N
N

N

HAL

open science

Predictive models by consensual aggregation and
applications
Sothea Has

» To cite this version:

Sothea Has. Predictive models by consensual aggregation and applications. Machine Learning
[stat.ML]. Sorbonne Université, 2022. English. NNT: 2022SORUS229 . tel-03850725

HAL Id: tel-03850725
https://theses.hal.science/tel-03850725

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-03850725
https://hal.archives-ouvertes.fr

)

B SORBONNE I—pSM ]

. . Université
b UNIVERSITE pl el e

Paris Cité

SORBONNE UNIVERSITE
Ecole Doctorale de Sciences Mathématiques de Paris Centre

Laboratoire de Probabilités, Statistique et Modélisation
LPSM, UMR 8001

THESE DE DOCTORAT

Discipline : Mathématiques

présentée par

Sothea HAS

MODELES PREDICTIFS PAR AGREGATION CONSENSUELLE
ET APPLICATIONS

Soutenue le 11 juillet 2022 devant le jury composé de :

Christophe BIERNACKI  Professeur, Université de Lille Rapporteur
Randal Douc Professeur, Télecom SudParis Examinateur
Aurélie FISCHER Maitre de conférences, Université Paris Cité Directrice de these
Liliana FORZANI Professeur, Universidad Nacional del Litoral Rapporteur
Emilie LEBARBIER Professeur, Université Paris Nanterre Examinatrice
Mathilde MOUGEOT Professeur, ENSITE Directrice de these
Stéphane ROBIN Professeur, Sorbonne Université Examinateur
Rapporteurs :

Christophe BIERNACKI  Professeur, Université de Lille
Liliana FORZANI Professeur, Université Nacional Del Litoral






Modeles prédictifs par agrégation consensuelle
et applications






@%mnefmimnm\tb

Je peux enfin officiellement montrer a quel point j’ai été reconnaissant pendant
toutes ces années de these! Ce fut une période difficile, mais certainement la plus
belle et la plus précieuse de ma vie. Cette expérience de vie incroyable a pu étre
accomplie grace a de nombreuses personnes, en particulier celles qui m’ont donné
I'opportunité de commencer mon parcours de recherche et celles qui m’ont aidé,
soutenu et ont toujours cru en moi.

Tout d’abord, je tiens a remercier mes deux encadrantes, Mathilde Mougeot et
Aurélie Fischer, pour leur patience et leur pédagogie. Je suis reconnaissant pour
tous les conseils techniques et humains que vous m’avez donnés au cours de cette
these. Je tiens également a remercier le directeur et le comité de recrutement du
LPSM pour m’avoir donné la chance de faire une theése de doctorat au laboratoire.
Merci aux rapporteurs et aux membres du jury pour le temps précieux qu’ils ont
consacré a 1’évaluation de ma these et & ma soutenance. De méme, tout serait tres
difficile sans Nathalie et Valérie, les secrétaires du LPSM a Sophie Germain. Je
vous remercie pour toute votre aide, notamment pour m’avoir prété la clé de mon
bureau, car j’avais tendance a oublier la mienne a mon retour de vacances.

Ces trois années de theése n’auraient pas été si savoureuses sans tous mes amis
de Sophie Germain : Assaf, Aaraona, Barbara, Benjamin, Bohdan, Clément,
Come, Cyril, Enzo, Fabio, Guillaume C., Guillaume S., Hiroshi, Houzhi, Ibrahim,
Junchao, Laure, Luca, Lucas, Marc, Maximilien, Mohan, Simon, Sylvain,
William, Xuanye, Yann, Yiyang and Ziad. J’ai beaucoup appris de vous sur la
musique, la cuisine, les cultures et les langues. Merci pour toutes les discussions
significatives a l'intérieur ou a l'extérieur de la recherche.

De plus, je tiens a exprimer ma gratitude envers tous les professeurs qui m’ont
encouragé et m’ont donné 'opportunité de partir en France : Brigitte Lucquin,
Michel Jambu, Pierre Anoux, Randal Douc, Thomas Lim and Vathana Ly Vath.
Enfin, merci & tous mes amis, et bien stir a ma famille pour les encouragements, le
soutien et pour avoir toujours cru en moi. Tout cela compte tellement pour moi.



Thambs

Finally, I can officially show how grateful I have been during all these years of my
PhD thesis! It was the most struggling, yet beautiful and precious time of my life.
This amazing life experience was accomplished thanks to many people including
those who gave me the opportunity to start my research journey, and those who
always help, support and believe in me.

First of all, I would like to thank both of my supervisors, Mathilde Mougeot
and Aurélie Fischer, for being patient and instructive with me in this journey. I am
very grateful for all the advises given to me during my thesis both technical and
nontechnical. Secondly, I would like to thank the director and recruiting committee
of LPSM for giving me an opportunity to do my PhD research in the laboratory.
Thanks also to the referees and members of the jury for the precious time they
devoted to the evaluation of my thesis and my defense. Likewise, everything
would be difficult without Nathalie and Valerie, the secretaries of LPSM at Sophie
Germain. Thank you for your help, especially for lending me the key of my office
as I tended to forget mine after coming back from holidays.

These three years of my thesis would not be this flavorful without all of my
friends at Sophie Germain: Assaf, Aaraona, Barbara, Benjamin, Bohdan, Clément,
Come, Cyril, Enzo, Fabio, Guillaume C., Guillaume S., Hiroshi, Houzhi, Ibrahim,
Junchao, Laure, Luca, Lucas, Marc, Maximilien, Mohan, Simon, Sylvain, William,
Xuanye, Yann, Yiyang and Ziad. I learned a lot from you guys, about music, food,
cultures and languages. Thank you guys for many meaningful discussions inside
and outside research.

More gratefully, I would like to express my gratitude to all professors who
supported and gave me an opportunity to start my journey in France: Brigitte
Lucquin, Michel Jambu, Pierre Anoux, Randal Douc, Thomas Lim and Vathana
Ly Vath. Lastly, many thanks to my friends outside Sophie Germain, and more
importantly to my family for the encouragements, supports and beliefs. It means
so much to me.



(ESTSHISCHRNIHRS

D o

B SMDAN BIEIMIS SRR SRS B SERSeINATSMIRRN BNSEhs
v 1

v [2) "\I-’ ?
D v &
DRDANSIES I NUDE RSN BRIS: 1 HDsthinasssan Santenes tefmm:nass Bra

Q > o o D °
S B ST E DR A BB S SN FINISRIS: (5555 0n
] v

l% I = D X Q

BmSEAIEMAS st et e s §his @9 S ShDRS s mfts 9
1

&

o, ° D o 534 3 o o .
METY SRR EHMISISANTZIN S BSRSTILRMSFTINISSA Mathilde Mougeot
1 v 1

D

r7- . ? D DD o o
89 Aurdlie Fischer 38n5tsaisinns’ 81 U@mga:g@ﬁmmmmmﬁﬁgﬁ O RIRIMS
v 1
10 QA

BOSSUS SQIBSTENIERUIDMISH 1§ SANSISIFHSINS 1 DSHDBA SAISHIBANCAT
! 1

Ve—b 5

9,

Q

R N o D [T & D, | =
DS S5 BBIVSSONREM IS EITATSBSMIaNDS LPSM 805 SBgm testss

Zc

! ° SV Q SN < 1 Y ! Q
JIE HRIMIEMIATN @mi@igbﬁ§mmmsmo 1HDPIGTE FIPNASTHBSM B

-
N

9B SIS S NiannE et Nis At 80 B massnms Sophie Germain & Nathalie
81 Valérie 38053 suimnmsas @Rsnpm gy miasns a1 Siants@h s esaniggam
N 1 1 1
1 o o, 1 i [ Q
ST ANMI NSRS STF S TE SN S0 GRS B A5
Ul 3 o D I o D
BHUSISIS IDsNDE IS RGN BSAIIM SIS 81 M A EasSEHTes 15
@S%@ﬁﬁgﬁiﬂﬁﬁﬁﬁ&éﬁbﬁﬁ&@u‘jt?ﬁ? Ashaaf, Aaroan, Barbara, Benjamin, Bohdan,
1
Clément, Come, Cyril, Enzo, Fabio, Guillaume C., Guillaume S., Hiroshi, Houzhi, Ibrahim,
Junchao, Laure, Luca, Lucas, Marc, Maximilien, Mohan, Simon, Sylvain, William, Yann,
. Q . o o N IR o ! N
Yiyang 8% Ziad 391812 9 SIS E1@S0MEINFRONIIEED 5(S HUsITMI
= Y ' °
sy 8 manmidys 9 ssssanaEimidmen S sssasmeiuny 819 sEImsadmn
1
E3Ens 4
Xy NG o o & D X Q o o 1 DO
MDA PTG TR GRIO AT IS RTRIIBANEIN SN ERHEA BN EDELY

-~
1

Q | = o I Y 0o S > Q o o
msgwﬁ@gg ISiY gmzmm@g,mmmmgmmaﬁtmsm;bmm&mqub Treasmnaes:
JBMS YO Brigitte Lucquin, Michel Jambu, Pierre Anoux, Randal Douc, Thomas Lim 8

o

Vathana Ly Vath 4 $i8esmhmdbensess SagssssmonSnsBanneinsnsem htamgn

‘\I-’ v 1 [2) (2] =
1 o [ U o o 1
EsEANIBRIST AR EISRIREE 5(G 81 10 NMIE s mTIsASIIABE
1 N I ]

i mnse Sase S B a @138

1

~






Contents

Introduction 9
1.1. Présentation de la these . . . . . . .. ... .. ... ... ..... 9
1.2. KFC : Une prédiction par cluster basée sur I'agrégation des distances 12
1.3. Une méthode d’agrégation a noyau pour la régression . . . . . . .. 14

1.4. Agrégation en grande dimension basée sur des projections aléatoires 17

Introduction 21
1.1. Thesis presentation . . . . . . . ... ... oL 21
1.2. KFC: A clusterwise prediction based on aggregation of distances . . 24
1.3. A Kernel-based Consensual Aggregation for Regression . . . . . .. 26
1.4. Consensual Aggregation on Random Projected Features . . . . . . . 29

2. KFC: A clusterwise prediction based on aggregation of distances 33
2.1. Introduction . . . . . . ... 35
2.2. Definitions and notations . . . . . .. ... ..o 36
2.3. Bregman divergences and K-means clustering . . . . . ... .. .. 37

2.3.1. Bregman Divergences . . . . . . . .. ... ... ... 37
2.3.2. Bregman Divergences and Exponential family . . . . . . .. 38
2.4. Consensual aggregation methods . . . . . . . .. .. ... ... ... 40
2.4.1. The original consensual aggregation . . . . . . . .. ... .. 40
2.4.2. Consensual aggregation combined to input distance . . . . . 43
2.5. The KFC procedure . . . .. .. . .. .. ... ... ........ 43
2.6. Simulated data . . . . . ... o L 44
2.6.1. Description . . . . . ... 45
2.6.2. Normalized Mutual Information . . . . . . ... .. ... .. 47
2.6.3. Numerical results . . . . .. .. ... ... 49
2.7. Application . . . . . ... 56
2.7.1. Air compressor data . . . . .. ... 56
2.7.2. Wind Turbine data . . . . . . . ... ... ... .. 58
2.8. Conclusion . . . . . . . . 60



Contents

3. A kernel consensual aggregation for regression 61
3.1. Imtroduction . . . . . . . . ... 62
3.2. The kernel-based combining regression . . . . . ... ... ... .. 63

3.2.1. Notation . . . . . . ... . L 63
3.2.2. Theoretical performance . . . . . . . ... ... ... ... 65
3.3. Bandwidth parameter estimation using gradient descent . . . . . . . 67
3.4. Numerical experiments . . . . . . . ... ... ... 70
3.4.1. Simulated datasets . . . . .. ... ... ... ... ... 70
3.4.2. Real public datasets . . . . . ... ... ... ... ... 75
3.4.3. Real private datasets . . . . . . ... ... ... ... ... 75
3.5. Application on a data of Magnetosphere- Ionosphere System
provided by CEA . . . . . . ... 76
3.6. Conclusion . . . . . . . . . ... ... 79
3.7. Proofs . . . . ... 80
3.7.1. Lemma of Binomial distribution . . . . . .. ... ... ... 80
3.7.2. Proof of proposition 1 . . . . ... ... 81
3.7.3. Proof of proposition 2 . . . ... ... 82
3.7.4. Proof of theorem 1 . . . . . ... ... ... ... ...... 94
3.7.5. Proofof remark 1 . . . . .. .. .. ... ... ... 98

4. Aggregation on random projected features for regression 101
4.1. Introduction . . . . . . . .. ... 102
4.2. The aggregation method . . . . . . ... ... ... ... ... .. 104

4.2.1. Notation . . . . . . . ... ... 104
4.2.2. Random projection: Johnson-Lindenstrauss Lemma . . . . . 104
4.2.3. Aggregation on randomly projected features . . . . . .. .. 106
4.3. Theoretical performance . . . . . . . ... ... .. ... ... 107
4.4. Numerical simulation . . . . .. ... .. ... ... ......... 108
4.4.1. Simulated datasets . . . . . ... ... .. L. 109
4.4.2. Real datasets . . . . ... .. ... ... ... ... ... . 113
4.5. Conclusion . . . . . . . . ... 116
4.6. Proofs . . . . . . .. 116
4.6.1. Proof of proposition 4.1 . . . . .. ... ..., 116
4.6.2. Proof of Theorem 4.1 . . . . . . . ... ... ... ... ... 117

Conclusion and perspectives 121

Annexes 123
A. Additional numerical results of Chapter 3 by including XGBoost . . 124

A.1.  Simulated datasets . . . . .. .. ... ... ... .. ..., 124



Contents

A2, Realdatasets . . . . . . . . .. 124






Introduction

1.1. Présentation de la thése

Quand j'étais petit, j'aimais regarder des films et des séries d’enquétes
criminelles. L’une de mes séries historiques chinoises préférées concernait un
célebre médecin légiste nommé Song Ci, qui a résolu plusieurs crimes en
rassemblant et en combinant des cas historiques de ses expériences médico-légales
(Asen [2]). Dans I’histoire, il a été président des hautes cours chinoises pendant
de nombreux mandats, et il a également écrit le livre Cas Collectés d’Injustices
Réparées dans le but d’éviter les erreurs judiciaires. “Les gens peuvent mentir,
mais pas les cadavres, nous avons juste besoin de méthodes appropriées pour les
questionner!”!, a-t-il dit. J'ai été tellement inspiré par cette phrase a 1’époque.
Plus tard, cette phrase m’est revenue lorsque j’ai suivi un cours d’analyse de
données pour la premiere fois. Pour moi, il en va de méme pour les cadavres et la
statistique fournit des méthodes pour les questionner.

Les données sont un ensemble d’informations collectées grace a des
expériences, des sondages... On peut s’appuyer sur elles pour trouver une
solution a de nombreux problémes de la vie réelle tels que la prise de décision, la
prédiction et 'exploration de la structure sous-jacente de la communauté étudiée.
L’apprentissage statistique vise a extraire des informations a partir de données.
Il peut étre classé en deux branches principales : 'apprentissage supervisé et
I’apprentissage non supervisé. L’objectif de DI'apprentissage supervisé est de
modéliser la relation entre un groupe de variables appelées entrées ou variables
explicatives, et la variable d’intérét, sortie ou variable de réponse, afin d’effectuer
ensuite des prévisions. En d’autres termes, I'apprentissage supervisé fournit une
réponse a la question :  “Quelle serait la valeur de sortie pour cette entrée?”. En
apprentissage non supervisé, il n’y a pas de sorite, c’est une technique

exploratoire : on cherche a comprendre la structure des données. En
classification non supervisée ou clustering, il s’agit par exemple de mettre en
évidence un partitionnement des données. Les procédures de réduction

dimensionnelle, consistant a représenter des données dans des espaces de
dimension inférieure, préservant certaines caractéristiques telles que la variation

!Cette phrase a été dite par Song Ci dans une scéne de la série, mais aucune référence officielle
n’a été trouvée.



Introduction

le long de chaque direction ou les distances entre les points de données
individuels, peuvent également étre rattachées a I’apprentissage non supervisé.

En apprentissage statistique supervisé, on dispose de n copies indépendantes
et identiquement distribuées (iid): (Xi,Y1),(Xs,Y2), ..., (X,,Y,), d'un couple
générique entrée-sortie (X,Y). On cherche a prédire la valeur de la sortie Y a
partir de la valeur de l'entrée correspondante X. Autrement dit, on souhaite
estimer une fonction f telle que f(X) ~ Y dans un certain sens. Cette fonction f
est construite a partir des observations disponibles, puis peut étre utilisée pour
estimer la sortie de toute nouvelle donnée d’entrée. Lorsque la sortie Y prend des
valeurs réelles (telles que la masse, le poids, la taille, etc.), il s’agit d’un probleme
de régression. Si Y prend des valeurs discrétes dans un ensemble fini (par
exemple, lorsqu’on veut prédire si un email est un spam ou non, s’il va pleuvoir
ou pas demain, ou en reconnaissance de caracteres quand on cherche a affecter
une étiquette parmi les chiffres manuscrits : 0,1,...,9, etc.), on est en présence
d’un probleme de classification. En apprentissage non supervisé, on observe
uniquement des données Xi, Xs,...,X, et on cherche a en extraire une
information pertinente.  Ainsi, en clustering, le but est de regrouper les
observations en un certain nombre de classes en fonction de leurs similitudes,
sans qu’il existe d’étiquette définie a ’avance comme classification supervisée.

Dans cette theése, nous mnous intéressons principalement a des méthodes
d’apprentissage supervisé. L’apprentissage non supervisé est également présent,
notamment via la combinaison de méthode d’apprentissage statistique supervisé
et non supervisé. La majeure partie des travaux exposés dans le manuscrit
concerne des méthodes d’agrégation de prédicteurs. Précisément, mnous
considérons des stratégies de combinaison d’un nombre donné de prédicteurs,
basées sur une notation de consensus entre ces prédicteurs. Une idée clé dans les
méthodes d’apprentissage supervisé consiste a partir du principe que, lorsque
deux points dans les entrées sont “proches” au sens d’une certaine mesure de
distance, leurs valeurs de sortie auront également tendance a étre proches. Ainsi,
pour prédire la réponse y associée a une observation x, il peut étre utile
d’identifier les voisins (dans l'espace d’entrée) de cette observation. Ensuite, la
prédiction finale est une moyenne, éventuellement pondérée ou un vote a la
majorité parmi les “valeurs de sortie” de ces voisins, selon le contexte du
probléeme (régression ou classification). Les méthodes d’agrégation considérées ici
sont basées sur le méme principe général de recherche d'une distance pertinente
entre les sorties. Plus précisément, pour prédire la valeur de sortie d’une nouvelle
observation x, on sélectionne les données d’apprentissage dont les “prédictions”
(par les estimateurs initiaux), sont proches dans un certain sens des prédictions
pour z. Ensuite, la prédiction est calculée sur la base des valeurs de sortie réelles
des voisins ainsi obtenus. En d’autres termes, la recherche des voisins d’une

10



1.1. Présentation de la thése

observation se fait dans ’espace des prédictions au lieu de ’espace d’entrées. Ce
type de technique d’agrégation est utilisé, par exemple, dans
Mojirsheibani [66, 67, 68], Balakrishnan et Mojirsheibani [5], et Mojirsheibani et
Kong [69] pour la classification, Biau et al. [9] pour la régression, et Fischer et
Mougeot [33] pour les deux cadres.

Dans les sections suivantes de ce chapitre, nous proposons une présentation
concise des résultats de ce manuscrit. La section 1.2 présente une méthodologie
en trois étapes qui fait l'objet du chapitre 2 appelée la procédure KFC
(K-means/Fitting/Combining), permettant de construire un modele prédictif. La
premiere étape repose sur un clustering K-means des entrées, basé sur des
divergences de Bregman. La deuxiéme étape consiste a estimer un modele
spécifique a chacun des groupes, pour chaque partitionnement obtenu. La
troisieme étape est une étape d’agrégation au cours de laquelle sont combinés les
différents modeles construits sur les structures des clustering différentes données
par la premiere étape. Plusieurs simulations numériques sont fournies a la fin de
ce chapitre pour illustrer les bonnes performances de la procédure, en particulier
sur les données énergétiques. Ensuite, la section 1.3 qui fait 'objet du chapitre 3,
examine les propriétés théoriques de la méthode d’agrégation pour la régression
(implémentée dans la derniere étape de la procédure KFC que l'on vient de
présenter).  Elle est une généralisation de la stratégie de combinaison de
régresseurs introduite par Biau et al. [9] & des noyaux plus généraux. Nous
étudions les performances théoriques de la méthode d’agrégation pour une large
classe de fonctions noyau et montrons que l'estimateur combiné surpasse
asymptotiquement le meilleur estimateur convergent de la liste. D’un point de
vue pratique, nous proposons dans ce chapitre une méthode d’optimisation basée
sur l'algorithme de descente de gradient pour calibrer I'hyperparametre de la
méthode.  Cette procédure s’avere beaucoup plus rapide que l’algorithme
classique de recherche sur une grille. Plusieurs expériences numériques qui ont
été implémentées sur différents types de jeux de données simulées et réelles sont
fournies dans ce chapitre. De plus, 'intérét de la méthode est également illustré
dans une application sur des données du systeme Magnétosphere-lonosphere
fournies par des chercheurs du Commissariat & I'Energie Atomique (CEA).
Comme l'estimateur combiné hérite asymptotiquement des propriétés de tout
estimateur convergent présent dans la liste initiale, il peut sembler intéressant
d’inclure un grand nombre d’estimateurs. Cela peut néanmoins conduire a une
situation de grande dimension dans l’espace des prédictions. Par conséquent, la
section 1.4 qui fait 'objet du chapitre 4 étudie plus en détail les performances en
grande dimension d’une technique d’agrégation basée sur un noyau exponentiel
introduite dans le chapitre précédent. Ici, la grande dimension concerne le
nombre d’estimateurs a combiner et non la dimension de l'espace d’entrées. La

11
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méthode est composée de deux étapes : le vecteur de prédictions, de grande
dimension, est d’abord projetés dans un sous-espace plus petit a 1’aide d’une
projection aléatoire de type Johnson-Lindenstrauss, puis la méthode d’agrégation
est implémentée sur les projections obtenues. Nous nous intéressons a deux
aspects importants d’agrégation. Tout d’abord, nous montrons théoriquement
que les performances de la méthode implémentée sur les prédictions projetées
sont proches de la méthode non projetée, avec une grande probabilité.
Deuxiemement, nous illustrons numériquement que la méthode d’agrégation
conserve ses bonnes performances sur un nombre de prédictions fortement
corrélé. La méthode fonctionne pratiquement bien sur des prédicteurs construits
simplement sans sélection de modele ni validation croisée. De plus, la méthode
d’agrégation projetée est beaucoup plus efficace en vitesse de calcul. Nous
fournissons a la fin de chaque chapitre les codes sources (dans GitHub) de la
méthode proposée implémentée dans le logiciel R. Enfin, une conclusion générale
présente quelques perspectives pour cloturer cette these.

1.2. KFC : Une procédure d’apprentissage supervisé
basée sur I'agrégation de distances

L’objectif principal de I'apprentissage statistique supervisé est la prédiction. A
cet effet, de nombreux modeles prédictifs ont été élaborés et largement utilisés
pour résoudre divers problemes de prédiction. Idéalement, on souhaite un modele
avec une bonne capacité de généralisation. Cependant, les performances d’une
modele prédictif dépendent de la qualité des données d’entrainement fournies, un
modele peut avoir une bonne performance prédictive sur un jeu de données
particulier, mais mal fonctionner sur d’autres jeux de données. La connaissance
de la structure des données, notamment une structure de groupes sur les entrées,
peut aider a construire un bon modele prédictif. Malheureusement, cette
connaissance n’est pas toujours possible, pour des raisons d’anonymisation des
données par exemple. Dans ce contexte, nous proposons dans la premiere partie
de cette these, une stratégie prédictive en trois étapes appelée Procédure KFC,
basée sur 'approximation de la structure des données d’entrée et la combinaison
de plusieurs méthodes d’estimation. La procédure s’inspire des problemes réels
dans lesquels les données d’entrée consistent en plusieurs groupes pouvant
correspondre a des données contextuelles cachées ou indisponibles et les modeles
sous-jacents sur les différents groupes ne sont pas nécessairement les mémes. La
figure 1.1 ci-dessous fournit un exemple de jeu de données avec différentes
relations d’entrée-sortie locales sur différentes classes.

Dans ce type de situation, il peut étre intéressant de construire un modele en

12



1.2. KFC : Une prédiction par cluster basée sur I'agrégation des distances
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Figure 1.1.: Un exemple de données simulées avec trois clusters, et il existe
différents modeles (linéaires) sous-jacents sur ces clusters.

deux étapes: la structure de groupes des données d’entrée est estimée dans la
premiere étape, puis un modele prédictif simple est ajusté pour chaque groupe
observé dans la deuxiéme étape. Une telle approche a déja été appliquée dans
de nombreux problemes réels de prédiction de certaines quantités physiques, par
exemple, pour approximer les courbes d’évolution dans le temps dans le contexte
de l'industrie nucléaire par Auder and Fischer [3], pour prévoir la consommation
d’électricité a I'aide de modeles de mélange pour la régression en grande dimension
par Devijver et al. [27], et la régression PLS par Keita et al. [56]. Cependant, la
performance finale d’une telle procédure peut dépendre fortement de ’étape de
clustering. Or, trouver une configuration appropriée de structure de groupe dans
la premiere étape n’est pas une tache facile et peut nécessiter une exploration
approfondie des données. La procédure KFC propose une solution a cette question,
en considérant plusieurs partitionnements et en agrégeant, dans la troisiéme étape,
les modeles obtenus. En résumé, les trois étapes K/F/C de la procédure signifient
K-means/ Fitting/ Combining. Plus précisément, un algorithme de clustering K-
means avec différentes divergences de Bregman (voir, par exemple, Banerjee et
al. [7], Bregman [13] et Fischer [32]) est effectué dans la premiere étape de la
procédure. Différentes divergences de Bregman peuvent conduire a différentes
structures de groupe des données d’entrée (voir la figure 1.2). Ainsi, a la fin
de I'étape K, on dispose de plusieurs structures de groupes des données d’entrée.
Ensuite a ’étape F, pour chaque divergence de Bregman, un modele prédictif local
simple est ajusté sur chaque groupe, conduisant a un modele global, constitué
de tous les modeles locaux. A la fin de I’étape F, plusieurs modeles globaux
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correspondant aux différentes divergences de Bregman, utilisées dans I’étape K, ont
été construits. Finalement, I’étape C' combine tous les modeles globaux construits
a ’aide des méthodes d’agrégation présentées dans la section 1.3. Des expériences
numeériques mises en ceuvre sur plusieurs ensembles de données simulées et réelles
illustrent Defficacité de la procédure dans de nombreux problemes de prédiction. De
plus, les expériences sur certains jeux de données réels montrent que le nombre de
clusters, qui est le parametre le plus important dans les problemes de classification
non supervisée, peut étre surestimé sans affecter les performances de la méthode.
La construction de la procédure est résumée dans la figure 1.3 ci-dessous. Ces
travaux ont été publiés dans Journal of Statistical Computation and Simulation
(Has et al. [48]).

Exponential Data Euclidean GKL Logistic Itakura-Saito
200 200
150 150
100 100

50 50

Euclidean
25 T* 25

T T
0 5 10 20

2D Gaussian Data Euclidean

Figure 1.2.: L’algorithme K-means avec différentes divergences de Bregman (en
colonne) sur différentes données simulées (en ligne).

1.3. Une méthode d’agrégation a noyau pour la
régression

L’objet de ce chapitre est I’étude théorique d’une méthode d’agrégation basée sur
un noyau, pour les problemes de régression. Cette méthode est une extension de
la procédure d’agrégation pour la régression basée sur le noyau a fenétre glissante
introduite par Biau et al. [9].

La méthode agrege un certain nombre d’estimateurs de régression en
fonctionnant comme une méthode a noyau implémentée sur les prédictions
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EtapeF ‘Ml,la---aMl,K‘ ‘M2,1, ,M2,KF+MM,1,---,MM,K‘

Etape C Agregatmn

Figure 1.3.: Les étapes principales de la construction du modele: pour chaque
divergence de Bregman B,,, un modele M,, ; est ajusté par classe
k, puis les modeles correspondant aux différentes divergences sont
combinés.

fournies par ces estimateurs de base. Cette stratégie s’inspire des méthodes
d’agrégation en classification introduites dans Mojirsheibani [66, 67, 68],
Balakrishnan et Mojirsheibani [5], et Mojirsheibani et Kong [69].  Plus
précisément, étant donné un ensemble de données d’entrée-sortie d’apprentissage
D, = {(X1,Y1),...,(X,,Y,)} réalisations d'un couple (X,Y) a valeurs dans
R¢  x R on le divise aléatoirement en deux  sous-ensembles
Dp = {X" v, L (xP vy et D = (X1 7), L (x99} de
tailles k et E respectivement telles que k + ¢ = n. On considere M estimateurs de
base rq,...,ry, construits en utilisant uniquement les points de données de Dy.
Pour un point z € R%, on note ry(z) = (ry1(2), ..., 7ka(x)) le vecteur de toutes
les prédictions calculées par les estimateurs individuels. L’étape de combinaison
est alors effectuée en utilisant les données Dy. Pour z € R?, I'estimateur combiné
est défini par

gn(xi(w)) = D Waa(2) V. (1.1)

les poids W, ;(x) sont donnés par

mwa%—m»

]

Kn(rn(X;") = x4 ()

ou Kj(z) = K(x/h) pour un fenétre h > 0 avec la convention 0/0 = 0. Notons que
la méthode introduite dans Biau et al. [9] correspond aux poids simples suivants:

Wn,i (ZL’) =

i=1,2,..0 (1.2)

1 T r T .
Wm(x) _ eHm 1 H{Irk,m (Xi) =7k m(z)|<h} = 1’27 ,6 (13>
31 Tt L (%) —rn ) <h}
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D’un point de vue théorique, on montre que la stratégie d’agrégation fait
asymptotiquement au moins aussi bien que le meilleur régresseur individuel dans
le sens Ls. On a la propriété d’héritage d’agrégation

E[|ga(ri(X)) = n(X)[] < min E[frgm(X) — (X)) +V, (1.4)

— 1<m<M

ouV, = ]E[]gn(rk(X)) — n(rk(X))ﬂ , n(X) = E[Y]X] est la fonction de régression,

et n(ry(X)) = E[Y|ri(X)]. Le premier terme du membre de droite de (1.4) dépend
des performances du meilleur estimateur de base, tandis que le second représente
le prix a payer pour 'agrégation et converge vers 0 lorsque n converge vers I'infini.

Dans Biau et al. [9], le résultat est obtenu avec V,, = O(E_MLH). Notre objectif
est d’obtenir un résultat analogue, pour une grande classe de noyaux. Si on
suppose que les queues de la fonction noyau décroissent suffisamment
rapidement, sous les mémes hypotheses que dans Biau et al. [9], on obtient la
convergence de l'estimateur agrégé avec un résultat un peu plus faible sur V,.
Par exemple, si I'on suppose que K(z) < Ck exp(—||z]|*) pour un certain Cx > 0

et o > 0, on obtient V, = O(Fﬁﬁw), pour tout positif 5 < 1. On retrouve la
vitesse de Biau et al. [9] lorsque /8 tend vers 1.

D’un point de vue pratique, on observe des courbes convexes de fonction
d’erreur dans presque toutes les expériences numériques (voir la figure 1.4
ci-dessous). C’est pourquoi une méthode d’optimisation basée sur un algorithme
de descente de gradient est proposée pour estimer rapidement et efficacement le
parametre de lissage h. La fonction a minimiser est ’erreur de validation croisée
k-fold. En notant Fi, ..., F} blocs considérés, elle est définie par:

S =13 Y lgn(X) - VP (15

p=1(X;,Y;)EF,

ou ¢, (ri(X;)) = > (Xi,Y)EDA\F, W,.i(X;)Y:. De plus, des expériences numériques
réalisées sur plusieurs ensembles de données simulées et réelles illustrent
I’amélioration et l'accélération de la méthode grace a l'introduction
respectivement des noyaux plus lisses et d’un algorithme de descente de gradient.
Une application de la méthode a des données du systeme de
Magnétosphere-Ionosphere, étudié par des chercheurs du Commissariat a
I’Energie Atomique (CEA)?, est également proposée pour illustrer la flexibilité de
la stratégie d’agrégation dans un sens d’adaptation au domaine. Dans ce projet,
les distributions des données d’apprentissage et de test sont différentes en raison
du processus de filtrage des données, mais 'agrégation permet tout de méme de
fournir de tres bonnes prédictions. Enfin, un autre ensemble d’expériences

2Larticle coéerit de cette étude est disponible dans le journal de Frontier (voir Kluth et al. [58]).
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Error as function of parameter
I

15000 -

12000 -

Error

|
|
|
|
|
|
I
|
|
|
|
|
|
|
9000 - I
|
|
I
|
|
6000 - |
|

|

|

¢

|

3000 - ' ' ' ' '
0.000 0.025 0.050 0.075 0.100

Parameter

Figure 1.4.: La courbe convexe de la fonction d’erreur sur le donnée Boston
contenues dans le package MASS du logiciel R.

numériques réalisées sur un groupe similaire de données simulées et de données
énergétiques réelles est fourni dans les annexes a la fin de ce manuscrit pour
illustrer l'efficacité de la méthode de combinaison lorsqu’un trés bon estimateur
de base est présenté dans la liste.

1.4. Agrégation en grande dimension basée sur des
projections aléatoires

Le chapitre 4 explore les performances de la méthode d’agrégation étudiée dans
le chapitre précédent dans un contexte de grande dimension. Ici, la grande
dimension concerne ’espace des prédictions, en lien avec le nombre d’estimateurs
initiaux considérés dans la combinaison. On propose d’utiliser des projections
aléatoires dans ce contexte. On considere un noyau exponentiel. Vu la forme du
terme de variance avec un grand nombre d’estimateurs de base, on constate que
la vitesse de convergence peut étre lente du terme de variance (V,, dans (1.4)) du
risque quadratique. En pratique, il peut étre intéressant d’explorer la robustesse
de la méthode a la grande dimension, comme il est pratiquement démontré que
I’agrégation biaise vers le meilleur estimateur de la liste initiale.

Il est bien connu que travailler dans des espaces de grande dimension est une
tache difficile en raison du coiit de calcul élevé et de la malédiction de la
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dimension, qui fait référence a la situation ou la distance euclidienne perd son
sens. Pour surmonter ces problemes, une réduction de dimensionnalité basée sur
le lemme de Johnson-Lindenstrauss (J-L) est utilisée dans cette étude. Ce
résultat indique qu’il est possible de plonger un ensemble fini de points d’un
espace euclidien de grande dimension dans un espace de dimension plus petite en
préservant approximativement les distances euclidiennes entre les points. Une
projection aléatoire consiste a projeter des vecteurs en dimension d dans un
sous-espace de dimension k a ’aide d’une matrice aléatoire. Cette méthode est
tres efficace en vitesse de calcul et peut étre implémentée tres facilement. II suffit
de générer une matrice aléatoire et d’effectuer une multiplication matricielle.
Nous montrons théoriquement que les performances de la procédure d’agrégation
en utilisant des projections aléatoires sont proches de 'agrégation sur les données
originales, avec une grande probabilité.

Comme dans le chapitre 3, les estimateurs de base sont supposés étre
construits indépendamment des données utilisées pour la combinaison. La
matrice de prédiction donnée par tous les estimateurs de régression de base est
notée r(X) € R™M ol n est la taille de I'échantillon et M est le nombre
d’estimateurs (grand). Soit G = (Gij)i<i<mi<j<m une matrice de projection
aléatoire, ou les G;; ~ N(0,1/m) sont des variables aléatoires normales centrées
indépendantes de variance 1/m. Ici, m désigne la dimension de l'espace de
prédiction. Les projections obtenues via la projection aléatoire J-L sont calculées
par #(X) = r(X) x G. Pour tout * € RY avec le vecteur de prédictions
correspondant r(z) € RM et pour tout 6 € (0,1), avec probabilité au moins
1 —2nexp(—m(6%/2 — §%/3)/2), on a

—T(X9[P
— (X[

Hr@) 1| < 4§, pour tout r(X;) € r(X)
r(x

(z)

ou T(x) et ¥(X;) désigne les projections aléatoires de r(z) et r(X;) respectivement.

La procédure d’agrégation est composé de deux étapes : les prédictions de

grande dimension sont d’abord projetées aléatoirement dans un sous-espace plus

petit de dimension m en utilisant lemme de Johnson-Lindenstrauss, puis la

méthode d’agrégation est mise en ceuvre sur les prédictions projetées. Ainsi, la
prédiction en tout point z € R? du schéma d’agrégation est donnée par

izt Yilu (| (2 (z) — 7(X3)[])
Yo Kn([Ie(z) —2(X5)1)

Ici K(t) = exp(—t*/o) pour tout t > 0, ot o > 0 et a > 0.

Dans la suite, les méthodes d’agrégation implémentées sur les prédictions
originales et projetées sont appelées respectivement méthode complete et
projetée. D’un point de vue théorique, on s’intéresse aux performances de la

gn(F(2)) = (1.6)
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méthode projetée par rapport a la méthode d’agrégation complete. Si nous
supposons que les machines de base rq, s, ..., 757, et la variable de réponse Y sont
toutes bornées par une constante positive R, presque slirement, pour tout
e, h > 0 et pour tout n > 1, on a

P(ln(e()) ~ 53| > <) <1 [ 20 (- ") )

ot 01 = 3(2+ a)?(2R)*1*) /52, Ce résultat indique que pour tout &, h > 0, pour
tout 0 > 0 et n > 1, avec m > O(*220) on 4

P(19a(x(X)) = G (X)) > €] <

D’un point de vue pratique, plusieurs résultats numériques calculés sur
différents ensembles de données simulées et réelles illustrent expérimentalement
que lagrégation complete (1000 estimateurs) conserve une tres bonne
performance malgré ce contexte de grande dimension. De plus, les performances
des méthodes d’agrégation projetées sur des espaces de dimension beaucoup plus
petits sont majoritairement préservées par rapport a la méthode d’agrégation
complete, mais sont beaucoup plus efficaces en vitesse de calcul. Dans les
expériences ont été considérées non seulement des dimensions de projection de
Iordre de 100, 200, ...900, mais méme 2, 3, ...,9. La simulation est réalisée a I'aide
d’estimateurs de la régression tres fortement corrélés (construits en faisant varier
les valeurs des hyperparametres de chaque modele, sans sélection de modele ni
validation croisée), et les performances de l'agrégation restent robustes. La

RMSE of Boston data RMSE of Air Compressor data
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Figure 1.5.: Boites a moustaches des RMSE moyennes calculées sur des ensembles
de données réelles.

figure 1.5 contient les boites a moustaches (des 30 répétitions) des erreurs
quadratiques moyennes (RMSE) et des temps de calcul des estimateurs de base
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et des méthodes d’agrégation calculées sur deux jeux de données réels (Boston
et Air Compressor). Dans cette figure, les dix premieéres boites a moustaches
sont les meilleures et les pires performances de 5 types d’estimateurs candidats
de base : KNN, Elastic net, Bagging, Random Forest et Gradient Boosting. Les
boites a moustaches restantes sont les performances des méthodes d’agrégation
pour différentes dimensions de projection et la méthode complete. Les temps de
calcul des méthodes sont donnés dans la figure 1.6 ci-dessous.

Running time on Boston data Running time on Air Compressor data

Method

Figure 1.6.: Durées d’exécution des correspondantes a figure 1.5.
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1.1. Thesis presentation

Back in my childhood, I loved watching movies and series of crime investigation.
One of my favorite historical Chinese series was about a famous forensic medical
scientist named Song Ci, who solved several crimes by collecting and combining
historical cases of his forensic experiences (Asen [2]). In history, he served as a
presiding judge in the Chinese high courts for many terms, and he also wrote the
book Collected Cases of Injustice Rectified, with the purpose of avoiding
miscarriage in justice. “People may lie but corpses don’t, we just need suitable
methods to question them!”?, said he in a scene of the series. I was inspired so
much by this phrase back in the days. Later, this phrase came to me again when
I took my very first Data Analysis course in the first year of my master’s degree.
To me, data are the same as corpses, and statistic provides methods to question
it.

Data are sets of information collected through experiments, surveys... It can
be relied on to find solutions to many real-life problems including decision
making, prediction and comprehension of the underlying structure of the
investigated community. Statistical learning is a subject aiming at extracting
information from data. It can be classified into two main branches: supervised
and unsupervised learning. Supervised learning tasks aim at estimating the
relationship between a group of information or variables called input or
explanatory variables, and any variables of interest called output or response
variable. Supervised learning tasks intend to provide an answer to the question:
“What is the output for this input?”. On the other hand, there is no output
variable in unsupervised learning study, and it seeks to understand the pattern or
structure of the data. Any tasks that aim at grouping the data points into
different clusters based on their similarities are called clustering. It is an
important part of unsupervised learning study. And any tasks of representing
data in a smaller dimensional subspace, preserving certain properties such as
variations of the data or pairwise distances between data points, are called
dimensional reduction. They can also be classified as unsupervised learning tasks.

Supervised statistical learning setting consists of n independent and identically

3There is no official reference found for this phrase.
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distributed copies (X1, Y1), (X2, Y3), ..., (X,, Y,,) of the generic input-output couple
(X,Y). In this branch, we are interested in predicting the value of the output YV
using the value of the corresponding input X. In other words, we aim at estimating
the relation or function f between input and output variable such that f(X)~Y
in some sense. This function f is built based on available data, which can be
used as a rule or formula to estimate the output of any new input observations.
When the output Y takes real values such as mass, weight, height, etc., the tasks
are called regression. On the other hand, if Y takes discrete values in a finite set
(small) such as classifying whether an email is a spam or not, predicting whether
it will be raining or not tomorrow, or recognizing handwritten digits: 0,1, ..., 9,
etc., such tasks are called classification. Whereas, unsupervised learning observes
only the observations X, X5, ..., X,,, and it aims at extracting information based
on the structure of the data by grouping them into a certain number of clusters
based on their similarities, or representing them in a lower dimensional subspace.

This thesis focuses mainly on supervised learning study, however, many
unsupervised learning algorithms are also presented in the complete work. The
major study of this manuscript concerns consensual aggregation methods of
predictors. More precisely, we consider strategies of combining a given number of
basic predictors, based on the consensus of predictions (given by those basic
estimators). The key idea of supervised learning methods consists of a principle
that if two input data are “close” (with respect to some distance), their
corresponding output values are also likely to be close. So, to predict the
response value y associated with an input x, one may try to identify the
neighbors (in the input space) of that observation. Then, the final prediction can
be computed using, for example, an average, weighted average or majority vote
among the “output values” of those neighbors, according to the context of the
problem (regression or classification). Analogously, the aggregation methods
considered in this thesis are based on the same principle except that the sense of
closeness is now between predictions of data points. More precisely, to predict a
response value y of any new input x, we are interested in the training data whose
their “predictions” are close to the predictions of x. Then, the final prediction is
computed based on the actual response values of those neighbors. In other
words, the search for neighbors of any observations is done in the space of
predicted features instead of the input space. This type of aggregation
techniques are studied, for instance, in Mojirsheibani [66, 67, 68|, Balakrishnan
and Mojirsheibani [5] and Mojirsheibani and Kong [69] for classification, in Biau
et al. [9] for regression, and in Fischer and Mougeot [33] for both frameworks.

In this paragraph, we briefly present the results studied in this manuscript.
Section 1.2 introduces a three-step methodology called KFC Procedure, which is
the subject of Chapter 2, allowing us to build a predictive model for both
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classification and regression problems. The first step of the procedure partitions
the input data using K-means -clustering algorithm based on Bregman
divergences. The second step proceeds by estimating a specific model on each
cluster, for each observed partition. And the third step is the aggregation step
which combines the different models constructed on different clustering
structures obtained in the first step. Several numerical simulations are provided
at the end of this chapter to illustrate the outstanding performance of the
procedure especially on energy data. Next, Section 1.3, which is the topic of
Chapter 3, highlights a theoretical study of an aggregation method for regression
(implemented in the last step of KFC procedure), which is a generalization of a
combining regressors introduced by Biau et al. [9], to a more general kernel-based
framework. In this study, we investigate the theoretical performance of the
aggregation method on a broad class of kernel functions and derive the so-called
consistency inheritance property of the method, which is to show that the
combination asymptotically outperforms the best basic consistent estimator of
the list. From a practical point of view, we propose in this chapter an
optimization method based on gradient descent algorithm to estimate the
hyperparameter of the method. It is numerically shown to be more efficient
compared to the classical grid search algorithm. Several numerical results
implemented on different types of simulated and real datasets are also provided
to confirm the theoretical results and the efficiency of the optimization method.
On top of that, a performance of the aggregation method is also illustrated on a
data of Magnetosphere-lonosphere system provided by researchers of
Commissariat & ’Energie Atomique (CEA). As the aggregation method studied
in Chapter 3 is shown to asymptotically inherit the consistency property of the
consistent estimator presented in the initial list, it is interesting to study the
performance of the aggregation method on a large number of predictors. This
leads us to a high dimensional study in the space of predicted features.
Therefore, in Section 1.4, which is a summary of Chapter 4, we investigate
further the performance of exponential kernel-based aggregation technique,
introduced in the previous part, in a high-dimensional framework. Here,
high-dimension refers to the number of basic estimators to be combined, not the
dimension of the input space. The aggregation method is composed of two steps:
the vectors of high-dimensional features of predictions are first randomly
projected into a smaller subspace using Johnson-Lindenstrauss-type random
projection, then the aggregation method is implemented on the obtained
projected features. In this study, we are interested in two important aspects of
the aggregation scheme. First, we theoretically show that the performance of the
aggregation method on random projected features is close to the method on the
original features, with high probability. Second, we numerically illustrate that
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the aggregation method maintains its good performance on a very large and
highly correlated features of predictions. We show that the combining method
practically performs well on plainly constructed predictors without model
selection or cross-validation. Moreover, with approximately the same level of
accuracy, the aggregation method implemented on low-dimensional projected
features is every efficient in computational speed. We provide at the end of each
chapter the source codes (in GitHub) of the proposed method implemented in R
software. Finally, a general conclusion presents a summary and some
perspectives to enclose the thesis.

1.2. KFC : A clusterwise supervised learning
procedure based on aggregation of distances

The main objective of supervised statistical learning is prediction. To this goal,
many predictive models have been elaborated and widely used in solving divers
prediction problems. Ideally, we look for a model with a strong generalization
capability which can perform well in predicting any new observations. However,
the performance of a predictive model depends on the quality of the training data
fed to them. One model may perform well on a particular data, but work poorly
on some other data. Nevertheless, the clustering structure of input data can help
to construct a good predictive model. Unfortunately, such an information is not
always available for many reasons such as anonymity, for example. In this context,
we propose in the first part of this thesis, a three-step predictive methodology
called KFC Procedure, which is based on the approximation of the input data
and the aggregation of several estimation methods. The procedure is inspired
by many real-life prediction problems for which the input data consists of more
than one cluster, maybe corresponding to some hidden or unavailable contextual
data, and the underlying models on different clusters are not necessarily the same.
Figure 1.7 below illustrates a toy example of a dataset with different local input-
output relations on different clusters.

In this kind of situation, it is interesting to build a predictive model in two
steps: the clustering structure of the input data is estimated in the first step,
then a simple predictive model is fit for each observed cluster in the second step.
Such a two-step approach has already been applied in predicting certain physical
quantities, for example, to approximate time evolution curves in the context of
nuclear industry by Auder and Fischer [3], to forecast electricity consumption
using high-dimensional regression mixture models by Devijver et al. [27], and to
cluster multi-blocks before PLS regression by Keita et al. [56]. However, the final
performance of such a procedure may depend strongly on the clustering step.
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Figure 1.7.: An example of simulated data with 3 clusters, and there are different
underlying (linear) models on these clusters.

Unfortunately, finding a suitable configuration of clustering structure in the first
step is not an easy task, and may require a deep data exploration. KFC
Procedure proposes a solution to such a question by considering several partition
structures of input data and an aggregation method in the third step. The three
steps: K/F/C of the procedure, stand for K-means/ Fitting/ Combining. More
precisely, K-means clustering algorithm with different Bregman divergences (see
for example, Banerjee [7], Bregman [13] and Fischer [32]), is performed in the
first step of the procedure. Different Bregman divergences may lead to different
clustering structures of the input data (see Figure 1.8). Thus, at the end of step
K, several partition structures of the input data are observed. In step F|, for each
Bregman divergence, a simple local predictive model is fitted on each observed
cluster, yielding a global model, which is the collection of all the corresponding
local models. At the end of step F, several global models corresponding to
different Bregman divergences used in step K, were constructed. Note that the
prediction of any new observation x given by any global model is done in two
steps: x is first clustered into the closest group using the corresponding Bregman
divergence, then the associated local model built on that group is used to predict
the response value of x. Finally, step C combines all the constructed global
models using consensual aggregation methods. Numerical experiments
implemented on several simulated and real datasets illustrate the capacity of the
procedure in both classification and regression. Moreover, the experiments
carried out on some real energy datasets suggest that the number of clusters,
which is the most important parameter in the context of unsupervised clustering
can be overestimated without affecting the performance of the method. The
construction of the procedure is summarized in Figure 1.9 below. This study is
published online in Journal of Statistical Computation and Simulation [48].
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Figure 1.8.: K-means algorithm with different Bregman (by column) divergences
on different simulated data (by row).
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Figure 1.9.: The main steps of the model construction: for each Bregman
divergence B,,, one model M,, ; is fit per cluster k, then the models
corresponding to the different divergences are combined.

1.3. A Kernel-based Consensual Aggregation for
Regression

The objective of this chapter is to study the theoretical performance of a
kernel-based aggregation method for regression problems. Technically, it is an
extension of a naive kernel-based aggregation for regression introduced by Biau
et al. [9]. The strategy aggregates a given number of regression estimators and
can be seen as a kernel smoothing method implemented on features of
predictions (given by the basic estimators) instead of the original input. This
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strategy is inspired by a combining classifier method introduced by
Mojirsheibani [66, 67, 68], Balakrishnan and Mojirsheibani [5] and Mojirsheibani
and Kong [69]. More precisely, given the training input-output data
D, = {(X1,Y1),....,(X,,Y,)} of n iid RY x R-valued random variables we
randomly split them into two parts D = {(Xl(k),Yl(k)), (X,g ,Yk )} and
D, = {(Xl(e),Yl(é)),...,(X(gz),Yg(Z))} of size k and ¢ respectively, such that
k + ¢ = n. We consider M basic regressors ri, ...,y constructed using only the
data points of Dj. For any point z € R?, the vector of predictions computed at
point =z, given by all individual estimators, is  denoted by
rp(z) = (rg1(x),....mem(x)).  The aggregation is computed based on the
remaining part D,. For any z € R?, the combined estimator is defined by

Gn(rr(2)) = 3 Wii(2)Y?, (1.8)

=1

where the weights W, ;(z) are given by

Kh<rk<X“>> —ry(z))

2

K (e (XS7) = ry ()

Here, K),(z) = K(x/h) for some smoothing parameter h > 0 with the convention
0/0 = 0. Note that the aggregation method introduced in Biau et al. [9]
corresponds to the following naive weights:

Wi(x) = i=1,2,..,0 (1.9)

M
[[n=1 ]l{|7°k,m(Xi)—7‘k,m(x)|<h}

Wii(z) = i=1,2,..L. (1.10)

5251 Tt Ll ()= m (@<}

From a practical point of view, we show that the aggregation strategy
asymptotically performs at least as good as the best basic regression estimator in
Ly sense. We show the following consistency inheritance property

Bllgn(rx(X) ~ n(OP] < min Ellrn(X) = ()P 4V, (111)
where V, = E[|g.(re(X)) — n(ri(X))], n(X) = E[Y|X] is the regression
function, and n(ri(X)) = E[Y|rg(X)]. The first term of (1.11) depends on the
performance of the best basic estimator, and the second term is the price to pay
for the aggregation, which converges to 0 as n converges to infinity.

In Biau et al. [9], the result is obtained with V,, = O(E_%ﬁ). Our objective
is to derive an analogous theoretical result for a large class of kernel functions. If
we assume that the tails of the kernel function decrease fast enough, under the
same assumptions as in the classical case, we can obtain the same consistency
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inheritance property. For example, if we assume that the tails of K decrease at
least exponentially fast, i.e.,

dCk > 0,a > 0: K(z) < Ckexp(—|z]|?),

we obtain V,, = O(é_ﬁﬂ?ﬁ), for any positive § < 1, which implies the same result
as in Biau et al. [9] as § — 1.

From a practical point of view, we often observe convex curves of risk function
for smooth kernel function, for example, Gaussian kernel (see Figure 1.10).
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Figure 1.10.: The convex curve of risk function of Boston dataset contained in
MASS library of R software.

That is why an optimization method based on gradient descent algorithm is
proposed to rapidly and efficiently estimate the smoothing parameter h. The
objective function to be minimized is the k-fold cross-validation error. If
Fi, ..., F, denote k folds forming a partition of D,, the associated error is defined
by
S =" S Do) - Vil (1.12)
p=1(X;,Y;)€Fp

where g,(re(X;)) = X(x,v)epar Wni(X;)Yi.  Several numerical experiments
carried out on many simulated and real datasets illustrate the improvement in
accuracy and computational speed of the method compared to the classical
method by Biau et al. [9], with the introduction of smoother kernel functions and
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gradient descent algorithm respectively. Moreover, an application of the method
on a data of Magnetosphere-lonosphere system studied by researchers of
Commissariat & 1'Energie Atomique (CEA)* is provided to illustrate the
flexibility of the proposed method in a sense of domain adaptation. In this
project, the distributions of the training and testing data are different due to the
data filtering process, yet the aggregation still can perform really well. In
addition to these, another set of numerical experiments carried out on similar
group of simulated and real energy data are provided in Annexes at the end of
this manuscript to illustrates further the efficiency of the combining method
when a strong basic estimator is presented in the list.

1.4. Consensual Aggregation on Random Projected
High-dimensional Features for Regression

Chapter 4 explores further the performance of the aggregation method studied
in the previous chapter in the context of high dimension. Here, high dimension
refers to the space of predicted features which is linked to the number of basic
estimators considered in the combination. In this study, a random projection
based on Johnson-Lindenstrauss lemma is employed, and an exponential kernel
function is considered. As seen in the previous chapter that the convergence rate
of the variance term (V, of equation (1.11)) may be slow with a large number of
basic estimators. However, in practice, it is interesting to explore the robustness
of the method in high-dimension, as the aggregation is shown to practically bias
towards the best estimator of the initial list.

It is well-known that working in high-dimensional spaces is a challenging task
due to some difficulties such as high computational cost and curse of
dimensionality, which refers to the situation where Euclidean distance losses its
meaning. To overcome these problems, a dimensionality reduction based on
Johnson-Lindenstrauss Lemma (J-L) is employed in this study. This lemma
indicates that it is possible to project a finite set of high dimensional Euclidean
space into a lower subspace approximately preserving pairwise Euclidean
distances between data points, with high probability. This method is very
efficient in computational speed and can be implemented very easily. It is as
simple as generating a random matrix and performing a matrix multiplication.
Based on this result, we theoretically show in this study that the performance of
the aggregation scheme on random projected features is close to the aggregation
on the original predicted features, with high probability.

As in Chapter 3, in this study, the basic regression estimators are assumed to be

4The co-authored article of this study is available in the journal of Frontier (see Kluth et al. [58]).
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constructed independently of the data used for the combination. The prediction
matrix given by all the basic regression estimators is denoted by r(X) € R™M
where n is the sample size and M is the number of estimators (assumed to be large).
Let G = (Gij)i<i<mi<j<m be a random projection matriz, where Gy; ~ N (0,1/m)
are independent centered normal random variables with variance 1/m. Here, m
denotes the dimension of the projected space. The projected features obtained via
J-L random projection are computed by ¥(X) = r(X) x G. For any point x € R%,
with the corresponding vector of predictions r(z) € RM, and for any § € (0,1),
with probability at least 1 — 2n exp(—m(6%/2 — §%/3)/2), one has

|7 (z) — F(X0)|I?
e —r(X)E 1| < ¢, for all r(X;) € r(X),
where T(x) and ¥(X;) denote the corresponding random projection of r(z) and
r(X;) respectively.

The aggregation scheme is composed of two steps: the high-dimensional features
of predictions are first randomly projected into a smaller subspace of dimension m
using Johnson-Lindenstrauss lemma, then the aggregation method is implemented
on the obtained projected features. Mathematically, the prediction at any point
r € R? of the aggregation scheme is given by

izt YilSu([[(F(z) — F(X5)[])
o1 Kn([[F(z) = (X))

Here, K(t) = exp(—t“/o) for all t > 0 and some ¢ > 0 and « > 0.

Hereafter, the aggregation method implemented on the original and on the
projected features of predictions are called full and projected aggregation method
respectively. From a theoretical point of view, one is interested in the performance
of the projected method with respect to the full aggregation method. If we assume
that the basic machines 7,9, ..., 737, and the response variable Y are all bounded
by some positive constant Ry almost surely, for any ¢, h > 0 and for any n > 1,
one has

gn(¥(2)) = (1.13)

mhz%Q)]n, (1.14)

(190 (r(X)) = ga(FC)| > ) < 1= [1 =230 (= T

where C} = 3(2 4 a)?(2R,)?1*+) /o, This result indicates that for any ¢, > 0,
for any 6 > 0 and n > 1, with m > O(*2222)) we have

(190 (X)) — ga (F(X))] > ) < 4.

From a practical point of view, several numerical results computed on
different simulated and real datasets experimentally illustrate that the
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performance of the complete aggregation (with 1000 estimators) maintains its
good performance in the context of high-dimension. Moreover, the performances
of the projected aggregation methods implemented on very small projected
spaces are almost preserved with respect to the complete method, yet much more
efficient in computational speed. In the experiment, we consider not only the
projected dimension of order 100, 200, ...,900, but also 2,3, ...,9. The simulation
is done using very highly correlated basic estimators (plainly constructed by
varying the hyperparameters of each model without performing model selection
or cross-validation), and the performances of the aggregation are still robust.
Figure 1.11 below contains the boxplots of root mean square errors (RMSE) and
the computational times over 30 runs evaluated on real-life data (Boston and
Air Compressor). In this figure, the first ten boxplots are the worst and best
performances of 5 different types of basic candidate estimator KNN, Elastic net,
Bagging, Random Forest and Gradient Boosting. The remaining boxplots are the
performances of the combining methods with different projected dimensions
including the complete method. The associated computational times are also
given in Figure 1.12 below.
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Figure 1.11.: Boxplots of average RMSEs computed on real-life datasets.
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2.1. Introduction

2.1. Introduction

Machine learning tools and especially predictive models are today involved in a
large variety of applications for automated decision-making processes such as
face recognition, anomaly detection... It is well-known that the performance of a
supervised learning model depends not only on the choice of the model but also
on the quality of the dataset used to estimate the parameters of the model. The
frequent expression “garbage in, garbage out (GIGO)” highlights that nonsense
or incomplete input data produces nonsense output as it is difficult to build an
accurate model when some information is missing.

For some reasons, several fields particularly useful for processing or
understanding data may be missing. For instance, in hiring processes, the use of
information about individuals, such as gender, ethnicity, place of residence, is not
allowed for ethic reason to avoid discrimination. Similarly, when high school
students apply for further studies in higher education, not every information can
be considered for selection. Besides, the General Data Protection Regulation
(GDPR) text has regulated data processing in the European Union since May
2018. It strengthens the French Data Protection Act, establishing rules on the
collection and use of data on French territory as mentioned in Tikkinen-Piri et
al. [78]. As a result, contextual data that could characterize individuals a little
too precisely is often missing in available databases. In a similar way, in an
industrial context, not all recorded fields are made available for data processing
for confidentiality reasons. For example, in the automotive industry, GPS data
could be a wvaluable tool to provide services such as predictive vehicle
maintenance. However, it is difficult to use such data as they are extremely
sensitive.  To sum up, in various areas, databases containing individual
information have to respect anonymization rules before being analyzed.

Mining such databases can then be a particularly complex task as some
critical fields are missing. In this context, the modalities of a missing qualitative
variable correspond to several underlying groups of observations, which are a
priori unknown but should be meaningful for designing a predictive model. In
this case, the most common approach consists of using a two-step procedure: the
clusters are computed in a first step and, in a second step, a predictive model is
fit for each cluster.  This two-step procedure has already been used to
approximate time evolution curves in the context of nuclear industry by Auder
and Fischer [3], to forecast electricity consumption using high-dimensional
regression mixture models by Devijver et al. [27], or to cluster multi blocks
before PLS regression by Keita et al. [56]. In a two-step procedure, the final
performance of the model strongly depends on the first step.  Different
configurations of clusters may bring various performances, and finding an
appropriate configuration of clusters is not an easy task which often requires a
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deep data investigation and/or human expertise.

To build accurate predictive models in situations where the contextual data
are missing, and to eliminate an unfortunate choice of clusters, we propose, in this
work, to aggregate several instances of the two-step procedures where each instance
corresponds to a particular clustering. Our strategy is characterized by three
steps, each is based on a quite simple procedure. The first step aims to cluster the
input data into several groups and is based on the well-known AK-means algorithm.
As the underlying group structures are unknown and may be complex, a given
Bregman divergence is used as a distortion measure in the K-means algorithm.
In the second step, for each divergence, a very simple predictive model is fit per
cluster. The final step provides an adaptive global predictive model by aggregating,
thanks to a consensus idea introduced by Mojirsheibani [67], several models built
for the different instances, corresponding to the different Bregman divergences
(see also Mojirsheibani [68], Balakrishnan and Mojirsheibani[5], Biau et al. [9]
and Fischer and Mougeot[33]). We name this procedure the KFC procedure for
K-means/Fit/Consensus.

This chapter is organized as follows. In Section 2.2, we recall some general
definitions and notations about supervised learning. Section 2.3 is dedicated to
Bregman divergences, their relationship with probability distributions of the
exponential family, and K-means clustering with Bregman divergences. Section
2.4 presents the consensual aggregation methods considered, in classification and
regression. The KFC procedure is detailed in Section 2.5. Finally, Sections 2.6
and 2.7.1 present several numerical results carried out on simulated and real
data, showing the performance and the relevance of using our method. We also
study the robustness of the procedure with respect to the number K of clusters.

2.2. Definitions and notations

We consider a general framework of supervised learning problems where the goal
is to construct a predictive model using input data to predict the value of a
variable of interest, also called response variable or output. Let (X,Y’) denote a
random vector taking its values in R% x ), where the output space ) is either
{0,1} (binary classification) or R (regression). Constructing a predictive model is
finding a mapping g : R? — ) such that the image g(X) is “close” in some sense
to the corresponding output Y. The space (R% | - ||) is equipped with the
standard Euclidean metric. Let (-,-) denotes the associated standard inner
product. Throughout, we take the convention 0/0 = 0.

In classification problems, the performance of a predictor or classifier g is usually
measured using the misclassification error

Re(g) =P(g(X) #Y).
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Similarly, the performance of a regression estimator ¢ is measured using the
quadratic risk

Rr(g) = E[(Q(X) - Y)Q}

In the sequel, R(g) describes the risk of a predictor g without specifying the
classification or regression case. A predictor ¢g* is called optimal if
R(g*) =inf R
(9) = mf R(9)
where G is the class of all predictors g : R® — ). In regression, the optimal

predictor is the regression function defined by n(x) = E(Y|X = z), whereas in
binary classification the minimum is achieved by the Bayes classifier, given by

oa(z) = {1 if n(z) > 1/2

0 otherwise.

Note that 7 and, hence gg, depend on the unknown distribution of (X,Y).

In a statistical learning context, we observe independent and identically
distributed random pairs (X7, Y1), (X2, Y2),...,(X,,Y,) distributed as (X,Y).
The goal is to estimate the regression function 7, or mimic the classifier gg,
based on the sample D,, = {(X;,Y;)};.

We consider, in this work, situations where the input data D, may consist of
several clusters and where there exist different underlying regression or
classification models on these clusters.

2.3. Bregman divergences and K-means clustering

Among all unsupervised learning methods, a well-known and widely used
algorithm is the seminal K-means algorithm, based on the Euclidean distance,
see for example Steinhaus [74], Lloyd [63], Linder [62] or Jain [50]. This
algorithm may be extended to other distortion measures, namely the class of
Bregman divergences, Banerjee et al. [7].

2.3.1. Bregman Divergences

Let ¢ : C — R be a strictly convex and continuously differentiable function defined
on a measurable convex subset C C R?. Let int(C) denote its relative interior. A
Bregman divergence indexed by ¢ is a dissimilarity measure d, : C x int(C) — R
defined for any pair (z,y) € C x int(C) by,

dy(z,y) = () — d(y) — (x —y, Vo(y)) (2.1)
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where V¢(y) denotes the gradient of ¢ computed at a point y € int(C). A Bregman
divergence is not necessarily a metric as it may not be symmetric and the triangular
inequality might not be satisfied. However, it carries many interesting properties
such as non-negativity, separability, convexity in the first argument, linearity in
the indexed function, and the most important one is mean as minimizer property
described in the following proposition.

Proposition 2.1 (Banerjee et al. [6]). Suppose U is a random variable over an
open subset © C R%, then we have,

E[U] = argerélin E[ds(U, x)].

In this article, we consider four Bregman divergences, presented in Table 2.1:
Squared Euclidean distance (Euclid), General Kullback-Leibler (GKL), Logistic
(Logit) and Itakura-Saito (Ita) divergences.

BD ¢ dg c
Euclid lzll = >, 22 lz = yl3 =327, (@i — v)? R
GKL >, wiln(a:) S [ n(E) — (2 — ) (0, +00)?
Logit 25:1 @i In(z;) + (1 — 2i) In(1 — ;) Zj:1 zi In(5F) + (1 — @) In( ti: ) (0,1)4
Tta — ijl In(x;) ijl % — ln(%) -1 (0, +00)¢

Table 2.1.: Some examples of Bregman divergences.

2.3.2. Bregman Divergences and Exponential family

An exponential family is a class of probability distributions enclosing, for
instance, Geometric, Poisson, Multinomial distributions, for the discrete case,
and Exponential, Gaussian, Gamma distributions, for the continuous case. More
formally, an Exponential family &, is a collection of probability distributions
dominated by a o-finite measure p with density with respect to p taking the
following form:

fo(x) = exp({(0, T(x)) —(0)),0 € O, (2.2)

where © = {0 € R? : ¢)(f) < +o0} is the parameter space of natural parameter 6,
T is called sufficient statistics and v is called log-partition function. The equation
(2.2) is said to be minimal if the sufficient statistics 7" is not redundant, that is, if
there does not exist any parameter a # 0, such that (o, T(z)) equals a constant,
Vaz € RY. If the representation (2.2) is minimal and the parameter space © is
open, then the family & is said to be regular. The relationship between a regular
exponential family and Bregman divergence is given in the following theorem.
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Theorem 2.1 (Banerjee et al. [7]). Each member of a reqular exponential family
corresponds to a unique reqular Bregman divergence. If the distribution of a
random variable X is a member of a reqular Exponential family £, and if ¢ is the
convex conjugate of ¢ defined by

¢(x) = Sl;p{@, y) —¥(y)},

then there exists a unique Bregman divergence dg such that the following
representation holds:

fo(x) = exp({0, T(x)) — P(0)) = exp(=dy(T'(x), E[T(X)]) + (T (2)))-

Theorem 2.1 and Proposition 2.1 together provide a strong motivation for using
K-means algorithm with Bregman divergences to cluster any sample distributed
from the corresponding member of an exponential family.

We consider a set of n input observations {X;}? ; distributed according to an
unknown distribution fy, organized in K clusters and dy, is the associated Bregman
divergence. Our goal is to find the centroids ¢ = (cy,...,ck) of the clusters
minimizing the function

W(fg,c)=E j:Hll’.l.l.’}qug(X, i) -
K-mean clustering algorithm with the Bregman divergence dy is described in the
following algorithm:
Algorithm 1.

1. Randomly initialize the centroids {cgo), cgo), e c(lg)} among the data points.

2. At iteration r: Fori=1,2,...,n, assign XZ-(T) to the k-th cluster if

() (N (r) _(r)
d¢<X » Ck ) - 1g1§an¢(Xi ) G5 )
3. Denote by C,S“) the set of points contained in the k-th cluster.
For k=1,2,.... K, recomputes the new centroid by,

C](:H)_ 1 >

1G] g

Repeat step 2 and 3 until a stopping criterion is met.
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In practice, it is well-known that the algorithm might get stuck at a local
minimum if it begins with a bad initialization. A simple way to overcome this
problem is to perform the algorithm several times with several initializations and
to keep the partition minimizing the empirical distortion. In our version, in the
event of ties, they are broken arbitrarily and the associated empirical distortion is

defined by
Z min_dy(X;, cr).

For example:

» Poisson distribution with parameter A > 0: X ~ P(\) has probability mass
function: for any k& € {0,1,..},P(X = k) = e_’\’,\c—];, corresponding to the
1-dimensional General Kullback-Leibler divergence defined by,

dy(z,y) =xIn (i) — (x —y),Vz,y > 0.

» Exponential distribution with parameter A > 0: X ~ £()\) has probability
density function: for any z > 0, fy(x) = Ae ?*, corresponding to the 1-
dimensional Itakura-Saito divergence defined by,

T

x
de(x,y :—ln(>—1,Vx,y>O.
o(,y) y y

See Banerjee et al. [7] for more examples.

2.4. Consensual aggregation methods

This section describes the aggregation methods, based on a consensus notion,
which are used in the next section to build the global predictive model. The original
combination idea was introduced by Mojirsheibani [67] for classification (see also
Mojirsheibani [68, 66]) and adapted to the regression case by Biau et al. [9]. We also
consider, in both classification and regression, a modified version of the consensual
aggregation method introduced recently by Fischer and Mougeot [33].

2.4.1. The original consensual aggregation

Several methods of combining estimates in regression and classification have been
already introduced and studied. LeBlanc and Tibshirani [59] proposed a procedure
of combining estimates based on the linear combination of the estimated class of
conditional probabilities, inspired on the “stacked regression” of Breiman [14].
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Linear-type aggregation strategies, model selection and related problems were also
studied by Catoni [20], Nemirovski [70], Yang [83], Yang et al. [84], and Gyorfi et
al. [45]. Other related works are available by Wolpert [81], and Xu et al. [82], for
example.

In this chapter, we use a combining method introduced first in classification by
Mojirsheibani [67], based on an idea of consensus. For a new query point = € R?,
the purpose is to search for data items X;, such that all estimators to be combined
predict the same label for X; and x. The estimated label of x is then obtained by
the majority vote among the corresponding labels Y;. More formally, for z € R,
m(z) = (mM(z),...,mM(z)) denotes the vector of the predictions for x given by
M estimators. The combined estimator is defined by:

1> Lmom@n 1 > 3 Lim(xomn L
ComiC(z) = ; {m(x;)=m(x)} L{vi=1} ; {m(x,)=m(x)} L{v;=0}

0 otherwise.

Under appropriate assumptions, the combined classifier asymptotically
outperforms the individual classifiers. It is also possible to allow a few
disagreements among the initial estimators.

A regularized version, based on different kernels has been proposed in
Mojirsheibani [68] (see also Mojirsheibani and Kong [69]). This smoother
definition is also a way not to require unanimity with respect to all the initial
estimators, to lighten the effect of a possibly bad estimator in the list.

To simplify the notation, let K be a positive decreasing kernel defined either
on Ry or RM or R¥*M to R, then the kernel-based combined classifier is defined
as follows:

Comp(z) =+ ! g(% — DK, (dﬂ(m(xi),m(m))) >0

0 otherwise,

where dy; stands for the Hamming distance (the number of disagreements between
the components of m(X;) and m(z)), and Kj(z) = K(x/h). We consider the
following kernels:

1. Gaussian kernel: for a given o > 0 and for all z € R?,

2. Triangular kernel: for all x € RY,
K(x) = (1= [l ga,<1y-
where ||.||; is the £;-norm and is defined by: ||z|, = 2%, | X;|
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3. Epanechnikov kernel: for all z € R,

K(z) = (1= [l2]3)Lgepa<1-

1/2
where ||.||2 is the 5-norm and is defined by: ||z||s = ( ¢, Xf)

4. Bi-weight kernel: for all z € R?,

K(z) = (1= [l2]3) " Lgpepo<1y-
5. Tri-weight kernel: for all x € R,

K(z) = (1= [|2]3)°Lgapp<1y-

These kernels are illustrated in dimension 1 in Figure 3.1, together with the uniform
kernel corresponding to Comb¢ .

1,
— 11 (|2])
0.8 | — e
— 1|z
0.6 | 1 — x2
ol (1 —a?)”
> — (1 — 22)3
< o4l ( )
0.2
0 '
1 9

Figure 2.1.: The shapes of all kernels.

In the regression case, mimicking the rule introduced in classification, the
predictions are required to be close to each other, in the sense of some metrics
and threshold e, with the predicted value obtained as a weighted average of the
outputs of the selected data. The combined regression estimator, proposed in
Biau et al. [9] known as COBRA method is given, for x € R?, by

M
= 1 i)—m X €
Combf(gg) — Wm(ac)Y;, Wm(a:) _ | ) {Im(® (X;)—m(® (z)|<e}

< S T Lo (x,)—m @ @) <}

n

SRS

)
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2.5. The KFC procedure

Once again, unanimity may be relaxed, for instance, if the distance condition is
only required to be satisfied by a fraction « of the individual estimators:

1
M
{ p Dy Lim® (x;)—m(® (z)\<5}ZMO‘}

Z?:l 1{

Wai(x) =
Dyl 1{\m<’v’><xj)—m“><z>|<a}2Ma}
The authors show that, when a — 1, the combined estimator asymptotically

outperforms the different individual estimators. As in classification, the kernel-
based version denoted by Combi! is defined associated to the following weight:

()= Kh(m(Xz) - m(x))
Wn,z( ) - Z?:l Kh(m(Xj) — m(x))

2.4.2. Consensual aggregation combined to input distance

An alternative definition of consensual aggregation suggests mixing the consensus
idea with information about distances between inputs through a kernel function
(Fischer and Mougeot [33]). This is a way to limit the influence, if any, of a bad
estimator; using at the same time information on the geometry of the inputs. In
regression, the estimator is defined, for z € R?, by

K(xi—g m(xnm(x))
1 (@) (@) . 1K(Xj_x m(xj)—m(x)>

Comb¥(z) =

n

S|

)

In classification, by plug-in, we set

Comcy - |1 12— (K T

0 otherwise.

2.5. The KFC procedure

Preliminarily, the training data D,, is randomly split into two parts D,, and D,,
of sizes ny and ny respectively with ny + ny = n (the choice of ny = ny = n/2 is
used in this work). We recall hereafter the three steps of the KFC strategy and
specify the parameters chosen at each step.

1. K-means. The input data X of D, are first clustered using the K-means
clustering algorithm with a chosen Bregman divergence. In this work,
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Chapter 2 — KFC: A clusterwise prediction based on aggregation of distances

M = 4 divergences are considered: Squared Euclidean distance (Euclid),
General Kullback-Leibler (GKL), Logistic (Logit) and Itakura-Saito (Ita)
divergences, as already defined in Section 2.3. The choice of the number of
clusters K is discussed in the next Section where the numerical results on
several examples are presented.

2. Fit. For each Bregman divergence m and for each cluster k, a dedicated
predictive model, M, , is fit using the available observations on D,,, for
1<m<Mand1<k<K.

The main ideas of this paper, based on our modeling experience gained
over several real-life projects, is that if the initial data are initially clustered
«in an appropriate way» then the fit of the target variable can often be
successfully computed with quite simple models in each group. In the
numerical applications, we simply choose for regression models linear
regression, whereas for the classification models, we choose logistic
regression but much more complex models could of course be considered.

3. Consensus. As neither the distribution nor the clustering structure of the
input data is known, it is not clear in advance which divergence will be the
most efficient. Thus, we propose to combine all the previous estimators, in
order to take the best advantage of the clustering step.  For the
combination task, we use the different consensus-based procedures already
described. Practically, the different kernel bandwidths appearing in the
combining methods are optimized on a grid, using cross-validation on the
remaining part D,,, of the training data.

Remark 2.1. The first two steps of the procedure are implemented using only the
first part D,,, of the training data. Once the candidate model, which is the collection
of all the local models constructed on the corresponding clusters, is fitted, in order
to make a prediction for a new observation x, which is either from D,, or a testing
data, we first affect x to the closest cluster for each divergence, which yields one
prediction per divergence, and then, perform the aggregation.

The procedure is illustrated in Figure 3.2 below.

2.6. Simulated data

In this section, we analyze the behavior of the strategy on several simulated
datasets in both classification and regression problems.
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2.6. Simulated data

K-step * _._._._.F

F-step ‘M“,.. MlK ‘le,.. MgK {MMl,.. MMK

C-step ‘ Consensual Aggregation ‘

Figure 2.2.: The main steps of the model construction: for each Bregman
divergence B,,, one model M,, ; is fit per cluster k, then the models
corresponding to the different divergences are combined.

2.6.1. Description

In both cases of classification and regression problems, we simulate 5 different
kinds of datasets. We consider 2-dimensional datasets where the two predictors
(X1, Xs) are simulated according to Exponential, Poisson, Geometric and
Gaussian distribution respectively. The remaining dataset is 3-dimensional, with
predictors (Xi, X, X3), distributed according to Gaussian distribution. Each
simulated training and testing dataset contains respectively 1500 and 450 data
points. Fach dataset consists of K = 3 balanced clusters; each cluster contains
500 observations for training and 150 for testing. Note that this choice of K = 3
clusters is to illustrate the procedure and performance of our algorithm. Various
complementary studies with different number of clusters showed that similar
results held.

The different distribution parameters used in the simulations are listed in
Table 2.2. Each cell of the table contains the parameters of each distribution at
the corresponding cluster for the input variables (X7, X3) or (X1, Xa, X3).

For the regression cases, the target observation Y; belonging to cluster k, is
computed by YF = gf + X 8F X} + ¢ where X} = (X[,)j=1...q4 is the input
observation of dimension d, B*¥ = (ﬁf)jzlymjd the parameters of cluster k,
1<k<K,d=2ord=3ande¢ ~ N(0,5). An example of simulated data for
regression problem with Gaussian predictors is illustrated in Figure 3.3 below.

For classification cases, the ktfirget observation belonging to cluster k, is
computed by Y} = 0 if i;ZZi%Zfi% —<0Oand ¢~ N(0,5).

In regression problems, we choose the intercepts (3%, 52, 53) = (—15,25, —10) for
the 3 clusters. For classification, we study cases where each cluster has the same
number of observations form the 2 labels. In order to balance the positive and
negative points in classification cases, we choose intercepts so that the hyperplane
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Distribution Cluster 1 Cluster 2  Cluster 3
Exponential: A 0.05;0.5 0.5;0.05 0.1;0.1
Poisson: A 3;11 1052 13;12
Geometric: p 0.07;0.35 0.55;0.07 0.15;0.15
2D Normal: a 412 22,9 105

o 1:1 2;1 2;2
3D Normal ¢ ** 6;14;6 51015 56,

o 1:2;1 2:1;2 1;1;2

Table 2.2.: Parameters of the simulated data.

Cluster 1 Cluster 2 Cluster 3
(k=1) (k=2) (k=3)

2D (5{67 55) (_87 3) (_67 _5) (57 _7>

3D (8%, 8%5,85) (-10,3,7) (7,5,—12) (6,—11,10)

Table 2.3.: The coeflicients of the simulated models.

defined by the input data within each cluster is centered at zero. Therefore, after
applying the sigmoid transformation, we would have a balance between the two
classes within each cluster. This can be done as follows.

o Compute ozf: the conditional average of the j-th input variable falling into
the k-th cluster which is defined by

where C]’? C X is the subset of the j-th input variable that are contained in
the k-th cluster.

o The intercept of the k-th cluster for k& € {1,2,3} is given by,

d
B = — (8", oF) = Zafﬁf, ford=2ord=3
=1

Remark 2.2. Note that in our simulations, the simulated samples might fall
outside the domain C for some Bregman divergences for instance, the logistic one
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2.6. Simulated data

Predictors Complete Data

Figure 2.3.: An example of simulated data in regression problem with Gaussian
predictors.

which can handle only data points in (0,1)%. In practice, we can solve this
problem by mnormalizing our original samples using the (i-norm ||.||1, i.e.,
X; = X; = Xi/|| Xi|l1. Moreover, we ignored those negative data points or added
a suitable constant in order to avoid negativity.

Each performance is computed over 20 replications of the corresponding
simulated dataset.

2.6.2. Normalized Mutual Information

Before analyzing the performances of our combined estimators, it is interesting to
take a look at the performances of the clustering algorithm with different
Bregman divergences. Even though this is not possible in practice, the clustering
structure is available in our simulations. We use a correlation coefficient between
partitions proposed by Strehl and Ghosh [76] known as Normalized Mutual
Information (NMI). Let S = {S;}/<, and S’ = {S;}/, be two partitions of
n-point observations. Let n;, nj and n;, denote the number of observations in
S; € 5,5, € 5" and S; N S| respectively. Then, the NMI of the two partitions S
and S’ is given by

K K n.n;ye
Zj:1 > =1 Ny log ( Y )

o (3)) (s (2))

This criterion allows us to compare the observed partition given by the algorithm
to the expected (true) one. We have 0 < p(S,5") <1 for any partitions S and S’
The closer coefficient to 1, the better result of the algorithm.

p(S,5") =
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Distributions | Euclidean  GKL  Logistic Itakura-Saito
Exvonential | 77 24796042 76.61
P (1.53)  (2.26)  (1.35) (1.82)
Poisson 8826  92.24  68.19 83.53
(1.16)  (141)  (1.47) (9.85)
Coomotric 5361  86.06 87.31 81.16
(1.86)  (10.04) (0.82) (1.56)
97.89 9746  69.56 94.81
2D Normal (0.89)  (0.99)  (1.41) (1.29)
91.55  91.190  89.22 89.95
3D Normal (1.31)  (1.22)  (1.57) (1.66)

Table 2.4.: Average Normalized Mutual Information (1 unit = 1072).

Table 2.4 above contains the average NMI over 20 runs of K-means clustering
algorithm performed on each simulated dataset. The associated standard
deviations are provided in brackets. The out-performance of each case is
highlighted in blue. Note that the results in the Table 2.4 recover the expected
relation between distributions and Bregman divergences as discussed in
Section 2.3.2. Figure 2.4 illustrates the observed partitions of a simulation using
K-means algorithm with Bregman divergences.

Exponential Data Euclidean GKL Logistic Itakura-Saito

200
150
100 #‘ _
50 o 00
0 Banads s &
0 20 60 100

0 20 60 100

Itakura-Saito

Figure 2.4.: Partitions obtained via K-means with Bregman divergences.
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2.6.3. Numerical results

This section analyzes the ability of the KFC procedure for classification or
regression on the five simulated examples described in section 2.6. Each example
is simulated 20 times. For each run, the error obtained using the KFC procedure
is computed on the test dataset; the classification error is evaluated using the
misclassification rate and the regression error the Root Mean Square Error. The
average and the standard deviation (in bracket) of the errors computed over the
20 runs are provided in the result tables. In order to compare the benefit of the
consensual aggregation of KFC procedure, we evaluate the performance of the
model on the test data in different situations. First, without any preliminary
clustering (i.e. considering only one cluster), the corresponding errors are
reported in the column block named "Single" in the different graphs or tables.
Second, considering a preliminary clustering using one given divergence. In this
case, the corresponding errors are reported in the column block named "Bregman
divergence" in different tables. The four columns named Euclid, GKL, Logistic
and Ita contain the results of the 4 individual estimators corresponding to the 4
chosen Bregman divergences. Last, the errors computed with the KFC procedure
are presented with several kernels in the block named “Kernel” which consists of
six columns named Unif, Epan, Gaus, Triang, Bi-wgt and Tri-wgt standing for
Uniform, Epanechnikov, Gaussian, Triangular, Bi-weight and Tri-weight kernel
(procedures C'omby, Combs). The KFC procedure is also evaluated taking into
account the inputs (Combs), and the corresponding results are provided in the
second row of each distribution.

For each table, the first column of each row mentions the names of the
simulated datasets where Exp, Pois, Geom, 2D Gauss, and 3D Gauss stand for
Exponential, Poisson, Geometric, 2-dimensional and 3-dimensional Gaussian
datasets respectively.

For each distribution, we highlight the out-performance of the individual
estimators in bold font and the two kinds of combining methods in boldfaced
blue Comb;, Comby) and red (Combs) respectively. In each simulation, we
consider 300 values of smoothing parameter h or € on the grid {1073% .. 5} for
Comb; and Comby, and consider 50 x 50 values of parameters
(a, B) € {10730 10}2 for Combs.

2.6.3.1. Classification

Table 2.5 below contains the results of misclassification errors computed on the
different kinds of simulated datasets. We observe that the results of all individual
estimators in the second block seem to agree with the results of NMI provided in
Table 2.4 except for the 3D Gaussian case. Of course, all models built after a

49



Chapter 2 — KFC: A clusterwise prediction based on aggregation of distances

clustering step outperform the simple model of the first block. The combined
classification methods perform generally better than or similarly to the best
individual estimator. The results of CombS, in the second row, seem to be better
compared to the ones of Comb§ in the first row. We also note that Gaussian
kernel seems to do a better job comparing to all other kernel-based methods.
Figure 2.5 and Figure 2.6 represent the boxplots of the associated average
misclassification errors for Comb$ and Comb§ respectively (the results of the
Table 2.5).
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Figure 2.5.: Boxplots of misclassification error of Comb§ .
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Poisson distribution

Exponential distribution

0.10

0.05 -

0.00

2D-Gaussian distribution

Geometric distribution

0.2
0.1

0.25
0.20
0.15
0.10 A
0.05

3D-Gaussian distribution

Figure 2.6.: Boxplots of misclassification error of Comb§ .
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Distribution | Single Bregman divergence Kernel
Fuclid GKL  Logit Ita Unif Epan Gaus Triang Bi-wgt Tri-wgt
2.59 2.28 2.21 2.30 2.24 2.24
Exp 18.67 19.33 7.40 3.30 2.25 | (0.76) (0.80) (0.73) (0.84) (0.77)  (0.75)
(1.44) | (6.35)  (6.08) (0.86) (0.77) | 2.67 3.17 2.09 3.65 3.13 3.09
(0.83) (0.74) (0.51) (0.81) (0.86)  (0.84)
8.68 8.01 7.99 7.99 7.99 7.98
Pois 46.96 9.07 7.99 12.36 9.65 | (1.13) (0.76) (0.75) (0.73) (0.74)  (0.73)
(3.02) | (1.31) (0.91) (1.89) (6.98) | 8.77 7.98 7.96 8.04 7.96 7.99
(1.09) (0.74) (0.84) (0.82) (0.78)  (0.83)
5.58 2.76 2.79 2.76 2.79 2.79
Geom 19.76 16.31 3.07 3.14 3.19 | (8.25) (0.60) (0.59) (0.60) (0.59)  (0.59)
(2.32) | (5.37)  (0.70) (0.69) (0.77) | 3.39 3.44 2.52 3.77 3.38 3.41
(0.92) (0.76) (0.50) (0.76) (0.73)  (0.70)
12.68 11.88 11.88 11.89 11.88 11.89
9D Gaus 49.42 | 11.84 11.86 18.20 11.90 | (2.07) (1.21) (1.21) (1.19) (1.21) (1.19)
(2.58) | (1.16) (1.18) (7.22) (1.19) | 12.79 11.94 11.22 12.06 12.01 12.00
(1.98) (1.16) (0.83) (1.23) (1.11) (1.11)
14.03 10.32 10.30 10.32 10.30 10.30
3D Gaus 43.51 21.72 19.82 2857 20.12 | (7.39) (1.34) (1.34) (1.35) (1.34) (1.34)
(2.52) | (10.63) (10.42) (6.19) (9.55) | 11.30  9.61 9.54 9.64 9.44 9.30
(1.69) (1.46) (1.40) (1.46) (1.42) (1.39)

Table 2.5.: Misclassification errors of CombS and Comb§ computed over 20 runs of all simulated data (1 unit =
10-2).
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Poisson distribution

It is clear that Gaussian kernel does the best job, and CombZ outperforms Comb¥
Exponential distribution

for almost all the cases.

In the regression case, the results in the Table 2.6 suggest that the candidate models

in the second block outperform the linear regression models in the first column.
And again, the performance of the estimators is globally improved by combining.

2.6.3.2. Regression

53

2D-Gaussian distribution

3D-Gaussian distribution

Figure 2.7.: Boxplots of RMSE of Combft.

Geometric distribution




Poisson distribution
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Figure 2.8.: Boxplots of RMSE of Comb¥.
simulation,

the
time-consuming, especially when the implementation is done with more options

Figure 2.7 and Figure 2.8 above represent the associated boxplots of root mean

square errors for Comby and Combl respectively (the results of the Table 2.6).
The numerical results are quite satisfactory, and this is a piece of evidence
showing that KFC procedure is an interesting method for building predictive

models, especially when the number of underlying groups of the input data is

Throughout
of Bregman divergences. However, it should be pointed out that the structure of

available. It is even more interesting in the next section where the procedure is
implemented on a real dataset of Air compressor machine for which the number

of clustering is not available.
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KFC procedure is parallel in a sense that the K and F steps (K-means and Fit
step) of the procedure can be implemented in parallel independently, and only
the predictions given by all of those independently constructed estimators are
required in the consensual aggregation step.

2.7. Application

2.7.1. Air compressor data

In this section, we study the performance of the KFC procedure on real data.
The goal of the application here is to model the power consumption of an air
compressor equipment Cadet et al. [19]. The target is the electrical power of
the machine, and 6 explanatory variables are available: air temperature, input
pressure, output pressure, flow, water temperature. The dataset contains N =
2000 hourly observations of a working air compressor. We run the algorithms
over 20 random partitions of 80% training sample. The root mean square error
(RMSE) computed on the testing sets as well as the associated standard errors are
summarized in Table 2.7. As the number of clusters is unknown, we perform the
KFC algorithm with different values of the number of clusters K € {1,2,...,8}.
For the consensual aggregation step, we use a Gaussian kernel which showed to be
the best one in the simulations with synthetic data. The associated boxplots of

K | Euclid GKL Logistic Ita  CombY Combl
9 161.00 161.04 161.24 161.14 156.30 135.68
(5.71) (5.61) (5.40) (5.51) (5.14)  (6.00)
3 158.31 158.29 158.40 158.61 155.85 136.00
(4.78) (4.72) (4.74) (4.60) (4.76)  (5.48)
4 156.67 156.71 155.96 156.70 154.93 136.44
(4.74) (4.65) (5.40) (4.74) (5.34)  (6.11)
5 155.67 155.53 155.13 155.11 153.87 135.75
(5.05) (4.91) (4.86) (4.86) (4.94)  (6.06)
6 153.73 153.72 154.59 154.01 153.55 135.46
(4.67) (4.43) (4.83) (5.00) (5.02) (5.41)
- 153.87 154.04 154.89 154.58 153.28 136.49
(4.96) (5.12) (5.37) (5.14) (4.98)  (5.82)
3 156.43 155.59 155.29 154.55 153.58 135.82
(5.41) (5.29) (6.02) (5.35) (5.03)  (5.01)

Table 2.7.: Average RMSE of each algorithm performed on Air Compressor data.
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Table 2.7 are given in Figure 2.9 below. We observe that the performance of the
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Figure 2.9.: Boxplots of RMSE of all the four preliminary models corresponding
to the four Bregman divergences in the K-step and the global models
(Combf and Comblt) of the C-step, evaluated on Air Compressor

data.

individual estimators improve as the number K of clusters increases. Note that
Comb¥ outperforms Combl with much lower errors (reduced around 13.5% of the
errors given by Comb¥). Regardless of the number of clusters, the combination
step allows to reduce the RMSE in each case to approximately the same level.
Hence, our strategy may be interesting even without the knowledge of the number
of clusters. Moreover, as a comparison, the performances of some classical methods
such as multiple linear regression (MLR), k nearest neighbor with & = 22 (22-
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Chapter 2 — KFC: A clusterwise prediction based on aggregation of distances

NN), random forest (RF) and gradient boosting (Boosting) with 500 trees, are
also reported in the Table 2.8 below.

MLR | 22-NN | RF | Boosting

178.67 | 292.08 | 217.14 | 158.92
(5.18) | (9.17) | (9.80) | (4.33)

Table 2.8.: Performances of alternative models.

2.7.2. Wind Turbine data

This section illustrates the performance of KFC procedure on another real energy
data recorded from a wind turbine (Turbine), provided by the wind energy
company Maia Eolis. The dataset contains 8 721 observations of seven variables
representing 10-minute measurements of FElectrical power, Wind speed, Wind
direction, Temperature, Variance of wind speed and Variance of wind direction
measured from a wind turbine of the company (see, Fischer et al. [34]). The goal
is to predict the electrical power produced by the turbine using the remaining six
measurements as explanatory variables. In this case, four Bregman divergences
are used including Euclidean (Euclid), Polynomial degree 3,4 and 5 (Poly3,
Poly4 and Polyb respectively). Note that the polynomial Bregman divergence of
degree n > 3 corresponds to the convex function ¢(x) = Zizl |z |™ for any
x € R, Therefore, by definition of Bregman divergences
de(z,y) = ¢(x) — d(y) — (x — v, Vo(y)), one can easily verify that the formula of
polynomial Bregman divergence of degree n > 3 is given by

dg(z,y) = S (™ = [wel™) = n i (o = we)wi ™ if n is even .
7 S (al™ = lyal™) = n iy (2 — y)yi ™ (1 = 2Lgy,<0p),  if m 0dd

The numerical results obtained from 30 independent runs evaluated on this
dataset are reported in Table 2.9 below. This table contains average testing
RMSEs and the associated standard errors of all the methods measured on 20%
testing data. We observe very satisfactory performances of the procedure. Note
that the performances of all the candidates estimators (Euclid, Poly3, Poly4 and
Poly5) increase as the number of cluster K increases. Moreover, Comb¥
outperforms Comb% in all cases with slightly larger variances. The performance
of the complete procedure seems not depending much on the number of cluster
K. The corresponding boxplots of this table are given in Figure 1.5 below. As a
comparison, Table 2.10 provides the performances of some classical methods such
as multiple linear regression (MLR), k nearest neighbor with £ = 22 (22-NN),

o8



2.7. Application

random forest (RF) and gradient boosting (Boosting) with 500 trees, evaluated
on this dataset.

K | Euclid Poly3 Poly4 Polyd Combl Comb¥
9 63.19 63.40 63.90 64.93 38.29  36.01
(3.11) 2.64) (3.33) (3.05) (2.96) (1.48)
5 62.62 65.03 64.37 62.07 3819 37.09
(2.79) (5.99) (4.67) (4.76) (2.39) (2.67)
4 60.70  59.96 60.90 60.58 37.34  37.02
(4.51) (3.93) (8.22) (4.68) (1.50) (2.68)
5 54.00 57.48 58.70  60.05 37.47  36.55
(3.04) (2.20) (8.97) (6.87) (1.50) (2.22)
6 53.67 57.26 57.31  60.11 37.62 36.94
(2.79) (7.20) (8.50) (12.60) (1.45) (2.83)
7 52.45 5533 55.05 58.27  37.20 36.80
(5.52) (3.17) (7.32) (10.36) (1.58)  (2.94)
g 51.056 55.88 50.79 57.47  37.57  36.78
(5.72) (6.89) (4.33) (7.96) (2.30) (2.91)

Table 2.9.: Average RMSEs of all the global models and the combining methods
of KFC procedure on wind turbine data.

Performance of KFC procedure on Wind Turbine data
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Figure 2.10.: Boxplot of RMSEs of all the global models and KFC procedure on
wind turbine data as a function of the number of cluster K.
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Chapter 2 — KFC: A clusterwise prediction based on aggregation of distances

MLR | 7-NN | RF | Boosting

69.46 | 40.30 | 37.26 | 41.65
(3.30) | (1.45) | (1.32) | (1.42)

Table 2.10.: Performances of alternative models on Wind Turbine data.

2.8. Conclusion

The KFC procedure aims to take advantage of the inner groups of input data to
provide a consensual aggregation of a set of models fitted in each group built
thanks to the K-means algorithm and several Bregman divergences. Simulations
using synthetic datasets showed that, in practice, this approach is extremely
relevant particularly when groups of unknown distributions belong to the data.
The introduction of several Bregman divergences let automatically captures
various shapes of groups. The KFC procedure also brings relevant improvements
for modeling in real-life applications when missing information may induce inner
groups. When the number of groups is unknown, which is often the case,
cross-validation on the number of groups helps to find the best configurations.

Supplementary materials

The R source codes, documentation and examples of the procedure is available in
GitHub: https://github.com/hassothea/KFC-Procedure.
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Chapter 3 — A kernel consensual aggregation for regression

3.1. Introduction

Aggregation methods, given the high diversity of available estimation strategies,
are now of great interest in constructing predictive models. To this goal, several
aggregation methods consisting of building a linear or convex combination of a
bunch of initial estimators have been introduced, for instance in Audibert [4],
Bunea et al. [16, 17, 18], Catoni [20], Gyorfi et al. [46], Dalalyan and Tsybakov [25],
[54], Nemirovski [71], Wegkamp [80], Yang [83, 84] and [85]. Another approach of
model selection, which aims at selecting the best estimator among the candidate
estimators, has also been proposed (see, for example, Massart [65]).

Apart from the usual linear combination and model selection methods, a
different technique has been introduced in classification problems by
Mojirsheibani [67]. In his paper, the combination is the majority vote among all
the points for which their predicted classes, given by all the basic classifiers,
coincide with the predicted classes of the query point. Roughly speaking, instead
of predicting a new point based on the structure of the original input, we look at
the topology defined by the predictions of the candidate estimators. Each
estimator was constructed differently so may be able to capture different features
of the input data and useful in defining “closeness”. Consequently, two points
having similar predictions or classes seem reasonably having similar actual
response values or belonging to the same actual class.

Later, Mojirsheibani [68] and Mojirsheibani and Kong [69] introduced
exponential and general kernel-based versions of the primal idea to improve the
smoothness in selecting and weighting individual data points in the combination.
In this context, the kernel function transforms the level of disagreements between
the predicted classes of a training point x; and the query point z into a
contributed weight given to the corresponding point in the vote. Besides, Biau et
al. [9] configured the original idea of Mojirsheibani [67] as a regression framework
where a training point x; is “close” to the query point x if each of their
predictions given by all the basic regression estimators is “close”. Each of the
close neighbors of x will be given a uniformly 0-1 weight contributing to the
combination. It was shown theoretically in these former papers that the
combinations inherit the consistency property of consistent basic estimators.

Recently from a practical point of view, a kernel-based version of Biau et
al. [9] called KernelCobra has been implemented in pycobra python library (see
Guedj and Srinivasa Desikan [43]). Moreover, it has also been applied in filtering
to improve the image denoising (see Guedj and Rengot [42]). In a complementary
manner to the earlier works, we present another kernel-based consensual
regression aggregation method in this chapter, as well as its theoretical and
numerical performances. More precisely, we show that the consistency
inheritance property shown in Biau et al. [9] also holds for this kernel-based
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3.2. The kernel-based combining regression

configuration for a broad class of regular kernels. Moreover, an evidence of
numerical simulation carried out on a similar set of simulated models, and some
real datasets shows that the present method outperforms the classical one.

This paper is organized as follows. Section 3.2 introduces some notation, the
definition of the proposed method, and presents the theoretical results, namely
consistency and convergence rate of the variance term of the method for a
subclass of regular kernel functions. A method based on gradient descent
algorithm to estimate the bandwidth parameter is described in Section 3.3.
Section 3.4 illustrates the performances of the proposed method through several
numerical examples of simulated and real datasets. Lastly, Section 3.7 collects all
the proofs of the theoretical results given in Section 3.2.

3.2. The kernel-based combining regression

3.2.1. Notation

We consider a training sample D,, = {(X;,Y;)",} where (X;,Y;),i =1,2,...,n, are
#id copies of the generic couple (X,Y). We assume that (X,Y) is an R? x R-valued
random variable with a suitable integrability which will be specified later.

We randomly split the training data D, into two parts of size ¢ and k£ such
that ¢ + k = n, which are denoted by D, = {(Xi(e), Y;(é))f:l} and
Dy = {(Xi(k), Y;(k))le} respectively (a common choice is k = [n/2] =n — (). The
M basic regression estimators or machines 7 1, 7x.2, ..., 7, m are constructed using
only the data points in Dg. These basic machines can be any regression
estimators such as linear regression, kNN, kernel smoother, SVR, lasso, ridge,
neural networks, naive Bayes, bagging, gradient boosting, random forests, etc.
They could be parametric, nonparametric or semi-parametric with their possible
tuning parameters. For the combination, we only need the predictions given by
all these basic machines of the remaining part D, and the query point x.

In the sequel, for any = € R?, the following notation is used:

o ri(x) = (rp1(x), Tk 2(2), ..., k0 (x)): the vector of predictions of z.

o ||z]| = ||z|lzs = V2L, 27: Euclidean norm on R?.

o [zl = Zle |z;|: ¢4 norm on R?,
o n(z) = E[Y|X = z]: the regression function.

o 7(rg(z)) = E[Y|rg(x)]: the conditional expectation of the response variable
given all the predictions. This can be proven to be the optimal estimator in
regression over the set of predictions ry(X).

63



Chapter 3 — A kernel consensual aggregation for regression

The consensual regression aggregation is the weighted average defined by

¢
gu(ri(@) = 3 W i(2)Y . (3.1)

=1

Recall that given all the basic machines ry1,7%2,...,7% 0, the aggregation
method proposed by Biau et al. [9] corresponds to the following naive weights:

TT—1 Ly (X0)—rim (@) <R}
S TI s L (X)) =rim (@) <1}

W.i(x) = a=1,2,... 0. (3.2)
Moreover, the condition of “closeness for all” predictions, can be relaxed to “some”
predictions, which corresponds to the following weights:

Iy Nerp o (z >aM
Wii(x) = {Z"” UremCD @<= Gy o0 (33)

ZJ 1 {Em 1 LI (X)) =7y () <} 2 M}

where a € {1/M,2/M, ..., 1} is the proportion of consensual predictions required
and A > 0 is the bandwidth or window parameter to be determined.
Constructing the proposed method is equivalent to searching for the best possible
value of these parameters over a given grid, minimizing some quadratic error
which will be described in Section 3.3.

In the present paper, K : R® — R, denotes a regular kernel which is a
decreasing function satisfying:

b1 <1,¥z€RM
b, kg, p > 0 such that { Bu0.)(2) < K(2) : (3.4)

Jrar SUD ey, () K (W)dz = Ko < 400

where By(c,7) = {z € RM : ||c — 2|]| < r} denotes the open ball of center ¢ € RM
and radius 7 > 0 of R™. We propose in (3.1) a method associated to the weights
defined at any query point z € R? by
K x 0y _

n(rx( ) —15(2))

7

Kn(ry(X;") = r4())

where Kp,(z) = K(z/h) for some bandwidth parameter A > 0 with the convention
of 0/0 = 0. Observe that the combination is based only on D, but the whole
construction of the method depends on the whole training data D,, as the basic
machines are all constructed using Dy. In our setting, we treat the vector of
predictions ry(z) as an M-dimensional feature, and the kernel function is applied

W,i(x) = i=1,2,..,0 (3.5)
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on the whole vector at once. Note that the implementation of KernelCobra in
Guedj and Srinivasa Desikan [44] corresponds to the following weights:

Ws(a) = — ZHet KnCrin(XE) = rion(z)

_ G=12.0 (36)
22:1 Zn]\;[:1 Kh(rk,m(X]@) - Tk:,m<x))

where the univariate kernel function K is applied on each component of ry(z)
separately.

3.2.2. Theoretical performance

The performance of the combining estimation g, is measured using the quadratic
risk defined by

E||gn(ri(X)) — n(X)[*

where the expectation is taken with respect to both X and the training sample
D,,. Firstly, we begin with a simple decomposition of the distortion between the
proposed method and the optimal regression estimator n(X) by introducing the
optimal regression estimator over the set of predictions n(ry(X)). The following
proposition shows that the nonasymptotic-type control of the distortion, presented
in Proposition.2.1 of Biau et al. [9], also holds for this case of regular kernels.

Proposition 3.1. Let v, = (rk1,7k2, .-, "km) be the collection of all basic
estimators and g,(ri(x)) be the combined estimator defined in (3.1) with the
weights given in (4.1) computed at point x € R Then, for all distributions of
(X,Y) with E[|Y|*] < +o0,

E[lgn(m (X)) = n(OF] < g B[ 7((X)) = n(X) ]
+B[lga(ne(X)) = (X))

where G is the class of any function f: RM — R satisfying E[f(r.(X))[?] < +oo.
In particular,

E|lgn(r(X)) = n(X)| < | min E[frn(X) = n(X)P]

+Elga (1)) = (e (X))

The two terms of the last bound can be viewed as a bias-variance decomposition
where the first term min;<,, <y E[|7%m(X) — n(X)|?] can be seen as the bias and
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E[|gn(r (X)) —n(ri(X))|?] is the variance-type term (Biau et al. [9]). Given all the
machines, the first term cannot be controlled as it depends on the performance
of the best constructed machine, and it will be there as the asymptotic control
of the performance of the proposed method. Our main task is to deal with the
second term, which can be proven to be asymptotically negligible in the following
key proposition.

Proposition 3.2. Assume that vy, is bounded for allm =1,2,.., M. Let h — 0
and ¢ — 400 such that hWM{ — +oo. Then

E{|gn(rk(X)) _ n(rk(X))ﬂ 40 as £ — 400

for all distribution of (X,Y) with E[|Y|?] < +oo. Thus,

lim supEE |9 (m (X)) = n(X) 2] < inf E|1f((X)) = n(X) 2.

=400 T feg

And in particular,

limsup E|[g. (X)) = n(OF| < min B lrn(X) = n(0F]
(> +o00 1<m<M

Proposition 3.2 above is an analogous setup of Proposition 2.2 in Biau et al. [9].
To prove this result, we follow the procedure of Stone’s theorem (see, for example,
Stone [75] and Chapter 4 of Gyorfi et al. [46]) of weak universal consistency of non-
parametric regression. However, showing this result for the class of regular kernels
is not straightforward. Most of the previous studies provided such a result of Ls-
consistency only for the class of compactly supported kernels (see, for example,
Chapter 5 of Gyorfi et al. [46]). In this study, we can derive the result for this
broader class thanks to the boundedness of all basic machines. However, the price
to pay for the universality for this class of regular kernels is the lack of convergence
rate. To this goal, a weak smoothness assumption of n with respect to the basic
machines is required. For example, the convergence rate of the variance-type term
in Biau et al. [9] is of order O(¢~2/(M+2)) ynder the same smoothness assumption,
and this result also holds for all the compactly support kernels. Our goal is not
to theoretically do better than the classical method but to investigate such a
similar result in a broader class of kernel functions. For those kernels which the
tails decrease fast enough, the convergence rate of the variance-type term can be
attained as described in the following main theorem of this paper.

Theorem 3.1. Assume that the response variable Y and all the basic machines
Thm, M = 1,2,..., M, are bounded by some constant R. Suppose that there exists a
constant L > 0 such that, for every k > 1,

In(ri(z)) — n(r(y))| < Ll|re(z) — me(y)||, Vo, y € RY.
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We assume moreover that

Rk, Cr > 0: K(2)|]2])* < Vz € RM such that ||z|| > Rx. (3.7)

1+ H [
o M+2
Then, with the choice of h oc £ M?+2M+4 - one has

El|ga(rs(X)) = n(X)F] £ min Eljre,m(X) - n(X)[} + CC 7w (3.8)

1<m<M
for some positive constant C' = C(b, L, R, R, Ck) independent of (.

. . . . M
Moreover, if there exists a consistent estimator named 7y ,,, among {rm }o_;
i.e.,

E[|rg,mo (X) — 77(X)|2] — 0 as k — 400,

then the combing estimator g, is also consistent for all distribution of (X,Y") in
some class M. Consequently, under the assumption of Theorem 3.1, one has

i Bl (r (X)) — (X = 0.
Remark 3.1. The assumption on the upper bound of the kernel K in the theorem
above is very weak, chosen so that the result holds for a large subclass of regqular
kernels. However, the convergence rate is indeed slow for this subclass of kernel
functions. If we strengthen this condition, we can obtain a much nicer result. For
instance, if we assume that the tails decrease at least of exponential speed i.e.,

I

ARy, Cx >0 and a > 0: K(z) < Cre FI% vz e RM, Izl > Rk,

by following the same procedure as in the proof of the above theorem (Section 3.7.4),
one can easily check that the convergence rate of the variance-type term is bounded
by O(£=28/(M+28)) for any positive B < 1. This implies the same convergence rate
as in Biau et al. [9] by letting § — 1.

3.3. Bandwidth parameter estimation using gradient
descent

In earlier works by Biau et al. [9] and Guedj and Srinivasa Desikan [44], the
training data D, is practically broken down into three parts D, where all the
candidate machines {ry,}»_, are built, and two other parts D,, and Dy,. Dy, is
used for the combination defined in equation (3.1), and Dy, is the validation set
used to learn the bandwidth parameter h of equation (3.2) and the proportion « of
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equation (3.3) by minimizing the average quadratic error evaluated on Dy, defined
as follows,

- 1
’,Db

ar(h) > lon(re(Xy) =YV (3.9)

| (X;,Y;j)€De,

where |Dy,| denotes the cardinality of Dy, gn(re(X;)) = X(x, viyen,, Wni(X;)Yi
defined in equation (3.1), and the weight W, ;(X;) is given in equation (3.2) and
(3.6) for Biau et al. [9] and Guedj and Srinivasa Desikan [44] respectively. Note that
the subscript M of ¢,;(h) indicates the full consensus between the M components
of the predictions ry(X;) and rj(X;) for any X; and X; of D,, and Dy, respectively.
In this case, constructing a combining estimation g, is equivalent to searching for
an optimal parameter h* over a given grid H = {hmin, .-, Pmax } 1-€.,

h* = argmin @y (h).
heH

The parameter « of equation (3.3) can be tuned easily by considering @anr(h)
where o € {1/2,1/3,...,1} referring to the proportion of consensuses required
among the M components of the predictions. In this case, the optimal parameters
a* and h* are chosen to be the minimizer of ¢,/ (h) i.e.,

(o, h") = arg min Car(h).
(a,h)€{1/2,1/3,.. 1} xH

Note that in both papers, the grid search algorithm is used in searching for the
optimal bandwidth parameter.

In this study, the training data is broken down into only two parts, Dy and D,.
Again, we construct the basic machines using Dy, and we propose the following

k-fold cross-validation error which is a function of the bandwidth parameter A > 0
defined by

rh) == > lon(ne(X5) = Vi) (3.10)

B p=1(X,,Y;)€F,

where in this case, gn(ri(X;)) = X(x, vi)ep\r, Wn,i(X;)Yi, is computed using the
remaining £ — 1 folds of D, leaving F,, C D, as the corresponding validation fold.
We often observe the convex-like curves of the cross-validation quadratic error on
many simulations; and from this observation, we propose to use a gradient descent
algorithm to estimate the optimal bandwidth parameter. The associated gradient
descent algorithm used to estimate the optimal parameter A* is implemented as

follows:
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Algorithm 2. : Gradient descent for estimating h*:

1. Initialization: hg, a learning rate X > 0, threshold 6 > 0 and the
mazximum number of iteration N.

2. Fork=1,2,...,N, while %gp“(hk_l) >0 do:
hie < et — A" ()
k k-1 thD k—1

3. return hy violating the while condition or hy to be the estimation of
h*.

From equation (3.10), for any (Xj,Y;) € F,, one has

d 1 & 0
—"(h) = = 27711' Xj n\ I Xj —Yj
AW =D X e on(es(X5) )

where

(X v )Dee\ By Yiln (T (X;) — 13( X))
Z(Xq,yq)eDZ\Fp K (r(X;) — 1i(Xg))

0
= g5 9n(rr(X5)) = > (¥i = Yg) <
(Xi7yvi)7(XfI7Y<Z)eth\FP

B K (r3(X;) — 1 (X0)) K (ri(X) — (X))
2a))
| Zxovomeers, Kn(me(X;) = i(X0))

gn(rk(X;)) =

The differentiability of ¢, depends entirely on the kernel function K. Therefore, for
suitable kernels, the implementation of the algorithm is straightforward. For example,
in the case of Gaussian kernel Kj,(z) = exp(—h|z||?/(20?)) for some o > 0, one has

0
%gn(rk(Xj)) = > (Yo — Yi)llrr(X;) — rp(X5) [P x
(X4,Y3),(Xq,Yq)ED\Fp

exp (= h(ler(X;) = re(X0)|2 + [[es (X)) — 1r(Xg)[2)/(202))

202( 3, vy, X~ (X)) — 1 (X,)[12/(202))

In our numerical experiment, the numerical gradient of (3.10) can be computed
efficiently and rapidly thanks to grad function contained in pracma library of R
software (see Borchers [11]). We observe that the algorithm works much faster, and
more importantly it does not require the information of the interval containing the
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optimal parameter as the grid search does. Most of the time, the parameter h
vanishing the numerical gradient of the objective function can be attained, leading to a
good construction of the corresponding combining estimation method, as reported in
the next section.

3.4. Numerical experiments

This section is devoted to numerical experiments to illustrate the performance of our
proposed method. It is shown in Biau et al. [9] that the classical method mostly
outperforms the basic machines of the combination. In this experiment, we compare
the performances of the proposed methods with the classical one and all the basic
machines. Several options of kernel functions are considered. Most kernels are
compactly supported on [—1, 1], taking nonzero values only on [—1, 1], except for the
case of compactly supported Gaussian which is supported on [—p1, p1], for some p; > 0.
Moreover to implement the gradient descent algorithm in estimating the bandwidth
parameter, we also present the results of non-compactly supported cases such as
classical Gaussian and 4-exponential kernels. All kernels considered in this paper are
listed in Table 3.1, and some of them are displayed (univariate case) in Figure 3.1
below.

’ Kernel ‘ Formula
Naive* K(z) = Hg:l Lo 1<1y
Epanechnikov K(z)=(1- HZL‘HQ)R{IIa:IISl}
Bi-weight K(2) = (1 [[2]*)*L{jap<1)
Tri-weight K(x) = (1 = [[2]*)°Lijey<y
Compact-support Gaussian | K(z) = eXp{—||33H2/(202)}]1{Hx||§p1}v o,p1 >0
Gaussian K(x) = exp{—|z[|*/(20°)},0 > 0
4-exponential K(x) = GXP{—||5U||4/(204)}a c>0

Table 3.1.: Kernel functions used.

3.4.1. Simulated datasets

In this subsection, we study the performances of our proposed method on the same set
of simulated datasets of size n as provided in Biau et al. [9]. The input data is either
independent and uniformly distributed over (—1,1)¢ (uncorrelated case) or distributed
from a Gaussian distribution A/(0, X) where the covariance matrix ¥ is defined by 3;; =
2~ 1=il for 1 < 4,5 < d (correlated case). We consider the following models:

Model 1. : n =800,d = 50,Y = X? + exp(—X2).

Model 2. : n = 600,d = 100,Y = X; X5 + X2 — X4 X7 + X X10 — X2 + N(0,0.5).

70



3.4. Numerical experiments

1 _‘Trl_
AN .
SN — Naive
. \ . .
0.8 SO0 ---- Epanechnikov
: ) H 1 ° . .
: ,‘:’l R LA Bi-weight
. 1 . . .
0.6 | ot |- ----Tri-weight
O N i\ .
= i i\ - - Gaussian
w1 ! LA .
= 0.4 ;’.’ i H ‘.‘*_ - -+ 4-exponential
Qi Wt
R ,’ ,' “ ‘| Y
0.2 ¢ A AL
R Wy
k4 /! W .
» /! \ . N,
0 - g } Wy o
-3 -2 -1 0 1 2 3
x

Figure 3.1.: The shapes of some kernels.

Model 3. : n = 600,d = 100,Y = —sin(2X;) + X2 + X3 — exp(—X4) + N (0,0.5).

Model 4. : n = 600,d = 100,Y = X; + (2X5 — 1)? + sin(27X3)/(2 — sin(27X3)) +
sin(2mXy) + 2 cos(2mXy) + 3sin?(2mXy) + 4 cos? (27 X4) + N(0,0.5).

Model 5. : n.=700,d = 20,Y = Iyx,50y + X35 + L{x, 1 Xo— X Xo>1+ ¥4} TEXD(—X3) +
N(0,0.05).

Model 6. : n=500,d =30,Y =332, Lix, <0y — Liar(0,1)>1.25}-
Model 7. : n = 600,d = 300,Y = X7 + X3 X3 exp(—|X4|) + X6 — Xg + N(0,0.5).

MOdel 8. T n = 6007 d == 50, Y == ]]'{XlJrXZ+X9+Sin(X12X18)+N(0,0.01)>0.38}'

Moreover, it is interesting to consider some high-dimensional cases as many real
problems such as image and signal processing involve these kinds of datasets. Therefore,
we also consider the following two high-dimensional models, where the last one is not
from Biau et al. [9] but a made-up one.

Model 9. : n = 500,d = 1000,Y = X; + 3X3 — 2exp(—X;) + X.

Model 10. : n = 500,d = 1500, Y = exp(X1)+exp(—X1)+ Y 7_y[cos(X7)) —2sin(X7)—
exp(—|X;[)].

For each model, the proposed method is implemented over 100 replications. We
randomly split 80% of each simulated dataset into two equal parts, D, and Dy where
¢ =10.8xn/2] —k, and the remaining 20% will be treated as the corresponding testing
data. We measure the performance of any regression method f using mean square error
(MSE) evaluated on the 20%-testing data defined by
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Ntest

Z test test))Q' (3.11)

ntest -1

MSE(f

Table 3.2 and 3.3 below contain the average MSEs and the corresponding standard
errors (into brackets) over 100 runs of uncorrelated and correlated cases respectively. In
each table, the first block contains five columns corresponding to the following five basic

machines r; = (Tk,m)gnzlz

o Rid: Ridge regression (R package glmnet, see Friedman et al. [39]).
o Las: Lasso regression (R package glmnet).

o kININ: k-nearest neighbors regression (R package FNN, see Li [60]).

o Tr: Regression tree (R package tree, see Ripley [72]).

o« RF: Random Forest regression (R package randomForest, see Liaw and
Wiener [61]).

We choose k& = 5 for k-NN and ntree = 300 for random forest algorithm, and other
methods are implemented using the default parameters. The best performance of each
method in this block is given in boldface. The second block contains the last seven
columns corresponding to the kernel functions used in the combining method where
COBRAT, Epan, Bi-wgt, Tri-wgt, C-Gaus, Gauss and Exp4 respectively stand
for classical COBRA, Epanechnikov, Bi-weight, Tri-weight, Compact-support Gaussian,
Gaussian and 4-exponential kernels as listed in Table 3.1. In this block, the smallest
MSE of each case is again written in boldface. For all the compactly supported kernels,
we consider 500 values of h in a uniform grid {10_100, ey Pmax } where hyayx = 10, which is
chosen to be large enough, likely to contain the optimal parameter to be searched. For the
compactly supported Gaussian, we set p; = 3 and o = 1 therefore its support is [—3, 3].
Lastly, for the two non-compactly supported kernels, Gaussian and 4-exponential, the
optimal parameters are estimated using gradient descent algorithm described in the
previous section. Moreover, it should be pointed out that the results in the first block
are not necessarily exactly the same as the ones reported in Biau et al. [9] due to the
choices of the parameters of the basic machines.

Note that it is numerically shown in Biau et al. [9] that the classical combining
method delivers similar performance, and sometimes outperforms two well-known
competitors, SuperLearner (see Van der Laan et al. [79] and Eric et al. [31]) and
Exponential Weighted Aggregation (EWA by Giraud [40]), on some other simulated
models described above. The two competitors predict a new data point based on
convex combination of predictions (not the response variable) given by all the basic
machines, which is practically different from our method. However, the two methods
philosophically stand on the same ground as the proposed method in the sense of

"We use the relaxed version of Biau et al. [9] with the weights given in equation (3.3). COBRA
library of R software is used (see, Gued;j [41]).
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combining inhomogeneous type of basic machines. That is why both were used as
benchmarks in Biau et al. [9]. Therefore in this paper, it is enough to compare the
proposed regular kernel-based method to the classical one.

We can easily compare the performances of the combining estimation methods with
all the basic machines and among themselves as the results reported in the second block
are the straight combinations of those in the first block. In each table, we are interested
in comparing the smallest average MSE in the first block to all the columns in the second
block. First of all, we can see that all columns of the second block always outperform the
best machine of the first block, which illustrates the theoretical result of the combining
estimation methods. Secondly, the kernel-based methods beat the first column (classical
COBRA) of the second block for almost all kernels. Lastly, the combing estimation
method with Gaussian kernel is the absolute winner as the corresponding column is bold
in both tables. Note that with the proposed gradient descent algorithm, we can obtain
the value of bandwidth parameter with null gradient of cross-validation error defined in
equation (3.10), which is often better and much faster than the one obtained by the grid
search algorithm (2 or 3 times faster). Figure 3.2 below contains boxplots of runtimes
of 100 runs of Model 1 and 9 of both correlated and uncorrelated cases computed on a
machine with the following characteristics:

o Processor: 2x AMD Opteron 6174, 12C, 2.2GHz, 12x512K L2/12M L3 Cache,
80W ACP, DDR3-1333MHz.

e Memory: 64GB Memory for 2 CPUs, DDR3, 1333MHz.

Running time on Medel 1 (uncorrelated) Running time on Model 1 (correlated)
* 5 —l—
5-
- e —

%’? Opt_method ’g’?i | Opt_method
%) ®
5 = = =]
é & . grid E 3 — grid

2 $ 2 E

COE‘!R#. Gausls grid ExmI grid Gaus‘s GD Exp4‘ GD COéRA Gaus‘s grid Exp4‘ grid Gaus‘s GD Expd‘ GD
IMethod Method
Running time on Model 9 (uncorrelated) Running time on Model 8 (correlated)
i . :
b + ~ et —I—
] . —2-
2 ‘ Opt_method 9 Opt_method
) )
= B3 o 5 . L =g
£ . £ Y
=P B orid £, . BS gid
% .
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Method Method

Figure 3.2.: Boxplots of runtimes of GD and grid search algorithm implemented
on some models.
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Table 3.2.: Average MSEs in the uncorrelated case.

Model Las Rid ENN Tr RF COBRA Epan Bi-wgt Tri-wgt C-Gaus Gauss Exp4
1 0.156 0.134 0.144 0.027 0.033 0.022 0.020 0.019 0.019 0.019 0.018 0.019
(0.016) (0.013) (0.014) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003) (0.002) (0.003)
2 1.301 0.784 0.873 1.124 0.707 0.722 0.718 0.712 0.715 0.712 0.709 0.710
(0.216) (0.110) (0.123) (0.165) (0.097) (0.065) (0.079) (0.080) (0.079) (0.079) (0.078) (0.079)
3 0.664 0.669 1.477 0.797 0.629 0.554 0.482 0.478 0.476 0.479 0.475 0.483
(0.107) (0.255) (0.192) (0.135) (0.091) (0.069) (0.062) (0.060) (0.060) (0.063) (0.060) (0.060)
4 7.783 6.550 10.238 3.796 3.774 3.608 3.231 3.185 3.153 3.189 2.996 3.186
(1.121) (1.115) (1.398) (0.840) (0.523) (0.526) (0.383) (0.382) (0.384) (0.371) (0.384) (0.464)
5 0.508 0.518 0.699 0.575 0.436 0.429 0.389 0.387 0.386 0.387 0.383 0.387
(0.051) (0.073) (0.084) (0.081) (0.051) (0.035) (0.031) (0.030) (0.030) (0.030) (0.030) (0.028)
6 2.693 1.958 2.675 3.065 1.826 1.574 1.274 1.259 1.254 1.270 1.273 1.286
(0.537) (0.292) (0.349) (0.475) (0.262) (0.270) (0.129) (0.130) (0.130) (0.125) (0.130) (0.130)
7 1.971 0.796 1.074 0.737 0.515 0.506 0.472 0.468 0.467 0.469 0.451 0.477
(0.410) (0.132) (0.152) (0.109) (0.073) (0.063) (0.049) (0.048) (0.049) (0.049) (0.049) (0.067)
8 0.134 0.131 0.200 0.174 0.127 0.104 0.092 0.091 0.091 0.091 0.091 0.094
(0.016) (0.020) (0.020) (0.034) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.011) (0.016)
9 1.592 2.948 3.489 1.830 1.488 1.130 0.929 0.918 0.914 0.918 0.895 0.993
) (0.219) (0.436) (0.516) (0.373) (0.267) (0.151) (0.128) (0.127) (0.130) (0.124) (0.126) (0.186)
10 2012.660 1485.065 1778.955 3058.381 1618.977 1511.283 1462.509 1458.306 1459.558 1452.523 1400.365 1414.316
(284.391)  (210.816)  (261.396)  (486.504)  (231.555) | (129.796)  (143.976)  (142.988)  (142.602)  (141.168)  (143.330)  (144.929)
Table 3.3.: Average MSEs in the correlated case.
Model Las Rid kNN Tr RF COBRA Epan Bi-wgt Tri-wgt C-Gaus Gauss Exp4
1 2.294 1.947 1.941 0.320 0.542 0.307 0.304 0.301 0.288 0.297 0.269 0.291
(0.544 (0.507) (0.487) (0.145) (0.231) (0.129) (0.111) (0.103) (0.104) (0.092) (0.098)
5 14.273 8.442 8.572 6.796 5.135 5.345 4.529 4.491 4.541 4.377 4.910
(2.593) (1.912) (1.751) (1.548) (1.372) (1.194) (0.934) (0.922) (0.896) (0.905) (1.181)
3 7.996 6.266 8.704 4.110 3.722 3.327 2.536 2.444 2.554 2.168 2.357
(3.393) (3.296) (3.523) (2.894) (2.956) (1.006) (0.944) (0.840) (0.907) (0.680) (0.756)
4 61.474 42.351 46.934 8.855 13.381 9.599 9.963 9.682 10.085 9.056 9.713
(13.986) (11.622) (12.543) (3.480) (5.549) (4.125) (3.101) (2.860) (2.904) (2.407) (2.695)
5 6.805 7.479 10.342 4.000 4.880 3.225 2.401 2.235 2.412 1.792 2.194
(3.685) (5.336) (5.425) (3.144) (3.787) (2.088) (1.387) (1.250) (1.355) (0.913) (1.242)
6 4.221 2.087 4.461 3.408 1.701 1.493 1.238 1.217 1.248 1.097 1.270
(0.848) (0.485) (0.599) (0.636) (0.288) (0.326) (0.146) (0.143) (0.148) (0.145) (0.386)
7 17.875 4.695 5.591 4.132 3.081 3.304 2.779 2.736 2.788 2.640 2.979
(5.632) (1.318) (1.418) (1.360) (1.091) (0.799 (0.614) (0.605) (0.623) (0.590) (0.764)
8 0.139 0.133 0.201 0.159 0.121 0.102 0.100 0.100 0.100 0.092 0.092
(0.016) (0.020) (0.019) (0.035) (0.013) (0.021) (0.021) (0.020) (0.020) (0.021) (0.018)
9 43.445 37.827 43.991 15.258 16.957 13.505 11.007 11.067 11.206 10.303 12.346
) (12.210) (12.201) (12.920) (8.119) (8.774) (4.822) (3.815) (3.949) (3.960) (3.634) (5.014)
10 7235.062 5244.843 7636.811 13014.596 7092.741 5147.950 4669.516 4663.430 4697.019 4660.043 5073.591
(1100.579) (996.181) (1159.445) (2020.133) (1030.249) (835.384) (703.049) (696.027) (687.474) (681.370) (764.363) (1022.894)
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3.4.2. Real public datasets

In this part, we consider three public datasets which are available and easily accessible
on the internet. The first dataset (Abalone, available at Dua and Graff [29]) contains
4177 rows and 9 columns of measurements of abalones observed in Tasmania, Australia.
We are interested in predicting the age of each abalone through the number of rings
using its physical characteristics such as gender, size, weight, etc. The second dataset
(House, available at Kaggle [55]) comprises house sale prices for King County including
Seattle. It contains homes sold between May 2014 and May 2015. The dataset consists
of 21613 rows of houses and 21 columns of characteristics of each house including ID,
Year of sale, Size, Location, etc. In this case, we want to predict the price of each house
using all of its quantitative characteristics.

Notice that Model 6 and 8 of the previous subsection are about predicting integer
labels of the response variable. Analogously, the last dataset (Wine, see Dua and
Graff [30], Cortez et al. [24]), which was also considered in Biau et al. [9], containing 1599
rows of different types of wines and 12 columns corresponding to different substances
of red wines including the amount of different types of acids, sugar, chlorides, PH, etc.
The variable of interest is quality which scales from 3 to 8 where 8 represents the best
quality. We aim at predicting the quality of each wine, which is treated as a continuous
variable, using all of its substances.

The five primary machines are Ridge, LASSO, kNN, Tree and Random Forest
regression. In this case, the parameter ntree = 500 for random forest, and KNN is
implemented using k£ = 20,12 and 5 for Abalone, House and Wine dataset respectively.
The five machines are combined using the classical method by Biau et al. [9] and the
kernel-based method with Gaussian kernel as it is the most outstanding one among all
the kernel functions. In this case, the search for parameter h for the classical COBRA
method is performed using a grid of size 300. In addition, due to the scaling issue, we
measure the performance of any method f in this case using average root mean square

error (RMSE) defined by,

RMSE(f) = /MSE(f) = J

The average RMSEs obtained from 100 independent runs, evaluated on 20%-testing data
of the three public datasets, are provided in Table 3.4 below (the first three rows). We
observe that random forest is the best estimator among all the basic machines in the first
block, and the proposed method either outperforms other columns (Wine and Abalone)
or biases towards the best basic machine (House). Moreover, the performances of kernel-
based method always exceed the ones of the classical method by Biau et al. [9].

Ntest

Z(yztest _ f(l.gest))Q_ (312)

ntest i=1

3.4.3. Real private datasets

The results presented in this subsection are obtained from two private datasets. The
first dataset contains six columns corresponding to the six variables including Air
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Chapter 3 — A kernel consensual aggregation for regression

temperature, Input Pressure, Output Pressure, Flow, Water Temperature and Power
Consumption along with 2026 rows of hourly observations of these measurements of an
air compressor machine provided by Cadet et al. [19]. The goal is to predict the power
consumption of this machine using the five remaining explanatory variables. The
second dataset is provided by the wind energy company Maia Eolis. It contains 8721
observations of seven variables representing 10-minute measurements of FElectrical
power, Wind speed, Wind direction, Temperature, Variance of wind speed and Variance
of wind direction measured from a wind turbine of the company (see, Fischer et
al. [34]). In this case, we aim at predicting the electrical power produced by the
turbine using the remaining six measurements as explanatory variables. We use the
same set of parameters as in the previous subsection except for kNN where in this case
k = 10 and k = 7 are used for air compressor and wind turbine dataset respectively.
The results obtained from 100 independent runs of the methods are presented in the
last two rows (Air and Turbine) of Table 3.4 below. We observe on one hand that the
proposed method (Gauss) outperforms both the best basic machines (RF) and the
classical method by Biau et al. [9] in the case of Turbine dataset. On the other hand,
the performance of our method approaches the performance of the best basic machine
(Las) and outperforms the classical COBRA in the case of Air dataset. Moreover,
boxplots of runtimes (100 runs) measured on Wine and Turbine datasets (computed
using the same machine as described in the subsection of simulated data) are also given
in Figure 3.3 below.

Table 3.4.: Average RMSEs of real datasets.

Data Las Rid ENN Tr RF COBRA Gauss
House 241083.959 241072.974 245153.608 254099.652 205943.768 223596.317 209955.276
(8883.107) (8906.332) (23548.367) (9350.885) (7496.766) (13299.934) (7815.623)
Wine 0.0.660 0.685 0.767 0.711 0.623 0.650 0.617
(0.029) (0.053) (0.031) (0.030) (0.028) (0.026) (0.020)
Abalone 2.204 2.215 2.175 2.397 2.153 2.171 2.128
(0.071) (0.075) (0.062) (0.072) (0.060) (0.081) (0.057)
Air 163.099 164.230 241.657 351.317 174.836 172.858 163.253
(3.694) (3.746) (5.867) (31.876) (6.554) (7.644) (3.333)
Turbine 70.051 68.987 44.516 81.714 38.894 38.927 37.135
(4.986) (3.413) (1.671) (4.976) (1.506) (1.561) (1.555)

3.5. Application on a data of Magnetosphere-
lonosphere System provided by CEA

This section presents an application of the proposed method on a data provided by
researchers of Commissariat & 1’'Energie Atomique (CEA). In a collaboration with
researchers of CEA on a research topic in Magnetosphere-Ionosphere System, we are
interested in constructing a global machine learning model of event-driven for

IThe co-authored article of this study is available in the journal of Frontier - Space Physics,
[58].
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CEA
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Figure 3.3.: Boxplots of runtimes of GD and grid search algorithm implemented
on Wine and Turbine datasets.

estimating a physical quantity called Pitch Angle Diffusion Coefficient (Dgyq) using
three input data: electron at L-shell L, energy F, and equatorial pitch angle a. Pitch
angle diffusion coefficient is one of the major mechanisms that drives the structure of
the Van Allen radiation belts and causes the well-known two belt structure. Whistler
mode waves which are known to play a crucial role in thermodynamics, electron
acceleration, and electron precipitation in the atmosphere are also caused by the
physical process of pitch angle diffusion. This quantity can be computed from
statistical models derived from years of satellite observations of the hiss waves
properties of different missions, or using a method called event-driven approach
(Thorne et al. [77]). We use in this study a database of event-driven diffusion
coefficients that was generated for the studies of Ripoll et al. [73]. We have at hands a
very large fully observed dataset containing around two hundred million observations.
However, one wants to construct predictive models using reasonably small training
data, therefore 4 values of L € {2,3,4,5}, 60 values of E and 256 of « are chosen from
the full data, yielding a full training dataset of size 61 440, simply called Dg,. Then,
two training datasets are extracted: high-resolution (HR) and low-resolution datasets
(LR). High-resolution dataset is composed of 84 pitch angles and 60 energies bins, thus
contains 20 160 data points. The low-resolution dataset is composed of only 14 pitch
angles and 13 energies bins, thus contains only 728 data points. It should be pointed
out that the training datasets are noiseless (see Figure 3.4), and the relationship of
D, and « at some fixed couples (L, F) are illustrated in Figure 3.4 below.

In this study, several regression models are considered including local evaluation
models such as k-nearest neighbors (kNN) and kernel regression (KerReg), tree-based
methods such as regression tree (Tree), bagging (Bag) and random forest (RF), function
approximations including radial basis (Radial) and splines (Spline), and deep neural
networks (DNN) to predict the quantity of interest. These machines are trained on
both training data HR and LR separately. To measure the prediction capability of the
models, three different testing data are extracted from the full training data Dg,. The
three testing data are denoted by Diestr, Diestbk and Diestr, (which contains more
decimal values of L), and are used to test the performances of all the models built on
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Figure 3.4.: The relation between D,, and « at some cuts of L and F values.

HR, LR and both training datasets respectively. In each case, the regression models are
built using the whole training data (HR or LR) and there are no training data left for
the aggregation. Therefore, to not violate the independence assumption between the
data used to train the individual estimators and the data used to aggregate them, we
randomly split each testing data Dy into two balanced parts denoted by D,Eégt and

D(Q)t respectively. The first part Dt(is)t is used to tune the smoothing parameter h for

tes

the aggregation, and the remaining part Dgs)t is treated as the real testing dataset. The
numerical results obtained from 50 independent runs of the above procedure implemented
on different testing data are reported in Figure 3.5 below. The kernel-based consensual
aggregation method is implemented using Gaussian kernel and is denoted by Gaussian.
We observe that the tree-based models behave similarly and are the worst ones in all
cases, and DNN is the best individual estimator as it provides the lowest average testing
RMSE. On the other hand, the aggregation outperforms other basic estimators in the

last three cases, and biases towards the best basic estimator on DiestgR-

Remark 3.2. Since the training data are selectively extracted from the full observed data,
the distributions of the training and testing data are not the same (L only take values
in {2,3,4,5} in the training data, and more decimal values in the testing data). In this
case, the aggregation takes the knowledge of the models built on the training data through
predicted features (and not the inputs), then adapts this knowledge to the testing data used
for the aggregation Dgzt, yielding a good performance on the new testing datasets. This
domain adaptation-like property is a remarkable advantage of the aggregation method.
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Figure 3.5.: Boxplots of RMSEs over 50 runs of the aggregation method on the
three testing data Diestnr, Diesttr and Diestr,. Note that Radial is
built only on the training data LR, therefore it is not presented in the
two boxplots on the left-hand side.

3.6. Conclusion

In this study, we investigate and extend the context of a naive kernel-based consensual
regression aggregation method by Biau et al. [9] to a more general regular kernel-based
framework. From a computational point of view, an optimization algorithm based on
gradient descent is proposed to efficiently and rapidly estimate the key parameter of the
method. It is also shown through several numerical simulations that the performance
of the method is improved significantly with smoother kernel functions. Moreover, it
is also shown in a real application that the aggregation works in such a way that the
knowledge of a training data can be adapted, through predicted features, to predict a
testing data of different distribution.

In practice, the performance of the consensual aggregation depends both on the
performance of the individual regression machines, and on the final combination, here
involving kernel functions. Since the calibration of hyperparameters may be critical in
both steps, it could be very interesting to investigate in future work how automated
machine learning models can improve the performances of the global model.
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3.7. Proofs

3.7.1. Lemma of Binomial distribution

The following lemma, which is a variant of lemma 4.1 in Gyorfi et al. [46] related to the
property of binomial random variables, is needed for the proofs of this chapter.

Lemma 1. Let B(n,p) be the binomial random variable with parameters n and p. Then

1. For any c > 0,

1 2
E[c—i-B(n,p)] = p(n—+1)

1 2

[ [ —
E[Bm,p) L] < p(n+1)

Proof of Lemma 1. 1. For any c > 0, one has

1 1 n! L —k
E[—— | = 1—p)"
[c—i—B(n,p) ; c+k % (n—k)!k‘!p (1=p)

1 E+1 n! i —k
- 1—p)"
Zk+1xk+cx(n—k)!k!p( p)

2 n (n 4 1)!pk+1(1 _ p)n—i-l—(k:-‘rl)

Sp(n—l—l)lg mrl-(kt DNk+ D)

o2 %1 (n+ 1)lpF(1 —p)nti-F
“p(n+1) & [n 41— E|'k!
2
- = 1— n+1
p(n+1)(p+ p)
_ 2
p(n+1)

1 2
E[m lB(n,p)>0} < E[H—Bi(n,p)}

" 2 n! k —k
=> X pi(1—p)"
k:0k~|—1 (n — k)k!
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2 " (n4 1)IpFt — p)rti-(+D)
T pn+1) kz:% n+1—(k+1)](k+1)!

9 n+1 (n + 1)!pk(1 _ p)n—‘rl—k

T k1 KA
2
— 1 _ n+1
_ 2
 p(n+1)

3.7.2. Proof of proposition 1

For any square integrable function with respect to ri(X), one has

E[!gnm(X))fn(X)F]=E[|gn<rk<x>> n(rk(X)) + n(rx(X)) = n(X)P?]
:Eﬂgn(rlﬁX
+ 2B (ga(re(X)) = n(re(X

+E[In(r(X)) = n(X)P?].

We consider the second term of the right hand side of the last equality,

E[(ga(re(X)) — n(re(X))) (n(r(X)) - n(X))]

= Ep, 00 [Ex [(9a(m(X)) = n(mi(X)) (n(m(X) = (X)) ()
= Ep, 0 (90 (rs(2X)) = n(rs (X)) (n(r (X)) ~ Eln(X >\rk<X>J>}
=0

where n(r(X)) = E[n(X)|re(X)] thanks to the definition of n(r,(X)) and the tower
property of conditional expectation. It remains to check that

E[|n(re(X)) = n(X)P] < inf E[|/(rs(X)) = n(0)P].
For any function f s.t E[|f(rk(X))|2} < 400, one has

E[|f(re(X)) = n(X)P?] = E[|f(rs(X)) = n(re(X)) +n(re(X)) = n(X)[?]

+E[n(r(X)) = n(X)[].
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Similarly,
E[(f(re(X)) = n(re(X))) (n(ri(X)) = n(X))] = 0.
Therefore,

E[|f(re(X)) = n(X)[2] = B[|f(r:(X)) = n(r(X))?]
+E|In(ri(X)) = n(X)P?]-

As the first term of the right-hand side is nonnegative thus,

E[[n(ri(X)) = (0] < inf E|7(r(X)) = n(X)P]

Finally, we can conclude that

E [|gn (rs (X)) = n(X)[2] < E||gn(r(X)) = n(ri(X))[?]

inf X)) —n(X)|?|.
+ b E[|f(m(X)) —n(X)[?]
We obtain the particular case by restricting G to be the coordinates of rx, one has

E||gn(7(X)) = n(X)[2] < E||gn(r(X)) = n(ri(X))P?]

+ min Eflren(X) —n(X)P].

3.7.3. Proof of proposition 2

The procedure of proving this result is indeed the procedure of checking the conditions of
Stone’s theorem (see, for example, Stone [75] and Chapter 4 of Gyérfi et al. [46]) which
is also used in the classical method by Biau et al. [9]. First of all, using the inequality:

82



3.7. Proofs

(a+b+c)? <3(a®+b%+c?), one has

l
E[|ga (m(X)) = n(re (X)) = E[| 3 WaaX)Y; — n(me ()| |
=1

- iilwn,xxm (X))
+ i W () (X)) — (X))
N i Woa (X)) — ()|
< 38 an,i(X)[n(rk(Xi)) (X))

L
+9E[| 3 W01 = (X))
i=1

¢ 2
+ 3E[n(r(X)) > (Wi (X) = 1)|].

=1

The three terms of the right-hand side are denoted by A.1, A.2 and A.3 respectively, thus
one has

E|[gn(re(X)) = n(rs(X))[?] <3(A1+ A2+ A3).

To prove the result, it is enough to prove that the three terms A.1, A.2 and A.3 vanish
under the assumptions of Proposition 2. We deal with the first term A.1 in the following
proposition.

3.7.3.1. Proposition A.1 and the proof

Proposition A.1. Under the assumptions of Proposition 2,
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Proof of Proposition A.1. Using Cauchy-Schwarz’s inequality, one has

o
AL =E[| D Wai(X)In(ri(Xi)) - n(rk(X))]‘Z}
=1

i=1
0 4
<E[( X WaiX)) 32 W s(X) [n(me(X0)) — n(r ()]
i=1 i=1
= B[ 3" Wi () [n(re(X3)) — n(ri(X))P?]
i=1

Note that the regression function n satisfies E[|n(re(X))|?] < +oo, thus it can be
approximated in La sense by a continuous function with compact support named § (see,
for example, Theorem A.1 in Devroye et al. [28]). This means that for any € > 0, there
exists a continuous function with compact support § such that,

El[n(ri(X)) — gl (X)) <e.

Thus, one has

We deal with each term of the last upper bound as follows.

o Computation of Ans: applying the definition of g,

Ans = E[ 3" Wi (X)[5(ri (X)) — n(ri(X))?] < E[lg(r(X)) = n(re(X)P] < e.
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o Computation of An1: denoted by u the distribution of X. Thus,

l
= E[ 3" W a(O)ln(r(X0)) - g(r (X))

=1
— EIE[WM yn r(X1)) —
5

a(re(X1))P]
Kol ""ffil()jW(m(Xl)) §(r X))

Kn(re(v) = me(X1)
Yoy Kn(ri(v) — mo(X;))
In(r(X1)) = §(r(X0)) Pra(cv) ka]]
= (Ep, [Egx,e //yn (ra(u 7 ()| x

K (r(v )—Tk( ))
Kp(rp(v) — ri(u)) + ijz Kp(ri(v) — re(X;))

= o, | [ In(re(w) = 5w
(

Kp(ri(v) — () p(dv)
E{Xj}ﬁ—Q[/Kh(Tk( ) = 1i(w) + g Kn(ri(v) — mi(X ‘Dk} duﬂ
)

= (Ep, | [ In(re(w) = 3(n )] x I(u, Opu(d)].

— (Ep, [E{Xj}ﬁzl [

pu(du)p(dv) [ Dy

Fubini’s theorem is employed to obtain the result of the last bound where the inner
conditional expectation is denoted by I(u,f). We bound I(u,l) using the argument
of covering RM with a countable family of balls B = {Bas(zi,p/2) : i =1,2,....}
and the facts that

1. r(v) € By (ri(u) + hay, hp/2) = Bur(ri(u) + hai, hp/2) C By (ri(v), hp).
2. blip, 001 (2) < K(2) <1,Vz € RM.

Now, let
~ An(u) = {v € R [ m(v) — m(u) — ha]| < hp/2}.

YA
= By (4) = Y50 L (X))~ ri(u)—has | <hp/2) -
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Thus, one has

() =y [/ Kp(rp(v) — mp(u))p(dv) ”Dk}
=l Ky () — () + S Ka(mi(v) — (X))
“+o0o
<E .y /
Pl [2 il ()= () —hal| <hp /2
Kp(ri(v) — rp(u))p(dv) ‘Dk}
Kp(re(v) = mo(w)) + S5y Kn (i (v) — mie(X;
+oo
< E{X]}f:Z [zz:l /Az n(w)
SUD: || z—ha;||<hp/2 Kh('z):u'(dv> ‘Dk}
SUD,. (12— s | <hpy2 K (2) + g Kn(ri(v) — mi(X;
“+00
SUDPz:||z—ha;||<hp/2 Kh(z):u(dv) ‘Dk]
SUD . 12— [ <hp/2 Kn(2) + 52 Ln (o) —n ()<}
+oo
< 3By Z /
SuPz:Hz—hxiH<hﬂ/2 Kh(Z)pL(d’U) ‘Dk}

SUD-.j = | <hp/2 Bh (2) + ma L (X,) i) ~hsl|<ho/2}

_1 RSN SUD . | 2—hay | <hp/2 Bn(2) (A n(w))
- b ZE{ J}J 2[

Dy,
SUD.||2—hal|<hp/2 Kn(2 )+Bf,h(u ’ }

Note that Bﬁh(u) is a binomial random variable B(£ —1, u(A; n(w))) under the law
of {Xj}f:Q. Applying part 1 of Lemma of Binomial distribution of section 3.7.1,
one has
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X 28UD... |12~ hay || <hp/2 Kn(2) (Ain ()

INA
S| o=
Mg

I(u,?)

i=1 Lp(Aip(u))
= sup K (w)
be i=1 willw—z;[|<p/2
=7 sup K(w)
be i=1 wEB (zi,p/2)
9 +o00
< v sup K(w)

i=1 wEBM (%4,0/2)

2 = /
< sup K(w)dy
W Bar0.7720) 2= Justonorny ey )

)
2

“+o00
- / sup K (w)dy
b (Bar(0,p/2)) ; B (wi,0/2) wEB (y,p)
2K /
< sup  K(w)dy
bg)\M(BM(Ov p/2)) wEBn (y,p)
= ro by (3.4)
< 2K Ko
= bl (B (0, p))
b M
— C(’p’;O’) < 400

where \yy denotes the Lebesque measure on of RM | kyr denotes the number of
balls covering a certain element of RM, and the constant part is denoted by
C(b, p, ko, M) depending on the parameters indicated in the bracket. The last
inequality is attained from the fact that the overlapping integrals
S fBM(xi,p/Q) SUD.c By, (y,p/2) K (2)dy is bounded above by the integral over the
entire space [ Sup.cp,,(y.p/2) K (2)dy multiplying by the number of covering balls
kayr. Therefore,

Ay < (0L Mg [ [y, 0) = () Pa(aw)]

= C(b, p, ko, M)E[3(r (X)) — n(r(X))P]
< C(b, p, ko, M)e.
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o Computation of Ans: for any § > 0 one has

(7 (X)) P g (- ()12

Il
&=
%
\./
=
=

=
Py
>

|
Qe

Z
[Z X)13(r(X3)) = G(r(X)) Py ) - ()<}
0
< 4 sup Gk @)PE| > Waa(X) L x0)-m(x)l129)]
ue =1
+ sup 3(ri(w)) = §(re(v))

wvER: |y, (u) =1y (v)][ <

Using the uniform continuity of g, the second term of the upper bound of A,2 tends
to 0 when § tends 0. Thus, we only need to prove that the first term of this upper
bound also tends to 0. We follow a similar procedure as in the previous part:

[/Kh(rk;)—;?h(ik)(ﬂ;{[ri:)( T)(;Q)IIM}M(dU)‘DkH

K (13 (v) = (W) Ly (0) = () | 253 #(d) p(d)
- Enle ([ | B —rk<u>>+z§thm(v)—m(Xj))‘D’“”
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Fubini’s theorem is applied to obtain the last equation where for any u € RY,

T t) = Eyx [/ Kn(re(v) = 7 (W) Ly (0)— g ()| 253 1(dV) ’Dk}
’ Polizz L) K (ri(v) — () + S—g Ko (ri(v) — m(X;))

—+oco

<E iy /

k= [; illru (o) —ri(w)— i | <hp 2
Ky (r(v) — 76(w) L1, (0) 1 (w) |26} p(dv)’Dk}
Kp(re(v) — mp(w) + 35g K (m(v) — m(X;))

+o0

<Epgy| 2 Lo
SUD .12 —ha | <hp/2 Bn(2) L2120} (do) \Dk}

SUD,.( s | <hpy2 K (2) + g Kn(ri(v) — (X))
400

< sup Kin(2)1g, Y E, v /
; zi||z—hx;||<hp/2 h( ) {llzl1=4} {X]}§:2 [ A
p(dv)

SUD,.{ s | <hpy2 Kh (2) + b X5 L{jime ()= e (v) | <ho}
—+o0

< sup Kin(2)1g, Y E, v /
; zi||z—hx;||<hp/2 h( ) {lIzl1=4} {X]}§:2 [ A
p(dv)

SUD.. 2y <2 B (2) 375 Ll (5,) —ri(w)—hai|<hp/2)

i,h(“)

]

i,h(“)

Exe, | D4

+oo

<>, osup Kp(R)Lgsapa(Ain(u)x
i=1 z:llz—hx;il|<hp/2

1 1
“Ey e Dy,
b {X]}JZQ [Supz:||z—hxi||<hp/2 Kh(z) + Bz{h(u) ‘ :|

<1 Jio:o 28UD || —hay || <hp/2 Kn(2)(Aip(w) L)z 25)
=3 L Cu(A;p(u))
2 X

< = sup K(w)Lgju>s/h1-
bt i—1 willw—z;||<p/2 {llw||>6/h}

Thus, one has
4 2 400
E[ 3" Wai X)) -ne ()21 | < ¢ sup K (W) Ljw)>a/n)

i=1 bt i=1 WEBM (z4,p/2)

When both h — 0 and 6 — 0 satisfying 6/h — 400, the upper bound series
converges to zero. Indeed, it is a non-negative convergent series thanks to the
proof of I(u,l) in the previous part. Moreover, the general term of the series,
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Sk = SUDwe By (zx,p/2) B (W) L{jjw|>s/n} > Satisfying lims o0 sk = 0 for all k > 1.
Therefore, this series converges to zero when h — 0,8 — 0 such that §/h — +o0.

In conclusion, when { — +o0o and ,h,d — 0 such that 6/h — +oo, all the three terms
of the upper bound of A, tend to 0, so does A,.
|

3.7.3.2. Proposition A.2 and the proof

Proposition A.2. Under the assumptions of Proposition 2,

¢
tim &[] W ()Y, - gu(m(x)][ ] = 0.

Proof of Proposition A.2. Using the independence between (X;,Y;) and (X;,Y;) for
all i # j, one has

A2=E szm )1V — galr (X))

= 3 E[Wai (X)W (XY — gn (e (XD — g (m(X))]
1<4,5<¢

A
= B[ W2, — ga(m(X0)] = [Z ?(re(Xy))
=1

where 02 (ry(1)) = E[(Y; — gn(m%(X:)))? |k (x)]. Thus, based on the assumption of X and
Y we have 0® € Lyi(u). Therefore, 0 can be approzimated in Ly sense i.c., for any
e > 0,362 a continuous function with compact support such that

E[lo?(r(X)) — &*(mp(X)]] <e.

Thus, one has

l
A2 <E[YW2(X)5(n }HE[Z X)[o?(ri(X5)) = 5 (re(X2)|
=1
< sup [6%(ri(u |E[z }HE[Z X)|o?(ri(X2)) — 2 (r (X)) |.

Using similar argument as in the case of Ap1 and the fact that Wy, ;(x) < 1,Vi=1,2,..., ¢,
thus for any € > 0, one has

l
[Z X)|o?(r(X2)) = & (re(X)l| < B[ X Waa (X)|o” (me(X2) = 52 (i (X))
=1

< C(b, p, ko, M)e.
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Therefore, it remains to prove that E[Y%_, WgZ(X)] — 0 as ¢ — +4oo. As
bl (2) < K(2) < 1,Vz € RM with the convention of 0/0 = 0, for a fized 6 > 0,
one has

éwg f:( n(r(X) — me(X5)) )2
P - h(Tk(X) (X )
< i 1Kh( (X)) — 7 (X5))
(s K () = (X))
< min {5, ﬂ{gzj1Khm<x>—m<xj>>>0}}
23:1 Kp(rp(X) — (X))
< min {5’ H{Z;-_l L1y (X) s (X )l <hio} >0}
b2 =1 L{lire(O—m (X)) <ho}
<5+ 1{Z§:1ﬂ{urk<X>—rk<xj>H<hp}>0}‘ (3.13)

4
b3 51 i (x)—mu (X))l <hp}

Therefore, it is enough to show that

0.

1

[ {Zj_lll{nrk(x)rk(xj)||<hp}>0}} l—too
il

g=1 H{llrk (X) =71 (X;)[|<hp}

One has

1

[ {ijll{%(x)Tk(Xj)|<hP}>O}:|
0

=1 Ll (X) = (X, <o)

()
< IE{ {221 Mling GO = () <hp} >0}

7 L ooesy| +ul{v €RY: i(v) € BY)
2 j=1 Lijmu(X)—r(X;)lI<hp}

£
{321 Mling (0 =g (X <hp} >0}

=E|1y, E X RY B¢
{{k(X)EB} [ 51 Lim() = (X, <o) ‘ HJFM({UG )€ B
Liry(x)eB) i .
< 2| a0 € B (o) — T <y T € B (v € BY)

where B is a M-dimensional ball centered at the origin chosen so that the second term
p({v € RY : m(v) € BCY) is small. The last inequality is attained by applying the
lemma of Binomial distribution of section 3.7.1. Moreover, as 1, = (Tk,m)%z1 18
bounded then there exists a finite number of balls in B = {By(zj,hp/2) : j = 1,2,...}
such that B is contained in the union of these balls i.e., Iy s finite, such that
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B C Ujer, o Bu(j, hp/2). Thus,

E| Lr (x)eB) ]
(¢ + Du(fo € RE: ||m(v) = mi(X)[| < hp})

< Z / p(du)

jerma Jullrw=zjli<ip/2 (€ + Du({v € RY: |Imi(v) — mi(u)|] < hp})
+ u({v € R%: 7 (v) € B°})

p(du)
< 2 /u:rk(u)—zj||<hp/2 L+ Du({v e Re: [|ry(v) — x5]| < hp/2})

JE€In,Mm
+ u({v e RY: my(v) € BYY)

) p{u € R? : ||lmi(w) — 4| < hp/2})

<oy (v ¢
[+ Du({v € R : [[re(0) — a;] < hpj2y) T HUHv € R mlv) € BY)

JEIn M

_ nul
‘+1
Co
R
— AM(+1)

otoo 0 p({v e R : rp(v) € BY}).

+ u({v € RY: 7y (v) € BYY)

+ u({v e R : 7 (v) € B°}) (3.14)

hAM{— 400

It is easy to check the following fact,
Co
| Tn | < T for some Cy > 0. (3.15)

To prove this, we consider again the cover B = {By(zj,hp/2) : j =1,2,...} of RM. For
any p > 0 fized and h > 0, note that the covering number |In p| s proportional to the
ratio between the volume of B and the volume of the ball By (0, hp/2) i.e.,

Vol(B)
Vol(Bar (0, hp/2))
Vol(B)

[ In, a1 | ox

for some positive constant Cy proportional to the volume of B. Finally, we can conclude
the proof of the proposition as we can choose B such that u({v € R : r,(v) € B¢}) =0
thanks to the boundedness of the basic machines.

Remark 3.3. The assumption on the boundedness of the constructed machines is
cructal. This assumption allows us to choose a ball B which can be covered using a
finite number |Ip ar| of balls By(xj,hp/2), therefore makes it possible to prove the
result of this proposition for this class of regular kernels. Note that for the class of
compactly supported kernels, it is easy to obtain such a result directly from the begging
of the evaluation of each integral (see, for example, Chapter 5 of Gyorfi et al. [46]).
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3.7.3.3. Proposition A.3 and the proof

Proposition A.3. Under the assumptions of Proposition 2,

l
lim ]EHn(rk(X))(Z Wii(X) = 1) ﬁ =0.
=1

f—+00

Proof of Proposition A.3. Note that | Y ¢_; W, ;(X) — 1| <1 thus one has

l
(X)) (X WasX) — 1) < n(ma(X)P
=1

Consequently, by Lebesque’s dominated convergence theorem, to prove this pmposz’tion, it
is enough to show that Y._, Wy (X)) — 1 almost surely. Note that 1 —Y%_; W, :(X) =

H{Zle Ko (i (X)— 1. (X1))=0} therefore,

I4 14
P[> Wii(X) #1] =P[ 3 Kn(me(X) = m(X:)) = 0]
=1 =1
V4
< P(Z L) —mu(X))lI<hp} = 0)

)4
(Z L)y (X,)l1<hp) = 0) ()

j=1

PNty flIme(@) — 7 (X5) | 2 ho} ) (da)
[1=P({lInee) = (X0 < hp})] ()

1= (fo e R (@) - nw)] < ho})] (o)
e—éu(Ah(w))M(dx)

I
.

Il Il
\\\\\ \

IN

- ()
where
Ap(x) = {v e R?: () — m(v)|| < hp}.
Therefore,
B[S W) £1] < | Lxcs) ]
=" = tu({v e R i (v) — me(X)|| < hp})

+ u({v € R%: 7 (v) € BYY).

A e pyp(de) + p({v € RY: 7 (v) € BY)

—u Ly (o
max, {ue "} / {r( )EB}M(dx) + u({v € R : my(v) € B°})
] (A

(3.16)
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Following the same procedure as in the proof of A.2 we obtain the desire result.

3.7.4. Proof of theorem 1

Choose a new observation x € R, given the training data Dy and the predzctwns

{rk(Xp)}f; 1 on Dy, taking expectation with respect to the response variables {Y}, )}p 1

it is easy to check that
Ellgn(ri.(x)) = n(ri(2))*{re(Xp) Y p1, Di]
= E[|ga(ru(a)) - E[gn<m<x>>|{rk<xp>}§;:1, Dy

+ Elga(r(@)| (e (Xp) Yo D] — nlree))|[ [ (m (X))o D]
=E[|gn<m<x>>—E[gn<m<x>>|m<xp> b DR (X) Yo DY)

+ (7 (@) = Elgn (i (@) {re(Xp) Yyur, Dil?
= F1 + Es.

On one hand by using the independence between Y; and (Y, X;) for alli # j, we develop
the square and obtain for any 6 > 0:

Ey = E[\gn ri(2)) — Ellgn (@) () Yomr, Dil| [ (e (X,) Yomr, D]

HZan Y E[Y‘Tk ‘ ’{Tk }p 17,Dk}
[Z V(Y — ElYi|r (X ‘{Tk p) e 1,94
Z 2)By; [(Y; — E[Y; |5 (X)))?[ru (X))

= V[Y1|r(X1)] Z W2

=1
1
(323) 4R? (5 n {Zle Ly (@) =g (X )| <hp} >0}
— l
b 251 Ll (@) = (X, <ho}

where the notation V(Z) stands for the variance of a random wvariable Z. Therefore,
using the result of inequality (3.14), one has

4R? C
; (5+hM(€°+1)) (3.17)

for some Cy > 0. On the other hand, set

E(E)) <
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= CR(@) = 1 L (X)) —ri (@)l <ho}-

- Di() = Sjoy Kn(re(X;) — ri(x))-

The second term Es is hard to control as it depends on the behavior of n(ri(.)). That is
why a weak smoothness assumption of the theorem is required to connect this behavior
to the behavior of the input machines. Using this assumption, one has

By = |n(ri(2)) — Elgn(rs (@) {re(X,) o1 il

¢
= (Z Wi (X) (n(ri () — E[Yi|rk(Xi)]))21{DfL(x)>0} + ((r(2)))* L pt (2)0y
=1

< > Wai@)(n(ri(@)) = E[Yilme(X))* 1 pt )s0p + (0(r5()))* L pe )0y

1
¢ ri(x) — (X, ri(2)) — n(re(X:)))?
< Z n (s (z) e (X 2)(77( k(7)) — n(re(X))) H{Dfl(:r)>0} + (U(Tk(x)))2ﬂ{l?fl(x)=0}

i=1 E?:l Kp(ri(z) — Tk(Xj))
¢ 2
=P Kh(rkgﬁ?l f?h(g;)(lgri(ii(xjf)(XZ)" Lngwsop T (1)) o )=o)
<12 [i Kp(ri(z) — ?"k:(Xz))[“?"k(fU) = 1% (X) P L {jfry (2) = 1o (X0 < Riche}
= > =1 Kn(ri(z) — me (X))
N LK (@) — (X)) (@) = 7 X P L) g () — i (0|2 Ric b} -
= i1 Knl(ri(@) — mi(X;)) {Pa(2>0)

+ (U(Tkz(w)))Qﬂ{cﬁ(z):o}
=FE)+ E3 +FEj.

for any a € (0,1) chosen arbitrarily at this point. Now, we bound the expectation of the
three terms of the last inequality.

e Firstly, E3 can be easily bounded from above by

¢ 2
K (r(x) — o (Xo)) e () — 7 (X5) |
i=1 ijl Kh(Tk(UC) - Tk(Xj))
L)y (2)— rk( Dll<Richo}
<L2h2aR2 Z Kh(rk( >_7'k(Xz')) 1,
Kn(ri(x) — mp(X;)) Pn>00

=1
= L?h**R%.

Therefore, its expectation is simply bounded by the same upper bound i.e.,

E(E3) < L*h*“R% (3.18)
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o Secondly, we bound the second term E? using the tail assumption of the kernel K
given equation (3.7), thus for any h > 0:

B2 = thzze: Kp(rip(x) — (X)) | (re(2) — 7(X0)) /||

1 pe (o1 X
i=1 Zle Ky (ri(z) — e (X)) {Dj,(x)>0}
L{jjry (@)= (X0)l|> Rich}
< hQLQé CKIL{H(Tlc(w)—rk(Xi))/hHZRK/hl*a}ﬂ{pfl(xbo}

5+ [l (r() — r(X0) /AIM) Y5y Kn(rw(z) — (X))

< M2 i Cr L (o) () |2 Rach} L0 )>0)

= (WM 4 (Rcho)M) S5y K (mi() — mi( X))

¢
]]' . e
< BMF2120 {llr () =7 (Xi) |> Rich'} 1o,
izzl (AM + RMReM) 6 Ky (ro(w) — m(X)) - 120020

MNP0 Y Yine)n(lzRche)
T MO RS Ko () — (X)) P

R=)M+2 120 " izt L (o) re(X0)l1> Rache

— M ¥/
bRy > =1 L ()= (Xl <ho}

¥
Lot @y>o0y
Therefore,

_ 1,
hI=e)M+21 20y ¢ {31 Ylirg (@)= (X ) <hpy >0}

E% < 7 X 7
bRy > =1 L ()= (X) | <hp}

Again, applying the result of inequality (3.14), one has

h(lfa)M+2L2CK£ y CO _ Clg hQ—aM
bRM RM(+1) — (£+1)

E(E3) < (3.19)

for some C; >0 and oo < 2/M.
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o Lastly with Ay(x) defined in (3.16), we bound the expectation of E3 by,

E(E3) < E[(n(rx(2)))* 110t ()0}

< sup (n(m(U))VE{]l{cﬁ(r):O}}

ueRd
= sgﬂg(n(m(u)))%l — p(Ap()))
< sup (n(,«k(u)))%—fﬂ(Ah(z))

ucRd

, Eu(Ah(x))e—Eu(Ah(x))
< f;@(n(rk(u))) Cp(Ap(z))

max,, ~pd ue v
< sup (n(re(u)))? — =8 ——

ueRd Cp(An(z))
1
2_ ¢

< C
~ Lu(Ap(x)))

(3.20)

for some Cy > 0.

From (3.17), (3.18), (3.19) and (3.20), one has

E[|gn(i(X)) = n(re(X)?] < /RdE[Ign(m(w)) = n(r(x))*]u(dz)

< /d E(E;1 + E3 + E3 + E3)pu(dx)
R

< o
_/Rd[ ; (6+hM(€+1))+Lh R
Cy! 2—alM Cy
(£+1) Lpu(An(x)))

+

Ju(de).
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Therefore following the same procedure of proving inequality (3.14), one has

E[|gn(ri(X)) = n(ri(X))|?)

AR? Co 27 20 p2 Cil o am Cop(da)
< L2h* R p-e _Camtar)
<5 Ot ) KT wt Tu(An(2)))

4R? Cy (&Y
< 5 L2h2a 2 h2 aM
<5 +hM(£+1)>+ Rt

Cop(dz)
> /rk(x )—a;||<hp £p({v € R : ||y (v) — mp () || < hp})

J€JIn, M
4R? Co 27 %2a P2 Cil o am
< (6% «
<~ (6+ hM(£+1)) LR
Cop(dx)
i @ —z;li<np fu({v € RY: [[mi(v) — | < hp})
4R? Co 27 20 P2 Cil o am
< 1) L°h**R he™¢
<=5 +hM(£+1)>+ Ty

& 3 p({v € R?: [Imi(v) — 4l| < hp})
p({v € RY: [|lmi(v) — x4l < hp})

J€JIh,m
4R2 C() 2,9 ) Clg 2—aM C’2|Jh M‘
L h*® « —_—
= b ( +hM(£+1)>+ RK+(£+ )h ¢
4R2 Co 01€ !
< 5 L2 2 h2a h2 aM 2
<= O ) U R

where |Jp n| denotes the number of balls covering the ball B (introduced in the proof of
A.2) by the cover {Bu(xj, hp) : j =1,2,...}. Similarly, one has |Jppr| < }?T‘} for some
constant Coy > 0 proportional to the volume of B. Since § > 0 can be arbitrarily small,
and with the choice of o =2/(M + 2), we can deduce that

Ellga(ri (X)) — n(me(X))[2] < % L Gt/ OrH2), (3.21)

From this bound, for h oc £~(M+2)/(M*+2M+4) e obtain the desire result with the upper

4
bound of order O(¢ M*+2M+4) je.,

E{|gn(2(X)) — n(r(X))[2] < C¢ 3o

for some constant C > 0 independent of £.

3.7.5. Proof of remark 1

To prove the result in this case, which means, under the following assumption:

IRk, Cx >0 and o > 0 : K(2) < Cxe 1% vz e RM 2| > Rk,
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by replacing, h® by hP for some B € (0,1), we can easily check that El < LQhQQR%(.
Now, it remains to check the new bound of E5. One has,

¢ Kn(re(@) — m(Xa))llme() — me(X) 121 pe ()50 y

E3=1*)"

P i1 Kn(ri(x) — me(X5))
Lfjime (@)= (X) | 212 Ric}
o2 z’f: W2 Kp(ry () — rkiXi))ll(m(w) = (X)) /hIP L pe (2)>0y
i—1 Zj:l Kp(ri(z) — (X))
L{(lri (@)= (X)) /B> Ric /11 =5
o WL Cre 0RO XM (1 (2) — (X)) />

— ¢
b i 2 j=1 L{jime(@)—ri(X;) | <hp}

L (@)= (X0)) /l| > R /h2=5) IL{C,‘;(ﬂf)>0}

As for any a > 0, t — A(t) = t2e™*" is strictly decreasing for all t > (2/a)/®. Thus,
for h small enough such that Rg/h'=? > (2/a)"*, one has

E5 <

_ _ 1-8\a

y ¢ L0k g B/ WOV O o) o miziiyy
¥/ x)>

b3 2 =1 Ly (@)= (X;) | <hp} "

- W20y RS e~ Rih™!= L H{Z;]1{Hrk<z>—rk<xj>|\<hp}>0}
- b = Zim1 L)) l<ho)
_ th?PL2C R2.e~Rich™o! 7" y H{Zf-:l Ly (@) =y, ()| <o} >0}
- b Y=t Line@)-n (Xl <he}
Applying the result of inequality (3.14), one has
e
< Oy R2M o= Rih= (=0 (3.22)

for some C1 >0 and B € (0,1).
Therefore, from (3.17), (3.18), (3.20) and (3.22), one has

E[|gn(rx(X)) — n(r(X))?] < /RdEHgn(?"k(w)) = n(r(@))*]u(dz)

< [ BB+ B} + B} + EDu(da)
R

4R? C
<[5 (64 jarge ) + L R
Cs
Lu(Ap(z)))

99



Chapter 3 — A kernel consensual aggregation for regression

By following the same procedure as in the previous proof of theorem 1, one has

Ellgn(re(X)) = n(re(X))|?]
4R? Co
=7 (6+hM(€+1)

) + LQhwR%{ + Clh2,3—Me—R§‘<h*‘l<1*f3) + .

Since § > 0 is chosen arbitrarily and the third term of the last inequality decreases
exponentially fast as h — 0 for any § € (0,1), hence it is negligible comparing to other
terms. Finally, with the choice of h o £~ (M+28) e obtain the desire result:

Ellgn(ri(X)) — n(re(X))?] < % 1 Coh28 < Cp—28/(M+28)

for some C' > 0 independent of £.

Supplementary materials

The R source codes, documentation and examples of the aggregation method is available
in GitHub: https://github.com/hassothea/AggregationMethods.
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Chapter 4 — Aggregation on random projected features for regression

4.1. Introduction

In supervised machine learning problems, one aims at predicting values of any quantities
of interest using the corresponding input data. When the quantity of interest or response
takes continuous values (which is the focus of this paper), the task is called regression.
On the other hand, it is called classification if the response variable takes values in any
finite sets (few unique values).

Nowadays, several machine learning methods are available, can be easily
constructed and used in any supervised prediction problems. Those methods aim at
approximating the relationship between inputs and the corresponding outputs by
minimizing some empirical distortion measures, which is a function of the available
training data. Hence, the performances of those predictive models strongly depend on
the data fed to them. In practice, when the training data is available, one would try
several types of predictive models and the one with strong generalization capability
would be selected. However, selecting the best instance method requires even more
techniques, efforts and considerations. Therefore, another approach is to automatically
combine those candidate predictors in a smart way, in a sense that the performance of
the combination biases towards the best one among them.

Up to now, many combining estimation methods have been introduced, for instance,
ensemble learning methods which combines an homogeneous type (trees) of predictors
such as Random Forest (Friedman [37]) and Boosting (Friedman [38]). Moreover, some
other methods allowing to combine a bunch of different types of individual estimators
using some convex combination are also introduced, for example, in Catoni [20],
Juditsky [54], Nemirovski [71], Yang [83, 85], Yang et al. [84], Gyorfi et al. [46],
Wegkamp [80], Audibert [4], Bunea et al. [16, 17, 18], and Dalalyan and Tsybakov [25].
There are also a group of combining strategies that aggregate different instance
estimators based on features of predictions given by the basic estimators such as stack
generalization of Wolpert [81] and stacked regression by Breiman [14]. Last but not
least, some combining estimation methods aggregating different types of individual
estimators based on consensus level of predictions given by the instances, which is the
central idea of this chapter, are also introduced by Mojirsheibani [67, 68] and
Mojirsheibani and Kong [69] for classification problems, by Biau et al. [9] and Has [47]
for regression problems, and for both frameworks by Fischer and Mougeot [33], where
in this case the combination takes into account also the input part. The consistency
result of each consensual aggregation method is provided under different assumptions,
and is also confirmed through several numerical simulations.

This study focuses on a high-dimensional setting of combining estimation strategy
for regressions by Has [47]. The method is an extension to a regular kernel-based
framework of a combining strategy by Biau et al. [9] known as COBRA method, which
is a regression configuration of combining classifiers by Mojirsheibani [67]. Let
r(z) = (ri(z),...,rar(x)) denote the vector of predictions of 2 € R? given by the M
basic regression estimators ri,...,7p7. The n iid couples of supervised training data
(X1,Y1), ..., (X, Yy) are observed, and |.| denotes the Euclidean norm on R thus
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the prediction at any point 2 € R? of the combining strategy by Has [47] is defined by

S () — (X))
an(®()) = S e () —r(5,)])

(4.1)

for some regular kernel function K with Kp(z) = K(x/h) for some smoothing parameter
h > 0, and the convention of 0/0 = 0. Note that COBRA method of Biau et al. [9]
corresponds to naive kernel K(z) = Hj]\/il 1{|z;|<c} for some window parameter € >
0 to be tuned. It is theoretically shown that the combining strategy asymptotically
outperforms the best individual estimator in Lo sense. Moreover, the implementation
of COBRA is available in COBRA library of R software (see, Guedj [41]), and a slightly
different setting of its kernel-based configuration is available in Python library called
pycobra (see, Guedj and Srinivasa Desikan [43]).

Until now, the study of high-dimensional case of the described consensual aggregation
method has not been considered yet. Therefore, we aim in this chapter to fill this gap
by considering exponential kernel-based consensual aggregation for regression on high-
dimensional features of predictions. In other words, we are interested in combining a
large number of basic machines, which might be obtained by varying the hyperparameters
of any types of predictive model, or from mixtures of different types of models. Moreover,
these basic machines can be constructed without any model selection or cross-validation
techniques. Omne can simply see this aggregation scheme as a method to merge the
candidate models into one final prediction that is optimal with respect to all the basic
machines.

However, working in high-dimensional spaces often brings along some difficulties
such as highly computational cost and curse of dimensionality, which refers to the
situation where Euclidean distance loses its meaning. In this study, these problems are
handled wusing dimensional reduction technique based on Johnson-Lindenstrauss
Lemma. Johnson and Lindenstrauss showed that for any § > 0 given, one can embed a
given finite set of high-dimensional vectors of FEuclidean spaces into a
lower-dimensional subspace, preserving the pairwise Euclidean distances between data
points up to an error §, with high probability (see, for example, Johnson and
Lindenstrauss [52] and Johnson et al. [53]). This result has become a very powerful
technique of dimensional reduction that aims at preserving pairwise Euclidean
distances between data points (Frankl and Maehara [35, 36] and Dasgupta and
Gupta [26]). J-L method is suitable for our setting not only because of the
pairwise-distance preserving property, but also because of its computational efficiency.
The implementation of this technique is as simple as simulating M independent
random vectors (rows of projection matrix) and performing a matrix multiplication.
Dimensional reduction based on J-L technique has also been applied in several machine
learning studies, for instance, in image processing and text analysis by Bingham and
Mannila [10], in Lipschitz embeddings of graphs into normed spaces by Frankl and
Maehara [35], in approximating nearest-neighbor in high-dimensional spaces by
Kleinberg [57] and Indyk and Motwani [49], in linear regression framework by Maillard
and Munos [64], and also in unsupervised clustering in Hilbert spaces by Biau et al. [8].
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In this work, we propose an aggregation scheme on random projected features of
high-dimensional predictions given by a large number of regression estimators. The
scheme is composed of two steps. First, we randomly embed the original features of
predictions into a lower subspace of dimension m using dimensional reduction based on
J-L Lemma. Then, the consensual aggregation (4.1) is implemented on the projected
features of predictions in the second step. We aim in this study to provide a probability
bound of the difference between the classical consensual aggregation and the aggregation
implemented on projected features of predictions. We also numerically illustrate the
performance of the full aggregation scheme on several simulated and real-world datasets.

This chapter is organized in the following manner. Section 4.2 details the construction
of the proposed aggregation scheme. Section 4.3 provides the theoretical answers to
the two important questions above. Section 4.4 illustrates performance of the method
through several numerical experiments evaluated on different types of datasets. Lastly,
the proofs of the theoretical result stated in this chapter are collected in Section 4.6.

4.2. The aggregation method

4.2.1. Notation

Assume that (X,Y) is an R? x R-valued generic random variable, and that we have at
hand a training dataset containing iid copies of (X,Y):

D, ={(X1,Y1), (X2, Y2), ..., (X, Yn)}.

We assume moreover that M basic regression estimators or machines ry, 73, ..., 757, are
constructed independently from D, (otherwise, a simple splitting technique can be
used as described, for example, in Biau et al. [9] and Has [47]). These basic machines
can be any regression estimators of the same type (with different parameters), or
constructed based on completely different theories. We only require that they can
predict the training data and any new data points since the aggregation is done based
only on those predictions.

To alleviate notation, when the context is clear, all Euclidean norms will be denoted
by ||.|| without mentioning the dimension of the space. Moreover, this paper deals
with exponential kernel, K(t) = exp(—t*/o), for some o > 0 and a > 1, which has
numerically been shown to be the most outstanding one so far. Moreover, ;1 denotes
the distribution of X with respect to Lebesgue measure, and the regression function is
denoted by n(z) = E[Y|X = z].

4.2.2. Random projection: Johnson-Lindenstrauss Lemma

In the sequel, the prediction matrix of the training data is denoted by
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Tl(Xl) Tg(Xl) T‘M(Xl)
LX) = 1 (X2) ?"2(:X2) . . 7”M(:X2) . (4.2)
1 (Xn) TQ(XN) s TM(X”) nxM

For any positive integer m < M, let G = (Gyj)i<i<m,1<j<m be a random projection
matrix where the entries G;; are iid centered Gaussian random variables with variance
1/m, for all i = 1,2,.... M and j = 1,2,...,m. Embedding the predicted features (4.2)
into a subspace of dimension m via J-L random projection is simply done by multiplying
the matrix of original features r(X’) by a random projection matrix G as follows,

F(X) = 1(X) x G

7“1(X1) TM(Xl) G11 Glm
_ . . « . .
ri(Xn) oo r(Xn) G Grm
F1(X1) To(X1) m(X1)
_ 71(X2) 72(X2) Tm (X2)
fl(Xn) 7:2(Xn) fm( n) nxXm

The ith row-vector of matrix #(X') is the vector of embedded features evaluated at X,
denoted by ©(X;) = (71(X;), 72(X5), oo, T (X;)) for i = 1,2,...,n. It is easy to check
that given the original features r(X;) and r(Xj;), the Euclidean distance between its
projection ||T(X;) — T(X;)||, is equal to the Euclidean distance between the original pair
|r(X;) —r(X;)]|, in expectation with respect to G. More precisely since G;; are iid and
centered, one has

Eg|

Q
=

(X3) = ()P r(X3), v(X;)]

Eg|(7p(X:) — 7p(X;))*[r(X3), r(X;)]

M

3
Il
—

M
(D00 = (X)) Gy ) Tr(X2), £(X5)]

I
(]

=
Q

p=1 k=1
m M
=D > (rk(Xa) — k(X)) Eg G, v (Xi), x(X;)] (Eg[Gry] = 0)
p=1k=1
m M
=D (re(Xa) = mi(X5))*/m (Eg[G},) = 1/m)

=

I
—
=

Il
i

(re(Xi) = (X)) = [[r(Xs) — e(X))],

=

£
Il
—
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where Eg denotes the expectation with respect to G. Moreover, as the pth coordinate
of vector ¥(X;) — ¥(Xj) is given by

(f'(Xz) - f'(Xj>)p = Fp(Xi) - Fp(Xj) = Z(rk(XZ) - T'k(Xj»ka’

and one has
(F(X0) — (X)) ~ N (0, () — 2(X,)[2/m), for all p = 1,2,...,m

Therefore, ,
er(Xl) — r(XJ)”2 ~ XQ(m)'
e (Xs) — x(X5) ||
Then, the gap between the original and projected features can by controlled using
concentration inequalities, for example, by applying Chernoff bound for x2(m)
distribution (see Chernoff [23]), for any rows r(X;) and r(X;) of r(X), and for any
6 > 0, one has

[15(Xi) — F(X;)|” m[—6+In(1+6)]/2
— < .
2oy —r(xgE ~ 170 <€ (43)

and

IF(X3) — £(X) S+In(1-8)]/2

Pg — 1< —§) < emiotin(=0)/2, (4.4)
(Hr(Xz') —r(X;)|? )

where Pg denotes the probability under the law of G. The union bound of the previous

inequalities and the following inequalities:

62 &
In(1-4) <-6-%-%

for any ¢ € (0,1), yields the following proposition.

Proposition 4.1. (Johnson-Lindenstrauss) Let S, = {z; € RM : j =1,2,....,n} denote
a subset containing n points of RM | zg € RM fized. Let Zy and Zj be the projected point
of zo and z; respectively into R"™ using random projection described above. Thus, for
any 6 € (0,1), with probability at least 1 — 2nexp(—m(5%/2 — §2/3)/2), one has:

‘Hzo il

120 = 2|2 — 1‘ <0, for all z; € S,.
J

4.2.3. Aggregation on randomly projected features

We are now in a position to formally describe our aggregation strategy on random
projected features of high-dimensional predictions. We first embed the original
M-dimensional features of predictions r(&X’) using J-L random projection, simply by
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multiplying r(X) by a random projection matrix G to obtain the projected features
r(X). Then, the aggregation method (4.1) is implemented on the projected features
#(X) in the last step. More precisely, the prediction of any point = € R? is defined by

Y YK — FC))
9@ = S e @) — 7))

Note that for any 2 € R? one has #(z) € R™ and the Euclidean norm used in (4.6) is
defined on R™ while the one used in (4.1) is defined on R,

(4.6)

4.3. Theoretical performance

In the sequel, we assume that dimension M of features of predictions is large. Moreover,
the consensual aggregation method implemented on the original M-dimensional features
of predictions (respectively m-dimensional projection features) is called full (respectively
projected) aggregation method.

We are now in a position to state the main theoretical result regarding the difference
between the full and projected aggregation methods. More precisely, for any € > 0, we
are interested in controlling the following probability:

P((g0(x(X)) = ga(F(X))| > ¢) (4.7)

where g,,(r(.)) and g, (7(.)) are the two aggregation methods defined respectively in (4.1)
and (4.6). The key difference between the two methods is the features of predictions used
for the aggregation, therefore the proof relies on the theoretical result of J-L Lemma.
The control of this probability is given in the following theorem.

Theorem 4.1. Assume that all the machines r1,7s, ...,y and the response variable Y
are bounded almost surely by Ry, thus for any h,e > 0,n > 1, and for any § € (0,1),
with the choice of m satisfying:

log[2/(1 — /1= 5)]

h2a82

m > C , with C1 = 3(2 4 a)?(2Ry)*+%) /o2,

one has:
P(|gn(x(X)) = ga(¥(X))| > ¢) < 6.

The probability of Theorem 4.1 is computed under the laws of X, the training data
D,, = {(X;,Y;)!~,} and the random projection matrix G. It can be viewed as the loss of
projecting the features of predictions into smaller subspace of dimension m. Note that
in this result, the constant C; depends on Ry, which is in practice can be scaled to be,
for example, less then 1. Therefore, the constant Cy ~ 12 for Gaussian kernel, and the
lower bound of m is roughly of order:

oo

for large n and small 4.
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4.4. Numerical simulation

This section is devoted to numerical experiments carried out on several simulated and
real datasets to illustrate the performance of the proposed method. The basic regression
estimators or machines considered in this section are of five different types:

o KkNN: k-nearest neighbors for regression (R package FNN, see Li [60]).

o Elas: lasso and elastic-net regularized generalized linear models (R package
glmbet, see Jerome et al. [51])

o Bag: bagging tree for regression (R package ipred, see Andrea et al. [1]).

o RF: regression random forest (R package randomForest, see Liaw and
Wiener [61]).

o Boost: gradient boosting (R package gbm, see Brandon et al. [12]).

To produce high-dimensional features of predictions, we construct the basic machines
of each type using various options of the corresponding parameter of each method as
described below:

o 200 values of k € {2,3,...,201} for kKININ.

e The coefficients of elastic-net model are defined by

A

B = arggnin{HY — BX| + AlallBll + (1 = @) [|B]12]},

where « is the trade-off parameter between L; and Lo penalty, and A is the
penalty parameter. In this case, 5 x 100 = 500 values of the couple (a,\) €
{0,0.25,0.5,0.75,1}x{0.00005, ..., 1} are considered. Note that o = 0 (respectively
a = 1) corresponds to Ridge (respectively Lasso) regression.

o 100 values of ntree € {18,21,...,315} for the three remaining tree-based methods:
Bag, RF and Boost.

Remark 4.1. With the choices of parameters of each model, one may expect the features
of predictions to be very highly correlated. For example, many values of parameter k of
kINN, and ntree of Bag and RF are not very interesting in a normal setting, however,
in our context, it is quite interesting to see the performance of the aggregation method in
such a large highly correlated features. This is interesting in a sense that, without model
selection or cross-validation technique, the aggregation method can merge the features of
predictions in a robust way.

Therefore, the features of predictions are of dimension 1000. The performance of any
regression estimator f is measured using the following root mean square error (RMSE)
evaluated on an independent testing dataset:

RMSE(f) = $ ntl : i(f(ﬂfi) — yi)?
est =1
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where niest denotes the number of testing sample.

4.4.1. Simulated datasets

In this part, we consider 5 simulated models of size n where the d-dimensional input
data is uniformly distributed on [—1,1]%, denoted by X ~ U([—1,1]%). The five simulated
models are defined as follows:

Model 1. : n = 600,d = 10,
Y = X{ — X2+ 3X exp(—X5) — X2 exp(—XsXo + X5X10) +N(0,1).

Model 2. : n = 800, d = 30,
5

Y = [3X5; exp(X30—j — Xojy1) — 2X5;_; exp(Xa; — X30-35)] + NV (0, 1).
=

Model 3. : n =800,d = 50,

1— X2 +2X35X,y ° 14+ Xs4i
Y = L —2. 14y 221 exp(— X1 + Xag — X30) + N(0,1).
11+ X: ZZ—X45+j p(—X10 + X20 — X30) (0,1)

=1

Model 4. : n = 800,d = 100,
10

Y = (X7 - X3)(1 — exp(—X5X7)) + 3Xz exp(— Y X105) + N (0, 1).
=1
Model 5. : n = 800,d = 100,

1+sin(X; +Xy) L2741
Y = — - X5:X10: X 0,1).
1 — sin(X;1 Xo) ];21_1 5jX10;X; +N(0,1)

In each simulation, we randomly split the simulated data into 80% and 20%
training and testing set respectively. Then, the training data is split further into two
parts of sizes ny and ng such that ny = [Nrain/2] = Ngrain — n2. The first part of the
training data of size np is used to construct the 1000 machines yielding predictions of
the remaining parts. On top of that, to study the impact of the projected dimension
m, the matrix of original features of predictions is embedded into two groups of
subspaces. The first group corresponds to the case of m € {100,200, ...,900}, and the
second group consists of much smaller values of m € {2,3,...,9}, associated with
different random projection matrices G. Then, the kernel-based consensual aggregation
method of equation (4.6) is implemented. In addition, the aggregation on the original
features defined in equation (4.1) is also computed and used to compare with all the
projected cases.

The average RMSE and the associated standard error (into bracket) over 30
independent runs of each model are reported in Table 4.1 below. For the sake of
readability, only the best performance of each type of the five basic machines is
reported, followed by the performance of all the aggregation methods. The first block
of this table consists of five columns (2nd to 6th), corresponding to the performances of
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Model Basic machines Aggregation method Combm

ENN Elas Bag RF Boost | 100/2 200/3 300/4 400/5 500/6 600/7 700/8 800/9 900/Comb_ Full

1.081 1.083 1.083 1.082 1.083 1.081 1.083 1.082 1.084

L 1.620 1.579 1.241 1.304 1.116 | (0.030) (0.033) (0.032) (0.032) (0.033) (0.031) (0.032) (0.033) (0.032)

(0.102) (0.091) (0.064) (0.087) (0.071)| 1.152 1.106 1.092 1.095 1.097 1.092 1.092 1.086 1.083

(0.064) (0.038) (0.034) (0.037) (0.038) (0.038) (0.036) (0.038) (0.032)

3.413 3.425 3.423 3.429 3.419 3.417 3.428 3.423 3.416

) 4498 3.971 4203 4.081 3.621 |(0.138) (0.145) (0.145) (0.140) (0.142) (0.151) (0.132) (0.137) (0.152)

(0.314) (0.275) (0.298) (0.293) (0.269) | 3.441  3.474 3.411 3.445 3.412 3.437 3.429 3.400 3.427

(0.139) (0.142) (0.134) (0.168) (0.171) (0.167) (0.149) (0.150) (0.138)

3 2.038 2.035 2.264 2.028 2.037 2.040 2.145 2.041 2.031

5.525  4.037 3.144 3454 2.518 |(0.126) (0.135) (0.855) (0.130) (0.141) (0.132) (0.582) (0.140) (0.127)

(0.768) (0.584) (0.382) (0.526) (0.333) | 2.116 2.124 2.173 2.060 2.072 2.070 2.082  2.060 2.044

(0.150) (0.181) (0.619) (0.160) (0.163) (0.146) (0.166) (0.152) (0.131)

4 15.672 15.677 15.610 15.785 15.573 15.822 15.814 15.741 15.604

18.752 18.350 17.844 18.706 17.708|(3.566) (3.488) (3.528) (3.532) (3.536) (3.449) (3.753) (3.539) (3.564)

(4.847) (4.626) (4.497) (4.409) (4.632) | 16.962 16.823 16.914 16.210 16.362 16.142 16.150 16.092 15.745

(4.993) (5.049) (4.912) (4.889) (4.723) (4.874) (4.963) (4.976) (3.609)

5 0.955 0.955 0.953 0.956 0.955 0.955 0.956 0.956 0.953

1.417 1169 1.021 1.076  1.031 |(0.039) (0.043) (0.040) (0.042) (0.040) (0.044) (0.040) (0.041) (0.042)

(0.114) (0.086) (0.046) (0.068) (0.045) | 0.950 0.951 0.948 0.942 0.956 0.953 0.950  0.953 0.954

(0.054) (0.057) (0.067) (0.048) (0.057) (0.050) (0.050) (0.050) (0.041)

Chapter 4 — Aggregation on random projected features for regression

Table 4.1.: Average RMSEs on all the simulated datasets.
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4.4. Numerical simulation

the best cases of the five basic regressors (NN, Flas, Bag, RF and Boost), and the
second block contains 9 columns (two rows in each column) corresponding to the
results of the proposed method with different values of m. The column’s names of this
block are of the form 77, /5, where m; and m, are the dimensions of the projected
subspaces reported in the first and second row respectively (except for the last column
900/Comb__Full). More precisely, the first row of this block contains the results of
the projected aggregation methods with m € {100,200, ....900}, and the second row
consists of the performances of the methods with m = 2,3,...,9, plus the full
aggregation method, which is the aggregation implemented on the original features of

RMSE of Model 1 RMSE of Model 2
25-
Model Model
20- B Ky 5- B
ES las ES Ehs

o] LTINS ——. *#H*HHHH B8 conore

w = ﬂ#” e
5&** - :zuu::me T + '* + ES Boost

LB L0 OO SIS PEL EISSS SHSSH0S
EED P EENCEIETEEL FOODE SO OESE S N OGSO
SRR & R ARSI
o <o
Method Method
RMSE of Model 3 RMSE of Model 4
. 40 -
7Rt Model Model
B 30- B
w . | . ES Es W ==
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13 i3

g = *M ,,,,,, .

\q’w{"e:\)@@%@t&%’*\“’é@’é"@ SERE @ o,@ § «@ cﬁé: S
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Figure 4.1.: Boxplots of average RMSEs computed on simulated datasets. From
left to right, the first ten boxplots are the best and the worst
performance of kNN, Elas, Bag, RF and Boost machines
respectively. The last eighteen boxplots represent the performances of
the aggregation methods Combm with m = 2,3, ...,9, 100, 200, ..., 900
and Comb__ Full respectively.
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Chapter 4 — Aggregation on random projected features for regression

predictions of dimension M = 1000 (the second row of the last column). The best
performance of each block is written in boldfaced. We observe that Boost shows the
best performance comparing to other basic machines in the first block. In the second
block, the performances of the aggregation methods are quite similar which confirms
the result of Theorem 4.1. Moreover, the performances of the aggregations bias
towards, sometimes even outperform, the best method of the first block. And more
interestingly, the performances of all projected methods are preserved in much lower
dimensional spaces (second rows of the second block of Table 4.1).

Running time on Model 1 Running time on Model 2

Lt $$$$$éééé$éé

> s“
&

o,
%,

& ; &
oe & & ©

Method

0& &

Method

Method Method

Running time on Model 5

Time (sec)

Method

Figure 4.2.: Running times of all the combining methods on simulated datasets.

With approximately the same accuracy, the proposed methods are at
least 3 times faster than the full aggregation.

Figure 4.1 and Figure 4.2 provide boxplots of RMSEs reported in the table above and
the computational efficiency of the method implemented using a computational machine
with the following characteristics:
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4.4. Numerical simulation

o Processor: 2x AMD Opteron 6174, 12C, 2.2GHz, 12x512K L2/12M L3 Cache,
80W ACP, DDR3-1333MHz.

e Memory: 64GB Memory for 2 CPUs, DDR3, 1333MHz.

Remark 4.2. Note that in all simulations, smoothing parameter h is estimated using
gradient descent algorithm discussed in Has [47]. In all cases, the same learning rate is
used, that is why on some datasets, the algorithm struggles around the optimal values
of parameter, leading to slower computational times (Model 4 and Model 5). In real
situation, this can be improved by choosing more suitable values of parameter in the
optimization method for any given datasets.

4.4.2. Real datasets

We consider in this section two public datasets (available and easily accessible on the
internet) and two private energy datasets. The first dataset called Abalone (available
at Dua and Graff [29]) contains 4177 rows and 9 columns of measurements of abalones
observed in Tasmania, Australia. We are interested in predicting the age of each abalone
through the number of rings (Rings) using its physical characteristics such as gender,
size, weight, etc. The second dataset, named Boston, is available in MASS library of R
software (see Brian et al. [15]), comprises of 14 columns corresponding to median house
prices (medv) and other variables of 506 suburbs in Boston such as per capita crime rate
(crim), average number of rooms per dwelling (7m), pupil-teacher ratio by town (ptratio),
nitrogen oxides concentration (oz), etc. Then, the goal is to predict the median house
prices of those suburbs using all quantitative characteristics.

The third dataset (Air) considered in this section is a private dataset containing six
columns corresponding to Air temperature, Input Pressure, Qutput Pressure, Flow,
Water Temperature and Power Consumption, along with 2 026 rows of hourly
observations of these measurements of an air compressor machine provided by Cadet et
al. [19]. The goal is to predict the power consumption of this machine using the five
remaining explanatory variables. The last dataset (Turbine) is provided by the wind
energy company Maia Eolis. It contains 8 721 observations of seven variables
representing 10-minute measurements of Flectrical power, Wind speed, Wind direction,
Temperature, Variance of wind speed and Variance of wind direction measured from a
wind turbine of the company (see, Fischer et al. [34]). In this case, we aim at
predicting the electrical power produced by the turbine using the remaining six
measurements as explanatory variables.

The performances of each method obtained from 30 independent runs, computed
using the same computer mentioned in the previous section, are given in Table 4.2
below. We observe that the performances of the aggregation methods approach, and
sometimes, outperform the best estimator in each case. Moreover, all the aggregation
methods perform equally well in each case regardless of the size of projected dimension.
In addition, the performances (the best and the worst cases) of all machines and the
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Basic machines

Aggregation method Combm

Model ENN Elas Bag RF Boost 100/2 200/3 300/4 400/5 500/6 600/7 700/8 800/9 900/Comb_ Full
2.135 2.105 2.114 2.113 2.113 2.115 2.112 2.114 2.113
Abalone | 2052 2092 2174 2213 2106 | (0051) (0.046) (0.051) (0.047) (0.048) (0.045) (0.049) (0.044) (0.047)
(0.061) (0.055) (0.060) (0.052) (0.055) | 2.198  2.165  2.143  2.144  2.156  2.138  2.149  2.152 2.114
(0.155)  (0.095) (0.066) (0.061) (0.067) (0.067) (0.078) (0.063) (0.044)
3.048 3.039 3.073 3.041 3.055 3.043 3.049 3.049 3.051
Boston | 6855 5039 4410  8.574 3811 | (0351) (0.348) (0378) (0.376) (0.373) (0.369) (0.372) (0.352) (0.383)
(0.547) (0.576) (0.468) (0.402) (0.437) | 4.033  3.431  3.436 3459 3.227 3.344 3.198  3.203 3.044
(1.099) (0.724) (0.672) (0.596) (0.737) (0.631) (0.555) (0.679) (0.362)
136.424 136.535 136.532 136.487 135.961 136.424 136.108 136.509 136.075
Afe | 291435 177581 341514 210910 158.538 | (3.178) (4.276) (4.535) (4.122) (3.704) (4.383) (4580) (4.237) (4.507)
(9.084) (4.763) (16.110) (15.809) (5.868) | 160.592 151.757 148.344 146.905 144.371 143.118 142.619 143.028 136.828
(20.127) (9.602) (5.556) (7.005) (6.294) (4.599) (4.572) (5.743) (3.616)
Turbine 39.850 36.968 36.671 36.694 36.602 36.675 36.568 36.643 36.635 36.622
39.348  67.978 68.110 35.932 (1.127)  (1.146) (1.099) (1.148) (1.184) (1.092) (1.034) (1.123) (1.125)
(1.119) (2.505) (1.498) (1.038) (0.976) 38.916 37.843 37.390 37.183 36.970 36.542 36.673 36.490 36.465
(2.363) (1.201) (1.228) (1.244) (1.035) (0.745) (0.759) (0.880) (1.117)
Table 4.2.: Average RMSEs of real-life datasets.
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aggregation methods are summarized in boxplots of Figure 4.3 below. Finally, Figure 4.4
illustrates time efficiency of the proposed method.

RMSE of Abalone data RMSE of Boston data
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Figure 4.3.: Boxplots of average RMSEs computed on real-life datasets.
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Figure 4.4.: Running times of the combining methods on real-life datasets.
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4.5. Conclusion

This chapter fills the gap by studying a high-dimensional framework of consensual
aggregation for regression. The aggregation scheme is composed of two steps:
high-dimensional features of predictions are first randomly projected into a smaller
space using J-L. method, then the exponential kernel-based aggregation method is
implemented on the projected features. First, we theoretically show that the
performance of the projected and full aggregation methods are close, with high
probability. Then, we numerically illustrate that the full aggregation method upholds
its good performance on very large redundant features given, by different types of
predictors. Together, this indicates the robustness of the method in a sense that, one
can plainly construct several types of predictive models with different values of
parameters in parallel, then flexibly aggregate them directly without any model section
or cross-validation step. All these results are confirmed through several numerical
experiments carried out on different types of simulated and real datasets. On top of
that, in terms of computational speed, the proposed method is often much faster (from
3 to 20 times) compared to the full aggregation method according to the optimization
process (learning rate, for instance).

In conclusion, according to the main theoretical result, the projected dimension m
does not depend at all on the original dimension M and is of logarithmic order of
the sample size n. Moreover, from the numerical evidence, it seems indeed that with
m = log(n), the aggregation scheme can provide reasonable performance in terms of
accuracy and computational speed.

4.6. Proofs

4.6.1. Proof of proposition 4.1

Under the assumption of the proposition, using the results of (4.3), (4.4) and (4.5), the
union bound probability implies for any ¢ € (0,1):

‘ Nl
:P<HZ‘ES'W—1>5>+P(HZ‘ES'M—1<—5)
N T T a0 — 212

A O 1
Pli——=—1>6) + Pli——= —1< -0
(o5 ) 2 (o2 )

IN
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<.
Il

eml=d+In(1+0)]/2 | zn: em[0+In(1-6)]/2
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We conclude the proof using the complementary probability,

(‘ 120 — Z]H

120 = 21

4.6.2. Proof of Theorem 4.1

~1| <6,Vz € 5,) > 1 - 2me /282,

For the sake of readability, for any j = 1,2,...,n, let
o Kj = Kp(|lr(X) —r(X;)I]).
o Kj = Ku([E(X) = #(X))])-
For any = € R? and for any h > 0,
~ _ ISR YK, YR, Yk,
on(=(00) = gnFO = [S3100 = St |
'Zz 1YKh i1 Y;}%;L i1 YzKizz _ i1 YZf(IZz
L Kj, i 1 K3 leL
< Ry >ie1 ’Kh _'Kh| + Ry [ZKJ} | > lKh im1 K|
A R S
S ST B IR v L i ]
Zj:l K}JL :,77/:1 Kf]l
noK K@’
g, i KL~ K/
Z?—l K”
< 2Ry max
1<i<n h
Therefore, for any € > 0, one has:
P(|gn(r(X)) = gn(#(X))] > )
K (|IF(X) — 7(X4)]])
2Ry max |1 — >e€
< P(2F o | En([[r(X) - r<Xz~>H>’ )
K (|IF(X) — F(X5)]])
=1-P(2R 1-— <
P(2Ro 1@%‘ Kn(r(X) — r(XZ»)H)‘ <)
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One can compute the last probability using independency of (X;)" ,; and Fubini’s
theorem as follow

Ka(|F(X) = £(X)1)
B(2R0 o [1 = ot 10— r(x >||>‘ <)

:/RM /RMXM P(Xi)?:1 QRO max '1 (II((r(:v) r(X; ))GII)’ SE)PQ(G)u(dx)

1<iza Kn([[r(z) = r(Xa)])
Kin(||(r(z) — r(X1))G]|)
- /]R]\I /]RMXm Px, (2R0‘1 - ;{g}[’((nr(-(q); — 1(~()2 ”)H ’ < 8)} Pg(G)p(dz)

)
(I(x(2) ()G
= fo fo [EoCom = S0 @) | <o) utaouiaa)

Kp( v))G||) n
/RM/RM (2Ro|1 - ;{l i )) ((3 i ) | < &) nldvyu(dn)]”.

The last bound of the above inequality is obtained by Jensen’s inequality. Next, for any
z,v € R, given all the basic machines (rk)]kv[: 1, Johnson-Lindenstrauss Lemma implies
that for any dg € (0, 1), with probability at least 1 — 2e~™(33/2-83/3)/2  one has:

| \%

[#(z) — £ (o)
@ —re <
& (1— d0)r(@) — (o] < [#(x) — F)]P < (1 4+ 80)l|e(x) — x(X,)]

& (1-6)*2[r(z) — ()[* < [[F(x) - EW)II < (1 + 80)*x(2) — r(v)][*

Thus for any z,v € R?, with probability at least 1 — Ze*m(53/2*53/3)/2, one has
K ([7(x) — #(0)]) ~ . Connle o]
e et~ 1 < e [~ )~ $0)) /B~ (x(a) ) /1)) /o] -1
< exp (1 - (1 80)/2)|(x(x) — 2(0)) /][ /o) — 1
<exp (1= (1= 00)*/%)(2Ro/h)* /o) — 1
< exp (50(1 + a/2)(2R0/h)°‘/a> -1,

where the last line above is obtained using the following inequality:
1-— (1 - 50)04 < 50(1 + Oé),V50 S (0, 1),VO& > 0.
And if one take ¢ = 2R0<exp (50(1 + a/2)(2R0/h)0‘/0> - 1), this implies that

oln(l+¢/(2Ro)) , ,,

(14 a/2)(2Ro)*

_ 0, oeh®
(1+a/2)2R) 7"

0=
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where the constant Cy ~ 1 and will be ignored. Therefore, for any z,v € R%, and using
the fact that for any &y € (0,1) : 63/2 — 63/3 > 62/6, one has

Pg (2Ro|1 - K;é’l’((ﬁiz)__ 2’2;%”‘ <e)>1-2exp(— m(53/22— 58’/3))
2
>1 - 2exp ( - 1—‘;0) 2
=1 =2exp [_ 3(2 +7Z)(;7(};}§3)2(a+1)]
>1—2exp ( — m:i;;%g)’
where the constant C; = 3(2 + a)?(2Rg)***+1). Therefore, one has
P(aro s 1 - Zeecd s <) > [1-2ow (- )

And this implies

1<i<n

|
< B(2R0 g 1~ HECO KX

Thus, for any § € (0, 1), one has
mh2®g?\n

log[2/(1 — YT=0)]

2022 :
Moreover, for any large n, one has (1 — /1 —0) &~ —log(1l — ¢)/n, which implies that
the lower bound of m is approximately
log[—2n/log(1 — ¢)]

h2ag2 :
Moreover, for small §, the order of this bound is roughly

log(2n/4)
O(= 5 )

h2a€2

mZC’l

Cq

Supplementary materials

The R source codes, documentation and examples of the aggregation scheme is available
in GitHub: https://github.com/hassothea/AggregationMethods.
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Conclusion and perspectives

Many studies suggest that data modeling is a very common tool used in several
real-life prediction problems, especially in the domain of energy and physics. However,
constructing good predictive models with strong generalization capability is not a
simple task, and may require some information such as clustering structure of the
input data, which are often not available. In many cases, contextual variables
corresponding to a particular structure of the data, which are useful for prediction,
may be missing due to privacy policy or data collection process. These are what make
modeling very challenging in practice. The KFC procedure proposed in Chapter 2 aims
at solving such problems in three steps using both, supervised and unsupervised
statistical learning algorithms. The clustering structure of the input data is estimated
in the first step using different options of Bregman divergences. For each Bregman
divergence, the clustering structure of the input data is approximated and the
corresponding global model, which is the collection of several simple local models built
on all the observed clusters, is constructed in the second step. Lastly, all the global
models obtained in the second step are aggregated using a consensual aggregation
method. Technically, the first two steps of the procedure can be efficiently computed in
parallel, followed by the aggregation method in the last step. The efficiency of the
procedure is illustrated through several numerical experiments carried out on simulated
and real energy datasets.

From the experimental study of KFC procedure, a kernel-based consensual
aggregation for regression is implemented and shows an interesting performance
compared to the classical method by Biau et al. [9]. Therefore, a theoretical and
numerical performance of this aggregation method are studied in Chapter 3. We prove
the consistency inheritance property of the method with a class of regular kernel
functions. Moreover, from a practical point of view, we propose to learn the key
parameter of the method using an optimization algorithm based on gradient descent,
which is numerically shown to be more efficient compared to the classical grid search
algorithm. On top of that, an application on a physics data studied by researchers of
CEA, is also provided to illustrate a good performance of the proposed method in a
sense of domain adaptation, where the training and testing data belong to different
distributions.

From the previous theoretical and numerical results, a high-dimensional context of
the kernel-based consensual aggregation method is studied in Chapter 4. We
experimentally show that the consensual aggregation upholds its good performance on
very highly correlated high-dimensional features of predictions, which are plainly
constructed without any model selection or cross-validation. Moreover, we theoretically
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prove that the performance of the aggregation method implemented on much smaller
randomly projected features are preserved, with high probability. This results together
allow us to flexibly combine different types of plainly built predictors without model
selection or cross-validation step.

As a perspective for further researches, it is very interesting to study performances of
KFC procedure in high-dimensional context. As already described, the clustering step of
the procedure aims at catching useful structures of the input data, where simple input-
output relations may be defined. This information is very useful not only for prediction,
but also for interpretability of the predicted features. However, the performance of
the procedure may not be guaranteed in the case of large-dimensional input data, and
since many problems nowadays involve high-dimensional datasets, an interesting future
direction is to explore the performance of KFC procedure in high-dimension. To this
purpose, Johnson-Lindenstrauss Lemma may be an interesting method to make use of, as
it has been used in many high-dimensional studies including clustering and aggregation
technique as discussed, for example, in Chapter 4 of this manuscript. It would also
be interesting to investigate the performance of dimension reduction subjectively to
clustering with different Bregman divergences other than Euclidean distance.

From anther aspect, the procedure requires pointwise comparisons in both clustering
and aggregation steps, therefore, it might not be suitable for any tasks involving big data,
or it may require a powerful machine for such tasks. However, the parallel structure of
the procedure can make up a significant among of computational time.

Supplementary materials

For the reason of reproducible research, the source codes, documentation and examples
of KFC procedure and consensual aggregation methods introduced in this manuscript,
implemented in R software, are available in the following GitHub links :

o KFC procedure: https://github.com/hassothea/KFC-Procedure.

o Aggregation methods: https://github.com/hassothea/AggregationMethods.
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A. Additional numerical results of Chapter 3 by
including XGBoost

This section provides supplementary numerical results of exponential kernel-based
consensual aggregation method. We include in this experiment the XGboost (Chen and
Guestrin [21]) predictor, denoted by XGB, which is an outstanding method according
to many applications and its performances in many Kaggle’s challenges. In this
simulation, the method is implemented using xgboost library of R software
(Chen [22]). We are interested in the behavior of the combining method when a strong
predictive method is presented. The experiment is carried out on the same set of
simulated and real datasets.

A.1. Simulated datasets

The results reported in this part are computed from 100 independent runs of the proposed
combining estimation method implemented using the 10 models of simulated data in
Section 3.4.1. The performances of uncorrelated and uncorrelated cases are presented
in Table 1.3 and Table 1.4 respectively. Only Gaussian kernel is considered in this
simulation as it stood out from the rest in the previous numerical experiments. Let Gauss
Grid and Gauss GD stand for Gaussian kernel-based method obtained by grid search
and gradient descent algorithm respectively. Note that each method is implemented on
a computer with the following characteristics:

e System type: 64-bit operating system, x64-based processor.
o Processor: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz 1.99 GHz.
« RAM: 16.0 GB.

As expected, XGB stands out from the rest of other basic regressors. Moreover, the
performances of the aggregation methods are quite close to the best individual machine
and sometimes even outperform the best one. We can also see that the performances of
Gaussian kernel are quite similar indicating the right performance of gradient descent
algorithm. Visually, Figure 1.5 and Figure 1.6 contain the boxplots of the results reported
in Table 1.3 and Table 1.4 respectively. Moreover, The boxplots of running times of all
the methods are given in Figture 1.7 and Figture 1.8 below.

A.2. Real datasets

With the same setting as in the previous part, this section reports the performances of all
the methods evaluated on the five real-life datasets: Abalone, Air, Boston (MASS library
of R software, see, Brian et al. [15]), Turbine, and Wine. Moreover, the corresponding
boxplots are given in Figure 1.9 below.
The associated RMSEs and standard errors are reported in Table 1.5 below.
Finally, the running times of all the methods are given in the Figure 1.10 below.
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Table 1.3.: Average MSEs in the uncorrelated case.

Model Las Rid ENN Tr RF XGB COBRA Gauss Grid Gauss GD
1 0.152 0.131 0.14 0.027 0.031 0.005 0.011 0.006 0.006
(0.016) (0.013) (0.015) (0.004) (0.004) (0.001) (0.005) (0.001) (0.001)
2 1.306 0.755 0.849 1.077 0.678 0.712 0.707 0.694 0.693
(0.186) (0.067) (0.084) (0.143) (0.059) (0.074) (0.061) (0.063) (0.062)
3 0.653 0.658 1.463 0.779 0.610 0.526 0.479 0.453 0.453
(0.087) (0.235) (0.173) (0.125) (0.079) (0.064) (0.045) (0.045) (0.044)
4 7.563 6.566 9.616 3.463 3.581 2.509 2.819 2.565 2.566
(1.083) (1.411) (1.358) (0.718) (0.449) (0.328) (0.416) (0.341) (0.338)
5 0.480 0.487 0.669 0.554 0.413 0.442 0.411 0.399 0.398
(0.045) (0.065) (0.085) (0.067) (0.040) (0.046) (0.037) (0.038) (0.038)
6 2.638 1.878 2.600 2.995 1.743 1.529 1.370 1.351 1.353
(0.514) (0.286) (0.292) (0.362) (0.225) (0.203) (0.178) (0.192) (0.191)
7 1.878 0.756 1.036 0.711 0.495 0.475 0.473 0.462 0.462
(0.380) (0.105) (0.120) (0.099) (0.058) (0.055) (0.046) (0.051) (0.051)
8 0.124 0.122 0.199 0.158 0.119 0.120 0.096 0.094 0.093
(0.015) (0.018) (0.020) (0.032) (0.012) (0.022) (0.013) (0.014) (0.014)
9 1.544 2.899 3.504 1.767 1.429 0.949 0.955 0.868 0.869
(0.203) (0.397) (0.476) (0.360) (0.179) (0.161) (0.122) (0.143) (0.143)
10 1927.677 1392.562 1668.111 2951.823 1511.842 1688.174 1496.756 1491.847 1493.466
(267.480) (172.288) (224.656) (431.816) (178.790) (219.798) (166.315) (177.779) (173.211)
Table 1.4.: Average MSEs in the correlated case.
Model Las Rid kNN Tr RF XGB COBRA Gauss Grid Gauss GD
1 2.184 1.831 1.841 0.286 0.485 0.064 0.193 0.064 0.062
(0.468) (0.416) (0.401) (0.123) (0.193) (0.048) (0.137) (0.046) (0.047)
2 13.366 7.635 7.661 6.280 4.643 4.308 4.450 3.992 3.986
(2.277) (1.291) (1.155) (1.230) (0.782) (0.808) (0.761) (0.729) (0.736)
3 6.995 4.979 7.163 3.030 2.590 1.562 2.485 1.431 1.430
(4.080) (1.362) (1.605) (1.029) (0.951) (0.540) (0.663) (0.515) (0.544)
4 56.900 39.319 43.676 7.937 12.398 4.994 8.217 5.361 5.357
(11.211) (9.450) (10.033) (2.076) (4.434) (1.142) (2.340) (1.366) (1.431)
5 5.434 6.783 8.750 2.550 3.466 1.253 2.473 0.500 0.465
(1.994) (3.726) (3.391) (1.217) (2.060) (1.558) (1.127) (0.635) (0.621)
6 4.231 2.059 4.522 3.168 1.713 1.324 1.062 1.120 1.120
(0.916) (0.394) (0.615) (0.519) (0.247) (0.219) (0.132) (0.131) (0.132)
7 18.240 4.321 5.148 3.622 2.662 2.139 2.430 2.368 2.352
(5.532) (0.823) (0.996) (0.844) (0.582) (0.626) (0.548) (0.590) (0.583)
8 0.134 0.129 0.197 0.153 0.118 0.111 0.092 0.062 0.062
(0.017) (0.020) (0.021) (0.029) (0.011) (0.020) (0.012) (0.013) (0.013)
9 40.629 30.688 37.252 13.083 13.040 6.323 9.833 7.036 6.845
(10.965) (7.199) (8.787) (5.382) (4.358) (2.705) (3.443) (3.208) (2.600)
10 6931.342 5007.011 7360.055 12529.912 6754.950 8261.759 5508.267 5344.097 5453.242
(949.032) (968.808) (1237.711) (1933.860) (970.711) (1219.494) (729.912) (879.113) (985.878)
Table 1.5.: Average RMSEs of real datasets.
Data Las Rid kNN Tr RF XGB COBRA Gauss Grid Gauss GD
Abalone 2.233 2.247 2.264 2.424 2.184 2.334 2.189 2.110 2.110
(0.079) (0.082) (0.070) (0.074) (0.061) (0.068) (0.062) (0.059) (0.058)
Air 163.298 164.644 259.401 354.961 174.766 204.349 172.781 165.898 165.872
(4.635) (14.685) (6.892) (34.906) (7.617) (11.804) (4.952) (6.216) (5.994)
Boston 5.247 5.218 7.558 5.467 4.306 4.354 4.582 3.982 3.963
(0.709) (0.726) (0.725 ) (0.760) (0.684) (0.780) (0.659) (0.775) (0.789)
Turbine 70.266 69.659 44.735 81.238 39.304 37.938 37.974 34.968 34.939
(3.671) (2.795) (1.155) (4.393) (1.153) (1.203) (1.176) (1.052) (1.047)
Wine 0.388 0.358 0.374 0.162 0.279 0.068 0.129 0.074 0.074
(0.019) (0.016) (0.018) (0.013) (0.013) (0.009) (0.015) (0.007) (0.007)
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