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Résumé

Les rayons cosmiques peuvent alimenter la croissance exponentielle dŠun champ magnétique préexistant en déclenchant des instabilités qui grandissent grâce au mouvement de dérive collectif des particules. Parmi les différentes instabilités de dérive, le mode non-résonnant, aussi appelé mode de Bell, a fait lŠobjet dŠune attention croissante car il peut ampliĄer le champ magnétique au-delà de son intensité initiale, et génère la turbulence nécessaire pour aider au conĄnement et à à accélération des rayons cosmiques. De manière générale, il peut se développer dans une grande variété dŠenvironnements, allant des nuages moléculaires froids et denses au milieu intergalactique chaud et diffus.

Ce travail vise à élucider le comportement de lŠinstabilité non-résonante de dérives des rayons cosmiques dans de tels environnements, où les effets thermiques et collisionnels peuvent modiĄer considérablement sa croissance et sa saturation. Nous décrivons dŠabord lŠinstabilité dans le cadre de la théorie Ćuide en mettant lŠaccent sur le mécanisme physique conduisant à lŠampliĄcation exponentielle des perturbations électromagnétiques, et obtenons des prédictions analytiques du taux de croissance pour des éléments ioniques arbitraires. En raison de sa nature non-résonante, une description Ćuide est suffisante pour saisir les principales caractéristiques de lŠinstabilité lorsque la température du plasma ambiant est négligeable. Pour étudier lŠinstabilité dans les environnements chauds, où les effets du rayon de Larmor Ąni sont importants, nous recourons à la théorie cinétique linéaire et étendons les résultats analytiques existants au cas dŠions découplés des perturbations magnétiques. Nous obtenons que les longueurs dŠonde instables ne sont pas entièrement supprimées, mais sont plutôt déplacées vers des échelles plus grandes avec un taux de croissance fortement réduit.

Les résultats de la théorie linéaire sont conĄrmés, et étendus à lŠévolution non-linéaire dans la deuxième partie de cette thèse, par des simulations multi-dimensionnelles hybrides de type Şparticle in cellŤ (ions cinétiques et électrons Ćuides). Les simulations mettent en évidence une réduction importante du niveau dŠampliĄcation du champ magnétique dans le régime chaud [Marret et al. MNRAS 2021], ce qui indique quŠil peut être limité dans les plasmas astrophysiques chauds tels que les superbulles ou le milieu intergalactique. Dans les environnements plus froids et plus denses, comme les régions H II et les nuages moléculaires, les collisions entre particules dans le plasma ambiant doivent être prises en compte. Nous étudions numériquement leur impact en incluant dans les simulations avec une méthode Monte-Carlo les collisions proton-proton et proton-hydrogène. Nous obtenons que lŠinstabilité est rapidement supprimée dans les plasmas faiblement ionisés, où les collisions proton-hydrogène dominent. Ces résultats de simulations cinétiques conĄrment quantitativement les calculs existants de la théorie linéaire multiĆuide. En revanche, nous constatons que les collisions coulombiennes favorisent de manière inattendue le développement de lŠinstabilité dans les plasmas entièrement ionisés, en réduisant des anisotropies de pression auto-générées qui autrement sŠopposeraient à sa croissance.

Les simulations numériques sont actuellement le seul moyen dŠétudier lŠévolution non-linéaire de lŠinstabilité et dŠobtenir des estimations quantitatives de lŠintensité du champ magnétique après saturation. La dernière partie de cette thèse est consacrée à la conception dŠexpériences dédiées à la vériĄcation des prédictions de la théorie linéaire et des simulations. Nous décrivons les conditions requises sur les paramètres du plasma pour générer lŠinstabilité dans une expérience, et proposons deux conĄgurations possibles basées 

Context

This thesis constitutes a new contribution to the vast Ąeld of instabilities in plasma physics. Plasmas represent the majority of the matter visible in the Universe, from the auroras on Earth to the interstellar clouds illuminated by nearby stars. The charged particles that form the plasma state are characterised by collective motions mediated by the electromagnetic Ąeld, which lead to an extraordinary wealth of phenomena. Among these, plasma instabilities play an important role in numerous astrophysical environments as they can efficiently redistribute the energy between the Ąelds and the ionized particles. This is of particular importance for the acceleration and transport of cosmic rays, in the Galaxy and beyond. Cosmic rays are charged particles which propagate in space at velocities close to the speed of light. Despite the historical appellation of ŞraysŤ, they are not electromagnetic radiation, but mainly constituted of protons with a small fraction of heavier elements, of positrons and of electrons. The Ąrst detection of cosmic rays dates back to balloon experiments led by Victor Hess in 1912, and signiĄcant progress have been made since in the detection techniques and instruments both on Earth and with satellites. The observations have unveiled that cosmic rays originating from outside the solar system cover a large range of energies, from tens of MeV up to ultra-high energies above 10 11 GeV. The cosmic rays energy spectrum is shown in Fig. 1.1. It follows a power law, with varying index depending on the energy, as E -2.7 from the GeV to the PeV (10 6 GeV, [START_REF] Hillas | The origin of ultra-high-energy cosmic rays[END_REF]), and steepens at a few PeV corresponding to the so-called ŞkneeŤ of the cosmic rays spectrum. It then Ćattens in the range of 10 11 GeV, corresponding to the ŞankleŤ, and terminates at 10 13 GeV [START_REF] Cronin | The highest-energy cosmic rays[END_REF]).

Understanding the acceleration and the transport of the cosmic rays is a central question in astrophysics, as they contain an important fraction of the energy released in supernovas [START_REF] Helder | Observational signatures of particle acceleration in supernova remnants[END_REF]), and contribute as much as the magnetic Ąeld and which yields:

E max = 10 14 r g λ B µG τ 1000 u 2 7

(1.1)

where E max is in eV, r L and λ are the Larmor radius and scattering mean free path of the cosmic ray respectively, u 7 is the shock velocity in units of 10 7 m.s -1 and τ 1000 is the age of the supernova remnant in kiloyears. The most favorable assumption is to suppose λ = r g , corresponding to the Bohm diffusion regime [START_REF] Stage | Cosmic ray diffusion near the Bohm limit in the Cassiopeia A supernova remnant[END_REF], [START_REF] Shalchi | Diffusive shock acceleration in supernova remnants: On the validity of the Bohm limit[END_REF]). Considering u 7 = 0.3, B µG = 1 and τ 1000 = 1 as in the case of SN 1006 [START_REF] Winkler | A high-resolution x-ray and optical study of SN 1006: Asymmetric expansion and small-scale structure in a type Ia supernova remnant[END_REF]), one obtains a maximum energy E max ∼ 10 13 eV, much smaller than the knee at 10 15 eV. These, and similar estimates, show that if cosmic rays are to be accelerated to high energies via the First Order Fermi process, then the turbulent magnetic Ąeld at the shock front needs to be ampliĄed, by more than one order of magnitude with respect to the typical interstellar magnetic Ąeld intensity B ∼ µG.

In this direction, the ion streaming instabilities constitute a promising candidate to produce the necessary ampliĄcation of the magnetic Ąeld, by converting the drift kinetic energy of the cosmic rays crossing the shock front and leaking in the ambient medium into magnetic energy. These plasma instabilities develop when a population of energetic ions, such as cosmic rays, drifts at super-Alfvénic speeds in a background plasma permeated by a magnetic Ąeld (Kulsrud and Pearce [1969], Winske and Leroy [1984], Bell [2004], Amato and Blasi [2009]). The collective drifting motion of these energetic particles is thought to drive the exponential growth of electromagnetic perturbations in many space [START_REF] Gary | Electromagnetic Ion / Ion Instabilities and Their Consequences in Space Plasmas -a Review[END_REF]) and astrophysical (Völk et al. [2005], [START_REF] Cui | A young supernova remnant illuminating nearby molecular clouds with cosmic rays[END_REF]) plasmas. Depending on the plasma conditions, three different modes exist (Gary et al. [1984]): two of them rely on resonant particle-wave interactions, referred to as right-hand and left-hand resonant modes, while the third mode is instead non-resonant and its importance was recognized in early work on the EarthŠs ion-foreshock (Sentman et al. [1981], Onsager et al. [1991], Akimoto et al. [1993]). The non-resonant mode, also called BellŠs mode in the astrophysics literature, has become central to the diffusive acceleration of cosmic rays in supernovae remnants shocks. This mode is thought to be able to amplify the magnetic Ąeld to values much larger than the ambient magnetic Ąeld, sufficiently to allow the acceleration of cosmic rays to PeV energies (Bell [2004], Amato and Blasi [2009]). This is in contrast to the two resonant modes which are limited to a magnetic Ąeld ampliĄcation lower than the ambient magnetic Ąeld (Bell [2013]). However, potentially important damping mechanisms may also need to be taken into account when considering the level of magnetic Ąeld ampliĄcation generated by the non-resonant mode. These are related to the conditions of the environment where the shock is propagating, such as the ambient plasma temperature (Zweibel and Everett [2010]) or the relative drift and collisions (ambipolar diffusion) between ambient ions and neutrals (Reville et al. [2008]).

Indeed, the non-resonant mode is expected to develop in a large variety of environments, ranging from the cold and dense molecular clouds to the hot and diffuse intergalactic medium. In this context, this thesis aims at expanding our knowledge on the behaviour of the instability in these environment, and in particular to study the importance of thermal effects in hot environments such as in superbubbles, and the effects of collisions in the ambient plasma, with neutrals but also among charged particles. Collisions can be important in many environments, such as H II regions, molecular clouds, as well as in laboratory plasmas. This latter case is of particular interest. Indeed numerical simulations are currently the only means to investigate the non-linear evolution of the instability and to obtain quantitative estimates of the saturated magnetic Ąeld intensity. There is consequently a growing need for an experimental veriĄcation of the predictions made by linear theory and simulations. Work in this direction has begun with the right-hand mode which was investigated in recent experiments on the Large Plasma Device (Heuer et al. [2018]). The non-resonant streaming instability has never been observed in the laboratory. Although the parameters required are potentially within the reach of high intensity laser experiments with tens of Tesla externally applied magnetic Ąelds (Albertazzi et al. [2013], Ivanov et al. [2021]), the large streaming population densities, drift velocities and ambient magnetic Ąeld required, together with the lack of theoretical knowledge on the effects of particle collisions on the development of the instability, have made its experimental investigations elusive. The Ąnal part of this thesis is devoted to tackle this problematic.

The manuscript is organized in six main chapters, with a natural progression from the theoretical study of the non-resonant streaming instability, complemented with numerical simulations of its non-linear evolution, and a Ąnal part dedicated to the design of laboratory experiments. In Chapter 2, the instability is described within Ćuid theory to highlight the basic physical mechanism leading to the exponential ampliĄcation of electromagnetic perturbations. In that chapter analytical predictions for the growth rate for arbitrary ion elements are obtained for the Ąrst time. Although the effects of heavier ions may be considered only as corrections (the cosmic rays are essentially made of protons), in the astrophysical context helium is also present and can modify the instability. In addition, it is necessary to take into account heavy ions accelerated in supernova remnants to explain the observed abundances in the cosmic rays spectrum (Tatischeff et al. [2021]). In the context of laboratory experiments, heavy ions effects can also become important as elements such as carbon and argon are frequently used. Owing to its non-resonant nature, a Ćuid description is a sufficiently accurate model of the instability only when the background plasma temperature is negligible. In order to study the instability in hot environments, where Ąnite Larmor radius effects are important, linear kinetic theory is applied to extend the existing analytical results to the case of demagnetized ions. This is presented in Chapter 3, where it is found that the instability is not entirely suppressed, but the unstable wavelengths are instead shifted toward larger scales with a strongly reduced growth rate. The linear theory results are conĄrmed, and extended to the non-linear evolution by multi-dimensional hybrid-Particle-In-Cell simulations (kinetic ions and Ćuid electrons). The code used is presented in Chapter 4, together with the algorithms, the normalizations, as well as the numerical implementation of particle collisions. The simulations results are then presented in Chapter 5 and show a large ampliĄcation of the magnetic Ąeld in the cold regime, which is a key property of the instability in the context of cosmic rays acceleration at shocks. The simulations also highlight an important reduction of the level of magnetic Ąeld ampliĄcation in the hot regime, indicating that it may be limited in hot astrophysical plasmas such as the intergalactic medium. In colder and denser environments, such as H II regions and molecular clouds, particle collisions in the background plasma must be taken into account. This is investigated numerically in Chapter 6 by including Monte-Carlo Coulomb and neutral collisions in the simulations. It is found that in poorly ionized plasmas, where neutral collisions dominate, the instability is rapidly suppressed and our results from kinetic simulations conĄrm quantitatively existing multi-Ćuid linear theory calculations. In contrast, the simulations results show that Coulomb collisions in a fully ionized plasma unexpectedly favour the development of the instability, by reducing self-generated pressure anisotropies that would otherwise oppose its growth. Finally, Chapter 7 is devoted to answer the growing need for an experimental veriĄcation of the linear theory and of the simulations predictions. The aim is to observe and characterize the non-resonant mode for the Ąrst time in the laboratory. In that respect, the stringent requirements placed on the laboratory plasma conditions to accommodate the instability are investigated and detailed. These requirements necessarily have to take into account the effects of Ąnite temperature and particle collisions, studied and highlighted in the Ąrst part of this thesis. Finally, two possible setups which may be conducted on existing high-power laser facilities are proposed. 

Introduction

The streaming instabilities can develop when a background plasma is traversed by a population of energetic ions with a drift velocity aligned with an ambient magnetic Ąeld, leading to the exponential growth of magnetohydrodynamic-like waves, generated at the expense of the bulk kinetic energy of the streaming particles. Depending on their drift velocity and velocity dispersion, three distinct modes can be excited. In general they grow for streaming velocities larger than the Alfvén speed, have a growth time of the order of the ion cyclotron time, and can potentially coexist and compete in their growth. The right-hand resonant mode (Gary et al. [1984]) requires a small streaming and thermal velocity and is characterized by magnetic Ćuctuations with right-hand polarisation. The left-hand resonant mode requires low streaming velocity and large velocity dispersion, and is left-hand polarized. This mode can strongly modify the propagation of cosmic rays by producing magnetic turbulence on scales comparable to the particles Larmor radius, and resulting in an important scattering (Kulsrud and Pearce [1969]). Finally the non-resonant mode is right-hand polarized, requires a large drift velocity and its growth is not associated with cyclotron resonances as for the other two modes. This non-resonant mode will be the focus of this thesis. It was Ąrst investigated in the context of back-streaming ions from the EarthŠs bow shock to the foreshock region using a kinetic description (Sentman et al. [1981], Winske and Leroy [1984]), but was not further studied for twenty years after these pioneering publications. The instability was later rederived within a Ćuid framework (Bell [2004]) and applied to the ampliĄcation of magnetic Ąeld at supernova shocks due to cosmic rays streaming in the interstellar medium.

This chapter is devoted to a theoretical study of the non-resonant streaming instability. The instability mechanism, as well as the growth rate and unstable wavelengths are calculated within the framework of Ćuid plasma theory, together with the energy exchange rates between the electromagnetic waves and the particles. These results are of particular importance as they constitute the fundamental characteristics of the unstable waves, and will be used as a basis in the following chapters to dimension and interpret the numerical simulations. The calculations will be performed while neglecting the gyro-radius of the particles, which is only valid when considering a cold and magnetized plasma. The effects of plasma temperature on the instability growth will be presented in Chapter 3.

Fluid model of the non-resonant mode

Equations of the fluid model

In the framework of Ćuid theory, each plasma components α can be described by the system of equations formed by the moments of the distribution function f α (r, v, t), coupled to MaxwellŠs equations. The zeroth order moment equation may be calculated by multiplying the collisionless Vlasov equation by the mass of the population m α and integrating over velocity space. This yields the equation of mass density conservation:

∂ρ α ∂t + ∇ • (ρ α u α ) = 0 (2.1)
where n α = +∞ -∞ f α dv is the plasma density, ρ α = n α m α is the mass density and u α = 1 nα +∞ -∞ vf α dv is the Ćuid velocity. From this Eulerian equation, one Ąnds that an explicit temporal variation of density is generated by spatial gradients of the mass Ćux. The Ąrst order moment equation can be calculated in a similar way by multiplying the Vlasov equation by m α v α and integrating over velocity space. One obtains the collisionless momentum density conservation equation as:

∂ρ α u α ∂t + u α • ∇(ρ α u α ) = -∇ • P α + q α n α (E + u α × B) (2.2)
where q α is the charge of population α, and

P α = m α +∞ -∞ (v -u α )(v -u α )f α dv
is the pressure tensor. The third order moment may be obtained by multiplying the Vlasov equation by m α vv and calculating the trace. This yields the total (kinetic and internal) energy conservation equation:

∂ ∂t ρ α u 2 α 2 + ρ α U α + ∇ • ρ α u 2 α 2 + ρ α U α u α + Φ α + k l ∂ k (P kl,α u l,α ) -j α • E = 0 (2.3) where ρ α U α = 3 2 n α k B T α with k B the Boltzmann constant, Φ α = +∞ -∞ f α mαv 2 α
2 v α dv is the reduced heat Ćux, and j α = q α n α u α is the current carried by the population α. These moments are exact equations, in the sense that they do not introduce additional approximations in the description of each plasma component with respect to the Vlasov equation. Each equation depends on the next moment, forming an inĄnite hierarchy of equations. In order to obtain a Ąnite system of equations one needs to introduce a closure relation. This is usually done for the second order moment by assuming a speciĄc form of the pressure tensor. One simple approximation is the isothermal pressure assumption, where the plasma pressure is expressed as P α = n α k B T 0 and T 0 is a constant and uniform temperature. This corresponds to the situation of a plasma population whose temperature is equilibrated with an external thermostat on time scales much shorter than the physics investigated, such that it is considered to remain constant during the plasma evolution. In the case of the solar wind for example, this is not a trivial assumption. Without any heating, the radial expansion of the solar wind should result in its cooling, in disagreement with satellites in-situ observations [START_REF] Verscharen | Diffuse ions produced by electromagnetic ion beam instabilities[END_REF]). Another widely used approximation is the adiabatic assumption, corresponding to the opposite situation where no wave-particle energy exchange occur and the heat Ćux are supposed negligible on the time and spatial scales of interest. The pressure may then be expressed with the closure equation d(P α n -γ α )/dt = 0 where d/dt is the material derivative and γ = (N + 2)/N with N the number of degrees of freedom of the system, i.e. γ = 5/3. More complex closure equations can be used, to take into account pressure anisotropies in the presence of a magnetic Ąeld (e.g. [START_REF] Hirabayashi | A new framework for magnetohydrodynamic simulations with anisotropic pressure[END_REF]).

Modified single-fluid approach

Owing to itŠs non-resonant nature, the instability is not dependent at Ąrst order of the precise shape of the distribution functions of the electron and ion populations in the plasma (Gary et al. [1984]). In this case a Ćuid description of each population can prove sufficient to understand the instability mechanism, as well as obtain the growth rate and associated unstable wavenumbers. The Ćuid equations presented in Sec. 2.2.1 apply for each component of the plasma, which results in a complex system of equation, whose physics is not easily discerned. In order to simplify the problem, one may consider several populations as a single Ćuid by assuming that they follow the same dynamic. In this case the system of equations may be reduced, corresponding to the so-called single-Ćuid approach and which will be detailed in the following sections.

One can use a non-relativistic Ćuid approach to describe the non-resonant mode and calculate its characteristic spatial and temporal scale (Amato and Blasi [2009]). Several studies of the instability using Ćuid models exist in the literature (Bell [2004], [START_REF] Zirakashvili | Modeling bellŠs nonresonant cosmic-ray instability[END_REF], Bai et al. [2015], [START_REF] Matthews | AmpliĄcation of perpendicular and parallel magnetic Ąelds by cosmic ray currents[END_REF], Mignone et al. [2018], [START_REF] Van Marle | On magnetic Ąeld ampliĄcation and particle acceleration near non-relativistic astrophysical shocks: Particles in MHD cells simulations[END_REF]), and a similar approach will be adopted here, with a focus on the instability microphysics and mechanism. Consider the following situation: an initially uniform plasma made of main protons and electrons (noted with the subscripts ŞmŤ and ŞeŤ respectively) is embedded in a zeroth order magnetic Ąeld B 0 , and traversed by a less dense population of super-Alfvénic streaming protons (noted with the subscript ŞcrŤ for cosmic rays) with a positive drift velocity in the main protons reference frame, parallel to the magnetic Ąeld. The calculation generalized to arbitrary elements is given in Appendix A, and has not been performed in the literature. Although the effects of heavier ions may be considered only as corrections (the cosmic rays are essentially made of protons), in the astrophysical context helium is also present and can modify the instability. In addition, it is necessary to take into account heavy ions accelerated in supernova remnants to explain the observed abundances in the cosmic rays spectrum (see Tatischeff et al. [2021]). In the context of laboratory experiments, heavy ions effects can also become important as elements such as carbon and argon are frequently used. In the present section, this will be neglected for the clarity of the calculations, hence supposing a plasma made only of electrons and protons. In addition, the electrons will be supposed to follow closely the ion dynamic such that any effects due to charge separation and Hall effects are assumed negligible. The electron temperature will be assumed to be small, and the electron pressure gradients will be neglected. The plasma is supposed quasi-neutral:

-n e + n m = -n cr (2.4) such that the background plasma (main protons and electrons) is electrically charged. The magnetic Ąeld evolution is calculated from Maxwell-FaradayŠs law:

∂B ∂t = -∇ × E (2.5)
and the total current from Maxwell-AmpèreŠs law as:

∇ × B = µ 0 e(-n e u e + n m u m + n cr u cr ) + 1 c 2 ∂E ∂t (2.6)
where µ 0 is the magnetic permeability, e the elementary charge and c the speed of light.

The ratio of the last term of the right-hand side, corresponding to the displacement current, to the curl of B while considering an Alfvénic Ćuctuation, yields a scaling as v 2 A /c 2 where v A is the Alfvén speed. The transverse component of the displacement current will be neglected in the following calculations, hence considering a non-relativistic plasma with v A /c ≪ 1 and ω/k ≪ 1 where ω and k are the frequency and wavenumber respectively. This approximation is discussed in more details in Sec. 4.3.2. The total current is initially null: ∇ × B 0 = 0, consistent with a homogeneous initial magnetic Ąeld. This is achieved by considering an initial drift velocity for the electron population relative to the main protons, in the same direction as the cosmic rays such that:

u e = n cr n m u cr (2.7)
A different way of compensating the current would be to distinguish two electrons populations: one with the same charge density as the main protons, and an additional population with the same charge density as the cosmic rays and drifting alongside them. Within the framework of kinetic theory, Amato and Blasi [2009] showed that the non-resonant mode can develop in both cases, and that the dispersion relation is only modiĄed by a corrective term of the order O(n 2 cr /n 2 m ) depending on the choice to compensate the current. In this thesis only one population of electrons will be considered with a small density ratio n cr /n m such that the results may be applied to the case of two electron populations as well, similarly to previous studies (e.g. Winske and Leroy [1984], Reville et al. [2007]).

One may obtain the momentum density conservation equation for the background plasma by performing a summation of the main protons and electrons momentum conser-vation equations (Eq. 2.2), and by using AmpèreŠs law, which gives:

ρ du dt = 1 µ 0 (∇ × B) × B -∇ • P -en cr (E + u cr × B) (2.8)
where d/dt = ∂/∂t + u • ∇ is the material derivative. The density, Ćuid velocity and total pressure tensor associated to the background plasma are deĄned as:

u = ρ e u e + ρ m u m ρ e + ρ m (2.9) ρ = ρ e + ρ m
(2.10) (2.11) such that ρ ≈ ρ m . The Ąrst and second terms of the right hand side of Eq. 2.8 correspond to the Lorentz and pressure gradients forces classically obtained in the momentum conservation equation of an MHD Ćuid. The third term -en cr (E + u cr × B) expresses the interaction of the electrically charged background plasma with the electromagnetic Ąeld and with the cosmic rays population. The -en cr u cr × B term can be rewritten as a function of the electrons velocity using Eq. 2.7, such that the cosmic rays can be seen as interacting with the background plasma via the so-called electron return current they generate in the background plasma with the condition ∇ × B 0 = 0. This interpretation however is valid only at early times, when the magnetic Ąeld perturbations are small such that the condition of a null total current is fulĄlled. For late time evolution Eq. 2.7 does not hold, and the cosmic rays drift velocity is no longer directly correlated to the electrons drift velocity. The Lorentz force term (∇ × B) × B/µ 0 which appears in Eq. 2.8 can be interpreted by decomposing the double cross product using vector calculus identities as follows:

P ij = α=e,m P ij,α
1 µ 0 (∇ × B) × B = 1 µ 0 [(B • ∇)B -(∇B) • B] (2.12)
where (∇B) ij = ∂B j /∂x i . The Ąrst term of the right-hand side of Eq. 2.12 can be rewritten by considering the curvilinear coordinates s such that n/R = dt/ds, where n and t are the vector normal and tangent to the Ąeld line respectively, and R is the curvature radius, in the local plane where the curvature is deĄned.

1 µ 0 (B • ∇)B = 1 µ 0 Bt • ∇(Bt) (2.13) = B µ 0 ∂B ∂s t + n R B (2.14) = 1 2µ 0 ∂B 2 ∂s t + B 2 µ 0 n R (2.15)
The l component of the second term of the right-hand side of this equation can be written as:

1 µ 0 (∇B) • B l = 1 µ 0 j ∂B j ∂x l B j (2.16) = 1 2µ 0 ∇ l B 2 (2.17)
Using the gradient perpendicular to the magnetic Ąeld line ∇ ⊥ = ∇t ∂/∂s, one obtains:

1 µ 0 (∇ × B) × B = -∇ ⊥ B 2 2µ 0 + B 2 µ 0 n R (2.18)
The Ąrst term corresponds to a gyrotropic magnetic pressure force perpendicular to the magnetic Ąeld line, the second one to a magnetic tension force which acts against the curvature of the magnetic Ąeld line, in the direction perpendicular to B. This is of particular importance for the non-resonant mode, as small scales Ćuctuations can be stabilized by a strong magnetic Ąeld tension force. Since the displacement current has been neglected, the electric Ąeld which appears in Eqs. 2.8 and 2.5 cannot be calculated from Maxwell-AmpèreŠs equation. It cannot be obtained from Maxwell-PoissonŠs equation either, which only gives information on the electrostatic component. The electric Ąeld is instead obtained from OhmŠs law, which can be derived as follows. Multiplying Eq. 2.2 by q α /m α , one obtains for the l component:

∂j l,α ∂t = n α q 2 α m α (E + u α × B) l - k q α m α ∂P α,kl ∂x k - k ∂(n α q α u l,α u k,α ) ∂x k (2.19)
Summing over the populations α and multiplying by m e /n e e 2 :

m e n e e 2 ∂J l ∂t = 1 + m e n e e 2 n m q 2 m m m + n cr q 2 cr m cr E l + u e + m e n e e 2 n m q 2 m m m u m + n cr q 2 cr m cr u cr × B l + 1 n e e k ∂P kl,e ∂x k - m e n e e 2 q m m m k ∂P kl,m ∂x k + q cr m cr k ∂P kl,cr ∂x k - m e n e e 2 k ∂ ∂x k (-n e eu l,e u k,e + n m q m u l,m u k,m + n cr q cr u l,cr u k,cr ) (2.20)
where J = n m q m u m + n cr q cr u cr + n e eu e is the total current, q m = q cr = e and m m = m cr = m p . Considering m e /m p ≪ 1 and neglecting the electron pressure gradients by supposing a negligible electron temperature, OhmŠs law can be written as:

E = J × B en e -u m × B - n cr n m u cr × B (2.21)
Below the ion inertial length, the electron and ion dynamics can be partially decoupled, and the single Ćuid description becomes difficult to justify. If one supposes spatial scales above the inertial length, OhmŠs law can be written while neglecting the Hall term J × B/en e .

Using u m × B ≈ u × B, one obtains: (2.22) This equation corresponds to an ideal OhmŠs law, augmented by an additional contribution due to the cosmic rays current, and has the interesting property that an induced electric Ąeld can exist in the reference frame of the background plasma. This is of particular importance in calculating the background plasma heating rate (see Sec. 2.2.4). Inserting Eq. 2.22 in Eqs. 2.8 and 2.5, and supposing an incompressible plasma such that ∇ • u = 0 from Eq. 2.1, one obtains:

E = -u × B - n cr n m u cr × B
du dt = 1 µ 0 ρ (∇ × B) × B - 1 ρ ∇ • P + n cr n m e m p u × B - 1 ρ j cr × B (2.23) ∂B ∂t = [(B • ∇)u -(u • ∇)B] - 1 en e (j cr • ∇)B (2.24)
with j cr = en cr u cr the cosmic rays current, supposed constant. This assumption will be veriĄed a posteriori. The assumption of an incompressible plasma is relevant to the study of electromagnetic perturbations, which verify the relation k • E = 0 such that there is no electrostatic component and no density Ćuctuations. Although the background Ćuid pressure gradients do not appear in the calculation for transverse electromagnetic Ćuctuations, non-linear pressure gradients effects can nonetheless modify the growth of the non-resonant mode. This will be further investigated in Sec. 2.2.4. Eqs. 2.23 and 2.24 form a coupled non-linear system which describes the interaction between the electrically charged background plasma with the magnetic Ąeld, and will be the basis for the following analysis.

The mechanism of the non-resonant mode

A classical operation to study non-linear systems of equations is the linearization, where one expresses all the varying quantities as a sum of initial, zeroth order contributions, and Ąrst order, perturbed (or Ćuctuating) contributions. The second order terms are then neglected, allowing a clearer view of the early times evolution of the non-linear system. Linearizing Eqs. 2.23 and 2.24 yields:

∂u 1 ∂t = (B 0 • ∇)B 1 µ 0 ρ + n cr n m Ω 0 u 1 × B 0 B 0 - 1 ρ j cr × B 1 (2.25) ∂B 1 ∂t + 1 en e (j cr • ∇)B 1 = (B 0 • ∇)u 1 (2.26)
where Ω 0 = eB 0 /m p is the proton cyclotron frequency, m p is the proton mass and j cr the constant, zeroth order proton cosmic rays current. The subscripts Ş0Ť and Ş1Ť refer to the order of the linearization. Many of the underlying features of the instability can be understood by inspecting these equations. The first term on the right hand-side of Eq. 2.25 is the magnetic tension force associated to the Ćuctuating magnetic Ąeld and dominates the background Ćuid dynamic at small enough scale. The second term is responsible for the cyclotron-like motion of the background Ćuid which occurs at a fraction of the cyclotron frequency. This motion is due to the ambient magnetic Ąeld, and to the background plasma excess of negative charge that compensates the cosmic rays charge. The third term is the source of the instability and drives growing background Ćuid velocity Ćuctuations via the interaction of the cosmic rays current with the Ćuctuating magnetic Ąeld. The linearized magnetic Ąeld induction equation (Eq. 2.26) has been rewritten to highlight its conservative character and the presence of a source term on the right-hand side, which is unchanged by the presence of cosmic rays and couples the background Ćuid velocity to the magnetic Ąeld Ćuctuations. The second term in the left-hand side of Eq. 2.26 can be rewritten as -∇ • (j cr B 1 /Q e ), corresponding to the advection of the magnetic Ąeld perturbation at a velocity -j cr /Q e , equal to the zeroth order electron drift velocity (Eq. 2.7).

v ϕ > 0 v ϕ <
The velocity perturbations will be taken of the form u 1 e i(kx-ωt) , and the magnetic Ąeld perturbations will be considered as propagating along the x direction aligned with the initial magnetic Ąeld such that k = ke x and B = B 0 e x + B 1 e i (kx-ωt) . This corresponds to a circularly polarized, parallel propagating electromagnetic wave, which encompasses the non-resonant mode. The angular frequency is ω = ω r + iγ where ω r is taken to be positive by convention, with γ the growth rate, and k the wave number which can be either positive or negative depending on the direction of propagation of the electromagnetic wave. The polarization of the wave is deĄned as the sense of rotation of the magnetic Ąeld in time, observed at a given position in space. The helicity is deĄned as the sense of rotation of the magnetic Ąeld in space, at a given time. Helicity and polarization are simply related in the case of plane wave through the direction of propagation v ϕ = ω/k. Table 2.1 summarizes these properties of the circularly polarized waves.

One may pursue the analysis by noting that the Ćuid velocity and magnetic Ąeld perturbations in Eqs. 2.25 and 2.26 are coupled by only certain terms, which allows to distinguish coupling and non-coupling contributions. First, considering only the noncoupling terms (i.e. neglecting the Ąrst and third terms of Eq. 2.25 and the right-hand side of Eq. 2.26) one directly obtains a rotation of the background Ćuid at a frequency:

ω u = n cr n m Ω 0 (2.27)
and a rotation of the magnetic Ąeld perturbation at a frequency:

ω r = - kj cr en e (2.
28)

The wavenumber is negative to satisfy the convention ω r ≥ 0, such that the mode is backward propagative. There is no instability, which is an expected result as the coupling terms have been neglected. Retaining only the coupling terms (i.e. neglecting the second term in the right-hand side of Eq. 2.25 and the second term in the left-hand side of Eq. 2.26) is equivalent to supposing fast growing modes, with a growth time much smaller than those associated to the perturbed magnetic Ąeld advection and to the background Ćuid cyclotron-like motion. In Fourier space the equations then become:

-iωu 1 =i B 0 k µ 0 ρ B 1 - 1 ρ j cr × B 1 (2.29) -iωB 1 =iB 0 ku 1 (2.30)
Rewriting in terms of the components of the magnetic Ąeld perturbation yields:

i ω 2 B 0 k B 1y =i B 0 k µ 0 ρ B 1y + j cr B 1z ρ (2.31) i ω 2 B 0 k B 1z =i B 0 k µ 0 ρ B 1z - j cr B 1y ρ (2.32)
By isolating ω one Ąnds the dispersion relation of the non-resonant mode as:

ω 2 = k 2 v 2 A0 ± m p e Ω 0 kj cr ρ (2.33) with v A0 = B 0 / √ µ 0 ρ where ρ ≈ n m m p .
The Ąrst term corresponds to the Alfvénic contribution, such that in the limit of zero cosmic rays current, one recovers the standard dispersion relation for Alfvén waves. This Alfvénic term can be seen as the effect of magnetic tension, which stabilizes the non-resonant mode at large wavenumbers when it is equal or greater to the magnetic force driving term. By considering a negative k, and choosing the negative sign solution in the second term (which corresponds to a left-hand polarized wave), one obtains a purely real angular frequency. In this case the only effect of the cosmic rays is to modify the dispersion relation of large wavelengths Alfvén waves. However choosing the positive sign solution (corresponding to a right-hand polarization), one obtains an instability for ♣k♣ < k max with:

k max = n cr n m u cr v 2 A0 Ω 0 (2.34)
The growth rate γ(k) may then be obtained in the form:

γ(k) = αk + βk 2 (2.35)
In the approximation of purely growing modes, i.e. γ/ω r ≫ 1, an instability can also be obtained by considering k positive with a left-hand polarization such that the helicity remains negative. This is an important property of the non-resonant instability, which relies on the helical spatial structure of the electromagnetic and background Ćuid velocity Ąelds to grow. Searching for an extremum of the growth rate yields the fastest growing wavenumber:

k fast = - α 2β = - 1 2 n cr n m u cr v 2 A0 Ω 0 (2.36)
which is half of the maximum (largest) unstable wavenumber. This is the same result as those found in Winske and Leroy [1984] within kinetic theory and Bell [2004] within Ćuid theory. This expression shows that the wavenumber at which the instability grows depends linearly on the cosmic rays drift velocity. It also decreases linearly with the ambient magnetic Ąeld intensity, corresponding to the magnetic tension overcoming the cosmic rays magnetic force at larger scales when considering a stronger magnetic Ąeld. Inserting Eq. 2.36 in the growth rate expression, one obtains the growth rate for the fastest growing wavenumber as:

γ fast = 1 2 n cr n m u cr v A0 Ω 0 (2.37) such that γ fast = k fast v A0 .
Additionally, in the case of multiply charged ions with a low density ratio n cr /n m ≪ 1, it can be shown (see Appendix A) that the fastest growth rate γ i fast and associated wavenumber k i fast are modiĄed as:

γ i fast =γ fast q cr e m p m m 1/2
(2.38)

k i fast =k fast q cr e (2.39)
where q cr and m m are the cosmic rays charge and main ions mass respectively. In this case the growth rate increases linearly with the cosmic rays charge, and decreases with the square root of the main ions mass. It does not depend on the cosmic rays mass, nor on the main ions charge. One obtains the intuitive result that multiply charged drifting ions increase the effective magnetic force -q cr n cr u cr × B driven by their current, which increases the growth rate and allows smaller scales to grow. Because of quasi-neutrality, the background ions charge does not play a role for the non-resonant mode growth rate, whereas the main ions mass introduces a larger inertia of the background Ćuid which opposes the growth of the instability. These results are not present in the literature, and may be important both for the acceleration of heavy elements at shocks (Tatischeff et al. [2021]), as well as for laboratory experiments. The effects of heavy ions will be further investigated in numerical simulations in Chapter 5.

The physical mechanism responsible for the instability can be better understood by considering large scales, in the range of wave numbers ♣k♣ ≪ k max , where the contribution of the Ąrst term in the right-hand side of Eq. 2.25 corresponding to the magnetic tension can be neglected with respect to the cosmic rays magnetic force. The instability may then be described in the case of protons populations by the simpliĄed system of equations:

∂u 1 ∂t = - 1 ρ j cr × B 1 (2.40) ∂B 1 ∂t =(B 0 • ∇)u 1 (2.41)
small with respect to the j cr1 × B 0 term. For this reason, the growth rate presented in Fig. 2.2 is not valid below k min . A derivation including cosmic rays resonance was done in Bell [2004], showing that the driving term is too weak to drive the non-resonant instability for k < k min , such that the left-hand and right-hand resonant modes become dominant.

In this case the cosmic rays cannot be considered as streaming with a constant velocity, and the precise distribution function of the cosmic rays must be taken into account as the population no longer interacts solely via its current with the unstable waves (Holcomb and Spitkovsky [2018]).

Energy conservation, plasma heating

In the previous section, only the Ąrst and second order moments of the Vlasov equation, namely the conservation of mass density and of momentum density have been exploited to study the non-resonant mode. Additional insights into the instability can be obtained by studying the energy transfers between the plasma and the electromagnetic Ąeld. In the following, the pressure and heat Ćux terms will be neglected with respect to the terms involving the electromagnetic Ąeld, in order to highlight the wave-particle energy exchanges. Summing the energy density conservation equation of the electrons and protons Ćuid (Eq. 2.

3), the conservation of the kinetic and internal energies background plasma energies can be expressed as:

ρ d dt u 2 2 + U = j b • E (2.44)
where ρU = 3p/2 with p the isotropic part of the pressure tensor and j b = en m u m -en e u e = ∇ × B/µ 0j cr is the background current. One may separate the internal and kinetic part of the energy conservation equation by calculating the kinetic energy conservation equation. This can be obtained from the conservation of momentum density of the background plasma:

ρ du dt = -∇ • P -en cr E + j b × B (2.45)
Taking the scalar product of this equation by u and neglecting the pressure term, one obtains the balance equation for the kinetic (directed) energy of the background as:

ρ d dt u 2 2 = -en cr E • u + (j b × B) • u (2.46)
Substracting Eq. 2.46 from Eq. 2.44, one obtains the conservation equation for the internal energy of the background Ćuid:

ρ dU dt = E • (j b + en cr u) -(j b × B) • u (2.47)
The electromagnetic energy density conservation, neglecting the electric energy with respect to the magnetic energy, gives:

∂ ∂t B 2 2µ 0 + ∇ • E × B µ 0 = -(j b + j cr ) • E (2.48)
The second term on the left-hand side corresponds to the Poynting Ćux. The right-hand side term expresses the interaction of the plasma with the electric Ąeld and allows energy exchanges between the Ćuid and the electromagnetic Ąeld. Finally the cosmic rays kinetic energy conservation equation reads:

ρ cr d dt u 2 cr 2 = j cr • E (2.49)
The sum of these conservation equations yields zero, which corresponds to the conservation of the total (kinetic, internal and electromagnetic) energy of the system. These conservation equations can be further developed by specifying the form of the electric Ąeld E such that it can be eliminated from the expressions. Using OhmŠs law one has E = -u × B -n cr n m u cr × B (Eq. 2.22), which gives the intermediary relations:

E • j b = u • F L + n cr n m u cr • F L + j cr • (u × B) (2.50) en cr E • u = - n cr n m u • (j cr × B) (2.51) E • j cr = -j cr • (u × B) (2.52) (j b × B) • u = u • F L -u • (j cr × B) (2.53) 
where F L = (∇ × B) × B/µ 0 is the Lorentz force. Inserting in the conservation equations gives:

ρ cr d dt u 2 cr 2 = -j cr • (u × B) (2.54) ρ d dt u 2 2 = j cr • (u × B) + u • F L (2.55) ρ dU dt = - n cr n m F L • [u -u cr ] (2.56) ∂ ∂t B 2 2µ 0 + ∇ • E × B µ 0 = -u • F L - n cr n m u cr • F L (2.57)
The equations involve the spatial structure of the magnetic Ąeld via the Lorentz force term F L , which is not easily interpreted. Additional insight can be obtained by linearizing the equations, while neglecting Ąrst order cosmic rays drift velocity perturbations, corresponding to the non-resonant regime as presented in the previous sections. One obtains that the second order parallel electric Ąeld can be expressed as E ∥ = -u 1 × B 1 . From Eq. 2.40, one obtains that the background Ćuid acceleration is oriented in the direction of -j cr × B 1 .

Given that the real frequency of the electromagnetic wave is negligible with respect to the instability growth rate for the non-resonant mode, and in the absence of external forces, one deduces that the velocity perturbations are aligned with the direction of the local magnetic force. Consequently, the second order induced parallel electric Ąeld slows down the cosmic rays, and accelerates the background plasma. The internal energy conservation equation can be better understood by considering the calculation in the reference frame of the background Ćuid. In this case the electric Ąeld and background Ćuid current can be written respectively as E ′ = E + u × B and j ′ b = j b + Q cr u, which allows to rewrite Eq.

2.47 as:

ρ dU dt = j ′ b • E ′ (2.58)
corresponding to the work of the electric force in the background Ćuid reference frame.

Assuming u m ≈ u and quasi-neutrality, the internal energy conservation equation can then be written as:

ρ dU dt = en cr (u e -u) • [(u cr -u) × B] (2.59)
The inductive term due to the background plasma motion no longer appears, such that one obtains that the electric Ąeld induced by the cosmic rays drift velocity interacts with the current carried by the electrons, allowing important energy exchanges between the waves and the background plasma. This heating effect will be further investigated in numerical simulations in Chapters 5 and 6.
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Introduction

Up to this point, the Larmor radius of the protons and electrons was considered negligible compared to the spatial scales relevant to the non-resonant instability, such that any kinetic effects due to a Ąnite temperature were supposed negligible. This chapter presents the derivation of the growth rate of the non-resonant mode while taking into account the background protons temperature. A wide range of parameters will be considered, starting from the zero and small temperature regimes (cold and warm plasma) up to the demagnetized regime (hot plasma) where the ion Larmor radius is larger than the unstable wavelengths. A kinetic description of the plasma components will be used in order to accurately describe Ąnite Larmor radius effects, which do not appear in the Ćuid model, even by considering the background Ćuid pressure tensor. This work will focus on obtaining analytical results by expanding the full kinetic dispersion relation for the non-resonant mode. The results are of particular importance to assess the spatial and temporal scales characteristic of the non-resonant mode in hot environments such as superbubbles and the intergalactic medium. In denser environments such as H II regions and molecular clouds, collisions can also become sufficiently frequent to modify the growth of the instability. This will be investigated in Chapter 6.

The linear dispersion relation

General relation

Waves propagating in a plasma can be studied by solving the Vlasov, Faraday and Ampère system of equations in Fourier space. The magnetic and electric Ąeld are linearized as:

B = B 0 + B 1 (3.1) E = E 1 (3.2)
where an ambient, homogeneous magnetic Ąeld is considered along the e z direction B 0 = B 0 e z , such that B 0 ≫ B 1 . AmpèreŠs law yields the relation:

ik × B 1 = µ 0 J 1 - iω c 2 E 1 (3.3)
where µ 0 is the magnetic permeability, c is the speed of light, J is the total conduction current, k is the wave number and ω is the angular frequency of the wave. The perturbed magnetic Ąeld B 1 may be expressed with FaradayŠs law as:

B 1 = k × E 1 ω (3.4)
from which one deduces:

c 2 ω 2 k × (k × E 1 ) + E 1 + i ωϵ 0 J 1 = 0 (3.5)
where ϵ 0 = 1/µ 0 c 2 is the dielectric permittivity of vacuum. Considering that the contributions from the plasma can be embedded in the conductivity tensor σ, then the total conduction current writes:

J 1 = σ • E 1 (3.6)
which gives the so-called dispersion relation:

c 2 ω 2 (kk -k 2 1) • E 1 + E 1 + i ωϵ 0 σ • E 1 = 0 (3.7)
where 1 is the identity matrix. DeĄning the ij element of the dispersion tensor:

R ij = c 2 ω 2 (k i k j -k 2 δ ij ) + δ ij + i ωϵ 0 σ ij (3.8)
with δ ij the Kronecker delta, the dispersion relation can be rewritten in a compact form:

R • E 1 = 0 (3.9)
It can then solved by calculating det ♣R♣ = 0, which allows to retrieve the frequency as a function of the wavenumber. Such analysis is central in the study of plasma instabilities, as it allows us to obtain the characteristic time and spatial scales associated to a given mode. In order to pursue the calculation, one needs the tensor σ which encompasses the speciĄcity of the propagation medium and dictates the current resulting from an electric Ąeld perturbation. In the following σ will be obtained by calculating the perturbed distribution function, through the linearization of the Vlasov equation. This will allow us to obtain the current as a function of the perturbed electric Ąeld, and thus give access to the conductivity tensor. Only parallel propagating modes (k × B 0 = 0) will be considered, which encompasses the non-resonant streaming instability.

Perturbed distribution function

The evolution of the distribution function f (r, v, t) of each population α of the plasma is dictated by the Vlasov equation:

∂f α ∂t + v • ∇f α + q α m α (E + v × B) • ∂f α ∂v = 0 (3.10)
where E(r, t) and B(r, t) are the macroscopic electric and magnetic Ąeld (see Sec. 4.4.2 for a discussion on the deĄnition of ŞmacroscopicŤ), q α the charge and m α the mass. In the following the subscript α will be omitted to simplify the notations. In order to obtain the total perturbed current J 1 = α j α1 , a classical procedure is to use the methods of the characteristics (e.g. [START_REF] Gary | A second-order theory for k B0 electromagnetic instabilities[END_REF], [START_REF] Gary | The mirror and ion cyclotron anisotropy instabilities[END_REF]). It consists in solving the Vlasov equation for each population as:

df 1 dt = - q m E 1 . ∂f 0 ∂v - q m (v × B 1 ). ∂f 0 ∂v (3.11) with df 1 dt = ∂f 1 ∂t + v. ∂f 1 ∂r + q m (v × B 0 ). ∂f 1 ∂v (3.12)
the trajectory along a non-perturbed orbit, where the position and velocity correspond to the cyclotron motion of the particles in the unperturbed magnetic Ąeld:

v = dr dt (3.13) dv dt = q m v × B 0 (3.14)
One may integrate Eq. 3.11 directly in time along this non-perturbed orbit, which then allows to obtain the waves dispersion relation.

An alternate derivation is presented here, which takes advantage of the cylindrical symmetry of the problem. The calculation can be separated in four steps: Ąrst, obtaining the perturbed distribution function, then calculation of the plasma current, thirdly calculating the conductivity tensor, and Ąnally solving the dispersion relation. Linearizing Eq. 3.10 in Fourier space while neglecting second order terms, one obtains:

-i(ω -k • v)f 1 + q m (v × B 0 ) • ∂f 1 ∂v = - q m (E 1 + v × B 1 ) • ∂f 0 ∂v (3.15)
Using cylindrical coordinates the velocity, wave vector and unperturbed magnetic Ąeld can be expressed as v = (v ⊥ cos ϕ, v ⊥ sin ϕ, v ∥ ), k = (0, 0, k) and B 0 = (0, 0, B 0 ) respectively, where v ⊥ and v ∥ refer to the velocity perpendicular and parallel to the initial magnetic Ąeld B 0 , and ϕ refers to the azimuthal angle. The following relations hold:

dv ⊥ = ∂v ⊥ ∂v x dv x + ∂v ⊥ ∂v y dv y (3.16) = cos ϕ dv x + sin ϕ dv y (3.17) dϕ = ∂ϕ ∂v x dv x + ∂ϕ ∂v y dv y (3.18) = - sin ϕ v ⊥ dv x + cos ϕ v ⊥ dv y (3.19)
The velocity derivatives can then be rewritten as :

∂f ∂v x = ∂f ∂v ⊥ ∂v ⊥ ∂v x + ∂f ∂ϕ ∂ϕ ∂v x (3.20) = ∂f ∂v ⊥ cos ϕ - 1 v ⊥ ∂f ∂ϕ sin ϕ (3.21) ∂f ∂v y = ∂f ∂v ⊥ ∂v ⊥ ∂v y + ∂f ∂ϕ ∂ϕ ∂v y (3.22) = ∂f ∂v ⊥ sin ϕ + 1 v ⊥ ∂f ∂ϕ cos ϕ (3.23)
DeĄning the cyclotron frequency Ω 0 = qB 0 /m and the shifted frequency ψ = ω -kv ∥ one Ąnds:

∂f 1 ∂ϕ + i ψ Ω 0 f 1 = q mΩ 0 (E 1 + v × B 1 ) • ∂f 0 ∂v (3.24)
The terms coupling the zeroth order Ąeld to the perturbed distribution function no longer appear in the equation in cylindrical coordinates for the velocity, allowing a direction integration of the Vlasov equation. Using Eq. 3.4, one can write:

v × B 1 = 1 ω [(v • E 1 )k -(v • k)E 1 ] (3.25)
Replacing in the linearized Vlasov equation (Eq. 3.24):

∂f 1 ∂ϕ + i ψ Ω 0 f 1 = q mΩ 0 E 1 • 1 -1 v • k ω + vk ω • ∂f 0 ∂v (3.26)
The second term on the right hand side can be developed as:

E 1 • 1 -1 v • k ω + vk ω • ∂f 0 ∂v = E 1 • v k ω ∂f 0 ∂v ∥ + 1 - kv ∥ ω E 1 • ∂f 0 ∂v (3.27)
Considering a drifting Maxwellian velocity distribution along the initial magnetic Ąeld B 0 with anisotropic temperatures T ∥ ̸ = T ⊥ , the initial distribution function f 0 can be expressed as:

f 0 = n 0 α ∥ π α ⊥ π e -α ∥ (v ∥ -u 0 ) 2 e -α ⊥ v 2 ⊥ (3.28) with α ∥ = m/2k B T ∥ , α ⊥ = m/2k B T ⊥ , k B the
Boltzmann constant, u 0 the drift velocity and n 0 the initial density. The initial distribution function being gyrotropic (∂f 0 /∂ϕ = 0), one obtains:

E 1 • ∂f 0 ∂v = E 1 • v v ⊥ ∂f 0 ∂v ⊥ (3.29)
Calculating the distribution function velocity derivatives yields:

∂f 0 ∂v ∥ = -2f 0 α ∥ (v ∥ -u 0 ) (3.30) ∂f 0 ∂v ⊥ = -2f 0 α ⊥ v ⊥ (3.31) Hence: ∂f 1 ∂ϕ + i ψ Ω 0 f 1 = -2 q mΩ 0 E 1 • v k ω α ∥ (v ∥ -u 0 ) + α ⊥ ψ ω f 0 (3.32)
By solving the associated Ąrst order linear homogeneous ordinary differential equation in f 1 one obtains:

f 1 = Ke -i ψ Ω 0 ϕ (3.33)
The constant K can be obtained directly by considering the condition f 1 (ϕ = 0) = f 1 (ϕ = 2π), which yields K = 0. Integrating Eq. 3.32 yields:

f1 (ϕ) = - 1 Ω 0 e -i ψ Ω 0 ϕ ϕ f 0 e i ψ Ω 0 ϕ ′ 2 q m E 1 • v k ω α ∥ (v ∥ -u 0 ) + α ⊥ ψ ω dϕ ′ (3.34)
where the variation of the constant has been used to deĄne:

f 1 = f1 e -i ψ Ω 0 (ϕ ′ -ϕ) (3.35)
which has been inserted in Eq. 3.32. DeĄning

ψ ± = ψ ± Ω 0 = ω -kv ∥ ± Ω 0 , one Ąnds: e -i ψ Ω 0 ϕ ϕ cos ϕ ′ e i ψ Ω 0 ϕ ′ dϕ ′ = Ω 0 2 e iϕ iψ + + e -iϕ iψ - (3.36) e -i ψ Ω 0 ϕ ϕ sin ϕ ′ e i ψ Ω 0 ϕ ′ dϕ ′ = Ω 0 2i e iϕ iψ + - e -iϕ iψ - (3.37)
The perturbed distribution function is then obtained as:

f1 = i q m f 0 k ω α ∥ (v ∥ -u 0 ) + α ⊥ ψ ω E 1 • η (3.38)
where the vector η is deĄned as:

η = iv ⊥ e iϕ ψ + + e -iϕ ψ -e x + v ⊥ e iϕ ψ + - e -iϕ ψ -e y + 2 v ∥ ψ e z (3.39)

Perturbed current

The perturbed current carried by a given population, deĄned as j 1 = q +∞ -∞ f1 vdv, can now be calculated as:

j 1 = i q 2 m +∞ -∞ ηvf 0 k ω α ∥ (v ∥ -u 0 ) + α ⊥ ψ ω • E 1 dv (3.40)
First, the integral in the Ąrst term of Eq. 3.40 is evaluated. The dyadic product ηv can be expressed as:

ηv =            iv 2 ⊥ cos ϕ e iϕ ψ + + e -iϕ ψ - iv 2 ⊥ sin ϕ e iϕ ψ + + e -iϕ ψ - iv ⊥ v ∥ e iϕ ψ + + e -iϕ ψ - v 2 ⊥ cos ϕ e iϕ ψ + - e -iϕ ψ - v 2 ⊥ sin ϕ e iϕ ψ + - e -iϕ ψ - v ⊥ v ∥ e iϕ ψ + - e -iϕ ψ - 2 v ∥ ψ v ⊥ cos ϕ 2 v ∥ ψ v ⊥ sin ϕ 2 v 2 ∥ ψ            (3.41)
The velocity integral can be rewritten in cylindrical coordinates as:

+∞ -∞ dv = 2π 0 dϕ +∞ 0 v ⊥ dv ⊥ +∞ -∞ dv ∥ (3.42)
The terms of the form sin ϕ, cos ϕ, e iϕ and e -iϕ yield 0 when integrating over the angle ϕ.

The other terms can be integrated in ϕ and v ⊥ as follows:

i +∞ -∞ f 0 v 2 ⊥ cos ϕ e iϕ ψ + + e -iϕ ψ -dv ⊥ = iπ +∞ 0 f 0 v 3 ⊥ dv ⊥ 1 ψ + + 1 ψ -dv ⊥ (3.43) i +∞ -∞ f 0 v 2 ⊥ sin ϕ e iϕ ψ + + e -iϕ ψ -dv ⊥ = -π +∞ 0 f 0 v 3 ⊥ dv ⊥ 1 ψ + - 1 ψ -dv ⊥ (3.44) +∞ -∞ f 0 v 2 ⊥ cos ϕ e iϕ ψ + - e -iϕ ψ -dv ⊥ = π +∞ 0 f 0 v 3 ⊥ dv ⊥ 1 ψ + - 1 ψ -dv ⊥ (3.45) +∞ -∞ f 0 v 2 ⊥ sin ϕ e iϕ ψ + - e -iϕ ψ -dv ⊥ = iπ +∞ 0 f 0 v 3 ⊥ dv ⊥ 1 ψ + + 1 ψ -dv ⊥ (3.46) +∞ -∞ 2 f 0 ψ dv ⊥ = 4π ψ +∞ 0 f 0 v ⊥ dv ⊥ (3.47)
The perpendicular velocity integrals can be found by using the following property:

G n = +∞ 0 v n ⊥ e -α ⊥ v 2 ⊥ dv ⊥ = n -1 2α ⊥ G n-2 (3.48) G 1 = 1 2α ⊥ (3.49)
Hence the integral:

G 3 = 1 2α 2 ⊥ (3.50)
The integrals on the parallel velocity component need to be calculated for the terms ij = (11,12,21,22) of the tensor ηv. DeĄning:

I ± = i n 0 q 2 2mω +∞ -∞ kv ∥ (α ∥ -α ⊥ ) -ku 0 α ∥ -ωα ⊥ 1 α ⊥ α ∥ π 1/2 e -α ∥ (v ∥ -u 0 ) 2 ω -kv ∥ ± Ω 0 dv ∥ (3.51)
and the quantity:

u 2 = α ∥ (v ∥ -u 0 ) 2 (3.52) such that v ∥ = u/ √ α ∥ + u 0 and dv ∥ = du/ √ α ∥
, the expression becomes:

I ± = i n 0 q 2 2mω +∞ -∞ u √ α ∥ (α ⊥ -α ∥ ) + α ⊥ u 0 - ω k 1 α ⊥ α ∥ π 1/2 × e -u 2 u - √ α ∥ k (ω -ku 0 ± Ω 0 ) du (3.53)
I ± can be expressed as a function of the Fried and Conte integral [START_REF] Fried | The Plasma Dispersion Function[END_REF]):

Z(ζ) = 1 √ π +∞ -∞ e -u 2 u -ζ du (3.54) by deĄning ζ ± = √ α ∥ k (ω -ku 0 ± Ω 0 ).
Using the following properties (Callen [2006]) for Im(ζ) > 0 and n ≥ 0:

Z n (ζ) = 1 √ π +∞ -∞ u n e -u 2 u -ζ du (3.55) Z 1 = - Z ′ 2 = 1 + ζZ (3.56) Z 2 = -ζ Z ′ 2 = ζ + ζ 2 Z (3.57) Z 3 = 1 2 1 + 2ζ 2 (1 + ζZ) (3.58)
where the prime notation corresponds to the derivative with respect to ζ, one Ąnds:

I ± = i n 0 q 2 2mω α ∥ -α ⊥ 2α ⊥ Z ′ (ζ ± ) + √ α ∥ u 0 - ω k Z(ζ ± )  (3.59)
The velocity integral for the ij = 33 term of the ηv tensor will now be calculated. DeĄning:

I = 2i n 0 q 2 m +∞ -∞ k ω α ∥ (v ∥ -u 0 ) + α ⊥ 1 - kv ∥ ω α ⊥ π α ∥ π 1/2 × v 2 ∥ e -α ⊥ v ⊥ -α ∥ (v ∥ -u 0 ) 2 ω -kv ∥ dv (3.60)
Using Eqs. 3.47 and 3.49:

I = 2i n 0 q 2 m +∞ -∞ k ω α ∥ (v ∥ -u 0 ) + α ⊥ 1 - kv ∥ ω α ∥ π 1/2 v 2 ∥ e -α ∥ (v ∥ -u 0 ) 2 ω -kv ∥ dv ∥ (3.61)
Using the previously deĄned u yields:

I = 2i n 0 q 2 mω +∞ -∞ α ∥ π 1/2 u √ α ∥ (α ⊥ -α ∥ ) + u 0 α ⊥ - ω k α ⊥ u 2 α ∥ + u 2 0 + 2 uu 0 √ α ∥ × e -u 2 ω k - u √ α ∥ -u 0 du √ α ∥ (3.62) DeĄning ζ = √ α ∥ k (ω -ku 0 )
and Γ as:

Γ = u 3 α ⊥ -α ∥ α 3/2 ∥ + u 2 α ⊥ α ∥ 3u 0 - ω k -2u 0 + u 1 √ α ∥ u 2 0 (3α ⊥ -α ∥ ) -2u 0 α ⊥ ω k + α ⊥ u 3 0 - ω k u 2 0  (3.63)
In a more compact form:

Γ = au 3 + bu 2 + cu + d (3.64)
This allows to express I as:

I = -2i n 0 q 2 mω +∞ -∞ α ∥ π 1/2 e -u 2 u -ζ Γ du (3.65)
Using Eqs. 3.56 to 3.58, one Ąnds:

I = -2i n 0 q 2 mω √ α ∥ [Z 3 a + Z 2 b + Z 1 c + Zd] (3.66)
One can now write the elements of the conductivity tensor σ for each species.

Conductivity tensor

Combining Eq. 3.40,Eqs. 3.43 to 3.46,and Eqs. 3.59,3.66 yields:

σ 11 = i ϵ 0 2 ω 2 p ω T ⊥ -T ∥ 2T ∥ (Z ′ (ζ + ) + Z ′ (ζ -)) + 1 √ 2v T ∥ u 0 - ω k (Z(ζ + ) + Z(ζ -)) (3.67) σ 12 = ϵ 0 2 ω 2 p ω T ⊥ -T ∥ 2T ∥ (Z ′ (ζ -) -Z ′ (ζ + )) + 1 √ 2v T ∥ u 0 - ω k (Z(ζ -) -Z(ζ + )) (3.68) σ 21 = -σ 12 (3.69) σ 22 = σ 11 (3.70) σ 13 = σ 23 = σ 31 = σ 32 = 0 (3.71) σ 33 = 2iϵ 0 ω 2 p ω √ α ∥ [Z 3 (ζ)a + Z 2 (ζ)b + Z 1 (ζ)c + Z(ζ)d] (3.72)
where ω 2 p = n 0 q 2 /ϵ 0 m is the plasma frequency. The conductivity tensor, deĄned by the relation J 1 = σ • E 1 , can now be written explicitly as a sum over each of the plasma components:

α j 1α = α σ α • E 1 (3.73)
The kinetic dispersion relation can now be solved, by calculating the determinant of the tensor deĄned in Eq. 3.8. The components can be written as:

R 11 = 1 - k 2 c 2 ω 2 + iσ 11 ωϵ 0 (3.74) R 12 = iσ 12 ωϵ 0 (3.75) R 21 = -R 12 (3.76) R 22 = R 11 (3.77) R 33 = 1 + iσ 33 ωϵ 0 (3.78) R 13 = R 23 = R 31 = R 32 = 0 (3.79)
where the conductivity tensor σ is the sum over each plasma components. Calculating det ♣R♣ = 0:

1 + iσ 33 ωϵ 0   1 - k 2 c 2 ω 2 + iσ 11 ωϵ 0 2 - σ 2 12 ω 2 ϵ 2 0   = 0 (3.80)
One obtains that the electrostatic modes are decoupled from the electromagnetic modes.

For electrostatic modes (left bracket, corresponding to k × E 1 = 0):

1 + iσ 33 ωϵ 0 = 0 (3.81)
And for electromagnetic modes (right bracket, corresponding to k

• E 1 = 0): 1 - k 2 c 2 ω 2 + iσ 11 ± σ 12 ωϵ 0 = 0 (3.82)
where the upper sign (plus) is for right-hand polarized modes, and the lower sign (minus) is for left-hand polarized modes. The latter equation will be investigated as the non-resonant mode is electromagnetic. Inserting Eqs. 3.67 and 3.68 in Eq. 3.82, one Ąnally obtains:

1 - k 2 c 2 ω 2 - α ω 2 pα ω 2 T ⊥α -T ∥α 2T ∥α Z ′ (ζ ± α ) + 1 √ 2v T ∥α u α - ω k Z(ζ ± α ) = 0 (3.83) with v T ∥α = k B T ∥α /m α and ζ ±
α the argument of the Fried and Conte functions:

ζ ± α = 1 √ 2v T ∥α k (ω -ku α ± Ω α ) (3.84)
where the subscript Ş0Ť for the drift velocity has been discarded to simplify the notation. This equation is the dispersion relation of electromagnetic waves propagating along an ambient magnetic Ąeld, and will be used to calculate the growth rate and unstable wavenumbers associated to the non-resonant mode. The Ąrst term in the right-hand side of Eq. 3.83 contains the effects of the temperature anisotropy, and the second term contains the effects of the zeroth order drift velocity. Since this equation encompasses all the parallel propagating electromagnetic modes, it is rather complex and needs further simpliĄcation to obtain analytical results. This is the purpose of the following sections.

Analytical solutions in various environments

Interaction regimes

In the following, the initial temperature will be supposed isotropic, such that T ∥α = T ⊥α = T α . In addition, it can be shown (Amato and Blasi [2009], Zacharegkas et al. [2019]) that the linear properties of the non-resonant mode are not modiĄed by relativistic effects, such that 1 ≪ k 2 c 2 /ω 2 . The dispersion relation can then be written as:

-k 2 c 2 - 1 √ 2 α ω 2 pα v T α u α - ω k Z(ζ ± α ) = 0 (3.85)
This complex equation can only be solved numerically using dispersion codes, where the roots of the equation are found using dedicated numerical methods while considering a set of initial plasma parameters on a predeĄned range of wavenumbers or angular frequencies. Useful analytical results can however be obtained by simplifying the Fried and Conte functions using Taylor and asymptotic expansions.

The argument of the Fried and Conte functions is a key parameter that characterizes the interaction of the population α with the electromagnetic waves of angular frequency ω and wave number k. Depending on the value of ζ ± α (Eq. 3.84), three regimes of interaction can be distinguished [START_REF] Gary | A second-order theory for k B0 electromagnetic instabilities[END_REF]). The Ąrst one corresponds to

♣ζ ± α ♣ > 1,
where the bulk of the velocity distribution function of the population α is far from the cyclotron resonance condition ω -ku α ± Ω α = 0. This so-called cold regime is non-resonant and may be correctly described using both a kinetic or a Ćuid approach, where the details of the distribution function are unimportant. The other case ♣ζ ± α ♣ < 1 can be deĄned as the hot and demagnetized regime, as the thermal Larmor radius is larger than the wavelengths of the mode. In such a case the particles respond weakly to the electromagnetic Ąeld perturbations. The intermediary regime, ♣ζ ± α ♣ ∼ 1, corresponds to the situation where the bulk of the velocity distribution function lies near the cyclotron resonant velocity with the electromagnetic waves and, depending on the polarization and direction of propagation, important cyclotron resonant interactions can occur. This regime is particularly relevant to the case of the right-hand resonant and left-hand resonant streaming instabilities (Kulsrud and Pearce [1969]). The case ♣ζ ± α ♣ ≳ 1 can also be considered, where Ąnite Larmor radius appear as small corrective terms in the dispersion relation, and will be referred as the warm regime. The three regimes of cold, warm and hot regimes will be considered successively in Sec. 3.3.2,3.3.3 and 3.3.4. A particular emphasis will be made on the hot regime, for which no analytical theory has been developed in the literature.

Cold regime

The non-resonant streaming instability has Ąrst been investigated in the work of Sentman et al. [1981], where the authors studied reĆected ions in the Earth bow shock and their propagation in the upstream solar wind. They found a Şnon-resonant Ąre-hose likeŤ mode by solving numerically the kinetic dispersion relation of parallel propagating electromagnetic waves. The instability has been further investigated in Winske and Leroy [1984], where it was found that the instability may be described by neglecting the background protons, electrons and streaming population temperature, relativistic effects, and by supposing low frequency modes ω < Ω α and a small density ratio n cr /n m ≪ 1. Under such assumptions, the ζ ± α parameter in Eq. 3.85 can be simpliĄed in order to obtain analytical results, using the approximation:

ζ ± α ≈ 1 √ 2 - u α v T α ± 1 kr Lα (3.86)
where r Lα = v T α /Ω α is the thermal Larmor radius of the population α. In the case of small thermal velocities, i.e. the drift velocity is larger than the thermal velocity and the thermal Larmor radius is smaller than the electromagnetic perturbation wavenumber, one obtains ♣ζ ± α ♣ ≫ 1. In this limit the Fried and Conte functions can be approximated by a Taylor expansion at Ąrst order as:

Z(ζ ± α ) = - 1 ζ ± α (3.87)
After simpliĄcation (Winske and Leroy [1984]), the fastest growing mode growth rate γ cold , wavenumber k cold and real angular frequency ω r,cold may be calculated analytically as:

γ cold = 1 2 n cr n m u cr v A0 Ω 0 (3.88) k cold = 1 2 n cr n m u cr v 2 A0 Ω 0 (3.89) ω r,cold = 1 2 n 2 cr n 2 m u 2 cr v 2 A0 Ω 0 (3.90)
One recovers the exact same results as the Ćuid model presented in Sec. 2.2.3. In the cold case the growth rate is independent of the ambient magnetic Ąeld and of the main protons temperature, which corresponds to the Larmor radius being much smaller than the instability wavelength, such that it does not modify the instability. This regime of interaction is particularly relevant in the context of supernova shocks in the cold and tenuous interstellar medium (Bell [2004]) and of back streaming populations from the earth bow shock region (Onsager et al. [1991], Akimoto et al. [1993]), where thermal effects are expected to be small.

Warm regime

In the same way as in the cold regime, the Fried and Conte function can be simpliĄed using Taylor expansions while retaining additional terms to account for thermal corrections (Zweibel and Everett [2010]) as:

Z(ζ ± α ) = - 1 ζ ± α - 1 2(ζ ± α ) 3 + iπ 1/2 e -(ζ ± α ) 2 (3.91)
The -1/2(ζ ± α ) 3 term represents the partial decoupling between the magnetic Ąeld and the particles due to their Ąnite Larmor radius, whereas the imaginary term (not present at Ąrst order in the cold limit) encompasses the effects of particles interacting resonantly with the wave. The dispersion relation may then be written in the form :

ω 2 -ω   k 2 v 2 T m 2Ω 0 + Ω 0 n cr n m -i √ π Ω 2 0 kv T m e - Ω 2 0 k 2 v 2 T m   -k 2 v 2 A0 + Ω 0 n cr n m ku cr = 0 (3.92)
Supposing that the electrons remain cold, while retaining thermal effects for the background protons, the fastest growing mode γ warm and associated wavenumber k warm in the warm regime (also called WICE, Warm Ions Cold Electrons) are then found as:

γ warm = n cr n m u cr v T m 2/3 Ω 0 (3.93) k warm = n cr n m u cr v T m 1/3 Ω 0 v T m (3.94)
The growth rate in this regime depends linearly on the initial magnetic Ąeld, and as T -1/3 m on the background protons temperature. Finite Larmor radius effects tend to reduce the non-resonant mode growth rate and shift the unstable wavelengths toward larger scales.

A threshold for this regime can be calculated as

v A0 /v T m < (n cr u cr /n m v T m ) 1/3
. This warm regime of interaction is of interest in low density, high temperature medium such as superbubbles and galaxy cluster shocks, where the non-resonant mode may be affected by the Ąnite background protons temperature.

Hot and demagnetized regime

In the case of hot protons in a plasma permeated by a weak magnetic Ąeld, the background protons thermal Larmor radius can be larger than the instability wavelength. In this case, the Fried and Conte function can be expressed with its asymptotic approximation similarly to the cold and warm regimes, and allowing an analytical treatment of the dispersion relation (Marret et al. [2021]). By making the assumption of cold electrons and of cosmic rays with a large drift over thermal velocity ratio, the arguments of the Fried and Conte functions follow the limits:

♣ζ ± cr ♣ ≫ 1, ♣ζ ± e ♣ ≫ 1 and ♣ζ ± m ♣ < 1.
Using the appropriate asymptotic expansions, the Fried and Conte functions can then be rewritten [START_REF] Fried | The Plasma Dispersion Function[END_REF]) as:

Z(ζ ± cr ) = - √ 2 ± 1 kr Lcr - u cr v T cr -1 + O(ζ ± cr ) 3 (3.95) Z(ζ ± e ) = - √ 2 ± 1 kr Le - u e v T e -1 + O(ζ ± e ) 3 (3.96) Z(ζ ± m ) = - √ 2 ± 1 kr Lm + iπ 1/2 + O(ζ ± m ) 3 (3.97)
The exponential terms have been simpliĄed and the contributions of order O(ζ ± α ) 3 have been neglected. In the following, the real part of the expansions for each populations α will be noted R α :

R cr = - √ 2 ± 1 kr Lcr - u cr v T cr -1 (3.98) R e = - √ 2 ± 1 kr Le - u e v T e -1
(3.99)

R m = - √ 2 ± 1 kr Lm (3.100)
Inserting the Fried and Conte expansions in the dispersion relation gives:

√ 2k 2 v 2 A0 Ω 2 0 = 1 v T m ω k (R m + iπ 1/2 )  + R e v T e ω 2 pe ω 2 pm ω k -u e  + R cr v T cr ω 2 pcr ω 2 pm ω k -u cr  (3.101)
Separating the real and imaginary parts of the frequency ω = ω r + iγ, one obtains: Considering protons populations with a small density ratio n cr /n m , neglecting electron inertia and using the initial null current condition (Eq. 2.7), one obtains after some algebra the growth rate and real angular frequency in the hot, demagnetized regime of interaction:

γ(k) = -k √ 2k 2 v 2 A0 Ω 2 0 + u e v T e ω 2 pe ω 2 pm R e + u cr v T cr ω 2 pcr ω 2 pm R cr π 1/2 v T m R m v T m + R e v T e ω 2 pe ω 2 pm + R cr v T cr ω 2 pcr ω 2 pm 2 + π v 2 T m (3.102) ω r (k) = k √ 2k 2 v 2 A0 Ω 2 0 + u e v T e ω 2 pe ω 2 pm R e + u cr v T cr ω 2 pcr ω 2 pm R cr R m v T m + R e v T e ω 2 pe ω 2 pm + R cr v T cr ω 2 pcr ω 2 pm R m v T m + R e v T e ω 2 pe ω 2 pm + R cr v T cr ω 2 pcr ω 2 pm 2 + π v 2 T m (3.103) 10 -4 10 -2 10 0 γ [Ω 0 ] 10 2 T 0 10 4 T 0 10 6 T 0 10 2 T 0 10 4 T 0 10 6 T 0 10 2 T 0 10 4 T 0 10 6 T 0 10 -3 10 -2 10 -1 10 0 k [l -1 0 ] -1 0 v φ [v A0 ] Figure 3
γ hot (k) = (2π) 1/2 r Lm ξ k Ω 0 v 2 A0 - n cr n m u 2 cr ∓ k 2 Ω 2 0 v 2 A0 + n 2 cr n 2 m u cr π k 2 r 2 Lm + 2 1 k 2 r 2 Lm - n cr n m 1 ξ -1 2 (3.104) ω hot (k) = k 3 r 2 Lm (k 2 r 2 Lm -1) n cr n m u cr ± k Ω 0 v 2 A0 k 4 r 4 Lm + k 2 r 2 Lm π 2 -2 + 1 (3.105)
with ξ = ±ku cr /Ω 0 -1. Eqs. 3.104 and 3.105 are plotted in Fig. 3.1 as a function of the wavenumber k. The growth rate is strongly reduced with increasing temperature. The fastest growing mode is also modiĄed, and shifts towards smaller wave numbers compared to the cold regime. In the warm regime, Ąnite Larmor radius effects of the main protons play a role in determining the largest unstable wave number (Zweibel and Everett [2010]).

In the hot regime however, the competition between the magnetic tension and the cosmic rays current driving term is the only determining factor of the largest unstable wave number, and one obtains good agreement with the Ćuid estimate k max = ncr nm ucr v 2

A0

Ω 0 . This property can be understood by considering the Ćuid model presented in Sec. 2.2 while retaining the Hall effect in OhmŠs law to account for the decoupling between electrons and background protons in the demagnetized and collisionless regime. In that case, if one neglects the background pseudo-cyclotron motion, the resulting linearized background Ćuid momentum conservation equation (eq. 2.25) is not modiĄed. Consequently the maximum unstable wavenumber k max is still solely determined by the balance between the cosmic rays magnetic force and the magnetic tension, hence the identical results in the cold and hot regimes.

Eqs. 3.104 and 3.105 may be further reduced to obtain information on the fastest growing mode. Considering kr Lm ≫ 1 and ku cr /Ω 0 ≫ 1, which corresponds to the hypothesis of demagnetized main protons, and to the non-resonant instability requirement k > k min , one Ąnds:

γ hot (k) = π 2 1/2 1 r Lm u cr ± v 2 A0 - n cr n m u 2 cr -k v 2 A0 Ω 2 0 + 1 k n 2 cr n 2 m u cr Ω 0 (3.106) ω hot (k) = k n cr n m u cr ± k Ω 0 v 2 A0 (3.107)
Calculating the growth rate derivative over k and searching for an extremum yields:

k hot = n cr n m Ω 0 v A0 (3.108)
Inserting in the expressions of γ hot (k) and ω hot (k), one obtains the growth rate, real angular frequency and phase velocity v ϕ,hot = ω hot /k hot for the fastest growing unstable mode:

γ hot = π 2 1/2 n cr n m u cr v T m Ω 0 (3.109) ω r,hot = n 2 cr n 2 m u cr v A0 Ω 0 (3.110) v ϕ,hot = - n cr n m u cr (3.111)
Eqs. 3.108 to 3.111 hold for k cold r Lm ≳ 2 This threshold for the hot regime originates from the Ąrst order asymptotic expansion of the main protons Fried and Conte function (Eq. 3.97), which cannot accurately describe the complete function for ζ ± m ≳ 1/2. One Ąnds that the growth rate decreases as T -1/2 with temperature, more rapidly than the T -1/3 dependency in the warm protons regime. This result may be of importance in high temperature plasmas with small ambient magnetic Ąeld, where the instability growth may be strongly reduced. The real angular frequency and the fastest growing wave number are independent of the main protons temperature. In addition, the fastest growing wave number is also independent of the cosmic rays velocity. The phase velocity v ϕ,hot = ω r,hot /k hot is equal and opposed to the electron drift velocity compensating the cosmic rays current, which is the same result as in the cold regime.

These analytical results can be used to estimate the characteristic time and spatial scales associated to the non-resonant instability in various environments. Using a density ratio n cr /n m = 10 -5 and a shock velocity u cr = 2.10 3 km.s -1 encountered in supernova and galaxy clusters shocks, one immediately Ąnds that very large plasma β m are required to reach the hot regime. Considering typical parameters of a cold and tenuous interstellar medium, n m = 1 cm -3 , T m = 10 4 K and B = 10 -6 G the demagnetized regime is not relevant even by considering locally smaller magnetic Ąeld, and larger temperatures such as those found in superbubbles (Mac [START_REF] Low | Superbubbles in disk galaxies[END_REF]). The picture may change however when considering leakage of cosmic rays in the intergalactic medium. Taking parameters n m = 10 -6 cm -3 , n cr = 10 -9 cm -3 , T m = 10 6 K, u cr = 10 2 km.s -1 , and a magnetic Ąeld B = 10 -11 G [START_REF] Kulsrud | On the origin of cosmic magnetic Ąelds[END_REF]), one obtains demagnetized main protons. The growth rate γ hot = 6.6 × 10 -10 s -1 corresponds to a growth time of the order of 2πγ -1 hot = 300 years, which is strongly reduced by temperature by a factor (2π) 1/2 v A0 /v T m = 3 × 10 -3 compared to the cold prediction. The instability is not suppressed however, indicating that it may still develop in such environment and modify the propagation and transport of cosmic rays. 

Introduction

While linear theory is useful to establish the stability conditions and growth rates, it gives no quantitative information on the non-linear evolution of the modes as well as on the saturation of the instability. This difficulty can be overcome by performing computer simulations, where the integro-differential equations which govern the evolution of the plasma are solved numerically for a given set of initial parameters. The plasma being constituted of charged particles, one needs to self-consistently compute their dynamic together with the electric and magnetic Ąeld evolution. The interactions between Ąelds and particles occur via the source terms in Maxwell equations, which depend on the density of each of the plasma component, and on the total current. Such macroscopic quantities can be obtained in two ways: either by studying the evolution of the distribution function of each plasma component using Vlasov equation, and calculating the associated moments to retrieve the density and current; or calculate directly the evolution of the moments of the distribution function. The Ąrst method corresponds to the kinetic approach, the second method to the Ćuid approach. In both cases, depending on the size and duration of the plasma considered, the numerical resolution is very expensive in computation time and it is generally performed using massively parallelized codes running on hundreds (thousands) of CPUs or GPUs cores. This chapter presents the numerical model used for the simulations presented in this thesis, the equations solved, as well as the physical hypothesis and limitations of the code. It also presents an overview of the physics of particle collisions, as well as their implementation in the simulations. The simulation results will be shown in the following Chapters 5 and 6.

Simulation models

Kinetic and fluid approaches

The coupled system of the Vlasov and Maxwell equations may be solved using various numerical methods, referred in the literature as Vlasov codes and Particle in Cell (PIC) codes. In Vlasov codes, the Vlasov equation is solved directly for each population of the plasma by discretizing the distribution functions in phase space, and by solving the resulting seven-dimensional system of equations (3D space, 3D velocity, and time) coupled with MaxwellŠs equations. This allows an accurate description of the linear and non-linear evolution of the plasma while retaining all kinetic effects. A disadvantage of this method is that the calculations require large amounts of computer memory, often restricting calculations to 1D or 2D geometry.

The PIC method aims to solve the Vlasov equation in an alternate manner, by discretizing the distribution function of each populations in space and in velocity using macroparticles, usually 10 5 -10 12 [START_REF] Le | Three-dimensional stability of current sheets supported by electron pressure anisotropy[END_REF]) depending on the dimensionality of the simulations, each macroparticle representing a fraction of the total distribution function. Note that the term ŞparticleŤ in the PIC acronym can be misleading, as it is rather macroparticles which are themselves a discretization of the distribution function, and in no way real particles. NewtonŠs motion equation is computed together with Maxwell equations for each macroparticle, which captures the same physics as solving Vlasov equation. Such calculation may be parallelized efficiently by computing individually the motion of each macroparticles while splitting the task among several processors by domain decomposition, leading to a consequent reduction of the real calculation time. However, the distribution function discretization leads to important numerical noise and to poor description of the the tails of the distribution functions. This can be partially mitigated by using more macroparticles, and by resorting to numerical adjustments such as high order shape functions and numerical smoothing terms added in the equations, at the cost of additional computational time and deteriorated physical accuracy. As a consequence, numerical simulations are always a trade-off between size, resolution, physical accuracy and computational time.

In MagnetoHydroDynamic (MHD) codes the plasma is described by its zero order (density), Ąrst order (Ćuid velocity) and second order (pressure) moments, which are coupled to MaxwellŠs equations. The electrons and ions are supposed to be tied together by the magnetic Ąeld and evolve as a single quasi-neutral Ćuid. MHD models do not include kinetic effects such as resonances and Ąnite Larmor radius effects, and are used to study the evolution of plasmas on large spatial and temporal scales, usually inaccessible to PIC codes.

The hybrid approach

The dynamic of a plasma is dictated by the interaction between multiple populations with various charges and masses, coupled with the electromagnetic Ąeld. For full-PIC simulations, where both the electrons and ions are modelled by macroparticles, the time step and mesh size must be adapted to follow the small electrons time and spatial scales. This requires prohibitive computational resources when studying plasmas at the ion scales because of the small electron to proton mass ratio m e /m p ≈ 5 × 10 -4 , and results in overly small time steps and Ąne spatial resolution which are not always absolutely required to study the ion dynamic. When studying plasmas on ion scales, a common approximation in full-PIC simulations is to artiĄcially increase the mass ratio to bring the electrons scales closer to the ionsŠ, i.e. m e /m i → 1, at the cost of a degraded physical accuracy. The asymptotic limit of such approach is pair plasmas, where electrons and positrons are considered, and it is important for many astrophysical applications such as pulsar winds [START_REF] Wada | A particle simulation for the global pulsar magnetosphere: The pulsar wind linked to the outer gaps[END_REF], [START_REF] Pétri | Theory of pulsar magnetosphere and wind[END_REF], [START_REF] Spitkovsky | Kinetic modeling of pulsar magnetospheres and winds[END_REF]) and extra-galactic jets [START_REF] Marcowith | Gamma-ray emission of blazars by a relativistic electronŰpositron beam[END_REF]).

The hybrid-PIC approach aims to alleviate the separation of scales issue in ionelectron plasma. It mixes Ćuid and PIC models by considering the electrons as a massless neutralising Ćuid, whereas the ion populations are treated kinetically. The massless assumption comes from the fact that the electrons are supposed to adapt to the ion dynamic at each time step to satisfy the quasi-neutrality hypothesis, which requires inĄnitely large accelerations, or equivalently inĄnitely small mass, i.e m e /m i → 0. Alternatively, this can be understood as an approximation of inĄnitely large scale separation between the ions and electrons, such that the electrons dynamic is supposed instantaneous with respect to the ionsŠ. This allows to relax the stringent constraints on the time step and spatial resolution imposed by the electron small mass, and permits long time scale studies while retaining the ionsŠ kinetic effects. The non-resonant streaming instability is characterized by large time and spatial scales, of the order of the ionsŠ inverse cyclotron frequency and inertial length. As such, a kinetic description of those of the electrons is unnecessary. In fact, a kinetic treatment of the ions is also not mandatory to capture the essential physics of the instability, in the limit of a small ion temperature. It becomes important in the situation where the ion Larmor radius is comparable or larger than the unstable wavelengths, as detailed in Sec. 3.2. The simulations presented in this thesis were performed with the hybrid-PIC computer code Heckle [START_REF] Smets | Heckle[END_REF]), developed at the Laboratoire de Physique des Plasmas in France. The ions are described as macroparticles, and the electrons as a massless Ćuid. This hybrid approach is well suited to study the kinetic, non-linear evolution of systems at the ions temporal and spatial scale while avoiding prohibitive computational time. It can also be employed to calculate theoretically the dispersion relation of plasma waves, and reproduces the ion physics contained in a fully kinetic description while discarding electron kinetic effects such as electron Landau damping and electron cyclotron resonance [START_REF] Told | A linear dispersion relation for the hybrid kinetic-ion/Ćuid-electron model of plasma physics[END_REF]).

A similar approach called MHD-PIC has been the subject of a growing interest in the astroparticle community for the acceleration of cosmic rays at shocks. The idea is to mix the particle and Ćuid approaches in order to be able to simulate plasmas on large time and spatial scales. Following a similar philosophy to the hybrid-PIC model, the electrons and background ions are treated as an MHD Ćuid, while a kinetic treatment is retained only for the cosmic rays which then contribute to the source terms in MaxwellŠs equation. This is particularly adequate to simulate the acceleration of cosmic rays at shocks, where the individual motion of the accelerated particles must be computed, whereas the kinetic effects in the background plasma may be neglected in some cases. Such approach however does not resolve the intermediary regime, i.e. the injection of cosmic rays, initially part of the background plasma and the expanding supernova remnant at the shock boundary. Current state-of-the-art MHD-PIC simulations circumvent this issue by injecting cosmic rays following prescriptions obtained from smaller scales PIC simulations of shocks (Bai et al. [2015], Casse et al. [2018], Mignone et al. [2018]).

The Heckle code

System of equations and normalizations

This section presents the basic set of equations solved by the code, the numerical scheme, and discuss the approximations and limitations of the code. The motion for each ion macroparticle k is obtained from NewtonŠs equation while considering the electric and magnetic forces:

dx k dt = v k (4.1) dv k dt = q k m k (E + v k × B) (4.2)
where q k and m k are the charge and mass respectively. The electromagnetic force is calculated using the electric and magnetic Ąelds which are discretized on a Cartesian grid, and linearly interpolated from the grid to the macroparticle position. The magnetic Ąeld evolution is obtained from Maxwell-FaradayŠs equation:

∂B ∂t = -∇ × E (4.3)
As the electrons are not treated kinetically, the electric Ąeld must be obtained from the electron momentum density conservation equation, which gives in the case of negligible electron inertia (m e = 0) the generalized OhmŠs law:

E = -u i × B + 1 en e (J × B -∇ • P e ) + ηJ -η ′ ∆J (4.4)
The Ąrst term on the right-hand side corresponds to the electric Ąeld produced by the ions Ćuid motion, the second and third terms are the Hall and electron pressure gradients contribution respectively. The fourth term corresponds to the electric Ąeld generated in the plasma because of the Ąnite resistivity η, and the last term is a numerical dissipative term, with η ′ the hyperviscosity. In the simulations presented in this work, the electron pressure is calculated by supposing an isothermal, isotropic behavior:

P e = n e k B T e (4.5)
where k B is the Boltzmann constant, and T e the uniform electron temperature Ąxed at the beginning of the simulation. In this case the pressure is a scalar, such that the pressure gradient forces due to the electrons can be computed directly as ∇P e = k B T e ∇n e . The numerical drawback of using OhmŠs law to calculate the electric Ąeld is the n -1 e dependency in the Hall and electron pressure gradients terms. In PIC simulations, the number of macroparticles per cell results from the dynamic of the simulated plasma. As such, if the dynamic leads to the generation of a strong electric Ąeld in some regions of space, the macroparticles can be swept away from a given cell, decreasing the density and amplifying an electric Ąeld which will bring back the macroparticles via the pressure gradient term in OhmŠs law. However if this electric Ąeld is too large, the macroparticles will ŞmissŤ the density hole. This can ultimately lead to a numerical singularity with a null density and a very large or undeĄned electric Ąeld. The most direct way of dealing with such issue is to inject new macroparticles in the simulation in under-dense regions, which is not always physically accurate and has a high computational cost. The density holes can also be avoided by reducing electric Ąeld Ćuctuations artiĄcially. This can be done by introducing numerical resistivity terms at small scales in OhmŠs law, allowing to dissipate electric Ćuctuations in regions of sharp gradients of the plasma current. This is the method employed in Heckle with the hyperviscosity term in Eq. 4.4. This hyperviscosity term has the interesting property of conserving large scale current structures, which may play an important role in hybrid-PIC simulations of magnetic reconnection [START_REF] Aunai | InĆuence of the dissipation mechanism on collisionless magnetic reconnection in symmetric and asymmetric current layers[END_REF]).

The plasma current

Maxwell-AmpèreŠs equation allows to calculate the total conduction current J in the plasma as a function of the electromagnetic Ąeld, and may be separated into the longitudinal and transverse components to the wave propagation direction k/k (noted with the subscripts ŞLŤ and ŞT Ť respectively). The longitudinal and transverse electric Ąelds and currents can then be written as

J L = J • kk/k 2 , J T = J -J L , E L = E • kk/k 2 and E T = E -E L , such
that Maxwell-AmpèreŠs equation becomes:

0 = µ 0 J L + 1 c 2 ∂E L ∂t (4.6) ∇ × B = µ 0 J T + 1 c 2 ∂E T ∂t (4.7)
In the non-relativistic limit, one may neglect the transverse component of the displacement current, corresponding to the second term in the right-hand side of Eq. 4.7. The transverse current J T can then be obtained directly from the curl of B, and is used to calculate the Hall, resistive and hyperviscosity terms in OhmŠs law. As a consequence the current involved in OhmŠs law is only the transverse one in the hybrid-PIC non-relativistic model, which is an approximation of the exact equation where the total current (longitudinal and transverse) appears. A direct consequence of such simpliĄcation is that the speed of light, or alternatively the dielectric permittivity of vaccum, is not deĄned in the simulations. This leads to numerical complications when modeling plasma effects below the Debye length, such as Coulomb collisions. This will be further discussed in Sec. 4.4. The longitudinal current J L is involved in the charge conservation equation:

∂ ∂t α Q α + ∇ • J L = 0 (4.8)
The Ąrst term in the left-hand side is associated to the hypothesis of quasi-neutrality, but cannot be neglected a priori with respect to the longitudinal current gradient. Hence, despite the quasi-neutrality hypothesis, a longitudinal (electrostatic) component of the electric Ąeld can still exist. As a result, the acoustic ionic and ion Bernstein modes can develop in the hybrid-PIC model despite the longitudinal current not being explicitly part of the solved system of equations.

Normalizations and numerical scheme

The Hybrid-PIC code Heckle uses normalized quantities in order to manipulate numbers of the order unity to avoid numerical precision issues. Masses and charges are normalized to the proton mass m p and elementary charge e respectively. The densities and magnetic Ąeld are normalized to a uniform reference value n 0 = n m (t = 0) where n m is the main ions density, and B 0 = B(t = 0). Frequencies, lengths and velocities are normalized to the initial proton cyclotron angular frequency Ω 0 = eB 0 /m p , initial proton inertial length l 0 = v A0 /Ω 0 = c/ω pm where c is the speed of light, ω pm = (n 0 e 2 /ε 0 m p ) 1/2 is the protons plasma frequency and v A0 = B 0 /(µ 0 n 0 m p ) 1/2 is the initial Alfvén velocity with µ 0 the magnetic permeability. Temperatures are expressed in terms of energy as

k B T 0 = m p v 2 A0 . Finally the electric Ąeld is normalized to E 0 = v A0 B 0 .
The code solves the Vlasov-Maxwell system of equations using a predictor-corrector explicit scheme for the electromagnetic Ąeld, deĄned on a Cartesian grid. The numerical scheme used can be described as follows [START_REF] Smets | Heckle[END_REF]). First, the predictor step:

• v n+1/2 = v n-1/2 + q∆t m E n + v n+1/2 + v n-1/2 2 × B n  • x n+1 = x n + ∆tv n+1/2 • N n+1/2 = Σ s q s (S n + S n+1 )/2 • V n+1/2 = Σ s (S n + S n+1 )v n+1/2 /2N n+1/2 • B n+1/2 = B n - ∆t 2 ∇ × E n • J n+1/2 = ∇ × B n+1/2 • P n+1/2 = N n+1/2 T 0 • E n+1/2 = -V n+1/2 × B n+1/2 + 1 N n+1/2 J n+1/2 × B n+1/2 -∇P n+1/2 + ηJ n+1/2 • E n+1 = -E n + 2E n+1/2 • B n+1 = B n+1/2 - ∆t 2 ∇ × E n+1 • J n+1 = ∇ × B n+1
Then, the corrector step:

• v n+3/2 = v n+1/2 + q∆t m E n+1 + v n+3/2 + v n+1/2 2 × B n+1  • x n+2 = x n+1 + ∆tv n+3/2 • N n+3/2 = Σ s q s (S n+1 + S n+2 )/2 • V n+3/2 = Σ s (S n+1 + S n+2 )v n+3/2 /2N n+3/2 • B n+3/2 = B n+1 - ∆t 2 ∇ × E n+1 • J n+3/2 = ∇ × B n+3/2 • P n+3/2 = N n+3/2 T 0 • E n+3/2 = -V n+3/2 × B n+3/2 + 1 N n+3/2 J n+3/2 × B n+3/2 -∇P n+3/2 + ηJ n+3/2 • E n+1 = 1 2 (E n+1/2 + E n+3/2 ) • B n+1 = B n+1/2 - ∆t 2 ∇ × E n+1 • J n+1 = ∇ × B n+1
with q the charge, m the mass and ∆t the numerical time step. The motion of a macroparticle is computed using a non-relativistic Boris pusher [START_REF] Boris | Acceleration calculation from a scalar potential[END_REF]), which algorithm is presented here for completeness. The equation which needs to be solved at the predictor step is:

v n+1/2 -v n-1/2 ∆t = q m E n + v n+1/2 + v n-1/2 2 × B n  (4.9)
DeĄning the variables:

v n-1/2 = v -- qE n m ∆t 2 (4.10)
and

v n+1/2 = v + + qE n m ∆t 2 (4.11)

Macroparticle initialization

The background ions are initialized with a Maxwellian distribution:

f (v) = n 0 α π 3/2 e -α(v-u 0 ) 2 (4.19)
with α = m/2k B T , k B the Boltzmann constant, u 0 the drift velocity and n 0 the initial density. Such distribution can be obtained numerically by sampling macroparticles using the Box-Muller method [START_REF] Box | A note on the generation of random normal deviates[END_REF]). Considering two uniformly distributed random numbers (R 1 , R 2 ) ∈ ]0, 1], the velocity component v j of a given macroparticle is calculated as:

v j = - 2 ln(R 1 )k B T j m cos(2πR 2 ) (4.20)
where T j is the temperature of the ion population in the j direction. This method corresponds to the calculation of the cumulative distribution function, which is then inverted in polar coordinates to obtain the velocity following a Maxwellian distribution.

It is known that the cosmic rays at supernova shocks and propagating in the galaxy follow a power law [START_REF] Arbutina | On the distribution function of suprathermal particles at collisionless shocks[END_REF]), usually deĄned in the cosmic rays research community as a function of momentum. In this calculation however the distribution will be deĄned as a function of velocity for numerical convenience. Such distribution can be obtained similarly to the Maxwellian case by inverting the cumulative distribution function. Considering velocities in a given direction between the minimum and maximum v min and v max and with a power index α, one may deĄne the power law velocity distribution function as:

f (v) = Av α (4.21)
where A is a normalization factor such that:

vmax v min Aw α dw = A α + 1 (v α+1 max -v α+1 min ) = 1 (4.22)
which gives A = (α + 1)/(v α+1 max -v α+1 min ) with α ̸ = -1. Integrating this expression between v min and a random Ąnite number v gives:

v v min Aw α dw = A α + 1 (v α+1 -v α+1 min ) = R (4.23)
If the distribution is normalized, then R is a uniformly distributed random number between 0 and 1, which can be obtained numerically using a random number generator. Hence:

v = α + 1 A R + v α+1 min 1/(α+1) (4.24)
Inserting the normalization factor, one Ąnally obtains:

v = (v α+1 max -v α+1 min ) R + v α+1 min 1/(α+1) (4.25)
The random velocity v follows a power law distribution between v min and v max with a power value α. The mean velocity u can be calculated directly as:

u = vmax v min Aw α+1 dw (4.26) = α + 1 α + 2 v α+2 max -v α+2 min v α+1 max -v α+1 min (4.27)
with α ̸ = (-1, -2). However, for the case of the non-resonant mode, the exact shape of the distribution function does not play a role in the growth of the unstable wavelengths. More precisely, only the zeroth and Ąrst order moments are involved, namely the density and Ćuid velocity as presented in Sec. 2.2.3. As such, the cosmic rays drifting population will be modelled in the simulations using a Maxwellian distribution, without any loss of physical accuracy. This model cannot be used when studying the left-hand and right-hand resonant modes, where details of the cosmic rays streaming population are important in determining the growth of the electromagnetic perturbations (e.g. Holcomb and Spitkovsky [2018]). In this case the distribution function cannot be assumed to be Maxwellian, and a realistic distribution function must be considered.

Coupling the macroparticles to the fields

The coupling between Ąelds and particles is accomplished via the moments (density, Ćuid velocity) of the distribution which appear in OhmŠs and AmpèreŠs laws. The Ąelds being deĄned on a discrete, Cartesian grid, the moments must also be calculated on this grid. This operation is called moments deposition. The electron charge density is obtained from the quasi-neutrality hypothesis, en e ≈ l q l n l , and the ion Ćuid velocity u i is obtained by a sum over the ion populations ℓ such that:

en e (x) = q i n i (x) = k,ℓ q ℓ S(x -x ℓ,k ) (4.28) u i (x) = ℓ,k v ℓ,k S(x -x ℓ,k )/ ℓ,k S(x -x ℓ,k ) (4.29)
In these expressions, x is the grid point position, x k,ℓ the position of a macro-particle k from population ℓ, and:

S(x -x ℓ,k ) = W ℓ j S j (4.30)
is the Ąrst order shape function where:

S j =    0 ♣(x -x ℓ,k ) • e j ♣ ≥ ∆x j ♣(x -x ℓ,k ) • e j ♣/∆x j ♣(x -x ℓ,k ) • e j ♣ < ∆x j (4.31)
with j = x for simulations in 1D aligned along the e x direction. For 2D simulations in the e x and e y directions, j = x, y and j = x, y, z for 3D simulations. ∆x j is the grid size in the j direction. The shape function corresponds to the spatial extent of a macroparticle. An illustration is given in Fig. 4.2. The ion species have different numerical weights W ℓ

Including particle collisions in the simulations

Coulomb collision operator

The Coulomb collisions refer to interactions between charged particles via electric Ąelds on small scales, as opposed to interactions via the electric Ąeld generated by collective effects such as the induction and the Hall electric Ąeld obtained in Ćuid theory. The evolution of the distribution function of a population α in a plasma including collisions is described by the Boltzmann equation:

∂f α ∂t + v • ∇f α + q α m α (E + v × B) • ∂f α ∂v = ∂f α ∂t C (4.34)
The electric Ąeld E in Eq. 4.34 is the large scale electric Ąeld, and does not include the Ćuctuating component on scales below a certain characteristic small scale, which will be characterized in the following. Collisions are taken into account via the term on the right-hand side of Eq. 4.34, which corresponds to the variation of the number of particles of the population α per unit of time and of phase space because of collisions. Under this generic name is hidden the complexity of interactions between the particles themselves, and it also includes close range interactions such as charged-neutral particle collisions.

The collision operator can be decomposed as:

∂f α ∂t C = β C αβ (4.35)
where C αβ is the contribution of the collisions between the populations α and β. It can be written in the general form:

C αβ = u dσ dΩ (f ′ α f ′ β -f α f β )d 3 v β dΩ (4.36)
where f α,β and f ′ α,β are the distribution functions before and after the collision respectively, u is the relative velocity before collision, and dσ/dΩ is the differential collision cross-section with Ω the scattering angle. Because of its complexity, it is rarely used in this form in analytical or numerical studies and requires simpliĄcations to make calculations tractable. The Bhatnagar-Gross-Krook (BGK) operator [START_REF] Bhatnagar | A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems[END_REF]) is the simplest approximation of the collision operator and consists in a relaxation term of the form:

∂f α ∂t C = -ν(f α -f α0 ) (4.37)
with f α0 an equilibrium distribution (usually a Maxwellian distribution) and ν a characteristic frequency, often assimilated to the collision frequency. It is a phenomenological operator, which characterizes the tendency of collisions to reduce anisotropies and drive the distribution toward a Maxwellian. Its main advantage is its relative simplicity in analytical calculations. A more precise approximation of the Boltzmann operator can be obtained by taking into account the fact that small angle scattering collisions are much more frequent that large angle scattering collisions in a plasma. One may then obtain after a lengthy derivation the Landau collisions operator [START_REF] Landau | The transport equation in the case of Coulomb interactions[END_REF]):

C αβ = - 1 8πϵ 2 0 q 2 α q 2 β m α ln Λ αβ ∂ ∂v α • u 2 1 -uu u 3 • f α m β ∂f β ∂v β - f β m α ∂f α ∂v α d 3 v β (4.38)
While still difficult to handle in analytical calculations, this operator can be solved numerically in PIC simulations.

Theoretical elements of Coulomb collisions

The effects of Coulomb collision can be illustrated by considering the Lorentz model, where a test particle electron collides with an immobile ion. The derivation can be found in textbooks such as Trubnikov [1965] and Callen [2006]. A brief summary of the calculation is presented here. In the reference frame of the electron, the ion is assumed to move with a velocity -ve z in a straight line trajectory. The electron position can then be written as a function of the impact parameter b, time t and angle φ:

x = b cos(φ) e x + b sin(φ) e y + vt e z (4.39)

♣x♣ = √ b 2 + v 2 t 2 (4.40)
A schematic of the situation is shown in Fig. 4.3. The electron interacts with the ion via the electric force F(x) = -Ze 2 x/4πϵ 0 ♣x♣ 3 with Z the ion atomic number. The change of velocity can then be obtained by integrating NewtonŠs equation in the direction perpendicular to the initial velocity as:

m e ∆v ⊥ = - Ze 2 b 4πϵ 0 (cos(φ)e x + sin(φ)e y ) +∞ -∞ dt (b 2 + v 2 t 2 ) 3/2 (4.41) = - Ze 2 2πϵ 0 bv
(cos(φ)e x + sin(φ)e y ) (4.42)

with t = 0 for ♣x♣ = b. Their is no parallel component as t/(b 2 + v 2 t 2 ) 3/2 is an odd function of t and consequently vanishes when integrated in time. Considering b ∼ n -1/3 e and v ∼ v T e , one obtains ∆v ⊥ /v ∼ (n e λ 3 D ) -2/3 ≪ 1 such that the typical angle of deĆection by a single encounter between the electron and an ion is small. For elastic collisions, the total electron energy is conserved such that:

1 2 m e ♣v♣ 2 = 1 2 m e ♣v + ∆v♣ 2 (4.43)
which yields:

v • ∆v = v∆v ∥ ≈ - 1 2 ∆v ⊥ • ∆v ⊥ (4.44)
Hence:

∆v ∥ = - 2Z 2 e 4 (4πϵ 0 ) 2 b 2 v 3 m e (4.45)
By integrating over angles, impact parameters and number of ions passed by the electron:

n i d 3 xdt = n i dz dt dxdy = n i v 2π 0 dφ +∞ 0
b db, the averaged parallel force can be calculated as:

⟨F ∥ ⟩ = m e ∆v ∥ ∆t = m e n i v 2π 0 dφ +∞ 0 ∆v ∥ b db (4.46) = -4π Z 2 e 4 (4πϵ 0 ) 2 v 2 m e n i +∞ 0 db b (4.47)
This integral diverges in both limits, but can be reduced by physical considerations. The lower limit b min can be estimated as the classical distance of closest approach between the electron and the ion, which can be deĄned as the distance for which ♣∆v ∥ ♣ = ♣∆v ⊥ ♣ corresponding to a π/2 deĆection (often referred as the Landau length), and yields b min = Ze 2 /12πϵ 0 k b T e . The electron kinetic energy is supposed to be of the order m e v 2 ≈ 3k b T e while considering electrons with a Maxwellian distribution. The upper limit b max can be estimated as the maximum impact parameter for which the interaction between the electron and the immobile ion alters signiĄcantly the electron trajectory. In this case the Debye length, corresponding to the distance above which the ion Coulomb potential is screened by the electrons, can be used such that b max = λ D = (ϵ 0 k B T e /n e e 2 ) 1/2 . The averaged parallel force then becomes:

⟨F ∥ ⟩ = -4π Z 2 e 4 (4πϵ 0 ) 2 v 2 m e n i bmax b min db b = -4π Z 2 e 4 (4πϵ 0 ) 2 v 2 m e n i ln Λ (4.48)
where ln Λ is the Coulomb logarithm with:

Λ = b max b min (4.49)
The Debye length constitutes the minimum spatial scale of the electric Ąeld Ćuctuations in Eq. 4.34. The Coulomb logarithm is of the order ln Λ ∼ 10 -30 depending on the plasma parameters. It can be considered to remain constant as a Ąrst order approximation. Using quasi-neutrality the equality Zn i = n e holds, hence:

m e dv ∥ dt = -ν L ei m e v ∥ (4.50)
where ν L ei is the Coulomb collision frequency in the Lorentz model of a single test electron in a population of immobile Ąeld ions:

ν L ei = 1 4πϵ 2 0 Ze 4 m 2 e n e v 3 ln Λ (4.51)
This rate depends strongly on the relative velocity v and linearly with the density, such that high temperature, low density plasma tend to be collisionless. The collision being elastic, the slowing down in the parallel direction (to the initial velocity) leads to a scattering in the perpendicular direction. In the case of a Maxwellian distribution of slowly drifting test particle electrons population (relative to their thermal velocity), it can be shown that the collision frequency is modiĄed by a factor 4/3 √ π ≈ 0.75. From this expression, one may calculate the plasma conductivity which appears in OhmŠs law J = σE as σ = n e e 2 /m e ν L ei . The calculation for collisions between two moving particles, being electrons or ions, is more complicated than in the Lorentz model, as the Ąeld particle cannot be considered immobile, and involves the Rosenbluth potentials [START_REF] Rosenbluth | Fokker-planck equation for an inverse-square force[END_REF]). It can be shown that the situation of a test particle α colliding with a background population β following a Maxwellian velocity distribution leads to several Coulomb collision processes: momentum loss, parallel and perpendicular diffusion, and energy loss, expressed respectively as:

d dt (m α v) = -ν α/β S m α v (4.52) d dt ♣v -u♣ 2 ⊥ = -ν α/β ⊥ v 2 (4.53) d dt ♣v -u♣ 2 ∥ = -ν α/β ∥ v 2 (4.54) d dt ε α = -ν α/β ε ε α (4.55)
with v the velocity of the test particle in the background reference frame, and

ε α = m α v 2 /2.
To each process is associated a characteristic rate:

ν α/β S = -1 + m α m β ψ ν α/β 0 (4.56) ν α/β ⊥ = -ψ + ψ ′ - ψ 2x ν α/β 0 (4.57) ν α/β ∥ = - ψ x ν α/β 0 (4.58) ν α/β ε = -2ν α/β S -ν α/β ⊥ -ν α/β ∥ ν α/β 0 (4.59) In these expressions, x = v 2 α /v 2 T β with v 2
T β the thermal velocity of the background particles β, and ψ is the Maxwell integral:

ψ(x) = 2 √ x x 0 dt √ te -t (4.60)
The fundamental collision frequency ν α/β 0 is deĄned by:

ν α/β 0 = 1 4πϵ 2 0 q 2 α q 2 β m 2 α n β v 3 ln Λ αβ (4.61)
where the Coulomb logarithm ln Λ αβ is calculated as:

ln Λ αβ = ln 4πϵ 0 λ D m αβ m β k B T β q α q β (4.62)
with m αβ = m α m β /(m α + m β ) the reduced mass. As each collision event produces a small scattering, the Coulomb collision frequency does not represent the actual frequency at which each individual interactions occur. It quantiĄes instead a characteristic time for which numerous interactions lead to an overall signiĄcant change in velocity. The Coulomb collisions can be separated in intra-species and inter-species collisions, depending on whether the collisions occur among particles of a given population, or between two different populations. The intra-species collisions produce the effect of reducing temperature anisotropies and drive the distribution toward an isotropic Maxwellian. Inter-species collisions reduce the relative drift velocity between the colliding populations, and equalize temperatures between the populations (Trubnikov [1965]). Supposing that the colliding populations have a characteristic relative velocity equal to their thermal velocity v = v T α , the Maxwell integral can be simpliĄed asymptotically, allowing the slowing down rates to be ordered with respect to the electron-ion collision fundamental collision frequency as: with Z i = q i /e. A similar scaling can be found for the diffusion and energy loss rates (Callen [2006]). In the simulations presented in this thesis, the electron-electron collisions are not explicitly computed, but are implicitly assumed to occur on time scales much shorter than those associated to other components of the plasma, consistent with the isothermal Ćuid assumption used for the electron population. The electron-ion collisions are taken into account via a Ąxed resistivity in OhmŠs law (see Sec. 4.5). The ion-electron momentum loss is much less efficient than electron-ion momentum loss, because of the large difference in mass. For this reason ion-electron collisions will be neglected in the simulations presented in this work. Only the ion-ion collisions are directly computed in the simulations.

Numerical implementation

The numerical resolution of the ion-ion Coulomb collisions was implemented in the hybrid-PIC code Heckle by Loïc Nicolas during its PhD thesis at the LERMA laboratory [START_REF] Nicolas | Effects of Collisions on the Magnetic Streaming Instability[END_REF]). The Landau collisions operator is numerically solved using the method proposed in [START_REF] Takizuka | A binary collision model for plasma simulation with a particle code[END_REF]. The algorithm is corrected to take into account different numerical weights between populations following the prescription of Miller and Combi [1994] and [START_REF] Nanbu | Weighted particles in coulomb collision simulations based on the theory of a cumulative scattering angle[END_REF]. This section gives a brief overview of the numerical method employed.

The algorithm relies on the pairing of macroparticles within a given cell in the simulation at each time step, which then allows to compute a scattering angle. Although the collisions are binary in the simulations, this does not contradict the physical process of Coulomb collision, as the average total effect of randomly paired macroparticle collisions over many time step is equivalent to solving the Landau operator [START_REF] Takizuka | A binary collision model for plasma simulation with a particle code[END_REF]). Once the random pairing of macroparticles is performed, the scattering angle is computed from the relative velocity using a Monte Carlo algorithm. The calculation is done in the reference frame (e ′

x , e ′ y , e ′ z ), where the relative velocity between a pair of macroparticles is aligned with the e ′ z direction as illustrated in Fig. 4.4. The change in velocity ∆u = u(t+∆t)-u(t) with ∆t the numerical time step is then obtained in the simulation reference frame (e x , e y , e z ) as:

∆u x = u x u ⊥ u z sin Θ cos Φ - u y u ⊥ u sin Θ sin Φ -u x (1 -cos Θ) (4.64) ∆u y = u y u ⊥ u z sin Θ cos Φ + u x u ⊥ u sin Θ sin Φ -u y (1 -cos Θ) (4.65) ∆u z = -u ⊥ sin Θ cos Φ -u z (1 -cos Θ) (4.66)
where u ⊥ = u 2 x + u 2 y is the velocity in the (e x , e y ) plane, and u = ♣u(t)♣. Using these expressions, the post collision velocities of the two colliding macroparticles α and β are then calculated as:

v α (t + ∆t) = v α (t) + m αβ m α ∆u (4.67) v β (t + ∆t) = v β (t) + m αβ m β ∆u (4.68)
The angle Φ is calculated by sampling a uniformly distributed angle such that 0 < Φ < 2π.

The scattering angle Θ is obtained from the relations:

sin Θ = 2δ 1 + δ 2 (4.69) 1 -cos Θ = 2δ 2 1 + δ 2 (4.70)
where δ is a random variable which characterizes a collision frequency in the simulations. It follows a Gaussian distribution of variance:

⟨δ 2 ⟩ = 1 8πϵ 2 0 q 2 α q 2 β m 2 αβ n L u 3 ∆t ln Λ (4.71)
with n L = min(n α , n β ). The scattering occurs at each time step, and is stronger for larger δ. In order to account for different numerical weights in inter-species collisions, the δ parameter must be corrected [START_REF] Miller | A Coulomb collision algorithm for weighted particle simulations[END_REF], [START_REF] Nanbu | Weighted particles in coulomb collision simulations based on the theory of a cumulative scattering angle[END_REF]) as:

δ ′ =          δ × max(W α , W β ) W β N α > N β δ × max(W α , W β ) W α N α < N β (4.72)
where N α,β is the number of macroparticles of species α and β in a given numerical cell, where the macroparticle pairing is done. The calculation of the δ parameter and of the Coulomb logarithm involves the dielectric permittivity ϵ 0 , which is not deĄned in the system of equations solved in the code. As a consequence the values of δ and ln Λ are normalized via the two parameters σ 0 and Ψ 0 deĄned as:

σ 0 = 1 8πϵ 2 0 e 4 m 2 p n 0 v 3 A0 Ω 0 (4.73)
and:

Ψ 0 = ln 4π (k B T 0 ϵ 0 ) 3/2 e 3 √ n 0 (4.74)
which are given as input to the simulations. Fixing these parameters is equivalent to deĄning the reference density n 0 and magnetic Ąeld B 0 , such that they verify the parameters σ 0 and Ψ 0 while being constrained by the elementary charge e, proton mass m p , speed of light c and dielectric permittivity ϵ 0 .

Ion-neutral collisions

The ion-neutral collisions differ signiĄcantly from the Coulomb collisions, as they result from close range interaction between the neutral and the ion. The Coulomb collisional scattering is the result of multiple interactions, as opposed to the ŞclassicalŤ binary collisions occurring for neutral collisions. A schematic is shown in Fig. 4 The main reason to choose a large density ratio is to maximize the growth rate in the simulations and reduce the computational cost. This approximation is quite common in PIC numerical studies of the non-resonant mode (Winske and Leroy [1984], Riquelme and Spitkovsky [2009], [START_REF] Gargate | The nonlinear saturation of the non-resonant kinetically driven streaming instability[END_REF], Zacharegkas et al. [2019]. As stated in Sec. 2.2, there is no physics added to the problem by artiĄcially increasing the density ratio, as long as the background charge compensating the cosmic rays charge is sufficiently small. This was studied in the work of Amato and Blasi [2009] who showed that the linear dispersion relation can be modiĄed by a term of the order O(n 2 cr /n 2 m ) depending on if the cosmic rays current was compensated by the background electrons, or by a population of low density electrons streaming along the cosmic rays. There is no clear consensus on which of these possibilities occur in supernova and jets shocks (Zweibel and Everett [2010]), however as long as the density ratio is not close to unity the simulations may still be relevant to both scenarios. The electron density and initial velocity are calculated to ensure quasi-neutrality and satisfy the initial current condition j cr = -j e (Eq. 2.7). A summary of the simulation parameters used can be found in Tables 4.1 and4

.2.
The simulation domain is of length L x = 1000 l 0 and discretized with 1000 cells for one-dimensional simulations, corresponding to a possible range of wavenumbers 2πL -1

x ≤ k ≤ πl -1 0 . These dimensions are sufficient to accommodate the expected range of unstable wavenumbers k max = l -1 0 and k min = 0.01 l -1 0 for the ŞTHŤ runs (Eqs. 2.34 and 2.43). The plasma and Ąeld quantities are initially homogeneous, and periodic boundary conditions are used in all directions. The numerical scheme being explicit, the time step ∆t must be chosen to satisfy the CourantŰFriedrichsŰLewy condition on the whistler waves and the most energetic macroparticles. It also needs to satisfy the condition on the particle collisions ν -1 0 ≪ ∆t with ν 0 the collision frequency. This latter condition restricted the range of collisions frequencies investigated, as large values ν 0 ≫ 100 would require prohibitively small numerical time steps to resolve low energy collisions. Each cell is initially Ąlled with a large number of macroparticles per cell (500 for each proton populations in the TH runs) to properly describe high temperature Maxwellian distributions, as well as the large density Ćuctuations that occur during the instability growth. For two-dimensional simulations, a domain length L y = 200 l 0 was used in the y-direction, discretized with 200 cells. Simulations with L y = 400 l 0 discretized with 400 cells were also performed, without any noticeable changes in the results. In 2D runs the number of macroparticles per cell is reduced to lower the high numerical cost of multidimensional simulations. The simulations setup is an initial value problem as the cosmic rays population is not injected over time during the simulation. The importance of this assumption compared to the case of a continuous injection of streaming particles will be discussed in Sec. 5.4.2. In the case of particle acceleration at shocks, the simulation setup can be visualized as a line (1D) or rectangle (2D) of plasma downstream of the shock front. The largest dimension (e x direction) is aligned with the ambient magnetic Ąeld, parallel to the shock surface normal. The remaining directions are supposed invariant and homogenous because of the periodic boundary conditions, i.e. there is no spatial gradients in those directions. The actual shock is not simulated. Only the suprathermal particles leaking from the shock and propagating in the surrounding ambient medium are considered, and constitute the cosmic rays drifting population.

The cosmic rays and electrons temperatures T cr and T e are chosen to be equal to the reference temperature T 0 to avoid important pressure effects due to the electrons, and to exclude the resonant streaming instabilities from competing with the non-resonant mode. For simulations including protons-hydrogen collisions, the hydrogen population temperature is taken to be T 0 . The simulations noted ŞTHŤ are focused on studying the effects of the initial main protons temperatures, ranging from T m = 0.1 to 200 T 0 . In the simulations noted ŞCCŤ are investigated the effect of Coulomb collisions on the nonresonant mode, while considering a wide range of collision frequencies, from ν 0 = 0.01 Ω 0 to ν 0 = 1000 Ω 0 . Similarly the simulations noted ŞCNŤ focus on the effect of proton-hydrogen collisions, with a range of frequencies ν 0 = 0.01 Ω 0 to ν 0 = 30 Ω 0 . The reference energy is taken as E σ = 1 eV, and the neutral temperature is chosen equal to the main protons temperature T n = T m = T 0 , such that the collision energy is of the order of 1 eV. In this case the typical collision cross-section of a thermal proton with an hydrogen is σ in = 600 a.u. as per Eq. 4.76. The simulations noted ŞTHŤ will be investigated in the following Chapter 5, and the simulations noted ŞCCŤ and ŞCNŤ will be investigated in Chapter 6.

The resistivity η and hyperviscosity η ′ in OhmŠs law (Eq. 4.4) are Ąxed as η = 10 -3 B 0 /en 0 and η ′ = 10 -3 B 0 l 2 0 /en 0 in order to reduce small scale Ćuctuations without introducing important dissipative effects. The resitivity is an effect of electron-proton collisions, as shown in Sec. 4.4.2. Hence choosing a constant resistivity is equivalent to supposing a constant electron-proton Coulomb collision frequency. However the actual electron-proton collision frequency is related to the proton-proton frequency via the relation ν e/i = m p /m e ν i/i with ν i/i ≡ ν 0 . The resistive effects can be compared to the induction term, and is quantiĄed with the magnetic Reynolds number as R m = LV µ 0 σ, where L and V are a characteristic length and velocity respectively, and σ = n e e 2 /m e ν e/i is the conductivity. One has L ∼ 2π/k max , and V ∼ j cr B/ργ where γ is the growth rate, as from Eq. 2.40. This yields the scaling:

R m ∼ π j cr v A0 γ 2 µ 0 e √ m e m p Ω 0 ν 0 ∼ 10 3 Ω 0 ν 0 (4.82)
for the ŞCCŤ simulations including Coulomb collisions. The resistivity effects are thus expected to become important on the smallest wavelength of the instability for protonproton collision frequencies which were not investigated in this work, above 10 3 Ω 0 . As such, the small and constant resistivity used in the simulations is solely numerical to reduce small scale electric Ćuctuations.

Introduction

The linear theory relies on the fundamental assumption of small perturbations, such that perturbations of a given quantity are small compared to the initial equilibrium value. The growth rate of the non-resonant instability can then be found by solving the linearized equations, which gives an unbounded exponential growth of the instability. However such growth cannot be inĄnite, as the principle of conservation of the system total energy prevents any growth beyond the amount of free energy available. When perturbations become comparable to the initial state values, the linear theory breaks down, and the complex system of the Vlasov and Maxwell equations must be solved in its full non-linear form. This can be achieved with numerical simulations, which allows to study the fundamental mechanism of the non-resonant mode, late time evolution, saturation mechanism and saturated magnetic Ąeld intensity. The instability has been extensively studied numerically using modiĄed magneto-hydrodynamics (MHD) (Bell [2004], [START_REF] Zirakashvili | Modeling bellŠs nonresonant cosmic-ray instability[END_REF]), hybrid-Particle-In-Cell (PIC ions and massless Ćuid electrons) (Winske and Leroy [1984], Akimoto et al. [1993], [START_REF] Haggerty | dHybridR: A HybridŰParticle-in-Cell Code Including Relativistic Ion Dynamics[END_REF], Marret et al. [2021]), full-PIC (Riquelme and Spitkovsky [2009], [START_REF] Ohira | Two-dimensional particle-incell simulations of the nonresonant, cosmic-ray-driven instability in supernova remnant shocks[END_REF], [START_REF] Crumley | Kinetic simulations of mildly relativistic shocks Ű I. Particle acceleration in high Mach number shocks[END_REF]) and MHD-PIC (Bai et al. [2015], Casse et al. [2018], Mignone et al. [2018]) simulations. The MHD-PIC method in particular has received growing attention as it combines the kinetic treatment of the cosmic rays while retaining the advantage of modelling the background plasma as a magnetoĆuid, over large spatial and temporal scales. Neglecting kinetic effects in the background plasma however is not always justiĄed. For example, in the hot plasmas of superbubbles or in the intergalactic medium, the backgroundŠs ions thermal Larmor gyro-radius can become comparable to or larger than the unstable wavelengths and a kinetic treatment of the background plasma is necessary. In addition, even in relatively cold plasmas, collisionless hybrid-PIC simulation have shown the non-linear development of signiĄcant ion pressure anisotropies in the background plasma (Marret et al. [2021]), suggesting that the assumption of an isotropic scalar pressure, often employed in Ćuid models, may not always be justiĄed. This chapter is devoted to hybrid-PIC numerical simulations of the non-resonant streaming instability. The instability mechanism, growth rate, saturation level, spatial structure, density Ćuctuations, background plasma heating and cosmic rays scattering are investigated, and compared to theoretical expectations while considering a wide range of main protons temperature. In the following, unless stated otherwise the simulation parameters are those corresponding to the ŞTHŤ runs (thermal) presented in Table 4.1.

Growth of the instability

Magnetic field amplification

One of the main feature of the non-resonant streaming instability is the generation of large amplitude magnetic Ćuctuations. Contrary to the right-hand and left-hand resonant mode, ampliĄcation beyond the initial magnetic Ąeld intensity is possible because of the large drift velocity required to drive the instability, which keeps the cosmic rays demagnetized (Bell [2013]). The evolution of the perturbed magnetic Ąeld intensity B 1 = ♣B -B 0 ♣ is presented in Fig. 5.1 for two different main protons temperatures T m = T 0 (cold regime) and T m = 25 T 0 (hot regime). The magnetic Ąeld intensity is averaged over space, hence encompassing perturbations at all the scales permitted by the size and resolution of the simulation domain. Considering for a start the cold case, with T m = T 0 , one can distinguish four phases. The Ąrst one (from t = 0 to 2 Ω -1 0 ) and corresponds to micro-adjustments of the plasma quantities from the random initialization to its eigenmode values. The second phase (from t = 2 to 18.5 Ω -1 0 ) is characterized by the exponential ampliĄcation of the perturbed magnetic Ąeld intensity, and continues even for perturbations larger than the initial magnetic Ąeld intensity. It will be refereed to as the linear phase or exponential
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.2: 1D and 2D simulations growth rate γ 1D,2D (blue and red dots), Winske and Leroy [1984] prediction γ cold (Eq. 5.2), Reville et al. [2008] prediction γ warm (Eq. 5.3) and growth rate prediction of this work γ hot (Eq. 5.4, solid orange line) as a function of the main protons temperature T m . The vertical dashed lines indicates the transition to the warm regime (Zweibel and Everett [2010], left line at T m = T 0 ), and to the hot regime k cold r Lm > 2 (right line at T m = 16 T 0 ).

v A0 /v T m < (n cr u cr /n m v T m ) 1/3
in the e x direction is possible. This is shown in the lower panel of Fig. 5.1 for the simulation parameters n cr /n m = 0.01, u cr /v A0 = 100 and T m /T 0 = 25, where a small component of the ampliĄed magnetic Ąeld is oriented parallel to the initial magnetic Ąeld. It is however much smaller compared to the perpendicular component by an order of magnitude, such that even in 2D simulations the e ⊥ unit vector can be considered as approximately aligned with the total B 1 .

Instability growth rate and temperature dependency

One important parameter characterizing the linear phase of an instability is its growth rate. As presented in Sec. 3.2, the growth rate of the non-resonant mode depends on the temperature of the main protons and can be strongly reduced when Ąnite proton Larmor radius effects become important. Fig. 5.2 shows the predictions of the fastest growing mode in the three regimes of cold (Eq. 5.2), warm (Eq. 5.3) and hot (Eq. 5.4) main protons:

γ cold = 1 2 n cr n m u cr v A0 Ω 0 (5.2) γ warm = n cr n m u cr v T m 2/3 Ω 0 (5.3) γ hot = π 2 1/2 n cr n m u cr v T m Ω 0 (5.4)
together with the growth rates extracted from 1D and 2D simulations γ 1D,2D , as a function of the main protons temperature. The warm and hot regimes thresholds are deĄned by the conditions v A0 /v T m < (n cr u cr /n m v T m ) 1/3 and k cold r Lm ≳ 2 respectively, with

r Lm = v T m /Ω 0 and k cold = 1 2 ncr nm ucr v 2 A0
Ω 0 . The growth rate in the hot regime is found to decrease with the temperature as T -1/2 m as expected from the linear theory calculation of this work. In the low temperature limit, the cold prediction from Winske and Leroy [1984] is very accurate, but becomes rapidly invalid for temperatures T m > T 0 . The intermediate warm regime from T 0 to 16 T 0 is well reproduced by the prediction from Reville et al. [2008] and Zweibel and Everett [2010] with a decrease of the growth rate with temperature as T -1/3 m . The overestimates in the warm and hot regimes by a factor ∼ 2 may be linked to the fact that the theoretical values correspond to the fastest growing mode. The magnetic Ąeld intensity measured in the simulations is integrated over the whole k spectrum, which gives an overall smaller growth rate than if only the fastest growing mode was observed (see Appendix B for a discussion on the growth rate measurements in the simulations).

Growth rate for arbitrary mass and charge

The non-resonant streaming instability can be excited in various space and astrophysical environments such as at the Earth bow shock, as well as in jet and supernova shocks. In those situations the plasma is essentially made of protons, which may be one of the reasons why the existing literature does not consider heavier elements. However such assumption cannot be made when considering the acceleration of heavier elements at shocks, as well as in laboratory experiments, where the plasmas are often constituted of elements such as carbon or argon. The instability growth rate can be calculated for arbitrary charge and mass of the main and cosmic rays populations. The derivation is given in Appendix A. Considering a small density ratio n cr /n m ≪ 1, the growth rate expression may be simpliĄed to obtain:

γ cold = 1 2 n cr n m u cr v A0 Ω 0 q cr e m p m m 1/2
(5.5)

where Ω 0 and v A0 are the proton cyclotron frequency and proton AĆvén speed. The growth rate increases linearly with the cosmic rays charge, and decreases with the square root of the main ions mass. It does not depend on the cosmic rays mass, nor on the main ions charge. The maximum wavenumber can be calculated in a similar way: 5.6) and the minimum wavenumber:

k max = n cr n m u cr v 2 A0 Ω 0 q cr e (
k min = Ω 0 u cr m p m cr
q cr e (5.7)

The cosmic rays charge shifts the range of unstable wavenumbers toward smaller scale. This has been observed in MHD-PIC simulations of the instability (see [START_REF] Crumley | Kinetic simulations of mildly relativistic shocks Ű I. Particle acceleration in high Mach number shocks[END_REF]).

The maximum unstable wavelength increase with cosmic rays mass can be understood in terms of the cyclotron resonance condition, as heavier elements allow the growth of larger scale electromagnetic perturbations without resonant interaction occurring with the streaming particles. The dependencies on mass and charges can be understood by examining the linearized background plasma momentum density conservation (Eq. 2.25) and induction (Eq. 2.26) equations. Neglecting the pseudo-cyclotron acceleration term acceleration process to high energies. This effects will however be limited, since the q cr m p /em cr ratio is smaller than unity but of the same order of magnitude for all elements of interest.

Magnetic field spectrum

In the context of cosmic rays acceleration in supernova remnants shocks, the conĄnement of energetic particles at shock boundary requires strong magnetic ampliĄcation, at wavelengths comparable to the gyroradius of the accelerated particles. As such, the scale at which the instability generates magnetic Ąeld Ćuctuations is a fundamental parameter. The non-resonant mode growth rate is a function of the wavenumber, and it is larger for small scales Ćuctuations, i.e. for large wavenumbers (Eq. 2.42). As the instability develops, the magnetic Ąeld intensity increases exponentially, and the largest unstable wavenumber

k max = ncr nm ucr v 2 A0
Ω 0 , which is inversely proportional to the magnetic Ąeld, decreases. This leads to a progressive reduction of the range of unstable wavelength as the instability saturates at small scales Ąrst, followed by larger scales. This is an important property of the non-resonant mode, whose range of unstable wavenumbers strongly vary over the course of the unstable waves growth.

In order to study the evolution of the magnetic Ąeld perturbations as a function of the wavelength, one may investigate their spectrum in Fourier space in the simulations. Furthermore, the circularly polarized electromagnetic waves produced by the non-resonant mode possess a deĄnite negative helicity, corresponding to the sense of rotation in space at a given time, which can be observed in the simulations and separated from the positive helicity component. The helical Ąeld lines with a positive helicity follow the space curve s + deĄned as [START_REF] Weidl | Hybrid simulations of a parallel collisionless shock in the large plasma device[END_REF]):

s + = x e x + r cos(♣k♣x)e y -r sin(♣k♣x)e z
(5.10) with x ∈ R and r > 0, and similarly for negative helicity: 5.11) The positive B + and negative helicity B -components in Fourier space can be separated using the following relations [START_REF] Terasawa | Decay instability of Ąniteamplitude circularly polarized Alfven waves: A numerical simulation of stimulated Brillouin scattering[END_REF]):

s -= x e x + r cos(♣k♣x)e y + r sin(♣k♣x)e z (
B + (♣k♣) = B y (♣k♣) + i B z (♣k♣) 2 (5.12) B -(♣k♣) = B y (♣k♣) -i B z (♣k♣) 2 (5.13)
with B the Fourier transformed component. This corresponds to the operation of shifting the relative phases of the signals, then superimposing them in Fourier space. In the case of a negative wavenumber as for the non-resonant mode, the positive and negative helicity components are then given by the complex conjugate of the helicity components for k > 0, i.e. for k < 0 one has ), as a function of time between t = 4 Ω -1 0 and t = 30 Ω -1 0 . The condition k max = k min is indicated with the vertical dashed line at t NLT = 18.5 Ω -1 0 , and reported in other panels. Greyed regions correspond to stable wave numbers. Middle panel: first order time derivative of the main protons normal velocity u × m (in unit of v A0 , orange solid line) and perturbed magnetic field intensity second order time derivative (in unit of B 0 and multiplied by a factor 100, green solid line). Lower panel: perturbed magnetic field intensity B 1 (green solid line) and main protons normal fluid velocity component (orange solid line). The magnetic field saturation is indicated with the vertical dashed line at t sat = 21 Ω -1 0 . Values are taken from 1D simulation with a main protons temperature T m = T 0 .

B + (k) = B -(♣k♣) and B -(k) = B + (♣k♣).
the local magnetic Ąeld basis (also shown in Fig. 5.6). The acceleration is increasing exponentially during the linear phase, starts to decrease after t = 17 Ω -1 0 , and then becomes negative at t ∼ 21 Ω -1 0 , corresponding to a slowing down of the main protons rotation. The Ćuctuating magnetic Ąeld second order time derivative is expected to be closely related to the velocity Ąeld via the FaradayŠs equation (Eq. 2.26) while neglecting the magnetic Ąeld advection:

∂ 2 B 1 ∂t 2 = (B 0 • ∇) ∂u 1 ∂t (5.14)
and is also shown in the Ągure. It exhibits the same behaviour as the velocity derivative, conĄrming the correlation between the main protons Ćuid motion and the growth of the magnetic perturbation. One obtains an excellent match between the k max = k min condition discussed previously and the deceleration of the main protons velocity. This suggests that this condition is correlated to the transition toward a non-linear phase of growth, and not to magnetic saturation as the magnetic Ąeld is seen to keep growing, although at a slower rate. The same correlation is recovered in all the simulations, indicating that the k max = k min condition may be a robust criteria to identify quantitatively the end of the exponential growth. Note that the exponential growth continues even for large magnetic perturbation: the non-linear transition occurs when the perturbed magnetic Ąeld intensity is already greater than the initial ambient magnetic Ąeld.

The non-linear phase which follows the linear phase of the instability is characterized by a decrease of the main protons Ćuid rotation velocity and a reduced magnetic Ąeld growth. Fig. 5.8 lower panel presents the main protons normal velocity and perturbed magnetic Ąeld intensity evolution over time. The transition toward non-linear growth, correlated to the maximum in normal velocity u × m is shown with the vertical dashed black line at t NLT = 18.5 Ω -1 0 , and the magnetic Ąeld saturation by the second vertical dashed black line at t sat = 21 Ω -1 0 corresponding to the maximum in magnetic Ąeld intensity. The magnetic Ąeld keeps growing during the non-linear phase until the normal velocity component becomes negative, corresponding in the magnetic Ąeld aligned basis to a loss of the -π/2 phase shift with respect to the magnetic perturbation necessary to the growth of the non-resonant mode. The parallel induced electric Ąeld changes sign and no longer slows down the cosmic rays drift velocity (Eq. 2.54), leading to the magnetic Ąeld saturation. This saturation mechanism is well observed in all the simulations. The normal velocity component decrease during the non-linear phase is due both to the conversion of the remaining rotational kinetic energy accumulated during the linear phase into magnetic energy via the induced electric Ąeld, and to the loss of the coupling between the magnetic perturbation and the main protons Ćuid rotation. The magnetic force driving term no longer operates, leading to a decrease of the normal velocity component (which is being projected in the e ⊥ direction) in the local magnetic Ąeld aligned basis.

Magnetic field intensity at saturation

The saturated magnetic Ąeld intensity is a key parameter of the instability in the context of supernova shocks, as it dictates whether cosmic rays can be conĄned and accelerated via Ąrst order Fermi acceleration. An estimate of the saturated magnetic Ąeld intensity can be found by studying the time evolution of the two limiting wave numbers k min and k max . During the instability growth, B increases with time and so does the minimum unstable wave number, whereas the maximum wave number decreases. The magnetic Ąeld saturation is expected to occur when k max = k min (Bell [2004]). The corresponding magnetic Ąeld is then estimated by considering the protons cosmic rays drift velocity to be constant such that the drift kinetic energy density W cr = n cr m p u 2 cr /2 is also constant (Bell [2004]). The saturated magnetic Ąeld energy density W B,sat = B 2 sat /2µ 0 can then be written as:

W B,sat ∼ W cr,0 (5.15) 
The condition k min = k max does not depend on the cosmic rays charge, indicating that the saturated magnetic Ąeld is also insensitive to the charge. This is in agreement with the results obtained in recent PIC simulations by Gupta et al. [2021]. For relativistic cosmic rays drift velocities, the k min limit is expressed as k min = Ω 0 /u cr γ cr where γ cr = 1/ 1 -u 2 cr /c 2 is the cosmic rays Lorentz factor (Amato and Blasi [2009], Zacharegkas et al. [2019]). In this case BellŠs saturation criterion is written as B 2 /2µ 0 = ρ cr γ cr u 2 cr /2. In general, depending on the cosmic rays drift kinetic energy, a large magnetic Ąeld ampliĄcation B 1 /B 0 > 1 can be obtained. This is an important feature of the non-resonant instability, as the left-hand and right-hand resonant modes are restricted to Ćuctuations ampliĄcation B 1 /B 0 ∼ 1 because of the resonance condition on the cosmic rays (Bell [2013]). 
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, as a function of the main protons temperature for 1D simulations. Blue curve corresponds to the ratio at non-linear transition (noted N LT ) and green curve to the ratio at magnetic saturation (noted sat). The non-linear transition time is found numerically by equating k max = k min averaged in the simulation box. The two dashed vertical lines corresponds to the limits of the warm and hot regimes of interaction as in Fig. 5.8.

A different estimate can be obtained by considering energy exchange rates within quasi-linear theory calculations (Winske and Leroy [1984]), which yield that the rate of energy gained by the magnetic Ąeld is half of the rate of loss of the protons cosmic rays drift kinetic energy. Extrapolating this result to saturation and supposing that the cosmic rays drift velocity is null at saturation, one obtains for the magnetic energy density:

W B,sat ∼ 1 2
W cr,0 (5.16) which is half of the Ćuid prediction obtained from the condition k min = k max . However, kinetic theory calculations show that for the instability to exist, the cosmic rays drift velocity must be larger than the Alfvén speed in the ampliĄed Ąeld (Gary et al. [1984]). In some regimes, this condition is violated and the growth of the instability is halted before the k min = k max limit is reached (Riquelme and Spitkovsky [2009]). All the difficulty lies in assessing the highly non-linear evolution of the cosmic rays drift velocity, which would then determine whether the conditions k min = k max or u cr ∼ v A gives the most accurate saturation mechanism, and whether the assumption of constant or completely depleted drift kinetic energy is relevant to estimate the saturated magnetic Ąeld. As such, only numerical simulations can provide a precise answer on the saturation mechanism and saturated magnetic Ąeld, for a given set of initial conditions. Fig. 5.9 presents the ratio between the magnetic Ąeld energy density W B = B 2 /2µ 0 and the initial cosmic rays kinetic energy density W cr = n cr m p u 2 cr /2, at non-linear transition (noted ŞNLTŤ, blue solid line) and at saturation (noted ŞsatŤ, green solid line), as a function of the main protons temperature. In the cold regime, the simulations yield a conversion efficiency of 30 per cent at the transition from linear to non-linear growth (determined by the condition k min = k max measured in the simulations), and about 60 per cent at saturation which is close to the quasi-linear theory prediction. The intermediate, warm regime of interaction shows a quick decrease of the conversion efficiency with temperature. For temperatures corresponding to the hot, demagnetized regime of interaction, the magnetic
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.11: Diagonal terms of the pressure tensor in the local magnetic field aligned basis for the main protons (upper panel) and cosmic rays (lower panel), as a function of time between t = 0 Ω -1 0 and t = 40 Ω -1 0 , for a main protons temperature T m = T 0 . The blue, orange and red curves corresponds to the parallel P ∥ , normal P × and perpendicular P ⊥ components respectively. The values are calculated locally, then averaged over the simulation domain. Obtained from a 1D simulation with a main protons temperature T m = T 0 . results found in full-PIC numerical simulations including the cosmic rays back-reaction on the instability (Riquelme and Spitkovsky [2009]). The cosmic rays are then able to interact resonantly when the resonance condition ω -kv ∥cr ± Ω cr = 0 is fulĄlled for right-hand polarized (plus sign) backward propagating (ω > 0, k < 0) waves, with v ∥cr the cosmic ray velocity along B 0 . One obtains v ∥cr = -(ω + Ω cr )/♣k♣ < 0, which may explain the strong cosmic rays scattering in the (e y , e z ) plane observed in the simulations (lower right panel). This effect is highly non-linear: the cosmic rays destabilize electromagnetic waves in a non-resonant way, and interact later on with the large amplitude waves they have generated. The cosmic rays velocity distribution, which was initially Maxwellian, is greatly altered during the linear and non-linear evolution, and returns to the Maxwellian only during the relaxation phase. The main protons acceleration in the normal direction e × is well observed (upper right panel), and it is correlated to the slowing down of the cosmic rays.

The heating and scattering of the proton populations can be quantiĄed by investigating the time evolution of the diagonal terms of the protons pressure tensor over time. Fig. 5.11 shows the diagonal components in the magnetic Ąeld aligned basis for the main protons (upper panel) and the cosmic rays (lower panel) in the low temperature case T m = T 0 . The main protons pressure starts increasing in the parallel and normal direction Ąrst, as magnetic perturbations become of the same order as the initial magnetic Ąeld. There is no heating in the perpendicular direction. The main protons are then isotropized after saturation, and are slowly heated during the relaxation phase. By supposing a perfect gas behaviour, the temperature can be estimated as k b T m ∼ P m /n m , hence obtaining values which correspond to a one order of magnitude increase with respect to the initial electric Ąeld gradients are generated, leading to an important heating of both protons populations. The background Ćuid is accelerated in the same direction as the cosmic rays initial velocity (Eq. 2.55). Because of the continuity equation, the background plasma accumulates density toward the positive e ∥ direction, on the right of the growing electric Ąeld regions in Fig. 5.12. Large density Ćuctuations are generated with cavities of low density, correlated with regions of fast growing modes and important heating of both protons populations. The reversal of the electric Ąeld occurs after saturation (t sat = 21 Ω -1 0 ), corresponding to the main protons normal velocity u × m changing sign in the magnetic Ąeld aligned basis (Fig. 5.8, lower panel) and inducing a positive electric Ąeld E • e ∥ = -(u 1 × B 1 ) • e ∥ > 0. As a consequence the cosmic rays are no longer slowed down, and their drift kinetic energy cannot be converted into magnetic energy anymore. This leads to the non-resonant mode saturation as discussed previously.

The 2D simulations bring additional information on the main protons density spatial structures. The simulations results are presented in Fig. 5.14. Density Ćuctuations are found to increase in scale from tenth to hundredth of l 0 over time, as small scale density holes along the initial magnetic Ąeld direction (observed in 1D simulations) merge together to generate large scale Ćuctuations during the non-linear evolution of the instability. The density holes expand in the perpendicular plane because of the increasing magnetic pressure, generating density Ćuctuations up to n m /n 0 ∼ 2 in the background plasma at the same spatial scales as the magnetic Ćuctuations, on the order of a hundredth of the proton inertial length for the parameters investigated. This result agrees with previous studies using a Ćuid description (Bell [2013], Bai et al. [2015]), consistent with the fact that the density perturbations are not the results of individual wave-particles interactions. In this case the hybrid-PIC simulations yield the same result as Ćuid simulations. The density Ćuctuations may play a role in allowing further magnetic Ąeld ampliĄcation, by allowing potentially important dynamo effects to take place at supernova shocks [START_REF] Del Valle | Turbulence-induced magnetic Ąelds in shock precursors[END_REF]). This also constitutes a marker of the development of the instability, and may be used as an observable in laboratory experiments (see Chapter 7).

As in previous studies (e.g. Winske and Leroy [1984], Riquelme and Spitkovsky [2009]), the simulations were performed without a continuous injection of streaming particles, corresponding to an initial value problem as stated in Chapter 4. The immediate consequence is that the cosmic rays current is self-consistently decreasing through time as the cosmic rays drift kinetic energy is being converted into magnetic Ćuctuations. An alternative approach is to maintain the driving current, either by re-accelerating the cosmic rays artiĄcially [START_REF] Lucek | Non-linear ampliĄcation of a magnetic Ąeld driven by cosmic ray streaming[END_REF]), or by injecting new ones in the simulation domain over time (Bai et al. [2015], Mignone et al. [2018], Casse et al. [2018]) which was used to directly simulate particles acceleration at supernova shocks. A comparison between these approaches shows that the development of the non-resonant instability is not signiĄcantly altered. In particular the magnetic Ąeld intensity at saturation and the density Ćuctuations are quantitatively similar, with magnetic Ąeld ampliĄcations of the order of ten times the ambient magnetic Ąeld and large density Ćuctuation of the order of the initial plasma density. These results however apply to the cold regime, and the ambient medium temperature remains an important factor in determining whether the non-resonant streaming instability can efficiently generate magnetic Ąeld Ćuctuations, and should be taken into account to model accurately cosmic rays acceleration with Şnon-idealŤ plasma conditions.

Summary

Multidimensional hybrid-PIC simulations of the non-resonant streaming stability have been performed, while considering a wide range of background plasma temperatures, as well as varying mass and charges for the ion populations. The results may be summarized as follows.

• The non-resonant streaming instability generates exponentially growing electromagnetic Ćuctuations, propagating parallel to the ambient magnetic Ąeld. The simulations show that the instability growth rate and saturated magnetic Ąeld can be strongly reduced when increasing the background protons temperature, in agreement with linear theory predictions. The Ąnite Larmor radius of the background ions weakens the coherent motion with the magnetic perturbation required to grow the instability, thus producing a damping of the unstable waves.

• Theoretical predictions on the growth rate as a function of mass and charge of the main and streaming populations agree with simulation results. Multiply charged streaming ions favour the instability by increasing the driving current for a given density and drift velocity, whereas heavy main ions increase the background plasma inertia and slow down the instability development.

• The instability mechanism described in Sec. 2.2.3 is well observed in the simulations.

In particular, the strong correlation between the background plasma Ćuid motion and the electromagnetic wave, which possesses a negative helicity with a clearly deĄned helical structure in space, is retrieved both in 1D and 2D runs. This correlation plays a fundamental role in the saturation of the instability.

• A non-linear phase of growth of the magnetic Ąeld perturbations has been described. The condition k min = k max can be used as a robust criteria for the beginning of this phase, characterized by a slowing down of the background plasma Ćuid motion and a progressive loss of correlation between the Ćuid velocity magnetic Ąelds until saturation is reached.

• The streaming population drift kinetic energy is converted into magnetic Ąeld Ćuctuations, eventually leading to particles propagating in a direction opposite to their initial drift velocity. Owing to the negative helicity and right-hand polarization of the waves, strong cyclotron resonance occurs, as the streaming particles can interact resonantly with the large amplitude waves that they have themselves generated in a non-resonant way during the early times of growth. This produces a strong scattering of the streaming particles in the plane perpendicular to the initial magnetic Ąeld.

• The instability is found to generate important pressure anisotropies in the background plasma, as well as important density Ćuctuations during the late time evolution of the unstable waves. The density Ćuctuations are a product of the development of an important electrostatic component of the electric Ąeld Ćuctuations, together with the large magnetic pressure generated by the non-linear magnetic Ąeld ampliĄcation.

• The magnetic Ąeld energy density at saturation obtained in the simulations is in reasonable agreement with theoretical estimates obtained by energy conservation arguments, in the case of a cold background plasma. In the hot regime, the instability saturated magnetic Ąeld energy density is strongly reduced. It is not totally suppressed however, indicating that the instability may still amplify the magnetic Ąeld and modify the transport of cosmic rays in hot and low magnetic Ąeld environments such as the intergalactic medium.

In addition to the effects of a Ąnite background plasma temperature, the instability may also be modiĄed if one takes into account particle collisions, between charged particles or with a population of neutrals. In the MHD framework, particles collisions are often implicitly assumed to occur on time scales much shorter than the scales of interest, such that the pressure tensor may be considered as isotropic. In addition, the electron and ion temperature are commonly assumed equal, which can be justiĄed by a strong collisionality between the populations. In the particular case of the non-resonant mode, the simulations showed that the instability can self-generate pressure anisotropies, invalidating the isotropic assumption. The interplay between anisotropic pressure generation, and isotropization by collisions is a strongly non-linear process, which may be investigated with numerical simulations. This is the subject of the following chapter, which tackles the question of the effects of particle collisions on the non-resonant mode. 

Introduction

As presented in Sec. 5.4, even in relatively cold plasmas, collisionless hybrid-PIC simulation have shown the non-linear development of signiĄcant ion pressure anisotropies in the background plasma (Marret et al. [2021]), suggesting that the assumption of an isotropic scalar pressure, often employed in Ćuid models, may not always be justiĄed. Pressure anisotropies may be suppressed by particle collisions, among other isotropization mechanisms. The Coulomb collisions, as well as the neutral collisions, are usually neglected in studies of space and astrophysical plasmas which are very tenuous (of the order of encountered in ionized H II regions [START_REF] Galarza | Spectrophotometry of H II Regions, Diffuse Ionized Gas, and Supernova Remnants in M31: The Transition from Photoionization to Shock Ionization[END_REF]) such as in the case of SN 1987A [START_REF] Orlando | 3D MHD modeling of the expanding remnant of SN 1987A -Role of magnetic Ąeld and non-thermal radio emission[END_REF]), while keeping the other parameters, one obtains a proton Coulomb frequency and non-resonant mode growth rate as ν 0 /γ cold ∼ 24, large enough to expect collisions to occur on time scales comparable to the non-resonant mode growth time. More precisely, large enough for the rate of change of the particles velocity resulting from numerous Coulomb interactions to occur on time scales comparable to the growth rate. While ion-neutral collisions have been shown to damp the non-resonant mode (Reville et al. [2007]), no studies have been done while considering Coulomb collisions.

The simulations presented in this chapter aim to investigate these problematic, by studying the effects of particle collisions on the growth of the non-resonant mode using hybrid-PIC simulations with Monte Carlo Collisions (MCC). A particular emphasis is made on the pressure anisotropies generated by the instability, and the isotropizing effect of collisions. In the following, the simulation parameters used will be those corresponding to the ŞCCŤ (Coulomb collisions) and ŞCNŤ (collisions with neutrals) runs presented in Table 4.2.

Growth rate dependency with collision frequency

Neutral collisions

Given that the instability relies on the interaction of large scale Ćuid motions with the electromagnetic wave, and that intra-species Coulomb collisions conserve momentum and energy (Trubnikov [1965]), one may expect that Coulomb collisions will have no effects on the instability, at least in its linear phase of growth. Proton-neutral collisions on the contrary, differ signiĄcantly from the Coulomb collisions as both momentum and energy of the background proton population are not conserved. This leads to important damping of the electromagnetic waves, including the non-resonant mode [START_REF] Khodachenko | Collisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere[END_REF], [START_REF] Forteza | Damping of oscillations by ion-neutral collisions in a prominence plasma[END_REF], Reville et al. [2007]). This may occur in supernova remnants expanding near molecular clouds, which are the subject of active research (e.g. [START_REF] Chevalier | Supernova remnants in molecular clouds[END_REF], [START_REF] Feinstein | What do supernova remnants interacting with molecular clouds reveal[END_REF]). In this situation collisions with neutrals are expected to be important because of the low temperature and ionization fraction. Following the analysis of Reville et al. [2007] and adopting the values T m = 10 2 K, n m = 23 cm -3 , a low ionization fraction x = 0.01 and a drift velocity u cr = 10 8 cm.s -1 [START_REF] Malkov | On the gamma-ray spectra radiated by protons accelerated in supernova remnant shocks near molecular clouds: The case of supernova remnant RX J1713.7-3946[END_REF]), while considering that the ion-neutral collision frequency follows the approximate expression (Kulsrud and Pearce [1969]):

ν 0 ≈ 8.9 × 10 -9 n n T m 10 4 K 0.4 s -1 (6.1)
then the growth rate is smaller than the collision frequency, such that neutral collisions cannot be neglected. The effect of ion-neutral collisions on the non-resonant mode has been calculated in Reville et al. [2007], by using a MHD model while including a collisional friction term in the background plasma momentum conservation equation [START_REF] Tagger | Ambipolar Ąlamentation of turbulent magnetic Ąelds[END_REF]) such that:

du dt = J × B ρ -ν in (u -u n ) (6.2)
with ν in a characteristic slowing down time by ion-neutral collisions. The neutral Ćuid velocity u n is computed by considering only the friction force:

du n dt = -ν ni (u n -u) (6.3)
with ν ni = ν in n n /n i is a characteristic neutral slowing down time by neutral-ion collisions where n n and n i are the neutral and ion densities respectively. The dispersion relation can then be obtained as:

ω ω 2 + n cr n m u 2 cr r Lcr k + iν 0 (1 + Z)ω 2 + Z n cr n m u 2 cr r Lcr k = 0 (6.4)
with r Lcr = u cr /Ω 0 and Z = n m /n n the density ratio between the ions and the neutrals.

In the case of a low ionization fraction, the growth rate can be reduced analytically with the simplifying assumption Z ≪ 1 as:

γ in (k) = - ν 0 2 + 1 2 ν 2 0 + 4Ω 0 n cr n m u cr k 1/2 (6.5)
with ν 0 ≡ ν in . This is plotted in Fig. 6.

1 considering k = k max /4 = 1 4 ncr nm ucr v 2 A0
Ω 0 , such that γ in (k = k max /4, ν 0 = 0) = γ cold with γ cold = 1 2 ncr nm ucr v A0 Ω 0 the fastest growing mode in the collisionless cold case (Winske and Leroy [1984]), together with the growth rate obtained in 1D simulations including proton-neutral collisions (ŞCNŤ runs). One obtains that the non-resonant streaming instability is rapidly damped with increasing neutral collisions frequency. The growth rate dependency with collision frequency is well recovered in the simulations. The neutral collisions reduce the background Ćuid velocity perturbations, leading to a weaker induced electric Ąeld and consequently smaller growth rate and magnetic Ąeld ampliĄcation. The observed offset may be explained by the fact that the magnetic Ąeld intensity in the simulations is integrated over the whole k spectrum, which gives an overall smaller growth rate than if only the fastest growing mode was observed (see Appendix B).

Coulomb collisions

For the case of a fully ionized collisional background where neutral collisions are negligible, and proton-proton Coulomb collisions are dominant (ŞCCŤ runs), the simulations show that the growth rate is enhanced for ν 0 ≳ γ 0 , where γ 0 = 0.15 Ω 0 is the growth rate in the collisionless case. The increase is maximum for a collision frequency ν 0 = 27 Ω 0 two orders of magnitude larger than γ 0 , yielding a growth rate γ = 0.17 Ω 0 (rightmost vertical dashed line in the Ągure). The saturated magnetic Ąeld energy density, W B,sat is displayed in Fig. 6.1 middle panel, and shows an increase from W cl B = 6.84 (in units of l -3 0 m p v 2 A0 ) in the collisionless case up to W B,sat = 1.21 W cl B,sat for ν 0 = 27 Ω 0 . Because of its relatively large density in the simulations, the cosmic rays population becomes collisional with the suppressed. The simulations show that the collision frequency must be larger than the instability growth rate, up to two orders of magnitude for the simulation parameters considered, to effectively suppress the anisotropies produced by the non-resonant mode. This corresponds to a competition between the instability tendency to generate pressure anisotropies in the background plasma, and the isotropization effect of collisions. This competition is overtaken by collisions during the whole instability growth for ν 0 > 10 Ω 0 for the simulation parameters considered.

Full pressure tensor effects

Pressure anisotropies in the amplified magnetic field

In order to describe the anisotropic heating of the background protons observed in the simulations presented in Chapter 5, one must distinguish the evolution of the energy densities in the directions parallel and perpendicular to the total magnetic Ąeld. This can be done within the framework of the double adiabatic Chew-Goldberger-Low (CGL) theory [START_REF] Chew | The Boltzmann equation an d the one-Ćuid hydromagnetic equations in the absence of particle collisions[END_REF]). Assuming cold electrons, and neglecting heat Ćuxes and non-gyrotropic (i.e. non-diagonal) pressure components, one may write the two equations for the main protons pressure in the directions parallel and perpendicular to the total magnetic Ąeld as:

d dt P ∥ m B 2 ρ 3 = 0 (6.6) d dt P ⊥ m ρB = 0 (6.7)
where d/dt = ∂/∂t + u • ∇ denotes the material derivative and ρ the main protons density.

The advective term may be written as:

u • ∇ P ∥ m B 2 ρ 3 = ∇ • u P ∥ m B 2 ρ 3 - P ∥ m B 2 ρ 3 ∇ • u (6.8)
Supposing no density Ćuctuations such that ∇ • u = 0 (Eq. 2.1), and averaging over space in the periodic simulation domain such that the Ćux term cancels out, one may neglect the advective component of the material derivative. The integrated CGL equations then read:

∂ ∂t P ∥ m B 2 ρ 3 = 0 (6.9) ∂ ∂t P ⊥ m ρB = 0 (6.10)
where the brackets denote the spatial average. Those equation can be directly integrated, and yield that in the incompressible case, an increase in magnetic Ąeld implies a decrease of the parallel pressure component, and an increase of the perpendicular component. This result is a consequence of the conservation of the Ąrst and second adiabatic invariants [START_REF] Kulsrud | MHD description of plasma[END_REF]) in an ampliĄed magnetic Ąeld, and is well recovered in the simulations, as is shown in Fig. 6.3. This Ągure highlights the correlation between the growth of the may be estimated via OhmŠs law and FaradayŠs law (Eq. 2 of the manuscript) which gives:

B ∼ kB 0 u γ (6.15)
with k the wavenumber and γ the growth rate. This yields a proportionality between the Ćuid and magnetic Ąeld perturbations, compatible with the simulation results, where B/B 0 = 3.9 in the collisional case and B/B 0 = 3.3 in the collisionless case corresponding to a 18% increase. A larger enhancement (> 100%) is not expected to be reachable, since it would require that the pressure gradients overcome the cosmic rays magnetic force, and thus preventing the growth of the instability entirely.

These results indicate that despite its non-resonant character, kinetic effects induced in the background plasma play an important role in the growth of the instability. The isotropic pressure closures often used in Ćuid models cannot capture the microphysics of the background heating and the self-stabilizing effect of the resulting spatial gradients of the non-diagonal terms of the pressure tensor. This may lead to an overestimate of the magnetic Ąeld ampliĄcation when applied to collisionless or poorly collisional plasmas where the instability growth time is smaller than the collision time. On the contrary, in collisional environments such as in laboratory plasmas and in H II regions for astrophysical plasmas, the mitigation of the pressure anisotropies by Coulomb collisions may enhance the accuracy of a Ćuid description, and favor the growth of the non-resonant mode.

In the case of a weaker cosmic rays Ćux, the reduction of the growth rate γ will in turn reduce the instability driven anisotropic heating rate. Consequently, one may expect that the anisotropic heating will be overcome by the isotropization mediated by ion-ion Coulomb collisions for a smaller collision frequency ν 0 . An order of magnitude estimate of the collision frequency necessary to mitigate the self-generated anisotropies can be found by comparing the anisotropic heating rate, obtained from quasi-linear theory (Winske and Leroy [1984]):

∂T ⊥ ∂t N R = 4γ cold W B n m (6.16)
to the isotropization of temperatures by Coulomb collisions:

∂T ⊥ ∂t c = -ν 0 T 0 κ (6.17)
where T ⊥ is the temperature perpendicular to the total magnetic Ąeld in units of energy and:

κ = 1 2π 1/2 A -3 + (A + 3) tan -1 (A 1/2 ) A 1/2 (6.18) is a decreasing function of A = T ⊥ /T ∥ -1 ∼ T ⊥ /T 0 -1.
Because heating is dominant in the perpendicular direction one may approximate T ∥ ∼ T 0 with T 0 the initial isotropic ion temperature. Using the prediction from quasi-linear theory for the saturated magnetic Ąeld W B ∼ W cr /2, the condition for collisions to become effective in suppressing the pressure anisotropies can then be written as:

ν 0 γ max ≳ 2 W cr n m T 0 κ (6.19)
In addition, whether these pressure anisotropies affect the instability can be estimated by a scaling between the pressure gradients and the magnetic force driving the instability as: (6.20) with k fast = k max /2 the fastest growing wavenumber (Eq. 2.36). This yields the condition that the anisotropy parameter A should be ≳ 2v 2 A0 /v 2 T 0 with v 2 T 0 = k B T 0 /m p , for pressure gradients to inĆuence the instability. For the parameters considered W cr /n m T 0 = 12.5 and v A0 /v T 0 = 1. For the collisionless simulations A ∼ 4 (see Fig. 6.3), and pressure gradients are expected to modify the growth of the instability, which is indeed what is observed in the simulations. In addition, the collision frequency required for anisotropies to be suppressed by Coulomb collisions gives 2W cr /n m T 0 κ ∼ 400, in good agreement with the values obtained from the simulations, ν 0 /γ 0 ∼ 300.

k fast n m AT 0 ≳ j cr B
In general, the level of pressure anisotropy produced by the non-resonant streaming instability may be estimated from quasi-linear theory using the scaling T ⊥ ∼ 2W B /n m + T 0 , such that A ∼ W cr /n m T 0 . Using this estimate, the criterion for pressure gradients to impact the growth of the instability becomes:

1 4 n cr u 2 cr n m v 2 A0 ≳ 1 (6.21)
which is the ratio of the cosmic rays to the initial magnetic Ąeld energy densities, and it is independent of the background plasma density. Considering a supernova shock which propagates at a velocity u cr = 10 3 km.s -1 in a cold interstellar medium with n m = 1 cm -3 , B = 5 µG, T 0 = 10 4 K and with a cosmic rays Ćux n cr u cr = 10 4 cm -2 s -1 (Zweibel and Everett [2010]), one obtains n cr u 2 cr /4n m v 2 A0 = 0.2 and a protons Coulomb collision frequency of ν 0 /γ max = 3 × 10 -2 (Trubnikov [1965]), much smaller than the criterion 2W cr /n m T 0 κ = 41. Under such collisionless conditions, one may expect pressure anisotropies to develop and reduce the growth rate and saturated magnetic Ąeld with respect to the theoretical predictions. Increasing the main protons density to n m = 90 cm -3 , as encountered in H II regions [START_REF] Galarza | Spectrophotometry of H II Regions, Diffuse Ionized Gas, and Supernova Remnants in M31: The Transition from Photoionization to Shock Ionization[END_REF], [START_REF] Orlando | 3D MHD modeling of the expanding remnant of SN 1987A -Role of magnetic Ąeld and non-thermal radio emission[END_REF]), while keeping the other parameters the same one obtains a collision frequency ν 0 /γ max = 24. This is of the same order as the criterion 2W cr /n m T 0 κ = 27, indicating that Coulomb collisions should reduce the anisotropies spontaneously generated by the instability and enhance its growth.

2.1, the acceleration of cosmic rays at shocks can be studied by analysing the gamma rays emitted by the energetic particles. Their interaction with the EarthŠs atmosphere initiates a cascade of interactions, leading to the formation of a shower of secondary charged particles. Those with velocities faster than the local speed of light in the atmosphere can resonate with the electromagnetic radiations and produce Ćashes of Cerenkov emission, which gives information on the primary gamma rays. This approach was applied to SNR RX J1713.7-3946 and Cassiopeia A [START_REF] Aharonian | Evidence for TeV gamma ray emission from Cassiopeia A[END_REF](Aharonian et al. [ , 2004]]), highlighting the possible role of supernova remnants as efficient cosmic rays accelerators. However this observational approach is also limited by the spatial resolution of the telescopes, which need to be compared with the spatial scales involved in the microphysics of the non-resonant instability. In the case of the HESS system of telescopes [START_REF] Hinton | The status of the HESS project[END_REF]), the angular resolution is of a few arc minutes. For Cassiopeia A, which is located at 3.4 kiloparsecs from the Earth, this corresponds to a spatial resolution of the images of the order of the parsec. Considering the plasma parameters of the supernova remnants propagating at a velocity u cr = 10 3 km.s -1 in an interstellar medium with density n m = 1 cm -3 , and with an ambient magnetic Ąeld B = 5 µG, one Ąnds the maximum non-resonant mode wavelength as λ max = 2πk -1 min = 1.3 × 10 5 km, much shorter than the telescope spatial resolution and out of reach for direct in situ observations.

One may circumvent this difficulty by bringing the plasmas closer to us. Experimental investigations of plasmas under extreme conditions have drawn increasing attention in the astrophysics community. Plasma phenomenon such as the streaming instabilities may be observed in experiments which can Ąt in a laboratory, using a combination of state of the art lasers together with sources of large intensity magnetic Ąeld. The right-hand resonant streaming instability has been investigated using the Large Plasma Device at the University of California where plasmas up to 18 meters long with a 300 G axial magnetic Ąeld can be obtained [START_REF] Leneman | The plasma source of the Large Plasma Device at University of California, Los Angeles[END_REF]). The streaming population was created by irradiating a solid target made of high density polyethylene C 2 H 4 and graphite with a high intensity laser, generating an expanding plasma with velocities up to hundreds of kilometers per second. Such combination of large scale ambient plasma, ambient magnetic Ąeld and relatively large streaming velocities allowed to observe the right-hand resonant mode in a recent experimental campaign (Heuer et al. [2018]). Electromagnetic Ąeld Ćuctuations were observed with a polarization and a frequency compatible with the theoretical expectations, constituting the Ąrst experimental demonstration of the righthand resonant streaming instability. The non-resonant streaming instability has however not yet been observed in the laboratory. This chapter is devoted to possible designs of future experimental investigations on the non-resonant streaming instability. It describes the conditions which must be satisĄed to observe the non-resonant mode in the laboratory, as well as theoretical predictions on the expected time and spatial scales involved. Several considerations which need to be taken into account when attempting to observe the instability in laboratory conditions are presented, from the effects of temperature and collisionality to the modiĄcation of the non-resonant mode behaviour for ion species with various mass and charge. Two possible setups are proposed, together with the relevant diagnostics which may allow us to analyse and understand the results.

Experimental constraints

Three fundamental elements must gathered to recreate the non-resonant mode in the laboratory: a background plasma, a super-Alfvénic streaming population and an ambient magnetic Ąeld aligned with the stream velocity. Although the parameters required are potentially within the reach of high intensity laser experiments with tens of Tesla externally applied magnetic Ąelds (Albertazzi et al. [2013], Ivanov et al. [2021]), the large streaming population densities, drift velocities and ambient magnetic Ąeld required, together with the lack of theoretical knowledge on the effects of particle collisions and of ion charge and mass on the development of the instability, have made its experimental investigations elusive. The main constraints on the experiments can be summarized as follows:

• The instability must grow on time scales compatible with the plasma lifespan, and on spatial scales compatible with the size of the plasma and of the magnetized regions.

• The density ratio between the streaming population and the background plasma must be less than unity, whereas the relative velocity normalized to the Alfvén velocity must be larger than unity.

• The particle Ćux must not be too large to avoid the demagnetization of the background plasma, nor too small to avoid damping by ion Ąnite Larmor radius effects, as well as the growth of the resonant modes.

• The e-folding reached at the end of the experiment, that is the integrated growth rate over the experiment duration, must be larger than unity in order to observe a substantial growth of the perturbations.

During the growth of the instability, the streaming population drift kinetic energy is converted in large amplitude magnetic Ąeld perturbations. This leads to a reduction of the streaming velocity and to a scattering of the particles in the plane perpendicular to the ambient magnetic Ąeld. The resulting changes in the streaming population energy spectrum could be measured using a Thomson parabola, together with the magnetic Ąeld ampliĄcation (obtainable by Faraday rotation). This would allow the veriĄcation of the theoretical prediction on the saturated magnetic Ąeld intensity, which is a central parameter of the non-resonant instability in the context of acceleration of particles at supernova shocks. In addition to magnetic Ąeld perturbations, the instability is characterized by large density Ćuctuations of the order of the initial background plasma density, produced by the increasing magnetic pressure on the same spatial scales as the electromagnetic waves, and which may be observed in laboratory experiments by laser interferometry.

Ambient magnetic field and instability regimes

Intense magnetic Ąelds may be obtained in the laboratory using Helmholtz coils to generate uniform magnetic Ąelds for a duration of a few µs, with intensities up to tens of Teslas on scales of the order of the centimeter (Albertazzi et al. [2013]). The instability is modiĄed by Ąnite Larmor radius effects, hence requiring strong magnetic Ąelds to keep the Larmor radius smaller than the unstable wavelengths in order to prevent unwanted non-resonant mode. The condition that the background ions are magnetized, kr Lm < 1, where r Lm = v T m /Ω 0 is the main ions Larmor radius, yields:

B > 5 × 10 -10 T 1/4 ϕ 1/2 s (7.2)
Below this limit the thermal ions Larmor radius becomes larger than the unstable wavelength, and the instability growth rate and saturation are strongly reduced. The condition that the instability is not modiĄed by thermal effects, corresponding to the warm regime of the instability, is given by:

B > 2.3 × 10 -9 T 1/3 n 1/6 m ϕ 1/3 s (7.3)
If this condition is violated the unstable wavelengths are modiĄed, and consequently the requirements on the streaming population demagnetization, and magnetization of the background ions, are also modiĄed. This imposes constraints on the streaming particle Ćux in the thermally modiĄed regime:

3 × 10 -16 n m T 2 m < ϕ s < 10 4 n m T 1/2 m (7.4)
In addition to the constraints on temperature, particle Ćux and ambient magnetic Ąeld, the unstable wavelengths must also be taken into account, namely the condition:

k min L 2π > 1 (7.5)
imposing that the largest unstable wavelength should be smaller than the size of the experiments, which is itself constrained by the size of the background plasma and by the size of the region where the Helmholtz coils can maintain a strong and uniform magnetic Ąeld.

Stream-background Coulomb collisions

The density and mass of the background plasma are critical parameters of the experiments as they modify the growth rate of the instability, as well as the collisionality with the streaming particles via Coulomb collisions. The background plasma may be obtained by ionizing a preexisting gas jet, typically made of hydrogen or argon, with a nanosecond laser. Such jets are generated by ejecting low density (∼ 10 18 cm -3 ), high pressure (∼ 10 bar) neutral gas from a gas nozzle, generating axisymmetric density proĄles around the direction of propagation. The radial density proĄle of such gas jet follows a Gaussian, exponentially decreasing law with the distance to the axis, and is known experimentally [START_REF] Malka | Characterization of neutral density proĄle in a wide range of pressure of cylindrical pulsed gas jets[END_REF]). The high velocities acquired by the plasma from the laser pulse should not be lost to collisions with the background [START_REF] Thaury | Regimes of expansion of a collisional plasma into a vacuum[END_REF]), which imposes conditions on the relative velocity, mass and charge of the background and streaming ions. As presented in Sec. 4.4.2, the characteristic time scale (ν α/β S ) -1 associated to the slowing down of test particles α by a population of Ąeld particles β may be calculated as (Trubnikov [1965], Callen [2006]):

ν α/β S = -ν α/β 0 1 + m α m β ψ(x) (7.6) where ν α/β 0 = 1 4πϵ 2 0 q 2 α q 2 β m 2 α n β u 3 α ln Λ αβ (7.7)
is the fundamental Coulomb collision frequency and ψ(x) is the Maxwell integral, with x = u α /v T β the relative speed parameters and u α the velocity of the test particle in the reference frame of the population β. In the case of a particle of population α propagating in a background plasma made of electrons and a single species of ions, the slowing down time scale is calculated as: , which corresponds to the average distance traveled by a particle with velocity u α before suffering a signiĄcant reduction of its drift velocity by Coulomb collisions. One may deĄne a collisionality parameter as λ S /L where L is the characteristic size of the experiment, which should be larger than unity in order to avoid any substantial loss of momentum before the instability may develop in the experiments:

ν α/i,
λ S L > 1 (7.9)
This parameter can be maximized by considering large relative velocities, together with small stream and background populations charge.

Background ion-neutral collisions

In addition to the ionization degree, the ionization fraction of the background plasma, i.e. the fraction of ionized particles, also plays an important role in the non-resonant mode growth. Ion-neutral collisions differ signiĄcantly from the Coulomb collisions as both the momentum and the energy of the background ion population are not conserved, leading to an important damping of the instability as seen in Sec 6.2.1. Similarly to temperature effects, the damping by neutral collisions should be avoided in experimental investigations, hence requiring the background plasma to be fully ionized to minimize the ion-neutral collision frequency. The ionization state of a gas in local thermodynamic equilibrium may be calculated using SahaŠs law as a function of the gas temperature:

N j+1 N j = 2 Z j+1 n e Z j 2πm e k B T h 2 3/2 e -∆ϵ j /k B T (7.10)
where N j is the number of particles in the state of ionization j, Z j is the degeneracy of states for the ions i, h is the Planck constant and ∆ϵ j = ϵ j+1 -ϵ j is the energy required to remove the i + 1 electron. In the case of a pure hydrogen gas this system of equation can be solved analytically. Assuming that most of the neutral hydrogen are in the ground state, then g 1 = 2, and g 2 = 1 since the ionized state is a proton. One can rewrite SahaŠs equation as:

N 2 N 1 = 1 2 2πm e k B T h 2 3/2 e -∆ϵ 1 /k B T (7.11)
By conservation of the charge, on may deĄne x = n e /n = N 1 /(N 1 + N 2 ) where x is the ionization fraction with n the total density of hydrogen and protons. Inserting in Eq. 7.11 and solving the resulting second order equation in x, one obtains:

x = -K + √ K 2 + 4K 2 (7.12)
where

K = e -13.6eV /k B T n 2πm e k B T h 2 3/2 (7.13)
The ionization fraction x is showed in Fig. 7.2 as a function of the hydrogen gas temperature T for various densities n. Considering typical parameters encountered in laser-plasma laboratory experiments, n m = 10 19 cm -3 and T = 10 5 K, one obtains a fully ionized hydrogen gas such that the damping effect of ion-neutral collision may be neglected.

Experiments with lower background ions temperature can also be conducted, and in this case the ion-neutral damping effect should be taken into account.

Target Normal Sheath Acceleration setup

Acceleration mechanism and energy spectrum

Plasmas with large drift velocities can be obtained in the laboratory by the use of short pulse lasers. The Target Normal Sheet Acceleration (TNSA) method consists in irradiating a solid target, ionizing the atoms of the front side and accelerating electrons inside the target, which propagate in the solid and escape by the rear side. The large charge separation created generates a strong electric Ąeld parallel to the surface normal, accelerating the ions to high energies, up to tens of MeV, with a low angle of dispersion. The ions then propagate following a ballistic trajectory if no external force is applied. A schematic of the TNSA acceleration process is shown in Fig. 7.3. The protons are the most efficiently accelerated particles, because of their higher charge to mass ratio. This acceleration mechanism generates highly energetic protons beams for a duration ranging from the picosecond to hundreds of picoseconds, depending on the laser pulse duration. The energy spectrum of the accelerated ions can be calculated using a two-Ćuid model for the electrons sufficient to destabilize the non-resonant mode depending on the plasma parameters and ambient magnetic Ąeld intensity considered.

Collisionless shock formation, modified Weibel instability

Depending on the parameters of the background and streaming populations, one may observe the formation of a shock when two plasma interpenetrate, characterized by a jump in density, velocity and magnetic Ąeld at the shock front. Shocks are ubiquitous across a wide range of astrophysical environments. Supernova remnants shocks (Völk et al. [2005]), galaxy clusters shocks [START_REF] Van Weeren | The case for electron re-acceleration at galaxy cluster shocks[END_REF]) and the Earth bow shock (Winske and Leroy [1984], [START_REF] Johlander | Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft[END_REF]) are a few non-exhaustive examples of such astrophysical shocks, which may develop even in collisionless plasmas by the interaction of the Ćow with the background via the electromagnetic Ąeld on scales larger than the Debye length. The upstream particles may be scattered off the electromagnetic Ćuctuations, generated by instabilities arising from the plasma interpenetration, and effectively reducing the Ćuid drift velocity. The formation of collisionless shocks in laboratory experiments is still an active Ąeld of research and poses challenging experimental and technological difficulties [START_REF] Grassi | Efficient generation of turbulent collisionless shocks in laser-ablated counter-streaming plasmas[END_REF]). Such shocks should be avoided in experiments on the non-resonant instability to prevent any substantial loss of drift velocity before the non-resonant mode may grow. [START_REF] Weibel | Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution[END_REF] showed that counter propagating plasmas may excite the exponential growth of purely growing transverse electromagnetic waves with respect to the drift velocity, on time scales of the order of the ion plasma frequency and on spatial scales of the order of the ion inertial length, and therefore providing the necessary electromagnetic Ćuctuations for the formation of a collisionless shock [START_REF] Spitkovsky | Simulations of relativistic collisionless shocks: Shock structure and particle acceleration[END_REF], [START_REF] Bohdan | Magnetic Ąeld ampliĄcation by the Weibel instability at planetary and astrophysical high-Mach-number shocks[END_REF]). The Weibel instability is modiĄed by the presence of an ambient magnetic Ąeld which acts as a stabilizing factor because of the associated magnetic tension in the parallel and oblique case, preventing the growth of the unstable waves at large scales. Supposing non-relativistic drift velocities and purely growing modes, the unstable wavelengths are bounded by the maximum spatial scale [START_REF] Stockem | On the Physical Realization of Twodimensional Turbulence Fields in Magnetized Interplanetary Plasmas[END_REF]): (7.29) where 2 with Ω = eB/m e c. In addition, one may obtain the relative drift velocity threshold for the Weibel instability as:

L Weibel max = 2π c ω p g µ - 1 
ω p = (1 + µ)ω 2 ps 1 + r n r n , µ = m e /m s , ω ps = n s e 2 /ϵ 0 m e , r n = n s /n m and g = (ω p /Ω 2 )r n (u s /c)
u s ≥ v As √ 1 + r n (7.30)
with u s the relative drift velocity, and v As = B/ n s (m s + m e )µ 0 . In order for the particles to not be scattered by the Weibel electromagnetic perturbations, the Larmor radius of the upstream particles should be larger than the Weibel instability wavelength. This yields the condition to avoid the formation of a collisionless shock mediated by the Weibel instability, between the counter-propagating plumes and to the large ambient magnetic Ąeld of 50 T , the maximum wavelength is contained in the interaction region of 4 mm during the entire duration of the experiment. Similarly the Coulomb collision mean free path between the plasma plumes is larger than the interaction region. It becomes comparable for times t ∼ 30 ns, where the instability has already substantially developed, such that particle collisions should not modify the drift velocities of the plumes on time scales comparable to the instability growth time. In this conĄguration, the instability should be able to grow before the two inter-penetrating plasmas become collisional. The modelizations presented in this chapter are based on predictions of the instability growth rate and spatial scales considering analytical density proĄles and particle Ćux. Numerical simulations will be necessary to assess the non-linear evolution of the plasma, and validate the simplifying assumptions used. Additional physical effects such as a Ąnite plasma resistivity will also be needed to be taken into account, as well as potential competing unstable modes, such as the Ąre-hose instability which may disrupt the propagation of the plasma plumes before the growth of the non-resonant mode.

Chapter 8

Conclusions and future prospects

This thesis aims to pursue the ongoing effort of describing the non-resonant streaming instability in non-ideal plasma environments, where the effects of Ąnite plasma temperature and collisions may modify signiĄcantly the unstable waves growth and saturation. These effects are crucial to understand cosmic rays acceleration and propagation in many astrophysics environments as well as to design future laboratory experiments.

A Ąrst approach in the theoretical developments presented in this thesis was to describe the non-resonant instability using an MHD model, considering the background plasma as an electrically charged Ćuid traversed by a population of drifting cosmic rays. Such model allows to describe all of the essential features of the instability. In particular, the fundamental mechanism leading to the unstable feedback loop between the plasma and the electromagnetic waves was investigated. The speciĄc spatial structure of the waves was described, and its importance on the non-linear evolution of the instability was highlighted. Quantitative predictions on the fastest growing modes and associated unstable wavelengths were obtained for arbitrary ion mass and charge, and were compared to the existing kinetic and Ćuid theory for protons population, in the limit of negligible plasma temperature and low density streaming population. It is found that heavy elements can destabilize the non-resonant mode on larger spatial scales, which may help to better conĄne lighter elements with a smaller Larmor radius at shock and thus ease the Ąrst order Fermi acceleration process to high energies for these lighter populations. It would be interesting to study such effects in shocks simulations by considering heavy cosmic rays, and look at their impact on the acceleration of lighter populations of energetic particles.

The effects of the ambient plasma temperature on the instability were then investigated within the framework of kinetic theory, where analytical expressions of its growth rate were derived in the hot, demagnetized regime of interaction for which the background ions Larmor radius is larger than the unstable wavelengths. The results obtained in this thesis were obtained with simplifying assumptions on the electrons population, assumed to remain cold. Their precise distribution function is difficult to infer in the astrophysical context, but complementary calculations with various possible distributions, including electrons thermal effects, could be attempted in the future. The prediction of the saturated magnetic Ąeld intensity is also a challenging issue. The existing estimates were obtained by assuming a cold background plasma. In the hot regime, additional work is needed to obtain corrected estimates. A promising lead is to adapt the results from quasi-linear theory to account for Ąnite Larmor radius effects, in order to derive energy exchange rate which could then be extrapolated to obtain a prediction on the saturated magnetic Ąeld. I have done preliminary work during this thesis, which will need to be pursued to obtain analytical results.

Using the massively parallelized hybrid-Particle-In-Cell code Heckle, numerical simulations of the instability were performed for a wide range of background ions temperature. The simulations explored the cold regime, expected to be correctly described by the modiĄed Ćuid model, the warm regime where the background ions Larmor radius is no longer negligible but remains smaller than the unstable wavelengths, and hot, demagnetized regime. The results were compared to theoretical predictions, and allowed to better constrain the saturation mechanism of the non-resonant mode. This in turn is crucial to determine the saturated magnetic Ąeld intensity as a function of the streaming ions and background plasma temperature. In particular, BellŠs saturation mechanism was investigated, where the combined effect of the increasing magnetic tension at small scales and magnetization of the streaming population at large scales breaks the instability feedback loop. Despite this effect, the simulations presented in this thesis showed the existence of a non-linear phase of growth, where further magnetic Ąeld ampliĄcation can occur because of the background Ćuid inertia. In the cold limit about two-thirds of the cosmic rays drift kinetic energy is converted into magnetic energy. Increasing the temperature of the ambient plasma can substantially reduce the growth rate and the magnitude of the saturated magnetic Ąeld, which may hinder magnetic Ąeld ampliĄcation in astrophysical environments such as supernova propagating in superbubbles, and in galaxy cluster shocks. The simulations have been performed both in 1D and 2D geometry, which yielded qualitatively and quantitatively similar results. The conduct of 3D simulations is a computational challenge that will need to be tackled to validate this tendency, and to better model the spatial structure of the regions of magnetic Ąeld ampliĄcation in the simulations. Moreover, the numerical setup used in this work was adapted to study the non-resonant mode microphysics, but does not include the interplay of the instability with the shock itself in the context of cosmic rays acceleration in supernova remnant and protostellar jets. The transition from the micro (electrons and ions scales) to the macro scale (shock and high energy particles scale) is the subject of active research in the astrophysical plasmas community, which will need to be pursued to understand high energy particles acceleration in a self-consistent way.

SigniĄcant pressure anisotropies in the background plasma were observed in the simulations. Owing to the helical spatial structure of the unstable electromagnetic waves, strong gradients of the non-diagonal terms of the full ions pressure tensor are created and oppose the instability growth, which leads to a reduced magnetic Ąeld growth rate and intensity at saturation. This result suggests that MHD and MHD-PIC simulations with isotropic closure may not be adequate to describe all of the essential features of the non-resonant mode, as a more sophisticated closure may be required to reproduce the anisotropic heating. These limitations of a Ćuid description of the background ions may restrict its range of applicability. In this direction, it would be interesting to perform comparative simulations between hybrid-PIC and MHD-PIC models in order to assess precisely the effects overlooked by the Ćuid description.

The mitigation of the anisotropies by particle collisions, which are important in denser environments such as H II regions and molecular clouds, was also investigated numerically. The Coulomb collisions between the background ions were shown to promote the growth of the instability, provided that the collision frequency is sufficiently large. In addition, protons-neutral hydrogen collisions have been implemented using a Monte-Carlo method, and are found to rapidly damp the unstable waves, conĄrming previous linear theory calculations. Other types of interactions could be considered in the future, such as charge exchange which may further damp the electromagnetic waves.

Studying the non-resonant mode in the laboratory is potentially within the reach of laser experiments with tens of Tesla externally applied magnetic Ąelds. However the large beam densities, drift velocities and ambient magnetic Ąeld required, together with the lack of theoretical knowledge on the effects of particle collisions on the development of the instability, have made its experimental investigations elusive. This work constitutes an additonal step toward Ąlling this gap in our knowledge. Two possible setups which may allow us to observe the non-resonant mode in the laboratory were described, as well as theoretical predictions on the expected time and spatial scales involved. Several considerations which need to be taken into account when attempting to observe the instability in laboratory conditions were presented, from the effects of temperature and collisions in typical laboratory plasmas, to the possible formation of a Weibel-mediated shock. The experiments involve high intensity lasers, coupled with source of strong magnetic Ąeld (∼ 0.1M G) on typical scales of the order of the centimeter for tens of nanoseconds. They satisfy the condition of super-Alfvénic Ćows propagating in a magnetized, collionless background, and may excite waves on time and spatial scales compatible with the constraints on the size and lifetime of strongly magnetized laboratory plasmas. Such experiments will allow us to observe the instability for the Ąrst time in laboratory conditions, and permit to confront the results to the existing Ćuid and kinetic theory, in addition to constrain the saturation mechanism of the non-resonant instability. Their modelling with state-of-the-art numerical codes is the object of on-going studies, and will require a multi-scale approach to model the whole interaction, from the laser energy deposition of the target to the propagation of the plasma plumes or TNSA accelerated protons. In addition, other potentially important effects such as the plasma resistivity will need to be taken into account. During this thesis I carried out preliminary work to obtain the dispersion relation while including such effects, and the non-analytical expressions obtained will require additional developments to be applied for future experiments. unstable k (in unit of l -1 0 ), as a function of time between t = 4 Ω -1 0 and t = 30 Ω -1 0 . The condition k max = k min is indicated with the vertical dashed line at t NLT = 18.5 Ω -1 0 , and reported in other panels. Greyed regions correspond to stable wave numbers. Middle panel: Ąrst order time derivative of the main protons normal velocity u × m (in unit of v A0 , orange solid line) and perturbed magnetic Ąeld intensity second order time derivative (in unit of B 0 and multiplied by a factor 100, green solid line). Lower panel: perturbed magnetic Ąeld intensity B 1 (green solid line) and main protons normal Ćuid velocity component (orange solid line). The magnetic Ąeld saturation is indicated with the vertical dashed line at t sat = 21 Ω -1 0 . Values are taken from 1D simulation with a main protons temperature T m = T 0 . . 5.9 Magnetic Ąeld energy density W B = B 2 /2µ 0 normalized to the initial cosmic rays drift kinetic energy density W cr = n cr m p u 2 cr /2 (t 0 ) = 50 l -3 0 m p v 2 A0 , as a function of the main protons temperature for 1D simulations. Blue curve corresponds to the ratio at non-linear transition (noted N LT ) and green curve to the ratio at magnetic saturation (noted sat). The non-linear transition time is found numerically by equating k max = k min averaged in the simulation box. The two dashed vertical lines corresponds to the limits of the warm and hot regimes of interaction as in Fig. 6.3 Upper panel: evolution of the spatial average of the perpendicular and parallel components P ⊥ m and P ∥ m (to the total magnetic Ąeld) of the main protons pressure tensor calculated from the local macroparticles distribution (solid lines) and magnetic Ąeld energy density W B = B 2 /2µ 0 (dashed black line) in units of l -3 0 m p v 2 A0 , obtained from a 1D collisionless simulation. The dotted orange and cyan lines show the CGL prediction as from Eqs. 6.9 and 6.10 obtained from the simulations. Lower panel: map of the anisotropy parameter P ⊥ /P ∥ at the end of the exponential phase of growth in a 2D collisionless simulation between x = 0 and x = 800 l 0 . . . . . . . . . . . . 0 . Note the different color scales. The solid and dashed black lines indicate the threshold for the ion-cyclotron γ ci (left panels) and mirror γ mi (right panels) modes obtained from linear kinetic theory assuming a homogeneous plasma with bi-Maxwellian populations [START_REF] Hellinger | Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations[END_REF]). . . . . . . . . . . . . . 6.5 Same as Fig. 6.4 in a 2D collisionless simulation, during the exponential phase of growth. The larger cell count due to the higher dimensionality (2 × 10 5 cells) yield better statistics than in 1D simulations (10 3 cells). . . .

6.6

Upper and lower left panels: Cosmic rays induced magnetic force -j cr × B (blue solid line) and main protons pressure gradients -∇ • P m (red solid line) components in the plane perpendicular to B 0 (e y , e z ), as a function of space between x = 100 and x = 200 l 0 . Data is taken during the exponential growth phase at t = 30 Ω -1 0 in a 1D collisionless simulation. Upper and lower right panels: with Coulomb collisions at a frequency ν 0 = 27 Ω 0 . The grey regions highlight the pressure gradients contribution, convoluted with a Gaussian to reduce Ćuctuations at the mesh size scale l 0 in the Ągure. . . 6.7 Perturbed magnetic Ąeld intensity B 1 = ♣♣B -B 0 ♣♣ (in units of B 0 , blue lines) and normal main protons Ćuid velocity u × m (in units of v A0 , red lines) as a function of time, for the collisionless case (dashed line) and collisional case (solid line, ν 0 = 27 Ω 0 ). . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 Parameter space reproduced as from Zweibel and Everett [2010] and considering n m = 10 19 cm -3 and T m = 10 5 K. The black triangle corresponds to the parameters ϕ s = 10 25 cm -2 s -1 and B = 10 T (0.1M G), which may be obtained in current experimental facilities, and lies in the ŞstandardŤ, cold non-resonant mode unstable region. The green line corresponds to the streaming population non-resonant condition, the blue line to the transition to the thermally modiĄed regime, the two vertical black lines to the resonance condition on the streaming population (left) and demagnetization of the background ions in the thermally modiĄed regime (right), and the red line to the background ions demagnetization in the standard regime. . . .
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 44 Figure 4.4: Schematic view of the spherical coordinates used to calculate the post collision velocity u(t + ∆t) of a pair of macroparticles, as a function of the relative velocity u(t) before the collision.
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  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2 Growth rate dependency with collision frequency . . . . . . . 98 6.2.1 Neutral collisions . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2.2 Coulomb collisions . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.3 Full pressure tensor effects . . . . . . . . . . . . . . . . . . . . . 102 6.3.1 Pressure anisotropies in the amplified magnetic field . . . . . . 102 6.3.2 The role of micro-instabilities . . . . . . . . . . . . . . . . . . . 103 6.3.3 The effects of anisotropies on the non-resonant mode . . . . . . 105 6.3.4 Destabilization by Coulomb collisions . . . . . . . . . . . . . . 107 6.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 7 . 2 :

 72 Figure 7.2: Ionization fraction x calculated with Eqs. 7.12 and 7.13 as a function of the hydrogen gas temperature T m for various gaz densities n.
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 5 Perturbed magnetic Ąeld phase ϕ B = tan -1 (B z /B y ) (black solid line) and main protons particle velocity phase ϕ v = tan -1 (v z /v y ) (black dots) as a function of space (from 600 to 800 x/l 0 ) for 1D simulations, during the linear growth phase phase. Upper panel: T m = T 0 . Lower panel: T m = 25 T 0 . 5.6 Main protons Ćuid velocity in a local magnetic Ąeld aligned basis. The blue, orange and red solid lines correspond to the e ∥ , e × and e ⊥ components respectively. The grey dashed vertical line indicates the instability saturation at t = 21 Ω -1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 Magnetic Ąeld and main protons velocity phase difference ∆ϕ map at three different times: beginning of the linear growth phase (t = 15 Ω -1 0 ), during the linear growth phase (t = 35 Ω -1 0 ), after saturation (t = 45 Ω -1 0 ). The difference is calculated locally as ∆ϕ = tan -1 (sin(ϕ B -ϕ v )/ cos(ϕ B -ϕ v )). Obtained from a 2D simulations with T m = 25 T 0 . The theoretical prediction from the Ćuid model yields a uniform phase shift ∆ϕ = π/2, which is recovered in the simulations, with modulations due to the high temperature of the main protons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.8 Upper panel: maximum (blue solid line) and minimum (red solid line)
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 4 Distribution (cell count) of the pressure anisotropy P ⊥ m /P ∥ m as a function of β ∥ m = 2µ 0 P ∥ m /B 2 , obtained in a 1D simulations without collisions at different times. From top to bottom: t = 15, 25, 35, 45, 55 Ω -1
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  .1: Growth rate γ hot (upper panel) and phase velocity v ϕ = ω r,hot /k (lower panel) as a function of the wave number k, obtained from Eqs. 3.104 and 3.105. Parameters used are, in normalized units: n cr /n m = 0.01, u cr = 100 v A0 . The black, red and orange curves corresponds to T m = 10 2 , 10 4 , 10 6 T 0 respectively. The dotted portion of each curve corresponds to wave numbers where the demagnetized main protons assumption is not fulfilled. The grey vertical dashed line corresponds to k = k max from Eq. 2.34.

Table 4 .

 4 1: Normalized parameters used in the simulations for the thermally modiĄed non-resonant mode, noted ŞTHŤ for thermal, with β m = 2(v T m /v A0 ) 2 . ∆x and ∆y are the mesh size in the x and y directions, N cr and N m are the initial number of macroparticles per cell for the cosmic rays and main protons populations respectively.

	dim n cr /n m u cr	β m	T m		T cr T e	L x /L y	∆x/∆y ∆t N cr / N m
	1DTH 1D	0.01	100 0.2 -400	0.1 -200	1	1 1000/	1/	10 -4 500/500
	2DTH 2D	0.01	100 20, 50, 100 10, 25, 50 1	1 1000/200	1/1	10 -4	75/75
	dim n cr /n m u cr	ν 0	T m T cr T e		L x /L y	∆x/∆y ∆t N cr / N m
	1DCC 1D	0.01	50 0.01 -100 1	1	1 1000/	1/	10 -5 100/100
	1DCN 1D	0.01	50 0.01 -30	1	1	1 1000/	1/	10 -5 100/100
	2DCC 2D	0.01	50	27	1	1	1 1000/200	1/1	10 -4 100/100

.5. The resulting scattering angle for each individual encounter can be large and depends on the atomic properties of the colliding particles. In this study, only proton-hydrogen collisions are considered. Such collisions are characterized by a collision frequency ν in = n n σ in ∆u, where

Table 4 .

 4 2: Normalized parameters used in the simulations including particle collisions, noted ŞCCŤ for Coulomb collisions and ŞCNŤ for collisions with neutrals with ν 0 the collision frequency between the main protons, and with the hydrogen population.

cm -3 in the cold interstellar medium and in the solar wind) such that particle collisions occur on time scales much longer than the plasma processes of interest. In the case of the non-resonant mode, considering a supernova shock which propagates at a velocity u cr = 10 3 km.s -1 in an cold and tenuous interstellar medium with a density n m = 1 cm -3 , an ambient magnetic Ąeld B = 5 µG, a low temperature T m = 10 4 K and a cosmic rays Ćux n cr u cr = 10 4 cm -2 s -1(Zweibel and Everett [2010]), one obtains a protons Coulomb frequency (Eq. 4.61) and instability growth rate (Eq.

2.37) as ν 0 /γ cold ≈ 3 × 10 -2 . In this case Coulomb collisions can be considered negligible a priori, which is the assumption commonly made in the literature. However, increasing the plasma density to n m = 90 cm -3

Remerciements

Introduction

The theory and numerical simulations of plasmas constitute two invaluable tools in understanding the physics of the non-resonant streaming instability, as well as its role in the ampliĄcation of the magnetic Ąeld and in the acceleration of cosmic rays in astrophysical shocks. However, theoretical investigations such as the one presented in this thesis are restricted to the linear phase of the instability, and give few information on the late evolution of the plasma. Numerical simulations allow us to overcome this limitation, but are by nature limited to the system of equation which is numerically solved. In addition, the computational cost becomes prohibitive for ŞrealisticŤ plasma parameters observed in astrophysical systems, and restricts most numerical investigations to idealized situations.

The third way to approach the problem is by studying actual astrophysical plasmas, which can be observed from the Earth via the radiations they emit. As presented in Sec.

Appendix A

Fluid linear theory for arbitrary ions

The following derivations complement those presented in Sec. 2.2 and retain the effects of arbitrary charges and masses.

A.1 Growth rate and unstable wavelengths

The plasma is supposed quasi-neutral:

where Q e = -en e is negative with e the elementary charge, such that the background plasma (main ions and electrons) is electrically charged: Q e + Q m = -Q cr . This property will be characterized by the parameter:

which is positive. In the case of multiple ion species, this parameter would be written

The total current can be expressed with Maxwell-AmpèreŠs law as:

where µ 0 is the magnetic permeability and c is the speed of light. The electron population possess a drift velocity relative to the main ions, in the same direction as the cosmic rays such that:

In the case of cosmic rays made of multiple ion species, one would also need to take into account the contribution of the current these species carry in AmpèreŠs law. In this case the effective cosmic rays current is the sum of each individual ion component. Performing a summation of the main ions and electrons momentum conservation equations, and inserting AmpèreŠs law, one Ąnds:

where d/dt = ∂/∂t + u • ∇ is the material derivative. The density, Ćuid velocity and pressure tensor associated to the background plasma are deĄned as:

such that ρ ≈ ρ m . In the case of multiple ion species the sum should be performed over the ion populations. Considering m e ≪ m p and neglecting the electron pressure gradients by supposing a negligible electron temperature, OhmŠs law can be written as:

If one supposes spatial scales above the ion inertial length, the OhmŠs law can be written while neglecting the Hall term -J × B/Q e . Using u m × B ≈ u × B, one obtains:

Inserting Eq. A.10 in Eqs. A.5 and in FaradayŠs law, and supposing an incompressible plasma such that ∇ • u = 0 as from the density conservation equation, one obtains: .12) with j cr = Q cr u cr the cosmic rays current, supposed constant. Linearizing Eqs. A.11 and A.12 while neglecting second order terms yields:

where Ω 0 = eB 0 /m p is the proton cyclotron frequency, m p is the proton mass and j cr the constant, zeroth order cosmic rays current. The subscripts Ş0Ť and Ş1Ť refer to the order of the linearization. The Ćuid velocity and magnetic Ąeld perturbations in Eqs. A.13 and A.14 are coupled by only certain terms, which allows to distinguish coupling and non-coupling contributions. First, considering only the non-coupling terms (i.e. neglecting the Ąrst and third terms of Eq. A.13 and the right-hand side of Eq. A.14) one directly obtains a rotation of the background Ćuid at a frequency:

and a rotation of the magnetic Ąeld perturbation at a frequency: .16) Retaining only the coupling terms (i.e. neglecting the second term in the right-hand side of Eq. A.13 and the second term in the left-hand side of Eq. A.14) and in Fourier space, the equations become:

-iωu

Rewriting as a function of the magnetic Ąeld perturbation yields:

By isolating ω one Ąnds the dispersion relation of the non-resonant mode as:

One obtains an instability for ♣k♣ < k max with:

The growth rate γ(k) may then be obtained in the form:

Searching for an extremum of the growth rate yields the fastest growing wavenumber:

which is half of the maximum unstable wavenumber. Inserting in the growth rate expression, one obtains the fastest growing mode for the non-resonant instability for arbitrary ions as:

In the range of wave numbers ♣k♣ ≪ k max , the contribution of the Ąrst term in the righthand side of Eq. A.13 corresponding to the magnetic tension can be neglected. The instability may then be described by the simpliĄed system of equations:

One obtains an exponential growth of the electromagnetic wave with a growth rate γ(k)

(A.28)

A lower limit for the unstable wave numbers can be obtained by considering the time (♣k♣u cr ) -1 for cosmic rays to cross one wavelength, which has to be smaller than the cyclotron period ( mp mcr qcr e Ω 0 ) -1 . This gives the minimum k as:

These results are further investigated in hybrid-PIC simulations in Sec. 5.2.3. The results in this appendix can be compared with the existing literature, which is focused on astrophysical applications where the streaming ions population is made of very tenuous and essentially protons cosmic rays. In this case

and one recovers the existing linear theory results for a low temperature plasma.

A.2 Energy conservation, anisotropic heating

In the following, the pressure and heat Ćux terms will be neglected with respect to the terms involving the electromagnetic Ąeld. The conservation equation for the background plasma kinetic and internal energies can be expressed as:

where ρU = 3p/2 with p the isotropic part of the pressure tensor,

∇ × B/µ 0j cr the background current and j cr = Q cr u cr the current carried by the ions cosmic rays. One may separate the internal and kinetic part of the energy conservation equation by calculating the kinetic energy conservation equation, which can be obtained from the background plasma momentum density conservation equation:

Multiplying this equation by vecu and neglecting the pressure gradients, one obtains the balance equation for the kinetic (directed) energy of the background as:

Subtracting Eq. A.36 from Eq. A.34, one obtains the conservation equation for the internal energy of the background Ćuid:

The electromagnetic energy density conservation, neglecting the electric energy with respect to the magnetic energy, gives:

Finally the cosmic rays kinetic energy conservation equation reads:

The sum of these conservation equations yields zero, which corresponds to the conservation of the total (kinetic, internal and electromagnetic) energy of the system. Using the electric Ąeld obtained from OhmŠs law E = -χu × B + (χ -1)u cr × B (Eq. A.10), one obtains the intermediary relations: .43) where F L = (∇ × B) × B/µ 0 is the Lorentz force. Reporting in the conservation equations gives:

Appendix B

Growth rate numerical measurement

The growth rates γ measured in Chapters 5 and 6 are obtained by calculating the norm of the perturbed magnetic Ąeld B 1 = B -B 0 , averaging the result over the simulation domain, and Ątting an exponential function of the form f (t) = Ae γt to the average perturbed magnetic Ąeld as a function of time. The Ąt is performed over the linear phase of the instability, which end is found by calculating the non-linear transition condition

This appendix presents a critical analysis of this method of growth rate measurement in the simulations. Indeed, care must be taken when comparing the Ątted numerical growth rate to the analytical expressions of the non-resonant mode growth rate at the fastest growing wavenumber. This growth rate corresponds, by its very deĄnition, to a monochromatic perturbation. Of course in the simulations all the spectrum of wavenumbers can develop, bounded by the spatial size and resolution used. Obtaining a growth rate for a speciĄc wavenumber can be achieved by performing a Fourier transform of the perturbed magnetic Ąeld, and by selecting the negative helicity part of the spectrum associated to the non-resonant mode, as done in Sec. 5.2.4). The main advantage of this procedure is that a direct comparison with the linear theory results can potentially be made, however the results are sensitive to the numerical noise present in the simulations. This may render the growth rate measurement delicate, and may require prior Ąltering and smoothing, by convoluting the signal with a Gaussian for example, at the cost of physical accuracy. In addition to these numerical concerns, the physics of the non-resonant mode must also be taken into account when trying to compare numerical and analytical growth rates. The growth rate obtained in the linear theory does not take into account the reduction of the maximum unstable wavenumber with increasing magnetic Ąeld over time, nor the increase in minimum wavenumber. Consequently the growth rate should be measured during a short period of time, i.e. before being modiĄed by the increasing magnetic pressure at small scales or the cosmic rays magnetization at large scales. The time period should be adjusted for each individual wavenumber for a given simulation. The period is a function of the growth rate, and can be short (of the order ∆t ∼ 5 Ω -1 0 ) which increases the noise in the results.

An example of a measurement of the magnetic Ąeld growth rate is given in Figs. B.1 and B.2. The results presented are for a simulation with the parameters n cr /n m = 0.01, u cr /v A0 = 100, T m = T 0 and no collisions such that γ cold = 0.5 Ω 0 . The same problematic of growth rate measurement arises in simulations including collisions, being with neutrals or among charged particles. The measured growth rate is given for a short time period of t = 5 Ω -1 0 for the linear phase, together with the theoretical prediction (Eq. 2.2.3) as a function of the wavenumber. The ŞgoodnessŤ of the Ąt R 2 is also shown, calculated with the PearsonŠs test as R 2 = (f (t) -y) 2 / (y -ȳ) 2 with f (t) the Ątting function, y the data and ȳ the mean, and is an indicator of the quality of the numerical Ąt with R 2 → 0 corresponding to a good Ąt with the data. The spectrum can be decomposed into three parts. Above k = k max (rightmost dashed line), the signal is very noisy, and the R 2 is large indicating that the exponential Ąt is a bad approximation of the data, consistent with the fact that the non-resonant mode is stable above k max . The second part, corresponding to wave numbers 0.1 l -1 0 < k < k max , is well described by an exponential function, and Ąts well with the theoretical prediction. Finally the third part k < l -1 0 is poorly described by an exponential, relative to the second part. Increasing the duration of the time period over which the Ąt is made to t = 10 Ω -1 0 , one obtains a reduced growth rate for k = k fast (Eq. 2.36) illustrating that those wavenumbers have started to saturate due to the increasing magnetic tension. This is in contrast to lower wavenumbers for which the growth rate remains very similar. In both cases, the exact value of the growth rate at a given wavenumber is noisy in the simulations, and varies with the Ątting time window. Since there is no clear criteria to deĄne the duration of this window, one could be tempted to choose the one that best Ąts the theoretical prediction, which contradicts the original goal of verifying theoretical results with simulations.

For this reason, growth rate measurements on a monochromatic perturbation of the non-resonant mode in the simulations can be misleading. In the work presented in this thesis, the growth rate measurements in the simulations have been obtained by studying space averaged quantities and over the entire linear phase, thus integrating over the whole k spectrum. Given the bell-shaped growth rate γ(k), the measured growth rate is smaller than the maximum monochromatic value, by a factor ∼ 2 for the parameters considered in the simulations, and represents an average growth rate over space and over the exponential phase.
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