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Introduction

Space exploration and commercial use of space applications heavily depend on the available propulsion systems. Electric thrusters have played a fundamental role in the last years in the space propulsion field worldwide. However, the working principle of current mature technologies relies on critical components like the neutralizer cathode or the accelerating grid [START_REF] Melkumov | Pioneers of Rocket Technology[END_REF]. Those components generate limitations such as a reduced lifetime, erosion issues, and a significant risk of failure. To contribute to the worldwide efforts around the development of propulsion technologies capable of overcoming those limitations, Onera is trying to demonstrate the feasibility of a new propulsion device. It is an electromagnetic device known as an "ECR" thruster for the Electron Cyclotron Resonance phenomenon used to heat the plasma.

It consists of a cathode-less and grid-less device that uses the cyclotron resonance phenomenon to heat the plasma using electromagnetic waves. Several prototypes of the thruster have been successfully tested in experimental facilities. Nevertheless, the physical phenomena governing the plasma heating and acceleration in the thruster

are not yet fully understood. This lack of understanding is a crucial problem that needs to be solved to develop an optimized prototype to use for in-space applications.

To tackle this problem, the research around the ECR plasma thruster has increased since the previous experimental works at Onera around 2013 [Jarrige et al., 2013b,c]. These studies complement past developments that can be traced back to the 1960s. [START_REF] Domitz | Survey of Electromagnetic Accelerators for Space Propulsion[END_REF] carried out a survey of the experimental status of plasma thrusters for space propulsion of the time. According to the authors, experimental results on microwave-driven devices designed to excite the electron cyclotron frequency were reported by General Electric [START_REF] Miller | Cyclotron Resonance Propulsion System[END_REF] and Radio Corporation of America [START_REF] Hendel | Continuous Plasma Acceleration At Electron Cyclotron Resonance[END_REF]. These propulsion devices were different from the current coaxial ECR thruster concept but exploiting the same physical principle to heat the plasma. These pioneer results gave us new information about the ECR plasma acceleration process and showed an important influence of the shape of the magnetic field on efficiency. They found that specific impulses and thrusts of interest for space propulsion could be achieved and values of energy-coupling efficiency from microwave into the plasma on the order of 80% to 90%. However, the work was limited to an experimental study that provides only a macroscopic plasma response. With these macroscopic descriptions, it is difficult to get a profound theoretical understanding of the physical mechanisms governing the plasma behavior.

The inefficiency of the microwave sources at the time lead to the stagnation of the research around this technology. After some time, [START_REF] Sercel | An Experimental and Theoretical Study of the ECR Plasma Engine[END_REF] published his doctoral dissertation as an experimental study around the ECR technology. His work confirmed the potential of this technology to provide a high efficiency and encouraged the development of this research area to get a deeper understanding of its fundamental physics. Nowadays, a considerable effort has been made to get a deeper understanding of the physical phenomena governing the plasma heating dynamics and acceleration in the thruster. This quest for gaining insights on the thruster working principles has been at the origin of several experimental Ph.D. theses around this subject, like the ones of [Cannat, 2016a], [START_REF] Vialis | Développement d'un propulseur plasma à résonance cyclotron électronique pour les satellites[END_REF], and [START_REF] Peterschmitt | Development of a stable and efficient electron cyclotron resonance thruster with magnetic nozzle[END_REF].

These works allowed the development of accurate techniques for measuring the plasma properties in the magnetic nozzle. They also allowed to carry out parametric studies to understand the influence of several factors around the thruster design. The experimental studies have mainly been focused on plasma potential, plasma density, electron temperature, and ion kinetic energy using Langmuir probes, Laser-Induced Fluorescence diagnostics, Faraday gridded probes, and a thrust balance [START_REF] Correyero | Plasma beam characterization along the magnetic nozzle of an ECR thruster[END_REF]Jarrige et al., 2013a;[START_REF] Vialis | Direct Thrust Measurement of an Electron Cyclotron Resonance Plasma Thruster[END_REF]]. An experimental geometry optimization of the thruster based on direct thrust measurements was carried out by [START_REF] Vialis | Geometry optimization and effect of gas propellant in an electron cyclotron resonance plasma thruster[END_REF]. This study also revealed that the thruster efficiency is very sensitive to the neutral background gas pressure. The impact of the neutral background gas has also been studied to define the most suitable propellant for the thruster. [START_REF] Cannat | Experimental investigation of magnetic gradient influence in a coaxial ECR plasma thruster[END_REF]Jarrige et al., 2013c;[START_REF] Vialis | Geometry optimization and effect of gas propellant in an electron cyclotron resonance plasma thruster[END_REF] found that better performances were obtained using xenon instead of argon or krypton. [Cannat, 2016a;[START_REF] Vialis | Développement d'un propulseur plasma à résonance cyclotron électronique pour les satellites[END_REF] studied the influence of the microwave heating parameters on the thruster efficiency experimentally, and [START_REF] Peterschmitt | A diffusion model in velocity space to describe the electron dynamics in an ECR plasma thruster with magnetic nozzle[END_REF] proposed a simplified analytical model for the microwave heating. These studies have proven to be helpful in our quest for understanding the plasma dynamics in the thruster. As a result, it has been possible to increase the thruster lifetime and optimize its design to achieve a high efficiency.

A brief assessment of the previously cited studies shows that various experimental investigations have characterized the thruster capacity to produce a thrust adapted to the nanosatellite market. We now have a deeper understanding of some aspects of the ECR thruster, such as the influence of the collisions between the charged particles and the neutral background gas, the electron confinement on the coaxial chamber, or the ions dynamics. However, the fine details of the complex physics inside the thruster

are not yet fully understood. Additionally, these studies have so far been limited to survey the plasma outside the thruster because the inner part represents a challenging environment for traditional probes in the electric propulsion field. Among the key issues to understand, we can cite the anisotropic microwave heating by resonant absorption and a more detailed description of the non-local transport of magnetized electrons. As a consequence of all this lacking information, it is still not possible to propose a thruster design capable of being used in real-life scenarios. We believe that the use of numerical simulations can contribute to increasing our understanding of these open questions. This belief was shared by [START_REF] Sercel | An Experimental and Theoretical Study of the ECR Plasma Engine[END_REF] when he wrote in his doctoral dissertation: "Given the projected power of the next generation of supercomputers, it is quite likely that by the time a complete particle-in-cell model of the ECR plasma engine can be formulated, a computer will be available to simulate the device in at least two dimensions". The time has come.

These arguments are the primary motivation for this research work. The goal of this thesis is to perform kinetic simulations of the magnetized plasma dynamics inside the ECR thruster and its interaction with the microwaves to identify the physical mechanisms governing the plasma behavior.

Dissertation Structure

In chapter 1 we present a literature review regarding the two main domains that form the framework on this research project: electric propulsion and kinetic plasma simulation. We propose a summary for the state-of-the-art of research works previous to our own. The idea is to position our work in the broader context of the joint effort undertaken by the electric propulsion community to improve the ECR thruster and on which this work is based. Afterward, in chapter 2, Onera's Particle-In-Cell code for the simulation of cold plasmas is presented. The idea is to provide an overview of the structure, features, and limitations of the tool used for this study. The remaining chapters are the consequence of a choice made during this research work: to follow a progressive approach by starting with a simplified modeling of the thruster and then start gaining in complexity. Each chapter dedicated to the simulation for a given model of the thruster is preceded by a chapter describing the developments required for the electromagnetic module adapted to that configuration.

The main body of this dissertation consists of 5 substantive chapters presented in this manuscript with a structure established using the same analogy given by Andrew Wiles between his experience doing mathematics and exploring a dark mansion:

"You enter the first room of the mansion and it is completely dark. In complete blackness. You stumble around bumping into the furniture, but you gradually learn where each piece of furniture is. Finally, after six months or so, you find the light switch, you turn it on, and suddenly it is all illuminated. You can see exactly where you were. Then you move into the next room and spend another six months in the dark. So each of these breakthroughs, while sometimes they are momentary, sometimes over a period of a day or two, they are the culmination of and could not exist without the many months of stumbling around in the dark that preceded them." A. Willes, Abel Prize winner for proving Fermat's last theorem.

Each one of the following chapters represents what I identify now as being one of those dark rooms during my doctoral formation in which I moved through. I learned as much as I could before considering I could move to the next one in each of them.

In chapter 3 the goal is to propose a means to compute the electromagnetic fields from a microwave in a Cartesian coordinate system to take into account their influence on the plasma dynamics. We developed and validated an electromagnetic solver in 1D planar after comparing different methods to achieve this goal. There are two main steps we followed in this part. Firstly, we identified numerical methods capable of solving Maxwell's equations to compute the desired fields and capable of meeting the constraints we imposed for these computations based on the particularities of our work. Secondly, we developed prototypes for those methods to proceed to a validation phase by comparing the values of the simulated electromagnetic fields with those obtained by analytical expression in simple scenarios where an analytical analysis is feasible.

In chapter 4 the goal is to analyze the plasma behavior in a simplified onedimensional model of the ECR thruster. It will be done by using our Particle-In-Cell code and the electromagnetic solver developed in the previous chapter. We aim to identify some of the physical mechanisms taking place inside the thruster governing the plasma behavior. The idea is to propose a 1D3V (one-dimensional in space threedimensional in velocity) numerical model of the device, knowing that the simplifying hypothesis needed to build it will allow us to capture some part of the physics but not all of it. Still, we considered it a good trade-off for a first approximation to the problem without using an excessive amount of computational resources.

In chapter 5 the goal is to analyze the impact of the modification of some of the thruster design parameters on the plasma behavior. To accomplish this objective, we will use the model presented in the previous chapter to run a parametric study and examine the plasma response. It will help us improve our knowledge about the thruster working principles and better assess the sensibility of our numerical model to several of the user-defined parameter on which it is based. This survey will give us a more accurate view of the validity of the results.

In chapter 6 the goal is also, like in chapter 3, to propose a means to compute the electromagnetic fields from a microwave. Although this time, the fields would be based on a cylindrical coordinate system because it was the same coordinate system we were planning to use to generate a more complex model of the thruster based on its cylindrical symmetry. To accomplish this objective, we developed a 2D axisymmetric electromagnetic solver using large time step sizes. It was also validated with different test cases by comparing the values of the simulated electromagnetic fields with those obtained analytically. Some of the developments carried out in this chapter were presented in a publication.

In chapter 7 the goal is to analyze the plasma behavior using the preliminary results of two-dimensional simulations of the ECR thruster with our Particle-In-Cell code and the electromagnetic solver developed in the previous chapter. The motivation for this study is to identify those physical mechanisms taking place inside the thruster that we may not have been able to see in chapter 4 because of the simplifying assumptions we used to build the 1D3V model. The idea is to propose a 2D3V (two-dimensional in space three-dimensional in velocity) numerical model, knowing that this configuration will allow us to get a representation of the thruster closer to its actual geometry. The motivation for this idea was that we hoped to capture more details about the plasma behavior with this more accurate description while been less computationally expensive than a three-dimensional model.

Chapter 1

State of the Art

Chapter structure: The goal of this chapter is to present an overview of the two main fields that build the framework for this research project: electric propulsion and numerical simulation for plasma physics. The major developments are presented to place our project into the continuity of previous works. Section 1.1 is devoted to the electric propulsion field, the details of the ECR thruster technology with magnetic nozzle, and the previous developments carried out by research works in the past. Recent developments being conducted in parallel to this research project are also presented. In section 1.2 we will take a look at previous research efforts towards selfconsistent simulations of the ECR heating mechanism. Finally, we will present an overview of research works using numerical simulations to study the ECR thruster. 

Electric Propulsion

Electric thrusters have played a fundamental role in the last years in the space propulsion field worldwide. This type of thrusters experienced a significant improvement since their first developments in the 1960s [START_REF] Melkumov | Pioneers of Rocket Technology[END_REF], and they are currently a mature technology. As we shall see later in this chapter, the main attraction of this technology lies in the efficient utilization of the propellant mass, and therefore a reduced propellant consumption. This improvement in the efficiency allows the inclusion of a greater portion of useful payload or an increased lifetime for the rocket in comparison with conventional chemical propulsion systems [START_REF] Jahn | [END_REF].

Fundamentals of Space Propulsion

Propulsion science relies on the momentum-conservation principle, formally stated by Sir Isaac Newton as his third law of motion: "For every action, there is an equal and opposite reaction". Therefore, a force acting upon the vehicle is created by ejecting matter with high kinetic energy [START_REF] Sutton | Rocket Propulsion Elements[END_REF]. This force is called thrust, and the ejected matter is the propellant mass. This principle was used at the beginning of modern rocketry in 1903 when the Russian physicist Tsiolkovsky published an article containing the derivation of what is known as the ideal rocket equation [START_REF] Choueiri | A Critical History of Electric Propulsion: The First 50 Years (1906-1956)[END_REF]. It tells us that the dynamics of a rocket subject to a external force F ext is described by Eq. 1.1.

m dv dt = v e dm dt + F ext (1.1)
Where v e is the velocity vector of the ejected propellant mass relative to the vehicle, also called the exhaust velocity, dm dt the ratio of change of rocket mass, and dv dt the acceleration vector of the rocket. The first term on the right side of the Eq. 1.1 is the thrust due to a change in momentum T = v e dm dt . It can be seen as an additional force applied to the rocket. The integral of this force over the total burning time t = t f -t 0 , is identified as the total impulse:

I = t f t 0 T (t) dt (1.2)
Using this equation for the case of a rocket moving at constant speed v e in a region where the external forces a negligible in comparison with the trust, we can obtain an expression to calculate the change in velocity of a vehicle ∆v, as a function of the be achieved (between 10 000 and 100 000 m/s [Cannat, 2016b]). Figure 1.1 illustrates the influence of the exhaust velocity v e on the increment of the rocket velocity ∆v.

Specific Impulse and Thruster Performance

The specific impulse is the total impulse per unit weight of propellant. It is a key parameter to take into account when evaluating a rocket propulsion system [START_REF] Sutton | Rocket Propulsion Elements[END_REF]. For constant thrust T , total mass flow rate of propellant ṁ, and g 0 as the acceleration of gravity, we obtain the following equation for the specific impulse:

I s = t f t 0 T dt g 0 t f t 0 ṁdt = T ṁg 0 = v e g 0 (1.4)
This parameter gives us an indication of the engine efficiency. Given two rockets with different values of specific impulse, the one with the highest I s will be able to produce more thrust for the same amount of propellant. So a higher specific impulse means a better performance. Another way to obtain the thruster performance is to compute its total efficiency. For an electric thruster it could be defined using the energy balance to get an indication about the effectiveness of the energy conversion from its input energy P in into the kinetic energy of the ejected matter P out [START_REF] Sutton | Rocket Propulsion Elements[END_REF]]:

η = P out P in = kinetic power in jet input power = 1 2 ṁp v 2 e P in = T 2 2 ṁp P in (1.5)

Electric versus Chemical Propulsion

The main differences previously pointed out between these families of propulsion methods can be seen in We can notice that the chemical propulsion technologies can achieve higher thrust values than the electric thrusters but are limited to a low specific impulse. On the other hand, current electric thruster technologies do not produce a strong propulsive force since they are mainly limited to the micro and mili-newton ranges. Nevertheless, its high specific impulse makes it a well-suited option for long-duration applications requiring low thrust. It is used for in-space missions like satellite station keeping and orbit changing or interplanetary travel and deep space probes. These applications are the primary motivation for developing electric propulsion technologies, and contributing to its improvement is the subject of study for this research project. 

Classification of Electric Thrusters

A classification based on the implemented method for accelerating the propellant mass was proposed by [START_REF] Jahn | [END_REF]. It defines the following three main categories:

• Electrothermal: The propellant mass is heated up by the Joule's effect using electricity. The hot gas then expands in a nozzle as in a chemical rocket.

• Electrostatic: Electrical power is used to ionize the propellant mass and create a plasma. Then an electric field is used to accelerate the ions and produce thrust.

• Electromagnetic: As for the electrostatic propulsion family, electrical power is also used to ionize the propellant mass. After the plasma is generated, it is accelerated using a magnetic field and ejecting a neutral plasma.

Another classification based on the topology of the electric and magnetic fields is presented in Fig. 1.2, where the electric field E is represented leaving the sheet for the first two categories, and so is the magnetic field B for the last one. Different well-established technologies in the field of electric propulsion are categorized.

The subject of this study is an electromagnetic thruster under development at

Onera. It is known as an "ECR" thruster for Electron Cyclotron Resonance, and it is presented in Fig. 1.2 as a cathode-less device since it does not require a cathode to neutralize the ejected mass, which is already a neutral plasma. The theoretical Figure 1.2: Electric propulsion technologies classification based on the electric and magnetic fields topologies [START_REF] Packan | The MINOTOR H2020 Project for ECR Thruster Development[END_REF].

foundations of the thruster's working principles are presented next to understand its design and main characteristics better.

Fundamentals of Plasma Physics

The Cyclotron Resonance Phenomenon

The motion of a single charged particle in an uniform magnetic field is controlled by the Lorentz force F = v × B. The particle's velocity v can be separated into two components: v ⊥ perpendicular and v ∥ parallel to the local magnetic field. Thanks to the v ⊥ perpendicular component of the velocity, the Lorentz force obliges the charged particle to describe a circular orbit around the magnetic field line.

This rotation is called the cyclotron movement. It is described as a simple harmonic oscillator at a given cyclotron frequency governed by Eq. 1.6, where q is the charge of the particle, m its mass, and B the magnetic field. The particle's circular orbit around the magnetic field line is characterized by a radius called the gyroradius or the Larmor radius, with a magnitude given by Eq. 1.7. If the v ∥ velocity is different from zero, the particle revolves around the magnetic field line following a helical movement as seen in Fig. 1.3. The direction of this cyclotron motion is such that the magnetic field generated by the charged particle is opposite to the externally imposed field, exhibiting a diamagnetic behavior [START_REF] Chen | Introduction to Plasma Physics and Controlled Fusion[END_REF].

Figure 1.3: Cyclotron movement of a charged particle with v ∥ ̸ = 0 describing a helical orbit around the magnetic field lines.

ω c = |q| B m (1.6) ρ L = mv ⊥ |q| B (1.7)
The cyclotron frequency and the Larmor radius depend on the charged particle's mass, as seen in Eq. 1.6 and 1.7. Therefore, the cyclotron movement of an electron will differ from some order of magnitudes to the one of a positively charged ion. It is produced by the mass difference between both particles, which is almost 2000 for a single proton and higher for heavier ions. For a positively charged ion, its cyclotron frequency will be smaller, and its Larmor radius will be greater in comparison with the electron. We can now state that a particle is said to be magnetized if the time scale being studied is greater than the cyclotron period, and the spatial scale is bigger than the Larmor radius. For the case of the ECR thruster, the electrons are considered to be magnetized while the ions are not. Therefore, the ion dynamics is expected to be varying only along the longitudinal direction.

Electron Heating

A linearly polarized wave can be decomposed into two circularly polarized components. One is the left-handed circularly polarized wave, and the other is the righthanded circularly polarized wave. Suppose an electromagnetic wave encounters an electron that gyrates around the magnetic field lines at the cyclotron frequency. In that case, the electron will see both circular components of the decomposed linearly polarized wave. Moreover, if the electromagnetic wave frequency has the same value as the electron cyclotron frequency in Eq. 1.6, a resonance phenomenon takes place.

The principle behind this ECR heating can be better understood thanks to Fig. 1.4

based on the explanation given by [START_REF] Lieberman | PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING[END_REF].

Fig. 1.4a shows the interaction between the electron cyclotron rotation and the right-handed circularly polarized wave. As the electron moves, it sees a constant electric field E R , with a force "-eE R " that is directed in the same direction as the electrons v ⊥ perpendicular velocity. This constant electric field accelerates the electron along its circular orbit, resulting in a continuous transverse energy gain. On the other hand, the case for the left-handed circularly polarized wave can be seen in Fig. 1.4b. The electric field seen by the electron is no longer constant. Instead, it is oscillating between phases where "-eE L " and v ⊥ points out in the same direction, and phases where it is the opposite. It produces an oscillating energy gain and loss for the electron, resulting in no energy gain since the time average is zero. Therefore, the energy transfer to the electron rotation in the ECR heating comes from the right-handed circularly polarized wave if its frequency equals the cyclotron frequency.

Influence of the Magnetic Field Topology

Until now, we have described the electron dynamics inside a constant magnetic field.

However, this dynamics is modified with a non-uniform time-varying magnetic field.

In order to understand the effects of this configuration, let's place ourselves in the case of a slowly varying magnetic field: ∂B/∂t ≪ |ω c |B and ∇ ⊥ B ≪ 1/ρ L . It means that the magnetic field has a slow temporal evolution and a weak spatial variation in comparison with the scales of the cyclotron movement [START_REF] Rezeau | Introduction à la physique des plasmas[END_REF].

One of the consequences of these variations is the presence of energy transfer between the electron's velocity component parallel v ∥ to the magnetic field lines, and the perpendicular component v ⊥ . If the electric field is zero, this energy exchange between those strong-field points oscillating back and forth each of them as seen in Fig. 1.5. Those electrons with a combination of v ∥ and v ⊥ such that the diamagnetic force generated at the strong-field region is not enough to make v ∥ equals zero will not go back into the weak-field region and will escape the trap. This limit of the magnetic mirror is given by the loss cone angle which is the pitch angle of the electron's orbit in the weak-field region. It can be seen as the angle in the velocity space v ∥ , v ⊥ plane that represents the cone-shaped boundary between those electrons trapped by the magnetic mirror and those energetic enough to escape it. It is given by Eq. 1.10.

sin(θ) = B min B max (1.10)

Guiding Center Drifts

Another consequence of the adiabatic invariance of the magnetic moment is the development of the guiding center approach. Since a magnetized particle gyrates around the magnetic field lines, this approach proposes the following idea: its dynamics, over long time scales compared with the cyclotron period, can be described as being a point particle located at its guiding center with a magnetic moment µ. This approach suggests that the magnetized particles' motion can be expressed as the sum of the cyclotron gyration around the magnetic field lines plus several drifts of its guiding center. Some of them are presented hereafter based on [START_REF] Chen | Introduction to Plasma Physics and Controlled Fusion[END_REF].

• Electric field drift: If a time-varying electric field E ⊥ (t) perpendicular to the magnetic field is overlap to the motion of the magnetized particle, a drift v E appears. It is superimposed to the cyclotron movement, and it is perpendicular to E ⊥ and B. The drift of the guiding center is given by Eq. 1.11.

• Polarization drift: Another drift v P appears along the direction of E ⊥ . It can be seen in Eq. 1.12, and it can be seen as a startup drift due to inertia. It occurs only in the first half-cycle of each gyration in which E ⊥ changes.

v E = E ⊥ × B B 2 (1.11) v P = ± 1 Bω c ∂E ⊥ ∂t (1.12)
• Grad -B drift: Let's consider the case in which the magnetic field lines have a gradient, i.e. there will be a region with a high-density of magnetic field lines and a region with a low-density. A particle moving through this two regions will have different Larmor radius in each of them: a small radius in the high-density region and a bigger one in the low-density region. Therefore, the absence of the coupling between these trajectories will generate a drift v ∇B (Eq. 1.13) from the accumulation of non-compensated offsets of the Larmor radius.

• Curvature drift: If the magnetic field lines are curved with a constant radius of curvature R c , the guiding center drifts as the particles feel the centrifugal force when moving along the field lines. This drift v R can be seen in Eq. 1.14.

v ∇B = ± 1 2 v ⊥ ρ L B × ∇B B 2 (1.13) v R = mv 2 ∥ qB 2 R c × B R 2 c (1.14)
Therefore, the movement of a magnetized particle is given by Eq. 1.15.

v ⊥ (t) = v cyclotron (t) + v E (t) + v P (t) + v ∇B (t) + v R (t) + ... (1.15)
Considering the previous theoretical elements that characterize the ECR thruster design, we are now better equipped for a journey through the past research studies around this technology. Let's start with the experimental studies where most contributions have been made before moving out to the numerical simulations.

ECR Phenomenon for Electric Propulsion

The research around the ECR phenomenon for electric propulsion devices can be traced back to the 1960s. [START_REF] Domitz | Survey of Electromagnetic Accelerators for Space Propulsion[END_REF], from the Lewis Research Center at NASA, presented a technical note with a survey of the experimental status of plasma thrusters for space propulsion of the time. According to the authors, experimental results on microwave-driven devices designed to excite the electron cyclotron frequency were reported by General Electric (GE) [START_REF] Miller | Cyclotron Resonance Propulsion System[END_REF] and Radio Corporation of America (RCA) at the David Sarnoff Research Center [START_REF] Hendel | Continuous Plasma Acceleration At Electron Cyclotron Resonance[END_REF].

These pioneer studies aimed at exploring the potential of the ECR phenomenon for space propulsion. Their results gave us new information about the working principles of the ECR thruster. For example, the acceleration of the ions was found to be due to the ambipolar electric field from the charge separation, the flux of particles impacting the thruster's walls was identified as a source of energy loss, and the importance of the shape of the ions magnetic field on the thruster performance. They also found specific impulses and thrust values, high enough to be of interest for space propulsion applications, could be achieved. Energy coupling efficiencies from the microwave into the plasma were obtained on the order of 80% to 90%.

Several contributions to the ECR thruster research field, both experimentally and theoretically, were made in the University of Tokyo by [START_REF] Nagatomo | Plasma Acceleration by High Frequency Electromagnetic Wave in Static Magnetic Field Gradient AlAA Electric Pronulsion and Plasmadynamics Conference[END_REF]. The author developed two prototypes of the ECR thruster using argon in a coaxial geometry in a 10 -4 torr vacuum chamber. From a theoretical perspective, he presented a simplified analytic model to describe the electron dynamics on a diverging magnetic field by solving the equations of motion. The central assumption of the model was to consider the plasma acceleration in two stages. It takes place in two separate regions:

the interaction region with no charge separation and where the microwaves heat the electrons, and the acceleration region with the magnetic nozzle with the absence of any microwave field. No transition zone was considered between these two regions since the author acknowledged the difficulty of treating it using a simplified model.

The combined action of this approach allowed the author to present essential information about the acceleration mechanism. For instance, on the interaction region, the electrons showed an increment of their perpendicular velocity, and a small gradient of the magnetostatic field close to the resonance point seemed to boost the energy transfer. The power absorption was influenced mainly by the magnetostatic field strength, and the electromagnetic field reached a minimum value near the resonance with a steep decrease just before this point. The author also acknowledged that the surrounding plasma in the vacuum tank could have disturbed the measurements. Nonetheless, and despite these research efforts around the ECR thruster, the inefficiency and heavy weight of the micro-wave sources at the time, and the considerable progress made with other electric propulsion technologies, led to a stagnation of the research on the ECR thrusters for several years.

The interest in this technology reappeared by the end of the late 1980s when [START_REF] Sercel | Electron Cyclotron Resonance (ECR) Plasma Acceleration. 19Th AIAA, Fluid dynamics, Plasma dynamics, and Lasers Conference[END_REF] from the California Institute of Technology presented an article to the American Institute of Aeronautics and Astronautics (AIAA) re-examining the situation at the time of the ECR plasma acceleration for electric propulsion. A few years later, he presented his doctoral dissertation about an experimental and theoretical study of the ECR plasma thrusters [START_REF] Sercel | An Experimental and Theoretical Study of the ECR Plasma Engine[END_REF]. His work confirmed the potential of this technology to provide high efficiency at high specific impulses. It encouraged the development of this research area to get a deeper understanding of the fundamental physics of the device. Nowadays, the research around the ECR plasma engine with a magnetic nozzle has increased since the previous experimental works at Onera around 2013 [Jarrige et al., 2013b,c]. A considerable effort has since been made to understand the physical phenomena governing the plasma heating dynamics and acceleration in the thruster. This quest for gaining insights on the engine working combination of two confining configurations that an electron will face in the coaxial chamber. On the one hand, the electron needs to overcome the electrostatic plasma potential when trying to leave the source downstream in the direction of the magnetic nozzle. If the electron does not have enough energy to do so, this potential acts as an electrostatic well. On the other hand, the converging magnetic field as the electron gets closer to the dielectric backplate generates a diamagnetic force (see Eq. 1.9) that pushes him into the opposite direction and forces him to come back to the ECR zone.

The positive voltage achieved by the dielectric backplate at the steady-state modifies this magnetic confinement at the close end of the thruster. These phenomena force the electron to make several round trips around each end of the coaxial chamber, increasing its energy with each ECR heating until he become energetic enough to escape the attraction of the electrostatic potential. Once the electrons escape this electrostatic barrier to get lost at the plume, an ambipolar electric field is created. It accelerates the ions to produce thrust with a quasi-neutral plasma.

An analytical model for the description of this electron dynamics was given by [START_REF] Peterschmitt | A diffusion model in velocity space to describe the electron dynamics in an ECR plasma thruster with magnetic nozzle[END_REF] to propose a quasi-linear heating model for the ECR thruster. It is different from the one proposed by [START_REF] Nagatomo | Plasma Acceleration by High Frequency Electromagnetic Wave in Static Magnetic Field Gradient AlAA Electric Pronulsion and Plasmadynamics Conference[END_REF] since it takes into account the kinetic and stochastic nature of the ECR heating to compute the electron perpendicular velocity distribution function. It uses a Fokker-Planck equation to model the ECR heating as a Markov system and considers it as a random walk in phase space. While the model provides qualitative results in agreement with experimental findings, a direct comparison of the model's predictions with experimental data showed that there is still room for improvement. However, the authors acknowledged that this comparison was not expected to yield good quantitative agreement since measurements are susceptible to phenomena ignored by the model.

Experimental Studies Around the ECR Thruster

The ECR heating zone of the thruster is characterized by its location within the coaxial chamber and by its width. These characteristics are determined by two parameters: the microwave frequency and the magnetic field profile. The effects of these characteristics on the plasma behavior have been studied experimentally. Since current prototypes of the thruster use a 2.45 GHz microwave generator because of its low price, most of the studies have focused mainly on changing the magnetic field topology. During his Ph.D. work, [Cannat, 2016a] developed a prototype of the thruster in which the magnetic field was generated by a coil. This version allowed him to simplify the test campaign since several configurations of the thrusters could be studied with the modification of the coil current intensity to obtain different magnetostatic field profiles. In subsequent studies, the influence of the heating zone's width was explored [Cannat, 2016a;[START_REF] Cannat | Experimental investigation of magnetic gradient influence in a coaxial ECR plasma thruster[END_REF]. The magnetic field was modified to obtain a quasi-null magnetic gradient around the resonance region. The idea was to get a broader area where ECR resonance can occur, thus increasing the electron heating. The microwave-plasma energy transfer was better in this new configuration, but no apparent improvement of the thruster efficiency was found. This effect was attributed to a modified magnetic confinement that would increase the electron losses to the walls of the coaxial chamber. The developments carried out during these studies allowed to upgrade the thruster prototype with an optimized magnetostatic field profile. They revealed that better efficiencies are obtained with an ECR heating zone located close to the backplate.

Nonetheless, several disadvantages were identified for the thruster prototype with the coil-generated magnetostatic field. Despite the flexibility gained by the experimental teams, which is helpful for parametric studies, the cables required for the current and the cooling water system of the coil prevent the use of a thrust balance for direct measurement of the thrust force. Additionally, a version of the thruster with this configuration being used in a real-life in-space application will have a greater mass and require an additional energy source for the coil compared to a magnet-generated magnetostatic field version. Having these constraints in mind, [START_REF] Vialis | Développement d'un propulseur plasma à résonance cyclotron électronique pour les satellites[END_REF] developed a prototype of the thruster in which the optimized magnetostatic field obtained by [Cannat, 2016a] was reproduced using permanent magnets. This approach gave him the possibility to characterize the thruster using a thrust balance. However, it also increased the complexity of the test campaigns since it required redesigning the configuration of the magnets for each new version of the thruster. The author changed the position of the heating zone by two means using both the magnet-version and the coil-version of the thruster. As a first step, the frequency of the incoming wave was changed while keeping an unchanged magnetic field. The author did not found a significant variation of the thrust after moving the heating zone closer and away from the backplate (using 2.6 GHz and 2.3 GHz, respectively). Then, the author modified the magnetic field profile while keeping a constant 2.45 GHz microwave frequency. This option also generates a modification in the divergence of the magnetic field and the confinement of the electrons. Still, the author considered it to be negligible in his case. No clear pattern was observed either with this configuration. Despite the dispersion of the results, the author concluded that the ECR heating position does not seem to play an essential role in the thruster's efficiency. [START_REF] Vialis | Geometry optimization and effect of gas propellant in an electron cyclotron resonance plasma thruster[END_REF] carried out an experimental geometry optimization of the thruster based on direct thrust measurements using the magnet-generated magnetostatic field version. Their study aimed to increase the thruster efficiency by modifying the length and diameter of the coaxial chamber. They found that the inner conductor length, i.e., the microwave antenna, does not play an important role in the thruster performance for values in a restricted range between 15 -25 mm. Its diameter, however, makes the thruster more efficient as it increased. The effect of the outer conductor, i.e., the outer wall of the coaxial chamber, was also studied and showed that the efficiency increased as the outer conductor length increased. The authors also found that the thruster efficiency was very sensitive to the background pressure: the thrust dropped by a factor of 1.5 when the background pressure was doubled. One hypothesis presented by the authors was that it could be explained by an increased ion-neutral charge exchange collisions rate that would reduce the energy of the ions.

An explanation was later proposed by [Wachs & Jorns, 2020]. The authors also tested an ECR thruster prototype, and their results demonstrated that the efficiency's dependency on the background density could be attributed to electron-neutral collisions within the plume. These collisions reduce the amount of power available to accelerate ions through the diverging magnetic nozzle. It is done by removing the thermal energy introduced to the electrons in the ECR heating region before it can be successfully converted to the ion's kinetic energy. Their study calculated that 39% of the power entering the plume is consumed by ionization and excitation collisions by raising the background pressure from 0.98 to 26 µTorr. [START_REF] Peterschmitt | Development of a stable and efficient electron cyclotron resonance thruster with magnetic nozzle[END_REF] also confirmed this trend with increased efficiency as the background pressure drops. It was achieved by testing the ECR thruster at the "Jumbo" facility of Justus Liebig University Giessen -Germany with a background pressure as low as 10 -7 mbar, which was a decade below all previous existing measurements. According to the author, since the data from both facilities (Onera and Jumbo) join remarkably, the results could not be attributed to an effect produced by the testing facility. Additionally, the measurements carried out at the Jumbo facility with low background pressure did not reach saturation. This fact suggests that a better vacuum might be needed to achieve a thruster's representative efficiency in actual in-space conditions.

The impact of the neutral gas has also been studied to define the most suitable propellant for the thruster. [START_REF] Cannat | Experimental investigation of magnetic gradient influence in a coaxial ECR plasma thruster[END_REF]Jarrige et al., 2013c] looked at the ion current and ion energy obtained using xenon and argon. The authors found that better performances were obtained with xenon. According to them, it might be due to the lower ionization potential and larger ionization cross-section. [START_REF] Vialis | Geometry optimization and effect of gas propellant in an electron cyclotron resonance plasma thruster[END_REF] observed a significant decrease in the thruster's performances when using krypton as propellant. However, the authors point out that a higher pumping rate would have been needed in their vacuum chamber to obtain the same conditions for krypton and xenon. Therefore, their results might have been affected by the efficiency's dependency on the background density described previously.

Current Developments Using the ECR Concept

Inspired by the results obtained by Onera's ECR thruster prototype, another important contribution to the development of ECR thrusters appeared in the electric propulsion field. It came from an industrial-academic collaboration among the AVS UK Ltd. Company, the University of Surrey, and the Science and Technology Facilities Council (STFC). Together they carried out the AQUAJET project to test a proof-of-concept electrodeless ECR thruster running on several propellants, including water [START_REF] Staab | AQUAJET : An Electrodeless ECR Water Thruster Space Propulsion 2018 Barcelo Renacimiento[END_REF]. It is also based on the cyclotron resonance phenomenon and running with a 2.45 GHz input microwave power. Their thruster was successfully operated using noble gases like xenon and argon, but also water vapor as expected [START_REF] Moloney | Experimental Validation and Performance Measurements of an ECR Thruster Operating on Multiple Propellants[END_REF][START_REF] Staab | AQUAJET : An Electrodeless ECR Water Thruster Space Propulsion 2018 Barcelo Renacimiento[END_REF]. The modular design of their thruster allowed them to characterize it, varying the thruster radius, its length, and the ECR zone's position. It was accomplished using experimental measurements that were compared to those obtained at Onera in [START_REF] Cannat | Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model[END_REF]: the thrust using a pendulumtype balance, and the electron temperature, ion density, and plasma potential using a Langmuir probe. Compared with Onera's prototype using xenon, it showed lower efficiencies: between 1.0% -1.3% at different operating conditions for a 24 mm thruster diameter, against 3% -16% at Onera for a 27 mm diameter. Design upgrades were therefore undertaken acting mainly on the coaxial microwave line [START_REF] Karadag | Analytical Plasma Modelling and Design Upgrade for an ECR Thruster Operating on Water and Ammonia Propellants Analytical Plasma Modelling and Design Upgrade for an ECR Thruster Operating on Water and Ammonia Propellants[END_REF]. So based on their successful proof-on-concept and the lessons learned on the process, this partnership has undertaken the follow-on development of three improved ECR thrusters [START_REF] Isis | Xjet : Design Upgrade and Preliminary Characterization for an Electrodeless Ecr Thruster[END_REF]. They aim to demonstrate improved thruster performance with xenon, scaling testing up to the 200-400 W power range, achieving stable operation with water and ammonia, and testing a custom-built solid-state microwave generator. Their research work around the ECR thruster is still ongoing, and it seems like a promising source of progress towards the common goal of achieving a highly efficient ECR thruster.

The Plasmadynamics & Electric Propulsion Laboratory at the University of Michigan -USA has also built an ECR thruster based on Onera's coaxial design. This team has carried out several research projects to contribute to the improvement of the ECR thruster concept. [START_REF] Wachs | Technique for Two-Frequency Optimization of an ECR Magnetic Nozzle Thruster[END_REF] proposed to use the two-frequency heating optimization technique to improve the thruster efficiency without physical modifications to its design. The author proposed to use two independent microwave frequencies to heat the plasma while keeping the average power and mass flow rate constant. This approach adds a second ECR resonance zone to the discharge, and it might be expected to see a better power coupling efficiency and an increased hot electrons density. This study presented the optimization technique and the experimental setup, but the results of the tests were said to be the subject of future publications. [Hepner & Jorns, 2020] focused on the study of electron transport in the magnetic nozzle where they placed a pair of azimuthally oriented ion saturation probes. It allowed them to measure the presence of plasma waves in three dimensions. With this experimental setup, the authors pointed out the presence of azimuthally propagating waves that they identified as a lower hybrid drift instability. [Hepner et al., 2020] analyzed the impact of these lower hybrid drift instabilities in the instability-induced electron transport. They found that non-classical transport may dominate the electron dynamics on the magnetic nozzle since the instability can enhance resistivity by two orders of magnitude. This research team has also contributed to the understanding of the relationship between thruster efficiency and neutral background density as previously discussed [Wachs & Jorns, 2020[START_REF] Vialis | Développement d'un propulseur plasma à résonance cyclotron électronique pour les satellites[END_REF].

Experimental Challenges

On a final note, it is worth mentioning that all the experimental studies cited on this "Electric propulsion" section faced a common set of challenges and constraints:

• Studies are limited by the technical capabilities of the experimental facilities and the effects produced by them. An excellent example of this limitation is the thruster efficiency variation when tested at the "Jumbo" facility with a background pressure a decade below all previous existing measurements. It suggests that a vacuum lower than 10 -7 mbar might be needed to achieve a representative efficiency of the thruster in actual in-space conditions.

• The experimental studies have so far been limited to study the plasma outside the coaxial chamber, with works like those of [START_REF] Correyero | Measurement of anisotropic plasma properties along the magnetic nozzle expansion of an Electron Cyclotron Resonance Thruster[END_REF][START_REF] Jarrige | Investigation on the ion velocity distribution in the magnetic nozzle of an ECR plasma thruster using LIF measurements[END_REF] where the plasma properties in the plume of the ECR thruster were measured using Langmuir probes and laser-induced fluorescence. This constraint is a consequence of the complexity of the measurement techniques required to survey the plasma experimentally within the coaxial chamber. This region represents a challenging environment for traditional probes in the electric propulsion field, with electron temperatures of several eV and a density around 1 × 10 11 cm -3 . It was only recently that a microwave resonant probe was developed at Onera by [START_REF] Blateau | The curling probe: A numerical and experimental study. Application to the electron density measurements in an ECR plasma thruster[END_REF] and allowed electron density and plasma potential measurements inside the plasma source. The measurements were taken at a fixed location since the probe was flush-mounted in the walls of the coaxial chamber with a sampling time of 10 s. The authors also acknowledged that their model does not consider the possible effects of the strong magnetostatic field in their model, around 500 G at the probe's position. Upcoming works will try to develop a non-intrusive diagnostic method to avoid etching due to the probe-plasma interaction.

• A limited number of parametric studies can be carried out. It is given by the fact that the development of new prototypes of the thruster to be tested can be expensive and highly time-consuming. Even when an experimental parametric study is carried out, like the geometry optimization performed by [START_REF] Vialis | Geometry optimization and effect of gas propellant in an electron cyclotron resonance plasma thruster[END_REF], the different configurations are only compared using global parameters like the thruster efficiency or the thrust. Such global parameters give little insight into the details of the complex plasma behavior for each new version of the thruster.

Numerical simulations appear as an excellent candidate to circumvent the previously described experimental constraints. They can complement both the laboratory data and the theoretical developments by providing additional insight into the understanding of the ECR technology.

Computational Plasma Modeling

Computational plasma modeling is an extensive field in itself. The developments carried out during this research project within this framework also need to be placed into the continuity of previous works. It is based on modeling complex physical phenomena by solving its governing equations numerically under a defined set of assumptions. Regarding its use in the plasma physics field, numerical simulations cover two general areas based on kinetic and fluid descriptions [C.K. [START_REF] Birdsall | Plasma physics via computer simulation[END_REF]: of the supersonic expansion of a collisionless plasma in a magnetic nozzle that takes into account electron-inertia effects. Their model has been integrated into a two-fluid code called "DIMAGNO" [START_REF] Merino | Simulation of plasma flows in divergent magnetic nozzles[END_REF]. [START_REF] Marks | Hall2de simulations of a magnetic nozzle[END_REF] used a fluid code developed at NASA's Jet Propulsion Laboratory to model Hall thrusters and called "Hall2De" to simulate the ECR thruster magnetic nozzle. They simulated the ECR thruster under development at Onera [START_REF] Correyero | Plasma beam characterization along the magnetic nozzle of an ECR thruster[END_REF][START_REF] Vialis | Direct Thrust Measurement of an Electron Cyclotron Resonance Plasma Thruster[END_REF] and the prototype of the University of Michigan [Hepner et al., 2020]. The results looked at the electron temperature, plasma density, and potential profile. They found significant differences between their simulation results and the available experimental data: a plasma density profile around five times higher than the experimental values, over-prediction of the thrust by 50%, and around 5-10% for the electron velocity near to the thruster exit plane. However, this work contributed to better understanding the factors needed to simulate magnetic nozzles accurately. The most relevant factor pointed out by the authors is a better account of the anomalous resistivity, which might increase because of instabilities in a real nozzle [Hepner et al., 2020]. It would be necessary for the electron temperature gradients to develop in the plume. The authors also point out the possibility that fluid codes might not be able to accurately capture electron cooling in magnetic nozzles since kinetic effects may be responsible for polytropic behavior, as suggested by [START_REF] Martinez-Sanchez | Electron cooling and finite potential drop in a magnetized plasma expansion[END_REF]. It is still an open question and, according to them, it is likely that both kinetic and resistive effects play important roles.

Hybrid Approach

Returning to the thruster's coaxial chamber, another alternative for its modeling is implementing a hybrid approach combining a PIC treatment for the heavy particles and a fluid description for the electrons. This approach was used by a research team from Carlos III University of Madrid to model the ECR thruster with details about their code given in [START_REF] Ahedo | Helicon and ECR plasma sources for space propulsion: Simulation and testing[END_REF][START_REF] Sanchez-Villar | PIC / fluid / wave Simulation of the Plasma Discharge in[END_REF].

[ [START_REF] Sánchez-Villar | Coupled plasma transport and electromagnetic wave simulation of an ECR thruster[END_REF] performed a self-consistent simulation of the thruster based on the concept under development at Onera using a 2D axisymmetric model.

It was a hybrid PIC-fluid model for the plasma transport coupled to a frequencydomain electromagnetic solver for the simulation of the microwave heating. One of the main findings of this study is that the solutions of the microwave fields in the thruster are strongly affected by the characteristics of the plasma transport inside the coaxial chamber and vice versa. The radial electric field at the ECR region was identified as the main contributor to the plasma heating. It generates an increased electron temperature close to the antenna, where most of the power absorption occurs.

There is also a maximum at the vicinity of the resonance attributed to the effect of damping. The authors pointed out that the plasma discharge contains multiple electromagnetic wave propagation/evanescence regimes, including an upper-hybrid resonance region. These propagation regimes were distributed over the computational domain as separated regions controlled mainly by the variations of the plasma density profile. These findings suggest that the plasma might open or close propagation channels through which the wave microwave power could flow. [START_REF] Inchingolo | Hybrid PIC-Fluid Simulation of a Waveguide ECR Magnetic Nozzle Plasma Thruster[END_REF] from the same research team also used their hybrid PICfluid code to simulate an ECR thruster where the input power is transferred to the coaxial chamber using a circular waveguide instead of a coaxial cable. This modification of the microwave coupling strategy seems like an interesting option since the absence of the antenna, and therefore its erosion could increase the thruster's lifetime. It has been previously studied experimentally [START_REF] Miller | Cyclotron Resonance Propulsion System[END_REF][START_REF] Peterschmitt | A diffusion model in velocity space to describe the electron dynamics in an ECR plasma thruster with magnetic nozzle[END_REF][START_REF] Sercel | An Experimental and Theoretical Study of the ECR Plasma Engine[END_REF]. However, no simulation effort before [START_REF] Inchingolo | Hybrid PIC-Fluid Simulation of a Waveguide ECR Magnetic Nozzle Plasma Thruster[END_REF] has addressed this issue. The authors used the same code previously described to simulate the coaxial version of the ECR thruster. Unfortunately, with the current version of their code, they were forced to adopt a non-self-consistent approach for the circular waveguide. They prescribed the power deposition profile near the ECR region. They found that the specified power deposition maps they used strongly affected the electron temperature profile, leading to global changes in density, pressure, and potential distribution in the coaxial chamber.

The vital role played by the plasma-wave interaction in these studies highlights the pertinence of self consistent simulations in the quest for a better understanding of the ECR heating and the ECR thruster plasma dynamics. This research team has pursued this development as a parallel approach to the full-PIC simulations we decided to use in this study. Their hybrid approach has been extremely helpful for the understanding of the thruster and the heating mechanism. Unfortunately, the simplifications in which the fluid model is based limit the degree of details we can obtain from these simulations. The most relevant one being the absence of electron temperature anisotropy. It prevents the simulations from getting segregated information for the directions parallel and perpendicular to the magnetostatic field. Let's focus on the options exploiting the PIC method to capture the plasma kinetic effects.

The PIC method's ability to model each computational particle's behavior makes it an interesting choice when studying complex phenomena using numerical models. One of them is the electron cyclotron resonance phenomenon which has already been investigated using computational models based on the PIC method. [START_REF] Acevedo | PIC numerical study of ECR plasmas confinement in a minimum-B and zero-B magnetic traps with GPU[END_REF]] used an electrostatic PIC numerical approach with GPU clustering parallelization to get a better understanding of the confinement of plasmas in magnetic traps under the ECR condition. Their results focused mainly on the confining conditions of the electrons for different magnetic traps. The simulation of the ECR heating by their code was not described, and this heating process was not discussed in the results. [START_REF] Ye | PIC/MCC mode simulation of electron cyclotron resonance discharge[END_REF] used a PIC-MCC code to simulate the ionization process in an ECR discharge using a 2.45 GHz microwave. Their results were primarily qualitative, but they allowed them to see that the ECR heating process mainly took place around the resonance condition's location. They also pointed out that the electron-neutral collisions tend to reduce the electron distribution anisotropy between the direction perpendicular and longitudinal to the magnetostatic field. Unfortunately, they provide limited details about the code and the simulation conditions.

Several authors working on ECR ion sources (ECRIS) have also used the PIC approach. The idea of these sources is to produce an intense beam of ions after heating the electrons using 2.45 -28 GHz microwaves in a magnetically confined plasma [START_REF] Geller | Electron cyclotron resonance ion sources and ECR plasmas[END_REF]. Faced with the observation that none of the published works around the ECRIS sources modeled the electromagnetic wave propagation into a non-isotropic and non-homogeneous plasma, [START_REF] Mascali | 3D-full wave and kinetics numerical modelling of electron cyclotron resonance ion sources plasma: steps towards selfconsistency[END_REF] proposed a quasi-self-consistent "stationary" PIC approach to solving the 3D Vlasov-Maxwell system of equations numerically. The authors neglected the ion dynamics and used a PIC treatment for the electrons coupled to the COMSOL Multiphysics™ software for the electromagnetic fields. MATLAB ® was used as a conduit for the communication between these modules. The coupling is done in several stages. First of all, the microwave electric field is computed in the vacuum without the plasma, generating what they called "vacuum field." A previous study of the same authors proposed a procedure to calculate the electron dynamics when moving in this "vacuum field" [START_REF] Celona | Microwave to plasma coupling in electron cyclotron resonance and microwave ion sources (invited)[END_REF]. After this point, the following stage gives this approach its "stationary" label, and it is based on a numerical artifice to accumulate enough statistical information for the particles. The electron dynamics is solved by the PIC code for each particle until the achievement of a stationary state, accumulating the electron density. Finally, the "vacuum field" is updated based on the electron density distribution, and the process is repeated. According to the authors, due to substantial time-consuming calculations needed at each loop-step, the computing of the microwave action on electrons and vice-versa was carried out two times.

The results obtained by [START_REF] Mascali | 3D-full wave and kinetics numerical modelling of electron cyclotron resonance ion sources plasma: steps towards selfconsistency[END_REF] based on this quasi-self-consistent approach highlighted the crucial role played by the plasma-wave interaction in the ECR heating mechanism. The absolute strength of the electric field inside the plasma chamber was modified when the plasma was considered in comparison with the "vacuum field." Among their findings, we can cite that the plasma concentrates mainly near the resonance region. However, this distribution depends on the electron temperature since hot electrons are placed near ECR regions while the cold ones are in the surroundings. The most significant fraction of energy was absorbed in the ECR region as expected while becoming several orders of magnitudes lower elsewhere. [Mironov et al., 2020b] followed the same quasi-self-consistent approach previously described to add an electromagnetic treatment to their code for the study of ECRIS [Mironov et al., 2020a] that did not take into account the electron-wave interaction. They also used COMSOL Multiphysics™ to simulate the effects of their 14.51 GHz microwave on the plasma dynamics. As for [START_REF] Mascali | 3D-full wave and kinetics numerical modelling of electron cyclotron resonance ion sources plasma: steps towards selfconsistency[END_REF], the input parameters for the electromagnetic module coupling are the electron density distribution and the magnetic field. However, [Mironov et al., 2020b] present more details into an additional parameter that needs to be specified in the process: a Doppler-broadening factor at the resonance zone. It is required to compute the user-defined anisotropic dielectric tensor in the cold-plasma approximation. The factor is tuned by the authors after a parametric analysis looking at the standing wave patterns formed in the simulation domain to avoid numerical instability of the COMSOL Multiphysics™ solver. Their results looked at the source response to variations of input parameters and the ion dynamics that was not taken into account by [START_REF] Mascali | 3D-full wave and kinetics numerical modelling of electron cyclotron resonance ion sources plasma: steps towards selfconsistency[END_REF].

The Particle-In-Cell Method for ECR Thrusters

Regarding its use in the electric propulsion field, the PIC method has been widely used to simulate the low-temperature plasmas inside some electric propulsion devices. To name a few examples we have the Ion thrusters [START_REF] Mahalingam | Particle Based Plasma Simulation for an Ion Engine Discharge Chamber[END_REF], Helicon thrusters [START_REF] Manente | 1D simulations of the Helicon Double Layer[END_REF][START_REF] Saini | Double layer formation and thrust generation in an expanding plasma using 1D-3V PIC simulation[END_REF] or Hall thrusters [START_REF] Coche | A two-dimensional (azimuthal-axial) particle-in-cell model of a Hall thruster[END_REF][START_REF] Liu | Particle-in-cell simulation of a Hall thruster[END_REF][START_REF] Yu | Particle-in-cell simulation of a double stage Hall thruster[END_REF]. These simulations are computationally expensive and are commonly run using a parallel approach in multicore architectures or coupled to some accelerating techniques to reduce the computation time like those used by [START_REF] Szabo | Full particle-in-cell simulation methodology for axisymmetric hall effect thrusters[END_REF]. The authors simulated a Hall thruster using a twodimensional axisymmetric model. They used an artificial ion to electron mass ratio and an artificial vacuum permittivity to accelerate the simulation. The artificial modification of these parameters might alter the outcome and produce incorrect results.

If we focus on the electric propulsion devices based on the ECR phenomenon, we notice that the vast majority of the current developments are different from our design. They are gridded thrusters [START_REF] Nishiyama | 20-cm ECR plasma generator for xenon ion propulsion[END_REF][START_REF] Shen | Development of a Micro ECR Ion Thruster for Space Propulsion[END_REF][START_REF] Takao | Three-dimensional particle-in-cell simulation of a miniature plasma source for a microwave discharge ion thruster[END_REF], so the plasma acceleration is done by an electric field and not by the magnetic nozzle. There are few works around the numerical simulation of such electric propulsion devices exploiting the advantages of the PIC codes. [START_REF] Takao | Three-dimensional particle-in-cell simulation of a miniature plasma source for a microwave discharge ion thruster[END_REF] successfully modeled a miniature ion thruster with ECR heating at 4.2 GHz with a 3D PIC-MCC code. The goal was to clarify the mechanism of ECR discharges and to provide clear guidelines for its design. The treatment of the ECR heating was done with a non-self-consistent calculation of the electromagnetic fields. First of all, the microwave electric field amplitude E EM 0 was computed using a finite-difference time-domain (FDTD) algorithm until they obtained a steady-state of the microwave without plasma. Then, in a subsequent stage, the PIC-MCC calculations were performed using as time-step 1/40 of a microwave cycle and taken into account the microwave field as E EM (t) = E EM 0 cos(2πf t). A subcycling technique was used to speed up the calculations. It consists of updating the ion dynamics with a lower frequency than the frequency for the electrons (every microwave cycle in this case). The results mainly showed density, potential, and electron temperature profiles for their specific configuration. So given the fact that the simulated thruster is different from the ECR technology since it does not eject a quasi-neutral plasma but an accelerated ion beam thanks to a grid system, a direct comparison can not be carried out. [START_REF] Nakamura | Numerical analysis of a miniature microwave-discharge ion thruster using water as the propellant[END_REF], from the same research team, conducted another study on the thruster using their PIC-MCC code. The only difference was the propellant to use water instead of xenon, the grid spacing for the acceleration of the ions, and the time step. One of their findings was that additional power absorption was required when using water to obtain the same electron density as xenon.

Their thruster, designed for miniaturized applications, is referred to as µ1 from the "mu-series" microwave discharge ion thrusters developed by the Japan Aerospace Exploration Agency (JAXA). [START_REF] Yamashita | Numerical investigation of plasma properties for the microwave discharge ion thruster µ10 using PIC-MCC simulation[END_REF] simulated with a PIC-MCC code another thruster from the same family known as µ10 which was installed in the Hayabusa asteroid explorer launched in 2003 [START_REF] Kuninaka | Powered flight of electron cyclotron resonance ion engines on hayabusa explorer[END_REF]. According to [START_REF] Yamashita | Numerical investigation of plasma properties for the microwave discharge ion thruster µ10 using PIC-MCC simulation[END_REF], the motivation for their study was that the design method of the microwave discharge chamber and the details of the plasma behavior have not yet been clarified. Their treatment of the microwave electric field starts by a first stage where its amplitude E 0 m is obtained using a finite-difference time-domain (FDTD) algorithm until a steady-state of the microwave without plasma is reached. Then, they enter a feedback control loop where E 0 m is adjusted until the microwave power absorbed by the plasma matches a user-defined power absorbed value given as an input to the simulation. [START_REF] Elias | Advances in the kinetic simulation of microwave absorption in an ECR thruster[END_REF] and [START_REF] Vialis | Développement d'un propulseur plasma à résonance cyclotron électronique pour les satellites[END_REF], both members of Onera's plasma physics unit, used an electrostatic version of Onera's PIC code with a quasi-1D model to simulate the ECR thruster. The microwave heating treatment was done with a non-self-consistent approach in which the microwave input power was modeled as a time-varying electric field inside the coaxial chamber. An attenuation was introduced by imposing a dependency of the electric field to the number of electrons N e to account for the energy transfer to the electrons: E EM (t) = E 0 cos(ωt)exp(-N e /N target ). The variable N target is a pre-defined total number of electrons in the computational domain. [START_REF] Vialis | Développement d'un propulseur plasma à résonance cyclotron électronique pour les satellites[END_REF], Vialis simulated a 200 mm one-dimensional computational domain with a plasma source of 20 mm. The input power was simulated with an initial 35 kV/m electric field. Some of the results were noisy with oscillations on the electron and ion density and current, resulting in a non-neutral plasma. However, other plasma parameters were consistent with experimental measurements. The thrust produced by the thruster was around 100 times smaller than the experimental values since the mass of the ions was artificially set to the value of a proton to speed up the calculations. These results confirmed the expected electron temperature anisotropy inside the coaxial chamber that was previously pointed out by [START_REF] Elias | Advances in the kinetic simulation of microwave absorption in an ECR thruster[END_REF] using the same simulation tool. The electron energy distribution function (EEDF), parallel and perpendicular to the magnetostatic field lines, was plotted at different locations of the computational domain. The EEDF in the perpendicular direction was shifting towards the low energies when moving downstream in the plume. Both these studies were used as a preliminary phase to guide future developments on the road to an electromagnetic modeling of the ECR thruster.

To our knowledge, none of the published works previous to ours has developed a self-consistent full-PIC electromagnetic description of the ECR heating mechanism or modeled the ECR plasma thruster. In addition to that, and despite the encouraging progress made using the PIC-fluid approach, the use of a fully kinetic modeling can unveil details about the thruster working principles otherwise inaccessible using analytic descriptions or fluid modeling. Therefore, from our perspective, the PIC method appears today as a powerful tool to help us understand the ECR heating mechanism and the plasma dynamics inside our thruster, especially given the present accelerated rate of progress of high-performance computing. Some of our previous self-consistent simulations were presented in [Porto & Elias, 2019]. The study pointed out that a negligible thrust variation is obtained when moving the ECR heating zone closer to the backplate. It results from an increased ion mean axial kinetic energy counteracted by an ion current decrease, leading to a negligible thrust modification. On the other hand, an increased cross-sectional area of the field tube led to an increased ion mean axial kinetic energy and a higher thrust.

Summary of the Chapter

During this overview of state of the art around the ECR technology, we saw some of the contributions of previous studies carried out by different research teams. The potential of the numerical simulations to circumvent the constraints of the experimental studies and provide new insights into the plasma dynamics inside the coaxial chamber was presented. Our approach's novelty lies in using a self-consistent full-PIC electromagnetic description of the plasma dynamics and the ECR heating mechanism to model the ECR thruster. The main goal is to use a fully kinetic modeling to unveil details about the plasma dynamics inside the thruster. It will complement theoretical and experimental data in the quest for understanding the thruster's working principles.

The simulation tool used for the kinetic modeling of the thruster is a PIC code under development at Onera. The code is presented in the next chapter to provide a brief survey of its underlying hypothesis, capabilities, and the remaining key challenges that needed to be solved before been able to carry out the self-consistent electromagnetic simulations of the ECR thruster.

Chapter 2 Onera's Particle-In-Cell Code

Chapter structure: This chapter presents an overview of the simulation tool used for this study and details of the main features of the code. This presentation will help us to highlight the code's capabilities and its state before the beginning of this research project. This phase will be helpful to understand the required developments that had to be overcome and that will be developed in upcoming sections to simulate the plasma dynamics inside our thruster. In section 2.1 we present a general outline of Onera's Particle-In-Cell code structure and capabilities as well as its main features. In section 2.2 we present some of the test cases used to validate the code and its different modules. In section 2.3 we introduce the post-processing phase used to analyze the results of the simulations. Lastly, in section 2.4, we will see new developments required for an electromagnetic version of the code. 

Overview of the Main Features

A brief outline of the Particle-In-Cell method was given in chapter 1 section 1.2.2.

This chapter aims at giving a more detailed presentation of this method which is composed of a series of operations representing a computational cycle which can be seen in Fig. 2.1 with the PIC loop. The Particle-In-Cell code under development at Onera is called Rhei, and it was initiated as an electrostatic code in 2016. It results from a collaboration between Onera and the Particle-In-Cell and Kinetic Simulation Software Center (PICKSC) at the University of California, Los Angeles (UCLA) -USA. It is intended to simulate low-pressure cold plasmas in complex geometry and adapted to massively parallel architectures. It can be run in serial or with either a pure MPI or a hybrid MPI/OpenMP parallelization. It is built with an objectoriented approach using Fortran 2008, and it is well suited for structured meshes and using the immersed boundary method for complex geometry. The code is coupled to a Monte-Carlos Collision (MCC) module to handle the collision between the charged particles and a neutral background, and a loss module to simulate the diffusion across the magnetic field lines of the charged particles in one-dimensional configurations. These components of the code, as well as its general data structure, are presented hereafter.

Particle Pusher

Once the electrostatic and the electromagnetic fields are calculated, the position and the velocity of each macro particle (from now on called just particle for simplicity) with the label "p" is updated using the equations in 2.1. It is done at each time step ∆t and for each species "s".

m s dv p dt = q s E ESp + E EMp + v p × B M Sp + B EMp and dx p dt = v p (2.1)
Where q s is the charge of the particle, m s the mass, x p the position, and v p the velocity. Regarding the electromagnetic fields, they must all be computed at the location of the particle p:

• E ESp is the electrostatic field generated by the charge distribution.

• B M Sp is the magnetostatic field generated by the current circulating a coil or by permanent magnets.

• E EMp and B EMp are the result of the electromagnetic fields produced by the microwave source and by the plasma itself. They are only computed selfconsistently if the code has an electromagnetic solver.

There are several numerical schemes to integrate these equations of motion, such as Runge-Kutta or the leap-frog method. The latter is commonly used since it requires a low number of mathematical operations and storage capability in comparison with more complex alternatives [C.K. [START_REF] Birdsall | Plasma physics via computer simulation[END_REF]. This solution is coupled to a Boris scheme algorithm to get the v × B rotation resulting from the Lorentz force. In practical terms, the update equations are presented next being n the time level:

x p n+1 -x p n ∆t = v p n+ 1 2 v p n+ 1 2 -v p n-1 2 ∆t = q s m s E ESp n + E EMp n + v p n+ 1 2 + v p n-1 2 2 × B M Sp n + B EMp n

Poisson Solver

This module computes the electrostatic contribution to the electric field (E ES ) using Eq. 2.6 from the charge density ρ s described previously using Eq. 2.4.

∇ 2 Φ(x, t) = - ρ s (x, t) ϵ (2.6)
Among the features of the Poisson solver we have:

• Direct solver for serial run: Lapack wrapper for dense matrix inversion, GMRES iterative inversion, Jacobi iterative inversion, and serial multigrid.

• Parallel solver: Parallel multigrid and Schwarz decomposition with Robin or Dirichlet interface.

• Dirichlet, Neumann, and Robin boundary conditions.

• Suitable for 1D, 2D, and 3D problems.

Scattering

The opposite of the gathering procedure is now required. It is done to extrapolate the electric and magnetic field values from the grid to the actual position of the particles. According to [C.K. [START_REF] Birdsall | Plasma physics via computer simulation[END_REF], the same interpolation function used for the gathering operation must be used again for the scattering to avoid a fictitious self-induced force in the particles.

Data structure

From the code point of view, the computational domain can be seen as an ensemble of blocks. These blocks are divided into several partitions using a Cartesian grid, as can be seen in Fig. 2.3. The mesh size needs to be equal on each partition, but each block can have its own independent set of boundary conditions. The connection of blocks can allow us to define simple geometries with straight boundaries, and complex geometries with curved surfaces are handled using the immersed boundary method.

Additionally, each partition mesh on the Cartesian grid is divided in tiles. The sorting of the particles is carried out in each tile since each of them keeps a list of the particles located within its boundaries. Among the consequences of this approach, we have a better cache access speed, and that collision operations can be performed in parallel at the tile level with a multithreaded execution. It also allows implementing a basic load balancing by adjusting the number of particles in each subset of tiles. Coulomb collisions are not considered in the code. The motivation for this choice was that Rhei is intended to simulate weakly ionized plasmas in which the collisions with the neutral particles are dominants. So a decision was reached by the development team to start, in the first instance, with a simplified description that handles only the interactions with the neutrals and leaves other features for an eventual upgrade. Another pertinent feature for a future version of the code will be to consider double ions in the simulations. We acknowledge that the absence of these features might limit the accuracy of our results. According to [START_REF] Sercel | Electron Cyclotron Resonance (ECR) Plasma Acceleration. 19Th AIAA, Fluid dynamics, Plasma dynamics, and Lasers Conference[END_REF], double ions are expected to account for 10% to 20% of the ions produced in the ECR plasma acceleration since they can be created through electron-neutral or electron-ion collisions.

Electrons

Regarding the treatment of the neutral gas, it is injected into the real prototype at the backplate. This gas expands in the source, resulting in a decreasing density.

The modeling of this process in our code does not allow us to consider the neutral gas depletion. However, we try to model these conditions by assuming that the neutral background density follows an exponential profile (where n n 0 is the maximum density of neutrals, and L n is the neutrals density characteristic length):

n n (x) = n n 0 exp - x L n (2.7)

Validation of the Code

The code development follows a test-driven approach. This choice seemed like an option with several advantages. The first one is that it reduces the time required to chase errors in the code since it is composed of several encapsulated parts tested individually. Additionally, it facilitates the development phase by multiple developers when validating their contributions while assuring the proper working of the whole. Finally, it ensures the robustness and the maintainability of the code over time.

Most of the tests that the code must pass after each development target specific functionalities. Some of those functionalities are the mesh generation, the treatment of the collisions, good communication between the processors, proper working of the boundary conditions, and so forth for a total of around one hundred. However, other tests involve a more significant amount of individual components like testing the accuracy of the electrostatic solvers by simulating simple test case scenarios and comparing the results against analytical predictions, a dielectric surface charging by impacting particles, or the communications among processes using the MPI library.

Furthermore, more complex tests were developed to challenge the whole code and not just its components. Some of them are presented hereafter.

Magnetic Mirror

The principles behind the plasma confinement method using a magnetic mirror were explained in chapter 1 subsection 1.1.2. A schematic scheme can be seen in Fig. 1.5.

A test was built based on this configuration using a quasi-one-dimensional model in which a Maxwellian electron population is injected in a magnetic bottle. In Fig. 2.6, each electron was plotted in the velocity space v ∥ , v ⊥ plane to verify that the loss cone angle is coherent with the expected value from Eq. 1.10. We notice that the confinement configuration correspond to the expected θ = 30 • of the red lines. It corresponds to the imposed magnetic bottle with a ratio B min /B max = 1/4.

Capacitively Coupled Discharge

We used the Rhei code to run the benchmark proposed by [START_REF] Turner | Simulation benchmarks for low-pressure plasmas: Capacitive discharges[END_REF] for lowtemperature plasma physics simulation. It assumes a discharge between two parallel electrodes, where the space between them is filled with Helium at a fixed density for each benchmark case and a temperature of 300 K. The simulated case was No. 1 with a neutral density of 9.64 × 10 20 m -3 , and initial plasma density of 2.56 × 10 14 m -3 , and a voltage between the electrodes of 450 V. The comparison shows a good agreement between the simulations using the Rhei code and the results of the authors, and it can be seen in Fig. 2.7 and Table 2.1.

Figure 2.7: Comparison of the results using the Rhei code and the benchmark for the CPP discharge from [START_REF] Turner | Simulation benchmarks for low-pressure plasmas: Capacitive discharges[END_REF]. 

Post-Processing

The code has several output files that give information about the plasma dynamics of the simulation. Regarding the particles, at a user-defined output frequency f out , the code will write the position and the velocity for each computational particle in the domain. The steady states reached at the end of a simulation are then characterized using the time average properties of the plasma. Depending on the time window over which the time average will be computed and the number of entries on the output file given by the frequency f out , we will have a given N number of snapshots with information about the state of the simulation. With this information, the plasma properties are computed using the following procedures.

• Charged particle's mean kinetic energy: The computational domain is discretized in a number of bins N b . Based on the particle's position, for each bin location

x k (k ∈ [1, N b ]
) we count the total number of particles (either ions or electrons separately) at that point C n (x k ) for each n snapshot of the code.

From the total number of snapshots N we use Eq. 2.8 to compute the total number of particles M (x k ) per bin.

M (x k ) = N n=1 C n (x k ), ∀x k ∈ [1, N b ] (2.8)
We know the velocity v p of any charged particle p in a given species. We use this information to compute, at each bin location, the average squared velocity ⟨v(x k ) 2 ⟩ over the total number of particles in that bin M (x k ) with Eq. 2.9. Finally, using the average squared velocities previously obtained, the mean kinetic energy is computed with Eq. 2.10 where m is the mass of the particle.

⟨v(x k ) 2 ⟩ = 1 M (x k ) M (x k ) p=1 v p (x k ) 2 , ∀k ∈ [1, N b ]
(2.9)

E(x k ) = 1 2 m⟨v(x k ) 2 ⟩, ∀k ∈ [1, N b ]
(2.10)

• Electron and ion number density: It is obtained using the total number of particles at each bin C n (x k ) for each n snapshot of the code. It is computed using Eq. 2.11 where this number of particles for each species is divided by the volume of the bin V (x k ), and W is the weight of the computational particles.

n(x k ) = 1 V (x k ) W 1 N N n=1 C n (x k ), ∀k ∈ [1, N b ] (2.11)
• Thrust: The thrust force produced by the thruster is computed using Eq. 2.12, where n i (x k ) is the ion number density density, m i the mass of the ions, and A(x k ) is the cross-sectional of the domain at each bin location.

T (x k ) = m i n i (x k )⟨v i (x k ) 2 ⟩A(x k ), ∀k ∈ [1, N b ]
(2.12)

• Energy flux: The energy flux along the longitudinal direction is computed using Eq. 2.13 with the velocity v ∥ parallel to the magnetic field lines. The energy flux in the direction perpendicular to the magnetic field lines is computed using Eq. 2.14 with the velocity v ⊥ . The average over each p particle at each bin location is used to build a profile over the computational domain.

Φ E∥ (x k ) = W 1 2 m M (x k ) p=1 v p∥ (x k )v p∥ (x k ) 2 , ∀k ∈ [1, N b ] (2.13) Φ E⊥ (x k ) = W 1 2 m M (x k ) p=1 v p∥ (x k )v p⊥ (x k ) 2 , ∀k ∈ [1, N b ] (2.14)
• Collisions: During the presentation of the code's features, we explained that each partition mesh on the Cartesian grid is divided in N tile tiles and that each of them keeps a list of the particles located within its boundaries. To keep track of how frequent the collisions between the charged particles and the neutral background are, a diagnostic on the code gives us the total number of collisions P n (x t ) (t ∈ [1, N tile ]) per tile at each snapshot n. This information is obtained for each type of collision described in section 2.1. The average number of collisions per tile and per snapshot is computed using Eq. 2.15.

G(x t ) = 1 N N n=1 P n (x t ), ∀x t ∈ [1, N tile ] (2.15)
Then, this value is divided by the volume of each tile and the time between each n snapshot to recover the total number of collisions per unit time.

Algorithm for the Electromagnetic PIC Codes

The details of the original version of the code, i.e., before the beginning of this work, presented in this chapter are important to understand the relevance of its missing features. Despite the several potential improvements that could be added to the code, the development of an electromagnetic module appears as a key step to simulate the ECR thruster with a self-consistent approach. The idea is to modify the electrostatic PIC loop presented in Fig. 2.1 to obtain a new loop represented in Fig. 2.8.

The electrostatic solver will keep providing the electrostatic field generated by the charge distribution (E ES ) while a new electromagnetic module will solve the Maxwell-Faraday and Maxwell-Ampère equations (E EM ). This new module will model the propagation of the injected microwaves on the ECR thruster and its interaction with the plasma (see chapter 1 subsection 1.1.3 for a description of the thruster). The linearity of the equations enables this division of Maxwell's equations into separated solvers. Therefore, the consistency with the charge conservation imposes that for the electromagnetic module, the condition ∇ • E EM = 0 should be respected to avoid creating a spurious contribution to the electric field from numerical errors [START_REF] Pfeiffer | Hyperbolic divergence cleaning, the electrostatic limit, and potential boundary conditions for particle-in-cell codes[END_REF]. To ensure this condition is met, a module called divergence cleaning can be used. For now, the main priority is the development of the electromagnetic solver. 

Summary of the Chapter

An overview of the code features has been presented. The test-driven approach of the code is intended to give us confidence in its results. It also endows it with the required robustness to long-term maintenance and updates from a team with multiple contributors. The electromagnetic module previously described will allow us to simulate the two models of the thruster that we choose to study: a quasi-1D model (or 1.5D) and a more complex 2D-axisymmetric representation of its geometry.

The first step in this increasing-complexity approach is developing a one-dimensional electromagnetic solver presented in the next chapter.

Chapter 3

Development and Validation of a 1D Planar Electromagnetic Solver using Different Numerical Methods

Chapter structure: This chapter aims to propose a means to compute the electromagnetic fields from a microwave in a Cartesian coordinate system to take into account their influence on the plasma dynamics. This stage required the development of an electromagnetic solver in 1D planar after comparing different methods.

The electromagnetic solver was validated using different analytical cases. In section 3.1 we present some of the requirements we are looking to fulfill with the numerical methods that will be studied. In section 3.2 we provide the development of an electromagnetic solver using the Linear Bicharacteristic Scheme (LBS). In section 3.3 we take a look at its potential to be used in a cylindrical coordinate system while still fulfilling the desired requirements. Finally, in section 3.4, we present the theoretical basis regarding the development of an electromagnetic solver using the Constrained Interpolation Profile (CIP) method. Each section also contains a validation phase by comparing the values of the simulated electromagnetic fields with those obtained by analytical expression in simple scenarios where an analytical analysis is feasible. 

Desired Requirements for the Electromagnetic Solver

The goal behind the development of an electromagnetic solver is finding numerically a solution for the complete set of Maxwell's equations shown next:

∇ • E = ρ ϵ (3.1) ∇ × B = µJ + µϵ ∂E ∂t + µσE (3.2) ∇ • B = 0 (3.3) ∇ × E = - ∂B ∂t + σ * µ B (3.4)
Where σ and σ * are the electric and magnetic conductivities, respectively. For our electromagnetic module, only the Maxwell-Ampère 3.2 and Maxwell-Faraday 3.4

equations will be solved. The reason for this is that the code Rhei is composed of a Poisson solver to solve the Gauss law (Eq. 3.1). In contrast, the divergence of the magnetic field (Eq. 3.3) is not solved since the magnetostatic field is greater than the microwave magnetic field by several orders of magnitude. Therefore, the error produced by omitting this equation is considered to be negligible. Having delimited our problem, we now need to identify those numerical methods that could be well suited to the specificities regarding the simulation of the ECR thruster.

Those specificities were translated into a set of requirements that were defined.

They served as a guide for choosing those numerical schemes that were considered in this work by trying to study options that could meet as many of them as possible.

These requirements are presented hereafter:

A) Be able to simulate an electromagnetic wave propagation taking into account its source terms, i.e., it must solve Maxwell's equations numerically (Eq. 3.1-3.4).

B) Accurate results. It is a crucial constraint since the validity of the simulation results will undoubtedly be related to the accuracy of the solver.

C) Stable and fast, if possible even with large time steps to speed up the simulations. When simulating the ECR thruster using a full-PIC model, we are forced to wait for the ions dynamics to be solved. This constraint imposes large simulation times before achieving a steady state. Therefore, a scheme that reduces the computational time required for each simulation will be appreciated.

D) Accurate and easy treatment of the outer boundary conditions: D1) Material discontinuities to handle: dielectric interfaces to simulate the thruster backplate, and electrically conductive surfaces to simulate the microwave antenna and the outer wall of the coaxial chamber.

D2) Implementation of an absorbing boundary condition for the electromagnetic waves with a Perfectly Matched Layer (PML). This feature will avoid the reflection of electromagnetic waves back into the computational domain.

D3) Possibility to impose a unidirectional power input source at the thruster backplate to simulate the microwave injection.

E) Update the fields at the same grid location for easy coupling to the others modules of the PIC code.

F) The numerical method must be well suited to be used in Cartesian and cylindrical coordinates systems since both of them will be used to simulate the thruster.

For the cylindrical case, the treatment of the symmetry axis singularity for twodimensional axisymmetric configurations is a key factor to consider.

A key point to remember from the previous requirements is that the development of a performing self-consistent electromagnetic solver must be based on an accurate numerical scheme with a fast computation time. [START_REF] Merino | Wave Propagation and Absorption in ECR Plasma Thrusters. 35th International Electric Propulsion Conference[END_REF] presented a review of the most well-known numerical methods for computational electromagnetism, among which we can found: spectral methods, finite difference, finite elements, and finite volume methods. The author describes the finite difference and the finite element methods as the most extended and successful of these techniques for electromagnetic problems. However, as described by [START_REF] Thomas | An Investigation of the Upwind Leapfrog Method for Scalar Advection and Acoustic / Aeroacoustic Wave Propagation Problems[END_REF], in addition to being a scheme that requires a complex implementation, time and space discretizations are not easily coupled together in the finite element method as is desired for time-dependent wave propagation problems. The finite difference method has therefore won the position as the most frequently used for electromagnetic solvers. It gives us a numerical solution for the hyperbolic partial differential equations governing electromagnetic problems.

One implementation of this family of numerical schemes is the finite-difference time-domain (FDTD) method proposed by [START_REF] Yee | Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[END_REF], which can be seen as a standard leapfrog method. It is the most popular solution implemented on PIC simulation codes worldwide. To name a few examples, we have the open-source code SMILEI started by a french team [START_REF] Derouillat | SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation[END_REF] or the german PIConGPU code for relativistic plasma physics running on graphic processing units [START_REF] Burau | PIConGPU: A fully relativistic particle-in-cell code for a GPU cluster[END_REF]. There is also the fully relativistic ZPIC code developed by the Kinetic Simulation Software Center (PICKSC) containing several solvers based either on finite-difference or on spectral methods [START_REF] Calado | The ZPIC educational code suite[END_REF]. However, this finite-difference time-domain (FDTD) method presents others several weak spots from our point of view:

• The stability of the scheme is restricted by the Courant-Friedrichs-Lewy (CFL) condition. Therefore, the time steps that can be used for the simulations are bounded to prevent the wave from traveling more than one grid cell per iteration. This constraint is not a problem for simulations describing fast phenomena, like laser-plasma interaction, for example. In our case, however, the duration of the simulation is given by the slow ion dynamics that needs to be solved using a small time step. Therefore, a huge computational time is required to wait for the transition between the initial conditions at the beginning of the simulation and the steady state.

• The fields update is not done at the same grid location as desired in the requirement E). It is not a problem since the integration with the PIC code could be achieved anyway, but it will be a value-added feature.

• The dissipation could be problematic when trying to simulate wave propagation [START_REF] Thomas | An Investigation of the Upwind Leapfrog Method for Scalar Advection and Acoustic / Aeroacoustic Wave Propagation Problems[END_REF]. Here again, the simulations focusing on fast phenomena and small domains are not touched by this constraint. However, simulations spanning over several wavelengths need to use a non-dissipative scheme.

In this study, we aim to explore different alternatives methods looking for a nondissipative numerical scheme fulfilling requirements A)-F). A wide variety of numerical methods might be able to fulfill most of these requirements. However, given the limited amount of time of any research project, we could not explore all the possibilities. So we decided to limit our study to two options we identified as promising since they seemed suitable candidates. Their main features and the developments carried out using these schemes in one-dimensional configurations are presented hereafter.

One-Dimensional Planar Electromagnetic Solver

Using the LBS Note: The developments presented in this section are based on the work carried out by [START_REF] Danvy | Développement d'un solveur électromagnétique pour la simulation de moteurs à plasma Mémoire de Master présenté par[END_REF] during her master's internship. Thanks for your valuable contributions to the electromagnetic solver for Rhei.

The Linear Bicharacteristic Scheme (LBS), also known as Upwind Leapfrog (UL) method, is a simultaneous space-time discretization approach. This scheme was initially developed thanks to the research conducted in the field of computational acoustics and aeroacoustics by [START_REF] Thomas | Development of Non-Dissipative Numerical Schemes for Computational Aeroacoustics[END_REF][START_REF] Thomas | An Investigation of the Upwind Leapfrog Method for Scalar Advection and Acoustic / Aeroacoustic Wave Propagation Problems[END_REF], and followed by many others researchers [START_REF] Kim | Multi-Dimensional Upwind Leapfrog Schemes and Their Applications[END_REF][START_REF] Nguyen | Investigation of three-level finite-difference time-domain methods for multidimensional acoustics and electromagnetics[END_REF][START_REF] Roe | Linear Bicharacteristic Schemes Without Dissipation[END_REF]. Since then, it has been extended to computational electromagnetic problems [START_REF] Beggs | The Linear Bicharacteristic Scheme for Electromagnetics[END_REF][START_REF] Zhang | An Upwind Leapfrog Scheme for Computational Electromagnetics: CL-FDTD[END_REF].

The LBS is based on the Method of Characteristics which claims that the solutions of a hyperbolic system propagate in specified directions or paths called "characteristics" [START_REF] Beggs | The Linear Bicharacteristic Scheme for Electromagnetics[END_REF]. It allows the algorithm to cluster the stencil around the given path and to obtain high accuracy. Among the advantages of this option, we can find their lack of numerical dissipation, low numerical dispersion, compact stencils [START_REF] Nguyen | The Implementation of the Upwind Leapfrog Scheme for 3D Electromagnetic Scattering on Massively Parallel[END_REF], and the ability to treat the outer boundary condition without non-reflecting approximations and without additional storage requirements [START_REF] Beggs | A Two-Dimensional Linear Bicharacteristic Scheme for Electromagnetics[END_REF]. While the CFL condition still limits the LBS option as the finite-difference time-domain (FDTD) method proposed by [START_REF] Yee | Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[END_REF], its advantages make it an attractive option worthy of being explored in more detail.

Characteristic Equations

Taking as a point of departure Maxwell's equations presented in section 3.1, we focus now on the Maxwell-Ampère and Maxwell-Faraday equations for a lossy media on the 1D configuration (Eq. 3.2-3.4):

∇ × B = µJ + µϵ ∂E ∂t + µσE ∇ × E = - ∂B ∂t + σ * µ B
Where σ and σ * are the electric and magnetic conductivity, respectively. Using E = ϵD and B = µH the equations are recast as:

∂D y ∂t + ∂H z ∂x + σ ϵ D y + J y = 0 (3.5) 1 c 2 ∂H z ∂t + ∂D y ∂x + σ * µc H z = 0 (3.6) ∂D z ∂t - ∂H y ∂x + σ ϵ D z + J z = 0 (3.7) 1 c 2 ∂H y ∂t - ∂D z ∂x + σ * µc H y = 0 (3.8)
For the sake of simplicity, further algebraic manipulation will only be presented for the assumption of a current J y acting as a source term. It means that only Eq. 3.5 and 3.6 will be used to solve for D y and H z . The next step towards the construction of the Linear Bicharacteristic Scheme (LBS) is to transform these equations into what is called the "characteristic form," in which each variable will represent a propagating wave over a specific direction or path. In order to do so, we multiply Eq. 3.6 for the speed of light (c) and then add and subtract it from Eq. 3.5.

∂ ∂t D y ± 1 c H z ± c ∂ ∂x D y ± 1 c H z + σ ϵ D y + σ * µ H z + J y = 0 (3.9)
The characteristic variables can now be defined as:

L p = D y + 1 c H z (3.10) L m = D y - 1 c H z (3.11)
Finally we get the next set of equations to represent ±x propagating solutions:

∂L p ∂t + c ∂L p ∂x + a 2 L p + b 2 L m + J y = 0 (3.12) ∂L m ∂t -c ∂L m ∂x + b 2 L p + a 2 L m + J y = 0 (3.13)
Where a = σ/ϵ + σ * /µ and b = σ/ϵ -σ * /µ. The fourth term of equations 3.12 and 3.13 represent what its called the "source term". To develop the discretized equations of the scheme, these terms were treated using the method proposed by

[John H. [START_REF] Beggs | On the Treatment of Electric and Magnetic Loss in the Linear Bicharacteristic Scheme for Electromagnetics[END_REF]: indexing the self source term (i.e., L p in equation 3.12 and L m in equation 3.13) at time level n + 1 and the coupled source term (i.e L m in equation 3.12 and L p in equation 3.13) at time level n. The advantage of this implementation is to provide a semi-implicit scheme avoiding a matrix solution at each time-step while keeping a good level of accuracy for the numerical solution. The Perfectly Matched Layer (PLM) outer boundary concept is automatically included in the scheme without additional storage requirements or without modifying the standard update equations by simply keeping ϵ = ϵ 0 , µ = µ 0 and σ * /µ 0 = σ/ϵ 0 [START_REF] Beggs | A Two-Dimensional Linear Bicharacteristic Scheme for Electromagnetics[END_REF].

The stencils used for the space-time discretization are shown in Fig. 3.1. This multilevel upwind stencil is compact and clusters the information around each unknown point of the grid. It reduces the required information to be shared among the communicating interfaces of the processors, resulting in a straightforward implementation for parallel codes [START_REF] Nguyen | The Implementation of the Upwind Leapfrog Scheme for 3D Electromagnetic Scattering on Massively Parallel[END_REF]. The update equations can finally be written as:

L p n+1 i = L p n-1 i-1 + (1 -2ν)(L p n i -L p n i-1 ) -b∆tL m n i -2∆tJ y 1 + a∆t (3.14) L m n+1 i = L m n-1 i+1 -(1 -2ν)(L m n i+1 -L m n i ) -b∆tL p n i -2∆tJ y 1 + a∆t (3.15)
Where ν = c∆t/∆x ≤ 1 is the Courant-Friedrichs-Lewy (CFL) condition to ensure the stability of the scheme. Once the update equations are solved at each iteration, we can translate back to the original variables D and H using Eq. 3.10 and 3.11. The accuracy of the results obtained with this scheme was validated by [START_REF] Danvy | Développement d'un solveur électromagnétique pour la simulation de moteurs à plasma Mémoire de Master présenté par[END_REF]. However, the potential of this method to fulfill the requirement F), i.e., to be used in a cylindrical coordinate system, has not been explored yet. To better assess the potential of the LBS to be used in an axisymmetric configuration, we decided to develop a one-dimensional axisymmetric electromagnetic solver.

One-Dimensional Axysimmetric Electromagnetic Solver Using the LBS Characteristic Equations

Taking as a point of departure Maxwell's equations presented in section 3.1, we focus now on the Maxwell-Ampère and Maxwell-Faraday equations in a cylindrical coordinate system. For this configuration, we obtain the following expressions:

• Maxwell-Faraday

∇ × E = - ∂B ∂t + σ * µ B 1 r ∂E z ∂θ - ∂E θ ∂z r + ∂E r ∂z - ∂E z ∂r θ + 1 r ∂(rE θ ) ∂r - 1 r ∂E r ∂θ ẑ = - ∂B ∂t + σ * µ B r -axis : 1 r ∂E z ∂θ - ∂E θ ∂z = - ∂B r ∂t - σ * µ B r , (3.16) θ -axis : ∂E r ∂z - ∂E z ∂r = - ∂B θ ∂t - σ * µ B θ , (3.17) z -axis : 1 r ∂(rE θ ) ∂r - 1 r ∂E r ∂θ = - ∂B z ∂t - σ * µ B z . (3.18) • Maxwell-Ampère ∇ × B = µJ + µϵ ∂E ∂t + µσE 1 r ∂B z ∂θ - ∂B θ ∂z r+ ∂B r ∂z - ∂B z ∂r θ+ 1 r ∂(rB θ ) ∂r - 1 r ∂B r ∂θ ẑ = µJ+µϵ ∂E ∂t +µσE r -axis : 1 r ∂B z ∂θ - ∂B θ ∂z = µJ r + µϵ ∂E r ∂t + µσE r , (3.19) θ -axis : ∂B r ∂z - ∂B z ∂r = µJ θ + µϵ ∂E θ ∂t + µσE θ , (3.20) z -axis : 1 r ∂(rB θ ) ∂r - 1 r ∂B r ∂θ = µJ z + µϵ ∂E z ∂t + µσE z . (3.21)
In our case, for a 1D configuration we got ∂ ∂z = ∂ ∂θ = 0. We define the configuration such as the electric field lies along the z-axis and the magnetic field along the θ-axis.

So we are only interested in E z and B θ , and from Eq. 3.17 and 3.21 we obtain:

∂B θ ∂t = ∂E z ∂r - σ * µ B θ , (3.22) ∂E z ∂t = 1 µϵ ∂B θ ∂r + 1 µϵ B θ r - σ ϵ E z - 1 ϵ J z . (3.23)
Now we need to transform equations 3.22 and 3.23 into characteristic form. To do this, we are going to add and subtract "c * Eq. 3.22" from Eq. 3.23:

• Eq. 3.23 + c * Eq. 3.22:

∂E z ∂t + c ∂B θ ∂t = 1 µϵ ∂B θ ∂r + 1 µϵ B θ r - σ ϵ E z - 1 ϵ J z + c ∂E z ∂r -c σ * µ B θ ∂(E z + cB θ ) ∂t -c ∂(E z + cB θ ) ∂r -c 2 B θ r + σ ϵ E z + 1 ϵ J z + c σ * µ B θ = 0 • Eq. 3.23 -c * Eq. 3.22: ∂E z ∂t -c ∂B θ ∂t = 1 µϵ ∂B θ ∂r + 1 µϵ B θ r - σ ϵ E z - 1 ϵ J z -c ∂E z ∂r + c σ * µ B θ ∂(E z -cB θ ) ∂t + c ∂(E z -cB θ ) ∂r -c 2 B θ r + σ ϵ E z + 1 ϵ J z -c σ * µ B θ = 0
We define the characteristic variables as:

Y = E z -cB θ (3.24) X = E z + cB θ (3.25)
And we introduce the new variables a = σ ϵ + σ * µ and b = σ ϵ -σ * µ . So the previous equations can be written as follows:

∂Y ∂t + c ∂Y ∂r + a 2 Y + b 2 X - c 2r (X -Y ) + 1 ϵ J z = 0 ∂Y ∂t + c ∂Y ∂r + a 2 + c 2r Y + b 2 - c 2r X + 1 ϵ J z = 0 (3.26) ∂X ∂t -c ∂X ∂r + a 2 X + b 2 Y - c 2r (X -Y ) + 1 ϵ J z = 0 ∂X ∂t -c ∂X ∂r + a 2 - c 2r X + b 2 + c 2r Y + 1 ϵ J z = 0 (3.27)

Discretization of the System of Equations

The set of characteristic equations 3.26 and 3.27 can now be written in matrix form:

∂U ∂t + Λ ∂U ∂r = S • U -J (3.28) U = Y X , Λ = c 0 0 -c , J = 1 ϵ J z J z , S =   -a 2 -c 2r -b 2 + c 2r -b 2 -c 2r -a 2 + c 2r   (3.29)
As for the planar electromagnetic solver in the previous section when we obtained the propagating solutions equations (3.12 and 3.13), here we must also deal with the source term S. However, this case is more complex since it has a variable coefficient that depends on 1/r. This feature generates instabilities with a spurious mode that grows rapidly and overwhelms the physical mode [START_REF] Kim | Accurate Schemes for Advection and Aeroacoustics[END_REF]. Therefore, special treatment is required to eliminate the source term. To accomplish this task, we decided to follow a stabilizing technique proposed by [START_REF] Kim | Multi-Dimensional Upwind Leapfrog Schemes and Their Applications[END_REF][START_REF] Kim | Maintaining the stability of a leapfrog scheme in the presence of source terms[END_REF] for polar coordinates by introducing a new vector V so U = e Dr • V.

∂ e Dr • V ∂t + Λ ∂ e Dr • V ∂r = S • e Dr • V -J e Dr ∂V ∂t + Λ • D • e Dr • V + Λ • e Dr ∂V ∂r = S • e Dr • V -J
To eliminate the source term, the following condition must be respected:

Λ • D • e Dr • V = S • e Dr • V Λ • D = S Therefore, D = Λ -1 • D D =   -a 2c -1 2r -b 2c + 1 2r b 2c + 1 2r a 2c -1 2r  
Finally, we get the following system of equations containing no source term:

e Dr ∂V ∂t + Λ • e Dr ∂V ∂r = -J e Dr ∂ e -Dr • U ∂t + Λ • e Dr ∂ e -Dr • U ∂r = -J (3.30)
The approximation that S (and therefore D) is locally constant around the center of the stencil (r c ) is used, such that D(r) = D(r c ). The implementation of equations 3.30 is confined to the local area around r c and it can be replaced with:

e Drc ∂ e -Dr • U ∂t + Λ • e Drc ∂ e -Dr • U ∂r = -J ∂ e -Dr • U ∂t + Λ ∂ e -Dr • U ∂r = -J (3.31)
Where r = r -r c . With the linear approximation of the exponential term e -Dr = 1 -Dr and ν = c∆t/∆r, equations 3.31 can be written as follows: 

∂(Y (1 -D 11 r) -X(D 12 r)) ∂t + c ∂(Y (1 -D 11 r) -X(D 12 r)) ∂r = - 1 ϵ J z , (3.32) ∂(X(1 -D 22 r) -Y (D 21 r)) ∂t -c ∂(X(1 -D 22 r) -Y (D 21 r)) ∂r = - 1 ϵ J z . ( 3 
β 1 = D 12 ∆r 2 1 + D 12 ∆r 2 β 2 = 1 -D 12 ∆r 2 1 + D 12 ∆r 2 α 1 = D 21 ∆r 2 1 -D 21 ∆r 2 α 2 = 1 + D 21 ∆r 2 1 -D 21 ∆r 2
To obtain the update equations of our numerical scheme, this equations can now be discretized using the stencils in Fig. Taking J = 0, the descretized equations are as follows:

• Right going wave from the equation 3.32: Update equation

Y n+1 i -X n+1 i β 1 = Y n i -Y n i-1 -Y n-1 i-1 β 2 -X n i β 1 -X n i-1 -X n-1 i-1 β 1 + 2νY n i-1 β 2 + 2νX n i β 1 + 2νX n i-1 β 1 -2νY n i (3.35)
• Left going wave from the equation 3.33: Update equation

X n+1 i + Y n+1 i α 1 = X n i -X n i+1 -X n-1 i+1 α 2 + Y n i α 1 + Y n i+1 -Y n-1 i+1 α 1 + 2νX n i+1 α 2 -2νY n i+1 α 1 -2νY n i α 1 -2νX n i (3.36)
Once the update equations were obtained, the solver was used to simulate the radial electromagnetic fields generated by a linearly increasing current along the longitudinal z-axis of a cylindrical domain. It was a one-dimensional axisymmetric simulation using a CFL = 0.25 and a time-increasing current J θ = 4t/(µ 0 ∆x 2 ). The results can be seen in Fig. 3.2. We can notice the presence of instabilities related to wave oscillations despite the low value of the CFL. Other test simulations effectuated during this development phase also showed the same trend, exhibiting parasite oscillations or dissipation. A Von Neumann stability analysis was carried out to get a deeper understanding of these results, and it can be found in Appendix A. Unfortunately, the results showed that the eigenvalues of the scheme lay inside the unit circle, meaning that our solver is dissipative. The applied stabilizing technique successfully suppressed the source term. However, an additional step was still missing in our 1D axisymmetric electromagnetic solver based on the LBS to suppress the dissipation and oscillations seen in Fig. 3.2.

At this stage of the research project, a decision was taken for what lied ahead. To obtain a functional non-dissipative LBS axisymmetric solver would still require a time investment, maybe even more significant than the time frame for this research project.

Additionally, the result on the road to getting a two-dimensional axisymmetric solver would still be limited by the CFL. On the other hand, the CIP method appeared as another possibility with several advantages, like being third-order accurate and not limited by the CFL, potentially reducing computational time. Future efforts from this point on were dedicated to exploring this numerical method.

One-Dimensional Planar Electromagnetic Solver Using the CIP Method

One of the advanced techniques among the finite-difference methods is a stable thirdorder accurate and non-dissipative scheme initially developed in the field of Computational Fluid Dynamics [START_REF] Yabe | A universal solver for hyperbolic equations by cubicpolynomial interpolation I. One-dimensional solver[END_REF], known as the Constrained Interpolation Profile (CIP) method. It is a semi-Lagrangian scheme that circumvents the Courant-Friedrichs-Lewy (CFL) stability condition [P.K. Smolarkiewicz & J.A.Pudykiewicz, 1992;[START_REF] Yabe | The Constrained Interpolation Profile Method for Multiphase Analysis[END_REF]. This feature allows computations with CFL values ≥ 1.0, as can be seen in [START_REF] Nie | CIP Method of Characteristics for the Solution of Tide Wave Equations[END_REF] and [START_REF] Tachioka | Application of the constrained interpolation profile method to room acoustic problems: Examination of boundary modeling and spatial/time discretization[END_REF] where the authors performed simulations using a CFL value of 2.6 in a Cartesian coordinate system. It considers not only the electromagnetic fields but also their spatial derivatives, therefore suppressing instabilities and providing lower numerical dispersion even when using coarse grids and large time steps [START_REF] Kajita | Computation of lightning electromagnetic pulses using the constrained interpolation profile method[END_REF]. [Okubo & Takeuchi, 2007] showed that it provides higher accuracy than the conventional finite-difference time-domain (FDTD) method under the condition of identical cell size. A proof of the weak stability of the scheme is presented in [START_REF] Daiki | Stability Analysis of the CIP Scheme and its Applications in Fundamental Study of the Diffused Optical Tomography[END_REF].

The CIP scheme was combined with the Method of Characteristic (MoC) to get an accurate simulation of Maxwell's equations by [START_REF] Ogata | An Accurate Numerical Scheme for Maxwell Equations with CIP-Method of Characteristics[END_REF]. Since then, several research developments have been published around the use of the CIP method for electromagnetics [START_REF] Chakarothai | Three-dimensional electromagnetic scattering analysis using constrained interpolation profile method[END_REF][START_REF] Tanaka | Computation of lightning electromagnetic pulses with the constrained interpolation profile method in the 2-D cylindrical coordinate system[END_REF]. Indeed, the CIP method has several interesting features for the computation of electromagnetic fields in time domain. Among them, its higher-order means lower dispersion and lesser points required per wavelength. It can be used with variable cell sizes or subgridding techniques [START_REF] Kobayashi | Lightning electromagnetic field calculation using the constrained interpolation profile method with a subgridding technique[END_REF]. Additionally, being a semi-Lagrangian technique, it can be used with larger CFL numbers than classical explicit FD techniques.

The CIP method is also based on the Method of Characteristics, which means that the solutions of the hyperbolic system to be solved propagate in specified directions or paths called "characteristics" [START_REF] Beggs | The Linear Bicharacteristic Scheme for Electromagnetics[END_REF]. Therefore, the same characteristics obtained previously for the LBS can be used in this case: L p from Eq. 3.10 and L m from Eq. 3.11 for a J y source term, and Q p and Q m for a J z source term. Just as the finite-difference time-domain (FDTD) method, the CIP considers the electromagnetic fields on each grid point. However, it also propagates the values of the spatial derivatives for each field through an additional advection equation. This feature produces less numerical dispersion or instabilities because for a given propagating wave, its values between the grid points are interpolated using not only the wave information at the grid but also its spatial derivatives [START_REF] Kajita | Computation of lightning electromagnetic pulses using the constrained interpolation profile method[END_REF].

It allows a better approximation of the wave all over the computational domain and maintains its original shape through the whole simulation. Consider the following advection equation for a one-dimensional problem:

∂f ∂t + c ∂f ∂z = 0 (3.37)
It represents the propagation of the a wavefield f at a constant speed c. The CIP method solves not only Eq. 3.37, but also another differential equation for its spatial derivative along its propagation direction, obtained by differentiating Eq. 3.37:

∂g ∂t + c ∂g ∂z = 0 ; g = ∂f ∂z (3.38)
The advection phase may be better understood thanks to Fig. 3.3. It represents the field update process of the CIP method where at each time step, the value at any given grid point is updated using the value the field had before traveling up to that point the distance given by the time step and its propagating speed (c∆t). It can be summarized as follows: consider a wave propagating along the positive direction of the z-axis (+z): the function f and its spatial derivative g at each time step (∆t) and at each grid point (z i ) are obtained by shifting its values from the position z i -c∆t, 

F CIP (z) =a i (z -z i ) 3 + b i (z -z i ) 2 + g i (z -z i ) + f i G CIP (z) = ∂F (z) ∂z = 3a i (z -z i ) 2 + 2b i (z -z i ) + g i (3.39)
Where a i and b i are coefficients calculated based on the functions f and g values at the grid points as follows:

a i = g i + g i-1 (-∆z) 2 + 2(f i -f i-1 ) (-∆z) 3 (3.40) b i = 3(f i-1 -f i ) (-∆z) 2 - 2g i + g i-1 (-∆z) (3.41)
In other words the update for the right going wave f n+1 + (z i ) at time n + 1 is done using in Eq. 3.42, while for the left going wave f n+1 -(z i ) we use Eq. 3.43.

f n+1 + (z i ) =f n + (z i -c∆t) (3.42) f n+1 -(z i ) =f n -(z i + c∆t) (3.43)

Validation of the Code: Waves Propagation and Reflection

Several test cases were developed to test the accuracy of the results obtained using the CIP solver in one-dimensional simulations. In Fig. 3.4 we can see the results obtained with one of those tests to verify the correct propagation of an electromagnetic waveshaped as a Gaussian pulse. The pulse is injected at the middle of the computational domain, and it propagates using CFL = 1.0. At each end of the computational domain, a conducting wall reflects the waves back into the computational domain. However, next to the conducting walls, two PML are designed to absorb 90% of the injected wave. Therefore, the simulation starts with a wave amplitude equals to 1.0 in dimensionless units (Fig. 3.4a). This pulse splits into two counter-propagating pulses of half the initial amplitude (Fig. 3.4b), and this amplitude reduces as each pulse moves through the PML (Fig. 3.4c). Finally, the pulses reflect back into the computational domain once they reach the conducting walls at the extremities to reach a final amplitude of 0.1 as expected (Fig. 3.4e).

Validation of the Code: Waves in a Magnetized Plasma

Once the code was upgraded from the original electrostatic version, it was important to test its capacity to reproduce the different waves in a magnetized plasma. This test aimed at challenging the proper working of the entire PIC code and not just the electromagnetic module isolated from the plasma.

Figure 3.5: Plasma waves for the case:

⃗ k x ⊥ ⃗ B z and ⃗ E y ⊥ ⃗ B z .
The simulation of the evolution of a plasma in a one-dimensional domain of 240 meters long is presented. The CIP method was used for the electromagnetic solver with a time step of 800 picoseconds and a 160 mm mesh spacing. The computational domain is orientated along the x-axis, while the imposed magnetostatic field B lies on the z-axis. The simulation is initialized with a uniform Maxwellian distribution. The resulting propagating waves can be seen in Fig. 3.5 and 3.6, where we plotted the ratio frequency over plasma frequency ω/ω p as a function of the wavenumber times 

= ω p 2 + k 2 c 2 .
Regarding the potential of this method to fulfill the requirement F), we are confident that it can be used in cylindrical coordinates. For this particular case of cylindrical systems, [START_REF] Tanaka | Computation of lightning electromagnetic pulses with the constrained interpolation profile method in the 2-D cylindrical coordinate system[END_REF] proposed a method to deal with the radial terms with the CIP method. By considering that the computational domain can be seen as a medium with radially varying impedance, the characteristic variables can propagate radially with the semi-Lagrangian method considering the transmission and reflection of waves due to the impedance variation. We have tested this procedure, and it has proved to be accurate for the treatment of electromagnetic problems in a cylindrical configuration. However, the method described by [START_REF] Tanaka | Computation of lightning electromagnetic pulses with the constrained interpolation profile method in the 2-D cylindrical coordinate system[END_REF] is only limited to CFL ≤ 1.0. In chapter 6 we will see how to overcome this constraint.

Summary of the Chapter

We have compared two options for developing a one-dimensional planar solver: the Linear Bicharacteristic Scheme (LBS) and the Constrained Interpolation Profile (CIP) method. Finally, the CIP method was chosen as the best alternative based on its capacity to fulfill a set of requirements proper to the kinetic simulation of the ECR thruster. This electromagnetic solver is intended to be coupled to the Particle-In-Cell code to have the means to compute the fields from a microwave in a Cartesian coordinate system. This feature will allow us to simulate the plasma-microwave interaction in the ECR thruster with our self-consistent approach. The simulations and the results using a quasi-1D model are presented in the following chapter.

Chapter 4 Electromagnetic Full-PIC Simulation of a 1D3V Model the ECR Thruster

Chapter structure: The objective of this chapter is to analyze the plasma behavior in a simplified 1D3V model of the ECR thruster using the Particle-In-Cell code and the electromagnetic solver developed in the previous chapter. A presentation of the numerical model is given in section 4.1 to expose its advantages, limitations, and underlying assumptions. Section 4.2 presents the boundary conditions imposed in our simulations while section 4.3 discuss the setup of the implementation and execution of the code. The identification of some of the physical mechanisms taking place inside the thruster is carried out in the subsequent chapters. Section 4.4 introduces a general overview of the plasma behavior. The electron heating is examined in section 4.5 while section 4.6 look at their dynamics and confinement. Finally, section 4.7 focuses on the ion dynamics, and section 4.8 presents an outline of the plasma dynamics in the thruster based on the results of our numerical model. 

1D3V Numerical Model

While being a truthful representation of reality, two or three-dimensional simulations of the thruster might be computationally expensive. In the particular case of PIC simulations, complex models could require several weeks or months of computing.

Additionally, this constraint slows down the development phase since each new idea to be tested in the model must wait for a time-consuming validation given by the speed of the simulations. Having this in mind, and as already pointed out in previous chapters, we decided to adopt an increasing-complexity approach. The idea is to start by studying the thruster with a 1D3V (one-dimensional in space and threedimensional in velocity) model before moving on to a more complex representation of its geometry.

From our perspective, the advantage of this approach is that a simplified model of the thruster could allow us to analyze the plasma behavior in both the coaxial chamber and the magnetic nozzle while using an affordable amount of computational resources. It will give us insight into some of the plasma dynamics phenomena taking place in the thruster. On the other hand, this development phase will help us set up the building blocks that will be useful for more complex models, like the boundary conditions for the electromagnetic module, for example. A more detailed presentation is given next about the assumptions and main features of the approach on which this work is based.

The Quasi-One-Dimensional Approach

In chapter 1, a brief overview of the electron dynamics in the ECR thruster was provided by describing the two confining methods: the electrostatic plasma potential barrier at the plume and the magnetic confinement at the close end of the coaxial chamber. This approach highlights the fact that the dominant axis governing the plasma dynamics is the longitudinal direction, i.e., parallel to the central axis of the coaxial chamber that can be seen in Fig. 4.1a with an actual prototype of the thruster. The particle's position along this axis determines its confinement as a function of the magnetic field and the electrostatic potential at the given location. This position also affects the ECR heating since different cyclotron frequencies and neutral gas densities are obtained as the electron moves through this axis. Consequently, in the quest to build a simplified representation of the thruster geometry, placing the longitudinal direction as the central pillar seemed an appropriate choice.

• The electrons and the ions are assumed to be confined within the magnetic field tube, whose area is related to the axial magnetic field intensity through Eq. 4.1.

A(x) = A x=0 B x=0 B x (x) (4.1)

Divergence of the Magnetic Field Tube

Different user-defined profiles can be specified for the magnetostatic field. Still, the most common one for the ECR thruster is an exponentially decaying profile, as seen in Fig. 4.2. The variation of the cross-sectional area for the field tube is also plotted. This shape for the magnetostatic field is chosen to ensure a magnetic confinement at the close end of the coaxial chamber while allowing the electrons to get accelerated in the plume thanks to the divergence of the magnetic field lines. From now on the term parallel or axial and the subscript ∥ will refer to the direction parallel to the magnetostatic field lines and not to the x-axis. Similarly, perpendicular and the subscript ⊥ refer to the direction perpendicular to the magnetostatic field lines where the cyclotron motion takes place. Both directions are computed using the components of the magnetostatic field (Eq. 4.4 to 4.6 that will be presented shortly). The term plasma plume refers to locations on the computational domain where the plasma expands on the magnetic nozzle. It is accessed by moving to increasing x values along the longitudinal axis, which is also known as moving downstream.

The code computes the divergence of the magnetostatic field by assuming that it is locally symmetrical along the field tube centerline as described by [START_REF] Elias | Advances in the kinetic simulation of microwave absorption in an ECR thruster[END_REF]. Under this assumption, the magnetostatic field divergence is given by Eq. 4.2.

1 r ∂(rB r ) ∂r + ∂B x ∂x = 0 (4.2)
Additionally, if we assume that the axial gradient is constant along a section of the magnetic field tube, i.e., it is only a function of x such that ∂B x /∂x = f (x), the radial component of the magnetostatic field is given by Eq. 4.3.

B r (r, x) = - f (x)r 2 (4.3)
Therefore, the magnetostatic field seen by the electrons is given by equations 4.4-4.6. Where θ, the angle of the electron gyromotion in the plane perpendicular to the longitudinal axis, is given by cos θ = v z /v ⊥ and sin θ = -v y /v ⊥ .

B x (x) (4.4) B y = B r (r, x) cos θ (4.5) B z = B r (r, x) sin θ (4.6)
It is worth mentioning that while the effect of the diverging channel on the magnetostatic field is taken into account thanks to the previous equations, it is not done in the electromagnetic module. A weak point of our one-dimensional electromagnetic solver is that the cross-sectional area variation of the magnetic field tube is not taken into account. The input parameter for the electromagnetic simulation is the injected power per unit surface, and the electromagnetic fields are computed using the crosssectional area at the backplate A(x = 0) in Fig. 4.2. Consequently, as the microwave propagates through the computational domain, the varying A(x) should have been used to obtain the electromagnetic fields from the user-defined power per unit area. In our electromagnetic module, only the cross-sectional area at the backplate was taken into account. The motivation for this choice was that based on experimental measurements carried out at Onera, the injected microwave was expected to be fully absorbed inside the coaxial chamber. The cross-sectional area variation is low in this region, so it does not seem like a relevant consideration to be taken into account since it would have a negligible impact on the results. On that account, a decision was made to keep a general one-dimensional solver that could be used for other cases without a varying cross-sectional area.

Let's now look at the boundary conditions that need to be specified in each surface of our computational domain.

Boundary Conditions

As it was shown in Fig. 4.1b when describing the quasi-one-dimensional model, the computational domain goes from x = x 0 at the left side with the backplate, to the right-end at x = L D . Making an analogy with the experimental studies of the ECR thruster, this L D position represents a wall at the end of the vacuum chamber tank in which the studies are carried out. Several boundary conditions need to be defined for these two extremities: electrostatic for the Poisson solver, electromagnetic for the CIP solver, and boundary conditions for the particles that reach those positions. These boundary conditions will be discussed subsequently.

Electrostatic

At the right end of the computational domain x = L D , we imposed a zero voltage to simulate the presence of the grounded vacuum chamber wall. The dielectric backplate is in contact with the plasma, and therefore its surface voltage V BP is changed as it gets impacted by the charged particles. The evolution of V BP through time is modeled as a capacitor given by Eq. 4.7, where ∆Q is the charge deposited at the backplate at each time step, and C is an equivalent capacitance under the assumption that the backplate is in contact with a grounded conductor.

∆V BP = 1 C ∆Q ∆t (4.7)

Electromagnetic

The microwaves are injected at the backplate with a linear polarization along the yaxis, specified by its power per unit area P in and by its frequency f EM . The microwave fields from the injected linearly polarized wave are computed using equations 4.8.

E y = µcP in sin (ωt) ; E z = 0 (4.8)
A circular polarization can also be specified to simulate right and left-handed circularly polarized waves. Its components are computed using equations 4.9.

E y = µcP in sin (ωt ± π 2 ) ; E z = µcP in sin (ωt) (4.9)
The injected microwave input power per unit area P in can be fixed, or it could be adapted to keep a roughly constant pre-defined number of particles N target . This feature is intended to speed up the simulations by reproducing a faster plasma response to a given variation in the simulation's parameters after regulating the injected microwave power per unit area with an attenuation factor α varying with the number of particles in the domain: α = exp(-N particles /N target ). It allows avoiding waiting as long as it would be required if a constant input were used. More details about its impact on the simulations will be given shortly.

Finally, for the right-side boundary of the domain, the CIP method allows the implementation of a PML. The goal is to avoid reflections of the electromagnetic waves back into the simulation domain when they reach the end.

Particles

The particles that reach the right end of the computational domain, x = L D , are lost and suppressed from the domain. At the backplate, several boundary conditions are available. The simplest one is the sticky condition in which the particles just get lost by being suppressed from the domain after the impact. The second option is to take into account the secondary electron emission at the backplate for electrons and ions impacts with a constant coefficient γ BP e or γ BP i , i.e., the energy of the impacting particle is not considered. The sticky condition was used to have a simple scenario.

Another important mechanism to model to get a more accurate representation of the reality is the diffusion across the magnetic field lines of the electron guiding centers. Previous works using PIC codes for electric thrusters take it into account by artificially increasing the collision rate like it was done by [START_REF] Blateau | The curling probe: A numerical and experimental study. Application to the electron density measurements in an ECR plasma thruster[END_REF]. Others may use a constant assumption or a profile based on empirical evidence for the crossfield diffusion as signaled by [Fox, 2003]. For our 1D3V simulations, we decided to consider this mechanism with a phenomenological volume loss model to simulate the particle losses into the coaxial chamber walls. The idea is to model it as a sink Monte-Carlo module that will compute the probability for an electron to impact the walls of the coaxial chamber and be suppressed from the computational domain. In that case, an ion would also be suppressed from the computational domain to conserve the charge. We called it the loss module and to compute this probability it is based on the hypothesis that the electron number density profile in a cylindrical coordinate system can be expressed as n e (x, r, t) = n e 0 (x, t)g(r). Being x the longitudinal axis and the radial r-axis corresponding to the y-z plane of our quasi-one-dimensional model. In this case, we obtain for the radial diffusion equation for the electrons ∂n e (x, r, t)/∂t:

D∇ 2 n e (x, r, t) = D 1 r ∂ ∂r r
∂n e (x, r, t) ∂r (4.10)

Defining δN as the number of particles per unit length, and integrating both sides of Eq. 4.10 we obtain the following expression:

δ N = -ν L δN ⇐⇒ ∂ ∂t n e 0 (x, t)2π R 0 rg(r)dr δ N = -ν L n e 0 (x, t)2π rmax 0 rg(r)dr δN
With the loss frequency given by:

ν L = -r max g ′ (r max ) S D (4.11)
Where:

S = rmax 0 rg(r)dr (4.12) δN = n e 0 (x, t)2πS (4.13)
For the diffusion coefficient D, two choices are possible. The first option is a coefficient based on classical diffusion obtained from theories on standard electronneutral collisions. It can be seen in Eq. 4.14 where τ = 1/ν is the collision period with the neutral background. However, the electron mobility tends to be higher than the value predicted by this classical diffusion approach [START_REF] Chen | Introduction to Plasma Physics and Controlled Fusion[END_REF]. The cause of this discrepancy is an active area of research in the electric propulsion field [START_REF] Croes | 2D particle-in-cell simulations of the electron drift instability and associated anomalous electron transport in Hall-effect thrusters[END_REF]Garrigues et al., 2009]. The second option is a coefficient based on Bohm diffusion, which is an empirical modeling of the cross-field diffusion with Eq. 4.15.

The Bohm diffusion coefficient was the option chosen for our model.

D classical = ω c τ 1 + (ω c τ ) 2 k B T e eB (4.14) D Bohm = 1 16 k B T e eB (4.15)
The probability for a given particle to be lost between t and t + ∆t is given by

p L = ν L dt.
In our quasi-1D model, the magnetostatic field is related to the crosssectional area of the magnetic field tube as shown in Fig. 4.2. Taking into account this fact and the proportionality of the loss frequency to the factor (k/r max ) 2 where k is a constant (this is true for several forms of the g(r) function such as g(r) = 1-(r/r max ) 2

with k = 2.8284 or g(r) = cos(πr/2r max ) with k = 2.6058), we obtain:

p L (x) = 2 3 π 16 k 2 1 2 m⟨v(x) 2 ⟩ dt eA L B x=0 (4.16)
Where dt is the time step, ⟨v(x) 2 ⟩ is the electron's mean kinetic energy, and A L is a fixed user-defined surface for the loss module. For this case it was set to be A L = A x=0 . Now that the boundary conditions have been defined, the setup for the implementation and execution of the code is presented in the upcoming section.

Reaching a Steady State

The goal of the simulations that will be performed is to reach a steady state simulating a stable working point of the thruster's operation. The electromagnetic module computes the energy exchange between the plasma and the microwaves, while the PIC code handles the subsequent plasma dynamics on the computational domain self-consistently. An energy balance of the plasma inside the ECR thruster can be seen in Fig. 4.3 with a schematic view. The net input energy injected into the thruster in the form of microwaves is distributed into several components:

• Energy absorbed by the plasma thanks to the ECR heating • Losses at the coaxial chamber walls from the diffusion across the magnetic field lines of the electron guiding centers: loss wall • Losses at the plume at the plasma is ejected from the thruster: loss plume • Losses at the backplate as the charged particles impacts it: loss BP • Losses on collisions between the charged particles and the neutrals: loss neutrals Therefore, the power absorbed by the plasma is given by Eq. 4.17.

P abs = P EM -LOSS T OT AL (Loss BP + Loss plume + Loss neutrals + Loss walls ) (4.17)

When the injected energy and the losses are balanced, the plasma properties are constant, and the thruster can produce a continuous thrust useful for in-space applications. We are interested in studying this point which means that we must wait for the transient phase after initializing the simulation. The presence of this transient phase suggests that we are constraint to have long simulation times until the steady state is achieved. To gain computational resources, the CIP method for the upcoming simulations will allow us to use a CFL value up to 3.0, i.e., time steps up to 5 times greater than our previous studies [Porto & Elias, 2019] (more details can be found in Appendix D), resulting in a significant gain in time. It is worth mentioning that despite the gain in computational time by using the CIP method, the required time steps for the microwave propagation in the electromagnetic simulations are small compared to the values used for the electrostatic cases. In the electrostatic numerical study carried out by [START_REF] Vialis | Développement d'un propulseur plasma à résonance cyclotron électronique pour les satellites[END_REF], the time step used was around seven times greater than the typical values at which our 1D3V simulations are run. We can now set aside this short parenthesis and come back to the steady state, but before discussing this topic further, let's focus first on the initialization of the simulation. A baseline configuration was defined using the set of parameters described in Table 4.1. The electron dynamics and the electromagnetic solver are updated every iteration.

The real Xenon mass for the ions was used to be more representative of the reality, and to speed up the calculations a subcycling is used so the ion's position and velocity that are updated every 10 times steps as given by ∆t ions in Table 4.1. The collisions are also computed every 10 times steps as given by ∆t coll to have a statistical smoothing for the Monte Carlos Collision (MCC) module. The charged particle's position is initialized using a uniform density distribution. The electron's initial energy along each of the x-y-z axis is fixed to 20 eV, and the room temperature of 0.03 eV for the ions. These values are intended to reproduce a cold plasma with no thermal equilibrium between the charged particles. The initial 20 eV for the electrons was obtained after a parametric analysis with several energy values between 10 eV and 30 eV. It showed little impact of the initial electron energy on the final characteristic of the steady state since the plasma has enough time to homogenize the plasma properties for different initial conditions. To sustain the plasma at the beginning, a plasma source at 2 mm from the backplate injects electrons at 3 × 10 5 m and ions at 3 × 10 2 m during the first 150 ns of the simulation. These velocities are specified along each of the x-y-z axis. Here again, as for the others initialization parameters, the idea is to reproduce a cold plasma knowing that it will have little impact on the steady state since the simulation has enough time to forget the initial conditions. The profiles used for the magnetostatic field and the cross-sectional area of the magnetic field tube were presented in Fig. 4.2. The simulation is run until it reaches a steady state, usually after around 40 µs. The definition of this steady state is done by following up the variation of the total number of particles in the domain, its mean kinetic energy, and the particle flux at the backplate and the plume as seen in Fig. 4.4. The particle fluxes at the boundaries of the domain also give us an indication of the achievement of the steady state since an equal number of ions and electrons must be impacting the backplate (Fig. 4.4c) and the right end of the computational domain (Fig. 4.4d).

As pointed out in chapter 3 section 3.1 when defining the requirements for the electromagnetic solver, the duration of the simulation is given by the ion transit after the initialization that needs to start leaving the domain. Figure 4.4d shows that to achieve a steady state, we must wait for the ions dynamics to be solved, which imposes long simulation times. At the end of the simulation, when the steady state is achieved, the plasma properties are obtained by calculating the time average for each parameter over several time steps as described in chapter 2 section 2.3. The time span that was used for this study was between 30 µs and 40 µs since the parameters of the simulations are in a stable region as seen in Fig. 4.4.

Microwave Power Regulation

We wanted to know the impact of the user-defined parameters related to the microwave injection. As a first approach, since we do not know in advance the microwave input power per unit area P in required to obtain a steady state, the initial P in was adapted to keep a N target of 10 5 . The initial input power per unit area was P in = 100 W cm -2 and it reached a final power per unit area of 3.38 W cm -2 . To verify that the impact of this regulation is limited only to the duration of the simulation, we run the simulation again but with a fixed input power per unit area. The fixed power per unit area was P in = 3.38 W cm -2 , i.e., the same value achieved by the simulation with the power regulation. We notice in Fig. 4.5 that the steady state is reached at the same values in both cases but with different duration for the transient phases.

Therefore, the power regulation feature had the expected impact on the simulation since the "constant P in " case, represented with dotted lines in Fig. 4.5, has a longer transient phase.

Different values of N target , from now on also represented as N t , were also considered. The previous simulations were carried out using N t = 10 5 , and two new simulations were performed: one with half the initial value (N t ↓), and the other with two times the initial value (N t ↑). The results can be seen in Fig. 4.6. They show a clear difference in the final values obtained by the simulation: total number of particles in the domain and fluxes at the boundaries. These results can be explained by the fact that despite having the same initial input power per unit area P in = 100 W cm -2 , the final input power per unit area for each simulation was not the same. For the baseline configuration P f inal = 3.38 W cm -2 , against P f inal = 5.82 W cm -2 for the case N t ↑ and P f inal = 1.93 W cm -2 for N t ↓. Therefore, each case is equivalent to a simulation with a different fixed input power per unit area. These differences can be understood thanks to the energy balance presented at the beginning of this section in Fig. 4.3. The power absorbed by the plasma results from the balance of the input microwave power and the energy losses. When imposing different values for the desired number of particles N target , the energy losses also change for each case. The response to that variation is a different attenuation of the microwave input power per unit area at this parameter is adjusted by the code. This mechanism ensures that the plasma will reach a steady state. It will also allow us later to use it for a parametric analysis comparison in which each case got the same energy absorbed by the plasma.

Let's now explore the results obtained with the 1D3V model.

Plasma Discharge

The simulation was run using an OpenMP parallelization with 12 threads for 44 hours. Figure 4.7a shows the plasma potential distribution over the whole computational domain. The peak of the plasma potential is 105 V, and it is reached at around 3 mm, not at the ECR surface (which is indicated with a vertical dashed line). The backplate reaches a positive steady state potential of around 70 V as it collects ions. These ions that get to be collected are created somewhere between the backplate and 3 mm from there, where the peak of the plasma potential is reached.

The ions created after this point are accelerated into the nozzle by the attraction of the ambipolar electric field generated by the charge separation. A plasma sheath is formed at the backplate and the vacuum chamber wall thanks to the flux of charged particles. The plasma sheath on the backplate is small, so it is not easily noticeable. But at the end of the computational domain, however, the plasma sheath is visible with a beginning at around 90 mm, as shown by Fig. 4.7b. The electron and ion number density profiles show the expected quasi-neutrality violation in the plasma sheath. Besides these two regions of plasma sheaths, Fig. 4.7b confirms that the quasi-neutrality is conserved in all the others parts of our model. The maximum density value (1.12 × 10 11 cm -3 ) is achieved at 1.5 mm.

The ionization collision frequency seen in Fig. 4.8b explains the concave shapes of the plasma potential and electron density within the coaxial chamber. As expected, the regions with higher collision frequencies are inside the coaxial chamber, as seen in Fig. 4.8. The reason for this is that the density of the neutral particles is modeled in our code by an exponentially decreasing function (Eq. 2.7) described in chapter 2. The dynamics of the charged particles in the plasma potential coupled to the diverging magnetostatic field (showed previously on Fig. 4.2) is one of the areas where our kinetic approach can be helpful to gain insight into the working principles of the ECR thruster. But before addressing this topic, we will first study how the microwave energy is deposited into the plasma. In the next section, we will focus on electron heating to better understand the microwave-electron energy transfer. We will address some open questions, like how this energy is being transferred and where it is taking place. After this section, we will be able to move to the electron and ion dynamics to see the effects of the ECR heating on each population.

Electron Heating

In chapter 1 section 1.1.2 a brief presentation of the theoretical explanation for the ECR heating was given. The theory states that the microwaves heat electrons in the direction perpendicular to the magnetic field. This microwave-electron energy transfer is achieved as the electrons gain energy in their gyromotion around the magnetic field lines thanks to the cyclotron resonance phenomenon. With the goal to better understand this energy transfer, we computed for our simulations the Poynting vector to get a better idea of the energy exchanges over the domain.

Being able to access this information is one of the main advantages of our selfconsistent approach. So we plotted in Fig. 4.9 the energy flux obtained as the time average of the Poynting vector E EM × H EM over one cycle of the microwave based on its user-defined frequency. Beyond 10 mm from the backplate, the energy flux reaches a plateau that extends until the end of the simulation domain. This energy transfer from the microwave to the plasma takes place at a constant rate, represented by a constant slope of the Poynting vector. Given that the resonance condition is met at the ECR surface (vertical dashed line), we expected a maximum energy transfer from this electron cyclotron resonance phenomenon expressed as an abrupt energy absorption at this location. Instead, we have a constant energy transfer in the surroundings of this point in a zone around the ECR surface.

The width of this zone is about ∆x ECR = 6 mm, i.e., from x = 3 mm to x = 9 mm. The energy transferred to the plasma corresponded to 25% of the injected linearly polarized wave, according to the Poynting vector in Fig. 4.9 and computed as the difference between the energy flux at the backplate and the value reached on the plateau. The microwave polarization at the steady state shows that the polarization plane was rotated as stated by the Faraday effect, suggesting a non-equal-amplitude of the circularly polarized components. The polarization rotation indicates that the left-handed circularly polarized wave (LHCP) is dominant. Therefore, the energy transfer to the plasma is coming from the right-handed circularly polarized wave (RHCP), as expected from the resonance coupling of the electron cyclotron resonance phenomenon. This energy transfer of 25% is lower than the typical values in experimental studies, usually around 90% [START_REF] Miller | Cyclotron Resonance Propulsion System[END_REF][START_REF] Vialis | Développement d'un propulseur plasma à résonance cyclotron électronique pour les satellites[END_REF]. It can be explained by the fact that our quasi-one-dimensional model allows a reduced number of complex coupling modes compared to those that could be present in experimental facilities. These modes might be the conversion of the LHCP into a RHCP that can be absorbed as described by [START_REF] Geller | Electron cyclotron resonance ion sources and ECR plasmas[END_REF] or the multiple electromagnetic wave propagation/evanescence regimes including an upper-hybrid resonance region showed numerically by [START_REF] Sánchez-Villar | Coupled plasma transport and electromagnetic wave simulation of an ECR thruster[END_REF]. Consequently, we expect the maximum energy transfer in our simulations to have a limit at 50%, corresponding to complete absorption of the right-handed circularly polarized wave. We acknowledge this limitation of our current model that will be lifted in future simulations with a more complex representation of the thruster geometry with a different model. The gap between the obtained 25% and the maximum expected value of 50% might be linked to the simulated parameters. [START_REF] Moloney | Experimental Validation and Performance Measurements of an ECR Thruster Operating on Multiple Propellants[END_REF] showed experimentally that the percentage of reflected power in an ECR thruster was modified with the input power and that the primary variables affecting it are the chamber radius and length. Therefore, we think that varying these simulation parameters might allow us to achieve higher microwave power absorption rates.

To better understand this energy transfer from the microwaves, we decided to use the Vlasov equation to help us get a more clear picture of the energy exchanges taking place. Taking the second moment of the Vlasov equation for the electrons, with its acceleration given by the Lorentz force, we got the following expression:

m e v 2 2 ∂f e ∂t + ∂ ∂x • (vf e ) + q e m ∂ ∂v • ((E + v × B)f e ) d 3 v = 0 ∂ ∂t m e v 2 2 f e d 3 v + ∂ ∂x • m e v 2 2 vf e d 3 v + q e v 2 2 ∂ ∂v • (E + v × B)f e d 3 v = 0
Since the simulations have reached a steady state, we can drop the time derivative term. For the two remaining terms, they can be rearranged to obtain Eq. 4.18.

∇ • m e v 2 2 vf e d 3 v = ∇ • Φ E = j • E (4.18)
The spatial derivative term represents an energy flux that will now be called Φ E while the term j • E describes the energy transfer between the microwave and the electrons. It is computed with integration by parts of the third term of Vlasov's equation regarding the electron acceleration from the total electric field, i.e., considering the electrostatic and the electromagnetic contributions E = E ES+EM . We acknowledge that Eq. 4.18 does not represent a detailed description of the energy exchanges on the domain since the collision term was not taken into account. Nevertheless, it is a heuristic approach that can give us an insight into this complex interaction.

An estimation of the total energy flux Φ E , and its components longitudinal Φ E∥ and perpendicular Φ E⊥ to the magnetic field lines. The procedure used for this approximation was described in chapter 1 section 1.1.2. The result can be seen in Fig. 4.10a with the profiles for the energy flux and its components. We notice a first decreasing part until around x = 3 mm, representing a region where the electrons lose energy. After this point, the electrons start to gain energy from the microwave resulting in an increasing region for Φ E with a maximum value at x = 9 mm. In with the energy flux is that the electrons loose energy in the regions x < 3 and x > 9, while gaining between 3 ≤ x ≤ 9. Figure 4.10b confirms the heating part between 3 mm and 9 mm with its positive value representing a gain term. On the other hand, however, it also tells us that the microwave only gains energy from the electrons in the region between the backplate and x = 1 mm. It means that between 1 ≤ x ≤ 3, the microwave transfers energy to the electrons, but this energy is lost. The cause might be the loss module for particle impact at the walls of the coaxial chamber or the electron-neutral collisions shown in Fig. 4.8. Consequently, the plasma gets heated in a zone of about ∆x ECR ≈ 6 mm, i.e., from x = 3 mm to x = 9 mm. Its width can be compared with the expected value according to the Doppler broadening theory ∆x D .

It states that the electrons might meet the resonance condition at different locations depending on their axial velocities v ∥ and the magnetic field as seen in Eq. 4.19 taken from [START_REF] Williamson | Self-consistent electron cyclotron resonance absorption in a plasma with varying parameters[END_REF]. The mean axial velocity v ∥ is 1.11 × 10 6 m s -1 computed as described in chapter 2 section 2.3. With this value we obtain ∆x D = 4.76 mm. However, as it will be shown with Fig. 4.15a in the next section regarding the electron dynamics, there is a high dispersion for the values of v ∥ . Therefore, we can expect a much larger Doppler broadening for the fastest electrons. The electron's axial velocity can reach values up to 3.5 × 10 6 m s -1 around the ECR zone. With this velocity, we can compute a maximum Doppler broadening of 1.16 mm, which means that 4.76 mm < ∆x D < 8.45 mm. The ECR heating zone obtained in the simulations is consistent with the one expected analytically. It indicates that the Doppler effect is a good candidate for explaining the width of the ECR heating zone. Nonetheless, we acknowledge that other heating mechanisms not explored here might also be affecting the plasma heating. One of them is the possibility of an energy transfer produced by a frequency dispersion of the injected 2.45 GHz microwave. The electromagnetic solver presented in chapter 3 section 3.4 uses a non-dissipative scheme with low numerical dispersion, but the possibility that the microwave-plasma interaction is creating a frequency dispersion deserve a deeper analysis in the future.

∆x D = 2πv ∥ ωc B M S ∂B M S ∂x (4.19) (a) (b)
A consequence of having an ECR heating zone spread over several millimeters around the ECR surface is that we might heat the electrons while having the ECR surface outside the plasma source. This hypothesis was tested and simulated using the same parameters described in Table 4.1 but with an input microwave frequency of f EM = 2.90 GHz. For this frequency, and given the topology of the magnetostatic field, the ECR condition is meet at -1.78 mm from the backplate (i.e., behind it (a) f EM = 2.45 GHz for a linear polarization (LP) and a for right-handed circular polarizion (RHCP) and (b) f EM = 2.90 GHz for a linear polarization (LP). For the sake of clarity the scale is not the same for the two plots. outside the plasma source). The simulation achieved a steady state, and its power flux is presented in Fig. 4.11b for the coaxial chamber. We can notice a plasma heating phase from the backplate and up to 2.3 mm. It is followed by a 4 mm zone where the energy is transferred from the plasma back to the microwave to reach a plateau finally. The fact that the thruster can work with an ECR zone outside the coaxial chamber was also proven by [START_REF] Vialis | Développement d'un propulseur plasma à résonance cyclotron électronique pour les satellites[END_REF] using an actual prototype on the laboratory with a heating surface at -0.17 mm and -0.77 from the backplate. It is experimental evidence for the spread of the ECR heating surface that we see in our results.

The baseline configuration was also simulated using an input microwave power with a right-handed circularly polarized wave (RHCP). The Poynting vector represented by the dotted line in Fig. 4.11a shows a power absorption of around 85% against 25% for the linear polarization, both computed as the difference between the energy flux at the backplate and the value reached on the plateau. The consequences of this improved microwave heating are a more energetic electron population in the axial direction, reduced collision frequencies, and a higher ion thrust from 0.8 µN for the baseline against 0.97 µN using the RHCP. This result suggests that the presence of the left-handed circularly polarized wave might harm the microwave-plasma energy transfer.

Electron Dynamics

Given the divergence of the magnetostatic field, the electrons have an anisotropic behavior depending on the direction parallel or perpendicular to the magnetic field lines, as seen in Fig. 4.12. We notice in Fig. 4.12a that at x = 7 mm the distribution function for the longitudinal energy (blue line) intersects the abscissa at 40 eV. In comparison, the curve for the perpendicular energy (red line) exceeds 100 eV. On the other hand, in Fig. 4.12b for x = 80 the energy distribution function for the longitudinal energy (blue line) has an intersection point with the abscissa higher than before, which means more energetic electrons in this direction. The intersection point for the curve of the perpendicular energy (red line) has reduced to 50 eV, and the number of electrons at low energies has increased. What we are seen is how the electrons are cooled down in their perpendicular motion thanks to the diverging magnetostatic field while being accelerated in the longitudinal direction thanks to the conservation of the magnetic moment described in chapter 1 section 1.1.2. This phenomenon can also be seen in Fig. 4.13 with the electron's energy distribution function (EEDF) in the axial direction at different positions. The symmetric parts of the EEDF around 0 eV represent an equal flux of particles moving away and towards the backplate, and it describes electrons that we will later refer to as being confined. As we move downstream, the EEDF is shifting to the right. Therefore, we have an increased electron population with high energies moving into the plume while also having a reduced electron population heading back towards the coaxial chamber. This anisotropy comes from the fact that, according to the ECR heating theory described in chapter 1 section 1.1.2, the main energy source for the electrons comes from the perpendicular energy transferred from the microwave in the ECR zone. This energy gained by the electrons is used to overcome the electrostatic potential and transferred to the electron's axial motion thanks to the divergence of the magnetic field. Figure 4.14 shows the electron's mean kinetic energy in both the axial and the perpendicular direction as a function of the position on the simulation domain obtained using the procedure described in chapter 2 section 2.3. The mean perpendicular kinetic energy reaches a peak at around 9 mm and then decreases before reaching a global maximum of 25 eV at x = 45 mm. After this point, the curve decreases, going all the way down to the end of the simulation domain. This behavior is puzzling for two reasons. The first one is that the increasing part of the mean perpendicular kinetic energy between 15 mm and 45 mm could not be linked to a microwave heating since there is no external energy transfer in this zone as seen in Fig. 4.9 and 4.10. Therefore, it can not be explained by the presence of several plasma-heating zones over the simulation domain where the electrons would be rotating at some harmonic of the cyclotron resonance frequency ω c (x = 41 mm for ω c /2 or x = 76 mm for ω c /4).

The second reason is that we would have expected the electron's mean perpendicular energy to be a monotonically decreasing function after the ECR heating. The argument behind this expectation is that the divergence of the magnetostatic field would tend to accelerate the electrons in the axial direction while decreasing their perpendicular energy as they move through the nozzle. We wanted to see this electron dynamics differently other than seen just the mean kinetic energies to shed some light on this situation. In Fig. 4.15 we plotted the twodimensional contour of the number of electrons (normalized by the total number) in the velocity space v ∥ , v ⊥ plane for the results of the simulations. The contour was plotted at different locations in the computational domain. For each case, we also plotted what we call the confinement boundaries described by an analytical model that will be presented later (described by Eq. 4.22 and 4.23). The results in Fig. 4.15 show that as we move downstream into the nozzle, we see an increased electron population with high energies in the perpendicular direction. We can also notice that the energy distribution seems to be linked to the confinement boundaries described by our analytical model. It means that to understand this phenomenon we must first get a more detailed description of the electron confinement in the ECR thruster, i.e., how they get trapped and under which conditions they can leave the thruster.

Confinement Boundaries

Let's focus on the dynamics of a single electron moving on the ECR thruster. At any point, it will see both a potential Φ and the magnetostatic field B. The magnetic field

B v ∥ =0
and the potential Φ v ∥ =0 are obtained at the point where the electron has a zero parallel velocity that forces him to turn back and stay trapped inside the thruster. The potential of the backplate is represented as Φ BP . Neglecting the plasma-wave interaction and writing the equation for the total energy of an electron, we obtain:

E total = 1 2 mv 2 ∥ + 1 2 mv 2 ⊥ -eΦ =⇒ E total = 1 2 mv 2 ∥ + µB -eΦ (4.20)
Figure 4.16: Schematic view of the effective potential profile for arbitrary values of the magnetic moment.

From Eq. 4.20 we can say that the electron is oscillating in an effective potential given by U ef f = µB -eΦ, where µB represents the magnetic confinement as the electron moves towards the backplate while -eΦ is the electrostatic confinement given by the plasma potential. It can be seen in Fig. 4.16 for different arbitrary values of v ⊥ . Its concave shape explains the confinement of the electrons in the ECR thruster inside this potential well. The goal is to understand the conditions under which an electron can escape from it. To do so, let's consider an electron moving from one point to another along the longitudinal direction, we can compute the energy conservation between any initial location and the final point where he will be confined v ∥ = 0 using Eq. 4.20 for the electron's total energy. We obtain the following expression:

1 2 mv 2 ∥ + µB = µB v ∥ =0 -e(Φ v ∥ =0 -Φ ∆Φ ) =⇒ v 2 ∥ + v 2 ⊥ 1 - B v ∥ =0 B = - 2e m ∆Φ (4.21)
When the electron is moving towards the backplate, we need to use the definition for the loss cone angle given in chapter 1 that we put here again as a reminder in Eq. 4.22. It can be applied here since the condition B v ∥ =0 ≥ B is meet given the diverging magnetostatic field profile used for the ECR thruster (see Fig. 4.2). We can now rewrite Eq. 4.21 considering the loss cone and we obtain Eq. 4.23.

sin(θ) = B B v ∥ =0 (4.22) v 2 ⊥ = tan 2 (θ) v 2 ∥ + 2e m ∆Φ (4.23)
Equations 4.22 and 4.23 are the base to describe what we called the confinement boundaries for the electron when moving on the ECR thruster. These boundaries represent the borderline in the velocity space v ∥ , v ⊥ plane separating the confined electrons from those that get to leave the thruster either at the backplate or ejected in the plume. The electron confinement will be different depending on whether the electron is moving to increasing or decreasing values on the x-axis. Let's focus for the moment on an electron moving away from the backplate into the plume. Given the divergence of the magnetostatic field downstream, there is no magnetic confinement but only the electrostatic potential. Therefore, from Eq. 4.21 we deduce that the only constraint that can force the electron to be confined in the plume is the electrostatic potential represented as a circle v 2 ∥ + v 2 ⊥ = -2e∆Φ/m in velocity space and known as the electrostatic plume confinement. The electron is considered to be lost on the plume if it overcomes this electrostatic plume confinement.

On the other hand, when the electron is moving towards the backplate, the situation is slightly more complicated. In this case we have a magnetic confinement given by the convergence of the magnetostatic field and an electrostatic confinement given by the potential of the backplate Φ BP . The electron is lost at the backplate if he impacts its surface. Therefore, the confinement boundary is obtained if the point at which the electron reaches a v ∥ = 0 is the backplate, meaning that

∆Φ = Φ v ∥ =0 -Φ = Φ BP -Φ.
A more clear explanation can be done using Fig. 4.17 which shows a schematic view of the representation of such boundaries in the velocity space v ∥ , v ⊥ plane. Our interpretation of these figures is as follows: • Fig. 4.17a (∆Φ = Φ BP -Φ = 0): The confinement of the electron at the backplate is given exclusively for the topology of the magnetostatic field according to the loss cone angle θ. Those electrons with values for v ∥ , v ⊥ such as they are located outside the confined zone (the orange colored one), are located on the loss cone and will therefore be lost by impacting the backplate.

• Fig. 4.17b (∆Φ = Φ BP -Φ < 0): The magnetic confinement given by the dotted lines is no longer the only factor to be considered. The impact of the backplate's potential is represented by the dashed line intercepting the v ∥ axis at v ∥ = -2e∆Φ/m. The newly added confinement region between the dotted and the dashed lines contains electrons with potential energies lower than the value required to overcome the electrostatic barrier. Therefore they are confined.

• Fig. 4.17c (∆Φ = Φ BP -Φ > 0): The impact of the backplate's potential is also represented by the dashed line intercepting the v ⊥ axis at v ⊥ = tan(θ) 2e∆Φ/m. In this case, the confined region is smaller than in the other cases. It is because electrons that in Fig. 4.17a were confined by the magnetic field alone are now being accelerated towards the backplate by the electrostatic potential, and eventually, they get lost. Therefore, the confined electrons are those that meet two conditions: they are not on the loss cone for the magnetic field, and they are energetic enough in the perpendicular direction to avoid being lost at the backplate thanks to the electrostatic acceleration towards it. This energetic electron population (in the perpendicular direction) is confined because they achieve a zero parallel velocity before been collected at the backplate thanks to the convergence of the magnetic field and then turn back.

If we now go back to the results in Fig. 4.15 for the electrons distribution in the velocity space v ∥ , v ⊥ plane, we notice that as we move downstream into the plume, the confinement boundaries change. There is a transition from a confinement boundary as the one in Fig. 4.17b (∆Φ < 0) to the one in Fig. 4.17c (∆Φ > 0). This transition is a consequence of the fact that, as can be seen in Fig. 4.7a where we plotted the plasma potential profile, there is a point near the coaxial chamber's exit at 20 mm where the plasma potential changes: inside the coaxial chamber we are in the phase ∆Φ = Φ BP -Φ < 0 (Fig. 4.17b), and outside we got ∆Φ = Φ BP -Φ > 0 (Fig. 4.17c). The result is that as we move downstream into the magnetic nozzle, we see mainly an energetic electron population in the perpendicular direction. However, this is not given by an additional heating phase but as a result of confining only a highly energetic electron population in the perpendicular direction. Those electrons with a low perpendicular kinetic energy (i.e., below the dashed line) are lost at the backplate as previously described. It can be seen as a filtering process where only the fast electrons are kept confined, and this is what we see when plotting the electron's mean kinetic energy in Fig. 4.14. This explanation also clarifies why the electron's mean kinetic energy drops at some point beyond the global maximum at 45 mm.

What is happening is that at each point, two opposite effects are guiding the electron dynamics: the described filtering process providing highly energetic electrons and the divergence of the magnetic field cooling them down. We think that those points where the plot for the perpendicular mean kinetic energy decreases are those where the effects of the divergence of the magnetic field counterbalance the filtering process.

On a final note, it is important to add a clarification regarding the electron confinement. The idea built up to this moment is the following: the confined electrons are those between the electrostatic plume confinement limit (solid line) and the backplate boundary (dashed and dotted lines). However, this electron population will only stay effectively confined if they do not get more energy or undergo a collision. Yet, we know that the electrons heading towards the backplate can interact again with the ECR zone and get heated. Two scenarios are possible:

• If an electron does get an extra ECR heating compared with what it used to have, it will reinforce the magnetic confinement at the near end of the coaxial chamber thanks to the diamagnetic force from Eq. 1.9. It will also increase the electron's longitudinal energy when accelerated in the magnetic nozzle, so it might eventually escape the electrostatic plume confinement. After several passages through the ECR heating zone, the electron may gain enough energy to overcome the electrostatic barrier and escape into the plume.

• If the electron undergoes an elastic collision, it will randomly scatter its velocity vector. The electron might get a v ∥ big enough to overcome the magnetic confinement and be lost at the backplate.

Both of these interactions can deconfine an electron. As a consequence, the electron population is constantly being scattered across the velocity space with random movements after collisions or with an increase in v ⊥ after an ECR heating. This diffusion from one point of the computational domain to another will redistribute the electrons all over the confinement zone. However, once the electrons near the solid line representing the electrostatic plume confinement get enough energy to be lost in the plume, they left behind an electron-depleted region. It can be noticed on where near this frontier, the diffusion will throw their v ⊥ out of the confined zone to be lost in the plume, leaving a sparsely populated region behind. The scattering of the electron population on the velocity space after each ECR heating can be seen in Fig. 4.18. We plotted the electrons distribution in the longitudinal energy -magnetic moment E ∥ , µ plane. As we move downstream, we can notice that the regions getting more and more populated are those with high values of E ∥ , µ. It means that for an electron to move farther and farther away from the backplate at each oscillation on the effective potential, he must increase his magnetic moment compared to what he used to have before, which means that he must have gone through the ECR heating zone. Figure 4.18 shows, as Fig. 4.15 did, the confinement of a highly energetic electron population in the perpendicular direction when moving downstream into the plume as the dashed line for the magnetic confinement keeps appearing higher and higher for the cases outside the source.

Having discussed the electron dynamics and how they are confined in the thruster, it is time we focus our interest on the ions. As the electrons evolve in the magnetic nozzle, the charge separation generates an ambipolar electric field that accelerates the ions in the longitudinal direction. While being accelerated by this ambipolar field, they undergo collisions with the neutral background and may lose energy. Their dynamics is studied in more detail in the next section.

Ion Dynamics

An estimation of the Xenon ion's Larmor radius can be obtained based on its mass, charge, longitudinal velocity estimated from an energy of a few electronvolts as it will be shown shortly, and the magnetostatic field. Using Eq. 1.6 and 1.7 from chapter 1 section 1.1.2, we obtain a cyclotron frequency of 10 kHz and a radius of 40 mm taking an energy of 5 eV within the coaxial chamber against 2.45 GHz and a few dozen of micrometers for the electrons. Therefore, the ions are not considered magnetized, so we will only consider their dynamics in the axial direction for the post-processing phase. They are treated as gaining energy only from the plasma potential after being created by electron-neutral ionization collisions with an energy close to zero. The ion's energy distribution function is plotted in Fig. 4.19 for different positions. At the coaxial chamber exit, Fig. 4.19e for 20 mm, the kinetic energy for the distribution peak is around 35 eV if we exclude those electrons around 0 eV created by collisions. The plasma potential at this location is 70 V as it was shown in Fig. 4.7a, so a 35 eV ion energy peak means that most of the ions were produced at the plasma potential peak of 105 eV. However, as we leave the coaxial chamber and keep moving away from the backplate, we notice the emergence of a second peak. In Fig. 4.19h for 40 mm, the second peak is located at a mean kinetic energy of 8 eV. According to Fig. 4.7a for the plasma potential, the value at this point is 62 eV. Therefore, most The curve increases all over the simulation domain except in the region near x = 20 mm. This position on the computational domain corresponds to the end of the coaxial chamber and to the end of the scope of our loss module to simulate the particle losses at the wall. This frontier is the point with the greatest wall losses since the electron's perpendicular mean kinetic energy reaches its highest value of 16.5 eV within the coaxial chamber. Additionally, right after this point, there starts a zone without electrons being lost at the walls. The number density of charged particles in this frontier is characterized by these different regions generating a density variation inside the coaxial chamber. If we take a closer look at the electron and ion number density profiles around the coaxial chamber exit in Fig. 4.21b, we notice a local break of the quasi-neutrality at 20 mm. The ions on the second peak are those in this over-populated region. This explanation was tested by simulating the baseline configuration again but without the loss module on the coaxial chamber. The ion's axial mean kinetic energy can be seen in Fig. 4.21a as the dashed line showing no slow down anywhere on the domain. The ion dynamics is coupled to that of the electrons presented previously to generate the quasi-neutral plasma response of the thruster. An overview of this plasma dynamics is presented hereafter to summarize the findings obtained from this chapter.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Overview of the Plasma Dynamics

The simulations using our 1D3V model allowed us to shed some light on some of the physical phenomena inside the ECR thruster. First of all, the microwave energy injected at the backplate of the thruster propagates through the coaxial chamber while being absorbed by the electrons. The absorption takes place exclusively inside the coaxial chamber and on a zone spread over several centimeters around the resonance condition, increasing the electron's kinetic energy perpendicular to the magnetic field lines. The width of this heating zone is the reason why the thruster can work even with a configuration in which the resonance condition is met outside the coaxial chamber. This microwave heating eventually provides the electrons with enough energy to escape the confinement in which they might get trapped. The conditions to be trapped, as well as the bounds for this confinement, were given in section 4.6 when discussing the confinement boundaries. It depends on the potential of the backplate as it collects ions, the magnetostatic field, and the electron's kinetic energy. For a given set of these parameters already described, it might confine only fast electrons. A selective mechanism designated as a filtering process. It would then confront two opposite effects guiding the electron dynamics: the described filtering process providing highly energetic electrons and the magnetic field's divergence cooling them down thanks to the conservation of the magnetic moment on the nozzle.

As the electrons escape the confinement and are lost on the plume, the creation of an ambipolar field by the charge separation attracts the ions. The plasma potential accelerates them in the longitudinal direction after being created by electron-neutral ionization collisions. However, on their way to the plume, the ions might lose energy by collisions with the neutrals background modifying the mean kinetic energy of the ejected ion population. Wall losses can also be responsible for a low energy ion population by producing an over-populated region with low-energy ions at the open end of the coaxial chamber.

Summary of the Chapter

This chapter presented the results of the self-consistent full-PIC simulations of a 1D3V model of the ECR thruster. We understood the electron and ion dynamics better while bringing to light some details about the ECR heating. The understanding of the electron confinement and its consequences was a central fragment of our results and helped us get a more clear picture of the plasma dynamics on the thruster.

Nevertheless, we recognize that all the information obtained from the simulated configuration is subject to the limitations of our model and its reliance on the userdefined parameters. In the upcoming chapter, we will examine how susceptible our results are to the simulation parameters. It is a logical next step in getting a better understanding of the thruster and more confidence about the results of our model.

Parametric Analysis

In the previous chapter, we saw the results for what we called a baseline configuration for our 1D3V model. In this chapter, we aim to assess the sensibility of our numerical model to several of the user-defined parameter on which it is based. This analysis will give us a more clear view of the validity of the results. The objective is to run a parametric study to examine the plasma response and improve our knowledge about the thruster working principles. It will also help us better understand the impact of several design factors of the thruster on the plasma dynamics. The possibility to implement this parametric study is one of the advantages of having a numerical code to simulate the thruster, as it was pointed out in chapter 1 when discussing the challenges of the experimental studies around this technology. The simulations will allow us to circumvent those challenges since they will have the following advantages.

• Not to be limited by the technical capabilities of the experimental facilities as user-defined parameters can be changed.

• Present a study not limited to study the plasma outside the coaxial chamber.

• Complement the data of parametric studies without being limited by the expensive and highly time-consuming development of new prototypes of the thruster.

This comparison will look at different plasma properties such as its potential, electron number density, mean kinetic energy of the charged particles, and collision frequencies. We will start by changing the magnitude of the wall losses using the loss module described in chapter 4 section 4.2. The objective is to understand better its effect on the plasma dynamics. The change in the neutral background density will also be studied since the results could be qualitatively compared against the trend found experimentally by [START_REF] Peterschmitt | Development of a stable and efficient electron cyclotron resonance thruster with magnetic nozzle[END_REF][START_REF] Vialis | Geometry optimization and effect of gas propellant in an electron cyclotron resonance plasma thruster[END_REF]Wachs & Jorns, 2020] of an increased thruster's efficiency as the background pressure drops. Finally, the position of the ECR surface will also be the subject of a parametric analysis given its vital role in the thruter's design. All the simulations were run using a regulated input power per unit area as described in section 4.2 of chapter 4. Therefore, each simulation might obtain a different P in as explained in the previous chapter from the energy balance in the thruster. The motivation for this choice was to obtain results with roughly the same number of particles on the domain in each case to enable a better comparison, i.e., similar electron number densities.

Effect of the Cross-Field Diffusion

The loss module is intended to simulate the cross-field diffusion of electrons and ions towards the walls of the coaxial chamber. It is a sink term in the particle balance equation applied only in the coaxial chamber, x ≤ 20 cm. In practical terms, at each time step the electrons have a probability to be lost computed using Eq. 5.1 presented chapter 4 section 4.2 regarding the boundary conditions of the 1D3V model.

p L (x) = 2 3 π 16 k 2 1 2 m⟨v(x) 2 ⟩ dt eA L B x=0 (5.1)
Where dt is the time step, k is a constant of around 2.6058, ⟨v(x) 2 ⟩ is the electron's mean kinetic energy, and A L is a fixed user-defined surface for the loss module and different from the cross-sectional area of the magnetic field tube A(x). For the baseline configuration it was set to A L = A x=0 = 1.0 cm 2 . Two more simulations were run using an increased cross-sectional area for the loss module of A L = 1.5 cm 2 and A L = 2.0 cm 2 . Since the probability of an electron to be lost at the walls is inversely proportional to A L as given by Eq. 5.1, both cases will reduce the electron losses to the wall. It is important to mention that in all cases A x=0 was kept unchanged at 1.0 cm 2 . It means that what we are doing by changing A L is just an artificial tuning of the wall losses by allowing a lower diffusion rate across the magnetic field lines.

Table 5.1 presents a summary of the results for each simulation with some of the most important parameters. The values referred to as in the "plume" were taken at x = 90 mm. This point was chosen to have a reference before the beginning of the plasma sheath at the right side of the domain.

Table 5.1: Comparison for the loss module parametric analysis. The flux of ions at the backplate and at the exit have the same value as for the electrons since the simulations reached the steady state. When the loss probability is decreased (A L = 1.5 and 2.0 cm 2 ), we notice that lower values of input power per unit area P in were required to reach a steady state compared to the baseline. This can be understood by considering the energy balance shown in Fig. 4.3 in chapter 4 section 4.3 during the analysis of the baseline. The power absorbed by the plasma was described as being governed by Eq. 4.17 rewriten here as a reminder:

Parameter A L = 1.0cm 2 A L = 1.5cm 2 A L = 2.0cm 2 P in [W/cm 2 ] 3.
P abs = P EM - LOSS T OT AL (Loss BP + Loss plume + Loss neutrals + Loss walls ) (5.2)
We observe that the total energy losses decreased for each new configuration. In Table 5.1 we see that the particle flux at the backplate was reduced, so the energy losses from the particles impacting its surface were also reduced. However, the losses on the plume were increased. It results from the fact that the flux of particles at the exit of the domain is greater for the new cases. To identify the behavior of the remaining terms, we plotted the total number of electron-neutral collisions per unit time in the coaxial chamber for the more extreme cases: the baseline with A L = 1.0 cm 2 (Fig. 5.1a) and the configuration with A L = 2.0 cm 2 (Fig. 5.1b). Several relevant findings can be obtained from Fig. 5.1. First of all, the magenta dashed line tells us that the wall losses from the cross-field diffusion are the dominant term in both simulations. This result highlights the important role played by this loss mechanism on the plasma dynamics inside the thruster. The comparison of the wall losses between the two simulations shows that this term decreased for the case with A L = 2.0 cm 2 as expected. Regarding the electron-neutral collisions, we notice that the ionization and excitation collisions do not change significantly. However, the elastic collisions with the solid red line increased for the new configuration with fewer wall losses. Strictly speaking, the plot that needs to be considered is the dark red dotted line labeled Elastic BP collisions. It is computed taking into account that the longitudinal variation of the magnetostatic field produce different values for the loss cone angle, described in chapter 1 section 1.1.2. Therefore, as we move downstream into the nozzle, the loss cone angle gets smaller, and the probability of an electron being lost at the backplate decreases. This variation can be seen on the velocity space v ∥ , v ⊥ plane in Fig. 5.2 with an schematic view along the longitudinal axis. The value for the loss cone angle θ was plotted in Fig. 5.3a and used to compute the probability p for an electron to fall into the loss cone. This probability was plotted in Fig. 5.3b, and it tells us how likely it is for an electron to be deconfined (i.e., lost at the backplate) after an elastic collision depending on its position. Due to the large mass difference between neutrals and electrons, the electron's kinetic energy is mostly conserved after an elastic collision. Therefore, the electron's velocity vector after the collision changes in direction (randomly) but keeps its magnitude. In effect, the vector points on a sphere whose radius is given by its kinetic energy. When the velocity vector angle with the local magnetic field axis is lesser than θ, the electron can be deconfined on the backplate. The value of p is computed from 1 -cos(θ) using the equations for the confinement boundaries described in chapter 4 section 4.6. It is the ratio between the surface of the three-dimensional sphere in velocity space generated by the electrostatic plume confinement and the surface on this sphere using the steradian of the loss cone from the magnetic confinement. However, the impact of the backplate's potential generating an electrostatic confinement was not considered for simplicity. Consequently, since it was shown in chapter 4 section 4.6 that this supplementary electrostatic confinement adds to the magnetic confinement, the curves labeled as Elastic BP are an overestimation of the number of collisions that could deconfine an electron. The trend showed by the Elastic BP curve is the same as the Elastic profile. To conclude, we can say that the total losses on the simulation domain decreased: fewer losses at the backplate, fewer wall losses, and more losses at the plume but not enough to counterbalance the others. The reduced microwave input power per unit area P in can be seen in Fig. 5.4a

where we plotted the energy flux from the Poynting vector for each simulation case.

To see the impact of this balance on the plasma behavior, we can see its potential in Fig. 5.4b for each case. We notice that as the wall losses decrease, the plasma potential profile drops. The impact of these modifications on the electron number density can be seen in Fig. 5.5. In Fig. 5.5a we notice that the new simulations reached higher densities. However, Fig. 5.5b shows that there is a trend reversal at the location of the ECR surface.

• Between the backplate and the ECR surface, the electron number density decreases as the cross-sectional area of the loss module increases.

• Beyond the ECR surface, the electron number density increases as the crosssectional area of the loss module increases. We can say that the gradient of the electron number density curves is flattening, i.e., the electrons are being distributed across the coaxial chamber with a more homogeneous profile. The trend reversal for the electron number density variation also generates the different flux of particles at each end of the computational domain we saw in Table 5.1: fewer particles lost at the backplate and more particles leaving the domain at the plume for the cases with reduced wall losses. So the question that puzzles us is to understand why there is that density reversal. We know that this question can not be explained by a modified number of electron-neutral ionization collisions near the backplate thanks to Fig. 5.1a shown previously. We can use the information about the behavior of the electrons to look for some answers. It is worth mentioning that this is an interesting result since it highlights the relevance of sur-veying the plasma properties within the coaxial chamber. Limiting a study of the plasma properties to the magnetic nozzle, as done experimentally, does not capture such trend reversals or properties variations.

Comparison of the Electron's Kinetic Energy for Each Case

The electron's mean kinetic energies plotted in Fig. 5.6 can give us information to understand the new simulations. In the loss module, the probability for an electron to be lost at the walls is inversely proportional to the cross-sectional area and proportional to the electron's mean kinetic energy as described in Eq. 5.1. We can notice the new configurations produced a less energetic electron population than the baseline simulation. This effect and the increased cross-sectional area will both have the same consequence: to reduce the electron wall losses. Another important point can be highlighted from Fig. 5.6. The mean kinetic energy in the perpendicular direction for the case A L = 2.0 cm 2 achieves a peak value at the ECR surface. Beyond this point, the curve decreases monotonically up to the end of the simulation domain. It is the only simulation case so far that does not exceed the peak value achieved right after the ECR heating. To get a better understanding of the electron behavior in this case we plotted the electron distribution in the velocity space v ∥ , v ⊥ plane for this case in Fig. 5.7. The confinement boundaries were also plotted for each case. A comparison between the confinement figures for the baseline configuration in Fig. 4.15, and the A L = 2.0 cm 2 case in Fig. 5.7 shows that as we move downstream into the magnetic nozzle we do not see a highly energetic confined electron population in the latter. We can say that we do not see the filtering process described in chapter 4 section 4.6. As a reminder, this filtering process was shown in Fig. 4.17c to be the effect of having a smaller confined region than in the other confinement cases. It confines only those electrons that meet two conditions: they are not on the loss cone for the magnetic field, and they are energetic enough in the perpendicular direction to avoid being lost at the backplate thanks to the electrostatic acceleration towards it. In other words, it means that the electron population that gets confined is highly energetic in the perpendicular direction. The reason why we do not see the filtering process is that in all the computational domain the plasma potential is above the potential at the backplate (as seen in Fig. 5.4b for the dotted line). Consequently, we do not see a low-energy electron depleted-zone in velocity space resulting from a high number of electrons being lost at the backplate. To put it in terms of the notation used in the previous chapter, the confining boundaries in The electron's mean kinetic energy will change due to the confinement of both low and high-energy electrons, instead of only a highly energetic population as in the baseline with a filtering process. When computing this mean kinetic energy, according to the procedure described in chapter 2 section 2.3, the presence of the low energy electrons will generate a more flattened profile as seen in Fig. 5.6a. This flattened electron's mean kinetic energy is responsible for the smoothed wall losses profile we saw in Fig. 5.1b for A L = 2.0 cm 2 compared to the baseline. For the latter, instead, we see in Fig. 5.1a great wall losses near the end of the coaxial chamber and less near the backplate. The smoothed wall losses profile will reduce the gradient of the electron number density profiles and its trend reversal we saw in Fig. 5.5b for the new simulation cases. To put it in another way, the longitudinal variation of the wall losses will impact the response of the plasma on the coaxial chamber.

Comparison of the Ion's Mean Kinetic Energy for Each Case

We can now focus on the effect that this smoothed wall losses profile has over the ions. In chapter 4 section 4.7 we saw that the presence of the loss module generated an over-populated zone with slow ions at the end of the coaxial chamber. The same tendency can be seen for the new simulations in Fig. 5.8 where we plotted the ion's mean axial kinetic energy. We notice that the inflection of the curves tends to be smoother as the wall losses are reduced. We saw in Table 5.1 that the new simulation cases generated a greater ion current I. Since the thrust is proportional to the ion flux and kinetic energy, this increased flux explains the thrust increment despite the reduction in the ion's mean kinetic energy as seen in Fig. 5.8. Given the greater mass of the ions in comparison with the electrons, the thrust is computed taking only into account the ion's contribution using the procedure described in chapter 2 section 2.3. The values for the thrusts were also shown in Table 5.1. The main conclusion to draw from this parametric study is the following: as lower cross-field diffusion rates were used for the simulations through the loss module, the reduction of the wall losses allowed to achieve a steady state with a lower input power producing a higher thrust.

Effect of the Neutral Background Density

As already pointed out in chapter 2 section 2.1, the treatment of the neutral particles in our 1D3V model does not allow us to consider neutral gas depletion. It is modeled as a background with a density following a user-defined exponential profile given by Eq. 2.7 and rewritten here as a reminder.

n n (x) = n n 0 exp - x L n (5.3)
We impose two parameters: the maximum density value n n 0 at the backplate, and the density characteristic length scale L n which controls the distance required for the profile to drop to zero and therefore its spread on the domain. The characteristic length scale was modified to generate two more simulation cases in addition to the baseline that had L n = 1.0 cm: L n = 1.5 cm and L n = 2.0 cm as seen in Fig. 5.9. The results of the simulations are summarized in Table 5.2 for each configuration with the values at the plume taken at x = 90 mm. The input power per unit area decreased for each one of the new configurations meaning that the total losses were diminished. To understand why the new configurations generated less energy losses we must take a look to Fig. 5.10 where we plotted the total number of electronneutral collisions per unit time in the coaxial chamber for the more extreme cases: Table 5.2: Comparison for the neutral density parametric analysis.

Parameter L n = 1.0cm L n = 1.5cm L n = 2.0cm P in [W/cm 2 ]
3.38 2.32 1.90 Total number of particles 3.38 × 10 5 3.7 × 10 5 3.9 × 10 5 Electron's mean kinetic energy We notice in both Fig. 5.10 and Fig. 5.11 with the same comparison but over a greater region, that the electron-neutral collisions for the new configurations are higher and are spread out over a longer part of the computational domain than the baseline simulation. The ionization and excitation collisions are inelastic, so the electrons lose energy. The elastic collisions, on the other hand, can be seen as a random scattering process for the electron velocity space v ∥ , v ⊥ plane carried out at nearly constant energy. This process was described in chapter 4 section 4.6 as the result of random movements after collisions in the velocity space for the electron population. Yet this scattering process could have also contributed to reducing the energy of the plasma since confined electrons can get lost at the backplate by falling into the loss cone after an elastic collision. However, this was not the case for these simulations since the increased elastic collisions were taking place far away from the backplate and generated a lower particle flux in this surface as shown in Table 5.2.

The reason is the longitudinal variation of the loss cone angle shown in Fig. 5.3a and the subsequent decreased probability for an electron to fall into the loss cone (see Fig.

5

.3b) as we move downstream into the plume.

In conclusion, the effect of the collisions was to increase the loss term Loss neutrals while reducing the loss term at the backplate Loss BP . The increased flux of particles in the plume shown in Table 5.2 also generated more significant energy losses. These are counterbalancing effects in which some term increase while other decreases as seen in Eq. 5.4 describing the energy balance in the thruster.

P abs =↓ P EM - ↓LOSS T OT AL (↓ Loss BP + ↑ Loss plume + ↑ Loss neutrals + ↓ Loss walls ) (5.4)
The wall losses also diminish when the neutral background density increases as it can be seen in Fig. 5.10b in comparison with the baseline Fig. 5.10a. Therefore, since we know that the total energy losses diminished (derived from the microwave input power per unit area in Table 5.2), we deduce that the reduced wall losses and energy lost at the backplate outweighed the other terms. As in the previous section, we see the relevant role of the cross-field diffusion into the plasma response. The smoother profile for the wall losses allowed the simulation to reach higher electron number density values as seen in Fig. 5.12 and the same trend reversal we saw in the previous parametric study for the cross-field diffusion. To understand the reason for the reduced wall losses, we can take a look at the plasma potential profile in Fig. 5.13. It shows the same behavior as the previous parametric study with the loss module, i.e., a reduced plasma potential profile for each new simulation. It means that we will not see the filtering process of high energetic electrons here either for the cases with an increased neutral background density since the plasma potential at every position is above the potential at the backplate. The effect of this fact over the electron's mean kinetic energy was discussed in the previous section and can be seen for this case in Fig. 5.14. We notice that as the neutral background density increases, the electron's mean kinetic energy decreases in both the perpendicular and the longitudinal direction.

As the electrons evolve in the magnetic nozzle, the charge separation generates an ambipolar electric field that accelerates the ions in the longitudinal direction.

Consequently, the electron's mean kinetic energy reduction causes a decrease of the ion's axial mean kinetic energy. We see this consequence in Table 5.2 with a lower ion's mean kinetic energy at the plume. This outcome is consistent with the analysis proposed by [Wachs & Jorns, 2020] when studying the ion dynamics in a magnetic nozzle. The authors found that increasing the neutral background pressure reduced the amount of power available to accelerate ions through the nozzle. Inelastic electronneutral collisions reduce the thermal energy of the electrons gained in the heating region before it can be successfully converted to the kinetic energy of the ions. Another important reason for the reduced ion's mean kinetic energy is the increased number of ion-neutral collisions, as seen in Figure 5.15. As discussed in chapter 4 section 4.7, the charge exchange collisions tend to produce a low-energy ion population by slowing them down.

Lastly, a comparison with the experimental works of [START_REF] Vialis | Geometry optimization and effect of gas propellant in an electron cyclotron resonance plasma thruster[END_REF] shows a difference between our results and theirs. The authors saw that the thrust dropped by a factor of 1.5 when the background pressure was doubled. It was explained by a reduced ion's energy from more ion-neutral charge exchange collisions, which is consistent with what we saw in Fig. 5.15b. For our results, however, we saw in Table 5.2 an increased thrust produced by a higher ion current. It can be explained by the fact that in our simulations, the reduced backplate and wall losses outweighed the increase of the other terms, and depending on the conditions of the study, it might not have been the case for the experimental results.

Effect of the Position of the Heating Surface

We saw on chapter 4 section 4.5 that the electron heating is accomplished on a region that we called ∆x ECR that is spread over several centimeters around the ECR surface, where the resonance condition is met. We also saw that the simulations achieved a steady state even when the ECR heating surface is outside the coaxial chamber. However, the absorbed microwave power was reduced in comparison with the baseline simulation. Therefore, even if the outside heating configuration achieves a steady state, it does not seems to be an optimal operating condition for the thruster since more energy could be transferred to the plasma if the entire ECR zone ∆x ECR were on the coaxial chamber. This result suggests that the ECR heating surface's position plays a relevant role in the thruster operation. This surface is determined by two parameters: the microwave frequency and the magnetic field profile. With the purpose of better understanding the effect of this position on the plasma dynamics, we will run a parametric analysis by modifying the location of the heating surface with each of these parameters.

Heating Surface Position: Microwave Frequency

The simplest way to change the ECR heating surface position is to modify the input microwave frequency. The simplicity of this approach comes from the fact that the divergence of the magnetostatic field is unaffected. Thus, generating fewer additional effects (others than those of the new heating position), which will be combined and be more complex to study. The resonance condition will be met at different positions in the simulation domain compared to the baseline configuration. We simulated two new configurations:

• f EM = 2.55 GHz. The ECR surface was moved -2 mm closer to the backplate,

x ECR = 4.7 mm

• f EM = 2.35 GHz. The ECR surface was moved +2 mm away from the backplate,

x ECR = 8.7 mm Nevertheless, the thruster prototypes use a 2.45 GHz microwave generator because it is in the frequency band allowed for industrial heating applications. Thus, if a heating zone modification is required, it should probably be achieved by changing the magnetostatic field topology. The consequences of this modification are also explored by varying the ECR heating surface using the magnetostatic field.

Heating Surface Position: Divergence of the Magnetic Field

The magnetostatic field profile for the baseline was shown in Fig. 4.2 in chapter 4. It follows an exponentially decaying profile tune using a characteristic length of L B = 5.0 cm for the baseline simulation. his characteristic length was modified to generate two more simulation configurations. One of the new configuration has a less diverging profile (i.e., closer to a flat profile) identified from now on as "Div ↓" with L B = 6.5 cm, and the other a more diverging profile identified from now on as "Div ↑" with L B = 3.5 cm. The generated neutral particles background profiles can be seen in Fig. 5.16. The modification of the characteristic length L B has also two other effects: • The magnetostatic field profile is linked to the cross-sectional area of the magnetic field tube increases according to Eq. 4.1. So the cross-sectional area was also modified. It is important to highlight that this cross-sectional area is not the same as the one used for the loss module kept unchanged.

• For each new configuration, the resonance condition's location is also modified by the topology of the field. Therefore, the ECR zone for each case is plotted as a vertical line and can be better seen in Fig. 5.16b. These modifications moved the ECR surface 2 mm either backward or forward from the baseline configuration where the ECR surface is at x = 6.7 mm.

-More diverging profile (Div ↑): The ECR surface was moved closer to the backplate -2 mm, x ECR = 4.7mm

-Less diverging profile (Div ↓): The ECR surface was moved away from the backplate +2 mm, x ECR = 8.7mm

Results for the case x ECR = 4.7 mm A summary of the results for each configuration can be seen in Table 5.3. The values at the plume were taken at x = 80 mm in this case since the plasma sheath is greater than in the previous simulations, given the electron number density that will be shown shortly. The chosen location gives us a comparison for particles that have not yet felt the presence of this plasma sheath. We can notice that the results for the case with the microwave frequency and the divergence of the magnetostatic field are similar. The flux of particles at the backplate was roughly the same for each case while the number of particles at the plume increased, thus increased plume losses. The reduced ion's mean kinetic energy was compensated with a more significant current, so the thrust increased in both simulations. The values for the new configurations are around 1.6 times higher than the baseline while using a reduced microwave input power per unit area. We can get more details for the energy balance on the thruster with Fig. 5.17 where we plotted the total number of electron-neutral collisions per unit time. We see in Fig. 5.17b and 5.17c that the number of ionization and excitation collisions were reduced, specially between 10 and 20 mm. The wall losses experienced a slight decrease localized mostly in the first half of the coaxial chamber and seen in Fig. 5.17. Therefore, from the energy balance in Eq. 5.2, we propose the assumption that it is mainly the diminished energy losses by inelastic collisions that counterbalanced the increased losses at the plume. The electron's mean kinetic energy obtained for each configuration was plotted in Fig. 5.18. We notice that both configurations produced a reduced electron's mean kinetic energy in the perpendicular direction seen in Fig. 5.18a. We can also notice the effect of the divergence of the new magnetostatic field since the mean perpendicular kinetic energy for the more diverging profile (Div ↑) has a greater gradient than the f EM = 2.55 GHz case. Regarding the energy on the longitudinal direction in Fig. 5.18b, we can notice the effect of the divergence of the new magnetostatic field again.

Using f EM = 2.55 GHz, the electron's mean longitudinal kinetic energy was lower than the baseline configuration. The more diverging profile Div ↑, however, produced an increased electron's mean longitudinal kinetic energy. Therefore, the electrons are ejected from the thruster at higher energies in the case of an ECR heating zone closer to the backplate achieved with the magnetostatic field instead of with the change in the microwave frequency.

Results for the case x ECR = 8.7 mm A summary of the results for each configuration is presented in Table 5.4. The values at the plume were also taken at 80 mm from the backplate. In this case, the ion's mean kinetic energy is high but with a low current. Therefore, the thrust is reduced in comparison with the baseline. The microwave power per unit area required to achieve the steady state is greater than for the baseline.

The plasma potential shown in Fig. 5.19a also increases and achieves a value of 280

V at the backplate. The electron number densities can be seen in Fig. 5.19b. Both parameters were only plotted for the configuration with the modified magnetostatic field. The results for the microwave frequency are similar and show the same trends. The high potential of the backplate affects the confinement of the electrons that exhibit an increased mean kinetic energy in the perpendicular direction as seen in Fig. 5.20a. For the f EM = 2.35 GHz case, the profile achieves a higher peak and starts decreasing faster in comparison with the results for the less divergence profile Div ↓. For the latter, the point at which the electron's mean kinetic energy in the perpendicular direction starts to decrease, after achieving a global maximum of 140 eV, is located at around 65 mm as seen in Fig. 5.18b. This point is reached further away from the backplate in comparison with the baseline configuration or the f EM = 2.35 GHz case, which are both around 45 mm. This difference is an effect of the counterbalancing between two events. On the one hand, the filtering process makes us see highly energetic electrons in the plume when computing their mean perpendicular kinetic energy. On the other hand, the divergence of the magnetostatic field accelerates them in the longitudinal direction. The point at which the electron's mean perpendicular kinetic energy starts to decrease is where the longitudinal acceleration outweighs the filtering process.

Regarding the collisions for each new simulation, we plotted in Fig. 5.21 the number of electron-neutral collisions. We notice that the number of wall losses decreased, and the number of electron-neutral collisions falls to zero at the end of the coaxial chamber, thus reducing the losses to the neutrals. The flux of particles at the exit of the domain decreased, and the flux at the backplate is unchanged. The behavior of each component of the energy balance seems to have decreased, yet the microwave power per unit area required to achieve the steady-state increased as shown in Table 5.4. A possible explanation is that it is an effect of the microwave regulation that Then, if the simulation had been performed with a power regulation that does not force a user-defined number of particles in the domain, the microwave input power needed to compensate for the decreased losses of this lowdensity plasma would have been lower compared to the baseline. However, with the power regulation trying to maintain a user-defined number of particles in the domain, the microwave input power needed to be high to meet this constraint. Further studies with these configurations should explore the possibility of using a fixed microwave power per unit area.

To conclude, we can say that the ECR heating position was shown to play an essential role in the behavior of the thruster. We saw that moving the resonance condition's location closer to the backplate produced a higher thrust by using the microwave frequency or the magnetostatic field profile. On the other hand, when the resonance condition's location is moved further away, we saw a decreased thrust and ion current, but more studies are needed to compare this case better. We acknowledge a discrepancy between our results and those of [START_REF] Vialis | Développement d'un propulseur plasma à résonance cyclotron électronique pour les satellites[END_REF] who did not found a significant variation of the thrust after moving the heating zone closer and away from the backplate (using 2.6 GHz and 2.3 GHz, respectively). The author concluded that the ECR heating position does not seem to play an essential role in the thruster's efficiency. However, the magnetostatic field profile used for our simulations and for the experimental study was not the same. In the latter, the ECR heating zone using a microwave frequency of 2.6 GHz was behind the backplate, i.e., outside the coaxial chamber. Additionally, the thrust was not obtained from a direct measurement using a thrust balance. Instead, they were estimated from the ion's current and energy measured using a Faraday probe, generating a high dispersion for the results. A deeper comparison in the future will be needed to elucidate this issue with simulations more representative of the reality.

Summary of the Chapter

In this chapter, we presented the results of the simulation cases explored using the quasi-one-dimensional model. It allowed us to identify some of the mechanisms influencing the thruster's behavior. The cross-field diffusion and the characteristics of the heating zone were shown to play an essential role. Possible improvements for future parametric analysis using the quasi-one-dimensional model were also identified.

The 1D3V model used for this study gave us a description of several phenomena: the electron ECR heating, the electron confinement, the ambipolar electric field to accelerate the ions, among others. This model still has a lot to teach us about the plasma dynamics on the ECR thruster. It will be the subject of future research works and parametric analysis that were not covered in this study because of time limitations. Nevertheless, despite all the information we could get with the onedimensional simulations yet to come, the model has a limit that constrains its scope. This limitation arises from the assumption required to build a simplified description of the thruster that the plasma dynamics are governed only by the position along the longitudinal axis. Consequently, we are aware that neglecting two dimensions of the ECR thruster left several phenomena outside the model's scope. Some of them are the creation of azimuthal currents and their impact on the plasma dynamics, the guiding center drifts for the electrons, the radial variation of the plasma properties, and the mode conversion of the injected microwaves generating different types of waves that could propagate in the plasma. To tackle this limitation, a more complex representation of the thruster geometry with a different model was found to be an appealing idea. Still, before this idea could be achieved, there were exciting challenges that needed to be addressed, and that will be presented in the next chapter.

Electromagnetic Fields Analysis in the Two-Dimensional Cylindrical Coordinate System

As pointed out in chapter 3, the potential use of the CIP method in cylindrical coordinates was successfully tested by [START_REF] Tanaka | Computation of lightning electromagnetic pulses with the constrained interpolation profile method in the 2-D cylindrical coordinate system[END_REF]. The author proposed a method to deal with the radial terms that appear in such configurations by considering that the computational domain can be seen as a medium with radially varying impedance and requiring the transmission and reflection of waves at the interfaces of those impedance variations. The treatment of these source terms is one of the vital parts of the procedure and it is required to get an accurate and stable scheme.

Nevertheless, the method described by [START_REF] Tanaka | Computation of lightning electromagnetic pulses with the constrained interpolation profile method in the 2-D cylindrical coordinate system[END_REF] is only limited to CFL ≤ 1.0. This chapter aims to propose a means to overcome this CFL limitation for our electromagnetic solver to allow faster simulations. An abridged version of this chapter has been published in IEEE Transactions on Antennas and Propagation, Vol. 69, No. 7 [Porto & Elias, 2021]. More details are given in Appendix D.

We start by recalling the complete set of equations obtained from Maxwell-Faraday and Maxwell-Ampère in a cylindrical coordinate system developed in chapter 3 section 3.3 (Eq. 3.16 to 3.21 neglecting the electric and magnetic conductivities):

1 r ∂E z ∂θ - ∂E θ ∂z = - ∂B r ∂t , ∂E r ∂z - ∂E z ∂r = - ∂B θ ∂t , 1 r ∂(rE θ ) ∂r - 1 r ∂E r ∂θ = - ∂B z ∂t . 1 r ∂B z ∂θ - ∂B θ ∂z = µJ r + µϵ ∂E r ∂t , ∂B r ∂z - ∂B z ∂r = µJ θ + µϵ ∂E θ ∂t , 1 r ∂(rB θ ) ∂r - 1 r ∂B r ∂θ = µJ z + µϵ ∂E z ∂t .
The microwave power coming to the coaxial chamber of the thruster is injected from a coaxial cable with a Transverse Electro Magnetic (TEM) mode. However, once the fields reach the open-end of the chamber, the orthogonality of the electric field and the direction of propagation is no longer assured. At this stage the microwave propagates with a Transverse Magnetic (TM) mode. Therefore, we will start this analytical analysis by considering a TM mode with the following set of equations:

∂E r ∂t + c 2 ∂B θ ∂z = - 1 ϵ J r (6.1) ∂E z ∂t -c 2 ∂B θ ∂r = c 2 r B θ - 1 ϵ J z (6.2) ∂E r ∂z - ∂E z ∂r + ∂B θ ∂t = 0 (6.3)
Where the electric field has a radial and a longitudinal component, E r and E z respectively, and the magnetic field is oriented in the azimuthal direction B θ . This set of equation can be expressed in matrix form as:

∂W ∂t + Λ ∂W ∂r + Γ ∂W ∂z = S (6.4) W =   B θ E r E z   , Λ =   0 0 -1 0 0 0 -c 2 0 0   , Γ =   0 1 0 c 2 0 0 0 0 0   , S =   0 -1 ϵ J r c 2 r B θ -1 ϵ J z  
We now applied the change of variable proposed by [START_REF] Tanaka | Computation of lightning electromagnetic pulses with the constrained interpolation profile method in the 2-D cylindrical coordinate system[END_REF] to get rid of the azimuthal magnetic field term in the right hand side of Eq. 6.4:

I B θ = r µ B θ .
The key idea here is to consider that the domain impedance is radially varying. Around a radial grid point, Tanaka et al. assume that the impedance is constant by part, thus removing the 1/r dependence and transforming the medium as a graded-index medium. The final form of our system can be written as:

W =   Z r j I B θ E r E z   , Λ =   0 0 -c 0 0 0 -c 0 0   , Γ =   0 c 0 c 0 0 0 0 0   , S =   0 -1 ϵ J r -1 ϵ J z  
Where Z = µ ϵ and r j is the radial distance from the axis of symmetry to the grid point. We will treat the source term S as a non-advection term that will only be taken into account once the solution of Eq. 6.4 is found under the hypothesis of S = 0. To do so, thanks to the change of variable previously introduced, we can now use the dimensional-splitting method [START_REF] Macnamara | Splitting Methods in Communication[END_REF]:

∂W ∂t + Λ ∂W ∂r = 0 (W n → W * ) (6.5) ∂W ∂t + Γ ∂W ∂z = 0 (W * → W * * ) (6.6)
Where W n is the field at time step n, W * represents the field after propagation along the radial direction, and W * * is the field after the propagation along the longitudinal direction. We will therefore express our system as the following set of propagating characteristics with its spatial derivatives along the propagation axis:

• Along the longitudinal direction (z-axis): L p and L m

L p = E r + Z r j I B θ ; L m = E r - Z r j I B θ (6.7) ∂L p ∂z = ∂E r ∂z + Z r j ∂I B θ ∂z ; ∂L m ∂z = ∂E r ∂z - Z r j ∂I B θ ∂z (6.8)
• Along the radial direction (r-axis): R p and R m

R p = E z - Z r j I B θ ; R m = E z + Z r j I B θ (6.9) ∂R p ∂r = ∂E z ∂r - Z r j ∂I B θ ∂r ; ∂R m ∂r = ∂E z ∂r + Z r j ∂I B θ ∂r (6.10)
The subscript p (plus) stands for a wave propagating in the positive direction of its axis (right-going wave), and m (minus) in the negative direction (left-going wave).

Once Eq. 6.6 is solved, we can treat the non-advection term and obtain the field at the time step n+1 by adding the current source J as follows:

E n+1 = E * * - ∆t ϵ J (W * * → W n+1 ) (6.11)

Wave Propagation with a Multi-Layer Radial Scattering Procedure

The computational domain used for our calculations in a 2D cylindrical coordinate configuration is presented in Fig. 6.1. The longitudinal axis goes from z i=0 to z i=N z , and the radial axis from r j=0 to r j=N r . The empty circles are ghost nodes helpful for the boundary conditions definition. Thanks to the dimensional-splitting method presented in Eq. 6.5 and 6.6, the problem can be treated along each propagating axis. Regarding the longitudinal axis, the characteristic and its derivative described in Eq. 6.7 and 6.8 are advected along the positive and negative direction of the z-axis using the interpolation polynomial described in section 3.4 and as it was shown in the schematic example of Fig. 3.3 in chapter 3.

However, special treatment is required for the radial propagation because of the dependence of the Z/r j coefficient to the radial distance from the longitudinal axis. [START_REF] Tanaka | Computation of lightning electromagnetic pulses with the constrained interpolation profile method in the 2-D cylindrical coordinate system[END_REF] has demonstrated that a radial scattering technique for the radial propagation produces accurate results. In order to extend this procedure for cases Figure 6.1: Computational domain for the simulations in a cylindrical coordinate system. The colourless nodes represent ghost nodes outside the domain used for the boundary condition at the symmetry axis Z.

with CFL ≥ 1.0, let us begin by considering a right-going wave R p propagating along the radial direction and a CFL ≤ 1.0. For a given node position (z i , r j ) in the mesh, we can update its value at time step n+1 (Rp n+1 j ) based on Rp n j-1 and Rp n j . The space between two grid points (with radial distances to the symmetry axis r j and r j-1 ) is considered as containing the interface between two different medias (located at ∆r/2) each one described by a fictitious impedance (Z/r j and Z/r j-1 ).

In Fig. 6.2, each medium is represented either as a grey zone or as a hatched one. At the interface between different media, as proposed by [Okubo et al., 2007], the wave propagation across this interface can be treated using the standard electromagnetic interface conditions between two dielectrics. Thus, each incoming wave will be divided into an "R"-wave reflected back into the original media and a transmitted "T"-wave that propagates to the second medium. We will therefore call radial scattering the procedure used to obtain the wave RS, which is the sum of a "T" wave coming from r j-1 and an "R"-wave coming from r j . The resulting wave RS can be thought of as an equivalent wave coming from the left in the same medium. This RS wave is used to perform the CIP propagation. This variable RS is shown in Fig. 6.2, and it is represented as the sum of the two double-arrow lines in the grey zone. It can be obtained as follows for a right-going radial propagating wave: 

RS =T + Rp n j-1 + R -Rm n j (6.12) ∂(RS) ∂r =T + ∂Rp n j-1 ∂r + R - ∂Rm n j ∂r (6.13)
With a coefficient for transmission T + = 2r j-1 r j +r j-1 and for reflection R -= r j -r j-1 r j +r j-1 . We check that T + + R -= 1. Similarly, for a left-going radial propagating wave:

RS =T -Rm n j+1 -R + Rp n j (6.14) ∂(RS) ∂r =T - ∂Rm n j+1 ∂r + R + ∂Rp n j ∂r (6.15)
Where T -= 2r j+1 r j+1 +r j and R + = r j+1 -r j r j+1 +r j . As r j → ∞, T → 1 and R → 0, meaning for example that for a right going wave RS → Rp j-1 , which is equivalent to the classical CIP method in a planar Cartesian coordinate system.

Here we finish the treatment for the case CFL ≤ 1.0, and we can now move on to CFL > 1.0. Under this condition a multi-layer radial scattering procedure is required in order to update the right-going characteristic Rp n+1 j . For this discussion we will restrict ourselves to the case CFL ≤ 2, but the method described below can be generalized to greater CFL numbers. We will use an intermediate stage described as n + 1 2 , as seen in Fig. 6.3, where the required propagating characteristics will be calculated with the following steps:

1. It starts with a radial scattering of the wave Rp n j-2 through the medias with impedance Z/r j-2 (hatched zone) and Z/r j-1 (grey zone) using Eq. 6.12 and 6.13. The sum of the transmitted part of Rp n j-2 from the striped zone to the grey one (solid line with double-arrow), and the reflected part of Rm n j-1 back into the grey zone (dashed line with double-arrow) is called RSp j-2 . Figure 6.3: Multi-layer scattering of the advected characteristics in the radial direction. Field update for a right-going wave Rp using 1.0 < CFL ≤ 2.0. equations in 3.39. The result of this CIP interpolation is shifted to the grid position r j-1 and it is an intermediate-stage characteristic called RSp n+ 1 2 j-1 . 3. A radial scattering for the left-going wave Rm n j+1 using Eq. 6.14 and 6.15 produces RSm j+1 . A CIP interpolation between RSm j+1 and Rm n j , and a shift of the result of this interpolation to the position r j allows us to get the intermediate-stage left-going wave RSm ) characteristics between t = n + 1 2 and t = n + 1. The result of this scattering is shifted to r j and it gives us the update for Rp n+1 j .

Note that two interpolations are performed in this procedure, one of them is using RSp j-2 and Rp n j-1 , and the other RSm j+1 and Rm n j . For a left-going wave, the entire procedure is symmetrical, starting from the rightmost point r j+2 and moving leftward to r j with the same multi-layer scattering.

This procedure can be extended to higher CFL numbers. First of all, the stencil changes as a function of the CFL number. The higher the CFL, the greater the stencil extent spreading over as many grid cells as the rounded upper value of the CFL number. Having defined the stencil scope, steps 1 and 2 are performed for the leftmost grid nodes. Then the radial scattering is repeated for RSp and RSm over the remaining grid cells until the wave quantities reach r j . For example, for a CFL of 2.5, the radial scattering is performed using a stencil scope going from r j-3 to r j+2 .

Boundary Conditions

Different types of boundary conditions can be easily implemented with the use of ghost nodes, as seen in Fig. 6.1. The main idea is to update the values of the ghost nodes based on the waves reaching the boundary and then proceed to a propagation back into the computational domain. Thus, no special stencil is required for the boundary nodes which use the same stencil as nodes in the domain. The rules for the ghost nodes update are the following:

• Symmetry axis

Based on [START_REF] Mohseni | Numerical Treatment of Polar Coordinate Singularities[END_REF], the ghost nodes of the symmetry axis (smaller than r j=0 ) can be obtained by applying a simple transformation rule to the incoming waves: we multiply by -1.0 any radial derivative, and also any radial or azimuthal component of a vector quantity (letting the axial component unchanged). Under this rule, for any given real number k, we obtain:

E z (z i , r -k ) = E z (z i , r k ) ∂E z (z i , r -k ) ∂r = - ∂E z (z i , r k ) ∂r (6.16) B θ (z i , r -k ) = -B θ (z i , r k ) ∂B θ (z i , r -k ) ∂r =
∂B θ (z i , r k ) ∂r (6.17)

Computing the radial characteristics for the ghost-nodes based on these fields and spatial derivatives (Eq. 6.16 and 6.17) yields the following expressions:

R p (z i , r -k ) = R m (z i , r k ) ∂R p (z i , r -k ) ∂r = - ∂R m (z i , r k ) ∂r (6.18) R m (z i , r -k ) = R p (z i , r k ) ∂R m (z i , r -k ) ∂r = - ∂R p (z i , r k ) ∂r (6.19)
• Perfect Conductor (PEC) wall parallel to the z-axis

Under the constraint of keeping a zero tangential electric field and a normal magnetic field on a conducting wall located at (z i , r j ), we can impose:

R p (z i , r j-k ) = α + R m (z i , r j+k ) + β + R m (z i , r j ) (6.20) R m (z i , r j+k ) = α -R p (z i , r j-k ) + β -R p (z i , r j ) (6.21)
α + = -(r j + ∆r)(2r j -∆r) (r j -∆r)(2r j + ∆r)

β + = -2r j ∆r (r j -∆r)(2r j + ∆r) α -= -(r j -∆r)(2r j + ∆r) (r j + ∆r)(2r j -∆r)

β -= + 2r j ∆r (r j + ∆r)(2r j -∆r)
Where the coefficients are obtained in order to ensure the E z = 0 condition over the wall with the interpolated fields: α + and β + for a conducting wall at r ≤ r j (Eq. 6.20) receiving left-going waves R m , and α -and β -for a conducting wall at r ≥ r j (Eq. 6.21) receiving right-going waves R p . It is important to point out that Eq. 6.20 and 6.21 do not apply for any given real number k. Both equations were obtained for the specific case k = 1 which represents a CFL ≤ 1.0. The equations for the case 1.0 < CFL ≤ 2.0 can be found in Appendix C.

• Perfect Conductor (PEC) wall parallel to the r-axis

To keep a zero tangential electric field on the conducting wall, therefore ensuring E r = 0, we can impose the following conditions for any given real number k to produce a mirrored wavefield with respect to the conducting wall:

E r (z -k , r j ) = -E r (z k , r j ) ∂E r (z -k , r j ) ∂z = ∂E r (z k , r j ) ∂z (6.22) B θ (z -k , r j ) = B θ (z k , r j ) ∂B θ (z -k , r j ) ∂z = - ∂B θ (z k , r j ) ∂z (6.23)
Once the ghost nodes have been updated, the corresponding characteristics can be computed on those locations. Its values can be propagated up to the inner nodes of the computational domain applying the same multi-layer radial scattering procedure previously described.

Validation of the Numerical Method

Two test cases were chosen to validate the electromagnetic solver. The first case was to simulate the electromagnetic radiation of a Hertzian dipole with a 2D cylindrical coordinate system. For the second validation case, we wanted to use a computational domain representative of the coaxial configuration used in the ECR thruster

by simulating an open-ended coaxial waveguide in vacuum.

Hertzian Dipole

The computational domain can be seen in Fig. 6.4. To simulate the Hertzian dipole, we impose a Gaussian function for the source term J z along the symmetry axis with a width of σ z = 2∆z and σ r = 4∆r where the mesh spacing ∆r = ∆z is fixed to 40 µm.

The dipole is located along the symmetry axis at r = 0 and z = z d = 0.5 * N z , as can be seen in Fig. 6.4, and it oscillates at a frequency of 300 GHz. The expression for J z is as follows (with J 0 = 2487.75 A.m -2 ): A radial view along the middle point of the computational domain would not be detailed enough to appreciate at the same time the two scales of the solution, close to the dipole and far away from it. In Fig. 6.4, we can also notice the presence of an absorbing boundary condition imposed in all the walls of the domain (except for the symmetry axis). Those absorbing layers can be seen in Fig. 6.5b and 6.5a as a yellow zone. The incoming waves into the Perfectly Matched Layer (PML) show an attenuation until the fields completely drop to zero as desired. The implementation of this boundary condition was done based on [START_REF] Ishizuka | Formulation and examination of the perfectly matched layer for sound field analyses using the constrained interpolation profile method[END_REF] with a linearly increasing attenuation parameter k f that depends on the distance from the PML starting point, and it is zero outside that layer. This attenuation parameter is treated as a non-advection term for Eq. 6.4, and it is taken into account in the same way as the source term S in Eq. 6.11. For example, after the advection phase, the following equation is applied to the right-propagating L p characteristic:

J z (r, z, t) = J 0 sin(ωt) exp - r 2 σ 2 r - (z -z d ) 2 σ 2 z ( 6 
L n+1 p(i,j) = L n+1 p(i,j) (1.0 -∆tk f ) (6.25)
Where k f = k fmax ( z i -zo z pml ). k fmax is the maximum value of the attenuation parameter, z o is the starting point of the PML, and z pml is the total length of the layer.

The same procedure is applied to the other outbound characteristics, adapting the k f coefficient for each direction. One should also underline that the equations being in characteristic form, the implementation of the PML is straightforward and does not require a modified stencil.

A constant offset between the analytical results and the plots from the CIP simulations can be seen in Fig. 6.5b at z = 0. An explanation for this offset comes from the fact that the analytical expressions used for this comparison describe the radiation from the oscillation of two point charges in free space separated by an infinitesimally small distance. The size of the mesh spacing limits the numerical representation of this infinitesimal nature of the Hertzian dipole. Therefore, since a better match between the simulation and the theoretical results can be achieved with either a smaller mesh spacing or a greater number of points per wavelength, the accuracy obtained with the previously described simulation parameters is deemed sufficient for a proper comparison point. The relative error along a given section compared to the analytical result is given by: 

Analytical CFL = 2.0 CFL = 1.5 CFL = 1.0 Ez [V/m] -0,4 -0,2 0 0,2 0,4 0 0,2 0,4 0,6 0,8 1 Bθ [nT] -2 -1 0 1 2 0 0,2 0,4 0,6 0,8 1 Er [V/m] -0,4 -0,2 0 0,2 0,4 Radial axis [cm] 0 0,2 0,8 1 (a) -1 -0,5 0 0,5 1 Analytical CFL = 2.0 CFL = 1.5 CFL = 1.0 Ez [V/m] -1 -0,5 0 0,5 1 -1 -0,5 0 0,5 1 Bθ [nT] -3 -2 -1 0 1 2 3 4 Longitudinal axis [cm] -1 -0,5 0 0,5 1 Er [V/m] -0,4 -0,2 0 0,2 0,4 (b) 
(F ) = i (F A i -F CIP i ) 2 i (F A i ) 2 Where F = E r , E z , B θ , F A
and F CIP are the analytical and the simulation results, respectively. The results can be seen in Table 6.1. The overlapping of all the plots obtained with the simulations using three different CFL values is a sign of the robustness and precision of the multi-layer scattering procedure, even for larger CFL.

Steady-State Open-Ended Coaxial Cable

The goal was to simulate a computational domain similar to the ECR thruster coaxial chamber by simulating an open-ended coaxial waveguide in vacuum. The computational domain is presented in Fig. 6.6. The dimensions of the coaxial waveguide that were tested are: a microwave antenna radius R antenna = 1.15 mm, an outer wall radius of R outer = 13.75 mm, a length of 200 mm for both conductor L antenna and L outer , and a rectangular computational domain of L total = 400 mm and R total = 100 mm. A 2.45 GHz Transverse Electro-Magnetic (TEM) input wave is imposed at the left-hand wall. A constant mesh spacing of 0.23 mm is used. The simulation is run for 3800 iterations, which corresponds to more than two round trips of the incident wave, to establish a standing wave in the waveguide.

The standing wave pattern is retrieved for our simulation based on the CIP method by taking the results once an amplitude peak is reached for the time-varying stationary wave. As a comparison, the fields obtained using a Frequency Domain electromagnetic solver from a commercial software are compared to the wave pattern obtained with our code. The same computational domain is used, using a triangulation of characteristic length of 0.2 mm. The results are shown in Fig. 6.7. Additionally, the reflected and radiated power are compared as well, as shown in Table 6.2. In the limit of large wavelength compared to the coaxial diameter λ ≫ R outer , an analytic formula for the radiated power exists as presented in Eq. 7.8 on Appendix B, and it is included for comparison. A good agreement is found between the two cases. The relative error between the CIP radial electric field and the frequency domain result does not exceed 0.1%. The radiated power obtained with the CIP method also matches the predicted value from the frequency-domain solver and the analytic formulation. Our time-domain solution successfully reproduced the steady state solution obtained with a frequency-domain finite-element method. This fact gives us confidence about the stable nature of the solution obtained by our procedure. CIP Frequency Domain Analytic [START_REF] Schelkunoff | On Diffraction and Radiation of Electromagnetic Waves[END_REF] Input power [W] 200.0 200.0 200.0

Reflected power [W] 198.5 198.5 198.4 Radiated power [W] 1.5 1.5 1.6

Integration of an Azimuthal Current Term on the Solver

Up to this point, we have developed and tested an electromagnetic solver capable of simulating propagating Transverse Electro-Magnetic (TEM) and Transverse Magnetic (TM) modes in a cylindrical coordinate system. This electromagnetic module will be coupled to a Particle-In-Cell code that provides the current source term J from the plasma dynamics. Given the magnetization of the electrons and the divergence of the magnetostatic field, the generation of an azimuthal electric field is a possible scenario. Therefore, the electromagnetic solver should also be capable of handling this term.

For the sake of clarity, let us recall the set of equations from Maxwell-Faraday and Maxwell-Ampère in a 2D cylindrical coordinate system developed in section 6.1:

1 r ∂E z ∂θ - ∂E θ ∂z = - ∂B r ∂t , ∂E r ∂z - ∂E z ∂r = - ∂B θ ∂t , 1 r ∂(rE θ ) ∂r - 1 r ∂E r ∂θ = - ∂B z ∂t . 1 r ∂B z ∂θ - ∂B θ ∂z = µJ r + µϵ ∂E r ∂t , ∂B r ∂z - ∂B z ∂r = µJ θ + µϵ ∂E θ ∂t , 1 r ∂(rB θ ) ∂r - 1 r ∂B r ∂θ = µJ z + µϵ ∂E z ∂t .
Taking into account the effect of the azimuthal current J θ , we obtain:

∂E θ ∂t -c 2 ∂B r ∂z + c 2 ∂B z ∂r = - 1 ϵ J θ (6.26) 1 r ∂(rE θ ) ∂r = - ∂B z ∂t (6.27) ∂E θ ∂z = ∂B r ∂t (6.28)
We use the change of variable I E θ = rE θ to get rid of the azimuthal electric field in the left hand side of Eq. 6.27. The key idea is to consider that the domain admittance is radially varying. These expressions can be expressed in characteristic form as follows:

• Along the longitudinal direction (z-axis):

Q p and Q m Q p = E θ -cB r ; Q m = E θ + cB r (6.29) ∂Q p ∂z = ∂E θ ∂z -c ∂B r ∂z ; ∂Q m ∂z = ∂E θ ∂z + c ∂B r ∂z (6.30)
• Along the radial direction (r-axis): S p and S m

S p = 1 r j I E θ + cB z ; S m = 1 r j I E θ -cB z (6.31) ∂S p ∂r = 1 r j ∂I E θ ∂r + c ∂B z ∂r ; ∂S m ∂r = 1 r j ∂I E θ ∂r -c ∂B z ∂r (6.32)

Boundary Conditions

Based on the same ghost-nodes procedures described on section 6.3, we obtain:

• Symmetry axis

S p (z i , r -k ) = -S m (z i , r k ) ∂S p (z i , r -k ) ∂r = ∂S m (z i , r k ) ∂r (6.33) S m (z i , r -k ) = -S p (z i , r k ) ∂S m (z i , r -k ) ∂r =
∂S p (z i , r k ) ∂r (6.34)

• Perfect Conductor (PEC) wall parallel to the z-axis

S p (z i , r j-k ) = α + S m (z i , r j+k ) + β + S m (z i , r j ) (6.35) S m (z i , r j+k ) = α -S p (z i , r j-k ) + β -S p (z i , r j ) (6.36) α + = - (r j + ∆r)(2r j -∆r) (r j -∆r)(2r j + ∆r) β + = - ∆r∆r (r j -∆r)(2r j + ∆r) α -= - (r j -∆r)(2r j + ∆r) (r j + ∆r)(2r j -∆r) β -= + ∆r∆r (r j + ∆r)(2r j -∆r)
Where the coefficients are obtained in order to ensure the E θ = 0 condition over the wall. In this case, as for the R characteristics, α + and β + are for a conducting wall at r ≤ r j (Eq. 6.35) receiving left-going waves S m , and α - and β -for a conducting wall at r ≥ r j (Eq. 6.36) receiving right-going waves S p . Only β + and β -changed with respect to those for the R characteristics. Additionally, Eq. 6.35 and 6.36 do not apply either for any given real number k. Both equations were also obtained for the specific case k = 1 which represents a CFL ≤ 1.0. The equations for 1.0 < CFL ≤ 2.0 can be found in Appendix C.

• Perfect Conductor (PEC) wall parallel to the r-axis

To keep a zero tangential electric field on the conducting wall E θ = 0 we impose:

E θ (z -k , r j ) = -E θ (z k , r j ) ∂E θ (z -k , r j ) ∂z = ∂E θ (z k , r j ) ∂z (6.37) B r (z -k , r j ) = B r (z k , r j ) ∂B r (z -k , r j ) ∂z = - ∂B r (z k , r j ) ∂z (6.38)

Validation of the Numerical Method

To test the accuracy of the results obtained with the inclusion of the azimuthal current effects on the solver, we decided to simulate the electromagnetic radiation of a current-carrying loop of wire. The computed magnetic field was compared with the analytical prediction of the Biot-Savart law along the longitudinal z-axis passing through the center of the loop and perpendicular to it.

The current-carrying loop of wire is contained on the θ -r plane carrying an azimuthal current J θ . We simulated the r -z plane with the longitudinal z-axis placed at the symmetry axis of the loop, and the intersection of the J θ current with the r -z plane taking place at the center of the latter. Absorbing Perfectly Matched Layers (PML) were placed all over the domain boundaries except the symmetry axis.

The comparison can be seen in Fig. 6.8 and it shows a good agreement.

Figure 6.8: Comparison of the magnetic field generated by a current-carrying loop of wire along its symmetry axis using the CIP solver and analytical predictions.

Porting of the Solver from Python to Fortran

All the developments that were previously presented were carried out using Python. This general-purpose programming language was used only during an exploratory phase. We expected to test different ideas and procedures constantly, and we decided that Python's simplicity and easy handling were well suited for the task. However, once the exploratory phase has reached its end, we must integrate the developed method into our Particle-In-Cell code. To achieve this goal, the numerical method must be coded using Fortran, which is the programming language of the Rhei code.

To ensure that the porting of the code from Python to its Fortran version did not introduce any error, we performed again all the simulations for the test case scenarios previously described during the development phase. The results using the Fortran code are compared to those previously obtained. The comparisons are presented in Fig. 6.9 for the coaxial cable and in Fig. 6.10 for the Hertzian dipole. For Fig. 6.9, the fields were computed with a computational domain of z = 100 mm and r = 30 mm. An inner radius for the coaxial cable of R in = 3 mm, an outer radius of R out = 10 mm, and a length of L = 50 mm with a 1 mm mesh spacing. Input microwave power of 200 W at 2.45 GHz. The compared fields were taken along a line parallel to the z-axis and located at the microwave antenna. In conclusion, the multiple interactions between the different parameters on the CIP electromagnetic solver are shown in Table 6.3 as a summary of its structure. An overview of the structure of the solver can be seen in Fig. 6.11. The dimensionalsplitting method [START_REF] Macnamara | Splitting Methods in Communication[END_REF] described during the development of the solver is exploited for its implementation on the code. The superscript n ′ is used for the intermediate stage when the fields are obtained after propagation along the longitudinal direction and n ′′ after the propagation along the radial direction.

Table 6.3: Summary of the characteristics for the 2D axisymmetric solver.

Source term Propagation along Z Source term Propagation along R The inputs for the solver are the electromagnetic fields at time "n". The dimensionalsplitting method allows to compute the wave propagation along Z and then the multilayer scattering along R. The finals outputs of the solver are the fields at time "n+1".

J r L p = E r + cB θ J z R p = E z -cB θ L m = E r -cB θ R m = E z + cB θ J θ Q p = E θ -cB r J θ S p = E θ + cB z Q m = E θ + cB r S m = E θ -cB z

Purely Hyperbolic Maxwell Model System

We saw in chapter 2 with the overview of the code Rhei, that it is composed of an electromagnetic module to solve the Maxwell-Ampère 3.2 and Maxwell-Faraday 3.4 equations, and a Poisson solver to solve the Gauss law 3.1. The divergence of the magnetic field (Eq. 3.3) was not solved since the magnetostatic field is greater than the microwave magnetic field by several orders of magnitude. Therefore, the error produced by omitting this equation was considered to be negligible.

The Purely Hyperbolic Maxwell (PHM) model is a divergence correction approach proposed by [START_REF] Munz | Maxwell's equations when the charge conservation is not satisfied[END_REF] in which the formulation of Maxwell's equations is modified. It is done in order to be able to incorporate the Gauss law and the divergence of the magnetic field into the numerical approximation. The idea is to solve approximately the complete set of Maxwell's equations at the same time. This approach has been further developed by subsequent publications of the same research team [Munz et al., 2000a,b], and it seems well suited to be exploited using the CIP method. If successful, this approach could allows us to have only one solver instead of two. It will speed up the calculations and reduce even further the error from the divergence of the magnetic field. The complete set of Maxwell's equations, presented in chapter 3 subsection 3.1, is modified in order to construct the PHM model. The modified set of equations is presented next with the new terms enclosed in a box:

1 χ ∂Φ ∂t + ∇ • E = ρ ϵ 1 γc 2 ∂Ψ ∂t + ∇ • B = 0 γ∇Ψ + ∇ × E = - ∂B ∂t + σ * µ B -χc 2 ∇Φ + ∇ × B = µJ + µϵ ∂E ∂t + µσE
Where Φ and Ψ are new variables carrying the numerical error from Gauss's laws for the electric and magnetic fields out of the domain with a propagation velocity of χ and γ, respectively [START_REF] Yan | A continuity-preserving and divergence-cleaning algorithm based on purely and damped hyperbolic Maxwell equations in inhomogeneous media[END_REF]. For the Transverse Magnetic mode we obtain:

∂E r ∂t + c 2 ∂B θ ∂z = - 1 ϵ J r -χc 2 ∂Φ ∂r (6.39) ∂E z ∂t -c 2 ∂B θ ∂r = c 2 r B θ - 1 ϵ J z -χc 2 ∂Φ ∂z (6.40) ∂E r ∂z - ∂E z ∂r + ∂B θ ∂t = 0 (6.41) ∂Φ ∂t + χ ∂E z ∂z + χ r ∂(rE r ) ∂r = ρ ϵ (6.42)
This set of equation can be expressed in matrix form as:

∂W ∂t + Λ ∂W ∂r + Γ ∂W ∂z = S (6.43) W =     B θ E r E z Φ     , Λ =     0 0 -1 0 0 0 0 0 -c 2 0 0 0 0 χ 0 0     , Γ =     0 1 0 0 c 2 0 0 0 0 0 0 χc 2 0 0 χ 0     , S =     0 -1 ϵ J r c 2 r B θ -1 ϵ J z -χ r E r + 1 ϵ ρ    
We now applied the change of variable I B θ = r µ B θ and I Er = rE r . As it was done before, the idea is to consider that the domain impedance for the azimuthal magnetic field and the admittance for the radial electric field are both radially varying. This allow us to express our system as the following set of propagating characteristics:

• Along the longitudinal direction (z-axis): L p , L m , M p and M m L p = 1 r j I Er + Z r j I B θ ; L m = 1 r j I Er - Z r j I B θ (6.44) M p = E z + cΦ ; M m = E z -cΦ (6.45)
• Along the radial direction (r-axis): R p , R m , N p , and

N m R p = E z - Z r j I B θ ; R m = E z + Z r j I B θ (6.46) N p = 1 r j I Er + cΦ ; N m = 1 r j I Er -cΦ (6.47)
The equations for the spatial derivatives are not presented for simplicity since they are the same as those for their respective characteristics. The subscript p (plus) stands for a wave propagating in the positive direction of its axis (right-going wave), and m (minus) in the negative direction (left-going wave).

To test the accuracy of the results obtained with this model, we simulated the electric field generated by a ring of charge along the longitudinal axis passing through its center. The simulated field is compared with the analytical prediction of Eq. 6.48.

E z = 1 4πϵ 0 zQ (z 2 + R 2 ) 3/2 (6.48) E z = 1 4πϵ 0 Q R 2 (6.49)
Where R is the radius of the ring, Q its total electric charge (i.e., the elementary charge e in our simulation), z is the distance to the ring center along its longitudinal axis, and ϵ 0 is the vacuum permittivity. The analytical values for the electric field generated by a point charge were also plotted using Eq. 6.49 for the case z ≫ R.

Figure 6.12: Electric field generated by a ring of charge along its axis.

The simulation was run using a CFL value of 1.0, a rectangular domain of (z = 2m, r = 1m) with a mesh spacing of 1 cm. The radius of the ring was 200 cm. The results can be seen in Fig. 6.12, and they show a good agreement between the simulation and the analytical predictions. It confirms the potential of the PHM model coupled to the CIP method to solve the complete set of Maxwell's equations.

Unfortunately, these developments were carried out almost at the end of this research journey. So, despite having already integrated the PHM solver on the Rhei code, we decided to proceed with the simulations of the ECR thruster using the Poisson and the electromagnetic solver instead of this unified approach. This choice will give more time to the development team to further explore the benefits and limitations of the PHM model before relying on it for large-scale simulations. This approach will speed up the calculations and produce more accurate results by allowing us to have only one solver (number 3) instead of two (number 1 and 2 for the current version of the code) in the next figure.

1 Poisson Solver E ES ∇ • E = ρ ϵ 2 Electromagnetic Solver E EM , B EM ∇ × E = - ∂B ∂t + σ * µ B, ∇ × B = µJ + µϵ ∂E ∂t + µσE 3 Purely Hyperbolic Maxwell (PHM) Model System E ES , B M S , E EM , B EM 1 γc 2 ∂Ψ ∂t + ∇ • B = 0, 1 χ ∂Φ ∂t + ∇ • E = ρ ϵ , γ∇Ψ + ∇ × E = - ∂B ∂t + σ * µ B, -χc 2 ∇Φ + ∇ × B = µJ + µϵ ∂E ∂t + µσE Figure 6
.13: Different solvers for the Rhei code.

Summary of the Chapter

We developed a two-dimensional axisymmetric electromagnetic solver capable of handling different propagation modes. The solver simulates waves' propagation using the electromagnetic fields and their spatial derivatives generated from the current source terms. The solver accuracy was tested by comparing its results against analytical descriptions of simple well-known physical phenomena. This tool will be coupled to our PIC code Rhei to get a self-consistent description of the plasma behavior in a 2D axisymmetric configuration. This new feature will allow a more realistic representation of the thruster geometry by taking advantage of its rotational symmetry.

1 r ∂E z ∂θ - ∂E θ ∂z = - ∂B r ∂t , ∂E r ∂z - ∂E z ∂r = - ∂B θ ∂t , 1 r ∂(rE θ ) ∂r - 1 r ∂E r ∂θ = - ∂B z ∂t . 1 r ∂B z ∂θ - ∂B θ ∂z = µJ r + µϵ ∂E r ∂t , ∂B r ∂z - ∂B z ∂r = µJ θ + µϵ ∂E θ ∂t , 1 r ∂(rB θ ) ∂r - 1 r ∂B r ∂θ = µJ z + µϵ ∂E z ∂t .
The next sections will present ongoing developments regarding the set up of the simulations and preliminary results to have the first insight into the model's capabilities.

Simulation Setup

Geometry

A schematic view of the computational domain can be seen in Fig. 7.2. The axisymmetric nature of the model allows to represents the longitudinal axis of the thruster with the z-axis while the r-axis represents its radial dimension. The simulations using this model are based on the hypothesis that the plasma properties are considered constant along the angular position given by the θ-axis. A detailed description of the dimensions of the computational domain is given in Table 7.1. These values were taken from the dimensions for a prototype of the thruster developed by [START_REF] Peterschmitt | Development of a stable and efficient electron cyclotron resonance thruster with magnetic nozzle[END_REF]. The author describes the details of its design in Appendix C of his work. Since the two-dimensional simulations are more time-consuming than those using the 1D3V model, the computational domain was restricted to a rectangular space, including the coaxial chamber and a few millimeters of the plume outside the thruster.

A magnetic nozzle boundary condition was used to simulate the effect of the missing part of the diverging magnetostatic field over the electrons inside the domain. Several other boundary conditions also need to be specified for each surface on the domain, and they are presented hereafter.

Boundary Conditions

For the two-dimensional model, more boundary conditions need to be defined in comparison with the quasi-1D case. These definitions are linked to the physics handled by different modules: electrostatic for the Poisson's equation presented in chapter 2 with Eq. 2.6, electromagnetic for Maxwell's equations with the CIP solver, and boundary conditions for the particles that reach those surfaces. These boundary conditions need to be defined for each one of the six surfaces on Fig. 7.3. 

Electrostatic

• Dielectric Backplate: S1. The evolution of the potential at the backplate (S1) V BP through time is modeled as a parallel plate capacitor with a userdefined capacitance per unit surface and filled with a thin dielectric. The charge per unit surface is computed from the particles next to the backplate by scattering its charge to the grid points and dividing by the surface of the cell edge.

• Fixed Field: S2, S3 and S4. The upper (S3), lower (S4), and right (S2) surfaces were forced to stay at a zero normal electric field.

• Floating Voltage: S5. The microwave antenna was modeled at a floating voltage with a capacitance C as explained in chapter 4 with Eq. 4.7.

• Fixed Voltage: S6. The outer conductor of the coaxial chamber was put at a fixed voltage of zero volts.

Electromagnetic

• Input Power: S1. The microwaves are injected at the backplate (S1) with a linear polarization along the r-axis, specified by its power P and by its frequency f EM . The microwave electric field is computed using Eq. 7.1. We set the rightpropagating characteristics L p and ∂ z L p described using Eq. 6.8 in the previous chapter. The exiting left-going characteristic L m is left free. The injected microwave power P is fixed in this case, i.e., there is no power regulation. PMLs have a length of 1 mm and are located as it was shown in Fig. 7.2. The absorption needs to be gradual and carried out along several grid points. They were set for the waves to lose 10% of their amplitude per mesh spacing on the PML.

• Perfect Electric Conductor (PEC): S5 and S6. The outer wall of the coaxial chamber (S6) and the microwave antenna (S5) are both modeled by a boundary condition for a perfectly conducting surface. The idea is to obtain a zero tangential electric field and normal magnetic field.

• Symmetry Axis: S4. A specific boundary condition for the axis of symmetry of the computational domain was developed in chapter 6 section 6.3 to force a zero radial electric field and a tangential magnetic field, i.e., E r = B θ = 0.

Particles

• Sticky Condition: S1, S3, S5, and S6. The sticky condition is used, so the particles get lost by being suppressed from the domain after they impact the backplate (S1), the microwave antenna (S5), or the outer conductor (S5).

In the first instance, the secondary electron emission is not considered to start with a simple model. It could be used to improve the simulations in the future.

• Symmetry Axis: S4. The particles reaching the axis of symmetry are reflected back into the computational domain. Their velocity follows a mirror-like specular reflection as seen in Fig. 7.4.

Figure 7.4: Specular reflection of the velocity vector for a particle at the axis of symmetry: θ i is the angle of incidence and θ r is the angle of reflection.

• Magnetic Nozzle: S2. The results of the 1D3V model in chapter 4 highlighted how the electrons are confined. The trapped electrons were shown to be present even at positions several centimeters outside the coaxial chamber. This coupling between the coaxial chamber and the magnetic nozzle was obtained thanks to the advantage of the quasi-1D model that allowed us to simulate both parts of the thruster. However, simulating both of them with the two-dimensional electromagnetic full-PIC simulation would be computationally too expensive.

The new computational domain is restricted to a rectangular space to save computational resources, including the coaxial chamber and a few millimeters of the magnetic nozzle outside the thruster. This approximation must take into account the electron dynamics on the part of the magnetic nozzle that is not being simulated since a sticky condition in (S2) would overestimate the electron flux leaving the domain by not considering its confinement.

We know that only the electrons with a high axial kinetic energy will escape the electrostatic plume confinement limit. We also know that the ions are not confined, so those reaching (S2) can leave the domain. Bearing that in mind, the boundary condition is based on the method proposed by [START_REF] Li | On electron boundary conditions in PIC plasma thruster plume simulations[END_REF] to enforce a current-free condition on (S2), i.e., J ions = J electrons . The authors propose several steps. The first one is to sort the electrons according to their kinetic energy. Then, an energy threshold E threshold is computed so that the number of electrons with a kinetic energy E k above that threshold equals the number of ions leaving the domain. Finally, all those electrons with E k < E threshold are reinjected back into the computational domain with a velocity v ′ ∥ . In our code it is computed from the incident value v ∥ by imposing v ′ ∥ = -v ∥ and keeping the same v ⊥ , as seen in Fig. 7.5 . The electrons with energies higher than the threshold are suppressed from the domain, representing those that overcome the electrostatic plume confinement limit.

Figure 7.5: Magnetic nozzle boundary condition: the red-colored v is the velocity vector of incident particle and the blue-colored v ′ is for the reflected particle.

Therefore, an electron injected into the domain simulates a confined electron that would have kept evolving into the missing magnetic nozzle until reaching v ∥ = 0 and be forced to turn back. In the current version of the code, the electron is injected immediately after reaching (S2). A future improvement could (described in chapter 2 with Eq. 2.6) to compute the electrostatic field E ES every 20 time steps. This choice represents a gain in time since solving Poisson's equation is computationally expensive. Still, the choice of the ∆t ES must be made so that the ions do not travel more than one cell size for each of their own time step to avoid inducing an error in the solution [START_REF] Gueroult | Étude d'une source d'ions obtenue par extraction et accélération à partir d'une source plasma filaire[END_REF]. The time step of the simulations for the electrons is small to capture their fast dynamics, but the slow motion of the ions does not need to be solved with the same temporal resolution. A schematic view of the different time steps used in the simulations can be seen in Fig. 7.8. To summarize, we can say that the electron dynamics (coupled to the electromagnetic solver) is updated using a small time step ∆t while the ions dynamics is solved using a greater temporal resolution ∆t ions . The electrostatic field is computed only after several updates of the electron and ions dynamics, and it is given by ∆t ES . Finally, the collisions with the neutral background are computed every ∆t coll .

Regarding the choice for the value of the CFL condition, it is worth mentioning that the validation for the porting of the electromagnetic solver from Python to Fortran presented in chapter 6 section 6.6 was only carried out for CFL values of 1.0 and 2.0. The capability to handle 1.0 < CFL ≤ 2.0 was already coded into Rhei, but it is not yet functional and still requires some debugging effort. Unfortunately, the first steps of the simulations with the plasma using CFL = 2.0 showed the emergence of numerical instabilities at the domain boundaries that polluted the results. Yet, these instabilities were not present with the simulations in the vacuum. Further studies need to be carried out to shed some light on this issue. Therefore, we decided to use a CFL value of 1.0 since this is the only case that does not shows any numerical instability when the plasma is taken into account. The simulations took around ten days to run for 2 µs. More time is required to achieve a steady state, as we saw with the 1D model. However, the simulation was stopped at this point to get preliminary insight into the results. The time-evolution for some of the simulation's parameters can be seen in Fig. 7.9. The electron's mean kinetic energy in Fig. 7.9b seems stable around 50 eV and an equal flux of charged particles have been achieved at the plume and at the backplate. The energy threshold E threshold also has a stable value. density plasma. This zone is shown as a white ring free of deposition at the end of the experimental study. The author also proposes that outside this white ring, the deposition rate is greater than the erosion rate due to fewer particles impacting the backplate and linked to a region with a lower plasma density.

There is, nonetheless, a point that needs to be considered cautiously since the author points out that the radius of the white ring corresponds to a section of the magnetostatic field that goes through the exit of the coaxial chamber. It means that the size of the white region is given by those lines of the magnetostatic field that do not touch the coaxial chamber walls, as seen in the schematic view at the left side of Fig. 7.12b. This fact differs from our results since the region with a high plasma density is between 1 mm and 2 mm smaller than what we would have expected based on the divergence of the magnetostatic field lines. A possible explanation for this difference is the absence of a magnetic nozzle boundary condition in the upper surface (S3). In Fig. 7.12a we see that the size of the high-density region at the backplate is given by those lines of the magnetostatic field that lead to the right surface (S2). Only the electrons reaching this surface can be reinjected back into the computational domain. A future improvement for the simulations would be to modify this boundary condition to better assess the impact of this surface on the results.

Another important information we can get from the results for the electrons is the presence of a highly energetic population near the antenna. It can be seen in Fig.

7

.13 where we plotted the electron's perpendicular velocity on the domain. This phenomenon was also observed by [START_REF] Sánchez-Villar | Coupled plasma transport and electromagnetic wave simulation of an ECR thruster[END_REF] who showed that the maximum value of the total electron temperature was reached close to the antenna using a hybrid PIC/fluid simulation of the thruster. To understand better how the electrons are distributed in the coaxial chamber, we divided the computational domain into a set of regions to compute the electron energy distribution function in each of them. This domain decomposition can be seen in Fig. 7.14, with a radial decomposition in Fig. 7.14a and a longitudinal decomposition in Fig. 7.14b. For each region of the computational domain the electron energy distribution function was computed in the longitudinal direction z-axis and the perpendicular direction r-θ plane. A rigorous post-processing would require computing the electron's energy parallel and perpendicular to the magnetic field lines. Nonetheless, we decided to use this heuristic approach to get an early observation of the electron behavior.

Conclusion Contributions of this Research Project

The framework for this work is the development of a propulsion device capable of overcoming some of the limitations of the current mature technologies impacting their lifetime and risk of failure. Until recently, the research community's efforts were mainly focused on experimental studies and were limited to survey the plasma on the magnetic nozzle. On that account, the primary motivation for this study was that numerical simulations of the plasma inside the coaxial chamber could complement the laboratory data and the theoretical developments by providing additional insight into the understanding of the underlying physics of this technology. Fully kinetic modeling was chosen because it can unveil details about the thruster working principles otherwise inaccessible using analytic descriptions or fluid modeling alone.

Thus, this research aimed to perform for the first time full-PIC simulations of the magnetized plasma inside the ECR thruster (developed at Onera) with self-consistent calculations of the electromagnetic fields. We decided to adopt an increasing-complexity approach and started by studying the thruster with a quasi-1D model before moving on to a more complex representation of its geometry in a 2D axisymmetric configuration. To achieve this goal, it was necessary to develop a simulation tool adapted to each model. Therefore, we developed a 1D planar and a 2D axisymmetric electromagnetic solver to simulate the microwave-electron interactions responsible for the plasma heating. In light of this, the most relevant contributions of this study can be linked to both the development phase to set up the required numerical capabilities and the stage exploiting them to simulate the thruster with the previously mentioned models. These contributions are presented next.

• An electromagnetic solver for Maxwell's equations in 1D planar was developed based on the Constrained Interpolation Profile (CIP) method. It enables the use of large time step sizes by not being limited by the CFL condition. Also, it is a novel solution for a PIC code since most of the electromagnetic solvers are based on conventional approaches like the finite-difference time-domain (FDTD) method proposed by [START_REF] Yee | Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[END_REF].

• The potential of the CIP method to be used in cylindrical coordinates was successfully tested by [START_REF] Tanaka | Computation of lightning electromagnetic pulses with the constrained interpolation profile method in the 2-D cylindrical coordinate system[END_REF] limited to CFL ≤ 1.0. In this study, a procedure was proposed to overcome this CFL limitation for our electromagnetic solver. Hence, an electromagnetic solver in 2D domains with cylindrical symmetry capable of handling large time steps was developed. A ghost node method was also proposed to deal with different boundary conditions, such as the singularity on the axis. Both solvers (in 1D and 2D) were successfully validated and integrated into Onera's PIC code Rhei and allow faster and more accurate simulations than the conventional methods. The different procedures and techniques developed here can also be applied to domains other than the electric propulsion and plasma physics fields in which this work is based.

• The divergence correction approach given by the Purely Hyperbolic Maxwell model was successfully implemented and validated for the 2D axisymmetric electromagnetic solver. It was integrated on the Rhei code, but further tests are required to ensure its proper coupling with the entire code. This approach will speed up the calculations since Poisson's equation does not need to be solved separately from the electromagnetic module, which is time-consuming.

• A 1D3V model of the thruster was simulated self-consistently with the electromagnetic full-PIC code. Among the findings obtained with the results of these simulations, we can cite the following:

-Anisotropy in the electron's energy is expected in the directions parallel and perpendicular to the magnetic field lines for a plasma in a diverging magnetic field. As expected, the results showed that the electron's mean perpendicular energy near the heating zone was greater than the value along the longitudinal direction. They also showed, unexpectedly, that the electron's mean perpendicular energy has a second peak in the plume due to the confinement of highly energetic electrons. The confinement is determined by the backplate's potential, the magnetostatic field, and the potential drop on the plume.

-Given the model in our simulations to account for the cross-field diffusion, the wall losses on the coaxial chamber were dominant over the energy lost in electron-neutral collisions. Additionally, the charge-exchange collisions between the neutral background and the ions were shown to slow them down on their longitudinal acceleration.

-The energy transfer between the microwave field and the electrons was shown to take place over a broad area around the resonance condition. It was around 6 mm, and it was consistent with the predicted value from the Doppler broadening.

• A 2D3V model of the thruster was simulated self-consistently with the electromagnetic full-PIC code. The results indicate the concentration of high-energy electrons in the region near the antenna. They also suggest the possibility of mode conversion for the injected microwaves inside the coaxial chamber.

Additionally, the results are consistent with the experimental finding of [START_REF] Peterschmitt | Development of a stable and efficient electron cyclotron resonance thruster with magnetic nozzle[END_REF] stating that the plasma is strongly tied to the magnetostatic field for longitudinal locations where the field is intense enough. It is worth mentioning that, since the conventional FDTD method is commonly used with CFL values below 0.7, even the cases in which the simulation is run with a CFL of 1.0 represent a great gain in computational time of around 30%.

These simulations brought to light questions that remain open, like the energy conversion from the injected microwave into others propagation modes inside the coaxial chamber due to the plasma-microwave interaction. The two-dimensional model represents a more accurate modeling closer to the thruster's actual geometry. Hence, it can be used to explore these issues more deeply since it allows us to circumvent the main limitation of our 1D3V model, which results from neglecting two dimensions of the ECR thruster. Several phenomena were kept outside the model's scope, such as creating azimuthal currents or the radial variation of the plasma properties. The setting up of the 2D3V simulations was successfully carried out during this work.

This tool should soon complement the forthcoming experimental studies inside the coaxial chamber as the laboratory research efforts progress to address the issue of the scarcity of data in this region. At Onera, for example, research efforts as those of [START_REF] Blateau | The curling probe: A numerical and experimental study. Application to the electron density measurements in an ECR plasma thruster[END_REF] with the development of a microwave resonant probe capable of measuring the electron density and plasma potential on the coaxial chamber have already started to deal with this challenge.

Perspectives

The electromagnetic full-PIC simulations will continue to reveal much more details about the plasma dynamics in the thruster. The current version of the Rhei code can continue to be exploited in 1D and 2D to explore further different parametric analyses that were not considered here. Namely, the effect of the materials used in the coaxial chamber, the impact of the computational domain size, or different values for the microwave input power. The logical next step in continuing our increasingcomplexity approach to model the thruster is developing a 3D electromagnetic full-PIC simulation. However, several questions regarding the electromagnetic solver will have to be answered before achieving this goal. The treatment of the boundary conditions is a crucial issue to handle in a domain where more numerous waves will have to be considered.

Needless to say that the code Rhei is still a work in progress. So whether the electromagnetic capabilities of the code will stay on its current 1D/2D version or move to a future 3D, several improvements are indeed required to either get more accurate results or use less computational resources. Some of these improvements identified during this study have been described in different sections scattered through the entire manuscript. They are presented next as a reminder.

• Implement a divergence cleaning to enforce the consistency with the charge conservation. It will avoid the creation of a spurious contribution to the electric field that may arise from lack of a strict charge conservation [START_REF] Pfeiffer | Hyperbolic divergence cleaning, the electrostatic limit, and potential boundary conditions for particle-in-cell codes[END_REF]. The absence of divergence cleaning in our 2D simulations has not yet been assessed, but it should be integrated soon to improve the accuracy of the results. Nonetheless, a divergence cleaning would not be required if the test for the proper coupling between the Purely Hyperbolic Maxwell (PHM) solver and the Rhei code is successful.

• Model Coulomb collisions and double ions on the simulations. Our simulations might underestimate the number of ions since double ions, produced through electron-neutral or electron-ion collisions, are expected to account for 10% to 20% of the ions produced on an ECR plasma according to [START_REF] Sercel | Electron Cyclotron Resonance (ECR) Plasma Acceleration. 19Th AIAA, Fluid dynamics, Plasma dynamics, and Lasers Conference[END_REF].

• Assess the effect of not considering the varying cross-sectional area of the magnetic field tube for the electromagnetic solver on the 1D3V simulations.

• Upgrade some of the boundary conditions for the computational domain.

-The magnetic nozzle would be more representative of reality with an estimation of the time required for an electron to be reinjected into the domain. It will also be helpful to have a randomly chosen orientation for its perpendicular velocity.

-Take into consideration the effect of the secondary electron emission. In the current version of the code, it is done using a simplified model with a constant coefficient γ BP e or γ BP i , i.e., the energy of the impacting particle is not considered. This feature is not yet fully operational and still requires to be validated. It will contribute to having a more accurate modeling.

Nonetheless, a future version of the code could also use a more complex model depending on the charged particle's energy and angle of incidence.

• Integrate a proper load balancing scheme will reduce the computational resources required per simulation. This feature, coupled to the speed up from the PHM model with large time steps, could facilitate the large-scale simulations needed for the 3D electromagnetic full-PIC modeling of the thruster.

The previous potential improvements concern the capabilities of the Rhei code. On the other hand, several perspectives concerning the physics of the thruster can be found hereafter.

• Study experimentally the results described in the previous section. On the one hand, the high anisotropy for the electron's energy on the plume is a finding to examine since it would represent a better understanding of the confinement of the electrons. On the other hand, the impact of the cross-field diffusion to verify if this mechanism is indeed dominant over the energy lost in collisions.

• Address the questions that remain open like studying in depth the possible presence of extraordinary waves (and other modes) in the coaxial chamber.

• Examine the impact of the Secondary Electron Emission for the backplate and the microwave antenna on the plasma dynamics. Experimental studies like those of [START_REF] Peterschmitt | Development of a stable and efficient electron cyclotron resonance thruster with magnetic nozzle[END_REF] highlighted the high erosion rate of the antenna and the backplate.

Finally, exciting advancements are expected to see the light of day coming from the new experimental-oriented graduate thesis currently under development at Onera.

Appendices

Appendix A

Von Neumann Stability Analysis for the 1D Axysimmetric Electromagnetic Solver using the LBS

In chapter 3 section 3.3 we found the update equations for the one-dimensional axysimmetric electromagnetic solver (3.35 and 3.36). Since it is a multi-level scheme in time, the following variables are introduced to replace those levels previous to "n":

L = Y n-1 (7.2) F = X n-1 (7.3)
So those previous level can be expressed as:

L n i = Y n-1 i
with an update equation:

L n+1 i = Y n i F n i = X n-1 i
with an update equation:

F n+1 i = X n i
Therefore, we have the new system of equations (assuming the solutions as Y n i = e jϕ-jθ and X n i = e jϕ+jθ ):

Y n+1 i -X n+1 i β 1 = Y n i -Y n i β 2 e jθ + L n i β 2 e jθ -X n i (β 1 ) -X n i β 1 e jθ + F n i β 1 e jθ + Y n i 2νβ 2 e jθ + X n i 2νβ 1 e jθ + X n i (2νβ 1 ) -Y n i (2ν) X n+1 i + Y n+1 i α 1 = X n i -X n i α 2 e jθ + F n i α 2 e jθ + Y n i (α 1 ) + Y n i α 1 e jθ -L n i α 1 e jθ + X n i 2να 2 e jθ -Y n i 2να 1 e jθ -Y n i (2να 1 ) -X n i (2ν) L n+1 i = Y n i F n+1 i = X n i
For a given spatial and angular frequency: κ and ω Fourier angles are defined as: In matrix form:

T •           Y n+1 i X n+1 i L n+1 i F n+1 i           = G •           Y n i X n i L n i F n i           Where T =     1 -β 1 0 0 α 1 1 0 0 0 0 1 0 0 0 0 1     G =    
1 -β 2 e jθ + 2νβ 2 e jθ -2ν -β 1 -β 1 e jθ + 2νβ 1 e jθ + 2νβ 1 β 2 e jθ β 1 e jθ α 1 + α 1 e jθ -2να 1 e jθ -2να 1 1 -α 2 e jθ + 2να 2 e jθ -2ν -α 1 e jθ α 2 e jθ 1 0 0 0 0 1 0 0

    So the amplification matrix is M = T -1 • G.           Y n+1 i X n+1 i L n+1 i F n+1 i           = M •           Y n i X n i L n i F n i          
Now we need to find the eigenvalues of M. Given the algebraic complexity of the problem, an analytical approach is unpractical. A numerical solution was created for each parameter's specific values to analyze the scheme's stability.

The scheme has shown to be stable after several iterations for each configuration.

Notwithstanding, there is dissipation in some cases since the eigenvalues are inside the unit circle. Figure 7.23 shows a summary of the results for the eigenvalues in the complex plane and the unit circle. 
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 14 Figure 1.4: Electrons heating using the ECR phenomenon.
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 21 Figure 2.1: Computational cycle of Onera's Particle-In-Cell code.
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  Figure 2.4: Collision cross-section of Xenon neutral by electron impact.
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 25 Figure 2.5: Collision cross-section of Xenon neutral by ion impact.
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 26 Figure2.6: Velocity space v ∥ , v ⊥ plane for the magnetic bottle at different times: (a) t = 0 ns, (b) t = 0.2 ns, and (c) t = 1 ns. The red lines were plotted using the loss cone angle θ = 30 • describing the magnetic confinement for the simulated configuration.
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 28 Figure 2.8: Computational cycle of the electromagnetic Particle-In-Cell code.
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 3 Figure 3.1: Stencil used for the one-dimensional LBS method: (a) right-going wave +x, and (b) left-going wave -x.

  .33) We consider a medium where ϵ = ϵ * = 0 and therefore a = b = 0. As a consequence, D 12 = D 21 = 1 2r and D 11 = -D 12 ; D 22 = -D 21 . Taking this relationships into account, we can now define the following variables:

  3.1. However, it is important to keep in mind that the matrix D (and thus its components D 11 , D 12 , D 21 and D 22 ) should be evaluated at r c . Therefore, the stencil used for each equation is not the same so the components D 11 and D 12 for the right propagating wave will be evaluated at r c,stencil(a) , while D 21 and D 22 in the left propagating wave at r c,stencil(b) . Given the symmetry of the stencils at each point, the following equation can be used: r c,stencil(b) = r c,stencil(a) + ∆r (3.34)
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 32 Figure 3.2: Comparison of the electric field generated by a linearly increasing current along the longitudinal axis using the LBS electromagnetic solver (red line) and analytical prediction (blue line). Both curves are in dimensionless simulation units.
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 33 Figure 3.3: Fields update on the CIP method. E CIP and B CIP are the interpolated fields between the grid cells: a) CFL ≤ 1.0, b) 1.0 < CFL ≤ 2.0.where c is the wave velocity. If the required values to be shifted are not on the grid points, they are interpolated using a cubic polynomial function from the values at the endpoints of the cell, generating what we call F CIP and G CIP located at the square marker on Fig.3.3. If we consider the right-propagating waves (+z) f and g at grid points z i and z i-1 , the interpolated values between those grid points are given by:
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 34 Figure 3.4: Test of a wave propagation and reflection for the CIP method at different times: (a) t = 0 ps, (b) t = 66 ps, (c) t = 132 ps, (d) t = 266 ps, and (e) t = 333 ps.
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 36 Figure 3.6: Plasma waves for the case: ⃗ k x ⊥ ⃗ B z and ⃗ E z ∥ ⃗ B z . the mesh spacing. It was obtained by using the Fast Fourier Transform (FFT) to compute the discrete Fourier transform of several instantaneous values of the electric fields took during the simulation. Fig. 3.5 shows the waves for the electric field E y , i.e., k x ⊥ B z and E y ⊥ B z , and we can notice the presence of the extraordinary wave as expected by the theory and plotted with a dashed line. Fig. 3.6 shows the waves for the electric field E z , i.e., k x ⊥ B z and E z ∥ B z . We can notice the overlap between the results and the equation for the ordinary wave with a dashed line ω 2 = ω p 2 + k 2 c 2 .

  of the Plasma Dynamics . . . . . . . . . . . . . . . . . . . . 97 4.9 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 4 . 2 :

 42 Figure 4.2: Magnetic field tube properties as a function of the position on the longitudinal axis. The magnetostatic field is shown with a solid blue line scaled with the left-side vertical axis. The cross-sectional area of the magnetic field tube is the dashed red line for the right-side axis.
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 43 Figure 4.3: Energy inputs and outputs on a volume control inside the coaxial chamber represented with a cylindrical view over the plane r-z. The input microwave energy is represented with a green solid line while the losses are in a red dashed line.
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 44 Figure 4.4: Time-evolution of several simulation parameters for the baseline configuration: (a) Total number of electrons, (b) Electron's mean kinetic energy, (c) Ion flux at the backplate, and (d) Ion flux at the end of the computational domain.
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 4546 Figure 4.5: Comparison of the time-evolution of several simulation parameters when using either a regulated or a fixed microwave input power per unit area: (a) Total number of electrons, (b) Electron's mean kinetic energy, (c) Ion flux at the backplate, and (d) Ion flux at the end of the computational domain.
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 47 Figure 4.7: Plasma properties as a function of the position on the computational domain: (a) Plasma potential and (b) Electron (solid red line) and ion (dashed blue line) number densities.
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 4 Figure 4.8: Electron-neutral collision frequencies: (a) Elastic for the entire domain, (b) Ionization for half the domain, and (c) Excitation for half the domain.
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 49 Figure 4.9: Time average of the Poynting vector over one cycle of the microwave.

Fig. 4 .

 4 Fig. 4.10b we plotted an estimation for the acceleration terms j • E ES+EM and j • E EM computed as the time-average over one wave-cycle. What we learned from Fig. 4.10a

Figure 4 .

 4 Figure 4.10: Microwave-electrons energy transfer on the coaxial chamber: (a) Energy flux parallel and perpendicular to the magnetic field lines and (b) Power per unit volume. All the curves are almost zero everywhere outside the coaxial chamber.

Figure 4

 4 Figure 4.11: Energy flux on the coaxial chamber for different microwave frequencies: (a) f EM = 2.45 GHz for a linear polarization (LP) and a for right-handed circular polarizion (RHCP) and (b) f EM = 2.90 GHz for a linear polarization (LP). For the sake of clarity the scale is not the same for the two plots.

Figure 4

 4 Figure 4.12: Electron energy distribution function comparison for several positions on the computational domain: (a) x = 7 mm and (b) x = 80 mm.

Figure 4

 4 Figure 4.13: Electron axial energy distribution functions for several locations in the simulation domain: (a) x = 7 mm and (b) x = 45 mm, and (c) x = 80 mm. The negative values of the EEDF represent electrons heading towards the backplate.

Figure 4 .

 4 Figure 4.14: Electron's mean kinetic energies: longitudinal (blue line) and perpendicular (red line) directions.

Figure 4 . 15 :

 415 Figure 4.15: Electrons distribution in the velocity space v ∥ , v ⊥ plane at different locations on the simulation domain. The number of electrons has been normalized by the total number of electrons for each case independently. The dotted line represents the magnetic confinement, the dashed line the electrostatic potential at the backplate, and the solid line is the plume electrostatic confinement. Where: (a) x = 5 mm, (b) x = 15 mm, (c) x = 20 mm, (d) x = 40 mm, (e) x = 60 mm, and (f) x = 80 mm.

Figure 4 . 17 :

 417 Figure 4.17: Confinement boundaries in velocity space on the v ∥ , v ⊥ plane where the orange colored zones describe those electrons being trapped in the ECR thruster. Solid line for the plume electrostatic confinement, and dashed (electrostatic) plus dotted (magnetic) lines for the backplate confinement. Where: (a) ∆Φ = 0, (b) ∆Φ < 0, and (c) ∆Φ > 0.

Figure 4 . 18 :

 418 Figure 4.18: Electrons distribution in the E k∥ , µ plane at different locations on the domain. The number of electrons has been normalized by the total number of electrons for each case independently. The dotted line represents the magnetic confinement. Where: (a) x = 5 mm, (b) x = 15 mm, (c) x = 20 mm, (d) x = 40 mm, (e) x = 60 mm, and (f) x = 80 mm.

Figure 4 . 19 :

 419 Figure 4.19: Ion axial energy distribution function for several positions: (a) x = 4 mm, (b) x = 7 mm, (c) x = 10 mm, (d) x = 15 mm, (e) x = 20 mm, (f) x = 25 mm, (g) x = 30 mm, (h) x = 40 mm, and (i) x = 50 mm.

  Figure 4.21a gives us another possibility to visualize the ion dynamics with the mean axial kinetic energy on the simulation domain. The plot shows an acceleration thanks to the electrostatic field generated by the electrons in the nozzle and achieving a maximum value of around 60 eV before entering the plasma sheath.
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 44 Figure 4.20: Collisions per unit time: (a) Electron-neutral and (b) Ion-neutral.

Figure 5 . 1 :

 51 Figure 5.1: Comparison of the number of collision per unit time in the coaxial chamber: (a) Baseline A L = 1.0 cm 2 and (b) A L = 2.0 cm 2 .

Figure 5 . 2 :

 52 Figure 5.2: Schematic view of the variation for the loss cone angle at different axial locations.

Figure 5 . 3 :

 53 Figure 5.3: Longitudinal variation of the : (a) Angle for the loss cone angle and (b) Probability for an electron to fall into the loss cone.

Figure 5 Figure 5

 55 Figure 5.4: Comparison of the results for the loss module parametric study: (a) Energy fluxes from hte Poynting vector and (b) Plasma potential profiles.

Figure 5 . 6 :

 56 Figure 5.6: Comparison of the electron's mean kinetic energies for the loss module parametric study: (a) Perpendicular direction and (b) Longitudinal direction.

Fig. 5

 5 Fig. 5.7 stay in the phase ∆Φ = Φ BP -Φ < 0 (Fig. 4.17b).

Figure 5 . 7 :

 57 Figure 5.7: Electrons distribution in the velocity space v ∥ , v ⊥ plane at different locations on the domain for the case A L = 2.0 cm 2 . The number of electrons has been normalized by the total number of electrons for each case independently. The dotted line represents the magnetic confinement, the dashed line the electrostatic potential at the backplate, and the solid line is the plume electrostatic confinement. Where: (a) x = 5 mm, (b) x = 15 mm, (c) x = 20 mm, (d) x = 40 mm, (e) x = 60 mm, and (f) x = 80 mm.

Figure 5 . 8 :

 58 Figure 5.8: Comparison of the ion's mean axial kinetic energy for the loss module parametric study.

Figure 5 . 9 :

 59 Figure 5.9: Comparison of the neutral background profiles.

  the backplate [elec/s] 8.3 × 10 -2 6.2 × 10 -2 5.0 × 10 -2 Particle flux at the exit [elec/s] baseline with L n = 1.0 cm (Fig. 5.10a) and the configuration with L n = 2.0 cm (Fig. 5.10b).

Figure 5

 5 Figure 5.10: Comparison of the number of collision per unit time in the coaxial chamber: (a) Baseline L n = 1.0 cm and (b) L n = 2.0 cm.

Figure 5

 5 Figure 5.11: Comparison of the number of electron-neutral collision per unit time for different neutral background densities: (a) Elastic, (b) Ionization, and (c) Excitation.

Figure 5 .

 5 Figure 5.12: Comparison of the electron number densities for different values of L n .

Figure 5 .

 5 Figure 5.13: Comparison of the plasma potential profiles for different values of L n .
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 55 Figure 5.14: Comparison of the electron's mean kinetic energies for the neutral density parametric study: (a) Perpendicular direction and (b) Longitudinal direction.

Figure 5

 5 Figure 5.16: Magnetostatic field profiles for the parametric study: (a) Full computational domain and (b) Coaxial chamber.

Figure 5

 5 Figure 5.17: Comparison of the number of electron-neutral collision per unit time: (a) Baseline, (b) f EM = 2.55 GHz, and (c) Div ↑ L B = 3.5 cm.

Figure 5

 5 Figure 5.18: Electron's mean kinetic energy magnetostatic field parametric study x ECR = 4.7 mm: (a) Perpendicular direction and (b) Longitudinal direction.

Figure 5

 5 Figure 5.19: Comparison of the results using different values of L B : (a) Plasma potentials and (b) Electron number densities.
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 55 Figure 5.20: Electron's mean kinetic energy magnetostatic field parametric study x ECR = 8.7 mm: (a) Perpendicular direction and (b) Longitudinal direction.
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 62 Figure 6.2: Radial scattering procedure CFL ≤ 1.0.

  Figure 6.4: Computational domain for the Hertzian dipole.

Figure 6 . 5 :

 65 Figure 6.5: Electromagnetic radiation of a Hertzian dipole. Comparison among the exact results from an analytical model and different values of CFL (1.0, 1.5, and 2.0): (a) radial direction and (b) longitudinal direction. Longitudinal electric field (top), azimuthal magnetic field (middle), and radial electric field (bottom).

Figure 6 . 6 :

 66 Figure 6.6: Computational domain for the simulation of the open-ended coaxial cable.

Figure 6 . 7 :

 67 Figure 6.7: Comparison of the electromagnetic fields in a coaxial cable simulated using the CIP method with CFL = 1.0 and COMSOL. The electric field E r (middle) is shown with a radial cross section taken at z = 80 mm. The electric field E r (top) and the azimuthal magnetic field B θ (bottom) are shown with longitudinal cross section taken at the outer surface of the inner conductor.

Figure 6 . 9 :Figure 6

 696 Figure 6.9: Radial (top) and longitudinal (bottom) electric fields in a coaxial cable using the Fortran code and the Python prototype at: (a) 200 ps, (b) 260 ps, and (c) 330 ps.

Figure 6 .

 6 Figure 6.11: Structure of the two-dimensional CIP electromagnetic solver for Rhei.The inputs for the solver are the electromagnetic fields at time "n". The dimensionalsplitting method allows to compute the wave propagation along Z and then the multilayer scattering along R. The finals outputs of the solver are the fields at time "n+1".

Figure 7 . 2 :

 72 Figure 7.2: Computational domain. The rectangles representing the microwave antenna and the outer conductor of the coaxial chamber are part of the domain. They are treated as immersed objects requiring a boundary condition for the fields and the particles. The PMLs are represented as the regions with diagonal lines. The upper PML, known as PML north (P M L 1 ), absorbs the radial propagating waves while the PML east (P M L 2 ) absorbs the waves propagating along the longitudinal direction.

Figure 7 . 3 :

 73 Figure 7.3: 2D representation of the model. The boundaries of the domain are: (S1) backplate, (S5) microwave antenna, (S6) outer conductor of the coaxial chamber, (S4) axis of symmetry axis, and (S2) and (S3) are the frontiers to the magnetic nozzle.

•

  Perfectly Matched Layer (PML): S2 and S3. The PMLs are located at the upper (S3) and right (S2) boundaries to avoid reflections of the electromagnetic waves back to the simulation domain when they reach these surfaces. Both

Figure 7 . 8 :

 78 Figure 7.8: Schematic view of the subcycling time steps used for the 2D3V simulations. The time steps represented in the diagram are not to scale.

Figure 7

 7 Figure 7.9: Time-evolution of several simulation parameters: (a) Total number of charged particles, (b) Electron's mean kinetic energy, (c) Charged particle's flux at the end of the computational domain, and (d) Charged particle's flux at the backplate.

  (a) Results for N = 10 (r c close to the symmetry axis). (b) Results for N = 100 (r c close to the symmetry axis).(c) Results for N=10. As r c → ∞ we found the behavior of a plane wave.

Figure 7 .

 7 Figure 7.23: Von Neumann stability analysis results for the LBS 1D-axysimmetric.
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Table 1

 1 

.1. It shows values for several technologies according to the NASA's State of the Art Report of Small Spacecraft Technology [NASA, 2020].

Table 1 .

 1 1: Comparison between chemical and electric propulsion technologies.

	Thrust Range Specific Impulse Range [s]
	CHEMICAL PROPULSION Hydrazine Monopropellant 0.25 -22 N Other Mono -and Bipropellants 10 mN -30 N Hybrids 1 -10 N Solid Motors 0.3 -260 N ELECTRIC PROPULSION Electrothermal 2 -100 mN Electrosprays 10 µN -1 mN Gridded Ion 0.1 -15 mN Hall-Effect 1 -60 mN Ambipolar 0.25 -10 mN	200 -235 160 -310 215 -300 180 -280 50 -185 250 -5,000 1,000 -3,500 800 -1,900 500 -1,400

Table 2 .

 2 1: Comparison of the results for the simulation benchmark using Rhei.

	9.36	9.64

Parameter

Benchmark PIC Rhei Peak ion number density n i (10 15 m -3 ) 0.140 0.144

Electron temperature k B T e (eV)

Table 4

 4 

	Parameter	Description	Value
	∆t ∆x C f EM L S x ECR W L D n n 0 L n A L ∆t ions ∆t coll	Time step Mesh spacing CFL condition Microwave frequency Coaxial chamber length ECR surface position Weight for the charged particles Computational domain length Maximum number density of neutrals 8 × 10 19 m -3 1.6 ps 167 µm 2.87 2.45 GHz 20 mm 6.7 mm 2 × 10 5 100 mm Neutral density characteristic length 1.0 cm Cross-sectional area for the loss module 1 cm 2 Time step to push the ions 10∆t Time step for collisions 10∆t

.1: Simulation parameters for the electromagnetic PIC simulations of the baseline configuration using the quasi-one-dimensional model.

Table 5 .

 5 3: Comparison for the heating surface parametric analysis x ECR = 4.7 mm.

	Parameter P in [W/cm 2 ] Total number of particles Elec. mean kinetic energy [eV] Flux at the backplate [elec/s] Flux at the exit [elec/s] V pmax [V] Mean E ⊥ electrons [eV] plume Mean E ∥ electrons [eV] plume Mean E ∥ ions [eV] plume I [mA] plume Thrust [µN] plume	Baseline 6.7 mm 4.7 mm f EM 4.7 mm Div ↓ 3.38 3.27 2.80 3.38 × 10 5 3.4 × 10 5 3.5 × 10 5 12 11.5 11.5 8.3 × 10 -2 8.8 × 10 -2 8.6 × 10 -2 2.9 × 10 -3 6.0 × 10 -3 6.0 × 10 -3 104.0 93.0 104.0 18.5 10.0 7.0 4.0 3.3 5.2 52.0 37.0 42.0 0.06 0.11 0.12 0.78 1.17 1.31

Table 5 .

 5 4: Comparison for the heating surface parametric analysis x ECR = 8.7 mm.

	Parameter P in [W/cm 2 ] Total number of particles Elec. mean kinetic energy [eV] Flux at the backplate [elec/s] Flux at the exit [elec/s] V pmax [V] Mean E ⊥ electrons [eV] plume Mean E ∥ electrons [eV] plume Mean E ∥ ions [eV] plume I [mA] plume Thrust [µN] plume	Baseline 6.7 mm 8.7 mm f EM 8.7 mm Div ↑ 3.38 6.14 5.57 3.38 × 10 5 2.8 × 10 5 2.9 × 10 5 12 12.5 12.5 8.3 × 10 -2 8.0 × 10 -2 8.4 × 10 -2 2.9 × 10 -3 8.0 × 10 -5 1.4 × 10 -4 104.0 440.0 325.0 18.5 120.0 120.0 4.0 10 10 52.0 355.0 217.5 0.06 1.7 × 10 -3 3.3 × 10 -3 0.78 0.05 0.09

Table 6 .

 6 1: Relative errors for the Hertzian dipole simulation.

		E z	E r	B θ
	Radial direction	3.9% 12.7% 8.3%
	Longitudinal direction 4.5% 12.8% 5.7%
	η		

Table 6 .

 6 

2: Power budget for the open-ended coaxial cable.

Table 7 .

 7 1: Dimensions for the two-dimensional computational domain.

	Parameter	Description	Value
	L antenna L outer L total R antenna R outer R total	Antenna length Outer wall length Computational domain length Antenna radius Outer wall radius Computational domain radius	20 mm 15 mm 32 mm 1.125 mm 14.875 mm 16 mm

Table 7 .

 7 2: Simulation parameters for the PIC simulations of the 2D3V model.

	Parameter	Description	Value
	∆t ∆z = ∆r C f EM W P ∆t ES ∆t ions ∆t coll	Time step Mesh spacing CFL condition Microwave frequency Weight for the charged particles Injected microwave power Time step to solve Poisson's equation Time step to push the ions Time step for collisions	208.5 fs 62.5 µm 1.0 2.45 GHz 9 × 10 4 6 W 20∆t 10∆t 100∆t

This right-going characteristic RSp j-2 and the right-going wave Rp n j-1 are both used to interpolate the characteristic value between r j-2 and r j-1 using the
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Chapter 5

Response of the 1D3V Model to Different Simulation Conditions

Chapter structure: This chapter aims to examine the impact of modifying some of the thruster design parameters on the plasma behavior. A parametric study will be performed using the 1D3V model to analyze the plasma response and get a critical examination of the model's reliance on the user-defined parameters. Several parameters are considered and they are detailed in section 5.1. Section 5.2 study the effect of the diffusion of the charged particles across the magnetic field lines with a model simulating the wall losses. Section 5.3 focus on the impact of the neutral background density. At last, section 5.4 is devoted to the consequences of the position of the resonance condition inside the coaxial chamber using different microwave frequencies and different profiles for the magnetostatic field. 

Chapter 6

Development and Validation of a 2D Axisymmetric Electromagnetic Solver Using Large Time Steps

Chapter structure: The goal of this chapter is to propose a means to simulate the electromagnetic wave propagation in 2D cylindrical coordinate systems to enable a more realistic modeling of the thruster. The CIP method appears as a good candidate after seeing its advantages over other numerical methods and its potential to handle large time step sizes. In section 6.1 we present an analytical analysis for adapting the CIP method to a 2D axisymmetric configuration. In section 6.2 we introduce the required new developments to handle large time step sizes. In section 6.3 a ghostnodes method is presented to deal with different boundary conditions. The results of the electromagnetic solver are compared in section 6.4 to the analytical values of two test cases used for the validation. In section 6.5 we take into account the effects of an azimuthal plasma current on the solver, and in section 6.6 we validate its integration to the Rhei code. Lastly, in section 6.7, we present a divergence correction approach. 

Contents

Electromagnetic Fields Analysis in the Two

Appendix B Explicit Expressions for the Electromagnetic Fields of a Hertzian Dipole

Explicit expressions for the electromagnetic fields of an oscillating z-directed dipole p(t) = pẑ cos (ωt) were derived and presented by [START_REF] Orfanidis | Electromagnetic Waves and Antennas[END_REF] in spherical coordinates. Here r is the vector pointing to the observation point from the dipole and θ = ∠(r, z) is the angle with the dipole axis.

These expressions were transformed to a cylindrical coordinate system to compare with the CIP method's simulation results. The following formulas are used for the radial and longitudinal electric field:

Analytical Formula for the Radiated Power from an Open-Ended Coaxial Cable [START_REF] Schelkunoff | On Diffraction and Radiation of Electromagnetic Waves[END_REF] propose the following expression for the radiated power P out from an open-ended coaxial cable as function of the input power P in , the inner R in and outer R out radius, and the wave number k:

Equations for the Ghost Nodes Update of the Perfect Conductor (PEC) Condition Parallel to the Zaxis with R characteristics and 1.0 < CFL ≤ 2.0

The main idea here is to compute analytically the R characteristics (Rp n+1 j and Rm n+1 j ) at the "j" mesh point where the PEC surface is located. This characteristics will be computed by forcing the boundary condition Rp n+1 j + Rm n+1 j = 0 in order to obtain E z = 0 as desired. To achieve this goal, we used the same approach described in chapter 6 section 6.2 to describe the multi-scattering procedure: each wave propagating across a mesh interface is divided into a 'R'-wave reflected back into the original media (with a coefficient for reflection R -), and a transmitted 'T'-wave that propagates to the second medium (with a coefficient for transmission T + ). Once this computation is achieved, we will be able to identify the required values to update the ghost nodes at the time step "n", such that E z = 0 at the PEC on "n+1".

First step: Rewriting CFL ≤ 1.0 Let's start by rewriting Eq. 6.20 and 6.21 for the case CFL ≤ 1.0 using the notation of the transmission and reflection coefficients for the propagating characteristics. This step will be helpful later on for the development of the 1.0 < CFL ≤ 2.0 case. All the characteristics without any temporal subscript are given at the time step "n".

We compute Rp n+1 j + Rm n+1 j = 0 with Eq. 7.9 and 7.10 and we obtain:

The relationship between the right-going and the left-going characteristics used to force E z on the PEC must also hold at the time step "n". Therefore, we can also use Rp j + Rm j = 0 in Eq. 7.11 to express one characteristics in terms of the others depending on what PEC surface we need to update.

• Update the ghost nodes of a PEC at r ≤ r j receiving left-going waves R m

T + (j,j-1)

T + (j,j-1)

R m (z i , r j ) (7.12)

• Update the ghost nodes of a PEC at r ≥ r j receiving right-going waves

T - (j,j+1)

T + (j,j-1)

We can notice in Eq. 7.12 and 7.12 that both update equations depends only on the nodes outside the PEC surface. The transmission and reflection coefficients can be seen in Eq. 7.14-7.15 for a right-going wave, and Eq. 7.16-7.17 for a left-going.

T + (j,j-1) = 2r j-1 r j + r j-1 (7.14)

Second step: Compute Rp n+1 j for 1.0 < CFL ≤ 2.0

Several radial scattering process are required in this phase. First of all, a scattering through the grid cell (r j-2 , r j-1 ) to obtain the scattered characteristic RS + at r j-1 .

Then we compute the left-going characteristic RS -located at r j . It is the result of the scattering through the grid cell (r j , r j+1 ).

Finally, we compute the scattering through the grid cell (r j , r j-1 ) using the right-going characteristic RS + at r j-1 and the left-going RS -at r j .

Third step: Compute Rm n+1 j for 1.0 < CFL ≤ 2.0

First of all, a scattering through the grid cell (r j+1 , r j+2 ) to obtain the scattered characteristic RS ′ -at r j+1 .

RS

Then we compute the right-going characteristic RS ′ + located at r j . It is the result of the scattering through the grid cell (r j , r j-1 ).

Finally, we compute the scattering through the grid cell (r j , r j+1 ) using the right-going characteristic RS ′ + at r j and the left-going RS ′ -at r j+1 .

Now we compute Rp n+1 j + Rm n+1 j = 0 using: Eq. 7.20 for Rp n+1 j with its embedded terms described by Eq. 7.18 -7.19, and Eq. 7.23 for Rm n+1 j with its embedded terms described by Eq. 7.21 -7.22.

• Update the ghost nodes of a PEC at r ≤ r j receiving left-going waves R m :

The mesh point located at r j-2 is the only one to be updated, because for the node at r j-1 it will be done using Eq. 7.12. Therefore, the update equation must be based on either left-going information, or right-going information from the nodes outside the PEC where are the location of the known right-going characteristics. The terms involving R p (z i , r j-1 ) are replaced by R m (z i , r j ) and R m (z i , r j+1 ) using Eq. 7.12. The final update expression can be seen in Eq. 7.24.

• Update the ghost nodes of a PEC at r ≥ r j receiving right-going waves R p :

The mesh point located at r j+2 is the only one to be updated, because for the node at r j+1 it will be done using Eq. 7.13. Therefore, the update equation must be based on either right-going information, or left-going information from the nodes outside the PEC where are the location of the known right-going characteristics. The terms involving R m (z i , r j+1 ) are replaced by R p (z i , r j ) and R p (z i , r j-1 ) using Eq. 7.13. The final update expression can be seen in Eq. 7.25.

T - (j,j+1)

T + (j,j-1)

T + (j,j-1)

T

T + (j,j-1) + R + (j,j+1)

The transmission and reflection coefficients are given in Eq. 7.26-7.27 for a right-going wave, and Eq. 7.28-7.29 for a left-going wave.

Equations for the Ghost Nodes Update of the Perfect Conductor (PEC) Condition Parallel to the Zaxis with S characteristics and 1.0 < CFL ≤ 2.0

The procedure is the same as the one described for the R characteristics. In this case, the boundary condition is defined as Sp n+1 j + Sm n+1 j = 0 in order to obtain E θ = 0 on the surface of the PEC. The update equations are identical to Eq. 7.12 -7.13 when CFL ≤ 1.0, and Eq. 7.24 -7.25 when 1.0 < CFL ≤ 2.0.

However, there is one important change and it can be found in the reflection coefficients that must be multiplied by -1.0 for the S characteristics. It is due to the fact that for the R characteristics we describe waves propagating across a medium with a fictitious change in impedance, while for the S characteristics it is the medium fictitious impedance that changes. The reflection coefficients are presented hereafter: in some instances where the Maxwell's equations are solved alongside systems with slower propagation velocities, explicit methods prove costly. This is the case for non-relativistic electromagnetic Particle-In-Cell methods which are required to study plasma thrusters. Several algorithms have been proposed to retain a nearly explicit formulation using large time steps to achieve higher CFL values. Among these is the semi-Lagrangian Constrained Interpolation Profile method. While the ability of this method to handle CFL > 1 has been demonstrated for planar 2D-3D cases, this has not been done for 2D cases with cylindrical symmetry. In this paper, a procedure is presented to compute the electromagnetic wave propagation in 2D domains with cylindrical symmetry using the Constrained Interpolation Profile (CIP) method. The CIP scheme is extended for CFL ≥ 1 cases, and a ghost node method is proposed to deal with the axis singularity and with the wall boundary condition. The results are compared to the fields of a Hertzian dipole and with a coaxial cable, and they show a good agreement [START_REF] Porto | Axisymmetric Electromagnetic Wave Propagation Computation Using the Constrained Interpolation Profile Scheme With Large Time Steps[END_REF].

Full-PIC Simulation of an ECR Plasma Thruster with Magnetic Nozzle

Paper presented at the 36th International Electric Propulsion Conference, University of Vienna -Austria. Abstract: A coaxial ECR thruster is simulated using a 1D3V electromagnetic Particle-In-Cell code coupled to a Monte-Carlo Collision module. The goal is to get a better understanding of the physical behavior of the thruster, in particular the wave absorption mechanism. For this purpose a non-dissipative wave solver is used, based on the Linear Bicharacteristic Scheme. The PIC model is used to run a parametric analysis of some simulation factors. The tendencies found in the simulation are in line with previous experimental results. This tools will be used to improve our understanding of the basic phenomena in the thruster and guide future modeling effort in 2D and 3D [Porto & Elias, 2019].