / \rho_{g}}<r_{l}^{m+1}<1$.
(ii) $\frac{1}{r_{l}^{m+1}} \in L^{\infty}(\Omega)$
(iii) $r_{l}^{m+1} \in H^{1}(\Omega)$

Proof. By the first equation of (B.8), we have

$$
\begin{equation*}
\left(1+\frac{K \delta t}{\rho_{g}} c_{g}^{m}\right) r_{l}^{m+1}=r_{l}^{m} \tag{B.10}
\end{equation*}
$$

By the assumption $c_{g}^{m} \geqslant 0$, we have

$$
r_{l}^{m+1} \leqslant 1, \quad \frac{\epsilon}{1+K \delta t / \rho_{l}}<r_{l}^{m+1}
$$

This proves (i). Since $1<\frac{1}{r_{l}^{m+1}}<\frac{1+K \delta t / \rho_{l}}{\epsilon}$, we have proved (ii).
Taking the derivative with respect to x_{i} in (B.10), we have

$$
\begin{equation*}
\left(1+\frac{K \delta t}{\rho_{g}} c_{g}^{m}\right) \partial_{x_{i}} r_{l}^{m+1}=-\frac{K \delta t}{\rho_{g}} r_{l}^{m+1} \partial_{x_{i}} c_{g}^{m}+\partial_{x_{i}} r_{l}^{m} . \tag{B.11}
\end{equation*}
$$

Since $\partial_{x_{i}} r_{l}^{m}, r_{l}^{m+1} \partial_{x_{i}} c_{g}^{m}$ are bounded in $L^{2}(\Omega)$, we can conclude that $\partial_{x_{i}} r_{l}^{m+1}$ is bounded in $L^{2}(\Omega)$. This proves (iii). Q.E.D.

The weak formulation regarding the system (B.8) except its first equation can be expressed as: Problem ($\widetilde{P_{c}}$):
Let $0<r_{l}^{m}, r_{l}^{m+1} \leqslant 1, r_{l}^{m}, r_{l}^{m+1} \in H^{1}(\Omega), 0<c_{s}^{m}, c_{k}^{m} \leqslant 1, c_{g}^{m} \geqslant 0, c_{s}^{m}, c_{k}^{m}, c_{g}^{m} \in H_{r_{l}^{m}}^{1}(\Omega)$. Find

$$
\begin{align*}
& c_{s}^{m+1}, c_{k}^{m+1}, c_{g}^{m+1} \in H_{r_{l}^{m+1}}^{1}(\Omega) \text { and } E_{m i x}^{m+1} \in L^{2}(S) \text { such that } \\
& \frac{1}{\delta t}\left(c_{s}^{m+1}, w_{s}\right)_{r_{l}^{m+1}}+D_{s}\left(\nabla c_{s}^{m+1}, \nabla w_{s}\right)_{r_{l}^{m+1}}+\frac{1}{z_{s} F}\left(r_{l}^{m+1} i_{s}^{m+1} c_{s}^{m+1}, w_{s}\right)_{L^{2}(S)}=\frac{1}{\delta t}\left(c_{s}^{m}, w_{s}\right)_{r_{l}^{m+1}} \\
& \frac{1}{\delta t}\left(c_{k}^{m+1}, w_{k}\right)_{r_{l}^{m+1}}+D_{k}\left(\nabla c_{k}^{m+1}, \nabla w_{k}\right)_{r_{l}^{m+1}}+\frac{1}{z_{k} F}\left(r_{l}^{m+1} i_{k}^{m+1} c_{k}^{m+1}, w_{k}\right)_{L^{2}(S)}=\frac{1}{\delta t}\left(c_{k}^{m}, w_{k}\right)_{r_{l}^{m+1}}^{m+1} \tag{B.12}\\
& \frac{1}{\delta t}\left(c_{g}^{m+1}, w_{g}\right)_{r_{l}^{m+1}}+D_{g}\left(\nabla c_{g}^{m+1}, \nabla w_{g}\right)_{r_{l}^{m+1}}-\frac{\beta}{z_{s} F}\left(r_{l}^{m+1} i_{s}^{m+1} c_{s}^{m+1}, w_{g}\right)_{L^{2}(S)} \tag{B.13}\\
& +\left(\frac{M_{g} K_{g}}{\rho_{l}} c_{g}^{m+1}, w_{g}\right)_{r_{l}^{m+1}}=\frac{1}{\delta t}\left(c_{g}^{m}, w_{g}\right)_{r_{l}^{m+1}} \tag{B.14}\\
& \left(i_{s}\left(E_{m i x}^{m+1}\right)+i_{k}\left(E_{m i x}^{m+1}\right), w\right)_{L^{2}(S)}=0 \tag{B.15}
\end{align*}
$$

for all $w_{s}, w_{k}, w_{g} \in H^{1}(\Omega)$ and $w \in L^{2}(S)$.

B. 3 Existence of the time-discrete problem

Proposition B.3.1 If $E_{m i x}^{m+1} \in B:=\left\{w \in L^{2}(S) \mid E_{k} \leqslant w \leqslant E_{s}\right.$ a.e. $\}$ is given, There exist unique solutions $\left(c_{s}^{m+1}, c_{k}^{m+1}, c_{g}^{m+1}\right)$ for Problem $\left(\widetilde{P_{c}}\right)$.
Proof. The existence and uniqueness for c_{s}^{m+1}, c_{k}^{m+1} and c_{g}^{m+1} can be guaranteed by a classic theory since (B.12)-(B.14) are linear.

If $E_{m i x}^{m+1}$ is given, we can further obtain the positivity for c_{s}^{m+1}, c_{k}^{m+1} and c_{g}^{m+1}.
Proposition B.3.2 Let $E_{m i x}^{m+1} \in B$, if $c_{s}^{m}, c_{k}^{m}, c_{g}^{m} \geqslant 0$ a.e., then $c_{s}^{m+1}, c_{k}^{m+1}, c_{g}^{m+1} \geqslant 0$ a.e..
Proof. Similar to the proof of Proposition 2.4.2, the nonnegativity of $c_{s}^{m+1}, c_{k}^{m+1}, c_{g}^{m+1}$ can be guaranteed by letting $w_{s}=\left(c_{s}^{m+1}\right)^{-}, w_{k}=\left(c_{k}^{m+1}\right)^{-}, w_{g}=\left(c_{g}^{m+1}\right)^{-}$. Q.E.D.

Proposition B.3.3 Let $E_{m i x}^{m+1} \in B, 0<c_{s}^{j}, c_{k}^{j} \leqslant 1, E_{m i x}^{j} \in B$, for all $0 \leqslant j \leqslant m$. Furthermore, we assume that $0 \leqslant c_{g}^{0}<M$ for some positive constant M, we have

$$
\begin{equation*}
c_{s}^{m+1}, c_{k}^{m+1} \leqslant 1 \tag{B.16}
\end{equation*}
$$

and there exists a positive constant C depending only on Ω, D_{g}, T, such that

$$
\begin{equation*}
c_{g}^{m+1} \leqslant C \tag{B.17}
\end{equation*}
$$

Proof. To obtain (B.16), we can take $w_{s}=\left(w_{s}-1\right)^{+}$and $w_{k}=\left(w_{k}-1\right)^{+}$in (B.12) and (B.13), respectively. The proof of (B.17) is extremely technical which can be referred to Lemma II 5.7 and Theorem II 6.2 in [70]. Q.E.D.

If the value of mixed potential $E_{m i x}^{m+1}$ is restricted in $\left[E_{k}, E_{s}\right]$, the L^{∞} norms of i_{s}^{m+1}, i_{k}^{m+1} are uniformly bounded in terms of $E_{m i x}^{m+1}$, respectively. By Thoerem 4 in [73], we have the following:

Lemma B.3.1 (Strong positivity for c_{s}^{m+1} amd c_{k}^{m+1}) Let $c_{s}^{m}, c_{k}^{m} \geqslant 0, E_{m i x}^{m+1} \in B$. Assuming further that there are constant $\eta_{s}^{m}, \eta_{k}^{m}>0$ such that $c_{s}^{m} \geqslant \eta_{s}^{m}$ and $c_{k}^{m} \geqslant \eta_{k}^{m}$ a.e., there are constants $\eta_{s}^{m+1}, \eta_{s}^{m+1}>0$ such that $c_{s}^{m+1} \geqslant \eta_{s}^{m+1}$, and $c_{k}^{m+1} \geqslant \eta_{k}^{m+1}$ a.e.. Moreover, c_{s}^{m+1} and c_{k}^{m+1} are Hölder continuous in $\bar{\Omega}$ for some exponent $0<\alpha<1$.

Corollary B.3.1 Assuming that $\left\|c_{s}^{j}\right\|_{L^{\infty}(\Omega)}$ is uniformly bounded for all $0 \leqslant j \leqslant N$, there is a generic constant $C>0$ such that

$$
\begin{equation*}
\left\|\frac{r_{l}^{j+1}-r_{l}^{j}}{\delta t}\right\|_{L^{\infty}(\Omega)} \leqslant C \tag{B.18}
\end{equation*}
$$

for all $0 \leqslant j \leqslant N$.
To show the existence for the full problem $\left(\widetilde{P_{c}}\right)$, the Browder fixed point theorem can be applied:

Theorem B.3.1 (Schauder fixed point theorem) Let K be a nonempty closed convex set in a Banach space. If a function $f: K \rightarrow K$ is compact, then f has a fixed point.
Lemma B.3.2 $B:=\left\{w \in L^{2}(S) \mid E_{k} \leqslant w \leqslant E_{s}\right.$ a.e. $\}$ is a closed bounded convex subset in $L^{2}(S)$.
Proof. Since S is of finite measure, it is obvious that B is bounded. Let $\theta \in(0,1)$, for $w_{1}, w_{2} \in B$ we have $\theta E_{k} \leqslant \theta w_{1} \leqslant \theta E_{s}$ and $(1-\theta) E_{k} \leqslant(1-\theta) w_{2} \leqslant(1-\theta) E_{s}$. Therefore $E_{k} \leqslant \theta w_{1}+(1-$ $\theta) w_{2} \leqslant E_{s}$. This implies that B is convex. Finally, let x be a limit point of B, there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset B$ such that

$$
\left\|x_{n}-x\right\|_{L^{2}(S)} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

This shows that $E_{k} \leqslant x \leqslant E_{s}$ almost everywhere on S. This completes the proof. Q.E.D.
We define the space $W_{\eta}:=\left\{w \in H_{r_{l}^{m+1}}^{1}(\Omega) \mid \eta \leqslant w \leqslant 1\right.$ a.e. $\}$. Given Lemma B.3.1, we define $\eta_{s}^{m+1}, \eta_{k}^{m+1}$ to be the essential infimum of c_{s}^{m+1}, c_{k}^{m+1}, respectively. Let us define the mapping $\Gamma_{1}: B \rightarrow \mathbf{H}:=W_{\eta_{s}^{m+1}} \times W_{\eta_{k}^{m+1}}$ such that $\Gamma_{1}(E)$ is the set of solutions to $\left(\widetilde{P_{c_{s}}}\right)$, and $\left(\widetilde{P_{c_{k}}}\right)$, respectively, when letting $E_{m i x}^{m+1}=E$.

Lemma B.3.3 Γ_{1} is a bounded operator.
Proof. Let $w_{s}=c_{s}^{m+1}$ in (B.12), we have

$$
\begin{align*}
& \frac{1}{\delta t}\left\|c_{s}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+D_{s}\left\|\nabla c_{s}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+\left(r_{l}^{m+1} i_{s}^{m+1} c_{s}^{m+1}, c_{s}^{m+1}\right)_{L^{2}(S)} \\
& =\frac{1}{\delta t}\left(c_{s}^{m}, c_{s}^{m+1}\right)_{r_{l}^{m+1}} \\
& \leqslant \frac{1}{\delta t}\left\|c_{s}^{m}\right\|_{r_{l}^{m}}\left\|c_{s}^{m+1}\right\|_{r_{l}^{m+1}} \tag{B.19}\\
& \leqslant\left\|c_{s}^{m}\right\|_{r_{l}^{m}}\left(\left\|c_{s}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+D_{s} \delta t\left\|\nabla c_{s}^{m+1}\right\|_{r_{l}^{m+1}}^{2}\right)^{\frac{1}{2}}
\end{align*}
$$

This shows that the bound for c_{s}^{m+1} is independent of i_{s}. By the same argument, we can show that c_{k}^{m+1} is uniformly bounded as well. We recall that the element in B has a minimal norm $\left\|E_{s}\right\|_{L^{2}(S)}$. There must exists a sufficiently large constant $M>0$ such that

$$
\begin{align*}
& \delta t\left(\frac{K}{\rho_{l}}\left\|c_{g}^{m+1}\right\|_{L^{\infty}(\Omega)}+\frac{1}{\delta t}\left(\left\|\frac{1}{r_{l}^{m+1}}\right\|_{L^{\infty}(\Omega)}\left\|r_{l}^{m}\right\|_{L^{\infty}(\Omega)}\right)^{\frac{1}{2}}\left\|c_{s}^{m}\right\|_{r_{l}^{m}}\right) \tag{B.20}\\
& \leqslant M\left\|E_{s}\right\|_{L^{2}(S)} \leqslant M\|E\|_{L^{2}(S)}
\end{align*}
$$

for all $E \in B$. Q.E.D.

By Corollary 7.3 in [11], we have:
Lemma B.3.4 The trace operator $T: \mathbf{H} \rightarrow L^{2}(S) \times L^{2}(S)$ is compact.
Now we define the operator $\Gamma_{2}: T(\mathbf{H}) \rightarrow L^{2}(S)$ by

$$
\Gamma_{2}\left(c_{s}, c_{k}\right)=\frac{c_{s}}{c_{k}}, \quad\left(c_{s}, c_{k}\right) \in \mathbf{H}
$$

Lemma B.3.5 Γ_{2} is a bounded operator.
Proof. Let $\left(c_{s}, c_{k}\right) \in T(\mathbf{H})$, we have, pointwisely

$$
\begin{equation*}
\left|\frac{c_{s}}{c_{k}}\right| \leqslant \frac{1}{\eta_{k}^{m+1}}\left|c_{s}\right| \tag{B.21}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
& \left\|\frac{c_{s}}{c_{k}}\right\|_{L^{2}(S)}^{2} \leqslant \frac{1}{\left(\eta_{k}^{m+1}\right)^{2}} \int_{S}\left|c_{s}\right|^{2} d \sigma \leqslant \frac{1}{\left(\eta_{k}^{m+1}\right)^{2}} \int_{S}\left|c_{s}\right|^{2}+\left|c_{k}\right|^{2} d \sigma \tag{B.22}\\
& =\frac{1}{\left(\eta_{k}^{m+1}\right)^{2}}\left(\left\|c_{s}\right\|_{L^{2}(S)}^{2}+\left\|c_{k}\right\|_{L^{2}(S)}^{2}\right)
\end{align*}
$$

This completes the proof. Q.E.D.
Finally, we define $\Gamma_{3}: \Gamma_{2}(T(\mathbf{H})) \rightarrow B$ by

$$
\Gamma_{3}: \zeta \mapsto E,
$$

where E satisfying $i_{s}(E) \zeta+i_{k}(E)=0$ pointwisely.
Lemma B.3.6 Γ_{3} is a bounded operator.
Proof. We write $\zeta=\zeta(E)$, we have $\zeta(E)=-\frac{i_{k}(E)}{i_{s}(E)}$. Observing that $i_{k}(E)>0$ and $i_{s}(E)<0$ for $E \in\left(E_{k}, E_{s}\right)$, since $i_{k}(E)$ is strictly increasing and $-i_{s}(E)$ is strictly decreasing, we have $\zeta(E)$ is strictly increasing. Therefore, Γ_{3} is the inverse of ζ. Since $i_{k}(E)$ and $i_{s}(E)$ are linear combinations of exponential function of E, respectively, and $i_{s}(E)<0$ for $E \in\left(E_{k}, E_{s}\right), \zeta(E)$ is differentiable in $\left(E_{k}, E_{s}\right)$. Therefore, we have

$$
\zeta^{\prime}(E)=\frac{1}{\Gamma_{3}^{\prime}(\zeta)}
$$

For any element $c=\left(c_{s}, c_{k}\right)$ in $T(\mathbf{H})$, we always have

$$
\min \left(\eta_{k}^{m+1}, \eta_{s}^{m+1}\right) \leqslant \frac{c_{k}}{c_{s}} \leqslant \frac{1}{\min \left(\eta_{k}^{m+1}, \eta_{s}^{m+1}\right)}
$$

Now we are going to seek the upper bound of $\Gamma_{3}^{\prime}(\zeta)$ for
$\zeta \in\left[\min \left(\eta_{k}^{m+1}, \eta_{s}^{m+1}\right), \frac{1}{\min \left(\eta_{k}^{m+1}, \eta_{s}^{m+1}\right)}\right]$. By the strict monotonity of ζ, there are constants m and M such that $E_{k}<m<M<E_{s}$ so that

$$
\Gamma_{3}\left(\left[\min \left(\eta_{k}^{m+1}, \eta_{s}^{m+1}\right), \frac{1}{\min \left(\eta_{k}^{m+1}, \eta_{s}^{m+1}\right)}\right]\right) \subset[m, M]
$$

Let $\alpha_{1}=\frac{\alpha_{s} z_{s} F}{R \theta}, \alpha_{2}=\frac{\alpha_{k} z_{k} F}{R \theta}, \beta_{1}=\frac{\beta_{s} z_{s} F}{R \theta}, \beta_{2}=\frac{\beta_{k} z_{k} F}{R \theta}$, we have

$$
\begin{align*}
& \zeta^{\prime}(E) \\
& =-\frac{L_{k}}{L_{s}} \frac{1}{\left(e^{\alpha_{1}\left(E-E_{s}\right)}-e^{-\beta_{1}\left(E-E_{s}\right)}\right)^{2}}\left[\left(e^{\alpha_{1}\left(E-E_{s}\right)}-e^{-\beta_{1}\left(E-E_{s}\right)}\right)\left(\alpha_{2} e^{\alpha_{2}\left(E-E_{k}\right)}+\beta_{2} e^{\beta_{2}\left(E-E_{k}\right)}\right)\right. \\
& \left.-\left(e^{\alpha_{2}\left(E-E_{k}\right)}-e^{\beta_{2}\left(E-E_{k}\right)}\right)\left(\alpha_{2} e^{\alpha_{2}\left(E-E_{k}\right)}+\beta_{2} e^{\beta_{2}\left(E-E_{k}\right)}\right)\right] \tag{B.23}
\end{align*}
$$

For $m \leqslant E \leqslant M$, we have

$$
\begin{equation*}
\zeta^{\prime}(E) \geqslant \frac{L_{k}}{L_{s}} \frac{\left(e^{-\beta_{1}\left(M-E_{s}\right)}-e^{\alpha_{1}\left(M-E_{s}\right)}\right)\left(\alpha_{2} e^{\alpha_{2}\left(m-E_{k}\right)}+\beta_{2} e^{-\beta_{2}\left(m-E_{k}\right)}\right)}{\left(e^{\alpha_{1}\left(m-E_{s}\right)}-e^{-\beta_{1}\left(m-E_{s}\right)}\right)^{2}} \tag{B.24}
\end{equation*}
$$

Therefore, there is a constant \widetilde{M} such that $\left|\Gamma_{3}^{\prime}(\zeta)\right| \leqslant \widetilde{M}$ for all $\zeta \in\left[\min \left(\eta_{k}^{m+1}, \eta_{s}^{m+1}\right), \frac{1}{\min \left(\eta_{k}^{m+1}, \eta_{s}^{m+1}\right)}\right]$. Finally we have

$$
\left|\Gamma_{3}(\zeta)\right| \leqslant \min \left(\eta_{k}^{m+1}, \eta_{s}^{m+1}\right)+\widetilde{M}|\zeta| \leqslant(\widetilde{M}+1)|\zeta|
$$

The proof can be completed by integrating the square of the above inequality. Q.E.D.

Proposition B.3.4 The operator $\Gamma=\Gamma_{3} \circ \Gamma_{2} \circ T \circ \Gamma_{1}: B \rightarrow B$ has a fixed point.
Proof. Since B is convex and closed by Lemma B.3.2 and the composition of bounded operator with compact operator (also their commutation) is compact, the existence of the fixed point can be proved by the Schauder fixed point theorem with Lemmas B.3.3,B.3.4,B.3.5,B.3.6. Q.E.D.

Now, we have the theorem

Theorem B.3.2 If $\delta t>0$ is sufficiently small, the system Problems $\left(\widetilde{P_{c}}\right)$ is well-posed.
Proof. It remains to prove the uniqueness of the system. Assuming that $\left(c_{s 1}, c_{k 1}, E_{1}\right),\left(c_{s 2}, c_{k 2}, E_{2}\right) \in$ $W_{\eta_{s}^{m+1}} \times W_{\eta_{k}^{m+1}} \times B$ are two different solutions. If $E_{1}=E_{2}$, then we must have $c_{s 1}=c_{s 2}$ and $c_{k 1}=c_{k 2}$ by the uniqueness of Problems $\left(\widetilde{P_{c}}\right)$. Therefore, we may assume that $E_{1} \neq E_{2}$ for all $\delta t>0$. By (B.12) and (B.13), we have

$$
\begin{align*}
& \left(c_{s 1}-c_{s 2}, w_{s}\right)_{r_{l}^{m+1}}+\delta t D_{s}\left(\nabla\left(c_{s 1}-c_{s 2}\right), w_{s}\right)_{r_{l}^{m+1}} \\
& +\frac{1}{z_{s} F}\left(r_{l}^{m+1}\left(\left|i_{s}\left(E_{1}\right)\right| c_{s 1}-\left|i_{s}\left(E_{2}\right)\right| c_{s 2}\right), w_{s}\right)_{L^{2}(S)} \\
& +\left(c_{k 1}-c_{k 2}, w_{k}\right)_{r_{l}^{m+1}}+\delta t D_{k}\left(\nabla\left(c_{k 1}-c_{k 2}\right), w_{k}\right)_{r_{l}^{m+1}} \tag{B.25}\\
& +\frac{1}{z_{k} F}\left(r_{l}^{m+1}\left(\left|i_{k}\left(E_{1}\right)\right| c_{k 1}-\left|i_{k}\left(E_{2}\right)\right| c_{k 2}\right), w_{k}\right)_{L^{2}(S)} \\
& =0
\end{align*}
$$

To estimate the boundary term, we observe pointwisely:

$$
\begin{equation*}
\left|i_{s}\left(E_{1}\right)\right| c_{s 1}-\left|i_{s}\left(E_{2}\right)\right| c_{s 2}=\left|i_{s}\left(E_{1}\right)\right|\left(c_{s 1}-c_{s 2}\right)-c_{s 2}\left(\left|i_{s}\left(E_{1}\right)\right|-\left|i_{s}\left(E_{2}\right)\right|\right) \tag{B.26}
\end{equation*}
$$

Work in progress as of February 5, 2022

Using notations in Lemma B.3.6, we have, pointwisely

$$
\begin{align*}
& \left\|i _ { s } (E _ { 1 }) \left|-\left|i_{s}\left(E_{2}\right) \|=L_{s}\right|\left(e^{\alpha_{1}\left(E_{1}-E_{s}\right)}-e^{-\beta_{1}\left(E_{1}-E_{s}\right)}\right)-\left(e^{\alpha_{1}\left(E_{2}-E_{s}\right)}-e^{-\beta_{1}\left(E_{2}-E_{s}\right)} \mid\right.\right.\right. \\
& \leqslant L_{s}\left(\alpha_{1}+\beta_{1} e^{\beta_{1}\left(E_{s}-E_{k}\right)}\right)\left|E_{1}-E_{2}\right| \\
& \leqslant L_{s}\left(\alpha_{1}+\beta_{1} e^{\beta_{1}\left(E_{s}-E_{k}\right)}\right) \widetilde{M}\left|\frac{c_{s 1}}{c_{k 1}}-\frac{c_{s 2}}{c_{k 2}}\right| \tag{B.27}\\
& \leqslant L_{s}\left(\alpha_{1}+\beta_{1} e^{\beta_{1}\left(E_{s}-E_{k}\right)}\right) \frac{\widetilde{M}}{\left(\eta_{k}^{m+1}\right)^{2}}\left(\left|c_{s 1}-c_{s 2}\right|+\left|c_{k 1}-c_{k 2}\right|\right)
\end{align*}
$$

Similarly, we have

$$
\begin{equation*}
\left|i_{s}\left(E_{1}\right)\right|-\left|i_{s}\left(E_{2}\right)\right| \leqslant L_{k}\left(\alpha_{2} e^{\alpha_{2}\left(E_{s}-E_{k}\right)}+\beta_{2}\right) \frac{\widetilde{M}}{\left(\eta_{k}^{m+1}\right)^{2}}\left(\left|c_{s 1}-c_{s 2}\right|+\left|c_{k 1}-c_{k 2}\right|\right) \tag{B.28}
\end{equation*}
$$

Now letting $w_{s}=c_{s 1}-c_{s 2}$ and $w_{k}=c_{k 1}-c_{k 2}$ in (B.25) and by (B.26)-(B.28) with Hölder inequality, there is a generic constant C such that

$$
\begin{align*}
& \left\|c_{s 1}-c_{s 2}\right\|_{r_{l}^{m+1}}^{2}+\left\|c_{k 1}-c_{k 2}\right\|_{r_{l}^{m+1}}^{2}+\delta t D_{s}\left\|\nabla\left(c_{s 1}-c_{s 2}\right)\right\|_{r_{l}^{m+1}}^{2}+\delta t D_{k}\left\|\nabla\left(c_{k 1}-c_{k 2}\right)\right\|_{r_{l}^{m+1}}^{2} \\
& \leqslant C \delta t\left(\left\|c_{s 1}-c_{s 2}\right\|_{L^{2}(S)}^{2}+\left\|c_{k 1}-c_{k 2}\right\|_{L^{2}(S)}^{2}\right) \tag{B.29}
\end{align*}
$$

Since $\left\|\frac{1}{r_{l}}\right\|_{L^{\infty}\left(0, T ; L^{\infty}(\Omega)\right)}$ is bounded, we also have

$$
\begin{align*}
& \left\|c_{s 1}-c_{s 2}\right\|_{0}^{2}+\left\|c_{k 1}-c_{k 2}\right\|_{0}^{2}+\delta t D_{s}\left\|\nabla\left(c_{s 1}-c_{s 2}\right)\right\|_{0}^{2}+\delta t D_{k}\left\|\nabla\left(c_{k 1}-c_{k 2}\right)\right\|_{0}^{2} \\
& \leqslant C \delta t\left(\left\|c_{s 1}-c_{s 2}\right\|_{L^{2}(S)}^{2}+\left\|c_{k 1}-c_{k 2}\right\|_{L^{2}(S)}^{2}\right) \tag{B.30}
\end{align*}
$$

for some constant $C>0$. Applying the trace inequality, there is a constant $C_{1}>0$ such that

$$
\begin{align*}
& \left\|c_{s 1}-c_{s 2}\right\|_{L^{2}(S)}^{2} \leqslant C_{1}\left\|c_{s 1}-c_{s 2}\right\|_{0}\left\|c_{s 1}-c_{s 2}\right\|_{1} \\
& \leqslant \frac{C_{1}}{2 \epsilon_{1}}\left\|c_{s 1}-c_{s 2}\right\|_{0}^{2}+\frac{C_{1} \epsilon_{1}}{2}\left\|c_{s 1}-c_{s 2}\right\|_{1}^{2}=\left(\frac{C_{1}}{2 \epsilon_{1}}+\frac{C_{1} \epsilon_{1}}{2}\right)\left\|c_{s 1}-c_{s 2}\right\|_{0}^{2}+\frac{C_{1} \epsilon_{1}}{2}\left\|\nabla\left(c_{s 1}-c_{s 2}\right)\right\|_{0}^{2} \tag{B.31}
\end{align*}
$$

for all $\epsilon_{1}>0$. Similarly, there is a constant $C_{2}>0$ such that

$$
\begin{equation*}
\left\|c_{k 1}-c_{k 2}\right\|_{L^{2}(S)}^{2} \leqslant\left(\frac{C_{2}}{2 \epsilon_{2}}+\frac{C_{2} \epsilon_{2}}{2}\right)\left\|c_{k 1}-c_{k 2}\right\|_{0}^{2}+\frac{C_{2} \epsilon_{2}}{2} \| \nabla\left(c_{k 1}-c_{k 2} \|_{0}^{2}\right. \tag{B.32}
\end{equation*}
$$

for all $\epsilon_{2}>0$. Choosing $\epsilon_{1}=\frac{2 D_{s}}{C_{1}}, \epsilon_{2}=\frac{2 D_{k}}{C_{2}}$ and

$$
\delta t \leqslant \min \left(\frac{1}{2\left(\frac{C_{1}^{2}}{4 D_{s}}+D_{s}\right)}, \frac{1}{2\left(\frac{C_{2}^{2}}{4 D_{k}}+D_{k}\right)}\right)
$$

we have

$$
\begin{equation*}
\frac{1}{2}\left\|c_{s 1}-c_{s 2}\right\|_{0}^{2}+\frac{1}{2}\left\|c_{k 1}-c_{k 2}\right\|_{0}^{2} \leqslant 0 \tag{B.33}
\end{equation*}
$$

This implies that $c_{s 1}=c_{s 2}$ and $c_{k 1}=c_{k 2}$. Since $c_{s 1}, c_{s 2}, c_{k 1}, c_{k 2} \in C(\bar{\Omega})$, the unique solvability for (B.15) implies that $E_{1}=E_{2}$ on S. This leads to the contradiction. Q.E.D.

Remark B.3.1 In the above theorem, the choice of δt is independent of the data of the previous step $\left(c_{s}^{m}, c_{k}^{m}, E_{m i x}^{m}\right)$. Therefore, the unique solution for time-discrete problem at time $t=T$ can be reached in finite steps.

B. 4 Stability analysis

Since the uniform bounds independent of $E_{m i x}^{m+1}$ have been found for L^{∞} boundedness of c_{s}^{m} and $c_{k}^{m}, m=0, \ldots, N$. Now we provide some results of stability:

Lemma B.4.1 Let $0 \leqslant c_{j}^{0} \leqslant 1, c_{j}^{0} \in H^{1}(\Omega)$ for $j=s, k, g$, and $E_{m i x}^{0} \in B$. There are generic constants $C>0$ such that

$$
\begin{equation*}
\delta t \sum_{j=s, k, g} \sum_{m=0}^{N-1}\left\|\nabla c_{j}^{m+1}\right\|_{r_{l}^{m+1}}^{2} \leqslant C \tag{B.34}
\end{equation*}
$$

Proof. Letting $w_{s}=c_{s}^{m+1}$ in (B.12), we have

$$
\begin{align*}
& \left\|c_{s}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+\delta t D_{s}\left\|\nabla c_{s}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+\delta t\left(r_{l}^{m+1} i_{s}^{m+1} c_{s}^{m+1}, c_{s}^{m+1}\right)_{L^{2}(S)} \\
& =\left(c_{s}^{m}, c_{s}^{m+1}\right)_{r_{l}^{m+1}} \leqslant\left\|c_{s}^{m}\right\|_{r_{l}^{m}}\left\|c_{s}^{m+1}\right\|_{r_{l}^{m+1}} \tag{B.35}\\
& \leqslant \frac{1}{2}\left\|c_{s}^{m}\right\|_{r_{l}^{m}}^{2}+\frac{1}{2}\left\|c_{s}^{m+1}\right\|_{r_{l}^{m+1}}^{2} .
\end{align*}
$$

Similarly, letting $w_{k}=c_{k}^{m+1}$ in (B.13), we have

$$
\begin{align*}
& \left\|c_{k}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+\delta t D_{k}\left\|\nabla c_{k}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+\delta t\left(r_{l}^{m+1} i_{k}^{m+1} c_{k}^{m+1}, c_{k}^{m+1}\right)_{L^{2}(S)} \\
& \leqslant \frac{1}{2}\left\|c_{k}^{m}\right\|_{r_{l}^{m}}^{2}+\frac{1}{2}\left\|c_{k}^{m+1}\right\|_{r_{l}^{m+1}}^{2} \tag{B.36}
\end{align*}
$$

Once more, letting $w_{g}=c_{g}^{m+1}$ in (B.14), we have

$$
\begin{align*}
& \left\|c_{g}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+\delta t D_{g}\left\|\nabla c_{g}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+\delta t \frac{M_{g} K_{g}}{\rho_{l}}\left\|c_{g}^{m+1}\right\|_{0}^{2} \\
& =\left(c_{g}^{m}, c_{g}^{m+1}\right)_{r_{l}^{m+1}}+\beta \delta t\left(r_{l}^{m+1} i_{s}^{m+1} c_{s}^{m+1}, c_{s}^{m+1}\right)_{L^{2}(S)} \\
& \leqslant \frac{1}{2}\left\|c_{g}^{m}\right\|_{r_{l}^{m}}^{2}+\frac{1}{2}\left\|c_{g}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+\beta \delta t\left(r_{l}^{m+1} i_{s}^{m+1} c_{s}^{m+1}, c_{g}^{m+1}\right) \\
& \leqslant \frac{1}{2}\left\|c_{g}^{m}\right\|_{r_{l}^{m}}^{2}+\frac{1}{2}\left\|c_{g}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+\beta \delta t\left\|i_{s}\right\|_{L^{2}(S)}\left\|c_{g}\right\|_{L^{2}(S)} \tag{B.37}\\
& \leqslant \frac{1}{2}\left\|c_{g}^{m}\right\|_{r_{l}^{m}}^{2}+\frac{1}{2}\left\|c_{g}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+\beta \delta t\left(\frac{1}{2 \epsilon}\left\|i_{s}\right\|_{L^{2}(S)}^{2}+\frac{\epsilon}{2}\left\|c_{g}\right\|_{L^{2}(S)}\right) \\
& \leqslant \frac{1}{2}\left\|c_{g}^{m}\right\|_{r_{l}^{m}}^{2}+\frac{1}{2}\left\|c_{g}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+C \delta t\left(\frac{1}{2 \epsilon}\left\|i_{s}\right\|_{L^{2}(S)}^{2}+\frac{\epsilon}{2}\left\|c_{g}\right\|_{1}^{2}\right)
\end{align*}
$$

Therefore, we have

$$
\begin{equation*}
\left(1+\delta t \frac{M_{g} K_{g}}{\rho_{l}}-C \epsilon \delta t\right)\left\|c_{g}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+\delta t\left(2 D_{g}-C \epsilon\right)\left\|\nabla c_{g}\right\|_{r_{l}^{m+1}}^{2} \leqslant \frac{C \delta t}{\epsilon}\left\|i_{s}\right\|_{L^{2}(S)}+\left\|c_{g}^{m}\right\|_{r_{l}^{m}}^{2} \tag{B.38}
\end{equation*}
$$

Taking $\epsilon=\frac{D_{g}}{C}$ sufficiently small so that and using the fact that c_{g}^{m+1} has a uniform L^{∞} bound. We can conclude that there exists a generic constant $C>0$ such that

$$
\begin{equation*}
\left\|\nabla c_{g}^{m+1}\right\|_{0}^{2} \leqslant C \tag{B.39}
\end{equation*}
$$

Collecting (B.35), (B.36), and (B.39) and taking the summation from 0 to $\frac{T}{\delta t}-1$, the proof is completed. Q.E.D.

Since $\left\|\frac{1}{r_{l}^{m+1}}\right\|_{L^{\infty}(\Omega)}$ is bounded for all $m=0, \ldots, N$, we have
Corollary B.4.1 There are generic constants $C>0$ such that

$$
\begin{equation*}
\delta t \sum_{j=s, k, g} \sum_{m=0}^{N-1}\left\|\nabla c_{j}^{m+1}\right\|_{0}^{2} \leqslant C \tag{B.40}
\end{equation*}
$$

Lemma B.4.2 There are generic constants $C>0$ such that

$$
\begin{equation*}
\sum_{j=s, k, g} \sum_{m=0}^{N-1}\left\|r_{l}^{m+1}\left(c_{j}^{m+1}-c_{j}^{m}\right)\right\|_{0}^{2} \leqslant C \tag{B.41}
\end{equation*}
$$

Proof. The proof is almost identical to Lemma B.4.1 with the fact that

$$
\begin{align*}
& \left(r_{l}^{m+1} c_{j}^{m+1}-c_{j}^{m}, c_{j}^{m+1}\right) \\
& =\frac{1}{2}\left\|c_{j}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+\frac{1}{2}\left\|c_{j}^{m}-c_{j}^{m}\right\|_{r_{l}^{m+1}}^{2}-\frac{1}{2}\left\|c_{j}^{m}\right\|_{r_{l}^{m+1}}^{2} \tag{B.42}\\
& \leqslant \frac{1}{2}\left\|c_{j}^{m+1}\right\|_{r_{l}^{m+1}}^{2}+\frac{1}{2}\left\|c_{j}^{m}-c_{j}^{m}\right\|_{r_{l}^{m+1}}^{2}-\frac{1}{2}\left\|c_{j}^{m}\right\|_{r_{l}^{m}}^{2}
\end{align*}
$$

Q.E.D.

Lemma B.4.3 There are generic constants $C>0$ such that

$$
\begin{equation*}
\delta t \sum_{j=s, k, g} \sum_{m=0}^{N-1}\left\|\frac{r_{l}^{m+1}\left(c_{j}^{m+1}-c_{j}^{m}\right)}{\delta t}\right\|_{\left(H^{1}(\Omega)\right)^{\prime}}^{2} \leqslant C \tag{B.43}
\end{equation*}
$$

Proof. We only look for the boundedness of c_{s} and the case is similar for k and dis. By definition

$$
\begin{equation*}
\left\|\frac{r_{l}^{m+1}\left(c_{s}^{m+1}-c_{s}^{m}\right)}{\delta t}\right\|_{\left(H^{1}(\Omega)\right)^{\prime}}=\sup _{w_{s} \in H^{1}(\Omega)}\left\langle\frac{r_{l}^{m+1}\left(c_{s}^{m+1}-c_{s}^{m}\right)}{\delta t}, w_{s}\right\rangle \tag{B.44}
\end{equation*}
$$

$\operatorname{By}(\mathrm{B} .12)$, with $w=\frac{w_{s}}{\left\|w_{s}\right\|_{1}} \in H^{1}(\Omega)$,

$$
\begin{align*}
& \left\|\frac{r_{l}^{m+1}\left(c_{s}^{m+1}-c_{s}^{m}\right)}{\delta t}\right\|_{\left(H^{1}(\Omega)\right)^{\prime}} \tag{B.45}\\
& =\sup _{w \in H^{1}(\Omega),\|w\|_{1}=1}\left\{-D_{s}\left(\nabla c_{s}^{m+1}, \nabla w\right)_{r_{l}^{m+1}}-\frac{1}{z_{s} F}\left(r_{l}^{m+1}\left|i_{s}^{m+1}\right| c_{s}^{m+1}, w\right)_{L^{2}(S)}\right\}
\end{align*}
$$

Work in progress as of February 5, 2022

We estimate all terms on the right hand side of (B.45):

$$
\begin{align*}
& -D_{s}\left(\nabla c_{s}^{m+1}, \nabla w\right)_{r_{l}^{m+1}} \leqslant D_{s}\left\|\nabla c_{s}^{m+1}\right\|_{r_{l}^{m+1}}\|\nabla w\|_{r_{l}^{m+1}} \tag{B.46}\\
& \leqslant D_{s}\left\|\nabla c_{s}^{m+1}\right\|_{r_{l}^{m+1}}\|\nabla w\| \leqslant D_{s}\left\|\nabla c_{s}^{m+1}\right\|_{r_{l}^{m+1}}\|w\|_{1} \leqslant D_{s}\left\|\nabla c_{s}^{m+1}\right\|_{r_{l}^{m+1}} \\
& \left.\quad-\frac{1}{z_{s} F}\left(r_{l}^{m+1}\left|i_{s}^{m+1}\right| c_{s}^{m+1}, w\right)_{L^{2}(S)} \leqslant \frac{1}{z_{s} F} \right\rvert\, i_{s}\left(E_{k}\right)\left\|c_{s}^{m+1}\right\|_{L^{2}(S)}\|w\|_{L^{2}(S)} \tag{B.47}\\
& \quad \leqslant C\left\|c_{s}^{m+1}\right\|_{1}\|w\|_{1}=C\left\|c_{s}^{m+1}\right\|_{1},
\end{align*}
$$

Collecting (B.46)-(B.47) and multiplying by δt gives

$$
\begin{equation*}
\delta t\left\|\frac{r_{l}^{m+1}\left(c_{s}^{m+1}-c_{s}^{m}\right)}{\delta t}\right\|_{\left(H^{1}(\Omega)\right)^{\prime}}^{2} \leqslant C \delta t\left(\left\|c_{s}^{m}\right\|_{1}^{2}+\left\|c_{s}^{m+1}\right\|_{1}^{2}\right) \tag{B.48}
\end{equation*}
$$

Taking the summation from 0 to $N-1$ and the boundedness given by Corollaray B.4.1 and Lemma B.3.3, we have the desired estimate. Q.E.D.

Corollary B.4.2 There are generic constants $C>0$ such that

$$
\begin{equation*}
\delta t \sum_{j=s, k, g} \sum_{m=0}^{N-1}\left\|\frac{c_{j}^{m+1}-c_{j}^{m}}{\delta t}\right\|_{\left(H^{1}(\Omega)\right)^{\prime}}^{2} \leqslant C \tag{B.49}
\end{equation*}
$$

Proof. This is the direct result from Lemma B.4.3 and the fact that r_{l}^{m+1} is bounded in $L^{\infty}(\Omega)$. Q.E.D.

Corollary B.4.3 There are generic constants $C>0$ such that

$$
\begin{equation*}
\delta t \sum_{j=s, k, g} \sum_{m=0}^{N-1}\left\|\frac{r_{j}^{m+1} c_{j}^{m+1}-r_{j}^{m} c_{j}^{m}}{\delta t}\right\|_{\left(H^{1}(\Omega)\right)^{\prime}}^{2} \leqslant C \tag{B.50}
\end{equation*}
$$

Proof. By the relation

$$
r_{l}^{m+1} c_{j}^{m+1}-r_{l}^{m} c_{j}^{m}=r_{l}^{m+1}\left(c_{j}^{m+1}-c_{j}^{m+1}\right)+c_{s}^{m}\left(r_{l}^{m+1}-r_{l}^{m}\right), \quad 0 \leqslant m \leqslant M-1,
$$

the desired result can be obtained by collecting Lemma B.4.3, Corollary B.4.2 and the L^{∞} boundedness of r_{l}^{m} for all $0 \leqslant m \leqslant N$. Q.E.D.

Lemma B.4.4 Assuming that $r_{l}^{j} \in H^{1}(\Omega), 0<r_{l}^{j} \leqslant 1, c_{g}^{j} \in H^{1}(\Omega) \cap L^{\infty}(\Omega), c_{g}^{j} \geqslant 0$ for all $0 \leqslant j \leqslant m \leqslant N$, then we have the estimate

$$
\begin{equation*}
\left\|\nabla r_{l}^{k}\right\|_{0}^{2} \leqslant \exp \left(\frac{K_{g} T}{\rho_{g}}\right)\left(\left\|\nabla r_{l}^{0}\right\|_{0}^{2}+\frac{K_{g} \delta t}{\rho_{g}} \sum_{m=0}^{N-1}\left\|\nabla c_{g}^{m}\right\|_{0}^{2}\right) \tag{B.51}
\end{equation*}
$$

Proof. Multiplying (C.11) with $\partial_{x_{i}} r_{l}^{m+1}$ and integrating the both sides with respect to Ω, we
have

$$
\begin{align*}
& \int_{\Omega}\left(1+\frac{K \delta t}{\rho_{g}} c_{g}^{m}\right)\left|\nabla r_{l}^{m+1}\right|^{2} d x=-\frac{K \delta t}{\rho_{g}} \int_{\Omega} \nabla c_{g}^{m} \cdot \nabla r_{l}^{m+1} d x+\int_{\Omega} \nabla r_{l}^{m} \cdot \nabla r_{l}^{m+1} d x \\
& \leqslant \frac{K \delta t}{\rho_{g}}\left\|\nabla c_{g}^{m}\right\|_{0}\left\|\nabla r_{l}^{m+1}\right\|_{0}+\left\|\nabla r_{l}^{m}\right\|_{0}\left\|\nabla r_{l}^{m+1}\right\|_{0} \tag{B.52}\\
& \leqslant \frac{1}{2}\left\|\nabla r_{l}^{m}\right\|_{0}^{2}+\frac{1}{2}\left(1+\frac{K \delta t}{\rho_{g}}\right)\left\|\nabla r_{l}^{m+1}\right\|_{0}^{2}+\frac{1}{2} \frac{K \delta t}{\rho_{g}}\left\|\nabla c_{g}^{m}\right\|_{0}^{2} .
\end{align*}
$$

The above inequality leads to

$$
\begin{equation*}
\left(1-\frac{K \delta t}{\rho_{g}}\right)\left\|\nabla r_{l}^{m+1}\right\|_{0}^{2} \leqslant\left\|\nabla r_{l}^{m}\right\|_{0}^{2}+\frac{K \delta t}{\rho_{g}}\left\|\nabla c_{g}^{m}\right\|_{0}^{2} \tag{B.53}
\end{equation*}
$$

Taking the summation from 0 to $N-1$, we have

$$
\begin{equation*}
\left\|\nabla r_{l}^{j}\right\|_{0}^{2} \leqslant\left(1-\frac{K \delta t}{\rho_{g}}\right)^{-N}\left(\left\|\nabla r_{l}^{0}\right\|_{0}^{2}+\frac{K \delta t}{\rho_{g}} \sum_{m=0}^{N-1}\left\|\nabla c_{g}^{m}\right\|_{0}^{2}\right) \tag{B.54}
\end{equation*}
$$

for all $0 \leqslant j \leqslant N$. Since $\delta t=T / N$, we have

$$
\left(1-\frac{K_{g} \delta t}{\rho_{g}}\right)^{-N}=\left(1-\frac{K_{g} T}{N \rho_{g}}\right)^{-N} \leqslant \exp \left(\frac{K_{g} T}{\rho_{g}}\right)
$$

Employing the above inequality to (B.54), the proof is completed. Q.E.D.

B. 5 Passage to limit $\delta t \rightarrow 0$

Let us define

$$
\begin{equation*}
r_{l, \delta}:[0, T] \rightarrow H^{1}(\Omega), \quad r_{l, \delta}(t)=r_{l}^{j} \quad \text { if } t \in((j-1) \delta t, j \delta t], \tag{B.55}
\end{equation*}
$$

$$
\begin{gather*}
r_{l, h}:[0, T] \rightarrow H^{1}(\Omega), \quad r_{l, h}(t)=\frac{t-(j-1) \delta t}{\delta t} r_{l}^{j}+\frac{j \delta t-t}{\delta t} r_{l}^{j-1} \quad \text { if } t \in((j-1) \delta t, j \delta t], \tag{B.56}\\
c_{d i s, \delta}:[0, T] \rightarrow H^{1}(\Omega), \quad c_{g, \delta}(t)=c_{g}^{j} \quad \text { if } t \in((j-1) \delta t, j \delta t], \tag{B.57}\\
c_{s, \delta}:[0, T] \rightarrow H^{1}(\Omega), \quad c_{s, \delta}(t)=c_{s}^{j} \quad \text { if } t \in((j-1) \delta t, j \delta t] \tag{B.58}\\
c_{k, \delta}:[0, T] \rightarrow H^{1}(\Omega), \quad c_{k, \delta}(t)=c_{k}^{j} \quad \text { if } t \in((j-1) \delta t, j \delta t] \tag{B.59}\\
c_{d i s, h}:[0, T] \rightarrow H^{1}(\Omega), \\
 \tag{B.60}\\
c_{d i s, h}(t)=\frac{t-(j-1) \delta t}{\delta t} c_{g}^{j}+\frac{j \delta t-t}{\delta t} c_{g}^{j-1} \quad \text { if } t \in((j-1) \delta t, j \delta t], \\
c_{s, h}:[0, T] \rightarrow H^{1}(\Omega), \tag{B.61}\\
c_{s, h}(t)=\frac{t-(j-1) \delta t}{\delta t} c_{s}^{j}+\frac{j \delta t-t}{\delta t} c_{s}^{j-1} \quad \text { if } t \in((j-1) \delta t, j \delta t] \\
c_{k, h}:[0, T] \rightarrow H^{1}(\Omega), \tag{B.62}\\
c_{k, h}(t)=\frac{t-(j-1) \delta t}{\delta t} c_{k}^{j}+\frac{j \delta t-t}{\delta t} c_{k}^{j-1} \quad \text { if } t \in((j-1) \delta t, j \delta t], \tag{B.63}\\
c_{d i s, \delta-}:[0, T] \rightarrow H^{1}(\Omega), \quad c_{d i s, \delta}(t)=c_{g}^{j-1} \quad \text { if } t \in((j-1) \delta t, j \delta t]
\end{gather*}
$$

$$
\begin{gather*}
c_{s, \delta-}:[0, T] \rightarrow H^{1}(\Omega), \quad c_{i s, \delta}(t)=c_{s}^{j-1} \quad \text { if } t \in((j-1) \delta t, j \delta t] \tag{B.64}\\
c_{k, \delta-}:[0, T] \rightarrow H^{1}(\Omega), \quad c_{k, \delta}(t)=c_{k}^{j-1} \quad \text { if } t \in((j-1) \delta t, j \delta t] \tag{B.65}\\
E_{m i x, \delta}:[0, T] \rightarrow L^{2}(S), \quad E_{m i x, \delta}(t)=E_{m i x}^{j} \quad \text { if } t \in((j-1) \delta t, j \delta t] \tag{B.66}
\end{gather*}
$$

$\left(r_{l} c_{g}\right)_{h}:[0, T] \rightarrow H^{1}(\Omega), \quad\left(r_{l} c_{g}\right)_{h}(t)=\frac{t-(j-1) \delta t}{\delta t} r_{l}^{j} c_{g}^{j}+\frac{j \delta t-t}{\delta t} r_{l}^{j-1} c_{g}^{j-1} \quad$ if $t \in((j-1) \delta t, j \delta t]$,
$\left(r_{l} c_{s}\right)_{h}:[0, T] \rightarrow H^{1}(\Omega), \quad\left(r_{l} c_{s}\right)_{h}(t)=\frac{t-(j-1) \delta t}{\delta t} r_{l}^{j} c_{s}^{j}+\frac{j \delta t-t}{\delta t} r_{l}^{j-1} c_{s}^{j-1} \quad$ if $t \in((j-1) \delta t, j \delta t]$,
$\left(r_{l} c_{k}\right)_{h}:[0, T] \rightarrow H^{1}(\Omega), \quad\left(r_{l} c_{k}\right)_{h}(t)=\frac{t-(j-1) \delta t}{\delta t} r_{l}^{j} c_{k}^{j}+\frac{j \delta t-t}{\delta t} r_{l}^{j-1} c_{k}^{j-1} \quad$ if $t \in((j-1) \delta t, j \delta t]$,
With the above notations, the system of discrete equations can be expressed as:

$$
\begin{gather*}
\left\langle\partial_{t} r_{l, h}, w\right\rangle+\left(\frac{K_{g}}{\rho_{g}} r_{l, \delta} c_{d i s, \delta-}\right)=0 \tag{B.70}\\
\left\langle r_{l, \delta} \partial_{t} c_{d i s, h}, w_{g}\right\rangle+D_{g}\left(r_{l, \delta} \nabla c_{d i s, \delta}, \nabla w_{g}\right)+\frac{M_{g} K_{g}}{\rho_{l}}\left(r_{l, \delta} c_{d i s, \delta}, w_{g}\right) \tag{B.71}\\
=\frac{\beta}{z_{s} F}\left(r_{l, \delta}\left|i_{g}\left(E_{m i x, \delta}\right)\right| c_{d i s, \delta}, w_{g}\right)_{L^{2}(S)} \\
\left\langle r_{l, \delta} \partial_{t} c_{s, h}, w_{s}\right\rangle+D_{s}\left(r_{l, \delta} \nabla c_{s, \delta}, \nabla w_{s}\right)+\frac{1}{z_{s} F}\left(r_{l, \delta}\left|i_{s}\left(E_{m i x, \delta}\right)\right| c_{s, \delta}, w_{s}\right)_{L^{2}(S)}=0, \tag{B.72}\\
\left\langle r_{l, \delta} \partial_{t} c_{k, h}, w_{k}\right\rangle+D_{k}\left(r_{l, \delta} \nabla c_{k, \delta}, \nabla w_{k}\right)+\frac{1}{z_{k} F}\left(r_{l, \delta}\left|i_{k}\left(E_{m i x, \delta}\right)\right| c_{k, \delta}, w_{k}\right)_{L^{2}(S)}=0 \tag{B.73}
\end{gather*}
$$

Here we collect the boundedness of functions given by (B.58)-(B.66): By Lemmas B.3.2, B.3.3 and B.4.1, $c_{d i s, \delta}, c_{s, \delta}, c_{k \delta}, c_{d i s, \delta-}, c_{s, \delta-}, c_{k, \delta-}$ are uniformly bounded in $L^{2}\left(0, T ; H^{1}(\Omega)\right)$. Since $E_{m i x, \delta}$ is always bounded in B for all time, $E_{m i x, \delta}$ is uniformly bounded in $L^{2}\left(0, T ; L^{2}(S)\right)$. Therefore, there are $r_{l}, r_{l}^{*}, c_{g}, c_{s}, c_{k}, c_{g}^{*}, c_{s}^{*}, c_{k}^{*}, E_{m i x}$ such that there exist subsequences of $r_{l, \delta}, r_{l, h}, c_{d i s, \delta}, c_{s, \delta}$, $c_{k, \delta}, c_{d i s, \delta-}, c_{s, \delta-}, c_{k, \delta-}$ (still denote by same notations) satisfying

$$
\begin{align*}
r_{l, \delta} \rightarrow r_{l} & \text { in } L^{2}\left(0, T ; H^{1}(\Omega)\right) \text { weakly, } \tag{B.74}\\
r_{l, h} \rightarrow r_{l}^{*} & \text { in } L^{2}\left(0, T ; H^{1}(\Omega)\right) \text { weakly, } \tag{B.75}\\
c_{d i s, \delta} \rightarrow c_{g} & \text { in } L^{2}\left(0, T ; H^{1}(\Omega)\right) \text { weakly, } \tag{B.76}\\
c_{s, \delta} \rightarrow c_{s} & \text { in } L^{2}\left(0, T ; H^{1}(\Omega)\right) \text { weakly, } \tag{B.77}\\
c_{k, \delta} \rightarrow c_{k} & \text { in } L^{2}\left(0, T ; H^{1}(\Omega)\right) \text { weakly, } \tag{B.78}\\
c_{d i s, \delta-} \rightarrow c_{g}^{*} & \text { in } L^{2}\left(0, T ; H^{1}(\Omega)\right) \text { weakly }, \tag{B.79}\\
c_{s, \delta-} \rightarrow c_{s}^{*} & \text { in } L^{2}\left(0, T ; H^{1}(\Omega)\right) \text { weakly, } \tag{B.80}\\
c_{k, \delta-} \rightarrow c_{k}^{*} & \text { in } L^{2}\left(0, T ; H^{1}(\Omega)\right. \text {) weakly, } \tag{B.81}\\
E_{m i x, \delta} \rightarrow E_{m i x} & \text { in } L^{2}((0, T) \times S) \text { weakly. } \tag{B.82}
\end{align*}
$$

For the time derivatives, by Lemma B.4.3, Corollaries B.4.2 and B.4.2, there are $g_{1}, g_{2}, g_{3}, g_{4}, g_{5}, g_{6}, g_{7}$ such that

$$
\begin{array}{rc}
\partial_{t} r_{l, h} \rightarrow g_{1} & \text { in } L^{2}\left(0, T ; L^{2}(\Omega)\right) \text { weakly, } \\
\partial_{t} c_{d i s, h} \rightarrow g_{2} & \text { in } L^{2}\left(0, T ;\left(H^{1}(\Omega)\right)^{\prime}\right) \text { weakly, } \\
\partial_{t} c_{s, h} \rightarrow g_{3} & \text { in } L^{2}\left(0, T ;\left(H^{1}(\Omega)\right)^{\prime}\right) \text { weakly, } \\
\partial_{t} c_{k, h} \rightarrow g_{4} & \text { in } L^{2}\left(0, T ;\left(H^{1}(\Omega)\right)^{\prime}\right) \text { weakly, } \\
\partial_{t}\left(r_{l} c_{g}\right)_{h} \rightarrow g_{5} & \text { in } L^{2}\left(0, T ;\left(H^{1}(\Omega)\right)^{\prime}\right) \text { weakly, } \\
\partial_{t}\left(r_{l} c_{s}\right)_{h} \rightarrow g_{6} & \text { in } L^{2}\left(0, T ;\left(H^{1}(\Omega)\right)^{\prime}\right) \text { weakly, } \\
\partial_{t}\left(r_{l} c_{k}\right)_{h} \rightarrow g_{7} & \text { in } L^{2}\left(0, T ;\left(H^{1}(\Omega)\right)^{\prime}\right) \text { weakly, } \tag{B.89}
\end{array}
$$

Remark B.5.1 By the $L^{2}\left(0, T ; H^{1}(\Omega)\right)$ boundedness of $r_{l, \delta} c_{j, \delta}$ for $j=s, k$, dis, it is easy to conclude that

$$
\begin{equation*}
r_{l, \delta} c_{j, \delta} \rightarrow r_{l} c_{j} \quad \text { in } L^{2}\left(0, T ; H^{1}(\Omega)\right) \text { weakly. } \tag{B.90}
\end{equation*}
$$

Lemma B.5.1 There are generic constants $C>0$ such that

$$
\begin{equation*}
\sum_{j=s, k, g} \int_{0}^{T}\left\|r_{l, \delta}\left(c_{j, \delta}-c_{j, h}\right)\right\|_{0}^{2} d t \leqslant C \delta t \tag{B.91}
\end{equation*}
$$

Proof. By the definition of (B.55), (B.58), and (B.61), we have

$$
\begin{equation*}
\int_{(j-1) \delta t}^{j \delta t}\left\|r_{l, \delta}\left(c_{s, \delta}-c_{s, h}\right)\right\|_{0}^{2} d t=\frac{\delta t}{3}\left\|r_{l}^{j}\left(c_{s}^{j}-c_{s}^{j-1}\right)\right\|_{0}^{2} \tag{B.92}
\end{equation*}
$$

Taking the summation from $j=1$ to $j=T / \delta t$, we get

$$
\begin{align*}
& \int_{0}^{T}\left\|r_{l, \delta}\left(c_{s, \delta}-c_{s, h}\right)\right\|_{0}^{2} d t=\sum_{j=1}^{N} \int_{(j-1) \delta t}^{j \delta t}\left\|r_{l, \delta} c_{s, \delta}-\left(r_{l} c_{s}\right)_{h}\right\|_{0}^{2} d t \tag{B.93}\\
& =\frac{\delta t}{3} \sum_{j=0}^{m}\left\|r_{l}^{j}\left(c_{s}^{j}-c_{s}^{j-1}\right)\right\|_{0}^{2} \leqslant C \delta t
\end{align*}
$$

for some constant $C>0$ by Lemma B.4.2. The same proof can be used to show the boundedness for $r_{l, \delta}\left(c_{k, \delta}-c_{k, h}\right)$ and $r_{l, \delta}\left(c_{d i s, \delta}-c_{d i s, h}\right)$. Q.E.D.

Lemma B.5.2

$$
\begin{equation*}
c_{g}=c_{g}^{*}, \quad c_{s}=c_{s}^{*}, \quad c_{k}=c_{k}^{*}, \quad \text { a.e. in }[0, T] \times \Omega \tag{B.94}
\end{equation*}
$$

Proof. Since there is a uniform L^{∞} bound of $\frac{1}{r_{l}^{m}}$ for all $0 \leqslant m \leqslant N$, there is a constant $C>0$ such that

$$
\begin{equation*}
C\left\|c_{j}^{m+1}-c_{j}^{m}\right\|_{0} \leqslant\left\|r_{l}^{m+1}\left(c_{j}^{m+1}-c_{j}^{m}\right)\right\|_{0}, \quad j=s, k, \text { dis } \tag{B.95}
\end{equation*}
$$

Lemma B.4.2 directly leads to the desired result.Q.E.D.
Remark B.5.2 By a classical argument, see for instance [113], we have

$$
\begin{equation*}
g_{1}=\partial_{t} r_{l}, g_{2}=\partial_{t} c_{g}, \quad g_{3}=\partial_{t} c_{s}, g_{4}=\partial_{t} c_{k}, g_{5}=\partial_{t}\left(r_{l} c_{g}\right), g_{6}=\partial_{t}\left(r_{l} c_{s}\right), g_{7}=\partial_{t}\left(r_{l} c_{k}\right) \tag{B.96}
\end{equation*}
$$

In order to pass the limit in (B.70)-(B.73), we look into (B.72) firstly and take any $w=$ $v(x) \lambda(t)$, where $v \in W^{1, \infty}(\Omega)$ and $\lambda \in W_{0}^{1, \infty}(0, T)$. Then

$$
\begin{align*}
& -\int_{0}^{T}\left(\left(r_{l} c_{s}\right)_{h}, v\right) \lambda^{\prime}(t) d t-\int_{0}^{T}\left(c_{s, \delta-} \partial_{t} r_{l, h}, v\right) \lambda(t) d t+\int_{0}^{T} D_{s}\left(r_{l, \delta} \nabla c_{s, \delta}, \nabla v\right) \lambda d t \tag{B.97}\\
& +\frac{1}{z_{s} F} \int_{0}^{T}\left(r_{l, \delta}\left|i_{s}\left(E_{m i x, \delta}\right)\right| c_{s, \delta}, v\right)_{L^{2}(S)} \lambda d t=0
\end{align*}
$$

For the first term in (B.72), we have

$$
\begin{equation*}
-\int_{0}^{T}\left(\left(r_{l} c_{s}\right)_{h}, v\right) \lambda^{\prime}(t) d t \rightarrow-\int_{0}^{T}\left(r_{l} c_{s}, v\right) \lambda^{\prime}(t) d t=\int_{0}^{T}\left\langle\partial_{t}\left(r_{l} c_{s}\right), v\right\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H^{1}(\Omega)} \lambda(t) d t \tag{B.98}
\end{equation*}
$$

Since $\partial_{t} r_{l, \delta}$ converges to $\partial_{t} r_{l}$ weakly in $L^{2}((0, T) \times \Omega)$ and $c_{s, \delta-}$ converges to c_{s} in $\left.L^{2}(0, T) \times \Omega\right)$ by Aubin-Lions lemma, we have

$$
\begin{equation*}
\int_{0}^{T}\left(c_{s, \delta-} \partial_{t} r_{l, h}, v\right) \lambda(t) d t \rightarrow \int_{0}^{T}\left(c_{s} \partial_{t} r_{l}, v\right) \lambda(t) d t \tag{B.99}
\end{equation*}
$$

Since $r_{l, \delta}$ is strongly convergent in $L^{2}((0, T) \times \Omega)$ (by Aubin-Lions lemma) and $\partial_{x_{i}} c_{s, \delta}$ is weakly convergent in $L^{2}((0, T) \times \Omega)$ for any direction x_{i}, we have

$$
\begin{equation*}
\int_{0}^{T} D_{s}\left(r_{l, \delta} \nabla c_{s, \delta}, \nabla v\right) \lambda d t \rightarrow \int_{0}^{T} D_{s}\left(r_{l} \nabla c_{s}, \nabla v\right) \lambda d t \tag{B.100}
\end{equation*}
$$

To deal with the fourth term, Theorem 1 in [39] can be applied. By the Rellich-Kondrachov theorem, we have the compact embedding $H^{1}(\Omega) \hookrightarrow H^{s}(\Omega)$ for all $0 \leqslant s<1$. On the other hand, H^{s} is continuously embedded in $\left(H^{1}(\Omega)\right)$. Let u be an arbitrary function defined on $[0, T] \times \Omega$. We define $\sigma_{\tau} u(t, x)=u(t-\tau, x)$ in $[\tau, T] \times \Omega$ for $0<\tau<T$. We claim that $\delta t^{-1}\left\|r_{l, \delta} c_{s, \delta}-\sigma_{\delta t}\left(r_{l, \delta} c_{s, \delta}\right)\right\|_{L^{1}\left(\delta t, T ;\left(H^{1}(\Omega)\right)^{\prime}\right)}$ is uniformly bounded.

Lemma B.5.3 There are generic constants $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
\left\|r_{l, \delta} c_{s, \delta}-\sigma_{\delta t}\left(r_{l, \delta} c_{s, \delta}\right)\right\|_{L^{1}\left(\tau, T ;\left(H^{1}(\Omega)\right)^{\prime}\right)} \leqslant C_{1} \delta t, \quad\left\|r_{l, \delta} c_{k, \delta}-\sigma_{\delta t}\left(r_{l, \delta} c_{k, \delta}\right)\right\|_{L^{1}\left(\tau, T ;\left(H^{1}(\Omega)\right)^{\prime}\right)} \leqslant C_{2} \delta t \tag{B.101}
\end{equation*}
$$

Proof. We prove the bound for $c_{s, \delta}$ only. By definition of $c_{s, \delta}$, we have

$$
\begin{aligned}
& \left\|r_{l, \delta} c_{s, \delta}-\sigma_{\delta t}\left(r_{l, \delta} c_{s, \delta}\right)\right\|_{L^{1}\left(\tau, T ;\left(H^{1}(\Omega)\right)^{\prime}\right)}=\int_{\tau}^{T}\left\|r_{l, \delta} c_{s, \delta}-\sigma_{\delta t}\left(r_{l, \delta} c_{s, \delta}\right)\right\|_{\left(H^{1}(\Omega)\right)^{\prime}} d t \\
& =\sum_{m=1}^{N-1} \int_{m \delta t}^{(m+1) \delta t}\left\|r_{l, \delta} c_{s, \delta}-\sigma_{\delta t}\left(r_{l, \delta} c_{s, \delta}\right)\right\|_{\left(H^{1}(\Omega)\right)^{\prime}} d t \leqslant \delta t \sum_{m=0}^{N-1}\left\|r_{s}^{m+1} c_{s}^{m+1}-r_{s}^{m} c_{s}^{m}\right\|_{\left(H^{1}(\Omega)\right)^{\prime}} \\
& =\delta t^{2} \sum_{m=0}^{N-1}\left\|\frac{r_{s}^{m+1} c_{s}^{m+1}-r_{s}^{m} c_{s}^{m}}{\delta t}\right\|_{\left(H^{1}(\Omega)\right)^{\prime}} \\
& \leqslant \delta t^{2} \sum_{m=0}^{N-1}\left(\left\|\frac{r_{s}^{m+1} c_{s}^{m+1}-r_{s}^{m} c_{s}^{m}}{\delta t}\right\|_{\left(H^{1}(\Omega)\right)^{\prime}}^{2}+\frac{1}{2}\right) \leqslant\left(C+\frac{1}{2} T\right) \delta t
\end{aligned}
$$

for some generic constant $C>0$ (by Lemma B.4.3). Q.E.D.

Now using Theorem 1 in [39], we have in particular

$$
\begin{array}{lll}
r_{l, \delta} c_{s, \delta} \rightarrow r_{l} c_{s} & \text { in } L^{2}\left(0, T ; H^{\frac{3}{4}}(\Omega)\right) & \text { strongly } \\
r_{l, \delta} c_{k, \delta} \rightarrow r_{l} c_{k} & \text { in } L^{2}\left(0, T ; H^{\frac{3}{4}}(\Omega)\right) & \text { strongly } \tag{B.103}
\end{array}
$$

Regarding the trace operator $T_{S}: L^{2}\left(0, T ; H^{\frac{3}{4}}(\Omega)\right) \rightarrow L^{2}\left(0, T ; H^{\frac{1}{2}}(S)\right)$ is continuous, we have

$$
\begin{array}{ll}
r_{l, \delta} c_{s, \delta} \rightarrow r_{l} c_{s} & \text { in } L^{2}\left(0, T ; H^{\frac{1}{4}}(S)\right) \text { strongly } \\
r_{l, \delta} c_{k, \delta} \rightarrow r_{l} c_{k} & \text { in } L^{2}\left(0, T ; H^{\frac{1}{4}}(S)\right) \text { strongly } \tag{B.105}
\end{array}
$$

Since i_{s} is strongly negative on $B,\left|i_{s}\right|: B \rightarrow L^{2}(S)$ preserves the continuity and boundedness. Therefore, $\left|i_{s}\left(E_{m i x, \delta}\right)\right| \rightarrow\left|i_{s}\left(E_{m i x}\right)\right|$ weakly in $L^{2}((0, T) \times S)$. Likewise, $i_{k}: B \rightarrow L^{2}(S)$ is continuous. Therefore, $i_{k}\left(E_{m i x, \delta}\right) \rightarrow i_{k}\left(E_{m i x}\right)$ weakly in $L^{2}((0, T) \times S)$. The strong convergence of $r_{l, \delta} c_{s, \delta}$ in $L^{2}((0, T) \times S)$ implies that

$$
\begin{equation*}
\frac{1}{z_{s} F} \int_{0}^{T}\left(r_{l, \delta}\left|i_{s}\left(E_{m i x, \delta}\right)\right| c_{s, \delta}, v\right)_{L^{2}(S)} \lambda d t \rightarrow \frac{1}{z_{s} F} \int_{0}^{T}\left(r_{l}\left|i_{s}\left(E_{m i x}\right)\right| c_{s}, v\right)_{L^{2}(S)} \lambda d t \tag{B.106}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& \int_{0}^{T}\left\langle r_{l} \partial_{t} c_{s}, v\right\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H^{1}(\Omega)}+\int_{0}^{T} D_{s}\left(r_{l} \nabla c_{s}, \nabla v\right) \lambda d t \\
& +\frac{1}{z_{s} F} \int_{0}^{T}\left(r_{l}\left|i_{s}\left(E_{m i x}\right)\right| c_{s}, v\right)_{L^{2}(S)} \lambda d t=0 \tag{B.107}
\end{align*}
$$

for all $\lambda \in W_{0}^{1, \infty}(0, T)$ and for all $v \in W^{1, \infty}(\Omega)$. By a totally same argument, we have

$$
\begin{align*}
& \int_{0}^{T}\left\langle r_{l} \partial_{t} c_{k}, v\right\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H^{1}(\Omega)} \lambda d t+\int_{0}^{T} D_{k}\left(r_{l} \nabla c_{k}, \nabla v\right) \lambda d t \tag{B.108}\\
& +\frac{1}{z_{k} F} \int_{0}^{T}\left(r_{l}\left|i_{k}\left(E_{m i x}\right)\right| c_{k}, v\right)_{L^{2}(S)} \lambda d t=0
\end{align*}
$$

for all $\lambda \in W_{0}^{1, \infty}(0, T)$ and for all $v \in W^{1, \infty}(\Omega)$. Moreover, since $i_{s}\left(E_{m i x, \delta}\right) c_{s, \delta}+i_{k}\left(E_{m i x, \delta}\right) c_{k, \delta}=$ 0 in $(0, T) \times S$ for all δt and

$$
\begin{equation*}
\int_{0}^{T}\left(i_{s}\left(E_{m i x, \delta}\right) c_{s, \delta}+i_{k}\left(E_{m i x, \delta}\right) c_{k, \delta}, v\right) \lambda d t \rightarrow \int_{0}^{T}\left(i_{s}\left(E_{m i x}\right) c_{s}+i_{k}\left(E_{m i x}\right) c_{k}, v\right) \lambda d t \tag{B.109}
\end{equation*}
$$

for all $\lambda \in W_{0}^{1, \infty}(0, T)$ and for all $v \in W^{1, \infty}(\Omega)$. Therefore the resctriction $i_{s}\left(E_{\text {mix }}\right) c_{s}+$ $i_{k}\left(E_{\text {mix }}\right) c_{k}=0$ holds.

Since $r_{l, \delta}, c_{d i s, \delta}$ are strongly convergent in $L^{2}((0, T) \times \Omega)$, we have

$$
\begin{equation*}
\int_{0}^{T}\left(r_{l, \delta} c_{d i s, \delta}, v\right) \lambda(t) d t \rightarrow \int_{0}^{T}\left(r_{l} c_{g}, v\right) \lambda(t) d t \tag{B.110}
\end{equation*}
$$

Employing the same argument as for s and k, we have

$$
\begin{align*}
& \int_{0}^{T}\left\langle r_{l} \partial_{t} c_{g}, v\right\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H^{1}(\Omega)}+\int_{0}^{T} D_{g}\left(r_{l} \nabla c_{g}, \nabla v\right) \lambda d t \\
& +\frac{K_{g} M_{g}}{\rho_{l}} \int_{0}^{T}\left(r_{l, \delta} c_{d i s, \delta}, v\right) \lambda(t) d t \rightarrow \int_{0}^{T}\left(r_{l} c_{g}, v\right) \lambda(t) d t-\frac{\beta}{z_{s} F} \int_{0}^{T}\left(r_{l}\left|i_{s}\left(E_{m i x}\right)\right| c_{s}, v\right)_{L^{2}(S)} \lambda d t=0 \tag{B.111}
\end{align*}
$$

for all $\lambda \in W_{0}^{1, \infty}(0, T)$ and for all $v \in W^{1, \infty}(\Omega)$.
To recover the initial conditions, we take $\lambda \in W^{1, \infty}(0, T), \lambda(T)=0, \lambda(0) \neq 0$, and $v \in$ $W^{1, \infty}(\Omega)$. We consider (B.97) such that all terms are identical except the first one:

$$
\begin{equation*}
\int_{0}^{T}\left(\partial_{t}\left(r_{l} c_{s}\right)_{h}, v\right) \lambda d t=\int_{0}^{T} \partial_{t}\left(\left(r_{l} c_{s}\right)_{h}, v\right) \lambda d t=-\int_{0}^{T}\left(\left(r_{l} c_{s}\right)_{h}, v\right) \lambda^{\prime}(t) d t-\left(r_{l}^{0} c_{s}^{0}, v\right) \lambda(0) \tag{B.112}
\end{equation*}
$$

When passing to the limit, we get

$$
\begin{align*}
& \int_{0}^{T}\left\langle\partial_{t}\left(r_{l} c_{s}\right)_{h}, v\right\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H^{1}(\Omega)} \lambda d t=-\int_{0}^{T}\left(r_{l} c_{s}, v\right) \lambda^{\prime}(t) d t-\left(r_{l}^{0} c_{s}^{0}, v\right) \lambda(0) \\
& =\int_{0}^{T} \frac{d}{d t}\left(r_{l} c_{s}, v\right) \lambda d t+\left(r_{l}(0) c_{s}(0), v\right) \lambda(0)-\left(r_{l}^{0} c_{s}^{0}, v\right) \lambda(0) \tag{B.113}\\
& =\int_{0}^{T}\left\langle\partial_{t}\left(r_{l} c_{s}\right), v\right\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H^{1}(\Omega)} \lambda d t+\left(r_{l}(0) c_{s}(0), v\right) \lambda(0)-\left(r_{l}^{0} c_{s}^{0}, v\right) \lambda(0)
\end{align*}
$$

Therefore

$$
\left(r_{l}(0) c_{s}(0), v\right)=\left(r_{l}^{0} c_{s}^{0}, v\right), \quad \forall v \in H^{1}(\Omega) \cap W^{1, \infty}(\Omega)
$$

This implies that $r_{l}(0) c_{s}(0)=r_{l}^{0} c_{s}(0)=r_{l}^{0} c_{s}^{0}$. Since $r_{l}^{0}>0$, by copying the same argument for r_{l}, c_{k} and c_{g}, we may conclude the above result by the theorem:

Theorem B.5.1 There exists $r_{l}, c_{g}, c_{s}, c_{k} \in L^{2}\left(0, T ; H^{1}(\Omega)\right), E_{m i x}$ in $L^{2}(0, T ; B)$ with $\partial_{t} r_{l}, \partial_{t} c_{g}, \partial_{t} c_{s}, \partial_{t} c_{k} \in$ $L^{2}\left(0, T ;\left(H^{1}(\Omega)\right)^{\prime}\right)$ such that

$$
\begin{gather*}
\int_{0}^{T}\left(\partial_{t} r_{l}, w\right) d t+\frac{K_{g}}{\rho_{g}} \int_{0}^{T}\left(r_{l} c_{g}, w\right) d t=0 \tag{B.114}\\
\int_{0}^{T}\left\langle r_{l} \partial_{t} c_{g}, w_{g}\right\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H^{1}(\Omega)} d t+\int_{0}^{T} D_{g}\left(r_{l} \nabla c_{g}, \nabla w_{g}\right) d t \\
-\frac{\beta}{z_{s} F} \int_{0}^{T}\left(r_{l}\left|i_{s}\left(E_{m i x}\right)\right| c_{s}, w_{s}\right)_{L^{2}(S)} d t+\frac{K_{g} M_{g}}{\rho_{l}} \int_{0}^{T}\left(r_{l} c_{g}, w_{g}\right) d t=0, \tag{B.115}\\
\int_{0}^{T}\left\langle r_{l} \partial_{t} c_{s}, w_{s}\right\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H^{1}(\Omega)} d t+\int_{0}^{T} D_{s}\left(r_{l} \nabla c_{s}, \nabla w_{s}\right) d t \\
+\frac{1}{z_{s} F} \int_{0}^{T}\left(r_{l}\left|i_{s}\left(E_{m i x)}\right)\right| c_{s}, w_{s}\right)_{L^{2}(S)} d t=0, \tag{B.116}\\
\int_{0}^{T}\left\langle r_{l} \partial_{t} c_{k}, w_{k}\right\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H^{1}(\Omega)} d t+\int_{0}^{T} D_{k}\left(r_{l} \nabla c_{k}, \nabla w_{s}\right) d t \\
+\frac{1}{z_{k} F} \int_{0}^{T}\left(r_{l}\left|i_{k}\left(E_{m i x}\right)\right| c_{k}, w_{k}\right)_{L^{2}(S)} d t=0, \tag{B.117}
\end{gather*}
$$

satisfying the constraint

$$
\begin{equation*}
\int_{0}^{T}\left(i_{s}\left(E_{m i x}\right) c_{s}+i_{k}\left(E_{m i x}\right) c_{k}, w_{e}\right)_{L^{2}(S)} d t \tag{B.118}
\end{equation*}
$$

for all $w, w_{g}, w_{s}, w_{k} \in L^{2}\left(0, T ; H^{1}(\Omega)\right)$ and for all $w_{e} \in L^{2}((0, T) \times S)$. Moreover, $r_{l}, c_{g}, c_{s}, c_{k}$ satisfy the initial conditions $r_{l}(0)=r_{l}^{0}, c_{g}(0)=c_{g}^{0}, c_{s}(0)=c_{s}^{0}, c_{k}(0)=c_{k}^{0}$ with $0<r_{l}^{0} \leqslant 1$, $0 \leqslant c_{g}^{0} \leqslant 1,0<c_{s}^{0}, c_{k}^{0} \leqslant 1, r_{l}^{0}, c_{g}^{0}, c_{s}^{0}, c_{k}^{0} \in H^{1}(\Omega)$.

Remark B.5.3 The solution $\left(r_{l}, c_{g}, c_{s}, c_{k}, E_{m i x}\right)$ is unique by Theorem B.3.2.

B. 6 Several species case

The results for two species case can be generalized to $N+1$ species case, $N>2$. Let E_{j} be the constants defined in Section 2 with subscripts $j=s, k_{1}, \ldots, k_{N}$, where s means the ion to be plated and $k_{1}, \ldots k_{N}$ mean other ions involving in the surface reaction. We assume that $0>E_{k_{1}}>\cdots>E_{s}>\cdots>E_{k_{N}}$. Again, we assume that the chemical reaction satisfying electron balance on the reaction surface $S \subset \partial \Omega$ and the convective effect in system (3.26)-(3.28) can be neglected. We assume the same regularity for r_{l} and c_{g} as in two species case. Te system of equations can be expressed as

$$
\begin{align*}
\partial_{t} r_{l}+\frac{K_{g}}{\rho_{g}} c_{g}=0 & \text { in } \Omega \times(0, T] \\
r_{l} \partial_{t} c_{g}-\nabla \cdot\left(r_{l} D \nabla c_{g}\right)+\frac{K_{g} M_{g}}{\rho_{l}} r_{l} c_{g}=0 & \text { in } \Omega \times(0, T] \tag{B.119}\\
\partial_{t}\left(r_{l} \Theta\right)-\nabla \cdot\left(r_{l} D \nabla \Theta\right)=0 & \text { in } \Omega \times(0, T]
\end{align*}
$$

subject to the boundary conditions

$$
\begin{equation*}
-D_{j} \frac{\partial c_{j}}{\partial \mathbf{n}}=\frac{\left|I_{j}\right|}{z_{j} F}, \quad \text { on } S \times(0, T], \quad \frac{\partial c_{j}}{\partial \mathbf{n}}=0, \quad \text { on }(\partial \Omega \backslash S) \times(0, T] \tag{B.120}
\end{equation*}
$$

for $j=s, k_{1}, \ldots, k_{N}$, and

$$
\begin{equation*}
-D_{g} \frac{\partial c_{g}}{\partial \mathbf{n}}=\frac{\beta\left|I_{s}\right|}{z_{s} F}, \quad \text { on } S \times(0, T], \quad \frac{\partial c_{g}}{\partial \mathbf{n}}=0, \quad \text { on }(\partial \Omega \backslash S) \times(0, T] \tag{B.121}
\end{equation*}
$$

The initial conditions are given by $r_{l}(0)=r_{l}^{0} \in H^{1}(\Omega), c_{j}(0)=c_{j}^{0} \in H^{1}(\Omega)$ satisfying

$$
\begin{equation*}
0<c_{j}^{0} \leqslant 1, \quad 0<r_{l}^{0} \leqslant 1, \quad \text { in } \Omega \tag{B.122}
\end{equation*}
$$

for $j=g, s, k_{1}, \ldots, k_{N}$. In the above $\Theta=\left(c_{s}, c_{k_{1}}, \ldots, c_{k_{N}}\right)^{T}$. The constraint for electrons balance reads

$$
\begin{equation*}
I_{s}+\sum_{l=1}^{N} I_{k_{l}}=0 \tag{B.123}
\end{equation*}
$$

Here, we omit the semi-discrete scheme for solving r_{l} and c_{g} since there is nothing different from the two-species case. The time-discrete problem for species $j=s, k_{1}, \ldots, k_{N}$ can be expressed as:

$$
\begin{equation*}
\frac{r_{l}^{m+1}\left(c_{j}^{m+1}-c_{j}^{m}\right)}{\delta t}-\nabla \cdot\left(D_{j} r_{l}^{m+1} \nabla c_{j}^{m+1}\right)=0 \tag{B.124}
\end{equation*}
$$

with boundary conditions on S

$$
\begin{equation*}
-D_{j} \frac{\partial c_{j}^{m+1}}{\partial \mathbf{n}}=\frac{1}{z_{j} F}\left|i_{j}\left(E_{m i x}^{m+1}\right)\right| c_{j}^{m+1} \tag{B.125}
\end{equation*}
$$

where

$$
\begin{align*}
& i_{j}\left(E_{m i x}^{m+1}\right)=L_{j}\left(\exp \left(\frac{\alpha_{j} z_{j} F\left(E_{m i x}^{m+1}-E_{j}\right)}{R \theta}\right)-\exp \left(\frac{-\beta_{j} z_{j} F\left(E_{m i x}^{m+1}-E_{j}\right)}{R \theta}\right)\right) \\
& \sum_{j} i_{j}\left(E_{m i x}^{m+1}\right) c_{j}^{m+1}=0 \tag{B.126}
\end{align*}
$$

for $j=s, k_{1}, k_{2}, \ldots, k_{N}$. In the following, we define $i_{j}^{m+1}:=\left|i_{j}\left(E_{m i x}^{m+1}\right)\right|$.
Now we define the weak problem for the time-discrete problem:
Problem $\left(\widetilde{P_{c_{j}}}\right)$
Find $c_{j}^{m+1}, j=s, k_{1}, k_{2}, \ldots, k_{N} \in H_{r_{l}^{m+1}}^{2}(\Omega)$ such that

$$
\begin{align*}
& \frac{1}{\delta t}\left(c_{j}^{m+1}, w_{j}\right)_{r_{l}^{m+1}}+D_{j}\left(\nabla c_{j}^{m+1}, \nabla w_{j}\right)_{r_{l}^{m+1}}+\frac{1}{z_{j} F}\left(r_{l}^{m+1} i_{j}^{m+1} c_{j}^{m+1}, w_{j}\right)_{L^{2}(S)} \tag{B.127}\\
& =\frac{K}{\rho_{l}}\left(c_{g}^{m+1} c_{j}^{m}, w_{j}\right)_{r_{l}^{m+1}}+\frac{1}{\delta t}\left(c_{j}^{m}, w_{j}\right)_{r_{l}^{m}}
\end{align*}
$$

subject to the constraint

$$
\begin{equation*}
\sum_{j} \int_{S} i_{j}\left(E_{m i x}^{m+1}\right) c_{j}^{m+1} w_{j} d \sigma=0 \tag{B.128}
\end{equation*}
$$

for all $w_{j} \in H^{1}(\Omega)$.
Regarding the argument given in the two species case, we need only to show the existence and uniqueness of the fixed point for solving $E_{m i x}^{m+1}$ by iteration algorithm. Firstly, we shall justify the solvability for $E_{m i x}^{m+1}$ for pointwisely given c_{j}^{m+1} on $S, j=s, k_{1}, \ldots, k_{N}$. Since Thoerem 4 in [73] guarantees that there are $\eta_{j}^{m+1}>0$ such that $c_{j}^{m+1} \geqslant \eta_{j}^{m+1}$ for $j=s, k_{1}, \ldots, k_{N}$, we have

Lemma B.6.1 There is one and only one root $E \in\left[E_{k_{N}}, E_{k_{1}}\right]$ satisfying

$$
\begin{equation*}
\sum_{j} i_{j}(E)\left(c_{j}\right)=0 \tag{B.129}
\end{equation*}
$$

for given $c_{j} \geqslant \eta_{j}^{m+1}, j=s, k_{1}, \ldots, k_{N}$.
Proof. Let $f(E)=\sum_{j} i_{j}(E)\left(c_{j}\right)$. Obviously, we have

$$
\begin{equation*}
f\left(E_{k_{1}}\right)>0, \quad f\left(E_{k_{N}}\right)<0 \tag{B.130}
\end{equation*}
$$

The continuity of f implies that there is a root in $\left[E_{k_{N}}, E_{k_{1}}\right]$. Differentiating f with respect to E, we have
$f^{\prime}(E)=\sum_{j=1}^{N}\left(\alpha_{k_{j}} L_{k_{j}} e^{\alpha_{k_{j}}\left(E-E_{k_{j}}\right)}+\beta_{k_{j}} L_{k_{j}} e^{-\beta_{k_{j}}\left(E-E_{k_{j}}\right)}\right)+\alpha_{s} L_{s} e^{\alpha_{s}\left(E-E_{s}\right)}+\beta_{s} L_{s} e^{-\beta_{s}\left(E-E_{s}\right)}>0$
for all $E \in\left(E_{k_{N}}, E_{k_{1}}\right)$. This implies that $f(E)$ is strcitly monotone. Therefore, the root is unique. Q.E.D.

Let us define $\Lambda_{1}: B \rightarrow \mathbf{H}_{N}:=W_{\eta_{s}^{m+1}} \times W_{\eta_{k_{1}}^{m+1}} \times \cdots \times W_{\eta_{k_{N}}^{m+1}}$ such that $\Lambda_{1}(E)$ is the set of solutions to $\left(\widetilde{P_{c_{j}}}\right)$ when letting $E_{m i x}^{m+1}=E$.

Lemma B.6.2 Λ_{1} is a bounded operator.
Proof. The boundedness of Λ_{1} can be shown by the same argument as in Lemma B.3.3. Q.E.D.
By Corollary 7.3 in [11]:
Lemma B.6.3 The trace operator $T_{N}: \mathbf{H}_{N} \rightarrow\left(L^{2}(S)\right)^{N+1}$ is compact.
Finally, we define $\Lambda_{2}: T_{N}\left(\mathbf{H}_{N}\right) \rightarrow B$ by

$$
\Lambda_{2}:\left(c_{s}, c_{k 1}, \ldots, c_{k_{N}}\right) \mapsto E
$$

where E satisfying $\sum_{j} i_{j}(E) c_{j}=0$ for $j=s, k_{1} \ldots, k_{N}$.
Lemma B.6.4 Λ_{2} is a bounded operator.
Proof. Let $\chi=\left(c_{s}, c_{k 1}, \ldots, c_{k_{N}}\right) \in T_{N}\left(\mathbf{H}_{N}\right)$, we have $E_{k_{N}} \leqslant \Lambda_{2}(\chi) \leqslant E_{k_{1}}$. This implies that

$$
\begin{equation*}
\left\|\Lambda_{2}(\chi)\right\|_{L^{2}(S)}^{2} \leqslant\left\|E_{k_{N}}\right\|_{L^{2}(S)}^{2} \leqslant M \sum_{j}\left\|\eta_{j}^{m+1}\right\|_{0}^{2} \leqslant M \sum_{j}\left\|c_{j}\right\|_{0}^{2} \leqslant M \sum_{j}\left\|c_{j}\right\|_{1}^{2} \tag{B.132}
\end{equation*}
$$

for some constant $M>0$. This completes the proof. Q.E.D.
Defining $\Lambda=\Lambda_{2} \circ T_{N} \circ \Lambda_{1}$, we have
Proposition B.6.1 The operator $\Lambda: B \rightarrow B$ has a fixed point.
Now the existence result for two species case can be generalized to several species case:
Theorem B.6.1 There exist unique $r_{l}, c_{g}, c_{j} \in L^{2}\left(0, T ; H^{1}(\Omega)\right), E_{m i x} \in L^{2}(0, T ; B)$ with $\partial_{t} r_{l}, \partial_{t} c_{g}, \partial_{t} c_{j} \in$ $L^{2}\left(0, T ;\left(H^{1}(\Omega)\right)^{\prime}\right)$ such that

$$
\begin{gather*}
\int_{0}^{T}\left(\partial_{t} r_{l}, w\right) d t+\frac{K_{g}}{\rho_{g}} \int_{0}^{T}\left(r_{l} c_{g}, w\right) d t=0 \tag{B.133}\\
\int_{0}^{T}\left\langle r_{l} \partial_{t} c_{g}, w_{g}\right\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H^{1}(\Omega)} d t+\int_{0}^{T} D_{g}\left(r_{l} \nabla c_{g}, \nabla w_{g}\right) d t \\
-\frac{\beta}{z_{s} F} \int_{0}^{T}\left(r_{l}\left|i_{s}\left(E_{m i x}\right)\right| c_{s}, w_{s}\right)_{L^{2}(S)} d t+\frac{K_{g} M_{g}}{\rho_{l}} \int_{0}^{T}\left(r_{l} c_{g}, w_{g}\right) d t=0, \tag{B.134}\\
\int_{0}^{T}\left\langle\partial_{t}\left(r_{l} c_{j}\right), w_{j}\right\rangle_{\left(H^{1}(\Omega)\right)^{\prime}, H^{1}(\Omega)}+\int_{0}^{T} D_{j}\left(r_{l} \nabla c_{j}, \nabla w_{j}\right) d t \\
+\frac{1}{z_{j} F} \int_{0}^{T}\left(r_{l}\left|i_{j}\left(E_{m i x}\right)\right| c_{j}, w_{j}\right)_{L^{2}(S)} d t=\frac{K}{\rho_{l}} \int_{0}^{T}\left(r_{l} c_{g} c_{j}, w_{j}\right) d t, \tag{B.135}
\end{gather*}
$$

satisfying the constraint

$$
\begin{equation*}
\sum_{j} \int_{0}^{T}\left(i_{j}\left(E_{m i x}\right) c_{s}, w_{e}\right)_{L^{2}(S)} d t \tag{B.136}
\end{equation*}
$$

for all $w, w_{g}, w_{j} \in L^{2}\left(0, T ; H^{1}(\Omega)\right)$ and for all $w_{e} \in L^{2}((0, T) \times S)$. Moreover, r_{l}, c_{g}, c_{j} satisfy the initial conditions $r_{l}(0)=r_{l}^{0}, c_{g}(0)=c_{g}^{0}, c_{j}(0)=c_{j}^{0}$ with $0<r_{l}^{0} \leqslant 1,0 \leqslant c_{g}^{0} \leqslant 1,0<c_{j}^{0} \leqslant 1$, $r_{l}^{0}, c_{g}^{0}, c_{j}^{0} \in H^{1}(\Omega)$.

Bibliography

[1] H. Abels, H. Garcke, and G. Grün. "Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities". In: Mathematical Models and Methods in Applied Sciences 22 (2012), p. 1150013.
[2] M. K. Akbar, D. A. Plummer, and S. M. Ghiaasiaan. "On gas-liquid two-phase flow regimes in microchannels". In: International Journal of Multiphase Flow 29 (2003), pp. 855866.
[3] L. Ambrosio, A. Pinamonti, and G. Speight. "Weighted Sobolev spaces on metric measure spaces". In: Journal für die reine und angewandte Mathematik 2019 (2019), pp. 39-65.
[4] S. Amstutz, T. Takahashi, and B. Vexler. "Topological sensitivity analysis for timedependent problems". In: ESAIM: Control, Optimisation and Calculus of Variations 14 (2008), pp. 427-455.
[5] C. Arana, J. Tabib, J. Dukovic, and L. T. Romankiw. "Electrodeposition of NickelIron Alloys". In: Journal of the Electrochemical Society 136 (1989), pp. 1336-1340.
[6] P. Atkins and J. De Paula. Elements of Physical Chemistry. Ed. by O. U. P. USA. 2013.
[7] M. R. Baer and J. W. Nunziato. "A two-phase mixture theory for the deflagration-todetonation transition (DDT) in reactive granular materials". In: International journal of multiphase flow 12.6 (1986), pp. 861-889.
[8] J. A. Bard and R. A. Faulkner. Electrochemical MethodsFundamentals and Applications. Ed. by J. W. bibinitperiod Sons. 2001.
[9] M. Bene and P. Kuera. "Solutions to the NavierStokes equations with mixed boundary conditions in two-dimensional bounded domains". In: Mathematische Nachrichten 289.2-3 (2016), pp. 194-212.
[10] M. Bercovier and O. Pironneau. "Error estimates for finite element method solution of the Stokes problem in the primitive variables". In: Numerische Mathematik 33 (June 1979), pp. 211-224.
[11] M. Biegert. "On traces of Sobolev functions on the boundary of extension domains". In: Proceedings of the American Mathematical Society 137 (2009), pp. 4169-4176.
[12] R. Blue and D. Uttamchandani. "Recent advances in optical fiber devices for microfluidics integration". In: Journal of Biophotonics 9 (2016), pp. 13-25.
[13] J. P. Boris and D. L. Book. "Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works". In: Journal of Computational Physics 11.1 (1973), pp. 38-69.
[14] M. Braack and P. B. Mucha. "Directional do-nothing condition for the Navier-Stokes equations". In: Journal of Computational Mathematics 32 (2014), pp. 507-521.
[15] A. Brenner and G. E. Riddell. "Nickel plating on steel by chemical reduction". In: Journal of Research of the National Bureau of Standards 37 (1946), pp. 31-34.
[16] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods. Ed. by Springer. 2008.
[17] D. Bresch, B. Desjardins, J.-M. Ghidaglia, and E. Grenier. "Global weak solutions to a generic two-fluid model". In: Archive for Rational Mechanics and Analysis 196 (2010), pp. 599-629.
[18] D. Bresch, B. Desjardins, J.-M. Ghidaglia, E. Grenier, and M. Hilliairet. "Multifluid models including compressible fluids". In: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids (2018), pp. 2927-2978.
[19] D. Bresch and M. Renardy. "Well-posedness of two-layer shallow-water flow between two horizontal rigid plates". In: nonlinearity 24.4 (2011), pp. 1081-1088.
[20] F. Brezzi. "On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers". In: Publications mathématiques et informatique de Rennes S4 (1974), pp. 1-26.
[21] F. E. Browder. "Nonlinear elliptic boundary value problems". In: B. Am. Math. Soc. 69.6 (1963), pp. 862-874.
[22] E. Burman, A. Ern, and M. Fernandez. "Explicit Runge-Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems". In: SIAM Journal on Numerical Analysis 48 (2010), pp. 2019-2042.
[23] A. Cartellier. "Simultaneous void fraction measurement bubble velocity and size estimate using a single optical probe in gasliquid twophase flows". In: Review of Scientific Instruments 63 (1992), pp. 5442-5453.
[24] Y. B. Chen. "Development of Interconnects by Electroless Nickel Plating". MA thesis. Graduate Institute of Materials Science and Engineering, National Taiwan University, 2015.
[25] Y. Choi and R. Lui. "Multi-dimensional electrochemistry model". In: Archive for rational mechanics and analysis 130 (1995), pp. 315-342.
[26] Y. Choi and L. Roger. "Long-time behaviour of solutions of an electrophoretic model with a single reaction". In: IMA journal of applied mathematics 50 (1993), pp. 239-252.
[27] P. G. Ciarlet. Linear and Nonlinear Functional Analysis with Applications. Vol. 130. SIAM, 2013.
[28] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. SIAM, 2002.
[29] P. Ciarlet Jr, J. Huang, and J. Zou. "Some observations on generalized saddle-point problems". In: SIAM Journal on Matrix Analysis and Applications 25.1 (2003), pp. 224-236.
[30] P. Constantin and M. Ignatova. "On the Nernst-Planck-Navier-Stokes system". In: Archive for Rational Mechanics and Analysis 232 (2019), pp. 1379-1428.
[31] C. M. Criss and J. W. Cobbie. "The Thermodynamic Properties of High Temperature Aqueous Solutions". In: Journal of the American Chemical Society 86 (1964), pp. 53855390.
[32] T. A. Davis. "Algorithm 832: UMFPACK V4.3-an Unsymmetric-Pattern Multifrontal Method". In: ACM Trans. Math. Softw. 30.2 (2004), pp. 196-199.
[33] E. Delnoij, F. A. Lammers, J. A. M. Kuipers, and W. P. M. van Swaaij. "Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model". In: Chemical Engineering Science 52 (1997), pp. 1429-1458.
[34] S. van Dijken, G. Di Santo, and B. Poelsema. "Influence of the deposition angle on the magnetic anisotropy in thin Co films on $\mathrm{Cu}(001)$ ". In: Physical Review B 61 (2001), p. 104431.
[35] J. Donea, S. Giuliani, and J. P. Halleux. "An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions". In: Computer Methods in Applied Mechanics and Engineering 33 (1982), pp. 689-723.
[36] J. Donea and A. Huerta. Finite Element Methods for Flow Problems. Ed. by Wiley. 2003.
[37] J. A. Donea. "Taylor-Galerkin method for convective transport problems". In: International Journal for Numerical Methods in Engineering 20 (1984), pp. 101-119.
[38] J. Douglas and T. Dupont. "Galerkin methods for parabolic equations with nonlinear boundary conditions". In: Numerische Mathematik 20 (1973), pp. 213-237.
[39] M. Dreher and A. Jüngel. "Compact families of piecewise constant functions in $L^{p}(0, T ; B)$ ". In: Nonlinear Analysis: Theory, Methods and Applications 75 (2012), pp. 3072-3077.
[40] D. Drew, L. Cheng, and R. Lahey Jr. "The analysis of virtual mass effects in two-phase flow". In: International Journal of Multiphase Flow 5.4 (1979), pp. 233-242.
[41] D. A. Drew. "Mathematical modeling of two-phase flow". In: Annual Review of Fluid Mechanics 15 (1983), pp. 261-291.
[42] F. Duarte, R. Gormaz, and S. Natesan. "Arbitrary LagrangianEulerian method for NavierStokes equations with moving boundaries". In: Computer Methods in Applied Mechanics and Engineering 193 (2004), pp. 4819-4836.
[43] S. Evje and H. Wen. "Weak solutions of a two-phase Navier-Stokes model with a general slip law". In: Journal of Functional Analysis 268 (2015), pp. 93-139.
[44] M. A. Freedman. "Riemann Step Function Approximation of Bochner Integrable Functions". In: Proceedings of the American Mathematical Society 96.4 (1986), pp. 605-613.
[45] T. Fukano and A. Kariyasaki. "Characteristics of gas-liquid two-phase flow in a capillary tube". In: Nuclear Engineering and Design 141 (1993), pp. 59-68.
[46] V. Girault, O. Pironneau, and P. Y. Wu. "Analysis of an Electroless Plating Problem". working paper or preprint. Nov. 2019.
[47] V. Girault and P.-A. Raviart. "Finite Element Methods for Navier-Stokes Equations". In: 5 (1986).
[48] V. Gol'dshtein and A. Ukhlov. "Weighted Sobolev Spaces and Embedding Theorems". In: Transactions of the American Mathematical Society 361 (2009), pp. 3829-3850.
[49] S. Gottesfeld, J. Beery, M. Paffett, M. Hollander, and C. Maggiore. "On the anodic oxidation of formaldehyde during the electroless copper plating process". In: Journal of the Electrochemical Society 133 (1986), p. 1344.
[50] J.-L. Guermond and M. Nazarov. "A maximum-principle preserving C0 finite element method for scalar conservation equations". In: Computer Methods in Applied Mechanics and Engineering 272 (2014), pp. 198-213.
[51] J.-L. Guermond, M. Nazarov, B. Popov, and Y. Yang. "A Second-Order Maximum Principle Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations". In: SIAM Journal on Numerical Analysis 52.4 (2014), pp. 2163-2182.
[52] J.-L. Guermond, B. Popov, and Y. Yang. "The effect of the consistent mass matrix on the maximum-principle for scalar conservation equations". In: Journal of Scientific Computing 70.3 (2017), pp. 1358-1366.
[53] F. Hecht. "New developments in FreeFem++ (www.freefem.org)". In: J. Numer. Math. 20 (2012), pp. 251-265.
[54] F. Hecht, O. Pironneau, A. Le Hyaric, and K. Ohtsuka. FreeFem++ Manual. Ed. by L. J. L. Lions. 2005.
[55] F. Hecht and O. Pironneau. "An energy stable monolithic Eulerian fluid-structure finite element method". In: International Journal for Numerical Methods in Fluids 85.7 (2017), pp. 430-446.
[56] S. Hessami and C. W. Tobias. "A Mathematical Model for Anomalous Codeposition of NickelIron on a Rotating Disk Electrode". In: Journal of the Electrochemical Society 136 (1989), pp. 3611-3616.
[57] A. Hibara et al. "Surface modification method of microchannels for gas- liquid two-phase flow in microchips". In: Analytical Chemistry. 77 (2005), pp. 943-947.
[58] M. Hintermuller and V. A. Kovtunenko. "From shape variation to topological changes in constrained minimization: a velocity method-based concept". In: Optimization Methods and Software 26 (2011), pp. 513-532.
[59] C. W. Hirt, A. A. Amsden, and J. L. Cook. "An arbitrary Lagrangian-Eulerian computing method for all flow speeds". In: Journal of Computational Physics 14 (1974), pp. 227-253.
[60] P. C. Hohenberg and B. I. Halperin. "Theory of dynamic critical phenomena". In: Reviews of Modern Physics 49 (1977), pp. 435-479.
[61] H. Hung, S. Yang, Y. Chen, and C. Kao. "Chip-to-Chip Direct Interconnections by Using Controlled Flow Electroless Ni Plating". In: Journal of Electronic Materials 46 (2017), pp. 4321-4325.
[62] H. Ide, R. Kimura, and M. Kawaji. "Optical Measurement of Void Fraction and Bubble Size Distributions in a Microchannel". In: Heat Transfer Engineering 28 (2007), pp. 713719.
[63] M. Ishii and T. Hibiki. Thermo-fluid dynamics of two-phase flow. Ed. by S. S. bibinitperiod B. Media. 2010.
[64] M. Kato and Y. Okinaka. "Some recent developments in non-cyanide gold plating for electronics applications". In: Gold Bulletin 37 (2004), pp. 37-44.
[65] T. Kato. "Linear evolution equations of "hyperbolic" type, II". In: Journal of the Mathematical Society of Japan 25.4 (1973), pp. 648-666.
[66] Y. S. Kim and H. J. Sohn. "Mathematical modeling of electroless nickel deposition at steady state using rotating disk electrode". In: Journal of the Electrochemical Society 143 (1996), pp. 505-509.
[67] H. C. Koo, R. Saha, and P. A. Kohl. "Copper electroless bonding of dome-shaped pillars for chip-to-package interconnect". In: Journal of the Electrochemical Society 158 (2011), pp. D698-D703.
[68] S. Kramar and J. Neustupa. "Modeling of the unsteady flow through a channel with an artificial outflow condition by the NavierStokes variational inequality". In: Mathematische Nachrichten 291.11-12 (2018), pp. 1801-1814.
[69] K. H. Krishnan, S. John, K. N. Srinivasan, J. Praveen, M. Ganesan, and P. M. Kavimani. "An overall aspect of electroless Ni-P depositionsA review article". In: Metallurgical and Materials Transactions A 37 (2006), pp. 1917-1926.
[70] O. A. Ladyzhenskaia, V. A. Solonnikov, and N. N. Ural'tseva. Linear and quasi-linear equations of parabolic type. Vol. 23. American Mathematical Soc., 1988.
[71] O. Lakkis, A. Madzvamuse, and C. Venkataraman. "Implicit-explicit timestepping with finite element approximation of reaction-diffusion systems on evolving domains". In: SIAM Journal on Numerical Analysis 51 (2013), pp. 2309-2030.
[72] P. D. Lax. Functional Analysis. Ed. by Wiley-Interscience. 2002.
[73] D. Le and H. Smith. "Strong positivity of solutions to parabolic and elliptic equations on nonsmooth domains". In: Journal of Mathematical Analysis and Applications 275 (2002), pp. 208-221.
[74] V. G. Levich and S. Technica. Physicochemical Hydrodynamics. Ed. by P.-h. E. Cliffs. 1962.
[75] C. B. Liu, P. Nithiarasu, and P. Tucker. "Wall distance calculation using the Eikonal/HamiltonJacobi equations on unstructured meshes: A finite element approach". In: Engineering Computations 27 (2010), pp. 645-657.
[76] C. Lochovsky, S. Yasotharan, and A. Günther. "Bubbles no more: in-plane trapping and removal of bubbles in microfluidic devices". In: Lab on a Chip 12 (2012), pp. 595-601.
[77] Lord Rayleigh, Sec R. S. "XX. On the theory of surface forces.II. Compressible fluids". In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 33 (1892), pp. 209-220.
[78] J. Lowengrub and L. Truskinovsky. "Quasi-incompressible Cahn-Hilliard fluids and topological transitions". In: Proceedings of the Royal Society of London. Series A: Mathematical Physical and Engineering Sciences 454 (1998), pp. 2617-2654.
[79] G. O. Mallory and J. B. Hajdu. Electroless Plating: Fundamentals and Applications. Ed. by W. Andrew. 1990.
[80] G. O. Mallory and J. B. Hajdu. Electroless plating: fundamentals and applications. Ed. by C. U. Press. 1990.
[81] A. D. McNaught. Compendium of Chemical Terminology. Ed. by B. S. Oxford. 1997.
[82] "Measurement accuracy of a mono-fiber optical probe in a bubbly flow". In: International Journal of Multiphase Flow 36 (2010), pp. 533-548.
[83] G. J. Minty et al. "Monotone (nonlinear) operators in Hilbert space". In: Duke Math. J. 29.3 (1962), pp. 341-346.
[84] G. J. Minty. "On a monotonicity method for the solution of nonlinear equations in Banach spaces". In: P. Natl. Acad. Sci. USA 50.6 (1963), p. 1038.
[85] J. Ni and C. Beckermann. "A volume-averaged two-phase model for transport phenomena during solidification". In: Metallurgical Transactions B 22 (1991), pp. 349-361.
[86] R. A. Nicolaides. "Existence, Uniqueness and Approximation for Generalized Saddle Point Problems". In: SIAM Journal on Numerical Analysis 19 (1982), pp. 349-357.
[87] A. E. Nielsen. Kinetics of precipitation. Vol. 18. Pergamon, 1964.
[88] C. Ohkubo, T. Hosoi, J. P. Ford, and I. Watanabe. "Effect of surface reaction layer on grindability of cast titanium alloys". In: Dental Materials 22 (2006), pp. 268-274.

Work in progress as of February 5, 2022
[89] Y. Ohtani, A. Horiuchi, A. Yamaguchi, K. Oyaizu, and M. Yuasa. "Non-Cyanide electroless gold plating using polyphenols as reducing agents". In: Journal of the Electrochemical Society 153 (2005), p. C63.
[90] E. Olsson and G. Kreiss. "A conservative level set method for two phase flow". In: Journal of Computational Physics 210 (2005), pp. 225-246.
[91] T. Osaka, Y. Okinaka, J. Sasano, and M. Kato. "Development of new electrolytic and electroless gold plating processes for electronics applications". In: Science and Technology of Advanced Materials 7 (2006), pp. 425-437.
[92] S. Osher and J. A. Sethian. "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations". In: Journal of Computational Physics 79 (1988), pp. 12-49.
[93] R. Parkinson. Properties and Applications of Electroless Nickel. Ed. by N. D. I. T. S. no.10081. 1995.
[94] N. Paunovic. "Electrochemical Aspects of Electroless Deposition of Metal". In: Plating 51 (1968), pp. 11-61.
[95] N. Perez. Electrochemistry and Corrosion Science. Ed. by Springer. 2004.
[96] M. Petersen, C. Ratsch, and R. Caflisch. "Level set approach to reversible epitaxial growth". In: Physical Review E 64 (2001), p. 061602.
[97] O. Pironneau. "On optimum profiles in Stokes flow". In: Journal of Fluid Mechanics 59 (1973), pp. 117-128.
[98] O. Pironneau. "On the transport-diffusion algorithm and its applications to the NavierStokes equations". In: Numerische Mathematik 38 (1982), pp. 309-332.
[99] A. Pryde. "Second order elliptic equations with mixed boundary conditions". In: Journal of Mathematical Analysis and Applications 80.1 (1981), pp. 203-244.
[100] M. Ramasubramanian, B. N. Popov, R. E. White, and K. A. Chen. "Mathematical model for electroless copper deposition on planar substrates". In: Journal of the Electrochemical Society 146 (1999), pp. 111-116.
[101] R. Rannacher. On Chorin's Projection Method for the Incompressible Navier-Stokes Equations. The Navier-Stokes equations II-Theory and Numerical Methods. Ed. by Springer. 1992.
[102] C. Ratsch et al. "Multiple domain dynamics simulated with coupled level sets". In: Applied Mathematics Letters 16 (2003), pp. 1165-1170.
[103] T. C. Rebollo, V. Girault, F. Murat, and O. Pironneau. "Analysis of a Coupled FluidStructure Model with Applications to Hemodynamics". In: SIAM Journal on Numerical Analysis 54(2) (2016), pp. 994-1019.
[104] M. Schmuck. "Analysis of the Navier-Stokes-Nernst-Planck-Poisson system". In: Mathematical Models and Methods in Applied Sciences 19 (2009), pp. 993-1014.
[105] R. T. Seeley. "Extension of C^{∞} functions defined in a half space". In: Proceedings of the American Mathematical Society 15 (1964), pp. 625-626.
[106] Y. Shacham-Diamand, T. Osaka, Y. Okinaka, A. Sugiyama, and V. Dubin. "30years of electroless plating for semiconductor and polymer micro-systems". In: Microelectronic Engineering 132 (2015). Micro and Nanofabrication Breakthroughs for Electronics, MEMS and Life Sciences, pp. 35-45.
[107] J. Shen and X. Yang. "Decoupled, energy stable schemes for phase-field models of twophase incompressible flows". In: SIAM Journal on Numerical Analysis 53 (2015), pp. 279296.
[108] S. Shukla, S. Seal, J. Akesson, R. Oder, R. Carter, and Z. Rahman. "Study of mechanism of electroless copper coating of fly-ash cenosphere particles". In: Applied Surface Science 181 (2001), pp. 35-50
[109] J. C. Slattery. "Flow of viscoelastic fluids through porous media". In: AIChE Journal 13 (1967), pp. 1066-1071.
[110] R. Soleimani, F. Mahboubi, S. Arman, M. Kazemi, and A. Maniee. "Development of mathematical model to evaluate microstructure and corrosion behavior of electroless NiP/nanoSiC coating deposited on 6061 aluminum alloy". In: Journal of Industrial and Engineering Chemistry 23 (2015), pp. 328-337.
[111] J. Sudagar, J. Lian, and W. Sha. "Electroless nickel, alloy, composite and nano coatingsA critical review". In: Journal of Alloys and Compounds 571 (2013), pp. 183-204.
[112] M. Sussman, P. Smereka, S. Osher, et al. "A level set approach for computing solutions to incompressible two-phase flow". PhD thesis. Department of Mathematics, University of California, Los Angeles, 1994.
[113] R. Temam. Navier-Stokes Equations: Theory and Numerical Analysis. Ed. by A. NorthHolland. 1977.
[114] G. Tierra and F. Guillén-González. "Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models". In: Archives of Computational Methods in Engineering 22 (2015), pp. 269-289.
[115] K. A. Triplett, S. M. Ghiaasiaan, S. I. Abdel-Khalik, A. LeMouel, and B. N. McCord. "Gas-liquid two-phase flow in microchannels part II: void fraction and pressure drop". In: International Journal of Multiphase Flow 25 (1999), pp. 395-410.
[116] K. A. Triplett, S. M. Ghiaasiaan, S. I. Abdel-Khalik, and D. L. Sadowski. "Gas-liquid twophase flow in microchannels part I: two-phase flow patterns". In: International Journal of Multiphase Flow 25 (1999), pp. 377-394.
[117] J. L. Vazquez. The Porous Medium Equation: Mathematical Theory. Ed. by C. Press. 2006.
[118] M. Vogelius. "A right-inverse for the divergence operator in spaces of piecewise polynomials". In: Numerische Mathematik 41.1 (1983), pp. 19-37.
[119] J. D. van der Waals. "Thermodynamische theorie der capillariteit in de onderstelling van continue dichtheidsverandering, Verhand". In: Verhandelingen der Koninklijke Akademie van Wetenschappen 1 (1893), p. 56.
[120] S. Wachi and A. G. Jones. "Mass transfer with chemical reaction and precipitation". In: Chemical Engineering Science 46.4 (1991), pp. 1027-1033.
[121] C. Wagner and W. Traud. "On the Interpretation of Corrosion Processes Through the Superposition of Electrochemical Partial Processes and on the Potential of Mixed Electrodes". In: Zeitschrift für Elektrochemie 44 (1938), pp. 391-454.
[122] M. Watanabe, M. Tomikawa, and S. Motoo. "Experimental analysis of the reaction layer structure in a gas diffusion electrode". In: Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 195 (1985), pp. 81-93.
[123] S. Whitaker. "Diffusion and dispersion in porous media". In: AIChE Journal 13 (1967), pp. 420-427.
[124] H. Whitney. "Analytic extensions of differentiable functions defined in closed sets". In: Transactions of the American Mathematical Society 36 (1934), pp. 63-89.
[125] H. Wiese and K. G. Weil. "On the Mechanism of Electroless Copper Deposition". In: Berichte der Bunsengesellschaft für physikalische Chemie 91 (1987), pp. 619-626.
[126] C. Y. Yang. "Application of Electroless Ni Plating for Chip-to-chip Direct Bonding". MA thesis. Graduate Institute of Materials Science and Engineering, National Taiwan University, 2019.
[127] S. Yang, H. T. Hung, P. Y. Wu, Y. W. Wang, Y. W. Nishikawa, and C. R. Kao. "Materials Merging Mechanism of Microfluidic Electroless Interconnection Process". In: Journal of the Electrochemical Society 165 (2018), pp. D273-D281.
[128] S. Yang, H. T. Hung, P. Y. Wu, Y. W. Wang, H. Nishikawa, and C. R. Kao. "Materials Merging Mechanism of Microfluidic Electroless Interconnection Process". In: J. Electrochem. Soc. 165.7 (2018), pp. D273-D281.
[129] Z. Yang, S. Matsumoto, and R. Maeda. "A prototype of ultrasonic micro-degassing device for portable dialysis system". In: Sensors and Actuators A: Physical 95 (2002), pp. 274280.
[130] X. Yin, L. Hong, B.-H. Chen, and T.-M. Ko. "Modeling the stability of electroless plating bathdiffusion of nickel colloidal particles from the plating frontier". In: Journal of Colloid and Interface Science 262 (2003), pp. 89-96.
[131] L. Yu, L. Guo, R. Preisser, and R. Akolkar. "Autocatalysis during Electroless Copper Deposition using Glyoxylic Acid as Reducing Agent". In: Journal of the Electrochemical Society 160 (2013), pp. D3004-D3008.
[132] S. T. Zalesak. "Fully multidimensional flux-corrected transport algorithms for fluids". In: Journal of computational physics 31.3 (1979), pp. 335-362.
[133] O. C. Zienkiewicz. The Finite Element Method for Solid and Structural Mechanics. Ed. by A. C. Publishing. 1977.
[134] N. Zuber and J. Findlay. "Average volumetric concentration in two-phase flow systems". In: Journal of Heat Transfer 87. Serie C (1965), pp. 453-462.

