
HAL Id: tel-03850746
https://theses.hal.science/tel-03850746v1

Submitted on 14 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Role of Architecture, Data Structure and Algorithm
in Machine Learning : a Statistical Physics Approach

Maria Refinetti

To cite this version:
Maria Refinetti. The Role of Architecture, Data Structure and Algorithm in Machine Learning : a
Statistical Physics Approach. Mathematical Physics [math-ph]. Sorbonne Université, 2022. English.
�NNT : 2022SORUS244�. �tel-03850746�

https://theses.hal.science/tel-03850746v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
DE SORBONNE UNIVERSITÉ

Spécialité : Physique

École doctorale nº564: Physique en Île-de-France

réalisée

au Laboratoire de Physique de l’École Normale Supérieure de Paris

sous la direction de Florent KRZAKALA

présentée par

Maria REFINETTI

pour obtenir le grade de :

DOCTEUR DE SORBONNE UNIVERSITÉ

Sujet de la thèse :

The Role of Architecture, Data Structure and Algorithm in Machine
Learning: a Statistical Physics Approach

soutenue le 24 Juin 2022

devant le jury composé de :

M. David SAAD Rapporteur
M. Alessandro LAIO Rapporteur
Mme Leticia CUGLIANDOLO Examinatrice SU
Mme Sara SOLLA Examinatrice
M. Federico RICCI-TERSENGHI Examinateur
M. Florent KRZAKALA Directeur de thèse

i

Acknowledgements

The three years I spent in Paris were the happiest years of my life thanks to many
outstanding people for whom one page of thank you is much too short. This PhD
was an incredible experience and I feel honoured to have been part of this unique
academic environment.

Firstly, I would like to thank my parents, who provided me with the best
conditions to live in this wonderful city and w hose encouragements and support
I am grateful for. M y sister who spent the hardest times with me and stood by
me despite everything. Thank you for always keeping your spirits up, for our long
confinement walks near the Seine, and for always being there for me!

Thank you Florent for taking me on board the PhD, and for being so welcoming,
friendly and comforting from start. I learned a lot from you, not only about physics
but about music, movies, politics, history and life in general. I wish we could have
gotten to know each other better as I always enjoyed our chats very much and you
still have so much to teach me! I am grateful to Giulio for taking care of me as a
second supervisor. You always made me feel included, made me participate in
projects and even found me a spot at CSD. Thank you Giulio, you really made
a big difference in my life during these years! I also want to thank Lenka, who
motivated me to always do my best. You pushed me to never be satisfied until I
understood every minute detail of my results, and to be a better scientist overall.

Francesca, Rudy and Florentin, who made many days special. I will cherish
forever the time we spent together: laughing, discussing life and plans for the
future and going to concerts and theatres. You made these years unforgettable!
Stephane who I admire. You were a role model throughout and showed me how
much one could do during the PhD. I never met someone as complete as you are.
Ruben O., Silvia, Stefano, Luca S., Giovanni, Luca P., Gaspard, Ruben Z., Hugo,
Gabriele, Bruno, Cedric, Marylou, Jean, Antoine and Alia; some of our interactions
were longer than others, but each one of you was fun, kind and welcoming. You
made me feel important and part of a group. M y PhD would not have been the
same without all these special people.

Lastly, my most sincere thanks go to Sebastian w ho from the first day has been
the best friend I could have hoped for. This PhD would not have been possible
without your help, your support and the intellectual thrill of discussing with you.
From the first days at ENS, to our confinement zooms, to my visits to Trieste, all
these experiences shaped my life and the person I am today. You were there when
I needed help and always pushed me to do my best. I am deeply grateful for all
you did and hope that our scientific collaboration is not over.

ii

This Thesis in a Nutshell

Over the last decades, machine learning revolutionised our daily lives from recom-
mendation systems [330] to image recognition, medical data analysis [179, 202, 318],
text completion and translation [148, 297], self driving cars [122, 324] and algo-
rithmic trading [310]. Its groundbreaking successes defy classical statistics and
the underlying mechanisms driving them remain, for the most part, obscure [49].
To bridge the gap between theory and practice, a community of mathematicians,
physicists and computer scientists joined forces to develop an understanding of
the three key components in deep learning: the architecture, the data and the
algorithm [325]. My thesis falls within this vast research program with results
providing insights into each one of these aspects and their interplay: [76, 201] for
the architecture, [258, 260] for the data and [77, 259] for the algorithm. The main
theoretical tools are those of statistical physics well adapted to describe the jillions
of adjustable parameters in deep networks.

In [76], we target architecture and the benign effect of overparametrisation in
deep learning. We focus on the lazy regime of deep networks [63, 145] where
the weights barely move from their initial values during training. Through a
bias-variance decomposition of the test error, we demonstrate that fluctuations
stemming from from the noise corrupting the labels, and from the initialisation of
the weights are responsible for the "double-descent" of the test error i.e its peak at
the interpolation threshold and its decay upon overparametrisation. From these
results, which we validate through numerical experiments, we can compare the
effect of ensembling methods, overparametrisation and regularisation. Follow-
ups [191, 246] perform more fine grained bias-variance decomposition. In a later
collaboration [201], we rigorously extend the analysis to the general case of convex
losses with generic convex regularisation.

Deep neural networks, however, solve complex tasks by extracting features
from the data they are trained with and, thus, cannot be fully described by lazy-
methods [19, 172]. Establishing to what extent the former outperform the later
requires understanding the interplay between architecture and data structure and
assessing how well both methods capture input features. We make progress
in [260] by studying Gaussian mixtures classification at varying signal-to-noise
ratio (SNR). We describe the dynamics of neural networks (NN), by extending
the works [114, 269, 270] to the case where inputs are conditional on the labels
and have non trivial covariance. The resulting equations reveal that that two
layer NN with a few hidden nodes, achieve oracle like performances for all SNR.
In sharp contrast, lazy methods are unable to classify the mixture at low SNR

iii

because the transformation of the inputs in feature space remains linear. Thus, a
non-separable mixture in input space remains non-separable in feature space where
linear methods perform no better than random chance. The non-linear effects
which allow lazy methods to learn, only kick-in at sufficiently high SNR.

Going a step further, it is key to understand which input features NN learn
and how. An ideal framework to do so is unsupervised learning, where feature
extraction is crucial. In [258], we focus on shallow non-linear autoencoders (AE), the
simplest unsupervised learning architecture, which are trained to reconstruct their
inputs. Leveraging again on [114, 269, 270], we characterise their training dynamics
on synthetic data and demonstrate that the results carry over to benchmark datasets
through numerical experiments. The analytical description reveals that AE learn
the leading principal components of their inputs sequentially and uncovers the
need to untie the weights in sigmoidal AE and to train the biases in ReLU AE.
Building on previous results for linear networks, we finally propose a modification
of the vanilla SGD algorithm which allows to learn the exact principal components.

In deep learning applications, however, practitioners rarely resort to vanilla
SGD considered so far. They speed up and improve optimisation through add-ons
among which, learning rate schedules, i.e. protocols to change the learning rate
during training, are ubiquitously used [147, 222, 245, 292]. In [77], we analytically
study the effects of learning rate scheduling in optimisation problems where the
loss function is high-dimensional and highly non-convex as is the case in deep
learning. We find that, with a power-law decay of the learning rate η(t) = t−β,
optimisation is fastest with β < 1, increasing with decreasing landscape complexity
and smaller than in convex setups where β = 1 is generally optimal. When we add
a signal to be recovered, optimisation occurs in two phases. In a first exploration
phase, the dynamics navigate through rough parts of the landscape and the learning
rate should be kept large. As soon as the signal is recovered, the dynamics enter
a convex basin. In this convergence phase the convex criterion β = 1 is optimal.
Numerical experiments confirm that our conclusions hold in a common regression
task involving neural networks.

The scrutiny of alternative algorithms, introduced to simplify back-propagation
and overcome some of its pitfalls, can deepen our understanding of the role of
the algorithm in deep learning. One such algorithm, Direct Feedback Alignement
(DFA) allows to speed up the training of neural networks [237] and to increase
their robustness against adversarial attacks [54] by simultaneously injecting the
error at every layer during the backward pass. In [259] we provide theoretical
understanding of how and when DFA succeeds. We distinguish two phases of
learning: an alignment phase, during which the algorithm limits the expressivity

iv

of the network, is followed by a memorisation phase where the expressivity is
recovered and the network learns the task. Thus, good performance is often not
hindered by a considerable simplification of back-propagation’s backward pass.
The results also reveal why DFA notoriously fails to train convolutional neural
networks, a manifestation of the interplay between algorithm and architecture.
Through numerical studies in deep networks, we verify that our conclusions carry
over to realistic setups.

The works, many of which were published at prestigious machine Learning
conferences such as ICML, were conducted in collaboration with various institu-
tions, including ENS Paris, EPFL (Lausanne), King’s College (London) and SISSA
(Trieste), and private companies, including Meta AI (Paris) and Lighton (Paris).

Papers & Pre-prints (in chronological ordering):

[76] Double trouble in double descent: Bias and variance(s) in the lazy regime.
D’Ascoli, Refinetti, Biroli & Krzakala, Sec. 3

[259] Align, then memorise: the dynamics of learning with feedback alignment.
Refinetti, D’Ascoli, Ohana & Goldt, Sec. 5.2

[260] Classifying high-dimensional Gaussian mixtures: Where kernel methods
fail and neural networks succeed.
Refinetti, Goldt, Krzakala & Zdeborová, Sec. 4.2.

[258] The dynamics of representation learning in shallow, non-linear autoen-
coders.
Refinetti & Goldt, Sec. 4.7.

[201] Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension.
Loureiro, Gerbelot, Refinetti, Sicuro & Krzakala, Sec. 3.1.6.

[77] Optimal learning rate schedules in high-dimensional non-convex optimisa-
tion problems.
D’Ascoli, Refinetti & Biroli, Sec. 5.1.

Two projects I was involved in during my PhD are outside the scope of this thesis
and will not be discussed. These are of independent interest and we provide a
short summary below.

[23] Epidemic mitigation by statistical inference from contact tracing data.
Baker, Biazzo, Braunstein, Catania, Dall’Asta, Ingrosso, Krzakala, Mazza, Mézard,

v

Muntoni, Refinetti, Sarao Mannelli & Zdeborová
In brief This work develops probabilistic inference methods which increase
the ability of contact-tracing to mitigate pandemics such as COVID-19. We
estimate the risk that an individual is infected based on the list of his recent
contacts and their own risk levels, as well as personal information such as
results of tests or presence of syndromes. This allows to optimise testing
and quarantining strategies and provides an efficient way to control the
epidemic, especially in ranges of epidemic spreading where manual tracing
of all contacts of infected people becomes practically impossible but before
a lock-down becomes inevitable. Our approaches translate into fully dis-
tributed algorithms compatible with privacy preserving standards since they
only require communication between individuals who have recently been in
contact.

[257] Bootstrapping traceless symmetric O(N) scalars.
Reehorst, Refinetti & Vichi
In brief Recently, numerical bootstrap techniques [249] determined the
critical exponents of numerous physical systems to new levels of preci-
sions [91, 92, 158, 256]. Here, we use these techniques on the correlation
functions of a traceless symmetric tensors of O(N) with two indexes tij. We
bound, for generic N, operator dimensions for all the relevant representa-
tions. Of particular interest is the N = 4 case which has been conjectured
to describe a phase transition in the antiferromagnetic real projective model
ARP3. Lattice simulations strongly suggest the existence of a second order
phase transition, while an effective field theory approach does not predict
any fixed point. Through a set of assumptions we can constrain operator
dimensions to a closed region compatible with the lattice predictions. This
region is still present when considering a mixed system involving t and the
lowest dimension scalar singlet.

Contents

1 Architecture, algorithm and data : the three building blocks of Machine
Learning 2
1.1 Introduction . 2
1.2 Architecture . 6
1.3 Data . 16
1.4 Algorithm . 21

2 L’algorithme, l’architecture et les données : les trois piliers du machine
learning 28

3 Architecture 34
3.1 Reconciling the bias-variance trade-off with over-parametrisation in

deep NNs . 34
3.1.1 Overview . 34
3.1.2 Analytical results . 38
3.1.3 Analysis of Bias and Variances 41
3.1.4 On the effect of ensembling . 43
3.1.5 Numerical experiments on neural networks 48
3.1.6 Extensions . 49

4 Data 53
4.1 Theory for the dynamics of online learning of shallow networks . . 54
4.2 Understanding the interplay between data structure and architecture

in Gaussian mixture classification . 60
4.3 Overview . 60
4.4 Neural networks for GM classification 65
4.5 Random features on GM classification 71
4.6 Neural networks vs random features 74
4.7 Autoencoders as a tool to study feature learning 76

4.7.1 Overview . 76

vi

Contents vii

4.7.2 Setup . 79

4.7.3 Results . 81

4.7.4 Representation learning on realistic data 90

5 Algorithm 92

5.1 Learning rate schedules and how they improve BP performance . . 93

5.1.1 Overview . 93

5.1.2 The speed-noise trade-off in a simple convex problem 96

5.1.3 Optimal decay rates in random landscapes 97

5.1.4 Recovering a signal: the two phases of learning 103

5.1.5 Turning to SGD : teacher-student regression 106

5.1.6 Recap . 107

5.2 Alternative training algorithm to go beyond BP 108

5.2.1 Overview . 108

5.2.2 A two-phase learning process 110

5.2.3 How do gradients align in deep networks? 115

5.2.4 The case of deep nonlinear networks 117

5.2.5 What can hamper alignment? 119

6 Looking back and beyond 122

Bibliography 126

Appendices 155

A Reconciling the bias-variance trade-off with modern deep learning 155

A.1 Further analytical results . 155

A.2 Statement of the Main Result . 158

A.3 Replica Computation . 161

B Online learning with two layer neural networks in the ODE limit - Toolbox178

B.1 Moments of functions of weakly correlated variables 178

B.2 Analytical formula for the integrals in the equations of motion . . . 180

C Understanding the interplay between data structure and architecture in
Gaussian mixture classification 181

C.1 Summary of Notations . 182

C.2 Equations of Motion . 184

C.3 Transforming a Gaussian mixture with random features 192

C.4 Final test error of random features . 197

Contents 1

C.5 The three-cluster model . 199

D Autoencoders as a tool to study feature learning 202
D.1 Online learning algorithms for PCA 202
D.2 Online learning in autoencoders . 204

D.2.1 Statics . 204
D.2.2 Derivation of dynamical equations 206
D.2.3 Simplification of the equations for spiked covariance matrices 210

D.3 Reduced equations for long-time dynamics of learning 212

E Learning rate schedules and how they improve BP performance 216
E.1 Dynamics of the convex model . 216
E.2 Dynamics of the Sherrington-Kirkpatrick model 217
E.3 Dynamics of the p-spin model . 220
E.4 Dynamics of the Spiked Matrix-Tensor model 222
E.5 Additional results for the Teacher-Student Regression Task 233

F Alternative training algorithm to go beyond BP 234
F.1 Derivation of the ODE . 234
F.2 Detailed analysis of DFA dynamics . 236
F.3 Derivation of weight alignment . 238
F.4 Impact of data structure . 239
F.5 Details about the experiments . 240

Chapter 1

Architecture, algorithm and data :
the three building blocks of
Machine Learning

1.1 Introduction

Today, machine leaning is central to many, if not most, daily life activities: from
machine translation [148, 297], to recommendation systems [330], from medical
applications [179, 202, 318] to self driving cars [122, 324]. This impressive leap
forward was in part due to the skyrocketing amount of data created world-wide,
Fig. 1.1, accompanied by fast increase in memory capacity which enabled storage
of thousands of millions of bytes of data. With so much data available, artificial
intelligence (AI) underwent a paradigm shift. It deviated from symbolic or deter-
ministic AI [210, 211, 224], fashionable in the 80s, to modern AI or machine learning
(ML) used today [172]. For a given task, e.g. differentiating images of cats from
images of dogs, symbolic AI programs a set of rules, or representations, into a
machine [178]. For example, one such rule could be to assign a picture to a cat if
the animal displays displays pointy ears and to a dog otherwise. However, as is
already clear in this simple example, keeping track of all exceptions, i.e. German
shepherds have pointy ears, and devising all rules by hand is a gargantuan task.

Machine learning (ML) takes a contrasting approach in which the rules are
learned directly from the raw data by the computer using artificial neural networks
(ANN). In full generality, an ANN is simply a function, denoted ϕθ(x), mapping an
input x i.e. the image of a cat or a dog, to an output y i.e. +1 if the network believes
it received a cat image as input and −1 for a dog. The function ϕθ(x) depends on
the network’s parameters, or weights w. ML provides a way of finding the best

2

Chapter 1: Introduction 3

D
at

a
vo

lu
m

e
in

 z
et

ab
yt

es

0

50

100

150

200

2010 2011
2012

2013
2014

2015
2016

2017
2018

2019
2020

2021
2022

2023
2024

2025

181

147

120

97

79
64,2

41
33

26
1815,512,596,552

Figure 1.1: The data created, captured, copied, and consumed globally has
exploded. Data taken from here.

choice of parameters to perform a given task like, for instance, discriminating cats
from dogs. Initially, these parameters are chosen randomly, as one has no idea of
what the correct choice is. In ML we start by collecting a large amount of data,
i.e. various images of cats and dogs. During training, we iteratively feed these
images to the network and update its weights with a general purpose rule in order
to minimise a loss function i.e. the number of images for which the network makes
an incorrect prediction. At the end of training, after many iterations of this step,
the parameters reach a good value. When presented with an unseen image, the
computer correctly predicts whether it is of a cat or of a dog. Having access to
large amounts of data is crucial as it takes around a hundred thousand images
of cats and dogs for the computer to classify images as well as the human eye.
Fast computing power is also needed to perform the jillion training operations
and the advent of "Graphical Processing Units" [238] (GPUs) greatly favoured
the development of modern AI. In this manuscript, we are mainly interested in
supervised learning, where the true label y∗, i.e. +1 for images of cat and −1 for
those of dogs, of an input is used to train the machine. At each step, the weights
are then updated to reduce the difference between the output ϕθ(x) and the correct
label. This contrasts with unsupervised learning where only the inputs are used for
training and the network learns the relevant rules directly from them. We defer a
discussion of unsupervised learning to Sec. 4.7.

Population loss vs. empirical loss
Ideally, we would like to minimise the number of times the network gives makes
wrong prediction on images it hasn’t seen before. If we were to define a joint
probability distribution, px,y∗ over the input space X ⊆ RD of images of cats and
dogs and label space Y = {±1}, the aim of machine learning is to minimise the
expected number of wrong predictions on new images, i.e. the population loss or

https://www.statista.com/statistics/871513/worldwide-data-created/

4 1.1. Introduction

population error:

Lpop = E px,y∗ ℓ(ϕθ(x), y∗). (1.1)

In practice, one does not have access to the population error as the input-label
probability distribution is inaccessible. Thus, the practitioner approximates the
expectation by a sum over a finite training dataset of P samples leading to the
minimisation of the empirical error defined as:

Lemp =
1
P ∑

µ

ℓ(ϕθ(xµ), y∗µ), (1.2)

where ℓ(ϕθ(xµ), y∗µ) is the error function evaluated on a single sample (xµ, y∗µ).
As we will see, minimisation of the empirical error does not guarantee good
generalisation, i.e. low population error.

Indeed, even if the network correctly learns to classify all pictures of cats and
dogs it has seen during training, it might miss-classify a new image. For instance,
suppose a leash is present in all the dog pictures in the training dataset. Then,
instead of finding the "correct" criterion to distinguish cats from dogs, the network
might learn to assign an image to a cat whenever there is no leash in the picture
thus miss-classifying all new dog images showing no leash. The leash is an example
of spurious feature i.e. a pattern irrelevant to the task that the network exploits while
we humans avoid. This example emphasises the need to train the network on a
diversified dataset i.e. one containing pictures with and without a leash. Overfitting
can also prevent good generalisation. When the network overfits the training data it
first learns the correct rules to classify cats and dogs. Then it exploits distinctive
features of training images, such as "leash = dog" to improve its score on the
training set thereby degrading its predictive power on new images of cats and
dogs.

Architecture, data and algorithm as buildings blocks of machine learning
The fundamental concept behind ML is astonishingly simple. However, the devil
is in the details. How should one choose the mapping ϕθ , i.e. which network’s
architecture is most suited for a given task? How should the parameters w of the
network be updated during training in order to produce the best performance,
i.e. which training algorithm to use? And, which features of the data x impact the
answer to any one of these questions?

Despite the ubiquity of ANN in daily life, these questions remain largely
unanswered. The design of efficient technologies, as those implemented today,

Chapter 1: Introduction 5

Deep fully connected networks

Deep neural networks

CNNs, Transformers, ResNets...

Perceptron
Kernel methods

Two layer fully connected networks

Adaptive gradients

Learning rate schedules

...

Finite training
dataset size

Online
SGD

Gaussian i.i.d. data

Gaussian
data with
non trivial
covariance

Synthetic
non

Gaussian
data

Real
images

GAN
generated

images

Data

Alg
orit

hm

Momentum

A
rc
hi
te
ct
ur
e

Theoretical

description

Figure 1.2: Developing a theory of machine learning requires understanding the
role and interplay of the architecture, data structure and algorithm. This can be
pictured as a three dimensional space where the question we address fall in the
continuum defining their interplay Zdeborová [325]. In all three aspects, theoretical
descriptions lag behind practice.

requires much expertise and hours of careful engineering [119, 225]. Besides
some basic principles, which we discuss now, there remains a lack of a priori
understanding of why certain choices lead to certain outcomes, a mystery often
dubbed the “BlackBox of AI” [49]. Not only is training these networks challenging,
their performance is also quite sensitive to small changes in design and to rare
events. For instance, minute changes in YouTube’s recommendation algorithm can
cause mysterious scrambling of the ordering of videos leading to great frustration
among Youtubers. Another example is self-driving cars which are very sensitive to
rare events with which they have not been confronted before [126, 309].

A theoretical understanding of when, why and how neural networks are suc-
cessful is crucial to make them more secure, reliable and faster to deploy. To
develop this theory we must understand the three backbones of modern machine
learning: the role played by the network’s architecture, the training algorithm and
the data as well as the interplay between the three [325]. These building axis span
a three dimensional space, Fig. 1.2. Their interplay defines a continuum, and the
theoretical knowledge we currently have can be seen as a volume in this space
where each new insight is a point. In the three directions, theory lags behind
practice. The aim of this manuscript is to show how tools from physics can help to
increasing the known volume and our understanding of each one of these aspects.

6 1.2. Architecture

Organisation of the manuscript
In the rest of this section, we give an introduction to architecture, data and algo-
rithm in sequence. For each we provide a summary of the results obtained during
the thesis. These results, as well as their derivation are detailed in later chapters.
Chap. 3 concerns architecture and explains how the traditional bias-variance trade-
off can be reconciled with overparametrisation in deep learning. It is mostly based
on [76] and takes the results for arbitrary loss from [201]. Chap. 4 discusses data.
Sec. 4.2 describes how the interplay between data and architecture impacts perfor-
mance. Sec. 4.7 analyses which features are learned by a given ANN architecture
and how. The results are those of [260] and [258]. Chap. 5 considers the algorithm.
Sec. 5.1 investigates the impact learning rate scheduling has on performance and
optimisation. Sec. 5.2 studies an alternative algorithm, direct feedback alignment,
which overcomes some pitfalls of today’s most widely used optimisation algorithm,
back-propagation [168]. The discussions can be found in [259] and [77].

1.2 Architecture

Suppose you want to design a machine able to classify images of cats and dogs,
of identifying the friends in pictures, or of recognising the sentiment you are
conveying in a Whatsapp text. One way to undertake the task is to understand
which features, or patterns, in the data are relevant and to program these rules into a
computer [178]. This however requires much domain expertise and careful scrutiny
of the type of data being analysed. The key idea of deep learning is to learn the
discriminating features directly from the raw data using a general purpose learning
procedure [119].

Artifical neural networks (ANN) offer to do so. They are composed of elemen-
tary constituents, the "atoms" of ANNs: the neurons. Neurons are grouped into
simple units, or layers, which are stacked on top of each others like Lego bricks and
connected by adjustable parameters, called weights. Each layer performs a simple
non-linear transformation of its input. As an input is propagated through the net-
work, it is is sequentially transformed into more and more abstract representations
which amplify important features for the task and suppress the irrelevant ones
(such as the background in pictures of cats and dogs). An image, for instance, is
presented to the network as a vector of pixels. The first layers, i.e. top layers, often
detect the presence and location of edges in the picture. Subsequent layers detect
patterns as combinations of these edges, regardless of the edges position in the
image, then part of familiar objects are obtained by combining these motives and
so on.

Chapter 1: Introduction 7

At the end of the training, an ANN performs a mapping of the inputs which
extracts the features needed to classify the image. Crucial to the development of
deep learning is that these features extractors learn the relevant patterns and rules
themselves, without the need for practitioner to add any domain specific knowledge
or rules. Modern deep networks are often composed of tens or hundreds of layers,
giving rise to the terminology deep learning, and hundred millions of adjustable
weights. These are fixed by the learning procedure using hundred thousands inputs
via an algorithm described in Sec. 1.4.

In a Lego construction, there are various different brick types and even more
ways to arrange the bricks together to form different buildings, objects etc. Similarly,
today, there are numerous types of ANN layers including convolutional layers [96,
172, 279], mostly used in task involving images, attention layers [307] used when
the inputs are sequences of smaller components (such as words in a sentence),
normalisation layers [17, 143], residual layers [133, 140, 295] and many more. These
can be are stacked together in innumerable ways to form different architectures.
Each architecture is best suited for a given type of task. For all these complex
architectures however, theoretical results are scarce. For now, most analysis are
centerer on the simplest architecture type i.e. fully connected networks which we
describe now.

xh−1

Whk

ah xh =g(ah)

g

WH

. . .x ϕθ(x)

W1 W2 W3 Wh

Figure 1.3: A fully connected network is composed of fully connected layers. Each
layer takes an input xh−1 and maps it to the output xh = g(ah) with ah = whxh−1.
g is an element wise non-linearity. By stacking multiple layers on top of each
others FC networks transform an input x into and output ϕθ(x) and learn complex
representation of the inputs.

Fully connected networks
For the purpose of this manuscript, we focus on the simplest type of layer, namely
fully-connected layers which when stacked together form a fully-connected network
(FCN) also called a multi-layer perceptron (MLP) and illustrated in Fig. 1.3 (Right).
The number of layers in an FCN, i.e. its depth, is denoted H, and each layer
comprises of Kh elementary units. Thus, as sketched on Fig. 1.3 (Left), a layer
at depth h in the network takes its input xh−1 ∈ RKh−1 and transforms it into an

8 1.2. Architecture

output xh:

xh = g(ah + bh) ah ≡
Kh

∑
k=1

whkx(h−1)k ∈ RKh , (1.3)

where x0 are the inputs of the network and y ≡ xH the outputs. g : R→R is an
element-wise non-linear function and we refer to ah as pre-activations. bh is an
additive bias at each layer. The stacking of these simple transformations leads to
extremely intricate functions of the inputs even at moderate number of layers.

State-of-the art (SOTA) neural networks, which achieve wonders in applications,
often comprise of tens of layers and hundreds of thousands parameters. However,
an understanding of how to choose, for a given problem, the ideal number of layers,
their width, and their activation function is still lacking. For instance, the most pop-
ular activation function nowadays is the rectified linear unit, ReLU(x) = max(0, x),
but in past decades, neural nets used different non-linearities, such as tanh(x) or
the sigmoid, 1/1+e−x. The change occurred on purely evidence experience after
noting that the ReLU typically learns much faster in networks with many layers
and avoids certain pitfalls of training deeper networks, such as the vanishing gra-
dient problem LeCun et al. [172]. In recent years, theoreticians sought to develop
theoretical arguments to study deep FC networks and the role different compo-
nents play in their performance. Nevertheless, only two layer networks are for now
analytically tractable and even so, only in some specific limits. Below, we describe
special choices of FCN which are the focus of many theoretical studies.

The perceptron and linear methods
The easiest way of predicting an outcome y from inputs x is to use linear methods.
For the sake of simplicity, suppose you are given the task of separating data points
coming from two different clusters as shown on the left of Fig. 1.4. A naive way to
solve the problem is to draw a line separating the two clusters and assign a new
observation x to the yellow cluster if it falls above the line, called decision boundary,
and to the red cluster if it falls below the line. By defining the decision boundary
as w ∈ RD, and its offset, or bias, b ∈ R , this simple protocol can be pictured as a
one layer neural network, dubbed perceptron [93, 98], whose output is:

ϕP
θ (x) = w · x + b (1.4)

An observation x is assigned to the yellow cluster if ϕP
θ > 0 and to the red cluster

otherwise. Whenever there exists a line (or hyper-plane in higher dimensional
problems), parametrised by w̃, that separates the two clusters, the problem is said

Chapter 1: Introduction 9

to be linearly separable and linear methods perform well. These methods are also
very common in regression tasks where one aims at predicting a response variable
y∗ ∈ R from an inputs x. Pictured on a 2D plane, linear regression draws a line
and assigns to an input a response on the line i.e. given by ϕP

θ (x) (see Fig. 1.5 left).

A key result, representer theorem [152] states that the optimal choice of weights
wopt, minimising the empirical loss Lemp, can be written as a weighted sum of the
inputs in the training-set:

wopt =
N

∑
µ=1

βµxµ. (1.5)

Thus, instead of minimising the empirical risk over the parameter’s w, we can
minimise it with respect to the coefficients in the weighted sum β and write the
output ϕθ as:

ϕθ(x) = ∑
µ

βµxµ · x + b. (1.6)

This dual representation is can be much more convenient as it requires estimating
N (the dimension of the training set) unknown parameters β instead of D (the
input dimension). It is particularly useful when using kernel methods which we
now discuss.

Kernel methods
Linear methods are extremely efficient for solving linearly separable problems and

Low dimensional Space High dimensional Space

Linearly separable clusters Nonlinearly separable clusters

Projection

Figure 1.4: Sketch of kernel methods (Left) When clusters are linearly separable,
we can determine which cluster a new point belongs to by comparing its position to
the separating line. (Right) When the clusters cannot be separated by a line, Kernel
methods project the points to a higher dimensional space in which the clusters
become separable.

simple regression tasks, where the relation between the response and the inputs is
linear. However, most problems of interest do not fall into this category and one

10 1.2. Architecture

Low dimensional Space Feature SpaceNonlinear Task

Projection

Linear Task

Figure 1.5: Sketch of kernel methods for regression tasks (Left) When the task is
linear, i.e. the underlying relation linking y∗ to x is of the form y∗ = w̃x + b̃, then
linear methods work well. (Right) When the task is not linear, Kernel methods
project the points to a higher dimensional space in which a linear method can be
successfully applied.

must resort to more sophisticated methods. Kernel methods, first introduced by
[8], were advanced in the context of ML by [42]. See [41, chap. 6] and [19, chap. 7]
for an introduction and a comprehensive overview of Kernel methods.

Consider, for a given task, a memory based approach which keeps in memory
the inputs xµ and their associated label y∗µ for all pairs in the training dataset. When
a new input x is presented, the method finds the training input xν to which it is
closest and assigns it the corresponding label y(x) = y∗ν. The similarity between
two inputs x and x

′
is measured via the kernel function k(x, x

′
) ∈ R. A new input

x is assigned the label y∗ν of xν in the train-set for which k(x, xµ) is smallest. The
simplest example of kernel function is the linear kernel, which measures similarity
as the scalar product between two inputs k(x, x

′
) = x · x

′
. As we now explain,

kernel methods are connected to linear methods, and offer an intuitive solution for
improving the latter’s performance in a myriad of settings [11, 99, 156, 174, 186,
209, 282, 286, 287].

Consider the classification problem illustrated on the right of Fig. 1.4 for which
the clusters cannot be well separated by a line. To solve the task, one approach
consists in projecting the points to a well chosen higher dimensional space where
the clusters become linearly separable. In this new space, called feature space, one
can use linear methods to find a plane separating the clusters. Then, by projecting
a new input x in feature space and observing its position relative to the plane, we
determine which cluster it belongs to. Denote ψ : RD→RP the projection of an
input x ∈ RD to a higher P > D (possible infinite) dimensional space. Then we can

Chapter 1: Introduction 11

write the output of this procedure as:

ϕK
θ (x) =

P

∑
i=1

wiψ(x)i. (1.7)

The input is assigned to the positive cluster if ϕθ(x) > 0 and to the negative cluster
otherwise.

This method, however, requires estimating P unknown parameters w which is
hopeless if one chooses P large, or infinite, as is often done in practice. Representer’s
theorem 1.5 offers an elegant solution to the problem by expressing the optimal
choice of w as a weighted sum over the projected training inputs {ψ(xµ)}:

wopt = ∑
µ

βµψ(xµ) ⇒ ϕK
θ (x) = ∑

µ

βµψ(xµ) · ψ(x) = ∑
µ

βµk(xµ, x). (1.8)

We introduced the kernel function as the scalar product between the projections
of the inputs in feature space k(x, x

′
) = ψ(x) · ψ(x

′
). This formulation turns the

question of estimating P parameters w into finding N parameters β. Crucially,
it allows to choose a very high dimensional, possibly infinite, feature space. In
addition, expressing the problem only in terms of the kernel function allows to use
more general similarity measures, beyond k(x, x

′
) = ψ(x) · ψ(x

′
), which cannot be

written as a scalar product of feature transformations. Choosing an appropriate
kernel function, or transformation ψ, is often non trivial and depends on the task
at hand [283].

As the size of modern datasets increases, kernel methods become numerically
expensive as they require memorising all points in the training set. Random
features [253, 254] (RF) were introduced to resolve this issue by mapping inputs
into feature space with ψ = g(w1x). The parameters w1 are chosen randomly
from some probability distribution, typically wij∼N (0, 1). They perform a linear
projection of the inputs before an element wise non linearity g is applied. Rahimi
and Recht [253] demonstrated that RF can approximate kernel methods to arbitrary
precision and offer a convenient solution for large training datasets. We can identify
RF with a two layer network in which the first layer’s weights are fixed and while
those of the second are adjustable:

ϕθ(x) =
P

∑
i=1

w2ig(w1i · x). (1.9)

Other analytically tractable architectures
Besides linear methods and kernel methods, neural networks are analytically

12 1.2. Architecture

understood only in particular limiting cases, some of which we discuss now.

To understand properties of deep, wide, architectures results have emerged in
the limit of networks have very large hidden layers and many more parameters
than the input dimensions. They are best understood by considering two layer
neural networks with output:

ϕθ(x) =
1√
K

K

∑
i=1

w2ig(w1ix). (1.10)

The first limit, coined lazy regime [63, 145], studies the case where the weights are
initialised of order 1. If K is much larger than D, the sum runs over a large number
of terms, and any small change in the weights will add up to produce a sizeable
change in overall output. Thus, the network’s parameters do not move much in
order to fit the data they are trained with. As a consequence, we can linearise ϕθ

around its initialisation where weights are independent of the inputs:

ϕθ(x)− ϕθ0(x) ≈ ∇ϕθ0(x)(w − w0). (1.11)

In the limit K→∞, D/K→0, Jacot et al. [144] showed that this approximation
becomes exact and the network essentially performs a kernel method where the
projection ψ is given by the gradient of ϕθ around its initialisation i.e. ∇ϕθ0(x) [9, 10,
52, 86, 145, 181]. This has drastic consequences on learning since, in this limit, the
transformation of the inputs performed by neural networks does not depend on the
data one wishes to analyse. It reveals that, when training deep, overparametrised
models, for which the same argument holds, one needs to take care not to operate
in the lazy regime. From a theoretical perspective, this limit allows to use tools from
kernel theory to study deep ANNs and thus, even if it does not give a complete
picture, understand some aspects of ML.

In applications, the weights of neural networks move far away from their
initialisation in order to capture relevant features of the data. The mean-field (MF)
limit of neural networks goes beyond the lazy regime and aims at understanding
feature learning [63, 104, 316]. It describes two layer neural networks defined in
Eq. 1.10 for which the weights are initialised of order O(1/

√
K) and the width K is

again taken to infinity. In sharp contrast with the lazy regime, the parameters of
the network must depart considerably from their initial value to produce a sizeable
change in the output allowing the network to adapt to the data and the task at
hand. Learning in the MF regime converges to a well defined limit and is described
theoretically by recognising that in the K→∞ limit, the sum over the hidden nodes
can be replaced by an integral over a density [60, 214, 265]. We can then study

Chapter 1: Introduction 13

the network’s performance in a variety of tasks and understand, for instance, how
different aspects of the inputs, the task, the activation function or algorithm impact
performance [18, 62, 73, 101, 109, 110, 185, 243, 300, 312, 320].

The distinction between a regime where the weights evolve to learn the features
in the data, i.e. a feature learning regime, and one where they do not, i.e. a lazy
regime, is also possible at finite width K. Chizat et al. [61] proposed to rescale the
overall output of the network by a scalar α:

ϕ̃α
θ = α [ϕθ − ϕθ0] . (1.12)

Choosing α of order one leads to a lazy network and α = O(K−1/2) to a mean-field
limit.

The last limit we discuss is the work-horse of the analysis in Secs. 4.2 4.7 5.2
and was first studied in the seminal works [38, 269, 270]. It describes two layer
networks with small hidden layer, i.e. K of order 1:

ϕθ =
K

∑
i=1

w2ig(
w1i · x√

D
), (1.13)

where the inputs dimension is large i.e. D→∞. As we will see, in the limit where
the number of training data is infinite (i.e. scales linearly with input dimension), the
learning dynamics of these networks are described by a set of ordinary differential
equations (ODE). These provide insights into how, and how well, the neural
network learns a given task (see [114–116, 118, 258–260] and the sections referenced
above).

[

\

[

\

[

\

G
en

er
al

is
at

io
n

Er
ro

r

Variance
Bias

Number of Parameters

Figure 1.6: The conventional bias-variance trade off To fit data points, the model
should neither be too simple to describe the underlying process generating the
points (left) nor too complex to avoid being sensitive to noise in measurements
(right). The right number of parameters is in between the two (middle) where both
the bias and the variance of the model are low. Here y∗ = x2 + ξ with ξ a random
noise sampled i.i.d. from N (0, σ2). (right-most) The generalisation error displays a
"U"-shaped curve as the variance increases with the number of parameters while
the bias decreases.

14 1.2. Architecture

Number of parameters

Generalisation
Error

U-shaped
curve

Peak in test error
at interpolation threshold

Monotonous decrease in the
overparametrized regime

Tr
ai

n
Er

ro
r

Number of parameters
102 105

0.000

0.025

0.050

interpolation
threshold when the

train error hits 0

Figure 1.7: The test error of DNNs displays a "double-descent" As the number
of parameters in the model is increased, the test error curve of modern DNN
display a "U-shaped" curve characteristic of the bias-variance trade-off. After
the peak at the interpolation threshold, where the training error goes to 0 (inset),
the test error decreases monotonically in the overparametrised regime. The best
performance is reached in the deeply overparamtetrised regime. Ensembling (orange
line) suppresses the peak. (Plot taken from [102].)

Reconciling the bias-variance trade-off with overparametrisation in deep NNs
Theoreticians can gain insights into what effects certain choices of network’s
architecture, for instance the number of trainable parameters, have on performance
by understanding how to reconcile basic principles of statistics with modern deep
learning. The bias-variance trade-off, at the basis of any statistics class, teaches that
the model chosen to explain data points should be carefully chosen as shown on
Fig. 1.6. If it has too few parameters, it is too simple to capture the underlying
physical process and the systematic error the model makes, i.e. the bias, is high.
In contrast, by including too many parameters in the model, we risk overfitting
i.e. fitting also the noise in the training data. The variance of the fit is high
and we expect it to generalise poorly. In between these two extremes, there is a
sweet-spot where the model is simple enough to be robust to noise yet complex
enough to grasp the underlying input-response relation having generated the data.
This results in a U-shaped curve of the population error. Deep learning however,
challenges this paradigm [230, 233, 294]. Modern deep networks have hundreds of
thousands of parameters, can fit all samples in the training set and yet generalise
to unseen data well, at odds with conventional statistics [4, 31, 131, 213, 232]. Their
performance, seen on Fig. 1.7 displays the conventional bias-variance U-shaped
curve until a peak in test error at the interpolation threshold, where network achieves

Chapter 1: Introduction 15

0 train loss. It generally occurs when a number of parameters is roughly equal
to the number of data points [103]. Then, instead of deteriorating at high model
complexity, performance improves with increasing number of parameters resulting
in a trend coined double descent [230, 233]. Reconciling both paradigms is crucial
if we want to understand the role of depth and width in modern ANNs. This
question has attracted attracted a growing amount of theoretical attention in the
last few years, see e.g. [4, 31, 131, 213, 232].

In my first project [76], we make progress by focusing on the lazy-regime of
neural networks and study the related RF model [253] trained with quadratic loss.
In a recent collaboration [201] we rigorously extend the results to generic convex
losses. The RF model is an ideal candidate for our analysis partly, but not only, for
its connection to the lazy regime [63, 145, 253]. Moreover, its test error displays a
double descent and it allows to disentangle the input dimension from the number
of parameters, an impossible distinction in simpler linear methods. Lastly, through
the randomness inherent to the choice of features, RF also offer a good basis to
study ensembling which improves performance by making a prediction based on
the averaged output of networks trained independently [102]. If the average is
taken over sufficiently many networks, ensembling suppresses the peak at the
interpolation threshold (orange line on Fig. 1.7).

An analysis of bias and variances in RF starts by recognising that there are
various sources of randomness in the model: the additive noise corrupting the
labels, the random sampling of the features and the random sampling of inputs
in the trainset. Each contributes to the test error via its associated variance. By
disentangling out the individual contributions, we can study how each source of
fluctuations impacts the generalisation performances of RF. This analysis, detailed
in Sec. 3.1, reveals that the variances associated to the noise corrupting the labels
and the initialisation of the random features are responsible for the peak of the test
error near the interpolation threshold and its decrease upon overparametrisation,
see Fig. 3.3. The variance stemming from the choice of training set and the bias
both display a kink at the interpolation threshold, and remain constant in the
overparametrised regime. Hence, ensembling and overparametrisation improve
performance by the suppressing fluctuations from the label noise and of the
weights initialisation. Subsequent results [2, 176, 191] perform a more fine grained
decomposition of the test error in terms of bias and variances.

16 1.3. Data

1.3 Data

Today neural networks are used on astonishingly different data types, from financial
data [141], to images [244], to medical data [179, 202, 318] and many more. Each
data type is analysed using a specific architecture and algorithm, often chosen on a
trial-and-error basis. Understanding which features in the inputs are relevant for a
given task, how these are captured by a network and why is key to develop a theory
of ML. Firstly for practical applications since answering these questions would
allow practitioners to better select the inputs in the training set as well as simplify
the choice of architecture and algorithm based on input features. Then, from a
fundamental perspective, the answers could reveal some intrinsic characteristics
in the data such as symmetries and similarities and teach us more on what we
humans capture when interacting with the outside world.

In this manuscript, we approach the question from a physics perspective: we
make assumptions on how the data is generated, i.e. we consider specific generative
models and describe properties of typical input sampled from this model. This
contrasts with worst-case approaches which study how rare and adverse inputs
impact learning. A generative model consists of simplifying assumptions on the
input-label distribution and often depends on parameters which can be tuned
to study a given phenomenon in a controlled way. It must be complete enough
to capture the phenomenon yet simple enough to be analytically tractable. To
validate that the conclusions drawn from the model carry over to realistic settings,
theoreticians can test their predictions on real data. Over the years, researchers
came up with a multitude of generative models. These remain nevertheless far too
simple to account for the complexity of real inputs. We now review some of the
simplest and most widely used.

Figure 1.8: (Left) Origi-
nal image. (Right) Input
x sampled from a Gaus-
sian distribution with the
same covariance as the
original image.

Gaussian data & the teacher-student model
The simplest generative model one can think of is to
assume each component in the input x ∈ RD is drawn
i.i.d. from a standard normal distribution i.e. xi∼N (0, 1).
This will seem as a crude simplification as it amounts
to assuming that the inputs are white noise. Nonethe-
less, many key results were derived in this setting in
particular in a teacher-student model [1, 98, 208]. The
teacher-student (TS) model assumes that the true la-
bels y∗ are given by a teacher function i.e. y∗ = ϕ̃w̃(x).
The student network is trained to reproduce the out-

Chapter 1: Introduction 17

put of her teacher. The teacher’s parameter w̃ can be seen as a signal in
parameter’s space which the student has to recover. Learning a target func-
tion such as the teacher is a widely studied setup in the theory of neural net-
works [5, 15, 20, 22, 85, 97, 109, 114, 276, 293, 303, 321, 333].

The next to simplest model is to assume the inputs are still Gaussian, but
have non trivial correlation among components i.e. x∼N (0, Ω) with Ω ∈ RD×D

a covariance matrix. We can check on the right-hand side of figure 1.8 that this
simplification allows to describe images well enough to recognise a digit taken
from dataset of hand-written digits (MNIST [65, 170]).

Gaussian mixture model
The Gaussian mixture (GM) model [261] assumes the inputs x are sampled from
a Gaussian mixture distribution. One first draws a label from a set of possible
values y∗ ∈ {1, ..., Nc} with some probability p(y∗= i) for each value. Many times
we choose all values equally probable so that p(y∗= i)= 1/Nc. Given the value of
the label, an input x is sampled from a Gaussian x∼N (µy∗ , Ωy∗). Note that here,
the generative process is reversed with respect to the teacher-student model in the
sense that in the latter, the realisation of the input determines the label. For the
GM model instead, the realisation of the label determines which distribution the
input is drawn from. The GM model is often used in classification tasks where the
inputs belong in Nc classes, specified by the labels. Mixture models generalise the
GM model by taking the distribution of x, given the y∗ to be generic py∗

x .

Understanding the interplay between data structure and architecture in Gaussian
mixture classification
The role of data structure cannot be disentangled from the one of architecture.
Simple networks detect less features than more complex networks and different
architectures capture different features [119, 124, 150]. So rather than asking what
features in the inputs are important for the task, the right question is: given an
architecture and a task, what are the input’s features that allow the network to
learn? One way to answer the question study how well neural networks perform
on inputs drawn from a well chosen generative model. By tuning the parameters
in the model, we can study the effect different features have on training.

In [260], detailed in Sec. 4.2, we explore the interplay between data structure and
architecture by comparing how kernel methods and two layer NN capture input
features at different noise levels. The motivation for this study is the observation
that, in the lazy regime (c.f. 1.11), deep neural networks act as kernel methods.
This raises the question of whether NN can only perform well if kernel methods

18 1.3. Data

RF space

z1
z3

z2

High SNR Low SNR

1/SNR

z1

z3

z2RF space

|μ |

Dσ
∼ 𝒪(D)

μ/ D

σ

Input Space

Figure 1.9: RF and 2LNN on high-dimensional Gaussian mixture classification
(Left) Example of nonlinearly separable distribution with 4 clusters. The first
2 components of each centres are organised as a XOR while the other D − 2
components are 0. The signal to noise ratio (SNR) is tuned by varying the width σ
of each cluster. (Right) For this model, an oracle which has knowledge of the means
and widths of the clusters attains minimal error. Two layers NN learn the mixture
at all SNR and achieve oracle like performances. Random features instead require
high SNR to learn. At low SNR the transformation in feature space remains linear.
The mixture is only mapped into a non-separable mixture in feature space at high
SNR. For more details see Sec. 4.2.

can also do so. Clearly, this cannot be the case as not all tasks performed by NN
are achievable by kernel methods [145]. Consequently, understanding the precise
conditions and input features for which the performance of NN are superior to
those of kernel methods becomes a central question in deep learning [18, 73, 101,
185, 243, 300, 312, 320]. Recent works [62, 109, 110] give evidence of the superior
learning ability of wide NN in the mean-field limit and Kernel methods. In Sec. 4.2,
we focus on the opposite ODE limit of neural networks, (c.f. 1.13), in which the
hidden layer is small, i.e. of order one. We compare the ability of kernel methods
and neural networks to classify Gaussian mixtures in high dimensions and tune the
hardness of the task, i.e. the prominence of the features, via the signal-to-noise ratio
(SNR) i.e. the ratio between the distance separating the clusters and their width.

In this setup, two layer neural networks, with only a few hidden neurons, learn
the mixture and achieve near optimal performance for all values of SNR. In contrast,
for the same number of samples, kernel methods and random features require the
signal in the input to be strong in order to perform better than chance. We explain
this failure by realising that, if the SNR is too low, the transformation in feature
space performed by kernel methods is linear. Thus, if a mixture is non separable in
input space, it remains non-separable in feature space. At high SNR, the non-linear

Chapter 1: Introduction 19

effects of the transformation kick-in and performance improves. Fig. 1.9 illustrates
this picture for the example of a non-separable mixture with the same covariance
matrix for all clusters Ωy∗ = σ2ID. The first 2 directions of the centers are arranged
in a XOR like manner, a distance µ/

√
D = 1 from the origin, and the remaining

D − 2 components are 0. The SNR is tuned by changing the width of the clusters
σ. At low SNR, the mixture in feature space remains non-separable. As the SNR
increases, the non-linear contributions to the projection in feature space allow for
the RF to learn the task. The results and the theoretical analysis apply to more
general mixtures with non-trivial covariance.

Gaussian equivalence theorem
The relevance of this result goes beyond illustrating some limitations of lazy
methods. For these simple networks, Gaussian mixtures turn out to be a successful
model to capture learning on real data [117, 118, 200, 213]. The similarity between
training on synthetic Gaussian (and GM) data and inputs used in practice can
be summarised in a somewhat surprising result, the Gaussian equivalence theorem
(GET) [118]. The GET states that training simple networks, such as two layers FC
and random features, on Gaussian inputs with well chosen mean and covariance,
is indistinguishable from training on real data for a plethora of input types and
tasks. It was first proposed by [106, 117, 213]. It was rigorously proved by [215] for
the special case of the square loss and by [118, 138] for general convex penalties.

The GET applies, for instance, in the hidden manifold model of Goldt et al.
[115]. This model builds on the observation that images are composed of a large
number of pixels and are thus high dimensional objects. However, it is most
likely that, when classifying images of cats and dogs, the features determining the
animal are actually much fewer than the images dimensions and define a lower
dimensional manifold on which the images live. We can formulate this intuition
through a generative model in which the label, i.e. cat or dog, depends on a low
dimensional variables c ∈ RDc with Dc < D. In a teacher-student setup, the teacher
acts on c to give the label y∗ = ϕ̃w̃(c). The network does not have knowledge of
the low dimensional vector c and is given as inputs x = ψ(c) with ψ : RDc→RD

transforming c into x in high dimensions. In the cat vs. dog example, we can
picture c as a vector containing all the necessary information for classification, x as
the image with many pixels and ψ the function mapping one c to an x. As predicted
by the GET, in this model, the performance of a simple network is the same when
trained on x and on Gaussian inputs with the same mean and covariance as x [118].
This remains true for very complex mappings ψ, including those of generative
adversarial networks which transform c into synthetic images indistinguishable

20 1.3. Data

to human eyes from the real images [67, 199]. Nonetheless, it remains hard to
believe that, in all cases, networks do not use any information beyond the first two
moments of their inputs. The precise conditions under which the GET applies are
subject to much recent interest [142].

Figure 1.10: Sketch of a
shallow under-complete
autoencoder

Autoencoders as a tool to study feature learning
Another way to obtain insights into how networks learn
relevant features of their inputs, and what these features
are, is to study unsupervised learning, and more specif-
ically autoencoders (AE) [119, 135, 159, 192] as we do in
[258] and Sec. 4.7. In contrast to supervised learning,
autoencoders are trained using only the inputs x which
they aim to reconstruct. The task is thus to minimise
the distance between x, and the network’s output ϕθ(x).
To ensure good feature extraction, we take intermediate
layers considerably smaller than the input dimension,
thereby forcing the network to develop a compressed
representation of its inputs. Autoencoders of this type, called under-complete and
shown on the right, provide an ideal framework to study feature learning as the
latent representation encompasses what the network considers the most valuable
features in the data. Understanding training with unsupervised learning is also
relevant for practical applications. Indeed, the performance of ANNs, especially
with limited number of samples, can be improved by first pre-training each layer to
reproduce the output of the previous layer [35, 134, 136, 255].

In Refinetti and Goldt [258], we analyse the performance and training dynamics
of shallow autoencoders with a single hidden layer in reconstruction tasks. For
linear AE, Eckart and Young [89] establish that the optimal reconstruction error is
obtained by a network whose weights are given by (a rotation of) the K leading
eigenvectors of the input covariance matrix. The performance is the one of principal
component analysis and dubbed PCA error. It is interesting to ask oneself how
autoencoders learn these components during training as was recently done from
various perspectives [24, 25, 46, 111, 165, 236, 239, 252, 276].

Still, neural networks rely on non-linearities in their hidden layers to extract
good features from data [119]. Adding the non-linearity to the theoretical de-
scription of AEs is thus key to understand how more realistic models capture
characteristics of their inputs. Although, it is known that the performances of
non-linear AE is also limited by the PCA reconstruction error [24, 46], we show in
Sec. 4.7 that their learning dynamics is rich and raises a series of questions: can

Chapter 1: Introduction 21

non-linear AE reach the PCA error, and if so, how do they do it? How do the
representations they learn depend on the architecture of the network, or on the
learning algorithm used to train them?

Unsupervised learning, requires the inputs to display some structure which the
network can exploit and thus to have non-trivial covariance matrix. We describe
the training dynamics of non-linear shallow AEs on these inputs using similar
techniques as those for supervised learning in the ODE limit [38, 269, 270], detailed
in Sec. 4.1. The analysis reveals that the network learns input features sequentially
in order of importance. This is intuitive as one expects the most relevant features
to carry the most information needed for reconstruction. However, not all AEs are
able to reconstruct their inputs and we find constrains on their architecture which
allow to do so: untying the network’s encoder weights from those of the decoder
is crucial to achieve good performance as is adding a bias in ReLU autoencoders.
In addition, we introduce a slightly unconventional algorithm which allows AE to
learn a one-to-one correspondence between nodes in the hidden layer and features
in the inputs, i.e. leading eigenvectors of the covariance matrix.

These results, derived for synthetic datasets, where the inputs are Gaussian,
carry over to networks trained on realistic inputs. They give access, at each stage,
to the marginal benefit of learning higher order modes of input data and reveal
a fundamental limit of shallow AE which do not differentiate between realistic
inputs and Gaussian inputs with well chosen covariance.

1.4 Algorithm

Gradient descent and stochastic gradient descent
In training a neural network, the practitioner is faced with the credit assignment
dilemma i.e. the question of how to update the network’s parameters to minimise
the the empirical loss (Eq. 1.2) given only the inputs and the target labels.

The most common way is to use gradient based methods, and in particular
gradient descent (GD) [266]. GD updates the parameters of the network, at layer h
and step s, via the rule:

ws+1
h = ws

h − η
∂Lemp

∂wh
, (1.14)

where η is the learning rate. We can picture the empirical loss function as a hilly
landscape in the high dimensional space of weight values, sketched in Fig. 1.11,
where the minimum is a configuration of low average error. Then, the negative
gradient vector indicates the direction of steepest descent in this landscape. The

22 1.4. Algorithm

Non-convex Landscape

Convex Basin

Non-convex Region

Figure 1.11: The empirical loss as a hilly landscape. Gradient based methods
descent in the landscape.

update equation above takes a current configuration of weights to a new configura-
tion closer to a minimum. The learning rate η determines the size of the step taken
in the downward direction. Note that the hilly, i.e. non-convex, nature of the loss
makes optimisation hard as the algorithm can get stuck in critical points, i.e. valleys
where the gradient is small and the error is still high [119].
Gradient descent computes the error over the entire training set. As a consequence,
it is often computationally expensive and requires large memory capacity, especially
on modern dataset consisting of many thousands of samples [44]. Stochastic gradient
descent (SGD) was designed to circumvent this limitation [43]. In SGD, instead
of computing the loss Lemp over the whole dataset and then making a step, one
computes it over a mini-batch of B samples and makes several steps before seeing
the whole dataset. It is clear that SGD introduces noise in the optimisation as the
average over the small set of examples gives a noisy estimate of the average over all
examples. The direction of each step on the hilly landscape becomes less precise.

x ϕθ(x)

δW1 δW2

W1 W2 W3
W4

e
W⊤2 W⊤3 W⊤4

BP 
(Rumelhart et al. ’86)

y*

δW4δW3

Figure 1.12: Back-Propagation propagates the error from the last layer to the first.
Using the chain rule, BP allows to compute the gradient at each layer h efficiently
by using the computations performed at layer h + 1.

Chapter 1: Introduction 23

Back Propagation
A fundamental building block in modern ML is the back-propagation (BP) al-
gorithm allowing to compute the updates Eq. 1.1 efficiently [173, 267]. It was
introduced in 1986 by Rumelhart et al. [267] and is currently the most common
algorithm to train ANNs.

BP computes the gradient ∂Lemp/∂wh by using the chain rule for differentiation.
"Back" in the name arises because the gradient is computed across the network from
the last layer to the first and the computation at a given layer uses the results at the
previous layer. To illustrate BP, consider the pre-activations and post-activations
defined in Eq. 1.3. The chain rule allows to rewrite 1.14 as:

dwhij = −η
∂Lemp

∂ahj

∂ahj

∂whij
= −η

∂Lemp

∂ahj
x(h−1)i ≡ −ηδhjx(h−1)i, (1.15)

where we defined the error factor δhj = ∂Lemp/∂ahj. The computation of δhj uses the
error factor at the next layer h + 1 and proceeds back sequentially from the last
layer to the first giving rise to the name "back-propagation of the error", BP for
short. To clarify, we show the computation for squared error (se) ℓ ≡ se defined as:

se(y, y∗) ≡ 1
2
(y − y∗)2 . (1.16)

The error factor at the last layer and the gradient of the loss with respect to the last
layer’s weights are given by:

δHi = (ϕθ(x)− y∗)g
′
H(aHi) ⇒

∂Lemp

∂wHij
= (ϕθ(x)− y∗)g

′
H(aHi)x(H−1)j, (1.17)

where gH is a non-linearity applied to the output and we set the bias to 0 for
simplicity. For the hidden layers, using the chain rule makes the computation
simple:

δhj =
∂Lemp

∂ahj
= ∑

k

∂Lemp

∂a(h+1)k

∂a(h+1)k

∂ahj

= g′(ahj)
Kh+1

∑
k

δ(h+1)kw(h+1)jk.

(1.18)

Crucially, the gradient at an intermediate layer h is given by a sum over the error
vectors at the next layer h + 1 weighted by the parameters w(h+1). Thus, as Fig. 1.12
shows, BP transmits the information of the error back through the network from the
output layer all the way to the input layer using the network’s weights. Contrasted
with the naive approach of computing the gradient at each layer separately, the

24 1.4. Algorithm

backward flow of error allows efficient calculations. Putting the pieces together, the
weights are updated via:

dwh
ij = −ηx(h−1)ig

′(ahj)
Kk+1

∑
k=1

w(h+1)jkδ(h+1)k (1.19)

Note the similarity between the computations of the gradients and of the network’s
output Eq. 1.3. This symmetry leads to the terminology forward pass for the
computation of output from the inputs and backward pass for that of the gradients
in the opposite direction. Also note that the forward pass always occurs before the
backward pass as the latter requires the knowledge of the activations ahj and of the
outputs xhj computed during the former.

Learning rate schedules and how they improve BP performance
BP works incredibly well, and its invention was consequential to the success

of modern ML [170–173]. However, training a network with BP requires a careful
choice of hyper-parameters i.e. training variables fixed by the developer such as the
choice of learning rate, parameters initialisation, weight decay to control the norm of
the weights, batch-size etc. Tuning these parameters is still mostly done a posteriori
on a trials-and-errors basis and requires hours of careful adjustments [119, chap 11].
In addition, variations of BP have been proposed to improve its performance such as
weight-decay [161], different type of optimizers [87, 127, 153], momentum [267, 298,
299], learning rate schedules [147, 222, 245, 292] and many more. There remains,
however, an overall lack of understanding about which parameters and add-ons
are best suited for a given problem.

Of particular importance is the choice of learning rate and learning rate schedule
which changes the learning rate during training i.e. changes the size of the step
taken in the downward direction as the network moves on the hilly landscape (for
an introduction see e.g. [50, 262]). Learning rate schedules have been developed
in recent years and today their use is ubiquitous among practitioners. Thus, it is
relevant to give some theoretical understanding about which scheduling technique
is most effective for a given problem and why.

In convex problems, i.e. setups where the landscape looks like a basin, the
optimal learning rate schedule generally goes as η(t)∼1/t [182, 194]. However, we
know that deep neural networks and other high-dimensional modern optimisation
problems operate in highly non-convex, i.e. rugged, loss landscapes [48, 64]. In
[77] and Chap. 5.1, we develop theoretical insights into the role of learning rate
scheduling in this setting. To do so, we focus on a specific gradient based algorithm
called the Langevin algorithm and decay the learning rate as η(t) = t−β. The

Chapter 1: Introduction 25

Langevin algorithm is picked because it allows to mimik the noise in optimisation
induced by SGD [59, 139, 182, 223] and on the problems we study, is analytically
tractable in the infinite dimensional limit [72, 207]. We begin by considering models
where the loss function presents an extensive, i.e. very large, number of critical
points. We show that to speed up optimisation, i.e. descent towards the minimum
of the loss, without getting stuck in saddles, the optimal choice of decay rate is
β < 1 contrary to convex setups where β = 1 is generally optimal. As the non-
convexity, i.e. the ruggedness, of the landscape increases, the value of the optimal
exponent decreases. We also consider the problem of recovering a signal, i.e. a
ground truth configuration of weights. In parameter’s space, the signal represents
a point of minimum loss around which the landscape is convex, i.e. a downward
pit. In this case, learning occurs in two phases: an exploration phase where the
dynamics navigates through rough parts of the landscape, followed by a convergence
phase where the signal is detected and the dynamics enter a convex basin (c.f. 1.11).
The optimal protocol is to keep the learning rate large during the exploration
phase in order to escape the non-convex region as quickly as possible, then use the
convex criterion β = 1 to converge rapidly to the solution. It allows to speed up
convergence and find lower loss solutions, and is reminiscent of schedules used in
practice [100, 328]. Lastly, we show that the conclusions drawn for this theoretical
setup also hold in a common regression task involving neural networks trained
with SGD.

Alternative training algorithm to go beyond BP
The careful tuning of hyper-parameters is only one of the issues of BP which,

despite its popularity and practical success, suffers from several other limitations.
For instance, it is clear from Eq. 1.18, that BP uses the same weights in the forward
pass as those in the backward pass. In biological neural networks, however, it is
highly unlikely that synapses propagating information in one direction are the same
as those propagating it in the other direction. As a consequence, BP is considered a
biologically implausible learning algorithm [69, 123]. In addition, and maybe more
importantly for practical applications, the sequential updates of weights during
the backward pass, see Fig. 1.13 top line, prevents an efficient parallelisation of
training. This constrain becomes ever more restraining as state-of-the-art networks
grow larger and deeper.

In light of these shortcomings algorithms which do not compute the exact
gradient in Eq. 1.18 but an approximation of it are recently attracting increasing
interest. Feedback alignment (FA) [190], sketched in the middle row of Fig. 1.13, is
one such algorithm that replaces the weights wh+1 in Eq. 1.18 by a random feedback

26 1.4. Algorithm

FA 
(Lillicrap et al. ’14)

x ϕθ(x)

W1 W2 W3
W4

BP 
(Rumelhart et al. ’86)

y*

e

e
F⊤1 F⊤2 F⊤3

DFA 
(Nøkland ’16)

e
F⊤1 F⊤2 F⊤3

δW1 δW2
W⊤2 W⊤3 W⊤4

δW4δW3

δW1 δW2 δW4δW3

δW1 δW2 δW4δW3

Figure 1.13: Back-Propagation propagates the error from the last layer to the first.
Using the chain rule, BP allows to compute the gradient at each layer h efficiently
by using the computations performed at layer h + 1.

matrix F, leading to:

δ(FA)hj = g′(ahj)∑
k

δ(h+1)kFhjk (1.20)

In this way, FA dispenses of the biologically unreasonable requirement of sym-
metric weights in the forward and backward pass. It is not a priori clear that the
replacement of the true weights by a random matrix does not prevent the network
from learning. Lillicrap et al. [190] demonstrated that FA allows to train neural
networks successfully.

Direct feedback alignment (DFA), an algorithm proposed by Nøkland [237] and
sketched on the last row of Fig. 1.13, takes this idea one step further. DFA propa-
gates the error directly from the output layer to each hidden layer of the network
through random feedback connections Fh:

δh
(DFA)j = g′(ahj)∆Fh

j , (1.21)

with ∆ ≡ ϕθ(x)− y∗ as before. When using DFA, the backward pass can be done
in parallel as all layers are updated simultaneously. While it was initially unclear
whether DFA could scale to challenging datasets and complex architectures [29, 112],
recently Launay et al. [167] obtained performances comparable to fine-tuned BP
when using DFA to train a number of state-of-the-art architectures on problems
ranging from neural view synthesis to natural language processing. Yet, both FA
and DFA notoriously fails to train convolutional networks [29, 128, 166, 227], which

Chapter 1: Introduction 27

are the most widely used for vision tasks i.e. tasks taking images as inputs.
These varied results underline the need for a theoretical understanding of how

and when feedback alignment works. Such an understanding, besides being useful
in practice, can shed light on the interplay between architecture, data and algorithm.
Does DFA train FC networks as well as BP on all data structures? When it does,
can we conclude that the information carried by the weights in the backward pass
is superfluous? If not, what part of it is essential to train the network? Why is
the information required by FC networks not sufficient to train convolutional NN?
What makes them intrinsically different from FC networks with respect to the
algorithm?

These questions motivate our work [259], detailed in Sec. 5.2, where we provide
theoretical insights into how and when feedback alignment works. We start by
extending the theoretical description of Sec. 4.1 for shallow non-linear networks
to study the dynamics of training with DFA. Through this analysis, we show
that learning with DFA proceeds in two steps. First, in an alignment phase, the
forward weights w adapt to the feedback weights and their configuration induce
the DFA gradient Eq. 1.21 to be aligned with the true BP gradient Eq. 1.18. Thus,
both algorithms take steps in the same direction in the landscape. In a second
memorisation phase, the network sacrifices some alignment in order minimise the
loss. The constrains imposed during the alignment phase lead to a degeneracy
breaking effect: out of all same loss solutions in the landscape, DFA converges to
the one maximising the alignment between the DFA gradient and the BP gradient.
We then move to the analysis of deep linear networks. Although the function
implemented by these networks is linear, their dynamics is rich [275]. We establish
a condition for gradient alignment: the conditioning of the alignment matrices,
described in Sec. 5.2. In particular, this condition allows us to analyse the impact of
data structure on DFA, and suggests an explanation for the failure of DFA to train
convolutional layers. Through various numerical experiments, we demonstrate
that these theoretical findings, namely the Align-then-Memorise phases of learning,
degeneracy breaking and layer-wise alignment, extend to deep non-linear networks
trained on standard vision datasets.

Chapter 2

L’algorithme, l’architecture et les
données : les trois piliers du
machine learning

Au cours des dernières décennies, l’apprentissage machine (machine learning (ML)
en anglais) a révolutionné notre quotidient, depuis les systèmes de recommanda-
tion [330] à la reconnaissance d’images, de l’analyse de données médicales [179,
202, 318] à la traduction automatique [148, 297], des voitures autonomes [122, 324]
aux marchés financiers [310]. Ses succès fulgurants défient les statistiques clas-
siques et la plupart des mécanismes sous-jacents qui les rendent possible restent
inexpliqués [49]. Pour combler le gouffre entre la théorie et la pratique, des mathé-
maticiens, des physiciens et des informaticiens ont unis leur forces pour développer
une compréhension des trois composants clés du deep learning: l’architecture,
les données et l’algorithme [325]. Ma thèse s’inscrit dans ce vaste programme de
recherche et les résultats concernent chacun de ces aspects ainsi que leurs inter-
actions: [76, 201] pour l’architecture, [258, 260] pour les données et [77, 259] pour
l’algorithme. Les principaux outils théoriques sont ceux de la physique statistique
qui se porte bien à la description des millions de paramètres constituants les réseaux
de neurones artificiels profonds.

Dans mon premier travail [76], nous étudions l’architecture et, plus spécifique-
ment, l’effet bénin de la surparamétrisation en deep learning. Selon la statistique
classique, le nombre de paramètres utilisés dans le modèle ne doit être ni trop
grand ni trop petit de sorte que le modèle soit assez expressif pour décrire les
relations entre les entrées et les cibles mais ne soit pas trop sensible au bruit
aléatoire dans les données. Il est donc stupéfiant que dans la pratique les réseaux
de neurones avec un nombre de paramètres élevé produisent d’excellents résul-

28

Chapter 2: Introduction en Français 29

Deep fully connected networks

Deep neural networks

CNNs, Transformers, ResNets...

Perceptron
Kernel methods

Two layer fully connected networks

Adaptive gradients

Learning rate schedules

...

Finite training
dataset size

Online
SGD

Gaussian i.i.d. data

Gaussian
data with
non trivial
covariance

Synthetic
non

Gaussian
data

Real
images

GAN
generated

images

Data

Algorith
m

Momentum

A
rc

hi
te

ct
ur

e
Theoretical

description

Data

Algorith
m

A
rc

hi
te

ct
ur

e

[1, 5]

[6]

[2] [3]

[4]

(B)(A)

Figure 2.1: Pour développer une théorie de l’apprentissage machine nous devons
comprendre le rôle de l’architecture, de la structure des données et de l’algorithme
ainsi que leurs interactions. Ces trois axes définissent un espace en trois dimensions
dans lequel s’inscrivent les problématiques abordées au cours de ma thèse (B). Les
descriptions théoriques sont en retard sur la pratique dans ces trois aspects (A).

tats. Nous nous focalisons sur le régime paresseux des réseaux profonds [63, 145]
(lazy regime en anglais) ainsi nommé car, pendant l’entraînement, les poids du
réseaux restent proche de leurs valeurs initiales. Par une décomposition de l’erreur
de généralisation en terme de biais et variances, nous montrons que les fluctu-
ations issues du bruit dans les cibles, et du choix aléatoire des poids initiaux
sont responsables de la "double descente" de l’erreur de généralisation c’est-à-dire
de son pic au seuil d’interpolation et suivi par une décroissance dans le régime
surparamétré. Ces résultats nous permettent également de comparer l’effet des
méthodes d’ensembling, de surparamétrisation et de régularisation. Nous validons
nos conclusions par des expériences numériques sur des réseaux profonds. Cette
recherche a suscité de l’intérêt dans la communauté et par la suite plusieurs travaux
l’ont approfondie [191, 246] en effectuant une décomposition en biais et variance
plus fine. Dans une collaboration postérieure [201], nous étendons l’analyse de
manière rigoureuse au cas général des fonctions de cout convexes.

Néanmoins, les réseaux de neurones profonds résolvent des tâches complexes
en reconnaissant des caractéristiques intrinsèques aux données d’entrainement.
Ainsi, ils ne peuvent être entièrement décrits par les méthodes paresseuses qui
ne discernent pas ces structures [19, 172]. Pour établir dans quelle mesure les
réseaux de neurones surpassent les méthodes paresseuses, nous devons comprendre
l’interaction entre l’architecture et la structure des données ainsi qu’évaluer la

30

capacité des deux méthodes à capturer les caractéristiques des données. C’est ce
que nous faisons dans [260] en étudiant le problème de la classification des mixtures
de Gaussiennes (Gaussian mixtures (GM) en anglais) à différents nivaux de signal à
bruit (Signal-to-Noise (SNR) en anglais). Nous étendons les travaux [114, 269, 270]
au cas où les entrées sont conditionnelles aux cibles et ont une matrice de covariance
non triviale. Ceci nous permet de décrire la dynamique d’entrainement des réseaux
de neurones à deux couches avec une petite couche cachée. Les équations qui
résultent de cette analyse révèlent que ces réseaux atteignent des performances
optimales pour toute valeur de signal-à-bruit. À l’opposé, les méthodes paresseuses
sont incapables d’apprendre la tache à faible SNR et nécessitent d’un signal de forte
intensité pour atteindre de bonnes performances. Ceci est du à la classification
linéaire que ces méthodes effectuent dans un espace à haute dimension dans lequel
elles projettent les donnés. Si le niveau du signal est en dessous d’une valeur seuil,
cette transformation est linéaire. Ainsi, une mixture non-séparable dans l’espace des
entrées demeure non-séparable après transformation et une classification linéaire
ne peut que deviner la cible au hasard. Les effets non-linéaires de la transformation
permettant aux méthodes paresseuses d’apprendre, ne se déclenchent qu’à un
niveau du signal suffisamment élevé.

Pour aller plus loin dans la description du machine learning, il est essentiel
de comprendre quelles caractéristiques des données sont relevées par les réseaux
de neurones. Pour ce faire, l’apprentissage non supervisé est un cadre idéal car
il garantie l’extraction de structure dans les entrés. Dans [258], nous considérons
les auto-encodeurs non linéaires peu profonds (AE), l’architecture la plus simple
pour l’apprentissage non supervisé. Les AE sont entraînés à reconstruire leurs
entrées. Nous caractérisons leur dynamique d’entraînement sur des données syn-
thétiques de manière théorique et vérifions ensuite par des expériences numériques
que les résultats s’appliquent également lorsque les réseaux sont entrainés sur
des données réelles. La description analytique révèle que les AE apprennent les
composantes principales de leur données séquentiellement, par ordre décroissant
d’importance. Elle met également en évidence des contraintes architecturales
néscéssaires à l’apprentissage comme celle de délier les poids dans les AE sigmoï-
daux et d’entrainer les biais dans les AE ReLU. Enfin, nous nous basons sur des
résultats précédents pour les réseaux linéaires, et proposons une modification de
SGD permettant d’obtenir une correspondance un à un entre les poids du résaux
et les composantes principales des données.

Dans les applications de deep learning la version basique de SGD, considérée
jusqu’à présent est rarement utilisée. En effet, l’optimisation est accélérée et
améliorée grâce à des modules complémentaires. Notamment, les learning rate

Chapter 2: Introduction en Français 31

schedules, c’est-à-dire des protocoles qui modifient la taille du pas de temps au cour
de l’entrainement, sont systématiquement utilisés [147, 222, 245, 292]. Dans [77],
nous étudions leur effets de manière analytique dans des problèmes d’optimisation
où la fonction de cout est de grande dimensions et non-convexe comme dans le
deep learning. Nous décelons qu’avec une décroissance en loi de puissance du
pas de temps η(t) = t−β, l’optimisation est plus rapide en prenant β < 1. Cet
exposant diminue lorsque la complexité du problème augmente et est inférieure
au choix optimal dans le cas convex β = 1. Si on ajoute au problème un signal
à retrouver, l’optimisation se déroule en deux phases. Dans une première phase
d’exploration, la dynamique navigue à travers des regions rugueuse du paysage et
on doit maintenir un grand pas de temps. Dés que le signal est repéré, commence
la phase de convergence où la dynamique entre dans un bassin convexe et le critère
β = 1 est optimal. Au travers d’expériences numériques, nous confirmons que
nos conclusions sont valables dans des tâches de régression sur des réseaux de
neurones.

Nous pouvons également approfondir notre compréhension du rôle de l’algorithme
dans le deep learning en étudiants des algorithmes d’entrainement alternatifs qui
ont souvent été introduits pour simplifier la passe arrière de back-propagation (BP)
et pour résoudre certains de ses défauts. En particulier, le Direct Feedback Aligne-
ment (DFA) permet d’accélérer l’entraînement des réseaux de neurones [237] et
d’augmenter leur robustesse contre les attaques adverses [54]. Au cours de la
passe-arrière, cet algorithme transmet le signal d’erreur depuis la sortie à toutes
les couches en simultané au moyen de matrices aléatoires. Dans [259], nous
menons une analyse théorique qui permet de comprendre quand et pourquoi
DFA permet d’entrainer des réseaux avec succès. Nous identifions deux phases
d’apprentissage: une phase d’alignement, pendant laquelle l’expressivité du réseau
est limitée par l’algorithme, est suivie d’une phase de mémorisation où le réseau
apprend la tâche. Ainsi, une simplification drastique de la passe arrière de BP
permet encore d’obtenir une bonne performance. Nos résultats révèlent également
la raison pour laquelle la DFA échoue à entrainer des réseaux de neurones de
convolution (convolutional neural networks (CNN) en anglais). Ceci est à nouveau
une manifestation de l’interaction entre l’algorithme et l’architecture. Au travers
d’études numériques sur des réseaux profonds, nous confirmons que nos résultats
rentent valides dans des applications réalistes.

La plus part de ces recherches ont menées à des publications dans des con-
férences prestigieuses telles que ICML. Elles ont été faites en collaboration avec
plusieures institutions, dont l’ENS Paris, l’EPFL (Lausanne), King’s College (Lon-
dres) et SISSA (Trieste), et des entreprises privées, dont Meta AI (Paris) et Lighton

32

(Paris).

Publications & Pre-prints (en ordre chronologique):

[76] Double trouble in double descent: Bias and variance(s) in the lazy regime.
D’Ascoli, Refinetti, Biroli & Krzakala, Sec. 3

[259] Align, then memorise: the dynamics of learning with feedback alignment.
Refinetti, D’Ascoli, Ohana & Goldt, Sec. 5.2

[260] Classifying high-dimensional Gaussian mixtures: Where kernel methods
fail and neural networks succeed.
Refinetti, Goldt, Krzakala & Zdeborová, Sec. 4.2.

[258] The dynamics of representation learning in shallow, non-linear autoen-
coders.
Refinetti & Goldt, Sec. 4.7.

[201] Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension.
Loureiro, Gerbelot, Refinetti, Sicuro & Krzakala, Sec. 3.1.6.

[77] Optimal learning rate schedules in high-dimensional non-convex optimisa-
tion problems.
D’Ascoli, Refinetti & Biroli, Sec. 5.1.

Au cours de mon doctorat j’ai pris part à deux projets qui sortent du cadre de ce
manuscrit et ne seront pas discutés. Nous en fournissons un bref résumé ci-dessous
et encourageons le lecteur intéressé à les parcourir indépendamment.

[23] Epidemic mitigation by statistical inference from contact tracing data.
Baker, Biazzo, Braunstein, Catania, Dall’Asta, Ingrosso, Krzakala, Mazza, Mézard,
Muntoni, Refinetti, Sarao Mannelli & Zdeborová
En bref Ce travail développe des méthodes d’inférence probabiliste per-
mettant d’augmenter l’efficacités des méthodes de traçage pour blocker la
propagation de pandémies telles que la COVID-19. Nous estimons le risque
d’infection d’un individu au travers de la liste de ses contacts récents et de
leurs propres niveaux de risque, ainsi qu’au travers d’informations person-
nelles commes les résultats des tests ou la présence de syndromes. Cette
estimation permet d’optimiser les stratégies de test et d’isolement et four-
nit un moyen efficace pour contrôler la propagation de l’épidémie. Elle est
notamment efficace pour des tots de propagation épidémique où le traçage

Chapter 2: Introduction en Français 33

manuel de tous les contacts de personnes infectées est infaisable mais avant
qu’un confinement ne devienne inévitable. Notre approche se traduit par
des algorithmes entièrement distribués et compatibles avec les normes de
protection des données personnelles puisqu’ils nécessitent uniquement d’une
communication entre des individus ayant été en contact récemment.

[257] Bootstrapping traceless symmetric O(N) scalars.
Reehorst, Refinetti & Vichi
In brief Au cours des dernières années, les les exposants critiques de nom-
breux systèmes physiques ont été déterminés très précisément [91, 92, 158,
256] grace à des techniques de bootstrap numériques [249]. Dans ce travail,
nous appliquons ces techniques aux fonctions de corrélation d’un tenseur
symétrique de O(N) à deux indices et trace nulle tij. Ainsi, pour N générique,
nous bornons les dimensions (scaling dimensions en anglais) des opérateurs de
toutes les representations pertinentes (relevant representations en anglais). Le
cas N = 4 est particulièrement intéressant du fait que, selon une conjecture
communément admise, il décrirait une transition de phase dans le modèle
projectif réel antiferromagnétique ARP3. Dans ce modèle, les simulations
sur des lattices suggèrent l’existence d’une transition de phase de deuxième
ordre alors qu’une approche de théorie des champs effective ne prédit aucun
point fixe. Un ensemble d’hypothèses nous permet de contraindre les dimen-
sions de l’opérateur à une région fermée compatible avec les prédictions des
simulations sur des lattices. Cette région est toujours présente lorsque l’on
considère un système mixte impliquant t et le singlet scalaire de dimension la
plus basse.

Chapter 3

Architecture

3.1 Reconciling the bias-variance trade-off with over-parametrisation
in deep NNs

3.1.1 Overview

As we have seen in Sec. 1.2, one of the main puzzles for theoreticians is to under-
stand the excellent generalization performance of heavily overparametrized deep
neural networks able to fit random labels [329]. Such interpolating estimators—that
can reach zero training error— have attracted a growing amount of theoretical
attention in the last few years, see e.g. [4, 31, 131, 213, 232]. Instead, of following
the characteristic U-shape curve of the bias-variance trade-off, the performance of
deep neural networks [230, 233, 294] as well as other machine learning models [31],
follow a double descent curve.

This curve displays two regimes : the classical U-curve is superseded at high
complexity by a modern interpolating regime where the test error decreases mono-
tonically with overparametrization [49]. Between these two regimes, i.e. at the
interpolation threshold where training error vanishes, a peak occurs in absence of reg-
ularization, sometimes called the jamming peak [294] due to similarities with a well-
studied phenomenon in the Statistical Physics litterature [93, 94, 164, 193, 241, 326].
Some mechanisms playing an important role for the good performance of deep
neural networks in the overparametrised regime include the implicit regularization
of stochastic gradient descent which allows to converge to the minimum norm
solution, and the convergence to mean-field limits [4, 11, 63, 212, 264]. However, a
complete picture of why overparametrised networks perform well remains lacking.

In this subsection, we present a detailed investigation of the double descent
phenomenon, and its theoretical explanation in terms of bias and variance in
the lazy regime [63] introduced in Chap. 1.2. As we discussed, in this regime,

34

Chapter 3: Architecture 35

neural networks behave like kernel methods [74, 145, 175] or equivalently random
projection methods [11, 63, 253]. This mapping makes the training analytically
tractable, allowing, for example, to prove convergence to zero error solutions in
overparametrized settings.

Optimization plays an important role in neural networks, and in particular for
the double descent phenomenon, by inducing implicit regularization [234] and
fluctuations of the learnt estimator [102]. Disentangling the variance stemming
from the randomness of the optimization process from that the variance due to the
randomness of the dataset is a crucial step towards a unified picture, as suggested
in [232]. Here, we address this issue and attempt to reconcile the behavior of bias
and variance with the double descent phenomenon by providing a precise and
quantitative theory in the lazy regime.

We focus on an analytically solvable model of random features (RF) defined in
Eq. 1.9, introduced by [253]. As a reminder, RF can be viewed either as a random-
ized approximation to kernel ridge regression, or as a two-layer neural network
whose first layer contains fixed random weights. The latter providing a simple
model for lazy learning via Eq. 1.11. In this setting, we quantitatively disentangle
the contributions to the test error of the bias and the various sources of variance of
the estimator, stemming from the sampling of the dataset, from the additive noise
corrupting the labels, and from the initialization of the random feature vectors.
Our theoretical analysis also provides a sharp asymptotic formula for the effect
of ensembling (averaging the predictions of indepently initialized estimators) on
these various terms. We show in particular how the over-fitting peak at the inter-
polation threshold can be attenuated by ensembling, as observed in real neural
networks [102]. We also compare the effect of ensembling, overparametrizing and
optimally regularizing. The conclusions stemming from this analysis include that
the over-fitting near the interpolation threshold is entirely due to the variances
due to the additive noise in the ground truth and the initialization of the random
features. Also, the data sampling variance and the bias both display a phase transi-
tion at the interpolation threshold, and remain constant in the overparametrized
regime. Hence, the benefit of ensembling and overparametrization beyond the
interpolation threshold is solely due to a reduction of the noise and initialization
variances. Finally, we present numerical results on a classic deep learning scenario
in the lazy learning regime to show that these findings, obtained for simple random
features and i.i.d. data, are relevant to realistic setups involving correlated random
features and realistic data. The analytical results we present are obtained using a
heuristic method from Statistical Physics called the Replica Method [217], which
despite being non-rigorous has shown its remarkable efficacy in many machine

363.1. Reconciling the bias-variance trade-off with over-parametrisation in deep NNs

learning problems [3, 93, 285, 327] and random matrix topics, see e.g. [6, 195, 301].
The rigorous proof of these result, for arbitrary loss function is given in [201].

Related work The analysis in this subsection builds on two contributions by
Geiger et al. [102], and Mei and Montanari [213]. Geiger et al. [102] carried out
a series of experiments in order to shed light on the generalization properties of
neural networks. The work discussed here, d’Ascoli et al. [76], carried out during
my PhD, is inspired by their observations and scaling theory about the role of
the variance due to the random initialization of the weights in the double-descent
curve. They argued that the decrease of the test error in the limit of very wide
networks is due to this source of variance, which vanishes inversely proportional
to the width of the network. They then used ensembling to empirically support
these findings in more realistic situations. Also related is the work of Neal et al.
[232] who empirically disentangles the various sources of variance in the process
of training deep neural networks.

On the analytical side, we build on the results of Mei and Montanari [213],
which provide a precise expression of the test error of the RF model in the high-
dimensional limit where the number of random features, the dimension of the input
data and the number of data points are sent to infinity with their relative ratios
fixed. The double descent was also studied analytically for various types of linear
models, both for regression [4, 32, 131, 229] and classification [80, 106, 155]. An
example of a practical method that uses ensembling in kernel methods is detailed in
[84]. Note that this analysis performs an average over the sampling of the random
feature vectors in contrast to [331] where the average is taken over the sampling of
the data set.

Reproducibility The codes necessary to reproduce the results in this subsection
and obtain new ones are given at https://github.com/mariaref/Random_Features.git.

Model

This work is centered around the RF model first introduced in [253] defined
in Eq. 1.9. Although simpler settings such as linear regression display the double
descent phenomenology [131], this model is more appealing in several ways. First,
the presence of two layers allows to freely disentangle the dimensionality of the
input data from the number of parameters of the model. Second, it closely relates
to the lazy regime of neural networks, as described above. Third, and most
importantly for our specific study, the randomness of the fixed first layer weights
mimics the randomness due to weight initialization in neural networks.

Let us repeat Eq. 1.9 which formulates the RF model as a two-layer neural

https://github.com/mariaref/Random_Features.git

Chapter 3: Architecture 37

X ∈ ℝN×D

θ(1) ∈ ℝP×D θ(2) = 1
D

y⊤Z (Z⊤Z + PN
D2 λ)

−1
∈ ℝP

Z = 1
D

g(Xθ(1)⊤

D
) ∈ ℝN×P

ϕθ = Dθ(2)Z⊤ ∈ ℝN

Figure 3.1: Illustration of a Random Feature (RF) network. The first layer weights
are fixed and initialized as i.i.d. centered Gaussian variables of unit variance. The
second layer weights are trained via ridge regression.

network whose first layer contains fixed random weights (see Fig. 3.1):

ϕθ(x) =
P

∑
i=1

w(2)
i g(w(1)

i x). (3.1)

As in the introduction, w(1)
i is the ith random feature vector, i.e the ith column

of the random feature matrix w(1) ∈ RP×D whose elements are drawn i.i.d from
N (0, 1) and g is a pointwise activation function, which we will take to be ReLU :
x 7→ max(0, x). For convenience, we define the output of the network as ϕ(x) ≡ ŷ,
the post-activation of the first layer as:

Z ≡ g(a(1))√
D

=
g(Xθ(1)⊤√

D
)

√
D

. (3.2)

The training data is collected in a matrix X ∈ RN×D whose elements are drawn
i.i.d from N (0, 1). We assume that the training labels y are given by a linear ground
truth corrupted by some additive Gaussian noise:

yµ = ⟨β, Xµ⟩+ ϵµ, ||β|| = F, ϵµ∼N (0, τ), (3.3)

SNR = F/τ.

The generalization to non-linear functions can also be performed as in [213].

The second layer weights, i.e the elements of w(2), are fixed by the means of

383.1. Reconciling the bias-variance trade-off with over-parametrisation in deep NNs

ridge regression i.e. by minimising the regularised squared loss:

LRF
emp(w

(2)) ≡ 1
N

N

∑
µ=1

(
yµ−

P

∑
i=1

w(2)
i g

(
⟨w(1)

i , Xµ⟩√
D

))2

+
Pλ

D
∥w(2)∥2

2,

θ̂(2) ≡ arg min
w(2)∈RP

LRF
emp(w

(2)).

(3.4)

Note that as P→∞, this is equivalent to kernel ridge regression with respect to the
following kernel:

K
(
x, x′

)
= Ew(1)∼P

[
g(⟨x, w(1)⟩/

√
D)g

(〈
x′, w(1)

〉
/
√

D
)]

,

where P = Unif
(

SD−1(
√

D)
)

.

The key quantity of interest is the test error, or population loss 1.1, of this model,
defined as the mean square error evaluated on a fresh sample x∼N (0, 1) corrupted
by a new noise ϵ̃:

LRF
pop = Ex

[
(⟨β, x⟩+ ϵ̃ − ϕ(x))2

]
, ϵ̃∼N (0, τ̃). (3.5)

3.1.2 Analytical results

In this subsection, we present the main result of this work, which is an analytical
expression for the terms appearing in the decomposition of the test error.

Decomposition of the test error

The test error can be decomposed into its bias and variance components:

Ew(1),X,w(2),ϵ

[
LRF

pop

]
=ENoise+EInit+ESamp+EBias+τ̃2. (3.6)

The first three terms contribute to the variance, the fourth is the bias, and the final
term τ̃2 is simply the Bayes error. It does not play any role and will be set to zero
in the rest of the paper: the only reason it was included is to avoid confusion with
ENoise defined below.

Noise variance: The first term is the variance associated with the additive noise
corrupting the labels of the dataset which is learnt, ϵ:

ENoise = Ex,X,w(1)

[
Eϵ

[
ϕw(x)2]− (Eϵ [ϕw(x)])2

]
. (3.7)

Initialization variance: The second term encodes the fluctuations stemming from

Chapter 3: Architecture 39

the random initialization of the random feature vectors, w(1):

EInit = Ex,X

[
Ew(1)

[
Eϵ [ϕw(x)]2

]
− Ew(1),ϵ [ϕw(x)]2

]
. (3.8)

Sampling variance: The third term measures the fluctuations due to the sampling
of the training data, X:

ESamp = Ex

[
EX

[
Ew(1),ϵ [ϕw(x)]2

]
−EX,w(1),ϵ [ϕw(x)]2

]
. (3.9)

Bias: Finally, the fourth term is the bias, i.e. the error that remains once all
the sources of variance have been averaged out. It can be understood as the
approximation error of our model and takes the form:

EBias = Ex

[(
⟨β, x⟩ − EX,w(1),ϵ [ϕw(x)]

)2
]

. (3.10)

Note that since we are performing deterministic ridge regression, the noise induced
by SGD, which can play an important role outside the lazy regime for deep neural
networks, cannot be captured.

Main result
Consider the high-dimensional limit where the input dimension D, the hidden
layer dimension P (which is equal to the number of parameter in our model) and
the number of training points N go to infinity with their ratios fixed:

N, P, D→∞,
P
D

= O(1),
N
D

= O(1). (3.11)

We obtain the following result:

Ex,ϵ,w(1),X [⟨β, x⟩ϕw(x)] =F2Ψ1, (3.12)

Ex,w(1),X

[
Eϵ [ϕw(x)]2

]
=F2Ψv

2, (3.13)

Ex,w(1),X

[
Eϵ

[
ϕw(x)2]−Eϵ [ϕw(x)]2

]
=τ2Ψv

3, (3.14)

Ex,X

[
Eϵ,Θ [ϕw(x)]2

]
=F2Ψe

2, (3.15)

Ex,X

[
Eϵ,Θ

[
ϕw(x)2]−Eϵ,w(1) [ϕw(x)]2

]
=τ2Ψe

3, (3.16)

Ex

[
Eϵ,w(1),X [ϕw(x)]2

]
=F2Ψd

2, (3.17)

where the terms {Ψ1, Ψv
2, Ψv

3, Ψe
2, Ψe

3, Ψd
2}, whose full analytical expressions are

deferred to Appendix A.2, are computed following the steps below:

403.1. Reconciling the bias-variance trade-off with over-parametrisation in deep NNs

10 1 100 101

P
N

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
1
v
2
v
3
e
2
e
3
d
2

Figure 3.2: All the terms entering our analytical expressions for the decomposition
of the error (Equations 3.12-3.17), as function of the overparametrization ratio P/N
for λ = 10−5 and N/D = 1. Numerical estimations obtained for a finite size
D = 200 (diamonds) shows that the asymptotic predictions are extremely accurate
even at moderate sizes.

1. Mapping to a random matrix theory problem. The first step is to express the
right-hand sides of Equations 3.12-3.17 as traces over random matrices. This is
achieved by replacing our model with its asymptotically equivalent Gaussian
covariate model [213], in which the non-linearity of the activation function is
encoded as an extra noise term. This enables to take the expectation value with
respect to the test sample x.

2. Mapping to a statistical physics model. The random matrix theory problem resulting
from the solution of ridge regression (3.4) involves inverse random matrices. In
order to evaluate their expection value, we use the formula:

M−1
ij = lim

n→0

∫ n

∏
α=1

D

∏
i=1

dηα
i η1

i η1
j e−

1
2 ηα

i Mijη
α
j ,

which is based on the Replica Trick [51, 217]. The Gaussian integrals over
ϵ, w(1), X can then be straightforwardly performed and lead to a Statistical
Physics model for the auxiliary variables ηα

i .
3. Mean-Field Theory. The model for the ηα

i variables can then be solved by intro-
ducing as order parameters the n × n overlap matrices Qαβ = 1

P ∑P
i=1 ηα

i η
β
i and

using replica theory [217], see Appendix A.3 for the detailed computation*.

The Ψ’s may also be estimated numerically at finite size by evaluating the traces
of the random matrices appearing in the Gaussian covariate model at the end of

*In order to obtain the asymptotic formulas for the Ψ’s we need to compute (what are called in
the Statistical Physics jargon) fluctuations around mean-field theory.

Chapter 3: Architecture 41

step 1. Figure 3.2 shows that results thus obtained are in excellent agreement with
the asymptotic expressions even at moderate sizes, e.g. D = 200, proving the
robustness of steps 2 and 3, which differ from the approach presented in [213].

The indices v, e, d in {Ψ1, Ψv
2, Ψv

3, Ψe
2, Ψe

3, Ψd
2} stand for vanilla, ensemble and divide

and conquer. The vanilla terms are sufficient to obtain the test error of a single RF
model and were computed in [213]. The ensemble and divide and conquer terms
allow to obtain the test error obtained when averaging the predictions of several
different learners trained respectively on the same dataset and on different splits of
the original dataset (see Sec. 3.1.4). Figure 3.2 shows that the vanilla terms exhibit
a radically different behavior from the others: at vanishing regularization, they
diverge at P = N then decrease monotonically, whereas the others display a kink
followed by a plateau. This behavior will be key to the following analysis.

3.1.3 Analysis of Bias and Variances

The results of the previous subsection, allow to rewrite the decomposition of the
test error as follows:

ENoise = τ2Ψv
3, (3.18)

EInit = F2(Ψv
2 − Ψe

2), (3.19)

ESamp = F2
(

Ψe
2 − Ψd

2

)
, (3.20)

EBias = F2
(

1 − 2Ψ1 + Ψd
2

)
. (3.21)

These contributions, together with the test error, are shown in Fig. 3.3 in the case of
small (top) and large (bottom) regularization.

Interpolation Threshold
The peak at the interpolation threshold is completely due to noise and initialization
variance, which both diverge at vanishing regularization. In contrast, the sampling
variance and the bias remain finite and exhibit a phase transition at P = N, which
is revealed by a kink at vanishing regularization. Adding regularization smooths
out these singular behaviours: it removes the divergence and irons out the kink.

Overparametrized regime
In the overparametrized regime, the sampling variance and the bias do not vary
substantially (they remain constant for vanishing regularization). The decrease of
the test error is entirely due to the decrease of the noise and initalization variances
for P>N. In the limit P/N→∞, the initialization variance vanishes, whereas there

423.1. Reconciling the bias-variance trade-off with over-parametrisation in deep NNs

10 1 100 101 102

P
N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Initialization Variance
Sampling Variance
Noise Variance
Bias
Generalization Error

10 1 100 101 102

P
N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Initialization Variance
Sampling Variance
Noise Variance
Bias
Generalization Error

Figure 3.3: Decomposition of the test error into the bias and the various sources of
variance as function of the overparametrization ratio P/N for N/D = 1, SNR =
F/τ = 1. Two values of the regularization constant are used: λ = 10−5 (left) and
λ = 10−1 (right). Notice the contrasting behaviors at the interpolation threshold:
the noise and initialization variances diverge then decrease monotonically whereas
the sampling variance and the bias display a kink followed by a plateau. These
singular behaviors are smoothed out by regularization.

remains an irreducible noise variance.

Discussion
In conclusion, we find that the origin of the double descent curve lies in the behavior of
noise and initialization variances. The benefit of overparametrizing stems only from
reducing these two contributions.

These results are qualitatively similar to the empirical decomposition of [232]
for real neural networks. The divergence of the test error as (P/N − 1)−1 at
the interpolation threshold is in agreement with the results of [213]*. As for the
decrease of the test error in the over-parametrized regime, we find consistently with
the scaling arguments of [102] that the initialization error asymptotically decays
to zero inversely proportional to the width (see Appendix A.1 for more details).
The interpretation of our results differ from those of [213] where the authors relate
the over-fitting peak occurring at P = N to a divergence in both the variance and
the bias terms. This is due to the fact the bias term, as defined in that paper, also
includes the initialization variance†. When the two are disentangled, it becomes
clear that it is only the latter which is responsible for the divergence: the bias is, in
fact, well-behaved at P = N.

*Note that for classification problems the singularity is different [102].
†For a given set of random features this is legitimate, but from the perspective of lazy learning

the randomness in the features corresponds to the one due to initialization, which is an additional
source of variance.

Chapter 3: Architecture 43

Intuition
The phenomenology described above can be understood by noting that the model
essentially performs linear regression, learning a vector a ∈ RP on a projected
dataset Z ∈ RN×P (the activations of the hidden nodes of the RF network). Since a
is constrained to lie in the space spanned by Z, which is of dimension min(N, P),
the model gains expressivity when P increases while staying smaller than N.

At P = N, the problem becomes fully determined: the data is perfectly in-
terpolated for vanishing λ. Two types of noise are overfit: (i) the stochastic noise
corrupting the labels, yielding the divergence in noise variance, and (ii) the deter-
ministic noise stemming from the non-linearity of the activation function which
cannot be captured, yielding the divergence in initialization variance. However,
by further increasing P, the noise is spread over more and more random features
and is effectively averaged out. Consequently, the test error decreases again as P
increases.

When we make the problem deterministic by averaging out all sources of
randomness, i.e. by considering the bias, we see that increasing P beyond N has
no effect whatsoever. Indeed, the extra degrees of freedom, which lie in the null
space of Z, do not provide any extra expressivity: at vanishing regularization, they
are killed by the pseudo-inverse to reach the minimum norm solution. For non-
vanishing λ, a similar phenomenology is observed but the interpolation threshold
is reached slightly after P = N since the expressivity of the learner is lowered by
regularization.

3.1.4 On the effect of ensembling

In order to further study the effect of the variances on the test error, we follow [102]
and study the impact of ensembling. In the lazy regime of deep neural networks,
the initial values of the weights only affect the gradient at initialization, which
corresponds to the vector of random features. Hence, we can study the effect of
ensembling in the lazy regime by averaging the predictions of RF models with
independently drawn random feature vectors.

Expression of the test error

Consider a set of K > 1 RF networks whose first layer weights are drawn
independently. These networks are trained independently on the same training set.
In the analogy outlined above, they correspond to K independent inizializations
of the neural network. At the end of training, one obtains K estimators {ϕwk}k∈[K].
When a new sample x is presented to the system, the output is taken to be the

443.1. Reconciling the bias-variance trade-off with over-parametrisation in deep NNs

θ(1)
1 θ(1)

2 θ(1)
K

ϕ(x) = 1
K ∑

k

ϕθk
(x)

Figure 3.4: Illustration of the ensembling procedure over K Random Features
networks trained on the same data but with different realizations of the first layer,
{w(1)

1 , ...w(1)
K }.

average over the outputs of the K networks, as illustrated in Fig. 3.4. By expanding
the square and taking the expectation with respect to the random initalizations, the
test error can then be written as:

E{w(1)k}
[
LRF

pop

]
= E

x{w(1)k}

(⟨β, x⟩ − 1
K ∑

k
ϕwk(x)

)2

= Ex
[
⟨β, x⟩2]− 2

K

K

∑
i=1

Ex,wi [⟨β, x⟩ϕwi(x)] +
1

K2

K

∑
i,j=1

Ex,wi ,wj

[
ϕwi(x)ϕwj(x)

]
.

(3.22)

The key here is to isolate in the double sum the K(K − 1) ensemble terms i ̸= j,
which involve two different initalizations and yield Ex

[
Ew(1) [ϕw(1)(x)]2

]
, from the

K vanilla terms which give Ex,Θ
[
ϕw(1)(x)2]. This allows to express the test error in

terms of the quantities defined in (3.12) to (3.17) and leads to the analytic formula
for the test error valid for any K ∈ N:

E{w(1)k},X,w(2),ϵ

[
LRF

pop

]
= F2 (1 − 2Ψv

1) +
1
K
(

F2Ψv
2 + τ2Ψv

3
)
+

(
1− 1

K

)(
F2Ψe

2+τ2Ψe
3
)

.

(3.23)

We see that ensembling amounts to a linear interpolation between the vanilla terms
Ψv

2, Ψv
3, for K = 1, and the ensemble terms Ψe

2, Ψe
3 for K→∞.

The effect of ensembling on the double descent curve is shown in Fig. 3.5.
As K increases, the overfitting peak at the interpolation threshold is diminished.
This observation is very similar to the empirical findings of [102] in the context of
real neural networks. Our analytic expression agrees with the numerical results

Chapter 3: Architecture 45

obtained by training RF models, even at moderate size D = 200.
Note that a related procedure is the divide and conquer approach, where the

dataset is partitioned into K splits of equal size and each one of the K differently
initialized learners is trained on a distinct split. This approach was studied for
kernel learning in [84], and is analyzed within our framework in Appendix A.1.

10 1 100 101

P
N

0.0

0.5

1.0

1.5

2.0

2.5

3.0
K = 1
K = 2
K = 10
K =

Figure 3.5: Test error when ensembling K = 1, 2, 10 differently initialized RF models
as function of the overparametrization ratio P/N. We fixed λ = 10−5, N/D = 1,
SNR = 10. For comparison, we show the results of numerical simulations at
finite D = 200: the vertical bars depict the standard deviation over 10 runs. The
variability observed here was absent in Fig. 3.2 because we are considering the true
RF model rather than the asymptotically equivalent Gaussian covariate model. This
shows that most of this variability is caused by the finite-size deviation between
the two models. Note that our analytic expression (3.23) gives us access to the limit
N→∞, where the divergence at P = N is entirely suppressed.

Ensembling reduces the double trouble

The bias-variance decomposition of the test error makes the suppression of
the divergence explicit. The bias and variances contribution read for the averaged
estimator:

ENoise = τ2
(

Ψe
3 +

1
K
(Ψv

3 − Ψe
3)

)
, (3.24)

EInit =
F2

K
(Ψv

2 − Ψe
2) , (3.25)

ESamp = F2
(

Ψe
2 − Ψd

2

)
, (3.26)

EBias = F2
(

1 − 2Ψ1 + Ψd
2

)
. (3.27)

These equations show that ensembling only affects the noise and initialization
variances. In both cases, their divergence at the interpolation threshold (due to

463.1. Reconciling the bias-variance trade-off with over-parametrisation in deep NNs

10 1 100 101 102

P
N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Initialization Variance
Sampling Variance
Noise Variance
Bias
Generalization Error

Figure 3.6: Decomposition of the test error into the bias and the various sources of
variance as function of the overparametrization ratio P/N for λ = 10−5, N/D = 1,
SNR = 1. The thin dashed lines are taken from Fig. 3.3 (top) where we had K = 1;
the thick solid lines show how ensembling at K = 10 suppressed the divergences
of the noise and initialization variances.

Ψv
2, Ψv

3) is suppressed as 1/K, see Fig. 3.6 for an illustration. At P>N, ensembling
and overparametrizing have a very similar effect: they wipe out these two troubling
sources of randomness by averaging them out over more random features. Indeed,
we see in Fig. 3.5 that in this overparametrized regime, sending K→∞ has the same
effect as sending P/N→∞: in both cases the system approaches the kernel limit. At
P<N, this is not true: as shown in [146], the K→∞ predictor still operates in the
kernel limit, but with an effective regularization parameter λ̃ > λ which diverges
as P/N→0. This (detrimental) implicit regularization increases the test error.

Ensembling vs. overparametrization
As we have shown, ensembling and overparametrizing have similar effects in the
lazy regime. But which is more powerful: ensembling K models, or using a single
model with K times more features? The answer is given in Fig. 3.7 for K = 2
where we plot our analytical results while varying the number of data points, N.
Two observations are particularly interesting. First, overparametrization shifts the
interpolation threshold, opening up a region where ensembling outperforms over-
parametrizing. Second, overparametrization yields a higher asymptotic improve-
ment in the large dataset limit N/D→∞, but the gap between overparametrizing
and ensembling is reduced as P/D increases. At P ≫ D, where we are already
close to the kernel limit, both methods yield a similar improvement. Note that
from the point of view of efficiency, ridge regression involves the inversion of a
P × P matrix, therefore ensembling is significantly more efficient.

Chapter 3: Architecture 47

10 1 100 101 102

N
D

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Baseline
Overparametrized
Ensembled
P
D = 0.5
P
D = 5

Figure 3.7: Comparison of the test error of a RF model (blue) with that obtained by
doubling the number features (orange) or ensembling over two initializations of
the features (green), as function of N/D. The parameters are λ = 10−5, SNR = 10,
P/D = 0.5 (solid lines) and P/D = 5 (dashed lines).

Ensembling vs. optimal regularization

10 2 100 1020.0

0.2

0.4

0.6

0.8

1.0

1.2

K = 1
K = 2
K = 5
K = 10
K = 50

10 1 100 101 102

P
N

0.2

0.4

0.6

0.8

1.0
 Optimal

 K = 1
= 10 5

 K

Figure 3.8: Left: Test error as a function of λ for various values of K and parameters
P/D = 2, N/D = 1, SNR = 10. Right: Comparison of test error for an optimal
regularized system with K = 1 and the system with K→∞ with λ = 10−5. Opti-
mization performed over 50 values of λ from 10−5 to 102. Parameters are N/D = 1,
SNR = 10.

In all the results presented above, we keep the regularization constant λ fixed.
However, by appropriately choosing the value of λ at each value of P/N, the
performance is improved. As Fig. 3.7 (left) reveals, the optimal value of λ decreases
with K since the minimum of the test error shifts to the left when increasing K.
In other words, ensembling is best when the predictors one ensembles upon are
individually under-regularized, as was observed previously for kernel learning
in [332]. Figure 3.8 (right) shows that an infinitely ensembled model (K→∞) always

483.1. Reconciling the bias-variance trade-off with over-parametrisation in deep NNs

performs better than an optimally regularized single model (K = 1).

3.1.5 Numerical experiments on neural networks

101 102 103

Width

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Te
st

 e
rr

or

K=1
K=20

101 102 103

Width

0.300

0.325

0.350

0.375

0.400

0.425

0.450
K=1
K=20

Figure 3.9: Test error on the binary 10-PCA CIFAR10 as function of the number of
nodes per layer of the 5-layer neural network trained until convergence with the
full-batch Adam. We compare the test error of a single predictor (K = 1), averaged
over 20 initializations of the weights (the standard deviation is depicted as vertical
bars), with the ensembling predictor at K = 20. Left: α = 10. Right: α = 100,
where we are closer to the lazy regime and the ensembling curve flattens beyond
the interpolation threshold, which occurs around 30 nodes per layer.

Finally, we investigate whether the phenomenology described here holds for
realistic neural networks learning real data in the lazy regime. We follow here
the protocol used in [102, 104] and train a 5-layer fully-connected network on the
CIFAR-10 dataset. We keep only the first ten PCA components of the images, and
divide the images in two classes according to the parity of the labels. We perform
105 steps of full-batch gradient descent with the Adam optimizer and a learning
rate of 0.1, and scale the weights as prescribed in [145].

We gradually go from the usual feature learning regime to the lazy learning
regime using the trick introduced in [63], which consists in scaling the output of the
network by a factor α and replacing the learning function fθ(x) by α(fθ(x)− fθ0(x)).
For α ≫ 1, one must have that θ−θ0∼1/α in order for the learning function to
remain of order one. In other words, the weights are forced to stay close to their
initialization, hence the name lazy learning.

Results are shown in Fig. 3.9. Close to the lazy regime (α=100, right panel), a
very similar behavior as the RF model is observed. The test error curve* obtained
when ensembling K = 20 independently initialized networks becomes roughly

*Note that we are considering a binary classification task here: the error is defined as the fraction
of misclassified images.

Chapter 3: Architecture 49

0.0 0.5 1.0 1.5 2.0 2.5 3.0

α−1 = p/n

0.20

0.25

0.30

0.35

0.40

0.45

T
es

t
er

ro
r
ε g

λ = 10−4

K = 1

K = 2

K = 3

K = 4

K →∞

0.0 0.5 1.0 1.5 2.0 2.5 3.0

α−1 = p/n

0.05

0.10

0.15

0.20

0.25

λ = 10−4

(a) εg

(a) δεg

(b) δεg

Figure 3.10: Left. Test error for logistic regression with λ = 10−4 and different
values of K as function of P/N = 1/α with N/D = 2 and ρ = 1. Dots represent
the average of the outcomes of 103 numerical experiments. Here we adopted
g(x) = erf(x) and estimator ϕ(v) = sign(∑k vk). Right. Decomposition of the
K = 1 test error Lpop = Lpop + δLpop for the estimator (a), with N/D = 2 and
λ = 10−4. We plot also the contribution δLpop corresponding to the estimator (b):
we numerically observed that such decomposition coincides in the two cases. Note
also the presence of a kink in δLpop at the interpolation transition.

flat after the interpolation threshold (which here is signalled by the peak in the
test accuracy). As we move away from the lazy regime (α = 10, left panel), the
same curve develops a dip around the interpolation threshold and increases beyond
P > N as observed previously in [102]. This may arguably be associated to the
beneficial effect of feature learning, as discussed in [104] where the transition from
lazy to feature learning was investigated.

3.1.6 Extensions

The results derived in the previous section allow to gain intuition on how to
reconcile the classical bias-variance tradeoff with the double descent trend of the
test error of over-parametrised networks. In particular, we have seen how over-
parametrisation improves performance by taming the label noise and initialisation
variances.

A slightly finer decomposition of the variance in terms of the different sources
of randomness in the problem was later proposed by Adlam and Pennington [2].
Lin and Dobriban [191] show that such decomposition is not unique, and can
be more generally understood from the point of view of the analysis of variance

503.1. Reconciling the bias-variance trade-off with over-parametrisation in deep NNs

(ANOVA) framework. Their conclusions are similar to the previous ones and reveal
that the divergence at the interpolation threshold of the error is due to the random
noise in the training labels and a joint contribution of the randomness in the choice
of weights and of inputs sampled for training.

Sec. 3 only considers the squared L2-loss, or mse, defined in Eq. 3.5 with L2
regularisation. The tools employed do not allow to study the case where the
networks are learned jointly.

In a recent work, Loureiro et al. [201] tackle these issues by considering the case
of general convex loss, any convex regularisation, and jointly trained learners. The
estimator is then given by:

ϕ(x) = f̂

(
Z1(x)w(2)⊤

1√
P

, . . . ,
ZK(x)w(2)⊤

K√
P

)
, (3.28)

where f̂ : RK→Y is an activation function. In the particular case in which the
predictors are independently trained, minimisation of the regularised empirical risk
fixes the weights w(2) as:

w(2)
k = arg min

w∈RP

[
1
N

N

∑
µ=1

ℓ

(
yµ,

Zk(xµ)w⊤
√

P

)
+

λ

2
∥w∥2

2

]
(3.29)

with a convex loss function ℓ : Y × R→R (e.g., the logistic loss) and ridge penalty
whose strength is given by λ ∈ R+. The analysis also includes the case in which
the learners are jointly trained with a generic convex penalty.

The results not only allow to study binary classification problems with the
logistic loss and cross-entropy loss but are also are fully mathematically rigourous.
They are proven through a Approximate Message Passing (AMP) proof technique
[30, 83], leveraging on recently introduced progresses in [107, 200] which enables
to capture the full complexity of the problem and obtain the asymptotic joint
distribution of the ensemble of predictors.

Although the asymptotic statistics of the single learner, i.e. K = 1, in the
general case had been studied in [81, 106, 200], they are not enough to quantify
the correlation between different learners, induced by the training on the same
dataset. Doing so is required to compute, e.g., the test error associated with an
ensembling predictor or the impact of fluctuations in the test error. Both these
quantities crucially depend on the average correlation between two independent
learners which Loureiro et al. [201] give an exact asymptotic characterisation of.

In the general case, we can also understand the role played by fluctuations in the
double-descent behaviour i.e. the non-monotonic behaviour of the generalisation

Chapter 3: Architecture 51

0.0 0.5 1.0 1.5 2.0 2.5 3.0

α−1 = p/n

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

P
ro

b
ab

il
it

y
of

d
is

ag
re

em
en

t

0.0 0.5 1.0 1.5 2.0 2.5 3.0

α−1 = p/n

0.20

0.25

0.30

0.35

0.40

0.45 λ = 10−4 K = 3

Estimator (a)

Estimator (b)

Figure 3.11: Left. Joint probability density of the confidence score

φk(x) =
(

1 + exp
(
−zkw(2)

k /
√

P
))−1

of two learners for P/N ≃ 0.13. Center.
Probability that two learners give discordant predictions using logistic regression
as function of P/N = 1/α with N/D = 2, ρ = 1, and λ = 10−4. Right. Test error
for logistic regression using the estimators in eq. (3.31) and K = 3, with the same
parameters. We adopted g(x) = erf(x). We observe that the test error obtained
using (a) is always smaller than the one obtained using (b). (Center and right) Dots
represent the average of the outcomes of 103 numerical experiments.

performance of interpolators. To do so, we decompose the error in terms of
fluctuation-free term Lpop and a fluctuation term δLpop:

Lpop(K = 1) = Lpop + δLpop. (3.30)

This decomposition confirms that, similar to the ridge case, the interpolation peak
arises from the model overfitting the particular realisation of the random weights.
Fig. 3.10 gives an example for max-margin classification.

Another question of interest in the context of ensembling is: given an ensemble
of predictors {ϕwk}k∈[K], what is the best way of combining them to produce a point
estimate? In our setting, this amounts to choosing the function f̂ in Eq. 3.28. We
compare, in terms of generalisation performance, two popular choices, majority
vote and score averaging:

(a) f̂ (v) = sign

(
∑

k
vk

)
, (3.31a)

(b) f̂ (v) = sign

(
∑

k
sign(vk)

)
. (3.31b)

In a sense, (a) provides an estimator based on the average of the individual
outputs, whereas (b), which corresponds to a majority rule if K is odd [129], is a
function of the average of the estimators of the single learners. For both choices
of the estimator we use ∆(y, ϕ(x)) = δŷ,ϕ(x) to measure the test error. Fig. 3.11

523.1. Reconciling the bias-variance trade-off with over-parametrisation in deep NNs

(right) compares the test error obtained using (a) and (b) for K = 3 with vanishing
regularisation λ = 10−4. As the estimator (a) has better performances than the
estimator (b), we conclude that score averaging consistently outperforms the
majority vote predictor. However, for a large number of learners K ≫ 1 these two
predictors agree, see Fig. 3.11 (right).

Ensembling can also be used as a tool for uncertainty quantification. In par-
ticular, we can connect the correlation between two learners to the probability of
disagreement, and show that it decreases with overparametrisation. By comparing
with the results in Fig. 3.11 (center), it is evident that the benefit of ensembling in
reducing the test error correlates with the tendency of learners to disagree, notably
for small P/N, as stressed by Krogh and Vedelsby [163]. Fig. 3.11 (left) provides a
full characterisation of the joint probability density of the confidence score between
two independent learners. Finally, we observe a constant value of Lpop beyond
the interpolation threshold, compatibly with the numerical results of Geiger et al.
[105].

Chapter 4

Data

In the previous chapter, we mostly considered i.i.d. Gaussian inputs, i.e. white
noise, a crude approximation of real data since, by definition, they are completely
structureless. Thus, the analysis was insensitive to particular features in the inputs.
In this chapter, we make a step forward and give some intuition on which features
in the inputs are relevant for learning a task in the feature learning regime. We
start, in Sec. 4.2, by studying the simple case of gaussian mixture classification
where the inputs have some low dimensional structure. We tune the hardness of
the problem via a signal-to-noise ratio (SNR). We will see that feature learning
allows small two-layer neural networks to learn the task while lazy methods fail
to capture the underlying structure for small SNR. This emphasises the need to
understand the interplay between input features and architecture. If badly chosen
the later can prevent capturing of relevant structure in the data and thus good
performance.

Second, in Sec. 4.7, we consider unsupervised learning, and in particular
autoencoders (AE) which are trained to reproduce their inputs. To do so, they
crucially exploit the structure in the inputs. We provide an analytic theory of the
training dynamics of shallow non-linear AE where the hidden layer is significantly
smaller than the input dimensions. This bottleneck forces the network to develop a
concise representation of the inputs which helps understand which features in the
data are captured by the network and are most important for the reconstruction
task. The derived equations give bounds on how strong the input structure must
be to achieve successful reconstruction. They also allow to assess the long times
training dynamics and to unravel constrains on the network’s architecture: tight
weight AE fail to learn as do ReLU AE if the bias is not trained. Importantly, we
show theoretically that relevant features in the data are learned sequentially, by
order of importance.

53

54 4.1. Theory for the dynamics of online learning of shallow networks

Of course real images are not Gaussians, nor Gaussian mixtures and have
complex relations between pixels. We must therefore address the question of
whether our results, derived for a specific generative model, carry over to learning
on realistic datasets and, if so, whether these relations are important for the network
to perform well.

In Sec. 4.7.4, we argue that the equations derived for learning with AE on
synthetic Gaussian inputs describe well the training dynamics on real images
suggesting that, for the reconstruction task, shallow AE do not exploit information
in the inputs beyond the second moment. This remains true for the supervised
learning setup where training 2LNN on benchmark datasets is well described
by a Gaussian mixture model, see App. C.2. This is another realisation of the
interplay between the architecture and data structure. Even though images are
more elaborate than Gaussians, shallow AE, and 2LNN with few hidden nodes, are
not powerful enough to capture the additional complexity in the inputs for these
simple tasks. Understanding the precise conditions under which networks capture
which features in the data, beyond the Gaussian, is an exciting direction which we
discuss further in the afore mentioned Sec. 4.7.4.

4.1 Theory for the dynamics of online learning of shallow
networks

To start, we illustrate the main theoretical tools needed for the analysis of the
next two sections by focussing on the simple setting of Gaussian i.i.d. inputs
xi∼N (0, 1). Namely, we show how to establish a theoretical description of the
dynamics of learning of two layers neural networks (2LNN) with K∼O(1) hidden
nodes. The networks are trained in the limit of an infinite number of training
samples, i.e. N→∞, with online (or one pass) SGD in which at each step of the
algorithm a new data point is drawn from the input’s distribution px. The online
limit is extensively used to analyse the dynamics of non-linear networks for both
supervised and unsupervised learning, and it has been shown experimentally to
capture the dynamics of deep networks trained with data augmentation well [231].
The description is valid in the high-dimensional limit where the input dimensions
are taken to infinity i.e. D→∞ with t = N/D∼O(1). We follow the derivation of
the seminal works [38, 269, 270] which was extended and made rigorous by [114].
We also illustrate the computations for the slightly more general setting where
the inputs have non-trivial covariance matrix as it will be useful in deriving the
results in the rest of the chapter. The approach here-after has several extensions to
different data distributions [117, 118, 321] and [258–260] which we discuss in this

Chapter 4: Data 55

manuscript.

Setup Consider a classical teacher-student setup [98] in which the inputs x ∈ RD

are drawn component wise i.i.d. from a standard Gaussian distribution and the
labels are given by a teacher network:

y∗ = ϕ̃w̃(x) =
M

∑
m=1

ṽm g̃(ãm), ãm ≡
D

∑
i=1

w̃m
i xi√
D

, (4.1)

where g̃ is the teacher non-linearity applied component wise and the sum is over
the teacher’s M hidden nodes with M∼O(1). The student is also a 2LNN with
K∼O(1) hidden nodes and has output:

ϕθ(x) =
K

∑
k=1

vkg(ak), ak =
D

∑
i=1

wk
i xi√
D

. (4.2)

The student is trained to reproduce her teacher by minimising the mean-squared
error:

mse =
1
2
(ϕ̃w̃(x)− ϕw(x))2 ≡ ∆2, (4.3)

where we defined the error on a single input ∆ ≡ y∗ − ϕw(x). Using the vanilla BP
algorithm described in Sec. 1.4, the update of the first and second layer of weights
at training step µ is given by:

wk
µ+1 − wk

µ ≡ dwk =
ηw√

D
vk

µg′
(

ak
µ

)
∆µxµ (4.4)

vk
µ+1 − vk

µ ≡ dvk =ηv g
(

ak
µ

)
∆µ. (4.5)

Note that we introduced different learning rates for the first and second layer
weights, ηw and ηv respectively.

Statics We are mostly interested in the generalisation performances of the
student and thus focus on the population mean-squared error:

pmse = E
x

mse =
1
2

E
x
(ϕ̃w̃(x)− ϕw(x))2 . (4.6)

To evaluate the expectation over the inputs distribution notice that the input x
only enters in the pmse via its low dimensional projections on the teacher’s and
student’s weights, ã ∈ RM and a ∈ RK respectively. We can hence replace the
high-dimensional expectation over the inputs with a low dimensional expectation
over the joint distribution of the local fields {ã, a}. A crucial observation is that due
to the Gaussianity of the inputs, the local fields are jointly Gaussian with 0 mean

56 4.1. Theory for the dynamics of online learning of shallow networks

and second moments:

Qkℓ =E
x

akaℓ =
wk · wℓ

D
,

Rkm =E
x

ak ãm =
wk · w̃m

D
,

Tmn =E
x

ãm ãn =
w̃m · w̃n

D
.

(4.7)

These macroscopic operators are often dubbed order parameters in statistical physics
and play an important role in the analysis. Intuitively the teacher-student overlaps R
measure the similarity between the student weights and the teacher weights, the
student-student overlap Q and the teacher-teacher overlap T, measure the overlap
between different weights of the student and the teacher respectively. In the high-
dimensional D→∞ limit, the pmse is a function only of Q, R, T and of the second
layer weights of both teacher and student:

lim
D→∞

pmse(x)→pmse(Q, R, T, v, ṽ). (4.8)

Thus, by establishing a closed set of ordinary differential equations (ODEs) de-
scribing the dynamics of (Q, R, T, v, ṽ) in the D→∞ limit, we obtain a complete
description of the training dynamics, i.e. the generalisation performance, of the
student at all times.

Dynamics Let us illustrate the rationale by deriving the dynamical equations for
the student-student overlaps Q. From its definition we have:

Qkℓ
µ+1 − Qkl

µ =
1
D

{
dwk

µwℓ
µ + wk

µdwℓ
µ + dwk

µdwℓ
µ

}
=

ηw

D
vk

µg′
(

ak
µ

)
∆µaℓ + (k ↔ ℓ) +

η2
w

D
vk

µvℓµg′
(

ak
µ

)
g′
(

aℓµ
)

∆2,
(4.9)

where we used ∑i x2
µi = D in the D→∞ limit.

By defining t ≡ µ/D, one can show [114] that in the high-dimensional limit, Qµ

concentrates towards Q(t) given by the solution of the ODE:

d
dt

Qkl = fQkl (t), (4.10)

where fQkl (t) is found by taking the expectation over x of Eq. 4.9:

fQkl = ηw vk(t)E
x

g′
(

ak
)

aℓ∆ + (k ↔ ℓ) + η2
w vk

µvℓµg′
(

ak
)

g′
(

aℓ
)

∆2. (4.11)

That we should take the expectation over the inputs distribution is intuitive as it

Chapter 4: Data 57

allows to describe a typical trajectory, independent of the particular realisation of
{xµ}. In addition, the inputs only appear in the averages through the local fields.
We can thus replace E x by expectations over the distribution of {a, ã} which is low
dimensional and only a function of the order parameters Q, R and T. It follows
that the integrals are at most four dimensional. For some activation functions such
as g(x) = erf(x/

√
2), the later have an explicit analytical expression [269, 270], see

e.g. App. B.2.

Performing a similar argument for R yields:

d
dt

Rkm = ηw vk E
{a,ã}

g′
(

ak
)

ãm∆. (4.12)

To find a well defined high dimensional limit for v, we have to scale the learning
rates as: ηv = η/D and ηw = η. Then we obtain the last equation of a closed set of
ODEs describing the dynamics at all times:

d
dt

vk = η E
{a,ã}

g(ak)∆. (4.13)

Case of non-trivial covariance
Consider now a slightly more sophisticated generative model in which the inputs
are Gaussian with non trivial covariance E x xixj = Ωij. Then, the order parameters
become:

Rkm =
1
D ∑

ij
wk

i Ωijw̃m
j Qkℓ =

1
D ∑

ij
wk

i Ωijwℓ
j , Tmn =

1
D ∑

ij
w̃m

i Ωijw̃n
j . (4.14)

Rotating the dynamics An immediate issue arises due to the presence fo the
covariance matrix in the contraction between the weights. Indeed, when trying to
compute the update of the order parameters the input appears contracted with
Ωw instead of w and cannot be identified with a local field. A key idea to make
progress is to rotate the dynamics in the eigen-basis of the covariance matrix. To
do so, we start by defining the eigen-decomposition of the covariance matrix and
the rotation of any vector z ∈ {w, w̃, x} onto this basis as:

Ωij =
1
D ∑

τ

ρτΓiτΓjτ, zτ =
1√
D

∑
i

Γiτzi. (4.15)

Note the normalisation of the eigenvectors as ∑τ ΓiτΓjτ = Dδij and ∑i ΓiτΓiτ′ =

Dδττ′ . In this basis, the order parameters reduce to sums over D terms, instead of

58 4.1. Theory for the dynamics of online learning of shallow networks

D2 terms:

Rkm =
1
D ∑

τ

ρτwk
τw̃m

τ Qkℓ =
1
D ∑

τ

ρτwk
τwℓ

τ, Tmn =
1
D ∑

τ

ρτw̃m
τ w̃n

τ . (4.16)

For illustration, let us focus on the dynamics of the teacher-student overlaps R. The
evolution of the rotated weights wτ follows directly from Eq. 4.5 and yields the
update for R:

d
dt

Rkm = ηw ∑
τ

ρτvk w̃m
τ

D

{
∑
n

ṽnE g′
(

ak
)

g̃ (ãn) xτ − ∑
j

vjE g′
(

ak
)

g
(

aj
)

xτ

}
.

(4.17)

The expectations in blue cannot be simply expressed in terms of local fields. A
crucial simplification occurs by noting that the rotated inputs xτ and the local fields
{a, ã} are weakly correlated:

E
x

akxτ =
1√
D

ρτwk
τ, E

x
ãmxτ =

1√
D

ρτw̃m
τ . (4.18)

Both these correlations are of order O(1/
√

D). To compute expectations of the
type E g′

(
ak) ajxτ, we can therefore use the lemma for weakly correlated variables

derived in App. B.1:

E g′
(

ak
)

g
(

aj
)

xτ =
1

QkkQjj − Qkj2
ρτ√

D

[
E g′(ak)akg(aj)

(
wk

τQjj − wj
τQkj

)
+E g′(ak)ajg(aj)

(
wj

τQkk − wk
τQkj

)]
E g′

(
ak
)

g̃ (ãm) xτ =
1

QkkTmm − Rkm2
ρτ√

D

[
E g′(ak)ak g̃ (ãm)

(
wk

τTmm − w̃m
τ Rkm

)
+E g′(ak)ãm g̃ (ãm)

(
w̃m

τ Qkk − wk
τRkm

)]
(4.19)

The equation for R now involves terms of the form ∑τ
ρ2

τw̃m
τ wj

τ/D and ∑τ
ρ2

τw̃m
τ w̃n

τ/D.
The later is a constant of motion we do not need to worry about. The former, in-
stead, is dynamical and cannot be expressed simply as order parameters. Defining
an additional operator is not an option as it would result in an infinite sequence
of operators with higher and higher powers of ρ. To find a closed set of equa-
tions, in terms of a finite number of quantities, we must therefore make another
manipulation.

Integral representation The trick is to introduce the order-parameter densities
r(ρ, s), q(ρ, s) and t(ρ). These are continuous functions of ρ and, for r and q, of

Chapter 4: Data 59

the normalised number of steps s ≡ µ/D, which we interpret as a continuous time
variable in the limit D→∞:

rkm(ρ, s) =
1
ερ

1
D ∑

τ

wk
τw̃m

τ 1
(
ρτ ∈ [ρ, ρ + ερ[

)
, (4.20)

qkℓ(ρ, s) =
1
ερ

1
D ∑

τ

wk
τwℓ

τ1
(
ρτ ∈ [ρ, ρ + ερ[

)
, (4.21)

tmn(ρ) =
1
ερ

1
D ∑

τ

w̃m
τ w̃n

τ1
(
ρτ ∈ [ρ, ρ + ερ[

)
, (4.22)

(4.23)

where tmn is constant, 1(.) is the indicator function and the limit ϵρ→0 is taken
after the thermodynamic limit D→∞. We recover the order parameters as an
integral over the densities, weighted by the distribution pΩ(ρ) of eigenvalues of
the covariance matrix:

Rkm(s) =
∫

dρρpΩ(ρ)rkm(ρ, s), (4.24)

Qkℓ(s) =
∫

dρρpΩ(ρ)qkℓ(ρ, s), (4.25)

Tmn(s) =
∫

dρρpΩ(ρ)tmn(ρ). (4.26)

The dynamical equation for rkm follows directly from Eq. 4.17 and Eq. 4.19:

∂rkm

∂t
= ηw ρvk

{
∑
n

ṽn

QkkTnn − Rkn2

[
Ikkn
3

(
rkmTnn − tmnRkn

)
+ Iknn

3

(
tmnQkk − rkmRkn

)]
−∑

ℓ

vℓ

QkkQℓℓ − Qkℓ2

[
Ikkℓ
3

(
rkmQℓℓ − rℓmRkℓ

)
+ Ikℓℓ

3

(
rℓmQkk − rkmRkℓ

)]}
,

(4.27)

where we defined the integral Ibcd
3 = E zg′(zb)zcg(zd) with zb = ab if b ∈ {k, ℓ, j}

and zb = ãb if b ∈ {m, n, p}.

Evolution of the student-student overlaps The evolution of the student-student
overlap Q is very similar to the one of R and we skip detailed computations to
avoid redundancy. The only additional elements are the terms quadratic in the
learning rate appearing in dQkℓ i.e.:

η2

D2 ∑
τ

ρτE ∆2g′(ak)g′(aℓ)x2
τ

D→∞≈ η2

D ∑
τ

ρ2
τ

D
E ∆2g′(ak)g′(aℓ) ≡ η2

D
γE ∆2g′(ak)g′(aℓ).

(4.28)

60
4.2. Understanding the interplay between data structure and architecture in

Gaussian mixture classification

where we used E xx2
τ = ρτ and that xτ and the local fields are weakly correlated to

factorise the expectation. Lastly, we defined the constant of motion γ = ∑τ
ρ2

τ/D.
Together with the equations for the second layer weights vk:

d
dt

vk(t) = η E
x

∆g(ak), (4.29)

these equations provide a closed set of dynamical equations which allow to track
the training dynamics and evaluate the generalisation performances Eq. 4.6 at all
times. As we will see in the next two sections, these equations also allow to gain
insight into the asymptotic solutions reached by the network and into some aspects
of learning with neural networks.

4.2 Understanding the interplay between data structure and
architecture in Gaussian mixture classification

4.3 Overview

In Chap. 3, we mostly focused on the random feature model Eq. 1.9 which can
seen as an approximation of kernel learning [281]. Part of the motivation for this
choice was the observation that, as discussed in the introduction, the weights of
strongly over-parameterised 2LNN, initialised in the lazy regime remain almost
constant throughout training [9, 10, 52, 86, 145, 183]. Nevertheless, these networks
can achieve good performance. The RF model, is obtained by going a step further
and fixing the first-layer weights of a 2LNN at their initial values. This behaviour is
to be contrasted with the other regime discussed in Sec. 1.2, i.e. the feature learning
regime, where the weights of the first layer move significantly during training.
Recent empirical studies showed that on some benchmark data sets in computer
vision, kernels derived from neural networks achieve comparable performance to
neural networks [11, 99, 174, 186, 209, 286].

These results raise the question of whether neural networks only learn success-
fully if random features can also learn successfully, and have led to a renewed
interest in the exact conditions and input type under which neural networks
trained with gradient descent, achieve a better performance than random fea-
tures [18, 73, 101, 185, 243, 300, 312, 320]. Chizat and Bach [62] studied the implicit
bias of wide two-layer networks trained on data with a low-dimensional structure.
They derived strong generalisation bounds, which, when both layers of the network
are trained, are independent of ambient dimensions, indicating that the network is
able to adapt to the low dimensional structure. In contrast, when only the output

Chapter 4: Data 61

layer of the network is trained, the network does not possess such an adaptivity,
leading to worse performance. Ghorbani et al. [109, 110] analysed in detail how
data structure breaks the curse of dimensionality in wide two-layer neural networks
in the mean-field (MF) limit (Sec. 1.2), but not in learning with random features,
leading to better performance of the former.

Both these works, however, study 2LNN in the MF limit of wide hidden layer,
defined in Sec. 1.2. Here, we continue exploring the interplay between architecture
and data structure, and the limitation of lazy methods to capture the later, by
studying the opposite limit of only a few neurones in the hidden layer. These,
despite having much fewer parameters than their mean-field counterpart, are
able to capture the structure in the data and learn the task even at high noise
levels. In contrast, random features, and lazy methods, do not and require much
higher signal-to-noise ratio (SNR) to perform well. We focus on high-dimensional
gaussian mixture classification. The setup is close to the one of Sec. 4.1 i.e. the
network are trained using online SGD with infinite number of samples N on infinite
dimensional inputs with t = N/D∼O(1).

We start with the study these 2LNN with a few hidden neurones K∼O(1). To
do so, we extend the derivation of Sec. 4.1, where the label y(x) is a function
of the input x, to a setup where the input is conditional on the label. Solving
these equations for their asymptotic fixed point, i.e. taking t→∞ after D→∞,
yields the final classification error of the 2LNN. We then characterise analytically
the performance of RF on the same task by analysing how Gaussian mixtures
are transformed under P random features in the regime P, D→∞ with γ ≡ P/D

fixed. In the high-dimensional limit the performance at large γ converges to the
one of the corresponding kernel [90, 189, 198, 246, 253, 254], and we can thus
recover the performance of kernel learning by taking γ large enough. Finally,
Computing the asymptotic generalisation of random features allows us to compare
their performance to the performance of 2LNN for various signal-to-noise ratios.

Note that we will not be concerned by formal rigorous derivations. The theoret-
ical claims of this section are however amenable to rigorous theorems. In particular
the ODEs analysis could be formalised rigorously using the technique of [114, 308].
Our results are valid for generic Gaussian Mixtures with O(1) clusters and we
will focus on the particular example of the XOR-like mixture in order to make the
problematic clear.

A paradigmatic example
The results can be illustrated through the simple example already presented in
Chap. 1.3 which we recall here. Consider a data distribution, sketched on Fig. 4.1

62 4.3. Overview

RF space

z1
z3

z2

High SNR Low SNR

1/SNR

z1

z3

z2RF space

|μ |

Dσ
∼ 𝒪(D)

μ/ D

σ

Input Space

Figure 4.1: Random Features and 2LNN on high-dimensional Gaussian mixture
classification (Left) Consider a data distribution that is a mixture of four Gaussians
in D dimensions. The first two components of the centroids organized in a XOR-like
manner as shown, while the other D − 2 directions of the centroids are set to zero.
The signal-to-noise is SNR = |µ|/

√
Dσ. We used µ =

√
D so the SNR is effectively

given by the inverse of the width of the Gaussian: SNR = 1/σ. (Right) A two-layer
neural network with K = 4 hidden neurones and ReLU non-linearity trained using
stochastic gradient descent, achieves a long-time test error close to the optimal
(oracle) error 4.33 for the whole range of SNR. The test error is obtained analytically
using techniques described in Sec. 4.4. In sharp contrast, random features (RF),
whose performance is given by Eq. 4.45, require a high SNR to perform as well
as the oracle. They performs better than chance when SNR ≫

√
D/ min(P, N)1/4,

and thus requires a diverging SNR in the high-dimensional limit. The insets show
the mixture after applying random features; only at high SNR does the mixture
become linearly separable. Parameters: RF error is computed with D = 10000 and
P = 2D and the 2LNN’s with D = 1000. For both methods η = 0.1, |µ|/

√
D = 1.

(left), where inputs x = (xr) ∈ RD are distributed in a mixture of four Gaussians,
those in red, yellow cluster have labels y∗ = 1,−1, respectively. The first two
components of the means are organised as in the top diagram, a distance |µ|/

√
D = 1

from the origin, while the remaining D − 2 components are zero, yielding a XOR-
like pattern. Each Gaussian cloud has standard deviation σID, as Gaussian noise is
added to all components of the input. We can define an SNR of |µ|/

√
Dσ2.

Clearly, the mixture cannot be linearly separated in direct space. As we already
argued and now show analytically, neural networks with a few neurones have
no problems learning a good partitioning of the space in this situation, reaching
oracle-like performance in the process. Kernel methods, however, manage to do so
only if the centres are extremely well separated, and completely fail when they are
too close.

We compare the performance of a two-layer neural network (2LNN) ϕ2LNN
θ ,

Chapter 4: Data 63

defined in Eq. 1.13:

ϕ2LNN
θ =

K

∑
k=1

vkg(ak) ak ≡ wk · x√
D

, (4.30)

where the number of hidden units K is kept of order 1 compared to the input
dimension D → ∞. We then train the 2LNN using online SGD and study the
high-dimensional limit t ≡ N/D = O(1). We obtain the final performance of the
2LNN by taking t→∞ (after D→∞) of the ODEs describing the training dynamics,
see Sec. 4.4. The blue line gives the 2LNN’s final classification error i.e. the expected
number of mistaken classifications:

ϵc(θ) = E Θ [−y∗ϕθ(x)] , (4.31)

where Θ is the Heaviside step function given by:

Θ [−y∗ϕθ(x)] ≡

1 if sign(ϕθ(x)) = y∗

0 otherwise
. (4.32)

The expectation E is computed over the Gaussian mixture for a network with
fixed parameters w. The classification error of the 2LNN is very close to that of an
oracle with knowledge of the means of the mixture that assigns to each input the
label of the nearest mean, achieving a classification error of

ϵoracle
c = 1/2

(
1 − erf (|µ|/2σ

√
D)2
)

. (4.33)

We compare the performance of the 2LNN to the performance of RF [253, 254]
defined in Eq. 1.9, where we first project the inputs x to a higher-dimensional
feature space, where features z = (zi) ∈ RP are given by

zi = ψ(bi), bi ≡
D

∑
r=1

1√
D

Firxr. (4.34)

Compared with the original definition Eq. 1.9, we denoted the random, fixed
projection matrix F ∈ RP×D to avoid confusion with the 2LNN’s trained parameters
{w} ∈ RK×D. ψ : R→R is the usual element-wise non-linearity. Then, like in the
previous section, the features are fit by training a linear model on the features:

ϕRF
w (x) =

1√
P

P

∑
i=1

wizi, (4.35)

64 4.3. Overview

where we denoted the trainable parameters as w ∈ RP (as opposed to v in Eq. 1.9
and the previous section) to avoid ambiguity. The weights w are trained using SGD,
where we again draw a fresh sample from the mixture to evaluate the gradients at
each step. The performance of RF is shown in red in Fig. 4.1. While RF achieve
low classification error at high SNR, there is a wide range of SNR where random
features do significantly worse than the 2LNN. The insets give the intuition behind
this result: at high SNR, RF map the inputs into linearly separable mixture in
random feature space (left) while at lower snr, the transformed mixture is not
linearly separable in RF space (right), leading to poor performance.

We emphasise that we study random features in the high-dimensional limit where
we let N, D→∞ with their ratio t = N/D∼O(1) as before, while also letting the
number of random features P→∞ with their ratio γ ≡ P/D∼O(1) fixed. This regime
has been studied in a series of recent works [67, 80, 155, 177, 188, 203, 220]. While
we concentrate on random features, we note that we can recover the performance of
kernel methods [253, 254] by sending γ→∞. Indeed, as γ = P/D grows, the gram
matrix converges to the limiting kernel gram matrix in the high-dimensional regime;
detailed studies of the convergence in this regime can be found in [90, 189, 198, 246].
We can thus recover the performance for any general distance or angle based kernel
method, e.g. the NTK of Jacot et al. [145], by considering γ large enough in our
computations with random features. Note, however, that this must be done with
some care. Our results for random projections are given for N > P. As discussed
by Ghorbani et al. [109], Mei et al. [215], the relevant dimension for random features
performances is, rather than P, the minimum between N and P. Since we focus
here in the regime where increasing P beyond O(D), and therefore γ beyond
O(1), is not allowed. Indeed, we shall see that Lazy training methods such as
kernels or random projections require asymptotically N = O(D2) samples to beat
a random guess, while neural-networks achieves oracle-like performances with
only N = O(D) samples.

Reproducibility We provide code to reproduce our plots and solve the equations
of Sec. 4.4 at this GitHub.

Further related work
Separation between kernels & 2LNN Barron [28] already discussed the limitations

of approximating functions with a bounded number of random features within a
worst-case analysis. Yehudai and Shamir [320] construct a data distribution that
can be efficiently learnt by a single ReLU neuron, but not by random features. Wei
et al. [312] studied the separation between 2LNN & RF and show the existence of
a small (K∼O(1)) network that beats kernels on this data distribution, and study

https://github.com/mariaref/rfvs2lnn_GMM_online

Chapter 4: Data 65

the dynamics of learning in the same mean-field limit as Chizat and Bach [62]
and Ghorbani et al. [109, 110]. Likewise, Li et al. [185] show separation between
kernels & neural networks in the mean-field limit on the phase retrieval problem.
Geiger et al. [101] investigated numerically the role of architecture and data in
determining whether lazy or feature learning perform better. Paccolat et al. [243]
studied how neural networks can compress inputs of effectively low-dimensional
data.

Gaussian mixture classification is a well-studied problem in statistical learning
theory, and its supervised version was recently considered in a series of works
from the perspective of Bayes-optimal inference [80, 177, 203]. Mignacco et al.
[220, 221] studied the dynamics of stochastic gradient descent on a finite training
set using dynamical mean-field theory for the perceptron, which corresponds to
the case K = 1, v1 = 1 in Eq. 4.30. Liao and Couillet [188] and Couillet [67] studied
mixture classification with kernel in an unsupervised setting using random matrix
theory.

Dynamics of 2LNN The equations describing the dynamics of learning, derived
for this study, build on the results presented in Sec. 4.1 and on the references
therein. All the referenced works, though, consider the label y∗ as a function of the
input x, or as a function of a latent variable from which x is generated. Here, we
extend this type of analysis to a case where the input is conditional on the label, a
point of view taken implicitly by Cohen et al. [66].

The reduction of the dynamics to a set of low-dimensional ODEs should be
contrasted with the “mean-field” approach, discussed in Sec. 1.2, where the number
of hidden neurones K is sent to infinity while the input dimension D is kept finite.
In this limit, the neural networks are still a more expressive function class than the
corresponding reproducing kernel Hilbert space [60, 214, 265, 290]. The evolution
of the network parameters in this limit can be described by a high-dimensional
partial differential equation. This analysis was used in the aforementioned works
by Ghorbani et al. [109, 110].

4.4 Neural networks for GM classification

Setup
We draw inputs x=(xi)∈RD from a high-dimensional Gaussian mixture, where
all samples from one Gaussian are assigned to one of two possible labels y∗ =±1,
which are equiprobable. The data distribution is thus

q(x, y∗)=q(y∗)q(x|y∗), q(x|y∗)= ∑
α∈S(y∗)

PαNα(x) (4.36)

66 4.4. Neural networks for GM classification

where Nα(x) is a multivariate normal distribution with mean µα/
√

D and covariance
Ωα. The index set S(y∗) contains all the Gaussians that are associated with the
label y∗. We choose the constants Pα such that q(x, y∗) is correctly normalised. To
simplify notation, we focus on binary classification, which can be learnt using a
student with a single output unit. Extending our results to C-class classification,
where the student has C output heads, is straightforward.

Training The network is trained using stochastic gradient descent on the pop-
ulation mean-squared error pmse for technical reasons related to the analysis.
The update equations for the weights at the µth step of the algorithm, dwk

i ≡(
wk

i
)

µ+1 −
(
wk

i
)

µ
, read

dwk
i = − η√

D
vk∆g′(ak)xi −

η√
D

λwk
i , (4.37a)

dvk = − η

D
g(ak)∆ − η

D
λvk , (4.37b)

where ∆=∑K
ℓ=1vℓg(aℓ)−y∗ and λ∈R is, here again, a L2-regularisation constant.

Initial weights are taken i.i.d. from the normal distribution with standard deviation
σ0. The different scaling of the learning rates η for first and second-layer weights
guarantees the existence of a well-defined limit of the SGD dynamics as D→∞. We
make the crucial assumption that at each step of the algorithm, we use a previously
unseen sample (x, y∗) to compute the updates in Eq. 4.37. This limit of infinite
training data is variously known as online learning or one-shot/single-pass SGD.

Theory for the learning dynamics of 2LNN on mixture of Gaussians
The derivation of the dynamical equations of motion follows closely the one

described in Sec. 4.1. The additional complexity is both in the dependence of the
inputs on the labels, which requires expectations to be conditioned on the label
realisation and in the non-zero mean of the inputs, which has to be treated with
care.

Statics Since we are training on the quadratic error, the first step of our analysis
is to rewrite the prediction mean-squared error pmse as a sum over the error made
on inputs from each Gaussian α in the mixture,

pmse(θ) = E
q(x,y∗)

(y∗ − ϕθ(x))2

= ∑
y∗

∑
α∈S(y∗i)

q(y∗i)Pα E
α

[
∑

k
vkg(ak)− y

]2 (4.38)

where the average E
α

is taken over the αth normal distribution Nα for fixed param-

Chapter 4: Data 67

eters θ. Then, within each cluster, we can apply the tools of Sec. 4.1 remembering
that here the the means of the inputs are not zero. Again, the input x only enters
the expression via products with the student weights a=(ak) and we can replace
the high-dimensional averages over x with an average over the K “local fields” ak.
Since the ak are jointly Gaussian when averages are evaluated over just a single
distribution in the mixture. We write the first two moments of the local fields as
M=(Mk

α) and Q=(Qkℓ
α), with

Mk
α ≡ E

α
ak =

1
D ∑

r
wk

r µα
r , (4.39a)

Qkℓ
α ≡ Cov

α

(
ak, aℓ

)
=

1
D ∑

r,s
wk

r Ωα
rsw

ℓ
s . (4.39b)

Any average over a Gaussian distribution is a function of only the first two mo-
ments of that distribution, so the pmse can be written as a function of the “order
parameters” M and Q and of the K∼O(1) second-layer weights v = (vk). Like-
wise, the classification error ϵc 4.31 can also be written as a function of the order
parameters only: limD→∞ ϵc(θ)→ϵc(Q, M, v). The order parameters have a clear
interpretation: Mk

α encodes the overlap between the kth student node and the mean
of the α cluster, and plays a similar role to the teacher-student overlap in the vanilla
teacher-student scenario. Qkl

α instead tracks the overlap between the various student
weight vectors, with the input-input covariance Ωα intervening. The strategy for
our analysis, like in Sec. 4.1, is thus to derive equations that describe how the
order parameters (Q, M, v) evolve during training, which will in turn allow us to
compute the pmse of the network at all times.

Dynamics We derived a closed set of ordinary differential equations that describe
the evolution of the order parameters in the case where each Gaussian in the mixture
has the same covariance matrix Ω. We proceed here with a brief statement of the
equations and defer the detailed derivation to Sec. C.2. The approach is most easily
illustrated with the second-layer weights vk. The key idea to compute the average
change in the weight vk upon an SGD update 4.37b, dvk, which can be decomposed
into a contribution from every Gaussian in the mixture,

E dvk = ∑
α∈S(+)

Pαdvk
α+ + ∑

α∈S(−)

Pαdvk
α− , (4.40)

where the change dvk
α+ is obtained directly from Eq. 4.37b,

dvk
α =

η

D
E
α

yαg(ak)− η

D ∑
j

vj E
α

g(ak)g(aj)− η

D
λvk. (4.41)

68 4.4. Neural networks for GM classification

A

B

C D

A

C D

B

Figure 4.2: How the 2LNN learns a XOR-like GM (Left) Evolution of the pre-
diction mean-squared error pmse 4.38 and the classification error 4.31 of a 2LNN
with K = 8 neurones trained on the XOR-like mixture of Fig. 4.1. We plot the
test errors as obtained from a single simulation with D = 1000 (crosses) and from
integration of the ODEs of Sec. 4.4. The dashed black line is the classification
error of an oracle with knowledge of the means µα, Eq. 4.33. The inset shows the
mean angle of the network weights to the means of the mixture. (Right) Projec-
tions of the first layer weights (dots) onto the plane spanned by the means of the
XOR-like mixture at different times during training. Shaded areas indicate the deci-
sion boundaries of the network, where its output ϕθ(x) changes sign. Parameters:
K = 8, D = 1000, σ = 0.05, η = 0.1 weights initialised with s.t.d. σ0 = 1, λ = 10−2.

The averages that remain to be computed only involve the true label and the local
fields a. The former is a constant within each Gaussian while the latter are jointly
Gaussian. It follows, that also these averages can be expressed in terms of only the
order parameters and the equation closes. As in Sec. 4.1, in the high-dimensional
limit D→∞ the normalised number of samples t ≡ N/D can be interpreted as a
continuous time, which allows the dynamics of vk to be captured by the ODE C.19.

Due to the presence of a non-trivial covariance, the order parameters Q require
the additional step which consists in diagonalising the sum Qkℓ∼ ∑D

r,s wk
r Ωrswℓ

s by
introducing the integral representation

Qkl =
∫

dρ pΩ(ρ) ρqkl(ρ), (4.42)

where pΩ(ρ) is the spectral density of Ω, and qkl(ρ) is a density whose time
evolution can be characterised in the thermodynamic limit. We relegate the full
expression of the equation of motion for qkl(ρ) to Eq. C.18 of the appendix. Crucially,
it involves only averages that can be expressed in terms of the order parameters 4.39,
and hence the equation closes. Likewise, the order parameter M can be rewritten
in terms of a density as Mαk =

∫
dρ pΩ(ρ)mk(ρ). The dynamics of mk is described

by Eq. C.13.

Solving the equations of motion The equations are valid for any mean and co-
variance matrix Ω. Solving them requires evaluating multidimensional integrals

Chapter 4: Data 69

of dimension up to 4, e.g. E α g′(ak)aℓy∗, which can be efficiently estimated using
Monte-Carlo (MC) methods. We provide a ready-to-use numerical implementation
on the GitHub.

Comparing theory and simulation On the left of Fig. 4.2, we plot the evolution
of the pmse 4.38 and the classification error 4.31 of a 2LNN with K = 8 neurones
trained on the XOR-like mixture of Fig. 4.1. We plot the test errors obtained
from integration of the order parameters with solid lines, and the same quantities
computed using a test set during the simulation with crosses. The agreement
between ODE predictions and a single run of SGD is good, even at intermediate
system size (D = 1000). In the App. C.2, we give additional plots for the simulated
dynamics of the individual order parameters and find very good agreement with
predictions obtained from the ODEs (cf. Fig. C.1). Note that although we initialise
the weights of the student randomly and independently of the means, there is
an initial overlap between student weights and the means of order 1/

√
D due

to finite-size fluctuations. To capture this with the ODEs, we initialise them in
a regime of weak recovery, where Mk

α ̸= 0. For a detailed discussion of the early
period of learning up to weak recovery, see Arous et al. [14].

How 2LNNs learn the XOR-like mixture A closer look at the learning dynamics on
the right of Fig. 4.2 reveals several phases of learning. There we show the first-layer
weight vectors of the 2LNN, projected into the plane spanned by the four means
of the mixture, at four different times during training. The regions shaded in red
and yellow indicate the decision boundaries of the network, which correspond to
the line where the network’s output ϕθ(x) changes its sign. A 2LNN with K ≥ 4
neurones can approach the classification error of the oracle 4.33 if its weight vectors
approach the four means, with corresponding second-layer weights. Panel (C)
shows that network reaches this configuration. However, this configuration does
not minimise the mean-squared error used during training 4.37, so eventually the
weights depart slightly from the means to converge to a solution with lower mean
squared error (D). This is confirmed by the inset on the left of Fig. 4.2, where we
see that the average angle of the network weights to the means has a maximum
around t = 300, before decaying slightly at the end of training.

Predicting the long-time performance of 2LNN

Direct integration of the ODEs is numerically expensive. A more straight
forward way to extract information from the ODEs is to find their asymptotic fixed
point, which fully characterises the t→∞ performance of the network. However,
the number of equations is already 26 for a 2LNN with 4 neurones trained on the

70 4.4. Neural networks for GM classification

10 4 10 3 10 2
0.08

0.09

0.10

0.11

0.12

0.13

pm
se

analytical
simulations

Figure 4.3: Prediction mean-squared error 4.38 on the XOR-like mixture versus
weight decay. Results obtained from a fixed point analysis of the ODEs with 4
degrees of freedom discussed in Sec. 4.4 (σ2 = 0.1, K = 4, η = 0.1, 104) Monte-Carlo
samples. The shaded area indicates standard deviation over 10 runs.

XOR mixture, and scales like K2. The key to finding fixed points efficiently is thus
to make an ansatz with fewer degrees of freedom for the matrices Q and M which
solve the equations. For example, one could impose Qkk = Q and Qkℓ = C, k ̸= ℓ.
By exploiting the symmetries of the XOR-like mixture, we find that the fix points
of the equations can be described by only K = 4 parameters: K/2 angles between
weight vectors and means, and K/2 norms, as described in Appendix C.2. Finding
the fixed-point of this reduced four-dimensional system allows to compute, for
example, the dependence of the generalisation error as a function the regularisation
in Fig. 4.3. The agreement between simulation and analytical predictions is again
good, and we find that increasing the regularisation only increases the test error of
the student. This is in agreement with previous work on two-layer networks in the
same limit in the teacher-student setup, where L2-regularisation was also found to
hurt performance [271].

The impact of over-parametrisation

We also studied the effect of over-parametrisation, which we define as the
number of additional neurones a student has on top of the K = 4 neurones that
it needs to reach the oracle’s performance on the XOR mixture. We show in the
inset of Fig. 4.4 that over-parametrisation does not improve final performance, since
the remaining error of the student is dominated by “spill-over” of points from
one mixture into adjacent quadrants. However, over-parametrisation leads to an
“implicit acceleration” effect: over-parametrised networks are much more likely to
converge to a solution that approaches the oracle’s performance, as we show in the
main of Fig. 4.4. The term “implicit acceleration” was coined by Arora et al. [12]

Chapter 4: Data 71

4 6 8 10 12 14 16
K

0.0

0.5

1.0

N
co

nv
er

ge
d/N

to
ta

l oracle
0 = 1
0 = 0.01

5 10 15
K

0.01

0.02

0.03

c
Figure 4.4: Fraction of simulations that converged to the optimal solution for
the 2LNN out of 20 simulations for increasing values of K. Overparametrisation
increases the probability of finding the optimal solution but does not affect classifi-
cation performances. Simulations started with initial weights of std.dev. σ0. The
inset shows the classification error of the networks that converged. Parameters:
D = 800, η = 0.1, λ = 0, σ2 = 0.1, run time 105.

for similar effects in deep neural networks, and analysed for two-layer networks in
the teacher-student setup by Livni et al. [196], Safran and Shamir [272]. A complete
understanding of the phenomenon remains an open problem, which we leave for
future work.

4.5 Random features on GM classification

To understand the performance of random features on Gaussian Mixtures classifi-
cation, we analyse the performances of the linear model 4.35 trained with online
SGD with the squared loss on the random features z 4.34 [53, 296].

First, we assume that we have enough samples, so that N ≫ P, and discuss
the situation when N ≪ P later. For any finite D, P, running the algorithm up
to convergence then corresponds to taking the limit t→∞. The random features’
weights converge to an estimate Ŵ which can be computed analytically, see Eq. C.51,
and allows to precisely characterise the test error:

pmset→∞ =
1
2

(
1 − ∑

τ

Φ̃2
τ

ρτ

)
, (4.43)

where ρτ are the eigenvalues of the feature’s covariance matrix Ωij = E zizj, with
associated eigenvector Γτ. Φ̃τ ≡∑P

i=1 ΓτiΦi/
√

P is the input-label covariance after
rotation into the eigenbasis of Ω (see Appendix C.4). Crucially, the test error and
Ŵ only depend on the first two moments of the features. The formula for these
moments, as well as the one for the classification error can be obtained when P, D

72 4.5. Random features on GM classification

are large using the Gaussian equivalence of [118]. Indeed, the distribution of the
features z remains a mixture of distributions (see App. C.3). We then define

Mα =
P

∑
i=1

ŵi E α[zi]√
P

, Qα =
P

∑
i=1

ŵiŵj

P
Cov

α
(z, z), (4.44)

and we find for D, P large enough, that

ϵct→∞ =
1
2

(
1 − ∑

α

Pα y erf
(

Mα√
2Qα

))
. (4.45)

As discussed in App. C.3, in the case of ReLU activation function, the feature
distribution p(zi) is a truncated Gaussian. Hence, at large D, P, both the mean of
zi and the population covariance Cov(zi, zj) can be obtained analytically in terms
of the matrix F and means µ, see Eq. C.37 and C.40 for the full result.

We used this formula to obtain precisely the error 4.43, and the results are
shown in Fig. 4.5. We see that the RF error is a function of σD1/2/P1/4 = σ(D/γ)1/4

leading to the conclusion that – as discussed in Fig. 4.1 – the “transition” from
the high to low SNR regime happens when σ−1 ≈ D1/2/P1/4. This scaling further
reveals that P ≈ D2 features are required in order to obtain good performance.
The validity of Eq. 4.45 is verified in Fig. C.3. Reaching this performance, however,
requires the number of samples N to be larger than P, so N > O(D2). In the
so-called high-dimensional regime analysed in this paper, where N ≈ D, such
performances remain out of reach. The scaling analysis can be easily generalised;
as discussed by Ghorbani et al. [109], Mei et al. [215], the relevant dimension for
RF performances is, rather than P, the minimum between N and P.

The classification error is thus a function of σD1/2/min(N,P)1/4. If N is O(D), then
even in the kernel limit when P→∞, the performance degrades to no more than a
random guess as soon as

σ ≫ N1/4/D1/2, (4.46)

and therefore for any value of σ when D, N→∞ with fixed N/D. In a nutshell, for
any fixed σ, lazy training methods such as random features or kernels will fail to
beat a random guess in the high-dimensional limit. This, and the requirement of
at least N = O(D2) samples to learn, are to be contrasted with the the oracle-like
performance achieved by a simple neural net with only N = O(D) samples.

Why do random features fail? The linear regime of features maps

This raises the question of why the random feature and kernel methods fail in
the high-dimensional setting. As we shall see – and this has been already discussed
in different contexts by El Karoui [90], Mei and Montanari [213] – this can be

Chapter 4: Data 73

10 1 100 101
D1/4
1/4

0.0

0.2

0.4

0.6

c

= 2
= 3
= 5
= 8
= 10
= 15

D=300
D=400
D=500
D=600
D=800
D=1000

Figure 4.5: Evolution of the classification error of random features (RF) for vari-
ous values of σ, γ = P/D and D on the XOR mixture of Fig. 4.1, in the limit of large
number of samples N ≫ P. All these different cases can be collapsed into a single
master curve by plotting the classification error versus σD1/2/P1/4 = σD1/4/γ1/4,
showing that for large D, P, it should be a function ϵc = f (σD1/2/P1/4). For a
finite input dimension D, increasing the number of features allows RF to perform
increasingly better as they approach the Kernel limit. Analytical predictions are
obtained by the linear regression analysis of Eq. 4.45 for RF. Parameters: η = 0.1,
|µ|/

√
D = 1. Note however that this analysis requires N ≫ P. Given random

features are sensitive to the minimum of P and N [109, 215] the effective scaling
variable is rather σD1/2/ min(P, N)1/4 (see text).

understood analytically from the fact that the feature map is effectively linear when
when P = O(D). This section is now dedicated to computing the moments E α[zi]

and Covα(z, z) analytically in this region, revealing that this effective linearity is
indeed the underlying reason for the failure of RF in this regime.

Since the mixture remains a mixture after the application of random features,
our main task is to compute the new means and variances of the distribution in the
transformed space. We thus focus on transformation of a random variable drawn
from a single Gaussian xr = µr/

√
D + σwr, where wr is a standard Gaussian, in

the kernel, or random feature, space.

For generic activation function the first two moments of the features can be
obtained in the well studied low signal-to-noise regime SNR∼O(1). Key to do so, is
the observation that Firµr/D∼O(1/

√
D). The activation function can thus be expanded

in orders of 1/D and its action is essentially linear. We define the constants

a ≡ E ψ (σζ) , b ≡ E ζψ (σζ) , c2 ≡ E ψ (σζ)2 (4.47)

with the expectation taken over the standard Gaussian random variable ζ. To

74 4.6. Neural networks vs random features

leading order, the mean and covariance of the features are given by (cf. Sec. C.3):

E zi = a + b
D

∑
r=1

Firµr

σD
(4.48)

cov(zi, zj) =

c2 − a2, i = j ,

b2 ∑r
Fir Fjr

D i ̸= j.
(4.49)

This computation immediately reveals the reason random features cannot hope
to learn in the low SNR regime: the transformation of the means is only linear;
hence a Gaussian mixture that is not linearly separable in input space will remain
so even after random features. In other words, if the centres of the Gaussian are
too close, the kernel fails to map the data non-linearly to a large dimensional space.
In contrast, in the high-SNR regime, where the centres are separated enough, the
non-linearity kicks-in and the data becomes separable in feature space.

Relation to kernel methods The same argument explains the failure of kernel meth-
ods: if two centres x and y are close, the kernel function K(x, y) can be expanded
to low order and the kernel is essentially linear, leading to bad performances. The
connection can be made explicit using the convergence of random features to a
kernel [253, 254]:

K(x, y)=
1
P

P

∑
i=1

E
F

[
ψ

(
D

∑
r=1

xrFir√
D

)
ψ

(
D

∑
s=1

ysFis√
D

)]
, (4.50)

At low SNR, the constants a, b, c can be obtained from the kernel via

c2 = E K(σω1, σω1), a2 = E K(σω1, σω2),

b2 = Dσ2
[
−a2 + E K

(
µ√
D

+ σω1,
µ√
D

+ σω2

)]
where the average is taken over two standard Gaussian random vectors ω1, ω2 ∈ RD.
This relation, similar in nature to one of El Karoui [90], allows to express the
statistical properties of the features directly from the kernel function.

4.6 Neural networks vs random features

We now collect our results for a comparison of the performance of 2LNN and RF on
the XOR-like mixture from Fig. 4.1. We look at three different regimes for the SNR,
illustrated in the first column of Fig. 4.6. The second column visualises the mixture
after the Gaussian random features transformation with ψ(x) = max(0, x) 4.34.
The third and fourth columns show the evolution of the pmse of 2LNN and RF,

Chapter 4: Data 75

Input space RF space Two-layer Neural Network Random features

x1

x2

x1

x2

z1

z2

z3

x1

x2

z1

z3

z2

z1
z3

z2

Lo
w

 S
N

R
H

ig
h

SN
R

M
ix

ed
 S

N
R

Figure 4.6: The performance of 2LNN and RF on the XOR-like mixture with
different signal-to-noise ratios. The first and second columns show the XOR-like
mixture in input space and random feature space, resp. The third and fourth columns
show the pmse 4.38 of 2LNN and RF during training, resp. In the low SNR regime
(top row), while the 2LNN learns a non trivial function of the inputs, RF cannot
perform better than random chance since the XOR-like mixture remains one in
feature space. Both networks learn to classify the XOR-mixture in the high SNR
regime (middle row) as the clusters become well separated in feature space. For
mixed SNR (bottom row), even though both networks do better than random
guessing, 2LNN outperform RF as the distance between opposite sign clusters
remains of order one in feature space. In all plots, crosses are obtained from
simulations with input dimension D = 1000. Solid black lines in the 2LNN plots
are obtained using tools from Sec. 4.4 (long-time performance of Sec. 4.4 for the
first row and integration of the odes for the second). Solid black lines in the RF
plots indicate the test error obtained from the analysis of Sec. 4.5 with D = 10000.
σ2 = 0.05, P = 2D, η = 0.1, K = 10, σ0 = 10−2.

respectively, during training with online SGD. Since overparametrisation does not
impact the 2LNN’s performance in these tasks, Sec. 4.4, we train a K = 10 network
to increase the number of runs that converge.

At low SNR (a) the distance of each Gaussian to the origin is O(1) and the
standard deviation σ∼O(1) as well. The two-layer neural network learns to predict
the correct labels almost as well as the oracle 4.33. Its performance does not depend
on D, and using the long-time solution of Sec. 4.4, we can predict its asymptotic
error (black line) which agrees well with simulations (crosses). In contrast, random
features display an asymptotic error that approaches random guessing as the input
dimensions increases (inset). This is clear from Eq. 4.49: in the large D limit,

76 4.7. Autoencoders as a tool to study feature learning

random features only produce a linear transformation of their input. The XOR
therefore remains a XOR in RF space, leading linear regression’s failure to do better
than chance.

At high SNR (b), the distance between the clusters scales as
√

D while the
σ remains fixed. The asymptotic error of the 2LNN thus decreases with D and
the network is able to learn perfectly in the D→∞ limit (black line). The error
of random features also approaches 0 as D→∞, since the mixture is now well
separated in random feature space, too.

We finally consider a regime of mixed SNR (c) where the mixture is well-
separated in one dimension, but very close in the other dimension. We achieve
this by setting µ0

1 ∼
√

D, µ0
2 ∼ D for the mean of the first mixture, etc. Random

features then achieve a non-trivial generalisation error, which can be understood
by considering the means of the features zi. The large component µ2, induces the
activation function to perform a non-linear transformation of the centres and allows
for opposite sign centroids to be separated by a hyper-plane in feature space. The
small component µ1, causes the distance between opposite sign centroids, which is
of order O(1) in input space, to remain of order one in feature space, for all D. This
leads to a finite generalisation error of RF which remains invariant with increasing
input dimension. In this regime, the 2LNN still achieve better performance than
the random features, thereby completing the picture we developed in Fig. 4.1.

4.7 Autoencoders as a tool to study feature learning

4.7.1 Overview

In the previous section, we quantified how strong the data structure has to be in
order for different architectures to classify high dimensional mixtures of Gaussian.
We controlled the strength of the features in the data by tuning the signal-to-noise
ratio. The larger the SNR, the more salient the features.

Even if the results give valuable insights into the data-architecture interplay
and also describes learning on some benchmark datasets, the type of structure
remains extremely simple. Real data is expected to be more complex than mixture
of Gaussians and to have no clear SNR measure allowing to a priori determine
wether lazy methods can learn a given task or not.

Studying unsupervised learning is one way to uncover which features are
learned in more general contexts, why and how. In this paradigm, the network is
trained using only the inputs and exploits their structure to perform a given task.
Autoencoders (AE) are the simplest neural network for unsupervised learning, and
thus offer an ideal framework for studying feature learning.

Chapter 4: Data 77

They are trained to reconstruct their inputs by minimising the distance between
an input x ∈ X , and the network output x̂ ∈ X . As we discussed in Sec. 1.3, the
key idea for learning good features with AE is to make the intermediate layer
in the middle of the network (significantly) smaller than the input dimension.
This bottleneck forces the network to develop a compressed representation of its
inputs, together with an encoder and a decoder describing how to go from the
inputs to the compressed representation and vice-versa. AE of this type are called
under-complete, see Fig. 4.7.

In order to study AE from a theoretical perspective we focus on shallow au-
toencoders with a single hidden layer of neurons. An immediate question arises:
how well can these networks perform on a reconstruction task? which features in
the data do they capture to attain this performance? and how do they capture the
latter?

For linear autoencoders, Eckart and Young [89] established that the optimal
reconstruction error is obtained by a network whose weights are given by (a rotation
of) the K leading principal components of the data, i.e. the K leading eigenvectors of
the input covariance matrix. The reconstruction error of such a network is therefore
called the PCA error and only the first two moments, i.e. the mean and covariance,
of the inputs are exploited.

How linear autoencoders learn these components when trained using stochas-
tic gradient descent (SGD) remains an interesting question. Indeed, although
these networks only perform linear transformations of their inputs, their learning
dynamics is non-linear and rich enough to give insights that carry over to the
non-linear case [5, 24, 162, 169, 275]. A series of recent works analysed linear
autoencoders in more detail, focusing on the loss landscape [165], the convergence
and implicit bias of SGD dynamics [236, 252, 276], and on recovering the exact
principal components [25, 111, 239].

However, we have seen in Sec. 1 that part of the power of neural networks as
feature extractors relies on the non-linearities in the hidden layers. Adding a non-
linearity to autoencoders is hence a key step on the way to more realistic models
of neural networks. This addition has been hindered mostly by the theoretical
challenge of analysing non-linear models on structured data, crucial ingredient to
study feature learning. The first step in this direction was taken by Nguyen [235],
who analysed over-complete autoencoders, in the MF limit, where the number
of hidden neurones grows polynomially with the input dimension, focusing on
the special case of weight-tied autoencoders, where encoder and decoder have the
same weights.

Here, we leverage recent developments in the analysis of supervised learning

78 4.7. Autoencoders as a tool to study feature learning

on complex input distributions and in particular in the description of the training
dynamics of networks in the ODE limit described in Sec. 4.1 and developed in
[115, 118, 199, 260].

We study the learning dynamics of under-complete, non-linear autoencoders
with both tied and untied weights. While, their reconstruction error is still limited
by the PCA reconstruction error [24, 46], their learning dynamics is rich, and dif-
ferent from the one of linear AE. In particular, we tackle the questions of whether
non-linear AE trained with SGD can reach the PCA error, and if so, how do they
do it? How do the representations they learn depend on the architecture of the
network, or the learning rule used to train them? The answers to all these question
also provides insights on the relevant features in the data and on their relative
importance for reconstruction.

The first step to tackle these question is to build on the tools of Sec. 4.1 and
derive the asymptotically exact ODEs that describe the generalisation dynamics
of shallow, non-linear autoencoders trained using online SGD (4.7.3). In deriving
these equations, we will establish a precise requirement on the magnitude of the
features required for the AE to learn to reconstruct their inputs. Using the ODEs,
we can understand how AE learn important features of their data. We will see that,
as in the linear case, these features are the principal components of the covariance
matrix of the data. These are learned sequentially, in order of importance modelled,
in this case, by the eigenvalue associated to a given PC (see Sec.4.7.3). The ODEs
also provide insights into the long-time dynamics of learning and highlight another
instance of data/architecture interplay in ML: to extract good features and achieve
low reconstruction error, it is the necessity to untie the weights of decoder and
encoder (4.7.3) and train the bias for ReLU autoencoders (4.7.3). We notice that,
due to the rotational symmetry inherent to the SGD step, the network only learns a
rotation of the leading PCs, making the output of the hidden layer hard to interpret.
We thus suggest a modification of vanilla SGD that beaks the rotational symmetry
of neurones and yields the exact principal components (4.7.3). Finally, we end this
section in Sec. 4.7.4, by verifying the pertinence of the generative model introduced
to study unsupervised learning with shallow AE. In particular, we demonstrate
that the equations and the insights developed for Gaussian data capture learning
on realistic dataset suc as CIFAR10 with great accuracy and discuss connections
with recent results on Gaussian universality in neural network models already
discussed in Chap. 1.3.

Reproducibility We provide code to solve the dynamical equations of 4.7.3 and to
reproduce our plots at this GitHub.

https://github.com/mariaref/NonLinearShallowAE

Chapter 4: Data 79

4.7.2 Setup

Architecture We study the performance and learning dynamics of shallow non-linear
autoencoders with K neurones in the hidden layer. Given the usual D-dimensional
input x = (xi), the output of the autoencoder is given by

ϕAE
w (xi) ≡ x̂i =

K

∑
k

dk
i g
(

ak
)

, ak ≡
D

∑
i=1

ekx√
D

(4.51)

where ek, dk ∈ RD are the encoder and decoder weight of the kth hidden neurone,
resp. With respect to the previous sections, we changed the notation from {w1, w2}
for the weights of the network to {e, d} for clarity and to highlight the role of
the encoder, respectively decoder in reconstructing the inputs. We keep g(·) a
non-linear function. Here again, we study this model in the thermodynamic limit
where we let the input dimension D→∞ while keeping the number of hidden
neurones K finite, as shown in 4.7 (a). The performance of a given autoencoder is
measured by the population reconstruction mean-squared error,

pmse ≡ 1
D ∑

i
E(xi − x̂i)

2, (4.52)

where the expectation E is taken with respect to the data distribution. Nguyen
[235] analysed shallow autoencoders in a complementary mean-field limit, where
the number of hidden neurones K grows polynomially with the input dimension.
Here, by focusing on the case K < D, we study the case where the hidden layer
is a bottleneck. Nguyen [235] considers tied autoencoders, where a single set of
weights is shared between encoder and decoder, ek =dk. We will see in 4.7.3 that
untying the weights is critical to achieve a non-trivial reconstruction error in the
regime K < D.

Data model We derive our theoretical results for inputs drawn from a spiked
Wishart model [250, 315], which has been widely studied in statistics to analyse
the performance of unsupervised learning algorithms. In this model, inputs are
sampled according to

xµ = Acµ +
√

σξµ, (4.53)

where µ is an index that runs over the inputs in the training set, xµ is a D-
dimensional vector whose elements are drawn i.i.d. from a standard Gaussian
distribution and σ > 0. The matrix A ∈ RD×M is fixed for all inputs, while we
sample cµ ∈ RM from some distribution for each µ. Different choices for A and
the distribution of c allow modelling of Gaussian mixtures, sparse codes, and
non-negative sparse coding.

80 4.7. Autoencoders as a tool to study feature learning

in
pu

t

(a) Autoencoder architecture (b) Typical inputs and their spectrum

latent
representation

re
co

ns
tr

uc
tio

n

Spike

Bulk

En
co

de
r

D
ec

od
er

fre
qu

en
cy

Figure 4.7: Shallow autoencoders and their inputs (a) We analyse two-layer
autoencoders with non-linear activation function in the hidden layer. (b) Top:
Rescaled eigenvalues of the covariance matrix of inputs drawn from the spiked
Wishart model in 4.53, which can be divided into a bulk and a finite number of
outliers. Bottom: example inputs drawn from CIFAR10 [160], a benchmark data set
we use for our experiments with realistic data in 4.7.4.

Spectral properties of the inputs The spectrum of the covariance of the inputs is
determined by A and the distribution of c. It governs the dynamics and the perfor-
mance of autoencoders (by construction, we have E xi = 0). If we set cµ = 0 in 4.53,
inputs would be i.i.d. Gaussian vectors with an average covariance of Exixj = σ2δij,
where δij is the Kronecker delta. The empirical covariance matrix of a finite data set
with P∼O(D) samples has a Marchenko–Pastur distribution with a scale controlled
by σ [218, 250]. By sampling the mth element of c as cm∼N (0, ρ̃m), we ensure that
the input-input covariance has M eigenvalues ρm =Dρ̃m with the columns of A as
the corresponding eigenvectors. The remaining D−M eigenvalues of the empirical
covariance, i.e. the bulk, still follow the Marchenko-Pastur distribution. We further
ensure that the reconstruction task for the autoencoder is well-posed by letting the
outlier eigenvalues scale as ρm∼O(D) (or ρ̃m∼O(1)), resulting in spectra such as
the one shown in 4.7(b). If the largest eigenvalues were of order one an autoencoder
with a finite number of neurones K could not obtain a pmse better than random
guessing as the input dimension D→∞. Thus, if the features in the inputs are not
salient enough shallow non linear AE, trained in the online limit, fail to reconstruct
their inputs.

Training As in Sec. 4.1, we train the autoencoder on the quadratic error in the
online limit of SGD. The SGD weight increments for the network parameters are

Chapter 4: Data 81

then given by:

dek
i = −ηW

D

(
1√
D

∑
j

dk
j ∆jg′(ak)xi

)
− λ

D
ek

i , (4.54a)

ddk
i = −ηV

D
g(ak)∆i −

λ

D
dk

i , (4.54b)

where ∆i ≡ (x̂i − xi) and λ≥0 is the ℓ2 regularisation constant. In order to obtain
a well defined limit in the limit D→∞, we rescale the learning rates as ηe =η/D,
ηd =η for some fixed η>0.

4.7.3 Results

Dynamical equations to describe feature learning
The theoretical derivation of the dynamical equations builds on the one of described
in Sec. 4.1 and extends it to the case of unsupervised learning. The starting point is
the observation that the pmse defined in 4.52 depends on the inputs only via their
low-dimensional projections on the network’s weights

ak ≡ ekx√
D

, l f tk ≡ dkx
D

. (4.55)

This allows us to replace the high-dimensional expectation over the inputs in 4.52
with a K-dimensional expectation over the local fields a=(ak) and ã=(l f tk). For
Gaussian inputs drawn from (4.53), (a, ã) are jointly Gaussian and their distribution
is entirely characterised by their second moments:

Tkℓ
1 ≡ E l f tkl f tℓ =

1
D2 ∑

i,j
dk

i Ωijdℓj , (4.56)

Qkℓ
1 ≡ E akaℓ =

1
D ∑

i,j
ek

i Ωijeℓj , (4.57)

Rkℓ
1 ≡ E l f tkaℓ =

1
D3/2 ∑

i,j
dk

i Ωijeℓj . (4.58)

These macroscopic overlaps, the order parameters, together with Tkl
0 = ∑i dk

i dℓi/D, are
sufficient to evaluate the pmse. To analyse the dynamics of learning, the goal is
then to derive a closed set of differential equations which describe how the order
parameters evolve as the network is trained using SGD Eq. 4.54. Solving these
equations then yields performance of the network at all times. Note that feature
learning requires the weights of the encoder and the decoder move far away from
their initial values. Hence, we cannot resort to the framework of the neural tangent

82 4.7. Autoencoders as a tool to study feature learning

kernel or lazy learning [61, 145].

Derivation: a sketch
Here, we sketch the derivation of the equation of motion for the order parameter T1

and skip precise computations as it is very close to the one of Sec. 4.1; a complete
derivation for T1 and all other order parameters is given in D.2. We define the
eigen-decomposition of the covariance matrix Ωrs = 1/D ∑D

τ=1 ΓsτΓrτρτ and the
rotation of any vector z ∈ {ek, dk, x} onto this basis as zτ ≡ 1/

√
D ∑D

s=1 Γτszs. The
eigenvectors are normalised as ∑i ΓτiΓτ′i =Dδττ′ and ∑τ ΓτiΓτ j =Dδij. Using this
decomposition, we can re-write T1 and its update at step µ as:(

Tkℓ
1

)
µ+1
−
(

Tkℓ
1

)
µ
=

1
D2 ∑

τ

ρτ

(
ddk

τdℓτ+dk
τddℓτ+ddk

τddℓτ
)

.

We introduce the order-parameter density t(ρ, s) that depends on ρ and on the
normalised number of steps s = µ/D, which we interpret as a continuous time
variable in the limit D→∞,

tkℓ(ρ, s) =
1

D2ϵρ
∑
τ

dk
τdℓτ1, (4.59)

where 1(.) is the indicator function and the limit ϵρ→0 is taken after the thermody-
namic limit D→∞. Now, inserting the update for d Eq. 4.54 in the expression of
tkℓ, and evaluating the expectation over a fresh sample x, we obtain the dynamical
equation:

∂tkℓ(ρ, s)
∂s

=η

(
E akg(ak)

Qkk
1

ρ

D
rℓk(ρ, s)

−∑
a

tℓk(ρ, s)E g(ak)g(aa)

)
+ (k ↔ ℓ).

(4.60)

The order parameter is recovered by integrating the density tℓk(ρ, s) over the
spectral density µΩ of the covariance matrix: Tkℓ

1 =
∫

dµΩ(ρ) ρ/D tkℓ(ρ, s). We can
finally close the equations by evaluating the remaining averages such as E akg(ak).
For some activation functions, such as the ReLU or sigmoidal activation g(x) =
erf (x/

√
2), these integrals have an analytical closed form. In any case, the averages

only depend on the second moments of the Gaussian random variables (a, ã),
which are given by the order parameters, allowing us to close the equations on the
order parameters.

Chapter 4: Data 83

Separation between bulk modes and principal components

We can exploit the separation of bulk and outlier eigenvalues to decompose the
integral Eq. 4.59 into an integral over the bulk of the spectrum and a sum over the
outliers. This results in a decomposition of the overlap T1 as:

T1 =
M

∑
i∈outliers

ρ̃iti + Tbulk, Tbulk =
1
D

∫
ρ∈bulk

dµΩ(ρ)ρt(ρ), (4.61)

and likewise for other order parameters. Leveraging the fact that the bulk eigenval-
ues are of order O(1), and that we take the D→∞ limit, we can write the equation
for Tbulk as:

∂Tkl
bulk
∂s

= −η ∑
a

Tal
bulkE g(ak)g(aa) + (k ↔ ℓ). (4.62)

On the other hand, the M outlier eigenvalues, i.e. the spikes, are of order O(D).
We thus need to keep track of all the terms in their equations of motion. Similarly
to 4.63, they are written:

∂tkℓ
τ

∂s
= η

(
E akg(ak)

Qkk
1

ρ̃τrℓk
τ − ∑

a
tℓk
τ E g(ak)g(aa)

)
+ (k ↔ ℓ) (4.63)

Note that the evolution of {ti}i=1,..,M is coupled to the one of Tbulk only through
the expectations of the local fields. A similar derivation, which we defer to D.2, can
be carried out for R1 and Q1.

Empirical verification
In 4.8, we plot the pmse of an autoencoder with K = 3 hidden neurones during
training on a dataset drawn from 4.53 with M = 3. We plot the pmse both
obtained from training the network using SGD Eq. 4.54 (crosses) and obtained from
integrating the equations of motion that we just derived (lines). The agreement
between the theoretical description in terms of bulk and spike modes captures the
training dynamics well, even at an intermediate input dimension of D=1000. In the
following, we analyse these equations, and hence the behaviour of the autoencoder
during training, in more detail.

Nonlinear autoencoders learn principal components sequentially
The dynamical equations of the spike mode order parameters Eq. D.29, (D.33) and

84 4.7. Autoencoders as a tool to study feature learning

100 101 102

t

0.00

0.25

0.50

pm
se

analytical
numerical

Figure 4.8: The dynamical equations describe the learning dynamics of autoen-
coders Prediction mean-squared error pmse Eq. 4.52 of an autoencoder with K=3
hidden neurones during training on with stochastic gradient descent on the spiked
Wishart model in the one-pass limit. We obtained the pmse directly from a simula-
tion (crosses) and from integration of the dynamical equations describing learning
that we derive in 4.7.3 (line). Horizontal lines indicate the PCA reconstruction
error with increasing numbers of principal components. Parameters: M=3, η=1,
D=1000.

Eq. D.34 take the form:

∂qkℓ(ρ, s)
∂s

= ηρ̃{· · · }, (4.64)

etc. The learning rate of each mode is rescaled by the corresponding eigenvalue.
Therefore the principal component corresponding to each mode is learnt sequen-
tially, from the largest to the smallest. Indeed, the pmse of the sigmoidal autoen-
coder shown in 4.8 goes through several sudden decreases, preceded by plateaus
with quasi-stationary pmse. Each transition is related to the network “picking up”
an additional principal component. By comparing the error of the network on the
plateaus to the PCA reconstruction error with an increasing number of principal
components (solid horizontal lines in 4.8), we confirm that the plateaus correspond
to stationary points where the network has learnt (a rotation of) the first leading
principal components. Whether or not the plateaus are clearly visible in the curves
depends on the separation between the eigenvalues of the leading eigenvectors.

This sequential learning of principal components has also been observed in
several other models of learning. It appears in unsupervised learning rules such as
Sanger’s rule [273] (aka as generalised Hebbian learning, cf. D.1) that was analysed
by Biehl and Schlösser [37]. Gidel et al. [111], Gunasekar et al. [125] found a sudden
transition from the initial to the final error in linear models x̂i = ∑D

j=1 eijxj, but
step-wise transitions for factorised models, i.e. linear autoencoders of the form

Chapter 4: Data 85

10−1 101 103

t

10−3

10−2

10−1

pm
se

random
aligned

10−1 101 103

t

0.25

0.50

0.75

1.00

α
W

0

2

4

6

α
V

100 101 102 103

tη

0.3

0.5

1

100 101 102 103

tη

1

2

3

5

analytical
numerical

Figure 4.9: Two phases of learning in sigmoidal autoencoders. (a) Prediction error
pmse Eq. 4.52 of a sigmoidal autoencoder with a single hidden neurone starting
from random initial conditions (blue). The error first decays exponentially, then
as a power law. During this second phase of learning, the pmse is identical to the
pmse of an autoencoder whose weights are proportional to the leading eigenvector
Γ of the input covariance at all times: e(t) ∝ αe(t)Γ, d(t) ∝ αd(t)Γ, cf. 4.66. (b)
Dynamics of the scaling constants αe and αd obtained through simulations of an
autoencoder starting from random weights (crosses) and from integration of a
reduced set of dynamical equations, D.47. (c,d) The norm of the encoder (left) and
decoder (right) weights. Their weights shrink, respectively grow, as a power law√

ρ(ηt)±δ with exponent δ ≃ 1/6. This allows the sigmoidal network to remain in
the linear region of its activation function and to achieve PCA performance. Solid
lines are obtained from integration of a reduced set of dynamical equations, D.47,
crosses are from simulations for various combinations of learning rates and leading
eigenvalue ρ (different colours). Parameters: D = 500, η = 1(a, b), M = 1, K = 1.

x̂i = ∑K
k=1 ∑D

j=1 dk
i ek

j xj. Saxe et al. [277] also highlighted the sequential learning of
principal components, sorted by singular values.

The evolution of the bulk order parameters obeys

∂Tkl
bulk
∂s

= −η ∑
a

Tal
bulkE g(ak)g(aa) + (k ↔ ℓ)

∂Rkl
bulk

∂s
= −η ∑

a
Ral

bulkE g(ak)g(aa),
∂Qkl

bulk
∂s

= 0

(4.65)

As a consequence, in the early stages of training, to first approximation, the bulk
component of R1 and T1 follow an exponential decay towards 0. The characteristic
time of this decay is given by the expectation E g(ak)g(aℓ)|s=0 which only depends
on Q1|s=0. In addition, the last equation implies that the evolution of Q1 is entirely
determined by the dynamics of the spike modes.

The long-time dynamics of learning: align, then rescale
At long training times, we expect a sigmoidal autoencoder with untied weights to

have retrieved the leading PCA subspace since it achieves the PCA reconstruction
error. This motivates an ansatz for the dynamical equations where the network

86 4.7. Autoencoders as a tool to study feature learning

weights are proportional to the eigenvectors of the covariance Γk,

ek
i (t) = αk

e (t)/
√

D Γk
i dk

i = αk
d(t)Γ

k
i , (4.66)

where αe, αd ∈ RK are scaling constants that evolve in time. With this ansatz, the
order parameters are diagonal, and we are left with a reduced set of 2K equations
describing the dynamics of αk

e and αk
d which are given in D.47 together with their

detailed derivation.

10−2 100 102 104

t

10−3

10−2

10−1

pm
se

r=1

r=2

r=3

r=4

r=5

10−2 100 102 104

t

10−4

10−3

10−2

10−1

Tied, no bias
Untied, no bias
Untied w/ bias

10−2

100

102

bi
as

before training

positive
negative

K
10−2

100

102

bi
as

after training

Figure 4.10: Shallow autoencoders require untied weights, and ReLU autoen-
coders also need biases. (a) Prediction error pmse Eq. 4.52 of sigmoidal autoen-
coders with untied weights (red) and with tied weights dk = ek (blue). Horizontal
lines indicate PCA errors for rank r. (b) Same plot for ReLU autoencoders with
three different architectures: tied weights, no bias (blue), untied weights with-
out bias (red) and untied weights with bias (green). Only the latter architecture
achieves close to PCA error. (c) Distribution of biases in a ReLU network before
(top) and after training (bottom). The biases increase throughout training, hence
pushing the network into the linear region of its activation function. Parameters:
D = 1000, K = 5, η = 1.

We first verify the validity of the reduced equations Eq. D.47 to describe the long-
time dynamics of sigmoidal autoencoders. In 4.9(a), we show the generalisation
dynamics of a sigmoidal autoencoder starting from random initial conditions (blue).
We see two phases of learning: after an exponential decay of the pmse up to time
t∼10, the pmse decays as a power-law. This latter decay is well captured by the
evolution of the pmse of a model which we initialised with weights aligned to the
leading PCs. We deduce that during the exponential decay of the error, the weights
align to the leading PCA directions and stay aligned during the power-law decay
of the error.

After having recovered the suitable subspace, the network adjusts the norm of
its weights to decrease the error. A look at the dynamics of the scale parameters
αe and αd during this second phase of learning reveals that the encoder’s weights
shrink, while the decoder’s weights grow, cf. 4.9(b). Together, these changes lead
to the power-law decay of the pmse. Note that we chose a dataset with only one

Chapter 4: Data 87

leading eigenvalue so as to guarantee that the AE recovers the leading principal
component, rather than a rotation of them. A scaling analysis of the evolution of
the scaling constants αk

e and αk
d shows that the weights decay, respectively grow, as

a power-law with time, αk
e ∝ 1/√

ρ (ηt)−δ and αk
d ∝ 1/√

ρ (ηt)δ, see 4.9(c-d).
We can understand this behaviour by recalling the linearity of g(x) = erf (x/

√
2)

around the origin, where g(x) ∼
√

2/π x. By shrinking the encoder’s weights,
the autoencoder thus performs a linear transformation of its inputs, despite the
non-linearity. It recovers the linear performance of a network given by PCA if the
decoder’s weights grow correspondingly for the reconstructed input x̂ to have the
same norm as the input x.

We can find a relation between the scaling constants αk
d and αk

e at long times
using the ansatz 4.66 in the expression of the pmse:

pmse =
K

∑
k=1

{
ρ̃k + αk2

d E g(ak)2 − 2E ãkg(ak)
}

︸ ︷︷ ︸
f (αk

d,αk
e)

+
D

∑
k>K

ρ̃k,
(4.67)

where the second term is simply the rank K PCA error. The first term should be
minimised to achieve PCA error, i.e. f (αk

e , αk∗
d)=0 for all k. For a linear autoencoder,

we find αk∗
d = 1/αk

e : as expected, any rescaling of the encoder’s weights needs to be
compensated in the decoder. For a sigmoidal autoencoder instead, we find

αk∗
d =

1
αk

e

√
π

2
(1 + ρ̃kαk2

e) (4.68)

Note, that at small αk
e we recover the linear scaling αk∗

d ∼
(

g′(0)αk
e
)−1.

The importance of untying the weights for sigmoidal autoencoders The need to let
the encoder and decoder weights grow, resp. shrink, to achieve PCA error makes
learning impossible in sigmoidal autoencoders with tied weights, where dk = ek.
Such an autoencoder evidently cannot perform the rescaling required to enter the
linear regime of its activation function, and is therefore not able able to achieve PCA
error. Even worse, the learning dynamics shown in 4.10(a) show that a sigmoidal
autoencoder with tied weights (blue) hardly achieves a reconstruction error better
than chance, in stark contrast to the same network with untied weights (red).

The importance of the bias in ReLU autoencoders
Sigmoidal autoencoders achieve the PCA error by exploiting the linear region of

their activation function. We can hence expect that in order to successfully train a
ReLU AE, which is linear for all positive arguments, it is necessary to add biases at
the hidden layer. The error curves for ReLU autoencoders shown in 4.10(b) show

88 4.7. Autoencoders as a tool to study feature learning

100 101 102

t

0.0

0.1

0.2

0.3

0.4

0.5

pm
se

erf sgd
erf truncated sgd
analytical
numerical

t=
0

Vanilla SGD

t
→
∞

Truncated SGD

V
an

ill
a

Full

T
ru

nc
at

ed

Partial

(a) (b) (c) (d)

Figure 4.11: Breaking the symmetry between neurones yields the exact prin-
cipal components of the data. (a) Prediction mean-squared error Eq. 4.52 of an
autoencoder trained using vanilla SGD (eq. 4.54, blue) and truncated SGD (eq. 4.70,
orange). Grey horizontal lines indicate PCA reconstruction errors. (b) We show the
weight vector of the first neurone of the autoencoder before and after training (top
vs bottom) with vanilla and truncated SGD (left and right, resp.). In contrast to
vanilla SGD, truncated SGD recovers the true leading principal component of the
inputs, a sinusoidal wave (black). (c) Example image taken from Fashion MNIST.
(d) The left column shows reconstructions of the image from (c) using all K = 64
neurones of an autoencoder trained with vanilla (top) and truncated SGD (bottom)
on the full Fashion MNIST database. The right column shows reconstructions using
only the first 5 neurones of the same autoencoders. Parameters: η = 1, K = 4 ((a)
and (b)), K = 64 ((c) and (d)), B = 1, P = 60000.

indeed that ReLU autoencoders achieve an error close to the PCA error only if
the weights are untied and the biases are trained. If the biases are not trained,
we found that a ReLU autoencoder with K hidden neurones generally achieves
a reconstruction error of roughly K/2, presumably because only K/2 nodes have
a positive pre-activation and can exploit the linear region of ReLU. Training the
biases consistently resulted in large, positive biases at the end of training, 4.10(c).
The large biases, however, result in a small residual error that negatively affects the
final performance of a ReLU network when compared to the PCA performances,
as can be seen from linearising the output of the ReLU autoencoder:

x̂ = ∑
k

dk max(0, ak + bk) = ∑
k

dkak

︸ ︷︷ ︸
PCA

+∑
k

dkbk

︸ ︷︷ ︸
residual

, (4.69)

where bk ∈ R is the bias of the kth neurone.

Breaking the symmetry of SGD yields the exact principal components
Linear autoencoders do not retrieve the exact principal components of the inputs,

but some rotation of them due to the rotational symmetry of the square loss [41].
While this does not affect performance, it would still be desirable to obtain the

Chapter 4: Data 89

leading eigenvectors exactly to identify the important features in the data.

The symmetry between neurones can be broken in a number of ways. In
linear autoencoders, previous work considered applying different amounts of
regularisation to each neurone [25, 165, 219, 248] or optimising a modified loss [239].
In unsupervised learning, Sanger’s rule [273] breaks the symmetry by making the
update of the weights of the first neurone independent of all other neurones; the
update of the second neurone only depends on the first neurone, etc. This idea
was extended to linear autoencoders by Bao et al. [25], Oftadeh et al. [239]. We
can easily extend this approach to non-linear autoencoders by training the decoder
weights following:

ddk
i = −ηV

D
g(ak)

(
xi −

k

∑
ℓ=1

dℓi g(aℓ)

)
, (4.70)

where the sum now only runs up to k instead of K. The update for the encoder
weights ek is unchanged from 4.54, but the error term is changed to ∆k

i = xi −
∑k

ℓ=1 dℓi g(aℓ).

We can appreciate the effect of this change by considering a fixed point {e∗, d∗}
of the vanilla SGD updates 4.54 with de∗k = 0 and dd∗k = 0. Multiplying this
solution by an orthogonal matrix O∈O(K) i.e. {ẽ, d̃}={Oe∗, Od∗} yields another
fixed point, since

dṽk
i = −ηV

D
g(l f tk)

xi −
K

∑
ℓ1ℓ2=1

K

∑
ℓ=1

Oℓℓ2Oℓℓ3

︸ ︷︷ ︸
δℓ2ℓ3

d∗ℓ2
i g(a∗ℓ3)

= −ηV

D
g(l f tk)

(
xi −

K

∑
ℓ=1

d∗ℓi g(a∗ℓ)

)
= 0

(4.71)

for the decoder, and likewise for the encoder weights. For truncated SGD Eq. 4.70,
the underbrace term in 4.71 is no longer the identity and the rotated weights {ẽ, d̃}
are no longer a fixed point.

We show the pmse of a sigmoidal autoencoder trained with vanilla and trun-
cated SGD in 4.11(a), together with the theoretical prediction from a modified
set of dynamical equations. The theory captures both learning curves perfectly,
and we can see that using truncated SGD incurs no performance penalty - both
autoencoders achieve the PCA reconstruction error. Note that the reconstruction
error can increase temporarily while training with the truncated algorithm since the
updates do not minimise the square loss directly. In this experiment, we trained the

90 4.7. Autoencoders as a tool to study feature learning

10−1 100 101 102

t

0.05

0.1

pm
se

r=2

r=4

r=6

r=1

r=3

r=5

r=7

r=8

K 2
K 4
K 6
analytical
numerical
pca

Figure 4.12: Theory vs. simulations for sigmoidal autoencoders trained on
CIFAR10. Prediction mean-squared error pmse Eq. 4.52 of a sigmoidal autoencoder
with K = 2, 4, 6 hidden neurones trained on 10 000 greyscale CIFAR10 images [160]
(crosses). Solid lines show the pmse predicted from integrating the dynamical
equations of 4.7.3, using the empirical covariance matrix of the training inputs.
Horizontal lines indicate the PCA error with varying rank r. Parameters: D =
1024, η = 1.

networks on a synthetic dataset where the eigenvectors are chosen to be sinusoidal
(black lines in 4.11 b). As desired, the weights of the network trained with truncated
SGD converges to the exact principal components, while vanilla SGD only recovers
a linear combination of them.

The advantage of recovering the exact principal components is illustrated with
the partial reconstructions of a test image from the FashionMNIST database [317].
We train autoencoders with K=64 neurones to reconstruct FashionMNIST images
using the vanilla and truncated SGD algorithms until convergence. We show the
reconstruction using all the neurones of the networks in the left column of 4.11(d).
Since the networks achieve essentially the same performance, both reconstructions
look similar. The partial reconstruction using only the first five neurones of the
networks shown on the right are very different: while the partial reconstruction
from truncated SGD is close to the original image, the reconstruction of the vanilla
autoencoder shows traces of pants mixed with those of a sweatshirt.

4.7.4 Representation learning on realistic data

We have derived a series of results on the training of non-linear AEs derived in
the case of synthetic, Gaussian datasets. Most of our simplifying assumptions are
not valid on real datasets, because they contain only a finite number of samples,
and because these samples are finite-dimensional and not normally distributed.
However, it turns out that the dynamical equations of 4.7.3 describe the dynamics

Chapter 4: Data 91

of an autoencoder trained on more realistic images rather well.
In 4.12, we show the pmse of autoencoders of increasing size trained on 10k

greyscale images from CIFAR10 [160] with crosses. The solid lines are obtained
from integration the equations of motion of D.2, using the empirical covariance of
the training images.

The accuracy of the equations to describe the learning dynamics at all times
implies that the low-dimensional projections a and ã introduced in 4.55 are very
close to being normally distributed. This is by no means obvious, since the images
clearly do not follow a normal distribution and the weights of the autoencoder
are obtained from training on said images, making them correlated with the
data. Instead, 4.12 suggests that from the point of view of a shallow, sigmoidal
autoencoder, the inputs can be replaced by Gaussian vectors with the same mean
and covariance without changing the dynamics of the autoencoder. In D.1 in the
appendix, we show that this behaviour persists also for ReLU autoencoders and,
as would be expected, for linear autoencoders. Nguyen [235] observed a similar
phenomenon for tied-weight autoencoders with a number of hidden neurones that
grows polynomially with the input dimension D.

This behaviour is an example of the Gaussian equivalence principle, or Gaussian
universality, that received a lot of attention recently in the context of supervised
learning with random features [189, 215, 284] or one- and two-layer neural net-
works [117, 118, 138, 199]. These works showed that the performance of these
models is asymptotically well captured by an appropriately chosen Gaussian model
for the data. The result closest to our setup was obtained by Goldt et al. [118],
who showed that for two-layer networks, the Gaussian equivalence was, to a first
approximation, a result of projecting high-dimensional inputs to a low-dimensional
set of local fields a in the limit where the number of hidden neurones K∼O(1)
compared to the input dimension. Intriguingly, we found that the Gaussian equiva-
lence in autoencoders extends to essentially any number of hidden neurones, for
example K = D/2, as we show in D.1 in the appendix.

We finally verified that several insights developed in the case of Gaussian
data carry over to real data. In particular, we demonstrate in D.2 that sigmoidal
AE require untied weights to learn, ReLU networks require adding biases to the
encoder weights, and that the principal components of realistic data are also learnt
sequentially.

Chapter 5

Algorithm

In Chap. 3 and Chap. 4, we understood how theoretical tools can be used to
gain insight into role of architecture and data structure in learning with artificial
neural networks. We also described the importance of understanding the interplay
between the two aspects. However, in all discussions, we bypassed the question of
the impact of the algorithm used in training. Indeed, we considered either training
with vanilla SGD (Sec. 4.2, Sec. 4.7) or performed a static analysis of the solution to
which NN converge (Chap. 3).

In training deep neural networks, making the proper choice of algorithm, in-
cluding that of the various hyper-parameters involved, is crucial. Back-propagation
is certainly the most widely used algorithm, but to perform best practitioners spend
hours adjusting the gigantic number of add-ons such as learning-rate schedule,
regularisation scheme, weights initialisation, optimiser, etc. Each one of these
requires fixing multiple hyper-parameters. These procedure is straining and time
consuming. Gaining theoretical insights into the effect different choices have on
learning is key to facilitate the task and improve performance.

In this view, we analyse in Sec. 5.1 the role of using a learning rate schedule
in optimisation problems. We focus on power law decays of the learning rate
η(t) = η0/tβ. The results provide an optimal exponent βopt with which to decay
the learning rate and theoretic intuition behind how this value depends on the
complexity of the loss landscape.

Sec. 5.2 analyses instead alternative algorithms to vanilla BP, which overcome
some of the latter’s pitfall. First of all, we know from Sec. 1.4 that BP requires the
backward pass to be done sequentially, for the last layers to the firsts. This prevents
efficient parallelisation of the updates increasing the training time of deep NN. In
addition, in BP, the same weights are used in the forward and the backward pass.
Since, it is unlikely that in biological neural networks the same synapses transmit

92

Chapter 5: Algorithm 93

the information forward and backward, BP remains a biologically implausible
algorithm. Additional problems include that of vanishing gradients, sensitiveness
to external attacks, etc. In light of these shortcomings, in recent years different
algorithms which only approximate the BP gradient have been proposed. Sec. 5.2
focuses on the study of one such algorithm: direct feedback-alignment (DFA). By
analysing learning with DFA on two layer neural networks described in Sec. 4.1 and
on deep linear networks, we establish precise conditions under which networks
trained with DFA perform well. We then verify that the conclusions hold in deep
non-linear models of neural networks.

We will see however, that we cannot study algorithm without considering
its interplay with architecture and data structure. Indeed, even though DFA
successfully trains fully-connected neural networks on various input distributions,
it notoriously fails on convolutional neural networks. The analytical results of
Sec. 5.2 provide some insight as to why. They also demonstrate that structure in the
inputs prevent NN trained with DFA to learn. Thus, even though theoreticians can
study either one of the architecture, the data structure or the algorithm by keeping
the other two fixed, the real challenge is to understand the interplay between them
i.e. answering the question of given a task, which is the best architecture-algorithm
combination to solve it?

5.1 Learning rate schedules and how they improve BP per-
formance

5.1.1 Overview

When training neural networks with BP, one is required to fix various hyper-
parameters, i.e. variables that configure various aspect of optimisation. Among
which the learning rate, i.e. the size of the step taken by the algorithm at every
update, has plays a key role and a wrong choice can completely prevent a network
from learning. Until now, only few guidelines on how to choose the appropriate
learning rate for a given problem exist and the choice is almost always done on a
trial-and-error basis. In this section, based on [77], we use statistical physics tools
to provide insights into what is the impact of the learning rate, and of learning rate
schedules, on optimisation. Such analysis is key to develop guidelines to chose
hyper-parameters and accelerate the design of machine learning methods. Learning
rate schedules allow to change the learning rate during training according to some
protocol and are used across all areas of modern machine learning. They provide
more flexibility than fixed learning rate methods since the training step size is

94 5.1. Learning rate schedules and how they improve BP performance

Figure 5.1: The optimal learning rate schedule depends on the structure of the
landscape. (Left): in the purely non-convex landscapes of Sec. 5.1.3, the learning
rate must be decayed as η(t) = η0/tβ with β < 1 to speed up optimisation. (Right):
the landscapes of Secs. 5.1.4 and 5.1.5 feature basins of attraction due to the presence
of a signal to recover. One must first keep a large constant learning rate to escape
the rough parts of the landscape as quickly as possible, then decay the learning
rate as η(t) = η0/t once inside a convex basin.

adjusted depending on the phase of optimisation one is at. Despite their wide
spread, very little is known on which schedule is most suited for a given problem.

This question has been thoroughly studied for convex problems, where the
optimal learning rate schedule generally goes as η(t)∼1/t [182, 194]. However,
deep neural networks and other high-dimensional modern optimisation problems
are known to operate in highly non-convex loss landscapes [48, 64]. In this section
we make some progress towards a theory to understand the impact of scheduling
in these settings.

Here, we focus on the analytical study of learning-rate schedules in gradient-
based algorithms and on the high-dimensional inference problem of retrieving
a ground truth signal w⋆ ∈ RN from observations via a noisy channel. In the
teacher-student jargon of previous chapters, the teacher’s weights are the signal
which much be recovered by her student. When the noise dominates the signal,
the loss simply boils down to a Gaussian random function on the N-dimensional
sphere (N→∞). This optimisation problem has been studied in the literature for
constant learning rate, both using rigorous methods and techniques from statistical
physics, see [13, 33, 79, 206, 327] and references therein.

Setup Learning rate decay is generally used to reduce the noise induced by
optimisation schemes used in practice. For example, SGD with batch size B
typically induces a noise which scales as the learning rate divided by batch size
η/B [147, 222, 245, 292]. To mimick this optimisation noise, we focus on Langevin
dynamics [59, 139, 182, 223]. Given a loss function L and a temperature T, this
consists in minimising L by updating the estimate w ∈ RN of the signal from a

Chapter 5: Algorithm 95

random initial condition according to the equation:

dwi(t)
dt

= −η(t)
(

∂L(w, w⋆)

∂wi
+ ξi(t) + z(t)wi(t)

)
, (5.1)

where ξ(t) ∈ RN is a Gaussian noise with 0 mean and variance ⟨ξi(t)ξ j(t′)⟩ =

2Tδijδ(t − t′), and the Lagrange multiplier z(t) is used to enforce the spherical
constraint ∥w∥2 = N which we impose throughout the paper (z(t) can be thought
of as a weight decay that evolves during training to keep the norm of the estimator
fixed). The temperature T represents the strength of the noise inherent to the
optimisation algorithm, i.e. 1/B for SGD (we consider T < 1 in the following). To
study scheduling, we decay the learning rate as η(t) = η0/tβ, as commonly chosen
in the literature [228, 319]. Note that here we are considering gradient-flow – our
results are confirmed by experiments performed with gradient descent.

We consider two models for the loss L: the (planted) Sherrington-Kirkpatrick
(SK) model [288], where the signal is scrambled by a random matrix, and the more
involved spiked matrix-tensor (SMT) model [207], where the signal is additionally
observed through its contraction with a random tensor of order p. The first
setup is analytically tractable both at infinite and finite dimensions [26, 71], and
its landscape features a number of critical points which grows linearly with the
dimension. The second setup is more involved and requires a mean-field treatment
in the infinite dimensional limit [72, 207, 274]. The number of critical points grows
exponentially with the dimension and has been studied analytically with the Kac-
Rice method [34, 263]. This distinction allows us to grasp how the amount of
non-convexity impacts the optimal decay of the learning rate.

Here, we begin by considering the purely non-convex setup where the signal is
undetectable (left panel of Fig. 5.1). The loss is then a Gaussian random function
on the N-dimensional sphere with zero mean and a covariance E[L(w)L(w′)] ∝
(w · w′)p. We determine the optimal learning rate to reach the lowest value of the
loss function on an arbitrarily large (but finite) time in the high-dimensional limit.
For the p = 2 case, corresponding to the spherical SK model, we find β = 1/2
whereas for p > 2 we obtain β = 2/5. The higher degree of non-convexity
of the latter requires the learning rate to be decayed more slowly; we generalise
these findings by leveraging results from out-of-equilibrium physics. Note that
inverse square root decay is commonly used among practitioners in state-of-the-art
endeavours such as training Transformers [307]; this analysis provides theoretical
evidence for its soundness in a particular class of non-convex landscapes.

We then study the influence of a detectable signal (right panel of Fig. 5.1), and
we determine the optimal learning rate schedule to find the signal in the shortest

96 5.1. Learning rate schedules and how they improve BP performance

amount of time. In this case, a crossover time emerges between two phases [43]: a
search phase, where the signal is weak and the dynamics travel through a rugged
landscape, followed by a convergence phase the signal is detected and the problem
becomes locally convex. We show that the optimal schedule is to keep a large
constant learning rate during the first phase to speed up the search, then, once in
the convex basin, to decay the learning rate as 1/t. This protocol allows to speed up
convergence and find lower loss solutions, and is reminiscent of schedules used in
practice.

We conclude this section with experiments that verify that these insights are
reflected in practice when training neural networks on a teacher-student regression
task with SGD.

Related work Typically, learning rate schedules consist in a large learning rate
phase followed by a decay phase. A body of works have shown that this allows
to learn easy patterns early on and complex patterns later [184, 323]. Although
stepwise decays of the learning rate were used for a long time [100, 133], most
recent works have turned to smooth decays such as inverse square root [307]
and cosine annealing [197], which involve less hyperparameters to tune. Other
possibilities include cyclical learning rates [291] and automatic schedulers [180].

The use of a warmup [121] before decaying the learning rate has shown to
be effective in avoiding instabilities arising from large learning rates [113, 120].
Another common practice is to use adaptive optimizers, which select a different
learning rate for each learning parameter [87, 153, 328], although these have been
shown to often degrade generalization [58, 151, 314].

On the theoretical side, several works have studied Langevin dynamics for
mean-field spin glasses. Particularly relevant to us are those which focus on the
spherical SK setup [26, 71], as well as those showing the existence of a search
and a convergence phase for the SMT model [207]. However, to the best of our
knowledge, no previous works have studied these kind of highly non-convex
optimisation problems in the context of a non-constant learning rate. Our analysis
is based on common methods in theoretical physics which have been to a large
extent made rigorous in recent years [33, 34, 79, 274], and is confirmed by numerical
experiments.

Reproducibility The code to reproduce the figures in this paper is available
at https://github.com/mariaref/nonconvex-lr.

5.1.2 The speed-noise trade-off in a simple convex problem

Before studying non-convex problems, it is instructive to recall the effect learning
rate decay has on optimisation in a simple 1D convex basin of curvature κ, for

https://github.com/mariaref/nonconvex-lr

Chapter 5: Algorithm 97

which L(w) = 1
2 κw2. The Langevin equation (Eq. 5.1) can easily be solved and

yields (see App. E.1):

⟨L(t)⟩ = κw(t0)2

2
e−2κ

∫ t
t0

dτη(τ)︸ ︷︷ ︸
L̄(t)

(5.2)

+
κT
2

∫ t

t0

dt′η(t′)2e−2κ
∫ t

t′ dτη(τ)︸ ︷︷ ︸
δL(t)

,

where ⟨.⟩ denotes an average over the noise ξ. The first term is an optimisation term,
which amounts to forgetting the initial condition w(t0). It is present in absence
of noise (T = 0) and its decrease is related to the way the dynamics descend in
the loss landscape. The second term is a noise term, which is proportional to the
strength of the noise T, and reflects the impact Langevin noise has on optimisation.

To converge to the solution w = 0 as quickly as possible, one is faced with a
dilemma: reducing the learning rate suppresses the effect of the noise term δL, but
also slows down the dynamics, leading to a larger optimisation term L̄. The ideal
tradeoff is found when these two effects are comparable. By taking η(t) = η0/t we
obtain:

L̄(t) ∝ t−2η0κ, δL(t) ∝ 1/t. (5.3)

Hence, the loss decays to zero as 1/t if we take η0 ≥ 1/2κ, as found in many previous
works [182, 194]. Note that if we take a slower decay such as η(t)∼1/tβ with
β < 1, L̄(t) converges to 0 exponentially fast, but δL(t)∝ η(t) decays slower and
bottlenecks the loss. Conversely, if we take a faster schedule, i.e. β > 1, then the
noise term decays faster, but the dynamics stop before reaching the solution, as
L̄(t) does not converge to zero when t→∞.

This simple example illustrates the trade-off between the speed of optimisation
and the noise suppressing effect, which will be the cornerstone of proper scheduling
in the high-dimensional non-convex settings studied below.

5.1.3 Optimal decay rates in random landscapes

In this section, we consider purely non-convex optimisation landscapes, where the
loss L is a Gaussian random function defined on the N-dimensional sphere, with
zero mean and covariance:

E[L(x)L(x′)] =
N
2
(x · x′)p, p ≥ 2.

98 5.1. Learning rate schedules and how they improve BP performance

This setup, which has been studied in great detail in the context of statistical
physics, can be viewed as a special case of the inference problems of Sec. 5.1.4
where the noise is too strong for the signal to be detectable. The aim is not to
retrieve a signal, but simply to decrease the loss as quickly as possible on an
arbitrarily large (but finite) time.

Sherrington-Kirkpatrick model
We start by focusing on the case p = 2. This can be achieved with the spherical

version of the spin glass model introduced by Sherrington and Kirkpatrick [288].
Here, the variables wi and xj interact with each other via random symmetric
couplings* Jij ∼ N (0, 1), and, as throughout the paper, are required to satisfy the
spherical constraint ∥w(t)∥2 = N. The loss function is given by:

L(w) = − 1√
N

N

∑
i<j

Jijwiwj. (5.4)

In this section, we consider the high-dimensional limit N→∞; finite-dimensional
effects are discussed in Sec. 5.1.4.

Solving the dynamics

To obtain the value of the loss function at all times, we multiply the original
Langevin equation by wi and sum over all components. Using Ito’s lemma, and the
concentration of z(t) in the N→∞ limit, leads to the simple relation:

0 =

〈
∂∥w∥2

∂t

〉
= η(t) [−2L(t)− Nz(t)] + Nη(t)2T

⇒ L(t) = −N
2
(z(t)− η(t)T) (5.5)

As in the convex setup, we find a competition between an optimisation term
and a noise term. Since the temperature is fixed, the latter decays as η(t). To obtain
the value of the Lagrange multiplier z(t), we impose the spherical constraint at all
times, yielding (see App. E.2):

z(t) = 2 − 3(1 − β)

4t1−β
. (5.6)

Hence, the scaled loss ℓ = L/N converges to the ground state (global minimum)

*As discussed in App. E.2, due to the universality typical of random matrix theory distributions,
our results hold for a broad class of distributions for the couplings. Note also that the diagonal terms
do not matter in the large N limit but for simplicity we take Jii ∼ N (0, 2).

Chapter 5: Algorithm 99

100 101 102

t

10−1`
−
` G

S

no decay

β

0.1

0.5

0.9

0.00 0.25 0.50 0.75
β

−0.4

−0.2

S
lo

p
e

1

1

Figure 5.2: In the SK model, the optimal decay rate is βopt = 0.5. (Left) Loss curves
of the SK model when decaying the learning rate as η(t) = η0/tβ for various values
of β (colored lines). (Right) Decay exponent of ℓ− ℓGS at long times as a function of
β. We recognize a decay exponent of min(β, 1 − β) as predicted by Eq. 5.7, which
is fastest for βopt = 1/2. Parameters: N = 3000, T = 1, η0 = 0.1.

ℓGS = −1 as a sum of power-laws:

ℓ(t)− ℓGS =
η0T
2tβ

+

3(1−β)
8η0t1−β , β < 1

3
8η0 log t , β = 1

. (5.7)

Optimal decay rate At long times, Eq. 5.7 implies a power-law decay of the loss
with an exponent min(β, 1− β) due to the speed-noise tradeoff. Hence, the optimal
decay rate at long times is βopt = 1/2. This is confirmed by numerical simulations at
finite size, see Fig. 5.2. Note that this decay rate is empirically chosen to train many
state-of-the-art neural networks such as the original Transformer [307], but, to the
best of our knowledge, has never been justified from a theoretical point-of-view in
a non-convex high-dimensional setting.

Curvature analysis To gain better understanding, it is informative to study the
local curvature of the effective landscape the dynamics take place in. To do so, one
needs to compute the spectrum of the effective Hessian taking into account the
spherical constraint of Eq. 5.1, defined as:

Hess =
1√
N

J + z(t)I. (5.8)

In the the N→∞ limit, the spectral density of the first term, defined as ρ(µ) = ∑N
i=1 δ(µ−

µi), converges to a semi-circle law [313]:

ρsc(µ) =
1

2π

√
4 − µ2, ∀µ ∈ [−2, 2]. (5.9)

The spectral density of Hess is shifted to the right during the dynamics by the
Lagrange multiplier z(t), reflecting the way in which the local curvature changes

100 5.1. Learning rate schedules and how they improve BP performance

−2 −1 0 1 2 3 4
µ

0.0

0.1

0.2

0.3
ρ

(µ
)

t→∞

↑ t

0

104

Figure 5.3: In the SK model, the dynamics never reach a convex region. During
training, the local curvature, i.e. the spectral density of the Hessian (Eq. 5.8) shifts
to the right. The left hand side of the spectrum only reaches 0 at t→∞, signalling
that there remains negative eigenvalues at any finite time. Parameters: N = 3000,
T = 1, η0 = 0.1, β = 0.8.

with t. As show in Fig 5.3 and known from previous works [71], there remains
negative eigenvalues at any finite time: the right edge of the spectrum only reaches
0 asymptotically as t→∞, since z(t)→2.

Hence, the dynamics never completely escape the saddles of the landscape
at N → ∞. This ruggedness of the landscape entails slow “glassy" dynamics,
characterized by a power-law decay of the optimisation term for any β < 1,
contrary to the exponential decay obtained in the convex setup (Sec. 5.1.2).

The p-spin model
We now turn to the analysis of the p-spin model which has been extensively

studied in physics as a model of structural glasses, see e.g. [36]. To us, it is an ideal
candidate as it corresponds to a random Gaussian landscape (with p > 2) for which
the Kac-Rice approach rigorously shows the existence of a number of critical points
growing exponentially with the dimension [16]. It is thus intrinsically harder, i.e.
more strongly non-convex than the SK model above. The loss of the p-spin model
(for p > 2) is written as:

L = −
√

(p − 1)!
Np−1 ∑

i1<...<ip

Ji1...ip wi1 ...wip . (5.10)

Solving the dynamics In the high-dimensional limit N→∞, the Langevin dynam-
ics of the system can be reduced to a closed set of PDEs for a set of “macroscopic"
quantities, which concentrate with respect to the randomness in the couplings
J and the thermal noise in the dynamics ξ, as shown rigorously in [33]. These
quantities are the two-point correlation C(t, t′) of the system at times t, t′ and the
response R(t, t′) of the system at time t to a perturbation in the loss function at an

Chapter 5: Algorithm 101

earlier time t′:

C(t, t′) = lim
N→∞

1
N

E
ξ,J

N

∑
i=1

wi(t)wi(t′), (5.11)

R(t, t′) = lim
N→∞

1
N

E
ξ,J

N

∑
i=1

δwi(t)
δξi(t′)

. (5.12)

Their dynamics is described by a closed set of integro-differential equations, dubbed
the Crisanti-Horner-Sommers-Cugliandolo-Kurchan (CHSCK) equations [33, 70, 72].
We extend these equations to the non-constant learning rate case using the methods
reviewed in [55]:

∂R (t1, t2)

∂t1
= Fp

R(z, R, C, η), (5.13)

∂C (t1, t2)

∂t1
= Fp

C(z, R, C, η), (5.14)

z(t)=Tη(t) + p
∫

dt2η(t2)R(t2, t)Cp−1(t2, t), (5.15)

where we deferred the full expression of the update functions Fp
R and Fp

C as well as
their derivation to App. E.4.

Imposing the the spherical constraint C(t, t) = 1 allows to find the value of the
spherical constraint z(t). To compute the loss, we follow the same procedure as in
the SK model and obtain:

ℓ(t) ≡ L
N

= − 1
p
(z(t)− Tη(t)) . (5.16)

Optimal decay rate Here again we find that two competing terms contribute to
the loss, the first related to optimisation and the second to noise. By choosing a
learning rate η(t) = η0/tβ, the later decays as t−β. The decay of the former is more
complex due to the high complexity of the landscape. It can be shown [72] that
the system never reaches the ground state, instead remaining trapped in so-called
threshold states where the Hessian has many zero eigenvalues (the density of
eigenvalues is a Wigner semicircle whose left edge is zero as in the SK model). The
loss is then given by:

ℓth = −
√

4(p − 1)
p

> ℓGS. (5.17)

The relaxation towards the threshold states is characterised by a power-law
due to the rough energy landscape, but with a different exponent this time: zth −
z(t) ∝ t−γ, with γ = 2/3 at T = 0 [302]. Using the CHSCK equations (5.13),
we analytically show in App. E.3 that with decaying learning rate the exponent

102 5.1. Learning rate schedules and how they improve BP performance

100 101 102

t

10−1

100

`
−
` t

h
no decay

β

0.1

0.5

0.9

0.00 0.25 0.50 0.75
β

−0.4

−0.2

0.0

S
lo

p
e

3

2

p=3
p=4

p=6

Figure 5.4: In the p-spin model, the optimal decay rate is βopt = 0.4. (Left)
Loss curves of the 3-spin model at T = 1 when decaying the learning rate as
η(t) = η0/tβ for various values of β (colored lines). (Right) Decay exponent
of ℓ− ℓth at long times, for various p, as a function of β. We recognize a decay
exponent of min(β, γ(1− β)), as predicted by Eq. 5.18, which is fastest for βopt = 2/5.
Parameters: dt = 10−2, η0 = 0.5, T = 1.

becomes γ(1 − β). Hence, similarly to the SK model, the decay of the loss is
controlled by a competition between two power-laws:

ℓ(t)− ℓth∼t−min(β,γ(1−β))

⇒ βopt =
γ

1 + γ
=

2
5

. (5.18)

In Fig. 5.4, we numerically integrate Eqs. 5.13 for p = 3, 4, 6, confirming that the
optimal decay rate to balance the noise and the optimisation terms is βopt = 2/5. The
numerical integration is non-trivial and we implement it using the tools developed
in [207].

Relation with annealing in physics
The results found in this section can be put in a very general framework that
was developed in physics of out of equilibrium systems. As shown in App. E.3,
using a learning rate schedule is equivalent to annealing the temperature of the
physical system as a power-law t−β/1−β. Thus, finding the optimal learning rate
schedule to minimize the loss is equivalent to determining the optimal annealing
protocol to decrease the energy. A key ingredient in the solution is how fast
the dynamics descend in the loss landscape in absence of noise. In physical
systems, this optimisation term generally follows a power-law decay with exponent
γ [40, 45, 47].

At finite temperature, the speed-noise tradeoff requires this decay rate to be
equal to that of the temperature, β/1−β, leading to βopt = γ/1+γ. The exponent
γ has been determined in many statistical physics problems, corresponding to
different high-dimensional non-convex landscapes, and typically ranges from zero

Chapter 5: Algorithm 103

(logarithmic relaxation) to one. Our results extend to all these problems and, and
predict optimal annealing exponents varying between 0 and 1/2.

5.1.4 Recovering a signal: the two phases of learning

We now move to the setup where there is a signal w⋆ in the problem, which the
algorithm aims to retrieve in the shortest time possible. In addition to the random
Gaussian function, the loss now contains a deterministic term forming an attraction
basin in the landscape, as sketched in the right panel of Fig. 5.1.

Spiked Sherrington-Kirkpatrick model
We first consider the so-called planted SK model, where the objective is to retrieve

a ground truth w⋆ such that ∥w⋆∥2 = N, i.e. maximize the overlap with the signal
m = ∑i wi ·w⋆

i/N. We enforce as before the spherical constraint ∥w∥2 = N which
induces m ∈ [−1, 1], and sample randomly the initial configuration of w, such that
the initial overlap is of order 1/

√
N. The loss function takes the form:

L(w) = −N
2

m2 − ∆√
N

N

∑
i<j

Jijwiwj =
1
2

wHw⊤, (5.19)

with H=− ∆√
N

J − 1
N w⋆w⋆⊤.

Decreasing ∆ makes the signal easier to detect, leading to an easier problem.
For ∆ < 1/2, an eigenvalue of H pops out of the semicircle law (5.9) as a BBP
transition takes place [21], leading to the follow spectrum:

ρ(µ) =

(
1 − 1

N

)
ρsc(µ/∆) +

1
N

ρ(µ − 1) (5.20)

This is the regime in which the signal overcomes the noise, i.e. the global minimum
of the loss has a finite overlap with the signal, which can then be retrieved by
gradient flow (or gradient descent).

In the following, we assume that ∆ < 1/2, and define the gap between the
largest and second largest eigenvalue as κ ≡ 1 − 2∆. In App. E.2, we analytically
show the emergence of a crossover time,

tcross =

(
log N
2η0κ

) 1
1−β

. (5.21)

Before tcross, the system behaves as if the signal was absent, i.e. as in Sec. 5.1.3: this
is the search phase. After tcross, the signal is detected: this is the convergence phase.

104 5.1. Learning rate schedules and how they improve BP performance

The loss becomes:

ℓ(t)− ℓGS =
η0T
2tβ

+

O(e−2η0κt1−β
), β < 1

O(t−2η0κ), β = 1
(5.22)

with ℓGS = −1. We recognize here the exact same result as obtained in the
convex setup of Eq. 5.3: as long as η0 > 1/2κ, the optimal learning rate schedule
is η = η0/t. This indicates that the dynamics has entered a convex basin of
curvature κ.

Optimal learning rate schedule To speed up the initial phase where the signal
hasn’t yet aligned with the signal, one needs to reduce tcross, which is achieved by
using a large learning rate η0 without any decay (β = 0). Passed this crossover,
the system enters a convex basin, and the optimal exponent becomes β = 1. Ergo,
the best schedule is to keep the learning rate constant up to tcross, then to decay it
with β = 1, in contrast with the case without signal where β = 1/2 was optimal, see
Sec. 5.1.3. This is confirmed by the numerical experiments of Fig. 5.5, where we
start decaying the learning rate as η0/(t−ts)−β for different "switch" times ts. Decaying
too early, with ts < tcross, slows down the dynamics, whereas ts > tcross enables the
system to reach the ground state at a rate t−β.

Finite-dimensional effects The two phases in the dynamics are a general feature
when there is a finite gap κ between the largest and second largest eigenvalue of H.
In the N→∞ limit, this only occurs when ∆ < 1/2. However, when ∆ > 1/2, there
is a finite gap at finite N due to the discrete nature of the spectrum, which scales
as κ∼N−2/3 [305]. This induces a crossover time tcross∼N2/3. Hence, decaying
the learning rate as βopt remains optimal for any finite time budget t < tcross, but
for a large budget t > tcross, using the two-step schedule described in this section
becomes optimal.

Spiked Matrix-Tensor model
We finally move to the analysis of the SMT model for which the loss function is

[274]:

L(w) =− N
2∆2

m2 −
√

1
∆2N ∑

i<j
Ji,jwiwj (5.23)

− N
p∆p

mp −
√

(p − 1)!
∆pNp−1 ∑

i1<...<ip

Ji1,...,ip wi1 ..wip ,

where both Jij and Ji1,..,ip sampled i.i.d. from N (0, 1). As understood from the loss
function, the signal is observed through its contraction with a matrix and a tensor

Chapter 5: Algorithm 105

100 102 104

t

10−3

10−2

10−1

100

`
−
` g

s
Search Phase Convergence Phase

−β

100 102 104

t

0.00

0.25

0.50

0.75

1.00

m

tcross

no decay

ts

1

3

10

31

100

316

1000

3162

102 104

10−3

10−1

η
(t

)

t

Figure 5.5: Emergence of a crossover time in the planted SK model. The dashed
black show the loss (left) and overlap with the signal (right) at constant learning
rate η0 = 0.1. The colored lines, show the result of keeping the learning rate
constant until ts and then decaying as η(t) = η0/(t − ts)β (as shown in the inset).
The dashed vertical line marks the theoretical crossover time tcross = log N

2η0κ , it
matches with the time at which the loss, at constant learning rate, saturates. Before
the crossover, decaying the learning rate is detrimental. After the crossover, it
allows the model to converge to zero loss as t−β and to perfectly recover the signal.
We set N = 3000, T = 1., η0 = 0.1, β = 0.8, κ = 0.5.

of order p. This model is a natural next step for our analysis: its loss landscape
is extremely non-convex, but its dynamics are exactly solvable in the N→∞ limit.
They can be described by a closed set of PDEs describing the dynamical evolution of
the quantities m(t), C(t, t′), R(t, t′) and z(t) described in Sec. 5.1.3. The derivation
of these equations is deferred to the appendix E.4.

The difficulty of the problem is controlled by the values of ∆2 and ∆p. Here, we
focus on the Langevin easy phase, defined in [274], where a randomly initialized
system recovers the signal and the overlap converges to a value of order one.* The
dynamics in this setting have been well understood at constant learning rate in
[207], and are shown as a black line in Fig. 5.6 for η0 = 1: the system remains
trapped in the exponentially many threshold states until a time tcross. At tcross, the
system finally detects the signal and the overlap jumps to a value mgs of order
one. This behavior is reminiscent of the grokking phenomenon observed for neural
networks [251].

The colored lines of Fig. 5.6 show that decaying the learning rate from a time
ts affects optimisation in two different ways. (i) If we choose ts < tcross, the
loss actually starts by dropping, in contrast with what was observed in Fig. 5.5.
However, this drop in the loss does not yield an increase of the overlap with the
signal, and the system rapidly gets stuck, remaining in a state of low overlap even

*We must start from a very small initial overlap m0 = 10−10 as explained in [207], since m0 = 0
would cause the system to remain stuck in the N→∞ limit considered here [14].

106 5.1. Learning rate schedules and how they improve BP performance

after tcross. (ii) If we choose ts > tcross, once the signal is detected, the noise is
suppressed, allowing the system to converge to the ground state and the overlap to
increase. Hence, the optimal schedule is again to keep a constant large learning
rate during the search phase (i.e. until tcross) then decay with β = 1. We provide
further theoretical justification for this behavior in App. E.4.

0 10 20 30 40
t

−3.0

−2.5

−2.0

−1.5

−1.0

`

`GS(T = 0)

`GS(T = 1)

0 10 20 30 40
t

0.0

0.2

0.4

0.6

0.8

m

mGS

tcross

no decay

ts

1
3
5
7
13
15
17
20
23
25
27
30

20 30 40

10−1

100

`
−
` G

S

Figure 5.6: Emergence of a crossover time in the SMT model. By fixing β from
start, or anytime before tcross, a randomly initialised system will remain stuck at
threshold states at high loss until tcross which is minimal for constant learning rate
β = 0. In contrast, by decaying the learning rate at long times allows to reach
lower loss solutions (left) with higher overlap with the signal (right). The optimal
schedule is to keep η constant until tcross and then set β = 1. By doing so, we get
the best of both worlds: the first phase minimises tcross while the second allows
to reach more informative solutions. Parameter: β = 0.8, ∆2 = 0.2, ∆p = 6, η0 = 1,
T = 1, dt = 10−2, m0 = 10−10.

5.1.5 Turning to SGD : teacher-student regression

Our work has demonstrated the emergence of a crossover time in a class of inference
problems, before which one should keep the learning rate constant and after which
it becomes useful to decay the learning rate.

We now investigate these findings in a setup that is more realistic but simple
enough to be amenable to analytical treatment in the near future. We consider a
teacher-student regression problem in which a student network is trained to mimick
the ouputs of a teacher by minimising the mean-squared error (mse) over a dataset
of N input-outputs observations {xµ, y∗µ} ∈ {RD, R}. Here both the student S and
the teacher T are two-layer networks:

S(x) =
K

∑
k=1

vkg
(

wk · x√
D

)
T(x) =

M

∑
m=1

ṽm g̃
(

w̃m · x√
D

)
.

We train on i.i.d. gaussian inputs xi∼N (0, 1) via SGD, by minimising the mse

Chapter 5: Algorithm 107

over mini-batches of size B:

mse =
1
B

B

∑
µ=1

(
S(xµ)− T(xµ)

)2 , (5.24)

The optimisation noise is controlled by the batch size B and is absent for full batch
SGD. To study the effect of learning rate scheduling, we focus on a mini-batch of
size 1 for which optimisation noise is high.

Fig. 5.7 shows the mse (calculated over the whole training set) of a student
with K = 2 hidden units learning from a teacher with M = 2 hidden units (results
with different sizes are presented in App. E.5). As before, we keep the learning
rate constant η0 until a time ts then decay it as η0/(t−ts)−β. The phenomenology is
remarkably similar to that of Sec. 5.1.4: there exists a cross-over time tcross such
that if the learning rate is decayed before tcross, optimisation remains stuck at high
mse. In contrast, decaying the learning rate after after tcross enables to tame the
noise associated with optimisation and converge to lower loss solutions.

10−1 100 101 102 103

t

10−3

10−2

10−1

100

`

no decay

ts

1
5
10
20
30
100
200
300
500
1000

Figure 5.7: The crossover time is also reflected in a regression task with SGD.
A K hidden nodes 2 layer neural network student is trained to reproduce the
output of her M hidden nodes teacher on gaussian inputs in D dimensions. As
before, we find that decaying the learning rate before the loss plateaus performance,
but decaying as η(t)∼t−1 once the plateau is reached allows to reach zero loss.
Parameters: D = 500, N = 104, η0 = 10−1, M = K = 2, β = 0.8.

5.1.6 Recap

In this section, we have analysed learning scheduling in a variety of high-dimensional
non-convex optimisation problems. First, we focused on purely non-convex prob-
lems (without any basins of attraction), and showed that the optimal learning rate
decay in the high-dimensional limit has an exponent smaller than one, which varies
according to the degree of non-convexity of the problem at hand (ranging from
0.4 to 0.5 in the problems considered here). Then, we studied models where a

108 5.2. Alternative training algorithm to go beyond BP

FA 
(Lillicrap et al. ’14)

x ϕθ(x)

W1 W2 W3
W4

BP 
(Rumelhart et al. ’86)

y*

e

e
F⊤1 F⊤2 F⊤3

DFA 
(Nøkland ’16)

e
F⊤1 F⊤2 F⊤3

δW1 δW2
W⊤2 W⊤3 W⊤4

δW4δW3

δW1 δW2 δW4δW3

δW1 δW2 δW4δW3

Figure 5.8: Three approaches to the credit assignment problem in deep neural
networks. In back-propagation (BP), the weight updates dwh are computed sequen-
tially by transmitting the error ∆ from layer to layer using the transpose of the
network’s weights wh⊤. In feedback alignment(FA) [190], wh⊤ are replaced by fixed
random feedback matrices Fh. In direct feedback alignment (DFA) [237], the error
is directly injected to each layer using random feedback matrices Fh, enabling
parallelized training.

signal must be recovered in presence of noise. In this case, what is important is not
how fast we decay the learning rate, but when we start decaying it. It is better to
keep a large learning rate in the search phase to find the convex basin as quickly as
possible, and only then start decaying the learning rate.

These theoretical findings are remarkably reminiscent of learning rate schedules
used in practice. Establishing a tighter connection is an important direction for
future work: could the 1/

√
t decay commonly used to train transformers reflect

the properties of the landscape the dynamics take place in? Conversely, could
one predict the optimal decay rate by inspecting the properties of the landscape?
Establishing such connections in simple settings such as that of Sec. 5.1.5 is certainly
within reach thanks to the recent analytical tools developed in [7, 56, 116, 221, 259].

5.2 Alternative training algorithm to go beyond BP

5.2.1 Overview

Up to now, we were only concerned with back-propagation (BP) [267], the algorithm
most widely used to train deep neural networks. Despite its wide-use and its
jaw-dropping achievements of recent years, BP is not problems free. Notably,
Sec. 5.1 demonstrates that the specific choice of hyper-parameters can have drastic
effect on learning and requires careful and tedious tuning.

BP also suffers from more fundamental shortcomings. As described in Sec. 1.4,

Chapter 5: Algorithm 109

it solves the the credit assignment problem of how weights deep in the network
should be updated, given only the output of the network and the target label of the
input, by using the transpose of the network’s weight matrices to transmit the error
signal across the network from one layer to the next, see Fig. 5.8. Thus, it enforces a
symmetry between the weights in the forward and the backward pass, which makes
it a biologically implausible algorithm [69, 123]. It also requires the sequential
update of weights in the backward pass preventing efficient parallelisation.

To overcome these shortcomings, several algorithms which only approximate
the gradient are recently attracting increasing attention. These include feedback
alignment of Lillicrap et al. [190], presented in in Eq. 1.20, and dirrect feedback
allignment of Nøkland [237], in Eq. 1.21. As a reminder, consider a for a fully-
connected neural network of depth H, activation function g and a single output
unit. On on an input x ∈ RD, we denote the pre-activations and the post-activations
at the hth layer of width Kh as in Eq. 1.3:

x0 ≡ x gH(aH) ≡ y = ϕθ(x) (5.25)

xh = g(ah + bh) ah ≡
Kh

∑
k=1

wh
k xh−1

k ∈ RKh , (5.26)

where we defined the output activation gH and set the bias to 0 for simplicity.
Then, the three algorithms update the weights of the network as:

dwh
ij ≡ −ηδh

j xh−1
i

with δh
j =

δh
(BP)j = g′(ah

j)∑
Kh+1
k δh+1

k wh+1
jk for BP

δh
(FA)j = g′(ah

j)∑k δh+1
k Fh

jk for FA

δh
(DFA)j = g′(ah

j)∆Fh
j for DFA

(5.27)

where, given a loss Lemp, we defined as before the error ∆ =
∂Lemp

∂y . The update of
the last layer of weights wH is unchanged in FA and DFA:

dwH
ij = −η∆g

′
H(aH

i)xH−1
j . (5.28)

By replacing the weights wh+1 by a random feedback matrix F in the updates,
FA dispenses with the need of biologically unrealistic symmetric forward and
backward weights [69, 123]. DFA propagates the error directly from the output
layer to each hidden layer of the network through random feedback connections Fh

and thus allows to update different layers in parallel. Fig. 5.8 shows the information
flow of all three algorithms.

110 5.2. Alternative training algorithm to go beyond BP

Despite doubts on whether DFA could scale up to solve practical problems [29,
112], Launay et al. [167] demonstrated on a number of state-of-the-art architectures
and benchmark datasets that networks trained with DFA reached performances
comparable to fine-tuned BP. Yet, both FA and DFA notoriously fail to train con-
volutional networks [29, 128, 166, 227], a common architecture for solving vision
tasks. Understanding these varied results is the primary motivation for this section
which develops theoretical insights into how ad when feedback alignment works.

In more details, we start with an analytical description of DFA dynamics in
the setting of Sec. 4.1 of shallow non-linear networks. We show that in this setup,
DFA proceeds in two steps: an alignment phase, where the forward weights adapt
to the feedback weights to improve the approximation of the gradient, is followed
by a memorisation phase, where the network sacrifices some alignment to minimise
the loss. Out of the same-loss-solutions in the landscape, DFA converges to the
one that maximises gradient alignment, an effect we term “degeneracy breaking”.
We then focus on the alignment phase in the setup of deep linear networks, and
uncover a key quantity underlying gradient alignment (GA): the conditioning of
the alignment matrices. Our framework allows us to analyse the impact of data
structure on DFA, and suggests an explanation for the failure of DFA to train
convolutional layers. Throughout the section, we validate our theoretical results
with experiments that demonstrate the occurence of (i) the Align-then-Memorise
phases of learning, (ii) degeneracy breaking and (iii) layer-wise alignment in deep
neural networks trained on standard vision datasets.

Related Work Lillicrap et al. [190] gave a first theoretical characterisation of
feedback alignment by arguing that for two-layer linear networks, FA works because
the transpose of the second layer of weights w2 tends to align with the random
feedback matrix F1 during training. This weight alignment (WA) leads the weight
updates of FA to align with those of BP, leading to gradient alignment (GA) and thus
to successful learning. Frenkel et al. [95] extended this analysis to the deep linear
case for a variant of DFA called “Direct Random Target Projection” (DRTP) under
the restrictive assumption of training on a single data point. Nøkland [237] also
introduced a layerwise alignment criterion to describe DFA in the deep nonlinear
setup, under the assumption of constant update directions for each data point.

Reproducibility We host all the code to reproduce our experiments online
at https://github.com/sdascoli/dfa-dynamics.

5.2.2 A two-phase learning process

We begin with an exact description of DFA dynamics in the setting of shallow non-
linear networks described in Sec. 4.1. The inputs x ∈ RD are sampled i.i.d. from

https://github.com/sdascoli/dfa-dynamics

Chapter 5: Algorithm 111

10 1 101 103

t
10 4

10 3

10 2

10 1

100
g

K=M

Erf
ReLU

(a) BP, matched

10 1 101 103

t
10 4

10 3

10 2

10 1

100

g

K=M

(b) DFA, matched

10 1 101 103

t
10 4

10 3

10 2

10 1

100

g

K=4M

(c) DFA, overparametrized

Figure 5.9: Learning dynamics of back-propagation and feedback alignment for
sigmoidal and ReLU neural networks learning a target function. Each plot shows
three runs from different initial conditions for every setting, where a shallow neural
network with K hidden nodes tries to learn a teacher network with M hidden nodes.
(a) All networks trained using BP in the matched case K = M achieve perfect test
error. (b) Sigmoidal networks achieve perfect test error with DFA, but the algorithm
fails in some instances to train ReLU networks (K = M) (c) In the over-parametrised
case (K > M), both sigmoidal and ReLU networks achieve perfect generalisation
when trained with DFA. Parameters: D = 500, H = 2, M = 2, η = 0.1, σ0 = 10−2.

the standard normal distribution and we take the high dimensional limit D→∞.
As before, we work in the teacher-student setup where the labels y∗ are given by
a teacher networks with random weights [93, 98, 285, 311, 327] and both teacher
and student are two-layer networks with K, M∼O(1) hidden nodes. We consider
sigmoidal, g(x) = erf (x/

√
2), and ReLU activation functions, g(x) = max(0, x). We

asses the student’s performance on the task through its pmse or test error:

pmse(x) ≡ 1
2

E
x
(ϕ(x)− y∗)2 ≡ 1

2
E
x

∆2, (5.29)

The expectation E is taken over the inputs for a given teacher and student networks.
In this shallow setup, FA and DFA are equivalent, and only involve one feedback
matrix, F1 ∈ RK which back-propagates the error signal ∆ to the first layer weights
w1. The updates of the second layer of weights w2 are the same as for BP.

Performance of BP vs. DFA We show the evolution of the test error (5.29) of
sigmoidal and ReLU students trained via vanilla BP in the “matched” case K = M
in Fig. 5.9 a, for three random choices of the initial weights with standard deviation
σ0 = 10−2. In all cases, learning proceeds in three phases: an initial exponential
decay; a phase where the error stays constant, the “plateau” [93, 270, 321]; and
finally another exponential decay towards zero test error.

Sigmoidal students trained by DFA always achieve perfect generalisation when
started from different initial weights with a different feedback vector each time
(blue in Fig. 5.9 b) raising a first question: if the student has to align its second-layer
weights with the random feedback vector in order to retrieve the BP gradient [190],
i.e. w2 ∝ F1, how can it recover the teacher weights perfectly, i.e. w2 = w̃2?

112 5.2. Alternative training algorithm to go beyond BP

10 1 100 101 102 103 104

t
10 3

10 2

10 1

100

g

BP
FA
Numerical
Analytical

v1

v2

v1

v2

v1

v2

(a) Generalization dynamics

10 1 100 101 102 103 104

t
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Al
ig

nm
en

t

Align Memorise

(b) Alignment dynamics

-1+1

+1

+1

+1

+1

+1

+1

-1

-1

+1

+1

-1

+1

-1 -1

-1

+1 -1

-1

-1

+0.5

-0.5

+0.3
Memorize

Most aligned

solution

Initial

Align

Optimization trajectory

Feedback vector

Degenerate solutions

Final

(c) Degeneracy breaking

Figure 5.10: (a) Theory gives exact prediction for the learning dynamics. We plot
learning curves for BP and DFA obtained from (i) a single simulation (solid lines),
(ii) integration of the ODEs for BP dynamics [38, 270] (orange dots), (iii) integration
of the ODEs for DFA derived here (blue dots). Insets: Teacher second-layer weights
(red) as well as the degenerate solutions (light red) together with the feedback vector
F1 (green) and the student second-layer weights v (blue) at three different times
during training with DFA. Parameters: D = 500, K = M = 2, η = 0.1, σ0 = 10−2.
(b) Align-then-Memorise process. Alignment (cosine similarity) between the
student’s second layer weights and the feedback vector. In the align phase, the
alignment increases, and reaches its maximal value when the test loss reaches the
plateau. Then it decreases in the memorization phase, as the student recovers the
teacher weights.
(c) The degeneracy breaking mechanism. There are multiple degenerate global
minima in the optimisation landscape: they are related through a discrete symmetry
transformation of the weights that leaves the student’s output unchanged. DFA
chooses the solution which maximises the alignment with the feedback vector.

For ReLU networks, over-parametrisation is key to the consistent success of
DFA: while some students with K = M fail to reach zero test error (orange in
Fig. 5.9 b), almost every ReLU student having more parameters than her teacher
learns perfectly (K = 4M in Fig. 5.9 c). A second question follows: how does
over-parameterisation help ReLU students achieve zero test error?

An analytical theory for DFA dynamics To answer these two questions, we study
the dynamics of DFA in the limit of infinite training data as in Sec. 4.1 where the
DFA weight updates, Eq. 5.27, are computed at every step on a previously unseen
sample (x, y∗). For BP, the theoretical analysis is the one described in Sec. 4.1.
For DFA, the rationale is the same and the only change in the equations is the
replacements of the student’s second layer weight by the feedback vector in the
update of the first layer Eq. 4.5 i.e.:

wk
µ+1 − wk

µ ≡ dwk =
ηw√

D
f kg′

(
ak

µ

)
∆µxµ. (5.30)

Chapter 5: Algorithm 113

with f k ≡ vk
µ for BP and to the kth element if the feedback vector FK

1 for DFA. The
first contribution of Refinetti et al. [259] is the extension of the ODEs to training
with DFA, thus predicting the test error of a student at all times (see SM F.1 for
the details). The accuracy of the predictions from the ODEs is demonstrated in
Fig. 5.10 a, where the comparison between a single simulation of training a two-
layer net with BP (orange) and DFA (blue) and theoretical predictions yield perfect
agreement.

Sigmoidal networks learn through “degeneracy breaking”
The test loss of a sigmoidal student trained on a teacher with the same number of
neurones as herself (K = M) contains several global minima, which all correspond
to fixed points of the ODEs (F.7). Among these is a student with exactly the same
weights as her teacher. The symmetry erf(z) = − erf(−z) induces a student with
weights {w̃1, w̃2} to have the same test error as a sigmoidal student with weights
{−w̃1,−w̃2}. Thus, as illustrated in Fig. 5.10 c, the problem of learning a teacher
has various degenerate solutions. A student trained with vanilla BP converges to
any one of these solutions, depending on the initial conditions.

Alignment phase A student trained using DFA has to fulfil the same objective
(zero test error), with an additional constraint: her second-layer weights w2 need to
align with the feedback vector F1 to ensure the first-layer weights are updated in
the direction that minimises the test error.

And indeed, an analysis of the ODEs (cf. Sec. F.2) reveals that in the early
phase of training, ẇ2∼F and so w2 grows in the direction of the feedback vector
F1 resulting in an increasing overlap between w2 and F1. In this alignment phase
of learning, shown in Fig. 5.10 b, w2 becomes perfectly aligned with F1. DFA has
perfectly recovered the weight updates for w1 of BP, but the second layer has lost
its expressivity (it is simply aligned to the random feedback vector).

Memorisation phase The expressivity of the student is restored in the memorisation
phase of learning, where the second layer weights move away from F1 and towards
the global minimum of the test error that maintains the highest overlap with the
feedback vector. In other words, students solve this constrained optimisation
problem by consistently converging to the global minimum of the test loss that
simultaneously maximises the overlap between w2 and F1, and thus between the
DFA gradient and the BP gradient. For DFA, the global minima of the test loss are
not equivalent, this “degeneracy breaking’ is illustrated in Fig. 5.10 c.

Degeneracy breaking requires over-parametrisation for ReLU networks
The ReLU activation function possesses the continuous symmetry max(0, x) =

114 5.2. Alternative training algorithm to go beyond BP

γ max(0, x/γ) for any γ > 0 preventing ReLU networks to compensate a change
of sign of wk

2 with a change of sign of wk
1. Consequently, a ReLU student can only

simultaneously align to the feedback vector F1 and recover the teacher’s second
layer w̃2 if at least M elements of F1 have the same sign as w̃2. The inset of Fig. 5.11
shows that a student trained on a teacher with M = 2 second-layer weights w̃m

2 = 1
only converges to zero test error if the feedback vector has 2 positive elements
(green). If instead the feedback vector has only 0 (blue) or 1 (orange) positive entry,
the student will settle at a finite test error. More generally, the probability of perfect
recovery for a student with K ≥ M nodes sampled randomly is given analytically
as:

P(learn) =
1

2K

M

∑
k=0

(
K
k

)
. (5.31)

As shown in Fig. 5.11, this formula matches with simulations. Note that the
importance of the “correct” sign for the feedback matrices was also observed in
deep neural networks by Liao et al. [187].

2 3 4 5 6 7 8
K

0.2

0.4

0.6

0.8

1.0

1.2

P(
le

ar
n)

Analytical
Numerical

t

g 0 pos
1 pos
2 pos

Figure 5.11: Over-
parameterisation improves
performance of shallow ReLU
networks. We show the learning
dynamics of a student with
K = 3 hidden nodes trained on a
teacher with M = 2 nodes and
w̃m

2 = 1 if the feedback vector has
0, 1, or 2 positive entries. Inset:
Probability of achieving zero test
error (Eq. 5.31, line) compared to
the fraction of simulations that
converged to zero test error (out
of 50, crosses). Other parameters:
D = 500, η = 0.1, σ0 = 10−2.

Degeneracy breaking in deep networks

We explore to what extent degeneracy break-
ing occurs in deep nonlinear networks by train-
ing 4-layer multi-layer perceptrons (MLPs) with
100 nodes per layer for 1000 epochs with both
BP and DFA, on the MNIST and CIFAR10
datasets, with Tanh and ReLU nonlinearities
(cf. App. F.5 for further experimental details).
The dynamics of the training loss, shown in the
left of Fig. 5.12, are very similar for BP and DFA.

From degeneracy breaking, one expects DFA
to drive the optimisation path towards a special
region of the loss landscape determined by the
feedback matrices. We test this hypothesis by
measuring whether networks trained with the
same feedback matrices from different initial
weights converge towards the same region of
the landscape. The cosine similarity between
the vectors obtained by stacking the weights
of two networks trained independently using
BP reaches at most 10−2 (right of Fig. 5.12), sig-

Chapter 5: Algorithm 115

101 103

Epochs

0

20

40

60

80

Tr
ai

n
er

ro
r

101 103

Epochs

10 3

10 2

10 1

100

C
os

in
e

si
m

ila
ri

ty

MNIST relu
MNIST tanh

CIFAR10 tanh
CIFAR10 relu

DFA
BP

Figure 5.12: Degeneracy breaking also occurs in deep neural networks. (Left) We
plot the training accuracy and the cosine similarity between the weights of four-
layer fully-connected neural networks with sigmoidal and ReLU activations during
training on MNIST and CIFAR10. Averages taken over 10 runs; for exp. details see
Sec. 5.2.2. (Right) Cartoon of the degeneracy breaking process in the loss landscape
of a deep network: while the optimisation paths of models trained with SGD
diverge in the loss landscape, with DFA they converge to a region of the landscape
determined by the feedback matrices.

nalling that they reach very distinct minima. In contrast, when trained with DFA,
networks reach a cosine similarity between 0.5 and 1 at convergence, thereby con-
firming that DFA breaks the degeneracy between the solutions in the landscape
and biases towards a special region of the loss landscape, both for sigmoidal and
ReLU activation functions.

This result suggests that heavily over-parametrised neural networks used in
practice can be trained successfully with DFA because they have a large number
of degenerate solutions. We leave a more detailed exploration of the interplay
between DFA and the loss landscape for future work. As we discuss in Sec. 5.2.4
the Align-then-Memorise mechanism sketched in Fig. 5.10 c also occurs in deep
non-linear networks.

5.2.3 How do gradients align in deep networks?

This section focuses on the alignment phase of learning. In the two-layer setup
there is a single feedback vector F1, of same dimensions as the second layer w2, and
to which w2 must align in order for the first layer to recover the true gradient.

In deep networks, as each layer wh has a distinct feedback matrix Fh of different
size of wh, it is not obvious how the weights must align to ensure gradient alignment.
We study how the alignment occurs by considering deep linear networks with
H layers without bias, without any assumption on the training data. While the
expressivity of linear networks is naturally limited, their learning dynamics is

116 5.2. Alternative training algorithm to go beyond BP

non-linear and rich enough to give insights that carry over to the non-linear case
both for BP [5, 24, 162, 169, 275] and for DFA [95, 190, 237].

Weight alignment as a natural structure
In the following, we assume that the weights are initialised to zero. With BP, they
would stay zero at all times, but for DFA the layers become nonzero sequentially,
from the bottom to the top layer. In the linear setup, the updates of the first two
layers at time t can be written in terms of the corresponding input and error vectors
using Eq. (5.27)*:

dwt
1 = −η(F1∆t)xT

t , dwt
2 = −η(F2∆t)(w1xt)

⊤ (5.32)

Summing these updates shows that the first layer performs Hebbian learning
modulated by the feedback matrix F1:

wt
1 = −η ∑t−1

t′=0 F1∆t′x⊤t′ = F1At
1, (5.33)

At
1 = −η ∑t−1

t′=0 ∆t′x⊤t′ (5.34)

Plugging this result into dwt
2, we obtain:

wt
2 = −η

t−1

∑
t′=0

F2∆t(At′
1 xt′)

⊤F⊤
1 = F2At

2F⊤
1 , (5.35)

At
2 = η2

t−1

∑
t′=0

t′−1

∑
t′′=0

(xt′ · xt′′)∆t′e⊤t′′ . (5.36)

When iterated, the procedure above reveals that DFA naturally leads to weak weight
alignment of the network weights to the feedback matrices:

Weak WA: wt
1<l<H =Fh At

hF⊤
h−1, wt

H =At
H F⊤

H−1, (5.37)

where we defined the alignment matrices At
h≥2 ∈ RKH×KH :

At
h≥2 = η2

t−1

∑
t′=0

t′−1

∑
t′′=0

(Bt′
h xt′) · (Bt′′

h xt′′)∆t′∆⊤
t′′ . (5.38)

Bh ∈ RKh×Kh is defined recursively as a function of the feedback matrices only and
its expression together with the full derivation is deferred to App. F.3. These results
can be adapted both to DRTP [95], another variant of feedback alignment where

*We implicitly assume a minibatch size of 1 for notational simplicity, but conclusions are
unchanged in the finite-batch setup.

Chapter 5: Algorithm 117

∆t = −yt and to FA by performing the replacement Fh→FhFh+1 . . . FH−1.

Weight alignment leads to gradient alignment
Weak WA builds throughout training, but does not directly imply GA. However, if
the alignment matrices become proportional to the identity, we obtain strong weight
alignment:

Strong WA: wt
1<h<H ∝ FhF⊤

h−1, wt
h ∝ F⊤

H−1. (5.39)

Additionally, since GA requires Fhe ∝ w⊤
h+1δah+1 (Eqs. 5.27 and 5.27), strong

WA directly implies GA if the feedback matrices Fh≥2 are assumed left-orthogonal,
i.e. F⊤

h FH = IKH . Strong WA of (5.39) induces the weights, by the orthogonality
condition, to cancel out by pairs of two:

w⊤
h+1δah+1 ∝ FhF⊤

h+1Fh+1 . . . F⊤
H−1FH−1e = Fhe. (5.40)

The above suggests that taking the feedback matrices left-orthogonal is favourable
for GA. If the feedback matrices elements are sampled i.i.d. from a Gaussian
distribution, GA still holds in expectation since E

[
F⊤

h Fh
]

∝ IKH .

Quantifying gradient alignment Our analysis shows that key to GA are the
alignment matrices: the closer they are to identity, i.e. the better their conditioning,
the stronger the GA. This comes at the price of restricted expressivity, since layers
are encouraged to align to a product of (random) feedback matrices. In the extreme
case of strong WA, the freedom of layers h ≥ 2 is entirely sacrificed to allow
learning in the first layer! This is not harmful for the linear networks as the first
layer alone is enough to maintain full expressivity*. Nonlinear networks, as argued
in Sec. 5.2.2, rely on the Degeneracy Breaking mechanism to recover expressivity.

5.2.4 The case of deep nonlinear networks

In this section, we show that the theoretical predictions of the previous two sections
hold remarkably well in deep nonlinear networks trained on standard vision
datasets.

Weight Alignment occurs like in the linear setup
To determine whether WA described in Sec. 5.2.3 holds in the deep nonlinear setup

*such an alignment was indeed already observed in the linear setup for BP [149].

118 5.2. Alternative training algorithm to go beyond BP

101 103

Epochs

0.0

0.1

0.2

0.3

0.4

W
ei

gh
t a

lig
nm

en
t

101 103

Epochs

0.0

0.2

0.4

0.6

0.8

G
ra

di
en

t a
lig

nm
en

t

MNIST relu
MNIST tanh
CIFAR10 tanh
CIFAR10 relu

(a) Global alignment dynamics of deep
nonlinear networks exhibits Align-then-
Memorise. Global weight and gradient
alignments, as defined in (5.41), varying
the activation function and the dataset.
Shaded regions represent the (small) vari-
ability over 10 runs.

101 103

Epochs

0.0

0.2

0.4

0.6

0.8

W
ei

gh
t a

lig
nm

en
t

layer 2
layer 3
layer 4

101 103

Epochs

0.0

0.2

0.4

0.6

0.8

G
ra

di
en

t a
lig

nm
en

t

layer 1
layer 2
layer 3

(b) Layerwise alignment dynamics re-
veal sequential Align-then-Memorise.
Layerwise weight and gradient align-
ments as defined in (5.42), for a ReLU
network trained on CIFAR10 with 10%
label corruption. Shaded regions repre-
sent the (small) variability over 10 runs.

of Sec. 5.2.2, we introduce the global and layerwise alignment observables:

WA=∡ (F, W), GA=∡
(

GDFA, GBP
)

(5.41)

WAh≥2=∡(Fh,Wh), GAh≥2=∡
(

GDFA
h ,GBP

h

)
, (5.42)

where ∡(A, B) = Vec(A) · Vec(B)/∥A∥∥B∥ and

F =
(

F2F⊤
1 , . . . , FH−1F⊤

H−2, F⊤
H−1

)
,

W(t) =
(
wt

2, . . . , wt
H−1, wt

H
)

,

G(t) =
(
δ1t, . . . , δt

H−1
)

.

Note that the layer-wise alignment of wh with FhF⊤
h−1 was never measured before:

it differs from the alignment of Fh with wh+1 . . . wH observed in [68], which is more
akin to GA.

If W and F were uncorrelated, the WA defined in (5.41) would be vanishing as
the width of the layer grows large. Remarkably, WA becomes of order one after a
few epochs as shown in Fig. 5.13a (left), and strongly correlates with GA (right).
This suggests that the layer-wise WA uncovered for linear networks with weights
initialised to zero also drives GA in the general case.

Align-then-Memorise occurs from bottom layers to top
As can be seen in Fig. 5.13a, WA clearly reaches a maximum then decreases,
as expected from the Align-then-Memorise process. Notice that the decrease is
stronger for CIFAR10 than it is for MNIST, since CIFAR-10 is much harder to fit
than MNIST: more WA needs to be sacrificed. Increasing label corruption similarly
makes the datasets harder to fit, and decreases the final WA, as detailed in SM F.5.

Chapter 5: Algorithm 119

10 1 100 101 102

Epochs

0

20

40

60

80

Tr
ai

n
er

ro
r

p=0
p=0.1
p=0.2
p=0.5
p=0.9

10 1 100 101 102

Epochs

0.0

0.2

0.4

0.6

0.8

G
ra

di
en

t a
lig

nm
en

t

Weight align

Figure 5.15: Label corruption hampers alignment in the early stages of training.
We see that the higher the label corruption, the more time WA and GA take to start
increasing, since the network initially predicts equal probabilities over the output
classes.

However, another question arises: why does the GA keep increasing in this case, in
spite of the decreasing WA?

To answer this question, we need to disentangle the dynamics of the layers
of the network, as in Eq. (5.42). In Fig. 5.13b, we focus on the ReLU network
applied to CIFAR10, and shuffle 10% of the labels in the training set to make
the Align-then-Memorise procedure more easily visible. Although the network
contains 4 layers of weights, we only have 3 curves for WA and GA: WA is only
defined for layers 2 to 4 according to Eq. (5.42), whereas GA of the last layer is not
represented here since it is always equal to one.

As can be seen, the second layer is the first to start aligning: it reaches its
maximal WA around 1000 epochs (orange dashed line), then decreases. The
third layer starts aligning later and reaches its maximal WA around 2000 epochs
(green dashed line), then decreases. As for the last layer, the WA is monotonically
increasing. Hence, the Align-then-Memorise mechanism operates in a layerwise
fashion, starting from the bottom layers to the top layers.

Note that the WA of the last layers is the most crucial, since it affects the GA of
all the layers below, whereas the WA of the second layer only affects the GA of the
first layer. It therefore makes sense to keep the WA of the last layers high, and let
the bottom layers perform the memorization first. This is reminiscent of the linear
setup, where all the layers align except for the first, which does all the learning.
In fact, this strategy enables the GA of each individual layer to keep increasing
until late times: the diminishing WA of the bottom layers is compensated by the
increasing WA of the top layers.

5.2.5 What can hamper alignment?

120 5.2. Alternative training algorithm to go beyond BP

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Gradient alignment

Weight align

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Figure 5.14: Badly condi-
tioned output statistics can
hamper alignment. WA and
GA at the final point of
training decrease when the
output classes are correlated
(β < 1) or of different vari-
ances (α < 1).

We demonstrated that GA is enabled by the WA
mechanism, both theoretically for linear networks
and numerically for nonlinear networks. In this
section, we leverage our analysis of WA to identify
situations in which GA fails.

Alignment is data-dependent
In the linear case, GA occurs if the alignment ma-

trices presented in Sec. 5.2.3 are well conditioned.
Note that if the output size KH is equal to one, e.g.
for scalar regression or binary classification tasks,
then the alignment matrices are simply scalars, and
GA is guaranteed. When this is not the case, one
can obtain the deviation from GA by studying the
expression of the alignment matrices (5.38). They
are formed by summing outer products of the error
vectors ∆t′∆⊤

t′′ , where ∆t = yt−y∗t . Therefore, good conditioning requires the differ-
ent components of the errors to be uncorrelated and of similar variances. This can
be violated by (i) the targets y∗, or (ii) the predictions y ≡ ϕθ(x).

(i) Structure of data The first scenario can be demonstrated in a simple regression
task on i.i.d. Gaussian inputs x∼R10. The targets y∗ ∈ R2 are randomly sampled
from the following distribution:

y∗∼N (0, Σ), Σ=

(
1 α(1 − β)

α(1 − β) α2

)
, α, β≤ 1. (5.43)

In Fig. 5.14, we show the final WA and GA of a 3-layer ReLU network trained
for 103 epochs on 103 examples sampled from this distribution (further details in
SM F.5). As predicted, imbalanced (α < 1) or correlated (β < 1) target statistics
hamper WA and GA. Note that the inputs also come into play in Eq. (5.38): a
more detailed theoretical analysis of the impact of input and target statistics on
alignment is deferred to SM F.4.

(ii) Effect of noise For classification tasks, the targets y∗ are one-hot encodings
whose statistics are naturally well conditioned. However, alignment can be de-
graded if the statistics of the predictions y become correlated.

One can enforce such a correlation in CIFAR10 by shuffling a fraction p of the
labels. The WA and GA dynamics of a 3-layer ReLU network are shown in Fig. 5.15.
At high p, the network can only perform random guessing during the first few
epochs, and assigns equal probabilities to the 10 classes. The correlated structure of

Chapter 5: Algorithm 121

the predictions prevents alignment until the network starts to fit the random labels:
the predictions of the different classes then decouple and WA takes off, leading to
GA.

Alignment is impossible for convolutional layers
A convolutional layer with filters Hh can be represented by a large fully-connected
layer whose weights are represented by a block Toeplitz matrix ϕ(Hh) [75]. This
matrix has repeated blocks due to weight sharing, and most of its weights are
equal to zero due to locality. In order to verify WA and therefore GA, the following
condition must hold: ϕ(Hh) ∝ FhF⊤

h−1. Yet, due to the very constrained structure of
ϕ(Hh), this is impossible for a general choice of Fh. Therefore, the WA mechanism
suggests a simple explanation for why GA doesn’t occur in vanilla CNNs, and
confirms the previously stated hypothesis that CNNs don’t have enough flexibility
to align [166].

In the case of convolutional layers, this lack of alignment makes learning near
to impossible, and has lead practitioners to design alternatives [128, 227]. However,
the extent to which alignment correlates with good performance in the general
setup (both in terms of fitting and generalisation) is a complex question which
we leave for future work. Indeed, nothing prevents DFA from finding a good
optimisation path, different from the one followed by BP. Conversely, obtaining
high gradient alignment at the end of training is not a sufficient condition for DFA
to retrieve the results of BP, e.g. if the initial trajectory leads to a wrong direction.

Chapter 6

Looking back and beyond

This manuscript reviews several contributions brought by my thesis to the theory
of deep leaning. Each of these can be place in the space defined by the three players
of machine learning: the architecture, the data and the algorithm, see Fig. 6.1. To
conclude, we summarise how they widen our theoretical knowledge in machine
learning and propose several axis of future research to expand it further.

Data

Algorith
m

A
rc

hi
te

ct
ur

e

[1, 5]

[6]

[2] [3]

[4]

Figure 6.1: The works detailed in
this thesis can be placed in the
3D space defined in Fig. 1.2.

In Chap. 3 and [76, 201], we made progress
on the architecture side by studying why over-
parametrisation benefits generalisation in neural
networks at odds with the classical variance-bias
trade off. By pinning down how various sources
of randomness contribute to the test error, we
concluded that overparametrisation improves
generalisation by taming the fluctuations stem-
ming from the noise in the labels and from the
choice of initial weights. These are at the root
of the "double-descent" curve displayed by the
test error.

Theoretical results like these, however, con-
sider mainly one hidden layer networks, and
even then, only in some specific scalings (the
ODE limit [38, 269, 270], the lazy regime [145] or the mean-field limit [63, 104, 316]).
A major challenge is to develop a theory for deeper networks which is missing
except in some limits [145, 175]. A first step to advance this theory is to study
the rectangular limit of one hidden layer networks in which the hidden layer di-
mension K scales linearly with input dimension D i.e. K, D→∞ with K/D∼O(1).
This limit allows for various layers of the same type to be stacked on top of each

122

Chapter 6: Looking back and beyond 123

other, in contrast to the mean-field limit, where the hidden layer is sent to infinity
before the input dimensions, or the ODE limit where the hidden layer is of order
1. The technical difficulty in treating the rectangular case is that the number of
dynamical parameters scales as D2, reminiscent of the dictionary learning prob-
lem [204, 205, 280, 304] for which Barbier and Macris [27] and Troiani et al. [306]
recently made significant contributions. The analysis could build on the tools
developed in Sec. 4.1, and focus on one-pass SGD with vanilla i.i.d. Gaussian
inputs. One-pass SGD removes correlations between training samples and allows
to describe the training dynamics as a Markov process. Gaussian i.i.d. inputs
simplify the analysis as they have identity covariance matrix. Finding a theoretical
description for the training dynamics of rectangular networks might bring insights
into how to treat deep fully connected networks. It is an interesting challenge
which I hope to address in future.

Fully connected networks, however, are rarely used by practitioners who most
often exploit the power of more complex architectures for which theoretical results
are scarce. Describing different types of layers, what they learn and how, is a key
step to develop a theory of machine learning. Again, by working in the online
learning limit, one might identify the relevant order parameters and understand
learning in these architecture models.

Architecture is deeply intertwined with data structure and theoreticians aim at
understanding how the two aspects are linked. We established in Sec. 4.2 that two
layer neural networks, with few hidden nodes successfully classify a mixture of
Gaussian at much lower signal-to-noise ratio than lazy-methods. This emphasises
the importance, for structured tasks, of choosing architectures which extract the
features in the data. Another manifestation of the interplay between data structure
and architecture is the recurring observation that simple models only exploit the
first two moments of their inputs. Indeed, we saw in Chap. 4, that for two layer
networks and shallow auto-encoders in the limit of small hidden layer and large
input dimension, training on gaussian data is indistinguishable from training
on real data, a result summarised in the gaussian equivalence theorem (GET) [118].
However, in applications neural networks exploit much more than the mean and
covariance of their inputs. Pinning down the conditions under which they do so
requires understanding the limits of the GET: when and how are networks able
to exploit higher order moments? what in the architecture and/or data allows
them to do so and why? Answering these questions requires to carefully design
the models we work with, simple enough to be analysed theoretically yet complex
enough to discriminate between gaussian and non-gaussian data. Progress was
made by Ingrosso and Goldt [142] but crisp theoretical answers are still missing.

124

These might reveal insights into the intrinsic relations between the architecture, the
task and the data.

Another way to understand the role of data structure is to focus on feature
detection in unsupervised learning which remains much less studied than its super-
vised counterpart. In Sec. 4.7, we extended the current description of linear shallow
autoencoders to encompass non-linear models. We identified which input features
the network picks up and showed that these features are learned sequentially in
order of importance. We pined-down architectural constraints required for the
network to successfully reconstruct its input and finally proposed a variant to
vanilla SGD which enables the autoencoder to learn a one to one mapping between
its weights and input features. Nonetheless, shallow non-linear autoencoders are
simple models which, unlike realistic networks, only exploit the mean and covari-
ance of the inputs. A compelling research topic to further explore representation
learning is to consider generative models, such as variational autoencoders [154]
which construct "fake" images from Gaussian inputs.

The description of the learning dynamics of ANNs carried out in both [260]
and [258] is intrinsically linked to the algorithm used for training. Nowadays,
BP is the most widely used algorithm although its properties remain, for the
most part, obscure. For instance, we saw in Sec. 4.2 [260], that shallow fully-
connected networks with 4 hidden nodes can successfully learn the XOR-like
mixture. However, for some initial conditions, the learning dynamics remain
stuck in "bad weight configurations" from where they struggle to escape 4.4. This
occurrs less frequently for over-parametrised models. A complete description of
how performance depends on the choice of initial conditions is fundamental and
still missing both in this toy model and in deep neural networks. Performance
also depends on the various hyper-parameters chosen for training and on the
multiple add-ons to BP. Indeed, we demonstrated in Sec. 5.1 [77] that a good choice
of learning rate schedule can speed-up and improve optimisation in non-convex
problems. Extending the analysis to realistic settings and nailing down how they
impact performance in deep neural networks is an interesting future work direction.

More fundamentally, we saw in Sec. 5.2 that the BP backward pass can be
simplified into DFA without hampering performance thanks to a two stage learning
process. First networks reduce their expressivity to ensure alignment between the
DFA and the BP gradient, then they sacrifice some alignment and converge to
the solution. This leads to a "degeneracy breaking" effect: networks consistently
converge to the solution maximising alignment between the BP gradient and the
DFA gradient. Crucially, this suggests that, when training fully connected networks
with BP, part of the information carried by the weights in the backward pass is

Chapter 6: Looking back and beyond 125

unnecessary. These results make progress towards pining down how much and
under which conditions one can simplify the BP updates while still performing
well. Indeed, architectural constrains, as in convolutional neural networks, and
structure in the data can hamper alignment in the first phase thus preventing
networks to learn. This highlights once more, the profound connection between
architecture, data and algorithm.

Broadening the theory of deep learning is essential as technical innovations
occur at remarkable speed, and so does the complexity of networks used in practice.
State of the art neural networks have varied architectures; each of them most suited
for a different kind of tasks. These include convolutional neural networks [96, 172,
279] for image related tasks, transformers [307], recurrent neural networks [108, 267]
, residual networks [133, 140, 295] and many mix between these. In addition, to
train a given architecture, there are many add-ons to vanilla BP such as weight-
decay [161], different types of optimisers [87, 127, 153], momentum [267, 298, 299],
learning rate schedules [147, 222, 245, 292] and many more. Data preprocessing
is also very involved, with techniques including data augmentation [289] among
others. To grasp how these varied tools impact performance, it is essential to
underpin the underlying mechanism driving the success of modern machine
learning. We proposed some directions of future research to do so notably by
describing the role and interplay between data structure, architecture and algorithm.

We conclude this manuscript, by emphasising that, as long as we do not
understand the "black box of AI", we have to address a number of questions on
when and how to use deep learning and on its possible ethical consequences [157,
247]. What is learned by the network? How does it depend on the training data
used? How different can inputs be from those in the training dataset in order for
networks to produce a sensible output? Can we trust these technologies enough to
integrate them in war drones [226, 242], targeted advertising [78, 130], self-driving
cars [82, 216], the judiciary systems [88, 132] and other high impact fields?

Bibliography

[1] S. Abbasi, M. Hajabdollahi, N. Karimi, and S. Samavi. Modeling teacher-
student techniques in deep neural networks for knowledge distillation. In
2020 International Conference on Machine Vision and Image Processing (MVIP),
pages 1–6. IEEE, 2020.

[2] B. Adlam and J. Pennington. Understanding double descent requires a fine-
grained bias-variance decomposition. Advances in neural information processing
systems, 33:11022–11032, 2020.

[3] M. Advani, S. Lahiri, and S. Ganguli. Statistical mechanics of complex neural
systems and high dimensional data. Journal of Statistical Mechanics: Theory
and Experiment, 2013(03):P03014, 2013.

[4] M.S. Advani and A.M. Saxe. High-dimensional dynamics of generalization
error in neural networks. arXiv:1710.03667, 2017.

[5] M.S. Advani, A.M. Saxe, and H. Sompolinsky. High-dimensional dynamics
of generalization error in neural networks. Neural Networks, 132:428–446,
2020.

[6] A. Aggarwal, P. Lopatto, and H.T. Yau. Goe statistics for levy matrices.
arXiv:1806.07363, 2018.

[7] E. Agoritsas, G. Biroli, P. Urbani, and F. Zamponi. Out-of-equilibrium dy-
namical mean-field equations for the perceptron model. Journal of Physics A:
Mathematical and Theoretical, 51(8):085002, 2018.

[8] M.A. Aizerman, B. M., and L.I. Rozonoér. Probability problem of pattern
recognition learning and potential functions method. Avtomat. i Telemekh, 25:
1307–1323, 1964.

[9] Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via
over-parameterization, 2018.

126

Bibliography 127

[10] Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning, pages
242–252. PMLR, 2019.

[11] S. Arora, S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang. On exact com-
putation with an infinitely wide neural net. In Advances in Neural Information
Processing Systems, pages 8141–8150, 2019.

[12] S. Arora, N. Cohen, and E. Hazan. On the optimization of deep networks:
Implicit acceleration by overparameterization. In International Conference on
Machine Learning, pages 244–253. PMLR, 2018.

[13] G.B. Arous, R. Gheissari, and A. Jagannath. Algorithmic thresholds for tensor
pca. The Annals of Probability, 48(4):2052–2087, 2020.

[14] G.B. Arous, R. Gheissari, and A. Jagannath. A classification for the per-
formance of online sgd for high-dimensional inference. arXiv:2003.10409,
2020.

[15] B. Aubin, A. Maillard, J. Barbier, F. Krzakala, N. Macris, and L. Zdeborová.
The committee machine: Computational to statistical gaps in learning a two-
layers neural network. In Advances in Neural Information Processing Systems 31,
pages 3227–3238, 2018.

[16] A. Auffinger, G. Ben Arous, and J. Černỳ. Random matrices and complexity
of spin glasses. Communications on Pure and Applied Mathematics, 66(2):165–201,
2013.

[17] J.L. Ba, J.R. Kiros, and G.E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[18] F. Bach. Breaking the curse of dimensionality with convex neural networks.
The Journal of Machine Learning Research, 18(1):629–681, 2017.

[19] F. Bach. Learning theory from first principles, 2021.

[20] Y. Bahri, J. Kadmon, J. Pennington, S. Schoenholz, J. Sohl-Dickstein, and
S. Ganguli. Statistical Mechanics of Deep Learning. Annual Review of Con-
densed Matter Physics, 11(1):501–528, 2020.

[21] J. Baik, G. Ben Arous, and S. Péché. Phase transition of the largest eigenvalue
for nonnull complex sample covariance matrices. The Annals of Probability, 33
(5):1643–1697, 2005.

128 Bibliography

[22] M. Baity-Jesi, L. Sagun, M. Geiger, S. Spigler, G. Arous, C. Cammarota,
Y. LeCun, M. Wyart, and G. Biroli. Comparing Dynamics: Deep Neural
Networks versus Glassy Systems. In Proceedings of the 35th International
Conference on Machine Learning, 2018.

[23] A. Baker, I. Biazzo, A. Braunstein, G. Catania, L. Dall’Asta, A. Ingrosso,
F. Krzakala, F. Mazza, M. Mézard, A.P. Muntoni, M. Refinetti, S. Sarao Man-
nelli, and L. Zdeborová. Epidemic mitigation by statistical inference from
contact tracing data. Proceedings of the National Academy of Sciences, 118(32):
e2106548118, Jul 2021.

[24] P. Baldi and K. Hornik. Neural networks and principal component analysis:
Learning from examples without local minima. Neural networks, 2(1):53–58,
1989.

[25] X. Bao, J. Lucas, S. Sachdeva, and R.B. Grosse. Regularized linear autoen-
coders recover the principal components, eventually. In H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Informa-
tion Processing Systems, volume 33, pages 6971–6981. 2020.

[26] D. Barbier, P.H. Pimenta, L.F. Cugliandolo, and D.A. Stariolo. Finite size ef-
fects and loss of self-averageness in the relaxational dynamics of the spherical
sherrington-kirkpatrick model. arXiv preprint arXiv:2103.12654, 2021.

[27] J. Barbier and N. Macris. Statistical limits of dictionary learning: random
matrix theory and the spectral replica method. arXiv preprint arXiv:2109.06610,
2021.

[28] A.R. Barron. Universal approximation bounds for superpositions of a sig-
moidal function. IEEE Transactions on Information theory, 39(3):930–945, 1993.

[29] S. Bartunov, A. Santoro, B. Richards, L. Marris, G.E. Hinton, and T. Lillicrap.
Assessing the scalability of biologically-motivated deep learning algorithms
and architectures. In Advances in Neural Information Processing Systems, pages
9368–9378, 2018.

[30] M. Bayati and A. Montanari. The dynamics of message passing on dense
graphs, with applications to compressed sensing. IEEE Transactions on Infor-
mation Theory, 57(2):764–785, 2011.

[31] M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling modern machine
learning and the bias-variance trade-off. arXiv preprint arXiv:1812.11118, 2018.

Bibliography 129

[32] M. Belkin, D. Hsu, and J. Xu. Two models of double descent for weak features.
arXiv preprint arXiv:1903.07571, 2019.

[33] G. Ben Arous, A. Dembo, and A. Guionnet. Cugliandolo-kurchan equations
for dynamics of spin-glasses. Probability theory and related fields, 136(4):619–660,
2006.

[34] G. Ben Arous, S. Mei, A. Montanari, and M. Nica. The landscape of the
spiked tensor model. Communications on Pure and Applied Mathematics, 72(11):
2282–2330, 2019.

[35] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise
training of deep networks. Advances in neural information processing systems,
19, 2006.

[36] L. Berthier and G. Biroli. Theoretical perspective on the glass transition and
amorphous materials. Reviews of modern physics, 83(2):587, 2011.

[37] M. Biehl and E. Schlösser. The dynamics of on-line principal component
analysis. Journal of Physics A: Mathematical and General, 31(5):L97–L103, 1998.

[38] M. Biehl and H. Schwarze. Learning by on-line gradient descent. J. Phys. A.
Math. Gen., 28(3):643–656, 1995.

[39] M. Biehl, P. Riegler, and C. Wöhler. Transient dynamics of on-line learning in
two-layered neural networks. Journal of Physics A: Mathematical and General,
29(16), 1996.

[40] G. Biroli. A crash course on ageing. Journal of Statistical Mechanics: Theory and
Experiment, 2005(05):P05014, 2005.

[41] C. Bishop. Pattern recognition and machine learning. Springer, New York, 2006.

[42] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, COLT ’92, page 144–152, New York, NY, USA, 1992.

[43] L. Bottou. Stochastic learning. In Summer School on Machine Learning, pages
146–168. Springer, 2003.

[44] L. Bottou and O. Bousquet. The Tradeoffs of Large Scale Learning. In
Advances in Neural Information Processing Systems 20, pages 161–168, 2008.

130 Bibliography

[45] J.P. Bouchaud, L.F. Cugliandolo, J. Kurchan, and M. Mezard. Out of equi-
librium dynamics in spin-glasses and other glassy systems. Spin glasses and
random fields, 12:161, 1998.

[46] H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and
singular value decomposition. Biological cybernetics, 59(4):291–294, 1988.

[47] A.J. Bray. Theory of phase-ordering kinetics. Advances in Physics, 51(2):
481–587, 2002.

[48] J. Brea, B. Simsek, B. Illing, and W. Gerstner. Weight-space symmetry in deep
networks gives rise to permutation saddles, connected by equal-loss valleys
across the loss landscape. arXiv preprint arXiv:1907.02911, 2019.

[49] L. Breiman. Reflections after refereeing papers for nips. The Mathematics of
Generalization, pages 11–15, 1995.

[50] J. Brownlee. Using learning rate schedules for deep learning models in
python with keras. Machine learning mastery, June, 21, 2016.

[51] J. Bun, J.P. Bouchaud, and M. Potters. Cleaning correlation matrices. Risk
magazine, 2015, 2016.

[52] Y. Cao and Q. Gu. Generalization bounds of stochastic gradient descent for
wide and deep neural networks. In Advances in Neural Information Processing
Systems, pages 10836–10846, 2019.

[53] A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares
algorithm. Foundations of Computational Mathematics, 7(3):331–368, 2007.

[54] A. Cappelli, J. Launay, L. Meunier, R. Ohana, and I. Poli. Ropust: Improv-
ing robustness through fine-tuning with photonic processors and synthetic
gradients. arXiv preprint arXiv:2108.04217, 2021.

[55] T. Castellani and A. Cavagna. Spin-glass theory for pedestrians. Journal of
Statistical Mechanics: Theory and Experiment, 2005(05):P05012, 2005.

[56] M. Celentano, C. Cheng, and A. Montanari. The high-dimensional asymp-
totics of first order methods with random data. arXiv preprint arXiv:2112.07572,
2021.

[57] N.V. Chawla, T.E. Moore, L.O. Hall, K.W. Bowyer, W.P. Kegelmeyer, and
C. Springer. Distributed learning with bagging-like performance. Pattern
recognition letters, 24(1-3):455–471, 2003.

Bibliography 131

[58] J. Chen, D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu. Closing the general-
ization gap of adaptive gradient methods in training deep neural networks.
arXiv preprint arXiv:1806.06763, 2018.

[59] X. Cheng, D. Yin, P. Bartlett, and M. Jordan. Stochastic gradient and langevin
processes. In International Conference on Machine Learning, pages 1810–1819.
PMLR, 2020.

[60] L. Chizat and F. Bach. On the global convergence of gradient descent for
over-parameterized models using optimal transport. In Advances in Neural
Information Processing Systems 31, pages 3040–3050, 2018.

[61] L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable program-
ming. In Advances in Neural Information Processing Systems, pages 2937–2947,
2019.

[62] L. Chizat and F. Bach. Implicit bias of gradient descent for wide two-layer
neural networks trained with the logistic loss. In Conference on Learning Theory,
pages 1305–1338. PMLR, 2020.

[63] L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable program-
ming. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 2933–2943. Curran Associates, Inc., 2019.

[64] A. Choromanska, M. Henaff, M. Mathieu, G. Ben Arous, and Y. LeCun. The
loss surfaces of multilayer networks. In Artificial intelligence and statistics,
pages 192–204. PMLR, 2015.

[65] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 International Joint Conference on Neural Networks
(IJCNN), pages 2921–2926. IEEE, 2017.

[66] U. Cohen, S. Chung, D. Lee, and H. Sompolinsky. Separability and geometry
of object manifolds in deep neural networks. Nature communications, 11(1):
1–13, 2020.

[67] R. Couillet. High dimensional robust classification: A random matrix analysis.
In 2019 IEEE 8th International Workshop on Computational Advances in Multi-
Sensor Adaptive Processing (CAMSAP), pages 420–424, 2019.

[68] B. Crafton, A. Parihar, E. Gebhardt, and A. Raychowdhury. Direct feedback
alignment with sparse connections for local learning. Frontiers in neuroscience,
13:525, 2019.

132 Bibliography

[69] F. Crick. The recent excitement about neural networks. Nature, 337(6203):
129–132, 1989.

[70] A. Crisanti and H.J. Sommers. The spherical p-spin interaction spin glass
model: the statics. Zeitschrift für Physik B Condensed Matter, 87(3):341–354,
1992.

[71] L.F. Cugliandolo and D.S. Dean. Full dynamical solution for a spherical
spin-glass model. Journal of Physics A: Mathematical and General, 28(15):4213,
1995.

[72] L.F. Cugliandolo and J. Kurchan. Analytical solution of the off-equilibrium
dynamics of a long-range spin-glass model. Physical Review Letters, 71(1):173,
1993.

[73] A. Daniely and E. Malach. Learning parities with neural networks. In
Advances in Neural Information Processing Systems, volume 33, 2020.

[74] A. Daniely, R. Frostig, and Y. Singer. Toward deeper understanding of neural
networks: The power of initialization and a dual view on expressivity. In
Advances In Neural Information Processing Systems, pages 2253–2261, 2016.

[75] S. d’Ascoli, L. Sagun, G. Biroli, and J. Bruna. Finding the needle in the
haystack with convolutions: on the benefits of architectural bias. In Advances
in Neural Information Processing Systems, pages 9334–9345, 2019.

[76] S. d’Ascoli, M. Refinetti, G. Biroli, and F. Krzakala. Double trouble in double
descent: Bias and variance (s) in the lazy regime. In International Conference
on Machine Learning, pages 2280–2290. PMLR, 2020.

[77] S. d’Ascoli, M. Refinetti, and G. Biroli. Optimal learning rate schedules in
high-dimensional non-convex optimization problems, 2022.

[78] A. De Bruyn, V. Viswanathan, Y.S. Beh, J.K.U. Brock, and F. von Wangenheim.
Artificial intelligence and marketing: Pitfalls and opportunities. Journal of
Interactive Marketing, 51:91–105, 2020.

[79] A. Dembo and E. Subag. Dynamics for spherical spin glasses: disorder
dependent initial conditions. Journal of Statistical Physics, 181(2):465–514, 2020.

[80] Z. Deng, A. Kammoun, and C. Thrampoulidis. A model of double descent
for high-dimensional binary linear classification. arXiv:1911.05822, 2019.

Bibliography 133

[81] O. Dhifallah and Y.M. Lu. A precise performance analysis of learning with
random features, 2020.

[82] L. Ding, D. Li, B. Liu, W. Lan, B. Bai, Q. Hao, W. Cao, and K. Pei. Capture
uncertainties in deep neural networks for safe operation of autonomous driv-
ing vehicles. In 2021 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable Computing & Communi-
cations, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom),
pages 826–835. IEEE, 2021.

[83] D. Donoho and A. Montanari. High dimensional robust m-estimation:
Asymptotic variance via approximate message passing. Probability Theory and
Related Fields, 166(3):935–969, 2016.

[84] H. Drucker, C. Cortes, L.D. Jackel, Y. LeCun, and V. Vapnik. Boosting and
other ensemble methods. Neural Computation, 6(6):1289–1301, 1994.

[85] S. Du, J. Lee, Y. Tian, A. Singh, and B. Poczos. Gradient descent learns one-
hidden-layer CNN: Don’t be afraid of spurious local minima. In Proceedings
of the 35th International Conference on Machine Learning, volume 80, pages
1339–1348, 2018.

[86] S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning
Representations, 2019.

[87] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research, 12
(7), 2011.

[88] M. Dymitruk. Ethical artificial intelligence in judiciary. 02 2019.

[89] C. Eckart and G. Young. The approximation of one matrix by another of
lower rank. Psychometrika, 1(3):211–218, 1936.

[90] N. El Karoui. The spectrum of kernel random matrices. Ann. Statist., 38(1):
1–50, 02 2010.

[91] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, and
A. Vichi. Solving the 3d ising model with the conformal bootstrap. Physical
Review D, 86(2):025022, 2012.

134 Bibliography

[92] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, and
A. Vichi. Solving the 3d ising model with the conformal bootstrap ii.

c

c-minimization and precise critical exponents. Journal of Statistical Physics,
157(4):869–914, 2014.

[93] A. Engel and C. Van den Broeck. Statistical mechanics of learning. Cambridge
University Press, 2001.

[94] S. Franz and G. Parisi. The simplest model of jamming. Journal of Physics A:
Mathematical and Theoretical, 49(14):145001, 2016.

[95] C. Frenkel, M. Lefebvre, and D. Bol. Learning without feedback: Direct
random target projection as a feedback-alignment algorithm with layerwise
feedforward training, 2019.

[96] K. Fukushima and S. Miyake. Neocognitron: A new algorithm for pattern
recognition tolerant of deformations and shifts in position. Pattern recognition,
15(6):455–469, 1982.

[97] M. Gabrié. Mean-field inference methods for neural networks. Journal of
Physics A: Mathematical and Theoretical, 53(22):223002, 2020.

[98] E. Gardner and B. Derrida. Three unfinished works on the optimal storage
capacity of networks. Journal of Physics A: Mathematical and General, 22(12):
1983–1994, 1989.

[99] A. Garriga-Alonso, C. Rasmussen, and L. Aitchison. Deep convolutional
networks as shallow gaussian processes. In International Conference on Learning
Representations, 2019.

[100] R. Ge, S.M. Kakade, R. Kidambi, and P. Netrapalli. The step decay schedule:
A near optimal, geometrically decaying learning rate procedure for least
squares. arXiv preprint arXiv:1904.12838, 2019.

[101] M. Geiger, S. Spigler, A. Jacot, and M. Wyart. Disentangling feature and lazy
training in deep neural networks. Journal of Statistical Mechanics: Theory and
Experiment, 2020(11):113301, 2020.

[102] M. Geiger, A. Jacot, S. Spigler, F. Gabriel, L. Sagun, S. d’Ascoli, G. Biroli,
C. Hongler, and M. Wyart. Scaling description of generalization with number
of parameters in deep learning. arXiv preprint arXiv:1901.01608, 2019.

Bibliography 135

[103] M. Geiger, S. Spigler, S. d’Ascoli, L. Sagun, M. Baity-Jesi, G. Biroli, and
M. Wyart. Jamming transition as a paradigm to understand the loss landscape
of deep neural networks. Physical Review E, 100(1):012115, 2019.

[104] M. Geiger, S. Spigler, A. Jacot, and M. Wyart. Disentangling feature and
lazy learning in deep neural networks: an empirical study. arXiv preprint
arXiv:1906.08034, 2019.

[105] M. Geiger, A. Jacot, S. Spigler, F. Gabriel, L. Sagun, S. d’Ascoli, G. Biroli,
C. Hongler, and M. Wyart. Scaling description of generalization with number
of parameters in deep learning. Journal of Statistical Mechanics: Theory and
Experiment, 2020(2):023401, 2020.

[106] F. Gerace, B. Loureiro, F. Krzakala, M. Mézard, and L. Zdeborová. Generalisa-
tion error in learning with random features and the hidden manifold model.
In 37th International Conference on Machine Learning, 2020. arXiv:2002.09339.

[107] C. Gerbelot and R. Berthier. Graph-based approximate message passing
iterations. arXiv preprint arXiv:2109.11905, 2021.

[108] F. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual
prediction with lstm. In 1999 Ninth International Conference on Artificial Neural
Networks ICANN 99. (Conf. Publ. No. 470), volume 2, pages 850–855 vol.2,
1999.

[109] B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari. Limitations of
lazy training of two-layers neural network. In Advances in Neural Information
Processing Systems, volume 32, pages 9111–9121, 2019.

[110] B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari. When do neural
networks outperform kernel methods? In Advances in Neural Information
Processing Systems, volume 33, 2020.

[111] G. Gidel, F. Bach, and S. Lacoste-Julien. Implicit regularization of discrete
gradient dynamics in linear neural networks. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. 2019.

[112] J. Gilmer, C. Raffel, S.S. Schoenholz, M. Raghu, and J. Sohl-Dickstein. Explain-
ing the learning dynamics of direct feedback alignment. In ICLR workshop
track, 2017.

136 Bibliography

[113] J. Gilmer, B. Ghorbani, A. Garg, S. Kudugunta, B. Neyshabur, D. Cardoze,
G. Dahl, Z. Nado, and O. Firat. A loss curvature perspective on training
instability in deep learning. arXiv preprint arXiv:2110.04369, 2021.

[114] S. Goldt, M. Advani, A. Saxe, F. Krzakala, and L. Zdeborová. Dynamics
of stochastic gradient descent for two-layer neural networks in the teacher-
student setup. In Advances in Neural Information Processing Systems 32, 2019.

[115] S. Goldt, M. Mézard, F. Krzakala, and L. Zdeborová. Modelling the influence
of data structure on learning in neural networks. arXiv:1909.11500, 2019.

[116] S. Goldt, M.S. Advani, A.M. Saxe, F. Krzakala, and L. Zdeborová. Dynamics
of stochastic gradient descent for two-layer neural networks in the teacher–
student setup. Journal of Statistical Mechanics: Theory and Experiment, 2020(12):
124010, 2020.

[117] S. Goldt, M. Mézard, F. Krzakala, and L. Zdeborová. Modeling the influence
of data structure on learning in neural networks: The hidden manifold model.
Physical Review X, 10(4):041044, 2020.

[118] S. Goldt, B. Loureiro, G. Reeves, F. Krzakala, M. Mézard, and L. Zdeborová.
The gaussian equivalence of generative models for learning with shallow
neural networks. Proceedings of Machine Learning Research, 145:1–46, 2021.

[119] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[120] A. Gotmare, N.S. Keskar, C. Xiong, and R. Socher. A closer look at deep
learning heuristics: Learning rate restarts, warmup and distillation. arXiv
preprint arXiv:1810.13243, 2018.

[121] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[122] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu. A survey of deep
learning techniques for autonomous driving. Journal of Field Robotics, 37(3):
362–386, 2020.

[123] S. Grossberg. Competitive learning: From interactive activation to adaptive
resonance. Cognitive science, 11(1):23–63, 1987.

[124] I. Gühring, M. Raslan, and G. Kutyniok. Expressivity of deep neural networks.
arXiv preprint arXiv:2007.04759, 2020.

Bibliography 137

[125] S. Gunasekar, B.E. Woodworth, S. Bhojanapalli, B. Neyshabur, and N. Sre-
bro. Implicit regularization in matrix factorization. In Advances in Neural
Information Processing Systems, pages 6151–6159, 2017.

[126] A. Gupta, A. Anpalagan, L. Guan, and A.S. Khwaja. Deep learning for object
detection and scene perception in self-driving cars: Survey, challenges, and
open issues. Array, 10:100057, 2021.

[127] M.R. Gupta, S. Bengio, and J. Weston. Training highly multiclass classifiers.
The Journal of Machine Learning Research, 15(1):1461–1492, 2014.

[128] D. Han and H.j. Yoo. Direct feedback alignment based convolutional neural
network training for low-power online learning processor. In Proceedings of
the IEEE International Conference on Computer Vision Workshops, 2019.

[129] L.K. Hansen and P. Salamon. Neural network ensembles. IEEE transactions
on pattern analysis and machine intelligence, 12(10):993–1001, 1990.

[130] J. Haryanto and L. Moutinho. Analyzing Children’s Consumption Behavior:
Ethics, Methodologies, and Future Considerations: Ethics, Methodologies, and
Future Considerations. IGI Global, 2016.

[131] T. Hastie, A. Montanari, S. Rosset, and R.J. Tibshirani. Surprises in
high-dimensional ridgeless least squares interpolation. arXiv preprint
arXiv:1903.08560, 2019.

[132] Y. Hayashi and K. Wakabayashi. Influence of robophobia on decision making
in a court scenario. In Companion of the 2018 ACM/IEEE International Conference
on Human-Robot Interaction, pages 121–122, 2018.

[133] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[134] G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep
belief nets. Neural computation, 18(7):1527–1554, 2006.

[135] G.E. Hinton, A. Krizhevsky, and S.D. Wang. Transforming auto-encoders. In
International conference on artificial neural networks, pages 44–51. Springer, 2011.

[136] G.E. Hinton et al. What kind of graphical model is the brain? In IJCAI,
volume 5, pages 1765–1775, 2005.

138 Bibliography

[137] R.A. Horn and C.R. Johnson. Matrix analysis. Cambridge university press,
2012.

[138] H. Hu and Y.M. Lu. Universality laws for high-dimensional learning with
random features. arXiv:2009.07669, 2020.

[139] W. Hu, C.J. Li, L. Li, and J.G. Liu. On the diffusion approximation of
nonconvex stochastic gradient descent. arXiv preprint arXiv:1705.07562, 2017.

[140] G. Huang, Z. Liu, L. Van Der Maaten, and K.Q. Weinberger. Densely con-
nected convolutional networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 4700–4708, 2017.

[141] J. Huang, J. Chai, and S. Cho. Deep learning in finance and banking: A
literature review and classification. Frontiers of Business Research in China, 14
(1):1–24, 2020.

[142] A. Ingrosso and S. Goldt. Data-driven emergence of convolutional structure
in neural networks. arXiv preprint arXiv:2202.00565, 2022.

[143] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37, pages 448–456, 2015.

[144] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 8571–8580. 2018.

[145] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In Advances in Neural Information
Processing Systems 32, pages 8571–8580, 2018.

[146] A. Jacot, B. Şimşek, F. Spadaro, C. Hongler, and F. Gabriel. Implicit regular-
ization of random feature models. arXiv preprint arXiv:2002.08404, 2020.

[147] S. Jastrzkbski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio, and
A. Storkey. Three factors influencing minima in sgd. arXiv preprint
arXiv:1711.04623, 2017.

[148] S. Jean, K. Cho, R. Memisevic, and Y. Bengio. On using very large target
vocabulary for neural machine translation. arXiv preprint arXiv:1412.2007,
2014.

Bibliography 139

[149] Z. Ji and M. Telgarsky. Gradient descent aligns the layers of deep linear
networks. In International Conference on Learning Representations (ICLR), 2019.

[150] D. Kalimeris, G. Kaplun, P. Nakkiran, B. Edelman, T. Yang, B. Barak, and
H. Zhang. Sgd on neural networks learns functions of increasing complexity.
In Advances in Neural Information Processing Systems 32, pages 3496–3506, 2019.

[151] N.S. Keskar and R. Socher. Improving generalization performance by switch-
ing from adam to sgd. arXiv preprint arXiv:1712.07628, 2017.

[152] G. Kimeldorf and G. Wahba. Some results on tchebycheffian spline functions.
Journal of mathematical analysis and applications, 33(1):82–95, 1971.

[153] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[154] D.P. Kingma and M. Welling. An introduction to variational autoencoders.
Foundations and Trends® in Machine Learning, 12(4):307–392, 2019.

[155] G.R. Kini and C. Thrampoulidis. Analytic study of double descent in binary
classification: The impact of loss. In 2020 IEEE International Symposium on
Information Theory (ISIT), pages 2527–2532. IEEE, 2020.

[156] J. Kivinen, A.J. Smola, and R.C. Williamson. Online learning with kernels.
IEEE transactions on signal processing, 52(8):2165–2176, 2004.

[157] J. Kleinberg, H. Lakkaraju, J. Leskovec, J. Ludwig, and S. Mullainathan.
Human decisions and machine predictions. The quarterly journal of economics,
133(1):237–293, 2018.

[158] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi. Precision islands in the
ising and o (n) models. Journal of High Energy Physics, 2016(8):1–16, 2016.

[159] M.A. Kramer. Nonlinear principal component analysis using autoassociative
neural networks. AIChE journal, 37(2):233–243, 1991.

[160] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from
tiny images. arXiV preprint, 2009.

[161] A. Krogh and J. Hertz. A simple weight decay can improve generalization.
Advances in neural information processing systems, 4, 1991.

[162] A. Krogh and J.A. Hertz. Generalization in a linear perceptron in the presence
of noise. Journal of Physics A: Mathematical and General, 25(5):1135, 1992.

140 Bibliography

[163] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and
active learning. In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in
Neural Information Processing Systems, volume 7. 1995.

[164] F. Krzakala and J. Kurchan. Landscape analysis of constraint satisfaction
problems. Physical Review E, 76(2):021122, 2007.

[165] D. Kunin, J. Bloom, A. Goeva, and C. Seed. Loss landscapes of regularized
linear autoencoders. In K. Chaudhuri and R. Salakhutdinov, editors, Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 3560–3569. 2019.

[166] J. Launay, I. Poli, and F. Krzakala. Principled training of neural networks
with direct feedback alignment. arXiv:1906.04554, 2019.

[167] J. Launay, I. Poli, F. Boniface, and F. Krzakala. Direct feedback alignment
scales to modern deep learning tasks and architectures. In Advances in neural
information processing systems, 2020.

[168] Y. Le Cun. Learning process in an asymmetric threshold network. In Disor-
dered systems and biological organization, pages 233–240. Springer, 1986.

[169] Y. Le Cun, I. Kanter, and S.A. Solla. Eigenvalues of covariance matrices:
Application to neural-network learning. Physical Review Letters, 66(18):2396,
1991.

[170] Y. LeCun and C. Cortes. The MNIST database of handwritten digits, 1998.

[171] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and
L. Jackel. Handwritten digit recognition with a back-propagation network.
In Advances in neural information processing systems, pages 396–404, 1990.

[172] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

[173] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and
L.D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

[174] J. Lee, J. Sohl-Dickstein, J. Pennington, R. Novak, S. Schoenholz, and Y. Bahri.
Deep neural networks as gaussian processes. In International Conference on
Learning Representations, 2018.

Bibliography 141

[175] J. Lee, Y. Bahri, R. Novak, S.S. Schoenholz, J. Pennington, and J. Sohl-Dickstein.
Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165,
2017.

[176] D. LeJeune, H. Javadi, and R. Baraniuk. The implicit regularization of
ordinary least squares ensembles. In International Conference on Artificial
Intelligence and Statistics, pages 3525–3535. PMLR, 2020.

[177] M. Lelarge and L. Miolane. Asymptotic bayes risk for gaussian mixture
in a semi-supervised setting. In 2019 IEEE 8th International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages
639–643. IEEE, 2019.

[178] C. Leondes. Expert Systems: The Technology of Knowledge Management for the
21st Century. Expert Systems: The Technology of Knowledge Management
and Decision Making for the 21st Century. Academic Press, 2002.

[179] M.K. Leung, H.Y. Xiong, L.J. Lee, and B.J. Frey. Deep learning of the tissue-
regulated splicing code. Bioinformatics, 30(12):i121–i129, 2014.

[180] A. Lewkowycz. How to decay your learning rate. arXiv preprint
arXiv:2103.12682, 2021.

[181] C. Li, H. Farkhoor, R. Liu, and J. Yosinski. Measuring the intrinsic dimension
of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

[182] Q. Li, C. Tai, and E. Weinan. Stochastic modified equations and adaptive
stochastic gradient algorithms. In International Conference on Machine Learning,
pages 2101–2110. PMLR, 2017.

[183] Y. Li and Y. Liang. Learning Overparameterized Neural Networks via Stochas-
tic Gradient Descent on Structured Data. In Advances in Neural Information
Processing Systems 31, 2018.

[184] Y. Li, C. Wei, and T. Ma. Towards explaining the regularization effect of initial
large learning rate in training neural networks. arXiv preprint arXiv:1907.04595,
2019.

[185] Y. Li, T. Ma, and H.R. Zhang. Learning over-parametrized two-layer neural
networks beyond ntk. In J. Abernethy and S. Agarwal, editors, Proceedings
of Thirty Third Conference on Learning Theory, volume 125 of Proceedings of
Machine Learning Research, pages 2613–2682. 2020.

142 Bibliography

[186] Z. Li, R. Wang, D. Yu, S.S. Du, W. Hu, R. Salakhutdinov, and S. Arora.
Enhanced convolutional neural tangent kernels. arXiv:1911.00809, 2019.

[187] Q. Liao, J.Z. Leibo, and T. Poggio. How important is weight symmetry in
backpropagation? In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, pages 1837–1844, 2016.

[188] Z. Liao and R. Couillet. On inner-product kernels of high dimensional
data. In 2019 IEEE 8th International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing (CAMSAP), pages 579–583, 2019.

[189] Z. Liao and R. Couillet. On the spectrum of random features maps of high
dimensional data. In International Conference on Machine Learning, pages
3063–3071. PMLR, 2018.

[190] T. Lillicrap, D. Cownden, D. Tweed, and C. Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature
Communications, 7:1–10, 2016.

[191] L. Lin and E. Dobriban. What causes the test error? going beyond bias-
variance via anova. Journal of Machine Learning Research, 22(155):1–82, 2021.

[192] C.Y. Liou, J.C. Huang, and W.C. Yang. Modeling word perception using the
elman network. Neurocomputing, 71(16-18):3150–3157, 2008.

[193] A.J. Liu and S.R. Nagel. Jamming is not just cool any more. Nature, 396(6706):
21–22, 1998.

[194] G.H. Liu and E.A. Theodorou. Deep learning theory review: An optimal
control and dynamical systems perspective. arXiv preprint arXiv:1908.10920,
2019.

[195] G. Livan, M. Novaes, and P. Vivo. Introduction to random matrices: theory and
practice, volume 26. Springer, 2018.

[196] R. Livni, S. Shalev-Shwartz, and O. Shamir. On the computational efficiency
of training neural networks. In Advances in Neural Information Processing
Systems, volume 27, pages 855–863, 2014.

[197] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983, 2016.

[198] C. Louart, Z. Liao, and R. Couillet. A random matrix approach to neural
networks. The Annals of Applied Probability, 28(2):1190–1248, 2018.

Bibliography 143

[199] B. Loureiro, C. Gerbelot, H. Cui, S. Goldt, F. Krzakala, M. Mézard, and
L. Zdeborová. Learning curves of generic features maps for realistic datasets
with a teacher-student model. In Advances in Neural Information Processing
Systems, volume 34, 2021.

[200] B. Loureiro, G. Sicuro, C. Gerbelot, A. Pacco, F. Krzakala, and L. Zdeborová.
Learning gaussian mixtures with generalized linear models: Precise asymp-
totics in high-dimensions. Advances in Neural Information Processing Systems,
34, 2021.

[201] B. Loureiro, C. Gerbelot, M. Refinetti, G. Sicuro, and F. Krzakala. Fluctuations,
bias, variance & ensemble of learners: Exact asymptotics for convex losses in
high-dimension, 2022.

[202] J. Ma, R.P. Sheridan, A. Liaw, G.E. Dahl, and V. Svetnik. Deep neural nets as
a method for quantitative structure–activity relationships. Journal of chemical
information and modeling, 55(2):263–274, 2015.

[203] X. Mai and Z. Liao. High dimensional classification via empirical risk min-
imization: Improvements and optimality. arXiv preprint arXiv:1905.13742,
2019.

[204] A. Maillard, F. Krzakala, M. Mézard, and L. Zdeborová. Perturbative con-
struction of mean-field equations in extensive-rank matrix factorization and
denoising. arXiv preprint arXiv:2110.08775, 2021.

[205] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for
sparse coding. In Proceedings of the 26th Annual International Conference on
Machine Learning, ICML ’09, page 689–696, New York, NY, USA, 2009.

[206] S.S. Mannelli and L. Zdeborová. Thresholds of descending algorithms in
inference problems. Journal of Statistical Mechanics: Theory and Experiment,
2020(3):034004, 2020.

[207] S.S. Mannelli, G. Biroli, C. Cammarota, F. Krzakala, P. Urbani, and L. Zde-
borová. Marvels and pitfalls of the langevin algorithm in noisy high-
dimensional inference. Physical Review X, 10(1):011057, 2020.

[208] V. Manohar, P. Ghahremani, D. Povey, and S. Khudanpur. A teacher-student
learning approach for unsupervised domain adaptation of sequence-trained
asr models. In 2018 IEEE Spoken Language Technology Workshop (SLT), pages
250–257. IEEE, 2018.

144 Bibliography

[209] A.G.d.G. Matthews, J. Hron, M. Rowland, R. Turner, and Z. Ghahramani.
Gaussian process behaviour in wide deep neural networks. In International
Conference on Learning Representations, 2018.

[210] J. McCarthy. Recursive functions of symbolic expressions and their computa-
tion by machine, part i. Communications of the ACM, 3(4):184–195, 1960.

[211] J. McCarthy et al. Programs with common sense. RLE and MIT computation
center Cambridge, MA, USA, 1960.

[212] S. Mei, T. Misiakiewicz, and A. Montanari. Mean-field theory of two-layers
neural networks: dimension-free bounds and kernel limit. arXiv:1902.06015,
2019.

[213] S. Mei and A. Montanari. The generalization error of random features
regression: Precise asymptotics and the double descent curve. Communications
on Pure and Applied Mathematics, 06 2021.

[214] S. Mei, A. Montanari, and P.M. Nguyen. A mean field view of the landscape
of two-layer neural networks. Proceedings of the National Academy of Sciences,
115(33):E7665–E7671, 2018.

[215] S. Mei, T. Misiakiewicz, and A. Montanari. Generalization error of ran-
dom features and kernel methods: hypercontractivity and kernel matrix
concentration. arXiv preprint arXiv:2101.10588, 2021.

[216] C. Metz. The costly pursuit of self-driving cars continues on. and on. and on.
The New York Times, 2021.

[217] M. Mézard, G. Parisi, and M. Virasoro. Spin glass theory and beyond: An Intro-
duction to the Replica Method and Its Applications, volume 9. World Scientific
Publishing Company, 1987.

[218] V. M.henko and L. Pastur. Distribution of eigenvalues for some sets of
random matrices. Matematicheskii Sbornik, 114(4):507–536, 1967.

[219] P. Mianjy, R. Arora, and R. Vidal. On the implicit bias of dropout. In J. Dy
and A. Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
3540–3548. 2018.

[220] F. Mignacco, F. Krzakala, Y.M. Lu, and L. Zdeborová. The role of regular-
ization in classification of high-dimensional noisy gaussian mixture. In 37th
International Conference on Machine Learning, 2020.

Bibliography 145

[221] F. Mignacco, F. Krzakala, P. Urbani, and L. Zdeborová. Dynamical mean-field
theory for stochastic gradient descent in gaussian mixture classification. In
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[222] F. Mignacco and P. Urbani. The effective noise of stochastic gradient descent.
arXiv preprint arXiv:2112.10852, 2021.

[223] C. Mingard, G. Valle-Pérez, J. Skalse, and A.A. Louis. Is sgd a bayesian
sampler? well, almost. Journal of Machine Learning Research, 22(79):1–64, 2021.

[224] M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc.,
USA, 1967.

[225] G. Montavon, G. Orr, and K.R. Müller. Neural networks: tricks of the trade,
volume 7700. springer, 2012.

[226] F.E. Morgan, B. Boudreaux, A.J. Lohn, M. Ashby, C. Curriden, K. Klima, and
D. Grossman. Military Applications of Artificial Intelligence: Ethical Concerns in
an Uncertain World. RAND Corporation, Santa Monica, CA, 2020.

[227] T.H. Moskovitz, A. Litwin-Kumar, and L. Abbott. Feedback alignment in
deep convolutional networks. arXiv preprint arXiv:1812.06488, 2018.

[228] E. Moulines and F. Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. Advances in neural information processing
systems, 24:451–459, 2011.

[229] P. Nakkiran. More data can hurt for linear regression: Sample-wise double
descent. arXiv preprint arXiv:1912.07242, 2019.

[230] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical
Mechanics: Theory and Experiment, 2021(12):124003, 2021.

[231] P. Nakkiran, B. Neyshabur, and H. Sedghi. The bootstrap framework: Gener-
alization through the lens of online optimization. In International Conference
on Learning Representations, 2021.

[232] B. Neal, S. Mittal, A. Baratin, V. Tantia, M. Scicluna, S. Lacoste-Julien, and
I. Mitliagkas. A modern take on the bias-variance tradeoff in neural networks.
arXiv preprint arXiv:1810.08591, 2018.

[233] B. Neyshabur, R. Tomioka, and N. Srebro. In search of the real inductive bias:
On the role of implicit regularization in deep learning. In ICLR, 2015.

146 Bibliography

[234] B. Neyshabur, R. Tomioka, R. Salakhutdinov, and N. Srebro. Geometry of
optimization and implicit regularization in deep learning. arXiv preprint
arXiv:1705.03071, 2017.

[235] P.M. Nguyen. Analysis of feature learning in weight-tied autoencoders via
the mean field lens. arXiv preprint arXiv:2102.08373, 2021.

[236] T.V. Nguyen, R.K. Wong, and C. Hegde. On the dynamics of gradient descent
for autoencoders. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 2858–2867. PMLR, 2019.

[237] A. Nøkland. Direct Feedback Alignment Provides Learning in Deep Neural
Networks. In Advances in Neural Information Processing Systems 29, 2016.

[238] nvidia. Nvidia launches the world’s first graphics processing unit: Geforce
256, 1999. URL https://web.archive.org/web/20160408122443/http://

www.nvidia.com/object/gpu.html.

[239] R. Oftadeh, J. Shen, Z. Wang, and D. Shell. Eliminating the invariance on
the loss landscape of linear autoencoders. In H.D. III and A. Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages 7405–7413. 07 2020.

[240] E. Oja. Simplified neuron model as a principal component analyzer. Journal
of mathematical biology, 15(3):267–273, 1982.

[241] M. Opper and W. Kinzel. Statistical mechanics of generalization. In Models of
neural networks III, pages 151–209. Springer, 1996.

[242] S. O’Sullivan, N. Nevejans, C. Allen, A. Blyth, S. Leonard, U. Pagallo,
K. Holzinger, A. Holzinger, M.I. Sajid, and H. Ashrafian. Legal, regulatory,
and ethical frameworks for development of standards in artificial intelligence
(ai) and autonomous robotic surgery. The international journal of medical robotics
and computer assisted surgery, 15(1):e1968, 2019.

[243] J. Paccolat, L. Petrini, M. Geiger, K. Tyloo, and M. Wyart. Geometric compres-
sion of invariant manifolds in neural networks. Journal of Statistical Mechanics:
Theory and Experiment, 2021(4):044001, 2021.

[244] M. Pak and S. Kim. A review of deep learning in image recognition. In 2017
4th international conference on computer applications and information processing
technology (CAIPT), pages 1–3. IEEE, 2017.

https://web.archive.org/web/20160408122443/http://www.nvidia.com/object/gpu.html
https://web.archive.org/web/20160408122443/http://www.nvidia.com/object/gpu.html

Bibliography 147

[245] D. Park, J. Sohl-Dickstein, Q. Le, and S. Smith. The effect of network width
on stochastic gradient descent and generalization: an empirical study. In
International Conference on Machine Learning, pages 5042–5051. PMLR, 2019.

[246] J. Pennington and P. Worah. Nonlinear random matrix theory for deep
learning. In Advances in Neural Information Processing Systems, pages 2637–
2646, 2017.

[247] E. Pierson, D.M. Cutler, J. Leskovec, S. Mullainathan, and Z. Obermeyer.
An algorithmic approach to reducing unexplained pain disparities in under-
served populations. Nature Medicine, 27(1):136–140, 2021.

[248] E. Plaut. From principal subspaces to principal components with linear
autoencoders. arXiv preprint arXiv:1804.10253, 2018.

[249] D. Poland, S. Rychkov, and A. Vichi. The conformal bootstrap: Theory,
numerical techniques, and applications. Reviews of Modern Physics, 91(1):
015002, 2019.

[250] M. Potters and J.P. Bouchaud. A First Course in Random Matrix Theory: For
Physicists, Engineers and Data Scientists. Cambridge University Press, 2020.

[251] A. Power, Y. Burda, H. Edwards, I. Babuschkin, and V. Misra. Grokking:
Generalization beyond overfitting on small algorithmic datasets. In ICLR
MATH-AI Workshop, 2021.

[252] A. Pretorius, S. Kroon, and H. Kamper. Learning dynamics of linear denoising
autoencoders. In International Conference on Machine Learning, pages 4141–4150.
PMLR, 2018.

[253] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In
Advances in neural information processing systems, pages 1177–1184, 2008.

[254] A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replac-
ing minimization with randomization in learning. In Advances in neural
information processing systems, pages 1313–1320, 2009.

[255] M. Ranzato, C. Poultney, S. Chopra, and Y. Cun. Efficient learning of sparse
representations with an energy-based model. Advances in neural information
processing systems, 19, 2006.

[256] R. Rattazzi, V.S. Rychkov, E. Tonni, and A. Vichi. Bounding scalar operator
dimensions in 4d cft. Journal of High Energy Physics, 2008(12):031, 2008.

148 Bibliography

[257] M. Reehorst, M. Refinetti, and A. Vichi. Bootstrapping traceless symmetric
o(n) scalars, 2020.

[258] M. Refinetti and S. Goldt. The dynamics of representation learning in shallow,
non-linear autoencoders, 2022.

[259] M. Refinetti, S. d’Ascoli, R. Ohana, and S. Goldt. Align, then memorise: the
dynamics of learning with feedback alignment. In M. Meila and T. Zhang,
editors, International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 8925–8935. PMLR, 2021.

[260] M. Refinetti, S. Goldt, F. Krzakala, and L. Zdeborova. Classifying high-
dimensional gaussian mixtures: Where kernel methods fail and neural net-
works succeed. In M. Meila and T. Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 8936–8947. 2021.

[261] D.A. Reynolds. Gaussian mixture models. Encyclopedia of biometrics, 741:
659–663, 2009.

[262] J.F. Ritchie Ng. Deep learning wizard. Zenodo, Apr 2019.

[263] V. Ros, G. Ben Arous, G. Biroli, and C. Cammarota. Complex energy land-
scapes in spiked-tensor and simple glassy models: Ruggedness, arrangements
of local minima, and phase transitions. Physical Review X, 9(1):011003, 2019.

[264] S. Rosset, J. Zhu, and T.J. Hastie. Margin maximizing loss functions. In
Advances in neural information processing systems, pages 1237–1244, 2004.

[265] G. Rotskoff and E. Vanden-Eijnden. Parameters as interacting particles:
long time convergence and asymptotic error scaling of neural networks. In
Advances in Neural Information Processing Systems 31, pages 7146–7155, 2018.

[266] S. Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[267] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

[268] D. Saad. On-line learning in neural networks, volume 17. Cambridge University
Press, 2009.

[269] D. Saad and S. Solla. Exact Solution for On-Line Learning in Multilayer
Neural Networks. Phys. Rev. Lett., 74(21):4337–4340, 1995.

Bibliography 149

[270] D. Saad and S. Solla. On-line learning in soft committee machines. Phys. Rev.
E, 52(4):4225–4243, 1995.

[271] D. Saad and S. Solla. Learning with Noise and Regularizers Multilayer
Neural Networks. In Advances in Neural Information Processing Systems 9,
pages 260–266, 1997.

[272] I. Safran and O. Shamir. Spurious local minima are common in two-layer
relu neural networks. In International Conference on Machine Learning, pages
4433–4441. PMLR, 2018.

[273] T.D. Sanger. Optimal unsupervised learning in a single-layer linear feedfor-
ward neural network. Neural networks, 2(6):459–473, 1989.

[274] S. Sarao Mannelli, G. Biroli, C. Cammarota, F. Krzakala, and L. Zdeborová.
Who is afraid of big bad minima? analysis of gradient-flow in spiked matrix-
tensor models. Advances in Neural Information Processing Systems, 32:8679–8689,
2019.

[275] A. Saxe, J. McClelland, and S. Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. In ICLR, 2014.

[276] A. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. Tracey, and
D. Cox. On the information bottleneck theory of deep learning. In ICLR,
2018.

[277] A. Saxe, J. McClelland, and S. Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of
Sciences, 116(23):11537–11546, 2019.

[278] E. Schlösser, D. Saad, and M. Biehl. Optimization of on-line principal compo-
nent analysis. Journal of Physics A: Mathematical and General, 32(22):4061–4067,
1999.

[279] J. Schmidhuber, U. Meier, and D. Ciresan. Multi-column deep neural net-
works for image classification. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3642–3649. IEEE Computer Society, 2012.

[280] H.C. Schmidt. Statistical Physics of Sparse and Dense Models in Optimization and
Inference. PhD thesis, Université Paris Saclay (COmUE), 2018.

[281] B. Scholkopf and A. Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. Adaptive Computation and Machine
Learning series, 2018.

150 Bibliography

[282] B. Schölkopf, K. Tsuda, and J.P. Vert. Kernel methods in computational biology.
MIT press, 2004.

[283] H. Schütze, C.D. Manning, and P. Raghavan. Introduction to information
retrieval, volume 39. Cambridge University Press Cambridge, 2008.

[284] M. Seddik, M. Tamaazousti, and R. Couillet. Kernel random matrices of large
concentrated data: the example of gan-generated images. In ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 7480–7484. IEEE, 2019.

[285] H.S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning
from examples. Physical review A, 45(8):6056, 1992.

[286] V. Shankar, A. Fang, W. Guo, S. Fridovich-Keil, J. Ragan-Kelley, L. Schmidt,
and B. Recht. Neural kernels without tangents. In H.D. III and A. Singh,
editors, Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 8614–8623. 2020.

[287] J. Shawe-Taylor, N. Cristianini, et al. Kernel methods for pattern analysis. Cam-
bridge university press, 2004.

[288] D. Sherrington and S. Kirkpatrick. Solvable model of a spin-glass. Physical
review letters, 35(26):1792, 1975.

[289] C. Shorten and T.M. Khoshgoftaar. A survey on image data augmentation
for deep learning. Journal of big data, 6(1):1–48, 2019.

[290] J. Sirignano and K. Spiliopoulos. Mean field analysis of neural networks: A
central limit theorem. Stochastic Processes and their Applications, 2019.

[291] L.N. Smith. Cyclical learning rates for training neural networks. In 2017
IEEE winter conference on applications of computer vision (WACV), pages 464–472.
IEEE, 2017.

[292] S.L. Smith, P.J. Kindermans, C. Ying, and Q.V. Le. Don’t decay the learning
rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[293] M. Soltanolkotabi, A. Javanmard, and J. Lee. Theoretical insights into the
optimization landscape of over-parameterized shallow neural networks. IEEE
Transactions on Information Theory, 65(2):742–769, 2018.

[294] S. Spigler, M. Geiger, S. d’Ascoli, L. Sagun, G. Biroli, and M. Wyart. A
jamming transition from under-to over-parametrization affects generalization

Bibliography 151

in deep learning. Journal of Physics A: Mathematical and Theoretical, 52(47):
474001, 2019.

[295] R.K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. arXiv
preprint arXiv:1505.00387, 2015.

[296] I. Steinwart, D.R. Hush, C. Scovel, et al. Optimal rates for regularized least
squares regression. In COLT, pages 79–93, 2009.

[297] I. Sutskever, O. Vinyals, and Q. Le. Sequence to sequence learning with neural
networks. In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and
K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 27,
pages 3104–3112. 2014.

[298] I. Sutskever. Training recurrent neural networks. University of Toronto Toronto,
ON, Canada, 2013.

[299] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of
initialization and momentum in deep learning. In International conference on
machine learning, pages 1139–1147. PMLR, 2013.

[300] T. Suzuki and S. Akiyama. Benefit of deep learning with non-convex noisy
gradient descent: Provable excess risk bound and superiority to kernel
methods. arXiv preprint arXiv:2012.03224, 2020.

[301] E. Tarquini, G. Biroli, and M. Tarzia. Level statistics and localization transi-
tions of levy matrices. Physical review letters, 116(1):010601, 2016.

[302] F. Thalmann. Geometrical approach for the mean-field dynamics of a particle
in a short range correlated random potential. The European Physical Journal
B-Condensed Matter and Complex Systems, 19(1):49–63, 2001.

[303] Y. Tian. An analytical formula of population gradient for two-layered relu
network and its applications in convergence and critical point analysis. In
Proceedings of the 34th International Conference on Machine Learning (ICML),
page 3404–3413, 2017.

[304] I. Tosic and P. Frossard. Dictionary learning. IEEE Signal Processing Magazine,
28:27–38, 2011.

[305] C.A. Tracy and H. Widom. On orthogonal and symplectic matrix ensembles.
Communications in Mathematical Physics, 177(3):727–754, 1996.

152 Bibliography

[306] E. Troiani, V. Erba, F. Krzakala, A. Maillard, and L. Zdeborová. Opti-
mal denoising of rotationally invariant rectangular matrices. arXiv preprint
arXiv:2203.07752, 2022.

[307] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

[308] C. Wang, H. Hu, and Y. Lu. A solvable high-dimensional model of gan. In
Advances in Neural Information Processing Systems, pages 13759–13768, 2019.

[309] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, and
R. Urtasun. Advsim: Generating safety-critical scenarios for self-driving
vehicles. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9909–9918, 2021.

[310] Y. Wang and G. Yan. Survey on the application of deep learning in algorithmic
trading. Data Science in Finance and Economics, 1(4):345–361, 2021.

[311] T. Watkin, A. Rau, and M. Biehl. The statistical mechanics of learning a rule.
Reviews of Modern Physics, 65(2):499–556, 1993.

[312] C. Wei, J.D. Lee, Q. Liu, and T. Ma. Regularization matters: Generalization
and optimization of neural nets v.s. their induced kernel. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32. 2019.

[313] E.P. Wigner. On the distribution of the roots of certain symmetric matrices.
Annals of Mathematics, pages 325–327, 1958.

[314] A.C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The marginal
value of adaptive gradient methods in machine learning. arXiv preprint
arXiv:1705.08292, 2017.

[315] J. Wishart. The generalised product moment distribution in samples from a
normal multivariate population. Biometrika, 20(1/2):32–52, 1928.

[316] B. Woodworth, S. Gunasekar, J. Lee, D. Soudry, and N. Srebro. Kernel and
deep regimes in overparametrized models. arXiv preprint arXiv:1906.05827,
2019.

[317] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiV preprint, 2017.

Bibliography 153

[318] H.Y. Xiong, B. Alipanahi, L.J. Lee, H. Bretschneider, D. Merico, R.K. Yuen,
Y. Hua, S. Gueroussov, H.S. Najafabadi, T.R. Hughes, et al. The human
splicing code reveals new insights into the genetic determinants of disease.
Science, 347(6218):1254806, 2015.

[319] W. Xu. Towards optimal one pass large scale learning with averaged stochastic
gradient descent. arXiv preprint arXiv:1107.2490, 2011.

[320] G. Yehudai and O. Shamir. On the power and limitations of random fea-
tures for understanding neural networks. In Advances in Neural Information
Processing Systems, volume 32, pages 6598–6608, 2019.

[321] Y. Yoshida and M. Okada. Data-dependence of plateau phenomenon in
learning with neural network — statistical mechanical analysis. In Advances
in Neural Information Processing Systems 32, pages 1720–1728, 2019.

[322] Y. Yoshida, R. Karakida, M. Okada, and S.I. Amari. Statistical mechanical
analysis of learning dynamics of two-layer perceptron with multiple output
units. Journal of Physics A: Mathematical and Theoretical, 52(18):184002, 2019.

[323] K. You, M. Long, J. Wang, and M.I. Jordan. How does learning rate decay
help modern neural networks? arXiv preprint arXiv:1908.01878, 2019.

[324] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda. A survey of autonomous
driving: Common practices and emerging technologies. IEEE access, 8:58443–
58469, 2020.

[325] L. Zdeborová. Understanding deep learning is also a job for physicists. Nature
Physics, 2020.

[326] L. Zdeborová and F. Krzakala. Phase transitions in the coloring of random
graphs. Physical Review E, 76(3):031131, 2007.

[327] L. Zdeborová and F. Krzakala. Statistical physics of inference: Thresholds
and algorithms. Advances in Physics, 65(5):453–552, 2016.

[328] M.D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[329] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep
learning requires rethinking generalization. In ICLR, 2017.

[330] S. Zhang, L. Yao, A. Sun, and Y. Tay. Deep learning based recommender
system: A survey and new perspectives. ACM Computing Surveys (CSUR), 52
(1):1–38, 2019.

154 Bibliography

[331] Y. Zhang, J. Duchi, and M. Wainwright. Divide and conquer kernel ridge
regression. In Conference on Learning Theory, pages 592–617, 2013.

[332] Y. Zhang, J. Duchi, and M. Wainwright. Divide and conquer kernel ridge
regression: A distributed algorithm with minimax optimal rates. The Journal
of Machine Learning Research, 16(1):3299–3340, 2015.

[333] K. Zhong, Z. Song, P. Jain, P. Bartlett, and I. Dhillon. Recovery guarantees
for one-hidden-layer neural networks. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 4140–4149. JMLR. org, 2017.

Appendix A

Reconciling the bias-variance
trade-off with modern deep
learning

A.1 Further analytical results

Asymptotic scaling laws
Figure A.1 (left) shows that the various terms entering the decomposition of the

100 101 102

P
N

10 2

100

102

1
-1

Initialization Variance
Noise Variance
Generalization Error

10 1 100

P
N 1

10 2

10 1

100

101

102

1
-1

Initialization Variance
Noise Variance
Generalization Error

Figure A.1: Log-log behaviour of the quantities of interest at Left: P/N→∞ and
Right: P→N with λ = 10−5, N/D = 1 and τ = 1. In both cases, one observes an
inverse scaling law.

test error approach their asymptotic values at a rate (P/N)−1. This scaling law is
consistent with that found in [102] for real neural networks, where P is replaced
by the width of the layers of the network. As for the divergence of the noise
and initialization variances observed at the interpolation threshold, figure A.1
(right) shows that they also follow an inverse power law (P/N − 1)−1 at vanishing

155

156 A.1. Further analytical results

regularization.

Divide and Conquer approach
As mentioned in the main text, another way to average the predictions of differently
initialized learners is the divide and conquer approach [84]. In this framework, the
data set is divided into K splits of size N/K. Each of the K differently initalized
learner is trained on a distinct split. This approach is extremely useful for kernel
learning [332], where the computational burden is in the inversion of the Gram
matrix which is of size N × N. In the random projection approach considered here,
it does not offer any computational gain, however it is interesting how it affects the
test error.

Within our framework, the test error can easily be calculated as:

E{BΘ(k)},BX,ε [RRF] = F2 (1 − 2Ψv
1)+

1
K
(

F2Ψv
2 + τ2Ψv

3
)
+

(
1 − 1

K

)
F2Ψd

2, (A.1)

where the effective number of data points which enters this formula is Neff=N/K
due to the splitting of the training set.

10 1 100 101 102

P
N

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Vanilla
K = 1
Ensembled
K = 2
D&C
K = 2

10 1 100 101 102

P
N

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Figure A.2: Comparison between performances of ensembling and divide and
conquer for K = 2 at different SNR. Left: SNR= F

τ = 10. Right: SNR= F
τ = 1

Computations performed with fixed N/D = 1, F = 1 and λ = 10−5.

Comparing the previous expression with that obtained for ensembling A.30 is
instructive: here, increasing K replaces the vanilla terms Ψv

2, Ψv
3 by the divide and

conquer term Ψd
2. This shows that divide and conquer has a denoising effect: at

K→∞, the effect of the additive noise on the labels is completely suppressed. This
was not the case for ensembling. The price to pay is that Neff decreases, hence one
is shifted to the underparametrized regime.

In Figure A.2, we see that the kernel limit error of the divide and conquer
approach, i.e. the asymptotic value of the error at P/N→∞, is different from the
usual kernel limit error, since the effective dataset is two times smaller at K = 2.
The denoising effect of the divide and conquer approach is illustrated by the fact

Appendix A 157

that its kernel limit error is higher at high SNR, but lower at low SNR. This is
of practical relevance, and is much related to the beneficial effect of bagging in
noisy dataset scenarios. The divide and conquer approach, which only differs from
bagging by the fact that the different partitions of the dataset are disjoint, was
shown to reach bagging-like performance in various setups such as decision trees
and neural networks [57].

Is it always better to be overparametrized ?
A common thought is that the double descent curve always reaches its minimum

in the over-parametrized regime, leading to the idea that the corresponding model
"cannot overfit". In this section, we show that this is not always the case. Three
factors tend to shift the optimal generalization to the underparametrized regime:
(i) increasing the numbers of learners from which we average the predictions, K,
(ii) decreasing the signal-to-noise ratio (SNR), F/τ, and (iii) decreasing the size of
the dataset, N/D. In other words, when ensembling on a small, noisy dataset, one
is better off using an underparametrized model.

These three effects are shown in Fig. A.3. In the left panel, we see that as we
increase K, the minimum of test error jumps to the underparametrized regime
P < N for a high enough value of K. In the central/right panels, a similar effect
occurs when decreasing the SNR or decreasing N/D.

10 1 100 101 102

P
N

0.6

0.8

1.0

1.2

1.4 K=1
K=2
K=10
K =

10 1 100 101 102

P
N

0

1

2

3

4
SNR = 10
SNR = 1
SNR = 0.5

10 1 100 101 102

P
N

0

1

2

3

4
N/D=1
N/D=10

Figure A.3: Generalisation error as a function of P/N: depending on the values of
K, F/τ and N/D, optimal generalization can be reached in the underparametrized
regime or the overparametrized regime. Left: F/τ = 1, N/D = 1 and we vary K.
This is the same as figure 5 in the main text, except that the higher noise causes
the ensembling curve at K→∞ to exhibit a dip in the underparametrized regime.
Center: K = 2, N/D = 1 and we vary F/τ. Right: F/τ = 1, K = 2 and we vary
N/D.

158 A.2. Statement of the Main Result

A.2 Statement of the Main Result

Assumptions
First, we state precisely the assumptions under which our main result is valid.
Note, that these are the same as in [213].

Assumption 1: σ : R→R is a weakly differential function with derivative σ′.
Assume there exists c0, c1 < ∞ ∈ R such that for all u ∈ R |σ(u)|, |σ′(u)| ≤ c0 ec1|u|.
Then define:

µ0 = E [σ(u)] µ1 = E [uσ(u)] µ2
⋆ = E

[
σ2(u)

]
− µ2

0 − µ2
1, (A.2)

where the expectation is over u∼N (0, 1). To facilitate readability, we specialize to
the case µ0 = 0. This simply amounts to a shift ctivation function σ̃ of the network,
σ̃(x) = σ(x)− µ0.

Assumption 2: We work in the high-dimensional limit, i.e. in the limit where
the input dimension D, the hidden layer dimension P and the number of training
points N go to infinity with their ratios fixed. That is:

N, P, D→∞,
P
D

≡ ψ1 = O(1),
N
D

≡ ψ2 = O(1). (A.3)

This condition implies that, in the computation of the risk R, we can neglect all the
terms of order O(1) in favour of the terms of order O(D).

Assumption 3: The labels are given by a linear ground truth, or teacher function:

yµ = fd(BXµ) + ϵµ, fd(Bx) = ⟨β, Bx⟩, ||β|| = F, ϵµ∼N (0, τ) . (A.4)

Note that as explained in [213], it is easy to add a non linear component to
the teacher, but the latter would not be captured by the model (the student) in the
regime N/D = O(1), and would simply amount to an extra noise term.

Results
Here we give the explicit form of the quantities appearing in our main result. In
these expressions, the index a ∈ {v, e, d} distinguishes the vanilla, ensembling and

Appendix A 159

divide and conquer terms.

Ψ1 =
1
D

Tr
[

H [Sv]−1 H [PΨ1]
]

,

Ψv
2 =

1
D

Tr
[

H [Sv]−1 H
[

PΨv
2

]]
,

Ψv
3 =

1
D

Tr
[

H [Sv]−1 H
[

PΨv
3

]]
,

Ψe
2 =

1
D

Tr
[

H [Se]−1 H
[

PΨe
2

]]
,

Ψe
3 =

1
D

Tr
[

H [Se]−1 H
[

PΨe
3

]]
,

Ψd
2 =

1
D

Tr
[

H
[
Sd
]−1

H
[

PΨd
2

]]
,

(A.5)

where the Hessian matrix H[F], for a given function F : (q, r, q̃, r̃) 7→ R is defined
as:

H [F] = @

∂F

∂q∂q
∂F

∂q∂r
∂F

∂q∂q̃
∂F

∂q∂r̃
∂F

∂q∂r
∂F

∂r∂r
∂F

∂r∂q̃
∂F

∂r∂r̃
∂F

∂q∂q̃
∂F

∂r∂q̃
∂F

∂q̃∂q̃
∂F

∂q̃∂r̃
∂F

∂q∂r̃
∂F

∂r∂r̃
∂F

∂q̃∂r̃
∂F

∂r̃∂r̃

q=q∗
r=r∗
r̃=0
q̃=0

,

with q⋆ and r⋆ being the solutions of the fixed point equation for the function
S0 : (q, r) 7→ R defined below:

∂S0(q,r)
∂q = 0

∂S0(q,r)
∂r = 0.

S0(q, r) = λψ2
1ψ2q + ψ2 log

(
µ2
⋆ψ1q

µ2
1ψ1r + 1

+ 1
)
+

r
q
+ (1 − ψ1) log(q) + ψ2 log

(
µ2

1ψ1r + 1
)
− log(r).

(A.6)

The explicit expression of the above quantities in terms of (q, r, q̃, r̃) is given below.

Explicit expression of Sv, Se, Sd

Here we present the explicit formulas for Sv, Se, Sd, which are defined as the
functions (q, r, q̃, r̃) 7→ R such that:

Sv(q, r, q̃, r̃) = 2 (S0(q, r) + q̃ f v(q, r) + r̃gv(q, r))

Se(q, r, q̃, r̃) = S0(q, r) + r̃2 f e(q, r) + q̃2ge(q, r)

Sd(q, r, q̃, r̃) = S0(q, r) + r̃2 f d(q, r) + q̃2gd(q, r),

(A.7)

160 A.2. Statement of the Main Result

where we defined the functions (q, r) 7→ R,

f v(q, r) = λψ2
1ψ2 +

µ2
⋆ψ1ψ2

µ2
⋆ψ1q + µ2

1ψ1r + 1
+

1 − ψ1

q
− r

q2 ,

gv(q, r) = − µ2
⋆µ2

1ψ2
1ψ2q(

µ2
1ψ1r + 1

) (
µ2
⋆ψ1q + µ2

1ψ1r + 1
) + µ2

1ψ1ψ2

µ2
1ψ1r + 1

+
1
q
− 1

r
,

f e(q, r) =
2rµ2

1ψ1
(
1 + qµ2

⋆ψ1
)
+
(
1 + qµ2

⋆ψ1
)2 − r2µ4

1ψ2
1(−1 + ψ2)

r2
(
1 + rµ2

1ψ1 + qµ2
⋆ψ1
)2 ,

ge(q, r) =
ψ1

q2 , f d(q, r) =
1
r2 , gd(q, r) =

ψ1

q2 .

(A.8)

Explicit expression of PΨ1 , Pv
Ψ2

, Pv
Ψ3

, Pe
Ψ2

, Pe
Ψ3

, Pd
Ψ2

Here we present the explicit formulas for PΨ1 , Pv
Ψ2

, Pv
Ψ3

, Pe
Ψ2

, Pe
Ψ3

, Pd
Ψ2

, which are
defined as the functions (q, r, q̃, r̃) 7→ R such that:

PΨ1 = ψ1ψ2µ2
1

(
M11

X + µ2
1µ2

⋆ψ2
1 (MX Mv

W MX)
11 + µ2

⋆ψ1 (MX Mv
W)11

)
, (A.9)

PΨv
2
= Dψ2

1ψ2(µ
2
1r̃ + µ2

⋆q̃)
[
µ2

1Pv
XX − 2µ2

1µ2
⋆ψ1Pv

WX + µ2
⋆Pv

WW
]

,

PΨv
3
= Dψ2

1ψ2(µ
2
1r̃ + µ2

⋆q̃)
[
µ2

1

(
M12

X + µ2
1µ2

⋆ψ2
1 [MX Mv

W MX]
12
)
− 2µ2

1µ2
⋆ψ1 [MX Mv

W]12 + µ2
⋆ [M

v
W]12

]
,

PΨe
2
= Dψ2

1ψ2µ2
1r̃
[
µ2

1Pe
XX − 2µ2

1µ2
⋆ψ1Pe

WX + µ2
⋆Pe

WW
]

,

PΨe
3
= Dψ2

1ψ2µ2
1r̃
[
µ2

1

(
M12

X + µ2
1µ2

⋆ψ2
1 [MX Me

W MX]
12
)
− 2µ2

1µ2
⋆ψ1 [MX Me

W]12 + µ2
⋆[M

e
W]12

]
,

PΨd
2
= Dµ2

1ψ1ψ2
2 r̃
[
ψ1µ2

1PXX + 2µ2
⋆µ2

1ψ2
1PWX + µ2

⋆ψ1PWW
]

,

where we defined the scalars PXX, PWX, PWW as follows:

Pv
XX = ψ2N12

X + M12
X + 2ψ2(µ1µ⋆ψ1)

2 [MX NX Ma
W]12 + (µ1µ⋆ψ1)

2 [MX Ma
W MX]

12

+ ψ2(µ1µ⋆ψ1)
4 [MX MW NX Ma

W MX]
12 ,

Pv
WX = ψ2 [NX Ma

W]12 + [MX Ma
W]12 + ψ2(µ1µ⋆ψ1)

2 [MX Ma
W NX Ma

W]12 ,

Pv
WW = [Ma

W]12 + ψ2(µ1µ⋆ψ1)
2 [Ma

W NX Ma
W]12 ,

Pe
XX = Pv

XX,

Pe
WX = Pv

WX,

Pe
WW = Pv

WW ,

Pd
XX =

(
Nd11

X + 2(µ1µ⋆ψ1)
2
[

Nd
X Md

W Md
X

]11
+ (µ1µ⋆ψ1)

4
[

Md
X Md

W Nd
X Md

W Md
X

]11
)

,

Pd
WX =

[
Nd

X Md
W

]11
+ (µ1µ⋆ψ1)

2
[

Md
X Md

W Nd
X Md

W

]11
,

Pd
WW = (µ1µ⋆ψ1)

2
[

Md
W Nd

X Md
W

]11
,

Appendix A 161

and the 2 × 2 matrices MX, MW , NX as follows:

Mv
X =

 r
1+µ2

1ψ1r
r̃

(1+µ2
1ψ1r)

2

r̃

(1+µ2
1ψ1r)

2
r

1+µ2
1ψ1r

 , /; Mv
W =

q(1+µ2

1ψ1r)
1+2µ2

1ψ1r+µ2
⋆ψ1q

q2µ2
1µ2

⋆ψ2
1 r̃

(1+µ2
1ψ1r+µ2

⋆ψ1q)
2

q2µ2
1µ2

⋆ψ2
1 r̃

(1+µ2
1ψ1r+µ2

⋆ψ1q)
2

q(1+µ2
1ψ1r)

1+2µ2
1ψ1r+µ2

⋆ψ1q

 ,

Nv
X =

1(
1 + µ2

1ψ1r
)2

[
r r̃
r̃ r

]
, (A.10)

Me
X = Mv

X, /; Me
W = Mv

W +
(1 + rµ2

1ψ1)
2q̃(

1 + µ2
1ψ1r + µ2

⋆ψ1q
)2

[
0 1
1 0

]
, /; Ne

X =
1(

1 + µ2
1ψ1r

)2

[
r r̃
r̃ r

]
,

Md
X =

r
1 + µ2

1ψ1r2

[
1 0
0 1

]
, /; Md

W =
q(1 + µ2

1ψ1r)
1 + µ2

1ψ1r + µ2
⋆ψ1q

[
1 0
0 1

]
, /; Nd

X =
1

(1 + µ2
1ψ1r)2

[
r̃ 0
0 r̃

]
.

A.3 Replica Computation

Toolkit
Gaussian integrals In order to obtain the main result for the generalisation error,
we perform the averages over all the sources of randomness in the system in the
following order: over the dataset X, then over the noise W, and finally over the
random feature layers Θ. Here are some useful formulaes used throughout the
computations:

∫
e−

1
2 xiGijxj+Jixi dx = (det G)−

1
2 e

1
2 JiG−1

ij Jj ,∫
xae−

1
2 xiGijxj+Jixi dx = P1

a (det G)−
1
2 e

1
2 JiG−1

ij Jj ,∫
xaxbe−

1
2 xiGijxj+Jixi dx = P2

ab(det G)−
1
2 e

1
2 JiG−1

ij Jj ,∫
xaxbxce−

1
2 xiGijxj+Jixi dx = P3

abc(det G)−
1
2 e

1
2 JiG−1

ij Jj ,∫
xaxbxcxde−

1
2 xiGijxj+Jixi dx = P4

abcd(det G)−
1
2 e

1
2 JiG−1

ij Jj ,

(A.11)

with

P1
a = [G−1 J]a, (A.12)

P2
ab = ((G−1)ab + [G−1 J]a[G−1 J]b),

P3
abc = ∑

a,b,c∈perm(abc)

(
(G−1)ab[G

−1 J]c + [G−1 J]a[G−1 J]b[G
−1 J]c

)
,

P4
abcd = ∑

a,b
c,d

∈perm(abcd)

(
(G−1)ab(G

−1)cd + [G−1 J]a[G−1 J]b[G
−1 J]c[G−1 J]d + (G−1)ab[G

−1 J]c[G−1 J]d)
)

.

Replica representation of an inverse matrix To obtain gaussian integrals we will use the

162 A.3. Replica Computation

"replica" representation the element (ij) of a matrix M of size D:

M−1
ij = lim

n→0

∫ (n

∏
α=1

D

∏
i=1

dηα
i

)
η1

i η1
j exp

(
−1

2
ηα

i Mijη
α
j

)
. (A.13)

Indeed, using the gaussian integral representation of the inverse of M,

M−1
ij = BZ−1

∫ (D

∏
i=1

dηi

)
ηiηj exp

(
−1

2
ηi Mijηj

)
,

Z =

√
(2π)D

det M

=
∫ (D

∏
i=1

dηi

)
exp

(
−1

2
ηi Mijηj

)
.

(A.14)

Using the replica identity, we rewrite this as

M−1
ij = lim

n→0
Zn−1

∫ (D

∏
i=1

dηi

)
ηiηj exp

(
−1

2
ηi Mijηj

)
. (A.15)

Renaming the integration variable of the integral on the left as η1 and the n − 1
others as ηα, α ∈ {2, n}, we obtain expression A.13.

The Random Feature model
In what follows, we will explicitly leave the indices of all the quantities used.
We use the notation, called Einstein summation convention in physics, in which
all repeated indices are summed but the sum is not explicitly written. Indices
i ∈ {1...D} are used to refer to the input dimension, h ∈ {1...P} to refer to the
hidden layer dimension and µ ∈ {1...N} to refer to the number of data points.
With a single learner In the random features model, the predictor can be computed
explicitly:

â =
1√
D

ByT
µBZµh

(
BZTBZ + ψ1ψ2λIN

)−1

hh′
(A.16)

f (Bx) = âhσ

(
BΘh′iBxi√

D

)
= ByT

µBZµh

(
BZTBZ + ψ1ψ2λIN

)−1

hh′
σ

(
BΘh′iBxi√

D

)
/
√

D, (A.17)

Appendix A 163

where

Byµ = fd
(

BXµ

)
+ Bϵµ, (A.18)

BZµh =
1√
D

σ

(
1√
D

BΘhiBXµi

)
. (A.19)

Hence the test error can be computed as:

RRF =EBx

[(
fd(Bx)− ByT

µBZµh

(
BZTBZ + ψ1ψ2λIN

)−1

hh′
σ

(
BΘh′iBxi√

D

)
/
√

D
)2
]

=EBx
[

fd(Bx)2]− 2By⊤µ BZµh

(
BZTBZ + ψ1ψ2λIN

)−1

hh′
BVh′/

√
D (A.20)

+ByT
µBZµh

(
BZTBZ + ψ1ψ2λIN

)−1

hh1
BUh1h2

(
BZTBZ + ψ1ψ2λIN

)−1

h2h′
BZT

h′µ′Byµ′/D,

where

BVh = EBx

[
fd(Bx)σ

(⟨BΘhiBxi⟩√
D

)]
, (A.21)

BUhh′ = EBx

[
σ

(⟨BΘhiBxi⟩√
D

)
σ

(
BΘh′i, Bxi√

D

)]
. (A.22)

Ensembling over K learners When ensembling over K learners with independently
sampled random feature vectors, the predictor becomes:

f (Bx) =
1

K
√

D
∑

k
ByT

µBZ(k)
µh

(
BZT(k)BZ(k) + ψ1ψ2λIN

)−1

hh′
σ

(
BΘ(k)

h′i Bxi√
D

)
, (A.23)

where

BZ(k)
µh =

1√
D

σ

(
1√
D

BΘ(k)
hi BXµi

)
. (A.24)

The generalisation error is then given by:

RRF =EBx

(fd(Bx)− 1
K ∑

k
ByTBZ(k)

(
BZT(k)BZ(k) + ψ1ψ2λIN

)−1
σ

(
BΘ(k)

h′i Bxi√
D

)
/
√

D

)2
=EBx

[
fd(Bx)2]− 2

K ∑
k

By⊤BZ(k)
(

BZT(k)BZ(k) + ψ1ψ2λIN

)−1 BV(k)
√

D
(A.25)

+
1

K2 ∑
k

l ̸=k

ByTBZ(k)
(

BZT(k)BZ(k) + ψ1ψ2λIN

)−1
BU(kl)

(
BZT(l)BZ(l) + ψ1ψ2λIN

)−1
BZ(l)TBy/D,

164 A.3. Replica Computation

where

BV(k)
h = EBx

[
fd(Bx)σ

(
⟨BΘ(k)

hi Bxi⟩√
D

)]
, (A.26)

BU(kl)
hh′ = EBx

[
σ

(
⟨BΘ(k)

hi Bxi⟩√
D

)
σ

(
⟨BΘ(l)

h′i′Bxi′⟩√
D

)]
. (A.27)

Equivalent Gaussian Covariate Model It was shown in [213] that the random features
model is equivalent, in the high-dimensional limit of Assumption 2, to a Gaussian
covariate model in which the activation function σ is replaced as:

σ

(
BΘ(k)

hi BXµi√
D

)
→µ0 + µ1

BΘ(k)
hi BXµi√

D
+ µ⋆BW(k)

µh , (A.28)

with BW(k) ∈ RN×P, W(k)
µh ∼N (0, 1) and µ0, µ1 and µ⋆ defined in A.2. To simplify

the calculations, we take µ0 = 0, which amounts to adding a constant term to the
activation function σ.

This powerful mapping allows to express the quantities BU, BV. We will not
repeat their calculations here: the only difference here is BUkl , which carries extra
indices k, l due to the different initialization of the random features BΘ(k). In our
case,

U(kl)
hh′ =

µ2
1

D
Θ

(k)
hi Θ

(l)
h′i + µ2

⋆δklδhh′ . (A.29)

Hence we can rewrite the test error as

E

{BΘ(k)}
BX,ε

[RRF] = F2 (1 − 2Ψv
1) +

1
K
(

F2Ψv
2 + τ2Ψv

3
)
+

(
1 − 1

K

) (
F2Ψe

2 + τ2Ψe
3
)

,

(A.30)

Appendix A 165

where Ψ1,Ψv
2,Ψe

2,Ψv
3,Ψe

3 are given by:

Ψ1 =
1
D

Tr
[(µ1

D
XBΘ(1)⊤

)⊤
Z(1)

(
Z(1)⊤Z(1) + ψ1ψ2λIN

)−1
]

,

Ψv
2 =

1
D

Tr
[(

Z(1)⊤Z(1) + ψ1ψ2λIN

)−1
(

µ2
1

D
BΘ(1)BΘ(1)⊤ + µ2

∗IN

)
(

Z(1)⊤Z(1) + ψ1ψ2λIN

)−1
Z(1)⊤

(
1
D

XX⊤
)

Z(1)
]

,

Ψv
3 =

1
D

Tr
[(

Z(1)⊤Z(1) + ψ1ψ2λIN

)−1
(

µ2
1

D
BΘ(1)BΘ(1)⊤ + µ2

⋆IN

)
(

Z(1)⊤Z(1) + ψ1ψ2λIN

)−1
Z(1)⊤Z(1)

]
,

Ψe
2 =

1
D

Tr
[(

Z(1)⊤Z(1) + ψ1ψ2λIN

)−1
(

µ2
1

D
BΘ(1)BΘ(2)⊤

)
(

Z(2)⊤Z(2) + ψ1ψ2λIN

)−1
Z(2)⊤

(
1
D

XX⊤
)

Z(1)
]

,

Ψe
3 =

1
D

Tr
[(

Z(1)⊤Z(1) + ψ1ψ2λIN

)−1
(

µ2
1

D
BΘ(1)BΘ(2)⊤

)
(

Z(2)⊤Z(2) + ψ1ψ2λIN

)−1
Z(2)⊤Z(1)

]
.

(A.31)

Computation of the vanilla terms
To start with, let us compute the vanilla terms (those who carry a superscript v),
which involve a single instance of the random feature vectors. Note that these
were calculated in [213] by evaluating the Stieljes transform of the random matrices
of which we need to calculate the trace. The replica method used here makes
the calculation of the vanilla terms carry over easily to the the ensembling terms
(superscript e) and the divide and conquer term (superscript d). To illustrate the
calculation steps, we will calculate Ψv

3, then provide the results for Ψv
2 and Ψ1.

In the vanilla terms, the two inverse matrices that appear are the same. Hence
we use twice the replica identity A.13, introducing 2n replicas which all play the
same role:

M−1
ij M−1

kl = lim
n→0

∫ (2n

∏
α=1

dη

)
η1

i η1
j η2

k η2
l exp

(
−1

2
ηα Mijη

α

)
. (A.32)

The first step is to perform the averages, i.e. the Gaussian integrals, over the dataset
X, the deterministic noise W induced by the non-linearity of the activation function
and the random features Θ. Averaging over the dataset Replacing the activation
function by its Gaussian covariate equivalent model and using A.32, the term Ψ3

166 A.3. Replica Computation

can be expanded as:

Ψv
3 =

1
D

[
BZµh

(
BZ⊤BZ + ψ1ψ2λIN

)−1

hh1

(
µ2

1
D

BΘh1iBΘh2i + µ2
⋆δh1h2

)(
BZ⊤BZ + ψ1ψ2λIN

)−1

h2h′
BZh′µ

]

(A.33)

=
1
D

(
µ2

1
D

BΘh1iBΘh2i + µ2
⋆δh1h2

) [
BZµhBZh′µ

]
(A.34)

∫ (2n

∏
α=1

dηα

)
η1

hη1
h1

η2
h2

η2
h′ exp

(
−1

2
ηα

h

(
BZ⊤BZ + ψ1ψ2λIN

)
hh′

ηα
h′

)
=

1
D2

(
µ2

1
D

BΘh1iBΘh2i + µ2
⋆δh1h2

)(
µ1√

D
BΘBX + µ⋆BW

)
hµ

(
µ1√

D
BΘBX + µ⋆BW

)
h′µ∫ (2n

∏
α=1

dηα

)
η1

hη1
h1

η2
h2

η2
h′ exp

(
−1

2
ηα

h

(
1
D

(
µ1√

D
BΘBX + µ⋆BW

)
hµ

(
µ1√

D
BΘBX + µ⋆BW

)
h′µ

+ψ1ψ2λδhh′) ηα
h′) .

Now, we introduce λα
i := 1√

P
ηα

h BΘhi, and enforce this relation using the Fourier
representation of the delta-function:

1 =
∫

dλα
i dλ̂α

i eiλ̂α
i (
√

Pλα
i −ηα

h BΘhi). (A.35)

The average over the dataset BXµi has the form of A.11 with:

(GX)µµ′,ii′ = δµµ′

(
δii′ +

µ2
1ψ1

D
λα

i λα
i′

)
, (A.36)

(JX)µ,i =
µ1µ⋆

√
ψ1

D ∑
αa

λα
i ηα

h BWµh. (A.37)

Appendix A 167

Using formulae A.11, we obtain:

Ψv
3 =

N
D2

∫ (2n

∏
α=1

dηαdλαdλ̂α

)(
µ2

1P
D

λ1
i λ2

i + µ2
⋆η1

i η2
i

)
[
µ2
⋆η1

hBWhBWh′η
2
h′ + µ2

1ψ1λ1
i λ2

i′

(
(G−1

X)ii′ + (G−1
X JX)i(G−1

X JX)i′
)

+2µ1µ⋆

√
ψ1λ1

i BWhη2
h(G

−1
X JX)i

]
exp

(
−n

2
log det(GX)−

1
2

ηα
h

(
µ2
⋆

D
BWhBWh′δαβ−

µ2
1µ2

⋆ψ1

D2 BWhλα
i (GX)

−1
ii′ λ

β
i′BWh′+ψ1ψ2λδhh′

)
η

β
h′

+iλ̂α
i(
√

Pλα
i −ηα

h BΘhi)
)

(A.38)

Note that due to with a slight abuse of notation we got rid of indices µ, which all
sum up trivially to give a global factor N. Averaging over the deterministic noise The
expectation over the deterministic noise BWh is a Gausssian integral of the form
A.11 with:

[GW]hh′ = δhh′ +
µ2
⋆

D
ηα

h Aαβη
β
h′ , (A.39)

[JW]h = 0, (A.40)

Aαβ = δαβ − µ2
1ψ1

1
D ∑

i,j
λα

i [G
−1
X]ijλ

β
j . (A.41)

Note that the prefactor involves, constant, linear and quadratic terms in BW since:

(G−1
X JX)i =

µ1µ⋆
√

ψ1

D
[ηαBW]

[
G−1

X λα
]

i
. (A.42)

Thus, one obtains:

Ψv
3 =

ψ2

D

∫ (2n

∏
α=1

dηαdλαdλ̂α

)(
µ2

1ψ1λ1
i λ2

i + µ2
⋆η1

i η2
i

)
[
µ2
⋆

[
η1(G−1

W)η2
]
+ µ2

1ψ1

[
λ1HWλ2

]
+ 2µ2

1µ2
⋆ψ1[λ

1SWη2]
]

exp
(
−n

2
log det(GX)−

n
2

log det(GW)− 1
2

ψ1ψ2λ ∑(ηα
h)

2 + iλ̂α
i (
√

Pλα
i − ηα

h BΘhi)

)
,

with

(HW)ij = (G−1
X)ij +

µ2
1µ2

⋆ψ1

D2

[
ηα(G−1

W)ηβ
] [

G−1
X λα

]
i

[
G−1

X λβ
]

j
, (A.43)

(SW)ih =
1
D

[
G−1

X λα
]

i

[
G−1

W ηα
]

h
. (A.44)

168 A.3. Replica Computation

Averaging over the random feature vectors The expectation over the random feature
vectors BΘhi is a Gausssian integral of the form A.11 with:

[GΘ]hh′,ii′ = δhh′,ii′ , (A.45)

[JΘ]hi = −iλ̂α
i ηα

h . (A.46)

Preforming this integration results in:

Ψv
3 =

ψ2

D

∫ (2n

∏
α=1

dηαdλαdλ̂α

)(
µ2

1ψ1λ1
i λ2

i + µ2
⋆η1

i η2
i

)
[
µ2
⋆

[
η1(G−1

W)η2
]
+ µ2

1ψ1

[
λ1HWλ2

]
+ 2µ2

1µ2
⋆ψ1[λ

1SWη2]
]

exp
(
−n

2
log det(GX)−

n
2

log det(GW)− 1
2

ψ1ψ2λ ∑(ηα
h)

2 − 1
2

ηα
h η

β
h λ̂α

i λ̂
β
i + i

√
Pλ̂α

i λα
i

)
.

(A.47)

Expression of the action and the prefactor To complete the computation we integrate
with respect to λ̂α

i , using again formulae A.11:

[
Gλ̂

]αβ

ii′ = δii′ηα
h η

β
h , (A.48)[

Jλ̂

]α

i = i
√

Pλα
i . (A.49)

This yields the final expression of the term:

Ψv
3 =

ψ2

D

∫ (2n

∏
α=1

dηα

)(
2n

∏
α=1

dλα

)(
µ2

1ψ1λ1
i λ2

i + µ2
⋆η1

i η2
i

) [
µ2
⋆

[
η1(G−1

W)η2
]
+ µ2

1ψ1[
λ1HWλ2

]
+ 2µ2

1µ2
⋆ψ1[λ

1SWη2]
]

exp
(
−n

2
log det(GX)−

n
2

log det(GW)− D
2

log det
(
Gλ̂

)
− 1

2
ψ1ψ2λ ∑(ηα

h)
2 − P

2
λα

i (G
−1
λ̂

)
αβ
ii′ λ

β
i′

)
.

The above may be written as

Ψv
3 =

∫ (
∏ dη

) (
∏ dλ

)
PΨv

3
[η, λ] exp

(
−D

2
Sv [η, λ]

)
, (A.50)

with the prefactor PΨv
3

and the action Sv defined as:

PΨv
3
[η, λ] :=

ψ2

D

(
µ2

1ψ1λ1
i λ2

i + µ2
⋆η1

i η2
i

) [
µ2
⋆

[
η1(G−1

W)η2
]
+ µ2

1ψ1

[
λ1HWλ2

]
+ 2µ2

1µ2
⋆ψ1[λ

1SWη2]
]

,

Sv [η, λ] :=ψ2 log det(GX) + ψ2 log det(GW) + log det
(
Gλ̂

)
+

1
D

ψ1ψ2λ ∑(ηα
h)

2 +
P
D

(
λα

i (G
−1
λ̂

)
αβ
ii′ λ

β
i′

)
.

Expression of the action and the prefactor in terms of order parameters Here we see that

Appendix A 169

we have a factor D→∞ in the exponential part, which can be estimated using the
saddle point method. Before doing so, we introduce the following order parameters
using the Fourier representation of the delta-function:

1 =
∫

dQαβdQ̂αβeQ̂αβ(PQαβ−ηα
h η

β
h), (A.51)

1 =
∫

dRαβdR̂αβeR̂αβ(DRαβ−λα
i λ

β
i). (A.52)

This allows to rewrite the prefactor only in terms of Q, R: for example,

µ2
1ψ1λ1

i λ2
i + µ2

⋆η1
i η2

i = ψ1D(µ2
1R12 + µ2

⋆Q12).

To do this, there are two key quantities we need to calculate: λG−1
X λ and ηG−1

W η.
To calculate both, we note that GX ang GW are both of the form I + X, therefore
there inverse may be calculated using their series representation. The result is:

[MX]
αβ :=

1
D

λαG−1
X λβ =

[
R(I + µ2

1ψ1R)−1
]αβ

, (A.53)

[MW]αβ :=
1
P

ηα(G−1
W)ηβ =

[
Q(I + µ2

⋆ψ1AQ)−1
]αβ

. (A.54)

Using the above, we deduce:

λ1HWλ2 = DM12
X + Pµ2

1µ2
⋆ψ1 [MX MW MX]

12 , (A.55)

λ1SWη2 = P [MX MW]12 . (A.56)

The integrals over η, λ become simple Gaussian integrals with covariance matrices
given by Q̂, R̂, yielding:

1 =
∫

dQαβdQ̂αβe−
ψ1D

2 (log det Q̂−2TrQQ̂), (A.57)

1 =
∫

dRαβdR̂αβe−
D
2 (log det R̂−2TrRR̂). (A.58)

The next step is to take the saddle point with respect to the auxiliary variables Q̂
and R̂ in order to eliminate them:

∂Sv

∂Q̂αβ

= ψ1

(
Q̂−1 − 2Q

)
= 0 ⇒ Q̂ =

1
2

Q−1, (A.59)

∂Sv

∂R̂αβ

=
(

R̂−1 − 2R
)
= 0 ⇒ R̂ =

1
2

R−1. (A.60)

170 A.3. Replica Computation

One finally obtains that:

Ψv
3 =

∫ (
∏ dQ

) (
∏ dR

)
PΨv

3
[Q, R] exp

(
−D

2
Sv [Q, R]

)
, (A.61)

With:

PΨv
3
[Q, R] =Dψ2

1ψ2(µ
2
1R12 + µ2

⋆Q12)
[
µ2
⋆ [M

v
W]12 + µ2

1

(
M12

X + µ2
1µ2

⋆ψ2
1 [MX Mv

W MX]
12
)

+2µ2
1µ2

⋆ψ1 [MX Mv
W]12

]
, (A.62)

Sv [Q, R] =ψ2 log det(GX) + ψ2 log det(GW) + ψ2
1ψ2λTrQ + Tr

(
RQ−1

)
+ (1 − ψ1) log det Q − log det R.

Saddle point equations The aim is now to use the saddle point method in order to
evaluate the integrals over the order parameters. Thus, one looks for R and Q
solutions to the equations:

∂Sv

∂Qαβ
= 0,

∂Sv

∂Rαβ
= 0 ∀α, β = 1, · · · , 2n.

To solve the above, it is common to make a replica symmetric ansatz. In this case, we
assume that the solutions to the saddle points equations take the form:

Q =

q q̃ · · · q̃

q̃
.

...
...

. q̃
q̃ · · · q̃ q

 , R =

r r̃ · · · r̃

r̃
.

...
...

. r̃
r̃ · · · r̃ r

 (A.63)

The action takes the following form:

Sv(q, r, q̃, r̃) = 2n (S0(q, r) + Sv
1(q, r, q̃, r̃))

S0(q, r) = λψ2
1ψ2q + ψ2 log

(
µ2
⋆ψ1q

µ2
1ψ1r + 1

+ 1
)
+

r
q
+ (1 − ψ1) log(q)

+ ψ2 log
(
µ2

1ψ1r + 1
)
− log(r)

Sv
1(q, r, q̃, r̃) = f v(q, r)q̃ + gv(q, r)r̃

f v(q, r) = λψ2
1ψ2 +

µ2
⋆ψ1ψ2

µ2
⋆ψ1q + µ2

1ψ1r + 1
+

1 − ψ1

q
− r

q2

gv(q, r) = − µ2
⋆µ2

1ψ2
1ψ2q(

µ2
1ψ1r + 1

) (
µ2
⋆ψ1q + µ2

1ψ1r + 1
) + µ2

1ψ1ψ2

µ2
1ψ1r + 1

+
1
q
− 1

r
. (A.64)

Appendix A 171

Fluctuations around the saddle point
We introduce the following notations:

[∇BT F(BT⋆)]αβ =
∂F

∂BTαβ
|BT⋆ ,

[HBT F(BT⋆)]αβ,γδ = @

 ∂2F
∂Qαβ∂Qγδ

∂2F
∂Qαβ∂Rγδ

∂2F
∂Rαβ∂Qγδ

∂2F
∂Rαβ∂Rγδ

BT⋆,

H [F] = @

∂F

∂q∂q
∂F

∂q∂r
∂F

∂q∂q̃
∂F

∂q∂r̃
∂F

∂q∂r
∂F

∂r∂r
∂F

∂r∂q̃
∂F

∂r∂r̃
∂F

∂q∂q̃
∂F

∂r∂q̃
∂F

∂q̃∂q̃
∂F

∂q̃∂r̃
∂F

∂q∂r̃
∂F

∂r∂r̃
∂F

∂q̃∂r̃
∂F

∂r̃∂r̃

q=q∗
r=r∗
r̃=0
q̃=0

.

(A.65)

Proposition Let q⋆ and r⋆ be the solutions of the fixed point equation for the function
S0 : (q, r) 7→ R defined in A.64:

∂S0(q,r)
∂q = 0

∂S0(q,r)
∂r = 0.

(A.66)

Then we have that
Ψv

3 =
1
D

Tr
[

H [Sv]−1 H
[

PΨv
3

]]
. (A.67)

Sketch of proof Solving the saddle point equations:

∂Sv(q,r,q̃,r̃)
∂q = 0

∂Sv(q,r,q̃,r̃)
∂q = 0

∂Sv(q,r,q̃,r̃)
∂q̃ = 0

∂Sv(q,r,q̃,r̃)
∂r̃ = 0

, (A.68)

one finds q̃ = r̃ = 0, which is problematic because the prefactor vanishes: PΨ3 ∝
µ2

1q̃ + µ2
⋆r̃. Therefore we must go beyond the saddle point contribution to obtain

a non zero result, i.e. we have to examine the quadratic fluctuations around the
saddle point. To do so we preform a second-order expansion of the action A.63 as
a function of Q and R:

PΨv
3
(BT) ≈ PΨv

3
(BT⋆) + B(BT − BT⋆)

⊤∇PΨv
3
(BT⋆) +

1
2
(BT − BT⋆)

⊤HBT

[
PΨv

3
(BT⋆)

]
(BT − BT⋆),

Sv(BT) ≈ S0(BT⋆) +
1
2
(BT − BT⋆)

⊤HBT [Sv(BT⋆)] (BT − BT⋆).

172 A.3. Replica Computation

Computing the second derivative of A.63, it is easy to show that:

[HBT [Sv(BT)]]αβ,γδ = [HBT [Sv(BT)]]αβ

(
δαγδβδ + δαδδβγ

)
,[

HBT

[
PΨv

3
(BT)

]]
αβ,γδ

=
[

HBT

[
PΨv

3
(BT)

]]
αβ

(
δαγδβδ + δαδδβγ

)
,

(A.69)

where

HBT [F]αβ =

 ∂2F
∂Qαβ∂Qαβ

∂2F
∂Qαβ∂Rαβ

∂2F
∂Rαβ∂Qαβ

∂2F
∂Rαβ∂Rαβ

=

1
2n

δαβ

[
∂2F
∂q∂q

∂2F
∂q∂r

∂2F
∂r∂q

∂2F
∂r∂r

]
+

2
2n(2n − 1)

(1 − δαβ)

[
∂2F
∂q̃∂q̃

∂2F
∂q̃∂r̃

∂2F
∂r̃∂q̃

∂2F
∂r̃∂r̃

]
.

(A.70)

Hence,

Ψv
3 = lim

n→0

∫
dBTPΨv

3
(BT) exp− D

2 Sv(BT),

= lim
n→0

PΨv
3
(BT⋆)︸ ︷︷ ︸
0

+∇PΨv
3
(BT⋆)αβ

∫
dBT(BT − BT⋆)αβ exp

(
−D

2
Sv(BT)

)
︸ ︷︷ ︸

0

+
1
2

HBT

[
PΨv

3
(BT⋆)

]
αβ

∫
dBT(BT − BT⋆)

2
αβ exp

(
−D

2
Sv(BT)

)
= lim

n→0

1
2

HBT

[
PΨv

3
(BT⋆)

]
αβ

e−
D
2 Sv(BT⋆)

∫
dBT(BT − BT⋆)

2
αβe−

D
2 ∑αβ B(BT−BT⋆)2

αβ HBT [Sv(BT⋆)]αβ

= lim
n→0

1
2

(2π)n

det HBT [Sv(BT⋆)]
e−

D
2 Sv(BT⋆) 2

D
HBT

[
PΨv

3
(BT⋆)

]
αβ

HBT [Sv(BT⋆)]
−1
αβ

=
1
D

Tr
[

H [Sv]−1 H
[

PΨv
3

]]
In the last step, we used the fact that:

lim
n→0

e−
D
2 Sv(BT⋆) = lim

n→0
e−nDS0(q⋆,r⋆) = 1,

lim
n→0

det HBT [Sv(BT⋆)] = 1.
(A.71)

The last equality follows from the fact that for a matrix of size n × n of the form
Mαβ = aδαβ + b(1 − δαβ), we have

det M = (a − b)n
(

1 +
nb

a − b

)
−−→
n→0

1.

Expression of the vanilla terms Using the above procedure, one can compute the terms
Ψ1, Ψv

2, Ψv
3 of A.30: for each of these terms, the action is the same as in A.63, and

Appendix A 173

the prefactors can be obtained as:

PΨ1 [Q, R] = µ2
1ψ1ψ2

(
M11

X + µ2
1µ2

⋆ψ2
1 (MX MW MX)

11 + µ2
⋆µ1ψ1 (MX MW)11

)
,

PΨv
2
[Q, R] = Dψ2

1ψ2

(
µ2

1R12 + µ2
⋆Q12

) (
µ2

1ψ2PXX − 2µ2
1µ2

⋆ψ1ψ2PXW + µ2
⋆PWW

)
,

PΨv
3
[Q, R] = Dψ2

1ψ2(µ
2
1R12 + µ2

⋆Q12)[
µ2
⋆ [M

v
W]12 + µ2

1

(
M12

X + µ2
1µ2

⋆ψ2
1 [MX Mv

W MX]
12
)
+ 2µ2

1µ2
⋆ψ1 [MX Mv

W]12
]

,

PXX = N12
X +

1
ψ2

M12
X + 2 (µ1µ⋆ψ1)

2 [NX MW MX]
12 +

(µ1µ⋆ψ1)
2

ψ2
[MX MW MX]

12

+ (µ1µ⋆ψ1)
4 [MX MW NX MW MX]

12,

PXW = [NX MW]12 +
1

ψ2
[MX MW]12 + (µ1µ⋆ψ1)

2 [MX MW NX MW]12 ,

PWW = M12
W + ψ2 (µ1µ⋆ψ1)

2 [MW NX MW]12 .

Where a new term appears:

[NX]
αβ =

[
R(I + µ2

1ψ1R)−2]αβ
. (A.72)

Computation of the ensembling terms
Expression of the action and the prefactor In the ensembling terms, the two inverse
matrices are different, hence one has to introduce two distinct replica variables. We
distinguish them by the use of an extra index a ∈ {1, 2}, denoted in brackets in
order not to be confused with the replica indices α.

[
M(1)

]−1

ij

[
M(2)

]−1

kl
= lim

n→0

∫ (n

∏
α=1

2

∏
a=1

dηα(a)

)
η

1(1)
i η

1(1)
j η

1(2)
k η

1(2)
l exp

(
−1

2 ∑
(a)

ηα(a)M(a)
ij ηα(a)

)
.

(A.73)

Calculations of the Gaussian integrals follow through in a very similar way as
for the vanilla terms. The matrices appearing in the process are:

174 A.3. Replica Computation

(Ge
X)ii′ = δii′ +

µ2
1ψ1

D ∑
(a)α

λ
α(a)
i λ

α(a)
i′ , (A.74)

(Je
X)i =

µ1µ⋆
√

ψ1

D2 ∑
αa

λ
α(a)
i η

α(a)
h W(a)

h , (A.75)

(Ge
W)

(ab)
hh′ = δab

hh′ +
µ2
⋆

D ∑
αβ

η
α(a)
h Aαβ,ab

e η
β(b)
h′ , (A.76)

(Je
W)h = 0 (A.77)

(Ge
Θ)

(ab)
hh′,ii′ = δab

hh′,ii′ (A.78)

(Je
Θ)

(a)
hi = −i ∑

α

λ̂
α(a)
i η

α(a)
h , (A.79)

(Ge
λ̂
)

αβ,(ab)
ii′ = 2δabδii′η

α(a)
h η

β(b)
h , (A.80)

(Je
λ̂
)

α(a)
i = i

√
Pλ

α(a)
i . (A.81)

(A.82)

with

Aαβ,(ab)
e = δabδαβ − µ2

1ψ1
1
D ∑

i,j
λ

α(a)
i [Ge−1

X]ijλ
β(b)
j ,

[He
W]ii′ =

[
Ge−1

X

]
ii′
+ ∑

αβ,ab

[
Ge−1

X λα(a)
]

i

[
Ge−1

X λβ(b)
]

i′

[
ηα(a)

[
Ge−1

W

](ab)
ηβ(b)

]
,

[Se
W]ih =

1
D ∑

α,a

[
Ge−1

X λα(a)
]

i

[
Ge−1

W ηα(a)
]

h
.

Starting with the computation of Ψe
3 in order to illustrate the method used, the

prefactor PΨe
3

and the action are Se are given by:

PΨe
3
[η, λ] :=

µ2
1ψ1ψ2

D
λ

1(1)
i λ

1(2)
i

[
µ2
⋆

[
η1(1)(Ge−1

W)(12)η1(2)
]
+ µ2

1ψ1

[
λ1(1)He

Wλ1(2)
]

+ 2µ2
1µ2

⋆ψ1[λ
1(1)Se

Wη1(2)]
]

,

Se [η, λ] :=ψ2 log det(Ge
X) + ψ2 log det(Ge

W) + log det
(

Ge
λ̂

)
+

1
D

ψ1ψ2λ ∑(η
α(a)
h)2

+
1

2D

(
λ

α(a)
i (Ge−1

λ̂
)

αβ,ab
ii′ λ

β(b)
i′

)
.

Expression of the action and the prefactor in terms of order parameters
This time, because of the two different systems, the order parameters carry an

Appendix A 175

additional index a, which turns them into 2 × 2 block matrices:

1 =
∫

dQ(ab)
αβ dQ̂(ab)

αβ eQ̂(ab)
αβ (PQ(ab)

αβ −η
α(a)
h η

β(b)
h), (A.83)

1 =
∫

dR(ab)
αβ dR̂(ab)

αβ eR̂(ab)
αβ (dR(ab)

αβ −λ
α(a)
i λ

β(b)
i). (A.84)

The systems being decoupled, we make the following ansatz for the order parame-
ters:

Q =

q · · · 0
...

. . .
...

0 · · · q

q̃ · · · 0
...

. . .
...

0 · · · q̃
q̃ · · · 0
...

. . .
...

0 · · · q̃

q · · · 0
...

. . .
...

0 · · · q

, R =

r · · · 0
...

. . .
...

0 · · · r

r̃ · · · 0
...

. . .
...

0 · · · r̃
r̃ · · · 0
...

. . .
...

0 · · · r̃

r · · · 0
...

. . .
...

0 · · · r

. (A.85)

In virtue of the simple structure of the above matrices, the replica indices α trivialize
and we may replace the matrices Q and R by the 2 × 2 matrices:

Q =

[
q q̃
q̃ q

]
, R =

[
r r̃
r̃ r

]
.

Define:

[Me
X](ab) ≡

1
D

λ
(a)
i

[
Ge−1

X

]
ij

λ
(b)
j =

[
R(I + µ2

1ψ1R)−1
]
(ab)

,

[Me
W](ab) ≡

1
P

η(a)
[

Ge−1
W

](ab)
η(b) =

[
Q(I + ψ1AeQ)−1

]
(ab)

,

where products are now over 2 × 2 matrices. Then, one has:

PΨe
3
[Q, R] :=Dµ2

1ψ2
1ψ2R(12)

[
µ2
⋆Me(12)

W + µ2
1

(
Me(12)

X + µ2
1µ2

⋆ψ2
1 [M

e
X Me

W Me
X]

(12)
)

+2µ2
1µ2

⋆ψ1 [Me
X Me

W](12)
]

,

Se [Q, R] :=ψ2 log det(Ge
X) + ψ2 log det(Ge

W) + ∑
a

[
(ψ2

1ψ2λ)TrQ(a)(a)

+Tr
(

R(a)(a)(Q−1)(a)(a)
)
+ log det Q(a)(a)

]
− ψ1 log det Q − log det R.

(A.86)

176 A.3. Replica Computation

Where we have:

Me
X =

1
(1 + µ2

1ψ1r)2 − (µ2
1ψ1r̃)2

[
r + µ2

1ψ1(r2 − r̃2) r̃
r̃ r + µ2

1ψ1(r2 − r̃2)

]
,

(A.87)

Ae
(ab) = δ(ab) − µ2

1ψ1 [Me
X](ab) , (A.88)

[Me
W](ab) = qδ(ab) − µ2

⋆ψ1

[
Ae(I + µ2

⋆ψ1qAe)−1
]
(ab)

, (A.89)

det(Ge
X) = det

(
δ(ab) + ψ1µ2

1R(ab)

)
, (A.90)

det(Ge
W) = det

(
δab + ψ1qAe

(ab)

)
. (A.91)

Finally, we are left with:

Se(q, r, q̃, r̃) =n (S0(q, r) + Se
1(q, r, q̃, r̃)) ,

Se
1(q, r, q̃, r̃) =r̃2 f e(q, r) + q̃2ge(q, r),

f e(q, r) =
2rµ2

1ψ1
(
1 + qµ2

⋆ψ1
)
+
(
1 + qµ2

⋆ψ1
)2 − r2µ4

1ψ2
1(−1 + ψ2)

2r2
(
1 + rµ2

1ψ1 + qµ2
⋆ψ1
)2 ,

ge(q, r) =
ψ1

2q2 .

(A.92)

Where S0 was defined in A.64. Expression of the ensembling terms Evaluating the
fluctuations around the saddle point follows through in the same way as for the
vanilla terms, with the following expressions of the prefactors:

PΨe
2
[Q, R] = Dψ2

1ψ2µ2
1r̃
[
µ2

1Pe
XX − 2µ2

1µ2
⋆ψ1Pe

WX + µ2
⋆Pe

WW
]

,

PΨe
3
[Q, R] = Dµ2

1ψ2
1ψ2R(12)

[
µ2
⋆Me(12)

W + µ2
1

(
Me(12)

X + µ2
1µ2

⋆ψ2
1 [M

e
X Me

W Me
X]

(12)
)

+2µ2
1µ2

⋆ψ1 [Me
X Me

W](12)
]

,

Pe
XX = ψ2Ne12

X + Me12
X + 2ψ2(µ1µ⋆ψ1)

2 [Me
X Ne

X Me
W]12 + (µ1µ⋆ψ1)

2 [Me
X Me

W Me
X]

12

+ ψ2(µ1µ⋆ψ1)
4 [Me

X Me
W Ne

X Me
W Me

X]
12 ,

Pe
WX = ψ2 [Ne

X Me
W]12 + [Me

X Me
W]12 + ψ2(µ1µ⋆ψ1)

2 [Me
X Me

W Ne
X Me

W]12 ,

Pe
WW = [Me

W]12 + ψ2(µ1µ⋆ψ1)
2 [Me

W Ne
X Me

W]12 .

Computation of the divide and conquer term
Here, we are interested in computing the term Ψd

2. This term differs from the
previous ones in that there are now two independent data matrices X(1) and X(2).
The calculations for the action and the prefactor are very similar to calculations
performed for the ensembling terms Ψe

2, Ψe
3, with the addition that BX now also

Appendix A 177

carries an index (a). Firstly let us write Ψd
2 as a trace over random matrices:

Ψd
2 =

µ2
1

d2 Tr
[

X(1)Z(1)B(1)−1Θ(1)Θ(2)B(2)−1Z(2)X(2)
]

. (A.93)

Calculations follow through in the same way as in the previous sections. Using the
replica formula A.73, and performing the integrals over the Gaussian variables the
following quantities appear:

(Gd
X)

(ab)
ii′ = δii′ +

µ2
1ψ1

D ∑
α

λ
α(a)
i λ

α(a)
i′ ,

(Jd
X)

(a)
i =

µ1µ⋆
√

ψ1

D2 ∑
α

λ
α(a)
i η

α(a)
h W(a)

h ,

(Gd
W)

(ab)
hh′ = δab

hh′ +
µ2
⋆

D ∑
αβ

η
α(a)
h Aαβ,abη

β(b)
h′ ,

(Jd
W)h = 0,

(Gd
Θ)

(ab)
hh′,ii′ = δab

hh′,ii′ , (Jd
Θ)

(a)
hi = −i ∑

α

λ̂
α(a)
i η

α(a)
h ,

(Gd
λ̂
)

αβ,(ab)
ii′ = 2δabδii′η

α(a)
h η

β(b)
h , (Jd

λ̂
)

α(a)
i = i

√
Pλ

α(a)
i .

The saddle point ansatz for Q and R is the same as the one for the ensembling
terms (see A.85). The procedure to evaluate Ψd

2 is also the same as the one for Ψe
2

except the Hessian is taken with respect to Sd. The final result is given below.

PΨd
2
[Q, R] =Dµ2

1ψ1ψ2
2 r̃
[
ψ1µ2

1PXX + 2µ2
⋆µ2

1ψ2
1PWX + µ2

⋆ψ1PWW
]

,

PXX =
(

N11
X + 2(µ1µ⋆ψ1)

2 [NX MW MX]
11 + (µ1µ⋆ψ1)

4 [MX MW NX MW MX]
11
)

,

PWX = [NX MW]11 + (µ1µ⋆ψ1)
2 [MX MW NX MW]11 ,

PWW =(µ1µ⋆ψ1)
2 [MW NX MW]11 ,

Sd[q, r, q̃, r̃] =n
(

S0(q, r) + Sd
1(q, r, q̃, r̃)

)
,

Sd
1(q, r, q̃, r̃) =

r̃2

r2 +
ψ1q̃2

q2 .

With:

MX =
r

1 + µ2
1ψ1r

, A = 1 − µ2
1ψ1MX ,

MW =
q

1 + µ2
⋆ψ1qA

, NX =
r̃

(1 + µ2
1ψ1r)2

.

Appendix B

Online learning with two layer
neural networks in the ODE limit -
Toolbox

B.1 Moments of functions of weakly correlated variables

Here, we show how to compute expectation of functions of weakly correlated
variables with non zero mean. The derivation follows the ones of [117] (see
App. A). We extend their computations to include variables with non-zero means.

Consider the random variables x,y ∈ R, jointly Gaussian with joint probability
distribution:

P(x, y) =
1

2π
√

det M2
exp

[
−1

2

(
x − x̄ y − ȳ

)
M−1

2

(
x − x̄
y − ȳ

)]
, (B.1)

where we defined the mean of x, respectively y, as x̄, respectively ȳ and the
covariance matrix:

M2 =

(
Cx ϵM12

ϵM12 Cy

)
. (B.2)

The weak correlation between x and y is encapsulated in the parameter ϵ ≪ 1
while M12∼O(1).

We are interested in computing expectations of the form E
(x,y)

[f (x)g(y)] with

two real valued functions f , g : R→R. Leveraging the weak correlation between x

178

Appendix B 179

and y, we can expand the distribution Eq. (B.1) to linear order in ϵ, i.e.:

(B.1) =
1

2π
√

CxCy
e−

1
2Cx (x−x̄)2− 1

2Cy (y−ȳ)2 [
1 − ϵ(x − x̄)

(
C−1

x M12C−1
y

)
(y − ȳ) + O

(
ϵ2)]

(B.3)

Using the above, one can compute the expectations:

E
(x,y)

[f (x)g(y)] =E
x
[f (x)]E

y
[g(y)] (B.4)

+ ϵ E
x
[f (x)(x − x̄)]

(
C−1

x M12C−1
y

)
E
y
[g(y)(y − ȳ)] + O(ϵ2).

The expectations are now taken over the 1-dimensional distributions of x∼N (0, Cx)

and y∼N (0, Cx). Similarly, consider the case of three weakly correlated real random
variables xi, i = 1, 2, 3 with mean x̄i and covariance matrix M3 such that

(M3)ij =

Ci, if i = j

ϵMij, if i ̸= j
. (B.5)

One can use an expansion of the joint probability distribution of {xi} to linear
order in ϵ to compute three point moments of real valued functions f , g, h as:

E
{x}i

[f (x1)g(x2)h(x3)] = E
{x}i

[f (x1)] [g(x2)] [h(x3)]

−ϵ E
x3
[h(x3)]E

x1
[(x1 − x̄1) f (x1)]

(
C−1

x M12C−1
y

)
E
x2
[(x2 − x̄2)g(x2)]

−ϵ E
x2
[g(x2)]E

x1
[(x1 − x̄1) f (x1)]

(
C−1

x M13C−1
y

)
E
x3
[(x3 − x̄3)h(x3)]

−ϵ E
x1
[f (x1)]E

x2
[(x2 − x̄2)g(x2)]

(
C−1

x M23C−1
y

)
E
x3
[(x3 − x̄3)h(x3)] + O(ϵ2).

(B.6)

In the case in which x1 and x2 are weakly correlated with x3 but not between each
other, i.e. Cov(x1, x2) = M12∼O(1), one has:

E [f (x1)g(x2)h(x3)] =E [f (x1)g(x2)]E [h(x3)] (B.7)

+ ϵ
E [h(x3)(x3 − x̄3)](
Cx1 Cx2 − M2

12

)
Cx3

{E [f (x1)g(x2)(x1 − x̄1)] M13Cx2

+E [f (x1)g(x2)(x2 − x̄2)] M23Cx1

−E [f (x1)g(x2)(x1 − x̄1)] M12M23

−E [f (x1)g(x2)(x2 − x̄2)] M13M12}+ O(ϵ2).

180 B.2. Analytical formula for the integrals in the equations of motion

B.2 Analytical formula for the integrals in the equations of
motion

Sigmoidal activation function

I2 ≡ E g(x1)g(x2) =
2
π

[
c12√

1 + c11
√

1 + c22

]
(B.8)

J2 ≡ E x1g(x2) =

√
2

π(1 + c22)
c12 (B.9)

I3 ≡ E g′(x1)x2g(x3) =
2
π

1√
(1 + c11)(1 + c33)− c2

13

c23(1 + c11)− c12c13

1 + c11
(B.10)

I21 ≡ E g′(x1)x1x2 =

√
2
π

c12

(c11 + 1)3/2 (B.11)

I22 ≡ E g′(x1)x2
2 =

√
2
π

(
c11c22 − c2

12 + c22
)

(c11 + 1)3/2 (B.12)

Linear activation function

I2 = J2 = I21 ≡ E x1x2 = c12 (B.13)

I22 ≡ E x2
2 = c22 (B.14)

I3 ≡ E x2x3 = c23 (B.15)

(B.16)

ReLU activation function

I2 ≡ E g(x1)g(x2)

=
1

8π

2
√

c11c22 − c2
12 + c12π + 2c12 + arctan

c12√
c11c22 − c2

12

 (B.17)

J2 ≡ E x1g(x2) =
c12

2
(B.18)

181

182 C.1. Summary of Notations

Appendix C

Understanding the interplay
between data structure and
architecture in Gaussian mixture
classification

C.1 Summary of Notations

D input dimensions P number of random
features

N number of samples γ = P/D

t = N/D training time,
or equivalently
rescaled number of
training samples

y∗ true label

Ωα ∈ RD×D covariance of the
normal distribution
of cluster α

µα
√

D
∈ RD mean of the Gaus-

sian cluster α in the
mixture

x ∈ RD input σ standard deviation
of the Gaussian clus-
ters in a mixture
with Ωα = σ2I

SNR= |µ|
σ
√

D
signal to noise ration η learning rate

λ L2-regularisation
constant

pmse population mean
squared error

ϵc classification error

Appendix C 183

q(x|y∗)= ∑
α∈S(y∗)

Pα±Nα(x) conditional probability of x given the true label y∗

Two layer neural networks (2LNN)

K number of hidden
nodes of the 2LNN

θ
(1)k
i first layer weights

θ(2)k second layer weights g : R→R activation function

a ≡ ∑
r

θ
(1)k
r xr/

√
D local field/pre-

activation of the
2LNN

ϕθ(x) =
K
∑

k=1
θ(2)kg(ak)

output of the net-
work

Qkl
α =

∑
rs

θ
(1)k
r Ωα

rsθ
(1)l
s

D

order parameter/ co-
variance of the local
fields

Mk
α =∑

r

θ
(1)k
r µα

r
D order parame-

ter/mean of the
local fields

σ0 weights are ini-
tialised i.i.d. from
N (0, σ2

0)

184 C.2. Equations of Motion

Random Features (RF)

F ∈ RP×D projection
matrix
Fir

i.i.d.∼N (0, 1)

z ≡ ψ

(
D
∑

r=1
Firxr/

√
D

)
features

ψ : R→R activation func-
tion applied ele-
ment wise

ϕw(x) =
P
∑

i=1
wizi/

√
D output of the net-

work

Ŵ fix point solu-
tion of the SGD
update equation
of RF

C.2 Equations of Motion

In this appendix, we derive the dynamical equations that describe the dynamics of
two-layer neural networks trained on the Gaussian mixture from Sec. 4.4. We first
derive a useful Lemma for the averages of weakly correlated random variables B.1,
which we we then use in the derivation of the dynamical equations C.2

Derivation of the ODEs
In this section, we derive the ODEs describing the dynamics of training of a

2LNN trained on inputs sampled from the distribution 4.36 with L2-regularisation
constant λ. We restrict to the case where all the Gaussian clusters have the same
covariance matrix, i.e. Ωα = Ω ∈ RD×D.

In order to track the training dynamics, we analyse the evolution of the macro-
scopic operators defined in Eq. 4.39 allowing to compute the performances of the
network at all training times.

At the sth step of training, the SGD update for the networks parameter is given
by Eq. 4.37:

dθ
(1)k
i ≡

(
θ
(1)k
i

)
s+1

−
(

θ
(1)k
i

)
s
= −ηθ(1)√

D

(
θ(2)k∆g′(ak)xi + λθ

(1)k
i

)
, dθ(2)k = −ηθ(2)√

D

(
g(ak) + λθ(2)k∆

)
.

(C.1)

In order to guarantee that the dynamics can be described by a set of ordinary

Appendix C 185

equations in the D→∞ limit, we choose different scalings for the first and second
layer learning rates:

ηθ(1) = η, ηθ(2) = η/D

for some constant η.

Update of the first layer weights To make progress, consider the eigen-decomposition
of the covariance matrix:

Ωrs =
1
D

D

∑
τ=1

ΓsτΓrτρτ; (C.2)

where we denote the eigenvalues as ρτ, their corresponding eigenvector as Γτ and
the eigenvalue distribution as pΩ. We further define the projection of the weights
into the projected basis as

θ̃
(1)k
τ ≡ 1√

D

D

∑
τ=1

Γsτθ
(1)k
s (C.3)

and similarly x̃τ and µ̃α
τ as the projected inputs and means. In this basis, the SGD

update for the first layer weights is:

dθ̃
(1)k
τ ≡

(
θ̃
(1)k
τ

)
s+1

−
(

θ̃
(1)k
τ

)
s
= − η√

D

(
θ(2)k∆g′(ak)x̃τ + λθ̃

(1)k
τ

)
. (C.4)

The expectation of this update over the distribution Eq. 4.36 is given by:

E dθ̃
(1)k
τ = ∑

α∈S(+)

Pαdθ̃(1)k(ρ)α+ + ∑
α∈S(−)

Pαdθ̃(1)k(ρ)α− , (C.5)

where we decomposed the expectation into the different clusters and introduced:

dθ̃(1)k(ρ)α± =± η√
D

θ(2)kCk
τ −

η√
D

∑
j ̸=k

θ(2)kθ(2)jAkj
τ − η√

D
θ(2)kθ(2)kBk

τ −
ηλ√

D
θ̃(1)k(ρ),

(C.6)

with the expectations Akj
τ ,Bk

τ and Ck
τ defined as:

Akj
τ = E

α
g′(ak)g(aj)x̃τ, Bk

τ = E
α

g′(ak)g(ak)x̃τ, Ck
τ = E

α
g′(ak)x̃τ. (C.7)

A crucial observation, is that ak and the projected input x̃τ are jointly Gaussian
and weakly correlated, with a correlation of order 1/

√
D:

E
α

ak x̃τ =
1√
D

ρτ θ̃(1)k. (C.8)

186 C.2. Equations of Motion

Thus, we can compute the expressions Eq. C.7 using the proposition for weakly
correlated variables derived in App. B.1. This gives:

Akj
τ = E

α
g′(ak)g(aj)

µ̃α
τ√
D

+
1

QkkQjj − Qkj2

{(
E
α

g′(ak)akg(aj)− E
α

g′(ak)g(aj)Mαk
)(

Qjj θ̃
(1)k
τ ρτ√

D
− Qkj w̃j

τρτ√
D

)
(

E
α

g′(ak)ajg(aj)− E
α

g′(ak)g(aj)Mαj
)(

Qkk w̃j
τρτ√
D

− Qkj θ̃
(1)k
τ ρτ√

D

)}

Bk
τ = E

α
g′(ak)g(ak)

µ̃α
τ√
D

+
1

Qkk

(
E
α

g′(ak)akg(ak)− E
α

g′(ak)g(ak)Mαk
) θ̃

(1)k
τ ρτ√

D
,

Ck
τ = E

α
g′(ak)

µ̃α
τ√
D

+
1

Qkk

(
E
α

g′(ak)ak − E
α

g′(ak)Mαk
) θ̃

(1)k
τ ρτ√

D
, (C.9)

where we used that the first moments of the local fields are given by the order
parameters, E α[ak] = Mαk and Cov(ak, al) = Qkl . The multi-dimensional integrals
of the activation function only depend on the order parameters at the previous
step. We discuss how to obtain them, using monte-carlo methods in Sec 4.4. The
averaged update of the first layer weights follows directly from Eq. C.9.

Update of the Order parameters In order to derive the update equations for the
order parameters, we introduce the densities m(ρ, t) and q(ρ, t). These depend on ρ

and on the normalised number of steps t = µ/D, which we interpret as a continuous
time variable.

mαk(ρ, t) =
1

Dϵρ
∑
τ

θ̃
(1)k
τ µ̃α

τ1(ρτ∈[ρ,ρ+ερ[),

qkl(ρ, t) =
1

Dερ
∑
τ

θ̃
(1)k
τ θ̃

(1)l
τ 1(ρτ∈[ρ,ρ+ερ[), (C.10)

where 1(.) is the indicator function and the limit ϵρ→0 is taken after the ther-
modynamic limit. Using these definitions, the order parameters can be written
as:

Qkl(t) =
∫

dρ pΩ(ρ) ρqkl(ρ, t), Mαk(t) =
∫

dρ pΩ(ρ)mαk(ρ, t). (C.11)

The equation of motion of m can can be easily computed using the update C.6
and is given by:

∂mβk(ρ, t)
∂t

= ∑
α∈S(+)

Pα
∂mβk

α+(ρ, t)
∂t

+ ∑
α∈S(−)

Pα
∂mβk

α−(ρ, t)
∂t

, (C.12)

Appendix C 187

with

∂mβk
α±(ρ, t)
∂t

=± ηθ(2)k I31(k)Tαβ ± ηρθ(2)k

Qkk

(
I32(k, k)− I31(k)Mαk

)
mβk(ρ, t)

+ ∑
j ̸=k

[
−ηθ(2)kθ(2)j I22(k, j)Tαβ

+
ηρθ(2)kθ(2)j

QkkQjj − Qkj2

{(
−I3(k, k, j) + I32(k, j)Mαk

) (
Qjjmβk(ρ, t)− Qkjmβj(ρ, t)

)
+
(
−I3(k, j, j) + I32(k, j)Mαj

) (
Qkkmβj(ρ, t)− Qkjmβk(ρ, t)

)}]
− ηθ(2)kθ(2)k I22(k, k)Tαβ − ληmβk(ρ, t)

− ηρθ(2)kθ(2)k

Qkk

(
I3(k, k, k)− I22(k, k)Mαk

)
mβk(ρ, t). (C.13)

Note how, in order to close the equation, we introduced an additional order

parameter Tαβ = ∑D
r=1

µα
r µ

β
r

D , which is entirely defined by the overlap of the means
of the mixture under consideration and is therefore a constant of motion. For
compactness, we defined the multidimensional integrals I of the activation function
over the local fields as:

I3(k, j, l) = E
α

g′(ak)ak(aj) (C.14a)

I32(k, j) = E
α

g′(ak)aj (C.14b)

I31(k) = E
α

g′(ak) (C.14c)

I22(k, j) = E
α

g′(ak)g(aj). (C.14d)

The update of q can similarly be decomposed as a sum over the different Gaussian
clusters:

∂qkl(ρ, t)
∂t

= ∑
α∈S(+)

Pα
∂qkl

α+(ρ, t)
∂t

+ ∑
α∈S(−)

Pα
∂qkl

α−(ρ, t)
∂t

(C.15)

The linear contribution to this update is directly computed by using Eq. C.6 and
is similar to the one for mβk(ρ, t). The quadratic contribution is obtained by using
the fact that the projected inputs x̃τ have a correlation of order 1/

√
D with the local

fields. Therefore, to leading order, this contribution is given by terms of the form:

η2

D2 ∑
τ

ρτ E
α

[
g′(ak)g′(al)g(ai)g(aj)x̃2

τ

]
=

η2

D
E
α

[
g′(ak)g′(al)g(ai)g(aj)

] (
∑
τ

ρτ E
α

[
x̃2

τ

])
+ O(D−3/2)

(C.16)

188 C.2. Equations of Motion

Let us define the constant of motion χα = 1
D ∑τ ρ2

τ, then the quadratic term in the
update for qα± is given by:

η2χαθ(2)kvl

(
I42(k, l)∓ 2 ∑

j
θ(2)j I43(k, l, j) + ∑

jb
θ(2)jθ(2)bI4(k, l, j, b)

)
. (C.17)

The multidimensional integrals I are given by:

I4(k, l, j, b) = E
α

g′(ak)g′(al)g(aj)g(ab) I43(k, l, j) = E
α

g′(ak)g′(al)g(aj) I42(k, l) = E
α

g′(ak)g′(al).

Finally, the full equation of motion of q is written:

∂qkl(ρ, t)α±

∂t
=± ηθ(2)k I31(k)mαk(ρ, t)± ηρθ(2)k

Qkk

(
I32(k, k)− I31(k)Mαk

)
qkl(ρ, t)

+ ∑
j ̸=k

[
−ηθ(2)kθ(2)j I22(k, j)mαk(ρ, t)

+
ηρθ(2)kθ(2)j

QkkQjj − Qkj2

{(
−I3(k, k, j) + I32(k, j)Mαk

) (
Qjjqkl(ρ, t)− Qkjqjl(ρ, t)

)
+
(
−I3(k, j, j) + I32(k, j)Mjα

) (
Qkkqjl(ρ, t)− Qkjqkl(ρ, t)

)}]
− ηθ(2)kθ(2)k I22(k, k)mαk(ρ, t)− ηρθ(2)kθ(2)k

Qkk

(
I3(k, k, k)− I22(k, k)Mαk

)
qkl(ρ, t)

+ (k ↔ l) (C.18)

+ η2χαθ(2)kvl

(
I42(k, l)∓ 2 ∑

j
θ(2)j I43(k, l, j) + ∑

jb
θ(2)jθ(2)b I4(k, l, j, b)

)
− 2ληqkl(ρ, t).

Update for the second layer weights The update of the second layer weights is also
decomposed into the contribution of the different Gaussian clusters and follows
from taking the expectation of Eq. 4.37b on the GM distribution 4.36:

E
dθ(2)k(t)

dt
= ∑

α∈S(+)

Pα
dθ

(2)k
α+ (t)
dt

+ ∑
α∈S(−)

Pα
dθ

(2)k
α− (t)
dt

,

dθ
(2)k
α± (t)
dt

=± η E
α

g(ak)− η ∑
j

θ(2)j E
α

g(ak)g(aj)− ηλθ(2)k

(C.19)

Equations C.13,C.18 and C.19 suffice to fully characterise the training dynamics, in
the limit of high dimensions and online-learning, of a 2LNN trained on an arbitrary
Gaussian mixture with O(1) clusters each having mean µα and same covariance
matrix Ω.

Agreement with Numerical Simulations Here, we verify the agreement of the ODEs

Appendix C 189

10 1 101 103
t

0.0

0.2

0.4
g

analytical
simulations

10 1 101 103
t

0.2

0.0

0.2
Qkl

10 1 101 103
t

0.2

0.0

0.2 Rkn

10 1 101 103
t

0.2

0.1

0.0

0.1

vk

Figure C.1: Agreement between simulations and ODEs when training a K =
3 2LNN on a Gaussian mixture in D = 800 dimensions, with four Gaussian
clusters with random covariance matrix Ω and random means (i.e. µr∼N (0, 1))
for sigmoidal activation function. We verify that even at finite (D = 800) input
dimension, the analytical prediction agree well with simulations. η = 0.1, g(x) =
erf (x/

√
2), weights initialised with s.t.d. σ0 = 1. Monte-Carlo integration performed

with 10−4 samples.

derived above with simulation of 2LNN trained via online SGD. To start, Fig. C.1
displays the dynamics of a K = 3 network trained on a Gaussian mixture with 4
Gaussian clusters having covariance matrix Ω = FT F/

√
D and means µα, where the

elements of both the matrix F ∈ RD×D and the means are sampled i.i.d. from a
standard Gaussian distribution. The agreement between analytical prediction, given
by integration of the ODEs, and simulations is very good both in the dynamics of
the test error, of the order parameters and of the second layer weights.

Note that the equations of motion describe the evolution of the densities m and
q averaged over the input distribution. The agreement between this evolution and
simulations justifies, at posteriori, the implicit assumption that the stochastic part of
the SGD increment 4.37 can be neglected in the D→∞ limit. We can thus conjecture
that in the D→∞ limit, the stochastic process defined by the SGD updates converges
to a deterministic process parametrised by the continuous time variables t ≡ N/D.
We further add that the proof of this conjecture is not a straight-forward extension
of the one of Goldt et al. [114] for i.i.d. inputs since here, one must take into account
the density of the covariance matrix.

The ODEs are valid for generic covariance matrix and means. Thus, they can
be used to analyse the role of data structure in training 2LNNs. Although we
leave a detailed analysis for future work, Fig. C.2 gives an example of how this
could be done in the case where a K = 3 2LNN is trained on a GM obtained
from the FashionMnist dataset. The GM is obtained by computing the means x̄α

and covariance matrix Covα(x, x) of each class in the dataset and assigning a label
+1 or −1 to the different classes, as is commonly done in binary classification
tasks. One could, for example, assign label y = +1 to the sneakers, boots, sandals,
trousers and shorts categories and y = −1 to all others. Extending our analysis
to C-class classification is straight forward and follows the analysis of Yoshida

190 C.2. Equations of Motion

100 102
t

0.1

0.2

0.3

g

simulations
odes

100 102
t

2

0

2
Qkl

100 102
t

100

0

100 M k

100 102
t

50

0

50

100
vk

Figure C.2: Agreement between simulations and ODEs when training a K = 3
2LNN with sigmoidal activation function on a Gaussian mixture obtained from the
FashionMNIST dataset. The analytical dynamics obtained by integrating the ODEs
agrees well with the given by simulations. Thus, the ODEs provide a tool to study
the importance of datastructure in training 2LNN. We leave this study for future
work. D = 784, η = 0.1, g(x) = erf (x/

√
2), weights initialised with s.t.d. σ0 = 0.1.

Monte-Carlo integration performed with 104 samples.

et al. [322]. The inputs are then sampled from a GM where the cluster’s mean
are given by x̄α and the covariance matrix Ω is the mean covariance of all classes:
Ω = 1/nclasses ∑

α
Covα(x, x). Note the similarity between this procedure and linear dis-

criminant analysis commonly used in statistics. The agreement between simulations
and analytical predictions is again very good, both at the level of the test error and
of the order parameters.

Simplified ansatz to solve the ODEs for the XOR-like mixture
Here, we detail the procedure, introduced in Sec. 4.4, used to find the long

time t→∞ performance of 2LNN by making an ansatz on the form of the order
parameters that solve the fix point equations. The motivation for doing so, as
argued in of the main text, is that integrating the ODEs is numerically expensive
as it requires evaluating various multidimensional integrals and the number of
equations to integrate scales as K2. In order to extract information about the
asymptotic performances of the network, one can look for a fix point of the ODEs.
However, the number of coupled equations to be solved, also scales quadraticaly
with K and is already 26 for a K = 4 student. The trick is to make an ansatz,
with fewer degrees of freedom, on the order parameters that solve the equations.
Used in this way, the ODEs have generated a wealth of analytical insights into the
dynamics and the performance of 2LNN in the classical teacher-student setup [38,
39, 117, 268–270, 321, 322]. In all these works though, an important simplification
occured because the means of the local fields were all zero by construction. This
simplification allowed the fixed points to be found analytically in some cases. Here,
the means of the local fields evaluated over individual Gaussians in the mixture
are not zero, so we have to resort to numerical means to find the fixed points of the
ODEs.

Appendix C 191

Consider, for example, a 2LNN trained on the XOR-like mixture of Fig. 4.1.
The Gaussian clusters have covariance Ω = σ2I and means chosen as in the left-
hand-side diagram of Fig. 4.1, with the remaining D − 2 components set to 0. This
configuration leads to the constrain θ(1)k ·µ±0 = −θ(1)k ·µ±1 that, in terms of overlap
matrices, forces Mαk = −Mα+1k thus halving the number of free parameters in M.
It is also clear that the only components of the weight vectors which contribute
to the error are those in the plane spanned by the means of the mixture. The
additional D − 2 components can be taken to 0: i.e. θ

(1)k
r = 0 for r = 2, .., D. This

condition allows to decompose the weight vectors as:

wk
s = ∑

r

θ
(1)k
r µ+0

r√
D

µ+0
s√
D

+ ∑
r

θ
(1)k
r µ−0

r√
D

µ−0
s√
D

(C.20)

This decomposition, fully constrains the overlap matrix Qkl in terms of Mαk:

Qkl = σ2 ∑
s

wk
s wl

s
D

= σ2

(
∑

r

θ(1)kµ+0
r

D

)(
∑

a

wl
aµ+0

a
D

)
|µ+0|2

D
+ σ2

(
∑

r

θ
(1)k
r µ−0

r
D

)(
∑

a

wl
aµ−0

a
D

)
|µ−0|2

D

=⇒ Qkl = σ2
(

M+0k M+0l + M−0k M−0l
)

, (C.21)

where we used that in the XOR-like mixture, |µα| =
√

D and µ0+ · µ0− = 0. From
the symmetry between the positive and negative sign clusters of the mixture, in
the fix point configuration, for every weight having norm |w| and at an angle α

with the mean of a positive cluster, there is a corresponding weight of the same
norm, at an angle α with a negative mean. I.e. the angles of the weight vectors
θ(1)k to the means µα, as well as the norms of the weights, are 2 × 2 equal (one for
the positive sign cluster and the other for the negative sign one). This constrains
further half the number of free parameters in the overlap matrix M, which are
down to 4K/(2 × 2) = K. The second layer weights v are fully constrained by
requiring the output of the student to be ±1 when evaluated on the means. Putting
everything together, one is left with K equations to solve for the K/2 angles and the
K/2 norms, or equivalently, for the K free parameters in the overlap matrix M. The
agreement between the solution found by solving this reduced set of equations and
simulations is displayed both in Fig. 4.3, where we use it to predict the evolution of
the test error with the L2−regularisation constant.

192 C.3. Transforming a Gaussian mixture with random features

C.3 Transforming a Gaussian mixture with random features

The distribution of random features is still a mixture
Given an input x = (xi) ∈ RD sampled from the distribution 4.36, we consider the
feature vector z = (zi) ∈ RN

zi = ψ

(
D

∑
r=1

1√
D

Firxr

)
, (C.22)

where F ∈ RD×P is a random projection matrix and ψ : R→R is an element-wise
non linearity. The distribution of z can be computed as:

pz(z) =
∫

RD
dxpx(x)δ

(
z − ψ

(
xF√

D

))
=
∫

RD
dx ∑

y
q(y)q(x|y)δ

(
z − ψ

(
xF√

D

))
≡ ∑

y
q(y) ∑

α∈S(y)
Pα pα

z (z), (C.23)

with
pα

z (z) =
∫

RD
dxδ

(
z − ψ

(
xF√

D

))
Nα

(
µα

√
D

, Ωα

)
(C.24)

Crucially, the distribution of the features z is still a mixture of distributions. We
can thus restrict to studying the transformation of a Gaussian random variable

xr =
µr√

D
+ σwr (C.25)

where wr is a standard Gaussian. The scaling of µr and σ is chosen according to
which regime (low or high SNR) one chooses to study. We aim at computing the
distribution, in particular the two first moments, of the feature z defined in Eq. C.22.
By construction, the random variables ui are Gaussian with first two moments:

E ui =
1√
D

µ̃i, µ̃i ≡ ∑
r

Firµr√
D

(C.26)

E uiuj =
1
D

µ̃iµ̃j + σ2 ∑
r

FirFjr

D
(C.27)

Low signal-to-noise ratio
Here we compute the statistics of the features, for general activation function, in

the low signal to noise regime, for which |µ|/
√

D∼O(1) and σ∼O(1) so that the
Gaussian clusters are a distance of order 1 away from the origin.

Appendix C 193

The mean of zi can be written as:

E zi = E ψ(ui) = E ψ

(
µ̃i√
D

+ σζ

)
, (C.28)

where ζ ∈ R is a standard Gaussian variable. In the scaling we work in, where
P and D are send to infinity with their ratio fixed, and |µ|/

√
D∼O(1), µ̃i/

√
D is of

order O(1/
√

D). Thus, the activation function ψ can be expanded around σζ:

E zi = E ψ (σζ) +
µ̃i

σ
√

D
E ζψ (σζ) + O

(
1
D

)
. (C.29)

where we used integration by part to find σE ∂ψ (σζ) = E ζψ (σζ).

For the covariance matrix, we separate the computation of the diagonal from
the off-diagonal. Starting with the diagonal elements:

E [z2
i] =E

[(
ψ (σζ) +

µ̃i

σ
√

D
∂ψ (σζ)

)2
]

=E
[
ψ (σζ)2

]
+

µ̃i

σ
√

D
E ζψ2 (σζ) + O

(
1
D

) (C.30)

where, once gain, integration by parts was used to obtain 2σE [ψ (σζ) ∂ψ (σζ)] =

E ζψ2 (σζ).

In order to compute the off-diagonal elements, we note that different compo-
nents of u are weakly correlated since Cov(ui, uj) = σ2 ∑r Fir Fjr/D∼O(1/

√
D). We

can therefore apply formula Eq. B.4 for weakly correlated variables:

E
(zi ,zj)

zizj = E
(ui ,uj)

ψ(ui)ψ(uj)

= E
ui

ψ(ui)E
uj

ψ(uj) +
1
σ2 ∑

r

FirFjr

D
E
ui

uiψ(ui)E
uj

ujψ(uj) + O(
1
D
) (C.31)

where the averages are now over the one dimensional distributions of ui∼N
(

µ̃i√
D

, σ2
)

.

We can now replace in the above ui =
µ̃i√
D
+ σζ and keep only leading order terms:

Cov(zi, zj) = ∑
r

FirFjr

σ2D

(
ψ(σζ +

µi√
D
)(σζ +

µi√
D
)

)(
ψ(σζ +

µj√
D
)(σζ +

µj√
D
)

)
= ∑

r

FirFjr

σ2D

(
ψ(σζ)σζ + O(

1√
D
)

)(
ψ(σζ)σζ + O(

1√
D
)

)
= E [ζψ(σζ)]2 ∑

r

FirFjr

D
+ O

(
1
D

)
, for i ̸= j. (C.32)

194 C.3. Transforming a Gaussian mixture with random features

Thus yielding the final result:

Cov(zi, zj) = E [ζψ(σζ)]2 ∑
r

FirFjr

D
, for i ̸= j. (C.33)

We define the constants a, b and c as in Eq. 4.47 and d as:

a = E ψ (σζ) , b = E ζψ (σζ) , c2 = E
[
ψ (σζ)2

]
, d2 = E ζψ2 (σζ) (C.34)

These definitions together with Eq. C.29, Eq. C.30 and Eq. C.33 lead to the statistics
of Eq. 4.48 and Eq. 4.49:

E zi = a +
µ̃i

σ
√

D
b

Cov(zi, zj) =

c2 − a2 +

µ̃i

σ
√

D

(
d2 − 2ab

)
︸ ︷︷ ︸

O(1√
D
): subleading if c2 − a2 > 0

+O(1
D) , if i = j

b2 ∑r
Fir Fjr

D + O(1
D) , if i ̸= j

(C.35)

The above shows that, the transformation of the means is only linear and in the
low SNR regime, the XOR-like mixture of Fig. 4.1, is transformed into a XOR-like
mixture in feature space which cannot be learned by linear regression. Note, that
the performance of linear regression on the features is equivalent to its performance
on inputs z̃ ∈ RP sampled from a Gaussian equivalent model defined as:

z̃i = E zi + ∑
j

Ω1/2
ij ζ j, (C.36)

where Cov(zi, zj) ≡ ∑k Ω1/2
ik Ω1/2

jk and ζ ∈ RP is a random vector with components
sampled i.i.d. from a standard Gaussian distribution.

ReLU features
In the case of Relu activation function i.e. ψ(x) = max(0, x), the mean and the

covariance of the features can be evaluated analytically for all SNR regimes. The
distribution of the features within each cluster is given by a modified Gaussian: the
probability mass of the Gaussian on the negative real axis is concentrated at the
origin while the distribution on the positive axis is unchanged.

In particular, the integral to obtain the mean of z can be computed analytically
and is given by:

E zi = E ReLU(ui) = σ

[
ρ̃i

2

(
1 + erf(

ρ̃i√
2
)

)
+

1√
2π

e−ρ̃2
i /2
]

, (C.37)

Appendix C 195

where we defined:
ρ̃i ≡

µ̃i√
Dσ

=
∑r Firµr

Dσ
.

The covariance is once again computed by separating the diagonal terms from
the off-diagonal ones. The integral to obtain the diagonal terms has an analytical
expression found to be:

Cov(zi, zi)=E [ReLU(ui)
2]−E [ReLU(ui)]

2=σ2
[

ρ̃i√
2π

e−ρ̃2
i /2 +

1
2
(ρ̃2

i + 1)(1 + erf(
ρ̃i√

2
))− (E zi)

2
]

(C.38)

For the off-diagonal components, we again use that the covariance of the different
components of the ui is of order 1/

√
D as Cov(ui, uj) = σ2 ∑r Fir Fjr/D. Therefore, to

evaluate E [ReLU(ui)ReLU(uj)], we can use the result Eq. B.4 for weakly correlated
variables with ϵM12 = σ2 ∑r Fir Fjr/D. Then to leading order in 1

D , one finds:

Cov(zi, zj) = E [ReLU(ui)ReLU(uj)]− E [ReLU(ui)]E [ReLU(uj)]

= ∑
r

FirFjr

σ2D
E [ui ReLU(ui)]E [uj ReLU(uj)] + O(

1
D
)

(C.39)

where the expectations above are over one dimensional distributions ui∼N
(

∑r
Firµr

D , σ2
)

.
The integrals have an analytical closed form expression, which yields the final
result for the covariance:

Cov(zi, zj) =

σ2
[

ρ̃i√
2π

e−ρ̃2
i /2 + 1

2 (ρ̃
2
i + 1)(1 + erf(ρ̃i√

2
))− (E zi)

2
]

if i = j,
σ2

4
∑r Fir Fjr

D

(
1 + erf(ρ̃i√

2
)
) (

1 + erf(ρ̃j√
2
)
)
+ O(1

D) if i ̸= j

(C.40)

Relation with the kernel
As discussed in Sec. 4.5 of the main text , the performances of kernel methods can
be studied by using the convergence of RF to a kernel in the γ→∞ limit taken after
the D, P→∞ limit [253]:

K(x, y)=
1
P

P

∑
i=1

E
F

[
ψ

(
D

∑
r=1

xrFir√
D

)
ψ

(
D

∑
s=1

ysFis√
D

)]
,

In the low SNR regime where |µ|/
√

D∼O(1), the action of the kernel is essentially
linear. The three constants a, b and c, defined in Eq. 4.47, can be expressed
equivalently in terms of the activation function ψ or of the kernel. Consider ω1,
ω2 ∈ R, two i.i.d. standard Gaussian random variables, and denote by angle

196 C.4. Final test error of random features

brackets ⟨·⟩ the expectation over w1, w2. Then, by the definition K(x, y) one has:

⟨K(σω1, σω1)⟩ =
1
P

P

∑
i=1

⟨ψ(ui)
2⟩ = c2 (C.41)

where u ∈ RP is the random vector whose moments are defined in Eq. C.26 and we
used the element wise convergence of ψ(∑r Firxr)ψ(∑r Fisys)/P to its expected value [253].
Similarly, one has:

⟨K(σω1, σω2)⟩ =
1
P

P

∑
i=1

⟨ψ(ui)⟩2 = a2 (C.42)

Finally, for b one has to perform a linear expansion of the kernel around the noise
variable σω1

2
:

⟨K(σω1 +
µ√
D

, σω2 +
µ√
D
)⟩ = 1

P

P

∑
i=1

⟨E
F

[
ψ(ui1 + ∑

r

µrFir

D
)⟩⟨ψ(ui2 + ∑

r

µrFir

D
)

]
⟩

=
1
P

P

∑
i=1

⟨ψ(ui)⟩2 + ∑
rs

µrµs

D2

P

∑
i=1

E
F

FirFis

P
⟨ψ′(ui)⟩2

=a2 +
1

Dσ2 b2, (C.43)

=⇒ b2 =Dσ2
(
−a2 + ⟨K(σω1 +

µ√
D

, σω2 +
µ√
D
)⟩
)

These expressions allow to express the statistical properties of the features z, and
to asses the performance of RF and kernel methods, directly in terms of the kernel
without requiring the explicit form of the activation function.

For completeness, we give the analytical expression of the kernel corresponding
to ReLU random features, i.e. ψ(x) = max(0, x):

KReLU(x, y) =
|x||y|
8πD

{
2| sin(θ)|+ cos(θ)

(
π + 2 Arctan

(
cos(θ)
| sin(θ)|

))}
, (C.44)

where we defined the angle θ between the two vectors x, y ∈ RD such that |x|, |y| >
0:

θ =
x · y
|x||y| (C.45)

From Eq. C.44, one sees that in case of ReLU activation function, the kernel is an
angular kernel, i.e. it depends on the angle between x and y∗.

Appendix C 197

10 1 100
0.0

0.1

0.2

0.3

0.4

0.5

c

= 5
= 10
= 20

analytical
simulations

Figure C.3: Agreement between analytical predictions and simulations of the
classification error of RF trained on the XOR like mixture of Fig. 4.1 for increasing σ
and various γ. The analytical predictions are obtained by computing the moments
of the features z using Eq. C.37 and Eq. C.40. These are then used to obtain, first the
asymptotic solution of RF via Eq. C.51, which is in turn plugged in Eq. C.54. The
final result is then given by Eq. C.53. Simulation results are obtained by training
online an RF network with η = 0.1 until convergence. Parameters: D = 800, η = 0.1,
P = γD, |µ|/

√
D = 1.

C.4 Final test error of random features

This section details the computations leading to Eq. 4.43 and Eq. 4.45 allowing to
obtain the asymptotic performances of RF trained via online SGD on a mixture of
Gaussian distribution.

Applying random features on x ∈ RD sampled from the distribution 4.36 is
equivalent to performing linear regression on the features z ∈ RP with covariance
Ωz and mean µz. In the following, for clarity, we assume the features are centred, so
that µz = 0, extending the computation to non centred features is straight-forward.
The means of the individual clusters are however non zero. The output of the
network at a step t in training is given by ϕ(w)t = ∑P

i=1
wizti/

√
P. We train the

network in the online limit by minimising the squared loss between the output of
the network and the label yt. The pmse is given by:

pmse(w) =
1
2

E

(
y −

P

∑
i=1

wizi√
P

)2

=
1
2
+

P

∑
i,j=1

wiwj

2P
Ωz

ij −
P

∑
i=1

wi√
P

Φi, (C.46)

where we introduced the input-label covariance Φi ≡ E [ziy].

198 C.4. Final test error of random features

The expectation of the SGD update over the distribution of z is thus:

E dwi = − η√
P

E zi

(
P

∑
j=1

wjzj√
P

− y

)
=

η√
P
(Φi −

P

∑
j=1

wj√
P

Ωz
ij) (C.47)

Importantly, both the pmse and the average update only depend on the distribution
of the features through the covariance matrix of the features Ωz and the input label
covariance Ψ.

To make progress, consider the eigen-decomposition of the covariance matrix
Ωz:

Ωz
ij =

1
P ∑

τ

ρτΓτiΓτ j, (C.48)

where ρτ are the eigenvalues and Γτ their corresponding eigenvectors.

Define the rotation of W and Φ into this eigenbasis:

θ̃
(1)
τ ≡ 1√

P

P

∑
i=1

Γiτwi Φ̃τ ≡ 1√
P

P

∑
i=1

ΓiτΦi (C.49)

In this basis, the SGD update for the different components of θ̃(1) decouple. One
finds a recursive equation in which each mode evolves independently from the
others:

E dθ̃
(1)
τ =

η√
P
(Φ̃τ −

1√
P

P

∑
τ=1

ρτ θ̃
(1)
τ) (C.50)

Thus, the fix point ˜̂W such that E d ˜̂wτ = 0, can be found explicitly:

ρτ ˜̂wτ =
√

PΦ̃τ.

Rotating back in the original basis one finds the asymptotic solution for W as:

ŵi = ∑
τ;ρτ>0

1
ρτ

ΓiτΦ̃τ. (C.51)

The asymptotic test error is thus given by:

pmset→∞ =
1
2

(
1 − ∑

τ

Φ̃2
τ

ρτ

)
(C.52)

Asymptotic classification error From the solution of Eq. C.51 for the asymptotic
solution found by linear regression, one can obtain the asymptotic classification

Appendix C 199

error performed by random features as:

ϵct→∞ = E Θ(−ya) = ∑
α

Pα E
α

Θ(−ya), (C.53)

where Θ : R→R is the Heaviside step function and we defined a ≡ ∑P
i=1

ŵizi/
√

P.
Introducing the local field a allows to transform the high dimensional integral over
the features z into a low-dimensional (in this case one dimensional) expectation
over the local field. The Gaussian equivalency theorem of Goldt et al. [118] shows
that even though the z are not Gaussian, to leading order in 1/P, the average
Eq. 4.45, only depends on the first two moments a, defined as:

Mα = E
α
[a] =

P

∑
i=1

ŵi E α[zi]√
P

Qα = Cov
α
[a, a] =

P

∑
i=1

ŵiŵj

P
Cov

α
(z, z) (C.54)

These moments can be computed analytically from the statistics of the features
computed in Sec. C.3 and from the optimal weights W obtained in Eq. C.51. The
classification error, Eq. C.53, can thus be evaluated by means of a one dimensional
integral over the distribution of a.

ϵct→∞ = ∑
α

Pα

∫ da√
2πQα

Θ(−yα)e−
1

2Qα
(a−Mα)2

(C.55)

=
1
2

(
1 − ∑

α

Pαyα erf
(

Mα√
2Qα

))
(C.56)

C.5 The three-cluster model

Similar to the analysis of the XOR-like mixture of Fig. 4.6, we analyse a data model
with three clusters that was the subject of several recent works [80, 177, 203, 220,
221]. The Gaussian mixture in input space can be seen in the first column of
Fig. C.4. The means of both positive clusters are set to 0 while the means of the
negative sign clusters have first component ±µ0 and all other D − 1 components 0.
The mixture after random feature transformation is displayed in the second column
and the third and fourth column show the performance of a 2LNN, respectively, a
random feature network, trained via online SGD, on this problem. Here again, we
build on the observation that overparametrisation does not impact performances
and train a K = 10 2LNN in order to increase the number of runs that converged.
The three rows, are as before, three different SNR regimes, they are in order the
low, high and mixed SNR regime.

The phenomenology observed in the XOR-like mixture carries through here. In

200 C.5. The three-cluster model
Lo

w
 S

N
R

Input space RF space Two-layer Neural Network Random features

H
ig

h
SN

R
M

ix
ed

 S
N

R

z1

z2

z3

z1
z3

z2

z1

z3

z2

x1

x2

x1

x2

x1

x2

Figure C.4: We compare the performance of 2LNN with K = 10 hidden units and
ReLU activation function (third column) to the ones of random features (fourth
column) on the three cluster problem with different signal-to-noise ratios. The
right sketches the input space distribution and the second column the transformed
distribution in feature space. 2LNN can considerably outperform RF in all three
regimes. In the low SNR regime (top), the action of the random features is essentially
linear inducing their performance to be as bad as random guessing in the D→∞
limit. In the high SNR regime (middle), instead, both networks manage to learn
the task. In the mixed SNR regime (bottom), the distance between opposite sign
clusters remains of orther one in feature space inducing the RF performances to
be unchanged with D. We plot the test error as a function of time. Parameters:
D = 1000, η = 0.1, σ2 = 0.05, P = 2D for random features, K = 10 for 2LNN.

the low SNR regime, µ0 =
√

D (top row), the 2LNN can learn the problem and its
performance remains constant with increasing input dimension. On the other hand,
in this regime, the transformation performed by the random features is only linear
in the large D limit. Consequently, the RF performances degrade with increasing
D and are as bad as random chance in the limit of infinite input dimension. In
the high SNR regime instead (second row), where µ0 = D, the mixtures becomes
well separated in feature space allowing RF to perform well. Both the performance
of 2LNN and RF improve as the clusters in the mixture become more separated.
The mixed SNR regime (bottom row) is obtained by setting one of the negative
sign clusters a distance

√
D from the origin while maintaining the other one at a

distance 1. Here, the random feature perform a non trivial transformation of the far
away cluster while its action on the nearby cluster is linear. Hence, in feature space,

Appendix C 201

one of the negative clusters remains close to the positive clusters while the other is
well separated. The RF thus achieve a test error which is better than random but
still worse that that of the 2LNN. Its error is constant with increasing D since it is
dominated by the “spill-over” of the negative cluster into the positive cluster at the
origin.

Lastly, let us comment that in all our work, we did not add a bias to the model.
Adding a bias, does not change the conclusion that small 2LNN considerably
outperform RF. In fact, the learning curves are only slightly modified. This is
due to to our minimisation of the pmse when training the network, which, unlike
classification loss that only cares about the sign of the estimate, penalises large
differences between label y = ±1 and the output. For simplicity, we thus chose
to remove the bias in our analysis, although including it is a straight forward
operation.

Appendix D

Autoencoders as a tool to study
feature learning

D.1 Online learning algorithms for PCA

We briefly review a number of unsupervised learning algorithms for principal
component analysis, leading to Sanger’s rule which is the inspiration for the
truncated SGD algorithm of 4.7.3.

Setup
We consider inputs x = (xi), i = 1, . . . , D with first two moments equal to

E xi = 0 and E xixj = Ωij. (D.1)

We work in the thermodynamic limit D→∞.

Hebbian learning
The Hebbian learning rule allows to obtain an estimate of the leading PC by
considering a linear linear model y = a = ∑i wixi/

√
D with i = 1, . . . , D and the loss

function L(a) = −a2. It updates the weights as:

dwt
i = −ηt∇wiL(a) =

1√
D

ηtyxi (D.2)

In other words, the Hebbian learning rule tries to maximise the second moment
of the pre-activation a. That using this update we obtain an estimate of the first
principal component makes intuitive sense. Consider the average over the inputs
of the loss:

EL(a) = − 1
D

wiΩijwj. (D.3)

202

Appendix D 203

If the weight vector e is equal to the τth eigenvector of Ω, then EL(a) = −ρτ/D,
and the loss is minimised by converging to the eigenvector with the larges eigen-
value. Also note, that similar to what we find in the main text, this result also
suggests that the leading eigenvalue in the large-D limit should scale as ρτ∼D. The
Hebbian rule has the well-known deficit that it imposes no bound on the growth of
the weight vector. A natural remedy is to introduce some form of weight decay
such that

dwt
i =

η√
D
(yxi − κwi). (D.4)

Oja’s rule
[240] offers a smart choice for the weight decay constant κ. Consider the same
linear model y = a trained with a Hebbian rule and weight decay κ = y2:

dwt
i =

η√
D
(yxi − y2wi) (D.5)

The purpose of this choice can be appreciated from substituting in the linear model
and setting the update rule to zero, which yields (dropping the constants)

∑
j

Ωijwj = ∑
j,l

wjΩjℓwℓwi (D.6)

which is precisely the eigenvalue equation for Ω.
Then, Oja’s update rule is then derived from Hebb’s rule by adding normalisa-

tion to the Hebbian update (D.2),

wt+1
i =

wt
i + ηyxi(

∑
[
wt

i + ηyxi
]p
)1/p (D.7)

with p integer (in Oja’s original paper, p = 2.) This learning rule can be seen as a
power iteration update. Substituting for y, we see that the numerator corresponds
to, on average, repeated multiplication of the weight vector with the average
covariance matrix. Expanding D.7 around η = 0 yields Oja’s algorithm (while
also assuming that the weight vector is normalised to one). One can show that
Oja’s rule indeed converges to the PC with the largest eigenvalue by allowing the
learning rate to vary with time and imposing the mild conditions

lim
T→∞

T

∑
t=0

ηt→∞, lim
T→∞

T

∑
t=0

η
p
t < ∞ for p > 1. (D.8)

Sanger’s rule [273] is also known as generalised Hebbian learning in the

204 D.2. Online learning in autoencoders

literature and extends the idea behind Oja’s rule to networks with multiple outputs
yk = wk

i xi. It allows estimation of the first few leading eigenvectors by using the
update rule is given by

dwk
i =

η√
D

yk

(
xi −

k

∑
ℓ=1

yℓwℓ
i

)
. (D.9)

Note that the second sum extends only to the k; the dynamics of the kth input
vector hence only depends on weight vectors wℓ with ℓ < k. This dependence
is one of the similarities of Sanger’s rule with the Gram-Schmidt procedure for
orthogonalising a set of vectors (cf. sec. 0.6.4 of Horn and Johnson [137]). The
dynamics of Sanger’s rule in the online setting were studied by Biehl and Schlösser
[37], Schlösser et al. [278]. Sanger’s rule reduces to Oja’s rule for K = 1.

D.2 Online learning in autoencoders

Here we derive the set of equations tracking the dynamics of shallow non-linear
autoencoders trained in the one-pass limit of stochastic gradient descent (SGD).
These equations are derived for Gaussian inputs x ∈ RD drawn from the generative
model 4.53, but as we discuss in 4.7.4, they also capture accurately the dynamics of
training on real data.

D.2.1 Statics

The starting point of the analysis is the definition of the test error (4.52) and
the identification of order parameters, i.e. low dimensional overlaps of high
dimensional vectors.

pmse ≡ 1
D ∑

i
E(xi − x̂i)

2 (D.10)

=
1
D

Tr Ω +
1
D ∑

i
∑
k,ℓ

vk
i vℓi E g

(
∑

i

wk
i xi√
D

)
g

(
∑

i

wℓ
i xi√
D

)
− 2

1
D ∑

i
∑

k
vk

i xig

(
∑

i

wk
i xi√
D

)
.

First we introduce the local fields corresponding to the encoder and decoder’s
weights,

ak ≡ ∑
i

wk
i xi√
D

νk ≡ ∑
i

vk
i xi

D
, (D.11)

Appendix D 205

as well as the order parameter tracking the overlap between the decoder weights:

Tkℓ
0 ≡ 1

D ∑
i

vk
i vℓi . (D.12)

Note the unusual scaling of νk with D; the intuition here is that in shallow autoen-
coders, the second-layer weights will be strongly correlated with the eigenvectors
of the input-input covariance, and hence with the inputs, requiring the scaling 1/D
instead of 1/

√
D. This scaling is also the one that yields a set of self-consistent

equations in the limit D→∞. The generalisation error becomes

pmse =
1
D

Tr Ω + ∑
k,ℓ

Tkℓ
0 E g(ak)g(aℓ)− 2 ∑

k
E νkg(ak). (D.13)

Crucially, the local fields a and ν are jointly Gaussian since the inputs are Gaussian.
Since we have E ak = E νk = 0, the pmse can be written in terms of the second
moments of these fields only:

Tkℓ
1 ≡ E νkνℓ =

1
D2 ∑

i,j
vk

i Ωijvℓj , (D.14)

Qkℓ
1 ≡ E akaℓ =

1√
D

∑
i,j

wk
i Ωijwℓ

j , (D.15)

Rkℓ
1 ≡ E νkaℓ =

1
D3/2 ∑

i,j
vk

i Ωijwℓ
j . (D.16)

The full expression of E g(ak)g(aℓ) and E νkg(ak) in terms of the order parameters
is given, for various activation functions, in App B.2. Note the different scalings of
these overlaps with D. These are a direct consequence of the different scaling of
the local fields ak and νk. In order to derive the equations of motion, it is useful to
introduce the decomposition of Ω in its eigenbasis:

Ωrs =
1
D

D

∑
τ=1

ΓsτΓrτρτ. (D.17)

The eigenvectors Γsτ are normalised as ∑i ΓτiΓτ′i = Dδττ′ and ∑τ ΓτiΓτ j = Dδij.
We further define the rotation of any zi ∈ {wk

i , vk
i , xi} onto this basis as zτ ≡

1/
√

D ∑D
s=1 Γτszs. The order parameters are then written:

Tkℓ
1 =

1
D2 ∑

τ

ρτvk
τvℓτ, Rkℓ

1 =
1

D3/2 ∑
τ

ρτwk
τvℓτ, Qkℓ

1 =
1
D ∑

τ

ρτwk
τwℓ

τ. (D.18)

206 D.2. Online learning in autoencoders

D.2.2 Derivation of dynamical equations

At the µth step of training, the SGD update for the rotated weights reads

dwk
τ ≡

(
wk

τ

)
µ+1

−
(

wk
τ

)
µ
= −ηW

D
1√
D

D

∑
j

(
K

∑
ℓ

vℓj g(aℓ)− xj

)
vk

j g′(ak)xτ −
κ

D
wk

τ

= − ηW√
D

(
K

∑
ℓ

Tℓk
0 g(aℓ)− νk

)
g′(ak)xτ −

κ

D
wk

τ, (D.19)

dvk
τ = −ηV

D
g(ak)

(
K

∑
m

vm
τ g(am)− xτ

)
− κ

D
vk

τ. (D.20)

To keep notation concise, we drop the weight decay term in the following analysis.
We can now compute the update of the various order parameters by inserting the
above into the definition of the order parameters. The stochastic process described
by the resulting equations concentrates, in the D→∞ limit, to its expectation
over the input distribution. By performing the average over a fresh sample x,
we therefore obtain a closed set of deterministic ODEs tracking the dynamics of
training in the high-dimensional limit. We also show in simulations that these are
able to capture well the dynamics also at finite dimension D∼500.

Update of T0 the overlap of the decoder’s weights
Let us start with the update equation for Tkℓ

0 = 1/D ∑τ vk
τvℓτ which is easily

obtained by using the sgd update (D.19).

Tkℓ
0µ+1 − Tkℓ

0µ =
1
D ∑

τ

dvk
τvℓτ + vk

τdvℓτ = −ηV

D

(
∑

a
g(ak)g(aa)Taℓ

0 + νℓg(ak)

)
+ (k ↔ ℓ)

(D.21)

By taking the expectation over a fresh sample x and the D, N→∞ limit, we obtain
a continuous in the normalised number of steps s = µ/D, which we interpret as a
continuous time variable, as:

∂Tkℓ
0

∂s
= −ηV

(
∑

a
E g(ak)g(aa)Taℓ

0 + E νℓg(ak)

)
+ (k ↔ ℓ) (D.22)

This equation requires to evaluate I22 ≡ E g(ak)g(ak), I21 ≡ E νℓg(ak), which are
two-dimensional Gaussian integrals with covariance matrix given by the order
parameters. We give their expression in B.2. We also note that the second order
term ∝ dvkdvℓ is sub-leading in the high dimensional limit we work in.

Appendix D 207

Update of T1

The update equation for Tkℓ
1 = 1/D2 ∑τ ρτvk

τvℓτ is obtained similarly as before by
using the SGD update (D.19) and taking the high-dimensional limit.

∂Tkℓ
1

∂s
= −ηV

(
∑

a
E g(ak)g(aa)Tal

1 + ∑
τ

ρτ
vℓτ
D2 E g(ak)xτ

)
+ (k ↔ ℓ) (D.23)

To make progress, we have to evaluate E g(ak)xτ. For this purpose it is crucial to
notice that the rotated inputs xτ are weakly correlated with the local fields:

E akxτ =
1
D ∑

i,j
wk

i ΩijΓτ j =
1√
D

ρτwk
τ,

E νkxτ =
1

D3/2 ∑
i,j

vk
i ΩijΓτ j =

1
D

ρτvk
τ.

(D.24)

Then, we can compute the expectation E g(ak)xτ using the results of ?? , i.e. Eq. (B.4)
with f (x) = g(x) and h(y) = y, thus obtaining:

E g(ak)xτ =
E akg(ak)

Qkk
1

ρτwk
τ√

D
(D.25)

Inserting the above expression in the update of T1 yields:

∂Tkℓ
1

∂s
= ηV

(
E akg(ak)

Qkk
1

∑
τ

ρ2
τ

vℓτwk
τ

D5/2 − ∑
a

E g(ak)g(aa)Tal
1

)
+ (k ↔ ℓ) (D.26)

Notice, that in this equation we have the the appearance of ∑τ ρ2
τ

vℓτwk
τ

D5/2 , a term which
cannot be simply expressed in terms of order parameters. Similar terms appear in
the equation for Q1 and R1. To close the equations, we are thus led to introduce
order parameter densities in the next step.

Order parameters as integrals over densities
To proceed, we introduce the densities q(ρ, s), r(ρ, s) and t(ρ, s). These depend on
ρ and on the normalised number of steps s = µ/D:

qkℓ(ρ, s) =
1

Dϵρ
∑
τ

wk
τwℓ

τ1,

rkℓ(ρ, s) =
1

D3/2ϵρ
∑
τ

vk
τwℓ

τ1,

tkℓ(ρ, s) =
1

D2ϵρ
∑
τ

vk
τvℓτ1,

(D.27)

208 D.2. Online learning in autoencoders

where 1(.) is the indicator function and the limit ϵρ→0 is taken after the thermody-
namic limit. The order parameters are obtained by integrating these densities over
the spectrum of the input-input covariance matrix:

Qkℓ
1 =

1
D

∫
dρpΩ(ρ)ρqkℓ(ρ, s), Rkℓ

1 =
1
D

∫
dρpΩ(ρ)ρrkℓ(ρ, s), Tkℓ

1 =
1
D

∫
dρpΩ(ρ)ρtkℓ(ρ, s).

(D.28)
It follows that tracking the dynamics of the functions q, r and t, we obtain the
dynamics of the overlaps Q1, R1 and T1.

Dynamics of t(s, ρ)

The dynamics of t is given straightforwardly from D.26 as:

∂tkℓ(ρ, s)
∂s

= ηV

(
E akg(ak)

Qkk
1

ρ̃rℓk(ρ, s)− ∑
a

tℓa(ρ, s)E g(ak)g(aa)

)
+ (k ↔ ℓ) (D.29)

where we defined the rescalled eigenvalue ρ̃ ≡ ρ/D. Here again, straightforward
algebra shows that the second order term is sub-leading in the limit of high input
dimensions.

Dynamics of q(s, ρ)

In a similar way, we compute the dynamical equation for q(s, ρ) by using the
encoder’s weight’s update in D.19 and taking the expectation over the input
distribution.

∂qkℓ(ρ, s)
∂s

=
ηW√

D
ρ ∑

τ

1 wℓ
τ

(
E g′(ak)νkxτ − ∑

a
TakE g′(ak)g(aa)xτ

)
+ (k ↔ ℓ)

(D.30)
In the above, we have the appearance of the expectations:

Aka
τ = E [g′(ak)g(aa)xτ]/;Bk

τ = E [g′(ak)g(ak)xτ]/; Ck
τ = E [νkg′(ak)xτ] (D.31)

Appendix D 209

To compute these, we use our results for weakly correlated variables from B.1 and
obtain:

Aka
τ =

1

Qkk
1 Qaa

1 −
(
Qka

1

)2

(
Qaa

1 E
[

g′
(

ak
)

akg(aa)
] ρτwk

τ√
D

− Qka
1 E

[
g′
(

ak
)

aag(aa)
] ρτwk

τ√
D

−Qka
1 E

[
g′
(

ak
)

akg(aa)
] ρτwa

τ√
D

+ Qkk
1 E

[
g′
(

ak
)

aag(aa)
] ρτwa

τ√
D

)
Bk

τ =
E
[
g′
(
ak) akg(ak)

]
Qkk

1

ρτwk
τ√

D
(D.32)

Ck
τ =

1

Qkk
1 Tkk

1 −
(

Rkk
1

)2

(
Tkk

1 E
[

g′
(

ak
)

akνk
] ρτwk

τ√
D

− Rkk
1 E

[
g′
(

ak
)

νk2
] ρτwk

τ√
D

−Rkk
1 E

[
g′
(

ak
)

akνk
] ρτvk

τ

D
+ Qkk

1 E
[

g′
(

ak
)

νk2
] ρτvk

τ

D

)
Using these results in the equations for q(ρ, s) we find:

∂qkℓ(ρ, s)
∂s

= ηW Dρ̃

{
1

Qkk
1 Tkk

1 −
(

Rkk
1

)2

(
Tkk

1 E
[

g′
(

ak
)

akνk
]

qkl(ρ, t)− Rkk
1 E

[
g′
(

ak
)

νk2
]

qkl(ρ, t)

−Rkk
1 E

[
g′
(

ak
)

akνk
]

r(ρ, t)kl + Qkk
1 E

[
g′
(

ak
)

νk2
]

r(ρ)kl
)

− ∑
a ̸=k

Tka
0

1

Qkk
1 Qaa

1 −
(
Qka

1

)2

(
Qaa

1 E
[

g′
(

ak
)

akg(aa)
]

qkl(ρ, t)

−Qka
1 E

[
g′
(

ak
)

aag(aa)
]

qkl(ρ, t)

−Qka
1 E

[
g′
(

ak
)

akg(aa)
]

q(ρ)al

+Qkk
1 E

[
g′
(

ak
)

aag(aa)
]

q(ρ, t)al
)

− Tkk
0

E
[
g′
(
ak) akg(ak)

]
Qkk

1
qkl(ρ, t)

}
+ (l ↔ k)

(D.33)

Note, that as explained in the main text, in order to find a well defined D→∞ limit,
we rescale the learning rate of the encoder’s weights as ηW = η/D.

Dynamics of r(s, ρ)

Lastly, we obtain the equation for r(ρ, s) in the same way as the two previous ones.

210 D.2. Online learning in autoencoders

We use D.19 and evaluate the expectation over a fresh sample x.

∂rkℓ(ρ, s)
∂s

= η

(
1

ϵgD3/2 ∑
τ

1wℓ
τE xτg(ak)− ∑

a

1
ϵgD3/2 ∑

τ

1wℓ
τva

τE g(ak)g(aa)

)

+ η

(
1

ϵgD ∑
τ

1vk
τE g′(aℓ)νℓxτ − ∑

a
Tal

0
1

ϵgD ∑
τ

1vk
τE g′(aℓ)g(aa)xτ

)
(D.34)

We can evaluate the expectations as before (B.1). Thus, we obtain the equation of
motion for r(ρ, s) as:

∂drkl(ρ, s)
∂s

=ηρ̃

{
1

Qkk
1 Tkk

1 −
(

Rkk
1

)2

(
Tkk

1 E
[

g′
(

ak
)

akνk
]

rlk(ρ, t)− Rkk
1 E

[
g′
(

ak
)

νk2
]

rlk(ρ, t)

−Rkk
1 E

[
g′
(

ak
)

akνk
]

tkl(ρ, t) + Qkk
1 E

[
g′
(

ak
)

νk2
]

tkl(ρ, t)
)

− ∑
a ̸=k

Tka
0

1

Qkk
1 Qaa

1 −
(
Qka

1

)2

(
Qaa

1 E
[

g′
(

ak
)

akg(aa)
]

rlk(ρ, t)

−Qka
1 E

[
g′
(

ak
)

aag(aa)
]

rlk(ρ, t)

−Qka
1 E

[
g′
(

ak
)

akg(aa)
]

rla(ρ, t)

+Qkk
1 E

[
g′
(

ak
)

aag(aa)
]

rla(ρ, t)
)

− Tkk
0

E
[
g′
(
ak) akg(ak)

]
Qkk

1
rlk(ρ, t)

}

+ η

{
E aℓg(aℓ)

Qll
1

ρ̃q(ρ, t)− ∑
a

rak(ρ, t)E g(aℓ)g(aa)

}
(D.35)

D.2.3 Simplification of the equations for spiked covariance matrices

In the case of the synthetic dataset defined as x = Ac + ξ, the spectrum of the
covariance matrix is decomposed into a bulk of small, i.e. O(1) eigenvalues, of
continuous support, and a few outlier eigenvalues taking values of order O(D)

(see 4.7). This allows to obtain M equations for controlling the evolution of the
spikes modes and one equation controlling the evolution of the bulk for all order
parameters. Indeed we can simplify the equations of motion of the bulk eigenvalues
(i.e. those for which ρ∼O(1)) by neglecting terms proportional to ρ/D ≪ 1. Doing

Appendix D 211

so leads to:

∂tkℓ(ρ, s)
∂s

= −η ∑
a

tℓk(ρ, s)E g(ak)g(aa) + (k ↔ ℓ)− κtkℓ(ρ, s)

∂rkl(ρ, s)
∂s

= −η ∑
a

E g(ak)g(aa)rak(ρ, t)− κrkℓ(ρ, s)

∂qkℓ(ρ, s)
∂s

= −κqkℓ(ρ, s).

(D.36)

We can define bulk order parameters, that take into account the contribution from
the bulk modes as:

Tbulk =
∫

ρ∈bulk
dpΩ(ρ)

ρ

D
t(ρ), Rbulk =

∫
ρ∈bulk

dpΩ(ρ)
ρ

D
r(ρ),

Qbulk =
∫

ρ∈bulk
dpΩ(ρ)

ρ

D
q(ρ). (D.37)

Note that even though the integrals involve ρ/D∼O(1/D) since we are integrating
over a large number (O(D)) of modes, the result is of order 1. The equation for
these overlaps are thus obtained as the integrated form of Eq. (D.36):

∂Tkℓ
bulk
∂s

=− η ∑
a

Tℓk
bulkE g(ak)g(aa) + (k ↔ ℓ)− κTkℓ

bulk

∂Rkℓ
bulk

∂s
=− η ∑

a
Rak

bulk(ρ, t)E g(ak)g(aa)− κRkℓ
bulk

∂Qkℓ
bulk

∂s
=− κQkℓ

bulk.

(D.38)

The order parameters can be decomposed into the contribution from the bulk
eigenvalues and those of the spikes as:

T1 =
M

∑
i∈outliers

ρ̃iti + Tbulk (D.39)

and similarly for Q1 and R1. The M spike modes ti, ri and qi obey the full equations
Eq. (D.29) , Eq. (D.34) and Eq. (D.33). In particular, it is clear from Eq. (D.38) that
for any non-zero weight decay constant κ, the bulk contribution to Q1 will decay to
0 in a characteristic time κ−1. Further note that the equations for Tbulk and Rbulk

result in an exponential decay of the bulk modes towards 0.

212 D.3. Reduced equations for long-time dynamics of learning

Figure D.1: Gaussian equivalence for autoencoders Train and test mean-squared
error for linear, sigmoidal and relu autoencoders with different numbers of hidden
neurons (K = 4, 64, 128 in blue, orange and green, resp.) The autoencoders were
trained on CIFAR10 grayscale images (solid lines) or, starting from the same initial
conditions, on Gaussian inputs with the same covariance (dashed lines). The
agreement is essentially perfect. Parameters: 10k training samples, D = 1024, mini-
batch size=1, η = 1.

10−2 100 102 104

t

0.06

0.12

pm
se

r=1

r=2

r=3
r=4

10−2 100 102 104

t

0.06

0.12

Tied, no bias
Untied, no Bias
Untied w/ bias

10−2

100

102

bi
as

before training

positive
negative

K
10−2

100

102

bi
as

after training

Figure D.2: Results derived on synthetic data carry over to finite real datasets
(a) Also in real dataset, a sigmoidal AE requires untied weights to attain good
performances. For an untied student, which asymptotically performs as PCA,
the dynamics slow down at intermediary ranks, signalling a sequential learning
of different modes. (b) In order to learn, a ReLU autoencoder requires training
the bias in the encoder’s weights. The asymptotic error is given by PCA plus
a residual due to the biases. Parameters: CIFAR10 and FashionMNIST with 10k
images. batch-size=1, η = 1.

D.3 Reduced equations for long-time dynamics of learning

In this section we illustrate how to use the equations of motion in order to study
the long training time dynamics of shallow non-linear autoencoders. At sufficiently
long times, we have seen that the weights of the network spam the leading PC

Appendix D 213

subspace of the covariance matrix. We restrict to the case in which the eigenvectors
are recovered directly. The case in which a rotation of them is found follows
straightforwardly. We also restrict to the matched case in which K = M.

Consider the following ansatz on the weights configuration: wk
i = αω/

√
DΓk

i and
vk

i = αk
vΓk

i . We defined dynamical constants αk
w, αk

v ∈ R which control the norm of
the weights. Using this ansatz, the order parameters take the form:

Qkℓ
1 = αk2

w ρ̃kδkℓ Rkℓ
1 = αk

wαk
vρ̃kδkℓ Tkℓ

1 = αk2
v ρ̃kδkℓ Tkℓ

0 = αk2
v δkℓ (D.40)

Using the above, we can rewrite the pmse as:

pmse(αk
w, αk

v) = ∑
k

{
Tkk

0 E g(ak)2 − 2E νkg(ak) + ρ̃k

}
+ ∑

i>K
ρ̃i (D.41)

The first observation is that the generalisation error reaches a minimum when the
term in bracket f k is minimised. Minimising it leads to an equation α∗k

v (αw) at
which f k(α∗k

v (αw), αw) = 0 and the pmse is equal to the PCA reconstruction error.

For a linear activation function, we have

pmse(αk
w, αk

v) = ∑
k

{
αk2

v αk2
w ρ̃k − 2αk

wαk
vρ̃k + ρ̃k

}
︸ ︷︷ ︸

fk(αk
v,αk

w)

+ ∑
i>K

ρ̃i︸ ︷︷ ︸
PCA reconstruction error

(D.42)

The pmse is a function only of the product αk2 ≡ αk
wαk

v and is minimal and equal to
the PCA reconstruction error whenever:

∂ fk(α
k
v, αk

w)

∂αl
v

= 0 =⇒ α∗k
v =

1
αk

w
, ∀k and fk(

1
αk

w
, αk

w) = 0 (D.43)

The above is nothing but the intuitive result that for a linear autoencoder, any
rescaling of the encoder’s weights can be compensated by the decoder’s weights.

For a sigmoidal autoencoder, instead, the expressions of the integrals given in
App. B.2, give:

pmse(αk
w, αk

v) = ∑
k

{
2
π

αk2
v

αk2
w ρ̃k

1 + αk2
w ρ̃k

−
√

2
π(1 + αk2

w ρ̃k)
2αk

wαk
vρ̃k + ρ̃k

}
︸ ︷︷ ︸

fk(αk
v,αk

w)

+ ∑
i>K

ρ̃i

(D.44)
Differentiating fK with respect to αk

w, and requiring the derivative to be 0, we find

214 D.3. Reduced equations for long-time dynamics of learning

the equation:

2π
(

1 + ρ̃kαk2
ω

)2
=4αk2

ω αk2
v

(
1 + ρ̃kαk2

ω

)
=⇒ αk∗2

v (αw) =
π

2

(
1

α2k
w

+ ρ̃

) (D.45)

We point out that this solution is independent of the sign of αk
ω or αk

v as recovering
the eigenvectors or minus the eigenvectors is equivalent. Replacing this solution for
αk

ω in the expression for the pmse, we find f k(αk∗
v (αw), αk

w) = 0. The autoencoder
reaches the same reconstruction error as the one achieved by PCA.

Ansatz in the equations of motion
The ansatz Eq. 4.66 results in order parameters of the form:

qkl(ρm) =
αk2

w
D

δklδk
m rkl(ρm) =

αk
wαk

v
D

δklδk
m tkl(ρm) =

αk2
v

D
δklδk

m (D.46)

Inserting these expressions into the full dynamical equations of motion Eq. (D.33),
Eq. (D.34) and Eq. (D.29), allows us to finnd a simplified set of 2K ODEs for the
scaling constants αk

v and αk
w:

∂αk
v

∂s
=

ρ̃kαk
w

π (αk2
w ρ̃ + 1)

√
2π (αk2

w ρ̃ + 1)− 2αk
vαk

w

∂αk
w

∂s
= αk

vρ̃k

√
2

π (αk2
w ρ̃ + 1)3

(
1 −

√
2 (αk2

w ρ̃ + 1)
π (2αk2

w ρ̃ + 1)
αk

vαk
w

) (D.47)

The validity of the equations is verified in Fig. 4.9 where we compare the result
of integrating them to simulations. We provide a Mathematica notebook which
allows to derive these equations on the Github repository of this paper.

To validate our calculations for autoencoders with finite D, we trained an
autoencoder from three distinct initial conditions: A random one, an informed
configuration in which the weights are initialised as in Eq. 4.66 with αk

v = αk
w = 1

and a perfect one, in which additionally, αk
v is initialised from the minimal pmse

solution Eq. D.45. The first observation is that the pmse of the network started with
perfect initial conditions remains at the PCA reconstruction error, thus validating
Eq. D.45. Since we have a noiseless dataset, the PCA error is given by the numerical
error, however we note that the same conclusion caries over to noisy datasets with
finite PCA reconstruction error. In D.3, we plot the pmse of the randomly initialised
and informed autoencoders on the left as well as the evolution of αk

v and αk
w, i.e. of

the overlap between the weights and the eigenvectors during training, on the right.

https://github.com/anon

Appendix D 215

10 1 101 103

t
10 3

10 2

10 1

g

PCA = 10 14

random
informed

10 1 101 103

t

0.2

0.4

0.6

0.8

1.0

W

0

2

4

6

V

Figure D.3: Learning in non-linear shallow AE occurs in two phases (a) The pmse
of an auto-encoder trained from random initial conditions first decays exponentially
and then as a power law in time. Dynamics of the scaling constants αv and αw The
reduced set of 2K ODEs match the results of simulations. The dynamics of an AE
initialised randomly with random initial conditions become indistinguishable with
those of an AE whose weights are initialised proportional to the PCs. This shows
that the network first recovers the leading PCs subspace and then adjusts the norm
of the weights in order to recover the linear regime.Parameters: η = 1, K = 64, bs = 1

We can see that the network with random initial weights learns in two phases: first
the pmse decays exponentially until it reaches the error of the aligned network.
Then, its pmse coincides with that of the informed network and the error decays
as a power-law. This shows that during the first phase of exponential learning,
the network recovers the leading PC subspace. This occurs early on in training.
In the second phase, the networks adjust the norm of the weights to reach PCA
performances. As discussed in the main text, this is achieved in the sigmoidal
network by shrinking the encoder’s weights, so as to recover the linear regime of
the activation function. It keeps the norm of the reconstruction similar to the one
of the input by and growing the decoder’s weights.

Appendix E

Learning rate schedules and how
they improve BP performance

E.1 Dynamics of the convex model

Here we give additional details and steps in the computations on the convex model
of Sec. 5.1.2. The loss function is given by L(w) = κ

2 w2. Integrating the Langevin
equation (Eq. 5.1) from t0 to t for w yields:

w(t) = w(t0)e
−κ
∫ t

t0
dτη(τ)︸ ︷︷ ︸

w̄(t)

+
∫ t

t0

dt′e−κ
∫ t′

t0
dtτη(τ)

η(t′)ξ(t′)︸ ︷︷ ︸
δw(t)

. (E.1)

In order to obtain a typical realisation of the loss which does not depend on the
optimisation noise ξ, we take the expectation over ξ. This gives for the loss L:

⟨L(t)⟩ = κ

2

⟨w̄(t)2⟩+ ⟨δw(t)2⟩+ 2 ⟨w̄(t)δw(t)⟩︸ ︷︷ ︸
0

 (E.2)

=
κ

2

w(t0)
2e−2κ

∫ t
t0

dτη(τ)︸ ︷︷ ︸
L̄(t)

+ 2T
∫ t

t0

dt′η(t′)2e−2κ
∫ t

t′ dτη(τ)︸ ︷︷ ︸
δL(t)

 (E.3)

The first term is an optimisation term while the second is the contribution of the
noise inherent to the optimisation algorithm. Thus, to converge to the solution as
quickly as possible, one has to find the trade-off between decreasing the impact of
the noise term while not slowing down optimisation excessively. The ideal schedule
is determined by requiring these two effects are comparable. Defining η(t) = η0/t,

216

Appendix E 217

we obtain

L̄(t) ∝ e−2η0κ log(t) ∝ t−2η0κ (E.4)

δL(t)
∫ t

t0

dt′
1
t′2

(
t′

t

)2η0κ

∝ 1/t. (E.5)

If η0 > 1/2κ, the loss is dominated by the noise term δL and decays as 1/t. If
η0 < 1/2κ, the loss is dominated by the optimization term δL and decays as t−2η0κ.

E.2 Dynamics of the Sherrington-Kirkpatrick model

In this section, we provide derivations for the results obtained in the SK model.

Unplanted model

The loss function is given by:

L(w) = − 1√
N

N

∑
i<j

Jijwiwj. (E.6)

Solving the dynamics
Following Cugliandolo and Dean [71], we express the spin configurations in the

eigenbasis of J and define wµ = w·Jµ/
√

N as the projection of w onto the eigenvector
Jµ. xµ evolves as:

∂wµ(t)
∂t

= η(t)
[
(µ − z(t))wµ(t) + ξµ(t)

]
. (E.7)

Integrating this equation yields again two terms, one related to the optimisation
and the second related to the noise:

wµ(t) = wµ (0) e−
∫ t

0 dτη(τ)(µ−z(τ)) (E.8)

+
∫ t

0
dt′′e−

∫ t
t′′ dτ′η(τ′)(z(τ′)−µ)η(t′′)ξµ

(
t′′
)

.

In the t→∞ limit, a non-exploding w̄µ requires µ−z(t) to be negative for all µ

in the support of ρ, implying z(t) < 2. We must also impose z(t)→t→∞2, otherwise
wµ(t)→0 ∀µ, in contradiction with the spherical constraint. To comply with these
two requirements we define z(t) = 2 − f (t), with f (t)→t→∞0.

In the constant learning rate setup η(t) = 1 we know from [71] that f (t) =
3/(4t). With η(t) = η0/tβ, a natural ansatz is f (t) = c/t1−β. To determine c, we

218 E.2. Dynamics of the Sherrington-Kirkpatrick model

impose the spherical constraint:

1 = ⟨
∫ dµ

N
ρ(µ)wµ(t)2⟩

= t2cη0

∫ 2

−2
dµ
√

4 − µ2e2η0(µ−2)t1−β

= t2cη0−3(1−β)/2
∫ ∞

0
dϵ

√
2ϵe−2η0ϵ ∝ t2cη0−3(1−β)/2 ⇒ c =

3(1 − β)

4η0
.

For β = 1, we instead use the ansatz z(t) = 2 − c/ log(t):

1 =
∫ 2

−2
dµ
√

4 − µ2e2η0(µ−2) log te2cη0 log log t

= (log t)2cη0−3/2
∫ ∞

0
dϵ

√
2ϵe−2η0ϵ ∝ (log t)2cη0−3/2 ⇒ c =

3
4η0

.

Hence, the scaled loss ℓ = L/N converges to the ground state (global minimum)
ℓGS = −1 as a sum of power-laws:

ℓ(t)− ℓGS =
η0T
2tβ

+

3(1−β)
8η0t1−β , β < 1

3
8η0 log t , β = 1

. (E.9)

Dependency on the spectrum of J One may naturally ask whether our conclusions
are affected by changing the spectrum of the coupling matrix J. Notice that the
key to solving the self-consistent equation is the behavior of the spectrum near its
right edge. For the semi-circle law considered here, the right edge of the spectrum
behaves as a square root. This law applies to a rather wide range of random
matrix ensembles. Besides, many other common spectral densities, such as the
Marcenko-Pastur law, also exhibit a same square root behavior on their right edge.
Hence we expect our results to hold for a wide range of random matrix ensembles.

Planted model

The loss function is given by:

L(w) = −N
2

m2 − ∆√
N

N

∑
i<j

Jijwiwj. (E.10)

Solving the dynamics

Again we choose η(t) = η0/tβ and consider the high signal-to-noise setting,

Appendix E 219

∆ < 1
2 . Writing z(t) = 1 − f (t), we obtain:

1 =⟨
∫ dµ

N
ρ(µ)wµ(t)2⟩ (E.11)

=
N − 1

N

∫ 2

−2
dµρsc(µ)e

2
∫ t

t0
dτη(τ)(µ−1)e2

∫ t
t0

dτη(τ) f (t)
+

1
N

e2
∫ t

t0
dτη(τ) f (t) (E.12)

=e2
∫ t

t0
dτη(τ) f (τ)

e−2η(t)(1−2∆)
∫ 2

−2
dµρsc(µ/∆)e2η(t)(µ−2∆)t︸ ︷︷ ︸

A(t)

+
1
N

 (E.13)

The expression above involves two terms. The first is of order one but decays
exponentially over time; using results above, we obtain that

A(t)∼t−3(1−β)/2e−2η0κt1−β
. (E.14)

Hence, there is a crossover time at which the first term becomes smaller than the
second term, given by:

A(t)∼1 ⇒ tcross =

(
log N
2η0κ

) 1
1−β

(E.15)

Before tcross, the signal is not detected and we have as before z(t) = 2∆− c/t1−β.
After tcross, we have A(t) ≪ 1/N. Multiply Eq. E.13 by N and taking the log,

we obtain:

log N = 2
∫ t

t0

dτ f (τ)t−β + log (1 + NA(t)) (E.16)

∼2
∫ t

t0

dτ f (τ)t−β + NA(t) (E.17)

Taking the derivative with respect to t, we find the following asymptotics for
late times:

f (t)∼−NA′(t)tβ

2
∼t−5(1−β)/2e−2η0κt1−β

(E.18)

Hence,

ℓ(t)− ℓGS =
η0T
2tβ

+
1
2

f (t) (E.19)

with ℓGS = 1. As previously, it is straightfoward to extend this to the setup
β = 1, for which we obtain f (t)∼t−2η0κ.

Curvature analysis

220 E.3. Dynamics of the p-spin model

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0
µ

0.0

0.2

0.4

0.6

ρ
(µ

)

t = 0
t = tcross

t = 104

Figure E.1: The landscape becomes convex at the crossover time. Parameters:
N = 3000, η0 = 0.1.

As before, the spectrum of interest to study the landscape is that of H shifted
to the right by the spherical constraint z(t), depicted in Fig. E.1. The crossover time
tcross corresponds to the time at which the left edge of the semi-circle reaches 0.
Thanks to the presence of the signal, the dynamics do not stop at this point; they
continue until the eigenvalue corresponding to the signal reaches zero (which as
achieved at t→∞). After the tcross, the landscape becomes locally convex: the only
negative eigenvalue is in the direction of the signal. Due to the spherical constraint,
the effective Hessian (of dimension N − 1) does not feel this negative eigenvalue
when w is close to w⋆.

E.3 Dynamics of the p-spin model

Rescaling the temperature
Introducing a learning rate schedule is equivalnt to changing the "clock" directly

in the Langevin (Eq. 5.1) as dt̃ = η(t)dt. Then, for β < 1 we have:

δ(t̃)dt̃ = δ(t)dt ⇒ δ(t) = δ(t̃)
(

η0

1 − β

) β
1−β

t̃
−β

1−β (E.20)

The Langevin equation becomes:

dwi(t)
dt

= −
(

∂L(w, w⋆)

∂wi
+ ξi(t) + z(t)wi(t)

)
,

⟨ξ(t)ξ(t′)⟩ = 2Tη̃0 t̃−β/1−βδ(t − t′), (E.21)

where we defined η̃0 =
(

η0
1−β

) β
1−β

. This equation reveals that the process optimised
with a varying learning rate is equivalent to a process at an effective temperature:

T̃ = η̃0 t̃
−β

1−β T (E.22)

Appendix E 221

This equation corresponds to the physical protocol in which the temperature T̃ is
annealed as a power law. As we show for the p-spin model in the next section, the
solution is governed by a speed-noise trade-off.

Application to the p-spin model
For the p-spin model the loss can therefore be written:

L(t; T̃) =
−N

p
(
z̃(t)− T̃

)
= L(t; T = 0) + Lth(T̃) (E.23)

where we assumed that, at all times, the temperature dependent contribution to
the loss has time to equilibrate in the threshold states.

To find Lth(T̃), we assume that, since we are looking at long times, we have
T̃ ≪ 1. We can consider the loss by performing an expansion around the T̃ = 0
minimum i.e. considering that the motion is oscillatory around the minimum.
At T = 0, the threshold overlap is given by qth = 1. At T ≪ 1, we thus write
q = 1 − χT. Performing a similar matching argument as the one of [207], described
in more details in Sec. E.4, we find that the close to the threshold, the loss is given
by Eq. E.68:

Lth(T) = − 1
p

[√
(p − 1)qp−2 +

1
T

√
2
p

(
1 − qp−1

)]
(E.24)

In addition, we can expand the threshold overlap solution around T = 0 [274]:

qp−2
th (1 − qth)

2 =
T2

p − 1

⇒ χ =

√
1

(p − 1)

(E.25)

Replacing this solution in Eq. E.24, we find:

Lth(T) = −
√

4(p − 1)
p︸ ︷︷ ︸

Lth(T=0)

+
p − 2

p
T︸ ︷︷ ︸

∝T

(E.26)

We see that Lth(T) is composed of a constant term, which is the same as the
threshold loss defined in Eq. 5.17 and a term scaling linearly with T. Thus:

Lth(T̃)−Lth ∝ T̃ ∝ t−β/1−β. (E.27)

222 E.4. Dynamics of the Spiked Matrix-Tensor model

We find again the two competing term in the speed of optimisation. On the one
hand, the noiseless term, which is the same as the zero temperature loss, decays
as L(t; T = 0) ∝ t−γ. On the other hand, the temperature dependent term, which
blocks the dynamics at loss Lth(T̃), which decays as t−β/1−β. The loss decays as

t−min
(

γ, β
1−β

)
. Equaling the two exponents gives the optimal value of βopt =

2
5 .

E.4 Dynamics of the Spiked Matrix-Tensor model

Derivation of the PDE equations
For simplicity, we detail the derivation of the p-spin model without the spike as

studied in Sec. 5.1.3 in the case p = 3. The derivation for the full spiked tensor
model is similar and can be found in [274]. The Langevin equation for each spin w
is given by:

ẇi(t) = −z(t)η(t)− η(t)∂wiL+ η(t)ξi(t) (E.28)

where ξ ∈ RN is the Langevin noise with distribution ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξ j(t′)⟩ =
2Tδijδ(t − t′). The solution w to the Langevin equation depends on the realisation
of the noise. We can obtain a probability distribution over w given the distribution
of ξ by considering the expectation of an observable A(t):

⟨A(x)⟩ =
∫

DξP(ξ)A
(
wξ

)
=
∫

dx
[∫

DξP(ξ)δ (ẋ + η(t)∂xL− η(t)ξ)
]

A(x)

=
∫

dxP(x)A(x) (E.29)

We are now interested in considering P(x) when averaged over the quenched
disorder J. We therefore resort to:

1 ≡ Z =
∫

DxP(x) (E.30)

=
∫

DxDŵDξ exp
[
−1

2

∫
dtdt′ξ(t)D−1

0
(
t, t′
)

ξ
(
t′
)
+ i

∫
dtŵ(t) (∂tx + η(t)∂xL)

−i
∫

dtη(t)ŵ(t)ξ(t)
]

=
∫

DxDŵ exp
[
−1

2

∫
dtdt′ x̂(t)η(t)D0

(
t, t′
)

x̂
(
t′
)

η(t′) + i
∫

dtŵ(t) (∂tx + η(t)∂xL)
]

=
∫

DxDŵ exp [S(x, x̂)]

where we defined D0(t, t′) = 2Tδ(t − t′). Crucially, S(x, x̂) acts as a generating
functional and allows to obtain correlation functions by a term

∫
dtx̂(t)h(t) +

Appendix E 223

x(t)ĥ(t). We can thus define

⟨x(t)x̂(t′)⟩ = ∂h(t′)⟨x(t)⟩ ≡ R(t, t′) ⟨x(t)x(t′)⟩ = ∂ĥ(t′)⟨x(t)⟩ ≡ C(t, t′) (E.31)

We now want to average the partition function over the quenched disorder Z. We
note that the only time depend term in the exponent is ix̂(t)η(t)∂xL. We thus have
to compute:

eix̂(t)η(t)∂xL ≡ e∆(x,x̂) (E.32)

The average over the disorder will induce corrections both to the propagator D0

and to the interaction term x̂(t)x(t′) i.e. ∆(x, ŵ) = − 1
2 ŵD1(x, ŵ)ŵ + iŵL1(x, ŵ).

By performing the average we obtain:

iŵi(t)η∂wiL =
∫

∏
i>k>l

dJikl exp

{
−1

2
J2
ikl −

√
(p − 1)!

Np−1 Jikl

∫
dtη(t) [iŵiwkwl + wiiŵkwl + wiwkiŵl]

}

= exp
{∫ dtdt′

2Np−1 η(t)η(t′)
[
(iŵ · iŵ)(x · x)p−1 + (p − 1)(iŵ · x)(x · iŵ)(x · x)p−2

]}
(E.33)

where we introduced the notation x · x ≡ ∑N
i=1 wi(t)wi (t′). We now introduce

dynamical overlaps Q1, Q2, Q3 and Q4 as:

eiŵi(t)η∂wiL =
∫

DQδ

(
NQ1 − ∑

k
iŵk(t)iŵk

(
t′
))

δ

(
NQ2 − ∑

k
wk(t)wk

(
t′
))

·δ
(

NQ3 − ∑
k

iŵk(t)wk
(
t′
))

δ

(
NQ4 − ∑

k
wk(t)iŵk

(
t′
))

(E.34)

· exp
{

N
2

∫
dtdt′η(t)η(t′)

[
Q1
(
t, t′
)

Q2
(
t, t′
)p−1

+(p − 1)Q3
(
t, t′
)

Q4
(
t, t′
)

Q2
(
t, t′
)p−2

]}
We can easily see that we have the correspondence Q1(t, t′) = 0, Q2(t, t′) = C(t, t′),
Q3(t, t′) = R(t′, t) and Q4(t, t′) = R(t, t′). By using the exponential form of the
delta function and solving the fix point equations for the conjugate fields Q̂1, Q̂2,

224 E.4. Dynamics of the Spiked Matrix-Tensor model

Q̂3 and Q̂4 we find:

iQ̂1 = 1
2 η(t)η(t′)Qp−1

2

iQ̂2 = p−1
2 η(t)η(t′)Q1Qp−2

2 + (p−1)(p−2)
2 η(t)η(t′)Q3Q4Qp−3

2 ≡ 0

iQ̂3 = p−1
2 η(t)η(t′)Q4Qp−2

2

iQ̂4 = p−1
2 η(t)η(t′)Q3Qp−2

2

(E.35)

From the definition of the Q̂’s we find the new term in the generating functional as:

∆ = ∑
k

∫
dtdt′η(t)η(t′)

{
−1

2
C
(
t, t′
)p−1 ŵk(t)ŵk

(
t′
)
− (p − 1)R

(
t, t′
)

C
(
t, t′
)p−2 iŵk(t)wk

(
t′
)}

(E.36)
This allows us to write an effective Langevin equation for a scalar degree of freedom
w:

ẋ(t) = −z(t)η(t)x(t) + η(t)(p − 1)
∫

dt′′η(t′)R
(
t, t′′

)
C
(
t, t′′

)p−2
σ
(
t′′
)
+ η(t)ξ̃(t),

(E.37)
with:

⟨ξ̃(t)ξ̃(t′)⟩ = 2Tδ(t − t′) + Cp−1(t, t′). (E.38)

In order to write down a set of PDE’s for R and C, note the useful relations:

⟨ ∂x(t)
∂ξ(t′)

⟩ = −i⟨x(t)x̂(t′)⟩

⟨x(t)ξ(t′)⟩ = 2Tη(t′)R(t, t
′
)

⟨ξ̃(t1)x(t2)⟩ = 2Tη(t1)R(t1, t2) +
∫

dt′′η(t′′)R(t′′, t2)Cp−1(t′′, t1)

(E.39)

We therefore find:

∂R (t1, t2)

∂t1
=

〈
δẋ (t1)

δξ̃ (t2)

〉
=− z (t1) η(t1)R (t1, t2) + η(t1)δ (t1, t2)

+ (p − 1)η(t1)
∫ t1

t2

dt′′η(t′′)R
(
t1, t′′

)
Cp−2 (t1, t′′

)
R
(
t′′, t2

) (E.40)

Appendix E 225

∂C (t1, t2)

∂t1
= ⟨ẋ (t1) x (t2)⟩

=− η(t1)z (t1)C (t1, t2) + 2Tη(t1)
2R(t1, t2)

+ (p − 1)η(t1)
∫ t1

−∞
dt′′η(t′′)R

(
t1, t′′

)
Cp−2 (t1, t′′

)
C
(
t′′, t2

)
+ η(t1)

∫
dt′′η(t′′)R(t′′, t2)Cp−1(t′′, t1)

(E.41)

The equation for z(t) is given by differentiation C(1, 1) = 1, i.e. [∂tC (t, t′) + ∂t′C (t, t′)]t,t′=s =

0:

z(t1) = Tη(t1) + p
∫

dt2η(t2)R(t2, t1)Cp−1(t2, t1). (E.42)

The loss at all times is found by using the Ito identity:

1
N

d
dt ∑

i
w2

i (t) =
2
N ∑

i
wi(t)ẋi(t) + 2 (E.43)

which yields:

L(t) = N
p
(Tη(t)− z(t)) (E.44)

Spiked matrix-tensor model The derivation of the PDEs describing the dynamics
of C, R and z in the spiked matrix-tensor model are similar as the ones for the
p-spin. In addition, one also needs to keep track of the evolution of the overlap
of the estimate with the signal i.e. the magnetisation m = w·w⋆/N. Using the same
method as before we find:

226 E.4. Dynamics of the Spiked Matrix-Tensor model

∂

∂t
C
(
t, t′
)
=− z(t)η(t)C

(
t, t′
)
+ η(t)Q′(m(t))m

(
t′
)

+ η(t)
∫ t

0
η(t′)R

(
t, t′′

)
Q′′ (C (t, t′′

))
C
(
t′, t′′

)
dt′′

+ η(t)
∫ t′

0
η(t′)R

(
t′, t′′

)
Q′ (C (t, t′′

))
dt′′ + 2Tη(t)2R(t, t′)

∂

∂t
R
(
t, t′
)
=− z(t)η(t)R

(
t, t′
)
+ δ(t − t′)η(t)

+ η(t)
∫ t

t′
η(t′)R

(
t, t′′

)
Q′′ (C (t, t′′

))
R
(
t′′, t′

)
dt′′

d
dt

m(t) =− η(t)z(t)m(t) + η(t)Q′(m(t))

+ η(t)
∫ t

0
η(t′)R

(
t, t′′

)
m
(
t′′
)

Q′′ (C (t, t′′
))

dt′′

z(t) =η(t)T + Q′(m(t))m(t)

+
∫ t

0
η(t′)R

(
t, t′′

) [
Q′ (C (t, t′′

))
+ Q′′ (C (t, t′′

))
C
(
t, t′′

)]
dt′′

(E.45)

where we defined Q(w) = Qp(w) + Q2(w) = wp

p∆p
+ w2

2∆2
. The loss is related to z(t)

via:

z(t) = Tη(t)− p
Lp

N
− 2

L2

N
, (E.46)

with L2, respectively L2 are the loss associated with the matrix, respectively tensor,
channel. The Langevin easy phase As explained in [207], one finds different phases
in the two dimensional space spamed by the noise intensities ∆2 and ∆p. In the
Langevin easy phase, a system initialised with a magnetisation m∼O(1/

√
N) recovers

the signal and converges to an overlap of order 1. It is delimited by ∆2 < ∆∗
2 , where

∆∗
2 is the solution to the implicit equation:

∆2 < ∆⋆
2 =

√
∆p

(p − 1)(1 − ∆∗
2)

p−3 . (E.47)

In contrast, in the Langevin hard and Langevin impossible phase, i.e. ∆2 > ∆∗
2 , the

dynamics fail to recover the signal and remain at low magnetisation. More details
in [274].

Derivation of the Ground-state Loss
In order to derive the ground state properties of the system, we resort to the

replica method, developed in physics as a tool to deal with random systems. Using

Appendix E 227

these tools, involves performing a mapping between the optimisation problem, an
inference problem and a physical system. We can consider the estimator w as a
guess on the planted signal w⋆ and y be the observations.The, using Bayes formula
we can express the posterior probability of the estimator w given the observation y:

P[x|y] = 1
P[y]

P[x]P[y|x] ≈β=1
1

P[y]
P[x]P[y|x]−β =

1
Z(y)

e−βL. (E.48)

We can identify the last terms with a Gibbs distribution at temperature β = 1/T

and Z is a normalisation constant named the partition function. At β = 1, the
posterior E.48 is the exact posterior of the problem. At β→∞, the distribution is
dominated by the spin configuration minimising the loss, i.e. the maximum likely
hood approximator of the problem. The partition function, and its logarithm the
free energy:

Φ =
−1
N

log Z, (E.49)

act as a generating functional. I.e. they encapsulate all the relevant information
needed to describe of the system. Notably, all observables can be obtained by
taking derivatives of it. In particular, the loss and the overlap with the signal are
given by:

L =
1
N

1
Z

∫
SN−1

Le−βL =
−1
N

∂ log Z
∂β

=
∂Φ
∂β

m =
1
N

N

∑
i=1

1
Z

∫
SN−1

wiw⋆
i e−βL+Bh·w|Bh=0 = −w⋆ ·∇BhΦ.

(E.50)

The spiked tensor model is rendered more complex due to the randomness as-
sociated with the couplings. We need to evaluate the averaged logarithm of the
partition function log Z which is in general prohibitive. To deal with this problem,
physics have developed the heuristic replica method based on the equality:

log Z = lim
n→0

Zn − 1
n

. (E.51)

In practice, one computes Zn for n ∈ N and then extends the result to real n.
The problem can be viewed as introducing n identical, replicated, copies of the
system. As we will see, averaging over the random couplings introduces correlation

228 E.4. Dynamics of the Spiked Matrix-Tensor model

between the copies. Zn can easily be evaluated as:

Zn = E
Ji1...ip

Jij

∫ n

∏
a=1

e
β
√

1
p∆p N ∑i1,...,ip Ji1,...,ip x(a)

i1
...x(a)

ip +β
√

1
2∆2 N ∑i,j Ji,jx

(a)
i x(a)

j +Nβ ∑i Q

(
x(a)

i x∗i
N

)
n

∏
a=1

dx(a)

=
∫

Sn(N−1)(
√

N)
e

Nβ ∑i Q

(
x(a)

i x∗i
N

)
+ Nβ2

2 Q

(
∑n

a,b=1 ∑i
x(a)

i x(b)i
N

)
n

∏
a=1

dx(a).

(E.52)

where we introduced Q(x) = x2/2∆2 + xp/p∆p. The second term in the exponent
carries the interaction between the different copies obtained after averaging out the

random couplings. It depends on the overlap Q having entries Qab = ∑i
x(a)

i x(b)i
N . We

associate the index a = 0 with the ground truth signal w⋆. Using the exponential
representation of the Dirac delta function, we introduce the overlap matrix into the
partition function. After some manipulation we obtain:

Zn =
∫

eNβS(Q) (E.53)

βS(Q) =
1
2

log det Q + β2
n

∑
a,b=1

Q(Qab) + β
n

∑
a=1

Q(Qa0). (E.54)

The factor N in the exponential in the integrand, implies that in the N→∞ limit,
the integral is dominated by the matrix Q maximising the action S. In order to
progress, we make a replica symmetric ansatz*: i.e. we assume the different systems
have overlaps q between each other and m with the ground truth. This imposes a
matrix Q has the form:

Q =

1 m m m
m 1 q q
m q 1 q
m q q 1

 . (E.55)

Replacing this overlap matrix in E.54 and taking n→0, we obtain:

βSRS(q, m) = n
{

1
2

q − m2

1 − q
+

1
2

log(1 − q) +
β2

2
Q(1)− β2

2
Q(q) + βQ(m)

}
(E.56)

*Since we only consider the Langevin easy phase, where there is no ergodicity breaking, we do
not need to consider a 1RSB ansatz.

Appendix E 229

We now maximise S with respect to m and q and obtain the saddle point equations:

SRS(q, m)

∂m
=

−m
1 − q

+ βQ′(m) (E.57)

SRS(q, m)

∂q
=

q − m2

(q − 1)2 + β2Q′(q) (E.58)

The expression of the loss as a function of the overlaps m and q is given by
using Eq. E.50:

L(m, q) = −β(Q(1)− Q(q)) + Q(m) (E.59)

By evaluating the above at the solutions Eqs. E.58, we obtain the ground state
loss at a given temperature. T = 1 solution At T = 1 (i.e. β = 1) the posterior
Eq. E.48 is exact and we can use the Nishimori identity stating that the distribution
of the estimator is the same as the one of the signal implying m = q. Replacing the
identity in Eq. E.58 and in Eq. E.59 we have:

m = (1 − m)Q′(m),LT=1
gs = −Q(1). (E.60)

T = 0 solution We can think of the 0 temperature system (i.e. β→∞) as physical
system coupled to a thermal bath. As the temperature goes to 0, all particles
collapse to a point at the minimum of the loss. Thus, the overlap tends to 1.
However, we check that Eqs. E.58 are singular at q = 1. To properly take the limit,
we perform a linear expansion in the temperature by replacing q = 1 − χT in the
equations and linearising in T. We then obtain the equation for m:

χ =

√
1 − m2

Q′(1)

m = χQ′(m)

(E.61)

and the ground state loss:

LT→0
gs = (−Q(m)− χQ′(1)). (E.62)

Additional results on the optimal learning rate schedule in the SMT model

In this section, we give additional results confirming the optimal decay of the
learning rate in the spiked-matrix tensor model. We have seen in the main text, that
there is a crossover time tcross before which the learning rate should be kept fixed
as the system is in the search phase. After tcross, the dynamics enter a convex basin

230 E.4. Dynamics of the Spiked Matrix-Tensor model

101 102

t

−3.0

−2.5

−2.0

−1.5
`

`GS(T = 0)

`GS(T = 1)

no decay

101 102

t

`GS(T = 0)

`GS(T = 1) β

0.2

0.4

0.6

0.8

1.0

101 102

t
10−3

10−2

10−1

100

`
−
` G

S

Figure E.2: Emergence of a crossover time in the SMT model. By fixing β from
start, a randomly initialised system will remain stuck at threshold states of 0 overlap
until tcross which is minimal for β = 0. Higher β, allow to reach lower loss solutions
but require much longer to converge. (Right) The optimal schedule is to keep η
constant until tcross and then setting β = 1. By doing so, we get the best of both
worlds: the first phase minimises tcross while the second allows to reach more
informative solutions. (Inset) m − mgs shows that choosing higher β after tcross
allows to reach more informative minima. Parameter: β = 0.8, ∆2 = 0.2, ∆p = 6,
η0 = 1, T = 1, dt = 10−2, m0 = 10−10.

and one should decay the learning rate as η(t)∼t−β. To verify that β = 1 leads to
the lowest loss, in the right panel of Fig. E.2, we keep a constant learning rate until
ts after which we vary the exponent with which the learning rate is decayed. We
check that β = −1 allows to reach the best solutions. However, the left panel shows
that if the learning rate is decayed from start, the dynamics take much longer to
converge towards the signal and remain stuck at high loss for very long.

Separation of time scales and matching solution
The long time dynamics, i.e. t→∞ of the p-spin model can be separated into two

regimes:

• For all times t, t→∞ with t−t′
t →0 the system is stationary. Here, the dynamics

are time-translation invariant (TTI) and the fluctuation-dissipation theorem
(FDT) holds. The two time functions C(t, t

′
) and R(t, t

′
) are thus only a

function of the time difference τ = t − t
′
. In this regime, we define CTTI(τ) ≡

C(t − t
′
, 0) and RTTI(τ) ≡ R(t − t

′
, 0). The FDT gives RTTI(τ) = − 1

T
dCTTI(τ)

dτ .
As a consequence, the equations for R and C collapse into a single equation.

• For all times t, t→∞ with t−t′
t = O(1) the system ages i.e. the dynamics

remain trapped in metastable states and does not lose memory of its history.
The relevant variable to consider in this regime is λ = t′/t. The correlation and
response functions can be rescaled as R(λ) = tR(t, t′) and qC(λ) = C(t, t′)

Appendix E 231

with q = limτ→∞ CTTI(τ). In this aging regime, a generalised form of the FDT
holds and R(λ) = x

T q dC(λ)
dλ . The violation parameter w is found by matching i.e.

considering the equations for the response and the correlation separetly. q is
found by imposing q = limτ→∞CTTI(τ) in the equation of the TTI regime.

In order to derive analytical results, we use the hypothesis of these two times
regimes to split the time integrals in Eqs. E.40- E.42. For compactness we also
define Q(x) = xp/2. As noted in the main text, we can re-scale time according to
dt̃ = η(t)dt and obtain a system at an effective temperature T̃ = (1 − β)

1
1−β T

tβ/1−β
.

We are ultimately interested in determining the threshold loss, a static quantity,
and can hence perform its derivation using a constant learning rate. This analysis
is a special case of the more general on performed in [274]. Here, we show it for
the special case of the p-spin model with no signal. In particular, we skip all the
computations and refer the reader to [274] (Appendix B) for additional details.

Lagrange multiplier in the long time-limit Let us start to illustrate how to proceed by
computing the long time limit of the loss z∞ = limt→∞ z(t) using Eqs. E.40 E.41 E.42
:

z∞(T)− T = p
∫ t

0
dt′′R(t′′, t)Q′(C(t′′, t))︸ ︷︷ ︸∫

TTI +
∫

aging

= −
∫ ∞

0

1
T

d
dt̃

Q (CTTI(t̃)) dt̃ +
∫ 1

0
R(λ)Q′(qC(λ))dλ

⇔ z∞ =
1 − qp

2T
+
∫ 1

0
R(λ)Q′(qC(λ))dλ,

(E.63)

where we used the fact that by definition CTTI(∞) = q and CTTI(0) = 1. Also note
that we neglected all the finite time contribution to the integrals. We are going to
determine z∞ using this equation.

Stationary regime In order to find the dynamical equations in the stationary
regime, we proceed as before and separate the contributions of the TTI regime from
those of the aging regime in the integrals. Since both equations for the response
and the correlation collapse into a single equation, we consider only the evolution
of the correlation CTTI. Using Eqs. E.40 we have:

(z∞ + ∂τ)CTTI(τ) =
∫ t1

0
dt′′R

(
t1, t′′

)
Q′′ (C (t1, t′′

))
C
(
t′′, t2

)
+
∫ t2

0
dt′′R(t′′, t2)Q′ (C(t′′, t1)

)
(E.64)

232 E.4. Dynamics of the Spiked Matrix-Tensor model

Using Eqs. 62 of [274], we have:

∂τCTTI(τ)+

(
1
T

Q′(1)− µ∞

)
[1 − CTTI(τ)]+T = − 1

T

∫ τ

0
Q′ (CTTI

(
τ − τ′′)) d

dτ′′ CTTI
(
τ′′) dτ′′

(E.65)
When τ→∞, the time variations of CTTI(τ) are negligible. Taking this limit in the
above equation gives:

z∞ =
√

Q′′(q) +
Q′(1)− Q′(q)

T
(E.66)

This equation allows to determine the threshold loss, i.e. the loss at the plateau
reached by the system before the recovery of the signal. We notice that the equality
above holds for all ∆2, ∆p and hence also if one of the two is sent to infinity.
Therefore, we have:

ℓth = ℓp + ℓ2, (E.67)

with ℓ2 = 1
2 (η(t)− z∞;∆p→∞) and similarly for ℓp. Thus, by defining Qk(x) = xk/k∆k,

we obtain:

ℓk =
1
k

(
η(t)−

√
Q′′

k (q)−
Q′

k(1)− Q′
k(q)

T

)
(E.68)

Using this equation, and performing an expansion around 0 for T and 1 for q, we
can determine that at low temperatures, the threshold energy scales linearly with
T.

Appendix E 233

E.5 Additional results for the Teacher-Student Regression
Task

In this section we give additional results on the teacher-student regression task
discussed in Sec. 5.1.5. The setting is the same as in the main text: a K hidden
nodes 2 layer neural network student is trained to reproduce the output of her 2
layer neural network teacher of M nodes on gaussian inputs. We train the model
with on a finite dataset of P examples using a mini-batch size B = 1. Fig. E.3
verifies that the conclusions drawn in the main text hold for different values of K
and M. The optimal schedule is to keep the learning rate constant until tcross and
to then decay it as 1/t. If the learning rate is decayed too soon, i.e. at ts < tcross,
learning remains stuck at high loss values. Decaying after tcross instead allows to
reduce the noise in optimisation and reach lower loss solutions. We verify that in
both these cases, tcross matches the end of the "specialisation" transition, where the
loss achieved student trained at constant learning rate plateaus.

10−1 100 101 102 103

t

10−2

10−1

100

`

no decay

ts

100.0

101.3

102.5

103.3

(a) K = M = 5

100 101 102 103 104

t

10−2

10−1

`

no decay

ts

100.0

101.3

102.5

103.7

104.7

(b) K = M = 20

Figure E.3: The crossover time is also reflected in a regression task with SGD. A
student with K hidden nodes is trained to reproduce the output of her M hidden
nodes. (Left) K = M = 5. (Right) K = M = 20. As in the main text.before, we find
that decaying the learning rate before the loss plateaus performance, but decaying
as η(t)∼t−1 once the plateau is reached allows to reach zero loss. Parameters:
N = 500, P = 104, η0 = 10−1, β = 0.8.

Appendix F

Alternative training algorithm to
go beyond BP

F.1 Derivation of the ODE

The derivation of the ODE’s that describe the dynamics of the test error for shallow
networks closely follows the one of Saad and Solla [270] and Biehl and Schwarze
[38] for back-propagation. Here, we give the main steps to obtain the analytical
curves of the main text and refer the reader to their paper for further details.

As we discuss in Sec. 5.2.2, student and teacher are both two-layer networks
with K and M hidden nodes, respectively. For an input x ∈ RD, their outputs ŷ
and y∗ can be written as

ŷ = ϕθ(x) =
K

∑
k=1

wk
2 g
(

ak
)

,

y = ϕθ̃(x) =
M

∑
m=1

w̃m
2 g (ãm) , (F.1)

where we have introduced the pre-activations ak ≡ wk
1x/

√
D and ãm ≡ w̃m

1 x/
√

D.
Evaluating the test error of a student with respect to the teacher under the squared
loss leads us to compute the average

ϵg
(
θ, θ̃
)
=

1
2

E x

[
K

∑
k=1

wk
2 g
(

ak
)
−

M

∑
m=1

w̃m
2 g (ãm)

]2

, (F.2)

where the expectation is taken over inputs x for a fixed student and teacher. Since
x only enters Eq. (F.2) via the pre-activations a = (ak) and ã = (ãm), we can replace
the high-dimensional average over x by a low-dimensional average over the K + M

234

Appendix F 235

variables (a, ã). The pre-activations are jointly Gaussian since the inputs are drawn
element-wise i.i.d. from the Gaussian distribution. The mean of (a, ã) is zero since
E xi = 0, so the distribution of (a, ã) is fully described by the second moments

Qkl = E akal = wk
1 · wl

1/D, (F.3)

Rkm = E ak ãm = wk
1 · w̃m

1 /D, (F.4)

Tmn = E ãm ãn = w̃m
1 · w̃n

1 /D. (F.5)

which are the “order parameters” that we introduced in the main text. We can thus
rewrite the generalisation error (5.29) as a function of only the order parameters
and the second-layer weights,

lim
D→∞

ϵg(θ, θ̃) = ϵg(Q, R, T, w2, w̃2) (F.6)

As we update the weights using SGD, the time-dependent order parameters Q, R,
and w2 evolve in time. By choosing different scalings for the learning rates in the
SGD updates (5.27), namely

ηw1 = η, ηw2 = η/D

for some constant η, we guarantee that the dynamics of the order parameters can
be described by a set of ordinary differential equations, called their “equations
of motion”. We can obtain these equations in a heuristic manner by squaring the
weight update (5.27) and taking inner products with w̃m

1 , to yield the equations of
motion for Q and R respectively:

dRkm

dα
= −ηFk

1 E
[

g′(ak)ãme
]

(F.7a)

dQkℓ

dα
= −ηFk

1 E
[

g′(ak)aℓe
]
− ηFℓ

1 E
[

g′(aℓ)ake
]

+ η2Fk
1 Fℓ

1 E
[

g′(ak)g′(aℓ)e2
]

, (F.7b)

dwk
2

dα
= −ηE

[
g(ak)e

]
(F.7c)

where, as in the main text, we introduced the error e = ϕθ(x) − ϕθ̃(x). In the
limit D→∞, the variable α = µ/D becomes a continuous time-like variable. The
remaining averages over the pre-activations, such as

E g′(ak)aℓg(ãm),

236 F.2. Detailed analysis of DFA dynamics

are simple three-dimensional integral over the Gaussian random variables ak, aℓ and
ãm and can be evaluated analytically for the choice of g(x) = erf(x/

√
2) [38] and

for linear networks with g(x) = x. Furthermore, these averages can be expressed
only in term of the order parameters, and so the equations close. We note that the
asymptotic exactness of Eqs. F.7 can be proven using the techniques used recently
to prove the equations of motion for BP [114].

We provide an integrator for the full system of ODEs for any K and M in the
Github repository.

F.2 Detailed analysis of DFA dynamics

In this section, we present a detailed analysis of the ODE dynamics in the matched
case K = M for sigmoidal networks (g(x) = erf (x/

√
2)).

The Early Stages and Gradient Alignment We now use Eqs. (F.7) to demonstrate
that alignment occurs in the early stages of learning, determining from the start
the solution DFA will converge to (see Fig. 5.10 which summarises the dynamical
evolution of the student’s second layer weights).

Assuming zero initial weights for the student and orthogonal first layer weights
for the teacher (i.e. Tnm is the identity matrix), for small times (t ≪ 1), one can
expand the order parameters in t:

Rkm(t) = tṘkm(0) +O(t2),

Qkl(t) = tQ̇kl(0) +O(t2),

wk
2(t) = tẆk

2 (0) +O(t2). (F.8)

where, due to the initial conditions, R(0) = Q(0) = w2(0) = 0. Using Eq. F.7, we
can obtain the lowest order term of the above updates:

Ṙkm(0) =

√
2

π
ηw̃m

2 Fk
1 ,

Q̇kl(0) =
2
π

η2
(
(w̃k

2)
2 + (w̃l

2)
2
)

Fl
1Fk

1 ,

Ẇk
2 (0) = 0 (F.9)

Since both Ṙ(0) and Q̇(0) are non-zero, this initial condition is not a fixed point of
DFA. To analyse initial alignment, we consider the first order term of Ẇ2. Using
Eq. (F.8) with the derivatives at t = 0 (F.9), we obtain to linear order in t:

Ẇk
2 (t) =

2
π2 η2||w̃2||2Fk

1 t. (F.10)

Appendix F 237

Crucially, this update is in the direction of the feedback vector F1. DFA training thus
constrains the student to initially grow in the direction of the feedback vector and
align with it. This implies gradient alignment between BP and DFA and dictates
into which of the many degenerate solutions in the energy landscape the student
converges.

Plateau phase After the initial phase of learning with DFA where the test error
decreases exponentially, similarly to BP, the student falls into a symmetric fixed
point of the Eqs. (F.7) where the weights of a single student node are correlated
to the weights of all the teacher nodes ([38, 93, 270]). The test error stays constant
while the student is trapped in this fixed point. We can obtain an analytic expression
for the order parameters under the assumption that the teacher first-layer weights
are orthogonal (Tnm = δnm). We set the teacher’s second-layer weights to unity for
notational simplicity (w̃m

2 = 1) and restrict to linear order in the learning rate η,
since this is the dominant contribution to the learning dynamics at early times and
on the plateau [269]. In the case where all components of the feedback vector are
positive, the order parameters are of the form Qkl = q, Rkm = r, wk

2 = w2 with:

q =
1

2K − 1
, r =

√
q
2

, w2 =

√
1 + 2q

q(4 + 3q)
. (F.11)

If the components of the feedback vector are not all positive, we instead obtain
Rkm = sgn(Fk)r, wk

2 = sgn(Fk)w2 and Qkl = sgn(Fk) sgn(Fl)q. This shows that on
the plateau the student is already in the configuration that maximises its alignment
with F1. Note that in all cases, the value of the test error reached at the plateau is
the same for DFA and BP.

Memorisation phase and Asymptotic Fixed Point At the end of the plateau phase,
the student converges to its final solution, which is often referred to as the specialised
phase [38, 93, 270]. The configuration of the order parameters is such that the
student reproduces her teacher up to sign changes that guarantee the alignment
between w2 and F1 is maximal, i.e. sgn(wk

2) = sgn(Fk
1). The final value of the test

error of a student trained with DFA is the same as that of a student trained with
BP on the same teacher. Choice of the feedback vector In the main text, we saw how a
wrong choice of feedback vector F1 can prevent a ReLU student from learning a
task. Here, we show that also for sigmoidal student, a wrong choice of feedback
vector F1 is possible. As Fig. F.1 shows, in the case where the F1 is taken orthogonal
to the teacher second layer weights, a student whose weights are initialised to
zero remains stuck on the plateau and is unable to learn. In contrast, when the
F1 is chosen with random i.i.d. components drawn from the standard normal
distribution, perfect recovery is achieved.

238 F.3. Derivation of weight alignment

100 102 104 106

t
10 4

10 3

10 2

10 1

100

g

Random
Orthogonal

Figure F.1: Test error of a sigmoidal student started with zero initial weights. The
feedback vector F1 is chosen random (blue) and orthogonal to the teacher’s second
layer weights w̃2 (orange). Parameters: η = 0.1, K = M = 2.

F.3 Derivation of weight alignment

Since the network is linear, the update equations are (consider the first three layers
only):

dw1 = −η(F1e)xT, (F.12)

dw2 = −η(F2e)(w1x)⊤, (F.13)

dw3 = −η(F3e)(w2w1x)⊤ (F.14)

First, it is straightforward to see that

wt
1 = −η

t−1

∑
t′=0

F1et′x⊤t′ = F1At
1 (F.15)

At
1 = −η

t−1

∑
t′=0

et′x⊤t′ (F.16)

This allows to calculate the dynamics of wt
2:

dwt
2 = −ηF2et(At

1xt)
⊤F⊤

1 (F.17)

wt
2 = −η

t−1

∑
t′=0

F2et(At′
1 xt′)

⊤F⊤
1 = F2At

2F⊤
1 (F.18)

At
2 = −η

t−1

∑
t′=0

et′(At′
1 xt′)

⊤ = η2
t−1

∑
t′=0

t′−1

∑
t′′=0

(xt′ · xt′′)et′e⊤t′′ . (F.19)

Appendix F 239

Which in turns allows to calculate the dynamics of wt
3:

dwt
3 = −ηF3et(F2At′

2 F⊤
1 F1At′

1 xt)
⊤ (F.20)

wt
3 = −η

t−1

∑
t′=0

F3et′(F2At′
2 F⊤

1 F1At′
1 xt)

⊤ = F3At
3F⊤

2 (F.21)

At
3 = −η

t−1

∑
t′=0

F3et′(At′
2 F⊤

1 F1At′
1 xt′)

⊤ (F.22)

= η2
t−1

∑
t′=0

t′−1

∑
t′′=0

(At′
1 xt′) · (At′′

1 xt′′)et′e⊤t′′ . (F.23)

By induction it is easy to show the general expression:

At
1 = −η

t−1

∑
t′=0

et′x⊤t′ (F.24)

At
2 = η2

t−1

∑
t′=0

t′−1

∑
t′′=0

(xt′ · xt′′)et′e⊤t′′ (F.25)

At
h≥3 = η2 ∑

t,t′=0
(At′

h−2 . . . At′
1 xt′) · (At′′

h−2 . . . At′′
1 xt′′)et′e⊤t′′ (F.26)

Defining A0 ≡ In0 , one can rewrite this as in Eq. 5.38

At
h≥2 = η2

t−1

∑
t′=0

t′−1

∑
t′′=0

(Bt′
h xt′) · (Bt′′

h xt′′)et′e⊤t′′ , (F.27)

Bh = Ah−2 · · · A0. (F.28)

F.4 Impact of data structure

To study the impact of data structure on the alignment, the simplest setup to
consider is that of Direct Random Target Projection [95]. Indeed, in this case the
error vector et = −yt does not depend on the prediction of the network: the
dynamics become explicitly solvable in the linear case.

For concreteness, we consider the setup of [190] where the targets are given by
a linear teacher, y = Tx, and the inputs are i.i.d Gaussian. We denote the input and
target correlation matrices as follows:

E
[

xx⊤
]
≡ Σx ∈ Rn0×n0 , (F.29)

E
[

TT⊤
]
≡ Σy ∈ RKH×KH (F.30)

If the batch size is large enough, one can write xtx⊤t = E
[
xx⊤

]
= Σx. Hence the

240 F.5. Details about the experiments

dynamics of Eq. 5.32 become:

dwt
1 = −η(F1et)xT

t = ηF1Txtx⊤t = ηF1TΣx (F.31)

dwt
2 = −η(F2et)(w1xt)

⊤ = ηF2TΣxw⊤
1 (F.32)

= η2F2

(
TΣ2

xT⊤
)

F⊤
1 (F.33)

dwt
3 = −η(F3et)(w2w1xt)

⊤ = ηF3TΣxw⊤
1 w⊤

2 (F.34)

= η3F3

(
TΣ2

xT⊤
) (

TΣ2
xT⊤

)
F⊤

2 (F.35)

From which we easily deduce At
1 = ηTΣxt, and the expression of the alignment

matrices at all times:

At
h≥2 = ηl

(
TΣ2

xT⊤
)h−1

t (F.36)

As we saw, GA depends on how well-conditioned the alignement matrices
are, i.e. how different it is from the identity. To examine deviation from identity,
we write Σx = In0 + Σ̃x and Σy = IKH + Σ̃y, where the tilde matrices are small
perturbations. Then to first order,

At
h≥2 − IKH ∝ (h − 1)

(
Σ̃y + 2TΣ̃xT⊤

)
(F.37)

Here we see that GA depends on how well-conditioned the input and target
correlation matrices Σx and Σy are. In other words, if the different components of
the inputs or the targets are correlated or of different variances, we expect GA to be
hampered, observed in Sec. 5.2.5. Note that due to the h − 1 exponent, we expect
poor conditioning to have an even more drastic effect in deeper layers.

Notice that in this DRTP setup, the norm of the weights grows linearly with
time, which makes DRTP inapplicable to regression tasks, and over-confident in
classification tasks. It is clear in this case the the first layer learns the teacher, and
the subsequent layers try to passively transmit the signal.

F.5 Details about the experiments

Direct Feedback Alignment implementation

We build on the Pytorch implementation of DFA implemented in [167], accessi-
ble at https://github.com/lightonai/dfa-scales-to-modern-deep-learning/

tree/master/TinyDFA. Note that we do not use the shared feedback matrix trick
introduced in this work. We sample the elements of the feedback matrix Fh from a

https://github.com/lightonai/dfa-scales-to-modern-deep-learning/tree/master/TinyDFA
https://github.com/lightonai/dfa-scales-to-modern-deep-learning/tree/master/TinyDFA

Appendix F 241

centered uniform distribution of scale 1/
√

Kh + 1.

Experiments on realistic datasets

We trained 4-layer MLPs with 100 nodes per layer for 1000 epochs using vanilla
SGD, with a batch size of 32 and a learning rate of 10−4. The datasets considered
are MNIST and CIFAR10, and the activation functions are Tanh and ReLU.

We initialise the networks using the standard Pytorch initialization scheme.
We do not use any momentum, weight decay, dropout, batchnorm or any other
bells and whistles. We downscale all images to 14 × 14 pixels to speed up the
experiments. Results are averaged over 10 runs.

For completeness, we show in Fig. F.2 the results in the main text for 4 different
levels of label corruption. The transition from Alignment phase to Memorisation
phase can clearly be seen in all cases from the drop in weight alignment. Three
important remarks can be made:

• Alignment phase: Increasing label corruption slows down the early increase
of weight alignment, as noted in Sec. 5.2.5.

• Memorization phase: Increasing label corruption makes the datasets harder
to fit. As a consequence, the network needs to give up more weight alignment
in the memorization phase, as can be seen from the sharper drop in the
weight alignment curves.

• Transition point: the transition time between the Alignement and Memo-
rization phases coincides with the time at which the training error starts to
decrease sharply (particularly at high label corruption), and is hardly affected
by the level of label corruption.

Experiment on the structure of targets

We trained a 3-layer linear MLP of width 100 for 1000 epochs on the synthetic
dataset described in the main text, containing 104 examples. We used the same
hyperparameters as for the experiment on nonlinear networks. We choose 5 values
for α and β: 0.2, 0.4, 0.6, 0.8 and 1.

In Fig. F.3, we show the dynamics of weight alignment for both ReLU and
Tanh activations. We again see the Align-then-Memorise process distinctly. Notice
that decreasing α and β hampers both the mamixmal weight alignment (at the
end of the alignment phase) and the final weight alignment (at the end of the
memorisation phase).

242 F.5. Details about the experiments

101 103

Epochs

0

20

40

60

80

Tr
ai

n
er

ro
r

A

101 103

Epochs

0.0

0.1

0.2

0.3

0.4

W
ei

gh
t a

lig
nm

en
t

B

101 103

Epochs

0.0

0.2

0.4

0.6

0.8

G
ra

di
en

t a
lig

nm
en

t

C

101 103

Epochs

10 3

10 2

10 1

100

C
os

in
e

si
m

ila
ri

ty

D

MNIST relu
MNIST tanh
CIFAR10 tanh
CIFAR10 relu
DFA
BP

(a) No label corruption

101 103

Epochs

0

20

40

60

80

Tr
ai

n
er

ro
r

A

101 103

Epochs

0.0

0.1

0.2

0.3

0.4

W
ei

gh
t a

lig
nm

en
t

B

101 103

Epochs

0.0

0.2

0.4

0.6

0.8
G

ra
di

en
t a

lig
nm

en
t

C

101 103

Epochs

10 4

10 3

10 2

10 1

100

C
os

in
e

si
m

ila
ri

ty

D

MNIST relu
MNIST tanh
CIFAR10 relu
CIFAR10 tanh
DFA
BP

(b) 50% label corruption

101 103

Epochs

0

20

40

60

80

Tr
ai

n
er

ro
r

A

101 103

Epochs

0.0

0.1

0.2

0.3

0.4

W
ei

gh
t a

lig
nm

en
t

B

101 103

Epochs

0.0

0.2

0.4

0.6

0.8

G
ra

di
en

t a
lig

nm
en

t

C

101 103

Epochs

10 4

10 3

10 2

10 1

C
os

in
e

si
m

ila
ri

ty

D

MNIST relu
CIFAR10 relu
MNIST tanh
CIFAR10 tanh
DFA
BP

(c) 90% label corruption

Figure F.2: Effect of label corruption on training observables. A: Training error.
B and C: Weight and gradient alignment, as defined in the main text. D: Cosine
similarity of the weight during training.

Appendix F 243

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Gradient alignment

Weight align

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

102 104

Epochs

0.0

0.1

0.2

W
ei

gh
t a

lig
nm

en
t

= 0.2

102 104

Epochs

= 0.6

102 104

Epochs

= 1.0

= 0.2
= 0.4
= 0.6
= 0.8
= 1.0

(a) ReLU

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Gradient alignment

Weight align

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

102 104

Epochs

0.0

0.1

0.2

W
ei

gh
t a

lig
nm

en
t

= 0.2

102 104

Epochs

= 0.6

102 104

Epochs

= 1.0

= 0.2
= 0.4
= 0.6
= 0.8
= 1.0

(b) Tanh

Figure F.3: WA is hampered when the output dimensions are correlated (β < 1) or
of different variances (α < 1).

	1 Architecture, algorithm and data : the three building blocks of Machine Learning
	1.1 Introduction
	1.2 Architecture
	1.3 Data
	1.4 Algorithm

	2 L'algorithme, l'architecture et les données : les trois piliers du machine learning
	3 Architecture
	3.1 Reconciling the bias-variance trade-off with over-parametrisation in deep NNs
	3.1.1 Overview
	3.1.2 Analytical results
	3.1.3 Analysis of Bias and Variances
	3.1.4 On the effect of ensembling
	3.1.5 Numerical experiments on neural networks
	3.1.6 Extensions

	4 Data
	4.1 Theory for the dynamics of online learning of shallow networks
	4.2 Understanding the interplay between data structure and architecture in Gaussian mixture classification
	4.3 Overview
	4.4 Neural networks for GM classification
	4.5 Random features on GM classification
	4.6 Neural networks vs random features
	4.7 Autoencoders as a tool to study feature learning
	4.7.1 Overview
	4.7.2 Setup
	4.7.3 Results
	4.7.4 Representation learning on realistic data

	5 Algorithm
	5.1 Learning rate schedules and how they improve BP performance
	5.1.1 Overview
	5.1.2 The speed-noise trade-off in a simple convex problem
	5.1.3 Optimal decay rates in random landscapes
	5.1.4 Recovering a signal: the two phases of learning
	5.1.5 Turning to SGD : teacher-student regression
	5.1.6 Recap

	5.2 Alternative training algorithm to go beyond BP
	5.2.1 Overview
	5.2.2 A two-phase learning process
	5.2.3 How do gradients align in deep networks?
	5.2.4 The case of deep nonlinear networks
	5.2.5 What can hamper alignment?

	6 Looking back and beyond
	Bibliography
	Appendices
	A Reconciling the bias-variance trade-off with modern deep learning
	A.1 Further analytical results
	A.2 Statement of the Main Result
	A.3 Replica Computation

	B Online learning with two layer neural networks in the ODE limit - Toolbox
	B.1 Moments of functions of weakly correlated variables
	B.2 Analytical formula for the integrals in the equations of motion

	C Understanding the interplay between data structure and architecture in Gaussian mixture classification
	C.1 Summary of Notations
	C.2 Equations of Motion
	C.3 Transforming a Gaussian mixture with random features
	C.4 Final test error of random features
	C.5 The three-cluster model

	D Autoencoders as a tool to study feature learning
	D.1 Online learning algorithms for PCA
	D.2 Online learning in autoencoders
	D.2.1 Statics
	D.2.2 Derivation of dynamical equations
	D.2.3 Simplification of the equations for spiked covariance matrices

	D.3 Reduced equations for long-time dynamics of learning

	E Learning rate schedules and how they improve BP performance
	E.1 Dynamics of the convex model
	E.2 Dynamics of the Sherrington-Kirkpatrick model
	E.3 Dynamics of the p-spin model
	E.4 Dynamics of the Spiked Matrix-Tensor model
	E.5 Additional results for the Teacher-Student Regression Task

	F Alternative training algorithm to go beyond BP
	F.1 Derivation of the ODE
	F.2 Detailed analysis of DFA dynamics
	F.3 Derivation of weight alignment
	F.4 Impact of data structure
	F.5 Details about the experiments

