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Introduction

When massive stars reach the end of their life, they collapse because their core exceeds the
Chandrasekhar limit. This collapse is followed by a bounce once the center reaches approximately
nuclear density, and this can cause a core-collapse supernova [1] [2]. After the bounce, the central
object, called a proto-neutron star, will evolve to become either a neutron star or a black hole
[3]. If the main features of the core-collapse supernova mechanism are now understood, some
important details about the microphysics are still subject to a lot of uncertainties. In particular,
neutrinos are playing a key role in the core-collapse mechanism but interaction rates between
neutrinos and dense matter are difficult to determine precisely due to the strongly interacting
dense matter [4]. The evolution of the proto-neutron star is also subject to these uncertainties,
and undergoes convective motions that play a significant role in the cooling process [5].

This thesis focuses on modelisations of core-collapse supernova and proto-neutron star evolution,
and more particularly on the role of neutrinos. It is organised as follows.

Part I is dedicated to the presentation of the physical context of studied phenomena. A brief
review of neutron star physics and history is given in chapter 1, then chapter 2 presents the
core-collapse mechanism and chapter 3 presents the cooling mechanism of a proto-neutron star.

Then, in part II we focus on the role of neutrinos. Chapter 4 presents the framework needed to
model neutrino transport and the model used in this thesis, whereas in chapter 5 we review
the weak processes involving neutrinos occuring in core-collapse and proto-neutron stars and
present the formulas and approximations used to compute the corresponding reaction rates.

In part III we present a new code modeling proto-neutron star evolution along with some
applications to specific problems. Chapter 6 presents the algorithm, with the generic framework
and its implementation. Then in chapter 7 we give an application of this code to the early
evolution of proto-neutron stars in connection with some recent work on proto-neutron star
asteroseismology and the corresponding gravitational wave emission. Chapter 8 is then dedicated
to the study of convection effects in proto-neutron stars, with the mixing length theory.

Finally, in part IV, we study the role of charged current interactions in the core-collapse
supernova and proto-neutron star cooling mechanisms. In chapter 9 we present the various
approximations used for the computation of electron capture rates on nuclei and study their
influence on core-collapse simulations, then in chapter 10 we focus on the various prescriptions
used for charged-current processes of neutrinos with nucleons and their influence on core-collapse,
before expanding this study to the case PNS cooling in chapter 11.

In all this thesis we will use Penrose’s abstract index notation for tensors : latins letters a, b, c, ...
are abstract indices such that Xa represent the vector itself and not its components. Components
of a tensor are given by greek indices µ, ν, ... (spanning from 0 to 3) and the latins letters i, j, k, ...
(spanning from 1 to 3). We also use units in which kB = 1.
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Chapter 1

Neutron stars in a nutshell

1.1 A short history of neutron star discovery

1.1.1 From a theoretical hypothesis...

The existence of neutron stars was suggested by Baade & Zwicky in 1934 [6], less than two
years after the discovery of the neutron by Chadwick [7]. They were originally looking for an
explanation of the supernova phenomenon, and hypothesised that they could be powered by the
collapse of a massive star into a compact star consisting mainly of neutrons.

In 1939 Tolman, Oppenheimer & Volkoff made the first computation of the structure of such a
star [8] [9], assuming that they were consistuted of a degenerate ideal gas constituted of free
neutrons. They predicted a maximum mass of neutron stars of about 0.75 M⊙.

Studies on neutron stars did not go beyond these few theoretical considerations during a few
decades, as they were believed to be too faint to produce an observable signal. At the end of
the 50s - beginning of the 60s, there was a renewal interest in neutron stars from the nuclear
physics point of view, in the search of an equation of state of dense nuclear matter and for the
role neutron stars might play in nucleosynthesis [10] (in particular Midgal predicted the possible
superfluidity of neutron star matter [11]). Those studies showed that the pressure due to nuclear
interactions between nucleons is dominant compared with the neutron’s degeneracy pressure,
such that the maximum mass of neutron stars should be much higher than the 0.75 M⊙ limit of
Oppenheimer & Volkoff.

1.1.2 ...to actual observations

The search for observational evidences of neutron stars began with x-ray astronomy, some x-ray
sources were believed to be thermal emissions from neutron stars. But it was impossible to
conclude due to lack of consistency with the models [10].

It was also hypothesised that the quasi stellar objects (quasars) were neutron stars, but this
was incompatible with the high redshift at which some of them were observed.

The turning point was the discovery of pulsating radio sources (pulsars) by Jocelyn Bell and
Antony Hewish [12]. The link with neutron stars was then quickly established because only an
extremely compact object such as a neutron star could explain the high rotation frequency of
millisecond pulsars [10].

Since then an increasing number of pulsars have been discovered, with the famous Hulse-Taylor
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binary PSR B1913+16 [13] among them. This pulsar was first observed in 1974 and lead Hulse
and Taylor to earn to Nobel Prize in 1993. The observation of the supernova SN1987A was also
a major discovery, because the detection of the neutrino emission [14] allowed to confirm the
scenario of core-collapse as main source of neutron star formation. Indeed, even if no neutron
star has been detected up to now as a remnant of SN1987A, the observed neutrino emission was
consistent with the loss of the gravitational binding energy that has to be emitted during the
formation of a neutron star and with the scenario of core-collapse involving the neutronization
of the core.

Today even optical observations of closest neutron stars have been made possible by the increasing
sensitivity of instruments (see e.g. [15]). And of course the observation of gravitational waves
emitted during the neutron star merger GW170817 by the LIGO and Virgo collaborations [16]
completely changed the picture, as we also detected the electromagnetic counterpart during
this event (see e.g. [17] and [18]). This combined observation allowed to obtain the proof
of heavy-element nucleosynthesis in binary neutron stars mergers, and the measure of the
deformabilities

Thus, the use of those various ways of observations allows to gain new insights on neutron star
and is the beginning of multimessenger astronomy.

1.2 Observation of neutron stars

In the last few decades, observations of neutron stars yielded important results, allowing for
more constraints on their physics. What made (at first) the study of neutron star possible is
the pulsar emission mechanism, which allow for an extremely accurate timing to measure their
rotation and orbital motion.

1.2.1 Pulsar timing

A pulsar is a strongly magnetized rotating neutron star which emits a tight beam of electromag-
netic radiation, which is detected at the star’s rotation frequency, with a period ranging from
around 1 ms to several tens of seconds.

The simple model for pulsar emission is the rotation powered pulsar, which rely on two rotational
effects. The first is the misalignment between the pulsar rotation axis and its magnetic dipole
axis with an angle α ≥ 0. Because of it the pulsar can be considered as a spinning magnetic
dipole which generates an electromagnetic radiation. The second is the complex interaction
between the rotating neutron star and its magnetosphere, which leads to the establishment of
electric currents and thus to an electromagnetic radiation. In [19], the author obtained a fit
formula for the electromagnetic power radiated by the pulsar :

Prad =
µ2Ω4

c3
(1 + sin2 α) (1.1)

Where µ is the magnetic moment and Ω the rotation frequency.
The first pulsar observed [12] was a rotation powered pulsar.

Some other emission mechanisms are possible, such as the case of accretion powered pulsars
(also called x-ray pulsars), which consists of a pulsar accreting matter from its stellar companion
in a binary system. x-ray hotspots [20] are created on the pulsar at the accretion points, and
these hotspots are visible at the rotation frequency.
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There exists also several strongly magnetized neutron stars, which have been classified as
magnetars. They are isolated x-rays pulsars for which the x-rays emission is powered by the
decay of their extremely high magnetic field, see e.g. [21].

The pulse period is extremely stable, and because of this particularity pulsars can be used as
extremely accurate astronomical clocks. They have been extensively studied for this reason,
indeed their timing can provide tests of general relativity (see e.g. [22]) and/or accurate
measurement of orbital parameters if the pulsar is part of a binary system.

Another interesting application of pulsar timing is the construction of a Pulsar Timing Array
(PTA), which consists of a set of pulsars observed regularly (about once a week) in order to
search for correlations in the pulse arrival times (see e.g. [23]). Such correlations could contain
the signature of low-frequency (between 10−9 and 10−6 Hz) gravitational waves.

1.2.2 Mass measurements

Mass measurements of neutron stars provide constraints on their maximum mass. This point
will be discussed in the section 1.3.2. The figure 1.1 reports some mass measurements of neutron
stars (up to 2016).

Various methods are used for mass measurements of neutron stars, but the most accurate one
is to use the orbital period of binary systems. If one of the two companions is a pulsar, an
accurate measurement of the orbital period Porb of the binary can be performed, as well as the
peak radial velocity of the pulsar vpeak

psr . From this we can deduce the binary mass function

f =
(Mc sin i)3

(Mc +Mpsr)2
=
Porb(vpeak

psr )3

2πG
(1.2)

where sin i is the inclination of the orbital plane and Mpsr and Mc are respectively the masses
of the pulsar and its companion.

Since we have three unknowns in this equation, we need some additional information to obtain
the masses, which can be obtained using the observation of the orbit of the companion or the
measurement of post-keplerian parameters such as the advance of the periastron or the Shapiro
delay (see [24] for a review).

The other methods available such as the observation of x-ray binaries can also provide estimations
of the masses, but those estimates are subject to several sources of systematic uncertainties due
to their dependance on a given model. For exemple the mass of Vela X-1 has been estimated
using measurements of the radial velocity of its companion, which are subject to a lot of
uncertainties and rely on a model for the oscillation modes of the companion and its interaction
with the neutron star [26].

Among the highest measured masses there is the millisecond pulsar J1748-2021B [27], with a
mass of (2.74 ± 0.21) M⊙, measured via the advance of the periastron. But this value comes
with a lot of uncertainties due to the inclination of the system and the fact the the periastron
advance may not be caused only by general relativistic effects. Some black widow pulsars also
have a very high measured mass, but they come with a lot of uncertainties.

To contrain the maximum mass of neutron stars, we usually retain the less massive but much
more accurate measurements of J0740+6620 [25] and J1614-2230 [28][29], both obtained at
a very high precision via Shapiro delay. They have respectively masses of (2.08 ± 0.07) M⊙

and (1.908 ± 0.016) M⊙. The pulsar J0348+0432 [30], also has a very high measured mass of
(2.01 ± 0.04) M⊙, but is less reliable as it is based on a spectroscopic modeling of its white dwarf
companion.
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Figure 1.1: Some mass measurements of neutron stars (up to 2016). This figure is extracted
from [24]. A different method of measurement is used for each color set. Among the masses
measured after 2016, once should mention the millisecond pulsar MSP J0740+6620 which has a
mass (2.08 ± 0.07) M⊙ [25]

Regarding the lowest neutron star mass measurement, the most accurate measurement comes
from the asymmetric double neutron star system PSR J0453+1559 [31]. In this binary the two
objects have respectively a mass of (1.559 ± 0.005) M⊙ and (1.174 ± 0.004) M⊙.
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1.2.3 Surface temperature measurements

Relatively young neutron stars have a surface temperature of about T ≈ 10 − 100 keV (106 −
107 K), therefore they emit thermal radiation in x-rays which can in principle be measured and
fitted to a black body spectrum to determine the surface temperature of the star.

In order to be a good observational candidate the thermally emitting neutron star must be
isolated because binaries are subject to accretion and other transient phenomena which polutes
the thermal spectrum. The small size of neutron stars makes the x-ray radiation hard to detect
and only the closest neutron stars present a measurable x-ray spectrum. Because of these
constraints, we can only measure the surface temperatures of a few neutron stars [32].

Among the observed neutron stars, Cassiopeia A is worth mentioning, as a detailed measurement
of its cooling rate has been performed [33] : its surface temperature was of (2.12 ± 0.01) × 106 K
in 2000 and of (2.04 ± 0.01) × 106 K in 2009. However this result is very controversial and have
been claimed to be not significant, see e.g. [34].

The determination of the temperature also comes with additional uncertainties : the observed
flux has to be corrected for the gravitational redshift and the magnetic field effect on the emission
[24], as well as for interstellar absorption. The distance of the star have to be known precisely
to obtain the absolute magnitude, and additionally, neutron stars are not ideal black bodies,
the composition of their atmosphere is extremely uncertain and strongly influences the emission.
Various models of atmospheres exist and the result usually depends on which atmosphere model
is used in the analysis [32].

Magnetar candidates are subject to even higher uncertainties due to the complex modelisation
of radiation transfer in strongly magnetised atmospheres.

1.2.4 Radius measurements

Radius measurements are also complicated and not so accurate. Among the available methods
are the measurements by x-ray observations (see e.g. the mission ATHENA [35] and the mission
NICER [36][20]), and the measurements by observation of gravitational waves of binary mergers
[37].

The radius determination from thermal spectrum observations relies on the thermal emission
of a neutron star surface : in principle one should be able to determine the radius from the
neutron star’s surface temperature, total luminosity and distance to Earth. But as mentioned
above temperature measurements are subject to a lot of uncertainties, which make radius
measurements from thermal spectra strongly model-dependent [38].

Because of these difficulties, radius measurements from x-ray observations now rely more on
x-ray timing methods (see e.g. [39]), which are based on the fact that in some cases the neutron
star presents hotspots on its surface (because of accretion points or hot polar regions heated by
the magnetic fields). The x-ray signal presents modulations because of the presence of these
hotspots, and we can extract the radius from the shape of the signal.

These observations have constrained most of measured radii between 9 km and 14 km. The
NICER collaboration recently anounced the determination of the radius of the millisecond pulsar
J0740+6620 (discussed in section 1.2.2, as being the pulsar with the highest mass known at a
high precision). Two independent teams provided a measurement : in [40] they estimate the
radius to be 12.39+1.30

−0.98km, and in [41] they estimate it to be 13.7+2.6
−1.5km.

It should be noted that a general problem of x-ray observations is that they are usually impossible
in systems for which accurate mass measurements are possible, therefore it is hard to provide a
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good constraint both on the mass and the radius, which could allow to discriminate between
equations of state (see section 1.3.1). The recent results of the NICER collaboration are thus
extremely promising in this sense.

The birth of gravitational wave astronomy opened new possibilities and methods for the mea-
surement of radii, indeed waves emitted during neutron star mergers carry a lot of informations
and are extremely promising to provide strong and reliable constraints for the radius. The
method is indirect : the tidal deformabilities can be recovered by a parameter estimation on
the detected waveform [37], which can then be translated into a radius, either by using a given
equation of state or by using infered universal relations1 between the tidal deformability and
the compactness (see e.g. [42]). Up to now, two gravitational wave observations correspond to a
binary neutron star merger with a high level of confidence : GW170817 [16] and GW190425 [43].

Examples of joint analysis combining GW observations with results from x-ray astronomy to
constraint the radius of a neutron star are given in [44] and in [45].

1.3 Neutron star theory : structure and composition

A lot of progress has been made since the first model of Oppenheimer & Volkoff [8], thanks to
observational data, nuclear physics experiments and general progress in numerical computations.
If a lot of uncertainties remain on the exact structure and composition of neutron stars, we
definitely have a lot more insight in those exotic objects.

1.3.1 Nuclear equation of state

In order to understand the structure of neutron stars, a first step is to understand how to
compute the pressure by using the density, temperature and composition of the neutron star
(i.e., we need an equation of state).

Principle and degrees of freedom

A typical order of magnitude for the central density of baryons in a neutron star is nB ≈
0.3 − 0.7 fm−3 (this corresponds to a rest mass density ρ ≈ 5 − 12 × 1017 kg m−3), which is
above the nuclear saturation density nsat ≈ 0.16 fm−3, meaning that nuclei dissolve under these
conditions and that neutron stars are mainly constituted of nuclear matter.

Regarding the temperature, after an initial cooling phase which can last several minutes an
isolated neutron star has a temperature below T = 1 MeV (109 K).

In dense media it is instructive to compare the average interparticle spacing n −1/3
B to the de

Broglie thermal wavelength λth in order to estimate the degeneracy of the gas and thus the need
for a quantum description.

In the case of non relativistic nucleons the thermal de Broglie wavelength λth is given by :

1
λ3

th

=
1
h3

(2πmT )3/2 =
(

T

1 MeV

)3/2

× 2.4 × 10−4 fm−3 (1.3)

1in the context of neutron star, a universal relation is an observed relation that does not depend upon the
used equation of state
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and in the case of relativistic particles (such as electrons in a neutron star) it is given by :

1
λ3

th

=
1

(hc)3
8πT 3 =

(

T

1 MeV

)3

× 1.3 × 10−8 fm−3 (1.4)

The average particle density inside a neutron star is several orders of magnitude above these
density scales, therefore neutron stars are mainly constituted of degenerate matter and the
pressure should not depend upon their temperature.

Now about the composition of neutron stars, we usually consider that they are constituted
of cold catalyzed nuclear matter, which means that complete thermodynamical equilibrium is
achieved in the T = 0 limit with respect to all interaction channels that do not include neutrinos.

The case of neutrino is different, they are not in thermodynamic equilibrium and leave the
star after their creation because of their large mean free path. There is a state of dynamic
equilibrium between two weak interaction processes : neutron decay and electron captures (1.5)
:







n → p+ e− + ν̄e (Γn→p)

p+ e− → n+ νe (Γp→n)
(1.5)

These two processes should occur at an equal rate :

Γn→p = Γp→n (1.6)

This situation is called β-equilibrium, and because of it there exists a relation between the
baryon density nB and the (charged) lepton density nL.

To conclude, the equation of state of a neutron star only has one degree of freedom : the pressure
is a function of the baryon density only P (nB) : it is a barotropic equation of state.

Note that this hypothesis of cold catalyzed matter is not valid if the temperature is too high or
if chemical equilibrium is not achieved (either because of weak processes out of β-equilibrium
[46] or because there are ongoing nuclear processes in the crust [47]). This is the case for
young neutron stars that did not have enough time to cool down and achieve equilibrium, or for
accreting neutron stars that are very dynamic systems.

Difficulties and uncertainties

There are still a lot of uncertainties on the nuclear equation of state describing the matter at
such high densities, for several reasons :

• the complex nature of the problem, involving many particles interacting via the strong
interaction, makes all investigations ab initio extremely difficult

• the very high density of the medium makes the particles strongly correlated and complexifies
a many-body modelisation

• the particle spectrum to consider is by itself subject to a lot of uncertainties, as an
example the possibility of stable hyperons or even of a quark transition in the inner core
is considered by several authors

• the strong asymetry (neutron over proton ratio) encountered in neutron stars makes it
difficult to obtain constraints from nuclear physics experiments

The review [48] covers the various methods to investigate the problem and the review [49] covers
existing constraints for nuclear matter equations of state.
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Figure 1.2: Schematic representation of neutron stars interior. This figure is extracted from the
NICER mission overview [50].

Composition of neutron stars

The structure of neutron stars can be viewed schematically as follows :

1. the envelope is an extremely thin (less than about 100 m) layer consisting of the oceans
and the atmosphere surrounding the neutron star

2. the outer crust is a relatively thin layer made of an ion lattice and electrons

3. beyond the neutron drip density2 the inner crust is mainly constituted of an ion lattice in
a neutron superfluid

4. beyond roughly nuclear density, the outer core is constituted of a neutron-proton fermi-
liquid with few charged leptons

5. at extreme densities, the inner core is of uncertain composition

The figure 1.2 represents the range of densities and the composition of neutron star interiors.

The equations of state used in this work come from the CompOSE 3 database [51], which aims to
provide the most common equations of state in open access.

1.3.2 Masses and radii

By using the nuclear equation of state and what we know about general relativity, we can
deduce information about the masses and radii.

The structure of a spherically symmetric neutron star of a given mass can be computed by using

2
i.e. the density above which the nuclei emit neutrons, and therefore form a situation of equilibrium with a

neutron gas
3compose.obspm.fr
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the Tolman–Oppenheimer–Volkoff equations (1.7) and (1.8), see [9] and [8].

dm

dr
= 4πr2 E

c2
(1.7)

dP

dr
= −(E + P )

Gm

r2c2

(

1 +
4πr3P

mc2

)

(

1 − 2Gm
rc2

)−1

(1.8)

where E is the energy density in the star, P the pressure, r the radial coordinate and m(r) a
metric potential equivalent to the enclosed mass in the Newtonian limit.
The boundary conditions are m(r = 0) = 0 and P (R) = 0, where R is the radius of the star.
The radius of the star is then related to its total baryon number NB as

NB = 4π
∫ R

0
nB

(

1 − 2Gm
rc2

)−1/2

r2dr (1.9)

where nB is the baryon density in the star. It is also common to define the baryonic mass MB

of the star as MB = mNNB where mN is the mass of a nucleon. This baryonic-mass is different
from the gravitational mass M = m(R) of the star, the difference between the two is related to
the gravitational binding energy (B = (MB −M)c2) of the neutron star.

This procedure yields a relation between the mass of a neutron star and its radius, some of
which are represented in the figure 1.3.
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Figure 1.3: On the left panel the pressure-density relation is given for a large sample of equations
of state calculated under different physical assumptions and using a range of computational
approaches. On the right panel the corresponding mass-radius relations are represented. This
figure is extracted from [24], to which the reader should refer for the description of the various
equations of state.

Each mass-radius relation presents a maximum mass, above which the neutron star is unstable
and collapses into a black hole. The distinction is generally made between stiff equations of
state, which presents a high slope in the pressure-density relation associated to a high maximum
mass and large radii, and the so-called soft equations of state, which present a less important
slope associated to a lower maximum mass and smaller radii.

Because the scenario of neutron star formation involves the collapse of a massive star, there
should also exist a lower boundary of the masses of neutron stars. In [52], the authors investigate
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this issue and found a minimum mass of 1.17 M⊙, which is consistent with the lowest neutron
star mass measured [31]. This scenario corresponds to the collapse of a low mass carbon-oxygen
stellar core.
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Chapter 2

Formation of neutron stars : the
core-collapse mechanism

2.1 Core-collapse dynamics

Neutron stars are formed during the collapse of massive stars at the end of their life, which can
trigger a cataclysmic explosion named core-collapse supernova.

This section summarizes what we understand about this mechanism, it is based on the reviews
[1], [2] and [53], to which the reader can refer for more details.

2.1.1 Onset of the collapse and infall

A massive star at the end of its evolution has an iron core which is growing due to silicon burning.
The collapse of the core starts when it reaches its Chandrasekhar mass, which is approximately
1.2 M⊙ (the exact value depends upon the electron density in the star), which correspond to the
moment when the electron degeneracy pressure is no longer enough to counter the self-gravity of
the core (see fig. 2.1, left pannel). When that happens, the core has a radius of about 1500 km.
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Figure 2.1: Schematic representation of the core-collapse mechanism (1st part). The upper slice
of diagrams gives information about the dynamics and the lower slice gives information about
matter composition and microphysical processes. MCh is the Chandrasekhar mass and Mhc is
the mass of the internal core in homologous collapse. This figure is extracted from [1]
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The inner core quickly undergoes a subsonic homologous collapse, while beyond the sonic point
the outer core collapses more slowly (see fig. 2.1, right pannel).

During the collapse the neutronization of matter begins with electron capture processes on
nuclei

A
ZX + e− → A

Z−1X + νe (2.1)

This results in an increasing emission of electron neutrinos. As the density of electrons in the
medium diminishes, the electron degeneracy pressure acting against the collapse diminishes as
well, resulting in an acceleration of the process.

About 40 % of the electrons of the iron-core are removed because of electron capture processes
during the infall.

As the density increases the neutrino mean free path is getting lower and lower, such that
when the density becomes high enough (nB ≈ 10−3 fm−3) neutrinos become trapped, stopping
momentarily the neutronization.

The limit where neutrinos start to free-stream is called the neutrinosphere, by analogy to a
stellar photosphere (more details on this notion are given in the section 2.2.4).

2.1.2 Bounce and shock propagation

When the central area reaches about half the nuclear saturation density nsat ≈ 0.16 fm−3, the
nuclei dissolve into free nucleons and the nuclear interaction between them becomes strongly
repulsive, giving rise to a nuclear pressure that stops the collapse and makes the core bounce.
When that happens the inner core has a radius of about 10-20 km.
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Figure 2.2: Schematic representation of the core-collapse mechanism (2nd part). ρ0 = mNnsat is
the nuclear saturation density, Rs is the shock radius and Rν is the neutrinosphere radius. This
figure is extracted from [1]

It is commonly accepted that the collapse of an iron Chandrasekhar-mass core cannot lead
directly to the formation of a black hole : the inner homologous collapsing core is never massive
enough and therefore bounces back to the outer core [53]. The bounce of the core therefore
seems to be an unavoidable step.

The bounce generates an hydrodynamic shock which propagates outwards (see fig. 2.2). But
the shock quickly exhausts all its kinetic energy by heating the matter and dissoving nuclei in
the still infalling material from the outer parts of the star, therefore it stops while still inside
the iron core, at a radius of about 100-200 km.
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When the shock reaches the neutrinosphere (located at a radius of about 60-80 km), the nuclei
are photodissociated, accelerating the electron captures in this electron-rich area where neutrinos
are not trapped. This triggers a sudden deleptonization burst in the electron neutrino emission.

2.1.3 Delayed neutrino heating and final explosion

The shock then stalls while accretion of infalling matter continues. The supernova explosion
can be triggered by the delayed neutrino heating mechanism : the newly formed central object
(which is called a Proto Neutron Star, or PNS) emits all flavors of neutrinos, which deposit
energy behind the shock, in the gain layer (see fig. 2.3). This can revive the shock and trigger
the explosion.
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Figure 2.3: Schematic representation of the core-collapse mechanism (3rd part). Rs is the shock
radius, Rg is the limit between the gain and cooling layers and Rν is the neutrinosphere radius.
This figure is extracted from [1]

When the shock is stalling, the structure of the core is as showed in fig. 2.3 : the inner part
constitutes the proto-neutron star, and is surrounded by a cooling layer and a gain layer before
the position of the shock.

Inside the proto-neutron star, neutrinos are trapped because of the high densities and tem-
peratures (see sec 2.2), and therefore the proto-neutron star slowly cools down over diffusion
timescales, that are long compared with the short timescales involved in the core-collapse
mechanism.

Just outside the proto-neutron star, where the mean free path of neutrinos becomes high enough
to allow them to escape (i.e. outside the neutrinosphere), is the so called cooling layer. This
cooling is dominated by e± captures on nucleons. The cooling rate by emission of neutrinos q−

ν

scales as q−
ν ∝ T 6 (see e.g. [2]).

The outgoing neutrino flux from the core is also partially absorbed by the surrounding layers
and contributes to a neutrino heating rate which scales as q+

ν ∝ Lν〈ǫ2
ν〉/r2. Lν is the neutrino

luminosity, 〈ǫ2
ν〉 the average squared neutrino energy and r the radial coordinate. There is a

radius in the core where q−
ν = q+

ν , which is called the gain radius. Between this radius and the
shock the net neutrino heating rate is positive, hence the name gain layer.

But the delayed neutrino heating mechanism is not sufficient in itself to trigger the explosion :
the most detailed simulations in spherical symmetry concluded that 1D models cannot explode
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and that asymetries are playing a crucial role (see e.g. [54]). Convection effects are a key
ingredient, and the standing accretion shock instability (SASI) does also play a crucial role
by allowing more matter to be heated (see e.g. [55]). Today many 3D simulations are able to
trigger an explosion via the delayed neutrino heating mechanism, see e.g. [56], [57], [58], [59],
[60], [61] and [62].

During this phase the collapse of the central object into a black hole can occur, either because
too much matter has been accreted through the shock before its revival or because the neutrino
delayed mechanism failed to revive the shock. This is the fallback mechanism (see e.g. [63]).

2.1.4 Neutrino driven wind and nucleosynthesis

After a successful explosion, the neutrinos emitted by the proto-neutron star core continue to
deposit some energy in the outer layers of the PNS, where the matter presents steep gradients of
temperature and densities. This results in a fraction of the matter being blown off outside the
star in a neutrino driven wind. The presentation of this phenomena is based on the review [64].

The wind can last from one second up to several tens of seconds after the explosion. This is an
important feature of core-collapse supernova as nucleosynthesis can occur in the wind. Indeed
when the entropy becomes low enough to avoid photodissociation, seed nuclei start to form.
Then various nucleosynthesis processes can occur depending on the neutron-to-seed ratio.

If the medium is extremely neutron rich, the fast neutron capture process (or r-process) can
occur. This process consists of fast enough neutron capture to avoid β-decay up to the neutron
dripline.
However most recent supernova simulations are in favor of a proton-rich neutrino driven wind,
therefore the most probable processes occuring in the wind are the weak r-process and the
νp-process. The νp-process consists in rapid proton captures followed by (n, p) reactions (the
capture of a neutron followed by the emission of a proton) which stabilise the nuclei [65]. The
supply of neutrons needed for the (n, p) processes is provided via inverse β-decay because of the
abundance of antineutrinos ν̄e in the medium.

Since supernova simulations with full hydrodynamics and neutrino treatments are computation-
ally expensive, the neutrino driven wind is usually studied by using the approximation of a
spherically symmetric steady state outflow. The corresponding equations are

Ṁ = 4πr2ρu (2.2)

ρu
du

dr
= −dP

dr
− GMρ

r2
(2.3)

q̇ = u

(

dE
dr

+ P
d(1/ρ)
dr

)

(2.4)

where u is the velocity of the wind, ρ its density, E its energy density and P its pressure.
The parameters Ṁ and q̇ represent respectively the mass outflow and the neutrino heating rate.

Within this framework, the electron fraction in the wind can be estimated by using the hypothesis
of a weak equilibrium dYe/dt = 0. In [66] the authors obtain the following formula :

Y NDW
e =

[

1 +
Lν̄e

(ǫν̄e
− 2∆ + 1.2∆2/ǫν̄e

)
Lνe

(ǫνe
+ 2∆ + 1.2∆2/ǫνe

)

]−1

(2.5)

where Lνe
and Lν̄e

are the electron neutrino and antineutrino luminosities, ∆ = mnc
2 −mpc

2 =
1.293 MeV is the neutron-proton mass difference, and ǫν is defined as ǫν = 〈ε2〉/〈ε〉 where ε is
the energy of the neutrino ν.
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The above formula is obtained by considering only the processes n+ νe ⇆ p+ e− and p+ ν̄e ⇆

n + e+. The rates are computed in the elastic approximation (see sec. 5.1.1 and 10.1.1), by
neglecting the mass of the electron me and the Pauli blocking effect of leptons on the final state.

The luminosities and mean energies as a function of time come from core-collapse or proto-
neutron star simulations, and are taken as input parameters of wind simulations, which makes
the electron fraction evolution predetermined in such models.

Note that the formula (2.5) is obtained by considering that the neutrino driven wind is composed
of free neutrons and protons only. By doing so we neglect the so-called alpha effect, which
result from the formation of alpha particles and can introduce significant changes in the electron
fraction [67]. Indeed the charged currents reaction rates on alpha particles is usually negligible
in these conditions, therefore the alpha effect will tend to bring the electron fraction in the
neutrino driven wind closer to Ye = 0.5 by allowing neutrino capture processes only on the most
abundant nucleon [68].

2.2 Trapping of neutrinos in dense matter

At very high densities and temperatures the matter becomes opaque to neutrinos. It is important
to understand this process as well as the relevant densities and temperatures to get some insight
in the core-collapse mechanism.

2.2.1 The weak interaction

Neutrinos interact only via the weak interaction. This section provides a brief overview of the
standard model of weak interactions.

These interactions can be classified in two types, depending upon the force mediating boson
involved :

• in charged current interactions, the mediating boson is W±. This interaction systematically
couples neutrinos νl to their corresponding charged lepton l−, whereas neutrons n are
coupled to protons p. We say that they form weak doublets : (νl, l

−), (p, n). The β-decay
of nuclei is an example of such interaction

• in neutral current interactions, the mediating boson is Z0. The processes are similar to
electromagnetism, but occur with extremely short range because of the high mass of the
Z boson

It should be stressed however that some processes occur via both charged and neutral currents
(as the example of neutrino-electron scattering).

2.2.2 Relevant processes

With electron captures on nuclei (see eq. (2.1)), the charged current interactions with the
nucleons are among the most important weak processes occuring during core-collapse supernova,
as they are changing the lepton composition of the medium :

p+ e− ⇆ n+ νe (2.6)

p⇆ n+ e+ + νe (2.7)

n+ e+ ⇆ p+ ν̄e (2.8)

n⇆ p+ e− + ν̄e (2.9)
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It should be pointed out that if proton decay (2.7) is a forbidden process in vacuum, there exists
some thermodynamic conditions in dense matter that would allow this process to happen.

Neutrinos can also scatter off nucleons and nuclei via flavor independent neutral current
interactions :

ν +N ⇆ ν +N (2.10)
A
ZX + ν ⇆ A

ZX + ν (2.11)

and can scatter off electrons and positrons via both charged and neutral currents :

ν + e± ⇆ ν + e± (2.12)

These scattering processes play a role in neutrino trapping and spectrum equilibration (see e.g.
[69] and the section 2.2.5 of this thesis).

Finally, neutrino-antineutrino pairs can be created by various processes because of thermal
excitations, contributing to the cooling of the medium.

The predominant one is nucleon-nucleon bremsstrahlung occuring via the neutral current (see
e.g. [70]) :

N +N ⇆ N +N + ν + ν̄ (2.13)

And we also have electroweak processes from electrons and photons (see e.g. [71]) :

e− + e+ ⇆ ν + ν̄ (2.14)

γ̃ ⇆ ν + ν̄ (2.15)

γ + e± ⇆ e± + ν + ν̄ (2.16)

the above processes are called respectively the pair, plasma and photo processes. γ̃ represent a
plasma excitation of the medium.

2.2.3 Cross-sections : some orders of magnitude

The relevant energy scale of the weak interaction is given by the Fermi coupling constant1

GF

~c
=

√
2

8
g2

m2
W c

4
= (1.166 378 7 ± 0.000 000 6) × 10−5 GeV−2 (2.17)

where g is the coupling constant of the weak interaction and mW the mass of the W boson.

The associated cross-section for the interaction of neutrinos with fixed targets (such as nucleons)
is given by

σ0 =
G2

F

π
ε2

ν ≈ 1.6 × 10−16
(

εν

10 MeV

)2

fm2 (2.18)

with εν the energy of the neutrino. In areas where nucleons are non-degenerate this formula
gives a good estimation of the actual cross-section, indeed the thermal velocities of nucleons
are negligible compared with the speed of neutrinos (i.e. the speed of light c), and they can be
considered as fixed.

1the value is taken from the CODATA 2018 recommended values
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The cross-sections of the two charged current processes νe + n⇆ p+ e− and ν̄e + p⇆ n+ e+

can be roughly estimated at first order within the elastic approximation2 and by considering
non degenerate nucleons by (see e.g. [72])

σcc = σ0(1 + 3g2
A) ≈ 5.8 σ0 (2.19)

where gA = 1.2695 is the nucleon coupling factor to weak axial currents.

Regarding the neutral current interactions ν +n⇆ ν +n and ν + p⇆ ν + p, similar expressions
can be obtained for both cross-sections by using the same approximations :

σνn =
σ0

6

(

1 + 5g2
A

)

≈ 1.5σ0 (2.20)

σνp =
σ0

6

(

(1 − 4 sin2 θW )2 + 5g2
A

)

≈ 1.3σ0 (2.21)

where sin2 θW = 0.222 90 is the sine of Weinberg’s weak mixing angle.

The coupling to charged currents is stronger than the coupling to neutral currents. This is
important because the various neutrino flavors have differents sensitivities to the weak currents

• the neutral current couples to all neutrino flavors identically

• the charged current couples a neutrino to its corresponding charged lepton, therefore the
charged current cross sections depend on the abundance and the flavor of charged leptons
in the medium

As the mass of the muon is mµ = 105.65 MeV c−2, muons (and the even heavier τ lepton) are
far less abundant than electrons, which makes electron neutrinos and antineutrinos much more
sensitive to charged currents.

But it should be stressed that despite the fact that muons have a low abundance and have little
influence on the neutrino interactions, their presence in the medium has a significant softening
effect on the equation of state that can lead to important differences in the dynamics of the
collapse, as pointed out in [73].

2.2.4 Mean free path and neutrinospheres

The opacity or inverse mean free path of neutrinos κ = 1
λ

can be estimated by considering only
the processes on free nucleons, we obtain

κνe
= nn(σcc + σνn) + npσνp (2.22)

κν̄e
= np(σcc + σνp) + nnσνn (2.23)

κνx
= npσνp + nnσνn (2.24)

where nn is the density of neutrons, np the density of protons and νx ∈ {νµ, ν̄µ, ντ , ν̄τ }.

Because the matter in the falling core and the nascent neutron star is more and more neutron
rich, we have the following ordering : κνx

< κν̄e
< κνe

, which means that electron neutrinos νe

are more easily trapped than electron antineutrinos ν̄e, which are themselves easier to trap than
heavy flavor neutrinos νµ, ν̄µ, ντ and ν̄τ .

2i.e. considering that there is no momentum transfer to the nucleon
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We can estimate the baryon density nB needed to trap neutrinos :

λ =
1

σ0nB

= 10
(

nB

6 × 10−4 fm−3

)−1

km (2.25)

for a baryon density nB = 6 × 10−4 fm−3, the mean free path starts to be comparable to the
size of the neutron star, and will only decrease at higher densities.

A useful notion to understand neutrino trapping is the neutrinosphere, defined as the sphere
inside which neutrino are trapped, and are free-streaming outside. It is named by analogy to a
stellar photosphere. Usually the neutrinosphere radius Rν is defined as

∫ +∞

Rν

κν dr =
2
3

(2.26)

where r is the radial coordinate.

The radius of the various neutrinospheres obeys the same ordering : Rνx
< Rν̄e

< Rνe
.

In reality there is a more or less thick layer in which the medium is semi-transparent to neutrinos,
and the neutrinosphere is more a theoretical tool used to obtain some insight and explain the
trapping mechanism.

It should be stressed that as the cross-section σ0 depends on the energy of the neutrino (c.f. eq.
(2.18)), this definition of neutrinosphere depends on the neutrino energy ǫν . And in order to
make sense the integral (2.26) has to be computed with the redshifted energy along a ray.

When "the" neutrinosphere of neutrinos is mentioned, it usually refers to the neutrinosphere
radius 〈Rν〉3 computed with the averaged opacities 〈κν〉3 :

〈κν〉3 =
(∫

κν(ǫ)f (eq)
ν (ǫ)ǫ3dǫ

)/(∫

f (eq)
ν (ǫ)ǫ3dǫ

)

(2.27)

where f (eq)
ν is the equilibrium neutrino distribution function, defined as in eq. (4.31).

The gray neutrinosphere is then defined as
∫ +∞

〈Rν〉3

〈κν〉3 dr =
2
3

(2.28)

It represents the sphere of emission that could be used in Stefan-Boltzmann formula to estimate
the total energy flux of neutrinos emitted by the star.

2.2.5 Chemical equilibrium and thermalization

When neutrinos are trapped in the matter, they will progress toward chemical equilibrium and
thermalize with the medium.

Since neutrinos stay in the medium, inverse processes corresponding to the absorption of
neutrinos can occur :
(p + e− ⇆ n + νe), and the particles fractions will evolve such that the rate of the forward
process becomes equal to the rate of the backward process. The timescale needed to reach this
equilibrium depends on the rate at which occur the process.
It should be stressed that inverse processes involving neutrinos are also relevant outside the
neutrinosphere, because of the outgoing neutrino flux interacting with the medium. But in this
case these interactions do not lead to thermal and chemical equilibration.
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When chemical equilibrium occurs, we have the following equalities between equilibrum chemical
potentials :

µνe
= µp + µe − µn (2.29)

µνx
= 0 (2.30)

where µνe
, µνx

, µp, µe and µn are respectively the chemical potentials of electron neutrinos,
heavy neutrinos, protons, electrons and neutrons. The chemical potential of antineutrinos is
simply given by µν̄ = −µν .

This state of neutrinos in chemical equilibrium is refered to as β-equilibrium, as the neutron
and proton number do not evolve anymore. But the situation is different from the case of the
β-equilibrium occuring in cold neutron stars (see the section 1.3.1 of this thesis), indeed here we
have a full chemical equilibrium with neutrinos participating in backward reactions. In the cold
case this was not the case, as the neutrinos leave the star without further interactions with the
medium.

In addition to the chemical equilibrium, neutrinos will also achieve thermal equilibrium thanks
to processes allowing a redistribution of energy. When thermal equilibrium occurs, the neutrino
distribution functions are given by Fermi-Dirac distributions.

For electron neutrinos νe and electrons anti-neutrinos ν̄e, the most important processes for
spectrum equilibration are the charged current processes on nucleons (2.6), (2.7), (2.8) and (2.9).
Those processes are far more efficient for spectrum equilibration than scattering processes and
the neutrinos νe and ν̄e quickly reach thermal equilibration when they are trapped.

For heavy flavor neutrinos νµ, ν̄µ, ντ and ν̄τ , the situation is different. Only inelastic scattering
processes (2.10) and (2.12) can redistribute the energy with enough efficiency to achieve thermal
equilibrium.

Supernova theoreticians worked for a long time with the idea that scattering off nucleons (2.10)
is done coherently because of the high mass of nucleons (see e.g. [74]), meaning that only the
scattering off charged leptons (2.12) contributes to spectrum equilibration. But more recent
works showed that at high densities and temperatures nucleons have thermal velocities, such
that the process (2.10) becomes highly inelastic (see e.g. [69]). It can even be more important
than scattering off charged leptons for the spectrum equilibration in the denser areas of the star.

A consequence of these complicated equilibration mechanisms is that neutrinos can decouple
thermally from the matter before being able to escape. Some authors such as [69], [70] and [75]
introduce the notion of energysphere, which delimits the zone of space where neutrinos are in
thermal equilibrium with the matter. It has usually a smaller radius than the neutrinosphere,
which delimits the zone where neutrinos are trapped. This is especially the case for heavy flavor
neutrinos, because their thermal equilibration relies on less efficient processes.
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Chapter 3

Thermal evolution of proto-neutron
stars

3.1 The proto-neutron star (PNS)

The newly formed compact object constituted by the bounced core and the shocked matter is
called a Proto Neutron Star (PNS). This object will accrete matter through the shock and cool
down to become either a neutron star or a black hole.

3.1.1 Initial structure of the PNS

Schematically the newly formed proto neutron star is constituted of two very different layers :

• a core constituted by the matter that has undergone the homologous collapse and the
bounce, which has relatively low entropy per baryon and high electron fraction

• a mantle constituted by the matter crossed by the shock, which has a high entropy per
baryon and low electron fraction

High entropy shocked mantle
( s ∼ 4, Ye ∼ 0.1, R ∼ 3RNS )

Bounced core ( s ∼ 1−2, Ye ∼ 0.2−0.3, R ∼ RNS )

PNS

Cold Neutron star ( s ∼ 0, Ye = (Ye)β−eq )

NS

Figure 3.1: Schematic representation of a proto neutron star structure (PNS), compared with the
corresponding cold catalysed neutron star (NS). R is the radius of the PNS, s is the entropy per
baryon and Ye is the electron fraction (net number of electrons per baryons Ye = (ne− −ne+)/nB)

The core radius is approximately the same as the corresponding cold neutron star, such that
the cooling of the PNS mainly corresponds to the contraction of the hot mantle onto the core.
The figure 3.1 shows a sketch of the PNS structure.
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An example of profiles for the PNS structure at about 500 ms after bounce are given by the
figure 3.2.
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Figure 3.2: Typical structure of a proto neutron star. The panel (a) represents the radial profile
of entropy per baryon and the panel (b) represents the radial profile of electron fraction. Those
profiles have been procuced with the CoCoNuT code, with the same setup as used in the chapter
10 of this thesis, with elastic charged current reaction rates

The size of the core depends on the mass of the inner homologous core, its limit corresponds to
the radius of the shock formation. The size of the mantle depends on the distance travelled by
the shock before it exhausts its kinetic energy.
This distance is a function of the inner core mass, because the kinetic energy of the shock comes
from the binding energy of the nascent proto-neutron star [76], thus one can expect that the
relative size of these two layers will remain approximately the same between various situations.
This argument seems to hold in multi-dimensional simulations : as shown in the figure 3.3 from
the work of [5], where the various models present few differences in the electron fraction and
entropy profiles.
But multi-dimensional simulations are qualitatively different and the profiles present isentropic
regions where convective effects have been highly efficient (such as in the mantle of the PNS),
see e.g. [5].

3.1.2 PNS cooling

The proto-neutron star continues to cool down and deleptonizes by emission of neutrinos after
the departure of the shock. At this moment it has an average temperature of about 20 − 40 MeV.
During this process its temperature diminishes until reaching a few MeV to finally reach neutrino
transparency, after which it will cool much more slowly. The reader can refer to [3] or [77] for
more details on the various thermal evolution stages of neutron stars.

A first phase corresponds to a quasi-thermal emission of neutrinos (or shallow decay phase)
during which the average mean free path of neutrinos is smaller than the PNS radius. Neutrinos
are trapped and thermalized with the dense matter. During this phase, the mantle heat diffuses
in the core such that the maxium of temperature is progressively displaced towards the center
of the star, and after several seconds the maximum of temperature is located in the center. This
process has been refered to as Joule heating in previous works. More details about this phase
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Figure 3.3: Radial profiles of angle-averaged electron fraction Ye on top and entropy per baryon
s on bottom panels at 200 (left panels) and 500 ms(right panels) after bounce, respectively,
for various progenitor models. This figure is extacted from [5], and comes from 3D CCSN
simulations.

are given in section 6.2.2.
The mean free path of neutrinos in dense and hot matter has an extreme dependency on the
temperature of the medium (because of Pauli blocking effects in degenerate baryon matter),
such that when the temperature is about a few MeV neutrinos decouple from the PNS matter
and the emission becomes non-thermal. This first phase lasts several about tens of seconds [3].

After the onset of neutrino-transparency, a second and poorly understood phase is given by the
crust cristallisation. Finally, after the formation of the crust, the cooling of the neutron star
continues to be dominated by neutrino emission for millions of years. Photon emission only
becomes relevant once the star is cold enough and has a temperature of about 10 keV (see e.g.
[77]).

3.1.3 Equation of state of a PNS

Contrary to the cold neutron star case (see sec. 1.3.1), in a proto-neutron star thermal effects are
not negligible and the matter is not neccessarily β-equilibrated. As a consequence the equation
of state has two additional degrees of freedom : the temperature T and the electron fraction Ye.
It also depends on the neutrino pressure and energy density in the trapped region.

If electrons alone have a marginal influence on the nuclear matter because their contribution to
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the pressure is negligible compared with the contribution of the nuclear forces, they do have an
indirect influence by setting the neutron-to-proton ratio required for local charge neutrality, as
we have (for the case of a nucleon-only equation of state) np = ne thus np/nB = Yp = Ye.

If we define the isospin asymmetry δ = 1 − 2np/nB, the energy per nucleon is given at second
order by

E(nB, T, δ) = E0(nB, T ) + Esym(nB, T ) δ2 + . . . (3.1)

where Esym ≥ 0 is the symmetry energy. Its contribution vanishes when neutron and proton
densities are equal (this situation is called symmetric nuclear matter).
Therefore the energy per nucleon and the pressure are higher in asymmetric matter than in
symmetric matter and we usually have

(

∂P
∂Ye

)

nB ,T
≤ 0 in nuclear matter.

Equations of state with temperature and electron fraction dependence are also available on the
CompOSE database [51], under the name general purpose equations of state.

3.1.4 Convection in proto-neutron stars

The shocked mantle of proto-neutron stars is known to be highly unstable to convection (see
e.g. [78], [79] and [80]), and the associated convective engine can speed up the cooling and the
deleptonization processes.

The instability of a stratification to convective motion appears if after an upward vertical
adiabatic motion a fluid element is lighter than its surrounding, in which case it will not fall
back to its original position. In a star the instability to convection is given by the Ledoux
criterion (a demonstration of this formula is given in the chapter 8 of this thesis) :

CL(r) =
1
γ

∂ lnP
∂r

− ∂ ln ρ
∂r

≤ 0 (3.2)

where ρ is the density in the star, P the pressure, γ = (∂ lnP/∂ ln ρ)S is the adiabatic index
and r is the radial coordinate. Convection will occur in regions where CL(r) ≤ 0. Typically a
strong negative temperature gradient (such as the one caused by the passing of the shock) can
give rise to convection.

In the case of proto-neutron stars we can express this criterion in terms of more intuitive
thermodynamic parameters :

CL(r) =
1

ΓnB

(

Γs
∂ ln s
∂r

+ ΓYe

∂ ln Ye

∂r

)

≤ 0 (3.3)

where ΓnB
=

(

∂ lnP
∂ lnnB

)

s,Ye

, Γs =

(

∂ lnP
∂ ln s

)

nB ,Ye

, ΓYe
=

(

∂ lnP
∂ ln Ye

)

nB ,s

. This criterion is identical

to the one used in [81].

The convective motion starts in the mantle because of its strong negative entropy gradient, but
progressively generalizes itself to the entire PNS as the heat from the mantle diffuses inside the
core.

More recently, systematic studies of proto-neutron star convection with 3D simulations have
been made possible [5]. They show in particular that the presence of convection in proto-neutron
stars is a common feature present in all models which has a huge impact on the PNS neutrino
emission :

29



• the deleptonization and the cooling are faster because the convective motions are carrying
electrons and heat from the inside to the outer boundary of the convective zone, which
enhance all neutrino luminosities during the early post-bounce phase

• later, when the convection stops, a sharp drop of the neutrinos luminosities is observed,
which makes the luminosities going below the detectable threshold at a much earlier time
[81]

3.1.5 Emission of gravitational waves

As core-collapse supernova are highly energetic events involving the formation of a compact
object and some asymetries, we expect them to emit gravitational waves.

The gravitational waveform emitted during the core-collapse mechanism is composed of a peak
associated to the core-bounce, and a more complicated signal emitted by the post-bounce
evolution of the nascent proto-neutron star.

The bounce signal is mostly sensitive to the rotational properties of the infalling core and is
largely independent of the equation of state that is used [82].

The post-bounce signal is much more difficult to study as several mechanisms are at play.
Torres-Forné et al. studies the asteroseismology of the proto-neutron star and proposed a
systematic method to classify the oscillations modes [83]. They make the distinction between :

• g-modes (for gravity modes), which can appear only in region where the buoyancy is a
restoring force, which corresponds to Ledoux stable regions CL ≥ 0 (defined by eq. 3.2)

• p-modes (for pressure modes), which use the pressure as a restoring force (i.e. they are
supported by sound waves)

• hybrid modes, a combination of the previous two

• discontinuity modes, resulting from the density jump occuring with some equations of
state presenting a phase transition

Most of the groups which possess a 3D core-collapse simulation code have studied the emission
of gravitational waves (see e.g. [84], [85], [86], [87] and [88]). We can retain from these works
that there are three main mechanisms of gravitational wave emission during the core-collapse
event :

• the SASI instability gives rise to significant movements of the shock and can generate
p-mode oscillations, which can emit gravitational waves. The convection in the gain layer
also contributes to this emission

• the convection inside the proto-neutron star may also generate a considerable amount of
p-mode oscillations, which can also generate GWs

• the outer layers of the proto-neutron are subject to gravity waves (g-mode oscillations),
exited either from below because of the proto-neutron star convection or from above
because of the infalling matter, this results in an emission of gravitational waves

The situation is represented schematically on the figure 3.4.

It is yet unclear what the dominant mechanism of gravitational wave emission in a core-collapse
supernova is, the various simulation groups arrive to different conclusions about what the
dominant mode of emission and the exact waveform (see e.g. [88]) is. But as this field of study
is very new there is a lot of room for improvements in the predictions.
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throughout the evolution, and that we consider only the evolution of intensive thermodynamic
quantities such as the electron fraction and the entropy per baryon (more details are given on this
approximation in the chapter 6 of this thesis). They were also using a diffusion approximation
for the neutrino transport. Among other we can cite [89], [90], [91] and [92] (more details are
given in the sec. 4.6).

The initial profiles of electron fraction and entropy per baryon are obtained with CCSN
simulations or rescaled from available profiles using the same arguments of invariance as
presented in the sec. 3.1.1. The usual method is to remove all the matter beyond the stalled
shock to account for an explosion. The remaining matter will constitute the proto-neutron star.

They find in particular that the PNS neutrino emission does not depend much upon the details
of the initial profiles and that the used equation of state has not a significant influence on them
at early times [92].

The neutrino emission decays exponentially during the evolution, this is the shallow decay
phase (see sec. 3.1.2). Then, at the end of the evolution, the neutrino emission sharply drop as
neutrino transparency sets in the PNS.

Recent studies tend to use more detailed neutrino transport methods, as is the case of [93],
which implements a variable Eddington factor method (more details about this method are
given in the sec. 4.6).

Most of these studies neglect the convection in the PNS, but there are some recent studies
of PNS convection within the mixing length theory approach, as in [81]. Indeed this method
is quite adapted to such a quasi-static modeling (see the chapter 8 for more details on this
approximation). There also exists toy models of stationary flows due to convection in this
context [94], and some detailed MHD simulations using the anelastic approximation [95].

3.2.2 Full hydrodynamic studies

The progressive improvements of core-collapse simulation codes during the past 30 years made
possible the modelisation of proto-neutron stars with full-hydrodynamic codes, either in spherical
symmetry [96] or with three-dimensional simulations [5].

Such codes allow to evaluate the importance of the convection inside the proto-neutron star
and it is instructive to compare the quasi-static models with theses fiducial full-hydrodynamic
simulations. But such a comparison can be difficult, especially at early times, because of the
significant accretion observed in some simulations, see e.g. [97] and [98]. Indeed, the quasi-static
models completely neglect the accretion process (by considering that it has already ended at
the beginning of the simulation). This is of importance in the prediction of neutrino luminosity
curves and emitted spectrum, which contains the signature of the accretion process, and also
modify the structure of the outer layers of the PNS.

Full-hydrodynamic studies are therefore more reliable, but as they have a significant computa-
tional cost and cannot model the evolution on very long timescales : 1D models take days of
computation to reach several seconds of evolution, and 3D models are even more expensive and
most of them are stopped before reaching one second. There exists however some hydrodymanic
simulations performed over long timescales, such as [99], which start the simulation in 2D and
switch to a 1D simulation after shock revival to study the PNS until 70 s of evolution. Their
results agree qualitatively with other other quasi-static 1D simulations.

Because of this limitation, the quasi-static simulations are thus still of great help in proto-neutron
star studies.
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3.2.3 Open questions in PNS evolution

Despite the significant progress made on proto-neutron star modeling, a lot of open questions
remain and/or would gain from some deeper investigation :

• As in core-collapse modeling, there are a lot of uncertainties in the microphysics (on the
choice of equation of state and on the appropriate approximations for the computation of
weak cross sections). Therefore investigating the effect of the microphysic on the cooling
is always interesting to determine what could be learned from future observations.

• At some point of the PNS cooling process, the neutron star crust will form [100]. This
process is not fully understood yet and could influence the cooling as the crust can act as
an insulating blanket (see e.g. [101]). Some studies of this exists [99] but relies on a crude
estimate of the cristallisation point.

• The transition to the ν-transparency and the subsequent evolution have not been studied
extensively in the litterature, because such a transition cannot be modeled with a neutrino
diffusion approximation. Even the full hydrodynamic simulations which has been carried
out up to very long timescales usually relies on a very simplified neutrino transport [99].
Therefore the study of this phase, especially with the influence of weak cross sections,
would be instructive.

• Models with high rotation rates might be very different from the spherically symmetric
case, for example because of differential rotation and rotation-induced meridional currents.
The rotation frequency of proto-neutron stars can go up to about 300 Hz during its initial
contraction if no spin-up mechanism, such as accretion, is involved [102].

3.3 Neutrino detection capabilities

As neutrinos only interact via the weak interaction, their detection is a complicated task : they
can only be detected indirectly by observing the charged particles produced during charged
current interaction or by measuring the recoil of neutral current scattering targets.

Because of this, neutrino astronomy is a very recent field of study, which was born with the
observation of solar neutrinos by R. Davis [103]. This important detection allowed to confirm
the model for nuclear burning in the Sun. Another extremely important event was the detection
of neutrinos produced by the supernova SN1987A.

3.3.1 The SN1987A supernova event

During the night of the 23rd February 1987, a neutrino burst was simultaneously observed in
three detectors : Kamioka-II [104], IMB [105] and Baksan [106]. This burst occured several
hours before the first optical observation of the supernova. The main reason for this delay
is that the neutrino burst signal is emitted shortly after bounce, when the shock reaches the
neutrinosphere (see sec. 2.1.2), whereas the photon signal is emitted once the shock wave
bursted out the mantle of the dying star, which can take up to several hours.

Kamioka-II detected 11 events spread over 12.5 s whereas IMB detected 8 events spead over
5.6 s. Regarding the Baksan detector, a burst is strongly suspected but a detailed analysis was
not possible.

Those detectors are mostly sensitive to the inverse β-decay (IBD) :

ν̄e + p → e+ + n (3.4)
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therefore the 21 detected neutrinos are electron antineutrinos ν̄e.
This process also has the disavantage of beeing nearly isotropic, making it difficult to obtain the
direction of incoming neutrinos. Nevertheless, the Kamioka-II observations were able to point
back the first two events to the Large Magellanic Cloud (host of the SN1987A event) [104].

The corresponding signal has been thoroughly analysed during the following years (see e.g.
[107]) and today it seems certain that this burst is originated from neutrinos emmited during
the cooling of the proto-neutron star in the SN1987A event.

Since this event the detector’s sensitivity has considerably increased, and we expect several
thousands of events in Super-Kamiokande from a galactic supernova.

3.3.2 Types of neutrino detectors

There is no neutrino detector perfectly adapted to the supernova case. Various technologies
exist and are complementary to each other.

Water Cherenkov detectors

Water Cherenkov detectors are looking for the Cherenkov light emitted by faster-than-light
charged particles in water. They consist of a large volume of ultra pure water associated with
an array of photomultipliers to detect the Cherenkov radiation.

Since there are protons in the medium, interaction channels are highly dominated by the inverse
β-decay, as shown in fig. 3.5. Therefore they are mostly sensitive to electron antineutrinos.
Scattering processes off electrons are also useful to point back to the source.

Figure 3.5: Event rates in a water Cherenkov detector for various interaction modes. This figure
is extracted from [108]. IBD is inverse β-decay, ES is scattering off electrons and other rates are
charged and neutral current interactions with 16O nuclei.

Charged current processes involving muon neutrinos νµ and ν̄µ are not considered here because
the threshold needed to create a muon would need a neutrino with an energy much higher than
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the supernova neutrino spectrum.

An example of such a detector is Super-Kamiokande [109], which consists of a cylindrical tank
filled with 50 000 m3 of water. Its successor Hyper-Kamiokande will be 20 times larger and
should be operational in 2027.

Another example is the IceCube neutrino observatory, but its design makes it mostly senstitive
to high energy neutrinos much higher than the supernova spectrum. However the detector
can observe the high neutrino flux generated by a supernova as a large coincident event on all
photomultipliers.

Scintillation counters

A scintillation counter relies on a scintillating material, which produces photons in response to
the passage of a charged particle. This material is associated to photomultipliers to detect the
resulting photon.

A common method is to use a liquid organic compound as a scintillator medium. One advantage
is that despite the fact that the interaction channels are still dominated by IBD, the resonant
de-excitation peak from neutral current interaction on 12C is clearly visible and exists for all
neutrino flavors, see fig. 3.6.

Figure 3.6: Event rates in an organic liquid scintillator for various interaction modes. This
figure is extracted from [108]. IBD is inverse β-decay, ES is scattering off electrons and other
rates are charged and neutral currents interactions with 12C nuclei.

The Baksan detector mentioned in the SN1987A case is an example of such a detector. Another
example is the Large Volume Detector (LVD) at the INFN Gran Sasso National Laboratory
[110], with an active mass of 1000 t of liquid scintillator.

Liquid Argon time projection chambers

In a time projection chamber a combination of electric and magnetic field is associated with a
position-sensitive electron collector in order to reconstruct the trajectory of incoming electrons
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on the collector.

In this case the medium is constituted by liquid atomic argon, and particles produced by
interactions of neutrinos will ionise the medium and generate a unique signature.

This kind of detector stands out from the other two because there are no protons in the
interacting medium, therefore the detector is not sensitive to IBD. The predominant interaction
channel is the charged current interaction of the electron neutrino νe, see fig. 3.7.

Figure 3.7: Event rates in a liquid argon TPC for various interaction modes. This figure
is extracted from [108]. ES is scattering off electrons and other rates are charged currents
interactions with 40Ar nuclei.

The sensitivity of this kind of detector to electron neutrinos νe makes it complementary to the
other two, which are mostly sensitive to ν̄e via the IBD channel.

Among the available experiments the MicroBooNE experiment began to collect data in October
2015 and has an active mass of 170 t of liquid argon. The Deep Underground Neutrino Experiment
(DUNE) is also a promising project for the future [111].

Other detectors

The previous categories represent the majority of large neutrino detectors, but some smaller
experiments do not fall under any of theses categories.

Among those other supernova detectors a promising one is the Helium and Lead Observatory
(HALO) [112], which rely on charged current interactions with the doubly magic nucleus 208Pb.
It is designed as a low cost neutrino detector mostly sensitive to electron neutrinos νe and able
to detect a supernova neutrino burst. A neutron is produced in the CC interaction of νe with a
lead nucleus ( νe + 208

82 Pb → e− + n+ 207
83 Bi ). As this neutron cannot be captured by another

doubly magic lead nucleus it goes through the medium until reaching the 3He detector.
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3.3.3 SuperNova Early Warning System (SNEWS)

SNEWS [113] is an international collaboration of neutrino detectors able to detect a supernova
neutrino burst. The goal is to detect the neutrino emission, which is the first signal (with the
GW emission) to arrive on Earth (as explained in the sec. 3.3.1), in order to have the time to
prepare all other experiments before other signals becomes available. The involved detectors
should have a prompt response and be able to point back the source.

The detectors currently involved in SNEWS are :

• Super-Kamiokande, a big water Cherenkov detector in Japan

• The Large Volume Detector (LVD), a scintillation counter in Italy

• IceCube, on the South Pole

• Borexino neutrino observatory, a liquid scintillator in Italy, joined SNEWS in July 2009

• Kamioka Liquid Scintillator Antineutrino Detector (KamLAND), from Kamioka observa-
tory, joined SNEWS in December 2013

• The Daya Bay Reactor Neutrino Experiment, another liquid scintillator in China, joined
SNEWS in November 2014

• The Helium And Lead Observatory (HALO), in Canada, was the last to join SNEWS in
October 2015

The SNEWS system checks those detectors for coincident detections and send an alert to the
astronomical community in case of a positive neutrino burst. The system has been built with
the requirement of a very low false alert rate (less than one per century).
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Part II

Transport of neutrinos in dense matter
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Chapter 4

Boltzmann equation and collision
integral

The modelisation of neutrino transport in the context of core-collapse supernova and proto-
neutron star evolution relies on the relativistic kinetic theory. Indeed the mean free path of
neutrinos varies from several orders of magnitude, and neutrinos can be trapped in some areas
while free-streaming in others, as already discussed in 2.2. This is why the description of the
neutrino gas has to be made within various approximations of the Boltzmann equation.

This chapter is focused on the Boltzmann equation and the usage of one-particle distribution
functions in general relativity, and more particularly in spherically symmetric spacetimes. It
aims to present to generic framework used to model neutrino transport throughout all this thesis.
And since the aim of this work is to focus on neutrino transport, we will restrict ourselves to
ultrarelativistic particles.

4.1 General relativistic Boltzmann transport

The Boltzmann transport equation describes the behaviour of a diluted (or weakly interacting)
gas out of thermodynamical equilibrium. It is an evolution equation for the one-particle
distribution function of the gas.

4.1.1 One-particle distribution function

The one-particle distribution function of neutrinos fν(t, xi, pi) is a marginal distribution of the
full many-body particle distribution of the neutrino gas which describes the average behaviour
of a particle in the system. It is a relativistic scalar (see, e.g. [114]), and pa is used as an on-shell
momentum. As we can neglect the masses of neutrinos because of their low value compared
with the system’s energy scales 1, the on-shell condition is given by

gabp
apb = 0 (4.1)

where gab is the space-time metric, with the signature (−,+,+,+).

This means that the time component p0 is a function of the other degrees of freedom pi :

p0(t, xi, pi) =
1
g00

(

−gi0p
i +

√

(gi0pi)2 − gijg00pipj

)

(4.2)

1for the electron neutrino νe the upper bound is mνe
< 1.1 MeV c−2 [115] at 90 % confidence level
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Therefore fν only depends upon pi and not upon p0 (this point is important in the formulation
of Boltzmann equation 4.5).

The particle distribution function contains information about the microscopic distribution of
momenta. A macroscopic hydrodynamic-like description can be obtained by computing some
relevant moment integrals of the one-particle distribution function (see, e.g. [116]) : we may
define the particle current density Na

ν of neutrinos and the stress-energy tensor T ab
ν of neutrinos

as

Na
ν =

c

h3

∫

pafν

√−gd
3pi

−p0

(4.3)

T ab
ν =

c2

h3

∫

papbfν

√−gd
3pi

−p0

(4.4)

where g = det(gab) is the metric determinant.

In the above expressions the integration element
√−gd

3pi

−p0

is a relativistic scalar [114].

Note that the minus sign in the integration element comes from our choice of metric signature
(−,+,+,+).

4.1.2 Boltzmann equation

The general relativistic Boltzmann equation reads

p0

c

∂fν

∂t
+ pi∂fν

∂xi
− Γi

abp
apb∂fν

∂pi
= (−uap

a)Bu[fν ] (4.5)

Where Γσ
ab are the Christoffel symbols and uµ is the four velocity of the local inertial frame in

which the collision integral Bu[fν ] is computed.

This is a scalar equation, but it is not manifestly covariant because we used on-shell momentum,
distribution function and collision integral. A manifestly covariant formulation of Boltzmann
equation is given in [117], and relies on the construction of an off-shell distribution function
and collision integral. The authors then recover equation (4.5) by integrating their equation on
the mass shell.

Equation (4.5) can be derived from Liouville’s theorem, see e.g. [118] for the special relativistic
case.

The left hand side is the streaming term (it is Liouville’s operator applied to fν) while the right
hand side is the collision integral, which takes all microphysics inputs.

By taking moments of this equation we get the macroscopic conservation laws for particle
number and stress-energy :

∇aN
a
ν =

c

h3

∫

(−uap
a)Bu[fν ]

√−gd
3pi

−p0

(4.6)

∇aT
ab
ν =

c2

h3

∫

(−uap
a)pbBu[fν ]

√−gd
3pi

−p0

(4.7)

In the case of neutrino transport in dense matter the right hand side terms will describe the
exchange of energy and lepton number with the neutron star matter. If the neutrino gas is at

40



local thermal and chemical equilibrium with the neutron star matter then the right hand side of
these equations vanishes.

Note that since energy and lepton number are globally conserved quantities, one should have

∇aN
a

L = 0 (4.8)

∇aT
ab
tot = 0 (4.9)

where N a
L and T ab are respectively the total lepton current density and the total stress-energy

tensor.

4.2 Case of a TOV spacetime

In this section we consider the case of a stationary, spherically symmetric spacetime using the
Schwarschild gauge :

ds2 = −α2(r)c2dt2 + ψ2(r)dr2 + r2
(

dθ2 + sin2(θ)dϕ2
)

(4.10)

where (r, θ, ϕ) are the usual spherical coordinates. We also introduce the four natural basis
vectors {(∂t)a, (∂r)a, (∂θ)a, (∂ϕ)a}.

α(r) and ψ(r) are two metric potentials. α is usually called the lapse function.

Finally, we introduce the four velocity of the Eulerian observer la = 1
α
(∂t)a

4.2.1 Momentum coordinates

The momentum coordinates (ǫ̂,Θ,Φ) are defined such that Θ represents the angle between the
momentum and the radial coordinate, and Φ is an azimuthal coordinate with respect to (∂r)a :

pa =
ǫ̂

cα2
(∂t)a +

ǫ̂ cos Θ
αψ

(∂r)a +
ǫ̂ sin Θ cos Φ

αr
(∂θ)a +

ǫ̂ sin Θ sin Φ
αr sin θ

(∂ϕ)a (4.11)

Here ǫ̂ represents the energy of the neutrino measured by an asymptotic observer : (∂t)apa = −ǫ̂.
The energy measured in the Eulerian frame is lapa = −ǫ = − ǫ̂/α. This is this value which
should be used in the computation of the collision integral Bl[fν ]. This choice of variables allows
for a considerable simplification of the formulation of Boltzmann equation by putting redshift
effects into the definition of the coordinates.

Using those coordinates the scalar integration element used in equations 4.3 and 4.4 is given by

√−gd
3pi

−p0

=
ǫ̂dǫ̂

α2
sin ΘdΘdΦ = ǫdǫ sin ΘdΘdΦ (4.12)

In the following we will also assume that the neutrino distribution is isotropic in the horizontal

direction2 :
∂fν

∂Φ
= 0 and is spherically symmetric in the star :

∂fν

∂θ
=
∂fν

∂ϕ
= 0.

2this property also stems from the spherical symmetry
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4.2.2 Boltzmann equation and angular moments

With the definition (4.11) the Boltzmann equation reads

1
cα

∂fν

∂t
+

cos Θ
ψ

∂fν

∂r
−
(1
r

− (∂r lnα)
) sin Θ

ψ

∂fν

∂Θ
= Bl[fν ] (4.13)

The advantage of ǫ̂ as a choice of variable is that the different energies are only correlated via
the collision integral (with e.g. inelastic scattering), indeed the redshift is taken into account in
the coordinate.

Since the problem is computationally very expensive despite the geometrical simplifications, it
is common to study only the few first angular moments. The nth angular moment is defined (in
spherical symmetry) as

1
2

∫

fν(t, r, ǫ̂,Θ) cos(Θ)n sin(Θ)dΘ (4.14)

In this work we will need only the three first angular moments :

Jν(t, r, ǫ̂) =
1
2

∫

fν(t, r, ǫ̂,Θ) sin(Θ)dΘ (4.15)

Hν(t, r, ǫ̂) =
1
2

∫

fν(t, r, ǫ̂,Θ) cos(Θ) sin(Θ)dΘ (4.16)

Kν(t, r, ǫ̂) =
1
2

∫

fν(t, r, ǫ̂,Θ) cos(Θ)2 sin(Θ)dΘ (4.17)

The zeroth angular integral of Θ of the Boltzmann equation (4.13) yields

1
cα

∂Jν

∂t
+

α2

r2ψ

∂

∂r

(

r2

α2
Hν

)

=
1
2

∫

Bl[fν ] sin(Θ)dΘ (4.18)

whereas the first angular integral of the Boltzmann equation (4.13) yields

1
cα

∂Hν

∂t
+

1
ψ

∂Kν

∂r
+
(1
r

− (∂r lnα)
) 1
ψ

(3Kν − Jν) =
1
2

∫

Bl[fν ] cos Θ sin(Θ)dΘ (4.19)

4.2.3 Macroscopic conservation laws

Moments of the equation (4.18) yield the macroscopic conservation laws.

The neutrino number conservation law is

1
α

∂nν

∂t
+

1
r2αψ

∂

∂r

(

r2αF (n)
ν

)

= Γν (4.20)

where nν is the number density of neutrinos, F (n)
ν is the outgoing number flux of neutrinos and

Γν is the production rate of neutrinos, which are defined as

nν =
α

c
N0

ν =
4π

(hc)3

∫

Jν
ǫ̂2dǫ̂

α3
(4.21)

F (n)
ν = ψN r

ν =
4πc

(hc)3

∫

Hν
ǫ̂2dǫ̂

α3
(4.22)

Γν = ∇a(Na
ν ) =

c

(hc3)

∫

Bl[fν ]
ǫ̂2dǫ̂

α3
sin(Θ)dΘdΦ (4.23)
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Another useful law is the neutrino energy conservation law :

1
α

∂Eν

∂t
+

1
r2α2ψ

∂

∂r

(

r2α2F (E)
ν

)

= Qν (4.24)

where Eν is the energy density of neutrinos, F (E)
ν is the outgoing energy flux carried by neutrinos

and Qν is the neutrino heating rate, defined as

Eν = α2T 00
ν =

4π
(hc)3

∫

Jν
ǫ̂3dǫ̂

α4
(4.25)

F (E)
ν = αψcT 0r

ν =
4πc

(hc)3

∫

Jν
ǫ̂3dǫ̂

α4
(4.26)

Qν = −lb∇a(T ab
ν ) =

c

(hc)3

∫

Bl[fν ]
ǫ̂3dǫ̂

α4
sin(Θ)dΘdΦ (4.27)

The neutrino total number luminosity L(n)
ν and energy luminosity L(E)

ν are defined as

L(n)
ν = lim

r→∞
4πr2αF (n)

ν (4.28)

L(E)
ν = lim

r→∞
4πr2α2F (E)

ν (4.29)

4.3 Collision integral

The collision integral Bu[fν ] is the right hand side of the Boltzmann equation (4.5), it contains
the effect of all interactions between particles on the distribution function.

A generic property which should hold for a collision kernel to be physically meaningful is the
detailed balance condition : each interaction term should vanish if the involved particles are at
equilibrium :

B(eq)
u [f (eq)

ν ] = 0 (4.30)

f (eq)
ν is the neutrino equilibrium distribution, which is a Fermi-Dirac distribution :

f (eq)
ν (ǫν) = fF D(ǫν − µν) =

1
1 + e(ǫν−µν)/T

(4.31)

where µν is the chemical potential of neutrinos.

We will now discuss the various processes entering the collision integral.

4.3.1 Charge exchange processes

Interactions which fall under this category are of the type

X + l− ⇆ Y + νl or X ⇆ Y + l+ + νl

The particularity of these interactions is that the neutrino is created or absorbed in the process.
This results in a very simple form for the collision integral, which is linear in fν :

BCE[fν ] = j(ǫ)(1 − fν(ǫ,Θ)) − 1
λ(ǫ)

fν(ǫ,Θ) (4.32)
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Where j is the emissivity and 1/λ is the inverse mean free path. These quantities are related by
the detailed balance condition :

j(ǫ) e(ǫ−µν)/T =
1
λ(ǫ)

(4.33)

where T is the temperature and µν is the chemical potential of the neutrino ν.

The detailed balance condition can also be made explicit in the collision integral by recasting
the expression as

BCE[fν ] = κ∗(ǫ)
(

f (eq)
ν (ǫ) − fν(ǫ,Θ)

)

(4.34)

Where κ∗ = j +
1
λ

=
j

f
(eq)
ν

=
1
λ

1

1 − f
(eq)
ν

is the opacity corrected for stimulated absorption.

The two first Legendre moments of BCE[fν ] are given by

1
2

∫

BCE[fν ] sin(Θ)dΘ = κ∗(ǫ)
(

J (eq)
ν (ǫ) − Jν(ǫ)

)

(4.35)

1
2

∫

BCE[fν ] cos(Θ) sin(Θ)dΘ = −κ∗(ǫ)Hν(ǫ) (4.36)

4.3.2 Scattering processes

Neutrinos can scatter off any weakly interacting particle present in the medium :

X + ν ⇆ X + ν

The scattering integral can be written as

BS[fν ] =
1

4π

∫

(ǫ′)2dǫ′dΩ′
{

Rin(ǫ, ǫ′,Ω · Ω′)fν(ǫ′,Ω′)(1 − fν(ǫ,Ω))

−Rout(ǫ, ǫ′,Ω · Ω′)fν(ǫ,Ω)(1 − fν(ǫ′,Ω′))
}

(4.37)

where Ω = (cos Θ, sin Θ cos Φ, sin Θ sin Φ)

The interaction is described by Rin and Rout, which are respectively the ingoing and outgoing
scattering kernels. They must fullfill the in/out symmetry :

Rin(ǫ, ǫ′,Ω · Ω′) = Rout(ǫ′, ǫ,Ω · Ω′) (4.38)

This symmetry simply stems from the conservation of neutrino number during the scattering
(the number of outgoing neutrinos must be equal to the number of ingoing neutrinos). And
indeed using this symmetry we can easily show that the scattering integral (4.37) has a vanishing
second energy moment :

∫

BS[fν ]ǫ2dǫ = 0 (4.39)

But the third moment is usually non vanishing as the neutrino energy changes during the
process.

In more practical terms, this means that the contribution of scattering processes to the neutrino
production rate Γν given by equation (4.23) is zero whereas its contribution to the heat function
Qν given by equation (4.27) is usually non-zero.

The kernel must also fullfill the detailed balance condition, which gives an additional relation
between outgoing and ingoing kernels :

eǫ/T Rin(ǫ, ǫ′,Ω · Ω′) = eǫ′/T Rout(ǫ, ǫ′,Ω · Ω′) (4.40)
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therefore, as pointed out in [119], the kernel has an internal symmetry :

Rin(ǫ′, ǫ,Ω · Ω′) = e(ǫ−ǫ′)/T Rin(ǫ, ǫ′,Ω · Ω′) (4.41)

Rout(ǫ′, ǫ,Ω · Ω′) = e(ǫ′−ǫ)/T Rout(ǫ, ǫ′,Ω · Ω′) (4.42)

Systems with azimuthal symmetry

When the neutrino distribution has an azimuthal symmetry
∂f

∂Φ
= 0, we can perform the

integration over Φ′ in the scattering integral (4.37).

To make it explicit we expand the scattering kernel into a Legendre series :

Rin/out(ǫ, ǫ′,Ω · Ω′) =
∞
∑

l=0

2l + 1
2

R
in/out
l (ǫ, ǫ′)Pl(Ω · Ω′) (4.43)

where Pl are the Legendre polynomials.

Then we use the spherical harmonic addition theorem :

Pl(Ω · Ω′) = Pl(cos Θ)Pl(cos Θ′) + 2
l
∑

m=1

(l −m)!
(l +m)!

Pm
l (cos Θ)Pm

l (cos Θ′) cos[m(Φ − Φ′)] (4.44)

where Pm
l are the associated Legendre polynomials.

Finally, we define the azimuthal average of the kernel :

Rin/out
az (ǫ, ǫ′,Θ,Θ′) =

1
2π

∫

Rin/out(ǫ, ǫ′,Ω · Ω′)dΦ′ =
∞
∑

l=0

2l + 1
2

R
in/out
l (ǫ, ǫ′)Pl(cos Θ)Pl(cos Θ′)

(4.45)

we obtain

BS[fν ] =
1
2

∫

(ǫ′)2dǫ′ sin(Θ′)dΘ′
{

Rin
az(ǫ, ǫ

′,Θ,Θ′)fν(ǫ′,Θ′)(1 − fν(ǫ,Θ))

−Rout
az (ǫ, ǫ′,Θ,Θ′)fν(ǫ,Θ)(1 − fν(ǫ′,Θ′))

}

(4.46)

Legendre moments of the scattering integral

In numerical applications we usually truncate the Legendre expansion (4.43) after the dipole :

Rin/out(ǫ, ǫ′,Ω · Ω′) =
1
2
R

in/out
0 (ǫ, ǫ′) +

3
2
R

in/out
1 (ǫ, ǫ′)Ω · Ω′ (4.47)

therefore, for the azimuthal average we obtain

Rin/out
az (ǫ, ǫ′,Θ,Θ′) =

1
2
R

in/out
0 (ǫ, ǫ′) +

3
2
R

in/out
1 (ǫ, ǫ′) cos(Θ) cos(Θ′) (4.48)

With this expression we can rewrite the scattering integral in terms of effective emissivities and
opacities (see e.g. [119]) :

BS[fν ] = j
(S)
0 (ǫ) − κ

(S)
0 (ǫ)fν(ǫ,Ω) + 3 cos(Θ)

[

j
(S)
1 (ǫ) − κ

(S)
1 (ǫ)fν(ǫ,Ω)

]

(4.49)
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with the following definitions :

j
(S)
0 (ǫ) =

1
2

∫

(ǫ′)2dǫ′Rin
0 (ǫ, ǫ′)Jν(ǫ′) (4.50)

κ
(S)
0 (ǫ) = j

(S)
0 (ǫ) +

1
2

∫

(ǫ′)2dǫ′Rout
0 (ǫ, ǫ′)(1 − Jν(ǫ′)) (4.51)

j
(S)
1 (ǫ) = −1

2

∫

(ǫ′)2dǫ′Rin
1 (ǫ, ǫ′)Hν(ǫ′) (4.52)

κ
(S)
1 (ǫ) = j

(S)
1 (ǫ) +

1
2

∫

(ǫ′)2dǫ′Rout
1 (ǫ, ǫ′)Hν(ǫ′) (4.53)

The two first Legendre moments of the scattering integral BS[fν ] are then given by

1
2

∫

BS[fν ] sin(Θ)dΘ = j
(S)
0 (ǫ) − κ

(S)
0 (ǫ)Jν(ǫ) − 3κ(S)

1 (ǫ)Hν(ǫ) (4.54)

1
2

∫

BS[fν ] cos(Θ) sin(Θ)dΘ = −κ(S)
0 (ǫ)Hν(ǫ) + j

(S)
1 (ǫ) − κ

(S)
1 (ǫ)Kν(ǫ) (4.55)

Case of isoenergetic scattering

When the scattering process is isoenergetic, we can write

Rin/out(ǫ, ǫ′,Ω · Ω′) =
2

(ǫ)2
δ(ǫ− ǫ′)κIS(ǫ,Ω · Ω′) (4.56)

therefore the scattering integral (4.37) is simply

BS[fν ] =
1

2π

∫

dΩ′κIS(ǫ,Ω · Ω′) (fν(ǫ,Ω′) − fν(ǫ,Ω)) (4.57)

We can expand the isoenergetic opacity in its two first Legendre moments :

κIS(ǫ,Ω · Ω′) =
1
2
κIS

0 (ǫ) +
3
2
κIS

1 (ǫ)Ω · Ω′ (4.58)

in the case of azimuthal symmetry this yields the following Legendre moments of the scattering
integral

1
2

∫

BS[fν ] sin(Θ)dΘ = 0 (4.59)

1
2

∫

BS[fν ] cos(Θ) sin(Θ)dΘ = (κIS
1 (ǫ) − κIS

0 (ǫ))Hν(ǫ) (4.60)

this is why we often define the transport opacity κIS
tr as

κIS
tr (ǫ) = κIS

0 (ǫ) − κIS
1 (ǫ) =

∫

(1 − cos Θ)κIS(ǫ, cos(Θ)) sin(Θ) dΘ (4.61)

κIS
tr is the effective opacity contributing to the transport properties of the medium.
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4.3.3 Thermal pair production

The pair production of neutrinos
X ⇆ Y + ν + ν̄

is also an important feature in neutrino transport, as it can produce heavy flavors neutrinos νµ

and ντ . They can also be created by charged current interactions with muons and τ leptons,
but as discussed in the section 2.2.3, they will be neglected in this work.

The thermal pair creation integral can be written as

BT P [fν ] =
1

4π

∫

(ǫ′)2dǫ′dΩ′ {Rp(ǫ, ǫ′,Ω · Ω′)(1 − fν(ǫ,Ω))(1 − fν̄(ǫ′,Ω′))

−Ra(ǫ, ǫ′,Ω · Ω′)fν(ǫ,Ω)fν̄(ǫ′,Ω′)} (4.62)

Where Rp and Ra are respectively the production and absorption kernels for thermal pairs. They
must fullfill the particle exchange symmetry, which means that we obtain the corresponding
kernels for the antineutrino by exchanging ǫ ↔ ǫ′ in the kernel expression.

Using this symmetry we can demonstrate the following equality between energy moments, which
means that those processes create as many neutrinos as antineutrinos and do not change lepton
numbers : ∫

ǫ2BT P [fν ]dǫdΩ =
∫

ǫ2BT P [fν̄ ]dǫdΩ (4.63)

In terms of production rate, this means that the contribution of the pair production kernel to
the neutrino and antineutrino production rates is the same : ΓT P

ν = ΓT P
ν̄ .

We have also the following relation between kernels, which stems from the detailed balance
condition :

Ra(ǫ, ǫ′,Ω · Ω′) = e(ǫ+ǫ′)/T Rp(ǫ, ǫ′,Ω · Ω′) (4.64)

Systems with azimuthal symmetry

The procedure is the same as in the scattering case : we expand the kernel in a Legendre series :

Rp/a(ǫ, ǫ′,Ω · Ω′) =
∞
∑

l=0

2l + 1
2

R
p/a
l (ǫ, ǫ′)Pl(Ω · Ω′) (4.65)

and we introduce the azimuthal average

Rp/a
az (ǫ, ǫ′,Θ,Θ′) =

1
2π

∫

Rp/a(ǫ, ǫ′,Ω · Ω′)dΦ′ =
∞
∑

l=0

2l + 1
2

R
p/a
l (ǫ, ǫ′)Pl(cos Θ)Pl(cos Θ′) (4.66)

we obtain

BT P [fν ] =
1
2

∫

(ǫ′)2dǫ′ sin(Θ′)dΘ′ {Rp
az(ǫ, ǫ

′,Θ,Θ′)(1 − fν(ǫ′,Θ′))(1 − fν(ǫ,Θ))

−Ra
az(ǫ, ǫ

′,Θ,Θ′)fν(ǫ,Θ)fν(ǫ′,Θ′)} (4.67)

Legendre moments of the thermal pair production integral

If we truncate the kernel after the dipole term we can obtain the same expression as eq. (4.49)
with effective opacities and emissivities :

BT P [fν ] = j
(T P )
0 (ǫ) − κ

(T P )
0 (ǫ)fν(ǫ,Ω) + 3 cos(Θ)

[

j
(T P )
1 (ǫ) − κ

(T P )
1 (ǫ)fν(ǫ,Ω)

]

(4.68)
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and the Legendre moments are obtained by analogy with eq. (4.54) and (4.55).

The only difference comes from the expression of effective interaction terms :

j
(T P )
0 (ǫ) =

1
2

∫

(ǫ′)2dǫ′Rp
0(ǫ, ǫ′)(1 − Jν(ǫ′)) (4.69)

κ
(T P )
0 (ǫ) = j

(T P )
0 (ǫ) +

1
2

∫

(ǫ′)2dǫ′Ra
0(ǫ, ǫ′)Jν(ǫ′) (4.70)

j
(T P )
1 (ǫ) = −1

2

∫

(ǫ′)2dǫ′Rp
1(ǫ, ǫ′)Hν(ǫ′) (4.71)

κ
(T P )
1 (ǫ) = j

(T P )
1 (ǫ) +

1
2

∫

(ǫ′)2dǫ′Ra
1(ǫ, ǫ′)Hν(ǫ′) (4.72)

4.4 Limits of the Boltzmann equation

In this section we briefly present the two limits of the Boltzmann equation obtained in the
diffusive case and in the free-streaming case.

4.4.1 The diffusion limit

A useful limit of the Boltzmann equation is the diffusion limit, as it allows to recover Fick’s and
Fourrier’s laws for the transport of heat and particles.

In this limit we consider that the neutrino distribution function fν is close to the equilibrium
distribution f (eq)

ν , such that it is almost isotropic :

fν(t, r, ǫ̂,Θ) ≈ Jν(t, r, ǫ̂) + 3 cos(Θ)Hν(t, r, ǫ̂) (4.73)

with Hν ≪ Jν . The second angular moment of the neutrino distribution function is then simply
Kν = 1

3
Jν .

with fν ≈ f (eq)
ν we can also approximate the first moment of the diffusion equation as

1
2

∫

BS[fν ] cos(Θ) sin(Θ)dΘ = −κDHν(ǫ) (4.74)

The first moment of Boltzmann equation (4.19) is then simply

τD

α

∂Hν

∂t
+Hν = − 1

ψ(3κD)
∂Jν

∂r
(4.75)

where τD = 1/(cκD) is a relaxation time and ψ is a metric coefficient introduced in eq. (4.10).
The equation above is known as causal diffusion law. By taking the τD = 0 limit we recover the
classic diffusion law, Fick’s (/Fourrier’s) law, where the flux of particles (/heat) is proportional
to the gradient of the transported quantity, but we also loose causality (Fick’s and Fourrier’s
laws are not compatible with relativity).

Fick’s law (for particle transport) is obtained by taking the second energy moments of the above
equation, as the particle density and flux are given by eq. (4.21) and (4.22), whereas Fourrier’s
law (for heat transport) is obtained by taking the third energy moments, as in eq. (4.25) and
(4.26).

The (energy dependant) diffusion coefficient is given by D = 1/(3κD).
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4.4.2 The free-streaming limit

Neutrinos are said to be free-streaming when the collision integral Bu[fν ] is vanishing for all
possible values of fν . In this case we have a strict conservation of individual neutrino number
currents and stress-energy tensors :

∇aN
a
ν = 0 (4.76)

∇aT
ab
ν = 0 (4.77)

The spherical geometry also has the effect of forward-peaking the neutrino angular distribution
in the radially outgoing direction far away from the star. At long distance this results in all
angular moments beeing equal : Jν = Hν = Kν .

4.5 The Fast Multigroup Transport (FMT)

The formalism presented in the previous sections was still fairly general and applicable to any
spherically symmetric system. But the Boltzmann equation (4.13) is still very expensive to
solve.

In this work we used a transport scheme to obtain an approximate solution of eq. (4.13)
while needing much less computational time. This scheme relies on a steady-state transport of
neutrinos, it is based on the fast multigroup transport developed in [120].

The equation of steady-state transport is solved at high optical depth by using a two-stream
approximation, which replaces the detailed angular distribution by a description in terms of a
balance between an ingoing and an outgoing ray.
As this approximation is valid only at high optical depth, the solution at low optical depth is
solved by using an Eddington factor closure, in which we solve the two first angular moments of
the Boltzmann equation closed by an analytic relation between the three first angular moments
Jν , Hν and Kν .

4.5.1 Steady-state neutrino transport

In a steady-state neutrino transport, we assume that the neutrino distribution function fν is
independent of time : ∂fν

∂t
= 0. This is a situation of dynamical equilibrium : all neutrinos

leaving the star by diffusing out are considered as instantly replaced by pair production and/or
charged current processes. This approximation is justified if the timescale corresponding to the
establishement of radiative equilibrium is small compared with other timescales of interest. An
order of magnitude of this timescale is given by the inverse mean free path of neutrinos, with
eq. (2.25) we obtain

τ =
λ

c
= 1.3 × 10−7

(

nB

0.16 fm−3

)

s (4.78)

Therefore this approximation is well justified in a PNS. When the PNS is cooling the neutrino
mean free path will eventually become much larger than the PNS radius, which may cause this
approximation to fail. But only the transition to transparency may present some issues, indeed
once the medium is transparent the only relevant quantities are the neutrino emissivities and
the scheme will neccessarily make the correct predictions.

The corresponding transport equation is eq. (4.13) without the time dependence :

cos Θ
ψ

∂fν

∂r
−
(1
r

− (∂r lnα)
) sin Θ

ψ

∂fν

∂Θ
= Bl[fν ] (4.79)
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This asumption of steady-state transport is reasonable as long as the background medium
(the thermodynamic conditions and the metric) has a long evolution timescale compared with
neutrino diffusion timescale in the star.

The effect of neutrinos on the transport of heat and lepton number in the matter is then deduced
after the resolution of this equation by using the macroscopic conservation laws (4.20) and
(4.24): The source terms are given by the divergence of outgoing neutrino fluxes

1
r2αψ

∂

∂r

(

r2αF (n)
ν

)

= Γν (4.80)

1
r2α2ψ

∂

∂r

(

r2α2F (E)
ν

)

= Qν (4.81)

One disadvantage of steady-state transport is that lepton number and energy conservation
cannot be enforced globally : diagnostic equations3 are solved for neutrino transport to deduce
source terms which are used a posteriori in the electron number and energy conservation laws of
dense matter. Therefore one cannot verify the consistency of the method by checking global
conservation laws.

Regarding the evaluation of the collision integral Bl[fν ] in eq. (4.79), the effective emissivities and
opacities involved in equations (4.49) and (4.68) are computed by using the neutrino distribution
function of the previous timestep instead of being solved consistently with the current timestep.
This greatly simplifies the evaluation of the collision integral and has a negligible influence on
the evolution if the steady-state approximation is valid.

We will also make the approximation of considering that all interactions are isotropic : we
truncate scattering and pair production kernels after their zeroth Legendre momenta.

Therefore we can use a collision integral of the form

Bl[fν ] = j[f ] − χ[f ]fν(ǫ,Θ) (4.82)

4.5.2 High optical depths : the two-ray approximation

The solution of the steady-state transport equation (4.79) at high optical depths (i.e. in
zones where neutrinos are trapped and in quasi-equilibrium) is obtained by using a two stream
approximation. This approach is valid if the distribution function is close to the isotropic,
diffusive case, Hν ≪ Jν .

Note that we do not use this approximation to compute the full solution, but only as a closure
method to obtain the ratio hν = Hν/Jν (called the flux factor) and we then solve the neutrino
flux equation (4.18) :

α2

r2ψ

∂

∂r

(

r2

α2
Hν

)

= j − χ
Hν

hν

(4.83)

Now to obtain this flux factor, we consider an outgoing ray f (out)
ν = fν(r, ǫ̂,Θ = 0) and an

ingoing ray f (in)
ν = fν(r, ǫ̂,Θ = π). The details of the angular distribution and the fact that

neutrinos are trapped (i.e. close to isotropy) or free-streaming (i.e. forward peaked toward
Θ = 0) is encoded in the balance between the two streams.

3a diagnostic equation relates quantities at a given time without influence from previous events, by opposition
to a prognostic equation. As an exemple, an equation of state is a diagnostic equation
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The two stream solution is computed by solving the corresponding transport equation (4.79) for
both of them :

1
ψ

∂f (out)
ν

∂r
= j − χf (out)

ν (4.84)

− 1
ψ

∂f (in)
ν

∂r
= j − χf (in)

ν (4.85)

The boundary conditions are given by : f (in)
ν (r = R) = 0 (no ingoing radiation from outside the

star) and f (in)(r = 0) = f (out)(r = 0) (central isotropy).
Note that these two equations are coupled because j and χ are computed by using fν .

We then need to compute the flux factor hν by using the obtained solutions for f (out)
ν and f in

ν .
Usually the two-stream approximation is used in planar geometry, and with the asumption that
fν = f (out)

ν δ(Θ) + f (in)
ν δ(Θ − π), which gives a flux factor

hν =
f (out)

ν − f (in)
ν

f
(out)
ν + f

(in)
ν

(4.86)

But here, in order to perform a smoother transition and have a better description in the diffusive
region, we will compute the flux factor as in [120], by assuming a continuous distribution
fν ∝ ea cos(Θ), we obtain

fν(ǫ,Θ) =
√

f
(in)
ν f

(out)
ν







√

√

√

√

f
(out)
ν

f
(in)
ν







cos Θ

(4.87)

Which yields the following flux factor

hν = 1 +
2f (in)

ν /f (out)
ν

1 − f
(in)
ν /f

(out)
ν

+
2

ln(f (in)
ν /f

(out)
ν )

(4.88)

4.5.3 Low optical depths : two-moment closure

At low optical depth (i.e. in the free-streaming zone) the two-ray approach is flawed because of
its planar geometry, and does not take correctly into account the forward peaking toward Θ = 0
caused by the spherical geometry.

Therefore we use a variable Eddington factor with an M1 closure to solve the two first moment
equations consisting of eq. (4.83) and (4.89)

1
ψ

∂Kν

∂r
+
(1
r

− (∂r lnα)
) 1
ψ

(3Kν − Jν) = −χHν (4.89)

The Eddington factor is defined as the ratio pν = Kν/Jν , and we will use the following M1
closure :

pν(hν) =
1 − 2hν + 4h2

ν

3
(4.90)

Note that the choice of this analytic closure is arbitrary, and a lot of possible choices are available
in the literature (see e.g. [121] for a review on M1 closures). As explained below, this choice of
closure in the FMT is motivated by the position of its critical point (the radial derivative of hν

generally presents a point of divergence, this is the critical point of the two-moments scheme).
The closure should however have the correct limits for the diffusive limit (p(0) = 1

3
) and for the

free-stream limit (pν(1) = 1).
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Using eq. (4.89) we get an ODE for the flux factor :

∂hν

∂r
=

1
pν(hν) − hνp′

ν(hν)

{(1
r

− ∂r logα
)

(pν − 1)hν

−ψ
(

χh2
ν − pν

j

Jν

+ pνχ
)}

(4.91)

We see that this equation presents a critical point for pν(hν) − hνp
′
ν(hν) = 0, which in our case

corresponds to hcrit
ν = 0.5. As this equation is easy to solve by an outward integration after the

critical point (for hν ≥ hcrit
ν ) but much stiffer before this point, we match the solution obtained

by solving the system constituted by equations (4.83) and (4.91) with the interior two-stream
solution at the critical point hν = hcrit

ν = 0.5 .

Regarding the choice of closure (4.90), it is not a standard choice, but this one has the advantage
of presenting a critical point much closer to the high optical depth region, which limits the error
due to the use of the two-stream approximation at low optical depth. Indeed most closures
proposed in the literature [121] present a critical point much higher, around hcrit

ν ∼ 0.7 .

4.6 Other neutrino transport methods used in PNS sim-

ulations

In this section we briefly outline two methods which have been used for neutrino transport in
the context of proto-neutron star evolution : the Equilibrium Flux Limited Diffusion (EFLD)
and the variable Eddington factor method. We also discuss their advantages and disadvantages
compared with our method.

4.6.1 Equilibrium Flux Limited Diffusion (EFLD)

In ELFD, the outgoing neutrino fluxes F (n)
ν and F (E)

ν (defined respectively by eq. (4.22) and
(4.26)) are computed by using an adapted Fick’s (/Fourrier’s) law (see e.g. [92]) :

F
(n)
lep = F (n)

νe
− F

(n)
ν̄e

= − T 2

6π2αψ

[

D3
∂(αT )
∂r

+ (αT )D2
∂(µνe

/T )
∂r

]

(4.92)

F
(E)
tot = F (E)

νe
+ F

(E)
ν̄e

+ 4F (E)
νx

= − T 3

6π2αψ

[

D4
∂(αT )
∂r

+ (αT )D3
∂(µνe

/T )
∂r

]

(4.93)

where Dn is a diffusion coefficient reflecting all microscopic processes involving neutrinos, we
have

D2 = Dνe

2 +Dν̄e

2 , D3 = Dνe

3 −Dν̄e

3 , D4 = Dνe

4 +Dν̄e

4 + 4Dνx

4 (4.94)

where Dν
n is defined as

Dν
n =

1
T n+1

∫

ǫndǫ
(

κ∗(ǫ) + κIS
tr (ǫ)

)−1
f (eq)

ν (ǫ)
[

1 − f (eq)
ν (ǫ)

]

(4.95)

κ∗ is the opacity corrected for stimulated absorption (see eq. (4.34)), and κIS
tr (ǫ) is the transport

opacity due to scattering (see eq. 4.61).

These fluxes can then be used in the macroscopic conservation laws of neutrinos (4.20) and
(4.24).

This approximation has the advantage of having a low computational cost, and predict correct
results in the high optical depth region.
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But eq. (4.92) and (4.93) have the disadvantage of predicting unphysical fluxes in low optical
depth regions, which exceed the black body limit4. Because of this some flux limiters have been
proposed in the literature, such as in [122] and [123]. This choice of flux limiter can have a
significant influence if the transport in semi-transparent region is relevant (as in the case of
core-collapse or in the case of the transition to transparency in proto-neutron stars). But EFLD
is not really adapted for this kind of situation anyway.

It should be stressed that EFLD methods can also be formulated as multigroup methods,
meaning that several energy bins are considered instead of integrating over the total fluxes F (n)

ν

and F (E)
ν . Doing so allows to make predictions of the emitted neutrino spectrum.

There are numerous works using EFLD in the context of proto-neutron stars evolution, see e.g.
[89], [90], [91] and [92].

4.6.2 Variable Eddington factor method

Variable Eddington factors are a class of methods which rely upon solving the two first angular
moments of the Boltzmann equation.

In the general case, these angular moments equations relate the four first angular moments
of the neutrino distribution Jν , Hν , Kν and Lν . The transport used in this thesis uses an
Eddington factor method at low optical depths (see section 4.5.3), but in our case the fourth
moment Lν is not involved (c.f. eq. (4.18) and 4.19), the reason is that we considered that the
fluid is not moving (i.e. we neglected the Doppler shift induced in the neutrino radiation).

The variable Eddington factors are defined as

p(0)
ν =

Kν

Jν

and p(1)
ν =

Lν

Hν

(4.96)

and the variable Eddington factor method then relies upon providing a method of closure to
obtain these two factors.

Two classes of methods can be employed :

• we can use an analytic closure, as presented in section 4.5.3 or in [124]. As stated earlier
a list of available closures can be found in [121]. This class of methods is called the M1
closure method.

• we can solve a simplified version of Boltzmann equation to compute the two Eddington
factors numerically at each timestep. This is the model Boltzmann equation method, used
e.g. in the context of core-collapse by [125] and in the context of proto-neutron stars
evolution by [93]

This second class of methods provides more accurate results in low optical depth areas (i.e.
closer to full radiation transfer), but has an heavier computational cost.

4.6.3 Comparison of various methods

In the diffusion zone (i.e. at high optical depth, where neutrinos are trapped), all methods
yield similar results. This is not surprising as all approximations behave the same way near
thermodynamic equilibrium.

4The black body radiation is an upper limit for the emission of an opaque solid surface. This limit is also
valid for fermionic emission and only differ from the bosonic case by a numerical factor
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The differences appear in the semi-transparent region. Here the EFLD method appears to be the
worst, because it predicts unphysical fluxes that have to be artificially reduced, but EFLD has
the advantage of a very low computational cost. Regarding variable Eddington factor methods
with model Boltzmann equations, they are perhaps the most accurate approximations in regards
to full radiation transfer. Indeed they are using a set of equations very close to the original
Boltzmann equation, such that they accurately model the low optical depth area. But they
come with an heavy computational cost.

The FMT method described in the previous section stands somewhere in the middle : it is not
so accurate in semi-transparent areas but still yields better results than EFLD, while having a
computational cost similar to multigroup EFLD.
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Chapter 5

Weak processes occuring in
core-collapse and (proto-)neutron stars

In this part we present the various weak processes involved in the core-collapse mechanism and
the evolution of proto-neutron stars. For convenience in this chapter we will use units in which
~ = c = 1.

5.1 Neutrino interactions with free nucleons

Neutrinos can interact with free neutrons and protons via charged and neutral current interactions.
Theses are the most important processes to describe proto-neutron star evolution.

5.1.1 Charged current interactions with nucleons

Charge exchange reactions play a major role in core-collapse and proto-neutron star cooling
because they are responsible for the deleptonization of matter and the onset of beta equilibrium.

Direct processes

In this section we will consider the following processes :

p+ e− ⇆ n+ νe p⇆ n+ e+ + νe

n+ e+ ⇆ p+ ν̄e n⇆ p+ e− + ν̄e

In a fairly general way, emissivity j and inverse mean free path 1/λ of neutrinos for the process
p+ e− ⇆ n+ νe can be written as an integral over the electron momentum [126]

j(ǫν) = −G2
F |Vud|2

∫ d3pe

(2π)3

(

Im(ΠV (q−)) + 3g2
AIm(ΠA(q−))

)

× (5.1)
[

1 + fBE(q−
0 )

]

[ fF D(ǫe − µe) ]

1
λ(ǫν)

= −G2
F |Vud|2

∫ d3pe

(2π)3

(

Im(ΠV (q−)) + 3g2
AIm(ΠA(q−))

)

× (5.2)
[

fBE(q−
0 )

]

[ 1 − fF D(ǫe − µe) ]

The weak interaction coupling constants GF and gA involved in this formula have been
introduced in the section 2.2.3, and |Vud| = 0.974 27 is the modulus of the up/down element of
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CKM matrix.
ǫe and pe are respectively the energy and the momentum of the electron (note that
ǫe =

√

p2
e +m2

e is the on-shell energy), ΠV (q) and ΠA(q) are the vector and axial contributions
to the polarisation tensor (for more details see [126]), whereas fBE and fF D are the usual
Bose-Einstein and Fermi-Dirac distributions.
Finally the 4-vector q− is given by q− = (ǫe − ǫν −µe +µνe

, ~pe − ~pνe
), meaning that the argument

of the Bose-Einstein distribution is q−
0 = ǫe − ǫν − µe + µνe

.

We see that these formulas fulfill explicitely the detailed balance condition (4.33), indeed
[

1 + fBE(q−
0 )

]

[ fF D(ǫe − µe) ] e(ǫν−µνe )/T =
[

fBE(q−
0 )

]

[ 1 − fF D(ǫe − µe) ] (5.3)

The rates for the corresponding positronic process p⇆ n+e+ +νe can be obtained by integration
over the positron momentum :

j(ǫν) = −G2
F |Vud|2

∫ d3pe

(2π)3

(

Im(ΠV (q+)) + 3g2
AIm(ΠA(q+))

)

× (5.4)
[

1 + fBE(q+
0 )

]

[ 1 − fF D(ǫe + µe) ]

1
λ(ǫν)

= −G2
F |Vud|2

∫ d3pe

(2π)3

(

Im(ΠV (q+)) + 3g2
AIm(ΠA(q+))

)

× (5.5)
[

fBE(q+
0 )

]

[ fF D(ǫe + µe) ]

with q+ = (−ǫe − ǫν − µe + µνe
,−~pe − ~pνe

).

For completeness we also provide the expression of the rates for the antineutrino processes. For
the neutron decay n⇆ p+ e− + ν̄e we have

j(ǫν) = −G2
F |Vud|2

∫ d3pe

(2π)3

(

Im(ΠV (q−)) + 3g2
AIm(ΠA(q−))

)

× (5.6)
[

fBE(q−
0 )

]

[ 1 − fF D(ǫe − µe) ]

1
λ(ǫν)

= −G2
F |Vud|2

∫ d3pe

(2π)3

(

Im(ΠV (q−)) + 3g2
AIm(ΠA(q−))

)

× (5.7)
[

1 + fBE(q−
0 )

]

[ fF D(ǫe − µe) ]

with q− = (ǫe + ǫν − µe + µνe
, ~pe + ~pνe

).

and for the positron capture n+ e+ ⇆ p+ ν̄e we have

j(ǫν) = −G2
F |Vud|2

∫ d3pe

(2π)3

(

Im(ΠV (q+)) + 3g2
AIm(ΠA(q+))

)

× (5.8)
[

fBE(q+
0 )

]

[ fF D(ǫe + µe) ]

1
λ(ǫν)

= −G2
F |Vud|2

∫ d3pe

(2π)3

(

Im(ΠV (q+)) + 3g2
AIm(ΠA(q+))

)

× (5.9)
[

1 + fBE(q+
0 )

]

[ 1 − fF D(ǫe + µe) ]

with q+ = (−ǫe + ǫν − µe + µνe
,−~pe + ~pνe

).

The expressions above are fairly general, and therefore we need the expressions of the polarisation
functions ΠV (q) and ΠA(q) in order to compute them. The various models and approximations
used in core-collapse or proto-neutron star cooling simulations to compute these rates will be
detailed in the chapter 10 of this thesis.
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Processes involving a spectator nucleon

In cold neutron stars, it is well known that the so-called dURCA (for direct URCA) process






n → p+ e− + ν̄e

p+ e− → n+ νe

is kinematically forbidden unless the proton fraction Yp exceeds a certain value [127].

The reasoning is the following : in cold neutron stars the momenta of the involved neutron,
proton and electron are close to their Fermi value pF n, pF p and pF e, and as a consequence the
above processes are possible only if

pF p + pF e > pF n (5.10)

We can then rewrite this condition by using the relation pF i ∝ n
1/3
i (where ni for i = n, p, e are

the particle densities) and the charge neutrality relation np = ne to obtain

Yp =
np

nn + np

>
1
9

≈ 11 % (5.11)

For a given equation of state, the density above which this condition is met (if it is met) is
called the dURCA threshold.

The above reasoning is given for a neutron star composed uniquely of neutrons, protons and
electrons. It can be generalised to all compositions (but yields different threshold values).

This effect is also expected to play a role in late time proto-neutron star cooling : as the tem-
perature drops the direct charged current processes with nucleons become strongly suppressed.

In this case, the so-called modified URCA (mURCA) processes are relevant. They involve a
spectator nucleon N :

p+ e− +N ⇆ n+ νe +N p+N ⇆ n+ e+ + νe +N

n+ e+ +N ⇆ p+ ν̄e +N n+N ⇆ p+ e− + ν̄e +N

By including this additional particle we can lift the kinematic restriction discussed above as
additional momenta can be exchanged.

If these processes have been extensively studied in the case of cold neutron stars [128], there
exists only a few attempts to extend this work to this case of hot matter and produce rates
usable in core-collapse and proto-neutron stars simulations. In [4], the authors modeled this
effect with a phenomenological approach, by including a collisional broadening factor. This
approach will be discussed in section 11.1.2.

5.1.2 Scattering off nucleons

Neutrinos of all flavors can scatter off nucleons via a flavor-independent neutral current interaction

ν +N ⇆ ν +N

If the first supernova simulations were using mostly rates computed with the elastic approximation
[129], it has been pointed out later that this scattering can actually be highly inelastic because
at high densities and temperatures the nucleons have non-negligible thermal velocities. This
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process might thus play a key role in spectrum equilibration for heavy flavor neutrinos (νµ and
ντ ) [69].

Therefore in our studies we used an inelastic scattering kernel [69] :

Rout(ǫ, ǫ′, cos Θ) =
2G2

F

(2π)2
Sx(q, ω)

{

(hx
V )2(1 + cos Θ) + (hx

A)2(3 − cos Θ)
}

(5.12)

Rout is the outgoing scattering kernel, defined as in eq. (4.37).
In this expression S(q, ω) is the dynamic structure function, ω = ǫ− ǫ′ is the energy transfered
to the nucleon and q =

√

(ǫ)2 + (ǫ′)2 − 2ǫǫ′ cos Θ is the momentum transfered to the nucleon.

The vector and axial coupling constants (hx
V ) and (hx

A) (with x = n or p) are given by

hn
V = −1

2
hn

A = −1
2
gA

hp
V =

1
2

− 2 sin2 θW hp
A =

1
2
gA (5.13)

Finally, the dynamic structure function is given by

Sx(q, ω) =
2

1 − e−ω/T

m2
xT

2πq
ln

(

1 + e−Q2+ηx

1 + e−Q2+ηx−ω/T

)

with Q =
√

mx

2T

(

−ω

q
+

q

2mx

)

(5.14)

where ηx = µx/T is the nucleon degeneracy factor and mx is the nucleon mass (we use the
values without mean field corrections).

This expression respects detailed balance (4.42) as we have Sx(q,−ω) = e−ω/T Sx(q, ω).

For ω = 0 (isoenergetic scattering) this expression becomes

Sx(q, ω = 0) = 2
m2

xT

2πq
e−Q2+ηx

1 + e−Q2+ηx
(5.15)

5.1.3 Pair production by nucleon-nucleon bremsstrahlung

Nucleon-nucleon bremsstrahlung is an important process as it is a major contribution to the
production of heavy flavor neutrinos. Neutrino-antineutrino pairs of all flavors are produced by
this flavor-independent process :

N +N ⇆ N +N + ν + ν̄

In our studies we have used an analytic approximation for the absorption kernel developed
in [70]. This computation relies on the one pion exchange model for the interaction with the
spectator nucleon :

Ra(ǫ, ǫ′, cos Θ) = πG2
Fg

2
AnBSσ(ǫ+ ǫ′) (3 − cos Θ) (5.16)

Ra is the pair absorbtion kernel, defined as in eq. (4.62), nB is the baryon density and Sσ is the
spin autocorrelation function, given by the ansatz

Sσ(ω) =
Γσ

ω2 + Γ2/4
s
(

ω

T

)

(5.17)
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which allows to include multiple scattering effects. In this formula Γσ is called the spin fluctuation
rate, s(ω/T ) is an analytic fit formula [70], while Γ is simply a normalization factor, which is
computed such that Sσ obeys the normalization requirement shown in [130] :

∫ +∞

−∞

dω

2π
Sσ(ω) =

1
nn

∫ 2d3p

(2π)3
fp(1 − fp) (5.18)

where fp is the occupation number of a neutron level with momentum p.

The factorisation between Γσ and s is choosen such that Γσ corresponds to the result of [131],
where the pion mass mπ is neglected in the propagator and the nucleons are considered as
non-degenerate. We have

Γσ =
8
√

2πα2
π

3π2
η3/2

∗

T 2

mN

(5.19)

where απ ≈ (2mN/mπ)2/(4π) ≈ 15.423 65 and η∗ is an effective degeneracy parameter given by

η∗ =
1

2mNT

(

3π2nB

)2/3
(5.20)

Finally, the production part of the kernel Rp is computed by using the detailed balance condition
(4.64).

This analytic fit reproduces numerical computations to within 10 % in the physically interesting
parameter space [70], and the one-pion exchange model seems sufficient to describe the interaction
in the context of proto-neutron stars, as recent simulations with improved rates tend to show
[132].

For completeness, the analytic fit function s(ω/T ) is given in the appendix A.

5.2 Neutrino interactions with nuclei

Interaction of neutrinos with nuclei are very similar to interactions with free nucleons : they can
scatter via neutral current or be involved in charge exchange processes via charged currents.

5.2.1 Composition of the medium : nuclear distributions

During the core-collapse, as the density and temperature increase, the medium becomes a mixture
of all possible nuclei in statistical equilibrium (or NSE, for Nuclear Statistical Equilibrium). The
figure 5.1 shows an example of such a distribution.

It should be stressed that initially in the NSE approximation there are no interactions between
the nuclei : the distribution is computed with a Saha-like equation. Therefore it is only valid if
the interparticle separation between nuclei is large enough to neglect interactions (i.e. it is only
valid at low densities, at the beginning of the collapse). Recent equations of state are using
extended NSE models including interactions, see e.g. [133] and [134].

In the Single Nucleus Approximation (SNA) the distribution of nuclei is replaced by a single
representative nucleus. The figure 5.1 shows that such an approximation is a considerable
simplification of the complexity of the medium.

In the first supernova simulations, it was common to use an equation of state computed within
the SNA approximation but to add the NSE distribution of nuclei to compute the weak processes
during the collapse, see e.g. [136].

59



N
0 20 40 60 80 100

Z

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

Figure 5.1: Typical nuclear abundance near the end of the collapse [135] (i.e. for a baryon
density nB = 1.18 × 10−3 fm−3, a temperature T = 2 MeV and an electron fraction Ye = 0.275),
in arbitrary units. Solid lines mark boundaries of experimental mass measurements, dashed
lines mark magic numbers

In particular, for some thermodynamic condition encountered during the collapse, the distribution
of nuclei can be bimodal, centered around the two doubly magic1 nuclei 78

28Ni and 132
50 Sn.

The core also becomes more and more neutron rich because of electron captures, such that near
the end of the collapse the most abundant nuclei are far from the valley of stability, outside the
boundaries of experimental mass measurements.

5.2.2 Electron captures on nuclei

Electron captures on nuclei play an important role during the infall phase of the supernova (see
sec. 2.1.1), indeed about 40 % of electrons of the iron-core are removed during this phase.

A
ZX + e− ⇆ A

Z−1X + νe

As explained in the previous section, two methods can be used to model the composition of
the medium and obtain the neutrino emissivity j and inverse mean-free path 1/λ related to
electron captures on nuclei :

• in the Single Nucleus Approximation (SNA), we consider that the medium is constituted
of a single representative nucleus of mass number ASNA and charge number ZSNA and we

1a magic nucleus has a closed nuclear shell of either protons or neutrons, and is thus particularly stable.
The first magic numbers are 2,8,20,28,50,82. A doubly magic nucleus has a magic number of both protons and
neutrons
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have
jEC,tot(ǫ) = jEC(ǫ, ASNA, ZSNA) (5.21)

• in a Nuclear Statistical Equilibrium model, we consider the full nuclei distribution as
represented figure 5.1, and we have

j(ǫ) =
∑

all nuclei

jEC,tot(ǫ, A, Z) (5.22)

Another important point is that as the most abundant nuclei can be outside the boundary of
experimental mass measurements (see fig 5.1), the electron capture rates jEC have to rely on
theoretical models and physically motivated extrapolations.

The chapter 9 of this thesis is dedicated to the influence of the various approximations used to
compute electron capture rates. The influence of the SNA approximation will also discussed in
this chapter.

5.2.3 Scattering off nuclei

Neutrinos can scatter off nuclei via a flavor independent neutral current interaction :

A
ZX + ν ⇆ A

ZX + ν

As in the case of electron capture, we have to either sum the opacities over all the distribution
(NSE) or consider a representative nucleus (SNA).

We always consider that the scattering off nuclei is coherent and we describe the interaction
with an isoenergetic opacity, defined as in eq. (4.56). The corresponding formula is given in
[129]

κIS(ǫ, cos Θ) =
G2

F

2π
n(A,Z) (Zhp

V +Nhn
V )2 ǫ2(1 + cos Θ) e−y(1−cos Θ) (5.23)

where n(A,Z) is the density of the nucleus A
ZX and the vector coupling constants of nucleons to

the neutral current hp
V and hn

V are given by eq. (5.13).
The exponential e−y(1−cos Θ) arises from nuclear structure, y is given by :

y =
2
5
ǫ2(1.07A)2/3(fm2) (5.24)

The corresponding transport opacity (defined as in eq. (4.61)) is given by

κIS
tr =

∫

(1 − cos Θ)κIS sin(Θ) dΘ =
G2

F

2π
n(A,Z) (Zhp

V +Nhn
V )2 ǫ2y − 1 + (1 + y) e−2y

y3
(5.25)

At low neutrino energies, this interaction is screened by the fact that ions form a lattice, and
therefore the corresponding opacity is reduced. The opacity formula becomes (see [137])

κIS(ǫ, cos Θ) =
G2

F

2π
n(A,Z) (Zhp

V +Nhn
V )2 ǫ2(1 + cos Θ) e−y(1−cos Θ) Sion(ǫ, cos Θ) (5.26)

where Sion(ǫ, cos Θ) is the dynamic structure function, sometimes also called the dynamic form
factor.
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In [138] the author provides an analytic fit of an angular average 〈S(ǫ)〉ion to model this
phenomenon :

〈S(ǫ)〉ion =
3
4

∫

(1 + cos Θ)(1 − cos Θ)Sion(ǫ, cos Θ) sin ΘdΘ (5.27)

The fit formula for 〈S(ǫ)〉ion provided in [138] is based on Monte-Carlo simulations of the ion
lattice in order to obtain the pair correlation function. For completeness, it is provided in the
appendix B.

This angular average is appropriate for the computation of the transport opacity while neglecting
the nuclear form factor. In our simulations we will make the same asumption as in [139] and we
simply multiply the transport opacity of eq. (5.25) by the angular averaged factor 〈S(ǫ)〉ion.

5.3 Neutrino interactions with charged leptons

Heavy flavors neutrinos νµ ν̄µ, ντ and ν̄τ interact with electrons and positrons via the neutral
current, whereas νe and ν̄e interact with them via both charged and neutral currents.

Two interactions are possible : the scattering off charged leptons and the electron-positron
annihilation into a neutrino pair.

5.3.1 Scattering off charged leptons

Neutrino scattering off electrons and positrons is a relevant process as it can become more
important than scattering on free nucleons for the thermalization at lower densities (the scattering
on nucleons tends to become elastic at lower densities).

ν + e± ⇆ ν + e±

We have used the Legendre expansion of the outgoing kernel (4.43) obtained in [140] using the
ultra relativistic limit. They write the kernel as a sum of three terms and neglect the third,
which is proportional to m2

e.

Rout
l (ǫ, ǫ′) = αIA

I
l (ǫ, ǫ′) + αIIA

II
l (ǫ, ǫ′) (5.28)

αI and αII are some coupling coefficients, which depend upon the nature of the particles involved.
They are summarized in table 5.1 . AI and AII are functions independent of the nature of the
particles involved, they are given by an integral over the electron (or positron) energies :

Ak
l (ǫ, ǫ′) =

4G2
F

(hc)3

1
(ǫ)2(ǫ′)2

∫ ∞

max(0,ǫ′−ǫ)
dE fF D(E±µe)(1−fF D(E+ǫ−ǫ′ ±µe))Hk

l (ǫ, ǫ′, E) (5.29)

The functions Hk
l are given in [140] and, for completeness, in the appendix C of this thesis.

Note that in order to reduce on-the-fly computations, the functions AI
l and AII

l can be precom-
puted in three-dimensional tables. The procedure is detailed in the appendix E.
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Interaction αI αII

νe/e
− (1 + 2 sin2 θW )2 (2 sin2 θW )2

νx/e
− (1 − 2 sin2 θW )2 (2 sin2 θW )2

ν̄e/e
− (2 sin2 θW )2 (1 + 2 sin2 θW )2

ν̄x/e
− (2 sin2 θW )2 (1 − 2 sin2 θW )2

νe/e
+ (2 sin2 θW )2 (1 + 2 sin2 θW )2

νx/e
+ (2 sin2 θW )2 (1 − 2 sin2 θW )2

ν̄e/e
+ (1 + 2 sin2 θW )2 (2 sin2 θW )2

ν̄x/e
+ (1 − 2 sin2 θW )2 (2 sin2 θW )2

Table 5.1: Coupling coefficients for neutrino scattering off electrons and positrons [119]

5.3.2 Pair production by electron-positron annihilation

This is (along with nucleon-nucleon bremsstrahlung) another process responsible for the creation
of heavy flavor neutrino pairs

e− + e+ ⇆ ν + ν̄

We used the Legendre expansion of the production kernel (4.65) obtained in [129] using the
ultra relativistic limit :

Rp
l (ǫ, ǫ′) = βIB

I
l (ǫ, ǫ′) + βIIB

II
l (ǫ, ǫ′) (5.30)

The coupling constants βI and βII are given in the table 5.2. Note that they are given with
the neutrinos (νe, νx) point of view. In order to obtain the kernel of antineutrinos (ν̄e, ν̄x), one
should exchange the coefficients βI ↔ βII .

Interaction βI βII

e− + e+ ⇆ νe + ν̄e (1 + 2 sin2 θW )2 (2 sin2 θW )2

e− + e+ ⇆ νx + ν̄x (1 − 2 sin2 θW )2 (2 sin2 θW )2

Table 5.2: Coupling coefficients for electron-positron pair process

BI and BII are functions independent of the neutrino type, they are given by the integrals

Bk
l (ǫ, ǫ′) =

4G2
F

(hc)3

∫ ǫ+ǫ′

0
dE fF D(E − µe)fF D(ǫ+ ǫ′ − E + µe)Jk

l (ǫ, ǫ′, E) (5.31)

where the functions Jk
l are given in [129]. We also have the relation BI

l (ǫ′, ǫ) = BII
l (ǫ, ǫ′), which

results from particle exchange symmetry.

For completeness, the functions Jk
l are also provided in the appendix D.

As in the case of scattering processes, the functions BI
l and BII

l can be precomputed in
three-dimensional tables, see the appendix E for the details.

63



5.4 Other relevant processes

In this section we discuss some other relevant microphysical processes involving neutrinos in
dense environments, but which we did not take into account in our models, either because
detailed interaction rates are unavailable or because of the considerable difficulty of their
implementation.

5.4.1 Plasma and Photo emission processes

Among the weak processes occuring in a plasma, we took only into account the interactions
of neutrinos with charged leptons (see sec. 5.3), but several other mechanisms of emission of
neutrino pairs exist.

Because of interactions with e−/e+ pairs in a plasma, the photon γ acquires an effective mass,
and can therefore decay into neutrino-antineutrino pairs via both charged and neutral current
interactions [141]. This process is called the plasma neutrino emissivity :

γ̃ ⇆ ν + ν̄

The distinction can be made between the transverse plasma emissivity, caused by the decay
of massive photons, and the longitudinal plasma emissivity, caused by the decay of collective
plasma oscillations (i.e. plasmons). In [142], the authors proposed a generic framework to
compute the Boltzmann collision integral for this process at all temperatures and densities.

Another process related to the interactions of charged leptons with the photon background can
lead to the production of neutrino pairs via both charged and neutral currents [71] :

γ + e± ⇆ e± + ν + ν̄

this process is called the neutrino photo emissivity. The computation of its emissivity is much
more complicated than in the case of the pair and plasma processes (see [71] for the details).

In [71], the authors compute the neutrino emissivities due to the pair, plasma and photo processes
at various temperature and densities. According to their results, the photo emissivity seems to
never be the dominant process in the conditions encountered in CCSN and proto-neutron star
evolution. But the plasma emissivity could be more important than the pair process at high
densities.

5.4.2 Neutrino-neutrino interactions

With the dense and hot early universe, core-collapse supernova and proto-neutron stars are
perhaps the only environments where neutrino-neutrino interactions can be probed because of
their significant role.

But as they heavily couple the various neutrino flavors, it is difficult to take these processes into
account in a stationary transport scheme.

Among neutrino-neutrino interactions, the pair annihilation of electron neutrinos into heavy
neutrino pairs

νe + ν̄e ⇆ νx + ν̄x

plays a significant role in the creation of heavy neutrinos [143]. It is more important than
electron-positron annihilation and can even compete with nucleon-nucleon bremsstrahlung in
some thermodynamic conditions.
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Neutrino-neutrino scattering
νe + νx ⇆ νe + νx

has also been considered in some studies [143], but has been found to have a less significant
effect on the neutrino spectra than neutrino-electron scattering.

5.4.3 Neutrino flavor evolution

The observation of the fluxes of solar neutrinos in the mid-60s lead to a considerable discrepancy
between observations and the predictions of the standard solar model. This problem is known
as the solar neutrino problem.

A part of the solution is provided by the fact that neutrino flavors oscillate in vacuum. This idea
was proposed before the discovery of the solar neutrino problem by Pontecorvo in 1958 [144] : if
the flavor eigenstates of neutrinos {|νe〉 , |νµ〉 , |ντ 〉} are not mass eigenstates {|ν1〉 , |ν2〉 , |ν3〉},
then the flavor of a neutrino can change during its propagation. The corresponding change of
basis matrix is called the PMNS matrix2.

This hypothesis was confirmed by the observation of atmospheric neutrinos by Super-Kamiokande
in 1999 [145], but is not sufficient to explain the solar neutrino problem. Indeed because of
the interaction of neutrinos with electrons in the sun, the oscillation phenomenon is strongly
modified. This phenomenon is called the MSW effect3 [146] [147], and is the final piece needed
to solve the solar neutrino problem. It can cause fast resonant flavor conversion of neutrinos.

Because of the MSW effect and the complex way it affects neutrino flavor conversions, in dense
matter we prefer to use the term neutrino flavor evolution instead of neutrino oscillations.

Because core-collapse supernova and proto-neutron stars are subject to many neutrino interac-
tions, the MSW effect is expected to play an important role in the neutrino transport, with the
occurence of fast neutrino flavor conversions, see e.g. [148]. This can have a significant effect on
the neutrino spectra, and consequently on the neutrino driven wind nucleosynthesis and the
shock revival.

Neutrino flavor evolution can be taken into account in the Boltzmann equation, with the
formalism detailed in [149], but at the expense of a considerable complexification of the
algorithm. Which is why, to our knowledge, there exists as of today no CCSN simulation using
a self-consistent neutrino transport with flavor evolution.

Nevertheless, neutrino flavor evolution is not expected to have an effect in areas where neutrinos
are trapped, because if neutrinos are heavily interacting, then the eigenstates of the Hamiltonian
will approximately be given by the flavor eigenstates.

2for Pontecorvo–Maki–Nakagawa–Sakata
3for Mikheyev–Smirnov–Wolfenstein
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Part III

Proto-neutron star evolution
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Chapter 6

Quasi-static modeling of proto-neutron
stars

In this chapter we motivate the quasi-static approximation for proto-neutron star evolution in
spherical symmetry and describe its implementation in an evolution algorithm [150].

6.1 The quasi-static approximation

6.1.1 Motivation : PNS evolution timescales

What makes stellar evolution a difficult problem is the tremendous difference between the
relevant timescales : nuclear burning takes place over secular times while structural adjustments
and convection have a timescale ranging from one minute to several hours.
Therefore one of the most important issues in stellar modeling is to find a consistent way of
averaging the short timescale effects over secular times.

The formation and initial cooling of a neutron star lasts less than 10 minutes, but despite this
very short timescale we are facing very similar issues as in main sequence stellar modeling.

Indeed, due to the densities encountered in neutron stars, the speed of sound is close to the
speed of light in the denser areas (see, e.g. [151]), which makes the acoustic timescale extremely
small :

tac =
l

csound

=

(

l

0.1 km

)

(

csound

108 m s−1

)−1

× 1 µs (6.1)

where l is a typical length of the neutron star stellar structure1.

For the problem of neutron star formation, the other relevant timescales are the convection
timescale, the rotation frequency, the deleptonization timescale and the Kelvin-Helmholtz
timescale.
An estimate for the deleptonization timescale is

tdelep =
YeNB

L
(n)
ν

≈
(

Ye

0.2

)

(

MB

1.6 M⊙

)(

L(n)
ν

1055 s−1

)−1

× 40 s (6.2)

Where NB is the total baryon number, Ye is the average electron fraction, MB = mnNB is the
total baryon mass and L(n)

ν the total neutrino number-luminosity.

1i.e. the order of magnitude of spatial discretization needed in a numerical description

67



And an estimate for the Kelvin-Helmholtz timescale is

tKH =
GM2

RL
(e)
ν

≈
(

M

1.6 M⊙

)2 (
R

10 km

)−1
(

L(E)
ν

1052 erg s−1

)−1

× 70 s (6.3)

Where L(e)
ν is the total neutrino energy-luminosity, M the (gravitational) mass of the neutron

star and R its radius.

Thus we see that we are also facing long term evolution timescales which differ by several orders
of magnitude from the acoustic timescale and that related to structural adjustements.

6.1.2 Hydrostatic stellar structure : the TOV equations

In order to perform without being limited by the timescales discussed above, we use the quasi-
static approximation, in which we consider that the star is in hydrostatic equilibrium. Therefore
we neglect the time derivatives of the density, the pressure and the metric, which allows to
average hydrodynamic effects occuring on the acoustic effect and to focus on the evolution over
the Kelvin-Helmholtz timescale.

As we consider a stationary and spherically symmetric spacetime, with the Schwarzschild gauge,
the metric used is the same as in eq. (4.10).

Our last approximation, widely used in core-collapse simulations, is that the stress-energy tensor
of the matter is given by the perfect fluid formula Tab = (E + P )uaub + Pgab, where E is the
energy density, P the pressure, ua the four-velocity and gab is the metric tensor. The only
exception is the neutrino part of the tensor (c.f. eq. (6.12)), which is computed via a neutrino
transport scheme.

Within these approximations, Einstein Field equations (9.11) are equivalent to the following
system :

ψ(r) =

(

1 − 2Gm(r)
rc2

)−1/2

(6.4)

dm

dr
= 4πr2 E

c2
(6.5)

g(r) = c2d lnα
dr

= ψ2G
(

m

r2
+ 4πr

p

c2

)

(6.6)

Where g(r) is the local gravitational acceleration and m(r) is a metric potential corresponding
to the enclosed mass in the Newtonian limit, which is obtained by taking ψ = 1, E ≈ ρc2 and
p ≪ E (where ρ is the mass density).

Outside the star (i.e. for r ≥ R where R is the radius of the star) the metric is simply given by
the Schwarzschild solution :

α(r) =
1

ψ(r)
=
(

1 − 2GM
rc2

)

(6.7)

where M = m(R) is the total gravitational mass of the proto-neutron star.

This system is completed by the hydrostatic equation, which stems from the radial projection of
the stress-energy conservation equation (9.14) :

dP

dr
= −(E + P )

g(r)
c2

(6.8)

the boundary condition used here is P (R) = Psurf where Psurf is the surface pressure. To model
cold catalyzed neutron stars we usually set Psurf = 0, but in the case of proto-neutron stars this
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can cause some difficulties at the beginning of the simulation. Indeed due to the high entropy
in the mantle, the associated gradient of density is very low, and the surface of the PNS can
prove difficult to properly define. The choice of Psurf is arbitrary and has a significant effect on
the mantle during the first few milliseconds of the simulation, but a sufficiently low value proves
to have no influence on the evolution of the internal structure on long timescales.

Note that this description is equivalent to the TOV equations (1.7) and (1.8) presented in the
chapter 1.

Finally, this system of equations is closed by a hot equation of state from the CompOSE database
[51], and by the fact that the total Baryon number NB should be conserved during the evolution

NB = 4π
∫ R

0
r2ψ nB dr = cte (6.9)

Note that it is common to use the Baryon mass MB instead of the total baryon number, defined
as MB = mNNB.

One final remark should be done about our approximation : we have neglected the effect of
the neutrino energy density in the computation of the metric, and the dynamical effect that
neutrinos can have on the pressure. Indeed the energy density of neutrinos is relevant only in
the central area of the PNS in the case of electron neutrinos, and their contribution is of roughly
1 %, but neglecting their contribution allows for a considerable simplification of the algorithm.

6.1.3 Quasi-static evolution equations

Despite the fact that the structure is computed with a static approximation, we do not neglect
the time variation of the electron fraction Ye and of the entropy per baryon s, which result from
weak processes with a longer timescale. The method and the formalism is the same as in Pons
et al. [92].

The lepton number conservation law (9.13) yields

∇a(uanBYe) + ∇a(N a
νe

) − ∇a(N a
ν̄e

) = 0 (6.10)

where ua =
1
α

(∂t)a is the fluid four-velocity and N a
νe

, N a
ν̄e

are respectively the electron neutrino

and antineutrino particle current densities.

By using the conservation of baryon number ∇a(uanB) = 0 we obtain

1
α

DYe

Dt
=

Γν̄e
− Γνe

nB

(6.11)

where D
Dt

= c α ua∇a is the Lagrangian derivative and Γνe
, Γν̄e

are respectively the electron
neutrino and antineutrino local production rates, introduced in the equation (4.23).

Now regarding the energy conservation, we have

ub∇a(T ab + T ab
νe

+ T ab
ν̄e

+ 4T ab
νx

) = 0 (6.12)

By considering that the stress-energy tensor of the neutron star matter is given by the perfect
fluid formula Tab = (E + P )uaub + Pgab, we can rewrite this equation as

1
α

D

Dt

( E
nB

)

+
P

α

D

Dt

( 1
nB

)

= −(Qνe
+Qν̄e

+ 4Qνx
)

nB

(6.13)
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where the Qν are the neutrino heating functions introduced in the equation (4.27).

Finally, by using the first law of therodynamics d(E/nB) = −Pd(1/nB) + Tds + µed(Ye) we
obtain the local conservation law of entropy

1
α

Ds

Dt
= −(Qνe

+Qν̄e
+ 4Qνx

)
TnB

+
µe (Γνe

− Γν̄e
)

TnB

(6.14)

where µe is the chemical potential of electrons, s is the entropy per baryon and T is the
temperature.

In particular, we recover our hypothesis that neutrinos are the only particles responsible of
transport phenomena : in the absence of neutrinos all processes are adiabatic (Ds/Dt = 0).

6.1.4 Summary of the algorithm

The full numerical implementation of the algorithm is detailed in appendix G.

The different steps followed during a single timestep are summarised as follows :

1. solve the structure equations (G.8), (G.13), (G.14), (G.15) and (G.16) to obtain the
structure of the star

2. compute the lapse function using equation (G.17)

3. compute the neutrino source terms Γν and Qν using the neutrino transport scheme

4. compute the new Ye and s profiles by using evolution equations (G.10) and (G.12)

5. restart at step 1.

The figure 6.1 gives a schematic representation of this algorithm.

Time evolution : deleptonization and entropy loss

Hydrostatic solver

ν-transport scheme

s, Ye

nB , T, Ye, gµν

sources Γν and Qν

Figure 6.1: Schematic representation of the algorithm

6.2 Example of simulation

In this section we present, as an example, the result of a PNS simulation realised with the
algorithm presented earlier in this chapter.

The initial data have been computed with the CoCoNuT code, with a similar setup as the one
used in chapters 9 and 10 : we use the s15 progenitor from [152] (15 M⊙ with solar metallicity)
and the RG(SLy4) equation of state [134]. The neutrino interactions are computed as in the
chapter 10, with the MF prescription for charged currents on nucleons (see sec. 10.1.3). The
simulation is stopped about 500 ms after bounce, when the shock is stalled.
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The method is then similar to the one used in previous works [92], [93] : all matter beyond
the shock is removed to simulate an explosion and we keep the electron fraction and entropy
profiles. We obtain a baryon mass MB = 1.61 M⊙. Our initial profiles are given in the figure
6.5, they correspond to the t = 0 plots.

The simulations run up to t = 67 s at which point the outer layers start to become semi-
transparent. Time t is counted from the start of the simulation, which uses initial data from
about ∼ 500 ms after bounce.

6.2.1 Evolution of global properties of the PNS

First let’s have a look at the evolution of some global properties of the proto-neutron star, such
as it’s radius, mass, electron number and entropy.

The figure 6.2 shows the evolution of the gravitational mass M = m(R) and of the radius R of
the proto-neutron star.

The gravitational mass represents the total energy present in the PNS (internal energy minus
gravitational binding), and diminishes as the PNS emits neutrinos.

We can distinguish two phases in the evolution

• during the first few seconds of evolution, the mantle of the PNS contracts rapidly and the
radius diminishes to less than 20 km

• this initial contraction phase is followed by the shallow phase, during which the mass
decay is approximately exponential by emission of neutrinos, while the star contracts more
slowly. This phase can be modeled by the Kelvin-Helmholtz mechanism
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Figure 6.2: Evolution of the mass M and the radius R of the proto-neutron star, as a function
of time, in our fiducial simulation.

It should be stressed that the definition of the radius depends on the value of the pressure Psurf

used to integrate eq. (6.8). We found that during the first phase (the fast contraction of the
mantle), the value of the radius strongly depends on this choice if the choosen value of Psurf is
too high (because we do not take into account the outer layers of the PNS). The table 6.1 gives
the values of the radius for different choices of Psurf, in our fiducial simulation, for the initial
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model (as it is the most sensitive to this choice). But after this initial contraction, this choice

Surface pressure Psurf (MeV fm−3) 10−9 10−8 10−7 10−6 10−5 10−4

Radius R (km) 73 73 73 70 60 48

Table 6.1: Values of the radius for different choices of Psurf, in our fiducial simulation, for the
initial model

does not have a significant influence as long as the value of Psurf is low enough (i.e. less than
about 10−5 MeV fm−3).

The evolution of the mean entropy and electron fraction of the PNS is shown on the figure 6.3.
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Figure 6.3: Evolution of the mean entropy per baryon 〈s〉 and the mean electron fraction 〈Ye〉
of the proto-neutron star, as a function of time, in our fiducial simulation.

For better readability we show the mean values of the entropy par baryon 〈s〉 and the electron
fraction 〈Ye〉, defined as

〈s〉 =
1
NB

4π
∫ R

0
r2ψ nBs dr , 〈Ye〉 =

1
NB

4π
∫ R

0
r2ψ nBYe dr (6.15)

but this figure can be understood as the evolution of total values, since S = NB〈s〉 is the total
entropy and Ne = NB〈Ye〉 is the total electron number.

We observe that half the loss of entropy happens during the first 10 s, while the deleptonization
happens mostly during the shallow decay phase. Indeed, as we shall see below, in our model the
PNS mantle is already extremely poor in electrons at the beginning of the simulation.

6.2.2 Structure of the PNS

Now let us have a look at the evolution of the internal structure of the proto-neutron star. The
figure 6.5 shows the radial profile of several relevant thermodynamic quantities, as a function of
the enclosed baryon mass mB = mNa(r), at different times.

The initial profiles obtained with the CoCoNuT code as explained earlier in this section correspond
to the t = 0 s case. We clearly see a structure similar to what was discussed in section 3.1.1,
with a low entropy, lepton rich core and a high entropy, lepton poor mantle.
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Regarding the evolution of temperature, we see that during the first phase of evolution it is
mostly rising in the star, hence the name proto-neutron star cooling might not be the most
adapted for the first phase of proto-neutron star evolution. This heating of the PNS is caused
by two phenomena :

• the fast initial contraction of the mantle of the proto-neutron star generates a lot of heat
because of the sudden compression of the matter

• the positive temperature gradient induces a net flux of ν̄e and νx into the core (but not of
νe, as we shall explain below), which contributes to the core heating. This phenomena has
been refered to as Joule Heating in previous works [92], [93]

The evolution of entropy is similar, the mantle constantly looses entropy because of neutrino
emission and the core is (at first) gaining entropy because of Joule Heating. An interesting
point to discuss is the evolution of the entropy gradient : at the beginning of the simulation it is
negative in the mantle, making it unstable to convection (see sec. 3.1.4 and chapter 8), and as
the Joule Heating of the core proceeds this negative entropy gradient progressively generalizes
to the whole star, making it fully unstable to convection.

Now concerning lepton transport, during the first part of the evolution the mantle does not
evolve much, actually the most important is the transport of electron neutrinos leaving the
core because of the strong gradient of neutrino chemical potential µνe

at the core boundary, as
shown in fig. (6.4) for the initial model conditions. Therefore the electron fraction in the core is
diminishing while it is increasing outside the core. It should also be stressed that because of the
gradient of chemical potential, electron neutrinos do not behave like other flavors, which have a
net flux going into the core, as explained above.
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Figure 6.4: Profile of the electron neutrino equilibrium chemical potential, in our initial model.

Finally, regarding the evolution of the pressure P and of the baryon density nB, both are
progressively increasing during the evolution, as the star becomes more and more compact. As
explained earlier, the gradient of baryon density in the mantle is very small at the beginning of
the simulation, and the radius of the PNS is hard to define. But as the evolution proceeds, the
density gradient at the surface becomes very high and the ambiguity in the definition of the
radius become less and less relevant.
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gas in thermal equilibrium), where Tν is the temperature of the neutrinosphere. And because
we have Rνx

< Rν̄e
< Rνe

, heavy neutrinos νx are created at higher temperatures.

Finally, let us discuss the evolution of the electron fraction in the neutrino driven wind Y NDW
e .

We compute it in our simulations by using eq. (2.5), with the hypotheses given sec. 2.1.4. The
evolution of Y NDW

e as a function of time is given by the figure 6.9.
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Figure 6.9: Electron fraction in the neutrino driven wind, computed with eq. (2.5), in our
fiducial simulation.

This figure can be compared with the figure 8 of [93] (a quasi-static simulation similar to ours)
and the figure 7 of [96] (a full-hydrodynamic simulation) who have obtained similar results. We
observe that the neutrino driven wind is neutron rich (Y NDW

e < 0.5) for a short period of time
at the beginning of the simulation, and then becomes proton-rich (Y NDW

e > 0.5) for the rest of
the simulation. This fact might be of importance for the nucleosynthesis in the neutrino driven
wind, as already discussed in section 2.1.4. The observation of a proton-rich neutrino driven
wind is in agreement with most recent simulations [153].
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Chapter 7

Masses and radii of proto-neutron stars

As introduced in the section 3.1.5, recent studies of asteroseismology of proto-neutron stars
suggest that the gravitational wave signal emitted during the core-collapse mechanism could be
used to extract information on the properties of the proto-neutron star.

This chapter is focused on these two questions : what can be learned on the proto-neutron
star from gravitational wave analysis ? And how can we use these informations to put general
constraints on (proto-)neutron star physics ?

7.1 Gravitational waves and PNS properties

7.1.1 Eigenmodes for oscillations of a PNS

In [83], the authors study linear perturbations of the general relativistic hydrodynamic equations
governing hydrostatic equilibrium in a compact star. They use the Cowling approximation, i.e.
they do not consider perturbations of metric-related quantities and only introduce perturbation
of hydrodynamic quantities (density, pressure, velocity, ...).

They find that, as in the case of non-relativistic stars, two physical origins for linear plane-wave
solutions, which are the so-called p-modes and g-modes, introduced in the section 3.1.5.

These modes correspond to very different physical phenomena. p-mode gravitational waves are
associated to acoustic oscillations of the proto-neutron star, and their frequency depends on
the speed of sound cs. The characteristic frequency of acoustic modes in a sphere is the Lamb
frequency ωL :

ω 2
L = c2

s

l(l + 1)
r2

(7.1)

where l designates the spherical harmonic index associated to the mode. The general relativistic
formula differs only by a numerical factor (see e.g. [83]).

Regarding g-mode gravitational waves, they are related to gravity waves, for which the charac-
teristic frequency is the Brunt-Väisälä frequency ωBV

ω 2
BV = g(r)CL(r) (7.2)

where g(r) is the local gravitational acceleration and CL(r) > 0 is the Ledoux criterion (positive
in stable stratifications subject to gravtity waves), defined as in eq. (3.2). As for the Lamb
frequency, the general relativistic case is given in [83]. The role played by this frequency in the
stability analysis of stratified media will be discussed further in the chapter 8 of this thesis.
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In [83], the authors proposed a generic method to classify the modes as p-mode or g-mode,
depending upon their frequencies and their number of radial nodes n. The mode with zero
radial nodes is called the fundamental mode f . Then modes at higher frequencies than the
f -mode are classified as p-modes and modes at lower frequencies than the f -mode are classified
as g-modes. The less radial nodes a specific mode has, the closer its frequency will be to the
fundamental mode. This method of analysis has been used in simulations by various groups,
but as explained in the section 3.1.5, the full picture of the GW emission is far from beeing
perfectly drawn.

7.1.2 Relation with the PNS properties

In [154], the authors derive universal relations that relate the oscillation frequencies of the PNS
to some of its fundamental properties, such as its surface gravity or its mean density.

For this they performed multiple 1D simulations with the codes AENUS-ALCAR [155] and
CoCoNuT [156]. They used the procedure described in [83] to classify the modes and find
that the p-mode frequencies can be fitted as functions of basic PNS properties depending upon
their nature.

Case of p-modes

The p-modes, as well as the fundamental mode, can be fitted as functions of the square root of
the PNS mean density inside the shock area

√

〈ρschock〉 =

√

3Mshock

4πR3
shock

∝
√

Mshock

R3
shock

(7.3)

where Mshock and Rshock designate respectively the mass inside the shock and the shock radius.

The fit is represented on the figure 7.1. The points in this figure come from a wide variety of
simulations with different progenitors and equations of states (see [154] for more details).

This dependency can be understood because the frequency of these acoustic modes depends
mostly upon the local speed of sound cs (see eq. 7.1), which depends mostly upon the local
density.

Case of g-modes

Regarding the case of g-modes, they can be fitted as functions of the PNS surface gravity gsurf

gsurf =
GMpns

R2
pns

∝ Mpns

R2
pns

(7.4)

where Mpns and Rpns designate respectively the mass and the radius of the proto-neutron star.

The fit is represented on the figure 7.2.

As g-modes depend mostly on the local gravitational acceleration (see eq. 7.2) and occur on the
surface layer of the proto-neutron star, this result can also be understood.

7.1.3 Possible difficulties

In principle, if we were able to identify the various modes and frequencies composing the
gravitational wave emission of the proto-neutron star, we should be able to give estimates for
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might be difficult to separate from the rest of the signal

• g-modes should depend only on neutron star properties, however in some simulations, the
emission of GWs is dominated by p-modes, which makes the identification of g-modes
difficult. g-modes can also be exited by the convective motion in the proto-neutron star,
which makes a clear separation between both types of modes more difficult.

Therefore it is yet unclear if the idenfication of the PNS properties from its gravitational wave
emission is possible. Nevertheless, since PNS asteroseismology is a very recent field of study,
the full picture is not perfectly drawn and the situation deserves some attention.
In the following section we will focus on what could be learned from the determination of a
PNS mass and radius.

7.2 Getting information from a PNS mass and radius

In this work ([157]) we investigated two problems :

• (P1) how much would the determination of the mass and radius of a PNS born in
core-collapse supernovae be able to constrain the M-R diagram of cold neutron stars and
therefore also their cold equation of state P (nB) ?

• (P2) is it possible, with such observations, to constrain at least the (3-dimensional) EoS
in hot newly born PNS ?

To tackle these questions, we use the PNS simulation code presented in section 6 to simulate
the first second of evolution for several models of proto-neutron stars.

7.2.1 Parametrized initial profiles

In order to take into account the variability in the initial profiles for the electron fraction Ye

and the entropy per baryon s, we choose to use analytic parametrizations of these profiles.

These analytic profiles should reproduce the observed features of profiles extracted from simula-
tions, which were discussed in section 3.1.1 :

1. an inner core with low entropy per baryon and high electron fraction

2. a hot mantle with high entropy and low electron fraction, which has a negative entropy
and electron fraction gradient

3. the matter contained in the mantle should be proportional to the kinetic energy of the
shock, which is itself proportional to the mass of the inner core (the ratio of mass between
the two regions should not depend a lot on the simulation)

4. the outer zone is the position of the shock with very high electron fraction and entropy

Because of the feature 3, it is more convenient to use a parametrization as a function of
the enclosed baryon mass mB = mNa(r). The following parametrizations s(mB) and Ye(mB)
reproduces these main features.

The entropy per baryon is modeled by a plateau followed by a Gaussian and a power-law
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• HS(DD2), using the extended NSE model of [133] and the DD2 parametrization of the
nuclear interaction [158]

• HS(SFHo), based on the same NSE model and using the SFHo parametrization [159]

• RG(SLy4), using the extended NSE model from [134] and the SLy4 Skyrme effective
interaction [160]

• SRO(APR), computed in [161], is based on the SRO model [162], and uses the APR
Skyrme-like effective interaction [163]

All these equations of state can be found in the CompOSE database [51].

Regarding the total baryon mass MB, we used three different values : 1.6 M⊙ , 1.8 M⊙ or 2.0 M⊙.
With the four EoS and the five parameters sets for initial data this gives us 60 models of
proto-neutron stars to study.

Each model is evolved for 1 s and we output detailed profiles every 0.1 s. For each result we
recompute the PNS structure and we define the radius as in [154], with a fixed baryon density
nB = 0.5970 × 10−5 fm−3. The masses and radii obtained are compiled in the figure 7.5, which
represents the (M,R) plane, normalized for each model by the T = 0 values corresponding to a
fully-evolved β-equilibrated neutron star.

We see that after 1 s of evolution, the mass of the PNS is still larger by about 6-10 % compared
with the cold configuration. The mass evolves on a slow timescale, as it related to the total
energy taken away by neutrinos. Therefore an accurate measurement of the mass should be
possible in principle as it is not really influenced during the time over which the signal is
integrated. Indeed the frequency of the g-modes should be of roughly 100-1000 Hz, and should
therefore require an integration time of only several tens of milliseconds. This could in principle
provide an upper bound on the mass of the cold configuration.

For the radius the situation is different : after 1 s of evolution it is larger by about 40-200 %
compared with the cold configuration. And the radius is undergoing a fast evolution due to the
contraction of the mantle. Therefore a constraint on the radius of the cold configuration will be
difficult to provide by a measurement of the proto-neutron star’s properties.

Now regarding the EoS dependence, the figure 7.6 represents the position of our 60 PNS models
in the (M,R) plane after t = 0.5 s and t = 1.0 s of evolution.

We see that the clouds are largely mixed : the position of the proto-neutron star on the
mass-radius plane largely depend on the set of parameters chosen to build the initial profiles.
This is especially the case for the radius, which has an extreme variablility. As a consequence we
see that a clear identification of the equation of state is impossible without precise information
about the entropy per baryon and electron fraction profiles in the proto-neutron star.

An interesting question is whether it is the uncertainty on the entropy profile or on the electron
fraction profile which causes the extreme variability of the radius. To answer that question
we studied profiles by varying only the s-profile or only the Ye-profile, and we found that the
contribution of the entropy is much more important on the determination of the radius than the
Ye-profile. Indeed by varying the Ye-profile we found less than 10 % of variations in the radius,
and by varying the s-profile the radius spreed between roughly 15 km and 60 km.

7.2.3 Conclusion and limitations

To conclude on the two problems (P1) and (P2) that we wanted to adress in this section :
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Chapter 8

Modeling convection with the Mixing
Length Theory

This chapter focuses on the role of convection in proto-neutron stars, and presents the results of
a simple modelisation with the mixing length theory (MLT) [150].

8.1 Instability to convective motion

8.1.1 Ledoux criterion for the stability of a stratified media

In this work we use the word "convection" to refer specifically to the natural fluid motion
occuring in stratified media by temperature and composition induced variations of the buoyancy,
and to the advection of heat and particles by this motion.

To explain the notion of convective instability, we consider the simple case of an ideal fluid in a
vertical stratification submitted to a vertical gravitationnal acceleration g = −gez.

We consider a small vertical displacement of an eddy of mass density ρ, and we note respectively
ρ0 and P0 the mass density and the pressure of the surrounding medium. The situation is
represented in the figure 8.1.

z

z + δz

ρ = ρ0(z)

ρ = ρ0(z) +∇adiab(ρ0)δz

ρ0(z)

P0(z)

ρ0(z + δz) = ρ0(z) +
∂ρ0

∂z δz

P0(z + δz)

Figure 8.1: Small adiabatic displacement of a mass element in a stratified medium

The surrounding medium is in hydrostatic equilibrium, therefore we have dP0

dz
= −ρ0g. The small

fluid element of mass density ρ = ρ0(z) is displaced adiabatically in the vertical direction with a
height δz. The variation of density induced by this adiabatic motion is noted ∇adiab(ρ0)δz.
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The mass element is submitted only to buoyancy, and its equation of motion is given by

ρ0
d2(δz)
dt2

= g(ρ0(z + δz) − ρ)

d2(δz)
dt2

= g

(

∂ ln ρ0

∂z
− 1
ρ0

∇adiab(ρ0)

)

δz (8.1)

Regarding the variation of density induced by the adiabatic motion, we can write

1
ρ0

∇adiab(ρ0) =
1
γ

∂ lnP0

∂z
(8.2)

where γ = (∂ lnP/∂ ln ρ)S is the adiabatic index of the fluid.

We define the Brunt–Väisälä frequency ωBV as

ω2
BV = −g

(

∂ ln ρ0

∂z
− 1
γ

∂ lnP0

∂z

)

(8.3)

If ω2
BV ≥ 0 the equation (8.1) has an oscillatory solution : the stratification is stable, and the

fluid element oscillates around its equilibrium position at the frequency ωBV , resulting in the
so-called gravity waves, already discussed in the section 3.1.5 and the chapter 7.

In the opposite case, the mass element will move away exponentially from its original position
and the system can be subject to convective motion.

We usually give the Ledoux criterion for the stability of the stratification as

CL(z) =
ω2

BV

g
=

1
γ

∂ lnP0

∂r
− ∂ ln ρ0

∂r
≥ 0 (8.4)

This definition is identical to eq. (3.2). The quantity CLδz can be interpreted as the relative
density contrast between the displaced mass element and its surrounding medium :

CL(z) =
1
ρ0

(

∇adiab(ρ0) − ∂ρ0

∂z

)

(8.5)

To resume this analysis :

• if CL(z) ≥ 0 the stratification is stable and can be subject to gravity waves

• if CL(z) ≤ 0 the stratification is unstable and convective motion will occur

8.1.2 Causes of convection : entropy and composition gradients

We will now connect the Brunt–Väisälä frequency and the instability criterion to more physically
meaningful quantities, such as the specific entropy, the composition of the fluid and the equation
of state of the fluid.

We consider that the fluid is constituted of N species of mass densities {ρi}1≤i≤N and we note
Yi = ρi/ρ0 their particle fractions. We also note s the specific entropy of the fluid.

The equation of state of the fluid may be written under the form

dP

P
= γ

dρ

ρ
+ Γs

ds

s
+

N
∑

i=1

ΓYi

dYi

Yi

(8.6)
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where Γs =

(

d lnP
d ln s

)

ρ,Yi

and ΓYi
=

(

d lnP
d ln Yi

)

ρ,s,Yj 6=Yi

and the Ledoux criterion becomes

CL =
1
γ

(

Γs
∂ ln s
∂z

+
N
∑

i=1

ΓYi

∂ ln Yi

∂z

)

≥ 0 (8.7)

We see that the stability of the fluid against convective motion relies not only on its thermody-
namic profiles but also on coefficients depending on its equation of state.

8.1.3 Case of proto-neutron stars

In the case of a small adiabatic displacement of a mass element at non relativistic speeds, the
above reasoning can be extended to the general relativistic case. Instead of mass density one
needs to consider the baryon density nB, and the Ledoux stability criterion becomes

CL(r) =
1

ΓnB

(

Γs
∂ ln s
∂r

+ ΓYe

∂ ln Ye

∂r

)

≥ 0 (8.8)

where r is the radial coordinate and ΓnB
=

(

d lnP
d lnnB

)

s,Ye

, Γs =

(

d lnP
d ln s

)

nB ,Ye

, ΓYe
=

(

d lnP
d ln Ye

)

nB ,s

.

This criterion is the same as the one used in [81], and as the one already presented in eq. (8.7)

For a fluid which respects thermodynamic stability criterions we always have ΓnB
and Γs ≥ 0,

therefore a negative gradient of entropy per baryon ∂rs ≤ 0 is always a factor of instability in a
stratification.

Regarding the role of the composition, in low density areas we have ΓYe
≥ 0 (pressure is

dominated by degenerate electrons), therefore negative gradients of Ye are a factor of instability
to convection. But in denser areas we have usually ΓYe

≤ 0 because the pressure is dominated by
nuclear symmetry effects, and in those areas positive gradients of Ye are a factor of instability.

The full stability criterion (8.8) is of course a combination of these two contributions, which can
compensate each other.

8.2 Mixing length theory

As a complete simulation of convection is computationally expensive, there exists various
methods to model convective effects at a lower cost. While not capturing all the complex details
of the physics of convection, those methods can model the influence of convective effects in a
rather reliable way.

The simplest model of convection is the mixing length theory (MLT). It is a 1D model which
considers that convection acts as a simple transport phenomenon and models its effect with
diffusion equations.

8.2.1 Particle and thermal diffusion with the MLT

The main effect of convection is to tend to uniformize the entropy per baryon and electron
fraction profiles in convectively unstable areas, in order to tend to CL = 0. Therefore in the
MLT we start by determining which are the areas unstable to convection by using the Ledoux
stability criterion (8.8). Then, an additional flux of lepton number and entropy is computed by
using a flux-gradient law :
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FMLT

N = −DMLTnB
∂Ye

∂r
(8.9)

FMLT

S = −DMLTnB
∂s

∂r
(8.10)

where DMLT is a diffusion coefficient equal to 0 in areas stable to convection and is non 0 in
convectively unstable layers.

The PNS evolution equations (6.11) and (6.14) become

1
α

DYe

Dt
+

1
r2αψ

∂

∂r

(

αr2FMLT

N

)

=
Γν̄e

− Γνe

nB

(8.11)

1
α

Ds

Dt
+

1
r2αψ

∂

∂r

(

αr2FMLT

S

)

= −(Qνe
+Qν̄e

+ 4Qνx
)

TnB

+
µe (Γνe

− Γν̄e
)

TnB

(8.12)

8.2.2 Estimation of the diffusion coefficients

The MLT diffusion coefficient DMLT is estimated by using the same procedure as in [164]. We set

DMLT = vcλP (8.13)

where λP is the length scale over which the convective turnover occurs and vc is the convection
velocity.

The length λP is called the mixing length, it is estimated as being of the same order of magnitude
as the pressure length scale :

λP = ξ

(

∂ lnP
∂r

)−1

(8.14)

where ξ is a coefficient of order unity. This choice does not have a strong influence on the results,
and taking ξ = 1 is the standard choice.

Regarding the convection velocity vc, it is estimated by using energy conservation during a
vertical displacement of λP :

1
2
nBv

2
c = g|∆nB|λP (8.15)

where ∆nB is the density contrast between the displaced mass element and its surrounding
medium after a displacement of height λP . According to eq. (8.5) we have |∆nB| = nB|CL|λP ,
which yields

vc =







λP

√

2g|CL| if CL(r) ≤ 0 (unstable stratification)

0 if CL(r) ≥ 0 (stable stratification)
(8.16)

8.2.3 Numerical implementation

The MLT diffusion fluxes FMLT

N and FMLT

S can be significant, especially at the beginning of the
simulation. Therefore implementing the MLT with an explicit time scheme would force us to
reduce considerably the timestep.

This is why we choose to solve eq. (8.11) and (8.12) in two steps with a semi-implicit scheme :

1. we use the discrete equations (G.10) and (G.12) to solve the neutrino part of the evolution

2. we use an implicit scheme to solve the MLT part, using the same timestep δt as used in
the previous step. The procedure is detailed in appendix I

By doing so, the timestep is essentially limited by the neutrino source terms, as explained in
section G.0.1.
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8.2.4 Advantages and weaknesses of the MLT

This method has the advantage of being extremely simple to implement and adds almost no
additional computational cost. It is also very adapted to our quasi-static modelisation as it
relies on an estimation of convective fluxes with diagnostic equations, and doing so does not
introduce any limitation in relation to any hydrodynamic timescale.

But the mixing length theory is a considerable simplification of the underlying physics and has
several weaknesses :

• the convection velocity and the associated diffusion timescale are usually wrong. Therefore
the mixing length theory does not produce reliable results on short timescales by comparison
to hydrodynamic simulations. But in general when using MLT we are interested in
timescales much longer than what is needed for the convective mixing of the layers to be
complete, and in this case the MLT yields good results because it averages the convective
effects occuring on short timescales

• when using MLT we consider that the layer in which the convective motion occurs stops
at the radius where CL(r) = 0. This is a considerable simplification : because of their
inertia the moving fluid elements will continue after this "boundary" and mix with some
Ledoux-stable layers. This phenomenon is called the convective overshoot, and is extremely
difficult to estimate without a self-consistent hydrodynamic simulation

We have considered several possible improvements to study the weaknesses of the MLT. In
particular the two-columns convection scheme of [165] seemed promising if combined with an
anelastic approximation.

8.3 PNS evolution with the MLT

In this section we present the results of proto-neutron star cooling simulations with the mixing
length theory. The setup of the simulation is the same as in our fiducial simulation, presented
in section 6.2, with the addition of the MLT.

8.3.1 Evolution timescale

Simulations including convective effects are very different from those which do not. Indeed the
convection considerably accelerates the cooling and the deleptonization by efficiently transporting
heat and electrons from the inner core to the outer layers. The figure 8.2 represents the evolution
of the mean entropy per baryon 〈s〉 and the mean electron fraction 〈Ye〉, as defined by eq. (6.15).

Our fiducial simulation took about 65 s to completely deleptonize the star, while it took about
15 s with the simulation including convective effects within the mixing length theory. This faster
cooling is confirmed by full hydrodynamic simulations [5].

Another interesting feature of simulations including convection is that they present a sudden
change of behaviour after several seconds of evolution, which corresponds to the instant when
the convection stops (see e.g. [166]). In our case we observe after about 4 s a sudden change in
the deleptonization rate, which become much slower.

8.3.2 Structure and convective mixing

Regarding the evolution of the internal structure of the proto-neutron star, fhe figure 8.3 shows
the radial profile of several relevant thermodynamic quantities, as a function of the enclosed
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Part IV

Influence of charged current processes
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Chapter 9

Electron captures on nuclei during the
infall of the iron core

This chapter is focused on the influence of electron capture processes on nuclei, introduced in
the section 5.2.2, which play a key role during the infall of the iron core.

A
ZX + e− ⇆ A

Z−1X + νe

9.1 Electron capture rates on neutron rich nuclei

During most of the infall the neutrinos are not trapped and can escape freely after their creation.
In this context, it can be convenient to define the electron capture rate per volume unit ΓEC as

ΓEC =
4πc

(hc)3

∫

jEC,tot(ǫ) ǫ2dǫ (9.1)

where jEC,tot is the total neutrino emissivity related to electron captures on nuclei.
Note that this formula is valid only in the context of free-streaming neutrinos, when neutrinos
are trapped this rate is modified because of their Pauli-blocking effect and because of the
backward neutrino-capture process.

As explained in section 5.2.2, the composition in nuclei is relevant here and the rate of electron
capture on nuclei depends not only on individual rates on a given nucleus but also on the nucleus
relative abundance in the medium :

ΓEC =
∑

all nuclei

λEC(A,Z)n(A,Z) (9.2)

λEC(A,Z) the individual EC rate of the nucleus A
ZX and n(A,Z) is its density.

Therefore one needs to compute the nuclear abundances and the rates consistently with a given
equation of state.

Within the SNA approximation (see sec. 5.2.1), this formula becomes

ΓEC = λEC(ASNA, ZSNA)n(ASNA, ZSNA) (9.3)

The lack of experimental data and microscopic calculations for the relevant nuclei makes it
mandatory to use models and extrapolations when it comes to electron capture rates during
core-collapse, in the following we will present the various models and approximations used in
the computation of electron capture rates in the context of core-collapse simulations.
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9.1.1 Approximation of independent particles

The first core-collapse simulations were using electron capture rates obtained by using the
approximation of independent particles and within the lowest order nuclear shell model [129]
(see appendix F).

Within those approximations, the reaction rate depends on the population in protons and
neutrons of the nuclear energy levels involved in the process.

The dominant interaction channel is considered to be the electron capture of an electron on a
proton from the 1f7/2 level, yielding a neutron on the 1f5/2 level (we say that is a 1f7/2 → 1f5/2

transition). The corresponding emissivity is given by

j(ǫ) =
2
7
G2

F

π
|Vud|2(gA)2 n(A,Z)Np(Z)Nh(N) (ǫ+Q+ ∆)2

√

√

√

√1 − m2
ec

4

|ǫ+Q+ ∆|fF D(ǫ+Q+ ∆)

(9.4)
where n(A,Z) is the density of nucleus A

ZX, Q is the Q-value of the β-decay, given by the mass
difference of the two nuclei

Q(A,Z) = M(A,Z − 1)c2 −M(A,Z)c2 (9.5)

and ∆ = 3 MeV represents an average of the excitation energy of the daughter nucleus. This
quantity is interesting as it is added to the reaction Q-value and influences the spectrum of the
emitted neutrinos.

The quantities Np(Z) and Nh(N) are respectively the number of protons in the level 1f7/2 and
the number of holes availables for neutrons in the level 1f5/2. They are given by

Np(Z) =















0, if Z ≤ 20

Z − 20, if 20 ≤ Z ≤ 28

8, if Z ≥ 28

(9.6)

Nh(N) =















6, if N ≤ 34

40 −N , if 34 ≤ N ≤ 40

0, if N ≥ 40

(9.7)

We see that no electron capture is possible with the transition 1f7/2 → 1f5/2 for a nucleus
which has a number of neutrons N ≥ 40. This is known as the neutron shell blocking effect
of electron captures [167]. This shell blocking effect is expected to have a significant influence
on core-collapse, indeed neutron rich nuclei become more and more dominant in the medium
during the collapse of the iron core, as mentioned in sec. 5.2.1.

A reminder of the nuclear shell model as well as additional explanations on the shell blocking
effect are given in the appendix F.

9.1.2 Fit on the Q-value dependancy (LMP)

One of the most important predictions of the model presented in the previous section is that
there are no electron captures on nuclei which have more than 40 neutrons because of neutron
shell blocking. However, more recent work (see e.g. [168], [169]) pointed out that in such a
dense and hot medium the thermal excitations and nuclear correlations play a major role : the
shell closure is smeared out and electron captures become allowed on neutron rich nuclei.
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In [170], Langanke et al. have proposed a formula (see eq. 9.8) fitted on results from improved
nuclear shell models calculations, inspired by the dependance on the Q-value showed in [171].

λEC(A,Z) =
B ln 2
K

(

T

mec2

)5
[

F4(η) + 2χF3(η) + χ2F2(η)
]

(9.8)

where χ =
Q+ ∆
T

and η =
µe −Q− ∆

T

Here T is the temperature of the medium, µe is the chemical potential of electrons, Q is the
Q-value of the electron capture (given by eq. (9.5)) and Fk(η) =

∫∞
0 xk/(1 + ex−η)dx is the

Fermi integral of order k. The fit parameters proposed in [170] are B = 4.6, K = 6146 s and
∆ = 2.5 MeV. The figure 9.1 shows, for some relevant thermodynamic conditions, this fit formula
compared with detailed microscopic calculations of λEC .
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ρ11Ye=0.07, µe=9.62, T=0.93

ρ11Ye=0.62, µe=20.2, T=1.32

ρ11Ye=4.05, µe=37.8, T=2.08

Figure 9.1: Electron capture rates on nuclei as function of Q-value for 3 different stellar
conditions. Temperature T and electron chemical potential (denoted αe on this figure) are
measured in MeV. ρ11 measure the density in units of 1011 g cm−3. The solid lines show the
approximate Q-value dependance from eq. (9.8). Figure extracted from [170].

The parametrization of eq. (9.8) will be denoted LMP (for Langanke & Martinez-Pinedo) in
the following.

An improvement of this model has been proposed in [172], by allowing a dependancy of ∆
upon various parameters such as the temperature T , the electron density ne and nuclear
parameters (isospin asymetry and pairing). This improved parametrization will be noted ISO
(for isospin-dependent) in the following.

As the parametrization presented in eq. (9.8) is integrated over neutrino energies, it cannot be
implemented as it is in multigroup neutrino treatments. Instead we use the following expression
for the neutrino emissivity (introduced in section 4.3) :

j(ǫ, A, Z) = Θ(ǫ+Q+∆)
B ln 2
K

( 1
mec2

)5 (hc)3

4πc
n(A,Z) (ǫ+Q+ ∆)2 fF D(ǫ+Q+∆−µe) (9.9)
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where Θ is the usual Heaviside step function.

It is straigthforward to check that once integrated we recover eq. (9.8) :

n(A,Z)λEC(A,Z) =
4πc

(hc)3

∫

j(ǫ, A, Z)ǫ2dǫ (9.10)

9.1.3 Nuclear masses and Q-values

In order to use the formulas (9.4) and (9.9), we need to be able to compute the Q-value of the
β-decay for each possible electron capture, and therefore we need the nuclear masses. In this
work we used nuclear masses from several sources :

• when available, experimental mass measurements [173], [174] are used

• if the experimental measurement of a mass is not available, we use the prediction of the
10-parameter model of Duflo and Zucker [175]

• if none of those data are available, we use a liquid drop model parametrization [176]

9.2 Core-collapse simulations

In order to perform a core-collapse simulation, one needs to solve equations of general relativistic
hydrodynamics, which consist of Einstein field equations (9.11) coupled with the conservation
equations of baryon and lepton numbers (9.12 and 9.13), and the conservation equation of
stress-energy (9.14), as already discussed in the chapter 4 with eq. (4.8) and (4.9) :

Rab − 1
2
gabR =

8πG
c4

Tab (9.11)

∇aN
a
B = 0 (9.12)

∇aN
a
L = 0 (9.13)

∇aT
ab = 0 (9.14)

where Rab is the Ricci tensor, R is the scalar curvature, gab is the metric, Tab is the stress-energy
tensor and Ja

B and Ja
L are respectively the baryon and lepton currents.

This system of equations is closed by an equation of state for hot and dense matter and a
neutrino transport scheme.

In order to perform those simulations we used the CoCoNuT code [156], completed by hot
equations of state from the CompOSE database [51] and the fast multigroup transport (FMT)
scheme for neutrinos [120] and section 4.5.

9.2.1 The CoCoNuT code

In order to solve equations of general relativistic hydrodynamics in a fast and accurate way, the
CoCoNuT code combines the use of spectral methods to solve Einstein field equations (9.11) and
a high resolution shock-capturing method to solve the hydrodynamic sector [177].

The metric solver

The metric is written in the 3+1 formalism (see e.g. [178]), we have

ds2 = −α2c2dt2 + γij(dxi + βidt)(dxj + βjdt) (9.15)
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where α is the lapse, βi is the shift vector and γij is the 3-metric.

The metric (4.10) discussed in the chapter 4 was a particular case of this general decomposition,
γrr = ψ2, γθθ = r2 and γϕϕ = r2 sin2 θ, βi = 0 and γij = 0 for off-diagonal terms.

In CoCoNuT , we use the IWM (for Isenberg-Matthews-Wilson) approximation, sometimes also
called conformally flat condition (CFC), in which γij = Ψ4γ̂ij where γ̂ij is the flat 3-metric
and Ψ is a scalar field called the conformal factor. This approximation has the particularity of
suppressing gravitational waves from the solutions.
It should also be stressed that the IWM approximation is exact in spherical symmetry, as it
corresponds to the isotropic gauge (different from the Schwarschild gauge used in eq. (4.10)) :

ds2 = −α2(r)c2dt2 + Ψ4(r)
(

dr2 + r2dθ2 + r2 sin2(θ)dϕ2
)

(9.16)

The IWM equations are solved by using the Lorene spectral solver [179], an open source library
allowing to solve elliptic problems via the use of spectral methods (see e.g. [180] for a pedagogical
approach on spectral methods and their application to general relativity).

The hydrodynamic solver

Equations of hydrodynamics are written in a conservative form, which allows to exploit their
hyperbolicity and make use of a finite volume scheme, enforcing conservation laws with high
precision (see e.g. [181] for the general relativistic case).

Since the core-collapse mechanism relies on the propagation of a shock, we need to use a specific
numerical method to correctly model the problem. In CoCoNuT we make use of a high resolution
shock capture (HRSC) scheme (see e.g. [182] for a review on numerical hydrodynamics methods
in general relativity).

9.2.2 Equation of state

In a core-collapse supernova simulation, we need to use a general purpose equation of state for
dense matter (see sec. 3.1.3), which will have to span an extreme range of temperatures, baryon
densities and electron fractions. Typically in a core-collapse we need

• a baryon density nB going from 10−11 fm−3 to 1 fm−3 to model the low densities of outer
layers as well as the nuclear matter core

• a temperature T going from 0.1 MeV to 100 MeV to model the matter heated by the shock

• an electron fraction Ye going from 0.01 to 0.6 to model heavily deleptonized region as well
as the proton rich neutrino driven wind

In this work we used equations of state from the CompOSE database [51].

Most of results of this chapter were obtained by using the HS(DD2) equation of state, which
relies on the statistical model of Hempel and Schaffner-Bielich [133] coupled with relativistic
mean field (RMF) interactions using the DD2 parametrization of the nuclear interaction [158].
This equation of state is also provided with a method to compute the detailed composition in
nuclei with masses from the finite range droplet model (FRDM) [183].

To get an idea of equation of state-dependent effects, we also used a second equation of state,
denoted as RG(SLy4). It is a nuclear statistical equilibrium model by Raduta and Gulminelli
[134], which employs the SLy4 Skyrme effective interaction [160].

101



9.2.3 Neutrino transport

The neutrino transport is done with the Fast Multigroup Transport (see sec. 4.5). In this study
we did not include inelastic scattering nor detailed pair production, instead we used the original
code from [120], with the formulas (9.4) or (9.9) for electron capture processes.

During the infall neutrinos are mostly free-streaming, and become trapped just a few milliseconds
before bounce, therefore such a crude description should be enough to describe the process.

The neutrino emissivity has been computed with either the single nucleus approximation or a
detailed statistical nuclear equilibrium for the composition of the medium in nuclei.

9.2.4 Initial data : the progenitor

The progenitor models used in this work come from the detailed stellar evolution models
performed in [152], which have been publicly released to be used as a starting point for
core-collapse simulations.

One should keep in mind that such models contain lots of uncertainties, in particular due to the
mass loss by stellar wind which is complicated to model and can be significant for the most
massive stars with high metallicity.

9.3 Results

This section presents the results of the study conducted in [184] regarding the influence of
electron capture rates during the infall. Note that a similar sensivity study to EC rate has been
conducted in [185], but with a uniform scaling factor for all EC rates, whereas in this study we
used the physically motivated EC rates prescriptions presented in section 9.1.

If not explicitely stated otherwise, all results presented in this section have been obtained in
spherical symmetry, with the s15 progenitor of [152] (15 M⊙ with solar metallicity), and the
HS(DD2) equation of state (see sec. 9.2.2). It should be stressed that the progenitors are
classified with their Zero Age Main Sequence (ZAMS) mass, i.e. the mass they have at the
begin of stellar evolution, which can be very different from their mass at collapse because of
mass loss processes (such as stellar winds).

9.3.1 Evolution of the electron fraction

Electron captures on nuclei during infall are responsible for about 40 % of the deleptonization
of the central object that will become the neutron star. Therefore a modification of electron
capture rates can have a significant impact on the number of electrons present in the core at
bounce time.

The figure 9.2 represents the influence of capture rates on the electron fraction in the central cell
of the grid. The label Bruenn represents the 1985 approximation (see eq. (9.4) or [129]), LMP
the Langanke et al. fit formula [170] adapted for multigroup transport (eq. (9.9)), whereas ISO
the improvement proposed in [172]. The electron fraction is freezed a few milliseconds before
the core bounce because the medium becomes dense enough to trap neutrinos and stop the
deleptonization.

This evolution can be understood by looking at the evolution of the total electron capture rate in
the same central cell, represented in figure 9.3 (as a function of baryon density, which increases
with time).
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Figure 9.2: Evolution of the electron fraction as a function of time after bounce for the 3 models
presented in section 9.1 [184]
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Figure 9.3: EC rate evolution (labelled by baryon density) in the central grid cell during infall
using the three models presented in section 9.1. The vertical dashed lines show the density
above which β-equilibrium sets in [184]

Up to a baryon density nB = 2 × 10−5 fm−3, electron capture rates given by the Bruenn formula
(9.4) are higher than the LMP and ISO ones. Above this density this behavior gets inverted,
because many neutron-rich nuclei for which the Bruenn EC rates vanishes get populated. Those
figures show that such nuclei play a key role in electron captures just before the bounce and
that taking them into account changes the electron fraction at bounce by about 40 %.

Regarding the electron fraction profiles in the star, figure 9.4 shows such profiles at bounce
time. We see that the differences mostly appear in the central region of the collapsing core, for
r . 50 km. As this is the zone where neutron rich nuclei become the most abundant near the
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end of the collapse, this behavior is understandable.
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Figure 9.4: Radial profiles of the electron fraction at bounce employing the three different EC
rate prescriptions in the section 9.1 [184]

9.3.2 Propagation of the shock and deleptonization burst

As the collapse of the core is essentially a free-fall, the various prescriptions for the EC rate
have only a minor influence on the duration of the collapse (we see about 4 % of differences in
the bounce time). But the difference of electron fraction at bounce has a major influence on the
post-bounce dynamics.

Profiles of radial velocity at bounce and at two instants after bounce are shown in figure 9.5. It
is clear that in the Bruenn case the shock has much more kinetic energy, it propagates faster
and further than in the two other cases.

These differences can be interpreted in terms of the inner core mass. Indeed the mass of the
inner core at bounce strongly depends upon the electron fraction in the inner core : it is roughly
proportional to 〈Y 2

e 〉 [76]. And indeed in our models we find the inner core masses to be 0.31 M⊙,
0.4 M⊙ and 0.45 M⊙ for respectively the models using LMP, ISO and Bruenn rates, which is the
same ordering as the core electron fraction shown figure 9.4.

A more massive inner core results in more binding energy being turned into shock kinetic energy,
hence the results of figure 9.5.

Finally, the figure 9.6 illustrates the time evolution of electron neutrino luminosity a few ms
before and after bounce.

Two peaks are observed, the first one corresponds to the increase of EC rates on nuclei a few
ms before bounce, just before neutrino trapping occurs. When the neutrino trapping density is
reached the luminosity goes down, and a secondary peak - the so called deleptonization burst -
occurs when the shock reaches the neutrinosphere, as explained in the section 2.1.2.
Regarding the peak amplitudes, a significant dependence on the EC rate model is to be noticed.
According to [185], the dependence of the peak amplitude on the EC rate relies on two effects, a
low EC rate (here the case of Bruenn rates) causes the neutrinosphere to move to inner radii
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Figure 9.5: Comparison of shock propagation at different instants during the early post-bounce
phase with the three different EC rate prescriptions [184]
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Figure 9.6: Time evolution of electron neutrino luminosity around bounce, for the three different
EC rate prescriptions [184]

because of lower opacities, and also causes the shock to be stronger because of the more massive
inner core. Because of those two effects, the shock reaches the neutrinosphere faster, which
makes the deleptonization burst higher and sharper. In the LMP case it is the opposite : the
high EC rates move the neutrinosphere far away and make the shock weaker, which gives a
weaker and broader deleptonization burst.

It is worthwhile to note that the total energy carried away by electron neutrinos is roughly
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independent of the EC rate model : we find 4.58 × 1051 erg in the Bruenn case, 4.90 × 1051 erg
with LMP and 4.99 × 1051 erg with ISO.

9.3.3 Influence of other parameters on the infall

We have also studied the influence of other parameters on the infall evolution to estimate the
relative importance of EC rate models. We have compared a nuclear statistical equilibrium
(NSE) approach with the single nucleus approximation (SNA). We have also studied the influence
of the equation of state and of the progenitor model.

SNA vs NSE

To estimate the influence of the SNA approach, we simulate the infall with the ISO model for
electron capture rates. In SNA calculations we extract the average nucleus from the entire
available NSE distribution, thermodynamic quantities are thus unchanged between SNA and
NSE and we can more easily isolate neutrino reaction effects.
In the SNA case, the Q-value needed for both LMP and ISO models is computed using the
nucleus obtained by rounding off the average (A,Z) to the closest integers.

The figure 9.7 presents the difference between both simulations.
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Figure 9.7: Neutrino inverse mean free path as function of baryon density in the central numerical
cell with reactions computed either on a single mean nucleus (SNA) or on a statistical ensemble
of nuclei (NSE) : contribution of electron capture effects only (left panel) and scattering effects
only (central panel). Electron fraction time evolution for both models (right panel). [184]

As expected, most important differences appear in the density range above nB & 10−3 fm−3,
where the nuclear distribution is large and potentially multimodal (see sec. 5.2.1). But these
changes in the absorption opacity have only a minor influence on the evolution of the electron
fraction (see right panel of fig. 9.7).

The previous studies comparing SNA and NSE were observing more differences between the two
prescriptions, but were employing in general simplified neutrino treatments with the Bruenn
rates (see e.g. [186]). As the LMP and ISO fit prescriptions are smoother over the nuclear chart,
such results had to be expected.

We should stress however that all rates presented in this work average over nuclear structure
effects, and that we should expect more differences between SNA and NSE if we used detailed
individual microscopic rates all over the nuclear chart. But such rates are presently not available.
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EoS dependence

To estimate the effect of equation of state models on the results, we have compared simulations
using both extended NSE models from the HS(DD2) (Hempel et al. [133]) and the RG(SLy4)
(Raduta and Gulminelli [134]) equations of state.

We observe very little differences between both simulations, there is almost no difference between
the central value of Ye at bounce and between the subsequent shock propagations. The only
noticeable discrepancy between the two models is the prediction of the temperatures profiles,
which is always larger in the HS(DD2) case.

The EoS dependence of CCSN simulation has already been adressed by several works (see e.g.
[185] and [186]), and the conclusion is that there is a limited but certain effect. The very little
differences observed in our case are probably due to the fact that we focused mostly on the
infall, during which the density is still relatively low. And at these low densities all equations of
state make similar predictions.

Progenitor dependence

The influence of the progenitor model has also been studied by performing simulations with the
ISO electron capture rates using various initial profiles from [152].

In this sensitivity study we used progenitors of 15 M⊙, 25 M⊙ and 40 M⊙ ZAMS mass, both
with solar metallicity and with 10−4× solar metallicity. We observe that the electron fraction
and the subsequent shock propagation depend more upon the total mass on the grid than upon
the details of the progenitors profiles. We thus confirm the result from Sullivan et al. [185],
who showed that the detailed progenitor model has less influence than the electron capture rate
prescription on the electron fraction at bounce.

9.3.4 Determination of the most relevant nuclei

In the previous sections we have shown that the model for electron capture rates is one of the
ingredients which has the most important influence during infall. Because of this fact, this
section is focused on the determination of most influencial nuclei for deleptonization during
infall, as theoretical and experimental work should be focused on those.

The figure 9.8 presents the time integrated deleptonization rate over the nuclear chart (for the
LMP rates). Those simulations required the use of a very flexible input for the EoS and the
matter composition, and therefore they have been performed with the ACCEPT code (see [189],
[190] and [191]) using a perturbative method to compute the NSE distribution [192]

The nuclei represented in this figure account for about 89 % of the total time integrated electron
capture rate, and can therefore be considered as the relevant set of nuclei for EC processes
during the infall. Most of those nuclei are close to the N = 50 magic number (shell closure), in
agreement with the results of [185].

The figure 9.8 also shows that detailed microscopic computations are not available for most of
the relevant nuclei. Therefore any core-collapse simulation has to use a parametrization of EC
rates for those nuclei, and detailed computations for those nuclei would be very welcome to
make simulations with more accurate and reliable microphysics.
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Figure 9.8: Time integrated relative deleptonization rate (color scale) associated to the different
nuclear species identified by their proton Z and neutron N number [184] The black contour
indicates the most relevant nuclei for EC identified by [185] and [187]. The red and green
contours indicate the nuclei for which microscopic rates are available from [169] and [188]
respectively. Nuclei with experimentally known masses are situated between the grey lines.
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Chapter 10

Improved charged-current reaction
rates on nucleons

This chapter is focused on the various approximations used to compute the charged current
reaction rates on nucleons, and the influence they have on core-collapse simulations.

p+ e− ⇆ n+ νe p⇆ n+ e+ + νe

n+ e+ ⇆ p+ ν̄e n⇆ p+ e− + ν̄e

10.1 Approximations and models for charged current

rates

In section 5.1.1, the general framework needed to compute reaction rates of the above processes
has been presented. In particular, we saw that we need an expression for the imaginary part
of the polarisation functions Im(ΠV (q)) and Im(ΠA(q)), which contain the structure of the
interaction and are sensitive to the various approximations. This section details the various
existing approximations and gives formulas for the polarisation functions.

Considering the equations for charged current processes presented section 5.1.1, there are two
factors upon which we can act to simplify the computations :

• we can act on the phase-space integration, by neglecting the transfer of momentum to the
nucleon. This is the so-called elastic approximation, opposed to a full-kinematic treatment

• we can act on the matric element modeling the interaction, by choosing how to take into
account the interactions between nucleons. In the simplest approximation we consider
that nucleons are non-interacting with each other, and in more accurate models we take
into account interactions, either at the mean field level or by adding RPA correlations

10.1.1 The Elastic approximation with non-interacting particles

As explained above, in the elastic approximation we neglect the transfer of momentum to the
nucleons.

In [129], the rates are computed within this approximation by considering that the nucleons do
not interact with each other. The rate of the process is then the same as in vaccuum, with the
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addition of Pauli blocking factors, to take into account that the final quantum states of particles
may be already occupied.

With these hypotheses we obtain

Im(ΠV (q)) = Im(ΠA(q)) = −π(np − nn) δ(q0 + µn − µp +mpc
2 −mnc

2) (10.1)

where nn and np are respectively the density of neutrons and protons, and µn and µp are the
chemical potentials of neutrons and protons

The integral over the electron momentum of eq. (5.1) can then be done analytically and for the
process p+ e− ⇆ n+ νe we obtain the following emissivity and inverse mean free path :

j(ǫ) =
G2

F

π
|Vud|2(1 + 3g2

A)(np − nn)(ǫ+Q)2

√

√

√

√1 − m2
ec

4

|ǫ+Q|× (10.2)

[ 1 + fBE(Q+ µp − µn) ] [ fF D(ǫ+Q− µe) ]

1
λ(ǫ)

=
G2

F

π
|Vud|2(1 + 3g2

A)(np − nn)(ǫ+Q)2

√

√

√

√1 − m2
ec

4

|ǫ+Q|× (10.3)

[ fBE(Q+ µp − µn) ] [ 1 − fF D(ǫ+Q− µe) ]

where Q = mnc
2 −mpc

2 is the Q-value of the neutron decay.

The corresponding rates for the three other processes are obtained in a similar manner.

It is worth mentioning that within the elastic approximation the proton decay process p ⇆

n+ e+ + νe is forbidden. Indeed by neglecting the momentum transfer the energy transfered
to the nucleons is only the mass difference and we reach the same conclusions as in vaccuum,
despite the fact that proton decay can always occur if µp > µn.

10.1.2 The Elastic approximation with Mean Field corrections

Because of the nuclear interactions, a nucleon in the medium is in interaction with all other
nucleons in its interaction range. In the mean field approximation (MF) we model the effect of
all other nucleons by an effective interaction potential. By doing so we also neglect 2-particle
correlations in the distributions functions, i.e. the state of the system is entirely characterised
by the 1-particle distribution functions at equilibrium.

In this approximation the nucleons still interact with each other, via a mean field potential.
Therefore the nucleons acquire an effective mass m∗

N and their energies are shifted by the mean
field potential UN . It is also convenient to define an effective chemical potential µ∗

N = µN − UN

(see [126]).

The changes to the above formula are straigthforward to implement : one simply has to replace
the masses by the effective masses and the chemical potentials by the effective ones in the
formula (10.1) for the polarisation functions :

Im(ΠV (q)) = Im(ΠA(q)) = −π(np − nn) δ(q0 + µ∗
n − µ∗

p +m∗
pc

2 −m∗
nc

2) (10.4)

As an example, the emissivity and mean free path for the process p + e− ⇆ n + νe are then
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given by :

j(ǫ) =
G2

F

π
|Vud|2(1 + 3g2

A)(np − nn)(ǫ+Q∗)2

√

√

√

√1 − m2
ec

4

|ǫ+Q∗|× (10.5)

[ 1 + fBE(Q∗ + µp − µn) ] [ fF D(ǫ+Q∗ − µe) ]

1
λ(ǫ)

=
G2

F

π
|Vud|2(1 + 3g2

A)(np − nn)(ǫ+Q∗)2

√

√

√

√1 − m2
ec

4

|ǫ+Q∗|× (10.6)

[ fBE(Q∗ + µp − µn) ] [ 1 − fF D(ǫ+Q∗ − µe) ]

where the effective Q-value of the neutron decay is

Q∗ = m∗
nc

2 −m∗
pc

2 + Un − Up (10.7)

10.1.3 Full kinematics within the Mean Field theory (MF)

The next step is to relax the Elastic approximation and consider full-kinematics. The leptons
now transfer some momentum to the nucleons. Note that in this work we have considered
non-relativistic nucleons, in contrast to the work of [193], which considered full relativistic
kinematics.

Within the mean field approximation, the imaginary part of the polarisation tensors are

Im(ΠV (q)) = Im(ΠA(q)) = Im(L(q)) (10.8)

where L(q) is the Lindhard function

L(q) = lim
η→0

∫ d3k

(2π~)3

fF D(ǫp
k − µ∗

p) − fF D(ǫn
k+q − µ∗

n)
ǫe − ǫν + ǫp

k − ǫn
k+q + iη

(10.9)

with the notation ǫ
p/n
k =

~k2

2m∗
n/p

+m∗
n/p

Note that the integral over the electron momentum (5.1) can no longer be carried out analytically.
The section 10.2.1 will present the interpolation procedure used to effectively implement these
rates in core-collapse and proto-neutron star simulations with a minimal computation time.

10.1.4 Full kinematics with the Random Phase Approximation (RPA)

To go beyond the mean field theory and include some nucleon-nucleon correlation effects in the
distribution function, we use the so-called "Random Phase Approximation" (RPA). It is one of
the oldest non-perturbative methods to compute ground-state correlation energies, which was
first introduced to study the effect of correlations between electrons in solids [194]. Since then
this approximation has also been used in molecular chemistry and in nuclear physics (see [195]
for the case of asymmetric nuclear matter).

In [195], the RPA is studied in the Landau approximation, which is equivalent to replace the
polarisation functions by

Im(ΠV (q)) = Im

(

L(q)
1 − 2fccL(q)

)

(10.10)

Im(ΠA(q)) = Im

(

L(q)
1 − 2gccL(q)

)

(10.11)
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where explicit expressions for the factors fcc and gcc are given in [195].

But these expressions present instabilities at high densities for the axial channel with Skyrme
nuclear forces [196]. In order to avoid this potential problem, in [126] we have used two other
prescriptions :

• in the RPA t′3 model, a repulsive term is added in Im(ΠA(q)) at high densities : we replace
gcc by gcc + t′3n

2
B/4 [197]

• in the RPA πρ model, a microscopically motivated correction based on interactions with
the π and ρ mesons is employed [198]

More details are given on those various RPA models in [126].

10.2 Resulting neutrino opacities

10.2.1 Tabulated rates and interpolation procedure

As rates with full kinematics (with either the mean field approach or the RPA) cannot be
computed analytically, this begs the question of what is the most efficient method to implement
them in a simulation.

The first idea to come may be to build four-dimensional tables of rates, depending upon the
baryon density nB, the temperature T , the electron fraction Ye and the neutrino energy ǫ.
But as the neutrino energy range span over several orders of magnitude (we need rates from
ǫ ≈ 0.1 MeV to 200 MeV in order to simulate proto-neutron star cooling) the numerical size of
tables needed to have a sufficient precision on the rates can become quite significant.

The solution retained in [126] was to build a polynomial fit on ln(ǫ) :

ln(κ∗(ǫ)) =
N
∑

n=0

cn(T, nB, Ye) ξn (10.12)

where κ∗ is the opacity corrected for stimulated absorption, as introduced by equation (4.34),
whereas cn are the tabulated coefficients of the fit and ξ ∈ [−1, 1] is an affine mapping
ln ǫ = αξ + β.

With this solution the tables are of acceptable size for numerical simulations and the computa-
tional cost of implementing these improved rates is minimal.

The tabulated coefficients used in [126] are available in the CompOSE database [51].

10.2.2 Some example of opacities

In this section we present an example of results regarding the charged current reaction rates
for some thermodynamic conditions relevant in core-collapse supernova, in order to show the
influence of the various approximations.

To do so, we perform a fiducial core-collapse supernova simulation, by using the core-collapse
simulation code presented in section 9.2. We use the s15 progenitor from [152] (15 M⊙ with
solar metallicity) and two equations of state : HS(DD2) [133] and RG(SLy4) [134], already
presented in the section 9.2.2. Our results are presented in figures 10.1 and 10.2.
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Figure 10.1: Electron neutrino (left) and anti-neutrino (right) opacities κ∗ for T = 12 MeV,
nB = 0.01 fm−3 and Ye = 0.1 (upper panels), T = 19 MeV, nB = 5 × 10−3 fm−3 and Ye = 0.1
(middle panels), and T = 5 MeV, nB = 10−4 fm−3 and Ye = 0.1 (lower panels). These correspond
to typical conditions close to the neutrinosphere in a CCSN from our fiducial simulation. The
different line types distinguish the different approximations and results with HS(DD2) are
indicated in red, whereas those with RG(SLy4) are in blue. The dominant processes contributing
to the opacities in a certain energy domain are mentioned in the figure, too.
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In these figures, the various line types corresponds to the various approximations presented
earlier in this chapter :

• the label Elastic corresponds to the Elastic approximation with non-interacting nucleons

• the label Elastic MF corresponds to the Elastic approximation with Mean Field corrections

• the label MF corresponds to the rates computed with full-kinematics in the Mean Field
theory

• the label RPA corresponds to the rates computed with full-kinematics with RPA correla-
tions in the Landau approximation [195]

• the label RPA t′3 corresponds to the rates computed with full-kinematics with RPA
correlations implemented with the additional repulsive term [197]

• the label RPA πρ corresponds to the rates computed with full-kinematics with RPA
correlations implemented with the microscopically motivated πρ model [198]

Note that because of their high computational cost, RPA rates have been computed only for
the equation of state RG(SLy4).

We clearly see that at low enough densities (see fig. 10.1, panels (a) and (b), for nB = 10−4 fm−3)
the differences between the various approximations are very small. This result was to be
expected, for two reasons :

• correlation effects only occur at very high densities, where the average distance between
nucleons is small. Therefore RPA corrections are expected to have a negligible influence
at low densities

• regarding momentum transfer, the situation is quite similar to the case of scattering off
nucleons, already discussed in the section 5.1.2 : at low densities and temperatures only
small momentum transfer are involved, which justifies the elastic approximation

The situation is different at high densities. For nB = 5 × 10−3 fm−3 (see fig. 10.1, panels (c)
and (d)), we see that the elastic approximation is still valid, as the small differences between the
Elastic MF and MF models tend to show. But the Mean Field corrections are quite significant,
with at least two noticeable effects :

• the reaction threshold present for antineutrinos reactions is shifted by Q∗ −Q

• reactions rates of low energy neutrinos are much higher

RPA correlation have a similar but opposite effect : they tend to decrease the shift of the
threshold and the reaction rate of low energy neutrinos.

Finally, we see that all models make the same predictions for high energy neutrinos, as all
approximations are equivalent in this case.

Another interesting comparison to make is between the effects of the choice of equation state
on the rates and the effect of the approximation used to compute the charged currents (CC).
We see that if at nB = 5 × 10−3 fm−3 both parameters (the choice of EoS and the choice of
the CC prescription) have similar effects on the rates, at higher densities the effect of the CC
prescription tends to have bigger effects than the choice of the equation of state (see fig. 10.1,
panels (e) and (f)).

Finally, at even higher densities we see that the full kinematics become important and that the
elastic approximation is no longer sufficient, which means that the momentum transfer to the
nucleons becomes important (see fig. 10.2, panels (c) and (d)). This observation is similar to
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the trend observed in the computations of [193], where the authors used mean field theory and
full relativistic kinematics.
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Figure 10.2: Electron neutrino (left) and anti-neutrino (right) opacities κ∗ for T = 8 MeV,
nB = 0.11 fm−3 and Ye = 0.05 (upper panels), and T = 5 MeV, nB = 0.01 fm−3 and Ye = 0.15
(lower panels). The different line types distinguish the different approximations and results
with HS(DD2) are indicated in red, whereas those with RG(SLy4) are in blue. The dominant
processes contributing to the opacities in a certain energy domain are mentioned in the figure
[126]

To summarise our conclusions, we see that if the approximation made in the computation of
charged currents has very little influence on neutrinos with an energy higher than a few tens of
MeV, its influence on neutrinos of lower energy can be quite significant. This observation might
be of importance for core-collapse, proto-neutron star and binary merger simulations.

10.3 Influence on a core-collapse

In this section the results of core-collapse simulations using the various approximations for
charged current processes will be discussed.

We have again used the core-collapse simulation code presented in section 9.2 with the HS(DD2)
[133] and RG(SLy4) [134] equations of state. The results presented here have been obtained
with the s15 progenitor from [152] (15 M⊙ with solar metallicity), but we obtained similar
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Figure 10.4: Total neutrino luminosities as a function of time after bounce. [126]

Let us now have a look at the transport properties of low energy neutrinos (below 10 MeV).
The figure 10.5 shows the early post-bounce evolution of neutrinosphere radii, for electrons
(anti-)neutrinos of 2 MeV and 14 MeV.

The neutrinosphere radii are computed with the definition given by eq. (2.26).

In this figure we recover the fact the trapping of neutrinos strongly depends on their energy :
low energy neutrinos escape much more easily than high energy ones, and decouple from matter
at small radii.

Now regarding the influence of the various prescriptions for charged current processes, we see by
the small difference between the Elastic MF and the MF cases that the elastic approximation has
a very small effect. But the prescription for the interaction between nucleons (non-interacting,
mean field or with RPA correlations) has a significant effect. And despite the fact that these low
energy neutrinos have only a marginal contribution to the luminosity, the modification of the
transport properties in the central area may have an influence on the subsequent proto-neutron
star evolution.

To conclude this chapter, the study presented here showed the feasibility of employing detailed
state-of-the-art reaction rates for charged currents in core-collapse supernova simulations. If the
simulations presented here are not pushed far enough to obtain significant differences, some
important effects can be expected on longer timescales, in particular when the star cools down
and that neutrinos below 10 MeV become dominant in the emission.
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Chapter 11

PNS evolution with improved reaction
rates on nucleons

This chapter is the continuation of the work started in chapter 10, which was focusing on
the influence of improved prescriptions for the computation of charged current rates in CCSN
simulations. Here we look at the longer term evolution by using these improved prescriptions in
proto-neutron star cooling simulations [150].

We will consider the following charged current processes :

p+ e− ⇆ n+ νe p⇆ n+ e+ + νe

n+ e+ ⇆ p+ ν̄e n⇆ p+ e− + ν̄e

11.1 Charged current rates and PNS cooling

If PNS simulations start in conditions close to those encountered in CCSN simulations, the
PNS will gradually move away from these conditions as it cools down. Therefore the needs in
charged current rates are slightly different in both simulations.

11.1.1 Failure of the elastic approximation

The elastic approximation presented in section 10.1.1 is commonly used in CCSN simulations,
as it comes with an analytic formula for the rates and yields good results at low densities and/or
high neutrino energies. But because this approximation neglects the transfer of momentum to
the nucleons, the energy exchanged between the nucleons is a fixed quantity which depends only
on their masses and interaction potentials. This strongly restricts the emissivity spectrum.

As a consequence there is a clear discrepancy between the predictions of this approximation at
low temperatures and the formulas commonly used in neutron star cooling, which rely on the
Fermi surface approximation. In particular we do not recover the dURCA threshold condition
(5.10). Another issue is that some processes such as the proton decay p → n + e+ + νe are
completely forbidden within the elastic approximation.

Therefore, if the elastic approximation might provide good results at the beginning of the
simulation, it will inevitably fail when the PNS reaches neutrino transparency. This is why
in this study we did not consider the elastic approximation but only rates computed with full
kinematics, in the mean field approximation (see sec. 10.1.3) or the random phase approximation
(see sec. 10.1.4).
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11.1.2 Modified URCA processes

As discussed in section 5.1.1, at low temperatures the charged current processes discussed
above are kinematically forbidden unless the proton fraction exceeds roughly 11 %. They can
also become strongly suppressed when the final state Pauli blocking requires large energy
and momentum transfer (see e.g. [4]), in which case the so-called modified URCA (mURCA)
processes can become dominant. The mURCA can even have significant effects on the rates at
relatively high temperatures : in [4], the authors notice important effects at T = 8 MeV and
nB = 0.02 fm−3.

As a reminder, they involve a spectator nucleon N which allows to lift the kinematical restriction
evoked above :

p+ e− +N ⇆ n+ νe +N p+N ⇆ n+ e+ + νe +N

n+ e+ +N ⇆ p+ ν̄e +N n+N ⇆ p+ e− + ν̄e +N

In proto-neutron star cooling, the kinematic restrictions are never really an issue, but as the
temperature drops the Pauli blocking effect on the final state can strongly suppress the direct
processes, and therefore modified URCA processes should play an important role when this
condition is met [4].

As explained in section 5.1.1, there have not been many works focused on mURCA processes in
the context of hot matter. In [4], the authors adapted the phenomenological approach developed
in [199] to the case of neutral current processes, which relies on the idea that the presence of
the spectator nucleon leads to collisional broadening. This effect is incorporated as a finite
lifetime τ of the quasi-particle in the nuclear response. Since the vector contribution Im(ΠV (q))
vanishes in the elastic limit, it is generally assumed that the axial contribution Im(ΠA(q))
dominates, such that the collisional broadening effect is incorporated only in the axial part. In
practice it enters the Lindhard function (10.9) used to determine the axial polarisation function
Im(ΠA(q)) = Im(LmURCA(q)) as

LmURCA(q) =
∫ d3k

(2π~)3

fF D(ǫp
k − µ∗

p) − fF D(ǫn
k+q − µ∗

n)
ǫe − ǫν + ǫp

k − ǫn
k+q + i~/τ

(

1 − i~

τ

1
ǫn

k+q − ǫp
k

)

(11.1)

The equation (10.9) is recovered in the τ → ∞ limit. The values for the quasi-particle lifetime
τ are taken from [200].

It should be stressed that this is a phenomenological model for the mURCA process, which
should not be considered as quantitatively reliable. The contribution of modified URCA to the
vector channel is neglected and the values of τ obtained in [200] are valid only in some specific
thermodynamic conditions.

Nevertheless, this simple model should cover the main effects of collisional broadening on charged
currents processes, which are the elimination of reactions thresholds (such as the thresholds
presents in the antineutrino opacities, see fig. 10.1 and 10.2) and the global enhancement of
reaction rates (by allowing more kinematic freedom). These effects will be illustrated in the
next section.

Therefore this prescription should be sufficient in our case as the main goal of this work is to
present the possible effects of mURCA and motivate further studies on the subject.

120



11.1.3 Example of charged-current rates relevant in PNS cooling
conditions

We present here an example of charged-current opacities in conditions relavant in PNS cooling,
in order to show the influence of the various prescriptions.

The figure 11.1 represent the opacities as functions of the energy of the electron (anti-)neutrino,
in conditions close to neutrino transparency. They have been computed with the RG(SLy4)
equation of state [134]. Various line types corresponds to the various prescriptions for charged-
currents :

• the label MF indicates the rates computed with full-kinematics in the Mean Field approx-
imation, discussed in section 10.1.3

• the label MF+MURCA indicates the MF rates for dURCA with the collisional broadening
term caused by the spectator nucleon

• the label RPA t′3 indicates the rates computed with full-kinematics with RPA correlations
implemented with the additional repulsive term [197], discussed in section 10.1.4
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Figure 11.1: Electron neutrino (left) and antineutrino (right) opacities κ∗ for T = 5 MeV,
nB = 10−1 fm−3 and Ye = 0.1. These correspond to typical conditions in the PNS close to
neutrino transparency. The dominant processes contributing to the opacities in a certain energy
domain are mentioned in the figure, too.

The effect of RPA correlations is the same as discussed in section 10.2.2, they tend to decrease
the reaction rate of "low" energy neutrinos (which at this low temperature are dominant in the
PNS).

Now regarding the effect of collisional broadening, we see that it clearly compensates the strongly
suppressed rates at low energies. We see that in these conditions the mean free path of neutrinos
λ = 1/κ∗ is of roughly 0.1 km without collisional broadening and of roughly 0.005 km with this
effect. Therefore taking into account modified URCA effects could slightly delay the transition
to neutrino transparency.

This result should nevertheless be taken with caution. As explained in the previous section, the
values for the quasi-particle lifetime τ are not valid in all conditions, and some additional work
on the subject is required to truly quantify the effects of collisional broadening.
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beginning of the simulation, by enhancing the mean energy of emitted electron neutrinos, which
indirectly increases the electron fraction in the neutrino driven wind.

Of course there are several limitations to this study. We performed our analysis of the effects of
RPA and mURCA with only one equation of state and one progenitor, thus the validity of our
conclusions is limited. The numerical method used is also not without defaults : our neutrino
transport scheme is approximate and does not behave as well as some recent methods (as e.g.
variable Eddington transport methods [93]) in the semi-transparent region, though it is still
more elaborated than equilibrium flux limited diffusion methods and have a similar numerical
cost. There is also a discontinuity in the evolution of our model in the transition between the
CCSN evolution code with full-hydrodynamics and our quasi-static PNS cooling, in addition to
the fact that we completely neglected the accretion process, therefore the first few hundreds of
milliseconds in the evolution of our models should not be considered as reproducing accurately
the conditions in core-collapse supernova. In particular we sometimes see a "re-leptonization"
because our initial model is not in radiative equilibrium. But this initial phase of adaptation
does not have not of a significant influence on the global evalution and does not last longer than
a few hundreds of milliseconds.

We nevertheless demonstrated the feasibility of proto-neutron star studies including mixing
length theory and state-of-the-art microphysics for the computation of neutrino interactions
with a new low-cost numerical algorithm. This kind of method allows to study a wide parameter
space in a reasonable time and will certainly prove useful as uncertainties in proto-neutron stars
evolution are still numerous.
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Conclusion and perspectives

Since the supernova 1987A, neutrino detectors have been considerably improved, and associated
to the emergent field of gravitational wave astronomy we should be able to learn a lot from the
next galactic supernova. To interpret these data we will need accurate models of the core-collapse
and proto-neutron star multi-messenger emissions, and this thesis aims to add a stone to this
edifice.

We focused mostly on the role of neutrinos in these phenomena, along with the emitted neutrino
spectrum and luminosity, which are of interest for neutrino detectors. For this we built models
using several approximations, among which we find the asumption of spherical symmetry and a
simplified neutrino transport. These models should nevertheless reproduce the main effects on
the studied parameters and motivate further studies on several interesting points.

Simulations of core-collapse were conducted with the CoCoNuT code, in which we have added the
Fast Multigroup Transport for neutrinos [120]. In our results, we show that the prescription used
to compute electron capture rates has a significant effect on the infall phase, and that using the Q-
value dependant fits [170][172] on results of microscopic calculations yields results quantitatively
differents from the analytic formula obtained with the approximation of independent particles.
The deleptonization before the bounce is enhanced, which yields a weaker shock. The most
relevant nuclei have been identified, which should motivate further studies with microscopic
computations of electron capture rates [184].

Then, a new code was developed to model the evolution of proto-neutron stars [150]. This
code relies on the quasi-static approximation and is using the Fast Multigroup Transport for
neutrinos. We applied this code to study the early time evolution of a proto-neutron star and
obtain the corresponding evolution of its mass and radius [157]. In this context, recent studies
suggest that measuring the gravitational wave emission from a proto-neutron star allows to
determine its mass and radius [154]. Our study, however, concluded that it will be difficult to
extract cold NS properties from PNS mass and radius because of the unknown internal structure
of the PNS, in particular its entropy distribution.

We also implemented convective effects with the Mixing Length Theory (MLT) [164] and showed
that models including MLT are qualitatively close to full 3D models [5], but very different from
non-convective ones [150]. As MLT can be implemented in a very efficient way, we encourage
further 1D studies on proto-neutron stars to systematically use it. MLT has nevertheless some
shortcomings, among which the fact that it does not take into account convective overshoot.
We have considered the toy model of [94] and some anelastic convection models combined with
the two columns formalism of [165] as a possible improvement for our algorithm.

Finally, we studied the influence of various prescriptions for the computation of rates for charged-
current processes during both core-collapse [126] and proto-neutron star evolution [150]. Among
the studied effects there are the elastic approximation opposed to a full kinematic treatment,
and the inclusion of nucleonic interactions via mean field effects, RPA correlations and collisional
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broadening. We see very little effects on the early evolution, but the various models start
to diverge after the onset of neutrino transparency, which leads us to suspect that the early
evolution of the nascent neutron star might be very different depending on the prescription
for charged currents. This fact might be of importance in models of crust formation [100] and
deserves some attention in further studies.
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Appendix A

Analytic fit for nucleon-nucleon
bremsstrahlung

In this appendix we give the explicit fit formula s(ω/T ) needed for the computation of the spin
autocorrelation function (see eq. (5.17)).

We define the dimensionless parameters x =
ω

T
and y =

m2
π

mNT
where mπ is the pion mass.

Non degenerate limit

In the non-degenerate limit η∗ = 0 (where η∗ is defined as in eq. (5.20)), the function s is given
by

sND(x, y) =
2
√
π (x+ 2 − e−y/12)3/2 [x2 + 2xy + (5/3)y2 + 1]√

π + (π1/8 + x+ y)4
(A.1)

Degenerate limit

In the degenerate limit η∗ ≫ 1 we have

sD(x, y, η∗) = 3
(

π

2

)

η−5/2
∗

(x2 + 4π2)x
4π2(1 − e−x)

f

(
√

y

2η∗

)

(A.2)

where f(u) = 1 − 5u
6

arctan
(2
u

)

+
u2

3(u2 + 4)
+

u2

6
√

2u2 + 4
arctan

(

2
√

2u2 + 4
u2

)

Interpolation between the two limits

In the general case we use the following interpolation formula :

s(x, y, η∗) =
[

(sND)−p(y) + (sD)−p(y)
]−1/p(y) × F (x, y, η∗) [1 + C(x, y, η∗)G(x, y, η∗)] (A.3)

where the exponent p(y) is defined as

p(y) = 0.67 + 0.18y0.4 (A.4)
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and the functions F , C and G are given by

F (x, y, η∗) = 1 +
1

[3 + (x− 1.2)2 + x−4] (1 + η2
∗)(1 + y4)

(A.5)

G(x, y, η∗) = 1 − 0.0044x1.1 y

0.8 + 0.06y1.05

η0.5
∗

η∗ + 0.2
(A.6)

C(x, y, η∗) =
1.1x1.1h(η∗)

2.3 + h(η∗)x0.93 + 0.0001x1.2

30
30 + 0.005x2.8

with h(η∗) =
0.1η∗

2.39 + 0.1η1.1
∗

(A.7)
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Appendix B

Analytic fit for the ion screening effect

In this appendix we provide the fit formula for the angular average 〈S(ǫν)〉ion (5.27) of the
dynamic structure function, from the work of [138].

We start by defining the average distance between ions aion, given by

aion(A,Z) =

(

4πn(A,Z)
3

)−1/3

(B.1)

where n(A,Z) is the density of nuclei A
ZX.

This fit formula depend upon two dimensionless constants :

• the adimensioned neutrino energy ǭν , given by

ǭ =
ǫνa

~c
(B.2)

• the ratio of the Coulomb potential to the thermal energy Γ, given by

Γ =
Z2α

aT
(B.3)

where α = 0.007 297 is the fine structure constant

The fit function is then

〈S(ǫν)〉ion =







[

1 + exp
(

−∑6
i=0 βi(Γ)ǭ i

)]−1
for ǭ < 3 + 4/

√
Γ

1 for ǭ > 3 + 4/
√

Γ
(B.4)

The three first function βi(Γ) (for i = 0, 1, 2) are given by

β0(Γ) = ln
[ 0.3
0.3 + 3Γ

]

(B.5)

β1(Γ) = 0 (B.6)

β2(Γ) = 6.667 (B.7)

Finally, the other functions βi(Γ) are given as power series of
√

Γ with tabulated coefficients :

βi(Γ) = βi,1 + βi,2Γ1/2 + βi,3Γ + βi,4Γ3/2 (B.8)

the coefficients βi,j are given in the table B.1.
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Coeff. j = 1 j = 2 j = 3 j = 4

β3,j −7.362 056 0.537 136 5 −0.107 884 5 4.189 612 × 10−3

β4,j 3.448 958 1 −0.402 516 56 9.087 787 8 × 10−2 −3.435 358 1 × 10−3

β5,j −0.741 286 45 0.110 198 55 −2.535 936 1 × 10−2 9.048 774 4 × 10−4

β6,j 5.957 328 5 × 10−2 −1.018 655 2 × 10−2 2.279 136 9 × 10−3 −7.461 459 7 × 10−5

Table B.1: Tabulated coefficients for the equation (B.8)
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Appendix C

Kernel for neutrino-charged lepton
scattering

In this appendix we provide expressions for the functions HI
0 and HII

0 used in the equation
(5.29).

Thoses functions can be found in [140]. They are given with the modifications provided below
eq. (C50) in [129].

We recall that ǫ represent the energy of the incoming neutrino, ǫ′ the energy of the outcoming
neutrino and E the energy of the charged lepton before the scattering.

The expressions depend upon the relative ordering of ǫ′ and E.

Case ǫ′ ≥ E

HI
0 (ǫ, ǫ′, E) =

4
15
E5 +

4
3
E4ǫ+

8
3
E3ǫ2 + Θ(ǫ′ − ǫ)Γ0(ǫ, ǫ′) (C.1)

HII
0 (ǫ, ǫ′, E) =

4
15
E5 − 4

3
E4ǫ′ +

8
3
E3(ǫ′)2 + Θ(ǫ′ − ǫ)Γ0(−ǫ′,−ǫ) (C.2)

where Θ is the usual Heaviside step function and Γ0 is given by

Γ0(x, y) =
8
3
E2(x3 − y3) + 4E(x− y)2

(

x2

3
+

2xy
3

+ y2

)

+ 4(x− y)3

(

x2

15
+
xy

5
+

2y2

5

)

(C.3)

Case ǫ′ ≤ E

HI
0 (ǫ, ǫ′, E) = a0(ǫ, ǫ′) + b0(ǫ, ǫ′)E + c0(ǫ, ǫ′)E2 (C.4)

HII
0 (ǫ, ǫ′, E) = a0(ǫ′, ǫ) − b0(ǫ′, ǫ)E + c0(ǫ′, ǫ)E2 (C.5)

where the functions a0, b0 and c0 are given by
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a0(x, y) =



















8
3
x2y3 − 4xy4 +

8
5
y5 if x ≥ y

4
15
x5 if x ≤ y

(C.6)

b0(x, y) =



















16
3
xy3 − 4y4 if x ≥ y

4
3
x4 if x ≤ y

(C.7)

c0(x, y) =



















8
3
y3 if x ≥ y

8
3
x3 if x ≤ y

(C.8)
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Appendix D

Kernel for electron-positron pair
process

In this appendix we provide expressions for the functions J I
0 and J II

0 used in the equation (5.31),
which can be found in [129].

We consider the process
e− + e+ ⇆ ν + ν̄

and we recall that ǫ represent the energy of the outgoing neutrino e−, ǫ′ the energy of the
outgoing antineutrino ν̄ and E the energy of the electron e−.

We also have the relation J I
l (ǫ′, ǫ) = J II

l (ǫ, ǫ′), stemming from particle exchange symmetry.

The expressions depend upon the relative ordering of ǫ, ǫ′ and E.

Case ǫ ≥ E and ǫ′ ≥ E

J I
0 (ǫ, ǫ′, E) =

1
ǫ2(ǫ′)2

Θ(ǫ+ ǫ′ − E)
[ 4
15
E5 − 4

3
E4ǫ′ +

8
3
E3(ǫ′)2

]

(D.1)

Case ǫ ≤ E and ǫ′ ≤ E

J I
0 (ǫ, ǫ′, E) =

1
ǫ2(ǫ′)2

Θ(ǫ+ ǫ′ − E)
[

− 4
15
E5 +

4
3
E4ǫ′ − 8

3
E3(ǫ′)2+ (D.2)

8
3
E(ǫ+ ǫ′)2((ǫ′)2 − 2ǫǫ′ + 3ǫ2) +

4
15

(ǫ+ ǫ′)3((ǫ′)2 − 3ǫǫ′ + 6ǫ2)
]

Case ǫ ≤ E and ǫ′ ≥ E

J I
0 (ǫ, ǫ′, E) =

ǫ

(ǫ′)2
Θ(ǫ+ ǫ′ − E)

[

8
3

(ǫ′)2 + 4ǫǫ′ +
8
5
ǫ2 − 16

3
Eǫ2 + 4E

ǫ3

ǫ′
+

8
3
E2 ǫ

2

ǫ′

]

(D.3)

Case ǫ ≥ E and ǫ′ ≤ E

J I
0 (ǫ, ǫ′, E) =

1
ǫǫ′

Θ(ǫ+ ǫ′ − E)

[

4
15

(ǫ′)4

ǫ
− 4

3
(ǫ′)3

ǫ
E +

8
3

(ǫ′)2

ǫ
E2

]

(D.4)
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Appendix E

Precomputation of functions for
charged leptons processes

In this appendix we explain how to precompute the functions AI and AII (from eq. (5.29)), as
well as the functions BI and BII (from eq. (5.31)), into three-dimensional numerical tables.

We introduce the notations x =
ǫ

T
, x′ =

ǫ′

T
and ηe =

µe

T
.

The key point for the procedure is to remark that the functions Hk
l (ǫ, ǫ′, E) are polynomials

homogeneous to an energy to the power of 5 (see appendix C). Therefore we can write

Hk
l (ǫ, ǫ′, E) = T 5Hk

l (x, x′, y) where y =
E

T
(E.1)

The eq. (5.29) can be recasted as

Ak
l (ǫ, ǫ′) = T 2ak

l (x, x′, ηe)

where ak
l (x, x′, ηe) =

4GF

(hc)3

1
x2(x′)2

∫ ∞

max(0,x′−x)
dy

1
1 + ey±ηe

×
(

1 − 1
1 + ey+x−x′±ηe

)

Hk
l (x, x′, y) (E.2)

And we can precompute the coefficients ak
l (x, x′,±ηe) and create 3D numerical tables usable in

simulations.

For the case of the pair process, we use the same idea, from appendix D we have

J I
0 (ǫ, ǫ′, E) = TJ I

0 (x, x′, y) (E.3)

and we can rewrite eq. (5.31) as

Bl(ǫ, ǫ′)k = T 2bk
l (x, x′, ηe)

where bk
l (x, x′, ηe) =

4GF

(hc)3

∫ x+x′

0
dy

1
1 + ey−ηe

× 1
1 + ex+x′−y+ηe

J l(x, x′, y) (E.4)

and then precompute the coefficients bI
l (x, x′, ηe) in 3D numerical tables.
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Appendix G

Numerical implementation of the PNS
evolution code

In this appendix we describe the implementation of the above equations into the evolution
algorithm that we used to model proto-neutron star evolution.

G.0.1 Grid and discrete set of equations

Lagrangian grid

For an easier implementation of the evolution equations, we use a Lagrangian grid. We introduce
the enclosed baryon number coordinate :

a(r) = 4π
∫ r

0
nB ψr

2 dr (G.1)

During our simulations, the enclosed baryon number grid {ai}0≤i≤m is fixed, and therefore the

Lagrangian derivative is given by a time derivative at constant a :
D

Dτ
=

(

∂

∂t

)

a

.

NB = a(R) = am is then the total baryon number in the star.

One of the difficulties of this method is the choice of the grid, as a uniform grid tends to produce
a very sparse grid in the central area (at low r) and in the outer areas (at low nB), indeed we
have

dr

da
=

1
4πnBψr2

(G.2)

and such a sparse grid in r introduces numerical errors in our neutrino transport solver.

We found that in order to produce a grid that yields good results in a wide range of situations,
it is convenient to split the grid into two separate parts :

• a central area which contains mc points and a baryon number (NB)c, for which grid points
are given by

ai = (NB)c

(

i

mc

)3

for 0 ≤ i ≤ mc (G.3)

This choice corrects for the fact that a ∝ r3 in the central area with quasi-constant density
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• an outer area which contains m−mc points for which the baryon number in a cell is given
as a geometric series :

ai − ai−1 = qi−mc × (NB)c for mc + 1 ≤ i ≤ m (G.4)

As q ≤ 1 this choice tends to produce a very fine grid in the outer layers and corrects for
the sparsity of the radial grid at low densities

We obtain the correct total baryon number if

NB =
1 − qm−mc+1

1 − q
(NB)c (G.5)

we found that a choice of parameters that gives good results is given by mc = m/40 and
qm−mc+1 = 0.1 .

Finite volume scheme

Now, since the evolution relies on the conservation equations of lepton number and entropy, we
implemented the radial grid discretization with a finite volume scheme, as this kind of methods
is conservative.

We start by defining the baryon number contained in a cell as

Ai = ai − ai−1 (G.6)

and the volume of a cell as
Vi =

4
3
π
(

r3
i − r3

i−1

)

(G.7)

thus the finite volume discretization of eq. (G.1) is

Ai = (nB)i ψiVi (G.8)

In practice we use the above equation to compute the volume of all cells {Vi}1≤i≤m, and we
deduce the radial grid {ri}0≤i≤m.

Finally, we introduce the expression of the surface of a cell, which will be needed to compute
numerical fluxes :

Si = 4πr2
i (G.9)

Discretization of PNS evolution equations

Because of the significant computational cost of an implicit neutrino transport scheme we
choosed to solve the time evolution equations of the proto-neutron with an explicit scheme. It
should be stressed that because of this choice the value of the timestep δt is limited in order to
have relatively small variations of the electron fraction and the entropy per baryon. We found
that limiting such variations to 0.5 % per time step allows to obtain good results and is a good
compromise compared with an implicit scheme.

Within a finite volume scheme, conservation laws are implemented under their integral form.
For the electron conservation law (6.11) we obtain

δt {[AYe]i} = [(Γν̄e
− Γνe

)αψV ]i (G.10)
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where δt {X} represent the discrete time derivative of X for an explicit Euler scheme :

δt {X} =
1
δt

(X(t+ δt) −X(t)) (G.11)

And for the entropy conservation law (6.14) we obtain

δt {[A s]i} =

[(

−(Qνe
+Qν̄e

+ 4Qνx
)

TnB

+
µe (Γνe

− Γν̄e
)

T

)

αψV
]

i

(G.12)

Resolution of structure equations

The value of the metric potentials ψ and α on cell interfaces are noted ψif and αif . They are
defined as ψi = ([ψif ]i + [ψif ]i−1)/2 and αi = ([αif ]i + [αif ]i−1)/2.

The TOV equations (6.4), (6.5) and (6.6) are then discretized as follows :

ψif =
(

1 − 2Gmi

ric2

)−1/2

(G.13)

mi = mi−1 +
1
c2

[

A E
nBψ

]

i

(G.14)

gi = G
[

ψ2
if

(

m

r2
+ 4πr2 p

c2

)]

i
(G.15)

Then, to be compatible with future implementations of the Euler hydrodynamic equation, the
hydrostatic equilibrium equation (6.8) has been discretized as follows :

(Pi+1 − Pi)Si = − 1
c2

[(E + P )gV ]i (G.16)

The boundary conditions are m0 = 0 and PN = Psurf, where Psurf is a fixed value of the pressure.
The value of Psurf is choosen to be the best compromise that satisfies the following constraints :

• Psurf should be low enough to model the structure of the PNS accurately, the ideal value
being Psurf = 0. The solution in the mantle becomes less and less accurate with high
values of Psurf.

• The timestep is inversely proportional to the surface density, indeed in eq. (6.11) and
(6.14) the source terms depend on 1/nB. Therefore the surface pressure should be high
enough to limit the timestep to reasonable values.

We found that a value Psurf = 10−6 MeV fm−3 is a good compromise, and we used this value in
our simulations.

Finally, we need to compute the lapse α needed in transport equations, which is given by

[lnα]i = [lnα]i+1 − gi

c2
(r̄i+1 − r̄i) (G.17)

with the averaged radius given by

r̄3
i =

1
2

(

r3
i + r3

i−1

)

(G.18)
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G.0.2 Treatment of neutrino transport

Energy grid and moments of neutrino distributions

The energy grid {ǫi}1≤i≤n is built such that

ǫi = exp
(1

2
(ln(ǫmax) + ln(ǫmin)) +

xi

2
(ln(ǫmax) − ln(ǫmin))

)

(G.19)

where −1 ≤ xi ≤ 1. The grid {xi}1≤i≤n is a Gauss-Legendre grid (see appendix H). We note wi

the weights associated to the nodes xi.

This choice allows to express the moment integrals of the distributions as

∫

f(ǫ)ǫkdǫ ≈ ln(ǫmax) − ln(ǫmin)
2

n
∑

i=1

fiǫ
k+1
i wi (G.20)

where fi ∼ f(ǫi)

In all the simulations presented in this document we used 20 points in the energy grid.

Neutrino transport scheme

Regarding the neutrino transport, we start by solving the two-ray problem with (4.84) and
(4.85) in order to obtain the flux factor hν with eq. (4.88). This problem is solved as in [120], by
using a Ricatti transformation. Then we integrate the steady-state neutrino flux equation (4.83).
This equation is extremely stiff, which means that an integration with an explicit method can
easily fail if the spatial step is too high, as the derivative of Hν strongly depends on the function
Hν itself. Therefore we integrate this equation with an implicit scheme.

For hν < 0 we obtain

[

HνS
α2

]

i+1
−
[

HνS
α2

]

i
=

[

j
ψV
α2

]

i+1

−
[

χ
ψV
α2

]

i+1

[

Hν

hν

]

i

(G.21)

thus we perform an inward integration ((Hν)i is computed by using the value of (Hν)i+1)

[Hν ]i =

(

[

HνS
α2

]

i+1
−
[

j
ψV
α2

]

i+1

)/(

[ S
α2

]

i
−
[

χ
ψV
α2

]

i+1

[ 1
hν

]

i

)

(G.22)

And for hν > 0 we obtain

[

HνS
α2

]

i
−
[

HνS
α2

]

i−1
=

[

j
ψV
α2

]

i

−
[

χ
ψV
α2

]

i

[

Hν

hν

]

i

(G.23)

thus we perform an outward integration ((Hν)i is computed by using the value of (Hν)i−1)

[Hν ]i =

(

[

HνS
α2

]

i−1
+

[

j
ψV
α2

]

i+1

)/(

[ S
α2

]

i
+

[

χ
ψV
α2

]

i

[ 1
hν

]

i

)

Note that for hν > 0.5 we use the two-moments equation (4.91) to compute hν instead of using
the two stream solution. As this equation is not stiff we can integrate it with an explicit scheme.
We use a Runge-Kutta of fourth order.
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Hydrodynamic source terms

In order to have neutrino luminosities consistent with the deleptonization and cooling rate, we
implement the source terms as the finite-volume divergences of outgoing neutrinos fluxes, as
given by eq. (4.80) and (4.81) :

[ΓναψV ]i =
[

αSF (n)
ν

]

i
−
[

αSF (n)
ν

]

i−1
(G.24)

[

Qνα
2ψV

]

i
=
[

α2SF (E)
ν

]

i
−
[

α2SF (E)
ν

]

i−1
(G.25)

For the case of the electron conservation law, we can see that this method allows the number
luminosity to be equal to the deleptonization rate up to machine precision, indeed with eq.
(G.10) we obtain

∑

i

δt {[AYe]i} =
[

αS
(

F (n)
νe

− F
(n)
ν̄e

)]

n
(G.26)

This fact has been verified for our algorithm as a test of the implementation of the finite volume
scheme.
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Appendix H

Gauss-Legendre quadrature method

A Gauss-Legendre quadrature method is an approximation to compute the integral of a function
f(x) defined on the interval [−1, 1].

The quadrature rule can be written as

∫ 1

−1
f(x) dx ≈

n
∑

i=1

wif(xi) (H.1)

where xi are the roots of the nth Legendre polynomial Pn(x), and wi are the quadrature weights,
given by

wi =
2

(1 − x2
i ) [P ′

n(xi)]
2 (H.2)

This method has the advantage of being extremely accurate, and is exact is f(x) is a polynomial
of degree 2n− 1.

But it has the disadvantage of requiring the value of the function at some specific points, and is
therefore not adapted to all situations.

It is possible to map the points xi to other coordinates yi = g(xi) (as done in eq. (G.19)), and
in this case we have

∫ g(1)

g(−1)
f(yi) dy ≈

n
∑

i=1

wif(yi)g′(xi) (H.3)
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Appendix I

Implicit solver for the MLT scheme

This appendix presents the implicit scheme used to compute the effects of MLT without
restriction of timestep (see section 8.2.3).

The MLT diffusion equation for the quantity x = Ye, s can be written as

1
α

Dx

Dt
=

1
r2αψ

∂

∂r

(

αr2DMLTnB
∂x

∂r

)

(I.1)

it is discretized as follows :

1
δt

(

[A x]t1 − [A x]t−δt
1

)

=

[

d1

A1

[A x]1 − d1

A2

[A x]2

]t

(I.2)

1
δt

(

[A x]ti − [A x]t−δt
i

)

=

[

di + di−1

Ai

[A x]i − di−1

Ai−1

[A x]i−1 − di

Ai+1

[A x]i+1

]t

(I.3)

1
δt

(

[A x]tm − [A x]t−δt
m

)

=

[

dm−1

Am

[A x]m − dm−1

Am−1

[A x]m−1

]t

(I.4)

where d =
nBSDMLTα

δr

We can check that this discretization is conservative for [A x] :

m
∑

i=1

1
δt

(

[A x]ti − [A x]t−δt
i

)

= 0 (I.5)

(I.2-I.4) is a linear system of equations on the vector [A x]t1≤i≤m :

1
δt

(

[A x]ti − [A x]t−δt
i

)

= Mij [Ax]tj (I.6)

we write this system as
[Id − δtM]ij [Ax]tj = [A x]t−δt

i (I.7)

The matrix Id − δtM is a sparse matrix, and the equation (I.7) can be solved almost without
additional computational cost with a sparse LU solver.
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