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Résumé

L’hydrogène est considéré comme une source d’énergie verte et alternative pour sa faible
émission de CO2. En raison du risque élevé de déflagration et détonation du mélange air-
hydrogène, des mesures de sécurité spécifiques sont nécessaires pour son utilisation pra-
tique. Nous nous intéressons à une configuration modélisant la distribution d’hydrogène
(ou d’hélium) en situation accidentelle pour des environnements confinés. Des simulations
numériques directes (DNS) d’un jet turbulent d’hydrogène dans une cavité à deux évents sont
réalisées, obtenant une distribution en bicouche de l’hydrogène avec un mélange homogène
en moyenne en partie haute. Les DNS sont d’abord comparées à des mesures par vélocimétrie
par images de particules (PIV) pour validation, puis l’écoulement est analysé. Afin d’estimer
la pertinence des modèles prédictifs de ventilation proposés dans la littérature pour évaluer
la sûreté des installations, les champs DNS sont intégrés pour calculer les grandeurs car-
actéristiques du jet et celles de la distribution d’hydrogène. Ces résultats sont comparés à des
modèles simplifiés de ventilation naturelle basés sur différents modèles de jets turbulents.
Ces modèles reposent sur une série d’hypothèses dont la validité est examinée. L’influence
du coefficient d’entraı̂nement du jet et des méthodes de son estimation sont discutées, (i)
dans le cadre des modèles de jet à coefficient constant ou variable, (ii) sous l’approximation
de Boussinesq ou en tenant compte des variations de masse volumique du mélange. Enfin,
des formulations modifiées des modèles de ventilation sont proposées pour les adapter au
cas d’une injection d’hydrogène dans une cavité à deux évents. gène dans une cavité à deux
évents.

Mots clés : Sécurité et sûreté d’hydrogène ; Dispersion des gaz ; Simulation numérique di-
recte (CFD-DNS) ; Modèles de jet turbulent ; Modèles de ventilation naturelle ; Coefficient
d’entraı̂nement

-

Abstract

Hydrogen is considered as one of the green and alternative energy sources because of its low
CO2 emission. Due to the high risk of deflagration and detonation of air-hydrogen mixture,
appropriate safety measures are required for its practical use. We are interested in a config-
uration modelling the distribution of hydrogen (or helium) in accidental release situation for
confined environments. Direct numerical simulations (DNS) of a turbulent hydrogen jet in a
two-vented cavity are performed, leading to the establishment of a bilayer hydrogen distribu-
tion with a homogeneous top layer on average. Numerical results are compared with Particle
Image Velocimetry (PIV) measurements for validation. The flow is then analysed. In order to
assess the relevance of the predictive ventilation models proposed in the literature to evaluate
the installation safety, the DNS fields are integrated to calculate the characteristic quantities
of the jet and of the hydrogen distribution. These results are compared to simplified natural
ventilation models based on different turbulent jet models. These models are developed on
the basis of a series of assumptions the validity of which is examined. The influence of the
jet entrainment coefficient and its estimation methods are discussed, (i) in the context of tur-
bulent jet models with constant or variable coefficient, (ii) under Boussinesq approximation
or with consideration of the mixture density variation. Finally, modified formulations of the
ventilation models are proposed to adapt them to the case of hydrogen injection in a two-vent
cavity.

Keywords: Hydrogen safety; Gas dispersion; Direct Numerical Simulation (CFD-DNS); Tur-
bulent jet model; Natural ventilation model; Entrainment coefficient
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Nomenclature

Geometrical parameters

Symbol Unit Description
O Global origin (injection centre) or local origin (jet centre)
(x,y,z) or (x1,x2,x3) m Global Cartesian coordinates
(r,z) m Local polar coordinates (in 1D analysis)
H m Height of the cavity (in z direction)
W m Width of the cavity (in y direction)
L m Length of the cavity (in x direction)
Hv m Height of the openings (in z direction)
d m Injection tube diameter
h m Injection tube length (in z direction)
Vcavity m3 Volume of the main cavity (H ×L×W )
Scavity m2 Cross-section area of the main cavity (L×W )

State quantities

Symbol Unit Description
P P a Pressure
subscript Pth Thermodynamic pressure
subscript PH Hydrodynamic pressure
T K(◦C) Temperature

Mixture physical properties

Symbol Unit Description
M kg/mol Molar mass
ρ kg/m3 Density
µ kg/(m.s) Dynamic viscosity
ν m2/s Kinematic viscosity (= µ/ρ)
D1,2 m2/s Diffusion coefficient
Y1, Y2 Mixture mass fraction (1 for injected gas He orH2, 2 for pure

air)
X1, X2 Mixture volume/molar fraction (1 for injected gas He or H2,

2 for pure air)
subscript inj Injected pure gas related
subscript a or air Fresh air related
subscript mix Mixture related

Sorbonne Université • 1 •



Universal constant

Symbol Unit Description
R J/mol.K Ideal gas constant (=8.314 J/mol.K)

Vectors and tensors

Symbol Unit Description
−→u or (u,v,w) or
(u1,u2,u3)

m/s Velocity vector

−→g = (0,0,−g) m/s2 Gravitational vector (g = 9.81m/s2 gravitational accelera-
tion)

τ = [τij ] or τij kg/(m.s2) Viscosity stress tensor
Sij s−1 Symmetrical part of strain rate tensor

Operators

Symbol Unit Description
div Divergence
−−−−→
grad Gradient

Dimensionless number

Symbol Unit Description
Gr Grashof number
Ra Rayleigh number
Re Reynolds number
Ri Richardson number
Sc Schmidt number

Local jet physical quantities

Symbol Unit Description
w or w(r,z) m/s Local vertical velocity
ρ or ρ(r,z) kg/m3 Local mixture density
X1or X1(r,z) Local injected pure gas (He or H2) volume/molar fraction
G′ or G′(r,z) m/s2 Local buoyancy force acceleration
subscript T Top-hat characteristic quantities
subscript G Gaussian characteristic quantities
subscript e Environmental quantities (in the far field of the jet)
subscript 0 Reference quantities

• 2 • Thèse de doctorat de Mécanique des fluides
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Local jet shape parameters

Symbol Unit Description
b m Local characteristic jet radius
subscript bT Top-hat characteristic radius
subscript bG Gaussian characteristic radius
λ Diffusion-convection ratio

Entrainment modelling

Symbol Unit Description
ue m/s Entrainment velocity
α Entrainment coefficient
subscript αT Entrainment coefficient under Top-hat assumption
subscript αG Entrainment coefficient under Gaussian assumption

Characteristic jet quantities

Symbol Unit Description
Q m3/s Volume flux
Qm kg/s Mass flux
M m4/s2 Momentum flux
Mm kg.m/s2 Mass momentum flux
B m4/s3 Buoyancy flux
B∗ m4/s3 Specific buoyancy flux as if the jet were immersed in an un-

stratified environment
subscript 0 Quantities at injection point or at position where z=0

Virtual origin related

Symbol Unit Description
zt m Total virtual origin displacement (zt = z0 + zv + zavs)
z0 m Injection geometrical correction displacement
zv m Source correction displacement
zavs m Jet-length based correction displacement
zB m Characteristic length of non-Boussinesq effect
Γ0 Source parameter
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Bi-layer parameters and related

Symbol Unit Description
zi m Bi-layer interface height
zn m Neutral plane height
ρi kg/m3 Mixture density in the top homogeneous layer
ρa kg/m3 Density of the pure air (fresh air)
ρ0 kg/m3 Reference density (= ρa in this problem)
ρe kg/m3 Mixture density in the far field of the jet
X1,i Corresponding mixture volume fraction in the top homoge-

neous layer
X1,e Corresponding mixture volume fraction in the far field of

the jet
g ′ m/s2 Environmental reduced gravity in the homogeneous layer

Global balance related

Symbol Unit Description
ub or uin m/s Mean inlet velocity through the bottom opening
ut or uout m/s Mean outlet velocity through the top opening
Sb m2 Surface of bottom opening
St m2 Surface of top opening
cb Pressure-loss coefficient related to bottom opening
ct Pressure-loss coefficient related to top opening
Qb or Qin m3/s Inlet volume flux through the bottom opening
Qt or Qout m3/s Outlet volume flux through the top opening
Qm,b or Qm,in kg/s Inlet mass flux through the bottom opening
Qm,t or Qm,out kg/s Outlet mass flux through the top opening
Qinj m3/s Injection volume flux

Abbreviations

ACF Autocorrelation function, see eq. (4.26)
CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
EDM Equi-distant Mesh, see appendix D
GCI Grid Convergence Index, see eq. (4.23)
LES Large Eddy Simulation
LGRM Local-Grid Refinement Mesh, see appendix D
LMN Low Mach Number, see section 1.4
ODE Ordinary Differential Equation
PDF Probability Density Function
PIV Particle Image Velocimetry
PSD Power Spectral Density
RANS Reynolds-averaged Navier–Stokes
RMS Root-Mean-Square, see eq. (4.31)
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Introduction

Hydrogen is considered as one of the green energies in the future due to its carbon-free na-
ture. For over 40 years, industry has used hydrogen in vast quantities as an industrial chem-
ical and fuel. In 2019, about 70 million tonnes of dedicated production per year all over
the world, larger than the primary energy supply of Germany (IEA (2019)). In the recent
years, hydrogen-based systems are well developed and marketed. In autumn 2020, French
government has provided an ambitious Covid-19 Recovery Plan with 7 billion euros of public
support for hydrogen industry, see report of Ministere de l’Economie et des Finances (2020).

Use of hydrogen requires special safety and security measures due to its high flammability
and high risk of detonation. Hydrogen possesses a very large interval of flammability limits:
4%-75% in ambient condition (Edwards et al. (2008)). As its density is 14 times lighter than
air, the hydrogen risk is mostly presented in indoor circumstance, as hydrogen-based systems
are stocked or operated in a confined environment. Accidental scenarios usually begin with
hydrogen release. Hydrogen escapes and rises in form of a plume-jet flow that entrains ambi-
ent air. The dispersion of released gas in confined environment will result in the accumulation
of hydrogen, generating a dangerous flammable air-hydrogen mixture which is physically the
origin of the risk.

In order to prevent the accumulation, ventilation system are usually required in the confined
environment where placed hydrogen-based system. These systems are commonly designed
to prevent concentration exceeding lower flammability limit for realistic expected hydrogen
release rates. In most of the cases, two passive vents located at different heights are preferable,
as this configuration is more effective than a single one only located at the top of the enclosure
(L’Hostis et al. (2012)). We focus on this configuration in this study and idealise this kind of
two-vented passive ventilation system by a simplified geometrical configuration of a cavity
with two openings in different levels.

From a physical point of view, this hydrogen release problem is an intrusion of a light fluid
into a heavier fluid filling initially in the confined environment. The release of hydrogen will
generate a momentum and buoyant source, and form a buoyant jet or plume in the cavity.
Meanwhile, the combination of the jet and the two-vented configuration generate an aspi-
ration flow by entrainment in the medium. Different injection conditions and geometrical
configurations will form variable stratification regime of hydrogen mixture in the medium
due to continuous intrusion. Either a homogeneous mixed layers or a density stratification
can build-up inside the cavity (Baines and Turner (1969)). It is important to quantify the
distribution of hydrogen concentration in the medium according to the stratification regime
and its sensibility to both the release conditions and the ventilation design for related safety
analysis.

Predictive models have therefore to be developed to assess the potential indoor use of hy-
drogen in this specific two-vented configuration. Macroscopic model such that proposed by
Linden (1999), and reviewed by Kaye (2008) and Hunt and Van den Bremer (2011) has been
used to predict hydrogen concentrations and the volume of inflammable region in two-vented
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cavities. In this model, it is assumed that the hydrogen release results in a bi-layer stratifi-
cation in the cavity with a concentration of the light gas accumulating in the top part of the
cavity depending on various geometrical and dynamic parameters. The model provided an
analytical approach to estimate the height of the interface and the mixture density, so that the
hydrogen concentration. This theoretical approach is the fastest and the easiest way to employ
in safety pre-calculations. Nonetheless, its practical use possesses some limits. The model is
based on an entrainment assumption where a parameter referred as ”entrainment coefficient”
shall be provided beforehand. This entrainment coefficient plays an important role in the
estimation of hydrogen concentration and flammable volume due to its high sensitivity to
turbulent jet modelling results. This issue makes the practical use of this model challenging
as its value is not easy to be correctly estimated. Consequently, a highly conservative safety
strategy is usually needed. The conservative safety strategy, also called conservatism, means
”being on the safe side”. It is an approach where the use of models, data and assumptions
would be expected to lead to a result that bounds the best-estimate on the safe side. For ex-
ample estimating a potential hydrogen concentration in an accident scenario to be higher than
the best estimate of the concentration. Under conservative safety strategy, the entrainment co-
efficient is not provided from its physical value, but from a highly conservative value which
guarantees a safety margin in hydrogen concentration estimation (overestimation). Besides,
the inflammable volume is usually not corrected estimated. All of these will result in a huge
additional cost which may be prejudicial.

In these circumstances, experimental approach is often needed to provide accurate informa-
tion about the flow pattern and concentration in order to improve the theoretical model. In
the early work, Baines and Turner (1969) and Linden et al. (1990) used a concentrated salt
solution injected into fresh water to investigate the global flow and validate their simplified
modelling. Then other methods are developed to obtain a precise velocity field, for example,
Elicer-Cortés et al. (2000) used ultrasound scattering to study the development of a buoyancy
plume in an enclosure. In recent years, Particle Image Velocimetry (PIV) is a common-used
optical method of flow visualisation. Veser et al. (2011) observed the structure of a turbulent
hydrogen jet by PIV measurement. Ngondiep et al. (2012) presented a PIV measurement of
a forced jet in a ventilated enclosure. Specific concentration measurements are realised by
gas sensor in particular positions. For example, Merilo et al. (2011) measured the hydrogen
concentration in an accidental scenario, by using a series of gas sensors, in a vehicle garage.
In addition, experimental approach is also used to validate theoretical and numerical results.

Numerical approach is another way to treat the problem. In this approach, the complete 3D
dimensional flow equations are solved numerically based on time and space discretisation. It
breaks the limitations of the theoretical models and experimental approaches and provides
complete and simultaneous 3D velocity and concentration fields. For example, Papanikolaou
and Venetsanos (2005) realised a large scale simulation for the light gas (helium) release from
a car in a two-vented garage by a standard k − ε model. In this study, the distribution of
release gas concentration in the garage is directly obtained. However, challenges and diffi-
culties mainly linked to specifying a turbulence model to handle classical closure problem
of turbulence. It is reported that statistical CFD turbulence models, like Reynolds-averaged
Navier-Stokes (RANS) usually cannot correctly simulate the flow of a turbulent jet and the
convection mixing (Bernard-Michel et al. (2012), Bernard-Michel et al. (2013), Giannissi et al.
(2015)). Thus, these methods are not recommended in security studies. Spatial filtered large
eddy simulations (LES) are also proposed to be used to simulate the light gas release in an
enclosure (Abdalla et al. (2009), Molkov and Shentsov (2014), Prasad et al. (2011), Bauwens
and Dorofeev (2014)). Some other numerical methods solving unsteady flows are also used.
Carasik et al. (2015) use Unsteady Reynolds Averaged (URANS) method to simulate acci-
dental scenario. However, most of these works lacks experimental comparisons thus cannot
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be strictly considered valid. Finally, Direct Numerical Simulation (DNS) is the most recom-
mended way as no additional turbulent models are applied. But DNS simulation requires
large computational resources. It is nearly impossible to obtain a fine resolution in large con-
figurations (in order of 1m). Therefore, in literature, DNS simulations are mainly based on
small-scale configurations. Other DNS simulations are mainly focused on the study of a jet
in a free space, like Craske and van Reeuwijk (2015a), Van Reeuwijk et al. (2016), Pham et al.
(2007) and Plourde et al. (2008).

Context of the work

Several international and European projects were carried out to investigate the indoor hydro-
gen release problematic. HyIndoor for example, is a European research project led by Air
Liquide S.A. started from January 2012, dedicated to developing safety design guidelines and
engineering tools for indoor hydrogen use. In this project, a series of benchmarks are pro-
vided based on predictive analytical models in literature and CFD simulations for dispersion
of hydrogen, in a general confined environment with one vent or two vents. It is found that the
numerical result provided by RANS method is largely different from the related experimen-
tal results, see L’Hostis et al. (2012), Jallais (2010). The RANS method seems not appropriate
to simulate the turbulent jet generated by hydrogen release. Simulation results from Large-
Eddy-Simulation (LES) presented a slightly better agreements with experimental results but
not precise enough.

The French Alternative Energies and Atomic Energy Commission (CEA) conducts fundamen-
tal and applied research in nuclear safety and operating safety of the nuclear power plant,
also contributed to the project HyIndoor. The hydrogen risk is also an important subject
in nuclear safety analysis. An example is the severe accident of Fukushima Daiichi in 2011
which was caused by hydrogen accumulation and explosion inside the reactor pressure ves-
sel (a confined environment). A series of research project on the theme of hydrogen release,
most of which are experimental studies, have been carried out in CEA since 2000s, for double
interest of a general hydrogen indoor use and its applications in nuclear safety. Some exper-
imental facilities are fabricated dedicated to simulating hydrogen release and accumulation
in a confined environment with different geometrical configurations, without vent, with one
vent and two vents. Particle Image Velocimetry (PIV) is used to measure the velocity field and
flow patten, see Cariteau (2010a,b); Cariteau et al. (2011); Cariteau and Tkatschenko (2012);
Cariteau (2012); Cariteau and Tkatschenko (2013), and Bernard-Michel et al. (2012, 2013);
Bernard-Michel (2014); Bernard-Michel and Houssin-Agbomson (2017).

Interdisciplinary Laboratory of Digital and Numerical Sciences (LISN), also recognised as
Computer Science Laboratory for Mechanics and Engineering Sciences (LIMSI), is a French
CNRS plural-disciplinary science laboratory with an expertise in the development of ad-
vanced numerical methodologies associated to academic and industrial configurations. LISN
is also interested in the research of turbulent convection flow. In their recent work, high-
performance large-scale simulation are realised and potentially validated with experimental
results, in order to improve the relevant physical models. LISN collaborates with CEA, work-
ing in the theme of hydrogen release simulation and related physical analysis for more than
10 years.

Under the collaboration framework of CEA and its academic partner LISN, two PhD projects
have been carried out Tran (2013), Saikali (2018) to analyse the flow structure presented in
the natural ventilation problem and to improve the simplified theoretical models. A reference
geometrical configuration has been selected. It is a parallelepiped cavity with two vents at
different altitudes on the same lateral side. The dimension of the cavity is 5 × 4.9 × 14.9cm3
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Figure 0.1: Experimental facility (left) and corresponding CFD computational domain (right),
with an additional volume (in blue) in the exterior of the cavity (in red) to model the flow of
surrounding fluids. Figures extracted from Saikali (2018)

with height of each vent equal to 2.9cm, see figure 0.1. The injection gas is selected as helium
instead of hydrogen for safety reasons. Helium is injected into the cavity, initially at rest
and filling with fresh air, from a tube situated at the centre floor of the cavity, with a flux
9.096 × 10−5m3/s. Based on this configuration, PIV measurements as well as LES and DNS
simulation are performed. It is found that an additional exterior domain shall be taken into
account into simulation to ensure an accurate inlet/outlet boundary conditions through the
two openings (Saikali et al. (2017)). The dimension of exterior domain has been previously
evaluated to optimise the computation cost.

The numerical calculation was based on the CFD code TrioCFD/TRUST developed by CEA.
The computation was done in parallel with MPI, on high-performance computer platform
of GENCI. The flow structure obtained from PIV, LES and DNS have been compared and
analysed, validating the numerical models, see figure 0.2. The global LES-DNS-PIV flow
pattern is almost similar. The difference between LES and DNS is not remarkable in the lower
part of the cavity, where a good agreement with PIV results is observed. However, in the upper
part of the cavity where the flow is highly turbulent, both LES and DNS overestimate the
velocity compared with PIV results. Monitoring point variations show that LES underestimate
70% velocity fluctuations in the laminar-turbulent transition area, principally related to its
sub-grid model for multi-species flow. DNS results is thus considered reference. The detailed
analysis are presented in Bernard-Michel et al. (2017); Saikali et al. (2017).

However, the configuration chosen in this project (Saikali (2018)) does not present a bi-layer
distribution of helium concentration, which is the key assumption of simplified model of
Linden et al. (1990), while it is commonly observed in industrial context. In the figure 0.3,
the distribution of the time-averaged volume fraction of the helium in the main cavity is
presented. Due to important ventilation and confinement effects, the jet direction is inclined
towards the x-negative direction so that the helium volume fraction attains a local maximum
in the corner formed between the jet and the backward wall. The distribution of the helium
volume fraction in the upper part of the cavity is not homogeneous.
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Introduction



0

0.2 0.4 0.6 0.8

1

PIV

z = 2 cm

z = 3.5 cm

z = 4.5 cm

z = 5.5 cm

z = 7 cm

z = 14 cm

V
E
N

T
S

WALL

XZ1

y

x

PIVLES Coarse DNS

-2 0 2 4
0

0.5

1

1.5

2

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

-2 0 2 4
0

0.2

0.4

0.6

0.8

1

-2 0 2 4
0

0.2

0.4

0.6

0.8

1

z = 3.5 cm z = 4.5 cm

z = 14 cm

z = 2 cm

z = 7 cmz = 5.5 cm

0

3

6

9

12

15

-3

-6

-9

0-2 2 4 6 8

0

3

6

9

12

15

-3

-6

-9

0-2 2 4 6 8

Coarse DNSLES

Figure 0.2: CFD-PIV comparison for the time-averaged flow pattern illustrated by 2D velocity
magnitude in y direction ¯uXZ(m/s), in the vertical plane y = 0 (noted XZ1 in sketch). Top:
contour plot; Bottom: horizontal profiles respectively at z =2, 3.5, 4.5, 5.5, 7 and 14 cm.
Thick dashed black lines denotes the vertical axis passing through the injection origin. Figure
extracted from Saikali (2018)
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Figure 0.3: CFD comparison of the time-averaged flow pattern illustrated by the helium vol-
ume fraction X1 contour plot in vertical plane y = 0. (a) LES results, (b) Coarse DNS results.
Figures extracted from Saikali (2018)

Motivation and objective of this work

Motivation

Hydrogen indoor risk is physically related to air-hydrogen mixture and generally linked to
hydrogen volume fraction (concentration) in the mixture. Hydrogen possesses a very large
inflammability limits in air 4%-75%. In ambient condition, hydrogen-air mixture possesses
large deflagration (when hydrogen concentration exceeds 4%) and detonation (when hydro-
gen concentration exceeds 8%) risks as its minimal inflammation energy is twice smaller than
other combustible gas (e.g. methane, propane and essence). In figure 0.4, we present the
evolution of hydrogen combustion conditions varied with its concentration in air-hydrogen
mixture. The combustion temperature and pressure reach their maximums for concentration
around 30% while the flame velocity achieves its maximal value for concentration around
40%. Effectively, 30%-40% is the interval where hydrogen-air mixture may generate the most
serious consequence.

Physically, formation of air-hydrogen mixture is related to global convection flow presented in
the cavity. In the case of accidental release, the development of the jet facilitates air-hydrogen
mixing in the jet region. Besides, global flow at far field of the jet, generated by ventilation
system will also contribute to global air-hydrogen mixing. Depending on hydrogen release
flow rate (injection flux), the flammable region where hydrogen risk is present can be classi-
fied into two cases, as shown in figure 0.5:

- Low injection flux case: Hydrogen mixes quickly with ambient air. The air-hydrogen
mixture at far field of the jet is below hydrogen lower flammability limit (4%). There-
fore, the flammable region of hydrogen risk is mainly presented in the jet region (Jallais
et al. (2018)).

- High injection flux case: Hydrogen accumulates in the cavity mixing with ambient air
and inlet fresh air. It generates a flammable mixture in the whole top part of the cavity
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Figure 0.4: Evolution of hydrogen combustion characteristics with its concentration with air.
(a): equilibrium combustion temperature (K), (b): equilibrium combustion pressure (105Pa),
(c): laminar frame velocity (m/s), results came from reference Gai (2020). Hydrogen in-
flammability limits 4%-75%, coloured in grey.

Figure 0.5: Sketches of hydrogen inflammable region with different release flux. (a) Small
injection flux case, hydrogen inflammable region is located only in the jet region; (b) Large
injection flux case, hydrogen flammable region includes the corresponding jet region but also
the whole top part of the cavity.
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where hydrogen concentration exceeds hydrogen lower flammability limit (4%). In this
case, the flammable region is not only located in the jet region, but also in the whole
upper part of the cavity.

Consequently, assessment of the hydrogen flammable region and potential accidental conse-
quences requires a good estimate of concentration both along the jet and at top homogeneous
layer.

The classic ventilation model of Linden et al. (1990) which is commonly used in industrial
context, is initially proposed to solve thermal air-conditioning problem where the air is heated
by a thermal source. The model is proposed to treat air-hydrogen mixing problem because the
basic equations of heat transfer and mass diffusion are similar. However, some additional as-
sumptions are also admitted in this model. But they are not necessarily valid in air-hydrogen
mixing. This ventilation model is based on the conservation principles of the global flow rate
in the cavity combined with different turbulent jet models. The jet modellings can be classi-
fied by two main assumptions applied in the demonstration: the Boussinesq approximation
and entrainment modelling. Analytical jet solutions of classic Boussinesq model (Morton
et al. (1956)) is applied in the original model of Linden et al. (1990). However, the Boussinesq
approximation assumption may not be valid for air-hydrogen problem due to large density
difference between the two gases.

The objective of this study is to clarify the validity of these assumptions. For this propose, we
shall ”measure” the real jet evolution developed in confined environment, i.e. the complete
information of velocity and concentration fields in the whole cavity. This is clearly not feasible
by experimental approach. Therefore, we consider applying numerical simulation. The idea
is to firstly establish a well-converged and well-validated simulation against experiments,
providing reference evolution of the jet flow and the global density distribution, treated as
the ”ground truth”. Then the validity of these various assumptions in theoretical models will
be easily investigated by comparing the evolution of characteristic quantities along the jet
with that provided by turbulent jet models.

Objective and methodology

One of the main assumptions of the classic ventilation model of Linden et al. (1990) is the
bi-layer distribution of the concentration of the injected light gas. All demonstration in the
model is based on this hypothesis. It is reported that hydrogen indoor release generates this
bi-layer distribution assumption in most cases, see Bernard-Michel et al. (2012). However,
there is no explicit criteria on appearance of this bi-layer distribution in the literature.

As a continuation of the PhD work of Saikali (2018), we need to determine firstly a new
reference configuration where in the steady state, hydrogen mixture presents a bi-layer dis-
tribution in the cavity. Consequently, the main objective of this study is:

• To study the light gas injection problem in a two-vented cavity, with presence of
bi-layer distribution, and to improve the performance and the applicability of sim-
plified 1D models used in industry context.

We aim to perform well-converged DNS simulation based on the reference configuration. In
order to well simulate the fine structure of turbulent flow, the mesh should be enough fine
with its cell size chosen in order of magnitude of Kolmogorov length scale. Due to limited
computation resources, we cannot provide a DNS simulation in the scale of a room. We con-
sider reducing the simulation domain to a small cavity in size order 10−1m. As proposed in
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Figure 0.6: Principal methodology of this work

the previous work Saikali (2018), an additional computation domain is added on the outside
of the cavity.

The DNS simulation will be validated against PIV measurements. The validated DNS results
is then used to compare with different simplified models, in order to study the applicability
of each hypothesis and the choice of certain key parameters. The outline of the methodology
is illustrated in figure 0.6.

This thesis is divided into 4 parts. The first part (chapters 1-3) is a presentation of physical
models of air-hydrogen (helium) mixture, turbulent jet models and natural ventilation model.
The second part (chapter 4) is dedicated to introduce the numerical and experimental setup,
convergence validation, error estimation and post-processing methodologies. The third part
(chapter 5) is the results analysis of DNS 3D flow pattern and its experimental comparison.
The last part is about 1D modelling (chapters 6 and 7). In chapter 6, different turbulent jet
models are evaluated. We discuss particularly the influence of the jet entrainment coefficient,
on one hand, in the context of turbulent jet models with constant or variable coefficient, on
the other hand, under Boussinesq approximation or with consideration of the mixture density
variation. In the last chapter (chapter 7), we will study the applicability of several assump-
tions applied in natural ventilation model.
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Chapter 1

Physical analysis for air-hydrogen or
air-helium mixture

1.1 Physical problem

We study a parallelepiped cavity with two vents inside situated at different altitudes on the
same solid wall boundary (see figure 1.1). The two vents are identical, located respectively at
the extreme top and bottom of the cavity. The cavity is immersed in an external environment
of fresh air, initially at rest. From initial state, helium or hydrogen gas is continuously injected
into the cavity with a constant flow rate through a cylindrical pipe, situated in the centre of the
floor of the cavity. The pipe is considered sufficiently long enough to ensure a fully developed
velocity. We suppose that after some time, the flow in the cavity attains a steady state.

A 3D Cartesian coordinates system is introduced in this problem with an origin on the floor
of the cavity and situated at the top centre of the injection pipe. Direction x is normal to
the vent plane and direction z is aligned with the axis of the cylindrical tube. The height of
the cavity (H) is large enough to ensure a global turbulent flow regime inside the cavity. The
horizontal width (W ) and length (L) of the cavity are chosen to be equal. The two vents are
considered to be of the same height (Hv) and located over the entire width of a same vertical
wall. The injection pipe is of diameter d and long enough (h) to ensure a well-developed
Poiseuille flow. The temperature of the system is assumed to be constant (T= 25◦C) with a
constant thermodynamic pressure Pth=105P a.

After the initial time, the light gas is continuously injected into the cavity. The flow pattern of
the injected gas in the cavity can be classified, as presented in Lee and Chu (2003), depending
on, on the one hand, whether the fluid is intruded with buoyant and/or momentum (inertia)
flux, and on the other hand, whether the flow is laminar or turbulent. The term ”jet” is
usually employed for a flow regime with inertial flux dominance and the term ”plume” is
used when buoyancy flux is dominant. We call a ”buoyant jet” the flow regime when both
terms, momentum and buoyancy, are presented.

When a light buoyant jet enters a calm medium, high shearing occurs leading to the formation
of eddies. These eddies capture the ambient fluid from the surrounding into the rotational
flow, then mix with the interior fluid, forming a shearing mixing layer all along the edge of
the jet. This phenomenon is called entrainment. Due to the entrainment effect, the fresh air is
entering into the cavity through the bottom opening, mixing with the injected light gas, and
flowing out through the top opening. This is called aspiration effect. Both the entrainment
effect and the ventilation effect give rise to global recirculation in the cavity, which produces
a turbulent flow in the cavity. Generally, the entrainment effect, the aspiration effect, as well
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Chapter 1. Physical analysis for air-hydrogen or air-helium mixture

Figure 1.1: Sketch of the open cavity

as the turbulent flow, are the origin of mixing. We will start from a simple mixing problem to
establish the governing equations of the problem.

1.2 Mixture state equation

In order to define physical parameters in the mixture, we start from a very simple situation.
Before mixture (noted state A), we have pure gas number 1 with mass mA1 and density ρA1
occupies a volume VA1, and pure gas number 2 with mass mA2 and density ρA2 in a volume
VA2, as presented in the figure 1.2.

Figure 1.2: Sketch of binary gas mixture

From the first and the second principle of thermodynamics, two extensive state functions, the
internal energy U and the entropy S can be defined for the system. Then the thermodynamic
pressure and temperature are defined by

1
Tth

=
(
∂S
∂U

)
V

Pth = Tth

(
∂S
∂V

)
U

(1.1)

We suppose that two pure gases mix in an isothermal and isobar condition (p, T constant).
After a complete mixing, we obtain a gas mixture with mass mB and density ρB, occupies a
volume VB, the subscript B indicates the steady state after mixing. We suppose that there is
no chemical reaction which will create additional enthalpy.
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1.2 Mixture state equation

We have clearly the conservation of mass

mB =mA1 +mA2 (1.2)

We suppose all these two gases are ideal gas, so we have the conservation of volume

VB = VA1 +VA2 (1.3)

For the mixture (state B), we define mass fraction of each component

Y1 =
mA1

mA1 +mA2
, Y2 =

mA2

mA1 +mA2
(1.4)

and volume (molar) fraction of each component

X1 =
VA1

VA1 +VA2
, X2 =

VA2

VA1 +VA2
(1.5)

We have of course: Y1 +Y2 = X1 +X2 = 1.

For mixture density, we have

ρB =
mB
VB

=
mA1 +mA2

VA1 +VA2
= X1

mA1

VA1
+X2

mA2

VA2
= X1ρA1 +X2ρA2 (1.6)

So that
X1 =

ρB − ρA2

ρA1 − ρA2
, X2 =

ρB − ρA1

ρA2 − ρA1
(1.7)

For mass fraction, we have

Y1 = X1
ρA1

ρB
=
ρB − ρA2

ρA1 − ρA2
·
ρA1

ρB
, Y2 = X2

ρA2

ρB
=
ρB − ρA1

ρA2 − ρA1
·
ρA2

ρB
(1.8)

We have also following relations between mass fraction (Y1,Y2) and volume (molar) fraction
(X1,X2)

Y1 =
1

1 + 1−X1
X1

ρA2
ρA1

, Y2 =
1

1 + 1−X2
X2

ρA1
ρA2

(1.9)

X1 =
1

1 + 1−Y1
Y1

ρA1
ρA2

, X2 =
1

1 + 1−Y2
Y2

ρA2
ρA1

(1.10)

By using the state equation of ideal gas at constant p,T , we have

ρA1

ρA2
=
MA1

MA2
(1.11)

with MA1,MA2 the molar mass of pure gas 1 and 2 before mixing. Hence,

Y1

Y2
=
X1

X2

ρA1

ρA2
=
X1

X2

MA1

MA2
(1.12)

Let us decide the gas number 1 is the injected light gas (pure helium or pure hydrogen)
and gas number 2 is the fresh air. The mixture state (state B) is noted with subscript mix.
The figure 1.3 illustrates the relation between X1 and Y1 for air-hydrogen and air-helium
mixture. Typically, if X1 = 0.4, we have Y1 = 0.084 for air-helium mixture and Y1 = 0.044 for
air-hydrogen mixture. Usually, the volume fraction X1 is used in the industrial context for
safety analysis. X1 is also called ”concentration” in this study.
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Chapter 1. Physical analysis for air-hydrogen or air-helium mixture

Figure 1.3: Variation of Y1(X1) for air-hydrogen/air-helium mixture

The injected gas and ambient air are considered as ideal gases, by using its state equation
(Williams (1965)), the mixed gas can also be proved as ideal gas, with

Mmix =
1

Y1
M1

+ 1−Y1
M2

(1.13)

The equation of state for gas mixture could be written as

ρmix =
pMmix

RT
(1.14)

with ρmix the density of the gas mixture andR the specific gas constant equal to 8.314 J.mol−1.K−1.

1.3 Conservation equations

The conservation equations consist of species equation, mass equation and momentum equa-
tion. As the problem is placed within a justified isothermal assumption, it is not necessary to
solve for an additional energy conservation equation.

1.3.1 Species equation

We choose in the flow domain a fluid parcel in the diffusion length scale. As there is no
chemical reaction as source term, the general transport equation of injected gas could be
written as (Bird et al. (2007))

∂ρR1

∂t
+ div

(
ρR1
−→u1

)
= 0 (1.15)

with ρR1 the relative density of injected gas presented in the local fluid parcel defined as
the quotient of the total mass of injected pure gas presented in the fluid parcel (m1) and the
volume of the fluid parcel ρR1 = m1/Vmix, which is also equal to Y1ρmix. Vector −→u1 is the
velocity vector of injected gas in the fluid parcel. We define same variables ρR2 and −→u2 for
ambient gas in the same fluid parcel.
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1.3 Conservation equations

Figure 1.4: Sketch of local convection-diffusion study

Based on the conservation of the total mass flux (mmix
−→u = m1

−→u1 +m2
−→u2 ), we have the mass-

averaged velocity in the fluid parcel
−→u = Y1

−→u1 +Y2
−→u2 (1.16)

Considering now the difference between the mixture’s mass-averaged velocity and the abso-

lute velocity of each component, the mass diffusion flux of injected and ambient gas (noted
−→
J1

and
−→
J2 ) can be defined as follows. The definition of these parameters in the local fluid parcel

are presented in figure 1.4.
−→
J1 = ρmixY1

(−→u1 − −→u
)

= ρR1

(−→u1 − −→u
)

(1.17)

−→
J2 = ρmixY2

(−→u2 − −→u
)

= ρR2

(−→u2 − −→u
)

(1.18)

Note that we have
−→
J1 +
−→
J2 = 0, the general transport equation of injected gas could be rewritten

as
∂ρR1

∂t
+ div

(
ρR1
−→u

)
= −div

−→
J1 (1.19)

The mass diffusion flux can be modelled by Fick’s first law (Brébec et al. (2004)), thus
−→
J1 = −D1,2ρmix

−−−−→
grad Y1 (1.20)

−→
J2 = −D1,2ρmix

−−−−→
grad Y2 (1.21)

with D1,2 the Fick’s diffusion coefficient of injected and ambient gas. We may remark that,
when we choose the mass fraction Y1 as the main parameter for solving the problem, the
effective diffusion coefficient is ρmixD1,2, instead of D1,2.

Thus, noting simply ρ the local mixture density instead of ρmix, we have for injected gas

∂ρY1

∂t
+ div

(
ρY1 · −→u

)
= div

(
ρD1,2 ·

−−−−→
grad Y1

)
(1.22)

And similarly for ambient gas

∂ρY2

∂t
+ div

(
ρY2 · −→u

)
= div

(
ρD1,2 ·

−−−−→
grad Y2

)
(1.23)

These are the conservation equations of species.

These equations may also be written in Einstein notation if we study in Cartesian coordinate
system (x1,x2,x3) = (x,y,z) with a summation over the index i

∂ρY1

∂t
+
∂ρY1ui
∂xi

=
∂
∂xi

(
ρD1,2

∂Y1

∂xi

)
(1.24)

and similar for another one.
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1.3.2 Mass equation

If we add together two conservation equations of species (1.22 and 1.23) respectively for in-
jected gas and for ambient gas, we have the conservation equation for the total mass of the
mixture

∂ρ

∂t
+ div

(
ρ−→u

)
= 0 (1.25)

And in Einstein notation with a summation over the index i

∂ρ

∂t
+
∂ρui
∂xi

= 0 (1.26)

1.3.3 Momentum equation

Considering the mass average velocity vector −→u of the gas mixture, by application of the
fundamental principle of dynamics, we can write the momentum conservation equation of
mixture as follows.

∂ρ−→u
∂t

+
(
ρ−→u ·

−−−−→
grad

)
−→u = −

−−−−→
grad p+ div τ + ρ−→g (1.27)

This equation could also be written in Einstein notation with a summation over the index i

∂ρuj
∂t

+
∂
∂xi

(
ρujui

)
= −

∂p

∂xj
+
∂τij
∂xi

+ ρgj (1.28)

where τ =
[
τij

]
is the viscous stress tensor and −→g = (0, 0, −g) the gravitational vector in

Cartesian or cylinder system with g = 9.81m/s2 and p the local pressure.

We suppose that the air-light gas mixture is a Newtonian fluid. The viscous stress depends
linearly on the velocity gradients. It can be written as follows, with µ dynamic viscosity of the
mixture, using Stoke’s hypothesis (coefficient of bulk viscosity λ = −2/3 ·µ).

τij = 2µeij = 2µ
(

1
2

(
∂uj
∂xi

+
∂ui
∂xj

)
− 1

3
δij
∂uk
∂xk

)
(1.29)

The term δij is equal to 1 when i = j and 0 if not (Kronecker-Delta symbol). The tensor eij
denotes the strain rate tensor and its symmetrical part Sij is defined as

Sij =
1
2

(
∂uj
∂xi

+
∂ui
∂xj

)
(1.30)

So that the momentum equation could be rewritten as

∂ρuj
∂t

+
∂
∂xi

(
ρujui

)
= −

∂p

∂xj
+ 2

∂µSij
∂xi

− 2
3
∂
∂xj

(
µ
∂uk
∂xk

)
+ ρgj (1.31)

1.4 Low Mach Number approximation and governing equations

Low Mach Number approximation

The Mach number is defined as the ratio of velocity of the fluid u and the local sound speed.
For ideal gas, this number is written as

Ma =
u√
γRT0

(1.32)
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1.5 Estimation of physical properties of mixture

with R ideal gas constant and T0 reference temperature and γ = 1.4 for gas with diatomic
molecule. The sound speed in the air is around 340 m/s. Considering a flow velocity in order
of magnitude 10m/s, a typical value for gas leak rate through small orifices, the corresponding
Mach number is Ma ≈ 0.01 << 1. Generally for Ma < 0.1, the compressibility effects can be
neglected. This is the main hypothesis of Low Mach Number (LMN) approximation. (Müller
(1998))

In mixing problem with large density variation, the incompressible momentum equations are
not applicable. However, as the compressible momentum equations consist of the acoustic
wave term, its resolution may be very difficult. The idea is to separate the pressure term in
equation (1.31), into a thermodynamic term Pth(t) and a hydrodynamic term PH (−→x , t)

p(−→x , t) = Pth(t) + PH (−→x , t) (1.33)

This hydrodynamic pressure fluctuates in an order of Ma2 in first order development.

PH (−→x , t) ∼Ma2p
(−→x , t) (1.34)

Replacing the decomposition of total pressure p in momentum equation (1.31) in first order,
this equation will be transformed into the same form with the term p replaced by the hydro-
dynamic pressure PH .

And in the state equation (1.14), the pressure term p will be replaced by the thermodynamic
pressure Pth.

Governing equations

The governing equations are based on conservation equations and state equation. The gov-
erning equations under LMN approximation are given as follows.



∂ρ

∂t
+ div

(
ρ−→u

)
= 0

∂ρY1

∂t
+ div

(
ρY1 · −→u

)
= div

(
ρD1,2 ·

−−−−→
grad Y1

)
∂ρ−→u
∂t

+
(
ρ−→u ·

−−−−→
grad

)
−→u = −

−−−−→
grad PH + div τ + ρ−→g

ρ =
Pth
RT

1
Y1

Minj
+

1−Y1

Mair

(1.35)

We have one vectorial equation and three scalar equations, and ρ, Y1, P three unknown scalar
fields and one unknown vectorial field −→u .

1.5 Estimation of physical properties of mixture

Some characteristic parameters related to the physical properties of mixture, like the mixture
density ρ, the mixture molar mass M, the dynamic viscosity µ and the diffusion coefficient
D1,2, have been presented in the above governing equations. In this section, we present the
physical models to link these parameters of mixture to the unknown quantities P ,ρ,Y1 of the
mixture presented in the governing equations.
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Chapter 1. Physical analysis for air-hydrogen or air-helium mixture

1.5.1 Mixture molar mass

The molar mass of atoms of an element is given by the Standard atomic weight of the element
multiplied by the molar mass constant. The molar mass of a molecule or mixture is calculated
by combination of the molar mass of its composition elements. We use the results presented
in Arcipreti (2006) and Turrin (2008):

M (Air) = 28.97 g/mol (1.36)

M (H2) = 2.016 g/mol (1.37)

M (He) = 4.003g/mol (1.38)

For the mixture of ideal gas, its molar mass could be calculated by (1.13).

1.5.2 Mixture density

The ideal gas density is depended on its pressure and temperature:

ρ =
PM
RT

(1.39)

with R = 8.314 J/mol·K ideal gas constant.

Under isobar and isothermal conditions P = 105Pa, T = 25◦C = 298.15K, we have

ρ (Air) = 1.168kg/m3 (1.40)

ρ (H2) = 0.0813kg/m3 (1.41)

ρ (He) = 0.161kg/m3 (1.42)

We have typically ρ(Air)/ρ(H2) = 14.4 and ρ(Air)/ρ(He) = 7.3, that corresponds to a large
difference of density between air and injected light gas. The calculation of the mixture density
is similar, by applying (1.14).

We present in the figure 1.5 the variation of mixture density ρ as function of mass fraction Y1
and of volume (molar) fraction X1 of injected gas, respectively for hydrogen-air and helium-
air mixture. Note that a linear relation between ρmix and X1 is observed. For example, for
the case where volume fraction of injected gas X1 = 0.4, we have ρmix = 0.73kg/m3 for air-
hydrogen mixture and ρmix = 0.76kg/m3 for air-helium mixture, corresponding to ρair /ρmix ≈
1.6 for air-hydrogen mixture and 1.5 for air-helium mixture.

1.5.3 Mixture dynamic viscosity

According to references (Lemmon and Jacobsen (1999), Reid et al. (1987), Turrin (2008)), in
the 0.1MPa condition, we have the dynamic viscosity of pure gas that varied as polynomial
functions of absolute temperature (see table 1.1).

Gas µ (P a · s) Relative error (%)

Air 2.02910 · 10−6 + 6.21004 · 10−8T − 2.40179 · 10−11T 2 -0.22
H2 2.15245 · 10−6 + 2.50715 · 10−8T − 8.05458 · 10−12T 2 0.18
He 5.03696 · 10−6 + 5.40569 · 10−8T − 1.47908 · 10−11T 2 0.14

Table 1.1: Variation of µ with temperature (around 300K) for different gases
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1.5 Estimation of physical properties of mixture

Figure 1.5: Variation of ρmix as function of mass fraction Y1 and of volume (molar) fraction
X1for air-hydrogen/air-helium mixture

Consequently, the dynamic viscosity of pure gas at 298.15K can be calculated by using the
above formulas. The value for pure air and pure helium are in the same order of magnitude
(relative difference 8%). However, a large difference between pure air and hydrogen (related
difference 50%) is observed, hydrogen is less viscous.

µ(Air) = 1.84093× 10−5kg/(m · s) (1.43)

µ(H2) = 0.89115× 10−5kg/(m · s) (1.44)

µ(He) = 1.98392× 10−5kg/(m · s) (1.45)

The value of dynamic viscosity of the mixture µmix depends on the properties of two injected
pure gases and their concentrations in the mixture. It is evaluated by using the semi-empirical
formula of Wilke (Wilke (1950)). Attention the formula presented in the article of Wilke is in
molar fractions not in mass fractions.

µmix =
µinj

1 +

1−Y1

Y1

Minj

Mair

1 +
√
µinj
µair

(
Mair

Minj

)1/42

2
√

2

√
1 +

Minj

Mair

+
µair

1 +

Y1

1−Y1

Mair

Minj

1 +
√
µair
µinj

(
Minj

Mair

)1/42

2
√

2

√
1 +

Mair

Minj

(1.46)
The variation of µmix for air-hydrogen and air-helium mixture is presented in figure 1.6. We
can remark that the variation of µmix is monotone for air-hydrogen mixture but not for air-
helium mixture. The air-helium mixture presents a larger dynamic viscosity than that of the
fresh air, but contrary results for air-hydrogen mixture. If we take a typical point for example
X1 = 0.4, for air-hydrogen mixture, the related change of µmix compared to that of fresh air
µair is 0.08%, for air-helium mixture, the related change is 0.55%. The change of dynamic
viscosity may be neglected except in the injection area where the percentage of light gas is
high.
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Figure 1.6: Variation of µmix with mass fraction Y1 and volume (molar) fraction X1 for air-
hydrogen/air-helium mixture

1.5.4 Diffusion coefficient

For non-polar molecules, Lennard-Jones potentials provide a basis of computing diffusion
coefficients of binary gas mixtures. The binary diffusion coefficient D1,2 in m2/s is given by
the Chapman-Enskog’s formula (Bird et al. (2007)) as follows.

D1,2 = 0.018583 · T 3/2 ·

√
1
M1

+ 1
M2

P · σ2
12 ·ΩD12

(1.47)

in which P pressure in Pa, T temperature in K and Mi molar mass in g/mol. The coefficient
σ12 is the Lennard-Jones force constant (in 10−10m) for the mixture which is the average of its
value for two pure gases.

σ12 =
σ1 + σ2

2
(1.48)

And the coefficient ΩD12 is the collision integral. Neufeld et al. (1972) proposes a formula of
8 parameters to calculate ΩD12 as a function of T ∗.

ΩD12 =
1.06036

(T ∗)0.15610 +
0.19300

exp(0.47635T ∗)
+

1.03587
exp(1.52996T ∗)

+
1.76474

exp(3.89411T ∗)
(1.49)

where T ∗ = kT /ε12 with T in K and k = 1.38065×10−23 kg·m2s−2K−1 the Boltzmann constant.

The coefficient ε12 is the characteristic energy appearing in the Lennard-Jones potential for
the binary mixture pair, which is calculated by

ε12 =
√
ε1ε2 (1.50)

We have numerical values of σ and ε/k for air, hydrogen and helium (Bird et al. (2007)).

Gas Air Hydrogen Helium

σ (10−10m) 3.617 2.915 2.576
ε/k (K) 97.0 38.0 10.2

Table 1.2: Numerical values of σ and ε/k for air, hydrogen and helium
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We then calculate the diffusion coefficient of air-hydrogen, air-helium and air-air mixture,
by applying above formulas. Results are presented in the following table. We may remark
that the self-diffusion coefficient for air is largely smaller than that of air-helium(hydrogen)
diffusion.

Mixture
Air-H2
(25◦C)

Air-He
(25◦C)

Air-H2
(20◦C)

Air-He
(20◦C)

Air-Air
(25◦C)

ε12/k (K) 60.7 31.5 60.7 31.5 97.0
σ12 (10−10m) 3.27 3.10 3.27 3.10 3.62

T ∗ 4.91 9.48 4.83 9.32 3.07
ΩD12 0.85 0.75 0.85 0.75 0.94

D1,2 (m2/s) 7.72× 10−5 7.11× 10−5 7.50× 10−5 6.91× 10−5 2.04× 10−5

Table 1.3: Diffusion coefficient of air-hydrogen/air-helium mixture and air-air mixture

We may also compare the above results with that presented in Marrero-Mason (Marrero and
Mason (1973), Marrero and Mason (1972), Reid et al. (1987), Turrin (2008)). The variation
of diffusion coefficient D1,2 is proportional to T s, with T temperature in K, s coefficient de-
termined by experiments. For air-hydrogen mixture, s = 1.750, and for air-helium mixture,
s = 1.729. After calculation, the relative error based on results in the above is less than 0.1%.
We may consider the above calculation is accurate.

1.6 Characteristic dimensionless numbers and fluid motion

Some dimensionless numbers may be used to predict the flow pattern. In this section, we
present definitions of a series of important dimensionless numbers to characterise the fluid
motion, typically the diffusion-convection phenomenon and the stratified flow regime.

1.6.1 Convection-diffusion phenomenon

The Reynolds number is usually considered as indicative to laminar-turbulent transition in
the flow regime. The Schmidt number is used to characterise the fluid propriety concerning
momentum transfer and mass transfer, depending on the fluid nature. Rayleigh number is
used to indicate if convection or diffusion is dominant on flow regime in convection-diffusion
phenomenon. Besides, as we study in the situations involving buoyancy effect, Grashof num-
ber could also be used.

Reynolds number (Re)

The Reynolds number is the ratio of inertial forces to viscous forces. The Reynolds number
for a general flow is defined as

Re =
ρuL

µ
=
uL
ν

(1.51)

with ρ fluid density, u velocity, µ dynamic viscosity, ν = µ/ρ kinematic viscosity and L charac-
teristic dimension.

The characteristic length L will be defined differently in different situations. Particularly, in
order to characterise the laminar or turbulent regime for the injection source of a jet into the
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cavity, we define the injection Reynolds number (Reinj ) as follows (Lee and Chu (2003)).

Reinj =
ρinjuinjd

µinj
(1.52)

uinj is the average injection velocity calculated as uinj =Qinj /Sinj and d the diameter of injec-
tion tube.

Grashof number (Gr)

Grashof number is generally defined as the ratio of buoyancy to viscous forces. For jet flow,
the local Grashof number is defined as a function of the vertical position as follows.

Gr(z) = g
ρair(ρair − ρ(z))

µ2
air

z3 (1.53)

with ρ(z) the local density of mixed gas and z the altitude compared to the injection plane.

Schmidt number (Sc)

The Schmidt number is defined as the ratio of momentum diffusivity (kinematic viscosity)
and mass diffusivity.

Sc =
ν
D

=
µ

ρD
(1.54)

For characterising a gas mixture of a jet, the Schmidt number can be calculated separately
for the injection fluid and the ambient fluid. Note that the diffusivity coefficient is given in
pair species for a multi-species system. We have for air-hydrogen mixture, ScH2

= 1.42 and
Scair = 0.204. For air-helium mixture, ScHe = 1.73 and Scair = 0.222. The Schmidt number of
hydrogen and helium is in the same order of magnitude.

Rayleigh number (Ra)

Rayleigh number is defined as product of Grashof number and Schmidt number:

Ra = Gr·Sc (1.55)

The Rayleigh number describes the behaviour of fluids when the mass density of the fluid is
non-uniform (due to mass transfer or temperature differences) in an acceleration field. When
the Rayleigh number is below a critical value for a fluid, mass transfer is primarily in the form
of diffusion; when it is superior to the critical value, mass transfer is primarily in the form of
convection. In the case of buoyant jet in an enclosure, a global Rayleigh number is defined as
follows

Raglobal= Grglobal·Sca =
g
(
ρa − ρinj

)
H3

µaD
(1.56)

For a cavity height H = 20cm, we have Raglobal = 6.0 × 107, almost the same value for air-
hydrogen and air-helium mixture.
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1.6.2 Mixed convection

In this problem of injection of light gas in an air-filled cavity, the prediction of mixture density
distribution in steady state is important to validate the validity of relative models. For this
purpose, the Richardson number is used in the literature.

Richardson number (Ri)

The Richardson number is defined as the ratio of the buoyancy term and the flow shear term.

Ri =
g

ρ

∥∥∥∥−−−−→grad ρ
∥∥∥∥∥∥∥∥−−−−→grad u
∥∥∥∥2 (1.57)

The Richardson number can also be expressed by using a combination of Gr and Re

Ri =
Gr
Re2 (1.58)

Typically, the natural convection is negligible when Ri < 0.1, forced convection is negligible
when Ri > 10.

We use Richardson number at injection region (Riinj ) for prediction of the flow regime rising
in the medium, which is defined as follows. (Chen and Rodi (1980a,b))

Riinj = g

(
ρa − ρinj

)
d

ρinju
2
inj

(1.59)

with d the diameter of injection tube. When Riinj�1, the buoyancy force is dominant at the
source, the flow regime is pure plume. If we have Riinj�1, the momentum flux is dominant
at the source, a pure jet is predicted to rise.

Besides, the Richardson number can also be used for characterising different regimes of con-
centration distribution of injected light gas in the cavity by introducing the Volume Richard-
son number (Riv) (Cleaver et al. (1994))

Riv = g
ρa − ρinj
ρinj

3
√
Vcavity

u2
inj

(1.60)

with Vcavity volume of the enclosure.

For a cavity with one opening, Cleaver et al. (1994) summarise three concentration regimes
associated with Riv . In situations where Riv� 1, overturning occurs and the inertia of the jet
is sufficient to mix the entire enclosure so that we have a homogeneous mixture. When Riv�
1, a complicated vertical stratified regime is obtained. In case where Riv ≈ 1, a homogeneous
layer will be formed at the top part of the enclosure and stratification layers formed below,
as illustrated in the following figure. In order to obtain a bi-layer distribution of mixture gas
concentration, we shall let the volume Richardson number around 1. Note that this result is
based on a flow study in a one-vented cavity. So it may be not directly applicable in present
problem.
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Figure 1.7: Illustration of predicted flow regime by Riv, sketch extracted from Saikali (2018)

1.7 Summary

In this chapter, we have presented

• Physical configuration studied in this work

• Physical modelling of the air-hydrogen mixing problem and conservation equations

• Principal dimensionless numbers characterising the flow regime

These constitute the general modelling of the problem. Besides, theoretical approaches are
also developed to provide simplified modelling. One important phenomenon is the jet flow
after injection. We will present the modelling of jet in the next chapter.
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Chapter 2

Theoretical models of turbulent
buoyant jet

In this chapter, we present a series of 1D simplified models from literature for turbulent
buoyant jets in a free place. Firstly, we present general assumptions in these models. Based
on different treatments of these assumptions, 3 analytical approaches are summarised. Model
of Morton et al. (1956) is the classic free jet model under Boussinesq approximation with a
constant entrainment coefficient. Model of Kaminski et al. (2005) presents a Boussinesq ap-
proach with a variable entrainment coefficient. Model of Rooney and Linden (1996) provides
a non-Boussinesq approach with a constant entrainment coefficient.

2.1 General assumptions

The development of turbulent jet models is usually based on simplified assumptions. In
this section, we summarise general assumptions in three aspects: Boussinesq approximation,
auto-similarity assumption and entrainment modelling. Note that the third one, entrain-
ment modelling will depend on first two assumptions: the formulation will be different for
Boussinesq or non Boussinesq case, under Top-hat or Gaussian profile assumption. The en-
trainment modelling is based on the conservation equations of turbulent jet models that will
be presented in the following sections.

2.1.1 Boussinesq approximation

In fluid dynamics, the Boussinesq approximation (Boussinesq (1897)) is used in the field of
natural convection flow. It ignores density differences of mixed fluids except where they ap-
pear in terms of buoyancy force. This kind of flows is commonly observed in nature (such as
oceanic circulation), in industry (dense gas dispersion, fume cupboard ventilation), and the
built environment (natural ventilation, central heating) (Kleinstreuer (1997), Tritton (2012)).

Boussinesq approximation is based on a reference physical state, characterised by state tem-
perature. In a general case, based on a reference temperature T0 (with subscript 0 indicating
the reference). We have the following first order development (linearisation) of local density:

ρ = ρ0

1 +
∂ρ

∂T

∣∣∣∣∣
T0

(T − T0) +
∂ρ

∂PH

∣∣∣∣∣
PH0

(PH − PH0
)

 (2.1)

with pressure variation term is that from hydrodynamic pressure PH . This linearisation with
then integrated in flow momentum equations (1.28). The hypothesis is valid generally in
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condition of small temperature variation in the flow as well as a small vertical scale so that
density variations due to temperature and hydrostatic pressure variations are negligible.

However, in this problem, as we study in an isothermal condition, the linearisation near
(ρ0,T0) is not necessary. We apply ρ ≈ ρ0 in momentum equation (1.28) everywhere except for
the buoyancy force term.

∂uj
∂t

+
∂
∂xi

(
ujui

)
= − 1

ρ0

∂PH
∂z

+
1
ρ0

∂τij
∂xi
− gj

ρ

ρ0
(2.2)

If we consider separating the hydrostatic variation from hydrodynamic pressure variation, we
can define the pressure related to fluid motion PM = PH −Ph, as the difference between PH and
hydrostatic pressure Ph = PH0

− ρ0gz. Thus the above equation can be transformed into:

∂uj
∂t

+
∂
∂xi

(
ujui

)
= − 1

ρ0

∂PM
∂z

+
1
ρ0

∂τij
∂xi

+ gj
ρ0 − ρ
ρ0

(2.3)

The Boussinesq approximation is valid if

ρ0 − ρ
ρ0

� 1 (2.4)

In this problem, the density reference is selected as the density of fresh air ρ0 = ρa = 1.168kg/m3.
Boussinesq approximation can be considered perfectly valid if

ρa − ρinj
ρa

� 1 (2.5)

If not, the condition 2.4 can be rewritten as

X1�
ρa

ρa − ρinj
(2.6)

As we have ρa/ρ(H2) = 14.4 and ρa/ρ(He) = 7.3 a large difference of density between air and
injected light gas, Boussinesq approximation is clearly not valid for the whole cavity, espe-
cially for the injection area. The term ρa/(ρa − ρinj ) equals to 1.16 for helium and 1.07 for
hydrogen. Therefore, Boussinesq approximation may be considered valid only for the region
where local concentration is less than 10%.

2.1.2 Auto-similarity and profile assumptions

The auto-similarity assumption is initially proposed in classic turbulent jet model Morton
et al. (1956). Auto-similarity means that the profiles of steady-state vertical velocity and
buoyancy force in horizontal sections are of similar form at all heights of the jet. The word
”similar form” could be explained as the same type of form with different characteristic pa-
rameters. As the buoyancy force is linearly related to mixture density and volume fraction,
this condition is equivalent to the similar form of the latter two fields. In original model of
Morton et al. (1956), two characteristic profiles are selected: the steady-state vertical velocity
w and mixture density ρ, assumed both in Top-hat profile with same characteristic radius. In
other models, like Kaminski et al. (2005), the profiles of w and ρ are not precisely assumed,
but in later development, Carazzo et al. (2006) gave the explicit analytical solutions under
Gaussian profiles. Based on PIV measurement, Cariteau (2012) also showed that w and ρ
could be better assumed in Gaussian profiles. Thus, Gaussian assumptions of vertical veloc-
ity w and mixture density ρ are recommended to be applied in post-processing method.

Here we summarise two approaches, Top-hat profiles and Gaussian profiles.
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Top-hat profiles

Top-hat assumption is the simplest way of jet modelling. Under Top-hat assumption, the
profile of vertical velocity varies as a function of altitude z over the injection point.

w(r,z) =
{
wT (z), for r ≤ bT (z)

0, for r > bT (z)
(2.7)

with bT characteristic radius of the jet defined as the border of the jet area.

The density profile in the jet is in the same Top-hat form with same characteristic radius bT
and a uniform mixture density ρT if we assumed self-similar solutions.

ρ(r,z) =
{
ρT (z), for r ≤ bT (z)
ρe(z), for r > bT (z)

(2.8)

with ρe the mixture density in the far field of the jet, called hereinafter environmental density.

Gaussian profiles

Under Gaussian assumption, the profile of vertical velocity is under a 2D Gaussian distribu-
tion

w(r,z) = wG(z)exp

− r2

b2
G(z)

 (2.9)

with wG the maximum vertical velocity in the jet centre, also called Gaussian characteristic
vertical velocity and bG the characteristic radius of the jet defined by

w(r = bG, z) =
wG(z)
e

(2.10)

with e the Euler’s number (e = 2.718...). Note that in Gaussian profile, the notion of ”jet edge
radius” does not exist. The area based on bG(z) is defined as the standard deviation (σ ) of this
2D Gaussian distribution.

The mixture density profile in the jet is in the similar 2D Gaussian form, but with different
characteristic radius λbG.

ρ(r,z) = ρe(z)− (ρe(z)− ρG(z))exp
(
− r2

(λbG)2

)
(2.11)

with λ called diffusion ratio. It represents the ratio of radial convection-diffusion of mass and
momentum. ρG is the characteristic density in the jet centre, representing the minimum value
of the mixture density, ρe is the environment density at far-field of the jet with

lim
r→∞

ρ = ρe (2.12)

For simple reason, some literature use λ = 1. In this case, the mixture density profile is
considered exactly in the same 2D Gaussian form as vertical velocity profile.
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Figure 2.1: Illustration of the entrainment process at the edges of the buoyant jet (internal
communication CEA)

2.1.3 Entrainment modelling

As illustrated in figure 2.1, for a buoyant jet, entrainment effect is formed by a series of eddies
capturing the ambient fluid from the surrounding into the rotational flow, then mixing with
the fluid in the jet. Physically, the phenomenon is characterised by a horizontal velocity called
entrainment velocity ue, which represent the centripetal velocity contribution of the exterior
to the jet, pushing the environmental ambient gas into the jet. This entrainment velocity
depends generally on radial and vertical positions. However, in 1D modelling, as the steady
flow is axisymmetric, the entrainment velocity can be considered as a function of vertical
position z only. The modelling of entrainment velocity depends on retained hypothesis.

Boussinesq case

In literature, two different types of assumptions are presented. One is typically in Morton
et al. (1956) and Morton (1967) models under the Boussinesq assumption: the entrainment
velocity ue at the edge of the jet is proportional to a entrainment characteristic vertical velocity
wc at this height, with the proportionality noted α called entrainment coefficient.

ue = αwc (2.13)

Generally, the value of α depends on profile assumption applied for vertical velocity. Follow-
ing the Top-hat or Gaussian profiles are considered, we have the following relation:

αT =
√

2αG (2.14)

with αT the value of entrainment coefficient under Top-hat profile assumption of vertical
velocity and αG that under Gaussian profile assumption. The classic turbulent jet model takes
this entrainment coefficient as a constant along the jet, as in Morton et al. (1956). It is reported
in literature, under a Top-hat profile assumption, that αT ≈ 0.05 for a turbulent jet and αT ≈
0.155 for a pure turbulent plume, as summarised in table 2.1. Note that the characteristic
velocity in the jet wc depends on velocity profile assumption (Top-hat or Gaussian).
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Experimental measurements Type αT αG

Rouse et al. (1952) Jet - 0.041
Kotsovinos (1975) Jet 0.04-0.06 -
Kotsovinos (1976) Jet 0.06 -
Chen and Rodi (1980a) Jet 0.05-0.06 -
Antonia et al. (1983) Jet 0.05 -
Linden (2000) Jet 0.05 -
Lee and Emmons (1961) Plume - 0.16
Kotsovinos (1975) Plume - 0.10
Ramaprian and Chandrasekhara (1989) Plume 0.16 0.11
Yuana and Cox (1996) Plume - 0.13
Paillat and Kaminski (2014) plume - 0.12
Parker et al. (2020) Plume 0.14 0.10

Table 2.1: Values of entrainment coefficient for gas-gas mixture, as reported in literature

For a general turbulent buoyant jet, experiments suggest that α varies with development of
the jet to a plume and takes the asymptotic values αj in momentum-driven (jet-like) and αp in
buoyancy driven (plume like) flows. α(z) values in between at transition from jets to plumes,
as a function of altitude z. Priestley and Ball (1955) propose an expression for a general case
based on the conservation of energy

α(z) = αj − (αj −αp)
Ri(z)
Rip

(2.15)

with Ri the local jet Richardson number and Rip the typical Richardson number for a pure
plume. Note that for a general case. This number may change along the jet thus the coefficient
α is in fact a function of vertical position z.

Based on this model, Fischer et al. (1979), List (1982) estimated these parameters αj = 0.0535,
αp = 0.0833, Rip = 0.557. These results have been re-evaluated experimentally by Papanico-
laou and List (1988) which reported αj = 0.0545,αp = 0.0875,Rip = 0.63 for a liquid-liquid
mixture. More recently, Jirka (2004) has employed an expression similar to that proposed
by Priestley and Ball (1955) and found αj = 0.055,αp = 0.083,Rip = 0.522 for a liquid-liquid
mixture. These results are summarised in Papanicolaou et al. (2008).

Moreover, another theoretical approach Craske and van Reeuwijk (2015a,b) based on energy
analysis proves that the entrainment coefficient α can be decomposed into three terms

α = αconv +αdiff +αturb (2.16)

with αconv the entrainment effect related to the convection and the redistribution of kinetic
energy, αdiff that related to the mass diffusion and αturb that related to the local turbulence
flow. This term is zero if flow is laminar. It is found that for a turbulent jet, the first term αconv
is the leading-order term for entrainment both in the steady state and unsteady state and the
other two terms related to the diffusion and local turbulence flow can be correctly ignored in
steady state.

Non-Boussinesq case

Apart from above various approaches under Boussinesq approximation, there is another type
of entrainment assumption presented in Crapper and Baines (1977), Rooney and Linden
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(1996), Carlotti and Hunt (2005), Xiao et al. (2009), El-Amin et al. (2010), under non-Boussinesq
condition: the entrainment velocity ue at the edge of the jet is not only proportional to a
characteristic vertical velocity wc at this altitude, but also related to a characteristic mixture
density ρc.

ue = α
√
ρc
ρ0
wc (2.17)

with ρ0 a density reference.

The evaluation of wc and ρc will depend on applied profile assumptions. Under Top-hat
assumption, we have simply wc = wT and ρc = ρT . No clear relation for Gaussian profiles is
found in the literature. However, in both cases, the relation (2.14) is still valid.

2.2 Characteristic jet quantities

In 1D models, the development of the jet is characterised by a series of 1D physical quantities.
These quantities, called characteristic jet quantities, are defined as integration on horizontal
plane. Here are presented its original definitions:

Volume flux

Q(z) =
∫
S(z)

w dS(z) (2.18)

where the integral surface S(z) indicates the jet area on the cross-section at altitude z and
w(r,z) is the vertical velocity in steady state.

Mass flux

Qm(z) =
∫
S(z)

ρw dS(z) (2.19)

with ρ(r,z) the local mixture density in steady state.

Momentum flux

M(z) =
∫
S(z)

w2 dS(z) (2.20)

Mass momentum flux

Mm(z) =
∫
S(z)

ρw2 dS(z) (2.21)

Buoyancy flux

B(z) =
∫
S(z)

G′w dS(z) (2.22)

with G′(r,z) the reduced gravity defined as

G′(r,z) =
ρe(z)− ρ(r,z)

ρ0
g (2.23)

ρe(z) is the environmental density in the far field outside the jet and ρ0 is a reference density
used as reference state in the Boussinesq approximation, here chosen equal to density of air
ρ0 = ρair .
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Expressions under Top-hat assumption

Based on the Top-hat assumption, these characteristic jet quantities can be simply rewritten
as

Q =
∫ ∞

0
w 2πrdr =

∫ bT

0
wT 2πrdr = πwT b

2
T (2.24)

Qm =
∫ ∞

0
ρw 2πrdr =

∫ bT

0
ρTwT 2πrdr = πρTwT b

2
T (2.25)

M =
∫ ∞

0
w2 2πrdr =

∫ bT

0
w2
T 2πrdr = πw2

T b
2
T (2.26)

Mm =
∫ ∞

0
ρw2 2πrdr =

∫ bT

0
ρTw

2
T 2πrdr = πρTw

2
T b

2
T (2.27)

B =
∫ ∞

0
G′w 2πrdr =

∫ bT

0
G′TwT 2πrdr = πG′TwT b

2
T (2.28)

with G′T the reduced gravity in horizontal sections defined by

G′T (z) =
ρe(z)− ρT (z)

ρ0
g (2.29)

2.3 Boussinesq approach Morton et al. (1956)

We present in this section the classic turbulent jet model based on Morton et al. (1956), a
Boussinesq approach with a constant entrainment coefficient α.

2.3.1 Basic assumptions

The model is based on the following assumptions.

Assumption 1: The flow is incompressible, so that we have a conservation of volume flux.

Assumption 2: The steady state is achieved. The flow pattern is assumed axisymmetric on jet
axis. Thus, the vertical velocity w and the density of local mixture ρ of jet at steady state are
theoretically independent of θ. Therefore, we can define a series of 1D physical quantities in
the jet area which are functions of altitude z only (1D modelling).

Assumption 3: The profiles of the vertical velocity and the mixture density in the jet are
modelled by a Top-hat approximation.

Assumption 4: The Boussinesq approximation is considered valid.

Assumption 5: The velocity of entrainment (ue) is proportional to Top-hat characteristic ve-
locity at that height (wT ), with an entrainment coefficient αT , assumed as a constant along the
jet.

ue (z) = αTwT (z) (2.30)
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2.3.2 Conservation equations

Three characteristic quantities are used in this model: the volume flux Q, the momentum
fluxM and the buoyancy flux B. The demonstration of conservation equations are based on
differential governing equations, that consist of conservation of volume flux, mass flux and
momentum. The detailed demonstration is presented in appendix A.1. Here we just present
the final relations.

dQ
dz

= 2αT
√
πM (2.31)

dM
dz

=
BQ
M

(2.32)

dB
dz

= −N2Q (2.33)

with N2 = −
g

ρ0

dρe
dz the square of the Brunt-Vaisala buoyancy frequency.

This system of equations is non-linear. Thus generally it does not possess explicit analytical
solutions. However, some analytical solutions may be existed under specific conditions. If we
study in homogeneous environment, that is to say, the far field environmental density ρe does
not change with altitude z, the conservation equations possess explicit analytical solutions.

2.3.3 Virtual origin and analytical solutions in homogeneous environment

In this section, we focus on analytical solutions of Morton’s equations in a homogeneous en-
vironment. The environmental density ρe is thus a constant along the jet and independent on
altitude z. Thus, we have directly

dB
dz

= 0 (2.34)

As a consequence, we have for any altitude z, B(z) = B0 the conservation of buoyancy flux at
injection point z = 0. We note also Q0 = Q(0), M0 =M(0) the initial conditions at injection
level z = 0.

Morton’s system possess an ordinary polynomial solution for a pure plume which possesses
zero initial conditions (Q0,M0,B0)=(0,0,B0), presented in the original article of Morton et al.
(1956). In the latter study, Morton (1959) shows that it is always possible to relate the flow
above a general point source to an equivalent a source of pure plume no matter in a homo-
geneous environment or a stratified environment. This conversion is more complicated for
a stratified environment than a homogeneous environment, which for the former one needs
more information about environment variation along the jet. Here, in homogeneous envi-
ronment, this change of initial conditions (Q0,M0,B0) to (0,0,B0) is done by introducing an
virtual origin displacement. Following the steps of Morton (1959), Hunt and Kaye (2001)
summarised a three-step conversion method.

Step 1: Injection geometrical correction

In this first step, we transfer an ordinary jet injection to a point source. A general buoyant
jet often possess a geometrical opening, eventually circular with diameter d. Chen and Rodi
(1980b) say that this kind of buoyant jet with a circular injection source could be considered
as a point jet, with the asymptotic virtual origin located below the injection source plan, with
a displacement z0 < 0, as illustrated in figure 2.2.
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Figure 2.2: Schematic representation of a real source and its associated virtual source

Generally, the displacement z0 is depended on the actual source diameter d and some char-
acteristic quantities of the injection source, such as its vertical velocity profile. If d is smaller
enough, comparing with vertical extension of the jet, the correction of z0 could be neglected.

Step 2: Source correction

In the second step, we transfer the obtained point source (Q0,M0,B0) to a forced plume.
From the demonstration of Morton (1959), a general point source with initial conditions
(Q0,M0,B0) at injection level z = 0 is exactly equivalent to a source forced plume with ini-
tial conditions (0, ζM0,B0), of buoyancy and momentum only, with modified strength ζM0
and modified position z = zv . The parameter ζ is called the modification factor and could be
calculated by

ζ5 = 1− Γ0 (2.35)

where Γ0 is the source parameter, indicating the nature of source. Γ0 < 1 corresponds the case
”forced plume”, while Γ0 > 1 corresponds to a ”lazy plume”.

Γ0 =
5

8
√
παT

B0Q2
0

M5/2
0

(2.36)

The modified position zv is related to the momentum jet length LM

zv
LM

=

 −
√

10 |ζ|3/2
∫ 1/ |ζ|

sgnζ |T
5 − sgnζ|−1/2T 3dT if Γ0 , 1

−2.108 if Γ0 = 1
(2.37)

with sgnζ the sign of ζ (+1 or -1). Hunt and Kaye (2001) propose a definition of LM related to
M0 and B0

LM =
1

2
√
αTπ1/4

M3/4
0

B1/2
0

(2.38)

Step 3: Jet-length-based correction

The third step is to transfer initial conditions (0,ζM0,B0) to a pure plume (0, 0, B0). Theoreti-
cal demonstration of Morton (1959) proved that the flow from the source (0,ζM0,B0) exhibits
the behaviour of the flow above the point source pure plume (0,0,B0) positioned at z = zavs cal-
culated as follows, with accurate range of height deduced later by Baines and Turner (1969).

zavs
LM

=


−1.057ζ3/2 if 0 < Γ0 < 1 accurate to within 1% for z/LM > 6ζ3/2

0 if Γ0 = 1
−3.253|ζ|3/2 if Γ0 > 1 accurate to within 1% for z/LM > 4|ζ|3/2

(2.39)
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Total virtual origin displacement

Once we have corrected the injection geometry and twice the injection conditions (Q0,M0,B0)
to (0,0,B0), we have introduced three displacement pf the source z0, zv and zavs. Consequently,
an ordinary turbulent jet can be considered physically as a pure plume, with its origin situated
at z = zt, with

zt = zv + zavs + z0 (2.40)

The origin of this equivalent pure plume is called virtual origin of the jet and zt is called total
virtual origin displacement.

General analytical solutions for homogeneous environment

As presented in the original model of Morton et al. (1956), conservation equations possess
analytical solutions for a pure plume with initial conditions (0,0,B0), taking into account the
total virtual origin displacement zt. We have the general solution for conservation equations
in homogeneous environment.

Q(z) =
6
5

( 9
10

)1/3
π2/3αT

4/3B1/3
0 (z − zt)5/3 (2.41)

M (z) =
1
ζ

( 9
10

)2/3
π1/3αT

2/3B2/3
0 (z − zt)4/3 (2.42)

G′T (z) =
5
6

( 9
10

)−1/3
π−2/3αT

−4/3B2/3
0 (z − zt)−5/3 (2.43)

bT (z) =
6
5
αT (z − zt) (2.44)

wT (z) =
5
6

( 9
10π

)1/3
αT
−2/3B1/3

0 (z − zt)−1/3 (2.45)

with ζ = (1− Γ0)1/5. Note that these solutions are valid only for sufficiently large distances
above the original source. The equation (2.42) is not valid for case Γ0 = 1.

2.3.4 Further development

The model of Morton et al. (1956) is a classic turbulent jet model under Boussinesq ap-
proximation. It has been validated by a series of experimental studies like Shabbir and
George (1994) and Papanicolaou and List (1988). Recently, developments based on this model
are various. For example, Caulfield (1991) determines the source conditions where a jet or
plume initially contracts, or called ”neck”, after rising above its source. The contraction oc-
curs directly above the source if the local change rate of jet radius bT with height satisfies
dbT
dz

∣∣∣∣
z=0

= (2− 0.8Γ0)αT < 0, providing Γ0 the source parameter (Γ0 > 2.5). By analysis of the jet

undergoing contraction, Caulfield (1991); Caulfield and Woods (1995) deduce later that the
jet can accelerate above the source without contracting if Γ0 > 1.25. Moreover, Scase and He-
witt (2012), Woodhouse et al. (2016) and Craske and van Reeuwijk (2016) present an unsteady
approach with volume, momentum and buoyancy fluxes varying in time. Papanicolaou et al.
(2008), Carazzo et al. (2010), Mehaddi et al. (2012) focus on a particular case called foun-
tain when the environmental density is lighter than that of the injection fluid. Wang and
Law (2002) propose a second-order general model for turbulent jet under a constant entrain-
ment coefficient. Van Reeuwijk and Craske (2015) and Van Reeuwijk et al. (2016) propose a
decomposition method of entrainment coefficient based on a DNS simulation.
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2.4 Boussinesq approach Kaminski et al. (2005)

In this section, we present a turbulent jet model proposed by Kaminski et al. (2005) and
Carazzo et al. (2006), under Boussinesq approximation with a variable entrainment coeffi-
cient α(z). Note that this model is valid only for homogeneous environment where the envi-
ronmental density ρe in the far-field of the jet is constant along the jet.

2.4.1 Basic assumptions and characteristic jet quantities

We study in the cylinder-polar coordinates system (r,θ,z). The origin is placed at injection
point. Recall that in this coordinates system the velocity vector can be written as −→u = u−→er +
vθ
−→eθ +w−→ez . The basic assumption of this model is presented as follows.

Assumption 1: The flow is incompressible, so that we have a conservation of volume flux.

Assumption 2: The steady state is achieved.

Assumption 3: The flow pattern is assumed axisymmetric on jet axis. The jet behaviour is
characterised by 1D physical quantities as functions of altitude z only (1D modelling).

Assumption 4: The jet develops in a uniform environment, so that the environment density
ρe is a constant along the jet.

Assumption 5: The largest local variations of density in the field of motion are small in
comparison with chosen reference density ρ′/ρ0� 1, Boussinesq approximation is considered
valid.

Three characteristic quantities are defined in this model, similarly to the model of Morton
et al. (1956): the volume flux Q, defined in equation (2.18), the momentum fluxM, defined
in equation (2.20) and the buoyancy flux B, defined in equation (2.22).

2.4.2 Conservation equations and entrainment parameters

The conservation equation of Kaminski et al. (2005) is like that of classic Boussinesq model of
Morton et al. (1956), we have three conservation equations:

dQ
dz

= 2α(z)
√
πM (2.46)

dM
dz

=
BQ
M

(2.47)

dB
dz

= 0 (2.48)

In this model the entrainment coefficient is no longer considered as a constant, but variable
along the jet α(z). The variation of α(z) depends on two entrainment parameters A(z), C(z)
as well as on the equivalent Top-hat radius variation bT (z) and the local Richardson number
Ri(z).

α (z) =
C (z)

2
+
(
1− 1

A (z)

)
Ri(z) +

bT (z)
2

dlnA(z)
dz

(2.49)

The local Richardson number Ri(z) is originally defined for Top-hat profiles parameters. By
identification of Q (2.24), M (2.26) and B (2.28), the local Richardson number (2.50) can be
rewritten as function of characteristic jet quantities.

Ri(z) =
bTG

′
T

w2
T

=
1
√
π

B0Q2(z)
M5/2(z)

(2.50)
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with B0 the buoyancy flux at source, considered constant along the jet.

The variation of entrainment coefficient α(z) is defined by equation (2.49) with parameters
A(z), C(z) called entrainment parameters. Based on 16 independent experimental measure-
ments (for gas and liquid, jet and plume), Carazzo et al. (2006, 2008) summarised these exper-
imental results and found that the parameter C(z) in (2.49) could be considered as a constant,
universal for jet and plume:

C = 0.135± 0.005 (2.51)

However, another parameter A(z) depends on the shapes of velocity and buoyancy profiles.
No accurate analytical formulas are found in the literature. Based on experimental studies
of Papanicolaou and List (1988) and Wang and Law (2002), Carazzo et al. (2008) proposed
a formula for A(z) valid at large distances from the source, typically for z/d > 10 with d the
injection diameter.

A (z) =


Aj(z) z ≤ Lmix

Aj (z) + 1
4

(
Ap (z)−Aj (z)

)(
z

Lmix
− 1

)
Lmix < z < 5Lmix

Ap(z) z ≥ 5Lmix

(2.52)

with Aj(z) and Ap (z) are two typical parameters related to pure jet and pure plume respec-
tively

Aj (z) = 2.45− 1.05 exp(−0.00465 z/d) (2.53)

Ap (z) = 1.42− 4.42 exp(−0.2188 z/d) (2.54)

And d is the injection diameter and Lmix is the Fischer’s characteristic mixing length, related
to the injection condition (Fischer et al. (1979)).

Lmix = π1/4Ri−1/2
inj

d
2

(2.55)

with Riinj injection Richardson number defined in (1.59).

In 2010s, CEA seeks to test the reliability of these empirical formulas in application of hydro-
gen release problem. An experimental project has been carried out with PIV measurement on
a facility in which light gas (helium) was released in a two-metre-high cavity. This work pro-
vides experimental validation for equations (2.51), (2.52) and (2.53), but not for (2.54). Based
on experimental measurements, Bernard-Michel (2014) proposes another correction formula
for parameter Ap(z)

Ap (z) = 1.28
1 + tanh(−0.1(z/d − 9))

2
+ 1.65

1 + tanh(0.1(z/d − 7))
2

(2.56)

which matches better than that proposed initially by Carazzo et al. (2006) equation (2.54).
Nonetheless, these formulas related to parameter A(z) are all empirical without precise valid-
ity study. Consequently, these formulas cannot be considered as universal and thus may not
be valid and be directly used in our problem.

2.4.3 Further development

The Boussinesq approach of Kaminski et al. (2005) and Carazzo et al. (2006) is a typical α-
variable model which provides an explicit formula for variation of entrainment coefficient
along the jet. Some recent work are based on this model. Papanicolaou et al. (2008) proposed
an experience-valid theoretical analysis of decomposition of entrainment coefficient for neg-
atively buoyant jets (where the jet buoyancy flux is negative). Bloomfield and Kerr (2000)
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2.5 Non-Boussinesq approach Rooney and Linden (1996)

developed an analytical model for the turbulent fountain, where the injection is occurred in a
lighter environment. The model is validated by the LES simulation of Devenish et al. (2010).
Paillat and Kaminski (2014) proposed an analytical approach for plane turbulent plume with
variable entrainment coefficient. Experimental study of Ezzamel et al. (2015) related model
of Kaminski et al. (2005) under Gaussian assumption and the jet source parameter (defined
in equation (2.36)).

2.5 Non-Boussinesq approach Rooney and Linden (1996)

In this section, we present a different turbulent jet model proposed by Rooney and Linden
(1996), based on a non-Boussinesq approach with constant entrainment coefficient α.

2.5.1 Basic assumptions and characteristic jet quantities

We study in the cylinder-polar coordinates system (r,θ,z). The origin is placed at injection
point with z axis of the jet. Basic assumptions of this model are presented as follows.

Assumption 1: The density of the mixture is a volume-weighted average of the densities of
the components (linear mixing assumption).

Assumption 2: The steady state is achieved. The flow pattern is assumed axisymmetric by
the vertical line through the jet point. We define a series of 1D physical quantities in the jet
area which are functions of altitude z only (1D modelling).

Assumption 3: The profiles of vertical velocity w(r,z) and density ρ(r,z) in steady state are
assumed in Top-hat form at all heights, with characteristic vertical velocity wT , characteristic
mixture density ρT and characteristic jet radius bT defined the same in (2.7) and (2.8).

Assumption 4: The entrainment velocity at the edge of the jet, noted ue(z), on the one hand,
is proportional to characteristic velocity at that height wc(z), with an entrainment coefficient
α, assumed as constant along the jet, and on the other hand, is related to the entrainment
characteristic density of mixture ρc in the jet at altitude z, presented in (2.17) with ρ0 is a
density reference. Under Top-hat assumption, we have wc(z) = wT (z),ρc(z) = ρT (z) and in
this case we note the entrainment coefficient αT under Top-hat assumption. The entrainment
velocity is written as

ue (z) = αT

√
ρT (z)
ρ0

wT (z) (2.57)

In non-Boussinesq model, the conservation of volume flux is no longer assumed. The flow
is no longer considered incompressible. Three characteristic jet quantities are analysed: the
volume flux Q, the mass flux Qm and the momentum mass fluxMm.

2.5.2 Conservation equations

The conservation equations consist of conservation of mass flux, momentum flux and a third
equation related to the fluid state and enthalpy to enclose the system. The detailed demon-
stration are presented in appendix A.3. The conservation equations are written as:

dQm
dz

= 2πbT ueρe (2.58)
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dMm

dz
= 2πg

∫ bT

0
(ρe − ρ)rdr = πg (ρe − ρT )b2

T (2.59)

dQ
dz

= 2πbT ue (2.60)

Under Top-hat assumption, by using relations (2.24), (2.25) and (2.27), we have profile pa-
rameters expressed using the following characteristic jet quantities

wT =
Mm

Qm
, bT =

√
Q Qm
πMm

, ρT =
Qm
Q

(2.61)

The conservation equations can be rewritten as follows.

dQm
dz

= 2αT ρe

√
πMm

ρ0
(2.62)

dMm

dz
= g

(
ρe −
Qm
Q

)
QQm
Mm

(2.63)

dQ
dz

= 2αT

√
πMm

ρ0
(2.64)

Equations (2.62)-(2.64) constitute a non-linear ODE system where only the characteristic jet
quantities Q,Qm,Mm appear.

2.5.3 Virtual origin and analytical solutions in homogeneous environment

In this section, we aim at solving the conservation equations (2.58), (2.59) and (2.60) in an
homogeneous environment, which means ρe is constant along the jet. We choose the envi-
ronmental density as the density reference presented in (2.57), that is to say ρ0 = ρe. The
analytical solutions are based on the discussion in Rooney and Linden (1996), Woods (1997)
and developed in Carlotti and Hunt (2005) and Salizzoni et al. (2017).

By comparing equations (2.58) and (2.60), we have firstly the conservation of buoyancy flux
under homogeneous environment assumption.

B(z) =
∫
ρe − ρ
ρ0

gw · 2πrdr = B0 (2.65)

where B0 is the buoyancy flux at the injection point. At the injection point, the density is
uniformly distributed in the jet (ρinj ), so we have simply

B0 =Q(0)
ρe − ρinj
ρ0

g (2.66)

Thus the initial condition for volume flux Q(0) is directly equivalent to the initial condition
for injection buoyant flux B0. For a general jet, the initial condition at injection (z = 0) could
be reconsidered as (Qm(0),Mm(0), B0).

The analytical solution for a pure plume with initial conditions (Qm(0) , 0, Mm(0) , 0, B0)
is deduced by Rooney and Linden (1997) after a dimensional analysis introduced in Rooney
and Linden (1996). Then the idea is the same as presented in Hunt and Kaye (2001) for
Boussinesq case, try to link a general source (Qm(0) = 0,Mm(0) = 0, B0) with a pure plume (0,
0, B0). For this purpose, we introduce the notion of virtual origin. Carlotti and Hunt (2005)
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present a three-step correction method for non-Boussinesq jet to determine this virtual source
displacement. The approach is very similar as in Boussinesq case in which correction param-
eters depends on the value of source parameter Γ0, differently defined in non Boussinesq case,
and presented as follows. Detailed formula are presented in appendix B.

Γ0 =
5
√
ρe

8
√
παT

B0Q2
m,0

M5/2
m,0

(2.67)

General analytical solutions for homogeneous environment

By applying the solutions of conservation equations applied for a pure plume, we have fol-
lowing general solutions, considering the total virtual origin displacement zt.

Qm(z) =
36
25

(25
48

)1/3
π2/3ρeαT

4/3B1/3
0 (z − zt)5/3 (2.68)

Q(z) =
36
25

(25
48

)1/3
π2/3 ρe

ρT (z)
αT

4/3B1/3
0 (z − zt)5/3 (2.69)

Mm(z) =
36
25

(25
48

)2/3
π1/3ρeαT

2/3B2/3
0 (z − zt)4/3 (2.70)

ρe − ρT (z)
ρT (z)

g =
25
36

(25
48

)−1/3
π−2/3αT

−4/3B2/3
0 (z − zt)−5/3 (2.71)

Thus
ρT (z) =

ρe

1 +
(
zB
z−zt

)5/3
(2.72)

and

wT =
(25

48

)1/3
π−1/3αT

−2/3B1/3
0 (z − zt)−1/3 (2.73)

with zB the characteristic length of non-Boussinesq effect defined as follows. Below this alti-
tude, the non-Boussinesq effects are dominant.

zB =
(25

36

)3/5(25
48

)−1/5
π−2/5αT

−4/5B0
2/5

g3/5
(2.74)

Consequently, under Top-hat assumption, the profile of jet radius reads as

bT =
6αT

5
(z − zt)

√
1 +

(
zB

(z − zt)

)5/3

(2.75)

Asymptotic behaviour and physical interpretation of zB

Woods (1997) compared the above solutions with that of Morton et al. (1956), typically for the
profile of the characteristic radius of the jet or plume bT (z), presented in figure 2.3. Neglecting
the total virtual origin displacement zt, for a pure plume, the structure in the area far higher of
the origin, non-Boussinesq (solid line) converges to the Boussinesq pure plume solution. The
limit zB = 0 corresponds to the classical solution of Morton et al. (1956) (see equations (2.41-
2.45)). The adjustment of the radius bT to within about 10% of a Boussinesq plume occurs
over the distance around z − zt = 4zB above the virtual point source. Thus, the Boussinesq
characteristic length zB is an indicator for the region where non-Boussinesq effects dominant.
Generally, for area z − zt > 4zB, the non-Boussinesq may be neglected.
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Figure 2.3: Variation of the characteristic radius of the pure plume (plotted as a function
of 5bT /6αT ) under Boussinesq approximation (dashed line) or in non-Boussinesq case (solid
line). The behaviour of the non-Boussinesq plume (solid line) converges to the Boussinesq
plume solution for z − zt > 4zB. Figure from Rooney and Linden (1996).

2.5.4 Further development

The model of Rooney and Linden (1996) is a non-Boussinesq modelling of the turbulent jet.
In recent research, Van Den Bremer and Hunt (2014) extended this theory on planar sources.
Hunt and Kaye (2005) presented a similar analytical approach for lazy plume where the
source parameter Γ0 > 1. Vaux et al. (2019) concentrated on a particular case for turbulent
fountains where the environmental density is lighter than that of injected fluid.

El-Amin (2009) and El-Amin et al. (2010) discussed the non-Boussinesq effect for hydrogen
jet in the ambient air. The analysis is similar to that of Rooney and Linden (1996) and Carlotti
and Hunt (2005), but with hydrogen volume fraction X1 used in the demonstration instead of
the mixture density. The numerical simulation results with different injection Froude number
are also presented to validate their analytical approach.

Another approach is based the virtual origin correction proposed by Carlotti and Hunt (2005),
to identify the similitude of Boussinesq model of Morton et al. (1956) and non-Boussinesq
approach of Rooney and Linden (1996). Van Den Bremer and Hunt (2010) proposed universal
solutions for Boussinesq and non-Boussinesq plumes, in which a flux balanced parameter is
defined not only at source position, but also along the entire jet, called the plume parameter
(or jet parameter) defined by

Γ (z) =
5B(z)Q2

s (z)

8α
√
πM5/2

s (z)
(2.76)

where B(z) is the buoyancy flux defined the same as in equation (2.22). Qs andMs are respec-
tively specific volume flux and momentum flux in the jet, defined as

Qs(z) =
∫
S(z)

ηwdS(z), Ms(z) =
∫
S(z)

ηw2dS(z) (2.77)

with coefficient η equal to 1 in Boussinesq case and η = ρ/ρ0 in non-Boussinesq case. The
entrainment assumption is changed to ue = αwc

√
η. The definition is very similar to that of

Rooney and Linden (1996). The conservation equations are established on the plume parame-
ter Γ , the characteristic radius of the plume or jet b and the characteristic vertical velocity wc.
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The analysis is based on Top-hat assumption. Based on this approach, Michaux and Vauquelin
(2010) and Candelier and Vauquelin (2012) studied the asymptotic solutions for this univer-
sal model in homogeneous layer. However, the application of this approach in the present
study presents additional difficulties as the Top-hat parameters like jet radius, vertical ve-
locity cannot be directly measured from numerical results. In order to determine its values,
we shall reconsider the identification of certain integrated characteristic quantities defined in
section 2.2. Note that the relations between Top-hat quantities and Gaussian quantities will
not be the same in the Boussinesq model and in the non Boussinesq case (see section 4.5.3).
Consequently, we choose to study the variation of integrated quantities (Q,B, ...) rather than
the profile parameters (wT ,ρT ,bT , ...).

2.6 Summary and discussion

In this chapter we have presented three theoretical approaches for turbulent jet modelling.

• Model of Morton et al. (1956), based on the Boussinesq approximation and an α-constant
entrainment modelling

• Model of Kaminski et al. (2005), based on the Boussinesq approximation and an α-
variable entrainment modelling

• Model of Rooney and Linden (1996), a non-Boussinesq approach with α-constant en-
trainment modelling

The model Morton et al. (1956) is the classic model for turbulent jet, which is commonly
used in the relevant industrial context. It contains three enclosed conservation equations
contains one non-linear equation, which usually, does not possess general analytical solu-
tions. However, by introducing virtual origin displacement, a jet flow can be transformed to
a pure plume and the latter one possesses explicit analytical solutions in unstratified envi-
ronment. Two important hypotheses are assumed in this model, Boussinesq approximation
and constant containment coefficient. Different experimental studies give us the value of con-
stant entrainment coefficient depended on the flow pattern. For a pure jet, this parameter is
around 0.05 and for a pure plume around 0.155. For practical use in the problem of hydrogen
release, on the one hand, the determination of this entrainment coefficient is required before
application of analytical results. On the other hand, by considering the density difference,
Boussinesq approximation may be not valid for air-hydrogen mixture, but no more reliability
study is found in the literature concerning its use in hydrogen release context.

In the previous experimental study Cariteau (2012), due to the ratio of buoyancy and mo-
mentum effect, the flow pattern (laminar/turbulent, jet/plume) is found changing along the
jet, which means the entrainment coefficient is not a constant. The analytical approach of
Kaminski et al. (2005) gives us an explicit formula of the variation of the entrainment coef-
ficient along the jet but only for homogeneous environment. The conservation equations are
the same as the classic model of Morton et al. (1956) but with variable entrainment coeffi-
cient. Later experimental studies Carazzo et al. (2006, 2008) provided us empirical formulas
to determine certain parameters defined in the model.

Rooney and Linden (1996) proposed another analytical approach without Boussinesq approx-
imation. The conservation equations are non-linear thus the model does not possess general
analytical solutions. Particularly, for a turbulent jet situated in homogeneous environment,
analytical solutions can be established thanks to a two-step correction proposed by Carlotti
and Hunt (2005), transferring a general jet flow to a pure plume. The entrainment coefficient
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is assumed constant in this model, while non Boussinesq entrainment coefficient depends also
on the mixture density in the jet. This approach is proposed to be used in hydrogen release
problem in El-Amin (2009); El-Amin et al. (2010).

We compare the assumptions and the differences between these 3 models in the table 2.2.

In summary, none of these models is perfect and prepared to be used. Analytical solutions
from Morton et al. (1956) and Rooney and Linden (1996) are valid for homogeneous environ-
ment only. The applicability of these analytical solutions needs to be validated for stratified
environment of air-hydrogen mixture. Besides, the profiles of entrainment coefficient pro-
vided by Kaminski et al. (2005) and Carazzo et al. (2006), as well as its validation domain
need to be re-evaluated in this study as their formulas are based on specific configurations.

Moreover, turbulent jet models as well as its analytical solutions are used in ventilation model
to solve hydrogen concentration distribution in the cavity. We will present this approach in
the next chapter.
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Chapter 3

Natural ventilation model for
two-vented cavity

In this chapter, we present analytical models for solving natural ventilation problem. The
model is originally presented in Linden et al. (1990), and then developed in Linden (1999), is
dedicated to the air-conditioning context: a thermal source is placed in a two-vented cavity,
generating a thermal plume inside. Temperature gradient leads to the mixing of warm air
heated by the thermal source and the ambient cool air initially presented in the cavity. The
model is used to solve the temperature distribution in the steady state where a bi-layer distri-
bution is assumed. It provides explicit analytical solutions, using geometrical parameters and
injection conditions only. The model is based on Boussinesq jet model Morton et al. (1956).
Afterwards, Rooney and Linden (1997) discussed density effect when applying this model for
a light gas injection, and proposed related non-Boussinesq analytical solutions. Vauquelin
et al. (2017b) evaluate this non-Boussinesq effect in 2D flow by experiments.

3.1 Model of Linden et al. (1990)

In this section, we present the original natural ventilation model proposed by Linden et al.
(1990), its flow pattern analysis, basic assumptions and related global conservation equations.

3.1.1 Steady state flow pattern

We consider the injection of a light gas in a two-vented cavity, immersed in an external envi-
ronment of fresh air, and two openings located at the top and bottom of the cavity (see figure
1.1). The height of the cavity is noted as H . The injection takes place at the centre of the
cavity floor at the altitude z = 0. The temperature of the system is assumed to be constant
with a constant thermodynamic pressure. We recall here the analysis of steady flow pattern
in the cavity presented in Linden et al. (1990).

The injection of light gas (with density ρinj ) generates a buoyancy-momentum source, entrain-
ing a turbulent buoyant jet above the injection point in the cavity. Within the jet, the flow is
rising. Outside the jet, the horizontal entrainment component of velocity will be towards to
the jet centre, making the air in the far field of the jet entering into the jet and mixing with the
light gas in the jet flow. Due to the effect of the injected momentum and positive buoyancy,
the light gas in the jet will quickly reach the ceiling of the cavity, then spread to the side-walls
and descend in the space between the side-walls and the jet, generating a mixture of injected
light gas and fresh air in the upper part of the cavity. Due to the mixing, the density of the
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Figure 3.1: Steady flow pattern in two-vented cavity with injection of light gas as a source
of buoyancy with a bi-layer distribution of the mixture density. Fresh air enters through the
bottom opening, density ρa; density in the homogeneous layer ρi , interface plane at z = zi .

mixture gas surrounding the jet in the upper part of the cavity will be lighter. Finally, a stable
stratification develops in the cavity.

The density stratification in the cavity generates a hydrostatic pressure gradient in vertical
direction. The pressure difference between the top and bottom of the cavity will be smaller
than that between the same altitudes outside the cavity in fresh air (which is denser). As the
result of pressure difference, gas flow through the two openings will be observed. This will
generate a global vertical upward flow from the bottom opening to the top opening through
the whole cavity.

In steady state, a constant level, with altitude zi , will appear, below which (z < zi) the vertical
component of velocity will be upward, so that all the fluid outside the jet will be ambient
fresh air (with density ρa); and above which (z > zi) the vertical component of velocity will be
downward outside the jet, so that the far-field field will be lighter than the ambient air (with
density noted ρi). The vertical velocity outside the jet will decrease to zero when approaching
the interface (z = zi). We consider the interface is steady, and the flow is upward only in the
jet cross-section area, connecting the two parts in the cavity.

The steady flow pattern is presented in figure 3.1. We call this two-layer stratification distri-
bution of mixture density a bi-layer distribution.

3.1.2 General assumptions

We resume the basic assumptions of ventilation model proposed by Linden et al. (1990).

Assumption 1 (Steady state): The steady flow state is achieved.

Assumption 2 (Incompressibility): The flow is incompressible, so that we have a global
conservation of volume flux in the cavity.

Assumption 3 (1D modelling): In the cavity, the distribution of mixture density as well as
the injected gas concentration can be modelled as a function depended on the altitude z only,
except for the jet area where the concentration is considered as a 3D distribution.
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3.1 Model of Linden et al. (1990)

Assumption 4 (Bi-layer distribution): A constant level is formed in steady state with a bi-
layer distribution of mixture density. Below this level, the far-field region is filled with am-
bient air with density ρa, while a homogeneous layer is considered above this level where the
mixture density is noted ρi . We call this level the bi-layer interface altitude, noted z = zi . In
summary, the distribution of mixture density at far-field of the jet is

ρe(z) =
{
ρa, 0 ≤ z < zi
ρi , zi ≤ z ≤H

(3.1)

Assumption 5 (Small openings): The opening area of two openings are largely smaller than
the cross-section area of the main cavity Scavity .

Assumption 6 (Horizontal openings): Two horizontal vents are situated on the ceiling and
the floor of the main cavity, so that the exterior hydrostatic pressure Pe is constant in the area
of vents.

3.1.3 Hydrostatic pressure and neutral level

Based on the flow pattern analysis, an inlet flow of fresh air is presented through the bottom
opening. The hydrostatic pressure outside cavity at this level Pe(0) is larger that the pressure
inside the cavity Pi(0). Similarly, we have the relation between the inside and outside pressure
through the top opening (altitudeH): Pi(H) > Pe(H). Based on the bi-layer distribution and 1D
modelling assumptions, there must exist an altitude, where the inside hydrostatic pressure is
equal to that outside of the cavity. We call this level the neutral level with its altitude noted
zn, see figure 3.2. We have by definition

Pi(zn) = Pe(zn) (3.2)

Based on the 1D hydrostatic model, the profile of exterior pressure Pe(z) as well as the interior
pressure Pi(z), can be written as

Pe (z) = Pe (zn)− ρag (z − zn) , for 0 ≤ z ≤H (3.3)

and
Pi (z) = Pi (zi)− ρig (z − zi) , for z ≥ zi (3.4)

Pi (z) = Pi (zi)− ρag (z − zi) , for z ≤ zi (3.5)

The profile of Pe(z) and Pi(z) are presented in the figure 3.2.

Note that for horizontal openings, we have zn > zi always valid. In the later correction of
Bernard-Michel (2014), where the height of two openings are considered, the neutral level
(z = zn) and/or the interface level (z = zi) may be located through the height of the top opening
(see appendix C). However, the relation (3.3-3.5) will not change.

3.1.4 Environmental reduced gravity

Based on 1D assumption, we define the environmental reduced gravity as a function of alti-
tude z for any point outside of jet area

g ′ (z) =
ρa − ρe(z)

ρa
g (3.6)
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Figure 3.2: Notations of physical quantities in Linden’s ventilation model and variation of
interior pressure Pi and exterior pressure Pe with altitude z

where ρe(z) is the mixture density at far field of the jet area, at altitude z and ρa the density of
the fresh air. By applying the bi-layer distribution assumption, we have

g ′ (z) =
{

0, 0 ≤ z < zi
ρa−ρi
ρa

g, zi ≤ z ≤H
(3.7)

We note in the following paragraph the environmental reduced gravity in the homogeneous
layer simply

g ′ =
ρa − ρi
ρa

g (3.8)

Note that this definition is different from the reduced gravity defined in the jet (see equation
(2.23)) and no longer treated as a function of vertical position.

3.1.5 Calculation of inlet/outlet velocity and flux

In this section, we calculate the inlet/outlet velocity through the bottom/top opening, as well
as its related inlet/outlet volume flux. We apply the Bernoulli theorem for incompressible
and steady flow.

Outlet velocity through the top opening

We apply Bernoulli’s equation between a point A, situated on the neutral plan zA = zn, and a
point B, situated on the exterior border of top vent with altitude zB =H , as presented in figure
3.2. We have

PA + ρAgzA +
ρAu

2
A

2
= PB + ρBgzB +

ρBu
2
B

2
(3.9)

where ρA = ρB = ρi , PA = Pi (zn) = Pe (zn), PB = Pe (H) and uA,uB the velocities at A and B respec-
tively.
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As the cross-section of the main cavity is much larger than that of the top opening, by using
the incompressible flow assumption, we have the fluid velocity uA � uB, so that we can sup-
pose uA ≈ 0 and let uB = ut the mean outlet velocity. Thus, we rewrite the Bernoulli’s equation
using hydrostatic distribution of Pe(z) equation (3.3):

Pe(zn) + ρigzn = Pe(H) + ρigH +
1
2
ρiu

2
t (3.10)

Therefore,

ρi
u2
t

2
= Pe (zn)− Pe (H)− ρig (H − zn) = (ρa − ρi)g (H − zn) (3.11)

and thus
u2
t

2
=
ρa − ρi
ρi

g (H − zn) =
ρa
ρi
g ′(H − zn) (3.12)

We shall take into account the pressure loss from openings. For this purpose, we introduce a
coefficient ct, called discharge coefficient or pressure loss coefficient depending generally on
geometry form of the top vent. This coefficient is lying between 0.5, for a sharp expansion,
and 1, for a perfectly smooth expansion (Linden (1999)). In engineering applications, this
discharge coefficient is taken approximately equal to 0.6. We thus modify the above equation
as

u2
t = 2ct

ρa
ρi
g ′(H − zn) (3.13)

Inlet velocity through the bottom opening

For bottom opening, the analysis is simpler. We shall firstly note that the difference between
the interior pressure and the exterior pressure at level z = 0 is equal to that at interface level
zi , as shown in figure 3.2.

Pi(0)− Pe(0) = Pi(zi)− Pe(zi) (3.14)

This difference can be calculated by

Pi (zi)− Pe (zi) = (Pi(zi)− Pi(zn)) + (Pe(zn)− Pe(zi)) = g (ρa − ρi) (zi − zn) (3.15)

Consequently, the mean inlet velocity ub is deduced by inlet press loss Pi(0)− Pe(0):

u2
b = 2cbg

′ (zn − zi) (3.16)

with cb geometrical pressure loss coefficient.

Inlet/outlet flux

We note Qb the inlet volume flux through the bottom opening and Qt the outlet volume flux
through the top opening. As two openings are assumed horizontal, the inlet/outlet fluxes can
be calculated simply from ub and ut with Sb and St the surface of bottom/top openings:

Qb = ubSb, Qt = utSt (3.17)

By applying equations (3.13) and (3.16), we have

Qt = St

√
2ctg ′

ρa
ρi

(H − zn) (3.18)

Qb = Sb
√

2cbg ′ (zn − zi) (3.19)
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3.1.6 Global conservation equations

We have three bilayer parameters (zi , zn,ρi) as well as two flux quantities (Qt ,Qb) in this prob-
lem. We have already established two equations for Qt and Qb (3.18-3.19). Thus, another
three independent conservation equations are needed to close the system.

Global conservation of volume flux in the cavity

As the flow is assumed incompressible, we have firstly the global conservation of volume flux
in the cavity.

Qb +Qinj =Qt (3.20)

Conservation of volume flux within the homogeneous layer

In steady state, at interface level z = zi , the jet region is assumed the only area where the
vertical velocity is non-zero. As defined in equation (2.18), we note Q(zi) the variation of
volume flux within the jet through the interface plane, representing the entering flux into
homogeneous layer (z > zi). This quantity shall be equal to the top outlet flux Qt as the
conservation of volume flux applies also within the top homogeneous layer. This provides us
the second conservation equation.

Qt =Q(zi) (3.21)

The jet volume flux variation Q(z) will be provided by jet models, as presented in the chapter
2. Depended on selected jet model, Q(z) may possess or not explicit analytical solutions.

Conservation of jet buoyancy flux below the interface coupled with global conservation of
mass flux

Below the interface z < zi , the environmental density in the far field of the jet can be consid-
ered as a constant ρe = ρa so that a conservation of the buoyancy flux will be established in
the jet. We note the jet buoyancy flux at injection

B0 = G′T (0)Q(0) = G′T (0)Qinj (3.22)

with G′T (0) =
ρa−ρinj
ρa

g the reduced density at injection. The conservation of jet buoyancy flux
between z = 0 and z = zi can be written as

G′T (0)Qinj = G′T (zi)Q(zi) (3.23)

Besides, we consider also the global conservation of mass flux:

ρinjQinj + ρaQb = ρiQt (3.24)

Regrouping this equation with global conservation of volume flux (3.20), we obtain

(ρa − ρinj )Qinj = (ρa − ρi)Qt (3.25)

By applying relation (3.21), this is equivalent to

G′T (0)Qinj = g ′Q(zi) (3.26)

with g ′ defined in equation (3.8). Comparing it with equation (3.23), we have finally

g ′ = G′T (zi) (3.27)

which provides us the last equation.
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Linden’s model - Summary

5 unknown variables (Qb,Qt ,ρi , zi , zn), 5 equations

• Qt = St
√

2ctg ′
ρa
ρi

(H − zn)

• Qb = Sb
√

2cbg ′ (zn − zi)

• Qb +Qinj =Qt

• Qt =Q(zi) with Q(z) provided by jet modelling

• g ′ =
ρa − ρi
ρa

g = G′T (zi) with G′T (zi) provided by jet modelling

3.2 Solutions of the model

Depending on the turbulent jet model used in the model of Linden et al. (1990), the variation
of volume flux in the jet Q(z) may possess or not analytical solutions. In this section, we
present two analytical approaches, specifically under particular additional assumptions: (i)
a Boussinesq approach proposed by Linden et al. (1990), and (ii) a non-Boussinesq approach
by Rooney and Linden (1997).

3.2.1 Analytical approach under Boussinesq approximation

Linden et al. (1990) proposed an explicit analytical approach in which the classic model of
Morton et al. (1956), with a constant entrainment coefficient is used.

3.2.1.1 Additional assumptions

We have the following two additional assumptions to hypotheses mentioned in section 3.1.2.

Assumption 7 (Small injection): The volume flux of the injection Qinj is largely smaller
than that of the inlet flow through the bottom opening Qb. Consequently, we neglect Qinj in
equation (3.20). The conservation equation of volume flux can be rewritten as

Qb =Qt (3.28)

Assumption 8 (Point source): The injection radius is relatively small and its flux is negligible.
The injection is considered as a point source of the jet. The virtual origin displacement is not
considered in the jet resolution.

Assumption 9 (Small density range assumption): The ratio ρa/ρi ≈ 1, this ratio is neglected
in equation (3.18) thus this equation is rewritten as

Qt = St
√

2ctg ′ (H − zn) (3.29)

Assumption 10 (Boussinesq approximation): The ratio (ρa − ρi)/ρa is much smaller than 1,
so that the variation of ρ in the jet can be neglected in jet equations except in the buoyancy
force term. Boussinesq jet model is thus applied in the resolution.
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3.2.1.2 Jet evolution by Morton’s analytical equations

The equations for a buoyant jet in a large steady, unstratified ambient fluid are given in Mor-
ton et al. (1956), see section 2.3.2. Recall that this model is based on Boussinesq approx-
imation and Top-hat profile assumption. A constant entrainment coefficient αT is used in
entrainment modelling.

In homogeneous environment, the conservation of jet buoyancy flux is valid: B (z) = B0 =
G′T (0)Q(0) for 0 ≤ z ≤ zi . By using equation (2.41) with zt = 0 by applying point source as-
sumption,

Q (z) = C(B0z
5)

1/3
(3.30)

G′T (z) =
1
C

(
B0

2z−5
)1/3

(3.31)

with C a universal constant depending on the entrainment constant αT .

C =
6
5

( 9
10

)1/3
π2/3αT

4/3 ≈ 2.4852αT
4/3 (3.32)

3.2.1.3 Solutions of ventilation model

Regrouping equations (3.29) (3.28) and (3.19), we have

zn − zi
H − zn

=
ctS

2
t

cbS
2
b

(3.33)

thus

zn =
cbS

2
bH + ctS

2
t zi

cbS
2
b + ctS

2
t

(3.34)

Therefore, equation (3.29) could be rewritten as

Qt = A
√
g ′(H − zi) (3.35)

where A is called effective surface of the two openings, defined as

A =
√
ct SbSt√

1
2

(
ct
cb
S2
t + S2

b

) (3.36)

A is largely dependent upon the smaller one between St and Sb.

Regrouping equations (3.21), (3.30) and (3.35), we obtain

A
√
g ′(H − zi) = C(B0z

5
i )

1/3
(3.37)

We define ξ the ratio of interface height and height of the main cavity

ξ =
zi
H

(3.38)

Regrouping (3.37) with (3.27) and (3.31), eliminating g ′, we obtain finally

ξ5

1− ξ
=

A2

C3H4 (3.39)
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This is a relation between two geometric quantities: the height of the interface zi as a fraction
of the ceiling height H and the effective area of the openings A. The zi will be obtained from
equation (3.39).

Then, by applying the conservation of buoyancy (3.27) and equation (3.20), we obtain finally

g ′ =
1
C
B0

2/3z−5/3
i (3.40)

The mixture density in the homogeneous layer ρi can be determined by this equation and the
previously obtained zi .

From the result, we find that there is no dependence of the interface height zi on the strength
of the source B0, nor on the cross-section surface area of the cavity. Only the geometrical
conditions and the entrainment coefficient αT are presented in the final equation (3.39), with
the latter one considered as a constant.

In addition, the location of the lower opening will not change the position of the interface, in
condition that it is situated below the interface, as mentioned in Linden (1999). This position
is not considered affecting the global flow in the jet, even though it may affect the vertical
velocity in the region outside the jet below the interface.

Linden-Morton solutions

•
ξ5

1− ξ
=

A2

C3H4

with ξ =
zi
H

, C = 2.4852αT 4/3 and A =
√
ct SbSt√

1
2

(
ct
cb
S2
t + S2

b

)

• g ′ =
1
C
B0

2/3z−5/3
i

with g ′ =
ρa − ρi
ρa

g and B0 =
ρa − ρinj
ρa

gQinj

• Qt = A
√
g ′(H − zi)

3.2.2 Analytical non-Boussinesq approach

Boussinesq approximation is not strictly valid for an air-hydrogen or air-helium mixture due
to their large density difference. Rooney and Linden (1997) proposed a non-Boussinesq ap-
proach using the turbulent jet model of Rooney and Linden (1996). A constant coefficient αT
is used to model entrainment effect. In this approach, resolutions of interface height zi and
mixture density ρi are no longer separated, but regrouped in an equation system.

3.2.2.1 Additional assumption

We have the following additional assumptions applied in this section.

Assumption 7 (Small injection): The volume flux of the injection Qinj is largely smaller
than that of the inlet flow through the bottom opening Qb. Consequently, we neglect Qinj in
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equation (3.20). The conservation equation of volume flux can be rewritten as

Qb =Qt (3.41)

Assumption 8 (Point source): The injection radius is relatively small and its flux is negligible.
The injection is considered as a point source of the jet. The virtual origin displacement is not
considered in the jet resolution.

3.2.2.2 Jet evolution by Rooney’s analytical solutions

By assuming the jet is placed in a homogeneous environment below the interface, we apply
the analytical solutions (equations (2.69), (2.71) and (2.72)) of turbulent jet model Rooney and
Linden (1996) with zt = 0 according to point source assumption. We have following solutions
for jet volume flux and reduced gravity

Q(z) = C∗(z)(B0z
5)1/3 (3.42)

G′T (z) =
1

C∗(z)

(
B0

2z−5
)1/3

(3.43)

with parameter C∗(z) a function of altitude z defined as

C∗(z) =
36
25

(25
48

)1/3
π2/3αT

4/3
(
1 +

(zB
z

)5/3
)
≈ 2.4852αT

4/3
(
1 +

(zB
z

)5/3
)

(3.44)

with zB the characteristic length of Boussinesq effect defined in equation (2.74). Note that zB
depends on the value of αT .

3.2.2.3 Solutions of ventilation model

Regrouping equation (3.18), (3.19) and (3.41), we have

zn − zi
H − zn

=
c∗tS

2
t

cbS
2
b

(3.45)

with
c∗t = ct

ρa
ρi

(3.46)

We are thus back to Linden-Morton resolution. All equations are in the same form with
replacement ct to c∗t and C to C∗. Consequently, we have

ξ5

1− ξ
=

A∗2

C∗(zi)
3H4

(3.47)

with effective opening area

A∗ =

√
c∗t SbSt√

1
2

(
c∗t
cb
S2
t + S2

b

) (3.48)

and for conservation of buoyancy (3.27), we have

g ′ =
1

C∗(zi)H5/3
B0

2/3ξ−5/3 (3.49)
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Equations (3.47) and (3.49) provide a system for two unknown variables (ξ,ρi) and may be
solved numerically by Newton’s method.

The results shows that both the interface height and the mixture density will depend on the
geometrical conditions (Sb,St , cb, ct ,H), injection condition B0 and jet entrainment coefficient
αT . Same as before, Rooney and Linden (1997) proves that the position of lower opening will
not change the position of interface, in condition that the previous one is situated below the
interface.

Linden-Rooney solutions

•
ξ5

1− ξ
=

A∗2

C∗3H4

• g ′ =
1

C∗(zi)H5/3
B0

2/3ξ−5/3

• Qt = A∗
√
g ′(H − zi)

with ξ =
zi
H

, C∗(z) = 2.4852αT 4/3
(
1 +

(zB
z

)5/3
)

and A∗ =
√
c∗t SbSt√√

1
2

 c∗tcb S2
t +S2

b


with c∗t = ct

ρa
ρi

as well as g ′ =
ρa − ρi
ρa

g and B0 =
ρa − ρinj
ρa

gQinj

3.3 Summary and discussion

In this chapter, we have presented

• Natural ventilation model of Linden et al. (1990)

• Two analytical approaches for its solutions (Linden-Morton and Linden-Rooney)

In the model of Linden et al. (1990), injected gas distribution is assumed in bi-layer form
with a homogeneous layer at top part of the cavity. The model is dedicated to solving bi-
layer parameters (the interface height and the homogeneous density) by using geometrical
conditions and injection conditions. Analytical solutions of turbulent jet model (Morton or
Rooney) are used in the ventilation model to provide connection between the jet flow and the
global conservation equations. A series of assumptions are applied in the demonstration.

In 2000s, Linden’s model is proposed to be applied in industrial context to evaluate the hydro-
gen release risk for its storage in semi-confined environment, see Fuster et al. (2015, 2017). A
series of experimental measures were carried out in CEA to build the benchmark. A theoret-
ical correction of geometrical conditions is introduced in CEA internal report (see appendix
C). (Bernard-Michel (2012); Cariteau (2012); Houssin (2012); Bernard-Michel (2014)).

The reliability of the ventilation model depends on the choice of certain key parameters.
Choice of entrainment coefficient for example, is relatively difficult without knowing the jet
flow pattern in the cavity whereas this parameter plays an important role in the jet modelling.

Apart from the entrainment coefficient αT , discharge parameter ct is also discussed in the
literature. In the final result of original model of Linden et al. (1990), equation (3.39), the
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bi-layer interface height is a function of a geometrical parameter only (noted effective open-
ing area A), which is defined from openings areas, the height of the cavity and the discharge
coefficient (or called pressure-loss coefficient). Holford and Hunt (2001) and Hunt and Hol-
ford (2000) quantified experimentally the dependence of this discharge coefficient on inside-
outside density difference, typically presented on the upper opening. The discharge coeffi-
cient corresponding to the top opening ct can rapidly decrease with increasing density con-
trast between homogeneous mixture density ρi and that of ambient air ρa.

Vauquelin et al. (2017a) applied the non-Boussinesq turbulent jet model of Rooney and Lin-
den (1996) in natural ventilation model to study the influence of inside-outside density dif-
ference on the top opening’s discharge coefficient ct. In this work, analytical solutions of Can-
delier and Vauquelin (2012) are used. An indicative parameter Γd is defined to characterise
the outlet flow through the top opening.

Γd =
5g

8
√
παT

S5/2
t

Q2
t

ρa − ρi√
ρaρi

(3.50)

Vauquelin et al. (2017a) summarised the experimental results of Hunt and Holford (2000)
and Holford and Hunt (2001), and proposed a simple model for correction of ct, as a function
of parameter Γd . Note that these corrections are only on top vent discharge coefficient ct and
based on the horizontal openings assumption. For the bottom vent, no further correction is
needed as there is no inside-outside density difference.

Correction proposed by Vauquelin et al. (2017a)

ct =

 0.6, if 0 < Γd < 4.9

1.3 (Γd−1)3/5

Γd
, if Γd > 4.9

(3.51)

Furthermore, an important point is that the model of Linden et al. (1990) is based on its flow
pattern analysis, specifically the bi-layer distribution of the mixture density in the cavity. This
is the essential assumption of the whole theory. However, experimental studies show that this
assumption is not always valid. For example, CEA researchers have measured the concentra-
tion distribution in a cavity with a height H = 207cm for air-helium mixture (Bernard-Michel
(2014)). It is found that the bi-layer distribution is not always observed (see figure 3.3) by
changing the injection point position from z = 27cm to z = 197cm and an injection volume
flux up to 210L/min. The bi-layer distribution of helium concentration is presented for the
majority cases. For the other cases, either a full stratification or a homogeneous distribution
is observed.

From the flow pattern analysis of Linden et al. (1990), the formation of the bi-layer structure
is due to the concurrence of reverse flow of the jet arriving at the ceiling of the cavity and the
global vertical flow generating by pressure difference between two openings. The injection of
light gas generates a momentum (inertia) and positive buoyancy source of the jet. Physically,
the formation of bi-layer distribution is related to three aspects, the source momentum, the
source buoyancy and the pressure difference outside the cavity. As seen in equation (1.60),
Cleaver et al. (1994) proposed a criterion about the volumetric Richardson number for esti-
mation of stratification in a one-vented cavity. No more information found in literature about
its reliability in a two-vented cavity.

No clear criteria is found in literature indicating the formation of bi-layer distribution for a
general case. As this assumption is essential in ventilation model, we have to make sure the
bi-layer distribution appears in the reference case chosen in this study.

Direct use of natural ventilation model often provides wrong estimation of hydrogen concen-
tration and flammable region, see report Kotchourko et al. (2014), especially for large release
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Figure 3.3: Experimental result of Bernard-Michel (2014) with air-helium mixture, with
height of cavity H = 207cm, the injection point varies from z = 27cm to z = 197cm and a
change of injection volume flux up to 210NL/min. The bi-layer distribution is presented for
majority cases

flow rate. Physically, this is related to non validity of certain hypotheses assumed in the
model. On the one hand, due to large density difference, Boussinesq approximation is not
systematically valid for air-hydrogen mixing problem. On the other hand, for large injection
condition, the point source assumption may be not valid as well. We have seen in chapter 2
that in turbulent jet modelling, it is proposed to use the notion of virtual origin displacement
to correct the injection condition.

In conclusion, the natural ventilation model need to be improved with some possible ap-
proaches to be validated, especially for its practical use in air-hydrogen mixing problem. As
presented in thesis introduction, experimental studies possess a series of restrictions so that
we pass to a well-converged DNS calculation to study in detail the validity of these assump-
tions in different analytical approaches. We suppose beforehand the existence of a bi-layer
distribution and try to establish a well-selected reference DNS case. Then we associated the
obtained well-converged DNS 3D results to characteristic quantities defined in the model in
order to compare its variations with that reported by theoretical models. Besides, a Particle
Image Velocimetry (PIV) measurement is carried out under the same geometrical and physical
conditions. The comparison PIV-DNS will validate the numerical results.
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Chapter 4

Numerical and experimental setup and
post-processing methodology

We present in this chapter the principal methodology used in this study, the numerical sim-
ulation as well as the experimental measurement. The numerical simulation is in type of
DNS (Direct Numerical Simulation). The geometrical configuration is chosen to ensure a bi-
layer distribution of concentration at steady state in order to match the basic assumption of
the ventilation model. An exterior domain of the cavity is added into simulation geometry
to ensure good boundary conditions through the two openings. A convergence check both
in space and in time is achieved to make sure the mesh is fine enough, the steady state is
well achieved and the averaging duration is long enough to cover all potential low-frequency
oscillations. We present also the integral method to transfer 3D results to 1D characteris-
tic quantities defined in the theories. In the last part, we present briefly the experimental
setup and its post-processing method under the same geometrical configuration defined in
numerical simulation.

4.1 Study case

The basic idea of this study is to simulate the flow and mixing phenomena of injected light
gas and ambient air in the two-vented cavity. Previous works have shown that it is important
to consider an additional computation domain in exterior of the cavity to simulate correctly
the flow through two vents, see Saikali et al. (2019). The complete computational domain is
shown in figure 4.1, with the main cavity on the left and additional exterior domain in the
middle. We consider 4 parts in the geometrical configuration.

- Main cavity, is the main area where we simulate the gas flow, with geometry L×W ×H
corresponding to the physical problem. The cavity is semi-enclosed with three openings.
One circle opening on the floor centre, connected with injection tube. The other two are
respectively two vents, both with height Hv , located over the entire width on the same
vertical wall. Two vents are similar and located at the top and bottom extremities (z = 0
to Hv and z =H −Hv to H) on the x-positive extremity wall (x = L/2).

- Injection pipe, or called pre-injection area, is a cylinder tube placed straight below the
main cavity, connecting the centre of the floor (z = 0). It possesses a diameter d and a
length h considered long enough to ensure a smooth and stable injection.

- Exterior domain, is also a cuboid domain representing the area outside the main cav-
ity. Compared with the side of two vents, it possesses an additional extension Ly in y
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Figure 4.1: Sketch of the computational domain exhibiting boundary groups. Blue surfaces
depict wall group while orange for free surface boundaries. Left: the main cavity, middle:
the exterior region, right: the complete computational domain. Figure extracted from Saikali
et al. (2020).

direction and Lz in z direction. Its horizontal extension is Lx. The exterior domain has a
volume Lx × (W + 2×Ly)× (H + 2×Lz).

- Two identical connection areas, connecting the main cavity and the exterior domain
via the two vents. Its x-direction extension Wv represents the thickness of cavity lateral
wall.

The outer surface of this geometry is divided into three face groups, corresponding to three
types of boundary conditions, shown in different colours in figure 4.1. The detailed descrip-
tion of these groups is presented in appendix D.

4.2 Numerical method

We use the code TrioCFD in the platform TRUST to provide numerical solutions of the time-
dependent system of governing equations. This code TRUST-TrioCFD is developed in the
Division of Energies (DES) of the French Atomic Energy Commission (CEA) (http://www-
trio-u.cea.fr), in order to study and solve a wide range of industrial problems, such as turbu-
lent flows, fluid/solid coupling, mono or multi-phase flows (Angeli et al. (2015)). The code
is capable to treat complex and coupled geometries. TRUST-TrioCFD is an open-source code,
can be downloaded from its website. The code is written in C++ language.

As the local density varies in the cavity, gas flow cannot be considered completely incom-
pressible in this problem. Here we apply the quasi-incompressible module of the code. The
governing equations (already presented in section 1.4) that will be solved numerically read:

∂ρ

∂t
+ div

(
ρ−→u

)
= 0 (4.1)
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∂ρY1

∂t
+ div

(
ρY1 · −→u

)
= div

(
ρD1,2 ·

−−−−→
grad Y1

)
(4.2)

∂ρ−→u
∂t

= −
(
ρ−→u ·

−−−−→
grad

)
−→u −
−−−−→
grad PH + div τ + ρ−→g (4.3)

ρ =
Pth
RT

(
Y1

Minj
+

1−Y1

Mair

)−1

(4.4)

The numerical algorithm implemented in this quasi-incompressible module is based on dis-
cretisation of two main equations: the species conservation equation, or generally called
convection-diffusion equation (4.2) and the momentum conservation equation (Navier-Stokes
equation) (4.3).

4.2.1 Spatial and time discretisation

In the code, the above flow equations are discretised by a finite difference volume (VDF)
method. The discretisation of each term is performed by integrating over a control volume
where the diffusion gradient terms are approximated by a linear difference equation.

Spatial discretisation is performed on a staggered (parallelepiped) grid. On such grid, the
scalars (pressure, density and mass fraction,... ) are stored at the centre of the control volumes,
whereas the velocity components are defined on the faces of the control volumes (Harlow et al.
(1965), Versteeg and Malalasekera (2007)).

In accordance with the staggered grid, all the terms of convection-diffusion equation are al-
ways stored at the centre of the control volumes while those of Navier-Stokes equation (4.3)
are at the faces. For all the spatial derivatives defined in equations, a second order cen-
tral scheme is employed. This scheme will be stable only if Pe < 2 for convection-diffusion
scheme, which is not systematically valid in the transition regime, especially just after injec-
tion. In this case, Quadratic Upstream Interpolation for Convective Kinematics (QUICK) is
applied for convection term only in the convection-diffusion equation.

The time advancement of these equations is treated by a two-stage second order Rational
Runge-Kutta discretisation scheme (RRK2) in order to approximate the time derivative term.
A semi-implicit scheme is chosen (implicit for diffusive and viscous terms and explicit for
convective term). The choice of time step δt is thus up to the convective criterion only, that is
to say

δt = δtconv = min
(
Vcell
ζcell

)
(4.5)

where ζcell in m3/s corresponds to the volume flux entering at each arbitrary control volume
(cell) of volume Vcell . This is basically equivalent to a CFL = 1, which means that a fluid
particle does not cross more than one mesh cell per time step.

4.2.2 Resolution algorithm

The numerical resolution is carried out sequentially. Three variables (5 scalars) are considered
main unknowns in this algorithm: the mass fraction (Y1), the hydrodynamic pressure (PH ) and
the velocity (u,v,w). The objective of each time step is to solve these fields for tn+1 by using
its values at tn.

The resolution begins with the convection-diffusion equation which can be simply rewritten
as follows by regrouping equation (4.2) with mass equation (4.1).

ρ
∂Y1

∂t
+CY1

=DY1
(4.6)
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with CY1
= ρui ·

∂Y1
∂xi

the species convective term and DY1
= ∂

∂xi

(
D1,2ρ

∂Y1
∂xi

)
the diffusion term.

This equation will be discretised in semi-implicit scheme.

∂Y n+1
1
∂t

=
1
ρn

(
−CnY1

+Dn+1
Y1

)
(4.7)

Using the fields ρn, −→u n, the field Y n+1
1 is evaluated. Then, using the gas mixture viscosity

equation (1.46), the mixture dynamic viscosity µn+1 is updated. Next, we apply the equation
of the state (4.4) to solve for the mixture density field ρn+1.

Then the Navier-Stokes equation will be treated. This equation can be written as (see detailed
demonstration in section 1.3.3).

∂ρuj
∂t

+
∂
∂xi

(
ρujui

)
= −∂PH

∂xj
+ 2

∂µSij
∂xi

− 2
3
∂
∂xj

(
µ
∂uk
∂xk

)
+ ρg −→ez (4.8)

Regroup the first and the third term of right side of the above equation, we can simplify it as

∂ρuj
∂t

+Cuj =Duj + Suj (4.9)

with Cuj = ∂
∂xi

(
ρujui

)
the convective term, Duj =

∂2µSij
∂xi

the viscous term and Suj = −∂P ∗∂xj
+ρg −→ez

with here P ∗ = PH+ 2
3µdiv(−→u ) as the source term containing both the buoyant and the pressure

gradient terms. (Bieder (2007); Vandroux and Barthel (2013); Roux (2017b,a))

The numerical resolution for Navier-Stokes equation is carried out by a prediction-projection
method to treat velocity-pressure coupling (Guermond et al. (2006)). This method consists of
three steps: velocity prediction, resolution of Poisson equation, velocity correction to satisfy
the conservation of mass (equation 4.1).

In the first step (prediction), the pressure gradient term is treated explicitly to obtain a pro-
visional field of

(
ρuj

)prov
:

∂
(
ρuj

)prov
∂t

= −Cnuj +Dn+1
uj + Snuj (4.10)

The integration of this equation is performed from tn to a provisional time tprov . Note that
the obtained

(
ρuj

)prov
does not satisfy the conservation of mass (equation 4.1) at this step.

The second step is to solve the Poisson equation. We apply here the discretisation on the whole
time increment between tn and tn+1 with implicit pressure term (but explicit for gradient
term), thus Navier-Stokes equation can be discretised as follows

∂
(
ρuj

)n+1

∂t
= −Cnuj +Dn+1

uj −
∂P ∗n+1

∂xj
+ ρng −→ez (4.11)

Subtracting equation (4.11) from equation (4.10) and applying divergence to both sides, we
have

∂
∂xj

(
∂
∂xj

(
P ∗n+1 − P ∗n

))
=

1
tn+1 − tn

(
∂
∂xj

(
ρuj

)prov
− ∂
∂xj

(
ρuj

)n+1
)

(4.12)

The term ∂
∂xj

(
ρuj

)n+1
shall satisfy the conservation of mass (equation 4.1), thus

∂
∂xj

(
ρuj

)n+1
= −

ρn+1 − ρn

tn+1 − tn
(4.13)
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with ρn+1 obtained from the above convection-diffusion resolution.

The above equation (4.12) is thus an elliptic Poisson equation, which is solved by an iterative
Symmetric Successive Over Relaxation (SSOR) procedure (Wesseling (1995), Saad (2003)).
This step takes 3/4 of the computational time. The term P ∗n+1 then will be deduced.

The last step is to correct the velocity term by a projection method. The term
(
ρuj

)n+1
will be

firstly corrected by the projection formula.(
ρuj

)n+1
= ρn+1un+1

j =
(
ρuj

)n
−
(
tn+1 − tn

) ∂
∂xj

(
P ∗n+1 − P ∗n

)
(4.14)

The correct velocity field uj is finally deduced. Here, all fields are up to date for tn+1, a new
time iteration is then lanced to perform again this resolution.

An important remark of this algorithm is as we solve in fact the pressure term P ∗ instead of
P , in which the velocity divergence is calculated via resolution of Poisson equation. However,
the final corrected velocity field at end of each time step may not satisfy explicitly this velocity
divergence constraint.

4.2.3 Initial and boundary conditions

At the initial state, the whole cavity is filled with pure air (Y1 = 0) at rest (−→u = 0). Light
gas then will be continuously injected into the cavity via the injection pipe with a constant
volume flux Qinj .

Different boundary conditions are applied on the different boundary face groups, defined in
the geometry configuration.

Wall group

The wall group includes the enclosed wall of the cavity, the lateral surface of the injection tube
and lateral surface of an extension of the two openings connected to the exterior domain.
No-slip boundary conditions are imposed on the wall area, with a homogeneous Neumann
condition for all scalars ρ, Y1 and P .

−→u = 0 and
∂φ

∂−→n
= 0,φ ∈ {PH , ρ, Y1} (4.15)

with −→n the outward unit normal at considered boundary surface.

Free surface group

The free surface group is defined as the frontier surface of the exterior domain, where a free
inlet-outlet condition will be set. A linear distribution of the hydrodynamic pressure with the
vertical coordinate z is applied, modelling a fluid at hydrostatic equilibrium. This pressure is
fixed (per outlet cell) during the whole simulation (Dirichlet condition).

PH = −ρairgz (4.16)

For the other variables (−→u , ρ and Y1), homogeneous Neumann conditions are imposed on the
boundaries of the external domain when the fluid is going outward.

∂φ

∂−→n
= 0,φ ∈

{−→u , ρ, Y1

}
if −→u · −→n ≥ 0 (4.17)

with −→n the unit vector outward normal to the wall.
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Otherwise, if the fluid enters into the calculation domain, a pure air is assumed at the surface
(Dirichlet conditions).

Y1 = 0, ρ = ρair if −→u · −→n < 0 (4.18)

Injection group

The injection group is the bottom boundary of the injection pipe, where we prescribe a con-
stant mass flux ρinjQinj as far as the diffusive contribution is set to zero. The velocity vector is
oriented along the z-direction with a parabolic vertical velocity profile. The vertical velocity
value in the centre of the surface is calculated to ensure a well-posed injection flux (Qinj ).

w(x,y) = εQ ×
(
d2

4
− x2 − y2

)
, with εQ =

Qinj∑
P ∈Ωinj

(
d2

4 − x2(P )− y2(P )2
)
dS(P )

(4.19)

where d is the diameter of the injection tube and x(P ), y(P ) indicates the X-Y coordinates of
the centre position of each mesh cell on this pre-injection plane and dS(P ) the corresponding
cell surface area. The pipe is designed long enough to ensure stable injection condition in the
underside of the main cavity.

Uniform profiles are applied for the mixture’s density and light gas mass fraction with

ρ = ρinj , Y1 = 1 (4.20)

For the hydrodynamic pressure PH , a homogeneous Neumann condition is applied (∂PH∂z = 0).

4.3 Physical configuration and simulation process

In the previous study Saikali (2018), light gas concentration did not present a clear bi-layer
distribution. Thus, this simulation cannot directly be used to analyse ventilation model.
Therefore, our first step is to change the geometrical configuration to ensure the appearance of
bi-layer distribution. We shall note that the Linden’s model is based on two horizontal open-
ings but in our case the vents are vertical (representing specific structures in the industrial
context like windows). Consequently, the height of openings shall be not chosen too large. As
presented in appendix C, the vertical opening theoretically does influence the vertical profile
of outlet velocity. For small vertical extension, this effect could be considered negligible and
the outlet flow could be considered uniformly distributed.

Finding new geometrical configuration to obtain a bi-layer distribution

In the first step, the objective is to fix a new geometrical configuration that appears the bi-
layer distribution. For this purpose, three pre-calculations are performed based on three
equidistant meshes, named A, B and C with δx = 0.7mm. The height of the cavity is chosen
as H = 20cm, taken constant for each configuration in order to keep the same turbulence
level. Only the horizontal size of the cavity is modified to test confinement effect. The width
of the cavity changes from L = W = 5cm for case A, almost the same as in Saikali (2018),
L = W = 7cm for case B to L = W = 10cm for case C. The exterior domain is chosen a little
smaller for case C compared to cases A and B for computation resource consideration. The
geometrical dimensions of the main cavity and the exterior domain, compared with its values
in Saikali (2018), are summarised in the table 4.1. The length h and the diameter d of the
injection pipe, as well as the cavity additional thickness Wv are set as in Saikali (2018): h =
10cm,d = 1cm,Wv = 0.5cm. The injection volume flux is chosen as Qinj = 15L/min, 3 times
larger than that in Saikali (2018) where Qinj = 5L/min.
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Figure 4.2: Time-averaged helium volume fraction field (X1) on the vertical mid-plane (y=0)
for three test geometrical configurations, from left to right A, B and C

Configuration
Main cavity
dimension
L×W ×H (cm3)

Dimension of
exterior domain
(cm3)

Height
of vents
Hv (cm)

Volume
Richardson
number

Saikali (2018) 4.9× 5× 14.9 6.75× 9× 18.9 2.9 3.37
A 5× 5× 20 8× 11× 26 1 0.41
B 7× 7× 20 8× 13× 26 1 0.52
C 10× 10× 20 6× 14× 24 1 0.65

Table 4.1: Description of three test configurations: geometry of main cavity and exterior do-
main, compared with Saikali (2018)

Geometrical parameter Value

Main cavity dimension L×W ×H 10 cm× 10 cm× 20 cm
Main cavity volume Vcavity 2 L
Exterior extension in x-direction Lx 8 cm
Exterior extension in y and z directions Ly and Lz 3 cm for each direction
Exterior domain dimension Lx × (W + 2Ly)× (H + 2Lz) 8 cm× 16 cm× 26 cm
Height of vents Hv 1 cm each
Injection pipe diameter d 1 cm
Injection pipe length h 10 cm
Separating wall thickness Wv 0.5 cm

Table 4.2: Geometrical parameters applied in this study
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Figure 4.3: Global view of geometrical configuration and mesh applied in this study with
three surface groups where applied different boundary conditions, wall group in red, free
inlet/outlet group in green, injection group not presented (underside of injection pipe)

In Figure 4.2, we present time-averaged field of helium volume fraction X1 at the mid vertical
plane y=0, for three test cases. From configuration A to C, the cavity is less and less confined
and the homogeneous layer is more and more clear. The bi-layer distribution is obvious in
configuration C.

Thus, we may take configuration C as the reference geometrical configuration. However, pre-
calculation results show that the exterior domain seems not large enough to cover the entire
outflux zone. Saikali et al. (2019) shows the horizontal extension of exterior domain should
around the length of the main cavity. Taking into account the outflux zone and computation
resource, we fix following geometrical configuration in this study, presented in table 4.2. For
illustration, a global view of this configuration is presented in figure 4.3.

4.3.1 Physical configuration

The whole system is placed in an isothermal environment (25◦C, 298.15K) with a constant
thermodynamic pressure (105 Pa). Pure helium or pure hydrogen will be continuously in-
jected into the cavity, the choice of injection volume flux is initially proposed to respect the
volume Richardson number Riv (see equation (1.60)) around 1.

The injection volume flux is fixed as 12NL/min in this study. Here the unity ”NL/min”,
usually used in experimental studies, means 1 litre of gas per minute in normal condition, or
standard state, corresponding to 273.15K (0◦C) and 105 Pa. Ideal gas state equation is used
to change from NL/min to L/min according to operation condition, thus:

Qinj = 12NL/min = 12L/min× 298.15K
273.15K

= 13.1L/min = 2.183× 10−4m3/s (4.21)

The local maximum injection velocity is around 5.5m/s at the jet centre and 2.8 m/s in av-
erage. In this case, the temperature correction presents a difference around 9.2% of volume
flux. Several characteristic dimensionless numbers of these two cases are summarised in table
4.3. From injection Re and Ri, the injection flow is deduced as a laminar jet.
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Figure 4.4: Illustration of two-steps simulation process: vertical velocity variation at a mon-
itoring point (0,0,6cm), first step simulation (EDM) from t=0 to 60s, second step simulation
(LGRM) from t=60s to 82s, transition periods , first 25s in first-step as well as first 2s in
second-step are coloured in grey

Dimensionless number Hydrogen case Helium case

Reinj 255 228
Riinj 0.167 0.078
Riv 2.13 1.00
Sc 1.42 1.73
Γ B0 0.021 0.026
ΓNB0 0.046 0.049

Table 4.3: Dimensionless numbers of two reference cases, Γ B0 defined in Boussinesq jet model,
see eq. (2.36), ΓNB0 defined in non Boussinesq jet model, see eq. (2.67).

Simulation step First step Second step

Mesh EDM LGRM
Min. cell size 0.7mm 0.2mm
Nb. of cells 15.44M 80.2M
MPI procs 560 2016
Cells / proc 27.5k 39.8k
Time-step ≈ 1.3× 10−4s 3.6× 10−5s
Phys. time in transition period 25s 2s
Phys. time for statistical operation 35s 20s
Sampling frequency 1kHz 5kHz
Nb. of statistical samples 35k 100k

Table 4.4: Computation parameters for two simulation steps
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4.3.2 Simulation process

For the need of mesh convergence test, based on this geometrical configuration, we construct
firstly an Equi-distant Mesh (EDM) with the cell size δx = 0.7mm. We construct a second
mesh, where the jet region is well refined with the smallest cell size δx = 0.2mm, correspond-
ing to the local Kolmogorov length scale, called Local Grid Refinement Mesh (LGRM). These
2 meshes are presented in appendix D. Results comparison will be presented in the next sec-
tion to evaluate the necessity of mesh refinement.

The whole simulation could be divided into 2 parts. The first-step simulation is based on
equi-distant mesh (EDM), from initial state t = 0 where the whole cavity and the injection
pipe are fulfilled with fresh air. The jet flow will arrive at the ceiling of the cavity in 0.1s.
The global flow then goes into the transition period for almost 10s before quasi-steady state
is established. The statistical operation begins at t = 25s to ensure the quasi-steady flow
regime in the whole cavity. The simulation continues for at least 35s during which statistical
quantities (time-averaged quantities and root-mean-square quantities) are calculated.

The second-step simulation is based on local grid refinement mesh (LGRM). We retake the
last-time instantaneous velocity and density field at the end of first-step simulation, as the
initial condition for the second-step. A projection procedure is needed. We wait 2 seconds
physical time to re-establish a new quasi-steady state before the statistical operation. Then
simulation continues for around 20s during which statistical quantities are calculated. The
whole simulation process is illustrated by velocity variation at a monitoring point situated at
(0,0,6cm), see figure 4.4.

The equidistant mesh possesses 15.44 millions of cells and is divided into 560 MPI processors,
so that 27.5k cells per processor. This number is in the reported optimal interval 25-40k by
Bieder (2007) and Vandroux and Barthel (2013) of the code. The monitoring points output
period as well as statistical sample period is around 1ms, corresponding to around 8 time-
steps. The statistical time lag (35s) corresponds to 270k time-steps and 35k samples.

The local grid refinement mesh possesses 80.2M cells and divided into 2016 MPI procs. The
monitoring points output period as well as statistical sample period is around 0.2ms, corre-
sponding to 5 or 6 time-steps. The statistical time lag (20s) corresponds to 556k time-steps
and 100k samples.

The parallel implementation is based on the domain decomposition method using the MPI
library. The computation is run on French national supercomputers CEA-CCRT, Jean-Zay of
IDRIS and OCCIGEN of CINES, all of them are under the framework of GENCI (www.genci.fr).
The detailed computation parameters of these two steps are summarised in table 4.4.

4.4 Numerical convergence validation

In the simulation, statistical quantities are calculated from a series of samples output in the
quasi-steady state. The accuracy of these statistical quantities are directly linked to the con-
vergence of numerical simulation. In this section, we focus on the convergence in space and
in time. On the one hand, we will evaluate the mesh convergence by comparing statistical
results from two meshes (EDM and LGRM) with different cell sizes. A check of Kolmogorov
length scale is also presented. On the other hand, statistical accuracy is directly linked to the
number of independent samples, deduced by local autocorrelation function.
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Figure 4.5: Result comparison equi-distant mesh (EDM) and local grid refinement mesh
(LGRM) for helium case: time-averaged volume fraction distribution (left) on plane y=0, vari-
ation of Y1 along three monitoring lines Z1: x=-1.4cm, Z2: x=-0.5cm, Z3: x=3cm (upper-right)
and associated relative error (lower-right)

Figure 4.6: Result comparison equi-distant mesh (EDM) and local grid refinement mesh
(LGRM) for helium case: time-averaged velocity magnitude (left) on plane y=0, its varia-
tion along three monitoring lines Z1: x=-1.4cm, Z2: x=-0.5cm, Z3*: x=-4cm (upper-right)
and associated relative error (lower-right)
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4.4.1 Mesh convergence and numerical accuracy

We will check if the mesh is fine enough to simulate the structure of turbulent flow. Firstly
we evaluate the necessity of mesh refinement and try to identify the numerical error related
to the cell size, by comparing the results obtained from two meshes. Then we verify if the
refinement mesh is in the Kolmogorov length scale to provide a proper DNS simulation.

Results comparison between two meshes (EDM and LGRM)

In figure 4.5 and 4.6, we present respectively the time-averaged volume fraction and velocity
magnitude distributions on plane y = 0 for helium case. Both velocity and concentration
distributions are in the similar structure. However, some important differences could be also
identified. The jet is little less inclined with LGRM where the grid in the jet area is 3.5 times
finer. Velocity in the area (x < −4cm, z < 8cm) is less obvious in LGRM.

We set three vertical monitoring lines to illustrate these differences. The concentration distri-
bution is almost the same in the top homogeneous layer, but local relative difference may up
to 150% at jet border (x = −1.4cm for Z1). For velocity magnitude, in the jet region (Z1 and
Z2, z < 10cm), the relative difference can up to ±50−75%, especially for jet region z = 2−4cm.
This is mainly due to the different inclination of jet centre. The jet is less inclined in LGRM
case. Besides, near the backward wall line Z3*, the velocity magnitude is quite different in
the recirculation region z = 2− 4cm. Local velocity for LGRM is nearly a half of that in EDM,
representing a relative error around 50% to 75%.

Global estimation of numerical error

From above results, we conclude that the equidistant mesh could not be considered fine
enough to guarantee simulation quality especially in the jet area. We define the global rel-
ative difference between these two results: for a statistical-based scalar field φ, the global
difference is defined as

Diff(φ) =

√∑
P ∈Ω (φ(P ,EDM)−φ(P ,LGRM))2∑

P ∈Ω (φ(P ,LGRM))2 (4.22)

where P monitoring points selected in the main cavity region Ω, corresponding to every cell
centre position of the EDM (140 × 140 × 280 = 5.488M probes). The results are presented in
the table 4.5.

The convergence of these statistical-based scalar fields will be detailed studied in the follow-
ing section.

From the guideline Mahaffy et al. (2015) concerning CFD numerical error related to mesh
size, at least 3 meshes with different refinements are generally needed to estimate numerical
accuracy. Due to computation resource consideration, we only have two meshes to compare.
Consequently, the Grid Convergence Index (GCI) is used to estimate the global numerical
accuracy which is defined as follows (Richardson (1911))

GCI(φ) = Fs
1

rp − 1
Diff(φ) (4.23)

where coefficient Fs is chosen as 3.0 in a conservative way as recommendation in Roache
(1998) as only two meshes are used in comparison (otherwise Fs = 1.25). r is the grid re-
finement ratio (here equals to 3.5). p = 2 is the truncation error order of the discretisation
scheme.
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Figure 4.7: Estimation of Kolmogorov length scale ηDNS based on instantaneous result on
helium case (LGRM), using local grid refinement mesh. (a) plane y=0 (b) plan x=-1.5cm
(c) z=19.5cm (d) z=2cm. Areas with estimated Kolmogorov length larger than 0.7mm are
coloured in light grey.

Statistical quantity φ
Global relative
difference
Diff(φ)

Estimated Grid
Convergence
Index (GCI)

Time-averaged mixture density 2.31% 0.617%
Time-averaged x-direction velocity 29.3% 7.82%
Time-averaged y-direction velocity 48.1% 12.8%
Time-averaged z-direction velocity 26.0% 6.94%
Time-averaged velocity magnitude 23.7% 6.32%
RMS mixture density 20.3% 5.43%
RMS x-direction velocity 98.6% 26.3%
RMS y-direction velocity 92.1% 24.6%
RMS z-direction velocity 60.8% 16.2%
RMS velocity magnitude 58.1% 15.5%

Table 4.5: Global relative difference of statistical quantities between two meshes as well as
estimated Grid Convergence Index (GCI)
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Results of GCI are also presented in table 4.5. In the first-order approximation, the GCI index
could be considered (in a conservative way) as the numerical error of LGRM related to mesh
convergence.

Globally, we have a very good numerical convergence for density field and for x and z com-
ponents of velocity field. The GCI of RMS in x-y directions (horizontal plan) is around 25%
which proves the necessity of mesh refinement. The perturbation of jet and effect of entrain-
ment is well simulated in the refinement mesh.

4.4.2 Kolmogorov length scale

For a proper DNS simulation, the cell length should be inferior to the Kolmogorov length
scale η. The notion of Kolmogorov length is based on the energy cascade theory of turbu-
lent flow. It was introduced by Richardson (1922) to describe how the energy is transferred
between rotational flow structures (eddies). The Kolmogorov length scale η is defined as the
smallest length scale of eddies. At the scale of η, the viscous effects become dominant and the
transported energy is completely dissipated.

The local Kolmogorov length scale ηDNS can be estimated as follows

ηDNS =
(
ν3

εDNS

)1/4

(4.24)

with ν = µ/ρ kinetic viscosity εDNS the local dissipation rate can be evaluated as

εDNS = 2µ(SijSji) (4.25)

with µ local dynamic viscosity and Sij symmetrical part of strain rate tensor defined in equa-
tion (1.30).

As presented in figure 4.7, an instantaneous field of ηDNS for helium case in quasi-steady
regime, using local LGRM. The Kolmogorov length is larger than 0.7mm for the majority area
in the main cavity. It can reach up to 0.2-0.3mm in the jet region. Apparently, the EDM with
cell size 0.7mm is not precise enough to realise a proper DNS simulation in strict sense. The
LGRM, where the cell size is equal to 0.2mm in the jet region and in maximum 0.45mm in the
main cavity, seems suitable with the estimated Kolmogorov length scale.

Consequently, we confirm the necessity of mesh refinement. All validated statistical anal-
ysis will be based on refinement mesh LGRM only (second-step in computation process).

4.4.3 Statistical convergence and sampling correlation

In this study, statistical quantities are used to characterise the flow and concentration dis-
tribution in quasi-steady state. Recall that in the second-step simulation process, statistical
operation continues for a physical time around 20s. Statistical quantities are calculated based
on a sampling frequency 5kHz thus possess around 100k samples in total at each cell. As
illustration, we will present the variation at two representative monitoring points for helium
case in this section.

- Point J: (0,0,6cm) within the jet to evaluate the jet flow

- Point S: (5cm,0,19.5cm) in the centre of the top opening to evaluate the outlet flow
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The principal results of this section are presented in figure 4.8. In the first column, we present
the temporal variations of velocity and density at these 2 monitoring points during last 20s
of the second-step simulation. The initial time t = 0 in the figure corresponds to the physical
time 62s. The flow is very turbulent at these points. Both velocity and density varies intensely
with time.

In order to evaluate sample dependency (correlation), we use the (unbiased) autocorrelation
function (ACF). ACF for a scalar field ϕ(x,y,z, t), at observation point (x,y,z) is defined as a
function of examined time-lag:

ACFϕ(x,y,z)(t) =

∑tend−t
τ=tstart (ϕ(x,y,z,τ)−ϕ(x,y,z)) · (ϕ(x,y,z,τ + t)−ϕ(x,y,z))∑tend−t

τ=tstart (ϕ (x,y,z,τ)−ϕ(x,y,z))2
(4.26)

with ϕ(x,y,z) the time-averaged field of ϕ at this point. The ACFs of these signals are pre-
sented in the second column of figure 4.8. These ACFs equal to 1 at t = 0 and drop rapidly
to zero, then oscillate around the axis ACF = 0. This means that there exists correlated sam-
ples in these signals. By applying second-order Taylor development of these ACFs near their
origins, we define related Taylor correlated time lag as follows (Spicker and Feitzinger (1988))

λT aylor =
1√

−d
2ACF(t)
dt2

∣∣∣∣
t=0

(4.27)

which can be interpreted as a parabolic fit to the ACF function near its origin and could be
transferred to a linear regression (Batchelor (1953)).√

1−ACF(t) =
1

√
2λT aylor

t (4.28)

In the third column of figure 4.8, we present the variation of
√

1−ACF(t) in solid lines as
well as their linear regression near the origin (with time lag less than 3ms) in dashed lines.
The Taylor correlated time lag is estimated from the slope of regression lines. All consecutive
samples within duration λT aylor are considered as correlated. For velocities, correlated time
lag equals 5.34ms at point J and 3.36ms at point S. Considering a sampling frequency 5000Hz,
this means every around 20-30 consecutive samples are correlated. For mixture density vari-
ation, the correlated time lag is longer, 8.9ms at point J and 7.19ms at point S, corresponding
to 45 and 36 consecutive sampling points.

Consequently, we consider the statistical samples are set enough dense to cover every char-
acteristic oscillation period (typically λT aylor ). In this case, the statistical accuracy can be
considered only related to the number of uncorrelated samples during the whole observation.

Uncorrelated samples

We noteN the number of uncorrelated samples during an observation from tstart to tend (here
indicating the start and the end of the second-step simulation with LGRM). From the above
analysis, we have

N =
⌊

(tend −λT aylor )− tstart
λT aylor

⌋
(4.29)

where bxc indicates the greatest integer less than or equal to x (floor function).

Generally, the number of uncorrelated samples depends on observed position and observed
physical quantity. Due to computation resource consideration, it is impossible to output all
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Figure 4.8: Study of statistical convergence at monitoring points, (a)-(c) quantities related to
velocity magnitude at point J, (d)-(f) results related to velocity magnitude at point S, (g)-(i)
results related to local mixture density at point J and (j)-(l) results related to local mixture
density at point S. 1st column: temporal variation with started time t = 0 corresponds here
to the beginning of statistical operation. 2nd column: auto-correlation function (ACF) of tem-
poral variation. 3rd column: linear regression (dashed lines) of variation

√
1−ACF(t) (solid

lines) near origin, estimation of Taylor correlated time lag.
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temporal variations at all cell points. To facilitate the calculation of statistical accuracy, we
admit that results obtained from some characteristic monitoring points could be correctly
applied in the whole cavity. During the whole observation, we have around 100k samples at
each mesh cell with 20s physical observation duration. By applying a conservative strategy,
for velocity field, the global correlated time is considered less than 10ms (frequency 100Hz)
at everywhere in the cavity. This corresponds to 2000 uncorrelated samples. As density seems
variable with low frequency at far field of the jet, we consider its global correlated time is less
than 40ms (25Hz), correspond to 500 uncorrelated samples. Therefore, during the second-
step simulation:

- At leastN = 2000 uncorrelated velocity samples obtained at each cell point

- At leastN = 500 uncorrelated density samples obtained at each cell point

4.4.4 Statistical quantities and its accuracies

Two kinds of statistic quantities are calculated in the simulation, the time-averaged quantity
(mean value) as well as its root-mean-square (RMS), which can be considered as the first-order
estimation of the standard deviation.

For a scalar field ϕ(x,y,z, t), its time-averaged field ϕ(x,y,z) is calculated as

ϕ(x,y,z) =
1

tend − tstart

 tend∑
τ=tstart

ϕ(x,y,z,τ) · δt

 (4.30)

And its root-mean-square (RMS) field is defined as

RMS(ϕ)(x,y,z) =

√√√
1

tend − tstart

 tend∑
τ=tstart

(ϕ (x,y,z,τ)−ϕ(x,y,z)))2 · δt

 (4.31)

The general error of statistical quantities consists of two parts: numerical error and statistical
error. For the first one, if we admit that the LGRM refinement mesh is in asymptotic regime
and considered fine enough (thus strictly under Kolmogorov length scale), we may take the
index GCI as an estimation of its numerical error in first order approximation. Note that the
numerical error is a notion of global error related to the simulation quality. For the second
one, statistical error depends on uncorrelated samples N . We apply 95% (1.96-σ ) as confi-
dence interval. Consequently, the total error of statistical quantities is calculated as follows

For time-averaged field ϕ:

- Upper 95% limit = ϕ × (1 + GCI(ϕ)) + 1.96RMS(ϕ)√
N

- Lower 95% limit = ϕ × (1−GCI(ϕ))− 1.96RMS(ϕ)√
N

For RMS field RMS(ϕ):

- Upper 95% limit = RMS(ϕ)×
(
GCI(RMS(ϕ)) +

√
N

CHIINV(0.975,N )

)
- Lower 95% limit = RMS(ϕ)×

(
−GCI(RMS(ϕ)) +

√
N

CHIINV(0.025,N )

)
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where the function CHIINV(p,n) returns the inverse of the right-tailed probability of the chi-
squared distribution with probability p and number of degrees of freedom n.

We define the relative accuracy (in %) for statistical quantity φ of a time-averaged or an RMS
field as follows

Err(φ) =
Upper 95% limit−Lower 95% limit

2φ
(4.32)

For example, we present in table 4.6 the estimation of relative error of statistical quantities
on the velocity magnitude and mixture density at monitoring points J and S. We compare the
contribution of numerical error (related to GCI) and statistical error (relative to uncorrelated
samples) in the total relative accuracy. For time-averaged fields, numerical error is generally
larger than statistical error, sometimes dominant. The GCI is 6.32% for time-averaged veloc-
ity magnitude field (see table 4.5), compared with statistical error from 0.2% to 3% depended
on monitoring position. The GCI is 0.62% for time-averaged density field, compared with
statistical error from 0.1% to 0.6%. For RMS field, numerical error is dominant to statisti-
cal error for velocity fields. The velocity magnitude RMS GCI is 15.5%, compared with a
statistical error around 3%. Statistical error presents only around 1/5 in the total error.

We shall note that all above estimation is in a conservative way. On one hand, numerical error
GCI is estimated based on only two meshes. On the other hand, the uncorrelated samples,
directly related to statistical error, is treated globally thus underestimated. Generally, the
total relative accuracy is considered less than 8% for time-averaged velocity field and 1% for
time-averaged density field and less than 18% for velocity RMS and 12% for density RMS.
Statistical fields for density are more precise than that for velocity.

In conclusion, we consider the second-step simulation using LGRM is long enough to pro-
vide necessary uncorrelated samples. The statistical error is generally smaller (sometimes
negligible) than that of numerical error.

4.5 Numerical 1D post-processing methodology

DNS simulation provides us complete 3D fields of flow variables, which could be treated as
reference to compare and improve analytical models. In this section, we present the post-
processing methods to calculate the characteristic 1D physical quantities, defined in the 1D
turbulent jet models.

The post-processing method is based on Gaussian profiles assumption. Characteristic jet
quantities are calculated from DNS time-averaged fields and corrected by a series of inte-
gral calculations on well-selected zones. Some parameters will then need to be converted into
Top-hat to compare with theoretical results. In addition, variations of entrainment coefficient
are estimated both for Boussinesq and non Boussinesq models.

4.5.1 Vertical velocity and mixture density profiles under Gaussian assumption

In turbulent jet models, two characteristic profiles are selected to describe the jet: the vertical
velocity w and the mixture density ρ. Recall that under Gaussian profile assumption, we have
for vertical velocity:

w(r,z) = wG(z)exp

− r2

b2
G(z)

 (4.33)

with wG the Gaussian characteristic vertical velocity and bG the characteristic radius of the jet
(of the vertical velocity). The mixture density profile in the jet is in the similar 2D Gaussian
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Velocity
Point J

Velocity
Point S

Density
Point J

Density
Point S

Time-averaged 0.1044m/s 0.6395m/s 1.015kg/m3 0.7842kg/m3

RMS 0.0672m/s 0.0270m/s 0.0770kg/m3 0.0111kg/m3

Conservative
uncorrelated samples

2000 2000 500 500

Numerical accuracy (GCI)
- time-averaged

6.32% 6.32% 0.62% 0.62%

Statistical accuracy -
time-averaged

2.82% 0.19% 0.66% 0.12%

Total relative accuracy -
time-averaged

9.14% 6.51% 1.28% 0.74%

Numerical accuracy (GCI)
- RMS

15.5% 15.5% 5.43% 5.43%

Statistical accuracy - RMS 3.1% 3.1% 6.17% 6.17%

Total relative accuracy -
RMS

18.6% 18.6% 11.6% 11.6%

Table 4.6: Estimation of relative accuracy of statistical quantities of velocity magnitude and
local mixture density at two monitoring points J and S

form, but with different characteristic radius.

ρ(r,z) = ρe(z)− (ρe(z)− ρG(z))exp

− r2

(λb)2
G

 (4.34)

ρG is the characteristic density at jet centre and ρe is the environment density at far-field of the
jet. The term λbG is the characteristic radius of the density with λ called convection-diffusion
ratio.

These profile parameters can be divided into two categories, where wG,bG,ρG,λ are related to
the jet and ρe is related to the far-field of the jet. Therefore, each horizontal cross-section of
the main cavity at altitude z, noted S(z), can be divided into two parts: the jet region, noted
Ω(z), and its complementary C(Ω)(z), called the far-field or environmental region.

S(z) =Ω(z)∪C(Ω)(z) (4.35)

The vertical velocity should be positive in Ω(z) and the mixture density should be quasi-
homogeneous in C(Ω)(z). As the jet axis is not straight, a dedicated methodology has to be
applied to restrict the jet region on the horizontal jet cross-sections.

Jet centre, jet region and environmental density

DNS results show that the jet is slightly inclined towards the x-negative backward wall due
to ventilation effect but the lateral width of the cavity is large enough to provide a gap for the
environmental downward flow. Therefore, we observe on any cavity cross-sections, that the
position where the maximum of the time-averaged vertical velocity located, defined here as
the jet centre, is coincided with the point where light gas concentration attains its maximum at
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Chapter 4. Numerical and experimental setup and post-processing methodology

Figure 4.9: Edge of ΩDNS(z), noted 1,2,3σ , corresponding to the choice of εw as 1/e,1/e2,1/e3,
and the distribution of time-averaged vertical velocity field w (on the left side) and mixture
density field ρ (on the right side) on horizontal planes z = 5cm (left), z = 10cm (middle) and
z = 15cm (right) for helium case

this level. The characteristic vertical velocity wDNSG (z) and the characteristic density ρDNSG (z)
are defined as:

wDNSG (z) = max(x,y,z)∈S(z)w(x,y,z) (4.36)

ρDNSG (z) = min(x,y,z)∈S(z)ρ(x,y,z) (4.37)

The determination of the jet region Ω(z) is based on the time-averaged fields of vertical ve-
locity and mixture density. The choice of Ω(z) should take into account the majority vertical
velocity contribution and remove as much as possible the influence of environmental flow.

The vertical velocity is the most representative flow variable of the jet. We define the jet region
Ω(z) by introducing a threshold value εw ∈ [0, 1] of the time-averaged vertical velocity w.

Ω(z) =
{
(x,y,z)|w(x,y,z) ≥ εw ·wDNSG (z)

}
(4.38)

The DNS-based environmental density ρDNSe then can be calculated by the mean value of the
time-averaged density on the far field region C(Ω)(z).

ρDNSe (z) =

∑
(x,y,z)∈C(Ω)(z)ρ(x,y,z)dS(x,y,z)∑

(x,y,z)∈C(Ω)(z)dS(x,y,z)
(4.39)

with dS(x,y,z) the horizontal surface of local cell at position (x,y,z).

Note that this threshold εw cannot be chosen too large in order to cover the majority of jet
zone. It cannot be selected too small or even zero as well in order to ensure environmental
flow, such as inlet/outlet flow is not significantly presented in the jet region. In addition,
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the time-averaged mixture density should be homogeneous in the complementary of the jet
region. Figure 4.9 illustrates for helium case, the influence of εw on the approximation of the
jet region ΩDNS(z) with three values, 1/e,1/e2,1/e3 with e Euler’s number, corresponding to
once, twice and three times of standard deviation of 2D Gaussian distribution (noted 1σ , 2σ ,
3σ respectively). Results comparisons are carried out on three horizontal planes with altitude
z =5cm, 10cm and 15cm.

At the two lowest planes (z =5cm and 10cm), the choice of 1σ or 2σ appears providing a
reasonable approximate of the jet region for ρ. The jet region is less clear for the vertical
velocity w, where a part of the rising flow is not covered. Additionally, in the top part of the
cavity (see for example altitude z = 15cm). It is more complicated to define a jet region by
density variation. We finally decide to retain the jet region 3σ , which covers an area maybe
just little larger than the jet region but provides a better estimate of environmental density.

Consequently, we take

εw =
1
e3 ≈ 0.05 (4.40)

Characteristic jet radius and diffusion-convection ratio

We notice that the inlet flow through the bottom opening presents a large influence on the jet
cross-section shape close to the injection, the distribution of w on the horizontal plane is not
as regular as a round Gaussian profile. In this section, we aim to evaluating the characteristic
jet radius bG and diffusion-convection ratio λ.

Note that the notion of characteristic jet radius bG does not correspond to the radius of jet
border. Its definition is linked to the ratio wG/e (see equation (2.10))

w(r = bG, z) =
wG(z)
e

(4.41)

Consequently, we identify firstly the section area Sb(z) at each altitude z, where the local
vertical velocity w is superior to the ratio wDNSG /e:

Sb(z) =
∑

(x,y,z)∈Ωb(z)

dS(x,y,z), with Ωb(z) =

(x,y,z)|w(x,y,z) ≥
wDNSG (z)

e

 (4.42)

with dS(x,y,z) the horizontal surface of local mesh at position (x,y,z). Then, the characteristic
radius of the jet under Gaussian assumption can be estimated by

bDNSG (z) =

√
Sb(z)
π

(4.43)

Similarly, the DNS-based diffusion-convection ratio λDNS , related to the distribution of time-
averaged mixture density ρ, can be determined by a specific surface Sρ(z) defined as

Sρ (z) =
∑

(x,y,z)∈Ωρ(z)

dS (x,y,z) , with Ωρ (z) =
{
(x,y,z) |ρ (x,y,z) ≤ ρDNSe (z) +

1
e

(
ρDNSG (z)− ρDNSe (z)

)}
(4.44)

And then the quantity diffusion-convection ratio λDNS can be calculated as follows.

λDNS (z) =
1

bDNSG (z)

√
Sρ(z)

π
=

√
Sρ(z)

Sb(z)
(4.45)
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Remark

In the literature, other definitions for diffusion-convection ratio λ are presented. Apart from
the mixture density ρ that used in this study, the mass fraction of injected gas Y1, the volume
fraction of injected gas X1 as well as the reduced density G′ are also introduced. Recall the
relation between these parameters

X1 =
ρair − ρ
ρair − ρinj

, Y1 = X1
ρinj
ρ

=
ρinjρair
ρair − ρinj

1
ρ
−

ρinj
ρair − ρinj

, G′ =
ρe − ρ
ρ0

g (4.46)

with ρinj ,ρair ,ρ0 the density of injected light gas, fresh air and that of reference respectively.
Owing to linear relationships between ρ, X1 and G′, similar Gaussian profiles with same de-
viation can be assumed for these 3 flow variables. Thus, the diffusion-convection ratio λ is
the same based on any flow variable among ρ, X1 or G′. This is not the case for Y1. It is
contradictory to assume Gaussian profile both for ρ and Y1.

4.5.2 Characteristic jet quantities

In this section, we aim at calculating the characteristic jet quantities defined in turbulent jet
models. We focus on five physical quantities, both as functions of altitude z only:

- Volume flux Q(z), defined in equation (2.18)

- Momentum fluxM(z), defined in equation (2.20)

- Mass flux Qm(z), defined in equation (2.19)

- Mass momentum fluxMm(z), defined in equation (2.21)

- Buoyancy flux B(z), defined in equation (2.22)

Except for the buoyancy flux B(z), the other four quantities can be approximated by integra-
tion of corresponding time-averaged fields on the jet region Ω(z) defined in (4.38) with index
3σ .

Qnum(z) =
∑

(x,y,z)∈Ω(z)

w(x,y,z) dS(x,y,z) (4.47)

Mnum(z) =
∑

(x,y,z)∈Ω(z)

w2(x,y,z) dS(x,y,z) (4.48)

Qnumm (z) =
∑

(x,y,z)∈Ω(z)

ρw(x,y,z) dS(x,y,z) (4.49)

Mnum
m (z) =

∑
(x,y,z)∈Ω(z)

ρw2(x,y,z) dS(x,y,z) (4.50)

with dS(x,y,z) the mesh vertical surface at point (x,y,z).

The obtained integration zone Ω(z) does not cover the entire jet area by construction based
on Gaussian self-similarity assumption which does not rely on a well-defined description of
jet edge. For this reason, the theoretical correction based on Gaussian profile assumption is
applied on these flux estimates.
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Theoretical correction for volume and momentum fluxes

Under Gaussian assumption, we have by definition eq. (2.18) and (2.20)

Q =
∫ ∞
r=0

wGexp

− r2

b2
G

 · 2πrdr = πwGb
2
G (4.51)

M =
∫ ∞
r=0

w2
Gexp

−2r2

b2
G

 · 2πrdr =
1
2
πw2

Gb
2
G (4.52)

We define jet border radius bΩ(z) a specific radius related to the integration surface Ω(z) with
index 3σ .

bΩ (z) =

√
SΩ (z)
π

, with SΩ (z) =
∑

(x,y,z)∈ΩDNS (z)

dS(x,y,z) (4.53)

Under the assumption of a Gaussian vertical velocity profile, we have the relation of bΩ(z),
bG(z) and εw.

w (r,z) = wG(z)exp
(
−r2/bG(z)2

)
, w (r = bΩ(z), z) = εw ·wG(z) (4.54)

Thus,
exp(−b2

Ω/b
2
G) = εw (4.55)

The theoretical value of Qnum(z) corresponding to integral zone Ω(z) is

Qnum (z) =
∫ bΩ

0
wGexp

− r2

b2
G

 2πrdr = πb2
G ·wG ·

1− exp

−b2
Ω

b2
G

  = πb2
GwG (1− εw) (4.56)

Consequently, regrouping it with (4.51) we have following relation between Qnum (z) and its
theoretical corrected value QDNS(z).

QDNS (z) =
1

1− εw
Qnum(z) (4.57)

Similarly, for relation betweenMnum (z) and its theoretical corrected valueMDNS(z):

Mnum (z) =
∫ bΩ

0

wGexp

− r2

b2
G

 2

2πrdr =
1
2
πb2

Gw
2
G

1− exp

−2
b2
Ω

b2
G

  =
1
2
πb2

Gw
2
G

(
1− ε2

w

)
(4.58)

Regrouping it with (4.52), we have

MDNS (z) =
1

1− ε2
w
Mnum(z) (4.59)

Taking εw = 1/e3 yields

QDNS = 1.052 Qnum, MDNS = 1.002Mnum (4.60)

The correction presents 5% variation for Q and only 0.2% forM. Correction for momentum
fluxM is thus not absolutely necessary.
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Theoretical correction for mass and mass momentum fluxes

We apply Gaussian profiles for w and ρ eq. (2.9) (2.11) in the definition of Qm and Mm eq.
(2.19) (2.21).

Qm =
∫ ∞
r=0

ρe

1−
(
ρe − ρG
ρe

)
exp

− r2

λ2b2
G

  ·wGexp

− r2

b2
G

 2πrdr = πwGb
2
G ·
ρe +λ2ρG
λ2 + 1

(4.61)

Mm =
∫ ∞
r=0

ρe

1−
(
ρe − ρG
ρe

)
exp

− r2

λ2b2
G

  ·w2
Gexp

−2r2

b2
G

 2πrdr =
1
2
πw2

Gb
2
G ·
ρe + 2λ2ρG

2λ2 + 1
(4.62)

We apply the same method used as before, by assuming Gaussian profile, we have theoreti-
cally

Qnumm (z) =
∫ bΩ

r=0
ρe

1−
(
ρe − ρG
ρe

)
exp

− r2

λ2b2
G

  ·wGexp

− r2

b2
G

 2πrdr (4.63)

Mnum
m (z) =

∫ bΩ

r=0
ρe

1−
(
ρe − ρG
ρe

)
exp

− r2

λ2b2
G

  ·w2
Gexp

−2r2

b2
G

 2πrdr (4.64)

with the radius bΩ defined in (4.53) related to integral area surface Ω. By comparing its
results with equations (4.61) (4.62), we have finally the relation between Qnumm ,Mnum

m and its
theoretical corrected values QDNSm ,MDNS

m

QDNSm (z) =Qnumm (z) ·
ρe+λ2ρG(

1− (λ2 + 1)εw +λ2εwε
1
λ2
w

)
ρe +

(
1−εwε

1
λ2
w

)
λ2ρG

(4.65)

MDNS
m (z) =Mnum

m (z) ·
ρe+2λ2ρG(

1− (2λ2 + 1)ε2
w + 2λ2ε2

wε
1
λ2
w

)
ρe +

(
1−ε2

wε
1
λ2
w

)
· 2λ2ρG

(4.66)

We may use the DNS estimated quantities ρDNSe , ρDNSG and λDNS to replace ρe,ρG,λ in the
above equations. Generally the correction is necessary only for mass fluxQm, especially under
bi-layer interface where the term of ρe dominates in denominator, corresponding to an error
may up to 10%.

Calculation of buoyancy flux

From its definition eq. (2.22), the buoyancy flux B(z) can be calculated as

B (z) =
∫
ρe − ρ
ρ0

gwdS =
g

ρ0

(
ρe(z)

∫
wdS −

∫
ρwdS

)
=
g

ρ0
(ρe(z)Q (z)−Qm(z)) (4.67)

Thus we have the same relation for its DNS estimation.

BDNS(z) =
g

ρ0

(
ρDNSe (z)QDNS(z)−QDNSm (z)

)
(4.68)

with ρ0 the reference density, chosen equal to density of fresh air in this study.
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4.5.3 Parameter identification for Top-hat and Gaussian profiles

Previous post-processing methods are all based on Gaussian profiles. In order to compare
DNS estimated Gaussian characteristic parameters with that used in turbulent jet models,
we shall transfer the obtained Gaussian parameters to that under Top-hat assumption, by
identification of characteristic jet quantities used in the model.

We first summarise in table 4.7, expressions of characteristic jet quantities, defined in differ-
ent models, both in Top-hat and Gaussian profiles.

Profile assumption Top-hat Gaussian

Volume fluxQ(z) πwT b
2
T πwGb

2
G

Momentum fluxM(z) πw2
T b

2
T

1
2πw

2
Gb

2
G

Buoyancy flux B(z) πwT b
2
T
ρe−ρT
ρ0

g λ2

λ2+1πwGb
2
G
ρe−ρG
ρ0

g

Mass fluxQm (z) πρTwT b
2
T πwGb

2
G
ρe+λ2ρG

1+λ2

Mass momentum fluxMm(z) πρTw
2
T b

2
T

1
2πw

2
Gb

2
G
ρe+2λ2ρG

1+2λ2

Table 4.7: Expressions of characteristic jet quantities under Top-hat and Gaussian profiles
assumptions

Boussinesq model of Morton et al. (1956)

In Boussinesq model of Morton et al. (1956) (α-constant), by identification of three character-
istic quantities Q,M and B, we have

bT =
√

2bG, wT =
1
2
wG, ρT =

ρe +λ2ρG
1 +λ2 (4.69)

This solution is also compatible with identification of mass flux Qm.

Non-Boussinesq model of Rooney and Linden (1996)

In non-Boussinesq model of Rooney and Linden (1996) (α-constant), by identification of three
characteristic quantities Q, Qm andMm, we have

bT =
√

2bG

√
(2λ2 + 1)(ρe +λ2ρG)
(λ2 + 1)(ρe + 2λ2ρG)

, wT =
1
2
wG

(λ2 + 1)(ρe + 2λ2ρG)
(2λ2 + 1)(ρe +λ2ρG)

, ρT =
ρe +λ2ρG

1 +λ2 (4.70)

This solution is also compatible with identification of buoyancy flux B.

Based on these relations, DNS estimated Top-hat parameters can be estimated, noted bDNST ,
wDNST , ρDNST corresponding to jet radius, vertical velocity and mixture density. These Top-
hat parameters are calculated from bDNSG , wDNSG , ρDNSe , ρDNSG and λDNS parameters directly
obtained from DNS results. However,we note that the result is identical for ρT in both models.

Characteristic Top-hat volume fraction in the jet

Particularly, instead of mixture density, the volume fraction of injected light gas, helium or
hydrogen, will be used in results analysis as this parameter is directly linked to the safety
analysis. The 1D characteristic volume fraction profile XDNS1,T (z) is directly deduced from
Top-hat mixture density ρDNST (z):

XDNS1,T (z) =
ρDNST (z)− ρa
ρinj − ρa

(4.71)
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Figure 4.10: Environmental density ρDNSe (z), jet centre density ρDNSG and Top-hat character-
istic density ρDNST (z) before (BC) and after (AC) correction, as well as corresponding volume
fraction profiles, for hydrogen case

For example, in figure 4.10, we present the environmental density ρDNSe (z), jet centre density
ρDNSG and Top-hat characteristic density ρDNST (z) (with indication BC), as well as correspond-
ing volume fraction profiles, for hydrogen case. We could clearly identify that:

- Environmental fraction XDNS1,e (z) can be used to investigate far-field variation along the
jet

- Jet centre fraction XDNS1,G (z) represents the maximum concentration at a given altitude,
used to evaluate jet evolution

- Top-hat characteristic volume fraction XDNS1,T (z) (with indication BC) is between envi-
ronmental fraction and jet centre fraction, presenting the mean concentration in the jet
region. Note that this profile is not representative near the injection area, typically for
z < 3cm here for hydrogen case (for helium z < 4cm), where X1,T ≈ 1. We replace its
value in this region by QDNSm (z)/QDNS(z). The corrected results are presented in figure
4.10 in solid lines with indication AC.

Besides, in the region where vertical position z larger than 14cm, all these 3 profiles super-
pose, which illustrate the existence of homogeneous layer in the top part of the cavity.

4.5.4 Entrainment velocity and entrainment coefficient

In this section, we aim at calculating the entrainment velocity and deducing the entrainment
coefficient from DNS result. The entrainment assumption is defined differently in Boussinesq
models and in non-Boussinesq models. The entrainment velocity, noted ue(z), is linked to the
specific entrainment characteristic vertical velocity wc(z):

ue (z) =

 αwc (z) , for Boussinesq case

αwc (z)
√
ρc(z)
ρ0
, for non−Boussinesq case

(4.72)

with ρc(z) the specific entrainment characteristic mixture density of the jet. The choice of
wc(z) and ρc(z) are depended on the profiles of w(r,z) and ρ(r,z).

The value of α depends on the selected Top-hat or Gaussian profile assumption. We note αT
if this one is calculated under Top-hat assumption and αG for Gaussian assumption.
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Figure 4.11: Conservation of volume flux of a control body with radius
√

2bG(z), definition of
mean entrainment velocity

Entrainment coefficient profile under Gaussian assumption

Under Top-hat assumption, the entrainment velocity can be estimated from the boundary
condition

− (ru) |∞ = − (ru) |bT = bT ue (4.73)

If profiles are assumed in Gaussian, by using relation (4.69), the above boundary condition
can be rewritten as

− (ru) |∞ = (
√

2bG)ue (4.74)

Then we consider a thin layer of the jet cross-section as the control body with its radius
√

2bG
and thickness dz, at altitude z, we apply the conservation of volume flux on this layer. The
vertical volume flux through this specific control body is written as q(z). Thus

q (z+ dz)− q (z) = ue (z)Le (z)dz (4.75)

with Le (z) the perimeter of the control body cross-section. This conservation of volume flux
is illustrated in figure 4.11. Thus

dq

dz

∣∣∣∣∣
z

= ue (z)Le (z) (4.76)

Consequently, for calculating entrainment velocity from DNS results, note that

w(r =
√

2bG, z) =
wG
e2 (4.77)

we firstly define a control area for cross-section plane at altitude z, corresponding to 2σ region

Ωe =
{
(x,y) |w(x,y,z) ≥ 1

e2w
DNS
G (z)

}
(4.78)

Then we calculate the perimeter of this area Ωe(z), noted LDNSe (z). From figure 4.9, the Ωe(z)
is always a connected area so that its perimeter is well defined. Then the volume flux through
Ωe(z) is calculated as

qDNS(z) =
∑

(x,y,z)∈Ωe(z)

w(x,y,z)dS(x,y,z) (4.79)

The DNS estimated mean entrainment velocity is defined by applying the relation (4.76)

uDNSe (z) =
1

LDNSe (z)

dqDNS

dz

∣∣∣∣∣∣
z

(4.80)
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The derivation operation requires smooth and derivable condition for qDNS(z). This quantity
is calculated vertically cell by cell, with height discretisation chosen equal to vertical cell size.
Its profile shall be smoothed in advance then derivation will be calculated in 4th order. The
smoothing process is based on the theory of least squares method presented in Savitzky and
Golay (1964) and Press et al. (2007). Two parameters shall be provided in this algorithm, the
window length NW (must be an odd number) and degree (usually 2 or 3). A quick parameter
test shows that NW = 15 with degree 2 could provide the enough smooth results.

Once we have a smooth profile of uDNSe (z) the entrainment coefficient can be determined from
its definition.

Boussinesq case

Under Boussinesq approximation, the specific entrainment characteristic vertical velocity is
chosen simply as

wc =
{
wT , for Top−hat profiles
wG, for Gaussian profiles

(4.81)

Thus under Gaussian assumption, the entrainment coefficient estimated by DNS results will
be

αDNS−BG (z) =
uDNSe (z)

wDNSG (z)
(4.82)

Note that in Boussinesq case, we have

bTwT =

√
2

2
bGwG (4.83)

Thus, by applying the identification of dQ
dz in equation (A.15) in model demonstration, we

have αT =
√

2αG.

Non-Boussinesq case

For non-Boussinesq cases, the specific entrainment characteristic density ρc(z) has to be cho-
sen correctly to ensure the relation αT =

√
2αG. Applying the identification of dQmdz in equation

(2.58), we have

bTwT
√
ρc,T =

√
2

2
bGwG

√
ρc,G (4.84)

with ρc,T ,ρc,G the specific entrainment characteristic density under Top-hat and Gaussian
assumptions. Thus, by using equitation (4.70), we apply

ρc =

 ρT , for Top−hat profiles
ρe+2λ2ρG

1+2λ2 , for Gaussian profiles
(4.85)

Consequently, the entrainment coefficient estimated by DNS results will be

αDNS−NBG (z) =
uDNSe (z)

wDNSG (z)

√√√
ρa

(
1 + 2λDNS2(z)

)
ρDNSe (z) + 2λDNS2(z)ρDNSG (z)

(4.86)

with the reference density chosen as the density of fresh air ρ0 = ρa.

Relation with Top-hat entrainment coefficient

Note that both αDNS−BG (z) and αDNS−NBG (z) are under Gaussian assumption. By using relation
between αT and αG, the DNS estimated Top-hat entrainment coefficient is deduced

αDNST (z) =
√

2αDNSG (z) (4.87)

with αDNSG (z) = αDNS−BG (z) for Boussinesq case or αDNSG (z) = αDNS−NBG (z) for non-Boussinesq
case.
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4.6 Experimental setup and post-processing

In this section, we present briefly the experimental setup, facilities build-up and data treat-
ment method. The principal idea is to measure a series of instantaneous velocity field by
Particle Image Velocimetry (PIV) method. Statistical quantities as mean or RMS, are calcu-
lated from instantaneous measurements. Helium is used as the injected gas due to safety
consideration. We shall particularly note that only on-plane velocity field are measured as
we carried out a 2D2C (2 dimensions, 2 components) approach with only one camera oper-
ated. The velocity component perpendicular to the measured plane as well as the helium
concentration are not able to be measured in this experiment.

4.6.1 Experimental facilities and process

Particle Image Velocimetry (PIV) is a measurement technique of velocity field. The flow is
seeded with tracer particles, consistently moving with the flow velocity, which are illuminated
by a high-frequency laser sheet. The position of the tracers, as well as the flow pattern, will
be recorded by a CCD PIV camera through the light scattered by these particles. The camera
records two consecutive snapshots for one measurement. The time lag between both shots and
laser impulsions is small enough so that the displacement of each particle can be identified
from the photo.

The experimental facilities used in this experiment consists of a cavity, a camera and a laser
emitter. All of these are positioned in a T-form base, placed in a dark closed room.

The cavity used in this PIV measurement is in the same geometry as defined in numerical
configuration. The cavity, presented in figure 4.12, is made by PMMA (methyl meth-acrylate
resin), or called Plexiglas. This material is qualified by its good transparency and often used
as a lightweight or shatter-resistant alternative to glass. A C-form shell frame consists of three
non-transparent plates (z = 0 and 20cm,y = +5cm), providing the stability of this structure.
Another three side faces of the cavity are transparent, fixed by screws and adhesive on the
frame. The two vents are created by a short plate, leaving an inter-space 1cm each in the
top and bottom ends on the side x = +5cm. The thickness of Plexiglas plate is 0.5cm. The
underside of the cavity is drilled in its centre with a well-polished round hole of 1cm diameter,
connecting with a 20cm long vertical injection tube to ensure a well-established Poiseuille
injection flow.

The laser used for this PIV experiment is a pulsed double cavity Yag laser (8ns - 200mJ).
Optics are used to transform the laser beam into a laser plane, which allows a 2D measure
inside the whole cavity. Laser optics are set to ensure that the laser sheet focuses inside the
cavity in order to obtain a sheet thickness less than 1mm, reducing the detection of axial
displacement of tracers and thus improves the quality of the 2D measures.

The camera used to record the pictures focused on the observation plane. Two pictures are
taken within a very short time (0.1 or 0.5ms). By comparing positions of tracers on the 2
consecutive photos, the instantaneous velocity field on the plane will be deduced. The or-
thogonality between camera axis and laser direction is assured by the rail-base on which ex-
perimental facilities are fixed, see figure 4.12. The laser is free to move along the rail, so we
can change the measurement plane coordinates and observe different planes inside the cavity.

The helium is stocked in room temperature. Its flux is controlled by a valve (pressure-
regulator) connected to a computer where we indicate the requisite flux in normal conditions
(12 NL/min), the flux will be automatically corrected by measurement of room temperature
to ensure a correct injected mass flux.
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Figure 4.12: Experimental facility, left: the cavity, right: sketch of laser emitter, cavity and
camera, on a T-form base

Two kinds of tracer are used in this measurement. In the injection flux, an oil-based tracer is
added. The quantity of tracer is regulated to adjust the visibility of the photo. In addition,
smoke is generated in the experimental room, in order to capture the flow of inlet ambient
air.

The observation plane is fixed on the mid-plane y = 0. At initial time, pure helium is contin-
uously injected into the cavity. Then we wait 10 minutes time to ensure a steady state flow is
well established in the cavity before the measurement begins. At each time, the camera will
take two consecutive photos within a fixed time lag, noted ∆t, equals to 0.1ms and 0.5ms for
two independent measurements. The observation interval between two measures are fixed as
1 second. For each ∆t, we have taken 1000 measures (thus 2000 photos) for further treatment.

4.6.2 First-step post-processing

The first-step post-processing is done by using the software gpiv and DaVis. This step of
work is realised in the context of an internship realised in spring 2020 in CEA. The objective
is to transform the photos taken from experiments to instantaneous 2D velocity fields on the
measure plane.

Before the post-processing, it is necessary to delete the environment noise and unnecessary
area, see figure 4.13 for example, flow in the area outside the cavity is not kept in further
treatment in this study.

Then the velocity calibration is realised by analysing the local tracer displacement in the cor-
responding interrogation window scale, chosen as non-overlapped squares 32x32 pixels in
this study. The velocity is calibrated by the displacement of tracer point in each interrogation
window during the fixed time lag ∆t between two consecutive photos. The quality of this cal-
ibration depends on the time lag ∆t applied in the measurement. See figure 4.14 for example,
on the left-hand side, the case ∆t = 0.1ms, local velocity can be calibrated almost everywhere
in the cavity but in low precision. On the right-hand side, the case ∆t = 0.5ms, the calibra-
tion quality is better for top area typically z > 10cm. However, velocity in region of jet centre
(coloured in rose) is not correctly calibrated due to high local velocity. The displacement of
local tracer in this region is not in the same interrogation window during ∆t. Note that this
rose region differs on each pair of photos. In the software, the deleting criteria is defined
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Figure 4.13: Example of a photo taken in the PIV measurement, in inverted colour (black
turns to white and vice versa), 1 pixel equals to 0.082mm. Black points indicate the positions
of tracers, which are almost uniformly distributed in the whole cavity.

as local correlation index inferior to 0.7 or peak ratio less than 3. Besides, a median filter is
also applied. We remove and replace the local velocity if this one is outside its 2-σ interval
(95% confidence interval) which is defined by 2 times of standard deviation calculated from
its neighbours.

An auto-correlation verification based on velocity temporal variations at a series of monitor-
ing points is also carried out to ensure the non-dependency of each measurement (observation
interval 1s).

4.6.3 Statistical quantities and its accuracies

Statistical quantities of time-averaged mean values and RMS are defined the same as pre-
sented in section 4.4.4 (equations (4.30) and (4.31)) with observation interval δt = 1s and du-
ration of observation tend − tstart = 1000s. The accuracy of these statistical quantities consists
of the system error related to the precision of camera and the statistical error.

For time-averaged field ϕ (a component of the plane velocity), the system error is far less than
its statistical error as the camera could capture the displacement up to 0.1-0.2 pixel. Total
error will be linked to its statistic accuracy only.

- Upper 95% limit = ϕ + 1.96RMS(ϕ)√
N

- Lower 95% limit = ϕ − 1.96RMS(ϕ)√
N

with number of independent samplesN = 1000.

For RMS field RMS(ϕ), its system error ∆v is linked to camera precision which could be con-
sidered independent on local velocity. It corresponds to the minimum displacement (0.1-0.2
pixel) that camera is able to capture during the measure time lag ∆t:

∆v =
(0.1 ∼ 0.2 pixel)× (0.082 mm/pixel)

∆t
(4.88)

It is around 2 cm/s for ∆t = 0.1ms and 10 cm/s for ∆t = 0.5ms. Consequently,
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Figure 4.14: Instantaneous plane velocity magnitude calibrated by software, for ∆t = 0.1ms
(left) and ∆t = 0.5ms (right), corresponding to different moments in the observation. Local
velocity in the jet-centre region for ∆t = 0.5ms (in rose colour) is not able to be calibrated due
to high local velocity. the calibration quality of ∆t = 0.5ms is better than ∆t = 0.1ms.

- Upper 95% limit = RMS(ϕ)×
√

N
CHIINV(0.975,N ) +∆v

- Lower 95% limit = RMS(ϕ)×
√

N
CHIINV(0.025,N ) −∆v

where the function CHIINV(p,n) returns the inverse of the right-tailed probability of the chi-
squared distribution with probability p and number of degrees of freedom n.

4.6.4 Integration of statistical results of two measurements

Two separate series of measurements with different time lag ∆t = 0.1 or 0.5ms are realised in
this experience. The case ∆t = 0.5ms provides a more precise velocity field in the majority
area, see figure 4.14. However, the jet centre region, where local velocity is typically superior
to 1.5m/s could not be correctly captured. This region, which varies in time, will be removed
in the statistical operation. Thus we need a smaller capture time lag ∆t = 0.1ms to provide
jet region velocity. In figure 4.15, we compare the statistical time-averaged plane velocity for
0.5ms case and 0.1ms. Both of them are in the same form, demonstrating the convergence
of this measurement. The jet centre region is not correctly measured for 0.5ms case (but not
equal to zero as the uncapturable region changes with time). Then we seek to integrate these
two results into a precise and complete field.

The instantaneous uncapturable region of 0.5ms case is generally situated in the centre, below
the altitude z = 8cm. Thus, we consider the 0.5ms result is valid for all area beyond this
level. In the jet region, the validity region of 0.5ms result should benchmark by 0.1ms result.
For a fixed horizontal level, from the jet centre to two ends, we take first interaction points
between two profiles 0.1ms and 0.5ms as the intersection point of the validity domain of
0.5ms case. The 0.1ms result will be considered only within this interval. From figure 4.14
(d)-(g), we can easily identify the coincided region of two measurements in the far field of
the jet. For example, for (f) where z = 6cm, the integrated profile takes 0.1ms result from
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Figure 4.15: Results comparison of time-averaged plane velocity magnitude for PIV measure-
ment time lag (a) ∆t =0.1ms and (b) ∆t =0.5ms as well as (c) the integrated results. Horizontal
profiles for (d) z = 1cm, (e) z = 4cm, (f) z =6cm and (g) z = 9cm.
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Chapter 4. Numerical and experimental setup and post-processing methodology

x = −2.2cm to x = 0 where two profiles across. In figure 4.14 (c), we present the integrated
time-averaged plane velocity magnitude. Similar process will be done for other statistical
quantities. Integrated statistical quantities will be compared with that calculated by DNS to
validate the numerical approach.

4.7 Summary

In this chapter, we have presented the principal methodology applied in this study, mainly
consisting of

• Geometrical, physical and numerical configurations

• Experimental setup and data treatment

• Method to determine the accuracies of statistical quantities from numerical simulation
and experimental measurements

• Numerical 1D post-processing methodology to calculate 1D characteristic jet quantities
from 3D DNS results

The accuracies of statistical quantities consist of that related to mesh convergence or cam-
era precision as well as that related to uncorrelated samples. A conservative estimation is
performed for DNS as GCI is directly used to characterise numerical error and numbers of
uncorrelated samples are underestimated.

1D characteristic jet quantities are calculated by integration on DNS fields. A theoretical
correction is conducted to associate Gaussian quantities with their corresponding Top-hat
formulations.

We will present in the next chapter the DNS simulation results and their comparisons with
experimental measurements.
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Part III

Simulation results





Chapter 5

DNS results analysis and experimental
comparisons

In this chapter, we present the DNS simulation results and their comparisons with PIV exper-
imental measurements. The analysis is divided into three parts. Firstly, we focus on the flow
structure. Specifically we compare the 3D time-averaged velocity field with that presented in
the model of Linden et al. (1990) that illustrates the formation of bi-layer distribution. Sec-
ondly, we compare the DNS statistical velocity quantities, the time-averaged and the RMS,
on the mid-plane y = 0 with that obtained by experimental measurements. We seek to val-
idate the DNS jet flow in this step. Thirdly, we compare the two simulation cases (helium
and hydrogen), to evaluate if helium could be treated as a substitutive gas in hydrogen safety
analysis. We particularly focus on their concentration (volume fraction) distribution, as well
as the inclination of the jet axis.

5.1 DNS flow analysis

5.1.1 Global turbulent flow

We first aim at analysing the global flow structure in the main cavity. Simulation results
show that the flow in the cavity is highly turbulent almost everywhere, see figure 5.1 as an
illustration for general flow pattern. On the left-hand side, an instantaneous flow field is
displayed for the helium case where turbulent eddies are shown using Q-criterion. On the
right-hand side, we present instantaneous 2D velocity magnitude on the mid-plane y = 0.

A light gas jet is injected from the cavity floor. Turbulent flow structures are developed around
the jet in the lower part of the cavity then inside the jet in the upper part. In the lower cavity,
jet entrainment generates the inlet flow of fresh air through the bottom opening. Inlet fresh
air passes the injection flow and reaches to the back-end of the cavity, changing its direction
to vertical and finally entering into the jet. This cross-flow contributes to the jet inclination
towards x-negative direction. A recirculation zone is formed between the opposite wall to the
openings and the jet. The rising jet passes through fluid layers with different densities while
a quasi-homogeneous layer appears started from the middle height of the cavity. The helium
jet reaches a higher altitude than hydrogen jet, showing the difference of injection momentum
due to their density difference.

In figure 5.2, we present the distribution of turbulent kinetic energy as well as the term ρ′w′

on the mid-plane y = 0 in the cavity. Local turbulent kinetic energy is maximal inside the
buoyant jet. Large fluctuations are observed, (i) almost everywhere in the upper 1/3 height
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Figure 5.1: Instantaneous flow in the main cavity, Left: iso-contour of Q-criterion equal to
2000 (coloured with vertical velocity), with two iso-contours of volume fraction inlet fresh
air (X1 = 0) and bi-layer interface (X1 = 0.25) in light yellow. Here the Q-criterion is defined
as Q = 1

2

(
||Ω||2 − ||S ||2

)
with Ω the local vorticity tensor and S the strain rate tensor and || ·

|| is the norm defined by ||T || = TijTji . Background colour indicates time-averaged volume
fraction distribution close to walls. Helium case. Right: Instantaneous 2D velocity magnitude√
u2 +w2 on mid-plane y = 0, for hydrogen and helium cases

Figure 5.2: Distribution of (a) turbulent kinetic energy Ekt = 1
2

(
u′u′ + v′v′ +w′w′

)
, (b) the term

ρ′w′ on the mid-plane y =0. Helium case.
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Figure 5.3: ”Streamlines” of time-averaged flow in the main cavity for (a)-(b) hydrogen case
and (c)-(d) helium case, background coloured by time-averaged volume fraction, iso-contour
of volume fraction equal to 25%. Views from x+ to x− direction for (a) and (c) on x = 5cm
and from y− to y+ direction for (b) and (d) on y = −5cm. The number of tracers released is
proportional to volume flux through these faces.

of the cavity, and (ii) at lower height, in the recirculation zone in x-negative direction outside
the jet. Fresh air enters into the cavity through the bottom opening by aspiration affect in a
laminar regime. Besides, the term ρ′w′, representing the mixing turbulent flow, is maximal at
jet border in the lower middle part of the cavity.

In summary, the flow is mainly turbulent in the main cavity. Therefore, in order to compare
with the flow structure assumed in model of Linden et al. (1990), we shall consider analysing
the well-converged time-averaged fields.

5.1.2 Three-layer flow structure in quasi-steady state

In order to verify the existence of bi-layer flow structure assumed in the model of Linden
et al. (1990), where an impenetrable interface is formed between two layers except for the
jet region, we draw the ”streamlines” on the time-averaged velocity field, as presented in
figure 5.3. Technically, these lines cannot be called streamlines as the time-averaged velocity
field is based on statistical operation and does not represent the flow structure at any time.
Nevertheless, these ”streamlines” describe, in statistical sense, the steady flow pattern and
illustrate the formation of bi-layer distribution.

We can easily identify the aspiration of fresh air through the bottom opening, the recircula-
tion zone in the volume opposite the inlet flow, and the entrainment effect pushing the fluid
at exterior of the jet entering into the jet. The rising jet arrives at the ceiling of the cavity, gen-
erating toric flow in each side of the upper cavity. Below this toric flow, a small velocity zone
is formed far away from the jet. This zone divides the cavity into two parts, and corresponds
to a fluid layer in which mixture density varies with altitude. Below the interface, we have a
mixture near fresh air. Above the interface, the mixture density is uniformly distributed.

The flow pattern outside the jet therefore corresponds to a bi-layer configuration. We note LA
the lower layer and LH the upper homogeneous layer. We introduce a third layer, which could
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Figure 5.4: Velocity and density vertical distribution of the environment flow outside the jet.
(a)(b) evaluation of vertical and horizontal components of environment mean velocity outside
of jet region, (c)(d) variation of environmental density, (e)(f) deduced Brunt-Vaisala buoyancy
frequency variation in the cavity. Hydrogen case (a)(c)(e), helium case (b)(d)(f). Stratified
layers LS are coloured in grey. Environmental mean velocity and density are calculated from
far-field region, cf. eq. (4.38) and (4.39).
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be considered as the ”interface” in which the fluid is stratified. This layer is called stratified
layer and noted LS .

In order to evaluate the flow at exterior of the jet, called also the jet ”environment”, we con-
sider applying the methodology presented in section 4.5 about definition of jet region as in
equation (4.38). In figure 5.4-(a)(b), we present the variation of horizontal and vertical com-
ponents of environmental mean velocity, defined as their mean values on the complementary
of the jet region. We note that LS is well impenetrable as the environmental mean vertical
velocity is nearly zero.

Besides, a quasi-linear density stratification is presented in LS , as shown in figure 5.4-(c)(d).
We can thus estimate the Brunt-Vaisala frequency in this layer which corresponds to the fre-
quency of the gravity wave. This frequency is defined as

N =

√
−
g

ρ0

dρe
dz

(5.1)

with ρ0 the density reference, chosen as the density of fresh air. As shown in figure 5.4-(e)(f),
buoyancy frequency reaches its maximum in the middle of this layer, at around z = 9cm for
hydrogen case and z = 10cm for helium case. This maximum frequency is used to define the
vertical extension of LS and to determine the heights of two interfaces.

We take the 70% of the maximum buoyancy frequency as the criteria of the extension of strat-
ified layer LS . This choice will make the vertical component of environmental mean velocity
achieves the same absolute value at two interfaces. In table 5.1, we present the method and
results to determinate two interfaces zAS between LA and LS and zSH between LS and LH .
Hydrogen case possesses larger stratified layer and a little larger homogeneous layer as well.
The change of environmental density is sharper in helium stratified layer. This characteristic
frequency can be captured in the spectrum analysis for vertical velocity at local monitoring
point situated at the far field of the jet (figure 5.5). In the middle of the stratified layer, the
peak of PSD corresponds to a frequency around 8Hz, close to the maximum Brunt-Vaisala
frequency.

This three-layer quasi-steady flow structure is summarised in figure 5.6 on the right-hand
side, and compared with original Linden’s bi-layer structure on the left. Generally, the time-
averaged flow structure obtained by DNS simulation is very close to that analysed in Linden’s
model. The main difference is the existence of a stratified layer between top homogeneous
layer and lower quasi-fresh air. All vertical flow passing through this stratified layer is lo-
cated in the jet region. In Linden’s bi-layer model, this stratified layer is simplified into one
interface. Besides, no-symmetrical flow structure in y-direction is observed for our case, due
to the same-side openings configuration, which are not as assumed as in the original Linden’s
analysis (horizontal openings).

5.1.3 Jet evolution

In this section, we consider the part of the jet flow and its vertical evolution. The jet flow is
characterised by a series of jet quantities defined in the jet theories as presented in section 2.2.
The procedure to calculate these 1D quantities from the fully 3D DNS results is presented in
section 4.5. The analysis will be useful for the chapter 6 where we evaluate the reliability of
the jet theories in our configuration regarding the DNS results. In figure 5.7, we present the
vertical evolution of 5 jet quantities and 3 jet parameters, obtained separately by 1D post-
processing procedures both for helium and hydrogen cases.

In figures (a) and (b), we present respectively the variations of jet volume flux QDNS(z) and
mass flux QDNSm (z). We note firstly at injection z = 0, same volume flux is imposed for two
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DNS Hydrogen DNS Helium

Altitude of max. N (z) 8.75 cm 9.90 cm
Corresponding max. N 6.74 Hz 7.72 Hz
70% max. N 4.72 Hz 5.40 Hz
Interface zAS 5.9 cm 7.9 cm
Mean env. vertical velocity at
interface zAS

0.116 cm/s 0.615 cm/s

Interface zSH 11.3 cm 11.9 cm
Mean env. vertical velocity at
interface zSH

-0.116 cm/s -0.615 cm/s

Table 5.1: Determination of three-layer interfaces: zAS between LA and LS and zSH between
LS and LH .

Figure 5.5: Time variation and the corresponding power spectral density (PSD) of the vertical
velocity fluctuations at monitoring point H, (3cm, 0cm, 10cm) at far field of the jet in the
middle of stratified layer. Helium case.

Figure 5.6: Bi-layer flow structure in quasi-steady regime. Left: original Linden’s structure,
right: flow structure in this study
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cases. Generally both of these profiles increase with the development of the jet. The maximum
flux is achieved at around z = 17cm, in the top homogeneous layer. Both the maximal volume
flux and mass flux of helium jet is slightly larger than hydrogen jet. The jet development
generates a 5 times increase of volume flux and a 20-50 times increase of mass flux in the jet,
illustrating the obvious entrainment effect.

Near the injection where typically z < 2cm, the jet flow is still laminar thus we observe just a
little rise of fluxes and entrainment effect is weak. This entrainment effect is remarkable for
the region of laminar-turbulent jet development, typically for z =2-4cm, both of volume and
mass fluxes rise sharply. This particularly relevant for the mass flux profiles as the entrain-
ment gas is the ambient air which is much denser than the jet gas. The profiles reach local
maxima at z = 5 − 6cm where the turbulent jet is well established. The volume flux keeps
nearly constant in the stratified layer until z = 11− 12cm where its buoyancy force decreases
sharply with its development. At z =15-16cm, turbulent plume is established both for he-
lium jet and hydrogen jet. Near the top opening (z > 17cm), the jet arrives at the ceiling and
changes its direction. The vertical velocity is no longer dominant while both volume and mass
fluxes sharply decrease.

In figures (c) and (d), we present respectively the vertical evolutions of jet momentum flux
MDNS(z) and mass momentum fluxMDNS

m (z). The mass momentum flux, indicating the jet
vertical kinetic energy, increases with the jet development, as the upward buoyancy force
does work. In the turbulent jet region where z =3-10cm, the two profiles of mass momentum
fluxes are nearly coincided because the density difference in the jet is compensated by the
velocity difference. Helium jet possesses higher vertical velocity and lower buoyancy force
(as it is denser) in this region. The mass momentum flux differs between the two cases in
the homogeneous layer. Generally for a Boussinesq jet, the jet momentum flux and the mass
momentum flux possess the same monotonicity, clearly here it is not the case. The momentum
flux decreases. The influence of the density difference changes completely its variation trend.

In figure (e), we present the variation of buoyancy flux BDNS(z), decreasing along the jet in
the two cases. Buoyancy flux is directly linked to the evolution of environmental density.
The buoyancy flux is nearly the same for the two gases in the bottom layer LA and the top
homogeneous layer LH , but differs in the intermediate stratified layer LS . Helium jet possess
higher buoyancy flux in this region due to a large thickness of LS for the helium case. The two
profiles are coincided at level zero in the top homogeneous layer as there is no longer density
difference inside and outside the jet.

In figure (f), we present the variation of characteristic jet radius bDNSG (z), defined in equation
(4.43). It keeps constant in the laminar jet region z < 4− 6cm and increases with the develop-
ment of the jet when entrainment is present. Profiles for hydrogen jet and helium jet possess
almost the same slope in the turbulent jet region as well as in the turbulent plume region, but
horizontal extension for hydrogen jet is larger.

In figure (g), we present the shape change factor which is defined by KDNS(z) = LDNS1σ /2πbDNSG

with LDNS1σ is the perimeter of region Ωb defined in equation (4.42). This factor is equal to 1
if the jet cross-section is a regular circle. The factor goes higher than 1 in laminar jet and
beginning of turbulent jet region mainly due to the cross-flow. The cross-section becomes
nearly a circle at z > 6cm for hydrogen case and z > 8cm for helium jet.

In figure (h), we present the convection-diffusion ratio λDNS(z) calculated by equation (4.45).
For air-hydrogen mixture, ScH2

= 1.42 and for air-helium mixture, ScHe = 1.73. These val-
ues can be found at injection level. In the laminar jet region, λ increases and attains a peak
around 2.2 at z ≈ 3.5cm for hydrogen case and around 1.8 at z ≈ 4cm for helium. This means
that in laminar jet region, at radial direction, mass diffusion is more significant than momen-
tum diffusion as the entrainment effect is not obvious in this region. The ratio continues to
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Figure 5.7: Comparison of profiles of characteristic jet quantities and parameters between
DNS He and DNS H2. (a) profiles of jet volume flux QDNS(z); (b) profiles of jet mass flux
QDNSm (z); (c) profiles of jet momentum fluxMDNS(z); (d) profiles of jet mass momentum flux
MDNS

m (z); (e) profiles of buoyancy flux BDNS(z); (f) profiles of characteristic jet radius under
Gaussian assumption bDNSG (z); (g) profiles of jet shape change factor KDNS(z); (h) profiles of
convection-diffusion ratio λDNS(z). Orange solid lines indicate DNS He results and blue solid
lines correspond to DNS H2 results.
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decrease in the turbulent jet and turbulent plume region. In the homogeneous layer, where
a complete mixing occurs, the local diffusion-convection ratio converges to a constant value,
identical for helium or hydrogen cases. This value corresponds to turbulent Schmidt number
estimated around 0.6 in this case, in good agreement with the theory Craske et al. (2017).

We summary in the table 5.2 the variation of jet flow pattern, characteristic jet quantities and
parameters with their corresponding altitudes in the cavity. Profiles of jet mass and volume
fluxes depend on jet flow structure while its buoyancy flux depends on environmental density
variation. In general, we observe similar profiles for helium and hydrogen cases.

z(cm)
Case H2

z(cm)
Case He

Jet flow
pattern

Three-layer
structure

Q or Qm M Mm B bG K

0-2cm 0-3cm Laminar jet LA → ↘ ↗ ↘ → >1

2-4cm 3-6cm
Laminar-
turbulent
transition

LA ↗ ↘ ↗ ↘ → >1

4-6cm 6-8cm Turbulent jet LA → → ↗ → ↗ >1

6-10cm 8-11cm Turbulent jet LS → → ↗ ↘ ↗ =1

10-11cm 11-12cm
Jet-plume
transition

LS ↗ ↘ ↗ ↘ ↗ =1

11-15cm 12-16cm
Jet-plume
transition

LH ↗ ↘ ↗ → ↗ =1

15-20cm 16-20cm
Turbulent
plume

LH ↗↘ ↘ ↗↘ → ↗ =1

Table 5.2: Variation of jet flow pattern, characteristic jet quantities and parameters in the
cavity and their corresponding heights

5.1.4 Inlet/outlet profiles and global balance

In this section, we focus on the inlet and outlet flows through the two vertical openings. In
figure 5.8, we present firstly the time-averaged velocities. The inlet flow is laminar and its
normal velocity u is nearly uniform through the bottom opening. Its y component is also
uniform except for the area close to the horizontal ends due to the aspiration cone.

Conversely, the outlet velocity through the top opening is not uniform. The distribution of
the velocity results from the toric flow occurring in the top part of the cavity. Meanwhile, in
figure 5.9, spectrum analysis of y-direction velocity temporal variation at top opening centre
shows a characteristic frequency around 2Hz corresponding to the clapping oscillation of
outlet velocity.

In the second step, we seek to check the global balance of fluxes for the helium and hydrogen
cases (table 5.3).

We set the same injection volume flux. As helium gas is twice heavier than hydrogen, the
mass flux of helium injection is almost the double of hydrogen jet. Helium case possesses
smaller inlet flux (around 10% compared with H2), which indicates its entrainment effect is
little weaker than hydrogen case. The outlet volume flux is in the same order between helium
and hydrogen cases. The mean outlet mixture density is quite close between two cases.
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Figure 5.8: Time-averaged inlet-outlet velocity profiles. Helium case. (a,b) Top vent, (c,d)
Bottom vent; (a,c) Normal velocity u, (b,d) Horizontal tangential velocity v.

Figure 5.9: Temporal variation and corresponding power spectral density (PSD) for varia-
tion of y direction velocity at monitoring point S, (5cm, 0cm, 19.5cm) centre of top opening.
Helium case.

DNS
helium

DNS
hydrogen

Difference
(He-H2)/H2

Injection volume flux Qinj (m3/s) 2.18×10−4 2.18×10−4 0%
Injection mass flux ρinjQinj (kg/s) 0.35×10−4 0.18×10−4 +98%
Inlet volume flux Qin(m3/s) 3.56×10−4 3.93×10−4 -9.6%
Inlet mass flux ρairQin(kg/s) 4.16×10−4 4.59×10−4 -9.6%
Outlet volume flux Qout(m3/s) 5.80×10−4 6.17×10−4 -6.0%
Outlet mass flux ρoutQout(kg/s) 4.51×10−4 4.78×10−4 -5.6%
Outlet mixture density ρout(kg/m3) 0.778 0.774 +0.5%
Balance – volume flux
(Qout −Qin −Qinj )/Qout

1.0% 0.9%

Balance – mass flux
(ρoutQout − ρairQin − ρinjQinj )/ρoutQout

0.1% 0.1%

Ratio Qin/Qinj 1.64 1.80
Ratio ρairQin/ρinjQinj 11.9 25.5

Table 5.3: Comparison inlet-outlet fluxes of DNS helium with DNS hydrogen, global balance
of volume flux and mass flux
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The global balance of the time-averaged volume flux over the cavity, or called dilatation per-
centage, is around 1% for all two cases. Note that this error is related to the numerical post-
processing output. The velocity field is stocked at vertex of cell in the CFD code while the
post-processing integration is calculated on cell face.

The global balance of the time-averaged mass flux through the bottom and the top openings

as well as the injection are calculated by integration operation of time-averaged field (ρ−→u ),
stocked on the cell face, the mass balance error is less than 0.1% for all two cases. The global
conservation of mass flux is valid.

The helium inlet volume flux is 1.64 times of injection flux, while for hydrogen it is 1.80. This
means that the injection volume flux cannot be correctly considered negligible in this case.
However, for mass flux, the inlet mass flux is 11.9 times larger than injection mass flux for
helium case and 25.5 times for hydrogen case. The injection mass flux may be considered
negligible which will introduce only 8% error for helium and 4% error for hydrogen case.

Conclusion 5.1

In conclusion, the flow is mainly turbulent in the cavity thus its structure is characterised
by the time-averaged velocity field. The flow pattern is in agreement with bi-layer structure
assumed in the model of Linden et al. (1990). Quasi-fresh air is presented in the lower cav-
ity and a homogeneous density layer is formed in the top part. The impenetrable interface
defined in Linden’s model corresponds to a stratified layer in which the vertical flow in the
far-field of the jet is nearly zero and environmental density changes quasi-linearly. The jet
flow provides the only connection between the top homogeneous layer and the bottom cavity.

The jet flow can be characterised by vertical variations of the jet quantities. The flow is laminar
at injection. With the development of the jet, the flow transforms into turbulent and a pure
turbulent jet is established in the middle height of the cavity. Due to entrainment effect, the
jet flow varies into a jet-plume then a pure plume in the top layer.

Globally, the conservations of volume flux and mass flux in the cavity are valid whereas the
injection volume flux cannot be considered negligible.

5.2 DNS-PIV flow comparison

In this section, we seek to compare DNS velocity fields with PIV experimental measurements
on the mid-plane y = 0, perpendicular to two openings. As the flow is highly turbulent in both
cases (DNS and PIV), we seek to compare the distribution of statistical quantities, typically
the time-averaged velocity and its RMS on the observation plane.

5.2.1 Time-averaged velocity

We firstly compare the time-averaged velocity fields. As only one camera was operated in PIV
measurement (type 2D2C), we only have two velocity components parallel to the measure
plane y = 0.

Time-averaged vertical velocity field

The vertical velocity is the key parameter in the jet theories and is representative to assess the
jet modelling. In figure 5.10, we present the distribution of vertical velocity on this observa-
tion plane y = 0, for PIV and DNS helium case.
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Figure 5.10: Comparison of time-averaged vertical velocity, on the mid-plane y = 0: (a) PIV
He (b) DNS He, (c)-(h) horizontal profiles on z =0.5cm, 4cm, 8cm, 12cm, 16cm and 19.5cm.
Profiles z = 0.5cm and z = 19.5cm represent the mid-level of two openings while other 4 pro-
files represent respectively: z = 4cm, laminar-turbulent transition area of the jet; z = 8cm,
turbulent jet area; z = 12cm, turbulent plume area; z = 16cm, in the centre of the top homoge-
neous layer. Orange solid lines indicate DNS profiles while black dashed lines are PIV results,
error bars correspond to total measurement accuracy with 95% confidence interval.
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5.2 DNS-PIV flow comparison

In figure 5.10-(a)(b), the jet region can be easily identified. The jet centre velocity decreases
along the jet due to the buoyancy force. The radius of the jet becomes larger with its develop-
ment, as the consequence of jet entrainment effect. The vertical velocity is nearly zero on the
left-hand side of the jet in the stratified layer and on right-hand side all along the cavity.

The contour of the vertical velocity are almost identical for small vertical velocity (around
0.2-0.4m/s) in PIV and DNS cases. The drop of jet inertia seems more pronounced in PIV
case. In order to compare more precisely the distribution, we presented in figure 5.10-(c)(h) a
series of horizontal profiles taken from the above results.

- At z = 0.5cm and 4cm, the profiles DNS and PIV are almost superposed except for
the jet centre. The maximum velocity in the jet centre at injection is around 5.5m/s,
in agreement with a Poiseuille injection axis-symmetrical profile. The radius of the jet
shrinks a little at z = 4cm compared with injection area. The jet centre is lightly inclined
towards left-hand side at this altitude.

- At z = 8cm and 12cm, the profiles DNS and PIV have similar shape. The expansion of
the jet is much larger than below area as the result of entrainment effect. PIV profiles
present Gaussian form with larger horizontal expansion compared with DNS profiles.
PIV jet centre is inclined a little more than DNS (-0.8cm vs -1.1cm at z = 8cm), with a
lower jet centre velocity (around 20%) compared with DNS case as well.

- At z = 16cm, where the jet transforms into a pure plume, the profiles DNS and PIV are
almost superposed except for the jet centre region. PIV jet centre is situated just a little
on the left of DNS centre, with a smaller centre velocity.

- At z = 19.5cm, we have a very good agreement of profiles DNS and PIV. The jet flow
blends in with outflux through the top opening, generating S profiles at this level. The
outlet velocity presents an obvious component in vertical direction.

Time-averaged x-direction velocity field

The horizontal velocity is representative for entrainment effect, and it is used to assess the
inlet and outlet fluxes modelling through two openings. In figure 5.11, we present the dis-
tribution of time-averaged horizontal x-direction velocity on the observation plane y = 0, for
PIV and DNS helium as well as six horizontal profiles.

In figure 5.11-(a)(b), we note that the area near two openings presents the maximum of the
x-direction velocity. The jet inclination is clearly identified. We seek more detailed analysis
from its variation along six horizontal lines:

- At z = 0.5cm, profiles DNS and PIV are superposed. The horizontal velocity is nearly
invariable along the inlet flow through the bottom opening until the border of the jet
(x = 2 − 5cm). On the left of the jet (x-negative region), local horizontal velocity is
towards the jet centre.

- At z = 4cm, profiles DNS and PIV are almost similar. In the jet centre, PIV result repre-
sents a higher x-component than DNS.

- At z = 8cm and 12cm, shapes of DNS and PIV profiles are similar, but we can identify
the PIV results present higher x-direction velocities and its jet centre is lightly more
inclined. The difference between PIV and DNS is much remarkable on the left-hand side
of the jet where the DNS jet seems more concentrated in the centre. At z = 12cm, PIV
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Figure 5.11: Comparison of time-averaged x-direction horizontal velocity, on the mid-plane
y = 0: (a) PIV He (b) DNS He, (c)-(h) horizontal profiles on z =0.5cm, 4cm, 8cm, 12cm, 16cm
and 19.5cm, orange solid lines indicate DNS profiles while black dashed lines are PIV results,
error bars correspond to total measurement accuracy with 95% confidence interval.
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5.2 DNS-PIV flow comparison

measurement becomes more inaccurate in the jet centre as local RMS becomes much
higher than DNS. PIV horizontal velocity is larger on the left-hand side of the jet but
smaller than DNS on the other side.

- At z = 16cm, jet centre could be identified as the only peak in DNS profile. There is
another peak in PIV profile at x = 3cm where local horizontal velocity is much larger
than DNS.

- At z = 19.5cm, two profiles are almost identical. A very good agreement on the outlet
flux could be identified.

General remark

Generally, a good agreement is found for time-averaged velocity field between PIV and DNS.
There are larger differences for x-direction velocity component, especially for the turbulent jet
region around z = 8cm where large scale horizontal movement of the jet centre is identified
in PIV but not in DNS. Compared to z-direction velocity which is dominated by injection
inertia, x-direction velocity is more self-motion, directly linked to global turbulent flow and
jet entrainment effect.

5.2.2 Velocity RMS

The flow in the cavity is highly turbulent. In order to evaluate the turbulent flow, we consider
comparing the velocity RMS measured in PIV and DNS cases.

RMS of vertical velocity field

In figure 5.12, we present the distribution of vertical velocity RMS on the observation plane
y = 0, for PIV and DNS helium and 6 horizontal profiles for detailed comparison.

In figure 5.12-(a)(b), we can identify the turbulent jet zones in the cavity both for PIV and
DNS cases. PIV result displays a larger extension of turbulent region.

The development of turbulent flow begins on the jet border, presented as two peaks. PIV flow
seems much more turbulent than DNS in this region. Then turbulence progressively invades
the jet centre.

When a turbulent jet is established, the RMS profiles present only one peak, corresponding to
the jet centre. A good agreement between PIV and DNS profiles is found for z = 8cm where
the jet is completely turbulent. The extension of PIV jet is little larger than that of DNS, which
is also shown in time-averaged profiles before.

In the top homogeneous layer, the jet flow is completely transformed into a plume where
a plateau could be observed in the profiles at z = 16cm and z =19.5cm, representing a large
turbulent flow region at these altitudes. The vertical velocity RMS is in the same error interval
for PIV and DNS results.

RMS of x-direction velocity field

The RMS of x-direction velocity is used to analyse the horizontal oscillation of the jet. In
figure 5.13, we present its distribution on the measurement plane y = 0 as well as a series of
horizontal profiles.
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Figure 5.12: Comparison of RMS of vertical velocity, on the mid-plane y = 0: (a) PIV He
(b) DNS He, (c)-(h) horizontal profiles on z =0.5cm, 4cm, 8cm, 12cm, 16cm and 19.5cm,
orange solid lines indicate DNS profiles while black dashed lines are PIV results, error bars
correspond to total measurement accuracy with 95% confidence interval.
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The difference between PIV and DNS are located for z < 12cm. Profiles of DNS and PIV are
quite similar in turbulent jet-plume region (z > 12cm).

For z = 0.5cm where the jet is still laminar, a good agreement is found for inlet flow region. In
the recirculation zone in x-negative side of the jet, PIV case presents larger RMS in x-direction
(0.15m/s vs 0.08m/s). At z = 4cm, where the turbulent jet is just established, even if the jet
centre is located at same position at this altitude for PIV and DNS, a large difference at the
jet centre is still observed in these profiles. RMS at jet centre for PIV is twice larger than
DNS. Between z = 4cm and z = 8cm, large differences between two figures are observed. The
jet extension as well as the local x-direction velocity RMS becomes much larger for PIV case
at z = 8cm. This means the horizontal oscillations in turbulent jet region, observed in PIV
measurement, is not correctly captured by DNS.

General remark

Generally, the DNS simulation generates enough fluctuations in the turbulent plume region
(z > 12cm), where local RMS, both in x and z directions, are comparable with PIV measure-
ment. However, DNS flow in jet region (z = 4− 12cm) is not as turbulent as observed by PIV
measurement, especially in x-direction.

5.2.3 Jet inclination and jet centre evolution

We consider evaluating the jet development and compare its evolution at jet centre in the DNS
He, DNS H2 and PIV He cases. The results are presented in figure 5.14. The jet centre at given
altitude is defined as the point where situated the maximum time-averaged vertical velocity
at this altitude.

In figure (a), we present the position of jet centre in the plane y = 0. For DNS simulation,
hydrogen jet is more inclined compared with helium jet. PIV helium jet centre is generally
situated between DNS helium jet centre and DNS hydrogen one. But at the laminar and
turbulent jet region, typically for z < 6cm, PIV jet centre is almost identical with that of DNS
helium jet.

Figure (b) shows the time-averaged vertical velocity variation at jet centre, which is identical
in laminar jet region where z < 2cm, then differs in the turbulent jet region. From z = 2cm
to z = 12cm, DNS helium jet possesses the largest vertical velocity while PIV profile is situ-
ated between DNS helium and DNS hydrogen. Three profiles are quite identical in turbulent
plume region for z > 12cm.

For vertical velocity RMS, presented in figure (c), surprisingly a good agreement between DNS
hydrogen with PIV helium is found for z < 4cm. DNS helium RMS is smaller than the other
two. From z = 4cm to z = 8cm, both DNS profiles are below the PIV profile. The profile peak,
indicating the establishment of a turbulent jet, is situated at around z =4cm for DNS H2,
z =5cm for PIV He and z =6cm for DNS He. Hydrogen injection possesses only half of density
and momentum of helium as well as a little larger upward buoyancy force. Its turbulent jet
flow is thus established earlier in the same environmental variation.

We present in figure (d) the ratio of vertical velocity RMS on its time-average, quantifying
their turbulence level. The turbulent jet development is quite similar between DNS hydrogen
and PIV helium where a constant ratio is established at z = 6cm. DNS helium establishes
lately at z = 8cm. In the well-established turbulent region, all of them possess same level of
turbulent flow ratio around 50%.

Figure (e) presents the centre density variation along the jet. We can identify the density
difference between helium and hydrogen at injection level. The development of the turbulent
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Chapter 5. DNS results analysis and experimental comparisons

Figure 5.13: Comparison of RMS of x-direction horizontal velocity, on the mid-plane y = 0:
(a) PIV He (b) DNS He, (c)-(h) horizontal profiles on z =0.5cm, 4cm, 8cm, 12cm, 16cm and
19.5cm, orange solid lines indicate DNS profiles while black dashed lines are PIV results,
error bars correspond to total measurement accuracy with 95% confidence interval.
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Figure 5.14: Comparison of jet centre variation between DNS He, DNS H2 and PIV He. (a)
evolution of jet centre position with the development of the jet; (b) variation of time-averaged
(AVG) vertical velocity at jet centre; (c) variation of vertical velocity RMS at jet centre; (d)
variation of ratio RMS/AVG of vertical velocity with development of the jet; (e) variation of
local mixture density at jet centre. Orange solid lines indicate DNS He results, blue solid
lines correspond to DNS H2 results while black dashed lines are PIV He results. Error bars
correspond to total measurement accuracy with 95% confidence interval.
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Figure 5.15: Comparison of inlet/outlet vertical profiles through two openings between DNS
and PIV time-averaged results, orange solid lines indicate DNS profiles while black dashed
lines are PIV results, error bars correspond to total measurement accuracy with 95% confi-
dence interval.

flow and jet entrainment facilitate the mixing in the horizontal direction thus the jet centre
density decreases all along the jet. It becomes stable and identical for both of them in the top
homogeneous layer.

5.2.4 Inlet-outlet profiles

Another key indicator is the velocity profiles through the two openings, illustrating the as-
piration and entrainment effects of the jet flow in the cavity. In figure 5.15, three vertical
profiles of the normal velocity are presented at different x locations along the inlet and outlet
vents. Indeed, integrated outlet profiles for PIV case is not easy to be captured. In figure 5.15-
(b), we present the profiles at x = 5.2cm located within the wall thickness. Only the top 0.3cm
region possesses measurements for PIV due to the parallax effect of the cavity wall when the
camera takes photos. In figure 5.15-(c), we present the profiles at x = 4.55cm inside the cavity.

Both inlet and outlet profiles present a good agreement for PIV and DNS. In figure 5.15-(b),
the outlet velocity at z = 19.8cm is nearly identical for DNS and PIV. If we take the integration
of these profiles to estimate the plane inlet/outlet fluxes, we have: for inlet flux from figure (a),
PIV 0.367m2/s, DNS 0.360m2/s (+2%); and for outlet flux from figure (c), PIV 0.304m2/s, DNS
0.295m2/s (-3%). Relative errors are both largely smaller than the measurement accuracies
which validates the comparison. Note that no information is given about the uniformity of
these profiles along the y-axis.

Conclusion 5.2

Considering the PIV-DNS comparison for time-averaged fields, jet evolution and inlet-outlet
profiles, we confirm that DNS simulation is valid and most of the phenomena observed
in the main cavity are correctly modelled, such as turbulent flow, jet flow, far field flow,
aspiration effect, entrainment effect etc. Consequently, DNS simulation results can be treated
as reference.

However, DNS flow in jet region (z = 4 − 12cm) is not as turbulent as observed by PIV mea-
surement, especially in x-direction.
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5.3 Light gas concentration distribution

In hydrogen safety experimental research, helium is often considered as a good substitutive
gas because its density is much lower than air while possessing low operational safety risk.
Helium concentration results are thus used to predict the hydrogen risk (Fuster et al. (2017)).
We have seen in section 5.1 that in the present case, DNS helium and DNS hydrogen possess
similar flow structure. In this section, we will compare their concentration distributions to
verify this statement.

Besides, hydrogen risk is in fact related to its instantaneous concentration distribution but
not systematically to its time-averaged field. In the second step, we are interested in the
comparison between instantaneous and time-averaged concentrations to see if time-averaged
results could be considered indicative or conclusive in risk analysis.

5.3.1 Helium-hydrogen comparison

We first focus on the distribution of time-averaged light gas concentration, illustrated in figure
5.16. The vertical variations of light gas concentration at far-field are similar (three-layer
structure) between hydrogen and helium cases. Their concentrations in the homogeneous
layer are almost identical. Helium interface altitude is little higher than hydrogen.

The major difference between these two cases is the inclination of the jet. The hydrogen jet
is more inclined towards x-negative direction compared with helium jet. From horizontal
profiles figures 5.16-(d)(e), we observe a peak translation with comparable concentration at
jet centre between two cases. Besides, the horizontal extension of hydrogen jet seems larger
than helium one.

The temporal variation of light gas concentration in the cavity is mainly located in the jet
region, as shown in figure 5.18. Maximum local concentration RMS may reach 20% at the
turbulent jet border. In the far field of the jet as well as in the top homogeneous layer, concen-
tration varies very little in the quasi-steady state. Integration in the whole cavity gives their
global mean of the RMS fluctuations: 2.55% for hydrogen case and 2.66% for helium case.
Therefore, the concentration temporal variation is globally comparable between two cases.

5.3.2 Temporal variation of concentration

The time dynamics of instantaneous concentration differs in the jet region and outside. In
figure 5.17, based on 100k samples in quasi-steady state, local Probability Density Function
(PDF) of concentration temporal variation can be approximated from its temporal histogram.
Two monitoring points are considered: point J at jet border and point H at far field of the jet.

The concentration PDF is not symmetrical at jet border. Local time-averaged concentration
(15.0%) does not correspond to the concentration the most probably observed in this loca-
tion, represented by the peak in its histogram (7.8%). Concentration temporal variation at
this point is very large, with its RMS equal to 7.4%, almost a half of its average. Its 1-σ in-
terval (average±RMS) contains 82% of samples, largely superior to that in standard Gaussian
distribution (68%).

Reversely, in the far field of the jet (point H), concentration PDF is nearly Gaussian. Its time-
averaged value (23.4%) corresponds to the most frequently presented concentration. Its 1-σ
interval (average±RMS) contains 67.4% of samples, very close to its theoretical value 68%. Be-
sides, local concentration RMS (2.9%) is much smaller compared with point J. Note that this
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Figure 5.16: Comparison He/H2 concentration on the cavity mid-plane y = 0 (a) He case (b)
H2 case, with three horizontal profiles (d)(e)(f) at different levels and one vertical profile (c)
for x = 4cm. Orange solid lines indicate DNS He profiles while blue solid lines are DNS H2
profiles. Error bars correspond to total measurement accuracy with 95% confidence interval.

Figure 5.17: Histogram of instantaneous concentration variation at two monitoring points,
helium case. Left: Point J (0,0,6cm) at jet border, right: Point H (3cm,0,10cm) in the centre of
stratified layer at far field of the jet. 1-σ intervals are coloured in grey.
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Figure 5.18: Distribution of light gas concentration RMS fluctuations at mid-plane y =0, left:
hydrogen case, right: helium case.

Figure 5.19: Comparison of characteristic jet radius bDNSG (z) defined by Gaussian vertical ve-
locity distribution on x-y plane and related characteristic concentration radius (λbG)DNS(z).
(a)-(c) hydrogen case, (d)-(f) helium case. (a)(d) time-averaged light gas concentration at
z =8cm; (b)(e) concentration RMS fluctuations at z =8cm, in the same colour scale. In these 4
figures, white contours indicate regions 1-σ of time-averaged vertical velocity, defined in eq.
(4.42), black contours are regions 1-σ of time-averaged concentration, defined in eq. (4.44).
(c)(f) variation of bDNSG (z) and (λbG)DNS(z) along the jet.
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point H is selected in the mi-height of stratified layer LS where local concentration RMS fluc-
tuations are maximal in the far field region. In contrast, as seen in figure 5.18, concentration
RMS fluctuations are less than 1% in LA and LH .

We now discuss the reliability of time-averaged concentration field in risk analysis context.

Jet region

For the jet region, two sorts of information are needed in risk analysis: the risk region, in
which concentration time fluctuations may present risk, as well as the associated concentra-
tion in this region for consequence evaluation.

If we admit that time-averaged concentration field could be directly used to determine the
risk region, we shall note that this region, defined from average concentration field, does
not accord with the ”jet region” defined in jet theories because the latter one is associated
with vertical velocity cross-section. In fact, the concentration cross-section (or density) is
characterised by (λbG)(z), defined in equation (4.44). DNS results (figure 5.19(c)(f)) show that
this parameter is almost constant (about twice of injection radius) below the homogeneous
layer whereas the characteristic jet radius bG(z) increases along the jet axis.

Nonetheless, we still cannot consider this parameter (λbG) as the indicator of the risk region
due to instability of jet flow. For illustration, we present in figure 5.19, cross-section distri-
butions of average concentration (a)(d) as well as the corresponding RMS fluctuation (b)(e) in
the same colour scale, at an altitude where λ ≈ 1. The density characteristic region defined
from (λbG)(z = 8(cm)) is shown in black contours in these figures. This region clearly does
not cover all the area which potentially presents a risk. On one hand, the concentration at
border of this region (30%) is much larger than the environmental concentration at this al-
titude (around 20% for H2, 15% for He). On the other hand, in the area where the average
concentration is larger than 20%, local RMS fluctuations can also reach to 20%, which means
that the average concentration does not make sense to calculate the lower bound of local con-
centration variation. Consequently, average concentration field cannot provide indications of
jet risk region. This region must be estimated under the conservative safety strategy.

However, average concentration, associated with its RMS fluctuations, is clearly indicative in
terms of order of magnitude of concentrations in risk analysis.

Far-field region

For the far-field region, as local concentration RMS is generally less than 1%, time-averaged
concentration field is indicative (even conclusive) in determination of risk region and relevant
consequence evaluation.

We have seen in the section 5.1.2 that the steady-state far-field concentration distribution can
be characterised by a three-layer structure. We discuss in this part if this structure can be
correctly represented by a few instantaneous concentration fields only.

We present in figure 5.20, the spatio-histogram of concentration distribution in the cavity
(where jet region presents only a very little part). The concentration distribution is divided
into 1000 intervals (0.1% for each) and the histogram is based on the numbers of points
counted in each interval. There are 150x150x300 thus 6.75 million of monitoring points, uni-
formly distributed in the whole cavity. The histogram is coloured differently in three layers
LA,LS and LH .

For illustration, we present results of one instantaneous concentration field in figures (a)(b).
The concentration distribution is clearly related to three-layer structure. Bottom layer LA
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Figure 5.20: Histogram of concentration distribution in the main cavity . (a)(b) present one
instantaneous concentration field; (c)(d) are the average histograms of 10 instantaneous con-
centration fields; (e)(f) are the histograms based on the time-averaged concentration fields.
Results are presented with three-layer structure. LA bottom quasi-fresh air layer, LS inter-
mediate stratified layer and LH top homogeneous layer. (g)(h) illustrate the difference of his-
togram in the top homogeneous layer LH between instantaneous fields and time-averaged
field in log scale.

Sorbonne Université • 127 •
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covers mainly all points of concentration lower than 10%. In stratified layer LS , local con-
centration is almost uniformly distributed from 10% to 30%. A clear peak is observed in the
top layer LA, corresponding to the homogeneous concentration. Jet region is negligible in this
figure as there are very few samples where local concentration is larger than 50%.

We consider comparing time-averaged concentration field with instantaneous fields. In fig-
ures (c)(d), the spatio-temporal histograms are presented, based on 10 independent instan-
taneous fields (with samples separating time 1s). The histogram is counted first separately
for each instant, then averaged in each concentration interval. For comparison, another two
histograms, based on time-averaged concentration fields, are presented in figures (e)(f). Their
distributions in the layers LA and LS are almost the same. We thus focus on the top homoge-
neous layer LH .

In figures (g)(h), we compare specifically histograms in LH for the average of 10 instantaneous
fields and time-averaged field in logarithm scale. We note that their peaks are in the same po-
sition with its horizontal extension much larger for instantaneous fields. We note that this
additional horizontal extension for instantaneous fields contains samples in higher concen-
tration intervals (40%-60%). This may present potential risk which cannot be estimated from
the time-averaged field.

In general, the three-layer structure, obtained from average concentration field, can be simply
calculated from 10 instantaneous concentration fields.

Conclusion 5.3

Firstly, by comparing DNS helium and hydrogen results, we confirm that, in this case, helium
can be used as a substitutive gas for hydrogen risk analysis. These two cases present similar
bi-layer distribution, same homogeneous concentration and comparable concentration RMS
fluctuations. The main difference between two cases is the jet inclination, where hydrogen jet
inclines a little more.

Secondly, time-averaged concentration field can be considered indicative (even conclusive) in
risk analysis except in the jet area. In the jet region, average field cannot provide indications
of jet risk region. This region must be estimated under the conservative safety strategy. In the
far field region, steady-state concentration peak can be characterised by several instantaneous
fields only.

5.4 Summary and discussion

In this chapter, we have presented the simulation results and its comparison with experimen-
tal measurements. We mainly focus on:

• Time-averaged flow pattern and its comparison with the bi-layer structure assumed in
model of Linden et al. (1990)

• Jet evolution in the cavity

• Global conservation of volume flux and mass flux

• Comparison DNS-PIV for time-averaged velocity and RMS

• Comparison helium-hydrogen on concentration distribution

• Comparison instantaneous concentration fields with the time-averaged field
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The flow is mainly turbulent in the cavity, thus its structure is characterised by the time-
averaged fields. The principle of Linden’s bi-layer flow structure is valid in the present case,
but its interface is extended into a stratified layer in which mixture density varies quasi-
linearly. The jet flow changes its form with its development: laminar jet, turbulent jet, tur-
bulent jet plume, pure plume. Concentration distribution is similar between hydrogen and
helium cases and time-averaged concentration is generally indicative in risk analysis.

Comparison DNS-PIV presents generally encouraging results. Most physical phenomena ob-
served in the cavity are correctly modelled by DNS. Their differences are mainly shown on
the x-direction velocity RMS in turbulent jet region.

In fact, the numerical modelling of a turbulent jet is technically much more difficult than that
of a pure plume, as reported in Bernard-Michel et al. (2019). The turbulent jet flow is more
sensitive to environmental perturbations while in PIV measurement, small perturbations at
injection jet border, or other wispy environmental movements, even not obvious, may change
completely the jet form and its axis in its development. As this kind of perturbation is usually
aleatory, its influence appears more clearly in RMS fields rather than time-averaged fields.

Despite these differences, the numerical results is considered valid and will be treated as
”ground truth” in the following study of the models. In the next chapter, DNS-deduced pro-
files of 1D jet quantities, will be compared with theoretical results based on different turbu-
lent jet models.
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Chapter 6

Turbulent jet models applied in
stratified environment

In this chapter, we compare DNS estimated 1D profiles of the jet with theoretical models, to
evaluate the performance of these models applied in stratified environment. Two profiles are
specifically analysed: jet volume flux, which is directly used in global conservation equation
in ventilation model (see chapter 3), as well as Top-hat jet concentration, which is indicative
in safety analysis. Recall that the jet extension defined in jet theories by its velocity field
does not make sense in safety analysis thus will not be detailed analysed. There are two
aspects particularly considered in the modelling, the Boussinesq approximation, under which
the density difference is neglected, as well as the entrainment modelling, with a constant or
variable entrainment coefficient. Three approaches presented in chapter 2, Boussinesq models
of Morton et al. (1956) and Kaminski et al. (2005), and non-Boussinesq model of Rooney and
Linden (1996) will be analysed.

Model of Morton et al. (1956) is based on the Boussinesq approximation and constant en-
trainment coefficient, commonly used in hydrogen safety assessment (Fuster et al. (2017)).
However, as the key parameter entrainment coefficient is very sensible to the estimated con-
centration, its partial use is generally based on a highly conservative method. The choice of
this coefficient is not related to its physical value, but a universal one, in order to guarantee
the safety margin in risk analysis. As a result, additional cost is required for compensate the
wrong estimation of concentration. We study in the first section, the influence of each as-
sumption applied in this model and seek to reduce the sensitivity of entrainment coefficient.

Besides, model of Rooney and Linden (1996) is also proposed to be used. In the second sec-
tion, we will present the performance of this non-Boussinesq model and to compare it with the
Boussinesq approach. In the models of Morton et al. (1956) and Rooney and Linden (1996),
entrainment is modelled by a constant coefficient α. We will compare in the third section of
this chapter, the variation of this entrainment coefficient, estimated by DNS results, with its
choice in α−constant models.

In the last part, we analyse the performance of typical α−variable turbulent jet model, that
of Kaminski et al. (2005). In this model, Richardson number is used as an indicator of jet
flow based on which the entrainment coefficient is predicted. We compare the predicted α
profile with DNS deduced α profile. Then a quasi-analytical approach is presented to see if
this α−variable model could be directly used in hydrogen injection problem.

Most of the modelling results presented in this chapter is based on hydrogen case while he-
lium case presents similar profiles and same remarks (He results presented in appendix F).
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6.1 Boussinesq approaches with constant entrainment coefficient

Morton et al. (1956) proposed a turbulent jet model under Boussinesq approximation. Ex-
plicit analytical solutions are provided for pure plume (with small momentum injection) as
presented in equations (2.41)-(2.45) for homogeneous environment. Hunt and Kaye (2001)
proposed a three-step correction for a general injection condition by introducing a virtual
origin displacement. In this approach, the entrainment coefficient αT , under Top-hat as-
sumption and assumed constant along the jet, shall be provided beforehand.

6.1.1 Conservative safety approach

We present firstly the conservative safety approach, where entrainment coefficient is chosen
equal to 0.05 in a conservative way (for any injection flux), as this choice provides always
overestimated concentration for a general jet or plume. Analytical solutions (2.41)-(2.45) are
directly applied with point source and small injection assumption (virtual origin displace-
ment neglected).

Q(z) =
6
5

( 9
10

)1/3
π2/3αT

4/3B1/3
0 z5/3 (6.1)

with αT = 0.05. Then the Top-hat reduced gravity is deduced by

G′T (z) =
B0

Q(z)
(6.2)

with B0 is calculated by injection condition. Light gas concentration is then deduced by G′T (z)

X1,T (z) =
ρa

ρa − ρinj
G′T (z)
g

(6.3)

For illustration, we present in figure 6.1 the profiles Q(z) and X1,T (z) for hydrogen case ob-
tained from this method, compared with DNS deduced profiles considered as reference. The
volume flux is largely underestimated and the estimated hydrogen concentration is always
larger than the DNS reference value. The above formula is not applicable until z =14cm and
jet concentration decreases in the rest of the cavity. In this case, the conservative strategy
provides a very large safety margin while the homogeneous layer could not be correctly mod-
elled. This margin will generate large additional cost just due to the bad estimation of the
model.

Figure 6.1: Profiles conservative approach with αT =0.05. Left: variation of jet volume flux
Q(z), right: variation of Top-hat concentration X1,T (z). Hydrogen case, DNS deduced profiles
in solid lines, 1D modelling in dashed lines.
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6.1.2 Injection volume flux correction

We apply the first correction of the model on the injection volume flux by introducing the
notion of virtual origin. We consider the injection flux is as in the middle range of a pure
buoyancy plume whose source is situated at zt < 0 below the injection level, and whose buoy-
ancy flux is conserved along the plume and equal to B0. This virtual plume is developed to
possess the same cross-section volume flux as injection flux at injection level z = 0. Conse-
quently,

Qinj =Q(0) =
6
5

( 9
10

)1/3
π2/3αT

4/3B1/3
0 (−zt)5/3 (6.4)

We have thus a relation between αT and zt. We change the value of αT to minimise discrep-
ancy of concentration profile between DNS estimated profiles and analytical solutions in the
lower mixing layer LA where the unstratified environment assumption could be considered
valid. We obtain

αT = 0.065 for hydrogen case, αT = 0.058 for helium case (6.5)

which correspond to the value of pure turbulent jet.

We present in figure 6.2 the profiles of jet volume flux Q(z) and Top-hat concentration X1,T (z)
obtained by 1D modelling and DNS. The estimation of jet volume flux is valid for area z < 2cm
then for z =11-16cm where presented respectively the laminar jet flow and turbulent plume
flow. 1D model underestimates the volume flux at turbulent jet region. For hydrogen concen-
tration, the 1D estimation is good below the stratified layer around z <10cm and underesti-
mates in the top homogeneous layer. This is mainly because the Morton’s analytical solution
is based on unstratified environment assumption where the far-field environmental density is
considered as fresh air all along the jet. This hypothesis is valid only in the lower part of the
cavity.

Figure 6.2: Injection volume flux correction approach with αT =0.065. Left: variation of
jet volume flux Q(z), right: variation of Top-hat concentration X1,T (z). Hydrogen case, DNS
deduced profiles in solid lines, 1D modelling in dashed lines.

6.1.3 Quasi-analytical approach considering environmental variation

The third approach is to solve conservation equations numerically by 4th order Runge-Kutta
method (RK4) with ”accurate” initial conditions and variation of environmental density along
the jet, called here quasi-analytical solutions.
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Chapter 6. Turbulent jet models applied in stratified environment

Classic Boussinesq model is provided by Morton et al. (1956) based on three characteristic jet
quantities: volume flux Q, momentum fluxM and buoyancy flux B. Conservation equations
of the jet are called Morton’s equation (see section 2.3.2)

dQ
dz

= 2αT
√
πM

dM
dz

=
BQ
M

dB
dz

= −N2Q

(6.6)

with N2 = −
g

ρ0

dρe
dz

the square of the Brunt-Vaisala buoyancy frequency.

The initial conditions Q(0),M(0),B(0) are provided by DNS measurement at z = 0. N2(z) pro-
file is calculated by ρDNSe (z) in 4th order. These differential equations are solved numerically
by 4th order Runge-Kutta method with altitude discretisation dz = δx the mesh cell size.

As here the environmental density ρe(z) is provided by DNS results, thus we are no longer in a
homogeneous environment assumption. We need to determine the entrainment coefficient αT
in this case. As the buoyancy flux B is the only characteristic jet quantity influenced directly
by the variation of ρe(z), the entrainment coefficient αT is chosen to minimise the discrepancy
between BDNS(z) and that calculated by theoretical models in the top homogeneous layer.
The value of αT is selected as

αT = 0.052 for hydrogen case, αT = 0.038 for helium case (6.7)

which correspond physically to a pure turbulent jet.

In figure 6.3, we present the variation of three characteristic jet quantities in Morton’s model
as well as the variation of Top-hat concentration evolution X1,T (z), both for DNS estimated
profiles and quasi-analytical solutions. The modelling results are much more precise com-
pared with previous approaches.

• The estimation ofQ(z) is not bad at the beginning of the jet (z < 2.5cm) where the jet flow
is laminar. It is followed by a sudden increase until z ≈ 5cm due to specific geometrical
configuration in the present case (same-side vertical openings). Detailed analysis has
presented in chapter 5.

• Profiles of momentum fluxM(z) are very dissimilar. Momentum flux decreases in DNS
due to large density difference of air and hydrogen. Boussinesq models cannot therefore
provide good estimation of this quantity.

• Two profiles of B(z) nearly superpose in the homogeneous layer typically for z > 12cm.
Profiles reach to zero in the upper part of the cavity. A difference around 20% could be
found at the altitude 3-7cm.

• The estimation of hydrogen concentration X1,T (z) is good all along the jet, especially
in the homogeneous layer where two profiles converge to the same level. The estima-
tion of light gas concentration is much better if we take into account the variation of
environmental density.

6.1.4 Sensitivity of entrainment coefficient

We discuss in this section the sensitivity of entrainment coefficient αT . As in Morton’s model,
this coefficient is chosen constant along the jet, its value is reported highly sensitive to the
modelling results, especially for the concentration modelling. (Bernard-Michel (2014))
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Figure 6.3: Quasi-analytical Boussinesq approach with αT =0.052, considering the variation
of far-field environmental density. (a) variation of jet volume flux Q(z), (b) variation of jet mo-
mentum fluxM(z), (c) variation of jet buoyancy flux B(z), (d) Top-hat concentration X1,T (z).
Hydrogen case, DNS deduced profiles in solid lines, 1D modelling in dashed lines.

We begin with the original conservative approach. In figure 6.4-(a)(b), we present the compar-
ison of profiles Q(z) and X1,T (z) obtained with αT =0.05 and 0.10, compared with reference
DNS profiles. We remark an obvious sensitivity of the value of αT . Passage from αT =0.05 to
0.10 will result in an increase 2.52 times of jet volume flux and a decrease 33.5% (in absolute
value) of concentration at z = 20cm. A wrong estimation of this value will generate large er-
rors in modelling. If αT is applied as 0.10, the modelled concentration is underestimated for
region z >15cm thus the conservative safety strategy is not always guaranteed. That is why in
the practical use, a highly conservative value αT =0.05 is preferred to be always applied.

If we take the correction of injection volume flux, but still apply Morton’s analytical solutions
in unstratified environment, we have results as presented in 6.4-(c)(d). If we pass αT from
0.05 to 0.10, the modelled jet volume flux will still increase 1.83 times, but its concentration
decreases only 10.4% in absolute value. Compared with the above results, the sensitivity of
entrainment coefficient is largely reduced for concentration estimation.

Lastly, we take the quasi-analytical approach considering environment variation. Results are
presented in 6.4-(e)(f). If we change αT from 0.05 to 0.10, the jet volume flux will still in-
crease 1.79 times but for hydrogen concentration, it will only decrease 4.6% in absolute value.
Height of homogeneous layer keeps the same. Consequently, we could consider this approach
provides an error-controllable concentration modelling in the jet.
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Figure 6.4: Evaluation of sensitivity of entrainment coefficient, comparison profiles DNS and
1D Boussinesq modelling with αT =0.05 and 0.10. Hydrogen case. (a)(b) Profiles Q(z) and
X1,T (z) obtained by conservative approach; (c)(d) Profiles Q(z) and X1,T (z) obtained after cor-
rection of injection volume flux; (e)(f) Profiles Q(z) and X1,T (z) obtained by quasi-analytical
approach considering environmental variation.
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Conclusion 6.1

In conclusion, direct use of analytical solutions of Morton et al. (1956) presents two aspects
of limits. Firstly is the unknown variation of environmental density, which is commonly
observed in a confined environment where injected hydrogen gas accumulates in the cavity.
Secondly is the entrainment coefficient is not easy to determine and very sensible to final
results. That is why in practical use, a very conservative approach is always required, gen-
erating huge safety margin and large additional cost. A good estimation is obtained if we
provide reasonable corrections of injection flux and environmental variation. However, Mor-
ton’s Boussinesq model cannot correctly evaluate the influence of density difference in the
mixing, which provides wrong estimation of jet momentum flux profile.

The high sensitivity of entrainment coefficient is due to wrong assumptions applied in the
resolution. Physical corrections, as for injection flux or environmental variation will improve
the sensitivity of entrainment coefficient in hydrogen concentration modelling. Among these
corrections, injection flux correction can be directly used in natural ventilation model (will
be detailed analysed in chapter 7) but environment change cannot be directly integrated in
ventilation model. Generally, the more physical conditions are applied in the model, the more
precise the prediction will be and the less sensitivity of entrainment coefficient will present
to concentration modelling result.

6.2 Non Boussinesq approaches with constant entrainment coeffi-
cient

In non-Boussinesq model of Rooney and Linden (1996), the conservation of volume flux is no
longer assumed. The flow is considered compressible. Three characteristic jet quantities are
used: the volume flux Q, the mass flux Qm and the momentum mass fluxMm. Under Top-hat
assumption, the conservation equations could be rewritten as an ODE system (2.62)-(2.64)
where only characteristic jet quantities appear.



dQm
dz

= 2αT ρe

√
πMm

ρ0
dMm

dz
= g

(
ρe −
Qm
Q

)
QQm
Mm

dQ
dz

= 2αT

√
πMm

ρ0

(6.8)

6.2.1 Quasi-analytical approach and evaluation of Boussinesq effect

Similar as that done in Boussinesq case, the above ODE system can be solved numerically by
4th order Runge-Kutta method with initial conditions Q(0),Qm(0),Mm(0) provided by injec-
tion conditions. The environmental density profile is provided by DNS ρDNSe (z) as well. The
reference density ρ0 is selected as that of the fresh air ρ0 = ρa.

The method to determine αT is the same as before. We select αT to minimise the discrepancy
of buoyancy flux B(z) between DNS estimated profile and that from Rooney’s model, as this
parameter characterises the variation of buoyancy force and density difference between inside
and outside the jet. A simple relation is used to deduce B:

B =
g

ρa
(ρeQ−Qm) (6.9)
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Note that in non Boussinesq model, the definition of entrainment coefficient is different with

that in Boussinesq case. An additional term
√
ρT (z)
ρ0

is added in its definition. See equation
(2.57). Here we have from DNS results,

αT = 0.124 for hydrogen case, αT = 0.082 for helium case (6.10)

This does not represent any jet form as in non Boussinesq model, entrainment coefficient is
no longer an indicator of jet flow pattern (it depends on mixture density as well).

In figure 6.5, we present profiles of characteristic jet quantities: volume flux Q(z), mass flux
Qm(z), mass momentum fluxMm(z), buoyancy flux B(z) as well as the Top-hat jet hydrogen
concentration X1,T (z), for DNS hydrogen case and 1D non Boussinesq quasi-analytical mod-
elling.

• The model provides nearly linear profiles for Q and Qm, which are accurate around the
injection laminar jet region z < 3cm. The model provides a relative error around 20-25%
in the homogeneous layer for Q and Qm.

• The estimation of buoyancy flux (d) is accurate especially for homogeneous layer where
z > 10cm. The model overestimates the buoyancy flux B around 20-25% for 3cm < z <
8cm.

• The profile of jet concentration (e) is well modelled in the cavity. The top homogeneous
layer clearly appears and its height is well estimated.

• The estimation of mass momentum represents the most important difference between
Boussinesq model and non-Boussinesq model. Not as in Boussinesq case, non Boussi-
nesq model provides good estimation of mass momentum flux for region z < 8cm.

Furthermore, if we compare the estimation of volume flux Q(z) and hydrogen concentration
X1,T (z) between Boussinesq model and non-Boussinesq model, as presented in figure 6.6, we
will find that two profiles are quite similar. In the stratified layer below the interface, the
estimated jet volume fluxes are almost identical for two cases. The non-Boussinesq estimated
concentration is lightly larger than that of Boussinesq. In the top homogeneous layer, non-
Boussinesq model provides a larger Q and the same concentration as in Boussinesq case.

In summary, compared with Boussinesq approach, non Boussinesq model provides a good
estimation of mass momentum profile, but their performance is quite identical for other char-
acteristic jet quantities and parameters.

The treatment of momentum term, which represents the jet kinetic energy, is quite different
whether we study in Boussinesq case or not (see detailed demonstration in appendix A). In
Boussinesq model, the density difference is totally ignored that the revolution of momentum
flux in the jet is entirely based on the reference density whereas in non-Boussinesq model, the
density difference is well considered in conservation equations.

6.2.2 Sensitivity of entrainment coefficient

Rooney and Linden (1996) provided a non-Boussinesq approach and associated analytical
solutions, see equations (2.68)-(2.73). The same as in Morton’s Boussinesq model, these ana-
lytical solutions are for a pure plume with no momentum at injection. An additional virtual
origin correction is usually needed, see Carlotti and Hunt (2005). Besides, analytical solu-
tions are valid only for homogeneous environment where both environmental density ρe and
buoyancy flux B are assumed constant along the jet.
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6.2 Non Boussinesq approaches with constant entrainment coefficient

Figure 6.5: Quasi-analytical non Boussinesq approach with αT =0.124, considering the varia-
tion of far-field environmental density. (a) variation of jet volume flux Q(z), (b) variation of jet
mass flux Qm(z), (c) variation of jet mass momentum fluxMm(z), (d) variation of jet buoyancy
flux B(z), (e)Top-hat concentration X1,T (z). Hydrogen case, DNS deduced profiles in solid
lines, 1D modelling in dashed lines.
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Figure 6.6: Comparison of quasi-analytical resolution in Boussinesq approach and non
Boussinesq approach. Left: variation of jet volume flux Q(z), right: variation of Top-hat
concentration X1,T (z). Hydrogen case, DNS deduced profiles in solid lines, 1D modelling
in dashed lines.

Same as presented in the section 6.1.4, we examine the sensitivity of entrainment coefficient
with different approaches of non-Boussinesq model. In figure 6.7, we present modelling re-
sults of volume flux and hydrogen concentration profiles with two values of entrainment co-
efficient, 0.05 and 0.10. And for three approaches: (a)(b) correspond to direct application of
Rooney’s analytical solutions eq. (2.68)-(2.73) without any correction, like the conservative
safety method applied in Boussinesq model. (c)(d) present the results of analytical solutions
but with injection correction (by introducing virtual origin displacement). Lastly, (e)(f) rep-
resent the quasi-analytical approach proposed in the above section 6.2.1.

Use of analytical solutions results in high sensitivity of αT to modelling results. Change of
entrainment coefficient from 0.05 to 0.10 will make the jet volume flux doubles (2.00 times
for its direct use and 1.92 times after injection correction). Hydrogen concentration decreases
18.3% in absolute value for direct application and 15.1% after injection correction. However,
compared with Boussinesq results (figure 6.4), the sensitivity of αT as well as the overesti-
mated hydrogen concentration (safety margin) for non Boussinesq solutions is smaller. Non
Boussinesq model provides relatively a better estimation.

If we consider the environmental variation and apply quasi-analytical approach, this change
for αT from 0.05 to 0.10 will keep 1.81 times increase for volume flux but largely reduced to
6.3% decrease in absolute value for hydrogen concentration in the jet.

Conclusion 6.2

In conclusion, compared with Boussinesq models, use of non Boussinesq approaches presents
following aspects of interests. The variation of density difference is considered in the demon-
stration and the modelling of momentum term is much better than in Boussinesq case. If en-
vironmental variation is correctly provided, the jet evolution (volume flux and concentration)
will be almost identical to that in Boussinesq case, very well matching with DNS reference
profiles. Besides, direct use of non Boussinesq analytical solutions generates a safety margin
smaller than Boussinesq solutions.

Besides, the entrainment coefficient in non Boussinesq model is larger than that in Boussinesq
model due to additional term in its definition.
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Figure 6.7: Evaluation of sensitivity of entrainment coefficient, comparison profiles DNS and
1D non Boussinesq modelling with αT =0.05 and 0.10. Hydrogen case. (a)(b) Profiles Q(z)
and X1,T (z) obtained by direct application of Rooney’s analytical approach; (c)(d) Profiles
Q(z) and X1,T (z) obtained after correction of injection volume flux; (e)(f) Profiles Q(z) and
X1,T (z) obtained by quasi-analytical approach considering environmental variation.
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6.3 Turbulent jet modelling with variable entrainment coefficient

Experimental studies show that the entrainment coefficient is variable with jet development
(e.g. Cariteau (2010b)). In this section, we study the variation α(z) along the jet. On the one
hand, we test the reliability of several models in the literature to provide the variation of α(z).
On the other hand, we test the performance of α-variable turbulent jet models, such as that
of Kaminski et al. (2005).

6.3.1 Variation of entrainment coefficient along the jet

The entrainment coefficient possesses different definitions under Boussinesq or non-Boussinesq
assumptions (see equation (4.72)). It depends also on the profile assumption of jet parameter
(Top-hat or Gaussian). The relation between Top-hat entrainment coefficient αT and Gaussian
αG is simple: αT =

√
2αG. In this section, only Top-hat entrainment coefficients are presented

and analysed.

The variation of αT can be estimated indirectly from entrainment velocity, which can be mea-
sured from DNS time-averaged results. We analyse separately the DNS deduced profiles
αDNST (z) in Boussinesq and non-Boussinesq cases.

Boussinesq case

Under the Boussinesq approximation and Top-hat assumption, the entrainment coefficient is
linked to the entrainment velocity and vertical velocity: αT (z) = ue(z)/wT (z).

We present in the figure 6.8-(a)(b) the variation of DNS estimated Boussinesq entrainment co-
efficient along the jet αDNS−BT (z), for hydrogen and helium cases, as well as the best-estimated
constant αT determined by quasi-analytical resolution in section 6.1.3 (0.052 for H2 and 0.038
for He). The variation of αDNS−BT (z) presents generally a continuous increase along the jet.
Comparing with jet evolution (table 5.2), we divide the profile into 5 regions.

- Laminar region where z <2-3cm, entrainment coefficient is very little and nearly zero.
The jet flow is completely laminar, and the entrainment effect is not obviously pre-
sented.

- Turbulent flow developing region where 2cm< z < 4cm for H2 and 3cm< z < 6cm for
He, entrainment coefficient continues increasing along the jet. The jet flow is more and
more turbulent, the entrainment effect is more and more important.

- Pure turbulent jet region where 4cm< z < 11cm for H2 and 6cm< z < 12cm for He, the
jet flow is completely turbulent and keeps in the jet form. The entrainment coefficient
is stable with αT=0.04-0.05, corresponding to a pure turbulent jet.

- Jet-plume region where 11cm< z < 15cm for H2 and 12cm< z < 15cm for He, the en-
trainment effect is more and more significant with decreasing buoyancy and momentum
force. The jet is becoming progressively a turbulent plume. At z = 15cm, the entrain-
ment coefficient corresponds to a quasi-pure turbulent plume with αT=0.12-0.15.

- Outflow region where z > 15cm, the pressure difference across top opening begins to
influence the flow direction as the opening is situated vertically in the lateral wall. The
momentum force in vertical direction decreases sharply and the entrainment coefficient
as well. The turbulent jet theory is no longer applicable.
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Figure 6.8: Variation of entrainment coefficient along the jet, DNS profiles and best-estimated
values in α−constant models. (a) hydrogen jet under Boussinesq approximation, (b) helium
jet under Boussinesq approximation, (c) hydrogen jet for non Boussinesq case, (d) helium jet
for non Boussinesq case. DNS results are in solid lines while best-estimated values are in
dashed lines.

We compare the profile of αDNS−BT (z) with best-estimated αT obtained from quasi-analytical
α-constant approach (in section 6.1.3). The best-estimated value corresponds to the pure tur-
bulent jet region where local variation of αDNS−BT is in a plateau. This value is representative
to the flow regime mostly presented in the jet development. Roughly speaking, we may also
consider it corresponds to the value of the entrainment coefficient averaged along the jet.

The variation of B(z), which, according to Morton’s theory, is directly linked to the Brunt-
Vaisala buoyancy frequency and associated with the slope change of environmental density
variation ρe(z).

dB
dz

= −N2Q, with N =

√
−
g

ρ0

dρe
dz

(6.11)

As presented in figure 5.4(e)(f), this buoyancy frequency presents a clear peak in the jet devel-
opment, around z = 9cm for hydrogen case and z =10cm for helium case, corresponding to the
levels where environmental stratification is the most obviously presented. In quasi-analytical
resolution, B(z) is selected as the key quantity to determine the value of αT . Therefore, the
best-estimated αT must be chosen to provide good modelling results in the stratified region
where environmental density changes sharply with increasing altitude, especially for the level
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whereN reaches to its maximum. In the present case, this stratified region is nearly coincided
with the pure turbulent jet plateau where αDNS−BT (z) changes little.

Non-Boussinesq case

In non-Boussinesq model, the entrainment coefficient is defined not only related to entrain-
ment velocity and vertical velocity, but also with the mixture density:

αT (z) =
ue(z)

wT (z)
√
ρT (z)
ρ0

(6.12)

with ρ0 = ρa density of fresh air chosen as reference in this study, very dense comparing to
pure helium (density ratio 7:1) and pure hydrogen (density ratio 14:1).

We present in the figure 6.8-(c)(d) the variation of DNS estimated non Boussinesq entrain-
ment coefficient along the jet, defined in equation (4.86). As the density variation is consid-
ered in non-Boussinesq model, the difference αT between hydrogen case and helium case is
significant at z =4-8cm where a turbulent jet is developing.

If we consider the choice of best-estimated αT applied in non Boussinesq quasi-analytical
approach, as presented in section 6.2.1 (0.124 for hydrogen case and 0.082 for helium case),
these best-estimated values are equal to the DNS measured αDNST at jet-plume transition area
at around z = 13cm. Their values are quite different with injection gas.

All above observations illustrate the limit of non Boussinesq model. Non Boussinesq entrain-
ment coefficient is not directly related to jet flow pattern. Thus, its value is generally much
more difficult to determine. For example, in this case, a turbulent jet of helium and hydrogen
does not possess the same non-Boussinesq αT , even if their flow patterns are very similar. The
αT calculated in this section cannot be directly used for other configurations.

6.3.2 Modelling of entrainment coefficient by jet Richardson number

In the literature, jet Richardson number is considered as an indicator of jet-plume transition
and associated entrainment coefficient variation. The jet Richardson number is defined as the
ratio of buoyancy effect and the flow shear effect.

Ri(z) =
bT
wT 2

ρe − ρT
ρ0

g (6.13)

with ρ0 = ρa the density reference equal to that of fresh air.

In figure 6.9 on the left, we present the variation of Richardson number along the jet, esti-
mated from DNS results. The jet Richardson number increases along the jet, in agreement
with the transition of jet flow: laminar jet - turbulent jet - turbulent jet-plume - turbulent
plume. It is less than 0.1 for a pure jet and around 1 for jet-plume transition.

Model of Papanicolaou et al. (2008)

Papanicolaou et al. (2008) summarised from experimental study a formula for entrainment
coefficient as function of jet Richardson number

α = αj − (αj −αp)
Ri(z)
Rip

(6.14)
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6.3 Turbulent jet modelling with variable entrainment coefficient

Figure 6.9: DNS evaluation of jet Richardson number variation and associated simple mod-
elled entrainment coefficient variation. Left: DNS deduced variation of jet Richardson num-
ber, hydrogen jet in blue line, helium jet in orange line. Right: variation of entrainment
coefficient deduced by model of Papanicolaou et al. (2008) in dashed lines, compared with
DNS profile in solid lines, hydrogen case.

with parameters αj ,αp,Rip determined by experiments.

We present in the figure 6.9 on the right the variation of entrainment coefficient, obtained by
formula of Papanicolaou et al. (2008), for hydrogen case as an example. The parameters are
chosen αj = 0.055 ,αp = 0.083, Rip = 0.522 as recommended by Jirka (2004). This modelling
seems not too bad, except for laminar injection flow region (z < 3cm). However, the relation
α with Richardson number seems not as simple as linear, as presented in this model, the
Richardson number increases three decades along the jet but entrainment coefficient clearly
does not.

Model of Kaminski et al. (2005)

Modelling of entrainment coefficient variation can also be found in α−variable turbulent jet
models such as that of Kaminski et al. (2005). This model is proposed for a turbulent jet
under Boussinesq approximation and in a homogeneous environment (ρe(z) =constant). The
entrainment coefficient is a function with jet altitude α(z), depending on jet radius bT (z), jet
Richardson number Ri(z) and a parameter A(z) called buoyancy parameter variable along the
jet.

α (z) =
0.135

2
+
(
1− 1

A (z)

)
Ri(z) +

bT (z)
2

dlnA(z)
dz

(6.15)

Carazzo et al. (2006) proposed an empiric formula for this buoyancy parameter. A(z) depends
on whether the flow is a pure jet, in jet-plume transition or a pure plume, see equation (2.52).
The jet-plume part begins at altitude Lmix and ends at 5Lmix, with the characteristic length
Lmix, named Fischer’s mixing length (Fischer et al. (1979)), calculated by

Lmix = π1/4Ri−1/2
inj

d
2

(6.16)

where Riinj is injection Richardson number, could be evaluated by the injection conditions,
here around 0.006 for both cases. Numerical application gives Lmix =8.7cm for hydrogen case
and 9cm for helium case, theoretically corresponding to the beginning height of the pure jet
region as if the jet were immersed in a homogeneous environment.
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Figure 6.10: Kaminski’s α−variation profiles, deduced by DNS jet Richardson number varia-
tion, compared with DNS estimated variation of αT (z) as reference. Left: hydrogen jet, right:
helium jet.

By applying these empiric formulas, using DNS estimated Top-hat jet radius bDNST (z) and
Richardson number RiDNS(z), we obtained the profile of α(z) calculatewd from equation
(6.15), presented in figure 6.10 in dashed lines. Kaminski’s model overestimates entirely the
entrainment coefficient. One main reason is its wrong modelling at injection point z = 0. DNS
results shows that the flow is very regular and laminar at injection level where local entrain-
ment coefficient is nearly zero. However, Kaminski’s modelling provides a pure turbulent jet
just after injection with α0 ≈ 0.07.

We shall particularly note that the Kaminski’s formulation eq. (6.15) is valid rigorously only if
the jet is in a homogeneous environment, see demonstration in appendix A.2 for more details.
That is why this formula is not applicable for z =8-10cm typically the jet is immersed in a
highly stratified environment.

6.3.3 Application of Kaminski’s α−variable turbulent jet model

Model of Kaminski et al. (2005) is a Boussinesq approach with variable entrainment coeffi-
cient, applied in homogeneous environment. Like classic Boussinesq model of Morton et al.
(1956), the conservation equations of Kaminski et al. (2005) are based on three characteris-
tic jet quantities, the volume flux Q, the momentum flux M and the buoyancy flux B. The
buoyancy flux is considered as a constant B0 as this model is valid only for homogeneous en-
vironment. The conservation equations are like that of classic Boussinesq model of Morton
et al. (1956) but with variable entrainment coefficient α(z).

dQ
dz

= 2α(z)
√
πM

dM
dz

=
B0Q
M

dB
dz

= 0

(6.17)

with α(z) calculated from expression (6.15).

We aim at solving this system numerically, by using 4th order Runge-Kutta method. The initial
conditions Q(0),M(0),B0 are provided by DNS measurements. The entrainment coefficient
α(z) is calculated by characteristic jet quantities. In formula of α(z) (6.15), the jet radius can
be calculated by bT (z) = Q(z)/

√
πM(z), and the Richardson number can be written with jet

quantities:
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6.3 Turbulent jet modelling with variable entrainment coefficient

Figure 6.11: Evaluation of Kaminski’s α−variable Boussinesq turbulent jet models. (a) varia-
tion of jet volume flux Q(z), (b) variation of jet Top-hat concentration X1,T (z), (c) variation of
jet Richardson number, (d) variation of entrainment coefficient αT (z). Hydrogen case, DNS
reference results in solid lines and results from 1D models in dashed lines.

Figure 6.12: Resolution of Kaminski’s jet conservation equations (6.17) by DNS estimated α
profile. Left: jet volume flux Q(z), right jet Top-hat concentration X1,T (z). Hydrogen case,
DNS reference results in solid lines and results from 1D models in dashed lines.
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Chapter 6. Turbulent jet models applied in stratified environment

Ri(z) =
1
√
π

B0Q2(z)
M5/2(z)

(6.18)

The variation α(z) shall be provided beforehand for system resolution. It is considered as a
constant equal to α0 in the first iteration. Then the ODE (6.17) will be solved numerically to
obtain profiles of Q(z) andM(z). The profile of α(z) is deduced and used in the next iteration.

In figure 6.11, we present the variation of volume flux Q(z), hydrogen concentration X1,T (z),
Richardson numberRi(z) and entrainment coefficient αT (z) obtained by Kaminski’s α-variable
model, compared with DNS. The model provides good estimation for the region z < 7cm, in
the lower mixing layer where far-field environmental density varies little. However, beyond
this limit, Kaminski’s model overestimates the jet volume flux and underestimates the jet
concentration. This is because the unstratified environment assumption is no longer valid. In
addition, the Richardson number is largely underestimated (up to 1/10) all along the jet. The
estimation of entrainment coefficient is not accurate as well.

In order to examine if the error is due to the bad estimation of entrainment coefficient along
the jet, we take the DNS estimated αDNS−BT (z) into quasi-analytical resolution of system 6.17.
The results comparisons are presented in figure 6.12. Evidently, the modelling results match
better with DNS profiles. However, this approach does not provide a good estimation for
concentration variation in the top homogeneous layer. This is due to the variation of environ-
mental density is not considered in the model.

Conclusion 6.3

In conclusion, the entrainment coefficient varies with the development of the jet. In Boussi-
nesq case, its variation is associated with jet flow pattern. The best-estimated value in α-
constant model corresponds to its physical value measured from DNS at the level where the
local buoyancy frequency reaches its maximum. This remark is not valid for non Boussinesq
case where entrainment coefficient depends also on the density variation.

α-variable models like Kaminski et al. (2005) could not provide accurate estimated profiles
as this model is supposed to be applied in unstratified environment only. The far-field envi-
ronmental density variation will largely influence the development of the jet and variation of
entrainment coefficient along the jet.

6.4 Summary and discussion

In this chapter, we focus on turbulent jet models applied in stratified bi-layer type environ-
ment. We have presented:

• Applications of Boussinesq and non Boussinesq α-constant jet models

• Variation of entrainment coefficient along the jet developed in stratified environment

• Applications of Boussinesq α-variable jet model

We focus on the model performance and the choice of entrainment coefficient αT . The analysis
consists of two aspects of modelling, (i) if the Boussinesq approximation is applied, and (ii) if
the entrainment coefficient is chosen constant or variable along the jet.
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6.4 Summary and discussion

The analysis is divided into three parts. Firstly we focus on constant entrainment coeffi-
cient models, classic Boussinesq model of Morton et al. (1956) and non-Boussinesq model of
Rooney and Linden (1996).

Both Boussinesq and non Boussinesq models possess analytical solutions. These analytical so-
lutions cannot provide accurate variations of jet quantities as both of them are valid in homo-
geneous environment only. If the environmental variation is provided, both Boussinesq and
non-Boussinesq models can provide a good estimation of jet concentration variation X1,T (z).
The sensitivity of entrainment coefficient is also well improved.

Secondly, we discuss the variation of entrainment coefficient α(z) along the jet and its best-
estimated choice in α-constant models.

The entrainment coefficient varies with the jet development. It depends on the jet model
selected and the profile assumption (Gaussian or Top-hat) adopted in the modelling. No gen-
eral conclusion is found for non Boussinesq case as αNB depends on jet density evolution. In
Boussinesq case, the entrainment coefficient depends generally only on the flow pattern. Jet
Richardson number can be considered as an indicator of variation α(z). The best-estimated
αT in α-constant models corresponds to the jet regime mostly presented in the cavity, and
matches its physical value measured from DNS at the level where the local buoyancy fre-
quency reaches its maximum.

Thirdly, we test the reliability of several α-variable models applied in bi-layer environment.
The validity of these models is limited in the lower part of the cavity where environmen-
tal density changes little. Application of these models in stratified environment should be
coupled with ventilation model providing environmental change.

From results obtained in this chapter, a summary of pros and cons of different turbulent jet
models is presented in table 6.1, for its practical use for air-hydrogen mixing problem in bi-
layer-like stratified environment.

In condition of large injection flow rate, the hydrogen risk may be not only presented in the jet
region, but also in the whole top part of the cavity. We will present the global concentration
modelling in the next chapter.
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Chapter 7

Solving bi-layer parameters

In 1D modelling, the light gas distribution can be characterised by the profile of light gas
concentration (volume fraction) at far field of the jet, or called environmental concentration
as a function of altitude. Linden et al. (1990) have proposed a classical natural ventilation
model with two-vented cavity. In this model, the distribution of light gas concentration in the
far field of the jet is considered as in bi-layer structure, with a homogeneous layer situated
in the top cavity. Global conservation equations are established by flow pattern analysis.
Analytical solutions are then deduced with turbulent jet models.

In this chapter, we will firstly evaluate, from DNS reference results, best-estimated bi-layer
parameters (interface height zi and homogeneous concentration X1,i) and verify the valid-
ity of a series of global conservation equations assumed in the ventilation model. Then we
propose to improve the formulation of ventilation solutions by applying different physical
assumptions.

7.1 Bi-layer modelling and its best-estimated solutions

In this section, we seek to determine the best-estimated (BE) bi-layer parameters from DNS
results. The best-estimated parameters are the solutions of Linden’s bi-layer model, based
on which all conservation equations established in the model are valid. These parameters
will be determined from hydrostatic pressure variation and global balance. From DNS, the
best-estimated results are summarised in table 7.2 in the end of this section.

7.1.1 Hydrostatic pressure, neutral level and discharge parameter

We select the hydrostatic pressure at z = 0 outside the studied cavity as the hydrostatic refer-
ence. Ambient air, with uniform density ρa, presents in the exterior of the cavity. Thus, the
exterior hydrostatic pressure varies linearly with altitude z.

Pe(z) = −ρagz, with Pe(0) = 0 (7.1)

The interior hydrostatic pressure profile depends on variation of environmental density ρe(z)
inside the cavity where the interior hydrostatic pressure at z = 0 is linked to inlet kinetic
energy, deduced from Bernoulli’s theorem:

Pi(z) = Pi(0)−
∫ z

0
ρe(s)gds, with Pi(0) = Pe(0)− cb

2
ρau

2
b (7.2)
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Figure 7.1: Variation of environmental density (left) and hydrostatic pressure (right) inside
and outside the cavity. DNS Hydrogen case in blue lines and DNS helium case in orange lines.

where cb = 0.61 a typical choice of inlet discharge parameter by Vauquelin et al. (2017a). We
retain this value for the following study.

At ceiling of the cavity, where is situated top opening, the difference between interior and
exterior pressure will be linked to outlet flux kinetic energy

Pe(H)− Pi(H) = −ct
2
ρoutu

2
t (7.3)

As the vertical extension of two opening is relatively small comparing with cavity height, the
inlet/outlet flux through two openings can be characterised by its mean values. We note ut,
ub mean velocity respectively for top and bottom opening. Its DNS estimated values can be
calculated simply by

uDNSb =
QDNSb

Sb
, uDNSt =

QDNSt

St
(7.4)

with Sb = St =WHv = 10cm2 = 0.001m2 surface of the two openings. From the linear relation
of Pe (7.1), using DNS deduced profile ρDNSe (z) in relation (7.2), we obtain Pe(H)−Pi(H). Then
regrouping it with equation (7.3), we obtain ct = 0.446 for hydrogen case, ct = 0.428 for helium
case. Both of them are smaller than cb chosen equal to 0.61, in agreement with conclusion of
Vauquelin et al. (2017a).

In figure 7.1, we present the DNS estimated variation of environmental density as well as
hydrostatic pressure profiles inside and outside the cavity obtained from above equations.
Hydrostatic pressure profile is quite identical for helium and hydrogen cases. Besides, inside
and outside pressure profiles cross at neutral level zn where Pe(zn) = Pi(zn). Its value will
be calculated from DNS interior pressure profile, summarised in table 7.2 at the end of this
section.

7.1.2 Determination of best-estimated bi-layer parameters

Model of Linden et al. (1990) is based on the bi-layer distribution of light gas concentration
thus also for mixture density. The modelled density distribution divides the cavity into two
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7.1 Bi-layer modelling and its best-estimated solutions

parts. The mixture density is considered equal to fresh air in the bottom layer and homoge-
neous in the top layer. By identification of global conservation equations of mass and volume,
we let the best-estimated value of ρi equal to DNS estimated mean outlet density deduced
from outlet mass flux QDNSm,t and volume flux QDNSt :

ρBEi =
QDNSm,t

QDNSt

(7.5)

The best-estimated mixture density as well as corresponding volume fraction XBE1,i for hydro-
gen and helium cases are presented in table 7.2 at the end of this section.

In hydrogen risk analysis context, the best-estimated interface altitude shall be set to make
the total amount of light gas accumulated in the cavity, calculated from bilayer modelling,
equal to DNS, in order to have the same system enthalpy. Therefore, the best-estimated bi-
layer interface altitude zBEi results from the identification of the following integral estimated
from DNS and from bi-layer model.

IDNS =
∫ H

0
XDNS1,e (z)dz, IBE = XBE1,e (H − zBEi ) (7.6)

The best-estimated interface height zBEi is thus defined as

zBEi =H − I
DNS

XBE1,i

(7.7)

with XBE1,i the best-estimated homogeneous concentration, corresponding to the mean concen-
tration of outlet gas. The obtained results zBEi are summarised in table 7.2 at the end of this
section.

In figure 7.2, we present the best-estimated bi-layer profiles compared with DNS. Profiles of
hydrostatic pressure are calibrated by identification of neutral plan zn.

7.1.3 Estimation of inlet/outlet fluxes

In the model of Linden et al. (1990), inlet and outlet volume fluxes Qt ,Qb are calculated
from bi-layer parameters zi ,ρi . The demonstration are presented in section 3.1.5 by applying
Bernoulli’s theorem and hydrostatic pressure variation. Recall the expressions of volume flux
through bottom opening Qb and outlet volume flux through top opening Qt: equations (3.18)
and (3.19).

Qt = St

√
2ct

ρa − ρi
ρi

g(H − zn) (7.8)

Qb = Sb

√
2cb

ρa − ρi
ρa

g(zn − zi) (7.9)

Then, the inlet and outlet mass fluxes will be then deduced simply by

Qm,b = ρaQb, Qm,t = ρiQt (7.10)

We present in the table 7.1 estimation results from above equations by using best-estimated
bi-layer parameters (columns Linden BE) in table 7.2. Generally the above equations provide
very good estimation of these fluxes. The inlet volume and mass fluxes are correctly calculated
while the outlet fluxes are estimated with an error around 1%.
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Figure 7.2: Comparison best-estimated bi-layer distribution with DNS. (a) variation of mix-
ture density for hydrogen case, (b) variation of hydrostatic pressure for hydrogen case, (c)
variation of mixture density for helium case, (d) variation of hydrostatic pressure for helium
case. DNS estimated profiles in solid lines, bi-layer modelling results in dashed lines.
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H2
DNS

H2
Linden BE

H2
Error(*)

He
DNS

He
Linden BE

He
Error(*)

Qinj(×10−4m3/s) 2.183 2.183 2.183 2.183

Qb(×10−4m3/s) 3.934 3.934 0.00% 3.558 3.558 0.00%

Qt(×10−4m3/s) 6.171 6.243 1.16% 5.779 5.842 0.74%

Qm,inj(×10−4kg/s) 0.1775 0.1775 0.3515 0.3515

Qm,b(×10−4kg/s) 4.597 4.597 0.00% 4.158 4.158 0.00%

Qm,t(×10−4kg/s) 4.779 4.835 1.16% 4.514 4.547 0.74%

Global balance
Volume flux(**)

0.88% 2.02% 1.00% 1.72%

Global balance
Mass flux(***)

0.09% 1.24% 0.11% 0.84%

Ratio Qinj /Qt 35% 35% 38% 37%

Ratio Qm,inj /Qm,t 3.7% 3.7% 7.8% 7.7%

(*): (Linden BE-DNS)/DNS; (**): (Qt −Qb −Qinj )/Qt; (***): (Qm,t −Qm,b −Qm,inj )/Qm,t

Table 7.1: Inlet/outlet volume flux and mass flux: comparison between results measured
from DNS and estimation from Linden best-estimated bi-layer parameters. Analyse of global
balance.

Conclusion 7.1

We have the best-estimated Linden’s bi-layer solutions presented in the following table, which
ensure good estimations of inlet/out mass and volume fluxes through the two openings.

Hydrogen Helium

cb 0.61 0.61
ct 0.446 0.428
zBEn (cm) 11.25 11.90
zBEi (cm) 7.41 8.72
ρBEi (kg/m3) 0.7744 0.7784
XBE1,i (%) 36.22% 38.69%

Table 7.2: Summary of choice of discharge parameters and best-estimated solutions of the
Linden’s bi-layer model

7.2 Validity of conservation assumptions

In this section, we seek to verify the validity of conservation assumptions required in Linden’s
model by applying the above best-estimated bi-layer parameters.

Firstly we shall note that the global conservations of volume flux (equation (3.20)) and mass
flux (3.24) have already been validated for DNS results in section 5.1.4. Consequently, these
conservations are also valid for Linden’s best-estimated results as a good agreement is pre-
sented for the estimation of inlet-outlet fluxes in table 7.1. The global conservation equa-
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tions are valid with 2% error of volume flux (Qt = Qb + Qinj ) and 1% error of mass flux
(Qm,t =Qm,b +Qm,inj ).

In original Linden’s model, the injection volume flux Qinj is neglected in global conservation
of volume flux (Qt = Qb). This assumption is clearly not valid in the present case. The injec-
tion volume flux presents around 35-37% of volume in the outlet flux. Nonetheless, we may
consider the injection mass flux is negligible as this presents only 4% for hydrogen case and
8% for helium case in the total outlet mass flux through the top opening.

We focus now on another two conservation equations assumed in Linden’s model.

7.2.1 Conservation of specific buoyancy flux below bi-layer interface

In turbulent jet modelling, the variation of far-field environmental density is characterised
by jet buoyancy flux. Linden’s model proposes to treat this quantity as a constant below the
interface level z < zi (see equation (3.23)) as this area is assumed homogeneous with density
ρa. In order to differentiate it with the ordinary definition of jet buoyancy flux (equation
(2.22)), we define here a specific jet buoyancy flux B∗(z) as if the jet were placed in the fresh
air environment.

B∗(z) =
∫
P ∈Ω(z)

ρa − ρ(P )
ρ0

g ·w(P )dS(P ) =
g

ρ0
(ρaQ(z)−Qm(z)) (7.11)

with P a point in the jet at altitude z and Ω(z) jet region at this altitude. ρ0 = ρa the reference
density. Note that B∗(0) = B(0) but generally B∗(z) , B(z) where the latter one is its ordinary
definition calculated with variable far field density ρe(z).

In figure 7.3, we present the DNS estimated profiles of this specific buoyancy flux, B∗DNS(z),
comparing with injection buoyancy flux B0. We note clearly this specific buoyancy flux
B∗DNS(z) is nearly constant around B0 below the bi-layer interface zBEi . The maximum dif-
ference is achieved at z =3cm for H2 case and at z = 4cm for He case, both of them possess
relatively 8% error. At best-estimated bi-layer interface z = zBEi , the relative difference be-
tween B∗DNS(zBEi ) and B0 is 6.2% for hydrogen case and 2.9% for helium case. Consequently,
the conservation of specific buoyancy flux below the interface is valid with a relative error
within 8%.

Figure 7.3: Variation of B∗DNS(z) along the jet (solid lines), calculated from DNS 1D profiles,
and comparison with injection buoyancy flux B0 (dashed lines). Left: hydrogen case, right:
helium case. Zone z > zi is coloured in grey. B∗DNS(z) are nearly constant below the interface.
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7.2 Validity of conservation assumptions

7.2.2 Conservation of volume flux and reduced gravity in the top homogeneous
layer

In model of Linden et al. (1990), two additional conservation equations connecting the jet flow
at interface with the homogeneous layer are also assumed. These two equations are conser-
vation of volume flux and conservation of reduced gravity within the bi-layer homogeneous
layer.

• First one, the volume flux going through the top openingQt shall be equal to the vertical
volume flux in the jet at interface level, direct consequence of conservation of volume
flux within the bi-layer homogeneous layer, see equation (3.21)

Qt =Q(zi) (7.12)

• Second one, the environmental reduced gravity in the top homogeneous layer is as-
sumed equal to that in the jet at interface level as if the jet were placed in the fresh air
environment, see equation (3.27)

g ′ =
ρa − ρT (zi)

ρa
g (7.13)

This equation is clearly equivalent to

ρi = ρT (zi) (7.14)

We seek to validate these two equations (7.12) and (7.14). In table 7.3, DNS and Linden best-
estimated solutions for Qt and ρi are compared respectively with DNS estimated Q(zBEi ) and
ρT (zBEi ). The relative error for equation (7.12) is around 6% for hydrogen and 3% for helium.
Equation (7.14) seems more accurate as its relative error between both sides of the equation
is less than 2% for all cases.

Remark: Regrouping equations (7.12) and (7.14), we deduce the equation conservation of
mass flux in the top homogeneous layer:

Qm,t =Qm(zi) (7.15)

H2
DNS

H2
Linden BE

He
DNS

He
Linden BE

Q(zBEi )(×10−4m3/s) 6.63 5.63

Qt(×10−4m3/s) 6.17 6.24 5.80 5.84

Error Qt(*) 7.4% 6.2% -3.0% -3.7%

ρT (zBEi )(kg/m3) 0.788 0.766

ρi (kg/m3) 0.774 0.774 0.778 0.778

Error ρi(**) 1.7% 1.7% -1.6% -1.6%

(*): ([DNS Q(zBEi )]-[DNS Qt or Linden BE Qt])/[DNS Qt or Linden BE Qt]
(**): ([DNS ρT (zBEi )]-[DNS ρi or Linden BE ρi])/[DNS ρi or Linden BE ρi]

Table 7.3: Validation of conservation of volume flux and reduced gravity in the top homoge-
neous layer. Comparison DNS and Linden best-estimated solutions for Qt and ρi with DNS-
estimated Q(zBEi ) and ρT (zBEi ).
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Chapter 7. Solving bi-layer parameters

Conclusion 7.2

The best-estimated solutions of bi-layer parameters as well as its associated quantities calcu-
lated from Linden’s model satisfy following conservation assumptions:

• Global conservation of mass flux: Qm,t =Qm,b +Qm,inj

• Global conservation of volume flux: Qt =Qb +Qinj

• Conservation of specific jet buoyancy flux below bi-layer interface: B∗(z) = B0, for z < zi

• Conservation of volume flux in the top homogeneous layer: Qt =Q(zi)

• Conservation of reduced gravity in the top homogeneous layer: g ′ = G′T (zi)

• Conservation of mass flux in the top homogeneous layer: Qm,t =Qm(zi)

7.3 Improvements of Linden’s model

In this section, we will present 4 aspects of improvements of Linden’s model. The objective of
this model is to solve bi-layer parameters (zi the altitude of interface and X1,i homogeneous
concentration) by using following conditions as input. Recall that X1,i is directly associated
with ρi and g ′.

- Geometrical configurations, i.e. height of the cavity H , surface of two openings Sb,St

- Injection conditions, including injected gas density ρinj , volume fluxQinj , buoyancy flux
B0 =

ρa−ρinj
ρa

gQinj .

- Discharge coefficients through two openings cb, ct.

- Additional jet parameters: Top-hat jet entrainment coefficient αT and jet virtual origin
displacement zt if this notion is applied in the resolution.

We will see that the conservation equations in ventilation model can be transformed into the
following form:

ξ5

1− ξ
=
A2

C3H4 (7.16)

and

g ′ =
1
C#B0

2/3(ξH)−5/3 (7.17)

with ξ,A,C,C#,H defined differently according to assumptions applied in the resolution. We
have seen in chapter 3 that these formulations are available for Linden-Morton solutions and
Linden-Rooney solutions (see section 3.2.1 and 3.2.2).

7.3.1 Overview of different physical assumptions

The improvements will be focused on fours additional physical assumptions in the system
resolution (as presented in section 3.2.1 - Assumptions 7-10). Here are noted ”DIBO”.
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• Assumption D (Small/Large density range): Under small density assumption, the ratio
ρa/ρi ≈ 1. This ratio is neglected in equation (7.8) and this equation will be written as

Qt =
√

2ctg ′(H − zn) (7.18)

Under large density assumption, this equation is written as

Qt =
√

2ctg ′
ρa
ρi

(H − zn) (7.19)

• Assumption I (Small injection volume/mass flux and choice of conservation princi-
ple): The injection flux is considered relatively small compared with inlet flux. The
small injection assumption can be applied in sense of volume flux or mass flux. Under
small injection volume flux assumption, the Qinj will be neglected in global conserva-
tion of volume flux Qt =Qb +Qinj . This conservation will be rewritten as

Qt =Qb (7.20)

Under small injection mass flux assumption, the Qm,inj will be neglected in global con-
servation of mass flux Qm,t =Qm,b +Qm,inj . This equation will be rewritten as

Qm,t =Qm,b (7.21)

• Assumption B (Jet modelling - Boussinesq/non Boussinesq): The jet evolution is solved
differently in different turbulent jet models. The jet evolution will be calculated at in-
terface (z = zi) then coupled with global conservation equations.

Under Boussinesq approximation, where the mixture density is considered close to that
of fresh air, Morton’s analytical solutions (equations (2.41) and (2.43)) will be used.

Under non-Boussinesq approach, Rooney’s analytical solutions (equations (2.69) and
(2.72)) will be used.

• Assumption O (Virtual origin correction): In original Linden’s model, point source
assumption is applied. The injection radius and flux is considered small enough to
neglect the virtual origin displacement.

This virtual origin correction could be used in the ventilation model. As presented in
figure 7.4, we consider the point source of the jet is situated at z = zt < 0 below the real
injection altitude. The virtual jet source is purely buoyancy. The jet is assumed to be
developed from z = −zt to z = 0 to achieve the correct injection flux at z = 0. Meanwhile,
in ventilation modelling, we imagine a virtual cavity from z = −zt to z =H , presented in
dashed lines in this figure. The virtual inlet flux is equal to the sum of Qb +Qinj and.
The classical ventilation model will then be applied in this virtual cavity with height
H − zt.

In the following sections, we will present how the formulations change if we apply different
physical assumptions. We first study assumptions D and I for global conservation equations.
These two assumptions will determine the formulation of A in equation (7.16). In the second
phase, we study the influence of assumption B in turbulent jet modelling. This assumption
will determine the formulation of C and C# in equations (7.16) and (7.17). And finally we will
see how assumption O will influence the formulation of ξ and H in these equations.
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Figure 7.4: Sketch of the notion of jet virtual origin displacement in ventilation model

7.3.2 Small/Large density range and choice of conservation principle

Case 1: Small density range with conservation of volume flux

As presented in section 3.2.1, the Linden-Morton solutions are based on small density range
assumption where the term ρa/ρi is eliminated in equation Qt (7.8). Besides, principle of
conservation of volume flux is used with small injection assumption applied on volume flux.
The termQinj is neglected in global conservation of volume fluxQt =Qb+Qinj . Consequently,
the conservation of volume flux is rewritten as:

Qt = St
√

2ctg ′(H − zn) = Sb
√

2cbg ′(zn − zi) =Qb (7.22)

Using this equation to eliminate the term zn, the outlet volume flux Qt will be re written as

Qt = A
√
g ′(H − zi) (7.23)

where A is called effective surface of the two openings, defined as

A =
√
ctSbSt√

1
2

(
ct
cb
S2
t + S2

b

) (7.24)

Further demonstration in section 3.2.1 shows this term A appears in final equation (7.16) to
replace the term A.

Case 2: Large density range with conservation of volume flux

As presented in section 3.2.2, the Linden-Rooney solutions are based on large density range
assumption thus the term ρa/ρi kept in place in equationQt (7.8). With principle of conserva-
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tion of volume flux is used with small injection assumption applied on volume flux, we have
this conservation written as

Qt = St

√
2ct

ρa
ρi
g ′(H − zn) = Sb

√
2cbg ′(zn − zi) =Qb (7.25)

We regroup the term ρa/ρi with ct to define a new c∗t

c∗t = ct
ρa
ρi

(7.26)

The equation comes to the same form of equation (7.22). Thus we have the following A∗

replacing the term A in final equation (7.16).

A∗ =

√
c∗t SbSt√

1
2

(
c∗t
cb
S2
t + S2

b

) (7.27)

Case 3: Large density range with conservation of mass flux

We have seen in section 5.1.4 that neglecting injection volume flux in global balance will
introduce 35% error while this error decreases to 4% if we neglect injection mass flux instead
of volume flux. Therefore, we consider to apply conservation of mass flux with small injection
assumption applied on Qm,inj . Thus we have the global conservation of mass flux by applying
equations (7.8) and (7.9).

Qm,t = ρiQt = ρiSt

√
2ct

ρa − ρi
ρi

g(H − zn) = ρaSb

√
2cb

ρa − ρi
ρa

g(zn − zi) = ρaQb =Qm,b (7.28)

This equation can be simplified to

St

√
2ct

ρi
ρa
g ′(H − zn) = Sb

√
2cbg ′(zn − zi) (7.29)

Same as done in case 2, we regroup term ρi/ρa with ct to define a new c∗∗t :

c∗∗t = ct
ρi
ρa

(7.30)

and we have

A∗∗ =

√
c∗∗t SbSt√

1
2

(
c∗∗t
cb
S2
t + S2

b

) (7.31)

will replace the term A in final equation (7.16). In this case, the outlet volume flux can be
written as

Qm,t = ρiQt = ρaA
∗∗√g ′(H − zi) (7.32)

Numerical application

The numerical values of these parameters are presented in table 7.4, calculated from DNS
best-estimated solutions. As ρi < ρa, we have c∗∗t < ct < c

∗
t . The value of c∗t , applied in case 2

with conservation of volume flux, is in the same order as cb. The value c∗∗t applied in case 3
with conservation of mass flux, is only a half of cb. The assumption applied in the resolution
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will influence largely the value of discharge parameter as well as the effective surface up to
50% in the present case.

Discharge parameter H2 He

cb 0.61 0.61
ct 0.446 0.428
c∗t 0.673 0.642
c∗∗t 0.296 0.285

Effective opening surface H2 He

Sb, St(cm2) 10 10
A(cm2) 7.18 7.09
A∗(cm2) 8.00 7.91
A∗∗(cm2) 6.31 6.23

Table 7.4: Numerical application of discharge parameters and effective opening surface under
different assumptions, results calculated from DNS best-estimated results

7.3.3 Turbulent jet modelling

The jet is assumed to be immersed in a homogeneous environment with density ρa below the
bi-layer interface. Therefore, analytical jet solutions can be applied in the ventilation model.
Its formulation depends on the jet model chosen, Morton’s solutions for Boussinesq model, as
well as Rooney’s solutions for non Boussinesq model.

Morton’s Boussinesq model

As presented in section 3.2.1, Morton’s Boussinesq solutions equations (2.41) and (2.43) are
used in Linden-Morton solutions, these equations are written as

Q (z) = C(B0(z − zt)5)
1/3

(7.33)

G′T (z) =
1
C

(
B0

2(z − zt)−5
)1/3

(7.34)

with C a universal constant depending only on the entrainment constant αT .

C = 2.4852αT
4/3 (7.35)

and zt the virtual origin displacement defined in the jet theory. This term is neglected in
Linden-Morton solutions by applying point source assumption.

Demonstration in section 3.2.1 shows the constant C will be replaced to the term C and C# in
final equations of the model (7.16) and (7.17).

Rooney’s non Boussinesq model

As presented in section 3.2.2, Rooney’s non Boussinesq solutions equations (2.68), (2.69) and
(2.71) are used in Linden-Rooney solutions, these equations are written as

Qm(z) = Cρa(B0(z − zt)5)1/3 (7.36)

Q(z) = C∗(z)(B0(z − zt)5)1/3 (7.37)

G′T (z) =
1

C∗(z)

(
B0

2(z − zt)−5
)1/3

(7.38)
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with C∗(z) a function of z

C∗(z) = C

1 +
(

zB
(z − zt)

)5/3 = 2.4852αT
4/3

1 +
(

zB
(z − zt)

)5/3 (7.39)

zt is the virtual origin displacement defined in the jet theory. This term is neglected in Linden-
Rooney solutions by applying point source assumption. And zB is the characteristic length of
Boussinesq effect defined in equation (2.74). Note that zB depends on the value of αT and B0.

If we apply the conservation principle for volume flux, as presented in section 3.2.2, C∗(zi)
will replace the term C and C# in final equation of the model (7.16) and (7.17), see equations
(3.47) and (3.49).

The formulation will be a little complicated if we apply the conservation equation for mass
flux. In this case, it is the term Cρa thus a constant appears in formulation of Qm but the term
C∗(z) appears in formulation of G′T . Therefore, we cannot apply directly the demonstration in
section 3.2.1.

We neglect here the term zt to simply the formulation. Regrouping (7.29) and (7.36) with
equation (7.15) connecting jet mass flux at interface with outlet mass flux, we have

Qm,t = ρaA
∗∗√g ′(H − zi) =Qm(zi) = Cρa(B0z

5
i )1/3 (7.40)

Replacing g ′ by G′T (zi) and applying equation (7.38), the above equation can be rewritten as

z5
i

H − zi
=

A∗∗2

C∗(zi)C2 (7.41)

Compared with formulation equation (7.16), we have

C = C∗1/3(zi)C
2/3 (7.42)

However, for equation (7.17), we have C# = C∗(zi) by direct application of equation (7.38).

7.3.4 Virtual origin correction

We have seen in section 3.2, when virtual origin displacement is neglected, we have ξ = zi/H
and H =H terms appear in the final equations of the model (7.16) and (7.17).

If we consider virtual origin correction in ventilation model, the system will be solved in a
virtual cavity from zt < 0 to H with zt virtual origin displacement defined in the jet models.
Thus, in this case, the total height of the virtual cavity is H − zt and the height of interface
above the virtual origin is zi − zt. Consequently, we have

ξ =
zi − zt
H − zt

, H =H − zt (7.43)

in equations (7.16) and (7.17).

The length of virtual origin displacement zt depends on applied turbulent jet model and the
value of αT , which may be different in Boussinesq and non Boussinesq cases. In a general case,
the literature reported αT will be used. Then zt will be calculated from injection condition.
In order to well fix the influence of virtual origin correction in system resolution, here we
apply double conditions both at injection level z = 0 and at best-estimated interface level zBEi
to determine the values of αT and zt.
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Boussinesq case

We apply conditions on jet volume flux.{
Qinj =Q(0) = 2.4852αT 4/3B1/3

0 (−zt)5/3

Qt =Q(zBEi ) = 2.4852αT 4/3B1/3
0 (zBEi − zt)

5/3 (7.44)

We obtain the best-estimated solutions

αT = 0.093, zt = −8.54cm for hydrogen case, αT = 0.070, zt = −10.9cm for helium case
(7.45)

We note here the additional virtual origin displacement is equal to almost the half of cavity
height thus may not be neglected.

Non Boussinesq case

As injection flux is pure light gas (with known density), the injection condition identification
will be equivalent for volume flux (7.37) and for mass flux (7.36). Therefore,{

Qm,inj =Qm(0) = 2.4852ρaB1/3
0 αT

4/3(−zt)5/3

Qt =Qm(zBEi ) = 2.4852ρaB1/3
0 αT

4/3(zBEi − zt)
5/3 (7.46)

We obtain the best-estimated solutions

αT = 0.148, zt = −1.19cm for hydrogen case, αT = 0.105, zt = −2.40cm for helium case
(7.47)

The value αT for non Boussinesq model is larger than that in Boussinesq case. The virtual
original displacement zt is largely smaller than that obtained in Boussinesq case.

And by applying injection conditions, we have

zB = 5.64cm for hydrogen case, zB = 7.20cm for helium case (7.48)

which is in the same order of the cavity height. The non Boussinesq effect is thus obviously
presented in the jet flow within the whole cavity.

*

Important remark: We note that the αT obtained in this section are different with that pre-
sented in the chapter 6. This is because we suppose the jet is immersed in a homogeneous
environment with density ρa below the interface. Therefore, the αT applied in Linden’s bi-
layer model shall be equivalent to the physical value of αT as if the jet were placed in an
unstratified environment. Practically, Boussinesq αT will be chosen from literature depend-
ing on jet form. However, it is difficult to determine the non Boussinesq αT as this value
depends also on the jet mixture density.

Conclusion 7.3

We summarise the following procedure for solving bi-layer parameters. zi can be solved from
ξ and X1,i is directly linked to ρi and g ′. As these two equations are coupled, it can be solved
numerically by iteration (Newton’s method). We may use A = A and C = C for the first itera-
tion. The obtained zi and ρi will be used to calculate A and C for the next iteration.
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*

with c∗t =
ρa
ρi
ct, c∗∗t =

ρi
ρa
ct, zB = 0.58 ·αT −4/5 · B0

2/5

g3/5

7.4 Impact of different assumptions on bi-layer parameters resolu-
tion

In this section, we will evaluate the impact of different assumptions (noted D, B, I, O in sec-
tion 7.3.1) on bi-layer parameters resolution. We realise 8 calculations, by using 8 different
methods (noted (i)-(viii)) with different assumptions summarised in table 7.5. We focus on
two parameters in this calculation. The height of top homogeneous layer H − zi indicating
the inflammable region of risk and its concentration (volume fraction) X1,i to evaluate the
consequence (deflagration or detonation). The obtained results, as well as their absolute er-
rors compared with that deduced in section 7.1 from DNS best-estimated parameters, are
presented respectively in figure 7.5 for inflammable height and figure 7.6 the concentration
error.

The absolute results as well as the estimation of outlet fluxes under each method are presented
in appendix G.
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ξ5

1− ξ
=
A2

C3H4

g ′ =
1
C#B0

2/3(ξH)−5/3

Parameter Formulation Condition

A =
√
ctSbSt√

1
2

(
ct
cb
S2
t +S2

b

) Small density range assumption,
small injection volume flux

A A∗ =
√
c∗tSbSt√

1
2

(
c∗t
cb
S2
t +S2

b

) Large density range, small injection
volume flux

A∗∗ =
√
c∗∗t SbSt√

1
2

(
c∗∗t
cb
S2
t +S2

b

) Large density range, small injection
mass flux

C = C# = 2.5αT 4/3 Morton’s Boussinesq model

C = C# = 2.5αT 4/3
(
1 +

(
zB

(zi−zt)

)5/3
) Rooney’s non Boussinesq model with

conservation of volume flux

C and C#

C = 2.5αT 4/3
(
1 +

(
zB

(zi−zt)

)5/3
)1/3 Rooney’s non Boussinesq model with

conservation of mass flux (zt = 0 if
virtual origin correction is not
applied)C# = 2.5αT 4/3

(
1 +

(
zB

(zi−zt)

)5/3
)

ξ and H
ξ =

zi
H
, H =H Virtual origin correction not applied

ξ =
zi − zt
H − zt

, H =H − zt
Virtual origin correction zt applied
in the ventilation model
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7.4 Impact of different assumptions on bi-layer parameters resolution

Figure 7.5: Estimation of height of inflammable region (H − zi), results comparison with dif-
ferent methodologies (table 7.5). Left: hydrogen case, right: helium case. Vertical axis in-
dicates the absolute vertical position in the cavity 0 < z <20cm. The length of bar indicates
the height of estimated height of inflammable region with their extremities zi calculated from
each method. Reference result is selected from its DNS best-estimated bi-layer parameters,
coloured in blue (hydrogen) or orange (helium) in figure background. Data labels indicate the
absolute error of estimation.

Figure 7.6: Estimation of volume fraction absolute difference X1,i −XBE1,i in top homogeneous
layer, results comparison. Based on DNS deduced best-estimated result, the absolute error
from each method (i)-(viii) are presented in bars with hydrogen case coloured in blue and
helium case in orange. Positive bars indicate overestimated values and negative bars are un-
derestimated values. The precise absolute error are indicated in data labels.
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Chapter 7. Solving bi-layer parameters

Method (i) is the original ventilation model presented in Linden et al. (1990), initially pro-
posed to solve thermal air-conditioning problem. Here for its use in air-hydrogen mixing
problem, the method provides a very inaccurate estimation of bi-layer parameters. The height
of top homogeneous layer is largely underestimated (> 5cm, 1/4 height of cavity), which does
not accord with conservative safety strategy. While the mixture concentration is largely over-
estimated (+20%), which is pertinent in conservative safety principle but generates large ad-
ditional cost (L’Hostis et al. (2012)). Consequently, the direct use of original Linden’s model
presents important limits in air-hydrogen mixing problem. In order to improve the perfor-
mance of Linden’s model, four approaches can be considered.

Firstly, small density range assumption is clearly not valid, as for methods (i) and (ii), both of
them estimate very badly the bi-layer parameters.

Secondly, virtual origin displacement shall be considered in the resolution. Methods (ii) (iv)
(vi) (viii) are 4 methods that virtual origin displacement is considered in the calculation. Their
relative errors are obviously smaller than that of the other 4 methods (i), (iii), (v), (vii) where
the virtual origin correction is not applied. The introduction of this parameter will improve
the concentration estimation and reduce its safety margin. Besides, this correction makes the
inflammable region from an underestimated height into overestimated, therefore providing a
conservative safety estimation (more serious consequence).

The influence of virtual origin displacement is obvious in Boussinesq case (ii) (iv) compared
with (i) (iii). The introduction of this parameter will largely reduce its safety margin (around
10% concentration in absolute value) and generates 7cm (1/3 cavity height) difference of
flammable region. For non Boussinesq cases (vi) (viii) compared with (v) (vi), the introduc-
tion of virtual origin displacement will not generate remarkable difference for concentration
estimation. This is mainly because the virtual origin displacement is much longer for Boussi-
nesq cases (larger than 10cm, 1/2 cavity height) than non-Boussinesq cases (around 1-2cm,
1/10 cavity height). Therefore, in the case when this virtual origin displacement cannot be
correctly estimated, we prefer to use non Boussinesq jet model to reduce its influence.

Thirdly, for non-Boussinesq methods applying in jet resolution, small injection simplification
is better to be applied for mass flux rather than for volume flux in global balance. In this
case, conservation of mass flux should be applied in the resolution. Methods (v) and (vi)
are calculated from conservation of volume flux and methods (vii) and (viii) are for mass
flux. Comparing (vi) and (viii), where virtual origin correction is correctly applied for both
methods, we note that the method (viii) provides the most accurate bi-layer parameters among
these methods. The method (vi) provides a flammable region 1cm higher (1/20 cavity height)
and 3% larger in absolute value for homogeneous concentration estimation.

However, if we turn to figure 0.4 in thesis introduction, we will find our case is such particular
that the homogeneous layer concentration X1,i just happens into the interval 30%-40% where
hydrogen-air mixture may probable generates the most serious consequence (detonation). In
this interval, even if the concentration estimation possesses only 3% difference, the evaluation
of detonation consequence will be totally different.

Lastly, Morton’s Boussinesq turbulent jet solutions seems as applicable as Rooney’s non Boussi-
nesq solutions in the resolution in condition that other physical assumptions are reasonably
applied. We compare method (iv) using Morton’s solutions and method (vi) using Rooney’s
solutions. These two methods provide nearly same bi-layer parameters, flammable region
and concentration. All these two solutions are competent to provide good bi-layer estimation
if the virtual origin displacement is correctly calculated.

Generally, the large density assumption is the most important factor to improve the model
reliability. Virtual origin correction is the second aspect which is absolutely necessary for
large release rate. Both Boussinesq and non Boussinesq model can provide good estimation if
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entrainment parameter αT is well selected. For non Boussinesq approach, it is better to apply
conservation of mass flux rather than volume flux. We shall particularly note that the above
conclusions and remarks are valid only for this reference case. In order to generalise it into
industrial practical use, some more tests shall be done with different release flow regimes.

Conclusion 7.4

In conclusion, original Linden’s model presents some limits in its practical use. Firstly, small
density range assumption must absolutely not be applied as this will generate large safety
margin of concentration and wrongly estimate the flammable volume. Secondly, virtual ori-
gin displacement shall be considered in the turbulent jet solutions, especially for Morton’s
Boussinesq solutions. Besides, in this case, mass flux conservation principle is preferred to
be used rather than volume flux. The later one generates around 3% in absolute error in
concentration estimation.

However, both Boussinesq and non Boussinesq turbulent jet solutions can be applied in the
resolution. Non Boussinesq method is preferred only if the virtual origin displacement could
not be correctly estimated.

7.5 Summary and discussion

In this chapter, we have presented

• Best-estimated bi-layer solutions for ventilation model, based on DNS time-averaged
concentration distribution

• Validity of a series of conservation assumptions applied in Linden’s model

• Four additional physical assumptions and corresponding modified formulations of the
ventilation model

• Results comparisons that justify the adaptation of physical assumptions applied for the
hydrogen injection and hydrogen-air mixing problem

Linden’s natural ventilation model is proposed to be used to calculate hydrogen distribution
in two-vented cavity. However, the direct application of this model presents several limits.
It usually provides bad estimation of interface level thus wrong flammable risk volume. Be-
sides, this model provides large safety margin in concentration estimation which generates
additional cost. The improvements of Linden’s model are based on several additional physi-
cal assumptions applied in the model resolution.

Our study is divided into two steps. Firstly, we calculate, from DNS results, the best-estimated
bi-layer solutions which meet all conservation assumptions in the model. These best-estimated
solutions will be used as reference in the following step.

In the second phase, we propose four aspects to improve the performance of Linden’s model.
By comparing with DNS deduced best-estimated solutions, we have found that:

• Small density range assumption is not valid.

• Boussinesq or non Boussinesq jet solutions provide same accuracy level if other assump-
tions and parameters are correctly imposed.
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• Virtual origin displacement should be considered, especially when Boussinesq model is
applied for the jet modelling.

• Small injection assumption in global balance is preferred to be applied on mass flux
rather than volume flux.

We shall particularly note that non-Boussinesq jet model presents an important constraint for
its practical use. The non-Boussinesq entrainment coefficient, which depends not only on the
flow pattern but also on mixture density in the jet and the selected reference density, does
not possess a universal value for all cases. In this chapter, we have used its ”measured” value
from DNS results. But practically, its experimental measured values from helium cannot be
used directly in hydrogen problem. The estimation of entrainment coefficient in non Boussi-
nesq case is very difficult if we do not have full information of the jet evolution (velocity and
density).

On the contrary, in Boussinesq jet models, entrainment coefficient is related only to flow pat-
tern and depends only on injection volume flux and buoyancy flux. Various empirical formu-
las can be found in the literature. However, in Linden’s model, the resolution is realised as
if the jet were immersed in an unstratified environment. The environmental variation will
reduce the buoyancy flux and thus will facilitate the entrainment effect. Consequently, the
entrainment coefficient applied in the ventilation model is larger than its physical value cal-
culated in chapter 6.
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Conclusions and perspectives

Hydrogen presents high risk of deflagration and detonation. Therefore, its indoor use requires
specific security measures. The air-hydrogen mixture risk is characterised by its concentra-
tion distribution in the confined environment. In accidental situations, hydrogen escapes and
rises in form of a plume-jet that entrains ambient air, facilitating the natural ventilation and
the mixing. Depending on the release flow rate, the risk region may be located only in the jet
region. Or, for large release, a dangerous flammable mixture could be formed occupying the
whole top part of the confined environment. In this study, we focus on a specific configura-
tion: a cavity with two passive vents at different levels. This configuration facilitates natural
ventilation effects and thus is recommended according to related security guidelines.

Predictive models have been developed to estimate hydrogen concentration distribution in
the cavity, as that proposed by Linden et al. (1990). This model is commonly used in indus-
trial context. However, it is found that this model often provides inaccurate estimation in
large release flow rate conditions. Therefore, prejudicial conservative safety strategy has to
be applied. This approach results in large safety margin in the related hydrogen concentra-
tion estimation, generating large additional cost. The objective of this thesis is to identify the
reasons why predictive model is not applicable for certain situations and try to improve the
applicability and the performance of the model.

In order to examine different approaches of modelling, we shall provide a reference test case
in which mixing flows and hydrogen concentration field are well solved. We carried out fine
DNS simulations based on a well-defined geometrical configuration.

The gas flow in the cavity is highly turbulent. Time-averaged velocity fields are thus used to
characterise the quasi-steady flow. The flow pattern is in agreement with bi-layer structure
assumed in the model of Linden et al. (1990). The impenetrable interface defined in Linden’s
model corresponds to a stratified layer in which environmental density changes quasi-linearly.
A three-layer structure is thus introduced. Meanwhile, the jet changes its flow regime with its
development: laminar jet - turbulent jet - turbulent jet-plume - pure plume. A comparison
PIV-DNS validates the numerical simulation. Then 3D DNS fields are integrated to calculate
the characteristic quantities of the jet and of the hydrogen distribution. DNS-deduced 1D
profiles are then considered as the ground truth for comparison with different theoretical
models. The 1D modelling is divided into two parts.

In the first phase, we study the reliability of several turbulent jet models applied in the strat-
ified three-layer type environment. These models can be classified by two main assumptions:
Boussinesq approximation and entrainment modelling. We first apply two α-constant mod-
els, Boussinesq model of Morton et al. (1956) and non Boussinesq approach of Rooney and
Linden (1996). The analytical solutions of these models cannot be applied directly in the
stratified environment. A quasi-analytical approach is thus proposed, taking into account
the variation of environmental density. The choice of entrainment coefficient is particularly
discussed compared with its physical value measured from DNS. In Boussinesq case, the best-
estimated α in the model corresponds to its physical value in the jet regime mostly presented
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in the cavity and matches the DNS measured value at the level where the local buoyancy fre-
quency reaches its maximum. However, no general conclusion can be drawn for non Boussi-
nesq model, as in this case, the entrainment coefficient depends also on the mixture density.

In fact, the entrainment coefficient varies with jet development. Richardson number is consid-
ered as an indicator to its variation. The reliability of several α-variable models like Kaminski
et al. (2005) is also tested. The validity of these models is found limited in the lower part of the
cavity where environmental density changes little. Application of these models in stratified
environment should be coupled with other models providing environmental change.

In the second phase, we consider improving the applicability of the ventilation model. Lin-
den’s nature ventilation model is based on the bi-layer distribution assumption. The envi-
ronmental density is assumed equal to that of fresh air below the interface and homogeneous
above the interface. The direct use of this model provides, in the present case, a wrong esti-
mation of flammable risk volume and a large safety margin in the concentration estimation.
Improvements of this model are based on a series of additional assumptions applied in the
model resolution. Four aspects are considered. Firstly small density range assumption is
not valid thus cannot be used to linearise the conservation equations. Secondly, virtual ori-
gin displacement of the jet should be considered in the ventilation model, especially when
Boussinesq model is applied for the jet. Thirdly, small injection assumption in global balance
is preferred to be applied on mass flux rather than volume flux. Lastly, non Boussinesq jet
model provides better solutions and is preferred to be used if virtual origin displacement can-
not be correctly estimated. Finally, we shall particularly note that the jet resolution is realised
as if the jet were immersed in a homogeneous environment. Consequently, the entrainment
coefficient applied in the ventilation model should be chosen larger than its physical value
defined in jet theories.

This work presents several perspectives.

First is about the jet modelling. In the resolution with α-constant models, the entrainment
coefficient α should be provided beforehand. This coefficient is in fact not easy to deter-
mine in industrial context. Therefore, we consider using α-variable models. For example,
in Kaminski’s model, Richardson number is used as an indicator of α variation whereas its
formula seems not directly applicable for this reference case. Other approaches such as that
with source parameter Γ could be considered in the future work. If the variation of α could
be correctly estimated, prejudicial conservative safety strategy applied for α = 0.05 may be
no longer necessary. This will save large additional cost related to the large safety margin
generated from wrong estimation of this parameter.

The second point is about the bi-layer assumption. In Linden’s ventilation model, the con-
centration distribution is treated as homogeneous above the interface. However, from DNS
results, this ”interface” is in fact a stratified layer in which environmental density varies with
altitude. Compared with the height of the cavity, the vertical extension of this stratified layer
may be not just simply ignored. We may integrate this three-layer structure into the ventila-
tion model by assuming linear variation of environmental density in the intermediate strat-
ified layer. We have developed one possibility presented in appendix H. In this three-layer
model, the conservation equations are non-linear thus the system can only be solved numeri-
cally. This model needs to be validated by numerical simulations or experimental studies.

Last but not least, from a numerical point of view, in this study, DNS simulation provides ex-
cellent estimation of gas flow and concentration distribution. However, it is difficult to apply
DNS method in large scale environment due to its high computation requirements. On one
hand, DNS simulations solve directly Navier-Stokes equations. Its resolution of Poisson equa-
tion usually needs to inverse a large matrix at every time step. On the other hand, the mesh
cell size depends on Kolmogorov micro-scale. For example, in this study, the full simulation
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on a 2L cavity needs 6 million hours computation resources with 2k processors in parallel.
For a larger geometry, DNS simulation often requires enormous computation resources and
storage space. Industry thus prefers to use turbulent models likes RANS or URANS in prac-
tical research, but it is reported that these Reynolds-averaged methods may not capable of
providing accurate estimation of hydrogen concentration in the turbulent jet. Therefore, we
may consider to use other numerical approaches like LES, to evaluate their differences with
DNS results in order to save computational costs, and at the same time, to guarantee the
simulation quality.
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Appendix A

Detailed demonstration of three
turbulent jet models

A.1 Boussinesq model Morton et al. (1956)

In this section, we present the detailed demonstration of conservation equations of Boussinesq
model Morton et al. (1956). We re-write firstly the differential steady-state conservation equa-
tions in cylindric-polar system, taking into account the axisymmetric assumption then we do
integration by applying model assumptions. The cylinder-polar coordinates system is used as
(r,θ,z) with r the radial position from the jet axis, z vertical position (height/altitude). The
origin is placed at injection point. We have in this coordinates system differential of position
d−→x = dr−→er + rdθ−→eθ + dz−→ez and the velocity vector −→u = u−→er + vθ

−→eθ +w−→ez .

Step 1: Differential conservation equations in cylinder-polar system

Conservation of volume flux

The conservation of volume flux is valid only under incompressible assumption.

div
(−→u )

=
1
r
∂ (ru)
∂r

+
∂w
∂z

= 0 (A.1)

This equation can be rewritten as

∂
∂r

(ru) +
∂
∂z

(rw) = 0 (A.2)

Conservation of mass flux

We associate equations of conservation of mass and volume flux, we obtain:

0 = div
(
ρ−→u

)
= ρ div

(−→u )
+ −→u ·

−−−−→
grad ρ = 0 +

(
−→u ·
−−−−→
grad

)
ρ (A.3)

Thus,

u
∂ρ

∂r
+w

∂ρ

∂z
= 0 (A.4)

Conservation of momentum in radial direction

We have the conservation of momentum in steady state:(
ρ−→u ·

−−−−→
grad

)
−→u = −

−−−−→
grad P + div τ + ρg −→ez (A.5)
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Appendix A. Detailed demonstration of three turbulent jet models

with P time-averaged pressure field, τ =
[
τij

]
is the viscous stress tensor, g = 9.81m/s2 grav-

itational acceleration and −→ez = (0, 0, −1) the downward unity vector. Under incompressible

assumption, we have the term
(
div τ

)∣∣∣∣
r

= µ
(

1
r
∂
∂r

(
r ∂u∂r

)
+ ∂2u
∂z2

)
is in second order derivation thus

will be neglected.

The radial projection of momentum equation is(
ρ−→u ·

−−−−→
grad

)
u = −∂P

∂r
(A.6)

which can be written as

u
∂u
∂r

+w
∂u
∂z

= −1
ρ
∂P
∂r

(A.7)

We define a coefficient γρ:

γρ =
ρ

ρ0
(A.8)

In Boussinesq approximation, γρ will be treated as a constant 1 (see eq. (2.4)), the projection
in radial direction can be written as

u
∂u
∂r

+w
∂u
∂z

= − 1
γρ

1
ρ0

∂P
∂r
≈ − 1

ρ0

∂P
∂r

(A.9)

Conservation of momentum in vertical direction

The vertical projection of momentum equation can be written as:

ρ
(
−→u ·
−−−−→
grad

)
w − ρeg +

(
div τ

)∣∣∣∣
z

+ ρg = 0 (A.10)

The far field environment is considered stable thus with zero radial velocity, thus we have
∂P
∂z = −ρeg the vertical gradient of pressure.

Also, note that
(
div τ

)∣∣∣∣
z

= µ
(

1
r
∂
∂r

(
r ∂w∂r

)
+ ∂2w
∂z2

)
under incompressible assumption. We neglect

this term because it is a second-order derivation concerning w.

Then we have (
−→u ·
−−−−→
grad

)
w =

ρe − ρ
ρ

g (A.11)

The conservation of momentum in vertical direction could be written to

u
∂w
∂r

+w
∂w
∂z

=
ρe − ρ
ρ

g =
1
γρ
G′ ≈ G′ (A.12)

As under Boussinesq approximation, γρ can be treated as a constant 1.

Step 2: Integral conservation equations

We integrate the differential conservation equations in the jet horizontal cross-section, apply-
ing assumptions of the model.

Conservation of volume flux by using entrainment assumption

By integrating equation (A.2) across the plume, we obtain:

d
dz

∫ ∞
0
rwdr = −[ru]∞0 = − (ru) |∞ (A.13)
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A.1 Boussinesq model Morton et al. (1956)

The inflow from jet border (at radius bT ) is driven by the entrainment into the turbulent jet.
Increase of volume flux in the jet is due to entrainment effect which pushes the environment
fluid in the far field of the jet entering into the jet. Thus, we consider

− (ru) |∞ = − (ru) |bT = bT ue (A.14)

Thus, by using entrainment assumption

dQ
dz

= 2π (− (ru) |∞) = 2πbT ue = 2παT bTwT (A.15)

Besides, under Top-hat assumption, by identification of Q andM we have

wT =
M
Q
, bT =

Q
√
πM

(A.16)

Using this relation, we have
dQ
dz

= 2αT
√
πM (A.17)

Conservation of buoyancy flux

Recall that the buoyancy flux B is defined as

B =
∫ ∞

0
G′w · 2πrdr =

∫ ∞
0

(
ρe − ρ
ρ0

)
gw · 2πrdr (A.18)

Consider
d
dz

∫ ∞
0
rw (ρe − ρ)dr =

∫ ∞
0

(ρe − ρ)r
∂w
∂z
dr +

∫ ∞
0
rw
∂ (ρe − ρ)

∂z
dr (A.19)

By using equations (A.1) and (A.4), this equation can be written as

d
dz

∫ ∞
0
rw (ρe − ρ)dr = −

∫ ∞
0

(ρe − ρ)
∂ru
∂r

dr −
∫ ∞

0
ru
∂ (ρe − ρ)

∂r
dr +

∫ ∞
0
rw
dρe
dz

dr (A.20)

Applying relation (2.12), the first two terms integrate to 0, by adding constant 2π on both
side of the equation, we obtain

dB
dz

= −N2Q (A.21)

with

N2 = −
g

ρ0

dρe
dz

(A.22)

is the square of the ambient Brunt-Vaisala buoyancy frequency.

Conservation of momentum

Integrating the equation of conservation of momentum in vertical direction (A.12), we have∫ ∞
0

(
u
∂w
∂r

+w
∂w
∂z

)
rdr =

∫ ∞
0

1
γρ
G′rdr (A.23)

Beside, we have ∫ ∞
0
u
∂w
∂r
rdr = [ruw]∞0 −

∫ ∞
0
w
∂ru
∂r

dr (A.24)
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The first term on the right-hand side is zero, by using equation (A.2), noting that w∂w
∂z = 1

2
∂w2

∂z ,
we have∫ ∞

0

(
u
∂w
∂r

+w
∂w
∂z

)
rdr =

1
2

∫ ∞
0

∂w2

∂z
rdr +

1
2

∫ ∞
0

∂w2

∂z
rdr =

d
dz

∫ ∞
0
w2rdr (A.25)

Consequently by using equations (A.23), (A.25) and (2.26) and under Boussinesq approxima-
tion, we have

dM
dz

=
∫ ∞

0

1
γρ
G′ · 2πrdr ≈

∫ ∞
0
G′ · 2πrdr (A.26)

Besides, by using Top-hat assumption (A.26), (2.24), (2.26) and (2.28), we have

dM
dz

=
∫ bT

0
G′T 2πrdr =

∫ bT
0 G′TwT 2πrdr

∫ bT
0 wT 2πrdr∫ bT

0 w2
T 2πrdr

=
BQ
M

(A.27)

A.2 Boussinesq model Kaminski et al. (2005)

In this section, we present the detailed demonstration of conservation equations of Boussinesq
model Kaminski et al. (2005). Note that this demonstration is based on Boussinesq approx-
imation and valid only for homogeneous environment where far field density ρe does nor
change along the jet.

Step 1: Additional conservation equation

Like classic Boussinesq model Morton et al. (1956), the conservation equations consist of that
of volume flux, momentum flux and buoyancy flux. Conservation equations of momentum
fluxM and of buoyancy flux B are under the same demonstration as presented in equations
(A.21) and (A.26). By applying under the homogeneous environment assumption, we have

dM
dz

=
∫ ∞

0
G′ 2πrdr, with G′(r,z) =

ρe − ρ(r,z)
ρ0

g (A.28)

dB
dz

= 0 (A.29)

An additional conservation equation is based on the conservation of mass flux and volume
flux (A.3) by changing ρ to G′ as G′ is a linear function of ρ under unstratified assumption.(

−→u ·
−−−−→
grad

)
G′ = 0 (A.30)

Regrouping with (A.2)
∂
∂r

(ruG′) +
∂
∂z

(rwG′) = 0 (A.31)

By using the conservation of momentum in vertical direction (A.12), we have

∂
∂r

(ruw) +
∂
∂z

(
rw2

)
= rG′ (A.32)

Then from equations of conservation of volume flux (A.2) and of momentum (A.32), we de-
duce the following balance equation.

∂
∂r

(1
2
ruw2

)
+
∂
∂z

(1
2
rw3

)
= rwG′ (A.33)
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A.2 Boussinesq model Kaminski et al. (2005)

By integrating it on horizontal plane, we have the third conservation equation:

d
dz

∫ ∞
r=0

1
2
w32πrdr = B (A.34)

Step 2: Associating general profiles with Top-hat profiles

For a general case, where the distribution of w(r,z) and G′(r,z) are arbitrary, 2 shape functions
may be introduced as follows. Shape functions f (r,z) and h(r,z) are null when r towards
infinity (far-field) for any z.

w (r,z) = wm (z)f (r,z) (A.35)

G′ (r,z) = G′m (z)h (r,z) (A.36)

with wm(z) the maximum vertical velocity in the centre of the jet (r = 0), G′m(z) the maximum
reduced gravity in the centre of the jet.

In order to provide the relation between wm and wT , G′m and G′T , We define following dimen-
sionless integral variables where r∗ = r/er dimensionless parameter with er length unit.

I0 (z) =
∫ ∞
r∗=0

f (r∗, z) · 2πr∗dr∗ (A.37)

I1(z) =
∫ ∞
r∗=0

f (r∗, z)h (r∗, z) · 2πr∗dr∗ (A.38)

I2(z) =
∫ ∞
r∗=0

h(r∗, z) · 2πr∗dr∗ (A.39)

I3(z) =
∫ ∞
r∗=0

f 2 (r∗, z) · 2πr∗dr∗ (A.40)

I4(z) =
∫ ∞
r∗=0

f 3 (r∗, z) · 2πr∗dr∗ (A.41)

Besides, under Top-hat assumption, we have∫ ∞
0
G′2πrdr = πb2

TG
′
T (A.42)

By identification of B,M and (A.42), we have

bT =
√
I3I2√
πI1

er , wT =
I1
I2
wm, G

′
T =

I2
1

I2I3
G′m (A.43)

Step 3: Solving conservation equation

The idea is to solve conservation equations (A.28), (A.29) and (A.34) by applying additional
Top-hat assumption then to generalise it by using the above relations (A.43).

Under Top-hat profiles assumption, we have firstly the conservation of buoyancy (A.29), the
same as in original model of Morton et al. (1956).

d
dz

(
b2
TwTG

′
T

)
= 0 (A.44)
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Also, we have the conservation of momentum (A.28), also same as in Morton et al. (1956).

d
dz
b2
Tw

2
T = b2

TG
′
T (A.45)

The third conservation equation is about volume flux. By using the integral profiles (A.43),
we rewrite the new conservation equation (A.34) as

d
dz
b2
Tw

3
T =

2
A
b2
TwTG

′
T − b

2
Tw

3
T
dlnA
dz

−CbTw3
T (A.46)

with coefficient

A(z) =
I2I4
I1I3

, C(z) =
√
I3I2√
πI1I4

(A.47)

Besides, note that
db2

Tw
3
T

dz
=
d(b2

Tw
2
T ·wT )
dz

= wT
db2

Tw
2
T

dz
+ b2

Tw
2
T
dwT
dz

(A.48)

db2
Tw

2
T

dz
=
d(b2

TwT ·wT )
dz

= wT
db2

TwT
dz

+ b2
TwT

dwT
dz

(A.49)

Eliminating dwT
dz , we have

db2
TwT
dz

= − 1

w2
T

db2
Tw

3
T

dz
+

2
wT

db2
Tw

2
T

dz
(A.50)

We identify on the left-hand side in equation (A.50) the derivative of volume flux, grouping
it with (A.44) and (A.45) by its expressions as a function of A and C (A.47), finally we obtain
following conservation equation of volume flux.

d
dz
πb2

TwT = 2παbTwT (A.51)

where α entrainment coefficient no longer constant but variable along the jet, is defined by

α (z) =
C (z)

2
+
(
1− 1

A (z)

)
Ri(z) +

bT (z)
2

dlnA(z)
dz

(A.52)

with A(z) and C(z) two parameters and Ri(z) local Richardson number defined by

Ri =
I2
2

I1
√
I3

G′mer
w2
m

=
bTG

′
T

w2
T

(A.53)

Note that Q = πb2
TwT , this equation can be rewritten in the form of conservation equation of

volume flux of Morton (2.3.2) but with entrainment coefficient α(z) variable along the jet.

dQ
dz

= 2α(z)
√
πM (A.54)

A.3 Non-Boussinesq model Rooney et Linden (1996)

In this section, we present the detailed demonstration of non-Boussinesq model Rooney and
Linden (1996). Note that in this model, no more incompressible condition is assumed. The
conservation equations consist of conservation of mass and momentum. We need a third
conservation equation that related to the fluid state and enthalpy to enclose the system as 3
characteristic quantities are defined.
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A.3 Non-Boussinesq model Rooney et Linden (1996)

First equation: Conservation of mass

We rewrite the differential steady-state conservation of mass

div
(
ρ−→u

)
=

1
r

∂ (ρru)
∂r

+
∂ρw

∂z
= 0 (A.55)

This equation can be rewritten as

∂
∂r

(ruρ) +
∂
∂z

(rwρ) = 0 (A.56)

By integrating equation (A.56) from jet centre to infinity, we obtain:

d
dz

∫ ∞
0
ρwrdr = −[ruρ]r→∞ = − (ru) |∞ρe (A.57)

where ρe is the environment density at far field of the jet.

The inflow from infinity is driven by the entrainment into the turbulent jet, thus u < 0. Under
Top-hat assumption, we have

− (ru) |∞ = − (ru) |r=bT = bT ue (A.58)

Thus,
dQm
dz

= 2πbT ueρe (A.59)

Second equation: Conservation of momentum

Regrouping differential equation of momentum in vertical direction (A.12) with conservation
of mass equation (A.56), we have

∂
∂r

(rρuw) +
∂
∂z

(
rρw2

)
= (ρe − ρ)gr (A.60)

By integrating equation (A.60) from the jet centre to infinity far field at rest, we obtain:

d
dz

∫ ∞
0
ρw2rdr = g

∫ ∞
0

(ρe − ρ)rdr (A.61)

Thus, we have conservation of momentum

dMm

dz
= 2πg

∫ ∞
0

(ρe − ρ)rdr (A.62)

Under Top-hat assumption, this equation can be rewritten as

dMm

dz
= 2πg

∫ bT

0
(ρe − ρ)rdr = πg (ρe − ρT )b2

T (A.63)
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Third equation: Equation enthalpy and conservation of volume flux

We begin with thermodynamic definition of enthalpy: dH = dQ + V dP with dQ the heat
change of the system, V the volume of the system considered constant and dP the thermody-
namic pressure change. We have firstly the enthalpy time change rate for a general system

Ḣ = Q̇+V Ṗ (A.64)

with Q̇ the total heat in power input to the system, dot superscripts denote time derivatives,
which is zero as we study in a isotherm condition. In a steady state, the pressure has no time
independence. Thus, we have

Ḣ = 0 (A.65)

Besides, the enthalpy flux Ḣ at altitude z in the jet can also be written as

Ḣ(z) =
∫
S(z)

ρh−→u · −→ez dS (A.66)

with S(z) jet section area at altitude z, ρ, h, −→u the local mass density, enthalpy and velocity in
the jet, −→ez is jet direction (assumed vertical). By definition, we have h = cvT +P /ρ with cvT the
density of internal energy with T temperature in K and cv the specific heat capacity. Thus, we
have

0 =
∫
S(z)

(cvT ρ+ P )−→u · −→ez dS (A.67)

We apply ideal gas state equation P = ρRT , so that cvT ρ+P = ρT (cv +R) = ρT cp with cp isobar
heat capacity assumed constant. By using divergence theorem, we have

cp
R

∫
τ(z)

P div
(−→u )

dτ = −
cp
R

∫
τ(z)

−→u ·
−−−−→
grad (P )dτ (A.68)

where τ(z) the volume enclosed by surface S(z). We approximate the pressure across the jet to
be uniform and equal to the ambient pressure just outside the jet boundary. In cylinder-polar
system, we have

P

∫ ∞
0

(
∂ru
∂r

+
∂rw
∂z

)
dr = −dP

dz

∫ ∞
0
wrdr (A.69)

Taking w negligible outside the jet boundary, using assumption − (ru) |∞ = − (ru) |r=bT = bT ue,
we obtain

dQ
dz

= 2πbT ue −
Q
P
dP
dz

(A.70)

In hydrostatic ambient, we have dP
dz = −ρeg with P ≈ 1atm. Thus, the term P / dPdz is in order of

magnitude 104m, largely superior to the height extension of the jet for majority cases (in this
study 0.2m). Hence, the second term in (A.70) QP

dP
dz can be correctly neglected.

Consequently, the consideration of enthalpy leads to a conservation of volume flux.

dQ
dz

= 2πbT ue (A.71)
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Appendix B

Virtual origin displacement in the non
Boussinesq case

Carlotti and Hunt (2005) present a two-step correction method for non-Boussinesq jet to de-
termine this virtual source displacement. The approach is very similar as in Boussinesq case
presented in section 2.5.3. The total virtual origin displacement can be divided into three
parts

zt = zv + zavs + z0 (B.1)

with z0 the injection geometry correction, zv source correction and zavs the jet-length-based
correction, detailed as follows. After correction, a general jet is transferred into a pure point
plume with its origin situated at z = zt.

Step 1: Source correction

In the first step, we transfer the general point source (Qm(0),Mm(0),B0) to a forced plume
(0,ζMm(0),B0) with ζ5 = 1−Γ0 linked to source parameter. Here for non-Boussinesq case, this
parameter is defined as

Γ0 =
5
√
ρe

8
√
παT

B0Q2
m,0

M5/2
m,0

(B.2)

This step introduces another source displacement zv called source correction origin displace-
ment. The source-related correction is exact.

Step 2: Jet-length-based correction

In the second step, we transfer the forced plume obtained by the second step (0,ζMm(0),B0)
to a pure plume (0, 0, B0). This will introduce another source displacement zavs called jet-
length-based correction origin displacement. The jet-length-based correction is valid only for
jet length far from the origin (z enough large).

Formulas for virtual origin displacement in non Boussinesq case

For calculation of zv and zavs, we shall firstly define a characteristic length of non-Boussinesq
effect noted zB. Below this level the non-Boussinesq effects is dominant.

zB =
(25

36

)3/5(25
48

)−1/5
π−2/5αT

−4/5B0
2/5

g3/5
(B.3)

The two displacements zv and zavs are related to the source parameter Γ0 and can be divided
into 3 cases.
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Case Γ0 = 1

If Γ0 = 1, only a single correction related to source is needed.

zv = −
√

10

3π1/4α1/2
T

M3/4
m,0

ρ3/4
e B1/2

0

(B.4)

and the correction displacement related to jet length is zero.

zavs = 0 (B.5)

Case Γ0 < 1

In this case, we call it a forced plume (or forced jet). The source-related correction is

zv
zB

= −3
5
M3/4Ff

(
g

ρe

Qm,0
B0

1
M5/4

)
(B.6)

with zB defined in equation (2.74), Ff a function defined by

Ff (X) =
∫ X

0

1

(u2 + 1)1/5
du (B.7)

as well as a dimensionless parameter M defined by

M =


Mm,0

ρe

g4/5

B6/5
0

(
36
25

(25
48

)1/3
π2/3αT

4/3
)3/10


5/2

−
(
g

ρe

Qm,0
B0

)2


2/5

(B.8)

The jet-length-based correction is

zavs
zB

= −0.5012 M3/4 (B.9)

Case Γ0 > 1

In this case, we call it a lazy plume. The source-related correction is

zv
zB

= −3
5
G3/5Fl

(
g

ρe

Qm,0
B0

1
G

)
(B.10)

with Fl a function defined by

Fl(X) =
∫ X

1

1

(u2 − 1)1/5
du (B.11)

as well as a dimensionless parameter G defined by

G =

√√√(
g

ρe

Qm,0
B0

)2

−

Mm,0

ρe

g4/5

B6/5
0

(
36
25

(25
48

)1/3
π2/3αT 4/3

)3/10


5/2

(B.12)

The jet-length-based correction is

zavs
zB

= −0.8526 G3/5 (B.13)
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Appendix C

Effect of vertical openings in
ventilation model

In industrial context, the height of openings sometimes may not be neglected, such as the case
of garage. Based on experimental studies in CEA (see Bernard-Michel et al. (2012), Cariteau
(2012)), Bernard-Michel (2014) summarised the effect of vertical opening in model of Lin-
den et al. (1990). In this section, we present in detail this correction for the calculation of
inlet/outlet volume through the two openings. As the height of two vents (1cm) is relatively
small in this problem, numerical application of following modification shows only 3% error
of outlet flux compared with original Linden’s model. Consequently, this correction will not
be applied in resolution.

C.1 Geometrical assumption of two openings and related velocity
profiles

In the correction of Bernard-Michel (2014), the height of openings is considered. We note
Tt ,Tb the height of top and bottom opening respectively and Wt ,Wb its related width, as pre-
sented in figure C.1 on the left. We suppose the bottom edge of the bottom opening is coin-
cided with the cavity floor where z = 0 and the top edge of the top opening is coincided with
the ceiling of the cavity where z =H .

In this case, the inlet/outlet velocity is not a constant but as functions of altitude z. The
neutral level z = zn and/or the interface level z = zi may be situated through the two openings.

We distinguish two cases, one for small top opening, where the whole top opening is situated
above the neutral level zn < H − Tt, as presented in the left-hand-side sketch in figure C.1. In
this case, the flow through the top opening is totally outward. However, if the top opening
is large enough so that the neutral level is situated through the top opening, as presented in
the right-hand-side sketch in figure C.1, where zn > H − Tt, the flow through the top opening
can be divided by two parts, an outward flow, for the area zn < z < H , and an inward flow,
corresponding to the area H − Tt < z < zn.

We note ut(z) the outlet velocity through the top opening, with ut(z) > 0 indicating outlet flux
(outward direction) and ut(z) < 0 indicating inlet flux (inward direction). Similarly, we note
ub(z) the inlet velocity through the bottom opening, with ub(z) > 0 when flow enters into the
cavity and ub(z) < 0 when flow exits the cavity.
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Figure C.1: Sketch for application of theorem of Bernoulli in a two-vented cavity. Left: defi-
nition of geometrical parameters of two openings. Middle: case where zn < H −Tt. Right: case
where zn > H − Tt

Flow through top opening

Top opening and outward flux

We apply Bernoulli’s equation between a point A, situated on the neutral plan zA = zn, and a
point B, situated on the border of top vent with altitude z > zn, as presented in figure C.1. As
the cross-section surface is largely bigger than that of the top opening, by using the incom-
pressible flow assumption, we assume that the fluid velocity uA ≈ 0 and we have uB = ut (z)
the velocity at point B. Thus, the Bernoulli’s equation is written as

ρi
u2
t (z)
2

= Pe (zn)− Pe (z)− ρig (z − zn) = (ρa − ρi)g (z − zn) (C.1)

We shall take into account the pressure loss from openings, for this purpose we introduce
a coefficient ct depending on geometry form for top vent. By introducing g ′ = ρa−ρi

ρa
g the

environmental reduced gravity in the homogeneous layer, we have finally

u2
t (z) = 2ct

ρa
ρi
g ′(z − zn) (C.2)

Top opening and inward flux

For case zn > H−Tt, the flow is inward for areaH−Tt < z < zn. We take another border point B∗

in this area. As in this case the flow at B∗ is inward so that if we apply the Bernoulli’s theorem
from B∗ to A, we have a same equation except ρB∗ = ρa, so that the term ρa/ρi will disappear
in the final result. We have in this case

u2
t (z) = 2ctg

′ (zn − z) (C.3)

Note that here ut(z) is negative because of its inward direction.

Top opening general formula

Regrouping equations (C.2) and (C.3), we can write for a general format

u2
t (z) = 2ctg

′Γρi |z − zn| (C.4)

where coefficient Γρi is equal to 1 for z < zn (inflow) and equals ρa/ρi for z > zn (outflow).
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C.2 Inlet/outlet flux through the openings

Flow through bottom opening

We suppose that there is always inflow for the bottom openings (Tb < zi). In fact, if the top
edge of the bottom opening is above the interface (Tb > zi), then we could divide the bottom
opening with two parts, one for 0 < z < zi as the real bottom opening and the rest zi < z < Tb
could be considered as a part of the top opening, so applying equation (C.4).

The analysis is similar by establishing Bernoulli’s equation between point A situated on the
neutral plane and the point C with an altitude z, situated on border of inlet opening, pre-
sented in the left-hand-side sketch in figure C.1. We shall note that the difference between
the interior pressure and the exterior pressure at level z is due to density difference for mixed
layer between level zi and zn, so that we have

Pi (z)− Pe (z) = g (ρa − ρi) (zi − zn) (C.5)

Thus, by supposing small inlet opening compared with cross-section of the cavity, we have
the Bernoulli’s equation

u2
b (z) = 2cbg

′ (zn − zi) (C.6)

with cb geometrical pressure loss coefficient and ub (z) inlet velocity at level z. We note that in
this case the inlet velocity ub is a constant and independent on z. Consequently, the position
of bottom opening is not important when its top edge is below the bi-layer interface, only the
difference zn − zi will be introduced in the velocity equation.

C.2 Inlet/outlet flux through the openings

By definition, for a general case, the volume flux through the two openings can be calculated
by integrating the corresponding velocity profile

Qb =
∫ Tb

0
ub (z)Wbdz, Qt =

∫ H

H−Tt
ut (z)Wtdz (C.7)

Volume flux through the top opening

Depended on different position of neutral plan, we have seen the flow through the upper
opening will be totally outward or inward/outward, as presented in figure C.1. We note Qt1
the volume flux corresponding to outward flow above the neutral plan and Qt2 < 0 that of
inward flow below the neutral plan. The total outlet flux could be defined as

Qt =Qt1 +Qt2 (C.8)

Applying the equation (C.2), integrating outward velocity ut(z) forH −Tt < z < H if zn < H −Tt
or for zn < z < H if zn > H − Tt, we have

Qt1 =
2
3

√
2ctg ′

ρa
ρi
Wt

(
(H − zn)3/2 − (H − Tt − zn)3/2ξzn<H−Tt

)
(C.9)

with ct the top-vent pressure loss coefficient and ξzn<H−Tt = 1 if zn < H − Tt and 0 if not.

Similarly, by integrating ut(z) from equation (C.3), we have

Qt2 = −2
3

√
2ctg ′Wt(zn −max(zi , H − Tt) )3/2ξzn>H−Tt (C.10)

We have Qt2 = 0 if zn < H − Tt which corresponds with analysis in the above paragraph.
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Volume flux through the bottom opening

Note that the aboveQt2 corresponds only inflow between plane z = zi and plane z = zn. This is
correct if zi < H −Tt. If zi > H −Tt, there is an additional influx for pure air through the lower
part of the top opening H −T − t < z < zi , which will be considered as a part of influx through
the ”lower” opening. Thus, an additional term in effective inflow surface for lower opening is
needed. We define the effective inflow surface

S#
b =WbTb +Wt (zi − (H − Tt))ξzi>H−Tt (C.11)

From Bernoulli’s equation (C.6), the inlet velocity is uniformly distributed in the effective
inlet opening, we can easily have

Qb = S#
b

√
2cbg ′(zn − zi) (C.12)

with cb effective bottom-vent pressure loss coefficient related to S#
b .

Numerical application for reference cases

We present here the numerical application for the above analysis to reference cases in this
study. As we are in the case zi < H − Tt, there will be no change for the flux through the
bottom opening. For the top one, we present in the following table the difference estimation
Qt under horizontal opening assumption (presented in chapters 3 and 7) or vertical open-
ing assumption equation (C.9). The difference is quite small (around 3%) which means in
the reference cases, vertical openings will not introduce huge additional error in ventilation
modelling. By the way, the consideration will reduce the estimation error of Qt by comparing
results measured from DNS time-averaged velocity field.

Case Qt (×10−4 m3/s) H.O. Qt (×10−4 m3/s) V.O. Relative difference (%)

Hydrogen 6.24 6.06 2.9%
Helium 5.84 5.65 3.2%

Table C.1: Estimation of outlet volume flux Qt under horizontal opening (H.O.) assumption
and vertical opening assumption (V.O.), results comparison
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Appendix D

Mesh construction

Equi-distant mesh (EDM)

We construct firstly an equi-distant mesh with cell length δx ≈ 0.7mm identical for three di-
rections. The main cavity, the exterior domain and the connection areas could be constructed
without problem as these are all cuboid geometry. 14 mesh steps (cells) divide 1cm length ev-
erywhere in every direction, corresponding to, in the main cavity, 140 cells for both direction
x and y and 280 cells for direction z. There are 5.488M cells in the main cavity.

The injection pipe is a cylinder which cannot be meshed perfectly with the main cavity. In
order to maintain the mesh regularity, we decide to mesh it with regular square meshes. In
the first row of figure D.2, we present on the left-hand side, existed equi-distant meshing for
the injection region on the underside surface of the main cavity, with injection circle coloured
in grey. The objective is to choose cells on this surface representing injection pipe region to
minimise the difference between the green area and the yellow area presented in the figure.
Injection pipe cells are illustrated on the right-hand side coloured in purple with the rest
surface, coloured in red, defined in the wall group. Then we stretch the blue zone in the
z-negative direction to create the pipe cells.

The three-view diagram of this equi-distant mesh is presented in figure D.1 (left), in which
wall boundary conditions are applied for area coloured in light red, injection boundary con-
ditions in blue and free surface group in light green. The mesh contains 15.44M cells among
which only 35.5% of them are located in the main cavity.

Local grid refinement mesh (LGRM)

In order to well simulate the turbulent structure and reach the Kolmogorov length scale, we
shall consider a refinement of the grid. Due to computation resource consideration, the global
refinement is not possible. We shall consider building a local grid refinement (LGR) mesh in
which cell length can up to 0.2mm in the jet zone.

We present in the figure D.1 (right) the local grid refinement mesh. In the main cavity, the
Local grid refinement is particularly applied in the jet zone in x-y directions. For both direc-
tion, 3 segments are defined. in the centre of the cavity where x ∈ [−2cm,2cm], y ∈ [−2cm,2cm]
the cell length is 0.2mm uniform and identical in both x and y direction. Then the cell length
increases linearly in each direction and up to 0.45mm at each corner of the main cavity. In
z direction, the cell length is equal to 0.25mm for x ∈ [0cm,2cm]∪ [18cm,20cm] and linearly
increases to the middle height of the cavity where cell length in z direction is around 0.5mm.
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Figure D.2: Injection area meshing method. Left: equi-distant meshing for the injection re-
gion on the underside surface of the main cavity, with injection circle in grey. Right: The
underside surface meshing, red zone corresponds to wall group, blue zone is defined as the
injection area. First row: Global equi-distant mesh (cell size 0.7mm), second row: Refinement
mesh (cell size 0.2mm)

In the injection pipe, the cell length is uniform 0.2mm identical in x-y direction and 0.25mm
in z direction. We apply the same method to create the mesh injection pipe (see second row
of figure D.2). Besides, the grid is uniformly distributed in middle connection zones, 0.45mm
in x-y directions and 0.25mm in z direction.

In exterior domain, we shall firstly let the grid density in the connected area identical as in the
main cavity to ensure the regularity of the mesh. In x direction, cell length is from 0.45mm
on the left edge, exponentially increases to 2mm on the right extremity. In y direction, cell
length is from 0.45mm at y = ±5cm, exponentially increases to 2mm on the extremities. In z
direction, cell size is from 0.25mm at z = 20cm, exponentially increases to 1.0mm at z = 23cm,
idem for z = 0 to −3cm. In the middle, cell size is from 0.25mm at z = 1cm, exponentially
increases to 2.0mm at z = 10cm and idem for z = 19cm to z = 10cm. In addition, we shall
keep in the same time the difference cell length between 2 adjacent cells less than 5% in each
direction to ensure the mesh regularity.

Finally, a local grid refinement mesh is constructed. It contains totally 80.2M cells where
around 70% of them are located in the main cavity. We optimise the computation resource
concentrating the flow structure in the main cavity.

Three surface groups

Three surface groups are defined corresponding to three type of boundary conditions.

At the bottom boundary (underside) of the injection pipe where z = −h, we defined an in-
jection surface group to provide injection boundary condition. Apart from this surface, all
boundary surfaces will be classified as two groups, a wall group and a free surface group,
where two different boundary conditions will be applied.

The main cavity possesses six surfaces among which 4 have no openings with other objects,
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the front one, the back one, the top one and the left one. They are both defined in wall group.
Bottom surface is also in wall group except for the area connecting injection tube where, in
fact, is inside the calculation domain (so not a boundary). Idem for right surface, the boundary
faces are classified in wall group except for the two rectangular areas of vents.

The two connection zones, connecting the main cavity and the exterior domain, possess each
of them, 4 lateral boundary surfaces, all defined in wall group.

For exterior domain, five of its six surfaces (except for the left one) are not connecting to other
objects. They are all defined in free surface group. Things will be little complicated on its
left surface connecting to the middle connection zones. This surface is divided into 2 parts
corresponding to wall group and free surface group. The projection of the right extremity
surface of the main cavity on this surface is all defined in wall group, except for the connection
area where is inside the calculation domain thus not a boundary. Apart from that, around each
of the two vents areas, a extension of thickness Wv both in y direction and z direction will be
also considered in the wall group. This represents thickness of plexiglass, used afterwards
to manufacture the experimental facility. Other zone on this surface will be classified as free
surface group.
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Appendix E

Full results of DNS-PIV comparison

In this section, we present the original and full results of DNS-PIV comparison, which consist
of two PIV results with different observation time lag (0.1ms and 0.5ms), DNS helium case
and DNS hydrogen case for information. PIV 0.5ms case is more accurate in most part of
the cavity but the time lag 0.5ms is too large to calibrate large velocity presented in the jet
centre after injection. Therefore, results in this zone for PIV 0.5ms is not accurate and cannot
be directly used in comparison. Two PIV results with different observation time lag shall be
afterwards superposed to construct the final PIV statistical fields. See section 4.6.4 for more
information. Observation plane is y =0. DNS helium is used to compare with PIV in order to
validate DNS simulation.

*

*

Figure E.1: Time-averaged plane velocity magnitude comparison: (a)&(a*) two PIV results
with different measure time interval, (b) DNS He and (c) DNS H2. Observation plane : y =0.
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Figure E.2: Time-averaged vertical velocity comparison: (a)&(a*) two PIV results with differ-
ent measure time interval, (b) DNS He and (c) DNS H2. Observation plane : y =0.

Figure E.3: Time-averaged x-direction velocity comparison: (a)&(a*) two PIV results with
different measure time interval, (b) DNS He and (c) DNS H2. Observation plane : y =0.
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Figure E.4: RMS vertical velocity comparison: (a)&(a*) two PIV results with different measure
time interval, (b) DNS He and (c) DNS H2. Observation plane : y =0.

Figure E.5: RMS x-direction velocity comparison: (a)&(a*) two PIV results with different mea-
sure time interval, (b) DNS He and (c) DNS H2. Observation plane : y =0.
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Appendix E. Full results of DNS-PIV comparison

Figure E.6: Change of interrogation window in injection area for PIV RMS vertical velocity
field. (a) non overlapped square window 32x32, (b) non overlapped square window 8x8,
measure interval time lag 0.1ms.

We may observe that the gradient of vertical velocity RMS is very large in the jet border just af-
ter injection for PIV measurement results. This is due to the selection of interrogation window
in first post-processing. The window is chosen as 32x32 pixels in this study and as presented
in figure E.6(a). If we change this window into 8x8 pixels in figure E.6(b), the velocity RMS
at jet border is well captured. However, as injection area is large velocity zone, 8x8 window
is not enough to capture high velocity in the jet centre, thus its results could not be directly
used in the result analysis.
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Appendix F

Turbulent jet modelling results for
helium case

In this part, we present turbulent jet modelling results for helium case, which are not pre-
sented in chapter 6. Generally, helium modelling results are similar to that of hydrogen.

Modelling results are presented in the same order as in chapter 6. We start with Boussinesq
model with constant α. Three approaches are applied: conservative approach with αT = 0.05,
injection flux correction and quasi-analytical approach considering environmental variation.
We are also interested in the sensibility of entrainment coefficient in each approach. The
same procedure is applied for α-constant non Boussinesq model as well. In the third part, we
present profiles obtained from Kaminski’s α-variable model, with profile α(z) applied from
modelling and DNS respectively.

F.1 Boussinesq approaches with constant entrainment coefficient

Figure F.1: Profiles conservative approach with αT =0.05. Left: variation of jet volume flux
Q(z), right: variation of Top-hat concentration X1,T (z). Helium case, DNS deduced profiles in
solid lines, 1D modelling in dashed lines.
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Figure F.2: Injection volume flux correction approach with αT =0.058. Left: variation of
jet volume flux Q(z), right: variation of Top-hat concentration X1,T (z). Helium case, DNS
deduced profiles in solid lines, 1D modelling in dashed lines.

Figure F.3: Quasi-analytical Boussinesq approach with αT =0.038, considering the variation
of far-field environmental density. (a) variation of jet volume flux Q(z), (b) variation of jet mo-
mentum fluxM(z), (c) variation of jet buoyancy flux B(z), (d) Top-hat concentration X1,T (z).
Helium case, DNS deduced profiles in solid lines, 1D modelling in dashed lines.
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F.1 Boussinesq approaches with constant entrainment coefficient

Figure F.4: Evaluation of sensitivity of entrainment coefficient, comparison profiles DNS and
1D Boussinesq modelling with αT =0.05 and 0.10. Helium case. (a)(b) Profiles Q(z) and
X1,T (z) obtained by conservative approach; (c)(d) Profiles Q(z) and X1,T (z) obtained after cor-
rection of injection volume flux; (e)(f) Profiles Q(z) and X1,T (z) obtained by quasi-analytical
approach considering environmental variation.
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F.2 Non Boussinesq approaches with constant entrainment coeffi-
cient

Figure F.5: Quasi-analytical non Boussinesq approach with αT =0.082, considering the varia-
tion of far-field environmental density. (a) variation of jet volume flux Q(z), (b) variation of jet
mass flux Qm(z), (c) variation of jet mass momentum flux Mm(z), (d) Top-hat concentration
X1,T (z). Helium case, DNS deduced profiles in solid lines, 1D modelling in dashed lines.

Figure F.6: Comparison of quasi-analytical resolution in Boussinesq approach and non
Boussinesq approach. Left: variation of jet volume flux Q(z), right: variation of Top-hat con-
centration X1,T (z). Helium case, DNS deduced profiles in solid lines, 1D modelling in dashed
lines.
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F.3 Boussinesq approaches with variable entrainment coefficient

F.3 Boussinesq approaches with variable entrainment coefficient

Figure F.8: Evaluation of Kaminski’s α−variable Boussinesq turbulent jet models. (a) vari-
ation of jet volume flux Q(z), (b) variation of jet Top-hat concentration X1,T (z), (c) variation
of jet Richardson number, (d) variation of entrainment coefficient αT (z). Helium case, DNS
reference results in solid lines and results from 1D models in dashed lines.

Figure F.9: Resolution of Kaminski’s model by DNS estimated α profile. Left: jet volume flux
Q(z), right jet Top-hat concentration X1,T (z). Helium case, DNS reference results in solid lines
and results from 1D models in dashed lines.
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Appendix F. Turbulent jet modelling results for helium case

Figure F.7: Evaluation of sensitivity of entrainment coefficient, comparison profiles DNS and
1D non Boussinesq modelling with αT =0.05 and 0.10. Helium case. (a)(b) Profiles Q(z) and
X1,T (z) obtained by direct application of Rooney’s analytical approach; (c)(d) Profiles Q(z)
and X1,T (z) obtained after correction of injection volume flux; (e)(f) Profiles Q(z) and X1,T (z)
obtained by quasi-analytical approach considering environmental variation.
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Appendix G

Full bi-layer modelling results

In this part, we present the full estimation results for each bi-layer modelling methods (i)-
(viii), presented in section 7.4 in table 7.5. We present in the first table the bilayer parameters
(interface height zi and homogeneous concentration X1,i) obtained from each method. In the
second and third tables, we present respectively the estimation of outlet volume flux and mass
flux as well as its relative errors compared with DNS measured values. The outlet mass and
volume flux are calculated simply by conservation of species: Qt =Qinj /X1,i and Qm,t = ρiQt.

*

Method H2 zi (cm) H2 X1,i (%) He zi (cm) He X1,i (%)

(i) 12.7 51.7% 14.8 59.9%
(ii) 5.9 41.6% 6.9 44.1%
(iii) 13.1 49.1% 15.2 57.3%
(iv) 6.4 39.2% 7.5 41.6%
(v) 7.6 40.4% 9.6 44.3%
(vi) 6.6 39.4% 7.7 41.9%
(vii) 8.4 36.6% 10.5 40.3%
(viii) 7.4 35.8% 8.6 38.4%

Table G.1: Estimation of bi-layer parameters (interface height zi and homogeneous concen-
tration X1,i) with different assumptions, methods (i)-(viii) presented in table 7.5

*

Method H2 Qt (×10−4 m3/s) Error (%) He Qt (×10−4 m3/s) Error (%))

(i) 4.22 -31.6% 3.64 -37.2%
(ii) 5.25 -15.0% 4.95 -14.6%
(iii) 4.45 -27.9% 3.81 -34.3%
(iv) 5.57 -9.7% 5.24 -9.6%
(v) 5.40 -12.5% 4.93 -15.0%
(vi) 5.54 -10.2% 5.21 -10.1%
(vii) 5.96 -3.4% 5.42 -6.5%
(viii) 6.09 -1.3% 5.68 -2.0%

Table G.2: Estimation of outlet volume flux Qt and relative error (compared with DNS mea-
sured value) with different assumptions, methods (i)-(viii) presented in table 7.5
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*

Method H2 Qm,t (×10−4 kg/s) Error (%) He Qm,t (×10−4 kg/s) Error (%))

(i) 2.56 -46.5% 2.06 -54.5%
(ii) 3.76 -21.4% 3.59 -20.5%
(iii) 2.82 -40.9% 2.25 -50.1%
(iv) 4.13 -13.5% 3.92 -13.1%
(v) 3.94 -17.6% 3.56 -21.1%
(vi) 4.10 -14.2% 3.89 -13.8%
(vii) 4.59 -3.9% 4.14 -8.4%
(viii) 4.74 -0.8% 4.44 -1.7%

Table G.3: Estimation of outlet mass flux Qm,t and relative error (compared with DNS mea-
sured value) with different assumptions, methods (i)-(viii) presented in table 7.5

Recall the reference values from DNS obtained from integration of time-averaged fields on
the top opening:

• Hydrogen case:

zi = 7.41cm, X1,i =36.2%, Qt=6.17×10−4 m3/s, Qm,t =4.78×10−4 kg/s

• Helium case:

zi = 8.72cm, X1,i =38.7%, Qt=5.80×10−4 m3/s, Qm,t =4.51×10−4 kg/s
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Appendix H

A three-layer natural ventilation model

In this section, we present an analytical approach of ventilation modelling based on the three-
layer structure as observed in DNS results. In fact, we have seen that a stratified layer exists
between top homogeneous layer and bottom mixing layer whose vertical extension is not neg-
ligible in our simulation cases. The vertical velocity in this stratified layer is practically zero
except in jet region. Hence, we may consider the top and bottom layers form two mass diffu-
sion sources with constant hydrogen concentrations. Hydrogen diffuses in vertical direction
in the stratified layer. According to Fick’s law, in steady state, the hydrogen concentration as
well as the mixture density varies linearly in the stratified layer. Therefore, the basic assump-
tions are the same as that presented in section 3.1.2 in Linden’s model, except for the fourth
assumption which is replaced by:

Assumption 4 (Three-layer distribution): In steady state, the cavity could be divided into
three layers according to environmental mixture density distribution. The bottom layer LA,
called mixing layer, filled with fresh air of density ρa. A homogeneous layer LH is situated
at top part of the cavity, with homogeneous density ρi . A stratified layer LS is between LA
and LH , in which mixture density varies linearly with altitude. We note zAS interface altitude
between LA and LS and zSH interface altitude between LS and LH . Consequently, we have

ρe(z) =


ρa z ≤ zAS
ρa − (ρa − ρi)

z−zAS
zSH−zAS zAS < z < zSH

ρi z ≥ zSH
(H.1)

The corresponding volume fraction variation is deduced

X1,e(z) =


0 z ≤ zAS
X1,i

z−zAS
zSH−zAS zAS < z < zSH ,

X1,i z ≥ zSH
with X1,i =

ρa − ρi
ρa − ρinj

(H.2)

Remark: Under above assumption, light gas mass fraction Y1,e(z) does not vary linearly in LS .

The stratified layer LS can also be characterised by its mid-plane altitude (noted zi) and its
vertical extension (noted 2hs with hs its half extension). Here the notation zi will match the
”bi-layer interface” notion in Linden’s model.

zi =
zAS + zSH

2
, hs =

zSH − zAS
2

(H.3)

and
zAS = zi − hs, zSH = zi + hs (H.4)
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Appendix H. A three-layer natural ventilation model

Fi
gu

re
H

.1
:T

hr
ee

-l
ay

er
ve

nt
il

at
io

n
m

od
el

.T
he

ca
vi

ty
is

d
iv

id
ed

in
to

th
re

e
la

ye
rs

:m
ix

in
g

la
ye

r
L
A

,s
tr

at
ifi

ed
la

ye
r
L
S

an
d

ho
m

og
en

eo
u

s
la

ye
r
L
H

.
E

nv
ir

on
m

en
ta

ld
en

si
ty
ρ
e(
z)

is
eq

u
al

to
th

at
of

ai
r
ρ
a

in
L
A

,i
s

ho
m

og
en

eo
u

s
an

d
eq

u
al

to
ρ
i

in
L
H

,a
nd

li
ne

ar
ly

d
ec

re
as

es
in
L
S

.(
a)

C
or

re
sp

on
d

in
g

p
ro

fi
le

of
en

vi
ro

nm
en

ta
l

li
gh

t
ga

s
vo

lu
m

e
fr

ac
ti

on
va

ri
at

io
n
X

1,
e(
z)

;
(b

)
Sk

et
ch

of
th

re
e-

la
ye

r
st

ru
ct

u
re

;
(c

)
H

yd
ro

st
at

ic
p

re
ss

u
re

va
ri

at
io

ns
in

co
nd

it
io

n
z n
>
z S
H

;(
d

)H
yd

ro
st

at
ic

p
re

ss
u

re
va

ri
at

io
ns

in
co

nd
it

io
n
z n
<
z S
H

w
it

h
z n

ne
u

tr
al

le
ve

l.
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H.1 Hydrostatic pressure and neutral level

H.1 Hydrostatic pressure and neutral level

Exterior pressure

We set exterior pressure at z = 0 as the reference of hydrostatic pressure of the system (Pe(0) =
0), thus its variation along the cavity will be simply

Pe(z) = −ρagz, for 0 ≤ z ≤H (H.5)

We have at interface levels and at ceiling

P (zAS ) = −ρagzAS , P (zSH ) = −ρagzSH , P (H) = −ρagH (H.6)

Interior pressure

The interior pressure is calculated by its definition

Pi(z) = Pi(0)− g
∫ z

0
ρe(s)ds (H.7)

By integrating equation (H.1), we have

Pi(z) =



Pi(0) z = 0
Pi(0)− ρagz 0 < z < zAS
Pi(0)− ρagzAS z = zAS
Pi(0)− ρagzAS + 1

2 (ρa − ρi)g
z2−z2

AS
zSH−zAS −

(
ρa + (ρa−ρi )zAS

zSH−zAS

)
g(z − zAS ) zAS < z < zSH

Pi(0)− ρagzAS −
ρa+ρi

2 g(zSH − zAS ) z = zAH
Pi(0)− ρagzAS −

ρa+ρi
2 g(zSH − zAS )− ρig(z − zSH ) zSH < z < H

Pi(0)− ρigH − (ρa − ρi)g
zAS+zSH

2 z =H

(H.8)

We have for the top opening same equation as in bi-layer model

Pi(H)− Pe(H) = Pi(0) + (ρa − ρi)g(H − zi) (H.9)

If the flow through the bottom opening is outlet, we must have Pi(0) > Pe(0) = 0 thus Pi(H) > 0
the flow through the top opening must also be outlet. This is impossible as the jet entrainment
generates aspiration effect on the openings. Hence Pi(0) < Pe(0) = 0, the flow through the
bottom opening must be inlet. According to conservation principle, the flow through top
opening must be outlet thus Pi(H)− Pe(H) > 0 and

|Pi(0)| < (ρa − ρi)g(H − zi) (H.10)

The variations of Pe(z) and Pi(z) are presented in the figure H.1 (c)(d).

Neutral plane

Same as in Linden’s model, the neutral plane is defined as

Pi(zn) = Pe(zn) (H.11)

The difference Pe(z) − Pi(z) keeps constant in LA, thus we must have zn > zAS . However, the
neutral plane can be situated in LS or LH . If Pe(zSH ) > Pi(zSH ), as shown in figure H.1 (c), the
neutral plane will be located in LH . If not, it will be in LS , as shown in figure H.1 (d). This
condition is equivalent to the sign of quantity Pe(zSH )− Pi(zSH ) which is equal to

Pe(zSH )− Pi(zSH ) = −Pi(0)− (ρa − ρi)g
zSH − zAS

2
= −Pi(0)− (ρa − ρi)ghs (H.12)
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• Case 1: Pe(zSH )− Pi(zSH ) > 0

zn will be in LH , consequently

Pi(zn) = Pi(0)− ρagzAS −
ρa + ρi

2
g(zSH − zAS )− ρig(zn − zSH ) = −ρagzn = Pe(zn) (H.13)

Regrouping it with relation (H.3), we have simply

−Pi(0) = (ρa − ρi)g(zn − zi) (H.14)

The conditions (H.10) and (H.12) positive are automatically valid.

• Case 2: Pe(zSH )− Pi(zSH ) < 0

zn will be in LS , consequently

Pi(zn) = Pi(0)−ρagzAS+
1
2

(ρa−ρi)g
z2
n − z2

AS

zSH − zAS
−
(
ρa +

(ρa − ρi)zAS
zSH − zAS

)
g(zn−zAS ) = −ρagzn = Pe(zn)

(H.15)
Regrouping it with relation (H.3), we have simply

−Pi(0) = (ρa − ρi)g
(zn − zAS )2

4hs
(H.16)

Thus the condition (H.12) negative is automatically valid and the condition (H.10) is
equivalent to

(zn − zAS )2

4hs
< H − zi (H.17)

• Case 3: Pe(zSH )− Pi(zSH ) = 0

zn will be equal to zSH . In this case, both equations (H.14) and (H.16) will result in

−Pi(0) = (ρa − ρi)ghs (H.18)

H.2 Inlet/outlet velocity and flux

Bottom opening

The mean inlet velocity through the bottom opening is directly linked to the pressure loss
Pe(0)− Pi(0):

ρa
u2
b

2cb
= Pe(0)− Pi(0) = −Pi(0) (H.19)

Applying above results (H.14) and (H.16), we have

u2
b =

 2cbg ′(zn − zi) zn ≥ zSH = zi + hs
2cbg ′

(zn−zAS )2

4hs
zn < zSH = zi + hs

(H.20)

with g ′ environmental reduced gravity. Consequently,

Qb =

 Sb
√

2cbg ′(zn − zi) zn ≥ zi + hs

Sb

√
2cbg ′

(zn−zi+hs)2

4hs
zn < zi + hs

(H.21)
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H.3 Conservation equations

Top opening

Similarly, for top opening we have

ρi
u2
t

2ct
= Pi(H)− Pe(H) = Pi(0)− ρigH − (ρa − ρi)gzi + ρagH = Pi(0) + (ρa − ρi)g(H − zi) (H.22)

Applying above results (H.14) and (H.16), we have

u2
t =


2ctg ′

ρa
ρi

(H − zn) zn ≥ zSH = zi + hs

2ctg ′
ρa
ρi

(
(H − zi)−

(zn−zAS )2

4hs

)
zn < zSH = zi + hs

(H.23)

This quantity is always positive as condition (H.17) is valid in case zn < zSH . Consequently,

Qt =

 St
√

2ctg ′
ρa
ρi

(H − zn) zn ≥ zi + hs

St

√
2ctg ′

ρa
ρi

(
(H − zi)−

(zn−zi+hs)2

4hs

)
zn < zi + hs

(H.24)

H.3 Conservation equations

The ventilation model is based on a series of conservation equations which are presented in
this section. The conservation principle is first applied on the whole cavity: the volume flux,
the mass flux and the species. Then particular conservation equations are established on the
region z > zi or z < zi from steady flow pattern in the cavity.

Global conservation of volume flux and mass flux

Firstly, we have the conservation of volume flux in the whole cavity

Qt =Qb +Qinj (H.25)

and the global conservation of mass flux

ρiQt = ρaQb + ρinjQinj (H.26)

Global conservation of species and buoyancy flux

Another equation is the conservation of species in the whole cavity, particularly that of in-
jected light gas

Qinj =QtX1,i (H.27)

Note that generally we have following relation

g ′ =
ρa − ρi
ρa

g =
ρa − ρi
ρa − ρinj

ρa − ρinj
ρa

g = X1,iG
′(0) (H.28)

The equation (H.29) is rewritten as

g ′Qt = G′(0)Qinj = B0 (H.29)

which is the global conservation of buoyancy flux in the cavity.
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Conservation of volume flux for region z > zi

Similar as in Linden’s model, as the vertical velocity is assumed nearly zero except for jet
region in stratified layer LS , we have practically the conservation of volume flux in the region
between any zAS < z < zSH to H . Consequently

For any z ∈ [zAS , zSH ], Q(z) ≈Qt (H.30)

with Q(z) the jet volume flux, provided by jet models. Particularly this equation is valid for
z = zi in which altitude environmental vertical velocity is considered strictly zero. Thus we
have the conservation of volume flux for region z > zi :

Qt =Q(zi) (H.31)

Conservation of species for region z < zi

We consider the conservation of light gas for region z < zi . In this region, the transportation
of injected light gas with exterior is generated from convection and diffusion. For convection
transportation:

• Inlet flow: fresh air thus no light gas

• Injection flow: pure light gas with volume flux Qinj

• Jet flow at zi : mixing gas with light gas volume flux Q(zi)X1,T (zi).

• No convection flow outside jet region at z = zi as vertical velocity is zero at far-field.

For diffusion transportation, from Fick’s law, diffusion flux goes from regions of high concen-
tration (z+

i ) to regions of low concentration (z−i ), with a magnitude that is proportional to the
molar concentration (volume fraction) gradient.

• Diffusion flux is calculated from Fick’s law:

Jdiff = −D
X1,i − 0
zSH − zAS

(H.32)

with D diffusion coefficient in m2/s. The negative sign means the diffusion of light gas
is towards z-negative direction.

Consequently, the conservation of light gas in region z < zi is written as follows, with SD =
Scavity − Sjet(zi) the diffusion area (equal to total cross-section area minus jet cross-section
area).

Qinj +DSD
X1,i

2hs
=Q(zi)X1,T (zi) (H.33)

By multiplying the term G′(0) on both sides and applying relation (H.28), we rewrite the
above equation as

B0 + g ′
DSD
2hs

=Q(zi)X1,T (zi)G
′(0) =Q(zi)

ρa − ρT (zi)
ρa

g = B∗(zi) (H.34)

with B∗(zi) the specific buoyancy flux at altitude z = zi in the jet. This specific buoyancy flux,
which is defined in equation (7.11), is the jet buoyancy flux as if the jet were immersed in an
environment ρa. Finally, this conservation equation is written as

g ′
DSD
2hs

= B∗(zi)−B0 (H.35)
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H.4 System resolution

Remark 1: Both sides of equation (H.35) shall be positive, thus B∗(zi) > B0. This may be a
little strange. However, we shall note that B(0) = B∗(0) but generally B(z) , B∗(z) due to their
different definitions. Here the increase of B∗ is related to growth of jet volume flux (due to jet
entrainment).

As ρa > ρe(z) for any z > 0, we have in fact B∗(zi) > B0 > B(zi). From figure 7.3, we can clearly
find that the quantity B∗ continuously increases in turbulent jet and plume regions.

Remark 2: Equation of diffusion (H.32) is established by Fick’s law on light gas molar con-
centration (not mass). This is generally applied for gas diffusion. Therefore, we do have,
through the diffusion area SD(zi), the conservation of diffusion volume flux respectively for
light-gas and air: Qdiff,1 = Qdiff,2. However, this is not theoretically valid for diffusion mass
flux Qm,diff,1 ,Qm,diff,2 due to density difference.

Consequently, the conservation of mass flux for region z > zi cannot be simply written as
ρiQt = Qm(zi). And on the same time, the relation g ′ = G′T (zi), which is assumed in original
Linden’s model, is not theoretically correct in this resolution.

DNS validation

Global conservation equations of volume flux, mass flux, species and buoyancy flux, as well as
equation (H.31) have been already validated in chapter 7. We are interested in the estimation
of hs from equation (H.35) and comparison with its DNS estimated value calculated from table
5.1. Results are presented in following table. For helium case, this equation (H.35) is valid
with only 1.5% error but it seems not for hydrogen case. This may be related to estimation
accuracy difference of B∗DNS(zBEi ) between two cases. Helium case is much more converged
than hydrogen case. Its total simulation time is 3 times longer. As we have seen in figure 7.3,
the quantity B∗ is nearly constant equal to B0 below the interface so that a tiny error in its
estimation at best-estimated interface height will generate large error in calculation of hs.

Hydrogen Helium

B∗DNS(zBEi )−B0 (×10−4 m3/s2) 1.23 0.521
g ′DNS (m/s2) 3.31 3.27
SDNSD (zBEi ) (cm2) 75.7 81.6
D (×10−5m2/s) 7.72 7.11

hs from DNS - Table 5.1 (cm) 2.7 2

hs from equation (H.35) (cm) 0.79 1.97
Relative error (%) -70.7% -1.5%

Table H.1: Calculation of demi-height of stratified layer hs from three-layer ventilation model,
comparison with DNS measured values.

H.4 System resolution

We have four parameters in this problem zn, zi ,hs,ρi (or g ′) and above four conservation equa-
tions. The resolution will be divided into three steps. Firstly, we apply global conservation
equations (volume flux or mass flux) with expressions from section G.2 to eliminate zn. Then
we deduce the expression of Qt with zi . Secondly, we apply equation (H.31) to find zi . The
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variation Q(z) will be provided by jet models. We shall consider solving ODE of the jet evolu-
tion separately in unstratified and linear stratified environments. Finally, we apply equations
(H.24), (H.29) and (H.35) to solve other parameters.

Solving global conservation equations

In order simplify mathematical formulations, we consider applying small injection assump-
tion in the resolution. As presented in section 7.3, depended on the selected conservation
principle (volume flux or mass flux), this small injection assumption may be applied on injec-
tion volume flux Qinj or mass flux Qm,inj .

Small volume injection flux

If injection volume flux is smaller enough (not valid for reference DNS cases), the term Qinj
may be neglected in global conservation of volume flux (H.25) and this equation will be rewrit-
ten simply as Qt = Qb. We regroup it with expressions of Qb and Qt obtained from section
G.2, equations (H.21) and (H.24). We shall discuss two cases.

Case 1: zn > zi + hs
The formulations of Qb and Qt are the same as presented in section 7.3.2 case 2.

Case 2: zn < zi + hs

Note z∗n = zi + (zn−zi+hs)2

4hs
and the formulations of Qb and Qt will be once again the same as

presented in section 7.3.2 case 2 by changing zn to z∗n. The resolution will be the same as this
term will be eliminated in the process.

Consequently, for both case, the outlet volume flux can be rewritten as

Qt = A∗
√
g ′(H − zi) (H.36)

with

A∗ =

√
c∗t SbSt√

1
2

(
c∗t
cb
S2
t + S2

b

) , c∗t = ct
ρa
ρi

(H.37)

Small mass injection flux

In a general case, for light gas injection, the term Qm,inj may be neglected in global conserva-
tion of mass flux (H.26) and this equation will be rewritten simply as ρiQt = ρaQb. We regroup
it with expressions of Qb and Qt obtained from section G.2, equations (H.21) and (H.24). The
formulations of Qb and Qt are the same as presented in section 7.3.2 case 3 (by changing zn
to z∗n in case zn < zi + hs). However, an additional term will appear if we respect the similar
definition of A.

Qt =
ρa
ρi
A∗∗

√
g ′(H − zi) (H.38)

with

A∗∗ =

√
c∗∗t SbSt√

1
2

(
c∗∗t
cb
S2
t + S2

b

) c∗∗t = ct
ρi
ρa

(H.39)

General formula

We group above two cases into one formula for Qt.

Qt =A
√
g ′(H − zi) (H.40)

with A defined differently in two cases: it is equal to A∗ in the first case and A∗∗ρa/ρi in the
second case.
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H.4 System resolution

Jet solutions

The second step is to provide jet solutions in order to regroup it with conservation equations.
The resolution will be divided into two parts: in LA (and LH ), the jet is immersed in an un-
stratified environment while in LS , it is in linear stratified environment where ρe(z) changes
linearly with altitude. We have presented different unstratified solutions in section 7.3.3.
However, for linear environment, this resolution is not evident as jet equations are generally
non-linear. Specific analytical solutions are usually obtained from dimensional analysis, and
we are even not sure if explicit analytical solutions exist.

For illustration, we reconsider Morton’s equations for a general Boussinesq jet.

dQ
dz

= 2αT
√
πM, dM

dz
=
BQ
M

,
dB
dz

= −N2Q (H.41)

In linear stratified environment, the term N2 = − gρa
dρe
dz = g

ρa

ρa−ρi
2hs

> 0 is a positive constant. We
consider power function form for three characteristic jet quantities:

Q(z) =Q#(z − ls)q, M(z) =M#(z − ls)m, B(z) = B#(z − ls)b, (H.42)

with ls a constant length. By identification, we have b = m = 4 and q = 3. Thus, the third
equation in (H.41) can be rewritten as 4B# = −N2Q#. As N2 > 0, Q# and B# must be in
different signs. This is not possible as both quantities must be positive.

The above analysis illustrates the difficulty to find explicit analytical jet solutions in linear
stratified environment. By default, the numerical ODE resolution (e.g. RK4) shall be used.

Summary

We summarise here the resolution process. We have three unknown variables zi ,hs, g ′, and
three conservation equations (H.29), (H.31) and (H.35). Replacing Qt by equation (H.40) and
regrouping (H.29) and (H.31), these conservation equations can be rewritten as follows.

zi =H −
B2

0

g ′3A2

B0

g ′
=Q(zi)

g ′
DSD
2hs

+B0 = B∗(zi)

(H.43)

This system could be solved numerically by a double-iteration method. We first consider solv-
ing light gas injection problem by bi-layer methods as presented in chapter 7. The obtained
zi and g ′ will be used for first iteration in resolution of three-layer model. The initial hs can
be determined from the third equation in (H.43).

For iteration n, we have z(n)
i , g ′(n),h

(n)
s as input. We solve firstly the evolution of jet volume

flux Q(z) by using turbulent jet model dedicated to stratified environment ρe(z) in equation
(H.1), as presented in chapter 6. The resolution may be based on α-constant models as quasi-
analytical approaches presented in section 6.1.3 and section 6.2.1. We may also consider using
α-variable model as presented in section 6.3.3. Once we obtain the jet evolution, we consider

solve the equation B0
g ′ = Q

(
H − B2

0
g ′3A2

)
for g ′(n+1). Note that here g ′ is coupled in the term A,

this step may be done by a second iteration. Once g ′(n+1) is determined, z(n+1)
i ,h

(n+1)
s will be

deduced respectively by the first and the third equations. Iteration will stop if the absolute
differences between two consecutive solutions are within the defined threshold.
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