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Abstract

Over the last few decades, protein sequencing techniques have been devel-
oped and continuous experiments have been done. Thanks to all of these
efforts, nowadays, we have obtained more than 2 ·108 protein sequence data.
In order to deal with such a huge amount of biological data, now, we need
theories and technologies to extract information that we can understand and
interprete. The key idea to resolve this problem is statistical physics and
the state of the art of machine learning (ML). Statistical physics is a field of
physics that can successfully describe many complex systems by extracting
or reducing variables to be interpretable variables based on simple princi-
ples. ML, on the other hand, can represent data (such as reconstruction and
classification) without assuming how the data was generated, i.e. physical
phenomenon behind of data.

In this dissertation, we report studies of protein sequence generative
modeling and protein-residue contact predictions using statistical physics-
inspired modeling and ML-oriented methods. In the first part, we review
the general background of biology and genomics. Then we discuss statistical
modelings for protein sequence. In particular, we review Direct Coupling
Analysis (DCA), which is the core technology of our research. Part 2 in-
troduces two generative models based on the DCA method. The Chapter 3
model specifically considers the parameters corresponding to spatial contact,
and the Chapter 4 model considers the effect of correlation between data de-
rived from phylogeneies. Chapter 5 proposes variable selection methods that
make use of the knowledge of these methods. Part 3 discusses the effects of
higher-order statistics contained in protein sequences and introduces deep
learning-based generative models as a model that can go beyond pairwise
interaction.



Résumé

Au cours des dernières décennies, des techniques de séquençage de protéines
ont été développées et des expériences continues ont été menées. Grâce à
tous ces efforts, de nos jours, nous avons obtenu plus de 2 · 108 données
relative à des séquences de protéines. Afin de traiter une telle quantité de
données biologiques, nous avons maintenant besoin de théories et de tech-
nologies pour extraire des informations de ces données que nous pouvons
comprendre et pour apporter des idées. L’idée clé pour résoudre ce problème
est la physique statistique et l’état de l’art de le machine learning (ML). La
physique statistique est un domaine de la physique qui peut décrire avec
succès de nombreux systèmes complexes en extrayant ou en réduisant les
variables pour en faire des variables interprétables basées sur des principes
simples. ML, d’autre part, peut représenter des données (par example en les
reconstruisant ou en les classifiant) sans comprendre comment les données
ont été générées, c’est-à-dire le phénomène physique à l’origine de la création
de ces données.

Dans cette thèse, nous rapportons des études de modélisation générative
de séquences protéiques et de prédictions de contacts protéines-résidus à
l’aide de la modélisation statistique inspirée de la physique et de méthodes
orientées ML. Dans la première partie, nous passons en revue le contexte
général de la biologie et de la génomique. Ensuite, nous discutons des
modélisations statistiques pour la séquence des protéines. En particulier,
nous passons en revue l’analyse de couplage direct (DCA), qui est la tech-
nologie de base de notre recherche. La partie 2 présente deux modèles
génératifs basés sur la méthode DCA. Le modèle du chapitre 3 considère
spécifiquement les paramètres correspondant au contact spatial, et le modèle
du chapitre 4 considère l’effet de la corrélation entre les données dérivées des
phylogénéies. Le chapitre 5 propose des méthodes de sélection de variables
qui utilisent la connaissance de ces méthodes. La troisième partie traite
des effets des statistiques d’ordre supérieur contenues dans les séquences de
protéines et présente des modèles génératifs basés sur l’apprentissage pro-
fond en tant que modèle pouvant aller au-delà de l’interaction par paires.
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rina, Francesco. Thank you for all of your dedicated supports: presentation
practices for postdoc interviews at UCR and reviews for my thesis. I learned
a lot from you, especially during the process of writing my thesis. Besides
these life events, I enjoyed many events with you, discussing various topics,
playing chess, disassembling the complex coffee machine, etc.

1



I would like to thank colleagues in LCQB for having talks, taking lunch/coffee,
going out to bars, watching films, and watching many episodes of Attack on
Titan. I would like to write all of your names, but I’ll thank you directly
when meeting you next time in Paris.
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Nothing in life is to be feared, it is only to be
understood. Now is the time to understand
more, so that we may fear less.

—Maire Curie (1867 - 1934)
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Introduction
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Chapter 1

Protein Structure and
Sequence

In 1962, Sir John Cowdery Kendrew shared the Nobel Prize in Chemistry
with Max Perutz because of their pioneering works to determine protein
structures using X-ray crystallography. After ten years of technological ad-
vance, scientists were asking a question while examining structures of pro-
teins and their mechanical and physiochemical properties: Why and how
can an amino-acid sequence obtain its three-dimensional and quickly (in be-
tween 100 micro sec and 1 ms [1]), even if the number of the conformational
possibilities is astronomically high? Nowadays, this question is known as
Levinthal’s paradox [2]. Later, an important hypothesis that helps to un-
derstand the question, was proposed by Christian B. Anfinsen [3]. Anfinsen’s
hypothesis or principle states that the structure of a protein is determined
not by a biological process, but by the purely physicochemical properties of
a particular amino-acid chain and its solvent environment. More precisely,
the folding process can be interpreted as the process driven by a free en-
ergy landscape, which is uniquely characterized by the amino-acid sequence
and the environment, and the natural state is the thermodynamically stable
one. Anfinsen’s hypothesis implies that it is possible to predict the three-
dimensional structure of proteins from these amino-acid sequences.

Predicting a three-dimensional structure as well as understanding the
functionality of a protein from a set of amino-acid sequences has been a
grand challenge in computational biology for over 50 years since Anfinsen’s
hypothesis was proposed [4, 5].
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1.1 Proteins

Proteins are biological macromolecular compounds that consist of at least
one linear chain of amino acids linked by peptide bonds in between. They are
the most essentials material in living systems: almost all life activities are
directly associated with proteins. Most proteins fold into unique structures
and have evolved to bind other proteins, DNA, RNA, or other molecules.
Therefore they are required to form and maintain a precise spatial structure
and biological functions. Well known function of proteins are:

• Structural proteins, which provide structural components.

• Contractile proteins, which associate with motion of muscles.

• Transport proteins, which carry other substances.

• Storage proteins, which store nutrients.

• Hormone, which regulate body metabolism and nervous system.

• Enzyme, which catalyze biochemical reactions.

• Protection, defend cells from foreign substances.

Each protein has a unique structure and functionality (except for intrin-
sically disordered proteins, which are not considered in this thesis). Hence
if proteins are folded incorrectly or interact with other molecules inappro-
priately, it causes dysfunction of the system. In some diseases, protein
misfolding is believed to be the primary cause, e.g., Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease, and many other degenerative and
neurodegenerative disorders [6].

1.1.1 Protein sequence

Proteins are made from some amino acids, ranges from about 30 to more
than 10,000. The majority of them are 50 to 500 amino-acid residues in
length. The amino-acid chains are tied due to covalent peptide bonds linking
two consecutive amino acids. Therefore proteins are referred to as polypep-
tides, and protein chains are called polypeptide chains. The 20 naturally
occurring amino acids have three-letter or one-letter abbreviations, and they
are always written from N-terminus to C-terminus of a polypeptide chain.

5



Figure 1.1: Left: An amino acid, a building block of proteins, contains both
amine (base) and carboxylic acid. It is the R-group, a side chain that char-
acterizes the 20 different natural amino acids. Right: The peptide bond,
a joint between amino acids, emerges as a consequence of the dehydration
synthesis. (Source [7])

Proteins are assembled from a set of 20 unique amino acids, which are
organic compounds made of an α-carbon (Cα) with four substitutes, an
amino (-NH2) group, a carboxyl (-COOH) group, a variable side chain (-R)
and a hydrogen atom (-H) (Fig. 1.1 left).

Amino acids are commonly categorized into four groups, according to
the charge and polarity of the side-chain [8]:

1. Nonpolar amino-acids group is hydrophobic, which means they are
repelled from water since they have very small dipole moment due to
the non-polarity. These amino acids have an aliphatic or aromatic side
chain. These amino acids are generally located inside the protein core
and participate in van der Waals interactions.

2. Uncharged polar amino acids are more water-soluble thus more hy-
drophilic than nonpolar amino acids. These types of amino acids are
often found at the surface of proteins.

3. Aromatic amino acids. As the name suggested includes an aromatic
ring and amphipathic, meaning that it has both hydrophilic and hy-
drophobic properties.

4. Charged amino acids, the side chains often include salt bridges that
combine hydrogen bonding and ionic bonding. Amino acids classi-

6



Figure 1.2: (1) The primary structure is given by an amino-acid chain, which
is linked formed by peptide bonds. (2) The secondary structure can take
a form of an alpha-helix or a beta-sheet. The hydrogen bonds, which are
indicated as dotted lines, maintain the secondary structure. (3) The tertiary
structure is a three-dimensional shape, which is formed by the further folding
and binding of the secondary structure. (4) The quaternary structure occurs
as a consequence of interactions between two or more tertiary structures.
As an example, we show here hemoglobin, a protein transporting oxygen to
body tissues. (Figure is adapted from [7]).
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Figure 1.3: Venn’s diagram of the 20 naturally occurring amino acids, clas-
sified according to some of these physicochemical properties. (Source [9])

fied in this group contribute to the stabilization of three-dimensional
protein structure.

As show in Fig. 1.3 these groups are partially overlapped. As an example,
Histidine (H) is a polar, charged, and aromatic amino acid.

The structure of proteins involves four different levels, cf. Fig. 1.2 :

1. Primary structure, amino-acids sequence, which is defined as the
linear polypeptide chains.

2. Secondary structure, locally folded structure that forms within a
polypeptide chain. It is formed by the interactions among atoms in the
backbone chain. The typical secondary structures: α-helices that is
a single peptide chain that forms a helical staircase-like structure. β-
sheets that is a structure formed by segments of a polypeptide chain
that line up next to each other and make a sheet-like structure.

3. Tertiary structure, a three-dimensional conformation that is formed
by an entire polypeptide chain primarily due to interactions among the
R-groups of amino acids.
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4. Quaternary structure, a complex of multiple polypeptide chains.

These shapes of proteins can be divided into three distinct categories based
on structure and functionality: globular proteins, fibrous proteins, and mem-
brane proteins [10].
In this section, we explained some general properties of protein sequences.
In the next section, we will see the basic properties of protein structures and
their role in nature.

1.1.2 Protein structure

Determining the structure of proteins is vital for understanding how thou-
sands of molecules can work together and keep our bodies healthy. For
instance, understanding the behavior of small-drug molecules and target
proteins in solution is fundamentally important for drug discovery. Thus
precise information of structure is essential. The branch of molecular biol-
ogy that aims to understand molecular structures of proteins and RNA is
called structural biology and is known as one of the representative areas of
biology.

In general, most protein structures are determined by experimental meth-
ods such as X-ray crystallography 1. X-ray crystallography is the currently
most favored technique for structure determination of protein in the sense of
the accuracy of structure determination. Most of the structures included in
PDB, a comprehensive protein structure database, are determined by this
method [11] (there is a description of PDB in Appendix A.1). The structural
information of the electron densities are encoded into the intensities of the
diffraction patterns of crystallized proteins, which are known as structure
factor [12]. Creating high-quality protein crystals is crucial for deducing
the structural information of a protein. However, it is highly demanding
to create relevant protein crystals in most cases, especially for relatively
large proteins and certain types of protein. For example, most membrane
proteins, which occupy 25% of all protein species and are essential as drug
targets (as mentioned in the previous paragraphs), have their structures yet
to be determined [13]. Therefore, determining protein structure using a
computational approach is scientifically and medically important.

1Other commonly used methods are NMR spectroscopy, and with impressive recent
progress, cryo-electron microscopy.
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In the next section, we will see how to make protein sequences more
amenable for applying statistical modeling. We will also discuss some sta-
tistical properties of protein sequences.

1.2 Multiple-sequence alignments and protein fam-
ilies

Beneficial proteins (or even if neutral) for adapting environments can spread
among descendants and different species. Over the course of propagat-
ing proteins, i.e., evolution, associating genetic information can be changed
while keeping its functions and a three-dimensional structure. Consequently,
protein-sequence also involves mutation effects after the transcription (DNA
→ RNA) and translation (RNA → protein). A group that shares the same
ancestor is called homologous, and characteristic similarity in such a group
is called homology. A group of proteins in the relation of homologous is
especially referred to as protein family (we will discuss the details in the
next section). Homologous groups are important information resources that
enable us to understand the genotype-phenotype relationship.

A codon, which is a combination of three consecutive nucleotides (A T
G C) of DNA, can encode naturally occurring 20 different types of amino
acids. There are three types of DNA point mutations that can affect protein
sequences:

1. Substitution, replacing a nucleotide with another one 2.

2. Deletion, remove one or more nucleotides.

3. Insertion, adding one or more nucleotide.

As a result of the evolution of DNA sequences, the corresponding pro-
tein sequences often have different lengths. Typically, consecutive amino-
acid insertions and deletions can occur in regions such as loops that do not

2In some cases, nucleotide substitutions do not cause any change in amino-acid en-
coding. For example, both AAA and AAG codons translated to the same amino-acid
Lysine. It is called codon degeneracy, and this type of mutation is known as the silent
mutation and does not influence the amino-acid sequence ensemble. On the other hand,
when mutated to a codon that does not correspond to a naturally occurring amino acid
(e.g., TAG, TAA, TGA), translation is stopped, and amino-acid sequence production is
stopped at this codon position. This type of codon is called stop codon, and the mutation
is called missense mutation, and there are some diseases due to the missense mutation.
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contribute to structural stabilization, i.e., it’s not involved in structure-
preserving constraints. Therefore we cannot naively compare the same
residue sites of different sequences due to the insertions and deletions. Hence,
what is needed is alignment, which makes the length of the sequence ensem-
ble constant by inserting an additional symbol “–” corresponding to insertion
so that the similarity between sequences is maximized.

The basis of sequence alignment is a pairwise alignment algorithm, a
method to align two sequences based on dynamic programming.

Probably Smith-Waterman algorithm is the most standard pairwise align-
ment algorithm [14]. This algorithm requires O(L1L2) computational cost
(number of necessarily required operations) to align two sequences, where
L1 and L2 are lengths of the two sequences to be aligned. It works well, but
if we apply this method to M different sequences to align simultaneously,
computational cost becomes min(L1, . . . , LM )M ≤ L1 · · ·LM , therefore it
will be impractical with increasing the number of sequences. However, as
we will see in this thesis, in many cases, we need to align thousands of se-
quences simultaneously. Therefore, alignment methods should be extended
to multiple sequence alignment for applying statistical argument. The most
commonly used heuristics for multiple alignments are:

1. Progressive alignment aligns pairs of the most similar sequences,
and then progressively aligns the partially aligned sequences until all
sequences are aligned. One of the shortcomings of this method is that
the alignment errors mainly due to the initial pairing of sequences
propagate and accumulate to the final results. Methods of Clustal
series [15] are the most well-known progressive algorithms.

2. Hidden Markov Model-based alignment is probabilistic align-
ment methods that construct probabilities or profile Hidden Markov
models (HMMs) of sequences. For the initial construction of HMMs,
it needs a small number of well-curated and aligned sequences (around
100 sequences), referred to as seed alignments. Then apply local opti-
mization of HMM alignments scoring system. These HMMs provide us
with the ratio of the likelihood that a given sequence originates from
a statistically identical distribution to the HMM (or equivalently the
ensemble of sequence used for the training of HMM) and the likelihood
that the sequence appears by chance (randomly).

Hereafter, we assume HMM-based alignment (cf. the section about pro-
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file HMMs below for details). HMMs can also be used to search sequences
using HMMs scoring systems. HMMer [16, 17], HH-suite [18] and HMM-
HMM [19], commonly used bioinformatics softwares can search sequences,
particularly homologous sequences from sequence databases such as UniPro-
tKB [20] and SwissProt [21]. Our study frequently uses Pfam, a database
of aligned protein families that contains MSAs and profile HMMs to re-
trieve protein domain sequences for statistical modelings (there is Appendix
A.1 about the databases and explained, UniProtKB, SwissProt, and Pfam
database).

1.2.1 Protein families

A protein family comprises evolutionarily related proteins that share a com-
mon ancestor protein while being structurally and functionally similar. Here-
after, we assume that MSA refers to be the MSA of the protein family.

MSAs are assembled based on sequence similarities, typically have more
than 20% of sequence identity among a protein family. Despite such a small
similarity of sequences, corresponding 3D structures and functionalities for
each sequence in a protein family are similar or almost identical. Fig. 1.4
shows a part of a multiple sequence alignment for one family.

As we mentioned earlier, each sequence is quite diverse from the others,
even if around 20% of sequence identity can be considered the same family
3. However, some sites are highly conserved (such as sites involving a Cys-
teine, C, in Fig. 1.4 ). Some pairs change in correlated ways, meaning that
if one site changes, the other site will be adjusted accordingly (correlations
could be both negative and positive values). From now on, we represent an
MSA as a M × L rectangular matrix, where M and L are assumed to be
the number of sequences and the length of aligned sequences. Typically the
number M can be 103 ∼ 105, and the number of amino acids L is 50 ∼ 500.
We define a shorthand representation of an MSA matrix as (Ami )m=1,...,M

i=1,...,L ,
where Ami ∈ A is one of the 20 naturally occurring amino-acid letters or the
insertion and deletion symbol “gap”, A = {A,C, ..., Y,−}. Alternatively,
we represent an MSA as (A1:M )t = (A1, . . . ,AM )t, where A ∈ AL is one
sequence, and 1:M = {1, 2, . . . ,M}. To describe the states of amino acids
simply, we assume the amino-acids letters and the gap to be mapped to num-
bers 1:q = {1, 2, . . . , q}, where q is the total number of states, i.e., q = 21.
Note that the following discussions do not depend on the way of mapping

3Random sequences have ∼ 5% sequence identity.
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Figure 1.4: Top: An MSA is a rectangular matrix containing aligned (amino
acid) sequences. Some sites (columns) show conservation, particularly sites
involved in Cysteine (C) conserved clearly, in the case of the protein family
PF00014 shown here Fig. 1.4. Notably, there are strong pairwise corre-
lations between several sites, which presumably contain information of the
co-evolution. Bottom: HMM logo, a sequence motif to characterize the
protein family based on single-site frequencies and entropy measures. Typ-
ically conserved sites are more emphasized.
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(this mapping causes no linear relation) 4.

As we can see in Fig. 1.4, the site-specific frequencies seem to character-
ize MSAs well. That is, the independent single-site variables are statistically
important variables to be regarded. Formally, the single-site frequencies are
define as

fi(a) =
1

M

M∑

m=1

δAmi ,a , (1.1)

where i being a site index that runs ∀i ∈ 1:L and a being as one of the
alignment states that runs ∀a ∈ 1:q. The symbol, δa,b is the Kronecker
delta that takes value 1 if a = b, and 0 otherwise. Indeed, these single-site
frequencies permit us to understand and construct MSAs. For example, the
single-site entropy Hi of {fi(a)}, allows us to estimate the amount of the
relative information Ri we can extract from knowing the id site i ∈ 1:L,

Hi = −
q∑

a=1

fi(a) log2 fi(a)

Ri = log2(q)−Hi .

(1.2)

By definition, the information content gives a large value for conservation
sites (small entropy). On the contrary, it gives a small value for variable sites
(large entropy). Fig. 1.4 shows an example of the sequence logo (denoted
as “HMM Logo” in the figure), which represents how each site is conserved
using the information content Ri and the frequencies fi(a) for determining
the symbol size.

1.2.2 Sequence motifs

Sequence motifs are site-specific nucleotide or amino-acid sequence patterns
that are biologically significant and well characterize sequence ensemble.
Typically these are closely associated with conserved and/or functionally
relevant sites. Identifying functional regions or regularly appearing patterns
in genetic data is a fundamental step to understand biological sequences.
For example, to find DNA regions where transcription factors 5 can bind is
known as a difficult and practically important problem [22, 23]. Sequence
motifs can also be used to find corresponding sequences (methodologically,

4States are categorical as known q-state Potts spins
5It is a protein that regulates the rate of transcription of genetic information from

DNA to mRNA
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this task can be done by combining strings search algorithms such as the
Rabin-Karp algorithm and Boyer-Moore algorithm [24]). It should be noted
here that the profile HMM can also be treated as sequence motifs.

Last, but not least, phylogenetic motifs, sequence motifs that can dis-
criminate the differences between evolutionarily related sequences, are also
important motifs [25, 26].

Here, we show the basic methods to find sequence motifs,

1. Position frequency matrices (PFM). Count the number of occurrences
of each state for each site in a given alignment. Formally, PFM at
position i ∈ 1:L as a state a ∈ 1:q is Mia =

∑M
m=1 δAmi ,a for an MSA.

Another variant, which is essentially equivalent to PFM is the position
probability matrix (PPM) which is normalized simply, thus equivalent
to the {fi(a) = Mia

M } single-site frequency defined in Eq. 1.1.

2. Position specific scoring matrices (PSSM). Provide an information-
theoretic weight that takes into account background frequencies. A
PSSM is given as Mia = fi(a) log fi(a)

¯f(a)
6, where f̄(a) = 1

L

∑L
i=1 fi(a) .

These sequence motif methods are based on a preexisting MSA and explic-
itly depend on site-specific frequencies.

In the study of the Hopfield-Potts models (see in Sec. 4.3.2), we show
that the patterns of Hopfield-Potts model are closely related to sequence
motifs and can characterize the protein-subfamilies.

1.2.3 Profile Hidden Markov Models

Profile HMMs are probabilistic models that can represent ensembles of bi-
ological sequences. They are constructed from curated sequences, which is
referred to as the seed alignments 7. HMMs can be used to align sequences
and search sequences based on a query sequence.

Definition – The following explanation of the profile HMMs is based on
[14, 27, 28]. A HMM is defined as the two types of variables, visible vari-
ables and hidden variables that are denoted as v = (v1, v2, . . . , vL) and
h = (h1, h2, . . . , hL), respectively. Here, vi is i-th observable taking one of
the states in o = {o1, . . . , oq} that correspond to the set of amino acids for

6Normally, the pseudocount method is required.
7Obtaining a profile HMM from an unaligned sequence is an open issue as it requires

simultaneous optimization of the model and multiple alignments.
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protein sequences (or nucleotide for DNA or RNA sequences), and hj is j
th state of hidden variable that takes a state from s = {s1, . . . , sp}, corre-
sponding to match, insertion, and deletion state in protein sequences. As
the name implies, the model assumes the Markov property in the hidden
space. That is, the probability of hidden variables can be written as

p(hi+1 = s′|hi = s, hi−1, . . . , h1) = p(hi+1 = s′|hi = s) = t(s′|s) , (1.3)

where s, s′ ∈ s, and t(s′|s) is called transition probability.

Similarly, the probability of the state vi depends only on the state of hi,
formally it can be wwritten as

p(vi = o|hi = s, vi−1, hi−1, . . . , h1, v1) = p(vi = o|hi = s) = e(o|s) . (1.4)

where o ∈ o, and e(o|s) is called the emission probability.
By summarizing these emission and transition probabilities, we can rep-

resent the joint distribution of the visible and hidden variables,

p(v,h) = p(v|h)p(h)

p(v|h) =
L∏

i=1

e(vi|hi)

p(h) = p(h1)
L−1∏

i=1

t(hi+1|hi)

. (1.5)

Notably, the visible variables are conditionally independent when all hidden
variables are given. Therefore, we can efficiently compute the observable
sequences if hidden states are known.

Profile HMMs for protein sequences – For the basic HMMs, there
are three states s = {M, I,D}, where M, I and D are referred as match,
insertion and deletion states for each site i ∈ 1:L. The emission probabilities
for these cases are (Fig. 1.5 ):

1. e(vi|hi = M): If a hidden variable is in the match state, the visi-
ble state emits one of the amino-acid variables according to the site-
specific probability estimated by PPM fi(a) = Mia

M .

2. e(vi|hi = I): If the hidden variable is in the insertion state, the vis-
ible state emits an amino-acid symbol according to the background
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Figure 1.5: A typical profile HMM architecture. Shown squares, diamonds,
and circles are denoted as match, insertion, and deletion states, respectively.
An edge between the states is denoted as one of the transition probabilities
t(s′|s). (Source [14])

frequency f̄(a).

3. e(vi|hi = D): If the hidden variable is in the deletion state, the visible
state emits the gap symbol with probability one.

.
Fig. 1.5 shows a typical profile HMM architecture.

Application of profile HMMs – As we mentioned before, profile HMMs
can provide a probability of an observed sequence. Particularly it can be
used for finding an ensemble of sequences that are similar i.e., homologous
to seed sequences of a given HMM, which corresponds to a high score. This
task is known as the scoring problem. One way to compute the probability
is marginalize the hidden variables h,

p(v) =
∑

h

p(v,h) , (1.6)

however, the exact naive computation of Eq. 1.6 is intractable because the
complexity increases exponentially as increase the number of hidden states.
A more sophisticated approach enables us to compute the score function
p(v) exactly by applying the forward-backward algorithm, a dynamic pro-
gramming algorithm.
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Second, another important application is to align a sequence to a given
profile HMM. This problem is known as the optimal alignment problem.
This problem needs to insert the gaps optimally. Therefore this problem is
equivalent to find the optimal hidden sequence:

h∗ = argmaxh p(h|v) . (1.7)

In order to find optimal hidden states, which equivalent to find an optimal
path, typically the Viterbi algorithm [29], a dynamic programming algo-
rithm, is employed.

1.3 Co-evolution

Residue-residue interactions are critically important for protein stabilization
and acquisition of function. Suppose a mutation occurs at a site that alters
the stability of a protein, residues that are influenced by the substituted
residue are expected to be compensated over the evolutionary time scale.
Therefore correlations between residues of MSAs contain coevolution infor-
mation.

However, not all strong correlations are due to structural constraints
since shared evolutionary history also induces background correlations or
phylogenetic correlations.

The first attempts to predict the secondary and tertiary structure of
the macromolecule from nucleic-acid sequences based on the insight of co-
evolution mechanism was proposed in 1991 [30]. In this study, a mutual
information (MI) based method was applied. The first attempt to predict
residue-residue contact predict regarding the co-evolutionary information
was done by the most naive way i.e., analyzing covariance matrix of residues
in 1994 [31]. The first method for predicting MI-based residue-residue con-
tact, waiting another year, was done in 1995 [32].

MI is one of the simplest information-theoretic quantities that can quan-
tify how much random variables X and Y influence each other. The defini-
tion of MI between two variables X and Y can be written as follows,

MIXY =
∑

x,y

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)
, (1.8)

where, pxy is the joint distribution of x and y, where as pX and pY are
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marginalized distribution by one another, pX(x) =
∑

y pXY (x, y) and pY (y) =∑
x pXY (x, y). The Eq. 1.8 is equivalent to the Kullback-Leiblear divergence

(KLD) between the joint distribution pXY and the factorized independent
distribution pXpY

8.

The MI function for the contact prediction is defined as following,

MIij :=

q∑

a,b=1

fij(a, b) log
fij(a, b)

fi(a)fj(b)
, (1.10)

where i, j are site indices of protein-sequences running ∀i, j ∈ 1:L, and
∀a, b ∈ 1:q are naturally occurring amino acid or gap state. hereafter if there
is no specific explanation of i, j, k, we assume these are indices of residues
in 1:L, similarly a, b, c are amino acids/gap in A or 1:q. The definition of
{fi(a)} is the same given in Eq. 1.1, and {fij(a, b)} are pairwise-frequencies,
which given as the natural generalization of Eq. 1.1 :

fij(a, b) =
1

M

M∑

m=1

δAmi ,aδAmj ,b . (1.11)

If sites i and j are located in spatial contact, the occupation of amino
acids at site i may receive influence from j (and vice versa), therefore MIij
should assume a large value in this case.

Here, “contact” means the minimal distance of heavy atoms of amino
acids is less than 8Å, and the correlations are used only for pairs that satisfy
|i− j| > 4 in our study 9.

The accuracy of the residue contact prediction based on the MI method
was drastically improved using phylogenetic correction methods, which is
called average product correction method (APC) [33](there is a section about

8The Eq. 1.8 can be also represented as

MIXY = HX −HX|Y (1.9)

The last result Eq. 1.9 can be interpreted as the mutual information is the amount of
information gained from the independent system X when adding the knowledge of the
state of the variable Y .

9We exclude neighboring 4 sites since there are around 4 amino acids in one pitch of
alpha-helix, such short-range predicted contact are therefore considered to trivial result
and not very useful in protein structure prediction.
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APC in the next section).

The MI-based method can give better predictions than the naive covariance-
based residue contact predictions. However, as we will see in the next sec-
tion, the MI-based approach also leads substantial amount of false positive
predictions.

Many such false positives are likely due to spurious correlation. Even
though there is no direct relationship between the stochastic variables A-B,
the presence of another variable C causes a significant correlation between
A-C, similarly B-C, so that an apparent correlation can emerge between
A-B as a result. From now on, we refer to such a spurious correlation as a
non-direct correlation and a true correlation as a direct correlation.

The following sections discuss statistical protein sequence modeling that
can generate artificial sequences and predict direct correlations that can
fairly disentangle the direct and non-direct correlations. We also show sta-
tistical modeling-based methods such as Direct Coupling Analysis (DCA)
outperform the MI-based contact prediction.
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Chapter 2

Statistical Sequence
Modeling

In this section, we review the maximum entropy (MaxEnt) principle, which
enables us to predict structural information of proteins from amino-acid
sequence alignment. Then, we formulate the Direct Coupling Alignment
(DCA) using the MaxEnt principle. Next, we show the features DCA can
learn from MSA. We show that the problems of DCA involved and approx-
imation methods to overcome these problems.

2.1 Maximum-Entropy Modeling

The maximum entropy principle is a method to derive an analytical form of
probability distributions, which are initially introduced by E.T. Jaynes [34].
The MaxEnt principle is a framework that explicitly gives us a functional
form of a probability distribution by maximizing the entropy under the con-
straint of reproducing the empirical averaged values of a set of observables.

Suppose that we choose a set of observables {Oµ(A)}µ∈1:P , where Oµ :
AL → R is a real-valued function of an amino-acid sequence. Then, we aim
at constructing a statistical model p(A), which maximizes the entropy,

S[p] = −
∑

A∈AL
p(A) log p(A) , (2.1)
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under the following certain constraints, ∀µ ∈ 1:P ,

∑

A∈AL
p(A)Oµ(A) = 〈Oµ〉A . (2.2)

Here we used a short hand representation 〈•〉A =
∑
A∈AL •f(A), where

f(A) is an empirical distribution.

The advantage of MaxEnt modeling is that it guarantees the desired
properties while keeping the minimum necessary conditions for the formu-
lation by the maximization of the entropy. Therefore, it is an objective
modeling method.

As a standard approach for solving this type of optimization problem
with equality constraints, we apply the method of Lagrange multipliers.
We introduce multipliers, λµ, µ ∈ 0:P , which are the conjugate parameters
for all constraints. Finally, a functional of the probability distribution is
formulated as,

F [p] = −
∑

A∈AL
p(A) log p(A)

+

P∑

µ=1

λµ


 ∑

A∈AL
p(A)Oµ(A)− 〈Oµ〉A




+ λ0


 ∑

A∈AL
p(A)− 1


 .

Here, λ0 imposes the normalization of p(A) as a probability distribution.
By maximizing F [p] with respect to p, we get the general form of the MaxEnt
distribution,

p((A)|{λµ}µ) =
1

Z({λµ})
exp

( P∑

µ=1

λµOµ(A)
)
. (2.3)

We replace λ0 explicitly by e−(λ0+1) = Z({λµ}) =
∑
A∈AL exp

(∑P
µ=1 λµOµ(A)

)

the normalization factor (also called partition function in the statistical
physics literature). Note that the probability distributions that can be found
using the MaxEnt modeling form are always a linear-exponential family, and
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the energy function, which is the function defined within the exponential
function, explicitly depends on this selected observables Oµ(A) .

In the next sections we will see the derivations of profile model and DCA
based on the MaxEnt principle.

2.1.1 Profile models

Profile models or single-site models can reproduce the position-specific fre-
quencies of multiple sequence alignments. As we saw in the introduction
section, site-specific frequencies {fi(a)} are significant features to character-
ize MSA and carry the information about conservation. Therefore profile
models can be placed as the simplest model to describe MSAs. Actually, in
sequence bioinformatics, they are the most important and applied statistical
model.

In terms of MaxEnt modeling, the observables of the profile model are
each state of residues Oia(A) = δAi,a for each site i ∈ 1:L and all amino-acid
states a ∈ 1:q . Therefore, the constraints that have to be satisfied in our
profile model are,

∑

A∈AL
p(A)Oia(A) =

q∑

Ai=1

p(Ai)δAi,a = fi(a) , (2.4)

where fi(a) are the single-site frequencies defined in Eq. 1.1. The Lagrange
multipliers, which are the conjugate parameters of these observables are
λia = hi(a), ∀i, a, and we can find the explicit form of profile models,

p((A)|{hi(a)}ia}) =
1

Z({hi(a)}ia)
exp

(∑

i,a

hi(a)δAi,a

)

=
L∏

i=1

exp
(
hi(Ai)

)

∑q
b=1 exp

(
hi(b)

) .

(2.5)

An important consequence here is that the model parameters of the
profile model can be easily obtained by using the relation Eq. 2.4, hi(a) =
log fi(a) + const. Note that the defined model factorizes over sites, therefore
it is also called the independent site model.
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2.2 Pairwise Potts model

We will see that the derivation of the pairwise Potts model (PPM) is a
natural generalization of profile models within the MaxEnt modeling. PPM
consider also pairwise interaction between amino acids, therefore the observ-
ables in MaxEnt are two-site (pairwise) quantities Oiajb(A) = δAi,aδAj ,b,

for all of locies ∀i, j ∈ 1:L and for all of the possible amono-acid letters
∀a, b ∈ 1:L. We also keep the single-site observables δi(a). The additional
constraints for the MaxEnt modeling for the PPM are thus

∑

A∈AL
p(A)Oiajb(A) =

q∑

Ai,Aj=1

p(Ai, Aj)δAi,aδAj ,b = fij(a, b) . (2.6)

Here, we used the empirical two point frequencies extracted from data,
fij(a, b). After a little calculation we can get the following probability dis-
tribution,

p((A)|h, J) =
1

Z(h, J)
exp

( ∑

i<j,a,b

Jij(a, b)δAi,aδAj ,b +
∑

i,a

hi(a)δAi,a

)
,

(2.7)
with the Jij(a, b) being new Lagrange multipliers. Here Z(h, J) is a normal-
ization factor,

Z(h, J) =
∑

A∈AL
exp (−H(A))

−H(A) =
∑

i<j

Jij(Ai, Aj) +
∑

i

hi(Ai) ,
(2.8)

where A(A) is known as the fully connected pairwise Potts energy function
or Hamiltonian in physics. Thus, predicting the parameters of PPM means
inferring the Hamiltonian 1. In the case of the PPM, the normalization
factor does not factorize due to the interactions between sites. Therefore
analytically obtaining forms of partition functions is practically impossible.
Moreover, the complexity for calculating it is qL. Thus, it will soon be
impractical to obtain it directly as L increase (typically, L = 50−500, hence
too large to resolve directly).

The log-likelihood function of the probability distribution for a given

1In recent years, inference problems to predict effective Hamilton has attracted signif-
icant attention in material informatics [35, 36].
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MSA is

lDCA(h, J) =
∑

a,b

fij(a, b)Jij(a, b) +
∑

a

fi(a)hi(a)− log(Z(h, J)) , (2.9)

and can be used in maximum-likelihood (ML) inference as an on objective
function.

The Lagrange multipliers {Jij(a, b)} contain spatial information and are
supposed to exclude the spurious correlations successfully, i.e., correlations
that are not associated with structural information as discussed in Sec. 1.3.
These pairwise parameters are called couplings in physics, and they are also
referred to as direct correlations in the context of residue contact prediction.

A framework to predict residues contact based on the model in Eq. 2.9
is known as direct coupling analysis (DCA), which was initially introduced
using message passing algorithm [37]. DCA has made significant contribu-
tions in statistical genetics and structural biology, through modifying and
improving the model itself.

Due to the numerically intractable partition function in Eq. 2.8, some
approximation methods were developed. In the following section, we present
representative approximation methods for DCA.

2.2.1 Boltzmann DCA

One of the first important contributions of DCA was done using the message
passing algorithm. It showed astonishing results but still, it needed to ac-
celerate more since there are convergency issues 2, and the limit of treatable
protein sizes were around 80 [37]. In this section, we introduce Boltzmann
machine DCA (bmDCA), the algorithmically simplest and versatile model.

The Boltzmann machine (BM) is a generative model for an arbitrary
distribution, which was introduced by Geoffrey E. Hinton in 1985 [38]. BM
is characterized by an energy function, the mathematical form of the dis-
tribution is an exponential family. The probability distribution is learned
by MCMC method in general. Historically speaking, BM has been inves-
tigated in the field of information theory or machine learning. However,
the model is equivalent to the Sherrington–Kirkpatrick model in statistical
physics, which was introduced in 1975. Probably, to adapt Boltzmann ma-

2This problem may more severe if the underlying interaction networks of residues have
many loops.
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chine learning to DCA is the most naive and intuitive idea [39].

The equation for updating the model parameters for bmDCA 3 follows
exactly the derivative of the likelihood function lDCA introduced in Eq. 2.9
for the probability Eq. 2.8,

∂lDCA(h, J)

∂hi(a)
= 〈δAi,a〉data − 〈δAi,a〉H = fi(a)− pi(a)

∂lDCA(h, J)

∂Jij(a, b)
= 〈δAi,aδAj ,b〉data − 〈δAi,aδAj ,b〉H = fij(a, b)− pij(a, b)

.

(2.10)

Parameters are updated iteratively using gradient ascent until the fixed
point equation Eq. 2.10 goes to zero ∀i, j, a, b,

hi(a)← hi(a) + ηh
∂lDCA(h, J)

∂hi(a)

Jij(a)← Jij(a) + ηJ
∂lDCA(h, J)

∂Jij(a)
.

(2.11)

The average, 〈·〉H over the statistical model is realized by using MC
sampling from the distribution in Eq. 2.8. Note that MC sampling depends
on the model parameters, we need to resample therefore at each time for
computing the gradient of the log-likelihood with slightly updated model pa-
rameters {Jij(a, b), hi(a)}. Empirically, this learning algorithm suffers from
the overlearning issue. We need to introduce regularization parameter for
the optimization, the details of this regularization will be discussed in the
following section.

One of the most significant features of bmDCA is that it constructs a gen-
erative model for protein sequence: It can reproduce one-point frequencies
and two-point connected correlations for the empirical distribution. More-
over, bmDCA was reported to reproduce non-fitted quantities such as the
three-point correlation, the principal component analysis (PCA) distribu-
tion, and the distribution of Hamming distances. Therefore bmDCA reaches
incredibly high reproducibility of the empirical data. Furthermore, bmDCA

3The very beginning attempt of structure information which evolved in to DCA was
[40], this method used MC to estimate the partition function but different method from
bmDCA.
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Figure 2.1: Two-point connected-correlations between the natural and ar-
tificially generated sequences for the Pfam protein family PF00072. The
ensemble of the artificial sequences reproduces the statistics of natural se-
quences in terms of two-point correlations with high accuracy. The result
is expected in BM learning, but technically it is difficult to reproduce the
statistics.

can generate artificial functional protein sequences; details are explained in
the following section 2.5 about the DCA applications.

2.2.2 bmDCA reproduces a wide range of statistics

MaxEnt modeling of bmDCA is constructed to reproduce single-site and
pairwise frequencies, so also the connected correlations of the empirical dis-
tribution should be reproduced precisely. We show a scatter plot of two-
point connected correlations between a natural MSA (the ensemble of nat-
ural sequences used as training data in bmDCA) and an artificial MSA (an
ensemble of generated sequences using MC sampling) in Fig. 2.1. The fitting
accuracy is significantly high.

Historically, one of the most important contributions of the DCA method
is the contact prediction of contacts between residue in the three-dimensional
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Figure 2.2: Left: Contact prediction for a protein family, sigma-70 factor
as an example. (a) shows the top 20 DI predictions, which are essentially
the DCA prediction, and (b) shows the top MI predictions. Each pair of
residues less than the 8Å are linked with the red edges, and pairs other than
that linked with the green edges. Right: Mean true positive (TP) rate for
131 domain families, as a function of top-ranked contacts. The curve of
the DCA (denoted as DI) outperform the other methods MI and Bayesian
dependency tree [41]. Both of the figures are adapted from [42].

structure of the protein. The key idea is that strong couplings {Jij(a, b)} are
typically associated with spatial interactions due to the co-evolution under
the constraint of keeping the structure.

Fig. 2.2 shows the result of residue contact prediction for one exemplary
protein family, we also compare the prediction with the MI method men-
tioned in the section 1.3.

As we mentioned several times, bmDCA reproduces non-fitted quanti-
ties, i.e., statistics that are not explicitly imposed to be reproduced. Most
strikingly, none of the measurements can significantly distinguish natural
sequences and sequences generated by bmDCA, which implies that the pair-
wise Potts distribution is effectively close to bee indistinguishable from the
empirical distribution.
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Figure 2.3: Top: The three-point correlations. (a) The three-point corre-
lation distribution of the profile model (vertical axis) is almost zero, and
there is no association with the three-point correlations of natural MSA
(horizontal). However, the three-point correlation from sequences generated
by a bmDCA can well reproduce the three-point distribution from the MSA.
Bottom: PCA projection for (c) the MSA, (d) a profile model, and (e) a
PPM. The profile model has a completely different sequence distribution in
the PCA space compared with the result of the natural sequence. In con-
trast, the PPM almost perfectly reproduces the distribution of it. Figures
were adapted from [43].
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In Fig. 6.1, we show the three-point connected correlations Cijk(a, b, c),

Cijk(a, b, c) = fijk(a, b, c) + 2fi(a)fj(b)fk(c)

− fij(a, b)fk(c)− fjk(b, c)fi(a)− fki(c, a)fj(b) ,
(2.12)

and PCA diagram as examples of the non-fitted quantities for PF00072.
As we reviewed in this section, bmDCA can markedly well reproduce sta-
tistical properties of natural sequences. However, there are computational
and statistical problems:

1. Computational complexity: The normalization factor of the prob-
ability distribution, the partition function Z, is defined as a sum over
a qL sequence configuration space, hence it is intractable to calculate
naively. Although bmDCA can realize the probability distribution
without directly estimating the partition function Z, it takes substan-
tial time to reach the equilibrium probability using MCMC, typically
between five hours and three days. Therefore, it needs approximations
to learn the model with a small computational cost.

2. Non-uniqueness of estimated parameters: Most of the estimated
model parameters, especially those not involved in contacts, are close
to zero but noisy. The gradient-based learning cannot achieve a global
minimum with a finite number of MC samples for computing the gra-
dient and with finite learning time. This issue becomes a bottleneck
for accurately investigating, and interpreting coupling parameters.

3. Over-learning: The bmDCA model depends on too many model
parameters. The effective number of available sequences is 103 − 105

typically. However, the number of model parameters to be optimized
is 105 − 107. Therefore, DCA-based learning typically suffers from an
over-learning problem.

4. Selection of variables: The choice of the observables in MaxEnt
might be subjective. Three-body interactions and/or collective vari-
ables might be inherently significant variables for protein sequences,
while many of the one- and two-site frequencies are not important.

In the next section, we show alternative models to resolve some of these
problems. In particular, sections 2.3.1 and 2.3.2 are computationally fast
and frequently used as residue contact prediction methods, section 2.3.3
is a computationally fast sequence generative method, and section 2.3.4 is
contact prediction methods with a small number of model parameters and
is closely associate with our works.

30



2.3 Approximations of DCA

In this section, we review some well-established approximation methods that
we use typically in our study are selected.

First, we review the mean-field DCA, the fastest DCA-based algorithm,
to predict the residue contacts. Then we discuss the pseudo-likelihood DCA,
which is also the first algorithm having the asymptotic consistency. Third,
we review the very recent autoregressive DCA, which is the currently fastest
algorithm to generate artificial sequences as well as to predict contact pre-
diction. Finally, we discuss Hopfield-Potts DCA, which can be used for the
contact prediction problem and can reduce the number of model parameters.

2.3.1 Mean-field DCA

Mean-field DCA (mfDCA) was introduced in 2011 [42]. The computational
cost of this method is proportional to O(q3L3), which is relatively small,
hence requiring computational time is substantially faster than bmDCA.
The downside is that this model cannot be used as a generative model. Pa-
rameters of mfDCA are typically associated with a low-temperature regime
(1 < T ) due to overestimated coupling parameters.

The algorithm of mfDCA is based on a small-coupling expansion which
is equivalent to a high-temperature expansion in physics. The following
derivation is based on the article [42].

First, we introduce a perturbation parameter into the Hamiltonian,

−H(A|h, J ;α) = α
∑

i<j

Jij(Ai, Aj) +

q∑

i=1

hi(Ai) . (2.13)

If we put α = 0, then the model will be an independent-site model or
profile model. If α = 1, the standard pairwise model appears. Furthermore,
we introduce the Gibbs potential,

−G(p|J ;α) = max
h



log


 ∑

A∈AL
exp(−H(A|h, J ;α))


−

L∑

i=1

q−1∑

a=1

hi(a)pi(a)



 ,

(2.14)
, which is the Legendre transformation of the Helmholtz free energy F =
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− logZ. Therefore short-hand representations of the Legendre transforma-
tion and its inverse are:

G(p|J ;α) = F(h|J ;α)− htp
F(h|J ;α) = G(p|J ;α) + htp

Here, pi(a) is a single-site frequency of H(α = 1), and p ∈ RqL is a vector
representation. Note that the sum over the amino acid takes only 1 to q− 1
due to the lattice-gas gauge choice in order remove redundant degrees of
freedom (we will discuss the gauge invariance in section 2.4.2). Since hi(a)
and pi(a) are connected by the Legendre transformation,

hi(a) =
∂G(p)

∂pi(a)
, pi(a) =

F(h)

∂hi(a)
, (2.15)

we also have,

(C−1)ij(a, b) =
∂hi(a)

∂pi(b)
=

∂2G(p)

∂pi(a)pi(b)
. (2.16)

Here, C is the connected correlation matrix, Cij(a, b) = fij(a, b)−fi(a)fj(b),
which has L(q − 1) dimensions and indices i, j ∈ 1:L, a, b ∈ 1:(q − 1),
this restriction is needed to make C be as invertible matrix (practically it
needs pseudo-count, see the following section). For simplicity, we neglect
the explicit dependence on J , α in Eq. 2.15.

When we expanding the Gibbs potential up to the first order with respect
to α, we get,

G(p|J ;α) = G(p|J ; 0) +
∂G(p|J ;α)

∂α

∣∣∣
α=0

α+O(α2)

= G(p|J ; 0) +
〈∑

i<j

Jij(Ai, Aj)
〉
α=0

α+O(α2) .
(2.17)

If we expand the Eq. 2.17 around α = 0, i.e., the profile model, then
put G(p|J ;α = 1), we get,

G(p|J) =
L∑

i=1

q∑

a=1

pi(a) log(pi(a))−
∑

i<j

q∑

a,b=1

Jij(a, b)pi(a)pj(b) . (2.18)

Here, we put also pi(q) = 1 − ∑q−1
a=1 pi(a). The aim is to find the self-

consistent equation for the parameters {hi(a)}. For this purpose, we perform
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the first and second partial derivatives of this first-order expansion of the
Gibbs potential Eq. 2.18 with respect to the single point frequency pi(a).
We find self-consistent equations for the model parameter hi(a):

pi(a) ∝ exp
(
hi(a) +

∑

j∈∂i

q∑

b=1

Jij(a, b)pj(b)
)
, (2.19)

which take the characteristic form of mean-field equations. We further de-
termine the inverse of the connected correlation matrix as,

(C−1)ij(a, b) =

{
−Ji,j(a, b) for i 6= j
δa,b
pi(a) + 1

pi(q)
for i = j

. (2.20)

Therefore, the inference problem for the couplings Jij(a, b) can be solved
by just plugging the empirical connected correlation C into the Eq. 2.20,
and by computing the inverse matrix. Surprisingly, the simple inverse of
the covariance matrix gives accurate contact prediction. The inverse of the
covariance matrix is probably the inherent quantity (there is a discussion
why such a simple method can correctly deduce direct-interaction based on
[44] in Chap. 5). Note that the covariance matrix is not a full rank matrix,
in fact there are L zero eigenvalue modes 4. The standard remedy for the
rank deficient is a gauge transformation (see the technical section 2.4.2).
However, even the reduced covariance matrix tends to be rank deficient,
and it happens for sure if the number of the sequences is smaller than the
(q − 1)L, since

C = M−1
M∑

m=1

(δm − 〈δ〉)(δm − 〈δ〉)t , (2.21)

where δ is a vector representation of the single-site observables, δm =
(δAm1 1, . . . , δAmL q)

t. The pseudo-count method, which adds a small positive
value to empirical counts is normally used for avoiding the rank deficient
issue [42] (the detail is discussed in the technical section 2.4.1).

4∑q
a=1 Cij(a, b) =

∑q
b=1 Cij(a, b) = 0, ∀i, j ∈ {1, . . . , L}, therefore we can easily con-

struc L different zero modes, (0 . . . , 0, 1, 0, . . . , 0)t︸ ︷︷ ︸
=L

⊗ (1, . . . , 1)t︸ ︷︷ ︸
=q
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2.3.2 Pseudo-likelihood maximization DCA

plmDCA can accurately predict contacts with a small computational time,
thereby out-performing mfDCA [45].

The first use of the pseudo-likelihood method for Markov Random fields
was in 2010 [46], but it used an Ising model. Then the idea was adapted to
protein sequence modeling in 2011 [47]. The objective function of plmDCA
is not the likelihood for the pairwise distribution. Instead, it maximizes the
log-likelihood of conditional single-site distributions, which we refer to as
pseudo-likelihood function,

p(Ami = a|Am
\i) =

exp(hi(a)) +
∑

j∂∈i Jij(a,A
m
j )∑q

b=1 exp(hi(b)) +
∑

j∂∈i Jij(b, A
m
j )

, (2.22)

withA\i = (A1, . . . , Ai−1, Ai+1, . . . , AL). In consequence, the pseudo-likelihood
function can be written as,

lplm(h,J) :=

L∑

i=1

lplmi (hi,J i) , (2.23)

where the local pseudo-likelihood is given by

lplmi (hi,J i) = M−1
M∑

m=1

log p(Ami |Am
\i)

=

q∑

a=1

fi(a)hi(a) +
∑

j∂∈i

q∑

a,b=1

fij(a, b)Jij(a, b)− zi ,
(2.24)

where zi is a position-specific normalization constant, depending on Am
\i .

zi := M−1
M∑

m=1

log
( q∑

b=1

exp(hi(b)) +
∑

j∂∈i
Jij(b, A

m
j )
)
. (2.25)

It is known that as the number of sequences increases, the estimators of
plmDCA for the Gibbs distribution become closer to the estimator of the
full likelihood [48] 5. To find the optimal solution for the pseudo-likelihood,
there are two ways of strategies. The first approach is to maximize the
lplm(h,J) directly, this method is called symmetric PLM [49]. A solution of

5This is a peculiarity of the pseudo-likelihood function, not plmDCA.
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the pseudo-likelihood estimator is,

{h∗,J∗} = argmax
h,J

lplm(h,J) . (2.26)

An alternative approach is to maximize each local likelihood lplmi (hi,J i),
separately ∀i ∈ 1:L. Note that this method gives asymmetric couplings since
the local likelihoods, given: lplmi (hi,J i) → J∗iij and lplmj (hj ,J j) → J∗jij .
These couplings results are generally different from each other. In practice,
an arithmetic average of the two couplings is used for contact prediction.
Therefore, the final solution should be written as

J∗ij =
1

2
(J∗iij + J∗jij ) . (2.27)

This approach is called asymmetric PLM [45]. Its computational cost is
smaller than that of symmetric PLM.

Recently, another related method called auto-regressive DCA (arDCA)
was introduced. Although arDCA and plmDCA are closely associated with
each other, the plmDCA is not a generative model, while arDCA is a gen-
erative model. In the next section we will briefly review arDCA.

2.3.3 Autoregressive DCA

Auto-regressive DCA (arDCA) was introduce in 2021 [50]. The key idea of
the arDCA is to factorize the joint probability into conditional probabilities
based on Bayes decomposition, which means

p(A|h, J) = p(A1|h1)
L∏

i=1

p(Ai|A1:(i−1);hi,J) , (2.28)

where A1:(i−1) = (A1, . . . , Ai−1). The mathematical form of each factor is
defined as

p(Ai = a|A1:(i−1);hi,J) =
exp(

∑
1≤j<i Jij(a,Aj) + hi(a))∑q

b=1 exp(
∑

1≤j<i Jij(b, Aj) + hi(b))
, (2.29)

and p(A1|h1) is a standard profile distribution. The arDCA model gives as-
tonishing results; the contact prediction is almost as good as plmDCA, which
is the currently best contact prediction method. Furthermore, arDCA can
be used as a generative model, and the reproduction of the statistics is as
good as bmDCA. One of the significant differences from bmDCA is that the
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computational time is 100 to 1000 times faster due to the accessibility of the
normalization rigorously and fastly. There were many situations in which
the application of DCA was limited due to the time-consuming sampling
using conventional generative models. Therefore, arDCA will be definitely
useful to sample sequences in a short time and at a large scale.

In the next section, we introduce another mean-field approach, which has
pairwise couplings but effectively reduces the number of model parameters
by applying the low-rank representation of couplings.

2.3.4 Mean-field Hopfield-Potts DCA

The method of mean-field Hopfield-Potts DCA was introduced in 2013 [51].
This method can effectively reduce the number of model parameters by in-
troducing a low-rank representation of the coupling matrix. Each non-zero
mode of the coupling matrix is called patterns, and is associate with an
eigenvector of Pearson correlation matrix in the mean-field approximation.
These patterns are also closely related to position-specific scoring matrices,
which are defined as characteristic sequence motifs as explained in Sec. 1.2.2.

While the dimensionality of the covariance matrix is L(q− 1), the num-
ber of essential dimensions is much smaller. These inherently significant
directions are called patterns as the following q×L matrix ξ = {ξi(a)}, with
i ∈ 1:L and a ∈ 1:q .

The log-score of a sequence

S(A|ξ) =
( L∑

i=1

ξi(Ai)
)2

. (2.30)

Within the Hopfield-Potts model, the statistical modeling of protein se-
quences A is characterized by the combination of P log-scores, given by P
patterns:

p(A) =
1

Z
exp


 1

2L

P+∑

µ=1

S(A|ξ+,µ)− 1

2L

P−∑

ν=1

S(A|ξ−,ν)


 . (2.31)

The patterns denoted as ξ+,µ with pattern index µ ∈ 1:P+ and ξ−,ν with
pattern index ν ∈ 1:P−(= P−P+) are called attractive-pattern and repulsive-
pattern, respectively. The log-likelihood function of the mean-field Hopfield-
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Potts model leads 6

L
[
{ξ+,µ, ξ−,ν}µ,ν |A1:M

]

=
∑

ia

fi(a) log fi(a)

+
1

2L

P+∑

µ=1

∑

ia,jb

fij(a, b)ξ
+,µ
i (a)ξ+,µ

j (b)− 1

2L

P−∑

ν=1

∑

ia,jb

fij(a, b)ξ
−,ν
i (a)ξ−,νj (b)

+
1

2

P+∑

µ=1

log
(

1− 1

L

∑

i,a

fi(a)ξ+,µ(a)2
)

+
1

2

P−∑

ν=1

log
(

1− 1

L

∑

i,a

fi(a)ξ−,ν(a)2
)

.

(2.32)

The Eq. 2.31 corresponds to the specific case of PPM Eq. 2.8, with the
couplings Jij(a, b) defined as

Jij(a, b) =
1

L

P+∑

µ=1

ξ+,µ
i (a)ξ+,µ

j (b)− 1

L

P−∑

ν=1

ξ−,νi (a)ξ−,νj (b) . (2.33)

As shown in the Eq. 2.33, the attractive pattern correspond to the P+

largest eigenvalues (λ+
1 ≥ λ+

2 ≥ . . . ≥ λ+
P+

> 1) while the repulsive patterns

correspond to the smallest P− eigenvalues (0 < λ−1 ≤ . . . ≤ λ−P−).

The likelihood function in Eq. 2.32 can also be expressed as a function
of eigenvalues {λµ},

L[A1:M ] =
∑

i,a

fi(a) log fi(a) +
1

2

P±∑

µ=1

(λ±µ − 1− log λ±µ ) . (2.34)

Significant findings in [51] are the following: First, the attractive patterns
are associate with the largest eigenvectors. On the other hand, the repulsive
patterns associate with the smallest eigenvectors. Second, the dominant
contributions on the likelihood are the patterns associated with the largest

6Technical points to derive the Eq. 2.32 is the estimation of the partition function based
on mean-field approximation. The outline of the derivation is shown as follows: First,
applying Hubbard-Stratonovich transformation on the partition function. Second, apply
the saddle point expansion of the joint distribution and approximate it as a multivariate
Gaussian distribution considering the mean and covariance. Last, integrate the Gaussian
distribution while imposing a particular gauge choice.
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or smallest eigenvectors. Last but not least, the attractive patterns capture
the sequence heterogeneity. On the other hand, the repulsive patterns tend
to learn residue contact information.

2.4 Technical Points

In this section, we will show some practically necessary treatments for learn-
ing the DCA-based statistical models.

2.4.1 Regularization

Let us assume that there is no observation for certain frequencies fij(a, b) =
0 with fi(a)fj(b) 6= 0. Suppose we impose the frequentist point of view in
such a situation. In that case, we need to introduce a negatively infinite con-
jugate parameter, Jij(a, b) → −∞ into our statistical model, which causes
unstable learning clearly. The standing point of Bayesian statistics, which is
the opposite to the frequentist, tends to assume that the model parameter
θ of a probability distribution p(x|θ) is also probabilistic and is governed by
a prior distribution p(θ|α), where α is known as a so-called hyper-parameter.

Here we recall Bayes’ theorem,

p(θ|x) ∝ p(x|θ)p(θ). (2.35)

In the context of the above mentioned problem, we can assume that the
model parameters {Jij(a, b)} and {hi(a)} come from independent Gaussian
distribution, Jij(a, b) ∼ N (0, λ−1

J ) and hi(a) ∼ N (0, λ−1
h ), hence we get

another objective function reflecting the philosophy of Bayesian statistics,

lDCA(h, J)← lDCA(h, J) + λJ‖J‖2 + λh‖h‖2 , (2.36)

where lDCA is the log-likelihood function defined in Eq. 2.9, and ‖A‖2 is
a L2 norm, and λJ , λh are hyper-parameters 7. The estimator using the
Eq. 2.36 is called Maximum a posteriori estimation (MAP). There is a
simple criterion for the hyper-parameter of DCA learning that states that
λJ ∼ L/M and λh ∼ 1/M , where M is the number of sequences in the
training data [52]. In practice, we use several hyper-parameters for the
couplings such as λJ ∈ {10−4, 2 · 10−4, . . . , 10−3}. Typically the value used

7
√
λJ and

√
λh are the standard deviation values of the Gaussian distributions

N (0, λ−1
J ) and N (0, λ−1

h ) .
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for the hyper-parameter depends strongly on the protein family, and careful
tuning is needed. There exist different methods to regularize, such as L1
regularization, which corresponds to assuming the Laplace distribution as
a prior distribution of the parameters. One of the advantage to use the
L1 regularization is that it can sparsify the couplings [53]. However, the L1
norm makes small parameters to zero even if they are statistically significant,
as a consequence, it tends thus to lead to a poor generative model.

Another regularization method we use frequently is pseudo counts,

fi(a)← (1− α)fi(a) +
α

q
,

fij(a, b)← (1− α)fij(a, b) +
α

q2
.

(2.37)

This method is typically used for mfDCA, and also we used it to investigate
sparse Boltzmann machines (cf. Chap. 3). With a similar discussion of the
relation between the L2 regularization and the Bayesian modeling, pseudo
counts appear if we assume a Dirichlet distribution as a prior distribution
of frequency counts. [14] .

2.4.2 Gauge Invariance and Gauge Transformation

In the case of DCA, the number of model parameters and the number of
observables are exactly the same, qL + q2L(L − 1)/2. However, the ob-
servables are not independent: The single site frequency are normalized∑q

a=1 fi(a) = 1, and
∑q

b=1 fij(a, b) = fi(a), ∀i, j ∈ 1:L and ∀a, b ∈ 1:q.
Therefore, there are L + qL redundant parameters. The number of inde-
pendent conditions is (q − 1)L + (q − 1)2L(L − 1)/2. In order to avoid
an over-parameterization, we can reduce the number of parameters keeping
the energy function invariant. This fact is known as a gauge invariance in
physics, and to reduce redundant model parameters is known as a gauge
choice [42, 37]. Eq. 2.8 is invariant under the following transformations,

Jij(a, b)← Jij(a, b) + Jij(a) +Kij(b) + cij

hi(a)← hi(a)−
∑

j(>i)

Jij(a)−
∑

j(<i)

Kji(a)−Hi , (2.38)

where Jij(a) and Kij(b) are arbitrary functions.
In DCA, we typically use lattice-gas gauge:

Jij(a, q) = Jij(q, b) = hi(q) = 0 , (2.39)
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for all i, j ∈ 1:L and a, b ∈ 1:(q − 1) [42].

Another frequently used gauge choice is zero-sum gauge or Ising gauge:

q∑

a=1

Jij(a, b) =

q∑

b=1

Jij(a, b) =

q∑

a=1

hi(a) = 0, (2.40)

for all i, j, a, b. This gauge can be achieved using the transformations,

Jij ← Jij(a, b)− Jij(a, ·)− Jij(·, b) + Jij(·, ·) ,
hi(a)← hi(a)− hi(·) +

∑

j(6=i)

(Jij(a, ·)− Jij(·, ·)) , (2.41)

where we denote g(·) as the average q−1
∑q

a=1 g(a). It is easy to check
that the zero-sum gauge minimizes the Frobenius norm of couplings, a fact
exploited in DCA-based residue contact prediction (cf. Sec. 2.5.1). Here is
a sketch of proof: Substitute the general form of the gauge transformation
into the definition of the Frobenius norm, then take the functional derivative
with respect to {Jij(a),Kji(a), Hi}, note that the function of Frobenius is
a convex function of these gauge variables. Therefore the set of variables
that gives zero gradients can minimize the Frobenius. The zero-sum gauge
satisfies this condition.

2.4.3 Phylogenetic Correction

Most inference methods assume that samples in the training data are inde-
pendently and identically distributed (i.i.d.). However, this assumption is
not true in general. In particular, ensembles of protein sequences or MSAs
typically strongly depend on each other. Therefore they are not indepen-
dent at least. This strong correlation among samples comes from the fact
that sequences are evolutionarily related to each other, and this relation is
known as the phylogenetic tree in evolutionary biology. Another reason is
the selection bias of sequencing: some specific species such as E. coli are
more frequently sequenced due to medical or academic interests.

Sequence reweighting – We use a simple reweighting method to reduce
such biases [42]. First, we introduce a similarity threshold 0 < x < 1: If the
number of identical residues between two sequences is greater than xL, these
sequences are assumed to be carrying almost the same information. On the
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contrary, sequences that have smaller sequence similarities are considered
to carry substantial information. Formally, the reweighting parameter for a
sequence ensemble among the 1:M sequences can be written as

wm =
( M∑

n=1

Θ(dmn < 1− x)
)−1

, (2.42)

where dmn is the normalized Hamming distance between Am and An, and
Θ(c) is the Heaviside function that gives 1 if and only if the condition c is
true, and 0 otherwise. Therefore, the more similar a sequence is to other
sequences, the smaller its weight will be. Normally, we use x = 0.8, and the
result of contact prediction is robust between 0.7 ≤ x ≤ 0.9 [42].

The single and pairwise frequencies should be modified accordingly,

fi(a) =
1

Meff

M∑

m=1

wmδAmi ,a

fij(a, b) =
1

Meff

M∑

m=1

wmδAmi ,aδAmj ,b ,

(2.43)

where Meff =
M∑
m=1

wm, denotes the effective number of sequences.

Averaged Product Correction – The APC is a method to remedy
the bias due to background noise and phylogenetic effect on the Frobenius
norms of couplings. Initially, this method was applied to MI [33], then it
was applied to DCA-based contact predictions.

Here, we show a derivation of APC based on Burger et al. [41]. The
APC is given by

FAPCij = Fij −
Fi∗F∗j
F∗∗

, (2.44)

where Fi∗ = 1
(L−1)

∑L
j( 6=i) Fij and F∗∗ = 2

L(L−1)

∑L
i<j Fij . The above Eq.

2.44 can be derived by assuming that the noise Bij that is in the observable
pairwise interaction, factorizes into BiBj . Therefore the pairwise signal can
be written in this way,

Fij = F trueij +BiBj ,

where F trueij is Frobenius norm removing the background noise. By summing
over indices, we get following relations
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Fi∗ = F truei∗ +BiB∗

F∗∗ = F true∗∗ +B2
∗ .

(2.45)

Assuming that the true pairwise signal is smaller than noise, we find
that Fi∗ ∼ BiB∗ and F∗∗ ∼ B2

∗ . We can thus remove the noise from the true
pairwise signal and get,

F trueij = Fij −
Fi∗F∗j
F∗∗

. (2.46)

The above argument explains why APC works. There is another interesting
method based on entropy correction [54], which leads to very similar results.

2.4.4 Learning by Contrastive Divergence and Persistent
Contrastive Divergence learning

Contrastive Divergence – Contrastive divergence (CD) is a point esti-
mation method that can be applied to a broad class of inference problems,
including exponential families (bmDCA is in this class), especially efficient
for learning restricted Boltzmann machines (RBM). Initially, the CD method
was proposed to reduce the vast computational time of learning statistical
models. The initial attempt was based on the products of experts (PoE)
model by Geoffrey E. Hinton [55], where the PoE is a latent variable model
closely related to the mixture model.

The key idea of the CD method is to replace the sample average in the
gradient of the log-likelihood with an average overs CD samples, which is
computationally easily attainable. Here, the CD sample is an instance af-
ter k steps of MCMC initialized in the training data. Therefore, the size
of the CD ensemble is exactly one of the training data. Typically, k is a
small number, and even k = 1 is quite frequently chosen. Note that if k is
sufficiently large, the CD method is converged to the conventional MCMC
based learning.

An intuition of the CD learning success is as follows: The empirical dis-
tribution and the model distribution might be close. Hence, a few MC steps
from the data points are assumed to be reasonable approximations of the
equilibrium distribution of the model probability (in other words, start from
one of the training data means starting from the almost equilibrated state
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in MCMC). Note that the principle of CD learning is different from ML
learning. The policy of CD learning corresponds to the minimization of the
transition probability flows escaping from the training data points (a similar
idea can be found in Minimum Probability Flow learning [56, 57]).

PCD has an algorithmically similar idea to CD learning. However, the
objective function that becomes effectively more similar to ML learning is
persistent contrastive divergence (PCD) learning. Empirically, PCD learn-
ing gives more stable and accurate results than CD learning in our study.
The first epoch is precisely the same as the CD learning. Each sample is
initialized by training data and update a few times. The difference will
be more noticeable after the second epoch: The last states at the previous
epoch are used as the initial states of the next epoch. Such as initialize a
sample state at the 2nd (3rd) epoch by an updated state at the 1st (2nd)
epoch.

More detailed descriptions about CD-based learning are discussed in the
Appendix E.

Batch learning – Some MSAs contain many sequences (about 105 se-
quences for PF00072), which cause a very long learning time for CD-based
learning. In this case, we use mini-batch learning, a powerful learning
method to reduce computational time to estimate gradients of the objective
function: we divide the MSA (M sequences) to sub-ensembles that contain
B(< M) sequences used for CD learning. Using smaller B will make the
calculations faster, but increases the statistical error of the estimated gradi-
ents due to the reduction of sample size. Hence there is a tradeoff between
accuracy and computational time. It is also closely related to the optimal
learning rate. If B is large, the gradient can be calculated accurately, so
a large learning rate may also be used. On the contrary, for small B, one
needs to use small learning rates.

2.4.5 Other learning techniques

Hyper-parameter optimization – Even simple DCA techniques rely
heavily on hyperparameters such as learning rates and the strength of reg-
ularization (typically, ηJ = 0.001 − 0.1 and λJ = 0.001 − 0.01, respec-
tively). Empirically, generative models require particularly careful fine-
tuning. What we normally use is grid search, a simple but exhaustive hy-
perparameter searching algorithm. For example, find the best possible com-
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bination among ηJ ∈ {0.001, . . . , 0.1}, λJ ∈ {0.001, . . . , 0.01} in the above
example.

Assessment of learning – It is crucial to evaluate the learning process
properly, to avoid excessively long learning times. For this aim, one can use
the Pearson correlation of two-point connected correlations, or the maximum
difference of correlations between the training data and data sampled from
the model. The evaluation of CD-based learning is particularly important,
and the convergence test must be made in consideration of the statistical
fluctuations involved in the gradient (see also Appendix E.3).

2.5 Applications

2.5.1 Predicting residue-residue contacts and protein

Initially, DCA was proposed to predict residue contacts in proteins using
only sequence information [42, 58, 49, 59, 60].

Here, we typically use 8Å as a condition for two residues to be in
“contact”. If a relative distance between residues i and j is equal or less
(greater) than this threshold, ≤ 8Å(> 8Å), we regard the pair as “con-
tact” (“non-contact”). We represent it by a contact matrix, a binary matrix
D ∈ {0, 1}L×L, results Dij = Dji = 1 (”contact”), otherwise 0 (”non-
contact”).

Accurately predicting such a contact maps is extremely helpful for 3D-
protein structure prediction, and it has been reported that the minimum
number of necessary true contact predictions to reconstruct protein structure
correctly is 8% − 25% [61, 62] in a contact map. Therefore, structure pre-
diction methods aim to minimize the difference between the native contact
map and a computationally predicted contact map. Due to the availability
of many experimentally determined protein structures, “true” contact maps
are known for many proteins and can be used for testing prediction methods.

For DCA-based contact prediction, coupling matrices Jij ∈ Rq×q are
converted to a Frobenius norm Fij ∈ R, ∀i, j ∈ 1:L,

Fij =

√√√√
q∑

a,b

(Jij(a, b))2 . (2.47)
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As mentioned in Sec. 2.4.2, the zero-sum gauge is typically used for comput-
ing the Frobenius norm. It provides a real-scalar-valued score to a residue
pair and can be used for contact prediction. In general, the APC score,
the matrix after applying the APC correction in Eq. 2.44 to the Frobenius
norm, is used.

To quantitative assess the accuracy of residue contact prediction, we
commonly use the positive predictive value (PPV), which is defined as the
number of true positives divided by the number of the total predictions 8.
To consider only non-trivial contacts, we exclude the effects of backbone in-
teractions due to peptide bindings such as |i−j| < 5. Therefore, the number
of total prediction is n∗ = L(L− 5)/2) .

In practice, we sort the (APC) score in descending order and represent
the PPV as a function of the sorting rank, n. We represent the sorting of
residue pairs as a function of the sorting rank as following,

σ(n) ∈ {(i, j) | ∀i ∈ 1:(L− 5), ∀j ∈ 6:L, i < j} ,

with,
Sσ(1) ≥ Sσ(2),≥, . . . ,≥, Sσ(n∗) ,

where Sσ(n) is a score ranked n-th. Note that the considering residue pairs
are those satisfying |i− j| ≥ 5. Thereby, the PPV curves can be written as
a function of the rank n ∈ 1:n∗,

PPV (n) =
n∑

m=1

Dσ(m)/n , (2.48)

The rationale for this constraint is that the alpha helix turns back to the
same position after four consecutive amino acids. The result of the contact
prediction was shown in Fig. 2.2.

2.5.2 Sequence scoring

Sequence scoring – This problem is one of the most classical bioinfor-
matics questions. As we saw in section 1.2.3, by marginalizing the hidden
state of a profile HMM, we can estimate the likelihood function and evalu-

8The sum of the number of true positives and the number of false positives corresponds
to the total predicted number.
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ate the probability of any sequence. It allows us to estimate the probability
that a sequence belongs to a particular sequence group (such as a homol-
ogy group). Similarly, DCA-based statistical models provide a probability.
Therefore it must be possible to use it as a sequence scoring method. In par-
ticular, the DCA-based method can consider the pairwise couplings. Hence
the scoring system with DCA can regard coevolution effects or epistasis ef-
fects. Technically, a log probability of the pairwise distribution, which is
essentially the negative of generalized Potts energy function, is employed as
the sequence score.

Indeed, it was found that scoring systems considering pairwise interac-
tions are inherently important for decoding amino-acid sequence informa-
tion. In [63], an experiment was conducted to verify the role of pairwise
interactions for functional artificial sequences of WW-domains (Pfam ID
PF00397). They revealed that the pairwise interactions between amino acids
are essential for proteins to be folded into the native structures. More specif-
ically, they generated artificial amino-acid sequences from models consider-
ing different statistical features such as one-point and two-point frequencies
of an MSA of natural sequences. They examined whether the artificial se-
quences are able to fold into the native structure.

The models to consider are:

• Natural (N): Natural WW sequences, selected randomly from the MSA
(we hereby name the natural sequences as Nat sequences).

• Random (R): Random sequences, where each amino-acid at each site
is randomly drawn from a random distribution that keeps only the
mean frequency of the MSA, Ai ∼ f(a).

• Independent conservation (IC): Site-independent conservation sequences,
each amino acids at each site are drawn from the single-site distribu-
tion of the MSA, Ai ∼ fi(a). Therefore, there is no statistical coupling
between residues.

• Coupled conservation (CC): Sequences that keep both single-site and
pairwise frequency, (Ai, Aj) ∼ fij(a, b). Sequences are generated by
swapping an amino-acids in the same MSA while keeping pairwise
frequencies. Specifically, this calculation was performed using MC
sampling and a simulated annealing (SA) algorithm.
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Figure 2.4: Left: Pie charts showing the results of folding experiments
for N (n = 42), CC (n = 43), IC (n = 43), or random (n = 19) WW
domain sequences. The experiments shown that none of the sequences folds
into the native structure for both R sequences and IC sequences. On the
contrary, 28% of the CC sequence realized the native structure. Considering
that a 67% of the N sequences could be natively folded in the experimental
conditions, the result of the CC sequences is astonishing. Right: The top
panel shows the Potts-energy distribution of generated sequences for the
WW domain (parameters were obtained by the ACE algorithm [64]). The
histograms correspond to MC samples of the pairwise model (blue), which
should be the best-fit distribution to the natural WW sequences of the single-
site model (profile model) (green), and random model (red). (Source [65, 66])

Note that the CC sequences are equivalent to a sample from a PPM that
reproduce the two-point frequencies observed in the MSA [63] 9.

The upper rights panel in Fig. 2.4 right shows energy distributions based
on a PPM using the Adaptive Cluster Expansion (ACE) [64], a precise
approximation of the pairwise-Potts model. It should be noted here that
DCA relies on pairwise information, so it can provide an indicator that
distinguishes between random, independent-site, and sequences considering

9The MC sampling with the same construction takes a very long convergence time.
As the number of sequences and the sequence length increase, it becomes more difficult
to converge the equilibrium distribution due to the funnel-like landscape of free energy.
Therefore, it is better to treat pairwise statistics using a statistical model for technical
reasons as well.
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the pairwise interactions.
Interestingly, whether the sequences can be folded or not is strongly cor-

related with the DCA energy. The bottom in Fig. 2.4 shows the energy
values for each N, R, IC, and CC sequences used in the experiment [65], the
red and gray bands are assigned to the foldable and non-foldable sequences.
The energy values for CC, IC, and R correspond to the energy histogram
(the top panel) Potts energy, site-independent energy, and randomized en-
ergy, respectively (note, these sequences are generated differently as in [65]).

The remarkable thing is that sequences with lower energies are more
likely to hold the native structure, with a significant increase in the percent-
age of sequences that fold below a certain energy threshold. It suggests that
the pairwise-Potts energies can reasonably distinguish between foldable- and
non-foldable- sequences. This experiment also implies the possibility of the
PPM to generate sequences with high-folding probability, meaning that the
model can be used not only for scoring but also for generating functional
protein sequences.

2.5.3 Protein sequence design

A direct experiment to learn artificial functional protein sequences based
on DCA has been conducted recently [67]. This experiment successfully de-
signs artificial protein sequences of chorismate mutases (CMs), a standard
model protein, to investigate principles of catalysis and enzyme design using
bmDCA model. CM acts as a catalyst and may accelerate the rate of a re-
action required for cell growth by more than 1 million times. It is essential
for bacterial growth in a minimal glucose of medium. In order to monitor
CMs activity in an in vivo complementation assay, this experiment employed
CM-deficient E. coli cells, and adapted selective conditions (lacking Phe and
Tyr, which are products of the reactions requiring CM catalysis) in the min-
imal medium. It is known that E. coli strains lacking CM are auxotrophic
to Tyr and Phe, and both the degree of supplementation of these amino
acids and the expression level of the reintroduced CM gene quantitatively
determines the growth rate. In other words, the more the CM genes are
expressed, the easier it is to grow even in a medium with low Tyr and Phe
concentration. Hereafter, we denote E. coli that express CM genes as EcCM.

Around 1130 protein sequences were included in the MSA that was used
for learning a bmDCA model that can precisely reproduce one-point frequen-
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cies and two-point connected correlations in the MSA. Then more than 1900
sequences are generated under the several temperatures T ∈ {0.33, 0.66, 1.0},
where the temperature is a parameter rescaling model parameters globally
and linearly. Therefore MC sampling is done using the following probability
distribution,

p(A) ∼ exp
[
1/T

(∑

i

hi(Ai) +
∑

i<j

Jij(Ai, Aj)
)]

.

To understand, which natural and artificial sequences are functional the
authors introduce the relative enrichment (r.e.) defined as the difference of
log ratio of frequencies of enrichment in the population before and after
selection. A schematic explanation of the pipeline of the experiments is also
shown in Fig. 2.5.a.

r.e. = log
fsel(A)

finp(A)
− log

fsel(A
ref )

finp(A
ref )

, (2.49)

where Aref is the sequence for EcCM, and the subscripts sel, inp are the
set of selected and input samples, respectively. If the relative population
size of the selected sequences is not changed, the r.e. becomes around ze-
ros. On the contrary, the r.e. gives a positive value if the population of the
selected sequence increases significantly. Fig. 2.5.c shows that the DCA en-
ergy (which is denoted as statistical energy in the original paper) is strongly
correlated with the functionality of the r.e.. Sequences should have a low
energy to realize functional sequences. There is a threshold in DCA energy
above which only non-functional sequences exist.

As the results of the experiment, Fig. 2.6 shows that the sequences
corresponding with low-energy drawn from T ∈ {0.33, 0.66} typically reca-
pitulate the qualities of natural sequences. On the contrary, sequences from
T = 1 poorly performed to recapitulate natural sequences. Overall, among
the 1618 total artificial sequences, 481 sequences (∼ 30%, norm r.e. > 0.42)
rescued growth in this experiment, although the top-hit sequences identi-
ties to any natural CM was between 42 and 92%. Even 46 sequences are
functional with < 65% sequence identity to the natural sequences.

2.5.4 Fitness landscape

A fitness landscape can provide information about the genotype–phenotype
evolutionary relation, including thermodynamic stability as well as the dy-
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Figure 2.5: (a) Schematic figure of the workflow to characterize CM activ-
ities. (b) Relationship between r.e. and log kcat/Km . It shows as reaction
proceed E. coli strains with defective CM decrease in the minimal medium
relative to the wild type reference. (c) Relation between the DCA energy
and r.e. indicates that no functional sequence can exist above a certain DCA
energy value. These figures were adapted from [67]
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Figure 2.6: The right column shows frequencies of the statistical energy
(measured relative to EcCM) for natural sequences, sequences from MC
sampling (T ∈ {1.0, 0.33, 0.66}), and sequences from the profile model. Se-
quences with the negative statistical (DCA) energy are observed in the nat-
ural and T = 0.66 and T = 0.33 sequences. However, none of the sequences
has a negative energy for T = 1 or profile sequences. The left column shows
frequencies of the r.e. for these ensembles of sequences. It shows that the
natural sequences and bmDCA sequences with T = 0.66, 0.33 are success-
fully adapted in the selective conditions since the normalized r.e. is shifted
toward positive values and show bimodal distribution (the left peak in the
histogram corresponds with null E. coli, and the right peak corresponds with
EcCM). Notably, sequences from bmDCA with T = 0.33 give higher enrich-
ment of EcCM compare to the natural sequences. On the other hand, it
also shows that both bmDCA with T = 1.0 and the profile model generate
rarely produced EcCM sequences. The figure was taken from [67].
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Figure 2.7: Comparison between the statistical scores (∆φ = ∆E) and
the experimental fitness, the minimum inhibitory concentration (MIC) of
the antibiotic [69]. The five highest-scoring mutations shown in the figure
(M182T, H153R, I247V, T265L/Q, and N276D) are reported as stabilizing
mutants (red crosses). (Source [70])

namic process of protein folding [3]. Prediction of the fitness landscape has
attracted great attention in engineering and biomedical applications due
to the possibility to design proteins that have acquired properties different
from those of natural species while maintaining the desired function (e.g.,
enzymatic function, increased stability, etc).

Particularly prediction of mutation (e.g., stability, types of potentially
prospering mutant), which can be assessed by comparing the fitness values
between a wild type and its variants (mutant), has been accelerated for the
last five years thanks to the accurate high-throughput mutation data or deep
mutational scanning [68].

The DCA energy function takes into account the effects of conservation
and co-evolution and can provide a protein sequence that folds into a nat-
urally occurring structure with high probability, as we saw previously Sec.
2.5.3. From this consideration, the energy function of DCA is used as a
sequence fitness landscape function, and the mutational landscape function
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can be predicted in terms of the DCA energy function,

∆E(Awt → Amut) = H(Amut)−H(Awt) , (2.50)

where, Awt and Amut are sequences of wild type and mutant, respectively.

Fig. 2.7 shows one of the remarkable results in [70] using the large-scale
mutagenesis data of beta-lactamase (TEM1), a model enzyme that provides
resistance against beta-lactam antibiotics. In this case, mutations consid-
ered were only single-site mutations. For the quantitative comparison to
the computational prediction, the antibiotic’s minimum inhibitory concen-
tration (MIC) was used [69].

This DCA-based fitness-landscape prediction has been applied, and its
effectiveness has been recognized in many cases such as protein design and
stability prediction [71], identification of drug resistance mutation in HIV[72],
drug resistance-associated mutation in HIV-1 protease [73], virus escaping
time and mutation-location prediction[74], antiviral drugs design [75], and
vaccine design[76, 77].

2.5.5 Other applications

Protein-protein interaction networks – Proteins rarely function alone
in vivo and work with other proteins to realize functions such as metabolisms,
transport, making components, etc. Such relationships between proteins are
known as protein-protein interaction (PPI) networks, consisting of proteins
as nodes and interactions between proteins as edges. Understanding PPI
networks is a fundamental question in systems biology.

PPI networks are also useful and give insight for understanding mecha-
nisms of complex systems, such as identifying genes and proteins that are as-
sociated with disease using an assumption that neighbors of ”disease genes”
in PPI networks typically relate with similar diseases [78, 79, 80, 81], to
understand metabolism [82], and to find proteins that can be influenced by
certain chemical compounds [83].

Ref. [84] shows that DCA can be also used for PPI predictions and
successfully infers underlying PPI networks. Training data is provided as
N MSAs for each protein family. An MSA contains Mp sequences of length
Lp in each alignment Dp for all of considering families p. The task of PPI
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network prediction can be decomposed into two steps:

1. Matching procedures (concatenate sequences): For applying DCA-
based interaction networks prediction, it is necessary to concatenate
sequences in two putative co-evolutionary related families (p, p′) in
MSAs (Dp, Dp′). DCA learning is done on a new alignment D(p,p′) of
sequence length Lp + Lp′ . Ref. [84] employed a matching algorithm
based on the genomic distance between sequences.

2. Inference procedures (execute DCA learning): The DCA learning us-
ing two concatenated sequences (A,A′) can be formulated as the fol-
lowing joint distribution,

p(A,A′) =
1

Z
exp

(
−H(A)−H′(A′)−Hint(A,A′)

)

Hint(A,A′) = −
Lp∑

i=1

Lp′∑

j=1+Lp

Jij(Ai, A
′
j) ,

(2.51)

where H(A) and H′(A′) are the standard DCA energy function in
Eq. 2.8. The function Hint(A,A′) is the function that regards co-
evolutionary couplings between the two families (p, p′). Ref. [84] used
plmDCA method.

The DCA-based PPI prediction achieved 70% for small ribosomal sub-
unit (SRU) and 90% for large ribosomal subunit (LRU) of the true positive
rate among the top 10 predictions.

The authors discussed that these results can improve as the number of
sequences available increases, which is likely to happen thanks to advances
in next-generation sequencing technology.

Sequence pattern selection – Sequence motifs or position-specific scor-
ing matrices (PSSM) are commonly used as representations of biological
sequences to characterize ensembles of sequences such as functionality or
phylogenetically related protein domains. Finding patterns of sequences to
distinguish ensembles of data is a fundamental problem in bioinformatics.

It was found that the mean-field Hopfield-Potts model can construct pat-
terns that are closely related to PCA vectors of the data covariance matrix
in [51]. Although it is not a DCA-based method, there is another important
method to find sequence motifs, statistical coupling analysis (SCA). SCA can
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Figure 2.8: The left and right figures show the inferred interaction networks
for the small ribosomal subunit (SRU) and large ribosomal subunit (LRU).
The edge colors are assigned as follows: Green for true prediction. Red
for false prediction (there is no such interaction in the experimental PPI
networks). Gray for the interaction that is determined by experiment but
not found in the prediction. (Source [84])
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find other types of sequence motifs, which can distinguish groups of amino-
acids that variate related to each other and can detect collectively evolving
groups of positions, which are referred to as “protein sectors” [85, 86, 87]. A
similar method can be found in [88]. It is based on a hierarchy of variables
and aims to select statistically relevant residual variables.

Coupling parameters reveal biologically meaningful information –
Indeed, today’s best contact prediction methods rely heavily on deep neu-
ral networks, enabling more accurate three-dimensional structure prediction
than other methods. The deep neural network (DNN) based methods may
obtain impressive results, but a clear drawback of DNN is that it is hard
to interpret millions of parameters and understand learning quantitatively.
Concerning the interpretability problem of DNN, DCA-based algorithms
provide clear relations among the statistical model, estimated parameters,
and biophysical meaning while keeping almost the same performance with
DNN.

Although the strong coupling parameter Jij(a, b) can be interpreted as
biophysical interaction, strong couplings are extremely rare, and most of the
remaining couplings are small, but some of them correspond with structural
interaction [89]. It is desired to propose a method that allows the selection
of statistically important but small couplings.

In the following section, we will report some statistical generative models
of protein families. These models are assumed certain interaction architec-
tures between residues to realize more biologically interpretable models, as
shown in Fig. 2.9.
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Figure 2.9: (A). Architecture Boltzmann machine (BM), edges, and nodes
are denoted as coupling interactions {Jij} and amino-acid variables {Ai}.
(B). Sparse BM, the architecture is represented by the same convention in
Fig. A, redundant couplings interactions are diluted (see Chap. 3) (C).
Restricted BM (RBM) or low-rank model, the squares in the green squares
are represented as “hidden variables”, which effectively induce interaction
among amino-acid variables (see Chap. 4). (D). Variational Autoencoder
(VAE), it is a generative model constructed by a multilayer neural network
(see Chap. 6).
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Everything should be made as simple as pos-
sible, but no simpler.

—Albert Einstein (1879 - 1955)

II

Variable selection for

protein sequence modeling
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Chapter 3

Specification of Sequences
Statistics

3.1 Motivation

As shown in the previous chapter, DCA methods shed light on many biolog-
ically intriguing questions: realize probability distributions that can repro-
duce properties of biological sequence ensembles, predict residue-residue in-
teractions, give an objective measure to score each sequence, reveal protein-
protein interaction networks, and generate functional artificial protein se-
quences.

DCA-based methods have succeeded in a wide range of studies. However,
the model depends on a considerable number of parameters, typically 102

to 103 times greater than the number of sequences available for learning.
Clearly, the model would be sensitive to statistical noise in the training
data. Moreover, most of the estimated coupling parameters are very noisy.
Especially, those with small coupling parameters are particularly dependent
on their initial conditions (Ref. [90] in section 6.1), which suggests that some
of these small parameters are irrelevant. Though, other small couplings
might come from properties of the protein family, such as physical contacts
or the underlying phylogenies. Regarding the discrimination of relevant
and irrelevant couplings parameters, we would like to address the following
questions:

1. What is the minimum set of constraints required to reproduce the
statistics of protein sequence ensembles within a generative model?

59



Can the minimally constrained models improve biological interpretabil-
ity?

2. Is the minimally constrained model more robust than the standard
fully connected pairwise Potts model (PPM)?

3. Can the minimally constrained model improve predictions of residues
contacts and the effects of mutations that might be affected by statis-
tical noise?

In order to address these questions, we propose a generative model that
takes only into account the minimal set of constraints while minimizing the
Kullback-Leibler divergence from the fully connected PPM. This method
decimates redundant model parameters based on information-theoretic mea-
sures. This method can be applied to any problem that standard PPMs can
handle.

Our work revealed that the remaining parameters after the decimations
contain only statistically relevant parameters associate with 3D structures
and/or phylogenies. As explained in the article (see the next section), the
decimation protocol is different from both the color compression method in
[52] and the pseudo-likelihood-based small coupling decimation in [91].

Our contributions to this study are:

1. We found that we can decimate (remove) around 90% coupling param-
eters Jij(a, b) without decreasing the accuracy of residues contact pre-
dictions and reproducibilities of statistics (two-point and three-point
connected correlations).

2. Our methods achieve lower densities of finite couplings than the other
regularization methods (e.g., L1 regularization, empirical frequencies-
based decimation) without degrading the ability to reproduce statistics
of the training data.

3. We found that by reducing the density of the coupling parameters, the
model became more robust against small perturbations on the model
parameters.

4. We also proposed a method for quantitatively estimating the difference
between the contact and non-contact distribution. Using these mea-
sures, we found that the difference in contact and non-contact became
more pronounced as the coupling densities decreased.
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Boltzmann machines (BM) are widely used as generative models. For example, pairwise Potts
models (PM), which are instances of the BM class, provide accurate statistical models of families
of evolutionarily related protein sequences. Their parameters are the local fields, which describe
site-specific patterns of amino-acid conservation, and the two-site couplings, which mirror the co-
evolution between pairs of sites. This coevolution reflects structural and functional constraints
acting on protein sequences during evolution. The most conservative choice to describe the coevo-
lution signal is to include all possible two-site couplings into the PM. This choice, typical of what is
known as Direct Coupling Analysis, has been successful for predicting residue contacts in the three-
dimensional structure, mutational effects, and in generating new functional sequences. However,
the resulting PM suffers from important over-fitting effects: many couplings are small, noisy and
hardly interpretable; the PM is close to a critical point, meaning that it is highly sensitive to small
parameter perturbations. In this work, we introduce a general parameter-reduction procedure for
BMs, via a controlled iterative decimation of the less statistically significant couplings, identified by
an information-based criterion that selects either weak or statistically unsupported couplings. For
several protein families, our procedure allows one to remove more than 90% of the PM couplings,
while preserving the predictive and generative properties of the original dense PM, and the resulting
model is far away from criticality, hence more robust to noise.

I. INTRODUCTION

Many applications of generative modeling, especially
in biological systems, are confronted to a limited amount
of available data, from which a large number of param-
eters have to be inferred [1]. A particularly interesting
example is that of proteins, which belong to the most
interesting complex systems in nature and are essential
in almost all biological processes. Most of them robustly
fold into well-defined three-dimensional structures, which
in turn form the basis of their functionality. This trian-
gular sequence-structure-function relationship has, over
several decades now, attracted substantial attention in
biological physics [2, 3].

A fascinating approach to the generative modeling of
biological sequences has emerged over the last years [4, 5].
In the course of evolution, biological sequences accumu-
late mutations and become more diverse. We can now
easily observe the sequence variability across large fam-
ilies of so-called homologous proteins, i.e. proteins of
common evolutionary ancestry and of close to equiva-
lent function but in different species or biological path-
ways [6]. Such homologous proteins may differ by 70-80%
of their amino acids without substantial changes in struc-
ture and function. However, their sequence variability is
not fully random: a vast majority of mutations is dele-
terious, reducing protein stability or functionality. They
are thus suppressed by natural selection. Only protein

variants of similar or even better functionality are main-
tained. In this way, the protein’s structure and function
constrain the viable sequence space that can be explored
by evolution. Inverting this argument, the empirically
observed variability of homologous sequences contains in-
formation about such evolutionary constraints, albeit fre-
quently well hidden. This idea is at the basis of the con-
cept of data-driven “sequence landscapes”, i.e. classes of
models that describe the statistical properties of protein
families, assigning high probabilities to functional amino-
acid sequences and low probabilities to non-functional
ones [5, 7]. The log-probability (or minus “energy”) is
thus interpreted as a measure of sequence fitness, hence
the name of sequence (fitness) landscape [8]. Among the
best known such models are Potts models (PM), param-
eterized by local fields and two-site interaction couplings
(cf. below for details), and constructed via the Direct
Couplings Analysis (DCA) method, which is now firmly
established [5, 7]. The DCA parameters can be obtained
via inference or learning procedures [9–12], and they can
be used to extract useful information on molecular struc-
ture [13–16] and function [17, 18], on the effects of muta-
tions [19, 20], and to generate new artificially-designed
molecules with specific properties [21, 22].

A concrete implementation of DCA is the follow-
ing [12]. Given training data in the form of a Multiple Se-
quence Alignment (MSA) of M homologous sequences of
aligned length L, the PM parameters are learned by the
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so-called Boltzmann machine learning (BML) algorithm
[23]. By performing gradient ascent on the log-likelihood
of the model given the data, BML determines values of
couplings and fields such that the one- and two-site model
frequencies match the empirical ones derived from the
MSA. A standard pairwise q-state PM is thus specified
by q2L(L− 1)/2 couplings and qL fields, where, for pro-
teins, q = 21 corresponds to the 20 naturally occurring
amino acids plus the gap symbol used for insertions or
deletions.

Crucially, despite the fact that modern sequencing
techniques are making available a huge amount of bio-
logical sequences, and in particular hundreds of millions
of protein sequences [24], a serious over-fitting problem
is present when PM are used as models of protein fami-
lies. In fact, with typical sequence lengths L ∼ 50− 500,
the parameters to be inferred are ∼ 106 − 108, which in
most cases substantially exceeds the available informa-
tion from the MSA. The resulting over-fitting is mani-
fested in several ways: (i) many couplings turn out to
be rather small and noisy, (ii) the PM is close to a criti-
cal point, i.e. it can be very susceptible to small changes
in its parameters, and (iii) different training procedures,
e.g. with different initial conditions, can lead to signif-
icant changes in the sets of parameters without affect-
ing the fitting accuracy, which severely limits the inter-
pretability of the model.

These observations call for a parameter reduction
procedure, which aims at identifying a minimal set of
couplings needed to accurately describe the training
data without overfitting. Hopfield-Potts models [25]
and the more general Restricted Boltzmann Machines
(RBM) [26] lead to a dimensional reduction of parame-
ter space by learning collective “patterns” from sequence
data, which in turn can be interpreted as extended se-
quence motifs and are activated via a limited number of
hidden variables. The resulting coupling matrix is low-
rank but still dense. A complementary approach aims
at sparsifying the network of couplings: `1-norm regular-
ization has been used in a number of approximate meth-
ods [27, 28], but cannot be easily used for generative mod-
eling, because the regularization penalizes also non-zero
couplings, which in turn assume too small values. Alter-
natively, a “color-compression” scheme [29] has been pro-
posed, which groups together sequence symbols with low
frequency in specific sites. However, frequent symbols
may also be involved into statistically non-supported cou-
plings. Another example is that proposed in [30] where a
candidate sparse graph topology is sought by pruning the
MSA columns associated with low values of the mutual
information. Although this method has to be preferred
when L is so large to prevent the standard DCA imple-
mentations, it completely loses some information on the
target statistical model. Overall, a statistically princi-
pled and efficient approach to construct sparse PM for
protein sequence modeling is still lacking.

In this work, we introduce an information-theory based
“decimation” procedure, which allows for an iterative and

controlled removal of irrelevant couplings. As a result,
parameters are removed either if they have no statisti-
cal support (as in color compression), or if they have
statistical support for being very small. We show that
up to about 90% of the coupling parameters can be re-
moved without observing any substantial change in the
fitting accuracy and in the generative properties of the
resulting Sparse Potts Model (SPM). Although greedy,
our pruning scheme does not require to add extra terms
in the energy function of the model, at variance with
any treatable regularization, like `1 or `2, and therefore
it preserves the generative properties of PM. Finally, we
show that the resulting SPM are not close to criticality,
at variance with the original PM learned using standard
DCA. Our results thus demonstrate that the observed
criticality of PMs inferred from protein sequence data is
not an intrinsic feature of the biological systems them-
selves, cf. [31], but results from the over-fitting in the
learning procedure.

II. AN INFORMATION-GUIDED DECIMATION
PROCEDURE

With each sequence S = (s1, · · · , sL) of length L, in
which si can take q possible values (q = 21 for proteins),
a PM associates a statistical “energy” or Hamiltonian
H(S), written as a sum over single-site fields hi(si) and
two-site couplings Jij(si, sj):

H(S) = −
∑

1≤i<j≤L
Jij(si, sj)−

∑

1≤i≤L
hi(si) . (1)

The negative of the Hamiltonian can be interpreted as
a “fitness score” for protein sequence S, with an asso-
ciated Boltzmann probability P (S) = exp{−H(S)}/Z,
where Z =

∑
S exp{−H(S)} is the partition function

guaranteeing correct normalization of P . Hence, the sur-
face defined by H(S) over the space of sequences can be
interpreted as a “fitness landscape” or – using a more
cautious term – “sequence landscape” for the protein
family represented by the training MSA. We define the
“model density” d as the number of non-zero couplings
Jij(a, b) 6= 0 divided by the total number of possible cou-
plings q2L(L − 1)/2. Note that this definition is given
element-wise, i.e. for each i, j, a, b, and not block-wise
for entire q×q matrices Jij coupling two sites i, j. Fields
are not decimated and do not contribute to the model
density: we consider them an essential ingredient of the
model because they encode amino-acid conservation.

A fully connected model, i.e. with d = 100%, can
be trained to arbitrarily high accuracy using standard
BML [12]. Let us define the empirical one-site frequency
fi(a) of observing amino acid a in position i in the MSA,
and two-site frequency fij(a, b) of observing amino acid
a in position i and b in position j in the same sequence
of the MSA. BML performs a gradient ascent on the log-
likelihood, which gives update equations for the couplings
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and fields at each learning epoch:

δhi(a) = ηh[fi(a)− pi(a)] ,

δJij(a, b) = ηJ [fij(a, b)− pij(a, b)] ,
(2)

where the pi(a), pij(a, b) are the one- and two-site
marginal probabilities of the PM, which are estimated
at each iteration of the learning by sampling P (S) via
a standard Markov Chain Monte Carlo (MCMC) simu-
lation, and ηh, ηJ are the learning rates for fields and
couplings. These equations are iterated until conver-
gence to a fixed point, at which the model almost per-
fectly matches the empirical frequencies. Note that a PM
trained in this way also corresponds to the maximum en-
tropy or least constrained model that is compatible with
the one- and two-site empirical frequencies [13, 32].

Our decimation procedure consists in choosing pairs
of sites i < j and amino acids a, b, and fixing the cor-
responding coupling permanently to Jij(a, b) = 0. The
coupling is removed from the set of adjustable parame-
ters, and the corresponding two-site frequency fij(a, b) is
no longer explicitly fitted in the subsequent BML epochs.
However, an important property of PM is the so-called
“gauge” or reparameterization invariance: the transfor-
mation

Jij(a, b)→ Jij(a, b) + Jij(a) +Kij(b) ,
hi(a)→ hi(a)−Hi −

∑

j(>i)

Jij(a)−
∑

j(<i)

Kji(a) , (3)

leaves the Hamiltonian in Eq. (1) and the associated
Boltzmann distribution P (S) invariant, for any choice
of the J , K and H. Hence, a gauge transformation can
transform a zero coupling into a non-zero one and vice
versa. Because the decimation procedure fixes some cou-
plings to zero, it breaks this invariance.

We thus begin our decimation procedure by a “gauge
fixing” step, which sets to zero 2q − 1 out of all q2 en-
tries of each coupling matrix Jij . To do so, we identify,
independently for each pair of sites 1 ≤ i < j ≤ L,
the 2q − 1 amino-acid pairs (a, b) of smallest connected
correlation cij(a, b) = fij(a, b) − fi(a)fj(b), and fix the
corresponding couplings Jij(a, b) to zero. Only the other
q2 − 2q + 1 = (q − 1)2 couplings are updated using the
BML, Eq. (2). This procedure chooses a model of mini-
mal density d = [(q−1)/q]2 = 90.7% out of all equivalent
PM related by the gauge transformation in Eq. (3). The
parameters are initialized using a “profile model” fitting
only the one-site frequencies fi(a). This initial model has

zero couplings and fields h
(0)
i (a) = log fi(a)+Hi, with the

constant Hi being fixed by
∑
a h

(0)
i (a) = 0 (with a very

small pseudo-count added to fi(a) to avoid infinite fields,
see Appendix A 3). The fitting quality of the learned PM
is tested by the Pearson correlation between the empiri-
cal cij(a, b) and their counterparts in the model P (S), the
latter being estimated from a large independently and
identically distributed MCMC sample. For all protein
families considered in this work, this Pearson correlation

exceeds 0.95, see Fig. 1 and Appendix B 1. Note that
the results of our decimation procedure depend on the
initialization and gauge fixing described above. We tried
a different initialization, either fixing both couplings and
fields to zero, or initializing both using pseudo-likelihood
maximization (PLM) [11]. We found qualitatively sim-
ilar results, but with slightly worse performance (Ap-
pendix C 3).

Any further decimation of couplings changes the
model. To measure the impact of removing a given cou-
pling Jij(a, b) from a PM, we determine the symmet-
ric Kullback-Leibler (KL) divergence between the Boltz-
mann distributions with and without that coupling. We
thus consider a Potts Model with Hamiltonian H, and
another with Hamiltonian H ′ in which a given coupling
is removed:

H ′(S) = H(S) + Jij(a, b)δa,siδb,sj . (4)

We observe that averages over P ′ = e−H
′
/Z ′ can be ex-

pressed in terms of averages over P = e−H/Z as

〈O(S)〉P ′ =

∑
S O(S)e−H

′(S)

∑
S e
−H′(S)

=

∑
S O(S)e−Jij(a,b)δa,si

δb,sj e−H(S)

∑
S e
−Jij(a,b)δa,si

δb,sj e−H(S)

=
〈O(S)e−Jij(a,b)δa,si

δb,sj 〉P
〈e−Jij(a,b)δa,si

δb,sj 〉P
.

(5)

Hence, the symmetric Kullback-Leibler divergence of P
and P ′ is

Dab
ij = DKL(P ||P ′) +DKL(P ′||P )

= −
∑

S

[P (S)− P ′(S)][logP (S)− logP ′(S)]

= 〈H ′ −H〉P − 〈H ′ −H〉P ′

= 〈Jij(a, b)δa,siδb,sj 〉P − 〈Jij(a, b)δa,siδb,sj 〉P ′ (6)

= 〈Jij(a, b)δa,siδb,sj 〉P

−〈Jij(a, b)δa,siδb,sje
−Jij(a,b)δa,si

δb,sj 〉P
〈e−Jij(a,b)δa,si

δb,sj 〉P

= Jij(a, b)pij(a, b)−
Jij(a, b)pij(a, b)e

−Jij(a,b)

pij(a, b)e−Jij(a,b) + 1− pij(a, b)
,

where pij(a, b) = 〈δa,siδb,sj 〉P is the marginal two-site
probability of P , which coincides, at convergence of
Eq. (2), with the empirical frequency fij(a, b). Note
that we could also have equivalently used the non-
symmetrized KL divergence (Appendix A 1).

At each decimation step, we now remove the least sig-
nificant couplings, i.e. those with the lowest Dab

ij . For
computational efficiency, this is done for a fixed fraction
(in this work we choose 1%) of all remaining couplings.
Note that Dab

ij = D(J, p ∼ f) (dropping the indices for
notational simplicity) goes to 0 either when f → 0 or
f → 1 at fixed J , or when J → 0 at fixed f . More
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precisely, we have D(J, f) ∼ Jf(1 − e−J) for f → 0,
D(J, f) ∼ J(f − 1) for f → 1, and D(J, f) ∼ J2f(1− f)
for J → 0. The first and second limits imply that fi-
nite couplings can be decimated if the corresponding fre-
quency is close to zero or one, i.e. they have little statis-
tical significance because the corresponding amino acids
are almost never observed (as in color-compression [29])
or almost always observed. The third limit indicates that
small couplings are decimated whatever f is (similar to
the procedure proposed in [33] for the inverse Ising prob-
lem using PLM). Numerically, we observe that the per-
centage of pruned couplings corresponding to each cate-
gory varies during decimation (Appendix C 2). After a
decimation step, we perform additional BML iterations
of Eq. (2) on all undecimated couplings and the fields,
to reach convergence again. In this way, we progressively
obtain PMs of reduced density, and we stop the decima-
tion when d = 1%.

Note that in order to accurately estimate Dab
ij , it is

important that the PM learning is well converged be-
fore each decimation step. We attempted an “online”
decimation in which couplings are pruned either after
a fixed number of iterations of Eq. (2) or for having
reached convergence, and found that this provides no ad-
vantage (Appendix C 4), neither in terms of generative
performance (i.e. the Pearson correlations at d = 1%
do not improve), nor in computational efficiency (i.e.
the computational time required to reach d = 1% is
almost unchanged). Other decimation strategies based
on fij(a, b) only (removing statistically unsupported cou-
plings), or on Jij(a, b) only (removing small couplings),
or on applying `1-norm regularization to select relevant
couplings, were found to perform substantially worse
than the information-based procedure using Eq. (6) (Ap-
pendix C 1).

III. RESULTS AND DISCUSSION

We focus here on a representative protein family, the
PF00076 family from the Pfam database [6], correspond-
ing to a RNA recognition motif (RRM) of about 90 amino
acids, known to bind single-stranded RNAs. The MSA
provided by Pfam contains M = 137605 sequences of
aligned length L = 70. Results obtained for other fam-
ilies (Appendix B) fully confirm the general conclusions
drawn here for the RRM.

In Fig. 1 we show, for model densities down to 1%, the
Pearson correlation coefficient between the empirical one-
site frequencies fi(a) obtained from the original MSA,
and the model one-site marginal probabilities pi(a), es-
timated by MCMC sampling. Similar curves are also
shown for the two-site connected correlations cij(a, b) and
for a selected sub-set (specified in Appendix B 1) of three-
site connected correlations, defined as

cijk(a, b, c) = fijk(a, b, c)− fij(a, b)fk(c)

−fjk(b, c)fi(a)− fki(c, a)fj(b) + 2fi(a)fj(b)fk(c) ,
(7)

FIG. 1. Fitting and generative quality – Pearson cor-
relation coefficient between model and data frequencies as
a function of the model density. The one-site frequencies
fi(a) are directly fitted. The two-site connected correlations
cij(a, b) are fully fitted by the densest model, while only a frac-
tion of them are fitted for the sparse models at d < 1. The
three-site connected correlations cijk(a, b, c) are never fitted.
The generative performance of the model is essentially un-
changed down to a density of 10%, and slowly decays for even
sparser couplings. However, even down to d = 1%, the Pear-
son coefficients remain at remarkably high values above 95%
for the two-site correlations, and above 84% for the three-site
correlations.

where i, j, k are the indices of the columns of the MSA
(which take value from 1 to L), and a, b, c run over the
amino-acids and the gap symbol (practically, from 1 to
q). The one-site frequencies are perfectly reproduced
by the model, i.e. fi(a) = pi(a), as a consequence of
the fixed-point condition in Eq. (2), and the Pearson
coefficient thus remains equal to one at all d (up to
tiny deviations due to the finite MCMC samples used
in BML and in estimating pi(a)). For the maximal den-
sity dmax = [(q − 1)/q]2 obtained after gauge fixing, the
two-site correlations should also be perfectly reproduced
because of Eq. (2). In practice we only reach a Pear-
son coefficient of ∼ 0.975 due to sampling noise (Ap-
pendix A 4). On the contrary, for d < dmax only a frac-
tion of all two-site frequencies is explicitly fitted by the
model via sparse BML. Nevertheless the two-site Pear-
son coefficient is essentially independent of d, up to a
slight reduction when d < 10%. Finally, three-site corre-
lations, that are never explicitly fitted by the model (the
training process in Eq. (2) does not include three-site in-
formation), are nevertheless very accurately reproduced,
with a Pearson coefficient around 0.94 for all d > 10%.
Note that the reproduction of unfitted observables is a
highly non-trivial test for the generative properties of our
models [12], i.e. of the capacity of the model to generate
data being statistically close to indistinguishable from
the natural sequence data used for model learning. Be-
low density d = 10%, the generative quality of the model
for three-site correlations is slightly reduced, remaining
nevertheless very high (above 84% down to d = 1%).
We discuss the generative property of the sparse models
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FIG. 2. Contact prediction – Positive predictive values
(PPV) for several model densities, i.e. the fraction of true pos-
itives among the highest-ranking k pairs (i, j) of sites, when
ordered by decreasing FAPC

ij . Even the most sparse model,
with only 1.6% of couplings, shows an excellent performance
at contact prediction. The curve for plmDCA, a standard
DCA approach for contact prediction, is shown for reference
and gives comparable results.

introducing additional metrics in Appendix D.
A second test of model quality is the prediction of

structural contacts, which constituted the major appli-
cation of DCA in the last years. The idea is that pairs
of strongly interacting sites in the PM should correspond
to close-by residues in the three-dimensional structure,
which display strong coevolution to maintain the proper
protein fold and functionality. Using the standard con-
vention for coevolutionary contact prediction, we con-
sider a pair of residues to be in contact if the distance
between them is at most 8 Å, and we exclude easy-to-
predict short-range contacts by considering only pairs
with |i − j| ≥ 4 in our analysis. The reference (ground-
truth) distance was obtained by the package [34] that
takes the shortest distance between heavy atoms in all
protein structures registered in the Protein Data Bank
(PDB) [35] for the given Pfam family. We follow the stan-
dard procedure for contact prediction, which consists in
computing the average-product corrected (APC) Frobe-
nius norms of the coupling matrices (note that the cou-
pling matrices are transformed into the zero-sum gauge
and that the gap states a, b = q are excluded from the
sum [36]),

Fij =

√√√√
q−1∑

a,b=1

Jij(a, b)2 ; FAPC
ij = Fij −

∑
k Fik

∑
k Fkj∑

kl Fkl
.

(8)
In Fig. 2 we show the fraction of true contacts within the
first k pairs of sites, ranked in decreasing order of FAPC

ij .
We observe that the performance of the model at infer-
ring the structural contacts is only slightly deteriorated
even in the sparsest case d = 1.6%.

In Fig. 3 we show the probability distributions of cou-
plings Jij(a, b), separately for pairs i < j corresponding

-1 -0.5 0 0.5 1 1.5 2 2.5

100

105

C
ou

nt
s

-1 -0.5 0 0.5 1 1.5 2 2.5

100

105

C
ou

nt
s

FIG. 3. Coupling distributions – Distribution of cou-
plings corresponding to true contacts (top) and to non-
contacts (bottom) in the three-dimensional protein fold, for
the initial PM with density dmax = 91% and a sparser model
having density d = 7% associated with a reasonably accurate
contact prediction.

to contacts and all the others. We observe that, both
for contacts and non-contacts, the decimation affects the
shape of the distribution around J ∼ 0 in a similar way,
while the tails are essentially unaffected. Overall, these
results explain why the performance of the PM for con-
tact prediction using FAPC

ij is essentially independent of
d (Fig. 2). Unfortunately, the large-J tail of the dis-
tributions of couplings on non-contacting sites does not
change upon sparsifying the model, which suggest that
our decimation procedure cannot help in devising better
contact predictors.

In order to study the criticality of the models, we
consider a simple perturbation of the statistical weight,
i.e. we rescale the Hamiltonian H(S) by a formal in-
verse temperature β = 1/T and set P (S) ∼ e−βH(S),
in such a way that T = 1 corresponds to the original
model trained on data, while measuring the variation of
the model entropy S. In Fig. 4 we show the heat capacity
C = TdS/dT of the PM for several sparsities (see Ap-
pendix B 4 for details on the computation of C). Note
that a large C indicates a large variation of the model
entropy with T , or equivalently that the model statistics
changes strongly after a slight change of the parameters.
This is indeed the best definition of criticality in statisti-
cal physics, keeping in mind that our models have finite
size L and we thus cannot perform a finite-size scaling
analysis to determine if the observed peak in C corre-
sponds to a phase transition in the thermodynamic limit.
In Fig. 4 we observe that the denser models display a
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FIG. 4. Criticality – Heat capacity as a function of temper-
ature for models with different density. The densest models
show a strong peak of specific heat close to the reference scale
T = 1, which is a signature of criticality: the model is ex-
tremely sensitive to a small change of couplings, due to over-
fitting. On the contrary, sparse models display a much smaller
peak, which is also shifted away from T = 1 towards lower
temperatures, indicating a better robustness of the learning.

large peak in C close to T = 1, which indicates that
the models are close to criticality. Upon sparsifying the
model, the peak amplitude is strongly reduced and the
peak is also shifted to lower temperatures, i.e. further
away from the reference scale T = 1. These results sug-
gest that the criticality of the dense models comes from
over-fitting. Because the dense models have a huge num-
ber of parameters, they are able to fit all the details of
the training data. As a consequence, the model becomes
very sensitive to noise, and a little change of the param-
eters changes a lot the model statistics. On the contrary,
sparse models have less parameters and are thus more
robust to noise.

Ref. [37] provides Deep Mutational Scanning (DMS)
data for a representative member of the PF00076 family,
namely the RRM2 domain of the Poly(A)-Binding Pro-
tein (PABP) in the yeast species Saccharomyces cere-
visiae. Using this domain as a reference, the authors
generated a library of 110,745 protein variants, includ-
ing 1,246 single amino-acid substitutions and 39,912 dou-
ble amino-acid substitutions. Each of these variants was
experimentally scored for function, by monitoring the
growth of mutant yeast and finally, a “fitness score”
was attributed to each mutant sequence in the experi-
ment [37]. Within our models, the inferred Hamiltonian
H(S) in Eq. (1) is also interpreted as a sequence-fitness
score. Hence, a good test of the generative property of
our models is to check whether the energy differences
∆H = H(mutant) − H(reference) between mutant se-
quences and the PABP reference correlate well with the
experimental fitness variations. Because the mapping be-
tween experimental and model fitness may be non-linear,
in Fig. 5 we show the Spearman’s rank correlation be-
tween these two variables, both for single and double
mutants. In the dense d = dmax case, we reproduce the
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FIG. 5. Single and double mutations – Spearman cor-
relation between the experimental fitnesses and the model
predictions as a function of the model density, both for single
and double mutants of the PABP, a member of the PF00076
family. The dashed lines show the same correlations for a
profile model (i.e. d = 0) as a reference.

reference values already given in Ref. [20]. We also ob-
serve that upon reducing density, once again the model
quality is not degraded, down to d ∼ 10%. Even for
d = 1.6% the model performs quite well, and much bet-
ter than a profile model, which coincides with the limit
d→ 0 of our decimation procedure.

IV. CONCLUSIONS

We introduced a general parameter reduction scheme
for Boltzmann Machine Learning, and we applied it
to Potts models for protein sequence data, i.e. for the
learning of highly accurate and generative, but sparse
DCA models. Our strategy makes use of a rigorous
information-based criterion to select couplings that are
iteratively pruned. Intuitively, removed couplings are
either statistically unsupported, i.e. they correspond
to pairs of amino acids that are almost never or al-
most always observed, similarly to the color-compression
scheme [29], or they are small, i.e. they correspond to
pairs that are only weakly correlated, or a combination of
both. The statistical significance of a coupling is precisely
quantified by the symmetric KL divergence between the
Boltzmann measure of the Potts model with and with-
out this coupling, which is exactly computable from the
model or the empirical statistics.

While our method is fully general for learning Boltz-
mann machines from high-dimensional categorical data,
here we focused on its application to model protein fam-
ilies via Potts models, in which strong couplings are
usually associated with physical contacts in the three-
dimensional protein fold. We stress that the aim of this
work is not to provide a sparse graph topology underlying
the true interaction network, and indeed the pruning is
not performed block-wise but at the level of the individ-
ual coupling entries, but to provide a general framework
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of parameters reduction strongly based on information-
theoretic assumptions. We have shown that the model
can be decimated down to less than 10% of the origi-
nal couplings, while losing neither its generative qual-
ity, nor its accuracy in contact prediction. However, it
has to be noted that many couplings not correspond-
ing to structural contacts remain non-zero even in the
lowest-density models. The interpretation of such cou-
plings remains unclear. They may result from subtle ef-
fects due to the phylogenetic relations between the train-
ing sequences [38, 39], but also from extended functional
constraints as those found by Restricted Boltzmann Ma-
chines or Hopfield-Potts models [25, 26]. As a result, fur-
ther work is needed to make DCA-type modeling fully
interpretable.

The sparse models resulting from our decimation pro-
cedure are also far away from criticality: they do not
display the specific-heat peak close to the formal temper-
ature T = 1 that characterizes the dense models. Hence,
we attribute the criticality observed in dense models to
over-fitting, and conclude that our decimation procedure
makes model learning more robust to finite-sample noise.
Finally, the model maintains its performance in predict-
ing the fitness of mutations around a reference sequence,
i.e. it is capable of predicting the local shape of the fitness
landscape after having been trained on a global alignment
of distantly diverged amino-acid sequences.

Our decimation procedure solves the first two problems
mentioned in the introduction: we can eliminate small
and noisy couplings, and the resulting model maintains
its fitting and generative qualities, while being statisti-
cally more robust. Unfortunately, we were unable to solve
the third problem, namely the strong dependence on the
initial condition of the training: different initial condi-
tions (zero couplings and fields, profile model, plmDCA)
produce fully-connected PMs of equal fitting quality but
with slightly different performances in predicting con-
tacts and mutational effects. This difference does not dis-
appear after decimation (Appendix C 3). In other words,
our decimation procedure remains sensitive to the initial
fully-connected model from which it is started.

The resulting sparse PMs attempt to fit the data by
using the minimal number of two-site couplings, i.e us-
ing coupling matrices that are as sparse as possible. In
the context of proteins (or RNA), it is natural to think
that the sparse couplings identified by the model are the
most relevant to describe the physical two-site correla-
tions that arise from the need to maintain the three-
dimensional folded structure. This strategy is comple-
mentary to collective-feature learning, e.g. via RBM or
Hopfield-Potts models [25, 26], in which the number of
parameters in the coupling matrix is reduced by assum-
ing it to be of low-rank. The features learned by these
machines are associated with global sequence motifs, re-
lated, e.g., to protein function or its interactions, but the
accuracy of contact prediction is reduced. An interesting
and natural perspective would be to combine these two
strategies into a general “sparse plus low-rank” scheme,

cf. [40] for a related idea, which could lead to an accurate
description of protein families in an easily interpretable
way, with sparse two-site couplings describing physical
constraints coming from structural contacts, and low-
rank couplings describing biological features associated
with protein function and its evolutionary history.

To conclude, we would like to stress once more that our
information-based decimation strategy is not specific to
the application of Potts models to protein sequence data.
It can directly be used in other applications of inverse
statistical physics and Boltzmann machine learning, as
e.g. in modeling neural or socio-economic data [1], and
may be adapted to more general network reconstruction
schemes.
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Appendix A: Methods

1. Alternative decimation score

Using the relation

Z ′

Z
=

1

Z

∑

S

e−Jij(a,b)δa,si
δb,sj e−H(S)

= 〈e−Jij(a,b)δa,si
δb,sj 〉P

= pij(a, b)e
−Jij(a,b) + 1− pij(a, b) ,

(A1)

we obtain

D̂ab
ij = DKL(P ||P ′) =

∑

S

P (S)[logP (S)− logP ′(S)]

= Jij(a, b)pij(a, b)

+ log[pij(a, b)e
−Jij(a,b) + 1− pij(a, b)] .

(A2)
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This second quantity also coincides with the variation of
the likelihood of data under the change of model,

∆L =
1

M

M∑

m=1

[logP (Sm)− logP ′(Sm)]

=
1

M

M∑

m=1

Jij(a, b)δa,smi δb,smj + log
Z ′

Z

= Jij(a, b)fij(a, b)

+ log[pij(a, b)e
−Jij(a,b) + 1− pij(a, b)] ,

(A3)

which coincides with (A2) when the model is well con-
verged and pij(a, b) = fij(a, b).

Note that the qualitative form of Dab
ij and D̂ab

ij as a

function of fij(a, b) and Jij(a, b) is very similar, and Dab
ij

is a monotonous function of D̂ab
ij . Using Dab

ij or D̂ab
ij in

the decimation procedure thus leads to fully equivalent
results.

2. Data set

In the following, we report the details of the five
protein families analyzed in our work, identified as
PF00014, PF00072, PF00076, PF00595, and PF13354 in
the Pfam database (https://pfam.xfam.org/) [6, 41].
For PF00014, PF00072, PF00076 and PF00595 we filter
the full set of sequences downloaded from Pfam, keeping
only those that have less than six consecutive gaps. Em-
pirically, we have found that the presence of stretched
gaps renders the training more difficult as the Markov
Chain Monte Carlo (MCMC) used for sampling has dif-
ficulties in visiting both very gapped sequences and gap-
free region of the sequence landscape in a proper way,
i.e. proportionally to the correct Boltzmann weight. This
leads to a systematic bias in the model statistics. For the
Beta-lactamase2 family PF13354, we used a slightly dif-
ferent procedure: we downloaded the Pfam pHMM model
for that family, and we scanned the NCBI database to
obtain aligned sequences. We then filtered sequences ac-
cording to two criteria: (i) 80% sequence coverage (i.e.
less than 20% gaps) and (ii) redundancy reduction at 80%
(soMeff ≈M in this case). We also removed the sequence
TEM-1 (which is used as reference in the deep mutational
scanning, as discussed below), and all sequences very sim-
ilar to it. Note that because there are overlapping Beta-
lactamase families in Pfam, our procedure, based on a
single pHMM, gives also sequences that would align bet-
ter to some other family in Pfam, in particular to the
Beta-lactamase family PF00144.

In Table I we show the name of the protein domain
associated with each family, the length, i.e. the number
of columns L of the multiple sequence alignment (MSA),
the number of sequences M of the original MSA and
Meff , the number of statistically relevant sequences after
a standard re-weighting of close-by sequences [14].

3. Training protocol

We specify here the details of the Boltzmann learning
used to train the dense Potts model and to refine the
non-zero parameters within the decimation run.

First, we compute the data statistics from the input
MSA as

fi(a) = (1− α)f emp
i (a) +

α

q
, (A4)

fij(a, b) = (1− α)f emp
ij (a, b) +

α

q2
, (A5)

with f emp
i (a) and f emp

ij (a, b) being the one- and two-

site frequencies computed from the MSA (for all po-
sitions i, j and amino acids a, b), and with α being a
pseudo-count [42] introduced to avoid divergent fields
and couplings associated with poor statistics. Here we
set α = 1/Meff except for the PF13354 family for which
we set α = 10−50 (we observed that other values of the
pseudo-count do not lead to a significant change of the
trained models). Then, we start from a profile model,
i.e. all couplings are set to zero and the fields are equal
to hi(a) = log[fi(a)] + Hi with Hi a constant ensuring∑
a hi(a) = 0. Subsequently we iteratively refine the

parameters according to Eq. (2), using as learning rate
ηJ = ηh = 5 · 10−2. We stop the algorithm when the
convergence error ε, computed as the maximum error
attained in the fitting of the two-site connected corre-
lations,

ε = max
i,j,a,b

|fij(a, b)− fi(a)fj(b)− pij(a, b) + pi(a)pj(b)| ,
(A6)

reaches 10−2 (this value may slightly change depending
on the family, up to 5·10−2 for the PF13354 family which
is the most difficult to train). At each iteration, we use
Metropolis-Hasting MCMC to compute the model statis-
tics pi(a) and pij(a, b). We run Nchain independent MC
chains, with Nchain = 3000 for PF00014 and PF00595,
Nchain = 1000 for the longer PF13354, and Nchain = 5000
for the copious families PF00072 and PF00076. The
chains are initialized at the first iteration from a uni-
form independent random distribution over all possible
amino-acids, gap included, and are then persistent over
iterations, i.e. at each new iteration the chain is initial-
ized from the last configuration of the previous iteration.
Each chain runs for Teq = 20 MC sweeps (one sweep cor-
responds here to L single-site Metropolis-Hastings MC
steps) before starting to sample 10 configurations spaced
by Twait = 10 MC sweeps. Hence, the total number of
generated samples in a single iteration is 10 × Nchains

(from 104 to 5 · 104 depending on the family), and each
chain is evolved by 110 MC sweeps in a single iteration.

4. Sampling protocol

Once the training is complete, for the final set of pa-
rameters of the Potts Model, we need to generate a new
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Identifier PF00014 PF00072 PF00076 PF00595 PF13354

Protein domain Kunitz domain Response regulator receiver domain RNA recognition motif PDZ domain Beta-lactamase2

L 53 112 70 82 202

M 13600 823798 137605 36690 7515

Meff 4364 229585 27785 3961 7454

TABLE I. We show here the Pfam identifier, the name of the protein domain, the length, the number of sequences and the
effective number of sequences for the families analyzed in our work.

sample, from which we compute the model statistics to be
compared with the MSA statistics. As in training, the
MCMC method used for the sampling is the standard
Metropolis-Hasting algorithm, using Nchain independent
MC chains, initialized from a uniform independent ran-
dom distribution over all possible amino-acids, gap in-
cluded. Each chain is evolved for Teq MC sweeps in order
to achieve equilibration, before we start collecting sam-
ples, the waiting time between each sampled configura-
tions being Twait MC sweeps. We specify in Table II the
values of Nchain, Teq and Twait and of the total number of
collected samples, MMC. Note that the conditions for the
sampling are different from those used in the learning.

We also compute, for each model, the Hamming dis-
tance dH(t) between an equilibrium configuration and
its time evolution under the MCMC dynamics after t
MC sweeps (averaged over initial configurations and over
the dynamics), see Fig. 6. Obviously, dH(0) = 0 and
for short times, dH(t) grows linearly, with a coefficient
given by the acceptance rate of single-site mutations in
the MCMC dynamics. At long times, dH(t → ∞) sat-
urates at the average distance between two independent
samples from the Potts Model equilibrium distribution.
This quantity can also be computed by measuring the
Hamming distance between two independent MC chains,
after equilibration, and is reported as a red horizontal
line in Fig. 6. The time it takes for dH(t) to reach its
asymptotic value gives an estimate of the decorrelation
time of the MCMC dynamics, i.e. the time needed to
generate a new independent equilibrium sample.

We observe that for PF00014, PF00072 and PF00076,
the decorrelation time is of the order of 102 MC sweeps,
and independent of sparsity, which suggest that the
model is sampled in equilibrium during the learning pro-
cess. In fact, we obtain exactly the same model statistics
upon resampling the model in different conditions.

For PF00595 the decorrelation time is ≈ 103 MC
sweeps for the dense model. Because our training is

Identifier PF00014 PF00072 PF00076 PF00595 PF13354

MMC 30000 30000 30000 30000 30000

Twait 60 80 60 90 100

Teq 10000 50000 30000 50000 50000

Nchain 100 100 100 100 300

TABLE II. We report here the details of the MC sampling
performed to evaluate the model statistics.

done with persistent chains, and a small learning rate, we
still believe that proper equilibrium sampling is achieved
during learning. This is confirmed by the fact that we
reproduce the same model statistics under resampling.
Furthermore, we observe that the decorrelation time is
reduced upon sparsifying the model, which suggests that
the sparse models are less critical, as we discuss below.

For PF13354 the situation is radically different. In
this case, the decorrelation time is huge (more than 104

MC sweeps for the dense model). This is likely due to
the presence of multiple subfamilies, such that the MC
chains take a lot of time to jump from one subfamily to
another. With such a long decorrelation time, learning
becomes extremely hard and we cannot guarantee that
equilibration is achieved during it. In fact, we find that
upon resampling the model starting from random initial
states, the statistics is initially good (after ≈ 2×104 MC
sweeps) but then is degraded, indicating that the model
suffers from overfitting due to poor equilibration during
learning. For the sparse models, the decorrelation time
is substantially reduced (by almost a factor 100), and
consistently we find that resampling is stable at all times.

Appendix B: Results for the other protein families

In this section we report the same type of results shown
in the main text for PF00076, but for the four remaining
families: PF00014, PF00072, PF00595 and PF13354.

1. Fitting quality

To evaluate the quality of the sparse models we com-
pute, for each possible density, the Pearson correlation
coefficients between a certain type of statistics computed
from the empirical data (the MSA) and the model (via
MCMC). More precisely, we focus on one-site frequencies
and two- and three-site connected correlations, as defined
in Eq. (7). To select the indices of the most significant
three-site connected correlations we have first extensively
scanned all possible triplets and computed the empirical
frequencies for all possible color assignment. We then
keep the elements cijk(a, b, c) with empirical absolute val-
ues above 10−4: only for those elements we compute the
corresponding model correlations, in order to limit the
computational cost. The model correlations are com-
puted from a set of samples generated via the MCMC
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FIG. 6. Averaged Hamming distances between an equilibrium sequence at time t = 0 and the evolved sequence after t MC
sweeps. The average is computed using 104 independent MC chains.

procedure described in Appendix A.

In Fig. 7, we show the Pearson correlation coefficients
for the three metrics between the data and the mod-
els as a function of the model density, for the PF00014
(a), PF00072 (b), PF00595 (c) and PF13354 (d) fami-
lies. For all families, the Pearson coefficient maintains
almost the same value reached for the densest (fully con-
nected) model up to a density of about 10%. When the
density goes below 10%, the Pearson coefficient gradually
decreases for all families; not surprisingly, the reduction
associated with the three-site connected correlations is
more pronounced, because this more-than-two-site cor-
relation is not explicitly fitted by BM learning.

The case of PF13354 is special because, for the rea-
sons discussed in Appendix A, the learning, which is
done using rather short waiting times between samples,
suffers from a very long decorrelation time in the dense

case. Hence, the resampling degrades when MC chains
are evolved for long times, which explains why the Pear-
son coefficients are poor for d > 20%. For d < 20%, the
decorrelation time becomes much shorter, and the resam-
pling is stable over time, but the Pearson coefficients get
progressively degraded when d is reduced, as for the other
families. The optimal compromise seems to be d ≈ 20%
for this atypical family.

2. Contact prediction

The APC-corrected Frobenius norms associated with
the couplings can be used for scoring each pair of sites of
the MSA (cf. main text). As already explored in litera-
ture, this score correlates well with the physical distances
between pairs of residues in the three-dimensional struc-
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FIG. 7. Pearson correlation coefficients between the three chosen metrics (first moments, two-site and three-site connected
correlations) of the data and the sparse models as a function of the density. Each panel (a), (b), (c) and (d) is associated with
a different family, respectively, PF00014, PF00072, PF00595, PF13354.

ture of the protein domains. Larger Frobenius norms
suggest larger probabilities of a physical interaction. As
usual, we try to estimate the quality of the sparse models
through a set of Positive Predictive Value (PPV) curves
associated with the prediction of contacts. As reference
structures we use those extracted from [34], a tool that
outputs the shortest relative distance of pairs of residues
over all known crystal structures registered in the Pro-
tein Data Bank (PDB) database [35]. In Fig. 8, we show
the PPV curves for a sub-set of the sparse models (the
density is mapped to a different color of the lines) to-
gether with the result of plmDCA [10] used here as com-
parison (red lines). Even keeping only 10% of the cou-
pling parameters, i.e. when 90% of them are removed by
the decimation procedure, the accuracy of the contact
prediction remains stable, that is the performances are
comparable to those of the fully connected models. The
comparison to plmDCA is instead heterogeneous: as found
in [12], the Boltzmann machine learning can have com-
parable performances to plmDCA as for PF13354 in panel
(d), slightly worse as for PF00014 and PF00072 in panels
(a), (b), or slightly better as for PF00595 in panel (c).

3. Coupling distribution

Because the couplings mirror a physical interaction
among residues, one may guess that the more we dec-

imate the model, the more we decimate the couplings
not associated with residues in contact. Similarly, one
may expect that the more a coupling is important in
terms of three-dimensional structure, the larger will be
its strength, hence it will be preserved by the decimation.

To check whether this is the case, we plot in
Fig. 9, for PF00014 (a), PF00072 (b), PF00595 (c) and
PF13354 (d), the distributions of the couplings linking
residues in contact (panel 1) and not in contact (panel
2); the values of the corresponding densities are indicated
in the legend. We note that as we reduce the density of
the couplings, those corresponding to residues in contact
are slightly enhanced (indeed, the original red histograms
in Fig. 9 for the dense models are shifted to slightly larger
values in the sparse case), but we do not observe a signif-
icant change in the tails of the distributions, as discussed
in the main text.

4. Criticality

Dense Potts models are generally very sensitive to a
perturbation of their model parameters: a slight change
of the couplings or the fields leads to a dramatic trans-
formation of the model statistics, which thus seems to be
close to a phase transition, i.e. to be critical. A good
measure of the criticality of statistical models is repre-
sented by the heat capacity, which is obtained by apply-
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FIG. 8. Positive predictive value (PPV) curve for the other protein families associated with the contact prediction of several
sparse models, from yellow to black lines. As a comparison we show the PPV curve (red line) obtained by the state-of-the-art
method for this task, plmDCA.

ing a global variation to the parameters, J → J/T, h→
h/T , and measuring the derivative of the average internal
energy with respect to the temperature,

C(T ) =
∂〈H〉T
∂T

=
1

T 2

(
〈H2〉T − 〈H〉2T

)
. (B1)

The averages in Eq. (B1), denoted as 〈.〉T , are eval-
uated by sampling a system with Boltzmann weight
exp{−H/T}. Standard thermodynamic identities also
show that TC(T ) = ∂S/∂T , where S(T ) is the entropy
of the model. The model criticality is related to the mag-
nitude of C(T ) in the vicinity of T = 1, which expresses
how quickly the model entropy (or energy) varies under
a small rescaling of all couplings.

Fig. 10 shows the behavior of the heat capacity C(T ) as
a function of the temperature T for the models associated
with the four families analyzed here: the color of the lines
depend on the value of the density of the corresponding
model, which spans the range (1, 90)%. We observe that
for all families, upon sparsifying the model, (i) the heat
capacity is reduced rendering the model less sensitive to
changes in the model parameters and/or (ii) the peak
slightly shifts towards a temperature smaller than T = 1,
the natural temperature of the learning. In all cases, the
value of C(T = 1) decreases upon sparsifying the model.
This observation suggests that a dense model learned by
the empirical data is indeed close to a phase transition,
but the criticality disappears (or decreases substantially)

for the statistically equivalent sparser models. Hence, we
conclude that the sensitivity of the dense model is related
to over-fitting. Note that the suppression of criticality is
also suggested by the reduction of the decorrelation time,
as discussed in Appendix A.

5. Mutational landscape prediction

Similarly to the analysis we proposed in the main text
for the PF00076 landscape and the experimentally de-
termined single and double-mutants fitness, we show in
Fig. 11 the Spearman correlation coefficient, as a function
of the density, between the energy variation (computed
according to our models) and the experimental fitness as-
sociated with single-residue mutations. Here we consider
the libraries of single mutants for the Beta-lactamase2
domain of the TEM1 protein [43] (here the fitness is re-
lated to antibiotic resistance) and for the PDZ3 domain
of the PSD95 protein [44] (here the fitness refers to the
CRIPT ligand), which we assume to be described by the
models for PF13354 and PF00595 families, respectively.
As shown in Fig. 11, the correlation coefficient (spBM
lines) between the experimental measures and the energy
differences of our models are mostly constant as a func-
tion of the density; only a smooth increment (drop) is
appreciated for densities smaller than 10−1 for PSD95
(TEM1). We remark that even in the sparsest case,
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(a1)

(a2)

(b1)

(b2)

(c2)

(c1) (d1)

(d2)

FIG. 9. Distribution of the couplings associated with residues physically in contact (labeled ‘1‘ histograms) and with residues
not in contact (labeled as ‘2‘ histograms) for two different densities. Panels (a), (b), (c) and (d) refer to PF00014, PF00072,
PF00595 and PF13354 respectively.

the Spearman correlation coefficient never crosses that
obtained from a pure profile model (denoted as prof )
suggesting that the remaining non-zero couplings of our
sparse models are fundamental for the good description
of the fitness landscape.

Appendix C: Additional results on PF00076

To complete the analysis described in the main text, we
propose here a set of additional results for the PF00076
family. More precisely, we compare the learning and
decimation strategy used in the main text and in Ap-
pendix B (initialize the parameters in the profile model,
learn a dense model until convergence, then perform dec-
imation) to several different initializations of the learn-
ing and to other decimation strategies based on different
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FIG. 10. Heat capacity as a function of the temperature T for the other protein families PF00014, PF00072, PF00595 and
PF13354 in panels (a), (b), (c) and (d) respectively.
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FIG. 11. Spearman correlation coefficient between the energy
variations computed according to the sparse models (spBM
lines) and the experimentally determined fitness variations of
a set of single mutants, for the TEM1 (PF13354) and PSD95
(PF00595) proteins. The dashed lines show the results of the
Spearman correlation coefficients when the energy variations
are computed by the profile models of the corresponding fam-
ilies.

metrics. We also investigate the nature of the decimated
couplings, via the statistics of the second moments asso-
ciated with them, to stress the non-trivial nature of the
symmetric Kullback-Leibler based decimation.

1. Decimation strategies

The method presented in the main text uses
as criterion (or score) for the iterative decimation
an information-theory based measure, the symmet-
ric Kullback-Leibler divergence (symKLD) between the
model with or without a certain coupling. As a result,
the decimation score of each coupling takes into account
both its statistical relevance (related to the second mo-
ments associated with it), and the strength of the cou-
pling alone. We compare here the results presented in the
main text to two simpler strategies where at each decima-
tion step a) we remove 1% of the weakest couplings or b)
we remove 1% of the couplings associated with the lowest,
hence less statistically significant, two-site frequencies.

In Fig. 12, in the left panels, we compare the three pos-
sible decimation procedures using as comparison metric
the fitting quality of the sparse models. We show the
Pearson correlation coefficient of the empirical data and
our sparse models predictions, as a function of the den-
sity, for the first moments (panel a), the two-site (panel
b) and the most relevant three-site (panel c) connected
correlations, respectively. Among the three procedures,
that based on the two-site frequencies gives the poorest
results, as it always provides the lowest Pearson up to
density≈3% where the algorithm fails to converge, mean-
ing that it is no more able to fit the statistics associated
with the non-zero parameters. The decimation based on
the coupling strength outperforms the frequencies-based
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FIG. 12. Left panels: Pearson correlation coefficients between (a) the first moments, (b) the two- and (c) three-site connected
correlations of each model (varying the density) compared to the empirical data. The lines are colored according to the metrics
used within the decimation procedure: the symmetric Kullback-Leibler distance, the strength of the couplings or the two-site
frequencies. Right panels: same plots, but varying the initial condition of the dense model learning. All data are for the
PF00076 family.

one but the Pearson coefficients, for all comparison met-
rics, is systematically lower than that of the symKLD-
based decimation.

In addition to the fitting quality, we compare the three
methods looking at the contact prediction PPV curves,
shown in the top panel of Fig. 13, varying the model
density. It is worth noting that all procedures, for all
densities (except 3.2% using a frequency-based measure)
perform equally well.

We also considered a standard network selection strat-
egy, in which we first learn a series of dense models with a
`1-norm regularization at different strength γ, i.e. Eq. (2)
for the couplings is modified to

δJij(a, b) = ηJ [fij(a, b)− pij(a, b)]− γsgn(Jij(a, b)) .
(C1)

At convergence, all couplings such that |fij(a, b) −
pij(a, b)| < γ thus have zero gradient and are considered
as decimated. In this way one can obtain PMs of dif-
ferent density d by tuning γ. After selection, the sparse
PMs is trained again keeping the decimated couplings to
zero, but without the `1-norm regularization for the non-
decimated couplings, until convergence. The results for
this procedure are reported in Fig. 14, and are outper-
formed by the symDKL-based procedure.

2. Decimated couplings

As mentioned in the previous section, the couplings
that are decimated at each iteration are either associated
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FIG. 13. Positive predictive value for each decimation pro-
cedure (top) and for each initial condition (bottom) for the
PF00076 family.

with poor statistics, i.e. pairs of residues that are rarely
or very frequently observed in two specific positions, or
their strength is very small rendering their contribution
in the Boltzmann weight negligible. It is interesting to
quantify how many decimated couplings fall into the first
or second class, as a function of the density. To this pur-
pose we plot in Fig. 15 the empirical cumulative density
function of the (logarithms of) the two-site empirical fre-
quencies associated with the decimated couplings. We
report in the same plot several curves depending on the
density of the considered model: more specifically we
observe the cases d ∈ {90.7, 69.9, 49.7, 12.2, 3.2}%. The
values of log10[fij(a, b)] in the range [−5,−4.3] empiri-
cally correspond to pairs of residues (a, b) appearing one
time in position (i, j). Note that, although these frequen-
cies are associated with a single occurrence, they span
an interval, i.e. they are not always equal to the same
value, because their computation takes into account the
re-weighting protocol described in Ref. [14], in which each
sequence may have a statistical weight smaller than one.
Therefore, the value of the cumulative density function
in log10[fij(a, b)] = −5 gives the fraction of decimated
couplings associated with the pairs (a, b) that are never
observed in sites (i, j). We see that this quantity changes
as a function of the density: when the model is quite
dense (for values of d = {90.7, 69.9, 49.7}%) about 70 %
of the decimated couplings corresponds to never observed
statistics and thus only 30 % are associated with negligi-
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FIG. 14. Pearson correlations (top) and positive predictive
value (bottom) for the decimation via `1-norm regularization,
for the PF00076 family, compared with those reported in the
main text.
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FIG. 15. Cumulative density function of the logarithms of the
two-site frequencies associated with the decimated couplings
for the sparse models having densities d = 90.7%, d = 69.9%,
d = 49.7%, d = 12.2% and d = 3.2%. The data refers to the
PF00076 and the decimation is performed according to the
standard protocol described in the main text.

ble couplings. As the model becomes sparser and sparser
the fraction reduces and reaches about 30 % for the spars-
est models: here about 70 % of the decimated couplings
are associated with a rich statistics but nonetheless their
contribution to the Boltzmann weight is negligible.
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3. Initialization of the learning for the dense
Boltzmann machine

An intrinsic difficulty arises when comparing statistical
models for protein sequences: the set of parameters that
are able to reproduce the empirical statistics well and also
give a good contact prediction is not unique. Therefore,
giving a clear interpretation of the fields and the cou-
plings of the inferred Potts model, i.e. to detect which
variables are sufficient to characterize the target ensemble
of protein sequences, is a challenging task. When the suf-
ficient set of observables is not known, and one attempts
to fit all possible pairwise couplings and single-site statis-
tics through the Boltzmann machine learning, it is com-
mon to encounter ‘flat’ directions of the log-likelihood
landscape, where the learning usually converges (as any
attempt at modifying the parameters does not lead to
any significant improvement). The parameters found at
convergence thus strongly depend on the initial condi-
tions.

Here we evaluate how the results of the decimation pro-
cedure are affected by the dense model used as starting
point, which in turn depends on the initial conditions of
the parameters. For this comparison, we consider three
distinct initial conditions for the initial learning of the
dense model: (a) the profile model (h = hprofile, J = 0,
used for the results presented in the main text), (b) the
parameters from pseudo-likelihood maximization (h =
hplmDCA, J = JplmDCA), as implemented in plmDCA [10],
and (c) a null initial condition for all model parameters
(h = 0, J = 0). We then let the Boltzmann machine
learning converge, and we use the converged Potts model
as the starting model of the decimation run described in
the main text.

In the right panels of Fig. 12 we show the Pearson
correlation coefficients between the empirical frequencies
fi(a) and the model frequencies pi(a) (in panel (a)), and
the two-site and three-site connected correlations of the
empirical data and of the sparse models, for panels (b)
and (c) respectively. When all parameters are initialized
to profile we reach the larger Pearson correlation coef-
ficients, for all the three measures and for all densities.
The plmDCA and zeros initializations have comparable
results, and they reach Pearson correlation coefficients
equal to those of the profile initialization only for the
first moment in the high density regime.

In addition to the fitting quality, we can compare the
three different initializations through the contact map
prediction. We observe in Fig. 13 that all the three strate-
gies, independently of the density, provide very similar
contact prediction as the associated PPV curves com-
pletely overlap.

4. Online learning

In our decimation protocol, we proceed with a new
decimation step only when the learning has reached con-
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FIG. 16. Pearson correlation coefficients for the online learn-
ing (blue line), for K = 10, 20, 40, compared to the converged
run (red line) as a function of the density, for the one-site
frequencies (a), two-site (b) and three-site (c) connected cor-
relations.

vergence. Starting from a well converged dense Potts
model, and decimating only 1% of the couplings at the
time, allows us to modify smoothly the remaining pa-
rameters during the decimation. Indeed, we empirically
observe that most of the times two consecutive decima-
tions are separated by just a few learning steps. However,
the entire protocol requires to learn a dense model first,
which can be time-consuming.

We thus explored an alternative strategy in which the
decimation is performed on-line, i.e. within a unique
learning run. Here the decimation step is applied either
because the learning has performed K steps or because
it has reached the tolerance required for convergence. In
these experiments, we start from a set of parameters cor-
responding to the profile model (as in the protocol il-
lustrated in the main text) for PF00076 and we proceed
with the decimation step every K = 10, 20, 40 steps.
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FIG. 17. Comparison between the Positive Predictive Value
(PPV) curve obtained for the online (for K = 10, 20, 40) and
converged runs at two different densities, 72% and 3.2%. All
data are for the PF00076 family.

In Fig. 16 we compare the Pearson correlation coeffi-
cient between the one-site frequencies (panel a), two-site
(b) and three-site (c) connected correlations, of the data
and the models obtained by the two different strategies:
we refer to the conventional method as converged (corre-
sponding to K → ∞) while the on-line learning method
is characterized by the number K of steps. It is worth
noting that, at convergence, both strategies, and inde-
pendently of K, reach the same fitting quality even in
the three-site connected correlations. For completeness,
we show in Fig. 17 the contact prediction performance
of the converged and on-line runs for densities equal to
72% (panel a) and 3.2% (panel b). In the denser case
(when we consider 72% of non-zero couplings) the con-
verged run outperforms the on-line learning for any K.
This can be explained by the poor fitting quality reached
by the on-line runs at the initial steps of the algorithm,
that is when the model is still inaccurate in fitting the
two-site frequencies. It is worth noting that, in the sparse
regime, i.e. for density equals to 3.2%, all the strategies
show comparable results, qualitatively similar to the per-
formance of the dense case (Fig. 17a).

Although the results of the on-line run resemble those
of the converged run for the very sparse models, the on-
line procedure is not always advantageous from the point
of view of the running time. We notice that, depend-
ing on the family, a unique learning-decimation run may

have problems fitting the statistics, i.e. to converge, be-
cause the decimation affects and ‘deviates’ the learning
of the machine, for small K. To cure this issue, one may
think of increasing the number of steps between each dec-
imation. However, this results in a very slow procedure,
because we remove 1% of the couplings every (large) K
steps. Instead, if the model is well converged first, then
convergence is achieved quite fast after each decimation,
resulting in a faster procedure overall.

Appendix D: Sequences similarity

The defining feature of generative models is the ability
to generate configurations that are statistically equiva-
lent to those used within the training process, but sub-
stantially different in the residue composition, i.e. a good
generative model should not just reproduce the sequences
of the training set. Hence, it is important to quantify
the distances between generated samples and the train-
ing data. For this purpose, we employed the following
metrics, introduced in [45, 46]:

DY (x) = min
y∈Y

D(x, y) , DXY =
1

NX

NX∑

n=1

DY (xn) .

(D1)
where X and Y are ensembles of the generic statisti-
cal variables x and y, D(x, y) is a certain distance de-
fined for the sequences x and y. The metric DY (x) com-
putes the minimum distance of the sequence x reached
when compared to each of the possible sequences in the
ensemble Y ; the quantity DXY is instead the average
value of DY (x) over the ensemble of X. In our problem,
we choose D(x, y) as the Hamming distance between se-
quence x and sequence y and the ensembles X and Y are
respectively t (the training set) and s, the synthetic se-
quences generated from the sparse Boltzmann machines.
A proper generative model would produce comparable
Dst and Dss and, concurrently, the two measures must
be sufficiently large (practically 20% of sequence sim-
ilarity is required for good training sets). This corre-
sponds to a scenario where generated sequences are vari-
able (large Dss), and similarly distant to natural or the
other generated sequences (Dss ' Dst). This corresponds
to a scenario where the average distance between each
pair of generated sequences is comparable to that ob-
tained between the two ensembles t and s: therefore,
the generated synthetic sequences are indistinguishable
from the natural sequences using distance based methods
(like nearest-neighbor classification, distance based clus-
tering). A similar argument can be applied to Dts. In
Fig. 18, we show the average distances Dts, Dst and Dss

for each protein family; we do not show the Dtt measure
which is obviously constant for all densities, and takes
values Dtt(PF00076) = 0.308, Dtt(PF00014) = 0.0917,
Dtt(PF00072) = 0.421, Dtt(PF00595) = 0.295, and
Dtt(PF00076) = 0.445. Because of the phylogenetic re-
lationship among sequences, the training set is composed
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of similar (correlated) sequences and, as a consequence,
the Dtt is significantly smaller than the other distance
metrics. Regarding Dts, Dst and Dss we notice that, as
the density of the couplings decreases, the distances re-
main unchanged up to a density in the range 10% - 20%,
depending on the family. Then the minimum average
distance significantly increases which suggests that the
synthetic sequences are distributed more broadly in the

sequence space as the number of model parameters de-
creases. Besides, the difference betweenDts, Dst, andDss

decreases for most of the protein families, in the sparse
regime, suggesting that the synthetic sequence ensembles
and the set of the natural sequences become more and
more statistically similar for increasing sparsity. We can
conclude that, according to these metrics, the decimation
improves the generative properties of the model.
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FIG. 18. Sequence variability for all the protein families considered in this work. We plot Dts, Dst and Dss as a function of
the density using blue, orange and green lines, respectively, for PF00076 (panel a), PF00014 (b), PF00072 (c), PF00595 (d),
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3.3 Interpretation of couplings

Here are some additional results related to the three questions we asked at
the beginning of this section.

3.3.1 Discrepancy of contacts and non-contacts

Since the accuracy of the contact predictions is maintained even in the case
of the very low coupling densities (d ∼ 5%), the non-decimated couplings
may tend to correspond with contacts. Intuitively, the difference between
the probability of couplings for contacts and non-contacts is expected to
becomes more noticeable as the density d decreases. Here, probabilities of
couplings for contacts, pc(J), and non-contacts, pn(J), are defined as the
probability densities of interactions Jij(a, b) for distances between residue-
pairs i < j smaller than 8Å and greater than 8Å , respectively. We introduce
the Jensen–Shannon divergence (JSD), a distance between two probability
distributions 1

JSDtot =
1

2
DKL(pc‖q) +

1

2
DKL(pn‖q) =

∫ +∞

−∞
dJf(J) , (3.1)

where q = (pc + pn)/2 and f = pc log(pc/q) + pn log(pn/q). We define the
relative cumulative contribution of couplings smaller than J to JSD as

JSD(J) =

∫ J
−∞ dJ ′f(J ′)

JSDtot
. (3.2)

Fig. 3.1.a and Fig. 3.1.b show histograms of the coupling for both
contact and non-contact couplings for a dense and a sparse model. Both
probability densities, pc and pn change around J ∼ 0 while diluting the cou-
plings. Interestingly, contact density pc becomes slightly more pronounced
by the coupling decimation at both tails (0� |J |).

We can observe that JSD(J) changes more abruptly around J ∼ 0 for
the dense model. In contrast, this change is smoother and in a broader re-
gion for the sparse mode. In particular, there are significant contributions
to JSD(J) in the tails of the distribution.

1The JSD is definable for all domains R even if the support of two distributions namely
pA and pB are different, therefore it meets our study.

82



J

PF00076, density=90.7%

PF00076, density=1.6%

density

PF00076, Jensen-Shannon divergence

JSD (J)

JSD (J)

co
un

t
co

un
t

(a)

(b)

(c)

Figure 3.1: (a) Distributions of couplings for contact (red) and non-contact
(blue) for a fully connected PPM with density d = 90.7% (some couplings
are zeros due to the gauge choice as mentioned Sec. 2.4.2). The blue line
shows cumulative JSD(J). (b) Same for a sparse model with d = 1.6%. (c)
It shows the JSD(J) as a function of the density d. We used the data set of
PF00076, which is also used in the article [92].
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Apparently, both contact and non-contact coupling parameters could in-
crease as decreasing the coupling density d (cf. Fig. 9 in [92]). However,
the rate of increase in the contact coupling parameters is much more pro-
nounced than that of non-contact coupling parameters.

Empirically, residue contact predictions by the standard {FAPCij } are not
substantially changed under the decimations, whereas coupling distributions
between contacts and non-contacts become more distinguishable. It would
be interesting to exploit this discrimination in further studies.

By removing redundant couplings, the remaining couplings tend to be
more enhanced to compensate for the removed couplings. The decimated
weak correlations can probably be reproduced by contact couplings, whereas
remaining non-contact couplings cannot significantly affect decimated cor-
relations. Therefore, contact couplings are enhanced while non-contact cou-
plings remain small.

3.3.2 Non-decimated and non-structural couplings

As shown before and in the article, large couplings Jij(a, b) that do not
correspond to contact pairs remain in the set of non-decimated couplings
(even at d = 1.6%, there are non-contact couplings |J | > 0.5, cf. Fig.
3.1). Such non-decimated and non-contact couplings are also considered
essential parameters in KLD-based parameter selection. Sometimes, non-
decimated couplings correspond to too spatially distant residue pairs, even
for long-range Coulomb interactions. Several explanations are possible for
these non-decimated couplings. They could be associated with the underly-
ing phylogeny, distant allosteric interactions and/or the molecular dynamics
of the protein.

Fig. 3.2 shows some coupling matrices Jij containing particularly strong
couplings Jij(a, b) in the sparse model (d = 1.6%). The coupling matrices of
the sparse model show that the number of strong couplings pairs in contact
is significantly greater than for pairs that are not in contact 2. By con-
struction, the coupling matrices in the sparse model contain a small number
of finite couplings. Therefore, it is likely that those couplings that are not
decimated are statistically important. However, the interpretation for the

2It is suggestive that using the L1 norm as the Frobenius norm may give better contact
predictions than in the case of the L2 norm.
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non-contact and non-decimated large couplings remains unclear.

Notably, the numbers of large entries in sparse non-contact coupling
matrices are significantly fewer than the case in sparse contact coupling ma-
trices. Therefore, instead of taking the L2 norm for converting the coupling
matrices to Frobenius norm, it could be interesting to apply L1 or L0 norm
to improve residue-contact predictions in further studies.
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Figure 3.2: (a) Contact map (left) and the APC score matrix (right) for
protein doamin, RNA biding domain (Pfam ID, PF00076). In the right
panel, the upper left triangle and the lower right triangle are results for
sparse model (d = 1.6) and dense model (d = 90.7), respectively. (b) Heat
maps of coupling matrices Jij for pairs that are close (< 3 Å) and have
strong couplings (Jij(a, b) > 0.5) in the sparse model. (c) The same type
of heat maps but for non-contact pairs (> 11 Å). There are a few strong
coupling entries in non-contact coupling matrices. However, the number of
strong coupling is much smaller than the contact coupling matrices, and the
difference is more pronounced in the sparse model.
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As a last remark, the coupling matrices Jij ∈ RL×L tends to have non-
zero coupling parameters only between certain amino-acid states as shown in
Fig. 3.2. Therefore, Jij are essentially low-rank matrices and assuming the
low-rank structure for coupling matrices, such as Jij(a, b) ∼

∑
µ v

µ
ij(a)vµij(b),

or equivalently assume a statistical model p(A) ∝ exp
(∑

µ

∑
i<j v

µ
ij(Ai)v

µ
ij(Aj)

)

3 might reflect well features of the estimated couplings parameters for pro-
tein sequences. The following section will introduce a statistical generative
model that considers a low-rank structure for the coupling matrices.

3.4 Conclusion

In this chapter, we proposed pairwise-Potts models or Boltzmann machines
for protein sequences that depend only on statistically important parame-
ters. Using this method, we can decimate coupling parameters by about
90% while maintaining the reproducibilities of statistics and diversities of
the generated samples, which are the expected properties as generative mod-
els. Note that a pairwise Potts model that reduces the number of coupling
parameters by introducing a strong L1 regularization does not reproduce
statistics as accurately as the proposed model (cf., Sec. 3.2).

By reducing coupling parameters, the model obtains the following ad-
vantages:

1. The original models are sensitive to the global perturbations of the
coupling parameters. That is, these are in a state of over-learning, but
the the proposed parameter-reduced models became more robust (cf.
Fig. 4 in Sec. 3.2).

2. The increasing rate of parameters involved in physical contact is sig-
nificantly greater than the case of non-contact couplings (cf. Fig. 3.1).

As Fig. 3.2 shows, the distribution of a finite number of elements in each
coupling can be a useful measure to distinguish whether the pair is in contact
or is not in contact. Further analysis should be done based on these insights.

3The fixed point equation for a paramter vµij(a) becomes a simple modification of the
case of PPM, ∑

b

fij(a, b)v
µ
ij(b)−

∑
b

pij(a, b)v
µ
ij(b) = 0 ,

where pij(a, b) is a two-point frequency of the assumed model.
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The accuracy of residue-residue contacts may be further improved by
evaluating whether the estimated coupling parameters are significantly dif-
ferent from the background noize by statistical tests [93, 94].
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Chapter 4

Selection of variables and
low-rank model

4.1 Motivation

Despite their great success, DCA-based methods have drawbacks. In most
situations, they depend on too many model parameters that need to be
learned with a limited number of protein sequences. Thus over-learning
problems are likely to happen. Moreover, the number of DCA parameters is
necessarily high in order for these models to be generative, but a majority of
these parameters are notably small and do not correspond to spatial inter-
actions. Lastly, the choice of statistical variables or observables in MaxEnt
modeling is still subjective. It might obscure the underlying simpler model
for protein sequences.

As mentioned in Sec. 3.3.4, the coupling matrices can be low-rank matri-
ces (cf. Fig. 3.2 ). This result is consistent biologically. Amino acids located
on the protein surface are typically hydrophilic, whereas, those located in
the protein core are normally hydrophobic. Therefore each coupling matrix
shows specific amino-acid preferences. As a consequence, coupling matrices
can exhibit a low-rank structure. Regarding these problems and the nature
of the coupling matrix, the naturally emerging idea is to introduce a low-
rank structure into the PPM. Moreover, by assuming the low-rank coupling
matrices, effective number of parameter can be reduced.

Our contributions to this study are:

1. We show that even with a number of hidden variables (e.g., P =
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20 − 40), which is sufficiently smaller than the coupling matrix size
qL, RBMs can reproduce protein sequence statistics (Pearson values
of two-point correlations are ∼ 0.9).

2. We have proposed a framework that selects patterns based on the
likelihood contributions. Such selected patterns can classify protein
subfamilies successfully.

3. We show RBM with Gaussian hidden variables learns patterns similar
to the attractive mfHP patterns (Sec. 4.3.1).

4. We show the rotation invariance in the space of the pattern indices
can be fixed by using attractive mfHP patterns as initial conditions of
RBM patterns (Sec. 4.3.2).

5. We show the fewer patterns in RBMs, the more robust RBM statistics
will be to the global perturbations of the parameters (Sec. 4.3.3).

4.2 Article
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Statistical models for families of evolutionary related proteins have recently gained interest: In particular,
pairwise Potts models as those inferred by the direct-coupling analysis have been able to extract information
about the three-dimensional structure of folded proteins and about the effect of amino acid substitutions in
proteins. These models are typically requested to reproduce the one- and two-point statistics of the amino acid
usage in a protein family, i.e., to capture the so-called residue conservation and covariation statistics of proteins of
common evolutionary origin. Pairwise Potts models are the maximum-entropy models achieving this. Although
being successful, these models depend on huge numbers of ad hoc introduced parameters, which have to be
estimated from finite amounts of data and whose biophysical interpretation remains unclear. Here, we propose
an approach to parameter reduction, which is based on selecting collective sequence motifs. It naturally leads to
the formulation of statistical sequence models in terms of Hopfield-Potts models. These models can be accurately
inferred using a mapping to restricted Boltzmann machines and persistent contrastive divergence. We show that,
when applied to protein data, even 20–40 patterns are sufficient to obtain statistically close-to-generative models.
The Hopfield patterns form interpretable sequence motifs and may be used to clusterize amino acid sequences
into functional subfamilies. However, the distributed collective nature of these motifs intrinsically limits the
ability of Hopfield-Potts models in predicting contact maps, showing the necessity of developing models going
beyond the Hopfield-Potts models discussed here.

DOI: 10.1103/PhysRevE.100.032128

I. INTRODUCTION

Thanks to important technological advances, exemplified,
in particular, by next-generation sequencing, biology is cur-
rently undergoing a deep transformation towards a data-rich
science. As an example, the number of available protein
sequences deposited in the UNIPROT database was about 106

in 2004, crossed 10 × 106 in 2010, and 100 × 106 in 2018,
despite an important reorganization of the database in 2015
to reduce redundancies and, thus, limit the database size [1].
On the contrary, proteins with detailed experimental knowl-
edge are contained in the manually annotated SWISSPROT

subdatabase of UNIPROT. Although their number remained
almost constant and close to 500 000 over the past decade,
the knowledge about these selected proteins has been contin-
uously extended and updated.

This rapidly growing wealth of data is presenting both
a challenge and an opportunity for data-driven modeling
approaches. It is a challenge because for less than 0.5%
of all known protein sequences, at least, some knowledge
going beyond sequence is available. Applicability of standard
supervised machine-learning approaches is, thus, frequently
limited. However, more importantly, it is an opportunity since
protein-sequence databases, such as UNIPROT, are not large
sets of unrelated random sequences but contain structured
functional proteins resulting from natural evolution.

In particular, protein sequences can be classified into so-
called homologous protein families [2]. Each family contains
protein sequences, which are believed to share common an-
cestry in evolution. Such homologous sequences typically
show very similar three-dimensional folded structures and

closely related biological functions. Put simply, they can be
seen as equivalent proteins in different species or in different
pathways of the same species. Despite this high level of struc-
tural and functional conservation, homologous proteins may
differ in more than 70–80% of their amino acids. Detecting
homology between a currently uncharacterized protein and a
well-studied one [3,4] is, therefore, the most important means
for computational sequence annotation, including protein-
structure prediction by homology modeling [5,6].

To go beyond such knowledge transfer, we can explore the
observable sequence variability between homologous proteins
since it contains its own important information about the evo-
lutionary constraints acting on proteins to conserve their struc-
ture and function [7]. Typically, very few random mutations
do actually destabilize proteins or interrupt their function.
Some positions need to be highly conserved, whereas others
are permissive for multiple mutations. Observing sequence
variability across entire homologous protein families, and
relating them to protein structure, function, and evolution, is,
therefore, an important task [8].

Over the past years, inverse statistical physics [9] has
played an increasing role in solving this task. Methods,
such as direct-coupling analysis (DCA) [10,11] or re-
lated approaches [12,13] allow for predicting protein struc-
ture [14,15], mutational effects [16–18], and protein-protein
interactions [19]. However, many of these methods depend
on huge numbers of typically ad hoc introduced parameters,
making these methods data hungry and susceptible to overfit-
ting effects.

In this paper, we describe an attempt to substantially reduce
the amount of parameters and to select them systematically
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using sequence data. Despite this parameter reduction, we
aim at so-called generative statistical models: Samples drawn
from these models should be statistically similar to the real
data, even if similarity is evaluated using statistical measures,
which were not used to infer the model from data.

To this aim, we first review in Sec. II some important points
about protein-sequence data, maximum-entropy (MaxEnt)
models of these data, in general, profile, and DCA models, in
particular. In Sec. III, we introduce a way for rational selection
of so-called sequence motifs, which generalizes maximum-
entropy modeling. The resulting Hopfield-Potts models are
mapped to restricted Boltzmann machines (RBMs) (recently
introduced independently for proteins in Ref. [20]) in Sec. IV
to enable efficient model inference and interpretation of the
model parameters. Section V is dedicated to the application
of this scheme to some exemplary protein families. The con-
clusion and outlook in Sec. VI are followed by some technical
Appendices.

II. A SHORT SUMMARY: SEQUENCE FAMILIES,
MAXENT MODELS, AND DCA

To put our work into the right context, we need to review
shortly some published results about the statistical models
of protein families. After introducing the data format, we
summarize the maximum-entropy approach typically used
to justify the use of Boltzmann distributions for protein
families together with some important shortcomings of this
approach. Next, we give a concise overview over two dif-
ferent types of maximum-entropy models—profile models
and direct-coupling analysis—which are currently used for
protein sequences. For all cases, we discuss the strengths and
limitations, which have motivated our current paper.

A. Sequence data

Before discussing modeling strategies, we need to properly
define what type of data is used. Sequences of homologous
proteins are used in the form of multiple-sequence alignments
(MSAs), i.e., rectangular matrices (Am

i )m=1,...,M
i=1,...,L . Each of the

rows m = 1, . . . , M of this matrix contains one aligned pro-
tein sequence Am = (Am

1 , . . . , Am
L ) of length L. In the context

of MSA, L is also called the alignment width, and M is
called its depth. Entries in the matrix come from the alphabet
A = {−, A,C, . . . ,Y } containing the 20 natural amino acids
and the alignment gap “−.” Throughout this paper, the size
of the alphabet will be denoted by q = 21. In practice, we will
use a numerical version of the alphabet, denoted by {1, . . . , q},
but we have to keep in mind that variables are categorical
variables, i.e., there is no linear order associated with these
numerical values.

The PFAM database [2] currently (release 32.0) lists almost
18 000 protein families. Statistical modeling is most success-
ful for large families, which contain between 103 and 106

sequences. Typical lengths span the range of L = 30–500.

B. Maximum-entropy modeling

The aim of statistical modeling is to represent each protein
family by a function P(A), which assigns a probability to
each sequence A ∈ AL, i.e., to each sequence formed by L

letters from the amino acid alphabet A. Obviously, the number
of sequences, even in the largest MSA, is much smaller
than the number qL − 1 of a priori independent parameters
characterizing P. So we have to use clever parametrizations
for these models.

A commonly used strategy is based on the MaxEnt ap-
proach [21]. It starts from any number p of observables,

Oμ: AL → R, μ = 1, . . . , p, (1)

which assign real numbers to each sequence. Only the values
of these observables for the sequences in the MSA (Am) go
into the MaxEnt models. More precisely, we require the model
to reproduce the empirical mean of each observable over the
data,

∀μ = 1, . . . p:
∑

A∈AL

P(A)Oμ(A) = 1

M

M∑
m=1

Oμ(Am). (2)

In a more compact notation, we write 〈Oμ〉P = 〈Oμ〉MSA.
Besides this consistency with the data, the model should be
as unconstrained as possible. Its entropy has, therefore, to be
maximized

−
∑

A∈AL

P(A) ln P(A) −→ max . (3)

Imposing the constraints in Eq. (2) via Lagrange multipliers
λμ, μ = 1, . . . , p, we immediately find that P(A) assumes a
Boltzmann-like exponential form

P(A) = 1

Z
exp

⎧⎨
⎩

p∑
μ=1

λμOμ(A)

⎫⎬
⎭ . (4)

Model inference consists in fitting the Lagrange multipliers
such that Eqs. (2) are satisfied. The partition function Z
guarantees normalization of P.

MaxEnt relates observables and the analytical form of the
probability distribution, but it does not provide any rule on
how to select observables. Frequently, prior knowledge is used
to decide which observables are important and which are not.
More systematic approaches, therefore, have to address, at
least, the following two questions:

(1) Are the selected observables sufficient? In the best
case, model P becomes generative, i.e., sequences A sampled
from P are statistically indistinguishable from the natural se-
quences in the MSA (Am) used for model learning. Although
this is hard to test in full generality, we can select observables
not used in the construction of the model and check if their
averages in the model and over the input data coincide.

(2) Are the selected observables necessary? Would it be
possible to construct a parameter-reduced, thus, more par-
simonious, model of same quality? This question is very
important due to, at least, two reasons: (a) The most par-
simonious model would allow for identifying a minimal set
of evolutionary constraints acting on proteins and, thus, offer
deep insight into protein evolution; and (b) a reduced number
of parameters would allow to reduce overfitting effects, which
result from the limited availability of data (M � qL).

Although there has been promising progress in the first
question, cf. the next two subsections, our paper attempts
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to approach both questions simultaneously thereby going
beyond standard MaxEnt modeling.

To facilitate the further discussion, two important technical
points have to be mentioned. First, MaxEnt leads to a family
of so-called exponential models where the exponent in Eq. (4)
is linear in the Lagrange multipliers λμ, which parametrize
the family. Second, MaxEnt is intimately related to maximum
likelihood. When we postulate Eq. (4) for the mathematical
form of model P(A), and when we maximize the logarithmic
likelihood,

L
[{λμ}|(Am

i

)] =
M∑

m=1

ln P(Am), (5)

with respect to the parameters λμ, μ = 1, . . . , P, we redis-
cover Eqs. (2) as the stationarity condition. The particular
form of P(A) guarantees that the likelihood is convex, having
only a unique maximum.

C. Profile models

The most successful approaches in statistical modeling
of biological sequences are probably profile models [22],
which consider each MSA column (i.e., each position in the
sequence) independently. The corresponding observables are
simply Oia(A) = δAi,a for all positions i = 1, . . . , L and all
amino acid letters a ∈ A with δ being the standard Kronecker
symbol. These observables, thus, just ask, if in a sequence A,
amino acid a is present in position i. Their statistics in the
MSA is, thus, characterized by the fraction,

fi(a) = 1

M

M∑
m=1

δAm
i ,a, (6)

of sequences having amino acid a in position i. Consistency
of model and data requires marginal single-site distributions
of P to coincide with fi,

∀ i = 1, . . . , L, ∀ Ai ∈ A:
∑

{Aj | j �=i}
P(A) = fi(Ai ). (7)

The MaxEnt model results as P(A) = ∏L
i=1 fi(Ai ), which can

be written as a factorized Boltzmann distribution,

P(A) = 1

Z
exp

{∑
i

hi(Ai )

}
, (8)

where the local fields equal hi(a) = ln fi(a). Pseudocounts or
regularization can be used to avoid infinite negative parame-
ters for amino acids, which are not observed in some MSA
column.

Profile models reproduce the so-called conservation statis-
tics of a MSA, i.e., the heterogenous usage of amino acids
in the different positions of the sequence. Conservation of a
single or few amino acids in a column of the MSA is typically
an indication of an important functional or structural role of
that position. Profile models, frequently in their generaliza-
tion to profile hidden Markov models [3,4,23], are used for
detecting homology of new sequences to protein families,
for aligning multiple sequences, and—using the conserved
structural and functional characteristics of protein families—
indirectly for the computational annotation of experimentally

uncharacterized amino acid sequences. They are, in fact, at the
methodological basis of the generation of the MSA used here.

Despite their importance in biological sequence analysis,
profile models are not generative. Biological sequences show
significant correlation in the usage of amino acids in different
positions, which are said to coevolve [7]. Due to their fac-
torized nature, profile models are not able to reproduce these
correlations, and larger sets of observables have to be used to
obtain potentially generative sequence models.

D. Direct-coupling analysis

The DCA [10,11], therefore, includes also pairwise corre-
lations into the modeling. The statistical model P(A) is not
only required to reproduce the amino acid usage of single
MSA columns, but also required to reproduce the fraction
fi j (a, b) of sequences having, simultaneously, amino acid a
in position i and amino acid b in position j for all a, b ∈ A
and all 1 � i < j � L,

fi j (a, b) = 1

M

M∑
m=1

δAm
i ,aδAm

j ,b

=
∑

A∈AL

P(A)δAi,aδAj ,b. (9)

The corresponding observables δAi,aδAj ,b are, thus, products of
pairs of observables used in profile models.

According to the general MaxEnt scheme described before,
DCA leads to a generalized q-state Potts model,

P(A) = 1

Z
exp

⎧⎨
⎩

∑
i< j

Ji j (Ai, Aj ) +
∑

i

hi(Ai )

⎫⎬
⎭, (10)

with heterogeneous pairwise couplings Ji j (a, b) and local
fields hi(a). The inference of parameters becomes compu-
tationally hard since the computation of the marginal dis-
tributions in Eq. (9) requires to sum over O(qL ) sequences.
Many approximation schemes have been proposed, includ-
ing message-passing [10], mean-field [11], Gaussian [13,24],
and pseudolikelihood maximization [12,25] approximations.
DCA and related global inference techniques have found
widespread applications in the prediction of protein structures,
of protein-protein interactions, and of mutational effects,
demonstrating that amino acid covariation as captured by fi j

contains biologically valuable information.
Although these approximate inference schemes do not lead

to generative models—not even fi and fi j are accurately
reproduced—recently, very precise but time-extensive infer-
ence schemes based on Boltzmann-machine learning have
been proposed [26–29]. Astonishingly, these models do not
only reproduce the fitted one- and two-column statistics of
the input MSA, but also reproduce nonfitted characteristics,
such as the three-point statistics fi jk (a, b, c) or the clustered
organization of sequences in sequence space. These observa-
tions strongly suggest that pairwise Potts models as inferred
via DCA are generative models, i.e., that the observables used
in DCA—amino acid occurrence in single positions and in
position pairs—are actually defining a (close to) sufficient
statistics. In a seminal experimental work [30], the importance
of respecting pairwise correlations in amino acid usage in
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generating small artificial but folding protein sequences was
shown.

However, DCA uses an enormous amount of parameters.
There are independent couplings for each pair of positions
and amino acids. In the case of a protein of limited length L =
200, the total number of parameters is close to 108. Very few
of these parameters are interpretable in terms of, e.g., contacts
between positions in the three-dimensional protein fold. We
would, therefore, expect that not all of these observables are
really important to statistically model protein sequences. On
the contrary, given the limited size (M = 103–104) of most
input MSAs, the large number of parameters makes overfitting
likely, and quite strong regularization is needed. It would,
therefore, be important to devise parameter-reduced models as
proposed in Ref. [31] but without giving up on the generative
character of the inferred statistical models.

III. FROM SEQUENCE MOTIFS TO THE
HOPFIELD-POTTS MODEL

Seeing the importance of amino acid conservation in pro-
teins and of profile models in computational sequence anal-
ysis, we keep Eqs. (7), which link the single-site marginals
of P(A) directly to the amino acid frequencies fi(a) in single
MSA columns. Furthermore, we assume that the important
observables for our protein-sequence ensemble can be repre-
sented as so-called sequence motifs,

Oμ(A) =
∑

i

ω
μ
i (Ai ), μ = 1, . . . , p, (11)

which are linear additive combinations of single-site terms.
In sequence bioinformatics, such sequence motifs are widely
used, also under alternative names, such as position-specific
scoring and weight matrices, cf. Refs. [32,33]. Note that, in
difference to the observables introduced before for profile or
DCA models, motifs constitute collective observables poten-
tially depending on the entire amino acid sequence.

Let us assume for a moment that these motifs, or more
specifically the corresponding ω matrices, are known. We will
address their selection later. For any model P reproducing the
sequence profile, i.e., for any model fulfilling Eqs. (7), also
the ensemble average of Oμ is given∑

A

P(A)Oμ(A) =
∑
i,a

ω
μ
i (a) fi(a). (12)

The empirical mean of these observables, therefore, does
not contain any further information about the MSA statistics
beyond the profile itself. The key step is to consider also the
variance, or the second moment,

1

M

∑
m

[Oμ(Am)]2 =
∑

i, j,a,b

ω
μ
i (a)ωμ

j (b) fi j (a, b), (13)

as a distinct feature characterizing the sequence variability in
the MSA, which has to be reproduced by the statistical model
P(A). This second moment actually depends on combinations
of fi j , which were introduced in DCA to account for the
correlated amino acid usage in pairs of positions.

The importance of fixing this second moment becomes
clear in a very simple example: Consider only two positions

{1, 2} and two possible letters {A, B}, which are allowed in
these two positions. Let us assume further that these two
letters are equiprobable in these two positions, i.e., f1(A) =
f1(B) = f2(A) = f2(B) = 1/2. Assume further a single mo-
tif to be given by ω1(A) = ω2(A) = 1/2, ω1(B) = ω2(B) =
−1/2. In this case, the mean of O equals zero. We further
consider two cases:

(1) Uncorrelated positions: In this case, all words
AA , AB, BA, and BB are equiprobable. The second moment
of O, thus, equals 1/2.

(2) Correlated positions: As a strongly correlated exam-
ple, only the two words AA and BB are allowed. The second
moment of O, thus, equals 1.

We conclude that an increased second moment (or vari-
ance) of these additive observables with respect to the uncor-
related case corresponds to the preference of combinations of
letters or entire words; this is also the reason why they are the
called sequence motifs.

Including, therefore, these second moments as conditions
into the MaxEnt modeling, our statistical model takes the
shape,

P
[
A|{λμ, hi(a), ωμ

i (a)
}]

= 1

Z
exp

⎧⎨
⎩

p∑
μ=1

λμ

L∑
i, j=1

ω
μ
i (Ai )ω

μ
j (Aj ) +

L∑
i=1

hi(Ai )

⎫⎬
⎭,

(14)

with Lagrange multipliers λμ, μ = 1, . . . , p, imposing
means (13) to be reproduced by the model, and hi(a), i =
1, . . . , L, a ∈ A, to impose Eqs. (7).

The Hopfield-Potts model: from MaxEnt
to sequence-motif selection

As mentioned before, an important limitation of MaxEnt
models is that they assume certain observables to be re-
produced, but they do not offer any strategy on how these
observables have to be selected. In the case of Eq. (14), this
accounts, in particular, to optimizing the values of the Lan-
grange parameters λμ to match the ensemble averages over
P(A) with the sample averages Eq. (13) over the input MSA.
As mentioned before, this corresponds also to maximizing the
logarithmic likelihood of these parameters given MSA and the
ω matrices describing the motifs,

L
({λμ, hi(a)}|(Am

i

)
,
{
ω

μ
i (a)

})
=

M∑
m=1

ln P
[
Am|{λμ, hi(a), ωμ

i (a)
}]

. (15)

The important, even if quite straightforward, step from
MaxEnt modeling to motif selection is to optimize the like-
lihood also over the choice of all possible ω matrices as
parameters. To remove degeneracies, we absorb the Lagrange
multipliers λμ into the motif matrix ωμ, and introduce

ξ
μ
i (a) = √

λμω
μ
i (a), i = 1, . . . , L,

μ = 1, . . . , p, a ∈ A . (16)
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The model in Eq. (14), thus, slightly simplifies into

P
(
A|{hi(a), ξμ

i (a)
})

= 1

Z
exp

⎧⎨
⎩

p∑
μ=1

L∑
i, j=1

ξ
μ
i (Ai )ξ

μ
j (Aj ) +

L∑
i=1

hi(Ai )

⎫⎬
⎭, (17)

with parameters, which have to be estimated by maximum
likelihood,{

ĥi(a), ξ̂μ
i (a)

}
= argmax

{hi (a),ξμ
i (a)}

M∑
m=1

ln P
[
Am|{hi(a), ξμ

i (a)
}]

. (18)

Our model becomes, therefore, the standard Hopfield-Potts
model, which has been introduced in Ref. [31] in a mean-field
treatment, and the sequence motifs equal, up to the rescaling
in Eq. (16), the patterns in the Hopfield-Potts model.

The mean-field treatment of Ref. [31] has both advantages
and disadvantages with respect to our present paper: On one
hand, the largely analytical mean-field solution allows to
relate the Hopfield-Potts patterns ξμ to the eigenvectors of the
Pearson-correlation matrix of the MSA, and their likelihood
contributions to a function of the corresponding eigenvalues.
This is, in particular, interesting since not only the eigen-
vectors corresponding to large eigenvalues were found to
contribute—as one might expect from the apparent similarity
to principal-component analysis (PCA)—but also the smallest
eigenvalues lead to large likelihood contributions. However,
the mean-field treatment leads to a nongenerative model,
which does not even reproduce precisely the single-position
frequencies fi(a). The aim of this paper is to reestablish the
generative character of the Hopfield-Potts model by more
accurate interference schemes without losing too much of the
interpretability of the mean-field approximation.

The model in Eq. (17) contains now an exponent, which
is nonlinear in the parameters ξμ. As a consequence, the
likelihood is not convex anymore, and possibly many local
likelihood maxima exist. This is also reflected by the fact that
any p-dimensional orthogonal transformation of ξμ leaves
the probability distribution P(A) invariant, thus, leading to an
equivalent model.

IV. INFERENCE AND INTERPRETATION
OF HOPFIELD-POTTS MODELS

A. The Hopfield-Potts model as a restricted Boltzmann machine

The question how many and which patterns are needed for
generative modeling, therefore, cannot be answered properly
within the mean-field approach. We, therefore, propose a more
accurate inference scheme based on RBM learning [34,35],
exploiting an equivalence between Hopfield models and RBM
originally shown in Ref. [36]. To this aim, we first perform p
Hubbard-Stratonovich transformations to linearize the expo-
nential in ξμ,

P(A) = 1

Z̃

∫
Rp

p∏
μ=1

dxμ exp

⎧⎨
⎩

∑
i,μ

xμξ
μ
i (Ai )

+
∑

i

hi(Ai ) − 1

2

∑
μ

(xμ)2

}
, (19)

with Z̃ containing the normalizations both of the Gaussian
integrals over the new variables xμ and the partition function
of Eq. (14). The distribution P(A) can, thus, be understood as
a marginal distribution of

P(A, x)= 1

Z̃
exp

⎧⎨
⎩

∑
i,μ

xμξ
μ
i (Ai ) +

∑
i

hi(Ai ) − 1

2

∑
μ

(xμ)2

⎫⎬
⎭,

(20)

which depends on the so-called visible variables A =
(A1, . . . , AL ) and the hidden (or latent) variables x =
(x1, . . . , xp). It takes the form or a particular RBM with a
quadratic confining potential for xμ: The important point is
that couplings in the RBM form a bipartite graph between
visible and hidden variables, cf. Fig. 1. RBM may have more
general potentials uμ(xμ) confining the values of the new
random variables xμ. This fact has been exploited in Ref. [20]
to cope with the limited number of sequences in the training
MSA. However, in our paper, we stick to quadratic potentials
in order to keep the equivalence to Hopfield-Potts models,
and thus, the interpretability of patterns in terms of pairwise
residue-residue couplings via Eq. (17).

B. Parameter learning by persistent contrastive divergence

Maximizing the likelihood with respect to the parameters
leads, for our RBM model, to the stationarity equations,

1

M

∑
m

δAm
i ,a = 〈

δAi,a
〉
P(A,x),

1

M

∑
m

δAm
i ,a〈xμ〉P(x|Am ) = 〈

δAi,axμ
〉
P(A,x) (21)

for all i, a, and μ; the difference of both sides equals the
gradient of the likelihood in the direction of the corresponding
parameter. Although the first line matches the standard Max-
Ent form—sample and ensemble average of an observable
have to coincide, the second line contains a mixed sample-
ensemble average on its left-hand side. Since the variables xμ

are latent and, thus, not contained in the MSA, an average
over their probability P(x|Am) conditioned to the sequences
Am in the MSA has to be taken. Having a P dependence
on both sides of Eqs. (21) is yet another expression of the
nonconvexity of the likelihood function.

Model parameters hi(a) and ξ
μ
i (a) have to be fitted to

satisfy the stationarity conditions Eq. (21). This can be per-
formed iteratively: Starting from arbitrarily initialized model
parameters, we determine the difference between the left- and
the right-hand sides of this equation and use this difference
to update parameters (i.e., we perform gradient ascent of the
likelihood); each of these update steps is called an epoch of
learning. A major problem is that the exact calculation of aver-
ages over the (L + p)-dimensional probability distribution P
is computationally infeasible. It is possible to estimate these
averages by Markov chain Monte Carlo (MCMC) sampling,
but efficient implementations are needed since accurate pa-
rameter learning requires, in practice, thousands of epochs.
To this aim, we exploit the bipartite structure of RBM: Both
conditional probabilities P(A|x) and P(x|A) are factorized.

032128-5



KAI SHIMAGAKI AND MARTIN WEIGT PHYSICAL REVIEW E 100, 032128 (2019)

MSA 
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update 
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FIG. 1. Panel (a) represents the (Hopfield-)Potts model as a statistical model for sequences A ∈ AL , typically characterized by a fully
connected coupling matrix J and local fields h (not represented). The model can be transformed into a RBM by introducing Gaussian hidden
variables x ∈ Rp with p being the rank of J . Note the bipartite graphical structure of RBM, which causes the conditional probabilities P(A|x)
and P(x|A) to factorize. Panel (b) shows a schematic of persistent contrastive divergence (PCD). Initially, the sample is initialized in the training
data (the MSA of natural sequences), and then, k alternating steps of sampling from P(A|x), respectively, P(x|A)’s are performed. Parameters
are updated after these k sampling steps, and sampling is continued using the updated parameters.

This allows us to initialize MCMC runs in natural sequences
from the MSA and to sample x and A in alternating fashion.
As a second simplification, we use PCD [37]. Only in the
first epoch the visible variables are initialized in the MSA
sequences, and each epoch performs only a finite number
of sampling steps (k for PCD k), cf. Fig. 1(b). Trajectories
are continued in a new epoch after parameter updates. If the
resulting parameter changes become small enough, PCD will
thereby generate close-to-equilibrium sequences, which form
an (almost) independent and identically distributed (i.i.d.)
sample of P(A, x) uncorrelated from the training set used for
initialization.

Details of the algorithm and comparison to the simpler
contrastive divergence are given in Appendix B. Further
technical details, such as regularization, are also delegated to
Appendix B.

C. Determining the likelihood contribution
of single Hopfield-Potts patterns

It is obvious that the total likelihood grows monotonously
when increasing the number p of patterns ξμ. It is, therefore,
important to develop criteria, which tell us if patterns are
more or less important for modeling the protein family. To
this aim, we estimate the contribution of single patterns to
the likelihood by comparing the full model with a model
where a single pattern ξμ has been removed, whereas the other
p − 1 patterns and the local fields have been retained. The
corresponding normalized change in logarithmic likelihood
reads

��μ = 1

M

M∑
m=1

[ln P(Am) − ln P−μ(Am)], (22)

where P−μ has the same form as given in Eq. (14) for
P but with pattern ξμ = {ξμ

i (a); i = 1, . . . , L, a ∈ A} re-
moved. Plugging Eq. (14) into Eq. (22), we find

��μ = 1

M

M∑
m=1

[
L∑

i=1

ξ
μ
i

(
Am

i

)]2

+ ln
Z−μ

Z
. (23)

The likelihood difference depends, thus, on the ratio of the
two partition functions Z and Z−μ. Although each of them
is individually intractable due to the exponential sum over
qL sequences, the ratio can be estimated efficiently using
importance sampling. We write

Z−μ

Z
= 1

Z

∑
A∈AL

exp

⎧⎨
⎩

∑
ν �=μ

L∑
i, j=1

ξν
i (Ai )ξ

ν
j (Aj ) +

L∑
i=1

hi(Ai )

⎫⎬
⎭

=
∑

A∈AL

P(A) exp

⎧⎨
⎩−

L∑
i, j=1

ξ
μ
i (Ai )ξ

μ
j (Aj )

⎫⎬
⎭. (24)

The last expression contains the average of an exponential
quantity over P(A), so estimating the average by MCMC
sampling of P might appear a risky idea. However, since P and
P−μ differ only in one of the p patterns, the distributions are
expected to overlap strongly, and sufficiently large samples
drawn from P(A) can be used to estimate Z−μ/Z . Note that
sampling is performed from P, so the likelihood contributions
of all patterns can be estimated in parallel using a single large
sample of the full model.

Once these likelihood contributions are estimated, we can
sort them, and identify and interpret the patterns of largest
importance in our Hopfield-Potts model.
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V. HOPFIELD-POTTS MODELS OF PROTEIN FAMILIES

To understand the performance of Hopfield-Potts models
in the case of protein families, we have analyzed three protein
families extracted from the PFAM database [2]: the Kunitz-
bovine pancreatic trypsin inhibitor domain (PF00014), the
response regulator receiver domain (PF00072), and the RNA
recognition motif (PF00076). They have been selected since
they have been used in DCA studies before; in our case,
RBM results will be compared to the ones of BMDCA,
i.e., the generative version of DCA based on Boltzmann
machine learning [29]. MSAs are downloaded from the PFAM

database [2], and sequences with more than five consecutive
gaps are removed; cf. Appendix B for a discussion of the
convergence problems of PCD-based inference in the case of
extended gap stretches. The resulting MSA dimensions for the
three families are, in the order given before, L = 52/112/70
and M = 10 657/15 000/10 000. As can be noted, the last two
MSAs have been subsampled randomly since they were very
large, and the running time of the PCD algorithm is linear
in the sample size. The MSA for PF00072 was chosen to be
slightly larger because of the longer sequences in this family.

In the following sections, results are described in detail
for the PF00072 response regulator family. The results for
the other protein families are coherent with the discussion;
they are moved to Appendix B to seek the conciseness of our
presentation.

A. Generative properties of Hopfield-Potts models

PCD is able, for all values of the pattern number p, to
reach parameter values satisfying the stationarity conditions
Eqs. (21). This is not only true when these are evaluated using
the PCD sample propagated via learning from epoch to epoch,
but also when the inferred model is resampled using MCMC,
i.e., when the right-hand side of Eqs. (21) is evaluated using
an i.i.d. sample of the RBM.

In the leftmost column of Fig. 2 [panels (a.1)–(g.1)], this
is shown for the single-site frequencies, i.e., for the first of
Eqs. (21). The horizontal axis shows the statistics extracted
from the original data collected in the MSA, whereas the
vertical axis measures the same quantity in an i.i.d. sample
extracted from the inferred model P(A, x). The fitting quality
is comparable to the one obtained by BMDCA as can be seen
by comparison with the last panel in the first column of Fig. 2.

The other two columns of the figure concern the generative
properties of RBM: connected two-point correlations [panels
(a.2)–(g.2) in Fig. 2] and three-point correlations [panels
(a.3)–(g.3) in Fig. 2],

ci j (a, b) = fi j (a, b) − fi(a) f j (b),

ci jk (a, b, c) = fi jk (a, b, c) − fi j (a, b) fk (c) − fik (a, c) f j (b)

− f jk (b, c) fi(a) + 2 fi(a) f j (b) fk (c), (25)

with the three-point frequencies fi jk (a, b, c) defined in anal-
ogy to Eqs. (6) and (9). Note that, in difference to DCA,
already the two-point correlations are not fitted directly by the
RBM but only the second moments related to the Hopfield-
Potts patterns. This becomes immediately obvious for the case
of p = 0 where RBM reduces to simple profile models of
statistically independent sites but remains true for all values of

p < (q − 1)L. Note also that connected correlations are used
since the frequencies fi j and fi jk contain information about
the fitted fi and, therefore, show stronger agreement between
data and model.

The performance of RBM is found to be, up to statistical
fluctuations, monotonous in the pattern number p. As in the
mean-field approximation [31], no evident overfitting effects
are observed. Even if not fitted explicitly, as few as p = 20–40
patterns are sufficient to faithfully reproduce even the nonfit-
ted two- and three-point correlations. This is very astonishing
since only about 1.7–3.5% of the parameters of the full DCA
model are used: The p patterns are given by p(q − 1)L param-
eters, whereas DCA has (q − 1)2(L

2) independently inferred
couplings. The times needed for accurate inference decrease
accordingly: In some cases, a slight decrease in accuracy of
BMDCA is observed as compared to RBM with the largest p;
this could be overcome by iterating the inference procedure
for further epochs.

B. Strong couplings and contact prediction

One of the main applications of DCA is the prediction
of contacts between residues in the three-dimensional protein
fold, based only on the statistics of homologous sequences. To
this aim, we follow Ref. [25] and translate q × q coupling ma-
trices Ji j (a, b) = ∑p

μ=1 ξ
μ
i (a)ξμ

j (b) for individual site pairs
(i, j) into scalar numbers by first calculating their Frobenius
norm,

Fi j = Fji =
∑

a,b∈A
Ji j (a, b)2, (26)

followed by the empirical average-product correction (APC),

F APC
i j = Fi j − Fi·F· j

F··
, (27)

where the · denotes an average over the corresponding index,

Fi· = 1

L − 1

∑
k

Fik,

F· j = 1

L − 1

∑
k

Fk j, (28)

F·· = 2

L(L − 1)

∑
k<l

Fkl .

The APC is intended to remove systematic nonfunctional
bias due to conservation and phylogeny. These quantities are
sorted, and the largest ones are expected to be contacts.

The results for several values of p and for BMDCA are
depicted in Fig. 3(a): The PPV is the fraction of true positives
(TPs) among the first n predictions as a function of n. TPs
are defined as native contacts in a reference protein structure
(PDB ID 3ilh [38] for PF00072) with a distance cutoff of
8 Å between the closest pair of heavy atoms forming each
residue. Pairs in the vicinity along the peptide chain are not
considered in this prediction since they are trivially in contact:
In coherence with the literature standard, Fig. 3 only considers
predictions with |i − j| � 5.

Despite the fact that, even for as few as p = 20–40 patterns,
the model appears to be generative, i.e., nonfitted statistical
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FIG. 2. Statistics of natural sequences (PF00072, horizontal axes) vs MCMC samples (vertical axes) of Hopfield-Potts models for values of
p ∈ {5, 10, 20, 40, 80, 160} and for a full-rank Potts model inferred using BMDCA. The first column [panels (a.1)–(g.1)] shows the one-point
frequencies fi(a) for all pairs (i, a) of sites and amino acids; the other two columns show the connected two- and three-point functions ci j (a, b)
[panels (a.2)–(g.2)] and ci jk (a, b, c) [panels (a.3)–(g.3)]. Due to the huge number of combinations for the three-point correlations, only the
100 000 largest values (evaluated in the training MSA) are shown. The Pearson correlations and the slope of the best linear fit are inserted in
each of the panels.
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FIG. 3. Panel (a) shows the positive predictive value (PPV) for contact prediction as a function of the number of predictions for various
values of the pattern number p and for BMDCA. Panels (b)–(d) show, for p = 20, 160, and BMDCA, the distribution of coupling scores F APC

i j .
All residue pairs are grouped into contacts (red) and noncontacts (blue). The best contact predictions correspond to the positive tail of the red
histogram, which becomes more pronounced when increasing p or even going to BMDCA.

observables are reproduced with good accuracy, the PPV
curves depend strongly on the pattern number p. Up to
statistically probably insignificant exceptions, we observe a
monotonous dependence on p, and none of the RBM-related
curves reach the performance of the full-rank Ji j matrices of
BMDCA. Even large values of p where RBM have more than
30% of the parameters of the full Potts model show a drop in
performance in contact prediction.

Can we understand this apparent contradiction: similarly
accurate reproduction of the statistics but reduced perfor-
mance in contact prediction? To this end, we consider, in
Figs. 3(b)–3(d), the histograms of coupling strengths F APC

i j di-
vided into two subpopulations: Values for sites i, j in contact
are represented by red, and values for distant sites are repre-
sented by blue histograms. It becomes evident that the rather
compact histogram of noncontacts remains almost invariable
with p (even if individual coupling values do change), but
the histogram of contacts changes systematically: The tail of
large F APC

i j going beyond the upper edge of the blue histogram
is less pronounced for small p. However, in the procedure
described before, these F APC

i j values provide the first contact
predictions.

The reduced capacity to detect contacts for small p is
related to the properties of the Hopfield-Potts model in itself.
Although the residue-residue contacts form a sparse graph,
the Hopfield-Potts model is explicitly constructed to have a
low-rank coupling matrix [Ji j (a, b)]. It is, however, hard to
represent a generic sparse matrix by a limited number of
possibly distributed patterns. Hopfield-Potts models are more
likely to detect distributed sequence signals than localized
sparse ones. However, for larger pattern numbers p, we are

able to detect more and more localized signals thereby im-
proving the contact prediction until BM and Hopfield-Potts
models become equivalent for p = (q − 1)L.

This observation establishes an important limitation to
the generative character of Hopfield-Potts models with lim-
ited pattern numbers: The applicability of DCA for residue-
residue contact prediction has demonstrated that physical
contacts in the three-dimensional structure of proteins intro-
duce important constraints on sequence evolution. A perfectly
generative model should respect these constraints and, thus,
lead to a contact prediction being, at least, as good as the one
obtained by full DCA, cf. also the discussion in the outlook of
this article.

C. Likelihood contribution and interpretation
of selected sequence motifs

So what do the patterns represent? In Sec. IV C, we
have discussed how to estimate the likelihood contribution
of patterns thereby being able to select the most important
patterns in our model. Figure 4 displays the ordered contri-
butions for different values of p. We observe that, for small
p, the distribution becomes more peaked with few patterns
having very large likelihood contributions. For larger p, the
contributions are more distributed over many patterns, which
collectively represent the statistical features of the data set.

Figure 5 represents the first five patterns for p = 20. Panels
(a.1)–(e.1) of Fig. 5 represent the pattern ξ

μ
i (a) as a sequence

logo, a standard representation in sequence bioinformatics.
Each site i corresponds to one position, the possible amino
acids are shown by their one-letter codes, the size of the
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FIG. 4. Likelihood contribution of the individual patterns for
pattern numbers p = 20, 40, 80, and 160.

letter being proportional to |ξμ
i (a)|, according to the sign

of ξ
μ
i (a), letters are represented above or below the zero

line. The alignment gap is represented as a minus sign in an
oval shape, which allows to represent its size in the current
pattern.

Patterns are very distributed, both in terms of the sites and
in the amino acids with relatively large entries ξi(a). This
makes a direct interpretation of patterns without prior knowl-
edge rather complicated. The distributed nature of patterns
explains also why they are not optimal in defining localized
contact predictions. Rather than identifying contacting residue
pairs, the patterns define larger groups of sites, which are
connected via a dense network of comparable couplings.
However, as we will see in the next section, the sites of
large entries in a pattern define functional regions of proteins,
which are important in subensembles of proteins of strong
(positive or negative) activity values along the pattern under
consideration. In particular, we will show that the largest
entries may have an interpretation connecting structure and
function to sequence in protein subfamilies.

The middle column [panels (a.2)–(e.2)] of Fig. 5 shows
a histogram of pattern-specific activities of single sequences,
i.e., of

xμ(A) =
N∑

i=1

ξ
μ
i (Ai ). (29)

Note that, up to the rescaling in Eq. (16), these numbers
coincide with the sequence motifs, introduced in Eq. (11)
at the beginning of this article. They also equal the average
value of the latent variable xμ given sequence A. The blue
histograms result from the natural sequences collected in the
training MSA. They coincide well with the red histograms,
which are calculated from an i.i.d. MCMC sample of our
Hopfield-Potts model, including the bimodal structure of
several histograms. This is quite remarkable: The Hopfield-
Potts model was derived, in the beginning of this paper, as
the maximum-entropy model reproducing the first two mo-
ments of the activities {xμ(Am)}m=1···M . Finding higher-order
features, such as bimodality, is again an expression of the
generative power of Hopfield-Potts models.

Figures (5.a.3)–(5.e.3) prove the importance of individual
patterns for the inferred model. The panels show the two-point
correlations ci j (a, b) of the natural data (horizontal axis) vs
the one of samples drawn from the distributions P−μ(A), intro-
duced in Eq. (22) as Hopfield-Potts models of p − 1 patterns
with pattern ξμ removed (vertical axis). The coherence of the
correlations is strongly reduced when compared to the full
model, which was shown in Fig. 2: Removal even of a single
pattern has a strong global impact on the model statistics.

D. Sequence clustering

As already mentioned, some patterns show a clear bimodal
activity distribution, i.e., they identify two statistically distinct
subgroups of sequences. The number of subgroups can be
augmented by using more than one pattern, i.e., combinations
of patterns can be used to cluster sequences.

To this aim, we have selected three patterns (numbers 6, 13,
and 14) with a pronounced bimodal structure from the model
with p = 20 patterns. In terms of likelihood contribution, they
have ranks 8, 4, and 1 in the contributions to the logarithmic
likelihood, cf. Fig. 5.

The clustered organization of response-regulator se-
quences becomes even more evident in the two-dimensional
plots characterizing, simultaneously, two activity distribu-
tions. The results for all pairs of the three patterns are dis-
played in Fig. 6, panels (a.1–(a.3). As a first observation, we
see that the main modes of the activity patterns give rise to one
dominant cluster. Smaller clusters deviate from the dominant
one in a single pattern but show compatible activities in the
other patterns—the two-dimensional plots, therefore, show
typically an L-shaped sequence distribution and three clusters
instead of the theoretically possible four combinations of
activity models. It appears that single patterns identify the
particularities of single subdominant sequence clusters.

We have chosen the response-regulator protein-domain
family in this paper also due to the fact that it constitutes
a functionally well studied and diversified family. Response
regulators are predominantly used in bacterial signaling sys-
tems:

(1) In chemotaxis, they appear as single-domain proteins
named CheY, which transmit the signal from kinase proteins
(activated by signal reception) to flagellar motor proteins,
which trigger the movement of the bacteria. CheY proteins
can be identified in our MSA as those coming from single-
domain proteins, i.e., with lengths compatible to the PF00072-
MSA width L = 112. We have selected a sub-MSA consisting
of all proteins with total sequence lengths between 110 and
140 amino acids.

(2) In two-component signal transduction (TCS), response
regulators are typically transcription factors, which are acti-
vated by signal-receiving histidine sensor kinases. The cor-
responding proteins contain two or three domains, in partic-
ular, a DNA-binding domain, which is actually responsible
for the transcription-factor activity of the activated response-
regulator protein. According to the present DNA-binding
domain, these TCS proteins can be subdivided into differ-
ent classes, the dominant ones are the OmpR, the GerE,
and the Sigma54-HTH8 classes, we identified three sub-
MSA corresponding to these classes by co-occurrence of the
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FIG. 5. The five patterns of highest likelihood contribution for p = 20, the eighth ranking is added since used later in the text. The left
panels (a.1)–(f.1) show the patterns in logo representation, the letter size is given by the corresponding element ξi(a). The middle panels
(a.1)–(f.2) show the distribution of the activities, i.e., the projections of sequences onto the patterns. The blue histogram contains the natural
sequences from the training MSA, and the red histogram contains sequences sampled by MCMC from the Hopfield-Potts model. The right-hand
side [panels (a.3)–(f.3)] shows the connected two-point correlations of the natural data (horizontal axis) vs data sampled from P−μ(A), i.e., a
Hopfield-Potts model with one pattern removed. Strong deviations from the diagonal are evident.

DNA-binding domains with the response-regulator domain in
the same protein. The different DNA-binding domains are
indicative for distinct homodimer structures assumed by the
active transcription factors; DCA run on the sub-MS identifies
their specific subfamily interfaces [39].

(3) Phosphorelays are similar to TCS but consist of more
complex multicomponent signaling pathways. In these sys-
tems, found in bacteria and plants, response-regulator do-
mains are typically fused to the histidine-sensor kinases. They
do not act as transcription factors but transduct a signal to
a phosphotransferase, which finally activates a down-stream
transcription factor of the same architecture mentioned in the
last paragraph. We identified a class of response-regulator do-
mains, which are fused to a histidine kinase domain. In terms

of domain architecture and protein length, this subfamily is
extremely heterogenous.

Panel columns (a)–(f) in Fig. 6 show the activities of
these five subfamilies. It is evident that distinct sub-MSAs
fall actually into distinct clusters according to these three
patterns:

(1) The CheY-like single domain proteins [panels (b.1)–
(b.3)] of Fig. 6 fall, according to all three patterns, into the
dominant mode.

(2) The OmpR-class transcription factors [panels (c.1)–
(c.3)] show a distinct distribution of higher activities for the
second of the patterns (which actually has the most pro-
nounced bimodal structure, probably due to the fact that the
OmpR class forms the largest sub-MSA). As can be seen

032128-11



KAI SHIMAGAKI AND MARTIN WEIGT PHYSICAL REVIEW E 100, 032128 (2019)

FIG. 6. Patterns with multimodal activity distributions for the set of all MSA sequences can be used to cluster sequences. The rows show
combinations of patterns 6–13 [panels (a.1)–(f.1)], 6–14 [panels (a.2)–(f.2)], and 13 to 14 [panels (a.3)–(f.3)]. Each sequence corresponds to
a density-colored dot. A strongly clustered structure is clearly visible. When dividing the full MSA into functional subclasses, we can relate
clusters to subclasses and, thus, patterns to biological function.

in Fig. 6, this pattern has the largest positive entries in the
region of positions 80–90 and 100–110. Interestingly, these
regions define the interface of OmpR-class transcription-
factor homodimerization, cf. Ref. [39]. In accordance with
this structural interpretation, we also find a periodic structure
of period 3 to 4 of the large entries in the pattern, which
reflects the fact that the interface is formed by two helices,
which lead to a periodic exposure of amino acids in the protein
surface.

(3) The GerE class [panels (d.1)–(d.3)] of Fig. 6 differs in
activities in the direction of the first pattern, only GerE-class
proteins have positive, and all others have negative activities.
Dominant positive entries are found in regions 5–15 and
100–105, again identifying the homodimerization interface,
cf. Ref. [39].

(4) The Sigma54 class [panels (e.1)–(e.3)] does not show
a distinct distribution of activities according to the three
selected patterns. It is located together with the CheY-
type sequences. However, when examining all patterns, we
find that pattern number 5 (ranked sixth according to the
likelihood contribution) is almost perfectly discriminating
the two.

(5) Last but not least, the response regulators fused to
histidine kinases in phosphorelay systems [panels (f.1)–(f.3)]
of Fig. 6 show a distinct activity distribution according to

the third pattern, mixing a part of activities compatible with
the main cluster, and others being substantially larger (this
mixing results presumably from the previously mentioned
heterogenous structure of this sub-MSA). Structurally known
complexes between response regulators and histidine phos-
photransferases (PDB ID 4euk [40], 1bdj [41]) show the
interface located in residues 5–15, 30–32, and 50–55, re-
gions being important in the corresponding pattern. It appears
that the pattern selects the particular amino acid composi-
tion of this interface, which is specific to the phosphorelay
sub-MSA.

These observations do not only show that the patterns allow
for clustering sequences into sub-MSA, but also show that the
discriminating positions in the patterns have a clear biological
interpretation. This is very interesting since the analysis in
Ref. [39] required a prior clustering of the initial MSA into
sub-MSA, and the application of DCA to the individual
sub-MSA. Here, we have inferred only one Hopfield-Potts
model describing the full MSA, and the patterns automatically
identify biologically reasonable subfamilies together with the
sequence patterns characterizing them. The prior knowledge
needed in Ref. [39] is not needed here; we use it only for the
posterior interpretation of the patterns.

It is also important to remember that sequence clustering
can be obtained by a technically simpler PCA. PCA is based
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FIG. 7. The same as Fig. 2 but for the protein family PF00014.

on the leading eigenvectors of the data-covariance matrix, i.e.,
exclusively on the largest eigenvalues. The potential differ-
ences were already discussed in Ref. [31] in the context of the
mean-field approximation of Hopfield-Potts models. It was
shown that not only the eigenvectors with large eigenvalues
lead to important contributions in likelihood, but also those

corresponding to the smallest eigenvalues. Both tails of the
spectrum are, thus, important for the statistical description of
protein-sequence ensembles. A second drawback of PCA as
compared to our approach is the nongenerative character of
PCA. No explicit statistical model is learned, but the data co-
variance matrix is simply approximated by a low-rank matrix.
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FIG. 8. The same as Fig. 3 but for the protein family PF00014.

0.02

0.01

0.00

0.03

0.04

0 50

0.02

0.01

0.00

0.03

0.04

0 50

0.02

0.01

0.00

0.03

-50 0

0.02

0.01

0.00

0.03

0 50

0.02

0.01

0.00

0.03

0 50-50

pattern activity xµ(A)
2-pt corr.

(nat. vs. MCMC)

p=20

1st

2nd

3rd

4th

5th

(a.1)

(b.1)

(c.1)

(d.1)

(e.1)

(a.2)

(b.2)

(c.2)

(d.2)

(e.2)

(a.3)

(b.3)

(c.3)

(d.3)

(e.3)

FIG. 9. The same as Fig. 5 but for the protein family PF00014.
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FIG. 10. The same as Fig. 2 but for the protein family PF00076.

VI. CONCLUSION AND OUTLOOK

In this paper, we have rederived Hopfield-Potts models as
statistical models for protein sequences by selection of addi-
tive sequence motifs. Statistical sequence models are required
to reproduce the first and second moments of the empirical
motif distributions (i.e., over the MSA of natural sequences).
Within a maximum-entropy approach, these motifs are found
to be (up to a scaling factor) the Hopfield-Potts patterns
defining a network of residue-residue couplings. In addition to

the maximum-entropy framework, which is built upon known
observables, the Hopfield-Potts model adds a step of variable
selection: The probability of the sequence data is maximized
over all possible selections of sequence motifs.

The quadratic coupling terms can be linearized using
a Hubbard-Stratonovich transformation. When the Gaussian
variables introduced in this transformation are interpreted as
latent random variables, the Hopfield-Potts model takes the
form of a restricted Boltzmann machine. This interpretation,
originally introduced in Ref. [36], allows for the application of
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FIG. 11. The same as Fig. 3 but for the protein family PF00076.

efficient inference techniques, such as persistent contrastive
divergence and, therefore, for the accurate inference of the
Hopfield-Potts patterns for any given MSA of a homologous
protein family.

We find that Hopfield-Potts models acquire interesting
generative properties even for a relatively small number of
parameters (p = 20–40). They are able to reproduce nonfitted
properties, such as higher-order covariation of residues. Also,
the bimodality observed in the empirical activity distributions
(i.e., the projection of the natural sequences onto individual
Hopfield-Potts patterns) is not automatically guaranteed when
using only the first two moments for model learning, but it is
recovered with high accuracy in the activity distributions of
artificial sequences sampled from the model. This observation
is not only interesting in the context of generative-model
learning, but also forms the basis of sequence clustering
according to interpretable sequence motifs in the main text.

The Hopfield-Potts patterns, or sequence motifs, are typ-
ically found to be distributed over many residues thereby
representing global features of sequences. This observation
explains why Hopfield-Potts models tend to lose accuracy in
residue-residue contact prediction as compared to the full-
rank Potts models normally used in direct coupling analysis:
The sparsity of the residue-residue contact network cannot be
represented easily via few distributed sequence motifs, which
describe more global patterns of sequence variability. Despite
the fact that Hopfield-Potts models reproduce also nonfitted
statistical observables, the loss of accuracy in contact predic-
tion demonstrates that these models are not fully generative
and alternative concepts for parameter reduction should be
explored.

Individual sequences from the input MSA can be pro-
jected onto the Hopfield-Potts patterns, resulting in sequence-
specific activity values. Some patterns show a monomodal
histogram for the protein family. They introduce a dense

network of relatively small couplings between positions with
sufficiently large entries in the pattern without dividing the
family into subfamilies. These patterns have great similarity
to the concept of protein sectors, which was introduced in
Refs. [42,43] to detect distributed modes of sequence coevo-
lution. However, the conservation-based reweighting used in
determining sectors is not present in the Hopfield-Potts model,
and the precise relationship between both ideas remains to
be elaborated. Other Hopfield-Potts patterns show bimodal
activity distributions, leading to the detection of functional
subfamilies. Since these are defined by, e.g., the positive vs
the negative entries of the pattern, the entries of large absolute
value in the patterns identify residues, which play a role
similar to so-called specificity determining residues [44,45],
i.e., residues, which are conserved inside specific subfami-
lies, but vary between subfamilies. Both concepts—sectors
and specificity-determining residues—emerge naturally in the
context of Hopfield-Potts families, even if their precise math-
ematical definitions differ and, thus, also their precise biolog-
ical interpretations.

These observations open up new ways of parameter reduc-
tion in statistical models of protein sequences: The sparsity
of contacts, which are expected to be responsible for a large
part of localized residue covariation in protein evolution, has
to be combined with the low-rank structure of Hopfield-
Potts models, which detect distributed functional sequence
motifs. However, distributed patterns may also be related to
phylogenetic correlations, which are present in the data, cf.
Ref. [46]. As has been shown recently in a heuristic way [47],
the decomposition of sequence-data covariance matrices or
coupling matrices into a sum of a sparse and a low-rank matrix
can substantially improve contact prediction if only the sparse
matrix is used.

Combining this idea with the idea of generative model-
ing seems a promising road towards parsimonious sequence
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FIG. 12. The same as Fig. 5 but for the protein family PF00076.

models, which, in turn, would improve parameter inter-
pretability and reduce overfitting effects, both limiting factors
of current versions of DCA. In this context, it will also be
interesting to explore more general regularization strategies
which favor more localized sequence motifs or Hopfield-Potts
patterns thereby unifying sparse and low-rank inference in a
single framework of parameter-reduced statistical models for
biological sequence ensembles.
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APPENDIX A: RESULTS FOR OTHER PROTEIN FAMILIES

The first Appendix is dedicated to other protein families.
As discussed in the main text, we have analyzed three distinct
families and discussed only one in full detail in the main
text. Here, we present the major results—generative prop-
erties, contact prediction, and selected collective variables
(patterns)—for two more families. These results show the
general applicability of our approach beyond the specific
response-regulator family used in the main text.

1. Kunitz-bovine pancreatic trypsin inhibitor domain PF00014

Figures 7–9 display the major results for the PF00014
protein family. PPV curves are calculated using PDB ID
5pti [48].

2. RNA recognition motif PF00076

Figures 10–12 display the major results for the PF00076
protein family. PPV curves are calculated using PDB ID
2x1a [49].
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FIG. 13. The upper two panels show the statistics (two-point
connected correlations) of the training data (PF00014) against an
i.i.d. MCMC sample extracted from the inferred model and the CD
sample used for inference. The perfect coincidence of the two in
the CD case demonstrates that the CD algorithm is converged and
contrast is lost despite the fact that the correlations extracted from an
i.i.d. sample do not match the empirical ones. To understand this, we
have selected those (i, j, a, b)’s with substantial deviations, cf. the
inset in the first panel and analyzed their location in the protein (first
panel) and their amino acid composition (second panel, amino acids
in alphabetical order of one-letter code [−, A,C, . . . ,Y ]), densities
are represented via heat map plots. Location at the extremities in the
sequences and in gap-gap correlations emerge clearly.

APPENDIX B: NOTES AND DETAILS
ON INFERENCE METHODS

1. Regularization

In the case of limited data but many parameters, i.e., the
case (Hopfield-)Potts models for protein families are in, the
direct likelihood maximization in Eq. (18) can lead to over-
fitting effects, causing problems in sampling and parameter
interpretation. To give a simple example, a rare and, therefore,
unobserved event would be assigned zero probability, corre-
sponding to (negative) infinite parameter values.

To cope with this problem, regularization is used. Regu-
larization, in general, penalizes large (respectively, nonzero)
parameter values and can be justified in Bayesian inference
as a prior distribution acting on the parameter values. In this
paper and following Ref. [20], we use a block regularization
of the form

R(ξ, h) = η0

p∑
μ=1

(∑
i,a

∣∣ξμ
i (a)

∣∣)2

+ qη0

∑
i,a

hi(a)2 , (B1)

with η0 being a hyperparameter determining the strength of
regularization. This regularization weakly favors sparsity of
the patterns.

We use η0 = α0L/qM with α0 = 0.0525 as default values
throughout this paper. In the last section of this Appendix, we
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FIG. 14. The upper two panels show the statistics (two-point
connected correlations) of the training data (PF00014) against an
i.i.d. MCMC sample extracted from the inferred model and the
PCD sample used for inference. As in the CD case, the MCMC
sample shows larger deviations from the empirical observations
than the PCD sample, but correlations appear overestimated and
contrast in the PCD plot is sufficient to drive further evolution of
parameters. To understand these observations, we have selected those
(i, j, a, b)’s with substantial deviations, cf. the inset in the first panel
and analyzed their location in the protein (first panel) and their amino
acid composition (second panel, amino acids in alphabetical order
of one-letter code [−, A,C, . . . ,Y ]), densities are represented via
heat map plots. Locations at the extremities in the sequences and
in gap-gap correlations emerge clearly.

show that Hopfield-Potts inference is robust with respect to
this choice.

2. Contrastive divergence vs persistent contrastive divergence

a. Contrastive divergence does not reproduce
the two-point statistics

CD is a method for training restricted Boltzmann machines
similar to persistent contrastive divergence. Initialized in the
original data, i.e., the MSA of natural amino acid sequences, a
few sampling steps are performed in analogy to Fig. 1, and the
kth step is used in the parameter update to approach a solution
of Eq. (21). However, rather than continuing the MCMC
sampling from this sample, the sample is re-initialized in the
original data after each epoch. This has, a priori, advantages
and disadvantages: The sample remains close to a good
sample of the model in CD but far from a sample of the
intermediate model with not yet converged parameters.

As can be seen in Fig. 13, after a sufficient number of
epochs the statistics of the CD sample and the training data
are perfectly coherent, the model appears to be converged.
However, the connected two-point correlations are not well
reproduced when resampling the inferred model with standard
MCMC. Part of the empirically nonzero correlations are not
reproduced and mistakenly assigned very small values in the
inferred model.
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FIG. 15. Regularization dependence for CD inference, empirical two-point connected correlations (PF00014) are plotted against those
estimated from the model using an i.i.d. MCMC sample. The regularization strength is varied over almost two orders of magnitude with
η0 = α0L/qM and α0 = 0.0525, going from a zone of overfitting to one of over-regularization. Results are shown for various values of p,
illustrating a strong p dependence of the optimal coupling strength.

To understand this observation, we have selected the ele-
ments of the second panel, which show discrepancies between
empirical and model statistics, cf. the inset in the figure.
The corresponding values of (i, j, a, b) are strongly local-
ized in the beginning and the end of the protein chain and
correspond to the gap-gap statistics ci j (−,−). This gives a
strong hint towards the origin of the problems in CD-based
model inference: gap stretches, which exist in MSA of natural
sequences, in particular, at the beginning and the end of
proteins due to the local nature of the alignment algorithm
used in PFAM. Those located at the beginning of the sequence
start in position 1 and continue with only gaps until they are
terminated by an amino acid symbol. They never start later
than in position 1 or include individual internal amino acid
symbols (analogous for the gap stretches at the end, which go
up to the last position i = L).

In CD, only a few sampling steps are performed, so
stretched gaps in the initialization tend to be preserved even
if the associated gap-gap couplings are very weak. Basi-
cally, to remove a gap stretch, an internal position cannot be
switched to an amino acid, but the gap has to be removed
iteratively from one of its end points, namely, the one inside
the sequence (i.e., not positions 1 or L). So, in CD, even

small couplings are, thus, sufficient to reproduce the gap-gap
statistics.

If resampling the same model with MCMC, parameters
have to be such that gap stretches emerge spontaneously
during sampling. This requires quite large couplings, actually,
in BMDCA, gap-gap couplings between neighboring sites are
the largest couplings of the entire Potts model. Using now
the small couplings inferred by CD, these gap stretches do
not emerge at sufficient frequency, and correspondingly the
positions at the extremities of the sampled sequences appear
less correlated.

b. Persistent contrastive divergence and transient oscillations
in the two-point statistics

Persistent contrastive divergence overcomes this sampling
issue by not reinitializing the sample after each epoch but
by continuing the MCMC exploration in the next epoch with
updated parameters.

As shown in the main text, PCD can actually be used to
infer parameters, which lead to accurately reproduced two-
point correlations when i.i.d. samples are generated from
the inferred model. However, during inference, we have
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FIG. 16. Regularization dependence for PCD inference, empirical two-point connected correlations (PF00014) are plotted against those
estimated from the model using an i.i.d. MCMC sample. The regularization strength is varied over almost two orders of magnitude with
η0 = α0L/qM and α0 = 0.0525; results are shown for various values of p. We find a strong robustness of results with respect to regularization.

observed transient oscillations, cf. Fig. 14 for an epoch where
correlations in a subset of positions and amino acids are
overestimated. An analysis of the positions and the spins
involved in these deviations shows that again gap stretches are
responsible.

The reason can be understood easily. Initially, PCD is
not very different from CD. Gap stretches are present due
to the correlation with the training sample, and only small
gap-gap interactions are learned. However, after some epochs,
the sample will lose the correlation with the training sample.
Due to the currently small gap-gap correlations, gap stretches
are lost in the PCD sample. According to our update rules,
the corresponding gap-gap couplings will fastly increase.
However, due to the few sampling steps performed in each
PCD epoch, this growth will go on even when parameters
would be large enough to generate gap stretches in an i.i.d.
sample. Also, in the PCD sample, gap stretches will now
emerge, but due to the overestimation of parameters, they will
be more frequent than in the training sample, i.e., parameters
start to decrease again. An oscillation of gap-gap couplings is
induced.

The strength of these oscillations can be strongly reduced
by removing samples with large gap stretches from the train-
ing data and train only on data with limited gaps. If the initial

training set was large enough, the resulting models are even
expected to be more precise since gap stretches do contain
no or little information about the amino acid sequences un-
der study. However, if samples are too small, the suggested
pruning procedure may reduce the sample to an insufficient
size for accurate inference. Care has, thus, to be taken when
removing sequences.

3. Robustness of the results

As discussed before, we need to include regularization to
avoid overfitting due to limited data. In Figs. 15 and 16, we
show the dependence of the inference results due to changes
in the regularization strength over roughly two orders of
magnitude. The first of the two figures shows the results for
CD: Empirical connected two-point correlations are compared
with i.i.d. samples of the corresponding models. We note that
the results depend strongly on the regularization strength.
For low regularization, the correspondence between model
and MSA is low due to overfitting. At strong regularization,
only part of the correlations is reproduced, we over-regularize
and, thus, underfit the data. For each protein family and each
number p of patterns, the regularization strength would have
to be tuned.
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For PCD, the situation is fortunately much better; results
are found to be very robust with respect to regularization, cf.

Fig. 16. This allows us to choose one regularization strength
across protein families and pattern numbers.
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4.3 Mean-field Potts model for learning RBM

It is known that the RBM with Gaussian hidden variables is equivalent to
the Hopfield-Potts (HP) model [95, 96]. As shown in [97], a HP model can
be represented as the marginalization of the joint probability distribution of
p(A,x), which corresponds to RBM with Gaussian hidden variables,

p(A,x) =
1

Z̃
exp


∑

i,µ

xµξµi (Ai) +
L∑

i

hi(Ai)−
L

2

P∑

µ

(xµ)2


 , (4.1)

where Z̃ is the partition function. The probability of a sequence p(A) can
be understood as the consequence of the marginalized distribution of Eq.
4.1,

p(A) =

∫

RP
p(A,x)dx

=
1

Z
exp


∑

i,j

1

L

P∑

µ

ξµi (Ai)ξ
µ
j (Aj) +

∑

i

hi(Ai)


 .

(4.2)

Although RBMs can reproduce statistics of training data, mean-field HP
(mfHP) models cannot serve reasonable generative models. Note that mean-
field DCA overestimates coupling parameters, thous cannot also be used as
a generative model. On the other hand, mfHP models are theoretically and
numerically well-investigated, and mfHP patterns directly associate with
data covariance matrices [98, 95, 51].

This section aims to understand RBM patterns by comparing mfHP pat-
terns. Our findings are as follows:

• RBM tends to preferentially learn patterns that are similar to the
attractive mfHP patterns with significant likelihood contributions in
the HP model (Sec. 4.3.1).

• Attractive mfHP patterns can be close to one of the optimal patterns
for RBM. In other words, when the attractive mfHP patterns are used
as the initial states of RBM, they keep patterns close to the initial
states (Sec. 4.3.1).

• Introducing HP patterns into RBM helps to improve learning efficiency
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and control each pattern (Sec. 4.3.2).

In the entire section, we assumed a Gaussian prior distribution for the
hidden variables. The following experiments were performed for the response
regulator domain (Pfam ID, PF00072), but qualitatively similar results are
obtained for other domain families.

4.3.1 Comparison between mean-field Hopfield-Potts model
and RBM with Gaussian hidden variables

Overlaps between mfHP and RBM patterns – In the case of the
mfHP model [95], there are two types of patterns: Those corresponding to
large eigenvalues of the Pearson correlation matrix (λµ > 1) and the others
associated with small eigenvalues (0 < λµ < 1). These patterns are called
attractive and repulsive [98, 95]. As established in Ref. [95], distributions
of entries of attractive patterns are typically dense. On the contrary, en-
tries of repulsive patterns are typically sparse and strongly localized in some
specific positions i and amino-acids a. Such localized entries are commonly
associated with structural interactions, hence necessary for accurate contact
predictions [98].

Fig. 4.1.a shows typical attractive and repulsive patterns. These are
the second most significant attractive pattern (top) and the most significant
repulsive pattern (bottom).

Ref. [95] shows that the patterns, whose eigenvalues are significantly
larger than 1 or markedly smaller than 1, contribute to the log-likelihood
function of the mfHP model, cf. Eq. 2.34. Fig. 4.1.b shows the log-likelihood
contributions as a function of eigenvalues.

It is important to examine how far the estimated patterns of the mean-
field approximation are from the patterns of the exact HP model. Note that
the learning dynamics are quite different between the HP model and RBM.
However, as long as RBM uses Gaussian hidden variables, these models are
equivalent.

In order to investigate how similar mfHP patterns and RBM patterns
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Figure 4.1: (a) An attractive pattern (top) and a repulsive pattern (bot-
tom). Distributions of entries of attractive patterns are usually dense across
the site and residue types. In contrast, the distributions of repulsive pat-
terns are typically localized at specific residues and amino acids, which are
generally associated with spatial interaction. (b) Likelihood contribution as
a function of eigenvalues of the Pearson covariance matrix. Patterns with
eigenvalues close to 1 have a small contribution to the log-likelihood, whereas
those eigenvalues that are greater than / less than 1 make a significant con-
tribution. Note that the largest eigenvalue gives the largest influence on the
likelihood, but that corresponds with conservation terms, hence associating
with the single site frequencies (see the following discussion and Fig. 4.2).c.
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are, we introduce here the overlap, i.e., inner products of these patterns,

〈ξµ,vν〉 = (ξµ)tvν

‖ξµ‖ = ‖vν‖ = 1 ,
(4.3)

where {ξµ} are RBM patterns and {vν} are mfHP patterns.

Fig. 4.2.a shows the overlaps between the RBM and mfHP attractive
patterns |〈ξµ,vν〉| . In this test, we used P = 2 hidden variables for the
RBM. For attractive mfHP patterns, µ = 1, 2, . . . , 400 patterns are selected
from the top in descending order of eigenvalues, that is, in descending order
of contribution to the log-likelihood.

The top three attractive mfHP patterns show significant overlap with
RBM patterns, which is greater than the overlaps between the two different
RBM patterns (red lines) (an estimated overlap using the same qL dimen-
sion 1000 Gaussian random vectors is around 0.0165). Notably, the mfHP
patterns corresponding with the second and third largest eigenvalues show
a strong correlation with each RBM pattern (we hereafter call a HP pattern
corresponding with the n-th largest eigenvalue as n-th mfHP pattern). The
first mfHP pattern does not show a strong correlation with any RBM pat-
terns. Instead, we found a large overlap with the local field, which associates
with single-site frequency Fig. 4.2.c .

In Fig. 4.2.b, the overlaps between the repulsive patterns and RBM
patterns are significantly smaller than the case of the attractive patterns
and the overlaps between the two RBM patterns (red lines). These results
clearly illustrate the absence of the repulsive modes in RBM (with Gaussian
hidden variables) patterns.

We will also investigate the comparison between a mfHP model and
RBM with P = 16 hidden variable case. Note that learning RBM is a non-
convex optimization problem, and the set of RBM patterns is not unique
and depends on the initial conditions. Therefore, as the number of hid-
den variables increases, so does the number of solutions (the optimal set of
patterns). Consequently, it is nontrivial how the similarity between RBM
patterns and mfHP patterns can be changed as an increase in the number of
patterns. Regarding this fact, we use mfHP patterns as the initial states of
RBM patterns and investigated how well RBM patterns can preserve mfHP
patterns after learning.
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Figure 4.2: (a) Overlap between RBM patterns (P = 2) and attractive HP
patterns (P = 400), |〈ξµ,vν〉|. mfHP patterns are sorted in descending
order according to the eigenvalues (the likelihood contribution decrease in
the same manner). The red lines in each panel are an overlap value between
the RBM patterns, |〈ξ1, ξ2〉|. The second and third mfHP patterns show
significant correlations with RBM patterns. (b) The same types of figures as
(a) but for repulsive patterns. None of the repulsive patterns show similarity
with the RBM patterns. (c) Overlap between between local field h and
the attractive mfHP patterns. The first attractive mfHP pattern shows
substantial similarity with the local field, which also associate with the single
site frequency fi(a) (See Appendix B.2).
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As for learning the RBM, we selected only attractive mfHP patterns as
initial conditions of RBM patterns. These mfHP patterns are ranked second
to 17th in the likelihood contribution. The first mfHP pattern was excluded
because of its similarity with the single-site frequency. The other learning
conditions are same as in the case of the random initializations (cf. Fig. 4.3)

Fig. 4.3 shows the overlaps between RBM patterns with P = 16 (each
panel corresponds with one of these patterns) and attractive mfHP pat-
terns. We cannot find RBM patterns that are particularly similar to one of
the mfHP patterns. On the other hand, as Fig. 4.4 shows that when a RBM
pattern was initialized by one of mfHP patterns, it is specifically similar to
the one used as the initial condition even after the learning. That is, the set
of mfHP patterns is close to one of the stable optimal solutions for RBM
(using Gaussian hidden variables).

Interestingly the overlap values are small (< 0.2) even if mfHP patterns
are corresponding the top ten largest eigenvalues, except those that were
used as the initialization of the learning. Therefore, these RBM patterns
after training show strong specificity for the initialized mfHP pattern. This
tendency becomes more pronounced as the contribution to log-likelihood in-
creases (the left on the top panel shows a greater maximum overlap than
the right on the bottom panel). It indicates that one of the optimal RBM
pattern sets (there are multiple optimal solutions) is close to the mfHP pat-
tern set.

Moreover, although the RBM patterns show specificity to the initialized
mfHP patterns, they differ to some extent, and their overlap values are not
very close to 1. Therefore, the difference between a mfHP pattern and the
RBM pattern that uses it as the initial condition makes a difference whether
it is a generative model or not.

In conclusion, using mfHP patterns as initial states of the RBM pattern,
it is possible to effectively “label” each RBM pattern (hidden variable) and
encourage the patterns to become independent. In addition, it is also pos-
sible to accelerate the learning time by using mfHP pattern as the initial
condition of RBM.

The similarities between RBM patterns are shown in Appendix D. None
of the RBM pattern pairs show an overlap greater than 0.2. Even for pairs
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of 0.1 or more, the pair is only about 15% Fig. D.1 and Fig. D.2.

Figure 4.3: In contrast to the case of RBM with P = 2, each RBM pattern
overlaps with multiple HP patterns. The overlap greater than around 0.1
(below of which corresponds to estimation noise) is across the top around ten
patterns. The RBM patterns with P = 16 are expressed by superimposing
multiple mfHP patterns.
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Figure 4.4: Overlap values between the attractive mfHP patterns and RBM
patterns using the mfHP patterns as initial states. In the order of the upper
left to lower right panel, it corresponds to the attractive mfHP patterns with
the rank according to the likelihood contribution. The left, on the top to
the bottom: 1st to 8th likelihood contribution. The right, on the top to the
bottom: 9th to 16th.
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4.3.2 Applications

Mean-field Hopfield-Potts pattern for a generative model

The HP Energy function in Eq. 4.2 is a rotational invariant with respect
to HP patterns. That is, the energy function does not change under the
following transformation,

ξµi (a)→
∑

ν

Oµνξνi (a) . (4.4)

It is called a gauge invariance, and such a degree of freedom is referred to
as the gauge freedom in physics (see also Sec. 2.4.2). Although RBM pat-
terns and mfHP patterns show significant overlap, these gauge choices are
different. Thus those inner product depends on the gauge choice.

In this section, we will compare RBM patterns and mfHP patterns in
terms of gauge-invariant quantities. Specifically, we will investigate statis-
tics that are generated from RBM using mfHP patterns.

To build a generative model using RBM with mfHP patterns, we choose
as free parameters the number of pattern P and the scale parameters of the
mfHP pattern, a parameter that multiplies the mfHP pattern in the energy
function of RBMs, vµ → vµ/T ∗ =: ξµ, where vµ is a mfHP pattern and ξµ

is a RBM pattern. As we saw in the last section, repulsive mfHP patterns
show very low similarity with RBM patterns, hence we consider only attrac-
tive patterns.

Finding the optimal scale parameters T ∗ can be useful for learning RBMs
efficiently and well-controlled manner:

1. The first advantage is the acceleration of the learning processes, by
choosing patterns that are close to the final configuration of the pattern
reduces the computational cost.

2. In addition, as we mentioned in the last Sec. 4.3.1, the RBM learning
is a non-convex problem and usually depends on the initial conditions
of the model parameters. Therefore by introducing the mfHP patterns
as the initial condition, we can label for each hidden variable (using
the likelihood-contribution of the mfHP patterns).

As we understand from Sec. 4.3.1, the pattern with the largest con-
tribution to the likelihood function tends to associate with the single-site
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frequency. Therefore, we select patterns from the second to the (P + 1) th
patterns. In this experiment we used P = 2 and P = 16.

Fig. 4.5.a shows the values of Pearson coefficients for two-point con-
nected correlations as a function of 1/T . The correlations are computed
from an ensemble of sequences generated from the RBM with P = 2 mfHP
attractive patterns using a scale parameter 1/T , and an MSA. We selected
protein families and the MSA that we used in our article [92]. The maximum
Pearson coefficients using the attractive mfHP patterns are 0.3− 0.7, which
are always smaller than the Pearson coefficients using the RBM patterns
(> 0.6) as expected.

Fig. 4.5.b shows the same types of figure with Fig. 4.5.a, but with many
mfHP attractive patterns (P = 16). Surprisingly, the Pearson coefficients
are much smaller values than the cases of P = 2. One of the possible reasons
is that the optimal scale parameter might be different for each pattern. It
may depend on the eigenvalues. According to the likelihood contributions
Fig. 4.1.b, the second and third eigenvalues are close. Therefore, scaling
with a single parameter can achieve relatively good statistics when P = 2.
However, the range of the eigenvalues up to the top 17th change substan-
tially (λµ = 0.3− 12). Therefore it may need to introduce scale parameters
for each pattern when P = 16.

Low-dimensional analysis using P = 2 model

In the previous section, we saw that RBM patterns show substantial simi-
larity with attractive mfHP that are significantly contributing to the like-
lihood. Notably, RBM patterns of P = 2 show strong specificity for a few
attractive mfHP patterns (Fig. 4.2), whereas RBM patterns of P = 16
show more broad similarities among many attractive mfHP patterns (Fig.
4.3). Therefore, the RBM patterns with P = 2 would be also similar to the
largest eigenmodes of the covariance matrix (hereafter we call as “principal
modes”), which have a clear relation with the attractive mfHP patterns (Eq.
C.5).

Moreover, RBM with P = 2 patterns can still reproduce statistical prop-
erties; the values of Pearson correlation are typically greater than 0.6. It
can be even 0.8 in some cases (see the red lines in Fig. 4.5). Therefore, it is
a generative model that shows the similarity to the principle modes of the
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Figure 4.5: (a) Pearson coefficients of two-point connected correlation
Cij(a, b), computed from the natural MSA and samples from the RBM with
mfHP attractive patterns for as a function of a parameter 1/T (represented
as blue circles and labeled as RBM(ξHP)). As comparisons, we also included
the Pearson values using sequences generated from the RBM with P = 2
RBM patterns, which are represented as red lines (denoted as RBM(ξ)).
(b) the same types of plot with the (a), but Pearson values using sequences
generated from the RBM with the P = 16 mfHP patterns (Pearson values
using RBM with P = 16 RBM patterns are typically greater than 0.9).
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covariance matrix.

Another advantage of using a smaller number of patterns is that they can
be used for low-dimensional analysis by projecting sequences to the pattern
space. Since RBM can be used as a generative model, projected variables in
the low-dimensional space corresponding to the hidden variables are thought
to capture the important features that characterize the training data.

Note that these hidden variable activities in the low-dimensional spaces
can be understood in terms of the statistical modelings, which making it
significantly different from commonly used low-dimensional analysis. For
example, the marginalized HP distribution in Eq. 4.2 can be written as a
function of the mean of hidden variables, xµ(A) = 1

L

∑
i ξ
µ
i (Ai) . That is,

p(A) ∝ exp

(
L

2

P∑

µ

(xµ(A))2 + const.

)
.

It shows the probability distribution of a sequence A for each pattern
µ ∈ 1:P , and the larger (

∑
i ξ
µ
i (Ai))

2, the greater the dependence on this
pattern µ.

We show here the low-dimensional spaces of protein sequences. As the
low-dimensional spaces, we used following patterns:

(a) Principal component vectors of the data covariance matrix (we will
explain the data set bellow).

(b) P = 2 RBM patterns used random initialization for learning. These
patterns are obtained using RBM’s standard learning method PCD,
and the training data is the same as in (a).

(c) mfHP attractive patterns, correspond with the second and third most
contributing patterns in the likelihood function (cf. Eq. 2.34). The
dataset used is the same as in (a).

(d) P = 2 RBM patterns used the mfHP patterns used in (c) for the initial
condition of learning. Other conditions are the same as in (a).

We used the data set of the response regulator domain family (Pfam ID,
PF00072) for this experiment. More precisely, within protein sequences of
the PF00072 domain, we constructed subgroups of sequences according to
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Figure 4.6: Schematic of two protein subfamilies of RR protein domain,
those are distinguished according to the adjoining protein domains. Class
RR-A protein family, which adjacents to domain A. Class RR-B protein
family adjacents to domain B.

other specific protein domains adjacent to the PF00072 domain. For exam-
ple, sequences belong to the other protein subfamily adjacent to a protein
domain A, but sequences belong to the other protein subfamily adjacent
to a different protein domain B (see a schematic of adjacent protein do-
mains, Fig. 4.6). In each protein subfamily, slight changes can occur in the
three-dimensional structure and function according to other adjacent pro-
tein domains. Consequently, the difference of sequences between different
protein subfamilies is pronounced. In Table 1, we summarized the consider-
ing protein subfamilies of PF00072 protein domain.

Fig. 4.7.a shows projections of PF00072 protein sequences using the low-
dimensional space mentioned in (a), where the projection means mapping
to a sequence to two-dimensional space such that {1:q}L → R2 . The color
of each point corresponds to each protein subfamily (the mapping between
the colors and protein subfamilies is summarized in Table 1).

Similarly, Fig. 2, Fig. 3, and Fig. 4 correspond to the projections of
the protein sequences to the low-dimensional spaces (b) the RBM patterns
with the random initialization, (c) attractive mfHP patterns, and (d) the
RBM patterns with the mfHP patterns initialization mentioned earlier, re-
spectively. For example, variables in the two-dimensional space projected
using the RBM pattern can be written as:

∑
i ξ
µ
i (Ai) , µ ∈ {1, 2}.

For protein subfamilies named classes PF00072-PF00512, PF00072-PF00512
(after 500 aa), and PF00072-PF00512 (after 1000 aa) (purple, red, and or-
ange colors are assigned, respectively). These protein families can be very
similar in nature, as the only difference is how far the domains PF00072
and PF00512 are from each other on the protein sequence. In fact, they
are projected on similar areas, and non of the low-dimensional space can
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Table 1: Summary of protein subfamilies for PF00072. The left column
shows Pfam IDs of the protein subfamily (discussed below). The center and
the right columns explain the colors used in Fig. 4.7 and the number of
sequences included in the protein subfamily data, respectively. The protein
subfamily of each PF00072 is adjacent to the protein domain shown in the
leftmost column of the table. PF00512 (after 500 aa) means that there are
500 amino acids between the PF00072 domain and PF00512. Similarly, after
1000 aa, means there are 1000 amino acids between them. No pair means
that the PF00072 domain does not adjacent to any protein domain. The
middle column shows the color types used in Fig. 4.7. M states the number
of protein sequences in each ensemble of the protein subfamilies.
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Figure 4.7: (a) Projection of the protein sequences to the PCA space. Each
color represents different protein subfamilies (cf. Table 1). we can see three
distinct regions in the PCA space. (b) Projection using the RBM patterns
(initial states of learning were random patterns). (c) Projection using the
attractive mfHP patterns. (d) Projection using the RBM patterns (initial
states were the mfHP patterns used in (c)).
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distinguish them.

Sequences of protein domains that are not adjacent to any protein do-
main (yellow color is assigned) are projected over a large area. This tendency
can be observed in all low-rank spaces. Probably because there is no adja-
cent protein family, the sequences belonging to this protein family are more
likely to be changed by mutational drift rather than specific mutations, and
the sequence variability among this protein family is high.

As explained previously in Sec. 4.3.1, RBM patterns with a small P
shows significant similarity to attractive mfHP patterns. Therefore, the
projection using the RBM patterns (initially random patterns) Fig. 4.7.b
and the projection using the mfHP patterns Fig. 4.7.c are similar. However,
the shape of the projected distribution is not exactly the same direction in
Fig. 4.7.b and Fig. 4.7.c , but it is projected in rotation (Fig. 4.7.b is the
shape of “+”, but Fig. 4.7.c is rather the shape of “x” ). We presume that
this is the direct result of the rotational invariance between the patterns de-
scribed in Sec. 4.3.1 (Eq. 4.4). Note that (d) is “gauge-fixed” by using the
attractive mfHP patterns as the initial state of RBM patterns, and shows
the same shape of distribution as (c) (both are “x” shapes).

In the case of the low-dimensional spaces except for the PCA space,
the protein subfamilies, including large populations (more than 3,000 se-
quences), are mostly projected into regions that differ from other protein
subfamilies except for the protein families we mentioned before. In the
PCA projections, the subfamilies classes PF00072-PF00158 (Green) and
PF00072-PF04397 (Gray) overlap with other prominent subfamily areas and
are indistinguishable.

Interestingly, the low-dimensional spaces based on RBM patterns (both
(b) and (c)) tend to project these subfamilies PF00072-PF00158 and PF00072-
PF04397 to regions that are different from other subfamilies. Such differ-
ences may characterize the differences between generative and non-generative
models.

4.4 Criticality of RBMs

This section shows that the number of hidden variables P required to re-
produce the statistical properties of protein sequences is much smaller than
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the number qL of the pairwise Potts model. We may think that the reduc-
tion of model parameters helps the low-rank model evade criticality, i.e., the
sensitivity of the statistics against slight changes in model parameters (see
Chap.3 and Ref. [92]).

We exploit the heat capacity, which is equivalent to a variance of an
energy function, to assess the robustness of the statistics against the global
change of the model parameters. Similar argument can be found in our
study [92].

For the HP model, the heat capacity function CHP (T ) is defined as:

CHP (T ) =
∂〈EHP 〉T

∂T
=

1

T 2

(
〈(EHP )2〉T − 〈EHP 〉2T

)
,

EHP (A) = −
∑

i<j

JHPij (Ai, Aj)−
L∑

i=1

hHPi (Ai) ,

JHPij (a, b) =
1

L

P∑

µ=1

ξµi (a)ξµj (b) , hHPi (a) = hi(a) +
1

L

P∑

µ=1

(ξµi (a))2 ,

(4.5)

where the average in Eq. 4.5, denoted as 〈•〉T is evaluated as a sample av-
erage from a RBM with Gaussian hidden variables. Therefore, although we
use the energy function of the HP model, the effect on the heat capacity is
purely due to the statistical properties of the RBM. In order to be equiva-
lent to a HP model pHP (A|T ) ∝ exp(−EHP (A/T )), we scaled the energy
function of RBM by hi(a)→ hi(a)/T and ξµi (a)→ ξµi (a)/

√
T 1

Fig. 4.8.a shows the heat capacity for different numbers of hidden vari-
ables P in the RBMs. As the data set, we used the RNA recognition motif
domain (Pfam ID PF00076). The figure clearly demonstrates that as we
increase the number of hidden variables, the peaks of the heat capacity be-
come rapidly steeper. As P increases further (P > 16), it becomes difficult to

1Introducing the temperature parameter to the RBM energy function is not unique,
we can obtain equivalent result using different scaling transformation:

−ERBM (A,x) =
∑
i,µ

xµξµi (Ai) +
1

T

∑
i

hi(Ai)− T
∑
µ

L

2
(xµ)2 ,

after we integrating out the hidden variables we get the same result as exp(−EHP (A/T )) .
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Figure 4.8: (a) Heat capacity C(T ) of the RBMs using a protein fam-
ily data, the RNA recognition motif domain (Pfam ID PF00076) as the
training data. We used P ∈ {1, 2, 4, 8, 16} patterns cases. There are
the peaks below T = 1 and as P increase the peak becomes more pro-
nounced that means the statistics of the RBMs become more sensitive
against a slight perturbation on the parameters. (b) Heat capacity of
the RBMs with randomized patterns (ξrand). The means µrand were es-
timated as (−0.234,−0.152,−0.0291, 0.00391,−0.00509) for each case of
P → (1, 2, 4, 8, 16). Similarly, the standard deviations σrand were estimated
as (0.423, 0.438, 0.4331, 0.406, 0.369).
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Figure 4.9: (a) Pearson coefficient of two-point connected correlations com-
paring the protein sequences (Pfam ID PF00076) and sequences generated
from the RBMs. As P increases, the Pearson value increases in all temper-
ature regions T and the P dependence becomes more pronounced around
T ∼ 0.95. (b) Similarly, it shows the slope of the comparison of the two-
point correlations between natural sequences and sequences generated from
RBMs. Qualitatively similar to the result of Pearson values in Fig. 4.9.c,
the optimal temperature is slightly below T = 1.0.
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perform sampling from the equilibrium distribution in the low-temperature
regime (T < 0.9). This result indicates that the influence is not because of
architecture but rather the effects of the underlying features of the train-
ing data. Fig. 4.8.b shows the heat capacity using random patterns ξrand.
These random patterns are generated from Gaussian distribution with the
same mean and variance values as the learned RBM patterns. Formally, we
can represent ξrand

N (µrand, σrand) ∼ ξµ, randi (a) ∈ R1 , ∀i, a, µ,
µrand = Mean(ξ1:P ) ∈ R1 ,

(σrand)2 = Var(ξ1:P ) ∈ R1 ,

(4.6)

where µrand and (σrand)2 are a mean and variance of the Gaussian distri-
bution (normal distribution), and these values are estimated by the RBM
patterns ξ1:P using the functions Mean(•) which returns arithmetic average
of the arguments •, similarity Var(•) is a function that returns a variance.

Fig. 4.9 shows comparison of two-point correlation Cij(a, b) of training
data (PF00076, the same data used in Fig. 4.8) and sequences generated
from the model using Pearson (a) values and slope (b).

Both Pearson value and the slope increase steadily as P increases. In
the case of P = 16, it already achieved the Pearson values 0.8 (it improves
further as increase the P ).

We found that the temperature that achieves the highest Pearson value
is below T < 1.0 (between 0.9 < T < 1.0). Considering the argument of the
heat capacity, this result, therefore, indicates the presence of optimal P and
T in the sense that it achieves reasonably good statistics but is less critical
(low-temperature is feasible).

4.5 Conclusion

This Chapter investigated low-rank models, also named Hopfield-Potts (HP)
models, for proteins sequence generative models. The HP model can be
converted to a restricted Boltzmann machine (RBM) with Gaussian hidden
variables using the Hubbard-Stratonovich transformation, both of which are
equivalent statistical models.

Sec. 4.2 (cf., [97]) showed that RBMs with a number of hidden variables
(∼ 40), which is sufficiently smaller than qL can reproduce two-point cor-
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relations of protein sequences (Pearson values of two-point correlations are
∼ 0.9). Note that two-point correlations, unlike in the case of bmDCA, are
quantities that are not guaranteed to be reproduced by the model.

Moreover, hidden variables of RBM show specificities for each protein
subfamily. Therefore, protein subfamilies can be classified by the activities
of hidden variables, which are equivalent to projections of protein sequences
using RBM patterns.

Sec. 4.3.1 compared RBM patterns, which are equivalent to HP pat-
terns and mean-field HP (mfHP) patterns. RBM (with Gaussian hidden
variables) patterns show similarity with attractive mfHP patterns that es-
pecially contribute to the log-likelihood (cf. Fig. 4.2).

RBM contains a set of patterns similar to mfHP patterns as the optimal
solutions. When mfHP patterns are used as the initial states of the RBM,
they show notable similarities with the mfHP patterns used in each initial
state after learning (cf. Fig. 4.3 and 4.4).

Sec. 4.3.2 shows the application of observations in Sec. 4.3.1. First,
we investigated how accurately the statistics could be reproduced when the
mfHP patterns were used as the RBM patterns.

In the case of P = 2, some RBMs that use mfHP patterns can gener-
ate statistics as well as standard RBMs by scaling the mfHP patterns with
temperature parameters (cf. Fig. 4.5.a. in Sec. Astonishingly, it achieves
Pearson values of two-point correlations that are bout 0.8 in the case of
PF13345). As we discussed in Sec. 4.3.1, mfHP patterns are close to the
ones of the RBM’s solutions. Therefore the case of P=16 RBM with mfHP
patterns could also generate statistics well if these patterns were correctly
scaled (cf. Fig. 4.5.b). To understand appropriate scaling for each pattern,
that is to understand the dependency of eigenvalues on the optimal scaling
is the objective of a future work.

As another application, we performed low-dimensional analyses of pro-
tein subfamilies using these RBM and mfHP patterns. As a further com-
parison, we performed the same analysis based on RBM patterns that are
initialized by mfHP patterns (cf. Fig. 4.7).

We constructed the intermediate space (d) between the RBM pattern
space (b) and the mfHP pattern space (c) by using the RBM patterns that
are used mfHP patterns as the initial states (these labels (b), (c) and (d)
correspond to the labels in Fig. 4.7).
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In Fig. 4.7, the comparison between (c) and (d) demonstrates the effect
of the mean-field approximation. Some protein sequences of protein sub-
families (e.g. Class PF00072-PF00158 and PF00072-PF04397) degenerate
in the mfHP pattern space. In other words, the activities of hidden variables
must be specific for each of the different major subgroups in order to be a
generative model. Similarly, the comparison between (b) and (d) shows the
effect of the rotational invariance of the HP patterns.

In Sec. 4.4, we discuss the criticality of RBMs using heat capacities
[92]. Increasing the number of hidden variables P has a more pronounced
effect on the statistics of RBMs by perturbing the model parameters. It is
interesting to understand how there is a difference between how the heat
capacity changes with respect to change in P in RBMs and how the heat
capacity changes with respect to the change in the coupling densities d in
sparse BM (cf., Sec. 3.2 and [92]).

There are many questions we couldn’t address in our studies. Some of
them are written as follows.

As we saw in [97], large P improves residue contact accuracy, and also
the repulsive patterns tend to associate with residue contacts [98, 51]. A
question considering these facts is: how increasing P influences the presence
of repulsive patterns? Do the increase in the number of P induce repulsive
patterns?

Other related questions concerning the emergence of repulsive patterns
and the independence 2 of patterns are: How does the selection of the hidden
variable prior distributions affect the patterns? How does the choice of
regularization affects the patterns?

2For this purpose, we need to look at the collective activity of hidden variables, 〈xµxν〉,
where 〈•〉 means the average of hidden space gives the training data.
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Chapter 5

Models combining sparse
and low-rank couplings

In the case of sparse bmDCA, we successfully reduced the number of cou-
plings. In general, contact prediction performance remains stable even be-
low coupling densities d ≤ 5% (cf., Fig. 2 in Chap. 3.2 ). Therefore, the
remaining strong couplings after the decimation are mostly couplings as-
sociated with contact pairs. However, statistics from sparse bmDCAs are
significantly degraded when we go below coupling densities d ≤ 10% (cf.,
Fig. 1 in Chap. 3.2 ).

On the other hand, low-rank or Hopfield-Potts (HP) models are excellent
for generating statistics using a very limited number of parameters. More-
over, the HP patterns can distinguish protein subfamilies, especially those of
high likelihood contributions. However, the accuracy of contact prediction
of the low-rank model is not as good as plmDCA or bmDCA. The main rea-
son is the absence of the repulsion pattern in the models [98, 95]. Therefore,
importantly, both sparse BM and low-rank models learn different features
from the same data.

This chapter explores the possibilities of statistical models that combine
both sparse couplings and low-rank models (Fig. 5.1). In particular, the
chapter is organized as follows:

• Section 5.1 introduces some backgrounds and motivations of this study:
Residue-residue contact predictions when phylogenetic correlations are
present in training data.
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Figure 5.1: A graphical representation of the model we propose in this
section: Combining sparse couplings and low-rank couplings. Blue circles
and green squares denote amino acids and hidden variables respectively.
Interactions between these variables are represented as edges, where black
edges are interactions defined in RBM and red edges are interactions of the
sparse bmDCA.

• Section 5.2 shows how to combine sparse couplings and low-rank cou-
plings. We propose methods for selecting sparse couplings that are
complementary parameters to low-rank couplings. Particularly, we
discuss element-wise couplings (Sec. 5.2.1) and block-wise couplings
(Sec. 5.2.2) individually.

• Section 5.3 shows some results of the proposed method. In Sec. 5.3.1,
we discuss the residue-residue contact predictions.

5.1 Motivation

It was reported [44] that the eigenvalue distributions of the covariance matri-
ces of biological sequences show power-law distributions. This phenomenon
is due to the effects of phylogenies, which are included in protein sequence
ensemble typically. Ref. [44] shows that removing the largest eigenmodes
from the covariance matrices can reduce phylogenetic effects and improve
residue-residue contact prediction accuracy. (Fig. 5.2 shows the eigenvalue
distribution and the contact prediction’s accuracy). Here we emphasize that
while RBM is a generative model of protein sequences, as explained in the
previous section (see Sec. 4.3.1), the RBM patterns are strongly associated
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with the eigenmodes of the covariance matrix. Especially when RBMs de-
pend on a small number of hidden variables such as P = 2, this relation
becomes more pronounced. On the other hand, the RBM with Gaussian
hidden variables cannot treat the repulsive patterns that correspond with
residue-residue contacts [98, 51].

Ref. [44] also provides a simple yet very suggestive insight to the ques-
tion “Why does DCA work well with non-i.i.d. samples?”. Here we sketch
this idea demonstrated in this reference article. Suppose the covariance ma-
trix C can be decomposed into eigenmodes, C = λ1v1v

t
1 + · · · + λPvPv

t
P .

Where, vµ and λµ are a non-zero-mode eigenvector and eigenvalue, respec-
tively. Here, P is the rank of the covariance matrix. In the case of mfDCA,
the coupling matrix is nothing but its inverse. Hence, it can be represented
as −J = C−1 = λ−1

1 v1v
t
1 + · · ·+ λ−1

P vPv
t
P , therefore the coupling matrices

effectively down-weights large eigenvalue modes. Combining this simple ar-
gument and the main claim in the reference article, that is the that large
eigenvalues are the consequences of phylogeny, we can understand why DCA
can accurately predict residue contacts even if protein sequence data is non-
i.i.d.

Although the largest eigenmodes of the covariance matrix may show
signs of phylogenies, still, we cannot bring clear answers to the following
questions:

• How to remove more effectively the large eigenmodes within the frame-
work of statistical modelings?

• How to distinguish phylogenetically or structurally induced correla-
tions?

Here we propose a tentative answer to these questions from a generative
modeling framework.

5.2 Coupling activation

As we noted, RBMs tend to learn the patterns that correspond to the largest
eigenvalue modes (hereafter, we referred to them as “principal modes”) of
the covariance matrix. Moreover, such principal modes presumably asso-
ciate with phylogenetic effects [44]. By considering these factors, the fol-
lowing hypothesis can be stand: Distributions obtained by subtracting the
RBMs probability distributions from an empirical distribution suppresses
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Figure 5.2: (a) An eigenvalue distribution of protein sequences covariance
matrix, which shows power-law. (b) The precision of the residue contact
predictions as a function of the number of removing the principle modes of
data covariance matrix. These eigenmodes are sorted in descending order
of the eigenvalues. It shows that removed some largest principle modes
improves contact predictions. These figures are adapted from [44].
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the influence of the principal modes, and can enhance correlations caused
by spatial interactions.

To compare an empirical distribution and the RBM distribution more
quantitatively, KL divergence between them is a reasonable measure. It can
be formally written as

DKL(p∗‖pRBM ) =
∑

A∈AL
p∗(A)

(
log p∗(A)− log pRBM (A)

)
, (5.1)

where p∗ is assumed that to be an empirical distribution, and it can be
represented as a pairwise Potts distribution with true model parameters
{J∗ij(a, b)}, and pRBM is a probability distribution depending on a small
number of hidden variables (P = O(1)). Here, we assumed the empirical
distribution could be fully described by a pairwise Potts distribution with
the set of coupling parameters. If pRBM can adequately learn the correla-
tions related to the principle modes, DKL(p∗‖pRBM ) in Eq. 5.1 would be
a function of the couplings {J∗ij(a, b)} that are more likely associated with
spatial contacts.

Although Eq. 5.1 is intractable, we may directly assess how KL diver-
gence (KLD) in Eq. 5.1 changes by adding an individual coupling to an
RBM distribution. Here we slightly generalize the problem so that the as-
sumed model is not only RBM but also an arbitrary statistical model p(A).
The difference in the KLD can be written as

∆l = DKL(f‖p)−DKL(f‖p′)
=
∑

A

f(A)
(

log p′(A)− log p(A)
)
, (5.2)

where f(A) is an empirical distribution, and p′(A) is a model that is added
an individual coupling parameter (e.g., Jij(a, b)). Hereafter, we refer to ∆l
in Eq. 5.2 as likelihood variation. As we will discuss in the following section,
∆l can be obtained analytically as a function of the empirical and the model
frequencies (e.g., fij(a, b) and pij(a, b)).

Note that a larger ∆l value means that the added parameter can be
more influential to the model p(A) . Therefore, it is possible to select sparse
parameters to add to the assumed model based on ∆l.

138



In the next section, we will formulate the ideas presented here in a more
concrete way.

5.2.1 Element-wise coupling activation

The key idea is to estimate relevant couplings based on a likelihood variation
Eq. 5.2. In order to formulate it, we first define a modified Hamiltonian,

H ′(A) = H(A)− Jij(a, b)δAi,aδAj ,b . (5.3)

The old Hamiltonian H(A) is an arbitrary function of protein sequences.
If H(A) is not a pairwise Potts energy function (e.g., a profile model or
RBM), the operation in Eq. 5.3 means adding a single coupling parameter
Jij(a, b)δAi,aδAj ,b, where i and a indicate the residue position being i ∈ 1:L
and amino acid being a ∈ 1:q, respectively. On the other hand, if H(A)
is a pairwise-Potts energy function, Eq. 5.3 means changing the existing
coupling.

Using these H(A) and H ′(A), we can estimate the likelihood variation
as following,

∆l =
1

M

M∑

m=1

(
log p′(Am)− log p(Am)

)

=
1

M

M∑

m=1

(
H ′(Am)−H(Am)

)
− log

Z ′

Z

= Jij(a, b)fij(a, b)− log
Z ′

Z
,

(5.4)

where p(A) and p′(A) are Gibbs-Boltzmann distributions characterized by
the Hamiltonians, e.g., p(A) = exp(−H(A))/Z. Similarly, Z and Z ′ are the
partition functions of the Boltzmann measure, e.g., Z =

∑
A exp(−H(A)).

The two-point frequency fij(a, b) is defined as a partial marginalization of
the empirical frequency, fij(a, b) =

∑
A∈{1:q}L f(A)δAi,aδAj ,b . Note that

the ratio of the partition function is tractable and can be easily computed:

Z ′

Z
=

1

Z

∑

A

e
−H(A)+Jij(a,b)δAi,aδAj,b = 〈eJij(a,b)δAi,aδAj,b〉H

= eJij(a,b)pij(a, b) + 1− pij(a, b) ,
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where pij(a, b) is the marginal two-point probability distribution for the
assumed model p(A). By plugging the analytical formula of Z ′/Z, we get
the exact formula of the likelihood variation,

∆l = Jij(a, b)fij(a, b)− log
(
eJij(a,b)pij(a, b) + 1− pij(a, b)

)
. (5.5)

Note that ∆l is derived without knowing the function H(A). The de-
pendency on H(A) comes via the probability pij(a, b) which we can estimate
using MC sampling. All we have assumed is that the probability distribution
is only Gibbs-Boltzmann, p(A) ∝ exp(−H(A)).

Optimize of the element-wise likelihood variation – Here, we dis-
cuss more basic properties of the likelihood variation as a function of the
coupling Jij(a, b). For the sake of simplicity, we neglect the indices (ijab):

∆l(J) = Jf − log(eJp+ 1− p) . (5.6)

Eq. 5.6 has a simple shape,

∆l(J) =





−J(1− f) if J → +∞
J(f − p) if J ∼ 0

−|J |f if J → −∞
. (5.7)

This function goes to minus infinity as |J | → ∞ in a linear manner and
approaches zero as J → 0 also linearly, hence this function has a strictly
positive maximum:

J∗ = log
[f(1− p)
p(1− f)

]
, (5.8)

with,

∆l∗ = f log
f

p
+ (1− f) log

1− f
1− p ≥ 0 . (5.9)

We refer to J∗ as activating couplings, which has also been suggested
in [99], but we can calculate the optimal value instead of a perturbative
calculation.

Note that J∗ goes to infinity if p or f is close to zero or one, however that
situation can easily be avoided by introducing a pseudo-count for frequencies
1. We also show another derivation of ∆l(J) by evaluating the likelihood of

1One easily finds that this function becomes ∆l(J) → 0 as f → 0, 1 for arbitrary J
(suppose f ∼ p).
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p given an observation of f (Appendix F.1).

Note that the above arguments can be held whenever an adding param-
eter is introduced individually. The same result can obtain by introducing
other types of parameters such as external field hi(a) and many-body inter-
actions parameters (e.g., Jijk(a, b, c)).

5.2.2 Block-wise couplings activation

Similar to the previous discussion, we can estimate the likelihood change
due to adding an entire coupling matrix Jij ∈ Rq×q.

H ′(A) = H(A)− Jij(Ai, Aj) ,∀A = (A1, . . . , AL) ∈ {1:q}L . (5.10)

Note that Eq. 5.10 is not an elementwise coupling addition on Eq. 5.3
but blockwise. Accordingly, we get the following relation for the likelihood
variation:

∆l =
∑

a,b

Jij(a, b)fij(a, b)− log
Z ′

Z
,

Z ′

Z
= 〈eJij(Ai,Aj)〉H =

∑

a,b

eJij(a,b)pij(a, b) .

Optimize the block-wise likelihood variation – Here we determine
the properties of the likelihood variation in the case of block-wise likelihood
variations. In the following analysis we neglect site indices and represent
states (ijab) as µ, Jij(a, b) = Jµ.

∆l =
∑

µ

Jµfµ − log
∑

µ

eJµpµ . (5.11)

Here the Hessian matrix of the likelihood variation is,

Hµν :=
∂2∆l(J)

∂Jµ∂Jν
=

{
rµrν if ν 6= µ

−rµ(1− rµ) if ν = µ
, (5.12)

where rµ =
exp(Jµ)pµ∑
ν exp(Jν)pν

, hence
∑

ν rν = 1 2.

2Thus rν can be regarded as a probability measure.
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Note that the inner-product for an arbitrary vector a and Ha is

atHa =
∑

µ,ν

aµrµaνrν −
∑

µ

a2
µrµ

= 〈a∗〉r〈a∗〉r − 〈a2
∗〉r = −

〈(
a∗ − 〈a∗〉r

)2〉
r
≤ 0 ,

(5.13)

where 〈a∗〉r =
∑

µ aµrµ . Thus, the block-wise ∆l is a convex function of

J ∈ Rq×q and there is only one maximum.

Therefore, we can find the coupling matrix that realizes the maximum,
by solving the saddle point equation,

∂∆l(J)

∂Jij(a, b)
= fij(a, b)−

eJ
∗
ij(a,b)pij(a, b)∑

c,d e
J∗ij(c,d)pij(a, b)

= 0 . (5.14)

Eq. 5.14 can be easily solved and we get a solution,

J∗ij(a, b) = log
fij(a, b)

pij(a, b)
(5.15)

with,

∆l(J∗ij) =
∑

a,b

fij(a, b) log
fij(a, b)

pij(a, b)
= DKL(fij‖pij) (5.16)

Note that when the frequency of model pij(a, b) is given by the profile
model i.e., pij(a, b) = fi(a)fj(b), the right most side of Eq. 5.16 becomes
the mutual information.

5.3 Applications

This section discusses residue-residue contact predictions using the likelihood-
variation methods for both element-wise and block-wise. Assume multiple
RBMs with different hidden variables P as generative models to be added
coupling parameters.
The RBM patterns are closely associated with the correlations associated
with the principal mode ([98, 51] and Sec. 4.3.1), which is significantly influ-
enced by phylogenies [44]. Therefore, it is expected that the residue-residue
contact prediction can be improved when correlations of RBM sequences
efficiently reproduce non-contact correlations.
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Here, increasing the number of hidden variables P is associated with
increasing the number of principal modes to be removed from a covariance
matrix for residue contact predictions (see Fig. 5.2). The effect of removing
the patterns is nontrivial.

The learning protocol is the following. First, we initialize the RBM
parameters based on the mfHP patterns as we discussed in Sec. 4.3.1.
Second, we learn the RBMs using the standard learning algorithm (PCD-
based learning algorithm with Gaussian hidden variables, see Appendix
E.2). Lastly, we apply the likelihood-variation methods and obtain the cou-
pling activation values J∗ij(a, b), J

∗
ij and the maximized likelihood variations

∆l(J∗ij(a, b)),∆l(J
∗
ij) for both elementwise and blockwise cases.

For obtaining the scoring function for contact predictions, we apply
different strategies for both element/block-wise and coupling/likelihood-
variation methods:

• J∗ij(a, b) ∈ R1 : For element-wise coupling activation, we simply use

Frobenius norm, FE.C.
ij :=

√∑
a,b(J

∗
ij)

2 .

• ∆l∗ij(a, b) ∈ R1 : For element-wise optimal likelihood variation, we use

the sum for the overall state, FE.L.
ij :=

∑
a,b ∆l∗ij(a, b)

3

• J∗ij ∈ Rq×q: For block-wise coupling activation, we take its Frobenius

norm, FB.C.
ij := ‖J∗ij‖ .

• ∆l∗ij ∈ R1 : For Block wise optimal likelihood variation, we use that

value directly, FB.L.
ij := ∆l∗ij

4.

Fig. 5.3 shows the contact predictions i.e., positive predictive value
(PPV) curves using the coupling activation values for both element- and
block-wise cases. For RBMs, we tested multiple different number of hidden
variables, P ∈ {0, 1, 2, 16, 32}. Note that a P = 0 RBM is equivalent to
the profile model. For comparison, we also included results using MI and
plmDCA. As for the MSA to predict residue contacts, we use the data set
of PF00072 employed in Ref. [92].

3The validity of this formulation could be that, as in the derivation of the likelihood
function, adding two couplings such as Jij(a, b) and Jij(c, d) gives an arithmetic sum if
the entropic term is negligible in Eq. 5.5.

4By definition, they are non-negative values, ∀i, j .
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Figure 5.3: (a) PPV curves based on element-wise coupling activation FE.C..
As a model to add coupling parameters, we used RBM with several different
P , the number of hidden variables. There is not much difference in the
results between different P . the accuracies of these results are between the
PPV curve of MI (red line) and PPV curve of plmDCA (blue line), which
is the best residue contact prediction from only MSAs. (b) Same as (a) but
these predictions are based on block-wise coupling activation FB.C.. These
PPV curves are very similar to the results in Fig. 5.3.a.

As shown in Fig. 5.3, residue contact prediction with coupling acti-
vation values for element-wise FE.C.

ij and block-wise FB.C.
ij gave almost the

same results. In fact, the coupling activation values for each element-wise
and block-wise were very similar. By the definition of the coupling acti-
vations in Eq. 5.8 and Eq. 5.15, it can be seen that when the two-point
empirical distribution pij(a, b) is close to one or zero (that is, it corresponds
to a situation sites where sites i and j are likely to be contact), both values
are close to each other.

Fig. 5.4 shows PPV curves using the likelihood variation values for both
element-wise FE.L.

ij and block-wise FB.L.
ij cases. They show that increasing

the number of hidden variables tends to improve contact prediction. Surpris-
ingly, these relatively simple methods can achieve almost the same accuracy
as plmDCA up to the top 300 predictions.
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Figure 5.4: (c) PPV curves based on element-wise likelihood variation FE.L..
These residue-contact accuracies are systematically better than the result
based on MI (shown as a red line). If P is greater than some values (P > 4),
predictions based on FE.C.

ij are almost the same with plmDCA results (blue
line) until around 300. (d) Same as (c) but for the block-wise likelihood
variation FB.L.. These show almost the same curves as the element-wise
cases, but the block-wise predictions are slightly more accurate (the point
the PPV curve based on plmDCA drops is almost the same point as some
of the cases for FB.L.).
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Interestingly, adding a small number of hidden variables (P = 4) could
improve the residue contact predictions, and adding more hidden variables
(P > 4) did not show any significant improvement in accuracy. The improve-
ment of the residue contact predictions is thought to be because RBMs have
specifically learned the pairwise correlation due to the phylogenetic effects of
protein sequences. Furthermore, they did not learn the correlation caused
by the three-dimensional structure so strongly (Sec. 4.3.1). In Appendix
F.2, we show the same analyses for other protein families. Phylogenetic
effects are highly dependent on the protein family, and the efficiencies of
residue contact predictions based on the likelihood variation also tend to be
dependent on the protein families.

5.4 Conclusion

In this chapter, we introduced statistical models that concern both a small
number of strong pairwise couplings in sparse BMs and the low-rank cou-
plings in RBMs. These two types of parameters are complementary: the
sparse couplings are typically associated with pairs of residues in spatial
contact. On the other hand, low-rank couplings tend to learn features of
each subfamily and phylogenies.

Sec. 5.1 reviewed Ref. [44], which is about phylogenetic effects on the
principal modes of data covariance matrices. Principle modes of covari-
ance matrices tend to carry phylogenetic effects and subfamily specific fea-
tures, and those eigenvalues are typically following a power-law distribution.
Therefore removing the principal modes from the covariance matrices can
improve residue-contact predictions (cf., Fig. 5.2).

Sec. 5.2 introduced methods that select variables that are presumably
significant variables to describe the training data. These methods allow
us to select variables to add to an assumed statistical model by assessing
the impact of virtually introducing an individual model parameter (e.g.,
pairwise coupling parameters Jij(a, b), higher-order interaction parameters
Jijk(a, b, c), ..., etc.) into the likelihood function of the assumed model. Note
that this is an opposite principle to the sparse BM, as we add the couplings
instead of decimating them. More specifically, we investigated in detail how
to add element-wise and block-wise coupling parameters that increase the
likelihood. We can also find another approach to add coupling to a pairwise
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model based on pseudo-likelihood. We can also find another interesting re-
search to add coupling parameters iteratively to a pairwise model based on
pseudo-likelihood [99].

From the results of Ref. [44] and Sec. 4.3.1, it is expected that RBMs can
efficiently learn the correlations that affect phylogenies. Therefore, assum-
ing RBMs as statistical models to which parameters are added, the coupling
parameters that increase the likelihood function correspond to pairs in spa-
tial contact.

In Sec. 5.3, we predicted residue-residue contact based on the proposed
method using RBMs. Assuming a model with a small number of hidden
variables (P > 2), residue contact prediction was significantly improved.
Further studies are needed to apply these methods to different protein fam-
ilies depending on the strength of the phylogenetic effects.
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Nature uses only the longest threads to weave
her patterns, so that each small piece of her
fabric reveals the organization of the entire
tapestry.

—Richard Feynman (1918 - 1988)

III

Higher-order statistical

modeling
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Chapter 6

Variational Autoencoders for
Protein Sequences

Up to this chapter, we have discussed parameter decimation and dimen-
sionality reduction. However, the objective of this chapter is to investi-
gate other possibilities of variables that explain training data more com-
prehensively than pairwise interactions in stochastic modeling for protein
sequences. Therefore, we will explore the possibility of other variables be-
sides pairwise interactions.

Particularly, we aim at investigating the presence of higher-order inter-
actions in natural protein sequences. From now on, the higher-order inter-
actions are defined as interactions between amino acids that include three
or more sites in underlying probability distributions for protein sequences.
Especially, three-body interactions are considered in Sec. 6.1. Note that we
need to distinguish interactions and correlations.

On the other hand, there has been extensive research on protein sequence
generative models and protein structure predictions using the state of the
art of deep neural networks over the last few years (DNNs) [100, 101, 102].

Notably, DNN-based generative models do not require to decide which
variables should be considered in a priori and can take into account higher-
order interactions. Variational Auto-Encoder (VAE) is a generative statis-
tical model that can handle DNNs well within the framework of statistical
modeling. VAEs have been applied as a protein sequence generative model
in recent years [103, 104], and further applications are expected.
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The structure of this section is as follows: First, we show a relatively
straightforward experiment that studies causes of strong third-order corre-
lations. Second, we investigate the presence of higher-order and non-linear
effects by exploiting VAEs.

6.1 Decomposition of strong three-point correla-
tions in two-point correlations

It has been said that there are higher-order interactions in protein-sequence
ensembles, and taking them into account is essential for improving properties
as a generative model[105, 106, 103]. Besides the computational challenge
to include higher-order interactions explicitly in a model, there are also
statistical challenges. That is, searching the evidence of the higher-order
interaction is like hearing a faint sound of insects at a construction site.
Most of the signals from relevant higher-order combinations are still much
smaller than the majority of lower-order statistics (single site frequencies
and pairwise frequencies).

Instead of directly investigating higher-order interactions, we first ex-
plore the nature of higher-order correlations. More specifically, we search
three-point correlations not explainable by two-point correlations 1. There-
fore, we focus on strong three-point correlations, especially when the two-
point correlations involved in the three-point correlation are not very strong.
Such three-point correlations can be defined as follows:

|Cξηζ | ≥ θ∗3 and,

|Cξη|, |Cηζ |, |Cζξ| ≤ θ∗2,
(6.2)

1More formally, three-point correlations that are explainable by two-point correlations
satisfy the following properties:

fξηζ = fξηfζ . (6.1)

We can easily check that the three-point correlation can be written in terms of means and
two-point correlations as follows:

Cξηζ = fξηζ − (fξfηζ + fηfζξ + fζfξη) + 2fξfηfζ

= +2fξfηfζ − (fξfηζ + fηfζξ)

= −fξCηζ − fηCζξ .

Therefore, three-point correlations that satisfies Eq. 6.1 can be written with the two-point
correlations and means. Thus, a strong three-point correlation that involves two or more
weak two-point correlations must be a different form.
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where each index in (ξ, η, ζ) is supposed to specify a position and an amino
acid, and Cξηζ is the three-point (connected) correlation defined in Eq. 2.12.
The θ∗3, θ

∗
2 are preselected thresholds for third- and second-order correlations

that distinguish significance.

The question raised here is whether there are strong three-point corre-
lations, even if the associated tow-point correlations are small. Concerning
this question, we compare the following two types of three-point correlation
ensembles:

• ensemble-1: an ensemble for all of the possible three-point correlations.

• ensemble-2: an ensemble of the three-point correlations, where two or
more of the three two-point correlations are large (e.g., if |Cξη|, |Cηζ | >
θ∗2, then we include Cξηζ in to ensemble-2).

For both ensembles, we treat only three-point correlations where indices are
pairwise different (ξ 6= η, η 6= ζ, ζ 6= ξ). If there are three-point correlations
not explainable by the involved two-point correlations, we cannot find them
in ensemble-2.

The two-point correlations that are induced by the background noise
can be estimated numerically by taking sequences from a profile model. In
fact, the two-point correlations due to the background noise are quite small,
0.0057, 0.0046, and 0.0049, for protein families, PF00014, PF00072, and
PF00076, respectively. Hence, we selected two-point correlations whose val-
ues are greater than θ∗2 = 0.01 as significant two-point correlations, which
correspond to less than 0.3% of all two-point correlations. Based on the se-
lected strong two-point correlations, we determined a set of pairs of indices
and states Ω2 := {(ijab)}, then construct all of the possible three-point cor-
relations Ω3 := {(ijkabc)}, which should include at least two out of these
three pairs (ijab), (jkbc) or (kica) ∈ Ω2.

In Fig. 6.1, we show the distributions of the three-point correlations for
the three protein families (the MSAs are those in Ref. [92]). For compar-
isons, we selected the largest 105 correlations as particularly strong three-
point correlations (the red histogram, which corresponds to ensemble-1),
which is typically less than 0.05% of the total, and three-point correlations
whose associated two-point correlations are significantly strong (the blue and
green histograms, which correspond with ensemble-2 with different thresh-
old θ∗2 = 0.01 and θ∗2 = 0.015 respectively). It clearly suggests that the
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strong three-point correlations occur as a consequence of strong two-point
correlations.

6.2 Variational Autoencoders as generative mod-
els and non-linear low-dimensional analysis for
proteinn sequences

Variational Autoencoders (VAEs) are alternative generative models get-
ting recently considerable attention. VAEs were proposed by Kingma and
Welling in 2013 [107]. VAE can be used as a generative model, but also
as low-dimensional analysis such as PCA, but in a non-linear manner. Be-
cause of the usefulness and flexibility of VAE, they have been applied for
designing protein sequences and extract a lot of biologically useful informa-
tion from sequence alignments [103, 108, 109]. The application of VAEs to
a protein sequence generation model has attracted great attention [103, 104].

It has been known that liner systems such as PCA and linear-autoassociate
model are not appropriate for certain types of distributions such as multi-
modal and non-linear distributions, whereas non-linear systems can classify
such distributions correctly [110]. Formally, both methods can be under-
stood as reconstruction spaces, one being a linear projection, the other a
non-linear projection. In fact, the difference between the two methods be-
comes clear in terms of reconstruction error. For instance, if there is a non-
linear relation in a given data set (suppose the variables are continuous), a
linear transformation cannot reconstruct original data [110]. Note that we
can find similar situations when dealing with categorical variables, but the
non-linear effect in the above example corresponds to multilinear effects, i.e.,
higher-order interactions. In the case of protein-sequence modeling, there-
fore, autoencoder-based lower-dimensional analysis might be useful if the
distributions are multi-modal or have multilinear effects, not captured by
pairwise interactions.

As we mentioned earlier, a VAE is a generative model. Moreover, it can
provide a space where the information of raw data (e.g., protein sequences)
is compressed or encoded. This space is called a hidden space or feature
space. The mapping of a raw data x to hidden variables z is called encoder,
qφ(z|x), the and reconstruction of the raw data from the encoded hidden
variables is called a decoder, pθ(x|z), cf. Fig. 6.2.a (we show more details
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Figure 6.1: (a) Distribution of the three-point correlations for PF00014.
We show the largest 105 |Cijk(a, b, c)| (red histogram), which corresponds
to 0.045% of all three-point correlations (ensemble-1). We also show three-
point correlations that are associated with two-point correlations (ensemble-
2) whose values are greater than θ∗2 = 0.01 (blue) and θ∗2 = 0.015
(green). The three amino-acid positions corresponding to the largest and
the second-largest correlations are highlighted on the 3D structure. The
largest positive three-point correlations emerge at (i, j, k) = (10, 32, 34) with
states, (a, b, c) = (G,G,C), (C,G,C). Similarly, the largest negative three-
point correlations correspond with (i, j, k) = (10, 14, 34) with (a, b, c) =
(G,L,C),(C,L,C). (b) The same type of figure but for PF00076. (c) The
same type of figure but for PF00072.
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Figure 6.2: (a) Schematic representation of VAE. An encoder qφ(z|x) trans-
forms an input sample x to a hidden variable z. A decoder pθ(x|z) trans-
forms the hidden variable z to a reconstructed variable x̂.

in Sec. 6.3.1). If the dimension of the hidden space is smaller than the
dimension of the input data, it acts as a dimensionality reduction or data
compression method.

Encoders and decoders are usually built by deep neural networks, as de-
scribed in the following section (Sec. 6.3.2), but qφ(z|x) and pθ(x|z) can
be treated as probability distributions. Hence, VAEs can be formulated in
terms of statistical modeling and also explicitly represent the hidden space
as a probability distribution.

The main advantages of VAE for protein-sequence modeling can be sum-
marized as follows: First, there is no assumption such as the pairwise in-
teractions among the amino-acid variables, so possible interactions can be
multi-variable interactions. Second, as we mentioned earlier, the distribu-
tion in the hidden space is flexibly adaptable considering the characteristics
of data.

The organization of this section is as follows:

• In Sec. 6.2.1, we define the objective function of VAE, and discuss
how encoder and decoder depend on it.

• In Sec. 6.2.2, we review (deep) neural network algorithms regarding
the application to VAEs.
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• In Sec. 6.2.3, we apply a VAE as protein-sequence generative models.

• In Sec. 6.2.4, we investigate the statistical properties of the hidden
spaces of protein-sequence VAEs.

• In Sec. 6.2.5, we classify protein subfamilies by exploiting the hidden
space. Here we also propose another VAE-based algorithm using a
generalized prior distribution for hidden variables.

6.2.1 Introduction

As mentioned before, VAEs are defined in terms of statistical models. In-
deed, behind VAEs, there is the idea of a (log-) likelihood function L(θ) =
log pθ(x).

One of the most important ideas of VAEs is that, instead of dealing with
pθ(x) directly, it assumes that there is another statistical variable, a hidden
variable (we will formally define it in the context of VAEs later) and its
marginalized distribution is defined by the Bayesian theorem:

pθ(x) =
pθ(x|z)pθ(z)

pθ(z|x)
. (6.3)

The benefit of adding an additional stochastic variable is the gain in the
complexity of probability distribution. If pθ(x) is rather a simple model but
the empirical distribution aimed to be learned is more complex, learning of
parameters θ will be difficult. Simple pθ(x|z) and p(z) may lead to complex
models, e.g., Gaussian mixtures instead of a simple Gaussian.

The objective function of VAE can be derived as follows:

log pθ(x)

=
〈

log pθ(x)
〉
qφ(z|x)

=

〈
log

pθ(x|z)pθ(z)

pθ(z|x)

〉

qφ(z|x)

=

〈
log

pθ(x|z)pθ(z)qφ(z|x)

qφ(z|x)pθ(z|x)

〉

qφ(z|x)

=
〈

log pθ(x|z)
〉
qφ(z|x)

−DKL(qφ(z|x)‖pθ(z)) +DKL(qφ(z|x)‖pθ(z|x))

≥
〈

log pθ(x|z)
〉
qφ(z|x)

−DKL(qφ(z|x)‖pθ(z)) ,

(6.4)
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where qφ(z|x) is defined as another conditional distribution of z given x.
Note that pθ(z) is an assumed prior distribution, thus given. For the second
to the third equation, we used the Bayesian theorem in Eq. 6.3. For the
transformation to the final inequality in Eq. 6.4, we used the non-negativity
of KLD. A necessary and sufficient condition for establishing equality in the
Eq. 6.4 is DKL(qφ(z|x)‖pθ(z|x)) = 0 .

The final result in Eq. 6.4 is a lower bound of the log-likelihood function.
It is as objective function of the VAE and called Evidence Lower Bound
(ELBO):

LELBO(θ, φ) =
〈

log pθ(x|z)
〉
qφ(z|x)

−DKL(qφ(z|x)‖pθ(z)) . (6.5)

It has to be maximized with respect to the model parameters θ (for decoder)
and φ (for encoder). These probabilities can be interpreted in relation to
each function of VAE as follows: pθ(x|z) reproduces a data point x from
z, hence it stands as a (probabilistic) decoder. On the contrary, qφ(z|x)
embeds a data point x to z, therefore it works as a (probabilistic) encoder.

ELBO learning consists of two distinctive elements. First, accurate data
reconstruction (the first term in Eq. 6.5). Second, minimization of KLD
between the encoder and an assumed hidden prior distribution (the second
term in Eq. 6.5).

To accurately reconstruct training data, the conditional log-likelihood
log pθ(x|z) is maximized with respect to θ, after marginalizing the hidden
variables. Note that the marginalization is not done by pθ(z|x), but qφ(z|x).
Therefore, LELBO is a lower bound of the log-likelihood function, and qφ(z|x)
is its variational function.

As the second element: KLD between the parameterized encoder distri-
bution qφ(z|x) and assumed prior distribution pθ(z) is minimized by chang-
ing the parameter φ. In general, factorized Gaussian distribution is chosen
for the encoder distribution qφ(z|x), and standard Gaussian distribution is
used for the hidden prior distribution pθ(z).

Therefore, the idea of ELBO is that a method alternately optimizes
between the variational function qφ(z|x) and the lower bound of the log-
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Figure 6.3: Schematic of ELBO learning. The log-likelihood function is
bounded by the variational lower bound. Each time optimize variational
function via φ, then optimize lower bound function via θ.

likelihood (optimization of log pθ(x|z) 2 Fig. 6.3.b.

6.2.2 Deep neural networks for VAE

In this section, we will review deep neural networks (DNNs) for VAE briefly
and introduce some quantities of VAEs in terms of DNNs.

A neural network (NN) is a machine (algorithm) that has a set of vari-
ables called perceptrons or neurons as components and can learn arbitrary
functional forms for a certain input data x (we assume x ∈ [0, 1]d). Here, we
denote a n-th perceptron at l-th layer as sln, where n being n ∈ 1:dl, (as we
defined later, we set l ∈ 1:lE for the encoder, and l ∈ lE :ltot(= lE+lD) for the
decoder). A perceptron sln is multiplied by a weight parameter wlmn and is
summed over all perceptrons in the same layer l, then becomes an argument
of another perceptron sl+1

m in the next layer using ul(•) a non-linear function
or activation function, cf., Fig. 6.2.b. As a nonlinear function, we use tanh
or Rectified Linear Unit (ReLU) function [111]. So, m-th perceptron located
at (l + 1)-th layer can be written as

sl+1
m = ul

(
dl∑

n

wlmns
l
n

)
, ∀l ∈ 1:lE . (6.6)

Here, the perceptrons in the first layer are the input values themselves,
therefore d1 = d. In the case of protein sequence data, we define each se-

2We can find a similar idea in the Expectation-Maximization algorithm.
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Figure 6.4: An expression of VAE with a factorized Gaussian distribution
and DNNs. The left trapezoid represents an encoder, qφ(z|x), which is a
DNN parmetrizing a factorized Gaussian distribution. The green squares
represent perceptrons. Each blue rectangular is a layer of perceptrons. The
perceptrons in the last layer are treated as model parameters of Gaussian
distributions, N (µφ,Σφ). Similarly, the right trapezoid is a decoder. Hidden
variables z generated from the N (z|µφ,Σφ) are used as an input variable of
the decoder. z is transformed to an output variable through multiple layers
of perceptrons. The output variable of the decoder and the input variable
of the encoder should have the same dimension.

quence A as a one-hot sequence such that

x(i−1)q+Ai = δAi,a . (6.7)

Therefore, a perceptron in the first layer is defined using Eq. 6.7,

s1
n = xn , ∀n ∈ 1:d(= qL) . (6.8)

From now on, we will discuss DNNs take into account VAE implementa-
tion i.e., formally define the decoder and encoder using the DNN language
(we will consider a model as shown in Fig. 6.4).

One of the key factors in determining the performance of a VAE is how
and what probability distribution is constructed using DNNs. In most cases,
the factorized Gaussian distribution is chosen for this purpose because it can
well approximate continuous probability distributions to some extent and is
theoretically well-grounded (we can analytically obtain the functional form)
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3.
Hence, we define the probability distribution for the encoder as follows:

qφ(z|x) = N (z|µφ(x),Σφ(x))

=
1√
|2πΣ|

exp
(
−(z − µφ(x))tΣ(x)−1(z − µφ(x))

)
,

Σφ(x) = diag(σ1(x), . . . , σP (x)) ,

(6.9)

where P is the dimension of the hidden space. The mean values and co-
variance matrices are defined by perceptrons of the last layer in the decoder
DNN,

µφ,n(x) = sl
E

n (x)

log σφ,n(x) = sl
E

P+1(x) ,
(6.10)

where ∀n ∈ 1:P . Note that, although we use uniform covariances log σφ,n(x) =
const.,∀n ∈ 1:P (therefore the number of perceptrons in the lE th layer is
P + 1), we can also assign different perceptrons for each covariance (in that
case, the number of the perceptron would be 2P ) .

A hidden variable z is the input variable to the decoder. It is converted
to an output variable through the repetition of multiple nonlinear transfor-
mations involved in the decoder,

sl+1
m = ul

(∑

n

wlmns
l
n

)
, ∀l ∈ (lE + 1):ltot

sl
E+1
n = zn , ∀n ∈ 1:P .

(6.11)

Note that, in order to have an output variable compatible to an one-hot
sequence, we use a Sigmoid function for the nonlinear function at the last
layer, ultot(•) = σ(•) = (1−exp(−•))−1. Since these elements are continuous
valuables, it is not yet a one-hot sequence. To be an one-hot sequence, the
maximum argument for each residue is normally used.

For the learning, we apply the backpropagation algorithm. Other tech-
nical information is summarized in Appendix G.1.

Finally, when using it as a generative model, the model parameters are

3As we saw the derivation of the ELBO function, however, there are no restrictions on
the functional form of pφ(z|x) (we will discuss this point later in Sec. 6.3.4).
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fixed, and only the decoder is used. Since the decoder is assumed to be a
conditional distribution of x given z, it can generate sequences. For a DNN,
it can be done by feeding a random variable (hidden variable) to the decoder
neural network. Random variables were sampled from the P -dimensional
standard normal distribution N (z|0, IP ) and used as input values for the
decoder. Note that assuming N (z|0, IP ) for z means, the prior distribution
pθ(z) is a standard Gaussian distribution in Eq. 6.5. In this case, there is
no dependency on the model parameters θ, so we will ignore the subscript
parameter to the prior distribution.

6.2.3 Protein sequence design using VAE

The first thing that has to be assessed is the capacity of VAE as a gen-
erative model, to confirm it as a model that can properly capture protein
data. To this purpose, we report here the standard single-site frequencies
and two-point connected correlations from VAE. Note that these are not
fitted quantities unlike in pairwise-Potts models. In the following experi-
ments, we focus on PF00072 domain data (the same data as in [92]) because
of the abundant sequences and available information about distinct protein
subfamilies (cf., Sec. 4.3.2).

In this experiment, the architecture we used here is summarized in Ta-
ble 2. We employed relatively simple architecture for DNNs because as the
number of layers increases, required learning processes increase, and learn-
ing control also becomes difficult. As a heuristic, we used more layers in
the encoder to avoid the posterior collapse, which is a well-known problem
for ELBO learning and is commonly occurred [112, 113]. Posterior collapse
is that the decoder ignores the encoded variables, which corresponds with
neglecting the second term in Eq. 6.5. This problem can happen if the
encoder is not enough complex and/or encoded signals are less informative.

Fig. 6.5 shows the comparison of correlations with natural sequences
(training data) and generated sequences from the VAE and bmDCA. VAE
sequences were generated as follows: First, we learned the decoder and en-
coder based on the ELBO function and backpropagation algorithm. After
that, we confirmed that the reconstructed sequences are similar enough to
the input sequences (property as an autoencoder). Then, by using a random
variable taken from a standard Gaussian distribution z ∼ N (z|0, IP ) as an
input variable to the decoder, the decoder can generate artificial sequences.
Note that we assumed standard Gaussian distribution as a prior distribution
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Table 2: Table shows the parameters of the architecture of the encoder
and the decoder. l indicates the ID of layer. dl indicates the number of
perceptrons contained in the layer. ul(•) is a nonlinear function (activation
function) used in the layer. ReLU(•) is defined as Rectified linear units
function. tanh(•), is the hyperbolic tangent function. σ(•) is the Sigmoid
function.

p(z) in ELBO learning in Eq. 6.5 .

These two-point correlations are obtained by matrix-matrix multiplica-
tion operations using q × L matrices and did not use the one-hot sequence
filter. It shows that statistics come from VAE is almost the same quality
with bmDCA in terms of single-site and two-point frequencies.
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Figure 6.5: (a.1) Comparison of single-site frequencies for natural sequences
(horizontal) and natural sequences from bmDCA (vertical). At the bot-
tom right corner, we show Pearson correlation values (denoted as “corr.”)
and the slope of a linear fitting. (a.2) Comparison of two-point connected
correlations for natural sequences (horizontal) and natural sequences from
bmDCA (vertical). (b.1) and (b.2) are the sames plot as (a.1) and (a.2)
respectively, but using the sequences from VAE (vertical).

6.2.4 Latent space analysis

As mentioned earlier, PCA analysis cannot well capture the underlying data
features in cases where these include non-linearities and thus higher-order
effects. On the other hand, autoencoder-based low-dimensional analysis can
consider non-linear and higher-order effects, and all information of the data
point is encoded into the internal hidden space.

The latent space of VAE can encode the underlying statistical features
in low dimensions. Hence, the embedded variables are statistically as infor-
mative as raw-data space when VAEs are generative.
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Moreover, both encoder and decoder are probability distributions. Not
only it is theoretically easy to handle, but it also has the following practical
advantages: suppose two input data xA and xB are given and we want to
understand this similarity. A naive idea is a Hamming distance between xA

and xB. Similarly, we can compute the distance between the corresponding
hidden variables for both data points, zA and zB, in the feature space used
by VAE. Furthermore, VAE can also enable us to estimate the likelihood of
an encoded sequence via qφ(zA|xB)/qφ(zB|xB), which can assess how likely
a data point xA belongs to the same ensemble as xB.

As we saw in the last section, the sequence-ensemble of VAE can repro-
duce the connected correlations of the natural sequences when the learning
of VAE is correctly done. Hence we can assume that VAE provide a statis-
tically supported higher-order hidden space. In this section, we exploit the
hidden space of VAE. More specifically, in order to investigate statistical
properties of protein-sequences and some generative models, we investigate
single-point mean and two-point connected correlations in hidden space,

ψu =
1

M

M∑

m=1

µu(xm)

ψuw =
1

M

M∑

m=1

µu(xm)µw(xm)− ψuψw , u 6= w ,

(6.12)

here we omit the symbol of the model parameters φ for simplicity. As in-
troduced in Sec. 6.2.2, µu(x) is the mean value of u-th hidden variable.
Since, µu(x) itself is a typical hidden value given x, ψu represent an en-
semble average of hidden values. Similarly, ψuw is a covariance of typical
hidden variables. Since the hidden variables are obtained by repeating the
non-linear transformation of the linear combination of perceptrons variables
(including amino acids), {ψu} contains also multilinear effects. Moreover,
since the decoder can successfully reproduce the training data, the encoded
variable µu(x) and {ψu} should be statistically relevant.

Fig. 6.6 shows comparisons of the natural sequences used for learning
the VAE in Sec. 6.2.3, and (a) profile sequences, (b) bmDCA sequences,
and (c) VAE sequences (generated using the same condition of Sec. 6.2.3)
in hidden space.

In Fig. 6.6.a, a profile model shows strong correlations between naturals
sequences in the hidden space. Notably, the hidden-covariancies can show
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Figure 6.6: (a.1) Comparison of {ψu}, hidden-means between the natural
sequences (horizontal) and sequences generated from the profile model (ver-
tical). At the bottom right corner, we also show the Pearson correlation and
slope of correlation. (a.2) Comparison of {ψuw}, hidden-covariance distribu-
tion for both the natural and profile sequences. (b.1, c.1) Same type of plots
as (a.1) but comparing bmDCA sequences and VAE sequences (vertical)
respectively. (b.2, c.2) Same type of plots as (a.2) but comparing bmDCA
sequences and VAE sequences (vertical) respectively.
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Figure 6.7: Projections of hidden variables in a PCA space of hidden vari-
ables of the natural sequence (sequences that were used for learning the
VAE). The ensemble sequences projected to the hidden PCA space are: (a)
Natural sequences (used in PCA space and learning the VAE). (b) Sequences
from a profile model. (c) Sequence form a bmDCA. (d) Sequences from the
VAE, which also used for providing the hidden space.

strong correlation even if profile models cannot generate strong correlations
at all in terms of two-point connected correlations in sequence space. This
result is not surprising, because there are strong influences from the single-
site frequencies fi(a) in ψuw due to the multiple non-linear transformations
in the DNN.

In Fig. 6.6.b and Fig. 6.6.c, we show the comparison between natural
sequences, bmDCA and VAE. It shows that the reproducabilites of statistics
using the VAE is better than the bmDCA in the hidden space, it is clear by
comparing the bmDCA and VAE in terms of ψuw. However, it is not very
astonishing because the model generates sequences, and the model provides
the hidden space is the same VAE model, therefore the features in hidden
space are characteristic variables for the VAE, which might be different from
the important variables for bmDCA (single site frequencies and pairwise fre-
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quencies).

The more important observation here is that bmDCA produces statistics
almost as good as the VAE in hidden space. As supplementary quantities
to assess the statistics, we also examine the distributions of hidden variables
using PCA. The PCA space is constructed by the ensemble of hidden vari-
ables for the the natural sequences that are used for learning.

In Fig. 6.7, we show the projections of hidden variables to PCA space.
The distribution of the profile model (b), does not have a cluster structure
and is different from the case of the natural sequences (a). On the contrary,
the distributions of bmDCA (c) and VAE (d) can reproduce the similar
distribution of the natural sequence in the hidden space.
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6.2.5 Protein sequence classification

In general, VAEs use a factorized Gaussian distribution for qφ(z|x) and
assume a prior distribution p(z) = N (z|0, IP ) (hence we omit the param-
eter symbol θ in the prior distribution). Therefore the decoder can gener-
ate samples when fed with statistical variables from the standard Gaussian
distribution. However the choice of the standard Gaussian distribution as
a prior distribution is not a fundamental constraint of VAE. Relaxing the
conditions of the standard Gaussian distribution as a prior distribution does
not conflict with the derivation of the ELBO function.

It is a rather reasonable choice to assume a factorized Gaussian distri-
bution for qφ(z|x) to describe latent space, which contains continuous vari-
ables. Due to the conditioning by x, assuming the factorized Gaussian dis-
tribution result effectively in a mixture of factorized Gaussian distributions.
However, when assuming a standard Gaussian distribution as the prior dis-
tribution, the distribution of qφ(z|x) would be simple and the mean values
tend to be zero because of the minimization of the KLD between qφ(z|x)
and p(z) in Eq. 6.5.

A problem that occurs frequently in VAE-based classification problems,
is that the hidden variables are projected into approximately the same area
and that their distribution does not show a clear structure. In fact, it is an
anticipated result since when we assume the standard Gaussian distribution
as a prior distribution pθ(z). This problem could be more pronounced for
some data structures, such as one-hot encoded sequences. This tends to
make VAEs spend a lot of effort learning features of specific data-structure
(e.g., one-hot sequence). Differences between sub-ensembles will be more
ambiguous when compared to differences due to data structures.

VAE with structured prior distribution –

Here, it is assumed that an encoder and a decoder are learned initially
using standard VAE learning. We introduce additional hidden variables,
c ∈ 1:K (K is any positive integer), in order to make the hidden prior be
more complex distribution. To do this, we assume the following hidden prior
distribution,

pθ(z, c) = pθ(z|c)pθ(c) , (6.13)
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where pθ(c) is a categorical distribution over 1:K and pθ(z|c) stands for a
non-zero mean factorized Gaussian distribution,

pθ(z|c) = N (z|µ̃c, IP ) . (6.14)

Here, µ̃c is a parameter vector defined in the hidden space, which we will
discuss it later in detail. In this manner, we modified the Decoder. Similarly,
the encoder changes in the following fashion:

qφ(z, c|x) = qφ(c|z)qφ(z|x) . (6.15)

The factorized distribution qφ(z|x) is the same as the standard encoder dis-
tribution defined in Eq. 6.5. The other distribution, qφ(c|z) is a probability
distribution, which generates a value for c given z.

From here, we will discuss how to obtain the probability distributions
within the framework of VAE we introduced earlier.

Let us make a first point about pθ(z|c), which generates z given c from
a Gaussian distribution with a mean µ̃c, as shown in Eq. 6.14. We define
µ̃c using the information of the distribution in hidden space at the previous
learning step:

µ̃t+1
c =

〈∫
zpθt(z|c) dz

〉

Data

, (6.16)

were the superscript t indicates a learning epoch. Note that the data de-
pendency result from c and z. As the initial states of the mean vectors
µ̃t=0
c , c ∈ 1:K, we assign random vectors drawn from a standard Gaussian

distribution, µ̃t=0
c ∼ N (µ̃|0, IP ).

Second, we define one of the factorized distribution, qφ(c|z) . As in the
previous discussion, we take an iterative strategy using the previous state of
model parameters,

ct+1 = argmax
c′∈1:K

qφt(c
′|z) , (6.17)

i.e., each z is assigned to the most probable cluster c . As for the specific
mathematical form of qφ(c|z), we use a Gaussian distribution with the mean
vector,

qφ(c|z) = N (z|µ̃c, IP ) , (6.18)

As an initial state of ct=0, it is chosen from a Gaussian distributionN (z|µ̃t=0
c , IP ) ,

hence the categorical variables are assigned uniformly.
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Note also that this iterative optimization of {µ̃c, c} defined in Eq. 6.16,
Eq. 6.17 and Eq. 6.18, is equivalent to the K-means clustering algorithm,
an supervised classification algorithm.

Last, in order to assess and control effects of the assumed generalized
prior distribution for hidden variables, we introduce a control parameter
β ∈ [0, 1] that changes the importance of the conditional log-likelihood term
and the KLD term in Eq. 6.5. Note, a VAE including such a parameter β
is known as β-VAE [114]. Finally, we define the VAE objective functions
with the generalized prior distribution regarding all the quantities we defined
here,

Lβ,K(θ, φ) = (1− β)
〈

log pθ(x|z, c)
〉
qφ(z,c|x)

−DKL (qφ(z, c|x)‖pθ(z, c)) .
(6.19)

By definition, as we increase β, we can enhance the effect of the non-zero
mean Gaussian distribution via the KLD.

This approach is closely related with the conditional VAE (CVAE), which
is a semi-supervised learning algorithm using label information (cf., Ap-
pendix G.1.3). The major difference is, although this method can use labeled
variables, it is not necessary; we perform unsupervised learning, whereas
CVAE is a semi-supervised learning algorithm.

Moreover, the cluster information of c has in effect via the prior distri-
bution of hidden variables pθ(z, c) . However, CVAE introduce additional
perceptrons to the encoder and decoder to take into account the label infor-
mation, and the dependency of the label is absorbed in the DNNs. Hence,
how c depends analytically on the probability distribution is not clear.

In the next section, we will see the results of the classification of protein
sequence subfamilies based on this method, and compare it to an existing
functional protein classification based on domain architecture, as already
used in [97].

Results

Here we apply this method to the classification of protein domain subfam-
ilies, response regulator domain (Pfam ID, PF00072). The data set is the
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Figure 6.8: Projection of training sequences to the hidden PCA space. using
the non-mean Gaussian hidden prior. Show several conditions of β, β = 0.1
(a), β = 0.5 (b), and β = 0.9 (c). As beta increases, the constraint of
the KLD increases, thus a stronger effect of the non-mean Gaussian hidden
prior distribution. In the left column, colors are assigned using the hidden
variable c, which is obtained during VAE learning (a.1, b.1, and c.1). In the
right column, on the other hand, colors are assigned using the true labels,
therefore classifying based on the information of protein subfamilies (a.2,
b.2, and c.2).
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same as in Sec. 4.3.2 (see also Table 1 in Sec. 4.3.2).

In this experiment, the architecture of the VAE is the same as Table 2
in Sec. 6.2.3. As mentioned earlier, we assigned initial states of mean vec-
tors µ̃t=0

c , c ∈ 1:K, from a standard Gaussian distribution. For the initial
class label, we assigned the true labels (correspond with the protein sub-
families) to make it easier to compare with the true labels. However, the
classification properties, such as the cluster structure of hidden variables and
assignment of the label did not change much by the initial state of the labels.

Fig. 6.8 shows results of sequence projections in to hidden PCA spaces,
which are constructed form the hidden variables of training data (including
all of the protein subfamilies). To demonstrate the effect of the constraint
on the hidden prior, we examined several, β ∈ {0.9, 0.5, 0.1}. Sequences
are colored according to their VAE-estimated label (left) or the true label
(right). Note that the sequences of the PF00072 domains themselves were
not used for the labeling but for the other adjacent domains in the same
protein.

As we increase β, i.e., we impose stronger constraints on the conditional
posterior for hidden variables, the hidden spaces show more and more com-
plex structures, and clusters become more distinctive. Some subfamilies are
correctly classified in any β, but some subfamilies always seem to be difficult
to classify. Probably these protein subfamilies are inherently very similar.

When β = 0.1 (a.1 and a.2), the constraint on the hidden space is very
weak by this construction. Therefore the distribution of hidden variables
is similar to that pre-learned with standard VAEs, cf., Fig. 6.7. As β in-
creases, the heterogeneity of the hidden-variable distribution increases.

On the other hand, when the hidden space is imposed greater constraint,
i.e., β = 0.9 (c.1 and c.2), distribution of the hidden variable projections
becomes more inhomogeneous and demonstrates characteristic structures.
In the case of the labels that are estimated by the VAE (c.1), label (color)
assignments differ from projected area to area; it shows the one-to-one cor-
respondence between label types and regions. However, in the case of the
true labels (c. 2), some regions involved hidden variables that are assigned
different labels, i.e., those labels are indistinguishable in the hidden space.

Interestingly, the subfamilies projected onto the characteristic regions
are the same as the low dimensional analysis based on RPM and mfHP,
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cf., Fig. 4.7. That is, subfamilies that are indistinguishable in RBM-based
low-dimensional space are also indistinguishable in VAE hidden space. For
example, Class PF00072-PF00512 (purple), PF00072-PF00512(after 500 aa)
(red) and PF00072-PF00512(after 1000 aa) (orange) are projected into same
areas.

6.3 Conclusion

In this chapter, we investigated the effects of higher-order statistics/interactions
in protein sequence data. We also discussed the Variational Auto-Encoder
(VAE) as a generative model considering the influence of higher-order inter-
actions.

Sec. 6.1 discussed the presence of significant three-point correlations that
are not explainable by the two-point correlations as a model-independent
analysis. Our experiments found that all significant three-point correlations
always involve more than two significantly large two-point correlations. Al-
though further numerical experimental evaluation is required, it would be
interesting to directly compare large three-point correlations with a combi-
nation of two-point correlations and means as a supplementary study.

In Sec. 6.2, we examined VAEs as protein-sequence generative models
that can consider higher-order interactions. Sec. 6.2.1 reviewed the princi-
ple of VAEs which are formulated by the objective function, Evidence Lower
Bound (ELBO). We also confirmed the relations between the main compo-
nents of VAE: encoder, decoder, and hidden space. In Sec. 6.2.2, we de-
fined deep neural networks (DNNs) formally and explained how to construct
probability distributions based on DNNs. In Sec. 6.2.3, we demonstrated an
experiment of generative model for protein sequences based on a VAE (cf.
Table 2). VAE can reproduce statistics of a protein family (PF00072), both
single-site frequencies and two-point connected correlations are as good as
the bmDCA (cf. Fig. 6.5 ).

In Sec. 6.2.4, we investigated statistical properties in the hidden variable
space, defined by variables including higher-order effects. For this investiga-
tion, we exploited the hidden space provided by the experiment in Sec. 6.2.3.
Note, since the decoder of the VAE can reproduce statistics accurately from
encoded variables, the hidden space provides statistically significant vari-
ables. Notably, generated sequences from bmDCA can reproduce hidden
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statistics (hidden-means and hidden-covariance) accurately (cf. Fig. 6.6).
In other words, no significant difference can be found between the natural
protein sequences and the sequence generated from the pairwise coupling
model, even in the space where non-linear and higher-order interaction ef-
fects exist.

Sec. 6.2.5 proposed a VAE method based on structured prior distribu-
tions, based on the insight that distributions of hidden variables tend to be
unimodal Gaussian distributions, which may prevent maximizing efficiencies
of VAEs encoding and decoding. Here, the structured prior distribution is
defined as a Gaussian mixture distribution with different means that are
expected to reflect underlying data clusters.

As expected from the construction of the structured prior distributions,
characteristic structures of hidden variable distributions were enhanced (cf.
Fig. 6.8). Protein subfamilies that were distinctive in the results of low-
dimensional analysis using the Hopfield-Potts model (cf. Fig. 4.7 in Sec.
4.3.2) have emphasized their cluster structures more in this VAE hidden
space (c.2). However, some protein subfamilies still share areas, that is,
such protein families are intrinsically indistinguishable. The same type of
experiment should be conducted on more protein families to ensure the
reproductibility.
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IV

CONCLUDING REMARKS
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Thanks to the development of next-generation sequencing machines,
technology for extracting meaningful information from vast amounts of ge-
nomic data has become increasingly important over the last years. Con-
sequently, machine learning technologies that can extract useful informa-
tion concerning data without understanding the physical mechanisms of the
data become more and more necessary. Such technologies as Deep neural
networks, machine learning have come to astonishing results in structural
biology in the last years [100].

While the developing machine learning technologies are crucially impor-
tant, the traditional modeling approaches that aware of understanding the
physical phenomena behind the data are just as crucial for further evolutions
of biology and genomics.

In this dissertation, we discussed protein sequence generation models
based on statistical modelings and machine learning methods. Especially, we
focused our studies on constructing biophysically understandable statistical
models and selecting variables that are inherently important for describing
protein sequences. Chapters 3, 4, and 5 are based on DCA [42, 45].

Chapter 3 aimed to construct minimally constraint pairwise Potts mod-
els so that the remaining coupling parameters correspond to structural con-
tacts by decimating coupling parameters. This sparse pairwise Potts models
can remove more than 90% of coupling parameters without degrading the
statistical properties expected as generative models. Moreover, even though
coupling parameters are removed by more than 95%, the accuracy of residue-
residue contact is maintained [92].

Chapter 4 investigated the HP models, a model that imposes a low-
rank structure on pairwise coupling parameters. These HP models can re-
produce the statistics reasonably well, even with about 95% reduction in
model parameters. Furthermore, the HP model can provide low-dimensional
spaces that are able to capture the characteristics of protein subfamilies
[51, 115, 97].

Chapter 5 proposed methods for selecting statistically significant vari-
ables that increase the likelihood function for any generative model. Us-
ing these methods, we specified pairwise coupling parameters to enhance
the likelihood of HP models, thus combining sparse couplings and low-rank
couplings. Note that the sparse couplings tend to associate with spatial
contacts, whereas low-rank couplings typically learn global correlations that
are supposed to be due to phylogenies. Therefore, this chapter served as

175



further analysis to distinguish correlations that are due to spatial contacts
or phylogenies in protein sequences [44].

Lastly, chapter 6 explored the presence of higher-order statistics. Sec-
tion 6.1 investigated significantly large three-point correlations that are not
explainable by the two-point correlations. It revealed that all large three-
point correlations are consequences of the large two-point correlations in our
experiments. In section 6.2, we employed variational autoencoders (VAEs)
[107, 116] as protein sequence generative models to consider nonlinear and
higher-order effects. We proposed a framework to investigate higher-order
effects in protein sequences by exploiting hidden spaces of VAEs. According
to these methods, the protein sequences generated from the pairwise Potts
model were not statistically significantly different from the natural protein
sequences. In other words, up to second-order interactions are sufficient as
a generative model of protein sequences.

The last two chapters need further researches in the future. For chapter
5, we should examine generative models that are re-trained after learning
sparse spatial couplings and low-rank couplings. As a result of the relearn-
ing, these generative models could improve residue contact prediction fur-
ther. Chapter 6 proposed the idea to exploit VAE hidden spaces for verifi-
cation of statistical reproducibility of generative models. This direction has
just been opened, many fundamental questions to be addressed are leaving.
Some of the intriguing questions are: Can we construct a situation in which
the hidden variables of VAE can have physical meanings? Can we under-
stand VAE hidden spaces by comparing them with other hidden variable
models, such as the HP models? There many things to be done.
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Appendix A

Databases and Data Format

A.1 Database

Pfam – Pfam contains multiple sequence alignments (MSAs) of protein
domain families and their hidden Markov models (HMMs). E-value (expect
value) is also calculated according to an MSA construction [117]. Pfam con-
sists of the following six types of sequences: family, domain, repeat, motif,
coiled-coil, and disordered.

To make a large MSA, it needs a curated small number of sequences
pre-aligned (the number of sequences is around 100). Based on an MSA
that contains a small number of alignments, construct a HMM to search
reference protein sequences from external databases such as UniProt. The
full alignments can improve the HMMs further by reselecting the seed align-
ments accordingly, then repeating the same process using the new HMMs.
This iterative construction of HMMs and seed alignments are repeated until
there is no new entry of sequences from the database.

UniProt – Universal Protein resource (UniProt) [20] is a comprehensive
resource of protein sequences and annotated data such as types of proteins
and taxonomy. It has been managed by Swiss Institute of Bioinformatics
(SIB), European Bioinformatics Institute (EBI), and Protein Information
Resource (PIR).
UniProt contains the following databases;

1. UniProtKB: a central hub for collections of functional protein infor-
mation. These entries come from coding sequences (CDS) that are
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also submitted from the EMBL-Bank/GenBank/DDBJ nucleotide se-
quence resources (International Nucleotide Sequence Database Collab-
oration (INSDC)).

2. UniProtKB/Swiss-Prot: a high-quality manually annotated 1 and non-
redundant protein sequence database. All registered sequences are
reviewed. It can also contain experimental conditions, functional in-
formation, and mechanical and thermodynamic features determined
in silico.

3. UniProtKB/TrEMBL: a protein sequence database, which contains
automatically annotated information, and these are unreviewed in-
formation. It also contains automatically generated annotations and
functional characterization.

PDB – Protein Data Bank (PDB) is a repository of information regarding
three-dimensional biological molecules such as proteins and nucleic acids. It
can provide information about 3D structures of molecules, and experimental
conditions that are used to determine the coordinates of atoms in molecules
[118]. Protein structure information is obtained by X-ray crystallography,
NMR spectroscopy, or cryo-electron microscopy. Structural/ functional in-
formation for proteins is maintained by a web-based data server (e.g., PDBe
[11], PDBj [119], and BMRB [120]).

The majority of protein structures are determined by X-Ray crystallog-
raphy (around 146,000 entries) [118]. The second and third most commonly
used protein structure determination methods are NMR (around 13,000 en-
tries) and electron microscopy (around 5,000 entries). Only 500 entries are
determined by other methods.

X-ray crystallography is almost inapplicable for some types of proteins
due to technical and experimental limitations. The main factor is the dif-
ficulty in creating protein crystals of sufficient quality for analysis. For
example, large proteins and membrane proteins are extremely difficult to
make protein crystals in general. Therefore, some classes of protein struc-
ture information are significantly insufficient.

1Here, manual annotation means reviews of experimentally proven facts or computa-
tionally predicted features.
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A.2 Data Format

In general, protein sequence files we use are in FASTA format. In the FASTA
format, sequences are represented as a series of lines, each of which is no
longer than 80 characters. The first line of each protein sequence in a FASTA
file, which is also called the header, starts as a later “>”, then follows a
unique name and/or a unique identifier of the sequence, and there may be
additional information. NCBI provides identifiers for protein sequences. The
after first lines are the series consist characters that correspond with one of
20 amino acids or gap “–” . Note that the character “ Z ” means glutamic
acids, “X” means any amino acids, and “*” means translation stop.
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Appendix B

Other modeling techniques

B.1 Sequence gap filtering

Amino acid sequences tend to have consecutive gap symbols at the begin-
ning and the end of sequences typically. These gaps cause some learning
problems. Especially quantities that directly depend on gaps cause slow
learning convergences and unstable learnings [97]. A method to remedy this
problem is to exclude sequences that contain too many consecutive gaps.
We typically keep sequences that have less than six consecutive gaps.

B.2 Initialization of model parameters

The reasonable choice of initial states for the local-field parameters {hi(a)}
in Eq. 2.8 are solutions of the profile model :

fi(a) = pprofilei (a|h∗i ) ∝ exp(h∗i (a)) . (B.1)

Thus, we can assume the local-field parameters as following

hi(a) = log(fi(a)) + const. , (B.2)

Empirically, solutions of {hi(a)} in bmDCA in Eq. 2.8 do not change much
after the learning when these parameters are initialized based on Eq. B.2.

Especially, efficient initializations for coupling parameters is needed be-
cause learning of {hi(a)} are much faster than {Jij(a, b)}. Furthermore, solu-
tions of bmDCA depend heavily on initializations in practice [90, 92], even if
optimizations of pairwise Potts models, including bmDCA are convex prob-
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lems. Indeed, bmDCA initialized by small couplings and another bmDCA
initialized by the plmDCA couplings converge to different couplings, espe-
cially small couplings after the learning are substantially different.

One of the reasons is that the objective functions of pairwise Potts mod-
els involve an almost flat direction in the space of coupling parameters.
Therefore, they tend to need long learning epochs to satisfy the fixed point
equations Eq. 2.10 using gradient-based optimization methods. The situa-
tion becomes more severe when the number of model parameters is signif-
icantly greater than the number of training data, which is the typical case
of our problems.

We typically use small random parameters as initial conditions of cou-
pling parameters because small parameters correspond to a high-temperature
regime and thus the mixing time is generally fast and the ergodicity breaking
does not occur.

One could use optimized coupling parameters using CD-based learning
as initial conditions of the coupling parameters (the similar idea to optimize
bmDCA can be found in [57]).
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Appendix C

Hopfield-Potts model and
Restricted Boltzmann
machines

Here, we summarize the solutions of mean-field Hopfield-Potts (HP) pat-
terns based on Ref. [95].

The key steps for obtaining the mfHP solutions are as follows:
(1) Apply the Harvard Stratonovich transformation by introducing contin-
uous variables to unwind interactions between categorical variables for the
partition function. (2) Execute Gaussian integration, including the effects of
second-order fluctuations, i.e., variance. (3) Fix the gauge to remove redun-
dant gauge freedom due to rotational invariance in the space of the pattern
(cf., Eq. 4.4), ∑

i,a

fi(a)ξµi (a)ξνi (a) = 0 , µ 6= ν . (C.1)

These arguments lead to the following equation of log-likelihood function
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of mfHP model,

L(ξ1:P |A1:M ) =
L∑

i

q∑

a

fi(a) log fi(a)

+
1

2L

∑

i,j,a,b,µ

ξµi (a)Cij(a, b)ξ
µ
j (b)

+
1

2
log
(

1− 1

L

∑

i,a,b,µ

ξµi (a)Cii(a, b)ξ
µ
i (b)

)
,

(C.2)

where C is covariance matrix Cij(a, b) = fij(a, b)− fi(a)fj(b).

Since Eq. C.2 is a convex function of the pattern from the equation,
the maximum likelihood estimation solution can be obtained easily. There
are two types of solutions, depending on the eigenvalues of the Pearson
covariance matrix. Here, Pearson covariance matrix is defined as follows,

Γij(a, b) =
Cij(a, b)√
fi(a)fj(b)

. (C.3)

Suppose we can easily get eigenvalues and eigenvectors as follows,

Γvµ = λµv
µ . (C.4)

It can be written as follows using the eigenvalues and eigenvectors of
the Pearson covariance matrix. When the eigenvalue is greater than 1, it is
called attractive patterns ξ+,µ, and when the eigenvalue is less than 1, it is
called repulsive patterns ξ−,ν .

P+ attractive mfHP patterns are:

ξ+,µ =

(
1− 1

λµ

)1/2

ṽµ , µ ∈ 1:P+ , (C.5)

where attractive eingenvalues are λ1 ≥ λ2,≥, . . . ,≥, λP+ > 1 .
Similarly, P (= P+ + P−) repulsive mfHP patterns are:

ξ−,ν =

(
1

λν
− 1

)1/2

ṽν , ν ∈ (P+ + 1):P , (C.6)

where repulsive eigenvalues are 0 < λP ≤ λP−1, . . . ,≤ λP++1 < 1 . Note
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that these mfHP patterns consider only non-zero eigenmodes therefore P ≤
L(q − 1) .

Here we denote ṽµ as the scaled eigenvectors:

ṽµ = D−1/2vµ , µ ∈ 1:P

D = diag({
√
fi(a)})

(C.7)
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Appendix D

RBM pattern orthogonality
and regularization effect

This section shows the overlap or inner products of RBM patterns with the
number of hidden variables P = 16. The learning protocols are the same as
in Sect. 4.3. As the data set, we used the response regulator domain (Pfam
ID, PF00076).

Fig. D.1.a shows heat maps of absolute values of inner-products among
the P = 16 patterns. This model used L2 regularization for the learning.
Similarly, Fig. D.1.b shows the same type of plot but using L1 norm. Except
for the type of regularization (L1 or L2) both models are identical conditions
including the other hyper-parameters.

Fig. D.2 shows absolute values of inner products values as a function
of the sorted ranks in descending order. For comparison, we included the
overlap value between RBM patterns using the P = 2 RBM model. Contri-
butions from the self overlaps are excluded.

In the case of the L2 regularization, the overlap values of all pairs are
less than 0.2 . Around 15% of pairs of the patterns show overlap values
above 1.0 . The maximum overlap value for L1 regularization is below 0.15,
and only a few pairs show overlap values greater than 1.0 .
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Figure D.1: Absolute value of inner products among RBM patterns, sorted
but their value, using L2 (a) or L1 (b) regularization. The self overlaps are
excluded and assumed to be zero.

Figure D.2: Same data as in Fig. D.1, but shown as a function of sorted
ranks. The blue and green markers correspond to the absolute overlap values
for L2 and L1 regularization, respectively. The red line is the overlap values
of RBM patterns for the P = 2 model.
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Appendix E

Contrastive Divergence

E.1 Contrastive Divergence based methods

MCMC is a flexible and relatively fast method to realize probability dis-
tribution. However, most of the probability distributions we want to infer
require iterative optimization of model parameters and MCMC execution
each time. Repeating such a process thousands of times is computationally
too demanding, even if running MCMC on a set of model parameters is
relatively light.

CD methods are stochastic learning methods for exponential families
that can remedy such a computational burden due to the repetitive exe-
cutions of MCMC. CD-based methods are widely used as common meth-
ods for learning exponential families (e.g, Boltzmann machines, Restricted
Boltzmann machines). However, there is not yet a sufficient theoretical un-
derstanding of the basic properties of learning based on CD methods. The
followings are examples:

• Are solutions using CD methods the same as the MLE solutions? (it
is generally accepted that CD is a different estimation method from
MLE methods [121]).

• Guarantee of convergence [122], speed for convergence, the dependence
of estimation bias Etc. have not been understood.

E.1.1 Contrastive Divergence learning

Suppose there is an ensemble of statistics x1:N = (x1,x2, ...,xN ) ∈ XN that
we use as a set of training data, and our primary objective is to describe
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the data in terms of statistical modeling. That means to construct a certain
probability density p(x|θ), which carries the same statistical properties of
the training data (as following we will denote vectors without bold for sim-
plicity such as θ → θ) . Here, θ is a set of model parameters that we want to
optimize so that the probability distribution can reproduce statistics of the
training data. Up to here, the assumed setup is the same as the MLE-based
learning.

The significant difference with the maximum likelihood (ML) method
is that ML based methods assume equilibrium distribution for estimating
gradients of the objective functions, i.e., log-likelihood functions, whereas
CD-based methods use non-equilibrium distribution to obtain gradients.

Suppose that the probability distribution of interest belongs to an expo-
nential family, p(x|θ) = exp(−E(x|θ))/Z , where Z is the partition function.
Accordingly, the log-likelihood function can be written as

l(θ) = 〈E(x|θ)〉pdata − logZ(θ) , (E.1)

where, pdata denotes an empirical distribution. Similarly we denote pdata =
p(x|θ) hereafter. Suppose we optimize the model parameters θ using the
standard ML approach. Therefore, we perform the differential of the log-
likelihood function l(θ) with respect to the model parameters θ,

∂l(x1:N )

∂θ
=
〈−∂E(x|θ)

∂θ

〉
pdata

−
〈−∂E(x|θ)

∂θ

〉
pmodel

. (E.2)

Where, 〈•〉pdata and 〈•〉pmodel
are expected values with the probability dis-

tribution of the data pdata and the model pmodel. Eq. E.2 is the fixed point
equation of MLE learning to be solved. The corresponding fixed point equa-
tion using CD-based learning can be written similarly as follows,

∂l(x1:N )

∂θ
=
〈−∂E(x|θ)

∂θ

〉
pdata

−
〈−∂E(x|θ)

∂θ

〉

q(k)(x|θ;x1:N )

. (E.3)

Where, q(k)(x|θ;x1:N ) is a probability distribution, after k step tran-
sitions with an appropriate transition kernel p(x|x′; θ) from an empirical
distribution pdata . We call Eq. E.3 as the update equation for CD learning.
From now on, we call this probability distribution as the distribution after
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k step transitions. Formally, we can define q(k)(x|θ;x1:N ) as following,

q(k)(x|θ;x1:N ) =




k∏

t=1

∑

x(t)∈X

p(x(t)|x(t−1); θ)


 pdata(x(0)|x1:N ) , (E.4)

where x(k) = x, and x(0) ∼ pdata(x|x1:N ). Ref. [123] shows that this
fixed point equation can be derived as a consequence of an approximation
of the log-likelihood function by expanding it. Historically, the CD method
was introduced to minimize a contrastive divergence [124, 125], therefore its
objective function is assumed to be different from the log-likelihood function.
The contrastive of the divergence is defined as

DKL(pdata‖pmodel)−DKL(q(k)‖pmodel) , (E.5)

If 1� k, it leads to q(k) ∼ pmodel, therefore the objective function becomes
the same as the one of the MLE.

The differentiation of Eq. E.5 with respect to the parameter θ cannot be
exactly the same as Eq. E.2, but assuming the parameter θ dependency on
q(k) is not so large i.e., |∂q(k)/∂θ| � 1. This assumption is usually satisfied
unless the set of parameters is at a critical point.

E.1.2 Contrastive Divergence for latent variable models

CD methods are used for Restricted Boltzmann Machines (RBMs) as the
standard learning algorithm.

Suppose a probability distribution p(v, h) is characterized by two types
of variables, namely visible variables v and hidden or latent variables h. Here
we assume there are corresponding observables in an assumed data set for
the visible variables, and the probability we can obtain is only a probability
after marginalizing the hidden variables, p(v) =

∑
h p(v, h).

The CD learning algorithm for hidden variable models is as follows:

1. Initialize the visible variables using one sample in the training data at
the first MC transition step t = 0, v(t=0) ← x ∈ x1:N .

2. Then, the hidden variables are obtained from the conditional proba-
bility distribution, h(t=0) ∼ p(h|v(t=0); θ) . Note that the conditional
distribution in the case of RBMs becomes independent among each
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hidden variable h because each hidden variable has interacted only via
the visible variables (there is no interaction between hidden variables).

3. The visible variables are updated by taking them from the conditional
distribution, v(t=1) ∼ p(v|h(t=0); θ) .

4. Repeat process 1. and 2. t = k times.

If we assume RBM as an example of a latent variable models,

p(v, h|w, a, b) ∝ e−E(v,h|w,a,b))

−E(v, h) =
∑

ij

wijvihj +
∑

i

aivi +
∑

j

bjhj
(E.6)

For simplicity, we assume the visible variables are binary variables vi ∈
{0, 1}. Where, {wij} are model parameters for interactions between visible
and hidden variables. {ai} and {bj} are other model parameters for visible
and hidden variables, respectively.

These model parameters are optimized using a gradient-based learning
algorithm. Eq. E.5 and Eq. E.6 lead to the following equations for updating
the model parameters.

δwij =
〈
vihj

〉
p(h|v;w,a,b)pdata(v)

−
〈
vihj

〉
p(h|v;w,a,b)qk(v|w,a,b)

δai =
〈
vi

〉
pdata(v)

−
〈
vi

〉
qk(v|w,a,b)

δbj =
〈
hj

〉
p(h|v;w,a,b)pdata(v)

−
〈
hj

〉
p(h|v;w,a,b)qk(v|w,a,b)

(E.7)

Learn the RBM so that δwij , δai, δbj ,∀i, j will be small. A more appropriate
learning evaluation method is explained in the following section, E.3.

E.2 Persistent Contrastive Divergence

CD methods can remarkably reduce the computational processes. How-
ever, CD samples that are generated from q(k)(x|θ;x1:N ) tend to depend
strongly on the training data. As a result, the energy function (probability
distribution) using the CD learning assigns a significantly lower value (high
probability) to state points that are included in the training data. On the
contrary, state points that are not included in the training data, tend to
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have high energy values (low probabilities).

Besides, the probability distribution constructed using MCMC with the
model parameters estimated by the CD method tends not to reproduce the
training data correctly. Therefore the data statistics are not accurately re-
produced (cf. [97, 126]).

One of the reasons for this phenomenon is that all data points are used as
initial states of the probabilistic transitions p(x(t)|x(t−1); θ) at each learning
epoch, and the samples used for estimating the update equations Eq. E.3
are constructed without sufficiently exploring the state space. Thus, the CD
learning minimizes the flow of the transition probability that escapes from
the data points. This observation is closely related to Minimum Probability
Flow learning [56, 127] .

Considering the drawbacks of the CD learning due to the lack of sufficient
state space search, T. Tieleman Ref. [128] proposed Persistent Contrastive
Divergence (PCD) learning. CD methods and PCD methods are equivalent
in terms of computational complexity, but the PCD methods can estimate
the update equations with samples that are similar to those generated from
the model. Thus, it is closer to the ML learning. When using protein family
data, empirically, the probability distributions learned by the PCD methods
reproduce the training data well.

The significant difference between the PCD method and the CD method
is the initialization of the visible variables: Instead of initializing the visible
variables by samples in the training data at the starting point of the tran-
sition of each learning epoch, reuse the final states of the previous CD chains.

More precisely, PCD learning consists in the following steps:

1. Initialize the visible variables using one of the training data (same as
CD)

2. Apply MCMC k times, then keep samples that are used to estimate
the update equations.

3. Use the samples generated and stored during the previous learning
epoch as the initial states for the current learning epoch.

4. Repeat processes 2. and 3.
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Note that if a learning ratio is sufficiently small (slight changes in model
parameters between epochs), the PCD samples would be equivalent to the
samples from the equilibrium distribution i.e., the PCD learning gives an
equivalent solution to the MLE.

E.3 Convergence criterion for Contrastive Diver-
gence based learning

The update equations are used to evaluate the learning processes in general.
However, these quantities cannot be used as appropriate measures to assess
the CD-based learning as showed in [129]. Note that the update equation
for the CD learning Eq. E.3 is not the “reconstruction error”, i.e., the dif-
ference between statistics based on the training data and samples from the
model. Hence the update equation Eq. E.3 cannot be used to assess the
learning processes (e.g., assessing adequate learning epoch). Particularly
learning hidden variable models require cautious treatments [130, 129].

To evaluate CD-based learning processes, Annealed Importance Sam-
pling (AIS) [131, 130, 132] can be used. The AIS is defined as a ratio be-
tween two partition functions named Z(θ(t)), Z(θ(t+1)). It can be estimated
statistically rigorously:

Z(θ(t+1))

Z(θ(t))
=

∫
p∗(x|θ(t+1))dx

Z(θ(t))
=
〈p∗(x|θ(t+1))

p∗(x|θ(t))

〉
p(x|θ(t))

∼ 1

M

M∑

m=1

p∗(xm|θ(t+1))

p∗(xm|θ(t))
,

(E.8)

where p∗(x|θ) denotes the unnormalized probability distribution of the model,
and 〈•〉p(x|θ(t)) is defined as an expected value of the probability distribution

p(x|θ) = e−E(x|θ)/Z(θ). In the last equation we assume that the expected
value 〈•〉p(x|θ(t)) can be approximated as an ensemble average and that those

samples come from the probability xm ∼ p(x|θ(t)).

If p(x|θ(t+1)) and p(x|θ(t)) are quite different, the ratio cannot be esti-
mated accurately. In such a situation, we can introduce intermediate proba-
bility distributions between these two probability distributions and estimate
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the ratio as follows:

pβ(x|θ(t), θ(t+1)) = pβ(x|θ(t+1))p1−β(x|θ(t))

Z(θ(t+1))

Z(θ(t))
=

K−1∏

k=0

Zβk+1
(θ(t+1), θ(t))

Zβk(θ(t+1), θ(t))
,

(E.9)

where βk = k/K, k = 1, 2, ..,K, and Zβ(θ(t+1), θ(t)) is a normalization factor
of the probability distribution pβ(x|θ(t), θ(t+1)).

It is reported that AIS values are good measurements to evaluate learning
processes and to determine the optimal learning stopping epochs [130] and
it also works for protein sequence modeling [115].
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Appendix F

Other remarks of
likelihood-variation method

F.1 Another derivation element-wise likelihood vari-
ation

Here, we show another derivation of the optimal likelihood variation ∆l(J∗ij(a, b))
in Eq. 5.9.

Suppose that M × fij(a, b) out of M sequences in a given MSA are
drawn from a probability distribution, pij(a, b) =

∑
A∈A p(A)δAi,aδAj ,b,

where p(A) ∝ e−H(A).

Therefore, the binomial distribution to consider can be written as:

pM [f, p] :=

(
M

Mf

)
pMf (1− p)M(1−f) . (F.1)

For simplicity, we ignored site and amino-acid indexes.

Eq. F.1 can be simplified to an exponential form with a large M limit,

pM [f, p] ∝ exp
(
−ML[f, p]

)

L[f, p] = f log
f

p
+ (1− f) log

1− f
1− p .

(F.2)

Here, we used Stirling formula N ! ∼ eN logN−N with large N . Eq. F.2
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is exactly the same form as we saw in Eq. 5.9.

If there is a significant discrepancy between the empirical distribution
fij(a, b) and the assumed model pij(a, b), in this case pM [fij(a, b), pij(a, b)]
becomes particularly small. That is exactly the case in which we need to
make corrections by introducing the conjugate parameters Jij(a, b).

The same argument can hold not only for two-point frequencies, but also
for single-site frequencies, and even three- or more-point frequencies.

F.2 Residue contact for additional protein families

As we showed in Sec. 5.3.1, the likelihood-variation-based residue-residue
contacts prediction can improve contact as the number of hidden variables
P increases in the RBMs. In this section, we will report residue contact pre-
diction results using the same methods for other protein families, PF00072
and PF13354. We used identical data sets that are used in Ref. [92].

Fig. F.1 shows PPV curves for PF13354. Similarly, Fig. F.2 shows PPV
curves for PF00076. Likelihood-variation-based methods FE.L. and FB.L.

show accurate results for both families. Especially in Fig. F.1.c and Fig.
F.1.d, the PPV values are higher than the result of plmDCA above around
200 contact predictions.
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Figure F.1: (a) PPV curves based on the element-wise coupling activation
FE.C.. (b) The same types of plots as (a) but for the block-wise coupling acti-
vation FB.C.. (c) PPV curves based on the element-wise likelihood variation
FE.L.. Fig. F.1.c and Fig. F.1.d show a clear dependency on the number
of hidden variables in RBM P . Increasing P improves these PPV curves,
with almost the same accuracy as contact predictions based on plmDCA.
Especially, when P ≥ 8, above a certain number of predictions, they achieve
better accuracy than plmDCA accuracy. (d) The same types of plots as (d)
but for the block-wise likelihood variation FB.L..
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Figure F.2: PPV curves for FE.C. (a), FB.C. (b), FE.L. (c), FB.L. (d). Since
the MI result (corresponding to P = 0 in the case of FB.L.) itself has already
been predicted as accurately as plmDCA, the effect of the phylogenetic effect
on this protein family is probably not so substantial.
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Figure F.3: (a) PPV curves based on the coupling matrix constructed by
mfHP patterns (the same definition of couplings shown in Eq. 4.5). The
accuracy of contact prediction increase as increases P, which is expected
result and is coherent with Ref. [97]. The same types of plots as (a) are
shown for PF00076 (b) and for PF13354 (c). For all of these families, the
accuracy of contact predictions improves as increase P .
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Appendix G

Variational Autoencoder

G.1 Other technical points of VAE

G.1.1 Reparametrization

There are numerous works of literature on optimization methods for deep
neural networks such as Momentum, Adam, Adadelta, Adagrad, etc. Most
methods are based on the backpropagation (BP, backprop) algorithm, which
is an essential gradient-based optimization, particularly for neural networks.

The encoder and decoders are represented as the neural network archi-
tectures, therefore, the objective function, ELBO is differentiable. However,
problems arise when parameters are stochastics: the dependency of φ on the
expectation Eqφ(z|x)[·] comes via the hidden variable, which has a stochastic
quantity, so it is not differentiable.

An important idea to solve this problem is to make all variables including
hidden variables differentiable by separating the deterministic parts and
stochastic parts [116]. Note that variables z are assumed as functions of
random variables, and dependency of x and φ are absorbed in the function.
Therefore, hidden variables can be written as

z = z(ξ,x;φ) = µφ(x) + Σφ(x)ξ

ξ ∼ N (ξ; 0, I) .
(G.1)

This method to separate stochastic factors and deterministic factors is
called reparameterization trick [107]. Accordingly, the objective function
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ELBO should also be slightly modified (we don’t rewrite the objective func-
tion but it is just plug Eq. G.1).

It is easy to check that the derivative with respect to parameters of the
expectation of this stochastic objective function is equivalent to the deriva-
tive of the original ELBO objective function, ∇θ,φEN (ξ;0,I)[L̃θ,φ(x, ξ)] =
∇θ,φL(x).

Regarding the reparametrization, we also need to take into account Ja-
cobian,

qφ(z|x)
∣∣∣∂z∂ξ
∣∣∣ = N (ξ;µ,Σ) , (G.2)

where
∣∣A
∣∣ is determinant of a matrix A, and ∂z

∂ξ is the Jacobian,

∂z

∂ξ
=
∂(z1, z2, . . . , zP )

∂(ξ1, ξ2, . . . , ξP )
=
(∂zi
∂ξj

)
i,j∈1:P

. (G.3)

In the case of the above example, we supposed that the hidden variable
comes from Gaussian distribution,

∂zi
∂ξj

=
∂

∂ξj
(µ+ Σξ)i = Σij . (G.4)

The conditional probability distribution of hidden valiables given visible
variables can be represented as following,

log qφ(z|x) = logN (z|µ(x), diag(σ(x))) =

P∑

u

(
logN (zu;µu(x), σ2

u(x))−log σu(x)
)
.

Put everything together, the objective function we used is represented
as follows,

L̃θ,φ(x, ξ)

= log pθ(x|z))pθ(z)− log qφ(z|x)

= log pθ(x|z)) +
P∑

u

(
logN (zi; 0, 1)− logN (zu;µu(x), σ2

u(x))− log σu(x)
)
.

(G.5)

Here, we assumed z = z(ξ,x;φ). Note that we have not explicitly stated
the index of the data points. To be the objective function, need to sum Eq.
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G.5 for all data points 1.

G.1.2 Other types of VAEs

Here we show some variants of VAE that are closely related to our study.

β-VAE – β-VAE is a simple powerful effective method that aims to re-
solve the frequently occurred problem, posterior collapse [133], where the
decoder learns to ignore the hidden variables.

The β-VAE can be realized by introducing a hyper-parameter β to ELBO
objective function 2.

LβVAE(θ, φ) = (1− β)
〈

log pθ(x|z)
〉
qφ(z|x)

− βKL(qφ(z|x)‖pθ(z)) , β ∈ (0, 1) ,
(G.6)

if β = 0.5, β-VAE recovers original VAE. The small β imposes less con-
straints to the latent space. On the other hand, large β induces strong
constraints so that the hidden variables are independent when it is assumed
standard Gaussian pθ(z) ∼∏µ pθ(zµ) .

In order to avoid the posterior collapse, we can push VAE to learn KLD
terms more by increasing β. That is, the posterior of the encoder becomes
similar with the distribution of hidden prior [135]. Moreover, by controlling
the β, we can enforce features or hidden variables [134].

Conditional VAE – The standard VAE learning is unsupervised, which
means there is no additional label to train VAEs. The conditional VAE
(CVAE) [136, 137] is a semi-supervised VAE that can generate a certain
class of variables according to a label variable. For example, it can specifi-
cally generate images of ”7” when the model learns images of handwritten
numbers (0-9) with the labels (also 0-9) (cf. MNIST data set).

Formally, the objective function of CVAE is defined as the variational
lower bound of the conditional probability distribution of data points given

1Note also that need to marginalize the hidden variables to be the objective function
in practice.

2The original β-VAE in [134] has β dependency only on the second term in eq.(G.6)
and the β > 0, but essentially the same.
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class variables. Thereby, the hidden prior distribution also depends on the
class variables.

LCVAE =
〈

log pθ(x|z, c)
〉
qφ(z|x,c)

−KL(qφ(z|x, c)‖pθ(z, c)) , (G.7)

where, c is the conditional variable. The class variables are assumed as
additional input variables, so they are assigned to additional perceptrons.
Therefore, CVAE can be learned by standard ELBO learning.

G.2 Conditions of the experiments

Batch learning – We also used batch-learning and batch-normalization
methods. Batch-learning is a method to optimize model parameters using
a sub-ensemble of training data for each learning epoch. The gradients of
the objective function are obtained using sub-ensembles that contain B se-
quences.

Our study constructed a batch ensemble by resampling using the reweight-
ing parameters (cf. Sec. 2.4.3) from all sequences in the training data for
each learning epoch. We didn’t find any significant difference by changing
the batch size B between 300 and 1000.

Advantages of batch learning are:

1. Reducing requiring computational processes.

2. Various combinations of samples can be provided to DNN for each
learning epoch.

3. Reducing the sample size enhances the stochastic effect and helps avoid
local minima. Note that DNN-based problems usually involve many
local minima solutions.

The second reason can be useful for VAE learning, but particularly for
Generative Adversarial Network (GAN) algorithm [138, 139, 140], to over-
come so-called mode collapse [141, 142, 143, 144].

Batch normalization is a method for removing gradient bias, which is
equivalent to using normalized training data as input. By using this method,
learning is expected to be stable and fast [145].
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Optimization of DNNs – For optimization methods, we employed a
stochastic gradient-based optimization method Adam [116] (adaptive mo-
ment estimation), which is a commonly used optimization method for DNN-
based algorithms. To apply Adam, only the first and second moments of
gradients are needed (these are obtained as a by-product while optimizing
the DNN) and are computationally efficient.

We have selected the weight decay parameters for the first and second
moments, which are Adam’s hyper-parameters, to 0.99 and 0.9999, respec-
tively.

One-hot sequence – To learn protein sequence data using a neural-
network-based algorithm, we map categorical variables representing amino
acids to binary variables, {1:q}L → {1, 0}qL . We refer to this binarized
sequences as one-hot sequences.

In general, initial conditions of input neurons are symmetric; all input
neurons connect to the next layer’s all neurons. Asymmetricity of the neu-
ral networks due to the one-hot data structure emerges as a consequence of
learning.

We often represent a one-dimensional vector containing qL elements as a
q×L matrix. Here, it corresponds to each residue site in the column, and in
the case of one-hot sequence, only one of the q elements is 1 and the others
are 0. Fig. G.1.a shows a typical PF00072 protein sequence using one-hot
representation (cf. Sec. 6.2). These white and black elements in the matrix
correspond to one and zero, respectively.

Output sequences from the VAEs are continuous variables RqL because
the activation functions of the output layer are the Sigmoid function. There-
fore, it is necessary to convert it into a one-hot sequence by some filter. One
naive way is to take the argument with the largest output value of all the
q-state amino acids.

Fig. G.1.b shows an output sequence from VAE (cf. Sec. 6.2.3) using
the filter. Fig. G.1.c shows the same output sequence without the filter.
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Figure G.1: (a) One-hot encoded matrix (q×L, q=21, L=112) of a protein
sequence (PF00072). White elements and black elements are assigned as 1
and 0 respectively. (b) One-hot encoded matrix generated from the VAE
using the argument-max filter. (c) One-hot encoded matrix generated from
the VAE.
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