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Abstract xi

Mathematical Modeling and Numerical Analysis of Electroless Plating Problem in a Mi-
crochannel

Abstract
Electroless plating process in microchannel is a rising technology in industry. From a physical point
of view, it is a multiphysics problem including fluid dynamics, mass transfer, chemical reaction, phase
change, etc.. Especially in micrometer scale, more subtle physical phenomena are of interest. In this
thesis, electroless plating problem is mostly taken care by mathematical modeling and numerical analysis.
There are three chapters in this thesis: A quick review and introduction of electroless plating process are
given in Chapter 1. Analysis of an electroless plating problem in a single phase liquid flow is presented
Chapter 2. The numerical simulation on the electrolss plating plating problem with gas generation is
discussed in Chapter 3.

• In Chapter 2, the gas generation due to the electroless plating is neglected. Instead, single phase
incompressible flow coupled with mass transfer is considered. The small boundary motion ow-
ing to the deposited chemical species is modeled by a transpiration approximation. With this
simplification, the mathematical model, consists of a Navier-Stokes flow and an equation for the
concentration of the plating chemical coupled by non-standard and nonlinear boundary conditions.
Existence and uniqueness are proven for the concentration equation. Numerical analysis is carried
out and justifies the proposed numerical schemes and nonlinear algorithm.

• In Chapter 3, the gas generation and motion of gaseous phase are taken into account. Since
the bubbles are generated randomly and everywhere, a volume averaged two phase flow model is
applied. This simplification is coupled with convection-diffusion equations subject to flux bound-
ary conditions satisfying electron balance. A first-order phase volume conservative method and
finite element method are carried out for numerical simulation and the well-posedness of numer-
ical scheme is proved. Numerical studies in one and two-dimensional cases with comparison to
experiment are performed to justify the proposed model.

• In Appendix B, a further simplified model for chemical species transport in two phase flow is
considered. In this case, the convection terms are neglected so that the volume fraction of liquid
phase depends only on the concentration of dissolving gas in the electrolyte. Three concentration
equations for two chemical species transport and dissolving gas coupling with an ODE for volume
fraction of liquid phase are considered. The flux boundary condition on the reacting surface with
electron balance is taken care. The existence and uniqueness are proven for the coupling equations.
It is shown that the two species case can be generalized to N -species case.

Keywords: electroless plating process, numerical analysis, long time existence

Laboratoire Jacques-Louis Lions
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xii Abstract

Résumé
Le dépôt autocatalytique dans les microcanaux est une technologie en plein essor dans l’industrie. D’un
point de vue physique, il s’agit d’un problème multiphysique incluant la dynamique des fluides, le trans-
fert de masse, la réaction chimique, le changement de phase, etc. Surtout à l’échelle micrométrique, des
phénomènes physiques plus subtils sont intéressants. Dans cette thèse, le problème du dépôt autocata-
lytique est principalement traité par la modélisation mathématique et l’analyse numérique. Il y a trois
chapitres dans cette thèse : Un examen rapide et une introduction du dépôt autocatalytique sont donnés
dans le chapitre 1. L’analyse d’un problème de dépôt autocatalytique dans un écoulement de liquide
monophasique est présentée au chapitre 2. La simulation numérique du problème de dépôt électrolytique
avec la production de gaz est abordée au chapitre 3.

• Dans le chapitre 2, la génération de gaz due au dépôt autocatalytique est négligée. Au lieu de cela,
un écoulement incompressible monophasé couplé à un transfert de masse est considéré. Le petit
mouvement de frontière dû aux espèces chimiques déposées est modélisé par une approximation de
la transpiration. Avec cette simplification, le modèle mathématique se compose d’un écoulement
Navier-Stokes et d’une équation pour la concentration du produit chimique de dépôt couplée par
des conditions aux limites non standard et non linéaires. L’existence et l’unicité sont prouvées pour
l’équation de concentration. Une analyse numérique est réalisée qui justifie les schémas numériques
et l’algorithme non linéaire proposés.

• Dans le chapitre 3, la génération de gaz et le mouvement de la phase gazeuse sont pris en compte.
Étant donné que les bulles sont générées de manière aléatoire et partout, un modèle d’écoulement
à deux phases moyennées en volume est appliqué. Cette simplification est couplée à des équations
de convection-diffusion soumises à des conditions aux limites de flux satisfaisant l’équilibre électro-
nique. Une méthode conservatrice de volume de phase du premier ordre et une méthode d’éléments
finis sont effectuées pour la simulation numérique et le bien-fondé du schéma numérique est prouvé.
Des études numériques dans des cas uni et bidimensionnels avec comparaison à l’expérience sont
réalisées pour justifier le modèle proposé.

• Dans l’annexe B, un autre modèle simplifié pour le transport d’espèces chimiques dans un écoule-
ment à deux phases est considéré. Dans ce cas, les termes de convection sont négligés de sorte que
la fraction volumique de phase liquide ne dépend que de la concentration en gaz de dissolution
dans l’électrolyte. On considère trois équations de concentration pour le transport de deux espèces
chimiques et le couplage du gaz de dissolution avec une ODE pour la fraction volumique de la
phase liquide. La condition aux limites de flux sur la surface de réaction avec équilibre électro-
nique est prise en compte. L’existence et l’unicité sont prouvées pour les équations de couplage.
On montre que le cas des deux espèces peut être généralisé au cas des N -espèces.

Mots clés : dépôt autocatalytique, analyse numérique, existence en temps grand
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Chapter 1

Introduction and state of the art

1.1 Electroless plating process

1.1.1 Overview
Electroless plating is a class of industrial chemical reaction process aimed at forming a film or
layer on a base substrate by reducing complex metal cations in a liquid solution [15, 94, 80]. In
contrast to electroplating processes, the reduction of metal cations can be achieved without the
external current during electroless plating process. The metal coatings is created by autocatalytic
chemical reduction of metal cations in a liquid bath. This technique has been widely applied
in various industries. For instance, surface decoration, hard-wearing coating, manufacture of
hard-disc drive, printed circuit boards, etc.[80, 106].

Recently, electroless process in microfluidic channels has been regarded as a promising micro
or nano meter technology. Applications range from chemical etching process for electronic de-
vices, to electrical packaging for food [93, 79]. Compared to the large-scale electroless process,
the change of geometry to the micro- or nano-meter scale raises a critical issue for the deposition
as the thickness becomes comparable to the dimension of flow channel. For instance, in the
copper interconnecting process [67] by electroless plating, the thickness of the deposition layer
of copper is large enough to risk a connection of the pillars.

1.1.2 Mechanism
In general, the chemical reaction of electroless plating can be expressed as

Mz+
(aq) +Xz−

(aq) →M0
(s) + Z,

where M is the metal, Xz− is the reducing agent, and Z is its oxidized by product.
In order to deposit the metal uniformly on a reaction surface, an initiator that is either an

additional catalyst or the substrate itself shall be added in advance. Moreover, the reaction must
be autocatylic so that it continues after the reaction surface has been covered by the metal. For
the setting of the electroless plating process, see also Figure 1.1.

1.1.3 Mixed potential theory
Two assumption is made when the mixed potential theory is applied for the electroless plating
process: (i) The overall chemical reaction can be divided into several partial reactions. Each

1



2 CHAPTER 1. Introduction and state of the art

Figure 1.1: Schematic of electroless plating setup.

partial reaction belongs to either anodic part or cathodic part. Here, the anodic reaction is the
decomposition of the reducing agent

R0 → Rz+ + ze−, (1.1)

and the cathodic reaction the reduction of the metal comples cations

Mz+ + ze− →M0. (1.2)

(ii) The reaction must satisfy electron balance at all time. Therefore, the sum of the anodic
current density and the cathodic current density is zero. That is,∑

j∈anodic

Ij +
∑

j∈cathodic

Ij = 0. (1.3)

We denote the equilirium potential for species j by Ej , the Butler-Volmer equation (see for
example [8]) suggest that the current density Ij can be expressed as

Ij = ijc
γj

j := Aj

[
exp

(
αjzjFξj
Rθ

)
− exp

(
−βjzjFξj

Rθ

)]
c
γj

j , (1.4)

where Aj is the ratio of the reference current density and the corresponding reference species
concentration, αj the anodic transfer coefficient, βj the cathodic transfer coefficient, zj the
number of electrons, F the Faraday constant, R the gas constant, θ the temperature, cj the
species concentration, and γj the concentration dependency. In the above, ζj is the overpotential
which can be expressed as

ζj = Emix − Ej , (1.5)

where Emix is the mixed potential (see also Figure 1.2).

1.1.4 Electroless plating in a microchannel
As the size of channel becomes smaller, more subtle issues influencing the deposition quality shall
be taken into account. Those effects that do not play crucial roles in a large size problem become

Work in progress as of February 5, 2022



1.1. Electroless plating process 3

Figure 1.2: Current-potential curves for the system satisfying the hypotheses of the mixed po-
tential theory.

Work in progress as of February 5, 2022



4 CHAPTER 1. Introduction and state of the art

Figure 1.3: A microchannel of cross section 8 mm × 1 mm with a copper plate where the
electroless copper plating process occurs.

main characters in micro- or nano-scale. Some issues which are worthy of further consideration
for electroless plating in a microchannel are listed below.

Gas generation

In a large scale problem, the gas generation in the electroless plating process is not important
becuase it takes only slight space in comparison with the size of bath. In contrast, the effect that
bubbles prevent the substrate from being plated is serious when the flow channel is of smaller
size. Indeed, conducting a electroless copper plating in a microchannel with cross section of size
8 mm×1 mm for 2 minutes, the bubbles will have been taken over a large portion of the channel
(see Figure 1.3).

Whether the gas generation occurs is determined by the electroless plating system being
employed. Electroless nickel and copper plating systems generate hydrogen gas. On the other
hand, electroless gold does not generate gas. Given this fact, both single phase and two-phase
flow problems for the fluid motion in a electroless plating process play crucial roles.

Seams and voids between microbumbs

Microbump bonding is one of the important applications of electroless plating in microchannels.
The geometry effect arising from the shape of microbumps is significant for the plating quality.
For example, if two microbumps to be plated are flat-topped (see Figure 1.4a), then seams or
voids may appear in the jointed bumps [67, 127]. This is owing to the fact that the region
between two bumps is always of the lowest ionic concentration. The deposition rate of the outer
region is always higher than the inner region between two bumps. Once the inner region is closed
by the deposited metal of outer region, the seam or void remains due to the shortage of fresh
electrolyte. On the other hand, if the dome-shaped microbumps (see Figure 1.4b) are adopted
for electroless plating process, The bumps can be jointed perfectly.

Work in progress as of February 5, 2022



1.2. Mathematical model for electroless plating problem 5

(a) Flap-topped microbumps. (b) Dome shape microbumps.

Figure 1.4: Comparison between flat-topped bump and dome shape microbumps.

Bridging

For a circuit pattern, It is essential to control precisely where to be plated and not to be plated.
Let us take the bonding of face-to-face microbump array as an illustration. In most cases,
the desired region to be plated is the gap between face-to-face bumps. Conversely, the plane
within the bumbs installed on the same substrate are not desired to be deposited since the short
circuit will be caused by the connection between to bumbs on the same plane. Such undesired
phenomenon is called bridging [24, 126]. Bridging is due to the instability of the electrolyte
which causes a homogeneous decomposition so that the metal particles accumulate everywhere.
Indeed, this phenomenon is observed in the low flow velocity region where the ionic concentration
is sufficient but the metal particles cannot be moved away.

Uniformity

For many circuit board, there always exists period structure so that the uniformity of plating
quality is important. However, many physical conditions in such periodic space may not be uni-
form. For example, the bubble distribution is in general far from uniform even in a microchannel
with simple geometry (see Figure. 1.3)

To see another uniformity issue, we take the bonding of face-to-face microbump arrays as an
example again. Considering an face-to-face array of microbumps is placed in a microchannel, we
observed that the plating condition is highly nonuniform [126]. The most interesting observation
is that the bumps near the flow entrance, which were in the region of higher ionic concentration,
were not deposited. A hypothesis is that the metal particles near the entrance was washed away
by the fluid flow but deposit behind. Indeed, when the entrance velocity is sufficiently high,
None of the microbumps can be plated.

1.2 Mathematical model for electroless plating problem
Electroless plating problem can be regarded as a multiphysics problem which consists of surface
reaction, fluid dynamics, heat transfer, chemical potential distribution, etc.. In a large scale
deposition, simplified models would be adequate for describing the occuring physical phenomena,
especially in a simple geometry case. In what follows, we review two kinds of one-dimensional
models which well described the electroless plating process in the special cases.

Work in progress as of February 5, 2022



6 CHAPTER 1. Introduction and state of the art

1.2.1 One-dimensional steady state advection-diffusion equations

Kim and Sohn proposed a model describing the concentration profile of chemical species in the
diffusion layer of a plated rotating disk with constant angular velocity [66]. In this situation,
the fluid flow near the surface of rotating disk can be approximated by a uniformly disbributed
flow directing to the surface. In addition, the thickness of diffusion layer is approximately
uniform on the surface. Consequently, the physical domain for modeling can be reduced to be
one-dimensional (see Chapter II, Section 11 in [74] for the derivation).

The modeling problem is given as follows: Let cj be the concentration profile of the j-th
species. The governing equations for steady state problem is

−Dj
∂2cj
∂z2

+ v
∂cj
∂z

= 0, (1.6)

where Dj is the diffusion coefficient, v the velocity field given by

v = −az2ω3/2ν−1/2, (1.7)

where a = 0.51023, ω is the angular velocity of the rotating disk, and ν the kinematic viscosity
of the electrolyte. The boundary conditions are given by

cj = cb,j , z2 + r2 →∞, −Dj
∂cj
∂z

=
∑
j∈Rj

|Ij |
zjF

, z = 0, (1.8)

where cb,j is the bulk concentration of species j, Rj the set collecting those species j participating
in the reaction related to cj , zj the number of electrons, F the Faraday constant, and Ij the
current density. We recall that Ij can be expressed by (1.4) with the overpotential (1.5).

For numerical simulation, the Dirichlet boundary condition cj = cb,j shall be set at the
diffusion layer-bulk interface. The diffusion layer thickness δj at steady state for a rotating disk
can be expressed as

δj = 1.61D
1/3
j ω−1/2ν1/6. (1.9)

Finally, the system of equations can be closed by the electron balance condition (1.3).

1.2.2 One-dimensional time-dependent diffusion-migration equations

To simulate electroless copper plating on a planar substrate, Ramasubramanian et. al. [100]
applied a system of time-dependent diffusion-migration equations for solving the concentration
profile of each species participating in the electroless process.

Let cj , j = 1, . . . N be the concentration profile of the j-th species. In the diffusion layer, the
mass balance implies that

∂cj
∂t

= −∂Jj
∂z

+ Yj , (1.10)

where Yj is the rate of homogeneous production or consumption of species j and the flux Jj is
contributed by diffusion and migration:

Jj = −
zjDjFcj
Rθ

∂Φ

∂z
−Dj

∂cj
∂z

. (1.11)

In the above Φ is the solution potential. In the electrolyte, water equilibrium holds at all times

Work in progress as of February 5, 2022
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and therefore we have ∑
j

zjcj = 0, (1.12)

which closes the system with unknowns (c1, . . . , cN ,Φ).
The boundary conditions are similar to those proposed by Kim and Sohn [66]. At the diffusion

layer-bulk interface, we let
cj = cb,j

At the electrode surface, the Neumann boundary conditions are given similarly the second equa-
tion of (1.8) but the current densities take the form

Ia = Aa

{ ∏
k∈Ra

cγk

k

(
exp

(
αaF

Rθ
[V − Φ− U0

j

)
− exp

(
−βaF
Rθ

[V − Φ− U0
j ]

))}
,

Ic = Ac

{ ∏
k∈Rc

cγk

k

(
exp

(
αcF

Rθ
[V − Φ− U0

j ]

)
− exp

(
−βcF
Rθ

[V − Φ− U0
j ]

))}
,

(1.13)

where Ra and Rc are the set of species j involving in anodic reaction and cathodic reaction,
respectively, V is the electrode potential, and U0

j is the open-circuit potential for the j-th species.
Here, V plays a similar role as the mixed potential Emix in (1.5). The full system can be closed
by the electron balance on the reacting surface:

Ia + Ic = 0. (1.14)

1.3 Governing equations of interest in an electroless plat-
ing problem

1.3.1 Navier-Stokes equations

To derive the Navier-Stokes equations, we assume that the fluid is a continuum and all the fields
of interest, such as density, flow velocity, pressure, and temperature are differentiable.

Material derivative

Changes of a physical quantity can be measured in two different ways depending on where the
observer is: One can measure a physical quantity either (i) on a fixed point (Eulerian), or (ii) by
following a parcel of fluid along its streamine (Lagragian). The derivative of a physical quantity
with respect to a fixed position in space is called a Eulerian derivatve, while the derivative fol-
lowing the flow velocity is called a Lagragian derivative. Based on the relation between Eulerian
and Lagragian derivatve, we define the material derivative which connects these two concept:

D

Dt
:= ∂t + u · ∇, (1.15)

where u is the flow velocity.

Work in progress as of February 5, 2022
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Continuity equation

Let φ be any physical quantity defined over a control volume Ω, and Γ its boundary. The mass
conservation can be expressed as

d

dt

∫
Ω

φdx =

∫
Γ

φu · ndS −
∫
Ω

sdx, (1.16)

where u is the flow velocity of teh field, n is the outward unit normal, and s is the sink or source
in the flow. By the divergence theorem, we have

d

dt

∫
Ω

φdx = −
∫
Ω

∇ · (φu)dx−
∫
Ω

sdx. (1.17)

Applating the Reynolds transport theorem, we have∫
Ω

∂tφdx = −
∫
Ω

∇ · (φu)dx−
∫
Ω

sdx. (1.18)

The above equation must hold for any control volume. Therefore,

∂tφ+∇ · (φu) + s = 0 (1.19)

Conservation of mass

Replacing φ by the density ρ in (1.19), and assuming that there is no source or sink of mass, we
have

∂tρ+∇ · (ρu) = 0. (1.20)

Conservation of momentum

Let φ = ρu in (1.19), we have
∂t(ρu) +∇ · (ρu⊗ u) = s, (1.21)

where s is a vector function. The above equation can be split as

(∂tρ)u+ ρ∂tu+ (u · ∇ρ)u+ ρ(u · ∇)u+ ρ(∇ · u)u = s. (1.22)

The rearrangement gives

(∂tρ+ u · ∇ρ+ ρ∇ · u)u+ ρ(∂tu+ (u · ∇)u)
= (∂tρ+∇ · (ρu))u+ ρ(∂tu+ (u · ∇)u) = s

(1.23)

By (1.15) and (1.20), we get

ρ
Du

Dt
= ρ(∂tu+ (u · ∇)u) = s (1.24)

Work in progress as of February 5, 2022
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Cauchy momentum equation

The momentum source s can be split into two terms: one term for internal stresses and another
for external forces. The momentum equation can be expressed as

ρ
Du

Dt
= ∇ · σ + f , (1.25)

where σ is the Cauchy stress tensor and f is the body force.
In three dimensional space, σ is a rank two symmetric tensor which can be explicitly repre-

sented as a 3× 3 matrix

σ =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 (1.26)

In the above, σ can be further split into isotropic part standing for the normal stresses and
anisotropic part for shear stresses:

σ =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 = −

p 0 0
0 p 0
0 0 p

+

σxx + p τxy τxz
τyx σyy + p τyz
τzx τzy σzz + p


= −pI + τ ,

(1.27)

where I is the identity matrix, and τ is the deviatoric stress tenor. Since the tensor τ should be
zero when the fluid is motionless, we define the mechanical pressure p by

p = −1

3
(σxx + σyy + σzz). (1.28)

Finally, the Cauchy equation can be expressed as

ρ
Du

Dt
= −∇p+∇ · τ + f . (1.29)

1.3.2 Compressible and incompressible flow

Compressible flow

We assume that the Cauchy stress tensor τ in (1.29) satisfying the following assumptions

1. τ is Galilean invariant: it depends only on the spatial derivatives of the flow velocity. That
is, τ is a function of ∇u.

2. The stress τ is linear in the variable τ(∇u) = C : ∇u for some fourth-order constant
tensor.

3. The fluid is isotropic. By Helmholtz decompositionm τ can be expressed in terms of two
scalar Lamé parameters: the bulk viscosity λ and the dynamic viscosity µ, i.e.

τ = λ(∇ · u)I + 2µε, (1.30)

where I is the identity tensor and ε(∇u) = 1
2∇u+ 1

2 (∇u)
T .
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In three-dimension, given that tr(ε) = ∇ · u and tr(τ ) = (3λ + 2µ)∇u, τ can be split into
isotropic and deviatoric parts:

τ = (λ+
2

3
µ)(∇ · u)I + µ(∇u+ (∇u)T − 2

3
(∇ · u)I). (1.31)

Introducing the second viscosity ζ := λ + 2
3µ, the linear stress constitutive equation can be

expressed as
τ = ζ(∇ · u)I + µ(∇u+ (∇u)T − 2

3
(∇ · u)I). (1.32)

Let p := p− ζ∇u, we obtain the Navier-Stokes momentum equation

ρ (∂tu+ (u · ∇)u) = −∇p+∇ ·
(
µ(∇u+ (∇u)T − 2

3
(∇ · u)I

)
+ f . (1.33)

Applying the relation ∇ · (∇u)T = ∇(∇ · u), we finally get

ρ(∂tu+ (u · ∇)u) = −∇p+ µ∆u+
1

3
µ∇(∇ · u) + f . (1.34)

Remark 1.3.1 In two dimension, we have

ρ(∂tu+ (u · ∇)u) = −∇p+ µ∆u+ f . (1.35)

Incompressible flow

The incompressiblity implies that the mateiral derivative of the density is zero, i.e.,

Dρ

Dt
= 0. (1.36)

Combining the above equation with the continuity equation (1.20), we have

∇ · u = 0. (1.37)

Therefore, the linear stress constitutive equation for the incompressible flow can be written as

τ = µ(∇u+ (∇u)T ). (1.38)

If µ is constant, divergence of the deviatoric stress is given by

∇ · τ = ∇ · (∇u+ (∇u)T ) = µ∆u. (1.39)

Furthermore, if ρ is constant, the incompressible Navier-Stokes equation can be expressed as

∂tu+ (u · ∇)u− ν∆u = −∇p̃+ f̃ , (1.40)

where ν = µ/ρ, p̃ = p/ρ, f̃ =
1

ρ
f .
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1.3.3 Gas-liquid two phase flow

In electroless copper and nickel plating system, hydrogen gas generation is a crucial issue, espe-
cially in a microchannel, since the volume of gas is comparable to the size of the physical domain.
Therefore, the governing equations for gas-liquid two phase flow should be considered.

There are several versions of models describing the two phase flow. They can be roughly
divided into two classes: (i) The interfaces of heterogeneous phases can be explicitly captured;
(ii) The distribution of phases is somehow stochastic so that the problem can only be described
in an average sense. For electroless plating process with gaseous phase generation, the problem
at the beginning before a serious aggregation of bubbles is of class (ii). Once some large bubbles
has accumulated in the microchannel, the problem becomes class (i) in a sense of approximation.
Now we are in a position to introduce some governing equations in the aspect of these two classes.

Diffuse interface models

To formulate the thermodynamics and transport phenomena of multiphase systems, Reyleigh
[77] and van der Waals [119] proposed a so-called diffuse interface model which assumes that
the heterogeneous interfaces have a non-zero thickness. Based on this idea, several Navier-
Stokes/Cahn-Hilliard system were proposed for modeling the multiphase flow [1, 60, 78]. For
example, the model H for incompressible two phase flow proposed by Hohenberg and Halperin
[60] can be read as

ρ∂tu+ ρ(u · ∇)u−∇ · (η(c)(∇u+ (∇u)T )) +∇p = σ̂ε∇ · (∇c⊗ c),
∇ · u = 0,

∂tc+ u · ∇c = ∇ · (m∇µ),

µ = σ̂ε−1Ψ
′
(c)− σ̂ε∆c.

(1.41)

In the above, ρ is the density, u is the mean velocity of fluids, ρ is the pressure and c is an order
parameter corresponding to the concnetration of the fluids (e.g. concentration of one component
or concentration difference between two components), η(c) is the viscosity of the mixture, σ̂
is the surface energy density ε is a parameter related to the thickness of the interface, Ψ is a
homogeneous free energy density and µ is the chemical potential.

Another example proposed by Abels [1] is a thermodynaically consistent generalization of
(1.41) to the case of non-matched densities based on a divergence-free velocity field u. The
governing equations can be expressed as

∂t(ρu) +∇ · (ρu⊗ u) +∇ · (u⊗
ρ̃1 − ρ̃2

2
m(ϕ)∇µ)

−∇ · (η(ϕ)(∇u+ (∇u)T ) +∇p = −σ̂ε∇ · (∇ϕ⊗∇ϕ),
∇ · u = 0,

∂tϕ+ u · ∇ϕ = ∇ · (m(ϕ)∇µ)

µ = σ̂ε−1Ψ
′
(ϕ)− σ̂ε∆ϕ,

(1.42)

where ϕ = ϕ2 − ϕ1 is the difference of the volume fracions and ρ̃2 − ρ̃1 is the difference of the
densities. The above model has been widely used for numerical simulation (e.g. [107, 58, 114]).

Work in progress as of February 5, 2022
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Level set model

Unlike the diffuse interface model, the interface between two phases formulated by the level set
model is sharp, i.e., the thickness of the interface between two phases is zero. In this case, the
equation of motion for incompressible two phase flow is described by [112]

∂tu+ (u · ∇)u =
1

ρ

(
∇ · (µ(∇u+ (∇u)T ))−∇p+ σκδ(d)n

)
+ f̃ ,

∇ · u = 0,

(1.43)

where u = u(x, t) is the fluid velocity, ρ = ρ(x, t) is the fluid density, µ = µ(x, t) is the fluid
viscosity, and f̃ is the body force. The surface tension is assumed to be a force exerting only
on the interface. We denote by σ the surface tension, κ the curvature of the interface, d the
normal distance to the interface, δ the Dirac delta function, and n the unit outward normal at
the interface.

For immiscible fluids, the density and viscosity are constant along the path of velocity field.
Therefore, we have

∂tρ+ (u · ∇)ρ = 0

∂tµ+ (u · ∇)µ = 0.
(1.44)

Let ρ1, µ1 denote the density and viscosity of the gaseous phase fluid, respectively, and for liquid
phase, ρ2, µ2. The level set φ is defined to discriminate the phases. For example, φ satisfies the
following properties

ρ =


ρ2, if φ > 0

ρ1, if φ < 0
ρ1 + ρ2

2
, if φ = 0

(1.45)

and

µ =


µ2, if φ > 0

µ1, if φ < 0
µ1 + µ2

2
, if φ = 0.

(1.46)

Moreover, φ is carried by the velocity field

∂tφ+ (u · ∇)φ = 0. (1.47)

If we initialize φ to be the signed distance function from the interface, φ is smooth, unlike ρ and
µ. This shows the advantage to solve φ numerically.

To avoid the instability caused by the sharp changing of density and viscosity at the interface,
a smoothing procedure on these two quantities is often applied to modify the governing equation,
which leads to a similar idea as the diffuse interface model. Here is a common example of
smoothing on the density: the density ρ can be smoothed by acting with a smoothed Heaviside
function Hα defined by

Hα(φ) :=


1, if φ > α,

0, if φ < −α,
1

2
(1 +

φ

α
+

1

π
sin(

πφ

α
)), otherwise.

(1.48)
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Now the smoothed density can be defined by

ρ(φ) = ρ2Hα(φ) + ρ1(1−Hα(φ)). (1.49)

It is worth noting that the smoothing in the diffuse interface model is by hypothesis but it is
artificially made in the level set model.

Averaged two phase flow model

When the distribution of dispersive phases in a physical domain is stochastic, we may describe it
in terms of the volume fraction of each phase at each point of the physical domain. The volume
fraction of a phase can be regarded as the expectation that the phase occurs at a given point.
This macroscopic aspect to the phase distribution is called volume averaging.

We review the derivation of volume averaging formulae introduced in [85, 41]. Let V0 be an
elementary volume to be observed in and Vk the volume in V0 occupied by a single phase k and
bounded by the interface Ak, which is assumed to be oriented. Let nk be a outer normal to Ak

and wk the normal velocity of Ak.
The volume average of some quantity Ψ in phase k is

〈Ψ〉k =
1

V0

∫
V0

χkΨdx, (1.50)

where χk is the indicator function that is 1 of Vk. The intrinsic volume average is defined by

〈Ψ〉(k)k =
1

Vk
〈Ψ〉k where Vk =

∫
V0

χkdx (1.51)

We define the volume fraction rk =
Vk
V0

with the properties
∑
k

rk = 1 and

〈Ψ〉k = rk 〈Ψ〉(k)k . (1.52)

Some useful formulae in terms of the averaging are listed below[123, 109]:〈
∂Ψ

∂t

〉
k

=
∂ 〈Ψ〉k
∂t

− 1

V0

∫
Ak

Ψkwk · nkdA, (1.53)

〈∇Ψ〉k = ∇〈Ψ〉k +
1

V0

∫
Ak

ΨknkdA. (1.54)

If Ψ is a vector, we also have

〈∇ ·Ψ〉k = ∇ · 〈Ψ〉k +
1

V0

∫
Ak

Ψ · nkdA. (1.55)

Remark 1.3.2 If Ψ = 0 outside Vk then we have

− 1

V0

∫
Ak

Ψ · nkdA = − 1

V0

∫
Vk

∇ ·ΨdV = − 1

V0

∫
V0

χk∇ ·ΨdV = −〈∇ ·Ψ〉k . (1.56)

This implies that ∇ · 〈Ψ〉k = 0.
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By taking the volume averaging to (1.20), we have

∂t(rkρk) +∇ · (rkρk〈uk〉(k)k ) = Γk, (1.57)

where
Γk = − 1

V0

∫
Ak

ρk(uk −wk) · nkdA.

The interfacial terms Γk satisfy the conservation∑
k

Γk = 0. (1.58)

For averaged equations of motion, we have

∂t(rkρk〈uk〉(k)k ) +∇ · (rkρk〈uk〉(k)k ⊗ 〈uk〉(k)k ) = −∇(rk〈pk〉(k)k )

+∇ · (〈τk〉k + 〈τT
k 〉k) +Mk + rk〈fk〉(k)k ,

(1.59)

where
Mk = − 1

V0

∫
Ak

ρkuk(uk −wk) · nkdA+
1

V0

∫
Ak

(τk − pI) · nkdA

and
〈τT

k 〉 = −〈ρkûk ⊗ ûk〉, ûk = (uk − 〈uk〉(k)k )χk.

Since the sum of internal forces is zero, we have the interfacial balance condition∑
k

Mk +Mi = 0. (1.60)

In the above, Mi is the surfacial force such that

Mi =
1

V0

∫
Ai

σκnidA,

where Ai the collection of all the interfaces, σ the surface tension, κ the curvature, and ni the
outer normal on the interface.

Remark 1.3.3 If there are only two phases (say phase 1 and phase 2) in the physical domain
of interest, then we have

Mi =
1

V0

∫
Ai

σκn1dA = −σκ∇r1, (1.61)

where κ is the mean curvature. The above relation can be obtained by the constitutive relation

r1 + r2 = 1, A1 = A2 = Ai (1.62)

1.3.4 Advection-diffusion in an electrolyte

The species transport is the core issue for studying the electroless plating process. We recall
that for a concentration profile cj of species j, the general mass conservation equation can be
expressed as

∂tcj +∇ · Jj = Rj , (1.63)
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where Jj is the overall flux and Rj is the source or sink of cj . If advection and diffusion are
considered in the system, then there are two sources for Jj . First, the advective flux can be
expressed as

Jj,adv = ucj , (1.64)

where u is the velocity field. Second, the diffusive flux can be approximated by the Fick’s first
law

Jj,diff = −Dj∇cj , (1.65)

where Dj is the diffusion coefficient. Given that the total sum is the summation of these sources,
we have

Jj = Jj,adv + Jj,diff = ucj −Dj∇cj . (1.66)

Therefore, the advection-diffusion equation can be expressed as

∂tcj +∇ · (ucj)−∇ · (Dj∇cj) = Rj . (1.67)

Work in progress as of February 5, 2022
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Chapter 2

Single phase problem

2.1 Introduction

In this chapter, the mathematical analysis of the two or three-dimensional electroless plating
problem neglecting the gas gneration is investigated. For numerical simulation, multi-dimensional
electroless processes in geometrically varying micro- or nano-fluidic channels remain computa-
tionally expensive so we have investigated on bidimensional cases.

We consider a single chemical species in the electrolyte. The flux of the chemical species on
the reacting surface is described in terms of the exchange current. In our case, the exchange
current I0 is given by the Butler-Volmer equation (see for example [74, 95]); it is a linear function
of the electrolyte concentration c

I0 = i0c := A
[
exp

(
α0zFξ

Rθ

)
− exp

(
−β0zFξ
Rθ

)]
c, (2.1)

where A,α0, β0 are physical constants, R is the perfect gas constant, F the Faraday constant and
z the atomic number of the electrolyte; θ is the temperature, and ξ is the excess potential related
to the interaction with other chemical species which, for our purpose is constant [66, 100]. The
temperature is also assumed uniform and constant.

The plating occurs on a boundary S(t) of the electrolyte, causing this interface to move
inward the fluid domain but this motion is small because it is only due to plating. The plating
being proportional to the concentration c, the velocity of S(t) is normal to itself and given by a
linear law

u = −αi0cn

and α is small. On the other hand the flux of metal ion through S(t) is proportional to c

D
∂c

∂n
= −i0c

where D is a diffusion constant.
The concentration of the chemical species c satisfies a convection diffusion equation while the

electrolyte flow is modelled by the Navier-Stokes equations.
In order to analyse this coupled problem, we approximate the small displacement of the

reaction surface S(t) by a transpiration approximation [97, 103] on a fixed mean surface S. It

17
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Figure 2.1: The physical domain is the domain occupied by the flow Ω(t); the chemical deposit
is above the free boundary S(t). The chemicals flow from the left boundary, Γin, to the right
Γout. The bottom Γwall is a solid wall.

leads to an integro-differential condition on S:

−D ∂c

∂n
+ i0c

(
1 +

αi20
D

∫ t

0

c(s)ds

)
= 0. (2.2)

The mathematical analysis of the Navier-Stokes equations coupled with a convection-diffusion
equation for c is somewhat problematic because of the non-homogenous condition on S for the
velocity. So we restrict the study to the existence of the weak solution to the convection-diffusion
equation with a given fluid velocity u and even this study is not straightforward. First a time-
discretized approximation is shown to have a unique solution using a version of Minty-Browder’s
theorem and the maximum principle to prove that 0 6 c 6 1. The solution of the time continuous
problem is obtained as the weak limit of the of the solution of the time-discretized solutions. Some
numerical tests are given to justify the transpiration approximation and the convergence of the
backward Euler nonlinear scheme.

2.2 Modeling of the physical system

The plating chemicals flow in a thin channel between a top and a bottom plate. Due to an
electro-potential applied between the two plates the chemicals will deposit on the top plate.
Hence the depth of the channel varies with time. A vertical cross section of the 3D system is
depicted in Figure 2.1.

2.2.1 The fluid flow
The geometry of the fluid part is a two or three-dimensional domain Ω(t) bounded on the left
by an inflow boundary Γin, on the right by an outflow boundary Γout, on the bottom by a
flat wall Γwall and on the top by a time dependent boundary S(t). In the three-dimensional
case, the remaining boundaries are assumed to be walls. The fluid is viscous, Newtonian and
incompressible, so the flow is governed by the Navier-Stokes equations for the velocity u(x, t)
and pressure p(x, t):

∂tu+ u · ∇u− ν∆u+∇p = 0, ∇ · u = 0, ∀x ∈ Ω(t), ∀t ∈ [0, T ], (2.3)

where ν is the (constant) kinematic viscosity of the fluid. The initial velocity is given and denoted
by u0; the inflow velocity uin is also given on Γin; a no slip condition holds on Γwall ∪ S(t), and
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2.2. Modeling of the physical system 19

we impose a traction-free outflow condition at Γout. So at all t ∈ [0, T ] we have:

u = uin on Γin, u = 0 on Γwall, −ν ∂u
∂n

+ pn = 0 on Γout. (2.4)

We assume that there is no back-flow on Γout: u · n > 0.
Remark 2.2.1 In general, the traction-free boundary condition on Γout, −ν ∂u

∂n + pn = 0 does
not imply u · n > 0. However, for electroless plating process, the fluid velocity field near the
outlet is near to a Poiseuille flow. We note that the Poiseuille flow in a fixed cross section domain
satisfies u · n > 0 on Γout and the traction-free condition. For mathematical convenience, the
assumption: u · n > 0 on Γout is made.

2.2.2 The metal ion concentration
The metal ion concentration c(x, t) solves a convection-diffusion equation

∂tc+ u · ∇c−D∆c = 0, ∀x ∈ Ω(t), ∀t ∈ [0, T ] (2.5)

with given initial concentration c0; D is the diffusion constant. The concentration is given on
Γin and a no-flux condition holds on Γwall and Γout :

c = cin on Γin,
∂c

∂n
= 0 on Γwall ∪ Γout. (2.6)

On S(t) a reaction condition is written as suggested in [66, 100],

−D ∂c

∂n
= i0c, u = −αi0cn, ∀x ∈ S(t), (2.7)

where i0 and α are constants. Most important for our study: α is small.
It is also important to remember that c, being a concentration it must be non-negative and

less or equal to one. In particular c0 and cin must be chosen in [0, 1].

2.2.3 The case α = 0

When α = 0, there is no free boundary; consider the case Ω = (0, L)× (0, 1). With appropriate
initial and inflow conditions, the fluid velocity is

u = (u1, u2)
T , u1 = y(1− y), u2 = 0

Similarly, with appropriate initial and inflow conditions, the concentration depends only on time
t and y := x2 and solves

∂tc−D∂yyc = 0, −D∂yc = i0c at y = 1, ∂yc = 0 at y = 0.

It has a closed solution c = e−Dλ2t cos(λy) provided λ satisfies: λ tanλ = i0
D .

When 0 < α << 1,uin = (y(1− y), 0)T , cin = e−Dλ2t cos(λy), u0 = uin, c0 = cin|t=0, the
solution will be a linear perturbation of the above.

2.2.4 Transpiration approximation
Experimental observation show that the evolution of S(t) is small. Following [97, 103], we
approximate (2.7) with a transpiration approximation as follows.
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Let S be the initial position of S(t) and let η be the distance between S(t) and S normally
to S, i.e.

S(t) = {x+ η(x, t)n(x) : x ∈ S}, η(0) = 0

where η(0) = 0 is short for η(x, 0) = 0 for all x ∈ S. If the radius of curvature of S(t) and the
derivative of η along S are not large it can be shown that the difference between the normals of
S and S(t) is second order in η (see [97]). By definition of u and by the second equation in (2.7),

dη

dt
= u · n = −αi0c, η(0) = 0, ⇒ η(t) = −αi0

∫ t

0

c(s)ds. (2.8)

By a Taylor expansion, the first equation in (2.7) can be written on S rather than S(t):

−D ∂c

∂n
(x+ η(x, t)n(x), t) = −D

(
∂c

∂n
(x, t) + η(x, t)

∂2c

∂n2
(x, t)

)
+ o(η)

= i0c(x+ η(x, t)n(x), t) = i0

(
c(x, t) + η(x, t)

∂c

∂n
(x, t)

)
+ o(η). (2.9)

By (2.8), it is rewritten as

−D
(
1− α i

2
0

D

∫ t

0

c(s)ds

)
∂c

∂n
(x, t)− i0c(x, t) = η(x, t)D

∂2c

∂n2
(x, t) + o(η) = O(η). (2.10)

A first order in α approximation of this condition is

−D ∂c

∂n
(x, t)− i0c(x, t) = 0 (2.11)

Neglecting o(η) and using 1

1− y
≈ 1 + y and neglecting D ∂2c

∂n2
leads to

D
∂c

∂n
+ i0c

(
1 +

αi20
D

∫ t

0

c(s)ds

)
= 0 on S. (2.12)

In the discussion below we argue in favor of this approximation where ηD ∂2c

∂n2
is neglected.

The second equation of (2.7) is simply written on S instead of S(t). Indeed a similar Taylor
expansion shows that

u+ η
∂u

∂n
= −αi0

(
c+ η

∂c

∂n

)
n+ o(ηα), (2.13)

The second equation in (2.7) implies that u is O(α); so when all normal derivatives are bounded

u = −αi0cn+O(ηα), on S (2.14)

2.2.5 The final Problem (P)

The domain and the top boundary are now fixed and denoted by Ω and S; the boundary of Ω is

Γ := ∂Ω = Γin ∪ Γwall ∪ Γout ∪ S.
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2.2. Modeling of the physical system 21

We propose to solve (2.3) and (2.5) in Ω × (0, T ) subject to initial conditions and boundary
conditions (2.4) and (2.6) and

D
∂c

∂n
+

(
1 +

αi20
D

∫ t

0

c(s)ds

)
i0c = 0 on S, (2.15)

u = −αi0cn on S. (2.16)

2.2.6 Discussion:

If we had kept the term η(x, t)D
∂2c

∂n2
(x, t) in (2.12), this condition would have been second order.

But even without it we expect it to be near second order when c varies slowly and Ω is elongated,

because (2.5) will not be far from −D ∂2c

∂n2
≈ 0.

One of the purpose of this article is to analyse the additional nonlinear term in (2.15). In the
numerical section , it will be compared to the first order condition obtained by setting α = 0 in
(2.15).

A third condition can be obtained as follows. If s denotes arc length on S, the PDE which
governs c tells us that near S

∂tc+ u · n
∂c

∂n
= D

∂2c

∂n2
+D

∂2c

∂s2

Assuming that the variations in s are much smaller than those in n, we obtain

D
∂2c

∂n2
= ∂tc− αi0c

∂c

∂n
= ∂tc+O(α). (2.17)

Inserting the above equation into (2.10), we get

−D
(
1− α i

2
0

D

∫ t

0

c(s)ds

)
∂c

∂n
(x, t)− i0c(x, t) = −

(
αi0

∫ t

0

c(s)ds

)
(∂tc+O(α)). (2.18)

As for getting (2.12), by a first order approximation ( 1

1− y
≈ 1 + y) and a discard of the term

of order O(α2), leads to

D
∂c

∂n
+ i0c+ αi0

(
i20
D
c− ∂tc

)∫ t

0

c(s)ds = 0 on S. (2.19)

2.2.7 Plan

If it wasn’t for the boundary conditions, the mathematical analysis of (2.3),(2.5,and (2.11),(2.16)
is somewhat classical, so we shall focus on the problem raised by the nonlinear boundary con-
ditions (2.3),(2.5,(2.15),(2.16). Then, at the end we shall argue that there is no essential new
difficulty if the term ∂tc is added, namely problem (2.3),(2.5,(2.19),(2.16).

Once more, existence of c will be shown for a given flow u, p. The coupled problem is analysed
only in the numerical section.
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2.3 Variational formulation

2.3.1 Notations

For convenience, C, C ′ and Ci, i = 1, 2, 3, . . ., denote generic constants independent of u and c.
We denote d = 2, 3 the dimension.

We use the standard notations: f+ = max{f, 0} and f− = −min{f, 0}.
We denote by ‖ · ‖s the norm of Hs(Ω) and by ‖ · ‖s,Γ the norm of Hs(Γ) for Γ ⊂ ∂Ω.
If B is a Banach space, B′ denotes its dual space. The L2(Ω) inner product is (·, ·) and the

duality product between B and B
′ is 〈·, ·〉B,B′ .

We define
W =

{
w ∈ H1(Ω) : w|Γin = 0

}
;

since W is closed in H1(Ω) and H1(Ω) is a Hilbert space, then so is W .
We assume that u ∈ L2(0, T ;Vdiv) ∩ L∞(0, T ;L2(Ω)d) is given, where

Vdiv := {v ∈ H1(Ω)d : ∇ · v = 0}.

In view of (2.16) with nonnegative concentration c and assuming that there is no back-flow on
Γout, we make the following assumptions for u:

(U1) u · n 6 0 on S,
(U2) u · n > 0 on Γout.

(2.20)

In variational form (2.5), (2.6), (2.15) is: Let w(x, t) be a sufficiently smooth function defined
in Ω× [0, T ] and vanishing on Γin. Multiplying w(x, t) with (2.5), integrating over Ω, and using
(2.6), (2.15), (2.16), we have∫

Ω

(∂tc+ u · ∇c−D∆c)wdx

=

∫
Ω

(∂tc)wdx+
1

2

∫
Ω

(u · ∇c)wdx− 1

2

∫
Ω

(u · ∇w)cdx+
1

2

∫
∂Ω

(u · n)cw

+

∫
Ω

D∇c · ∇wdx−
∫
∂Ω

D
∂c

∂n
w

=

∫
Ω

(∂tc)wdx+
1

2

∫
Ω

[(u · ∇c)w − (u · ∇w)c]dx+

∫
Ω

D∇c · ∇wdx

+
1

2

∫
Γout

(u · n)cw +

∫
S

(
1− αc

2
+
αi20
D

∫ t

0

c(s)ds

)
i0cw.

(2.21)

The resulting variational formulation reads:

Problem (P)
Given c0 ∈ H1(Ω), c0(x) ∈ [0, 1], cin ∈ H1/2(Γin), cin(x) ∈ [0, 1], and u ∈ L2(0, T ;Vdiv)

satisfying (U1), (U2), find c ∈ L2(0, T ;H1(Ω)) ∂tc ∈ L2(0, T ;W
′
), such that, c(0) = c0, c|Γin

=
cin and, for all w ∈W ,

〈∂tc, w〉W ′ ,W +

∫
Ω

D∇c · ∇wdx+
1

2

∫
Ω

[(u · ∇c)w − (u · ∇w)c]dx

+
1

2

∫
Γout

(u · n)cw +

∫
S

(
1− αc

2
+
αi20
D

∫ t

0

c(s)ds

)
i0cw = 0.

(2.22)
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The following result, central to this chapter, shows existence of the concentration profile c when
the velocity field u, is known:

Theorem 2.3.1 Given c0 ∈ H1(Ω), c0(x) ∈ [0, 1], cin ∈ H1/2(Γin), cin(x) ∈ [0, 1], and u ∈
L2(0, T ;Vdiv) satisfying (U1) and (U2), there exists a unique c ∈ L2(0, T ;H1(Ω)) with ∂tc ∈
L2(0, T ;W

′
) such that∫ T

0

〈∂tc, w〉W ′ ,W dt+
1

2

(∫ T

0

∫
Ω

[(u · ∇c)w − (u · ∇w)c]dxdt

)

+D

∫ T

0

∫
Ω

∇c · ∇wdxdt+
∫ T

0

∫
S

(
1− αc

2
+
αi20
D

∫ t

0

c(s)ds

)
i0cwdt

+

∫ T

0

∫
S

αi30
D
c

(∫ t

0

c(s)ds

)
wdt+

1

2

∫ T

0

∫
Γout

(u · n)cwdt

= 0.

(2.23)

for all w ∈ L2(0, T ;W ), and c(0) = c0 ∈ H1(Ω), and c|Γin
= cin ∈ H1/2(Γin).

Remark 2.3.1 The existence and regularity of the coupled problem {u, c} will not be studied.
Mostly because it would require minute and perhaps hard to obtain estimates due to the corners
in the domain as in [9, 68, 14], the traction-free boundary condition, etc, but also because, u
is merely weakly coupled with c only through the boundary condition on S. Furthermore, due
to the numerical values of the physical constants, u is small on Γin. Therefore, we focus on the
solution to the convection-diffusion equation (2.22), for which, as we shall see, the functional
setting is not so simple.

2.3.2 Convexification

The term c− αc2

2
in the integral on S is problematic because it is not monotone so it makes the

problem non-coercive. Indeed its primitive ψ(c) := c2

2
− αc3

6
is nonconvex beyond c >

1

α
. But

the physics require that c ∈ [0, 1] and the maximum principle will insure it. So any modification
of ψ outside (0, 1) will not affect the solution; hence to work with a convex potential let us replace
ψ by (see Figure 2.2).

Ψ(c) =


c2

2
− αc3

6
if c < 1

α ,

c

2α
− 1

6α2
otherwise.

(2.24)

Let ρ be any time dependent function defined on [0, T ]. We define

(φ(ρ))(t) = i0Ψ̇(ρ(t)) +
αi30
D
ρ(t)

∫ t

0

|ρ(s)|ds, t ∈ [0, T ], (2.25)

where Ψ̇(c) is the derivative of Ψ with respect to c:

Ψ̇(c) =

c−
αc2

2
if c < 1

α ,

1

2α
otherwise.

(2.26)
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24 CHAPTER 2. Single phase problem

Figure 2.2: Graphic showing the modification of the nonconvex function c 7→ c2

2
− αc3

6
into a

convex one.

Naturally Ψ̇ is monotone increasing. Note that Ψ is strictly convex and Ψ̇ is strictly increasing
in [0, 1

α ].
The convexified variational formulation replacing (2.22) is

Problem (Pc)
Given c0 ∈ H1(Ω), c0(x) ∈ [0, 1], cin ∈ H1/2(Γin), cin(x) ∈ [0, 1], and u ∈ L2(0, T ;Vdiv) satis-

fying (U1), (U2), find c ∈ L2(0, T ;H1(Ω)) satisfying c|Γin = cin ∈ H1/2(Γin), ∂tc ∈ L2(0, T ;W
′
),

φ(c) ∈ L2(0, T ;L2(S)), and

〈∂tc, w〉W ′ ,W +

∫
Ω

D∇c · ∇wdx+
1

2

∫
Ω

[(u · ∇c)w − (u · ∇w)c]dx

+
1

2

∫
Γout

(u · n)cw +

∫
S

φ(c)w = 0, ∀w ∈W.
(2.27)

Note that when 0 6 c 6 1, then both c and φ(c) ∈ L∞(Ω× (0, T )).
The proof of existence goes by steps. We assume that u ∈ L2(0, T ;Vdiv)∩L∞(0, T ;L2(Ω)d),

so as to focus on the equation for c with u given. We will first discretize in time, show existence
for the time discretized problem and then let the time step tend to zero.

2.4 Existence for the time-discretized problem

Let N ∈ N+ and let δt = T

N
be the time step.

Discrete velocity field u

Since functions in a Bochner space Lp(0, T ;X) for all Banach space (X, ‖ · ‖) can be approxi-
mated by step functions on a uniform discretization of (0, T ) (see for instance [44, 65]), we define
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2.4. Existence for the time-discretized problem 25

uδ : (0, T ]→ Vdiv by

uδ(t) =

N−1∑
m=0

um+1χ(mδt,(m+1)δt](t), (2.28)

where uj =
1

δt

∫ (j+1)δt

jδt

u(s)ds for j = 0, . . . N − 1. For convenience, we further define u0 =

u(0) ∈ Vdiv. Obviously, uj ∈ Vdiv for all 0 6 j 6 N . To show that uδ converges to u strongly
in L2(0, T ;H1(Ω)d), we need a lemma:

Lemma 2.4.1 Let f ∈ L2([a, b]) for a, b ∈ R, a < b, and N > 0 be an integer. Defining δt = b−a
N ,

we have

δt

N−1∑
j=0

∫ a+(j+1)δt

a+jδt

∫ a+(j+1)δt

a+jδt

|f(s)− f(t)|2

δt2
dsdt→ 0, as δt→ 0 (2.29)

Proof. Given ε1 > 0, there exists g ∈ C([a, b]) such that∫ b

a

|f − g|2dt < ε1

We note that choice of g is independent to δt. With given g in hand, for every ε2 > 0, there
exists δ > 0 such that for every s, t ∈ [a, b], we have

|g(s)− g(t)| < ε2, whenever |s− t| < δ.

Choosing δt < δ, we have the estimate:

N−1∑
j=0

∫ a+(j+1)δt

a+jδt

∫ a+(j+1)δt

a+jδt

|f(s)− f(t)|2dsdt

6 3

N−1∑
j=0

∫ a+(j+1)δt

a+jδt

∫ a+(j+1)δt

a+jδt

(|f(s)− g(s)|2 + |g(s)− g(t)|2 + |f(t)− g(t)|2)dsdt

6 6

N∑
j=0

δt

(∫ a+(j+1)δt

a+jδt

∫ a+(j+1)δt

a+jδt

|f(s)− g(s)|2ds

)
+ 3

N−1∑
j=0

∫ a+(j+1)δt

a+jδt

∫ a+(j+1)δt

a+jδt

|g(s)− g(t)|2dsdt

6 6δtε1 + 3(b− a)δtε2
(2.30)

Therefore,

δt

N−1∑
j=0

∫ a+(j+1)δt

a+jδt

∫ a+(j+1)δt

a+jδt

|f(s)− f(t)|2

δt2
dsdt 6 6ε1 + 3(b− a)ε2. (2.31)

By the arbitrariness of ε1 and ε2, the proof is completed. Q.E.D.

Proposition 2.4.1 Let uδ be defined by (2.28), we have the following:

‖u− uδ‖L2(0,T ;H1(Ω)) → 0 as δt→ 0. (2.32)
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Proof. ∫ T

0

‖uδ(t)− u(t)‖21dt

=

N−1∑
j=0

∫ (j+1)δt

jδt

‖uj+1 − u(t)‖21dt

=

N−1∑
j=0

∫ (j+1)δt

jδt

∥∥∥∥∥ 1

δt

∫ (j+1)δt

jδt

(u(s)− u(t))ds

∥∥∥∥∥
2

1

dt

6
N−1∑
j=0

∫ (j+1)δt

jδt

(
1

δt

∫ (j+1)δt

jδt

‖u(s)− u(t)‖21ds

)
dt

= δt

N−1∑
j=0

∫ (j+1)δt

jδt

∫ (j+1)δt

jδt

‖u(s)− u(t)‖21
δt2

dsdt

(2.33)

Defining the function f : [0, T ] → R by s 7→ ‖u(s)‖21 and applying Lemma 2.4.1, the proof is
completed. Q.E.D.

We observe that uδ is strongly convergent to u in L2(0, T ;H1(Ω)d). Thus,

Corollary 2.4.1 There exists a constant C depending only on Ω, T,u so that

‖uδ‖L2(0,T ;H1(Ω)d) 6 C ∀δt > 0. (2.34)

Problem (Pm
c )

For each integer m ∈ (0, N − 1), given cm ∈ H1(Ω), and um+1 = uδ((m + 1)δt) satisfying
(U1), (U2), find cm+1 ∈ H1(Ω) such that for all w ∈W ,∫

Ω

cm+1 − cm

δt
wdx+D

∫
Ω

∇cm+1 · ∇wdx

+
1

2

∫
Ω

[(um+1 · ∇cm+1)w − (um+1 · ∇w)cm+1]dx

+

∫
S

φm(cm+1)w +
1

2

∫
Γout

(um+1 · n)cm+1w = 0

(2.35)

with cm+1|Γin
= cin ∈ H1/2(Γout), where φm(cm+1) is the following time approximation of φ(c),

φm(cm+1) = i0Ψ̇(cm+1) +
αi30
D

 m∑
j=0

cjδt

 cm+1.

The boundary condition is given by c|Γin
= cin ∈ H1/2(Γin), 0 6 cin 6 1. The initial value is

c0 = c0 with c0 ∈ H1(Ω), c0|Γin
= cin ∈ H1/2(Γin), 0 6 c0 6 1.

2.4.1 Existence of the solution to the time-discretized Problem (Pm
c )

To prove the existence, the Minty-Browder Theorem (see Theorem 9.14.1 in [27] and a series of
works by Minty and Browder[83, 84, 21]) will be used.

Work in progress as of February 5, 2022



2.4. Existence for the time-discretized problem 27

Theorem 2.4.1 (Minty-Browder) Let B be a reflexive Banach space and ‖ · ‖ its norm. Let
A : B → B

′ a continuous mapping such that

(i) 〈Au−Av, u− v〉 > 0 ∀u, v ∈ B, u 6= v

(ii) lim
∥u∥→∞

‖u‖−1〈Au, u〉 = +∞.

Then, for any b ∈ B′ , there is a unique u such that Au = b.

Remark 2.4.1 The continuity of A in Theorem 2.4.1 can be generalized to hemicontinuity, or
demicontinuity.

The theorem will be applied to cm − c̃in where c̃in ∈ H1(Ω) is a lift of the boundary conditions
defined as the unique solution of∫

Ω

D∇c̃in · ∇wdx = 0, ∀w ∈W (2.36)

such that c̃in = cin on Γin. With cin ∈ H1/2(Γin), the existence and uniqueness of c̃in can be
guaranteed (see Section 7 in [99]).

Lemma 2.4.2 If 0 ≤ cin ≤ 1, then c̃in satisfies 0 6 c̃in 6 1 a.e.
Proof. The argument is classical; let us recall it for the reader’s convenience. Note that

(c̃in−1)+ and (c̃in)
− belong to W . Choosing w = (c̃in)

− in (2.36), gives ‖∇(c̃in)−‖20 = 0. Hence
(c̃in)

− = 0 i.e. c̃in > 0.
Now choosing w = (c̃in − 1)+ in (2.36) implies ‖∇(c̃in − 1)+‖20 = 0. Hence (c̃in − 1)+ = 0,

i.e. c̃in 6 1 a.e. in Ω. Q.E.D.

Proposition 2.4.2 Let m > 0. If 0 6 cj 6 1 a.e. in Ω, cj ∈ H1(Ω) for all j 6 m, then
cm+1 ∈ H1(Ω) and 0 6 cm+1 6 1 a.e. in Ω.
Proof. Letting w = (cm+1)− in (2.35), gives

− 1

δt
‖(cm+1)−‖20 −D‖∇(cm+1)−‖20 −

1

2

∫
Γout

(um+1 · n)(cm+1)−
2

+

∫
S

i0Ψ̇(cm+1)(cm+1)− − αi30
D

m∑
j=0

cjδt(cm+1)−
2
=

1

δt

∫
Ω

cm(cm+1)− > 0

(2.37)

All terms on the left are obviously negative except Ψ̇(cm+1)(cm+1)−. Two cases: if c > 1
α then

c− = 0 and Ψ̇(c)c− = 0; if c < 1
α then Ψ̇(c)c− = (c − α

2 c
2)c− = −(c−)2 − α

2 c
2c− 6 0. Hence

Ψ̇(cm+1)(cm+1)− 6 0 always; thus (2.37) leads to ‖(cm+1)−‖20 = 0.
Define cm+1 = cm+1 − 1. It satisfies∫

Ω

cm+1 − cm

δt
w +

∫
Ω

D∇cm+1 · ∇wdx

+
1

2

∫
Ω

[(um+1 · ∇cm+1)w − (um+1 · ∇w)cm+1]dx

− 1

2

∫
S∪Γout

(um+1 · n)w +

∫
S

i0Ψ̇(cm+1)w +

∫
S

αi30
D

m∑
j=0

cjδtcm+1w

+
1

2

∫
Γout

(um+1 · n)(cm+1 + 1)w = 0

(2.38)
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Testing with w = (cm+1)+, gives

1

δt
‖(cm+1)+‖20 −

1

δt

∫
Ω

cm(cm+1)+ +D‖∇(cm+1)+‖20 −
1

2

∫
S

(um+1 · n)(cm+1)+∫
S

i0Ψ̇(cm+1)(cm+1)+ +
αi30
D

∫
S

m∑
j=0

cjδtcm+1(cm+1)+

+
1

2

∫
Γout

(um+1 · n)((cm+1)+ + 1)(cm+1)+ = 0.

(2.39)

By the induction hypothesis, cm is negative; observe that um+1 ·n 6 0 on S by (U1), um+1 ·n > 0
on Γout by (U2) and Ψ̇(cm+1) > 0 because cm+1 > 0. So we have that ‖(cm+1)+‖20 = 0. Q.E.D.

Let us define
c̃m := cm − c̃in ∈W, m = 0, 1, . . . , N.

Remark 2.4.2 As c̃m ∈ [−1, 1] and Ψ̇(cm) ∈ [0, 1], therefore |Ψ̇(cm)c̃m| 6 1.

By construction, (2.35), which defines Problem Pm
c , can be rewritten as

Problem (P̃m
c )

For each integer m ∈ (0, N − 1), given c̃m ∈ H1(Ω), c̃in ∈ H1(Ω), c̃in(x) ∈ [0, 1], and
um+1 = uδ((m+ 1)δt) satisfying (U1), (U2), find c̃m+1 ∈W such that for all w ∈W ,

1

δt

∫
Ω

c̃m+1wdx+
1

2

∫
Ω

[(um+1 · ∇c̃m+1)w − (um+1 · ∇w)c̃m+1]dx

+D

∫
Ω

∇c̃m+1 · ∇wdx+

∫
S

ϕm(cm+1)w +
1

2

∫
Γout

(um+1 · n)c̃m+1w

= −1

2

∫
Ω

[(um+1 · ∇c̃in)w − (um+1 · ∇w)c̃in]dx+
1

δt

∫
Ω

c̃mwdx− 1

2

∫
Γout

(um+1 · n)c̃inw

(2.40)

Now define the mapping A :W →W
′ by

〈Aρ,w〉 = 1

δt

∫
Ω

ρwdx+
1

2

∫
Ω

[(um+1 · ∇ρ)w − (um+1 · ∇w)ρ]dx

+D

∫
Ω

∇ρ · ∇wdx+

∫
S

φm(ρ+ c̃in)w +
1

2

∫
Γout

(um+1 · n)ρw
(2.41)

Since W is closed in H1(Ω) and H1(Ω) is a Hilbert space, then so is W .

Lemma 2.4.3 Let m > 0. We suppose that cj ∈ H1(Ω) for all j 6 m, then A : W → W
′

defined by (2.41) is locally Lipschitz continuous.

The proof is fairly straightforward but long, so it is postponed to Appendix A so as not to
break the thread of the proof of existence of (P̃m

c ). From the definition of A by (2.41), there is
no essential difficulty to arrive, via a sequence of inequalities, at

|〈Aρ1 −Aρ2, w〉|

6

C1 + C2‖um+1‖1 + C3(‖ρ1‖1 + ‖ρ2‖1) + C4δt

m∑
j=0

‖cj‖1

 ‖ρ1 − ρ2‖1‖w‖1, (2.42)
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Lemma 2.4.4 Let ρ1, ρ2, ρ ∈ W and m > 0. We suppose that 0 6 cj 6 1 a.e. in Ω for all
j 6 m. A :W →W

′ defined by (2.41) satisfies

(i) 〈Aρ1 −Aρ2, ρ1 − ρ2〉 > 0 if ρ1 6= ρ2

(ii) lim
∥ρ∥1→+∞

‖ρ‖−1
1 〈Aρ, ρ〉 = +∞.

Proof. To show (i), we use (2.41) with ρ1, ρ2 ∈W ,

⟨Aρ1 −Aρ2, w⟩ = 1

δt

∫
Ω

(ρ1 − ρ2)wdx

+
1

2

∫
Ω

[(um+1 · ∇(ρ1 − ρ2))w − (um+1 · ∇w)(ρ1 − ρ2)]dx+D

∫
Ω

∇(ρ1 − ρ2) · ∇wdx

+

∫
S

(ϕm(ρ1 + c̃in)− ϕm(ρ2 + c̃in))w +
1

2

∫
Γout

(um+1 · n)(ρ1 − ρ2)w.

(2.43)

By the definition of φm, cj are given for j 6 m irrespectively of ρ. Let w = ρ1− ρ2 in the above
equation, one obtain

〈Aρ1 −Aρ2, ρ1 − ρ2〉 =∫
Ω

1

δt
(ρ1 − ρ2)2dx+D

∫
Ω

|∇(ρ1 − ρ2)|2dx+
1

2

∫
Γout

(um+1 · n)(ρ1 − ρ2)2∫
S

αi30
D

m∑
j=0

cjδt(ρ1 − ρ2)2 +
∫
S

(Ψ̇(ρ1 + c̃in)− Ψ̇(ρ2 + c̃in))(ρ1 − ρ2).

(2.44)

Recall that um+1 · n > 0 on Γout. All the terms on the right are obviously positive, except
the last one. Without loss of generality, we assume that ρ2 > ρ1; we know that Ψ̇ is strictly
increasing. That is, Ψ̇(ρ2 + c̃in) > Ψ̇(ρ1 + c̃in). Hence (Ψ̇(ρ2 + c̃in)− Ψ̇(ρ1 + c̃in))(ρ2 − ρ1) > 0.
Hence

〈Aρ1 −Aρ2, ρ1 − ρ2〉 >
1

δt
‖ρ1 − ρ2‖20 +D‖∇(ρ1 − ρ2)‖20.

Finally (ii) can be proved by taking ρ1 = 0 in (i). Q.E.D.

By Theorem 2.4.1 and Lemmas 2.4.3, 2.4.4, we have

Corollary 2.4.2 There exists a unique solution to Problem (P̃m
c ) and hence also to (Pm

c ) defined
by (2.35).

2.5 Stability of the time-discretized Problem Pm
c

Proposition 2.5.1 Let c̃m+1 be the solution of (2.40) for each integer m ∈ (0, N−1) with given
c̃j ∈ H1(Ω), c̃j(x) ∈ [−1, 1] for j = 0, . . . ,m, c̃in ∈ H1(Ω), c̃in(x) ∈ [0, 1], and um+1 ∈ H1(Ω)d

satisfying (U1), (U2). We have

‖c̃m+1‖20+ ‖c̃m+1 − c̃m‖20 +Dδt‖∇c̃m+1‖20 + δt

∫
Γout

(um+1 · n)(c̃m+1)2

6 ‖c̃m‖20 + C1δt+ C2δt‖um+1‖21 + C3δt‖∇c̃in‖20 (2.45)
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Proof. By (2.40) with w = c̃m+1 we have

1

2δt
‖c̃m+1‖20 +

1

2δt
‖c̃m+1 − c̃m‖20 +D‖∇c̃m+1‖20 +

1

2

∫
Γout

(um+1 · n)(c̃m+1)2

= −
∫
S

i0Ψ̇(cm+1)c̃m+1 −
∫
S

αi30
D

m∑
j=0

cjδtcm+1c̃m+1 − 1

2

∫
Γout

(um+1 · n)c̃inc̃m+1

− 1

2

∫
Ω

(um+1 · ∇c̃m+1)c̃indx+
1

2

∫
Ω

(um+1 · ∇c̃in)c̃m+1dx+
1

2δt
‖c̃m‖20

(2.46)

We estimate each term of the right hand side

−
∫
S

i0Ψ̇(cm+1)c̃m+1 6 i0

∫
S

|Ψ̇(cm+1)c̃m+1| 6 i0|S|.

−
∫
S

αi30
D

(
m∑

j=0

cjδt

)
cm+1c̃m+1 6 αi30

D

∫
S

(
m∑

j=0

cjδt

)
cm+1|c̃m+1| 6 αi30

D

∫
S

mδt 6 αi30T

D
|S|.

−
∫
Γout

(um+1 · n)c̃inc̃m+1 6 |Γout|
1
2

(∫
Γout

|um+1|2
) 1

2

6 C∥um+1∥21.

−
∫
Ω

(um+1 · ∇c̃m+1)c̃indx 6
∫
Ω

|um+1 · ∇c̃m+1|dx 6 1

2D
∥um+1∥20 +

D

2
∥∇c̃m+1∥20.∫

Ω

(um+1 · ∇c̃in)c̃
m+1dx 6

∫
Ω

|um+1 · ∇c̃in|dx 6 1

2D
∥um+1∥20 +

D

2
∥∇c̃in∥20.

Collecting all terms leads to

1

2δt
‖c̃m+1‖20 +

1

2δt
‖c̃m+1 − c̃m‖20 +

D

2
‖∇c̃m+1‖20 +

1

2

∫
Γout

(um+1 · n)(c̃m+1)2

6 1

2δt
‖c̃m‖2 + C1 + C2‖um+1‖21 + C3‖∇c̃in‖20

(2.47)

Multiplying both sides by 2δt completes the proof. Q.E.D.

Summing (2.45) from 0 to m, leasds to the following:

Corollary 2.5.1 Let uj+1 ∈ H1(Ω)d be given satisfying (U1), (U2) for all j = 0, . . . , N − 1. If
c̃0 ∈ H1(Ω), c̃0(x) ∈ [−1, 1], c̃in ∈ H1(Ω), c̃in(x) ∈ [0, 1], then (2.40) implies that

‖c̃m+1‖20 +
m∑
j=0

‖c̃j+1 − c̃j‖20 +Dδt

m∑
j=0

‖∇c̃j+1‖20 +
m∑
j=0

δt

∫
Γout

(uj+1 · n)(c̃j+1)2

6 ‖c̃0‖20 + C1T + C2δt

m∑
j=0

‖uj+1‖21 + C3T‖∇c̃in‖20.
(2.48)

Proposition 2.5.2 Let uj+1 ∈ H1(Ω)d be given satisfying (U1), (U2) for all j = 0, . . . , N − 1.
If c̃0 ∈ H1(Ω), c̃0(x) ∈ [−1, 1], c̃in ∈ H1(Ω), c̃in(x) ∈ [0, 1], then (2.40) implies that

δt

m∑
j=1

∥∥∥∥ c̃j+1 − c̃j

δt

∥∥∥∥2
W ′

is uniformly bounded. (2.49)
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Proof. By definition ∥∥∥∥ c̃m+1 − c̃m

δt

∥∥∥∥
W ′

= sup
w0∈W

1

‖w0‖1

〈
c̃m+1 − c̃m

δt
, w0

〉
. (2.50)

By (2.40), with w =
w0

‖w0‖1
∈W ,

∥∥∥∥ c̃m+1 − c̃m

δt

∥∥∥∥
W ′

= sup
w∈W,∥w∥=1

{
−
∫
Ω

D∇c̃m+1 · ∇wdx

− 1

2

∫
Ω

[(um+1 · ∇c̃m+1)w − (um+1 · ∇w)c̃m+1]dx− i0
∫
S

Ψ̇(cm+1)w

−
∫
S

αi30
D

 m∑
j=0

cjδt

 cm+1w − 1

2

∫
Γout

(um+1 · n)cm+1w

− 1

2

∫
Ω

[(um+1 · ∇c̃in)w − (um+1 · ∇w)c̃in]dx
}
.

(2.51)

We estimate all terms on the right hand side of (2.51)

−D
∫
Ω

∇c̃m+1 · ∇wdx 6 D‖∇c̃m+1‖0‖∇w‖0 6 D‖c̃m+1‖1‖w‖1 = D‖c̃m+1‖1, (2.52)

∫
Ω

(um+1 · ∇w)c̃m+1dx 6
∫
Ω

|um+1 · ∇w| 6 ‖um+1‖0, (2.53)

−
∫
Ω

(um+1 · ∇c̃m+1)wdx =

∫
Ω

(um+1 · ∇w)c̃m+1dx−
∫
∂Ω

(um+1 · n)c̃m+1w

6 ‖um+1‖0 + ‖um+1‖∂Ω‖w‖∂Ω 6 C‖um+1‖1,
(2.54)

−
∫
S

Ψ̇(cm+1)w 6 C|S| 12 ‖w‖1 = C|S| 12 , (2.55)

−
∫
S

 m∑
j=0

cjδt

 cm+1w 6
∫
S

T |w| 6 CT |S| 12 ‖w‖1 = CT |S| 12 , (2.56)

−
∫
Γout

(um+1 · n)cm+1w 6 ‖um+1‖Γout
‖w‖Γout

6 C‖um+1‖1‖w‖1 = C‖um+1‖1, (2.57)∫
Ω

(um+1 · ∇w)c̃indx 6
∫
Ω

|um+1 · ∇w| 6 ‖um+1‖0‖w‖1 = ‖um+1‖0, (2.58)

−
∫
Ω

(um+1 · ∇c̃in)wdx 6 C‖um+1‖1 (see (2.54)). (2.59)

Collecting (2.52)-(2.59) with (2.51), all multiplied by δt, gives

δt

∥∥∥∥ c̃m+1 − c̃m

δt

∥∥∥∥2
W ′

6 Cδt(1 + ‖c̃m+1‖21 + ‖um+1‖21). (2.60)

By summing (2.60) from 0 to N −1 and the boundedness given by Corollary 2.4.1 and Corollary
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2.5.1, the proof is completed. Q.E.D.

2.6 Passage to the limit δt→ 0

Let us define
cδ : [0, T ]→ H1(Ω), cδ(t) = cj if t ∈ ((j − 1)δt, jδt], (2.61)

ch : [0, T ]→ H1(Ω), ch(t) =
t− (j − 1)δt

δt
cj +

jδt− t
δt

cj−1 if t ∈ ((j − 1)δt, jδt], (2.62)

cδ− : [0, T ]→ H1(Ω), cδ−(t) = cj−1 if t ∈ [(j − 1)δt, jδt), (2.63)

Cδ− : [0, T ]→ H1(Ω), Cδ−(t) =

j∑
k=1

ck−1δt if t ∈ [(j − 1)δt, jδt), (2.64)

for j = 1, . . . , N . Note that cδ, ch, and cδ− are in L2(0, T ;H1(Ω)) and L∞(Ω × (0, T )). With
these notations, problem (Pm

c ) reads

(∂tch, w) +
1

2
[(uδ · ∇cδ, w)− (uδ · ∇w, cδ)]

+D(∇cδ,∇w) +
∫
S

i0Ψ̇(cδ)w +

∫
S

αi30
D
cδCδ−w +

1

2

∫
Γout

(uδ · n)cδw = 0.
(2.65)

Lemma 2.6.1 Cδ− is in L2(0, T ;H1(Ω)).
Proof. ∫

T

∫
Ω

|∂xiCδ−(t)|2dxdt 6
∫ T

0

∫
Ω

(
δt

N∑
k=1

|∂xic
k−1|

)2

dxdt

=

∫ T

0

∫
Ω

δt2

(
N∑

k=1

|∂xick−1|

)2

dxdt 6
∫ T

0

δt2 · T
δt

N∑
k=1

|∂xi
ck−1|2dx

= T 2δt

N∑
k=1

∫
Ω

|∂xi
ck−1|2dx 6 C

The last inequality is due to Corollary 2.5.1.

Lemma 2.6.2

‖cδ − ch‖L2((0,T )×Ω) 6
√
δt

3

 N∑
j=1

‖cj+1 − cj‖20

 1
2

(2.66)

Proof.

cδ(t)− ch(t) =
t− jδt
δt

(cj − cj−1) for (j − 1)δt < t 6 jδt,∫ jδt

(j−1)δt

‖cδ(t)− ch(t)‖20dt =
δt

3
‖cj − cj−1‖20.

The proof can be completed by taking summation from j = 1 to N .

Corollary 2.6.1
cδ − ch → 0 in L2((0, T )× Ω) as δt→ 0. (2.67)
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By the boundedness given by Proposition 2.4.2, 2.5.2, and Corollary 2.5.1, there are subsequences
of cδ and ch (still denoted by cδ and ch), respectively such that

cδ → c in L2(0, T ;H1(Ω)) weakly, (2.68)
ch → c∗ in L2(0, T ;H1(Ω)) weakly, (2.69)

ch → c∗ in L∞(Ω× (0, T )) weak star, (2.70)
∂tch → g in L2(0, T ;W

′
) weakly. (2.71)

By Corollary 2.6.1, we have c = c∗.
By a classical argument, see for instance [113], we have

g = ∂tc. (2.72)

Let
Y =

{
w ∈ L2(0, T ;H1(Ω)), ∂tw ∈ L2(0, T ;W

′
)
}
.

By the Aubin-Lions Lemma, Y is compactly embedded in L2(0, T ;Lq(Ω)) with q < 6 when d = 3
and q <∞ when d = 2. Therefore, we have in particular

ch → c in L2((0, T )× Ω) strongly. (2.73)

Using Corollary 2.6.1 again, we get

cδ → c in L2((0, T )× Ω) strongly. (2.74)

To see the convergence of the boundary term, we need the following lemma:

Lemma 2.6.3 Let X be a normed linear space, D a dense subset of X ′ , xn, n = 1, 2, . . . a
uniform bounded sequence in X. If g(xn)→ g(x) for all g ∈ D, then xn → x weakly in X.

The above Lemma can be found in Theorem 10.1 of [72].

Lemma 2.6.4 Given cδ defined by (2.61), there exists a subsequence (still denoted by cδ) sat-
isfying (2.68) and the followings:

Ψ̇(cδ)→ Ψ̇(c) in L2(0, T ;H
1
2 (S)) weakly, (2.75)

cδ

∫ t

0

cδ(s)ds→ c

∫ t

0

c(s)ds in L2(0, T ;H
1
2 (S)) weakly. (2.76)

Proof. Let us prove that Ψ̇(cδ) tends to Ψ̇(c) weakly in L2(0, T ;H1(Ω)). First, we know that

Ψ̇(cδ) is bounded in Ω × [0, T ] and we have Ψ̇(cδ) = cδ −
αc2δ
2

a.e. since cδ 6 1 a.e.. Moreover,
since α < 1, we have∫ T

0

∫
Ω

|∂xi
Ψ̇(cδ)|2dxdt =

∫ T

0

|∂xi
cδ − αcδ∂xi

cδ|2dxdt

=

∫ T

0

∫
Ω

|(1− αcδ)∂xi
cδ|2dxdt =

∫ T

0

∫
Ω

|1− αcδ|2|∂xi
cδ|2dxdt

6
∫ T

0

∫
Ω

|∂xi
cδ|2dxdt <∞.
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Therefore, Ψ̇ converges weakly in L2(0, T ;H1(Ω)). To identify its limit, let w ∈ C([0, T ] × Ω).
Then (2.74) implies that ∫ T

0

∫
Ω

Ψ̇(cδ)wdxdt→
∫ T

0

∫
Ω

Ψ̇(c)wdxdt

and (2.74) and (2.68) imply that∫ T

0

∫
Ω

∂xiΨ̇(cδ)wdxdt→
∫ T

0

∫
Ω

∂xiΨ̇(c)wdxdt.

This gives the desired convergence. By the continuity of the trace mapping

φ 7→ φ|∂Ω

for the weak topology, we deduce that

Ψ̇(cδ)→ Ψ̇(c) weakly in L2(0, T ;H
1
2 (S)). (2.77)

For (2.76), we define r(t, cδ) := cδ

∫ t

0

cδ(s)ds in (0, T ) × Ω. To begin with, we observe that∫ t

0

cδ(s)ds→
∫ t

0

c(s)ds strongly in L2((0, T )× Ω). This can be checked by the estimate:

∫ T

0

∫
Ω

∣∣∣∣∫ t

0

(cδ(s)− c(s))ds
∣∣∣∣2 dxdt 6 ∫ T

0

∫
Ω

t

∫ t

0

|cδ(s)− c(s)|2dsdxdt

6
∫ T

0

t

∫ T

0

∫
Ω

|cδ(s)− c(s)|2dxdsdt =
1

2
T 2

∫ T

0

∫
Ω

|cδ(s)− c(s)|2dxds

→ 0 as δt→ 0.

Let w ∈ C([0, T ]× Ω). Since cδ strongly converges to c in L2((0, T )× Ω), we have∫ T

0

∫
Ω

r(t, cδ)wdxdt→
∫ T

0

∫
Ω

r(t, c)wdxdt. (2.78)

We differentiate r(t, cδ):

∂xi
r(t, cδ) = ∂xi

cδ

∫ t

0

cδ(s)ds+ cδ

∫ t

0

∂xi
cδ(s)ds. (2.79)

We have the boundedness for the first term on the right hand side:∫ T

0

∫
Ω

|∂xicδ|2
∣∣∣∣∫ t

0

cδ(s)ds

∣∣∣∣2 dxdt 6 ∫ T

0

∫
Ω

t|∂xicδ|2dxdt

6 T

∫ T

0

∫
Ω

|∂xi
cδ|2dxdt <∞

(2.80)

Using the fact that both ∂xi
cδ → ∂xi

c weakly in L2((0, T ) × Ω) and
∫ t

0

cδ(s)ds →
∫ t

0

c(s)ds
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strongly in L2((0, T )× Ω), we have∫ T

0

∫
Ω

∂xi
cδ

(∫ t

0

cδ(s)ds

)
wdxdt→

∫ T

0

∫
Ω

∂xi
c

(∫ t

0

c(s)ds

)
wdxdt. (2.81)

The second term is bounded as well:∫ T

0

∫
Ω

∣∣∣∣∫ t

0

∂xicδ(s)ds

∣∣∣∣2 dxdt 6 ∫ T

0

∫
Ω

t

∫ t

0

|∂xicδ(s)|2dsdxdt

=

∫ T

0

t

∫ t

0

∫
Ω

|∂xi
cδ(s)|2dxdsdt 6

∫ T

0

t

∫ T

0

∫
Ω

|∂xi
cδ(s)|2dxdsdt

=
1

2
T 2

∫ T

0

∫
Ω

|∂xi
cδ(s)|2dxdt <∞

(2.82)

And we observe that∫ T

0

∫
Ω

(∫ t

0

∂xi
cδ(s)ds

)
wdxdt

=

∫ T

0

∫ t

0

(∫
Ω

∂xicδ(s)wdx

)
dsdt→

∫ T

0

(∫ t

0

∫
Ω

∂xic(s)wdxds

)
dt

because w(t) for fixed t is continuous in Ω. Now, we have cδ → c in L2((0, T )×Ω) strongly and∫ t

0

∂xicδ(s)ds→
∫ t

0

∂xic(s)ds weakly in L2((0, T )× Ω). This implies that

∫ T

0

∫
Ω

cδ

(∫ t

0

∂xicδ(s)ds

)
w(t)dxdt→

∫ T

0

∫
Ω

c

(∫ t

0

∂xic(s)ds

)
wdxdt

By (2.82) and Lemma A.3.3 below, we have cδ
∫ t

0

∂xi
cδ(s)ds→ c

∫ t

0

∂xi
c(s)ds weakly in L2((0, T )×

Ω).

Collecting all the weak convergence results above, we conclude that r(t, cδ) → r(t, c) in
L2(0, T ;H1(Ω)) weakly. By the continuity of the trace for the weak topology, we have r(t, cδ)→
r(t, c) in L2(0, T ;H

1
2 (S)) weakly. Q.E.D.

Lemma 2.6.5 Cδ− defined in (2.64) satisfies∥∥∥∥Cδ− −
∫ t

0

cδ(s)ds

∥∥∥∥
L2(0,T ;H1(Ω))

6 Cδt (2.83)

Proof. For all t ∈ [(j − 1)δt, jδt),

Cδ−(t)−
∫ t

0

cδ(s)ds =

j∑
k=1

ck−1δt−
j−1∑
k=1

ckδt− cj(t− (j − 1)δt)

= c0δt− cj(t− (j − 1)δt).
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But for t ∈ [(j − 1)δt, jδt), we have 0 6 t− (j − 1)δt 6 δt. Therefore∣∣∣∣Cδ−(t)−
∫ t

0

cδ(s)ds

∣∣∣∣ 6 δt|c0 + cj |.

On the other hand,

∂xi
Cδ−(t)− ∂xi

∫ t

0

cδ(s)ds = ∂xi
Cδ−(t)−

∫ t

0

∂xi
cδ(s)ds

= ∂xic
0δt− ∂xic

j(t− (j − 1)δt).

Hence, we have ∣∣∣∣∂xi

(
Cδ−(t)−

∫ t

0

cδ(s)ds

)∣∣∣∣ 6 δt|∂xi(c
0 + cj)|.

Therefore, ∥∥∥∥Cδ− −
∫ t

0

cδ(s)ds

∥∥∥∥2
L2(0,T ;H1(Ω))

=

∫ T

0

∥∥∥∥Cδt−(t)−
∫ t

0

cδ(s)ds

∥∥∥∥2
1

6
N∑
j=1

∫ jδt

(j−1)δt

(δt)2‖c0 + cj‖21

6 2

N∑
j=1

∫ jδt

(j−1)δt

(δt)2
(
‖c0‖21 + ‖cj‖21

)
6 2‖c0‖21(δt)2 + 2(δt)2

N∑
j=1

δt‖cj‖21

6 C(δt)2

Q.E.D.

Proof of Theorem 2.3.1.
Now, we are in a position to pass to the limit in (2.65). Take any w = v(x)λ(t), where

v ∈W ∩W 1,∞(Ω) and λ ∈W 1,∞
0 (0, T ). Then

−
∫ T

0

(ch, v)λ
′
(t)dt+

1

2

∫ T

0

[(uδ · ∇cδ, v)− (uδ · ∇v, cδ)]λdt

+

∫ T

0

D(∇cδ,∇v)λdt+
∫ T

0

∫
S

i0Ψ̇(cδ)vλ(t)dt+

∫ T

0

∫
S

αi30
D
cδCδ−vλ(t)dt

+
1

2

∫ T

0

∫
Γout

(uδ · n)cδvλ(t)dt = 0.

Since uδ → u strongly in L2(Ω× (0, T )) and ∇cδ → ∇c weakly in L2(Ω× (0, T )), the regularity
of v and λ implies that

−
∫ T

0

(ch, v)λ
′
(t)dt→ −

∫ T

0

(c, v)λ
′
(t)dt =

∫ T

0

〈∂tc, v〉W ′ ,Wλdt, (2.84)

1

2

∫ T

0

[(uδ · ∇cδ, v)− (uδ · ∇v, cδ)]λdt→
1

2

∫ T

0

[(u · ∇c, v)− (u · ∇v, c)]λdt, (2.85)
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∫ T

0

D(∇cδ,∇c)λdt→
∫ T

0

D(∇c,∇v)λdt. (2.86)

Similarly, the weak convergence of Ψ̇(cδ) to Ψ̇(c) in L2(0, T ;H
1
2 (S)) implies that∫ T

0

∫
S

i0Ψ̇(cδ)vλ(t)dt→
∫ T

0

∫
S

Ψ̇(c)vλ(t)dt, (2.87)

and the weak convergence of cδCδ− to c
∫ t

0
c in L2(0, T ;H

1
2 (S)) implies that∫ T

0

∫
S

cδCδ−vλ(t)dt→
∫ T

0

∫
S

c

(∫ t

0

c(s)ds

)
vλ(t)dt. (2.88)

Finally, we consider the last term 1

2

∫ T

0

∫
Γout

(uδ ·n)cδvλ(t). Given the construction of uδ in Sec-

tion 2.4, we have: uδ → u weakly in L2(0, T ;H1(Ω)d) and uδ → u strongly in L2(0, T ;L4(Ω)d)
(thanks to the strong convergence of uδ by (2.32), H1(Ω)d can be replaced by any space X so
that H1(Ω) ⊂⊂ X. Here we take X = L4(Ω)d, which is compatible with d = 3; the exponent
has to be less than 6). We use Green’s formula:∫ T

0

∫
Γout

(uδ · n)cδvλ =

∫ T

0

∫
Ω

∇ · (uδcδ)vλ+

∫ T

0

∫
Ω

(cδuδ · ∇v)λ (2.89)

for all λ ∈ L∞(0, T ) and for all smooth v that vanish on ∂Ω \ Γout. It is suffices to prove the
convergence of each term to the desired limit.

1) For all v ∈ L4(Ω) and for all λ ∈ L∞(0, T ):∫ T

0

∫
Ω

∇ · (uδcδ)vλ =

∫ T

0

∫
Ω

uδ · ∇cδvλ

=

∫ T

0

∫
Ω

(uδ − u) · ∇cδvλ+

∫ T

0

∫
Ω

u · ∇cδvλ

6 ‖uδ − u‖L2(0,T ;L4(Ω))‖∇cδ‖L2(Ω×(0,T ))‖λ‖L∞(0,T )‖v‖L4(Ω) +

∫ T

0

∫
Ω

u · ∇cδvλ.

It is noted that uvλ ∈ L2(0, T ;L2(Ω)d) and ∇cδ → ∇c weakly in L2(0, T ;L2(Ω)d), we have∫ T

0

∫
Ω

∇ · (uδcδ)vλ→
∫ T

0

∫
Ω

(u · ∇c)vλ =

∫ T

0

∫
Ω

∇ · (uc)vλ. (2.90)

2) For all v ∈ H1(Ω), λ ∈ L∞(Ω)∫ T

0

∫
Ω

(cδuδ · ∇v)λ =

∫ T

0

∫
Ω

cδ(uδ − u) · ∇vλ+

∫ T

0

∫
Ω

u(cδ − c) · ∇cλ+

∫ T

0

∫
Ω

c(u · ∇v)λ

6 ‖uδ − u‖L2(0,T ;L2(Ω)d)‖cδ‖L∞(Ω×(0,T ))‖∇v‖0‖λ‖L∞(Ω)

+ ‖u‖L2(0,T ;L4(Ω)d)‖cδ − c‖L2(0,T ;L4(Ω)d)‖∇v‖0‖λ‖L∞(Ω) +

∫ T

0

∫
Ω

c(u · ∇v)λ.
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Therefore∫ T

0

〈∂tc, v〉W ′ ,Wλdt+
1

2

∫ T

0

((u · ∇c, v)− (u · ∇v, c))λdt

+

∫ T

0

D(∇c,∇v)λdt+
∫ T

0

∫
S

i0Ψ̇(c)vλdt+

∫ T

0

∫
S

αi30
D
c

(∫ t

0

c(s)ds

)
vλdt

+
1

2

∫ T

0

∫
Γout

(u · n)cvλdt = 0

(2.91)

for all λ ∈W 1,∞
0 (0, T ) and for all v ∈W 1,∞(Ω). This gives the equations a.e. in (0, T ).

To recover the initial condition, we take λ ∈ W 1,∞(0, T ), λ(T ) = 0, λ(0) 6= 0, and v ∈
W 1,∞(Ω). We consider (2.65) such that all terms are identical except the first:∫ T

0

(∂tch, v)λdt =

∫ T

0

∂t(ch, v)λdt = −
∫ T

0

(ch, v)λ
′
(t)− (c0, v)λ(0). (2.92)

When passing to the limit, we obtain∫ T

0

〈∂tc, v〉W ′ ,Wλdt = −
∫ T

0

(c, v)λ
′
(t)− (c0, v)λ(0)

=

∫ T

0

d

dt
(c, v)λ+ (c(0), v)λ(0)− (c0.v)λ(0)

=

∫ T

0

〈∂tc, v〉W ′ ,Wλdt+ (c(0), v)λ(0)− (c0, v)λ(0).

(2.93)

Therefore
(c(0), v) = (c0, v), ∀v ∈W ∩W 1,∞(Ω).

This implies that c(0) = c0.
The above shows that Problem (Pc) has a unique solution, which satisfies 0 6 c 6 1; it is also

the solution of (P ). Q.E.D.

2.6.1 On the boundary condition (2.19) which contains ∂tc

To prove existence a similar strategy is taken: ∂tc is replaced by (cm+1 − cm)/δt, existence is
shown and then convergence when δt→ 0.

The proof of existence of the time-discretized problem is exactly the same but with φ redefined
as

φm(cm+1) = i0Ψ̇(cm+1) + αi0(
i20
D
− 1

δt
)

 m∑
j=0

cjδt

 cm+1.

Convergence with δt→ 0 requires more regularity, which can be obtained from the PDE differ-
entiated in time.

2.7 Numerical simulations
The rectangular domain of size 0.025 mm × 0.005 mm is the initial physical domain. The
electroprocess is simulated up to time T = 5000.
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2.7.1 Scalings
The simulation will be done with dimensionless variables. Let L,C and U be representative
length, concentration and velocity of the physical system. Then it is easy to see that the dimen-
sionless equation for c is the same as the original equation but with D̃/(LU) instead of D, where
D̃ is the physical molecular diffusion. Similarly because (2.7) becomes

−D ∂c

∂n
=
i0
U
c, u = −αC i0

U
cn,

the original form holds but with i0/U redefined as i0 and αC redefined as α.
It is well known that the dimensionalized Navier-Stokes equation has the inverse Reynolds

number ν̃/(UL) redefined as ν, where ν̃ being the kinematic viscosity.
The parameters of nickel ion given in [66] are i0 = ĩ0/(zF ) with ĩ0 = 0.001 A ·mm−2, the

number of electrons involves in the reaction z = 2 and the Faraday constant F = 96487 s · A ·
mol−1, C = 3× 10−7 mol ·mm−3.

For electrodeless plating we may take U = 1mm·s−1, L = 0.005mm, D̃ = 1×10−4 mm2 ·s−1,
α = 6590 mm3 ·mol−1, and ν̃ = 1.2 mm2 · s−1.

So in the end the numerical tests are done on a rescaled domain Ω = (0, 5)× (0, 1) with

α = 0.002085, i0 = 0.017273, D = 0.02, ν = 240,

2.7.2 Numerical algorithm
The finite element method is used for spacial discretization. Let Th be a triangulation consisting
of K traingles {Tk}Kk=1 with the standard conformity hypothesis. We define the finite element
space which will be used in this section:

Wh := {w ∈ C0(Ω) : w|Tk
∈ P 1 ∀Tk ∈ Th, w|Γin = 0},

Ch := {w ∈ C0(Ω) : w|Tk
∈ P 1, ∀Tk ∈ Th},

Vh := {v ∈ C0(Ω)2 : v|Tk
∈ (P 2)2, ∀Tk ∈ Th},

Jh := {v ∈ C0(Ω)2 : v|Tk
∈ (P 2)2 ∀Tk ∈ Th, v|∂Ω\Γout

= 0},
Qh := Ch.

(2.94)

Solving concentration profile cm+1
h with known velocity field um+1

h

We use the P 1 finite element method for Problem (Pm
c ) to define {cmh }m>0. Given um+1

h ∈ Vh,
one must solve the finite dimensional problem (Pm

h ) defined to be (Pm
c ) with Wh instead of W

in (2.35): find cm+1
h ∈ Ch satisfying, for all wh ∈Wh,∫
Ω

cm+1
h − cmh

δt
whdx+

∫
Ω

[(um+1
h · ∇cm+1

h )wh

+D

∫
Ω

∇cm+1
h · ∇whdx+

∫
S

1 +
αi20
D

 m∑
j=1

cjhδt

 i0c
m+1
h wh = 0,

cm+1
h |Γin = cinh

(2.95)

In the above, cinh is the piecewise linear interpolate of cin.
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Since um+1
h and {cjh}j6m are given, (2.95) leads to a linear system by assigning wh to be the

P1 hat functions in a standard way. We apply UMFPACK[32] for solving the linear system at
each time step.

Solving velocity field um+1
h with known concentration profile cm+1

h

For the Navier-Stokes equation we use the P 2/P 1 triangular Taylor-Hood element [10] and we
denote by um

h , pmh the finite element solution and by Vh, Qh the corresponding finite element
space. The variational formulation is: Find um+1

h ∈ Vh and pm+1
h ∈ Qh satisfying∫

Ω

um+1
h − um

h

δt
· vhdx+

∫
Ω

[(um
h · ∇)um+1

h ] · vhdx+ ν

∫
Ω

∇um+1
h : ∇vhdx

−
∫
Ω

(pm+1
h ∇ · vh + qh∇ · um+1

h + εpm+1
h qh)dx = 0,

um+1
h = uinh on Γin, um+1

h = 0 on Γwall, um+1
h = −αi0cm+1

h n on S

(2.96)

for all vh ∈ Jh and qh ∈ Qh; ε is a small regularization parameter which is taken to be 10−12 in
our computer implementation. In the above, uinh is the P 2 interpolation of uin.

With known um
h and cm+1

h , (2.96) leads to a linear system for the degrees of freedom of um+1
h

and pm+1
h which is solved with the numerical library UMFPACK[32], at each m.

Remark 2.7.1 If mass-lumping is used and the triangulation has no obtuse angle, the positivity
of (2.95) can be guaranteed by the same argument in the proof of Proposition 2.4.2. Therefore,
the assumption (U1) holds for um+1

h . Again, (U2) does not hold for the system (2.96) in general.
In practical numerical implementation, the natural outflow boundary condition

−ν
∂um+1

h

∂n
+ pm+1

h n = 0

does no harm to (U2) when the velocity field is closed to a Poiseuille flow (for instance, the
numerical tests conducted in Sections 7.3 and 7.4).

Iteration algorithm

The coupled system (2.95)-(2.96) is solved iteratively. We replace cm+1
h by c∗ in (2.95) and solve

(2.96). We denote the solution by u∗. Then we replace um+1
h by u∗ in order to get the new c∗,

until ‖u∗
new − u∗

old‖0 + ‖c∗new − c∗old‖0 is sufficiently small.
To validate the method we need to compare with the original free boundary problem. It is

solved with a similar iterative fixed point like process but the mesh needs to be rebuilt when
the free boundary is updated. It is done by a scaling on y-coordinate at each time step tj :
y 7→ (1− αi0cjhδt)y.
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δt L2 error
0.16 1.01723× 10−5

0.08 4.74704× 10−6

0.04 2.03444× 10−6

0.02 6.78147× 10−7

δt H1 error
0.16 1.03365× 10−5

0.08 4.82368× 10−6

0.04 2.06729× 10−6

0.02 6.89107× 10−7

δt L2 error
0.16 1.01722× 10−5

0.08 4.74701× 10−6

0.04 2.03443× 10−6

0.02 6.78142× 10−7

δt H1 error
0.16 1.03365× 10−5

0.08 4.82367× 10−6

0.04 2.06729× 10−6

0.02 6.89103× 10−7

Table 2.1: Convergence when δt → 0: L2 and H1 relative error at T = 100 for the scheme
with the nonlinear transpiration approximation and ν = 240 (left columns) and ν = 0.01 (right
columns). A uniform triangular mesh 150× 30 is used.; cδt=0.01 is used as reference solution.

Data : um
h , pmh , cmh , and y

1 Set initial data u0, c0;
2 for m do
3 c∗ = cmh ;
4 while ‖u∗

new − u∗
old‖0 + ‖c∗new − c∗old‖0 > tolerance do

5 Solve (2.95) to get c∗new;
6 Solve (2.96) to get u∗

new and p∗new;
7 end
8 cm+1

h = c∗new;
9 um+1

h = u∗
new;

10 For the free boundary case change the mesh by y ← (1− αi0cm+1
h δt)y;

11 end

2.7.3 Numerical results at low Reynolds number
The initial and inflow values are

c0 = cos(λy), u0 = y(1− y); cin = c0|Γin exp(−Dλ2t), uin = u0|Γin .

A uniform triangular mesh 150 × 30 for the initial domain for each test so that the time-
discrete error can be emphasized.

We compare the results obtained using a time dependent domain (Figure 2.3a) with the
results using a fixed domain and the linear condition (2.7) (see Figure 2.3b) and finally with the
nonlinear condition (2.12) (see Figure 2.3c).

On Figure 2.4 the free boundary and the reconstructed free boundaries are displayed using η
given by (2.8).

The convergence with respect to time step size is shown on Table 2.1, computed at an inter-
mediate time T = 100. Since no exact solution is available, the numerical solution with time step
δt = 0.01 is taken as the reference solution. The numerical results in Table 2.1 show a first order
convergence in L2 error conformed with the estimates given in Appendix B (see Figure 2.5).The
weak first order convergence of H1 error is also proved in Appendix B. However the numerical
results show strong first order H1 convergence for this test problem (see Figure 2.6).
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(a) Intensity map of c computed with a free boundary on a moving mesh.

(b) Intensity map of c computed by the linear transpiration approximation.

(c) Intensity map of c computed by nonlinear transpiration approximation.

Figure 2.3: The solution profiles of numerical experiments with ν = 240.
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Figure 2.4: S(T ) calculated by 3 experiments at T = 5000. The red curve is the height of
S(T ) computed by moving mesh. The blue curve is computed by the displacement η(T ) with
linear condition. The green dash curve is computed by the displacement η(T ) with nonlinear
condition. If the curve of moving mesh is regarded as the reference solution, it is easy to see that
the nonlinear approximation does better than the linear approximation. Left figure corresponds
to with ν = 240 and Right figure to ν = 0.01.
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Figure 2.5: L2 relative error versus δt at
T = 100
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Figure 2.6: H1 relative error versus δt at
T = 100.
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2.7.4 Numerical results at larger Reynolds number

In the previous example, where the values of the parameters correspond to the physical design
of [61], we could have neglected the inertial terms and work with the Stokes approximation.
In order to validate the algorithm at higher Reynolds number, which may be the case for other
plating problems, we keep all parameters given in the end of Section 7.1 but change the Reynolds
number to the inverse of ν = 0.01. The same experiments are conducted as in Section 7.3. The
numerical results obtained for the low Reynolds number and the larger Reynolds number are very
similar; no visible changes can be seen (see the right side of Figure 2.4 ) so we do not display the
plots of Figure 2.3 for the high Reynolds number case.

Furthermore, several numerical experiments show no visible change by choosing the Reynolds
number between the inverse of 240 and the inverse of 0.01.

2.7.5 Influence of the term ∂tc in (2.19)

For the geometry considered in these numerical test no visible difference could be observed
between (2.12) and (2.19) .

2.8 Conclusion

We have proposed a simplified model which approximates the Electroless process of [61] by
replacing the time dependent domain occupied by the reacting chemical by a fixed domain using
a transpiration approximation. We have validated the approximation numerically with a finite
element method in space and a fully implicit in time approximation. We have constructed an
existence proof by using variational convex analysis or fixed point arguments. The proof is
technical and long because the nonlinearity is on the boundary condition and because it required
a convexification of the energy potential and the maximum principle. However it was worth the
effort because it gives a stable ground for the numerical studies and it may be useful for other
similar problems. We plan to extend this study to two phase flows to take into account the
formation of bubbles.

2.A Proof of Lemma 2.4.3.

Let ρ1, ρ2 ∈W . Formula (2.41) gives

〈Aρ1 −Aρ2, w〉 =
1

δt

∫
Ω

(ρ1 − ρ2)wdx

+
1

2

∫
Ω

[(um+1 · ∇(ρ1 − ρ2))w − (um+1 · ∇w)(ρ1 − ρ2)]dx+D

∫
Ω

∇(ρ1 − ρ2) · ∇wdx

+

∫
S

(φm(ρ1 + c̃in)− φm(ρ2 + c̃in))w +
1

2

∫
Γout

(um+1 · n)(ρ1 − ρ2)w

(2.97)

We estimate each term on the right hand side of (2.97):

1

δt

∫
Ω

(ρ1 − ρ2)wdx 6 1

δt
‖ρ1 − ρ2‖0‖w‖0 6 1

δt
‖ρ1 − ρ2‖1‖w‖1 (2.98)
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Ω

(um+1 · ∇(ρ1 − ρ2))wdx 6 ‖um+1‖L4(Ω)‖∇(ρ1 − ρ2)‖0‖w‖L4(Ω)

6 C‖um+1‖1‖ρ1 − ρ2‖1‖w‖1
(2.99)

∫
Ω

(um+1 · ∇w)(ρ1 − ρ2)dx 6 ‖um+1‖L4(Ω)‖∇w‖0‖ρ1 − ρ2‖L4(Ω)

6 C‖um+1‖1‖ρ1 − ρ2‖1‖w‖1
(2.100)

∫
Ω

∇(ρ1 − ρ2) · ∇wdx 6 ‖∇(ρ1 − ρ2)‖0‖∇w‖0 6 ‖ρ1 − ρ2‖1‖w‖1 (2.101)

Let x1, x2 ∈ R. If x1 + c̃in, and x2 + c̃in > 1
2α , then |ψ,c(x1 + c̃in) − ψ,c(x2 + c̃in)| = 0. If

x1 + c̃in 6 1

2α
and x2 + c̃in >

1

2α
, then

|ψ,c(x1 + c̃in)− ψ,c(x2 + c̃in)| 6 |ψ,cc(x1 + c̃in)||x1 − x2|
6 |1− α(x1 + c̃in)||x1 − x2| 6 (1 + α+ α|x1|)|x1 − x2|.

If x1 + c̃in, and x2 + c̃in 6 1
2α , then

|ψ,c(x1 + c̃in)− ψ,c(x2 + c̃in)| = |x1 + c̃in −
α

2
(x1 + c̃in)

2 − (x2 + c̃in) +
α

2
(x2 + c̃in)

2|

= |x1 − x2 −
α

2
(x1 + c̃in)

2 +
α

2
(x2 + c̃in)

2|

= |x1 − x2 −
α

2
(x1 + x2)(x1 − x2)− αc̃in(x1 − x2)|

6 (1 + α+
α

2
|x1|+

α

2
|x2|)|x1 − x2|.

Now we can conclude that∫
S

(ψ,c(ρ1 + c̃in)− ψ,c(ρ2 + c̃in))w 6
∫
S

(1 + α+
α

2
|ρ1|+

α

2
|ρ2|)|ρ1 − ρ2||w|

6 (1 + α)‖ρ1 − ρ2‖S‖w‖S +
α

2
(‖ρ1‖L3(S) + ‖ρ2‖L3(S))‖ρ1 − ρ2‖L3(S)‖w‖L3(S)

6 C1‖ρ1 − ρ2‖1‖w‖1 + C2(‖ρ1‖1 + ‖ρ2‖1)‖ρ1 − ρ2‖1‖w‖1.

(2.102)

Now, ∫
S

m∑
j=0

cjδt((ρ1 + c̃in)− (ρ2 + c̃in))w

=

∫
S

m∑
j=0

cjδt(ρ1 − ρ2)w 6 δt

∫
S

m∑
j=0

|cj ||ρ1 − ρ2||w|

6 δt

m∑
j=0

‖cj‖L3(S)‖ρ1 − ρ2‖L3(S)‖w‖L3(S) 6 Cδt

m∑
j=0

‖cj‖1‖ρ1 − ρ2‖1‖w‖1

(2.103)
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And finally,∫
Γout

(um+1 · n)(ρ1 − ρ2)w 6
∫
Γout

|um+1 · n||ρ1 − ρ2||w|

6 ‖um+1‖L3(Γout)‖ρ1 − ρ2‖L3(Γout)‖w‖L3(Γout) 6 C‖um+1‖1‖ρ1 − ρ2‖1‖w‖1
(2.104)

Combining (2.98)-(2.104), we have

|〈Aρ1 −Aρ2, w〉|

6

C1 + C2‖um+1‖1 + C3(‖ρ1‖1 + ‖ρ2‖1) + C4δt

m∑
j=0

‖cj‖1

 ‖ρ1 − ρ2‖1‖w‖1 (2.105)

This completes the proof. Q.E.D.

2.B Error estimates

In this section, we further assume that

(A1)
∫ T

0

‖∂ttc‖2−1dt 6M1 for some constant M1 and

(A2) sup
t∈[0,T ]

‖∂tc‖H1(Ω)′ < M2 for some constant M2.
(2.106)

For convenience, we define

B(u, v) :=

(
1 +

αi20
D
u

)
i0v,

b(u, v, w) :=

∫
S

(
1 +

αi20
D
u

)
i0vw,

G(u, v, w) :=

∫
S

αi30
D
uvw.

(2.107)

The difference equation for the exact solution of c defined by (2.5) can be expressed as:

c(tm+1)− c(tm)

δt
+ um+1 · ∇c(tm+1)−D∆c(tm+1) = Rm, (2.108)

where

Rm =
1

δt

∫ tm+1

tm
(t− tm)∂ttc(t)dt (2.109)

Defining εj = c(tj)− cj , the error equation can be expressed by

εm+1 − εm

δt
+ um+1 · ∇εm+1 −D∆εm+1 = Rm (2.110)
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subject to the boundary condition

εm+1 = 0 on Γin,
∂εm+1

∂n
= 0 on Γwall ∪ Γout

D
∂εm+1

∂n
+B(

∫ tm+1

0

c(s)ds, c(tm+1))−B(

m∑
j=0

cjδt, c
m+1) = 0 on S.

(2.111)

The symmetrized weak formulation to (2.108) is∫
Ω

c(tm+1)− c(tm)

δt
w +D

∫
Ω

∇c(tm+1) · ∇w

+
1

2

∫
Ω

[(um+1 · ∇c(tm+1))w − (um+1 · ∇w)c(tm+1)]dx+

∫
Γout

(um+1 · n)cm+1w

+

∫
S

1− αcm+1

2
+
αi20
D

m∑
j=0

cj

 i0c
m+1w =

∫
Ω

Rmwdx

(2.112)

Subtracting (2.112) by (2.35), we have∫
Ω

εm+1 − εm

δt
wdx+D

∫
Ω

∇εm+1 · ∇wdx

+
1

2

∫
Ω

[(um+1 · ∇εm+1)w − (um+1 · ∇w)εm+1]dx+

∫
Γout

(um+1 · n)εm+1w

−
∫
S

αi0
2

(c(tm+1) + cm+1)εm+1w + b(

∫ tm+1

0

c(s)ds, c(tm+1), w)

− b(
m∑
j=0

cjδt, cm+1, w) =

∫
Ω

Rmwdx

(2.113)

Before investigating the error estimate, some auxiliary results are needed. We collect them
in the Remark below:

Remark 2.B.1 We have

B(

∫ tm+1

0

c(s)ds, c(tm+1))−B(

m∑
j=0

cjδt, cm+1)

=

1 +
αi20
D

m∑
j=0

cjδt

 i0ε
m+1 +

αi30
D

∫ tm+1

0

c(s)ds−
m∑
j=0

cjδt

 c(tm+1)

(2.114)

Defining

ξm =

∫ tm+1

0

c(s)ds−
m∑
j=0

cjδt (2.115)

we have

ξm =

m∑
j=0

εjδt+ φm, (2.116)
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where φm =

m∑
j=0

∂tc(θ
j)δt2 for some θj ∈ (tj , tj+1). By (2.114), (2.115), (2.116) and letting

w = εm+1 in (2.113), we have

1

δt
‖εm+1‖2 − 1

δt

∫
Ω

εm+1εmdx+D‖∇εm+1‖2 + b(

m∑
j=0

cjδt, εm+1, εm+1)

+G(c(tm+1),

m∑
j=0

εjδt, εm+1) +G(c(tm+1), φm, εm+1) +

∫
Γout

(um+1 · n)(εm+1)2

−
∫
S

αi0
2

(c(tm+1) + cm+1)(εm+1)2 =

∫
Ω

Rmwdx

(2.117)

Multiplying the both sides by δt, we get

‖εm+1‖2 +Dδt‖∇εm+1‖2 + δtb(

m∑
j=0

cjδt, εm+1, εm+1)

+ δtG(c(tm+1),

m∑
j=0

εjδt, εm+1) + δtG(c(tm+1), φm, εm+1) + δt

∫
Γout

(um+1 · n)(εm+1)2

− δt
∫
S

αi0
2

(c(tm+1) + cm+1)(εm+1)2 = δt

∫
Ω

Rmwdx+

∫
Ω

εm+1εmdx

(2.118)

Q.E.D.

Theorem 2.B.1 There is a generic constant C such that

‖εm+1‖ 6 Cδt ∀ 0 6 m 6 T

δt
− 1 (2.119)

and
‖εm+1‖1 6 Cδt

1
2 ∀ 0 6 m 6 T

δt
− 1. (2.120)

Proof. By a recurrence argument, we are going to show that if the statements (2.119) and (2.120)
hold simultaneously for all εj and for all j 6 m, then they hold as well for εm+1. Notice that it
is true when m = 0.

Defining G1 = |G(c(tm+1),
∑m

j=0 ε
jδt, εm+1)| and G2 = |G(c(tm+1), φm, εm+1)|, we have the

estimates:

G1 6 αi30
D

m∑
j=0

∫
S

|c(tm+1)εjεm+1δt|

6 αi30
D

m∑
j=0

∫
S

|δtεjεm+1| 6 αi30
D

 m∑
j=0

‖εj‖Sδt

 ‖εm+1‖S

6 C

 m∑
j=0

‖εj‖1δt

 ‖εm+1‖1 6 C(m+ 1)δt
3
2 ‖εm+1‖1 6 C‖εm+1‖δt 1

2 .

(2.121)
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Using (A2), we have

G2 6 αi30
D

∫
S

|c(tm+1)φmεm+1| 6 αi30
D

∫
S

|φmεm+1|

6 αi30
D
‖φm‖S‖εm+1‖S 6 C‖φm‖1‖εm+1‖1 6 Cδt2‖εm+1‖1.

(2.122)

By (A1), we have

δt

∣∣∣∣∫
Ω

Rmεm+1dx

∣∣∣∣
6 D

4
δt‖εm+1‖21 + Cδt−1‖Rm‖2

H1(Ω)′

=
D

4
‖εm+1‖21 + Cδt−1

∥∥∥∥∥
∫ tm+1

tm
(t− tm)∂ttcdt

∥∥∥∥∥
2

H1(Ω)′

6 D

4
‖εm+1‖21 + Cδt−1

∫ tm+1

tm
‖∂ttc‖2H1(Ω)′

dt

∫ tm+1

tm
(t− tm)2dt

6 D

4
‖εm+1‖21 + Cδt2

∫ tm+1

tm
‖∂ttc‖2H1(Ω)′

dt

6 D

4
‖εm+1‖21 + Cδt2

(2.123)

b(

m∑
j=0

cjδt, εm+1, εm+1)−
∫
S

αi0
2

(c(tm+1) + cm+1)(εm+1)2

>
∫
S

1 +
αi20
D

m∑
j=0

cjδt

 i0(ε
m+1)2 −

∫
S

αi0(ε
m+1)2

>
∫
S

(1− α) + αi20
D

m∑
j=0

cjδt

 i0(ε
m+1)2 > 0.

(2.124)

∫
Ω

εm+1εmdx 6 1

2
‖εm‖2 + 1

2
‖εm+1‖2. (2.125)

Combining (2.118), (2.121)-(2.125), and since the boundary term of Γout in (2.118) is nonnegative,
we have

(
1

2
− 1

4
Dδt)‖εm+1‖2 + 3

4
Dδt‖εm+1‖21 6 C‖εm+1‖1δt

3
2 + Cδt2. (2.126)

This implies (2.120). Now using (2.126) and (2.120), we get (2.119). Q.E.D.

Theorem 2.B.2 (Improved estimate) For 0 6 m 6 T

δt
− 1, we have

δt

m∑
j=0

‖εj+1‖21 6 Cδt2 (2.127)
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Proof. Putting w = 2εm+1 in (2.118) and using the estimates in Theorem 2.B.1, we have

‖εm+1‖2 + 2Dδt‖∇εm+1‖2 6 2δtC1‖εm+1‖1

 m∑
j=0

‖εj‖1δt


+2C2δt

3‖εm+1‖1 +
D

4
δt‖εm+1‖21 + C3δt

2

∫ tm+1

tm
‖∂ttc‖2H1(Ω)′

dt+ ‖εm‖2

(2.128)

Note that
‖εm+1‖2 + 2Dδt‖εm+1‖21 = (1− 2Dδt)‖εm+1‖2 + 2Dδt‖εm+1‖21.

Taking the sum of (2.128) from 0 to m and using (A1), we have

(1− 9

4
Dδt)‖εm+1‖2 + 7

4

m∑
j=0

Dδt‖εj+1‖21 6
m∑
j=0

2δtC1‖εj+1‖1

(
j∑

k=0

‖εk‖1δt

)

+

m∑
j=0

2C2δt
3‖εj+1‖1 + C3δt

2.

(2.129)

The first term on the right hand side of (2.129) can be estimated by

m∑
j=0

2δtC‖εm+1‖1

(
k∑

k=0

‖εk‖1δt

)

6
m∑
j=0

D

4
δt‖εj+1‖21 + Cδt2

m∑
j=0

j∑
k=0

‖εk‖21

6 D

4
δt‖εm+1‖21 + Cδt

m∑
j=0

‖εj‖21.

(2.130)

Similarly, the second term can be estimated by
m∑
j=0

2C2δt
3‖εm+1‖1 6

m∑
j=0

2Cδt3
(

1

2ν
‖εm+1‖21 +

ν

2
|Ω|
)

6 νCT |Ω|δt2 + C

ν
δt2

m∑
j=0

‖εm+1‖21

6 Cδt2 +
D

4
δt

m∑
j=0

‖εj‖21 +
D

4
δt‖εm+1‖21

(2.131)

for every ν > 0.

Finally, employing (2.129)-(2.131), we have(
1− 11

4
Dδt

)
‖εm+1‖2 + 5

4
Dδt

m∑
j=0

‖εj+1‖21 6 C1δt
2 + C2δt

m∑
j=0

‖εj‖21. (2.132)
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By induction on m, we can easily show that

5

4
Dδt

m∑
j=0

‖εj+1‖21 6 Cδt2. (2.133)

Q.E.D.
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Chapter 3

Simulation on electroless plating
problem with gas generation

3.1 Introduction

When emphasizing on micro-scale electroless plating problem, gas generation will be a serious
issue. The existence of relatively large bubbles in a microchannel has been an important issue
in the study of microfluid[76, 57, 129]. In electroless plating process, the bubbles may prevent
electrolyte from going into the region needed to be plated. In view of the trouble caused by
bubble generation, we are motivated to understand the mechanism of bubble motion and bubble
generation in electroless process. From a theoretical point of view, the physical phenomena for
describing electroless process are very complicated. In practical simulation, not all the physical
phenomena are of interest. Therefore, for the simulation, we chose a system which includes:
gas-liquid two phase flow, chemical species transport, surface reaction, and moving boundary
caused by deposition.

Numerous papers about modeling and simulation of gas-liquid two phase flow have been
published [116, 115, 2, 33, 45]. In terms of how we resolve the motion of the gaseous phase flows,
the working models in most of these papers can be sorted into two classes: (i) phase field or level
set models where the gas-liquid interface is tracted[1, 107, 112, 90]; (ii) averaged models [63,
134, 41]. Several reasons support our choice for an averaged model: (i) The bubble generation
is random, we only know that there is a higher chance of gas generation occurring in regions of
higher concentration of dissolving gas; (ii) Even if the bubble generation can be well predicted,
vast amounts of bubbles are generated in a short moment for electroless process; furthermore,
the computational cost for capturing each bubble is prohibitive; (iii) Interfacial terms (e.g. terms
caused by phase change) can be easily estimated if the averaged model is applied (see Appendix
A); (iv) it simplifies substantially the modeling.

Experimentally, the bubbles are seen to get stuck somewhere in the microchannel. This indi-
cates that the velocities of two phases are quite different. To allow a disparity of motion between
the liquid phase and gaseous phase, a two velocities model will be used. To our knowledge, such
approach is new for incompressible two phase flows in thin microchannels.

A system of linear convection-diffusion equations with additional phase change terms is ap-
plied for depicting the concentration profiles of chemical species. We use the mixed potential
theory (see for instance [74]) to model the reaction boundary condition describing the electroless
process, which is a Robin boundary condition subject to electron balance constraints. We further
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Figure 3.1: The computational domain Ω(t) for the test problem in Section 3.5.2 is initially a
rectangle of size 10mm×1mm. We assume a fixed inflow velocity and given chemical concentra-
tions from the left on Γin, a solid wall on the top side with a no-slip condition for the velocity,
and a traction-free outflow on Γout. On the bottom side, S(t) is a free boundary and its motion
is given by (3.23). However as the reaction site is active mostly for x ∈ (1.5mm, 5.5mm), we
may block the chemical reactions for x < 1mm to avoid a corner singularity at the entrance
and also for x > 6mm because experiments show that almost no plating occurs there. In the
regions x ∈ (1.0mm, 1.5mm) ∪ (5.5mm, 6.0mm) the numerical simulations may not be accurate
due to the singularity caused by the discontinuity in the boundary conditions (see figure 3.17 for
details).

consider the boundary motion induced by the chemical species deposition on reaction surface.
Combining all with the average model for gas-liquid two phase flow, we propose a set of coupled
equations for a system which includes gas-liquid fluid motion, chemical species transport and
moving boundary to simulate an electroless plating process. Note that, in absence of bubbles,
the proposed model reduces to the usual single phase model (i.e. neglecting the existence of gas)
which is compatible with previous studies on electroless process such as [46].

For numerical simulations, the Galerkin characteristic method[98] is applied for time dis-
cretization. The Finite element method of degree one is used for space discretization. The
well-posedness of the numerical scheme for the coupling system is proved. We reproduce a one-
dimensional numerical simulation on electroless nickel plating problem to compare with [66].
The numerical code for the full system is implemented as well and we compare the numerical
results with a real-world experiment done by one of the authors for this purpose. Unfortunately
the numerical experiment is very difficult to make and it gave only qualitative results. So the
numerical results are compared qualitatively only with the experiment.

So the numerical simulations seems more reliable than experiment and they give detail in-
formation on the free boundary and on the speeds and concentrations of the chemical, highly
important for the design of commercial systems.

3.2 Modeling equations for liquid-gas flow

Let Ω(t) be the time-dependent physical domain which is a thin channel between a top and a
bottom plate. The boundary of Ω consists of the inlet Γin, the outlet Γout, the solid wall Γwall

and the reacting surface S(t) (see Figure 3.1).
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3.2.1 Volume averaging
We review the derivation proposed by Ni and Beckermann [85].

Let Ω0(x, t) be an small open set to be observed in Ω(t) and Ωk ⊂ Ω0 the set occupied
by phase k and bounded by the interface ∂Ωk, which is assumed to be oriented. Assume that
∪kΩk = Ω0 and Ωk ∩ Ωj = 0, k 6= j. Let nk be a outer normal to ∂Ωk and wk the normal
velocity of ∂Ωk.

Let Ψ be a function of a slow variable x and a fast variable y due to the phase change.
The volume average of Ψ in phase k is 〈Ψ〉k (x, t) =

1
V0

∫
Ω0(x,t)

χk(y)Ψ(x, y)dy, where χk is the
indicator function of the domain of phase k and V0 =

∫
Ω0
dx, assumed constant. The intrinsic

volume average is defined as

〈Ψ〉(k)k =
V0
Vk
〈Ψ〉k where Vk =

∫
Ω0

χkdy (3.1)

The volume fraction rk =
Vk
V0

has the properties
∑
k

rk = 1 and 〈Ψ〉k = rk 〈Ψ〉(k)k . Some useful

formulas in terms of the averaging are listed below[123, 109]:〈
∂Ψ

∂t

〉
k

=
∂ 〈Ψ〉k
∂t

− 1

V0

∫
∂Ωk

Ψkwk · nkdA, 〈∇Ψ〉k = ∇〈Ψ〉k +
1

V0

∫
∂Ωk

ΨknkdA. (3.2)

In principle one should introduce also fast and slow time variables but it is assumed that spatially
averaged functions are no longer varying fast in time.

3.2.2 Mass conservation
We consider a gas and a liquid phase. Let ρg be the density of gas, ρl the density of liquid. We
have the mass conservation for both phases (l for liquid and g for gas):

∂t(rjρj) +∇ · (rjρjuj) = Ṡj , l = l, g (3.3)

where Ṡg is the mass gained owing to the precipitation of dissolved gas, Ṡl is the mass loss when
liquid is replaced by the gas, and ug(x, t), ul(x, t) are the volume averaged fluid flow of gas and
liquid, respectively. Since the mass gained in gas balances the mass loss in liquid, we have

Ṡg = −Ṡl. (3.4)

For chemical species, we assume that the ions are transported only by the liquid electrolyte.
Let cs be the volume averaged concentration of metallic ions destined to be deposited on the
reacting surface, cg the volume averaged concentration of dissolved gas and ck, k = k1, . . . , kM the
volume averaged concentration of other chemical species participating to the chemical reaction.
The equations for the concentrations are

∂t(rlρlcj) +∇ · (rlρlcjul)−∇ · (rlρlDj∇cj)−Gj = 0, j = s, g, k. (3.5)

where Gj , j = s, k are interfacial terms due to the phase change. By (3.3) , we can rewrite the
above equation by

rlρl(∂tcj + ul · ∇cj)−∇ · (rlρlDj∇cj)−Gj + Ṡlcj = 0, j = s, g, k. (3.6)
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where Dj are the diffusion coefficients. In particular, since the gas is consumed by the phase
change, we have

Gg = − 1

V0

∫
∂Ωl

ρlcg(ul −wl) · nldA− ρlMgKrl(cg − csat)+ (3.7)

by assuming the gas precipitation is linearly dependent on the dissolving gas concentration[87,
120].

In the above, wl is the interface velocity of ∂Ωl and where K is a constant independent of
rg, rl and csat is the saturated concentration of the gas, Mg is the reciprocal of the molar mass
of the gas,

Ṡg = Krl(cg − csat)+. (3.8)

Moreover, Gj , j = s, k, g can be estimated by (see Appendix A)

Gj ≈ Ṡlcj , j = s, k, Gg ≈ Ṡlcg − ρlMgKrl(cg − csat)+. (3.9)

For incompressible fluids, a volume conservation is derived from (3.3):∑
α=g,l

1

ρα

[
∂t(rαρα) +∇ · (rαραuα)− Ṡα

]
= 0. (3.10)

By (3.4), the above reduces to

∇ · (rgug + rlul) = Ṡg

(
1

ρg
− 1

ρl

)
. (3.11)

Recall that the physical domain is occupied either by gas or liquid, therefore rg(t) + rl(t) = 1 at
all times.

3.2.3 Equations of motion
Let µg, µl be the viscosity of the gas and the liquid, respectively. The volume averaged Navier-
Stokes equations are used for momentum balance (see [85]):

∂t(rjρjuj) +∇ · (rjρjuj ⊗ uj) + rj∇pj − µj∇ · (rjD(uj)) +MD,j = Fj , j = g, l (3.12)

where pj , MD,j , Fj , j = l, g are pressure, drag force terms[41, 85]

MD,g = CDrg|ug − ul|(ug − ul)

MD,l = CDrg|ug − ul|(ul − ug),
(3.13)

where CD is drag coefficient, and interfacial terms Fj = − 1
V0

∫
∂Ω

j
ρjuj (uj −wj ) ·njdA, j = l, g,

D(v) = ∇v + (∇v)T is the viscous stress tensor for any vector-valued function v; Fj , j = l, g
can be estimated by (see Appendix A)

Fg ≈ Ṡgug, Fl ≈ Ṡlul, (3.14)

In view of (3.11), following [18, 19], we assume a constitutive relation p = pl = pg in order to
close the system of equations. The velocity fields of both phases are assumed to be 0 outside
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their own single phase region, respectively. Consequently, and by (3.3), (3.12), the momentum
equations simplify to

rjρj(∂tuj + (uj · ∇)uj) + rj∇p− µj∇ · (rjD(uj)) + γjCDrg|ug − ul|(ug − ul) = 0,

j = g, l, with γg = 1 and γl = −1
(3.15)

3.2.4 Boundary conditions

We consider a fluid flow from an input boundary Γin to an output boundary Γout with a solid
wall at the bottom, Γwall:

uj = uin on Γin, uj = 0 on Γwall,

− µjD(uj) · n+ pn = 0 on Γout, j = l, g.
(3.16)

The boundary conditions for rj , j = g, l are

rg = ε, rl = 1− ε on Γin,

∂rg
∂n

=
∂rl
∂n

= 0 on ∂Ω \ Γin,
(3.17)

where ε is a fixed positive small constant.
The boundary conditions for the concentrations of chemical species are, with cj,in given:

cj = cj,in on Γin,
∂cj
∂n

= 0 on Γwall ∪ Γout, j = s, g, k (3.18)

With F the Faraday constant, and z the atomic number of the material.
Referring to Figure 3.2, if S(t) is the reaction surface , we denote Sl(t) ⊂ S(t) the region

occupied by the liquid and Sg(t) := S(t) \ Sl(t) the region occupied by gas. Choosing an
arbitrary subset W ⊂ S(t), the surface reaction takes place only on W ∩ Sl(t). Assuming that

the concentration profile is uniform near the small region W , we have: −
∫
W

ρlDj
∂cj
∂n

dA =∫
W∩Sl(t)

ρl
|Ij |
zjF

dA. Therefore by dividing both sides by
∫
W

1dA:

−Dj
∂cj
∂n

=
|Ij |
zjF

, j = s, k, −Dg
∂cg
∂n

= −β|Is|
zsF

(3.19)

for a positive number β indicating the chemical equivalence for gaseous molecular generation.
In the above, Ij is the current density satisfying the Butler-Volmer equation

Ij = ij(Emix)c
κj

j := Lj

[
exp

(
αjzjF (Emix − Ej)

Rθ

)
−exp

(
−βjzjF (Emix − Ej)

Rθ

)]
c
κj

j , j = s, k,

(3.20)
where R is the gas constant, Ej are the chemical potentials of species j, θ is the temperature,
αj , βj ,Lj , κj are constants, Emix is given by writing electrical neutrality :

Is +
∑
k

Ik = 0. (3.21)
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Figure 3.2: The reaction surface.

On S(t), the fluid velocity induced by the deposition is

ug = ul =
rlVs|Is|
zsF

n. (3.22)

where Vs is a constant. Hence S(t) moves according to

ẋ(t) = (ug · n)n|x(t), x(t) ∈ S(t) (3.23)

3.2.5 Single phase flow
If there is no gaseous phase in the system and no dissolved gas in liquid, i.e. rg = cg = 0, then
u = ul and Ṡg = 0 and mass conservation reduces to ∇ · u = 0. The convection-diffusion of
chemicals become,

∂tcj + u · ∇cj −Dj∆cj = 0, j = s, k, (3.24)

and the fluid system reduce to the Navier-Stokes equations:

ρl(∂tu+ (u · ∇)u)− µl∆u+∇p = 0, ∇ · u = 0. (3.25)

The above system of equations exactly describes the chemical species transported by the fluid
flow satisfying the incompressible Navier-Stokes equation.

3.3 Numerical method

3.3.1 Notations

If f ∈ R, we denote by f+ := max(f, 0) and by f− := −min(f, 0). We denote by ‖ · ‖Lp :=
‖ · ‖Lp(Ω(t)) the Lp norm on Ω(t), ‖ · ‖Wk,p := ‖ · ‖Wk,p(Ω(t)) the W k,p norm on Ω(t), and
‖ · ‖Hk = ‖ · ‖Wk,2 , 0 6 k 6 +∞, 1 6 p 6 +∞. Remembering that ck(x, t) is a vector, let us
denote C = (cs, c

T
k , cg)

T .
We assume the densities ρj constant and denote αj = rjρj and the kinematic viscosities

νj = µj/ρj . The system is

∂tαj + uj · ∇αj + αj∇ · uj − αl
γjK

ρl
(cg − csat)+ = 0, j = l, g (3.26)

αj

(
∂tuj + uj · ∇uj + ρ−1

j ∇p
)
−νj∇·(αjD(uj))+γjCDrg|ug−ul|(ug−ul) = 0, j = g, l (3.27)
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αl(∂tC + ul · ∇C)−∇ · (αlD · ∇C) + (0, 0,MgKαl(cg − csat)+)T = 0, (3.28)

where D is the appropriate diffusion matrix compatible with (3.15). In addition as Ṡg = −Ṡl =
Kαl(cg − csat)+/ρl, we may use the redundant equation (3.11):

∇ · (αg

ρg
ug +

αl

ρl
ul) = Ṡg

(
1

ρg
− 1

ρl

)
. (3.29)

3.3.2 Semi-discrete schemes

Let T be the final time and δt a time step. We denote by φm, m = 0, 1, . . . , N := T/δt the
numerical solution of any physical quantity φ at time mδt. Convection terms are approximated
in time by the method of characteristics. Let Xm

j (x) ≈ x− um
j (x)δt. Then

(∂tαj + uj · ∇αj)|x,t=tm+1 ≈ 1

δt

(
αm+1
j (x)− αm(Xm

j (x))
)
.

Consider the following scheme

1

δt
(αm+1

l − αm
l ◦Xm

l ) + αm+1
l

(
∇ · um

l +
1

ρl
K(cmg − csat)+

)
= 0, (3.30)

rm+1
l = αm+1

l /ρl, rm+1
g = 1− rm+1

l , αm+1
g = ρgr

m+1
g (3.31)

1

δt
αm+1
j (um+1

j − um
j ◦Xm

j ) + ρ−1
j αm+1

j ∇pm+1 − νj∇ · (αm+1
j D(um+1

j ))

+γjρ
−1
g CDα

m+1
g |um+1

g − um+1
l |(um+1

g − um+1
l ) = 0, j = g, l,

(3.32)

∇ · (ρ−1
g αm+1

g um+1
g + ρ−1

l αm+1
l um+1

l ) = ρl
−1Kαm+1

l (cm+1
g − csat)+

(
ρ−1
g − ρ−1

l

)
, (3.33)

1

δt
αm+1
l (Cm+1−Cm ◦Xm

j )−∇· (αm+1
l D ·∇Cm+1)+ (0, 0,MgKα

m
l (cmg − csat)+)T = 0, (3.34)

For electroless plating the domain is Ωm = {(x, y) : 0 < y < ym(x), x ∈ (0, L)}, so it is updated
by

ym+1(x) = ym(x) + δtug
m+1
2 (x), x ∈ (0, L)

Remark 3.3.1 Because of the asymmetrical treatment of αg and αl the scheme (3.30) does not
imply that

1

δt
(αm+1

g − αm
g ◦Xm

g ) + αm+1
g ∇ · um

g = ρ−1
l αm+1

l K(cmg − csat)+. (3.35)

However, by (3.30),(3.31), (3.33), we have

1

δt
(αm+1

g − αm
g ◦Xm

g ) + αm+1
g ∇ · um

g +
ρg
ρl

(αm+1
l − αm

l )∇ · (um
l − um

g )

+
1

δt
(αm

g ◦Xm
g − αm

g ◦Xm
l ) + (um

g − um
l ) · ∇αm

g

= ρ−1
l αm+1

l K(cmg − csat)+ + ρ−1
l (

ρg
ρl
− 1)(αm+1

l − αm
l )K(cmg − csat)+.

(3.36)

By a Taylor expansion at x, we obtain

αm
g (Xm

l (x))− αm
g (Xm

g (x)) = δt(um
g − um

l ) · ∇αm
g (x) +O(δt2), (3.37)
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and

αm+1
l − αm

l = −δt(ul · ∇αm
l + αm+1

l ∇ · um
l )− δtKαm+1

l (cmg − csat)+ +O(δt2). (3.38)

Plugging (3.37) and (3.38) into (3.36), we have

1

δt
(αm+1

g − αm
g ◦Xm

g ) + αm+1
g ∇ · um

g = ρ−1
l αm+1

l K(cmg − csat)+ +O(δt). (3.39)

So the scheme is consistent with the equation for αg.

3.3.3 Positivity

Positivity of αm+1
l holds only if δt is small enough. When positivity is required absolutely, an

O(δt) modification of (3.30) forces the positivity of αl:

1

δt

(
αm+1
l (x)− αm

l (Xm
l (x))

)
+ αm+1

l

(
∇ · um

l +
1

ρl
K(cmg − csat)+

)+

= αm
l

(
∇ · um

l +
1

ρl
K(cmg − csat)+

)−

.

(3.40)

Indeed assume that αm
l is strictly positive, or more precisely that αm

l > ε > 0 for all x; then we
have

αm+1
l

[
1 + δt(∇ · um

l +
1

ρl
K(cmg − csat)

+)+
]
= αm

l (Xm
l ) + δtαm

l

[
∇ · um

l +
1

ρl
K(cmg − csat)

+

]−
> ϵ(1 + δt(∇ · um

l +
1

ρl
K(cmg − csat)

+)−).

(3.41)

1. Let us show first that (3.30) generates a bounded sequence {αm
l }m=1..N . For clarity we

assume homogeneous data at the boundaries. With simplified notations

1

δt
(αm+1 − αm ◦Xm) + αm+1 (∇ · um + φm) = 0

A multiplication by αm+1 and an integration on Ωm+1 leads to

‖αm+1‖2L2 =

∫
Ωm+1

[
αm+1

(
αm ◦Xm − δt

(
αm+1∇ · um + φm

))]
dx

By the Cauchy-Schwarz inequality and the positivity of φm,

‖αm+1‖2L2 6 ‖αm+1‖L2

(∫
Ωm+1

[
αm ◦Xm − δtαm+1∇ · um

]2
dx

) 1
2

.

The inverse of the determinant of the Jacobian of the transformation x 7→ Xm(x) is 1 +
δt∇ · u+O(δt2); therefore, for any smooth function f , in particular with f = αm ◦Xm −
δtαm+1∇ · um = αm ◦Xm(1− δt∇ · um ◦Xm +O(δt2)),∫

Ωm+1

fm ◦Xm =

∫
Ωm

fm(1 + δt∇ · u+O(δt2))dx

⇒ ‖αm+1‖L2 6 ‖αm‖L2(1 + C(‖∇2um‖L∞)δt2).
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where C() is a generic constant bounded by the Hessian of u. Thus {αm
l }m=1..N is bounded.

2. Stability of the scheme for C is shown by the same argument.

3. Stability of the scheme for ug and ul is a consequence of a similar argument combined with
the Ladhyzenskaya-Babuska-Brezzi saddle point theory (LBB) [47].
We denote by (·, ·) the L2 inner product. For tensor-valued functions such that f , g ∈
L2(Ω(t))mn, m,n ∈ N+, (f , g) =

∑m
i=1

∑n
j=1 (fij , gij). With self explanatory notations,

the equations for the velocities (3.32),(3.33) are written in variational form as:
Find ug,ul and p satisfying the Dirichlet conditions and such that, ∀v̂g, v̂l ∈ V m+1

0 :=(
H1

0 (Ω
m+1)

)2 and ∀q̂ ∈ Pm+1 := L2(Ωm+1)/R,

(βgug, v̂g) + (βlul, v̂l) +
1

2
(αgD(ug), D(v̂g)) +

1

2
(αlD(ul), D(v̂l))

−
(
p,∇ · (αg

ρg
v̂g +

αl

ρl
v̂l)

)
+

(
q̂,∇ · (αg

ρg
ug +

αl

ρl
ul)

)
= (Lg, v̂g) + (Ll, v̂l) + (q̂, f) .

(3.42)

where, for j = g, l, αj := αm+1
j , βj :=

1

δt
αj +

CD

ρg
αg|um

g − um
l |,

Lj :=
1

δt
αju

m
l ◦Xm

j +
CD

ρg
αg|um

g − um
l |um

!j , f := ρl
−1Kαl(c

m+1
g − csat)+

(
ρ−1
g − ρ−1

l

)
.

(3.43)
and where !g = l, !l = g.
Note that the above is a semi-linearization of (3.32),(3.33). However in algorithm 1 below,
the nonlinear problem is solved by an iterative fixed point which uses (3.42)-(3.43).
The LBB theorem says that the solution of (3.42) exists and is unique because, for every
p ∈ Pm+1 there is a (non-unique) w ∈ V m+1

0 with

(∇ ·w, q̂) = (f, q̂), ∀q̂ ∈ Pm+1,

provided that
∫
Γin
uin · n =

∫
Ωm+1 fdx. Let us show stability in the special case f = 0

because one can always subtract w from αg

ρg
ug +

αl

ρl
ul so as to work with ug,in = ul,in = 0

and f = 0.
Thus, setting v̂g = ug, v̂l = ul and q̂ = p leads to

1

δt

∥∥√αgug

∥∥2
L2 +

1

2

∥∥√αgD(ug)
∥∥2
L2 +

1

δt
∥
√
αlul∥2L2 +

1

2
∥
√
αlD(ul)∥2L2 6 (Lg,ug) + (Ll,ul) .

(3.44)
By the same argument used above, it implies that uj , j = g, l is bounded. Indeed, assuming
αm > 0,

δt (Lj ,uj) =

∫
Ωm+1

αju
m
j ◦Xm

j · ujdx 6
∥∥√αjuj

∥∥
L2

(∫
Ωm+1

αj

∣∣um
j ◦Xm

j

∣∣2 dx) 1
2

=
∥∥√αjuj

∥∥
L2

(∫
Ωm+1

(
αm
j ◦Xm

j − αδt(∇ · um
l +

1

ρl
K(cmg − csat)+)

) ∣∣um
j ◦Xm

j

∣∣2 dx) 1
2

6
∥∥√αjuj

∥∥
L2

(∫
Ωm+1

(
αm
j ◦Xm

j − αδt∇ · um
l

) ∣∣um
j ◦Xm

j

∣∣2 dx) 1
2
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6
∥∥√αjuj

∥∥
L2

(∫
Ωm+1

αm
j ◦Xm

j

(
1− δt∇ · um

l +O(δt2)
) ∣∣um

j ◦Xm
j

∣∣2 dx) 1
2

=
∥∥√αjuj

∥∥
L2

(∫
Ωm

(
αm
j (1 +O(δt2))

) ∣∣um
j

∣∣2 dx) 1
2

6
∥∥√αjuj

∥∥
L2 (1 + δt2C(‖cmg ‖L∞ , ‖∇2um

l ‖L∞))
∥∥∥√αm

j u
m
j

∥∥∥
L2

(3.45)

for some generic constant C depending on ‖cmg ‖L∞ and ‖∇2um
l ‖L∞ . Finally, we obtain

|||um+1
g ,um+1

l |||m+1 6 (1 + Cδt2)|||um
g ,u

m
l |||m + δt

CD

ρg
‖ αg

αm
j

(um
g − um

l )‖L∞ |||um
g ,u

m
l |||m,

(3.46)
where

|||ug,ul|||2m :=
∑
j=g,l

∥∥∥√αm
j,huj

∥∥∥2
L2

+ 1
2δt
∥∥∥√αm

l,hD(uj)
∥∥∥2
L2
, m = 0, . . . , N.

This estimate is optimal, but for the constant C which is the drawback of the characteristic
method and for the L∞ norm which is consequence of the unsophisticated treatment of the
nonlinearity. Nevertheless, would these two be bounded, the scheme would be H1 stable.

4. Note that we have swept under the rug the fact that at level m the domain of definition of
the functions is Ωm and at level m+ 1 it is Ωm+1. The problem can be solved but at the
cost of difficult notations and iterations between ym+1 and um+1; for details see [55].

3.4 Finite element implementation
For simplicity, the physical domain Ω(t) is assumed to be a two-dimensional polygonal domain.

3.4.1 Mesh
Let {Kh(t)}h>0 be an affine, shape regular (in the sense of Ciarlet[28]) family of mesh conforming
to Ω(t). The conforming Lagrange finite element space of degree p on Ω(t) is

Xp
h,t = {v ∈ C

0(Ω(t)) : v|K ∈ P p, ∀K ∈ Kh(t)}, (3.47)

where P p is the space of polynomials of degree p of R2.
Let {φ1, . . . φNq

} be the nodal Lagrange basis of X1
h,t. If the vertices are denoted by {qi}Nq

1 ,
then φi(qj) = δij . Let Si be the support of φi and let Sij := Si ∩ Sj . If E is a union of
triangles, define I(E) := {i ∈ {1, . . . , Nq} : |Si ∩ E| 6= 0}. Finally, the local minimum mesh
size of K ∈ Kh(t) is hK(t) := 1/maxi∈I(K) ‖∇φi‖L∞(K), and the global minimum mesh size is
h(t) := minK∈Kh

hK(t).
We assume that the connectivity of the mesh Kh(t) never changes with time.

3.4.2 Spatial discretization
We use the Hood-Taylor element: the velocities are in Vh(t) := (X2

h,t)
2 and the pressure is in

Ph(t) := X1
h,t. For the volume fractions and the concentrations we use also Ph(t).
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Recall that the nodes of X2
h,t are the vertices and the middle of the edges. Denote by

{ψ1, . . . , ψNa} the nodal Lagrange basis of associated with the nodes {a1, . . . ,aNa} for X2
h,t. For

convenience, we define Ωm := Ω(tm), Pm
h = X1

h,tm and V m
h = (X2

h,tm)2.
On the boundaries where Dirichlet conditions are set, the functions are known. We denote

Pm
0h and V m

0h , the corresponding spaces where basis functions attached to a Dirichlet node are
removed.

Volume fractions

Given αm
l,h, c

m
g,h ∈ Pm

h and um
l,h ∈ V m

h , find αm+1
l,h ∈ Pm+1

h satisfying the Dirichlet boundary
conditions and such that

1

δt

(
αm+1
l,h − αm

l,h ◦Xm
l,h, q̂h

)
+
(
αm+1
l,h (∇ · um

l,h + ρ−1
l K(cmg,h − csat)+), q̂h

)
= 0, ∀q̂h ∈ Pm+1

0h ,

(3.48)
where Xm

j,h(x) = x− δtum
j,h(x) for x ∈ Ωm, j = g, l. Then we let αm+1

g,h = ρg(1− ρ−1
l αm+1

l,h ).

Remark 3.4.1 A modification similar to (3.40) will insure the positivity of αm+1
l,h .

Concentration profiles

Given αm+1
l,h ∈ Pm+1

h , αm
l,h ∈ Pm

h , um
l,h ∈ V m

h , Cm
h ∈ (Pm+1

h )2+kM , find Cm+1
h ∈ (Pm+1

h )2+kM

such that

1

δt

(
αm+1
l,h (Cm+1

h − Cm
h ◦Xm

l ), ŵh

)
+
(
αm+1
l,h D∇Cm+1

h ,∇ŵh

)
+
(
MgKαm

l,h(c
m
g,h − csat)

+, ŵg,h

)
+
(
I(Em+1

mix,h)(C
m+1
h )κ, ŵh

)
L2(S(tm+1))

= 0 ∀ŵh ∈ (Pm+1
0h )2+kM ,

(3.49)

subject to ∑
j=s,k

ij(E
m+1
mix,h)(c

m+1
j,h )κj (qi) = 0, for each nodal point qi on Sm (3.50)

where ŵg,h is the last component of ŵh and

I(Em+1
mix,h) = diag

(
|is(Em+1

mix,h)|
zsF

,
|ik(Em+1

mix,h)|
zkF

,−
β|is(Em+1

mix,h)|
zsF

)
,

(Cm+1
h )κ =

(
(cm+1

s,h )κs , (cm+1
k,h )κk , (cm+1

s,h )κs

)T
for is, ik defined by (3.20).

Two phase flow

Given αm+1
j,h ∈ Pm+1

h , j = g, l, cm+1
g,h ∈ Pm+1

h , and um
j,h ∈ V m

h , find um+1
j,h ∈ V m+1

h , j = g, l and
pm+1
h ∈ Pm+1

h /R such that

∑
j=g,l

{ 1

δt

(
αm+1
j,h (um+1

j,h − um
j ◦Xm

j,h), v̂j,h

)
+

1

2
νj
(
αm+1
j D(um+1

j,h ), D(vj,h)
)

+ γjρ
−1
g CD

(
αm+1
g,h |um+1

g,h − um+1
l,h |(um+1

g,h − um+1
l,h ), v̂j,h

)
−
(
pm+1
h ,∇ · (ρ−1

j αm+1
j,h v̂j,h)

)}
= 0

(3.51)
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(
q̂h,∇ · (ρ−1

g αm+1
g,h um+1

g,h + ρ−1
l αm+1

l,h um+1
l,h )

)
=

(
q̂h,

K

ρl
αm+1
l,h (cm+1

g,h − csat)+
(
ρ−1
g − ρ−1

l

))
(3.52)

for all v̂j,h ∈ V m+1
0h , j = g, l and q̂h ∈ Pm+1

h /R.

3.4.3 Fixed point iterative solution of (3.51), (3.52)

The system (3.51)-(3.52) is nonlinear. An iterative algorithm is described in Algorithm 1.

Algorithme 1 : A semi-lineariazation for solving (3.51)-(3.52).
1 Let Lg, Ll, f be defined by (3.43).

Data : Set uj = um
j,h, j = g, l.

2 for n = 1 . . . N do

3 Set βj =

(
1

δt
αm+1
j,h +

CD

ρg
αm+1
g,h |ug − ul|

)
,

4 Find ug,ul and p sastifying the Dirichlet conditions and such that, ∀v̂g, v̂l ∈ V m+1
0h and

∀q̂ ∈ Pm+1
h /R

(βgug, v̂g) + (βlul, v̂l) +
1

2

(
αm+1
g,h D(ug), D(v̂g)

)
+

1

2

(
αm+1
l,h D(ul), D(v̂l)

)
−

(
p,∇ · (

αm+1
g,h

ρg
v̂g +

αm+1
l,h

ρl
v̂l)

)
+

(
q̂,∇ · (

αm+1
g,h

ρg
ug +

αm+1
l,h

ρl
ul)

)
= (Lg, v̂g) + (Ll, v̂l) + (q̂, f) . (3.53)

5 end
6 Set un+1

j = uj , j = g, l.

3.4.4 Consistence and stability

Variational formulations discretized by finite element methods inherit the stability and con-
sistency of the continuous equations. The LBB theorem applies also to the Hood-Taylor ele-
ment for velocity pressure problems. Therefore, as in the continuous case, the H1 norms of
αm+1
j ,um+1

j , Cm+1
j are less than (1 + C(‖∇2um

l ‖L∞)δt) times the H1 norms of αm
j ,u

m
j , C

m
j . If

we could show that C( ) is bounded, then it would imply that the scheme converges when δt→ 0.

3.4.5 Solvability of the linear system in matrix form

Let ζ = (ζg, ζl) ∈ (V m+1
h )2, αm+1

j,h ∈ Pm+1
h , αj,h > ε for some constant ε > 0, j = g, l.

To study the solvability of (3.51)-(3.52), we consider a simpler case with ug = ul = 0 on
∂Ωm+1\Γout, and take the linearized approximation on the drag force terms. The problem reads:
Find um+1

h := (um+1
g,h ,um+1

l,h ) ∈ (V m+1
0h )2 and pm+1

h ∈ Pm+1
h /R satisfying

aζ(u
m+1
h , v̂h) + b(pm+1

h , v̂h) = F (v̂h), b(q̂h,u
m+1
h ) = G(q̂h), (3.54)
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where, for u = (ug,ul),v = (vg,vl) ∈ (vm+1
0h )2, q ∈ Pm+1

h ,

aζ(u,v) =
∑
j=g,l

[
1

δt

(
αm+1
j,h uj ,vj

)
+

1

2
νj

(
αm+1
j,h D(uj), D(vj)

)]
+ ρ−1

g CD

(
αm+1
g,h |ζg − ζl|(ug − ul),vg − vl

)
b(q,v) = −

(
q,∇ · (ρ−1

g αm+1
g,h vg + ρ−1

l αm+1
l,h vl)

)
F (v) =

∑
j=l,g

1

δt

(
αm+1
j,h um

j,h(X
m
j,h(x)),vj

)
G(q) =

(
q, ρ−1

l Kαm+1
l,h (cm+1

g,h − csat)+(ρ−1
g − ρ−1

l )
)
.

(3.55)
On the basis of V m+1

h and Pm+1
h , we can write

um+1
g,h =

2Na∑
i=1

um+1
g,i ψi, um+1

l,h =

2Na∑
i=1

um+1
l,i ψi, pm+1

h =

Nq∑
i=1

pm+1
i φi, (3.56)

More precisely {ψ1, . . . ,ψ2Na} is {ψ1e1, . . . , ψNae1, ψ1e2, . . . , ψNae2} for e1 = (1, 0)T and e2 =
(0, 1)T .

Problem (3.54) can be formally expressed as a system of linear equations:

ΦUm+1 = Fm, (3.57)

where Φ is a (4Na + Nq) × (4Na + Nq) matrix, Um+1 and Fm are (4Na + Nq) vectors. Note
that Φ has the form

Φ =

(
A B
BT O

)
, with A =

(
Ag Amix

Amix Al

)
. (3.58)

In the above,

Ak =

(
1

δt

(
αm+1
k,h ψi,ψj

)
+

1

2
νk

(
αm+1
k,h D(ψi), D(ψj)

)
+ ρ−1

g CD

(
αm+1
g,h |ζg − ζl|ψi,ψj

))
i,j=1,...,2Na

, k = g, l,

Amix =
(
−ρ−1

g CD

(
αm+1
g,h |ζg − ζl|ψi,ψj

))
i,j=1,...,2Na

,

B =

−(φj ,∇ · (ρ−1
g αm+1

g,h ψi)
)

−
(
φj ,∇ · (ρ−1

l αm+1
l,h ψi)

)
i=1,...,4Na;j=1,...,Nq

.

Proposition 3.4.1 The linear system (3.57) is uniquely solvable.
Proof. According to the Ladyzhenskaya-Babuska-Brezzi theorem [47] the saddle point problem
(3.53) is well posed when for p ∈ Pm+1

h /R, there exists v ∈ V m+1
0h such that

(p,∇ · v)
‖v‖H1

> c‖p‖L2/R for some c > 0. (3.59)

Therefore Φ has full rank and is non singular.

3.4.6 Iterative process
At each time step, (3.48), is solved first, then (3.49)-(3.50) is solved iteratively by using a semi-
linearization of the nonlinear boundary terms. Then (3.51),(3.52) is solved iteratively by a semi-
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linearization of the nonlinear terms; each block involves the solution of a well posed symmetric
linear system. Finally Sm is updated by (3.23). Algorithm 2 summarises the procedure.

Note that the computational domain is Ωm = {(x, y), 0 < x < L, 0 < y < ym(x)}.

Algorithme 2 : Algorithm for solving the full system of equations.
Data : αm

g,h, αm
l,h, um

g,h, um
l,h, pmh , cms,h, cmk,h, cmg,h, Em

mix,h, and ym

1 Set initial data α0
g,h, α0

l,h, u0
g,h, u0

l,h, c0s,h, c0k,h, c0g,h, E0
mix,h;

2 for m do
3 Solve (3.48) to get αm+1

g,h , αm+1
l,h ;

4 Initial guess: Em+1,0
mix,h = Em

mix,h, Cm+1,0
h = solution to (3.49) when mixed potential is

Em+1,0
mix,h ;

5 while ∥Cm+1,k+1
h − Cm+1,k

h ∥ > tolerance do
6 Initial guess: Em+1,k+1,0

mix,h = Em+1,k
mix,h ;

7 while ∥Em+1,k+1,l+1
mix,h − Em+1,k+1,l

mix,h ∥L2(Sm) > tolerance do
8 Solve (3.49) to get cm+1,k+1,l+1

s,h , cm+1,k+1,l+1
k,h , cm+1,k+1,l+1

g,h ;
9 Solve (3.50) to get Em+1,k+1,l∗

mix,h ;
10 Em+1,k+1,l+1

mix,h = ξEm+1,k+1,l∗

mix,h + (1− ξ)Em+1,k+1,l
mix,h , 0 < ξ < 1;

11 end
12 end
13 Solve (3.51)-(3.52) to get, um+1

g,h , um+1
l,h , pm+1

h (Using Algorithm 1);
14 For the free boundary case change the mesh by ym+1 = ym + δtu2

m+1
g,h ;

15 end

3.5 Numerical simulation

3.5.1 One-dimensional electroless nickel plating problem
Here we reproduce, with a two dimensional computation, the one-dimensional study by Kim
and Sohn [66]. In their work, the electroless nickel plating process on a rotating disk with
constant angular velocity is considered. In this situation, the velocity field near the surface of
the rotating disk can be approximated by a uniformly distributed flow towards the plating surface.
In addition, the thickness of diffusion layer is assumed uniform on the surface. Consequently,
for the modeling, the domain becomes one-dimensional. Given that the gas generation is not
considered and only the steady state is computed in [66], a single phase recovery rl = 1, cg = 0
is applied. Finally, four partial reactions in the electroless nickel plating process are considered:

H2PO
−
2 +H2O = H2PO

−
3 + 2H+ + 2e− (anodic) (3.60a)

H2PO
−
2 + 2H+ + e− = P+ 2H2O (cathodic) (3.60b)

Ni2+ + 2e− = Ni (cathodic) (3.60c)
2H+ + 2e− = H2 (cathodic) (3.60d)

All chemical species are labeled as follows: c1 is the concentration of the anodic hypophosphite
(H2PO

−
2 ), c2 the concentration of the cathodic hypophosphite, c3 the concentration of the nickel

ion (Ni2+), and c4 the concentration of the hydrogen ion (H+). Now the two-dimensional ana-
logue can be formulated: Let Ω = (0, δ3)× (0, ε), where δ3 is the thickness of the diffusion layer
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Table 3.1: Physical parameters used in the simulation by Kim and Sohn [66], which are valid
for pH = 4.5 and the concentration of H2PO

−
2 = 0.3 M

H+ Ni2+ H2PO
−
2 (cathodic) H2PO

−
2 (anodic)

i0 (A/cm2) 1.5× 10−4 a 1.5× 10−7 b 6.0× 10−4 8.9× 10−3

D (cm2/s) 4.5× 10−5 a 0.5× 10−6 c 1.7× 10−5 1.7× 10−5

α 0.79 a 0.79 c 0.2 0.9
β 0.21 a 0.21 c 0.8 0.1
z 1 2 1 4
γ 1.0 a 1.0 c 0.3 1.0

E0 (V ) d −0.101 −0.147 −0.806 −0.878
c0 (M) 3.162× 10−5 e 0.1 0.3 0.3
subscript j 4 3 2 1

a Estimated from the literature [5]. b Assumed in this study. c Taken from the literature [56] . d

Calculated based on the literature [31]. all values except E03 (Ni2+) depend on pH (see (3.66)). e If
pH = x, then c04 = 10−x (M). i0: Exchange current density, D: Diffusion coefficient. α: Anodic
transfer coefficient, β Cathodic transfer coefficient. z: Number of electron transport, γ: Reaction order,
E0: Equilibrium potential (90oC) c0 inlet and initial concentration

Table 3.2: Conditions assumed in [66] for performing our simulations

Experimental conditions
Angular velocity ω 400 rpm
Kinematic viscosity ν 1.2× 10−2 cm2/s
Temperature θ 90 oC

Composition of electrolytes
NiSO4 (nickel sulfate) 0.1 M
NaH2PO2 (sodium hypophosphite) 0.3 M
pH 4.0− 5.3

for nickel and ε << δ3 is a small positive number. The thickness of the diffusion layer for species
j is given in [74]:

δj = 1.61D
1/3
j ω−1/2ν1/6. (3.61)

The governing equation for the concentration profile is given by

∂tcj + u · ∇cj −Dj∆cj = 0 in Ω, (3.62)

subject to the boundary conditions

cj = c0j at x = δ3, −Dj
∂cj
∂n

= 0 at y = 0, ε,

−Dj
∂cj
∂n

=
|i1(Emix)|

z1F

(
(1− r)c1
c01

)γ1

+
|i2(Emix)|

z2F

(
rc2
c02

)γ2

j = 1, 2,

−Dj
∂cj
∂n

=
|ij(Emix)|

zjF

(
c1
c01

)γj

j = 3, 4 at x = 0.

(3.63)
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with the electron balance constraint
4∑

j=1

ij(Emix)

zjF

(
cj
c0j

)γj

= 0. (3.64)

The velocity field can be expressed as in [74]:

u = (−ax2ω3/2ν−1/2, 0)T (3.65)

where a = 0.51023 is an experimental constant, r = 0.995 is the ratio between the hypophosphite
anodic part and the cathodic part on the reacting surface. The equilibrium potential E0j for
species j can be approximated by the Nernst equation, with pH = log(c04):

E01 = −0.878 + 0.25Rθ

F
log
(
104.5c04

)
, E02 = −0.806 + 0.3Rθ

F
log
(
104.5c04

)
,

E03 = −0.147, E04 = −0.101 + Rθ

F
log
(
104.5c04

)
.

(3.66)

By simulating system (3.62), (3.63), and (3.64), with the physical constants given in Table 3.1,
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Figure 3.3: In red, the mixed potential Emix computed by the one dimensional system (3.63)
versus pH = log c04. In black, the same but computed with the full two dimensional system.

until a steady state is reached, the numerical tests show that the present model agrees well with
the previous 1D studies of Kim and Sohn [66]: see Figures 3.3 and 3.4.

Regarding (3.60), atomic nickel and phosphorus are deposited on the surface during the
electroless process. The deposition thickness can be estimated in terms of the current densities:(

i2(Emix) (c2|x=0/c02)VP
z2F

+
i3(Emix) (c3|x=0/c03)VNi

z3F

)
t, (3.67)

where VP , VNi are molar volumes of phosphorus and nickel, respectively, and t is the deposition
time.

3.5.2 Two species in a gas-liquid two phase flow
Let the initial domain Ω be a rectangular of size 0.01×0.001 (in meters). We consider complexed
(by tartrate, denoted by L) copper ions, formaldehyde, and hydrogen dissolved in water, which
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Figure 3.4: Concentration profiles of three chemical species versus x computed by the one di-
mensional system (3.63) and compared with the results of the full two dimensional system.

are denoted by the subscriptions s, k, g, respectively, for the chemical species transport equations.

The chemical reaction can be expressed as the following two partial reactions:

Cu(OH)2L
−4
2 = Cu + 2OH− + 2L−2 (3.68a)

2HCHO+ 4OH− = 2HCOO− +H2 + 2H2O+ 2e− (3.68b)

Given the above equations, we also use the subscriptions s and k to represent the quantities
corresponding to (3.68a) and (3.68b), respectively.

The values of the physical constants are listed in Table 3.3.

physical quantity value physical quantiy value
ρl (kg/m

3) 995.65 ρg (kg/m3) 1.161
ρ0 (kg/m3) 1.161 µg (kg/m · s) 1.86× 10−5

µl (kg/m · s) 7.977× 10−4 d0 (m) 0.001
u0 (m/s) 0.001 csat (mol/m3) 0
ig (A/m2) 1.0× 10−2 is (A/m2) 1.0× 10−2

ik (A/m2) 10 R (J/K ·mol) 8.314
K (kg/mol · s) 3.87× 10−4 Mg (mol/kg) 500
cg,0 (mol/m3) 1 cs,0 (mol/m3) 39.34
ck,0 (mol/m3) 77.58 Dg (m2/s) 2× 10−8

Ds (m2/s) 7× 10−10 Dk (m2/s) 1.2× 10−9

zs (1) 2 zk (1) 4
αs (1) 0.67 αk (1) 0.37
βs (1) 0.33 βk (1) 0.63
θ (K) 363.15 Es (V ) −0.266
Ek (V ) 1.5 CD (1) 242220
α (1) 0.0005

Table 3.3: Parameters used in Section 3.5.2.
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For convenience, the following scalings are applied:

L → L

d0
(L is any length), ρl →

ρl
ρ0

, ρg → ρg
ρ0

,

µl →
µl

ρ0d0u0
, µg → µg

ρ0d0u0
, cg → cg

cg0
, ck → ck

ck0
, cs → cs

cs0
, K → d0cg0

ρ0u0
K,

Lg → Lg

u0cg0zsF
, Ls → Ls

u0cs0zsF
, Lk → Lk

u0ck0zkF
, Dg → Dg

u0d0
, Ds → Ds

u0d0
, Dk → Dk

u0dk
,

ig → ig
u0cg0zsF

, is → is
u0cs0zsF

, ik → ik
u0ck0zkF

.

(3.69)
The initial conditions are set to: constant phase ratio and Poiseuille flow:

r0g = ε, r0l = 1− ε, u0
g = u0

l = (0.69y(1− y), 0)T , (3.70)

with ε = 0.0001. Also, let C0 = (c0s, c
0
k, c

0
g)

T satisfies

−∇ · (r0lD∇C0) = 0, C0|Γin
= (1, 1, 0)T ,

∂C0

∂n
|Γout∪Γwall

= 0 (3.71)

plus the first equation in (3.73) subject to (3.21). The inflow values are

um+1
g |Γin

= um+1
l |Γin

= (y(1− y), 0)T , cg|Γin
= 0, cs|Γin

= ck|Γin
= 1, rl|Γin

= 1− ε. (3.72)

The boundary conditions on S(tm+1) are

−Dp

∂cm+1
p

∂n
= χrm+1

l |im+1
p |cm+1

p , p = s, g, k, um+1
g = um+1

l = αχrm+1
l |im+1

s |cm+1
s , (3.73)

where α = 0.0005 and

χ(x, y) =


x− 3

4 + 1
4 sin

(
2π(x− 1

4 )
)
, 1 6 x < 1.5,

1, 1.5 6 x < 5.5,
17
4 − x−

1
4 sin

(
2π(x− 19

4 )
)
, 5.5 6 x < 6,

0, 0 6 x < 1 or 6 6 x 6 10.

(3.74)

Boundary conditions on Γout and Γwall are as in Section 3.2.4. See also Figure 3.1.

Remark 3.5.1 We note that α = 0.0005 is much larger than the experimental values; the
numerical simulations produce ug2 (and ul2) of magnitude in the order O(10−4). On the other
hand, the deposition rate in a typical experiment is of order 1 µm per hours [128], which is not
larger than O(10−6). Yet the numerical test is conducted to validate the numerical method when
the evolution of the domain is larger than real life values.

Convergence

First, we conduct the convergence test for different time step with a fixed mesh. To obtain a
“reference solution”, the system (3.48)-(3.52) is solved with a 50× 10 uniform mesh and a small
time step δt = 0.01 and T = 10. The convergence with respect to δt is studied without changing
the mesh; results are given in Table 3.4 and the rate of convergence for each variable is presented
in Figure 3.5. Numerical tests for solving two phase flow problem and volume fraction problem
present a linear decay of L2 error with respect to the time step. However, the convergence for
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Table 3.4: L2 error with respect to the reference solution provided with time step δt = 0.01,
50× 10 uniform mesh, and α = 0.0005 for numerical simulation in Section 3.5.2 at T = 10.

δt ug ul p αg cs ck cg
1 5.56× 10−4 5.49× 10−4 1.45× 10−3 9.11× 10−2 9.12× 10−3 3.77× 10−4 1.74× 10−2

0.5 2.77× 10−4 2.73× 10−4 7.17× 10−4 4.50× 10−2 6.80× 10−3 2.64× 10−4 8.74× 10−3

0.1 4.85× 10−5 4.84× 10−5 1.28× 10−4 8.07× 10−3 3.87× 10−3 2.01× 10−4 1.72× 10−3

0.05 2.25× 10−5 2.24× 10−5 5.75× 10−5 3.58× 10−3 3.00× 10−3 1.55× 10−4 8.77× 10−4

Table 3.5: L2 error with respect to the reference solution provided with time step δt = 0.05,
200× 20 uniform mesh, and α = 0.0005 for numerical simulation in Section 3.5.2 at T = 10.

(δt,mesh) ug ul p αg cs ck cg
(1, 25× 3) 2.03× 10−2 2.04× 10−2 1.72× 10−2 6.24× 10−1 1.55× 10−1 8.73× 10−2 8.57× 10−1

(0.5, 50× 5) 6.50× 10−3 6.45× 10−3 5.24× 10−3 2.18× 10−1 4.54× 10−2 3.08× 10−2 2.78× 10−1

(0.1, 100× 10) 1.47× 10−3 1.35× 10−3 9.48× 10−4 6.09× 10−2 1.57× 10−2 7.65× 10−3 6.58× 10−2

solving the concentration profiles does not reach the expectation due to extremely low diffusion
coefficients and large current densities.

Second, we conduct the convergence tests for different time step and mesh pairs. The reference
solution is obtained with 200 × 20 uniform mesh and δt = 0.05 at T = 10. We always keep the
time step being proportional to the mesh size. Figure 3.6 and Table 3.5 present a linear decay
of L2 error with respect to the time step for each variable.

Third, the convergence tests for different time step and mesh pairs are performed until a
larger final time. The reference solution is obtained with 200× 20 uniform mesh and δt = 0.3 at
T = 120. Same as the second test, we always keep the time step being proportional to the mesh
size. Figure 3.7 and Table 3.6 present a nearly linear decay of L2 error with respect to the time
step for each variable. In this test, rg and ck are of the worst convergence. Their intensity maps
are given in Figures 3.8 and 3.9. Except for tests with time step δt = 1.2, the intensity maps for
the tests with δt 6 0.6 present no significant difference with the reference solutions.

Robustness for large time steps

With a large time step δt = 1 and 100 × 10 uniform mesh, the product of the maximal liquid
fluid speed with the time step is around 1.5 times of the mesh size, which is optimal for the
Galerkin-Characteristic method. solutions are displayed in Figure 3.10-3.15.

CPU time

With δt = 1 and 100 × 10 uniform mesh, it took 5832 seconds to reach the final time T = 180
with an Intel Core i7-8750H @ 2.20GHz. During the computation, it took 0.086% of the total

Table 3.6: L2 error with respect to the reference solution provided with time step δt = 0.3,
200× 20 uniform mesh, and α = 0.0005 for numerical simulation in Section 3.5.2 at T = 120.

(δt,mesh) ug ul p αg cs ck cg
(1.2, 50× 5) 1.73× 10−2 1.73× 10−2 6.48× 10−3 3.71× 10−1 3.97× 10−2 1.56× 10−2 2.73× 10−1

(0.6, 100× 10) 1.22× 10−2 1.23× 10−2 4.07× 10−3 2.20× 10−1 1.35× 10−2 1.18× 10−2 2.11× 10−1

(0.4, 150× 15) 6.40× 10−3 6.41× 10−3 2.23× 10−3 1.19× 10−1 6.60× 10−3 6.23× 10−3 1.11× 10−1
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Figure 3.5: Convergence with respect to δt for the case described in Section 3.5.2 with fixed
mesh: log-log plot of the error for each unknown; (note that the curves for ug and ul overlap)
. R.O.C. means “Rate Of Convergence”. The reference solution is a computation with a very
small time step.

Figure 3.6: Convergence with respect to δt and mesh size for the case described in Section 3.5.2
(see Table 3.5 for the time step and mesh size pair): log-log plot of the error for each unknown;
(note that the curves for ul and ul overlap) .
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Figure 3.7: Convergence with respect to δt and mesh size for the case described in Section 3.5.2
(see Table 3.5 for the time step and mesh size pair): log-log plot of the error for each unknown;
(note that the curves for ug and ck overlap and the curve of ul is closed to them).

(a) Intensity map of rg at t = 120 with δt = 1.2 and 50× 5 uniform mesh.

(b) Intensity map of rg at t = 120 with δt = 0.6 and 100× 10 uniform mesh.

(c) Intensity map of rg at t = 120 with δt = 0.4 and 150× 15 uniform mesh.

(d) Intensity map of rg at t = 120 with δt = 0.3 and 200× 20 uniform mesh.

Figure 3.8: For Section 3.5.2: The intensity maps of rg for different time step and mesh size
pairs.
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(a) Intensity map of cg at t = 120 with δt = 1.2 and 50× 5 uniform mesh.

(b) Intensity map of cg at t = 120 with δt = 0.6 and 100× 10 uniform mesh.

(c) Intensity map of cg at t = 120 with δt = 0.4 and 150× 15 uniform mesh.

(d) Intensity map of cg at t = 120 with δt = 0.3 and 200× 20 uniform mesh.

Figure 3.9: For Section 3.5.2: The intensity maps of cg for different time step and mesh size
pairs.
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(a) Intensity map of ug at t = 100.

(b) Intensity map of ul at t = 100.

Figure 3.10: For Section 3.5.2: The velocity magnitudes of ug and ul.

CPU for solving the volume fraction problem, 7.66% for solving the chemical species transport
problem and 91.93% for solving the two velocities/pressure flow problem.

The computer program is written using the FreeFEM++ toolkit [53].

Results

On Figure 3.10a and 3.10b the velocity vector fields ug and ul are seen to be almost parabolic
in y (Poiseuille flow). but the phase change and moving boundary induce a non-zero asymmetric
vertical component u2g (see Figure 3.14); both play important roles for the bubble distribution.
Bubble density can be inferred by analyzing cg and rg (see Figure 3.17). The color maps of
Figure 3.11 displays a high gas volume fraction area near the top and bottom plates . Figure
3.12 shows how the steady state is established and how the electrolyte disappears in the plating
region due to the plating. Figure 3.13 explains why it is always of the highest volume fraction
of gaseous phase near the reacting surface. The deposition-induced movement of S is presented
in Figure 3.16. Figure 3.17b shows that the region of the highest bubble density is moving away
from the inlet as the electroless plating proceeds.

3.6 Comparison with experimental results
To validate the numerical method on a real-life problem, an experiment for reproducing the
numerical study in Section 3.5.2 is conducted. Here, we shall show that the experimental result
can be qualitatively fitted by the numerical simulation.

The experimental setting is described as the following: A micro-channel is enclosed by two
sheet glasses of size 8 mm × 8 mm and another two of size 8 mm × 1 mm, which form a
rectangular channel. The electrolyte goes in the channel from the left and exit on the right.
One piece of the square sheet glasses is partially glued on a copper plate of size 8 mm× 4 mm,
where the longer side of the copper plate coincides with an edge of the inlet (see Figure 3.18
for geometry setting). The inflow is set to be of average velocity 0.115 mm/s. At inlet, the
copper ion concentration is cs0 = 39.34 mol/m3 and the formaldehyde concentration is ck0 =
77.5883 mol/m3. Here, the inlet concentrations cg0 and ck0 are the reference concentrations for
copper ion and formaldehyde, respectively. We further define the reference concentration of the
hydrogen gas to be cg0 = 1 mol/m3. Other physical parameters are given by Table 3.3. Some
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(a) Intensity map of rg at t = 20.

(b) Intensity map of rg at t = 40.

(c) Intensity map of rg at t = 100.

(d) Intensity map of rg at t = 140.

(e) Intensity map of rg at t = 180.

Figure 3.11: For Section 3.5.2: intensity maps of the volume fraction of the gas phase rg computed
with δt = 1 and a 100× 10 uniform mesh.
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(a) Intensity map of cs at t = 20.

(b) Intensity map of cs at t = 40.

(c) Intensity map of cs at t = 100.

(d) Intensity map of cs at t = 140.

(e) Intensity map of cs at t = 180.

Figure 3.12: For Section 3.5.2: intensity maps of the concentration electrolyte ions cs computed
with δt = 1 and a 100×10 uniform mesh. The blue zone in the plating region, on the lower plate
shows that the electrolyte is absorbed by the plating process.
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(a) Intensity map of cg at t = 20.

(b) Intensity map of cg at t = 40.

(c) Intensity map of cg at t = 100.

(d) Intensity map of cg at t = 140.

(e) Intensity map of cg at t = 180.

Figure 3.13: For Section 3.5.2: intensity maps of the concentration of dissolved gas.
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(a) Intensity map of u2g at t = 20.

(b) Intensity map of u2g at t = 40.

(c) Intensity map of u2g at t = 100.

(d) Intensity map of u2g at t = 140.

(e) Intensity map of u2g at t = 180.

Figure 3.14: For Section 3.5.2: The vector fields ug and ul are very closed to Poisseuille flow.
In this case, phase change and moving boundary contribute to the second component of ug (and
ul) together. The numerical test is conducted with δt = 1 and 100 × 10 uniform mesh. The
intensity maps indicate the bubble rising in the red region. Indeed, their exists high gas volume
fraction region near the top side (see Figure 3.11).
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(a) Intensity map of ul2 at t = 100.

(b) Intensity map of ck at t = 100.

Figure 3.15: For Section 3.5.2: Intensity maps of ul2 and ck at t = 100.

Figure 3.16: The thickness of the deposition is given by the motion of S(t), plotted here at 5
instants of time, with respect to x-axis (in mm). Notice that the motion t→ S(t) is very small;
the oscillations are blown-out of proportions by the scaling used in the graphic.
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(a) For Section 3.5.2: Intensity map of cg on S
versus x.

(b) For Section 3.5.2: Intensity map of rg on S
versus x.

Figure 3.17: Plots of rg and cg versus x on the reaction surface S.The gas bubble density in the
plating reaction zone can be observed.

parameters, for example, reference current densities is, ik, and ig, may not be exactly same as
what are given in Table 3.3. Nevertheless, they are acceptably closed to the reality, or at least
in a same order.

Figure 3.18: The geometry setting for both experiment and numerical simulation. Here, the
yellow region indicates the copper plate glued on the sheet glass.

3.6.1 Experimental
To fabricate the test vehicle, a 4 inch glass wafer was first sputtered with 30 nm chromium
and 200 nm copper which served as adhesion layer and seed layer, respectively. The wafer was
then diced into each 8 mm × 8 mm glass dies. To ensure a significant comparison between the
regions being plated or not, each test die was half immersed in SPS (Na2S2O8) solution and
hydrochloric acid to remove copper and chromium layer. The glass die turned out half transparent
and half coated with copper where the electroless copper plating took place. Thereafter, a fully
transparent glass which was identical to the size of test die, was face-to-face aligned and bonded
via using flip-chip die-bonder in order to obtain a clear observation view. Two tungsten wire
which were 8 mm in length and 2 mm in diameter were glued by UV gel and placed on the
periphery of the test die for the purpose of restricting the flow direction and defining the height
between the dies (see Figure 3.19).

The test vehicle was then subjected to micro-fluidic system composed of a PDMS mode con-
taining micro-fluidic channel and a bottom glass. Clips were used to sealed the micro-fluidic
system and prevented the leakage of electrolyte. A peristatic pump was used to control the flow
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and connect the micro-fluidic system with silicone tube. Prior to the electroless plating, the test
vehicle was immersed in 10% sulfuric acid to remove copper oxide. Finally, the electroless copper
plating was conducted in a water tank controlled at 50 ◦C with in-situ recording via stereomicro-
scope (charged coupled device digital camera CCD). The electrolyte PHE-1 Uyemura possessing
the given reference concentrations cs0 of (complexed) copper ion and ck0 of formaldehyde was
used for the experiment. A complete equipment setup is described in Figure 3.20.

Figure 3.19: Test vehicle formation.

Figure 3.20: Electroless copper plating via using microfluidic system.

3.6.2 Results
Experimental results (see Figure 3.21) show that the bubbles are not only appearing on the
copper plate, but also appearing on the top. In video, one can see that there were several
bubbles going to the top from the center or the bottom side of the channel. The region above
the glass becomes darker with time. The simulation results (see Figure 3.11) qualitatively arrive
at the same conclusion. The experiment indicates that the clustering of bubbles happens on
both top side and the bottom side of the channel. Second, the numerical simulation predicts
that most bubbles are generated at an early stage and near the inlet. The experiment shows
that the bubble generation is more exuberant near the inlet in comparison with other regions at
t = 20. This observation coincides with that of Figs 3.13 and 3.17a. The region near the inlet
at t = 20 is of the highest concentration of dissolving hydrogen gas. In addition, large bubbles
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(a) The initial profile of the micro-channel.

(b) micro-channel at t = 20 s.

(c) micro-channel at t = 40 s.

(d) micro-channel at t = 100 s.

(e) micro-channel at t = 140 s.

(f) micro-channel at t = 180 s.

Figure 3.21: The pictures are taken from the top side and the region near the center between
two 8 mm × 1 mm sheet glasses. The brown region is covered by the copper plate, where the
surface reaction occurs.
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were observed at the back end of the copper plates (i.e. region near (x,y) = (6,0) corresponding
Figure 3.1), which is also the case in Figure 3.17b.

3.6.3 Discussion

For an electroless plating process accompanying gas generation, the bubble distribution with
respect to time, in the micro-channel, is the most important index for evaluating the quality of
deposition. To measure it quantitatively, a high-quality optical system installed in the micro-
channel is indispensable. For example, several types of fiber optical probe have been used to
measure the particle (or bubble) size and distribution in a channel flow (or micro-channel flow)
[23, 12, 62, 82]. However, such optical system is difficult to be installed in our case because there
is no appropriate place to setup the light source and the detector in the micro-channel. The
signal interference caused by the copper plate or glued gel on two sides is almost inevitable.

3.7 Conclusion

The numerical simulation of an electroless plating is difficult for two reasons: the multi-phase
modeling and the nonlinearities. We have proposed a phase averaged liquid-gas two fluid veloc-
ities/one pressure system combined with phase densities and chemical concentration equations.
The nonlinearities being similar to those of the Navier-Stokes equations, we have used a semi-
Eulerian time discretization leading to a generalized Stokes operator for the two velocities/one
pressure system; the inf-sup saddle point theorem has lead to a proof of stability and well posed-
ness of the discretized system by the Hood-Taylor finite element method. The two phase flow
model is compatible with single phase models when the volume fraction of gas and the concen-
tration of the gas in the liquid phase are set to zero. The model is also compatible with the one
dimensional model proposed in [66]. The numerical results confirm the robustness of the method.
To validate the model a real life experiment has been performed. The numerical results agree
qualitatively with the experiment for the repartition of bubbles near the plating boundary. We
believe that in the future the computer code will be used to design industrial and experimental
systems. However, as to the measurement of the deposition rate, It takes at least one hour to
obtain an observable thickness of plating. In this case, bubbles have accumulated everywhere in
the micro-channel and there is ground for an extension of the present code with a level set or
phase field model which tracks the liquid to gas interface. To establish a mathematical model
suitable for a larger time simulation is left as a future work.

3.A Estimation of the interfacial terms

Let V0 be a local volume to be observed which is occupied by gas and liquid. In a liquid-gas two
phase system, we have Al = Ag and further ρl(wl−ul) ·nl = −ρg(wg−ug) ·ng on the interface.
If the size of each single bubble in the electrolyte is small enough, then we can assume that
the bubbles are spherical. Assuming that there is a typical radius for all bubbles RB > 0 such
that 1/R2

B is the average of 1/R2 among all bubbles in the system, the growth rate of bubbles
governed by the local mass loss prescribed by Eq. (3.3) can be computed by the relation

4πR2
BNq

dR

dt
=

∫
V0

Ṡg

ρg
dV, (3.75)
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where Nq is the amount of bubbles in a local volume V0. Therefore, we have the following
formulae on Ag and Al, respectively

(ug −wg) · ng = − 1

4πNqR2

∫
V0

Ṡg

ρg
dV (3.76)

(ul −wl) · nl =
1

4πNqR2

∫
V0

Ṡg

ρl
dV. (3.77)

The quantity RB is useful when the fluid velocity is large enough so that each bubble won’t stay
at the observed physical domain, because every bubble hasn’t been far from the state that is just
after nucleation.

Given a small cube V0 of size |V0| = d×d×d and a typical radius RB , the ratio of its surface

area and volume is 4πNqR
2
B

d3
, where Nq can be estimated by

Nq =
rgd

3

4
3πR

3
B

(3.78)

Therefore, if d is small enough so that the physical quantities in Fα defined in Section 3.2.3 can
be assumed uniform, then we have the approximation

(3.79)

Fl ≈
(
4πNqR

2
B

d3

)
· ρl ·

(
− d3Ṡg

4πNqR2
Bρl

)
ul = −Ṡgul = Ṡlul. (3.80)

Similarly,
Fg ≈ Ṡgug (3.81)

The same approximation can be applied to Gj occurring at (3.5) and (3.6):

Gj ≈ Ṡlcj , j = s, k, Gg ≈ Ṡlcg −MgKρlrl(cg − csat)+ (3.82)
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Appendix A

Preliminaries and notations

A.1 Lebesgue spaces Lp(Ω) and Sobolev spaces W k,p(Ω)

A.1.1 Lp space

Let 1 6 p 6 ∞ and Ω ⊂ Rd a bounded domain. We denote by Lp(Ω) the set of all measurable
functions from Ω to C or R which satisfy

‖f‖p :=


(∫

Ω

|f |pdx
)1/p

<∞ 1 6 p <∞;

ess supx∈Ω |f | p =∞.
(A.1)

In particular, L2(Ω) is a Hilbert space with the inner product (·, ·) defined by

(f, g) :=

∫
Ω

f(x)g(x)dx, f, g ∈ L2(Ω), (A.2)

which induces the norm ‖ ‖0.

A.1.2 Sobolev space

Let k be a natrual number, α = (α1, . . . , αd) a multi-index with norm |α| = α1 + · · · + αd. We
define

Dαf =
∂|α|f

∂xα1
1 · · · ∂x

αd

d

The Sobolev space W k,p(Ω) is defined as

W k,p(Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) ∀|α| 6 k} (A.3)

A common way to define the norm of W k,p(Ω) is

‖f‖Wk,p(Ω) :=


(∑

α6k ‖Dαf‖pLp(Ω)

) 1
p

1 6 p <∞;

maxα6k ‖Dαf‖L∞(Ω) p =∞.
(A.4)
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For the particular case p = 2, the space Hk(Ω) := W k,2(Ω) is a Hilbert space. Moreover, we
denote by H1

ΓD
(Ω) the closed subspace of H1(Ω) defined by

H1
ΓD

(Ω) := {f ∈ H1(Ω) : f |ΓD
= 0}. (A.5)

If the number k is non-integer, we define the fractional Sobolev space in two cases: If 0 < k < 1,
we define W k,p for 1 6 p <∞ by

W k,p(Ω) :=

{
f ∈ Lp(Ω) :

|f(x)− f(y)|
|x− y|

d
p+k

∈ Lp(Ω× Ω)

}
(A.6)

which endowed with the norm

‖f‖Wk,p(Ω) :=

(∫
Ω

|f |pdx+

∫
Ω

∫
Ω

|f(x)− f(y)|
|x− y|

d
p+k

dxdy

) 1
p

. (A.7)

When k > 1 and it is not an integer, we write k = m+ s, where m is an integer and 0 < s < 1.
The space W k,p(Ω) is defined by

W k,p(Ω) := {f ∈Wm,p : Dαf ∈W s,p ∀α s.t. |α| = m}. (A.8)

The above space is equipped with the norm

‖f‖Wk,p(Ω) :=

‖f‖pWm,p(Ω) +
∑

|α|=m

‖Dαf‖pW s,p(Ω)

 1
p

. (A.9)

In particular, Hk(Ω) :=W k,p(Ω) is again a Hilbert space when k is non-integer.
For convenience, we denote the norm of Hk(Ω) by ‖ · ‖k for real k > 0.

A.1.3 Traces
Theorem A.1.1 Let Ω ⊂ Rd be bounded with Lipschitz boundary. Then there exists a bounded
linear operator T :W 1,p(Ω)→ Lp(∂Ω) such that

Tu = u|∂Ω, u ∈W 1,p(Ω) ∩ C(Ω)
‖Tu‖Lp(∂Ω) 6 c(p,Ω)‖u‖W 1,p(Ω), u ∈W 1,p(Ω)

(A.10)

Remark A.1.1 For 1 < p < ∞, the trace operator T maps maps W 1,p(Ω) continuously onto
the space W 1− 1

p ,p(∂Ω).

A.1.4 Bochner space
Given I := [0, T ] a time interval and a Sobolev space W k,p(Ω), the Bochner space Lr(I;W k,p(Ω))
is the space of all measurable function u : I →W k,p(Ω) such that the associated norm is finite:

‖u‖Lr(I;W 1,p(Ω)) :=

(∫ T

0

‖u(t)‖rWk,p(Ω)dt

) 1
p

< +∞, 1 6 r <∞

‖u‖L∞(I;Wk,p(Ω)) := ess sup
t∈I

‖u(t)‖Wk,p(Ω) < +∞, r =∞.
(A.11)
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A.2 Weighted Sobolev space
Definition A.2.1 (Weighted space Lp

ρ(Ω, d,m) and W 1,p
ρ (Ω, d,m)) Let (Ω, d,m) be a met-

ric measure space, where m is a locally finite Borel regular measure on Ω. Let p > 1 and
ρ : Ω→ [0,∞] a Borel function satisfying ρ−1 ∈ L

1
p−1m; we define the weighted space Lp(Ω, d,m)

and sobolev space W 1,p
ρ (Ω, d,m) by

Lp
ρ(m) :=

{
f ∈ L1(Ω, d,m) |

∫
Ω

|f |pρdm < +∞
}
,

W 1,p
ρ (m) :=

{
f ∈W 1,1(Ω, d,m) |

∫
Ω

|f |pρdm+

∫
Ω

|∇f |pρdm < +∞
}
,

respectively. The above spaces are endowed with the norms

‖f‖p
Lp

ρ
:=

∫
Ω

|f |pρdm+

∫
Ω

|∇f |pρdm.

‖f‖p
W 1,p

ρ
:=

∫
Ω

|f |pρdm+

∫
Ω

|∇f |pρdm.

If Ω ⊂ Rn endowed with standard Euclidean metric, we shorten the notations by Lp
ρ(Ω) :=

Lp
ρ(Ω, d,m), W 1,p

ρ (Ω) :=W 1,p
ρ (Ω, d,m), respectively

Proposition A.2.1 ∀p > 1, the weighted Sobolev space (W 1,p
ρ (Ω, d,m), ‖·‖ρ) is a Banach space

whenever ρ−1 ∈ L
1

p−1 (Ω)

Definition A.2.2 (Doubling) A locally finite Borel measure m on (Ω, d) is doubling if it gives
finite positive measure to balls and there is a constant C > 0 such that

m(B(x, 2r)) 6 Cm(B(x, r)), ∀x ∈ Ω, r > 0

Definition A.2.3 (p-Poincaré) For p ∈ [1,∞), we say that a p-Poincaré inequality holds for
Lipschitz functions if there are constants τ,Λ > 0 such that ∀f ∈ Lip(Ω), ∀x ∈ supp(m), r > 0,
the following inequality holds:

1

m(B(x, r))

∫
B(x,r)

|f − fB(x,r)|dm 6 τ

(
1

m(B(x,Λr))

∫
B(x,Λr)

|∇f |pdm

) 1
p

,

where
fA :=

1

m(A)

∫
A

fdm.

Definition A.2.4 A doubling metric measure space satisfying p-Poincaré inequality is called
PIp space.

Remark A.2.1 Euclidean space endowed with normal euclidean distancing is PIp for all p > 1.

Theorem A.2.1 [3] Suppose that (Ω, d,m) is a PI1 metric measure space, ρ ∈ L1
loc(m) and

ρ−1 ∈ L
1

p−1 (m). Then W 1,p
ρ (Ω, d,m) is reflexive for all p > 1.

Corollary A.2.1 Let Ω ⊂ Rd be a open bounded domain, W 1,p
ρ is a reflexive Banach space if

p > 1, ρ ∈ L1
loc(Ω), and ρ−1 ∈ L

1
p−1 (Ω).
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Remark A.2.2 Let Ω ⊂ Rd and p = 2, we denote W 1,p
ρ (Ω) by H1

ρ(Ω), which is a Hilbert space
endowed with the inner product

(u, v)ρ,1 =

∫
Ω

u(x)v(x)ρ(x)dx+

∫
Ω

(∇u(x) · ∇v(x))ρ(x)dx.

We also denote the inner product for L2
ρ(Ω) by

(u, v)ρ,0 =

∫
Ω

u(x)v(x)ρ(x)dx.

The norm of Hk
ρ (Ω), k ∈ N ∪ {0} is denoted by ‖ · ‖ρ,k.

Theorem A.2.2 (compact embedding) [48] Let Ω ⊂ Rd, 1 6 s 6 r < dq
d−q , q 6 p, 1 < p <

+∞, and
K(w) := max

{
‖w− 1

p ‖
L

pq
p−q (Ω)

, ‖w 1
s ‖

L
rs

r−s (Ω)

}
< +∞. (A.12)

Note that we take +∞ if p− q = 0 or r − s = 0 in (A.12). Then the embedding operator

i :W 1,p
w (Ω) ↪→ Ls

w(Ω)

is a compact operator. For r = dq/(d− q), the embedding operator i is bounded only.

A.3 Weak convergence in Banach spaces
Lemma A.3.1 Let E be a Banach space, ‖ · ‖ its norm, and fn : E → R a sequence of functions
for n = 1, 2, . . .. If fn is equicontinuous and pointwisely convergent on a dense subset D ⊂ E,
then fn is pointwisely convergent everywhere.
Proof. Let a ∈ E. Since D is dense in E, there is a b ∈ D such that for every ε there is a δ such
that ‖a− b‖ < δ and |fn(b)− fn(a)| <

ε

3
. For any m > n, we have

|fm(a)− fn(a)| 6 |fm(a)− fm(b)|+ |fm(b)− fn(b)|+ |fn(b)− fn(a)|

<
2ε

3
+ |fm(b)− fn(b)|

But fn(b) is convergent, it is shown that fn(a) is a Cauchy sequence. Q.E.D.

Lemma A.3.2 Let E be a normed space, ‖ · ‖ its norm and ‖ · ‖E′ the norm of its dual space.
Let xn be a sequence in E for n = 1, 2, . . ., x ∈ E. The followings are equivalent:

(i) xn → x in E weakly

(ii) xn is bounded and for all S ⊂ E
′ such that span S = E

′ satisfies lim
n→∞

f(xn) = f(x) for
all f ∈ S.

Proof. (i)⇒(ii). Assuming that xn → x in E weakly, then xn is bounded. Moreover, for all
f ∈ E

′ , we have lim
n→∞

f(xn) = f(x). Hence for all S ⊂ E
′ such that span S = E

′ we have
lim
n→∞

f(xn) = f(x) for all f ∈ S.

(ii)⇒ (i). Assume that ‖xn‖ is bounded by some constant M > 0 and for all S ⊂ E
′ such

taht span S = E
′ satisfies limn→∞ f(xn) = f(x) for all f ∈ S. Take arbitrary g ∈ span S, then
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g =

m∑
k=1

αkfk for αk ∈ R and fk ∈ S. This gives us lim
n→∞

g(xn) = g(x). Now, take arbitrary

g ∈ E′
= span S, then g = lim

k→∞
gk for some sequence gk in span S. Fix ε > 0. Since g = lim

k→∞
gk,

there is K ∈ N such that ‖g − gk‖E′ 6 ε for all k > K. Then

|g(xn)− g(x)| 6 |g(xn)− gk(xn)|+ |gk(xn)− gk(x)|+ |gk(x)− g(x)|
6 ‖g − gk‖E′ ‖xn‖+ |gk(xn)− gk(x)|+ ‖gk − g‖E′ ‖x‖
6 εM + |gk(xn)− gk(x)|+ ε‖x‖

(A.13)

We take a limit n→∞ in the above inequality, then

lim sup
n→∞

|g(xn)− g(x)| 6 εM + lim
n→∞

|gk(xn)− gk(x)|+ ε‖x‖

Since gk ∈ span S, we have lim
n→∞

|gk(xn)− gk(x)| = 0 and we get

lim sup
n→∞

|g(xn)− g(x)| 6 εM + ε‖x‖.

Since ε > 0 is arbitrary, we obtain lim sup
n→∞

|g(xn)−g(x)| = 0. This implies that lim
n→∞

g(xn) = g(x).

Since g ∈ E′ is arbitrary, the proof is completed. Q.E.D.

Lemma A.3.3 Let X be a Banach space, D a dense subset of X ′ , xn, n = 1, 2, . . . the bounded
sequence in X. If g(xn)→ g(x) for all g ∈ D, then xn → x weakly in X.
Proof. If xn is a bounded sequence in X, it is an equicontinuous sequence as a sequence of
functions X ′ → R. And xn is pointwisely convergent on D by the hypothesis. Using Lemma
A.3.1, xn is pointwisely convergent. By Lemma A.3.2, since xn is bounded in norm by the
hypothesis, we conclude that xn is weakly convergent to x in X. Q.E.D.

Lemma A.3.4 Let X, Y be two normed space and T : X → Y the bounded linear operator. If
xn → x weakly in X, then Txn → Tx.
Proof. Let y∗ ∈ Y ′ . We can define x∗ = y∗T ∈ X ′ . So

y∗(Txn) = (y∗T )(xn) = x∗(xn)→ x∗(x) = (y∗T )(x) = y∗(Tx).

Q.E.D.

Corollary A.3.1 Let Γ ⊂ ∂Ω. There is a trace operator Tr : L2(0, T ;H1(Ω))→ L2(0, T ;H
1
2 (S))

such that: If xn → x weakly in L2(0, T ;H1(Ω)), then Trxn → Trx weakly in L2(0, T ;H
1
2 (Γ)).

Proof. By Section 5.7 in [117], there exists a trace operator Tr : L2(0, T ;H1(Ω))→ L2(0, T ;H
1
2 (Γ))

which is linear and bounded. By Lemma A.3.4, the proof is completed. Q.E.D.
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Appendix B

A simplified model with surface
reaction

We assume that Ω ⊂ Rd be a bounded open domain. For Sobolov space, the norm of W k,p(Ω)
space is denoted by ‖ · ‖k,p for p > 0, k > 0. If p = 2, the norm is denoted by ‖ · ‖k. For weighted
Sobolev space, we denote the norm of Hk

ρ (Ω) by ‖ · ‖ρ,k for k ∈ N, ρ any function satisfying

ρ,
1

ρ
∈ L1(Ω). If k = 0, we denote the norm of L2

ρ(Ω) by ‖ · ‖ρ for simplicity. We denote the

inner product for L2
ρ(Ω) by (·, ·)ρ. For convenience, we denote the generic constant by C or Cj ,

j = 1, 2, . . ..

B.1 Modeling equations

We assume that there are two chemical species s and k involving in the surface reaction in terms
of the mixed potential (see (3.20)). Let Ej be the constant with subscripts j = s, k representing
the ion to be plated and the anodic ion involving in the surface reaction, respectively. Without
loss of generality, we assume that 0 > Es > Ek. For the physical system, we assume that the
chemical reaction satisfying electron balance on the reaction surface S ⊂ ∂Ω, the convective
effect in system (3.26)-(3.26) is negligible, and the densities satisfy ρl >> ρg > 0. For simplicity,
we further assume that the saturation concentration can be neglected. That is, we require that

ug = ul = 0, csat = 0. (B.1)

Employing (B.1) into (3.3), we get

∂trl = −
K

ρ̃g
rlcg, (B.2)

where 1

ρ̃g
:=

1

ρg
− 1

ρl
. The assumption (B.1) tells us that the momentum balance equations

(3.27) are dropped. The remaining equations (3.5) with the assumption (B.1) can be rewritten
as

rl∂tcj −Dj∇ · (rl∇cj) = 0, j 6= g

rl∂tcg −Dg∇ · (rl∇cg) +
KgMg

ρl
rlcg = 0

(B.3)
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Since there are only two chemical species s and k involving in the surface reaction, (B.2), (B.3)
and the boundary conditions (3.19)-(3.20) with electrical neutrality assumption lead to the sys-
tem:

∂trl = −
K

ρg
rlcg, in Ω× (0, T ],

rl∂tcg −Dg∇ · (rl∇cg) +
KgMg

ρl
rlcg = 0, in Ω× (0, T ],

rl∂tcs −Ds∇ · (rl∇cs) = 0, in Ω× (0, T ],

rl∂tck −Dk∇ · (rl∇ck) = 0, in Ω× (0, T ],

(B.4)

subject to the boundary conditions

−Ds
∂cs
∂n =

|Is|
zsF

, −Dk
∂ck
∂n =

|Ik|
zkF

, −Dg
∂cg
∂n

= −β|Is|
zsF

on S,

∂cs
∂n =

∂ck
∂n =

∂cg
∂n 0, on ∂Ω \ S × (0, T ]

(B.5)

for some constant β > 0. The initial conditions rl(0) = r0l , cs(0) = c0s, ck(0) = c0k, cg(0) = c0g are
all in H1(Ω) satisfying

0 < c0s, c
0
k, c

0
g 6 1, 0 < ε < r0l 6 1 in Ω (B.6)

for some constant ε > 0. In the above, Is and Ik satisfy (3.20) with j = s, k respectively and we
further assume that γs = γk = 1. For electron balance, we have the constrain:

Is + Ik = 0, on S. (B.7)

We shall note that we replace ρ̃g with ρg in (B.4) by an abuse of notation.

Remark B.1.1 In (B.4), we employ cg instead of c+g in the second term of the first equation
and the third term of the second equation. We will show that cg is nonnegative with a proper
initial condition.

B.2 Time-discrete problem

Let N > 0 be an integer and δt = T/N be the time step. To study the existence and the stability
of (B.4)-(B.7), we consider the time-discrete problem:

rm+1
l − rml

δt
= −Kg

ρg
rm+1
l cmg

rm+1
l cm+1

g − rm+1
l cmg

δt
−∇ · (Dgr

m+1
l ∇cm+1

g ) +
MgKg

ρl
rm+1
l cm+1

g = 0

rm+1
l cm+1

s − rm+1
l cms

δt
−∇ · (Dsr

m+1
l ∇cm+1

s ) = 0

rm+1
l cm+1

k − rm+1
l cmk

δt
−∇ · (Dkr

m+1
l ∇cm+1

k ) = 0

(B.8)
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with boundary conditions on S:

−Ds
∂cm+1

s

∂n =
1

zsF
|is(Em+1

mix )|cm+1
s , −Dk

∂cm+1
k

∂n =
1

zkF
|ik(Em+1

mix )|cm+1
k , −Dg

∂cm+1
g

∂n
= βDs

∂cm+1
s

∂n
(B.9)

where

is(E
m+1
mix ) = Ls

(
exp

(
αszsF (E

m+1
mix − Es)

Rθ

)
− exp

(
−βszsF (Em+1

mix − Es)

Rθ

))
,

ik(E
m+1
mix ) = Lk

(
exp

(
αkzkF (E

m+1
mix − Ek)

Rθ

)
− exp

(
−βkzkF (Em+1

mix − Ek)

Rθ

))
,

is(E
m+1
mix )cm+1

s + ik(E
m+1
mix )cm+1

k = 0.

In the following context, we define im+1
s := |is(Em+1

mix )|, im+1
k := |ik(Em+1

mix )|.
Let us begin with the upper bound and the lower bound of rl.

Lemma B.2.1 Assume that 0 < ε < rjl < 1, cjg > 0, cjg ∈ H1(Ω) ∩ L∞(Ω) and rjl ∈ H1(Ω) for
all integer 0 6 j 6 m, then

(i) 0 <
ε

1 +Kδt/ρg
< rm+1

l < 1.

(ii) 1

rm+1
l

∈ L∞(Ω)

(iii) rm+1
l ∈ H1(Ω)

Proof. By the first equation of (B.8), we have(
1 +

Kδt

ρg
cmg

)
rm+1
l = rml . (B.10)

By the assumption cmg > 0, we have

rm+1
l 6 1,

ε

1 +Kδt/ρl
< rm+1

l .

This proves (i). Since 1 <
1

rm+1
l

<
1 +Kδt/ρl

ε
, we have proved (ii).

Taking the derivative with respect to xi in (B.10), we have(
1 +

Kδt

ρg
cmg

)
∂xi

rm+1
l = −Kδt

ρg
rm+1
l ∂xi

cmg + ∂xi
rml . (B.11)

Since ∂xi
rml , rm+1

l ∂xi
cmg are bounded in L2(Ω), we can conclude that ∂xi

rm+1
l is bounded in

L2(Ω). This proves (iii). Q.E.D.

The weak formulation regarding the system (B.8) except its first equation can be expressed as:
Problem (P̃c):
Let 0 < rml , r

m+1
l 6 1, rml , r

m+1
l ∈ H1(Ω), 0 < cms , c

m
k 6 1, cmg > 0, cms , cmk , cmg ∈ H1

rml
(Ω). Find
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cm+1
s , cm+1

k , cm+1
g ∈ H1

rm+1
l

(Ω) and Em+1
mix ∈ L2(S) such that

1

δt
(cm+1

s , ws)rm+1
l

+Ds(∇cm+1
s ,∇ws)rm+1

l
+

1

zsF
(rm+1

l im+1
s cm+1

s , ws)L2(S) =
1

δt
(cms , ws)rm+1

l

(B.12)
1

δt
(cm+1

k , wk)rm+1
l

+Dk(∇cm+1
k ,∇wk)rm+1

l
+

1

zkF
(rm+1

l im+1
k cm+1

k , wk)L2(S) =
1

δt
(cmk , wk)rm+1

l

(B.13)
1

δt
(cm+1

g , wg)rm+1
l

+Dg(∇cm+1
g ,∇wg)rm+1

l
− β

zsF
(rm+1

l im+1
s cm+1

s , wg)L2(S)

+ (
MgKg

ρl
cm+1
g , wg)rm+1

l
=

1

δt
(cmg , wg)rm+1

l

(B.14)

(is(E
m+1
mix ) + ik(E

m+1
mix ), w)L2(S) = 0 (B.15)

for all ws, wk, wg ∈ H1(Ω) and w ∈ L2(S).

B.3 Existence of the time-discrete problem

Proposition B.3.1 If Em+1
mix ∈ B := {w ∈ L2(S)| Ek 6 w 6 Es a.e.} is given, There exist

unique solutions (cm+1
s , cm+1

k , cm+1
g ) for Problem (P̃c).

Proof. The existence and uniqueness for cm+1
s , cm+1

k and cm+1
g can be guaranteed by a classic

theory since (B.12)-(B.14) are linear.

If Em+1
mix is given, we can further obtain the positivity for cm+1

s , cm+1
k and cm+1

g .

Proposition B.3.2 Let Em+1
mix ∈ B, if cms , cmk , cmg > 0 a.e., then cm+1

s , cm+1
k , cm+1

g > 0 a.e..
Proof. Similar to the proof of Proposition 2.4.2, the nonnegativity of cm+1

s , cm+1
k , cm+1

g can be
guaranteed by letting ws = (cm+1

s )−, wk = (cm+1
k )−, wg = (cm+1

g )−. Q.E.D.

Proposition B.3.3 Let Em+1
mix ∈ B, 0 < cjs, c

j
k 6 1, Ej

mix ∈ B, for all 0 6 j 6 m. Furthermore,
we assume that 0 6 c0g < M for some positive constant M , we have

cm+1
s , cm+1

k 6 1 (B.16)

and there exists a positive constant C depending only on Ω, Dg, T , such that

cm+1
g 6 C, (B.17)

Proof. To obtain (B.16), we can take ws = (ws − 1)+ and wk = (wk − 1)+ in (B.12) and (B.13),
respectively. The proof of (B.17) is extremely technical which can be referred to Lemma II 5.7
and Theorem II 6.2 in [70]. Q.E.D.

If the value of mixed potential Em+1
mix is restricted in [Ek, Es], the L∞ norms of im+1

s , im+1
k are

uniformly bounded in terms of Em+1
mix , respectively. By Thoerem 4 in [73], we have the following:

Lemma B.3.1 (Strong positivity for cm+1
s amd cm+1

k ) Let cms , cmk > 0, Em+1
mix ∈ B. As-

suming further that there are constant ηms , ηmk > 0 such that cms > ηms and cmk > ηmk a.e., there
are constants ηm+1

s , ηm+1
s > 0 such that cm+1

s > ηm+1
s , and cm+1

k > ηm+1
k a.e.. Moreover, cm+1

s

and cm+1
k are Hölder continuous in Ω for some exponent 0 < α < 1.
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Corollary B.3.1 Assuming that ‖cjs‖L∞(Ω) is uniformly bounded for all 0 6 j 6 N , there is a
generic constant C > 0 such that

‖
rj+1
l − rjl
δt

‖L∞(Ω) 6 C (B.18)

for all 0 6 j 6 N .

To show the existence for the full problem (P̃c), the Browder fixed point theorem can be
applied:

Theorem B.3.1 (Schauder fixed point theorem) Let K be a nonempty closed convex set
in a Banach space. If a function f : K → K is compact, then f has a fixed point.

Lemma B.3.2 B := {w ∈ L2(S)| Ek 6 w 6 Es a.e.} is a closed bounded convex subset in
L2(S).
Proof. Since S is of finite measure, it is obvious that B is bounded. Let θ ∈ (0, 1), for w1, w2 ∈ B
we have θEk 6 θw1 6 θEs and (1− θ)Ek 6 (1− θ)w2 6 (1− θ)Es. Therefore Ek 6 θw1 + (1−
θ)w2 6 Es. This implies that B is convex. Finally, let x be a limit point of B, there exists a
sequence {xn}∞n=1 ⊂ B such that

‖xn − x‖L2(S) → 0 as n→∞

This shows that Ek 6 x 6 Es almost everywhere on S. This completes the proof. Q.E.D.

We define the space Wη := {w ∈ H1
rm+1
l

(Ω) | η 6 w 6 1 a.e.}. Given Lemma B.3.1, we define
ηm+1
s , ηm+1

k to be the essential infimum of cm+1
s , cm+1

k , respectively. Let us define the mapping
Γ1 : B → H := Wηm+1

s
×Wηm+1

k
such that Γ1(E) is the set of solutions to (P̃cs), and (P̃ck),

respectively, when letting Em+1
mix = E.

Lemma B.3.3 Γ1 is a bounded operator.
Proof. Let ws = cm+1

s in (B.12), we have

1

δt
‖cm+1

s ‖2
rm+1
l

+Ds‖∇cm+1
s ‖2

rm+1
l

+ (rm+1
l im+1

s cm+1
s , cm+1

s )L2(S)

=
1

δt
(cms , c

m+1
s )rm+1

l

6 1

δt
‖cms ‖rml ‖c

m+1
s ‖rm+1

l

6 ‖cms ‖rml
(
‖cm+1

s ‖2
rm+1
l

+Dsδt‖∇cm+1
s ‖2

rm+1
l

) 1
2

(B.19)

This shows that the bound for cm+1
s is independent of is. By the same argument, we can show

that cm+1
k is uniformly bounded as well. We recall that the element in B has a minimal norm

‖Es‖L2(S). There must exists a sufficiently large constant M > 0 such that

δt

K
ρl
‖cm+1

g ‖L∞(Ω) +
1

δt

(∥∥∥∥ 1

rm+1
l

∥∥∥∥
L∞(Ω)

‖rml ‖L∞(Ω)

) 1
2

‖cms ‖rml


6M‖Es‖L2(S) 6M‖E‖L2(S)

(B.20)

for all E ∈ B. Q.E.D.
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By Corollary 7.3 in [11], we have:

Lemma B.3.4 The trace operator T : H→ L2(S)× L2(S) is compact.

Now we define the operator Γ2 : T (H)→ L2(S) by

Γ2(cs, ck) =
cs
ck
, (cs, ck) ∈ H.

Lemma B.3.5 Γ2 is a bounded operator.
Proof. Let (cs, ck) ∈ T (H), we have, pointwisely∣∣∣∣ csck

∣∣∣∣ 6 1

ηm+1
k

|cs|. (B.21)

Therefore, ∥∥∥∥ csck
∥∥∥∥2
L2(S)

6 1

(ηm+1
k )2

∫
S

|cs|2dσ 6 1

(ηm+1
k )2

∫
S

|cs|2 + |ck|2dσ

=
1

(ηm+1
k )2

(‖cs‖2L2(S) + ‖ck‖
2
L2(S))

(B.22)

This completes the proof. Q.E.D.

Finally, we define Γ3 : Γ2(T (H))→ B by

Γ3 : ζ 7→ E,

where E satisfying is(E)ζ + ik(E) = 0 pointwisely.

Lemma B.3.6 Γ3 is a bounded operator.

Proof. We write ζ = ζ(E), we have ζ(E) = − ik(E)

is(E)
. Observing that ik(E) > 0 and is(E) < 0

for E ∈ (Ek, Es), since ik(E) is strictly increasing and −is(E) is strictly decreasing, we have
ζ(E) is strictly increasing. Therefore, Γ3 is the inverse of ζ. Since ik(E) and is(E) are linear
combinations of exponential function of E, respectively, and is(E) < 0 for E ∈ (Ek, Es), ζ(E) is
differentiable in (Ek, Es). Therefore, we have

ζ
′
(E) =

1

Γ
′
3(ζ)

.

For any element c = (cs, ck) in T (H), we always have

min(ηm+1
k , ηm+1

s ) 6 ck
cs

6 1

min(ηm+1
k , ηm+1

s )
.

Now we are going to seek the upper bound of Γ′

3(ζ) for
ζ ∈ [min(ηm+1

k , ηm+1
s ),

1

min(ηm+1
k , ηm+1

s )
]. By the strict monotonity of ζ, there are constants m

and M such that Ek < m < M < Es so that

Γ3([min(ηm+1
k , ηm+1

s ),
1

min(ηm+1
k , ηm+1

s )
]) ⊂ [m,M ].
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Let α1 =
αszsF

Rθ
, α2 =

αkzkF

Rθ
, β1 =

βszsF

Rθ
, β2 =

βkzkF

Rθ
, we have

ζ
′
(E)

= −Lk

Ls

1

(eα1(E−Es) − e−β1(E−Es))2
[
(eα1(E−Es) − e−β1(E−Es))(α2e

α2(E−Ek) + β2e
β2(E−Ek))

− (eα2(E−Ek) − eβ2(E−Ek))(α2e
α2(E−Ek) + β2e

β2(E−Ek))
]

(B.23)
For m 6 E 6M , we have

ζ
′
(E) > Lk

Ls

(e−β1(M−Es) − eα1(M−Es))(α2e
α2(m−Ek) + β2e

−β2(m−Ek))

(eα1(m−Es) − e−β1(m−Es))2
(B.24)

Therefore, there is a constant M̃ such that |Γ′

3(ζ)| 6 M̃ for all
ζ ∈ [min(ηm+1

k , ηm+1
s ),

1

min(ηm+1
k , ηm+1

s )
]. Finally we have

|Γ3(ζ)| 6 min(ηm+1
k , ηm+1

s ) + M̃ |ζ| 6 (M̃ + 1)|ζ|.

The proof can be completed by integrating the square of the above inequality. Q.E.D.

Proposition B.3.4 The operator Γ = Γ3 ◦ Γ2 ◦ T ◦ Γ1 : B → B has a fixed point.
Proof. Since B is convex and closed by Lemma B.3.2 and the composition of bounded operator
with compact operator (also their commutation) is compact, the existence of the fixed point can
be proved by the Schauder fixed point theorem with Lemmas B.3.3,B.3.4,B.3.5,B.3.6. Q.E.D.

Now, we have the theorem

Theorem B.3.2 If δt > 0 is sufficiently small, the system Problems (P̃c) is well-posed.
Proof. It remains to prove the uniqueness of the system. Assuming that (cs1, ck1, E1), (cs2, ck2, E2) ∈
Wηm+1

s
×Wηm+1

k
× B are two different solutions. If E1 = E2, then we must have cs1 = cs2 and

ck1 = ck2 by the uniqueness of Problems (P̃c). Therefore, we may assume that E1 6= E2 for all
δt > 0. By (B.12) and (B.13), we have

(cs1 − cs2, ws)rm+1
l

+ δtDs(∇(cs1 − cs2), ws)rm+1
l

+
1

zsF
(rm+1

l (|is(E1)|cs1 − |is(E2)|cs2), ws)L2(S)

+ (ck1 − ck2, wk)rm+1
l

+ δtDk(∇(ck1 − ck2), wk)rm+1
l

+
1

zkF
(rm+1

l (|ik(E1)|ck1 − |ik(E2)|ck2), wk)L2(S)

= 0.

(B.25)

To estimate the boundary term, we observe pointwisely:

|is(E1)|cs1 − |is(E2)|cs2 = |is(E1)|(cs1 − cs2)− cs2(|is(E1)| − |is(E2)|). (B.26)
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Using notations in Lemma B.3.6, we have, pointwisely

||is(E1)| − |is(E2)|| = Ls

∣∣∣(eα1(E1−Es) − e−β1(E1−Es))− (eα1(E2−Es) − e−β1(E2−Es)
∣∣∣

6 Ls

(
α1 + β1e

β1(Es−Ek)
)
|E1 − E2|

6 Ls

(
α1 + β1e

β1(Es−Ek)
)
M̃

∣∣∣∣ cs1ck1 − cs2
ck2

∣∣∣∣
6 Ls

(
α1 + β1e

β1(Es−Ek)
) M̃

(ηm+1
k )2

(|cs1 − cs2|+ |ck1 − ck2|)

(B.27)

Similarly, we have

|is(E1)| − |is(E2)| 6 Lk(α2e
α2(Es−Ek) + β2)

M̃

(ηm+1
k )2

(|cs1 − cs2|+ |ck1 − ck2|). (B.28)

Now letting ws = cs1 − cs2 and wk = ck1 − ck2 in (B.25) and by (B.26)-(B.28) with Hölder
inequality, there is a generic constant C such that

‖cs1 − cs2‖2rm+1
l

+ ‖ck1 − ck2‖2rm+1
l

+ δtDs‖∇(cs1 − cs2)‖2rm+1
l

+ δtDk‖∇(ck1 − ck2)‖2rm+1
l

6 Cδt(‖cs1 − cs2‖2L2(S) + ‖ck1 − ck2‖
2
L2(S))

(B.29)
Since ‖ 1

rl
‖L∞(0,T ;L∞(Ω)) is bounded, we also have

‖cs1 − cs2‖20 + ‖ck1 − ck2‖20 + δtDs‖∇(cs1 − cs2)‖20 + δtDk‖∇(ck1 − ck2)‖20
6 Cδt(‖cs1 − cs2‖2L2(S) + ‖ck1 − ck2‖

2
L2(S))

(B.30)

for some constant C > 0. Applying the trace inequality, there is a constant C1 > 0 such that

‖cs1 − cs2‖2L2(S) 6 C1‖cs1 − cs2‖0‖cs1 − cs2‖1

6 C1

2ε1
‖cs1 − cs2‖20 +

C1ε1
2
‖cs1 − cs2‖21 = (

C1

2ε1
+
C1ε1
2

)‖cs1 − cs2‖20 +
C1ε1
2
‖∇(cs1 − cs2)‖20

(B.31)
for all ε1 > 0. Similarly, there is a constant C2 > 0 such that

‖ck1 − ck2‖2L2(S) 6 (
C2

2ε2
+
C2ε2
2

)‖ck1 − ck2‖20 +
C2ε2
2
‖∇(ck1 − ck2‖20 (B.32)

for all ε2 > 0. Choosing ε1 =
2Ds

C1
, ε2 =

2Dk

C2
and

δt 6 min

 1

2
(

C2
1

4Ds
+Ds

) , 1

2
(

C2
2

4Dk
+Dk

)
 ,

we have
1

2
‖cs1 − cs2‖20 +

1

2
‖ck1 − ck2‖20 6 0. (B.33)
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This implies that cs1 = cs2 and ck1 = ck2. Since cs1, cs2, ck1, ck2 ∈ C(Ω), the unique solvability
for (B.15) implies that E1 = E2 on S. This leads to the contradiction. Q.E.D.

Remark B.3.1 In the above theorem, the choice of δt is independent of the data of the previous
step (cms , c

m
k , E

m
mix). Therefore, the unique solution for time-discrete problem at time t = T can

be reached in finite steps.

B.4 Stability analysis

Since the uniform bounds independent of Em+1
mix have been found for L∞ boundedness of cms and

cmk , m = 0, . . . , N . Now we provide some results of stability:

Lemma B.4.1 Let 0 6 c0j 6 1, c0j ∈ H1(Ω) for j = s, k, g, and E0
mix ∈ B. There are generic

constants C > 0 such that

δt
∑

j=s,k,g

N−1∑
m=0

‖∇cm+1
j ‖2

rm+1
l

6 C (B.34)

Proof. Letting ws = cm+1
s in (B.12), we have

‖cm+1
s ‖2

rm+1
l

+ δtDs‖∇cm+1
s ‖2

rm+1
l

+ δt(rm+1
l im+1

s cm+1
s , cm+1

s )L2(S)

= (cms , c
m+1
s )rm+1

l
6 ‖cms ‖rml ‖c

m+1
s ‖rm+1

l

6 1

2
‖cms ‖2rml +

1

2
‖cm+1

s ‖2
rm+1
l

.

(B.35)

Similarly, letting wk = cm+1
k in (B.13), we have

‖cm+1
k ‖2

rm+1
l

+ δtDk‖∇cm+1
k ‖2

rm+1
l

+ δt(rm+1
l im+1

k cm+1
k , cm+1

k )L2(S)

6 1

2
‖cmk ‖2rml +

1

2
‖cm+1

k ‖2
rm+1
l

.
(B.36)

Once more, letting wg = cm+1
g in (B.14), we have

‖cm+1
g ‖2

rm+1
l

+ δtDg‖∇cm+1
g ‖2

rm+1
l

+ δt
MgKg

ρl
‖cm+1

g ‖20

= (cmg , c
m+1
g )rm+1

l
+ βδt(rm+1

l im+1
s cm+1

s , cm+1
s )L2(S)

6 1

2
‖cmg ‖2rml +

1

2
‖cm+1

g ‖2
rm+1
l

+ βδt(rm+1
l im+1

s cm+1
s , cm+1

g )

6 1

2
‖cmg ‖2rml +

1

2
‖cm+1

g ‖2
rm+1
l

+ βδt‖is‖L2(S)‖cg‖L2(S)

6 1

2
‖cmg ‖2rml +

1

2
‖cm+1

g ‖2
rm+1
l

+ βδt(
1

2ε
‖is‖2L2(S) +

ε

2
‖cg‖L2(S))

6 1

2
‖cmg ‖2rml +

1

2
‖cm+1

g ‖2
rm+1
l

+ Cδt(
1

2ε
‖is‖2L2(S) +

ε

2
‖cg‖21)

(B.37)

Therefore, we have

(1 + δt
MgKg

ρl
− Cεδt)‖cm+1

g ‖2
rm+1
l

+ δt(2Dg − Cε)‖∇cg‖2rm+1
l

6 Cδt

ε
‖is‖L2(S) + ‖cmg ‖2rml (B.38)
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Taking ε = Dg

C
sufficiently small so that and using the fact that cm+1

g has a uniform L∞ bound.
We can conclude that there exists a generic constant C > 0 such that

‖∇cm+1
g ‖20 6 C (B.39)

Collecting (B.35), (B.36), and (B.39) and taking the summation from 0 to T

δt
− 1, the proof

is completed. Q.E.D.

Since ‖ 1
rm+1
l

‖L∞(Ω) is bounded for all m = 0, . . . , N , we have

Corollary B.4.1 There are generic constants C > 0 such that

δt
∑

j=s,k,g

N−1∑
m=0

‖∇cm+1
j ‖20 6 C (B.40)

Lemma B.4.2 There are generic constants C > 0 such that

∑
j=s,k,g

N−1∑
m=0

‖rm+1
l (cm+1

j − cmj )‖20 6 C. (B.41)

Proof. The proof is almost identical to Lemma B.4.1 with the fact that

(rm+1
l cm+1

j − cmj , cm+1
j )

=
1

2
‖cm+1

j ‖2
rm+1
l

+
1

2
‖cmj − cmj ‖2rm+1

l

− 1

2
‖cmj ‖2rm+1

l

6 1

2
‖cm+1

j ‖2
rm+1
l

+
1

2
‖cmj − cmj ‖2rm+1

l

− 1

2
‖cmj ‖2rml

(B.42)

Q.E.D.

Lemma B.4.3 There are generic constants C > 0 such that

δt
∑

j=s,k,g

N−1∑
m=0

∥∥∥∥∥r
m+1
l (cm+1

j − cmj )

δt

∥∥∥∥∥
2

(H1(Ω))′

6 C (B.43)

Proof. We only look for the boundedness of cs and the case is similar for k and dis. By definition∥∥∥∥rm+1
l (cm+1

s − cms )

δt

∥∥∥∥
(H1(Ω))′

= sup
ws∈H1(Ω)

〈
rm+1
l (cm+1

s − cms )

δt
, ws

〉
(B.44)

By (B.12), with w =
ws

‖ws‖1
∈ H1(Ω),

∥∥∥∥rm+1
l (cm+1

s − cms )

δt

∥∥∥∥
(H1(Ω))′

= sup
w∈H1(Ω),∥w∥1=1

{
−Ds(∇cm+1

s ,∇w)rm+1
l
− 1

zsF
(rm+1

l |im+1
s |cm+1

s , w)L2(S)

} (B.45)
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We estimate all terms on the right hand side of (B.45):

−Ds(∇cm+1
s ,∇w)rm+1

l
6 Ds‖∇cm+1

s ‖rm+1
l
‖∇w‖rm+1

l

6 Ds‖∇cm+1
s ‖rm+1

l
‖∇w‖ 6 Ds‖∇cm+1

s ‖rm+1
l
‖w‖1 6 Ds‖∇cm+1

s ‖rm+1
l

,
(B.46)

− 1

zsF
(rm+1

l |im+1
s |cm+1

s , w)L2(S) 6
1

zsF
|is(Ek)|‖cm+1

s ‖L2(S)‖w‖L2(S)

6 C‖cm+1
s ‖1‖w‖1 = C‖cm+1

s ‖1,
(B.47)

Collecting (B.46)-(B.47) and multiplying by δt gives

δt

∥∥∥∥rm+1
l (cm+1

s − cms )

δt

∥∥∥∥2
(H1(Ω))′

6 Cδt(‖cms ‖21 + ‖cm+1
s ‖21). (B.48)

Taking the summation from 0 to N − 1 and the boundedness given by Corollaray B.4.1 and
Lemma B.3.3, we have the desired estimate. Q.E.D.

Corollary B.4.2 There are generic constants C > 0 such that

δt
∑

j=s,k,g

N−1∑
m=0

∥∥∥∥∥c
m+1
j − cmj

δt

∥∥∥∥∥
2

(H1(Ω))′

6 C (B.49)

Proof. This is the direct result from Lemma B.4.3 and the fact that rm+1
l is bounded in L∞(Ω).

Q.E.D.

Corollary B.4.3 There are generic constants C > 0 such that

δt
∑

j=s,k,g

N−1∑
m=0

∥∥∥∥∥r
m+1
j cm+1

j − rmj cmj
δt

∥∥∥∥∥
2

(H1(Ω))′

6 C (B.50)

Proof. By the relation

rm+1
l cm+1

j − rml cmj = rm+1
l (cm+1

j − cm+1
j ) + cms (rm+1

l − rml ), 0 6 m 6M − 1,

the desired result can be obtained by collecting Lemma B.4.3, Corollary B.4.2 and the L∞

boundedness of rml for all 0 6 m 6 N . Q.E.D.

Lemma B.4.4 Assuming that rjl ∈ H1(Ω), 0 < rjl 6 1, cjg ∈ H1(Ω) ∩ L∞(Ω), cjg > 0 for all
0 6 j 6 m 6 N , then we have the estimate

‖∇rkl ‖20 6 exp

(
KgT

ρg

)
(‖∇r0l ‖20 +

Kgδt

ρg

N−1∑
m=0

‖∇cmg ‖20). (B.51)

Proof. Multiplying (C.11) with ∂xi
rm+1
l and integrating the both sides with respect to Ω, we
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have ∫
Ω

(1 +
Kδt

ρg
cmg )|∇rm+1

l |2dx = −Kδt
ρg

∫
Ω

∇cmg · ∇rm+1
l dx+

∫
Ω

∇rml · ∇rm+1
l dx

6 Kδt

ρg
‖∇cmg ‖0‖∇rm+1

l ‖0 + ‖∇rml ‖0‖∇rm+1
l ‖0

6 1

2
‖∇rml ‖20 +

1

2
(1 +

Kδt

ρg
)‖∇rm+1

l ‖20 +
1

2

Kδt

ρg
‖∇cmg ‖20.

(B.52)

The above inequality leads to

(1− Kδt

ρg
)‖∇rm+1

l ‖20 6 ‖∇rml ‖20 +
Kδt

ρg
‖∇cmg ‖20. (B.53)

Taking the summation from 0 to N − 1, we have

‖∇rjl ‖
2
0 6

(
1− Kδt

ρg

)−N

(‖∇r0l ‖20 +
Kδt

ρg

N−1∑
m=0

‖∇cmg ‖20) (B.54)

for all 0 6 j 6 N . Since δt = T/N , we have

(1− Kgδt

ρg
)−N = (1− KgT

Nρg
)−N 6 exp(

KgT

ρg
)

Employing the above inequality to (B.54), the proof is completed. Q.E.D.

B.5 Passage to limit δt→ 0

Let us define
rl,δ : [0, T ]→ H1(Ω), rl,δ(t) = rjl if t ∈ ((j − 1)δt, jδt], (B.55)

rl,h : [0, T ]→ H1(Ω), rl,h(t) =
t− (j − 1)δt

δt
rjl +

jδt− t
δt

rj−1
l if t ∈ ((j − 1)δt, jδt], (B.56)

cdis,δ : [0, T ]→ H1(Ω), cg,δ(t) = cjg if t ∈ ((j − 1)δt, jδt], (B.57)

cs,δ : [0, T ]→ H1(Ω), cs,δ(t) = cjs if t ∈ ((j − 1)δt, jδt] (B.58)

ck,δ : [0, T ]→ H1(Ω), ck,δ(t) = cjk if t ∈ ((j − 1)δt, jδt] (B.59)

cdis,h : [0, T ]→ H1(Ω),

cdis,h(t) =
t− (j − 1)δt

δt
cjg +

jδt− t
δt

cj−1
g if t ∈ ((j − 1)δt, jδt],

(B.60)

cs,h : [0, T ]→ H1(Ω),

cs,h(t) =
t− (j − 1)δt

δt
cjs +

jδt− t
δt

cj−1
s if t ∈ ((j − 1)δt, jδt],

(B.61)

ck,h : [0, T ]→ H1(Ω),

ck,h(t) =
t− (j − 1)δt

δt
cjk +

jδt− t
δt

cj−1
k if t ∈ ((j − 1)δt, jδt],

(B.62)

cdis,δ− : [0, T ]→ H1(Ω), cdis,δ(t) = cj−1
g if t ∈ ((j − 1)δt, jδt] (B.63)
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cs,δ− : [0, T ]→ H1(Ω), cis,δ(t) = cj−1
s if t ∈ ((j − 1)δt, jδt] (B.64)

ck,δ− : [0, T ]→ H1(Ω), ck,δ(t) = cj−1
k if t ∈ ((j − 1)δt, jδt] (B.65)

Emix,δ : [0, T ]→ L2(S), Emix,δ(t) = Ej
mix if t ∈ ((j − 1)δt, jδt] (B.66)

(rlcg)h : [0, T ]→ H1(Ω), (rlcg)h(t) =
t− (j − 1)δt

δt
rjl c

j
g+

jδt− t
δt

rj−1
l cj−1

g if t ∈ ((j−1)δt, jδt],
(B.67)

(rlcs)h : [0, T ]→ H1(Ω), (rlcs)h(t) =
t− (j − 1)δt

δt
rjl c

j
s+

jδt− t
δt

rj−1
l cj−1

s if t ∈ ((j−1)δt, jδt],
(B.68)

(rlck)h : [0, T ]→ H1(Ω), (rlck)h(t) =
t− (j − 1)δt

δt
rjl c

j
k+

jδt− t
δt

rj−1
l cj−1

k if t ∈ ((j−1)δt, jδt],
(B.69)

With the above notations, the system of discrete equations can be expressed as:

〈∂trl,h, w〉+ (
Kg

ρg
rl,δcdis,δ−) = 0 (B.70)

〈rl,δ∂tcdis,h, wg〉+Dg(rl,δ∇cdis,δ,∇wg) +
MgKg

ρl
(rl,δcdis,δ, wg)

=
β

zsF
(rl,δ|ig(Emix,δ)|cdis,δ, wg)L2(S),

(B.71)

〈rl,δ∂tcs,h, ws〉+Ds(rl,δ∇cs,δ,∇ws) +
1

zsF
(rl,δ|is(Emix,δ)|cs,δ, ws)L2(S) = 0, (B.72)

〈rl,δ∂tck,h, wk〉+Dk(rl,δ∇ck,δ,∇wk) +
1

zkF
(rl,δ|ik(Emix,δ)|ck,δ, wk)L2(S) = 0 (B.73)

Here we collect the boundedness of functions given by (B.58)-(B.66): By Lemmas B.3.2, B.3.3 and
B.4.1, cdis,δ, cs,δ, ckδ, cdis,δ−, cs,δ−, ck,δ− are uniformly bounded in L2(0, T ;H1(Ω)). Since Emix,δ

is always bounded in B for all time, Emix,δ is uniformly bounded in L2(0, T ;L2(S)). Therefore,
there are rl, r∗l , cg, cs, ck, c∗g, c∗s, c∗k, Emix such that there exist subsequences of rl,δ, rl,h, cdis,δ, cs,δ,
ck,δ, cdis,δ−, cs,δ−, ck,δ− (still denote by same notations) satisfying

rl,δ → rl in L2(0, T ;H1(Ω)) weakly, (B.74)
rl,h → r∗l in L2(0, T ;H1(Ω)) weakly, (B.75)

cdis,δ → cg in L2(0, T ;H1(Ω)) weakly, (B.76)
cs,δ → cs in L2(0, T ;H1(Ω)) weakly, (B.77)
ck,δ → ck in L2(0, T ;H1(Ω)) weakly, (B.78)

cdis,δ− → c∗g in L2(0, T ;H1(Ω)) weakly, (B.79)
cs,δ− → c∗s in L2(0, T ;H1(Ω)) weakly, (B.80)
ck,δ− → c∗k in L2(0, T ;H1(Ω)) weakly, (B.81)

Emix,δ → Emix in L2((0, T )× S) weakly. (B.82)
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For the time derivatives, by Lemma B.4.3, Corollaries B.4.2 and B.4.2, there are g1, g2, g3, g4, g5, g6, g7
such that

∂trl,h → g1 in L2(0, T ;L2(Ω)) weakly, (B.83)
∂tcdis,h → g2 in L2(0, T ; (H1(Ω))

′
) weakly, (B.84)

∂tcs,h → g3 in L2(0, T ; (H1(Ω))
′
) weakly, (B.85)

∂tck,h → g4 in L2(0, T ; (H1(Ω))
′
) weakly, (B.86)

∂t(rlcg)h → g5 in L2(0, T ; (H1(Ω))
′
) weakly, (B.87)

∂t(rlcs)h → g6 in L2(0, T ; (H1(Ω))
′
) weakly, (B.88)

∂t(rlck)h → g7 in L2(0, T ; (H1(Ω))
′
) weakly, (B.89)

Remark B.5.1 By the L2(0, T ;H1(Ω)) boundedness of rl,δcj,δ for j = s, k, dis, it is easy to
conclude that

rl,δcj,δ → rlcj in L2(0, T ;H1(Ω)) weakly. (B.90)

Lemma B.5.1 There are generic constants C > 0 such that

∑
j=s,k,g

∫ T

0

‖rl,δ(cj,δ − cj,h)‖20dt 6 Cδt (B.91)

Proof. By the definition of (B.55), (B.58), and (B.61), we have∫ jδt

(j−1)δt

‖rl,δ(cs,δ − cs,h)‖20dt =
δt

3
‖rjl (c

j
s − cj−1

s )‖20 (B.92)

Taking the summation from j = 1 to j = T/δt, we get∫ T

0

‖rl,δ(cs,δ − cs,h)‖20dt =
N∑
j=1

∫ jδt

(j−1)δt

‖rl,δcs,δ − (rlcs)h‖20dt

=
δt

3

m∑
j=0

‖rjl (c
j
s − cj−1

s )‖20 6 Cδt

(B.93)

for some constant C > 0 by Lemma B.4.2. The same proof can be used to show the boundedness
for rl,δ(ck,δ − ck,h) and rl,δ(cdis,δ − cdis,h). Q.E.D.

Lemma B.5.2
cg = c∗g, cs = c∗s, ck = c∗k, a.e. in [0, T ]× Ω (B.94)

Proof. Since there is a uniform L∞ bound of 1

rml
for all 0 6 m 6 N , there is a constant C > 0

such that
C‖cm+1

j − cmj ‖0 6 ‖rm+1
l (cm+1

j − cmj )‖0, j = s, k, dis. (B.95)

Lemma B.4.2 directly leads to the desired result.Q.E.D.

Remark B.5.2 By a classical argument, see for instance [113], we have

g1 = ∂trl, g2 = ∂tcg, g3 = ∂tcs, g4 = ∂tck, g5 = ∂t(rlcg), g6 = ∂t(rlcs), g7 = ∂t(rlck) (B.96)
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B.5. Passage to limit δt→ 0 107

In order to pass the limit in (B.70)-(B.73), we look into (B.72) firstly and take any w =
v(x)λ(t), where v ∈W 1,∞(Ω) and λ ∈W 1,∞

0 (0, T ). Then

−
∫ T

0

((rlcs)h, v)λ
′(t)dt−

∫ T

0

(cs,δ−∂trl,h, v)λ(t)dt+

∫ T

0

Ds(rl,δ∇cs,δ,∇v)λdt

+
1

zsF

∫ T

0

(rl,δ|is(Emix,δ)|cs,δ, v)L2(S)λdt = 0

(B.97)

For the first term in (B.72), we have

−
∫ T

0

((rlcs)h, v)λ
′
(t)dt→ −

∫ T

0

(rlcs, v)λ
′
(t)dt =

∫ T

0

〈∂t(rlcs), v〉(H1(Ω))′ ,H1(Ω)λ(t)dt. (B.98)

Since ∂trl,δ converges to ∂trl weakly in L2((0, T )×Ω) and cs,δ− converges to cs in L2(0, T )×Ω)
by Aubin-Lions lemma, we have∫ T

0

(cs,δ−∂trl,h, v)λ(t)dt→
∫ T

0

(cs∂trl, v)λ(t)dt. (B.99)

Since rl,δ is strongly convergent in L2((0, T )×Ω) (by Aubin-Lions lemma) and ∂xi
cs,δ is weakly

convergent in L2((0, T )× Ω) for any direction xi, we have∫ T

0

Ds(rl,δ∇cs,δ,∇v)λdt→
∫ T

0

Ds(rl∇cs,∇v)λdt. (B.100)

To deal with the fourth term, Theorem 1 in [39] can be applied. By the Rellich-Kondrachov
theorem, we have the compact embedding H1(Ω) ↪→ Hs(Ω) for all 0 6 s < 1. On the other
hand, Hs is continuously embedded in (H1(Ω))

′ . Let u be an arbitrary function defined on
[0, T ] × Ω. We define στu(t, x) = u(t − τ, x) in [τ, T ] × Ω for 0 < τ < T . We claim that
δt−1‖rl,δcs,δ − σδt(rl,δcs,δ)‖L1(δt,T ;(H1(Ω))′ ) is uniformly bounded.

Lemma B.5.3 There are generic constants C1, C2 > 0 such that

‖rl,δcs,δ − σδt(rl,δcs,δ)‖L1(τ,T ;(H1(Ω))′ ) 6 C1δt, ‖rl,δck,δ − σδt(rl,δck,δ)‖L1(τ,T ;(H1(Ω))′ ) 6 C2δt

(B.101)
Proof. We prove the bound for cs,δ only. By definition of cs,δ, we have

‖rl,δcs,δ − σδt(rl,δcs,δ)‖L1(τ,T ;(H1(Ω))′ ) =

∫ T

τ

‖rl,δcs,δ − σδt(rl,δcs,δ)‖(H1(Ω))′dt

=

N−1∑
m=1

∫ (m+1)δt

mδt

‖rl,δcs,δ − σδt(rl,δcs,δ)‖(H1(Ω))′dt 6 δt

N−1∑
m=0

‖rm+1
s cm+1

s − rms cms ‖(H1(Ω))′

= δt2
N−1∑
m=0

∥∥∥∥rm+1
s cm+1

s − rms cms
δt

∥∥∥∥
(H1(Ω))′

6 δt2
N−1∑
m=0

(∥∥∥∥rm+1
s cm+1

s − rms cms
δt

∥∥∥∥2
(H1(Ω))′

+
1

2

)
6 (C +

1

2
T )δt

for some generic constant C > 0 (by Lemma B.4.3). Q.E.D.
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108 APPENDIX B. A simplified model with surface reaction

Now using Theorem 1 in [39], we have in particular

rl,δcs,δ → rlcs in L2(0, T ;H
3
4 (Ω)) strongly (B.102)

rl,δck,δ → rlck in L2(0, T ;H
3
4 (Ω)) strongly (B.103)

Regarding the trace operator TS : L2(0, T ;H
3
4 (Ω))→ L2(0, T ;H

1
2 (S)) is continuous, we have

rl,δcs,δ → rlcs in L2(0, T ;H
1
4 (S)) strongly (B.104)

rl,δck,δ → rlck in L2(0, T ;H
1
4 (S)) strongly (B.105)

Since is is strongly negative on B, |is| : B → L2(S) preserves the continuity and boundedness.
Therefore, |is(Emix,δ)| → |is(Emix)| weakly in L2((0, T ) × S). Likewise, ik : B → L2(S) is
continuous. Therefore, ik(Emix,δ)→ ik(Emix) weakly in L2((0, T )×S). The strong convergence
of rl,δcs,δ in L2((0, T )× S) implies that

1

zsF

∫ T

0

(rl,δ|is(Emix,δ)|cs,δ, v)L2(S)λdt→
1

zsF

∫ T

0

(rl|is(Emix)|cs, v)L2(S)λdt (B.106)

Therefore ∫ T

0

〈rl∂tcs, v〉(H1(Ω))′ ,H1(Ω) +

∫ T

0

Ds(rl∇cs,∇v)λdt

+
1

zsF

∫ T

0

(rl|is(Emix)|cs, v)L2(S)λdt = 0

(B.107)

for all λ ∈W 1,∞
0 (0, T ) and for all v ∈W 1,∞(Ω). By a totally same argument, we have∫ T

0

〈rl∂tck, v〉(H1(Ω))′ ,H1(Ω)λdt+

∫ T

0

Dk(rl∇ck,∇v)λdt

+
1

zkF

∫ T

0

(rl|ik(Emix)|ck, v)L2(S)λdt = 0

(B.108)

for all λ ∈W 1,∞
0 (0, T ) and for all v ∈W 1,∞(Ω). Moreover, since is(Emix,δ)cs,δ+ik(Emix,δ)ck,δ =

0 in (0, T )× S for all δt and∫ T

0

(is(Emix,δ)cs,δ + ik(Emix,δ)ck,δ, v)λdt→
∫ T

0

(is(Emix)cs + ik(Emix)ck, v)λdt (B.109)

for all λ ∈ W 1,∞
0 (0, T ) and for all v ∈ W 1,∞(Ω). Therefore the resctriction is(Emix)cs +

ik(Emix)ck = 0 holds.

Since rl,δ, cdis,δ are strongly convergent in L2((0, T )× Ω), we have∫ T

0

(rl,δcdis,δ, v)λ(t)dt→
∫ T

0

(rlcg, v)λ(t)dt (B.110)
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Employing the same argument as for s and k, we have∫ T

0

〈rl∂tcg, v〉(H1(Ω))′ ,H1(Ω) +

∫ T

0

Dg(rl∇cg,∇v)λdt

+
KgMg

ρl

∫ T

0

(rl,δcdis,δ, v)λ(t)dt→
∫ T

0

(rlcg, v)λ(t)dt−
β

zsF

∫ T

0

(rl|is(Emix)|cs, v)L2(S)λdt = 0

(B.111)
for all λ ∈W 1,∞

0 (0, T ) and for all v ∈W 1,∞(Ω).
To recover the initial conditions, we take λ ∈ W 1,∞(0, T ), λ(T ) = 0, λ(0) 6= 0, and v ∈

W 1,∞(Ω). We consider (B.97) such that all terms are identical except the first one:∫ T

0

(∂t(rlcs)h, v)λdt =

∫ T

0

∂t((rlcs)h, v)λdt = −
∫ T

0

((rlcs)h, v)λ
′
(t)dt− (r0l c

0
s, v)λ(0). (B.112)

When passing to the limit, we get∫ T

0

〈∂t(rlcs)h, v〉(H1(Ω))′ ,H1(Ω)λdt = −
∫ T

0

(rlcs, v)λ
′
(t)dt− (r0l c

0
s, v)λ(0)

=

∫ T

0

d

dt
(rlcs, v)λdt+ (rl(0)cs(0), v)λ(0)− (r0l c

0
s, v)λ(0)

=

∫ T

0

〈∂t(rlcs), v〉(H1(Ω))′ ,H1(Ω)λdt+ (rl(0)cs(0), v)λ(0)− (r0l c
0
s, v)λ(0).

(B.113)

Therefore
(rl(0)cs(0), v) = (r0l c

0
s, v), ∀v ∈ H1(Ω) ∩W 1,∞(Ω)

This implies that rl(0)cs(0) = r0l cs(0) = r0l c
0
s. Since r0l > 0, by copying the same argument for

rl, ck and cg, we may conclude the above result by the theorem:

Theorem B.5.1 There exists rl, cg, cs, ck ∈ L2(0, T ;H1(Ω)), Emix in L2(0, T ;B) with ∂trl, ∂tcg, ∂tcs, ∂tck ∈
L2(0, T ; (H1(Ω))

′
) such that∫ T

0

(∂trl, w)dt+
Kg

ρg

∫ T

0

(rlcg, w)dt = 0 (B.114)

∫ T

0

〈rl∂tcg, wg〉(H1(Ω))′ ,H1(Ω)dt+

∫ T

0

Dg(rl∇cg,∇wg)dt

− β

zsF

∫ T

0

(rl|is(Emix)|cs, ws)L2(S)dt+
KgMg

ρl

∫ T

0

(rlcg, wg)dt = 0,

(B.115)

∫ T

0

〈rl∂tcs, ws〉(H1(Ω))′ ,H1(Ω)dt+

∫ T

0

Ds(rl∇cs,∇ws)dt

+
1

zsF

∫ T

0

(rl|is(Emix)|cs, ws)L2(S)dt = 0,

(B.116)

∫ T

0

〈rl∂tck, wk〉(H1(Ω))′ ,H1(Ω)dt+

∫ T

0

Dk(rl∇ck,∇ws)dt

+
1

zkF

∫ T

0

(rl|ik(Emix)|ck, wk)L2(S)dt = 0,

(B.117)
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satisfying the constraint ∫ T

0

(is(Emix)cs + ik(Emix)ck, we)L2(S)dt (B.118)

for all w,wg, ws, wk ∈ L2(0, T ;H1(Ω)) and for all we ∈ L2((0, T ) × S). Moreover, rl, cg, cs, ck
satisfy the initial conditions rl(0) = r0l , cg(0) = c0g, cs(0) = c0s, ck(0) = c0k with 0 < r0l 6 1,
0 6 c0g 6 1, 0 < c0s, c

0
k 6 1, r0l , c0g, c0s, c0k ∈ H1(Ω).

Remark B.5.3 The solution (rl, cg, cs, ck, Emix) is unique by Theorem B.3.2.

B.6 Several species case
The results for two species case can be generalized to N + 1 species case, N > 2. Let Ej be
the constants defined in Section 2 with subscripts j = s, k1, . . . , kN , where s means the ion to
be plated and k1, . . . kN mean other ions involving in the surface reaction. We assume that
0 > Ek1

> · · · > Es > · · · > EkN
. Again, we assume that the chemical reaction satisfying

electron balance on the reaction surface S ⊂ ∂Ω and the convective effect in system (3.26)-(3.28)
can be neglected. We assume the same regularity for rl and cg as in two species case. Te system
of equations can be expressed as

∂trl +
Kg

ρg
cg = 0 in Ω× (0, T ]

rl∂tcg −∇ · (rlD∇cg) +
KgMg

ρl
rlcg = 0 in Ω× (0, T ]

∂t(rlΘ)−∇ · (rlD∇Θ) = 0 in Ω× (0, T ]

(B.119)

subject to the boundary conditions

−Dj
∂cj
∂n =

|Ij |
zjF

, on S × (0, T ],
∂cj
∂n = 0, on (∂Ω \ S)× (0, T ] (B.120)

for j = s, k1, . . . , kN , and

−Dg
∂cg
∂n =

β|Is|
zsF

, on S × (0, T ],
∂cg
∂n = 0, on (∂Ω \ S)× (0, T ] (B.121)

The initial conditions are given by rl(0) = r0l ∈ H1(Ω), cj(0) = c0j ∈ H1(Ω) satisfying

0 < c0j 6 1, 0 < r0l 6 1, in Ω (B.122)

for j = g, s, k1, . . . , kN . In the above Θ = (cs, ck1
, . . . , ckN

)T . The constraint for electrons balance
reads

Is +

N∑
l=1

Ikl
= 0. (B.123)

Here, we omit the semi-discrete scheme for solving rl and cg since there is nothing different from
the two-species case. The time-discrete problem for species j = s, k1, . . . , kN can be expressed
as:

rm+1
l (cm+1

j − cmj )

δt
−∇ · (Djr

m+1
l ∇cm+1

j ) = 0 (B.124)
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with boundary conditions on S

−Dj

∂cm+1
j

∂n =
1

zjF
|ij(Em+1

mix )|cm+1
j , (B.125)

where

ij(E
m+1
mix ) = Lj

(
exp

(
αjzjF (E

m+1
mix − Ej)

Rθ

)
− exp

(
−βjzjF (Em+1

mix − Ej)

Rθ

))
,∑

j

ij(E
m+1
mix )cm+1

j = 0
(B.126)

for j = s, k1, k2, . . . , kN . In the following, we define im+1
j := |ij(Em+1

mix )|.
Now we define the weak problem for the time-discrete problem:

Problem (P̃cj )
Find cm+1

j , j = s, k1, k2, . . . , kN ∈ H2
rm+1
l

(Ω) such that

1

δt
(cm+1

j , wj)rm+1
l

+Dj(∇cm+1
j ,∇wj)rm+1

l
+

1

zjF
(rm+1

l im+1
j cm+1

j , wj)L2(S)

=
K

ρl
(cm+1

g cmj , wj)rm+1
l

+
1

δt
(cmj , wj)rml

(B.127)

subject to the constraint ∑
j

∫
S

ij(E
m+1
mix )cm+1

j wjdσ = 0 (B.128)

for all wj ∈ H1(Ω).
Regarding the argument given in the two species case, we need only to show the existence and

uniqueness of the fixed point for solving Em+1
mix by iteration algorithm. Firstly, we shall justify

the solvability for Em+1
mix for pointwisely given cm+1

j on S, j = s, k1, . . . , kN . Since Thoerem 4 in
[73] guarantees that there are ηm+1

j > 0 such that cm+1
j > ηm+1

j for j = s, k1, . . . , kN , we have

Lemma B.6.1 There is one and only one root E ∈ [EkN
, Ek1

] satisfying∑
j

ij(E)(cj) = 0 (B.129)

for given cj > ηm+1
j , j = s, k1, . . . , kN .

Proof. Let f(E) =
∑
j

ij(E)(cj). Obviously, we have

f(Ek1) > 0, f(EkN
) < 0 (B.130)

The continuity of f implies that there is a root in [EkN
, Ek1 ]. Differentiating f with respect to

E, we have

f
′
(E) =

N∑
j=1

(
αkj

Lkj
eαkj

(E−Ekj
) + βkj

Lkj
e−βkj

(E−Ekj
)
)
+αsLse

αs(E−Es)+βsLse
−βs(E−Es) > 0

(B.131)
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for all E ∈ (EkN
, Ek1

). This implies that f(E) is strcitly monotone. Therefore, the root is
unique. Q.E.D.

Let us define Λ1 : B → HN := Wηm+1
s
×Wηm+1

k1

× · · · ×Wηm+1
kN

such that Λ1(E) is the set of

solutions to (P̃cj ) when letting Em+1
mix = E.

Lemma B.6.2 Λ1 is a bounded operator.
Proof. The boundedness of Λ1 can be shown by the same argument as in Lemma B.3.3. Q.E.D.

By Corollary 7.3 in [11]:

Lemma B.6.3 The trace operator TN : HN → (L2(S))N+1 is compact.

Finally, we define Λ2 : TN (HN )→ B by

Λ2 : (cs, ck1, . . . , ckN
) 7→ E,

where E satisfying
∑
j

ij(E)cj = 0 for j = s, k1. . . . , kN .

Lemma B.6.4 Λ2 is a bounded operator.
Proof. Let χ = (cs, ck1, . . . , ckN

) ∈ TN (HN ), we have EkN
6 Λ2(χ) 6 Ek1

. This implies that

‖Λ2(χ)‖2L2(S) 6 ‖EkN
‖2L2(S) 6M

∑
j

‖ηm+1
j ‖20 6M

∑
j

‖cj‖20 6M
∑
j

‖cj‖21 (B.132)

for some constant M > 0. This completes the proof. Q.E.D.

Defining Λ = Λ2 ◦ TN ◦ Λ1, we have

Proposition B.6.1 The operator Λ : B → B has a fixed point.

Now the existence result for two species case can be generalized to several species case:

Theorem B.6.1 There exist unique rl, cg, cj ∈ L2(0, T ;H1(Ω)), Emix ∈ L2(0, T ;B) with ∂trl, ∂tcg, ∂tcj ∈
L2(0, T ; (H1(Ω))

′
) such that∫ T

0

(∂trl, w)dt+
Kg

ρg

∫ T

0

(rlcg, w)dt = 0 (B.133)

∫ T

0

〈rl∂tcg, wg〉(H1(Ω))′ ,H1(Ω)dt+

∫ T

0

Dg(rl∇cg,∇wg)dt

− β

zsF

∫ T

0

(rl|is(Emix)|cs, ws)L2(S)dt+
KgMg

ρl

∫ T

0

(rlcg, wg)dt = 0,

(B.134)

∫ T

0

〈∂t(rlcj), wj〉(H1(Ω))′ ,H1(Ω) +

∫ T

0

Dj(rl∇cj ,∇wj)dt

+
1

zjF

∫ T

0

(rl|ij(Emix)|cj , wj)L2(S)dt =
K

ρl

∫ T

0

(rlcgcj , wj)dt,

(B.135)

satisfying the constraint ∑
j

∫ T

0

(ij(Emix)cs, we)L2(S)dt (B.136)

Work in progress as of February 5, 2022



B.6. Several species case 113

for all w,wg, wj ∈ L2(0, T ;H1(Ω)) and for all we ∈ L2((0, T ) × S). Moreover, rl, cg, cj satisfy
the initial conditions rl(0) = r0l , cg(0) = c0g, cj(0) = c0j with 0 < r0l 6 1, 0 6 c0g 6 1, 0 < c0j 6 1,
r0l , c

0
g, c

0
j ∈ H1(Ω).
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