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General Introduction

T he recent growth of interest in smart systems technology, autonomous robotics and location-
aware services generates a strong motivation to develop robust and efficient techniques for track-
ing the position of a moving body, in both outdoor and indoor environments. The most cur-
rent positioning technologies that emerged in this sense, use radio frequency-based signals, from
which Global Positioning System (GPS) is the most common Ref. [Parakkal2017]. While GPS
is known to be most of the times efficient in determining position, its performance can be eas-
ily corrupted with outer disturbances (e.g. skyscrapers, extreme atmospheric conditions, etc.)
Ref. [Afraimovich2002]. Most importantly, when considering indoor applications, such as malls,
subways, parking lots, etc., the latter is usually useless Ref. [Fallah2013].

This limited indoor coverage of GPS encouraged nowadays, the rise of different solutions to
deal with the indoor navigation problem. Most of these solutions use a variety of sensors that
usually require pre-installed infrastructures, from those based on Wireless Local Area Network
(WLAN) structures, such as Bluetooth beacons Ref. [Kaewpinjai2020], to those relying on Radio
Frequency Identification (RFID) Ref. [Motroni2021], or vision-based techniques Ref. [Martín-
Gorostiza2019]. These approaches can be inaccessible in certain applications that have hostile
environment conditions (e.g. smoke in building), cost, and time constraints. For this reason, alter-
native navigation solutions that are independent from pre-equipped buildings must be explored.

The most common solution to the case where the conditions of intervention, and the availability of
pre-installed equipment are unknown, is the use of low-cost Inertial Measurement Units (IMUs),
composed of 3− axis accelerometers and 3− axis gyroscopes. Different approaches have been
proposed to effectively explore these sensors, as they introduce biases and errors, and a simple in-
tegration of their outputs can not provide any accurate position or orientation (attitude) estimations
Ref. [Jang2020]. One of the best approaches that are used to compensate these IMU drifts relies
on including additional sensors to conduct the estimation process, from which magnetometers are
the most explored.

The knowledge on the magnetic field plays a crucial role, especially in attitude estimation, as
discussed in Ref. [Wahba1965]. In that work, it is stated that in order to identify a rotation matrix
between a fixed and a body frame, at least two known vectors in these frames are required. By
using the acceleration and the magnetic field as observation vectors, in addition to the integration
of angular rate measurements, the attitude estimation problem can be solved under a data fusion
framework.

Many of the first developed solutions treating Wahba’s problem Ref. [Markley2000] assume neg-
ligible magnetic perturbations surrounding the moving body under study. Nevertheless, in an
indoor environment, magnetic perturbations can be very large Ref. [Bachmann2004], due to all
metals used in buildings (door frames, aluminum windows, etc.) and potentially, to the strong
electric currents propagating close-by. Consequently, when the magnetic field is used as a com-
pass, i.e. to determine the direction of the moving body in a certain trajectory, also known as the
heading Ref. [Afzal2011b], it can suffer from up to 30 degrees (deg) of error because of magnetic
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disturbances. Such large deviation represents a sufficient argument to question the reliability of
magnetometers in providing heading information.

One way to face such problem is through compensation-based approaches that are developed to
reject magnetic disturbances. This is done by identifying the Earth’s magnetic field from the over-
all perturbed one through the design of adequate detectors. While many techniques have been
suggested and evaluated in related state-of-the-art Ref. [Michel2017], such task remains difficult
especially when dealing with an indoor environment that introduces multiple sources of magnetic
perturbations.

Conversely, instead of defining magnetic disturbances as an anomaly to be excluded, one may
wonder if there are any valuable information in them that can be explored. It turns out that mag-
netic disturbances are not in fact a random noise. On the contrary, they are well structured by
physics equations and can be used to extract trajectory information. This makes of the magnetic
field inhomogeneity, a huge asset to the indoor navigation community Ref. [Storms2010].

Most of the research that has emerged in this context is focused on map-based approaches that
compare 3−axis magnetometer measurements with a pre-existing map of the magnetic field, al-
lowing therefore the estimation of absolute position Ref. [Raquet2013]. While such techniques
are evolving towards being entirely independent from any prior-mapping, most of them has to be
combined with complementary methods in order for them to work Ref. [Robertson2013].

Another solution in this case, that takes advantage of magnetic information, even when perturbed,
and that does not rely on any map-matching procedure, was introduced in Ref. [Afzal2011c]. The
approach relies on detecting Quasi-Static magnetic Field (QSF) periods, where the field remains
constant. It uses then its temporal gradient to aid with the error estimation of the angular rate.
Such use of the magnetometer is attractive since information is provided other than the heading.
Nevertheless, the approach requires a careful tuning of the test statistics parameters to generate an
optimal performance. The importance of such step intervenes mainly when dealing with different
sensor placements Ref. [Bancroft2012] or applications.

In such circumstances, an alternative methodology that studies not only the temporal variation
of the magnetic field but also the spatial one, without requiring any tuning procedure was first
suggested in Ref. [Vissière2007a] and further investigated in Refs. [Dorveaux2011b, Praly2013,
Batista2013,Caruso2016,Chesneau2016]. The proposed technique, referred to as Magneto-Inertial
Navigation (MINAV), explores the physical relationship that links the magnetic field to the veloc-
ity, and enables its estimation, as long as information about the spatial gradient of the magnetic
field is available. This is achieved under a sensor fusion framework, using solely a 3− axis ac-
celerometer, a 3− axis gyroscope, and a 3− axis magnetometer array, which is a setup that has
been explored by only few other works in related state-of-the-art Ref. [Skog2018a].

Scope

This thesis targets essentially improving the velocity estimation of a moving body, in a GPS-
denied indoor environment. The direction taken during this work is to provide a global solution
that works independently from any major requirements. Initially, an Extended Kalman Filter
(EKF) Ref. [Daum2015] is designed from a derived navigation model, to conduct an accurate es-
timation process.
This goal is rather ambitious, as such setup introduces different limitations that must be handled.
This leads to exploring other state-of-the-art methods in order to enhance the performance of the
estimation process. In this sense, two famous schemes are discussed: the Zero-Velocity Update
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Technique (ZUPT) Ref. [Wahlström2020], usually applied under a pedestrian foot-mounted sensor
framework, and Deep Neural Networks (DNNs), one of the basic tools in Artificial Intelligence
(AI).
While both these schemes can be of benefit, they introduce however, certain constraints, such as
the need for a specific sensor attachment, hyperparameters tuning, the availability and diversity of
data, the low computational cost, etc. These limitations encourage developing a rather flexible so-
lution, that does not demand large resources to be implemented, and that can be easily accessible
to different use cases.

Main contributions

The main contributions of this thesis are the following:

1. A better modeling of the navigation problem and more particularly, that of the magnetic
field gradient, is conducted. As initially suggested in Ref. [Chesneau2018], higher order
spatial derivatives of the magnetic field are explored using an adequate architecture of the
magnetometer array. This enables to efficiently model the dynamics of the magnetic field
gradient, and consequently improve the velocity estimation results. Both the theoretical and
experimental benefits of doing so are demonstrated on simulated and real datasets.

2. Two possible implementations of the proposed navigation model are introduced and com-
pared, both representing a magnetic field gradient-based EKF structure. This provides the
user of more flexibility when it comes to the EKF architecture and the handling of its differ-
ent parameters.

3. The performance of the derived single magnetic field gradient-based EKF approach is evalu-
ated under a pedestrian foot-mounted sensor framework, and then improved using the ZUPT.
Such solution provides promising results, especially when considering the trajectory recon-
struction.

4. To have a global solution that can be applied not only on the foot-mounted sensor case but
also on any other sensor attachment, an innovative approach is proposed that combines the
magnetic field gradient-based EKF with an AI-based technique, known as the Bidirectional
Long Short-Term Memory Network (BiLSTM), to improve the velocity estimation accuracy,
without any heavy computation or complex tuning.

5. The different discussed approaches are evaluated and compared on a real case study with a
complete experimental benchmark using a Magneto-Inertial Tachymeter (MIT) provided by
SYSNAV company Ref. [Sysnav2020] and a motion capture system from Qualisys brand
Ref. [Qualisys2021]. The benefit of using the MIT mostly resides on the generation of
magnetometer array measurements, which are unavailable in all used open-source datasets
chosen in this thesis. This experimental benchmark is the most adequate validation that can
be conducted to evaluate the performance of the different studied approaches.

Organization of the manuscript

This thesis is divided into two parts. Part I is dedicated to the introduction of magneto-
inertial navigation with a focus on the magnetic field gradient modeling. In this part, Chapter 1
discusses the theory behind the navigation problem and introduces the "traditional" MINAV
model. Then, it highlights its different limitations, especially those related to the magnetic field
gradient determination. Chapter 2 proposes an improved navigation model after exploring spatial
derivatives of the magnetic field. A special setting of two magnetic field gradient-based EKFs is

3



General Introduction

derived, which performance is evaluated under a simulation scheme, and promising results are
obtained. Chapter 3 treats the special case of trajectory reconstruction under a pedestrian foot-
mounted sensor framework. A new single EKF architecture is proposed and then enhanced with
the ZUPT. Different comparisons are conducted under an open-source simulated foot-mounted
dataset. Part II discusses the inclusion of AI-based techniques in the magneto-inertial navigation
scheme. In this part, Chapter 4 highlights the limitations that the proposed EKF may introduce,
that cannot be handled by the ZUPT when considering a non foot-mounted context. An innovative
solution that combines the EKF with a BiLSTM is then proposed and evaluated on a public
dataset with real measurements. Finally, Chapter 5 presents a real case study where the MIT and
motion capture system are used to conduct several experiments with different trajectory scenarios
and sensor attachments. The estimation accuracy of the different discussed methods in this thesis
is then evaluated. Final results prove the pertinence of the EKF-BiLSTM approach compared to
the existing state-of-the-art works.
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1
Velocity Estimation With a Magnetometer Array

This chapter starts by introducing in Section 1.1, preliminary notions about the naviga-
tion problem along with the notation used throughout this thesis. Then, inertial navi-
gation with low-cost sensors is discussed, where it is demonstrated why they are insuf-
ficient to obtain an estimate of attitude, velocity and position. The use of magnetome-
ters to complement inertial sensors is proposed in Section 1.2. Thanks to the magnetic
field disturbances present in an indoor environment, a technique called Magneto-Inertial
Navigation (MINAV) is presented, that enables the reconstruction of the velocity, under
some conditions. These conditions revolve essentially around the magnetic field gradient
that needs to be precisely determined. In Section 1.3, limitations of the usually applied
approximations using a magnetometer array are highlighted. This encourages the de-
velopment of more sophisticated models to represent the magnetic field gradient. In this
sense, some state-of-the-art attempts are presented and conclusions are made.
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1.1. Introduction

1.1 Introduction

The indoor magneto-inertial navigation problem consists in tracking a rigid body motion, over
time, with respect to an inertial frame, located in an indoor environment. This is achieved using a
low-cost strapdown (i.e. attached to the rigid body) Micro Electro Mechanical Systems (MEMS)
sensor board containing: an Inertial Measurement Unit (IMU), composed of a 3−axis accelerom-
eter and a 3−axis gyroscope and completed with an array of at least three non-aligned 3−axis
magnetometers. Motion tracking can be summarized with the determination of three entities: atti-
tude, velocity, and position. In this chapter, the kinematic differential equations connecting these
entities to the sensor board measurements are presented. Relying on these equations introduces
several limitations that are discussed in detail in the following sections.

1.1.1 Preliminaries and notation

Frames of reference

To mathematically present the navigation problem, two frames are introduced. Let ℜn = (On,Bn)
be a local inertial frame, fixed to the Earth, where Bn is its associated orthonormal basis such as
Bn = (en

1,e
n
2,e

n
3), and 〈en

i ,e
n
j〉= δi j for all i, j = 1, ...,3, where δi j is the Kronecker delta symbol,

i.e., δi j = 1 if i = j and is zero otherwise. The point On represents a fixed origin. This local
frame is oriented according to the North East Down (NED) convention, such as the unit vectors
of (en

1,e
n
2,e

n
3) point respectively to the directions north, east and gravity. For each application

considered in this thesis, the Earth’s curvature and its angular velocity are neglected.

Remark 1 Most of low-cost MEMS gyroscopes are not sensitive enough to measure angular ve-
locities with a magnitude close to the Earth’s one (≈ 7.3 ∗ 10−5rads−1). This is why the Earth’s
rotation is neglected in this entire thesis.

Consider then a body frame attached to the rigid body under study ℜb = (Ob,Bb), where Ob

is the center of gravity of the sensor board strapped to the rigid body, and Bb is another direct
orthonormal basis, that coincides with the sensor board inner sensors axes. In the entire thesis,
the index n (resp. b) denotes the coordinates of vectors in the inertial frame ℜn (resp. in the body
frame ℜb).

Attitude

The attitude is defined as the transfer matrix from ℜn to ℜb such as A = Rb
n = (Rn

b)
>. The attitude

matrix Rb
n ∈ R3×3 belongs to SO(3), the group of rotations in 3D Euclidean space. This means

that (Rb
n)
−1 = (Rb

n)
>.

The rotation matrix Rb
n is formed with a succession of three elementary rotations R1, R2 and R3

around the three axes of the inertial frame. These rotations are represented with three angles,
called Euler angles, where φ is the roll angle, representing the rotation around the X−axis of ℜb,
θ is the pitch angle, defining the rotation around the Y −axis and ψ is the yaw angle (or heading
angle), describing the rotation around the Z− axis. Several combinations of these rotations are
possible Ref. [Shuster1993] (here a ZY X combination). Accordingly, the rotation matrix Rb

n is

7



Chapter 1. Velocity Estimation With a Magnetometer Array

given by

Rb
n = R3(φ) R2(θ) R1(ψ) =


1 0 0

0 cφ sφ

0 −sφ cφ




cθ 0 −sθ

0 1 0

sθ 0 cθ




cψ sψ 0

−sψ cψ 0

0 0 1



=


cθ cψ cθ sψ −sθ

sφ sθ cψ − cφ sψ sφ sθ sψ + cφ cψ sφ cθ

cφ cψsθ + sφ sψ sθ sψcφ − sφ cψ cφ cθ


(1.1)

where sψ = sin ψ and cθ = cos θ , for example.

Remark 2 Attitude can be represented entirely with Euler angles. However, the problem with
such representation is the existence of singularities: in some cases, a same attitude in space can
be obtained by an infinite number of rotations. For instance, if θ =

π

2
, the rotation axes of R1 and

R3 are identical. This phenomena is called the gimbal lock Ref. [Diebel2006].

To avoid the singularity problem encountered by Euler angles, another form of attitude represen-
tation is used: quaternions Ref. [Kuipers1999]. A quaternion describes the orientation of ℜb with
respect to ℜn by a three dimensional vector~u and a rotation αr around this vector. It is then defined
such that

q =

 cos
αr

2
sin

αr

2
~u

 (1.2)

with ‖~u‖= 1.
The unit quaternion represents then a quadruplet q = [q0 q>v ]

> ∈R4×1, where q0 is the scalar part,
and qv = [q1 q2 q3]

> the vector part, such that q2
0 +q>v qv = 1.

In this entire thesis, the attitude matrix Rb
n is numerically represented by an associated unit quater-

nion as follows

Rb
n = Rb

n(q) =


2(q2

0 +q2
1)−1 2(q1q2 +q0q3) 2(q1q3−q0q2)

2(q1q2−q0q3) 2(q2
0 +q2

2)−1 2(q2q3 +q0q1)

2(q1q3 +q0q2) 2(q2q3−q0q1) 2(q2
0 +q2

3)−1

 (1.3)

Reciprocally, given the attitude matrix Rb
n, the quaternion that represents the same rotation can be

computed. First, the trace of Rb
n is calculated (i.e. the sum of the elements on the main diagonal of

the matrix)

Tr(Rb
n) =R11 +R22 +R33

=2(3q2
0 +q2

1 +q2
2 +q2

3)−3

=2(3q2
0 +(1−q2

0))−3

=4q2
0−1

(1.4)

where Tr(Rb
n) is the trace of Rb

n, and R11, R22 and R33 are the diagonal elements of Rb
n, going from

the up left till the right down.
Solving Eq. (1.4) gives

|q0|=
√

Tr(Rb
n)+1
4

(1.5)
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1.1. Introduction

with | . |, referring to the absolute value.
Once the scalar part q0 is obtained, q1 can be determined from R11 such that

R11 =2(q2
0 +q2

1)−1 = 2
(

Tr(Rb
n)+1
4

+q2
1

)
−1

|q1|=
√

R11

2
+

1−Tr(Rb
n)

4

(1.6)

Similarly, q2 and q3 are computed from R22 and R33, respectively

|q2|=
√

R22

2
+

1−Tr(Rb
n)

4
(1.7)

|q3|=
√

R33

2
+

1−Tr(Rb
n)

4
(1.8)

Angular velocity

Denote ωb = [ωb
x ωb

y ωb
z ]
> ∈ R3×1, the angular velocity of ℜb with respect to ℜn. Implicitly, it

can be defined such that
dRb

n

dt

∣∣∣∣
ℜn

=−[ωb×]Rb
n (1.9)

where [ωb×] ∈ R3×3 is the skew-symmetric matrix having this following form

[ωb×] =


0 −ωb

z ωb
y

ωb
z 0 −ωb

x

−ωb
y ωb

x 0

=−[ωb×]> (1.10)

Remark 3 In this entire thesis, time derivations are performed with respect to the inertial frame

ℜn. For simplicity reasons, the notation
d
dt

∣∣∣∣
ℜn

is omitted and
d
dt

is rather used.

The relationship between attitude and ωb can also be expressed in terms of quaternion with

dq
dt

=
1
2

Ω
bq (1.11)

where Ωb = Ωb(ωb) ∈ R4×4, such that

Ω
b =

 0 −(ωb)>

ωb −[ωb×]

 (1.12)

Acceleration

Denote ab = [ab
x ab

y ab
z ]
> ∈ R3×1, the rigid body’s acceleration in ℜb. It can be defined with the

following form
ab = Rb

nan = Rb
n(a

n
l +gn) = ab

l +Rb
ngn (1.13)

with an = [an
x an

y an
z ]
> ∈ R3×1, the acceleration vector in ℜn, an

l = [an
lx an

ly an
lz]
> ∈ R3×1, the

linear acceleration in ℜn, γb = [ab
lx ab

ly ab
lz]
> ∈ R3×1, its corresponding form in ℜb, and gn =

[0 0 gn
z ]
> ∈ R3×1, is the gravity vector. In this work, Coriolis acceleration (the acceleration

induced by the Earth’s rotation) is neglected, and gn
z ∈ R is considered a known positive constant,

as the chosen convention for the local inertial frame is NED.
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Chapter 1. Velocity Estimation With a Magnetometer Array

Remark 4 In reality, assuming that the gravity is a known constant vector is not entirely valid.
The latter actually depends on the attitude of the rigid body, which itself, is unknown. In a purely
inertial navigation framework, this hypothesis may degrade the accuracy of the velocity and posi-
tion estimations. Thus, several techniques in the literature are developed to precisely estimate the
gravity vector Ref. [Manos2018, De Celis2018].

Position

Consider M a fixed point of the rigid body. Let Mn = [Mn
x Mn

y Mn
z ]
> ∈ R3×1 be its representation

with cartesian coordinates in ℜn, and Mb = [Mb
x Mb

y Mb
z ]
> ∈R3×1, its corresponding form in ℜb.

It is considered that Mb is superposed with the origin of the body frame ℜb, so Mb = Ob. The
trajectory of the rigid body is then defined as the evolution of (Rb

n,M
n) ∈ SE(3) with respect to

time, where SE(3) is the special Euclidean group of rigid body displacements in 3D. The vector
Mn represents then, the position of the rigid body under consideration.

Velocity

The corresponding velocity in ℜn to the position Mn is denoted by vn = [vn
x vn

y vn
z ]
> ∈ R3×1 and

is obtained with
vn =

dMn

dt
(1.14)

Inertial velocity dynamics can also be represented in terms of attitude and body acceleration such
that

dvn

dt
= an

l = Rn
bab−gn (1.15)

In ℜb, the velocity vb = Rb
nvn = [vb

x vb
y vb

z ]
> ∈ R3×1 can then be derived as follows

dvb

dt
=

dRb
nvn

dt
=

dRb
n

dt
vn +Rb

n
dvn

dt
=− [ωb×]Rb

nvn +Rb
n(R

n
bab−gn)

(1.16)

By simplifying Eq. (1.16), the basic differential equation describing the temporal variation of vb

is deduced
dvb

dt
=−ω

b× vb +ab−Rb
ngn (1.17)

where × is the cross product of two vectors in R3.

Remark 5 It is brought to the attention of the reader that
dRb

nvn

dt
6= Rb

n
dvn

dt
, which may represent a

confusion during derivations. This is because the change of frame through Rb
n applies to Eq. (1.9).

This also means that ab
l 6=

dvb

dt
and vb 6= dMb

dt
.

1.1.2 Limitations of IMU measurements

Implications on attitude estimation

Regrouping the different kinematics equations stated above leads to the following system

dq
dt

=
1
2

Ω
bq (1.18)

dvb

dt
= −ω

b× vb +ab−Rb
ngn (1.19)

dMn

dt
= Rn

bvb (1.20)
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The true angular velocity ωb and acceleration ab are the inputs for Eqs. (1.18)-(1.20). These
true measurements are contained in the outputs of the IMU’s 3− axis gyroscope and 3− axis
accelerometer, respectively, alongside with biases and noises as follows

ω
b
IMU = ω

b +bb
ω +η

b
ω (1.21)

ab
IMU = ab +bb

a +η
b
a (1.22)

where bb
ω = [bb

ωx bb
ωy bb

ωz]
> ∈ R3×1 and bb

a = [bb
ax bb

ay bb
az]
> ∈ R3×1 are the biases of the gyro-

scope and accelerometer, and ηb
ω = [ηb

ωx ηb
ωy ηb

ωz]
> ∈R3×1 and ηb

a = [ηb
ax ηb

ay ηb
az]
> ∈R3×1 are

their corresponding noises, respectively. This means that deriving Eqs. (1.18)-(1.20) implicates
the use of ωb

IMU and ab
IMU as there is no full knowledge on biases and noises, and thus they cannot

be directly subtracted from Eqs. (1.21)-(1.22). In fact, the problem with the presence of biases
intervenes during integration. For instance, a bias of order εb on the accelerometer measurements
has an impact of order 1

2 εbt2 on the determined position after t seconds (s), leading to a huge
cumulative drift. The same happens when computing quaternion from angular velocity measure-
ments. For example, consider a 1 minute (min) trajectory, where a subject is moving in an office
environment with a low-cost IMU attached to his ankle. A gyroscope with a bias of approximately
0.003 rads−1 and a noise standard deviation of 0.005 rads−1 is used to compute Eq. (1.18). As
illustrated with Fig. 1.1, by comparing the ground truth quaternion q1 (red line) and the integrated
one q̂1 (blue line), the drift occur starting from less than 3 s and becomes larger over time, making
attitude estimation diverge. The other elements of q̂ have also the same behavior as q̂1.

0 10 20 30 40 50 60
Time (s)

-1

-0.5

0

0.5

1

q
1

2.8 2.9

-0.4

-0.3

Figure 1.1: Example of quaternion drift caused by integrating biased gyroscope measurements.
In red is the ground truth q1 and in blue is the integrated one q̂1

To better highlight the impact of using noisy and biased angular velocity measurements on the atti-
tude, the integrated quaternion q̂ is converted to Euler angles representation through both Eq. (1.1)
and Eq. (1.3). Then, the difference between the ground truth Euler angles and the integrated ones
is evaluated. In Fig. 1.2, the error of the pitch angle is displayed. In only 3 s, an error of around
4 degrees (deg) is obtained, that accumulates through time till it reaches approximately 140 deg
in 1 min, causing this trajectory drift. This calls for the need to develop efficient solutions that can
treat such crucial problem.

IMU biases determination

From the observations above, it is clear that measurements’ errors cannot be neglected when study-
ing an inertial navigation problem. Typically, a two-stage calibration step can be conducted before
using the IMU, where both the deterministic and stochastic parts of these errors are identified
Ref. [Amirsadri2012]. Considering biases as fixed errors, the simplest method to determine them
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Figure 1.2: Example of pitch error caused by integrating biased gyroscope measurements

is by measuring the output while the IMU is stationary. For the gyroscope, the true angular rate in
Eq. (1.21) is set to zero when the IMU is static. By taking the mean of its measurements over few
minutes and provided that ηb

ω is zero-mean, white and Gaussian, the bias is obtained such that

bb
ω = Sωω

b
IMU (1.23)

where ω
b
IMU is the measured angular rate’s mean, and Sω is the gyroscope’s scale factor, which

can be estimated using information from the IMU’s data sheet Ref. [Amirsadri2012]. To cover
most cases of interest, the gyroscope’s scale factor can be substituted with a diagonal matrix of
scale factors for each axis, that is multiplied with a skew-symmetric matrix representing sensor’s
misalignment terms. Both these matrices are alternatively gathered in one general matrix, to be
determined through the calibration process, as studied in detail in Ref. [Dorveaux2011a]. It is
reminded that the Earth’s rotation has a magnitude of ≈ 7.3 ∗ 10−5 rads−1, which is considered
negligible for the above procedure. Following the same principle used for the gyroscope, i.e. static
calibration, the bias of the accelerometer is computed by considering that at rest, the latter mea-
sures the gravity vector. By neglecting Coriolis acceleration and supposing that gravity on the
vertical axis gn

z is a known constant, the accelerometer’s bias can be determined.
While such procedure succeeds to provide an initial estimation of biases, it can become unsatis-
factory in the presence of some external factors that may affect the IMU’s nature. For instance,
low-cost sensors tend to have strong thermal dependencies Ref. [Reginya2018], which means
that, changes in ambient temperature induce changes in the IMU’s behavior. In other words,
IMU’s biases may not remain constant during long period experiments causing the sensor’s com-
ponents to heat. This implies that biases vary, and thus, it is rather appropriate to consider them
as part of the state vector. Different methods in the literature are proposed in this sense, such
as in Refs. [Tie2018, Liu2019, Javed2020, Nazemipour2020]. However, the accuracy of these
approaches usually depends on the availability of reference data, the validity of model assump-
tions and observability conditions. Estimation errors in such case are inevitable, which makes
depending only on bias determination to obtain accurate velocity and position estimates through
the integration of Eqs. (1.18)-(1.20) unreliable.
That being said, one should stress that the effectiveness of classical approaches such as the one
initially presented in this section (static calibration) is preserved during short period experiments,
where no significant change in sensor’s temperature is detected. A benchmark with the used sen-
sor board in this thesis, have demonstrated that gyroscope and accelerometer biases remain almost
constant for an entire 20 minutes (min) of recordings. For trajectories that last not more than 4 min
(refer to Chapter 5), it is safe to follow such assumption and consider biases as constant parame-
ters. This is why, for the continuity of this thesis, biases are determined during a pre-processing
phase by relying on the static calibration method, and then subtracted from the IMU’s measure-
ments, before they are fed to the navigation filter. For simulation scenarios, they are chosen null
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directly, as the same method can be applied during the measurements preparation step.
Nevertheless, under challenging conditions, such as longer period trajectories, developing more
sophisticated methods for biases estimation, that take into consideration their potential variation,
remains necessary. A preliminary work is elaborated in this sense and is presented at the end
of this thesis as a future perspective. The inability of eliminating imperfections from IMU’s
measurements entirely encourages the design of approaches that can limit their detrimental ef-
fect, and thus reduce the navigation errors. While attitude can be partially restored with sensor
fusion-based algorithms Refs. [Wu2019a,Renaudin2014,Makni2019,Crassidis2007], velocity and
position estimations are more complicated, especially when maintaining the low-cost strapdown
sensors framework.

1.2 The MINAV technique

Beside to accelerometers and gyroscopes, modern low-cost IMUs are designed nowadays with
integrated magnetometers as they provide an additional solution to the navigation problem. This
preserves the main advantage of purely inertial technology: no pre-installed infrastructure or ad-
ditional information source are required.

1.2.1 The magnetic field in indoor environments

Heading estimation

The use of magnetometers to solve the navigation problem has been largely treated in the litera-
ture. For instance, the magnetic field is widely used in attitude estimation algorithms, where it is
fused with other IMUs, to compensate the errors contained in their measurements.
In this sense, a wide range of solutions have been proposed since the introduction of Wahba’s prob-
lem Ref. [Wahba1965], to combine inertial and magnetic sensor measurements in a relevant man-
ner. TRIAD-based algorithms Refs. [Black1964,Tanygin2007] are one of the earliest methods that
were explored, followed by QUaternion ESTimators (QUESTs) Refs. [Shuster1981, Cheng2005],
as well as a variety of filters, such as, Particle Refs. [Oshman2006, Zhang2016, Zhou2021],
Kalman Refs. [Choukroun2006,Sabatini2006,Makni2014] and complementary filters Refs. [Ma-
hony2008, Madgwick2011, Wu2019a]. In these algorithms, magnetometers usually play a role of
a compass to determine which direction the moving body is facing, also known as heading esti-
mation Refs. [Afzal2011b, Wu2018]. For outdoor applications, such technique is very effective,
assuming the Earth’s declination angle is known. However, for indoor applications, the use of
magnetometers as a compass is not as straight forward, see Refs. [Bachmann2004,De Vries2009].
One obvious solution in this case, for accurate attitude estimation in the presence of magnetic per-
turbations, resides on developing compensation techniques that can efficiently reject them, such as
those proposed in Refs. [Roetenberg2005,Renaudin2012a,Yadav2014,Madgwick2020], for exam-
ple. A detailed comparative between many of these techniques is conducted in Ref. [Michel2017].
For these approaches to work, one must develop magnetic field detectors that are able to correctly
identify the Earth’s magnetic field from the existing perturbations. Such task however, can become
very challenging in an indoor environment that contains various external sources of magnetic dis-
turbances.
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Indoor magnetic disturbances

The magnetic field measured by a magnetometer in an indoor environment may vary widely
from the Earth’s one that is observed outdoor away from any perturbations1. According to the
most recent World Magnetic Model (WMM) calculator Ref. [NOAA2021], the magnitude of the
Earth’s magnetic field in Grenoble, where all experiments of this thesis are conducted, is around
≈ 0.466 Gauss (G). In an indoor environment, magnetic disturbances can occur due to electrical
currents and devices, building infrastructure, or any type of activity relying on ferrous materials
such as steel, for example. The measured magnitude of these disturbances depends on the distance
between the moving body holding/wearing the magnetometer and their source. In Fig. 1.3, the
magnitude (determined by applying the norm) of a 3−axis magnetometer’s output is recorded over
approximately 5 min of trajectory performed by a subject inside a research laboratory. The varia-
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Figure 1.3: Magnitude of the magnetic field Bb measured by a 3− axis magnetometer during an
indoor trajectory

tion in the displayed magnitude confirms the assumptions previously stated about the presence of
magnetic disturbances. For instance, walking around the office and the hallway generates multi-
ple fluctuations in the measured magnetic field, which are explained by the presence of heaters,
screens, metallic tables, etc. This is followed by enormous perturbations caused by standing next
to a running microwave in the kitchen. When the microwave is paused (for about 4 s), almost no
magnetic perturbations are observed. Afterwords, the subject goes inside an elevator, where the
measured magnitude of the magnetic field significantly decreases, since the elevator in question
is constructed with a similar structure to a Faraday’s cage [Krauss1992], and its doors and walls
are equipped with glass-wool insulation. Finally, by going outside the building, a magnitude very
close to the Earth’s one is recorded, which is expected with the absence of magnetic disturbances
in an outdoor environment.
As many works in the literature discuss the high magnetic field disturbances measured close to
elevators, and due to the special structure of the previously tested one, a second experiment is
undertaken where a subject walks through a different hallway, having less magnetic field pertur-
bations, towards a standard elevator. As demonstrated in Fig. 1.4, by standing near the elevator,
the norm of the magnetic field increases drastically to reach more than 1.5 G, which proves the
presence of high magnetic field disturbances around the elevator’s door. It follows that this norm
decreases by going inside the elevator, again, explained by the Faraday’s cage phenomena. Both

1In the entire thesis, the word perturbation is equivalent to disturbance.
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Figure 1.4: Magnitude of the magnetic field Bb measured by a 3−axis magnetometer close to and
inside an elevator

these experiments demonstrate efficiently the presence of magnetic field perturbations in an in-
door environment and rise the question of how to take advantage of such conditions to accurately
reconstruct the velocity, position, and attitude of a moving body.

Magnetic field-based mapping

While magnetic disturbances represent a problem for heading estimation, which encourages the
development of solutions to reject them as in Refs. [Ye2020, Árvai2020], the idea of using the
magnetic field inhomogeneity for positioning instead has emerged in the recent years like in
Refs. [Ashraf2021, Galván-Tejada2020]. Some techniques that take the lead in this context are
fingerprinting such as in Refs. [Kuang2018,Chen2020b] and Simultaneous Localization And Map-
ping (SLAM), see for example Refs. [Kok2018,Liu2021]. In these approaches, the magnetic field
is used to reconstruct a trajectory that is matched with a pre-existing map. Even though such
techniques may work without requiring any pre-installed or additional equipment, they do need
prior information on the building infrastructure, which doesn’t meet the expectations of this thesis:
purely inertial and magnetic navigation, without additional information sources.

Angular rate update using quasi-static magnetic field periods

An approach that employs magnetometer measurements in a perturbed environment, while main-
taining a map-free framework, was introduced in Refs. [Afzal2011a, Afzal2011c] and further de-
veloped in Ref. [Renaudin2014]. The technique resides mainly on detecting Quasi-Static magnetic
Field (QSF) periods in the body frame, and using them as measurements under a non-linear filter
scheme. This is done in the purpose of better estimating attitude and gyroscope errors.
In these works, it was shown that the magnetic field can have a constant magnitude and direction
for some locations or short periods (e.g. when the body is not moving). During these instances,
the rate of change of the magnetic field, which is referred to as its temporal gradient, can be equal
or very close to zero. Such information enables developing a measurement error model that is
used for updating the state vector of the navigation filter, to improve the estimation process.
To ensure an accurate detection of QSF periods, the tuning of the test statistics parameters: the
detection threshold, the noise variance and the window size, must be carefully handled. These pa-
rameters can vary largely with the studied sensor placement Ref. [Bancroft2012] or the application,
for instance, from pedestrians, to vehicles navigation. Such desired diversity cannot guarantee the
ability to detect QSF periods continuously, unless an adaptive tuning process is considered.
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Chapter 1. Velocity Estimation With a Magnetometer Array

MINAV and related state-of-the-art

In order to make use of the Earth’s magnetic field in indoor environments, two of its properties
are exploited: First, it is assumed to be stationary, i.e. time-invariant in the inertial frame ℜn

for few seconds to hours. Second, it varies with respect to the position in space, which is the
strategy of fingerprinting-based approaches. Then, considering that information about the spatial
variation of the magnetic field is available, one can link the magnetic field temporal variation in
the body frame ℜb, to the velocity vb of the sensor board (containing the magnetometers) that
is strapped to the moving subject under study. It becomes then possible to combine an array of
spatially distributed magnetometers with an IMU to obtain velocity estimates, position, and at-
titude, without building any map. Unlike the QSF approach, such methodology does not rely
on any tuned parameters or the detection of specific trajectory characteristics, which gives it a
fairly general aspect. This idea, referred to as Magneto-Inertial Navigation (MINAV), was firstly
proposed in Ref. [Vissière2007a], where it was shown how to use low-cost magnetometers’ mea-
surements as a velocity information source in a sensor fusion framework. This represents an
alternative and promising way of using the magnetic field for indoor navigation purposes. Few
works were then developed in a similar manner, mostly by the same authors Refs. [Vissière2007b,
Dorveaux2011a, Dorveaux2011b, Dorveaux2011c, Praly2013, Batista2013, Chesneau2016, Ches-
neau2017, Chesneau2018, Caruso2016, Caruso2017a, Caruso2017b, Caruso2017c, Caruso2018,
Caruso2019], where different theoretical and experimental results are presented.
In the same direction, another research team has elaborated solutions that also take advantage of
the magnetic field perturbations recorded by a magnetometer array Refs. [Skog2014, Skog2016,
Skog2018a, Skog2018b, Skog2018c]. In these works, authors consider a model parameter estima-
tion problem where the velocity is viewed as a free parameter and is fitted to the observed data.
This is different from the approach in Ref. [Vissière2007a], where velocity is directly estimated by
solving a differential equation that links the rate of change of the magnetic field to its spatial gradi-
ent as well as the gyroscope measurements. In Ref. [Skog2018b], authors represent the magnetic
field variations using a second order polynomial model and then derive a maximum likelihood
estimator Ref. [Myung2003] that determines the displacement of the magnetometer array. To have
an idea on the needed architecture of the array and the possible performance of the method, iden-
tifiability and Cramér-Rao analyses of the estimation problem are conducted Ref. [Skog2016].
However, while the derived identifiability conditions show that attitude can also be determined
using the discussed approach, the performance of the latter is only evaluated for the case where
the rotation is known, which lays some concerns on how well such solution can estimate atti-
tude, especially under challenging conditions (e.g. low magnetic perturbations, trajectory’s static
periods, etc.). Contrarily to purely IMU arrays that are widely spread in the literature, see sur-
vey in Ref. [Nilsson2016], studying the capabilities of magnetometer arrays is not as extensive,
which motivates reviewing the challenges that the MINAV technique may introduce to the indoor
navigation problem.

1.2.2 The MINAV model

The magnetic field in the inertial frame

Following the notation previously introduced, the vector field Bn = [Bn
x Bn

y Bn
z ]
> ∈ R3×1 is in-

troduced, representing the Earth’s magnetic field in ℜn. The component Bn
x is directed towards

the geographic north, Bn
y represents the east, while the vertical and positive component directed

downwards into the Earth is Bn
z . Four parameters can be employed to describe Bn: the horizontal

intensity HB = ‖(Bn
x)

2 +(Bn
y)

2‖, the total intensity FB = ‖(Bn
x)

2 +(Bn
y)

2 +(Bn
z )

2‖, the inclination

IB = arctan
Bn

z

HB
and the declination DB = arctan

Bn
y

Bn
x

. These quantities can be directly deduced

from Ref. [NOAA2021], by indicating the desired location and time of the measurements. The
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1.2. The MINAV technique

Earth’s magnetic field Bn is then expressed with

Bn = [HBcos DB HBsin DB FBsin IB]
> (1.24)

Originally, the magnetic field Bn can be represented as a function of two variables: time t, and
space/position Mn. In this sense, its temporal variation can be expressed with a multivariable
chain rule differentiation as follows

dBn(t,Mn)

dt
=

∂Bn

∂Mn
dMn

dt
+

∂Bn

∂ t
(1.25)

Assuming Bn is stationary in ℜn implicates that
∂Bn

∂ t
= 0, making the field only dependent on the

space variable Mn. Therefore, Eq. (1.25) is reduced to

dBn(Mn)

dt
=

∂Bn

∂Mn
dMn

dt
=

∂Bn

∂Mn vn (1.26)

This leads to the definition of the Jacobian matrix ∇Bn, representing the magnetic field spatial
gradient ∈ R3×3, such that

∇Bn =
∂Bn

∂Mn (1.27)

Remark 6 Using Eq. (1.27), and according to the rule of vector derivative versus vector, the
magnetic field gradient ∇Bn should be defined as a 9×1 vector. However, it can also be mapped
by a unique bijection to a matrix in R3×3, which justifies the previous dimension definition.

The magnetic field in the body frame

In navigation applications, the Earth’s magnetic field can be measured using a 3− axis magne-
tometer that is contained in the sensor board attached to the moving body. It comes without saying
that the latter needs to be represented in the body frame ℜb such that Bb = [Bb

x Bb
y Bb

z ]
> ∈ R3×1.

The rotation between ℜn and ℜb is conducted using simply

Bb = Rb
nBn (1.28)

In the same manner as the velocity in Eq. (1.17), the dynamics in Eq. (1.26) can also be trans-
formed to the body frame ℜb using both Eq. (1.28) and Eq. (1.9). This leads to the following
derivation

dBb

dt
=

dRb
nBn

dt
=

dRb
n

dt
Bn +Rb

n
dBn

dt
=− [ωb×]Rb

nBn +Rb
n∇Bnvn

(1.29)

The rotation of the magnetic field gradient ∇Bn is achieved according to the 2nd rank tensors (i.e.
matrices) transformation formula as follows

∇Bn = Rn
b∇BbRb

n (1.30)

where ∇Bb ∈ R3×3 is the magnetic field gradient in ℜb and is expressed with

∇Bb =
∂Bb

∂Mb (1.31)
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Chapter 1. Velocity Estimation With a Magnetometer Array

Remark 7 Similarly to ∇Bn definition, the magnetic field gradient ∇Bb can be either represented
as a matrix in R3×3 or a vector in R9×1 through a bijection.

Going back to Eq. (1.29), and replacing ∇Bn with Eq. (1.30) gives

dBb

dt
=−ω

b×Bb +Rb
nRn

b∇BbRb
nvn (1.32)

A simplification of the terms Rb
nRn

b and Rb
nvn leads to

dBb

dt
=−ω

b×Bb +∇Bbvb (1.33)

The equation above represents the base of the MINAV technique, that enables the estimation of
the velocity vb, by relying on IMU and magnetometers measurements. An analysis on the benefit
of this equation is conducted in the following section.

Remark 8 It is highlighted that any non-uniform vector field may be used to estimate the velocity
vb in a similar manner to Eq. (1.33). For instance, the magnetic field can be replaced by the electric
one which information on its variation is acquired using a set of electrometers Ref. [Lee2008].

Stationarity of the magnetic field

The model presented in Eq. (1.33) relies on the assumption that the magnetic field in the inertial
frame Bn is stationary. Nevertheless, this hypothesis can become untrue in indoor environments
due to the presence of additional perturbations related to the electric field. Different solutions
can be suggested in this case, depending on the nature of the perturbation, that is, periodic or
non-periodic. The most usual one that may occur in an indoor environment is due to power-line
interference. Under such circumstances, a periodic component at the 50 Hz frequency (in Europe)
is contained in the magnetic field vector. This component can go up to 1 µT in amplitude in some
cases (e.g. office close to train station), causing a significant drift during the estimation process,
as discussed in Ref. [Chesneau2018]. Therefore, it is considered necessary to take power-line
interference into account during the magnetic field’s modeling.
In Ref. [Chesneau2018], the magnetic field is presented as the sum of a stationary field, and a
disturbance field in ℜn, denoted Bn

pli, such that, the measured total field yb
B by the sensor board, is

defined with
yb

B = Bb +Rb
nBn

pli (1.34)

By denoting ωpli the pulsation of power-line interference, the dynamics of Bn
pli are then determined

such that
d2Bn

pli

dt2 =−ω
2
pliB

n
pli (1.35)

The equation above is considered in the state-space model, in addition to Eq. (1.33), to represent
the overall dynamics of the magnetic field.
Similarly to Ref. [Chesneau2018], and to account for power-line interference, in
Ref. [Dorveaux2011a], the magnetic field is modeled with

yb
B = Bbcos(ωplit +Φ) (1.36)

where Φ is an unknown phase. Considering the latter null, as a simplifying assumption, one has

dyb
B

dt
=−ω

b×Bbcos(ωplit)+∇Bbvbcos(ωplit)−Bb
ωplisin(ωplit) (1.37)

It is suggested in Ref. [Dorveaux2011a] that, an asymptotic observer relying on magnetic mea-
surements and Eq. (1.37) can enable the reconstruction of velocity. This indicates the effectiveness
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1.2. The MINAV technique

of the MINAV approach, even under the magnetic field’s non-stationary condition.
When no assumption on the time-varying component of the magnetic field can be made, it is pos-
sible to compensate its unsteadiness using an extra measurement, as the electric field, for example.
By relying on Maxwell’s equations describing the relationship between the curls of the magnetic
and electric fields Ref. [Jackson1998], an extra term is added to Eq. (1.33) such that

dBb

dt
=−ω

b×Bb +∇Bbvb−∇×Eb (1.38)

where Eb ∈R3×1 is the output of an electric field sensor (e.g. electrometer) and ∇×Eb is its curl.
Alternatively, by completely dropping the stationarity hypothesis of the magnetic field, and replac-
ing it by an assumption on its spectrum, a more general model is given in Ref. [Chesneau2018],
where in addition to Eq. (1.34) and Eq. (1.35), the magnetic field is defined with

dBb

dt
=−ω

b×Bb +∇Bbvb +Rb
nBn

p (1.39)

where Bn
p ∈ R3×1, is a non-stationary component of the magnetic field, different from power-line

interference, and is modeled with

dBn
p

dt
=−

Bn
p

τBp

(1.40)

where τBp is a time constant, representing the settling time of a magnetic instationarity.
The proposed models in both discussed references Refs. [Dorveaux2011a,Chesneau2018] demon-
strate that the applicability of MINAV approach is not restricted to the presence of a stationary
magnetic field and can be generalized to the unsteady case. This is done by either using dedicated
models for compensating electric interference at known frequency (power-line), or by adding an
additional information, as for the non-periodic case (e.g. output of an electrometer).
Assuming a time-periodic perturbed magnetic field, and more particularly, a power-line inter-
ference at 50 Hz, a substitute methodology can be performed, that does not require any further
modeling of the magnetic field, other than Eq. (1.33). In fact, instead of taking into account the
non-stationary component in the measured magnetic field vector yb

B, it can be initially rejected
through the use of a notch filter Ref. [Hirano1974], during a pre-processing phase. Preliminary
experiments have demonstrated that, in a regular office environment, the magnitude of power-line
interference is most of the time negligible, compared to the stationary component of yb

B. Such
observation is realized through a frequency domain analysis of the measured magnetic field vector
from a real sensor board. Following the fact that Bn

pli is insignificant, it was later verified that for
most of the conducted experiments in this thesis, using the magnetic field measurements in the
proposed state-space model, even without any pre-processing, does not have any major impact on
the state’s estimation accuracy. It follows that, the magnetic field models for the non-stationary
case suggested in Refs. [Dorveaux2011a, Chesneau2018] are not adopted in this thesis, to avoid
augmenting the state vector and adding more complexity to the proposed solution. The notch filter
is however maintained during the measurements’ pre-processing phase, to ensure the elimination
of the 50 Hz periodic component whenever it exists.
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Chapter 1. Velocity Estimation With a Magnetometer Array

1.2.3 Velocity observability

MINAV main state-space model

Writing back the set of Eqs. (1.18)-(1.20) and adding Eq. (1.33) results in the following system
that constructs MINAV main state-space model.

dq
dt

=
1
2

Ω
bq (1.41)

dvb

dt
= −ω

b× vb +ab−Rb
ngn (1.42)

dBb

dt
= −ω

b×Bb +∇Bbvb (1.43)

dMn

dt
= Rn

bvb (1.44)

The choice of this model is inspired from Ref. [Chesneau2016], and is mainly used here to demon-
strate the velocity observability conditions. This model is improved in the next chapter and con-
stitutes the first contribution of this thesis.
The state vector here is then X(t) = [q vb Bb Mn]> ∈ R13×1 and the output vector is y(t) = Bb ∈
R3×1. Direct measurements of ωb, ab, and ∇Bb are available using the IMU and the magnetome-
ters, like in Ref. [Chesneau2018]. Thus, the input u is expressed with u(t) = [ωb ab ∇Bb]> ∈
R11×1. It is brought to the attention of the reader that in this model, ∇Bb is represented as a
function of 5 elements (instead of 9). The reason for this simplification is explained in details in
Section 1.3, where all properties of the magnetic field gradient are attentively discussed.
The model above, governed by Eqs. (1.41)-(1.44), can be written in the form of a non-linear state-
space model as follows

Ẋ(t) = f (X(t),u(t),η(t)) (1.45)

y(t) =h(X(t),ν(t)) (1.46)

where X(t) is the state vector at time t, y(t) is the known output vector (measurement vector),
u(t) is the input, f (.) is a non-linear function that represents the state transition model, h(.) is a
non-linear function that represents the measurement (observation) model, and η(t) and ν(t) are
the process and measurement noises, respectively, assumed to be zero-mean, white, Gaussian and
uncorrelated.
To solve Eqs. (1.45)-(1.46), many observers, specifically designed for non-linear systems, are
proposed in the literature, such as those in Ref. [Besançon2007]. In Chapter 2, the observer used
in this thesis is presented, and the reasons behind that choice are detailed.

Linearization

In order to compute the system’s observability matrix, a linearization of the model is undertaken,
by computing the Jacobians of f (.) and h(.) as follows

F =
∂ f
∂X
|X̂(t),u(t) (1.47)

H =
∂h
∂X
|X̂(t) (1.48)

where F is the state matrix, and H is the measurement one. The current estimate of X(t) is denoted
by X̂(t).
In the case of the model formed by Eqs. (1.41)-(1.44), the derived state matrix F ∈R13×13 has the
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1.2. The MINAV technique

following form

F =


1
2 Ωb 04×3 04×3 04×3

A1 −[ωb×] 03×3 03×3

03×4 ∇Bb −[ωb×] 03×3

A2 A3 03×3 03×3

 (1.49)

with A1 =
∂ (−Rb

ng)
∂q

∈ R3×4, A2 =
∂ (Rn

bvb)

∂q
∈ R3×4 and A3 =

∂ (Rn
bvb)

∂vb ∈ R3×3. A zero matrix

and its dimensions is represented with 0i× j, where i corresponds to the number of rows and j to
columns.
As the output model is formed with only the magnetic field Bb, the measurement matrix H ∈R3×13,
is expressed with

H =
[
03×7 I3 03×3

]
(1.50)

with I3 representing the identity matrix ∈ R3×3.

Observability matrix

The observability matrix of a system Ref. [Kalman1960b] is defined with O =
[H HF HF2 · · ·HFns−1]> ∈ Rnsms×ns where ns is the number of state variables and
ms is the outputs one. The studied system corresponding to Eq. (1.49) is with ns = 13
state variables, and ms = 3 outputs, its corresponding observability matrix is then
O = [H HF HF2 · · ·HF12]> ∈ R39×13. It yields that

O =



03×4 03×3 I3 03×3

03×4 ∇Bb −[ωb×] 03×3

∇BbA1 −W1 [ωb×]2 03×3

1
2 ∇BbA1Ωb−W1A1 W1[ω

b×]+ [ωb×]2∇Bb −[ωb×]3 03×3
...

...
...

...


(1.51)

with W1 = (∇Bb[ωb×]+ [ωb×]∇Bb) ∈ R3×3.
On the basis of the Kalman observability criterion for linear dynamic systems
Ref. [Kalman1960b], a system is called observable if and only if

rank(O) = ns (1.52)

However, it is clear through this derivation that rank(O) < ns. By looking at the last column of
O , it comes without saying that the observability matrix is 3 states deficient (last column is all
zeros). These 3 states correspond to the 3 elements of the position vector Mn. The position is
then unobservable, which makes considering it as a state in the model formed by Eqs. (1.41)-
(1.44) a questionable choice by [Chesneau2018]. For instance, the position estimate M̂n can be
directly deduced through a simple integration of the velocity estimate v̂b, without being included
in the estimation approach. However, maintaining it in the state vector has a numerical effect on
estimation accuracy in the context of Kalman filtering Ref. [Kalman1960a, Grewal2020].

Observability of the velocity

As discussed in Ref. [Dorveaux2011a], in order for velocity to be observable, the magnetic field
gradient ∇Bb needs to be non-singular (as it occurs in the second column of O). A square matrix
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A is non-singular if and only if its determinant is nonzero. More precisely, the observability
matrix of Eq. (1.51) can be of rank(O) = 10, only if ∇Bb is full-rank. For the quaternion, its
observability also depends on A1, if the latter is full-rank, three of the quaternion elements are
observed thanks to the term ∇BbA1 in the first column (and third block line) of O , while the fourth
element may be recovered from the next block lines of O . In practice, the non-singularity condition
of ∇Bb is very linked to the presence of magnetic field disturbances. In fact, if there are very low
perturbations in the surrounding environment of the moving body, one or more of the magnetic
field gradient’s directions may have nearly-null values, which implies that ∇Bb is no more a full-
rank matrix. Nevertheless, it is reminded that the presence of sufficient magnetic field disturbances
is a condition that is usually satisfied in indoor environments as previously demonstrated in Section
1.2.1. In the worst case scenario where ∇Bb = 03×3 (in outdoor environments, for example),
rank(O) = 3 and only the magnetic field is observable (thanks to the identity matrix in the third
column). This highlights the dependency of the MINAV technique on the presence of magnetic
perturbations and more specifically on the availability of ∇Bb.
In the next section, the magnetic field gradient is presented in detail, where its different properties
and models are discussed and commented.

1.3 Limitations of the magnetic field gradient determination

As elaborated in the previous section, the magnetic field gradient plays a key role in the MI-
NAV scheme as it ensures velocity observability and enables its reconstruction alongside with
attitude and position. Analyzing this entity is then crucial to understand not only its capabilities
but also its challenges.

1.3.1 The magnetic field gradient properties

What makes of the magnetic field an interesting asset to the navigation problem is its properties
that act explicitly on the magnetic field gradient, and enable the simplification of the model formed
by Eqs. (1.41)-(1.44). These properties are governed by Maxwell’s equations Ref. [Jackson1998]
for a source-free region, and are detailed subsequently.

Divergence

In the absence of electric sources, the divergence of the magnetic field is equal to zero, i.e.

∇ · Bb = 0 (1.53)

This implies that the trace of its Jacobian, representing the magnetic field gradient ∇Bb in its 3×3
matrix form, is zero i.e.

∂xBb
x +∂yBb

y +∂zBb
z = 0 (1.54)

with ∂x, ∂y and ∂z, referring to the partial derivative of an element with respect to Mb
x , Mb

y and Mb
z ,

respectively.
It follows that the number of independent terms in ∇Bb is reduced to 8 instead of 9.

Curl

In the case of stationary fields and in absence of electric and magnetic sources, the curl of the
magnetic field is equal to zero, i.e.

∇×Bb = 0 (1.55)
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1.3. Limitations of the magnetic field gradient determination

This implies that its Jacobian matrix is symmetric i.e.,

∀i, j ∈ {x,y,z},∂iBb
j = ∂ jBb

i (1.56)

This means that the number of independent terms in ∇Bb is now down to 5 instead of 8.

1.3.2 The magnetometer array: extracting the magnetic field gradient

A planar arrangement of 3 magnetometers

Thanks to the previously presented properties, the magnetic field gradient ∇Bb can be expressed
with the following form

∇Bb =



∂Bb
x

∂Mb
x

∂Bb
y

∂Mb
x

∂Bb
z

∂Mb
x

∂Bb
x

∂Mb
y

∂Bb
y

∂Mb
y

∂Bb
z

∂Mb
y

∂Bb
x

∂Mb
z

∂Bb
y

∂Mb
z

∂Bb
z

∂Mb
z


=


β1 β2 β3

β2 β4 β5

β3 β5 −β1−β4


β1,··· ,5∈R

(1.57)

By a finite differences scheme, it is evident that, in order to reconstruct ∇Bb, an array of at least
3 non-aligned 3− axis magnetometers is required. As the magnetic field gradient is symmetric
and traceless, as shown in Eq. (1.57), the third column of ∇Bb can be recovered from the first
two columns. This suggests that a 2D arrangement of the 3 magnetometers is sufficient to obtain
the full magnetic field gradient. Conception wise, this is advantageous as it enables having a
user-friendly embedded system, that can be easily strapped to the moving body under study.

Remark 9 While this assumption is theoretically justifiable, it may be interesting to explore a non-
planar disposition of the magnetometer array. In fact, in Ref. [Hanley2018], it was demonstrated
that, in indoor environments, the magnetic field can vary significantly as a function of height.
Despite that this evaluation was performed on a higher scale than the one concerning a sensor
array (usually, the distance between the magnetometers doesn’t exceed the centimeter level), it
provides a useful insight on the matter.

Determination of the magnetic field gradient

Since the sensor board does not directly provide the magnetic field gradient, it needs to be deduced
from the measurements of the magnetometer array. To do so, several approximation-based solu-
tions can be exploited, such as finite differences Ref. [Grossmann2007], polynomial interpolation
Ref. [Atkinson1988], or any regression-based technique Ref. [Manski1991].
To have a clearer idea on the targeted problem in this case, consider a vector pi = [pix piy piz]

> ∈
R3×1, representing the position of a magnetometer i in the sensor array. In Fig. 1.5, a simplified
diagram of the magnetometer array is displayed.
Suppose that the magnetometer 0, measuring Bb

0, is centered at the origin of the array, denoted
with p0 = [0 0 0]. The two magnetometers 1 and 2 are symmetric, i.e. p1x =−p2x and p1y = p2y.
Also, |p1x|= |p1y|.
It is assumed that the magnetic field and its gradient are known at p0 such that

Bb(p0) =Bb
0 (1.58)

∇Bb(p0) =∇Bb
0 (1.59)

with Bb
0 and ∇Bb

0 expressed in the same forms as their standard definitions.
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Chapter 1. Velocity Estimation With a Magnetometer Array

Figure 1.5: Diagram of a magnetometer array

Remark 10 In reality, the assumption that the magnetic field is known at p0 is not totally accu-
rate, as the 3 axes of magneteometer 0 do not coincide precisely with the considered origin. The
assumption is done only for estimation.

According to Taylor’s formula Ref. [Li2016] for functions of several variables, the following ap-
proximation is introduced

Corollary 1 Let f : R2→ R be two times differentiable in (a,b) ∈ R2, then:

f (a+h,b+ k) = f (a,b)+
∂ f (a,b)

∂x
h+

∂ f (a,b)
∂y

k+
1
2

∂ 2 f (a,b)
∂x2 h2

+
1
2

∂ 2 f (a,b)
∂y2 k2 +

∂ 2 f (a,b)
∂x∂y

hk

+o(h2 + k2)

(1.60)

Using this corollary, the magnetic field Bb
i measured by a magnetometer i can be expressed at any

point pi, with the following first-order approximation

Bb
i (pi) = Bb

0 +∇Bb
0 pi (1.61)

In matrix form, Eq. (1.61) is rewritten as follows

Bb
i =


Bb

x

Bb
y

Bb
z

+


β1 β2 β3

β2 β4 β5

β3 β5 −β1−β4




pix

piy

piz

 (1.62)

The measured magnetic field Bb
i is then the result of a multiplication between a non-square matrix

and an unknown vector as shown below

Bb
i =


1 0 0 pix piy piz 0 0

0 1 0 0 pix 0 piy piz

0 0 1 −piz 0 pix −piz piy





Bb
x

Bb
y

Bb
z

β1

β2

β3

β4

β5



= PiXB (1.63)
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1.3. Limitations of the magnetic field gradient determination

where Pi ∈ R3×8 is a known matrix containing the different position coordinates of magnetometer
i with respect to the origin p0, and XB ∈ R8×1 is the vector to be estimated, containing both the
magnetic field and its gradient at the origin p0 of the magnetometer array. The magnetometer array
of Fig. 1.5 generates measurements of three magnetometers such that BTotal = [Bb

0 Bb
1 Bb

2]
> ∈

R9×1, and its corresponding PTotal = [P0 P1 P2]
> ∈ R9×8. It yields that Eq. (1.63) is re-written

such that
BTotal = PTotalXB (1.64)

The matrix PTotal is called skinny, i.e. a rectangular m×n matrix with m > n. This implicates that
Eq. (1.64) represents an overdetermined system of linear equations, i.e. there exist more equations
than unknowns.
One approach that has proven to be efficient for solving this kind of equation, resides on the
following points:

• define a residual or error e such as e = PTotalXB−BTotal;

• find XB = Xls that minimizes ‖e‖.

The matrix Xls is called the least-squares solution Ref. [Boyd2018] of Eq.(1.64).
Assume PTotal is full rank and skinny. To find Xls, the following norm of the error, squared, is
minimized

‖e‖2 = X>B P>TotalPtotalXB−2B>TotalPTotalXB +B>TotalBtotal (1.65)

The gradient with respect to XB is then set to zero at minimum

∇XB‖e‖2 = 2P>TotalPTotalXB−2P>TotalBTotal = 0 (1.66)

This yields the normal equation

P>TotalPTotalXB = P>TotalBTotal (1.67)

Assumptions imply that P>TotalPTotal is invertible, thus

Xls = (P>TotalPTotal)
−1P>TotalBTotal (1.68)

The expression noted with (P>TotalPTotal)
−1P>Total is called the pseudo-inverse matrix of PTotal and

is noted P†
Total . The latter is a left inverse of PTotal , which means

P†
TotalPTotal = (P>TotalPTotal)

−1P>TotalPTotal = I (1.69)

with I ∈ R9×8, the identity matrix.
The vector containing the magnetic field and its gradient XB is then estimated with

XB = Xls = P†
TotalBTotal (1.70)

Recall that P†
Total contains the coordinates of the positions of the different magnetometers in the

sensor board, and therefore it is known. While the vector BTotal represents the recorded measure-
ments of the magnetometer array and is also known.

What about finite differences?

Usually, the most straightforward method to determine the Jacobian matrix of a vector field is
based on a finite differences scheme. Recall that the properties of the magnetic field gradient
introduced in Section 1.3.1 allow to distribute the magnetometers array only in a plane. This
enables the determination of only two lines of ∇Bb and not taking into account the z− axis of
the magnetometer array. More precisely, for a 2D system having the three magnetometers located
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Chapter 1. Velocity Estimation With a Magnetometer Array

according to the schematic on Fig. 1.5, where magnetometer 0 is assumed centered at the origin

p0, the main goal is to determine
∂Bb

0
∂Mb

x
and

∂Bb
0

∂Mb
y

, while the magnetic field partial derivative with

respect to z, denoted
∂Bb

0
∂Mb

z
, is concluded.

A first step to solve this problem is to use Taylor’s approximation Eq. (1.60). Applying this formula
on Bb

1 leads to the following first-order approximation

Bb(0− p2x,0+ p2y) = Bb(0,0)− ∂Bb(0,0)
∂Mb

x
p2x +

∂Bb(0,0)
∂Mb

y
p2y (1.71)

The same approximation is applied on Bb
2

Bb(0+ p2x,0+ p2y) = Bb(0,0)+
∂Bb(0,0)

∂Mb
x

p2x +
∂Bb(0,0)

∂Mb
y

p2y (1.72)

The summation of Eq. (1.71) and Eq. (1.72) gives

Bb
1 +Bb

2 = 2Bb
0 +2

∂Bb
0

∂Mb
y

p2y (1.73)

This implies that

∂Bb
0

∂Mb
y
=


β2

β4

β5

=
Bb

1 +Bb
2−2Bb

0
2p2y

(1.74)

Similarly, subtracting Eq. (1.71) from Eq. (1.72) gives

Bb
2−Bb

1 = 2
∂Bb

0
∂Mb

x
p2x (1.75)

It is deduced then that

∂Bb
0

∂Mb
x
=


β1

β2

β3

=
Bb

2−Bb
1

2p2x
(1.76)

As the least-squares method, the estimated magnetic field gradient ∇Bb through a finite differ-
ences scheme is dependent not only on the measurements of the magnetometers but also on their
positions in the array.

Challenges and discussion

What makes of the finite differences method a less interesting choice to determine the magnetic
field gradient is its high sensitivity to the synchronization between the different magnetometers.
As discussed in Ref. [Dorveaux2011a], data from the magnetometers can be acquired at slightly
different times, depending on their specifications, which induces a certain time delay between the
measurements. For instance, consider a sensor board sampled at 50 Hz, moving at the speed of
1 ms−1. If the measurements of two magnetometers, distanced by 0.1 m, are acquired with a one

step delay dT =
1
50

= 0.02 s, then the induced displacement is of 0.02∗1= 0.02 m. This represents
20% of error in the magnetic field gradient estimate. In addition to errors generated by delays
(i.e. time delays between the various sensors: IMU and the magnetometers, acquisition delays,
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1.3. Limitations of the magnetic field gradient determination

internal computations delays, etc.), the finite differences scheme is rather unhandy dealing with
singularities induced by boundary conditions, which is also discussed in Ref. [Dorveaux2011a].
Most of all, the simplicity of such derivation comes from the assumption on the planar arrangement
of the magnetometers, making of this method, a 2D estimation problem. However, in practice, it
is nearly impossible to have a perfectly planar sensor board as magnetometers are designed with a
certain width between their outer box and their axes. It follows that their positions with respect to
the z−axis, piz, are better to be taken into account.
These difficulties encourage the use of a more flexible approximation method such as the least-
squares. However, having a high accuracy determination of the magnetic field gradient through
such an approximation method is also challenging for few reasons:

• while magnetometers’ positions with respect to all axes are taken into account, it is natural
to consider that knowing their values precisely is not evident as there’s always a millimeter-
wise gap between the axes and the magnetometers’ covers. A technique using a straight
rail is used in Ref. [Dorveaux2011a] to determine these parameters, a system that may be
unavailable in general cases;

• the magnetic field gradient is computed using the set of magnetometers. These sensors have
to be accurate, which is not always the case. This may lead to a vanishing magnetic field
gradient, and consequently to velocity observability issues. The resolution and the distance
between the different magnetometers represent then a constraint on the precision of the
magnetic field gradient determination.

In addition, the magnetic field measurements from the magnetometer array are noisy. Since they
are used to compute the magnetic field gradient, no matter what the approximation method, it
yields that the latter suffers also from noise, affecting thereafter the velocity estimation. The noise
contained in the magnetic field measurements is not in fact a white noise, and identifying it from
the other "beneficial" magnetic field perturbations induced by the indoor environment is not a
straightforward task. This makes relying on standard filtering methods an unsuitable option.
To illustrate the last point, the sensor board represented in Fig. 1.5 is placed on the floor, motion-
less, in an outdoor environment where there is no source for magnetic disturbances. Being static,
the magnetometer array is measuring the Earth’s magnetic field (assumed constant during the time
of the experiment), noise, and bias, as the case for any MEMS sensor. Assuming that this noise
is white, the Power Spectral Density (PSD) Ref. [Miller2004] of ηb

B0
= Bb

0−Bb
0 is expected to be

flat (i.e. constant all along the frequency range), with ηb
B0

representing the noise of the magnetic

field Bb
0, and Bb

0 its corresponding mean. In Fig. 1.6, the PSD of ηb
B0

, (in decibels (dB)), is plotted.
By looking at the form of this PSD, it is clear that the studied signal is not flat and thus it does not
correspond to a white noise. Because of all the above limitations, the determined magnetic field
gradient may lack precision. As the latter plays a key role in the MINAV technique and guarantees
velocity observability, a more precise solution should be found for a better determination of this
state.

Calibration of a magnetometer array

The major reason for the inaccuracy of magnetometers’ measurements, that also represents a big
challenge for the magnetic field gradient determination, is the efficiency of the calibration step.
Calibration algorithms are usually intended to compensate the magnetometers’ instrumentation
errors, such as scale factors, misalignments, non-orthogonality, and biases. They are also meant
to reduce the impact of two fundamental phenomena known as hard and soft iron effects. Hard
iron errors are caused by any magnetic source, natural or electric, generating its own magnetic
field that is added to the Earth’s one. On the contrary, soft iron errors are induced by ferromag-
netic materials that influence the Earth’s magnetic field, by changing its direction depending on
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Figure 1.6: Power spectral density of ηb
B0

in an outdoor environment

their orientation. Several approaches have been proposed in related state-of-the-art to perform an
adequate calibration of the magnetometers. From these methods, many are based on the Ellipsoid
fitting principle Refs. [Foster2008, Dorveaux2009, Vasconcelos2011, Mohamadabadi2014], as it
has no specific requirements on sensor orientation during the calibration process, and does not
need any additional hardware. Nevertheless, the performances of these approaches usually de-
pend on several assumptions, that may not always reflect reality, such as the nature of hard and
soft iron errors (linear and without hysteresis) Refs. [Foster2008,Dorveaux2009], or the magnetic
field dynamics (homogeneous field with invariant norm) Ref. [Mohamadabadi2014]. In Ref. [Re-
naudin2010], an adaptive least squares estimator, suited for non-linear equations, is derived to find
the parameters of the ellipsoid in a statistically consistent way. Unlike many works in the literature,
it does not rely on any simplification on the sensor error modeling and can fully estimate the mag-
netometer’s calibration parameters. Conversely, in Ref. [Chesneau2018], it is stated that ellipsoid
fitting calibration techniques cannot ensure a predefined calibration reference frame and do not
give any information on magnetometers’ effective positions. If the magnetic field gradient is to be
computed from multiple magnetometer measurements, especially under an inhomogeneous field,
such limitation can drastically degrade the accuracy of its determination. Thus, in Ref. [Ches-
neau2018], the author proposes two replacement calibration methods that are rather suitable for
applications relying on magnetometer arrays. The first approach relies on the use of an arrange-
ment of 3− axis Helmholtz coils Ref. [Frix1994], to generate an unknown and inhomogeneous
magnetic field. The magnetometer array is then placed inside the coils in multiple unknown posi-
tions, while independent and known currents are provided to each coil. Using the measurements
of the array, in addition to the currents, one can compute the performed trajectory of the magne-
tometer array inside the coils-based setting. The main advantage of this approach over ellipsoid
fitting is enabling the determination of magnetometers effective positions, allowing therefore the
calibration of the entire array. Unlike the coils-based calibration procedure, the second proposed
approach Ref. [Chesneau2019] does not require any dedicated calibration setup. It relies however
on exploring the relationship between raw magnetic field measurements and available position and
attitude information. This is achieved by undertaking arbitrary trajectories inside a motion cap-
ture setup and then using the collected data to solve the optimization problem. Indeed, when the
magnetic field is stationary and not specifically homogeneous, and that positioning information is
available, the identifiability conditions show that the array’s calibration parameters can be derived.
The determined parameters include the effective positions of the different magnetometers within
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1.3. Limitations of the magnetic field gradient determination

the sensor board, which are essential for the determination of the magnetic field gradient.
The methods proposed in Ref. [Chesneau2018] have been used to calibrate the sensor board em-
ployed in this thesis (see Chapter 5). No further work has been conducted in this direction and any
possible improvements could be considered for future perspectives.

1.3.3 State-of-the-art models and discussion

In the previously presented model formed by Eqs. (1.41)-(1.44), the magnetic field gradient ∇Bb

is considered known as in Refs. [Dorveaux2011a, Chesneau2018]. It is then used as an input in
Eq. (1.43) without accounting for its uncertainties caused by approximations and noise.
If a representative dynamic model of ∇Bb, one can add it as a state for the considered model and
rather estimate it through a non-linear observer framework.
In [Vissière2007a], direct measurements of the magnetic field gradient are not considered avail-
able. In fact, using a single 3− axis magnetometer is not sufficient to determine ∇Bb. For this
reason, it is estimated instead by an observer. Then, a differential equation representing the dy-
namics of ∇Bb should be considered. In [Vissière2007a], authors assume that the magnetic field
gradient satisfies some first order dynamics driven by white noise such as

d∇Bb

dt
=
−∇Bb

τb
∇B

+η
b
∇B (1.77)

where τb
∇B ∈ R>0 is a time constant and ηb

∇B is a white noise. In reality, this model is not the
most convenient option to capture full information on the dynamics of ∇Bb. In fact, from the same
experiment shown in Fig. 1.3, a magnetic field gradient is determined through the least-squares
approximation. The evolution of its first element β1 is shown for the first 20 s of the test in
Fig. 1.7.
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Figure 1.7: Variation of β1 during an indoor trajectory

The displayed variations and the nature of the depicted slopes of β1 suggest that the second deriva-
tives of the magnetic field are not negligible. Thus, modeling its gradient using Eq. (1.77) does
not fit well with the actual dynamics of ∇Bb.
In [Vissière2007b], authors extend their work to using three 3− axis magnetometers and deter-
mining the magnetic field gradient through a finite differences scheme. However, contrarily to
Refs. [Dorveaux2011a, Chesneau2018], ∇Bb is not considered as a known input, even after being
computed from the magnetometer array. Instead, it is included in the state vector and also serves
in the measurement one, such as, using our notation from Eq. (1.61)

yb
Bi
= Bb

i (pi) (1.78)

where yb
Bi
∈ R9×1 is the measurements vector corresponding to an orthogonal trihedron of mag-

netometers. For simplicity reasons, the model used in this case to describe the magnetic field
gradient is

d∇Bb

dt
= η

b
∇B (1.79)
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Again, representing the dynamics of the magnetic field gradient with a white noise is not very
informative, especially that such characterization does not take into account the attitude, the ve-
locity, etc. One way to solve this problem is to investigate higher-order spatial derivatives of the
magnetic field given a proper setting of the magnetometer array.

1.4 Conclusion

Purely inertial navigation Low-cost MEMS inertial sensors do not provide an accurate estima-
tion of attitude, velocity and position over more than a few seconds up to one minute in the best
case scenario. This is due to the presence of sensor biases whose effect is amplified with every
integration.
Magnetometers for heading estimation Complementing inertial sensors with magnetometers is
a very common solution to solve the inertial navigation problem, especially for attitude estimation.
In fact, magnetometers are largely used to determine heading, as long as they are not perturbed by
the outer environment. In case they are, compensation methods are developed to reject or reduce
these perturbations.
Magnetic disturbances in indoor environments In an indoor environment, the presence of
magnetic perturbations can be very large, due to all metals used in buildings and potentially to the
strong electric currents propagating close-by. One may think that these disturbances can only rep-
resent a constraint for navigation, as in heading applications. However, these perturbations are not
in fact a random noise. On the contrary, they are well structured by physics equations. Therefore,
it is considered that rich information lies in these disturbances.
Mapping or extra equipment Most of the techniques that take advantage of the magnetic field
disturbances present indoor require either a prior information on the building infrastructure (map)
or extra equipment, which opposes with the objectives of this thesis: indoor navigation using
solely low-cost sensors and no prior knowledge. Besides, the main goal of most of these works is
usually trajectory/position reconstruction and not velocity estimation.
MINAV technique An approach was firstly introduced in 2007 that demonstrates the relationship
between the magnetic field and the velocity. The method ensures the observability of the velocity
and an accurate reconstruction of the latter as long as the magnetic field gradient is non-singular.
The estimation is conducted through a non-linear observer framework, where the magnetic field
gradient is considered as a known input.
Modeling the magnetic field gradient The magnetic field gradient is usually determined through
approximation schemes applied on a magnetometer array. The magnetic field gradient is then sub-
ject to many uncertainties as well as noise, and thus considering it as a known input in the observer
may lead to large estimation errors. A dynamic model needs to be derived in order to add this mag-
netic field gradient to the state vector and estimate it instead. Few attempts are proposed in the
literature to do so, but they are rather too simplistic and do not fully capture the richness of the
magnetic field gradient dynamics. A more sophisticated model is then derived in Chapter 2 by
exploiting higher-order spatial derivatives of the magnetic field through a more complete magne-
tometer array setting.
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2
Two Magnetic Field Gradient-Based Extended

Kalman Filters

The main goal of this chapter is to derive a new model describing the dynamics of the
magnetic field gradient. Unlike previous works in the state-of-the-art, the proposed
model highlights the richness of the magnetic field gradient variations, and their re-
lationship with velocity and attitude. To do so, higher-order spatial derivatives of the
magnetic field are explored in Section 2.1. Then, a specific configuration of two Extended
Kalman Filters (EKFs) is proposed in Section 2.2 to estimate not only the velocity, po-
sition and attitude of the moving body, but also the magnetic field and its gradient. Dif-
ferent comparisons are undertaken between including the magnetic field gradient in the
state vector to be estimated (with different models) or directly using it as an input, under
some approximations. This is achieved under a simulation framework in Section 2.3,
where the accuracy of the velocity estimation is shown to be higher when the magnetic
field gradient is modeled as a state.
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2.1. Higher-order spatial derivatives of the magnetic field

2.1 Higher-order spatial derivatives of the magnetic field

As shown in the previous chapter, the magnetic field gradient plays a crucial role not only for
the estimation of the velocity but also the attitude and position. Therefore, its estimation has to be
well-founded, in order to avoid the much more errors caused by approximation models and better
remove the noise coming from the magnetometer array measurements. In the literature Refs. [Vis-
sière2007a, Chesneau2018], it is recommended to explore higher-order spatial derivatives of the
magnetic field in order to better model the magnetic field gradient and relate its dynamics to the
attitude and velocity.

2.1.1 Problem statement

The targeted problem in this chapter is how to improve velocity estimation, as well as position and
attitude, by adding the dynamics of the magnetic field gradient to the main model, presented in
Chapter 1. Instead of considering the magnetic field gradient as a known input in the state-space
model, it is rather moved to the state vector to be estimated. This is done while maintaining the
low-cost sensor board framework and only through employing inertial and magnetic measurements
in a non-linear observer scheme.

2.1.2 Chapter contribution

The main contribution in this chapter is the introduction of a new specific equation, to describe
the dynamics of the magnetic field gradient. This equation is derived through exploring higher-
order spatial derivatives of the magnetic field, as encouraged in [Vissière2007a, Chesneau2018].
These derivatives are computed thanks to a determined arrangement of a magnetometer array.
The proposed dynamic model also preserves a direct link between the magnetic field gradient
and the velocity, as well as the attitude (angular velocity), which efficiently exhibits the richness
of the magnetic field spatial variations, especially in an indoor environment. The advantage of
the proposed state-space model is evaluated through an Extended Kalman Filter (EKF) approach.
Different comparisons are undertaken under a simulation scheme, where the importance of con-
sidering the magnetic field gradient as a state is highlighted. The proposed dynamic model is then
shown to outperform state-of-the-art ones, by inducing the best estimation accuracy results.

2.1.3 Second order spatial derivative

In order to represent the dynamics of ∇Bb, an equation describing its temporal variation needs to
be derived. To preserve full information on these dynamics and to follow the same vector field
calculus used in Chapter 1, the derivative of the magnetic field gradient with respect to time is
written in function of its spatial derivative and velocity such that

d∇Bb(Mb)

dt
= f (

∂∇Bb

∂Mb ,vb) (2.1)

Remark that the equation above is very similar to Eq. (1.33), where Bb and ∇Bb are replaced with
their respective spatial derivatives.

Before figuring out the equation describing
d∇Bb

dt
, the temporal derivative of the magnetic field

gradient in ℜn is determined. By applying the chain rule differentiation for a non-stationary field
as demonstrated previously in Eq. (1.25), the following equation is obtained

d∇Bn(t,Mn)

dt
=

∂∇Bn

∂Mn
dMn

dt
+

∂∇Bn

∂ t
(2.2)
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It is reminded that Bn is assumed stationary in Rn, which implicates that
∂∇Bn

∂ t
= 0. Thus, it is

safe to write
d∇Bn(Mn)

dt
=

∂∇Bn

∂Mn
dMn

dt
=

∂∇Bn

∂Mn vn (2.3)

A new entity is then introduced, the magnetic field hessian, representing the second order
spatial derivative of the magnetic field in ℜn. It is denoted T n ∈ R3×3×3 and defined as follows

T n =
∂∇Bn

∂Mn (2.4)

To ease the reading, this tensor is alternatively represented as a matrix in R9×3 through a unique
bijection, and can be written in the following form

T n =


∇α1 ∇α2 ∇α3

∇α2 ∇α4 ∇α5

∇α3 ∇α5 −∇α1−∇α4


α1,··· ,5∈R

(2.5)

where ∇αi = [
∂αi

∂Mn
x

∂αi

∂Mn
y

∂αi

∂Mn
z
]>, with αi∈{1,··· ,5} representing the elements of the magnetic field

gradient in ℜn.
As measurements from the magnetometer array are acquired in ℜb, one must write Eq. (2.3) in ℜb

rather than ℜn. The following derivation is then conducted

d∇Bb

dt
=

d(Rb
n∇BnRn

b)

dt
=

dRb
n

dt
∇BnRn

b +Rb
n

d∇Bn

dt
Rn

b +Rb
n∇Bn dRn

b
dt

(2.6)

Recalling the temporal derivative of Rb
n in Eq. (1.9) and the one of ∇Bn in Eq. (2.3) yields

d∇Bb

dt
=−[ωb×]Rb

n∇BnRn
b +Rb

nT nvnRn
b +Rb

n∇BnRn
b[ω

b×] (2.7)

It follows by taking into account the frame transformation induced by the multiplication with Rb
n

and its transpose to have

d∇Bb

dt
= T bvb +∇Bb[ωb×]− [ωb×]∇Bb (2.8)

where T b ∈ R3×3×3 is the magnetic field hessian expressed in ℜb and defined with

T b =
∂∇Bb

∂Mb (2.9)

This tensor can also be represented with a matrix in R9×3, as a function of βi∈{1,··· ,5} such that

T b =


∇β1 ∇β2 ∇β3

∇β2 ∇β4 ∇β5

∇β3 ∇β5 −∇β1−∇β4


β1,··· ,5∈R

(2.10)

where ∇βi = [
∂βi

∂Mb
x

∂βi

∂Mb
y

∂βi

∂Mb
z
]>.

The temporal derivative of ∇Bb is then described as a function of the magnetic field gradient itself,
the hessian T b, the velocity vb, and the angular rate ωb1. Through the proposed Eq. (2.8), the
richness of the dynamics of the magnetic field gradient is preserved, unlike state-of-the-art models
that limit its variations to those of a first order system or simply a white noise.

1In the entire thesis, the expression "angular rate" is equivalent to "angular velocity".
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2.1. Higher-order spatial derivatives of the magnetic field

2.1.4 Properties of the magnetic field hessian

Before further investigating the added value of Eq. (2.8), it is almost evident to check the prop-
erties that define the new introduced magnetic filed hessian T b, in order to take advantage of any
simplifications that can be applied.
One may wonder if the planar arrangement possibility of the magnetometer array can be main-
tained when working with a second order spatial derivative. First, recall that ∇Bb is expressed
with only 5 elements (β1,··· ,5), thanks to its properties from Eq. (1.54) and Eq. (1.56). It follows
from Eq. (2.10), that T b determination is reduced from 27 to only 5× 3 = 15 elements that con-
stitute ∇β1,··· ,5. Then, to further reduce the computations, Schwarz’s theorem [Hairer1996] is
recalled.

Theorem 2.1.1 Let U be an open set of Rn. Consider p ∈ Rn a point such that some neigh-
borhood of p is contained in U. If f is a function of U in Rp and of class C2 on U (i.e. two
times differentiable and its second derivative is continuous). Then, ∀ i, j ∈ 1, · · · ,n, the following
equality holds

∂ 2

∂xi∂x j
f (p) =

∂ 2

∂x j∂xi
f (p) (2.11)

This theorem implies that for a sufficiently regular function, the order of derivation with respect to
its variables does not matter. As long as the partial derivatives exist in the neighborhood of a point
p and are continuous in p, then it is possible to invert the order of derivation.
Assuming that components of Bb are regular enough, then Schwarz’s theorem applies, and the
symmetry of the hessian is established. A proof by recurrence taking into account the first or-
der derivation in Eq. (1.56) is performed in Ref. [Chesneau2018]. Using the same notation as
Eq. (1.56) gives

∀ i, j,k ∈ {x,y,z},∂i∂ jBb
k = ∂ j∂iBb

k (2.12)

It follows that from Eq. (2.12), one can determine only 7 elements of T b instead of 15, while
the rest of the values can be deduced. To better demonstrate this affirmation, two more detailed
examples are undertaken. Recall that a priori ∇β1,··· ,5 are to be computed. Using Eq. (2.12), the
following equalities can be written

∇β1(3) =
∂ 2Bb

x

∂Mb
z ∂Mb

x
=

∂ 2Bb
x

∂Mb
x ∂Mb

z
=

∂

∂Mb
x

(
∂Bb

x

∂Mb
z

)
=

∂

∂Mb
x

(
∂Bb

z

∂Mb
x

)
=

∂ 2Bb
z

∂ (Mb
x )

2

=∇β3(1)
(2.13)

∇β3(3) =
∂ 2Bb

z

∂Mb
z ∂Mb

x
=

∂ 2Bb
z

∂Mb
x ∂Mb

z
=

∂

∂Mb
x

(
∂Bb

z

∂Mb
z

)
=

∂

∂Mb
x

(
− ∂Bb

x

∂Mb
x
−

∂Bb
y

∂Mb
y

)
=− ∂ 2Bb

x

∂ (Mb
x )

2 −
∂ 2Bb

y

∂Mb
x ∂Mb

y
=−∇β1(1)−∇β2(2)

(2.14)

In the same way as Eqs. (2.13)-(2.14), the rest of T b elements are determined:

∇β2(1) =∇β1(2) (2.15)

∇β2(3) =∇β3(2) (2.16)

∇β4(1) =∇β2(2) (2.17)

∇β4(3) =∇β5(2) (2.18)

∇β5(1) =∇β3(2) (2.19)

∇β5(3) =−∇β1(2)−∇β4(2) (2.20)

From Eqs. (2.13)-(2.20), it is demonstrated that only ∇β1(1), ∇β1(2), ∇β2(2), ∇β3(1), ∇β3(2),
∇β4(2) and ∇β5(2) should be determined in order to conclude all the 27 elements of T b, which
highly simplifies the computation later on.

35



Chapter 2. Two Magnetic Field Gradient-Based Extended Kalman Filters

2.1.5 Determination of the magnetic field hessian

Since the sensor board does not directly provide the magnetic field hessian, the latter should be
deduced from the measurements of the magnetometer array. In fact, T b is going to be included in
the state-space model of Eqs. (1.45)-(1.46) as an input. Thus, it is approximated in the same way
as for the magnetic field gradient.
In Chapter 1, an array of three magnetometers is employed to perform the necessary approxima-
tions to determine the magnetic field gradient. Nevertheless, in order to access the second order
spatial derivative of the magnetic field, at least five magnetometers are mandatory to compute
the entire 7 elements of T b. This condition on the number of the magnetometers can be deter-
mined under a finite differences scheme. By relying on Eq. (1.60) and approximations for partial
derivatives that are either mixed or not, the hessian can be reconstructed. The finite differences
scheme is not detailed nor employed in this section because of its several drawbacks, previously
discussed in Section 1.3.2. Instead, the least-squares method is used to determine T b, similarly to
the derivation previously done in Section 1.3.2. In Fig. 2.1, a simplified diagram of the proposed
magnetometer array is displayed, where two magnetometers measuring Bb

3 and Bb
4 are added to the

array of Fig. 1.5.

Figure 2.1: Diagram of the proposed magnetometer array for hessian determination

Similarly to magnetometers 1 and 2, the added magnetometers (3 and 4) are symmetric with re-
spect to p0, i.e. p3x =−p4x and p3y = p4y. Also, |p3x|= |p3y|.
According to the second-order Taylor series expansion previously presented in Eq. (1.60), the mag-
netic field Bb

i measured by a magnetometer i can be expressed at any point pi, with the following
approximation

Bb
i (pi) = Bb

0 +∇Bb
0 pi +(T b

0 )
>(pi� p>i ) (2.21)

where � is the Hadamard product (also known as the element-wise product), which leads to

pi� p>i =


p2

ix pix piy pix piz

piy pix p2
iy piy piz

piz pix piz piy p2
iz

 (2.22)

For computation reasons, this matrix is written in vector form as follows

pi� p>i = [p2
ix pix piy pix piz piy pix p2

iy piy piz piz pix piz piy p2
iz]
> (2.23)

To ease the reading, T b is represented in terms of the parameters γ1,··· ,7 such that

T b =


γ1 γ2 γ5 γ2 γ4 γ7 γ5 γ7 −γ1− γ4

γ2 γ4 γ7 γ4 γ3 γ6 γ7 γ6 −γ2− γ3

γ5 γ7 −γ1− γ4 γ7 γ6 −γ2− γ3 −γ1− γ4 −γ2− γ3 −γ5− γ6

 (2.24)
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In the same manner as Eq. (1.62), the matrix form of Eq. (2.21) is

Bb
i =


Bb

x

Bb
y

Bb
z

+


β1 β2 β3

β2 β4 β5

β3 β5 −β1−β4




pix

piy

piz

+ 1
2

T b pi� p>i (2.25)

By recalling Eq. (1.63), the magnetic field Bb
i measured by a magnetometer i can then be expressed

with
Bb

i = [Pi Pi,h]XB,h (2.26)

where XB,h ∈ R15×1 is the vector to be estimated, containing the magnetic field, its gradient and
the hessian at the origin p0 of the magnetometer array. The matrix Pi ∈R3×8 is previously defined
in Eq. (1.63). The matrix Pi,h ∈ R3×7 defines the magnetometer’s i position coordinates related to
T b and is expressed as follows

Pi,h = [P1i,h P2i,h] (2.27)

with

P1i,h =


pix

2− piz
2 pix piy + piy pix 0

0 p2
ix− p2

iz p2
iy− p2

iz

−pix piz− piz pix −piy piz− piz piy −piy piz− piz piy

 (2.28)

and

P2i,h =


piy

2− piz
2 pix piz + piz pix 0 piy piz + piz piy

pix piy + piy pix 0 piy piz + piz piy pix piz + piz pix

−pix piz− piz pix p2
ix− p2

iz p2
iy− p2

iz pix piy + piy pix

 (2.29)

The magnetometer array of Fig. 2.1 generates measurements of five magnetometers such that
BTotal,h = [BTotal Bb

3 Bb
4]
> ∈ R15×1, and its corresponding PTotal,h = [PTotal P3 P4]

> ∈ R15×15.
Recall that, the matrices BTotal ∈ R9×1 and PTotal ∈ R9×8 are previously defined in Eq. (1.64). It
yields that Eq. (1.64) is re-written such that

BTotal,h = PTotal,hXB,h (2.30)

Note that the matrix PTotal,h is square, which represents a special case for the least-squares prob-
lem. If PTotal,h is non-singular, one can solve Eq. (2.30) with the standard linear algebra solution
such that

XB,h = P−1
Total,hBTotal,h (2.31)

Nevertheless, to keep a more general condition on the magnetometer array architecture, and
the correlation between the different magnetometers’ positions, the derivation elaborated in
Eqs. (1.65)-(1.70) is applied. The vector XB,h containing the magnetic field hessian T b is then
determined as follows

XB,h = Xls,h = P†
Total,hBTotal,h (2.32)

Recall that P†
Total,h contains the coordinates of the positions of the different magnetometers in

the sensor board, and therefore it is known. While the vector BTotal,h represents the recorded
measurements of the five magnetometers and is also known, enabling therefore the determination
of XB,h.
By approximating T b through the magnetometer array, all inputs in Eq. (2.8) are now known. Thus,
∇Bb can be considered as a state and be added to the continuous-time model of Eqs. (1.41)-(1.44).
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2.2 Proposed magnetic field gradient-based EKFs

In this section, an augmented MINAV model is proposed to better estimate the velocity of a
moving body in an indoor environment, alongside with attitude and position. The novelty of the
model resides on the adding of a specific equation Eq. (2.8) that is derived to describe efficiently
the dynamics of the magnetic field gradient. Within this framework, a specific set configuration of
two Extended Kalman Filters (EKFs) is proposed to not only focus on the estimation of velocity,
attitude and position but also on the magnetic field and its gradient. Some simulations for a specific
scenario are proposed to show the improvements that are brought to the velocity estimation when
introducing the new magnetic field gradient equation. Comparisons with state-of-the-art models
are also conducted to highlight the benefit of deriving an equation that takes into consideration
higher-order spatial derivatives of the magnetic field.

2.2.1 Proposed continuous-time model

The proposed continuous-time model is obtained by augmenting the main model governed by
Eqs. (1.41)-(1.44) with the equation describing the magnetic field dynamics Eq. (2.8). This gives

dq
dt

=
1
2

Ω
bq (2.33)

dvb

dt
= −ω

b× vb +ab−Rgn (2.34)

dBb

dt
= −ω

b×Bb +∇Bbvb (2.35)

d∇Bb

dt
= T bvb +∇Bb[ωb×]− [ωb×]∇Bb (2.36)

dMn

dt
= Rn

bvb (2.37)

The new state vector is then X(t) = [q vb Bb ∇Bb Mn]> ∈ R18×1 and the measurement vector is
y(t) = [Bb ∇Bb] ∈ R8×1. The determination of T b from the magnetometer array, using the least-
squares method, enables considering it in the input vector such that u(t) = [ωb ab T b]> ∈ R13×1.
It is recalled that in this model, T b is represented as a function of 7 elements (instead of 27), which
was explained earlier in Section 2.1.4.

2.2.2 Observability of the proposed model

Similarly to the steps undertaken from Eq. (1.47) to Eq. (1.51) in Chapter 1, a linearization is
applied to both the state transition and the measurement functions of the proposed model, by
computing their Jacobians with respect to the current estimate X̂(t). The derived state matrix
F ∈ R18×18 is then expressed such that

F =



1
2 Ωb 04×3 04×3 04×5 04×3

A1 −[ωb×] 03×3 03×5 03×3

03×4 ∇Bb −[ωb×] A4 03×3

05×4 A5 05×3 A6 05×3

A2 A3 03×3 03×5 03×3


(2.38)

with A4 =
∂ (∇Bbvb)

∂∇Bb ∈ R3×5, A5 =
∂ (T bvb)

∂vb ∈ R5×3 and A6 =
∂ (∇Bb[ωb×]− [ωb×]∇Bb)

∂∇Bb ∈
R5×5. The rest of the elements are already defined in Eq. (1.49).
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In the same manner, the measurement matrix H ∈ R8×18 is defined with

H =
[
08×7 I8 08×3

]
(2.39)

where I8 is the identity matrix in R8×8.
The observability matrix of the proposed model O ′ ∈ R144×18 is then expressed as follows

O ′ =



03×4 03×3 I3 03×5 03×3

05×4 05×3 05×3 I5 05×3

03×4 ∇Bb −[ωb×] A4 03×3

05×4 A5 05×3 A6 05×3

∇BbA1 W2 [ωb×]2 W3 03×3

A5A1 W4 05×3 A2
6 05×3

1
2 ∇BbA1Ωb +W2A1 W5 −[ωb×]3 [ωb×]2A4 +W3A6 03×3

1
2 A5A1Ωb +W4A1 −W4[ω

b×]+A2
6A5 05×3 A3

6 05×3
...

...
...

...
...



(2.40)

with W2 =−W1+A4A5 ∈R3×3, W3 =−[ωb×]A4+A4A6 ∈R3×3, W4 =−A5[ω
b×]+A6A5 ∈R5×3

and W5 =−W2[ω
b×]+ [ωb×]2∇Bb +W3A5 ∈ R3×3.

Same as the observability matrix derived in Chapter 1, it turns out that O ′ is 3 states deficient
(last column is all zeros), which corresponds to Mn. This is expected as the added magnetic field
gradient model Eq. (2.36) does not have a direct relationship with Mn. Thus, its observability does
not undergo any changes.
By looking at the first and second columns of O ′, corresponding to the quaternion and velocity
states, respectively, new terms linked to the proposed magnetic field gradient model appear (i.e.
A4, A5 and A6). More particularly, the presence of the term A5 involving T b in the second column
of O ′, implies an evident effect on the velocity observability. In fact, if rank(A5) = 3, velocity can
be reconstructed, and three elements of the quaternion vector are observable (supposing A1 is full-
rank and relying on the term A5A1 in the first column of O ′). The fourth quaternion element may be
recovered from the next block lines. In this case, all states (except the position) are observable and
rank(O ′) = 15. The presence of A5 provides an additional degree of freedom to the observability
condition of the proposed model. So to guarantee rank(O ′) = 15, it is sufficient to have one of
these conditions satisfied

• ∇Bb is non-singular;

• rank(A5) = 3.

It is believed that further investigations may reveal special cases where these two conditions can
be rather complementary. For example, one can use ∇Bb to observe only 2 dimensions of the
velocity while the third one is reconstructed using A5.

2.2.3 Extended Kalman Filter

Choice of the observer

Putting under test any navigation model requires first choosing an adequate estimation algorithm
to use with an efficient architecture. First, the implemented algorithm must be able to converge
to the true values of observable states, even with the presence of measurement errors. Second, it
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needs to have an appropriate method that quantifies the estimation uncertainty, in order to better
comprehend the sources of errors generated during the process. Finally, as this algorithm will be
used on a real embedded system (see Chapter 5), it needs to respect certain computational con-
straints, related to the microcontroller computing power, memory allocation, time-consumption,
and so on. This implicates the importance of using an observer that meets these criteria, or at least
some of them.
The first obvious intuition in this work, is the need for an estimator that can be applied on a non-
linear system, as this is the kind of model that is dealt with in this thesis.
One of the first state estimators that appeared in the field of navigation and proved their efficiency
in providing an accurate state estimate for a dynamical system with digital measurements is the
Kalman filter Ref. [Kalman1960a,Grewal2020]. This filter is optimal for state estimation of linear
systems. Nevertheless, systems are rarely linear in practice, especially in the field of navigation,
where kinematics laws and measurements bring a lot of complexity.
An extension of the Kalman filter, the Extended Kalman Filter (EKF) Ref. [Daum2015], was
then introduced to generalize the applicability of the Kalman filter for systems with non-linear
transition and observation functions. It turns out that the EKF works well in many cases, which
encouraged its use in the related literature Refs. [Vissière2007b, Chesneau2016, Barrau2015, Lig-
orio2013,Wagstaff2018]. In Ref. [Chesneau2018], it was shown that the EKF is an approximately
appropriate choice that meets the different criteria mentioned above. For this reason, it was chosen
as the main approach to achieve state estimation.

Extended Kalman Filter

Recall from Chapter 1, the continuous-time state-space model presented with Eqs. (1.45)-(1.46).
In discrete-time, this system can be re-written as

Xk = fd(Xk−1,uk,ηk) (2.41)

yk =hd(Xk,νk) (2.42)

where fd(.) and hd(.) are two non-linear functions that represent the state transition and the mea-
surement (observation) models, respectively. At time step k, the state vector is Xk, the measurement
vector is yk, and uk is the input. The process and measurement noises ηk and νk, are assumed to be
zero-mean, white, Gaussian and uncorrelated. The EKF, applied to this non-linear model, defines
an estimate X̂k at each step k through the following steps of initialization, prediction and update:

Initialization
X̂0|0 =E[X0]

P0|0 =E[(X0− X̂0)(X0− X̂0)
>]

(2.43)

where X̂0|0, is the initial state estimate, E[.] represents the expected value of a random variable X ,
and X0 is the state vector at k = 0. The initial estimate of the covariance matrix (a measure of the
estimated accuracy of the state estimate) is P0|0 ∈Rn×n, with n∈N>0, representing the length of X .

Prediction
X̂k|k−1 = fd(X̂k−1|k−1,uk)

Pk|k−1 =FkPk−1|k−1F>k +Qk
(2.44)

such that Qk ∈Rn×n is the process noise covariance matrix corresponding to ηk and Pk|k−1 ∈Rn×n

is the predicted covariance estimate.
Because of the non-linearity of the studied system, the covariance prediction equation of the linear
version of Kalman cannot use the state transition function fd(.) directly. Instead, its Jacobian
Fk ∈Rn×n, in discrete-time, needs to be computed around the current estimate X̂k−1|k−1 as follows,

Fk =
∂ fd

∂X
|X̂k−1|k−1,uk

(2.45)
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Similarly to the state transition function, the discrete-time Jacobian of the measurement function,
denoted Hk ∈ Rm×n is determined through

Hk =
∂hd

∂X
|X̂k|k−1

(2.46)

with m ∈ N>0, representing the length of y.
Then, the Kalman gain Kk ∈ Rn×m is computed in order to conduct the correction step through
updating both the state and the covariance estimates as follows

U pdate

Sk =HkPk|k−1H>k +Nk

Kk =Pk|k−1H>k S−1
k

X̂k|k =X̂k|k−1 +Kk(yk−hd(X̂k|k−1))

Pk|k =(In−KkHk)Pk|k−1

(2.47)

where Nk ∈ Rm×m is the measurement noise covariance matrix corresponding to νk and In is the
identity matrix in Rn×n.

Model discretization

The implementation of the EKF governed by Eqs.(2.43)-(2.47) requires transforming the proposed
model of Eqs.(2.33)-(2.37) into the form of a discrete-time system as Eqs. (2.41)-(2.42).
There are many existing methods in the literature for the numerical treatment of differential equa-
tions Ref. [Grossmann2007], from which Euler’s method is the most known. The method is very
straightforward which makes it practical for theoretical demonstrations. However, it is numeri-
cally unstable and its accuracy is very dependent on the sample time. Furthermore, as it is based
on a first-order approximation, the method may fail for complex problems and/or boundary con-
ditions. The rich dynamics introduced in the proposed model especially when dealing with the
magnetic field and its spatial derivatives suggest considering a higher-order discretization method
for a better stability and higher accuracy. In this sense, the Runge-Kutta 4th order method (RK4)
Ref. [Grossmann2007] is employed, as it represents a good balance between stability, the level of
accuracy and the computational cost.
Applying the RK4 method on the proposed model implicates defining the state transition function
fd(.) as follows

fd =RK4( f )

=Xk−1 +
dT
6
(k1 +2k2 +2k3 + k4)

(2.48)

where

k1 = f (tk−1,Xk−1) (2.49)

k2 = f (tk−1 +
dT
2
,Xk−1 +

dT
2

k1) (2.50)

k3 = f (tk−1 +
dT
2
,Xk−1 +

dT
2

k2) (2.51)

k4 = f (tk−1 +dT,Xk−1 +dT k3) (2.52)

with dT , the sample time, and tk−1 representing the time vector at step k−1.
As most of the commercialized IMUs and magnetometers provide nowadays discrete-time mea-
surements, the continuous-time output model y(t) is considered equivalent to the one in discrete-
time y(k). This means that no discretization step of the measurement function h(.) is then neces-
sary, which implicates hd(.) = h(.).
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Remark 11 The discretization of the state transition function f (.) implies that its Jacobian un-
dergoes the same transformation. This means that a discrete-time version of the state matrix F,
defined in Eq. (2.38), is determined. This is done by simply computing the Jacobian of fd(.) with
Eq. (2.45), and is not further detailed, for its representation complexity. The measurement matrix
H is maintained, as no discretization is applied on the observation model.

2.2.4 Architecture of the magnetic field gradient-based EKFs

The proposed model in Eqs. (2.33)-(2.37) introduces strong correlations between the different
states, which makes detecting the sources of errors, induced by the estimation process, much more
difficult. Also, by considering ∇Bb as a state, the proposed model endures more non-linearities
(the term ∇Bbvb, for example). In this case, the computed Jacobian Fk of the state transition
function fd(.) becomes more sensitive to errors, and can therefore affect the estimation accuracy.
Besides to the linearization problem, the EKF can suffer from a divergence of its state estimates in
the case where the noise covariance matrices Q and N are not properly specified. In fact, there is no
general solution to accurately tune these covariance matrices and commonly, empirical methods
based on a trial and error scheme are used. However, with a complex model as the proposed one,
such manual procedure is long and difficult to conduct as it requires studying the interaction of the
different noise parameters induced by the filter, which are highly non-linear and stochastic.

Remark 12 The estimation of Kalman noise covariance matrices represents itself a common
problem that generated a lot of research on the matter. A brief discussion about the existing
state-of-the-art methods is conducted in Chapter 4. In this chapter of the thesis, the covariance
matrices are chosen through a heuristic hand-tuning.

In other words, each time a change is brought to the model representing the dynamics of ∇Bb, all
of the parameters of the process noise covariance matrix Q need to be tuned all over again. This is
due to the correlation of ∇Bb with the other states. As different model comparisons are conducted
in the next section, an EKF architecture that uses the proposed model entirely, is not practical.
For all the reasons above, and in order to avoid augmenting the complexity of the proposed model
while maintaining the contribution of Eq. (2.36), a specific EKF architecture is designed as illus-
trated in Fig. 2.2.

Figure 2.2: Proposed magnetic field gradient-based EKFs, in red are the inputs, in green are the
measurements and in blue are the estimates

The proposed setting is based on two EKFs, in cascade. The primary EKF uses Eq. (2.36) describ-
ing the magnetic field gradient dynamics, while the main EKF acts on the rest of the model. At
each time step, the estimated magnetic field gradient ∇̂Bb is determined in the primary EKF using
the inputs ωb, T b and the determined ∇Bb from the magnetometer array measurements, through
the least-squares scheme. Then, it is fed to the main EKF alongside with ωb and ab, as well as the
measurements of Bb, to estimate the rest of the states. Note that the estimated velocity v̂b is itself
injected in the primary EKF and considered as one of its inputs.
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Remark 13 It is brought to the attention of the reader, that measurements from only one 3−axis
magnetometer are used to represent Bb. The choice of which magnetometer to use, is done taking
into account the position of the latter, that needs to represent the center of inertia of the sensor
board. In Fig. 2.1, it is considered that the origin with the position vector p0, represents this center
of inertia. The magnetic field at this origin, is measured by magnetometer 0. For this reason, the
values of Bb

0 are used in the measurement vector of the proposed model. It is underlined here, that
the accelerometer and the gyroscope are also placed very close to this origin.

2.3 Simulation results and comparisons

This section aims to illustrate the performance and accuracy of the designed EKFs-based ob-
server. Some numerical simulations are carried out under MATLAB to estimate a rigid body’s
velocity, attitude, position, magnetic field and its gradient, based on theoretical inertial and mag-
netic measurements. The obtained estimates with the proposed approach are compared to the
theoretical ground truth data, as well as the main EKF, that does not include the estimation of the
magnetic field gradient. Furthermore, the proposed model describing the dynamics of ∇Bb, and
defined with Eq. (2.36), is compared to the state-of-the-art ones, discussed in Section 1.3.3, and
represented with Eq. (1.77) and Eq. (1.79).

2.3.1 Simulation scenario and details for implementation

First, the following angular rate scenario is simulated

ω
b
x =−1.8 sin(1.5t) (2.53)

ω
b
y =0.5 cos(0.9t) (2.54)

ω
b
z =1.5 sin(1.2t) (2.55)

where t is the time vector varying until 200 s, under a time sample of 0.02 s. Then, the equation de-
scribing the dynamics of the quaternion Eq. (1.11) is solved to obtain the continuous-time motion
in quaternion, which represents the attitude variation example. The obtained quaternion is used
as a reference to compare it with the estimated one from the proposed EKFs-based observer. The
rotation matrix in Eq. (1.3) is also computed using the reference quaternion. This is followed by
the generation of a reference trajectory Mn of the moving body using both the rotation matrix and
a random translation vector. This enables thereafter to compute the acceleration an in ℜn through
a two-times derivation of Mn. Note that in order to express the accelerometer measurements in ℜb,
Eq. (1.13) is applied. After that, the measurements of magnetometer 0 of Fig. 2.1 are simulated by
applying Eq. (1.28), where Bn

0 values are chosen according to Eq. (1.24), and the magnetic field
calculator in Ref. [NOAA2021] at the time of the algorithm’s implementation such that

Bn
0 = [0.22cos(2) 0 0.47sin(61)]> (2.56)

To generate the rest of the magnetometer array measurements, small random variations are added
to Bb

0, in a way that the corresponding magnetic field gradient values are coherent with what is mea-
sured in a magnetically disturbed environment (eigenvalues of ∇Bb are no less than 0.05 Gm−1).
The simulation scheme does not include constraints like the ones that may be encountered dur-
ing real experiments, such as measurements synchronization problems, imprecise knowledge on
the magnetometers’ positions, etc. For this reason, a simple finite differences scheme is used
to compute ∇Bb and T b. That being said, a close to reality simulation needs to consider sensor
imperfections. To do so, an additive random zero-mean white Gaussian noise is considered for
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all measurements with a large standard deviation (see Table 2.1). It is underlined here, that the
chosen values for the standard deviations are actually over-evaluated. This choice is conducted in
order to better highlight the advantage of the proposed approach, that succeeds to converge to the
true states values, despite the presence of high noises in the inputs and measurements. It is also
reminded that, sensor biases are considered null, as bias modeling is not studied in this thesis. In
practice, the different sensor biases can be pre-identified and subtracted from the measurements,
before applying the proposed approach.

Table 2.1: Noise characteristics of sensor measurements

Sensor Parameter Standard deviation Unit

3−axis accelerometer ηb
a 0.1 ms−2

3−axis gyroscope ηb
ω 0.05 rads−1

3−axis magnetometers ηb
B 0.1 G

During the EKFs implementation, the noise covariances, Q and N, are set according to the consid-
ered sensor noise levels. They are assumed constant, and do not vary during the simulation. Also,
to optimize the computation time and memory allocation, the Jacobian matrices Fk and Hk are
computed periodically (every 1000 samples), instead of each step. The accuracy on the two EKFs
estimation is not impacted, while having a lighter algorithm. The choice of this periodic value is
done taking into account the trajectory dynamics that are repetitive almost every 1000 samples.
This simplification does not work necessarily in a real life experiment where the moving body’s
dynamics can change drastically every few seconds.
In the proposed simulation, the theoretical model and the two EKFs-based observer are initialized
with different values. Notice that this choice allows to illustrate the convergence of these EKFs
even though they are initialized with values that are far from the actual states of the model.

2.3.2 EKFs estimation results

Implementing the proposed EKFs using the model composed of Eqs. (2.33)-(2.37) enables the
estimation of 5 states, that form the vector X̂ : quaternion, velocity, position, magnetic field and its
gradient. In the following, comparisons between X̂ and the theoretical ground truth states in the
vector X are performed.

Quaternion estimation

Recall that the angular velocity data is corrupted with noise. It follows that the quaternion de-
termined through the integration of Eq. (2.33) contains some errors. The latter is expected to be
corrected with the main EKF, that converges in the end towards the ground truth quaternion. In
Fig. 2.3, the estimation results for the four quaternion components are plotted. It is shown through
the green line how simply integrating Eq. (2.33) induces errors that accumulate through time. The
implementation of the main EKF however, succeeds to compensate this drift and provide an accu-
rate quaternion estimation.
Despite initializing the main EKF with values that are far from the theoretical ones, the estimated
quaternion q̂ components converge in less than 2 s, which illustrates the efficiency of the proposed
two EKFs-based observer. However, even when initializing the integration of Eq. (2.33) with the
same values as the theoretical quaternion, an inevitable accumulation of error (norm of the dif-
ference between theoretical and estimated quaternion elements) is generated, as represented in
Fig. 2.4. The zoomed area illustrates that the initial error considered for the integration process
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is zero, contrarily to the proposed EKFs approach that rather starts with a large error, and yet
converges to a very small one (≈ 0.02).

Figure 2.3: Estimation results of the quaternion. In red is the theoretical quaternion representing
the ground truth, in green is the determined one through integrating Eq. (2.33), and in blue is the
EKFs estimated one q̂
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Figure 2.4: Quaternion error results. In blue from the proposed EKFs estimation, and in green
from the integration of Eq. (2.33)

Velocity estimation

The main contribution of the proposed MINAV solution resides mainly in its velocity estimation
capabilities. This means that in order to assess the performance of the proposed magnetic field
gradient-based EKFs, the velocity estimate v̂b is investigated. In Fig. 2.5, the velocity estimation
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results are compared to the ground truth ones for the considered the simulation time.
Similarly to the quaternion, it is observed that the convergence of the velocity estimation is reached
after few seconds of the simulation time, despite the contained noise in the inputs and the different
initialization of the ground truth and estimated states. This would not have been possible without
using the magnetic field measurements alongside with the main equation Eq. (2.35) that links the
velocity observability to the magnetic field gradient. Notice the presence of some small remaining
errors along the trajectory. These errors are the consequence of the different uncertainties consid-
ered in the simulation scenario, i.e., the approximations taken into account to extract the spatial
derivatives (∇Bb and T b), the linearization process of the two EKFs, the hand-tuning of the noise
covariance matrices, etc.

Figure 2.5: Estimation results of the velocity. In red is the theoretical velocity representing the
ground truth, and in blue is the EKFs estimated one v̂b

Magnetic field estimation

To evaluate the advantage of the proposed two EKFs on the magnetic field estimation, a noise
with a large standard deviation is considered in the measurements of magnetometer 0. Note that
the chosen value of 0.1 G is overestimated compared to the noise contained in commercial magne-
tometers, but yet taken into account in the purpose of demonstrating the contribution. In Fig. 2.6,
it is shown that the estimated magnetic field B̂b converges to the theoretical one given the noisy
measurements. The same behavior is expected for its corresponding gradient.

Magnetic field gradient estimation

Recall that noise is added to the five magnetometers of Fig. 2.1. The same noise standard deviation
is considered for these magnetometers but noise amplitude vary differently from one magnetome-
ter to another. This reflects a realistic behavior of sensors, that, even when having the same brand

46



2.3. Simulation results and comparisons

Figure 2.6: Estimation results of the magnetic field. In red is the theoretical magnetic field repre-
senting the ground truth, in green is the real one used in the measurement vector of the main EKF
and in blue is the estimated one B̂b

and model, are never completely identical, due to the manufacturing process.
The noise contained in the magnetometers impacts the corresponding gradient, which will most
likely generate errors during the velocity estimation as mentioned in Chapter 1. This is where
the proposed magnetic field gradient model described by Eq. (2.37) and implemented through the
primary EKF comes in handy. Fig. (2.7) displays the estimation results for ∇Bb.
The primary EKF succeeds to reconstruct ∇Bb using the proposed dynamic model and the noisy
measurements. The magnetic field gradient ∇̂Bb is very close to the theoretical one. This is very
beneficial as employing ∇̂Bb enables a more accurate velocity estimation than the one relying on
a noisy ∇Bb.

Position estimation

The proposed two EKFs scheme fails at some time steps to accurately estimate the velocity due to
the different sources of errors previously mentioned. These velocity estimation errors, as small as
they may be, lead to a noticeable position drift after integration. It is recalled that the position Mn

is not observable. It follows that the main EKF cannot achieve a good estimation of the position
Mn. In Fig. (2.8), it is shown how the position reconstruction suffers from a remarkable drift,
compared to the theoretical trajectory.
In order to obtain an accurate position reconstruction, it is mandatory then to improve further the
velocity estimation, as these two states are linked by a simple integration. However, in this chapter,
the main objective is to illustrate the improvement that is brought to the velocity estimation in the
case where ∇Bb is estimated rather than being used as an input. Further enhancements on the
velocity estimation are proposed in the next chapters.
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Figure 2.7: Estimation results of the magnetic field gradient. In red is the theoretical magnetic
field gradient representing the ground truth, in green is the real one used in the measurement
vector of the primary EKF and in blue is the estimated one ∇̂Bb

2.3.3 Estimation with and without the primary EKF

The contribution of the proposed magnetic field gradient-based EKFs resides mainly on the imple-
mentation of the primary EKF that uses the equation describing the magnetic field gradient ∇Bb

dynamics. If this primary EKF is not considered, then the magnetic field gradient is fed to the
main EKF as an input, usually with noise, and the main model of Eqs.(1.41)-(1.44) is applied as
illustrated in Fig. 2.9.
To evaluate the importance of the primary EKF, the velocity estimation accuracy is assessed with
and without it. To do so, the Monte-Carlo simulation technique Ref. [Kroese2014] is applied to
run the algorithm for 100 times. This is achieved to obtain more meaningful results as the dif-
ferent noises generation under MATLAB follows a random scheme so the estimation error values
can change from one code execution to another. Using the Monte-Carlo technique, the mean of
the velocity error with respect to the chosen number of simulations is computed.
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Figure 2.8: Estimation results of the position. In red is the theoretical trajectory representing the
ground truth Mn and in blue is the estimated one M̂n

Figure 2.9: Main EKF architecure, without the primary EKF, in red are the inputs, in green are
the measurements and in blue are the outputs

Table 2.2 displays the Mean Squared Error (MSE) and the Mean Absolute Error (MAE)
Ref. [Li2001] between the velocity estimate v̂b and the theoretical one vb for the two studied
cases: with the implementation of the primary EKF alongside with the main EKF to estimate
∇Bb, and without it (the magnetic field gradient is used in the main EKF as a noisy input). It is
observed that both the MSE and the MAE of the velocity significantly decrease with the addition
of the primary EKF and the estimation of ∇Bb instead of using it directly as an input in the main
EKF. This proves the contribution of deriving an equation that describes the dynamics of ∇Bb and
considering it as a state in the proposed model.
The same conclusion is outlined in Fig. 2.10 by computing the Cumulative Distribution Function
(CDF) Ref. [Forbes2011] in both cases.
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Table 2.2: Velocity error mean results

Primary EKF Without With

MSE (ms−1) 0.48 0.29

MAE (ms−1) 0.57 0.43
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Figure 2.10: Cumulative distribution function of the velocity estimation error. In red without the
primary filter, and in blue with it

Fig. 2.10 shows how the proposed approach provides better results, in terms of error between the
theoretical velocity and the estimated one. For instance, without using the primary EKF, only 30%
of vb

x estimation error is inferior to 0.5 ms−1, contrarily to 60% when applying the primary EKF.
In the next section, the proposed magnetic field gradient model is compared to two other ones of
the state-of-the-art and it provides the best accuracy.

2.3.4 Comparison with other magnetic field gradient models

Considering the magnetic field gradient as a state to be estimated by an observer has already been
discussed in previous works Ref. [Vissière2007a,Vissière2007b] and was detailed in Section 1.3.3.
Two models (1 and 2) are studied in this sense and are described by Eq. (1.77) and Eq. (1.79), re-
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spectively. For comparison, the primary EKF is fed with the three models (the proposed one and
the two of the state-of-the-art), one at a time. In order to avoid the influence of the velocity es-
timation error on the performance of the proposed model, the latter is considered known and the
theoretical velocity representing the ground truth is used in Eq. (2.36). This means that for this
comparison, the main EKF is omitted.
In order to implement models 1 (given by Eq. (1.77)) and 2 (given by Eq. (1.79)), two parameters
(ηb

∇B and τb
∇B) need to be determined. This can be problematic as introducing more unknowns

to the studied model demands a careful tuning process and implies the loss of generality of the
solution. In other words, the chosen standard deviation of ηb

∇B is highly dependent on the used
magnetometer array characteristics and can even vary during the trajectory due to external factors
(temperature, for example). Furthermore, choosing the time constant τb

∇B in the first order model
Eq. (1.77) implies making an assumption on the behavior of the model’s exponential decay, which
may not properly describe the actual dynamics of ∇Bb, especially in a highly magnetically per-
turbed environment. For these two reasons, it is almost impossible to determine the optimal model
for ∇Bb when considering such solutions.
However, to achieve this comparison, the value of the standard deviation of ηb

∇B is chosen the same
as the one for ηb

B. The time constant τb
∇B is fixed to 0.2 s after some hand-tuning.

In Fig. 2.11, the Power Spectral Density (PSD) of ∇Bb estimation error (the difference between
∇̂Bb and the theoretical one) is shown, when the primary EKF is used for the three studied models.
This metric as it describes how the power of a signal is distributed over frequency, represents an
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Figure 2.11: Power spectral density of the magnetic field gradient error. In red for the proposed
model, in green for model 1 and in blue for model 2

interesting criterion to evaluate the noise compensation performed by the three compared mod-
els. Fig. 2.11 shows that in case ∇Bb is estimated using the proposed model, the noise power of
its elements, is lower than the ones obtained using the other two models. The first-order model
(model 1) is slightly better than the only noise-based one (model 2), which is expected as the latter
assumes a more dynamic behavior of the magnetic field gradient. It is reminded though, that these
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results are highly influenced by the models’ parameters tuning as well as the simulation scheme,
that does not reflect precisely the actual magnetic field dynamics encountered in a magnetically
disturbed environment. In other words, no simulation scenario can replicate the perturbations that
are generated by office equipment, building structure, electrical currents, etc. So, the used mag-
netic field measurements lack such physical complexity. For this reason, model 1 and 2, despite
their simplicity, provide acceptable results. Nevertheless, in a real life experiment, these models
are not able to recover the richness of ∇Bb, which makes the proposed model the best solution in
this case. Evaluations with experimental data and real sensors are conducted in the next chapters.
The same results can be presented in terms of the magnetic field gradient error’s CDF, as illus-
trated in Fig. 2.12. By looking at the CDF of the estimation error of ∇Bb for the three models, it
is evident that the best performance belongs to the proposed model (i.e. the proposed model has
bigger percentages of low errors compared to the other models). This is expected as the latter pre-
serves maximum information on the magnetic field dynamics by introducing higher-order spatial
derivatives and conserving their relationship with the velocity and angular rate.
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red for the proposed model, in green for model 1 and in blue for model 2
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2.4 Conclusion

Magnetic field gradient proposed model As elaborated in Chapter 1, there is a clear advan-
tage in modeling the magnetic field gradient and including it in the state vector of the main model.
Higher-order spatial derivatives of the magnetic field are explored, then a new equation is proposed
that efficiently describes the magnetic field gradient dynamics and guarantees its relationship to
the magnetic field hessian, the velocity and the angular rate.
The magnetic field hessian The magnetic field hessian is a tensor that represents an input to
the proposed model, and needs to be determined using the magnetometer array. At least 5 mag-
netometers are required to recover 7 tensor elements, either with a finite differences scheme or
the least-squares method. These 7 elements enable the computation of the entire magnetic field
hessian thanks to its properties.
Special architecture of EKFs To avoid complexity and to facilitate the implementation of the
proposed model, a special architecture of two EKFs, in cascade, is proposed. In fact, the EKF
introduces few limitations related to its noise covariances tuning, its linearization process, etc. By
handling the proposed magnetic field gradient model separately, in a primary EKF, it is possible to
examine its behavior under different conditions, without having to worry about the different noise
parameters of the rest of the model, used by the main EKF.
Limitations of state-of-the-art models Two models of related literature are compared to the
proposed magnetic field gradient model. A first observation states that these two models do not
reflect the actual dynamics of the magnetic field, especially in a highly disturbed environment.
It is also highlighted that these models introduce two more unknown parameters that require a
proper tuning in order for them to provide a reasonable performance. A condition that is not easily
satisfied, especially when dealing with a real experimental setup under various uncertainties.
The simulation results are encouraging The proposed magnetic field gradient-based EKFs are
evaluated under a simulation framework. It it shown that the proposed model outperforms the case
where the magnetic field gradient is used as an input, under some noises. The proposed model
appears also to outperform the related literature ones, in the case of the chosen parameters’ values.
In the next chapter, a closer to reality setup is adopted (closer to a real experimental scenario, with
complex dynamics and many uncertainties), to further explore the capabilities of the proposed
approach as well as its possible weaknesses.
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3
Single Magnetic Field Gradient-Based Extended

Kalman Filter

This chapter treats the special case of trajectory reconstruction under a foot-mounted
sensor framework, that represents one of the most common setups used in pedestrian
inertial navigation. An introduction of such scheme is presented in Section 3.1, where
a method usually employed under this particular sensor placement, called the Zero-
Velocity Update Technique (ZUPT), is introduced. This technique is used to complement
the previously proposed magnetic field gradient-based EKFs in a new proposed EKF
setting presented in Section 3.2. To assess the performance of the proposed approach, a
simulated trajectory that is based on a real human walk pattern is used in Section 3.3.
The obtained results demonstrate the interest in using the proposed solution when deal-
ing with a foot-mounted application, and especially when targeting position estimation.
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3.1. Introduction

3.1 Introduction

One of the advantages of the magnetic field gradient-based EKFs approach proposed in the
previous chapter is its generality and adaptability to any kind of application. Whether it is a
pedestrian, a moving vehicle or a robot, the proposed solution can be applied with no imposed
restrictions, as long as it is used under a magnetically disturbed environment. In the case of a
specific application, the proposed approach can be enhanced, taken into account the characteristics
of the studied conditions. In other words, knowing the nature of the targeted application opens
doors for complementary methods that can be added to the proposed magnetic field gradient-based
EKFs, in order to improve the estimation accuracy.

3.1.1 Pedestrian Dead Reckoning

The first application that comes in mind when dealing with indoor navigation, is the one related to
the pedestrian trajectory reconstruction. In the last decades, there has been a growing interest in
what is referred to as Pedestrian Dead Reckoning (PDR) Refs. [Hou2020,Wu2019b,Jiménez2009].
Such process resides on the determination of the subject’s current position by using the previously
known one, and advancing that position over time through either a step detection, a step length
estimation and a knowledge on the walking direction Refs. [Wang2019a, Yao2020, Susi2013] or
through a generation of velocity estimates Refs. [Lo2011, Tong2019, Ju2018], which is more in
the scope of this thesis. The PDR approach is typically (but not necessarily, see for example
Ref. [Renaudin2012b]) applied when the sensor board is worn on the foot of the subject under
study, and it relies basically on analyzing the foot movement and its corresponding characteristics.
In fact, the walking activity of a human (at any speed) can be defined as a cyclic pattern of body
movements that propagates a subject’s position. Therefore, all walking cycles can be considered
nearly similar. Thus, investigating the walking process can be summarized with the study of
one walking cycle known as the gait cycle or the stride. Fig. 3.1 is a simplistic illustration of a
pedestrian gait cycle. The gait cycle is composed of two separate phases: the first is the stance

Figure 3.1: Illustration of a gait cycle of a pedestrian walk for the right leg (clear grey color)

phase, representing the period of time during which the foot is in contact with the ground (the right
leg in a clear grey color), usually forming around 60% of the stride’s duration time. The second
is the swing phase, representing the entire period during which the foot is in the air for limb
advancement, and it takes about 40% of the gait cycle time. Detecting these two phases plays a
crucial role in PDR as they provide information not only on step length but also on velocity. While
step length detection represents a wide research area with promising perspectives, this thesis is
rather focused on velocity estimation. In fact, as the proposed magnetic field gradient-based EKFs
already provide a velocity estimate, it can be of benefit to introduce a complementary method that
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can enhance the velocity estimation accuracy in the context of foot-mounted inertial navigation.

3.1.2 About the Zero-velocity Update Technique

During a gait cycle, there are specific times when the velocity and acceleration of the sensor board
mounted on a subject’s foot are equal to (or near) zero. These periods occur each time the foot
contacts the ground during the stance phase. This information can represent a sort of external
velocity measurement whenever such a situation is detected. For the times when the foot is off
the ground (swing phase), various Inertial Navigation System (INS) algorithms can be applied
Ref. [Hasan2009], which leaves a very limited time for the trajectory to start drifting, before it is
again corrected with the zero velocity observation. This methodology is referred to as the Zero-
velocity Update Technique (ZUPT) Refs. [Wahlström2020, Fourati2015, Nilsson2010], which has
enabled the growth of a lot of research in the inertial navigation field for several decades now.
There exist many ways of employing the ZUPT in a foot-mounted INS framework, from which
conventional PDR methods are the most obvious. For instance, the relative position of a walking
subject can be determined through a simple integration of the velocity. The latter itself is deduced
from the sensor board measurements, attached to the foot (by integrating the accelerometer and
gyroscope data) and is periodically set to zero on each detected stance phase during the subject’s
trajectory. Yet, as repeatedly discussed in this thesis, relying solely on the integration of sensor
measurements is not efficient, even after including the ZUPT, as the latter cannot correct attitude
errors generated by integrating the angular rate (see Section 3.3.4). For this reason, the use of an
estimation filter remains necessary and in such case, the ZUPT is used as some sort of a velocity
measurement update to the filter, as largely investigated in the related literature Refs. [Zhao2021,
Nilsson2014a, Benzerrouk2014, Jiménez2010].
This suggests that in the context of this thesis, the proposed magnetic field gradient-based EKFs
can be aided by the ZUPT solution in the case of foot-mounted inertial navigation in the purpose
of improving not only the velocity, but also the position estimation results.

3.1.3 Zero-velocity detector

Before performing a zero-velocity update, one needs to accurately identify the time epochs
when the sensor board strapped to the subject’s foot is stationary. This task is handled by a
measurements-based statistical algorithm called a zero-velocity detector. The objective of a zero-
velocity detector is to decide whether, during a time epoch that consists of Ws ∈N observations or
number of sensor readings (i.e. window size) between the samples m and m+Ws− 1, the sensor
board strapped to the subject’s foot is moving or stationary, given the measurements ab and ωb. At
each sample, this detector, denoted d, can have one of the two values: d = 1, which corresponds to
the stance phase or d = 0, which represents the swing phase. The most common ZUPT detectors
are based on statistical features, from which signals energy (e.g. angular velocity and accelera-
tion) and their variances are employed, to distinguish the zero velocity instants. The zero-velocity
detection also requires the tuning of a certain threshold with which the test statistics are compared.
Mathematically, this detection process can be seen as a binary hypothesis testing problem, where
the detector indicates that the sensor board is stationary (i.e. d = 1) if

Ts(ab,ωb)≤ δd (3.1)

where Ts(ab,ωb) stands for the test statistics of the detector and δd is the the detection thresh-
old. The test statistics can have multiple forms depending on the chosen detector type. In related
works, different detectors have been evaluated Ref. [Skog2010b] from the ones depending only
on accelerometer data (such as Acceleration Moving Variance Detector (MV) and Acceleration
Magnitude Detector (MAG)), to those that are angular rate-based (Angular Rate Energy Detec-
tor (ARE)), or even those that rely on pressure measurements Ref. [Ma2018]. In this thesis, the
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3.2. Proposed single EKF setting

Stance Hypothesis Optimal Detector (SHOE) Ref. [Skog2010a] is chosen, an efficient detector
that is derived within a General Likelihood Ratio Test (GLRT) framework. It represents a combi-
nation between acceleration and angular rate-based detectors, and has proven to outperform other
detectors in the literature for its robustness to changes in gait speed as well as its high positional
accuracy. Concretely, SHOE computes Ts(ab,ωb) in the following way

Ts(ab,ωb) =
1

Ws

m+Ws−1

∑
k=m

(
1

σ2
a
||ab

k−gn ab
m

||ab
m||
||2 + 1

σ2
ω

||ωb
k ||2) (3.2)

where σ2
a and σ2

ω are the variances of the acceleration and angular rate measurements, respectively.
The mean over Ws samples is denoted ab

m such that

ab
m =

1
Ws

m+Ws−1

∑
k=m

ab
k (3.3)

In order for ZUPT to work efficiently, the detection threshold δd must be carefully tuned to ac-
count for the different human walking paces that may occur during one trajectory. Indeed, even if
the use of ZUPT has been successful in PDR related research over the years, its implementation
remains nontrivial due to the necessity to adapt to the large variations of human dynamics. Such
concern encouraged the rising of several adaptive threshold-based ZUPT approaches to meet this
particular challenge Refs. [Cho2019, Wang2019c], from which a large quantity are based on Arti-
ficial Intelligence (AI) techniques. This is discussed further in Part II of this thesis. For the time
being, as the used dataset in the next sections is synthetic and most of its characteristics are already
known, choosing the value of the ZUPT detection threshold is not of a high complexity. Therefore,
no sophisticated method is employed, and a heuristic hand-tuning of δd is rather achieved.

3.2 Proposed single EKF setting

In this section, a new estimation solution that is used to solve the foot-mounted inertial nav-
igation problem is proposed. First, the magnetic field gradient-based EKFs introduced earlier in
Chapter 2 are modified to a more compact architecture which advantages are discussed. Then,
this condensed version of the magnetic field gradient-based EKFs is enhanced, by incorporating
the ZUPT in its estimation process, in the purpose of not only bounding the errors of the velocity
estimate, but also reducing the propagation of the position’s drift.

3.2.1 Proposed magnetic field gradient-based EKF

In the previous chapter, it was elaborated that an EKF architecture which uses the entire model
governed by Eqs. (2.33)-(2.37) is complex to conceive, especially when performing different
model comparisons. For this reason, a specific configuration of two EKFs (primary and main), in
cascade, was proposed and illustrated with Fig. 2.2. While the former architecture is of high ben-
efit especially when dealing with noise covariance matrices tuning (as explained in Section 2.2.4),
a compact design may also have its advantages. One should take into consideration the realistic
aspect of any proposed solution. For instance, if a certain model contains coupled and correlated
states, such connection should not be interrupted even if it’s computationally more convenient to
do so. Therefore, it is rather rigorous to design a single EKF that uses all equations of the proposed
model to conduct the estimation process.
After gaining more proficiency and a better understanding on how to efficiently hand-tune the
noise covariance matrices of the EKF, it is proposed to simplify the estimation architecture in
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Fig. 2.2. This is done by designing a single EKF that uses the model of Eqs. (2.33)-(2.37) alto-
gether. The proposed magnetic field gradient-based EKF is presented in Fig. 3.2.

Figure 3.2: Proposed magnetic field gradient-based EKF, in red are the inputs, in green are the
measurements, and in blue are the estimates

One important criteria that must be verified when proceeding with such modification of the previ-
ously proposed solution is the computation time. As earlier discussed in Section 2.2.3, one of the
constraints that need to be kept in mind for any proposed algorithm in this thesis, is its capability
to be integrated in an embedded system, and eventually adapted to a real-time application. Conse-
quently, conceiving an algorithm that is less energy consuming is highly preferred.
Within this framework, it is highlighted that there’s one main difference between the two studied
architectures, that has the biggest effect on the time consumption. This dissimilarity resides on
the computational process of the Jacobians corresponding to the state transition and measurement
functions. More particularly, in the two EKFs setting, two state matrices are computed: one that
is related to the primary EKF and one that corresponds to the main EKF. While for the single
EKF configuration, only one state matrix is derived, yet with larger dimensions. This makes the
assessment of the time consumption of both settings rather difficult theoretically which calls for a
simulation-based validation.
To obtain an estimation of the computation time of the new proposed magnetic field gradient-based
EKF, compared to the previous architecture (of Fig. 2.2), the Monte-Carlo simulation conducted in
Section 2.3.3 is reproduced, where the two proposed configurations are tested. The algorithms are
run under the same conditions, on a Central Processing Unit (CPU) Intel Core i7@1.9 Gigahertz
(GHz). Under Matlab, the tic toc commands are placed right before the algorithm starts and after
it ends, respectively. Simulations are run for 100 times, where the computation time is saved for
each execution of the entire algorithm (estimation of a trajectory of 200 s). In Fig. 3.3, a histogram
of the toc command output for both the examined architectures (single EKF and two EKFs) is dis-
played. It is observed in Fig. 3.3 that the average computation time of the proposed single EKF
architecture (represented with the red bins), is slightly lower than the one of the two EKFs (illus-
trated with the blue bins). For example, the histogram bin corresponding to the computation time
in between 8.1 s and 8.2 s has a percentage of 39% for the single EKF architecture versus only 2%
for the two EKFs setting. The latter’s maximum percentage of runs takes around 8.4 s and 8.5 s
of computation time, which represents about 0.3 s of difference compared to the proposed single
EKF configuration. What needs to be highlighted in this case, is that even though the proposed
new configuration is more complex in terms of Jacobians computation, it is rather faster than the
divided version of the EKF (two EKFs), which is advantageous when dealing with an embedded
system. As long as the noise covariance matrices parameters are properly tuned, having a single
EKF solution is then much more efficient.
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3.2. Proposed single EKF setting

Figure 3.3: Toc outputs for 100 runs. In light green for the two EKFs-based architecture, and in
purple for the proposed single EKF. The dark green color is the superposition of both results

3.2.2 ZUPT-aided magnetic field gradient-based EKF

In the context of foot-mounted inertial navigation, the ZUPT technique enables not only the cor-
rection of velocity estimation errors, but also those of position. As a matter of fact, the unobserv-
ability of the position in the proposed magnetic field gradient-based EKF, makes its reconstruction
an unstraightforward task. As noticed in Section 2.3, the proposed scheme fails at some time steps
to accurately estimate the velocity, which is totally expected in light of the different uncertain-
ties taken into account during the simulation scenario. These velocity estimation errors, as small
as they may be, lead to a noticeable position drift after integration of Eq. (2.37). The proposed
EKF is unable to recover the true trajectory as no source of correction is available for the po-
sition estimate M̂n. Such limitation encourages combining the EKF with a convenient solution
to compensate the accumulating drift. Accordingly, a new algorithm is proposed that fuses the
ZUPT with the proposed magnetic field gradient-based EKF. The general scheme of estimation is
presented in Fig. 3.4. The ZUPT-aided magnetic field gradient-based EKF works in three steps:
first, the EKF uses the sensor board measurements, and the dynamic model of Eqs. (2.33)-(2.37),
to provide an estimate of its state vector X̂ . Second, the zero-velocity detector d (represented
with the red block) declares whether the sensor board under study is stationary at that time step
(i.e. d = 1) or not (i.e. d = 0). This is by computing the test statistics Ts using the angular
velocity ωb and the acceleration ab measurements. If the detector d has declared the stationary
case, the EKF velocity estimate v̂b is expected to give a zero-velocity value. However, due to the
various potential sources of errors, it most likely will not. In this case, the ZUPT (illustrated with
the green block) "manually" resets the velocity estimate v̂b to zero (i.e. v̂b = 03×1). Consequently,
by continuously updating the velocity estimate in the EKF loop using the ZUPT, the accumulated
estimation errors are efficiently bounded. A better position estimation is then obtained compared
to the case of using only the magnetic field gradient-based EKF.
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Figure 3.4: ZUPT-aided magnetic field gradient-based EKF, in red are the inputs, in green are the
measurements and in blue are the estimates

3.3 Estimation results in a foot-mounted scenario

In this section, the performance of the proposed ZUPT-aided magnetic field gradient-based
EKF is assessed under a realistic simulation of a pedestrian trajectory with the sensor board at-
tached to their foot. Before that, a number of comparisons is conducted between the different
discussed solutions, where it is shown that the proposed approach provides the best results in
terms of the states’ estimation accuracy.

3.3.1 About the foot-mounted IMU dataset

One of the main limitations of the simulations undertaken in Chapter. 2 is the fact that they do
not represent a reality-like trajectory scenario (recall the generation of random sinusoidal signals
for the angular rate measurements in Section 2.3.1). While such methodology may represent a
good starting point for evaluations, it is mandatory to have a rather realistic setup to validate the
proposed approach. The importance comes from the fact that in the case of foot-mounted inertial
navigation, the walking dynamics must be properly introduced in order for them to be accurately
identified by the zero-velocity detector.
In Ref. [Zampella2011], authors generate a 3D trajectory (position and attitude) that is based on
a simplified human walk pattern. This is implemented using the step patterns that are observed
with a motion capture system, and through the solving of an optimization-based problem. From
this ground truth, a synthetic noiseless IMU data is derived (i.e. measurements from a 3− axis
accelerometer, a 3− axis gyroscope and a 3− axis magnetometer), by exploiting the equations
linking these measurements to the trajectory, as defined in Section. 1.1.1.
On the basis of Ref. [Zampella2011], in Ref. [LOPSI2021], a closed 3−loop trajectory with a
rectangular path of 12× 7 m is provided. The dataset contains not only the simulated IMU
measurements, but also ground truth position, velocity, and orientation (Euler angles and rotation
matrix). All data is sampled at a frequency of 100 Hz, and the walking steps are normalized at 1 s
duration.
To maintain the same sensor configuration as the one introduced in Fig. 2.1, a set of measurements
from the spatially distributed magnetometer array is also considered. Magnetometer 0 measure-
ments are provided by Ref. [Zampella2011], while the remaining others (magnetometer 1 to 4) are
simulated. This is done in a similar manner to the simulations in Section 2.3.1 of Chapter 2, where
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small random variations are added to Bb0 in a way that preserves the non-singularity condition of
the magnetic field gradient ∇Bb.
To reproduce the characteristics of a real sensor board, additive random zero-mean white Gaus-
sian noises are considered for all the simulated measurements. The standard deviations of these
noises are chosen by following the specific datasheet of a real IMU, the Xsens MTi module
Ref. [MTi2021], and are indicated in Table 3.1. Note that, similarly to the simulations conducted

Table 3.1: Noise characteristics of sensor measurements

Sensor Parameter Standard deviation Unit

3−axis accelerometer ηb
a 0.012 ms−2

3−axis gyroscope ηb
ω 0.0087 rads−1

3−axis magnetometers ηb
B 0.03 G

in Section. 2.3.2, the same noise standard deviation is considered for all five magnetometers’ mea-
surements. However, noise amplitude vary differently from one magnetometer to another, which
represents a realistic behavior of any commercialized sensors.

Remark 14 It is underlined that, the chosen value of the standard deviation of the magnetometers’
noises is actually over-evaluated. In fact, in commercialized magnetometers, it is found that the
standard deviation of output noise can go up to 0.01 G in some cases, but the most common range
is around 0.005 G. However, as the used data in this section is from Ref. [Zampella2011], it is
interesting to choose close parameters to theirs. In Ref. [Diaz2015], the same authors indicate
that the magnetometer has an added 0.1 G standard deviation zero-mean Gaussian noise. This is
considered very high compared to reality. For this reason, it is preferred to select a value that is
between the previously found 0.01 G and 0.1 G, hence the choice of 0.03 G in Table 3.1.

It is reminded that sensor biases are not taken into account, as no bias modeling is conducted in
the proposed approach.
During the entire simulations, the process and the measurement noise covariances, Q and N, of
any tested EKF architecture, are chosen based on the noise characteristics of the IMU and mag-
netic measurements. They are kept fixed during the EKF computation. The EKF linearization is
conducted during each time step, around the current state estimate. During all experiments, the
theoretical model and the EKF-based observer are initialized with different values. Notice that
this choice allows to illustrate the convergence of the EKF even though it is initialized with values
that are far from the actual states of the model.

3.3.2 Proposed single EKF compared to two EKFs

Before demonstrating the benefit of combining the magnetic field gradient-based EKF with the
ZUPT, one should first assess the estimation accuracy of the proposed single EKF in Fig. 3.2,
compared to the earlier introduced two EKFs setting (primary and main in Fig. 2.2). To do so, the
two architectures are applied using the foot-mounted dataset presented above, in the purpose of
estimating the velocity, attitude and position, as well as the magnetic field and its gradient.
As the considered measurements noise patterns are generated randomly, the estimation results
may slightly vary on each execution of the proposed algorithm. For this reason, the Monte-Carlo
technique is used to run the EKFs under study for 100 times. Then, the mean of the different error
results is computed with respect to these 100 runs. Table 3.2 presents the Root Mean Squared
Error (RMSE) and the MAE between the velocity estimate v̂b and the ground truth one (provided
in the dataset), for the two studied cases (single EKF and two EKFs). The reason behind this
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Table 3.2: Velocity estimation results of the proposed single EKF and the two EKFs architectures

Metrics Two EKFs Single EKF

RMSE (ms−1) 0.18 0.16

MAE (ms−1) 0.14 0.11

evaluation is to illustrate that, even though the proposed single EKF architecture is rather complex
when it comes to the linearization process as well as the tuning of the noise covariance matrices,
better estimation accuracy results can be achieved, as long as the noise parameters of Q and N
are properly chosen. Indeed, it is shown through Table 3.2 that the RMSE and the MAE of the
velocity estimation using the proposed single version of the EKF (in Fig. 3.2) are lightly better
than the ones of the previous proposed architecture in Fig. 2.2. To be more precise, the proposed
approach is actually more accurate for 86 times out of 100 using the RMSE metric and 97 times
out of 100 through the MAE evaluation. This represents enough statistical proof to validate the
efficiency of the proposed single EKF.
To better visualize the distribution of the velocity estimation errors, the obtained RMSE and the
MAE values are plotted for the conducted 100 Monte-Carlo runs as represented by Figs. 3.5-3.6.

Figure 3.5: Distribution of velocity RMSE during 100 runs. In light green for the two EKFs-based
architecture, and in purple for the single EKF

Through this assessment, it is clear that the proposed single EKF outperforms the case of using
the two EKFs setting, no matter the chosen random noise pattern of the employed measurements.
In fact, by looking at these histograms, one can see for example in Fig. 3.6, that 41% of runs
generate a velocity MAE in between 0.11 ms−1 and 0.12 ms−1 when using the proposed single
EKF, versus only 1% through the two EKFs configuration.
As discussed in Section. 3.2.1, this improvement on the velocity estimation accuracy can be ex-
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Figure 3.6: Distribution of velocity MAE during 100 runs. In light green for the two EKFs-based
architecture, and in purple for the single EKF

plained based on two main reasons: first, due to the better handling of the tuning process of the
EKF noise covariance matrices, and second, thanks to preserving the complex relationship be-
tween the different states that hold valuable information behind their non-linear connections.
The same positive outcome can be seen when considering the position estimation. For instance in
Table 3.3, the traveled distance error percentage with respect to the ground truth one is presented
for both the studied EKF architectures. It is shown that, using the single EKF configuration pro-
vides a better accuracy, confirming in this case, the pertinence of the proposed approach.

Table 3.3: Position estimation results of the proposed single EKF and the two EKFs architecture

Metric Two EKFs Single EKF

Traveled distance error (%) 23.48 21.86

For all these performance improvements, in the rest of the thesis, the EKF is always used in its
compact form (single EKF architecture).

3.3.3 Proposed EKF compared to the main EKF

In this section, the proposed EKF (single EKF in Fig. 3.2), using the model of Eqs. (2.33)-
(2.37), is compared to the main EKF of Fig. 2.9, corresponding to the model of Eqs. (1.41)-(1.44).
As demonstrated earlier in Chapter 2, there is a clear advantage in estimating the magnetic field
gradient ∇Bb, instead of using it directly as a noisy input in the EKF. The benefit from doing
so was assessed using a simulation scheme in Section 2.3. However, the comparison was done

63



Chapter 3. Single Magnetic Field Gradient-Based Extended Kalman Filter

with the two EKFs architecture of Fig. 2.2 and not with the new proposed single EKF. Also,
the simulation groundwork was not reflecting a real walking scenario of a pedestrian equipped
with a foot-mounted sensor, which is the targeted application in this chapter. In this sense, new
comparisons are conducted in this particular framework and the different estimation results are
presented accordingly.

Estimating the magnetic field gradient

The main contribution of the proposed EKF resides in its corresponding model, and more particu-
larly, Eq. (2.36), that enables the filtering of ∇Bb, in the purpose of better estimating the different
states, especially the velocity. The main EKF lacks however this equation, and considers instead
∇Bb as a known input, and not a state.
In Fig. 3.7, the estimation result of the first element β1 of ∇Bb by the proposed EKF is presented.
The other elements (β2···5) have the same behavior and are not plotted for simplicity reasons. The
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Figure 3.7: Estimation results of β1. In red is the ground truth, in green is the measured one, and
in blue is the proposed EKF estimate β̂1

estimated element of the magnetic field gradient element β̂1 (in blue dashed line) is close to the
ground truth one (in red solid line), even though the initialization values of the EKF are different
from the actual ones. Note that the measured β1 (in green dotted line), that is used as an input in
the main EKF, is very noisy. This will remarkably affect later the accuracy of the velocity estima-
tion.
Let ηb

β1
represent the noise of the first element β1 of ∇Bb. In Fig. 3.8, the PSD of this noise is

presented, before and after estimating ∇Bb with the proposed EKF. Recall that a zero-mean white
Gaussian noise is added to all magnetic measurements in the beginning of these simulations. This
noise is illustrated with the red "flat" line in the PSD representation. Then, the advantage of
applying the proposed EKF that estimates ∇Bb using Eq. (2.36) can be seen through the blue
line behavior. In fact, the PSD of ηb

β̂1
significantly decreases from around −55 dB/Hz to about
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Figure 3.8: PSD of ηb
β1

. In green is the measured one, and in blue is ηb
β̂1

from the proposed EKF

−95 dB/Hz along the frequency range, which justifies the effectiveness of the proposed approach
in reducing the noise contained in ∇Bb. Note here that ηb

β̂1
does not represent only a white noise

(i.e. is not flat), as it contains also the estimation errors contained in β̂1, that are generated by the
proposed EKF.
Another way that is used to quantify noise in a signal is by computing the Signal to Noise Ratio
(SNR) Ref. [Oppenheim2015], which is the ratio of the power of the ground truth signal β1 to the
power of its noise ηb

β1
. The SNR of β1 increases from SNRβ1 = −9.4 dB when ∇Bb is not esti-

mated, to SNR
β̂1
=−0.42 dB when it is done. This proves again that ∇Bb noise is greatly reduced

with the proposed model and EKF.

Quaternion estimation results

The major advantage of estimating the magnetic field gradient ∇Bb with the proposed EKF, rather
than using it as a noisy input in the main one of Fig. 2.9, is mostly seen on the velocity estimation
accuracy results. However, this contribution of modeling ∇Bb has an implicit relationship with
attitude estimation, which can be mainly detected when analyzing the model’s observability matrix
in Section 2.2.2. For this reason, the quaternion q is estimated using the two studied models.
Then, Eq. (1.1) and Eq. (1.3) are applied, to transform the quaternion estimate q̂ into Euler angles
representation as shown in Fig. 3.9. Such attitude representation is preferred during the results
evaluation, as it provides a more "physical" information on the rotations than the quaternion,
which is rather "abstract". Note that the chosen quaternion value during the initialization of both
the compared EKFs is different from the ground truth one. Yet, the proposed EKF as well as the
main one converge to the actual state in less than 20 s of the walking scenario. The proposed EKF
performs slightly better, as its corresponding Euler angles estimates are closer to the ground truth,
than the main EKF, which can be easily detected in the zoomed areas of Fig. 3.9. This confirms
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Figure 3.9: Euler angles estimation results. In red is the ground truth, in green is the main EKF
estimation, and in blue is the proposed EKF one

again, that estimating ∇Bb using Eq. (2.36), has a positive impact on the estimation process.

Remark 15 Some jumps are seen on the yaw angle estimate ψ̂ when the estimated pitch angle θ̂

reaches 90◦. This is a great example of the common problem of singularity in Euler angle’s rep-
resentation, previously discussed in Section 1.1.1. Also, recall that it is assumed that the direction
of gravity defines the vertical z−axis of the considered sensor board. As the yaw angle represents
the rotation around this axis, any error in ψ̂ will then generate errors in position reconstruction
along the z−axis.

Velocity estimation results

The pertinence of the proposed EKF compared to the main one is mainly observed during the
velocity estimation, that has a direct link with the magnetic field gradient (i.e. the term ∇Bbvb in
Eq. (2.35)). In Fig. 3.10, the x−axis of the ground truth velocity, the estimate from the proposed
approach as well as the one from the main EKF are plotted. The other two velocity axes have nearly
the same behavior and are omitted from the plot for clarity purposes. It is clear from Fig. 3.10,
that the velocity estimation using the proposed EKF (in blue line) provides a better accuracy than
the one from the main EKF (in green line). This can be easily detected especially during static
phases (i.e. velocity is equal to zero), where v̂b

x from the proposed EKF is closer to the ground
truth (in red line) than the green line estimate. This is actually a very important advantage of the
proposed EKF, that is expected after studying the observability of its corresponding model. When
the magnetic field gradient is very low/or equal to zero (which is the case at some time frames of
β1 in Fig. 3.7), the main EKF fails at providing an accurate velocity estimation due to the potential
unobservability of the latter. Nevertheless, the use of the proposed model adds more flexibility
to the observability conditions as discussed in Section 2.2.2, in a way that can better recover the
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Figure 3.10: vb
x estimation results. In red is the ground truth, in green is the main EKF estimation,

and in blue is the proposed EKF one

velocity even in critical magnetic field-related situations. This limitation of the magnetic field
gradient-based EKF is discussed further in detail in the next chapter.

Remark 16 Independently from the magnetic field gradient state, attitude and velocity estima-
tions may suffer from inevitable drifts during static phases (constant attitude and zero velocity).
In Ref. [Chesneau2018], it was stated that for a trajectory to be observable, it is necessary, but
not sufficient, that the targeted object is continually moving, which is considered an impractical
constraint in a realistic use case. In the same reference, it was discussed that the reason behind
these drifts is due heavily to the presence of sensor biases. It is believed that further investiga-
tions may reveal all the exact conditions where the proposed model’s observability matrix is state
deficient. In the meantime, a complementary solution is used, to compensate for these limitations
of the proposed EKF and provide an all-time working approach (as long as it’s a foot-mounted
application).

For comparison reasons, the Monte-Carlo simulation used in the previous section is reproduced
here for the main EKF, in order to compute the velocity RMSE and MAE of the latter as indi-
cated in Table 3.4. Again, it is observed through the velocity estimation error results, that the

Table 3.4: Estimation results of vb with the proposed EKF and the main EKF

Metrics Main EKF Proposed EKF

RMSE (ms−1) 0.21 0.16

MAE (ms−1) 0.15 0.11
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proposed EKF outperforms the main EKF that does not consider ∇Bb as a state and uses it in its
noisy input. While the difference in accuracy is not enormous, for instance the RMSE is reduced
from 0.21 ms−1 to 0.16 ms−1, a such improvement is important when dealing with the position
estimation, due to the integration relationship that links it with the velocity.

Position estimation results

The biggest evidence that highlights the importance of the decrease of the velocity estimation
error, is the position reconstruction through the integration of Eq. (2.37). The impact can be
seen by plotting the 2D representation of the estimated trajectory in Fig. 3.11. A noticeable drift
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Figure 3.11: Mn estimation results. In red is the ground truth trajectory, in green is the main EKF
estimation, and in blue is the proposed EKF one

compensation is observed when the proposed EKF is applied. Indeed, the slightest improvement
in velocity estimation can increase the accuracy of the trajectory reconstruction, as less errors
are generated. Therefore, there is less of their accumulation during the integration process. It is
observed that there is a jump after each loop for both the green and the blue plots in Fig. 3.11. This
is explained by the less accurate estimation of velocity during static phases (as shown in Fig. 3.10),
where the latter tends to drift but quickly recovers after. It is underlined here that the jumps in the
blue plot are narrower, which proves the advantage of the proposed approach.
In the same context, by looking at Table 3.5, it is seen that the traveled distance error percentage of
the studied trajectory is reduced from 36.05% to 21.86%, when using the proposed approach. This
improvement of 14.19% is very beneficial for position reconstruction, especially when dealing
with applications of longer trajectories.

3.3.4 Estimation results of the proposed EKF-ZUPT

Despite the contribution of the proposed EKF in velocity estimation, the obtained error results
are still not satisfactory if position reconstruction needs to be conducted, which is observed in
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Table 3.5: Estimation results of Mn with the proposed EKF and the main EKF

Metric Main EKF Proposed EKF

Traveled distance error (%) 36.05 21.86

Table 3.5. In fact, whether its computed with or without the proposed model, v̂b still suffers from
some drifts. One reason for these errors is the earlier discussed observability loss issue, during
static trajectories or when the magnetic field gradient does not satisfy the non-singularity condi-
tion (for instance, if one of its columns is almost/or equal to zero). Other errors are due to the
different uncertainties considered in the simulation scenario, i.e. the generation of the four addi-
tional magnetic fields, the approximation of the spatial derivatives ∇Bb and T b, the linearization
process of the EKF, etc. These errors lead to drifts when the position is reconstructed, as seen in
Fig. 3.11.
For the different reasons stated above, the proposed magnetic field gradient-based EKF is com-
bined with the ZUPT, as presented in Fig. 3.4, and the same comparisons as the previous section
are conducted.

Velocity correction using the ZUPT

The magnetic field gradient-based EKF fails at providing an accurate velocity estimate v̂b during
instants where the latter is equal to zero. As explained in Section 3.2.2, the advantage of the ZUPT
comes from being able to efficiently detect these instants, and consequently, to manually assign
03×1 to v̂b, inside the EKF loop. Such correction enables to continuously reset the errors contained
in v̂b to zero, and thus, avoid any drifting through time.
In Fig. 3.12, the velocity estimation results of the proposed ZUPT-aided magnetic field gradient-
based EKF (EKF-ZUPT), as well as the main EKF, also combined with the ZUPT (Main EKF-
ZUPT) are plotted.
By correcting the velocity estimate v̂b

x of the magnetic field gradient-based EKF with ZUPT, the
latter is now almost perfectly superposed with the ground truth velocity vb

x , and there are no more
visible estimation errors, especially during the instants where the velocity is equal to zero.
What is is also interesting to see, is that even after adding the ZUPT to the main EKF, which in-
directly discards the benefit of estimating ∇Bb, the proposed EKF-ZUPT solution is still slightly
better in terms of velocity estimation accuracy, which can be detected in the zoomed area of
Fig. 3.12. In fact, in a foot-mounted framework where the ZUPT can be used, the advantage of
eliminating noise from ∇Bb by considering it as a state instead of an input, is very less remark-
able. Yet, it is important to keep in mind that the ZUPT is only added to the EKF, in the context
of foot-mounted navigation, and does not represent a global solution that can be always adopted.
In the same manner as the previous section, the Monte-Carlo simulation is conducted in order
to compute the mean RMSE and MAE of the velocity estimate with the two studied approaches.
First, from Table 3.6, it is shown how the proposed ZUPT-aided magnetic field gradient-based
EKF succeeds to accurately estimate v̂b with a remarkable decrease in the RMSE and MAE re-
sults, compared to the case of not using the ZUPT (e.g. RMSE that decreases from 0.16 ms−1 in
Table 3.4 to 0.02 ms−1).
Second, while the difference in velocity errors between the two approaches of Table 3.6 is con-
sidered irrelevant, it is believed that for position estimation, this improvement can be beneficial,
especially when dealing with long trajectories.
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Figure 3.12: vb
x estimation results. In red is the ground truth, in green is the main EKF-ZUPT

estimation, and in blue is the proposed EKF-ZUPT one

Table 3.6: Estimation results of vb with the proposed EKF-ZUPT and the main EKF-ZUPT

Metrics Main EKF-ZUPT Proposed EKF-ZUPT

RMSE (ms−1) 0.025 0.020

MAE (ms−1) 0.016 0.009

Position reconstruction using EKF-ZUPT

The accurate estimation of v̂b using the proposed EKF-ZUPT approach plays a major role during
the position reconstruction. Unlike the performance of the magnetic field gradient-based EKF in
Fig. 3.11, using the proposed EKF-ZUPT approach provides an accurate trajectory estimation as
demonstrated in the 2D and 3D plots of Figs. 3.13-3.14.
The previous drifts contained in M̂n are almost entirely removed, providing this way nearly the
exact same ground truth trajectory. In both figures, it is shown that even when adding ZUPT, the
proposed approach (EKF-ZUPT), still slightly outperforms the case of when ∇Bb is not estimated
(Main EKF-ZUPT), especially around the z−axis. This can be explained by the difference in the
yaw angle estimation accuracy, earlier illustrated in Fig. 3.9. In fact, it is observed that the arrival
point of the proposed approach (in blue) is closer to the ground truth one (in red) than the green
point (Main EKF-Zupt). Note that all trajectories begin at the same coordinates and the starting
and arrival points for the ground truth trajectory are the same.
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Figure 3.13: 2D trajectory reconstruction aided by ZUPT. In red is the ground truth trajectory, in
green is the main EKF-ZUPT estimation, and in blue is the proposed EKF-ZUPT one

Figure 3.14: 3D trajectory reconstruction aided by ZUPT and corresponding arrival points. In
red is the ground truth trajectory, in green is the main EKF-ZUPT estimation, and in blue is the
proposed EKF-ZUPT one
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In Table 3.7, a comparison between the traveled distance errors is displayed when ZUPT is added.
First, it is underlined that the distance error is remarkably reduced from the case of not using the

Table 3.7: Estimation results of Mn with the proposed EKF and the main EKF

Metric Main EKF-ZUPT Proposed EKF-ZUPT

Traveled distance error (%) 0.59 0.2

ZUPT to the proposed EKF-ZUPT solution (distance error percentage that decreases from 21.86%
to 0.2%). This justifies again, the advantage that ZUPT can bring to the trajectory estimation
process, in the case of foot-mounted navigation applications. Second, similarly to the conclusions
made through Figs. 3.13- 3.14, even after adding ZUPT, there is a clear advantage in estimating
∇Bb with the proposed magnetic field gradient-based EKF. This is why, in the continuity of this
thesis, the proposed EKF solution is maintained.

What about ZUPT versus EKF-ZUPT ?

To reconstruct the velocity, one may wonder about the advantage of the proposed EKF-ZUPT so-
lution, over simply applying ZUPT with a regular integration process of Eqs. 2.33-2.34.
While the ZUPT is considered as one of the most effective solutions in pedestrian velocity correc-
tion, it does not satisfy the generality aspect of a proposed approach, as it is very dependent on the
sensor board location (i.e. the foot) to be able to detect the subject’s walking dynamics. However,
the aim of this work is to provide a rather global solution, that can be adopted by any other ap-
plication, and that does not rely on any specific sensor board placement or movement dynamics.
More on the limitations of the ZUPT method is presented in the next chapter.
Furthermore, even though the ZUPT can continuously reset the errors generated by Eq. 2.34 to
zero, this does not guarantee the accurate estimation of the velocity. In fact, the velocity recon-
struction is also dependent on the attitude which itself, suffers from drifts after integrating Eq. 2.33,
as shown in Section 1.1.2. In Fig. 3.15, the velocity estimate v̂b

x , obtained from the integration of
Eqs. 2.33-2.34 and applying ZUPT, is plotted. As expected, despite that v̂b

x does not suffer from
the drifting phenomena (i.e. accumulation of errors), it is far from the ground truth velocity vb

x .
This is mostly due to the quaternion estimation that is flawed because of the noise contained in the
angular velocity measurements. As discussed in Section 1.1.2, several attitude estimation methods
that rely on data fusion techniques, can be used to treat this issue. However, it is believed that, in a
magnetically disturbed environment, with the sensor board attached to the subject’s foot, the pro-
posed EKF-ZUPT approach is a very adequate solution that easily succeeds to provide promising
results.

3.4 Conclusion

Foot-mounted inertial navigation One possible application that can be considered when study-
ing indoor navigation, is the one related to pedestrian trajectory reconstruction, and more particu-
larly to the foot-mounted sensor framework. The advantage of such setup is that it provides rich
information on the subject’s walking dynamics (i.e. the phases of the gait cycle), enabling there-
fore, the design of adapted methods that rely on the detection of these phases.
Zero-velocity update technique The most used method in the literature when dealing with foot-
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Figure 3.15: Estimation results of vb
x through ZUPT. In red is the ground truth, and in blue is the

ZUPT estimate v̂b
x

mounted navigation is the ZUPT. It relies basically on the detection of static instants during one’s
gait cycle, using IMU measurements, and updating the velocity estimate to zero, each time these
phases are identified.
Proposed EKF-ZUPT approach The magnetic field gradient-based EKF generates velocity esti-
mation errors, especially during static instants (constant attitude and zero velocity) or very low/or
equal to zero magnetic field gradient moments. This encourages combining it with the ZUPT, that
not only stops the accumulation of velocity estimation errors but also enables a better trajectory
reconstruction.
Better configuration of the magnetic field gradient-based EKF Instead of using the primary
and the main EKF configuration, presented in Chapter 2, a single EKF architecture is proposed, to
not only reduce the computation time needed for the algorithm to be executed, but also to provide
better estimation accuracy results, while having a compact solution.
Evaluation of the proposed EKF-ZUPT approach with a foot-mounted sensor dataset A
realistic simulation of a human walk pattern is used to assess the performance of the proposed ap-
proach. Different comparisons are conducted between the use of only the magnetic field gradient-
based EKF, or the main EKF, and when considering the ZUPT. Different evaluation metrics are
considered that demonstrate the efficiency of the EKF-ZUPT method in a foot-mounted frame-
work.
On the limitations of the ZUPT The ZUPT is known to be very efficient when dealing with
foot-mounted navigation. However, the latter usually requires the presence of the sensor board on
the moving body’s foot to detect specific walking dynamics. This is not always feasible, especially
in non-pedestrian applications (e.g. vehicles, robotics, etc.). In the next chapter, an alternative so-
lution is proposed that enables the correction of the magnetic field gradient-based EKF estimation
errors, while representing a rather general approach that can be applied at any context.
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4
AI-based Kalman Filtering

This chapter starts by discussing in Section 4.1, the difficulties of the proposed magnetic
field gradient-based EKF in providing an accurate estimation of the states, especially
during low magnetic field gradient instants. Then, the inadequacy of the ZUPT to deal
with such problem is demonstrated, when considering trajectory scenarios that are out-
side of the foot-mounted sensor framework. One way to tackle these limitations, is to
consider an Artificial Intelligence (AI) based solution as widely conducted in the related
literature. Nevertheless, relying entirely on Deep Neural Networks (DNNs) introduces
several inconveniences that are discussed in Section 4.1. An innovative solution that
takes advantage of both the EKF and a Bidirectional Long Short-Term Memory Network
(BiLSTM) is then proposed in Section 4.3. The performance of the proposed approach is
evaluated through the Openshoe dataset in Section 4.4, where an improvement on veloc-
ity and position accuracies is shown, in comparison with the only EKF or BiLSTM-based
solutions.
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4.1. Limitations of the magnetic field gradient-based EKF for velocity estimation

4.1 Limitations of the magnetic field gradient-based EKF for velocity
estimation

The magnetic field gradient-based EKF represents a very interesting solution for the magneto-
inertial estimation problem thanks to its strong theoretical background and practical implementa-
tion. However, as discussed in Chapter 3, the accuracy of the EKF estimation can degrade under
certain conditions. In such circumstances, the proposed EKF, with the equation describing the
dynamics of the magnetic field gradient, outperforms the main MINAV EKF, as demonstrated in
Section 3.3.3. Nevertheless, despite this improvement, several errors are still contained in the
velocity estimate v̂b, that should be corrected. From these errors, one can differentiate two main
categories: the errors generated from the measurements and the EKF numerical implementation,
and those induced by the surrounding environment characteristics and the nature of the performed
trajectory. In the following, both these categories are discussed, to better understand the limitations
that they introduce to the estimation problem.

4.1.1 Errors related to the EKF implementation

The EKF errors can be generated from multiple sources during the estimation process. For in-
stance, the different noises contained in the inputs and the measurements of the EKF, that are
assumed to be zero-mean, white and Gaussian (which is not necessarily true, especially using
real experimental data), highly influence the estimation accuracy of the states. Their impact is
mostly seen when tuning the process and measurement covariance matrices, that, if improperly
configured, can lead not only to inaccurate estimation results, but even to the divergence of the
EKF. Other than that, the linearization process of the transition and measurement functions of the
dynamic model, around the current estimate X̂ , also implies the addition of more error. This is
due to the computation of Jacobians that require the use of numerical approximations. Finally,
the discretization step of the proposed continuous-time model (using the Runge-Kutta 4th order
method) is also considered as a potential source of error. By providing an approximated value of
a function using a weighted average of four increments, the method cannot preserve the model’s
actual dynamics. Thus, important information on the temporal variation of the states can be lost
in the process, leading consequently to estimation errors.
All of the above sources of errors suggest that the EKF performance is most likely to degrade even
while having an appropriate modeling of observable states. However, such errors can always be
bounded to an extent by choosing adequate numerical methods and a proper configuration of the
EKF noise parameters. It is believed that further investigations can provide a better insight on
the EKF estimation uncertainty with respect to the different possible errors. In the meantime, an
innovative method is proposed, that enables reducing the impact of these errors, and provide good
estimation accuracy results.

4.1.2 Errors related to the trajectory characteristics

The second category of EKF errors is related to those generated by the surrounding environment
characteristics, and the nature of the performed trajectory. In fact, one should know by now, that
the most important criterion that has to be satisfied to fully reconstruct the velocity, is the presence
of sufficient magnetic disturbances around the moving body under study. This is in order to avoid
having directions in ∇Bb that are close or equal to zero, affecting this way, the non-singularity
requirement of the latter.
A magnetically disturbed environment generates a magnetic field gradient which eigenvalues, de-
noted by λ1,··· ,3, are around 0.05 Gm−1. In case these values are really lower, the performance
of the EKF may decrease depending on the trajectory’s dynamics. In Ref. [Chesneau2018], it
was demonstrated that, under low magnetic field gradient conditions, the noise contained in its
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measurements increases the EKF estimation uncertainity even higher, leading to a some sort of
a damping effect, which causes either under or over estimating the velocity. This is one more
reason for modeling ∇Bb, as performed by the proposed magnetic field gradient-based EKF, in
the purpose of reducing this measurement noise, and minimizing the inaccuracy of v̂b during the
low magnetic field gradient case. In the same reference, it was also discussed that, any approx-
imated calibration parameter (i.e. scale-factor, effective position) can cause unbounded velocity
estimation errors close to singular magnetic field gradient conditions. Thus, the issue of velocity
estimation during low magnetic field gradient conditions can also be considered as an issue of
robustness to calibration uncertainty.
To visualize the effect of low magnetic field perturbations on the states’ estimation when using the
proposed EKF, an experiment is conducted. A real sensor board, containing a 3−axis accelerom-
eter, a 3− axis gyroscope, and a magnetometer array, having the same architecture as the one in
Fig. 2.1, is placed on the back pocket of a subject. The latter performs a circular trajectory in two
different locations: first inside an office where there are sufficient magnetic disturbances, due to the
presence of laptops, heaters, electric currents, etc. Second, along the building entrance/hallway,
that is not equipped with any major sources of magnetic perturbations. In Fig. 4.1, the three eigen-
values of ∇Bb are plotted for the two tested locations, as they represent a direct evaluation on the
presence of magnetic field disturbances (by looking at their amplitudes) and the maintaining of the
non-singularity condition (i.e. they need to be non-zero). First, it is observed that the eigenvalues

Figure 4.1: Eigenvalues of the magnetic field gradient for the two locations. In blue for the office,
and in red for the hallway

of ∇Bb in the hallway are significantly lower than the ones in the office. This is expected as the
magnetic disturbances are remarkably higher with the presence of office equipment. Through the
zoomed area in Fig. 4.1, one can see that the three values of λ corresponding to the hallway are
notably lower than the values usually observed indoor (λ1,··· ,3� 0.05 Gm−1). In addition one of
the eigenvalues is almost equal to zero, which implies a possible loss of observability of at least
one direction of the velocity estimate v̂b, as the magnetic field gradient ∇Bb may become singular.
Contrarily, the eigenvalues corresponding to ∇Bb in the office are around ≈ 0.1 Gm−1, which is
considered sufficient to recover v̂b. Note also that these eigenvalues are different from zero, so no
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singularity problem of ∇Bb occurs in this case.
To evaluate the impact of these magnetic field gradient eigenvalues on the performance of the
magnetic field gradient-based EKF, the reconstructed position M̂n is presented in Figs. 4.2-4.3 for
both the studied locations. Knowing that the performed trajectory is a circle, it is evident to con-
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Figure 4.2: Magnetic field gradient-based EKF position estimation in the office

clude that the EKF performance is completely corrupted in the case of low magnetic disturbances
(i.e. in the hallway), generating consequently a drifting trajectory in Fig. 4.3, that does not have
any similar shape to a circle. On the opposite side, in Fig. 4.2, the magnetic field gradient-based
EKF succeeds to reconstruct a trajectory that has the desired form, and that does not suffer from
any noticeable drift. Nevertheless, as no ground truth data is available for this experiment, no
further investigations on the accuracy of the estimation are conducted.
Finally, it is underlined that, even with the presence of magnetic field perturbations, there is a set of
indistinguishable trajectories that may introduce observability issues to the studied model. From
this set, one can recall the static trajectories case (i.e. constant attitude, zero velocity), mentioned
in Remark 16, and discussed in detail in Ref. [Chesneau2018]. A further studying of the different
possible characteristics that a trajectory may have, can help detect the times where the proposed
model looses observability. However, no matter the case, a solution is needed to compensate for
all the above limitations of the magnetic field gradient-based EKF and provide a rather global
approach, that generates an accurate estimation of the states.

4.1.3 Limitations of the ZUPT for velocity correction in the EKF

In Chapter 3, a method called ZUPT was introduced in the context of foot-mounted navigation,
as it is known to be very efficient in continuously correcting the EKF’s velocity estimate v̂b and
providing accurate trajectory reconstruction. However, as briefly discussed before, the ZUPT
approach has several drawbacks, that make of it an inadequate solution to attenuate the errors gen-
erated by only using the EKF.
The first obvious limitation when applying ZUPT comes from the sensor board placement. For
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Figure 4.3: Magnetic field gradient-based EKF position estimation in the hallway

instance, if the moving body under study is a pedestrian, the sensor has to be attached to the foot,
in order for this approach to work. This requirement is considered user-unfriendly as such sensor
placement is uncomfortable and exposed.
In case the used sensor board is placed on any other body location beside the feet, the ZUPT can
either suffer from false detections, or not detect any zero-velocity instances. To illustrate these is-
sues, an experiment is conducted where the EKF-ZUPT from Chapter 3 is applied. Three databases
are used, each one corresponding to a pedestrian trajectory with a triangular shape and a normal
walking pace. One with the sensor board placed on the waist, another with the sensor placed on
the ankle, and finally for comparisons, the sensor is attached to the foot. These placements, being
on three different parts of the human body, enable the sensor board to observe different movement
dynamics. Such comparison demonstrates to what extent the ZUPT can accurately detect zero-
velocity instants, when having the sensor board placed on different body parts.
The Stance Hypothesis Optimal Detector (SHOE) is again used to identify zero-velocity moments,
with a window size Ws set to be equal to 3 and a detection threshold δd of 0.03∗105. These values
are inspired by the proposed algorithm in Ref. [Nilsson2012], and they have been proven efficient
in determining stance phases during a normal walking pace scenario with the sensor board placed
on the foot, as demonstrated in Fig. 4.4. First, instances where the SHOE detector indicates a
zero-velocity are presented with the red dots. Simultaneously, the norm of vb is plotted to better
visualize the accuracy of these detections, i.e. if at time instant t, the velocity norm ||vb(t)|| ≈ 0,
it is highly likely that a zero-velocity detection should occur at the moment. As expected, when
dealing with a foot-mounted framework, the SHOE detector can easily indicate when the foot
touches the ground, enabling therefore, a periodic correction of the velocity estimate in the EKF,
and an accurate trajectory reconstruction, as shown in Chapter 3.
Contrarily to the positive results above, in Figs. 4.5-4.6, the SHOE detection results are plotted for
the rest of the studied sensor board placements (i.e. waist and ankle).
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Figure 4.4: The velocity norm when the sensor is on the foot (blue line) and the instances where
the ZUPT detector indicates a zero-velocity (red dots)
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Figure 4.5: The velocity norm when the sensor is on the waist (blue line) and the instances where
the ZUPT detector indicates a zero-velocity (red dots)
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Figure 4.6: The velocity norm when the sensor is on the ankle (blue line) and the instances where
the ZUPT detector indicates a zero-velocity (red dots)

In Fig. 4.5, when the sensor board is placed on the waist, the SHOE detector succeeds to accurately
recognize the zero-velocities instants at the beginning and the end of the trajectory scenario (cir-
cled in green). However, it also detects other zero-velocity moments during the trajectory despite
that the velocity norm is not necessarily equal to zero. For instance, a zero-velocity moment is
detected at t1 = 103.8 s, corresponding to, ||vb(t1)||= 0.9 ms−1, which implies that this detection
is rather false.
On the other side, it is expected that much more zero-velocity moments are detected when the
sensor board is located on the ankle as this placement is very close to the one on the foot. So, the
dynamics of vb are somewhat similar to the ones observed from the foot. Nevertheless, in Fig. 4.6,
it is observed that the SHOE only detects the static phases at the beginning and the end of the
walking scenario (circled in green), without being able to recognize any other zero-velocity mo-
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ments. For example, by looking at the zoomed area of Fig. 4.6, it is almost evident that at t2 = 50 s,
a zero-velocity moment occurs as the velocity norm is very low, i.e. ||vb(t2)||< 0.05 ms−1, how-
ever, the SHOE fails at identifying not only this instance, but many other ones.
These false and/or undetected zero-velocity instances caused by the use of SHOE in a non foot-
mounted framework affect the accuracy of the EKF-ZUPT approach, making of it an unsuitable
solution for any other application that requires placing the sensor board somewhere other than the
foot. Consequently, it becomes evident that such method (ZUPT) cannot be extended to applica-
tions outside of the pedestrian/humanoid scope, such as vehicles, aircrafts, etc.

Remark 17 These detection results can vary to some extent with a different tuning of the ZUPT
window and detection threshold parameters, but the same conclusions are made. The ZUPT can-
not correct the velocity errors generated by the magnetic field gradient-based EKF, especially
those caused by the low magnetic disturbances case, and when the sensor board is placed some-
where other than the foot of a pedestrian.

From the remark above, one can notice that, in addition to limiting the location of the sensor
board, and the nature of the motion to be studied (i.e. human-like), employing ZUPT introduces
one more constraint that is related to the tuning of its detector’s parameters (i.e. window size Ws

and detection threshold δd). It is underlined here, that the statistical detector is selected from vari-
ous choices that can be found in the related literature Ref. [Skog2010b], which represents itself an
unstraightforward task.
The choice of these parameters is conducted taking into account the pedestrian’s walking pace, the
nature of the walk that varies from one subject to another, etc. This means that in order for ZUPT
to work during multiple experiments, these parameters should be continuously tuned, to not only
adapt to the different walking paces that may appear during one trajectory, but to be also applied
on different targeted individuals.
This constraint gave rise to several works in the literature that aim to develop innovative methods,
either to properly select these parameters such as in Ref. [Wang2015] or to adaptively tune them
like in Refs. [Wahlström2019, Wang2019c, Wagstaff2017, Liu2014, Wang2018, Wagstaff2019]. In
contrast, many other works are rather proposing approaches to achieve the zero-velocity detec-
tion without relying on any threshold-based methodology such as in Refs. [Cho2019, Sun2018].
From these works, a large variety are focusing on one powerful tool, known as Artificial Intel-
ligence (AI) Ref. [Nilsson2014b], from which two concepts can be exploited: Machine Learn-
ing (ML) Ref. [Mitchell2013], and its subset, Deep Learning (DL) Ref. [LeCun2015]. Both
these channels can perform the same task: deriving a model that enables the detection of zero-
velocity moments through learning their relationship with sensors data features, as conducted in
Refs. [Kone2020, Wagstaff2018] for example. Nevertheless, as efficient these approaches can be
in terms of prediction accuracy, the use of AI raises many questions about the need to use large
training datasets, the heavy computational cost that they require, and so on. These inconveniences
are discussed further in detail in the next section.
For the time being, what needs to be recalled is that relying on the detection of zero-velocity
instants, does not represent a general solution that can be applicable to any navigation scenario
(i.e. with a non foot-mounted sensor, on vehicles, etc.) and introduces a lot of constraints (de-
tector choice, parameters tuning, large training datasets, etc.). In the next sections, an alternative
solution is proposed, that not only helps avoid the different disadvantages introduced by the ZUPT,
but also provides very promising results, with minimal resources and under any navigation sce-
nario.
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4.2 Neural networks in indoor navigation

During the last decades, AI-based research has witnessed an exponential growth and a major
interest in various applications (e.g. computer vision, robotics, natural language programming,
etc.), from which indoor navigation takes part. More recently, one subset that emerged from the AI
framework and proved its efficiency in performing prediction tasks is called Deep Learning (DL),
that is conducted using what are known as Deep Neural Networks (DNNs). This fast development
is the outcome of designing more powerful hardware through the years, that can perform complex
and heavy computations, and the availability of more public data, that can be employed in the
learning process.
The next sections discuss the use of deep learning in magneto-inertial indoor navigation and how
it can be used to enhance a more "traditional" state estimation approach such as the Kalman filter.

4.2.1 Artificial neural networks overview

Before examining the role that Artificial Neural Networks (ANNs) occupy in the magneto-inertial
navigation scheme, one should first understand how such approach works, and why its gaining an
enormous interest from the research field.

Artificial neural network architecture

An Artificial neural network is a system whose structure is schematically inspired by the behavior
of the human brain, mimicking the way that biological neurons communicate with one another.
Neural networks are typically formed with layers: an input layer, one or more hidden layers and
an output layer. An ANN with more than one hidden layer is considered a "deep" neural network.
The layers are constituted of a number of interconnected nodes, or artificial neurons. An example
of a DNN with two inputs, two hidden layers, and one output, is presented in Fig. 4.7.

Figure 4.7: Example of a deep neural network architecture

Learning process of an artificial neural network

The training of a basic ANN architecture represents a supervised learning process Ref. [Reed1999]
where a descriptive model is determined through learning the relationship between inputs and out-
puts from a particular training set.
In a neural network, each node in each layer (excluding input nodes) computes the weighted sum
of its inputs, that is added to a scalar bias value, as illustrated in Fig. 4.8. The obtained vector is
passed to an activation function (e.g. linear, tanh, sigmoid, etc.) that computes the output of that
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Figure 4.8: Output node example of the learning process

node Ref. [Sharma2017].
When the last output is generated from the output layer of the neural network, a loss function is
calculated (e.g. MSE, MAE, etc), to compare the prediction of the network to the ground truth
output (contained in the training set). Then, a reversed step is performed, known as backpropa-
gation where the weights and the bias are adjusted, using a gradient descent scheme, to minimize
the loss Ref. [Amari1993].
This process is repeated several times inside a loop, until the best prediction accuracy is reached
(i.e. the loss function is at its minimum). In other words, determining the optimal values of weights
and bias is the main objective of the training process, as these variables define the learned model
that is used later to predict the outputs of the testing set from the corresponding inputs.
Designing any deep neural network, requires making multiple choices such as the number of lay-
ers, the number of nodes in each layer, the activation functions between the layers, the loss func-
tion, and many other parameters that play an important role in ensuring the best performance from
the network. This variety in the configuration raises one question: to what extent using DNNs for
magneto-inertial indoor navigation can be straightforward ? A discussion on the efficiency of the
existing works in the related literature is conducted next.

4.2.2 State-of-the-art related works

The estimation of the trajectory using only a learned model from magneto-inertial measurements
and a deep neural network is a methodology that is adopted by many works in the related liter-
ature. Nevertheless, most of these works are focusing on pedestrian-related applications and on
particular human motion characteristics to recover the trajectory Refs. [Edel2015,Xing2017]. For
instance, in Ref. [Wang2019b], authors propose a stride length estimation method, based on a
Long Short-Term Memory Network (LSTM) Ref. [Hochreiter1997] and a Denoising Autoencoder
(DAE) Ref. [Vincent2010]. While the proposed approach achieves encouraging results, to esti-
mate an accurate position, the user must have not only a ground truth IMU attached to the foot
but also hold the phone IMU in front of his/her chest, as the proposed solution is rotation-variant.
This does not represent the general applicability condition, targeted by this thesis.
To address these challenges, in Refs. [Chen2018a, Chen2019b, Chen2020a], traditional PDR
equations are reformulated as a polar vector based model, containing both the traveled dis-
tance of a moving body and its corresponding change of heading. These two variables are
learned using raw IMU data, and different possible types of Recurrent Neural Networks (RNNs)
Ref. [Medsker1999], to provide at the end, a trajectory estimation. The approach provides promis-
ing results, yet, it is assumed that the displacement with respect to the z− axis is zero (i.e. nav-
igation is conducted only on an horizontal plane). To extend the solution to the 3 dimensional
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case, additional sensor modalities should be considered (e.g. barometer). This is against one of
the requirements of this thesis, to use only magneto-inertial measurements and no other additional
sensor.
In a different manner, in Ref. [Feigl2019], authors consider velocity estimation as a regression
problem that is solved using a hybrid solution combining a Convolutional Neural Network (CNN)
Ref. [Albawi2017], to extract features of human motion, and a Bidirectional LSTM network (BiL-
STM) Ref. [Schuster1997], to track this motion over time. This is done by learning how to map
IMU measurements to different human movement velocities such as walking, jogging, running,
and a random combination of all. While the proposed approach provides interesting results in
terms of velocity estimation accuracy (instantaneous velocity error ≤ 0.1 ms−1), the training
process of such solution requires 9 hours (h) of training for each considered set of parameters
(i.e. sample rate, network window length, etc.), for a total of 800 min of data recordings. Sim-
ilar observations are found in Ref. [Feigl2020], where the proposed CNN-BiLSTM solution of
Ref. [Feigl2019] is further enhanced. In that work, several comparisons are conducted one the
computational effort of the proposed approach with respect to other methods in the literature. It
was shown that the proposed solution requires 15.6 h to train for a 1203 min training dataset (with
112500 windows), compared to the one in Ref. [Feigl2019], as it has a rather more complex net-
work design. The approach is also compared to Ref. [Herath2020] that uses an LSTM for heading
estimation and a Residual Neural Network (ResNet Ref. [He2016]), that is known to be computa-
tionally heavy due to its many parameters, generating then a training time of 11.2 h.
From the discussion above, one can draw two main conclusions:

• it seems that the most used types of Neural Networks (NNs) in the related state-of-the-art
belong to the family of recurrent architectures. This is actually justifiable for time-series
data and is explained in detail in the next section;

• using only a DL-based approach introduces several drawbacks, from which, the computa-
tional cost is the most remarkable, as well as the need to acquire large and diverse training
datasets, which is not always accessible.

For the reasons above, a BiLSTM-aided approach is proposed later, that does not require any
heavy training process and provides in the same time, an estimation accuracy that competes with
top-ranked methods in the literature.

Remark 18 It is underlined that, in this thesis, velocity estimation using DL, is handled as a
regression problem, i.e. the predicted velocity is a continuous output variable, represented with
a numerical value, and is not described as a label or a category, as the case for classification
problems.

4.3 Velocity estimation using BiLSTM

The different surveys and comparisons presented in related state-of-the-art Refs. [Alom2019,
Nessa2020, Kang2018a, Feigl2020], suggest that estimating the velocity of a moving body using
a BiLSTM architecture can provide promising results. Nevertheless, one should verify to what
extent these results are useful, in the case of a light training process with a limited training dataset.

4.3.1 Introduction to the BiLSTM network

The BiLSTM architecture is an improved version of unidirectional LSTM, which itself, is an ex-
tension of the RNN architecture. To understand the benefit of employing a BiLSTM, one should
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first explain the advantage of RNNs, compared to conventional feed-forward ANNs Ref. [Be-
bis1994].
Feed-forward neural network In a feed-forward ANN Ref. [Bebis1994], information is only
transmitted in one direction: from the input layer, through the hidden layers, to the output layer.
Such architecture only considers the current input to predict the next output, ignoring that way, all
information about the past.
Recurrent neural network Contrarily to a feed-forward NN, a RNN Ref. [Medsker1999] per-
forms a decision, by considering not only the current input, but also what it has learned from the
inputs of the "recent" past (i.e. RNN has a short-term memory). An illustration of the information
flow in an RNN is presented in Fig. 4.9.

Figure 4.9: Illustration of a recurrent neural network

An RNN architecture is then very useful when dealing with sequential or time-series data, as it
assumes that each sample in the data is dependent on previous ones, which is the case when analyz-
ing inertial and magnetic measurements corresponding to a trajectory. In other words, the velocity
of a moving body at a specific time-step, is indeed dependent on its previous values, which makes
RNN an adequate solution to conduct its prediction.
Nevertheless, there is a major drawback when using a simple RNN architecture: vanishing and
exploding gradients, i.e. during backpropagation, the network assigns too low or too high values
to the weights, causing the model to either completely stop learning without reaching the optimal
accuracy, or becoming unstable which results in predicted "NaN" values. This implies that RNNs
cannot efficiently process long data sequences which calls for a better architecture to solve these
issues, known as the LSTM network.
Unidirectional long short-term memory neural network Unidirectional LSTMs Ref. [Hochre-
iter1997] are an enhanced version of RNNs, that include a memory cell, enabling the network to
memorize inputs over a longer period of time and solve especially the vanishing gradient problem.
The particularity of an LSTM is its ability to control over time, using a set of gates, when an
information enters the memory, when it outputs and when it is forgotten, based on a decided im-
portance determined by learned weights. This sorting process keeps the training relatively short
and the prediction accuracy rather high.
Bidirectional LSTM neural network To improve even further the performance of the network,
two LSTM layers are combined to form what is known as the bidirectional LSTM Ref. [Schus-
ter1997]. At every time step, the first LSTM takes the input sequence (time-series data in this
case) as it is, i.e. in its forward direction, and the second LSTM receives a reversed copy of this
sequence, i.e. in its backward direction. This enables the BiLSTM network during training to
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preserve information from both the past and the future, contrarily to the LSTM that only takes
into account previous information. By incorporating anterior and posterior knowledge, the BiL-
STM is better at understanding context, which results in a faster learning process of long-term
dependencies and thus consequently, higher prediction accuracy results, as shown in Ref. [Siami-
Namini2019], for example.
For the reasons above, in the continuity of this thesis, the BiLSTM architecture is used to represent
the DL part of the proposed approach.

4.3.2 Preliminary results and discussion

As discussed earlier, the BiLSTM network cannot provide accurate velocity estimation results if
the network training process is not complex enough to account for the different dynamics that
may occur during a specific trajectory scenario. To investigate further this idea, some tests are
undertaken using real magneto-inertial measurements, acquired from a commonly used dataset in
the related literature, called Openshoe Ref. [Nilsson2012].

Dataset and implementation details

Openshoe dataset The used Openshoe dataset in this chapter, contains real experimental (noisy
and biased) foot-mounted inertial and magnetic measurements (a 3−axis accelerometer, a 3−axis
gyroscope and a 3− axis magnetometer), sampled at a frequency of 250 Hz, representing some
sort of a "figure-of-eight" trajectory. In addition to that dataset, a ZUPT-based algorithm is pro-
vided Ref. [Nilsson2012], that enables an accurate estimation of the velocity of the moving body,
and consequently an accurate reconstruction of the performed trajectory. For the BiLSTM training
process and for any comparisons, the ZUPT estimation is considered as the ground truth data (as
it can be trusted during a foot-mounted framework), because no motion capture system informa-
tion is provided with the dataset. In the rest of this chapter, "ground truth" refers then to "ZUPT
estimate".
It is underlined that no magnetometer array measurements are provided with this dataset, thus,
four magnetic fields are simulated in the same manner as in Chapter 3. These measurements are
necessary to run the magnetic field gradient-based EKF, however, they are not used in the BiLSTM
network.
BiLSTM training Before proceeding with any performance analysis, one should first choose a
specific architecture for the BiLSTM-based network to enable the training process, and eventually
the outputs’ prediction. Several hyperparameters (e.g. number of hidden layers, number of nodes,
etc.) have to be pre-identified, which represents itself a research problem that requires the im-
plementation of optimization-based algorithms Ref. [Kaselimi2019], in order to provide the best
prediction accuracy results.
Nevertheless, it is reminded that, the goal here is to provide a solution, that is simple, and com-
putationally light, while also generating a useful prediction (i.e. not necessarily optimal) which
somehow improves the velocity estimation accuracy of the magnetic field gradient-based EKF.
A basic architecture design can actually satisfy these criteria and is proposed in Fig. 4.10. The
network starts with a sequence input layer receiving 9 features, representing available sensor mea-
surements, i.e. raw data of the 3− axis accelerometer, 3− axis gyroscope, and 3− axis magne-
tometer. Then, there is the first BiLSTM layer, containing 100 hidden units (i.e. nodes). This value
is hand-tuned on the basis of two constraints: maintaining a fast training, and generating a good
accuracy. Note that a tanh activation function is used for updating the cell and hidden states, and
a sigmoid activation function is applied to the gates. These functions are the literature basic ones
used in a BiLSTM layer.
Next, a dropout Ref. [Baldi2013] layer is considered. Briefly, dropout is a regularization tech-
nique that ignores (zeros out) a chosen percentage of neurons, randomly from each hidden layer,
for every training sample, to obtain at the end different prediction models, that are averaged later
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Figure 4.10: Diagram of the used BiLSTM network

on to form the final model. This is in order to prevent overfitting, i.e. when the learned model of
the network is too representative of the training data to the extent that it cannot perform well on
new testing data. A dropout of 25 % is chosen after few trial and error testings. Yet, this hyperpa-
rameter should be more carefully tuned if optimal results are targeted.
These two layers (BiLSTM and dropout) are added only twice to the network, in order to have the
"deep" aspect of the proposed architecture, while preserving the desired simplicity.
The output of the last BiLSTM layer is fed to a fully connected layer Ref. [Sainath2015], which
simply transforms that output into the form of the targeted 3− axis velocity to be predicted
vb

BiLST M = [vb
x,BiLST M vb

y,BiLST M vb
z,BiLST M] ∈ R3×1. It is followed by a regression layer that com-

putes the loss function (MSE in this case) between the ground truth velocity and the predicted one
vb

BiLST M.
The objective of the proposed network is then to learn a model, that computes, for each time step
k

vb
BiLST M,k = BiLST M(ωb

k ,a
b
k ,B

b
k) (4.1)

During training, Adam optimizer is applied Ref. [Kingma2015], to update the network’s weights,
thanks to its numerous advantages, compared to the basic stochastic gradient descent algorithm.
The weights are adjusted using a learning rate, which initial value is chosen equal to 0.0015, and
is dynamically reduced during training according to a pre-defined schedule (piecewise, with a
drop period of 125 epochs) and a drop factor of 0.2. A detailed explanation on the learning rate
configuration can be found in Ref. [Senior2013].
The training is set to run for a maximum of 500 epochs. Before proceeding, a standardization
Ref. [Anysz2016] is applied on the training dataset, which consists basically in subtracting its
arithmetic mean and dividing the result by its standard deviation. The same calculated mean and
standard deviation are then used to standardize the testing set. The reason behind this step is to
avoid using features at different scales, (as measurements have different units), as it may lead some
features to outweigh others and thus do not contribute equally to the training process.
In the following analysis, the training set represents 50% of the Openshoe dataset, that is also
used for validation, while the other 50% are kept for testing. The validation patience is set to 5
epochs, i.e. if the loss on the validation set does not decrease from the previous smallest loss for 5
consecutive epochs, an "early stopping" of the training occurs, to prevent overfitting and optimize
computation time. The 50% training portion is equivalent to 7038 samples, which is considered
very small for a training process. Yet, one needs to investigate the network performance in such
condition, to see if it can be useful despite the light training process.
The implementation, training and prediction steps of the BiLSTM network are done under Matlab
and its deep learning toolbox, on a CPU Intel Core i7@1.9 GHz. The training of the BiLSTM-
based network takes around 40 min to run the 500 epochs, which is considered very fast compared
to related state-of-the-art works. This value decreases significantly (to≈ 15 min) under a Graphics
Processing Unit (GPU) environment (using python in Google Colab).
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Velocity estimation using the BiLSTM-based network

In Fig. 4.11, the result of the velocity prediction using the proposed BiLSTM network, applied
on the testing set, is displayed. From this figure, and by comparing to the ground truth, it seems
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Figure 4.11: Prediction of vb using only the BiLSTM network for the testing set. In red is the
ground truth velocity and in blue is the BiLSTM estimate vb

BiLST M

that the BiLSTM prediction is quite accurate during instants where the velocity values are equal
or close to zero (quasi-static phases) as indicated in the zoomed area of vb

y,BiLST M, for example.
However, when the velocity amplitudes are rather large (dynamic phases), the BiLSTM prediction
is most of the times unreliable, as clearly shown for instance in the subplot of vb

x,BiLST M.
Such behavior is the outcome of two main reasons: first, it is almost evident for the BiLSTM
to detect quasi-static phases, as the corresponding sensor measurements at those times are quite
representative and proportional to the targeted output, i.e. a low acceleration and angular rate, for
example, will most likely correspond to a low amplitude velocity. Such conditions make it eas-
ier for the regression algorithm to fit the input data to the output, without requiring any complex
modeling. On the contrary, when dealing with a dynamic behavior of data, the BiLSTM pre-
diction task becomes less straightforward, as the multiple combinations of measurements’ values
generate different velocities, leading to some sort of a non-linear model that does not necessarily
perform well under all possible scenarios. Second, it is believed that the limited training dataset
(only 7038 samples), plays a huge role in the BiLSTM prediction inaccuracy during dynamic
phases, as it lacks diversity of data that correspond to a varying velocity behavior, and cannot be
used to derive an all-time working model. To back up this assumption, an analysis is conducted.
First, to avoid being biased by the network’s performance during quasi-static phases, any data
corresponding to a velocity with an amplitude lower than 0.2 ms−1 (chosen value to represent a
quasi-static velocity, see Section 4.5.1) is removed. This provides a solely dynamic phases-based
dataset, with only 5541 samples, from which 70% (equivalent to 3878 samples) are for the train-
ing, and 30% (equivalent to 1663 samples) are for the testing. Then, the impact of the training
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data percentage of this dynamic dataset on the prediction accuracy of vb
BiLST M is analyzed using

the boxplot Ref. [Williamson1989] in Fig. 4.12. To do so, the RMSE between the ground truth and
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Figure 4.12: Effect of dynamic training data percentage on the RMSE of vb
BiLST M. Larger the

percentage of the training data, the smaller velocity RMSE of the testing data becomes

the BiLSTM predicted velocity (of the testing set) is measured for different used percentages of
the training dataset. The learning process is repeated 20 times for each training data percentage, as
it is based on various randomnesses that affect the prediction accuracy during each run, and thus
analyzing average results is more rigorous. Note that the 30% of data corresponding to the testing
set are always fixed.
As the training data percentage increases, the RMSE of the predicted velocity of the testing set
gradually decreases, for instance, by looking at the median values represented by the red horizon-
tal lines in Fig. 4.12.
The results indicate that as more data of dynamic phases is provided to the BiLSTM during train-
ing, the prediction of vb

BiLST M at these times is more accurate. Nevertheless, optimal BiLSTM
accuracy results for high amplitudes velocities is not of priority, especially if it requires having a
large training dataset. The obtained accuracy for quasi-static instants is enough to proceed with
the proposed approach and improve the estimation of the magnetic field gradient-based EKF, as
presented in the following section.

4.4 Proposed EKF-BiLSTM estimation approach

So far, from the different conducted analyses, one can draw the following conclusion: the
magnetic field gradient-based EKF may suffer from errors, mainly during low magnetic field gra-
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dient instants as well as static or quasi-static trajectories. Meanwhile, a BiLSTM based approach,
can provide a good velocity estimation during these instants, without the need to employ any large
training dataset. An obvious idea that enables to take advantage of both the EKF and the BiLSTM
estimations is then to combine both these approaches into one general solution that performs well,
no matter the trajectory’s nature.

4.4.1 Kalman filter and neural networks: related state-of-the-art

Difference between both methods

Combining Kalman filtering and deep learning methods is a methodology that has already been
considered in many works in the related literature. While both these techniques can perform state
estimation using a set of measurements, their mechanisms are completely different. The Kalman
filter requires modeling the states’ dynamics using pre-derived differential equations, but does not
always succeed to mimic the reality. In contrast, neural networks learn the system’s model from
available training data that also does not necessarily cover all of its dynamics. This is what makes
the Kalman filter and neural networks rather complementary and encourages coupling them in one
efficient solution.

Related state-of-the-art

Incorporating deep learning into Kalman filtering can be performed in two different manners. A
first methodology resides on using neural networks to learn the model of the Kalman filter from
the available data. This can be done by acting directly on its state transition and measurement
functions ( f and h) as performed in Refs. [Chen2019a, Shen2020, Coskun2017, Li2020, Hos-
seinyalamdary2018], or/and by intervening in the tuning of its unknown parameters, such as the
process and measurement noise covariance matrices (Q and N), as done in Refs. [Jamil2020, Ul-
lah2019, Coskun2017].
The other concept is to use the neural network for an auxiliary and independent task, that
generates a certain output to be fed to the Kalman filter once the training process is over
Refs. [Ashraf2019, Brossard2020a]. In Ref. [Liu2020], authors propose an innovative ResNet-
aided EKF architecture, that jointly enables the estimation of position, orientation, velocity,
and IMU biases using only IMU data. In that work, the neural network outputs an estimate of
a pedestrian 3D displacement and its corresponding uncertainty, that are then employed as a
measurement update in the EKF. In a similar manner, but for intelligent vehicles applications, in
Ref. [Brossard2020b], it is proposed to use a CNN to dynamically tune the noise parameters of
an Invariant EKF (IEKF). This is done by assuming that, in a car frame, the lateral and vertical
velocities are "roughly null". This knowledge on the dynamics of two velocity axes enables
considering them as pseudo-measurements that are fed to the IEKF, and controlled using their
corresponding noise parameters.

Chapter contribution

Following a similar principle to the one in Ref. [Brossard2020b], a novel method is proposed, that
improves the performance of the magnetic field gradient-based EKF, especially when the latter
fails at providing an accurate states estimation, such as during low magnetic field gradient instants,
or static/quasi-static phases, as discussed in Section 4.1. This is achieved by taking advantage of
the velocity information provided by the BiLSTM, and considering it as a pseudo-measurement
in the EKF. Such process is conducted while simultaneously controlling the level of confidence
given to this measurement through the adaptation of its corresponding noise covariance matrix in
the EKF. More details on the proposed approach are given in the next section.
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4.4.2 General overview of the EKF-BiLSTM approach

Main idea of the proposed approach

The proposed EKF-BiLSTM approach consists of three main blocks and is represented in
Fig. 4.13.

Figure 4.13: Diagram of the proposed EKF-BiLSTM estimation approach

The proposed estimation scheme can be summarized with the following steps:

• a training dataset is generated. The inputs are a set of raw sensor measurements (9 features,
representing the angular rate, acceleration and magnetic field), while the output is a 3−axis
reference velocity, usually computed from a reference position (orange blocs), acquired
from a motion capture system;

• the training dataset is fed to the BiLSTM (green block), that uses it to learn a model, repre-
senting the relationship between the considered inputs and outputs;

• on the testing dataset, the BiLSTM is then able to predict the velocity vb
BiLST M, from the

inputs of that particular data;

• the predicted velocity vb
BiLST M is considered as a pseudo-measurement, that is added to the

output vector of the magnetic field gradient-based EKF (blue block), represented by the
continuous-time dynamic model of Eqs. (2.33)-(2.37), such that y(t) = [Bb ∇Bb vb

BiLST M] ∈
R11×1;

• a measurement covariance matrix adapter (red block) dynamically tunes the noise param-
eters corresponding to vb

BiLST M, to control in a way, the level of confidence given to this
pseudo-measurement, by the EKF. In fact, after augmenting the output vector of the EKF
with vb

BiLST M, the measurement noise covariance matrix becomes N = diag(N1, N2, N3) ∈
R11×11, where N1 ∈R3×3, N2 ∈R5×5 and N3 ∈R3×3, are the noise covariance matrices, cor-
responding to Bb, ∇Bb and vb

BiLST M, respectively. This means that the dynamic tuning in this
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proposed approach, concerns only N3. Regarding N1 and N2, their values are fixed taking
into account the sensor board’s noise characteristics, which are usually provided in its cor-
responding datasheet. It is underlined here that no dynamic adaptation is performed for the
process noise covariance matrix Q. As the previous chapters, the process noise parameters
are fixed through a hand-tuning step under a trial and error scheme;

• the magnetic field gradient-based EKF uses the continuous-time dynamic model of
Eqs. (2.33)-(2.37), inertial and magnetic measurements, vb

BiLST M and N3 to better estimate
the different states, especially under challenging instants (low magnetic field gradient, static
phases, etc.).

Measurement covariance adapter

The basic idea of the measurement covariance adapter is to dynamically set the noise parameters
of N3, in order to implicitly decide which of the EKF or the BiLSTM velocity estimations is more
likely to be accurate during a specific instant, and thus should be more trusted. Such process is
based on Algorithm 1 and it works as follows

EKF initialization;
for k = 1 : length (testdata) do

N3,k = αI3;
EKF prediction;
if vb

BiLST M,k ≤ ε then
N3,k = I3;

end
EKF update;

end
Algorithm 1: Algorithm of the measurement covariance adapter

After initializing the magnetic field gradient-based EKF, and for the first time step k inside the
EKF loop, high values are assigned to N3 using a large multiplication factor α ∈ R>0 that is mul-
tiplied with the identity matrix I3. This is in order to give more confidence to the EKF velocity
estimation than the one of the BiLSTM, that cannot provide accurate results in the case of high am-
plitude velocities (dynamic instants), especially under a light training process with a small training
dataset. On the contrary, during such a dynamic behavior, the EKF has proven to be efficient in
determining a velocity estimate with minimal errors, as the magnetic field gradient is sufficiently
strong at these times.
Next, the EKF prediction is performed to obtain a first velocity estimate. At this point, the al-
gorithm checks if vb

BiLST M is below a certain threshold ε ∈ R>0, to indicate whether a static or
quasi-static phase of the velocity is occurring (i.e. velocity is null or close to zero). If this condi-
tion is satisfied, the adapter attributes only I3 to N3 (i.e. a small value) in order to trust more the
BiLSTM prediction. In fact, when the velocity has low amplitudes, the BiLSTM is more accurate
at determining its values because the regression task is much simpler under such condition, as
discussed in Section 4.3.2. The EKF however, suffers from errors at those instants, as shown in
Section 4.1, therefore, its estimation should be less taken into account.
Once the tuning is performed, the EKF update step is undertaken to take into account the chosen
value of N3, and provide a final velocity estimate on the basis of this adaptation.

What about observability?

Considering the BiLSTM predicted velocity vb
BiLST M as a pseudo-measurement in the EKF implies

a change in the measurement matrix H, previously defined in Eq. (2.39). In the proposed EKF-
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BiLSTM approach, not only does the velocity represent a state to be estimated, but it is also
contained in the output vector of the EKF, which implies

H ′ =
[
011×4 I11 011×3

]
(4.2)

where H ′ ∈ R11×18 is the measurement matrix corresponding to the proposed EKF-BiLSTM ap-
proach.
As no modification is conducted to the model governed by Eqs. (2.33)-(2.37), the state matrix F ,
defined in Eq. (2.38), remains unchanged.
The observability matrix O ′′ of the proposed EKF-BiLSTM approach is then defined such that

O ′′ =



03×4 I3 03×3 03×5 03×3

03×4 03×3 I3 03×5 03×3

05×4 05×3 05×3 I5 05×3

A1 −[ωb×] 03×3 03×5 03×3

03×4 ∇Bb −[ωb×] A4 03×3

05×4 A5 05×3 A6 05×3

W6 [ωb×]2 03×3 03×5 03×3

∇BbA1 W2 [ωb×]2 W3 03×3

A5A1 W4 05×3 A2
6 05×3

1
2

W6Ωb +[ωb×]2A1 −[ωb×]3 03×3 03×5 03×3

1
2 ∇BbA1Ωb +W2A1 W5 −[ωb×]3 [ωb×]2A4 +W3A6 03×3

1
2 A5A1Ωb +W4A1 −W4[ω

b×]+A2
6A5 05×3 A3

6 05×3
...

...
...

...
...



(4.3)

with W6 =
1
2

A1Ωb− [ωb×]A1.

In Section 2.2.2, after analyzing the observability matrix O ′ corresponding to the magnetic field
gradient-based EKF, some conditions were imposed on the magnetic field gradient and hessian in
order to ensure the observability of the states. In contrast, the proposed EKF-BiLSTM approach
does not set any constraints on the magnetic field dynamics in order to observe the velocity. This
can be easily detected by looking at the new observability matrix. In fact, an identity matrix
appears on the second column of O ′′, which implies that vb is always observable, no matter the
values of ∇Bb. Nevertheless, such flexibility in the velocity observability conditions does not
guarantee the observability of quaternion that remains dependent firstly on the rank of A1 (rank
equal to 3 at max), and then, on the ranks of the following blocks (in the first column of O ′′).

4.5 Experimental scenario and results

The proposed EKF-BiLSTM approach is applied on the Openshoe dataset, presented earlier
in Section 4.3.2. To demonstrate the benefit of aiding the magnetic field gradient-based EKF with
the BiLSTM-based network, the velocity estimation results of the EKF and the EKF-BiLSTM are
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compared. The proposed solution exhibits a better performance in terms of estimation accuracy,
and promising results when it comes to trajectory reconstruction.

4.5.1 Additional implementation details

Before implementing the EKF-BiLSTM solution, the measurement covariance adapter parameters
have to be chosen, i.e. the multiplication factor α and the threshold ε .
The tuning of α is actually very straightforward. Its value should be set really high, so when
it is assigned to N3 (after being multiplied with the identity matrix I3), the BiLSTM prediction
(i.e vb

BiLST M), representing a pseudo-measurement in the EKF, is almost completely rejected by the
EKF during the update step, because of this assigned large value, thus, it is chosen to be equal to
α = 106.
The threshold’s tuning is less evident, but also remains very simple. In general, if a pedestrian
navigation application is considered, the average value of the walking velocity of the latter can
vary from 1 ms−1, in the case of a low pace walk, until above 8 ms−1 during running. This means
that in order to consider a velocity very low or quasi-static, it should have a value that is below
approximately 0.5 ms−1. This would apply on any kind of application and is not limited to human
movement. Therefore, ε in the measurement covariance adapter is chosen in a way that represents
a very small velocity value, nearly equal to zero, implying that the subject under study (or any
moving body, such as a vehicle, for example) is almost immobile at that time instant. This is
without being too close to zero as the main idea is to capture quasi-static instants and not zero-
velocity moments. The choice of ε = 0.2 ms−1 is then done considering the above reasoning.
What makes the proposed approach stands out, is that such choice of parameters does not represent
a critical problem that needs to be profoundly investigated (as the case for ZUPT parameters,
for example). While the above tuning process remains important, it is believed that these two
parameters do not necessarily have to be tuned every time the proposed approach is applied, as
they are very general and not related to a particular movement nature, trajectory characteristics or
sensor attachment. This supports the generality and applicability aspects of the proposed EKF-
BiLSTM approach and indicates that it can be extended to any other application, whether its on
pedestrians, vehicles, or robots.

4.5.2 Results of the magnetic field gradient-based EKF

One cannot asses the advantage of the proposed EKF-BiLSTM approach, without comparing its
estimation accuracy results to when only the magnetic field gradient-based EKF is applied. To do
so, the same implementation scenario of Section 4.3.2 is maintained, where 50% of the Openshoe
dataset is used for testing.
As demonstrated in Section 4.1, the EKF encounters several limitations that highly influence its
estimation accuracy results, from which, the low magnetic field gradient case is the most signifi-
cant. To highlight this issue, the simulated magnetic field gradient from the magnetometer array
measurements is set to have small eigenvalues (lower than 0.05 Gm−1), as represented in Fig. 4.14.

Next, in Fig. 4.15, the velocity estimation results using only the magnetic field gradient-based
EKF, for the considered scenario, are presented.
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Figure 4.14: Eigenvalues of the magnetic field gradient
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Figure 4.15: Estimation of vb using only the magnetic field gradient-based EKF. In red is the
ground truth velocity, and in blue is the estimated one
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In the presence of low magnetic field gradient, the EKF generates inevitable errors, as observed
in Fig. 4.15. However, the EKF does not completely diverge, in the sense that there is no drifting
phenomena of the velocity estimate v̂b (i.e. does not go very far from the ground truth), and is
rather continuously recovered during the trajectory scenario, thanks to the variation of ∇Bb that at
times, can provide sufficient information in order for the velocity to be observable.
It is underlined that velocity estimation results using only the BiLSTM-based network have already
been presented and discussed in Section 4.3.2, where it was demonstrated that relying only on a
neural network, under a light training procedure, does not provide accurate predictions.

4.5.3 Results of the proposed EKF-BiLSTM approach

The performance of the proposed EKF-BiLSTM estimation approach is evaluated on the testing
set, by comparing the obtained results to the ground truth ones. In Fig. 4.16, the 3−axis compo-
nents of vb are plotted. Unlike the results of the EKF in Fig. 4.15 and the BiLSTM in Fig. 4.11, the
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Figure 4.16: Estimation of vb with the EKF-BiLSTM approach. In red is the ground truth velocity,
and in blue is the estimated one

velocity estimate v̂b given by the proposed approach is now very close to the ground truth one, with
an RMSE that is around 0.21 ms−1, which is very promising considering that the proposed method
does not rely on any trajectory assumptions nor sensor attachment (as the case for pedestrian foot-
mounted applications), does not demand any heavy training procedure, and is tuning-free.
To analyze the effect of the velocity estimation on the trajectory reconstruction, the estimated po-
sition M̂n from the EKF-BiLSTM approach is plotted in its 2D form and represented in Fig. 4.17.
It is observed that the estimated trajectory is close to the ground truth one and the same squared
shape is maintained. This level of accuracy is unreachable when integrating the velocity from
Fig. 4.15 that actually generates a senseless trajectory as the case in Fig. 4.3.
Table 4.1 presents the traveled distance, as well as the coordinates of the arrival points for the
estimated and ground truth trajectories. The arrival point of the ground truth trajectory is different
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Figure 4.17: Estimation of Mn with the EKF-BiLSTM approach. In black is the training trajectory,
in red is the ground truth of the tested trajectory, and in blue is the estimated one. Bullets stand
for the coordinates of the arrival points

Table 4.1: Velocity error mean results

Metrics Ground truth EKF-BiLSTM

Traveled distance (m) 45.01 44

Arrival point coordinates (m) [-0.41 7 0.06] [-1.57 7.67 0.34]

from its starting point, that is the same for both the compared trajectories. The error of the final
arrival point between the two trajectories is around 1.37 m which competes with top ranked meth-
ods in the literature, that require either heavy computations (only DL-based methods) or a very
specific sensor location (as the case for ZUPT).
It is also important to recall that in these experiments, the Openshoe ZUPT estimation results are
considered as the ground truth. However, no conclusions can be made on their accuracy, as no
actual ground truth is provided. This means that results given by the proposed approach, can be
closer to reality than the ones computed from the Openshoe ZUPT approach.
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4.6 Conclusion

Weaknesses of the magnetic field gradient-based EKF The magnetic field gradient-based EKF
represents a promising solution to the indoor navigation problem, for its strong theoretical foun-
dation and easy applicability. Nevertheless, the latter encounters several limitations that are either
related to its technical implementation, or to the surrounding environment characteristics, such as
the presence of low magnetic field gradient, quasi-static or static trajectory phases, etc.
ZUPT is not adequate to compensate the EKF errors When the sensor board is attached to
body placements other than the foot, the zero-velocities detection is completely inaccurate. In
addition to that, such technique requires a continuous tuning of its parameters to account for the
different trajectory scenarios, which sometimes demands heavy resources. This makes the ZUPT
solution unfit to correct the errors generated by the EKF in more general cases.
BiLSTM for inertial navigation The many advantages of the BiLSTM over other ANN archi-
tectures encouraged its massive use in the related state-of-the-art works. Nevertheless, despite its
promising accuracy results, employing an only DL-based solution remains debatable as it usually
requires a large training dataset, intensive hyperparameters tuning, and heavy overall computa-
tions, that are not always so feasible.
Proposed EKF-BiLSTM approach The proposed approach enables correcting the magnetic field
gradient-based EKF estimation and taking advantage in the same time of the prediction accuracy
of a BiLSTM-based network. This is achieved while using a very small training dataset for the
BiLSTM, and without requiring any sophisticated tuning of its parameters. The EKF-BiLSTM can
be applied to any trajectory scenario, no matter the sensor board attachment and for any studied
application, which makes of it, a very suitable solution to the indoor navigation problem.
Openshoe dataset for experimental validation While the Openshoe dataset represents a good
starting point to evaluate the performance of the proposed approach, it does not form an opti-
mal choice for experimental validation because of few reasons. First, this dataset corresponds to
pedestrian foot-mounted IMU measurements and one single trajectory. This is considered very
limited and does not demonstrate the generality of the proposed approach, that can be applied on
any type of trajectory and for whatever sensor board placement, under various applications. Sec-
ond, the dataset lacks measurements of the magnetometer array because only one magnetometer
in an IMU is used, which leads to the simulation of imprecise data through approximations from
a theoretical array. Finally, the used dataset is missing ground truth measurements. Thus, results
from the ZUPT-based approach proposed by Ref. [Skog2010b] are assumed to be the ground truth,
which is not entirely accurate.
In the next chapter, a real case study is conducted with a complete sensor board generating not
only inertial but also magnetometer array measurements. Ground truth data is acquired from a
motion capture system, and many trajectory scenarios and sensor board attachments are tested, to
better demonstrate the efficiency of the proposed EKF-BiLSTM approach.
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5
Real Case Study: The Magneto-Inertial

Tachymeter

In this chapter, the proposed EKF-BiLSTM approach is evaluated on a real case
study with a complete experimental benchmark and several testings. In Section 5.1,
a fully-designed sensor board containing an IMU and a magnetometer array, called the
Magneto-Inertial Tachymeter (MIT) is presented. With this sensor board, a motion cap-
ture system framework is also introduced, from which ground truth data is acquired and
synchronized with the inertial and magnetic measurements. Then, in Section 5.2, the
performance of the EKF-BiLSTM approach compared to other studied methods in this
thesis is validated through multiple trajectory scenarios and sensor placements. The
results demonstrate how the EKF-BiLSTM outperforms the other methods in terms of
velocity estimation accuracy, and trajectory reconstruction.
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5.1 Measurements and ground truth data

In the previous chapters, the discussed estimation approaches were evaluated using either sim-
ulated trajectory scenarios or real publicly available datasets. While both these strategies provide a
prior knowledge on the methods’ performances, they represent some inconveniences, from which
the most important are first, the lack of actual magnetometer array measurements, and second, the
absence of ground truth data. In the following, a complete experimental benchmark is presented
that accounts for all these requirements.

5.1.1 Magneto-Inertial Tachymeter

The Magneto-Inertial Tachymeter (MIT) is a prototype system, provided by SYSNAV company
Ref. [Sysnav2020], that has been designed for pedestrian navigation applications, to demonstrate
indoor navigation capabilities. The SYSNAV tachymeter consists of two main components: a
sensor module and a fusion module.

MIT sensor module

The sensor module of the MIT is shown in Fig. 5.1. It contains the different sensors (3− axis
accelerometer, 3− axis gyroscope and a 3− axis magnetometer array), the associated circuitry
(A/D, power converters), a Serial Peripheral Interface (SPI), and a cable to connect it to the fusion
module.

Figure 5.1: Sensor module of the used MIT

The sensor module is delivered in a bubble-wrap to protect it from any possible damages. This
packaging plays also a role in the temperature regulation of the case during the calibration process.
Note that, any mishandling of the sensor module can impact this calibration which results in the
performance of the system being significantly deteriorated.

MIT fusion module

The fusion module of the MIT is presented in Fig. 5.2. It contains a Secure Digital (SD) card
to save the measurements recorded by the sensor module, a battery, a SPI and Bluetooth inter-
faces. When the fusion module internal battery needs recharging, an external charger is plugged
in through the CHG connector. The tri-state power switch, located on the side of the module, is
placed on the "E/C" position, as represented in Fig. 5.2.

101



Chapter 5. Real Case Study: The Magneto-Inertial Tachymeter

Figure 5.2: Fusion module of the used MIT

Operating instructions

The sensor module is first connected to the fusion module, then powered on by flipping the tri-state
switch to the "BAT" position. The magnetometers and accelerometers are sensitive to temperature
change. So, in order to ensure optimal performance, the system should reach a steady temperature
state before starting any recordings, which occurs within 20 min of switching on the MIT.
It is also recommended to keep a safety distance between the sensor module and any magnetic
elements to avoid any decalibration of the MIT.

Data extraction

Each time the MIT is powered up, a new session file is created on the SD card which contains the
recorded inertial and magnetic measurements.
To extract these recordings, a USB cable is plugged to the computer and to the SD output of the
fusion module (has to be powered on), and a program provided by SYSNAV is launched. The pro-
gram automatically detects the SD card and indicates the different recorded session files contained
in it. To extract a particular session data, the latter is simply selected and the corresponding data
is extracted using the read button "Lire", as indicated in Fig. 5.3. The obtained files contain the

Figure 5.3: Data extraction using SYSNAV software

angular velocity, acceleration, as well as the five magnetometers’ measurements.
The SD card can provide 15 h of recordings. Once full, the latter has to be freed by selecting the
sessions to be deleted and clicking on the erase button "RAZ".
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5.1.2 Reference system and data preparation

The evaluation of the states estimation accuracies using the different discussed methods in this
thesis requires the presence of ground-truth data to be compared to. Furthermore, the training of
the BiLSTM-based network of the EKF-BiLSTM approach demands a velocity ground truth data.
For these reasons, all experiments conducted in this chapter are elaborated in the "Biomeca" room
in GIPSA-Lab Ref. [Gipsa-lab0 19], equipped with a motion capture system from Qualisys brand
Ref. [Qualisys2021]. The room has 9 cameras, as shown in Fig. 5.4, that provide a high accuracy
of ground truth position (1 mm) as well as ground truth attitude (Euler angles and rotation matrix).

Figure 5.4: Qualisys cameras in the Biomeca room

Calibration of the cameras

The Qualysis Track Manager (QTM) software, used to conduct all camera’s processings, needs
to have information about the orientation and position of each of the 9 cameras in order to effi-
ciently scale and locate the 3D coordinate system of the moving body in the measurement zone.
Therefore, before conducting any experiments, the used cameras have to go through a calibration
process. This can be done using a calibration kit that consists of two parts: a mirrored L-shaped
reference structure and a calibration wand, as presented in Fig. 5.5. To perform the calibration,
the L-shaped reference structure is placed on the ground, to obtain its corresponding coordinate
system. Then, the calibration wand is moved inside the chosen measurement zone in all three
directions, as illustrated in Fig. 5.5, in a way that allows all cameras to see the wand in as many
orientations as possible. This is done to assure that all directions are properly scaled. It is under-
lined that the 9 cameras must be able to detect all markers of the calibration kit, and no sources
of extra reflections (other than the markers) should be present, in order to avoid jeopardizing the
calibration process. The QTM software estimates each camera’s position and orientation by eval-
uating the camera’s view of the wand during the calibration, and calculates the average residual
error of this estimation, as indicated in Table. 5.1. It is observed that, in the performed calibration,
the 9 cameras residual errors are around 1 mm, which is considered satisfactory for the targeted
application, for comparisons as well as training.
It is underlined that, during the recordings, the moving body must move inside the covered zone
by the calibration (around 9 m2 of surface), as shown in Fig. 5.6.
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Figure 5.5: A subject sweeping the zone that needs to be covered by the Qualisys cameras using
the calibration kit: the L-shaped reference structure and the calibration wand

Table 5.1: Average residual errors of estimated position by the nine cameras after calibration

Cameras 01 02 03 04 05 06 07 08 09

Average residual (mm) 1.14 1.10 0.83 0.87 1.16 0.92 0.79 1.10 1.06

Figure 5.6: Covered zone from the cameras after calibration

Measurements and trajectories

Before acquiring any measurements from the MIT, the latter has to be equipped with a markers-
based frame such that its motion can be captured by the cameras during the recordings. The frame
is specially designed to be placed on the MIT using OpenSCAD, a free software of parametric
modeling that enables creating Computer-Aided Design (CAD) solid objects for 3D printing, as
illustrated in Fig. 5.7.
Once all discussed steps are conducted, data collection is performed. Five trajectories, achieved
by a subject, are examined: square, circle, diagonal rectangle, triangle and heart. Trajectories
are carried out under normal walking, and they last 3.5 min on average each. Evaluations are

104



5.1. Measurements and ground truth data

Figure 5.7: Markers-based frame designed to be place on the MIT

performed with three sensor attachments: right tibia, right front pocket, and waist. In Fig. 5.8, an
illustration of the tibia and pocket placements is presented.

Figure 5.8: Examples of MIT attachments during the conducted experiments

Data synchronization

After recording the different trajectories, ground truth and MIT data are extracted and a synchro-

nization procedure is conducted. In fact, the MIT is sampled at the frequency f sMIT =
4∗106

12∗1024
≈

325.52 Hz, while the Qualysis system’s frequency is chosen as f sQualisys = 326 Hz. Thus, a down-
sampling step is applied in order to obtain synchronized and ready-to-use databases.
In fact, from the example in Fig. 5.9, one can see that the Qualisys data is oversampled (6 samples
for the TMI versus 7 for the Qualisys). The difference between the MIT and the Qualisys sample
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Figure 5.9: Illustration of the MIT and the qualisys motion capture system sampling. Every 7
steps, the qualisys system has one extra sample with respect to the MIT, as highlighted with the
yellow circle

rates is denoted ∆r such that

∆r =
12∗1024

4∗106 −
1

326
= 4.51∗10−6 (5.1)

One should look for n ∈ N>0 such that n∆r =
12∗1024

4∗106 , i.e. the needed number of ∆r in order
for the Qualisys system to have one extra sample with respect to the MIT. It yields that n = 680,
which means that, for every 680th steps, a sample from the Qualisys data is removed.
While such methodology is efficient at ensuring data synchronization, one should notice that for
all samples before the 680 step, the delay between the TMI and Qualisys measurements is not han-
dled. For such reason, one can rather use traditional interpolation methods Ref. [Maeland1988]
to account for this issue. Nevertheless, to avoid any change in signals’ information, the downsam-
pling technique is maintained as it has no major effect on the considered application. i.e. pedestrian
walk at normal speed, which step frequency is known to vary between 1.6 Hz to 2.4 Hz.
Note also that before undergoing the synchronization step, the TMI and Qualisys datasets need to
be modified to start at the same time. The ground truth dataset has to be cleaned from any "NAN"
values, caused by the inability of the motion capture system, at some instants, to detect the TMI
markers (when blocked by the subject, for example, during a certain movement).
It is finally underlined that, the choice of a pedestrian to represent the moving body in this study
case, is taken for flexibility and comparison reasons. Nevertheless, it is believed that the proposed
approach (EKF-BiLSTM) can be extended to other applications of indoor navigation.

5.2 Experimental results and comparisons

In this section, the performance of the proposed EKF-BiLSTM approach is evaluated under
the presented experimental benchmark. Comparisons are conducted where it is demonstrated how
the latter provides the best estimation accuracy results among other studied methods, which is
mainly seen during trajectory reconstruction.

5.2.1 Implementation details of the EKF-BiLSTM

The implementation of the EKF-BiLSTM approach is done under the same network architecture
previously introduced in Section 4.3.2. The only difference resides on the used datasets for the
training, testing and validation processes. For each sensor placement, four trajectories are used to
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construct the training set, and the remaining one is for the testing. Around 1% of the training set
is left for validation. The training takes around 1 h on the CPU. This procedure is repeated 5 times
so each trajectory can form the testing set one time. It is underlined that the training set remains
very small (≈ 14 min, 9 features and ≈ 200000 samples) compared to the state-of-the-art works
Refs. [Feigl2019, Kang2018b] that use very large training databases.

5.2.2 Effect of the measurement covariance adapter

One comparison that must be conducted before preceding with the EKF-BiLSTM evaluation, is the
one related to the measurement covariance adapter. One may wonder to what extent such algorithm
can improve the estimation results of the proposed EKF-BiLSTM approach, and how far this
approach can be accurate in case such adaptation is not considered, i.e. the pseudo-measurement
vb

BiLST M is all the time trusted by the EKF by setting its corresponding noise covariance matrix to
the identity matrix the entire time. To perform this evaluation, a walking rectangular trajectory is
considered as the testing set, with the MIT placed on the right tibia of a subject. The training is
done using a dataset containing four other forms of trajectories. Then, the proposed EKF-BiLSTM
approach is applied with and without the measurement covariance adapter. In Fig. 5.10, the results
of the velocity estimation corresponding to this experiment are plotted. To ease the reading, only
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Figure 5.10: Estimation of vb with the EKF-BiLSTM approach. In red is the ground truth velocity,
in blue is the EKF-BiLSTM estimation with the measurement covariance adapter, and in green
without it

the first axis vb
x is plotted for about 7 s from the total time of the trajectory. The green line signal

corresponds to when the pseudo-measurement vb
BiLST M is trusted the entire time by the EKF. This

means that no dynamic adaptation of N3 is taken into account and its values are rather fixed to
the identity matrix. In this case, the inaccurate prediction of vb

BiLST M during moments when the
velocity is higher than the threshold ε affects negatively the EKF velocity estimation. On the
contrary, the blue line signal is found when Algorithm 1 is applied. A better velocity estimation
accuracy is then observed after controlling the level of confidence given to vb

BiLST M by the EKF
using the measurement covariance adapter.
In Fig. 5.11, the position reconstruction results are displayed in 2D and the same conclusions are
made. Note here that, all numerical results (such as in Table 5.2, for example) take into account the
3 axes of the position vector Mn. Table 5.2 represents the distance error de between the proposed
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Figure 5.11: Estimation of Mn with the EKF-BiLSTM approach. In red is the ground truth position,
in blue is the EKF-BiLSTM estimation with the measurement covariance adapter, and in green
without it

EKF-BiLSTM position estimate M̂n and the ground truth one for both cases, with and without the
measurement covariance adapter. This evaluation metric is borrowed from Ref. [Needham2003]
and is defined such that

de = ‖M̂n−Mn‖ (5.2)

It is observed that a better estimation accuracy is obtained when the measurement covariance
adapter is used, which proves the importance in including it in the EKF-BiLSTM solution.

Table 5.2: Distance error using the EKF-BiLSTM with and without the measurement covariance
adapter

de (m) Mean Median Max
Standard
deviation

Without the adapter 1.93 1.87 3.88 1.20

With the adapter 0.43 0.45 0.71 0.15

It is stressed here that ε is maintained the same for all the next experiments (trajectories and
sensor placements), which recalls one advantage of the proposed EKF-BiLSTM approach, that is
tuning-free.

5.2.3 Main results and performance of the EKF-BiLSTM

This section starts by discussing the performance of the magnetic field gradient-based EKF (Chap-
ter 2) under different magnetic field gradient conditions. Then, the estimation results from the
proposed EKF-BiLSTM approach (Chapter 4) are presented, and compared to ground truth data
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as well as the EKF and the EKF-ZUPT (Chapter 3) approaches. Evaluations demonstrate how the
EKF-BiLSTM solution gives the best states’ estimation results providing consequently an accurate
trajectory reconstruction.

Magnetic field gradient and sensor placements

The design of the EKF-BiLSTM approach is independent from any particular sensor location or
trajectory scenario. Therefore, one expects that the latter provides the same estimation accuracy
results, no matter the attachment of the sensor board. Nevertheless, it turns out that there is a direct
relationship between the sensor placement and the magnetic field variations, that somehow, still
affect the performance of the EKF-BiLSTM approach. In other words, even though the BiLSTM
attenuates the errors generated by the EKF in a low magnetic field gradient environment, it does
not entirely eliminate them, which means that in all cases, the best estimation accuracy results are
obtained when the magnetic field gradient is the strongest.
To back up such assumptions, a triangular trajectory is conducted for each sensor placement. Then,
the magnetic field gradient is calculated using the magnetometer array from the MIT and the steps
previously presented in Section 2.1.5. In Fig. 5.12, the three eigenvalues of ∇Bb for the different
MIT placements are plotted.
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Figure 5.12: Eigenvalues of the magnetic field gradient for different sensor placements. In red for
the tibia, in black for the waist and in blue for the pocket

What is demonstrated through Fig. 5.12, is that the magnetic field variations are more significant
when the MIT module is placed on the tibia (red line). This can be explained by the metal structure
of the floor in the motion capture room, that generates noticeable magnetic disturbances, making
the corresponding eigenvalues of the magnetic field gradient superior to 0.05 Gm−1. The room
also contains office equipment (laptop, metallic table, etc.), as shown in Fig. 5.4, that produces
significant magnetic disturbances. Yet, in order for these variations to be captured, the subject
wearing the MIT (in the pocket or waist placements) has to move close to this equipment. Other-
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wise, the recorded magnetic field gradient will not be as large as the one of the tibia placement.
However, during all experiments, the subject was moving in the middle of the room and not very
close to this equipment. For this reason, the pocket and waist sensor placements do not capture
such high magnetic variations, which can be illustrated by the corresponding magnetic field gradi-
ent eigenvalues, that are inferior to 0.05 Gm−1. It follows that the estimation results of the different
compared algorithms (EKF, EKF-ZUPT and EKF-BiLSTM) are most accurate for the tibia sensor
placement, as it has the largest magnetic disturbances. This will be detailed further in the next
sections.

EKF performance under different sensor placements

To confirm that, for different sensor placements, the EKF estimation accuracy varies (because
of the magnetic field gradient variation), the following experiment is undertaken. Two sensor
placements are chosen for comparison: tibia (with high magnetic disturbances) and waist (with
low magnetic disturbances). The same triangular trajectory of the previous section is considered.
Figs. 5.13- 5.14 display a comparison between the estimated trajectory from the EKF and ground
truth, for the two sensor placements.

Figure 5.13: Position estimation from the EKF when the MIT is on the waist. In red is the ground
truth trajectory from the motion capture system, and in blue is the EKF estimated one

From these figures, it is clear that the EKF provides better accuracy when the MIT is subject
to enough magnetic field disturbances (MIT on the tibia), than the case of a low magnetic field
gradient (MIT on the waist). This is expected as the EKF is highly sensitive to the magnetic
field gradient as demonstrated in Section 4.1. Then, in the next Section, the results show how the
proposed EKF-BiLSTM improves the estimation process when magnetic disturbances are low, for
example when the MIT is on the waist. It is underlined here that adding the BiLSTM to the EKF in
the case of high magnetic disturbances (MIT on the tibia) does not drastically improve the results
from the case where only the EKF is used. This is because the latter can already provide good
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Figure 5.14: Position estimation from the EKF when the MIT is on the tibia. In red is the ground
truth trajectory from the motion capture system, and in blue is the EKF estimated one

accuracy results as long as the magnetic field gradient is sufficiently large. In other words, the
biggest impact of the BiLSTM algorithm on the magnetic field gradient-based EKF takes place
when the EKF cannot perform well, under a low magnetic field gradient.

EKF-BiLSTM results

In this section, the performance of the EKF-BiLSTM approach is studied. First, in Figs. 5.15-5.16,
the velocity estimation results are plotted for both the MIT placements (waist and tibia, respec-
tively). To ease the reading, only about 10 s of each signal is plotted. Also, the axis vb

x is chosen
to be plotted. The other two axes have the same behavior. A comparison between using the mag-
netic field gradient-based EKF and the EKF-BiLSTM is undertaken. It is clear that the proposed
approach outperforms the use of only the EKF, in both cases of lower and higher magnetic distur-
bances (waist and tibia placements). The difference in the estimation accuracy between the EKF
and EKF-BiLSTM is clearer in Fig. 5.15, which proves the efficiency of the proposed approach,
especially in low magnetic field gradient situations. Such improvement on the velocity estimation
by the EKF-BiLSTM impacts the position reconstruction for the studied triangular trajectory.
In Fig. 5.17, it is seen that for the case where there are enough magnetic disturbances (tibia at-
tachment), the EKF-BiLSTM succeeds to accurately estimate the trajectory with a small error. It
also improves greatly the results when the MIT is on the waist (in Fig. 5.18), by reducing the drift
previously seen in Fig. 5.13.
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Figure 5.15: Velocity estimation from the EKF-BiLSTM when the MIT is on the waist. In red is the
ground truth velocity deduced from the motion capture system, in green is its estimate when using
the EKF and in blue is when using the proposed EKF-BiLSTM
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Figure 5.16: Velocity estimation from the EKF-BiLSTM when the MIT is on the tibia. In red is the
ground truth velocity deduced from the motion capture system, in green is its estimate when using
the EKF and in blue is when using the proposed EKF-BiLSTM

112



5.2. Experimental results and comparisons

Figure 5.17: Position estimation from the EKF-BiLSTM when the MIT is on the waist. In red is the
ground truth trajectory from the motion capture system, and in blue is the EKF-BiLSTM estimated
one

Figure 5.18: Position estimation from the EKF-BiLSTM when the MIT is on the tibia. In red is the
ground truth trajectory from the motion capture system, and in blue is the EKF-BiLSTM estimated
one
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Comparisons and discussion

In Tables 5.3-5.4, the results from all discussed methods are presented (EKF, EKF-ZUPT and
EKF-BiLSTM). For each sensor placement, the five trajectories mentioned in Section 5.1.2 are
tested and the mean of their accuracy results is presented (as evaluations are conducted for each
of the tested trajectories). Table 5.3 displays the RMSE and the MAE of the estimated velocity
with respect to the ground truth one. Table 5.4 contains the mean, median, maximum and standard
deviation of the distance error between the true and the estimated position. By looking at Ta-
bles 5.3-5.4, the proposed EKF-BiLSTM approach gives the best velocity and position estimation
results compared to the other methods (EKF and EKF-ZUPT). In fact, for the velocity estimation,
it succeeds to decrease the EKF’s error with more than a factor of 2 for all the studied sensor
placements. While for the position estimation, it is shown that the BiLSTM’s impact is mostly
seen under the pocket and waist attachments, which correspond to the low magnetic field gradient
case. For instance, the velocity MAE of the waist attachment goes down from 0.21 ms−1 using
only the EKF to 0.07 ms−1 with the EKF-BiLSTM approach, while the mean of the distance error
of the position for the pocket placement is reduced from 11.35 m using the EKF to 3.72 m with
the EKF-BiLSTM solution. This illustrates the benefit of the proposed EKF-BiLSTM approach in
improving estimation accuracy results, especially under low magnetic field disturbances.

Table 5.3: Velocity error mean of the different sensor placements

Velocity (ms−1) RMSE MAE

Waist

EKF 0.282 0.214

EKF-ZUPT 0.29 0.212

EKF-BiLSTM 0.114 0.074

Pocket

EKF 0.206 0.166

EKF-ZUPT 0.21 0.164

EKF-BiLSTM 0.106 0.078

Tibia

EKF 0.164 0.116

EKF-ZUPT 0.152 0.102

EKF-BiLSTM 0.088 0.05

Table 5.4: Distance error mean of the different sensor placements

de (m) Mean Median Max STD

Waist

EKF 5.982 5.874 11.95 3.668

EKF-ZUPT 5.79 5.624 11.61 3.528

EKF-BiLSTM 3.65 3.516 7.254 2.176

Pocket

EKF 11.35 11.15 23.28 7.154

EKF-ZUPT 11.29 11.17 23.15 7.094

EKF-BiLSTM 3.726 3.662 7.312 2.204

Tibia

EKF 2.402 2.288 5.216 1.456

EKF-ZUPT 2.072 1.966 4.53 1.42

EKF-BiLSTM 1.356 1.356 2.286 0.542
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It is also important to highlight that the difference in accuracy between the tested algorithms in
terms of position estimation is less remarkable for the tibia case. For instance, the mean of the
distance error of the position estimate is reduced from 2.4 m using the EKF to only 1.35 m with
the proposed EKF-BiLSTM approach. This is because the EKF can already perform well alone,
without considering the BiLSTM prediction, due to the presence of a strong magnetic field gra-
dient like explained in Section 4.1. Note here that results between the EKF and the EKF-ZUPT
are very similar, for all sensor placements, which proves again as demonstrated in Section 4.1.3
that the ZUPT is inefficient outside of the foot-mounted framework. This makes the proposed
EKF-BiLSTM stand out, compared to state-of-the-art works, as it first, provides a very promising
position reconstruction accuracy (≈ 1 m of error), under enough magnetic field disturbances, sec-
ond, it can be applied on any sensor placement, and finally, can perform relatively well under the
low magnetic field gradient condition (≈ 3 m of error).

5.3 Conclusion

Magneto-inertial tachymeter (MIT) The magneto-inertial tachymeter is a sensor board pro-
vided by SYSNAV company that generates real inertial and magnetic measurements. Unlike the
publicly available datasets that are used in this entire thesis, the MIT consists of a magnetometer
array, that enables the determination of the magnetic field gradient and hessian without having to
conduct any simulations.
Motion capture system A motion capture system composed of 9 Qualisys cameras is used to
provide ground truth data of the position, attitude, and consequently velocity of a moving body.
This reference data is used for evaluating the different discussed approaches in this thesis and
training the BiLSTM-based network. Before conducting any recordings, such system has to be
carefully calibrated to provide accurate ground truth. After performing the experiments, the mea-
surements from the MIT and the motion capture system are cleaned from any "NAN" values and
then synchronized, to finally obtain appropriate and ready-to-use databases.
Importance of the measurement covariance adapter The BiLSTM velocity prediction is inac-
curate during dynamic phases due to the use of a limited training dataset. In contrast, the EKF
provides a better velocity estimation accuracy during these phases. It follows that trusting the BiL-
STM estimate by the EKF the entire time is less efficient than controlling the level of confidence
given to this pseudo-measurement, by adapting its corresponding noise covariance matrix.
EKF-BiLSTM provides the best estimation accuracy Evaluations on a real experimental
benchmark demonstrate that the proposed EKF-BiLSTM approach outperforms the EKF and EKF-
ZUPT under all studied sensor placements (tibia, pocket and waist), that are proportional to the
presence of magnetic disturbances in the case of the conducted experiments. For the velocity esti-
mation, the EKF-BiLSTM reduces the EKF’s error with more than a factor of 2 for all the studied
sensor placements. While for the position estimation, its impact is mostly seen under the low
magnetic field gradient case (pocket and waist attachments). In the case of sufficient magnetic
disturbances (tibia attachment), it provides the best results in terms of velocity as well as position
accuracy (≈ 1 m of position error), which competes with state-of-the-art related works.
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Summary of main contributions

This thesis investigates the problem of GPS-free indoor navigation using only strapdown
low-cost magneto-inertial sensors. The contributions in this work are the results of different
improvements that are conducted on previously published solutions on the subject. These
solutions rely basically on one efficient scheme, referred to as MINAV. This approach consists in
combining classical inertial navigation equations with Eq. (1.33), to build a state-space model,
that is representative of a moving body’s motion. The particularity of this technique resides on
the use of a magnetometer array to determine the spatial variations of the magnetic field, that are
essential to the estimation process. More precisely, to ensure the observability of the estimated
states, the magnetic field gradient must meet some conditions from which, the non-singularity is
the most decisive. This highlights its crucial role in the MINAV approach.

In this sense, the study of the different published works that follow the MINAV technique
has given rise to the following important issues:

• Being determined through approximation schemes from the magnetometer array measure-
ments, such as finite differences or least squares, the magnetic field gradient suffers from
uncertainties and noise. It follows that considering it as a known input in the state-space
model introduces errors.

• In case the eigenvalues of the magnetic field gradient are really low (<< 0.05 Gm−1), the
latter becomes close to the singularity condition. This implies the loss of observability of
one or more velocity and/or attitude states, and consequently, generating inaccurate estima-
tion results.

Both of these points encourage the modeling of the magnetic field gradient, to not only have a
better estimation of its actual values, but to also gain extra degrees of freedom when it comes to
the state-space model observability conditions.
Using the magnetometer array and the different properties of the magnetic field, higher order
spatial derivatives are explored. Consequently, the magnetic field hessian is determined and used
to model the dynamics of the magnetic field gradient, alongside with velocity and attitude, as
represented by Eq. (2.8).
The presence of the magnetic field hessian in the proposed state-space model adds more flexibility
to the conditions of observability, in a way that it can be maintained even if the magnetic field
gradient is singular.

To evaluate the performance of the proposed model, a two EKFs-based approach is pro-
posed and assessed on a simulated dataset. The benefit of adopting this specific setting comes
mainly from the difficult tuning of the EKF noise covariance matrices, especially when compar-
isons of different models for a particular state are conducted. In fact, the proposed model given
by Eq. (2.8) describing the dynamics of the magnetic field gradient is compared to state-of-the-art
ones, and proved to outperform them in terms of noise compensation and velocity estimation
accuracy. It comes without saying that such modeling enables reaching higher estimation accuracy
than the case of not considering the magnetic field gradient in the state vector.
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While the first architecture of two EKFs is of high benefit especially when tuning noise param-
eters, a compact design has also its advantages. Therefore, a second architecture of a single
magnetic field gradient-based EKF is introduced, which performance is evaluated on the special
case of pedestrian foot-mounted navigation. Comparisons of computation time and velocity
estimation accuracy between the two proposed architectures have shown the better performance
of the single EKF case, which justifies its use in the continuity of the thesis.

The performance of the single magnetic field gradient-based EKF is enhanced using the
most common technique in foot-mounted applications, which is the ZUPT. As expected, this
combination enables reaching high accuracy results not only for velocity estimation but also
trajectory reconstruction. However, relying on ZUPT comes with few restrictions, that make it
rather unsuitable in many cases. Not only it demands having the sensor board attached to the
foot, which is not always feasible, but it also requires continuous tuning of its parameters in order
to adapt to various walking speeds and subjects. For other applications that go beyond human
motion, such as vehicles or robots, the ZUPT is practically useless.

Independently from the limitations of ZUPT, when the velocity is equal to zero and atti-
tude is constant (i.e. static trajectory), the estimation suffers from inevitable drifts. These drifts
are also increased by the different sources of errors related to the EKF numerical implementation,
such as the discretization of the continuous-time model, the linearization process, etc. It is seen
then, that in addition to errors generated by the low magnetic field gradient case, the single EKF
solution has some weaknesses that must be compensated.

One way to tackle these limitations is to consider an AI-based solution as widely con-
ducted in the related literature. Nevertheless, relying entirely on neural networks introduces
several inconveniences from which the heavy training process and the hyperparameters tuning
are the most influential. An innovative solution that combines the magnetic field gradient-based
EKF with a BiLSTM network is then proposed. The main idea behind this approach is to obtain a
velocity estimate from the BiLSTM, that is fed to the EKF as a pseudo-measurement. The level
of confidence given to it by the EKF is controlled using a measurement covariance adapter. This
is achieved while using a very small training dataset for the BiLSTM, and without requiring any
sophisticated tuning of its hyperparameters. The EKF-BiLSTM can be applied to any trajectory
scenario, no matter the sensor board attachment and for any studied application, which makes it a
very suitable solution to the indoor navigation problem.

The performance evaluation of the EKF-BiLSTM is first conducted using an open-source
dataset with real foot-mounted inertial and magnetic measurements, corresponding to one
trajectory. This limited experimental scenario does not demonstrate the generality of the proposed
approach, that can be applied on any type of trajectory and for whatever sensor board placement,
under various applications. The used dataset also lacks measurements of a magnetometer array
(only one magnetometer is considered) and is missing ground truth data. Therefore, acquiring a
complete dataset is necessary to rigorously evaluate the proposed EKF-BiLSTM approach.

A real case study is then conducted with a complete sensor board provided by SYSNAV
company (MIT), generating not only inertial but also magnetometer array measurements. In
addition, ground truth data is acquired from a motion capture system composed of 9 cameras from
Qualisys brand. Measurements of five trajectory scenarios (square, circle, diagonal rectangle,
triangle and heart) and three sensor board attachments (right tibia, right front pocket, and
waist) are recorded. The generation of datasets is conducted after going through calibration and
synchronization steps.
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Comparisons are performed between the different studied approaches in this thesis: EKF,
EKF-ZUPT, and EKF-BiLSTM, where it is demonstrated that the proposed EKF-BiLSTM
approach outperforms the EKF and EKF-ZUPT under all the studied sensor placements. For the
velocity estimation, the EKF-BiLSTM succeeds to decrease the EKF’s error with more than a
factor of 2 for all studied sensor placements. While for the position estimation, it is shown that
the BiLSTM’s impact is mostly seen under the pocket and waist attachments, which correspond
to the low magnetic field gradient case. The proposed EKF-BiLSTM approach provides the best
accuracy results in the case of the tibia attachment, when there is sufficient magnetic disturbances,
and generates a position error of approximately 1 m, which competes with state-of-the-art related
works.

Challenges and perspectives

Indoor navigation using low-cost inertial and magnetic sensors under an EKF-based frame-
work that is aided by AI, introduces different challenges such as

• Attitude observability conditions of the proposed navigation model are still dependent on the
presence of magnetic field disturbances, the ranks of the magnetic field gradient and hessian
matrices, as well as the nature of the trajectory (non-static). Having favorable conditions
to ensure an all-time observability is not guaranteed even in an indoor environment, as the
magnetic field perturbations can get really low at certain scenarios, or when the studied body
remains immobile for a long period of time. The drift in attitude in these cases is the result
of the presence of noise and bias in angular rate measurements that is not modeled in this
thesis;

• Relying on an EKF-based framework generates several numerical errors, from which those
induced by the non optimal tuning of noise covariance matrices are the most significant.
The hand-tuning of the process Q and measurement N noise covariance matrices represents
one of the main difficulties encountered in this thesis as the smallest change in their values
can induce the divergence of the EKF;

• The choice of the neural network architecture and the values of its corresponding hyperpa-
rameters is conducted using a trial and error scheme. However, it is believed that further
investigations can result in a better design in terms of prediction accuracy and computation
time, especially if an online solution is considered;

• To the author’s knowledge, there are no publicly available datasets of a magnetometer array
with the needed architecture to apply the proposed solutions of this thesis. Until acquiring
the sensor board (MIT) from SYSNAV company, the different discussed solutions were
evaluated under datasets that contained only one magnetic field measurements, and thus the
rest of the magnetometer array had to be simulated. While the theoretical array has enabled
conducting the different performance validations, it does not entirely reflect the complexity
of the magnetic field disturbances observed indoor, therefore it may introduce additional
errors in the estimation process.

The different challenges discussed above encourage the following future work

• Further investigations on the observability conditions of the proposed navigation model may
reveal the exact cases where the observability matrix becomes deficient. This can be done
with a more precise understanding on the relationship between the ranks of the magnetic
field gradient and the hessian matrices as well as their correlations with attitude and veloc-
ity.
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It is reminded that, in challenging conditions such as the low magnetic field gradient case
or static and quasi-static periods, attitude observability is the most influenced because of
angular rate’s noise and bias. A preliminary consideration in this case recalls the QSF ap-
proach that is discussed in the beginning of this thesis. Such technique enables not only the
detection of this quasi-static periods where the magnetic field’s magnitude and direction are
constant, but it also uses them as measurements in an EKF filter, to mitigate gyroscope errors
and consequently, better estimate the attitude. It is believed then, that the proposed solutions
in this thesis that rely on the magnetic field’s spatial gradient, and the QSF technique that
rather considers the temporal one, are very complementary. Whether the trajectory is highly
dynamic or almost static, the combination of both approaches can cover all possible scenar-
ios, and may guarantee, an all-time observability on the states and remarkable estimation
results;

• Sensors’ biases and especially that of the gyroscope has to be modeled and subtracted from
the angular rate measurements in order to lower its effect on attitude estimation, mainly
when observability issues are encountered. A preliminary work has been done in this sense,
inspired by Ref. [Brossard2020c], where authors propose a learning method for denoising
gyroscopes using ground truth data, a neural network based on dilated convolutions, and a
proper loss function. In a similar manner, and as an initial work, a BiLSTM-based network
has been designed to receive noisy and biased gyroscope measurements as an input, and
true angular measurements deduced from ground truth attitude as an output. Consequently,
the BiLSTM learns a model that enables the prediction of true angular rate values when-
ever it is given noisy and biased measurements from the gyroscope. The main challenge
encountered in such solution is obtaining true angular rates from ground truth attitude, as
the latter is usually acquired from a motion capture system which itself, suffers from noise
and occasional "bugs". Any pre-processing of this ground truth data may filter-out valuable
information, that cause a change in the actual orientation and consequently a different tra-
jectory is obtained. Further work is then expected in this sense to figure out how to handle
such constraints;

• A sophisticated tuning of the EKF’s process and measurement noise covariance ma-
trices is mandatory to ensure its optimal performance. A profound review of state-
of-the-art works have shown numerous solutions to treat this problem, such as adap-
tive Kalman filtering Refs. [Hashlamon2020, Akhlaghi2017, Yang2006], optimization
techniques Refs. [Chen2018b, Kaur2016b, Kaur2016a, Karasalo2011], machine learn-
ing Ref. [Abbeel2005] and reinforcement learning through the Q-learning method
Ref. [Xiong2020]. An attempt to apply such technique on a simplified navigation model,
focusing only on quaternion and gyroscope bias estimation, has been conducted. Never-
theless, no significant improvement compared to the hand-tuning case is obtained. Further
investigations must be performed to better understand the reasons for such initial results;

• If no sensor board containing the desired magnetometer array is available, one would have
to simulate different magnetic fields from one magnetometer’s measurements in a rigorous
way, in order to have a complete benchmark for evaluations when performing magneto-
inertial navigation. To do so, the spherical harmonic expansion of the Earth’s magnetic
field can be explored as conducted in Refs. [Tóth2011, Roithmayr2004, Tikhonov2002,
Granzow1983], which may greatly serve in providing adequate and close to reality mea-
surements from a theoretical magnetometer array.
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Magnetometer Array-Based Indoor Navi-
gation Using Kalman Filter

Résumé
Cette thèse porte sur la navigation intérieure sans GPS, en se basant uniquement
sur des capteurs magnéto-inertiels à bas coût, et sans l’utilisation d’une cartogra-
phie préalable du champ magnétique, ou une infrastructure dédiée. L’idée principale
est d’utiliser les perturbations du champ magnétique présentes à l’intérieur des bâ-
timents pour générer non seulement une estimation de la vitesse, mais aussi de
l’attitude et de la position de l’objet mobile étudié, permettant ainsi de reconstruire
toute trajectoire effectuée. Pour ce faire, les dérivées spatiales du champ magné-
tique sont explorées à travers un réseau de magnétomètres spécifique. À partir de
ce réseau, le gradient du champ magnétique est déterminé à travers des approxi-
mations. Ainsi, il présente des incertitudes et du bruit. Pour cette raison, un modèle
de navigation magnéto-inertielle standard (MINAV) a été amélioré en introduisant
une nouvelle équation qui décrit la dynamique du gradient du champ magnétique.
Le nouveau modèle proposé se démarque des modèles habituels utilisés dans la
littérature correspondante, car il capture pleinement la richesse des variations du
gradient du champ magnétique, et permet de réduire ses incertitudes et son bruit.
Ensuite, différents algorithmes basés sur le filtre de Kalman étendu (EKF) sont im-
plémentés, pour mettre en œuvre le modèle proposé. Néanmoins, les performances
de l’EKF se dégradent sous certaines conditions, principalement liées à la qualité
des mesures. Par conséquent, il est nécessaire de le combiner avec la technique
de la mise à jour de la vitesse nulle (ZUPT), dans le cas où le capteur est sur le
pied, ou les réseaux de neurones profonds (DNNs) dans un cas plus général.
Les algorithmes proposés sont évalués non seulement sur des données simulées
mais aussi sur un benchmark expérimental utilisant un réseau de capteurs réels en
présence d’équipements de vérité-terrain. Les résultats obtenus illustrent l’apport
de cette thèse sur l’estimation de la vitesse et par conséquent sur la reconstruction
de trajectoires.

Mots-clés : Navigation intérieure, réseau de magnétomètres, capteurs iner-
tiels, filtre de Kalman étendu, intelligence artificielle

Abstract
This thesis focuses on GPS-free indoor navigation using only strapdown low-cost
magneto-inertial sensors and without relying on any prior-mapping of the magnetic
field, nor on a dedicated infrastructure. The main idea is to take advantage of the
magnetic field’s disturbances present indoor to generate not only a velocity estimate,
but also attitude, and position of the moving body under study, enabling therefore the
reconstruction of any performed trajectory. To do so, the spatial derivatives of the
magnetic field are explored throughout a specific set of a magnetometer array. From
this array, the magnetic field gradient is determined using approximation methods.
It follows that it suffers from uncertainties and noise. For this reason, a standard
Magneto-Inertial Navigation (MINAV) model is enhanced by introducing a new equa-
tion that describes the magnetic field gradient dynamics. The new proposed model
stands out from the usual ones used in the corresponding literature, as it fully cap-
tures the richness of the magnetic field gradient variations, and enables reducing its
uncertainties and noise. Then, different algorithms based on Extended Kalman Fil-
tering (EKF) are implemented, to make use of the proposed model. Nevertheless,
the performance of the EKF is degraded under certain conditions, mostly related
to measurements quality. Therefore, it becomes necessary to combine it with the
Zero-velocity Update Technique (ZUPT), in the case of foot-mounted navigation or
Deep Neural Networks (DNNs) in the more general case. The proposed algorithms
are assessed not only on simulated data but also on a real experimental benchmark
using a sensor array, in presence of ground truth equipment. The obtained results
illustrate the contribution of this thesis on the velocity estimation and consequently
on the trajectory reconstruction.

Keywords : Indoor navigation, magnetometer array, inertial sensors, ex-
tended Kalman filter, artificial intelligence
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