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Abstract

Cosmic rays can power the exponential growth of a seed magnetic Ąeld by exciting

instabilities that feed on the kinetic energy of the particles collective streaming motion.

Of the different streaming instabilities, the non-resonant mode, also called BellŠs mode,

has received growing attention as it can amplify the magnetic Ąeld well beyond its initial

intensity, and generate the necessary turbulence to help conĄne and accelerate cosmic rays

in supernovae remnants and young stellar jets shocks via the Ąrst order Fermi mechanism.

In general, it can develop in a large variety of environments, ranging from the cold and

dense molecular clouds to the hot and diffuse intergalactic medium.

This work aims at elucidating the behaviour of the non-resonant cosmic rays streaming

instability in such environments, where thermal and collisional effects can substantially

modify its growth and saturation. In the Ąrst part of this thesis, we describe the instability

within Ćuid theory by highlighting the basic physical mechanism leading to the exponential

ampliĄcation of electromagnetic perturbations, and obtain analytical predictions for

the growth rate for arbitrary ion elements. Owing to its non-resonant nature, a Ćuid

description is a sufficiently accurate model of the instability only when the background

plasma temperature is negligible. To study the instability in hot environments, where

Ąnite Larmor radius effects are important, we then resort to linear kinetic theory and

extend the existing analytical results to the case of demagnetized ions. We Ąnd that the

unstable wavelengths are not entirely suppressed, but are instead shifted toward larger

scales with a strongly reduced growth rate.

The linear theory results are conĄrmed, and extended to the non-linear evolution in the

second part of the thesis, by multi-dimensional hybrid-Particle-In-Cell simulations (kinetic

ions and Ćuid electrons). The simulations highlight an important reduction of the level of

magnetic Ąeld ampliĄcation in the hot regime [Marret et al. MNRAS 2021], indicating that

it may be limited in hot astrophysical plasmas such as in superbubbles or the intergalactic

medium. In colder and denser environments, such as H II regions and molecular clouds,

particle collisions in the background plasma must be taken into account. We investigate

numerically their impact by including Monte-Carlo Coulomb and neutral collisions in the

simulations. We Ąnd that in poorly ionized plasmas, where proton-hydrogen collisions

dominate, the instability is rapidly suppressed and our results from kinetic simulations

conĄrm quantitatively existing, multi-Ćuid linear theory calculations. In contrast, we Ąnd

that in fully ionized plasmas, Coulomb collisions unexpectedly favour the development

of the instability by reducing self-generated pressure anisotropies that would otherwise

oppose its growth.

Numerical simulations are currently the only means to investigate the non-linear

evolution of the instability and to obtain quantitative estimates of the saturated magnetic

Ąeld intensity. The Ąnal part of this thesis is devoted to answer the growing need for an

experimental veriĄcation of the linear theory and simulations predictions. We describe

the requirements on the plasma parameters to generate the instability in an experiment,

and propose two possible setups based on existing high-power laser facilities, aiming at

observing and characterizing the non-resonant mode for the Ąrst time in the laboratory.
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Résumé

Les rayons cosmiques peuvent alimenter la croissance exponentielle dŠun champ magnétique

préexistant en déclenchant des instabilités qui grandissent grâce au mouvement de dérive

collectif des particules. Parmi les différentes instabilités de dérive, le mode non-résonnant,

aussi appelé mode de Bell, a fait lŠobjet dŠune attention croissante car il peut ampliĄer le

champ magnétique au-delà de son intensité initiale, et génère la turbulence nécessaire pour

aider au conĄnement et à à accélération des rayons cosmiques. De manière générale, il peut

se développer dans une grande variété dŠenvironnements, allant des nuages moléculaires

froids et denses au milieu intergalactique chaud et diffus.

Ce travail vise à élucider le comportement de lŠinstabilité non-résonante de dérives des

rayons cosmiques dans de tels environnements, où les effets thermiques et collisionnels

peuvent modiĄer considérablement sa croissance et sa saturation. Nous décrivons dŠabord

lŠinstabilité dans le cadre de la théorie Ćuide en mettant lŠaccent sur le mécanisme

physique conduisant à lŠampliĄcation exponentielle des perturbations électromagnétiques,

et obtenons des prédictions analytiques du taux de croissance pour des éléments ioniques

arbitraires. En raison de sa nature non-résonante, une description Ćuide est suffisante

pour saisir les principales caractéristiques de lŠinstabilité lorsque la température du plasma

ambiant est négligeable. Pour étudier lŠinstabilité dans les environnements chauds, où les

effets du rayon de Larmor Ąni sont importants, nous recourons à la théorie cinétique linéaire

et étendons les résultats analytiques existants au cas dŠions découplés des perturbations

magnétiques. Nous obtenons que les longueurs dŠonde instables ne sont pas entièrement

supprimées, mais sont plutôt déplacées vers des échelles plus grandes avec un taux de

croissance fortement réduit.

Les résultats de la théorie linéaire sont conĄrmés, et étendus à lŠévolution non-linéaire

dans la deuxième partie de cette thèse, par des simulations multi-dimensionnelles hybrides

de type Şparticle in cellŤ (ions cinétiques et électrons Ćuides). Les simulations mettent en

évidence une réduction importante du niveau dŠampliĄcation du champ magnétique dans

le régime chaud [Marret et al. MNRAS 2021], ce qui indique quŠil peut être limité dans

les plasmas astrophysiques chauds tels que les superbulles ou le milieu intergalactique.

Dans les environnements plus froids et plus denses, comme les régions H II et les nuages

moléculaires, les collisions entre particules dans le plasma ambiant doivent être prises

en compte. Nous étudions numériquement leur impact en incluant dans les simulations

avec une méthode Monte-Carlo les collisions proton-proton et proton-hydrogène. Nous

obtenons que lŠinstabilité est rapidement supprimée dans les plasmas faiblement ionisés,

où les collisions proton-hydrogène dominent. Ces résultats de simulations cinétiques

conĄrment quantitativement les calculs existants de la théorie linéaire multiĆuide. En

revanche, nous constatons que les collisions coulombiennes favorisent de manière inattendue

le développement de lŠinstabilité dans les plasmas entièrement ionisés, en réduisant des

anisotropies de pression auto-générées qui autrement sŠopposeraient à sa croissance.

Les simulations numériques sont actuellement le seul moyen dŠétudier lŠévolution

non-linéaire de lŠinstabilité et dŠobtenir des estimations quantitatives de lŠintensité du

champ magnétique après saturation. La dernière partie de cette thèse est consacrée à la

conception dŠexpériences dédiées à la vériĄcation des prédictions de la théorie linéaire et

des simulations. Nous décrivons les conditions requises sur les paramètres du plasma pour

générer lŠinstabilité dans une expérience, et proposons deux conĄgurations possibles basées
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sur les installations laser haute puissance existantes, en visant à observer et caractériser le

mode non-résonant pour la première fois en laboratoire.
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Chapter 1

Introduction

Contents

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Context

This thesis constitutes a new contribution to the vast Ąeld of instabilities in plasma

physics. Plasmas represent the majority of the matter visible in the Universe, from the

auroras on Earth to the interstellar clouds illuminated by nearby stars. The charged

particles that form the plasma state are characterised by collective motions mediated by

the electromagnetic Ąeld, which lead to an extraordinary wealth of phenomena. Among

these, plasma instabilities play an important role in numerous astrophysical environments

as they can efficiently redistribute the energy between the Ąelds and the ionized particles.

This is of particular importance for the acceleration and transport of cosmic rays, in the

Galaxy and beyond.

Cosmic rays are charged particles which propagate in space at velocities close to the

speed of light. Despite the historical appellation of ŞraysŤ, they are not electromagnetic

radiation, but mainly constituted of protons with a small fraction of heavier elements,

of positrons and of electrons. The Ąrst detection of cosmic rays dates back to balloon

experiments led by Victor Hess in 1912, and signiĄcant progress have been made since

in the detection techniques and instruments both on Earth and with satellites. The

observations have unveiled that cosmic rays originating from outside the solar system

cover a large range of energies, from tens of MeV up to ultra-high energies above 1011

GeV. The cosmic rays energy spectrum is shown in Fig. 1.1. It follows a power law, with

varying index depending on the energy, as E−2.7 from the GeV to the PeV (106 GeV, Hillas

[1984]), and steepens at a few PeV corresponding to the so-called ŞkneeŤ of the cosmic

rays spectrum. It then Ćattens in the range of 1011 GeV, corresponding to the ŞankleŤ,

and terminates at 1013 GeV (Cronin [2005]).

Understanding the acceleration and the transport of the cosmic rays is a central

question in astrophysics, as they contain an important fraction of the energy released

in supernovas (Helder et al. [2012]), and contribute as much as the magnetic Ąeld and
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CHAPTER 1. INTRODUCTION

which yields:

Emax = 1014 rg

λ
BµGτ1000u

2
7 (1.1)

where Emax is in eV, rL and λ are the Larmor radius and scattering mean free path of

the cosmic ray respectively, u7 is the shock velocity in units of 107 m.s−1 and τ1000 is the

age of the supernova remnant in kiloyears. The most favorable assumption is to suppose

λ = rg, corresponding to the Bohm diffusion regime (Stage et al. [2006], Shalchi [2010]).

Considering u7 = 0.3, BµG = 1 and τ1000 = 1 as in the case of SN 1006 (Winkler et al.

[2014]), one obtains a maximum energy Emax ∼ 1013 eV, much smaller than the knee at

1015 eV. These, and similar estimates, show that if cosmic rays are to be accelerated to

high energies via the First Order Fermi process, then the turbulent magnetic Ąeld at the

shock front needs to be ampliĄed, by more than one order of magnitude with respect to

the typical interstellar magnetic Ąeld intensity B ∼ µG.

In this direction, the ion streaming instabilities constitute a promising candidate to

produce the necessary ampliĄcation of the magnetic Ąeld, by converting the drift kinetic

energy of the cosmic rays crossing the shock front and leaking in the ambient medium into

magnetic energy. These plasma instabilities develop when a population of energetic ions,

such as cosmic rays, drifts at super-Alfvénic speeds in a background plasma permeated by

a magnetic Ąeld (Kulsrud and Pearce [1969], Winske and Leroy [1984], Bell [2004], Amato

and Blasi [2009]). The collective drifting motion of these energetic particles is thought to

drive the exponential growth of electromagnetic perturbations in many space (Gary [1991])

and astrophysical (Völk et al. [2005], Cui et al. [2016]) plasmas. Depending on the plasma

conditions, three different modes exist (Gary et al. [1984]): two of them rely on resonant

particle-wave interactions, referred to as right-hand and left-hand resonant modes, while

the third mode is instead non-resonant and its importance was recognized in early work

on the EarthŠs ion-foreshock (Sentman et al. [1981], Onsager et al. [1991], Akimoto et al.

[1993]). The non-resonant mode, also called BellŠs mode in the astrophysics literature, has

become central to the diffusive acceleration of cosmic rays in supernovae remnants shocks.

This mode is thought to be able to amplify the magnetic Ąeld to values much larger than

the ambient magnetic Ąeld, sufficiently to allow the acceleration of cosmic rays to PeV

energies (Bell [2004], Amato and Blasi [2009]). This is in contrast to the two resonant

modes which are limited to a magnetic Ąeld ampliĄcation lower than the ambient magnetic

Ąeld (Bell [2013]). However, potentially important damping mechanisms may also need to

be taken into account when considering the level of magnetic Ąeld ampliĄcation generated

by the non-resonant mode. These are related to the conditions of the environment where

the shock is propagating, such as the ambient plasma temperature (Zweibel and Everett

[2010]) or the relative drift and collisions (ambipolar diffusion) between ambient ions and

neutrals (Reville et al. [2008]).

Indeed, the non-resonant mode is expected to develop in a large variety of environments,

ranging from the cold and dense molecular clouds to the hot and diffuse intergalactic

medium. In this context, this thesis aims at expanding our knowledge on the behaviour

of the instability in these environment, and in particular to study the importance of

thermal effects in hot environments such as in superbubbles, and the effects of collisions

in the ambient plasma, with neutrals but also among charged particles. Collisions can

be important in many environments, such as H II regions, molecular clouds, as well as in

laboratory plasmas. This latter case is of particular interest. Indeed numerical simulations
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CHAPTER 1. INTRODUCTION

are currently the only means to investigate the non-linear evolution of the instability

and to obtain quantitative estimates of the saturated magnetic Ąeld intensity. There is

consequently a growing need for an experimental veriĄcation of the predictions made by

linear theory and simulations. Work in this direction has begun with the right-hand mode

which was investigated in recent experiments on the Large Plasma Device (Heuer et al.

[2018]). The non-resonant streaming instability has never been observed in the laboratory.

Although the parameters required are potentially within the reach of high intensity laser

experiments with tens of Tesla externally applied magnetic Ąelds (Albertazzi et al. [2013],

Ivanov et al. [2021]), the large streaming population densities, drift velocities and ambient

magnetic Ąeld required, together with the lack of theoretical knowledge on the effects

of particle collisions on the development of the instability, have made its experimental

investigations elusive. The Ąnal part of this thesis is devoted to tackle this problematic.

The manuscript is organized in six main chapters, with a natural progression from the

theoretical study of the non-resonant streaming instability, complemented with numerical

simulations of its non-linear evolution, and a Ąnal part dedicated to the design of laboratory

experiments. In Chapter 2, the instability is described within Ćuid theory to highlight

the basic physical mechanism leading to the exponential ampliĄcation of electromagnetic

perturbations. In that chapter analytical predictions for the growth rate for arbitrary

ion elements are obtained for the Ąrst time. Although the effects of heavier ions may be

considered only as corrections (the cosmic rays are essentially made of protons), in the

astrophysical context helium is also present and can modify the instability. In addition, it is

necessary to take into account heavy ions accelerated in supernova remnants to explain the

observed abundances in the cosmic rays spectrum (Tatischeff et al. [2021]). In the context

of laboratory experiments, heavy ions effects can also become important as elements

such as carbon and argon are frequently used. Owing to its non-resonant nature, a Ćuid

description is a sufficiently accurate model of the instability only when the background

plasma temperature is negligible. In order to study the instability in hot environments,

where Ąnite Larmor radius effects are important, linear kinetic theory is applied to extend

the existing analytical results to the case of demagnetized ions. This is presented in

Chapter 3, where it is found that the instability is not entirely suppressed, but the unstable

wavelengths are instead shifted toward larger scales with a strongly reduced growth rate.

The linear theory results are conĄrmed, and extended to the non-linear evolution by

multi-dimensional hybrid-Particle-In-Cell simulations (kinetic ions and Ćuid electrons).

The code used is presented in Chapter 4, together with the algorithms, the normalizations,

as well as the numerical implementation of particle collisions. The simulations results

are then presented in Chapter 5 and show a large ampliĄcation of the magnetic Ąeld in

the cold regime, which is a key property of the instability in the context of cosmic rays

acceleration at shocks. The simulations also highlight an important reduction of the level

of magnetic Ąeld ampliĄcation in the hot regime, indicating that it may be limited in hot

astrophysical plasmas such as the intergalactic medium. In colder and denser environments,

such as H II regions and molecular clouds, particle collisions in the background plasma

must be taken into account. This is investigated numerically in Chapter 6 by including

Monte-Carlo Coulomb and neutral collisions in the simulations. It is found that in poorly

ionized plasmas, where neutral collisions dominate, the instability is rapidly suppressed

and our results from kinetic simulations conĄrm quantitatively existing multi-Ćuid linear

theory calculations. In contrast, the simulations results show that Coulomb collisions in a
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fully ionized plasma unexpectedly favour the development of the instability, by reducing

self-generated pressure anisotropies that would otherwise oppose its growth. Finally,

Chapter 7 is devoted to answer the growing need for an experimental veriĄcation of the

linear theory and of the simulations predictions. The aim is to observe and characterize

the non-resonant mode for the Ąrst time in the laboratory. In that respect, the stringent

requirements placed on the laboratory plasma conditions to accommodate the instability

are investigated and detailed. These requirements necessarily have to take into account

the effects of Ąnite temperature and particle collisions, studied and highlighted in the

Ąrst part of this thesis. Finally, two possible setups which may be conducted on existing

high-power laser facilities are proposed.
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Fluid description of the instability
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2.1 Introduction

The streaming instabilities can develop when a background plasma is traversed by a

population of energetic ions with a drift velocity aligned with an ambient magnetic Ąeld,

leading to the exponential growth of magnetohydrodynamic-like waves, generated at the

expense of the bulk kinetic energy of the streaming particles. Depending on their drift

velocity and velocity dispersion, three distinct modes can be excited. In general they grow

for streaming velocities larger than the Alfvén speed, have a growth time of the order of

the ion cyclotron time, and can potentially coexist and compete in their growth. The

right-hand resonant mode (Gary et al. [1984]) requires a small streaming and thermal

velocity and is characterized by magnetic Ćuctuations with right-hand polarisation. The

left-hand resonant mode requires low streaming velocity and large velocity dispersion, and

is left-hand polarized. This mode can strongly modify the propagation of cosmic rays by

producing magnetic turbulence on scales comparable to the particles Larmor radius, and

resulting in an important scattering (Kulsrud and Pearce [1969]). Finally the non-resonant

mode is right-hand polarized, requires a large drift velocity and its growth is not associated

with cyclotron resonances as for the other two modes. This non-resonant mode will be

the focus of this thesis. It was Ąrst investigated in the context of back-streaming ions

from the EarthŠs bow shock to the foreshock region using a kinetic description (Sentman

et al. [1981], Winske and Leroy [1984]), but was not further studied for twenty years after

these pioneering publications. The instability was later rederived within a Ćuid framework
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(Bell [2004]) and applied to the ampliĄcation of magnetic Ąeld at supernova shocks due to

cosmic rays streaming in the interstellar medium.

This chapter is devoted to a theoretical study of the non-resonant streaming instability.

The instability mechanism, as well as the growth rate and unstable wavelengths are

calculated within the framework of Ćuid plasma theory, together with the energy exchange

rates between the electromagnetic waves and the particles. These results are of particular

importance as they constitute the fundamental characteristics of the unstable waves, and

will be used as a basis in the following chapters to dimension and interpret the numerical

simulations. The calculations will be performed while neglecting the gyro-radius of the

particles, which is only valid when considering a cold and magnetized plasma. The effects

of plasma temperature on the instability growth will be presented in Chapter 3.

2.2 Fluid model of the non-resonant mode

2.2.1 Equations of the fluid model

In the framework of Ćuid theory, each plasma components α can be described by the system

of equations formed by the moments of the distribution function fα(r,v, t), coupled to

MaxwellŠs equations. The zeroth order moment equation may be calculated by multiplying

the collisionless Vlasov equation by the mass of the population mα and integrating over

velocity space. This yields the equation of mass density conservation:

∂ρα

∂t
+ ∇ · (ραuα) = 0 (2.1)

where nα =
∫+∞

−∞ fαdv is the plasma density, ρα = nαmα is the mass density and uα =
1

nα

∫+∞
−∞ vfαdv is the Ćuid velocity. From this Eulerian equation, one Ąnds that an explicit

temporal variation of density is generated by spatial gradients of the mass Ćux. The Ąrst

order moment equation can be calculated in a similar way by multiplying the Vlasov

equation by mαvα and integrating over velocity space. One obtains the collisionless

momentum density conservation equation as:

∂ραuα

∂t
+ uα · ∇(ραuα) = −∇ · Pα + qαnα(E + uα × B) (2.2)

where qα is the charge of population α, and Pα = mα

∫+∞
−∞ (v − uα)(v − uα)fαdv is the

pressure tensor. The third order moment may be obtained by multiplying the Vlasov

equation by mαvv and calculating the trace. This yields the total (kinetic and internal)

energy conservation equation:

∂

∂t

(
ραu

2
α

2
+ ραUα

)
+ ∇ ·

((
ραu

2
α

2
+ ραUα

)
uα + Φα

)
+
∑

k

∑

l

∂k(Pkl,αul,α) − jα · E = 0

(2.3)

where ραUα = 3
2
nαkBTα with kB the Boltzmann constant, Φα =

∫+∞
−∞ fα

mαv2
α

2
vαdv is

the reduced heat Ćux, and jα = qαnαuα is the current carried by the population α.

These moments are exact equations, in the sense that they do not introduce additional

approximations in the description of each plasma component with respect to the Vlasov
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equation. Each equation depends on the next moment, forming an inĄnite hierarchy

of equations. In order to obtain a Ąnite system of equations one needs to introduce

a closure relation. This is usually done for the second order moment by assuming a

speciĄc form of the pressure tensor. One simple approximation is the isothermal pressure

assumption, where the plasma pressure is expressed as Pα = nαkBT0 and T0 is a constant

and uniform temperature. This corresponds to the situation of a plasma population whose

temperature is equilibrated with an external thermostat on time scales much shorter than

the physics investigated, such that it is considered to remain constant during the plasma

evolution. In the case of the solar wind for example, this is not a trivial assumption.

Without any heating, the radial expansion of the solar wind should result in its cooling,

in disagreement with satellites in-situ observations (Verscharen et al. [2019]). Another

widely used approximation is the adiabatic assumption, corresponding to the opposite

situation where no wave-particle energy exchange occur and the heat Ćux are supposed

negligible on the time and spatial scales of interest. The pressure may then be expressed

with the closure equation d(Pαn
−γ
α )/dt = 0 where d/dt is the material derivative and

γ = (N + 2)/N with N the number of degrees of freedom of the system, i.e. γ = 5/3.

More complex closure equations can be used, to take into account pressure anisotropies in

the presence of a magnetic Ąeld (e.g. Hirabayashi et al. [2016]).

2.2.2 Modified single-fluid approach

Owing to itŠs non-resonant nature, the instability is not dependent at Ąrst order of the

precise shape of the distribution functions of the electron and ion populations in the

plasma (Gary et al. [1984]). In this case a Ćuid description of each population can prove

sufficient to understand the instability mechanism, as well as obtain the growth rate and

associated unstable wavenumbers. The Ćuid equations presented in Sec. 2.2.1 apply for

each component of the plasma, which results in a complex system of equation, whose

physics is not easily discerned. In order to simplify the problem, one may consider several

populations as a single Ćuid by assuming that they follow the same dynamic. In this

case the system of equations may be reduced, corresponding to the so-called single-Ćuid

approach and which will be detailed in the following sections.

One can use a non-relativistic Ćuid approach to describe the non-resonant mode and

calculate its characteristic spatial and temporal scale (Amato and Blasi [2009]). Several

studies of the instability using Ćuid models exist in the literature (Bell [2004], Zirakashvili

et al. [2008], Bai et al. [2015], Matthews et al. [2017], Mignone et al. [2018], van Marle

et al. [2018]), and a similar approach will be adopted here, with a focus on the instability

microphysics and mechanism. Consider the following situation: an initially uniform plasma

made of main protons and electrons (noted with the subscripts ŞmŤ and ŞeŤ respectively)

is embedded in a zeroth order magnetic Ąeld B0, and traversed by a less dense population

of super-Alfvénic streaming protons (noted with the subscript ŞcrŤ for cosmic rays) with a

positive drift velocity in the main protons reference frame, parallel to the magnetic Ąeld.

The calculation generalized to arbitrary elements is given in Appendix A, and has not

been performed in the literature. Although the effects of heavier ions may be considered

only as corrections (the cosmic rays are essentially made of protons), in the astrophysical

context helium is also present and can modify the instability. In addition, it is necessary

to take into account heavy ions accelerated in supernova remnants to explain the observed
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abundances in the cosmic rays spectrum (see Tatischeff et al. [2021]). In the context of

laboratory experiments, heavy ions effects can also become important as elements such

as carbon and argon are frequently used. In the present section, this will be neglected

for the clarity of the calculations, hence supposing a plasma made only of electrons and

protons. In addition, the electrons will be supposed to follow closely the ion dynamic such

that any effects due to charge separation and Hall effects are assumed negligible. The

electron temperature will be assumed to be small, and the electron pressure gradients will

be neglected. The plasma is supposed quasi-neutral:

−ne + nm = −ncr (2.4)

such that the background plasma (main protons and electrons) is electrically charged. The

magnetic Ąeld evolution is calculated from Maxwell-FaradayŠs law:

∂B

∂t
= −∇ × E (2.5)

and the total current from Maxwell-AmpèreŠs law as:

∇ × B = µ0e(−neue + nmum + ncrucr) +
1

c2

∂E

∂t
(2.6)

where µ0 is the magnetic permeability, e the elementary charge and c the speed of light.

The ratio of the last term of the right-hand side, corresponding to the displacement current,

to the curl of B while considering an Alfvénic Ćuctuation, yields a scaling as v2
A/c

2 where

vA is the Alfvén speed. The transverse component of the displacement current will be

neglected in the following calculations, hence considering a non-relativistic plasma with

vA/c ≪ 1 and ω/k ≪ 1 where ω and k are the frequency and wavenumber respectively.

This approximation is discussed in more details in Sec. 4.3.2. The total current is initially

null: ∇ × B0 = 0, consistent with a homogeneous initial magnetic Ąeld. This is achieved

by considering an initial drift velocity for the electron population relative to the main

protons, in the same direction as the cosmic rays such that:

ue =
ncr

nm

ucr (2.7)

A different way of compensating the current would be to distinguish two electrons popula-

tions: one with the same charge density as the main protons, and an additional population

with the same charge density as the cosmic rays and drifting alongside them. Within

the framework of kinetic theory, Amato and Blasi [2009] showed that the non-resonant

mode can develop in both cases, and that the dispersion relation is only modiĄed by a

corrective term of the order O(n2
cr/n

2
m) depending on the choice to compensate the current.

In this thesis only one population of electrons will be considered with a small density ratio

ncr/nm such that the results may be applied to the case of two electron populations as

well, similarly to previous studies (e.g. Winske and Leroy [1984], Reville et al. [2007]).

One may obtain the momentum density conservation equation for the background

plasma by performing a summation of the main protons and electrons momentum conser-
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vation equations (Eq. 2.2), and by using AmpèreŠs law, which gives:

ρ
du

dt
=

1

µ0

(∇ × B) × B − ∇ · P − encr(E + ucr × B) (2.8)

where d/dt = ∂/∂t+ u · ∇ is the material derivative. The density, Ćuid velocity and total

pressure tensor associated to the background plasma are deĄned as:

u =
ρeue + ρmum

ρe + ρm

(2.9)

ρ = ρe + ρm (2.10)

Pij =
∑

α=e,m

Pij,α (2.11)

such that ρ ≈ ρm. The Ąrst and second terms of the right hand side of Eq. 2.8 correspond to

the Lorentz and pressure gradients forces classically obtained in the momentum conservation

equation of an MHD Ćuid. The third term −encr(E + ucr × B) expresses the interaction

of the electrically charged background plasma with the electromagnetic Ąeld and with

the cosmic rays population. The −encrucr × B term can be rewritten as a function of

the electrons velocity using Eq. 2.7, such that the cosmic rays can be seen as interacting

with the background plasma via the so-called electron return current they generate in

the background plasma with the condition ∇ × B0 = 0. This interpretation however

is valid only at early times, when the magnetic Ąeld perturbations are small such that

the condition of a null total current is fulĄlled. For late time evolution Eq. 2.7 does not

hold, and the cosmic rays drift velocity is no longer directly correlated to the electrons

drift velocity. The Lorentz force term (∇ × B) × B/µ0 which appears in Eq. 2.8 can be

interpreted by decomposing the double cross product using vector calculus identities as

follows:

1

µ0

(∇ × B) × B =
1

µ0

[(B · ∇)B − (∇B) · B] (2.12)

where (∇B)ij = ∂Bj/∂xi. The Ąrst term of the right-hand side of Eq. 2.12 can be

rewritten by considering the curvilinear coordinates s such that n/R = dt/ds, where

n and t are the vector normal and tangent to the Ąeld line respectively, and R is the

curvature radius, in the local plane where the curvature is deĄned.

1

µ0

(B · ∇)B =
1

µ0

Bt · ∇(Bt) (2.13)

=
B

µ0

[(
∂B

∂s

)
t +

n

R
B

]
(2.14)

=
1

2µ0

∂B2

∂s
t +

B2

µ0

n

R
(2.15)
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The l component of the second term of the right-hand side of this equation can be written

as:
(

1

µ0

(∇B) · B

)

l

=
1

µ0

∑

j

∂Bj

∂xl

Bj (2.16)

=
1

2µ0

∇lB
2 (2.17)

Using the gradient perpendicular to the magnetic Ąeld line ∇⊥ = ∇ − t ∂/∂s, one obtains:

1

µ0

(∇ × B) × B = −∇⊥

(
B2

2µ0

)
+
B2

µ0

n

R
(2.18)

The Ąrst term corresponds to a gyrotropic magnetic pressure force perpendicular to the

magnetic Ąeld line, the second one to a magnetic tension force which acts against the

curvature of the magnetic Ąeld line, in the direction perpendicular to B. This is of

particular importance for the non-resonant mode, as small scales Ćuctuations can be

stabilized by a strong magnetic Ąeld tension force.

Since the displacement current has been neglected, the electric Ąeld which appears in

Eqs. 2.8 and 2.5 cannot be calculated from Maxwell-AmpèreŠs equation. It cannot be

obtained from Maxwell-PoissonŠs equation either, which only gives information on the

electrostatic component. The electric Ąeld is instead obtained from OhmŠs law, which can

be derived as follows. Multiplying Eq. 2.2 by qα/mα, one obtains for the l component:

∂jl,α

∂t
= nα

q2
α

mα

(E + uα × B)l −
∑

k

qα

mα

∂Pα,kl

∂xk

−
∑

k

∂(nαqαul,αuk,α)

∂xk

(2.19)

Summing over the populations α and multiplying by me/nee
2:

me

nee2

∂Jl

∂t
=

[
1 +

me

nee2

(
nmq

2
m

mm

+
ncrq

2
cr

mcr

)]
El

+

[(
ue +

me

nee2

(
nmq

2
m

mm

um +
ncrq

2
cr

mcr

ucr

))
× B

]

l

+
1

nee

∑

k

∂Pkl,e

∂xk

− me

nee2

[
qm

mm

∑

k

∂Pkl,m

∂xk

+
qcr

mcr

∑

k

∂Pkl,cr

∂xk

]

− me

nee2

∑

k

∂

∂xk

(−neeul,euk,e + nmqmul,muk,m + ncrqcrul,cruk,cr)

(2.20)

where J = nmqmum +ncrqcrucr +neeue is the total current, qm = qcr = e and mm = mcr =

mp. Considering me/mp ≪ 1 and neglecting the electron pressure gradients by supposing

a negligible electron temperature, OhmŠs law can be written as:

E =
J × B

ene

− um × B − ncr

nm

ucr × B (2.21)

Below the ion inertial length, the electron and ion dynamics can be partially decoupled, and

the single Ćuid description becomes difficult to justify. If one supposes spatial scales above

the inertial length, OhmŠs law can be written while neglecting the Hall term J × B/ene.
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Using um × B ≈ u × B, one obtains:

E = −u × B − ncr

nm

ucr × B (2.22)

This equation corresponds to an ideal OhmŠs law, augmented by an additional contribution

due to the cosmic rays current, and has the interesting property that an induced electric

Ąeld can exist in the reference frame of the background plasma. This is of particular

importance in calculating the background plasma heating rate (see Sec. 2.2.4). Inserting

Eq. 2.22 in Eqs. 2.8 and 2.5, and supposing an incompressible plasma such that ∇ · u = 0

from Eq. 2.1, one obtains:

du

dt
=

1

µ0ρ
(∇ × B) × B − 1

ρ
∇ · P +

ncr

nm

e

mp

u × B − 1

ρ
jcr × B (2.23)

∂B

∂t
= [(B · ∇)u − (u · ∇)B] − 1

ene

(jcr · ∇)B (2.24)

with jcr = encrucr the cosmic rays current, supposed constant. This assumption will

be veriĄed a posteriori. The assumption of an incompressible plasma is relevant to the

study of electromagnetic perturbations, which verify the relation k · E = 0 such that

there is no electrostatic component and no density Ćuctuations. Although the background

Ćuid pressure gradients do not appear in the calculation for transverse electromagnetic

Ćuctuations, non-linear pressure gradients effects can nonetheless modify the growth of

the non-resonant mode. This will be further investigated in Sec. 2.2.4. Eqs. 2.23 and 2.24

form a coupled non-linear system which describes the interaction between the electrically

charged background plasma with the magnetic Ąeld, and will be the basis for the following

analysis.

2.2.3 The mechanism of the non-resonant mode

A classical operation to study non-linear systems of equations is the linearization, where

one expresses all the varying quantities as a sum of initial, zeroth order contributions, and

Ąrst order, perturbed (or Ćuctuating) contributions. The second order terms are then

neglected, allowing a clearer view of the early times evolution of the non-linear system.

Linearizing Eqs. 2.23 and 2.24 yields:

∂u1

∂t
=

(B0 · ∇)B1

µ0ρ
+
ncr

nm

Ω0

(
u1 × B0

B0

)
− 1

ρ
jcr × B1 (2.25)

∂B1

∂t
+

1

ene

(jcr · ∇)B1 = (B0 · ∇)u1 (2.26)

where Ω0 = eB0/mp is the proton cyclotron frequency, mp is the proton mass and jcr the

constant, zeroth order proton cosmic rays current. The subscripts Ş0Ť and Ş1Ť refer to

the order of the linearization. Many of the underlying features of the instability can be

understood by inspecting these equations. The first term on the right hand-side of Eq. 2.25

is the magnetic tension force associated to the Ćuctuating magnetic Ąeld and dominates
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vϕ > 0 vϕ < 0
Positive helicity Right polarization Left polarization
Negative helicity Left polarization Right polarization

Table 2.1: Polarization and helicity of a circularly polarized electromagnetic wave as a
function of the phase velocity vϕ = ωr/k.

the background Ćuid dynamic at small enough scale. The second term is responsible for the

cyclotron-like motion of the background Ćuid which occurs at a fraction of the cyclotron

frequency. This motion is due to the ambient magnetic Ąeld, and to the background

plasma excess of negative charge that compensates the cosmic rays charge. The third term

is the source of the instability and drives growing background Ćuid velocity Ćuctuations

via the interaction of the cosmic rays current with the Ćuctuating magnetic Ąeld. The

linearized magnetic Ąeld induction equation (Eq. 2.26) has been rewritten to highlight its

conservative character and the presence of a source term on the right-hand side, which

is unchanged by the presence of cosmic rays and couples the background Ćuid velocity

to the magnetic Ąeld Ćuctuations. The second term in the left-hand side of Eq. 2.26 can

be rewritten as −∇ · (jcrB1/Qe), corresponding to the advection of the magnetic Ąeld

perturbation at a velocity −jcr/Qe, equal to the zeroth order electron drift velocity (Eq.

2.7).

The velocity perturbations will be taken of the form u1ei(kx−ωt), and the magnetic Ąeld

perturbations will be considered as propagating along the x direction aligned with the

initial magnetic Ąeld such that k = kex and B = B0ex + B1ei(kx−ωt). This corresponds to

a circularly polarized, parallel propagating electromagnetic wave, which encompasses the

non-resonant mode. The angular frequency is ω = ωr + iγ where ωr is taken to be positive

by convention, with γ the growth rate, and k the wave number which can be either positive

or negative depending on the direction of propagation of the electromagnetic wave. The

polarization of the wave is deĄned as the sense of rotation of the magnetic Ąeld in time,

observed at a given position in space. The helicity is deĄned as the sense of rotation of the

magnetic Ąeld in space, at a given time. Helicity and polarization are simply related in the

case of plane wave through the direction of propagation vϕ = ω/k. Table 2.1 summarizes

these properties of the circularly polarized waves.

One may pursue the analysis by noting that the Ćuid velocity and magnetic Ąeld

perturbations in Eqs. 2.25 and 2.26 are coupled by only certain terms, which allows

to distinguish coupling and non-coupling contributions. First, considering only the non-

coupling terms (i.e. neglecting the Ąrst and third terms of Eq. 2.25 and the right-hand

side of Eq. 2.26) one directly obtains a rotation of the background Ćuid at a frequency:

ωu =
ncr

nm

Ω0 (2.27)

and a rotation of the magnetic Ąeld perturbation at a frequency:

ωr = −kjcr

ene

(2.28)
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The wavenumber is negative to satisfy the convention ωr ≥ 0, such that the mode is

backward propagative. There is no instability, which is an expected result as the coupling

terms have been neglected. Retaining only the coupling terms (i.e. neglecting the second

term in the right-hand side of Eq. 2.25 and the second term in the left-hand side of Eq.

2.26) is equivalent to supposing fast growing modes, with a growth time much smaller

than those associated to the perturbed magnetic Ąeld advection and to the background

Ćuid cyclotron-like motion. In Fourier space the equations then become:

−iωu1 =i
B0k

µ0ρ
B1 − 1

ρ
jcr × B1 (2.29)

−iωB1 =iB0ku1 (2.30)

Rewriting in terms of the components of the magnetic Ąeld perturbation yields:

i
ω2

B0k
B1y =i

B0k

µ0ρ
B1y +

jcrB1z

ρ
(2.31)

i
ω2

B0k
B1z =i

B0k

µ0ρ
B1z − jcrB1y

ρ
(2.32)

By isolating ω one Ąnds the dispersion relation of the non-resonant mode as:

ω2 = k2v2
A0 ± mp

e
Ω0
kjcr

ρ
(2.33)

with vA0 = B0/
√
µ0ρ where ρ ≈ nmmp. The Ąrst term corresponds to the Alfvénic

contribution, such that in the limit of zero cosmic rays current, one recovers the standard

dispersion relation for Alfvén waves. This Alfvénic term can be seen as the effect of

magnetic tension, which stabilizes the non-resonant mode at large wavenumbers when it

is equal or greater to the magnetic force driving term. By considering a negative k, and

choosing the negative sign solution in the second term (which corresponds to a left-hand

polarized wave), one obtains a purely real angular frequency. In this case the only effect

of the cosmic rays is to modify the dispersion relation of large wavelengths Alfvén waves.

However choosing the positive sign solution (corresponding to a right-hand polarization),

one obtains an instability for ♣k♣ < kmax with:

kmax =
ncr

nm

ucr

v2
A0

Ω0 (2.34)

The growth rate γ(k) may then be obtained in the form:

γ(k) =
√
αk + βk2 (2.35)

In the approximation of purely growing modes, i.e. γ/ωr ≫ 1, an instability can also be

obtained by considering k positive with a left-hand polarization such that the helicity

remains negative. This is an important property of the non-resonant instability, which

relies on the helical spatial structure of the electromagnetic and background Ćuid velocity

Ąelds to grow. Searching for an extremum of the growth rate yields the fastest growing
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wavenumber:

kfast = − α

2β
= −1

2

ncr

nm

ucr

v2
A0

Ω0 (2.36)

which is half of the maximum (largest) unstable wavenumber. This is the same result as

those found in Winske and Leroy [1984] within kinetic theory and Bell [2004] within Ćuid

theory. This expression shows that the wavenumber at which the instability grows depends

linearly on the cosmic rays drift velocity. It also decreases linearly with the ambient

magnetic Ąeld intensity, corresponding to the magnetic tension overcoming the cosmic

rays magnetic force at larger scales when considering a stronger magnetic Ąeld. Inserting

Eq. 2.36 in the growth rate expression, one obtains the growth rate for the fastest growing

wavenumber as:

γfast =
1

2

ncr

nm

ucr

vA0

Ω0 (2.37)

such that γfast = kfastvA0. Additionally, in the case of multiply charged ions with a low

density ratio ncr/nm ≪ 1, it can be shown (see Appendix A) that the fastest growth rate

γi
fast and associated wavenumber ki

fast are modiĄed as:

γi
fast =γfast

qcr

e

(
mp

mm

)1/2

(2.38)

ki
fast =kfast

qcr

e
(2.39)

where qcr and mm are the cosmic rays charge and main ions mass respectively. In this

case the growth rate increases linearly with the cosmic rays charge, and decreases with

the square root of the main ions mass. It does not depend on the cosmic rays mass, nor

on the main ions charge. One obtains the intuitive result that multiply charged drifting

ions increase the effective magnetic force −qcrncrucr × B driven by their current, which

increases the growth rate and allows smaller scales to grow. Because of quasi-neutrality,

the background ions charge does not play a role for the non-resonant mode growth rate,

whereas the main ions mass introduces a larger inertia of the background Ćuid which

opposes the growth of the instability. These results are not present in the literature, and

may be important both for the acceleration of heavy elements at shocks (Tatischeff et al.

[2021]), as well as for laboratory experiments. The effects of heavy ions will be further

investigated in numerical simulations in Chapter 5.

The physical mechanism responsible for the instability can be better understood by

considering large scales, in the range of wave numbers ♣k♣ ≪ kmax, where the contribution

of the Ąrst term in the right-hand side of Eq. 2.25 corresponding to the magnetic tension

can be neglected with respect to the cosmic rays magnetic force. The instability may then

be described in the case of protons populations by the simpliĄed system of equations:

∂u1

∂t
= − 1

ρ
jcr × B1 (2.40)

∂B1

∂t
=(B0 · ∇)u1 (2.41)
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small with respect to the jcr1 × B0 term. For this reason, the growth rate presented in Fig.

2.2 is not valid below kmin. A derivation including cosmic rays resonance was done in Bell

[2004], showing that the driving term is too weak to drive the non-resonant instability

for k < kmin, such that the left-hand and right-hand resonant modes become dominant.

In this case the cosmic rays cannot be considered as streaming with a constant velocity,

and the precise distribution function of the cosmic rays must be taken into account as the

population no longer interacts solely via its current with the unstable waves (Holcomb

and Spitkovsky [2018]).

2.2.4 Energy conservation, plasma heating

In the previous section, only the Ąrst and second order moments of the Vlasov equation,

namely the conservation of mass density and of momentum density have been exploited to

study the non-resonant mode. Additional insights into the instability can be obtained by

studying the energy transfers between the plasma and the electromagnetic Ąeld. In the

following, the pressure and heat Ćux terms will be neglected with respect to the terms

involving the electromagnetic Ąeld, in order to highlight the wave-particle energy exchanges.

Summing the energy density conservation equation of the electrons and protons Ćuid (Eq.

2.3), the conservation of the kinetic and internal energies background plasma energies can

be expressed as:

ρ
d

dt

(
u2

2
+ U

)
= jb · E (2.44)

where ρU = 3p/2 with p the isotropic part of the pressure tensor and jb = enmum−eneue =

∇ × B/µ0 − jcr is the background current. One may separate the internal and kinetic part

of the energy conservation equation by calculating the kinetic energy conservation equation.

This can be obtained from the conservation of momentum density of the background

plasma:

ρ
du

dt
= −∇ · P − encrE + jb × B (2.45)

Taking the scalar product of this equation by u and neglecting the pressure term, one

obtains the balance equation for the kinetic (directed) energy of the background as:

ρ
d

dt

(
u2

2

)
= −encrE · u + (jb × B) · u (2.46)

Substracting Eq. 2.46 from Eq. 2.44, one obtains the conservation equation for the internal

energy of the background Ćuid:

ρ
dU

dt
= E · (jb + encru) − (jb × B) · u (2.47)

The electromagnetic energy density conservation, neglecting the electric energy with respect

to the magnetic energy, gives:

∂

∂t

(
B2

2µ0

)
+ ∇ ·

(
E × B

µ0

)
= −(jb + jcr) · E (2.48)

23



CHAPTER 2. FLUID DESCRIPTION OF THE INSTABILITY

The second term on the left-hand side corresponds to the Poynting Ćux. The right-hand

side term expresses the interaction of the plasma with the electric Ąeld and allows energy

exchanges between the Ćuid and the electromagnetic Ąeld. Finally the cosmic rays kinetic

energy conservation equation reads:

ρcr
d

dt

(
u2

cr

2

)
= jcr · E (2.49)

The sum of these conservation equations yields zero, which corresponds to the conservation

of the total (kinetic, internal and electromagnetic) energy of the system.

These conservation equations can be further developed by specifying the form of the

electric Ąeld E such that it can be eliminated from the expressions. Using OhmŠs law one

has E = −u × B − ncr

nm

ucr × B (Eq. 2.22), which gives the intermediary relations:

E · jb = u · FL +
ncr

nm

ucr · FL + jcr · (u × B) (2.50)

encrE · u = −ncr

nm

u · (jcr × B) (2.51)

E · jcr = −jcr · (u × B) (2.52)

(jb × B) · u = u · FL − u · (jcr × B) (2.53)

where FL = (∇ × B) × B/µ0 is the Lorentz force. Inserting in the conservation equations

gives:

ρcr
d

dt

(
u2

cr

2

)
= −jcr · (u × B) (2.54)

ρ
d

dt

(
u2

2

)
= jcr · (u × B) + u · FL (2.55)

ρ
dU

dt
= −ncr

nm

FL · [u − ucr] (2.56)

∂

∂t

(
B2

2µ0

)
+ ∇ ·

(
E × B

µ0

)
= −u · FL − ncr

nm

ucr · FL (2.57)

The equations involve the spatial structure of the magnetic Ąeld via the Lorentz force term

FL, which is not easily interpreted. Additional insight can be obtained by linearizing the

equations, while neglecting Ąrst order cosmic rays drift velocity perturbations, correspond-

ing to the non-resonant regime as presented in the previous sections. One obtains that the

second order parallel electric Ąeld can be expressed as E∥ = −u1 × B1. From Eq. 2.40,

one obtains that the background Ćuid acceleration is oriented in the direction of −jcr × B1.

Given that the real frequency of the electromagnetic wave is negligible with respect to the

instability growth rate for the non-resonant mode, and in the absence of external forces,

one deduces that the velocity perturbations are aligned with the direction of the local

magnetic force. Consequently, the second order induced parallel electric Ąeld slows down

the cosmic rays, and accelerates the background plasma. The internal energy conservation

equation can be better understood by considering the calculation in the reference frame of

the background Ćuid. In this case the electric Ąeld and background Ćuid current can be

written respectively as E′ = E + u × B and j′
b = jb + Qcru, which allows to rewrite Eq.
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2.47 as:

ρ
dU

dt
= j′

b · E′ (2.58)

corresponding to the work of the electric force in the background Ćuid reference frame.

Assuming um ≈ u and quasi-neutrality, the internal energy conservation equation can

then be written as:

ρ
dU

dt
= encr(ue − u) · [(ucr − u) × B] (2.59)

The inductive term due to the background plasma motion no longer appears, such that one

obtains that the electric Ąeld induced by the cosmic rays drift velocity interacts with the

current carried by the electrons, allowing important energy exchanges between the waves

and the background plasma. This heating effect will be further investigated in numerical

simulations in Chapters 5 and 6.
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Chapter 3

Kinetic approach to the

non-resonant mode
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3.1 Introduction

Up to this point, the Larmor radius of the protons and electrons was considered negligible

compared to the spatial scales relevant to the non-resonant instability, such that any

kinetic effects due to a Ąnite temperature were supposed negligible.

This chapter presents the derivation of the growth rate of the non-resonant mode while

taking into account the background protons temperature. A wide range of parameters

will be considered, starting from the zero and small temperature regimes (cold and warm

plasma) up to the demagnetized regime (hot plasma) where the ion Larmor radius is larger

than the unstable wavelengths. A kinetic description of the plasma components will be

used in order to accurately describe Ąnite Larmor radius effects, which do not appear in

the Ćuid model, even by considering the background Ćuid pressure tensor. This work will

focus on obtaining analytical results by expanding the full kinetic dispersion relation for
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the non-resonant mode. The results are of particular importance to assess the spatial

and temporal scales characteristic of the non-resonant mode in hot environments such as

superbubbles and the intergalactic medium. In denser environments such as H II regions

and molecular clouds, collisions can also become sufficiently frequent to modify the growth

of the instability. This will be investigated in Chapter 6.

3.2 The linear dispersion relation

3.2.1 General relation

Waves propagating in a plasma can be studied by solving the Vlasov, Faraday and Ampère

system of equations in Fourier space. The magnetic and electric Ąeld are linearized as:

B = B0 + B1 (3.1)

E = E1 (3.2)

where an ambient, homogeneous magnetic Ąeld is considered along the ez direction

B0 = B0ez, such that B0 ≫ B1. AmpèreŠs law yields the relation:

ik × B1 = µ0J1 − iω

c2
E1 (3.3)

where µ0 is the magnetic permeability, c is the speed of light, J is the total conduction

current, k is the wave number and ω is the angular frequency of the wave. The perturbed

magnetic Ąeld B1 may be expressed with FaradayŠs law as:

B1 =
k × E1

ω
(3.4)

from which one deduces:

c2

ω2
k × (k × E1) + E1 +

i

ωϵ0

J1 = 0 (3.5)

where ϵ0 = 1/µ0c
2 is the dielectric permittivity of vacuum. Considering that the contri-

butions from the plasma can be embedded in the conductivity tensor σ, then the total

conduction current writes:

J1 = σ · E1 (3.6)

which gives the so-called dispersion relation:

c2

ω2
(kk − k2

1) · E1 + E1 +
i

ωϵ0

σ · E1 = 0 (3.7)

where 1 is the identity matrix. DeĄning the ij element of the dispersion tensor:

Rij =
c2

ω2
(kikj − k2δij) + δij +

i

ωϵ0

σij (3.8)
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with δij the Kronecker delta, the dispersion relation can be rewritten in a compact form:

R · E1 = 0 (3.9)

It can then solved by calculating det ♣R♣ = 0, which allows to retrieve the frequency as a

function of the wavenumber. Such analysis is central in the study of plasma instabilities,

as it allows us to obtain the characteristic time and spatial scales associated to a given

mode. In order to pursue the calculation, one needs the tensor σ which encompasses

the speciĄcity of the propagation medium and dictates the current resulting from an

electric Ąeld perturbation. In the following σ will be obtained by calculating the perturbed

distribution function, through the linearization of the Vlasov equation. This will allow us

to obtain the current as a function of the perturbed electric Ąeld, and thus give access to

the conductivity tensor. Only parallel propagating modes (k × B0 = 0) will be considered,

which encompasses the non-resonant streaming instability.

3.2.2 Perturbed distribution function

The evolution of the distribution function f(r,v, t) of each population α of the plasma is

dictated by the Vlasov equation:

∂fα

∂t
+ v · ∇fα +

qα

mα

(E + v × B) · ∂fα

∂v
= 0 (3.10)

where E(r, t) and B(r, t) are the macroscopic electric and magnetic Ąeld (see Sec. 4.4.2

for a discussion on the deĄnition of ŞmacroscopicŤ), qα the charge and mα the mass. In

the following the subscript α will be omitted to simplify the notations. In order to obtain

the total perturbed current J1 =
∑

α jα1, a classical procedure is to use the methods of

the characteristics (e.g. Gary and Feldman [1978], Gary [1992]). It consists in solving the

Vlasov equation for each population as:

df1

dt
= − q

m
E1.

∂f0

∂v
− q

m
(v × B1).

∂f0

∂v
(3.11)

with
df1

dt
=
∂f1

∂t
+ v.

∂f1

∂r
+

q

m
(v × B0).

∂f1

∂v
(3.12)

the trajectory along a non-perturbed orbit, where the position and velocity correspond to

the cyclotron motion of the particles in the unperturbed magnetic Ąeld:

v =
dr

dt
(3.13)

dv

dt
=

q

m
v × B0 (3.14)

One may integrate Eq. 3.11 directly in time along this non-perturbed orbit, which then

allows to obtain the waves dispersion relation.

An alternate derivation is presented here, which takes advantage of the cylindrical sym-

metry of the problem. The calculation can be separated in four steps: Ąrst, obtaining the

perturbed distribution function, then calculation of the plasma current, thirdly calculating
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the conductivity tensor, and Ąnally solving the dispersion relation. Linearizing Eq. 3.10 in

Fourier space while neglecting second order terms, one obtains:

− i(ω − k · v)f1 +
q

m
(v × B0) · ∂f1

∂v
= − q

m
(E1 + v × B1) · ∂f0

∂v
(3.15)

Using cylindrical coordinates the velocity, wave vector and unperturbed magnetic Ąeld

can be expressed as v = (v⊥ cosϕ, v⊥ sinϕ, v∥), k = (0, 0, k) and B0 = (0, 0, B0)

respectively, where v⊥ and v∥ refer to the velocity perpendicular and parallel to the initial

magnetic Ąeld B0, and ϕ refers to the azimuthal angle. The following relations hold:

dv⊥ =
∂v⊥

∂vx

dvx +
∂v⊥

∂vy

dvy (3.16)

= cosϕ dvx + sinϕ dvy (3.17)

dϕ =
∂ϕ

∂vx

dvx +
∂ϕ

∂vy

dvy (3.18)

= − sinϕ

v⊥

dvx +
cosϕ

v⊥

dvy (3.19)

The velocity derivatives can then be rewritten as :

∂f

∂vx

=
∂f

∂v⊥

∂v⊥

∂vx

+
∂f

∂ϕ

∂ϕ

∂vx

(3.20)

=
∂f

∂v⊥

cos ϕ− 1

v⊥

∂f

∂ϕ
sin ϕ (3.21)

∂f

∂vy

=
∂f

∂v⊥

∂v⊥

∂vy

+
∂f

∂ϕ

∂ϕ

∂vy

(3.22)

=
∂f

∂v⊥

sin ϕ+
1

v⊥

∂f

∂ϕ
cos ϕ (3.23)

DeĄning the cyclotron frequency Ω0 = qB0/m and the shifted frequency ψ = ω − kv∥ one

Ąnds:
∂f1

∂ϕ
+ i

ψ

Ω0

f1 =
q

mΩ0

(E1 + v × B1) · ∂f0

∂v
(3.24)

The terms coupling the zeroth order Ąeld to the perturbed distribution function no longer

appear in the equation in cylindrical coordinates for the velocity, allowing a direction

integration of the Vlasov equation. Using Eq. 3.4, one can write:

v × B1 =
1

ω
[(v · E1)k − (v · k)E1] (3.25)

Replacing in the linearized Vlasov equation (Eq. 3.24):

∂f1

∂ϕ
+ i

ψ

Ω0

f1 =
q

mΩ0

E1 ·
[
1 − 1

v · k

ω
+

vk

ω

]
· ∂f0

∂v
(3.26)

The second term on the right hand side can be developed as:

E1 ·
[
1 − 1

v · k

ω
+

vk

ω

]
· ∂f0

∂v
= E1 · v

k

ω

∂f0

∂v∥

+

(
1 − kv∥

ω

)
E1 · ∂f0

∂v
(3.27)
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Considering a drifting Maxwellian velocity distribution along the initial magnetic Ąeld

B0 with anisotropic temperatures T∥ ̸= T⊥, the initial distribution function f0 can be

expressed as:

f0 = n0

√
α∥

π

(
α⊥

π

)
e−α∥(v∥−u0)2

e−α⊥v2

⊥ (3.28)

with α∥ = m/2kBT∥, α⊥ = m/2kBT⊥, kB the Boltzmann constant, u0 the drift velocity

and n0 the initial density. The initial distribution function being gyrotropic (∂f0/∂ϕ = 0),

one obtains:

E1 · ∂f0

∂v
=

E1 · v

v⊥

∂f0

∂v⊥

(3.29)

Calculating the distribution function velocity derivatives yields:

∂f0

∂v∥

= − 2f0 α∥(v∥ − u0) (3.30)

∂f0

∂v⊥

= − 2f0 α⊥v⊥ (3.31)

Hence:
∂f1

∂ϕ
+ i

ψ

Ω0

f1 = −2
q

mΩ0

E1 · v

[
k

ω
α∥(v∥ − u0) + α⊥

ψ

ω

]
f0 (3.32)

By solving the associated Ąrst order linear homogeneous ordinary differential equation in

f1 one obtains:

f1 = Ke
−i ψ

Ω0
ϕ

(3.33)

The constant K can be obtained directly by considering the condition f1(ϕ = 0) = f1(ϕ =

2π), which yields K = 0. Integrating Eq. 3.32 yields:

f̂1(ϕ) = − 1

Ω0

e
−i ψ

Ω0
ϕ
∫ ϕ

f0e
i ψ

Ω0
ϕ′

2
q

m
E1 · v

[
k

ω
α∥(v∥ − u0) + α⊥

ψ

ω

]
dϕ′ (3.34)

where the variation of the constant has been used to deĄne:

f1 = f̂1e
−i ψ

Ω0
(ϕ′−ϕ)

(3.35)

which has been inserted in Eq. 3.32. DeĄning ψ± = ψ ± Ω0 = ω − kv∥ ± Ω0, one Ąnds:

e
−i ψ

Ω0
ϕ
∫ ϕ

cosϕ′e
i ψ

Ω0
ϕ′

dϕ′ =
Ω0

2

[
eiϕ

iψ+
+
e−iϕ

iψ−

]
(3.36)

e
−i ψ

Ω0
ϕ
∫ ϕ

sinϕ′e
i ψ

Ω0
ϕ′

dϕ′ =
Ω0

2i

[
eiϕ

iψ+
− e−iϕ

iψ−

]
(3.37)

The perturbed distribution function is then obtained as:

f̂1 = i
q

m
f0

[
k

ω
α∥(v∥ − u0) + α⊥

ψ

ω

]
E1 · η (3.38)
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where the vector η is deĄned as:

η = iv⊥

(
eiϕ

ψ+
+
e−iϕ

ψ−

)
ex + v⊥

(
eiϕ

ψ+
− e−iϕ

ψ−

)
ey + 2

v∥

ψ
ez (3.39)

3.2.3 Perturbed current

The perturbed current carried by a given population, deĄned as j1 = q
∫+∞

−∞ f̂1vdv, can

now be calculated as:

j1 = i
q2

m

∫ +∞

−∞
ηvf0

[
k

ω
α∥(v∥ − u0) + α⊥

ψ

ω

]
· E1dv (3.40)

First, the integral in the Ąrst term of Eq. 3.40 is evaluated. The dyadic product ηv can

be expressed as:

ηv =




iv2
⊥ cosϕ

(
eiϕ

ψ+
+
e−iϕ

ψ−

)
iv2

⊥ sinϕ

(
eiϕ

ψ+
+
e−iϕ

ψ−

)
iv⊥v∥

(
eiϕ

ψ+
+
e−iϕ

ψ−

)

v2
⊥ cosϕ

(
eiϕ

ψ+
− e−iϕ

ψ−

)
v2

⊥ sinϕ

(
eiϕ

ψ+
− e−iϕ

ψ−

)
v⊥v∥

(
eiϕ

ψ+
− e−iϕ

ψ−

)

2
v∥

ψ
v⊥ cosϕ 2

v∥

ψ
v⊥ sinϕ 2

v2
∥

ψ




(3.41)

The velocity integral can be rewritten in cylindrical coordinates as:

∫ +∞

−∞
dv =

∫ 2π

0
dϕ
∫ +∞

0
v⊥dv⊥

∫ +∞

−∞
dv∥ (3.42)

The terms of the form sinϕ, cosϕ, eiϕ and e−iϕ yield 0 when integrating over the angle ϕ.

The other terms can be integrated in ϕ and v⊥ as follows:

i
∫ +∞

−∞
f0v

2
⊥ cosϕ

(
eiϕ

ψ+
+
e−iϕ

ψ−

)
dv⊥ = iπ

∫ +∞

0
f0v

3
⊥dv⊥

(
1

ψ+
+

1

ψ−

)
dv⊥ (3.43)

i
∫ +∞

−∞
f0v

2
⊥ sinϕ

(
eiϕ

ψ+
+
e−iϕ

ψ−

)
dv⊥ = −π

∫ +∞

0
f0v

3
⊥dv⊥

(
1

ψ+
− 1

ψ−

)
dv⊥ (3.44)

∫ +∞

−∞
f0v

2
⊥ cosϕ

(
eiϕ

ψ+
− e−iϕ

ψ−

)
dv⊥ = π

∫ +∞

0
f0v

3
⊥dv⊥

(
1

ψ+
− 1

ψ−

)
dv⊥ (3.45)

∫ +∞

−∞
f0v

2
⊥ sinϕ

(
eiϕ

ψ+
− e−iϕ

ψ−

)
dv⊥ = iπ

∫ +∞

0
f0v

3
⊥dv⊥

(
1

ψ+
+

1

ψ−

)
dv⊥ (3.46)

∫ +∞

−∞
2
f0

ψ
dv⊥ =

4π

ψ

∫ +∞

0
f0v⊥dv⊥ (3.47)

The perpendicular velocity integrals can be found by using the following property:

Gn =
∫ +∞

0
vn

⊥e
−α⊥v2

⊥dv⊥ =
n− 1

2α⊥

Gn−2 (3.48)
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G1 =
1

2α⊥

(3.49)

Hence the integral:

G3 =
1

2α2
⊥

(3.50)

The integrals on the parallel velocity component need to be calculated for the terms

ij = (11, 12, 21, 22) of the tensor ηv. DeĄning:

I± = i
n0q

2

2mω

∫ +∞

−∞

[
kv∥(α∥ − α⊥) − ku0α∥ − ωα⊥

] 1

α⊥

(
α∥

π

)1/2 e−α∥(v∥−u0)2

ω − kv∥ ± Ω0

dv∥ (3.51)

and the quantity:

u2 = α∥(v∥ − u0)
2 (3.52)

such that v∥ = u/
√
α∥ + u0 and dv∥ = du/

√
α∥, the expression becomes:

I± = i
n0q

2

2mω

∫ +∞

−∞

[
u

√
α∥

(α⊥ − α∥) + α⊥

(
u0 − ω

k

)]
1

α⊥

(
α∥

π

)1/2

× e−u2

u−
√
α∥

k
(ω − ku0 ± Ω0)

du (3.53)

I± can be expressed as a function of the Fried and Conte integral (Fried and Conte [1961]):

Z(ζ) =
1√
π

∫ +∞

−∞

e−u2

u− ζ
du (3.54)

by deĄning ζ± =

√
α∥

k
(ω − ku0 ± Ω0). Using the following properties (Callen [2006]) for

Im(ζ) > 0 and n ≥ 0:

Zn(ζ) =
1√
π

∫ +∞

−∞

une−u2

u− ζ
du (3.55)

Z1 = −Z ′

2
= 1 + ζZ (3.56)

Z2 = −ζ Z
′

2
= ζ + ζ2Z (3.57)

Z3 =
1

2

[
1 + 2ζ2(1 + ζZ)

]
(3.58)

where the prime notation corresponds to the derivative with respect to ζ, one Ąnds:

I± = i
n0q

2

2mω

[
α∥ − α⊥

2α⊥

Z ′(ζ±) +
√
α∥

(
u0 − ω

k

)
Z(ζ±)


(3.59)
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The velocity integral for the ij = 33 term of the ηv tensor will now be calculated. DeĄning:

I = 2i
n0q

2

m

∫ +∞

−∞

[
k

ω
α∥(v∥ − u0) + α⊥

(
1 − kv∥

ω

)]
α⊥

π

(
α∥

π

)1/2

× v2
∥

e−α⊥v⊥−α∥(v∥−u0)2

ω − kv∥

dv

(3.60)

Using Eqs. 3.47 and 3.49:

I = 2i
n0q

2

m

∫ +∞

−∞

[
k

ω
α∥(v∥ − u0) + α⊥

(
1 − kv∥

ω

)](
α∥

π

)1/2

v2
∥

e−α∥(v∥−u0)2

ω − kv∥

dv∥ (3.61)

Using the previously deĄned u yields:

I = 2i
n0q

2

mω

∫ +∞

−∞

(
α∥

π

)1/2
[
u

√
α∥

(α⊥ − α∥) + u0α⊥ − ω

k
α⊥

] [
u2

α∥

+ u2
0 + 2

uu0√
α∥

]

× e−u2

ω

k
− u

√
α∥ − u0

du
√
α∥

(3.62)

DeĄning ζ =

√
α∥

k
(ω − ku0) and Γ as:

Γ = u3α⊥ − α∥

α
3/2
∥

+ u2

[
α⊥

α∥

(
3u0 − ω

k

)
− 2u0

]
+ u

[
1

√
α∥

(
u2

0(3α⊥ − α∥) − 2u0α⊥
ω

k

)]

+ α⊥

[
u3

0 − ω

k
u2

0



(3.63)

In a more compact form:

Γ = au3 + bu2 + cu+ d (3.64)

This allows to express I as:

I = −2i
n0q

2

mω

∫ +∞

−∞

(
α∥

π

)1/2 e−u2

u− ζ
Γ du (3.65)

Using Eqs. 3.56 to 3.58, one Ąnds:

I = −2i
n0q

2

mω

√
α∥ [Z3a+ Z2b+ Z1c+ Zd] (3.66)

One can now write the elements of the conductivity tensor σ for each species.
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3.2.4 Conductivity tensor

Combining Eq. 3.40, Eqs. 3.43 to 3.46, and Eqs. 3.59, 3.66 yields:

σ11 = i
ϵ0

2

ω2
p

ω

[
T⊥ − T∥

2T ∥ (Z ′(ζ+) + Z ′(ζ−)) +
1√
2vT ∥

(
u0 − ω

k

)
(Z(ζ+) + Z(ζ−))

]
(3.67)

σ12 =
ϵ0

2

ω2
p

ω

[
T⊥ − T∥

2T ∥ (Z ′(ζ−) − Z ′(ζ+)) +
1√
2vT ∥

(
u0 − ω

k

)
(Z(ζ−) − Z(ζ+))

]
(3.68)

σ21 = −σ12 (3.69)

σ22 = σ11 (3.70)

σ13 = σ23 = σ31 = σ32 = 0 (3.71)

σ33 = 2iϵ0

ω2
p

ω

√
α∥ [Z3(ζ)a+ Z2(ζ)b+ Z1(ζ)c+ Z(ζ)d] (3.72)

where ω2
p = n0q

2/ϵ0m is the plasma frequency. The conductivity tensor, deĄned by the

relation J1 = σ · E1, can now be written explicitly as a sum over each of the plasma

components: ∑

α

j1α =
∑

α

σα · E1 (3.73)

The kinetic dispersion relation can now be solved, by calculating the determinant of the

tensor deĄned in Eq. 3.8. The components can be written as:

R11 = 1 − k2c2

ω2
+
iσ11

ωϵ0

(3.74)

R12 =
iσ12

ωϵ0

(3.75)

R21 = −R12 (3.76)

R22 = R11 (3.77)

R33 = 1 +
iσ33

ωϵ0

(3.78)

R13 = R23 = R31 = R32 = 0 (3.79)

where the conductivity tensor σ is the sum over each plasma components. Calculating

det ♣R♣ = 0:
(

1 +
iσ33

ωϵ0

)

(

1 − k2c2

ω2
+
iσ11

ωϵ0

)2

− σ2
12

ω2ϵ2
0


 = 0 (3.80)

One obtains that the electrostatic modes are decoupled from the electromagnetic modes.

For electrostatic modes (left bracket, corresponding to k × E1 = 0):

1 +
iσ33

ωϵ0

= 0 (3.81)
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And for electromagnetic modes (right bracket, corresponding to k · E1 = 0):

1 − k2c2

ω2
+
iσ11 ± σ12

ωϵ0

= 0 (3.82)

where the upper sign (plus) is for right-hand polarized modes, and the lower sign (minus) is

for left-hand polarized modes. The latter equation will be investigated as the non-resonant

mode is electromagnetic. Inserting Eqs. 3.67 and 3.68 in Eq. 3.82, one Ąnally obtains:

1 − k2c2

ω2
−
∑

α

ω2
pα

ω2

[
T⊥α − T∥α

2T∥α

Z ′(ζ±
α ) +

1√
2vT ∥α

(
uα − ω

k

)
Z(ζ±

α )

]
= 0 (3.83)

with vT ∥α =
√
kBT∥α/mα and ζ±

α the argument of the Fried and Conte functions:

ζ±
α =

1√
2vT ∥αk

(ω − kuα ± Ωα) (3.84)

where the subscript Ş0Ť for the drift velocity has been discarded to simplify the notation.

This equation is the dispersion relation of electromagnetic waves propagating along an

ambient magnetic Ąeld, and will be used to calculate the growth rate and unstable

wavenumbers associated to the non-resonant mode. The Ąrst term in the right-hand

side of Eq. 3.83 contains the effects of the temperature anisotropy, and the second term

contains the effects of the zeroth order drift velocity. Since this equation encompasses all

the parallel propagating electromagnetic modes, it is rather complex and needs further

simpliĄcation to obtain analytical results. This is the purpose of the following sections.

3.3 Analytical solutions in various environments

3.3.1 Interaction regimes

In the following, the initial temperature will be supposed isotropic, such that T∥α = T⊥α =

Tα. In addition, it can be shown (Amato and Blasi [2009], Zacharegkas et al. [2019]) that

the linear properties of the non-resonant mode are not modiĄed by relativistic effects, such

that 1 ≪ k2c2/ω2. The dispersion relation can then be written as:

− k2c2 − 1√
2

∑

α

[
ω2

pα

vT α

(
uα − ω

k

)
Z(ζ±

α )

]
= 0 (3.85)

This complex equation can only be solved numerically using dispersion codes, where the

roots of the equation are found using dedicated numerical methods while considering a set

of initial plasma parameters on a predeĄned range of wavenumbers or angular frequencies.

Useful analytical results can however be obtained by simplifying the Fried and Conte

functions using Taylor and asymptotic expansions.

The argument of the Fried and Conte functions is a key parameter that characterizes

the interaction of the population α with the electromagnetic waves of angular frequency ω

and wave number k. Depending on the value of ζ±
α (Eq. 3.84), three regimes of interaction

can be distinguished (Gary and Feldman [1978]). The Ąrst one corresponds to ♣ζ±
α ♣ > 1,
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where the bulk of the velocity distribution function of the population α is far from the

cyclotron resonance condition ω−kuα ±Ωα = 0. This so-called cold regime is non-resonant

and may be correctly described using both a kinetic or a Ćuid approach, where the details

of the distribution function are unimportant. The other case ♣ζ±
α ♣ < 1 can be deĄned as the

hot and demagnetized regime, as the thermal Larmor radius is larger than the wavelengths

of the mode. In such a case the particles respond weakly to the electromagnetic Ąeld

perturbations. The intermediary regime, ♣ζ±
α ♣ ∼ 1, corresponds to the situation where the

bulk of the velocity distribution function lies near the cyclotron resonant velocity with the

electromagnetic waves and, depending on the polarization and direction of propagation,

important cyclotron resonant interactions can occur. This regime is particularly relevant to

the case of the right-hand resonant and left-hand resonant streaming instabilities (Kulsrud

and Pearce [1969]). The case ♣ζ±
α ♣ ≳ 1 can also be considered, where Ąnite Larmor radius

appear as small corrective terms in the dispersion relation, and will be referred as the warm

regime. The three regimes of cold, warm and hot regimes will be considered successively

in Sec. 3.3.2, 3.3.3 and 3.3.4. A particular emphasis will be made on the hot regime, for

which no analytical theory has been developed in the literature.

3.3.2 Cold regime

The non-resonant streaming instability has Ąrst been investigated in the work of Sentman

et al. [1981], where the authors studied reĆected ions in the Earth bow shock and their

propagation in the upstream solar wind. They found a Şnon-resonant Ąre-hose likeŤ mode by

solving numerically the kinetic dispersion relation of parallel propagating electromagnetic

waves. The instability has been further investigated in Winske and Leroy [1984], where it

was found that the instability may be described by neglecting the background protons,

electrons and streaming population temperature, relativistic effects, and by supposing low

frequency modes ω < Ωα and a small density ratio ncr/nm ≪ 1. Under such assumptions,

the ζ±
α parameter in Eq. 3.85 can be simpliĄed in order to obtain analytical results, using

the approximation:

ζ±
α ≈ 1√

2

(
− uα

vT α

± 1

krLα

)
(3.86)

where rLα = vT α/Ωα is the thermal Larmor radius of the population α. In the case of

small thermal velocities, i.e. the drift velocity is larger than the thermal velocity and the

thermal Larmor radius is smaller than the electromagnetic perturbation wavenumber, one

obtains ♣ζ±
α ♣ ≫ 1. In this limit the Fried and Conte functions can be approximated by a

Taylor expansion at Ąrst order as:

Z(ζ±
α ) = − 1

ζ±
α

(3.87)

After simpliĄcation (Winske and Leroy [1984]), the fastest growing mode growth rate γcold,

wavenumber kcold and real angular frequency ωr,cold may be calculated analytically as:

γcold =
1

2

ncr

nm

ucr

vA0

Ω0 (3.88)
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kcold =
1

2

ncr

nm

ucr

v2
A0

Ω0 (3.89)

ωr,cold =
1

2

n2
cr

n2
m

u2
cr

v2
A0

Ω0 (3.90)

One recovers the exact same results as the Ćuid model presented in Sec. 2.2.3. In the

cold case the growth rate is independent of the ambient magnetic Ąeld and of the main

protons temperature, which corresponds to the Larmor radius being much smaller than

the instability wavelength, such that it does not modify the instability. This regime of

interaction is particularly relevant in the context of supernova shocks in the cold and

tenuous interstellar medium (Bell [2004]) and of back streaming populations from the

earth bow shock region (Onsager et al. [1991], Akimoto et al. [1993]), where thermal effects

are expected to be small.

3.3.3 Warm regime

In the same way as in the cold regime, the Fried and Conte function can be simpliĄed

using Taylor expansions while retaining additional terms to account for thermal corrections

(Zweibel and Everett [2010]) as:

Z(ζ±
α ) = − 1

ζ±
α

− 1

2(ζ±
α )3

+ iπ1/2e−(ζ±
α )2

(3.91)

The −1/2(ζ±
α )3 term represents the partial decoupling between the magnetic Ąeld and the

particles due to their Ąnite Larmor radius, whereas the imaginary term (not present at

Ąrst order in the cold limit) encompasses the effects of particles interacting resonantly

with the wave. The dispersion relation may then be written in the form :

ω2 − ω


k

2v2
T m

2Ω0

+ Ω0
ncr

nm

− i
√
π

Ω2
0

kvT m

e
−

Ω
2

0

k2v2

Tm


− k2v2

A0 + Ω0
ncr

nm

kucr = 0 (3.92)

Supposing that the electrons remain cold, while retaining thermal effects for the background

protons, the fastest growing mode γwarm and associated wavenumber kwarm in the warm

regime (also called WICE, Warm Ions Cold Electrons) are then found as:

γwarm =
(
ncr

nm

ucr

vT m

)2/3

Ω0 (3.93)

kwarm =
(
ncr

nm

ucr

vT m

)1/3 Ω0

vT m

(3.94)

The growth rate in this regime depends linearly on the initial magnetic Ąeld, and as T−1/3
m

on the background protons temperature. Finite Larmor radius effects tend to reduce the

non-resonant mode growth rate and shift the unstable wavelengths toward larger scales.

A threshold for this regime can be calculated as vA0/vT m < (ncrucr/nmvT m)1/3. This

warm regime of interaction is of interest in low density, high temperature medium such as

superbubbles and galaxy cluster shocks, where the non-resonant mode may be affected by

the Ąnite background protons temperature.
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3.3.4 Hot and demagnetized regime

In the case of hot protons in a plasma permeated by a weak magnetic Ąeld, the background

protons thermal Larmor radius can be larger than the instability wavelength. In this case,

the Fried and Conte function can be expressed with its asymptotic approximation similarly

to the cold and warm regimes, and allowing an analytical treatment of the dispersion

relation (Marret et al. [2021]). By making the assumption of cold electrons and of cosmic

rays with a large drift over thermal velocity ratio, the arguments of the Fried and Conte

functions follow the limits: ♣ζ±
cr♣ ≫ 1, ♣ζ±

e ♣ ≫ 1 and ♣ζ±
m♣ < 1. Using the appropriate

asymptotic expansions, the Fried and Conte functions can then be rewritten (Fried and

Conte [1961]) as:

Z(ζ±
cr) = −

√
2
(

± 1

krLcr

− ucr

vT cr

)−1

+O(ζ±
cr)

3 (3.95)

Z(ζ±
e ) = −

√
2
(

± 1

krLe

− ue

vT e

)−1

+O(ζ±
e )3 (3.96)

Z(ζ±
m) = −

√
2
(

± 1

krLm

)
+ iπ1/2 +O(ζ±

m)3 (3.97)

The exponential terms have been simpliĄed and the contributions of order O(ζ±
α )3 have

been neglected. In the following, the real part of the expansions for each populations α

will be noted Rα:

Rcr = −
√

2
(

± 1

krLcr

− ucr

vT cr

)−1

(3.98)

Re = −
√

2
(

± 1

krLe

− ue

vT e

)−1

(3.99)

Rm = −
√

2
(

± 1

krLm

)
(3.100)

Inserting the Fried and Conte expansions in the dispersion relation gives:

√
2k2v

2
A0

Ω2
0

=
1

vT m

[
ω

k
(Rm + iπ1/2)


+
Re

vT e

ω2
pe

ω2
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[
ω

k
− ue


+
Rcr

vT cr

ω2
pcr

ω2
pm

[
ω

k
− ucr


(3.101)

Separating the real and imaginary parts of the frequency ω = ωr + iγ, one obtains:

γ(k) = −k

[√
2k2v

2
A0

Ω2
0

+
ue

vT e

ω2
pe

ω2
pm

Re +
ucr

vT cr

ω2
pcr

ω2
pm

Rcr

]
π1/2

vT m
[
Rm
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+
Re

vT e
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ω2
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ω2
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+
π

v2
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(3.102)

ωr(k) = k
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(3.103)

41



CHAPTER 3. KINETIC APPROACH TO THE NON-RESONANT MODE

10−4

10−2

100

γ
[Ω

0
]

10
2T0

10
4T0

10
6T0

10
2T0

10
4T0

10
6T0

10
2T0

10
4T0

10
6T0

10−3 10−2 10−1 100

k [l−1

0
]

−1

0
v φ

[v
A
0
]

Figure 3.1: Growth rate γhot (upper panel) and phase velocity vϕ = ωr,hot/k (lower panel) as a
function of the wave number k, obtained from Eqs. 3.104 and 3.105. Parameters used are, in
normalized units: ncr/nm = 0.01, ucr = 100 vA0. The black, red and orange curves corresponds
to Tm = 102, 104, 106 T0 respectively. The dotted portion of each curve corresponds to wave
numbers where the demagnetized main protons assumption is not fulfilled. The grey vertical
dashed line corresponds to k = kmax from Eq. 2.34.

Considering protons populations with a small density ratio ncr/nm, neglecting electron

inertia and using the initial null current condition (Eq. 2.7), one obtains after some algebra

the growth rate and real angular frequency in the hot, demagnetized regime of interaction:

γhot(k) =
(2π)1/2

rLmξ

k

Ω0

(
v2

A0 − ncr

nm

u2
cr

)
∓
(
k2

Ω2
0

v2
A0 +

n2
cr

n2
m

)
ucr

π

k2r2
Lm

+ 2

(
1

k2r2
Lm

− ncr

nm

1

ξ
− 1

)2 (3.104)

ωhot(k) =

k3r2
Lm (k2r2

Lm − 1)

(
ncr

nm

ucr ± k

Ω0

v2
A0

)

k4r4
Lm + k2r2

Lm

(
π

2
− 2

)
+ 1

(3.105)

with ξ = ±kucr/Ω0 − 1. Eqs. 3.104 and 3.105 are plotted in Fig. 3.1 as a function of the

wavenumber k. The growth rate is strongly reduced with increasing temperature. The

fastest growing mode is also modiĄed, and shifts towards smaller wave numbers compared

to the cold regime. In the warm regime, Ąnite Larmor radius effects of the main protons

play a role in determining the largest unstable wave number (Zweibel and Everett [2010]).

In the hot regime however, the competition between the magnetic tension and the cosmic

rays current driving term is the only determining factor of the largest unstable wave

number, and one obtains good agreement with the Ćuid estimate kmax = ncr
nm

ucr
v2

A0

Ω0. This

property can be understood by considering the Ćuid model presented in Sec. 2.2 while

retaining the Hall effect in OhmŠs law to account for the decoupling between electrons

and background protons in the demagnetized and collisionless regime. In that case, if one

neglects the background pseudo-cyclotron motion, the resulting linearized background Ćuid
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momentum conservation equation (eq. 2.25) is not modiĄed. Consequently the maximum

unstable wavenumber kmax is still solely determined by the balance between the cosmic

rays magnetic force and the magnetic tension, hence the identical results in the cold and

hot regimes.

Eqs. 3.104 and 3.105 may be further reduced to obtain information on the fastest

growing mode. Considering krLm ≫ 1 and kucr/Ω0 ≫ 1, which corresponds to the

hypothesis of demagnetized main protons, and to the non-resonant instability requirement

k > kmin, one Ąnds:

γhot(k) =
(
π

2

)1/2 1

rLmucr

[
±
(
v2

A0 − ncr

nm

u2
cr

)
−
(
k
v2

A0

Ω2
0

+
1

k

n2
cr

n2
m

)
ucrΩ0

]
(3.106)

ωhot(k) = k

(
ncr

nm

ucr ± k

Ω0

v2
A0

)
(3.107)

Calculating the growth rate derivative over k and searching for an extremum yields:

khot =
ncr

nm

Ω0

vA0

(3.108)

Inserting in the expressions of γhot(k) and ωhot(k), one obtains the growth rate, real angular

frequency and phase velocity vϕ,hot = ωhot/khot for the fastest growing unstable mode:

γhot =
(
π

2

)1/2 ncr

nm

ucr

vT m

Ω0 (3.109)

ωr,hot =
n2

cr

n2
m

ucr

vA0

Ω0 (3.110)

vϕ,hot = −ncr

nm

ucr (3.111)

Eqs. 3.108 to 3.111 hold for kcoldrLm ≳ 2 This threshold for the hot regime originates

from the Ąrst order asymptotic expansion of the main protons Fried and Conte function

(Eq. 3.97), which cannot accurately describe the complete function for ζ±
m ≳ 1/2. One

Ąnds that the growth rate decreases as T−1/2 with temperature, more rapidly than the

T−1/3 dependency in the warm protons regime. This result may be of importance in high

temperature plasmas with small ambient magnetic Ąeld, where the instability growth may

be strongly reduced. The real angular frequency and the fastest growing wave number are

independent of the main protons temperature. In addition, the fastest growing wave number

is also independent of the cosmic rays velocity. The phase velocity vϕ,hot = ωr,hot/khot is

equal and opposed to the electron drift velocity compensating the cosmic rays current,

which is the same result as in the cold regime.

These analytical results can be used to estimate the characteristic time and spatial

scales associated to the non-resonant instability in various environments. Using a density

ratio ncr/nm = 10−5 and a shock velocity ucr = 2.103 km.s−1 encountered in supernova

and galaxy clusters shocks, one immediately Ąnds that very large plasma βm are required

to reach the hot regime. Considering typical parameters of a cold and tenuous interstellar

medium, nm = 1 cm−3, Tm = 104 K and B = 10−6 G the demagnetized regime is not
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relevant even by considering locally smaller magnetic Ąeld, and larger temperatures such

as those found in superbubbles (Mac Low and McCray [1988]). The picture may change

however when considering leakage of cosmic rays in the intergalactic medium. Taking

parameters nm = 10−6 cm−3, ncr = 10−9 cm−3, Tm = 106 K, ucr = 102 km.s−1, and a

magnetic Ąeld B = 10−11 G (Kulsrud and Zweibel [2008]), one obtains demagnetized

main protons. The growth rate γhot = 6.6 × 10−10 s−1 corresponds to a growth time

of the order of 2πγ−1
hot = 300 years, which is strongly reduced by temperature by a

factor (2π)1/2vA0/vT m = 3 × 10−3 compared to the cold prediction. The instability is not

suppressed however, indicating that it may still develop in such environment and modify

the propagation and transport of cosmic rays.
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Chapter 4

Hybrid-PIC algorithm and numerical

setup
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4.1 Introduction

While linear theory is useful to establish the stability conditions and growth rates, it gives

no quantitative information on the non-linear evolution of the modes as well as on the

saturation of the instability. This difficulty can be overcome by performing computer

simulations, where the integro-differential equations which govern the evolution of the

plasma are solved numerically for a given set of initial parameters. The plasma being
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constituted of charged particles, one needs to self-consistently compute their dynamic

together with the electric and magnetic Ąeld evolution. The interactions between Ąelds and

particles occur via the source terms in Maxwell equations, which depend on the density of

each of the plasma component, and on the total current. Such macroscopic quantities can

be obtained in two ways: either by studying the evolution of the distribution function of

each plasma component using Vlasov equation, and calculating the associated moments to

retrieve the density and current; or calculate directly the evolution of the moments of the

distribution function. The Ąrst method corresponds to the kinetic approach, the second

method to the Ćuid approach. In both cases, depending on the size and duration of the

plasma considered, the numerical resolution is very expensive in computation time and it

is generally performed using massively parallelized codes running on hundreds (thousands)

of CPUs or GPUs cores.

This chapter presents the numerical model used for the simulations presented in this

thesis, the equations solved, as well as the physical hypothesis and limitations of the

code. It also presents an overview of the physics of particle collisions, as well as their

implementation in the simulations. The simulation results will be shown in the following

Chapters 5 and 6.

4.2 Simulation models

4.2.1 Kinetic and fluid approaches

The coupled system of the Vlasov and Maxwell equations may be solved using various

numerical methods, referred in the literature as Vlasov codes and Particle in Cell (PIC)

codes. In Vlasov codes, the Vlasov equation is solved directly for each population of

the plasma by discretizing the distribution functions in phase space, and by solving the

resulting seven-dimensional system of equations (3D space, 3D velocity, and time) coupled

with MaxwellŠs equations. This allows an accurate description of the linear and non-linear

evolution of the plasma while retaining all kinetic effects. A disadvantage of this method

is that the calculations require large amounts of computer memory, often restricting

calculations to 1D or 2D geometry.

The PIC method aims to solve the Vlasov equation in an alternate manner, by

discretizing the distribution function of each populations in space and in velocity using

macroparticles, usually 105 − 1012 (Le et al. [2019]) depending on the dimensionality of the

simulations, each macroparticle representing a fraction of the total distribution function.

Note that the term ŞparticleŤ in the PIC acronym can be misleading, as it is rather

macroparticles which are themselves a discretization of the distribution function, and

in no way real particles. NewtonŠs motion equation is computed together with Maxwell

equations for each macroparticle, which captures the same physics as solving Vlasov

equation. Such calculation may be parallelized efficiently by computing individually the

motion of each macroparticles while splitting the task among several processors by domain

decomposition, leading to a consequent reduction of the real calculation time. However,

the distribution function discretization leads to important numerical noise and to poor

description of the the tails of the distribution functions. This can be partially mitigated

by using more macroparticles, and by resorting to numerical adjustments such as high
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order shape functions and numerical smoothing terms added in the equations, at the cost

of additional computational time and deteriorated physical accuracy. As a consequence,

numerical simulations are always a trade-off between size, resolution, physical accuracy

and computational time.

In MagnetoHydroDynamic (MHD) codes the plasma is described by its zero order

(density), Ąrst order (Ćuid velocity) and second order (pressure) moments, which are

coupled to MaxwellŠs equations. The electrons and ions are supposed to be tied together

by the magnetic Ąeld and evolve as a single quasi-neutral Ćuid. MHD models do not

include kinetic effects such as resonances and Ąnite Larmor radius effects, and are used to

study the evolution of plasmas on large spatial and temporal scales, usually inaccessible

to PIC codes.

4.2.2 The hybrid approach

The dynamic of a plasma is dictated by the interaction between multiple populations

with various charges and masses, coupled with the electromagnetic Ąeld. For full-PIC

simulations, where both the electrons and ions are modelled by macroparticles, the time

step and mesh size must be adapted to follow the small electrons time and spatial scales.

This requires prohibitive computational resources when studying plasmas at the ion scales

because of the small electron to proton mass ratio me/mp ≈ 5 × 10−4, and results in overly

small time steps and Ąne spatial resolution which are not always absolutely required to

study the ion dynamic. When studying plasmas on ion scales, a common approximation

in full-PIC simulations is to artiĄcially increase the mass ratio to bring the electrons

scales closer to the ionsŠ, i.e. me/mi → 1, at the cost of a degraded physical accuracy.

The asymptotic limit of such approach is pair plasmas, where electrons and positrons

are considered, and it is important for many astrophysical applications such as pulsar

winds (Wada and Shibata [2007], Pétri [2016], Spitkovsky [2017]) and extra-galactic jets

(Marcowith et al. [1995]).

The hybrid-PIC approach aims to alleviate the separation of scales issue in ion-

electron plasma. It mixes Ćuid and PIC models by considering the electrons as a massless

neutralising Ćuid, whereas the ion populations are treated kinetically. The massless

assumption comes from the fact that the electrons are supposed to adapt to the ion dynamic

at each time step to satisfy the quasi-neutrality hypothesis, which requires inĄnitely large

accelerations, or equivalently inĄnitely small mass, i.e me/mi → 0. Alternatively, this can

be understood as an approximation of inĄnitely large scale separation between the ions and

electrons, such that the electrons dynamic is supposed instantaneous with respect to the

ionsŠ. This allows to relax the stringent constraints on the time step and spatial resolution

imposed by the electron small mass, and permits long time scale studies while retaining

the ionsŠ kinetic effects. The non-resonant streaming instability is characterized by large

time and spatial scales, of the order of the ionsŠ inverse cyclotron frequency and inertial

length. As such, a kinetic description of those of the electrons is unnecessary. In fact, a

kinetic treatment of the ions is also not mandatory to capture the essential physics of the

instability, in the limit of a small ion temperature. It becomes important in the situation

where the ion Larmor radius is comparable or larger than the unstable wavelengths,

as detailed in Sec. 3.2. The simulations presented in this thesis were performed with
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the hybrid-PIC computer code Heckle (Smets, R. and Aunai [2011]), developed at the

Laboratoire de Physique des Plasmas in France. The ions are described as macroparticles,

and the electrons as a massless Ćuid. This hybrid approach is well suited to study the

kinetic, non-linear evolution of systems at the ions temporal and spatial scale while

avoiding prohibitive computational time. It can also be employed to calculate theoretically

the dispersion relation of plasma waves, and reproduces the ion physics contained in a

fully kinetic description while discarding electron kinetic effects such as electron Landau

damping and electron cyclotron resonance (Told et al. [2016]).

A similar approach called MHD-PIC has been the subject of a growing interest in the

astroparticle community for the acceleration of cosmic rays at shocks. The idea is to mix

the particle and Ćuid approaches in order to be able to simulate plasmas on large time

and spatial scales. Following a similar philosophy to the hybrid-PIC model, the electrons

and background ions are treated as an MHD Ćuid, while a kinetic treatment is retained

only for the cosmic rays which then contribute to the source terms in MaxwellŠs equation.

This is particularly adequate to simulate the acceleration of cosmic rays at shocks, where

the individual motion of the accelerated particles must be computed, whereas the kinetic

effects in the background plasma may be neglected in some cases. Such approach however

does not resolve the intermediary regime, i.e. the injection of cosmic rays, initially part

of the background plasma and the expanding supernova remnant at the shock boundary.

Current state-of-the-art MHD-PIC simulations circumvent this issue by injecting cosmic

rays following prescriptions obtained from smaller scales PIC simulations of shocks (Bai

et al. [2015], Casse et al. [2018], Mignone et al. [2018]).

4.3 The Heckle code

4.3.1 System of equations and normalizations

This section presents the basic set of equations solved by the code, the numerical scheme,

and discuss the approximations and limitations of the code. The motion for each ion

macroparticle k is obtained from NewtonŠs equation while considering the electric and

magnetic forces:
dxk

dt
= vk (4.1)

dvk

dt
=

qk

mk

(E + vk × B) (4.2)

where qk and mk are the charge and mass respectively. The electromagnetic force is

calculated using the electric and magnetic Ąelds which are discretized on a Cartesian grid,

and linearly interpolated from the grid to the macroparticle position. The magnetic Ąeld

evolution is obtained from Maxwell-FaradayŠs equation:

∂B

∂t
= −∇ × E (4.3)

As the electrons are not treated kinetically, the electric Ąeld must be obtained from the

electron momentum density conservation equation, which gives in the case of negligible
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electron inertia (me = 0) the generalized OhmŠs law:

E = −ui × B +
1

ene

(J × B − ∇ · Pe) + ηJ − η′∆J (4.4)

The Ąrst term on the right-hand side corresponds to the electric Ąeld produced by the

ions Ćuid motion, the second and third terms are the Hall and electron pressure gradients

contribution respectively. The fourth term corresponds to the electric Ąeld generated in

the plasma because of the Ąnite resistivity η, and the last term is a numerical dissipative

term, with η′ the hyperviscosity. In the simulations presented in this work, the electron

pressure is calculated by supposing an isothermal, isotropic behavior:

Pe = nekBTe (4.5)

where kB is the Boltzmann constant, and Te the uniform electron temperature Ąxed at the

beginning of the simulation. In this case the pressure is a scalar, such that the pressure

gradient forces due to the electrons can be computed directly as ∇Pe = kBTe∇ne.

The numerical drawback of using OhmŠs law to calculate the electric Ąeld is the n−1
e

dependency in the Hall and electron pressure gradients terms. In PIC simulations, the

number of macroparticles per cell results from the dynamic of the simulated plasma. As

such, if the dynamic leads to the generation of a strong electric Ąeld in some regions of

space, the macroparticles can be swept away from a given cell, decreasing the density

and amplifying an electric Ąeld which will bring back the macroparticles via the pressure

gradient term in OhmŠs law. However if this electric Ąeld is too large, the macroparticles

will ŞmissŤ the density hole. This can ultimately lead to a numerical singularity with a null

density and a very large or undeĄned electric Ąeld. The most direct way of dealing with

such issue is to inject new macroparticles in the simulation in under-dense regions, which

is not always physically accurate and has a high computational cost. The density holes

can also be avoided by reducing electric Ąeld Ćuctuations artiĄcially. This can be done by

introducing numerical resistivity terms at small scales in OhmŠs law, allowing to dissipate

electric Ćuctuations in regions of sharp gradients of the plasma current. This is the method

employed in Heckle with the hyperviscosity term in Eq. 4.4. This hyperviscosity term has

the interesting property of conserving large scale current structures, which may play an

important role in hybrid-PIC simulations of magnetic reconnection (Aunai et al. [2013]).

4.3.2 The plasma current

Maxwell-AmpèreŠs equation allows to calculate the total conduction current J in the plasma

as a function of the electromagnetic Ąeld, and may be separated into the longitudinal and

transverse components to the wave propagation direction k/k (noted with the subscripts

ŞLŤ and ŞT Ť respectively). The longitudinal and transverse electric Ąelds and currents can

then be written as JL = J · kk/k2, JT = J − JL, EL = E · kk/k2 and ET = E − EL, such
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that Maxwell-AmpèreŠs equation becomes:

0 = µ0JL +
1

c2

∂EL

∂t
(4.6)

∇ × B = µ0JT +
1

c2

∂ET

∂t
(4.7)

In the non-relativistic limit, one may neglect the transverse component of the displacement

current, corresponding to the second term in the right-hand side of Eq. 4.7. The transverse

current JT can then be obtained directly from the curl of B, and is used to calculate

the Hall, resistive and hyperviscosity terms in OhmŠs law. As a consequence the current

involved in OhmŠs law is only the transverse one in the hybrid-PIC non-relativistic model,

which is an approximation of the exact equation where the total current (longitudinal and

transverse) appears. A direct consequence of such simpliĄcation is that the speed of light,

or alternatively the dielectric permittivity of vaccum, is not deĄned in the simulations. This

leads to numerical complications when modeling plasma effects below the Debye length,

such as Coulomb collisions. This will be further discussed in Sec. 4.4. The longitudinal

current JL is involved in the charge conservation equation:

∂

∂t

∑

α

Qα + ∇ · JL = 0 (4.8)

The Ąrst term in the left-hand side is associated to the hypothesis of quasi-neutrality, but

cannot be neglected a priori with respect to the longitudinal current gradient. Hence,

despite the quasi-neutrality hypothesis, a longitudinal (electrostatic) component of the

electric Ąeld can still exist. As a result, the acoustic ionic and ion Bernstein modes can

develop in the hybrid-PIC model despite the longitudinal current not being explicitly part

of the solved system of equations.

4.3.3 Normalizations and numerical scheme

The Hybrid-PIC code Heckle uses normalized quantities in order to manipulate numbers

of the order unity to avoid numerical precision issues. Masses and charges are normalized

to the proton mass mp and elementary charge e respectively. The densities and magnetic

Ąeld are normalized to a uniform reference value n0 = nm(t= 0) where nm is the main

ions density, and B0 = B(t= 0). Frequencies, lengths and velocities are normalized to

the initial proton cyclotron angular frequency Ω0 = eB0/mp, initial proton inertial length

l0 = vA0/Ω0 = c/ωpm where c is the speed of light, ωpm = (n0e
2/ε0mp)

1/2 is the protons

plasma frequency and vA0 = B0/(µ0n0mp)
1/2 is the initial Alfvén velocity with µ0 the

magnetic permeability. Temperatures are expressed in terms of energy as kBT0 = mpv
2
A0.

Finally the electric Ąeld is normalized to E0 = vA0B0.

The code solves the Vlasov-Maxwell system of equations using a predictor-corrector

explicit scheme for the electromagnetic Ąeld, deĄned on a Cartesian grid. The numerical

scheme used can be described as follows (Smets, R. and Aunai [2011]). First, the predictor

step:

• vn+1/2 = vn−1/2 +
q∆t

m

[
En +

vn+1/2 + vn−1/2

2
× Bn
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• xn+1 = xn + ∆tvn+1/2

• Nn+1/2 = Σsqs(Sn + Sn+1)/2

• Vn+1/2 = Σs(Sn + Sn+1)vn+1/2/2Nn+1/2

• Bn+1/2 = Bn − ∆t

2
∇ × En

• Jn+1/2 = ∇ × Bn+1/2

• Pn+1/2 = Nn+1/2T0

• En+1/2 = −Vn+1/2 × Bn+1/2 +
1

Nn+1/2

(
Jn+1/2 × Bn+1/2 − ∇Pn+1/2

)
+ ηJn+1/2

• En+1 = −En + 2En+1/2

• Bn+1 = Bn+1/2 − ∆t

2
∇ × En+1

• Jn+1 = ∇ × Bn+1

Then, the corrector step:

• vn+3/2 = vn+1/2 +
q∆t

m

[
En+1 +

vn+3/2 + vn+1/2

2
× Bn+1



• xn+2 = xn+1 + ∆tvn+3/2

• Nn+3/2 = Σsqs(Sn+1 + Sn+2)/2

• Vn+3/2 = Σs(Sn+1 + Sn+2)vn+3/2/2Nn+3/2

• Bn+3/2 = Bn+1 − ∆t

2
∇ × En+1

• Jn+3/2 = ∇ × Bn+3/2

• Pn+3/2 = Nn+3/2T0

• En+3/2 = −Vn+3/2 × Bn+3/2 +
1

Nn+3/2

(
Jn+3/2 × Bn+3/2 − ∇Pn+3/2

)
+ ηJn+3/2

• En+1 =
1

2
(En+1/2 + En+3/2)

• Bn+1 = Bn+1/2 − ∆t

2
∇ × En+1

• Jn+1 = ∇ × Bn+1

with q the charge, m the mass and ∆t the numerical time step. The motion of a

macroparticle is computed using a non-relativistic Boris pusher (Boris [1970]), which

algorithm is presented here for completeness. The equation which needs to be solved at

the predictor step is:

vn+1/2 − vn−1/2

∆t
=

q

m

[
En +

(
vn+1/2 + vn−1/2

2

)
× Bn


(4.9)

DeĄning the variables:

vn−1/2 = v− − qEn

m

∆t

2
(4.10)

and

vn+1/2 = v+ +
qEn

m

∆t

2
(4.11)
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4.3.4 Macroparticle initialization

The background ions are initialized with a Maxwellian distribution:

f(v) = n0

(
α

π

)3/2

e−α(v−u0)2

(4.19)

with α = m/2kBT , kB the Boltzmann constant, u0 the drift velocity and n0 the initial

density. Such distribution can be obtained numerically by sampling macroparticles using

the Box-Muller method (Box and Muller [1958]). Considering two uniformly distributed

random numbers (R1, R2) ∈ ]0, 1], the velocity component vj of a given macroparticle is

calculated as:

vj =

√

−2 ln(R1)kBTj

m
cos(2πR2) (4.20)

where Tj is the temperature of the ion population in the j direction. This method

corresponds to the calculation of the cumulative distribution function, which is then

inverted in polar coordinates to obtain the velocity following a Maxwellian distribution.

It is known that the cosmic rays at supernova shocks and propagating in the galaxy

follow a power law (Arbutina and Zekovic [2021]), usually deĄned in the cosmic rays research

community as a function of momentum. In this calculation however the distribution will

be deĄned as a function of velocity for numerical convenience. Such distribution can be

obtained similarly to the Maxwellian case by inverting the cumulative distribution function.

Considering velocities in a given direction between the minimum and maximum vmin and

vmax and with a power index α, one may deĄne the power law velocity distribution function

as:

f(v) = Avα (4.21)

where A is a normalization factor such that:
∫ vmax

vmin

Awαdw =
A

α+ 1
(vα+1

max − vα+1
min ) = 1 (4.22)

which gives A = (α + 1)/(vα+1
max − vα+1

min ) with α ̸= −1. Integrating this expression between

vmin and a random Ąnite number v gives:

∫ v

vmin

Awαdw =
A

α+ 1
(vα+1 − vα+1

min ) = R (4.23)

If the distribution is normalized, then R is a uniformly distributed random number between

0 and 1, which can be obtained numerically using a random number generator. Hence:

v =
(
α+ 1

A
R + vα+1

min

)1/(α+1)

(4.24)

Inserting the normalization factor, one Ąnally obtains:

v =
[
(vα+1

max − vα+1
min ) R + vα+1

min

]1/(α+1)
(4.25)
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The random velocity v follows a power law distribution between vmin and vmax with a

power value α. The mean velocity u can be calculated directly as:

u =
∫ vmax

vmin
Awα+1dw (4.26)

=
α+ 1

α+ 2

vα+2
max − vα+2

min

vα+1
max − vα+1

min

(4.27)

with α ≠ (−1,−2). However, for the case of the non-resonant mode, the exact shape of

the distribution function does not play a role in the growth of the unstable wavelengths.

More precisely, only the zeroth and Ąrst order moments are involved, namely the density

and Ćuid velocity as presented in Sec. 2.2.3. As such, the cosmic rays drifting population

will be modelled in the simulations using a Maxwellian distribution, without any loss of

physical accuracy. This model cannot be used when studying the left-hand and right-hand

resonant modes, where details of the cosmic rays streaming population are important in

determining the growth of the electromagnetic perturbations (e.g. Holcomb and Spitkovsky

[2018]). In this case the distribution function cannot be assumed to be Maxwellian, and a

realistic distribution function must be considered.

4.3.5 Coupling the macroparticles to the fields

The coupling between Ąelds and particles is accomplished via the moments (density, Ćuid

velocity) of the distribution which appear in OhmŠs and AmpèreŠs laws. The Ąelds being

deĄned on a discrete, Cartesian grid, the moments must also be calculated on this grid.

This operation is called moments deposition. The electron charge density is obtained from

the quasi-neutrality hypothesis, ene ≈ ∑
l qlnl, and the ion Ćuid velocity ui is obtained by

a sum over the ion populations ℓ such that:

ene(x) = qini(x) =
∑

k,ℓ

qℓS(x − xℓ,k) (4.28)

ui(x) =
∑

ℓ,k

vℓ,kS(x − xℓ,k)/
∑

ℓ,k

S(x − xℓ,k) (4.29)

In these expressions, x is the grid point position, xk,ℓ the position of a macro-particle k

from population ℓ, and:

S(x − xℓ,k) = Wℓ

∏

j

Sj (4.30)

is the Ąrst order shape function where:

Sj =





0 ♣(x − xℓ,k) · ej♣ ≥ ∆xj

♣(x − xℓ,k) · ej♣/∆xj ♣(x − xℓ,k) · ej♣ < ∆xj

(4.31)

with j = x for simulations in 1D aligned along the ex direction. For 2D simulations in the

ex and ey directions, j = x, y and j = x, y, z for 3D simulations. ∆xj is the grid size in

the j direction. The shape function corresponds to the spatial extent of a macroparticle.

An illustration is given in Fig. 4.2. The ion species have different numerical weights Wℓ
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4.4 Including particle collisions in the simulations

4.4.1 Coulomb collision operator

The Coulomb collisions refer to interactions between charged particles via electric Ąelds on

small scales, as opposed to interactions via the electric Ąeld generated by collective effects

such as the induction and the Hall electric Ąeld obtained in Ćuid theory. The evolution of

the distribution function of a population α in a plasma including collisions is described by

the Boltzmann equation:

∂fα

∂t
+ v · ∇fα +

qα

mα

(E + v × B) · ∂fα

∂v
=

(
∂fα

∂t

)

C

(4.34)

The electric Ąeld E in Eq. 4.34 is the large scale electric Ąeld, and does not include the

Ćuctuating component on scales below a certain characteristic small scale, which will

be characterized in the following. Collisions are taken into account via the term on the

right-hand side of Eq. 4.34, which corresponds to the variation of the number of particles

of the population α per unit of time and of phase space because of collisions. Under this

generic name is hidden the complexity of interactions between the particles themselves,

and it also includes close range interactions such as charged-neutral particle collisions.

The collision operator can be decomposed as:

(
∂fα

∂t

)

C

=
∑

β

Cαβ (4.35)

where Cαβ is the contribution of the collisions between the populations α and β. It can be

written in the general form:

Cαβ =
∫
u

dσ

dΩ
(f ′

αf
′
β − fαfβ)d3vβdΩ (4.36)

where fα,β and f ′
α,β are the distribution functions before and after the collision respectively,

u is the relative velocity before collision, and dσ/dΩ is the differential collision cross-section

with Ω the scattering angle. Because of its complexity, it is rarely used in this form in

analytical or numerical studies and requires simpliĄcations to make calculations tractable.

The Bhatnagar-Gross-Krook (BGK) operator (Bhatnagar et al. [1954]) is the simplest

approximation of the collision operator and consists in a relaxation term of the form:

(
∂fα

∂t

)

C

= −ν(fα − f
α0) (4.37)

with f
α0 an equilibrium distribution (usually a Maxwellian distribution) and ν a charac-

teristic frequency, often assimilated to the collision frequency. It is a phenomenological

operator, which characterizes the tendency of collisions to reduce anisotropies and drive

the distribution toward a Maxwellian. Its main advantage is its relative simplicity in

analytical calculations. A more precise approximation of the Boltzmann operator can be

obtained by taking into account the fact that small angle scattering collisions are much

more frequent that large angle scattering collisions in a plasma. One may then obtain
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Figure 4.3: Schematic view of a Coulomb collision between an electron (noted e−) and an ion
(noted i+) in the Lorentz model. The two particles are separated by a distance vt in the ez

direction, and by the distance b called impact parameter, in the plane (ex, ey).

after a lengthy derivation the Landau collisions operator (Landau [1965]):

Cαβ = − 1

8πϵ2
0

q2
αq

2
β

mα

ln Λαβ
∂

∂vα

·
∫ u2

1 − uu

u3
·
(
fα

mβ

∂fβ

∂vβ

− fβ

mα

∂fα

∂vα

)
d3vβ (4.38)

While still difficult to handle in analytical calculations, this operator can be solved

numerically in PIC simulations.

4.4.2 Theoretical elements of Coulomb collisions

The effects of Coulomb collision can be illustrated by considering the Lorentz model, where

a test particle electron collides with an immobile ion. The derivation can be found in

textbooks such as Trubnikov [1965] and Callen [2006]. A brief summary of the calculation

is presented here. In the reference frame of the electron, the ion is assumed to move with

a velocity −vez in a straight line trajectory. The electron position can then be written as

a function of the impact parameter b, time t and angle φ:

x = b cos(φ) ex + b sin(φ) ey + vt ez (4.39)

♣x♣ =
√
b2 + v2t2 (4.40)

A schematic of the situation is shown in Fig. 4.3. The electron interacts with the

ion via the electric force F(x) = −Ze2x/4πϵ0♣x♣3 with Z the ion atomic number. The

change of velocity can then be obtained by integrating NewtonŠs equation in the direction

perpendicular to the initial velocity as:

me∆v⊥ = − Ze2b

4πϵ0

(cos(φ)ex + sin(φ)ey)
∫ +∞

−∞

dt

(b2 + v2t2)3/2
(4.41)

= − Ze2

2πϵ0bv
(cos(φ)ex + sin(φ)ey) (4.42)

with t = 0 for ♣x♣ = b. Their is no parallel component as t/(b2 + v2t2)3/2 is an odd function

of t and consequently vanishes when integrated in time. Considering b ∼ n−1/3
e and v ∼ vT e,

one obtains ∆v⊥/v ∼ (neλ
3
D)−2/3 ≪ 1 such that the typical angle of deĆection by a single

encounter between the electron and an ion is small. For elastic collisions, the total electron
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energy is conserved such that:

1

2
me♣v♣2 =

1

2
me♣v + ∆v♣2 (4.43)

which yields:

v · ∆v = v∆v∥ ≈ −1

2
∆v⊥ · ∆v⊥ (4.44)

Hence:

∆v∥ = − 2Z2e4

(4πϵ0)2b2v3me

(4.45)

By integrating over angles, impact parameters and number of ions passed by the elec-

tron: ni

∫
d3xdt = ni

dz
dt

∫
dxdy = niv

∫ 2π
0 dφ

∫+∞
0 b db, the averaged parallel force can be

calculated as:

⟨F∥⟩ = me

∆v∥

∆t
= meniv

∫ 2π

0
dφ

∫ +∞

0
∆v∥b db (4.46)

= − 4π
Z2e4

(4πϵ0)2v2me

ni

∫ +∞

0

db

b
(4.47)

This integral diverges in both limits, but can be reduced by physical considerations. The

lower limit bmin can be estimated as the classical distance of closest approach between

the electron and the ion, which can be deĄned as the distance for which ♣∆v∥♣ = ♣∆v⊥♣
corresponding to a π/2 deĆection (often referred as the Landau length), and yields bmin =

Ze2/12πϵ0kbTe. The electron kinetic energy is supposed to be of the order mev
2 ≈ 3kbTe

while considering electrons with a Maxwellian distribution. The upper limit bmax can

be estimated as the maximum impact parameter for which the interaction between the

electron and the immobile ion alters signiĄcantly the electron trajectory. In this case

the Debye length, corresponding to the distance above which the ion Coulomb potential

is screened by the electrons, can be used such that bmax = λD = (ϵ0kBTe/nee
2)1/2. The

averaged parallel force then becomes:

⟨F∥⟩ = −4π
Z2e4

(4πϵ0)2v2me

ni

∫ bmax

bmin

db

b
= −4π

Z2e4

(4πϵ0)2v2me

ni ln Λ (4.48)

where ln Λ is the Coulomb logarithm with:

Λ =
bmax

bmin

(4.49)

The Debye length constitutes the minimum spatial scale of the electric Ąeld Ćuctuations in

Eq. 4.34. The Coulomb logarithm is of the order ln Λ ∼ 10 − 30 depending on the plasma

parameters. It can be considered to remain constant as a Ąrst order approximation. Using

quasi-neutrality the equality Zni = ne holds, hence:

me

dv∥

dt
= −νL

eimev∥ (4.50)
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where νL
ei is the Coulomb collision frequency in the Lorentz model of a single test electron

in a population of immobile Ąeld ions:

νL
ei =

1

4πϵ2
0

Ze4

m2
e

ne

v3
ln Λ (4.51)

This rate depends strongly on the relative velocity v and linearly with the density, such that

high temperature, low density plasma tend to be collisionless. The collision being elastic,

the slowing down in the parallel direction (to the initial velocity) leads to a scattering in

the perpendicular direction. In the case of a Maxwellian distribution of slowly drifting test

particle electrons population (relative to their thermal velocity), it can be shown that the

collision frequency is modiĄed by a factor 4/3
√
π ≈ 0.75. From this expression, one may

calculate the plasma conductivity which appears in OhmŠs law J = σE as σ = nee
2/meν

L
ei.

The calculation for collisions between two moving particles, being electrons or ions, is

more complicated than in the Lorentz model, as the Ąeld particle cannot be considered

immobile, and involves the Rosenbluth potentials (Rosenbluth et al. [1957]). It can be

shown that the situation of a test particle α colliding with a background population β

following a Maxwellian velocity distribution leads to several Coulomb collision processes:

momentum loss, parallel and perpendicular diffusion, and energy loss, expressed respectively

as:

d

dt
(mαv) = − ν

α/β
S mαv (4.52)

d

dt
♣v − u♣2⊥ = − ν

α/β
⊥ v2 (4.53)

d

dt
♣v − u♣2∥ = − ν

α/β
∥ v2 (4.54)

d

dt
εα = − να/β

ε εα (4.55)

with v the velocity of the test particle in the background reference frame, and εα = mαv
2/2.

To each process is associated a characteristic rate:

ν
α/β
S = −

[(
1 +

mα

mβ

)
ψ

]
ν

α/β
0 (4.56)

ν
α/β
⊥ = −

[
ψ + ψ′ − ψ

2x

]
ν

α/β
0 (4.57)

ν
α/β
∥ = −

[
ψ

x

]
ν

α/β
0 (4.58)

να/β
ε = −

[
2ν

α/β
S − ν

α/β
⊥ − ν

α/β
∥

]
ν

α/β
0 (4.59)

In these expressions, x = v2
α/v

2
T β with v2

T β the thermal velocity of the background particles

β, and ψ is the Maxwell integral:

ψ(x) =
2√
x

∫ x

0
dt

√
te−t (4.60)
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The fundamental collision frequency ν
α/β
0 is deĄned by:

ν
α/β
0 =

1

4πϵ2
0

q2
αq

2
β

m2
α

nβ

v3
ln Λαβ (4.61)

where the Coulomb logarithm ln Λαβ is calculated as:

ln Λαβ = ln

(
4πϵ0λD

mαβ

mβ

kBTβ

qαqβ

)
(4.62)

with mαβ = mαmβ/(mα +mβ) the reduced mass. As each collision event produces a small

scattering, the Coulomb collision frequency does not represent the actual frequency at

which each individual interactions occur. It quantiĄes instead a characteristic time for

which numerous interactions lead to an overall signiĄcant change in velocity. The Coulomb

collisions can be separated in intra-species and inter-species collisions, depending on

whether the collisions occur among particles of a given population, or between two different

populations. The intra-species collisions produce the effect of reducing temperature

anisotropies and drive the distribution toward an isotropic Maxwellian. Inter-species

collisions reduce the relative drift velocity between the colliding populations, and equalize

temperatures between the populations (Trubnikov [1965]).

Supposing that the colliding populations have a characteristic relative velocity equal

to their thermal velocity v = vT α, the Maxwell integral can be simpliĄed asymptotically,

allowing the slowing down rates to be ordered with respect to the electron-ion collision

fundamental collision frequency as:

ν
e/e
S =

0.86

Zi

ν
e/i
0 , ν

i/i
S = 0.86Z2

i

√
me

mi

ν
e/i
0 , ν

i/e
S = 0.75Zi

me

mi

ν
e/i
0 (4.63)

with Zi = qi/e. A similar scaling can be found for the diffusion and energy loss rates

(Callen [2006]). In the simulations presented in this thesis, the electron-electron collisions

are not explicitly computed, but are implicitly assumed to occur on time scales much

shorter than those associated to other components of the plasma, consistent with the

isothermal Ćuid assumption used for the electron population. The electron-ion collisions

are taken into account via a Ąxed resistivity in OhmŠs law (see Sec. 4.5). The ion-electron

momentum loss is much less efficient than electron-ion momentum loss, because of the

large difference in mass. For this reason ion-electron collisions will be neglected in the

simulations presented in this work. Only the ion-ion collisions are directly computed in

the simulations.

4.4.3 Numerical implementation

The numerical resolution of the ion-ion Coulomb collisions was implemented in the hybrid-

PIC code Heckle by Loïc Nicolas during its PhD thesis at the LERMA laboratory (Nicolas

[2017]). The Landau collisions operator is numerically solved using the method proposed

in Takizuka and Abe [1977]. The algorithm is corrected to take into account different

numerical weights between populations following the prescription of Miller and Combi
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Figure 4.4: Schematic view of the spherical coordinates used to calculate the post collision
velocity u(t + ∆t) of a pair of macroparticles, as a function of the relative velocity u(t) before
the collision.

[1994] and Nanbu and Yonemura [1998]. This section gives a brief overview of the numerical

method employed.

The algorithm relies on the pairing of macroparticles within a given cell in the simulation

at each time step, which then allows to compute a scattering angle. Although the collisions

are binary in the simulations, this does not contradict the physical process of Coulomb

collision, as the average total effect of randomly paired macroparticle collisions over many

time step is equivalent to solving the Landau operator (Takizuka and Abe [1977]). Once

the random pairing of macroparticles is performed, the scattering angle is computed from

the relative velocity using a Monte Carlo algorithm. The calculation is done in the reference

frame (e′
x, e

′
y, e

′
z), where the relative velocity between a pair of macroparticles is aligned with

the e′
z direction as illustrated in Fig. 4.4. The change in velocity ∆u = u(t+∆t)−u(t) with

∆t the numerical time step is then obtained in the simulation reference frame (ex, ey, ez)

as:

∆ux =
ux

u⊥

uz sin Θ cos Φ − uy

u⊥

u sin Θ sin Φ − ux(1 − cos Θ) (4.64)

∆uy =
uy

u⊥

uz sin Θ cos Φ +
ux

u⊥

u sin Θ sin Φ − uy(1 − cos Θ) (4.65)

∆uz = − u⊥ sin Θ cos Φ − uz(1 − cos Θ) (4.66)

where u⊥ =
√
u2

x + u2
y is the velocity in the (ex, ey) plane, and u = ♣u(t)♣. Using these

expressions, the post collision velocities of the two colliding macroparticles α and β are

then calculated as:

vα(t+ ∆t) = vα(t) +
mαβ

mα

∆u (4.67)

vβ(t+ ∆t) = vβ(t) +
mαβ

mβ

∆u (4.68)
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The angle Φ is calculated by sampling a uniformly distributed angle such that 0 < Φ < 2π.

The scattering angle Θ is obtained from the relations:

sin Θ =
2δ

1 + δ2
(4.69)

1 − cos Θ =
2δ2

1 + δ2
(4.70)

where δ is a random variable which characterizes a collision frequency in the simulations.

It follows a Gaussian distribution of variance:

⟨δ2⟩ =
1

8πϵ2
0

q2
αq

2
β

m2
αβ

nL

u3
∆t ln Λ (4.71)

with nL = min(nα, nβ). The scattering occurs at each time step, and is stronger for larger

δ. In order to account for different numerical weights in inter-species collisions, the δ

parameter must be corrected (Miller and Combi [1994], Nanbu and Yonemura [1998]) as:

δ′ =





δ × max(Wα,Wβ)

Wβ

Nα > Nβ

δ × max(Wα,Wβ)

Wα

Nα < Nβ

(4.72)

where Nα,β is the number of macroparticles of species α and β in a given numerical cell,

where the macroparticle pairing is done. The calculation of the δ parameter and of the

Coulomb logarithm involves the dielectric permittivity ϵ0, which is not deĄned in the

system of equations solved in the code. As a consequence the values of δ and ln Λ are

normalized via the two parameters σ0 and Ψ0 deĄned as:

σ0 =
1

8πϵ2
0

e4

m2
p

n0

v3
A0

Ω0 (4.73)

and:

Ψ0 = ln

(
4π

(kBT0ϵ0)
3/2

e3
√
n0

)
(4.74)

which are given as input to the simulations. Fixing these parameters is equivalent to

deĄning the reference density n0 and magnetic Ąeld B0, such that they verify the parameters

σ0 and Ψ0 while being constrained by the elementary charge e, proton mass mp, speed of

light c and dielectric permittivity ϵ0.

4.4.4 Ion-neutral collisions

The ion-neutral collisions differ signiĄcantly from the Coulomb collisions, as they result

from close range interaction between the neutral and the ion. The Coulomb collisional

scattering is the result of multiple interactions, as opposed to the ŞclassicalŤ binary

collisions occurring for neutral collisions. A schematic is shown in Fig. 4.5. The resulting

scattering angle for each individual encounter can be large and depends on the atomic

properties of the colliding particles. In this study, only proton-hydrogen collisions are

considered. Such collisions are characterized by a collision frequency νin = nnσin∆u, where
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dim ncr/nm ucr βm Tm Tcr Te Lx/Ly ∆x/∆y ∆t Ncr/ Nm

1DTH 1D 0.01 100 0.2 - 400 0.1 - 200 1 1 1000/ 1/ 10−4 500/500
2DTH 2D 0.01 100 20, 50, 100 10, 25, 50 1 1 1000/200 1/1 10−4 75/75

Table 4.1: Normalized parameters used in the simulations for the thermally modiĄed
non-resonant mode, noted ŞTHŤ for thermal, with βm = 2(vT m/vA0)2. ∆x and ∆y are the
mesh size in the x and y directions, Ncr and Nm are the initial number of macroparticles
per cell for the cosmic rays and main protons populations respectively.

dim ncr/nm ucr ν0 Tm Tcr Te Lx/Ly ∆x/∆y ∆t Ncr/ Nm

1DCC 1D 0.01 50 0.01 - 100 1 1 1 1000/ 1/ 10−5 100/100
1DCN 1D 0.01 50 0.01 - 30 1 1 1 1000/ 1/ 10−5 100/100
2DCC 2D 0.01 50 27 1 1 1 1000/200 1/1 10−4 100/100

Table 4.2: Normalized parameters used in the simulations including particle collisions,
noted ŞCCŤ for Coulomb collisions and ŞCNŤ for collisions with neutrals with ν0 the
collision frequency between the main protons, and with the hydrogen population.

The main reason to choose a large density ratio is to maximize the growth rate in the

simulations and reduce the computational cost. This approximation is quite common in

PIC numerical studies of the non-resonant mode (Winske and Leroy [1984], Riquelme and

Spitkovsky [2009], Gargate et al. [2010], Zacharegkas et al. [2019]. As stated in Sec. 2.2,

there is no physics added to the problem by artiĄcially increasing the density ratio, as long

as the background charge compensating the cosmic rays charge is sufficiently small. This

was studied in the work of Amato and Blasi [2009] who showed that the linear dispersion

relation can be modiĄed by a term of the order O(n2
cr/n

2
m) depending on if the cosmic rays

current was compensated by the background electrons, or by a population of low density

electrons streaming along the cosmic rays. There is no clear consensus on which of these

possibilities occur in supernova and jets shocks (Zweibel and Everett [2010]), however as

long as the density ratio is not close to unity the simulations may still be relevant to both

scenarios. The electron density and initial velocity are calculated to ensure quasi-neutrality

and satisfy the initial current condition jcr = −je (Eq. 2.7). A summary of the simulation

parameters used can be found in Tables 4.1 and 4.2.

The simulation domain is of length Lx = 1000 l0 and discretized with 1000 cells for

one-dimensional simulations, corresponding to a possible range of wavenumbers 2πL−1
x ≤

k ≤ πl−1
0 . These dimensions are sufficient to accommodate the expected range of unstable

wavenumbers kmax = l−1
0 and kmin = 0.01 l−1

0 for the ŞTHŤ runs (Eqs. 2.34 and 2.43). The

plasma and Ąeld quantities are initially homogeneous, and periodic boundary conditions

are used in all directions. The numerical scheme being explicit, the time step ∆t must be

chosen to satisfy the CourantŰFriedrichsŰLewy condition on the whistler waves and the

most energetic macroparticles. It also needs to satisfy the condition on the particle collisions

ν−1
0 ≪ ∆t with ν0 the collision frequency. This latter condition restricted the range of

collisions frequencies investigated, as large values ν0 ≫ 100 would require prohibitively

small numerical time steps to resolve low energy collisions. Each cell is initially Ąlled

with a large number of macroparticles per cell (500 for each proton populations in the

TH runs) to properly describe high temperature Maxwellian distributions, as well as the

large density Ćuctuations that occur during the instability growth. For two-dimensional
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simulations, a domain length Ly = 200 l0 was used in the y-direction, discretized with

200 cells. Simulations with Ly = 400 l0 discretized with 400 cells were also performed,

without any noticeable changes in the results. In 2D runs the number of macroparticles

per cell is reduced to lower the high numerical cost of multidimensional simulations. The

simulations setup is an initial value problem as the cosmic rays population is not injected

over time during the simulation. The importance of this assumption compared to the

case of a continuous injection of streaming particles will be discussed in Sec. 5.4.2. In the

case of particle acceleration at shocks, the simulation setup can be visualized as a line

(1D) or rectangle (2D) of plasma downstream of the shock front. The largest dimension

(ex direction) is aligned with the ambient magnetic Ąeld, parallel to the shock surface

normal. The remaining directions are supposed invariant and homogenous because of the

periodic boundary conditions, i.e. there is no spatial gradients in those directions. The

actual shock is not simulated. Only the suprathermal particles leaking from the shock

and propagating in the surrounding ambient medium are considered, and constitute the

cosmic rays drifting population.

The cosmic rays and electrons temperatures Tcr and Te are chosen to be equal to the

reference temperature T0 to avoid important pressure effects due to the electrons, and

to exclude the resonant streaming instabilities from competing with the non-resonant

mode. For simulations including protons-hydrogen collisions, the hydrogen population

temperature is taken to be T0. The simulations noted ŞTHŤ are focused on studying the

effects of the initial main protons temperatures, ranging from Tm = 0.1 to 200 T0. In

the simulations noted ŞCCŤ are investigated the effect of Coulomb collisions on the non-

resonant mode, while considering a wide range of collision frequencies, from ν0 = 0.01 Ω0 to

ν0 = 1000 Ω0. Similarly the simulations noted ŞCNŤ focus on the effect of proton-hydrogen

collisions, with a range of frequencies ν0 = 0.01 Ω0 to ν0 = 30 Ω0. The reference energy

is taken as Eσ = 1 eV, and the neutral temperature is chosen equal to the main protons

temperature Tn = Tm = T0, such that the collision energy is of the order of 1 eV. In this

case the typical collision cross-section of a thermal proton with an hydrogen is σin = 600

a.u. as per Eq. 4.76. The simulations noted ŞTHŤ will be investigated in the following

Chapter 5, and the simulations noted ŞCCŤ and ŞCNŤ will be investigated in Chapter 6.

The resistivity η and hyperviscosity η′ in OhmŠs law (Eq. 4.4) are Ąxed as η =

10−3B0/en0 and η′ = 10−3B0l
2
0/en0 in order to reduce small scale Ćuctuations without

introducing important dissipative effects. The resitivity is an effect of electron-proton

collisions, as shown in Sec. 4.4.2. Hence choosing a constant resistivity is equivalent to

supposing a constant electron-proton Coulomb collision frequency. However the actual

electron-proton collision frequency is related to the proton-proton frequency via the relation

νe/i =
√
mp/me νi/i with νi/i ≡ ν0. The resistive effects can be compared to the induction

term, and is quantiĄed with the magnetic Reynolds number as Rm = LV µ0σ, where L

and V are a characteristic length and velocity respectively, and σ = nee
2/meνe/i is the

conductivity. One has L ∼ 2π/kmax, and V ∼ jcrB/ργ where γ is the growth rate, as from

Eq. 2.40. This yields the scaling:

Rm ∼ π
jcrvA0

γ2

µ0e√
memp

Ω0

ν0

∼ 103 Ω0

ν0

(4.82)
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for the ŞCCŤ simulations including Coulomb collisions. The resistivity effects are thus

expected to become important on the smallest wavelength of the instability for proton-

proton collision frequencies which were not investigated in this work, above 103Ω0. As

such, the small and constant resistivity used in the simulations is solely numerical to

reduce small scale electric Ćuctuations.
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5.1 Introduction

The linear theory relies on the fundamental assumption of small perturbations, such

that perturbations of a given quantity are small compared to the initial equilibrium

value. The growth rate of the non-resonant instability can then be found by solving

the linearized equations, which gives an unbounded exponential growth of the instability.

However such growth cannot be inĄnite, as the principle of conservation of the system

total energy prevents any growth beyond the amount of free energy available. When

perturbations become comparable to the initial state values, the linear theory breaks
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down, and the complex system of the Vlasov and Maxwell equations must be solved in

its full non-linear form. This can be achieved with numerical simulations, which allows

to study the fundamental mechanism of the non-resonant mode, late time evolution,

saturation mechanism and saturated magnetic Ąeld intensity. The instability has been

extensively studied numerically using modiĄed magneto-hydrodynamics (MHD) (Bell

[2004], Zirakashvili et al. [2008]), hybrid-Particle-In-Cell (PIC ions and massless Ćuid

electrons)(Winske and Leroy [1984], Akimoto et al. [1993], Haggerty and Caprioli [2019],

Marret et al. [2021]), full-PIC (Riquelme and Spitkovsky [2009], Ohira et al. [2009],

Crumley et al. [2019]) and MHD-PIC (Bai et al. [2015], Casse et al. [2018], Mignone

et al. [2018]) simulations. The MHD-PIC method in particular has received growing

attention as it combines the kinetic treatment of the cosmic rays while retaining the

advantage of modelling the background plasma as a magnetoĆuid, over large spatial

and temporal scales. Neglecting kinetic effects in the background plasma however is not

always justiĄed. For example, in the hot plasmas of superbubbles or in the intergalactic

medium, the backgroundŠs ions thermal Larmor gyro-radius can become comparable to or

larger than the unstable wavelengths and a kinetic treatment of the background plasma is

necessary. In addition, even in relatively cold plasmas, collisionless hybrid-PIC simulation

have shown the non-linear development of signiĄcant ion pressure anisotropies in the

background plasma (Marret et al. [2021]), suggesting that the assumption of an isotropic

scalar pressure, often employed in Ćuid models, may not always be justiĄed.

This chapter is devoted to hybrid-PIC numerical simulations of the non-resonant

streaming instability. The instability mechanism, growth rate, saturation level, spatial

structure, density Ćuctuations, background plasma heating and cosmic rays scattering are

investigated, and compared to theoretical expectations while considering a wide range

of main protons temperature. In the following, unless stated otherwise the simulation

parameters are those corresponding to the ŞTHŤ runs (thermal) presented in Table 4.1.

5.2 Growth of the instability

5.2.1 Magnetic field amplification

One of the main feature of the non-resonant streaming instability is the generation of large

amplitude magnetic Ćuctuations. Contrary to the right-hand and left-hand resonant mode,

ampliĄcation beyond the initial magnetic Ąeld intensity is possible because of the large

drift velocity required to drive the instability, which keeps the cosmic rays demagnetized

(Bell [2013]). The evolution of the perturbed magnetic Ąeld intensity B1 = ♣B − B0♣ is

presented in Fig. 5.1 for two different main protons temperatures Tm = T0 (cold regime)

and Tm = 25 T0 (hot regime). The magnetic Ąeld intensity is averaged over space, hence

encompassing perturbations at all the scales permitted by the size and resolution of the

simulation domain. Considering for a start the cold case, with Tm = T0, one can distinguish

four phases. The Ąrst one (from t = 0 to 2 Ω−1
0 ) and corresponds to micro-adjustments of

the plasma quantities from the random initialization to its eigenmode values. The second

phase (from t = 2 to 18.5 Ω−1
0 ) is characterized by the exponential ampliĄcation of the

perturbed magnetic Ąeld intensity, and continues even for perturbations larger than the

initial magnetic Ąeld intensity. It will be refereed to as the linear phase or exponential
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Figure 5.2: 1D and 2D simulations growth rate γ1D,2D (blue and red dots), Winske and Leroy
[1984] prediction γcold (Eq. 5.2), Reville et al. [2008] prediction γwarm (Eq. 5.3) and growth
rate prediction of this work γhot (Eq. 5.4, solid orange line) as a function of the main protons
temperature Tm. The vertical dashed lines indicates the transition to the warm regime vA0/vT m <
(ncrucr/nmvT m)1/3 (Zweibel and Everett [2010], left line at Tm = T0), and to the hot regime
kcoldrLm > 2 (right line at Tm = 16 T0).

in the ex direction is possible. This is shown in the lower panel of Fig. 5.1 for the simulation

parameters ncr/nm = 0.01, ucr/vA0 = 100 and Tm/T0 = 25, where a small component of

the ampliĄed magnetic Ąeld is oriented parallel to the initial magnetic Ąeld. It is however

much smaller compared to the perpendicular component by an order of magnitude, such

that even in 2D simulations the e⊥ unit vector can be considered as approximately aligned

with the total B1.

5.2.2 Instability growth rate and temperature dependency

One important parameter characterizing the linear phase of an instability is its growth

rate. As presented in Sec. 3.2, the growth rate of the non-resonant mode depends on the

temperature of the main protons and can be strongly reduced when Ąnite proton Larmor

radius effects become important. Fig. 5.2 shows the predictions of the fastest growing

mode in the three regimes of cold (Eq. 5.2), warm (Eq. 5.3) and hot (Eq. 5.4) main

protons:

γcold =
1

2

ncr

nm

ucr

vA0

Ω0 (5.2)

γwarm =
(
ncr

nm

ucr

vT m

)2/3

Ω0 (5.3)

γhot =
(
π

2

)1/2 ncr

nm

ucr

vT m

Ω0 (5.4)

together with the growth rates extracted from 1D and 2D simulations γ1D,2D, as a function

of the main protons temperature. The warm and hot regimes thresholds are deĄned

by the conditions vA0/vT m < (ncrucr/nmvT m)1/3 and kcoldrLm ≳ 2 respectively, with

rLm = vT m/Ω0 and kcold = 1
2

ncr
nm

ucr
v2

A0

Ω0. The growth rate in the hot regime is found to
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decrease with the temperature as T−1/2
m as expected from the linear theory calculation of

this work. In the low temperature limit, the cold prediction from Winske and Leroy [1984]

is very accurate, but becomes rapidly invalid for temperatures Tm > T0. The intermediate

warm regime from T0 to 16 T0 is well reproduced by the prediction from Reville et al.

[2008] and Zweibel and Everett [2010] with a decrease of the growth rate with temperature

as T−1/3
m . The overestimates in the warm and hot regimes by a factor ∼ 2 may be linked to

the fact that the theoretical values correspond to the fastest growing mode. The magnetic

Ąeld intensity measured in the simulations is integrated over the whole k spectrum, which

gives an overall smaller growth rate than if only the fastest growing mode was observed

(see Appendix B for a discussion on the growth rate measurements in the simulations).

5.2.3 Growth rate for arbitrary mass and charge

The non-resonant streaming instability can be excited in various space and astrophysical

environments such as at the Earth bow shock, as well as in jet and supernova shocks. In

those situations the plasma is essentially made of protons, which may be one of the reasons

why the existing literature does not consider heavier elements. However such assumption

cannot be made when considering the acceleration of heavier elements at shocks, as well

as in laboratory experiments, where the plasmas are often constituted of elements such

as carbon or argon. The instability growth rate can be calculated for arbitrary charge

and mass of the main and cosmic rays populations. The derivation is given in Appendix

A. Considering a small density ratio ncr/nm ≪ 1, the growth rate expression may be

simpliĄed to obtain:

γcold =
1

2

ncr

nm

ucr

vA0

Ω0
qcr

e

(
mp

mm

)1/2

(5.5)

where Ω0 and vA0 are the proton cyclotron frequency and proton AĆvén speed. The growth

rate increases linearly with the cosmic rays charge, and decreases with the square root of

the main ions mass. It does not depend on the cosmic rays mass, nor on the main ions

charge. The maximum wavenumber can be calculated in a similar way:

kmax =
ncr

nm

ucr

v2
A0

Ω0
qcr

e
(5.6)

and the minimum wavenumber:

kmin =
Ω0

ucr

mp

mcr

qcr

e
(5.7)

The cosmic rays charge shifts the range of unstable wavenumbers toward smaller scale. This

has been observed in MHD-PIC simulations of the instability (see Crumley et al. [2019]).

The maximum unstable wavelength increase with cosmic rays mass can be understood

in terms of the cyclotron resonance condition, as heavier elements allow the growth of

larger scale electromagnetic perturbations without resonant interaction occurring with

the streaming particles. The dependencies on mass and charges can be understood by

examining the linearized background plasma momentum density conservation (Eq. 2.25)

and induction (Eq. 2.26) equations. Neglecting the pseudo-cyclotron acceleration term
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acceleration process to high energies. This effects will however be limited, since the

qcrmp/emcr ratio is smaller than unity but of the same order of magnitude for all elements

of interest.

5.2.4 Magnetic field spectrum

In the context of cosmic rays acceleration in supernova remnants shocks, the conĄnement of

energetic particles at shock boundary requires strong magnetic ampliĄcation, at wavelengths

comparable to the gyroradius of the accelerated particles. As such, the scale at which

the instability generates magnetic Ąeld Ćuctuations is a fundamental parameter. The

non-resonant mode growth rate is a function of the wavenumber, and it is larger for small

scales Ćuctuations, i.e. for large wavenumbers (Eq. 2.42). As the instability develops,

the magnetic Ąeld intensity increases exponentially, and the largest unstable wavenumber

kmax = ncr
nm

ucr
v2

A0

Ω0, which is inversely proportional to the magnetic Ąeld, decreases. This

leads to a progressive reduction of the range of unstable wavelength as the instability

saturates at small scales Ąrst, followed by larger scales. This is an important property

of the non-resonant mode, whose range of unstable wavenumbers strongly vary over the

course of the unstable waves growth.

In order to study the evolution of the magnetic Ąeld perturbations as a function of

the wavelength, one may investigate their spectrum in Fourier space in the simulations.

Furthermore, the circularly polarized electromagnetic waves produced by the non-resonant

mode possess a deĄnite negative helicity, corresponding to the sense of rotation in space

at a given time, which can be observed in the simulations and separated from the positive

helicity component. The helical Ąeld lines with a positive helicity follow the space curve

s+ deĄned as (Weidl et al. [2016]):

s+ = x ex + r cos(♣k♣x)ey − r sin(♣k♣x)ez (5.10)

with x ∈ R and r > 0, and similarly for negative helicity:

s− = x ex + r cos(♣k♣x)ey + r sin(♣k♣x)ez (5.11)

The positive B̃+ and negative helicity B̃− components in Fourier space can be separated

using the following relations (Terasawa et al. [1986]):

B̃+(♣k♣) =
B̃y(♣k♣) + iB̃z(♣k♣)

2
(5.12)

B̃−(♣k♣) =
B̃y(♣k♣) − iB̃z(♣k♣)

2
(5.13)

with B̃ the Fourier transformed component. This corresponds to the operation of shifting

the relative phases of the signals, then superimposing them in Fourier space. In the

case of a negative wavenumber as for the non-resonant mode, the positive and negative

helicity components are then given by the complex conjugate of the helicity components

for k > 0, i.e. for k < 0 one has B̃+(k) = B̃−(♣k♣) and B̃−(k) = B̃+(♣k♣). The helicity

decomposition does not allow us to distinguish right-hand polarized backward propagating

waves from left-hand polarized forward propagating waves, or right-hand polarized forward
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Figure 5.8: Upper panel: maximum (blue solid line) and minimum (red solid line) unstable k (in
unit of l−1

0 ), as a function of time between t = 4 Ω−1
0 and t = 30 Ω−1

0 . The condition kmax = kmin

is indicated with the vertical dashed line at tNLT = 18.5 Ω−1
0 , and reported in other panels.

Greyed regions correspond to stable wave numbers. Middle panel: first order time derivative of
the main protons normal velocity u×

m (in unit of vA0, orange solid line) and perturbed magnetic
field intensity second order time derivative (in unit of B0 and multiplied by a factor 100, green
solid line). Lower panel: perturbed magnetic field intensity B1 (green solid line) and main
protons normal fluid velocity component (orange solid line). The magnetic field saturation is
indicated with the vertical dashed line at tsat = 21 Ω−1

0 . Values are taken from 1D simulation
with a main protons temperature Tm = T0.

the local magnetic Ąeld basis (also shown in Fig. 5.6). The acceleration is increasing

exponentially during the linear phase, starts to decrease after t = 17 Ω−1
0 , and then

becomes negative at t ∼ 21 Ω−1
0 , corresponding to a slowing down of the main protons

rotation. The Ćuctuating magnetic Ąeld second order time derivative is expected to be

closely related to the velocity Ąeld via the FaradayŠs equation (Eq. 2.26) while neglecting

the magnetic Ąeld advection:
∂2B1

∂t2
= (B0 · ∇)

∂u1

∂t
(5.14)

and is also shown in the Ągure. It exhibits the same behaviour as the velocity derivative,

conĄrming the correlation between the main protons Ćuid motion and the growth of the

magnetic perturbation. One obtains an excellent match between the kmax = kmin condition

discussed previously and the deceleration of the main protons velocity. This suggests that

this condition is correlated to the transition toward a non-linear phase of growth, and

not to magnetic saturation as the magnetic Ąeld is seen to keep growing, although at a

slower rate. The same correlation is recovered in all the simulations, indicating that the

kmax = kmin condition may be a robust criteria to identify quantitatively the end of the

exponential growth. Note that the exponential growth continues even for large magnetic

perturbation: the non-linear transition occurs when the perturbed magnetic Ąeld intensity

is already greater than the initial ambient magnetic Ąeld.
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The non-linear phase which follows the linear phase of the instability is characterized

by a decrease of the main protons Ćuid rotation velocity and a reduced magnetic Ąeld

growth. Fig. 5.8 lower panel presents the main protons normal velocity and perturbed

magnetic Ąeld intensity evolution over time. The transition toward non-linear growth,

correlated to the maximum in normal velocity u×
m is shown with the vertical dashed black

line at tNLT = 18.5 Ω−1
0 , and the magnetic Ąeld saturation by the second vertical dashed

black line at tsat = 21 Ω−1
0 corresponding to the maximum in magnetic Ąeld intensity.

The magnetic Ąeld keeps growing during the non-linear phase until the normal velocity

component becomes negative, corresponding in the magnetic Ąeld aligned basis to a loss of

the −π/2 phase shift with respect to the magnetic perturbation necessary to the growth of

the non-resonant mode. The parallel induced electric Ąeld changes sign and no longer slows

down the cosmic rays drift velocity (Eq. 2.54), leading to the magnetic Ąeld saturation.

This saturation mechanism is well observed in all the simulations. The normal velocity

component decrease during the non-linear phase is due both to the conversion of the

remaining rotational kinetic energy accumulated during the linear phase into magnetic

energy via the induced electric Ąeld, and to the loss of the coupling between the magnetic

perturbation and the main protons Ćuid rotation. The magnetic force driving term no

longer operates, leading to a decrease of the normal velocity component (which is being

projected in the e⊥ direction) in the local magnetic Ąeld aligned basis.

5.3.2 Magnetic field intensity at saturation

The saturated magnetic Ąeld intensity is a key parameter of the instability in the context

of supernova shocks, as it dictates whether cosmic rays can be conĄned and accelerated

via Ąrst order Fermi acceleration. An estimate of the saturated magnetic Ąeld intensity

can be found by studying the time evolution of the two limiting wave numbers kmin and

kmax. During the instability growth, B increases with time and so does the minimum

unstable wave number, whereas the maximum wave number decreases. The magnetic

Ąeld saturation is expected to occur when kmax = kmin (Bell [2004]). The corresponding

magnetic Ąeld is then estimated by considering the protons cosmic rays drift velocity to

be constant such that the drift kinetic energy density Wcr = ncrmpu
2
cr/2 is also constant

(Bell [2004]). The saturated magnetic Ąeld energy density WB,sat = B2
sat/2µ0 can then be

written as:

WB,sat ∼ Wcr,0 (5.15)

The condition kmin = kmax does not depend on the cosmic rays charge, indicating that the

saturated magnetic Ąeld is also insensitive to the charge. This is in agreement with the

results obtained in recent PIC simulations by Gupta et al. [2021]. For relativistic cosmic rays

drift velocities, the kmin limit is expressed as kmin = Ω0/ucrγcr where γcr = 1/
√

1 − u2
cr/c

2

is the cosmic rays Lorentz factor (Amato and Blasi [2009], Zacharegkas et al. [2019]).

In this case BellŠs saturation criterion is written as B2/2µ0 = ρcrγcru
2
cr/2. In general,

depending on the cosmic rays drift kinetic energy, a large magnetic Ąeld ampliĄcation

B1/B0 > 1 can be obtained. This is an important feature of the non-resonant instability,

as the left-hand and right-hand resonant modes are restricted to Ćuctuations ampliĄcation

B1/B0 ∼ 1 because of the resonance condition on the cosmic rays (Bell [2013]).
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Figure 5.9: Magnetic field energy density WB = B2/2µ0 normalized to the initial cosmic rays drift
kinetic energy density Wcr = ncrmpu2

cr/2 (t0) = 50 l−3
0 mpv2

A0, as a function of the main protons
temperature for 1D simulations. Blue curve corresponds to the ratio at non-linear transition
(noted NLT ) and green curve to the ratio at magnetic saturation (noted sat). The non-linear
transition time is found numerically by equating kmax = kmin averaged in the simulation box.
The two dashed vertical lines corresponds to the limits of the warm and hot regimes of interaction
as in Fig. 5.8.

A different estimate can be obtained by considering energy exchange rates within

quasi-linear theory calculations (Winske and Leroy [1984]), which yield that the rate of

energy gained by the magnetic Ąeld is half of the rate of loss of the protons cosmic rays

drift kinetic energy. Extrapolating this result to saturation and supposing that the cosmic

rays drift velocity is null at saturation, one obtains for the magnetic energy density:

WB,sat ∼ 1

2
Wcr,0 (5.16)

which is half of the Ćuid prediction obtained from the condition kmin = kmax. However,

kinetic theory calculations show that for the instability to exist, the cosmic rays drift

velocity must be larger than the Alfvén speed in the ampliĄed Ąeld (Gary et al. [1984]). In

some regimes, this condition is violated and the growth of the instability is halted before

the kmin = kmax limit is reached (Riquelme and Spitkovsky [2009]). All the difficulty lies

in assessing the highly non-linear evolution of the cosmic rays drift velocity, which would

then determine whether the conditions kmin = kmax or ucr ∼ vA gives the most accurate

saturation mechanism, and whether the assumption of constant or completely depleted

drift kinetic energy is relevant to estimate the saturated magnetic Ąeld. As such, only

numerical simulations can provide a precise answer on the saturation mechanism and

saturated magnetic Ąeld, for a given set of initial conditions.

Fig. 5.9 presents the ratio between the magnetic Ąeld energy density WB = B2/2µ0 and

the initial cosmic rays kinetic energy density Wcr = ncrmpu
2
cr/2, at non-linear transition

(noted ŞNLTŤ, blue solid line) and at saturation (noted ŞsatŤ, green solid line), as a function

of the main protons temperature. In the cold regime, the simulations yield a conversion

efficiency of 30 per cent at the transition from linear to non-linear growth (determined by

the condition kmin = kmax measured in the simulations), and about 60 per cent at saturation

which is close to the quasi-linear theory prediction. The intermediate, warm regime of

interaction shows a quick decrease of the conversion efficiency with temperature. For

temperatures corresponding to the hot, demagnetized regime of interaction, the magnetic
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Figure 5.11: Diagonal terms of the pressure tensor in the local magnetic field aligned basis for
the main protons (upper panel) and cosmic rays (lower panel), as a function of time between
t = 0 Ω−1

0 and t = 40 Ω−1
0 , for a main protons temperature Tm = T0. The blue, orange and red

curves corresponds to the parallel P ∥, normal P × and perpendicular P ⊥ components respectively.
The values are calculated locally, then averaged over the simulation domain. Obtained from a
1D simulation with a main protons temperature Tm = T0.

results found in full-PIC numerical simulations including the cosmic rays back-reaction on

the instability (Riquelme and Spitkovsky [2009]). The cosmic rays are then able to interact

resonantly when the resonance condition ω − kv∥cr ± Ωcr = 0 is fulĄlled for right-hand

polarized (plus sign) backward propagating (ω > 0, k < 0) waves, with v∥cr the cosmic

ray velocity along B0. One obtains v∥cr = −(ω + Ωcr)/♣k♣ < 0, which may explain the

strong cosmic rays scattering in the (ey, ez) plane observed in the simulations (lower right

panel). This effect is highly non-linear: the cosmic rays destabilize electromagnetic waves

in a non-resonant way, and interact later on with the large amplitude waves they have

generated. The cosmic rays velocity distribution, which was initially Maxwellian, is greatly

altered during the linear and non-linear evolution, and returns to the Maxwellian only

during the relaxation phase. The main protons acceleration in the normal direction e× is

well observed (upper right panel), and it is correlated to the slowing down of the cosmic

rays.

The heating and scattering of the proton populations can be quantiĄed by investigating

the time evolution of the diagonal terms of the protons pressure tensor over time. Fig. 5.11

shows the diagonal components in the magnetic Ąeld aligned basis for the main protons

(upper panel) and the cosmic rays (lower panel) in the low temperature case Tm = T0.

The main protons pressure starts increasing in the parallel and normal direction Ąrst, as

magnetic perturbations become of the same order as the initial magnetic Ąeld. There is

no heating in the perpendicular direction. The main protons are then isotropized after

saturation, and are slowly heated during the relaxation phase. By supposing a perfect

gas behaviour, the temperature can be estimated as kbTm ∼ Pm/nm, hence obtaining

values which correspond to a one order of magnitude increase with respect to the initial
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electric Ąeld gradients are generated, leading to an important heating of both protons

populations. The background Ćuid is accelerated in the same direction as the cosmic

rays initial velocity (Eq. 2.55). Because of the continuity equation, the background

plasma accumulates density toward the positive e∥ direction, on the right of the growing

electric Ąeld regions in Fig. 5.12. Large density Ćuctuations are generated with cavities

of low density, correlated with regions of fast growing modes and important heating

of both protons populations. The reversal of the electric Ąeld occurs after saturation

(tsat = 21 Ω−1
0 ), corresponding to the main protons normal velocity u×

m changing sign in

the magnetic Ąeld aligned basis (Fig. 5.8, lower panel) and inducing a positive electric

Ąeld E · e∥ = −(u1 × B1) · e∥ > 0. As a consequence the cosmic rays are no longer slowed

down, and their drift kinetic energy cannot be converted into magnetic energy anymore.

This leads to the non-resonant mode saturation as discussed previously.

The 2D simulations bring additional information on the main protons density spatial

structures. The simulations results are presented in Fig. 5.14. Density Ćuctuations are

found to increase in scale from tenth to hundredth of l0 over time, as small scale density

holes along the initial magnetic Ąeld direction (observed in 1D simulations) merge together

to generate large scale Ćuctuations during the non-linear evolution of the instability.

The density holes expand in the perpendicular plane because of the increasing magnetic

pressure, generating density Ćuctuations up to nm/n0 ∼ 2 in the background plasma at

the same spatial scales as the magnetic Ćuctuations, on the order of a hundredth of the

proton inertial length for the parameters investigated. This result agrees with previous

studies using a Ćuid description (Bell [2013], Bai et al. [2015]), consistent with the fact

that the density perturbations are not the results of individual wave-particles interactions.

In this case the hybrid-PIC simulations yield the same result as Ćuid simulations. The

density Ćuctuations may play a role in allowing further magnetic Ąeld ampliĄcation, by

allowing potentially important dynamo effects to take place at supernova shocks (del Valle

et al. [2016]). This also constitutes a marker of the development of the instability, and

may be used as an observable in laboratory experiments (see Chapter 7).

As in previous studies (e.g. Winske and Leroy [1984], Riquelme and Spitkovsky

[2009]), the simulations were performed without a continuous injection of streaming

particles, corresponding to an initial value problem as stated in Chapter 4. The immediate

consequence is that the cosmic rays current is self-consistently decreasing through time

as the cosmic rays drift kinetic energy is being converted into magnetic Ćuctuations. An

alternative approach is to maintain the driving current, either by re-accelerating the

cosmic rays artiĄcially (Lucek and Bell [2000]), or by injecting new ones in the simulation

domain over time (Bai et al. [2015], Mignone et al. [2018], Casse et al. [2018]) which

was used to directly simulate particles acceleration at supernova shocks. A comparison

between these approaches shows that the development of the non-resonant instability is

not signiĄcantly altered. In particular the magnetic Ąeld intensity at saturation and the

density Ćuctuations are quantitatively similar, with magnetic Ąeld ampliĄcations of the

order of ten times the ambient magnetic Ąeld and large density Ćuctuation of the order

of the initial plasma density. These results however apply to the cold regime, and the

ambient medium temperature remains an important factor in determining whether the

non-resonant streaming instability can efficiently generate magnetic Ąeld Ćuctuations, and

should be taken into account to model accurately cosmic rays acceleration with Şnon-idealŤ

plasma conditions.
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5.5 Summary

Multidimensional hybrid-PIC simulations of the non-resonant streaming stability have

been performed, while considering a wide range of background plasma temperatures, as

well as varying mass and charges for the ion populations. The results may be summarized

as follows.

• The non-resonant streaming instability generates exponentially growing electro-

magnetic Ćuctuations, propagating parallel to the ambient magnetic Ąeld. The

simulations show that the instability growth rate and saturated magnetic Ąeld can be

strongly reduced when increasing the background protons temperature, in agreement

with linear theory predictions. The Ąnite Larmor radius of the background ions

weakens the coherent motion with the magnetic perturbation required to grow the

instability, thus producing a damping of the unstable waves.

• Theoretical predictions on the growth rate as a function of mass and charge of the

main and streaming populations agree with simulation results. Multiply charged

streaming ions favour the instability by increasing the driving current for a given

density and drift velocity, whereas heavy main ions increase the background plasma

inertia and slow down the instability development.

• The instability mechanism described in Sec. 2.2.3 is well observed in the simulations.

In particular, the strong correlation between the background plasma Ćuid motion and

the electromagnetic wave, which possesses a negative helicity with a clearly deĄned

helical structure in space, is retrieved both in 1D and 2D runs. This correlation

plays a fundamental role in the saturation of the instability.

• A non-linear phase of growth of the magnetic Ąeld perturbations has been described.

The condition kmin = kmax can be used as a robust criteria for the beginning of

this phase, characterized by a slowing down of the background plasma Ćuid motion

and a progressive loss of correlation between the Ćuid velocity magnetic Ąelds until

saturation is reached.

• The streaming population drift kinetic energy is converted into magnetic Ąeld

Ćuctuations, eventually leading to particles propagating in a direction opposite to

their initial drift velocity. Owing to the negative helicity and right-hand polarization

of the waves, strong cyclotron resonance occurs, as the streaming particles can interact

resonantly with the large amplitude waves that they have themselves generated in a

non-resonant way during the early times of growth. This produces a strong scattering

of the streaming particles in the plane perpendicular to the initial magnetic Ąeld.

• The instability is found to generate important pressure anisotropies in the background

plasma, as well as important density Ćuctuations during the late time evolution of

the unstable waves. The density Ćuctuations are a product of the development of an

important electrostatic component of the electric Ąeld Ćuctuations, together with

the large magnetic pressure generated by the non-linear magnetic Ąeld ampliĄcation.

• The magnetic Ąeld energy density at saturation obtained in the simulations is in

reasonable agreement with theoretical estimates obtained by energy conservation
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arguments, in the case of a cold background plasma. In the hot regime, the instability

saturated magnetic Ąeld energy density is strongly reduced. It is not totally sup-

pressed however, indicating that the instability may still amplify the magnetic Ąeld

and modify the transport of cosmic rays in hot and low magnetic Ąeld environments

such as the intergalactic medium.

In addition to the effects of a Ąnite background plasma temperature, the instability

may also be modiĄed if one takes into account particle collisions, between charged particles

or with a population of neutrals. In the MHD framework, particles collisions are often

implicitly assumed to occur on time scales much shorter than the scales of interest, such

that the pressure tensor may be considered as isotropic. In addition, the electron and ion

temperature are commonly assumed equal, which can be justiĄed by a strong collisionality

between the populations. In the particular case of the non-resonant mode, the simulations

showed that the instability can self-generate pressure anisotropies, invalidating the isotropic

assumption. The interplay between anisotropic pressure generation, and isotropization

by collisions is a strongly non-linear process, which may be investigated with numerical

simulations. This is the subject of the following chapter, which tackles the question of the

effects of particle collisions on the non-resonant mode.
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6.1 Introduction

As presented in Sec. 5.4, even in relatively cold plasmas, collisionless hybrid-PIC sim-

ulation have shown the non-linear development of signiĄcant ion pressure anisotropies

in the background plasma (Marret et al. [2021]), suggesting that the assumption of an

isotropic scalar pressure, often employed in Ćuid models, may not always be justiĄed.

Pressure anisotropies may be suppressed by particle collisions, among other isotropization

mechanisms. The Coulomb collisions, as well as the neutral collisions, are usually neglected

in studies of space and astrophysical plasmas which are very tenuous (of the order of

1 cm−3 in the cold interstellar medium and in the solar wind) such that particle collisions

occur on time scales much longer than the plasma processes of interest. In the case of

the non-resonant mode, considering a supernova shock which propagates at a velocity

ucr = 103 km.s−1 in an cold and tenuous interstellar medium with a density nm = 1 cm−3,

an ambient magnetic Ąeld B = 5 µG, a low temperature Tm = 104 K and a cosmic rays

Ćux ncrucr = 104 cm−2s−1 (Zweibel and Everett [2010]), one obtains a protons Coulomb

frequency (Eq. 4.61) and instability growth rate (Eq. 2.37) as ν0/γcold ≈ 3 × 10−2. In

this case Coulomb collisions can be considered negligible a priori, which is the assumption

commonly made in the literature. However, increasing the plasma density to nm = 90 cm−3
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encountered in ionized H II regions (Galarza et al. [1999]) such as in the case of SN 1987A

(Orlando, S. et al. [2019]), while keeping the other parameters, one obtains a proton

Coulomb frequency and non-resonant mode growth rate as ν0/γcold ∼ 24, large enough to

expect collisions to occur on time scales comparable to the non-resonant mode growth time.

More precisely, large enough for the rate of change of the particles velocity resulting from

numerous Coulomb interactions to occur on time scales comparable to the growth rate.

While ion-neutral collisions have been shown to damp the non-resonant mode (Reville

et al. [2007]), no studies have been done while considering Coulomb collisions.

The simulations presented in this chapter aim to investigate these problematic, by

studying the effects of particle collisions on the growth of the non-resonant mode using

hybrid-PIC simulations with Monte Carlo Collisions (MCC). A particular emphasis is

made on the pressure anisotropies generated by the instability, and the isotropizing effect

of collisions. In the following, the simulation parameters used will be those corresponding

to the ŞCCŤ (Coulomb collisions) and ŞCNŤ (collisions with neutrals) runs presented in

Table 4.2.

6.2 Growth rate dependency with collision frequency

6.2.1 Neutral collisions

Given that the instability relies on the interaction of large scale Ćuid motions with the

electromagnetic wave, and that intra-species Coulomb collisions conserve momentum and

energy (Trubnikov [1965]), one may expect that Coulomb collisions will have no effects

on the instability, at least in its linear phase of growth. Proton-neutral collisions on the

contrary, differ signiĄcantly from the Coulomb collisions as both momentum and energy

of the background proton population are not conserved. This leads to important damping

of the electromagnetic waves, including the non-resonant mode (Khodachenko, M. L. et al.

[2004], Forteza et al. [2007], Reville et al. [2007]). This may occur in supernova remnants

expanding near molecular clouds, which are the subject of active research (e.g. Chevalier

[1999], Feinstein et al. [2009]). In this situation collisions with neutrals are expected

to be important because of the low temperature and ionization fraction. Following the

analysis of Reville et al. [2007] and adopting the values Tm = 102 K, nm = 23 cm−3,

a low ionization fraction x = 0.01 and a drift velocity ucr = 108 cm.s−1 (Malkov et al.

[2005]), while considering that the ion-neutral collision frequency follows the approximate

expression (Kulsrud and Pearce [1969]):

ν0 ≈ 8.9 × 10−9nn

(
Tm

104 K

)0.4

s−1 (6.1)

then the growth rate is smaller than the collision frequency, such that neutral collisions

cannot be neglected.

The effect of ion-neutral collisions on the non-resonant mode has been calculated in

Reville et al. [2007], by using a MHD model while including a collisional friction term in
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the background plasma momentum conservation equation (Tagger et al. [1995]) such that:

du

dt
=

J × B

ρ
− νin(u − un) (6.2)

with νin a characteristic slowing down time by ion-neutral collisions. The neutral Ćuid

velocity un is computed by considering only the friction force:

dun

dt
= −νni(un − u) (6.3)

with νni = νinnn/ni is a characteristic neutral slowing down time by neutral-ion collisions

where nn and ni are the neutral and ion densities respectively. The dispersion relation can

then be obtained as:

ω

(
ω2 +

ncr

nm

u2
cr

rLcr

k

)
+ iν0

[
(1 + Z)ω2 + Z

ncr

nm

u2
cr

rLcr

k

]
= 0 (6.4)

with rLcr = ucr/Ω0 and Z = nm/nn the density ratio between the ions and the neutrals.

In the case of a low ionization fraction, the growth rate can be reduced analytically with

the simplifying assumption Z ≪ 1 as:

γin(k) = −ν0

2
+

1

2

(
ν2

0 + 4Ω0
ncr

nm

ucrk
)1/2

(6.5)

with ν0 ≡ νin. This is plotted in Fig. 6.1 considering k = kmax/4 = 1
4

ncr
nm

ucr
v2

A0

Ω0, such that

γin(k = kmax/4, ν0 = 0) = γcold with γcold = 1
2

ncr
nm

ucr
vA0

Ω0 the fastest growing mode in the

collisionless cold case (Winske and Leroy [1984]), together with the growth rate obtained

in 1D simulations including proton-neutral collisions (ŞCNŤ runs). One obtains that the

non-resonant streaming instability is rapidly damped with increasing neutral collisions

frequency. The growth rate dependency with collision frequency is well recovered in the

simulations. The neutral collisions reduce the background Ćuid velocity perturbations,

leading to a weaker induced electric Ąeld and consequently smaller growth rate and

magnetic Ąeld ampliĄcation. The observed offset may be explained by the fact that the

magnetic Ąeld intensity in the simulations is integrated over the whole k spectrum, which

gives an overall smaller growth rate than if only the fastest growing mode was observed

(see Appendix B).

6.2.2 Coulomb collisions

For the case of a fully ionized collisional background where neutral collisions are negligible,

and proton-proton Coulomb collisions are dominant (ŞCCŤ runs), the simulations show

that the growth rate is enhanced for ν0 ≳ γ0, where γ0 = 0.15 Ω0 is the growth rate in

the collisionless case. The increase is maximum for a collision frequency ν0 = 27 Ω0 two

orders of magnitude larger than γ0, yielding a growth rate γ = 0.17 Ω0 (rightmost vertical

dashed line in the Ągure). The saturated magnetic Ąeld energy density, WB,sat is displayed

in Fig. 6.1 middle panel, and shows an increase from W cl
B = 6.84 (in units of l−3

0 mpv
2
A0) in

the collisionless case up to WB,sat = 1.21 W cl
B,sat for ν0 = 27 Ω0. Because of its relatively

large density in the simulations, the cosmic rays population becomes collisional with the
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suppressed. The simulations show that the collision frequency must be larger than the

instability growth rate, up to two orders of magnitude for the simulation parameters

considered, to effectively suppress the anisotropies produced by the non-resonant mode.

This corresponds to a competition between the instability tendency to generate pressure

anisotropies in the background plasma, and the isotropization effect of collisions. This

competition is overtaken by collisions during the whole instability growth for ν0 > 10 Ω0

for the simulation parameters considered.

6.3 Full pressure tensor effects

6.3.1 Pressure anisotropies in the amplified magnetic field

In order to describe the anisotropic heating of the background protons observed in the

simulations presented in Chapter 5, one must distinguish the evolution of the energy

densities in the directions parallel and perpendicular to the total magnetic Ąeld. This

can be done within the framework of the double adiabatic Chew-Goldberger-Low (CGL)

theory (Chew et al. [1956]). Assuming cold electrons, and neglecting heat Ćuxes and

non-gyrotropic (i.e. non-diagonal) pressure components, one may write the two equations

for the main protons pressure in the directions parallel and perpendicular to the total

magnetic Ąeld as:

d

dt

(
P ∥

mB
2

ρ3

)
= 0 (6.6)

d

dt

(
P⊥

m

ρB

)
= 0 (6.7)

where d/dt = ∂/∂t+ u · ∇ denotes the material derivative and ρ the main protons density.

The advective term may be written as:

u · ∇

(
P ∥

mB
2

ρ3

)
= ∇ ·

(
u
P ∥

mB
2

ρ3

)
− P ∥

mB
2

ρ3
∇ · u (6.8)

Supposing no density Ćuctuations such that ∇ · u = 0 (Eq. 2.1), and averaging over space

in the periodic simulation domain such that the Ćux term cancels out, one may neglect the

advective component of the material derivative. The integrated CGL equations then read:

∂

∂t

〈
P ∥

mB
2

ρ3

〉
= 0 (6.9)

∂

∂t

〈
P⊥

m

ρB

〉
= 0 (6.10)

where the brackets denote the spatial average. Those equation can be directly integrated,

and yield that in the incompressible case, an increase in magnetic Ąeld implies a decrease

of the parallel pressure component, and an increase of the perpendicular component. This

result is a consequence of the conservation of the Ąrst and second adiabatic invariants

(Kulsrud [1983]) in an ampliĄed magnetic Ąeld, and is well recovered in the simulations,

as is shown in Fig. 6.3. This Ągure highlights the correlation between the growth of the
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may be estimated via OhmŠs law and FaradayŠs law (Eq. 2 of the manuscript) which gives:

B ∼ kB0u

γ
(6.15)

with k the wavenumber and γ the growth rate. This yields a proportionality between

the Ćuid and magnetic Ąeld perturbations, compatible with the simulation results, where

B/B0 = 3.9 in the collisional case and B/B0 = 3.3 in the collisionless case corresponding

to a 18% increase. A larger enhancement (> 100%) is not expected to be reachable, since

it would require that the pressure gradients overcome the cosmic rays magnetic force, and

thus preventing the growth of the instability entirely.

These results indicate that despite its non-resonant character, kinetic effects induced

in the background plasma play an important role in the growth of the instability. The

isotropic pressure closures often used in Ćuid models cannot capture the microphysics of

the background heating and the self-stabilizing effect of the resulting spatial gradients

of the non-diagonal terms of the pressure tensor. This may lead to an overestimate of

the magnetic Ąeld ampliĄcation when applied to collisionless or poorly collisional plasmas

where the instability growth time is smaller than the collision time. On the contrary, in

collisional environments such as in laboratory plasmas and in H II regions for astrophysical

plasmas, the mitigation of the pressure anisotropies by Coulomb collisions may enhance

the accuracy of a Ćuid description, and favor the growth of the non-resonant mode.

In the case of a weaker cosmic rays Ćux, the reduction of the growth rate γ will in

turn reduce the instability driven anisotropic heating rate. Consequently, one may expect

that the anisotropic heating will be overcome by the isotropization mediated by ion-ion

Coulomb collisions for a smaller collision frequency ν0. An order of magnitude estimate of

the collision frequency necessary to mitigate the self-generated anisotropies can be found

by comparing the anisotropic heating rate, obtained from quasi-linear theory (Winske and

Leroy [1984]): (
∂T⊥

∂t

)

NR

= 4γcold
WB

nm

(6.16)

to the isotropization of temperatures by Coulomb collisions:

(
∂T⊥

∂t

)

c

= −ν0T0κ (6.17)

where T⊥ is the temperature perpendicular to the total magnetic Ąeld in units of energy

and:

κ =
1

2π1/2A

(
−3 + (A+ 3)

[
tan−1(A1/2)

A1/2

])
(6.18)

is a decreasing function of A = T⊥/T∥ − 1 ∼ T⊥/T0 − 1. Because heating is dominant in

the perpendicular direction one may approximate T∥ ∼ T0 with T0 the initial isotropic ion

temperature. Using the prediction from quasi-linear theory for the saturated magnetic Ąeld

WB ∼ Wcr/2, the condition for collisions to become effective in suppressing the pressure

anisotropies can then be written as:

ν0

γmax

≳ 2
Wcr

nmT0κ
(6.19)
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In addition, whether these pressure anisotropies affect the instability can be estimated by

a scaling between the pressure gradients and the magnetic force driving the instability as:

kfastnmAT0 ≳ jcrB (6.20)

with kfast = kmax/2 the fastest growing wavenumber (Eq. 2.36). This yields the condition

that the anisotropy parameter A should be ≳ 2v2
A0/v

2
T 0 with v2

T 0 = kBT0/mp, for pressure

gradients to inĆuence the instability. For the parameters considered Wcr/nmT0 = 12.5 and

vA0/vT 0 = 1. For the collisionless simulations A ∼ 4 (see Fig. 6.3), and pressure gradients

are expected to modify the growth of the instability, which is indeed what is observed

in the simulations. In addition, the collision frequency required for anisotropies to be

suppressed by Coulomb collisions gives 2Wcr/nmT0κ ∼ 400, in good agreement with the

values obtained from the simulations, ν0/γ0 ∼ 300.

In general, the level of pressure anisotropy produced by the non-resonant streaming

instability may be estimated from quasi-linear theory using the scaling T⊥ ∼ 2WB/nm +T0,

such that A ∼ Wcr/nmT0. Using this estimate, the criterion for pressure gradients to

impact the growth of the instability becomes:

1

4

ncru
2
cr

nmv2
A0

≳ 1 (6.21)

which is the ratio of the cosmic rays to the initial magnetic Ąeld energy densities, and

it is independent of the background plasma density. Considering a supernova shock

which propagates at a velocity ucr = 103 km.s−1 in a cold interstellar medium with

nm = 1 cm−3, B = 5 µG, T0 = 104 K and with a cosmic rays Ćux ncrucr = 104 cm−2s−1

(Zweibel and Everett [2010]), one obtains ncru
2
cr/4nmv

2
A0 = 0.2 and a protons Coulomb

collision frequency of ν0/γmax = 3 × 10−2 (Trubnikov [1965]), much smaller than the

criterion 2Wcr/nmT0κ = 41. Under such collisionless conditions, one may expect pressure

anisotropies to develop and reduce the growth rate and saturated magnetic Ąeld with

respect to the theoretical predictions. Increasing the main protons density to nm = 90 cm−3,

as encountered in H II regions (Galarza et al. [1999], Orlando, S. et al. [2019]), while

keeping the other parameters the same one obtains a collision frequency ν0/γmax = 24.

This is of the same order as the criterion 2Wcr/nmT0κ = 27, indicating that Coulomb

collisions should reduce the anisotropies spontaneously generated by the instability and

enhance its growth.
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7.1 Introduction

The theory and numerical simulations of plasmas constitute two invaluable tools in

understanding the physics of the non-resonant streaming instability, as well as its role in

the ampliĄcation of the magnetic Ąeld and in the acceleration of cosmic rays in astrophysical

shocks. However, theoretical investigations such as the one presented in this thesis are

restricted to the linear phase of the instability, and give few information on the late

evolution of the plasma. Numerical simulations allow us to overcome this limitation, but

are by nature limited to the system of equation which is numerically solved. In addition,

the computational cost becomes prohibitive for ŞrealisticŤ plasma parameters observed in

astrophysical systems, and restricts most numerical investigations to idealized situations.

The third way to approach the problem is by studying actual astrophysical plasmas,

which can be observed from the Earth via the radiations they emit. As presented in Sec.
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2.1, the acceleration of cosmic rays at shocks can be studied by analysing the gamma rays

emitted by the energetic particles. Their interaction with the EarthŠs atmosphere initiates

a cascade of interactions, leading to the formation of a shower of secondary charged

particles. Those with velocities faster than the local speed of light in the atmosphere can

resonate with the electromagnetic radiations and produce Ćashes of Cerenkov emission,

which gives information on the primary gamma rays. This approach was applied to SNR

RX J1713.7−3946 and Cassiopeia A (Aharonian et al. [2001, 2004]), highlighting the

possible role of supernova remnants as efficient cosmic rays accelerators. However this

observational approach is also limited by the spatial resolution of the telescopes, which need

to be compared with the spatial scales involved in the microphysics of the non-resonant

instability. In the case of the HESS system of telescopes (Hinton [2004]), the angular

resolution is of a few arc minutes. For Cassiopeia A, which is located at 3.4 kiloparsecs

from the Earth, this corresponds to a spatial resolution of the images of the order of the

parsec. Considering the plasma parameters of the supernova remnants propagating at

a velocity ucr = 103 km.s−1 in an interstellar medium with density nm = 1 cm−3, and

with an ambient magnetic Ąeld B = 5 µG, one Ąnds the maximum non-resonant mode

wavelength as λmax = 2πk−1
min = 1.3 × 105 km, much shorter than the telescope spatial

resolution and out of reach for direct in situ observations.

One may circumvent this difficulty by bringing the plasmas closer to us. Experimental

investigations of plasmas under extreme conditions have drawn increasing attention in

the astrophysics community. Plasma phenomenon such as the streaming instabilities may

be observed in experiments which can Ąt in a laboratory, using a combination of state

of the art lasers together with sources of large intensity magnetic Ąeld. The right-hand

resonant streaming instability has been investigated using the Large Plasma Device at the

University of California where plasmas up to 18 meters long with a 300 G axial magnetic

Ąeld can be obtained (Leneman et al. [2006]). The streaming population was created

by irradiating a solid target made of high density polyethylene C2H4 and graphite with

a high intensity laser, generating an expanding plasma with velocities up to hundreds

of kilometers per second. Such combination of large scale ambient plasma, ambient

magnetic Ąeld and relatively large streaming velocities allowed to observe the right-hand

resonant mode in a recent experimental campaign (Heuer et al. [2018]). Electromagnetic

Ąeld Ćuctuations were observed with a polarization and a frequency compatible with the

theoretical expectations, constituting the Ąrst experimental demonstration of the right-

hand resonant streaming instability. The non-resonant streaming instability has however

not yet been observed in the laboratory. This chapter is devoted to possible designs of

future experimental investigations on the non-resonant streaming instability. It describes

the conditions which must be satisĄed to observe the non-resonant mode in the laboratory,

as well as theoretical predictions on the expected time and spatial scales involved. Several

considerations which need to be taken into account when attempting to observe the

instability in laboratory conditions are presented, from the effects of temperature and

collisionality to the modiĄcation of the non-resonant mode behaviour for ion species with

various mass and charge. Two possible setups are proposed, together with the relevant

diagnostics which may allow us to analyse and understand the results.
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7.2 Experimental constraints

Three fundamental elements must gathered to recreate the non-resonant mode in the

laboratory: a background plasma, a super-Alfvénic streaming population and an ambient

magnetic Ąeld aligned with the stream velocity. Although the parameters required are

potentially within the reach of high intensity laser experiments with tens of Tesla externally

applied magnetic Ąelds (Albertazzi et al. [2013], Ivanov et al. [2021]), the large streaming

population densities, drift velocities and ambient magnetic Ąeld required, together with

the lack of theoretical knowledge on the effects of particle collisions and of ion charge

and mass on the development of the instability, have made its experimental investigations

elusive. The main constraints on the experiments can be summarized as follows:

• The instability must grow on time scales compatible with the plasma lifespan, and on

spatial scales compatible with the size of the plasma and of the magnetized regions.

• The density ratio between the streaming population and the background plasma

must be less than unity, whereas the relative velocity normalized to the Alfvén

velocity must be larger than unity.

• The particle Ćux must not be too large to avoid the demagnetization of the background

plasma, nor too small to avoid damping by ion Ąnite Larmor radius effects, as well

as the growth of the resonant modes.

• The e-folding reached at the end of the experiment, that is the integrated growth

rate over the experiment duration, must be larger than unity in order to observe a

substantial growth of the perturbations.

During the growth of the instability, the streaming population drift kinetic energy is

converted in large amplitude magnetic Ąeld perturbations. This leads to a reduction of

the streaming velocity and to a scattering of the particles in the plane perpendicular to

the ambient magnetic Ąeld. The resulting changes in the streaming population energy

spectrum could be measured using a Thomson parabola, together with the magnetic Ąeld

ampliĄcation (obtainable by Faraday rotation). This would allow the veriĄcation of the

theoretical prediction on the saturated magnetic Ąeld intensity, which is a central parameter

of the non-resonant instability in the context of acceleration of particles at supernova

shocks. In addition to magnetic Ąeld perturbations, the instability is characterized by

large density Ćuctuations of the order of the initial background plasma density, produced

by the increasing magnetic pressure on the same spatial scales as the electromagnetic

waves, and which may be observed in laboratory experiments by laser interferometry.

7.2.1 Ambient magnetic field and instability regimes

Intense magnetic Ąelds may be obtained in the laboratory using Helmholtz coils to generate

uniform magnetic Ąelds for a duration of a few µs, with intensities up to tens of Teslas

on scales of the order of the centimeter (Albertazzi et al. [2013]). The instability is

modiĄed by Ąnite Larmor radius effects, hence requiring strong magnetic Ąelds to keep

the Larmor radius smaller than the unstable wavelengths in order to prevent unwanted
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non-resonant mode. The condition that the background ions are magnetized, krLm < 1,

where rLm = vT m/Ω0 is the main ions Larmor radius, yields:

B > 5 × 10−10T 1/4ϕ1/2
s (7.2)

Below this limit the thermal ions Larmor radius becomes larger than the unstable wave-

length, and the instability growth rate and saturation are strongly reduced. The condition

that the instability is not modiĄed by thermal effects, corresponding to the warm regime

of the instability, is given by:

B > 2.3 × 10−9T 1/3n1/6
m ϕ1/3

s (7.3)

If this condition is violated the unstable wavelengths are modiĄed, and consequently the

requirements on the streaming population demagnetization, and magnetization of the

background ions, are also modiĄed. This imposes constraints on the streaming particle

Ćux in the thermally modiĄed regime:

3 × 10−16nmT
2
m < ϕs < 104nmT

1/2
m (7.4)

In addition to the constraints on temperature, particle Ćux and ambient magnetic Ąeld,

the unstable wavelengths must also be taken into account, namely the condition:

kminL

2π
> 1 (7.5)

imposing that the largest unstable wavelength should be smaller than the size of the

experiments, which is itself constrained by the size of the background plasma and by the

size of the region where the Helmholtz coils can maintain a strong and uniform magnetic

Ąeld.

7.2.2 Stream-background Coulomb collisions

The density and mass of the background plasma are critical parameters of the experiments

as they modify the growth rate of the instability, as well as the collisionality with the

streaming particles via Coulomb collisions. The background plasma may be obtained by

ionizing a preexisting gas jet, typically made of hydrogen or argon, with a nanosecond laser.

Such jets are generated by ejecting low density (∼ 1018 cm−3), high pressure (∼ 10 bar)

neutral gas from a gas nozzle, generating axisymmetric density proĄles around the direction

of propagation. The radial density proĄle of such gas jet follows a Gaussian, exponentially

decreasing law with the distance to the axis, and is known experimentally (Malka et al.

[2000]). The high velocities acquired by the plasma from the laser pulse should not be lost

to collisions with the background (Thaury et al. [2009]), which imposes conditions on the

relative velocity, mass and charge of the background and streaming ions. As presented in

Sec. 4.4.2, the characteristic time scale (ν
α/β
S )−1 associated to the slowing down of test

particles α by a population of Ąeld particles β may be calculated as (Trubnikov [1965],

Callen [2006]):

ν
α/β
S = −να/β

0

(
1 +

mα

mβ

)
ψ(x) (7.6)
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where

ν
α/β
0 =

1

4πϵ2
0

q2
αq

2
β

m2
α

nβ

u3
α

ln Λαβ (7.7)

is the fundamental Coulomb collision frequency and ψ(x) is the Maxwell integral, with

x = uα/vT β the relative speed parameters and uα the velocity of the test particle in the

reference frame of the population β. In the case of a particle of population α propagating

in a background plasma made of electrons and a single species of ions, the slowing down

time scale is calculated as:

ν
α/i,e
S = ν

α/i
S + ν

α/e
S (7.8)

One may deduce the associated collision mean free path λS = uα/ν
α/i,e
S , which corresponds

to the average distance traveled by a particle with velocity uα before suffering a signiĄcant

reduction of its drift velocity by Coulomb collisions. One may deĄne a collisionality

parameter as λS/L where L is the characteristic size of the experiment, which should be

larger than unity in order to avoid any substantial loss of momentum before the instability

may develop in the experiments:
λS

L
> 1 (7.9)

This parameter can be maximized by considering large relative velocities, together with

small stream and background populations charge.

7.2.3 Background ion-neutral collisions

In addition to the ionization degree, the ionization fraction of the background plasma, i.e.

the fraction of ionized particles, also plays an important role in the non-resonant mode

growth. Ion-neutral collisions differ signiĄcantly from the Coulomb collisions as both the

momentum and the energy of the background ion population are not conserved, leading to

an important damping of the instability as seen in Sec 6.2.1. Similarly to temperature

effects, the damping by neutral collisions should be avoided in experimental investigations,

hence requiring the background plasma to be fully ionized to minimize the ion-neutral

collision frequency. The ionization state of a gas in local thermodynamic equilibrium may

be calculated using SahaŠs law as a function of the gas temperature:

Nj+1

Nj

= 2
Zj+1

neZj

(
2πmekBT

h2

)3/2

e−∆ϵj/kBT (7.10)

where Nj is the number of particles in the state of ionization j, Zj is the degeneracy of

states for the ions i, h is the Planck constant and ∆ϵj = ϵj+1 − ϵj is the energy required

to remove the i+ 1 electron. In the case of a pure hydrogen gas this system of equation

can be solved analytically. Assuming that most of the neutral hydrogen are in the ground

state, then g1 = 2, and g2 = 1 since the ionized state is a proton. One can rewrite SahaŠs

equation as:

N2

N1

=
1

2

(
2πmekBT

h2

)3/2

e−∆ϵ1/kBT (7.11)

By conservation of the charge, on may deĄne x = ne/n = N1/(N1 +N2) where x is the

ionization fraction with n the total density of hydrogen and protons. Inserting in Eq. 7.11
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Figure 7.2: Ionization fraction x calculated with Eqs. 7.12 and 7.13 as a function of the hydrogen
gas temperature Tm for various gaz densities n.

and solving the resulting second order equation in x, one obtains:

x =
−K +

√
K2 + 4K

2
(7.12)

where

K =
e−13.6eV/kBT

n

(
2πmekBT

h2

)3/2

(7.13)

The ionization fraction x is showed in Fig. 7.2 as a function of the hydrogen gas temperature

T for various densities n. Considering typical parameters encountered in laser-plasma

laboratory experiments, nm = 1019 cm−3 and T = 105 K, one obtains a fully ionized

hydrogen gas such that the damping effect of ion-neutral collision may be neglected.

Experiments with lower background ions temperature can also be conducted, and in this

case the ion-neutral damping effect should be taken into account.

7.3 Target Normal Sheath Acceleration setup

7.3.1 Acceleration mechanism and energy spectrum

Plasmas with large drift velocities can be obtained in the laboratory by the use of short

pulse lasers. The Target Normal Sheet Acceleration (TNSA) method consists in irradiating

a solid target, ionizing the atoms of the front side and accelerating electrons inside the

target, which propagate in the solid and escape by the rear side. The large charge separation

created generates a strong electric Ąeld parallel to the surface normal, accelerating the

ions to high energies, up to tens of MeV, with a low angle of dispersion. The ions then

propagate following a ballistic trajectory if no external force is applied. A schematic of

the TNSA acceleration process is shown in Fig. 7.3. The protons are the most efficiently

accelerated particles, because of their higher charge to mass ratio. This acceleration

mechanism generates highly energetic protons beams for a duration ranging from the

picosecond to hundreds of picoseconds, depending on the laser pulse duration. The energy

spectrum of the accelerated ions can be calculated using a two-Ćuid model for the electrons
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sufficient to destabilize the non-resonant mode depending on the plasma parameters and

ambient magnetic Ąeld intensity considered.

7.4.3 Collisionless shock formation, modified Weibel instability

Depending on the parameters of the background and streaming populations, one may

observe the formation of a shock when two plasma interpenetrate, characterized by a

jump in density, velocity and magnetic Ąeld at the shock front. Shocks are ubiquitous

across a wide range of astrophysical environments. Supernova remnants shocks (Völk et al.

[2005]), galaxy clusters shocks (van Weeren et al. [2017]) and the Earth bow shock (Winske

and Leroy [1984], Johlander et al. [2016]) are a few non-exhaustive examples of such

astrophysical shocks, which may develop even in collisionless plasmas by the interaction of

the Ćow with the background via the electromagnetic Ąeld on scales larger than the Debye

length. The upstream particles may be scattered off the electromagnetic Ćuctuations,

generated by instabilities arising from the plasma interpenetration, and effectively reducing

the Ćuid drift velocity. The formation of collisionless shocks in laboratory experiments

is still an active Ąeld of research and poses challenging experimental and technological

difficulties (Grassi and Fiuza [2021]). Such shocks should be avoided in experiments on

the non-resonant instability to prevent any substantial loss of drift velocity before the

non-resonant mode may grow.

Weibel [1959] showed that counter propagating plasmas may excite the exponential

growth of purely growing transverse electromagnetic waves with respect to the drift velocity,

on time scales of the order of the ion plasma frequency and on spatial scales of the order of

the ion inertial length, and therefore providing the necessary electromagnetic Ćuctuations

for the formation of a collisionless shock (Spitkovsky [2005], Bohdan et al. [2021]). The

Weibel instability is modiĄed by the presence of an ambient magnetic Ąeld which acts

as a stabilizing factor because of the associated magnetic tension in the parallel and

oblique case, preventing the growth of the unstable waves at large scales. Supposing

non-relativistic drift velocities and purely growing modes, the unstable wavelengths are

bounded by the maximum spatial scale (Stockem et al. [2006]):

LWeibel
max = 2π

c

ωp

√
g

µ
− 1 (7.29)

where ωp = (1 + µ)ω2
ps

1 + rn

rn

, µ = me/ms, ωps =
√
nse2/ϵ0me, rn = ns/nm and g =

(ωp/Ω
2)rn(us/c)

2 with Ω = eB/mec. In addition, one may obtain the relative drift velocity

threshold for the Weibel instability as:

us ≥ vAs

√
1 + rn (7.30)

with us the relative drift velocity, and vAs = B/
√
ns(ms +me)µ0. In order for the particles

to not be scattered by the Weibel electromagnetic perturbations, the Larmor radius of the

upstream particles should be larger than the Weibel instability wavelength. This yields the

condition to avoid the formation of a collisionless shock mediated by the Weibel instability,
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between the counter-propagating plumes and to the large ambient magnetic Ąeld of 50 T ,

the maximum wavelength is contained in the interaction region of 4 mm during the entire

duration of the experiment. Similarly the Coulomb collision mean free path between the

plasma plumes is larger than the interaction region. It becomes comparable for times

t ∼ 30 ns, where the instability has already substantially developed, such that particle

collisions should not modify the drift velocities of the plumes on time scales comparable

to the instability growth time. In this conĄguration, the instability should be able to grow

before the two inter-penetrating plasmas become collisional.

The modelizations presented in this chapter are based on predictions of the instability

growth rate and spatial scales considering analytical density proĄles and particle Ćux.

Numerical simulations will be necessary to assess the non-linear evolution of the plasma, and

validate the simplifying assumptions used. Additional physical effects such as a Ąnite plasma

resistivity will also be needed to be taken into account, as well as potential competing

unstable modes, such as the Ąre-hose instability which may disrupt the propagation of the

plasma plumes before the growth of the non-resonant mode.
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Chapter 8

Conclusions and future prospects

This thesis aims to pursue the ongoing effort of describing the non-resonant streaming

instability in non-ideal plasma environments, where the effects of Ąnite plasma tempera-

ture and collisions may modify signiĄcantly the unstable waves growth and saturation.

These effects are crucial to understand cosmic rays acceleration and propagation in many

astrophysics environments as well as to design future laboratory experiments.

A Ąrst approach in the theoretical developments presented in this thesis was to describe

the non-resonant instability using an MHD model, considering the background plasma

as an electrically charged Ćuid traversed by a population of drifting cosmic rays. Such

model allows to describe all of the essential features of the instability. In particular,

the fundamental mechanism leading to the unstable feedback loop between the plasma

and the electromagnetic waves was investigated. The speciĄc spatial structure of the

waves was described, and its importance on the non-linear evolution of the instability

was highlighted. Quantitative predictions on the fastest growing modes and associated

unstable wavelengths were obtained for arbitrary ion mass and charge, and were compared

to the existing kinetic and Ćuid theory for protons population, in the limit of negligible

plasma temperature and low density streaming population. It is found that heavy elements

can destabilize the non-resonant mode on larger spatial scales, which may help to better

conĄne lighter elements with a smaller Larmor radius at shock and thus ease the Ąrst

order Fermi acceleration process to high energies for these lighter populations. It would be

interesting to study such effects in shocks simulations by considering heavy cosmic rays,

and look at their impact on the acceleration of lighter populations of energetic particles.

The effects of the ambient plasma temperature on the instability were then investigated

within the framework of kinetic theory, where analytical expressions of its growth rate

were derived in the hot, demagnetized regime of interaction for which the background

ions Larmor radius is larger than the unstable wavelengths. The results obtained in this

thesis were obtained with simplifying assumptions on the electrons population, assumed

to remain cold. Their precise distribution function is difficult to infer in the astrophysical

context, but complementary calculations with various possible distributions, including

electrons thermal effects, could be attempted in the future. The prediction of the saturated

magnetic Ąeld intensity is also a challenging issue. The existing estimates were obtained

by assuming a cold background plasma. In the hot regime, additional work is needed to

obtain corrected estimates. A promising lead is to adapt the results from quasi-linear

theory to account for Ąnite Larmor radius effects, in order to derive energy exchange rate
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which could then be extrapolated to obtain a prediction on the saturated magnetic Ąeld. I

have done preliminary work during this thesis, which will need to be pursued to obtain

analytical results.

Using the massively parallelized hybrid-Particle-In-Cell code Heckle, numerical simula-

tions of the instability were performed for a wide range of background ions temperature.

The simulations explored the cold regime, expected to be correctly described by the

modiĄed Ćuid model, the warm regime where the background ions Larmor radius is no

longer negligible but remains smaller than the unstable wavelengths, and hot, demag-

netized regime. The results were compared to theoretical predictions, and allowed to

better constrain the saturation mechanism of the non-resonant mode. This in turn is

crucial to determine the saturated magnetic Ąeld intensity as a function of the streaming

ions and background plasma temperature. In particular, BellŠs saturation mechanism

was investigated, where the combined effect of the increasing magnetic tension at small

scales and magnetization of the streaming population at large scales breaks the instability

feedback loop. Despite this effect, the simulations presented in this thesis showed the

existence of a non-linear phase of growth, where further magnetic Ąeld ampliĄcation

can occur because of the background Ćuid inertia. In the cold limit about two-thirds of

the cosmic rays drift kinetic energy is converted into magnetic energy. Increasing the

temperature of the ambient plasma can substantially reduce the growth rate and the

magnitude of the saturated magnetic Ąeld, which may hinder magnetic Ąeld ampliĄcation in

astrophysical environments such as supernova propagating in superbubbles, and in galaxy

cluster shocks. The simulations have been performed both in 1D and 2D geometry, which

yielded qualitatively and quantitatively similar results. The conduct of 3D simulations

is a computational challenge that will need to be tackled to validate this tendency, and

to better model the spatial structure of the regions of magnetic Ąeld ampliĄcation in the

simulations. Moreover, the numerical setup used in this work was adapted to study the

non-resonant mode microphysics, but does not include the interplay of the instability

with the shock itself in the context of cosmic rays acceleration in supernova remnant

and protostellar jets. The transition from the micro (electrons and ions scales) to the

macro scale (shock and high energy particles scale) is the subject of active research in

the astrophysical plasmas community, which will need to be pursued to understand high

energy particles acceleration in a self-consistent way.

SigniĄcant pressure anisotropies in the background plasma were observed in the

simulations. Owing to the helical spatial structure of the unstable electromagnetic waves,

strong gradients of the non-diagonal terms of the full ions pressure tensor are created

and oppose the instability growth, which leads to a reduced magnetic Ąeld growth rate

and intensity at saturation. This result suggests that MHD and MHD-PIC simulations

with isotropic closure may not be adequate to describe all of the essential features of the

non-resonant mode, as a more sophisticated closure may be required to reproduce the

anisotropic heating. These limitations of a Ćuid description of the background ions may

restrict its range of applicability. In this direction, it would be interesting to perform

comparative simulations between hybrid-PIC and MHD-PIC models in order to assess

precisely the effects overlooked by the Ćuid description.

The mitigation of the anisotropies by particle collisions, which are important in denser

environments such as H II regions and molecular clouds, was also investigated numerically.

The Coulomb collisions between the background ions were shown to promote the growth
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of the instability, provided that the collision frequency is sufficiently large. In addition,

protons-neutral hydrogen collisions have been implemented using a Monte-Carlo method,

and are found to rapidly damp the unstable waves, conĄrming previous linear theory

calculations. Other types of interactions could be considered in the future, such as charge

exchange which may further damp the electromagnetic waves.

Studying the non-resonant mode in the laboratory is potentially within the reach of

laser experiments with tens of Tesla externally applied magnetic Ąelds. However the large

beam densities, drift velocities and ambient magnetic Ąeld required, together with the

lack of theoretical knowledge on the effects of particle collisions on the development of

the instability, have made its experimental investigations elusive. This work constitutes

an additonal step toward Ąlling this gap in our knowledge. Two possible setups which

may allow us to observe the non-resonant mode in the laboratory were described, as

well as theoretical predictions on the expected time and spatial scales involved. Several

considerations which need to be taken into account when attempting to observe the

instability in laboratory conditions were presented, from the effects of temperature and

collisions in typical laboratory plasmas, to the possible formation of a Weibel-mediated

shock. The experiments involve high intensity lasers, coupled with source of strong

magnetic Ąeld (∼ 0.1MG) on typical scales of the order of the centimeter for tens

of nanoseconds. They satisfy the condition of super-Alfvénic Ćows propagating in a

magnetized, collionless background, and may excite waves on time and spatial scales

compatible with the constraints on the size and lifetime of strongly magnetized laboratory

plasmas. Such experiments will allow us to observe the instability for the Ąrst time in

laboratory conditions, and permit to confront the results to the existing Ćuid and kinetic

theory, in addition to constrain the saturation mechanism of the non-resonant instability.

Their modelling with state-of-the-art numerical codes is the object of on-going studies, and

will require a multi-scale approach to model the whole interaction, from the laser energy

deposition of the target to the propagation of the plasma plumes or TNSA accelerated

protons. In addition, other potentially important effects such as the plasma resistivity will

need to be taken into account. During this thesis I carried out preliminary work to obtain

the dispersion relation while including such effects, and the non-analytical expressions

obtained will require additional developments to be applied for future experiments.
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Appendix A

Fluid linear theory for arbitrary ions

The following derivations complement those presented in Sec. 2.2 and retain the effects of

arbitrary charges and masses.

A.1 Growth rate and unstable wavelengths

The plasma is supposed quasi-neutral:

Qe +Qm +Qcr = 0 (A.1)

where Qe = −ene is negative with e the elementary charge, such that the background

plasma (main ions and electrons) is electrically charged: Qe +Qm = −Qcr. This property

will be characterized by the parameter:

χ = −Qm

Qe

= 1 +
Qcr

Qe

(A.2)

which is positive. In the case of multiple ion species, this parameter would be written

χ = −∑
α Qα/Qe. The total current can be expressed with Maxwell-AmpèreŠs law as:

∇ × B = µ0(Qeue +Qmum +Qcrucr) +
1

c2

∂E

∂t
(A.3)

where µ0 is the magnetic permeability and c is the speed of light. The electron population

possess a drift velocity relative to the main ions, in the same direction as the cosmic rays

such that:

ue = −Qcr

Qe

ucr = (1 − χ)ucr (A.4)

In the case of cosmic rays made of multiple ion species, one would also need to take into

account the contribution of the current these species carry in AmpèreŠs law. In this case

the effective cosmic rays current is the sum of each individual ion component. Performing

a summation of the main ions and electrons momentum conservation equations, and
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inserting AmpèreŠs law, one Ąnds:

ρ
du

dt
=

1

µ0

(∇ × B) × B − ∇ · P −Qcr(E + ucr × B) (A.5)

where d/dt = ∂/∂t + u · ∇ is the material derivative. The density, Ćuid velocity and

pressure tensor associated to the background plasma are deĄned as:

u =
ρeue + ρmum

ρe + ρm

(A.6)

ρ = ρe + ρm (A.7)

Pij =
∑

α=e,m

Pij,α (A.8)

such that ρ ≈ ρm. In the case of multiple ion species the sum should be performed over

the ion populations. Considering me ≪ mp and neglecting the electron pressure gradients

by supposing a negligible electron temperature, OhmŠs law can be written as:

E = −J × B

Qe

− χum × B + (χ− 1)ucr × B (A.9)

If one supposes spatial scales above the ion inertial length, the OhmŠs law can be written

while neglecting the Hall term −J × B/Qe. Using um × B ≈ u × B, one obtains:

E = −χu × B + (χ− 1)ucr × B (A.10)

Inserting Eq. A.10 in Eqs. A.5 and in FaradayŠs law, and supposing an incompressible

plasma such that ∇ · u = 0 as from the density conservation equation, one obtains:

du

dt
=

1

µ0ρ
(∇ × B) × B − 1

ρ
∇ · P + χ

Qcr

ρ
u × B − χ

ρ
jcr × B (A.11)

∂B

∂t
= χ [(B · ∇)u − (u · ∇)B] +

1

Qe

(jcr · ∇)B (A.12)

with jcr = Qcrucr the cosmic rays current, supposed constant. Linearizing Eqs. A.11 and

A.12 while neglecting second order terms yields:

∂u1

∂t
=

(B0 · ∇)B1

µ0ρ
+
χ

ρ

mp

e
QcrΩ0

(
u1 × B0

B0

)
− χ

ρ
jcr × B1 (A.13)

∂B1

∂t
− 1

Qe

(jcr · ∇)B1 = χ(B0 · ∇)u1 (A.14)

where Ω0 = eB0/mp is the proton cyclotron frequency, mp is the proton mass and jcr the

constant, zeroth order cosmic rays current. The subscripts Ş0Ť and Ş1Ť refer to the order

of the linearization.

The Ćuid velocity and magnetic Ąeld perturbations in Eqs. A.13 and A.14 are coupled

by only certain terms, which allows to distinguish coupling and non-coupling contributions.

First, considering only the non-coupling terms (i.e. neglecting the Ąrst and third terms
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of Eq. A.13 and the right-hand side of Eq. A.14) one directly obtains a rotation of the

background Ćuid at a frequency:

ωu =
χ

ρ

mp

e
QcrΩ0 (A.15)

and a rotation of the magnetic Ąeld perturbation at a frequency:

ωr =
kjcr

Qe

(A.16)

Retaining only the coupling terms (i.e. neglecting the second term in the right-hand side

of Eq. A.13 and the second term in the left-hand side of Eq. A.14) and in Fourier space,

the equations become:

−iωu1 = i
B0k

µ0ρ
B1 − χ

ρ
jcr × B1 (A.17)

−iωB1 = iχB0ku1 (A.18)

Rewriting as a function of the magnetic Ąeld perturbation yields:

i
ω2

B0kχ
B1y = i

B0k

µ0ρ
B1y +

χ

ρ
jcrB1z (A.19)

i
ω2

B0kχ
B1z = i

B0k

µ0ρ
B1z − χ

ρ
jcrB1y (A.20)

By isolating ω one Ąnds the dispersion relation of the non-resonant mode as:

ω2 = χ
nmmp

ρ
k2v2

A0 ± χ2mp

e
Ω0
kjcr

ρ
(A.21)

One obtains an instability for ♣k♣ < kmax with:

kmax =
jcr

enm

Ω0

v2
A0

χ (A.22)

The growth rate γ(k) may then be obtained in the form:

γ(k) =
√
αk + βk2 (A.23)

Searching for an extremum of the growth rate yields the fastest growing wavenumber:

kfast = − α

2β
= −1

2

jcr

enm

Ω0

v2
A0

χ (A.24)
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which is half of the maximum unstable wavenumber. Inserting in the growth rate expression,

one obtains the fastest growing mode for the non-resonant instability for arbitrary ions as:

γfast =
1

2

jcr

e

Ω0

vA0

(
mpχ

3

ρnm

)1/2

(A.25)

In the range of wave numbers ♣k♣ ≪ kmax, the contribution of the Ąrst term in the right-

hand side of Eq. A.13 corresponding to the magnetic tension can be neglected. The

instability may then be described by the simpliĄed system of equations:

∂u1

∂t
= −χ

ρ
jcr × B1 (A.26)

∂B1

∂t
= χ(B0 · ∇)u1 (A.27)

One obtains an exponential growth of the electromagnetic wave with a growth rate γ(k)

varying as k1/2:

γ(k) ≈
(
jcr♣k♣Ω0

χ2

ρ

mp

e

)1/2

(A.28)

A lower limit for the unstable wave numbers can be obtained by considering the time

(♣k♣ucr)
−1 for cosmic rays to cross one wavelength, which has to be smaller than the

cyclotron period ( mp

mcr

qcr
e

Ω0)
−1. This gives the minimum k as:

kmin =
mp

mcr

qcr

e

Ω0

ucr

(A.29)

These results are further investigated in hybrid-PIC simulations in Sec. 5.2.3. The

results in this appendix can be compared with the existing literature, which is focused on

astrophysical applications where the streaming ions population is made of very tenuous

and essentially protons cosmic rays. In this case ncr/ne ≪ 1, ne ≈ nm, χ ≈ 1−ncr/nm ≈ 1,

ρ ≈ nmmp such that:

γcold =
1

2

ncr

nm

ucr

vA0

Ω0 (A.30)

kcold = −1

2

ncr

nm

ucr

v2
A0

Ω0 (A.31)

kmax =
ncr

nm

ucr

v2
A0

Ω0 (A.32)

kmin =
Ω0

ucr

(A.33)

and one recovers the existing linear theory results for a low temperature plasma.
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A.2 Energy conservation, anisotropic heating

In the following, the pressure and heat Ćux terms will be neglected with respect to the

terms involving the electromagnetic Ąeld. The conservation equation for the background

plasma kinetic and internal energies can be expressed as:

ρ
d

dt

(
u2

2
+ U

)
= jb · E (A.34)

where ρU = 3p/2 with p the isotropic part of the pressure tensor, jb = Qmum +Qeue =

∇ × B/µ0 − jcr the background current and jcr = Qcrucr the current carried by the ions

cosmic rays. One may separate the internal and kinetic part of the energy conservation

equation by calculating the kinetic energy conservation equation, which can be obtained

from the background plasma momentum density conservation equation:

ρ
du

dt
= −∇ · P −QcrE + jb × B (A.35)

Multiplying this equation by vecu and neglecting the pressure gradients, one obtains the

balance equation for the kinetic (directed) energy of the background as:

ρ
d

dt

(
u2

2

)
= −QcrE · u + (jb × B) · u (A.36)

Subtracting Eq. A.36 from Eq. A.34, one obtains the conservation equation for the internal

energy of the background Ćuid:

ρ
dU

dt
= E · (jb +Qcru) − (jb × B) · u (A.37)

The electromagnetic energy density conservation, neglecting the electric energy with respect

to the magnetic energy, gives:

∂

∂t

(
B2

2µ0

)
+ ∇ ·

(
E × B

µ0

)
= −(jb + jcr) · E (A.38)

Finally the cosmic rays kinetic energy conservation equation reads:

ρcr
d

dt

(
u2

cr

2

)
= jcr · E (A.39)

The sum of these conservation equations yields zero, which corresponds to the conservation

of the total (kinetic, internal and electromagnetic) energy of the system. Using the electric

Ąeld obtained from OhmŠs law E = −χu × B + (χ− 1)ucr × B (Eq. A.10), one obtains

the intermediary relations:

E · jb = χu · FL + (1 − χ)ucr · FL + χjcr · (u × B) (A.40)

QcrE · u = (χ− 1)u · (jcr × B) (A.41)

E · jcr = −χjcr · (u × B) (A.42)
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(jb × B) · u = u · FL − u · (jcr × B) (A.43)

where FL = (∇ × B) × B/µ0 is the Lorentz force. Reporting in the conservation equations

gives:

ρcr
d

dt

(
u2

cr

2

)
= −χjcr · (u × B) (A.44)

ρ
d

dt

(
u2

2

)
= χjcr · (u × B) + u · FL (A.45)

ρ
dU

dt
= (χ− 1)FL · [u − ucr] (A.46)

∂

∂t

(
B2

2µ0

)
+ ∇ ·

(
E × B

µ0

)
= −χu · FL + (χ− 1)ucr · FL (A.47)

with χ = −Qm/Qe deĄned positive.
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Growth rate numerical measurement

The growth rates γ measured in Chapters 5 and 6 are obtained by calculating the norm

of the perturbed magnetic Ąeld B1 = B − B0, averaging the result over the simulation

domain, and Ątting an exponential function of the form f(t) = Aeγt to the average

perturbed magnetic Ąeld as a function of time. The Ąt is performed over the linear phase

of the instability, which end is found by calculating the non-linear transition condition

kmin = kmax.

This appendix presents a critical analysis of this method of growth rate measurement

in the simulations. Indeed, care must be taken when comparing the Ątted numerical

growth rate to the analytical expressions of the non-resonant mode growth rate at the

fastest growing wavenumber. This growth rate corresponds, by its very deĄnition, to a

monochromatic perturbation. Of course in the simulations all the spectrum of wavenumbers

can develop, bounded by the spatial size and resolution used. Obtaining a growth rate for

a speciĄc wavenumber can be achieved by performing a Fourier transform of the perturbed

magnetic Ąeld, and by selecting the negative helicity part of the spectrum associated to

the non-resonant mode, as done in Sec. 5.2.4). The main advantage of this procedure is

that a direct comparison with the linear theory results can potentially be made, however

the results are sensitive to the numerical noise present in the simulations. This may render

the growth rate measurement delicate, and may require prior Ąltering and smoothing, by

convoluting the signal with a Gaussian for example, at the cost of physical accuracy. In

addition to these numerical concerns, the physics of the non-resonant mode must also be

taken into account when trying to compare numerical and analytical growth rates. The

growth rate obtained in the linear theory does not take into account the reduction of the

maximum unstable wavenumber with increasing magnetic Ąeld over time, nor the increase

in minimum wavenumber. Consequently the growth rate should be measured during a

short period of time, i.e. before being modiĄed by the increasing magnetic pressure at

small scales or the cosmic rays magnetization at large scales. The time period should be

adjusted for each individual wavenumber for a given simulation. The period is a function

of the growth rate, and can be short (of the order ∆t ∼ 5 Ω−1
0 ) which increases the noise

in the results.

An example of a measurement of the magnetic Ąeld growth rate is given in Figs.

B.1 and B.2. The results presented are for a simulation with the parameters ncr/nm =

0.01, ucr/vA0 = 100, Tm = T0 and no collisions such that γcold = 0.5 Ω0. The same

problematic of growth rate measurement arises in simulations including collisions, being
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with neutrals or among charged particles. The measured growth rate is given for a short

time period of t = 5 Ω−1
0 for the linear phase, together with the theoretical prediction

(Eq. 2.2.3) as a function of the wavenumber. The ŞgoodnessŤ of the Ąt R2 is also shown,

calculated with the PearsonŠs test as R2 =
∑

(f(t) − y)2/
∑

(y − ȳ)2 with f(t) the Ątting

function, y the data and ȳ the mean, and is an indicator of the quality of the numerical Ąt

with R2 → 0 corresponding to a good Ąt with the data. The spectrum can be decomposed

into three parts. Above k = kmax (rightmost dashed line), the signal is very noisy, and

the R2 is large indicating that the exponential Ąt is a bad approximation of the data,

consistent with the fact that the non-resonant mode is stable above kmax. The second part,

corresponding to wave numbers 0.1 l−1
0 < k < kmax, is well described by an exponential

function, and Ąts well with the theoretical prediction. Finally the third part k < l−1
0 is

poorly described by an exponential, relative to the second part. Increasing the duration of

the time period over which the Ąt is made to t = 10 Ω−1
0 , one obtains a reduced growth

rate for k = kfast (Eq. 2.36) illustrating that those wavenumbers have started to saturate

due to the increasing magnetic tension. This is in contrast to lower wavenumbers for which

the growth rate remains very similar. In both cases, the exact value of the growth rate at

a given wavenumber is noisy in the simulations, and varies with the Ątting time window.

Since there is no clear criteria to deĄne the duration of this window, one could be tempted

to choose the one that best Ąts the theoretical prediction, which contradicts the original

goal of verifying theoretical results with simulations.

For this reason, growth rate measurements on a monochromatic perturbation of the

non-resonant mode in the simulations can be misleading. In the work presented in this

thesis, the growth rate measurements in the simulations have been obtained by studying

space averaged quantities and over the entire linear phase, thus integrating over the whole

k spectrum. Given the bell-shaped growth rate γ(k), the measured growth rate is smaller

than the maximum monochromatic value, by a factor ∼ 2 for the parameters considered in

the simulations, and represents an average growth rate over space and over the exponential

phase.
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instruments. The arrows on the abscissa indicate energies reachable in
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1.2 Image of SN 1006 seen in X-rays (Winkler et al. [2014]). Low (0.5 − 1.2

keV), medium (1.2 − 2.0 keV), and higher energy (2.0 − 7.0 keV) X-rays are
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