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Abstract

Combining two great scientific revolutions of the XXth century, quantum computing
uses the strange properties of quantum physics to redefine the notion of information
processing to solve computational problems. From the initial proposal to the present
day, much work has been done to develop quantum algorithms for these machines
to push the limits of what was thought achievable in the fields of computational
physics, chemistry, optimisation, communication, cryptography, and many more.

In this thesis, we investigate whether quantum algorithms can be used in the
field of artificial intelligence, or machine learning. In the last decade, this field has
been revolutionizing our ability to predict, classify, and learn, for many applications.

We will first recall the fundamentals of machine learning and quantum com-
puting, and then describe more precisely how to link them through linear algebra.
By encoding vectors in the form of quantum states, we will present and introduce
quantum algorithms to efficiently solve tasks such as matrix product or distance
estimation.

These results are then used to develop new quantum algorithms for unsupervised
machine learning, such as k-means and spectral clustering. This allows us to define
many fundamental procedures, in particular in vector and graph analysis. We will
also present new quantum algorithms for artificial neural networks, or deep learning.
For this we will introduce an algorithm to perform a quantum convolution product
on images, as well as a new way to perform fast tomography on quantum states.

We prove that these quantum algorithms are faster compared to their classical
version, but exhibit random effects due to the quantum nature of the computation.
Many simulations have been carried out to study these effects and measure their
learning accuracy on real data.

Finally, we will present a quantum orthogonal neural network circuit adapted to
the currently available small and imperfect quantum computers. This allows us to
perform real experiments to test our theory.

The quantum algorithms presented in this thesis give hope for the utility of an
ideal quantum computer in the future. Indeed, we prove an asymptotic advantage
for each algorithm in terms of complexity or running time, compared to the classical
case. That being said, for this hope to become reality, many efforts remain to be
realized in practice, from error correction to quantum data access.

Keywords: Quantum computing, quantum algorithms, quantum information, quan-
tum computers, quantum machine learning, machine learning, unsupervised learn-
ing, clustering, neural networks, deep learning.
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Résumé

Combinant deux grandes révolutions scientifiques du XXème siècle, l’ordinateur quan-
tique utilise les étranges propriétés de la physique quantique pour redéfinir la notion
d’ordinateur afin de résoudre des problèmes calculatoires. Depuis l’imagination du
concept d’ordinateur quantique jusqu’à nos jours, de nombreux travaux ont été
réalisés pour développer des algorithmes quantiques afin de repousser les limites de
ce que l’on pensait faisable par les ordinateurs dans les domaines de la physique,
de la chimie, de l’optimisation, de la communication, de la cryptographie, et bien
d’autres encore. Cette thèse questionne quant à elle la capacité théorique des ordi-
nateurs quantiques dans le domaine des algorithmes d’apprentissage automatisé, ou
machine learning.

Nous proposons de nouveaux algorithmes quantiques étant capable d’améliorer
asymptotiquement la résolution de problèmes tels le k-means et le spectral clustering,
tous deux visant à assembler de nombreuses données en groupe de similarité dans des
espaces à haute dimension. D’autre part, nous présentons de nouveaux algorithmes
quantiques pour les réseaux de neurones artificiels.

Plus globalement, ces travaux nous ont amené à créer les liens entre machine
learning et information quantique à travers des résultats d’algèbre linéaire, en par-
ticulier l’encodage de données vectorielles sous forme d’états quantiques. Cela nous
permet de créer des algorithmes quantiques permettant de résoudre rapidement des
tâches telles que le produit matriciel ou l’estimation de distance entre vecteurs. Nous
développons aussi un algorithme quantique pour réaliser un produit de convolution
sur des images, ainsi qu’une nouvelle façon de réaliser une tomographie rapide sur
les états quantiques.

Nous prouvons que ces algorithmes sont des équivalents plus rapides que leur
version classique, et étudions les effets aléatoires induits par la nature quantique du
calcul à l’aide de nombreuses simulations. Enfin, nous présentons un circuit quan-
tique pour les réseaux de neurones orthogonaux, adapté aux ordinateurs quantiques
petits et imparfaits actuellement disponibles. Cela nous permet de réaliser de vraies
expériences afin de tester notre théorie.

Les algorithmes quantiques présentés dans cette thèse donnent espoir quant à
l’utilité d’un ordinateur quantique idéal dans le futur. Ceci étant dit, pour que ces
espoirs deviennent réalité, de nombreux efforts resteront à réaliser en pratique dans
le domaine de la correction d’erreur et de l’accès aux données.

Mots clés : Informatique quantique, algorithmes quantiques, information quan-
tique, ordinateurs quantiques, intelligence artificielle, apprentissage automatique,
apprentissage non supervisé, réseaux neuronaux, apprentissage profond.
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Détails

L’informatique quantique aborde la manipulation de l’information (bits dans l’état 0
ou 1) en y appliquant les lois de la physique quantique. Ceci faisant, nous autorisons
de nouvelles possibilités et ouvrons des chemins jusqu’alors considérés impossibles.
En particulier, la propriété de la superposition quantique stipule qu’un objet quan-
tique peut être simultanément dans plusieurs états à la fois, préalablement à sa
mesure. Si l’on manipule ainsi l’information, les qubits peuvent être dans l’état 0 et
1 à la fois. Ainsi, avec n qubits, ce sont 2n états, ou combinaisons binaires, qui peu-
vent être en superposition. Ces états superposés ont chacun leur probabilité d’être
observé une fois la mesure faite. Ces probabilités découlent de l’amplitude quantique
associée à chaque état. Comme pour un ordinateur classique, nous devons appliquer
des séquences logiques, appelés aussi circuits ou algorithmes quantiques, qui nous
permettent de manipuler ces amplitudes, d’introduire ou de détruire des qubits,
et d’obtenir un résultat. Le recherche des 30 dernières années a permis de trou-
ver de nombreux algorithmes quantiques qui présentent des avantages considérables
comparés aux solutions classiques équivalentes.

Les états quantiques peuvent être décrits à l’aide de l’algèbre linéaire, un système
en superposition quantique étant considéré comme une combinaison linéaire d’états
propres dans une certaine base, les seuls que l’ont peut observer lorsque l’on mesure
le système. Un système quantique à n qubit est un vecteur dans un espace de
Hilbert de dimension 2n. À titre d’exemple, pour le chat de Schrödinger ces états
seraient“vivant” et“mort”, définissant un espace vectoriel bidimensionnel. Toute
évolution d’un système quantique n’impliquant pas de mesure est ainsi décrite par
un opérateur linéaire (unitaire), c’est à dire une matrice que l’on multiplie au vecteur
du système.

Cette description algébrique nous est utile pour faire le lien avec la théorie de
l’apprentissage automatisé ou machine learning. Ce domaine vise à trouver des
méthodes algorithmiques pour qu’un ordinateur puisse apprendre à résoudre un
problème donné: la classification d’image, la détection de maladies, la prédiction
de phénomènes physiques ou sociaux, la complétion de données astronomiques, et
bien d’autres. Ce sujet recouvre de nombreux champs théoriques et applicatifs, et
la dernière décennie a prouvé l’efficacité incontournable de ces méthodes, en par-
ticulier concernant les réseaux de neurones artificiels. Le formalisme du machine
learning emploie aussi l’utilisation de vecteurs et de matrices, nécessite de calculer
des distances, des produits de convolution, d’extraire des vecteurs propres, et bien
d’autres opérations communes en algébre linéaire.

Cette thèse aborde donc le lien entre ces deux champs afin de développer des
algorithmes quantiques en machine learning. Après avoir rappelé les notions essen-
tielles en informatique quantique et machine learning dans la Partie I, nous abor-
derons les premiers algorithmes quantiques d’algèbre linéaire dans la Partie II. Nous
y verrons en détails les façons de convertir des données de la forme classique à la
forme d’états quantiques, en introduisant les notions de mémoires quantiques et
de tomorgraphie. Il existe plusieurs méthodes pour encoder un vecteur classique
en superposition quantique, et nous décrirons l’amplitude encoding, le bit encoding
et l’unary encoding, ainsi que leur liens et différences pratiques. En particulier, la
méthode de l’amplitude encoding consiste à utiliser chaque composant d’un vecteur
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en tant qu’amplitude de l’état quantique correspondant. Chaque partie de la su-
perposition quantique correspond à un état de la base computationelle, soit une
combinaison de 0 et de 1. Enfin, pour être conforme aux lois de probabilités, les
vecteurs sont naturellements normalisés quand ils sont sous forme quantique. Il est
clef de noter que pour un vecteur de dimension d, seul log2(d) qubits sont nécessaires
à l’encoder puisqu’à eux seuls ils définissent un espace de Hilbert à d dimensions,
soit d amplitudes à atitrer.

À l’inverse, la tomographie correspond à retrouver le vecteur classique en ex-
trayant chaque amplitude de la superposition quantique. Cette tâche semble difficile
pour atteindre une précision idéale, c’est pourquoi nous utilisons des méthodes ap-
proximatives. En fonction du type et de la quantité d’erreur que nous autorisons, des
résulats peuvent être inférés quant au nombre de fois où il faut mesurer l’état quan-
tique pour en récupérer une description suffisante. Dans cette thèse nous présentons
la tomographie `∞, qui correspond à un type d’erreur suivant la norme `∞, que nous
justifions utile dans certains cas en machine learning, et qui nécessite substantielle-
ment moins de mesures que la tomographie `2.

Nous présenterons aussi des méthodes quantiques pour calculer la distance ou le
produit sclaire entre deux vecteurs classiques avec un avantage exponentiel par rap-
port à la dimension de ces vecteurs. Notre circuit quantique résulte en l’apparition
du produit scalaire désiré dans l’amplitude d’un qubit en particulier selon qu’il est
mesuré dans l’état 1 ou 0. Cela nous permet par la suite d’appliquer des algorithmes
fondamentaux tels que l’amplitude estimation pour inscrire la valeur cherchée dans
d’autres qubits.

Dans la Partie III, nous nous concentrerons sur le développement d’algorithmes
quantiques spécifiques aux problèmes d’apprentissage non supervisé, pour lesquels
la donnée vient sous forme de nuage de points non labelisés, et pour lesquels il
faut détecter automatiquement des emsembles pouvant être assimilés à différentes
classes. Ces problèmes, pour la pluparts considérés comme NP-complets, peuvent
être résolus par des algorithmes approximatifs non déterministes. Le plus fonda-
mental de ces algorithmes étant le k-means, nous proposons le q-means, une version
quantique potentiellement exponentiellement plus rapide par rapport au nombre
de points dans le jeu de données. Il s’agira d’utiliser le circuit de calcul de dis-
tance de la partie précédente et de l’appliquer en parallèle à tous les vecteurs, grâce
à l’amplitude encoding de ces derniers. Grâce à une mesure quantique, il nous est
alors possible de sélectionner les vecteurs les plus proches de certains points dits cen-
troids et d’itérativement mettre à jour ces derniers. La complexité algorithmique du
q-means dépend aussi de la dimenison des vecteurs, du nombre de centroids, ainsi
que de certains paramètres non classiques qui dépendent de la distribution et de la
valeurs des vecteurs.

Ensuite, nous généralisons cette méthode à l’algorithme de spectral clsutering, qui
considère cette fois les points comme les noeuds d’un graphe dont il faut distinguer
les sous-parties. Notre version quantique de cet algorithme utilise à nouveau le
calcul de distances en superposition de toutes les paires de points du graphe. Nous
développons aussi l’extraction de vecteurs propres de la matrice Laplacienne associée
au graphe. Tout en conservant la cohérence quantique au long de l’algorithme,
nous projettons les données dans l’espace défini par les vecteurs propres aux valeurs
propres les plus petite. Dans cet espace, il est alors possible d’utiliser l’algorithme
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q-means ci-dessus. Ce résultat est aussi analysé d’un point de vue de la complexité
et nous prouvons un avantage comparé à la version classique.

Dans les deux cas, des simulations sont faites sur des jeux de données réels afin
de tester l’impact de l’aléas quantique, ou de la faible précision dûe au nombre limité
de qubits disponibles.

Dans la Partie IV, nous irons voir du côtés des réseaux de neurones artificiels.
Ces architectures sont des algorithmes enchâınant produits matriciels et fonctions
non linéaires. Les produits matriciels pouvant être vus comme une série de produit
scalaire, nous avons déjà une méthode quantique afin de les accélérer. Cependant,
il est complexe d’appliquer des transformations non linéaires sur un état quantique
sans devoir en mesurer une partie. Dans cette thèse nous présentons le cas des
réseaux de neurones convolutionnels, spécialisés dans le traitement du signal comme
la classification d’image ou de signaux audio. Nous introduisons pour cela un des
premiers algorithmes quantiques pour le produit de convolution ayant un avantage
sur l’équivalent classique. Enfin nous utilisons une nouvelle méthode de tomographie
d’états quantiques. Nous avons simulé notre algorithme sur un cas de classification
d’images et avons obtenus des résultats comparables à l’équivalent classique.

Pour finir, nous changerons de paradygme pour étudier les algorithmes dits Noisy
Intermediate Scale Quantum ou NISQ, c’est-à-dire destinés aux petits ordinateurs
quantiques imparfaits actuellement disponibles. Nous proposons un circuit quan-
tique ayant une forme pyramidale dont nous prouvons l’équivalence avec un réseau
de neurone dit orthogonal. Ce circuit utilise cette fois-ci l’unary encoding. Il nous
a été possible de tester notre circuit sur un ordinateur quantique à base de qubits
supraconducteurs et d’obtenir des résultats satisfaisants malgré la présence de bruits.
Ces circuits pyramidaux ont l’originalité d’utiliser un seul type de portes quantiques,
et nécessitent une connectivité simple entre les qubits de la puce quantique. Une
optimisation classique est faite en parallèle pour ajuster les portes quantiques en
question, permettant un apprentissage via descente de gradient dans un espace al-
ternatif comparé aux réseaux de neurones orthogonaux classiques.

Pour conclure, le développement de cette thèse nous a permis d’enrichir la
panoplie d’outils et d’algorithmes pouvant être utilisé par les ordinateurs quantiques
idéaux (long terme) mais aussi bruités (court terme). Nous espérons que ces outils
pourront être adaptés à encore d’autres algorithmes dans le domaine du machine
learning mais aussi ailleurs. De nombreux efforts sont encore à faire pour trouver des
applications où l’ordinateur quantique pourra proposer un avantantage par rapport
à un calculateur classique. Ces efforts seront à faire en parallèle de ceux qu’occupent
les phycisiens et ingénieurs qui essayent de fabriquer de telles machines dont le but
est de dompter l’état quantique de la matière afin de manipuler l’information d’une
nouvelle façon. Nous attendons donc avec impatience l’arrivée des premiers ordina-
teurs quantiques à grande échelle pour tester nos théories et espérons qu’ils aideront
la communauté scientifique à résoudre des problèmes pour l’intérêt général.
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À mes amis qui pourront enfin arrêter de me demander “c’est quoi ta thèse
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Avant-Propos

”La science à tout moment
recule les limites du
merveilleux.”

Guy De Maupassant
La Peur (1882)

Je me permets d’introduire cette thèse de Doctor of Philosophy (Ph.D.) par une
touche de philosophie, une série de pensées qui m’ont accompagné durant ces années
de Doctorat.

J’aime à croire que l’émerveillement scientifique qu’il arrive à certaines et certains
de ressentir dans leur vie est en partie dû à notre relation avec les limites. Parmi
les plus communes, celles qui hantent l’humanité depuis toujours, on peut citer
“d’où vient-on ?”, “qu’il y a-t-il au plus loin ?”, ou bien “quelle est la plus petite
chose ?”. De ces questions enfantines a jailli l’exploration du réel, emmenant nos
connaissances toujours plus loin. Je ne sais pas ce qui est le plus surprenant entre les
nouveaux savoirs acquis ou le fait même que nous ayons pu les acquérir. D’ailleurs,
les questions les plus élégantes sont souvent celles qui portent sur les limites du
savoir lui-même: “pourra-t-on savoir un jour pourquoi l’univers existe ?”, ”puis-je
me prononcer sur la conscience, étant moi-même conscient ?”. D’un degré supérieur,
ces limites sont la passion communes des philosophes, logiciens, mathématiciens et
physiciens.

La beauté des mathématiques, c’est ce que je ressens devant la preuve d’une
limite sur la connaissance elle-même, ou la démonstration habile de son absence.
Les limites elles-mêmes sont devenues des objets mathématiques. D’ailleurs, une
limite fait-elle partie de ce qu’elle délimite ? Qu’en est-il du Big Bang ? On voit
que les limites ne sont pas des murs, mais bien des portes.

Si la quête des limites est l’archétype d’un hybris, elle n’est pas forcément à
confondre avec le désir d’utiliser ou de contrôler. Chercher les limites, c’est avant
tout une méthode pour interroger notre compréhension du monde. La théorie de
la physique quantique n’a pas seulement mieux délimité l’infiniment petit mais en
a redéfini la notion même. Le principe d’incertitude de Heisenberg en est un bon
exemple: il ne s’agit pas, au contraire de ce que l’on entend souvent, d’une limite de
ce que l’on peut savoir conjointement sur la position et la vitesse d’une particule,
mais plutôt la découverte que ces notions ont un sens physique différent à cette
échelle. Ainsi la quête de limite a modifié notre conception de la réalité.

Un sudoku à résoudre, l’équation du mouvement des planètes, la configuration
d’une molécule. À partir de nombreux problèmes émergent des interrogations sim-
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ilaires sur les limites du possible: Est-ce que ce problème a une solution ? Si oui,
puis-je la trouver avec une feuille et un stylo ? Est-ce qu’un ordinateur peut la trou-
ver ? Si oui, peut-il la trouver rapidement, disons avant que le Soleil n’ait englouti
la Terre ? Plus généralement, y a-t-il une limite à ce qu’un ordinateur peut résoudre
rapidement ? Est-ce qu’un ordinateur peut simuler une conscience, ou un univers ?
Les limites qui s’appliqueraient à ces résultats nous informent-elles sur la nature de
l’information dans l’univers lui-même ? Par exemple, si j’autorise mon ordinateur
à manipuler l’information sous forme quantique, possède-t-il les mêmes limites ? Si
non, pourquoi ?

Ainsi, des sciences de l’ordinateur ou Computer Science, de nombreuses ques-
tions fondamentales émergent et passionnent les chercheurs. Se demander quelles
sont les limites de ce qui peut être résolu ou encore résolu efficacement permet de
voir d’un autre angle de nombreuses questions philosophiques [Aar13]. Il en va de
même avec l’intelligence artificielle ou Machine Learning. Se demander jusqu’à quel
point une machine peut apprendre à différencier des images d’animaux, résoudre
un problème de mécanique des fluides, ou détecter l’ironie dans un texte, c’est un
chemin alternatif pour comprendre la nature de l’apprentissage, de la physique, ou
du language.

Cette thèse, portant sur ce qu’il est théoriquement possible ou impossible de faire
avec un ordinateur quantique dans le champ de l’intelligence artificielle, est d’une
certaine façon motivée par ces considérations, ces émerveillements.

Enfin, il faut dire que sur le chemin de comprendre les limites se trouve as-
sez fréquemment le désir de dépasser nos propres limites à travers la technique.
Ces dernières années, j’ai pu assister en temps réel à l’émergence de l’intelligence
artificielle et à l’apparition des premiers ordinateurs quantiques. Ces nouvelles tech-
nologies, part leur élégante universalité, sont ou seront probablement capables du
meilleur comme du moins meilleur. J’espère que l’on fera attention à ne pas ériger le
dépassement des limites en un principe supérieur aux principes naturels et humains.
Car si nous sommes ici flottant dans l’espace, le principal est peut être simplement
de comprendre et de prendre soin.

Jonas Landman
Juin 2021
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Chapter 1

Introduction

”A mathematician is a blind
man in a dark room looking for
a black hat which isn’t there.”

Charles Darwin

1.1 Context and Motivation

Quantum Physics

Quantum physics is often considered as the most wonderful intellectual adventure
of modern science. As Einstein, Bohr, Schrödinger, Dirac and others taught us, this
theory is a new paradigm to our comprehension of the world. Small objects behave
differently, by following specific equations and having the ability to be in multiple
states before we look at them. Even though it concerns the tiniest objects such as
atoms, electrons, or photons, the consequences are indeed macroscopic: without it,
we wouldn’t understand the Cosmic Microwave Background or photosynthesis, and
we wouldn’t have atomic clocks, lasers, computers and smartphones. Since the 1980s
and the experimental realization of entangled particles by Alain Aspect [ADR82],
solving the Einstein-Podolsky-Rosen (EPR) paradox, we even started to manipulate
information at a quantum level. We tend to forget it, but information is physical, and
therefore it could also be quantum physical. This second quantum revolution, paved
the way to counterintuitive applications such as quantum teleportation [BBC+93].
At the same time emerged the idea that handling quantum systems could help us
performing computation, as Richard Feynman’s famous quote [Fey82] puts it:

“Trying to find a computer simulation of physics seems to me to be
an excellent program to follow out [...] the real use of it would be with
quantum mechanics [...] Nature isn’t classical dammit, and if you want to
make a simulation of Nature, you’d better make it quantum mechanical,
and by golly it’s a wonderful problem, because it doesn’t look so easy.”

On year later, inspired by the work of Bennet and Fredkin, he added [Fey87]:

“We can in principle make a computing device in which the numbers
are represented by a row of atoms with each atom in either of the two
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states. That’s our input. The Hamiltonian starts “Hamiltonianizing”
the wave function [...] The ones move around, the zeros move around
[...] Finally, along a particular bunch of atoms, ones and zeros [...] occur
that represent the answer.”

In addition, using quantum information processing to create a computer seemed
to solve an impending problem faced by traditional classical computers: Moore’s
law. First stated in 1965, this empirical rule claims that the transistors, building
blocks of computers and physical embodiment of bits (0’s and 1’s), will be twice
smaller every 18 months. As transistors reach a size of few nanometers with few
atoms per unit, quantum and thermodynamical effects will disturb their properties.
Shrinking has its limits [Wal16] and experts expect the end of Moore’s law in the
current decade.

Quantum Computing

So, what is a quantum computer, and why it may surpass classical computers? First
of all it is a computer. It manipulates quantum objects, such as photons, electrons, or
ions, as bits of information (see Section 3.1 for mathematical formalism). Therefore
the quantum bits or qubits, representing the 0’s and 1’s, would inherit a quantum
nature. It allows them to be in both states a the same time or to be entangled with
each other. But these properties are only available before any measurement is made,
after which everything becomes classical again. In the meantime, the quantum
computer would apply logical operations to the qubits so that the measurements
would give the desired answer with less resource globally.

Intuitively, the key difference lies in the exponential superposition of binary
inputs. Indeed, one classical bit can be either in state 0 or 1 as a transistor can be
opened or closed, but a qubit can simultaneously be in a combination of both states,
informally:

|0〉+ |1〉 (1.1)

where the Dirac notation |·〉 reminds us that the bit is a quantum system. Similarly,
two qubits can be in four states simultaneously, informally:

|00〉+ |01〉+ |10〉+ |11〉 (1.2)

It follows that n qubits can be in a superposition of 2n states. Since 2n classical bits
would be necessary to encode the same amount of state. This gives the intuition of
the exponential advantage quantum could offer, informally:

|0 · · · 00〉+ |0 · · · 01〉+ |0 · · · 010〉+ · · ·+ |10 · · · 0〉 (1.3)

Let’s consider a simplified, informal, and intuitive reasoning. We are required
to solve the task of checking if a given name is ”Albert”, among a random list
of N = 109 names (a billion). The best thing a classical computer can do is to
repetitively instantiate bits to be each name of the list, one by one, and check if
the name is ”Albert” until it finds it. The time to find the right name, called the
complexity of the algorithm, would be on average N/2. We see that this algorithm
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would be linear in N , and doubling N would double the time.

Niels 7→ 0

Marie 7→ 0

...

Albert 7→ 1

...

Erwin 7→ 0

(1.4)

However, if a quantum computer could instantiate all names in superposition
using only 30 qubits (230 ≈ 109), it would need to check only once if the quantum
state is ”Albert” and get a superposition of all answers:

|Niels〉
+ |Marie〉
...

+ |Albert〉
...

+ |Erwin〉


7→



|0〉
+ |0〉
...

+ |1〉
...

+ |0〉

(1.5)

One computation instead of one billion seems astonishing. Note however that the
output in Eq.1.5 is still in a quantum state before any measurement. Therefore the
answer is not directly accessible to us, classical beings. One would have to measure
and therefore destroy this state to get only one of the output, most probably a
|0〉. In fact, the effective method is called Grover’s algorithm [Gro96] and is quite
different. It has the benefit of a complexity of ∼

√
N instead of ∼ N .

In fact, during the 1990s, computer scientists and physicists tried to develop a
theory on quantum computing and find specific problems where a quantum com-
puter would be beneficial. The first algorithms made by Deutsch-Josza [DJ92],
Bernstein–Vazirani [BV97], and Simon [Sim97], where simple but already showed
provable exponential speedups. Later, the development of Phase Estimation, Quan-
tum Fourier Transform led to the famous Shor’s algorithm [Sho99] for solving prime
number factoring in 1994.

Behind these specific algorithms hides the field of Complexity theory, and the
question of what nature is able to compute efficiently, and what happens if we
add quantum physics to it? The discovery of efficient quantum algorithms would
invalidate the Church-Turing thesis which, in its modern complexity theoretical
formulation, states:

“A probabilistic Turing machine can efficiently simulate any realistic
model of computation.”

Consider a yes-no problem with an input of n bits. We call P the class of prob-
lems solvable in time polynomial in n by a computer, or more precisely a Turing
Machine. NP is the class of problems where, if a solution is given, we can verify
it in polynomial time in n. Some problems that are in NP but not in P are called
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NP-complete problems. Notably, the question of proving or not that P 6=NP is
one of the million-dollar problems of the Clay Math Institute. The class of prob-
lems efficiently solvable by a quantum computer with some constant error allowed is
called BQP for Bounded-Error Quantum Polynomial-Time. We could compare it
to P but since quantum measurements are probabilistic, it is fairer to compare it to
BPP for Bounded-error Probabilistic Polynomial time, the equivalent of P with the
ability to give a solution with some constant probability. It is easy to show BQP
contains BPP, meaning that every (probabilistic) classical circuit can be simulated
by a quantum circuit. But is the reciprocal true? In fact, proving that BQP 6=BPP
would invalidate the Church-Turing thesis cited above, and be key to understand the
power of quantum computing. However, it is believed that NP * BQP, meaning
that some important problems hard to solve but easily checkable, would eventually
not be solvable by a quantum computer. In conclusion, BQP is something else, a
complexity class made stranger due to quantum nature.

Figure 1.1: A map of fundamental complexity classes. Source: [NM14].

Researchers realized quickly that qubit errors, due to various quantum effects
such as decoherence or uncontrolled state perturbation, would be a major flaw for
quantum computers. As for classical computing, a theory of error correction has
been developed [KL97, NC02]. In error correcting codes, a logical qubit in state |0〉
or |1〉, is in fact composed of many physical qubits. Current error correcting codes
imply a strong overhead in the number of qubits required for a denoised device.

We call universal fault tolerant quantum computers (FTQC) the ideal quantum
computers, with a universal set of gates, and a high number of logical qubits. Al-
though they seem far away, conceptualizing and working on these ideal computers
help us to understand theoretically what are the hopes and the limits. Proving a
serious limitation could thus call into question the efforts currently deployed, or on
the contrary provide even more excitement as Shor’s algorithm did in 1994.

Throughout this thesis, the majority of the quantum machine learning algorithms
will be suited for such FTQC devices, except for Chapter 12 where we propose a
quantum circuit that we effectively implement on a real quantum computer.

Machine Learning

Machine learning is a subfield of artificial intelligence. Its specificity is to perform
tasks in a radically different way than what is usually considered as algorithms.
Indeed, these algorithms are made to progressively learn how to solve a problem
instead of being the most efficient solution by design. There exist plenty of algorithm
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families which all have their properties, their formalism and applications, while
remaining very general. Modern developments include deep learning, or artificial
neural networks, which are allegedly built to mimic neurons connectivity in the
brain. These methods have become essential in all domains of science.

Figure 1.2: On April 2019, the first image of the blackhole M87∗ was produced using
petabytes of data and machine learning algorithms [AAA+19]. Updated image from
March 2021.

In the last decade, machine learning algorithms have pushed the boundaries of
science and information processing more than we could have imagined. Among the
most exciting and recent discoveries, in 2019, the Event Horizon Telescope (EHT)
reconstructed the first image of a black hole in the galaxy M87 using a machine learn-
ing algorithm [AAA+19]. It used a supercomputer to process an enormous amount of
data, gathered from 10 telescopes around the world: more than 10 petabytes, equiv-
alent to the number of pictures 100.000 people would take in their entire life. In
2021, 1200 gravitational lenses, another phenomenon predicted by Einstein (again)
in the theory of general relativity, have been discovered thanks to a machine learning
algorithm. This algorithm found them in an image of Space containing 10 trillion
pixels, or 1 petabyte [HSG+21]. This discovery could help us understand the ex-
pansion of the universe and discover new galaxies. Discoveries also concern biology
since in 2020 researchers used machine learning algorithms [SEJ+20] to solve the
problem of protein folding for the first time at the CASP competition [Cal20]. This
opens new paths for understanding life or discovering new medical treatments.

All these developments come at a cost of a tremendous amount of data processing,
requiring the most powerful supercomputers available. Machine learning may reach
its limit with the never-ending global data growth, associated with the increasing
complexity of the algorithms used. Efficient computing will become mandatory since
machine learning is now helping in many domains, from medical applications, image
processing, social networks, experimental science, safety systems, and may even help
for fighting against climate change [RDK+19].

Recent Developments

In recent years, a lot of efforts have been done by physicists all over the world
to make the first experimental realizations of qubits, quantum logical gates, and
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now quantum computers. In 2017, anyone could access IBM’s superconducting
qubit quantum computer and launch a circuit. More recently, in 2019, Google
demonstrated the first quantum “supremacy” experiment [AAB+19]. Their 53 qubit
quantum chip was processed random quantum logical gates to create a complex
quantum state and sample random outputs. Despite the noise of their device, they
showed that for a classical computer to output random results following the same
distribution it would require allegedly 10,000 years, versus in 200 seconds for the
quantum computer. Note that this result was recently nuanced by [PZ21] who were
able to classically simulate the same quantum circuit in 149 days. However, the
“supremacy” experiment remains a great achievement that proves the reality of
exponential Hilbert spaces.

Since this news made the front page, quantum computing has became more real-
istic and triggered a lot of hope. Many countries, universities, big and small private
companies have started the race of building a fault tolerant universal quantum com-
puter. The expectations are high, and the pressure on the achievements is rising.
Due to the universality of quantum computing, every domain is now interested, in-
cluding optimization, machine learning, chemistry, material science, health, and of
course quantum physics in general.

But one question remains uncertain: will a fault tolerant quantum computer be
useful? Despite the difficulty of physically building one, which would already be
a fantastic scientific achievement for mankind, what useful task would we do with
such a machine? And isn’t there any fundamental limits to their power, and why?
In the rest of this thesis, we will focus these questions on the field of unsupervised
machine learning and neural networks and try to answer the following:

Can a fault tolerant universal quantum computer provide an advantage
in machine learning over classical computing?

Both quantum computing and machine learning have universal properties, and
the future will probably allow us to find unexpected results by combining these two
fields.

1.2 Quantum Machine Learning

Combining quantum computing and machine learning is audacious but justified as
they share a deep connection. Both theories are based on a common mathematical
formalism, linear algebra, which makes a certain translation possible. Indeed, as we
will see later, all machine learning can be written as vectors, matrices, vector spaces
and transformations. Algorithms rely on linear algebra properties and theorems to
classify, modify or create data points, seen as vectors (Chapter 2 for details). They
can also play with representations and map points from a vector space to another
where the task is efficient. On the other hand, quantum physics formalism was built
around the mathematical description of quantum states, represented as vectors in a
complex vector space called the Hilbert space. Therefore, a set of qubits can always
be seen as a vector in a high dimensional space, and any quantum gate or circuit as
a matrix or linear operation in that space (see Section 3.1 for details).

In short, both theories speak the same language, but they also differ in many
aspects. To cite a few: quantum Hilbert spaces are exponentially bigger but don’t
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allow non-linear transformations, which are common in machine learning. quantum
Hilbert spaces are complex, whereas data in machine learning is mostly real num-
bers. quantum algorithms deal with quantum states but machine learning requires
classical inputs and classical outputs. quantum vectors are normalized, which can
be undesirable for representing data in machine learning.

The goal of quantum machine learning (QML) [BWP+17] is to find a common
theory for developing quantum algorithms that implement known or unknown ma-
chine learning tasks. It is also about using the differences between the two fields to
propose new algorithms or to enhance the existing ones.

This deep connection between the two fields become real in 2009 with the HHL
algorithm [HHL09] that solve linear systems and matrix inversion with a proven
exponential speedup on a quantum computer. Given an N -dimensional input vector
b ∈ RN and a Hermitian matrix A ∈ RN×N , the task is to find a vector x ∈ RN such
that:

Ax = b (1.6)

Solving this problem comes down to find the inverse A−1 of the matrix A, as x =
A−1b. On a classical computer, this requires in general ∼ N iterations, but the HHL
allows to solve it in only ∼ log(N) steps. This represents an exponential speedup
that could be a practical game changer, as this computational task appears all over
science including fluid mechanics, optimization, physics in general, but also machine
learning. This breakthrough also questioned our abilities to convert the inputs b and
A in quantum states to be further processed by a quantum circuit, as well as the
way of recovering a classical output from it [Aar15].

Figure 1.3: Quantum circuit for the HHL algorithm. Source: [LJL19]

Using the HHL algorithm, the first proposals for precise quantum machine learn-
ing algorithms appeared a few years later. They concerned various tasks includ-
ing simple linear regressions, the dimensionality reduction called Principal Com-
ponent Analysis (PCA) [LMR14], Nearest Neighbors algorithm [WKS14a], topo-
logical data analysis [LGZ16], recommendation systems [KP16], classification with
Support Vector Machines (SVM) [RSML18], unsupervised learning and clustering
[ABG13, LMR13]. Later on, attempts to provide quantum algorithms for neural
networks and deep learning were proposed [WKS14b, RBWL18, FN18].

In parallel to quantum machine learning, a concerted research effort has been
made to find quantum algorithms for optimization problems. As we will see in
Chapter 2, machine learning is intimately linked to optimization, in particular
concerning the various way of performing gradient descent. Recent results in-
clude a quantum gradient descent algorithm [KP20a], as well for the interior point
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Figure 1.4: Occurrences of the basic keywords “quantum machine learning”, “quan-
tum neural network(s)”, and “quantum deep learning” in Google Scholar’s articles
2010–2020.

method [KP20b] and more generally algorithms for solving LP and SDP problems
[VAGGdW17, BS17, vAG18]. For instance, a quantum solver for second order cone
programming is directly applicable to support vector machine [KPS21], a popular
machine learning algorithm.

It is worth noticing that since the start of this thesis, an impressive amount
of new QML algorithms were proposed. Some of them followed the initial works
presented above. Others shifted to a new paradigm called variational quantum cir-
cuits, where ideas of machine learning (tunable parameters) were directly applied to
quantum circuits themselves. In addition, the first implementations on actual quan-
tum hardware were made possible by various institutions and companies allowing
for real experimentation: IonQ, IBM, Google, Xanadu, Rigetti, Pasqal, and many
more. Besides, many software projects were made to program quantum circuits eas-
ily: Qiskit, Pennylane, Cirq, Forge, Q# and plenty more. In only three years, the
evolution is noticeable at all levels and brings great hope for the future of quantum
computing.

1.3 Contributions

The approach of this thesis is to pursue these works and find new quantum al-
gorithms that correspond to existing machine learning methods that are used in
practice. We focus our scope to clustering or unsupervised learning algorithms, as
well as on neural networks or deep learning methods. Moreover, we always prove
that using a quantum computer would benefit in some manner. Defining and prov-
ing a quantum advantage is the key difficulty in most cases. It can be a theoretical
complexity result for the running time, a quantum circuit with shorter depth, or
with few qubits. It can also relate to the final accuracy of the algorithm, in theory
with the control on the errors, but also practice on real datasets.

Complexity or running time results are presented with the O(·) notation, indi-
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cating asymptotic growth with the size of the problem. For instance, problems of
size N that require N , 1/2N+3, or 100N steps to be solved, have each a complexity
of O(N), indicating proportionality to N . This notation always emphasizes on most
dominant asymptotic terms, and for instance we have N3 + 10

√
N + 4 log(N) =

O(N3). We also use the Õ(·) symbol to discard the terms that grow logarithmically

slow. Therefore, O(log(N)N2) can be written Õ(N2). See Section 1.4 for more
details.

Figure 1.5: Representation of Big-O notation for different asymptotic growths.
Source: Bigocheatsheet

To prove a speedup over a classical algorithm, the quantum algorithm must be
comparable in some sort. To do so, we require it to be end-to-end and comparable:
It should start from classical input, follow similar steps and returning a classical
answer. With rigor, we tried to analyze any source of error due to quantum ran-
domness during measurement, and include it in our final running time for a fair
comparison. We also have simulated our quantum algorithms on real datasets to
compare them in practice with their classical counterparts.

We now present the structure of this thesis and the corresponding results. for
each result, we compare the complexity of the previous classical or quantum algo-
rithm and the one from this thesis. Note that they often depend on some parameters
define as

• N : usually the number of points, size of the problem, input size, etc.

• d: dimension of the points or vectors for the problem to solve.

• k: number of classes or clusters to find in a dataset.

• ε, δ: error or precision parameters due to quantum effects. There is most of
the time a trade-off between speed and accuracy.
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• µ, η: these are data dependant parameters specific to quantum linear algebra.
See Definitions 5.1 and 6.1. In a nutshell, µ is derived from a data matrix
norm, and η is the maximum norm of the vectors in the dataset.

• Other parameters should be defined in Section 1.4 or in the corresponding
theorems.

Part II To create our quantum algorithms, we used existing quantum linear al-
gebra tools and developed new ones as well. These tools were general enough to be
reused across algorithms and are the common thread of most of this thesis. Among
others, we propose quantum algorithms for inner product and distance estimation
(Section 6.2, Theorem 6.1). As we will see, they allow quantum computing to speak
the same language as machine learning. Using them, we also provide an algorithm for
a quantum convolution product (Section 11.2.1, Theorem 11.1). As well as a quan-
tum processing routine for graph-based machine learning including the fast creation
of an adjacency graph and its Laplacian matrix (Section 9.2, Theorem 9.3). Finally,
a new quantum tomography procedure with `∞-norm error bounds is introduced
(Section 4.2.1, Theorem 4.3), to retrieve a classical description of a quantum state
faster, while keeping the meaningful information in the context of neural networks.

Algorithm Type Running Time
Inner product or distance estimation (IPE) Classical O(Nd)

Quantum IPE [KLLP19] Quantum Õ(η/ε)
Tensor convolution product Classical O(NoK)

Quantum tensor convolution product [KLP20a] Quantum Õ(η/ε)
Projected Laplacian matrix creation Classical O(N3)

Quantum projected Laplacian matrix [KL21] Quantum Õ(µκ/ε)

Table 1.1: Summary of contributions for fundamental linear algebra routines. In
the classical convolution product, No, and K are respectively the output size and
the kernel size. The quantum convolution product returns a quantum state.

Algorithm Type Running Time
`2 tomography [KP20b] Quantum O(d log(d)/ε2)

`∞ tomography [KLP20a] Quantum O(log(d)/ε2)

Table 1.2: Summary of contributions for quantum tomography. d is the dimension
or the number of elements in the quantum vector.

Part III We then focus on quantum algorithms for unsupervised machine learning.
We propose q-means, a new quantum algorithm [KLLP19] providing a potential
exponential speedup to one of the most basic and widely used clustering algorithms,
the k-means algorithm (Chapter 8, Theorem 8.3). We build upon this result by
introducing another quantum algorithm [KL21], an analog of the spectral clustering
algorithm, which uses the k-means method on top of graph-based machine learning.
(Chapter 9, Theorem 9.4).

23



CHAPTER 1. INTRODUCTION

Algorithm Type Running Time
k-means Classical O(Nkd)

Quantum k-means [LMR13] Quantum O(Nk log(d)/ε)

q-means [KLLP19] Quantum Õ(log(N)k2dη1.5/ε3)

Table 1.3: Summary of contributions for the k-means algorithms. N is the size of the
dataset, d the dimension of each vector, and k the number of clusters. The runtime
for q-means is simplified and for the case of well-clusterable datasets. The result
from [LMR13] outputs a quantum state and would become linear in d to produce a
classical output as in our work [KLLP19].

Algorithm Type Running Time
Spectral clustering [NJW02] Classical O(N3)

Quantum spectral clustering [KL21] Quantum O(log(N)µ)

Table 1.4: Summary of contributions for the spectral clustering algorithms. µ in the
quantum algorithm is O(N) in the worst case and in our numerical experiments.

Part IV Next, the same tools are adapted to develop a framework for quantum
neural networks, also called quantum deep learning. In particular, we introduce an
algorithm for quantum convolution neural network [KLP20a] (Chapter 11, Theorem
11.1).

We also propose a different type of quantum circuit, suited for Noisy Intermediate
Scale Quantum computers, or NISQ [Pre18] (see Section 3.3), currently available.
These quantum circuits have a specific pyramid shape and data encoding, allowing
them to implement a neural network with orthogonal properties (Chapter 12).

Algorithm Type Running Time
Convolutional CNN layer [LBBH98] Classical O(NoK)

Quantum CNN [KLP20a] Quantum O(σNoη/ε)
Orthogonal NN inference [JLW+19] Classical O(N2)
Orthogonal NN training [JLW+19] Classical O(N3)

Pyramidal OrthoNN [KLM21] inference Quantum O(N/δ2)
Pyramidal OrthoNN [KLM21] training Classical O(N2)

Table 1.5: Summary of contributions for neural networks algorithms. For CNN,
No and K are respectively the output size and the kernel size. σ is a ratio in [0,1].
OrthoNN stands for Orthogonal Neural Network and N is both the input and output
size of a single layer.

24



CHAPTER 1. INTRODUCTION

These contributions were the subject of scientific publications, which are listed
below:

• [KLLP19] “q-means: A quantum algorithm for unsupervised machine learn-
ing”. Published in Proceedings of the 33rd Conference on Neural Information
Processing Systems (NeurIPS) - 2019, pp.4136-4146. By I. Kerenidis, J. Land-
man, A. Luongo, A. Prakash.

• [KLP20a] “Quantum Algorithms for Deep Convolutional Neural Networks”
Published in Proceedings of the 8th International Conference on Learning Rep-
resentation (ICLR) - 2020. By I. Kerenidis, J. Landman, A. Prakash

• [KL21] “Quantum Spectral Clustering”. Published in Physical Review A 103,
042415 - April 2021. By I. Kerenidis, J. Landman.

• [KLM21] “Classical and Quantum Algorithms for Orthogonal Neural Net-
works”. By I. Kerenidis, J. Landman, N. Mathur. (Under submission)

• [BFL21] “Quantum Inference Algorithm for Bayesian Neural Networks”. By
N. Berner, V. Fortuin, J. Landman. (Under submission)

• [MLL+21] “Medical Image Classification Via Quantum Neural Networks”. By
N. Mathur, J. Landman, Y. Li, M. Strahm, S. Kazdaghli, A. Prakash, I.
Kerenidis. (Under submission)

Figure 1.6: Diagram representation of the main contributions. Arrows denote de-
pendencies between linear algebra (blue), tomography (grey), unsupervised machine
learning (red), and neural networks (orange) algorithms. Q stands for “Quantum”.
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1.4 Mathematical Notations

We introduce basic notations and definitions for the understanding of this disserta-
tion.

N, Z, R, R+, and C are respectively the integers, natural numbers, real numbers,
positive real numbers, and complex numbers. For an integer N > 0, [N ] denotes
the set of integers between 1 and N included. i is the imaginary number such that
i2 = −1, but is also often used as the index of numbered elements. A Hilbert space
is a real or complex vector space with an inner product.

Vectors are often written as x, v, s, or y and are elements of (a subspace of) Rd

(or Cd), where d > 0 is the dimension. Therefore, a vector x ∈ Rd vectors have d
real components, each in R (or C). We write x = (x1, x2, · · · , xd) or x =

∑d
i=1 xiei

where ei is the ith vector of the standard or canonical basis. Note that in some cases,
the vector’s components will be indexed from 0 to d − 1 instead. x or v will often
denote the input vector of an algorithm, y the output vector. c often stands for a
centroid vector (center of a cluster).

The `p norm of a vector is ‖x‖p = (
∑d

i=1 |xi|p)1/p. In particular, we use the `2

norm ‖x‖2 =
√∑d

i=1 |xi|2, and we define the `∞ norm as ‖x‖∞ = maxi∈[d] |xi|. If

the subscript is not specified, ‖x‖ usually represents the `2 norm.
The inner product between two d-dimensional real vectors x and y is written

(x, y), x · y or xTy and is equal to
∑

i∈[d] xiyi. We have ‖x‖2 =
√

(x, x) and the
euclidean distance between x and y is:

d(x, y) = ‖x− y‖2 =

√
‖x‖2

2 + ‖y‖2
2 − 2(x, y) (1.7)

The normalized inner product is 〈x|y〉 such that (x, y) = ‖x‖2 ‖y‖2 〈x|y〉. Two vec-
tors x and y are orthogonal if (x, y) = 0. We use x⊥ to denote a vector orthogonal
to x.

For a collection of N vectors, also called dataset of size N , we can number each
vector in the set {xi}i∈[N ]. Therefore, the jth component of the ith vector is written
xij. However, we often used {xi}i∈[N ] with each xi ∈ Rd to denote the ith vector and
not its component, which could lead to confusion. A dataset can also be represented
as a matrix A ∈ RN×d (also V , X, Y , M or S). Indeed, N vectors of d dimensions can
compose the N rows of a matrix. Therefore the ith vector can be written Ai and its
jth component is Aij or Ai,j. We denote its transpose AT ∈ Rd×N , with elements Aji.

Let A be a square matrix in CN×N . If A is said invertible, we denote A−1 the
inverse of A such that AA−1 = I where I is the identity matrix. The adjoint of A

is A† = A
T

, where A is the complex conjugate of A. The matrix A is Hermitian if
A = A† and unitary if AA† = A†A = I. Note that for real matrices, being unitary
is equivalent to being orthogonal.

The Singular Value Decomposition (SVD) of a rectangular matrix A ∈ RN×d is
of the form A = UΣV , where U ∈ RN×N , V ∈ Rd×d and Σ is a rectangular diagonal
matrix with non negative elements σi called the singular values. If r ≤ min(N, d) is
the rank of A, we can write:
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A =
∑
i∈[r]

σiuiv
T
i (1.8)

where ui and vi are respective columns of U and V . We can define the pseudo
inverse of A as A+ =

∑
i∈[r]

1
σi
uiv

T
i . The condition number κ(A) is the ratio between

the biggest and the smallest singular values κ(A) = σmax

σmin
.

Let A ∈ CN×N be a diagonalizable matrix. Then A has N eigenvectors vi and
eigenvalues λi such that Avi = λivi. The vectors vi form a basis in RN . An unitary
matrix is diagonalizable and its eigenvalues are such that |λi| = 1. The sparsity s
of A is the maximum number of non zero elements in a row of A.

A symmetric matrix A ∈ RN×N is said to be positive semidefinite if, for any
vector x ∈ RN , we have xTAx ≥ 0. Then all eigenvalues of A are non negative.

We define possible norms for a matrix A ∈ CN×d with elements Aij. the Frobe-

nius norm ‖A‖F if the generalization of the `2 norm, ‖A‖F =
√∑

i,j |Aij|2 =√∑
i ‖Ai‖

2
2. For a square matrix we have ‖A‖F =

√∑
i λ

2
i . The spectral norm

of A is written ‖A‖2 or ‖A‖ and is the biggest singular value of A.

Tensors are the generalization of matrices with more than two dimensions. 3D
tensors are indexed by i, j and d.

For an algorithm depending on the variable N , its running time is stated in
the standard asymptotic notation O(f(N)) which indicates a running time upper
bounded by cf(N) for a fixed c ∈ R+ and sufficiently large N > 0. The notation

Õ() hides polylogarithmic factors (e.g. log2(N)), that is O(f(N)polylog(N)) is rep-

resented by Õ(f(N)).

Note finally that across Chapters and algorithms, it is possible that notations
switch due to the context e.g. in Chapter 9 singular values are also written λi. For
neural networks in Chapter 12, the input vectors are of size n and the output of size
d.
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Chapter 2

Classical Machine Learning

”A computer would deserve to
be called intelligent if it could
deceive a human into believing
that it was human.”

Alan Turing
Computing Machinery and

Intelligence (1950)

2.1 Introduction

The growing importance of machine learning in Science, but also in industry and in
our society, is undeniable. Recent advances in signal processing, time series forecast-
ing, medical predictions, image recognition, anomaly detection, or generative data,
have surpassed most expectations. In 2019 deep learning inventors [LBH15] were
awarded the Turing medal, and together with Learning Theory and Neuroscience,
the scientific community is working to understand how the brain learns.

The sophistication of the algorithms used, and the amount of data necessary to
train them seems staggering. The quantity of data generated by our society, from the
web, various captors, open medical data, is expected to grow beyond comprehension.
Most of this data will be multimodal, complex, and unlabelled. Therefore the help of
unsupervised machine learning and neural networks (or deep learning) will become
more necessary, but more powerful ways of making sense of this amount of data will
be necessary as well.

In the following, we will introduce basic concepts and notations in machine learn-
ing, required for this thesis. Complete courses can be found in [Bis06] and [GBCB16]
for deep learning.

A machine learning task aims to extract information from data. It usually con-
sists of a parametrized function (or model). Its parameters are is progressively tuned
(or trained) such that the task is done as efficiently as possible. We then say that
the model has learned to predict using the data provided.

Data points could represent points in space, a set of numbers, or even images de-
composed as pixels. In the general case, a dataset D consists of N vectors {xi}i∈[N ],
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CHAPTER 2. CLASSICAL MACHINE LEARNING

where each vector lies in a subspace of Rd. Said differently, each vector has d fea-
tures, or is d-dimensional. The model to train can be written as a function f(x|θ),
where θ are the parameters to tune, that should map each input xi ∈ Rd to an out-
put yi ∈ Rd′ . The outputs can be of any sort as well. In the context of regression,
it usually consists of a number, and d′ = 1. In classification, where the goal is to
put on each input a label (or class), we have d′ = k, where k is the number of classes.

The most common machine learning branch is supervised learning, where the
dataset is provided with labelled data. Namely we are given a dataset D = xi, yii∈[N ].
Training such algorithms boils down to being able to predict the right yi for each
xi with a training set, and then ensure that the model can also predict the right
result for a testing set of pairs (xi, yi) that haven’t been seen during the training.
Supervised learning are usually trained by adjusting the parameters θ = (θ1, · · · , θm)
for a chosen number m, such that a loss or cost function C decreases. This loss is
calculated from the accuracy of the predictions made on the training set. Then, we
perform a gradient descent to update each parameters θj with a learning rate λ > 0:

θi ← θi − λ
∂C
∂θi

(2.1)

In this thesis, supervised learning will be used as the framework for neural net-
works (see Section 2.3). Before that, in the next section, we will introduce unsuper-
vised machine learning and two specific algorithms.

Figure 2.1: Schematic differences between supervised and unsupervised machine
learning. Source: [QSW+20].

Note that, for each algorithm presented, notations for inputs, outputs, parame-
ters, matrices, and different numbers, may change but will remain consistent between
classical and quantum versions.

2.2 Unsupervised Learning

As shown in Fig.2.1, unsupervised learning deals only with unlabelled dataset D =
{xi}i∈[N ]. The algorithms must find by themselves the labels yi to assign at each
input xi. In the context of classification or segmentation, this automatic process
is often referred to as clustering. It aims to find clusters among data points, each
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cluster can then be converted as a certain class or label yi. Note that unsuper-
vised learning can also include generative tasks such as generative adversarial neu-
ral networks [GPAM+14], which have been studied as quantum algorithms as well
[DDK18, LW18].

The next two algorithms are the k-means algorithm and the spectral clustering
algorithm. They are closely linked, as the latter relies on the former. Given a distri-
bution of points in a vector space, their goal is to identify clusters among them and
further classify new points. This problem is known to be NP-complete [Vat09] (see
Section 1.1). Both algorithms are iterative, non deterministic algorithms, or heuris-
tic, that solve this problem with good accuracy on simple cases. k-means clustering
has a complexity of O(N) per iteration, where N is the number of points, but suffers
from poor flexibility and requires well-shaped datasets. Spectral clustering however
uses properties of graph theory to distinguish complex data, at the cost of a higher
complexity of O(N3) per iteration. This can be seen in simple examples showed in
Fig.2.2.

Figure 2.2: A comparison between k-means and spectral clustering on different types
of toy datasets. We can see that spectral clustering distinguishes nested datasets
with more accuracy, but is unfortunately slower. Source: Scikit Learn [PVG+11].

2.2.1 k-means Clustering

The k-means algorithm was introduced in 1982 [Llo82], and is extensively used for
unsupervised problems. The inputs to k-means algorithm are vectors vi ∈ Rd for
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i ∈ [N ]. These points must be partitioned in k subsets according to a similarity
measure, which in k-means is the Euclidean distance between points. The output
of the k-means algorithm is a list of k cluster centers, which are called centroids.

The algorithm starts by selecting k initial centroids randomly or using efficient
heuristics like the k-means++ [AV07]. It then alternates between two steps: (i) Each
data point is assigned the label of the closest centroid. (ii) Each centroid is updated
to be the average of the data points assigned to the corresponding cluster. These
two steps are repeated until convergence, that is until the change in the centroids
during one iteration is sufficiently small.

Figure 2.3: 3D representation of the k-means clustering applied on the IRIS dataset
of 3 types of flowers. Source: Wikipedia.

More precisely, we are given a dataset V of vectors vi ∈ Rd for i ∈ [N ]. At
step t, we denote the k clusters by the sets Ct

j for j ∈ [k], and each corresponding
centroid by the vector ctj. At each iteration, the data points vi are assigned to a
cluster Ct

j such that Ct
1 ∪ Ct

2 · · · ∪ Ct
K = V and Ct

i ∩ Ct
l = ∅ for i 6= l. Let d(vi, c

t
j)

be the Euclidean distance between vectors vi and ctj. The first step of the algorithm
assigns each vi a label `(vi)

t corresponding to the closest centroid, that is

`(vi)
t = argminj∈[k](d(vi, c

t
j)) (2.2)

The centroids are then updated, ct+1
j = 1

|Ctj |
∑

i∈Ctj
vi, so that the new centroid is the

average of all points that have been assigned to the cluster in this iteration. We say
that we have converged if for a small threshold τ we have

1

k

k∑
j=1

d(ctj, c
t−1
j ) 6 τ (2.3)

The loss function that this algorithm aims to minimize is the RSS (residual sums of
squares), the sum of the squared distances between points and the centroid of their
cluster.

RSS :=
∑
j∈[k]

∑
i∈Cj

d(cj, vi)
2 (2.4)
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The RSS decreases at each iteration of the k-means algorithm, the algorithm there-
fore converges to a local minimum for the RSS. The number of iterations T for
convergence depends on the data and the number of clusters. A single iteration has
complexity of O(kNd) since the N vectors of dimension d have to be compared to
each of the k centroids.

The algorithm can be super-polynomial in the worst case (the number of iter-

ations is 2ω(
√
N) [AV06]), but the number of iterations is usually small in practice.

The k-means algorithm with a suitable heuristic like k-means++ to initialize the
centroids finds a clustering such that the value for the RSS objective function is
within a multiplicative O(logN) factor of the minimum value [AV07].

In Section 8.1.2, we will introduce a slightly different version of the algorithm,
named δ-k-means, which includes some noise and randomness to be fairly compara-
ble to the quantum algorithm q-means presented in Section 8.2.

2.2.2 Spectral Clustering

A summary of all variables along with their definition is given in Chapter 9, Table
9.1.

Notations and Definitions

Let S ∈ RN×d be the input of our clustering task. S is the data matrix composed
of N vectors si ∈ Rd, for i ∈ [N ]. The spectral clustering method uses a graph
derived from the data S, where similar points are connected. We define the distance
between two points by dij = ‖si − sj‖.

We consider the undirected graph for which each of the N nodes corresponds to
a data point. The value of the edge connecting two nodes i and j is 1 if the two
nodes are connected and 0 otherwise. More generally we will denote by aij ∈ {0, 1}
the value of this edge. By convention we have aii = 0. We define the Adjacency
matrix A ∈ RN×N as the symmetric matrix with elements aij.

Figure 2.4: Example of the Adjacency, Incidence, and Laplacian matrices of a N=4
nodes graph.

We will use the following construction rule for the graph: the value of an edge
between two points si and sj is equal to 1 if their distance satisfies dij ≤ dmin and 0
otherwise, for a given threshold dmin > 0. This choice has been made for simplicity
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and to take into account constraints from quantum circuits that will be detailed later.

The Incidence matrix B is another way of representing the graph. Each row
of B represents a node whereas a column represents a possible edge. An element
of B indicates if an edge is incident to a node. B is not symmetric and has size
N × N(N−1)

2
. We index the elements of B by three numbers Bi,(p,q) where i is the

node and (p, q) represents the edge connecting the nodes p and q ordered so that
p < q. Even though the graph is undirected, the values of B must follow an oriented
convention. Therefore the rule for constructing B is the following:

Bi,(p,q) =


apq if i = p

−apq if i = q

0 if i /∈ {p, q}
(2.5)

We introduce the normalized incidence matrix B, with elements defined by

Bi,(p,q) =
Bi,(p,q)
‖Bi‖ , where Bi is the ith row of B. Therefore each row Bi has unit

norm.
The Laplacian matrix is defined by L = BBT . We introduce the normalized

Laplacian matrix as L = BBT . It inherits the properties of the Laplacian matrix
and will be used for classification. Note that the usual definition L = D−

1
2LD−

1
2 ,

with D the Degree matrix, coincides if the edges are either 0 or 1.
L is a symmetric and positive semidefinite matrix in RN×N . The n eigenvalues

of L are real and positive. We denote them {λ1, · · · , λN}, and their corresponding
eigenvectors are {u1, · · · , uN}. The eigenvalues are ordered such that λ1 ≤ λ2 ≤
· · · ≤ λN . For a given integer k ∈ [N ], we will denote by L̃(k) the projection of L on
its k lowest eigenvalues.

Since L = BBT , the N singular values λBj of B are such that λj = (λBj )2. Indeed,
using the singular value decomposition (SVD), there exist two orthonormal matri-
ces U and V and the diagonal matrix Σ ∈ RN×N with elements (λB1 , · · · , λBN), such
that B = UΣV T . Therefore L = UΣ2UT , and the eigenvectors uj of L are the left
singular vectors of B.

In Chapter 9, to ensure a better running time for the quantum algorithm, we
will slightly modify the incidence matrix B by replacing the “0” elements with a
small parameter εB > 0. We will see in the experiments that it does not affect the
accuracy of the clustering.

Partitioning the Graph into k Clusters

Once the graph’s normalized incidence matrix B is computed, we can calculate its
normalized Laplacian and find its eigenvalues and eigenvectors.

Let L̃(k) ∈ RN×k be the projected normalized Laplacian matrix on its k lowest
eigenvectors, i.e. The jth column of L̃(k) is uj, the jth eigenvector of L, for j =
1, · · · , k. The method developed by [NJW02] consists in applying the clustering

algorithm k-means (see previous Section 2.2.1) with input the N rows L̃(k)
i of the

projected normalized Laplacian L̃(k). Each row L̃(k)
i is a vector of dimension k,

corresponding to an input vector si in the initial input space.
With this procedure, the k-means clustering takes place in a low-dimensional

and appropriate space, ensuring an efficient clustering (see Fig.2.5). The output of
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the algorithm could be the label of each point (for example the label corresponding
to the nearest centroid) or the k centroids in the spectral space.

Figure 2.5: Example of the spectral clustering algorithm on two nested half moons.
(left) The two classes of N points in two dimensions. (center) The similarity graph.
(right) The points projected into the space spanned by the first two eigenvectors
of the Laplacian matrix of the graph. In the spectral space (right) we see that the
point are easy to separate.

Classical Running Time

The classical algorithm can be decomposed into several steps: the distance calcula-
tion between points runs in time O(dN2), and the creation of the Laplacian matrix
in O(Nm) where m is the number of edges in the graph, which is O(N2) in the
worst case. Then, the extraction of eigenvalue and eigenvectors of the Laplacian
matrix is done in O(N3). Finally, the k-means clustering runs in O(Nk2). The
dominant term is in practice therefore O(N3) (we assume we have more points than
dimensions), and the impractical running time of spectral clustering is due to the
need for diagonalization of the Laplacian matrix [LLKL11].

Alternative Classical Algorithms

Randomness naturally occurs during our quantum spectral clustering algorithm (see
Chapter 9), and one may wonder for fair comparison if an alternative classical al-
gorithm can efficiently spectral clustering with noisy or sampled methods as well.
To circumvent the prohibitive running time of the classical algorithm, several ap-
proximations have indeed been proposed on different steps. A recent review of these
techniques [TL20] concludes that despite many efforts, methods with provable scal-
ability are found limited or worse in practice, whereas other good empirical methods
have no provable guarantees.

Some methods aim to build the similarity graph using sampling [CJK+13, RR08,
LLKL11]. They present limitations [WGM19] and act by sampling partially the
input data, which is not the case of our quantum algorithm. Their running time is
often proportional to O(Nm) or O(Nm2) where m is the number of edges, which is
O(N2) in the worst case. If one of these methods was empirically efficient, we could
actually adapt it to our quantum algorithm, by first applying a similar sparsification
and then using it as input in our quantum algorithm. Recently such techniques have
been done in the quantum setting [AdW20].

At the next step, it is possible to use Lanczos methods to compute the k lowest
eigenvalues and eigenvectors, with a running time of O(N2) for a fully connected
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graph. However, they seem to suffer from poor efficiency in practice since they
strongly rely on the distribution of the eigenvalues and can require many iterations
that would ruin the advantage [BDD+00]. Note that even with an effective applica-
tion of this method, our quantum algorithm would still be advantageous. We can
also cite the use of power methods [BKG15] to solve clustering using approximated
eigenvectors.

Some methods try to improve the clustering step itself, by modifying the k-means
algorithm [HD15]. One should compare these methods directly with the quantum
k-means [KLLP19] (Chapter 8). In most cases, such variations carry over to the
quantum case as well. Finally, other attempts use solely preprocessing techniques
[YHJ09] on the initial dataset. Again, one could simply use them before the quantum
algorithm to similarly improve its practical efficiency.

2.3 Neural Networks

Artificial neural networks may be the most impressive advance in contemporary
computing. They were imagined to roughly mimic neuron connectivity in the brain.
While being far from complete, this imitation already allowed for impressive ad-
vances in machine learning. Today, deep learning has become a state-of-the-art
standard in most cases, be it speech recognition, image or video processing, disease
detection, etc.

The first attempts to create artificial neural networks go back to the mid XXth

century, but the key paradigm for training them efficiently was developed in the
1980s with the backpropagation algorithm [RHW86, LBBH98]. Neural networks
had to wait until the late 2000s to achieve their worldwide success, thanks to the
impressive development of GPUs (Graphics Processing Units) allowing fast imple-
mentation of linear algebra routines.

To continue to improve, today’s architectures are becoming increasingly com-
plex, deep, and resource-intensive. Training deep networks requires large clusters of
GPUs and an excessive amount of time and energy.

For this thesis, we will only review few basic types of neural networks for which
quantum algorithms are proposed in Part IV. Emphasis is made on mathematical
formalism which will be helpful for the quantum versions of these algorithms. Fully
connected neural networks (FCNN) are the original and most basic ones, followed
by the backpropagation algorithm, necessary to train all neural networks. We then
outline the recent proposal of orthogonal neural networks (OrthoNN). OrthoNNs
show special abilities for learning, but that is most interest is their orthogonality
constraint that arises naturally in quantum computing. We then present the widely
used convolutional neural networks (CNN) which are specialized in signal or image
processing. Finally, we detail the backpropagation algorithm in the context of CNN.

2.3.1 Fully Connected Neural Networks

A neural network usually consists of layers of neurons or nodes, each being a numer-
ical value. Adjacent layers are connected through weights. A network is said to be
fully connected if all nodes of a layer are connected to all nodes of the next layer,
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as in Fig.2.6. The input layer has as many nodes as the input vector has dimen-
sions. The output layer size is also the dimension of the output. A key feature of
neural networks, that gives them the expressive power and universal abilities, is the
presence of non-linear activation functions at each layer.

Figure 2.6: A fully connected neural network for 4-dimensional inputs, 2 classes
outputs, and two hidden layers. Each line represents a tunable weight.

Layers are numbered ` = 1, · · · , L, from input to output. Between two layers
` and ` + 1, respectively of size n` and n`+1, the weights can be embedded in a
matrix W ` ∈ Rn`+1×n` . For instance, the first column of W ` will correspond to
the weights connecting each node of layer ` to the first node of layer ` + 1, that is
(w00, w10, · · · , wn`+10).

We denote by a` ∈ Rn` the vector of layer `. The feedforward procedure consists
of creating the next layer a`+1 by first doing a matrix product with the weight
matrix, and then applying a non-linear function σ. Usually, an extra parameter
b` called bias is added to the layer to ensure flexibility to the model. Note that
this bias can be discarded in the formalism, as it is equivalent to adding an extra
dimension to the value 1 at each layer.

z`+1 = W `a` + b` (2.6)

a`+1 = σ(z`+1) (2.7)

This procedure is continued until we obtain the last layer aL. As we will see in
the rest of this thesis, it is important to notice that Eq.(2.6) can be decomposed as
several inner products between the input vector a` and the rows of W `.

The non-linearity σ is usually taken to be the sigmoid function, which has the
property of pushing positive and negative values respectively towards +1 and 0.

σ : x 7→ 1

1 + e−x
(2.8)

It follows that the running time of a single fully connected is dominated by the
matrix-vector multiplication at its core, which takes O(n`n`+1), or O(n2) in the case
of square layers.

2.3.2 Backpropagation

The backpropagation algorithm in a fully connected neural network is a well know
and efficient procedure to update the weight matrix at each layer [HN92, Roj96].
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Figure 2.7: The sigmoid function. Source: Wikipedia.

After the last layer aL, one can define the cost function C that compares the
output to the ground truth during the supervised training. The goal is to calculate
the gradient of C with respect to each weight and bias, namely ∂C

∂W ` and ∂C
∂b`

. In
the backpropagation, we start by calculating these gradients for the last layer, then
propagate back to the first layer.

We will require to obtain the error vector at layer ` defined by ∆` = ∂C
∂z`

. One
can show the backward recursive relation

∆` = (W `+1)T ·∆`+1 � σ′(z`), (2.9)

where � symbolizes the Hadamard product, or entry-wise multiplication. If
using the sigmoid function, we also have the property σ′(x) = σ(x)(1 − σ(x)).
Note that the previous computation requires simply to apply the layer (i.e. apply
matrix multiplication) in reverse. We can then show that each element of the weight
gradient matrix at layer ` is given by ∂C

∂W `
jk

= ∆`
j · a`−1

k . Similarly, the gradient with

respect to the biases is easily defined as ∂C
∂b`j

= ∆`
j.

Once these gradients are computed, we update the parameters using the gradient
descent rule, with learning rate λ :

W `
jk ← W `

jk − λ
∂C
∂W `

jk

; b`j ← b`j − λ
∂C
∂b`j

(2.10)

The task is repeated until the cost function stops decreasing, indicating a local
minimum has been reached. We also refer as stochastic gradient descent (SGD)
when the loss and its gradients are estimated with one or few samples only, and
not on the entire dataset. SGD allows for faster iterations in big datasets, and the
imperfect gradient estimations along with good learning rate can help escape from
local minima.

The complexity of a single gradient descent update of one layer only is dominated
by the time to compute all gradients. Since these are made using a similar matrix-
vector multiplication as in the forward pass (see Eq.(2.9)), the complexity is also
O(n`n`+1) for a layer with input size n` and output size n`+1. This becomes O(n2)
for a square layer.
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Figure 2.8: Representation of gradient descent on two-dimensional parameter space.
The z-axis is the cost function. Source: Matlab.

2.3.3 Orthogonal Neural Networks

The idea behind Orthogonal Neural Networks (OrthoNNs) is to add a constraint
to the weight matrices corresponding to the layers of a neural network. Imposing
orthogonality to these matrices has theoretical and practical benefits in the gen-
eralization error [JLW+19]. Orthogonality ensures a low weight redundancy and
preserves the magnitude of the weight matrix’s eigenvalues to avoid vanishing gradi-
ents. In terms of complexity, for a single layer, the feedforward pass of an OrthoNN
is simply a matrix multiplication, hence has a running time of O(n2) if n× n is the
size of the orthogonal matrix (input and output layers of size n). It is also interest-
ing to note that OrthoNNs have been generalized to convolutional neural networks
[WCCY20].

The main drawback of OrthoNNs is to preserve the orthogonality of the ma-
trices while updating them during gradient descent. Several algorithms have been
proposed to this end [WCCY20, BCW18, LCMR19], but they all point that pure
orthogonality is computationally hard to conserve. Therefore, previous works allow
for approximations: strict orthogonality is no longer required, and the matrices are
often pushed toward orthogonality using regularization techniques during weights
update.

We present two algorithms from [JLW+19] for updating orthogonal matrices.
The first algorithm is an approximated one, called Singular Value Bounding

(SVB). It starts by applying the usual gradient descent update on the matrix, there-
fore making it not orthogonal anymore. Then, the singular values of the new matrix
are extracted using Singular Value Decomposition (SVD), their values are manually
pushed to be close to 1, and the matrix is recomposed hence enforcing orthogonal-
ity. This method shows less advantage on practical experiments [JLW+19]. It has
a complexity of O(n3) due to the SVD, which in practice is better than the next
algorithm. Note that this running time is still longer than O(n2), the running time
to perform standard gradient descent.

The second algorithm can be considered perfect since it ensures strict orthogonal-
ity by performing the gradient descent in the manifold of orthogonal matrices, called
the Stiefel Manifold. In practice [JLW+19], this method showed advantageous clas-
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sification results on standard datasets. This algorithm requires O(n3) operations,
but is very prohibitive in practice. We give a very informal step-by-step detail of
this algorithm:

1. Compute the gradient G of the weight matrix W .

2. Project the gradient matrix G in the tangent space, (The space tangent to the
manifold at this point W ): multiply G by some other matrices based on W :

(I −WW T )G+
1

2
W (W TG−GTW ) (2.11)

This requires several matrix-matrix multiplications. In the case of square n×n
matrices, each has complexity O(n3). the result of this projection is called the
manifold gradient Ω.

3. update W ′ = W − ηΩ, where η is the chosen learning rate.

4. Perform a retraction from the tangent space to the manifold. To do so we mul-
tiply W ′ by Q factor of the QR decomposition, obtained using Gram Schmidt
orthonormalization, which has complexity O(2n3).

2.3.4 Convolutional Neural Networks

Convolutional neural networks (CNN) are a specific type of neural networks, de-
signed in particular for image processing or time series. They use the convolution
product as the main procedure for each layer. They were originally developed by
Yann LeCun and others [LBBH98] in the 1980s. They are now the most widely used
algorithms for image recognition tasks [KSH12]. Their capacities have been used in
various domains such as autonomous vision [BCC+16] or gravitational wave detec-
tion [GH18]. Despite these successes, CNNs suffer from a computational bottleneck
that makes deep CNNs resource expensive in practice.

In the following, we will focus on image processing with a tensor framework for
all elements of the network. Our goal is to explicitly describe the CNN procedures
in a form that can be translated in the context of quantum algorithms. As a reg-
ular neural network, a CNN should learn how to classify any input, in our case
images. The training consists of optimizing parameters learned on the inputs and
their corresponding labels.

Tensor representation

Images, or more generally layers of the network, can be seen as tensors. A tensor is
a generalization of a matrix to higher dimensions. For instance, an image of height
H and width W can be seen as a matrix in RH×W , where every pixel is a greyscale
value between 0 and 255 (8 bit). However, the three channels of color (RGB: Red
Green Blue) must be taken into account, by stacking three times the matrix for each
color. The whole image is then seen as a 3 dimensional tensor in RH×W×D where
D is the number of channels. We will see that the Convolution Product in the
CNN can be expressed between 3-tensors (input) and 4-tensors (convolution filters
or kernels), the output being a 3-tensor of different dimensions (spatial size and
number of channels).
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Figure 2.9: RGB decomposition, a colored image is a 3-tensor.

Architecture

A CNN is composed of 4 main procedures, compiled and repeated in any order:
Convolution layers, most often followed by an Activation Function, Pooling Layers,
and some Fully Connected layers at the end. We will denote by ` the current layer.

Convolution Layer : The `th layer is convolved by a set of filters called kernels.
The output of this operation is the (`+ 1)th layer. A convolution by a single kernel
can be seen as a feature detector, that will screen over all regions of the input. If
the feature represented by the kernel, for instance a vertical edge, is present in some
part of the input, there will be a high value at the corresponding position of the
output. The output is called the feature map of this convolution.

Activation Function : As in regular neural networks, we insert some non-
linearities also called activation functions. These are mandatory for a neural network
to be able to learn any function. In the case of a CNN, each convolution is often
followed by a Rectified Linear Unit function, or ReLu. This is a simple function
that puts all negative values of the output to zero, and lets the positive values as
they are.

Pooling Layer : This downsampling technique reduces the dimensionality of the
layer, in order to improve the computation. Moreover, it gives the CNN the ability
to learn a representation invariant to small translations. Most of the time, we apply
a Maximum Pooling or an Average Pooling. The first one consists of replacing a
subregion of P ×P elements only by the one with the maximum value. The second
does the same by averaging all values. Recall that the value of a pixel corresponds
to how much a particular feature was present in the previous convolution layer.

Fully Connected Layer : After a certain number of convolution layers, the
input has been sufficiently processed so that we can apply a fully connected network.
Weights connect each input to each output, where inputs are all elements of the
previous layer. The last layer should have one node per possible label. Each node
value can be interpreted as the probability of the initial image to belonging to the
corresponding class.

Convolution Product as a Tensor Operation

Most of the following mathematical formulations have been very well detailed in
[Wu17]. At layer `, we consider the convolution of a multiple channels image, seen
as a 3-tensor X` ∈ RH`×W `×D` . Let’s consider a single kernel in RH×W×D` . Note
that its third dimension must match the number of channels of the input, as in
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Figure 2.10: Representation of a CNN’s layers and operations. Source:
Mathworks

Fig.2.11. The kernel passes over all possible regions of the input and outputs a
value for each region, stored in the corresponding element of the output. Therefore
the output is 2 dimensional, in RH`+1×W `+1

.

Figure 2.11: Convolution of a 3-tensor input (Left) by one 3-tensor
kernel (Center). The ouput (Right) is a matrix for which each entry is a
inner product between the kernel and the corresponding overlapping
region of the input.

In a CNN, the most general case is to apply several convolution products to the
input, each one with a different 3-tensor kernel. Let’s consider an input convolved
by D`+1 kernels. We can globally see this process as a whole, represented by one
4-tensor kernel K` ∈ RH×W×D`×D`+1

. As D`+1 convolutions are applied, there are
D`+1 outputs of 2 dimensions, equivalent to a 3-tensor X`+1 ∈ RH`+1×W `+1×D`+1

This tensor convention explains why Fig.2.10 is represented with layers as vol-
umes of different shapes. Indeed we can see in Fig.2.12 that the output’s dimensions
are modified given the following rule:{

H`+1 = H` −H + 1

W `+1 = W ` −W + 1
(2.12)

We omit to detail the use of Padding and Stride, two parameters that control
how the kernel moves through the input, but these can easily be incorporated in the
algorithms.
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Figure 2.12: Convolutions of the 3-tensor input X` (Left) by one
4-tensor kernel K` (Center). Each channel of the output X`+1 (Right)
corresponds to the output matrix of the convolution with one of the
3-tensor kernel.

An element of X` is determined by 3 indices (i`, j`, d`), while an element of the
kernel K` is determined by 4 indices (i, j, d, d′). For an element of X`+1 we use 3
indices (i`+1, j`+1, d`+1). We can express the value of each element of the output
X`+1 with the relation

X`+1
i`+1,j`+1,d`+1 =

H∑
i=0

W∑
j=0

D`∑
d=0

K`
i,j,d,d`+1X

`
i`+1+i,j`+1+j,d (2.13)

Matrix Expression

It is possible to reformulate Eq.(2.13) as a matrix product. For this we have to re-
shape our objects. We expand the input X` into a matrix A` ∈ R(H`+1W `+1)×(HWD`).
Each row of A` is a vectorized version of a subregion of X`. This subregion is a
volume of the same size as a single kernel volume H × W × D`. Hence each of
the H`+1 ×W `+1 rows of A` is used for creating one value in X`+1. Given such a
subregion of X`, the rule for creating the row of A` is to stack, channel by channel,
a column first vectorized form of each matrix. Then, we reshape the kernel tensor
K` into a matrix F ` ∈ R(HWD`)×D`+1

, such that each column of F ` is a column first
vectorized version of one of the D`+1 kernels.

As proved in [Wu17], the convolution operation X` ∗K` = X`+1 is equivalent to
the following matrix multiplication

A`F ` = Y `+1, (2.14)

where each column of Y `+1 ∈ R(H`+1W `+1)×D`+1
is a column first vectorized form of

one of the D`+1 channels of X`+1. Note that an element Y `+1
p,q is the inner product

between the pth row of A` and the qth column of F `. It is then simple to convert
Y `+1 into X`+1 The indices relation between the elements Y `+1

p,q and X`+1
i`+1,j`+1,d`+1 is
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Figure 2.13: A convolution product is equivalent to a matrix-matrix
multiplication.

given by: 
d`+1 = q

j`+1 = b p
H`+1 c

i`+1 = p−H`+1b p
H`+1 c

(2.15)

A summary of all variables along with their meaning and dimensions is given in
Chapter 11, Table 11.1.

Finally, we can give a running time for one single convolutional layer. From all
the routines, the convolution product is the most costly and dominates the rest.
With an input tensor of size H`W `D` and D`+1 kernels of size HWD`, we produce
an output of size H`+1W `+1D`+1. We have seen that each pixel of the output was
created by applying an inner product between one kernel and a same-size part of
the input. Each output’s pixel is therefore created in O(HWD`), and the whole
convolution product takes:

O(H`+1W `+1D`+1 ·HWD`) (2.16)

We can summarize this complexity as:

O(output size · kernel size) (2.17)

2.3.5 Backpropagation for Convolutional Neural Networks

After each forward pass, the outcome is compared to the true labels and a suitable
loss function is computed. We can update our weights by gradient descent to mini-
mize this loss, and iterate. The main idea behind the backpropagation is to compute
the derivatives of the loss L, layer by layer, starting from the last one.
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At layer `, the derivatives needed to perform the gradient descent are ∂L
∂F `

and
∂L
∂Y `

. The first one represents the gradient of the final loss L with respect to each
kernel element, a matrix of values that we will use to update the kernel weights
F `
s,q. The second one is the gradient of L with respect to the layer itself and is only

needed to calculate the gradient ∂L
∂F `−1 at layer `− 1.

Convolution Product

We first consider a classical convolution layer without non-linearity or pooling. Thus
the output of layer ` is the same tensor as the input of layer `+ 1, namely X`+1 or
equivalently Y `+1. Assuming we know ∂L

∂X`+1 or equivalently ∂L
∂Y `+1 , both correspond-

ing to the derivatives of the (` + 1)th layer’s input, we will show how to calculate
∂L
∂F `

, the matrix of derivatives with respect to the elements of the previous kernel
matrix F `. This is the main goal to optimize the kernel’s weights.

The details of the following calculations can be found in [Wu17]. We will use the
notation vec(X) to represents the vectorized form of any tensor X.

Recall that A` is the matrix expansion of the tensor X`, whereas Y ` is a matrix

reshaping of X`. By applying the chain rule ∂L
∂vec(F `)T

= ∂L
∂vec(X`+1)T

∂vec(X`+1)
∂vec(F `)T

, we can

obtain (See [Wu17] for calculations details):

∂L
∂F `

= (A`)T
∂L

∂Y `+1
(2.18)

Eq.(2.18) shows that, to obtain the desired gradient, we can just perform a matrix-
matrix multiplication between the transposed layer itself (A`) and the gradient with
respect to the previous layer ( ∂L

∂Y `+1 ).
Eq.(2.18) explains also why we will need to calculate ∂L

∂Y `
in order to back-

propagate through layer ` − 1. To calculate it, we use the chain rule again for
∂L

∂vec(X`)T
= ∂L

∂vec(X`+1)T
∂vec(X`+1)
∂vec(X`)T

. Recall that a point in A`, indexed by the pair

(p, r), can correspond to several triplets (i`, j`, d`) in X`. We will use the notation
(p, r)↔ (i`, j`, d`) to express formally this relation. One can show that ∂L

∂Y `+1 (F `)T

is a matrix of same shape as A`, and that the chain rule leads to a simple relation
to calculate ∂L

∂Y `
(See [Wu17] for calculations details):[

∂L
∂X`

]
i`,j`,d`

=
∑

(p,r)↔(i`,j`,d`)

[
∂L

∂Y `+1
(F `)T

]
p,r

(2.19)

We have shown how to obtain the gradients with respect to the kernels F ` and
to the layer itself Y ` (or equivalently X`).

Non Linearity

The activation function has also an impact on the gradient. In the case of the ReLu,
we should only cancel the gradient for points with negative values. For points with
a positive value, the derivatives remain the same since the function is the identity.
A formal relation can be given by

[
∂L

∂X`+1

]
i`+1,j`+1,d`+1

=


[

∂L
∂f(X`+1)

]
i`+1,j`+1,d`+1

if X`+1
i`+1,j`+1,d`+1 ≥ 0

0 otherwise
(2.20)
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Pooling

If we take into account the pooling operation, we must change some of the gradients.
Indeed, a pixel that hasn’t been selected during pooling has no impact on the final
loss, thus should have a gradient equal to 0. We will focus on the case of Max
Pooling (Average Pooling relies on similar idea). To state a formal relation, we
will use the notations of Section 11.2.3: an element in the output of the layer, the
tensor f(X`+1), is located by the triplet (i`+1, j`+1, d`+1). The tensor after pooling
is denoted by X̃`+1 and its points are located by the triplet (̃i`+1, j̃`+1, d̃`+1). During
backpropagation, after the calculation of ∂L

∂X̃`+1 , some of the derivatives of f(X`+1)
should be set to zero with the following rule:

[
∂L

∂f(X`+1)

]
i`+1,j`+1,d`+1

=


[

∂L
∂X̃`+1

]
ĩ`+1,j̃`+1,d̃`+1

if (i`+1, j`+1, d`+1) ∈ P

0 otherwise
(2.21)

where P is the set of indices selected during pooling.
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Chapter 3

Quantum Computing

”Où finit le télescope, le
microscope commence. Lequel
des deux a la vue la plus
grande? Choisissez.”

Victor Hugo
Les Misérables (1862)

3.1 Preliminaries in Quantum Computing

We introduce a basic and succinct quantum information background necessary for
this thesis. For a more detailed introduction we recommend [NC02, KLM+07,
DW19, Chi17].

3.1.1 Quantum Bits and Quantum Registers

The bit is the basic unit of classical information. It can be either in state 0 or 1.
Similarly, a quantum bit or qubit, is a quantum system that can be in state |0〉, |1〉
(the braket notation |·〉 is a reminder that the bit considered is a quantum system)
or in a superposition of both states

α |0〉+ β |1〉 (3.1)

The coefficients α, β ∈ C, named amplitudes, are such that |α|2 + |β|2 = 1. It is
also convenient to see this qubit as a unit norm, complex, vector of dimension two,
in the computational basis (see Fig.4.1a):

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
, α |0〉+ β |1〉 =

(
α
β

)
(3.2)

The amplitudes are linked to the probabilities of observing either 0 or 1 when
measuring the qubit, since

P (0) = |α|2, P (1) = |β|2. (3.3)

Before the measurement, any superposition is possible, which gives quantum
information special abilities in terms of computation. With n qubits, the 2n possible

46



CHAPTER 3. QUANTUM COMPUTING

binary combinations can exist simultaneously, each with a specific amplitude. For
instance we can consider an uniform distribution 1√

n

∑2n−1
i=0 |i〉 where |i〉 represents

the ith binary combination (e.g. |01 · · · 1001〉). Multiple qubits together are often
called a quantum register.

In its most general formulation, a quantum state with n qubits can be seen as a
vector in a complex Hilbert space of dimension 2n. This vector must be normalized
under `2-norm, to guarantee that the squared amplitudes sum to 1, to respect the
probabilities of measuring each possible state.

With two quantum states or quantum registers |p〉 and |q〉, the whole system is
written as a tensor product |p〉 ⊗ |q〉, often simplified as |p〉 |q〉 or |p, q〉.

3.1.2 Quantum Computation

To process qubits and therefore quantum registers, we use quantum gates. These
gates are unitary operators in the Hilbert space as they should map unit-norm
vectors to unit-norm vectors. Formally, we can see a quantum gate acting on n
qubits as a Hermitian matrix U ∈ C2n such that UU † = U †U = I, where U † is the
conjugate transpose of U .

There exist plenty of quantum logical gates. For a single qubit, living in a
complex 2-dimension space, it is worth mentioning first the Pauli matrices σx, σy,
and σz. They have core importance in quantum physics, and together with the
identity matrix, they form a basis for all single qubit quantum gates:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(3.4)

σx is often referred to as the NOT gate, also written X, that inverts |0〉 and
|1〉. The Hadamard gate, written H, which truly captures the nature of quantum
information processing:

H =
1√
2

(
1 1
1 −1

)
(3.5)

Indeed, we can see that H, applied to the computational basis, creates the uniform
quantum superposition:

H |0〉 =
1√
2

(
1 1
1 −1

)(
1
0

)
=

(
1√
2

1√
2

)
=

1√
2

(|0〉+ |1〉) (3.6)

H |1〉 =
1√
2

(
1 1
1 −1

)(
0
1

)
=

(
1√
2

− 1√
2

)
=

1√
2

(|0〉 − |1〉) (3.7)

Rotation gates rotate a qubit vector inside the Bloch sphere (see Fig.4.1a), each
on a respective plan. These gates take a real value angle as parameter:

Rx(θ) =

(
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
, Ry(θ) =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
,

Rz(θ) =

(
1 0
0 eiθ

)
(3.8)
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Multiple qubit gates exist, such as the Controlled-NOT, or CNOT , that applies
a NOT gate on a target qubit conditioned on the state of a control qubit. As well,
the Controlled-Z or CZ gate, flips the phase of the amplitude of the target qubit
(σz), if the controlled qubit is in state |1〉:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (3.9)

The same controlled gates exist for Rotations and other gates. They can be
controlled by more qubits as well. If these gates are not native to a quantum device,
they often come at the cost of being decomposed in practice into other gates, adding
some depth to the circuit.

An other fundamental and useful gate is the SWAP gate, that swaps two qubits,
such that SWAP |p〉 |q〉 = |q〉 |p〉:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (3.10)

The main advantage of quantum gates is their ability to be applied to a super-
position of inputs. Indeed, given a gate U on a quantum state |x〉, such that:

U |x〉 7→ |f(x)〉 (3.11)

we can apply it to all possible combinations of |x〉 at once:

U

(
1

C

∑
x

|x〉

)
7→ 1

C

∑
x

|f(x)〉 (3.12)

where C is is a normalization factor to respect the fact that quantum states must
be unit vectors.

3.1.3 Quantum Measurements

Before any intervention, quantum states evolve according to unitary transforma-
tions. But there is a moment where one needs to get a result in the classical world.
Measuring a quantum state is an action that transfers some information from quan-
tum to classical, but the output can remain quantum if the measurement was made
on a part of the state. Measuring a quantum state |φ〉 can often result in differ-
ent outcomes indexed m, symbolized by the set of measurement operators {Mm}.
These operators act on the quantum Hilbert space and the probability of obtaining
the outcome m is given by:

p(m) = 〈φ|M †
mMm |φ〉 (3.13)

and the quantum state of the system after the measurement is:

Mm |φ〉√
〈φ|M †

mMm |φ〉
(3.14)
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The denominator of this fraction appears to renormalize the output state. A
complete set of measurement operators is such that

∑
mM

†
mMm = I, where I is the

identity operator.
The most common measurement operators are the ones in the computational

basis, where we want to know in which computational state qubits are. For a single
qubit and its basis {|0〉,|1〉}, we write M0 = |0〉 〈0|, M1 = |1〉 〈1|, and the associated
probability is the respective square of the amplitude.

More generally one can define POVM (Positive Operator Valued Measure) and
extend their applications to mixtures of quantum states known as density matrices.

And in practice, we most commonly use Projective measurements, which are
derived from observables. An Hermitian measurement operator M can be decom-
posed in m projections Pm. Each Pm is a projection into an eigenspace of M with
eigenvalue m. The projectors are orthogonal between each other, complete, positive
definite, and Hermitian.

M =
∑
m

mPm (3.15)

Since for a projector P we have P = P † and P 2 = P , the probability of obtaining
the state m is now given by:

p(m) = 〈φ|Pm |φ〉 (3.16)

and the remaining state is:

Pm |φ〉√
〈φ|Pm |φ〉

(3.17)

Notably, the average outcome of a projective measurement M is the expectation
value:

E(M) =
∑
m

mp(m)

=
∑
m

m 〈φ|Pm |φ〉

= 〈φ| (
∑
m

mPm) |φ〉

= 〈φ|M |φ〉

(3.18)

Finally, we will use the following facts:

• When asking the question “ what is the probability of measuring |ψ〉 from
quantum state |φ〉?” we use p(ψ) = |〈φ|ψ〉|2. To prove this, we use the projec-
tor |ψ〉 〈ψ|.

• Two quantum states |φ〉 and |ψ〉 are said orthogonal is 〈φ|ψ〉 = 0.

• For tensor product of quantum states, linearity prevails: (〈φ| ⊗ 〈φ′|)(|ψ〉 ⊗
|ψ′〉) = 〈φ|ψ〉〈φ′|ψ′〉. We wan write |ψ⊥〉 to denote a quantum state orthogonal
to |ψ〉.
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• We will often have state in the form |φ〉 = α |y〉 |0〉+β |y⊥〉 |1〉. The probability
of measuring |0〉 on the last qubit is then given by:

〈φ| (|0〉 〈0|) |φ〉 = α2 (3.19)

and the remaining state after the measurement is simply |y〉.

3.2 Quantum Algorithms

Joined together, quantum gates form quantum circuits, also called quantum algo-
rithms, and are often represented as in Fig.3.1. The complexity of a quantum circuit
can be expressed as the relationship between its depth and the size of the problem.
The complexity also takes into account the number of time the circuit must be run
to obtain the desired output.

Figure 3.1: Quantum circuit for the teleportation of any quantum state |ψ〉
[BBC+93]. Each wire corresponds to one or several qubits. The input on the left is
processed through the circuit. The circuit uses Hadamard, CNOT, Pauli σx and σz
gates. It also requires measurements and classical information flow.

We already presented the first meaningful quantum algorithms in Section 1.1.
Among them, the Deutsch-Josza algorithm [DJ92], the Bernstein-Vazirani algorithm
[BV97], Simon’s algorithm [Sim97], and the famous Grover [Gro96] and Shor’s al-
gorithms [Sho99]. In this section, we will introduce a few more quantum algorithms
that will be used as subroutines in this thesis. The algorithms are presented in
the form of theorems specifying the error and running time guarantees. We omit
the proof of the theorems of this section (see [NC02, KLM+07, DW19, Chi17] for
details).

3.2.1 Phase Estimation

Phase estimation [Kit95] is an important quantum algorithm that creates the link
with linear algebra. It is also a subroutine used in Shor’s algorithm [Sho99], the HHL
algorithm[HHL09], and amplitude estimation (see Section 3.2.2). Phase estimation
is itself based on the Quantum Fourier Transform (QFT) algorithm. The QFT
provides an exponential speedup in the task of mapping a vector, encoded as a
quantum state, into the Fourier space.

Basically, the goal of phase estimation is to extract the eigenvalues of a matrix
U . In fact, this matrix must be a quantum circuit U , therefore it should be an
unitary operator. We denote its eigenvectors by |uj〉 and eigenvalues eiθj , hence
U |uj〉 = eiθj |uj〉. Given a eigenvector and an extra register |uj〉 |0〉 as input, the
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algorithm should return |uj〉 |θj〉. Since the eigenvectors compose a basis, any state
|ψ〉 can be written as |ψ〉 =

∑
j∈[n] αj |uj〉. Therefore, the interesting feature of

phase estimation is to apply in superposition. the circuit is shown in Fig.3.2.

Figure 3.2: The phase estimation circuit for a unitary U and any input |ψ〉, with
measurements at the end. F−1

n is the inverse QFT. Source: Wikipedia

Theorem 3.1: Phase Estimation

Let U be a unitary operator than runs in time T (U), with eigenvectors |uj〉
and eigenvalues eiθj for θj ∈ [−π, π], for j ∈ [N ]. For a precision parameter
ε > 0, there exists a quantum algorithm that runs in time O(T (U) log(N)/ε)
and with probability 1− 1/poly(N) performs the mapping

|ψ〉 =
∑
j∈[N ]

αj |uj〉 |0〉 7→
∑
j∈[N ]

αj |uj〉 |θj〉 (3.20)

where θj is approximating θj with guarantee |θj − θj| ≤ ε for all j ∈ [N ].

One can decide to measure the result at the end to recover a classical description
of the eigenvalues, or to leave the output as a quantum state for further processing.
Note however that this circuit requires to apply sequentially the unitary U in a
controlled fashion. For certain circuits U , this can become a costly operation.

3.2.2 Amplitude Amplification and Amplitude Estimation

As stated before, one of the major difficulties in quantum computing is to manipulate
the amplitudes of the quantum states. These amplitudes often carry important
information, in particular in quantum linear algebra (see Chapter 4). It also happens
that a part of the quantum superposition is considered as “garbage” and that one
wants to discard it. Finally, one may need to recover a classical value of a target
amplitude.

Following the Grover algorithm [Gro96], a generalisation was proposed in [BH97]
and then [BHMT02] to amplify a target amplitude of a quantum state. This has
proven to be very useful in many cases. It can also output an amplitude or writing
it in a quantum register, and become very powerful when applied in superposition.
As Grover algorithm, these algorithms usually provides a quadratic speedup (see
Table 3.1).
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Theorem 3.2: Amplitude Amplification

Given the ability to implement a quantum unitary U and U−1, such that
U |0〉 = sin(θ) |x, 1〉 + cos(θ) |G, 0〉, where |G〉 is a garbage state, then we

can instead create the state |x〉 in time Õ( T (U)
sin(θ)

), where T (U) is the time to

implement U and U−1.

Theorem 3.3: Amplitude Estimation (1)

Given the ability to implement a quantum unitary U and U−1, such that
U |0〉 = sin(θ) |x, 1〉 + cos(θ) |G, 0〉, where |G〉 is a garbage state, then sin(θ)

can be estimated to multiplicative error ε > 0 in time Õ( T (U)
ε sin(θ)

), or to additive

error in Õ(T (U)
ε

), where T (U) is the time to implement U and U−1.

In this thesis, we will also use a specific version of this algorithm [Gro05, YLC14]
where the amplitudes don’t have to be known in advance to be estimated.

Theorem 3.4: Amplitude Estimation (2)

Given the ability to implement a quantum unitary U and U−1, such that
U : |0〉 → √p |y, 1〉+

√
1− p |G, 0〉 where |G〉 is a garbage state, then for any

positive integer P , the amplitude estimation algorithm outputs p̃ (0 ≤ p̃ ≤ 1)
such that

|p̃− p| ≤ 2π

√
p(1− p)
P

+
( π
P

)2

(3.21)

with probability at least 8/π2. It uses exactly P iterations of the algorithm
U and U−1. If p = 0 then p̃ = 0 with certainty, and if p = 1 and P is even,
then p̃ = 1 with certainty.

Proper proofs of these theorems are given in [KLM+07]. Briefly, let U be the
unitary that creates the state

√
p |y, 1〉 +

√
1− p |G, 0〉. Amplitude amplification

or estimation is phase estimation (Section 3.2.1) applied on a the unitary Q =
U−1O⊥UOf where O⊥ and Of are the Grover phase shift operators. One can show
that the eigenvalues of the operator Q which are estimated by phase estimation are
linked to the desired amplitudes.

It is also possible to obtain the amplitude as a quantum state, written in bi-
nary with some precision ε, as |√p〉 or |sin(θ)〉 with some amplitude

√
α such that

α > 8/π2. For this it suffices to not perform the measurement at the end of the
phase estimation (see Section 3.2.1). We will refer indistinctly to “amplitude esti-
mation” and Theorem 3.4 for both usages, and often for the additive error case (see
Table 3.1). Later on, we will also use Theorem 6.2 to boost the amplitude

√
α and

have a state arbitrary close to |√p〉 or |sin(θ)〉.

Note that both amplitude amplification and estimation rely on phase estimation
(see Section 3.2.1) and therefore can suffer from the same constraints. However
recently, proposals for amplitude estimation without phase estimation have been
made [AR20, SUR+20] and could better suit short term implementations for which
shallow circuits are required [GTKL+20].
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Figure 3.3: The amplitude estimation circuit, where F is the Quantum Fourier
Transform, and A is the initial unitary (denoted U in above Theorems). Source:
[GGZW21].

Type Guarantee Quantum Classical
additive error |p̃− p| < ε O (1/ε) O (1/ε2)

relative error |p̃− p| < εp O
(

1/ε
√
P (0)

)
O (1/ε2P (0))

Table 3.1: Comparison of classical and quantum amplitude estimation in the additive
and relative cases.

3.2.3 Other Subroutines

Classical Boolean Circuits

In the following claim we state some primitive quantum circuits, which we will use
in our algorithm. They are basically quantum circuits with a reversible version of
the classical boolean ones.

Using quantum circuits, one can perform the following operations in time linear
in the number of qubits used to encode the input values :

Claim 3.1: Classical Boolean Circuits

• For two integers i and j, we can check their equality with the mapping
|i〉 |j〉 |0〉 7→ |i〉 |j〉 |[i = j]〉.

• For two real numbers a > 0 and b > 0, we can compare them using
|a〉 |b〉 |0〉 7→ |a〉 |b〉 |[a ≤ b]〉.

• For a real number a > 0, we can obtain its square |a〉 |0〉 7→ |a〉 |a2〉.

This can be extended since any classical boolean function can be embedded in a
quantum circuit (see Section 3). In particular, non linear functions (arcsin(x),

√
x,

sigmoid(x) etc.) can be applied to the value encoded in binary quantum registers,
as we will do in Part IV. These functions can be implemented using Taylor de-
composition or any other technique. Note however that non linear transformations
are impossible on quantum amplitudes directly, which require unitary, thus linear,
transformations.
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Conditional rotation

Conditional rotation is a convenient and short procedure, used in the HHL algo-
rithm [HHL09] for instance, and throughout this thesis. In contrast to amplitude
estimation (Theorem 3.4), the goal is to map a value, binary encoded in a quan-
tum register, to the amplitude of an extra qubit. Therefore, this value should be in
[−1, 1].

Theorem 3.5: Conditional Rotation

Given the quantum state |a〉 encoded in q qubits, with a ∈ [−1, 1], There is a
quantum circuit to perform |a〉 |0〉 7→ |a〉 (a |0〉+

√
1− a2 |1〉).

Proof. Let γ = arcsin(a). The controlled rotation starts by writing the state |γ〉
in a q qubits register. This can be done using a quantum implementation of the
arcsin function, as in Claim 3.1 or any other [HRS18]. Quantum circuits are classical
boolean operations, which usually apply part of the arcsine polynomial decomposi-
tion from the Taylor’s series. This can require O(poly(q)) or less, depending on the
solution adopted.

|a〉 |0〉 |0〉 7→ |a〉 |0〉 |γ〉 (3.22)

The second step is the controlled rotation itself by performing a series of controlled
rotation gates along the y-axis, for each one of the q qubits of |γ〉. If we write
the binary expansion γ = 0.γ1. · · · .γq, we can write the unitary that performs the
rotation (see Fig.3.4) Ry(2γ) =

∏q
j=1R

γj
y (21−j):

|a〉 |0〉 |γ〉 7→ |a〉
(√

1− a2 |0〉+ a |1〉
)
|γ〉 (3.23)

Finally, we can get rid of |γ〉 by reverting the circuit, and we can switch |0〉 and |1〉
using a NOT gate.

Figure 3.4: First half of a circuit implementing conditional rotation.

In addition, knowing in advance or computing an upper bound max(a) for the
value of a would allow applying the conditional rotation to values whose absolute
value is bigger than 1, that is:

|a〉 |0〉 7→ |a〉
(

a

max(a)
|0〉+

√
1− a

max(a)
|1〉
)

(3.24)

Using Theorem 3.5 followed by Theorem 3.4, it then possible to transform the
state 1√

d

∑d−1
j=0 |xj〉 into 1

‖x‖
∑d−1

j=0 xj |xj〉 and therefore alternate between the encod-

ing types of a vector x ∈ Rd (see Chapter 4).
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3.3 Noisy Intermediate Scale Quantum Comput-

ing (NISQ)

The algorithms presented in the previous Section are the continuation of the first
results proving the theoretical superiority of quantum computing. Therefore, they
all assume access to an ideal quantum computer, without decoherence, gate noise,
and qubit errors.

In recent years, we witnessed the advent of the first noisy quantum computers,
up to the first quantum supremacy experiment [AAB+19]. Computer scientists
and physicists tried to develop quantum algorithms that would suit these “noisy
intermediate scale quantum” devices, or NISQ for short [Pre18].

Several approaches exist, but the one that has attracted the most attention of
researchers is called variational quantum circuits (VQC) [CAB+20, BCLK+21]. In-
spired by classical machine learning, it was proposed for quantum chemistry with the
variational quantum eigensolver (VQE) algorithm [PMS+14], and for optimization
with the quantum approximate optimization algorithm (QAOA) [FGG14]. Later, a
lot of derived applications in machine learning [BWP+17, CCL19, CMDK20].

Figure 3.5: Representation of variational quantum circuit optimization scheme.
Source: Xanadu

VQC have universal properties [Bia21] and already show encouraging results on
real experiments [ASZ+20], however they are very different in nature. They are
based on the following scheme (see Fig.3.5): One defines a small circuit, called the
ansatz, made of many gates with tunable parameters, such as the angle of a rotation
gate. Then, measurements of the resulting quantum state are performed and should
give the right answers to the desired task (classification, regression). At first, the
results are bad because the parameters are almost random. This metric is called
the Objective Function or the Loss. Finally, optimization is done on a classical
computer to propose a new and hopefully better set of parameters to try. And we
repeat this loop until the circuit gives good results.

The main difference with previous quantum algorithms is that the circuit is not
implementing a known classical ML algorithm. One would simply hope that the
heuristic will converge and successfully classify data or predict values, and even
more when quantum machines will become larger.

Researchers hope that VQC would project data in large enough Hilbert space,
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to perform classically inaccessible correlations or separations. Notably, research
on variational quantum machine learning is less focused on proving computational
speedups. The main interest is to reach a more expressive or complex state of in-
formation processing. Despite the excitement, VQC also suffers from theoretical
disturbance. It is proven that when the number of qubits or the number of gates
becomes too big, the optimization landscape will be flat and hinder the ability to
optimize the circuit. Many efforts are made to circumvent this issue, called bar-
ren plateaus [MBS+18], by using specific circuits [PCW+20] or smart initialization
of the parameters [GWOB19]. These barren plateaus may be very fundamental in
quantum information, as a deep link has been recently proven with quantum infor-
mation scrambling and limitations for the Hayden-Preskill thought experiment on
black holes information loss [HAY+20].

in a VQC, the gradients of a cost function with respect to each parameter have to
be estimated. In classical neural networks, this is usually done using the backprop-
agation algorithm 2.3.2 over analytic operations. With VQC, operations become
too complex, and we cannot access intermediate quantum states, without measur-
ing them. The current state-of-the-art solution is called the parameter shift rule
[MNKF18, SBG+19] and requires applying the circuit and measure its result 2 times
for each parameter. By comparison, in classical deep learning, the network is applied
just once forward and once backward to obtain all thousand or millions gradients.
Hopefully, we could parallelize the parameter shift rule on many simulators or quan-
tum devices, but this could be limited for a large number of parameters.

Finally, researchers tend to focus more and more on the importance of data
loading into a quantum state [JDM+20], also called feature map [Sch21]. Without
the ideal amplitude encoding obtained with the QRAM (see Chapter 4), there are
doubts that we will be able to load and process high dimensional classical data with
an exponential or high polynomial factor.

Note that the expression “Quantum Neural Networks” has been used to show
the similarities with classical Neural Networks (NN) training. However they are
not equivalent, since the VQC don’t have the same hidden layers architecture, and
neither have natural non-linearities, unless a measurement is performed. And there’s
no simple rule to convert any neural network to a VQC or vice versa.

In Chapter 12, we will propose an alternative NISQ algorithm for neural network
implementation, and backpropagation, with exact equivalence.

3.4 How to Test a Quantum Algorithm?

Throughout this thesis, quantum algorithms will be developed theoretically. But
actual experiments or simulations are necessary to judge, or at least gain intuition
about the results of the algorithms. This becomes even more crucial when comparing
to equivalent classical algorithms. Indeed, by the nature of quantum information,
precision, noise, and randomness often arise, which can provide undesirable effects.

However, as detailed in Section 3.2, we will often consider algorithms that current
and near term quantum computers would not support, due to the lack of error
correction and qubit number. In the next sections, we will explain the three methods
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we used for testing our quantum algorithms and provide meaningful results.

3.4.1 Real Quantum Computers and Emulators

The most conclusive experiment will always be to run the quantum circuit on actual
hardware. For a few years, it becomes possible via cloud access to run quantum cir-
cuits on real quantum computers. The emergence of open-source quantum software
from various institutions and companies allow to program easily quantum circuit
and launch experiments.

In Chapter 12, we used several quantum computers made by IBM, ranging from 5
to 16 qubits (see Fig.3.7), for our orthogonal neural network algorithm. Indeed, this
algorithm has the advantage of being shallow, repetitive, and requires only adjacent
connectivity between qubits.

(a)

(b)

Figure 3.6: (a) Decomposition of the RBS(θ) gate (see Chapter 12) with Hadamard,
y-axis Rotation, and CZ gates. (b) Quantum circuit implementation using Qiskit
[A+19], with additional X gate to start in ’10’ and measurement on both qubits at
the end.

However, the current state of these quantum computers makes them only in-
teresting for proof of concepts and reality check. In practice, the qubits are noisy
and prone to errors when applying gates and measuring qubit states. Still, it allows
to learn the real constraints of quantum computing and to take into account the
connectivity between the qubits, their quality, the noxious depth, and of course the
monetary cost of such experiments. Moreover, current standard access is limited to
few qubits, which is certainly too little to achieve quantum advantage.

It is however possible to move to a more ideal world, using emulators. Emulators
are classical computers implementing the quantum circuit, by actually storing the
exponentially large number of amplitudes and transforming it gate by gate. The
main advantage of this method is to get rid of real hardware noise and augment
the number of qubits. However, this number is often limited to 30 or 40 qubits
for a general use case, since 240 amplitudes with 32 bit floating point precision is
already several Terabytes of data to process. Note that for some specific quantum
circuits, efficient classical emulations can be found, which increases the number of
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Figure 3.7: The IBM Guadalupe quantum computer of 16 qubits. Visualization
of the connectivity (right), and the calibrated error parameters(left). Qubits are
connected with their adjacent neighbors, and only 3 qubits have 3 connections.
May 2021.

qubits emulated.

In Fig.3.8, we see the results of 8192 measurements of the circuit shown in
Fig.3.6b. We see in Fig.3.8a, the theoretical emulated result, that states ’00’ and ’11’
are not present in the quantum superposition and therefore should not be measured.
However, on the real 5 qubits IBM Santiago quantum computer, these states are
effectively measured because of errors in gates, qubits, or readout.

(a) (b)

Figure 3.8: Measurements results between the ideal (a) and the real (b) experiment
of the RBS gate. This experiment took place on the 5 qubits IBM Santiago quantum
computer in May 2021.

As a result, it adds imprecision to the estimation of the amplitudes. In the
case of the RBS(θ) gate, one expects to recover respectively cos(θ) and sin(θ) by
measuring the relative size of the histogram bar ’01’ and ’10’. In Fig.3.9, we have
computed this error, for different angles θ ∈ [0, π/2],

3.4.2 Classically Simulating Quantum Algorithms

Whether it is with 16 qubits on real hardware or 40 qubits on an emulator, we often
require more. Indeed, for complex algorithms as most of those presented in this
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(a)

(b)

Figure 3.9: Absolute error in the estimation of cos2(θ) and sin2(θ) from the mea-
surements of the output of the RBS(θ) gate. We see that this error is correlated
to the parameter θ, making error mitigation more complex. This experiment took
place on the 5 qubits IBM Santiago quantum computer in May 2021.

thesis, or for bigger size problems, a small number of qubits is often far from being
useful.

The advantage of the quantum machine learning algorithms we propose is their
equivalence with their classical version. Indeed, as we will see, our algorithms follow
the same steps, use the same inputs and outputs. The quantum circuits differ a lot,
but we can mathematically describe their effects and we control the error committed,
or the randomness during measurement.

It is then possible to simply adapt programs, for instance in Python, that im-
plement the classical machine learning algorithms. Since we control how and where
the differences will occur, we can as well modify the classical programs to include
them. With this, we can simulate our ideal fault-tolerant quantum algorithms in
Python.
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Chapter 4

Quantum Data

”There is no difference between
Theory and Practice, except in
Practice.”

Benjamin Brewster (1882)

In this chapter, we will cover the numerous techniques to interface quantum
algorithms with classical data. As seen in Chapter 2, most machine learning relies
on datasets containing samples {xi}i ∈ [N ], with xi ∈ Rd for all i. These samples
come from external experiments or data mining. As well, one needs classical outputs
such as classes or labels {yi}i ∈ [N ], with yi ∈ Rd′ for all i. It seems that, for
most real life applications of quantum machine learning or optimization, it will be
mandatory to have a way to handle classical data [CB18].

In Section 4.1, we will see different propositions for encoding classical data as
quantum states, and how we can generate them efficiently using quantum memory
models. Then, in Section 4.2, we will present the inverse task: recovering classical
data from a quantum state.

Being able to propose such methods, even though some are only suited for per-
fect quantum computers (FTQC), is key to understand the potential benefit from
near term and long term quantum computers.

Note that we will not cover the field on quantum machine learning on quantum
data. This is the case when the input of an algorithm is already a quantum state, as
it could be in quantum communication or cryptography [CDKK20]. As well, efforts
are made for developing classical machine learning for quantum data [DB18]. We
will not cover Grover based quantum memory models, such as the Quantum Asso-
ciative Memory [dPNdSdOL19].

Finally, as the translation between classical and quantum data remains a chal-
lenge in practice, there is interest in looking for “dataless” problems. They could
be problems that only involve an environment, such as solving partial differential
equations, training a reinforcement learning algorithm, generate data or sampling
from peculiar distributions, or even some chemistry applications.
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(a) (b)

Figure 4.1: (a) A quantum state (blue vector) of one qubit is a unit vector in the
Bloch sphere, embedded in a 2 dimensional Hilbert Space. Source: [DGV12] (b)
Classical machine learning also manipulates data as vectors (blue and red dots) in
vector spaces to classify or transform them. Source: Machine Learning in Action.

4.1 From Classical to Quantum Data

4.1.1 Quantum Encodings

In the following, numbers are given in their decimal (N10) or binary (N2) basis. If
not specified, the basis shall be the decimal one. Unless otherwise specified, we
will denote by |i〉 the ith quantum state in the computational basis, e.g. the state
|0110 · · · 10〉 that corresponds to the binary representation of the number i.

Note that in the rest of this thesis, except Chapter 12, the amplitude encoding
described below will be used by default.

Bit Encoding

Classical data is naturally encoded as bits, e.g. x = 510 and y = 3.2510 can be
respectively written in binary as x = 1012 and y = 11.012. Therefore, it seems
natural to first propose a similar simple bit encoding using qubits, e.g. |x〉 = |101〉.

Similarly, a vector x =

(
310

210

)
=

(
112

102

)
, can be encoded as the quantum state

|x〉 = |11〉 ⊗ |10〉 or |1110〉.
For a small number of data points, or for low precision values, the loading of

classical data known in advance is simple, using simple NOT gates on qubits where
|1〉 should be. This encoding is however poorly efficient as it requires as many qubits
as bits, and has a limited precision.

In the quantum regime, it possible to use quantum superposition to handle mul-
tiple numbers at the same time. We can then propose the following bit encoding for
a vector:
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Definition 4.1: Bit Encoding

m+ dlog(d)e qubits can encode a vector x = (x1, · · · , xd) ∈ Rd as a quantum
superposition of bit strings:

1√
d

d∑
j=1

|j〉 |xj〉 (4.1)

wherem is the number of qubits used for the precision, and |j〉 the jth quantum
state in the computational basis.

Amplitude Encoding

To use qubits to represent classical vectors or matrices, the most efficient encoding
is by far the amplitude encoding scheme. It is the theoretical link between quantum
computing and linear algebra that exploits quantum properties to the maximum.

We will see that obtaining the amplitude encoding is usually the main bottleneck
to our quantum algorithms (see Sections 4.1.2 and 4.2.1), while the rest consists in
playing with the amplitudes. In fact, amplitude encoding was used in the pioneering
work of [HHL09], and later in many quantum machine learning and linear algebra
works.

Definition 4.2: Amplitude Encoding

dlog(d)e qubits can encode a vector x = (x1, · · · , xd) ∈ Rd using the ampli-
tudes of the quantum state:

|x〉 =
1

‖x‖2

d∑
j=1

xj |j〉 (4.2)

where |j〉 is the jth quantum state in the computational basis

Since the quantum state |x〉must be of unit norm in the Hilbert space, we use the
normalization factor 1/ ‖x‖2, which is equivalent to having a normalized input such
that ‖x‖2 = 1. Amplitude encoding uses only dlog(d)e qubits: high dimensional data
can be encoded with a small number of qubits, hence the exponential advantage.

To go further, one can encode N such vectors simultaneously, which is equivalent
to encoding a matrix X ∈ RN×d, as:

|X〉 =
1

‖X‖F

N∑
i=1

‖Xi‖2 |Xi〉 |i〉 (4.3)

As in Definition 4.2, |Xi〉 is the quantum state of Xi, the ith row of X. ‖X‖F
is the Frobenius norm of the matrix X. Note that this state is still normalized as

‖X‖F =
√∑N

i=1 ‖Xi‖2
2, which is permitted since all states in the superposition are

orthogonal to each other thanks to the registers |i〉 at the end.
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Finally, we present a methodology to switch from a superposition using bit en-
coding to a superposition using amplitude encoding.

Claim 4.1: From Bit Encoding to Amplitude Encoding

Given an unitary U which takes a ground state and creates in time TU the bit
encoding quantum state of the vector x = (x1, · · · , xd), we can perform the
following mapping:

|0〉 U7−→ 1√
d

d∑
j=1

|j〉 |xj〉 7→
1

‖x‖2

d∑
j=1

xj |j〉 (4.4)

in time Õ(TUη
2/E(x2

j)), where η ≥ max(xj), and E(x2
j) is the average value

of the square components of x.

Proof. We start with a conditional rotation on the bit encoding state, see Theorem
3.5, and obtain:

1√
d

d∑
j=1

|j〉 |xj〉 |0〉 7→
1√
d

d∑
j=1

|j〉 |xj〉

xj
η
|0〉+

√
1−

x2
j

η2
|1〉

 (4.5)

where η is an upper bound of {xj}j∈[d], or simply η = 1 if x is normalized. It would
then suffice to measure the ancilla bit in the state |0〉 to end up with the desired
state, with probability P (0). This can also be done using amplitude amplification
(Theorem 3.2). This second step has a complexity of O(1/

√
P (0)):

P (0) =
1

d

d∑
j=1

x2
j

η2
≤

E(x2
j)

η2
(4.6)

where E(x2
j) is the expectation value, or average, of {xj}j∈[d]. We finally obtain the

state
1√
d

d∑
j=1

αj |j〉 |xj〉 |0〉 (4.7)

The new amplitudes αj must be proportional to xj, i.e. αj = cxj. To respect the
normalization, we must have 1

d

∑
j c

2x2
j = 1, therefore c = d/

∑
j x

2
j = d/ ‖x‖2

2. This
shows that the remaining state is the amplitude encoding version of the vector x:

1

‖x‖2

d∑
j=1

xj |j〉 |xj〉 (4.8)

Note that the output is close but not exactly the amplitude encoding of x as defined
in Defintion 4.2, but can be used in a similar manner. The last two registers are
entangled and thus the last one cannot be simply discarded. The only solution is to
apply U †, the reversed unitary that was used to create the bit encoding state. This
adds another time TU in the computation but allows to obtain the exact amplitude
encoding state 1

‖x‖2

∑d
j=1 xj |j〉.
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Unary Encoding

As the previous encoding, unary encoding takes advantage of the amplitudes of
quantum states in superposition to encode the components of a vector. However,
a unary encoded quantum vector can be loaded with smaller circuits, as shown in
Section 4.1.2.

The key feature of unary encoding is to use only the amplitude of unary states:
the states that have one and only |1〉, e.g. |100 · · · 0〉, |010 · · · 0〉, etc.

Definition 4.3: Unary Encoding

Given a vector x = (x0, · · · , xd) ∈ Rd, such that ‖x‖2 = 1. We can encode it
in a superposition of unary states:

|x〉 = x0 |10 · · · 0〉+ x1 |010 · · · 0〉+ · · ·+ xd−1 |0 · · · 01〉 (4.9)

We can also rewrite the previous state as:

|x〉 =
d−1∑
i=0

xi |ei〉 (4.10)

where |ei〉 is the ith unary state with a |1〉 in the ith position e.g.
|0 · · · 010 · · · 0〉 .

Note that if x is not normalized, it is still possible to load it and each amplitude
will naturally be divided by the norm.

This encoding is suited for short term quantum computers (NISQ) that are prone
to errors. A very convenient consequence is the ability to perform error mitigation
while measuring the quantum states. Indeed, Indeed, as we expect to obtain only
quantum superposition of unary states, we can post-process our measurements and
discard the ones that present non unary states (i.e. states with more that one qubit
|1〉, or the ground state). The most expected error is a bit-flip between |1〉 and
|0〉. The case where two bit-flips happened, which would pass through our error
mitigation, is even less probable.

Other Encodings

Other encodings exist in the literature but are not used in this thesis. It is worth
mentioning the gate encoding used in variational quantum circuits (VQC), where
the value of the input vector is directly put as the angle of rotation gate (note
that it is close to unary loaders, see Section 4.1.2). Data reuploading, the fact of
repeating the gates that encode a vector, seems to add efficiency to such VQCs
[PSCLGFL20]. Trying to understand how vectors are mapped into the high dimen-
sional Bloch sphere, and what can be done to process the data [SSM21].

Finally, there is also the Hamiltonian encoding which differs a lot since it consists
of encoding the problem we desire to solve in a Hamiltonian form, and then try to
perform the Hamiltonian evolution of an initial quantum state. This method is
used in optimization, quantum annealing, QAOA type of VQCs [FGG14], but most

65



CHAPTER 4. QUANTUM DATA

importantly in Hamiltonian simulation, as used originally in the HHL algorithm
[HHL09] where the matrix to be inverted is encoded as a Hamiltonian.

4.1.2 Quantum Memory Models

A quantum memory model, or data loader, is the link between classical data and
quantum states. It is a classical structure, such as a table, a tree, or a list, where
classical information is written. For each type of encoding we desire for the quantum
state (see Section 4.1.1), there exists one or several quantum circuits associated.
In each case, it is important to differentiate the time to create the classical data
structure, which should be done only once, and the time to load the quantum state.

Definition 4.4: Quantum memory model

For a given type of quantum encoding, a quantum memory model is a classical
data structure that stores vectors Xi ∈ Rd for i ∈ [N ]. Along with a quantum
circuit, it can perform the mapping:

|i〉 |0〉 7→ |i〉 |Xi〉 (4.11)

Note that starting with log(N) qubits in uniform superposition, all quantum
states can be loaded as:

1√
N

N−1∑
i=0

|i〉 |0〉 7→ 1√
N

N−1∑
i=0

|i〉 |Xi〉 (4.12)

In the following, the number i will be referred as the index or sometimes the
address.

Quantum Random Access Memory (QRAM)

The QRAM, or Quantum Random Access Memory, is often used as a quantum
memory model for amplitude encoding (see Definition 4.2), its name is derived from
the classical RAM, for their equivalent underlying tree structure.

For instance, an 8-dimensional vector x = (x0, · · · , x7) would be stored using a
tree structure, also known as KP-tree [Pra14, KP16], as shown in Fig.4.2. Compared
to the number of dimensions, it has a linear number of leaves, but most importantly
a logarithmic depth.

The time to create such a data structure is linear in the dimension d, and in the
number N of vectors to store, if applicable (see Theorem 4.1).

The interest of this framework is to compute angles that will be sequentially
used to create |x〉, the amplitude encoding of x. Indeed, as shown in Fig.4.3 on a
small example, each node of the tree has a relative weight that corresponds to the
amount of rotation that should be applied. As a result, due to depth of the tree, the
time to create the quantum state |x〉 is only O(polylog(d)) or, for N such vectors,
O(polylog(Nd)) (see Theorem 4.1). Note that some additional details must be taken
care of to handle the signs of the components [Pra14].

For any matrix, we call quantum access the ability to prepare, or load, the
amplitude encoding of the rows of the matrix.
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Figure 4.2: KP-tree structure for QRAM model on a 8-dimensional vector x.

Definition 4.5: Quantum Access to Data

We say that we have quantum access to a matrix X ∈ RN×d if there exists a
procedure to perform the following mapping, for i ∈ [N ]:

• |i〉 |0〉 7→ |i〉 |Xi〉

• |0〉 7→ 1
‖X‖F

∑
i ‖Xi‖2 |i〉

Theorem 4.1: QRAM

Let X ∈ RN×d be a matrix N vectors of dimension d. There is a data structure
to store the rows of X such that,

1. The size of the structure is O(Nd log2(Nd)).

2. The time to store a row Xi is O(d log2(Nd)), and the time to store the
whole matrix X is thus O(Nd log2(Nd)).

3. The time to insert, update or delete a single entry Xij is O(log2(Nd)).

4. A quantum algorithm with access to the data structure can perform the
following unitaries (in superposition if necessary) in time O(log2(Nd)).

(a) |i〉 |0〉 → |i〉 |Xi〉 for i ∈ [n].

(b) |0〉 → 1
‖X‖F

∑
i∈[n] ‖Xi‖2 |i〉.

In practice, each component of the vectorsXi will have to be stored using classical
bits. The number of bits k used for the precision of each value is not shown in
Theorem 4.1 but should appear simply as a multiplicative factor.
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Figure 4.3: Example of sequential rotations to load the vector φ = (0.4, 0.4, 0.8, 0.2).
Source: [Pra14].

Recently, using the QRAM data structure, the Block Encoding framework was
introduced by [CGJ18, GSLW19], which allows us further improvements on quantum
linear algebra subroutines (see Section 5.2).

Definition 4.6: Block Encoding of a Matrix

For a symmetric matrix X ∈ Rn×n, the q qubits unitary U ∈ C2q×2q is a (ζ, q)-

block encoding of M if U =

(
X/ζ ·
· ·

)
. For a general matrix M ∈ Rn×m, we

use a symmetrized version P =

(
0 M
MT 0

)
to construct a block encoding for

it.

QRAM then allows us to store and load such block encoding. In detail, for a
matrix X ∈ Rn×n it can implement in Õ(log(n)) a (ζ(X), 2 log(n))-block encoding
with ζ(X) = 1

‖X‖2
min(‖X‖F , s1(X)) where s1(X) = maxi(

∑
j |Xij|). As before,

the storing takes a single pass over the matrix X, but a single update takes only
O(log2(n)).

In the first proposals of a QRAM [GLM08b, GLM08a], the authors assumed
access to a hardware platform that could naturally encode data into amplitudes.
The circuit requires O(d) qubits and log(d) depth, but necessitates specific hard-
ware with light-matter interaction. On the other hand, one could also compose a
controlled-NOT based multiplexer with only O(log(d)) qubits, which remains im-
practical since it requires performing a sequence of d log(d) controlled gates [PPR19].
New ideas were suggested in [AGJO+15] with O(d) depth and O(d) qubits, with
strong tolerance to noise and quantum errors. This last proposal encodes the
state in log(d) qubits but requires d additional classical bits to load the d val-
ues. Resource estimation and resilience against noise have been studied in depth
[DMGM20, HLGJ21, ZDF+18]. They reveal that the task of creating such a circuit
and use it efficiently remains a strong challenge. However, in theory, this should be
no more difficult than building the fault-tolerant quantum computer itself.

In the next section, we will introduce memory model that require only log(d)
depth for d qubits, but using unary encoding this time.
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Finally, note that different methods were proposed for loading amplitude encod-
ing for near term devices, with the help of variational circuits [ZHLT20]. However,
they remain imperfect and too costly for now.

Unary Data Loaders

The QRAM model for amplitude encoding might only be available for long term
quantum computers. Therefore, shorter term data loaders were proposed in [JDM+20],
suited for unary encoding (see Definition 4.3). Since these quantum states are a su-
perposition of unary states, i.e. states with one and only qubit in state |1〉, circuits
with O(d) qubits and depth ranging from O(log(d)) to O(d) can be proposed.

They rely on the Reconfigurable Beam Splitter gate, or RBS gate for short. This
two-qubit gate is parametrizable with one angle θ ∈ [0, 2π]. Its matrix representation
is given as:

RBS(θ) =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 (4.13)

We note that this gate leaves the states |00〉 and |11〉 unaffected. For the two other
states, it equivalent to a planar rotation with angle θ:

RBS(θ) :

{
|01〉 7→ cos θ |01〉 − sin θ |10〉
|10〉 7→ sin θ |01〉+ cos θ |10〉

(4.14)

We can think of this gate as a rotation in the two-dimensional subspace spanned
by the basis {|01〉 , |10〉, while it acts as the identity in the remaining subspace
{|00〉 , |11〉}. Or equivalently, starting with two qubits, one in the |0〉 state and the
other one in the state |1〉, the qubits can be swapped or not in superposition. The
qubit |1〉 stays on its wire with amplitude cos θ or switches with the other qubit
with amplitude + sin θ if the new wire is below (|10〉 7→ |01〉) or − sin θ if the new
wire is above (|01〉 7→ |10〉). Note that in the two other cases (|00〉 and |11〉) the
RBS gate acts as identity.

Figure 4.4: Representation of the quantum mapping from Eq.(4.13) on two qubits.

Given a vector x = (x1, · · · , xd) ∈ Rd, the associated unary data loaders is a
simple circuit using d-1 RBS gates, along with the same number of precomputed
angles θi. In Chapter 12, we will use a diagonal circuit of depth O(d), as shown on
Fig.4.5a. This circuit has longer depth but has the property of using only adjacent
qubits, which is convenient when using the current quantum computers available.
The other circuit, a parallel loader, shown on Fig.4.5b, has a depth of O(log(d)).
An important advantage compared to the classical inner that uses O(d) steps.

A trade-off is possible between the number of qubits and the depth, the product
of the two remaining constant. The optimal solution would be a circuit of

√
d log(d)
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(a) (b)

Figure 4.5: Two quantum circuits for unary data loaders with (a) diagonal and (b)
parallel structure. Each vertical bar is a RBS gate applied on the two connected
qubits, with angle θi.

depth and 2
√
d qubits. This could also be extended to loading matrices. These

unary loaders can be combined to apply linear algebra tasks such as inner product
[JDM+20] or matrix multiplication (see Chapter 12).

These unary data loaders can be easily implemented by classical emulator as
they consist of planar rotations, and are therefore not exploring an exponentially
large Hilbert space.

The creation of the angles θi for i ∈ [d − 1] is an easy task, requiring O(d)
classical precomputations. For instance, for the diagonal unary loader (Fig.4.5a),
we recursively obtain d-1 loading angles with:

θ0 = arccos(x0)

θ1 = arccos
(

x1
sin(θ0)

)
θ2 = arccos

(
x2

sin(θ0) sin(θ1)

)
· · ·

(4.15)

Indeed, the diagonal unary loader starts in the all |0〉 state and flips the first
qubit using an x gate, in order to obtain the unary state |10 · · · 0〉 as shown in
Fig.12.4. Then a cascade of RBS gates allows creating the state |x〉. The first gate
will propagate the amplitude of the first qubit to the second one:

x0 |100 · · ·〉+ sin(θ0) |010 · · ·〉 (4.16)

The second gate will create in turn the state :

x0 |100 · · ·〉+ x1 |010 · · ·〉+ sin(θ0) sin(θ1) |001 · · ·〉 (4.17)

and so on, until obtaining |x〉 as in Eq.(12.2).

Finally, to verify the accuracy of these encoding, we performed a real hard-
ware implementation of the unary diagonal loader. We compared the results with
quantum circuit simulations. Using a 5 qubits superconducting quantum computer
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IBMSantiago, we were able to load unary encoded vectors on the 3-dimensional
unit sphere. For this, we used vectors of the form (x0, x1, x2) ∈ [0, 1]3. For several
points, we created the quantum state, measured 8192 samples of it to recover its
position, and calculated the euclidean error compared to the actual vector. Results
are shown on Fig.4.6. Naturally, we see more errors (light blue coloring) for the real
experiment, but the results seem consistent with the simulations.

(a) (b)

Figure 4.6: `2 norm errors when comparing vectors of the 3D unit sphere and their
quantum version by using diagonal unary loaders. (a) Emulated results and (b)
Actual hardware experiment on the IBMSantiago quantum computer. May 2021.

4.2 From Quantum to Classical data

For quantum linear algebra and machine learning applications, recovering classical
data from quantum states is the other side of the coin. This process, called tomog-
raphy, is usually very costly and is the second bottleneck of quantum algorithms
[Aar15], after the data loading (see Section 4.1.1).

In this section we will present two different tomography procedures, both for
amplitude encoded quantum vectors, the second one being a contribution of this
thesis.

4.2.1 `2 and `∞ Tomography

We consider a final state of a quantum circuit, expected to be |x〉 = 1
c

∑d−1
i=0 xi |i〉,

the quantum version of an unknown vector x = (x0, · · · , xd−1) ∈ Rd. Measuring this
state will randomly result in one of the binary strings |i〉. Performing a sufficiently
large number of measurements would allow us to guess the underlying probability
distribution of the binary strings, and therefore the amplitudes (|x0|2, · · · , |xd−1|2).
As the number of measurements is not infinite, the probability distribution is only
approximated and therefore an error is committed on the recovered vector, in partic-
ular for small value components. Depending on the guarantee we put on this error,
the number of queries is modified.
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We first present an `2-norm guarantee tomography, introduced in [KP20b]. In-
formally, for some parameter δ > 0, we require that the resulting vector x̃ is δ-close
to the actual vector x.

Theorem 4.2: `2 Vector State Tomography

Given access to unitary U such that U |0〉 = |x〉 and its controlled ver-
sion in time T (U), there is a tomography algorithm with time complexity
O(T (U)d log d

δ2
) that produces unit vector x̃ ∈ Rd such that ‖x̃− x‖2 ≤ δ with

probability at least (1− 1/poly(d)).

Next, we introduce a new procedure, the `∞-norm guarantee tomography, where
now each recovered component xi must be δ-close to the actual vector’s component
xi. Noticeably, this tomography requires exponentially fewer resources than the
previous one.

Theorem 4.3: `∞ Vector State Tomography

Given access to unitary U such that U |0〉 = |x〉 and its controlled ver-
sion in time T (U), there is a tomography algorithm with time complexity
O(T (U) log d

δ2
) that produces unit vector x̃ ∈ Rd such that ‖x̃− x‖∞ ≤ δ with

probability at least (1− 1/poly(d)).

In some contexts, the `∞ tomography turns out to be more meaningful. In fact,
when the quantum state |x〉 does not represent a vector per se, as a position on a
mesh or some precise embedding in a latent space, but rather a collection of values
like the pixels of an image or a time series, it is in practice less critical to have
low precision on some components. In some cases as well, we only care about the
high-value elements of x, for instance in neural networks, where non-linearities are
applied to push high values even higher, and downsize small values (see Section
2.3.1).

For instance, in the case of visual neural networks (see Chapter 11), we will use
this tomography to recover the highest valued pixels in an image.

Figure 4.7: Representation of `2 (left) and `∞ (right) error guarantees.
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4.2.2 `∞ Tomography Details

To prove the Theorem 4.3 introduced in this thesis, we follow the method from
[KP20b]. In the following we consider a quantum state |x〉 such that x ∈ Rd and
‖x‖2 = 1.

Algorithm 1 `∞ norm tomography

Require: Error δ > 0, access to unitary U : |0〉 7→ |x〉 =
∑

i∈[d] xi |i〉, the controlled
version of U , QRAM access.

Ensure: Classical vector x̃ ∈ Rd, such that ‖x̃‖ = 1 and ‖x̃− x‖∞ < δ.

1: Measure N = 36 ln d
δ2

copies of |x〉 in the standard basis and count ni, the num-

ber of times the outcome i is observed. Store
√
pi =

√
ni/N in QRAM data

structure.
2: Create N = 36 ln d

δ2
copies of the state 1√

2
|0〉
∑

i∈[d] xi |i〉+ 1√
2
|1〉
∑

i∈[d]

√
pi |i〉.

3: Apply an Hadamard gate on the first qubit to obtain

|φ〉 =
1

2

∑
i∈[d]

((xi +
√
pi) |0, i〉+ (xi −

√
pi) |1, i〉) (4.18)

4: Measure both registers of each copy in the standard basis, and count n(0, i) the
number of time the outcome (0, i) is observed.

5: Set σ(i) = +1 if n(0, i) > 0.4Npi and σ(i) = −1 otherwise.
6: Output the unit vector x̃ such that ∀i ∈ [N ], x̃i = σi

√
pi

The following version of the Chernoff Bound will be used for analysis of algorithm
1.

Theorem 4.4: Chernoff Bound

Let Xj, for j ∈ [N ], be independent random variables such that Xj ∈ [0, 1]
and let X =

∑
j∈[N ] Xj. We have the three following inqualities:

1. For 0 < β < 1,P[X < (1− β)E[X]] ≤ e−β
2E[X]/2

2. For β > 0,P[X > (1 + β)E[X]] ≤ e−
β2

2+β
E[X]

3. For 0 < β < 1,P[|X − E[X]| ≥ βE[X]] ≤ e−β
2E[X]/3, by composing 1.

and 2.

Theorem 4.5

Algorithm 1 produces an estimate x̃ ∈ Rd such that ‖x̃− x‖∞ < (1 +
√

2)δ
with probability at least 1− 1

d0.83
.

Proof. Proving ‖x− x̃‖∞ ≤ O(δ) is equivalent to showing that for all i ∈ [d], we
have |xi − x̃i| = |xi − σ(i)

√
pi| ≤ O(δ). Let S be the set of indices defined by

S = {i ∈ [d]; |xi| > δ}. We will separate the proof for the two cases where i ∈ S and
i /∈ S.
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Case 1 : i ∈ S.
We will show that if i ∈ S, we correctly have σ(i) = sgn(xi) with high probability.

Therefore we will need to bound |xi − σ(i)
√
pi| = ||xi| −

√
pi|.

We suppose that xi > 0. The value of σ(i) correctly determines sgn(xi) if the
number of times we have measured (0, i) at Step 4 is more than half of the mea-
surements, i.e. n(0, i) > 1

2
E[n(0, i)]. If xi < 0, the same arguments holds for n(1, i).

We consider the random variable that represents the outcome of a measurement on
state |φ〉. The Chernoff Bound (part 1) with β = 1/2 gives

P[n(0, i) ≤ 1

2
E[n(0, i)]] ≤ e−E[n(0,i)]/8 (4.19)

From the definition of |φ〉, see Eq.(4.18), we have E[n(0, i)] = N
4

(xi +
√
pi)

2. We will
lower bound this value with the following argument.

For the kth measurement of |x〉, with k ∈ [N ], let Xk be a random variable such
that Xk = 1 if the outcome is i, and 0 otherwise. We define X =

∑
k∈[N ] Xk. Note

that X = ni = Npi and E[X] = Nx2
i . We can apply the Chernoff Bound, part 3 on

X for β = 1/2 to obtain,

P[|X − E[X]| ≥ E[X]/2] ≤ e−E[X]/12 (4.20)

P[|x2
i − pi| ≥ x2

i /2] ≤ e−Nx
2
i /12 (4.21)

We have N = 36 ln d
δ2

and by assumption x2
i > δ2 (since i ∈ S). Therefore,

P[|x2
i − pi| ≥ x2

i /2] ≤ e−36 ln d/12 = 1/d3 (4.22)

This proves that the event |x2
i −pi| ≤ x2

i /2 occurs with probability at least 1− 1
d3

if i ∈ S. This previous inequality is equivalent to
√

2pi/3 ≤ |xi| ≤
√

2pi. Thus, with

high probability we have E[n(0, i)] = N
4

(xi +
√
pi)

2 ≥ 0.82Npi, since
√

2pi/3 ≤ |xi|.
Moreover, since |pi| ≤ x2

i /2, E[n(0, i)] ≥ 0.82Nx2
i /2 ≥ 14.7 ln d. Therefore, equation

(4.19) becomes

P[n(0, i) ≤ 0.41Npi] ≤ e−1.83 ln d = 1/d1.83 (4.23)

We conclude that for i ∈ S, if n(0, i) > 0.41Npi, the sign of xi is determined correctly
by σ(i) with high probability 1− 1

d1.83
, as indicated in Step 5.

We finally show |xi− σ(i)
√
pi| = ||xi| −

√
pi| is bounded. Again by the Chernoff

Bound (3.) we have, for 0 < β < 1:

P[|x2
i − pi| ≥ βx2

i ] ≤ eβ
2Nx2i /3 (4.24)

By the identity |x2
i − pi| = (|xi| −

√
pi)(|xi|+

√
pi) we have

P
[∣∣∣|xi| − √pi∣∣∣ ≥ β

x2
i

|xi|+
√
pi

]
≤ eβ

2Nx2i /3 (4.25)

Since
√
pi > 0, we have β

x2i
|xi|+

√
pi
≤ β

x2i
|xi| = β|xi|, therefore P

[∣∣∣|xi| − √pi∣∣∣ ≥ β|xi|
]
≤

eβ
2Nx2i /3. Finally, by chosing β = δ/|xi| < 1 we have

P
[∣∣∣|xi| − √pi∣∣∣ ≥ δ

]
≤ e36 ln d/3 = 1/d12 (4.26)
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We conclude that, if i ∈ S, we have |xi − x̃i| ≤ δ with high probability.
Since |S| ≤ d, the probability for this result to be true for all i ∈ S is 1 − 1

d0.83
.

This follows from the Union Bound on the correctness of σ(i).

Case 2 : i /∈ S.
If i /∈ S, we need to separate again in two cases. When the estimated sign is

wrong, i.e. σ(i) = −sgn(xi), we have to bound |xi − σ(i)
√
pi| = ||xi| +

√
pi|. On

the contrary, if it is correct, i.e. σ(i) = sgn(xi), we have to bound |xi − σ(i)
√
pi| =

||xi| −
√
pi| ≤ ||xi|+

√
pi|. Therefore only one bound is necessary.

We use Chernoff Bound (2.) on the random variable X with β > 0 to obtain

P[pi > (1 + β)x2
i ] ≤ e

β2

2+β
Nx2i (4.27)

We chose β = δ2/x2
i and obtain P[pi > x2

i + δ2] ≤ e
δ4

3δ2
N = 1/d12. Therefore,

if i /∈ S, with very high probability 1 − 1
d12

we have pi ≤ x2
i + δ2 ≤ 2δ2. We can

conclude and bound the error:

|xi − X̃i| ≤ ||xi|+
√
pi| ≤ δ +

√
2δ = (1 +

√
2)δ (4.28)

Since |S| ≤ d, the probability for this result to be true for all i /∈ S is 1− 1
d11

. This
follows from applying the Union Bound on the event pi > x2

i + δ2.
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Chapter 5

Quantum Linear Algebra

”The purpose of computation is
insight, not numbers.”

Richard Hamming
Numerical Methods for

Scientists and Engineers (1962)

Throughout this thesis, we will use previously developed quantum linear alge-
bra subroutines. These fundamental algorithms harness quantum encoding seen in
Chapter 4 to perform their tasks with substantial speedup.

We will present succinctly two of them: the singular value estimation (Section
5.1), and the matrix multiplication (Section 5.2).

5.1 Singular Values Estimation and Projection

Singular Value Decomposition (SVD)

We recall some properties from Section 1.4. For any matrix A ∈ Rm×n, the singular
value decomposition (SVD) of A is

A = UΣV T (5.1)

where U ∈ Rm×m and V ∈ Rn×n are unitary matrices, and Σ ∈ Rm×n is a rectangular
diagonal matrix with non-negative elements σi. With r being the rank of A, the
SVD can be also expressed as:

A =
r∑
i=1

σiuiv
T
i (5.2)

where the left and the right singular vectors ui and vi are the columns of U and V.
The singular values σi of a matrix A of great importance to understand its

properties, especially when the matrix is a transformation from one space to another,
or when it is representing a graph (see Section 2.2.2).

The singular values of a m× n matrix A are the square roots of the eigenvalues
of the n×n matrix ATA. Thus, if A is a n×n, real and positive semidefinite matrix,
the singular values and the eigenvalues are the same, which is not generally the case
due to negative signs.
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Quantum Singular Value Estimation (SVE)

A quantum algorithm for singular value estimation (SVE) was developed in [KP16]
for solving the recommendation system problem, and later improved in [KP20a],
inspired by the method of [Chi10] for solving eigenvalue estimation. They extended
to non unitary matrices the method used in [HHL09] from extracting eigenvalues.

Given a matrix A stored in the appropriate quantum memory model (see Section
4.1.2), the algorithm can map the quantum state of any right singular vector |vi〉
to its singular value σi, with some precision ε > 0. The interesting feature comes
when this is applied in superposition over all right singular vectors. And since they
form a complete basis, any quantum vector |x〉 can be written as |x〉 =

∑
i αi |vi〉,

for some coefficients αi. We begin by introducing the parameter µ(A) in Definition
5.1.

Definition 5.1: Parameter µ(·)

For a matrix A, the parameter µ(A) is defined by

µ(A) = min
p∈[0,1]

(
‖A‖F ,

√
s2p(A)s2(1−p)(AT )

)
(5.3)

where sp(A) = maxi(‖Ai‖pp).

Theorem 5.1: Quantum Singular Value Estimation

Given quantum access in time T to a matrix A ∈ Rm×n with singular value
decomposition A =

∑
i σiuiv

T
i , there is a quantum algorithm that performs

the mapping ∑
i

αi |vi〉 |0〉 7→
∑
i

αi |vi〉 |σi〉 (5.4)

such that for any precision ε > 0, we have for all singular values |σi − σi| ≤ ε,

in time Õ(Tµ(A)/ε), with probability at least 1− 1/poly(n).

The parameter µ(A) will appear frequently in the running time of algorithms that
use quantum linear algebra subroutines. For dense matrices, µ(A) can be taken to
be the ratio Frobenius Norm / Spectral Norm of A. In some sense, it replaces the
explicit dependence on the matrix dimension. Note that with p = 1/2 we have
µ(A) ≤ s1(A) = maxi ‖Ai‖1. For sparse matrices, µ(A) can then be seen as the
sparsity.

We informally give the details of the initial quantum SVE algorithm [KP16]. One
starts by finding two matrices P ∈ Rmn×m and Q ∈ Rmn×n that form the decomposi-
tion A/ ‖A‖F = P TQ, such that we have fast quantum access to P and Q. Then we
apply phase estimation (Theorem 3.1) on the unitary W = (2PP T − I)(2QQT − I).
The input should be |Qx〉 that can be created from |x〉 =

∑
i αi |vi〉. Since the eigen-

vectors of W are Qvi, with eigenvalues eiθi such that cos(θi/2) = σi/ ‖A‖F , phase
estimation allows us to obtain the state

∑
i αi |Qvi〉 |θi〉 and then

∑
i αi |Qvi〉 |σi〉

with simple processing. Inverting the whole computation will yield to
∑

i αi |vi〉 |σi〉.
We also see that the error in the estimation of σi comes directly from the error of
phase estimation. The running time at this point is O(polylog(mn)/ε).
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In the improved version [KP20a], an additional qubit is used, and instead of
choosing P and Q such that A/ ‖A‖F = PQ, we know require A/µ = P ◦Q for some
parameter µ. It is shown that the best parameter to choose is µ(A) from Definition
5.1.

Projections using SVE

It is a common task to project vectors in lower-dimensional space. If these space
are spanned by a specific basis that results from singular vector or eigenvector de-
composition, the projection is meaningful. This technique is widely used in machine
learning to reduce the inputs, and quantum algorithms have been proposed to solve
this in several ways [LMR14, KP16, KL20]. Often, one wants to select either the
highest or lowest singular values and project all vectors in the subspace spanned by
the corresponding singular vectors. We will also require such projections in Chapter
9.

Using the quantum algorithm for SVE (Theorem 5.1), it becomes easier since,
starting from any vector |x〉 decomposed in the singular basis, we obtain a superpo-
sition of all singular vectors along with their singular values.

|x〉 =
∑
i

αi |vi〉 7→
∑
i

αi |vi〉 |σi〉 (5.5)

It then suffices to separate the retained singular values from the others. For instance,
if the singular values to select are the ones smaller than a parameter δ > 0, using a
boolean comparison circuit (see Claim 3.1) and a marked ancilla qubit, we obtain:∑
i|σi≤δ

αi |vi〉 |σi〉+
∑
i|σi>δ

αi |vi〉 |σi〉 7→
∑
i|σi≤δ

αi |vi〉 |σi〉 |0〉+
∑
i|σi>δ

αi |vi〉 |σi〉 |1〉 (5.6)

Then, as in Claim 4.1, we start by applying a conditional rotation (Theorem 3.5) to
have: ∑

i|σi≤δ

αi |vi〉 |σi〉 |0〉

(
σi
δ
|0〉+

√
1− σ2

i

δ2
|1〉

)
+
∑
i|σi>δ

αi |vi〉 |σi〉 |1〉 |0〉 (5.7)

and then we only have to measure the state |00〉 on the last two qubits. This could
also be done using amplitude amplification on the state |00〉 (Theorem 3.2). In both
cases we obtain the desired projection:∑

i|σi≤δ

α′i |vi〉 (5.8)

The new amplitudes α′i will correspond to the component of the projection of vector
x in the new subspace.

The running time of this operation is driven by the amplitude amplification
that involves O(1/

√
P (00)) queries to the SVE circuit itself, where P (00) is the

probability to measure ’00’ in the last two qubits of state (5.7), given by:

P (00) =
∑
i|σi≤δ

α2
i

σ2
i

δ2
(5.9)

78



CHAPTER 5. QUANTUM LINEAR ALGEBRA

5.2 Matrix Multiplication and Inversion

As mentioned in Section 1.2, the field of quantum machine learning was ignited by
the pioneering work of [HHL09] giving exponential speedup for matrix multiplication
and inversion. this construction was based on phase estimation (Theorem 3.1) and
Hamiltonian simulation. Later, improvements were proposed in [CKS17, KP20a],
until [CGJ18, GSLW19] improved it again error wise, by introducing the Block
Encoding framework (see Definition 4.6). This ensures a complexity sublinear in
the dimension. Recall that for a matrix M , κ(M) is its condition number (the
ratio between the biggest and the smallest singular values), and µ(M) is defined in
Definition 5.1.

Theorem 5.2: Quantum Matrix Multiplication and Inversion

Let M ∈ Rd×d and x ∈ Rd. Let δ1, δ2 > 0. If M is stored in appropriate
QRAM data structures and the time to prepare |x〉 is Tx, then there exist
quantum algorithms that with probability at least 1− 1/poly(d) return

1. A state |z〉 such that ‖|z〉 − |Mx〉‖2 ≤ δ1 in time Õ((κ(M)µ(M) +
Txκ(M)) log(1/δ1)).
Note that this also implies ‖|z〉 − |Mx〉‖∞ ≤ δ1

2. A state |z〉 such that ‖|z〉 − |M−1x〉‖ ≤ ε in time Õ((κ(M)µ(M) +
Txκ(M)) log(1/ε)).

3. Norm estimate z ∈ (1 ± δ2) ‖Mx‖2, with relative error δ2, in time

Õ(Tx
κ(M)µ(M)

δ2
log(1/δ1)).

Notably, these routines for quantum linear algebra can be applied to products
of matrices. If the matrix M is the product of k matrices, i.e. M = M1...Mk, the
resulting factor in the runtime is Õ(κ(M)

∑
k µ(Mk) log(1/ε)).

5.3 Quantum Inspired Algorithms

A recent breakthrough by Tang et al. [GLT18, Tan18, Tan19], proposed sev-
eral classical machine learning algorithms obtained by dequantizing the quantum
recommendation systems algorithm [KP16] and low rank linear system solvers.
Like the quantum algorithms, the running time of these classical algorithms is
O(poly(k)polylog(mn)), which is polylogarithmic in the dimension of the dataset
and polynomial in the rank. However, the polynomial dependence on the rank of
the matrices is significantly worse than the quantum algorithms and in fact renders
these classical algorithms highly impractical. For example, the classical algorithm
for stochastic regression inspired by the HHL algorithm [HHL09] has a running time
of Õ(κ6k16 ‖A‖6

F /ε
6), which is impractical even for a rank-10 matrix. This running

time has then been improved by [SM21] under some assumptions, to obtain a run-

ning time of Õ(κ6
Fκ

2/ε2) where κF = ‖A‖F ‖A−1‖ and κ = ‖A‖2 ‖A−1‖, if A is the
matrix to invert or to multiply with.

The extremely high dependence on the rank and the other parameters implies not
only that the quantum algorithms are substantially faster, since their dependence
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on the rank is sublinear, but more importantly that in practice there exist much
faster classical algorithms for these problems. While these new quantum inspired
classical algorithms are based on the FKV methods [FKV04], in classical linear
algebra, algorithms based on the CUR decomposition (a low rank approximation of
the SVD) that have a running time linear in the dimension and quadratic in the
rank are preferred to the FKV methods [FKV04, DFK+04, AM01]. Experimental
comparisons with the usual classical algorithms have been done in [ADBL19] but
don’t seem in favor of the new quantum inspired algorithms.

It remains an open question to find classical algorithms for these machine learn-
ing problems that are polylogarithmic in the dimension and are competitive with
respect to the quantum or the classical algorithms for the same problems. This
would involve using significantly different techniques than the ones presently used
for these algorithms.

That being said, these results remain theoretically important as they reduce
the exponential separation between quantum and classical linear algebra algorithms
for low rank problems. In fact, the algorithms presented in this thesis could have
their own quantum inspired versions (as we show for the quantum convolutional
neural network algorithm in Chapter 11), but would not be usable in practice. This
still forces us to find where quantum computations must draw to find an unrivaled
advantage. Recent results indicate that sparsity-based algorithm, where the matrices
and vectors are high dimensional but sparse, is a better candidate against quantum
inspired classical algorithms.
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Chapter 6

Inner Product and Distance
Estimation

”Quantum mechanics describes
nature as absurd from the point
of view of common sense. And
yet it fully agrees with
experiment. So I hope you can
accept nature as She is -
absurd.”

Richard P. Feynman
QED: The Strange Theory of

Light and Matter (1985)

6.1 Related Work

6.1.1 SWAP Test

In this section, we detail the seminal idea of [LMR13] of using the SWAP test
to compute the distance between two vectors. We assume quantum access to the
vectors and their norms, using the amplitude encoding framework (Definition 4.2).
For two vectors vi ∈ Rd and vj ∈ Rd, respectively indexed by i and j, we can query
them in quantum registers in time T using the mapping:

|i〉 |0〉 7→ |i〉 |vi〉 , |j〉 |0〉 7→ |j〉 |vj〉 (6.1)

With a QRAM data structure (Theorem 4.1) the query time is O(log d) where d
if the dimension of the vectors. We can also query their norms in a similar manner,

|i〉 |0〉 7→ |i〉 |‖vi‖〉 , |j〉 |0〉 7→ |j〉 |‖vj‖〉 (6.2)

We can compute the distance d(vi, vj) in the amplitude of the ancillary register
by performing a Swap Test between two states that were introduced in [LMR13].
Define,

|ψij〉 =
1√
2

(|vi〉 |0〉 − |vj〉 |1〉) (6.3)
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|φij〉 =
1√
Zij

(‖vi‖ |0〉+ ‖vj‖ |1〉) (6.4)

Where Zij = ‖vi‖2 +‖vj‖2. Note that, in Section 6.2, compared to [LMR13], we will
exchange the minus sign between |ψ〉 and |φ〉, and the two registers in |ψ〉, in order
to avoid an extra quantum arithmetic operation to the conditional rotation step for
|φij〉. Note that these states have been chosen for retrieving the distance between vi
and vj, but it suffices to replace |φij〉 by the |+〉 state to obtain the inner product
|〈vi|vj〉|2 instead.

We now describe the preparation procedures for |ψij〉 and |φij〉. In order to create
|ψij〉, we first create |i〉 |j〉 |−〉 |0〉 and then perform controlled queries as indicated
below, {

|i〉 |j〉 |0〉 |0〉 7→ |i〉 |j〉 |0〉 |vi〉
|i〉 |j〉 |1〉 |0〉 7→ |i〉 |j〉 |1〉 |vj〉

(6.5)

|i〉 |j〉 1√
2

(|0〉 − |1〉) |0〉 → |i〉 |j〉 1√
2

(|0〉 |vi〉 − |1〉 |vj〉) = |i〉 |j〉 |ψij〉 (6.6)

A different procedure is used for creating |φij〉. We start with |i〉 |j〉 as well and query
the two norms in ancilla registers to obtain |i〉 |j〉 |‖vi‖〉 |‖vj‖〉. We then add an extra
qubit |0〉 and apply a controlled rotation, to directly create |i〉 |j〉 |‖vi‖〉 |‖vj‖〉 |φij〉.
We can then undo the first step to remove the third and fourth registers.

Having prepared the states |ψij〉 and |φij〉, we can apply the Swap Test circuit
given below. The swap test circuit introduces an ancilla qubit on which we first
apply a Hadamard gate, we then use the ancilla qubit to perform a controlled swap
on two quantum registers, this is followed by a Hadamard gate and a measurement
on the ancilla.

|0〉 H • H

|a〉 ×
|b〉 ×

Figure 6.1: Swap Test circuit on two quantum states |a〉 and |b〉

The action of the swap test over two registers is:

|0〉 |a〉 |b〉 7→
(

1

2
|0〉 (|a〉 |b〉+ |b〉 |a〉) +

1

2
|1〉 (|a〉 |b〉 − |b〉 |a〉)

)
(6.7)

It follows that after the swap test, the probability of measuring |0〉 in the ancilla

register is equal to 1+|〈a|b〉|2
2

.
In our case, for the swap test between |φij〉 and the second register of |ψij〉 which

we denote as 〈φij|ψij,2〉. the probability pij of measuring 0 in the final ancilla register

is
1+|〈φij |ψij,2〉|2

2
. In order to compute pij we first compute |〈φij|ψij,2〉|2,
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|〈φij|ψij,2〉|2 =
1

2Zij
|(‖vi‖ 〈0|+ ‖vj‖ 〈1|)(|vi〉 |0〉 − |vj〉 |1〉)|2

=
1

2Zij
| ‖vi‖ |vi〉 − ‖vj‖ |vj〉 |2

=
1

2Zij
(‖vi‖2 + ‖vj‖2 − 2 ‖vi‖ ‖vj‖ 〈vi|vj〉)

=
d(vi, vj)

2

2Zij
(6.8)

Thus, the probability encodes the squared distance between vi and vj, such that:

pij =
1

2
+
d(vi, vj)

2

4Zij
(6.9)

The quantum state before measuring the ancilla qubit in the swap test circuit can
be written as,

|i〉 |j〉 (√pij |yij〉+
√

1− pij |y⊥ij〉) (6.10)

Finally, we can apply this transformation over a superposition of indices i and
j, thus allowing to compute many pairwise distances simultaneously.

In Section 6.2, we will propose a different method to obtain a similar quantum
state as Eq.(6.10), and show how to extract the value d(vi, vj)

2 from the amplitude.

6.1.2 Unary Inner Products

Recently, [JDM+20] used the unary encoding (Definition 4.3) and unary data load-
ers (Section 4.1.2) to perform the inner product between two vectors.

Figure 6.2: The inner product circuit for two unary quantum vectors of dimension
8 is the concatenation of the two data loaders D†(vj)D(vi).

We consider two vectors vi ∈ Rd and vj ∈ Rd, with respective address i and j,
stored in a unary memory model. We write D(vi) and D(vj) their respective loader
circuits, for instance the parallel loader from Fig.4.5b.
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D(vi) |0〉 = |vi〉 =
1√
d

d∑
i

vi |ei〉 (6.11)

where ei is the ith unary vector (e.g. |0 · · · 010 · · · 0〉). Note that |vi〉 can be
projected onto the second vector, and thus expressed in the basis {vj, v⊥j } as

|vi〉 = 〈vi|vj〉 |vj〉+
√

1− 〈vi|vj〉2 |v⊥j 〉 (6.12)

Recall that the unary data loaders from [JDM+20] are using only RBS(θ) gates
from Eq.4.13 and it is simple to show that RBS(θ) = RBS†(−θ). The concatenation
of the two circuits D†(vj)D(vi) will therefore output the state:

D†(vj)D(vi) = D†(vj)

(
〈vi|vj〉 |vj〉+

√
1− 〈vi|vj〉2 |v⊥j 〉

)
= 〈vi|vj〉 |e1〉+

√
1− 〈vi|vj〉2 |e⊥1 〉 (6.13)

Using parallel data loaders as shown in Fig.6.2, the depth of the circuit is
O(2 log(d)), using O(d) qubits. If the goal is to retrieve a classical approxima-
tion of 〈vi|vj〉, one can perform several measurements to estimate |〈vi|vj〉|2, being
the probability to the number of times a ‘1’ is seen on the first qubit.

Notably, we remark that recovering the inner product would be exact only for
vectors with the same sign. To generalize and get the sign of the inner product,
one can add an extra qubit in superposition to control the whole circuit, which will
result in an amplitude of ((1 + 〈vi|vj〉)/2).
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6.2 Quantum Circuit for Inner Product and Dis-

tance Estimation

In this section, we introduce a quantum algorithm for inner product and distance
estimation between amplitude encoded vectors, applicable in superposition. Using
the work of [WKS14a], we adapted the Frobenius distance estimator from [KL20]
that calculates the average square distance between a single point and all set many
other points. It allows us to calculate the square distance or inner product (with its
sign) between two vectors. This routine becomes very efficient when having quantum
access to the vectors (Definition 4.5).

As shown in Fig.1.6, this algorithm will be a core part of many others during this
thesis: matrix multiplication, neural network’s layer, convolution product, adjacency
graph creation, etc.

6.2.1 Quantum Circuit

We first state the Theorem that summarizes the circuit complexity and guarantees,
from [KLLP19]:

Theorem 6.1: Distance & Inner Product Estimation

Given quantum access in time T to two data matrices V ∈ RN×d and C ∈ Rk×d

with rows vi and vj. For any ∆ > 0 and ε > 0, there exists a quantum
algorithm that computes

1. The squared distance: |i〉 |j〉 |0〉 7→ |i〉 |j〉 |d2(vi, vj)〉 where |d2(vi, vj) −
d2(vi, vj)| 6 ε with probability at least 1 − 2∆, in time
O
(

1
ε
‖vi‖ ‖vj‖T log(1/∆)

)
.

2. The unnormalized inner product: |i〉 |j〉 |0〉 7→ |i〉 |j〉 |(vi, vj)〉 where

|(vi, vj) − (vi, vj)| 6 ε with probability at least 1 − 2∆, in time
O
(

1
ε
‖vi‖ ‖vj‖T log(1/∆)

)
.

Both of these tasks can be applied in superposition over all vectors of V
and C, each with a running time upper bounded by O

(
1
ε
ηT log(1/∆)

)
where

η = maxi,j(‖vi‖ ‖vj‖) with the assumption mini(‖vi‖) = mini(‖vj‖) = 1.

Remark that if a QRAM model is used (Theorem 4.1), the complexity becomes

simply Õ(η/ε). Note also that the error guarantees can be reformulate for a rel-
ative error |(vi, vj) − (vi, vj)| 6 ε(vi, vj) which modifies the running time to be

O
(

1
ε

‖vi‖‖vj‖
|(vi,vj)| T log(1/∆)

)
The parameter η(·) will be present in many running times from now on. To this

end, we introduce a proper definition:
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Definition 6.1: Parameter η(·)

For a matrix V ∈ Rn×d, its parameter η(V ) is defined as

η(V ) =
maxi(‖vi‖2)

mini(‖vi‖2)
(6.14)

or as maxi(‖vi‖2) if we assume mini(‖vi‖) = 1.

Proof. Let us start by describing a procedure to estimate the square `2 distance
between the normalized vectors |vi〉 and |vj〉. We start with the initial state

|φij〉 := |i〉 |j〉 1√
2

(|0〉+ |1〉) |0〉 (6.15)

Then, we query the state preparation oracle controlled on the third register to
perform the mappings |i〉 |j〉 |0〉 |0〉 7→ |i〉 |j〉 |0〉 |vi〉 and |i〉 |j〉 |1〉 |0〉 7→ |i〉 |j〉 |1〉 |vj〉.
The state after this is given by,

1√
2

(|i〉 |j〉 |0〉 |vi〉+ |i〉 |j〉 |1〉 |vj〉) (6.16)

Finally, we apply an Hadamard gate on the the third register to obtain,

|i〉 |j〉
(

1

2
|0〉 (|vi〉+ |vj〉) +

1

2
|1〉 (|vi〉 − |vj〉)

)
(6.17)

The probability of obtaining |1〉 when the third register is measured is,

pij =
1

4
(2− 2〈vi|vj〉) =

1

4
d2(|vi〉 , |vj〉) =

1− 〈vi|vj〉
2

(6.18)

which is proportional to the square distance between the two normalized vectors.
We can rewrite |1〉 (|vi〉 − |vj〉) as |yij, 1〉 (by swapping the registers), and hence

we have the final mapping

A : |i〉 |j〉 |0〉 7→ |i〉 |j〉 (√pij |yij, 1〉+
√

1− pij |Gij, 0〉) (6.19)

where the probability pij is proportional to the square distance between the nor-
malized vectors and Gij is a garbage state. Note that the running time of A is
TA = Õ(T ).

We then use amplitude estimation (Theorem 3.4) on the unitary A defined in
Eq.(6.19). This creates an unitary operation that maps

U : |i〉 |j〉 |0〉 7→ |i〉 |j〉
(√

α |pij, G, 1〉+
√

(1− α) |G′, 0〉
)

(6.20)

where G,G′ are garbage registers, |pij − pij| ≤ ε and α ≥ 8/π2. The unitary U
requires P iterations of A with P = O(1/ε). Amplitude estimation thus takes time

TU = Õ(T/ε).
We then make use of a tool developed in [WKS14a] to boost the probability and

precision for the estimation of the distances or inner products. At high level, it takes
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multiple copies of the estimator from the amplitude estimation procedure, and uses
them to compute the median value. It finally reverses the circuit to get rid of the
garbage states. We provide more details after the end of the current proof. Here we
provide a theorem with respect to time and not query complexity.

Theorem 6.2: Median Evaluation

Let U be a unitary operation that maps

U : |0〉 7→
√
a |x, 1〉+

√
1− a |G, 0〉 (6.21)

for some 1/2 < a ≤ 1 in time T . Then there exists a quantum algorithm that
uses L copies of the above state, and for any ∆ > 0 and for any 1/2 < a0 ≤ a,

produces a state |Ψ〉 such that
∥∥∥|Ψ〉 − |0〉⊗L |x〉∥∥∥ ≤ √2∆, in time:

2T

⌈
ln(1/∆)

2
(
|a0| − 1

2

)2

⌉
. (6.22)

We apply Theorem 6.2 for the unitary U to obtain a quantum state |Ψij〉 such
that, ∥∥∥|Ψij〉 − |0〉⊗L |pij, G〉

∥∥∥
2
≤
√

2∆ (6.23)

The running time of the procedure is O (TU ln(1/∆)) = Õ
(
T
ε

log(1/∆)
)
.

Note that we can easily multiply the value pij by 4 in order to have the esti-
mator of the square distance of the normalized vectors or compute 1− 2pij for the
normalized inner product. Last, the garbage state does not cause any problem in
calculating the minimum in the next step, after which this step is uncomputed.

The last step is to show how to estimate the square distance or the inner product
of the unnormalized vectors. Since we know the norms of the vectors, we can simply
multiply the estimator of the normalized inner product with the product of the two
norms to get an estimate for the inner product of the unnormalized vectors and
a similar calculation works for the distance. Note that the absolute error ε now
becomes ε ‖vi‖ ‖vj‖ and hence if we want to have in the end an absolute error ε this
will incur a factor of ‖vi‖ ‖vj‖ in the running time. This concludes the proof of the
Theorem 6.1.

Median Evaluation Details

As stated in Theorem 6.2 from [WKS14a], we can boost the probability of measur-
ing the right state during inner product estimation. The improved precision can
be arbitrary with only a logarithmic dependence in the runtime. It also requires L
new copies of the current state, which fortunately is also logarithmic in the precision.

As before, if we can obtain the state
√
p |y〉 +

√
1− p |y⊥〉, with p encoding

the meaningful information such as a distance or else, we can apply the amplitude
estimation and get in time T :

α |y..〉 |p〉+ α′ |y⊥..〉 |p⊥〉 (6.24)
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with the informal notation |y..〉 to denote the potential presence of garbage states,
and with p being an ε-close estimate of p using m-qubits for precision. We know
from Theorem 3.4 that |α|2 ≥ 8/π2.

Then, to increase the probability of measuring |p〉 and not |p⊥〉, we will use L
copies of the state in Eq.(6.24), (α |y..〉 |p〉+α′ |y⊥..〉 |p⊥〉)⊗L. We will apply a median
evaluation unitary on these L states. This operations write in an extra register the
median value |P̃ 〉 observed.

(α |y..〉 |p〉+ α′ |y⊥..〉 |p⊥〉)⊗L |0〉⊗m 7→ (α |y..〉 |p〉+ α′ |y⊥..〉 |p⊥〉)⊗L |P̃ 〉 (6.25)

To understand what is |P̃ 〉, we index each of the L copies gives, such that:

(
α |..p1〉+ α′ |..p1

⊥〉
)
⊗
(
α |..p2〉+ α′ |..p2

⊥〉
)
⊗ · · · ⊗

(
α |..pL〉+ α′ |..pL⊥〉

)
(6.26)

This expression, once developed, is informally equivalent to:

(|p1〉 |p2〉 · · · |pL〉) +
(
|p1
⊥〉 |p2〉 · · · |pL〉

)
+ · · ·+

(
|p1
⊥〉 |p2

⊥〉 · · · |pL⊥〉
)

(6.27)

For each term were half of the values are |pi〉 and not |pi⊥〉, the median evaluation
will gives the right result |p〉. The proof of Theorem 6.2 ensures that the final state
|P̃ 〉 is sufficiently close to p, and that if we reverse the whole computation, we obtain
a state |Ψ〉 such that: ∥∥∥|Ψ〉 − |0〉⊗L |p〉∥∥∥

2
≤
√

2∆ (6.28)

Where ∆ > 0 is an arbitrary precision parameter linked to the number L of
copies requires:

L =

⌈
ln(∆−1)

2(|α| − 1
2
)2

⌉
(6.29)

We see that the number L of copies is logarithmic in the precision ∆, which
is efficient since the median evaluation unitary has a complexity of O(L). Finally,
the overall time is given by O(2TL), where the factor 2 is for reversing the whole
computation:

O

(
2T

⌈
ln(∆−1)

2(|α| − 1
2
)2

⌉)
(6.30)

Note that Eq.(6.28) can be interpreted as a result on the probability of observing
the right state as well. Indeed, if ‖|a〉 − |b〉‖2 ≤

√
ε, then we can show that |a〉 =

β |b〉+β′ |G〉 with β ≥
√

1− ε and β′ ≤
√
ε. |G〉 is the undesired state. This implies

a probability at least 1− 2∆ of observing the good state |0〉⊗L |p〉 from |Ψ〉.
Finally, we can extend this demonstration to the case of k tensor products as

it will be used in Chapter 8. The logic stays the same, but the error between |Ψ〉
is now upper bounded by

√
2∆k, by a Union bound argument. indeed, following

Eq.(6.28), the probability to have one bad results out k is 2∆k.
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6.2.2 Error Analysis

Since the quantum inner product or distance estimation algorithm (Theorem 6.1)
will be used frequently, it is important to understand exactly the error it implies for
the rest of the computations. Since the algorithm relies on amplitude estimation
(Theorem 3.4), itself relying on phase estimation (Theorem 3.1), we can cascade
back the error.

At first, the phase estimation algorithm [BHMT02] allows us to compute in
superposition the phases ω of the eigenvectors eiπω of a unitary. For one value ω,
the phase estimation circuit with n qubits will return the state |ω〉 =

∑
x α(k) |k〉

where k are series of integers between 0 and 2n. We define the error δ = |ω− k/2n|.
The probability of obtaining a specific integer k when measuring the output is given
by:

p(k) = |α(k)|2 =
1

22n

sin2(π(2nδ − k))

sin2(π(δ − k/2n))
(6.31)

The most probable k we would measure is the one such that k/2n is the closest
to ω. Unless ω = k/2n, in which case the computation is perfect. Note that the
error made on the estimation of ω strongly depends on the value of ω itself. See
Fig.6.4 for numerical simulations of the distributions.

Figure 6.3: We estimate ω with the closest k/2n for any integer k ∈ [0, 2n] . Source:
[KLM+07].

Later on, this error is modified during amplitude estimation and the quantum
circuit from 6.2.1. It is worth noticing that to obtain the unnormalized inner prod-
uct, or the distance, the error is multiplied by the product of the norm of the two
vectors. Therefore, the magnitude of the vectors will increase the absolute error
(but not the relative one) as we can see in Fig.6.5.

More precisely, for two vectors vi and vj, the amplitude we want to estimate is:

a =
1

2

(
〈vi|vj〉
‖vi‖ ‖vj‖

+ 1

)
(6.32)
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Since phase estimation allows to obtain the phase ω of an amplitude of the form
sin(πω), we further want to obtain the actual normalized inner product:

ω =
1

π
arcsin(a) (6.33)

As explained above, phase estimation will output, with some probability (see Eq.(6.31)),
the closest value to ω of the form k/2n. We write b = argmink∈[2n](|k/2n−ω|). The
actual amplitude obtained is an element of the set {ω`}`∈[2n] such that:

ω` =
1

2n
(b+ ` mod (2n)) (6.34)

Each ω` yields an approximated amplitude a` = sin(πω`) which finally gives the
result:

x` = ‖vi‖ ‖vj‖ (2a` − 1) (6.35)

With probability:

p(`) =
1

22n

sin2(π(2nδ − `))
sin2(π(δ − `/2n))

(6.36)

Note that we don’t include median evaluation (Theorem 6.2) in this analysis,
which could have improved the precision arbitrarily.

6.2.3 Numerical Simulations

To gain more intuition on the numerical errors made by the quantum algorithms,
we perform extensive classical simulations1 (see Section 3.4.2 for the methodology).

First, we plotted the distribution from Eq.(6.31) along with the inner product
estimation that follows, for two particular vectors. The results are given in Fig.6.4.
We can see that the more qubits, the precise is the distribution around the exact
value of the inner product. Recall from the previous section that the shape of the
distribution depends on the value itself. With more qubits, more values with high
probabilities are close to the exact value, and therefore the estimation is more and
more precise.

To gain one dimension, we performed the same simulations by varying one of
the two input vectors. We chose two vectors of two dimensions but with only one
element of one vector is shown in the x-axis, so that the inner product is shown in
the y-axis. The first vector was (0.544, 0.6) and the variable vector (x, 1).

The results are given in Figures 6.5 and 6.6 for increasing number of qubits n.
For each, we sampled randomly 500000 points x and generate an estimation of the
inner product using the simulation. In the ideal case, the result of such a simulation
should be a straight line f(x) = λx with λ = 0.6 + 0.544x. For each graph, we
observe a general tendency to follow this line, accompanied by oscillations around
it, depending on the x value and the number of qubits.

The parts of the oscillations with high amplitude show where the error is expected
to be the highest. As expected, the error increases on average when the norm of the
vector increases.

Notably, with a small number of qubits such as n = 10, we are already almost
reproducing the ideal line with low noise around.

1The simulation program was made by Noah Berner
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(a) n=6 (b) n=8 (c) n=10

Figure 6.4: Probability distribution for the output of an inner product estimation
with x = (0.25, 0.3,−0.5) and y = (−0.15,+0.3,−0.5), 〈x|y〉 = 0.302, for different
number of qubits n. The shape of the distribution depends on the value to estimate.

(a) n=6 (b) n=7

(c) n=8 (d) n=9

Figure 6.5: Classical simulation results of the Quantum Inner Product Estimation
algorithm. The y-axis is the result of the quantum inner product between a fixed
vector (0.544, 0.6) and a variable vector (x, 1), where x is the x-axis. The estimation
is repeated over 500000 points, simulated for different number n of qubits.
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(a) n=10 (b) n=11

Figure 6.6: Classical simulation results of the Quantum Inner Product Estimation
algorithm. The y-axis is the result of the quantum inner product between a fixed
vector (0.544, 0.6) and a variable vector (x, 1), where x is the x-axis. The estimation
is repeated over 500000 points, simulated for different number n of qubits.

Finally, we couldn’t help but think of the famous interference pattern one can
see in the diffraction of a laser beam passing through a small slit or obstacle. This
pattern is the signature of a wave-like phenomenon such as light, but also matter at
its smallest scale, as quantum physics tell us.

Figure 6.7: A quantum interference pattern produced by the diffraction of a laser
beam. Source: Institute of Quantum Computing, University of Waterloo.

Note that in the rest of this thesis, when trying to simulate quantum algorithms
classically, we will approximate the quantum noise of inner product or distance
estimation by Gaussian noise with mean 0 and variance ε, multiplied by the norm of
the input vectors. We have seen that this is not exactly what is occurring in theory.
The noise at a specific value may seem Gaussian (see Fig.6.4), but in fact it depends
on the value itself, which makes it non-isotropic and periodic. That being said,
Gaussian noise remains a simpler and fairly accurate approximation of the above
effect.
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Quantum Unsupervised Learning
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Chapter 7

Introduction

”La science consiste à passer
d’un étonnement à un autre.”

Aristote
La Métaphysique

In this Part, we are interested in unsupervised learning and in particular in the
canonical problem of clustering: given a dataset represented as N vectors, we want
to find an assignment of the vectors to one of k labels (for a given k that we assume
to know) such that similar vectors are assigned to the same cluster. Often, the
Euclidean distance is used to measure the similarity of vectors, but other metrics
might be used, according to the problem under consideration. Details of the classical
algorithms are given in Chapter 2.

In Chapter 8, we propose q-means [KLLP19], a quantum algorithm for clustering,
which can be viewed as a quantum alternative to the classical k-means algorithm.
More precisely, q-means is the equivalent of the δ-k-means algorithm, a robust ver-
sion of k-means that will be defined later. We provide a detailed analysis to show
that q-means has an output consistent with the classical δ-k-means algorithm and
further has a running time that depends polylogarithmically on N , the number of
elements in the dataset. We introduce the notion of well-clusterable dataset, allow-
ing us to further refine the final running time. The last part of this work includes
simulations which asserts the performance and running time of the q-means algo-
rithm.

In Chapter 9, we propose the quantum spectral clustering algorithm [KL21], a
quantum analog of the spectral clustering algorithm. With roots in graph theory,
it uses the spectral properties of the Laplacian matrix to project the data in a low
dimensional space where clustering is more efficient. Despite its success in clustering
tasks, spectral clustering suffers in practice from a fast-growing running time of
O(N3), where N is the number of points in the dataset. In this work we propose
an end-to-end quantum algorithm performing spectral clustering, extending several
works in quantum machine learning.

The quantum algorithm is composed of two parts: the first is the efficient creation
of the quantum state corresponding to the projected Laplacian matrix, and the
second consists of applying q-means algorithm presented before. Both steps depend
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polynomially on the number of clusters, as well as precision and data parameters
arising from quantum procedures, and polylogarithmically on the dimension of the
input vectors. Our numerical simulations show an asymptotic linear growth with N
when all terms are taken into account, significantly better than the classical cubic
growth.

This work opens the path to other graph-based quantum machine learning algo-
rithms, as it provides routines for efficient computation and quantum access to the
Incidence, Adjacency, and projected Laplacian matrices of a graph.

Related Work

In this section, we discuss previous work on quantum unsupervised learning and
clustering. Aimeur, Brassard and Gambs [ABG13] gave two quantum algorithms for
unsupervised learning using the amplification techniques from [DH96]. Specifically,
they proposed an algorithm for clustering based on minimum spanning trees that
runs in time Θ(N3/2) and a quantum algorithm for k-median (a problem related to
k-means) algorithm with complexity time O(N3/2/

√
k).

Lloyd, Mohseni and Rebentrost [LMR13] proposed quantum k-means and near-
est centroid algorithms using an efficient subroutine for quantum distance estimation
assuming as we do quantum access to the data. Given a dataset of N vectors in
a feature space of dimension d, the running time of each iteration of the clustering
algorithm (using a distance estimation procedure with error ε) is O(kN log d

ε
) to pro-

duce the quantum state corresponding to the clusters. Note that the time is linear
in the number of data points and it will be linear in the dimension of the vectors if
the algorithm needs to output the classical description of the clusters.

In the same work, they also proposed an adiabatic algorithm for the assignment
step of the k-means algorithm, that can potentially provide an exponential speedup
in the number of data points as well, in the case the adiabatic algorithm performs
exponentially better than the classical algorithm. The adiabatic algorithm is used in
two places for this algorithm, the first to select the initial centroids, and the second
to assign data points to the closest cluster. However, while arguments are given
for its efficiency, it is left as an open problem to determine how well the adiabatic
algorithm performs on average, both in terms of the quality of the solution and the
running time.

[WKS14a] applied the minimum finding algorithm [DH96] to obtain nearest-
neighbor methods for supervised and unsupervised learning. At a high level, they
recovered a Grover-type quadratic speedup with respect to the number of elements
in the dataset in finding the k nearest neighbors of a vector. Otterbach et al.
[OMA+17] performed clustering by exploiting a well-known reduction from cluster-
ing to the Maximum-Cut (MAXCUT) problem; the MAXCUT is then solved using
QAOA, a quantum algorithm for performing approximate combinatorial optimiza-
tion [FGG14].

There is extensive work in quantum computing involving graph problems such
as min-cut, max-flow, or the traveling salesman problem [MLM17, CFS+16], but
only a few are about graph-based machine learning [OMA+17, DFK+04]. Spectral
clustering has been studied in [Das17] but no proven speedups were given. More
recently, [AdW20] introduced quantum algorithms using the graph Laplacian for
optimization and machine learning applications, including spectral clustering. In
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that paper, the starting point was the assumption of having superposition-access to
the classically-stored weights of the similarity graph, corresponding to the Lapla-
cian directly, from which the authors performed tasks like sparsification of the graph
faster than classical algorithms. In our work, we propose an efficient quantum algo-
rithm to construct the projected Laplacian matrix itself from access to the classical
input, before proceeding to the clustering algorithm. Note that one could eventu-
ally combine the methods from [AdW20] and our procedure, or any other procedure
that provides access to the projected Laplacian matrix, and thus construct different
quantum spectral clustering algorithms.
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Chapter 8

Q-means

”Mathematics may be defined as
the subject in which we never
know what we are talking about,
nor whether what we are saying
is true.”

Bertrand Russell
Mysticism and Logic and Other

Essays (1910)

8.1 Preliminaries

Preliminaries on the k-means algorithm , along with all notations are given in Section
2.2.1.

8.1.1 Main Results

We define and analyze a new quantum algorithm for clustering, the q-means al-
gorithm, whose performance is similar to that of the classical k-means algorithm
defined in Section 2.2.1 and whose running time provides substantial savings, espe-
cially for the case of large data sets. To be more precise and to take into account
all quantum randomness and noise, we define the classical δ-k-means algorithm in
Section 8.1.2, a noisy version of the k-means that is equivalent to our quantum
algorithm.

The q-means algorithm combines most of the advantages that quantum machine
learning algorithms can offer for clustering. First, the running time is polyloga-
rithmic in the number of elements of the dataset and depends only linearly on the
dimension of the feature space. Second, q-means returns explicit classical descrip-
tions of the cluster centroids that are obtained by the δ-k-means algorithm. As the
algorithm outputs a classical description of the centroids, it is possible to use them
in further (classical or quantum) classification algorithms.

Our q-means algorithm requires that the dataset is stored in a QRAM (see Theo-
rem 4.1), which allows the algorithm to use efficient linear algebra routines (Part II)
that have been developed using QRAM data structures. Of course, our algorithm
can also be used for clustering datasets for which the data points can be efficiently
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prepared even without a QRAM, for example if the data points are the outputs of
quantum circuits.

We start by providing a worst case analysis of the running time of our algorithm,
which depends on parameters of the data matrix, for example the condition number
and the parameter µ that appears in the quantum linear algebra procedures. Note
that with Õ we hide polylogarithmic factors.

Result 8.1: q-means - General Case

Given dataset V ∈ RN×d stored in QRAM, the q-means algorithm outputs
with high probability centroids c1, · · · , ck that are consistent with an output
of the δ-k-means algorithm in time

Õ

(
kd

η

δ2
κ(V )(µ(V ) + k

η

δ
) + k2η

1.5

δ2
κ(V )µ(V )

)
(8.1)

per iteration, where κ(V ) is the condition number, µ(V ) is a parameter that
appears in quantum linear algebra procedures and 1 ≤ ‖vi‖2 ≤ η.

When we say that the q-means output is consistent with the δ-k-means, we mean
that with high probability the clusters that the q-means algorithm outputs are also
possible outputs of the δ-k-means.

We go further in our analysis and study a well-motivated model for datasets
that allows for good clustering. We call these datasets well-clusterable. One possible
way to think of such datasets is the following: a dataset is well-clusterable when
the k clusters arise from picking k well-separated vectors as their centroids, and
then each point in the cluster is sampled from a Gaussian distribution with small
variance centered on the centroid of the cluster. We provide a rigorous definition in
the following sections. For such well-clusterable datasets, we can provide a tighter
analysis of the running time and have the following result, whose formal version
appears as Theorem 8.3.

Result 8.2: q-means - Well-Clusterable Case

Given a well-clusterable dataset V ∈ RN×d stored in QRAM, the q-means
algorithm outputs with high probability k centroids c1, · · · , ck that are con-
sistent with the output of the δ-k-means algorithm in time

Õ

(
k2d

η2.5

δ3
+ k2.5η

2

δ3

)
(8.2)

per iteration, where 1 ≤ ‖vi‖2 ≤ η.

In order to assess the running time and performance of our algorithm, we performed
extensive simulations for different datasets. The running time of the q-means algo-
rithm is linear in the dimension d, which is necessary when outputting a classical
description of the centroids, and polynomial in the number of clusters k which is
typically a small constant. The main advantage of the q-means algorithm is that it
provably depends logarithmically on the number of points, which can in many cases
provide a substantial speedup. The parameter δ (which plays the same role as in the

98



CHAPTER 8. Q-MEANS

δ-k-means) is expected to be a large enough constant that depends on the data and
the parameter η is again expected to be a small constant for datasets whose data
points have roughly the same norm. For example, for the MNIST dataset, η can
be less than 8 and δ can be taken to be equal to 0.5. In Section 8.3 we present the
results of our simulations. For different datasets we find parameters δ such that the
number of iterations is practically the same as in the k-means, and the δ-k-means
algorithm converges to a clustering that achieves an accuracy similar to the k-means
algorithm or in times better. We obtained these simulation results by simulating
the operations executed by the quantum algorithm adding the appropriate errors in
the procedures.

As a side note, a generalization of the q-means algorithms has been proposed
to solve the Gaussian mixture model in [KLP20b]. Instead of looking for centroids
only, it also finds the covariance matrix for each cluster that approximates the multi
dimensional Gaussian distribution of data points around the centroids. This ensures
a more precise clustering and allows for clusters to be of different sizes and shapes.

8.1.2 δ-k-means

We now consider a δ-robust version of the k-means defined in Section 2.2.1, in which
we introduce some noise. The noise affects the algorithms in both of the steps of
k-means: label assignment and centroid estimation.

Let us describe the rules for the assignment step of δ-k-means more precisely.
Let c∗i be the closest centroid to the data point vi. Then, the set of possible labels
Lδ(vi) for vi is defined as follows:

Lδ(vi) = {cp : |d2(c∗i , vi)− d2(cp, vi)| ≤ δ } (8.3)

The assignment rule selects arbitrarily a cluster label from the set Lδ(vi).
Second, we add δ/2 noise during the calculation of the centroid. Let Ct+1

j be the
set of points which has been labeled by j in the previous step. For δ-k-means we
pick a centroid ct+1

j with the property∥∥∥∥∥∥∥ct+1
j − 1

|Ct+1
j |

∑
vi∈Ct+1

j

vi

∥∥∥∥∥∥∥ <
δ

2
(8.4)

One way to do this is to calculate the centroid exactly and then add some small
Gaussian noise to the vector to obtain the robust version of the centroid.

Let us add two remarks on the δ-k-means. First, for a well-clusterable data set
and for a small δ, the number of vectors on the boundary that risk to be misclassified
in each step, that is the vectors for which |Lδ(vi)| > 1 is typically much smaller
compared to the vectors that are close to a unique centroid. Second, we also increase
by δ/2 the convergence threshold from the k-means algorithm. All in all, δ-k-means
is able to find a clustering that is robust when the data points and the centroids are
perturbed with some noise of magnitude O(δ). As we will see in this work, q-means
is the quantum equivalent of δ-k-means.
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8.1.3 Well-Clusterable Datasets

In this section, we define a model for the dataset in order to provide a tight analysis
on the running time of our clustering algorithm. Note that we do not need this
assumption for our general q-means algorithm, but in this model we can provide
tighter bounds for its running time. Without loss of generality we consider in the
following that the dataset V is normalized so that for all i ∈ [N ], we have 1 ≤ ‖vi‖,
and we define the parameter η = maxi ‖vi‖2. We will also assume that the number k
is the “right” number of clusters, meaning that we assume each cluster has at least
some Ω(N/k) data points.

We now introduce the notion of a well-clusterable dataset. The definition aims
to capture some properties that we can expect from datasets that can be clustered
efficiently using a k-means algorithm. Our notion of a well-clusterable dataset shares
some similarity with the assumptions made in [DKR02], but there are also some
differences specific to the clustering problem.

Definition 8.1: Well-clusterable dataset

A data matrix V ∈ RN×d with rows vi ∈ Rd, i ∈ [N ] is said to be well-
clusterable if there exist constants ξ, β > 0, λ ∈ [0, 1], η ≤ 1, and cluster
centroids ci for i ∈ [k] such that:

1. (separation of cluster centroids): d(ci, cj) ≥ ξ ∀i, j ∈ [k]

2. (proximity to cluster centroid): At least λN points vi in the dataset
satisfy d(vi, cl(vi)) ≤ β where cl(vi) is the centroid nearest to vi.

3. (Intra-cluster smaller than inter-cluster square distances): The following
inequality is satisfied

4
√
η
√
λβ2 + (1− λ)4η ≤ ξ2 − 2

√
ηβ (8.5)

Intuitively, the assumptions guarantee that most of the data can be easily as-
signed to one of k clusters, since these points are close to the centroids, and the
centroids are sufficiently far from each other. The exact inequality comes from the
error analysis, but in spirit it says that ξ2 should be bigger than a quantity that
depends on β and the maximum norm η.

We now show that a well-clusterable dataset has a good rank-k approximation
where k is the number of clusters. This result will later be used for giving tight
upper bounds on the running time of the quantum algorithm for well-clusterable
datasets. As we said, one can easily construct such datasets by picking k well
separated vectors to serve as cluster centers and then each point in the cluster is
sampled from a Gaussian distribution with small variance centered on the centroid
of the cluster.

Claim 8.1

Let Vk be the optimal k-rank approximation for a well-clusterable data matrix
V , then ‖V − Vk‖2

F ≤ (λβ2 + (1− λ)4η) ‖V ‖2
F .

Proof. Let W ∈ RN×d be the matrix with row wi = cl(vi), where cl(vi) is the centroid
closest to vi. The matrix W has rank at most k as it has exactly k distinct rows.
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As Vk is the optimal rank-k approximation to V , we have ‖V − Vk‖2
F ≤ ‖V −W‖

2
F .

It therefore suffices to upper bound ‖V −W‖2
F . Using the fact that V is well-

clusterable, we have

‖V −W‖2
F =

∑
ij

(vij − wij)2 =
∑
i

d(vi, cl(vi))
2 ≤ λNβ2 + (1− λ)N4η (8.6)

where we used Definition 8.1 to say that for a λN fraction of the points d(vi, cl(vi))
2 ≤

β2 and for the remaining points d(vi, cl(vi))
2 ≤ 4η. Also, as all vi have norm at least

1 we have N ≤ ‖V ‖F , implying that ‖V − Vk‖2 ≤ ‖V −W‖2
F ≤ (λβ2 + (1 −

λ)4η) ‖V ‖2
F .

The running time of the quantum linear algebra routines for the data matrix V in
Theorem 5.2 depend on the parameters µ(V ) and κ(V ). We establish bounds on
both of these parameters using the fact that V is well-clusterable

Claim 8.2

Let V be a well-clusterable data matrix, then µ(V ) :=
‖V ‖F
‖V ‖ = O(

√
k).

Proof. We show that when we rescale V so that ‖V ‖ = 1, then we have ‖V ‖F =

O(
√
k) for the rescaled matrix. From the triangle inequality we have that ‖V ‖F ≤

‖V − Vk‖F + ‖Vk‖F . Using the fact that ‖Vk‖2
F =

∑
i∈[k] σ

2
i ≤ k and Claim 8.1, we

have,
‖V ‖F ≤

√
(λβ2 + (1− λ)4η) ‖V ‖F +

√
k (8.7)

Rearranging, we have that ‖V ‖F ≤
√
k

1−
√

(λβ2+(1−λ)4η)
= O(

√
k).

We next show that if we use a condition threshold κτ (V ) instead of the true
condition number κ(V ), that is we consider the matrix V≥τ =

∑
σi≥τ σiuiv

T
i by

discarding the smaller singular values σi < τ , the resulting matrix remains close to
the original one, i.e. we have that ‖V − V≥τ‖F is bounded.

Claim 8.3

Let V be a matrix with a rank-k approximation given by ‖V − Vk‖F ≤ ε′ ‖V ‖F
and let τ = ετ√

k
‖V ‖F , then ‖V − V≥τ‖F ≤ (ε′ + ετ ) ‖V ‖F .

Proof. Let l be the smallest index such that σl ≥ τ , so that we have ‖V − V≥τ‖F =
‖V − Vl‖F . We split the argument into two cases depending on whether l is smaller
or greater than k.

• If l ≥ k then ‖V − Vl‖F ≤ ‖V − Vk‖F ≤ ε′ ‖V ‖F .

• If l < k then, ‖V − Vl‖F ≤ ‖V − Vk‖F + ‖Vk − Vl‖F ≤ ε′ ‖V ‖F +
√∑k

i=l+1 σ
2
i .

As each σi < τ and the sum is over at most k indices, we have the upper
bound (ε′ + ετ ) ‖V ‖F .
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The reason we defined the notion of well-clusterable dataset is to be able to provide
some strong guarantees for the clustering of most points in the dataset. Note that
the clustering problem in the worst case is NP-hard and we only expect to have
good results for datasets that have some good property. Intuitively, we should only
expect k-means to work when the dataset can actually be clustered in k clusters.
We next show that for a well-clusterable dataset V , there is a constant δ that can
be computed in terms of the parameters in Definition 8.1 such that the δ-k-means
clusters correctly most of the data points.

Claim 8.4

Let V be a well-clusterable data matrix. Then, for at least λN data points
vi, we have

min
j 6=`(i)

(d2(vi, cj)− d2(vi, c`(i))) ≥ ξ2 − 2
√
ηβ (8.8)

which implies that a δ-k-means algorithm with any δ < ξ2−2
√
ηβ will cluster

these points correctly.

Proof. By Definition 8.1, we know that for a well-clusterable dataset V , we have
that d(vi, cl(vi)) ≤ β for at least λN data points and where cl(vi) is the centroid
closest to vi. Further, the distance between each pair of the k centroids satisfies
the bounds 2

√
η ≥ d(ci, cj) ≥ ξ. By the triangle inequality, we have d(vi, cj) ≥

d(cj, c`(i))− d(vi, c`(i)). Squaring both sides of the inequality and rearranging,

d2(vi, cj)− d2(vi, c`(i)) ≥ d2(cj, c`(i))− 2d(cj, c`(i))d(vi, c`(i))) (8.9)

Substituting the bounds on the distances implied by the well-clusterability assump-
tion, we obtain d2(vi, cj)− d2(vi, c`(i)) ≥ ξ2− 2

√
ηβ. This implies that as long as we

pick δ < ξ2 − 2
√
ηβ, these points are assigned to the correct cluster, since all other

centroids are more than δ further away than the correct centroid.

8.2 The q-means Algorithm

8.2.1 Quantum Circuit

The q-means algorithm is given as Algorithm 2. At a high level, it follows the same
steps as the classical k-means algorithm described in Section 2.2.1. Compared to
k-means, q-means uses quantum subroutines for distance estimation, finding the
minimum value among a set of elements, matrix multiplication for obtaining the
new centroids as quantum states, and efficient tomography. First, we pick some ran-
dom initial points, using some classical techniques, for example k-means++ [AV07].
Then, in Steps 1 and 2 all data points are assigned to clusters, and in Steps 3 and 4
we update the centroids of the clusters. The process is repeated until convergence.

Step 1: Centroid Distance Estimation

The first step of the algorithm estimates the square distance between data points
and clusters using a quantum procedure. For this we used the method presented in
Section 6.2, assuming quantum access to the vectors {vi}i∈[N and centroids {cj}j∈[k.
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Algorithm 2 q-means.

Require: Data matrix V ∈ RN×d stored in QRAM data structure. Precision pa-
rameters δ for k-means, error parameters ε1 for distance estimation, ε2 and ε3
for matrix multiplication and ε4 for tomography.

Ensure: Outputs vectors c1, c2, · · · , ck ∈ Rd that correspond to the centroids at the
final step of the δ-k-means algorithm.

1: Select k initial centroids c0
1, · · · , c0

k and store them in QRAM data structure.
2: t=0
3: repeat
4: Step 1: Centroid Distance Estimation

Perform the mapping (Theorem 8.1)

1√
N

N∑
i=1

|i〉 ⊗j∈[k] |j〉 |0〉 7→
1√
N

N∑
i=1

|i〉 ⊗j∈[k] |j〉 |d2(vi, ctj)〉 (8.10)

where |d2(vi, ctj)− d2(vi, c
t
j)| ≤ ε1.

5: Step 2: Cluster Assignment
Find the minimum distance among {d2(vi, c

t
j)}j∈[k] (Lemma 8.5), then uncom-

pute Step 1 to create the superposition of all points and their labels

1√
N

N∑
i=1

|i〉 ⊗j∈[k] |j〉 |d2(vi, ctj)〉 7→
1√
N

N∑
i=1

|i〉 |`t(vi)〉 (8.11)

6: Step 3: Centroid states creation
3.1 Measure the label register to obtain a state |χtj〉 = 1√

|Ctj |

∑
i∈Ctj
|i〉, with

prob.
|Ctj |
N

3.2 Perform matrix multiplication with matrix V T and vector |χtj〉 to obtain

the state |ct+1
j 〉 with error ε2, along with an estimation of

∥∥ct+1
j

∥∥ with relative
error ε3 (Theorem 5.2).

7: Step 4: Centroid Update
4.1 Perform tomography for the states |ct+1

j 〉 with precision ε4 using the op-

eration from Steps 1-3 (Theorem 4.2) and get a classical estimate ct+1
j for the

new centroids such that |ct+1
j − ct+1

j | ≤
√
η(ε3 + ε4) = εcentroids

4.2 Update the QRAM data structure for the centroids with the new vectors
ct+1

0 · · · ct+1
k .

8: t=t+1
9: until convergence condition is satisfied.
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For q-means, we need to estimate distances or inner products between vectors
which have different norms. At a high level, if we first estimate the inner between
the quantum states |vi〉 and |cj〉 corresponding to the normalized vectors and then
multiply our estimator by the product of the vector norms we will get an estimator
for the inner product of the unnormalized vectors. A similar calculation works for
the square distance instead of the inner product. If we have an absolute error ε for
the square distance estimation of the normalized vectors, then the final error is of
the order of ε ‖vi‖ ‖cj‖.

We now rewrite the Theorem 6.1, suited for the setup and notations of q-means.
The proof of the new theorem follows rather straightforwardly. In fact one just needs
to apply the distance estimation procedure from Theorem 6.1 k times in parallel.
Note also that the norms of the centroids are always smaller than the maximum
norm of a data point which gives us the factor η.

Theorem 8.1: Centroid Distance estimation

Let a data matrix V ∈ RN×d and a centroid matrix C ∈ Rk×d be stored in
QRAM, such that the following unitaries |i〉 |0〉 7→ |i〉 |vi〉 , and |j〉 |0〉 7→ |j〉 |cj〉
can be performed in time O(log(Nd)) and the norms of the vectors are known.
For any ∆ > 0 and ε1 > 0, there exists a quantum algorithm that performs
the mapping

1√
N

N∑
i=1

|i〉 ⊗j∈[k] (|j〉 |0〉) 7→ 1√
N

N∑
i=1

|i〉 ⊗j∈[k] (|j〉 |d2(vi, cj)〉) (8.12)

where |d2(vi, cj) − d2(vi, cj)| 6 ε1 with probability at least 1 − 2∆, in time

Õ
(
k η
ε1

log(1/∆)
)

where η = maxi(‖vi‖2).

Step 2: Cluster Assignment

At the end of step 1, we have coherently estimated the square distance between
each point in the dataset and the k centroids in separate registers, as written in
Eq.(8.12):

1√
N

N∑
i=1

|i〉 ⊗j∈[k] (|j〉 |d2(vi, cj)〉) (8.13)

We can now select the index j that corresponds to the centroid closest to the given
data point, written as `(vi) = argminj∈[k](d(vi, cj)). As the square is a monotone
function, we do not need to compute the square root of the distance in order to find
`(vi).

Claim 8.5

Given k different log(p)-bit registers ⊗j∈[k] |aj〉, there is a quantum circuit
Umin that maps (⊗j∈[p] |aj〉) |0〉 → (⊗j∈[k] |aj〉) |argmin(aj)〉 in time O(k log p).

Proof. We append an additional register for the result that is initialized to |1〉. We
then repeat the following operation for 2 ≤ j ≤ k, we compare registers 1 and j,
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if the value in register j is smaller we swap registers 1 and j and update the result
register to j. The cost of the procedure is O(k log p).

The cost of finding the minimum is Õ(k) in step 2 of the q-means algorithm, while
we also need to uncompute the distances by repeating Step 1. Once we apply the
minimum finding Claim 8.5 and undo the computation we obtain the state

|ψt〉 :=
1√
N

N∑
i=1

|i〉 |`t(vi)〉 . (8.14)

Remark that if, instead of using the above minimum finding classical circuit, we
used the algorithm from [DH96] as in [WKS14a], we could certainly save a factor

Õ(
√
k) in some part of the running time.

Step 3: Centroid State Creation

The previous step gave us the state |ψt〉 = 1√
N

∑N
i=1 |i〉 |`t(vi)〉. The first register

of this state stores the index of the data points while the second register stores the
label for the data point in the current iteration. Given these states, we need to find
the new centroids |ct+1

j 〉, which are the average of the data points having the same
label.

Let χtj ∈ RN be the characteristic vector for cluster j ∈ [k] at iteration t scaled
to unit `1 norm, that is (χtj)i = 1

|Ctj |
if i ∈ Cj and 0 if i 6∈ Cj. The creation of

the quantum states corresponding to the centroids is based on the following simple
claim.

Claim 8.6

Let χtj ∈ RN be the scaled characteristic vector for Cj at iteration t and

V ∈ RN×d be the data matrix, then ct+1
j = V Tχtj.

Proof. The k-means update rule for the centroids is given by ct+1
j = 1

|Ctj |
∑

i∈Cj vi.

As the columns of V T are the vectors vi, this can be rewritten as ct+1
j = V Tχtj.

The above claim allows us to compute the updated centroids ct+1
j using quantum

linear algebra operations. In fact, the state |ψt〉 can be written as a weighted
superposition of the characteristic vectors of the clusters.

|ψt〉 =
k∑
j=1

√
|Cj|
N

 1√
|Cj|

∑
i∈Cj

|i〉

 |j〉 =
k∑
j=1

√
|Cj|
N
|χtj〉 |j〉 (8.15)

By measuring the last register, we can sample from the states |χtj〉 for j ∈ [k],
with probability proportional to the size of the cluster. We assume here that all k
clusters are non-vanishing, in other words they have size Ω(N/k). Given the ability
to create the states |χtj〉 and given that the matrix V is stored in QRAM, we can
now perform quantum matrix multiplication by V T to recover an approximation of
the state |V Tχj〉 = |ct+1

j 〉 with error ε2, as stated in Theorem 5.2. Note that the
error ε2 only appears inside a logarithm. The same Theorem allows us to get an
estimate of the norm

∥∥V Tχtj
∥∥ =

∥∥ct+1
j

∥∥ with relative error ε3. For this, we also need
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an estimate of the size of each cluster, namely the norms ‖χj‖. We already have
this, since the measurements of the last register give us this estimate, and since the
number of measurements made is large compared to k (they depend on d), the error
from this source is negligible compared to other errors.

The running time of this step is derived from Theorem 5.2 where the time to
prepare the state |χtj〉 is the time of Steps 1 and 2. Note that we do not have to add
an extra k factor due to the sampling, since we can run the matrix multiplication
procedures in parallel for all j so that every time we measure a random |χtj〉 we
perform one more step of the corresponding matrix multiplication. Assuming that
all clusters have size Ω(N/k) we will have an extra factor of O(log k) in the running
time by a standard coupon collector argument.

Step 4: Centroids Update

In Step 4, we need to go from quantum states corresponding to the centroids, to
a classical description of the centroids in order to perform the update step. For
this, we will apply the vector state tomography algorithm, stated in Theorem 4.2,
on the states |ct+1

j 〉 that we create in Step 3. Note that for each j ∈ [k] we will

need to invoke the unitary that creates the states |ct+1
j 〉 a total of O(d log d

ε24
) times for

achieving ‖|cj〉 − |cj〉‖ < ε4. Hence, for performing the tomography of all clusters,

we will invoke the unitary O(k(log k)d(log d)

ε24
) times where the O(k log k) term is the

time to get a copy of each centroid state.
The vector state tomography gives us a classical estimate of the unit norm cen-

troids within error ε4, that is ‖|cj〉 − |cj〉‖ < ε4. Using the approximation of the
norms ‖cj‖ with relative error ε3 from Step 3, we can combine these estimates to
recover the centroids as vectors. The analysis is described in the following claim:

Claim 8.7

Let ε4 be the error we commit in estimating |cj〉 such that ‖|cj〉 − |cj〉‖ < ε4,

and ε3 the error we commit in the estimating the norms, | ‖cj‖−‖cj‖| ≤ ε3 ‖cj‖.
Then ‖cj − cj‖ ≤

√
η(ε3 + ε4) = εcentroid.

Proof. We can rewrite ‖cj − cj‖ as
∥∥∥‖cj‖ |cj〉 − ‖cj‖ |cj〉∥∥∥. It follows from triangle

inequality that:∥∥∥‖cj‖ |cj〉 − ‖cj‖ |cj〉∥∥∥ ≤ ∥∥∥‖cj‖ |cj〉 − ‖cj‖ |cj〉∥∥∥+ ‖‖cj‖ |cj〉 − ‖cj‖ |cj〉‖ (8.16)

We have the upper bound ‖cj‖ ≤
√
η. Using the bounds for the error we have from

tomography and norm estimation, we can upper bound the first term by
√
ηε3 and

the second term by
√
ηε4. The claim follows.

Let us make a remark about the ability to use Theorem 4.2 to perform tomog-
raphy in our case. The updated centroids will be recovered in step 4 using the
vector state tomography algorithm in Theorem 4.2 on the composition of the uni-
tary that prepares |ψt〉 and the unitary that multiplies the first register of |ψt〉 by
the matrix V T . The input of the tomography algorithm requires a unitary U such
that U |0〉 = |x〉 for a fixed quantum state |x〉. However, the labels `(vi) are not
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deterministic due to errors in distance estimation, hence the composed unitary U as
defined above therefore does not produce a fixed pure state |x〉.

We therefore need a procedure that finds labels `(vi) that are a deterministic
function of vi and the centroids cj for j ∈ [k]. One solution is to change the

update rule of the δ-k-means algorithm to the following: Let `(vi) = j if d(vi, cj) <

d(vi, cj′) − 2δ for j′ 6= j where we discard the points to which no label can be
assigned. This assignment rule ensures that if the second register is measured and
found to be in state |j〉, then the first register contains a uniform superposition of
points from cluster j that are δ far from the cluster boundary (and possibly a few
points that are δ close to the cluster boundary). Note that this simulates exactly
the δ-k-means update rule while discarding some of the data points close to the
cluster boundary. The k-means centroids are robust under such perturbations, so
we expect this assignment rule to produce good results in practice.

A better solution is to use consistent phase estimation instead of the usual phase
estimation for the distance estimation step , which can be found in [TS13, Amb12].
The distance estimates are generated by the phase estimation algorithm applied
to a certain unitary in the amplitude estimation step. The usual phase estimation
algorithm does not produce a deterministic answer and instead for each eigenvalue λ
outputs with high probability one of two possible estimates λ such that |λ− λ| ≤ ε.
Instead, here as in some other applications we need the consistent phase estimation
algorithm that with high probability outputs a deterministic estimate such that
|λ− λ| ≤ ε.

We also describe another simple method of getting such consistent phase esti-
mation, which is to combine phase estimation estimates that are obtained for two
different precision values. Let us assume that the eigenvalues for the unitary U are
e2πiθi for θi ∈ [0, 1]. First, we perform phase estimation with precision 1

N1
where

N1 = 2l is a power of 2. We repeat this procedure O(logN/θ2) times and output
the median estimate. If the value being estimated is λ+α

2l
for λ ∈ Z and α ∈ [0, 1]

and |α−1/2| ≥ θ′ for an explicit constant θ′ (depending on θ) then with probability
at least 1 − 1/poly(N) the median estimate will be unique and will equal to 1/2l

times the closest integer to (λ + α). In order to also produce a consistent estimate
for the eigenvalues for the cases where the above procedure fails, we perform a sec-
ond phase estimation with precision 2/3N1. We repeat this procedure as above for
O(logN/θ2) iterations and taking the median estimate. The second procedure fails
to produce a consistent estimate only for eigenvalues λ+α

2l
for λ ∈ Z and α ∈ [0, 1]

and |α − 1/3| ≤ θ′ or |α − 2/3| ≤ θ′ for a suitable constant θ′. Since the cases
where the two procedures fail are mutually exclusive, one of them succeeds with
probability 1 − 1/poly(N). The estimate produced by the phase estimation proce-
dure is therefore deterministic with very high probability. In order to complete this
proof sketch, we would have to give explicit values of the constants θ and θ′ and the
success probability, using the known distribution of outcomes for phase estimation.

For what follows, we assume that indeed the state in Eq.(8.14) is almost a deter-
ministic state, meaning that when we repeat the procedure we get the same state
with very high probability.

We set the error on the matrix multiplication to be ε2 � ε24
d log d

as we need to

call the unitary that builds ct+1
j for O(d log d

ε24
) times. We will see that this does not

increase the runtime of the algorithm, as the dependence of the runtime for matrix
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multiplication is logarithmic in the error.

8.2.2 Analysis

We provide our general theorem about the running time and accuracy of the q-means
algorithm.

Theorem 8.2: q-means - General Case

For a data matrix V ∈ RN×d stored in an appropriate QRAM data structure
and parameter δ > 0, the q-means algorithm with high probability outputs
centroids consistent with the classical δ-k-means algorithm, in time

Õ

(
kd

η

δ2
κ(V )(µ(V ) + k

η

δ
) + k2η

1.5

δ2
κ(V )µ(V )

)
(8.17)

per iteration, where κ(V ) is the condition number, 1 ≤ ‖vi‖2 ≤ η and µ(M) =
minp∈[0,1](‖M‖F ,

√
s2p(M)s(1−2p)(MT )).

We prove the theorem in the following Sections and then provide the running
time of the algorithm for well-clusterable datasets as Theorem 8.3.

Error analysis

In this section we determine the error parameters in the different steps of the quan-
tum algorithm so that the quantum algorithm behaves the same as the classical
δ-k-means. More precisely, we will determine the values of the errors ε1, ε2, ε3, ε4
in terms of δ so that firstly, the cluster assignment of all data points made by the
q-means algorithm is consistent with a classical run of the δ-k-means algorithm,
and also that the centroids computed by the q-means after each iteration are again
consistent with centroids that can be returned by the δ-k-means algorithm.

The cluster assignment in q-means happens in two steps. The first step estimates
the square distances between all points and all centroids. The error in this procedure
is of the form

|d2(cj, vi)− d2(cj, vi)| < ε1 (8.18)

for a point vi and a centroid cj. The second step finds the minimum of these distances
without adding any error.

For the q-means to output a cluster assignment consistent with the δ-k-means
algorithm, we require that:

∀j ∈ [k], |d2(cj, vi)− d2(cj, vi)| ≤
δ

2
(8.19)

which implies that no centroid with distance more than δ above the minimum dis-
tance can be chosen by the q-means algorithm as the label. Thus we need to take
ε1 < δ/2.

After the cluster assignment of the q-means (which happens in superposition),
we update the clusters, by first performing a matrix multiplication to create the
centroid states and estimate their norms, and then a tomography to get a classical
description of the centroids. The error in this part is εcentroids, as defined in Claim
8.7, namely
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‖cj − cj‖ ≤ εcentroid =
√
η(ε3 + ε4) (8.20)

Again, for ensuring that the q-means is consistent with the classical δ-k-means
algorithm we take ε3 <

δ
4
√
η

and ε4 <
δ

4
√
η
. Note also that we have ignored the error

ε2 that we can easily deal with since it only appears in a logarithmic factor.

Runtime analysis

As the classical algorithm, the runtime of q-means depends linearly on the number
of iterations, so here we analyze the cost of a single step.

The cost of tomography for the k centroid vectors is O(kd log k log d
ε42

) times the

cost of preparation of a single centroid state |ctj〉. A single copy of |ctj〉 is prepared
applying the matrix multiplication by V T procedure on the state |χtj〉 obtained using
square distance estimation. The time required for preparing a single copy of |ctj〉 is
O(κ(V )(µ(V ) + Tχ) log(1/ε2)) by Theorem 5.2 where Tχ is the time for preparing

|χtj〉. The time Tχ is Õ
(
kη log(∆−1) log(Nd)

ε1

)
= Õ(kη

ε1
) by Theorem 8.1.

The cost of norm estimation for k different centroids is independent of the tomog-
raphy cost and is Õ(kTχκ(V )µ(V )

ε3
). Combining together all these costs and suppressing

all the logarithmic factors we have a total running time of,

Õ

(
kd

1

ε24
κ(V )

(
µ(V ) + k

η

ε1

)
+ k2 η

ε3ε1
κ(V )µ(V )

)
(8.21)

The analysis in section 8.2.2 shows that we can take ε1 = δ/2, ε3 = δ
4
√
η

and ε4 = δ
4
√
η
.

Substituting these values in the above running time, it follows that the running time
of the q-means algorithm is

Õ

(
kd

η

δ2
κ(V )

(
µ(V ) + k

η

δ

)
+ k2η

1.5

δ2
κ(V )µ(V )

)
(8.22)

This completes the proof of Theorem 8.2. We next state our main result when
applied to a well-clusterable dataset, as in Definition 8.1.

Theorem 8.3: q-means - Well-Clusterable Data

For a well-clusterable dataset V ∈ RN×d stored in appropriate QRAM,
the q-means algorithm returns with high probability the k centroids con-
sistently with the classical δ-k-means algorithm for a constant δ in time

Õ
(
k2dη

2.5

δ3
+ k2.5 η2

δ3

)
per iteration, for 1 ≤ ‖vi‖2 ≤ η.

Proof. Let V ∈ RN×d be a well-clusterable dataset as in Definition 8.1. In this case,
we know by Claim 8.3 that κ(V ) = 1

σmin
can be replaced by a thresholded condition

number κτ (V ) = 1
τ
. In practice, this is done by discarding the singular values

smaller than a certain threshold during quantum matrix multiplication. Remember
that by Claim 8.2 we know that ‖V ‖F = O(

√
k). Therefore we need to pick ετ for

a threshold τ = ετ√
k
‖V ‖F such that κτ (V ) = O( 1

ετ
).

Thresholding the singular values in the matrix multiplication step introduces an
additional additive error in εcentroid. By Claim 8.3 and Claim 8.7 , we have that
the error εcentroid in approximating the true centroids becomes

√
η(ε3 + ε4 + ε′ + ετ )
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where ε′ =
√
λβ2 + (1− λ)4η is a dataset dependent parameter computed in Claim

8.1. We can set ετ = ε3 = ε4 = ε′/3 to obtain εcentroid = 2
√
ηε′.

The definition of the δ-k-means update rule requires that εcentroid ≤ δ/2. Further,
Claim 8.4 shows that if the error δ in the assignment step satsifies δ ≤ ξ2 − 2

√
ηβ,

then the δ-k-means algorithm finds the corrects clusters. By Definition 8.1 of a
well-clusterable dataset, we can find a suitable constant δ satisfying both these
constraints, namely satisfying

4
√
η
√
λβ2 + (1− λ)4η < δ < ξ2 − 2

√
ηβ (8.23)

Substituting the values µ(V ) = O(
√
k) from Claim 8.2, κ(V ) = O( 1

ετ
) and

ετ = ε3 = ε4 = ε′/3 = O(
√
η/δ) in the running time for the general q-means

algorithm, we obtain that the running time for the q-means algorithm on a well-

clusterable dataset is Õ
(
k2dη

2.5

δ3
+ k2.5 η2

δ3

)
per iteration.

Let us make some concluding remarks regarding the running time of q-means.
For dataset where the number of points is much bigger compared to the other pa-
rameters, the running time for the q-means algorithm is an improvement compared
to the classical k-means algorithm. For instance, for most problems in data analysis,
k is eventually small (< 100). The number of features d ≤ N in most situations,
and it can eventually be reduced by applying a quantum dimensionality reduction
algorithm first (which has running time polylogarithmic in d). To sum up, q-means
has the same output as the classical δ-k-means algorithm (which approximates k-
means), it conserves the same number of iterations, but has a running time only
polylogarithmic in N , giving an exponential speedup with respect to the size of the
dataset.

8.2.3 Initialization: q-means++

We now show that the quantum analogue of the initialization procedure of k-
means++ can be implemented efficiently using the square distance subroutine es-
timation for the q-means algorithm given in Theorem 8.1. Starting with a random
index j we compute the state 1√

N

∑N−1
i=0 |i〉 |j〉 |d2(vi, vj)〉 in time Õ( η

ε1
), where vj

is the initial centroid, using our quantum procedure for distance estimation. By
applying some arithmetic preprocessing and a controlled rotation we can transfer
the distance information as an amplitude to obtain the following state:

1√
N

N−1∑
i=0

|i〉 |j〉 |d2(vi, vj)〉
(
d(vi, vj)

2
√
η
|0〉+ β |1〉

)
(8.24)

Each square distance has been normalized by 2
√
η ≥ maxi,j(d(vi, vj)) to be

a valid amplitude. Note that postselecting on |0〉 and measuring the register |i〉
samples exactly from the probability distribution in the k-means++ algorithm as

the probability of measuring (i, 0) on second and fourth registers is
d2(vi,vj)

4ηN
.

We can perform amplitude amplification to boost the probability of measuring
|0〉. For this we need to repeat O(1/

√
P (0)) times the previous steps, with P (0)

being the probability of measuring |0〉. Since P (0) = 1
N

(∑ d(vi,vj)

2
√
η

)2

, it is simple
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to show that 1√
P (0)
≤ 2

√
η√

E(d2(vi,vj))
, where E(d2(vi, vj)) is the mean squared distance.

Note that for the next steps we can use a tensor product of the squared distance from
previous centroids to compute the minimum distance among them, using Lemma 8.5.
In the end we repeat k− 1 times this circuit, for a total time of Õ(k2 2η1.5

ε1
√

E(d2(vi,vj))
).

The running time for the q-means++ initialization is smaller than that for the q-
means algorithm, showing than q-means++ initialization doesn’t cancel any benefit
of the q-means algorithm. Thus, we can use the q-means++ algorithm to provide a
speedup compared to the classical k-means++.

8.3 Numerical Simulations

We would like to assert the capability of the quantum algorithm to provide accu-
rate classification results, by simulating on several datasets. However, since neither
quantum simulators nor quantum computers large enough to test q-means are avail-
able currently, we tested the equivalent classical implementation of δ-k-means. For
implementing the δ-k-means, we changed the assignment step of the k-means al-
gorithm to select a random centroid among those that are δ-close to the closest
centroid and added δ/2 error to the updated clusters.

We benchmarked our q-means algorithm on two datasets: a synthetic dataset of
Gaussian clusters, and the well known MNIST dataset of handwritten digits. To
measure and compare the accuracy of our clustering algorithm, we ran the k-means
and the δ-k-means algorithms for different values of δ on a training dataset and
then we compared the accuracy of the classification on a test set, containing data
points on which the algorithms have not been trained, using a number of widely-used
performance measures.

Gaussian clusters dataset

We describe numerical simulations of the δ-k-means algorithm on a synthetic dataset
made of several clusters formed by random Gaussian distributions. These clusters
are naturally well suited for clustering by construction, close to what we defined to
be a well-clusterable dataset in Definition 8.1 of Section 8.1.3. Doing so, we can
start by comparing k-means and δ-k-means algorithms on high accuracy results,
even though this may not be the case on real-world datasets. Without loss of
generality, we preprocessed the data so that the minimum norm in the dataset is 1,
in which case η = 4. This is why we defined η as a maximum instead of the ratio
of the maximum over the minimum which is really the interesting quantity. Note
that the running time basically depends on the ratio η/δ. We present a simulation
where 20.000 points in a feature space of dimension 10 form 4 Gaussian clusters with
standard deviation 2.5, that we can see in Fig.8.1. The condition number of dataset
is calculated to be 5.06. We ran k-means and δ-k-means for 7 different values of δ
to understand when the δ-k-means becomes less accurate.

In Fig.8.2 we can see that until η/δ = 3 (for δ = 1.2), the δ-k-means algorithm
converges on this dataset. We can now make some remarks about the impact of
δ on the efficiency. It seems natural that for small values of δ both algorithms
are equivalent. For higher values of δ, we observed a late start in the evolution of
the accuracy, witnessing random assignments for points on the clusters’ boundaries.
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Figure 8.1: Representation of 4 Gaussian clusters of 10 dimensions in a 3D space
spanned by the first three PCA dimensions.

However, the accuracy still reaches 100% in a few more steps. The increase in the
number of steps is a tradeoff with the parameter η/δ.

Figure 8.2: Accuracy evolution during k-means and δ-k-means on well-clusterable
Gaussians for 5 values of δ. All versions converged to a 100% accuracy in few steps.

MNIST dataset

The MNIST dataset is composed of 60.000 handwritten digits as images of 28x28
pixels (784 dimensions). From this raw data we first performed some dimensionality
reduction processing, then we normalized the data such that the minimum norm is
one. Note that, if we were doing q-means with a quantum computer, we could use
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efficient quantum procedures equivalent to Linear Discriminant Analysis, such as
[KL20], or other quantum dimensionality reduction algorithms like [LMR14, CD15].

As preprocessing of the data, we first performed a Principal Component Analysis
(PCA), retaining data projected in a subspace of dimension 40. After normalization,
the value of η was 8.25 (maximum norm of 2.87), and the condition number was 4.53.
Fig.8.3 represents the evolution of the accuracy during the k-means and δ-k-means
for 4 different values of δ. In this numerical experiment, we can see that for values
of the parameter η/δ of order 20, both k-means and δ-k-means reached a similar,
yet low accuracy in the classification in the same number of steps. It is important
to notice that the MNIST dataset, without other preprocessing than dimensionality
reduction, is known not to be well-clusterable under the k-means algorithm.

Figure 8.3: Accuracy evolution on the MNIST dataset under k-means and δ-k-means
for 4 different values of δ. Data has been preprocessed by a PCA to 40 dimensions.
All versions converge in the same number of steps, with a drop in the accuracy while
δ increases. The apparent difference in the number of steps until convergence is just
due to the stopping condition for k-means and δ-k-means.

On top of the accuracy measure (ACC), we also evaluated the performance of q-
means against many other metrics, reported in Table 8.1. More detailed information
about these metrics can be found in [FHT01]. We introduce a specific measure of er-
ror, the Root Mean Square Error of Centroids (RMSEC), which a direct comparison
between the centroids predicted by the k-means algorithm and the ones predicted by
the δ-k-means. It is a way to know how far the centroids are predicted. Note that
this metric can only be applied to the training set. For all these measures, except
RMSEC, a bigger value is better. Our simulations show that δ-k-means, and thus
the q-means, even for values of δ (between 0.2 − 0.5) achieves similar performance
to k-means, and in most cases the difference is on the third decimal point.
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Algo Dataset ACC HOM COMP V-M AMI ARI RMSEC

k-means
Train 0.582 0.488 0.523 0.505 0.389 0.488 0
Test 0.592 0.500 0.535 0.517 0.404 0.499 -

δ-k-means Train 0.580 0.488 0.523 0.505 0.387 0.488 0.009
(δ = 0.2) Test 0.591 0.499 0.535 0.516 0.404 0.498 -
δ-k-means Train 0.577 0.481 0.517 0.498 0.379 0.481 0.019
(δ = 0.3) Test 0.589 0.494 0.530 0.511 0.396 0.493 -
δ-k-means Train 0.573 0.464 0.526 0.493 0.377 0.464 0.020
(δ = 0.4) Test 0.585 0.492 0.527 0.509 0.394 0.491 -
δ-k-means Train 0.573 0.459 0.522 0.488 0.371 0.459 0.034
(δ = 0.5) Test 0.584 0.487 0.523 0.505 0.389 0.487 -

Table 8.1: A sample of results collected from the same experiments as in Fig.8.3.
Different metrics are presented for the train set and the test set. ACC: accuracy.
HOM: homogeneity. COMP: completeness. V-M: v-measure. AMI: adjusted mu-
tual information. ARI: adjusted rand index. RMSEC: Root Mean Square Error of
Centroids.

These experiments have been repeated several times and each of them presented
a similar behavior despite the random initialization of the centroids.

(a) (b) (c)

Figure 8.4: Three accuracy evolution on the MNIST dataset under k-means and
δ-k-means for 4 different values of δ. Each different behavior is due to the random
initialization of the centroids

Finally, we present a last experiment with the MNIST dataset with a different
data preprocessing. In order to reach higher accuracy in the clustering, we replace
the previous dimensionality reduction by a Linear Discriminant Analysis (LDA).
Note that a LDA is a supervised process that uses the labels (here, the digits) to
project points in a well chosen lower dimensional subspace. Thus this preprocessing
cannot be applied in practice in unsupervised machine learning. However, for the
sake of benchmarking, by doing so k-means is able to reach a 87% accuracy, therefore
it allows us to compare k-means and δ-k-means on a real and almost well-clusterable
dataset. In the following, the MNIST dataset is reduced to 9 dimensions. The results
in Fig.8.5 and Table 8.2 show that δ-k-means converges to the same accuracy than
k-means even for values of η/δ down to 16. In some other cases, δ-k-means shows
a faster convergence, due to random fluctuations that can help escape faster from a
temporary equilibrium of the clusters.
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Figure 8.5: Accuracy evolution on the MNIST dataset under k-means and δ-k-means
for 4 different values of δ. Data has been preprocessed to 9 dimensions with a LDA
reduction. All versions of δ-k-means converge to the same accuracy than k-means
in the same number of steps.

Algo Dataset ACC HOM COMP V-M AMI ARI RMSEC

k-means
Train 0.868 0.736 0.737 0.737 0.735 0.736 0
Test 0.891 0.772 0.773 0.773 0.776 0.771 -

q-means Train 0.868 0.737 0.738 0.738 0.736 0.737 0.031
(δ = 0.2) Test 0.891 0.774 0.775 0.775 0.777 0.774 -
q-means Train 0.869 0.737 0.739 0.738 0.736 0.737 0.049
(δ = 0.3) Test 0.890 0.772 0.774 0.773 0.775 0.772 -
q-means Train 0.865 0.733 0.735 0.734 0.730 0.733 0.064
(δ = 0.4) Test 0.889 0.770 0.771 0.770 0.773 0.769 -
q-means Train 0.866 0.733 0.735 0.734 0.731 0.733 0.079
(δ = 0.5) Test 0.884 0.764 0.766 0.765 0.764 0.764 -

Table 8.2: A sample of results collected from the same experiments as in Fig.8.5.
Different metrics are presented for the train set and the test set. ACC: accuracy.
HOM: homogeneity. COMP: completeness. V-M: v-measure. AMI: adjusted mu-
tual information. ARI: adjusted rand index. RMSEC: Root Mean Square Error of
Centroids.

Let us remark, that the values of η/δ in our experiment remained between 3 and
20. Moreover, the parameter η, which is the maximum square norm of the points,
provides a worst case guarantee for the algorithm, while one can expect that the
running time in practice will scale with the average square norm of the points. For
the MNIST dataset after PCA, this value is 2.65 whereas η = 8.3.

In conclusion, our simulations show that the convergence of δ-k-means is almost
the same as the regular k-means algorithms for large enough values of δ. This
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provides evidence that the q-means algorithm will have as good performance as the
classical k-means, and its running time will be significantly lower for large datasets.
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Chapter 9

Quantum Spectral Clustering

”All generalisations - perhaps
except this one - are false.”

Kurt Gödel

Preliminaries on spectral clustering, along with all notations are given in Section
2.2.2. Variables are summarized in Table 9.1.

Variable Dimension Remark
Input Matrix: S N × d Each input vector is

a row si ∈ Rd

Adjacency Matrix: A N ×N Nodes connectivity. Elements aij =
1 if d(si, sj) ≤ dmin and 0 otherwise

Incidence Matrix: B N × N(N−1)
2

Elements Bi,(p,q) = ±apq if
edge (p, q) is incident to node i

Normalized Incidence Matrix: B N × N(N−1)
2

Each row is normalized
Eigenvalues λB1 ≤ · · · ≤ λBn

Normalized Laplacian: L N ×N L = BBT
Eigenvalues λj = (λBj )2

Projected Normalized Laplacian: L̃(k) N × k L projected on its
k lowest eigenvectors

Table 9.1: Summary of variables for Classical and Quantum spectral clustering.

9.1 Main Results

In this work, we develop an end-to-end quantum algorithm for spectral clustering
[NJW02]. As detailed in Section 2.2.2, this unsupervised learning algorithm shows
great accuracy in identifying complex and interlacing clusters, and allows a high level
of explainability. However, it suffers from a fast-growing runtime, namely cubic in
the number N of vectors in the dataset, that inhibits its use in practice. The goal
of the spectral clustering algorithm is to perform the clustering task in a low dimen-
sional space derived from the data. More precisely, one starts with the set of input
vectors and constructs a similarity graph, where the edge between two nodes is built
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from the distance between the two associated vectors. From this graph, one can
define the Incidence matrix and the Laplacian matrix. By extracting the eigenvec-
tors of the Laplacian matrix and keeping the subspace spanned by the lowest ones,
a lower dimensional space is defined. The initial data can then be projected onto
this new space, where one can expect the data to be better organized, as clusters.
Therefore, to obtain the clusters, the k-means algorithm is applied to the projected
vectors.

We provide a quantum algorithm for spectral clustering following a similar
methodology, while having to carefully extend or alter the specifics of each step
of the algorithm. We first adapt and extend recent and efficient quantum subrou-
tines for linear algebra and distance estimation. These methods are used to create
the similarity graph, as well as the Incidence and Laplacian matrices, extract their
eigenvectors and project the data points onto the right subspace to finally apply a
quantum analog of k-means. While the steps of the algorithm follow the classical
ones, we had to adjust most of the definitions, for example the definitions of the
Incidence and Laplacian matrices, in order to make the quantum algorithm efficient.
We will detail all the needed changes in the following sections.

In high level, the running time of the quantum spectral clustering algorithm
reflects the two stages of spectral clustering and is given by

O(TL̃(k)Tqmeans) (9.1)

The first term TL̃(k) is the time to create a quantum state corresponding to the
normalized Laplacian matrix of the graph projected on its lowest eigenvectors. The
resulting quantum state is the input state to the quantum clustering algorithm whose
overall running time contains another multiplicative term that we denote by Tqmeans.

For the first part, we will propose an algorithm in time

TL̃(k) = Õ

(
TS

η(S)

εdistεB

µ(B)κ(L̃(k))

ελ

)
. (9.2)

Here, the term TS is the time to load the input vectors in a quantum state, which
becomes efficient is we assume fast quantum access (see Definition 4.5). The terms
εdist, εB and ελ correspond to error or precision parameters that appear in several
quantum routines. The matrices S,B, and L̃(k) are respectively the input data ma-
trix, the normalized incidence matrix, and the projection of the normalized Lapla-
cian matrix. For these matrices, the condition number κ(·) is the ratio between the
largest and the lowest singular values, and the terms µ(·) and η(·) are two specific
norm parameters defined respectively in Definitions 5.1 and 6.1 (see Chapter 5 for
more details).

We will show that the term µ(B) in the above expression is in fact upper bounded
by O(N), in the worst case scenario. In our basic numerical experiments (see Section
11.3), we indeed observed a quantum running time scaling linearly with N , when
all terms are taken into account. This implies a significant polynomial speedup over
the classical algorithm.

The second stage, the quantum clustering, adds to the running time the multi-
plicative term Tqmeans, a rather complex expression detailed in Chapter 8. In the
case of well-clusterability, namely when the vectors can effectively be organized in
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clusters that can be detected efficiently (See Section 8.1.3 for details), this runtime
can be rewritten as follows (see also Theorem 8.3), where k is the number of clusters
and δ is a precision parameter :

Tqmeans = Õ

(
k3η(L̃(k))2.5

δ3

)
(9.3)

We expect our quantum spectral clustering algorithm to be accurate and effi-
cient when the classical spectral clustering algorithm also works well. In fact, the
classical algorithm works well in the case when, once projected onto the reduced
spectral space, the vectors follow the well-clusterability assumption, allowing for
efficient clustering. In particular, in this case, the term κ(L̃(k)) is close to k, the
number of clusters. Note however that our algorithm could work without this well-
clusterability assumption, but the theoretical runtime would be bounded differently.

In conclusion, our algorithm provides a considerable theoretical speedup that
could allow for new applications of spectral clustering on larger, high-dimensional
datasets. The quantum subroutines developed in this section could be useful inde-
pendently, and we hope for substantial improvements in several other graph based
machine learning algorithms.

9.2 Quantum Graph Based Machine Learning

In this part, we will detail the quantum algorithm that performs spectral clustering
with similar guarantees and more efficient running time compared to its classical
analog. We start by presenting all the theorems that will help us construct the
quantum spectral clustering algorithm, then in the following subsections we provide
details and proofs.

We first state the theorem that allows to compute the edge’s value of the data
adjacency graph:

Theorem 9.1: Quantum Algorithm for Data Point Similarity

Given quantum access to the data matrix S ∈ RN×d in time TS and two indices
p, q ∈ [N ]2, we can obtain the following mapping: |p〉 |q〉 |0〉 7→ |p〉 |q〉 |apq〉 in

time O(TS
η(S)
εdist

). The elements apq correspond to the edge’s values of the data
adjacency graph, using the rule of construction based on a threshold distance.
η(S) is a data parameter defined in Definition 6.1, εdist > 0 is the precision
parameter in the estimation of the distance between input points.

Using the previous theorem we can have quantum access to the normalized In-
cidence matrix.
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Theorem 9.2: Quantum access to the Normalized Incidence Matrix

Given quantum access to the data matrix S ∈ RN×d in time TS we can have

quantum access to the normalized incidence matrix B ∈ RN×N(N−1)
2 in time

TB = Õ

(
TS
η(S)

εdist

1

εB

)
(9.4)

where η(S) is defined in Definition 6.1, εdist > 0 is the precision of distance
estimation between vectors, and εB is the substitute of the zeros in B.

Using the previous theorem we can finally have quantum access to the projected
Laplacian matrix.

Theorem 9.3: Quantum access to projected Laplacian matrix

Given quantum access to the normalized incidence matrix B ∈ RN×N(N−1)
2 in

time TB, we can have quantum access to L̃(k) ∈ RN×k, the Laplacian matrix
projected onto its k lowest eigenvalues, in time

TL̃(k) = Õ

(
TB
µ(B)κ(L̃(k))

ελ

)
(9.5)

where ελ is the precision parameter for estimating the eigenvalues of L, µ(B)

is a data parameter defined in Definition 5.1, and κ(L̃(k)) is the condition

number of L̃(k).

The quantum spectral clustering algorithm consists then in applying the quan-
tum k-means algorithm (Theorem 8.3) using the fact that we have quantum access
to the projected Laplacian matrix.

The main algorithm can thus be summarized in the following theorem.
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Theorem 9.4: Quantum Spectral Clustering

Given quantum access to a data matrix S ∈ RN×d in time TS, there is a quan-
tum algorithm that with high probability outputs k centroids in the Laplacian
spectral space, in time

Õ

(
TS

η(S)

εdistεB

µ(B)κ(L̃(k))

ελ
Tqmeans

)
(9.6)

where Tqmeans is the multiplicative factor in the running time of the quantum
clustering algorithm (Theorem 8.3) on the vectors projected onto the Lapla-
cian spectral space. In the case where the vectors projected onto the spectral
space are well-clusterable (see Definition 8.1), the running time becomes

Õ

(
TS

η(S)

εdistεB

µ(B)κ(L̃(k))

ελ

k3η(L̃(k))2.5

δ3

)
(9.7)

In the above formulas, B refers to the normalized incidence matrix of the data,
and L̃(k) to the projection of the Laplacian matrix. εdist, εB, ελ and δ are error
or precision parameters. η(S), η(L̃(k)), and µ(B) are data parameters defined

in Definition 6.1 and Definition 5.1, and κ(L̃(k)) is the condition number of

L̃(k).

9.2.1 Quantum Circuits

Computing the similarity between two nodes

We now detail the algorithm for Theorem 9.1, which allows to compute the elements
apq of the Adjacency Matrix, corresponding to a pair of input vectors sp and sq.
This will be used as a subroutine in the algorithm that gives quantum access to the
normalized incidence matrix.

For any two quantum states corresponding to the indices |p〉 and |q〉, we can use
Theorem 6.1 to obtain |p〉 |q〉 |d(sp, sq)2〉. The square distance obtained is approxi-

mated with a precision εdist > 0 such that |d(sp, sq)2 − d(sp, sq)
2| ≤ εdist.

These distances are then converted into the edge values apq ∈ {0, 1} using our
modified graph construction rule from Section 2.2.2. For doing so, we can use the
comparison operator (see Claim 3.1) to check if d(sp, sq)2 is smaller than the desired
threshold below which we consider that two nodes are connected. Therefore we can
easily obtain |p〉 |q〉 |apq〉.

Note that it was necessary to use this particular definition of the Adjacency
Matrix in order to be able to perform this operation efficiently quantumly. Other
definitions include the direct use of the distance, or sometimes a mapping of the
distance using diverse kernels.

Finally, note that using this theorem, it is possible to have quantum access
to a normalized vesrion of the Adjacency Matrix, which could be useful in many
applications. In our case, however, it is not clear how to use it to obtain quantum
access to the normalized Laplacian, because it would require the Degree matrix and
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the norms ‖ai‖, which are not accessible efficiently. Therefore, we chose to work
with the normalized Incidence matrix.

Quantum Access to the Normalized Incidence Matrix B

To obtain quantum access to B (see Definition 4.5), we start with a quantum state

encoding one node’s index i ∈ [N ], along with the superposition of all N(N−1)
2

possible
edges encoded as pairs (p, q) ∈ [N ]2 with p < q. We use the following quantum state,
whose preparation requires O(log(N)) qubits and a simple quantum circuit.

√
2√

N(N − 1)
|i〉
∑
p<q

|p〉 |q〉 (9.8)

From this state, we first determine which edges are incident using two ancillary
qubits as flags, using the equality operator (see Section 3.1). This allows us to
separate the cases that appear in Eq.(2.5). For simplicity, we will use the notation
|p〉 |q〉 = |p, q〉.

√
2√

N(N − 1)
|i〉

∑
p<q
i=p

|p, q〉 |11〉+
∑
p<q
i=q

|p, q〉 |10〉+
∑
p<q

i/∈{p,q}

|p, q〉 |00〉

 (9.9)

We then use another register to write the values of B, the unormalized incidence
matrix, given by Eq.(2.5). For the flagged edges (i = p or i = q), using a controlled
version of Theorem 9.1, we obtain the superposition of the similarity between all
input points and point i, in a quantum register. For the other edges (i /∈ {p, q}),
instead of simply writing 0 as in Eq.(2.5) we modify the zero elements of the matrix
to a value εB > 0 in order to retain the efficiency of the quantum algorithm in the
next step. The running time for this step is O(TSη(S)/εdist), where η(S) is a data
parameter defined in Definition 6.1, and εdist > 0 is the precision parameter in the
estimation of d2(si, sj). Finally TS is the time to have quantum access to the input
points s1, · · · , sN , which becomes TS = O(log(Nd)) if we assume QRAM access.

We obtain the following state:

√
2√

N(N − 1)
|i〉

∑
p<q
i=p

|p, q〉 |11〉 |apq〉+
∑
p<q
i=q

|p, q〉 |10〉 |apq〉+
∑
p<q

i/∈{p,q}

|p, q〉 |00〉 |εB〉


(9.10)

Which, by Eq.(2.5) and after uncomputing the flags would be equal to

√
2√

N(N − 1)
|i〉
∑
p<q

|p, q〉 |Bi,(p,q)〉 (9.11)

From this state, we use a Conditional Rotation (see Theorem 3.5) to encode, in
superposition, the values of the B into the amplitude of a new qubit, and after
uncomputing the values of the matrix B from the registers, we have the state:
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√
2√

N(N − 1)
|i〉

(∑
p<q

Bi,(p,q) |p, q〉 |0〉+
∑
p<q

√
1−B2

i,(p,q) |p, q〉 |1〉

)
(9.12)

Finally, an amplitude amplification (see Theorem 3.2) is performed to select
the |0〉 part of the state, and obtain a valid quantum encoding of the vector Bi.
This requires to repeat the previous steps O(1/

√
Pi(0)) times where Pi(0) is the

probability of reading “0” in the last register. Since all elements of the matrix B
have norm at least εB we therefore have O(1/

√
Pi(0)) is at least O(1/εB). We finally

obtain with high probability the state |i〉 1
‖Bi‖

∑
p<q Bi,(p,q) |p, q〉 = |i〉 |Bi〉.

Recall from Section 2.2.2 that Bi,(p,q) =
Bi,(p,q)
‖Bi‖ and that ‖Bi‖ = ‖ai‖. In addition,

we have access to the norm of each row of B since by definition they are all equal
to 1. We can therefore conclude that we have quantum access to B, the normalized
incidence matrix, according to Definition (4.5). The global running time to have

quantum access to B is given by O(TS
η(S)
εdist

1
εB

)). This proves Theorem 9.2.

Quantum Access to the Projected Normalized Laplacian Matrix L̃(k)

With the quantum access to the normalized incidence matrix B in time TB, we will
use the fact that the ith row of L = BBT can be written as Li = L · ei where ei
represents the ith vector of the standard basis, for which the corresponding quantum
state is simply |i〉. We also use the fact that this state can be naturally expressed as
|i〉 =

∑
j σij |uj〉 in the basis made of the left singular vectors uj of B, with unknown

coefficients σij, such that
∑

j σ
2
ij = 1.

On this initial state |i〉 we apply the SVE algorithm1 (Theorem 5.1) to estimate
the singular values of B in superposition and obtain

∑
j σij |uj〉 |λBj 〉. The running

time for this step is O(TBµ(B)/ελ), where µ(B) is a data parameter defined in Def-
inition 5.1, and ελ > 0 is the desired precision in the estimation of the singular
values. We then square these values to obtain the state

∑
j σij |uj〉 |λj〉, with the

eigenvalues of L.
Note that µ(B) is upper bounded by N . Indeed, from Definition 5.1 we have

µ(B) ≤ ‖B‖F . Recall that B ∈ RN×N(N−1)/2. Since by construction each ‖Bi‖2 = 1,
and since N(N − 1)/2 < N2, we have finally:

µ(B) ≤ ‖B‖F =

√√√√√N(N−1)
2∑
i

‖Bi‖2
2 =

√
N(N − 1)

2
≤ N (9.13)

At this point, we can prepare the projection on the k lowest eigenvectors of L,
as in Section 5.1. We first separate the eigenvalues lower that a threshold ν > 0
with an ancillary qubit, such that the k lowest eigenvalues are flagged by “0” :∑

j|λj≤ν

σij |uj〉 |λj〉 |0〉+
∑
j|λj>ν

σij |uj〉 |λj〉 |1〉 (9.14)

1Since SVE must be applied to a square matrix, we use in fact

(
0 B
BT 0

)
see [KP16].

123
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If the flag qubit is “0”, we perform a conditional rotation on the eigenvalue
register using Theorem 3.5 in a controlled fashion. For this we introduce again an
ancillary qubit. Since the amplitude of the rotation must be inferior to 1, we first
divide each eigenvalue by ν, which is higher than the largest eigenvalue of L̃(k):

∑
j|λj≤ν

σij |uj〉 |λj〉 |0〉

λj
ν
|0〉+

√
1−

λ2
j

ν2
|1〉

+
∑
j|λj>ν

σij |uj〉 |λj〉 |1〉 |0〉 (9.15)

From this quantum state, we will show how to obtain quantum access to |L̃(k)〉
using Amplitude Estimation and amplitude amplification on the “00” value on the
last two registers. We recall that quantum access is guaranteed if we can recover,
for each row L̃(k)

i , its norm and the corresponding quantum state.
Let Pi(00) be the probability of reading “00” on the last two registers. It is easy to

show that Pi(00) = 1
ν2

∑
j|λj≤ν σ

2
ijλ

2
j . We will prove that

∥∥∥L̃(k)
i

∥∥∥ = ν
√
Pi(00), and

that amplifying the state will yield to |L̃(k)
i 〉.

The normalized Laplacian matrix can be written in its eigenbasis using the outer
product L =

∑
j λj |uj〉 〈uj|. Similarly, recall that we used

∑
j σij |uj〉 to encode ei,

the ith vector in the standard basis. Therefore, each row Li = L · ei can be written
as |Li〉 =

∑
j λj |uj〉 〈uj| ·

∑
j σij |uj〉 =

∑
j σijλj |uj〉. We thus have a formula for the

norm of the rows ‖Li‖ =
√∑

j σ
2
ijλ

2
j . The same idea holds for L̃(k), the projection

of the normalized Laplacian, and we obtain
∥∥∥L̃(k)

i

∥∥∥ =
√∑k

j=1 σ
2
ijλ

2
j = ν

√
Pi(00).

Therefore, using Amplitude Estimation (Theorem 3.2), we can estimate P (00) and

have access to the norms of L̃(k) to a multiplicative constant. Similarly, using am-
plitude amplification (Theorem 3.2 also), we can amplify the |00〉 state and obtain

the state
∑

λj≤ν σijλj |uj〉 = |L̃(k)
i 〉.

The number of iterations for Amplitude Estimation and Amplification is Õ(1/
√
Pi(00)).

Let λk be the kth eigenvalue of L and therefore the largest eigenvalue of L̃(k). By cor-
rectly choosing the threshold ν close to the largest eigenvalue, for instance ν ≤ γλk
with γ > 1 a small positive constance, we can write:

Pi(00) =
∑
j|λj≤ν

σ2
ij

λ2
j

ν2
≥

∑
j|λj≤λk

σ2
ij

λ2
min

γ2λ2
k

=
1

γ2

λ2
min

λ2
k

=
1

γ2

1

κ(L̃(k))2
= O

(
1/κ(L̃(k))2

)
(9.16)

Therefore the number of iterations for this step can be upper bounded by Õ(κ(L̃(k))).

Overall, the running time is given by O(TB
µ(B)
ελ
κ(L̃(k))). This concludes the algo-

rithm that gives quantum access to the projected Laplacian of a graph and proves
Theorem 9.3.

9.2.2 Quantum Clustering in the Spectral Space

Having quantum access to the projected normalized Laplacian L̃(k), we possess all
requirements to apply the quantum k-means algorithm, or q-means (Theorem 8.3).
We initialize k centroids at random or using q-means++ (see Section 8.2.3), equiv-
alent to the k-means++ initialization. The q-means algorithm first consists in con-
structing a state where all distances between rows L̃(k)

i and the current centroids are
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Figure 9.1: Diagram for Sections 9.2.1 to 9.2.1

computed in parallel. The rest of the algorithm consists in finding the label for each
row, and updating the centroids as the average of the vectors composing the cluster.
After several iterations, the centroids should have converged and can be retrieved.

Several approximations are necessary during the steps, hence the presence of
precision parameter δ > 0. It expresses the approximation error committed during
the distance estimation, and during the classical description of the new centroids at
each step. Therefore, to be more specific, q-means is a noisy version of k-means.

In high level, denoting with TL̃(k) the time to have quantum access to L̃(k) ∈
RN×k, which plays the role of the initial state for the clustering algorithm, and
Tqmeans the remaining multiplicative factor in the running time of the quantum
clustering algorithm (see Theorem 8.3), the overall running time of our algorithm is
given by

TL̃(k)Tqmeans (9.17)

To go further, we can assume that the vectors are effectively made of well sepa-
rated clusters. Indeed, it should be the case in the spectral clustering method, once
projected onto the spectral space (see Section 11.3 for numerical simulations). This
well-clusterability assumption (See Definition 8.1) ensures the classical spectral clus-
tering to classify the data accurately, and the quantum algorithm to work efficiently.
Indeed, the running time of the q-means algorithm is bounded with better guaran-
tees in this case (Chapter 8). With this assumption, and with input dimension k for

the spectral space of L̃(k), the running time to update the k centroids in the case of
well-clusterable data is given by

Õ

(
TL̃(k)

k3η(L̃(k))2.5

δ3

)
(9.18)

Again, it is important to note that our algorithm could work without this well-
clusterability assumption, the only difference would be a different bound on the
theoretical runtime (See Theorem 8.3 for the general formulation).
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9.2.3 Running Time

Using the running times obtained in Theorems 9.2 and 9.3, as well as result (9.18) for
the well-clusterable case, we can conclude that our quantum algorithm for spectral
clustering has the following running time :

Õ

(
TS

η(S)

εdistεB

µ(B)κ(L̃(k))

ελ

k3η(L̃(k))2.5

δ3

)
(9.19)

TS is the time to have quantum access (see Definition 4.5) to the input vectors
S ∈ RN×d which becomes O(polylog(N, d)) if we assume access to the QRAM. k is

the number of clusters. κ(L̃(k)) is the condition number of L̃(k). µ(B), η(S), and

η(L̃(k)) are data parameters defined in Definitions 5.1 and 6.1. εB is the chosen min-
imum value in the incidence matrix. εdist is the precision in the distance calculation
between input points. δ is the precision of the q-means algorithm.

9.3 Numerical Simulations

The quantum algorithm performs the same steps as the classical one while introduc-
ing noise or randomness along the way. We present numerical simulations on simple
synthetic datasets made of two concentric circles, as in the original work on spectral
clustering [NJW02], in order to benchmark the quality of the quantum algorithm. In
this way, we see how the quantum effects are impacting the graph and the spectral
space, and we obtain numerical estimates on the quantum running time.

These simulations are made with a classical computer that simulates the quantum
steps and introduces equivalent noise and randomness. It would be very interesting
to perform the same experiments using a real quantum computer, alas such com-
puters are not yet available. While simulating the quantum steps, the computation
becomes very soon impractical, in fact the simulations we present already take sev-
eral hours to execute, and thus we leave numerical simulations on larger datasets as
future work. Our goal was to design a quantum spectral clustering algorithm with
a rigorous theoretical analysis of its running time and provide initial evidence of its
practical efficiency and accuracy on a canonical dataset.

The precision parameters used in the quantum case were: εdist = 0.1 for the
creation of edges, εB = 0.1 for the creation of the incidence matrix, ελ = 0.9 during
the estimation of the eigenvalues of L and finally the precision parameter in q-means
δ = 0.9. The quantum algorithm was able to classify the two sets with high accuracy
(Table 9.2). The clustering was simulated for 300 to 1000 points, repeated 10 times
each. In Fig.9.2 we observe clearly the impact of the quantum effects in the graph,
where the edges are different, and in the spectral space, where the clusters are
more spread out. It is surprising that the quantum algorithm is already faster for
small values of N , below 1000 points (Fig.9.3). This difference should substantially
increase as N grows. Indeed, compared to the classical algorithm used in practice
which scales as O(N3), the quantum running time is advantageous as its scaling
appears to be linear in N . In fact, the scaling comes from the factor µ(B) which is
upper bounded by N (see Section 9.2.1). Note, of course, that both for the classical
and quantum running time we used as a proxy the order of steps in the theoretical
analysis, disregarding questions of clock time or error correction. Our results show
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Figure 9.2: (a) Classical and (b) Quantum spectral clustering algorithms on two
non linearly separable sets of 600 input vectors. The Laplacian is derived from the
adjacency graph (left), itself constructed from the data points. The clustering is
shown in both spectral (center) and input (right) space domains. Three points were
misclassified in the quantum case.

Figure 9.3: Running times for quantum
and classical spectral clustering. Error
bars are present.

Numbers
of points

Accuracy

Classical Quantum

300 100% 99.6%± 1.05%
400 100% 99.5%± 0.83%
500 100% 99.3%± 1.52%
600 100% 99.9%± 0.31%
700 100% 100.0%± 0.0%
800 100% 99.6%± 0.62%
900 100% 99.6%± 0.68%
1000 100% 99.9%± 0.19%

Table 9.2: Our quantum algorithm finds
the clusters with a similar high accuracy.

more than anything that it is certainly worth pursuing quantum algorithms for
spectral clustering and other graph based machine learning algorithms, since at
least at a first level of comparison they can offer considerable advantages compared
to the classical algorithms. It remains an open question to see when and if quantum
hardware can become good enough to offer such advantages in practice.
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Conclusions

In this work, we described a new quantum machine learning algorithm, inspired by
the classical spectral clustering algorithm. While introducing a number of modi-
fications, approximations, and randomness in the process, the quantum algorithm
can still perform clustering tasks with similar very good accuracy, and with a more
efficient running time thanks to a weaker dependence on the number of input points:
at most linear in our preliminary experiments. This could allow quantum spectral
clustering to be applied on datasets that are now considered infeasible in practice.
Our quantum algorithm is end-to-end, from classical input to classical output, and
could pave the way to other graph based methods in machine learning and opti-
mization, for example using our methods for obtaining access to the normalized
Adjacency, Incident, and Laplacian matrices.
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Quantum Neural Networks
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Chapter 10

Introduction

“Les machines un jour pourront
résoudre tous les problèmes,
mais jamais aucune d’entre elles
ne pourra en poser un !”

Albert Einstein
Comment je vois le monde

(1934)

We refer the reader to Section 2.3 for a basic introduction to classical neural
network theory and notations.

10.1 Why is it Hard to Implement a Neural Net-

work on a Quantum Computer?

In recent years, many attempts have been made to provide quantum algorithms for
neural networks. this proliferation is due to the significance that it would represent
but also to the fact that it is a problem difficult to solve [SSP14].

The main issues in creating quantum neural networks are non-linearities, modu-
larity and diversity:

Non-linearities As we have seen in Section 2.3.1, non-linear functions are sys-
tematically present at the end of each neural network layer. They allow the model
to reach universality by approximating any functions [Cyb89, LLPS93]. However,
quantum computing is the realm of unitary, therefore linear, transformations. In
particular, when the amplitudes of a quantum state encode the meaningful data, one
cannot apply an arbitrary non-linear function on it. This represents a strong limit
on the ability of quantum computers to enhance deep learning by directly converting
them as quantum circuits and harnessing quantum superposition across layers.

To deal with this paradox, several attempts have been made [TMGB19, BBF+20,
WKS14b, CGAG17]. Most use measurements to trigger non-linear behaviors, oth-
ers transfer the data in binary encoding for classical applications of non-linearities
[AHKZ20]. Finally, it is often the case that quantum neural networks are proposed
without any non-linearity [RBWL18]. In this thesis, we will pursue the approach of
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[AHKZ20], which comes at the cost of performing amplitude estimation and thus
limits the speedup to a quadratic one at the end.

Modular approach The success of deep learning relies on the infinite number of
architectures that are possible to produce in order to solve one particular task. It
allows us to adapt to any input or output size, or to test different numbers and sizes
of hidden layers (often called hyper parameter optimization). Recent architectures
such as ResNet [TYL17] or LSTM [GSC00] even require connections between input
layer non adjacent hidden layers. In deep learning for recommendation systems
[ZYST19] several inputs are processed on their own neural network, then branched
later on.

The way we define quantum neural networks should include this modularity and
offer similar handling. This would require a certain architecture for the quantum
circuit. First, the quantum circuit should correspond to one layer, and potentially
be end-to-end (from classical input to classical output).

Diversity of modules Even though quantum deep learning should start at the
basic, namely fully connected neural networks (see Section 2.3.1), there is a large
variety of layers that exist in the literature. Different layer types are combined in
a single network, including convolutional layer, but also pooling (see Section 2.3.4),
averaging, dropout. A zoo of non-linearities are also used at different steps (ReLu,
Sigmoid, tanh, etc.). More recently, additional constraints have been introduced on
the layer such as orthogonality, isometry, hyperbolic geometry [GBH18] and more.

Quantum neural networks don’t have to mimic them all at first, but we should
bear in mind that this is the level of diversity we could aim for. Quantum computing
may allow for certain properties easily (see Chapter 12).

Training Finally, we must not overlook the difficulty of training the weights of the
neural networks, which is most commonly done using backpropagation (see Section
2.3.2). This also represents a challenge for quantum computing since it imposes to
access the state of each layer. It is then a strong argument for modularity and the
classical inputs and outputs. Having only a quantum state for each layer and pur-
suing the computation would present to do the backpropagation unless we destroy
the quantum state by measuring it. for instance, faced with this problem, varia-
tional quantum circuits have chosen to abandon backpropagation for less efficient
techniques (see Section 3.3).

Before going into the details of quantum neural networks, it is useful to remind
that there exist different approaches for short term or NISQ applications. As de-
tailed in Section 3.3, variational quantum circuits don’t properly have weights but
gate parameters that are tunable as well. As in [CCL19, VBB17], the appellation
quantum neural networks is used for their conceptual similarities. In Chapter 12,
we will propose a similar NISQ neural network that has a specific and fast training
paradigm, and that is equivalent to its classical counterpart. There also exist recent
proposals for fault tolerant quantum computers using the Neural Tangent Kernel
approach and the HHL algorithm [ZNL21].
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10.2 Quantum Algorithm for Fully Connected Neu-

ral Networks

In [AHKZ20], the authors introduced a quantum algorithm for fully connected neural
network defined in Section 2.3.1, based on the quantum inner product estimation
(QIPE) from [KLLP19] (Theorem 6.1).

As stated in Eq.(2.6) and Eq.(2.7), the `th layer of a fully connected neural
network’s with input vector a`, weight matrix W ` and bias vector b` can be written
as

z`+1 = W `a` + b` (10.1)

a`+1 = σ(z`+1) (10.2)

We see that the matrix product between W ` and a` is the core of this operation,
followed by a non-linear function σ. This matrix multiplication can be replaced by
a series of inner product between the input a` and each row of the weight matrix
W `
j for j ∈ [n`], where n` is the number of input nodes or the dimension of a`.

z`+1
j = (W `

j , a
`) + b`j (10.3)

where (x, y) is the inner product between vectors x and y.

Using the QIPE algorithm from Theorem 6.1, with relative error parameters ε
and probability parameter ∆, the authors defined a (ε,∆)-feedforward neural net-
work. They achieve a running time of:

Õ

(
N

log(1/∆)

ε
R

)
(10.4)

where N is the number of neurons in the whole neural network, and R is an
aggregate of data dependant parameters (based on the norms of the weights and
inputs).

To this end, they apply the QIPE in superposition over all the rows of the weights
matrix, assuming quantum access to W ` and a`.

Figure 10.1: Diagram representation of a fully connected neural network’s layer
using the quantum inner product estimation from Theorem 6.1. It performs the
matrix multiplication and the following non-linearity σ.

Further, a quantum backpropagation algorithm was introduced. Indeed, as ex-
plained in Section 2.3.2, backpropagation is also a series of matrix multiplication
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performed layer by layer backward. Using again the QIPE, the authors proposed a
quantum algorithm for training the networks in time

Õ

(
(TM)1.5N

log(1/∆)

ε
R′
)

(10.5)

where T is the number of update iterations, M the size of the mini batches, and
R′ another aggregate of data dependant parameters. Classical simulations were con-
ducted and showed that the numerical parameters R and R′ were small in practice.

In addition, the difficulties presented in Section 10.1 forced the authors to be
subtle with the weight matrix. They first imagined a low rank initialization, to
avoid having too many values stored in the QRAM. Then, at each iteration, instead
of updating the whole matrix, which would have ruined the benefit of previous
quantum computations, they store instead the layers and a derivative of the error
vectors, which allow for a fast recomputation of the weight matrix.

The authors suggest that the noise and errors caused by the quantum nature
of this algorithm could be beneficial for neural networks. They argue that training
a neural network while performing noisy computations will help it generalize cor-
rectly, preventing the weights to adjust too well to the training set also known as
overfitting. This robust training using quantum effects is interesting, and could be
further developed in terms of privacy preserving, data enhancement, and more.

Note finally that it is also possible to perform fully connected neural networks
in a different setting, using inner products from unary data loaders [MLL+21] (see
Section 6.2).
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Quantum Convolutional Neural
Networks

”L’ignorance rend plus sûr de
soi que la connaissance.”

Etienne Klein
Le goût du vrai (2020)

Preliminaries on convolutional neural networks, along with all notations are given
in Section 2.3.4. Variables are summarized in Section 11.2.3.

11.1 Main Results

We design a quantum algorithm for a complete CNN, with a modular architecture
that allows any number of layers, any number and size of kernels, and that includes
a large variety of non-linearity and pooling methods. We introduce a quantum
convolution product and a specific quantum sampling technique well suited for in-
formation recovery in the context of CNN. We also propose a quantum algorithm
for backpropagation that allows an efficient training of our quantum CNN.

As explained in Section 2.3.4, a single layer ` of the classical CNN does the
following operations: from an input image X` seen as a 3D tensor, and a kernel
K` seen as a 4D tensor, it performs a convolution X`+1 = X` ∗ K`, followed by a
non-linear function, and followed by pooling. In the quantum case, we will obtain
a quantum state corresponding to this output, approximated with error ε > 0.
To retrieve a classical description from this quantum state, we will apply an `∞
tomography (see Theorem 4.3) and sample the elements with high values, in order
to reduce the computation while still getting the information that matters (see
Section 11.2.1).

The QCNN can be directly compared to the classical CNN as it has the same
inputs and outputs. We show that it offers a speedup compared to the classical CNN
for both the forward pass and for training using backpropagation in certain cases.
For each layer, on the forward pass (Algorithm 3), the speedup is exponential in the
size of the layer (number of kernels) and almost quadratic on the spatial dimension
of the input. We next state informally the speedup for the forward pass, the formal
version appears as Theorem 11.1.
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Result 11.1: Quantum Convolution Layer

Let X` be the input and K` be the kernel for layer ` of a convolutional neural
network, and f : R 7→ [0, C] with C > 0 be a non-linear function so that
f(X`+1) := f(X` ∗K`) is the output for layer `.
Given X` and K` stored in QRAM, there is a quantum algorithm that, for

any precision parameters ε > 0 and ν > 0, creates quantum state |f(X
`+1

)〉
such that

∥∥∥f(X
`+1

)− f(X`+1)
∥∥∥
∞
≤ 2Mε and retrieves classical tensor X `+1

such that for each pixel j,{
|X `+1

j − f(X`+1
j )| ≤ 2ε if f(X

`+1

j ) ≥ ν

X `+1
j = 0 if f(X

`+1

j ) < ν
(11.1)

This algorithm runs in time

Õ

 1

εν2

M
√
C√

E(f(X
`+1

))

 (11.2)

where E(f(X
`+1

)) represents the average value of f(X
`+1

), and Õ hides factors
polylogarithmic in the size of X` and K` and the parameter M (defined in
Eq.(11.22)) is the maximum product of norms from subregions of X` and K`.

We see that the number of kernels contributes only polylogarithmically to the
running time, allowing the QCNN to work with larger and in particular exponentially
deeper kernels. The contribution from the input size is hidden in the precision
parameter ν such that (see also Eq.(11.34)):

ν =
1√

σ ·H`+1W `+1D`+1
(11.3)

Therefore the running time has a factor O(σ ·H`+1W `+1D`+1), which is the number
of pixels classically retrieved from the quantum state. Indeed, a sufficiently large
fraction of pixels must be sampled from the output of the quantum convolution
to retrieve meaningful information. In the Numerical Simulations (Section 11.3)
we give estimates for ν. The cost of generating the output X `+1 of the quantum
convolutional layer can thus be much smaller than that for the classical CNN in
certain cases, Section 11.2.3 provides a detailed comparison to the classical running
time.

Following the forward pass, a loss function L is computed for the output of a
classical CNN. The backpropagation algorithm is then used to calculate, layer by
layer, the gradient of this loss with respect to the elements of the kernels K`, in
order to update them through gradient descent. The formal version of our quantum
backpropagation algorithm is given as Theorem 11.2
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Result 11.2: Quantum Backpropagation for Quantum CNN

Given the forward pass quantum algorithm in Result 11.1, and given the
kernel matrix F `, the input matrices A` and Y `, stored in the QRAM for each
layer `, and a loss function L, there is a quantum backpropagation algorithm
that estimates each element of the gradient tensor ∂L

∂F `
within additive error

δ
∥∥ ∂L
∂F `

∥∥, and updates them to perform a gradient descent. The running time
of a single layer ` for quantum backpropagation is given by

O

(((
µ(A`) + µ(

∂L
∂Y `+1

)

)
κ(
∂L
∂F `

) +

(
µ(

∂L
∂Y `+1

) + µ(F `)

)
κ(
∂L
∂Y `

)

)
log(1/δ)

δ2

)
(11.4)

where for a matrix V ∈ Rn×n, κ(V ) is the condition number and µ(V ) ≤
√
n

is a matrix dependent parameter defined in Definition 5.1.

Details concerning the tensors and their matrix expansion or reshaping are given
in Section 2.3.4, and a summary of all variables with their meaning and dimension
is given in Section 11.2.3. Note that X`, Y ` and A` are different forms of the same
input. Similarly K` and F ` both refer to the kernels.

For the quantum backpropagation algorithm, we introduce a quantum tomogra-
phy algorithm with `∞ norm guarantees, that could be of independent interest. It is
exponentially faster than the tomography with `2 norm guarantees and is given as
Theorem 4.2. Numerical simulations on classifying the MNIST dataset show that
our quantum CNN achieves a similar classification accuracy as the classical CNN.

The rest of the chapter is organized as follows: we explain our quantum algo-
rithm in two parts: the forward quantum convolution layer (Section 11.2.1) and the
quantum backpropagation (Section 11.2.4). The final part presents the results of our
numerical simulations (Section 11.3) and our conclusions (Section 11.4). A summary
of the variables is given as Section 11.2.3, and the two algorithms for the forward
and backpropagation phase of the QCNN are given as Algorithm 3 and Algorithm 4.

11.2 Quantum Algorithm

11.2.1 Quantum Feedforward Algorithm

In this section we will design quantum procedures for the usual operations in a
CNN layer. We start by describing the main ideas before providing the details. The
forward pass algorithm for the QCNN is given as Algorithm 3.

First, to perform a convolution product between an input and a kernel, we use
the mapping between convolution of tensors and matrix multiplication from Section
2.3.4, which can further be reduced to inner product estimation between vectors.
The output will be a quantum state representing the result of the convolution prod-
uct, from which we can sample to retrieve classical information to feed the next
layer. This is stated in the following Theorem:
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Theorem 11.1: Quantum Convolution Layer

Given 3D tensor input X` ∈ RH`×W `×D` and 4D tensor kernel K` ∈
RH×W×D`×D`+1

stored in QRAM, and precision parameters ε,∆ > 0, there

is a quantum algorithm that computes a quantum states ∆-close to |f(X
`+1

)〉
where X`+1 = X` ∗K` and f : R 7→ [0, C] is a non-linear function. A classical
approximation such that∥∥∥f(X

`+1
)− f(X`+1)

∥∥∥
∞
≤ ε (11.5)

The time complexity of this procedure is given by Õ (M/ε), where M is the
maximum norm of a product between one of the D`+1 kernels, and one of the
regions of X` of size HWD` and Õ hides factors polylogarithmic in ∆ and in
the size of X` and K`.

Recall that a convolution product can be seen as a pattern detection on the
input image, where the pattern is the kernel. The output values correspond to
“how much” the pattern was present in the corresponding region of the input. Low
value pixels in the output indicate the absence of the pattern in the input at the
corresponding regions. Therefore, by sampling according to these output values,
where the high value pixels are sampled with more probability, we could retrieve
less but only meaningful information for the neural network to learn. It is a singular
use case where amplitudes of a quantum state are proportional to the importance
of the information they carry, giving a new utility to the probabilistic nature of
quantum sampling. Numerical simulations in Section 11.3 provide an empirical
estimate of the sampling rate to achieve good classification accuracy.

11.2.2 Single Quantum Convolution Layer

In order to develop a quantum algorithm to perform the convolution as described
above, we will make use of quantum linear algebra procedures. We will use quantum
states proportional to the rows of A`, denoted |Ap〉, and the columns of F `, denoted
|Fq〉 (we omit the ` exponent in the quantum states to simplify the notation). These
states are given by

|Ap〉 =
1

‖Ap‖

HWD`−1∑
r=0

Apr |r〉 (11.9)

|Fq〉 =
1

‖Fq‖

D`+1−1∑
s=0

Fsq |s〉 (11.10)

We suppose we can load these vectors in quantum states by performing the following
queries: {

|p〉 |0〉 7→ |p〉 |Ap〉
|q〉 |0〉 7→ |q〉 |Fq〉

(11.11)

Such queries, in time polylogarithmic in the dimension of the vector, can be imple-
mented with a Quantum Random Access Memory (QRAM). See Section 11.2.3 for
more details on the QRAM update rules and its integration layer by layer.
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Algorithm 3 QCNN Layer

Require: Data input matrix A` and kernel matrix F ` stored in QRAM. Precision
parameters ε and ν, a non-linearity function f : R 7→ [0, C].

Ensure: Outputs the data matrix A`+1 for the next layer, result of the convolution
between the input and the kernel, followed by a non-linearity and pooling.

1: Step 1: Quantum Convolution
1.1: Inner product estimation
Perform the following mapping, using QRAM queries on rows A`p and columns
F `
q , along with Theorems 3.2 and 6.2 to obtain

1

K

∑
p,q

|p〉 |q〉 7→ 1

K

∑
p,q

|p〉 |q〉 |P pq〉 |gpq〉 , (11.6)

where P pq is ε-close to Ppq =
1+〈A`p|F `q 〉

2
and K =

√
H`+1W `+1D`+1 is a normali-

sation factor. |gpq〉 is some garbage quantum state.
1.2: Non-linearity

Use an arithmetic circuit and two QRAM queries to obtain Y
`+1

, an ε-
approximation of the convolution output Y `+1

p,q = (A`p, F
`
q ) and apply the non-

linear function f as a boolean circuit to obatin

1

K

∑
p,q

|p〉 |q〉 |f(Y
`+1

p,q )〉 |gpq〉 . (11.7)

2: Step 2: Quantum Sampling
Use Conditional Rotation and Amplitude Amplification to obtain the state

1

K

∑
p,q

α′pq |p〉 |q〉 |f(Y
`+1

pq )〉 |gpq〉 . (11.8)

Perform `∞ tomography from Theorem 4.3 with precision ν, and obtain clas-

sically all positions and values (p, q, f(Y
`+1

pq )) such that, with high probability,
values above ν are known exactly, while others are set to 0.

3: Step 3: QRAM Update and Pooling
Update the QRAM for the next layer A`+1 while sampling. The implementation
of pooling (Max, Average, etc.) can be done by a specific update or the QRAM
data structure described in Section 11.2.3.
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Inner Product Estimation

The following method to estimate inner products is derived from previous work
[KLLP19]. With the initial state |p〉 |q〉 1√

2
(|0〉+|1〉) |0〉 we apply the queries detailed

above in a controlled fashion, followed simply by a Hadamard gate to extract the
inner product 〈Ap|Fq〉 in an amplitude.

1√
2

(|p〉 |q〉 |0〉 |0〉+ |p〉 |q〉 |1〉 |0〉) 7→ 1√
2

(|p〉 |q〉 |0〉 |Ap〉+ |p〉 |q〉 |1〉 |Fq〉) (11.12)

By applying a Hadamard gate on the third register we obtain the following state,

1

2
|p〉 |q〉

(
|0〉 (|Ap〉+ |Fq〉) + |1〉 (|Ap〉 − |Fq〉)

)
(11.13)

The probability of measuring 0 on the third register is given by Ppq = 1+〈Ap|Fq〉
2

.
Thus we can rewrite the previous state as

|p〉 |q〉
(√

Ppq |0, ypq〉+
√

1− Ppq |1, y
′

pq〉
)

(11.14)

where |ypq〉 and |y′pq〉 are some garbage states.
We can perform the previous circuit in superposition. Since A` has H`+1W `+1 rows,
and F ` has D`+1 columns, we obtain the state:

|u〉 =
1√

H`+1W `+1D`+1

∑
p

∑
q

|p〉 |q〉
(√

Ppq |0, ypq〉+
√

1− Ppq |1, y
′

pq〉
)

(11.15)

Therefore the probability of measuring the triplet (p, q, 0) in the first three registers
is given by

P0(p, q) =
Ppq

H`+1W `+1D`+1
=

1 + 〈Ap|Fq〉
2H`+1W `+1D`+1

(11.16)

Now we can relate to the Convolution product. Indeed, the triplets (p, q, 0) that
are the most probable to be measured are the ones for which the value 〈Ap|Fq〉 is
the highest. Recall that each element of Y `+1 is given by Y `+1

pq = (Ap, Fq), where
“(·, ·)” denotes the inner product. We see here that we will sample most probably
the positions (p, q) for the highest values of Y `+1, that corresponds to the most
important points of X`+1, by the Eq.(2.15). Note that the values of Y `+1 can be
either positive or negative, which is not an issue thanks to the positiveness of P0(p, q).

A first approach could be to measure indices (p, q) and rely on the fact that pixels
with high values, hence a high amplitude, would have a higher probability to be
measured. However we have not exactly the final result, since 〈Ap|Fq〉 6= (Ap, Fq) =
‖Ap‖ ‖Fq‖ 〈Ap|Fq〉. Most importantly we then want to apply a non-linearity f(Y `+1

pq )
to each pixel, for instance the ReLu function, which seems not possible with unitary
quantum gates if the data is encoded in the amplitudes only. Moreover, due to the
normalization of the quantum amplitudes and the high dimension of the Hilbert
space of the input, the probability of measuring each pixel is roughly the same,
making the sampling inefficient. Given these facts, we have added steps to the
circuit, in order to measure (p, q, f(Y `+1

pq )), therefore know the value of a pixel when
measuring it, while still measuring the most important points in priority.
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Encoding the amplitude in a register

Let U be the unitary that map |0〉 to |u〉

|u〉 =
1√

H`+1W `+1D`+1

∑
p,q

|p〉 |q〉
(√

Ppq |0, ypq〉+
√

1− Ppq |1, y
′

pq〉
)

(11.17)

The amplitude
√
Ppq can be encoded in an ancillary register by using Amplitude

Estimation (Theorem 3.2) followed by a Median Evaluation (Theorem 6.2).
For any ∆ > 0 and ε > 0, we can have a state ∆-close to

|u′〉 =
1√

H`+1W `+1D`+1

∑
p,q

|p〉 |q〉 |0〉 |P pq〉 |gpq〉 (11.18)

with probability at least 1− 2∆, where |Ppq − P pq| ≤ ε and |gpq〉 is a garbage state.

This requires O( ln(1/∆)
ε

) queries of U . In the following we discard the third register
|0〉 for simplicity.

The benefit of having P pq in a register is to be able to perform operations on it
(arithmetic or even non-linear). Therefore we can simply obtain a state correspond-
ing to the exact value of the convolution product. Since we’ve built a circuit such
that Ppq = 1+〈Ap|Fq〉

2
, with two QRAM calls, we can retrieve the norm of the vectors

by applying the following unitary:

|p〉 |q〉 |P pq〉 |gpq〉 |0〉 |0〉 7→ |p〉 |q〉 |P pq〉 |gpq〉 |‖Ap‖〉 |‖Fq‖〉 (11.19)

On the fourth register, we can then write Y `+1
pq = ‖Ap‖ ‖Fq‖ 〈Ap|Fq〉 using some

arithmetic circuits (addition, multiplication by a scalar, multiplication between reg-
isters). We then apply a boolean circuit that implements the ReLu function on the
same register, to obtain an estimate of f(Y `+1

pq ) in the fourth register. We finish by
inverting the previous computations and obtain the final state

|f(Y
`+1

)〉 =
1√

H`+1W `+1D`+1

∑
p,q

|p〉 |q〉 |f(Y
`+1

pq )〉 |gpq〉 (11.20)

Because of the precision ε on |P pq〉, our estimation Y
`+1

pq = (2P pq−1) ‖Ap‖ ‖Fq‖,
is obtained with error such that

|Y `+1

pq − Y `+1
pq | ≤ 2ε ‖Ap‖ ‖Fq‖ (11.21)

In superposition, we can bound this error by |Y `+1

pq − Y `+1
pq | ≤ 2Mε where we

define
M = max

p,q
‖Ap‖ ‖Fq‖ (11.22)

M is the maximum product between norms of one of the D`+1 kernels, and one
of the regions of X` of size HWD`. Finally, since Eq.(11.21) is valid for all pairs
(p, q), the overall error committed on the convolution product can be bounded by∥∥∥Y `+1 − Y `+1

∥∥∥
∞
≤ 2Mε, where ‖.‖∞ denotes the `∞ norm. Recall that Y `+1 is just

a reshaped version of X`+1. Since the non-linearity adds no approximation, we can
conclude on the final error committed for a layer of our QCNN∥∥∥f(X

`+1
)− f(X`+1)

∥∥∥
∞
≤ 2Mε (11.23)
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At this point, we have established Theorem 11.1 as we have created the quantum
state (11.20), with given precision guarantees, in time polylogarithmic in ∆ and in
the size of X` and K`.

We know aim to retrieve classical information from this quantum state. Note that
|Y `+1
pq 〉 is representing a scalar encoded in as many qubits as needed for the precision,

whereas |Ap〉 was representing a vector as a quantum state in superposition, where
each element Ap,r is encoded in one amplitude (See Section 4.1.1). The next step
can be seen as a way to retrieve both encodings at the same time, which will allow
an efficient tomography focus on the values of high magnitude.

Conditional rotation

In the following sections, we omit the `+ 1 exponent for simplicity. Garbage states
are removed as they will not perturb the final measurement. We now aim to modify
the amplitudes, such that the highest values of |f(Y )〉 are measured with higher
probability. As shown in Section 4.1.1, a way to do so consists in applying a condi-
tional rotation on an ancillary qubit, proportionally to f(Y pq). We will detail the
calculation since in the general case f(Y pq) can be greater than 1. To simplify the
notation, we denote it by x = f(Y pq).

This step consists of applying the following rotation on an ancillary qubit:

|x〉 |0〉 7→ |x〉
(√

x

maxx
|0〉+ β |1〉

)
(11.24)

Where maxx = maxp,q f(Y pq) and β =
√

1− ( x
maxx

)2. Note that in practice it is
not possible to have access to |maxx〉 from the state (11.20), but we will present a
method to know a priori this value or an upper bound in section 11.2.2.

Let’s denote αpq =
√

f(Y pq)

maxp,q(f(Y pq))
. The ouput of this conditional rotation in

superposition on state (11.20) is then

1√
HWD

∑
p,q

|p〉 |q〉 |f(Y pq)〉 (αpq |0〉+
√

1− α2
pq |1〉) (11.25)

Amplitude Amplification

In order to measure (p, q, f(Y pq)) with higher probability where f(Y pq) has high
value, we could post select on the measurement of |0〉 on the last register. Otherwise,
we can perform an amplitude amplification on this ancillary qubit. Let’s rewrite the
previous state as

1√
HWD

∑
p,q

αpq |p〉 |q〉 |f(Y pq)〉 |0〉+
√

1− α2
pq |g′pq〉 |1〉 (11.26)

Where |g′pq〉 is another garbage state. The overall probability of measuring |0〉 on
the last register is P (0) = 1

HWD

∑
pq |αpq|2. The number of queries required to

amplify the state |0〉 is O( 1√
P (0)

) (Theorem 3.2). Since f(Y pq) ∈ R+, we have

α2
pq = f(Y pq)

maxp,q(f(Y pq))
. Therefore the number of queries is

O

√max
p,q

(f(Y pq))
1√

1
HWD

∑
p,q f(Y pq)

 = O


√

maxp,q(f(Y pq))√
Ep,q(f(Y pq))

 (11.27)
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Where the notation Ep,q(f(Y pq)) represents the average value of the matrix f(Y ).
It can also be written E(f(X)) as in Result 11.1:

Ep,q(f(Y pq)) =
1

HWD

∑
p,q

f(Y pq) (11.28)

At the end of these iterations, we have modified the state to the following:

|f(Y )〉 =
1√

HWD

∑
p,q

α′pq |p〉 |q〉 |f(Y pq)〉 (11.29)

Where, to respect the normalization of the quantum state, α′pq = αpq√∑
p,q

α2pq
HWD

.

Eventually, the probability of measuring (p, q, f(Y pq)) is given by

p(p, q, f(Y pq)) =
(α′pq)

2

HWD
=

(αpq)
2∑

p,q(αpq)
2

=
f(Y pq)∑
p,q f(Y pq)

(11.30)

Note that we have used the same type of name |f(Y )〉 for both state (11.20) and
state (11.29). For now on, this state name will refer only to the latter (11.29).

`∞ tomography and probabilistic sampling

We can rewrite the final quantum state obtained in (11.29) as

|f(Y
`+1

)〉 =
1√∑

p,q f(Y
`+1

pq )

∑
p,q

√
f(Y

`+1

pq ) |p〉 |q〉 |f(Y
`+1

pq )〉 (11.31)

We see here that f(Y
`+1

pq ), the values of each pixel, are encoded in both the
last register and in the amplitude. We will use this property to extract efficiently
the exact values of high magnitude pixels. For simplicity, we will use instead the

notation f(X
`+1

n ) to denote a pixel’s value, with n ∈ [H`+1W `+1D`+1]. Recall that
Y `+1 and X`+1 are reshaped version of the same object.

The pixels with high values will have more probability of being sampled. Specif-
ically, we perform a tomography with `∞ guarantee and precision parameter ν > 0.
See Theorem 4.3 and Section 4.2.1 for details. The `∞ guarantee allows to obtain
each pixel with error at most ν, and require Õ(1/ν2) samples from the state (11.31).

Pixels with low values f(X
`+1

n ) < ν will probably not be sampled due to their low
amplitude. Therefore the error committed will be significative and we adopt the

rule of setting them to 0. Pixels with higher values f(X
`+1

n ) ≥ ν, will be sample
with high probability, and only one appearance is enough to get the exact register

value f(X
`+1

n ) of the pixel, as is it also written in the last register.
To conclude, let’s denote X `+1

n the resulting pixel values after the tomography,
and compare it to the real classical outputs f(X`+1

n ). Recall that the measured values

f(X
`+1

n ) are approximated with error at most 2Mε with M = maxp,q ‖Ap‖ ‖Fq‖. The
algorithm described above implements the following rules:{

|X `+1
n − f(X`+1

n )| ≤ 2Mε if f(X
`+1

n ) ≥ ν

X `+1
n = 0 if f(X

`+1

n ) < ν
(11.32)
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Concerning the running time, one could ask what values of ν are sufficient to
obtain enough meaningful pixels. Certainly, this highly depends on the output’s size
H`+1W `+1D`+1 and on the output’s content itself. But we can view this question
from another perspective, by considering that we sample a constant fraction of pixels
given by σ · (H`+1W `+1D`+1) where σ ∈ [0, 1] is a sampling ratio. Because of the
particular amplitudes of state (11.31), the high value pixels will be measured and
known with higher probability. The points that are not sampled are being set to 0.
We see that this approach is equivalent to the `∞ tomography, therefore we have

1

ν2
= σ ·H`+1W `+1D`+1 (11.33)

ν =
1√

σ ·H`+1W `+1D`+1
(11.34)

We will use this analogy in the numerical simulations (Section 11.3) to estimate,
for a particular QCNN architecture and a particular dataset of images, which values
of σ are enough to allow the neural network to learn.

Regularization of the Non Linearity

In the previous steps, we see several appearances of the parameter maxp,q(f(Y
`+1

pq )).
First, for the conditional rotation preprocessing, we need to know this value or an
upper bound. Then for the running time, we would like to bound this parameter.
Both problems can be solved by replacing the usual ReLu non-linearity with a
particular activation function, that we denote by capReLu. This function is simply
a parametrized ReLu function with an upper threshold, the cap C, after which the
function remains constant. The choice of C will be tuned for each particular QCNN,
as a tradeoff between accuracy and speed. Otherwise, the only other requirement of
the QCNN activation function would be not to allow negative values. This is already
often the case for most of the classical CNN. In practice, we expect the capReLu
to be as good as a usual ReLu, for convenient values of the cap C (≤ 10). We
performed numerical simulations to compare the learning curve of the same CNN
with several values of C. See the numerical experiments presented in Section 11.3
for more details.

Figure 11.1: Activation functions: ReLu (Left) and capReLu (Right)
with a cap C at 5.

11.2.3 Quantum Memory Update

We wish to detail the use of the QRAM between each quantum convolution layer and
present how the pooling operation can happen during this phase. General results
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about the QRAM are given as Theorem 4.1. Implementation details can be found
Section 4.1.2. In this section, we will show how to store samples from the output of
the layer `, to create the input of layer `+ 1.

Storing the output values during the sampling

At the beginning of layer ` + 1, the QRAM must store A`+1, a matrix where each
elements is indexed by (p′, r′), and perform |p′〉 |0〉 7→ |p′〉 |A`+1

p′ 〉. The data is stored

in the QRAM as a tree structure described in Fig.4.2. Each row A`+1
p′ is stored in

such a tree T `+1
p′ . Each leaf A`+1

p′r′ correspond to a value sampled from the previous

quantum state |f(Y
`+1

)〉, output of the layer `. The question is to know where to

store a sample from |f(Y
`+1

)〉 in the tree T `+1
p′ .

When a point is sampled from the final state of the quantum convolution, at
layer `, as described in Section 11.2.2, we obtain a triplet corresponding to the two

positions and the value of a point in the matrix f(Y
`+1

). We can know where this
point belongs in the input of layer `+ 1, the tensor X`+1, by Eq.(2.15), since Y ` is
a reshaped version of X`.

The position in X`+1, denoted (i`+1, j`+1, d`+1), is then matched to several po-
sitions (p′, r′) in A`+1. For each p′, we write in the tree T `+1

p′ the sampled value
at leaf r′ and update its parent nodes. Note that leaves that weren’t updated will
be considered as zeros, corresponding to pixels with too low values, or not selected
during pooling (see next section).

Having stored pixels in this way, we can then query |p′〉 |0〉 7→ |p′〉 |A`p′〉, using

Theorem 4.1, where we correctly have |A`+1
p′ 〉 = 1∥∥∥A`+1

p′

∥∥∥
∑

r′ A
`+1
p′r′ |r′〉. Note that each

tree has a logarithmic depth in the number of leaves, hence the running time of writ-
ing the output of the quantum convolution layer in the QRAM gives a marginal mul-

tiplicative increase, polylogarithmic in the number of points sampled from |f(Y
`+1

)〉,
namely O(log(1/ν2)).

Quantum Pooling

As for the classical CNN, a QCNN should be able to perform pooling operations. We
first detail the notations for classical pooling. At the end of layer `, we wish to apply
a pooling operation of size P on the output f(X`+1). We denote by X̃`+1 the tensor
after the pooling operation. For a point in f(X`+1) at position (i`+1, j`+1, d`+1), we
know to which pooling region it belongs, corresponding to a position (̃i`+1, j̃`+1, d̃`+1)
in X̃`+1: 

d̃`+1 = d`+1

j̃`+1 = b j`+1

P
c

ĩ`+1 = b i`+1

P
c

(11.35)

We now show how any kind of pooling can be efficiently integrated into our
QCNN structure. Indeed the pooling operation will occur during the QRAM update
described above, at the end of a convolution layer. At this moment we will store
sampled values according to the pooling rules.

In the quantum setting, the output of layer ` after tomography is denoted by
X `+1. After pooling, we will describe it by X̃ `+1, which has dimensions H`+1

P
×W `+1

P
×
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Figure 11.2: A 2× 2 tensor pooling. A point in f(X`+1) (left) is given
by its position (i`+1, j`+1, d`+1). A point in X̃`+1 (right) is given by its
position (̃i`+1, j̃`+1, d̃`+1). Different pooling regions in f(X`+1) have
separate colours, and each one corresponds to a unique point in X̃`+1.

D`+1. X̃ `+1 will be effectively used as input for layer `+ 1 and its values should be
stored in the QRAM to form the trees T̃ `+1

p′ , related to the matrix expansion Ã`+1.

However X `+1 is not known before the tomography is over. Therefore we have
to modify the update rule of the QRAM to implement the pooling in an online

fashion, each time a sample from |f(X
`+1

)〉 is drawn. Since several sampled values of

|f(X
`+1

)〉 can correspond to the same leaf Ã`+1
p′r′ (points in the same pooling region),

we need an overwrite rule, that will depend on the type of pooling. In the case
of Maximum Pooling, we simply update the leaf and the parent nodes if the new
sampled value is higher than the one already written. In the case of Average Polling,
we replace the actual value with the new averaged value.

In the end, any pooling can be included in the already existing QRAM update. In
the worst case, the running time is increased by Õ(P/ν2), an overhead corresponding
to the number of times we need to overwrite existing leaves, with P being a small
constant in most cases.

As we will see in Section 11.2.4, the final positions (p, q) that were sampled

from |f(X
`+1

)〉 and selected after pooling must be stored for further use during the
backpropagation phase.

Running Time

We will now summarize the running time for one forward pass of convolution layer
`. With Õ we hide the polylogarithmic factors. We first write the running time of
the classical CNN layer, which is given by

Õ
(
H`+1W `+1D`+1 ·HWD`

)
(11.36)

For the QCNN, the previous steps prove Result 11.1 and can be implemented in
time

Õ

 1

εν2
· M

√
C√

E(f(X
`+1

))

 (11.37)
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Note that, as explain in Section 11.2.2, the quantum running time can also be written

Õ

σH`+1W `+1D`+1 · M
√
C

ε

√
E(f(X

`+1
))

 (11.38)

with σ ∈ [0, 1] being the fraction of sampled elements among H`+1W `+1D`+1 of
them.

It is interesting to notice that the one quantum convolution layer can also include
the ReLu operation and the Pooling operation in the same circuit, for no significant
increase in the running time, whereas in the classical CNN each operation must be
done on the whole data again.

Let’s go through all the important parameters that appear in the quantum run-
ning time:

- The error ε committed during the inner product estimation, is an empirical
parameter Our simulations tend to show that this error can be high without com-
promising the learning. Indeed the introduction of noise is sometimes interesting in
machine learning applications, providing more robust learning [GBCB16, Bis95].

- The parameter M = maxp,q ‖Ap‖ ‖Fq‖ as a worst case upper bound during
inner product estimation.

- Precision parameter ν can be related to the fraction of sampled elements in the

quantum output |f(X
`+1

)〉 of the convolution layer, during `∞ tomography.

- Amplitude amplification adds a multiplicative term

√
max (f(X

`+1
)) to the

running time, replaced here by
√
C, a constant parameter of order O(1), corre-

sponding to the cap, or upper bound, of the activation function. See Section 11.2.2
for details. This parameter appears at the conditional rotation step.

- Similarly, the data related value E(f(X
`+1

)), appearing during amplitude am-

plification, denotes the average value in the tensor f(X
`+1

), as defined in Eq.(11.28).
Finally, in most cases, to recognize kernel features in the input tensor, the size

H ×W of the kernels is a sufficient constant fraction of the input size H` ×W `.
Since H`+1 = H`−H+ 1, the classical running time can be seen as quadratic in the
input size, whereas the quantum algorithm is almost linear.

Variable Summary

We recall the most important variables for layer `. They represent tensors, their
approximations, and their reshaped versions.

Data Variable Dimensions Indices

Input
X` H` ×W ` ×D` (i`, j`, d`)
Y ` (H`W `)×D` -
A` (H`+1W `+1)× (HWD`) (p, r)

Kernel
K` H ×W ×D` ×D`+1 (i, j, d, d′)
F ` (HWD`)×D`+1 (s, q)

Table 11.1: Summary of input variables for the `th layer, along with their meaning,
dimensions and corresponding notations. These variables are common for both
quantum and classical algorithms. We have omitted indices for Y ` which don’t
appear in our work.
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Data Variable Dimensions Indices

Output of Quantum Convolution
f(Y

`+1
) (H`+1W `+1)×D`+1 (p, q)

f(X
`+1

) H`+1 ×W `+1 ×D`+1 (i`+1, j`+1, d`+1)
Output of Quantum Tomography X `+1 H`+1 ×W `+1 ×D`+1 (i`+1, j`+1, d`+1)

Output of Quantum Pooling X̃ `+1 H`+1

P
× W `+1

P
×D`+1 (̃i`+1, j̃`+1, d̃`+1)

Table 11.2: Summary of variables describing outputs of the layer `, with the quantum
algorithm.

Data Variable Dimensions Indices

Output of Classical Convolution
f(Y `+1) (H`+1W `+1)×D`+1 (p, q)
f(X`+1) H`+1 ×W `+1 ×D`+1 (i`+1, j`+1, d`+1)

Output of Classical Pooling X̃`+1 H`+1

P
× W `+1

P
×D`+1 (̃i`+1, j̃`+1, d̃`+1)

Table 11.3: Summary of variables describing outputs of the layer `, with the classical
algorithm.

Classical and quantum algorithms can be compared with these two diagrams:

{
Quantum convolution layer : X` → |X`+1〉 → |f(X

`+1
)〉 → X `+1 → X̃ `+1

Classical convolution layer : X` → X`+1 → f(X`+1)→ X̃`+1

(11.39)

We finally provide some remarks that could clarify some notations ambiguity:
- Formally, the output of the quantum algorithm is X̃ `+1. It is used as input

for the next layer ` + 1. But we consider that all variables’ names are reset when
starting a new layer: X`+1 ← X̃ `+1.

- For simplicity, we have sometimes replaced the indices (i`+1, j`+1, d`+1) by n to
index the elements of the output.

- In Section 11.2.3, the input for layer ` + 1 is stored as A`+1, for which the
elements are indexed by (p′, r′).

Figure 11.3: Variable summary and representation of a full QCNN layer. From left to
right: matrix expansion for input and kernel, parallel matrix product, non-linearity,
tomography and pooling.
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Quantum-Inspired Classical Algorithm

In Section 5.3, we detailed recent works that have provided quantum inspired clas-
sical algorithms for linear algebra that rely on `2 sampling using classical analogs of
the binary search tree (BST) data structure to efficiently estimate inner products.
Indeed the inner product can be efficiently approximated classically, analogous to
quantum inner product estimation. As shown in [AHKZ20], if x, y ∈ Rn are stored
in `2-BST then, with probability at least 1 − ∆, a value s that approximates the
inner product 〈x|y〉 can be computed with the following guarantees,

|s− 〈x|y〉| ≤

ε in time Õ
(

log(1/∆)
ε2

‖x‖2‖y‖2
|〈x|y〉|

)
ε|〈x|y〉| in time Õ

(
log(1/∆)

ε2
‖x‖2 ‖y‖2

) (11.40)

The running time is similar to the quantum inner product estimation presented
in Section 11.2.2, but presents a quadratic overhead on the precision ε and the
norms of the vectors x and y, which in our case would be A`p and F `

q , input and
kernel vectors. Similarly, the steps corresponding to the amplitude amplification of
Section 11.2.2 can be done classically with a quadratically worse dependence on the
parameters.

It is therefore possible to define a classical algorithm inspired by this work if
the matrices A` and F ` are stored in classical `2 BST. Using the above result, and
applying classically non-linearity and pooling, would give a forward pass algorithm
with running time,

Õ

(
H`+1W `+1D`+1 · M2C

ε2E(f(X
`+1

))

)
. (11.41)

Similar to the quantum algorithm’s running time (11.38), we obtain a polyloga-
rithmic dependence on the size of the kernels. We however see a quadratically worse
dependence with respect to ε, M = maxp,q ‖Ap‖ ‖Fq‖, C the upper bound of the

non-linearity, and the average value of f(X
`+1

), too. Recent numerical experiments
[ADBL19, AHKZ20] showed that such quantum inspired algorithms were less effi-
cient than the quantum ones, and even than the standard classical algorithms for
performing the same tasks.

Finally, the quantum inspired algorithm doesn’t provide the speedup character-
ized by σ ∈ [0, 1], the fraction of sampled elements among H`+1W `+1D`+1 of them.
Indeed, the probabilistic importance sampling described in Section 11.2.2, that al-
lows sampling the highest values of the convolution product output does not have
a classical analog. The importance sampling does not offer an asymptotic speedup,
however it could offer constant factor savings that are relevant in practice.

11.2.4 Quantum Backpropagation Algorithm

Preliminaries on classical CNN backpropagation, along with all notations are given
in Section Section 2.3.5.

The entire QCNN is made of multiple layers. For the last layer’s output, we
expect only one possible outcome, or a few in the case of a classification task, which
means that the dimension of the quantum output is very small. A full tomography
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can be performed on the last layer’s output in order to calculate the outcome. The
loss L is then calculated, as a measure of correctness of the predictions compared
to the ground truth. As the classical CNN, our QCNN should be able to perform
the optimization of its weights (elements of the kernels) to minimize the loss by an
iterative method.

Theorem 11.2: Quantum Backpropagation for Quantum CNN

Given the forward pass quantum algorithm in Algorithm 3, the input matrix
A` and the kernel matrix F ` stored in the QRAM for each layer `, and a loss
function L, there is a quantum backpropagation algorithm that estimates,
for any precision δ > 0, the gradient tensor ∂L

∂F `
and update each element to

perform gradient descent such that

∀(s, q),
∣∣∣∣ ∂L∂F `

s,q

− ∂L
∂F `

s,q

∣∣∣∣ ≤ 2δ

∥∥∥∥ ∂L∂F `

∥∥∥∥
2

(11.42)

Let ∂L
∂Y `

be the gradient with respect to the `th layer. The running time of a
single layer ` for quantum backpropagation is given by

O

(((
µ(A`) + µ(

∂L
∂Y `+1

)

)
κ(
∂L
∂F `

) +

(
µ(

∂L
∂Y `+1

) + µ(F `)

)
κ(
∂L
∂Y `

)

)
log(1/δ)

δ2

)
(11.43)

where for a matrix V , κ(V ) is the condition number and µ(V ) is defined in
Definition 5.1.

We will detail the quantum algorithm to perform backpropagation on a layer `,
and analyze the impact on the derivatives, given by the following diagram:

{
∂L
∂X`

∂L
∂F `

← ∂L
∂X

`+1
← ∂L

∂f(X
`+1

)
← ∂L

∂X `+1
← ∂L

∂X̃ `+1
=

∂L
∂X`+1

(11.46)

We assume that backpropagation has been done on layer ` + 1. This means in
particular that ∂L

∂X`+1 is stored in QRAM. However, as shown on Diagram (11.46),
∂L

∂X`+1 corresponds formally to ∂L
∂X̃ `+1 , and not ∂L

∂X
`+1 . Therefore, we will have to

modify the values stored in QRAM to take into account non-linearity, tomography
and pooling. We will first consider how to implement ∂L

∂X` and ∂L
∂F `

through back-
propagation, considering only convolution product, as if ∂L

∂X
`+1 and ∂L

∂X`+1 where the

same. Then we will detail how to simply modify ∂L
∂X`+1 a priori, by setting some of

its values to 0.

Quantum Convolution Product

In this section we consider only the quantum convolution product without non-
linearity, tomography nor pooling, hence writing its output directly as X`+1. Re-
garding derivatives, the quantum convolution product is equivalent to the classi-
cal one. Gradient relations (2.18) and (2.19) remain the same. Note that the
ε-approximation from Section 11.2.2 doesn’t participate in gradient considerations.

The gradient relations being the same, we still have to specify the quantum
algorithm that implements the backpropagation and outputs classical description
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Algorithm 4 Quantum Backpropagation

Require: Precision parameter δ. Data matrices A` and kernel matrices F ` stored
in QRAM for each layer `.

Ensure: Outputs gradient matrices ∂L
∂F `

and ∂L
∂Y `

for each layer `.

1: Calculate the gradient for the last layer L using the outputs and the true labels:
∂L
∂Y L

2: for ` = L− 1, · · · , 0 do
3: Step 1 : Modify the gradient

With ∂L
∂Y `+1 stored in QRAM, set to 0 some of its values to take into account

pooling, tomography and non-linearity that occurred in the forward pass of
layer `. These values correspond to positions that haven’t been sampled nor
pooled, since they have no impact on the final loss.

4: Step 2 : Matrix-matrix multiplications
With the modified values of ∂L

∂Y `+1 , use quantum linear algebra (Theorem 5.2)
to perform the following matrix-matrix multiplications{

(A`)T · ∂L
∂Y `+1

∂L
∂Y `+1 · (F `)T

(11.44)

to obtain quantum states corresponding to ∂L
∂F `

and ∂L
∂Y `

.
5: Step 3 : `∞ tomography

Using the `∞ tomography procedure given in Algorithm 1, estimate each entry
of ∂L

∂F `
and ∂L

∂Y `
with errors δ

∥∥ ∂L
∂F `

∥∥ and δ
∥∥ ∂L
∂Y `

∥∥ respectively. Store all elements
of ∂L

∂F `
in QRAM.

6: Step 4 : Gradient descent
Perform gradient descent using the estimates from step 3 to update the values
of F ` in QRAM:

F `
s,q ← F `

s,q − λ
(
∂L
∂F `

s,q

± 2δ

∥∥∥∥ ∂L∂F `

∥∥∥∥
2

)
(11.45)

7: end for

of ∂L
∂X` and ∂L

∂F `
. We have seen that the two main calculations (2.18) and (2.19)

are in fact matrix-matrix multiplications both involving ∂L
∂Y `+1 , the reshaped form of

∂L
∂X`+1 . For each, the classical running time is O(H`+1W `+1D`+1HWD`). We know
from Theorem 5.2 and Theorem 4.3 a quantum algorithm to perform efficiently a
matrix-vector multiplication and return a classical state with `∞ norm guarantees.
For a matrix V and a vector b, both accessible from the QRAM, the running time
to perform this operation is

O

(
µ(V )κ(V ) log(1/δ)

δ2

)
(11.47)

where κ(V ) is the condition number of the matrix and µ(V ) is a matrix parameter
defined in Definition 5.1. Precision parameter δ > 0 is the error committed in the
approximation for both Theorems 5.2 and 4.3.

We can therefore apply theses theorems to perform matrix-matrix multiplica-
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tions, by simply decomposing them in several matrix-vector multiplications. For
instance, in Eq.(2.18), the matrix could be (A`)T and the different vectors would
be each column of ∂L

∂Y `+1 . We know from Section 5.2 that the global running time
to perform quantumly Eq.(2.18) is obtained by replacing µ(V ) by µ( ∂L

∂Y `+1 ) + µ(A`)
and κ(V ) by κ((A`)T · ∂L

∂Y `+1 ). Likewise, for Eq.(2.19), we have µ( ∂L
∂Y `+1 ) +µ(F `) and

κ( ∂L
∂Y `+1 · (F `)T ).
Note that the dimension of the matrix doesn’t appear in the running time since

we tolerate a `∞ norm guarantee for the error, instead of a `2 guarantee (see Section
4.2.2 for details). The reason why `∞ tomography is the right approximation here
is because the result of these linear algebra operations are rows of the gradient
matrices, that are not vectors in an euclidean space, but a series of numbers for
which we want to be δ-close to the exact values. See the next section for more
details.

It is an open question to see if one can apply the same sub-sampling technique
as in the forward pass (Section 11.2.2) and sample only the highest derivatives of
∂L
∂X` , to reduce the computation cost while maintaining a good optimization.

We then have to understand which elements of ∂L
∂X`+1 must be set to zero to take

into account the effects the non-linearity, tomography and pooling.

Quantum Non-Linearity and Tomography

To include the impact of the non-linearity, one could apply the same rule as in
(2.20), and simply replace ReLu with capReLu. After the non-linearity, we obtain

f(X
`+1

), and the gradient relation would be given by

[
∂L

∂X
`+1

]
i`+1,j`+1,d`+1

=


[

∂L
∂f(X

`+1
)

]
i`+1,j`+1,d`+1

if 0 ≤ X
`+1

i`+1,j`+1,d`+1 ≤ C

0 otherwise

(11.48)

If an element of X
`+1

was negative or bigger than the cap C, its derivative
should be zero during the backpropagation. However, this operation was performed
in quantum superposition. In the quantum algorithm, one cannot record at which
positions (i`+1, j`+1, d`+1) the activation function was selective or not. The gradient
relation (11.48) cannot be implemented a posteriori.

We provide a partial solution to this problem, using the fact that quantum
tomography must also be taken into account for some derivatives. Indeed, only
the points (i`+1, j`+1, d`+1) that have been sampled should have an impact on the
gradient of the loss. Therefore we replace the previous relation by

[
∂L

∂X
`+1

]
i`+1,j`+1,d`+1

=

{[
∂L

∂X `+1

]
i`+1,j`+1,d`+1 if (i`+1, j`+1, d`+1) was sampled

0 otherwise

(11.49)
Nonetheless, we can argue that this approximation will be tolerable:

In the first case where X
`+1

i`+1,j`+1,d`+1 < 0, the derivatives can not be set to
zero as they should. But in practice, their values will be zero after the activation
function and such points would not have a chance to be sampled. In conclusion,
their derivatives would be zero as required.
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In the other case where X
`+1

i`+1,j`+1,d`+1 > C, the derivatives can not be set to zero
as well but the points have a high probability of being sampled. Therefore their
derivative will remain unchanged as if we were using a ReLu instead of a capReLu.
However in cases where the cap C is high enough, this shouldn’t be a source of
disadvantage in practice.

Quantum Pooling

From relation (11.49), we can take into account the impact of quantum pooling (see
Section 11.2.3) on the derivatives. This case is easier since one can record the selected
positions during the QRAM update. Therefore, applying the backpropagation is
similar to the classical setting with Eq.(2.21).

[
∂L

∂X `+1

]
i`+1,j`+1,d`+1

=


[

∂L
∂X̃ `+1

]
ĩ`+1,j̃`+1,d̃`+1

if (i`+1, j`+1, d`+1) ∈ P

0 otherwise
(11.50)

where P is the set of indices selected during pooling. Note that we know ∂L
∂X̃ `+1 as

it is equal to ∂L
∂X`+1 , the gradient with respect to the input of layer `+ 1, known by

assumption and stored in the QRAM.

Conclusion and Running Time

In conclusion, given ∂L
∂Y `+1 in the QRAM, the quantum backpropagation first consists

in applying the relations (11.50) followed by (11.49). The effective gradient now take
into account non-linearity, tomography and pooling that occurred during layer `. We
can know use apply the quantum algorithm for matrix-matrix multiplication that
implements relations (2.19) and (2.18).

Note that the steps in Algorithm 4 could also be reversed: during backpropaga-
tion of layer `+ 1, when storing values for each elements of ∂L

∂Y `+1 in the QRAM, one
can already take into account (11.50) and (11.49) of layer `. In this case we directly
store ∂L

∂X
`+1 , at no supplementary cost.

Therefore, the running time of the quantum backpropagation for one layer `,
given as Algorithm 4, corresponds to the sum of the running times of the circuits
for implementing relations (2.18) and (2.19). We finally obtain

O(((µ(A`) + µ(
∂L

∂Y `+1
))κ((A`)T · ∂L

∂Y `+1
)

+ (µ(
∂L

∂Y `+1
) + µ(F `))κ(

∂L
∂Y `+1

· (F `)T ))
log(1/δ)

δ2
) (11.51)

which can be rewritten as

O

(((
µ(A`) + µ(

∂L
∂Y `+1

)

)
κ(
∂L
∂F `

) +

(
µ(

∂L
∂Y `+1

) + µ(F `)

)
κ(
∂L
∂Y `

)

)
log(1/δ)

δ2

)
.

(11.52)
Besides storing ∂L

∂X` , the main output is a classical description of ∂L
∂F `

, necessary to
perform gradient descent of the parameters of F `.
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Gradient Descent and Classical equivalence

In this part we will see the impact of the quantum backpropagation compared to the
classical case, which can be reduced to a simple noise addition during the gradient
descent. Recall that gradient descent, in our case, would consist of applying the
following update rule

F ` ← F ` − λ ∂L
∂F `

(11.53)

with the learning rate λ.
Let’s denote x = ∂L

∂F `
and its elements xs,q = ∂L

∂F `s,q
. From the first result of The-

orem 5.2 with error δ < 0, and the tomography procedure from Theorem 4.3, with
same error δ, we can obtain a classical description of x

‖x‖2
with `∞ norm guarantee,

such that: ∥∥∥∥ x

‖x‖2

− x

‖x‖2

∥∥∥∥
∞
≤ δ (11.54)

in time Õ(κ(V )µ(V ) log(δ)
δ2

), where we denote V the matrix stored in the QRAM that
allows to obtain x, as explained in Section 11.2.4. The `∞ norm tomography is used
so that the error δ is at most the same for each component

∀(s, q),
∣∣∣∣ xs,q‖x‖2

− xs,q
‖x‖2

∣∣∣∣ ≤ δ (11.55)

From the second result of the Theorem 5.2 we can also obtain an estimate ‖x‖2 of
the norm, for the same error δ, such that

| ‖x‖2 − ‖x‖2 | ≤ δ ‖x‖2 (11.56)

in time Õ(κ(V )µ(V )
δ

log(δ)) (which does not affect the overall asymptotic running
time). Using both results we can obtain an unnormalized state close to x such that,
by the triangular inequality

‖x− x‖∞ =

∥∥∥∥ x

‖x‖2

‖x‖2 −
x

‖x‖2

‖x‖2

∥∥∥∥
∞

≤
∥∥∥∥ x

‖x‖2

‖x‖2 −
x

‖x‖2

‖x‖2

∥∥∥∥
∞

+

∥∥∥∥ x

‖x‖2

‖x‖2 −
x

‖x‖2

‖x‖2

∥∥∥∥
∞

≤ 1 · | ‖x‖2 − ‖x‖2 |+ ‖x‖2 ·
∥∥∥∥ x

‖x‖2

− x

‖x‖2

∥∥∥∥
∞

≤ δ ‖x‖2 + ‖x‖2 δ ≤ 2δ ‖x‖2 (11.57)

in time Õ(κ(V )µ(V ) log(δ)
δ2

). In conclusion, with `∞ norm guarantee, having also access
to the norm of the result is costless.

Finally, the noisy gradient descent update rule, expressed as F `
s,q ← F `

s,q−λ ∂L
∂F `s,q

can written in the worst case with

∂L
∂F `

s,q

=
∂L
∂F `

s,q

± 2δ

∥∥∥∥ ∂L∂F `

∥∥∥∥
2

(11.58)

To summarize, using the quantum linear algebra from Theorem 5.2 with `∞ norm
tomography from Theorem 4.3, both with error δ, along with norm estimation with
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relative error δ too, we can obtain classically the unnormalized values ∂L
∂F `

such that∥∥∥ ∂L
∂F `
− ∂L

∂F `

∥∥∥
∞
≤ 2δ

∥∥ ∂L
∂F `

∥∥
2

or equivalently

∀(s, q),
∣∣∣∣ ∂L∂F `

s,q

− ∂L
∂F `

s,q

∣∣∣∣ ≤ 2δ

∥∥∥∥ ∂L∂F `

∥∥∥∥
2

(11.59)

Therefore the gradient descent update rule in the quantum case becomes F `
s,q ←

F `
s,q − λ ∂L

∂F `s,q
, which in the worst case becomes

F `
s,q ← F `

s,q − λ
(
∂L
∂F `

s,q

± 2δ

∥∥∥∥ ∂L∂F `

∥∥∥∥
2

)
(11.60)

This proves the Theorem 11.2. This update rule can be simulated by the addition
of a random relative noise given as a Gaussian centered on 0, with a standard
deviation equal to δ. This is how we will simulate quantum backpropagation in the
next Section.

Compared to the classical update rule, this corresponds to the addition of noise
during the optimization step. This noise decreases as

∥∥ ∂L
∂F `

∥∥
2
, which is expected to

happen while converging. Recall that the gradient descent is already a stochastic
process. Therefore, we expect that such noise, with acceptable values of δ, will not
disturb the convergence of the gradient, as the following numerical simulations tend
to confirm.

11.3 Numerical Simulations

As described above, the adaptation of the CNNs to the quantum setting implies some
modifications that could alter the efficiency of the learning or classifying phases.
We now present some experiments to show that such modified CNNs can converge
correctly, as the original ones.

The experiment, using the PyTorch library [PGC+17], consists of training clas-
sically a small convolutional neural network for which we have added a “quantum”
sampling after each convolution, as in Section 11.2.3. Instead of parameterizing it
with the precision ν, we have chosen to use the sampling ratio σ that represents
the number of samples drawn during tomography. These two definitions are equiva-
lent, as shown in Section 11.2.2, but the second one is more intuitive regarding the
running time and the simulations.

We also add a noise simulating the amplitude estimation (Section 11.2.2, parame-
ter: ε), followed by a capReLu instead of the usual ReLu (Section 11.2.2, parameter:
C), and a noise during the backpropagation (Section 11.2.4, parameter: δ). In the
following results, we observe that our quantum CNN is able to learn and classify
visual data from the widely used MNIST dataset. This dataset is made of 60.000
training images and 10.000 testing images of handwritten digits. Each image is a
28x28 grayscale pixels between 0 and 255 (8 bits encoding), before normalization.

Let’s first observe the “quantum” effects on an image of the dataset. In particu-
lar, the effect of the capped non-linearity, the introduction of noise and the quantum
sampling.
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Figure 11.4: Effects of the QCNN on a 28x28 input image. From left to right:
original image, image after applying a capReLu activation function with a cap C
at 2.0, introduction of a strong noise during amplitude estimation with ε = 0.5,
quantum sampling with ratio σ = 0.4 that samples the highest values in priority.
The useful information tends to be conserved in this example. The side gray scale
indicates the value of each pixel. Note that during the QCNN layer, a convolution is
supposed to happen before the last image but we chose not to perform it for better
visualization.

We now present the full simulation of our quantum CNN. In the following, we
use a simple network made of 2 convolution layers, and compare our quantum CNN
to the classical one. The first and second layers are respectively made of 5 and
10 kernels, both of size 7x7. A three-layer fully connected network is applied at
the end and a softmax activation function is applied on the last layer to detect the
predicted outcome over 10 classes (the ten possible digits). Note that we didn’t
introduce pooling, being equivalent between quantum and classical algorithms and
not improving the results on our CNN. The objective of the learning phase is to
minimize the loss function, defined by the negative log-likelihood of the classification
on the training set. The optimizer used was a built-in Stochastic Gradient Descent.

Using PyTorch, we have been able to implement the following quantum effects
(the first three points are shown in Fig.11.4):

• The addition of noise, to simulate the approximation of amplitude estimation
during the forward quantum convolution layer, by adding Gaussian noise cen-
tered on 0 and with standard deviation 2Mε, with M = maxp,q ‖Ap‖ ‖Fq‖, as
given by Eq.(11.23).

• A modification of the non-linearity: a ReLu function that becomes constant
above the value T (the cap).

• A sampling procedure to apply on a tensor with a probability distribution
proportional to the tensor itself, reproducing the quantum sampling with ratio
σ.

• The addition of noise during the gradient descent, to simulate the quantum
backpropagation, by adding a Gaussian noise centered on 0 with standard de-
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viation δ, multiplied by the norm of the gradient, as given by Eq.(11.60).

The CNN used for this simulation may seem “small” compared to the standards
AlexNet [KSH12] or VGG-16 [SZ14], or those used in industry. However simulating
this small QCNN on a classical computer was already very computationally intensive
and time consuming, due to the“quantum” sampling task, apparently not optimized
for a classical implementation in PyTorch. Every single training curve showed in
Fig.11.6 could last for 4 to 8 hours. Hence adding more convolutional layers wasn’t
convenient. Similarly, we didn’t compute the loss on the whole testing set (10.000
images) during the training to plot the testing curve. However we have computed
the test losses and accuracies once the model trained (see Table 11.4), in order to
detect potential overfitting cases.

We now present the result of the training phase for a quantum version of this
CNN, where partial quantum sampling is applied, for different sampling ratio (num-
ber of samples taken from the resulting convolution). Since the quantum sampling
gives more probability to observe high value pixels, we expect to be able to learn
correctly even with a small ratio (σ ≤ 0.5). We compare these training curves to the
classical one. The learning has been done on two epochs, meaning that the whole
dataset is used twice. The following plots show the evolution of the loss L during
the iterations on batches. This is the standard indicator of the good convergence of
a neural network learning phase. We can compare the evolution of the loss between
a classical CNN and our QCNN for different parameters.

Figure 11.5: Training curves comparison between the classical CNN and
the Quantum CNN (QCNN) for ε = 0.01, C = 10, δ = 0.01 and the
sampling ratio σ from 0.1 to 0.5. We can observe a learning phase
similar to the classical one, even for a weak sampling of 20% or 30% of
each convolution output, which tends to show that the meaningful
information is distributed only at certain locations of the images,
coherently with the purpose of the convolution layer. Even for a very
low sampling ratio of 10%, we observe a convergence despite a late start.
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Figure 11.6: Numerical simulations of the training of the QCNN. These training
curves represent the evolution of the Loss L as we iterate through the MNIST
dataset. For each graph, the amplitude estimation error ε (0.1, 0.01), the non-
linearity cap C (2, 10), and the backpropagation error δ (0.1, 0.01) are fixed whereas
the quantum sampling ratio σ varies from 0.1 to 0.5. We can compare each training
curve to the classical learning (CNN). Note that these training curves are smoothed,
over windows of 12 steps, for readability.

In the following we report the classification results of the QCNN when applied on
the test set (10.000 images). We distinguish to use cases: in Table 11.4 the QCNN
has been trained quantumly as described in this Chapter, whereas in Table 11.5 we
first have trained the classical CNN, then transferred the weights to the QCNN only
for the classification. This second use case has a global running time worst than the
first one, but we see it as another concrete application: quantum machine learning
could be used only for faster classification from a classically generated model, which
could be the case for high rate classification task (e.g. for autonomous systems,
classification over many simultaneous inputs). We report the test loss and accuracy
for different values of the sampling ratio σ, the amplitude estimation error ε, and
for the backpropagation noise δ in the first case. The cap C is fixed at 10. These
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values must be compared to the classical CNN classification metrics, for which the
loss is 0.129 and the accuracy is 96.1%. Note that we used a relatively small CNN
and hence the accuracy is just over 96%, lower than the best possible accuracy with
larger CNN.

QCNN Test - Classification

σ
ε 0.01 0.1
δ 0.01 0.1 0.01 0.1

0.1
Loss 0.519 0.773 2.30 2.30

Accuracy 82.8% 74.8% 11.5% 11.7%

0.2
Loss 0.334 0.348 0.439 1.367

Accuracy 89.5% 89.0% 86.2% 54.1%

0.3
Loss 0.213 0.314 0.381 0.762

Accuracy 93.4% 90.3% 87.9% 76.8%

0.4
Loss 0.177 0.215 0.263 1.798

Accuracy 94.7% 93.3% 91.8% 34.9%

0.5
Loss 0.142 0.211 0.337 1.457

Accuracy 95.4% 93.5% 89.2% 52.8%

Table 11.4: QCNN trained with quantum backpropagation on MNIST dataset. With
C = 10 fixed.

QCNN Test - Classification
σ ε 0.01 0.1

0.1
Loss 1.07 1.33

Accuracy 86.1% 78.6%

0.2
Loss 0.552 0.840

Accuracy 92.8% 86.5%

0.3
Loss 0.391 0.706

Accuracy 94,3% 85.8%

0.4
Loss 0.327 0.670

Accuracy 94.4% 84.0%

0.5
Loss 0.163 0.292

Accuracy 95.9% 93.5%

Table 11.5: QCNN created from a classical CNN trained on MNIST dataset. With
δ = 0.01 and C = 10 fixed.

Our simulations show that the QCNN is able to learn despite the introduction
of noise, tensor sampling and other modifications. In particular it shows that only
a fraction of the information is meaningful for the neural network, and that the
quantum algorithm captures this information in priority. This learning can be more
or less efficient depending on the choice of the key parameters. For reasonable values
of these parameters, the QCNN is able to converge during the training phase. It
can then classify correctly on both training and testing set, indicating that it does
not overfit the data.
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We notice that the learning curves sometimes present a late start before the
convergence initializes, in particular for small sampling ratio. This late start can be
due to the random initialization of the kernel weights, which performs a meaningless
convolution, a case where the quantum sampling of the output is of no interest.
However it is very interesting to see that despite this late start, the kernel can start
converging once they have found a good combination.

Overall, the QCNN may present some behaviors that do not have a classical
equivalent. Understanding their potential effects, positive or negative, is an open
question, all the more so as the effects of the classical CNN’s hyperparameters are
already a topic an active research [SWM17]. Note also that the size of the neural
network used in this simulation is rather small. A following experiment would be
to simulate a quantum version of a standard deeper CNN (AlexNet or VGG-16),
eventually on more complex datasets, such as CIFAR-10 [KH09] or Fashion MNIST
[XRV17].

11.4 Conclusions

We have presented a quantum algorithm for evaluating and training convolutional
neural networks (CNN). At the core of this algorithm, we have developed the first
quantum algorithm for computing a convolution product between two tensors, with
a substantial speed up. This technique could be reused in other signal process-
ing tasks that would benefit an enhancement by a quantum computer. Layer by
layer, convolutional neural networks process and extract meaningful information.
Following this idea of learning foremost important features, we have proposed a
new approach of quantum tomography where the most meaningful information is
sampled with higher probability, hence reducing the complexity of our algorithm.

Our quantum CNN is complete in the sense that almost all classical architectures
can be implemented in a quantum fashion: any (non negative an upper bounded)
non-linearity, pooling, number of layers and size of kernels are available. Our circuit
is shallow, indeed one could repeat the main loop many times on the same shallow
circuit, since performing the convolution product uses shallow linear algebra tech-
niques, and is similar for all layers. The pooling and non-linearity are included in
the loop. Our building block approach, layer by layer, allows a high modularity,
and can be combined with previous works on quantum feedforward neural network
[AHKZ20] (see Section 10.2).

The running time presents a speedup compared to the classical algorithm, due to
fast linear algebra when computing the convolution product, and by only sampling
the important values from the resulting quantum state. This speedup can be highly
significant in cases where the number of channels D` in the input tensor is high (high
dimensional time series, videos sequences, games play) or when the number of kernels
D`+1 is big, allowing deep architectures for CNN, which was the case in the recent
breakthrough of DeepMind AlphaGo algorithm [SHM+16]. The quantum CNN also
allows larger kernels, that could be used for larger input images, since the size the
kernels must be a constant fraction of the input in order to recognize patterns.
However, despite our new techniques to reduce the complexity, applying a non-
linearity and reusing the result of a layer for the next layer make register encoding
and state tomography mandatory, hence preventing from having an exponential
speedup on the number of input parameters.
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Finally we have presented a backpropagation algorithm that can also be imple-
mented as a quantum circuit. The numerical simulations on a small CNN show that
despite the introduction of noise and sampling, the QCNN can efficiently learn to
classify visual data from the MNIST dataset, performing a similar accuracy than
the classical CNN.
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Chapter 12

NISQ Algorithm for Orthogonal
Neural Networks

”La vision scientifique et la
vision poétique, loin de
s’exclure, se rejoignent pour
nous faire percevoir le monde
dans sa véritable richesse.”

Hubert Reeves
Malicorne. Réflexions d’un

observateur de la nature (1990)

In this chapter, we present a new training method for neural networks that
preserves perfect orthogonality while having the same running time as usual gradient
descent methods without the orthogonality condition, thus achieving the best of both
worlds, most efficient training and perfect orthogonality.

The main idea comes from the quantum world, where we know that any quantum
circuit corresponds to an operation described by a unitary matrix, which if we only
use gates with real amplitudes is an orthogonal matrix. In particular, we propose a
novel special-architecture quantum circuit, for which there is an efficient way to map
the elements of the orthogonal weight matrix to the parameters of the gates of the
quantum circuit and vice versa. In other words, while performing a gradient descent
on the elements of the weight matrix individually does not preserve orthogonality,
performing a gradient descent on the parameters of the quantum circuit preserves
orthogonality (since any quantum circuit with real parameters corresponds to an
orthogonal matrix) and is equivalent to updating the weight matrix. We also prove
that performing gradient descent on the parameters of the quantum circuit can be
done efficiently classically (with constant update cost per parameter) thus conclud-
ing that there exists a quantum-inspired, but fully classical way of efficiently training
perfectly orthogonal neural networks.

Moreover, the special-architecture quantum circuit we defined has many prop-
erties that make it a good candidate for NISQ implementation (see Section 3.3):
it uses only one type of quantum gates, requires simple connectivity between the
qubits, has depth linear in the input and output node sizes, and benefits from pow-
erful error mitigation techniques that make it resilient to noise. This allows us to
also propose an inference method running the quantum circuit on data which might
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Algorithm Feedforward Pass Training
Quantum Pyramidal Circuit (This work) 2n/δ2 = O(n/δ2)

O(n2)
Classical Pyramidal Circuit (This work) 2n(n− 1) = O(n2)

Classical Approximated OrthoNN (SVB) [JLW+19] n2 = O(n2) O(n3)
Classical Strict OrthoNN (Stiefel Manifold) [JLW+19] n2 = O(n2) O(n3)

Standard Neural Network (non orthogonal) n2 = O(n2) O(n2)

Table 12.1: Running times summary. n is the size of the input and output vectors, δ
is the error parameter in the quantum implementation. See Section 2.3.3 for details
on related work.

offer a faster running time, given the shallow depth of the quantum circuit.
Our main contributions are summarized in Table 12.1, where we have considered

the time to perform a feedforward pass, or one gradient descent step. A single neural
network layer is considered, with input and output of size n.

12.1 A Parametrized Quantum Circuit for Or-

thogonal Neural Networks

Preliminaries on orthogonal neural networks, along with all notations are given in
Section 2.3.3, as well as Section 4.1.2 for data loaders with unary encoding.

In the following, we will define a special-architecture parametrized quantum
circuit that will be useful for performing training and inference on orthogonal neural
networks. As we said, the training will be completely classical in the end, but the
intuition of the new method comes from this quantum circuit, while the inference
can happen both classically or by applying this quantum circuit.

12.1.1 The RBS Gate

The quantum circuit proposed in this work (see Fig.12.1), which implements a fully
connected neural network layer with an orthogonal weight matrix, uses only one
type of quantum gate, the Reconfigurable Beam Splitter (RBS ) gate. This two-
qubit gate is parametrizable with one angle θ ∈ [0, 2π]. Its matrix representation is
given as:

RBS(θ) =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 RBS(θ) :

{
|01〉 7→ cos θ |01〉 − sin θ |10〉
|10〉 7→ sin θ |01〉+ cos θ |10〉

(12.1)
We can think of this gate as a rotation in the two-dimensional subspace spanned
by the basis {|01〉 , |10〉}, while it acts as the identity in the remaining subspace
{|00〉 , |11〉}. Or equivalently, starting with two qubits, one in the |0〉 state and the
other one in the state |1〉, the qubits can be swapped or not in superposition. The
qubit |1〉 stays on its wire with amplitude cos θ or switches with the other qubit
with amplitude + sin θ if the new wire is below (|10〉 7→ |01〉) or − sin θ if the new
wire is above (|01〉 7→ |10〉). Note that in the two other cases (|00〉 and |11〉) the
RBS gate acts as identity.
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Figure 12.1: Representation of the quantum mapping from Eq.(12.1) on two qubits.

See Fig.3.6a and Section 3.4.1 for practical circuit of the RBS gate and imple-
mentation with real quantum computers.

12.1.2 Quantum Pyramidal Circuit

We now propose a quantum circuit that implements an orthogonal layer of a neural
network [KLM21]. The circuit is a pyramidal structure of RBS gates, each with
an independent angle, as represented in Fig.12.2a. In Section 12.1.3 and 12.2, more
details are provided concerning respectively the input loading, and the equivalence
with a neural network’s orthogonal layer.

(a)
(b)

Figure 12.2: (a) Quantum circuit for an 8x8 fully connected, orthogonal layer. Each
vertical line corresponds to an RBS gate with its angle parameter. And (b), the
equivalent classical orthogonal neural network 8x8 layer.

To mimic a given classical layer with a quantum circuit, the number of output
qubits should be the size of the classical layer’s output. We refer to the square case
when the input and output sizes are equal, and to the rectangular case otherwise
(Fig.12.3a).

The important property to note is that the number of parameters of the quantum
pyramidal circuit corresponding to a neural network layer of size n× d is (2n− 1−
d) ∗ d/2 exactly the same as the number of degrees of freedom of an orthogonal
matrix of dimension n× d.

For simplicity, we pursue our analysis using only the square case but everything
can be easily extended to the rectangular case. As we said, the full pyramidal struc-
ture of the quantum circuit described above imposes the number of free parameters
to be n(n− 1)/2, the exact number of free parameters to specify a n×n orthogonal
matrix.

In Section 12.2 we will show how the parameters of the gates of this pyramidal
circuit can be easily related to the elements of the orthogonal matrix of size n × n
that describes it. We note that alternative architectures can be imagined as long as
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(a) (b)

Figure 12.3: (a) Quantum circuit for a rectangular 8x4 fully connected orthogonal
layer, and (b) the equivalent 8x4 classical orthogonal neural network. They both
have 22 free parameters.

the number of gate parameters is equal to the parameters of the orthogonal weight
matrix and a simple mapping between them and the elements of the weight matrix
can be found.

Note finally that this circuit has linear depth and is convenient for near term
quantum hardware platforms with restricted connectivity. Indeed, the distribution
of the RBS gates requires only nearest neighbor connectivity between qubits.

12.1.3 Loading the Data

Before applying the quantum pyramidal circuit, we will need to upload the classical
data into the quantum circuit. As introduced in Section 4.1.1, we will use one qubit
per feature of the data. For this, we use a unary amplitude encoding of the input
data (see Definition 4.3) that we will recall briefly. Let’s consider an input sample
x = (x0, · · · , xn−1) ∈ Rn, such that ‖x‖2 = 1. We will encode it in a superposition
of unary states:

|x〉 = x0 |10 · · · 0〉+ x1 |010 · · · 0〉+ · · ·+ xn−1 |0 · · · 01〉 (12.2)

We can also rewrite the previous state as |x〉 =
∑n−1

i=0 xi |ei〉, where |ei〉 represents the
ith unary state with a |1〉 in the ith position |0 · · · 010 · · · 0〉. Recent work [JDM+20]
proposed a logarithmic depth data loader circuit for loading such states. Here we
will use a much simpler circuit. It is a linear depth cascade of n-1 RBS gates which,
due to the particular structure of our quantum pyramidal circuit, only adds 2 extra
steps to our circuit.

The circuit starts in the all |0〉 state and flips the first qubit using an X gate,
in order to obtain the unary state |10 · · · 0〉 as shown in Fig.12.4. Then a cascade
of RBS gates allow to create the state |x〉 using a set of n− 1 angles α0, · · · , αn−2.
Using Eq.(12.1), we will choose the angles such that, after the first RBS gate of the
loader, the qubits would be in the state x0 |100 · · ·〉+ sin(α0) |010 · · ·〉 and after the
second one in the state x0 |100 · · ·〉+x1 |010 · · ·〉+sin(α0) sin(α1) |001 · · ·〉 and so on,
until obtaining |x〉 as in Eq.(12.2). To this end, we simply perform a classical pre-
processing to compute recursively the n-1 loading angles, in time O(n). We choose
α0 = arccos(x0), α1 = arccos(x1 sin−1(α0)), α2 = arccos(x2 sin−1(α0) sin−1(α1)) and
so on (see Section 4.1.2).
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Figure 12.4: The 8 dimensional linear data loader circuit (in red) is efficiently em-
bedded before the pyramidal circuit. The input state is the first unary state. The
angles parameters α0, · · · , αn−2 are classically pre-computed from the input vector.

The ability of loading data in such a way relies on the assumption that each
input vector is normalized, i.e. ‖x‖2 = 1. This normalization constraint could seem
arbitrary and impact the ability to learn from the data. In fact, in the case of
an orthogonal neural network, this normalization shouldn’t degrade the training be-
cause orthogonal weight matrices are in fact orthonormal and thus norm-preserving.
Hence, changing the norm of the input vector, by diving each component by ‖x‖2,
in both classical and quantum settings is not a problem. The normalization would
impose that each input has the same norm, or the same ”luminosity” in the context
of images, which can be helpful or harmful depending on the case.

12.2 Orthogonal Feedforward Pass

In this section, we will detail the effect of the quantum pyramidal circuit on an
input encoded in a unary basis, as in Eq.(12.2). We will also see in the end how to
simulate this quantum circuit classically with a small overhead and thus be able to
provide a fully classical scheme.

Let’s first consider one pure unary input, where only the qubit j is in state
|1〉 (e.g. |00000010〉). This unary input will be transformed into a superposition
of unary states, each with an amplitude. If we consider again only one of these
possible unary outputs, where only the qubit i is in state |1〉, its amplitude can be
interpreted as a conditional amplitude to transfer the |1〉 from qubit j to qubit i.
Intuitively, this value is the sum of the quantum amplitudes associated with each
possible path that connects the qubit j to qubit i, as shown in Fig.12.5. Using this
image of connectivity between input and output qubits, we can construct a matrix
W ∈ Rn×n, where each element Wij is the overall conditional amplitude to transfer
the |1〉 from qubit j to qubit i.

Fig.12.5 shows an example where exactly three paths can be taken to map the
input qubit j = 6 (the 7th unary state) to the qubit i = 5 (the 6th unary state).
Each path comes with a certain amplitude. For instance, one of the paths (the red
one in Fig.12.5) moves up at the first gate, and then stays put in the next three
gates, with a resulting amplitude of − sin(θ16) cos(θ17) cos(θ23) cos(θ24). The sum of
the amplitudes of all possible paths give us the element W56 of the matrix W (where,
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Figure 12.5: The three possibles paths from the 7th unary state to the 6th unary
state, on an 8x8 quantum pyramidal circuit.

for simplicity, s(θ) and c(θ) respectively stand for sin(θ) and cos(θ)):

W56 = −c(θ16)c(θ22)s(θ23)c(θ24)− s(θ16)c(θ17)c(θ23)c(θ24) + s(θ16)s(θ17)c(θ18)s(θ24)
(12.3)

In fact, the n × n matrix W can be seen as the unitary matrix of our quantum
circuit if we solely consider the unary basis, which is specified by the parameters of
the quantum gates. A unitary is a complex unitary matrix, but in our case, with only
real operations, the matrix is simply orthogonal. This proves the correspondence
between any matrix W and the pyramidal quantum circuit.

The full unitary UW in the Hilbert Space of our n-qubit quantum circuit is a
2n×2n matrix with the n×n matrix W embedded in it as a submatrix on the unary
basis. This is achieved by loading the data as unary states and by using only RBS
gates that keep the number of 0s and 1s constant.

For instance, as shown in Fig.12.6, a 3-qubit pyramidal circuit is described as a
unique 3× 3 matrix, that can be easily verified to be orthogonal.

Figure 12.6: Example of a 3 qubits pyramidal circuit and the equivalent orthogonal
matrix. c(θ) and s(θ) respectively stand for cos(θ) and sin(θ).

In Fig.12.5, we considered the case of a single unary for both the input and
output. But with actual data, as seen in Section 12.1.3, input and output states
are in fact a superposition of unary states. Thanks to the linearity of quantum
mechanics in absence of measurements, the previous descriptions remain valid and
can be applied on a linear combination of unary states.

Let’s consider an input vector x ∈ Rn encoded as a quantum state |x〉 =∑n−1
i=0 xi |ei〉 where |ei〉 represents the ith unary state (see Section 12.1.3). By defi-

nition of W , each unary |ei〉 will undergo a proper evolution |ei〉 7→
∑n−1

j=0 Wij |ej〉.
This yields, by linearity, the following mapping

|x〉 7→
∑
i,j

Wijxi |ej〉 (12.4)
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Figure 12.7: Schematic representation of a pyramidal circuit applied on a loaded
vector x with two non-zero values. The output is the unary encoding of y = Wx
where W is the corresponding orthogonal matrix associated with the circuit.

As explained above, our quantum circuit is equivalently described by the sparse
unitary UW ∈ R2n×2n or on the unary basis by the matrix W ∈ Rn×n. This can be
summarized with

UW |x〉 = |Wx〉 (12.5)

We see from Eq.(12.4) and Eq.(12.5) that the output is in fact |y〉, the unary encoding
of the vector y = Wx, which is the output of a matrix multiplication between the
n × n orthogonal matrix W and the input x ∈ Rn. As expected, each element of
y is given by yk =

∑n−1
i=0 Wikxi. See Fig.12.7 for a diagram representation of this

mapping.
Therefore, for any given neural network’s orthogonal layer, there is a quantum

pyramidal circuit that reproduces it. On the other hand, any quantum pyramidal
circuit is implementing an orthogonal layer of some sort.

As a side note, we can ask if a circuit with only log(n) qubits could also implement
an orthogonal matrix multiplication of size n × n. Indeed, it would be a unitary
matrix in Rn×n, but since the circuit should also have n(n − 1)/2 free parameters
to tune, this would come at a cost of large depth, potentially unsuitable for NISQ
devices.

Error Mitigation

It is important to notice that with our restriction to unary states, strong error mit-
igation techniques become available. Indeed, as we expect to obtain only quantum
superposition of unary states at every layer, we can post process our measurements
and discard the ones that present non unary states (i.e. states with more than one
qubit in state |1〉, or the ground state). The most expected error is a bit-flip be-
tween |1〉 and |0〉. The case where two bit-flips happen at the same time, which

167



CHAPTER 12. NISQ ALGORITHM FOR ORTHOGONAL NEURAL
NETWORKS

would change a unary state to a different unary state and would thus pass through
our error mitigation, is even less probable. This error mitigation procedure can be
applied efficiently to the results of a hardware demonstration and it has been used
in the results presented in this Chapter.

Extracting the classical output

As shown in Fig.12.7, when using the quantum circuit, the output is a quantum
state |y〉 = |Wx〉. As often in quantum machine learning [Aar15], it is important
to consider the cost of retrieving the classical outputs, using a procedure called
tomography. In our case, this is even more crucial since, between each layer, the
quantum output will be converted into a classical one in order to apply a non-linear
function, and then reloaded for the next layer.

Retrieving the amplitudes of a quantum state comes at cost of multiple mea-
surements, which requires running the circuit multiples times, hence adding a mul-
tiplicative overhead in the running time. A finite number of samples is also a source
of approximation error in the final result. In this work, we will allow for `∞ errors
[KLP20a]. The `∞ tomography on a quantum state |y〉 with unary encoding on
n qubits requires O(log(n)/δ2) measurements, where δ > 0 is the error threshold
allowed. For each j ∈ [n], |yj| will be obtained with an absolute error δ, and if
|yj| < δ, it will most probably not be measured, hence set to 0. In practice, one
would perform as many measurements as is convenient during the experiment, and
deduce the equivalent precision δ from the number of measurements made.

Note that it is important to obtain the amplitudes of the quantum state, which
in our case are positive or negative real numbers, and not just the probabilities of
the outcomes, which are the squares of the amplitudes. There are different ways of
obtaining the sign of the amplitudes and we present two different ways below.

Indeed, a simple measurement in the computational basis will only provide us
with estimations of the probabilities that are the squares of the quantum amplitudes
(see Section 4.1.1). In the case of neural networks, it is important to obtain the sign
of the layer’s components in order to apply certain types of non-linearities. For
instance, the ReLu activation function is often used to set all negative components
to 0.

In Fig.12.8, we propose a specific enhancement to our circuit to obtain the signs
of the vector’s components at low cost. The sign retrieval procedure consists of three
parts.

a) The circuit is first applied as described above, allowing to retrieve each squared
amplitude y2

j with precision δ > 0 using the `∞ tomography (Section 4.2.1).
The probability of measuring the unary state |e1〉 (i.e. |100...〉), is p(e1) = y2

1.

b) We apply the same steps a second time on a modified circuit. It has additional
RBS gates with angle π/4 at the end, which will mix the amplitudes pair by
pair. The probabilities to measure |e1〉 and |e2〉 are now given by p(e1) =
(y1+y2)2 and p(e2) = (y1−y2)2. Therefore if p(e1) > p(e2), we have sign(y1) 6=
sign(y2), and if p(e1) < p(e2), we have sign(y1) = sign(y2). The same holds
for the pairs (y3, y4), and so on.

c) We finally perform the same where the RBS are shifted by one position below.
Then we compare the signs of the pairs (y2, y3), (y4, y5) and so on.
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In the end, we are able to recover each value yj with its sign, assuming that
y1 > 0 for instance. This procedure has the benefit of not adding depth to the
original circuit but requires 3 times more runs. The overall cost of the tomography
procedure with sign retrieval is given by Õ(n/δ2).

Figure 12.8: First tomography procedure to retrieve the value and the sign of each
component of the resulting vector |y〉 = |Wx〉. Circuit a) is the original one while
circuits b) and c) have additional RBS gates with angle π/4 at the end to compare
the signs between adjacent components. In all three cases an `∞ tomography is
applied.

In Fig.12.9 we propose another method to obtain the values of the amplitudes
and their signs, which is in fact what we used for the hardware demonstrations.
Compared to the above procedure, it relies on one circuit only but requires an extra
qubit and a depth of 3n+O(1) instead of 2n+O(1).

Figure 12.9: Second tomography procedure to retrieve the value and the sign of each
component of the resulting vector |y〉 = |Wx〉. For a rectangular case with output
of size m, the two opposite loaders at the end must be on the last m qubits only,
and the CNOT gate between them connects the top qubits to the loader’s top qubit
as well.

This circuit performs a Hadamard and CNOT gate in order to initialize the
qubits in the state 1√

2
|0〉 |0〉 + 1√

2
|1〉 |e1〉, where the second register corresponds to

the n qubits that will be processed by the pyramidal circuit and the loaders.
Next, applying the data loader for the normalized input vector x (see Section

12.1.3) and the pyramidal circuit will, according to Eq.(12.4), map the state to

1√
2
|0〉 |0〉+

1√
2
|1〉

n∑
j=1

Wjx |ej〉 (12.6)

In other words, we performed the pyramid circuits controlled on the first qubit
being in state |1〉. Then, we flip the fisrt qubit with an X gate and perform a
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controlled loading of the uniform norm-1 vector ( 1√
n
, · · · , 1√

n
). For this, we add the

adjoint data loader for the state, a CNOT gate and the data loader a second time.
Recall that if a circuit U is followed by U †, it is equivalent to the identity. Therefore,
this will load the uniform state only when the first qubit is in state |1〉:

1√
2
|0〉

n∑
j=1

Wjx |ej〉+
1√
2
|1〉

n∑
j=1

1√
n
|ej〉 (12.7)

Finally, a Hadamard gate will mix both parts of the amplitudes on the extra
qubit to give us the desired state:

1

2
|0〉

n∑
j=1

(
Wjx+

1√
n

)
|ej〉+

1

2
|1〉

n∑
j=1

(
Wjx−

1√
n

)
|ej〉 (12.8)

On this final state, we can see that the difference in the probabilities of mea-
suring the extra qubit in state 0 or 1 and rest in the unary state ej is given by

Pr[0, ej] − Pr[1, ej] = 1
4

(
Wjx+ 1√

n

)2

− 1
4

(
Wjx− 1√

n

)2

= Wjx/
√
n. Therefore, for

each j, we can deduce the sign of Wjx by looking at the most frequent output of the
measurement of the first qubit. To deduce as well the value of Wjx, we simply use
Pr[0, ej] or Pr[1, ej] depending on the sign found before. For instance, if Wjx > 0
we have Wjx = 2

√
Pr[0, ej]− 1√

n
.

Combining with the `∞ tomography and the non linearity, the overall cost of
this tomography is given by Õ(n/δ2) as well.

Multiple Quantum Layers

In the previous sections, we have seen how to implement a quantum circuit to
perform the evolution of one orthogonal layer. In classical deep learning, such layers
are stacked to gain expressivity and accuracy. Between each layer, a non-linear
function is applied to the resulting vector. The presence of these non-linearities is
key in the ability of the neural network to learn any function [LLPS93].

The benefit of using our quantum pyramidal circuit is the ability to simply con-
catenate them to mimic a multi layer neural network. After each layer, a tomography
of the output state |z〉 is performed to retrieve each component, corresponding to
its quantum amplitudes (see Section 12.2). A non-linear function σ is then applied
classically to obtain a = σ(z). The next layer starts with a new unary data loader
(See Section 12.1.3). This hybrid scheme allows as well to keep the depth of the
quantum circuits reasonable for NISQ devices, by applying the neural network layer
by layer.

Note that the quantum neural networks we propose here are close to the behavior
of classical neural networks and thus we can control and understand the quantum
mapping and implement each layer and its non-linearities in a modular way. They
are also different regarding the training strategies which are close to the classical
ones but use a different optimization landscape that can provide different models
(see Section 12.3 for details). It will be interesting to compare our pyramidal circuit
to a quantum variational circuit with n qubits and n(n − 1)/2 gates of any type,
as we usually see in the literature. Using such circuits we would explore among all
possible 2n × 2n matrices instead of n × n classical orthogonal matrices, but so far
there’s no theoretical ground to explain why this should provide an advantage.
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(a)

(b)

Figure 12.10: A full neural network with layers [8,8,4,4]. (a) Classical representation.
(b) The equivalent quantum circuit is a concatenation of multiple pyramidal circuits.
Between each layer one performs a measurement and applies a non-linearity. Each
layer starts with a new unary data loader.

As an open outlook, one could imagine incorporating additional entangling gates
after each pyramid layer (composed, for instance, of CNOT or CZ). This would
mark a step out of the unary basis and could effectively allow exploring more inter-
actions in the Hilbert Space.

Classical implementation While we presented the quantum pyramidal circuit
as the inspiration of the new methods for orthogonal neural networks, it is not hard
to see that these quantum circuits can be simulated classical with a small overhead,
thus yielding classical methods for orthogonal neural networks.

This classical algorithm is simply the simulation of the quantum pyramidal cir-
cuit, where each RBS gate is replaced by a planar rotation between its two inputs.

As shown in Fig.12.11, we propose a similar classical pyramidal circuit, where
each layer is constituted of n(n−1)

2
planar rotations, for a total of 4 × n(n−1)

2
=

O(n2) basic operations. Therefore our single layer feedforward pass has the same
complexity O(n2) as the usual matrix multiplication.

One may still have an advantage in performing the quantum circuit for inference,
since the quantum circuit has depth O(n), instead of the O(n2) classical complexity
of the matrix-vector multiplication. In addition, as we will see below, the main
advantage of our method is that we can also now train orthogonal weight matrices
classically in time O(n2), instead of the previously best-known O(n3).

171



CHAPTER 12. NISQ ALGORITHM FOR ORTHOGONAL NEURAL
NETWORKS

Figure 12.11: Classical representation of a single orthogonal layer on a 4x4 case
(n=4) performing x 7→ y = Wx. The angles and the weights can be chosen such
that our classical pyramidal circuit (left) and normal classical network (right) are
equivalent. Each connecting line represents a scalar multiplication with the value
indicated. On the classical pyramidal circuit (left), inner layers ζλ are displayed. A
timestep corresponds to the lines in between two inner layers (see Section 12.3 for
definitions).

12.3 Backpropagation for the Orthogonal Neural

Network Circuit

Classical Backpropagation Algorithm

Basic introduction and notation to the backpropagation in fully connected neural
networks are given in Section 2.3.2. We recall some facts and notations that will be
useful for the following;

The backpropagation in a fully connected neural network is a well known and
efficient procedure to update the weight matrix at each layer [HN92, Roj96]. At
layer `, we denote its weight matrices by W ` and biases by b`. Each layer is followed
by a non-linear function σ, and can therefore be written as

a` = σ(W ` · a`−1 + b`) = σ(z`) (12.9)

After the last layer, one can define a cost function C that compares the output to the
ground truth. The goal is to calculate the gradient of C with respect to each weight
and bias, namely ∂C

∂W ` and ∂C
∂b`

. In the backpropagation, we start by calculating these
gradients for the last layer, then propagate back to the first layer.

We will require to obtain the error vector at layer ` defined by ∆` = ∂C
∂z`

. One can
show the backward recursive relation ∆` = (W `+1)T ·∆`+1 � σ′(z`), where � sym-
bolizes the Hadamard product, or entry-wise multiplication. Note that the previous
computation requires simply to apply the layer (i.e. apply matrix multiplication) in
reverse. We can then show that each element of the weight gradient matrix at layer
` is given by ∂C

∂W `
jk

= ∆`
j · a`−1

1 . Similarly, the gradient with respect to the biases is

easily defined as ∂C
∂b`j

= ∆`
j.

Once these gradients are computed, we update the parameters using the gradient
descent rule, with learning rate λ:

W `
jk ← W `

jk − λ
∂C
∂W `

jk

; b`j ← b`j − λ
∂C
∂b`j

(12.10)
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Backpropagation for Pyramidal Circuits

Looking through the prism of our pyramidal quantum circuit, the parameters to
update are no longer the individual elements of the weight matrices directly, but
the angles of the RBS gates that give rise to these matrices. Thus, we need to
adapt the backpropagation method to our setting based on the angles. We will start
by introducing some notation for a single layer `, which will not be explicit in the
notation for simplicity. We assume we have as many output bits as input bits, but
this can easily be extended to the rectangular case.

We first introduce the notion of timesteps inside each layer, which correspond
to the computational steps in the pyramidal structure of the circuit (see Fig.12.12).
It is easy to show that for n inputs, there will be 2n − 3 such timesteps, each one
indexed by an integer λ ∈ [0, · · · , λmax]. Applying a timestep consists in applying
the matrix wλ, made of all the RBS gates aligned vertically at this timestep (wλ is
the unitary in the unary basis, see Section 12.2 for details). Each time a timestep
is applied, the resulting state is a vector in the unary basis named inner layer and
denoted by ζλ. This evolution can be written as ζλ+1 = wλ ·ζλ. We use this notation
similar to the real layer `, with the weight matrix W ` and the resulting vector z`

(see Section 12.3).
In fact we have the correspondences ζ0 = a`−1 for the first inner layer, which is

the input of the actual layer, and z` = wλmax · ζλmax for the last one. We also have
W ` = wλmax · · ·w1w0. We use the same kind of notation for the backpropagation

Figure 12.12: Quantum circuit for one neural network layer divided into timesteps
(red vertical lines) λ ∈ [0, · · · , λmax]. Each timestep corresponds to an inner layer
ζλ and an inner error δλ. The part of the circuit between two timesteps is an unitary
matrix wλ in the unary basis.

errors. At each timestep λ we define an inner error δλ = ∂C
∂ζλ

. This definition is

similar to the layer error ∆` = ∂C
∂z`

. In fact we will use the same backpropagation
formulas, without non-linearities, to retrieve each inner error vector δλ = (wλ)T ·
δλ+1. In particular, for the last timestep, the first to be calculated, we have δλmax =
(wλmax)T ·∆`. Finally, we can retrieve the error at the previous layer `− 1 using the
correspondence ∆`−1 = δ0 � σ′(z`).

The reason for this breakdown into timesteps is the ability to efficiently obtain
the gradient with respect to each angle. Let’s consider the timestep λ and one of its
gate with angle denoted by θi acting on qubits i and i+1 (note that the numbering is
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different from Fig.12.12). We will decompose the gradient ∂C
∂θi

using each component,
indexed by the integer k, of the inner layer and inner error vectors:

∂C
∂θi

=
∑
k

∂C
∂ζλ+1

k

∂ζλ+1
k

∂θi
=
∑
k

δλ+1
k

∂(wλk · ζλ)
∂θi

(12.11)

Where wλk is the kth row of matrix wλ. Since timestep λ is only composed of separated
RBS gates, the matrix wλ consists of diagonally arranged 2x2 block submatrices
given in Eq.(12.1). Only one of these submatrices depends on the angle θi considered
here, at the position i and i+1 in the matrix. We can thus rewrite the above gradient
as ∂C

∂θi
= δλ+1

i
∂
∂θi

(
wλi · ζλ

)
+ δλ+1

i+1
∂
∂θi

(
wλi+1 · ζλ

)
, or:

∂C
∂θi

= δλ+1
i

∂

∂θi

(
cos(θi)ζ

λ
i + sin(θi)ζ

λ
i+1

)
+ δλ+1

i+1

∂

∂θi

(
− sin(θi)ζ

λ
i + cos(θi)ζ

λ
i+1

)
(12.12)

∂C
∂θi

= δλ+1
i (− sin(θi)ζ

λ
i + cos(θi)ζ

λ
i+1) + δλ+1

i+1 (− cos(θi)ζ
λ
i − sin(θi)ζ

λ
i+1) (12.13)

Therefore we have shown a way to compute each angle gradient: During the
feedforward pass, one must apply sequentially each of the 2n− 3 = O(n) timesteps,
and store the resulting vectors, the inner layers ζλ. During the backpropagation,
one obtains the inner errors δλ by applying the timesteps in reverse. One can
finally use a gradient descent on each angle θi, while preserving the orthogonality
of the overall equivalent weight matrix θ`i ← θ`i − λ ∂C

∂θ`i
. Since the optimization is

performed in the angle landscape, and not on the equivalent weight landscape, it
can potentially be different and produce different models. We leave open the study
of the properties of both landscapes.

As one can see from the above description, this is in fact a classical algorithm
to obtain the angle’s gradients, which allows us to train our OrthoNN efficiently
classically while preserving the strict orthogonality. To obtain the angle’s gradient,
one needs to store the 2n-3 inner layers ζλ during the feedforward pass. Next, given
the error at the following layer, we perform a backward loop on each timestep (see
Fig.12.11). At each timestep, we obtain the gradient for each angle parameter, by
simply applying Eq.(12.13). This requires O(1) operations for each angle. Since
there are at most n/2 angles per timesteps, estimating gradients has a complexity
of O(n2). After each timestep, the next inner error δλ−1 is computed as well, using
at most 4n/2 operations.

In the end, our classical algorithm allows us to compute the gradients of the n(n−
1)/2 angles in time O(n2), thus performing a gradient descent respecting the strict
orthogonality of the weight matrix in the same time. This is considerably faster than
previous methods based on Singular Value Decomposition methods and provides a
training method that is asymptotically as fast as for normal neural networks, while
providing the extra property of orthogonality.

12.4 Numerical Experiments

In [KLM21], we performed basic numerical experiments to verify the abilities of our
pyramidal circuit, on the standard MNIST dataset. Note that current quantum
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hardware and software are not yet suited for bigger experiments. We first compared
the training of our Classical OrthoNN to the SVB algorithm from [JLW+19] (see
Section 2.3.3). Results as reported in Fig.12.13. These small scale tests confirmed
that the pyramidal circuits and the corresponding gradient descent on the angles
were efficient for learning a classification task.

(a) [16,4] (b) [16,8,4]

(c) [16,16,4] (d) [32,8,2]

(e) [32,16,4] (f) [32,32,4]

Figure 12.13: Training comparison between the SVB OrthoNN from [JLW+19] and
our classical pyramidal OrthoNN. Test accuracy on 1000 samples during several
epochs of training on the MNIST dataset on 5000 samples. Initial dimensionality
reduction (PCA) was on the samples to fit the input layer of the networks. Shaded
areas indicate the accuracy variance during minibatch updates of size 50.
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Then, we implemented the quantum circuit on a real quantum computer provided
by IBM. We used a 16 and 5 qubits device to perform respectively a [8,2] and a [4,2]
orthogonal layer. We also branched two layers to perform a [4,4,2] network with
non-linearity. A pyramidal OrthoNN was trained classically, and the resulting angles
were transferred to test the quantum circuit on a classification task on classes 6 and
9 of the MNIST dataset, over 500 samples. We compared the real experiment with
a simulated one, and the classical pyramidal circuit as well. Results are reported in
Table 12.2.

Network
Architecture

Inference Accuracy
Classical Pyramidal

Circuit
IBM Simulator IBM Quantum Computer

[4, 2] 98,4% 98,4% 98,0%
[8, 2] 97,4% 97,4% 95,0%

[4, 4, 2] 98,2% 98,2% 82,8%

Table 12.2: Results of the Pyramidal OrthoNN on classical simulators and real quan-
tum computers. ibmq bogota v1.4.32 and ibmq guadalupe v1.2.17 are respectively 5
and 16 qubits quantum computers. May 2021.

Finally, in [MLL+21], we performed a benchmark on the MedMNIST dataset
for medical imaging. We compared quantum and classical methods for orthogonal
neural networks to classify diseases in two datasets: a classification of Chest X-Rays
(Pneumonia) and a classification of retina images for retinopathy detection (Retina).

In Fig.12.14 we show our results, where we provide the AUC (area under curve)
and ACC (accuracy) for all different types of neural network experiments, for both
the training and test sets, for the Pneumonia and Retina datasets. In Fig.12.15
we show similar results for non orthogonal quantum neural networks, also called
Quantum assisted Neural Network, that are based on simple inner products using
data loaders as explained in Section 6.2.

Figure 12.14: Results of experiments for the Orthogonal Neural Network. QPC
stands for Quantum Pyramidal Circuit and is the classical algorithm simulating our
quantum circuit. QHW is the quantum circuit on the real quantum hardware. SVB
stands for the classical Singular Value Bounded algorithm.
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Figure 12.15: Results of experiments for the Quantum assisted Neural Network.

Conclusion and Outlook

In this chapter, we have proposed for the first time training methods for orthogonal
neural networks (OrthoNNs) that run in quadratic time, a significant improvement
from previous methods based on Singular Value Decomposition. The main idea of
our method is to replace usual weights and orthogonal matrices with an equivalent
pyramidal circuit made of two-dimensional rotations. Each rotation is parametriz-
able by an angle, and the gradient descent takes place in the angle’s optimization
landscape. This unique type of gradient backpropagation ensures perfect orthogonal-
ity of the weight matrices while substantially improving the running time compared
to previous work. Moreover, we propose both classical and quantum methods for
inference, where the forward pass on a near term quantum computer would pro-
vide a provable advantage in the running time. This work expands the field of
quantum deep learning by introducing new tools, concepts, and equivalences with
classical deep learning theory. We have highlighted open questions regarding the
construction of such pyramidal circuits for neural networks and their potential new
advantages in terms of execution time, accuracy, and learning properties.
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Conclusion

”Aux murs de nos laboratoires
les cadrans lumineux remplacent
les ombres de la caverne.”

Arthur Koestler
Les Somnambules (1959)

In this thesis, we have proven the existence of new quantum algorithms for ma-
chine learning applications in unsupervised learning (k-means, spectral clustering)
and in deep learning (convolutional and orthogonal neural networks).

During the development of these algorithms, we have introduced new quantum
subroutines for linear algebra, distance estimation, graph analysis, and tomography
of quantum states. These subroutines are fundamental enough to be reused across
all machine learning and hopefully in other fields as well.

Our algorithms are provably faster, using complexity analysis, often with respect
to the number of points in the dataset, or in their dimension. These running times
should be interpreted with subtlety as they depend on counter intuitive parameters,
that often depends on the data values themselves. This behaviour has no classical
counterpart and can help us determine where quantum computing can provide an
advantage in machine learning. To go further, we have performed extensive classical
simulations in order to test the training abilities of our quantum solutions in prac-
tice, as well as the scaling of their running times. For quantum orthogonal neural
networks, we even implemented real quantum circuits on 8 and 16 qubits quantum
computers.

In the end, we can expect quantum machine learning to be the most advantageous
for hard linear algebra problems, involving spectral analysis (eigenvalue decompo-
sition or projection) for which classical complexity are cubic or more. This should
also motivate us to look at new problems that are even harder, in different fields
such as topological data analysis and graph problems. On the other hand, it will
be interesting to see what quantum can offer for machine learning problems that
don’t involve data, such as reinforcement learning, approximately solving partial
differential equations, and even chemistry or many-body physics.

Quantum machine learning is definitely an interesting field, and there is still
a lot of work to be done to bring these algorithms closer to what can be done in
practice. Many efforts are also expected in the physical realization of qubits quality,
error correction, and quantum access to data. We are looking forward to the arrival
of the first large scale quantum computers to test our theories in practice and hope
they will help people solve problems for the general interest.
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speed-up for unsupervised learning. Machine Learning, 90(2):261–
287, 2013.

[ADBL19] Juan Miguel Arrazola, Alain Delgado, Bhaskar Roy Bardhan, and
Seth Lloyd. Quantum-inspired algorithms in practice. arXiv
preprint arXiv:1905.10415, 2019.

[ADR82] Alain Aspect, Jean Dalibard, and Gérard Roger. Experimental test
of bell’s inequalities using time-varying analyzers. Physical review
letters, 49(25):1804, 1982.

[AdW20] Simon Apers and Ronald de Wolf. Quantum speedup for graph
sparsification, cut approximation and laplacian solving. In 2020
IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 637–648. IEEE, 2020.

[AGJO+15] Srinivasan Arunachalam, Vlad Gheorghiu, Tomas Jochym-
O’Connor, Michele Mosca, and Priyaa Varshinee Srinivasan. On
the robustness of bucket brigade quantum ram. New Journal of
Physics, 17(12):123010, 2015.

179



BIBLIOGRAPHY

[AHKZ20] Jonathan Allcock, Chang-Yu Hsieh, Iordanis Kerenidis, and
Shengyu Zhang. Quantum algorithms for feedforward neural net-
works. ACM Transactions on Quantum Computing, 1(1):1–24,
2020.

[AM01] Dimitris Achlioptas and Frank McSherry. Fast computation of low
rank matrix approximations. In Proceedings of the 33rd Annual
Symposium on Theory of Computing, pages 611–618, 2001.

[Amb12] Andris Ambainis. Variable time amplitude amplification and quan-
tum algorithms for linear algebra problems. In STACS’12 (29th
Symposium on Theoretical Aspects of Computer Science), vol-
ume 14, pages 636–647. LIPIcs, 2012.

[AR20] Scott Aaronson and Patrick Rall. Quantum approximate counting,
simplified. In Symposium on Simplicity in Algorithms, pages 24–32.
SIAM, 2020.

[ASZ+20] Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi,
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