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Oui, si le souvenir, grice a I’oubli, n’a pu
contracter aucun lien, jeter aucun chainon
entre lui et la minute présente, s’il est
resté a sa place, a sa date, s’il a gardé ses
distances, son isolement dans le creux
d’une vallée, ou a la pointe d’un sommet,
il nous fait tout a coup respirer un air
nouveau, précisément parce que c’est un
air qu’on a respiré autrefois, cet air plus
pur que les poetes ont vainement essayé
de faire régner dans le Paradis et qui ne
pourrait donner cette sensation profonde
de renouvellement que s’il avait été
respiré déja, car les vrais paradis sont les
paradis qu’on a perdus.

Marcel Proust
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Thesis abstract

Asteroseismology has revolutionised our understanding of stellar interiors, through the observations of oscil-
lations on the surface of stars. In solar-like oscillators, which exhibit a convective envelope, the turbulent motions
caused by convection have a substantial impact on the properties of the acoustic modes, whether on their fre-
quencies or their amplitude. This impact results from a turbulence/oscillation coupling, which must therefore be
understood and realistically modelled in order to allow for accurate seismic diagnosis. In turn, this coupling offers
a way to constrain the little-understood properties of convection using the observed acoustic mode properties. This
last point forms the overarching motivation behind the work presented in this thesis.

The first part of this thesis focuses on the asymmetry displayed by the line profiles of solar-like oscillations,
which carries the signature of the localisation of the driving source close to the surface of the star. In this context,
I developed a formalism designed to give quantitative predictions for solar-like mode asymmetry, and to directly
relate the observed asymmetries to the underlying properties of turbulence in this region. Applying this formalism
to the solar case allowed me to successfully reproduce the observations throughout the entire p-mode spectrum for
spectroscopic measurements, as well as in the low-frequency part of the spectrum for photometric measurements.
In particular, it led me to the determination of the sign of the asymmetry depending on the stochastic excitation
occurring above or beneath the photosphere. It also allowed be to shed a new light upon the issue of asymmetry
reversal between the velocity and intensity measurements.

In a second part, I interested myself with the modelling of the turbulence/oscillation modelling more gener-
ally. I investigated Lagrangian stochastic models of turbulence as an alternative way, compared to more traditional
approaches, to model the coupling between turbulent convection and solar-like oscillations. First, a linear pertur-
bative treatment of this class of models led me to establish a wave equation which, by construction, contains a
stochastic part representing the impact of turbulence on the modes. This stochastic wave equation includes the
effect of turbulence, and therefore the effect of the coupling with oscillations, in a consistent way, while allowing
for the introduction of a realistic model of turbulence, taking into account the large range of time and spatial scales
characterising stellar turbulent convection. This formalism then allowed me to simultaneously build physically-
grounded prescriptions for the driving and damping of the modes, as well as for the modal part of the surface
effects. In parallel, I developed a more direct numerical implementation of Lagrangian stochastic models, which
allows, in conjunction with my analytical formalism, to explore the impact of the physical parameters of turbulent
convection on the observed properties of the solar-like modes. I propose a test case where exact analytical results
can be derived, and the close agreement reached between those and numerical results validates this implementation.
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Résumé de la these

L’ astérosismologie a révolutionné notre compréhension des intérieurs stellaires, grace a I’observation des os-
cillations a la surface des étoiles. En ce qui concerne les oscillateurs de type solaire, qui posseédent une enveloppe
convective, les mouvements turbulents dus a la convection ont un impact important sur les propriétés des modes
acoustiques, tant du point de vue de leur fréquence que de leur amplitude. Cet impact résulte d’un couplage entre
convection et oscillations, qui doit donc &tre compris et correctement modélisé pour permettre des diagnostics
sismiques fiables dans ces étoiles. En retour, ce couplage offre I’opportunité d’utiliser les propriétés observées des
modes pour contraindre la convection stellaire — dont les propriétés restent encore relativement mal comprises a ce
jour. C’est ce dernier point qui constitue la motivation sous-tendant le travail présenté dans cette thése.

La premicre partie de cette these se concentre sur 1I’asymétrie exhibée par les profils des modes dans le spectre
des oscillateurs de type solaire, qui porte la signature de la localisation de leur source d’excitation proche de la
surface de I’étoile. Dans ce contexte, j’ai développé un formalisme congu pour fournir des prédictions quantitatives
concernant ces asymétries, mais également pour relier directement les asymétries observées aux propriétés sous-
jacentes de la convection turbulente dans cette région. L’application de ce formalisme au cas du Soleil m’a permis
de reproduire les observations a travers tout le spectre des modes acoustiques pour les mesures spectroscopiques,
ainsi que pour les modes acoustiques de basse fréquence pour les mesures photométriques. En particulier, elle m’a
permis de déterminer la dépendance du signe de 1’asymétrie en fonction de la position de la source relativement
a la photosphere, ainsi que d’apporter un éclairage nouveau sur la question de I’inversion d’asymétrie entre les
observations effectuées en vitesse et en intensité.

Dans une seconde partie, je me suis penché sur la question de la modélisation du couplage turbulence/oscillation
de maniere plus générale. J'y examine les modeles de turbulence Lagrangiens stochastiques en tant qu’alternative
aux approches traditionnelles pour le traitement du couplage entre convection turbulente et oscillations de type
solaire. Premierement, un traitement perturbatif linéaire de ce type de modele m’a permis d’exhiber une équation
d’onde possédant, par construction, un caractere stochastique représentant I’impact de la turbulence sur les modes.
Cette équation d’onde stochastique présente 1’avantage d’inclure des le début I’effet de la turbulence, et par suite
celui du couplage, de maniere cohérente, tout en permettant I’introduction d’un modele de turbulence réaliste,
et prenant en compte le large éventail d’échelles temporelles et spatiales caractérisant la convection turbulente
stellaire. Ce formalisme m’a ensuite permis de construire une prescription simultanée, sur la base de relations
de fermeture physique, pour le taux d’excitation et d’amortissement des modes acoustiques, mais également pour
la partie modale des effets de surface. En parallele, j’ai développé une implémentation numérique plus directe
des modeles Lagrangiens stochastiques, qui permet, en conjonction avec mon formalisme analytique, d’explorer
I’impact des parametres physiques controlant la convection turbulente sur les propriétés observées des modes de
type solaire. Le trés bon accord obtenu en comparant les résultats numériques a un cas test dans le cadre duquel
des résultats analytiques exacts peuvent €tre établis m’a permis de valider cette implémentation.
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Foreword

Asteroseismology has enabled us to make a significant leap forward in our understanding of the physics of
stellar interiors. Stars play the role of a resonant cavity for the waves that they feature, so that these waves take the
form of resonant global modes. The frequencies of these modes carry the signature of the mechanical and thermal
structure of the star in which they develop, thus allowing us to probe the stellar interior without having direct
observational access to it. But the Fourier power spectrum of these oscillations gives us access to more than just
their frequencies, it also provides us with the shape of their line profile in the Fourier domain. In the case of solar-
like oscillations — that is, oscillations featuring the same behaviour and properties as the oscillations of the Sun —,
these line profiles bear the mark of the energetic processes pertaining to the oscillations — how they are driven, and
how they are damped. These energetic aspects are tightly related to the physics of the convective envelope in these
stars, and more specifically of their highly turbulent superficial layers. The same way mode frequencies tell us a
lot about stellar structure, mode line profiles tell us as much about the behaviour of the turbulent convection just
beneath the surface of solar-like stars.

Since the early days (only 60 years ago!), when solar “5-minute oscillations” had just been discovered, we
have come far. Observations of solar-like oscillations have become increasingly accurate, and have spanned across
increasingly long periods of time. As a result, observed power spectra are now considerably more resolved, and
contain substantially more information, than before. Not only have thousands of modes now been resolved for the
Sun, but modes are also being observed in the spectrum of an ever-increasing number of other solar-like stars. The
advent of the space-borne mission CoRoT, shortly followed by Kepler, as well as the more recent mission TESS,
has made this number quite literally explode, going from one (the Sun) to several thousands in a matter of years.
And the road does not stop here, since the mantle is about to be picked up by the PLATO mission in a few years,
bringing with it the promise of yet another blow in the amount of seismic data at our disposal. The fact that one
has to plot the evolution of the number of known oscillators available for study on a logarithmic plot is perhaps
the clearest sign of the vigour currently characterising the field of asteroseismology. And of course, the larger the
amount of data, and the more accurate the data is, the more information can be extracted on the physics underlying
the oscillations, and the stars at the surface of which they are observed.

But in order for this incredible wealth of data to be exploited, our theoretical understanding of solar-like
oscillations, and of how their properties relate to those of the medium in which they develop, has to be continuously
improved. This is particularly the case when it comes to the question of how the properties of the modes relate to
the properties of turbulent convection in solar-like stars. Our ability to use the observed characteristics of solar-like
mode line profiles to learn more about the behaviour of the convective envelope in these stars is contingent on our
theoretical understanding of the coupling between the two: one cannot evolve much faster than the other. This,
in one sentence, summarises the overarching motivation behind the projects that I undertook during my PhD, and
that I present in this thesis: to build a theoretical framework in which the properties of turbulent convection can be
constrained using the observed line profile of solar-like modes of oscillation.

The first project I undertook in this context has to do with an aspect of observed solar-like mode line profiles
that has not recently received as much attention as others — like their amplitude or their linewidth for instance —,
namely the asymmetry they feature in the Fourier domain. Since observations have uncovered this asymmetry, first
in the Sun, and very recently in other solar-like oscillators observed with the Kepler telescope, it was discovered
that this asymmetry mainly stems from a combination of two different aspects of the physics of the mode: the
fact that the source of excitation of the modes is localised in a thin layer just beneath the surface of the star; and
the correlation that exists between the motions entailed by the resonant modes and those due to the convective
background noise, also close to the surface of the star. A puzzling aspect of mode asymmetry is the observation
that they are not the same depending on how the modes are observed, through spectroscopy (i.e in terms of surface
velocity), or through photometry (i.e in terms of emergent intensity). Not only are the asymmetries not the same
between the two observables, they are even reversed in sign. Upon discovery, this was dubbed the “asymmetry
reversal puzzle”, and several conflicting explanations have been proposed to explain it. Solving this puzzle is

Xvii



essential in order to understand how — and why — asymmetries vary across the Hertzsprung—Russell (HR) diagram:
at the present time, asymmetries in solar-like oscillators other than the Sun can only be observed in intensity.

Observed asymmetries can be used to constrain both the properties of the source of excitation, and of the corre-
lated background. But so far, the models that were developed to that end are extremely simplified; in particular, the
source of excitation is almost systematically prescribed empirically, both in its radial dependence and its frequency
dependence. By contrast, physical models have been developed for mode excitation for a long time, but mainly to
account for the observed amplitudes of the modes. This first project, therefore, consisted in adapting these excita-
tion models to yield not only theoretical predictions for the amplitude of the modes, but more generally a synthetic
oscillation power spectrum from which the exact shape of the mode line profiles can be extracted, including their
asymmetry. My goal, in taking on this first project, was to then compare the predictions made with this theoretical
model to observations, in order to constrain the physical properties of the source of excitation. Conversely, the
model I developed also contains the effect of the correlated background, so that it allowed me to determine the
dominant process at hand in solar-like mode asymmetry. For the moment, I focused exclusively on the Sun, as
a first validating step. First, I considered the solar oscillation power spectrum as observed spectroscopically, i.e
in terms of surface velocity, because, for the Sun, it is the easiest to model. In a second part of the project, I
also considered the solar oscillation spectrum as observed photometrically, i.e in terms of emergent intensity. This
required to adapt my model to intensity measurements instead of simply velocity, and allowed me to tackle the
asymmetry reversal puzzle.

The second project I undertook concerns turbulence—oscillation coupling as a whole, instead of focusing on
one specific observational aspect of this coupling. Traditional approaches designed to model stellar convection
and its interaction with pulsations in solar-like oscillators are either based on mixing-length theories, or else on
3D hydrodynamic or magnetohydrodynamic (MHD) simulations. These approaches show unavoidable limitations,
among which the impossibility to include the full effect of the turbulent cascade in a realistic way. The starting idea
behind this second project, therefore, was to exploit mesh-free, Lagrangian Probability Density Function (PDF)
models — the kind of which has been used in the fluid dynamics community to model turbulence for a long time — in
the context of stellar turbulent convection, to circumvent the limitations of classical approaches. In these models,
the turbulent medium is no longer described by grid-based quantities pertaining to a flow, but by a set of fluid
particles whose position and properties are tracked over time. Because of the turbulent nature of stellar convection,
the particle properties evolve according to a system of stochastic differential equations. This method is coupled
with a Smoothed Particle Hydrodynamics (SPH) procedure to extract the relevant mean flow quantities directly
from the set of fluid particles. The stochastic evolution of the set of fluid particles is perfectly equivalent, from a
statistical point of view, to the temporal evolution of the PDF of all Eulerian quantities pertaining to the turbulent
convection. By construction, this PDF contains the information on both the turbulence and the oscillations. That
means this method is perfectly suited for the study of the coupling between the two.

The first step of this second project was to derive the stochastic equations for the temporal evolution of the fluid
particles that are relevant in the stellar context. Once this was done, I pursued two different avenues of research.
First, I developed a code to numerically implement these methods. As a first step, I focused on a “1.5D” model
in the sense that both vertical and horizontal velocities are modelled, but only their vertical position is accounted
for. The simulated box features modes of oscillation that can be directly extracted from the simulation, including
not only their frequency, but also the shape of their line profile. The second path I followed is more analytical:
I used this Lagrangian stochastic formalism to derive an intrinsically stochastic, linear wave equation, governing
the behaviour of the oscillating modes, while at the same time encompassing the impact of turbulent convection
on the waves. This stochastic wave equation naturally contains the information on every aspect of turbulence—
oscillation coupling: not only the effect on mode frequency (commonly referred to as “surface effects”), but also
every energetic aspect of solar-like oscillations, namely the driving and damping of the modes by the turbulent
convection.

The structure of this manuscript follows the summary given above. It is split into three parts. In Part I, I propose
a short discussion designed to introduce the two subjects of this thesis: first the turbulent convection occurring in
stellar interiors (Chapter 1); and secondly the stellar oscillations, with a particular focus on the core subject of
the work presented in the main body of this thesis, namely the various ways in which turbulent convection and
solar-like oscillations are entangled and coupled (Chapter 2). Emphasis will be put on the work already produced
on the subject, the questions that have been answered, and those that have not. My motivations and goals, which
I summarised above, will perhaps appear more clearly in the end of this first introductory part, and particularly
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in Chapter 3. Part II is devoted to my work in the scope of the first project mentioned above, on solar-like
mode asymmetry. I introduce the subject and the literature thereon in Chapter 4, while Chapter 5 is devoted to
the theoretical development of the synthetic velocity power spectrum model on which I worked, as well as its
application to the solar case, and Chapter 6 is devoted to the adaptation of this model to intensity measurements.
In Part III, I present the work I produced in the scope of the second project mentioned above. I introduce the
basics of the theory of stochastic processes in Chapter 7, which are central in the subsequent chapters. I then set
out to describe how Lagrangian stochastic models can be applied to the case of solar-like oscillations. I present
the analytical developments briefly described above in Chapter 8, while the numerical implementation of the
aforementioned Lagrangian stochastic model is the subject of Chapter 9. Finally, I end each of the last two parts
by summarising not only my findings, but also the perspectives opened by these findings, as well as the multiple
open paths which I have yet to walk.
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Etre toujours paisible, cela ne dépend pas
plus du progres que du fleuve ; n’y élevez
point de barrage ; n’y jetez pas de rocher
; I’obstacle fait écumer 1’eau et
bouillonner I’humanité. De la des
troubles ; mais, apres ces troubles, on
reconnait qu’il y a du chemin de fait.

Victor Hugo

Convection happens whenever a large temperature difference exists between two layers in a fluid, in the direc-
tion of gravity. From there, indeed, troubles; or to be more exact — albeit less literal —, any small displacement of a
parcel of fluid, caused by a seemingly random local fluctuation, gives birth to an instability, and leads to motions of
the fluid over distances similar to the largest scale of the system. This happens, for instance, in a pan full of water
when the bottom is heated up; or in the lower Earth atmosphere, when the ocean or the ground is hot enough (in
this context, it is referred to as a Convective Boundary Layer); or else, in certain regions of stellar interiors. Stellar
convection is no different than convection in any other context', and is characterised by a very efficient mixing of
all quantities pertaining to the fluid — in particular momentum, energy and chemical composition. For that reason,
convection is key to understanding stellar structure and evolution.

But stellar convection is also incredibly hard to understand, and the reason is that it is characterised by very
turbulent motions, hence my consistent association of the word “convection” with the word “turbulent” in this
entire manuscript. As always when studying turbulence, the properties of the flow must be studied from a statistical
point of view: the question is not “what is the velocity of the flow?”, but “what is the average velocity of the flow,
and how much, on average, does the actual velocity deviate from the mean?”. The uncertainty regarding turbulence
modelling is directly at the heart of the uncertainty regarding convection modelling in the stellar context.

The work presented in this thesis pertains to the interplay between these convective motions and stellar oscil-
lations. Following the advice of the King to Alice, I start from the beginning, and devote this first chapter to an
introductory discussion of stellar convection. This is in no way, naturally, an exhaustive account of our current
understanding of every aspect of stellar convection. Rather, this chapter is structured in two parts. In a first part,
I present how the phenomenon of convection naturally arises from first principles, and I outline some of its most
general properties. In a second part, I focus on the various ways stellar physicists have found to describe and study

'T do not dare take the leap and state that the star itself is no different than the pan, because at least pans are not partially ionised, and
do not host nuclear fusion reactions, however bad the cook is.



1.1. ENERGY TRANSPORT IN STELLAR INTERIORS

convective transport in the stellar context: 3D hydrodynamic simulations, as well as analytical models based on
the Mixing Length Theory (MLT), or the more refined Reynolds-stress models.

1.1 Energy transport in stellar interiors

Stars, in the broadest definition of the term, are self-gravitating bodies comprised of a more or less ionised
gas. In particular, stellar matter is sufficiently dense that it can be described as a continuous medium, and its
motion modelled through the equations of hydrodynamics. Those are the fundamental equations governing the
behaviour of the plasma constituting the stars, directly derived from first principles, and all phenomena described
in this manuscript are, at some point or another, contained within these equations — although some digging may
be necessary to unveil them. I give a detailed derivation of the equations of hydrodynamics in Appendix A.
In particular, Equation A.36 governs the evolution of the internal energy of the fluid, with the divergence term
representing all modes of non-local transport of energy, while the right-hand side contains all the source terms,
which happen to be entirely due to the conversion of macroscopic kinetic energy into microscopic internal energy.
In the stellar context, the transport terms are of particular interest, as they describe how the energy “created””
in the center of the star travels outwards to be finally radiated by its surface, allowing it to shine. Provided
conduction is neglected — as I did in deriving Equation A.36 —, the transport of internal energy can be due to
viscous transport, represented by the flux FVis¢ (Equation A.34), radiative transport, represented by the flux F©2d,
and convective transport, represented by the flux F° (Equation A.32). The question of which process dominates
energy transport in a given region of the star is important to predict its evolution, and is the subject of the following
section.

1.1.1 Prevalence of convective transport: the Schwarzschild criterion

Viscous transport can already be ruled out as a dominant contribution. Indeed, the prevalence of viscous effects
can be measured by the Reynolds number associated to the flow, and which corresponds to the ratio between the
advection and viscous terms in the Navier-Stokes equation (Equation A.24). The Reynolds number is defined by
(e.g. Lesieur 2008)

Re= —, (1.1)
v

where U is the characteristic velocity of the flow, L its characteristic length scale, and v is the kinematic viscosity
of the fluid. For a fully ionised hydrogen plasma, the kinematic viscosity may be estimated by v ~ 1.2 x 10720 x
7°2p~! m?.s~! (Miesch 2005). For instance, close to the surface of the Sun, this yields v ~ 0.01 m?.s™!. With
typical velocities U ~ 3 km.s~! and typical length scales L ~ 3 Mm, one would find Re ~ 10'2. For a rotating star,
typical values of the Reynolds number would be ~ 10'¢ (Kippenhahn and Weigert 1994). At any rate, in the stellar
context, the Reynolds number characterising the flow is always much larger than unity, meaning that the effect of
viscosity — and in particular viscous transport of energy — is negligible compared to the radiative or convective
flux.

The question that remains now is this: on which condition is convective transport more efficient than radiative
transport — or indeed, efficient at all? Equation A.32 shows that convective transport stems from the fact that
parcels of fluid carry the enthalpy of the medium where they initially lie and transport it to other regions of the
flow during their movement. More specifically, parcels that are travelling upwards take enthalpy from a hot region
to a cold region. Once it is there, it gives away its enthalpy by cooling down. On the other hand, parcels that are
travelling downwards take less enthalpy with them, precisely because they come from a cooler medium, therefore
characterised by a lesser specific enthalpy. As a result, the enthalpy transported by the upwards travelling parcels is
greater than the enthalpy transported by the downwards travelling ones, resulting in a net flux of enthalpy directed
upwards. It is apparent, therefore, that in order for convective transport to be efficient, the medium has to allow
for fluid parcels to travel as far as possible before giving away their enthalpy. This only happens if the medium is
subjected to a convective instability, which I now describe.

*Naturally, energy cannot be created out of nowhere, although that would probably solve a lot of problems. This energy is actually
stored in the form of potential energy in the bonds maintaining the integrity of the nuclei present in the center of the star, and is released
when these nuclei undergo fusion reactions.



CHAPTER 1. TURBULENT CONVECTION IN THE STELLAR CONTEXT

The question of whether a medium is unstable to convective motions can be formulated thus: when will a
fluid parcel accidentally displaced upwards continue to travel upwards instead of falling back down? While being
displaced, the parcel undergoes a change in density, due to the fact that it is travelling to a region characterised by
a different thermodynamic state. Therefore, the answer is: the parcel will continue travelling upwards if it ends
up with a lower density — or in other words, a higher temperature® — than that of its surroundings, because of the
same buoyancy force that keeps balloons in the air. But when does that happen? If we consider that the parcel
does not have time to exchange any heat with its surroundings during its upwards travel, then the thermodynamic
transformation it undergoes is adiabatic. Therefore, if the parcel goes from a region characterised by a pressure p
to a region characterised by a pressure p + dp, its temperature will change by

dr

6Tparcel = (_

T
q ) 6p = —Vaddp , (1.2)

where Vg = (dIn 7'/ d1n p),q is called the adiabatic gradient, and only depends on the thermodynamic equation of
state associated to the fluid. On the other hand, the background temperature ‘felt’ by the parcel will have changed
by an amount

dT T
0T medium = (_ Xop = ;Vrad(sp s (1.3)

dp )medium
where Jp is identical because mechanical equilibrium is reached at all times, and the background gradient (d In 7'/ d In p)medium
is equal to the radiative gradient because the background is in radiative equilibrium. Resulting from this is the fol-

lowing proposition: that a medium is subjected to a convective instability if and only if we have (Bohm-Vitense
1992)

VaLd < Vrad . (1-4)

This criterion is known as the Schwarzschild criterion for convective instability. In regions where this criterion is
verified, the convective instability can develop, and the energy is efficiently transported by convection. Although
radiative transfer is still responsible for a non-negligible portion of the total energy flux, these regions are still
called convective zones. On the other hand, regions where the Schwarzschild criterion is not verified exhibit a
very inefficient convective transport of energy, and the energy flux is exclusively due to radiative transfer: they are
called radiative zones.

1.1.2 Convective zones in stellar interiors

The question remains: when is the Schwarzschild criterion verified? For which type of stars, and where in the
star? The plasma in stellar interiors behaves like an ideal gas to a satisfactory degree, so that its pressure p, density
p, temperature 7' and molecular weight u (assumed constant for the sake of this discussion) are related through
_ PRT

ﬂ 9

p (1.5)
where R is the ideal gas constant. Then, introducing the first adiabatic exponent I'y = ¢,,/cy, where cp and cy are
the specific heat per unit mass at constant pressure and volume respectively, and using the fact that cp — cy = R,
one finds that the adiabatic gradient is simply (Bohm-Vitense 1992)

-1
Vad = . 1.6

ad Fl ( )
For instance, for a monoatomic ideal gas, I’y = 5/3, so that V,q = 0.4. However, this value drops substantially
in ionisation regions (i.e. regions where the temperature is high enough to strip electrons away from atoms of
a given element, but not so high that the element in question is completely ionised). Indeed, part of the energy

3The reason a lower density means a higher temperature relates to the fact that mechanical equilibrium can be considered to be reached
instantaneously, and therefore the pressure associated to the parcel is identical to the pressure of its surroundings. At equal pressure, a
hotter element is lighter. If the chemical composition of the fluid is also susceptible to vary, then the thermodynamic variance of the system
is 3, and not 2, so that even at equal pressure, the temperature — which now depends on composition in addition to density —, does not
necessarily decrease with density. Then the criterion derived here must be modified to account for adiabatic composition gradient.

5



1.1. ENERGY TRANSPORT IN STELLAR INTERIORS

provided to the gas will be used to ionise the gas, instead of heating it. As a result, the energy needed to increase
the temperature of one kilogram of gas by one degree — which is the definition of cy — is considerably higher in an
ionisation region. Then I'j = R/cy + 1 becomes much closer to unity, and V,4 becomes much smaller. According
to Equation 1.4, it results in the following statement: that ionisation regions are more susceptible to convective
instability (Bohm-Vitense 1992).

I now turn to the radiative gradient. Under the assumption that the star behaves like a black body in radiative
and mechanical equilibrium®, then it is given by (Bohm-Vitense 1992)

3AKRP | rad

1.12
160gT* (1.12)

Vrad =

According to Equation 1.4, convective instability happens when the radiative gradient is sufficiently high, which
we now see happens, for a given temperature T, if either the product gz p or the radiative flux F™ is high enough.

When is the product kgp high? Roughly speaking, for a given optical depth’, the opacity is inversely propor-
tional to pressure. In the atmosphere, the opacity and pressure are both low. In deeper layers of the star, pressure
increases, but if opacity remains sensibly the same, the pressure increase is not sufficient to put the radiative gradi-
ent above the instability threshold. If opacity increases steeply with depth, however, pressure is still high (because
opacity in the atmosphere remains low, and p « Klgl), and opacity is much higher as well. If the increase in opac-
ity is steep enough, this can be sufficient to give rise to a convective instability. Therefore, convective instability
arises in regions where the opacity increases steeply with depth (Bohm-Vitense 1992), rather than where the ab-
solute opacity is high. It so happens that those precisely correspond to ionisation regions, which I already argued
have a small adiabatic gradient, and are therefore even more likely to be unstable to convection.

When is the radiative flux high? This flux describes the amount of radiative energy which flows through a
given layer per unit surface. As such, it is not the raw amount of radiative energy generated by nuclear fusion
that is important, so much as the concentration in space of the region in which these reactions take place. In
main-sequence stars, there are mainly two types of fusion reaction chains that can be responsible for the radiative
flux coming out of the core, both of which ultimately lead to the fusion of hydrogen into helium. The pp-chain
involves the direct fusion of two hydrogen nuclei into deuterium, and the generation rate of energy € scales as T;
the CNO-chain involves the fusion of hydrogen nuclei with heavier nuclei of carbon, oxygen and nitrogen, and
its generation rate of energy is much more sensible to temperature, with € o« T'. As such, the pp-chain is the
dominant process for stars with a cooler core — with temperature T < 1.7 x 107 K —, while the CNO-chain prevails

“I recall that, in that case, the radiative flux F™ is given by

4 dB

Frad - _ -
3kpp dr’

(1.7)

where kg is the Rosseland mean opacity per unit mass, defined by

1 +* dB ** 1 dB
_f 43 d/lsf 148, (18)
kg Jo dT o ki dT

and k, is the monochromatic opacity per unit mass at wavelength A; and

B(T) =f ooBA(T) da, (1.9)
0

where B,(T) is the Planck function associated to the wavelength A, which represents the energy radiated per unit surface, solid angle,
wavelength and time by a body at thermodynamic equilibrium, also referred to as black body radiation. It only depends on the temperature
T of the body, and is given by

2hc? 1

Bu(T) = B exphe /W _]

(1.10)
where £ is the Planck constant, ¢ the speed of light in vacuum, and k the Boltzmann constant. The total specific intensity associated to a
black body is obtained by integrating the monochromatic specific intensity B, over all wavelengths, and yields

B(T) = %T“, (1.11)

where o = 2°k* /(15¢2h?) is the Stefan-Boltzmann constant.

>The optical depth is a non-dimensional variable defined through its differential form by dr = —«kgp dr, where r is the radial coordinate,
and the minus sign ensures that 7 decreases towards the surface. The optical depth can be thought of as the radial coordinate counted in
units of the local photon mean free path.
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for stars with a hotter core. In the latter case, because energy generation is so strongly dependent on temperature,
it only occurs in a very concentrated region in the very center of the star, in which case the radiative flux is very
high. On the other hand, in stars where energy is generated through pp-chains predominantly, energy generation
occurs in a larger central region, and the radiative flux is much weaker. In light of Equation 1.4, it results that the
center of the star is subjected to convective instability if the core is hot enough for CNO-chains to be dominant
over pp-chain in energy generation (Bohm-Vitense 1992).

The above discussion allows me to draw the following qualitative picture

e hot stars where T.g = 9000 K feature a convective core, because CNO-chain reactions prevail in the core
of stars with such effective temperatures. On the other hand, the star is so hot that all the hydrogen and
helium is already ionised, even close to the surface, so that there cannot be any convective instability in the
envelope;

e cooler stars with T.g < 9000 K have a radiative core, because pp-chains prevail over CNO-chains. However,
these stars are cold enough to feature ionisation regions in their envelope, meaning they have a convective
envelope. More precisely, in the effective temperature range [7000 — 9000] K, there is only a hydrogen
ionisation region, which means the convective zone is very thin. Below 7000 K, the hydrogen ionisation
region is adjacent to the first helium ionisation region (i.e. the region where He is partially ionised in He"),
which is in turn adjacent to the more deeply located second helium ionisation region (i.e. the region where
He is partially ionised in He*™), so that the convective envelope is much thicker;

e in the intermediate range, stars are too hot to have ionisation-driven convective instabilities, and too cold to
feature core convection: these stars are mainly radiative;

e in very cool stars, like M stars for instance, the hydrogen and helium convective regions extend so far down
the center that they actually take up the entire volume of the star. These stars are entirely convective — with
the exception of a very thin radiative surface layer, where the density is too low to allow for an efficient
convective transport;

e in evolved stars, there may be ionisation regions for elements other than hydrogen and helium, in which case
the corresponding convective zones are the regions where the temperature lies within the range where the
element in question is partially ionised. This is also the case for main-sequence stars of spectral type O or B
for instance, which feature iron ionisation zone in regions where 7 ~ 2 x 10° K.

In the rest of this manuscript, I will interest myself with solar-like stars, with masses and effective temperatures
similar to the Sun. These stars — and the Sun in particular — fall in the second category, and possess a convective
envelope (with an outer part due to hydrogen ionisation, and an inner part due to helium ionisation), and a radiative
core.

1.2 Modelling convection: a complicated task

As it transpired from Section 1.1, in regions that are prime for a convective instability, the convective flux
plays a crucial role in transporting energy outwards. This has a number of implications as regards stellar structure
and evolution. For instance, the extra energy loss due to convection ‘forces’ the star to increase its internal energy
generation rate in order to stay at thermodynamic equilibrium. This requires increasing the core temperature,
which the star does by contracting: convection makes stars shrink. In turn, because of the increase in the core
temperature, the luminosity of the star is also increased. The presence of a convective flux also decreases the part
played by the radiative flux in the total energy flux. This means that the actual temperature gradient is less steep
than what it would be without convection. Therefore, the density profile in the interior of the star is also impacted
by convection.

In addition, while the previous discussion focused on the energetic aspects of convection, it must be under-
stood that such large-scale convective motions also transport momentum, as represented by the term 0;(pu;u;) in
Equation A.24, and therefore also angular momentum. In parallel, convection also transports chemical elements,
in such a way that convective zones can be considered fully mixed — meaning that their chemical composition
is uniform. Convective motions are also known to penetrate, by inertia, into neighbouring radiative zones over
a certain distance, so that the convective transport also has a non-negligible impact just outside the convective
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zones — a phenomenon known as convective overshooting if the convective elements quickly loose their thermal
integrity, or convective penetration if they travel further away and transfer their enthalpy much less efficiently to
the convectively stable background (Zahn 1991). This convective mixing is susceptible to drastically alter the later
evolutionary stages of the star, by changing the spatial distribution of fuel in its interior.

These quick considerations are enough to make it clear that the modelling of the convective flux — both in terms
of energy and momentum — is a crucial task for improving the accuracy of our stellar evolutionary and structural
models. Sure enough, the modelling of convection has been the subject of considerable efforts, which I outline in
the following.

1.2.1 Exact equations and Large-Eddy Simulations

The exact equations

The equations of hydrodynamics, governing the motions of the fluid, are expressed in their exact form by
the continuity equation (Equation A.15), the Navier-Stokes equation (Equation A.24) and the energy equation
(Equation A.36), which stem from the conservation of mass, momentum and energy respectively. I reproduce
them for more clarity here

dp  Opu;
L) 1.13
ot * ox; ’ ( )
dpu;  O(pdij + pujuj — o)
=p&i 1.14

a ox; re (119
dpe 0 d __0p doij
E+a—xi(phui+Ffa +0',‘juj)—u,~8—Xi—uin, (1.15)

where I recall that p is the fluid density, u; its velocity, p the gas pressure, o7;; the viscous tensor, g; the gravitational
acceleration, e the internal energy per unit mass, / the enthalpy per unit mass and F’ fad the radiative flux. I also recall
that the decomposition of the stress force is such that —p 6;; constitutes its isotropic part, and o its deviatoric part.
As such, the viscous tensor is constrained to be traceless; however, up to now, I have given no further information
on o;j, which I have left in an undetermined form. As it happens, it can be expressed solely in terms of the velocity
field, in the form (e.g. Lesieur 2008)
Ou; Ouj\ 2 ou
_ Vp(a—x; + 8_x]) - gvp(s,-ja—x’; , (1.16)
where v is the kinematic viscosity of the fluid, and i = vp the dynamic viscosity coefficient. It is immediately seen
that the viscous stress tensor is traceless, as indicated above. If the dynamic viscosity u is known, o7; is in closed
form.
This set of equations must be supplemented with a model for the pressure p. As density p and internal energy
e are both modelled, all one needs to do is to add an equation of state of the form p = p(p, e) to the system. For
instance, the ideal gas law (Equation 1.5) can be used®, where T = e/cy. Concerning the radiative flux F™, one
would also need to add a treatment for radiative transfer. We already saw that if the gas can be considered at local
thermodynamic equilibrium, the radiative flux is given by Equation 1.12, as a function of Rosseland mean opacity
per unit mass kg, density p and temperature 7. As for pressure p, the opacity kg can be obtained through a suitable
equation of state’ in the form kg = kr(p, €), in which case F rad js now known as a function of modelled variables

The ideal gas law also requires the molecular weight, or equivalently the chemical composition, to be known. This would be true of
any equation of state: the indetermination of the chemical composition increases the variance of the system, thus requiring an additional
constraint. Either the composition can be considered known in advance, or a transport equation for chemical composition must be derived.
I will follow the former course in this discussion, and consider the chemical composition known.

"In fact, except for very approximate relations valid only in certain regions of the star, there exists no such simple analytical relation
for opacity. Physically, the opacity «z represents the fractional change per unit length in specific intensity of a photon flux, and is due
to the absorption of the photons by the medium, and especially by the electrons — the energy of the destroyed photon then being made
available to the matter for ionisation, dissociation or heating. The total opacity is therefore the result of all possible state transitions for the
electrons present in the medium — with the numerous bound-bound transitions allowed by the quantisation of bound energy states around
atoms resulting in a multitude of frequency-selective absorption lines, while bound-free transitions (i.e. ionisation processes) and free-free
transitions (if the gas is already fully ionised) are responsible for continuous absorption (in terms of frequency). Because of the complexity
of this picture, k is usually provided as a function of two independent thermodynamic variables — for instance density and temperature, but
this choice is not unique — in the form of opacity tables. Fundamentally, however, this is no different than giving an analytical expression,
and still constitutes an equation of state.
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only. Of course, the assumption that the gas is at local thermodynamic equilibrium is a strong one, and while it
is valid in the bulk of the star, it must be supplemented with a more realistic treatment of radiative transfer in the
superficial layers of the star, close to its atmosphere. For the sake of the following discussion, I leave this matter
aside, and consider that the radiative flux is in closed form.

On the applicability of Direct Numerical Simulations, or lack thereof

The entire system of equations described above is in closed form, and with the exception of rotation or magnetic
fields — which can be incorporated into these equations if need be —, the gas-related behaviour in the stellar interior,
including convection, is contained exactly and in its entirety within these equations. One could therefore naively
ask oneself: why are we even discussing this? Modelling convective transport seems to be a matter for Direct
Numerical Simulations (DNS thereafter), where the integration of the above differential equations forward in time
should tell us anything we might want to know about convection. Then, the only remaining complications would
concern the initial state from which one should start, the boundary conditions which one should enforce, and the
numerical scheme one should adopt for the integration in time.

As the reader is no doubt aware, the answer to this naive question is this: that the computational cost of such
an operation would be so tremendously enormous that it cannot even remotely begin to be applicable in the stellar
context. The reason for this, as we will now see, is the highly turbulent nature of the flow. I briefly touched upon
the subject of the Reynolds number characterising the gas flow in stellar interiors in Section 1.1.1, only to point
out its high typical value. By construction of the Reynolds number, this means that the advection term in the
Navier-Stokes equation (Equation 1.14) largely dominates the linear contribution from the viscous stress force,
and therefore the equation of motion is strongly non-linear. As a consequence, the different scales of motion are
coupled together, and can exchange energy®. As such, even if the flow is initially characterised by a very coherent
velocity field with only one typical scale, the kinetic energy will eventually be distributed over a wide range of
scales, and the flow will feature a much more complicated structure. Resulting from these considerations is the
familiar observation that flows with a high Reynolds number are very turbulent.

More specifically, the flow of kinetic energy from scale to scale is described by the idea of turbulent cascade,
first introduced by Richardson (1922). The idea is that kinetic energy from the mean flow is injected in the
turbulence at the largest scale of motion — corresponding to the mean-flow scale —, and is then transferred to smaller
and smaller scales, until the scale of motion becomes so small that viscous effects can no longer be neglected, and
the kinetic energy is dissipated into heat. This cascade of energy from large to small scales reaches an equilibrium
when the rate at which energy is injected at large scales equals the rate at which it is dissipated at small scales.
Can the smallest scale of turbulence be quantified? The answer is given by the historical work by Kolmogorov
(1941), and happens to be ‘yes’. One of the fundamental hypotheses underlying this work is the assumption that
all the information about the specific geometry of the large-scale eddies — imposed by the geometry of the flow —
is lost along the way as energy is transferred through the turbulent cascade. As such, the statistics of the small-
scale flow take a somewhat universal form, in the sense that they should exhibit some degree of similarity. The
important quantities characterising the turbulent cascade are the rate € at which energy is injected at large scales,
and the viscosity v controlling the small scales at which it is dissipated. This led the author to his first similarity
hypothesis, which can loosely be expressed in the following terms: for flows with a high Reynolds number, there
exists a scale /Iy« such that for any scale ! < [y, the statistics of the flow take the form of a universal function of

8This statement may need a clearer definition of the notion of ‘scales of motion’. An intuitive picture is to regard the flow as a
superposition of vaguely defined regions — usually called eddies — over which the velocity field is somewhat coherent. These eddies are of
very different sizes /, and large eddies are susceptible to contain smaller ones. These eddy-sizes are referred to as the scales of motion of
the flow. However, a more rigorous definition can be constructed from the Fourier decomposition of the velocity field at a given time

uk,?) = \/% f dxu(x, nexp x| (1.17)
T

where k denotes a 3-dimensional wavevector. Instead of being described in real space, the velocity field is now described in wavevector
space: for a given k, the quantity / = 2x/[K| is the scale of motion represented by this wavevector component, and E(k, ) = |ff(k, t)|2 is
the specific kinetic energy per unit wavevector characterising this region of wavevector space, which gives a much firmer definition for the
otherwise somewhat vaguely defined energy of the eddies of size I. An equation of transport in wavevector space for E(K, t) can be derived
from the Navier-Stokes equation (Equation 1.14), and the non-linear advection term gives rise to a non-local energy flux, meaning that
kinetic energy can flow from scale to scale. This is really what is meant by the statement that, in high Reynolds number flows, the different
scales of motion are coupled together, and can exchange energy — a statement that would not be true if the equation of motion were linear.
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€ and v only. The range [ < Imax defines the universal equilibrium range of turbulence’ .
From these two parameters, a unique, universal typical length and velocity can be constructed (e.g. Pope 2000)

n=le't, (1.18)
u, = (en)'*, (1.19)

which are the Kolmogorov scale and velocity respectively. It can be seen that the Reynolds number associated
with the scale 7 is unity, meaning that the Kolmogorov scale actually represents the smallest, dissipative scale of
turbulence. In order to quantify n, one still need to quantify €. If [ is the size of the largest eddies, uq their typical
velocity and 7 their typical timescale, then the rate at which energy is injected in the turbulent cascade is given,
through dimensional arguments, by € ~ u% [To ~ ug /lp. Making the large-scale Reynolds number appear, one can
write

Re?
4
lo

EN

(1.20)

Plugging Equation 1.20 into Equation 1.18, one finally obtains the ratio of the smallest to largest scales of turbu-
lence as (Pope 2000)

I _Re¥4 (121

lo
In other words, the higher the Reynolds number, the larger the range of length scales that need to be resolved in
order to describe the entire turbulent cascade.

Let me quickly compute an estimate of how ridiculously expensive this can become in the stellar context. For
the above-mentioned value of the Reynolds number Re ~ 10'2, we have n/ly ~ 107°. Roughly speaking, this
means the number of grid points for a 3D DNS of turbulence, if one wished to resolve all of these scales, would
be of the order of 10?7, The current record for the number of operations performed by a computer per second is
held by the Fugaku supercomputer in Kobe, at 442 petaflops (https://www.top500.0rg/). It would take about
3 x 10° seconds, or 100 years, for this computer to advance the simulation by one time step, and provided the size
of the box is ly — i.e. provided the simulation is very local. This is the reason why there is no such thing as a Direct
Numerical Simulation of stellar turbulent convection: all such simulations are incapable of resolving all relevant
length scales, and must be regarded as what they really are, Large-Eddy Simulations.

Large-Eddy Simulations (LES)

LES have been used to model convection in the stellar context ever since computers became fast and powerful
enough to run the simulations in a reasonable amount of time, whether it be global simulations of an entire con-
vection zone, or more local simulations focused on the transition region between a convection zone and a radiative
zone — in particular the surface layers of a star with a convective envelope. Since the early 2D simulations of
convection using only limited microphysical ingredients (see for instance the early works of Graham (1975) or
Latour et al. (1976)), LES have been considerably refined, with simulations now ranging from 1D to 3D, more
realistic treatments of radiative transfer (with the non-local, and sometimes non-grey equation of radiative transfer
having long since replaced, for surface convection, the more simplistic diffusion approximation), and the inclusion
of magnetic fields in the scope of the magneto-hydrodynamics (MHD) equations, as well as rotation. LES have
been used to study, for instance, surface granulation (e.g. Stein and Nordlund 1998), the effect of convection on the
surface abundances and the formation of spectral lines in stellar atmospheres (e.g. Allende Prieto et al. 2001, 2002;
Asplund et al. 2000a,b; Asplund 2000; Asplund et al. 2004, 2005b,a), its interplay with rotation or magnetic fields
in dynamo processes (e.g. Glatzmaier and Roberts 1995), or the overshooting into neighbouring radiative regions
(e.g. Freytag et al. 1996; Tremblay et al. 2015; Kupka et al. 2018). The range of applications of LES for stellar
convection is so vast that being exhaustive in that regard would require a volume of its own. I refer the interested

°This must not be confused with the inertial subrange of turbulence, for which the Kolmogorov second similarity hypothesis is needed.
This second hypothesis states that there exists a lower limit scale /;, — in addition to the upper limit /., — such that for any scale
Imin < I < Inax, the statistics of the flow take the form of a universal function of € only. This second hypothesis is stronger than the first one,
because now the statistics are independent of v, but on the other hand it is only valid in the inertial subrange /;yi, </ < [y, instead of the
larger universal range.

10



CHAPTER 1. TURBULENT CONVECTION IN THE STELLAR CONTEXT

reader to the many reviews dedicated to that very question, among which Nordlund et al. (2009) or Kupka and
Muthsam (2017) for instance.

However, let me discuss briefly the ways in which the resolution issue raised above is tackled in such simula-
tions. In a DNS, nearly all of the computational efforts are focused on the small, dissipative scales, deep within
the universal range of turbulence. But these scales only contain a negligible fraction of the total energy of the flow,
while almost all of the energy is contained in the largest eddies (also called, as a result, the energy-bearing eddies).
This observation naturally leads to the conclusion that only the largest scales need to be described by the exact
equations of hydrodynamics, while the smaller scales — also referred to as the subgrid scales, SGS thereafter —,
having more universal statistical properties, can be described by a much simpler model that does not require them
to be resolved. It is useful to make a distinction between two different approaches, namely 1) the LES where the
numerical viscosity inherent to the numerical scheme is implicitly expected to contain all phenomena occurring at
scales smaller than the grid resolution, and 2) those where the SGS are explicitly modelled.

When it comes to modelling stellar convection, most LES fall into the first category. With a typical grid step of
~ 10 km in local “box-in-a-star” simulations, and a typical Kolmogorov scale of ~ 1 cm, the effective viscosity is
some 6 orders of magnitude higher than the actual viscosity in the real system (see Table 1 of Freytag et al. 2012,
for more details). Naturally, the picture is more dire still in global “star-in-a-box” simulations of an entire stellar
convection zone. This effective viscosity — which I recall is not explicitly enforced in the integrated equations,
but rather stems from the numerical scheme — is used to mimic the effect of all the unresolved scales. However,
in order to lower the relative effect of these scales on the large-scale flow, and thus reduce the influence of this
artificial dissipation, it is common practice to include hyperdiffusion — or hyperviscosity — in the scheme. For the
sake of this short discussion, let me remark that the viscous term in the Navier-Stokes equation, which is given by
the divergence of the viscous tensor (Equation 1.16), reduces in the incompressible limit (where V - u = 0) to

ou

= = o+ v V. (1.22)

The hyperdiffusion approach (Borue and Orszag 1995, 1996) consists in replacing the Laplacian-based viscous
force by an expression using a higher derivative of the velocity

o s vi(=1)" vy (1.23)
ot

where vy is referred to as the hyperviscosity, and m is an integer, usually equal to 2 or 4. The effect of this
modification is best viewed in Fourier space, where the original vkzu/(E) is replaced by kaz’”u/(E). For large
scales (i.e small values of |k|), the dissipative effects are therefore reduced, while they are enhanced for small
scales. Effectively, this causes the dissipative range to be narrower in wavevector space, thus reducing the amount
of energy-containing k-components (or modes) of the velocity. As a result, the effect of not resolving all the
modes is drastically reduced, at the expense of the model equation not being the Navier-Stokes equation anymore.
Hydrodynamic codes for stellar convection using hyperviscosity include, for instance, the MURaM code (Vogler
et al. 2005), the Stagger code (Stein and Nordlund 1998; Magic et al. 2013), or the MUSIC code (Viallet et al.
2011, 2016).

An alternative to letting the numerical viscosity represent unresolved scales is to derive a model for the effect
of the small scales on the large scales. In this approach, a spatial filtering operation is applied to the flow, in order
to separate the total flow into a filtered component (corresponding to the large scales) and a residual component
(corresponding to the small scales). The idea of spatial filtering makes this approach conceptually different than
the one described above, which instead relies on a completely uncontrolled separation between the resolved and
unresolved components. Now, the spatial filtering is explicit, and is independent from the resolution of the grid.
This perhaps makes the term Large Eddy Simulation more befitting of this approach alone, while the one described
above is more of a ‘poorly-resolved DNS’ approach. However, as we will now see, this approach also ultimately
takes the form of an effective viscosity, so that this is more of a debate on semantics.

For the sake of this discussion, let me consider the velocity u(x, ¢) as the only flow variable that needs to
be modelled, and let me consider an incompressible flow. In an ‘explicit’ LES, a new variable u(x, f) is created
beforehand, which is defined by

ux, 1) = f &Ex’ ux’, HG(x - X, X) , (1.24)
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where G is a filtering operator, whose properties can depend on the slow variable x in addition to the fast variable
x—X’. This new quantity is the filtered component of the velocity, while u’ = u—u refers to its residual component.
Instead of the Navier-Stokes equation, it is the filtered Navier-Stokes equation that needs to be integrated. It is
obtained by applying the filtering operation to Equation 1.14, which yields (for an incompressible flow)

ogw;  OPoij [P+ Ui 0y — ndjiti — o)
E " axj -

gi. (1.25)

Formally, the filtered Navier-Stokes equation is almost identical to the full, exact Navier-Stokes equation, with the
key difference that a new stress tensor appears, called the residual stress tensor, in the form of'’

ok

l.jEu,-uj—u_,-u_j. (1.26)
I insist on the fact that in this approach, Equation 1.25 is still an exact equation, stemming directly and without
assumptions from the Navier-Stokes equation itself. However, the quantity 0'5. is not known, and needs to be
expressed as a function of u itself and the filtering operator G: this is where the modelling part begins.

The most common model for 0'5. is the Smagorinsky model, which is essentially a down-gradient approxima-

tion for the transport of momentum by residual motions. It yields (Smagorinsky 1963)
0'5- = —2V5§ij 5 (1.27)

where S j 18 the filtered rate of strain

- 1 (0w Ou;
I ) 1.2
Sl] 2(8)61' * c')x,-) ’ ( 8)

the eddy viscosity is given by

Vs = lgg = lé \[Zgijgij , (1.29)

and g is the Smagorinsky lengthscale. The fundamental assumption is that this lengthscale is comparable to the
width A of the spatial filter G, so that Iy = CsA, and Cy is a somewhat universal constant of order unity.

A useful limit in order to understand the implications of this model is the case where the characteristic filtered
rate of strain S can be approximated by its standard-deviation (in the sense of ensemble average). In that case,
vs becomes uniform (Pope 2000), and the filtered Navier-Stokes equation becomes identical to the exact Navier-
Stokes equation, where v is replaced with vy = v + vs. In flows with very high Reynolds number, v < vg and the
effective Kolmogorov scale is equal to /g, which is itself of the order of the filtering width A: ultimately, from the
point of view of the large-scale flow, adopting the Smagorinsky model amounts to artificially enhancing viscosity.
Hydrodynamic codes for stellar convection that use a Smagorinsky SGS model include, for instance, the work of
Robinson et al. (2003), the CO’BOLD code (Freytag et al. 2012), the StellarBox code (Wray et al. 2015) or the
ANTARES code (Muthsam et al. 2010).

Albeit not exhaustive, this introductory discussion shows that all LES strategies — the implicit use of numerical
viscosity to mimic the effect of the unresolved scales, the additional inclusion of hyperdiffusion, or explicit SGS
modelling, through the Smagorinsky model or otherwise — ultimately rely on the same fundamental assumption:
that the resulting effective viscosity accurately represents the effect of the entire turbulent cascade (which is impos-
sible to resolve) on the volume-averaged flow (which is the part that can be resolved). As such, a natural question
is this: to what degree is this assumption verified? How sensitive are LES to the treatment of small scales? The
answer to this kind of question always depends on what one wishes to achieve with the simulation. For instance,
Stein and Nordlund (1998), Robinson et al. (2003), Kupka (2009) or Kitiashvili et al. (2013) showed that in a star
with a convective envelope, such as the Sun, the properties of convection close to the surface — and more specif-
ically in the super-adiabatic region — tend to depend on the grid resolution and the treatment of the SGS. On the
other hand, the bulk of the convection zone is rather insensitive to such considerations (Kupka 2009; Beeck et al.

10The reader already familiar with Reynolds-stress models will undoubtedly have noticed the similarity between the filtered Navier-
Stokes equation and the Reynolds-averaged Navier-Stokes equation, or equivalently between the residual stress tensor and the Reynolds
stress tensor. It must be understood, however, that these are fundamentally different quantities and approaches, as one is the result of spatial
filtering while the other is the result of ensemble averaging. In particular, we have in general u#u,sothatw # 0.
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2012). As far as oscillation excitation goes, it was shown by Jacoutot et al. (2008) that excitation rates are very
sensitive to these matters as well (see also Prentice and Dyt 2003). All in all, the takeaway message is this: unlike
the bulk of the convective region, surface convection is rather sensitive to the specific treatment of small scales
in the simulation. Fundamentally, this is because the structure of convection becomes more complex as one gets
closer to the surface, where the fluid parcels travelling upwards are suddenly forced to go back down; in particular,
mode excitation is particularly sensitive to the detailed properties of the turbulent convection (as we will see in
much more details in Section 2.2), which explains the sensitivity of the numerically computed excitation rates with
the small-scale treatment in the LES.

1.2.2 Mixing-length formalisms
Mean equations and the closure problem in the Boussinesq approximation

As we saw in Section 1.2.1, the core problem in considering the exact equations of hydrodynamics directly is
that the ensuing spatial structure of the turbulent flow is too complicated and involves too wide a range of scales to
be exactly simulated. On the other hand, the mean flow, defined as an average over a large number of realisations
of the same flow (or ensemble average), does not exhibit such a complex behaviour, while containing most of the
information in which one may be interested anyway. It is only natural, therefore, that one may wish to consider
the mean equations of hydrodynamics, rather than the exact ones. To do this, one first needs to separate each flow
variable into an average and a residual (or fluctuating) part. There are several ways of performing this separation.
The natural decomposition is

0=0+0Q, (1.30)

where Q corresponds to the actual ensemble average'' (or Reynolds average) of Q, and Q’ refers to the fluctuations
of Q around its ensemble average. But another possibility is to write

0=0+0", (1.31)

where é = E/ﬁ is called the mass average (or Favre average) of Q (Favre 1969), and Q" refers to the fluctuations
of Q around its Favre average. In particular, while it stems immediately from Equations 1.30 and 1.31 that Q =
Q” =0, we have Q” # 0 and Q’ # 0. It can already be seen from Equations 1.13 to 1.15 that the Favre average is
a more natural choice of decomposition: indeed, the exact equations naturally take the form of transport equations
not for p, u and e, but for p, pu and pe (or, in other words, for the momentum and energy per unit volume rather
than per unit mass). Therefore, we will consider the following decomposition

— ’ —_ 0= ’ —
p=Ep+p, PEp+p, 0',]_0',]+0'U, u=u+u ,

g=g+¢g"’, e=e+eée’, h=h+n". (1.32)

The choice of which variable should be decomposed according to its Reynolds average, and which according to
its Favre average is completely arbitrary. However, this choice happens to simplify the subsequent equations, as
we will see below. Plugging this decomposition into Equations 1.13 to 1.15 and taking the ensemble average, one
finds

B, % _0, (133)
opii; N 6(ﬁ5ij + put; U +pu”u” —O'_ZJ) e (134)
ot dx;j b '

ot 0x; 8xl ! Bxi ij ' Ox;

Those are still exact equations, but the key difference is that they do not model the evolution of the total flow
variables p, u and e, but the mean flow variables p, u and ¢ instead. These equations can be integrated exactly

"'This notation must not be confused with the filtering operator introduced in LES (see Section 1.2.1). I will not come back to this
filtering process in the future, and this notation will always be meant as a Reynolds average from now on.
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without having the scale resolution problem that DNS have. The price to pay, however, is heavy: the non-linear,
quadratic advection terms in both the Navier-Stokes equation and the energy equation give rise, once they are
averaged, to second-order terms in the fluctuating quantities, which are not directly expressed in terms of the mean
flow variables themselves. In other words, the system of equations is no longer closed, and must be supplemented
with some model for the unclosed terms.

In semi-analytical models of convection based on these mean equations, it is very common to adopt the Boussi-
nesq approximation, which renders the task of closing the equations slightly less daunting (Houdek and Dupret
2015). The Boussinesq approximation consists in i) neglecting the fluctuations of the fluid density p’ everywhere,
except in the gravitational force, and ii) neglecting the fluctuations of the gas pressure p’ everywhere. In essence,
this amounts to considering that 1) when a fluid parcel is displaced to a neighbouring region, the difference in den-
sity is too small to have an effect on the inertia of the parcel, but 2) that gravity is sufficiently strong to make even
this small change in density appreciable in the gravitational force; and finally, that 3) the dynamical time is much
smaller than any other time scale in the system, so that the fluid always has time to adapt to the new condition for
mechanical equilibrium. Of course, the second remark is not anecdotal, since the difference in gravitational force
is precisely what is usuqlly referred to as the Archimedes force (or buoyancy force), and is responsible for the
convective instability in the first place. The Boussinesq approximation is similar to considering the incompressible
limit, but not perfectly equivalent to it. Indeed, in the incompressible limit, there is no buoyancy force, and the
pressure is mechanically constrained by the Poisson equation instead of evolving as a thermodynamic variable.
The Boussinesq approximation is justified if two conditions are verified (Spiegel and Veronis 1960): any given
parcel of fluid must remain confined within a layer whose thickness is much smaller than the local density scale
height H, = |d1Inpg/ dz|™!, where po is the equilibrium density and z is the vertical coordinate (i.e. the coordinate
along the direction of the gravitational acceleration); and the typical density fluctuations must remain much smaller
than the average density value. The full impact of the Boussinesq approximation will be seen later, upon writing
the equations on the fluctuating part of the flow. But it already allows us to simplify the mean equations. Indeed,
the fact that we neglect p’ makes the velocity-pressure-gradient correlation (i.e. the second term on the right-hand
side of Equation 1.35) vanish from the energy equation.

Furthermore, another common approximation is to consider that the mean viscous stress tensor is negligible
— otherwise stated, that the viscous force has no effect on the large-scale mean flow. This is justified by the
very high Reynolds number characterising stellar convection. This means that the term ¢7; is discarded in both
Equations 1.34 and 1.35. However, the viscous-stress-velocity correlation (which appears both on the left-hand
side and the right-hand side of Equation 1.35) cannot a priori be neglected, because it is where turbulent dissipation
originates from. By definition, the turbulent dissipation tensor is defined by (e.g. Pope 2000)

17 ’7
€ =0, u o o’ (1.36)
! (')xk J 8xk
Under the assumption that the dissipation tensor is isotropic, one can define a scalar turbulent dissipation € in such
a way that

2_
€j= §p65ij . (1.37)

The isotropy of the dissipation tensor is also a consequence of the high Reynolds number of the flow, and stems
directly from the Kolmogorov hypotheses (Kolmogorov 1941). Essentially, the idea is that by the time the turbulent
kinetic energy has trickled down the entire turbulent cascade, and is ready to be dissipated into heat at the viscous
scales of motion, all directional information has already been lost.

Putting everything together — the Boussinesq approximation, the neglect of the mean viscous stress force, the
isotropy of dissipation —, Equations 1.33 to 1.35 become

dp  dpu;
o -0 138
oo 0oy + il i+ )
- psi 1.39

ar o, P8 (139)
aﬁgf(ﬁzmﬁwﬁfad) U (1.40)
ot = Uj— + pe . .

at axi axi P
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CHAPTER 1. TURBULENT CONVECTION IN THE STELLAR CONTEXT

Furthermore, taking the average of the ideal gas equation of state (Equation 1.5), and recalling that for an ideal gas
e = cyT, one obtains

_ Rpe

p=-L° (1.41)

Hey

meaning that the mean gas pressure is already in closed form (provided the molecular weight u is known). Let me
also assume that the radiative flux is taken care of through the appropriate treatment of radiative transfer — not that
this task is trivial, of course, but this is not the core subject of the discussion here, so that I will leave this question

aside in the following —, so that the mean radiative flux Frad is known as a function of the mean flow quantities p,
uande.

Then there are two quantities left to close: the Reynolds stress tensor and the mean convective flux, defined
respectively by

—~—~—

ol =pu! (1.42)
F =phl (1.43)

These two quantities are fundamental to the modelling of convection, because they describe the transport of mean
momentum and enthalpy by the residual fluctuating flow. In the Boussinesq approximation, all modelling efforts
are therefore focused on these two quantities.

A general picture of convective transport in a static background

In general, we are particularly interested in the vertical components of these two second-order moments, be-
cause these are the only components that need to be modelled in order to include convection in 1D stellar models.
We will denote the vertical component of the convective flux as F., and the vertical-vertical component of the
Reynolds-stress tensor as p;, also commonly referred to as the turbulent pressure. In the following, I will discuss
these two scalar quantities, which pertain only to the vertical motions of the gas.

A common picture of the convective motions of the gas consists in describing the flow as a set of convective
cells. Locally, the flow can be viewed as being comprised of vertical columns of gas, some of them flowing
upwards, other downwards. Let me denote the relative cross-section, density, vertical velocity and temperature of
the upwards-travelling columns as o, p,, v, and T, respectively, and those of the downwards-travelling columns
as o4, pa, Vg and T, respectively, all of these quantities being defined at a given depth in the star. Then during a time
dt, the upwards-travelling (resp. downwards-travelling) gas carry a mass 0,0, v, d¢ dS, a momentum o0, v2 dt dS
and an enthalpy o,p,cpT, Vv, dtdS (resp. idem with d indices) through a horizontal surface dS '? at this depth, from
bottom to top (resp. from top to bottom). Then the net mass, momentum and enthalpy flux (i.e. the net quantity
flowing through the layer per unit time and per unit surface) is given by the difference between the quantity carried
upwards and the quantity carried back down, so that

Fiy = 0upuVu — 0apava (1.44)
Pt = CuPuVy — Tapavs » (1.45)
Fe = ouwucpTyVy — oapacpTava , (1.46)

where F, is the vertical mass flux. Of course, there can actually be no net mass flux in any direction, as this would
quickly either deplete the star of all its matter (although that would considerably simplify the treatment of the
convective flux, we would still like the star to exist), or on the contrary end up concentrating all the matter in an
arbitrarily small central region (which would violate the condition of hydrostatic equilibrium). As such, we have
F,, = 0, which yields the following constrain

OuPuVu = 04dPdVd - (1.47)
In turn, this condition allows us to rewrite the convective flux and turbulent pressure thus

Pt = OupuVu Vi — Va) (1.48)
Fe = oupucpvy (Tu —Ta) - (1.49)

12The relative cross-sections o, and o, are defined in such a way that the upflows (resp. downdrafts) take up a portion o, (resp. o) of
the surface dS. As such, they have no dimension, and o, + 0y = 1.
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Then, because the velocity difference v, — v; and the temperature difference 7, — T, are already first-order differ-
ences compared to v = (v, + v4)/2 and Ty = (T, + T4)/2 respectively, one can remark that replacing o, p, and
v, by 0.5, pg and v respectively would only result in second-order corrections to the above expressions. Following
that remark, one finally obtains

Pi = povAv (1.50)
F. = pocpvAT , (1.51)

where Av = (v, — v4)/2 is the difference between v, (or v;) and the mean velocity v, and AT = (T, — T)/2 is the
difference between T, (or Tz) and the mean temperature 7.

The hard question still remains however: how to quantify the velocity difference Av and the temperature
difference AT, as well as the mean norm of the velocity v? This is where the mixing-length theory (thereafter
shortened to MLT) kicks in.

Standard MLT

The following discussion is based on Bohm-Vitense (1992), where the focus is on the convective flux only.
Therefore, I will only consider F. in the following, even though p, can be treated similarly.

Let me take a closer look at the gas. Each column can be thought of as a set of individual small volumes of
gas, usually referred to as gas bubbles, which all travel up or down over different distances, with their own velocity
and temperature. If we consider the set of bubbles which, at a given time, have arrived at a given layer of vertical
coordinate z, we find that these bubbles have all come from different layers, either lower if they are travelling up,
or higher if they are travelling down. Let us consider one such upwards-travelling bubble, initially coming from a
layer of vertical coordinate z — s, meaning that its temperature at z — s was equal to the mean temperature 7o(z — s).
Upon arriving at the layer z, the bubble has undergone a change of temperature due to energy exchanges with
the background, which is proportional to the travel distance s, and which we denote as (d7'/ dz)pubble X s, Where
(dT'/ dz2)bubble < O because the bubble is giving energy to its surroundings. But the background seen by the bubble
has also changed, due to the temperature stratification, by an amount (d7y/dz) X s. Therefore, the bubble has
developed a net temperature difference with the background

dr

_ _ %o
AT = [(d_z)bubble dz ]S.

This can be rewritten by remarking that

)] 0
dz Jpubble dInp Jyppe PO dz /yupble

where (d1n7/dIn p)yupbie Only depends on the nature of the thermodynamic transformation undergone by the
bubble during its travel, and will be denoted as Vyypble in the following, and (dp/ dz)bubble = dpo/ dz, where py is
the equilibrium gas pressure, because, as we mentioned before, the pressure in the bubble instantaneously adapts to
the ceaselessly changing mechanical equilibrium condition, so that it is equal to the pressure of the background at
all time. Introducing the pressure scale height H, = —1/(d In p/ dz), one obtains (d7/ dz)bubble = =70 Voubble/Hp.
By the same token, one also has d7y/dz = =TyV/H),, where V = dIn T/ dIn pg is the background gradient. With
these notations, Equation 1.52 can be rewritten

(1.52)

Ty
AT(s) = 7~ (V.= Voubbie) § - (1.54)
P
From this, one can also derive the velocity with which the bubble arrives at the layer of depth z. Indeed,
during its travel time, a buoyancy force is exerted on the bubble, which can be expressed in terms of the difference
between the density of the bubble and the density of the background Ap

dv
= —Apg = po Y. 1.55
Jo P8 =po (1.55)

where f;, is the buoyancy force per unit volume, g is the norm of the gravitational acceleration, and the second
equality then stems from Newton’s second law. Let me discard, for simplicity, the possibility that the chemical
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composition of the gas may also change during its motion, because of changes in the ionisation processes in the
different regions through which the bubble is travelling. Let me also remark, as I did before, that the pressure in
the bubble is equal to the pressure of the background at all time. Then the ideal gas law simply yields Ap/pg =
—AT /Ty, and we obtain

dv AT
—=—g. 1.56
dr Ty & ( )
Multiplying by v dt, this yields
AT AT
dv=—gvdt = —gd7, 1.57
VST SV T 8% (1.57)

which can then be integrated over 7’ between z — s and z. But here, AT refers to the difference in temperature
between the bubble and the background after the bubble has risen from the initial layer at z — s to the layer z’. As
such, it is equal to AT (7" — (z — s)). Performing the change of variables 5" = 7/ — z + s, we now have

v dv= 2 AT(s)ds' (1.58)
Ty

which should now be integrated between s” = 0 and s” = s, using Equation 1.54 for AT (s”). Assuming the bubble
is initially at rest, one finds

12
g(V- Vbubble)] / s

Hp

v(s) = [ (1.59)

Equations 1.54 and 1.59, valid for one gas bubble with a travel distance s, must now be averaged over all bub-
bles. If / is the average distance over which gas bubbles travel before they are assimilated to their new environment
(meaning the bubble can be considered as having been ‘destroyed’), then for any given layer, the distance over
which a bubble travels before reaching the layer is //2 — in other words, on average, the bubbles that do go through
a given layer spend as much time travelling fo the layer from birth than from the layer to their demise. Then, an
average temperature difference (resp. average velocity) can be obtained by setting s = [/2 in Equation 1.54 (resp.
Equation 1.59), and the total convective flux given by Equation 1.51 becomes

ocpTo /g

p 3/2 l 2
Fe= 57— (V= Vhubble)“ | 5] (1.60)
HP

2

The equilibrium quantities po, cp, Ty, g and H,, are considered known; then the convective flux only depends on the
difference between the bubble gradient and the background gradient (i.e. how fast does the temperature difference
between the bubble and its surroundings grow as the bubble rises?), and the average length travelled by the bubble
[ (i.e. how far away do the bubbles go before they die?).

Let me first discuss the temperature gradient of the bubble Vyyppe. On the one hand, it must be smaller than
the background temperature gradient, because only then would the temperature of the bubble fall off more slowly
than that of its surroundings, thus allowing for an upwards buoyancy force to drag the bubble further up. On the
other hand, it must be steeper than the adiabatic gradient, because otherwise the cooler surroundings would heat
up the bubble instead of the other way around, thus violating the second law of thermodynamics. We therefore
have V,q < Vyupble < V, and I can already say this about the efficiency of the convective transport of enthalpy: the
closer Viyypple 1S to Vg, the longer it takes for the bubble to be ‘destroyed’, and the higher the convective efficiency
is; on the contrary, the closer it is to V, the smaller the buoyancy force driving convection, and the smaller the
convective efficiency. This qualitative picture can be rendered more quantitative by introducing the convective
efficiency I'. This quantity is constructed on the basis of the following enthalpy budget: if no enthalpy was lost to
heat exchange during the bubble’s travel over the distance / (i.e. if the thermodynamic transformation undergone
by the bubble were adiabatic), then the total enthalpy carried upwards by the bubble per unit volume would be
given by hiora = pocpATaq(l), with AT4(l) being given by Equation 1.54 with Viyppie = Vag, so that

pocpTo

p

(V-=Va)l. (1.61)

htotal =
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In reality, the motion is not adiabatic: the enthalpy per unit volume effectively carried upwards is only

P pocpTo
gain Hp

(V = Viubble) £, (1.62)

while the difference originates from heat loss by radiation

ocpTo
Bioss = htotal — gain = ’)H—P (Voubble — Vad) [ - (1.63)
p

Then the efficiency of convection is defined by the ratio of the enthalpy effectively transported upwards to the
enthalpy lost along the way, so that (Bohm-Vitense 1992)

hgain _ V — Viubble

r

hloss Vbubble - Vad . (164)
As such, I' is an alternative way of describing how close the actual bubble gradient is to the adiabatic gradient.
In particular, I reiterate the remark I made earlier: the more adiabatic the transformations of the bubble, the more
efficient the convective transport of enthalpy.

But on the other hand, the convective efficiency can be expressed as the ratio of the radiative transfer through
the surface of the bubble to the enthalpy change of the bubble during its lifetime, both of which are ultimately
proportional to the temperature difference between the bubble and its surroundings, so that Viyppie — V ends up
disappearing from the expression. I do not detail the entire derivation, which involves the specific geometry of
the bubble, as well as the exact temperature stratification inside the bubble, and can become quite complicated. I
simply give the estimate by Bohm-Vitense (1958)

p(2)c pTokplv
- 240T*

This relation does not give, as one may be tempted to suggest, a closed form for the bubble gradient Vyypple,
because the velocity v appearing in Equation 1.65 depends itself on Vyyppie. However, this expression allows for
an estimation of I' in the stellar context. More specifically, in the bulk of the stellar convective zone, because
of the high density pp and mean-Rosseland opacity xg, we have I' > 1. Equation 1.65 then tells us that this
is only possible if Vyyphie ~ Vag = (I't — 1)/I';. This means that throughout most of the convective zone, the
radiative transfer between the bubble and its surroundings is so inefficient that the bubble keeps almost all of its
enthalpy to be given back to the background only once the bubble is dissolved. In that case, the convective flux
is given by Equation 1.60 with Vyy,pe now being a known quantity, so that F. only depends on /. Only close
to the surface of the star does the efficiency of convection drop to a value comparable to unity, in which case a
non-negligible portion of the enthalpy of the bubbles is now lost to radiation, and the convective transport is not
as efficient as in the bulk. This region is referred to as the superadiabatic region, because Viypple > Vaq. In this
region, determining the convective flux is much more complicated (see Bohm-Vitense (1958) for German-speaking
readers, or (Kippenhahn et al. 1967) for the less fortunate).

Apart from the superadiabatic region, the convective flux is given throughout the stellar interior as a function of
the average travelling distance / of the bubbles, also referred to as the mixing length. The mixing length constitutes
a free parameter in MLT, whether it be the standard form presented until now, or the more refined variants that I will
present below. It is therefore necessary to give a prescription for /. A simple argument can be used to justify that
it cannot exceed H, by much. Indeed, H, represents the e-folding length of the background gas pressure. Since
the expansion of the gas bubbles during their ascension happens at mechanical equilibrium, it also corresponds
to the e-folding length for the expansion of the bubbles, and therefore also for the relative upflow cross-section
o,. But o, cannot exceed unity: in other words, the expansion of the bubbles must stop before they take up more
space than is physically available. As a consequence, the mixing length is at most of the order of H,,. In practical
applications, [ is usually chosen to actually be of the order of the pressure scale height, even though it could a
priori be much smaller. In that spirit, a mixing length parameter ayyr is introduced so that

(1.65)

[ = aMLTHp . (166)

The free parameter of the theory is now aypr, which is a non-dimensional parameter that takes typical values
between ~ 0.1 and ~ 1. There is no way to physically constrain the value of this parameter, because it stems from
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Figure 1.1: Calibrated value of the mixing-length parameter aymrt as a function of effective temperature 7.g and
surface gravity g, obtained by calibrating 1D solar-type stellar models on 2D radiation hydrodynamical simulations
of their atmosphere. Each symbol corresponds to one stellar model. The lines are obtained by interpolation
between the discrete symbols, through a fitting procedure. Credits: Ludwig et al. (1999).

a picture of convection which is already a rough approximation of a more complex reality: indeed, 3D simulations
show that stellar convection is more complicated than a set of well-behaved gas bubbles gently rising and falling
repeatedly, within equally well-behaved up- and downwards gas columns. The standard MLT picture, however, is
still valuable, as even this simplified picture provides with a satisfactory expression for the convective flux. This is
at the expense of having to calibrate the MLT parameter. The usual procedure consists in matching averages of 3D
hydrodynamic simulations of convection with 1D stellar envelope models, where the convective flux is given by
the standard MLT prescription. This procedure is performed for a grid of models with different stellar parameters,
which eventually leads to a map of ar as a function of the effective temperature'® Teg and the surface gravity g
(Trampedach et al. 1999, 2014; Ludwig et al. 1999, 2008; Magic et al. 2015), as illustrated, for instance in Figure 5
of Ludwig et al. (1999), which we reproduce here (see Figure 1.1). Another approach consists in calibrating amr
against a solar model — the Sun being, by far and for obvious reasons, the star for which the global parameters
and the specific internal physics are known with the greatest precision —, and then assuming that this value is
universal, at least for main-sequence stars. However, there is no physical justification for this assumption, which
is in essence impossible to verify. At any rate, the resulting calibrated value of ayy is, by construction, extremely
model-dependent, in the sense that it depends on every other physical ingredient put in the model. As such, the
accuracy of apmr only stands as long as every single other aspect of stellar physics is perfectly known — which is,
of course, impossible, or at least currently far from our grasp. This is one of the major concerns with MLT, and
one of the main reasons why alternative modelling approaches have been investigated to circumvent it (see the use
of 3D simulations, upon which I have already touched in Section 1.2.1, or Reynolds-stress models, which will be
the subject of Section 1.2.3).

Time-dependent Mixing-Length Theories

One of the most important assumptions made in standard MLT is that the average flow (in the sense of ensemble
average) is independent of time, so that the bubbles travel through a static medium. In reality, this is not the case,
primarily because the convective zone, as the rest of the star, is subjected to oscillations (a matter that I will

B3I have not had the opportunity to define this quantity yet: it corresponds to the temperature of a hypothetical spherical black-body
having the same radius R, and radiating the same luminosity L, as the star, and is therefore defined in such a way that L, = 47R>T 2.
Since the star does not behave like a black-body (in particular because of the absorption lines in the atmosphere), T is not equal to the
actual thermodynamic temperature characterising the surface of the star.
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introduce in Section 2.1). In order to describe the effect of the oscillations on the behaviour of convection — or
the other way around —, it is necessary to account for the time-dependence of the mean flow in the treatment of
the convective flux F,. and the turbulent pressure p,. This yields what is commonly referred to as time-dependent
MLT, which I briefly discuss here.

Subtracting the average flow equations (Equations 1.33 to 1.35) from the total equations (Equations 1.13
to 1.15), one finds the equations on the convective fluctuations in the following form
P, ’ P, r= a—u{/ a 'y’
op N 0" U, N PU; P u
ot 0x; axi 8x,~
0 (p’ﬁ} +ﬁu;’) 0 (p u,u [+ p'uuj + p’u"u” +pulu +pulu; - pu"u” +p'oij— O';j)

+

=0, (1.67)

ot Ox: =08 +p8;
j
(1.68)
d(0'e +pe’") . a(p’ITih” +p u”h +p'u'h’ + pu;h” +pu”h pu"h” F; rad)
ot 0x;
dp _ap’ op’ oo: 00l o
—u P PPl u; l{ + U l_] . (1.69)

— U .
Y Ox; 0x; L Ox; ' Ox;j

I already mentioned that the Boussinesq approximation simplifies the mean equations, but it simplifies the convec-
tive equations even more drastically, because it allows to neglect all the terms containing p’, with the exception of
0'g;, and all the pressure-work terms on the right-hand side of the energy equation. Furthermore, it is customary
in MLT to neglect not only the mean viscous force, but also all viscous effects completely. Finally, in a local
framework, the gravitational acceleration is assumed to have a constant value, so that g; = g; and g/’ = 0. Under
these approximations, one obtains

M 1.70
BXI - ’ ( N )
dpu!! 8(puu + pu; uJ+p(u”u;’—/-"\’/’)+p5 ) ) L7
+ =p'gi, .
g OPTH + P+ B (! — )+ )
+ =0. (1.72)
ot ox;

The continuity equation is no longer a transport equation for the fluctuating density p’, but becomes a mechanical
constraint on the fluctuating velocity u}’. As for the other two equations, they can be rearranged with the help of
the mean continuity equation (Equation 1.33) and the mean energy equation (Equation 1.35), to yield the following
transport equations for «;” and the temperature fluctuations around its Reynolds average T’ = T —T (Gough 1977a)

ou’’ ou’’ ou! or’o P _ 1op T’
_l + /I_l _ l./ 1 // + 6 - 1.73
ot ( ! 0x; “j c')x/] 1308 5 P ox; Tg, (1.73)
oT’ or’ , aT’ __ - 0InT ——3Inp 1 oF, ™
+u — - -9 —Vaa 6 T -pufy = ———F—, 1.74
o [ul o ! e ) ((CPT ) ad OT ) Bu pcp Ox; (1.74)
where r denotes the radial coordinate, u} is the radial component of u’, 6 = —(dlnp/dInT), is the expansion

coefficient at constant pressure, cpr and o7 are the partial derivatives of cp and ¢ with respect to T at constant
pressure, and S = 58,5/5 - (’),T/ﬁ is the superadiabatic temperature gradient. In Equation 1.73, the third term
on the left-hand side stems from u;'d; (ﬁifj) on the left-hand side of Equation 1.71, where the mean continuity
equation makes the time derivative of the mean density appear; the second term on the right-hand side corresponds
to the buoyancy force p’g;, where the density fluctuations are expressed in terms of temperature fluctuations. In
Equation 1.74, the third term on the left-hand side stems from 4" 9; (ou;) on the left-hand side of Equation 1.72,
and the fourth term stems from u;’9; (ﬁa, where the mean continuity equation, the relation between fluctuating
enthalpy and fluctuating temperature, and the mean energy equation have been used.

Equations 1.73 and 1.74 are almost linear, including the divergence of the radiative flux which is usually linear
in the temperature fluctuations. In fact, they would be completely linear, were it not for the term u,ﬁ;’u;’ - ulf’aiu;’ in
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the momentum equation, and the term u;’9;T’ —u’9;T’ in the temperature equation. Different versions of the MLT
(and a fortiori time-dependent MLT) differ only in their treatment of these non-linear terms. There are mainly two
such versions of time-dependent MLT currently in use in the context of stellar convection

o The formalism developed by Gough (1969), later generalised to the time-dependent case by Gough (1977b),
and later used, for instance, by Balmforth (1992b); Houdek et al. (1995); Rosenthal et al. (1995); Chaplin
et al. (2005), whereby the eddies grow linearly in time (the non-linear terms are discarded) until they die.
Then Equations 1.73 and 1.74 form a system of linear differential equations'#, into which an Ansatz o
exp(jk - r + ot) can be injected for both u;" and 7. This yields a dispersion relation between the linear
growth rate o, of the eddies and their wavevector k. Together with the introduction of an eddy survival
probability, this gives an expression for the flux of ;" and T’ (i.e. for the convective flux and the turbulent
pressure). It is necessary to introduce a mixing length for two reasons: the eddy wavevectors are given
by a unique eddy size which acts as a free parameter in the model; and the eddy survival probability is
defined in such a way that the eddy has a probability dx/! of being destroyed over a travelling distance
dx, where [ is the total distance travelled by the eddy on average, and therefore corresponds to a mixing
length. A time-independent version of MLT can be recovered by neglecting the explicit time derivatives
in Equations 1.73 and 1.74 and considering that the eddy wavevector is time-independent. Otherwise, the
instantaneous properties of the background both at the instant ¢ considered and the time of birth g of the
eddy must be explicitly taken into account;

e The formalism developed by Unno (1967), later generalised to the time-dependent case by Unno (1977),
and later used, for instance, by Grigahcéne et al. (2005); Dupret et al. (2005¢,b,a, 2009); Belkacem et al.
(2008, 2009, 2012), whereby the non-linear advection term acts as a dragging force that exactly balances
the buoyancy force. In a static atmosphere (i.e. in the time-independent limit of MLT), all time derivatives
are neglected in Equations 1.73 and 1.74, including the acceleration terms d,u; and ,7’, and the non-
linear terms are written in a down-gradient approximation in the form ulf’aiu;.' - ul’.’é,-u;.’ = 2u§’2/l and

w!o;T" — u!0;T" = 2ufT’/l, where a mixing length is necessary to describe the divergence of the second-
order moments. This yields algebraic equations for u; and 7’, from which the convective flux F. and
turbulent pressure p; can be directly extracted. In the time-dependent generalisation, the acceleration terms
are restored, but all the mean variables are supposed to be time-independent.

Each of these formalisms yields an equilibrium value for F. and p, in the limit of a static convection zone,
after which a perturbative approach gives a time-dependent correction 0 F. and ¢ p; as a function of the more readily
available fluctuations of the mean density, temperature, etc. This gives a prescription for the convective flux and
turbulent pressure which accounts for the varying properties of the background from which the eddies are born,
through which they travel, and to which they give their energy back when they are dissolved. This is at the expense
of having to set not only a value for the static mixing length /, but also now an expression for its time-dependent
fluctuations dl.

The non-local Mixing-Length Theory

Another important approximation underlying the standard MLT is the assumption that the mixing length [ is
much smaller than the stratification length scale, so that the mean variables are considered uniform over one eddy
travel distance. However, this is far from the truth: the mixing-length parameter aympr being of order unity, this
means [ is of the order of the pressure scale height H,,. Spiegel (1963) proposed to generalise the standard MLT to
cases where [ is not necessarily small, in a way which I summarise below.

The turbulent eddies are described in phase space, by means of a density of eddies per unit phase-volume
Y(t, X, u), meaning that at time ¢, the number of eddies whose position lie within d°x of x and whose velocity
lies within d*u of u is ¥(z,x,u) d*>x d*u. The evolution equation for the density function ¢ takes the form of a
Fokker-Planck equation (Gardiner 1994), and can be written as (Spiegel 1963)

6_¢ + oupyr + o(du;/ dtyy _
ot ox; ou; B

9+ = q- > (1.75)

14“The pressure fluctuations p’ is eliminated, as usual, by taking the curl of Equation 1.73, or rather, in this case, the curl of its curl.
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where the second term on the left-hand side represents the fact that the velocity u; of the eddies entails a variation
of eddy positions, and therefore a flow of ¢ in x-space, the third term on the left-hand side represents the fact that
the acceleration du;/ dt of the eddies (due to buoyancy and pressure forces) entails a variation of eddy velocities,
and therefore a flow of i in u-space, the term g, represents the rate of creation of convective eddies, and the term
q- represents the rate at which they are annihilated. Immediately, the flux of  in u-space can be assimilated in the
source term ¢, so that one can define

_ O(dui/ dt)://)

0.=1 (C]+ ou;

(1.76)

Furthermore, by definition of the mixing length, eddies travel over a distance [ before they are annihilated, meaning
that eddies of vertical velocity v are annihilated at a rate v//. As such

v
qg- = —;ﬁ . (1.77)
Equation 1.75 then becomes
W ouh Qv W (1.78)

o ox; 1 ]

For a static convection zone, the time derivative can be dropped, and if, in addition, the convection zone is
assumed to have plane-parallel geometry, then du;yr/0x; = ud(vyy)/ dz, where z is the vertical coordinate, and u is
the cosine of the angle between the direction of u; (i.e. the eddy trajectory) and the vertical direction. Then one
obtains

a9 o, Y

,L[d—Z—T—T, (179)
where ¥ = viy. Equation 1.79 immediately strikes by its formal similarity with the equation for radiative transfer
(Mihalas and Mihalas 1984), and must therefore be thought of as an equation for convective transfer, where ¥ is
the specific convective intensity (i.e. the amount of convective energy that passes through a surface whose normal
vector is inclined by an angle of cosine u with respect to the vertical direction, per unit time, surface area and
solid angle), and the mixing length / is a mean free path for the convective eddies, and plays the role of opacity for
radiative transfer. It is only natural, therefore, to redefine the vertical coordinate in units of the mean free path /, in
the form of a ‘convective depth’ o, so that do- = dz//, in which case the equation of convective transfer becomes

dy
,ud_=Q+_lP, (1.80)
o
whose formal solution is given for i > 0 by (Mihalas and Mihalas 1984)
T ds (o=9)/
Yo = —exp 70 (s) (1.81)
o M
and for u <0
0 ds
Yo, ) = f —exp I QL (s). (1.82)
o M

Let me now denote the excess enthalpy (with respect to the local surroundings) of the eddies of position x and
velocity u as &, for the eddies flowing upwards, and A_ for those flowing downwards (with the understanding that
h_ = —h,, and hy > 0). Then the total upwards (resp. downwards) enthalpy fluxes are obtained by multiplying
Y(o,u > 0) (resp. ¥(o,u < 0)) by puhy (resp. ph_) and integrating over all solid angles covering the top (resp.
bottom) hemisphere, so that

1 +00
Fo.=2m f du f ds exp T b, ()04 (s) (1.83)
0 o
and
0 0
F._=2n f du f ds exp T h_(5)04(s) . (1.84)
-1 o
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The net enthalpy flux is obtained by forming the sum of F., and F._. After permutation of the integrals over s
and 4, and after having substituted y for 4=, one finally obtains

Fe(o) = 27rf ) hi(5)Q+(s)E2 (|o — s]) ds, (1.85)
0

where E, is the second exponential integral defined by

+00 d
E>(x) :I t—ztexp_x’ . (1.86)

This is perfectly equivalent to the Milne equation obtained from the equation of radiative transfer for the radiative
energy flux — or, to a factor 4x, the Eddington flux (Mihalas and Mihalas 1984). Essentially, /4, Q. plays the role
of a convective source, and the local convective flux is a non-local combination of all convective sources in the
vicinity, with a weighting function given by E; and therefore having a typical width of the order of /. If / is much
smaller than the stratification length scale, then F, ~ 2nh, Q., meaning the convective flux is equal to the local
convective source only: one recovers the local, standard MLT. In general, however, Equation 1.85 is not closed,
because the convective source inside the integral is itself a function of the convective flux. As such, one now has an
integro-differential equation to solve in order to find F., very similar to the integro-differential equation obtained
for the radiative flux when the radiative source is a function of the specific intensity (when scattering is taken into
account for instance).

The fact that Equation 1.85 is integro-differential makes the numerical treatment of convective transfer substan-
tially more complex. Spiegel (1963) suggested that the source function /., Q. be taken to be equal to the convective
heat flux as computed in the local MLT. However, this is only valid for high convective depths o-, and also requires
the total enthalpy flux to be exclusively convective (without a contribution from radiation). If o is small, or [ high,
then the buoyancy force felt by an eddy, instead of depending on the local superadiabatic gradient 8 = V — V,q,
becomes an average buoyancy force over the trajectory of the eddy, and therefore depends on a non-local mean
value of the superadiabatic gradient. The author therefore suggested that the source function should equal the local
convective flux where the superadiabatic gradient is replaced by a non-local average over a vicinity of height .
The mean is weighted by a sine squared, peaking at the center of the trajectory, and vanishing at its starting and
ending points.

To further extend this formalism to high values of /, and in analogy with radiative transfer, Gough (1977b)
suggested to adopt a convective version of the Eddington approximation, whereby ¥ is considered to be a linear
function of y, in which case the ratio of the second- to zero-order moments of ¥ with respect to u is exactly 1/3.
In radiative transfer, this relation is then used to close the infinite hierarchy of moment equations at second order,
thus yielding (Mihalas and Mihalas 1984)

1d%J
3 dr?
where J is the specific radiative intensity, T the optical depth, and S the local radiative source (which, if the medium

is in radiative equilibrium, is equal to the Planck function). Similarly, for convective transfer, this approximation
yields

=J-5, (1.87)

1 d°F,

ﬁ do? =F.— Fc,local s (1-88)
1 d?

C_QdTlg = B = Biocal (1.89)

where F jocal i the convective flux computed in the local MLT with the non-local superadiabatic gradient S, for
which one therefore needs the second equation, where Bjoca is the local superadiabatic gradient. The turbulent
pressure is obtained through a similar equation

1 d2
;g”; = Pt — Procal - (1.90)

Instead of adopting the radiative pressure-to-density ratio of 1/3, this factor is supplemented by the factors
1/a?, 1/b* and 1/c%. The local, standard MLT corresponds to the limit a, b, c — +co. These three non-dimensional
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parameters therefore control the ‘non-locality’ of the theory, with a controlling how far away a convective source
acts upon the turbulent pressure, b controlling how far away it acts upon the convective flux, and c controlling how
far away the stratification acts upon the eddy buoyancy force. To reflect the uncertainty in the formalism, they are
left as free parameters in the model, and as for the mixing length, they need to be calibrated, for example through
the use of 3D simulations (see for instance Dupret et al. 2006).

A final note on Mixing-Length Theories

The above introductory discussion only scratches the surface of the wealth of mixing-length theories that were
developed over the years, and the numerous and still ongoing efforts to refine them. I refer the reader who wishes to
know more to the review by Houdek and Dupret (2015), from which a large portion of this discussion is inspired.
From this limited account, however, one can already spot a common denominator to all these approaches: the
physical picture of convection is always somewhat simplified in MLT, in order to allow for tractable derivations;
each step in the simplification comes at the price of an increasing uncertainty in the theory, which is illustrated
by the presence of a certain number of free parameters (mixing length /, or equivalently mixing-length parameter
amrT; perturbation of the mixing length ¢/ for time-dependent MLT; parameters of non-locality a, b and ¢ for non-
local MLT). Because the underlying picture of convection is too simple, these parameters cannot be constrained by
physical arguments, and it will always be necessary to calibrate them against observations, laboratory experiments,
or else numerical models such as 3D simulations. For the same reason, the question of their universality is also a
very complex one — why should the mixing length, which is a construction of the mind rather than a creation of
Nature, be the same in all stars? As such, it has been argued that MLT, whether in its standard form or its more
refined versions, does not deserve the name of ‘theory’ so much as that of ‘empirical prescription’'>. However, with
simplicity comes applicability, so that MLT is still to this day a tool of choice to describe the effect of convection,
in evolutionary models for instance.

1.2.3 Reynolds-stress models

As we have seen in Section 1.2.2, averaging the exact equations of hydrodynamics yields equations for the
mean flow that feature second-order moments in the fluctuating quantities — namely the Reynolds stress tensor in
the mean momentum equation, and the convective flux in the mean energy equation. In MLT, the overarching
goal was to provide with algebraic expressions for both these quantities as a function of the mean flow itself, so
as to close the system. Alternatively, one can use the exact equations of hydrodynamics again to derive transport
equations for these second-order moments. Instead of integrating differential equations for the mean flow where the
second-order correlations are injected as algebraic expressions in the system, one ends up integrating differential
equations for the mean flow and at least the second-order correlations. This is at the heart of Reynolds-stress
models. Let me immediately remark that this solution does not free us from having to close the system, as it might
appear at first glance. Indeed, the transport equations for second-order correlations derived from the equations of
hydrodynamics contain third-order correlations, for which one has the same problem all over again. This procedure
leads to an infinite hierarchy of transport equations for correlation products of higher and higher order, so that there
will always be more unknowns than equations. If, up to this point, the reader has not yet lost the candid and naive
hope that a convection model can be derived from first principles only, let me cruelly dispel this illusion: turbulence
needs closure, always has, and always will (whether it be in the context of a convectively unstable region or not).

Reynolds-stress models have been used for a long time in the hydrodynamics community to model turbulent
flows (see seminal papers by Chou (1945); Rotta (1951), or else Chapter 11 of Pope (2000)). However, it was
some time before they found applications in the stellar context. Xiong (1989) followed this approach to derive
transport equations for the velocity variance, the temperature variance and the velocity-temperature covariance,
which correspond to all the second-order moments one can form with the fluctuating velocity and temperature.
In order to derive these equations, the author made a number of approximations to simplify the formalism: the
fluctuations of the gravitational potential are neglected under the Cowling approximation (the validity of which
I will discuss in Section 2.1.1), the radiative flux is described in the diffusion approximation, the turbulence is
assumed subsonic (i.e. the relative fluctuations of density and temperature are supposed to be much smaller
than unity) and anelastic (i.e. the material derivative of the fluctuating density is taken to be zero), the density
fluctuations are assumed to only be due to temperature changes, without contribution from the pressure changes.

131n the words of Spiegel (1963): “It should be stressed that the word theory in [the] context [of MLT] is perhaps a misnomer.”
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Those are approximations pertaining directly to the nature of the fluctuating fields, and are not so much closure
relations as physically grounded approximations. But, as I mentioned above, one also needs to adopt closure
relations. Here the author chose to assume that 1) the Reynolds stress tensor is isotropic, so that only a scalar
(the turbulent kinetic energy) is needed to describe the entire tensor, 2) the fluctuating velocity is completely
uncorrelated with the fluctuating pressure gradient, and therefore vanishes from the energy equation, and 3) all
third-order moments can be written in the down-gradient approximation. These are strong assumptions, especially
in the superadiabatic region. The third assumption is important, in particular, because third-order moments are
responsible for the non-local behaviour of convection. In the down-gradient approximation (also referred to as
diffusion approximation), any third order moment is written as

= _ oxy

uxy = —vxya—Xk , (1.91)
where u; is the fluctuating k-th component of the velocity, x and y are any scalar turbulent quantities, and vy, is a
diffusion coefficient pertaining to the transport of xy by the small-scale motions u; . Because this mode of transport
is due to the turbulent motion of the gas, v,y is often called furbulent viscosity, and in analogy with the actual fluid
viscosity, is prescribed by

Vip = ULy (1.92)

where [, is the mean free path of the turbulent eddies transporting the fluctuating quantities. This mean free path
is perfectly equivalent to the notion of mixing length already introduced above for MLT, and must likewise be
given an arbitrary value (here the author chose all I, to be equal to the local pressure scale height to within a
factor of order unity, which is of course akin to the free parameter ayrr in MLT). It becomes apparent, then, that
Reynolds-stress models actually rely on the same mixing length idea underlying the MLT, although the notion of
mixing length appears at higher order.

Going beyond Xiong’s work, Canuto (1993), and later Canuto (1997), proposed a refined version of this
approach, where the velocity-pressure-gradient correlations are not neglected, the turbulent dissipation evolves
according to its own transport equation, and most importantly, transport equations are derived for the third-order
moments as well, meaning that the equations are closed at fourth order, and the non-local fluxes are modelled
exactly. As such, his model is comprised of

e transport equations for the first-order moments: mean density p, mean velocity #; and mean temperature T;

—~— —~—

e transport equations for the second-order moments: Reynolds stress tensor u;’u’/.’, convective flux cpuT"”
and temperature potential 7772/2;
o transport equations for the third-order moments: I;jx = u}'u’/dxp’, H?j =u/T"0;p" and 1T = T"29,p’;

e transport equation for the turbulent dissipation rate € (which I recall is defined by Equations 1.36 and 1.37);

e algebraic expressions for u_;’, T, p'u, p’oiu}, uDp’[Dt and T"” Dp’ | Dt.

Insofar as transport equations are derived up to third order, the small scale advection terms in the first- and second-
order moment equations have their own transport equations, and therefore do not need to be closed, which is
a considerable improvement compared to Reynolds-stress models stopping at second order. As an illustrative
example, let us consider the transport equation on the Reynolds stress tensor. It is obtained by the following
procedure: first, one multiplies Equation 1.14 on pu; by u;

Opu . 0 (o + puiu — i)

uj % u; It = pu;g; . (1.93)

Then by permuting indices i and j and making use of Equation 1.13 to pull the density out of the derivatives, one
obtains

Ou; ou; (o —oik)
oUi— + pujy— + Uj—————=

= pU;g; . 1.94
ot Oxy, Oxy, PU8 | ( )
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Then, forming the sum of Equations 1.93 and 1.94 yields

Opuju Opuiujuk ap ap BO'J-k 60‘,k
+ ui— +ui— |+ (u +u +lui—— +u; . 1.95
" o o gy, (ujgip + uig;p) o Yo (1.95)
Taking the Reynolds average and remarking that
PUUj = Pl +pu"u” (1.96)
- ~——
puiujuy = pUiujily + pi; u”u” +pu]u”u" +puku”u" +pu;'ufuy (1.97)
one finds
- ~— —
T (?pu” 7 Op (u,u]uk +U; W uk + uju”u,’c’ + uku”u” + u"u”u,’c’)
i
+
ot ot Oxy,

op _0p —dp —0p op’ ' (=~ 9o jk 00
- +ui—+u —+u —+u—+u— |+ igituig)+u —+u!—|.
(M’Bx, “i c’)x,- M’ C())Cj u] 5)6,' ul 8xj I/t] ax,' ,D(Mzg] ujgl) u’ axk Mj 8xk

(1.98)

Here, I have already neglected the mean viscous stress tensor o;;, and I have considered g to be unperturbed by
the turbulence. From this one must subtract the equation on pu;u;. The latter is obtained by performing the exact
same operation on Equation 1.34, which yields

24 II

opin,  opiin 0P api |
ot * Oxy, + il Oxy U Oxy - ax] +u/a +p(uigj+ujgi) : (1.99)

Again, the mean viscous stress tensor has been neglected. Subtracting Equation 1.99 from Equation 1.98, and
using Equation 1.33 to pull p out of the time derivative, one finally obtains

o oW dpul 7 P
A A k 7,\7,‘3“1‘ 7, Ol

+ Uy = —|w/w/ — + v u —

ot 0xy p axk O0xy ] Oxy.

p  —;0p op’ op’ 1 0o ji , O ik

- =lu’ + +u +u!— |+ =|u'——+u . (1.100
o (u Hx] u] ox; “i Ox;j “j ox; o Ui Oxy J 6 ( )
On the left-hand side, we recognise the mean material derivative (i.e. the material derivative following the mean
flow velocity u instead of the actual flow velocity u), as well as the non-local flux of turbulent kinetic energy. This
quantity, which is closed using the mixing-length hypothesis in Xiong (1989) for instance, does not need to be

- ~——
closed here, because the system of equations contains a transport equation for u”u;’ w; itself. As for the right-hand

side, only the second and third brackets need to be closed. The quantities that are not closed in the second bracket
(u_;’ and the velocity-pressure-gradient correlation — or acoustic energy flux — u;’d;p’) are expressed by assuming
that the density, pressure and temperature fluctuations follow polytropic relations. The last bracket, on the other
hand, is rewritten

/ . = — —— 1.101
boOxg 7 Oxy, Oxy, oxy, O-kaxk ( )

7 aa-]k +u” ao—lk _ a(ul O-]k u] O-lk) _ [O_Jkau' au} ]
The first term corresponds to the viscous flux, and can be incorporated in the total non-local transport term, with
the kinetic energy flux. It is then argued that the viscous flux is negligible compared to the kinetic energy flux, and
can therefore be discarded. The second term, on the other hand, defines the turbulent dissipation tensor ¢, in such

a way that ; = u! 0o j + u}’ak(rik (see Equation 1.36). In turn, for high-Reynolds number flows, the turbulent
dissipation tensor is assumed to be isotropic, which defines the scalar turbulent dissipation rate €, in such a way
that ;; = 2ped;;j/3 (see Equation 1.37). All in all, the last bracket on the right-hand side of Equation 1.100 only
depends on €, and is closed by adding to the system a transport equation for the turbulent dissipation rate.
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This brief derivation makes salient the key points in deriving a Reynolds-stress model, namely that 1) the
non-local transport terms only need to be closed at the last order of the system of equations, 2) certain additional
moments appearing in the equations, essentially involving either the compressibility'® term u_:’ and the fluctuation
of the pressure gradient V p’ require special treatment (in Canuto (1997) this is done by considering a polytropic
gas), and 3) special care must be taken to model the turbulent dissipation rate €. This last point, in particular,
constitutes one of the major difficulties in deriving a Reynolds-stress model, because while it is possible to derive
an exact equation for € from first principle (Pope 2000) — by plugging Equation 1.16 into the definition of the
turbulent dissipation —, this exact equation proves very impractical to close. It is important to understand that the
impossibility to close the exact equation on € is not just a purely mathematical tantrum thrown by the equation,
but instead has a more fundamental, physical origin: this definition of € makes it pertain to the dissipative scales
of motion, which, for high-Reynolds number flows such as those considered here, are far removed from the large
scales of motion. While closure relations can reasonably be linked to the large scales, it is extremely difficult to
link them to what is happening at the other end of the turbulent spectrum. Therefore, in order to ‘derive’!” a model
equation for e, it is best viewed in terms of its effect on the large scales, namely as a sink of energy corresponding
to the rate of injection of energy into the turbulent cascade. This invariably leads to a model equation that is
purely empirical in nature, and moreover relies on the mixing-length hypothesis to close the non-local transport
of € (Pope 2000) — more specifically, the term corresponding to the advection of € by the small-scale turbulent
motions is closed by the down-gradient approximation (Equation 1.91). For instance, Canuto (1997) considered
two different forms, one of which is an extension of the standard form to compressible flows

66+~86 1 06 (_ Oe c € 57—, Ou; c €
—tuj— —=—\|pvij— | = —Ce1-u v/ — — —
o "ox pox \Uax; ki o, T Tk
e ouy eFON g5 o
+Cez=—p' — +C -y ) —/— = —e—, (1.102
<35k ox; cam(1=y7") ok ax, Coxc 110Y

—~—

where k = u'u’ /2 is the turbulent kinetic energy, m is the polytropic index of the gas, y the polytropic exponent,

Vij = C555kul'.’u;’ /€ is an anisotropic viscosity tensor describing the small-scale, turbulent transport of €, and C;
(i = 1 to 5) are empirical, dimensionless parameters of order unity.

As a final note on Reynolds-stress models, let me remark that closing the system of equations at third order
requires a closure relation for fourth-order correlation products. This is often done by adopting the Eddy-Damped
Quasi-Normal Approximation, which I briefly discuss now. The idea stems from the mathematical identity that,
if X; i = 1 to N) are N random variables that each follow a normal distribution, regardless of their mutual
correlations, then (Millionshchikov 1941) any correlation product formed using an odd number of X; is zero, and
any correlation product formed using an even number of X; can be written as a function of the covariance matrix
associated to the vector of random variables X only. The function in question becomes increasingly complex as the
order of the correlation product considered becomes higher. However, the special case of fourth-order correlation
products yields the simple following relation

XinXle = Xl'Xj X X; + Xi Xy Xle + X;X; Xij . (1.103)

When the random vector X does not follow a multivariate Gaussian distribution, it is customary to define the
fourth-order cumulant C;j; of the distribution as the difference between the actual fourth-order moment and the
Gaussian fourth-order moments, so that

XinXkXI = Xin X X; + X; Xy Xle + X;X; Xij + Cijkl . (1104)

Then closing the fourth-order moments amounts to closing the fourth-order cumulant. The most drastic approxi-
mation one can adopt is the Quasi-Normal Approximation (QNA), which consists in setting C;ji; = 0. However,
this poses a number of problems as regards the predicted evolution of the third-order moments. In particular, since
the third-order moments (of velocity for instance) are no longer non-locally transported by the turbulent motions

16The reason this moment is referred to as the compressibility becomes apparent when it is rewritten thus: u_f’ = —p/_uf.’/ﬁ, where p’ = p—p.
As such, if the fluid is incompressible (or even in the slightly less strict Boussinesq approximation), we have p” = 0, and therefore u_:’ =0.

1"Model equations for the turbulent dissipation are not so much derived as they are guessed, and then confronted to laboratory experi-
ments on turbulence, or else — for Reynolds numbers that are not too high — direct numerical simulations.
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of the gas, they locally accumulate without any way to escape anywhere. This non-physical accumulation of third-
order moment leads to an ever-increasing skewness of the statistical velocity distribution, and as a result eventually
violates the condition that the flow must be realisable'® — more specifically, some wavevectors can end up with
a negative energy. In order to circumvent this unwanted behaviour, the next level of approximation consists in
modelling the effect of the non-vanishing cumulant by adding an extra viscosity in the third-order equation: this
is the Eddy-Damped Quasi-Normal Approximation (or ED-QNA, Lesieur 2008). This approximation requires the
introduction of a typical damping time 7, which must be prescribed accordingly. This poses two problems. First,
there are multiple time scales in the problem (for instance, the acoustic time scale 7, = L/c, where L is the typical
scale of the mean flow, and c the speed of sound, the shear time scale 74 = (6,-&}61-&})1/ 2 as well as the local thermal
time scale that can become relevant for third-order moments involving the temperature), which can be very differ-
ent from one another. There is no physical justification for one to be chosen over the others. The second problem
is the unavoidable — and undoubtedly unsurprising by now — consequence that a non-dimensional parameter of
order unity must be introduced to account for the uncertainty not only on the exact value of the damping time 7,
but more generally on the very notion of the cumulant being modelled by a damping time. The hope in closing
the system of equations at such a high order, therefore, is that this uncertainty will have but a small effect on the
predicted behaviour of the large-scale flow, compared, for instance, with the large sensitivity of the predictions
made by MLT depending on the chosen value of apr. Nevertheless, even the ED-QNA fails to correctly predict
the fourth-order moments observed in 3D Large-Eddy Simulations (Kupka and Montgomery 2002; Montgomery
and Kupka 2004; Kupka and Robinson 2007), so that more refined closure relations are necessary (e.g Gryanik
and Hartmann 2002; Gryanik et al. 2004).

1.2.4 Concluding remarks

Each method listed in Section 1.2 for the modelling of stellar turbulent convection has its own strengths, but
also its own weaknesses. Mixing length formalisms are historically the first models that were used to describe
the convective flux in stars, and to include the effect of convection in 1D stellar evolutionary models. Standard
MLT yields very simple expressions for the convective flux and the turbulent pressure, and is therefore easy to
implement. As a result, it remains, to this day, a widely used tool for convection modelling. More refined versions
of MLT, accounting for the time-dependence of the background in which convection arises, as well as the non-
local nature of convection, have been developed. Nevertheless, the core assumptions underlying MLT have always
remained the same, in particular the Boussinesq or anelastic approximation, and the mixing length hypothesis.
Consequently, some aspects of turbulent convection are inherently discarded in all versions of MLT, in particular
the spatial and temporal structure of the turbulent cascade, which is reduced to a single spatial scale and timescale.
As we will see in Chapter 2, while this may be sufficient to describe the equilibrium state of convection in the bulk
of the convectively unstable region, the effect of turbulent convection on the waves that travel in the stellar medium
is highly sensitive to these approximations. Furthermore, MLT being more of an empirical prescription than a bona
fide theory, it depends on a number of free parameters that are very complicated to constrain physically. The more
refined Reynolds-stress models suffer from the same fundamental limitations.

On the other hand, 3D hydrodynamic simulations have become the subject of an increasing interest in the
context of stellar convection modelling, especially (but not only) in the uppermost layers of stellar convective
zones (Kupka and Muthsam 2017). The advantage of these simulations lies in the fact that the flow is computed
from first principles, instead of relying on ad-hoc prescriptions. However, there are substantial caveats, not the
least of which concerns the grid resolution achieved in these simulations. Because of the highly turbulent nature
of stellar convection, all relevant length scales cannot be resolved, so that ad-hoc prescriptions must be adopted
to model the small, unresolved scales, very often through the introduction of an effective viscosity — of through
the introduction of nothing, in which case the numerical scheme ‘takes care’ of the unresolved scales. Because
of this resolution problem, the flow no longer evolves according to the exact equations of hydrodynamics, and the
equations therefore are not derived directly from first principles. Nevertheless, these large-eddy simulations have
found an increasing use to describe surface stellar convection, in particular to build patched stellar models, because

18In the vocabulary of statistics, the term realisability usually refers to the Probability Density Function (or PDF) associated to the
considered random variables. A PDF is said to be realisable if it is everywhere positive (or at least non-negative), and if it is normalised
to unity. In the scope of fluid dynamics, and more particularly of Reynolds stress models of turbulence, the term realisability more often
than not refers to the flow itself. In that case, the flow is said to be realisable if the determinant of the Reynolds stress tensor is everywhere
positive. A corollary of that condition is that the energy spectrum must be positive for every wavevector Pope (2000)
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they significantly improve the realism of the superficial layers of 1D stellar models, compared to MLT (Schlattl
et al. 1997). However, as for MLT, they show their limitations when it comes to modelling the detailed structure of
turbulence in the superadiabatic region, which, as will become apparent in Chapter 2, is of particular importance
for the coupling of convection with the waves that travel in its midst. Furthermore, these simulations have a high
computational cost, which limits their use for parametric studies, where the physics of convection may be explored
through the use of various control parameters.

I conclude on the matter of stellar convection by saying this: that many modelling approaches have been de-
veloped, which have considerably deepened our understanding of the structure and dynamics of stellar convective
regions; but that there is still much that is not understood, in particular as far as surface convection is concerned,
and that no ideal approach seems to stand out as the ultimate method. Consequently, the question of how to model
convection is not a closed one. This is particularly the case in regard to the interaction of convection with stellar
oscillations, as I will show in Chapter 2, and more specifically in Sections 2.2 to 2.4.
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La lumiére ne peut-elle pénétrer ces
masses ? Revenons a ce cri : Lumiere ! et
obstinons-nous-y ! Lumiere ! Lumiére !
Qui sait si ces opacités ne deviendront
pas transparentes ?

Victor Hugo

To the utter dismay of generations of astronomers, this most passionate cry has fallen into the deaf ears of
Nature, who, as usual, could not care less that it does not make our task easy: no, stars are not transparent, and
with the exception of their most superficial atmospheric layers, their deep interior eludes our direct gaze. While
stellar interiors are opaque to light, however, they are transparent to other kinds of waves, in particular sound waves.
Acoustic oscillations can propagate through the stratified gaseous medium constituting the star, and by rebounding
on its surface, lead to the development of global modes of oscillation. These modes check two very important
boxes: they carry the signature of the physical conditions prevailing in a substantial portion of the interior of the
star; and they can be observed through the perturbations they entail at the visible surface of the star, either by
means of the velocity power spectrum measured via the Doppler effect incurred by spectral absorption lines in the
atmosphere, or by means of the intensity power spectrum measured via the total emergent intensity. From there,
the idea that observing surface oscillations gives us access to the internal structure of the star: this is at the heart
of helioseismology — when applied to the Sun —, and its younger brother asteroseismology — when applied to other
stars. In the immortal' words of Marie-Antoinette: if they have no electromagnetic waves, let them have acoustic
ones! And undoubtedly, the advent of asteroseismology has revolutionised our understanding of stellar interiors.
In this chapter, I start by giving a quick and general introduction on stellar oscillations in Section 2.1, particularly
from a theoretical point of view. As for Chapter 1, this outline is not meant as an exhaustive account of all the

lalbeit wrongly attributed
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refinements brought to stellar oscillation analysis over the decades of existence of asteroseismology, but is rather
meant as a simple theoretical framework in which the rest of the discussion can be articulated. It is largely, if not
entirely, inspired by Unno et al. (1989), and more particularly their Chapter III; naturally, this is where I would
refer the interested reader, should he or she want to know more.

I will specifically focus on solar-like oscillations, which are modes of acoustic nature that develop partly in
the convective envelope of solar-type stars, and are therefore susceptible to be coupled with turbulent convection.
In solar-like oscillators, oscillation-convection coupling is at its strongest close to the surface of the star, where
the convective transport is not as efficient as in the bulk. This coupling is a burden, as much as it is a blessing.
A burden, because convection changes the frequency of the modes. This frequency change is primarily due to
a combination of physical processes happening at the surface of the star, and collectively referred to as surface
effects. 1f one wishes to use individual mode frequencies to probe the interior of the star, one has to treat or
avoid the surface effects in some way. The problem of correcting the surface effects, therefore, is the same as
the problem of modelling turbulent convection, which, as we saw in Chapter 1, is not a small one. Additionally,
turbulent convection plays a very important role in the energetic aspects of solar-like oscillations. Indeed, the
turbulent motions entailed by convection inject energy in the modes, and are therefore directly responsible for
their excitation. In parallel, the same turbulent motions can also take energy from the modes (in other words, damp
them), therefore affecting their typical life time, or even their linear stability.

A burden, yes, but also a blessing in disguise. Because solar-like oscillations bear the mark of turbulent
convection, observations on the former give information on the latter. The difficulties we encounter to model
stellar convection, preventing us from deploying the full arsenal of p-mode frequencies to probe stellar interiors,
are indeed great. But this winter of despair can also be seen as a spring of hope, as an opportunity to use observed
p-mode properties precisely to constrain our stellar convection models. To that end, it is necessary to gain a better
theoretical knowledge of the coupling between what we can observe (the p-modes), and what we wish to study (the
turbulent convection). This is the overarching motivation behind the work I present in this thesis. In the second
part of this chapter, I present the extent to which the turbulence-oscillation coupling, and all of its consequences,
have been studied before, more particularly the energetic aspects pertaining to the driving (Section 2.2) and the
damping (Section 2.3) of the modes by turbulent convection, as well as the surface effects (Section 2.4). In doing
so, I will focus as much on what has been done, as on what still needs to be done; as much on what is fairly
well understood, as on what remains unclear; as much on the closed questions, as on the open ones; as much on
the basis of the work presented in this thesis, as on the reason why it is necessary. By the end of this Chapter, I
will therefore be able to present, in Chapter 3, both the context, and the research problems underlying the work
presented in this manuscript.

2.1 Stellar oscillations: a quick introduction

I presented in detail the equations of hydrodynamics in Appendix A, in the form of a transport equation for
density (which I later put in the form of Equation 1.13), momentum (which I later put in the form of Equation 1.14),
and internal energy (which I later put in the form of the entropy equation A.39). Those are the starting equations,
from which all the properties of the oscillations can be derived (with the exception of the impact of magnetic
fields, which I neglected above, and will continue to neglect in this entire manuscript). During the course of this
introductory discussion, I will be led to adopt a certain number of approximations without which the derivation
would become unnecessarily complicated. I can already list those we adopt from the very beginning

o I will neglect all viscous effects, which amounts to setting o;; = 0 in the momentum equation and in the
entropy equation;

o [ will neglect all effects of turbulence — or, in other words, all effects of convection. This amounts to
discarding the contribution of turbulence to the velocity u of the flow, which now only contains a contribution
from the equilibrium background and a contribution from the oscillations;

o [ will, as I did before, discard the energy generation due to nuclear reactions.

These approximations are important ones — for instance, energy generation is actually not negligible in the core of
the star, while the effect of convection is not negligible in convective regions, and in particular in the superadiabatic
region, as we will see later on in this Chapter. However, they are sufficient for the sake of this basic discussion. I

32



CHAPTER 2. IMPACT OF TURBULENT CONVECTION ON SOLAR-LIKE
OSCILLATIONS

will be led to relax the first hypothesis for the energy equation, as well as the second hypothesis, after this Section.
However, I will continue to adopt the third hypothesis throughout the rest of this thesis. With these approximations
in mind, the continuity, Navier-Stokes” and entropy equations become

a a u;
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(8t T 8x,~)p+p6xi @D
o 8 op  8d
O L= -, 22
p(az +”faxj)” ox: Lox 2:2)
o @ OF
TS 4w )s= -2, 23
P (8t T (?xi)s axi ( )

where I have used the continuity equation to rearrange the first term in the momentum equation, and I have
introduced the gravitational potential @, defined in such a way that g = V®. To this system of equations I
must add one on the gravitational potential @ and another one on the radiative flux. The former only depends on
the mass distribution inside the star, and is locally given by the Poisson equation

V20 = 47Gp , (2.4)

where V? is the Laplacian operator, and G = 6.67 x 10~'! m3 kg~!.s72 is the gravitational constant. As for the
radiative flux, it is given in the diffusion limit by Equation 1.12, which I recall here for the sake of clarity

16073

Frad —
3nkgp

2.5)

The system comprised of Equations 2.1 to 2.5, in addition to equations of state for pressure p(p, T'), entropy s(po, T')
and opacity kg(p, T), form the basis on which oscillations can be described.

2.1.1 Linear perturbation theory for adiabatic oscillations
Linearisation of the equations of hydrodynamics

Setting all time derivatives to zero in this system, and furthermore setting the velocity to zero (in the absence
of rotation and convection, there is no background velocity), one obtains the equations of stellar equilibrium. The
standard form of these equations is found by further assuming spherical symmetry for the star, which amounts to
neglecting all external forces which could break the spherical symmetry by imposing a preferred direction, such
as global or differential rotation, magnetic fields, or the presence of a binary companion for instance. If there is
spherical symmetry, then the resulting equilibrium quantities only depend on the radial coordinate r. I now set out
to linearly perturb the full system of equations around this state, meaning that I will derive the Taylor development
of each of these equations and truncate the development at first-order in the fluctuating quantities. In that spirit,
one can define the Eulerian perturbation of a quantity f as’

f(x,0 = f(x,1) = fo(x), (2.6)

with the understanding that f’ < fy. The reason this perturbation is called Eulerian is because it corresponds to
the difference between f as measured in a Eulerian frame of reference and its equilibrium counterpart. Naturally,
one can do the exact same thing in a Lagrangian frame. For any given Eulerian position X, there is a parcel of fluid
which would lie at this position in the absence of oscillations — i.e. in the equilibrium state. In the presence of
oscillations, this parcel is displaced, and I denote its actual position at time 7 as X(x, #). This allows me to define
the fluid displacement at X as

Ex, 1) =X(x,1)—X. 2.7)

2which now corresponds to the Euler equation

3T warn the reader that the notation f” in this chapter must not be confused with the similar notation adopted in the previous chapter,
where it referred to fluctuations around a time-dependent ensemble average. Here, it refers to fluctuations around a time-independent
equilibrium value.
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The Lagrangian frame is the frame in which the fluid parcel is immobile — otherwise stated, the frame which
follows the movement of the parcel —, so that one can define the Lagrangian perturbation of f as

of(x,0) = f(x+&(x,0,0) = fo(x) . (2.8)

This constitutes an exact definition of the Lagrangian perturbation. However, in a linear perturbation framework,
the fluid displacement is assumed to be much smaller than all other length scales in the system, so that Equation 2.8
can be linearised thus

Of(x,1) ~ f(x, 1) + §&(X, 1) - V f = fo(X)
~ (X0 +&x,0-Vfy. (2.9)

In order to obtain the second equality, I used the definition of f’ (Equation 2.6), as well as the fact that the additional
term & - V f” is of second-order in the fluctuating quantities, and can therefore be discarded.

I express the linear, homogeneous system of partial differential equations yielded by the linearisation of the
system using the Eulerian decomposition

op’ dpo Ou;
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to which must be added the linearisation of the equations of state
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These last three equations must necessarily be written in terms of Lagrangian perturbations: indeed, they pertain to
thermodynamic transformations undergone by a given parcel of fluid, so that only in the Lagrangian frame do the
coefficients (0X/dY)z correspond to actual thermodynamic coefficients. Of course, the same kind of relation can
be derived for Eulerian quantities instead, by plugging Equation 2.9 into these last three relations. However, the
coeflicients appearing in front of p” and 7’ would not coincide with the thermodynamic coefficients, and would also
contain a contribution from the stratification. In other words, they would not depend only on the thermodynamic
state of the gas, but also on the specific structure of the star.

This system of twelve equations has twelve unknowns in the form of p’, u, @', s/, F™d, p’, T’ and kg (I'recall
that the only reason why the velocity perturbation u is not denoted with a ’ is that we considered ug = 0, so that the
velocity perturbation corresponds to the total velocity). All the other quantities depend on the equilibrium structure
of the star only, including all the thermodynamic coefficients in the last three equations. However, several changes
of variables will help put this system in a more practical form. First, I adopt an Ansatz of the form

f'(x,1) = F'(x) exp’” (2.18)

for every Eulerian perturbation f”, where w represents the angular frequency associated to the oscillations. For the
sake of clarity, I will not change the notations of the wave variables; it must be noted, however, that from this point
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onwards, the wave variables actually refer to the time-independent F’ rather than the time-dependent f’. Adopting
Equation 2.18 transforms the system of equations into differential equations on the space variable only, the entire
time-dependence being contained within w. Secondly, I replace the Eulerian perturbation of velocity u by the fluid
displacement £. To do this, let me remark that by definition of these two quantities, we have D&/Dt = u. But
the advection term in the material derivative of £ then yields (u - V)&, which is of second-order in the fluctuating
quantities, so that it can be discarded, and we simply have d€/d¢ = u, or using the Ansatz above, u = jw€.

With these changes in mind, let me derive the new form of the system of equations. Equation 2.10 becomes

. , . 0, 0 0 jwé;
Jjwp +Jw§i£ +po2 5

=0. 2.19
TP (2.19)

Dividing by jw, we recognise that the first two terms together equal the Lagrangian perturbation of density, so that
the linearised continuity equation reads

0&;
Sp + poa—i - 0. (2.20)

Similarly, the velocity equation reads

1oy o ddy 0D

2
—w = —— -, 221
e Po Oxi  po Ox;  Ox; 2D
which can be further split into a radial and horizontal parts
1 9p’ "ddy 0D’
Y S Y i U , (2.22)
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where &, is the radial component of £, &), is the horizontal displacement defined by &, = & — &, (e, is the unit
radial vector pointing outwards), the operator V, is the horizontal gradient defined by V;, = V — e,d,, and we
have used the spherical symmetry of the static equilibrium state to justify that the horizontal gradient of both pg
and ®( vanishes.

The horizontal displacement equation can be used to eliminate &, from Equation 2.20. One finds

62 ’
sp+ 20 r§r+p—ovi P o)=0, (2.24)
r2 Or w? 00

where Vfl is the horizontal Laplacian operator, defined by Vﬁ = V2 -2, and I recall that in spherical coordinates,
the divergence operator contains a curvature term, which explains the presence of 72 inside the radial derivative of
&,. Using a similar decomposition, one can rewrite the Poisson equation

19 26(1), 25/ ’
25 (r ar )+ V, @' = 4nGp’" . (2.25)

Let me now turn to the entropy equation. Replacing u; by jwé; and using Equation 2.9, it reads

7 e d
aFird
6x,~

JjwpoTods = — (2.26)

As for the radiative flux, it can be split into its radial and horizontal components, so that

3 ’
rad _ l60Ty dT

160T3 810 (. T K, ’
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35



2.1. STELLAR OSCILLATIONS: A QUICK INTRODUCTION

where I have used the spherical symmetry of the star to write Vj fy = 0 for all equilibrium quantities. Using
Equation 2.28 to eliminate F;lrad from Equation 2.26, one finds

1 or2F'rad 160°T3
il 2(—0T’ , (2.29)

jwppTpd6s = ————+V
Jepoto r2  or "\ 37k 0p0

where I have once again used the spherical symmetry of the star to justify that the equilibrium radiative diffusion
coefficient only depends on the radial coordinate, and therefore commutes with the horizontal gradient.

Finally, one can decrease the order of the system by expressing the Eulerian and Lagrangian density perturba-
tions p’ and dp as functions of the Eulerian pressure perturbation p’ and the Lagrangian entropy perturbation .
To do this, I start by considering p as a function of the two thermodynamic state variables p and s, so that

op op

op = (%) op + (a) 0s . (2.30)
s p

Since the quantities p/p” and p, on the one hand, and 7 and s on the other hand, are conjugated pairs of state
variables®, one can write

oT\ _ (dp/p*
(3.~ (%5, ean

and pulling 1/p? from the constant-density derivative on the right-hand side, this yields

op oT oT\ (dp
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Plugging this into Equation 2.30, and rearranging to isolate 6p instead, one finds
0, oT
5p = (—p) 5p — p* (—) 55 . (2.33)
dp/, op)

We recognise the adiabatic exponent I'j = (01n p/d1np), and the adiabatic gradient V,q = (d1nT/d1n p),, both
of which have already been introduced in Chapter 1, and finally, splitting §p into p’ and & - V pg, and since the
equilibrium pressure py only depends on the radial coordinate

2
PO poér dpo PT0Vad Ss

Sp = p (2.34)
pol'i pol'y dr Po
Using Equation 2.9, one can obtain a similar relation for p’
2
d ToVad d
A B posr dpo PploVa 5s—§,ﬂ. (2.35)
pol’y pol'y dr Po dr

Eliminating all occurrences of dp or p’ from the other equations using Equations 2.34 and 2.35 respectively,

“I recall that the pairs (A, B) and (C, D) of state variables are said to be conjugated if there exists a fifth state variable X such that for any
elementary thermodynamic transformation, we have dX = AdB + CdD. In our case, X is the internal energy per unit mass, as illustrated
by the thermodynamic relation we already used above to write the entropy equation in the first place. Then it is straightforwardly seen
that, on the one hand, (0(0X/dB)p/0D)g = (0A/0D)g, and on the other hand, (0(0X/0D)g/0B)p = (0C/0B)p. But the Schwarz theorem
stipulates that these two second derivatives are equal, so long as the function X checks all the necessary regularity boxes, which leads to
what is usually referred to as the Maxwell relation (0A/dD)g = (0C/dB)p.
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one obtains
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Since I have eliminated the density variable as well as the two horizontal components of the fluid displacement
and of the radiative flux from the system, there are now only seven equations, with seven unknowns in the form
of p’, &, 05, ¥, F /,rad, T’ and k. However, there actually is an eighth unknown in the system, in the form of the
angular frequency w. Therefore the system cannot be solved without an additional constraint: I will return to this
matter later on.

On the adiabaticity of stellar oscillations and validity of the Cowling approximation

It is possible, under certain circumstances, to approximate the Lagrangian perturbation of entropy ds by a
much more practical expression, which frees us from having to include it in the set of wave variables. The most
drastic of these approximations is to consider that all thermodynamic transformations undergone by a given parcel
of fluid are isentropic, that is to say both adiabatic (so that there is no transfer of entropy between the parcel and
the neighbouring gas), and reversible, or quasi-static (so that there is no creation of entropy inside the parcel). This
assumption is commonly referred to as the adiabatic approximation, even though it is actually stronger than mere
adiabaticity. The adiabatic approximation translates best in the Lagrangian frame of reference: indeed, only in
this frame does the variation of a thermodynamic variable correspond to an actual thermodynamic transformation
undergone by a physical system. The mathematical translation of that approximation, therefore, is simply s = 0
(this is the reason, incidentally, why we chose to write all variables in a Eulerian frame, except for ¢s). This
substantially simplifies the system comprised of Equations 2.36 to 2.42: not only does ¢s vanish, but that also
makes Equations 2.38 and 2.40 to 2.42 useless, as the only reason I needed them in the first place was to describe
the non-adiabatic density perturbation.

To what extent can the oscillations be considered adiabatic? To answer this question, one has to compare
timescales, more specifically the typical timescale associated to the oscillations, and the typical timescale asso-
ciated to the thermal processes responsible for heat transfer. The former corresponds to the typical period of the
modes: about 5 minutes in the Sun. The latter requires a bit more thought. At first glance, one may be tempted
to use the Kelvin-Helmholtz time scale, defined as the ratio of the total gravitational potential energy stored in the
star to its luminosity: gy = GM/ LR?, where M is the mass of the star, L its luminosity, and R its radius. This
corresponds to the time it would take for the star to radiate its energy away if there were no supply from nuclear
reactions in the core. For the Sun, this is of the order of thirty million years, which is much longer than the os-
cillation timescale. However, this is only an averaged value of the thermal timescale over the entire star, and does
not account for its large variability between the core and the surface. A local Kelvin-Helmholtz time scale can be
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defined, in the form (e.g. Dziembowski and Koester 1981)

M

T

Txp(m) = f —C’; dm, (2.43)
m

where the virial theorem® was used to equate the opposite of the gravitational potential energy of a given layer

with twice its internal energy (the factor 2 was then omitted, because I am only after an order of magnitude), cp,
T and L are now local quantities, and m(r) is the mass coordinate, defined as the total mass contained below the
layer of radius r. Throughout most of the interior of the star, the local thermal timescale is still much greater than
the period of the oscillations. In that case, the gas has no time to exchange heat during a cycle of the modes, so
that they can indeed be considered adiabatic to a very good approximation. However, this ceases to be true close
to the surface of the star, where the two timescales become comparable. The adiabatic approximation is no longer
valid in this region, and the entropy perturbations must then be accounted for. For the sake of this introduction,
however, and because I simply aim at presenting some very basic properties of stellar oscillations, I will adopt the
adiabatic approximation throughout the entire star.

In the following discussion, and because it further simplifies the formalism while being fairly accurate, espe-
cially for modes that have a large number of nodes in the radial direction, I will also adopt the Cowling approxima-
tion (Cowling 1941), which consists in neglecting the Eulerian perturbation of the gravitational potential: ® = 0.
The basis for this approximation is that, if the spherical symmetry of the star is not broken by the oscillations to
too large an extent, then the total potential ® at radius r is given by the total gas mass enclosed by the sphere of
radius r centered on the center of the star. The idea, then, is to state that at any given time, the regions of the star
where there is an excess of mass due to the oscillations compensate the regions where there is a default, so that
in total, the deviation of ® from its equilibrium value is negligible. As a result of the Cowling approximation, ®’
vanishes from the system of equations, and Equation 2.39 becomes useless.

Under these two approximations — the isentropic character of the oscillations, and the Cowling approximation
—, the system of Equations 2.36 to 2.42 reduces to the much simpler form
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Now, there are only two equations, and three unknowns, in the form of the radial displacement &, and the Eule-
rian pressure perturbation p’ (both of which are functions of the three space coordinates), as well as the angular
frequency w. Of course, the remark I made earlier about needing an additional constraint still holds.

Splitting the radial and horizontal component

For the moment, the wave variables depend both on the radial and horizontal coordinates. However, I have al-
ready split all vector variables and operators into a radial and horizontal parts. Therefore, Equations 2.44 and 2.45
is prime for a separation of variables, which can be performed thus. The radial displacement and pressure pertur-
bation can both be written in the form

f(r.6,9) = F(nY(6,9¢) , (2.46)

where 6 and ¢ are the latitudinal and azimuthal angles, F contains the radial dependence of f, and Y its angular
dependence. In the following, I will retain the notation &, and p’ for the wave variables, with the understanding
that they now refer to the radial function F'(r) rather than the 3D function f(r). Plugging this in Equation 2.44, and
rearranging to isolate the radial terms from the angular terms, one obtains

Pov? (107 0, & dpo)_ IV 47
p \r? or  pol't  pol't dr . |

Y

>The virial theorem states that if the Lagrange function of a system is homologous of degree k — meaning that it goes as the k-th power
of the generalised coordinates —, then the time average of the kinetic and potential energy (respectively (T') and (E,)) are related through
2(T) = k(E,), with the only requirement being that all trajectories of the system in phase space must remain bounded (Landau and Lifshitz
1976). In our particular case, the average kinetic energy is of microscopic origin, and corresponds to the internal energy U of the gas, and
the mean potential energy — being of gravitational origin — is homologous of degree —1, so that (U) = —(Egay)/2.
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The left-hand side only depends on r, while the right-hand side® only depends on 6 and ¢. Since they are identically
equal, neither depends on anything, and they are simply constant. Let me denote this constant as C, then one has

C

V%Y =-=Y, (2.48)
r

which constitutes a second-order differential equation for Y, with the additional constraint that ¥ must be 27-

periodic in both 6 and ¢. Solving this equation is equivalent to finding the eigenfunctions of the operator V%.

Those are given by
Y0, ¢) = P'(cos 6) exp™™ | (2.49)

where P}" is the associated Legendre polynomial’ of degree [ and order m, and [ is given by C = I(I + 1). If we
leave it at that, C can take any value, and therefore so can /: this relation just transforms the unknown C into the
unknown /. However, the function Y is subjected to certain boundary conditions: the periodicity of Y forces m
to take an integer value, and the associated Legendre polynomials can only be regular at the poles if [ is also an
integer. Therefore, the entire angular dependency of the wave variables is only parameterised by the two integers
I and m (with the additional constraint that |m| < [, otherwise ¥;" vanishes everywhere).

Now that the angular part of the wave equation is taken care of, one can transform Equations 2.44 and 2.45
into purely radial equations. This is done by replacing the horizontal Laplacian operator by its expression (Equa-
tion 2.48), with C = [(I+1). Furthermore, let me remark that d®q/ dr = go, where gy is the norm of the equilibrium

gravitational acceleration®, and let me use the hydrostatic equilibrium condition to write dpg/dr = —pogo. One
then obtains
1 dr zfr le p/ 80
— +|1-—=|—-=&,=0, 2.50
r2 dr w? | poc? ¢ Z (2:50)
1 dp’
_i+&pf+(1v2_w2)§r:o, (2.51)
po dr — poc?

where ¢? = poI'1/po is the square of the celerity at which sound waves propagate, and I have introduced the two
characteristic squared frequencies

1 dpo 1 dpo
N? = go| — 20 _ —_2F0) 2.52
gO(Porl dr  po dr) (22)
I+ 1)c?
2 _
L= —a (2.53)

respectively referred to as the square of the Briint-Viiisdld frequency and of the Lamb frequency. When the stratifi-
cation is such that N> > 0, the buoyancy force acts as a stabilising force, dragging a parcel back down when a local
fluctuations displaces it upwards. In this case, the buoyancy force acts as a restoring force, allowing for buoyancy
waves (or gravity waves) to propagate: the Briint-Viisild frequency represents the frequency of these waves. On
the other hand, if N2 < 0, then V—N2 represents the linear growth rate associated to the convective instability.
As for the Lamb frequency, it is better represented in terms of the local horizontal wave vector associated to the
angular degree [, k, = I(I+ 1)/r. Then we simply have L; = kjc, and it can be seen that the Lamb frequency
corresponds to the angular frequency associated to the horizontal propagation of waves.

2.1.2 Stellar oscillations as resonant modes
The boundary value problem

As I mentioned above, the system comprised of Equations 2.50 and 2.51 has one more unknown than equations,
because the angular frequency w of the waves is also to be determined. Boundary conditions must therefore be

0 0 0*
T recall that in spherical coordinates, Vﬁ = (sin 60— (sin 9—) + —) As such, while the operator V,Zl does depend on r, this

r2sin’ @ o0 ) d¢?
is not the case of > V2.

"The associated Legendre polynomials differ from the actual Legendre polynomials, in the sense that they depend on an additional
parameter m — Legendre polynomials do not have an order, only a degree. As it happens, if m is odd, the associated Legendre polynomials
are actually not polynomials at all.

8Tn general, we have V@, = —gy; but in the spherically symmetric case, gy = —goe.
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added to these two equations, and because the system is of second order in the radial coordinate r, two boundary
conditions are needed: one at the center of the star and one at its surface.

The equations can be simplified at the center, because both the gravitational acceleration gy and the Briint-
Viisdld frequency vanish, whereas the Lamb frequency diverges. Furthermore, the gradient of py vanishes, for
regularity reasons. Therefore, the system of equations becomes

(&) _w+np

) 2.54
dl" (/_)2 po ( )
d /7
P'/po _ W, | (2.55)
dr
which amounts to the following second-order differential equation
d? (rzfr)
4 - I+ D&, . (2.56)
P

Assuming that the radial displacement goes as a power function of r close to the center, characterised by an
exponent «, one finds

(a+2)(a+1)=1l1l+1), (2.57)

with two possible solutions: @ = [ — 1 and @« = —[. Naturally, & must remain regular at » = 0, so that the
second solution is not physical. That leaves us with & o #/~!, from which one also obtains p’ o« r/. This
constitutes the first boundary condition at the center. Concerning the surface, multiple boundary conditions can
be adopted. The simplest one consists in assuming that while the surface can be distorted under the influence of
the oscillations — meaning that the surface radius changes with time —, the pressure must remain identically null
there, lest mechanical work be exerted on the star by a medium that does not contain matter. In other words, the
Lagrangian perturbation of the gas pressure must vanish: 6p(r = R) = 0. This constitutes one possible second
boundary condition at the surface, although others exist (Unno et al. 1989).

The second-order system of equations, together with these two boundary conditions, form a well-posed bound-
ary value problem, to which a discrete spectrum of eigenfrequencies can be associated. It is common to put this
kind of system of equations and boundary conditions in the following canonical form (e.g. Hartman 2002)

d d
- (p(r)—f) + g0 () = =W f () (2.58)
r dr

where the unknowns are the function f(r) and the scalar o, and the functions p(r), g(r) and w(r) are known
functions of the radial coordinate r. This canonical form, known as a Sturm-Liouville type equation, is very useful,
because the solutions f(r) and o are then given as the eigenvectors and eigenvalues of the linear Hermitian
operator

1 1 d

If, in addition, boundary conditions of the form a f(r1) + B1f'(r1) = 0 and as f(r2) + Bof’(r2) = 0 are imposed
(where r; and r, are the two radial boundaries, and f’ denotes the first derivative of f with respect to r), this
becomes a Sturm-Liouville problem: the acceptable eigenfunctions are filtered according to whether or not they
verify the boundary conditions, and the spectrum of solutions to the problem becomes discrete, with real eigen-
frequencies o2 that can be indexed with an integer n (referred to as the radial order of the solution), and a unique
function f,(r) associated to each of these real eigenfrequencies having exactly n — 1 zeros between r; and r;
(Hartman 2002).

Unfortunately, Equations 2.50 and 2.51 do not constitute a Sturm-Liouville type equation. While it might
look like a mere mathematical coincidence, this problem actually has a much deeper and physical origin. The
fundamental reason is that there are two different restoring forces: the buoyancy force, and the pressure force; and
therefore, two different kinds of waves that can propagate in the interior of the star: gravity waves and acoustic
waves (or sound waves)’. The coexistence of these two restoring forces is what prevents us from putting the system

9With the exception of radial waves, i.e. if [ = 0: then, gravity waves do not exist, and only acoustic ones can propagate.
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in the form of Equation 2.58. However, in the limit of high frequencies (6> — +0), the buoyancy restoring force
becomes negligible, and only acoustic waves remain. On the contrary, in the limit of low frequencies (o> — 0), the
pressure force becomes negligible, and only gravity waves remain. In these two limits, the problem does reduce to
a Sturm-Liouville type, provided simple boundary conditions as those described above are adopted. Whether o>
is high or low enough or not, however, the solutions can still be associated each to their own radial order n.

Trapping of stellar oscillations

While the system does not generally constitute a Sturm-Liouville type equation, it can still be put into a more
canonical form, by changing variables one last time. Let me introduce the new wave variables (Unno et al. 1989)

E(r) = P&, (r) exp (— f r%dr’) , (2.60)
0
’ r Q0.0
=L © exp (— Mdr’) . (2.61)
po(r) o &)

Then, forming the derivative of these variables with respect to r and using Equations 2.50 and 2.51, one finds

& PR
& =3 (w_lz - l)n(r) : (2.62)
dr_ 1 (o2 - N?) &) (2.63)
dr — r2h(r) o ‘
where
_ "NAr)  go(r)
h(}’) = exp( o m - Tr’) dl") . (264)

Let me perform a local analysis, meaning that I will consider the coefficients in these equations to be independent
of r. Then one can inject an Ansatz for the radial dependence of &, and 7, in the form

f(r) = fexpjk’r , (2.65)

where the radial function f(r) is replaced with a constant f, and the entire radial dependence is contained within
the exponential factor. One can then derive a dispersion relation between the time dependence and the radial
dependence of the perturbations — in other words, between w and &,

2 12\(, 2 _ AR
kf:(w L’Czi;u N). (2.66)

As a first remark, it can be seen that the dispersion relation, like the original wave equation, is independent of the
azimuthal order m of the solution. As such, in this simple framework, there is a degeneracy among all modes that
share the same radial order n and angular degree [. This degeneracy is lifted whenever the spherical symmetry
assumed from the beginning is broken, whether it be by rotation, magnetic fields, etc., in which case modes of
different azimuthal order are split from each other. However, in the present discussion, I discard the effect of
these symmetry-breaking processes. Equation 2.66 shows that the squared Briint-Viisili frequency N2 and Lamb
frequency le are key to study the local nature of the oscillations. More precisely, considering a particular solution
to the system of equations, characterised by a known angular eigenfrequency w verifying the boundary conditions
described above, and a known angular degree [, then any region in the star falls into either one of these categories
e if the local values of N and L7 are such that w?® > N2, L? or w* < N?, L7, then we have k? > 0, and the radial
wavevector is real. The Ansatz exp/” then shows that the perturbations are oscillatory in nature. In other
words, they are associated to waves that can propagate in the radial direction. Naturally, they also propagate
in the horizontal direction, with a horizontal wave number (already introduced above) k;, = VI([+ 1)/r.
These regions are therefore referred to as propagative regions;
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o if the local values of N* and L7 are such that N> < w* < L7 or L? < w* < N2, then we have k? < 0, and
the radial wavevector is purely imaginary. The Ansatz exp/*" then shows that the perturbations either grow
or decay exponentially with r, and cannot propagate. More specifically, the direction of variation must be
increasing in the direction of the closest propagative region (increasing with r if the propagative region is
located above, decreasing if it is located below). In other words, the perturbations vanish exponentially the
further away they are from their propagative regions. These regions are therefore referred to as evanescent
regions.

From this local analysis stems that fact: that the solutions to the wave equation are only oscillatory in nature
in certain regions of the star, depending on their frequency and angular degree. The waves propagate in these
regions, and are reflected on the boundary of these regions — also called furning points —, only leaving evanescent,
non-propagating waves leaking into the neighboring regions. In other words, the oscillations are trapped. Because
of the multiple reflections of the waves on the turning points, the propagative regions act as resonant cavities,
and the waves actually take the form of stationary modes of oscillation'’. Unlike what one may have thought
at first, it is therefore not the boundary conditions imposed at the center and the surface of the star that trap the
oscillations, but the physical conditions reigning inside the star. The eigenfrequencies w, however, still stem
from the global boundary conditions, not to boundary conditions at the turning points of the resonant cavities'!,
although the structure of the trapping regions has much more impact than that of the evanescent regions on the
eigenfrequencies.

p-modes versus g-modes

The condition of wave trapping depends on the Briint-Viisild and Lamb frequency profiles N2(r) and le(r),
which allows the visualisation of the locations of the resonant cavities in the form of a propagation diagram. The
propagation diagram largely depends on the type and the mass of the star considered. However, for the sake of this
discussion, I do not delve into the entire zoology of stars that can be found in the Universe; rather, I focus on the
case of solar-like stars, and more particularly the Sun, as these are the stars in which I will interest myself in this
manuscript.

The definition of the Lamb frequency shows that it diverges at the center. In addition, if ¢ decreases with r —
which is the case throughout most of the star, with the exception of the chromosphere —, then le itself decreases
monotonously outwards. This behaviour is quite independent of the type of star considered. The behaviour of
Nz(r), however, is much less universal. As we mentioned in Section 2.1.1, it is negative in convective regions,
and positive in radiative regions. In the Sun, that means we have N2(r) > 0 up to r/R ~ 0.7 (where r/R is the
fractional radial coordinate), and N2(r) < O from 0.7 to almost 1. Then, because of the fast transition between
the convective envelope and the radiative surface, N> quickly increases again, and takes positive values in the
very superficial layers of the star. We show this behaviour in Figure 2.1. It can be seen, then, that depending on
the eigenfrequency, a given mode is either going to be trapped in a central region, where w? < N? < le, or in
an envelope region, where N? < le < w?. In the case of the Sun, those two types of trapping regions are quite
distinctly separated'”, and are referred to the G-trapping region and P-trapping region respectively. The modes that
are trapped in the G region are called g-modes, or gravity modes, and the modes that are trapped in the P region are
called p-modes, or acoustic modes. The reason for the denomination “gravity” and “acoustic” modes will become
apparent in a moment.

Let me consider briefly each type of mode, starting with the p-modes. These modes are trapped between a
certain point in the interior, referred to as the inner turning point r;, and another point very close to the surface.
The inner turning point is reached when the angular frequency of the mode is no longer larger than the local Lamb

10As such, the term “propagative region” is perhaps a bit misleading, seeing as stationary modes cannot propagate.

' Besides, this would lead to a circular definition, since the turning points themselves — corresponding to the locations where w? = N?
or w? = L} — depend on the frequency

12For stars where the distinction is not as clear, there can exist modes that have two important trapping regions — one of type G, and one
of type P—, separated by a thin evanescent region coupling the two main cavities. Those are referred to as mixed modes, and are particularly
important in more evolved stars, such as red giants. The reason is that the core contraction increases the Briint-Viisdiéd frequency in the
radiative core, while the envelope swelling decreases the Lamb frequency. While mixed modes are a very important subject of study, I
choose to focus the discussion on the solar case here, and I only mention them for the sake of completeness.
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Figure 2.1: Solar propagation diagram, as a function of the fractional radial coordinate r/Re (Where R is the solar
radius). The solid line represents the Briint-Viisild frequency N, where negative values in the convective envelope
are not shown. The dashed lines represent the Lamb frequency L; for different values of the angular degree /. The
horizontal lines show the extent of the propagative regions for two different modes of frequency v = 100 yHz and
2000 uHz respectively (we recall that the frequency v and angular frequency w are related through w = 27nv.), the
second one having an angular degree [ = 20. Credits: Aerts et al. (2010).

frequency. Therefore, it is given by the following implicit relation
» I+ DAE(r)
W= —

2
rt

2.67)

In particular, since L12 increases with /, so does ry: the higher the angular degree of a p-mode, the narrower the
cavity in which it is trapped. When the wave reaches the inner turning point, Equation 2.66 shows that k, = 0:
in other words, the wave propagates horizontally. We see now, therefore, that the reason the wave “reflects” at
r = r; has actually nothing to do with an actual reflection, but is due to the refraction of the wave that continuously
curves its trajectory'?, until it becomes horizontal and goes back up again. This is illustrated in Figure 2.2 for
several value of the angular degree /.

As for the outer turning point, it is due to the sudden increase of N2 at the surface, which in turn provokes a
sudden increase of the acoustic cut-off angular frequency w,.. The outer turning point is therefore independent
of angular degree, and only has a very weak dependence on frequency. It is because of this behaviour of N2 — or
equivalently of w,. — that the p-modes are consistently trapped below the photosphere, and that the atmosphere
itself plays the role of an evanescent region. There, of course, the local analysis conducted above is no longer valid,
because of the very small scale associated to the stratification. From the point of view of the wave, the change
in the physical conditions amounts to a discontinuity, which means that, unlike what happens at the inner turning
point, the wave actually undergoes reflection at the surface.

The nature of the p-modes can be unveiled by looking at their dispersion relation. As we have seen in Chapter 1,
the bulk of stellar convection zones is characterised by a very efficient convective transport, which means that N2,
which must be negative for the convective instability to arise, is actually barely below zero. As such, we can
consider |[N?| < w. Then the dispersion relation (Equation 2.66) takes the simpler form

2 12
k2~“’ L

r CZ

(2.68)

This is further rearranged by remarking that the horizontal wave vector associated to the angular degree [ is given
by k;, = VI(l + 1)/r, meaning that L; = kyc. Therefore, this dispersion relation simply reduces to

K== (2.69)

3The trajectory of the wave must be understood as the curve defined in the scope of the ray theory, by analogy with geometrical optics.
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Figure 2.2: Propagation of sound rays in the solar interior for two acoustic modes of different angular degree. The
lower turning points r; of the two modes are represented. The mode with the smaller value of r; has the lowest
angular degree. On the other hand, the upper turning point of the two modes is relatively similar, and located just
beneath the surface of the Sun. Credits: Di Mauro (2012).

where k2 = k% + kﬁ is the norm of the total wave vector, including its radial and horizontal components. This is
identical to the dispersion relation for acoustic waves, which shows that in a p-mode cavity, the waves are acoustic
in nature. This is, in fact, not surprising: indeed, I already remarked that there are two restoring forces leading
to the propagation of waves in a star. But in a convective zone, the buoyancy force is destabilising, and as such
cannot act as a restoring force. This leaves the pressure force as the only possible restoring force, and explains
why the waves propagating in a convective zone are necessarily acoustic waves. This could have been seen from
the start; but it is also instructive to see it arise naturally from the dispersion relation.

As for g-modes, Figure 2.1 shows that they are trapped in a more central region of the star. This is because the
condition w? < N? can only be fulfilled if N> > 0, i.e. in a radiative zone. Additionally, the condition w? < le
cannot be fulfilled for / = 0, because L;—¢ = 0. In other words, all g-modes are non-radial. This time, both the inner
and outer turning points are given by the condition w? = N2. While the inner turning point is not too dependent
on frequency, the outer turning point is deeper in the core for higher frequency modes. Unlike the p-mode turning
points, the g-mode turning points are completely independent of /. Similarly to p-modes, the dispersion relation
associated to the g-modes tells us about their nature. One can see from Figure 2.1 that in the g-mode frequency
range, one pretty much always has w < L, so that the dispersion relation (Equation 2.66) reduces to

2

L
K = > c: S(N? - o), (2.70)

which can be rearranged by introducing the horizontal wave vector

2 2
% = % - (2.71)

h
This reduces exactly to the dispersion relation of internal gravity waves, which is why these modes are called g-
modes, or gravity modes, in the first place. In particular, the g-modes dispersion relation is anisotropic, in the sense
that it does not only depend on the norm k of the wave vector (like the p-mode dispersion relation), but also on its
direction. This is not surprising, of course: while the pressure force, responsible for the propagation of acoustic
waves, is isotropic (by definition of the gas pressure), the gravitational force responsible for the propagation of
internal gravity waves has a preferred direction — the local direction of the gravitational acceleration.

Solar-like oscillations: what about the effect of convection?

In this introductory discussion, we saw that a star is subjected to a discrete set of resonant oscillating modes.
As I hinted in the introduction of this Chapter, these modes can be observed through the oscillating pattern of either
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Figure 2.3: Solar velocity power spectrum, as observed by an eight-month run of GOLF measurements. Credits:
Lazrek et al. (1997).

the radial velocity of the surface of the star, or its emergent intensity. In practice, a Fourier transform in time of the
‘velocity curve’ or of the light curve is performed, yielding respectively a velocity power spectrum or an intensity
power spectrum of the star. This is illustrated in Figure 2.3, which shows the velocity power spectrum of the
Sun as observed by GOLF: the oscillations take the form of a forest of resonant peaks, whose central frequencies
correspond to the eigenfrequencies of the modes. Not only in the remainder of this Chapter, but in the rest of this
thesis as well, I will only discuss solar-like oscillations. We saw earlier that, in such stars, g-modes are confined in
the core, while the p-mode cavity extends to the surface. As such, only p-modes can be observed on the surface'*:
all the peaks in Figure 2.3 correspond to resonant p-modes. As such, this kind of spectrum is often referred to as
a p-mode spectrum.

Observations of the p-mode spectrum of a star constitute a gold mine of information on various aspects of the
stellar interior. The extraction of the central frequencies of the resonant peaks, in particular, allows for the precise
determination of their eigenfrequencies, and give invaluable information on the equilibrium structure of the star —
information that cannot be obtained any other way, except through very indirect and more uncertain means. The
regularity of the frequency pattern, which is even visible to the naked eye from Figure 2.3 for instance, gives
access to seismic indices that can be used to constrain certain stellar parameters, like the radius or the mass of the
star. Individual mode frequencies, if they can be identified with the corresponding values of the radial order n,
angular degree / and azimuthal order m, can also be used to map the stellar interior, through inversion techniques.
The more frequencies are observed, the better the mapping. But in order for this invaluable information to be
extracted from the observed spectra, measuring frequencies in a precise and accurate manner is not sufficient: we
must also be able to theoretically relate mode frequencies to the structure of the medium in which they develop.
In other words, from a given stellar model, we must be able to theoretically — or numerically — predict what the
frequencies are going to be: only then does the comparison between predicted and observed frequencies allow
us to assess our understanding of stellar interiors. The probing of stars with seismic frequencies can only be as
accurate as our stellar models. The problem, then, is that, as we made abundantly clear in Chapter 1, our models
for convective motions inside stars are not nearly accurate enough. This is a major obstacle to the use of observed
frequencies for internal probing of stars, not only for solar-like oscillators with a convective envelope, but for any
star whose observationally available oscillation interact with convection in any way. In particular, the inadequacy

“We note, for the sake of completeness, that there are claims that g-modes have been detected in certain solar datasets (Garcia et al.
2007; Fossat et al. 2017; Fossat and Schmider 2018). However, these claims are very controversial, and not only have these detections
never been definitely confirmed, they have even been discarded as being ‘artifacts of their methodology’ (Appourchaux et al. (2018); see
also Broomhall et al. (2010)).
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of existing models for stellar surface convection in solar-like oscillators causes a discrepancy between the observed
and predicted p-mode frequencies, known as “surface effects”. This is a part of convection—oscillation coupling
that is very important to understand.

The central frequency of the peaks is not the only information that can be extracted from the observed power
spectrum: if observations are performed over a sufficiently long period of time, the line profile of the p-modes
can also be resolved. In particular, their width in the Fourier domain, as well as their amplitude, can be extracted
individually. While the frequencies of the modes are related to the equilibrium structure of the star, their amplitude
and linewidth are markers of the energetic aspects of the modes. In solar-type stars, those are also related to surface
convection, which is responsible both for the stochastic excitation of the modes, and their linear damping. For all
these reasons, therefore, turbulent convection has a significant impact on the p-modes in solar-like oscillators. In
this introductory discussion, I have so far elected to neglect convection in the treatment of stellar oscillations: the
remainder of this Chapter is dedicated to restoring convection in the linearly perturbed equations governing stellar
oscillations, or equivalently, in the wave equation that stems from these linear perturbations. I will split the rest
of this discussion three ways: in Sections 2.2 and 2.3, I will focus on the two energetic aspects mentioned above
— respectively the stochastic excitation and the linear damping of the modes by convection. I will then discuss
‘surface effects’ in Section 2.4.

2.2 Mode driving

As I just mentioned, the turbulent convective motions of the gas are responsible for the stochastic driving of the
modes. The coexistence of linear damping and inhomogeneous forcing leads to the establishment of a stationary
state as regards the energetic behaviour of the modes. This stationary state is responsible for the observed amplitude
of the modes, and results from a balance between the damping and driving processes. Understanding the observed
mode amplitudes, and, perhaps more importantly, inferring properties of turbulent convection from these observed
amplitudes, therefore requires a thorough theoretical understanding of both mode driving and mode damping. Let
me, in this section, discuss our current understanding of the former.

2.2.1 Anillustrative toy-model for excited harmonic oscillators

Before we dive into the core subject of this section, that is the excitation mechanisms for solar-like p-modes, let
us briefly examine the general case of a linear, harmonic oscillator that is both linearly damped and stochastically
excited. This illustrative toy model will allow me to introduce a certain number of general properties that will be
useful for the rest of the discussion.

Driving-damping balance

Let me denote the oscillating variable as z(f), the linear damping rate as 7, the angular eigenfrequency as wo,
and the forcing term as f(¢). Then the equation of evolution governing the behaviour of the oscillator is

d?z o dz
dr? T

The general solution of the corresponding homogeneous equation — i.e. the same equation where f(¢) has been set
to zero —is

+wie(t) = (1) . (2.72)

() = Aexp "IN Bexp M Vo P (2.73)

where A and B are two constants that only depend on the initial state. Without loss of generality, we can define
the time ¢ = 0 in such a way that B = 0. The solution of the inhomogeneous equation is then found by varying the
constant A. Setting

() = Aty exp "INt (2.74)
and plugging this into Equation 2.72, one finds

d’A dA :

ar " YN = fexpT N 275)
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which can be immediately integrated once with respect to time ¢ to yield

——2]‘/60 n2A = f dr’ £y exp” Nl (2.76)

This first-order differential equation governs the evolution of A(#), which is the instantaneous amplitude of the
oscillation. While this is the exact form of the equation, it can be drastically simplified in the case where n < wy,
i.e. if the lifetime of the oscillation is much longer than its period. This approximation is relevant to the case
of solar-like oscillations, where the typical damping rate does not exceed ~ 10 uHz, while the frequencies are

of the order of a few mHz. In this case, not only can the square root . /w% — n? be approximated by wy, but the
first term on the left-hand side becomes negligible compared to the second term on the left-hand side. The reason
is that the amplitude of the oscillation varies over time scales comparable to the lifetime of the mode, so that
|[dA/ df] ~ nA < wpA. As such, Equation 2.76 transforms into an algebraic equation. The amplitude becomes

; !
A = = f dt’ f(t") exp™ i’ (2.77)
2wo J-

(o9

and the solution of the inhomogeneous equation (Equation 2.72) becomes

. !
(1) = - f dr’ f(t) expn(t’—t)+jwo(t’—t) ) (2.78)
20)0 -0
The instantaneous value of the oscillating variable is therefore the combination of a continuum of kicks f(¢’) for
all times ¢’ in the past, and each kick leads to an oscillating response which dies away after a time ~ 1/7. Because
there are always more kicks to replenish the energy lost to damping, the oscillation always has the same typical
amplitude. This is perhaps better seen in terms of the energy of the mode. It is proportional to the modulus square
of z(1), and therefore

E(t) <

!
dry | dry f(11)f (1) expitirtiwola=i) (2.79)

Because f(¢) is a stochastic process, so is E(f). The relevant quantity, in practice, is therefore the ensemble
average (E(1)) of the power spectrum, i.e. its average over a large number of realisations'”. Using the linearity
of the ensemble average to pull it inside the integrals yields an expression of (E(#)) as a function of the two-time
correlation product of the driving source f(z). Then, changing variables from (¢1, ;) to (7, '), where ¢’ = (t; +12)/2
and 7 = #] — 1p, and further casting the boundary of the integral over 7 to infinity (on the grounds that the correlation
product {f(¢) f(t + 7)) vanishes quickly when 7 is large), one obtains

exp—Znt t +00 .
(E()) o< e f dr’ f dr{f(&)f({ +1))yexpT H/oT (2.80)
0 —00 —00
Forming the time derivative of this expression finally yields
d(E oo o
fjt> —21(E) + C f de(f()f(d + 7)) exp> 1 —DHjwot (2.81)
=P

where C is a constant which, for the purposes of this illustrative toy-model, we do not attempt to quantify, and the
last term on the right-hand side correspond to the power injected in the oscillator by the driving source. We denote
this power as P.

This last equation governs the evolution of the energy of the mode, which contains two terms: one is a positive
contribution from the driving source, and does not depend on the energy itself; the other is a negative contribution

150bviously, if we were to actually observe this oscillator, this would not be true, because we would only have access to one realisation.
But if the observations are made over sufficiently long time scales, then the total observation time can be split into shorter periods that are
long enough for the definition of the power spectrum to still hold, but short enough that each of these sub-periods are independent of each
other. Then the average over the sub-periods is considered to be equivalent to an actual ensemble average: this is the ergodic principle.
Everything hinges on this principle, which is both indispensable and unverifiable — since there is only one Universe that we can observe.
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from the linear damping, and is proportional to the energy itself. In particular, the stationary state of the mode is
found by setting the time derivative of the average energy to zero, in which case one finds

(E)stat = 22 . (2.82)
n

This illustrates perfectly a key property of damped and stochastically excited oscillators: that their observed energy
is the result of a balance between the injected power # and the damping rate 7.

Line profile in the power spectrum

In practice, solar-like oscillations are observed not in the time domain, but in the Fourier domain — in other
words, the observations provide with the power spectrum of the oscillating quantities. In this toy-model, this is
given by

1
272

obs

P(w) =

o), (2.83)

where Tops is the total observation time, and the Fourier transform of z in time is defined by

—+00

ZAw) = L dt z(t) exp /" . (2.84)

V21 Jeo

Plugging Equation 2.84 into Equation 2.83 gives an expression of the power spectrum in terms of z(¢)
1 .
P(w) = ——— || dry dey 2*(11)2(t2) exp/™ =) 2.85
(@) snrgbsﬂ 1 diy 2 (0)2(12) exp (2385)

where the notation * refers to a complex conjugate. In turn, plugging Equation 2.78 yields an expression of the
power spectrum in terms of the driving source f(f), in the form of a quadruple integral

1 + 00 +00 1 ) ' .
—3277(,02T2 f dr f dt, f dr; f disf(t3) f (1) eXpTI(11+I4—la —h)+jwo(t1+14=13-12) explw(n —h) (2.86)
0% obs Y™ —o0 —00 —00

P(w) =

Performing the usual integral permutation, it can be shown that the power spectrum is expressed as

1 F(w)

P(w)) = , 2.87
(P@)) 167rT0bswé (w — wp)?* + n? (2.87)
in terms of the correlation spectrum of the driving source f(¢)
1 +00 . ,
Fw= ——— [t e gy 2.88)
Tgbs \/ﬂ -

provided the stochastic process f(t) is stationary (i.e its multi-time statistics are independent of absolute time,
and only depend on time differences). This shows that the Fourier representation of a stochastically excited and
linearly damped harmonic oscillator is a Lorentzian profile, centered around the eigenfrequency wq of the mode,
and whose linewidth is 25 (this is why the damping rate of a mode can be inferred from observation if the line
profile of the mode is resolved, a point on which I will have the opportunity to return in Section 2.3.1). This is
only on the condition that F(w) does not depend too much on w over the frequency range [wo — 217 ; wo + 2n]
— i.e. on the condition that the driving source is not too frequency dependent. This is the case if the driving
source is incoherent, which is the case in the stellar context. When the observations of the solar power spectrum
became precise enough to allow for the spectral resolution of the solar p-mode line profiles, they revealed that
the line profiles indeed feature a Lorentzian shape (Gabriel 1995), as illustrated in Figure 2.4, which was a robust
giveaway that solar p-modes were indeed stable, and that their observed amplitudes were indeed due to stochastic
excitation.

On a final note, let me remark that, while this toy-model may be useful to understand some of the most
general properties of stochastically excited oscillators, the picture is very simplified compared to actual solar-like
oscillations. This is especially due to the fact that the wave variables, in the stellar context, are not just function
of time, but also of space. Therefore, the spatial correlation of the driving source is as important as its temporal
correlations, and the spatial structure of the eigenfunctions also have an important role to play.
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Power

Figure 2.4: Observed line profile of a single radial mode, obtained through spectroscopic measurements made
with the Bi-State Optical Network (BiSON). The line profile features the wide stochastic variations expected from
a stochastically excited mode, but its overall shape is Lorentzian. The white line correspond to a Lorentzian fit to
the data. Credits: Christensen-Dalsgaard (2004).

2.2.2 Turbulent acoustic emission as a source of stochastic driving

When it comes to solar-like oscillations, one of the driving source contributing to f(¢) was identified as stem-
ming from turbulent acoustic emission. This mechanism has long been recognised as a source of acoustic waves
in highly turbulent media (Lighthill 1952). It has two different origins: the turbulent fluctuations of the Reynolds
stress force in the momentum equation, and the non-adiabatic pressure fluctuations. Because of the turbulent na-
ture of the flow in the convective region, and especially close to the surface of the star, both these contributions
act as a non-coherent, randomly fluctuating force that is able to drive the motions of the gas at all frequencies.
Shortly after solar 5-minute oscillations were discovered and ascribed to global modes of oscillation, several au-
thors investigated this mechanism as a possible explanation for their observed amplitude, by applying the work of
Lighthill (1952) to a stratified stellar atmosphere (e.g. Unno and Kato 1962; Stein 1967).

In a groundbreaking paper, Goldreich and Keeley (1977b) provided with a theoretical framework to describe
the stochastic driving of solar-like p-modes by turbulent acoustic emission, which allowed them to determine the
relative strength of different sources of driving, as well as to quantify the rate at which energy is provided to
solar-like oscillations. They wrote the perturbed equation of motion as

oy

o2 + L(v) =N(@®), (2.89)

where, under the Cowling approximation

1 1
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and
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the subscript O refers to equilibrium values, and the subscript 1 denotes perturbations around the equilibrium
values. In writing Equation 2.89, the authors separated the linear part £ — which they expressed solely as a
function of the velocity wave variable — from all other, non-linear contributions N. They identified these non-
linear terms to inhomogeneous forcing terms (akin to the driving force f(¢) in the Section 2.2.1). The three
terms in the definition of N can be categorised according to the multipolar expansion one usually encounters, for
instance, in electromagnetism, depending on the spatial structure of the acoustic emission each term produces. The
emission can either be monopolar (stemming from isotropic gas expansion and contraction), dipolar (stemming
from fluctuations of a body force locally exerted on the fluid, in which case the direction of the force corresponds
to the axis of the dipole) or quadrupolar (stemming from fluctuations in a stress force locally exerted on the fluid).
For instance, the first term on the right-hand side of Equation 2.91 is a quadrupolar source (where the emitting
stress force is the Reynolds stress force), while the third term is predominantly dipolar (where the emitting body
force is the buoyancy force, directed in the local direction of g).

Then, the authors derived scaling relations for each of the non-linear terms. To evaluate the amplitude of the
fluctuating quantities, they used 1) the Kolmogorov scaling relations relevant in the inertial subrange of the turbu-
lent cascade, 2) the standard MLT description of convection to relate the entropy, pressure and density fluctuations
to the velocity fluctuations, and 3) the hypothesis that the turbulent eddies whose typical size should be used in
the scaling relations are those with lifetimes comparable to the period of the mode — i.e. the resonant eddies.
The authors found that for modes whose period is shorter than the local lifetime of the energy-bearing eddies, the
quadrupolar contribution from the Reynolds stress dominates, while it is the dipolar contribution from the buoy-
ancy force that prevails for modes whose period is longer. The latter condition is only verified close to the surface
of the star, and only for the lowest order modes: they concluded that Reynolds stress fluctuations are responsible
for most of the mode driving. Finally, they derived an expression for the excitation rate due to Reynolds stress
force fluctuations, using the same kind of analysis as the one I very crudely presented in Section 2.2.1. In particu-
lar, as I hinted above, the two-time, two-point correlation product of N is of crucial importance for mode driving.
For want a better representation of these correlations, the authors chose to describe the two-time correlation as
Gaussian, with a typical width given by the lifetime of the resonant eddies, and to get rid of two-point correlations
by integrating over the corresponding space difference. Eventually, they obtained an integral expression for the
excitation rates of solar radial p-modes of order n = 0 to n = 21, and therefore could infer the velocity amplitude
of these modes, which they could compare to observations. They found values ranging from ~ 1 to ~ 6 cm.s™!.
While these values are several times lower than the actual observed amplitudes (which can reach as high as ~ 30
cm.s~! for the Sun), their analysis still provided with the right order of magnitude for excitation rates.

The approach of Goldreich and Keeley (1977b) was later refined by other studies (e.g. Dolginov and Muslimov
1984; Balmforth 1992c¢; Goldreich et al. 1994; Samadi and Goupil 2001; Samadi et al. 2003; Chaplin et al. 2005;
Belkacem et al. 2006, 2008, 2010). The question of the relative importance of the quadrupolar excitation by the
Reynolds stress force and the dipolar excitation by the buoyancy force was, at some point, the subject of some
disagreement (Stein and Nordlund 1991; Goldreich et al. 1994). The current accepted picture, however, is that the
former contribution is indeed dominant. In that case, the two-time, two-point correlation of N, being equivalent to
its Fourier spectrum in time and space, is directly related to the turbulent velocity spectrum, which is defined as

1 .
¢ij(k, w,X) = > f d’x f dr (i (X, (X + X, £ + 7)) exp/ TN (2.93)
JT

with the understanding that the turbulent velocity u has stationary statistical properties, which therefore do not
depend on ¢, but only on 7. As a result, solar-like p-mode excitation rates can be used as a way to constrain the
properties of the turbulent spectrum ¢;; (Balmforth 1992c; Samadi and Goupil 2001). In particular, Samadi and
Goupil (2001) built on the formalism of Goldreich and Keeley (1977b) to include both quadrupolar and dipolar
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emission, and more importantly, to include the turbulent velocity spectrum in both space and time in the most
general way possible. This allowed them to constrain the various non-dimensional parameters of order unity
usually introduced in turbulent spectrum models to account for the uncertainty on the time and length scales
associated to the energy bearing eddies. They applied this formalism to the Sun in Samadi et al. (2001), and found
very good agreement with solar data, as illustrated in Figure 2.5, with the adoption of a Kolmogorov spectrum
extended to small wave vectors outside the universal range by different power laws. However, they found that
the amplitude of the low-frequency modes is systematically overestimated. As regards the temporal spectrum,
they argued that a Gaussian form is preferable to a decaying exponential. It was later argued by Belkacem et al.
(2010), on more physical grounds, that a mixed Lorentzian-Gaussian form should be adopted, which allowed them
to correct the low-frequency overestimation of mode amplitude.

By contrast with damping rates (see Section 2.3) or surface effects (see Section 2.4), the mechanism responsible
for the excitation of solar-like p-modes is therefore fairly well understood, and the theoretical predictions match
the observations quite satisfactorily. As such, mode driving is probably the most well understood mechanism
arising from oscillation—turbulence coupling. I will have the opportunity, in Chapter 5 in particular, to come back
to the details of the theoretical modelling of stochastic driving for solar-like oscillations.

2.3 Mode damping

2.3.1 Foreword

On the stable nature of solar-like oscillations

Historically, the coupling between solar-like oscillations and turbulent convection was studied for the purpose
of accurate determination of mode frequencies in stellar models, as I will show in detail in Section 2.4. The
question of the energetic aspects of these modes was at first only secondary, and mainly aimed at determining
whether or not solar oscillations are linearly stable. In other words: do these oscillations behave as damped and
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forced harmonic oscillators, or do their amplitude grow exponentially due to some instability process? Some stars
do indeed exhibit such unstable modes, which develop in the interior through the advent of self-excited instabilities.
Two such important instabilities, for instance, are the k<-mechanism and the y-mechanism (e.g. Samadi et al. 2015).
In the k-mechanism, the key ingredient is the dependence of the Rosseland mean opacity on temperature: if the
local equation of state is such that a small local increase in temperature, due to local random fluctuations, leads
to a corresponding increase in opacity, then the matter absorbs the outwards photon flux more efficiently, which
heats up the gas, thus leading to a further increase in temperature, etc. This runaway mechanism constitutes
an instability, and translates into global modes of oscillation being self-excited, and therefore having considerable
amplitudes. By nature of the k-mechanism, however, the perturbation of the radiative flux plays a crucial role in the
behaviour of the mode, so that this mechanism cannot possibly arise from the adiabatic framework we introduced
in Section 2.1: a non-adiabatic framework is necessary. This is also the case of the y-mechanism, whereby the
variation of the radiative flux is responsible for the instability, through its dependence on the adiabatic exponents.
The mechanism is based on the fact that the adiabatic exponents are lower inside ionisation regions (where part
of the energy brought to the gas serves for ionisation, rather than for heating) than outside. As a result, during a
compression phase, the radiative flux is increased by a smaller amount inside the ionisation region than outside.
This creates a gradient of the radiative flux perturbation at the boundary of the ionisation region, and if the gradient
is in the correct direction — i.e. directed inwards —, this leads to a local heating of the gas. Ultimately, as for the «-
mechanism, the temperature increase also runs away. Once again, the y-mechanism cannot arise from an adiabatic
framework for the pulsations. Both mechanisms arise in or close to ionisation regions, where the «(T) relation or
the dependence of radiative flux variation on the adiabatic exponents allows for the instability to develop. Even
though other mechanisms exist — like the convective flux blocking mechanism, or the e-mechanism for instance—,
these two are primarily responsible for classical pulsators, which encompasses all classes of stars that exhibit
large-amplitude, linearly overstable modes of oscillation. Because of their large amplitudes, these oscillations,
which are also sometimes called opacity-driven oscillations, were historically the first to be discovered — hence the
term ‘classical’ —, for instance in Mira stars, or the classical Cepheids that are still used, as they were more than a
century ago, for the measure of distances in the Universe'°.

Comparatively, the discovery of solar oscillations — and, a fortiori, oscillations in other solar-like stars — is
much more recent, with the 5-minute oscillations measured on the surface of the Sun (Leighton et al. 1962)
only having been ascribed to global modes of oscillation in the 1970’s by Ulrich (1970) and Leibacher and Stein
(1971). The question of their stability was tackled shortly thereafter, for example by Ando and Osaki (1975) or
Antia et al. (1982), with an early consensus on the unstable nature of solar oscillations. On the contrary, other
studies (Goldreich and Keeley 1977a; Balmforth 1992a), including the effect of turbulent pressure and dissipation
of turbulent kinetic energy into heat, predicted that solar oscillations should be stable. Once the instrumental
capabilities allowed for the resolution of the line profile of the resonant peaks in the p-mode spectrum, it became
clear that they feature the Lorentzian profile characteristic of linearly stable oscillators (see Section 2.2.1). The
characteristic of such oscillations is that the background in which they develop takes more energy from it than
it provides during a cycle of the mode. From the point of view of the mode, this leads to a net loss of energy
each cycle, and in the long run, to a decay — or damping — that is only counterbalanced by the forcing of the
waves (see Section 2.2 for more details). To this decay of mode energy is associated a decay rate — or damping
rate — 1, which is defined as half the e-folding time of energy loss. The inverse of the damping rate corresponds
to the typical lifetime of the mode'’, and therefore corresponds, in the observed p-mode spectrum of the star, to
the linewidth associated to the resonant mode: if the resolution is sufficient, it can therefore be directly inferred
from observations. The dependence of the solar damping rates with frequency is illustrated by Figure 2.6, where
the observed linewidths of the solar p-modes are plotted against frequency — each dot representing one mode.
More precisely, the top panel represents the linewidth at half maximum I',; = /7 (Baudin et al. 2005) (where
n and [ are the radial order and angular degree of the modes), while the bottom panel represents the linewidths
weighted by a factor Qy,;, which depends on the radial order n and the angular degree | of the modes, and defined

161t was indeed discovered that the intrinsic luminosity of Cepheid pulsators is tightly correlated with the period of their pulsation.
Therefore, measuring their period gives a measure of their luminosity, which can then be combined with the measurement of their apparent
luminosity — which goes as the inverse square of the distance between the object and the observer — to yield an estimate of their distance.

7That is, the time it would take for a mode to be reduced to a negligible amplitude if the mode energy was not constantly replenished by
the forcing processes.
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Figure 2.6: Top: Linewidths of individual p-modes in the solar velocity power spectrum, inferred from observa-
tions by the GONG network, for angular degrees / = 0 — 150, as a function of frequency. Each symbol represents
one mode. Bottom: Same as top panel, but linewidths are scaled by the factor Q,; defined in Equation 2.96.
Credits: Kiefer et al. (2018).

as (Christensen-Dalsgaard and Thompson 1997)
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where M is the mode mass, R is the radius of the star — where the modes are observed —, the subscript ‘rad’
refers to the radial mode that has the same frequency as the (n, [) mode under consideration (so that, in particular,
On=0; = 1), and 7 is the mode inertia, defined as

I= L d*x po(x) €I . (2.97)

The scaled linewidth Q,,;I',;; is a more relevant quantity to compare between different modes than the raw linewidth.
Indeed, the mode mass corresponds to the mass of gas that would need to be put in motion across the entire volume
of the star if it were to be displaced everywhere with the amplitude actually observed on the surface, while keeping
the same kinetic energy. Because high-angular-degree modes are trapped in a much narrower region than radial
modes (see Section 2.1.2), they naturally have a much smaller mass, and are comparatively much more affected by
convection than radial modes, regardless of the intrinsic properties of convection. Correcting for the mode mass
therefore allows for the comparison of the linewidths of modes that have the same frequency but different values
of [. This is particularly visible upon comparing the two panels of Figure 2.6: the top panel is clearly comprised of
different ‘continuous’ curves that are offset with respect to one another, while all these curves collapse to a unique,
slowly-varying function of frequency in the bottom panel. Furthermore, Figure 2.6 shows that the damping rate of
the modes increases with frequency, going from ~ 0.1 ¢Hz to ~ 10 yHz throughout the solar p-mode spectrum.
An interesting feature of Figure 2.6, in particular, is the plateau between ~ 2.5 and ~ 3 mHz, whose existence
means that some destabilising process decreases the damping rate in this frequency range. The most probable
cause is the k-mechanism described above, associated to hydrogen ionisation, and which still exists in solar-like
oscillators, even though it is not strong enough to overcompensate the stabilising effect of convection-oscillation
coupling (e.g. Samadi et al. 2015).

Once the stable nature of solar-like oscillations had been established, the focus shifted towards the determi-
nation of the dominant physical processes responsible for the damping of the modes, and to the development of
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predictive theoretical models. This became more important, in particular, with the advent of space-borne missions
that considerably increased the amount of asteroseismic observations at our disposal, like the CoRoT (Baglin et al.
2006) or the Kepler missions (Borucki et al. 2010). It became apparent that the properties of the modes, including
their damping rate, follow distinct trends with global parameters, such as effective temperature and surface gravity
for instance. These trends constitute valuable clues as to the nature of the underlying physical processes respon-
sible for mode damping; on the other hand, they give observed mode damping the potential to serve as a way to
constrain stellar global parameters. Both require an accurate and precise theoretical knowledge of the coupling
between the turbulent convection and solar-like oscillations.

On the difficulty of modelling p-mode damping

The fact that it is necessary to include the effect of turbulent pressure and turbulent dissipation to explain even
the stable nature of the modes shows that the turbulence—oscillation coupling is crucial in understanding why the
modes are damped instead of being self-excited, and are a fortiori essential in predicting to what extent they are
damped. More precisely, it is this coupling close to the surface of the star that is responsible, because this is
the region where it is at its most efficient. The reason has to do with characteristic timescales, and coincidence
thereof. Here, three timescales are relevant to the problem: the typical period of the modes I, the local thermal
timescale 1y, and the eddy turn-over timescale 7, associated to the turbulent convection. I already mentioned the
coincidence between I and 7y, in Section 2.1.1, when I discussed the validity of the adiabatic approximation for
oscillations. I remarked that while they are very different throughout most of the star, they become similar close to
its surface, with typical timescales of ~ 5 minutes. As for 7y, it represents the time it takes for a turbulent eddy to
be dissolved into the neighbouring background once it has been born from random fluctuations at its birth location
(see Section 1.2.2 for more details), and it is also related to the typical dissipation timescale for turbulent kinetic
energy. In the MLT picture, it is given by the ratio of the mixing length / to the convective velocity (Equation 1.59).
In most of the convective zone, the convection is extremely efficient, so that the eddies can live a long time before
they die: their turn-over timescale is much longer than the period of the modes. However, close to the surface,
convection becomes superadiabatic, and therefore much less efficient. As a result, the lifetime of the eddies is
much shorter, and happens to be comparable with the period of the modes.

We therefore have three timescales that are very different from one another in most of the stellar interior, but
which converge towards one another in its superficial layers. This assertion is true not only of the Sun, but of
solar-like oscillators in general. The fact that IT ~ 7, explains why the coupling between turbulent convection and
solar-like oscillations is so strong in the superadiabatic region. On the other hand, the fact that IT ~ 7y, explains
why non-adiabatic effects become prominent in this region, and why they must necessarily be accounted for to
understand the properties of the modes therein. In addition, the typical length scales associated with convection
(i.e the mixing length /), oscillations (i.e. the wavelength 1) and stratification (i.e. the pressure scale height H),)
also coincide in the superficial layers of the star. As a result, understanding the physical processes responsible for
the damping of the modes requires not only a time-dependent treatment of turbulent convection, but also a non-
adiabatic one. This makes the task of theoretically prescribing these processes an immensely complicated one, as
I will show in the remainder of this section.

2.3.2 The work integral
Mode damping as a counterpart of mode frequency

In Section 2.1.2, I introduced the mode frequencies as the eigenvalues associated to a boundary value problem
comprised of Equations 2.50 and 2.51, to which I added the boundary conditions at the center and on the surface.
The wave variables are complex functions of the radial coordinate r, and therefore the eigenvalues themselves are
complex, a point that I have left aside until now. In writing the temporal Ansatz for the wave variables in the form
of Equation 2.18, it is customary to denote it as exp/”’, and to reserve the notation w to the real part of o~. Then
w does indeed correspond to the angular frequency at which the mode oscillates, while the imaginary part of o
corresponds to the e-folding time of either the decay or the growth of the wave amplitude, depending on its sign.
As such, we see that it corresponds to the damping rate 7 defined in Section 2.3.1, and we have

c=w+ i, (2.98)
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so that a positive value of 1 corresponds to a decaying mode, and a negative value to an unstable, linearly growing
mode. From a theoretical point of view, mode damping and mode frequency are therefore one and the same, and
in particular the question: how does turbulent convection affect mode damping? is the same as the question: how
does it affect mode frequency? In other words, modelling mode damping and modal surface effects is the same
task; I will come back to this statement upon introducing surface effects, in Section 2.4.

I also take this opportunity to remark that, while the importance of adopting a non-adiabatic framework to
study mode damping is made clear by the coincidence between the period of the mode and the local thermal
timescale in the superadiabatic region, it could actually have been outlined as early as in Section 2.1. Indeed, I
briefly discussed in Section 2.1.2 the nature of the boundary value problem associated to the oscillations in the
adiabatic framework, and remarked that while the full problem was not of Sturm-Liouville type, it becomes of
Sturm-Liouville type in both asymptotic limits o — 0 and oo — +o0, i.e. both high-order g-modes and high-order
p-modes. One of the key characteristics of a Sturm-Liouville problem is the fact that all of its eigenvalues are
real. 1 recall that the eigenvalue associated to the boundary value problem associated to stellar oscillations is o™
if o2 is real, then o is either real or purely imaginary. The solution has an oscillating behaviour only in the first
case, in which case o = w, and n = 0. Otherwise stated, in the adiabatic framework presented in Section 2.1,
and in the asymptotic limit, neither p-modes nor g-modes can be damped. Therefore, the stability of solar-like
p-modes can only stem from either the effect of turbulent convection (which we also discarded in Section 2.1), or
from non-adiabatic effects. As I will now show, both are responsible.

Definition and interpretation of the work integral

In general, the correct computation of the damping rate of a mode requires the full non-adiabatic linear eigen-
value problem to be solved, where, as I remarked above, the imaginary part of the complex eigenvalues corresponds
to the damping rates. This would be the correct, rigorous way to obtain them; however, there is a more practical
and convenient way to proceed, based on the work integral, which I introduce now. For the sake of simplicity,
I will only consider radial modes in this discussion. Multiplying the perturbed vertical displacement equation
(Equation 2.22) by &, integrating over the entire stellar volume, and taking the imaginary part, one finds the work
integral in the form (e.g. Samadi et al. 2015)

1™ sp*
n=>— | dmim|%sp|. (2.99)
2T 0 p(z)
where the mass variable m is defined through its differential form
dm = 4nr’pydr, (2.100)

and the inertia 7 of the mode is defined by Equation 2.97. Equation 2.99 yields the damping rate n of the mode,
provided the oscillatory angular frequency w and the inertia 7 of the mode are known, in addition to its complex
eigenfunctions written in terms of density and pressure. Here, dp refers to the Lagrangian perturbation of the total
pressure: with the inclusion of turbulent convection, it contains both the gas pressure p, and the turbulent pressure
p:- It is immediately seen that the damping rate depends on the phase difference between the pressure fluctuations
and the gas expansion due to the modes, and is intimately related to the total pressure work exerted on the mode
by the background. Let me interpret this relation further. The quantity under the integral can be rewritten in terms
of the change in the material volume dV occupied by the layer dm

* 1 * *
a2~ —dmé(—) - —5(d—m) - _5dV*, 2.101)
Jo

o p

so that the quantity under the integral is simply —Re (—jwd dV*ép) /w. I made — jw appear on purpose inside the
real part: indeed, the quantity —jwd dV* is the (conjugated) complex representation of the rate of change of the
local material volume, and the entire real part is the real representation of the power transferred by the background
to the mode in the layer dm through the pressure mechanical work —p dV. Integrating over m, and taking the extra
minus sign into account, yields the total power transferred by the mode fo the background through pressure work,
which I will denote as #,,. With these new quantities in mind, Equation 2.99 is simply (e.g. Samadi et al. 2015)

2027

n (2.102)
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It can immediately be seen that i has the same sign as #,, which is consistent with the idea that n > 0 if the
mode loses energy to the background each cycle — i.e. if it is damped. Furthermore, w”7 corresponds to the
total kinetic energy contained in the mode (this can be seen by inserting w inside the integral defining the inertia
in Equation 2.97, and remarking that |wé,|> is the modulus squared of the modal velocity). As such, the ratio
Pp/ (w?7) is the ratio of the mode energy loss rate to the mode energy itself, and does indeed correspond to the
inverse time scale associated to the energy loss. Finally, the factor 1/2 stems from the fact that the square of a
decaying quantity decreases twice as fast as the quantity itself: if the amplitude of the mode decreases at a rate 7,
the energy does so at a rate 27.

One can go one step further and break down the pressure perturbation into its different components. This
is done by expressing the gas pressure perturbation in terms of density and entropy perturbations through Equa-
tion 2.34, and replacing the entropy perturbation with its expression given by Equation 2.26. One finds (Samadi
et al. 2015)

1 op* (6pr | Vaal'i (d6L™  doLeo™
n=-— dmIrnL ﬁ+ a_dl + +de
2wl Jy Po \ Po Jjw dm dm
= Tpt + Mrad + Nconv + Ndiss » (2.103)

where the radiative and convective luminosities are defined by

L™ = dn? Fr (2.104)
drr? Feom (2.105)

Lo =
In addition to the extra contributions from turbulent pressure and convective flux, the inclusion of convection in
this expression also yields a modification of the dissipation in the entropy equation, which now takes the form
€ = €+ Veony © V pg, Where the second term corresponds to the mechanical work exerted by the gas pressure force
on the fluid moving with the convective velocity.

The form of the work integral given by Equation 2.103 makes it clear that mode damping can come from
two different processes: the work of turbulent pressure, and the work of the non-adiabatic part of the fluctuating
pressure. The adiabatic pressure perturbation, being in phase with the density perturbation, yields a vanishing
imaginary part, and therefore does not contribute to the work integral. This is easily interpreted: the adiabatic
pressure fluctuations being perfectly in phase with the volume changes, the amount of work exerted in the expan-
sion phases exactly compensates the work exerted in the contracting phases, so that no net work is done during an
entire cycle of the mode. As for the other contributions, there are four: one from turbulent pressure, one from the
radiative flux (which contains, among other things, the k-mechanism mentioned above), one from the convective
flux, and one from the turbulent dissipation rate'®. The last three contributions collectively correspond to the effect
of the non-adiabatic pressure perturbation. In general, an extra contribution should come from the perturbation of
the energy generation rate in the core. Since I am only concerned with processes happening close to the surface
of the star, I do not include this contribution here. Equation 2.103 is only valid for radial modes, but a generalised
expression valid for radial and non-radial modes alike can be derived (e.g. Grigahcene et al. 2005).

For completeness, I should also add two more contributions that do not arise directly from the work integral
formalism. One is the leaking of the acoustic waves into the evanescent region above the upper turning point,
especially for high-frequency modes close to the acoustic cut-off frequency v, (Balmforth and Gough 1990). The
other is the incoherent scattering of the waves in the superadiabatic layer (Goldreich and Murray 1994). The
authors showed that this layer is subjected to large density inhomogeneities in the horizontal direction, with the
RMS value of the density fluctuations being proportional to the turbulent Mach number!” squared. These inhomo-
geneities scatter the waves, which the authors showed leads to a coupling between modes of similar frequencies
and different angular degrees. They further showed that the energy exchange stemming from this coupling between
different modes is unfavorable to the p-modes, thus creating, in effect, an additional source of p-mode damping. It
is usually recognised, however, that these two additional sources of damping are negligible compared to the ones
included in Equation 2.103.

3This denomination is perhaps a bit of a misnomer, seeing as €, contains the turbulent dissipation rate € in addition to the buoyancy
work Veony - V p,. Nevertheless, I will conserve this designation in the following.

9The turbulent Mach number is defined as the ratio between the RMS turbulent velocities to the local sound speed, the former being
given, for instance, by Equation 1.59 in standard MLT.

56



CHAPTER 2. IMPACT OF TURBULENT CONVECTION ON SOLAR-LIKE
OSCILLATIONS

2.3.3 Solar mode damping predictions

Equation 2.103 is both very simple in its form, and extremely complicated to apply. The reason is that the
complexity is hidden behind the different modal perturbations appearing in the expression of the damping rate,
and that are not directly related to the wave variables dp or &, for instance. The reason is that they pertain to
the turbulent convection, and their accurate assessment requires a time-dependent and non-adiabatic treatment of
convection. If one wishes to better understand solar-like mode damping, and to answer the questions: what are the
dominant contributions?, and: can we predict the damping rates in a given stellar model?, one encounters the exact
same obstacles and has to face the exact same challenges as for stellar turbulent convection modelling, which I
have discussed in detail in Chapter 1.

Naturally, the work integral is useful not only for solar-like oscillators, but for stellar oscillations in general.
It can be used to predict the stable or unstable nature of global modes of oscillation in a given star, thus allowing
for a determination of the physical processes responsible for self-excitation in classical pulsators, as well as the
boundaries of the instability strips in the HR diagram. As such, the wealth of results produced by mode stability
analysis far outstrips the realm of solar-like oscillators. Here, however, I am only concerned with this realm, and I
will leave aside the question of classical pulsators entirely. I refer the reader who wishes a more general discussion
to the review by Houdek and Dupret (2015) for more details.

Predictions based on MLT

Balmforth (1992a) made use of the time-dependent, non-local, non-adiabatic formalism of Gough (1977a)
to compute complex eigenfrequencies for a solar model. His model is such that the only contributions to 7 that
he considered are 7y, Mraq and 7eony (see Equation 2.103), where the radiative flux is described in the Eddington
approximation, and the quasi-adiabatic approximation was adopted. The author found the solar modes to be stable
— with the exception of a few low-frequency modes —, in agreement with observations. He also found orders of
magnitude similar to the observations, as illustrated in Figure 2.7. However, the high-frequency modes are found
to be much less stable than observed. Furthermore, while for low-frequency modes the predicted damping rate do
not depend too much on the free parameters chosen in the MLT treatment of convection — unsurprisingly, since low
frequency modes are reflected in deeper layers of the star, and are therefore much less sensitive on the physics of
the surface —, by contrast this is not the case for higher-frequency modes. This work was extended by Houdek et al.
(1999) for other solar-like oscillators on the main-sequence. The authors found that the contribution 749 + 7jcony has
a destabilising effect (except for high-frequency modes), while 17, has a stronger stabilising effect, which explains
the overall stability of the modes. In particular, they predicted that the compensation peaks just below 3 mHz, thus
explaining the damping plateau. Chaplin et al. (2005) used the same model, but allowed the Reynolds stress tensor
to be anisotropic; this requires the introduction of yet another free parameter, in the form of an anisotropy factor
defined as the ratio of the vertical-vertical Reynolds stress component to the trace of the Reynolds stress tensor.
They adjusted all the free parameters to fit the data, which led them to a somewhat reasonable agreement.

On the other hand, Dupret et al. (2004) used the formalism of Unno (1967) in the form presented by Grigahcéne
et al. (2005) to perform similar calculations. However, they also considered the contribution of turbulent dissipation
nNdiss- In addition to the usual free parameters inherent to MLT, the authors needed to introduce an additional free
parameter 3, which is a complex non-dimensional damping time for the entropy perturbation®”. The results of this
study are very different from the ones of Balmforth (1992a) or Houdek et al. (1999): the authors found that it is
Neonv that has a stabilising effect, while 7, has a destabilising effect. Furthermore, they found that the contribution
Ndiss cancels out with 7, to a large extent, with the cancellation being exact in the limit of adiabatic, isotropic
turbulence. They also found an agreement with observations, but the agreement is found for completely different
reasons than in Chaplin et al. (2005) for instance. This is particularly illuminating, because it shows that the
resulting stability analysis largely depends on the MLT empirical prescription used in the pulsation computations.
Belkacem et al. (2012) extended these calculations to a non-local treatment of convection (although they still
retained 3 as a model parameter, but constrained its value by matching the resulting frequency of maximum spectral
height v« with the value yielded by scaling relations), and applied their model on a variety of solar-like oscillators

20This parameter is necessary to remove the non-physical fast spatial oscillations of the eigenfunction §L that otherwise arise. This
happens when the typical entropy perturbation have a typical length scale that is much smaller than the mixing length: in a purely local
treatment of convection such as considered here, this leads to abnormally fast entropy eigenfunctions. This can otherwise be avoided by
treating convection non-locally.
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Figure 2.7: Comparison between the observed solar linewidths (symbols) and theoretically predicted linewidths
(solid lines), with quasi-adiabatic pulsation calculations in a non-local MLT equilibrium solar model, for different
values of the mixing-length parameter angr and top: a® = b% = ¢2 = 600, or bottom: &> = b* = ¢Z = 300.
Credits: Balmforth (1992a).

for confrontation with observations made by CoRoT and Kepler. They found, in a perhaps closer agreement with
the prior results of Balmforth (1992a), that the turbulent pressure has a stabilising effect, while the non-adiabatic
gas pressure perturbations have a destabilising effect. However, the authors found a much more pronounced
cancellation between the two, with overall damping rates being much smaller than the individual contributions.
They also found the damping plateau to be caused by a peak in the mutual cancellation.

The early studies on the subject clearly formulated the hope that the comparison between theoretically pre-
dicted and observationally inferred damping rates could serve as a mean to calibrate the free parameters pertaining
to MLT formalisms. Unfortunately, the absence of consensus not only on the quantitative predictions of damping
rates, but also on the determination of the dominant physical processes, makes it doubtful that this can be done.
The reason lies in the large number of free parameters inherent to this approach, but also — as we already point out
for surface effects — in the simplistic nature of the mixing length hypothesis, which introduces a large uncertainty
in the model in the first place. Even from this limited account, it becomes apparent that alternative methods must
be employed.

Predictions based on alternative methods

In Section 1.2.3, I presented Reynolds-stress models of turbulent convection as a natural extension of the MLT
formalism, whereby closure relations are prescribed not for second-order correlation products, but at higher order.
Xiong et al. (2000) made use of the Reynolds stress model of Canuto (1992) to carry out linear stability analysis and
predict mode damping rates in the Sun. They did so alternatively with and without any effect from convection. In
agreement with the prior studies mentioned above, the authors found that convection stabilises the modes: without
convection, they found all modes of radial order smaller than n = 10 to be unstable, while the range of unstable
modes is narrower with convection. However, the agreement stopped there, because even with the full effect of
convection—oscillation coupling, the authors predicted all radial modes of order 11 < n < 24 to be unstable, in
direct disagreement with observations, which show that the Sun does not feature any unstable oscillations. As
I had the opportunity to outline in Section 1.2.3, while the Reynolds-stress approach indeed constitutes a better

58



CHAPTER 2. IMPACT OF TURBULENT CONVECTION ON SOLAR-LIKE
OSCILLATIONS

representation of reality than MLT, it still suffers from the same overall problems, in particular the wealth of
free parameters, and the reliance on the Boussinesq approximation, and more importantly, on the mixing length
hypothesis. As such, the Reynolds-stress approach does not address the core issues posed by MLT treatments of
turbulent convection.

The invaluable input of 3D hydrodynamic simulations in this context has become apparent more recently, and
its potential for calibrating turbulent convection models — and in particular MLT — was outlined, for instance,
by Stein and Nordlund (2001) — although their focus was mainly on the excitation rate of the modes —, or more
recently by Houdek et al. (2017) or Aarslev et al. (2018). While the procedure provides with an agreement with
observations, there still remains the problem that the agreement is obtained after fitting a certain number of free
parameters. For instance, Houdek et al. (2017) chose to calibrate the non-local parameter a for turbulent pressure
so that the maximum of the equilibrium turbulent pressure in the 3D atmosphere and in the 1D model coincide,
while the other non-local parameters b and c are fitted to obtain the best possible agreement between theoretical
and observed linewidths, the anisotropy of the Reynolds stress tensor is approximated with an analytical function
designed to agree as best as possible with the anisotropy ‘observed’ in 3D simulations, and the mixing-length
parameter is calibrated so that the depth of the convective zone matches the value inferred from helioseismic
measurements. Because of these numerous free parameters, and the multiple ways in which each is calibrated,
these models do not allow for any theoretical predictions, nor do they shed light on the physical processes at stake.
Building on the idea of using 3D hydrodynamic simulations, Belkacem et al. (2019) suggested to investigate
directly the normal modes that develop in a 3D LES of stellar superficial layers, and whose properties can be
extracted directly from the simulation. They applied this idea to a solar model, and managed to extract three
different radial modes, which they identified with corresponding non-radial modes in the actual Sun, having a
node at the layer corresponding to the bottom of the simulation, and whose angular degree matches the boundary
conditions on the lateral sides of the simulation box. They compared the measured linewidths with the predictions
from the work integral (Equation 2.103), and found reasonable agreement for the only two modes they managed
to resolve. Using the work integral, they also managed to split the ‘observed’ linewidths of the simulated modes
into their different physical contributions, and furthermore identified the damping regions (where the work integral
is positive) and the driving regions (where it is negative). Their results are in stark contrast with those presented
above in the MLT framework: they found that it is the radiative and convective contributions 7,q and 7cony that
nearly cancel each other, with the former having a destabilising effect, and the latter a stabilising effect of similar
importance. Furthermore, also in contrast with previous results, they found that the overall non-adiabatic gas
pressure perturbation and the turbulent pressure perturbation were both stabilising factors, and equally contribute
to the stability of the modes.

Zhou et al. (2019) followed a similar path, with the notable difference that they found a way to enhance the
visibility of any given normal mode of the box in the simulation. To do so, they modified the bottom boundary
condition of their simulation to introduce a forced sinusoidal oscillation of thermal pressure while at the same
time ensuring that the entropy remains constant. In effect, this injects energy into the Fourier component of the
spectrum that coincides with the imposed frequency, so that the target mode has a much larger amplitude than any
other mode, or than the convective noise. This procedure allowed the authors to extract the eigenfunctions of the
mode directly from the simulation; and what is more, this gave them access to many more modes in the simulation
than if they were ‘observed’ without artificial excitation. The authors then used the work integral to obtain the
different contributions to the damping rate of the modes. For the Sun, they found a perhaps slightly less obvious
agreement with observations, which still reproduces the qualitative behaviour of damping rate with frequency —
in particular the damping plateau —, and, in contrast with all MLT-based approaches, is independent of any free
parameters. In contrast with Belkacem et al. (2019), however, they found that the non-adiabatic gas pressure
perturbation has a destabilising effect, and the turbulent pressure perturbation a stabilising effect, in accordance
with Balmforth (1992a) for instance. This approach was then extended to other stellar models by Zhou et al.
(2020).

While the input of 3D simulations is indeed valuable, and makes it possible to disentangle the various physical
contributions to mode damping, this kind of approach still has its own limitations. First, it is absolutely impossible
to assess the contribution 74iss from a 3D simulation, because in such LES, the turbulent dissipation is either
completely dominated by numerical dissipation (which cannot be controlled, and is completely non-physical), or
explicitly described by equally non-physical models (see Section 1.2.1 for more details). Secondly, this approach
requires a considerable simulation running time, so as to resolve the modes and be able to measure their linewidths.
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This precludes the use of such simulations for a parametric study, for instance. Finally, the results are much more
dependent on the boundary conditions, and in particular at the top boundary of the box, than in full stellar models,
primarily because of the relative size of the regions under consideration. These observations, and the discussion
I conducted in this section in general, showcase what I already hinted in Section 2.3.1, namely that theoretical
efforts to prescribe the relation between the properties of turbulent convection and solar-like damping rates are met
with considerable difficulties, directly stemming from our lack of knowledge on turbulent convection itself, and
illustrated by the lack of consensus, still lingering to this day, concerning the dominant physical process for mode
damping. It would therefore be of much interest to go beyond these approaches, whether they be based on MLT,
Reynolds-stress models or LES: I will come back to this last point in Chapter 3.

2.4 Surface effects

2.4.1 Definition and observed properties

In Section 2.1, I introduced the stellar global modes of oscillation in a framework that discarded a certain
number of aspects in the physics of stellar interiors. While this allowed me to conduct a simple discussion,
adapted to the brevity called for in the context of this introduction, one must realise that each approximation,
each discarded phenomenon, increases the inaccuracy of the model. On the contrary, if one wishes to accurately
predict the properties of the modes in a given star, one has to include much more realistic physics in the stellar
model. Many studies have been devoted to the inclusion of better physics in stellar models for more accurate
eigenfrequency predictions: rotation, whether it be slow (e.g. Cowling and Newing 1949; Hansen et al. 1977;
Dziembowski and Goode 1992; Goupil et al. 1996; Soufi et al. 1998; Townsend 2003) or fast (e.g. Dintrans and
Rieutord 2000; Lignieres et al. 2006; Reese et al. 2006, 2009; Ouazzani et al. 2015); magnetic fields (e.g. Kurtz
1982; Dziembowski and Goupil 1998; Bigot and Dziembowski 2002); the non-adiabaticity of the oscillations (e.g.
Christensen-Dalsgaard and Gough 1975; Dziembowski 1977; Saio and Cox 1980; Christensen-Dalsgaard 1981;
Pesnell 1990; Balmforth 1992a; Rosenthal et al. 1995; Houdek 1996; Dupret 2001; Dupret et al. 2002; Reese et al.
2017); or the impact of element diffusion (e.g. Guzik and Cox 1993; Giinther 1994; Guzik and Swenson 1997;
Deal et al. 2017), are several examples. Each step helps close the gap between the predicted frequencies and the
observed frequencies.

But despite these refinements to stellar modelling, their still remains a substantial discrepancy, and what is
more, one that largely dominates the errors stemming from the observational techniques or the reduction of the
observational data (Christensen-Dalsgaard et al. 1996). This discrepancy has been given the name surface effects,
for reasons that will become clear in an instant. Since these surface effects do not originate from uncertainties
in the observations, they must come from uncertainties in the models. In a large part, this discrepancy is due to
the fact that the effect of convection was ignored in the analysis conducted in Section 2.1. Figure 2.8 shows, as
a function of frequency, the difference between the p-mode frequencies inferred from solar observations by the
GONG network, and those computed through an adiabatic standard solar model, without convection — i.e. in the
framework presented in Section 2.1.1. More precisely, the frequency differences are weighted by the same factor
QOn that we introduced for damping rates in Section 2.3, and defined by Equation 2.96. For the same reasons
detailed in Section 2.3.1, the scaled frequency difference Qy; (Vyiobs — Vnim) is @ more relevant quantity to compare
between different modes than the raw frequency differences.

Figure 2.8 presents some striking features: it shows that the scaled frequency differences are very small for
frequencies < 2 mHz, but start rising significantly for higher frequency modes, and ends up reaching as far high
as ~ 15 mHz at the high-frequency end of the p-mode spectrum. Furthermore, the frequency differences always
have the same sign, with the theoretically predicted frequencies being systematically overestimated compared to
the observed frequencies. Finally, the scaled frequency difference is quite independent of angular degree, and
collapses to a unique, slowly varying function of frequency only. These features tend to support the hypothesis
that the frequency discrepancy is primarily due to the uncertainties in the modelling of convection close to the
surface of the star, where the convective motions are at their most turbulent — hence the name: surface effects.
Indeed, at the surface, modes with lower frequencies have their upper turning point’! more deeply located than
high frequency modes, which means that they are much less affected by the phenomena occurring at the surface

2'We recall, from Section 2.1.2, that the upper turning point r, of solar-like p-modes is defined by the implicit relation w? = N2(r,).
With N? rapidly increasing with r in the superficial layers of the star, r,, does indeed increase with w.
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of the star. This is why the frequency difference is much larger for high frequency modes. Additionally, the wave
vectors associated to the p-modes are almost vertical close to the surface’’, and therefore the behaviour of the
mode there is almost independent of angular degree. This is why the surface effects themselves, like the damping
rates (see Section 2.3), are almost independent of angular degree.

Unsurprisingly, these properties are very similar to the properties of the mode damping rates, given in Sec-
tion 2.3.1. This is because, as I had the opportunity to point out then, not only do surface effects and damping
processes for solar-like oscillations both arise from the coupling with turbulent convection, but also, perhaps more
fundamentally, because both phenomena are actually two faces of the same complicated coin, since the damp-
ing rate and the frequency of the modes are simply the real and imaginary part of the same complex eigenvalue.
Therefore, in attempting to explain surface effects from a theoretical point of view, one runs into the exact same dif-
ficulties as for mode damping, and all of the conclusions drawn for mode damping in Section 2.3 remain valid for
surface effects, in particular regarding the difficulties inherent to the theoretical modelling of turbulence—oscillation
coupling, and the as-of-yet still lingering absence of consensus concerning the dominant physical processes. This
is particularly problematic when it comes to surface effects: indeed, the use of p-mode eigenfrequencies to infer
the structure of stellar interiors requires that the frequencies be accurately, and without bias, predicted from stellar
modelling. Consequently, it is necessary to correct modelled frequencies from these surface effects, and one way
to do this, which I outline below, is through a better theoretical modelling of the surface layers, and particularly of
the interplay between the convection and the oscillations.

2.4.2 Theoretical modelling of surface effects

The surface effects are commonly separated into two distinct classes of effects: those pertaining to the mod-
ification of the equilibrium state, and those pertaining to the modification of the mode physics. The former are
referred to as structural or extrinsic effects, the latter as modal or intrinsic effects (Balmforth 1992b). In fact,
the separation is rather artificial, as we will see in a moment: one actually depends on the other, and vice versa.

22This statement might, at first glance, seem to be at odds with the dispersion relation presented in Section 2.1.2, according to which we
should have k? = 0 at the upper turning point (where w? = N?). However, this is not so: the increase of the Briint-Viisili frequency with
r is so sudden at the surface that w* actually remains non-negligibly larger than N? until just below the upper turning point. Therefore, the
factor w* — N? in the dispersion relation remains of the order of w? itself, and since, in addition, L} < w?, the dispersion relation yields
ki, < k,. The radial wave vector only becomes zero — and therefore the p-modes only become horizontal — in an extremely narrow region
around their upper turning point (which is why, incidentally, the acoustic waves are said to be reflected at the surface).

61



2.4. SURFACE EFFECTS

Nevertheless, for the sake of this discussion, I will introduce them separately.

Structural surface effects

Turbulent convection acts on the momentum equation through the additional Reynolds stress force, which
represents the diffusive transport of momentum by the small scale turbulent motions of the gas (see Chapter 1). In
general, it is assumed to be isotropic, and in analogy with the viscous stress force, this isotropic part is characterised
by the scalar quantity p,, referred to as the turbulent pressure. The turbulent pressure thus adds up with the
gas pressure, so that in the momentum equation, the gas pressure p must be replaced by the total pressure’
Dot = p + p;. While a majority of stellar models disregard the effect of p, altogether, it actually does become
non-negligible in the superficial layers of the star, and especially in the superadiabatic region, as shown by 3D
hydrodynamic simulations (Stein and Nordlund 2001). In fact, the ratio p;/p can reach as high as ~ 0.15 in the
Sun (Rosenthal et al. 1999): turbulent pressure must therefore be accounted for in the oscillation analysis. It is
common to separate the contributions of turbulent pressure to the surface effects into two components: one due to
the equilibrium turbulent pressure p; ¢, and one due to the perturbation of the turbulent pressure dp;.

The time-averaged, equilibrium turbulent pressure modifies the hydrostatic equilibrium condition, and with it
the state around which the equations are perturbed. Then the hydrostatic equilibrium condition must be modified
to

0 oD
Dtot,0 +p0—0 ~0. (2.106)
(9)61‘ Gx,-

where pior0 = po + Pro is the equilibrium total pressure. Essentially, the extra pressure term elevates the radius of
the star, and therefore increases the size of the resonant cavity associated to the p-modes. With the increase of the
cavity size comes a decrease in the eigenfrequencies: this partially explains why the frequencies are overestimated
when turbulent pressure is not accounted for. The effect of the equilibrium turbulent pressure was investigated, for
example, by Rosenthal et al. (1995). The authors considered several treatments of convection-oscillation coupling.
Their model number 2, in particular, focuses solely on the effect of the equilibrium turbulent pressure, and discards
the perturbation to the turbulent pressure. They computed the interior of the model, excluding the superficial
layers, by treating convection in the standard MLT approach (see Section 1.2.2), but without turbulent pressure.
In parallel, they used a 3D hydrodynamic simulation of solar convection, and averaged all quantities horizontally
and temporally for each horizontal layer in the simulation, in order to obtain a more realistic equilibrium model
for the outer 2% of the Sun. In particular, by averaging the quantity pu? (p being the density and u, the vertical
velocity), they obtained p;o as a function of radius in the superficial layers of their model. The authors then
patched the averaged surface layers on top of the more crudely modelled interior, making sure, in doing so, that
the sound speed profile remained continuous at the transition, thus obtaining what is commonly referred to as a
patched model. While this procedure yields a much more realistic equilibrium turbulent pressure than the standard
MLT for instance, it tells us nothing of the turbulent pressure perturbations 6p;. The authors argued, on the basis
of results obtained with non-local MLT (see Section 1.2.2) as well as hydrodynamic simulations, that ép; varies
in quadrature with the other forces, and in particular with p. As such, they considered that this perturbation
only impacts the imaginary part of the eigenfrequency, and not its real part — in other words, not the oscillatory
frequency. For the sake of computing the real part of the frequencies, the authors therefore considered 6p; = 0. In
the linearly perturbed equations, everything remains the same, except that §p/po now actually refers to dpiot/ Piot.0
with

6pot _ 6p po_ T1podp

Prot,0 Po Dtot,0 Prot,0 PO

(2.107)

In other words, the linear analysis presented in Section 2.1 remains exactly the same, with the first adiabatic
exponent being replaced by an effective exponent I, called the reduced adiabatic exponent. Because of the
averaging process performed to obtain the model, the reduced exponent must also be carefully averaged, and the
authors found

r
= {Lipdo (2.108)

Ptot,0

2Since I do not account for the radiative pressure here, this is actually not really the total pressure. For the sake of this discussion,
however, I will disregard this point.
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where (.)o denotes a horizontal and temporal average. This approximation is accordingly referred to as the
Reduced-I'1 Model (or RGM). The authors computed the frequencies of the model, and compared them to a stan-
dard solar model, as computed according to the model presented in Section 2.1. The resulting scaled frequency
differences are shown in Figure 2.9, which shows that the inclusion of the equilibrium turbulent pressure in the
model decreases the predicted mode frequencies, and that the latter are therefore brought closer to the observed
values. In particular, Figure 2.9 must be compared with its observational counterpart Figure 2.8: the difference be-
tween observed and reference frequencies, on the one hand, and the difference between frequencies computed with
equilibrium turbulent pressure and reference frequencies, on the other hand, have qualitatively similar dependence
on mode frequency. It can be seen that the turbulent pressure decreases the predicted frequencies, and furthermore,
the behaviour of the difference closely resembles the observed surface effects illustrated in Figure 2.8.

This path was further investigated by Rosenthal et al. (1999), with a focus on the treatment of the turbulent
pressure perturbation dp;. In addition to the RGM approximation described above, the authors also considered the
possibility that the perturbation of turbulent pressure might be proportional to the gas pressure perturbations, so
that 6p;/p:o = dp/po. In that case, one simply has

OProt op

=I'r—. (2.109)
Ptot,0 Po

The frequencies are computed as in the RGM, but this time the effective first adiabatic component is given by
(I'1)o. This alternative approximation was dubbed Gas-I'y Model (or GGM) by the authors. This time around,
the turbulent pressure was also included in the interior of the model, with a prescription given by the standard
MLT and adjusted for turbulent pressure continuity at the transition between the interior model and the averaged
surface layers. The authors concluded that the GGM leads to a better agreement of the predicted frequencies with
observations than the RGM. Scaled frequency differences between the GGM and GONG observations are shown in
Figure 2.10. There still exist discrepancies, which are now either positive or negative depending on the frequency;
however, the difference is considerably smaller than those shown in Figure 2.8.

Other studies aiming at assessing the structural surface effects followed, with further and further refinements
brought to the equilibrium state, but most of which rely on either the RGM or the GGM. For instance, Li et al.
(2002), and later Robinson et al. (2003), also included the anisotropy of the equilibrium Reynolds stress tensor in
their model, as well as the turbulent contribution to entropy and kinetic energy. However, the pulsation calculations
were still carried out in an adiabatic framework, and the relative perturbation of total pressure assumed equal
to the relative perturbation of gas pressure, thus amounting to adopting the GGM. The authors found a better
agreement with observed frequencies than with the sole inclusion of an isotropic turbulent pressure, and underlined
the importance of the turbulent kinetic energy in the solar model. In later studies, the patching procedure described
above was used to study the dependence of the structural surface effects on the stellar model under consideration.
Sonoi et al. (2015) used 3D hydrodynamic simulations performed with the COBOLD code to construct several
stellar patched models for various values of the effective temperature and surface gravity, and showed that the
dependence of surface effects with frequency largely varies across the HR diagram. They also considered the
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Figure 2.10: Same as Figure 2.8, but the model used to theo-
retically predict mode frequencies accounts for the equilibrium
turbulent pressure throughout the entire star, and the turbulent
pressure perturbations are included in the scope of the GGM.
The remaining residuals are either due to non-adiabatic effects,
-10f . or to a poor modelling of dp,. Credits: Rosenthal et al. (1999).
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GGM. Ball et al. (2016) performed a similar study with the MURaM code, but with a complementary set of stellar
models: while the grid of models used by Sonoi et al. (2015) extended to more evolved models, the one used by
Ball et al. (2016) contained cooler stars on the main sequence. The results found by both studies were relatively
similar, with structural surface effects being more prominent for hotter stars. Trampedach et al. (2017) conducted
a similar analysis, but adopted the RGM instead of the GGM. Magic and Weiss (2016) focused on a solar model,
but investigated the influence of the averaging process used to construct the patched model, alternatively averaging
over layers of fixed geometrical depth or fixed column mass density, separating the upflows from the downflows
or not, and correcting the column mass density for turbulent pressure or not. They concluded that the latter effect
is very important in obtaining accurate frequencies from 1D models. The authors elected to use the GGM”*. They
also investigated the effect of chemical composition and magnetic field on the p-mode frequencies. Metallicity, in
particular, was later shown by Manchon et al. (2018) to significantly affect structural surface effects, through the
surface value of the Rosseland mean opacity. The authors considered the GGM.

While a more and more consistent light is shed on the structural part of the surface effects, a significant part
of the frequency difference between models and observations remains unaccounted for. As we can see from the
approximations adopted by all the above mentioned studies, there are two different potential reasons for that. First,
all the aforementioned studies carry out pulsation computations in an adiabatic framework, which means that
neither the perturbation of the radiative flux, nor that of the convective flux, are considered. Second, the turbulent
pressure perturbations are consistently modelled through either the GGM or the RGM, neither of which have any
real physical ground. Indeed, the argument for adopting the RGM is the assumption that the turbulent pressure
perturbations vary in quadrature with respect to the gas pressure perturbations. Figure 2 from Houdek et al. (2017)
shows, for a particular solar radial mode around 3 mHz, that the phase difference actually never exceeds 50 degrees.
To assert that the perturbations are 7/2-phased therefore seems like a questionable leap to take, especially when
it comes to modelling such subtle frequency differences. This assumption was further disproved by Schou and
Birch (2020). The authors extracted p-mode eigenfunctions directly from a 3D hydrodynamic simulation of the
surface layers of the Sun, in terms of displacement, density, gas pressure and turbulent pressure. They computed,
among other things, the phase difference between the density and turbulent pressure eigenfunctions (which is close
to the phase difference between gas pressure and turbulent pressure, since most of the gas pressure perturbation
are adiabatic, and therefore in phase with the density perturbations). Their Figure 5 clearly shows that the two
are not in quadrature. As for the GGM, it is openly admitted that it has absolutely no physical grounds, and is
only adopted because it happens, for whatever reason, to give better results. The physical assumptions underlying
these two widely used approximations were recently investigated by Belkacem et al. (2021), who concluded that

24They indicate having also tried the RGM, and report that the reduced first adiabatic exponent is very close to the actual I';. However,
they defined the reduced I'; as I'} = (pI'})/p instead of (pI';}/pior0, SO this may have played a role.
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they both amount not only to considering adiabatic oscillations, but additionally to neglecting two effects in the
linear perturbation of the equations of hydrodynamics that are a priori not negligible, namely the mechanical work
exerted by the buoyancy force, and the dissipation of turbulent kinetic energy into heat. In order to account for the
entirety of the surface effects, it is therefore necessary to go beyond both approximations — the adiabaticity, and
the GGM/RGM treatment of dp;.

Modal surface effects

The combined effect of non-adiabaticity and 6p; on the p-mode frequencies is usually considered to correspond
to the modal surface effects, i.e. the part of the surface effects that are due to a poor modelling of the perturbation
of turbulent pressure and convective flux (or even absent, in the standard adiabatic approach introduced in Sec-
tion 2.1). However, this simplified picture of structural and modal surface effects being separate effects, and the
subsequent hope that one may be able to study them in a completely separate manner, does not exactly correspond
to reality. Indeed, in studies focusing on the structural surface effects, the very assumptions made about 6p; en-
tail that part of the modal surface effects are also included. Therefore, the two kinds of surface effects are only
artificially separated, and as a result, including both non-adiabaticity and realistic turbulent pressure perturbations
must be seen not as a way to add modal surface effects to otherwise purely structural effects, but simply as a way
to model the entirety of the surface effects.

To this end, it is necessary to use a description of the turbulent convection that is both non-adiabatic and time-
dependent. One of the first use of a time-dependent, non-adiabatic MLT formalism to describe the full extent
of the surface effects is due to Balmforth (1992b). The author used a formalism that he presented in Balmforth
(1992a), which is a hybrid between the time-dependent formalism of Gough (1977b) and the non-local formalism
of Spiegel (1963), both of which I introduced in Section 1.2.2. This entails the presence of several free parameters
in the model, more specifically the MLT non-dimensional parameter ayyr, and the three parameters of non-
locality a, b and c. The author showed that the influence of both the entropy perturbation and turbulent pressure
perturbation — which he referred to as intrinsic surface effects — is heavily dependent on the values taken by these
free parameters, as shown in Figure 2.11. For instance, for a> = b*> = ¢ = 300 (all three then being exactly 10
times higher than their counterpart in the radiative transfer equation), varying ayr even moderately (between 1.6
and 2.0 in Figure 2.11) entails frequency differences that can go from ~ 0.5 to ~ 2 yHz for frequencies above
3 mHz, and can even change sign for higher-frequency modes. Predicted surface effects are equally impacted
by the values taken by the parameters of non-locality, as illustrated by the difference between the two panels of
Figure 2.11, where the parameters of non-locality are only multiplied by a factor V2. Throughout most of the
p-mode spectrum, and almost independently of the values taken by the various free parameters of the model, the
author found that the intrinsic surface effect to be positive, in the sense that the obtained frequencies are larger than
those obtained without either s or 6 p,. Therefore, the intrinsic surface effects partially compensate the effect of the
modified equilibrium state — or, in the vocabulary of the author, extrinsic surface effects —, so that the non-adiabatic
frequencies actually get closer to the standard adiabatic frequencies without equilibrium turbulent pressure than
the adiabatic frequencies with the extrinsic effect. However, the extrinsic effect still largely dominates, so that this
compensation is only limited. A similar result was found by Rosenthal et al. (1995), except that the compensation
is much more important, and the frequency shift with both extrinsic and intrinsic effects is much smaller (with
values not exceeding 5 umHz, while Balmforth (1992b) predicted values close to 10 umHz). Balmforth (1992b)
was further able to separate the frequency shift ascribed to entropy perturbations from those attributed to turbulent
stress perturbations, and showed that while the turbulent stress part is larger for low-frequency modes, neither
dominates the other from ~ 3 mHz onwards. Similar conclusions were reached for the hotter and more evolved star
1 Boo by Christensen-Dalsgaard et al. (1995), and later by Straka et al. (2006), although the equilibrium turbulent
pressure and kinetic energy used to assess the structural surface effects were extracted from a solar model.

Other uses of time-dependent convection theories to describe the modal surface effects include the work of
Grigahcene et al. (2012), who used the time-dependent mixing length formalism developed by Unno (1967), later
refined by Gabriel (1996) and Grigahcene et al. (2005), and implemented in the MAD pulsation code Dupret (2001).
The authors used this local, time-dependent convection model to compute non-adiabatic pulsation frequencies
for the Sun as well as 3 other stars. They then compared them to adiabatic frequencies obtained in the same
equilibrium state, and investigated whether or not the time-dependent treatment of convection gives better results
than adiabatic frequencies corrected through empirical formulations of the surface effects (see Section 2.4.3). They
concluded that this is indeed the case, but that the frequency differences still remain significantly larger than the

65



2.4. SURFACE EFFECTS

L B e ] LI B ] T 1 T T ] T T T T ] T T T T [ Al
: a, = 2 i
2~ s -
CH ]
B N R\ ” ]
> 0 \ ,’/ e
! v
A i a, = 1.6 i
-2~ (a) Sequence 1 : a"=b’=800 . Figure 2.11: Frequency difference between the-
T T T T T oretical predictions made with adiabatic calcula-
0 1 2 3 4 5 tions and the non-adiabatic, non-local calculations
H
Kl of Balmforth (1992a). Both panels show a strong
L L H L B () dependence of the predicted surface effects with
L J the mixing length parameter a)pr and the param-
2r ] eters of non-locality a, b and c. Credits: Balmforth
:"i L ] (1992b).
N L ]
. of g
Y
| L .
2 -
—2~  (b) Sequence 2 : a®=b°=300
1 11 1 I i 1 1 1 l 1 1 1 1 ‘ 1 1 1 1 I 1 1 1 1

0 1 2 3 4 5
v / mHz

observational uncertainties, so that the time-dependent, non-adiabatic treatment of convection must be refined. Let
me remark, for the sake of completeness, that while their model is local, and therefore does not contain any free
parameters for non-locality, it includes another free parameter S, related to the filtering of fast spatial oscillations
in the non-adiabatic luminosity eigenfunctions (see the above section on extrinsic surface effects). Later on, Sonoi
et al. (2017) used the same time-dependent treatment of convection to study solar surface effects, but this time
in the adiabatic limit. As such, their study purposefully neglects the effect of the entropy perturbation in the
modal surface effects, and focuses on the effect of the turbulent pressure perturbation. They compare the resulting
frequency shift in a solar model to the corresponding frequency shift obtained through the GGM and RGM, and find
that while the GGM does indeed give better results than the RGM (in accordance with the conclusions of Rosenthal
et al. (1999)), the agreement with observations is much better with the time-dependent convection model than with
either the GGM or RGM approximations. Furthermore, they find that a significant part of the modal surface effects
could be ascribed to the perturbation of the turbulent pressure — a different conclusion compared to Balmforth
(1992b), who found that the entropy perturbation plays a role of similar importance for high frequency modes —,
and more particularly to the contribution of the density perturbation and advection effect thereon. The authors
also treated the parameters of non-locality differently: instead of leaving them as free parameters, they used a 3D
hydrodynamic simulation to calibrate their value (Dupret et al. 2006). In doing so, they found a = 6.975 and
b = 1.697, which is also at odds with the much higher values adopted by Balmforth (1992b): in other words,
Sonoi et al. (2017) found the convection to be much less local. The same path was also pursued by Houdek et al.
(2017), but this time through the use of the same time-dependent treatment of convection as Balmforth (1992b)
(based on the formalism developed by Gough (1977a)), and only for radial modes. The authors compared a) the
purely adiabatic frequencies obtained in the standard MLT framework with b) the adiabatic frequencies of a patched
model obtained in the RGM, c) the adiabatic frequencies obtained in a non-local MLT framework, still in the RGM,
and d) the non-adiabatic frequencies obtained in the non-local, time-independent MLT framework of Balmforth
(1992b). The authors concluded that the fourth model gives a better agreement with observed frequencies, with
scaled differences not exceeding 3 /Hz. One must remark, however, that the two components of the surface effects
were not computed with the same equilibrium model, and furthermore, the agreement was found at the expense of
having to adjust a number of free parameters — mixing-length parameter, anisotropy parameter for the equilibrium
Reynolds stress tensor, parameters of non-locality, with the addition of a different non-local parameter for the
convective flux and the turbulent pressure. What is more, the authors calibrated part of these free parameters
on 3D simulations, while others were adjusted to give the best agreement possible between the observed and
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predicted linewidths (see Section 2.3.3). The authors report that the agreement with observations is the result of
a large compensation of the structural effects (which lower the frequencies) and the non-adiabatic modal effects
(which increase them). While this is in accordance with the conclusions of Balmforth (1992b), it is directly at odds
with the conclusions of Grigahcene et al. (2012) or Sonoi et al. (2017), where the effect of the turbulent pressure
perturbation is dominant.

Final note on the theoretical modelling of surface effects

Even this brief and non-exhaustive review of the treatment of surface effects through theoretical modelling,
whether it be structural or modal effects, allows me to make this general observation: that there is currently no
real consensus, and that this is due to the uncertainty in the treatment of convection-oscillation coupling itself.
The underlying assumptions are either too crude — as is illustrated by the GGM and RGM -, or, to the best of our
current capabilities, impossible to constrain physically, and therefore too heavily parameterised. This prevents us
from making real predictions when it comes to surface effects. As a result of this uncertainty, the conclusions drawn
in different studies, through different treatments of convection, are at odds with each other, and when agreements
are found, it is seldom for the same physical reasons, even for a star as well known as the Sun. For this reason, in
most asteroseismic diagnosis where accurate frequencies are needed, two alternative approaches are adopted. First,
it is possible to study not the observed frequencies individually, but combinations of these frequencies that happen
to not be affected by the physics at the surface of the star. For instance, Roxburgh and Vorontsov (2003) proposed
to use the ratio of the small to large separations, instead of both quantities separately. They showed that the ratio
was much less impacted by the structure of the outer layers of the Sun, and therefore does not need surface effect
correction to be used for seismic diagnosis purposes. Roxburgh (2005) later extended this conclusion to other
solar-like stars (see also Oti Floranes et al. 2005). While this prevents us from having to treat surface effects, it
presents the distinct disadvantage of reducing the amount of information at our disposal in the p-mode spectrum,
and therefore decreases the precision of the ensuing seismic diagnosis. Secondly, the other alternative approach
for the correction of surface effects is the use of purely empirical formulations, which I introduce now.

2.4.3 Empirical formulations

Let me denote as vops(n) the observed eigenfrequency associated to the radial p-mode of order n in a given star;
and let me suppose that a best-fit stellar model> has been constructed for this star, whose radial eigenfrequencies
I denote as vpest(12). Then to design an empirical formula for the surface effects is to answer this question: can
one find a simple function f(n,®), where O is a limited set of free parameters, which closely fits the frequency
difference vops(1) — vest (1) regardless of the star under consideration for the same value of ®? If this last condition
can be reached, then the situation would be ideal: the values of the free parameters could be constrained with
observations of a very well known star — like the Sun for instance —, and could then be used to predict — and
therefore correct — the surface effects in any other star, or at least any other star of the same type. Unfortunately,
while several functions have been proposed by different studies, the free parameters associated to these functions
are never even remotely universal. For instance, Kjeldsen et al. (2008) proposed a simple power law

b
VO"S(”)) , (2.110)
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f(n,(a,b,vp)) = a(

with three free parameters in the form of a characteristic frequency vg, an exponent b and a prefactor a. This
was proposed on the basis of an analysis conducted by Christensen-Dalsgaard and Gough (1980), who quantified,
in the case of a polytropic atmospheric model, the frequency discrepancy entailed by neglecting the phase shift
incurred by the waves whose frequency is similar to the acoustic cut-off frequency v, of the star, and can therefore
penetrate further into the upper layers before being reflected. In this simplified polytropic model, they found the
discrepancy to be larger as frequency is increased (because higher-frequency modes are reflected higher in the
atmosphere), and to take the form of a power law, with an exponent directly related to the average polytropic index
considered in the atmospheric model. In the analysis conducted by Kjeldsen et al. (2008), the parameters a, b
and vq are supplemented by an additional parameter r used to modify the stellar model to yield a more accurate
estimation of the mean density of the star, under the assumption that the structure of the star is homologous. The

Z5By that, I mean a standard model — in particular, where the convection is treated in the standard MLT — that most closely matches the
global parameters of the star, such as its mass, radius and effective temperature.

67



2.4. SURFACE EFFECTS

parameters b and r are in fact degenerate, as the value of one constrains the value of the other. The authors first
determined the best-fit parameter values for a, b, v and r for the Sun. Then they used the same procedure on other
stars, where they fixed a value of v for each star, used the solar value of b to constrain r for each star, and finally
left a as a free parameter. The authors found that the large separations Av — i.e. the mean star density — were
accurately recovered after this surface effect correction for the sample of stellar models considered.

As I mentioned in Section 2.4.1, the surface effects become increasingly prominent as the frequency of the
modes get closer to the acoustic cut-off frequency v,. of the star. Building on this observation, Christensen-
Dalsgaard (2012) proposed that the surface effects be a self-similar function of frequency, with the frequency of
reference being chosen as v,.. The author hypothesised the existence of a somewhat universal function Gg(x) such
that

2.111)
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The notation G, stems from the fact that this function is calibrated on the Sun, and then assumed to be the same
for all stars. The factor @ still needs to be adjusted, in addition to the same homology factor r as in Kjeldsen
et al. (2008). The agreement found with observation, once the frequencies are surface-effect-corrected, is better
than with the simpler power law, which is understandable, as a functional form such as Equation 2.111 is much
more flexible than the one given by Equation 2.110. On the other hand, the assumption that G is universal is more
of a leap to take than the assumption that the exponent b is universal, because one is a function, and the other
a simple scalar. An alternative empirical relation was proposed by Sonoi et al. (2015), to alleviate the fact that
Equation 2.110 overestimates surface effects for high frequencies, in the form

1

- 1+ (Vbest(n)/vmax)ﬁ ,

where v, 1s the frequency of maximum spectral height in the p-mode spectrum of the star.

These empirical relations pertain to the raw frequency differences, which may seem incompatible with the
observation I made in Section 2.4.1 that the modes with a high angular degree, having a much smaller mode mass,
are associated with a much larger surface effect than radial modes of similar frequencies, and therefore scaled
frequency differences should be considered instead. So long as only low angular degrees are considered (or even
exclusively radial modes), this is not a problem. However, this ceases to be true for stars featuring mixed modes,
in which case it is necessary to include mode inertia in the empirical relation. This was done by Ball and Gizon
(2014), who proposed both a cubic law

f(n,(@,B) = avmax |1
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where 7, is the inertia of the mode of radial order n and angular degree /, defined by Equation 2.97. The authors
found that including the inertia of the modes in the empirical relation considerably improves the fit, and that the
second formulation in particular gives better results than a simple power law.

All these empirical relations provide accurate frequency corrections, which can be used, for instance, for the
correct determination of stellar parameters from the observed frequencies. They perform differently depending on
the type of star considered, and more importantly yield global stellar parameters that can be degenerate (meaning
that several equally probable solutions can be found). Another problem of these approach is that even if surface
effects are indeed corrected, there is no way to relate the correction to physical arguments, which becomes prob-
lematic when extending the corrective formula to a vaster sample of stars. Indeed, it is impossible to assess how
adequate the extrapolation of a given surface effect empirical formula is to stars for which it has not been tested,
and in particular, to assess the degree of universality of the coefficients in said formula. Finally, in extrapolating
these relations to other stars, it is implicitly assumed that the discrepancy between the observed and modelled
frequencies remain solely attributed to surface effects. In reality, all sources of uncertainties from the modelling
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point of view are corrected simultaneously, and the assumption that it only comes from surface effects leads to an
‘overcorrection’ of the frequencies, if other modelling inaccuracies are present in the analysis. As a result, there is
absolutely no guarantee that the corrected frequencies can be safely compared with observations. Although these
relations have subsequently been used in numerous asteroseismic analysis (Metcalfe et al. (2012); Mathur et al.
(2012); Metcalfe et al. (2014) for the formulation of Kjeldsen et al. (2008); Bellinger et al. (2017); Ball and Gizon
(2017); Compton et al. (2018); Di Mauro et al. (2018) for the composite formulation of Ball and Gizon (2014),
perhaps the mostly widely used; Buldgen et al. (2019); Farnir et al. (2019) for the formulation of Sonoi et al.
(2015)), there is to this day no consensus on which form should be adopted, and no way to assess the accuracy of
the resulting correction.

On a final note, Gruberbauer et al. (2012) advocated for the use of Bayesian inference to treat the systematic
frequency bias entailed by surface effects, with the idea that no ad hoc empirical relation is needed in this approach.
The improved flexibility, and the fact that the frequencies do not need to be corrected beforehand, is certainly an
improvement compared to the other approaches presented above. However, this kind of Bayesian approach is
fundamentally based on the assumption that the asteroseismic grid used for the stellar parameter inference is only
impacted by the uncertainty related to the surface effects. But since the results of such Bayesian analysis are
model-dependent, there is, once again, no reason why additional model deficiencies could not arise elsewhere, and
significantly bias the results. Furthermore, as noted by the authors, enough low-order modes, less impacted by
surface effects, are needed to obtain less biased results.
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3.1 A summary of the context

In this introductory discussion, I presented the current state-of-the-art regarding our theoretical knowledge of
the main aspects of the coupling between solar-like oscillations and turbulent convection, namely mode driving
(Section 2.2), mode damping (Section 2.3), and surface effects (Section 2.4). The amount of asteroseismic data
provided by ground-based observations, and more recently space-borne missions (with the huge impact of CoRoT
and Kepler in particular) has grown exponentially, and this led to a much better and more refined understanding
of the processes underlying these aspects of mode physics. In solar-like oscillations, this is important for two
mutually complementary reasons. First, the properties of the modes are tightly related to the physics of the tur-
bulent convection close to the surface of the star, which means that the observed mode properties can serve as a
way to constrain the behaviour of turbulent convection. This is of paramount importance, because, as I outlined
in Chapter 1, the way convection is modelled in stellar evolutionary models heavily impacts the results. Secondly,
asteroseismic indices, such as the frequency of maximum spectral height vyy,«, the acoustic cut-off frequency v,
the damping and excitation rates, and the velocity and bolometric amplitudes for instance, are subjected to scaling
relations, meaning that they follow somewhat universal trends with the stellar parameters (radius, mass, effective
temperature, surface gravity). As such, measuring the former can give an estimate for the latter, especially when
large samples are used, in the scope of ensemble asteroseismology.

But all of these challenges require an accurate and realistic theoretical knowledge of the mechanisms at play
concerning the interaction between turbulent convection and solar-like oscillations. While the stochastic driving
of the modes by turbulence is, to this day, fairly well understood, this is not the case of surface effects or damping
mechanisms, and this lack of understanding, which has been more and more clearly revealed by the wealth of
seismic data on this age of ensemble asteroseismology, prevents us from using the full potential of asteroseismic
measurements — whether it be frequencies for internal probing, or energetic aspects of solar-like modes for the
use of realistic scaling relations. This lack of understanding is related to the absence of a satisfactory description
of stellar turbulent convection, a point which I attempted to make clear in Section 1.2. The most widely used
prescriptions are based on Mixing-Length Theory, which leaves to be desired on a certain number of points (Sec-
tion 1.2.2), especially in that it overly simplifies the description of the turbulent cascade — a simplification that
directly impacts predictions on turbulence—oscillation coupling, since the large range of sizes and life times of tur-
bulent eddies close to the star surface has, as we saw, an important role to play. We also mentioned Reynolds-stress
models as an alternative approach (Section 1.2.3); however, its use has remained limited in the present context, and
the predictions stemming from it have not necessarily done well when confronted to observations (Section 2.3.3).
Another very important avenue of research in this area is the use of 3D simulations to constrain turbulent convec-
tion prescriptions, or more directly mode properties (Section 1.2.1). Compared to other approaches, this has only
become possible recently, with the ever increasing' computational capabilities of our computers. In particular,
the possibility to use properly averaged 3D simulations to replace the outer layers of 1D models has considerably

but for how long still?
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improved the physics of the superficial layers in stellar evolutionary models and pulsation calculations. However,
from the point of view of turbulence—oscillation coupling, there is only so much that we can learn from these
simulations. This is primarily because of the artificial treatment of unresolved small scales, which is unavoidable
with our current computational power, and has an important impact on the behaviour of the turbulent cascade.
On another point, 3D simulations can only serve to constrain preestablished analytical prescriptions: they do not
provide with the prescriptions themselves. In particular, they are, more often than not, used to constrain the free
parameters in such or such MLT formalism, thus circling back to the weaknesses of MLT itself. Lastly, these
simulations remain, to this day, very heavy to run, so that they cannot be reasonably used in parametric studies
designed to explore the physics of turbulence—oscillation coupling. In summary, our theoretical understanding of
this coupling still leaves to be desired, and this shows in the large uncertainties surrounding our understanding of
mode physics itself, and in particular the surface effects, as well as the damping mechanisms responsible for the
stabilisation of solar-like oscillations.

3.2 Structure of this manuscript

It is in this very open context that I undertook the work that I present in the rest of this manuscript. It was done
in two stages, seemingly independent from one another, but nevertheless related, and which are the subject of the
two remaining parts of this work.

3.2.1 Part II: Solar-like p-mode asymmetries

The first part of my work has to do with an aspect of turbulence-oscillation coupling that I deliberately left
behind until now: the asymmetry shown by the line profile of solar-like p-modes in the observed power spectrum.
This asymmetry skews the line profile in such a way that they feature slightly more power on their left side than
their right side in velocity observations, while it is reversed in intensity observations. In essence, this is tightly
related to the stochastic excitation of the mode, just like the observed amplitude; unlike the observed amplitudes,
however, the depth of the driving region is very important in explaining the observed asymmetries. Historically,
observed asymmetries have been used to infer to position of the excitation region inside the star, with mitigated
success, primarily because of the lack of realism of the prescriptions that were used. I summarise these efforts in
much more details in Chapter 4. My motivation, by contrast, consisted in using a more realistic excitation model,
coupled with a 3D hydrodynamic simulation of the superficial layers of the star, to constrain the prescription of the
turbulent velocity spectrum — with the same philosophy as Samadi and Goupil (2001). I present this model, and
apply it to the observed solar asymmetries in velocity data, in Chapter 5. I also present how I adapted this model
to intensity measurements, thus shedding light on the physical origin of the asymmetry reversal between the two
observables, in Chapter 6. Chapters 5 and 6 are the subject of two articles that were published in Astronomy and
Astrophysics (Philidet et al. 2020a,b).

Even though many details still need some consideration, the question of mode driving, and the subsequent
asymmetry it entails in solar-like p-mode line profiles, is quite satisfactorily understood. However, the other as-
pects of turbulence-oscillation coupling that constitute mode damping and surface effects are, as I showed in Sec-
tions 2.3 and 2.4, much more sensitive to the specific properties of the coupling. Further theoretical investigation
was therefore needed on this subject, which led me to the second part of my PhD.

3.2.2 Part III: A combined stochastic Lagrangian/SPH approach to turbulence-oscillation cou-
pling

In the second part, I will interest myself with a new approach designed to theoretically describe the turbulent
convection in the presence of oscillations, with the short-term goal of describing the impact of the former on the
latter 1) without having to rely on the hypotheses inherent to MLT prescriptions or Reynolds-stress models, i.e. the
mixing-length hypothesis and the reduction of the entire range of timescales relevant in the turbulent cascade to a
unique typical turbulence timescale, and 2) in a way that allows to relate the underlying properties of turbulence to
the observed properties of the modes, in a direct and physical manner. To that effect, I investigate turbulence models
based on the evolution of the joint-Probability Density Function (or PDF) associated to the turbulent quantities,
and more particularly, I investigate the possibility of modelling this evolution by representing turbulence as a
large set of individual fluid particles, evolving according to stochastic differential equations (or SDE) — a class of
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models referred to as Lagrangian stochastic models. 1 will first introduce the subject of stochastic processes and
SDE - a necessary mathematical tool in these models —, as well as PDF methods, and in particular Lagrangian
stochastic models and their use in the context of turbulent flow modelling, in Chapter 7. The motivation, in
Part III, is to propose an alternative to both MLT formalisms, Reynolds-stress formalisms, and the use of 3D LES
for our description of the aspects of turbulence-oscillation coupling that we presented in this chapter. In practice,
I followed two different avenues, one analytical, one numerical, which, while distinct in their implementation, are
nevertheless related to each other, and benefit from being developed alongside one another

o in Chapter 8, I will present how a Lagrangian stochastic model can be handled analytically to yield a wave
equation that is stochastic in nature, and consistently encompasses the full effect of turbulent convection.
I will then show how this stochastic wave equation can serve as a baseline framework where surface ef-
fects, damping mechanisms and driving mechanisms alike can be studied, from an analytical point of view.
This formalism offers a way to physically construct analytical prescriptions for the relation between turbu-
lence properties and observed mode properties. Furthermore, it can be used to help disentangle the various
physical contributions to turbulence-oscillation coupling, and therefore shed light into the results obtained
numerically;

o in Chapter 9, I will present a direct, numerical implementation of the Lagrangian stochastic model itself,
in a simplified 1D framework. More particularly, I will show how normal modes of oscillations can be
extracted from the resulting simulation, and their coupling with turbulence studied efficiently. This numerical
approach may become preferable over the analytical approach for more complex Lagrangian stochastic
models, and can also serve as a more efficient way to quantify the prescription offered by the analytical
formalism presented in Chapter 8.

The work presented in Chapter 8 is the subject of an article that was published in Astronomy and Astrophysics
(Philidet et al. 2021), as well as another article in preparation. By contrast, the work presented in Chapter 9 is
only in its first stages, and the only results I detail in this chapter are preliminary results, aiming at validating the
numerical approach.
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Asymmetries of solar-like oscillations
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Mode asymmetry: history and context
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- Permettez-moi de vous dire que ce soir,
je ne suis pas le Premier ministre, et vous
n’étes pas le président de la République,
nous sommes deux candidats a égalité
[...], vous me permettrez donc de vous
appeler monsieur Mitterrand.

- Mais vous avez tout a fait raison,
monsieur le Premier ministre.

Francois Mitterrand a Jacques Chirac

I'had the opportunity, in Sections 2.2 to 2.4, to show that stochastically excited and damped oscillations, such as
solar-like oscillations, are characterised, in their observed power spectrum, by a Lorentzian line profile. However,
as the resolution reached in helioseismic measurements (both ground-based and space-borne) have increased, it
has become apparent that, just as French politics, the observed line profiles are actually skewed and asymmetric,
in such a way that one side of the line profile has more power than the other. This was first measured in the solar
spectrum, but later confirmed in other stars as well. More precisely, the line profiles in the velocity power spectrum
have more power on their left side than right side, while the opposite occurs in the intensity power spectrum. This
last result, in particular, was particularly puzzling at the time, as one would assume the two power spectra to be
simply proportional to one another: it was quickly dubbed the asymmetry reversal puzzle.

This phenomenon was quickly ascribed to several physical mechanisms. First, it was recognised that the
asymmetries had to do with the p-mode excitation process, and more particularly to the localisation of the source
of excitation in a narrow layer just beneath the surface of the star. This constitutes the dominant mechanism
at play for mode asymmetry, but alternative processes were proposed to explain the asymmetry reversal puzzle:
non-adiabatic effects, correlation of the mode with incoherent convective noise, or opacity effects for instance.

The subject of p-mode asymmetries has been studied through the prism of mainly two different questions. The
first question concerns exclusively the asymmetries in velocity data. Since they are caused by the localisation of
the excitation source, it was not long after their discovery before several authors attempted to constrain the position
of the source using observed asymmetries, in the hope of bringing a better understanding of driving mechanisms.
The second question concerns the asymmetry reversal puzzle, and is twofold: what is the underlying mechanism
at play? and what does observed asymmetry reversal tell us about the physics of the mode? This introduction
is therefore structured in two parts. I first give an account of the observational aspects of solar-like p-mode
asymmetry; after which, in a second part, I present the efforts already made to bring answers to the set of questions
raised above, and why there is still much to be done. As I will show, while considerable progress has been made,
these questions still remain very open.
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Figure 4.1: Left: Solar intensity power spectrum of the n = 2 modes, averaged over values of the angular degree
[ = 157 — 221 and over all values of m, as inferred from observational data taken from the ground at the South
Pole. The eigenfrequency dependence for different values of [ and m was removed before averaging. The dashed
line represent a linear extrapolation of the low-frequency background slope. The line profile is distinctly skewed.
Right: Same as left panel, but with the velocity data of GONG. The asymmetry is clearly reversed compared to
the intensity measurements shown in the left panel. Credits: Duvall et al. (1993).

4.1 Observation of solar-like p-mode asymmetries

Asymmetries of solar p-modes were first reported by Duvall et al. (1993), using ground-based observations
made at the geographical South Pole during a period of 16 days. Those consisted in full-disk observations of
the Sun, onto which a narrow pass band filter centered on the Ca II K absorption spectral line was applied, thus
isolating the minimum temperature region of the Sun. This allowed them to measure the solar intensity power
spectrum. In parallel, they used spectroscopic data from the Global Oscillations Network Group (GONG) to
obtain, in a similar fashion, the velocity power spectrum. They investigated the asymmetries in both observables,
although their focus was on the intensity data. The authors resolved p-modes of angular degrees between [ = 0
and / = 250, and with frequencies ranging from ~ 2 mHz to ~ 4.5 mHz. Averaging each (n,[) multiplet over
all values of the azimuthal order m, they found the line profiles to be distinctly skewed, with asymmetries barely
depending on / at all. This /-independence allowed them to further average the line profiles over all measured / for
any given radial order n (recentering the frequencies beforehand) to obtain a clearer picture of the asymmetries.
This is illustrated for the modes of radial order n = 2 in the left panel of Figure 4.1 for instance, which shows quite
clearly an offset of the sloped background between the two sides of the line profile, with the high-frequency end of
the line being elevated with respect to the low-frequency end. On the other hand, the authors conducted a similar
investigation on the velocity power spectrum. The results are shown, also for the modes of radial order n = 2, in
the right panel of Figure 4.1, which shows two main differences compared to the left panel: first, the background
is no longer sloped; secondly, it is now the low-frequency side of the spectrum that is elevated with respect to the
high-frequency side. The asymmetry difference is, of course, more general than just the n = 2 modes. For instance,
Figure 4.2 shows the asymmetric line profiles featured in both observables (velocity for the top panel, intensity for
the bottom panel) for / = 200 modes of various radial orders n = 1 — 21. The asymmetry reversal between the two
observables is clearly general, throughout the entire p-mode spectrum.

In order to measure mode asymmetry more consistently, Duvall et al. (1993) proposed an asymmetric form
of the line profiles that they could then use to fit the observations. They used an analogy with a Fabry-Pérot
interferometer with a light source outside the resonant cavity: then the total observed wave is the result of the
interference between 1) the direct wave, 2) the wave that reflects on the upper turning point of the cavity, without
ever entering it, and 3) the multiple echoes of the wave trapped inside the cavity. The situation is illustrated in
Figure 4.3.

Duvall et al. (1993) obtained the following formula

1 + R?> + D* — 2R cos 20 + 2D cos 2(6 + 66) — 2RD cos 66
1 + R2 —2Rcos 20 ’

P@6) = Py .1
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Figure 4.2: [ = 200 solar power spectrum, measured with the Michelson Doppler Imager (MD]I) in velocity (top)
and intensity (bottom), during the same 3-day period. The vertical dashed lines correspond to the local maxima in
the velocity power spectrum. Credits: Nigam et al. (1998).

R< 1

Direct wave
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Echoes of the
frapped wave
\\)
Resonant cavity Source

Figure 4.3: Illustrative picture of the analogy between the solar-like p-modes and light waves in a Fabry-Pérot
interferometer. The source of the waves (represented in blue) is located outside the resonant cavity (represented
in grey), characterised by a perfect reflection boundary (black rectangle) on one side, and a slightly transmitting
boundary (black vertical line) on the other. The total observed wave — where the observer is located on the right
side of the picture — is the superposition of all components represented in red: a direct wave going directly towards
the observer; a wave that travels the other way but reflects on the boundary of the cavity without entering it, and
travels the other way towards the observer; and finally, the multiple echoes of the part of the wave that did enter
the cavity, and lets a small portion of its energy leak out of the cavity upon each reflection.
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where R is the reflection coefficient in amplitude associated to the upper turning point; D is the amplitude reduction
factor undergone by the wave after it has traveled in the evanescent region between the source outside the cavity
to the cavity itself; the frequency variable is recast in the form of the phase shift 6 of the wave after a trip back and
forth in the cavity

r2(v)

0= f dr k,(v), 4.2)
r1(v)

where ry, r; and k, are the lower turning point, upper turning point and radial wave vector, all dependent on v (see
Section 2.1.2), and 66 is an additional phase shift incurred by the waves upon each reflection. This latter quantity is
a measure of the asymmetry of the modes. Indeed, the resonant modes correspond to values of 6 that are multiples
of &, and in the neighbourhood of such a resonant mode, one has approximately
p=TV V) (4.3)
Ay
where vg is the eigenfrequency of the mode, and Av is the difference between the eigenfrequencies of two con-
secutive resonant modes. Plugging this into Equation 4.1, and Taylor-developing the cosines around 66 = 0 and
6 = nm, one finds

(1 — R + D)?> + Rx* — D(x — 256)> + RD66>

P©) ~ Po (1 —R)? + Rx2

, “4.4)

with

2n(v — vg)
xX= —.

Ay 4.5)

As such, it is immediately seen that the line profile P(v) is symmetric if and only if 66 = 0. In fact, the line profile
then takes the form of a combination between a flat background and a peaked Lorentzian profile, centered around
x =0 (i.e. v = vp), and whose linewidth is given by

_ Av(1-R)
7VR

As a result, the better the reflection, the narrower the resonant peak. This is not surprising, given the analogy with
a Fabry-Perot interferometer whence this analysis stems. If, on the other hand, 66 # 0, the line profile features
asymmetry: the parameter 66 therefore constitutes an asymmetry parameter for the line profile. The authors fitted
the observed line profiles with Equation 4.1, the free parameters of the fit being R, D, vy, 68 and Py. This allowed
the authors to extract values of ¢6 for each mode, among other things. The results are shown in Figure 4.4, where
each point represents one mode. This plot has several interesting features. First, the asymmetry parameter 66
seems to only be weakly dependent on /, and all dots seem to collapse to a unique, slowly varying function of
frequency only. This is very similar to the behaviour of surface effects (see Section 2.4.1), and suggests that the
asymmetries are yet another marker of the physics of the superficial layers of the star. Secondly, the authors found
that 66 takes non-zero, positive values for low-frequency modes, but vanishes around vyax ~ 3 mHz. Concerning
frequencies higher than ~ 3 mHz, the authors argued that the formula given by Equation 4.1 is no longer valid,
because then the upper turning point becomes higher than the driving source, meaning that the latter ends up inside
the cavity instead of outside.

Nigam and Kosovichev (1998) proposed an alternative fitting formula for asymmetric line profiles, based on a
polynomial expansion of the profile obtained for an oscillating mode in a non-stratified equilibrium background,
and excited by a point-like driving source (i.e. characterised by a Dirac spatial distribution). They found

r 4.6)

(1 + Bx)> + B?

Px)=A 5

+ By, 4.7
1+x

where
2(v —vp)
x=—-".
Y

4.8)
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Figure 4.4: Value of the asymmetry parameter 66 for individual modes, obtained by fitting individual line profiles
in the observed intensity power spectrum of the Sun with Equation 4.1, as a function of mode frequency. Each dot
represents one mode. Credits: Duvall et al. (1993).

Fitting observed line profiles to this formula requires the adjustment of 5 free parameters, in the form of A, vy,
v, By and B. The first four are the height of the mode, its eigenfrequency, its linewidth and its background. If
B = 0, one obtains a Lorentzian line profile, perfectly symmetric. A non-zero value of this fifth, non-dimensional
parameter, on the other hand, leads to an asymmetric line profile. If B > 0, the power is higher on the high-
frequency side of the mode than the low-frequency side, and vice-versa if B < 0. The former case corresponds to a
mode having positive asymmetry, and the latter to a mode having negative asymmetry. The authors fitted solar p-
mode line profiles observed with the Michelson Doppler Interferometer (MDI), aboard the Solar and Heliospheric
Observatory (SoHO) spacecraft, both in velocity and intensity. They showed that Equation 4.7 provides with a
good fit to the data in both observables, and applied the fit to modes of radial order n = 3 to 8, for angular
degree [ = 75. Even though the asymmetry is quantified by the parameter B instead of ¢6, they still found the
same qualitative behaviour of solar p-mode asymmetry as Duvall et al. (1993), with asymmetries being positive in
intensity, negative in velocity, and both vanishing for frequencies higher than ~ 3 mHz.

Fits to observed solar p-mode line profiles were subsequently performed by several authors, using more and
more precise and resolved data as time went by, thus leading to more and more accurate inference of the mode
asymmetry across the solar p-mode spectrum (e.g. Toutain et al. 1998; Korzennik 1998; Rosenthal 1998; Chaplin
et al. 1999; Thiery et al. 2000; Basu and Antia 2000; Gelly et al. 2002; Oliviero et al. 2002; Korzennik 2005;
Vorontsov and Jefferies 2013; Howe et al. 2013; Korzennik et al. 2013). Equation 4.7 found the most use in
asymmetric line profile fitting to solar data, although several alternative forms were also used, among which
Korzennik (1998, 2005); Korzennik et al. (2013)

Ap |
1+ ap,l (-xn,l,m - %)
Pn,l,m(V) = 5 s 4.9
n,l,m +1

V= Vulm
b
I‘11,1/2

Xnlm =
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Figure 4.5: Asymmetry parameter S obtained by fitting individual line profiles in the solar velocity power spectrum
measured by MDI with Equation 4.11. Each dot represents one mode, and the uncertainty stemming from the fit is
shown. The solid line shows an approximation of the data with a function of frequency only, except below ~ 1.5
mHz, where it is a simple linear extrapolation. The dots are arranged along different lines marked p;, where i refers
to the radial order of the p-modes. Credits: Vorontsov and Jefferies (2013).

where the asymmetry parameter is @, ;; Rosenthal (1998)

. . -1
P(x)=ay+ a3z X (sm2 x cosh? ay + cos? x sinh® 0/1)

X ( [(a4 cos x — sin x) sinh @; — a5 sin x sinh (1/1]2 + [(ay4 sin x + cos x) sinh a1 + @5 cos x cosh a1]2) s

(4.10)
n(v = vo)
X=—,
0
where the asymmetry parameter is a4; or Vorontsov and Jefferies (2013)
2
Acos(¢p—S) >

P(p) = Py|| —————=| + B, 4.11

9) 0([ e ] @.11)
¢ 1+R tan

ng = n

an¢ = —ptand,

where 6 and R are the same quantities as in Duvall et al. (1993), and the asymmetry parameter is S. The asymmetry
parameters 66, B, @, a4 and S are all perfectly equivalent to one another, in particular if the asymmetry is small
(which is the case for the Sun). In this limit, these various asymmetric line profiles all perform equivalently, so that
there is no reason to choose one over the other. For instance, in the small asymmetry limit, one has S ~ B ~ @/2
(Vorontsov and Jefferies 2013). We now have very good measurements of solar p-mode asymmetries in both
observables, which support the early conclusions of Duvall et al. (1993). For instance, Figure 4.5 shows the
asymmetry parameter S defined by Equation 4.11 as a function of mode frequency, for low-frequency solar p-
modes in the velocity power spectrum (below ~ vp,«). The figure shows that the asymmetry remains negative over
this entire range of frequencies. It also shows that, in terms of absolute values, the asymmetry reaches a minimum
at ~ vmax, after which it increases again for higher frequencies.

Asymmetry measurements performed at different moments in the solar activity cycle revealed that the asym-
metry parameter varies between the quiet phases and active phases (Jiménez-Reyes et al. 2007; Howe et al. 2015).
This is primarily due to the fact that the asymmetry parameters defined above, like the parameter B for instance,
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scales with the linewidth of the mode, which itself vary with the solar activity cycle. To avoid the linewidth-
dependence of the asymmetry parameter, Gizon (2006) proposed to recast it as

B 2Bvg
T

This definition also has the advantage of relating the asymmetry directly to the relative position of the peaks (local
maxima) and valleys (local minima) in the power spectrum. Indeed, if v; is the frequency of the nearest valley and
v, the frequency of the nearest peak, then one has y = v»/(v» — vy): the closer the consecutive peak and valley are
to each other, the more pronounced the asymmetry. Because the linewidths of the solar-like p-modes depend so
much on frequency (see Section 2.3.1), it is perhaps more relevant to measure mode asymmetry with the parameter
x rather than with B.

An alternative fitting model for asymmetric line profiles was used by Severino et al. (2001) on the n = 10,
[ = 17 solar p-mode, and later extended to a larger frequency range in the solar p-mode spectrum by Barban et al.
(2004). Their model is based on the assumption that the asymmetries are caused by the presence of convective noise
partially correlated to the coherent, resonant modes (see Section 4.2.2 for more details on the matter). Although
the model can be used regardless of the actual physical origin of p-mode asymmetry, the interpretation of the
best-fit parameter values as representing the properties of the correlated convective noise is of course contingent
on the validity of this assumption. The novelty of their approach is to fit simultaneously the p-mode spectra
in both observables — velocity and intensity —, in addition to the amplitude and phase of the coherent velocity-
intensity cross-spectrum. Each observable is decomposed into a p-mode component (V,(v) and I,(v)), a coherent,
correlated background component (V.. and I..), a coherent uncorrelated background component (V,,, and I.,), and
an incoherent, uncorrelated background component (V, and I,). The p-mode component is assumed to be the
only one that depends on frequency over a given line profile frequency range: if the mode under consideration
is thin enough in the power spectrum, the behaviour of all background components can indeed be considered
frequency-independent. Each component is written thus

4.12)

Vp(v) = |Vp(V)| exp/®® () = |I p(v)| exp/Pn ™) Vie = [Vee| exp/®vec |
ICC = |ICC| eijCDI“ s ch = |ch| eij(DVz:u , Icu = |Icu| exqu)lcu ,
Vi =1Vl , I, =1L, , (4.13)

where V,, and [, only impact the observed spectra through their modulus square, so that their phase is irrelevant
to the model. The p-mode components are assumed Lorentzian, and are characterised by an amplitude, a phase, a
central frequency and a linewidth. Naturally, phases are only defined in terms of phase differences, and the time
origin can be set such that

2 Vo=l P
Vel = e @.14)

o=l P

2
Lo = Pt (4.15)

) , (4.16)

Oy, (v) = - arctan(
V=Y

) + (D]p_vp . (417)

Q) = - arctan(
V=

Then the four observed spectra (velocity power spectrum, intensity power spectrum, coherence I-V cross-spectrum
and phase of the I-V cross-spectrum respectively) are fitted with the following formulae

Py) = |V, + Ve + IVl + Vil (4.18)

Pi) = 1,0 + e + e + 11 (4.19)

COH() = (0 # 1) (V) + Vi) + eV , (4.20)
VP (V)Py(v)

O y(v) = Arg [(Ip(v) L) (Vo) + Vee) IcuVC*u] : 4.21)
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where * denotes a complex conjugate. The fit has 14 different parameters for each mode, in the form of 8 ampli-
tudes (V,(v = vo), I,(v = vo), [Veel, Ueel, IVeul, Heuls [Vl and |1,]), 4 phase differences (d),p_vp, ®y,., O v, and
®;..-v.,), the central frequency vy and the linewidth 5. The authors showed, in particular, that the resulting fit is
more robust when all four spectra are fitted simultaneously than when each observable is treated separately.

It was noted as early as Duvall et al. (1993) that neglecting asymmetry in the fit leads to a systematic error in the
measurement of mode frequency. The authors remarked that using a fitting formula with and without asymmetry
yields a frequency difference Av ~ 1.7 66, where 66 is their asymmetry parameter. Similar scalings were found for
the Sun by Abrams and Kumar (1996) or Chaplin et al. (1999) for instance — provided the frequency differences
are normalised by the linewidth of the modes —, as well as for other solar-like oscillators by Benomar et al. (2018).
Frequencies obtained with a symmetric fit are systematically found to be higher than those obtained with an
asymmetric fit if B > 0, and vice-versa if B < 0. This is fairly easily understood: a symmetric fit will compensate
the impossibility of giving more power to the wing that deserves it by shifting the central frequency towards it. It
can also be understood in terms of the maximum of the line profile. Indeed, taking Equation 4.7 for instance, one
easily finds that, to leading order in B, the maximum is reached for x ~ B, i.e for v = vy + BI'/2. Assuming that
the symmetric fit places the central frequency at the maximum of the line profile, while the asymmetric fit places
it correctly at vy, then the frequency difference normalised by the linewidth becomes

VOB=0 _ V(l)#o

B
~—=. 4.22
T > (4.22)

For the Sun, where B ~ 0.05 and the linewidth reaches ~ 10 uHz for the highest frequencies (see Section 2.3.1),
the frequency bias can reach values as high as ~ 0.5 uHz. While this is negligible compared with the frequency
bias entailed by surface effects (see Section 2.4), it remains largely superior to the spectral resolution attained in
solar observations, and more importantly to the statistical error stemming from the fitting procedure that yields the
inferred value of the mode frequencies, so that it is important to account for the asymmetry of the p-mode line
profiles for an accurate determination of mode frequency, especially for higher frequency modes, characterised by
a larger linewidth. However, as noted by Roxburgh and Vorontsov (2003), frequency differences are less affected
by this bias than absolute frequencies, especially close to the damping plateau, so that seismic indices such as
the large or small separation are likely to constitute less biased diagnosis tools than indices based on absolute
frequencies. Accounting for mode asymmetry is also important so as not to mix observational and theoretical
biases together: as it stands, the surface effect correction applied on frequencies obtained by symmetric fitting
formulae actually correct for both surface effects and the effect of asymmetry at the same time, meaning that any
conclusion drawn on surface effects is biased.

For a long time, asymmetry measurements were limited to the solar spectrum. The reason is that the spectrum
needs to be very well resolved in order for p-mode asymmetries to be accurately inferred. This only became
possible for other solar-like oscillators with Kepler data, once the observation duration was sufficient. Recently,
asymmetries were inferred by Benomar et al. (2018) from the intensity power spectrum of 43 stars from the Kepler
LEGACY sample (whose signal-to-noise ratio is highest). They used Equation 4.7 to fit the observed line profiles,
and quantified the asymmetry parameter with y (see Equation 4.12). Even though their targets were chosen to
have the highest possible signal-to-noise ratio, it was necessary, in order to improve the robustness of the fit, to
assume a unique asymmetry parameter over the entire measured frequency range for any given star. As I showed
for solar measurements, this assumption is an oversimplification; nevertheless, the authors tested the consistency
of this assumption by comparing the solar asymmetries measured in the different photometric channels (red, green
and blue) of the SPM/Virgo instrument aboard the SOHO spacecraft. They found that the best-fit value of y is
similar in all channels for high-frequency and high-signal-to-noise ratio modes, but that it is no longer the case for
lower frequency modes, whose signal-to-noise ratio is much smaller. The authors chose to consider an average
of y over all three channels, banking on the fact that the strong assumption that a unique value of y exists for all
modes under consideration in a given star is sufficient to compare the asymmetries across the HR diagram. Their
results are shown in Figure 4.6. Shown in the figure is the asymmetry y as a function of the stellar parameters Teg
(effective temperature) in the right panel, and g (surface gravity) in the left panel, where each point represents one
star. The figure shows a clear trend, with intensity asymmetries being negative for hotter and more massive stars
and positive for colder and less massive stars. They place the limit at Tex ~ 5700 K, and log(g) ~ 4.4, which is
incidentally not too far from the solar parameters. The authors also investigated, as it had been done for the Sun,
the effect on the frequency determination of not accounting for mode asymmetry. They found that, because of
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Figure 4.6: Asymmetry parameter y inferred from Kepler observations for a set of main-sequence solar-like os-
cillators, as a function of surface gravity (left) and effective temperature (right). The parameter y was obtained
by fitting all observed modes with Equation 4.10, where B and y are related to each other through Equation 4.12.
x was assumed to be unique for any given star. Each dot represents one star, error bars stemming from the fit to
the data are shown. The Sun is represented, for comparison, by the filled square (for velocity asymmetry) and the
filled triangle (for intensity asymmetry). The sample is divided into three categories, depending on the value of
x: red for negative asymmetry, green for negligible asymmetry, blue for positive asymmetry. The figure shows a
clear trend of y with stellar parameters. Credits: Benomar et al. (2018).

the high quality of the Kepler data, the frequency bias often exceeds the 1o-difference, with the differences being
more pronounced for modes with a larger linewidth.

4.2 Physical origin of p-mode asymmetry

4.2.1 Source localisation

The first physical mechanism to which mode asymmetry was ascribed is the localisation of the source of
excitation of the modes within a thin layer located close to the surface of the star. As I showed in Section 2.2.2,
mode driving is indeed primarily due to turbulent acoustic emission, which is particularly efficient at the top of the
convective envelope in solar-like oscillators, where the gas advected upwards by the convective instability suddenly
has to go back down. The fact that locally-driven modes feature an asymmetric line profile was recognised in
the context of solar-like p-modes even before the asymmetries were observed (e.g. Gabriel 1992, 1993, 1995;
Roxburgh and Vorontsov 1995; Abrams and Kumar 1996).

Physical mechanism

In order to understand why a localised source leads to an asymmetric profile, let me briefly consider a very
simple situation. In the adiabatic framework presented in Section 2.1, and with the Cowling approximation, I had
obtained two first-order ordinary differential equations in the form of Equations 2.62 and 2.63, for the two variables
E, and 77. These two equations can be transformed into a single second-order equation. Let me differentiate
Equation 2.62 with respect to r, and then replace d7/ dr and 77 by their expressions as functions of g?, and dg?; /dr
using Equations 2.62 and 2.63 itself respectively. We obtain, for a radial mode

a2, d[ (hﬂ)]d?, w? - N? ~
In

_ 4, o -No 423
dr c? 2 (423)

dr2  dr

c2
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where c is the speed of sound, N the Briint-Viisild frequency, and # is defined by Equation 2.64. The first-
derivative-term can be eliminated by introducing the new wave variable

_ ¢ = _ 'fr

Y(r) = Wfr(”) =’ (4.24)
in which case one gets a Schrédinger-type equation

Y [o?

5,{?_w4w:m (4.25)
with an acoustic potential given by

1d2%x 2 (dx)* N2
Vins-——-—+—=[— — . 4.26
) xdrr X2 (dr) c? (4-26)

The shape of the acoustic potential defines the cavity within which the modes develop: in particular, for a mode
of angular frequency w, the regions where w?/c> > V form the resonant cavity (where the eigenfunction ¥(r)
has an oscillatory behaviour), whereas the regions where w?/c?> < V form the evanescent regions (where the
eigenfunction has a decaying exponential behaviour). With this in mind, let me consider the simplest case where
the acoustic potential forms a square well. Since I consider a radial mode, the inner turning point is at the center
of the star, while the upper turning point is almost at the surface. The boundary condition at the center imposes
perfect reflection, but this is not the case at the surface, where part of the energy of the mode is lost through the
evanescent region. Therefore, the well should have a wall of infinite height at the center, and a wall of finite height
at the surface. Furthermore, I will consider that the equilibrium sound speed is uniform throughout the entire star,
so that I can replace the radial variable r with an acoustic depth variable 7, defined through its differential form
dt = dr/c. Finally, I will add, ‘by hand’, the effect of the linear damping as an additional linear term on the left-
hand side of the wave equation (Equation 4.25), and the effect of the localised driving as a point-like source with
no frequency dependence. Piecing all these ingredients together yields the following toy model wave equation

a2y

— + (0’ = V(D) + jwy) ¥ = 6(r - 1,) (4.27)
dr?

where 7y is the damping rate of the mode, ¢ is the Dirac distribution, 7, is the acoustic depth of the point-like source,
and the acoustic potential has a square-well shape

Vir)y= +o0 if 7<0,
0if 0<7t<a,
@ ifa<t. (4.28)

In this model, a represents the acoustic length of the cavity, and corresponds to the time it takes for the sound waves
to travel from one side of the stellar radius to the other. As for «, it represents the acoustic cut-off frequency, above
which waves are no longer confined within the square well. This toy model corresponds to the wave equation
considered, for instance, in Section II of Abrams and Kumar (1996). The wave equation, together with appropriate
boundary conditions (namely that ¥ should vanish at the center, and the growing exponential solution should be
filtered out at the surface) is straightforwardly solved: the detailed calculations can be found in Appendix C of
Philidet et al. (2020a). The value of the acoustic depth related to the layer at which the modes are observed (which
we will denote as 7ps) being fixed, the observed wave variable becomes a function of angular frequency w alone,
and depending on whether the source is inside or outside the well, one finds' (Abrams and Kumar 1996)

N(w) _ _
Wons(w) = — 75~ ex @olfons=a) (4.29)
with
D(w) = w; cos w;a + w, sin w;a , 4.30)

!"The solution given here is only valid if @, 7, < 7, meaning the layer at which the mode is observed is located higher than both the upper
turning point of the mode and the point-like source of excitation. This corresponds to what happens in practice, since modes are observed
in the atmosphere of the star, outside the acoustic cavity of the modes.
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and

N(w) = sinw;ts if 1,<a (4.31)

w; cos w;a sinh w,(ty — a) + w, sinw;acoshw,(ry —a) if a<ty. 4.32)

(see also Philidet et al. 2020a, Appendix C), where w? = w? + jwy and w? = a* —w* — jwy. The observed quantity,

then, is [¥ops(w)[*.

Naturally, because I considered an inhomogeneous wave equation with a forcing term, non-trivial solutions are
found for every value of w, not just for the eigenvalues of the corresponding homogeneous system. This solution
can be split three ways

e the denominator D(w) of the fraction, which is the same whether the source is inside or outside the mode
cavity, corresponds to the Wronskian” of two homogeneous solution of the wave equation, one verifying the
boundary solution at the center, the other verifying the boundary solution at the surface. I plot 1/|D(w)[* as
a function of w in the left panel of Figure 4.7. In the absence of damping (i.e. if ¥ = 0), D would vanish
for all values of the angular frequency w that coincides with an eigenvalue of the homogeneous system, so
that 1/|D(w)> would diverge for all eigenfrequencies. This is due to the definition of the Wronskian: if w
is an eigenfrequency, then the solution to the homogeneous system verifies both boundary conditions, and
the Wronskian of two identical solutions if obviously zero. In the presence of a linear damping contribution,
such as in the case of Equation 4.27, 1/ |D(w)|* does not diverge, and instead takes the form of a set of
Lorentzian profiles centered on each eigenfrequency of the system, each having a width at half maximum
equal to y. As such, the corresponding spectrum feature regularly spaced resonant peaks, so long as w < a.
For w > a, one still finds peaks in the spectrum, but they are much less pronounced, because these waves
are no longer confined modes, and do not undergo any reflection at the surface. Regardless of whether w is
smaller and greater than the acoustic cut-off frequency, 1/|D(w)|? alone yields symmetric line profiles;

o the exponential factor simply represents the evanescent nature of the region outside the cavity: the higher in
the atmosphere the mode is observed, the lower its apparent amplitude. This factor is almost independent of
w, and does not participate in the shape of the line profiles, except in the sense that it decreases its overall
amplitude;

o the numerator N(w) of the fraction is the only component that depends on the position of the source 7.
I plot the quantity |[N(w)/D(w)|* in the right panel of Figure 4.7. The difference with the left panel is
striking: the line profiles are now distinctly asymmetric. The reason is that N(w) is not symmetric around
an eigenfrequency of the system. More specifically, if N(w) increases with w in the vicinity of an angular
eigenfrequency wy, then [ obs(w)[* takes slightly higher values for w > wq than for w < wy, and the line
profile will feature positive asymmetry. The argument is reversed if N(w) decreases with w in the vicinity of
wo: then the line profile will feature negative asymmetry. The right-panel of Figure 4.7 also shows that the
amplitude of the modes drastically vary from mode to mode: this is also due to the fact that N(w) can take
very different values depending on wy.

The asymmetry of a given mode, therefore, is primarily determined by the direction of variation of |N(w)[?
with w. But it can be seen from the calculations carried out in Appendix C of Philidet et al. (2020a) that N(w)
corresponds to the value of the wave variable ¥, (1) at 7 = 75 (to a w-independent factor), i.e. at the position of
the point-like source of excitation. Since, in these expression, w and 7 systematically appear together in the form
of the product w;t, the direction of variation of |N ()| with w is exactly the same as the direction of variation of
the wave variable |'Y ()| with T around the source position. Since the wave variable has an oscillatory behaviour
for 0 < 7 < a, and behaves as an evanescent wave for a < 7, the following conclusions can be drawn

1) if 7y < a (i.e. if the source is inside the cavity), then the sign of the asymmetry of a mode depends on
the location of the source compared to the nodes and antinodes of the associated eigenfunction. More
specifically, if the source is located between a node below and an antinode above, then the modulus square

2In general, given a n-th order system of linear differential equations, and 7 solutions to the homogeneous system, then the Wronskian
of these n solutions is the determinant of the n X n matrix consisting of the »n first derivatives of each solution. One of its fundamental
properties is that it does not depend on the variable of the linear system. If, in addition, the solutions are linearly degenerate (i.e. if one can
be written as a linear combination of the others), then the Wronskian vanishes.
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Figure 4.7: Left: Inverse square of the Wronskian 1/ |D(w)|2, where D(w) is defined by Equation 4.30. Arbitrary
values @ = 7, a = 10, vy = 0.05, and 73 = 3.2 were chosen. All line profiles are symmetric. Right: Same as
left panel, but with the quantity |N(w)/ D(w)lz, also including the numerator defined by Equation 4.31. The line
profiles are now asymmetric, and their amplitude varies significantly from mode to mode.

of the eigenfunction increases with 7 in the vicinity of the source: the mode features positive asymmetry.
On the other hand, if the source is located between an antinode below and a node above, the mode features
negative asymmetry. Additionally, the relative amplitude of the modes also depends on whether 7 is located
close to a node or not;

2) ifa < 74 (i.e. if the source is outside the cavity), then the eigenfunction associated to any mode is evanescent,
so that its modulus square decreases with 7 in the vicinity of the source. Therefore, all modes feature a
negative asymmetry.

These conclusions, which I drew from a simplified toy model, are actually very general, which can be under-
stood through the perhaps more intuitive argument illustrated in Figure 4.8. I plot an asymmetric line profile in the
left panel, with three different frequencies highlighted green, red and blue respectively. One is the eigenfrequency
of the mode, the other two are slightly lower and slightly larger respectively, while still remaining within the fre-
quency range of the mode line profile. On the right panel are plotted (in an illustrative manner) the spatial profiles
Y, (1) associated to these three frequencies, and I add the position of the point-like source of excitation. It is clear
from this illustration that the relative amplitude of the wave variable profile at the position of the source is not the
same for all three frequencies, which impacts the efficiency of the excitation of a given frequency-component by
the point-like source. More specifically, if a component w is associated with a wave variable profile that features a
node at the position of the source, then the source will not be able to excite this component of the spectrum. On the
contrary, the efficiency of the excitation will be maximal if the source coincides with an antinode of the frequency-
component under consideration. Otherwise stated, in perhaps more familiar terms, the driving efficiency does not
only depend on the amplitude of the driving source itself, but also on the modulus squared of the local compress-
ibility [0&,/0r|* of the mode. In the example illustrated in Figure 4.8, the source ‘sees’ a much larger amplitude for
the green frequency than for the blue frequency, which explains why the green frequency has slightly more power
than the blue one. From this example, it is clear why, in the most general case, the sign of the asymmetry is tightly
related to the direction of variation of the eigenfunction of the mode in the vicinity of the source of excitation.

Other interpretations of the asymmetry caused by source localisation have been proposed as well. Gabriel
(1992) or Abrams and Kumar (1996), for instance, remarked that one could reason in terms of interference pat-
terns between the multiple reflections undergone by the waves. A localised source of excitation creates a certain
difference between the travel time of the outwards-travelling waves and the inwards-travelling ones, thus entailing
a certain phase difference, which leads to a frequency-dependent interference pattern that can create asymmetry. In
fact, this interpretation is already contained in Equation 4.29, which can be rewritten, as was remarked by Abrams
and Kumar (1996), in the form of an infinite series of travelling waves precisely corresponding to the multiple
reflections constituting the resonant mode, in addition (in the case of a source outside the cavity) to the original
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Figure 4.8: Schematic illustration of mode asymmetry caused by a localised source of excitation.

outwards-travelling wave that never entered the cavity in the first place. Let me note that a similar argument was
used by Duvall et al. (1993), except that they considered that the phase difference was not caused by a localised
source, but by non-adiabatic effects influencing the phase of the waves upon reflection on the surface. How-
ever, the influence of non-adiabaticity on mode asymmetry was later shown to be negligible by Rast and Bogdan
(1998). This may sound surprising, seeing as the oscillations are notoriously non-adiabatic close to the surface
of the star, as we saw in Section 2.1; however, I recall that mode asymmetry is a differential effect, not subjected
to overall changes to the mode line profile, so that certain effects affecting the amplitude of the mode can leave
the asymmetries unscathed. Another, alternative interpretation of the asymmetry caused by source localisation
was proposed by Rosenthal (1998). In his view, he measured the asymmetry of the mode as a non-equidistance
between the consecutive peaks and troughs in the power spectrum. He remarked that while the peaks correspond
to the eigenfrequencies of the whole solar cavity, the troughs correspond to the eigenfrequencies of the upper part
of the cavity only, truncated at the position of the source. Then, if a mode has a node on the source, the peaks and
troughs are superimposed, and the asymmetry is maximal; if the mode has an antinode on the source, each trough
is located exactly in between the two adjacent peaks, and there is no asymmetry. These conclusions are identical
to those reached above: all these alternative representations of source localisation as a source of mode asymmetry
are perfectly equivalent to the one I presented in more details earlier.

Constraints on the depth of excitation of solar p-modes

Since p-mode asymmetry carry the signature of the position of the driving region of the modes, observed solar
asymmetries have been used by several authors to try and constrain this position in the Sun. Abrams and Kumar
(1996) used a solar model calculated by Christensen-Dalsgaard (1991) to extract a realistic radial profile V(r)
for the acoustic potential, and used it to compute theoretical asymmetries for a grid of source positions, located
between the photosphere and a point 2000 km below the photosphere. Comparing their results to the observed
solar asymmetries reported by Duvall et al. (1993), they concluded that the point-like source of excitation of the
solar p-modes should be located between 325 and 525 km beneath the photosphere. They remarked that any deeper
source of excitation would cause some modes to feature a strong positive asymmetry (in direct disagreement with
observations), because the source would then have passed one of their radial nodes. Nigam et al. (1998) performed
a similar study, but used asymmetries observed in both velocity and intensity. Their goal was to determine both
the position of the source and its multipolar nature. For the latter, they considered that the right-hand side of the
wave equation can be written as a combination of monopolar (ec 6(7 — 7)) and dipolar (ec d 6(7 — 75)/ d7) sources.
The authors reported that they could only explain the observed asymmetries by including both components at
the same time, and constrained the location of the source between 25 and 125 km below the photosphere, in
stark disagreement with the results of Abrams and Kumar (1996). Kumar and Basu (1999a) later also considered
different source types, but focused on low-frequency modes in velocity. They found that in order for theoretically
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predicted asymmetries in the velocity power spectrum to agree as best as possible with observations, quadrupolar
sources have to be located between 700 and 1050 km below the photosphere, while the depth only has to be
between 120 and 350 km for dipolar sources. However, they did not consider the possibility of a mix between the
two kinds of sources, and could not discriminate between a purely dipolar and purely quadrupolar source using
observed asymmetries. Kumar and Basu (2000) extended this analysis to both low- and high-frequency modes.
Using this wider frequency range, they discarded the possibility that the high-frequency modes be excited by a
dipolar source, thus leaving only the possibility of a quadrupolar source. They further concluded that a quadrupolar
source should be located between 60 and 250 km below the photosphere to reproduce the observed asymmetries for
high-frequency modes. Chaplin and Appourchaux (1999) followed a slightly different approach. They considered
only modes of low angular degree /, observed both in velocity with 3 years worth of solar data from BiSON,
and in intensity with the full-disk intensity observations made with SPM/Virgo aboard the SoHO spacecraft, and
extracted their line profiles. In parallel, they computed theoretical line profiles by using the same inhomogeneous
wave equation presented above (Equation 4.27). Then they adjusted the model to match each observed line profile
individually, resulting in a best-fit value for the position of the source for each mode individually. They found that
all modes are excited by sources located between ~ 50 km and ~ 400 km. However, they considered the same
simplified square-well potential as I did above, instead of a more realistic solar potential.

This account strikes by the variety of results obtained by different, independent studies, as regards the depth of
the excitation source for solar p-modes. The results either disagree too much with each other, or are subjected to
uncertainties that are too large, which prevents the inferred source position from providing with a realistic picture of
solar-like p-mode excitation, even in the case of the Sun. This begs the question: can the properties of the source
actually be inferred from observations? This question was investigated by Jefferies et al. (2003), by using the
model of Severino et al. (2001) described in Section 4.1 (making use simultaneously of the velocity and intensity
power spectra, as well as the coherence velocity-intensity cross-spectrum, and their relative phase difference), to
fit the observed line profiles, by including both the effect of the source localisation, and the correlation of the
resonant mode with the convective noise, which can also lead to some sense of mode asymmetry (see Section 4.2.2
for more details). They concluded that the depth of the acoustic source cannot be uniquely determined, despite
the simultaneous use of the information contained in all four spectra, thus replying to the above question with a
resounding ‘no’. The exact same conclusion was reached by Wachter and Kosovichev (2005) as well. To conclude
on the subject of source position inference from observed asymmetries, we point out that all the studies presented
above either consider a point-like source of excitation, without any spatial extent, or include the spatial extent of the
source as an additional free parameter, but systematically simplify the spatial profile of the source to be Gaussian
(e.g. Gabriel 1992; Abrams and Kumar 1996; Chaplin and Appourchaux 1999). As I will show in Chapter 5,
these constitute oversimplifying assumptions, and the lack of a realistic description of the spatial profile of the
excitation source is a major drawback of these models, preventing them from enabling the inference of accurate
source properties through the use of observed p-mode asymmetries.

4.2.2 Correlated background

Another source of asymmetry is the partial statistical correlation of the resonant mode with the convective noise
in the background. The correlation stems from the fact that the modes are precisely excited by the turbulent motions
at the top of the convective zone: therefore, there can be interference between the mode and the background
noise, which, as I will now show, can skew the line profile of the modes. This is perfectly equivalent to another
phenomenon occurring in atomic spectroscopy: when a given atomic bound-bound transition can be subjected to
auto-ionisation (i.e. when an electron can be excited or deexcited through interaction with a continuum of free-
free or bound-free transitions of similar energy), then the resulting resonant spectral line can interfere with the
continuum, and the spectral line becomes asymmetric. Such asymmetric atomic line profiles are referred to as
Fano profiles (Fano 1961). The similarity between this phenomenon and the asymmetry of solar-like p-modes was
noted by Gabriel et al. (2001), and gives an invaluable insight into the physical mechanism at play in the realm of
helioseismology.
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Physical mechanism

Let us assume that the resonant mode is intrinsically characterised by a Lorentzian line profile, without asym-
metry®. Then the amplitude of the Fourier transform in time of the signal associated to the mode can be written as

Am
Jmode(w) = ——, (4.33)
X+

where A, is a complex constant representing the amplitude and phase of the mode (although one can always
redefine the time origin so that A,, is real), and

_2w—w) (4.34)
r

wo 1is the angular eigenfrequency of the mode, and I its linewidth. If only the mode itself were observed, the

modulus squared of this signal would yield a symmetric, Lorentzian profile. However, there is also noise, part of

which is correlated to the mode, and part of which is not. Denoting the former as A, exp(j®.) and the latter as

A, exp(j®,) (where A, and A, are the real amplitude of the correlated and uncorrelated background respectively,

and @, and @, their phase difference with the mode), then the total, observed power spectrum is

A o |
P(w) = |—2 + A exp/®| +A2. (4.35)
X+ ]
After some algebra, one finds
A2 24,,A
P(w) = —— + = gin(arctan x + ®.) + A2 + A2 (4.36)

1+x2  V1+2

The first term corresponds to the Lorentzian profile one would have obtained if only the mode were there, and
the last two terms correspond to the frequency-independent background. Both these contributions are symmetric
about the angular eigenfrequency wy (i.e. around x = 0). But the second term, in general, is not: unless the mode
and the correlated background are in quadrature (i.e. their phase difference ®, = +x/2), this interference term is
clearly not an even function of x. In fact, if ®. = 0 or 7, this term is an odd function of x. In other words, the
interference between the mode and the correlated background is either destructive for x < 0 and constructive for
x > 0, or the other way around. As a result, one of the wings of the mode is elevated by the interference pattern,
and the other is lowered: the mode has an asymmetric line profile. It is apparent, then, that while the degree of
asymmetry depends on a number of properties of the background, including its overall amplitude and its degree
of correlation with the mode, the sign of the asymmetry, on the other hand, only depends on the phase difference
between the mode and the correlated background — that is, between the mode and its source of excitation. Let me
remark, before going further, that a similarity can be drawn between the asymmetries caused by source localisation
(see Section 4.2.1) and the asymmetries caused by the correlated background: they can both be described in terms
of an interference pattern. This begs the question: is there a physical reason for separating the two? or is this
distinction purely artificial, and these two mechanisms really two sides of the same process? Gabriel et al. (2001)
hinted that this was indeed the case. Here, I content myself with remarking that as a result of this similarity, both
mechanisms have the same formal effect on the line profiles: it is therefore rigorously impossible to disentangle
the contribution of source localisation from the contribution of the correlated background using only observations.

Constraints on the solar correlated background

Originally, this mechanism was proposed by Nigam et al. (1998) to explain the asymmetry reversal puzzle
between the velocity and intensity observables. The authors included the correlated background into their model
in the following manner: they considered different source types — monopolar, dipolar, quadrupolar —, and for each

30f course, that is not true, since we just saw that the localisation of the mode driving source also creates an intrinsic asymmetry.
However, for the sake of this discussion, I will consider that the correlated background is the only source of asymmetry.
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source type computed the Green’s function* associated to the wave equation

A2y w?

F+|:C—Z—V(I’)j|\PZS(I’), (438)
1 N?

Vi == w? + le(l - E)] : (4.39)

where w, is the acoustic cut-off frequency. They considered that the Green’s function is the same for the ve-
locity and intensity observables. They then expressed the full observed signal by adding an arbitrary frequency-
dependence for the point-like source S (v), the correlated background C(v) and the uncorrelated background U(v)

Pv)=SW,rg))(CV)+GW)+UW), (4.40)

where the position of the source r; and the position at which the modes are observed rps are fixed in advance. The
authors then tweaked the position of the source, the relative weight of each source type, as well as the amplitude
of both the correlated and uncorrelated background in each observables, to reproduce the observed power spectra
as best they could. They found that they could only explain the asymmetry reversal between the two observables if
the amplitude of the correlated background was different in velocity than in intensity; varying any other parameter
also changes the sign of the asymmetries, but does so in both observables simultaneously. As a result, the authors
argued that the asymmetry reversal is caused by a much higher correlated background in intensity (where it can be
so high as to reverse the sign of the asymmetries) than in velocity (where it cannot). They remarked, as I did earlier,
that the presence of a correlated background can be explained by the presence of granulation overshoot, which is
responsible both for part of the noise and for the excitation of the modes. However, they offer no explanation as
to why it should be higher in one observable than in the other. Around the same time, Roxburgh and Vorontsov
(1997) proposed the same explanation, except they considered that the correlated background is more important in
velocity rather than in intensity. They argued that the kinematic velocity of the turbulent eddies shooting upwards
while exciting the modes is responsible for the correlated noise signal. On the other hand, Nigam and Kosovichev
(1999) proposed that the higher degree of correlation between the background and the modes in intensity is due
to the slight local photospheric darkening occurring before an acoustic emission event in the superadiabatic layer,
as observed on the surface of the Sun by Goode et al. (1998), as well as in 3D simulations (Stein and Nordlund
1991). Although Rast and Bogdan (1998) only considered uncorrelated, additive background, they remarked that
another explanation for the noise impacting asymmetries differently in both observables could stem from the fact
that modes stand out above noise level much more significantly in velocity than in intensity. They argued that, as
a result, one observes the wings of the modes much further away from the center in velocity than in intensity, so
that the line profiles in velocity are more sensitive to the frequency-dependence of the noise than the line profile in
intensity.

Regardless of the exact physical origin of the difference between the correlated noise levels in velocity and in-
tensity, observed solar asymmetry reversal was used by several authors to constrain the properties of the correlated
background. Kumar and Basu (1999b), for instance, considered that the correlated background could be neglected
in velocity, and only included it in the intensity spectrum. More specifically, they parameterised it through two
different parameters, namely the relative amplitude S of the correlated background compared to the amplitude of
the mode, and their phase difference ¢. They computed theoretical asymmetries in velocity (i.e. with 8 = 0) and in
intensity (i.e. with 8 # 0) for dipolar and quadrupolar sources, and found that they could explain the asymmetry
reversal provided the parameter 8 = S exp(—n) (where 7 is the acoustic depth difference between the upper turning
point of the modes and the layer at which the observations are performed) exceeds ~ 0.1. However, they consid-
ered the oversimplified toy model that I presented in the Section 4.2.1, instead of a more realistic solar acoustic
potential, which makes this figure a somewhat rough approximation. Nevertheless, they computed the expected

“For any given linear differential equation £(¥) = S, where £ is a linear operator, ' the variable of the equation, and S the inhomoge-
neous source term, the Green’s function G(r, ry) is defined as the unique solution to the differential equation, with its associated boundary
conditions, when S (r) = 6(r — ry). Knowing the Green’s function for every value of r and r; is sufficient to solve the full equation with an
arbitrary source term S (r), because the general solution is simply

‘P(r)=fdrs G(r,r)S(ry) . 4.37)
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value of S for the Sun, using a more realistic wave equation, and found the values to be in the range leading to
a reversal of asymmetry. A more systematic determination of this parameter was performed by Chaplin and Ap-
pourchaux (1999), who also included it only in intensity measurements, but adjusted its value for a set of observed
solar p-modes individually. They found that the ratio @.oe between the correlated background and the maximum
of the real part of the Green’s function of the modes reaches a minimum around vy, and a maximum for very
low and very high frequency modes, with values ranging from ~ 2% to ~ 5%. However, the authors remarked
that the frequency dependence of @ o) Was primarily due to the difference in the amplitude of the modes them-
selves. Considering instead the product of acorre; and the amplitude of the modes in intensity — in other words, the
absolute amplitude of the correlated background in intensity —, they found a much less pronounced, monotonously
decreasing frequency dependence.

The idea that only the intensity signal should contain correlated noise was then challenged by Skartlien and
Rast (2000), who used both observed asymmetries in intensity and velocity as well as observed phase differences
between the two spectra to conclude that both observables contain a certain measure of correlated background.
They argued that this was in agreement with the observation that acoustic emission event are systematically ac-
companied not only by a local darkening of the photosphere, but also by the creation of a local downdraft, quickly
followed by a subsequent upflow to take the place of the evacuating gas (Stein and Nordlund 1991; Rast and
Toomre 1993; Rast 1999). The same conclusion was reached by Severino et al. (2001), and later by Barban et al.
(2004), who used the information contained in all four observed spectra (velocity, intensity, and amplitude and
phase velocity-intensity cross-spectra) and fitted the observations with their model consisting of Equations 4.18
to 4.21. However, by construction, their model ascribes the entirety of the asymmetry of the modes and the ob-
served velocity-intensity phase difference to the correlated background, whereas, as I showed in the Section 4.2.1,
part of it is due to the localisation of the source. This analysis was improved by Wachter and Kosovichev (2005),
who included the non-adiabatic effects due to radiative transfer into their model, thus freeing them from having
to include an ad hoc intensity-velocity p-mode phase difference as a free parameter in the fit, and also included
the effect of source localisation on the asymmetry of the modes. Instead of focusing on the dependence of the
noise on frequency, like Severino et al. (2001) and Barban et al. (2004), the authors focused on the simultaneous
determination of source properties (position and multipolar decomposition) and noise properties (amplitude and
phase). While they did not manage to constrain the properties of the source, they did succeed in determining those
of the correlated and uncorrelated background. More specifically, they found that the fraction of the noise that is
correlated to the oscillations is indeed higher in intensity (~ 4%), but still exists in velocity (< 3%). As for the
phase difference, the authors found it to be almost in phase opposition (between —155° and —162°). However,
these results are considerably tainted by the uncertainty surrounding the source properties. The idea that the ve-
locity signal should also contain a correlated background component is also supported by the findings of Tripathy
et al. (2003) or Sanchez Cuberes et al. (2003) for instance, who reported that the asymmetry reversal is stronger
when the asymmetries are observed locally close to the center of the solar disk than when they are observed near
its limb. The only explanation is that the velocity field we observe is radial in the center and horizontal in the limb;
but only the radial velocity is correlated with the oscillations, so that the correlated background component in the
velocity signal is lower near the limb than near the center. Naturally, this only works if the velocity signal contains
a correlated noise component in the first place. However, these results were contradicted by Tripathy et al. (2009),
who concluded, at complete odds with these earlier results, that their is no difference between measurements near
the limb and near the center, and that therefore only the intensity signal contains a contribution from the correlated
background.

Attempts were also made at predicting the effect of the correlated background on mode asymmetry, for instance
by Chaplin et al. (2008). The authors managed to give a theoretical prescription for the asymmetry parameter
B caused by the correlated background, for any given observable and any given geometrical factor related to
the observational technique. However, they still need to leave the fraction of noise correlated to the source of
excitation as a free parameter, which is precisely that part of the calculations on which concentrates a large part of
the modelling complexity. They also assume that the noise level is the same for all modes. Were these obstacles
to be lifted, however, one could find out what portion of B is caused by the correlated background, with the
understanding that the leftover, compared to observations, is due to source localisation alone, and can therefore be
used for a more accurate determination of the source properties. I conclude on the matter by remarking that in the
absence of such a predictive model, and as I hinted in the beginning of this section, it is extremely complicated to
disentangle the various contributions to mode asymmetry, and therefore it is very complicated to infer properties
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of either the excitation source or the correlated background from observed asymmetries. This is illustrated, in
particular, by the absence of consensus concerning the question of which mode observable is correlated with the
convective noise, an absence of consensus that mirrors the one I already mentioned regarding the properties of the
source (see Section 4.2.1), and that still lingers to this day.

4.2.3 Opacity effect
Physical mechanism

A third physical mechanism that is susceptible to be responsible for mode asymmetry, and more specifically for
asymmetry reversal between velocity and intensity, was proposed by Georgobiani et al. (2003), and has to do with
the modulation of the radiative flux by the oscillations, and more specifically the modulation of the optical depth
that they bring about. The authors used a 3D hydrodynamic simulation of the solar atmosphere calculated with the
STAGGER code (Stein and Nordlund 1998), which they had already used in Georgobiani et al. (2000) to directly
extract normal modes of oscillation from the simulation, and to ‘observe’ the asymmetry reversal directly in the
simulation. This approach presents the distinct advantage of allowing for a precise exploration of the physical
mechanisms at hand, since they are all contained in the output of the simulation®. The authors isolated one normal
mode of oscillation in their simulation box, and ‘observed’ it alternatively at fixed geometrical depth ry (chosen
such that the horizontal and time average of the optical depth 7 at ry equals unity), and at fixed optical depth
7 = 1. In the following, I will refer to the former as the r-frame, and to the latter as the r7-frame. Because of the
fluctuations due to the noise and to the modes, the layer of optical depth 7 = 1 depends on both time and horizontal
coordinates. In particular, one sees deeper in the cooler — and therefore more transparent — intergranular lanes than
in the hotter granules. Therefore, the r-frame and the 7-frame are different. First, the authors remarked that the
amplitude of the modes in temperature was considerably reduced in the 7-frame compared to the r-frame, while
the amplitude in velocity remains unaffected. Furthermore, they remarked that the asymmetry of the line profile
was the same in velocity and temperature in the r-frame, but that the asymmetry in temperature became opposite in
sign in the 7-frame. They also observed the line profile in the emergent intensity spectrum, which features the same
reversed asymmetry as temperature in the 7-frame. Real solar observations are done in the 7-frame: indeed, the
emergent intensity is observed at the 7 = 2/3 layer (due to the Eddington-Barbier relations, Mihalas and Mihalas
1984), and the Doppler measurements are made at the formation height of the spectral absorption line under
consideration, which is also 7-dependent. Based on this observation, the authors proposed the following picture:
modal fluctuations of the temperature entail fluctuations of the opacity; opacity fluctuations perturb the geometrical
depth at which modes are observed; because of the steep background temperature gradient at the photosphere,
the observed background temperature undergoes fluctuations in phase with the observation height fluctuations;
the background temperature fluctuations adds up with the modal temperature fluctuations, thus modifying the
observed intensity spectrum. Because the background temperature fluctuations are in phase opposition with the
modal temperature fluctuations, the 7-frame intensity spectrum has a reduced amplitude compared to the r-frame
intensity spectrum. Because there is no background mean velocity gradient at the photosphere (at least in their
simulation), the 7-frame velocity spectrum is identical to the r-frame velocity spectrum. Finally, because the x — T
relation is non-linear, the intensity spectrum reduction between the two frames depends on the amplitude of the
starting modal fluctuations, which explains why the wing of the temperature line profile that has more power in the
r-frame is more drastically reduced than the other once observed in the 7-frame, so much so that the asymmetry is
reversed.

A toy-model for the opacity effect

In the simulation studied by Georgobiani et al. (2003), the authors showed that the opacity effect described
above is responsible for the asymmetry reversal between velocity and intensity observables. However, their ex-
planation is based on an intrinsically non-linear mechanism. This begs the question: while this effect might be
important in a 3D simulation, where modes have a very high amplitude, does it remain important in the real solar
case, where the modes have much smaller amplitudes? In order to answer this question, I propose the following
toy-model to quantify the extent to which the opacity effect impacts the shape of the line profile of a resonant mode

On the other hand, the simulation presents the distinct disadvantage of not being the Sun, which, as will become clear later on, makes
the transposition of these results to the real solar case complicated.
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in the temperature power spectrum, both in terms of its overall amplitude and of its asymmetry. It is similar, at
least in its spirit, to the model presented by Severino et al. (2008), although they applied it to the numerical results
of Georgobiani et al. (2003) rather to the actual Sun.

In the following, I denote the Lagrangian temperature perturbation as 67 in the r-frame, and the 7-frame
temperature perturbation as 67;. The two kinds of fluctuations are related through

dr,
6T, = 6T — —2671, (4.41)
dr

where 67 refers to the Lagrangian perturbation of the optical depth, and Ty(r) is the unperturbed, equilibrium
temperature. I recall that the optical depth is defined through its differential form by

dr = —pkgdr, (4.42)

where p is the density and g the mean Rosseland opacity per unit mass. The minus sign ensures that the optical
depth is zero far away from the star, and increases as one goes deeper into it. Perturbing this linearly, one finds

doT = —6pkg dr — pokg dr — pkg d&, , (4.43)

where &, is the radial fluid displacement. Integrating this between the radius r, at which the mode is observed and
infinity (where 67 = 0), one finds

+oo skg op d
57 = —f derR(ﬁ + 2y ﬁ) . (4.44)
w ' pdr

There is a bit of a subtlety here. Indeed, I argued only moments ago that the modes are observed in the 7-frame,
which means that the geometrical height at which the observations are done is not fixed: in other words, r, depends
on time. However, the difference between the instantaneous and average values of r, can be treated as a first-order
quantity in the perturbative framework of the oscillations. Since the integral is already first-order, accounting
for the perturbation of r, would only add a second-order correction to this expression, which can therefore be
neglected. As such, the value of r, that appears in Equation 4.44 is actually the average geometrical height of
observation, and is constant. Plugging Equation 4.44 into Equation 4.41, one obtains

1 dTy (™ 0 o)

KRopPo dr J, KR Jol r

oT; =0T +

(4.45)

where kg, and p, are the equilibrium opacity and density at the average height of observation r,,.

To close this relation, one has to express the density, opacity and displacement perturbations dkg, dp and &,
as a function of the temperature perturbation 67. Using the perturbed continuity equation, one can write dp/p +
dé,/ dr = =2&,/r. Because the modes are observed in the atmosphere of the star, this curvature term is negligible(’.
As such, only the opacity perturbation need be retained in Equation 4.45. Assuming an equation of state of the
form kg o< TP, one easily derives

(4.46)

Okr @:(1+£)ﬁ—1.
KR TB

T
Note that I do not linearise this expression, because the asymmetry change between the r-frame and 7-frame
intensity spectra are precisely brought about by the non-linearity of this relation (Georgobiani et al. 2003). Close
to the photosphere, the opacity is mainly due to H~ absorption, for which the exponent in the x — T relation
is approximately g ~ 7.5 for the Sun (Kippenhahn and Weigert 1994). One can then combine Equations 4.45
and 4.46 to obtain the following relationship between Lagrangian and 7-frame temperature perturbations

6T, = 6T Lo f -
= - Kp
! HTKR,opo o

(1 + %)ﬁ _ 1] dr, (4.47)

For an order of magnitude: in the Sun &, is typically of the order of a few tens of meters, while r refers to the radius of the Sun,
~ 700,000 km. The ratio between the two is ~ 1078, which is indeed negligible compared to the few parts per million of the relative
opacity perturbation entailed by the modes.

95



4.2. PHYSICAL ORIGIN OF P-MODE ASYMMETRY

o

1.0 15 2.0 2.5 3.0 35 10
Frequency v (mHz)

Figure 4.9: Inverse of the dimensionless parameter @ = [/Hr, where [ is defined by Equation 4.48, as a function
of frequency, for a solar model. The horizontal solid black line corresponds to o~ = .

where T, is the equilibrium temperature at the average observation height, and I have introduced the temperature
scale height Hr such that d7¢/dr = —T,/Hr. This expression can be simplified greatly if one introduces the
integral spatial scale related to the integral over r

—+00 ST B
fr KRP (1+T) —1] dr

= —= . (4.48)

B
oT
(1 + —) -1
T()

In order to render this integral scale dimensionless, I introduce the parameter @ such that [ = aHr, in which case
Equation 4.47 reduces to

T T T\
oT: _ ¢ (1+6T—) —1], (4.49)

I, T,

where the parameter @ only depends on the temperature eigenfunction associated to the mode in the atmosphere, as
well as the equilibrium state of the stellar atmosphere. In order to apply this toy model to the solar case, I used an
equilibrium patched model of the Sun computed with the CO’BOLD hydrodynamic code to extract the equilibrium
quantities appearing in Equation 4.48, and the adiabatic pulsation code ADIPLS’ to extract the temperature eigen-
function 67 associated to the solar radial p-modes of radial order n = 6 to n = 30. This allowed me to compute
the values of the dimensionless parameter a for each of these modes. I show the results in Figure 4.9. It can be
seen that, except for very low-frequency modes, the parameter o' remains slightly above 3, which will prove of
crucial importance in the following.

Equation 4.49 provides with a closed relation between the temperature perturbations as observed in the La-
grangian and 7-frames. It can therefore be used to analytically derive a relation between the properties of a given
p-mode in both frames. Denoting the eigenfrequency of the mode as vy, its linewidth as I', its height as H, and its
asymmetry as B, in the r-frame, then the complex Fourier transform in time associated to the mode reads

W) = ﬁ(

T am getting slightly ahead of myself here, as the numerical tools I use in this toy model are the same I used for the bulk of my work,
which I present in the next few chapters. As such, for the moment, I deliberately give no further details as regards either of these codes or
how I used them. These details can be found in the Chapter 5.

KR.0Po

- jB 4.50
1+jx .] r) s ( )

96



CHAPTER 4. MODE ASYMMETRY: HISTORY AND CONTEXT

where x = 2(v — vp)/I is the reduced frequency, the notation y refers to 67'/T,, the subscript r refers, as before,
to quantities measured in the Lagrangian frame, and j is the imaginary unit. The modulus squared of the above
expression, which corresponds to the power spectrum of the quantity y, indeed yields an asymmetric line profile
corresponding to Equation 4.7

(1 + B,x)*> + B?

[l 00 = H =5

4.51)
Naturally, the same is true for the 7-frame counterpart of y, where the eigenfrequency vy and the linewidth I’
remain the same, but the height and asymmetry may differ. The inverse Fourier transform of Equation 4.50 is
readily derived, and one finds

. A,B
v () = Ay exp T Q1) + j—=L5(1) (4.52)
al’
. A.B
ye(f) = Ag exp TN Q(p) + j—TrT(S(t) , (4.53)
T

where the functions ® and ¢ are the Heaviside and Dirac distributions respectively, A, refers to the amplitude of the
mode in the Lagrangian frame: A, = VT H,, and A, is its 7-frame counterpart. Note that the time series derived
from the Fourier transform should be subjected to a normalising factor, depending both on the convention used
for the definition of the Fourier transform and the total observation time. However, since this factor is identical
for y, and y-, it is not relevant to the following calculations, and we take it as unity. Plugging Equation 4.52 into
Equation 4.49 and expanding the 8-th power, one finds

: A,B, S _ : AB,
y(1) = (1 — ap) (A, exp MM Q(r) + 5(;))—aZc; (Ar exp Q1) + (5(t)) , (4.54)
al’ al’

i=2

where I simply separated the terms i = 0 and i = 1 from all others in the expansion, and C* refers to the ‘k among
n’ binomial coefficient. Among the many terms arising from the expansion in the second term on the right-hand
side, only the term i = 2 affects the mode under consideration. Indeed, it can be seen that all other terms are either
proportional to exp(27n jvot), with n > 2, in which case its influence on the v = vy mode is negligible, or it is of
second or higher order in B,, in which case, given the small typical values of the asymmetry, it is also negligible.
For the same reason, in the i = 2 term, only the crossed term in the expansion of the square is retained. As such,
one finds

_ 2
P 3 D 'A’B’a(t) ) (4.55)

. A,B
ye(t) = (1 = ap) (A, exp ™20 01 + L26(0) - @ X2
al’ al’

Finally, identifying the @(¢) and 6(¢) terms in Equation 4.55 with those of Equation 4.53, one finds

Ar=(1-aP)A,, (4.56)
o _aBB-1
B, = B,(l - ) , 4.57)

which gives the amplitude and asymmetry of the 7-frame intensity spectrum as a function of their Lagrangian-
frame counterparts.

Equations 4.56 and 4.57 encompass every qualitative aspect of the opacity effect as I described them above.
Let me consider separately the effect on mode amplitude and the effect on mode asymmetry

e it can be seen from Equation 4.56 that the amplitude reduction due to the opacity effect is a purely linear
phenomenon, as the ratio A; /A, does not depend on the amplitude of the oscillation. This is further supported
by the fact that it only depends on the i = 0 and i = 1 terms in the expansion of Equation 4.54, which are
precisely the terms that would have been retained, had I linearised the expression from the start. Since both
a and B are positive, we further have A; < A,; if, in addition, the product af is sufficiently close to unity —
which, as can be seen from Figure 4.9, is the case throughout the entire p-mode spectrum —, the amplitude
reduction becomes quite significant. As a crude estimate, for instance, taking 8 = 7.5 and ~! ~ 8.5, one
finds A;/A, ~ 0.1. This is in agreement with the results of Georgobiani et al. (2003), who report in their
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simulation a temperature amplitude reduction from ~ 30 K to ~ 2 K (see their Figures 6 and 7 respectively).
Since this ratio does not depend on the amplitude of the modes, a similar amplitude reduction is to be
expected in the real solar case. What this means, therefore, is that the Lagrangian temperature perturbation
is not an appropriate proxy for the emergent intensity spectrum: adopting 6T as proxy would lead to a severe
overestimation of the mode amplitude in intensity. I will have the opportunity to elaborate on this point in
Chapter 6, and more specifically in Section 6.3;

e on the other hand, Equation 4.57 shows that the asymmetry change due to the opacity effect is a non-linear
effect, as the ratio B;/B, does depend on the mode amplitude A,. This is further supported by the fact
that, had I linearised the expression for 67; given by Equation 4.49 from the start, the i > 1 terms in the
above expansion would have vanished, and I would simply have obtained B; = B,. As such, in the limit
A, — 0, the asymmetry remains unchanged by the opacity effect. Equation 4.57 gives us an estimate for the
amplitude threshold above which B, starts significantly departing from B,

1 -ap
apB-1)

Again, because the product af is fairly close to unity, this threshold is substantially smaller than unity.
Adopting the same crude estimates as above (8 = 7.5, a~! ~ 8.5), one finds Awreshold ~ 0.02. In the
3D simulation studied by Georgobiani et al. (2003), plugging in visually-estimated values of the spectral
height and linewidth of the r-frame modal temperature line profile as illustrated in their Figure 6, one finds
A, ~ 5x 1073, which is only slightly below the predicted value of Agyeshold- This explains why their 7-
frame asymmetry B, differs from its Lagrangian frame counterpart, but not so much as to have a reversed
sign, as can be visually inferred from their Figure 7. Actual solar modes are, however, of much smaller
amplitude: indeed, they are of the order of several parts per million (ppm) in intensity, meaning that, in
terms of temperature fluctuations, A, ~ 107® < Agreshoid. The solar p-mode asymmetries in intensity
therefore need not be corrected for the non-linear opacity effect, which is negligible at such low amplitudes.

Athreshold ~ (458)

I conclude from this toy model that while the opacity effect is likely to have a drastic impact on the amplitude
of the modes observed in the intensity power spectrum, its effect on mode asymmetry is completely negligible in
the real solar case, and cannot explain the observed asymmetry reversal puzzle. The reason is that the impact of
opacity effects on mode asymmetry is non-linear, and therefore negligible for low-amplitude modes such as the
solar p-modes.

4.3 My work in the context of solar-like p-mode asymmetry

There are two main questions surrounding the subject of solar-like p-mode asymmetry, both of which I tackle
in the scope of this thesis

1) how can the observed asymmetries help us constrain the properties of the source of excitation of the modes,
as well as the properties of the part of the background convective noise that is correlated with the modes?

2) to what physical mechanism is due the asymmetry reversal between the velocity and intensity observables?
and how can we use it to further constrain the properties of the source of excitation and the correlated
background?

As I showed during the course of this introduction, these two questions have been extensively investigated in the
past, but still remain open. Furthermore, the recent observation of skewed line profiles in the power spectrum of
solar-like oscillators other than the Sun (Benomar et al. 2018) not only calls for a revisiting of these two questions,
but also opens up a third one

3) how can the observed scaling law for asymmetry as a function of the stellar parameters (effective temperature
or surface gravity) be used as a tool for seismic diagnosis?

Concerning the first question: as I showed in Section 4.2.1 (for the localised source) and Section 4.2.2 (for
the correlated background), our ability to infer their properties from observations is tightly related to the degree
of realism that goes in the modelled p-mode power spectrum. It is clear from the account given above that all
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attempts, so far, are either based on overly simplified models (in particular concerning the spatial extent of the
source of excitation — which is assumed to follow either a Dirac or a Gaussian distribution —, but also the frequency
or wavelength dependence of the driving source or the correlated background), or on models that contain so many
free parameters that best-fit solutions cannot be uniquely determined (more particularly, since the effect of the
localised source and of the correlated background on mode asymmetry takes rigorously the same form, there is a
strong degeneracy between the inferred properties of both these components). Using observed asymmetries as a
way to constrain these properties therefore requires two things: a model for p-mode excitation that is much more
realistic than what has been tried in the context of mode asymmetry so far; and one, what is more, that contains
much fewer free parameters — in other words, not an empirical prescription, but a physically-grounded model.
In the larger context of solar-like p-mode excitation, several such realistic and physically-grounded models have
been proposed and applied to constrain the properties of the source from observed amplitudes — as I showed in
Section 2.2.2. But these models have so far found very few uses in the context of p-mode asymmetry.

The first task I undertook, in the beginning of my PhD, was therefore to develop a realistic oscillation synthetic
power spectrum model, largely based on the p-mode excitation formalism of Samadi and Goupil (2001). The
model contains a limited number of physical parameters, which allowed me to successfully predict not simply
the amplitude of the modes, but also the full shape of their line profiles, and in particular their asymmetry, while
providing with useful constraints on the few physical parameters present in the model, pertaining to the spatial
and temporal properties of the turbulent velocity spectrum. In the next two chapters, I only concern myself with
radial modes (since, as I had the opportunity to point out in Section 4.1, the observed asymmetry are relatively
independent of the angular degree /, and mainly depend on the frequency of the modes). Furthermore, the work
presented in this first part concerns new theoretical developments, and the short-term goal of this work was to test
the validity of these developments. As such, for the moment, I have only applied it to the case of the most finely
understood solar-like oscillator: the Sun. Chapter 5, then, is devoted to presenting this synthetic power spectrum
model, as well as the results it yielded when applied to the case of solar radial p-modes, with a focus on the velocity
power spectrum only.

Answering the second question requires a model with the same qualities as mentioned above. Having at
my disposal a synthetic power spectrum model for the solar-like radial p-modes in velocity, it was only natural
that I should investigate whether the model could be adapted to intensity observations as well. The short-term
goal, in doing so, was to investigated the second question. But the longer-term motivation was to prepare for
an investigation of the third question. Indeed, at the present time, for stars other than the Sun, only photometric
measurements are resolved enough to allow for a determination of mode asymmetry. Otherwise stated, velocity
asymmetry are only observationally available for the Sun, not for other stars. As such, fully understanding question
2) is actually a prerequisite to even starting to consider question 3). The adaptation of my model to photometric
measurements is the subject of Chapter 6.
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Indulge your passion for science... but let
your science be human, and such as may
have a direct reference to action and
society. Be a philosopher; but amidst all
your philosophy, be still a man.

David Hume

This chapter is devoted to the work of Philidet et al. (2020a). All the details of this work are presented in this
article, which I reproduce in the end of this chapter. I will not present all these details in the body of the thesis,
as this would be redundant. Instead, I focus on the main building steps of my formalism, after which I present the
main results of the application of this model to the solar case.

5.1 The formalism

I showed in Chapter 4 that solar-like p-mode asymmetry stems primarily from two physical sources: the
localisation of the source of excitation, and the convective background correlated with the oscillations. In this
chapter, I build on the excitation formalism of Samadi and Goupil (2001) to describe the shape of the p-mode
line profiles as a function of the turbulent velocity spectrum @;; (see Equation 2.95), in such a way that both
sources of asymmetry are contained in the model. The first step is to express the observed power spectrum in
terms of the Fourier transform in time of the fluid velocity. To do this, I decompose the flow velocity in an
oscillatory component v, corresponding to the modes, and a background component u, corresponding to the
turbulent convection. The total velocity is then Fourier transformed in time, projected along the observer line of
sight, and integrated over the entire solar disk. Then the modulus squared is expanded, yielding three components
in the synthetic power spectrum: one due to the oscillatory component alone, one due to the turbulent background
alone, and a crossed term. Neglecting the turbulent background, on account of its small amplitude compared to the
resonant mode, and the fact that it constitutes an additive noise, and therefore cannot impact the asymmetry of the
modes, one finds (see Philidet et al. 2020a, Eq. 4)

2
P = [ s (@) +2 [ audoore( [ i (rwn @) 5.1)

where the integrals span over the observed solar disk, and represent the variable visibility of the radial fluid velocity
between the center and the limb, weighted by the reduced limb-darkening factor Z(,u), and Vs and u, are the
Fourier transform in time of the oscillatory and background components of the velocity respectively. The observed
power spectrum P(w) contains two terms. The first term is the contribution of the p-modes to the total observed
velocity: the mode line profiles due to this term only contain the asymmetry due to the source localisation. On the
other hand, the second term is the contribution of the correlated background to the total observed velocity: this
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additional term is susceptible to modify the shape of the mode line profiles, and contains the aforementioned effect
of the correlated background on mode asymmetry.

I now need to model Vo5 (w). To this end, T use the adiabatic wave equation that I presented in Chapter 2, with
three modifications

o the first modification has to do with the fact that I only consider radial p-modes, so that the Lamb frequency
L;—o vanishes. This also means that the Cowling approximation becomes useless, as the perturbation ®’ of
the gravitational potential is now easily related to the fluid radial displacement &,. This is done by plugging
Equation 2.24 into Equation 2.25, and discarding all horizontal gradients of the wave variables and the
equilibrium quantities. One finds (Unno et al. 1989)

do’
dr

= 47Gpoé; . (5.2)

Because of this simple relation, the order of the system is not increased by taking @’ into account, and the
wave equation remains of second-order in the radial coordinate;

e the second modification consists in not discarding the convective velocity in the wave equation any longer.
More precisely, I retain the non-homogeneous forcing term stemming from the non-linear advection term
in the momentum equation. This results in a source term in the wave equation, which represents turbulent
emission from the perturbation of the Reynolds stress force which I introduced in Section 2.2.2;

o the third modification consists in including the effect of linear damping by adding, by hand, a damping
contribution in the wave equation, similarly to what I did in Equation 4.27 (see also Abrams and Kumar
1996). This extra damping term is characterised by a damping rate y, for which I use observed solar values
(see Philidet et al. 2020a, Table 1).

With these three modifications, the inhomogeneous wave equation becomes (see Philidet et al. 2020a, Eq. 8)

d*vy,, 24 jwl,
LY vy, =S50, (5.3)
dr? c?

where the wave variable W, (r) is related to Vos(r, w) through (see Philidet et al. 2020a, Eq. A.28)

re(r) \lpo(r)
jw

Yu(r) = Vosc(r, w) , (5.4

the acoustic potential is slightly modified compared to Equation 4.26 (because of the inclusion of the perturbed
gravitational potential) to

2_4 2 SRS
Vir) = N(r) nGpo(r) d_x L dwx ’ (5.5)
c(r)? x(r)? \dr x(r) dr?
and the source term is given by (see Philidet et al. 2020a, Eq. 7)
r dp; r d [ }
r=s ———— = ————— | puu, — {puyuy)| (5.6)
c(r)yJpo(r) A c(r) yJpo(r) dr

where p; is the Eulerian perturbation of the turbulent pressure, and u, the turbulent part of the radial velocity. As I
mentioned in Section 4.2.1, the general solution of this inhomogeneous wave equation is

Wou(r) = fdl’sGw(l”, rs)S(rg) , 6.7

where G, (r, r;) is the Green’s function associated to the wave equation, i.e. its solution when the source term is
replaced by a Dirac distribution centered on r = r;

S(r)=6(r—rs). (5.8)
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CHAPTER 5. SOLAR ASYMMETRIES IN VELOCITY

It becomes apparent, then, that modelling the wave variable ¥, (r) — and therefore, through Equations 5.1 and 5.4,
modelling the observed power spectrum — requires two ingredients: the Green’s function and the source term.

The first ingredient is obtained numerically, according to the procedure described in Section 3.2 of Philidet
et al. (2020a). In broad lines, I use a solar equilibrium model constructed with the 1D evolutionary code CESTAN,
on top of which a solar atmosphere computed with the CO’BOLD code, averaged temporally and horizontally, is
patched. This provides with the equilibrium quantities appearing in the homogeneous part of the wave equation
(Equation 5.3). The total inhomogeneous wave equation, where the source term is given by Equation 5.8, is then
integrated numerically using a fourth-order Runge-Kutta scheme, with boundary conditions imposing a null radial
displacement at the center, and a vanishing Lagrangian pressure perturbation at the surface. This procedure allows
me to compute the radial profile of the Green’s function G,,(, r;) for any given angular frequency w and any source
position r;: it can be considered completely known.

The second ingredient is the statistical properties of the turbulent source of excitation S (r), i.e. those of the
turbulent velocity field. It is precisely those properties that I strive to constrain. More precisely, the first term in
the right-hand side of Equation 5.1 depends on the fourth-order correlation product of the turbulent velocity, while
the second term in the right-hand side depends on its third-order correlation product. The challenge, therefore,
consists in prescribing the form taken by these high-order correlations in the case of stellar turbulent convection.
First, they must be expressed in terms of second-order correlations, through adapted closure relations. This is done,
for fourth-order terms, by adopting the Quasi-Normal Approximation' (see Philidet et al. 2020a, Eq. 14), and for
third-order terms, by adopting the closure relation of Belkacem et al. (2006), in the scope of the Plume Closure
Model (see Philidet et al. 2020a, Eq. 15). The core idea behind the Plume Closure Model (PCM thereafter) is
the assumption that the gas close to the surface of the star is organised in separate upflows and downflows, each
being characterised by a turbulent velocity that follows a Gaussian distribution. The total velocity field is therefore
characterised by a bi-Gaussian distribution, and the asymmetry between the upflows and downflows — the latter
being more turbulent — skews the total distribution, thus yielding non-zero third-order moments”

Once this is done, only the second-order moment of the turbulent velocity — i.e. its two-point, two-time
covariance — needs to be prescribed. I adopt exactly the same prescription as Samadi and Goupil (2001), and details
of this prescription can be found both in their paper or in the one reproduced in the end of this chapter. In short,
the second-order moment is described in terms of its Fourier transform in space and time ®;; (see Equation 2.95),
which takes the form (see Philidet et al. 2020a, Eqs. 17 and 18)

D;i(k, w) = f d’k f do (1R, (R + 1,1 + 7)) exp/ o

_ E@)

——(6~-—ki—kj)><G><Xk(a)) (5.9
4rk2 \ Y k2 ’ '

where the first factor on the right-hand side of Equation 5.9 is the spatial part, written in the case of isotropic
incompressible turbulence, and only depends on the energy spectrum E(k); the second factor G is an anisotropy
factor, relevant in the stellar context where the turbulent eddies are distorted in the radial direction, and given by
(see Philidet et al. 2020a, Eq. B.10)

1 2,2

o2 = Vol _ \s) (5.11)

where ug and uy are the two horizontal components of the turbulent velocity; and the third factor is the tempo-
ral turbulent spectrum. The spatial turbulent energy spectrum E(k) is then given by the Kolmogorov spectrum,

'T already discussed the shortcomings of this approximation in Section 1.2.3, and it may seem odd that I should adopt it here. But these
shortcomings were related, as I showed, to the third-order moments of the turbulent velocity. By contrast, the dependence of the two-point,
fourth-order moment on space increment is relatively well reproduced by the QNA, as shown by Belkacem et al. (2006). As far as mode
asymmetry is concerned, therefore, the QNA is acceptable to model the fourth-order moment of the turbulent velocity.

2Let me note that the PCM also yields fourth-order moments that are different than in the QNA, so that, strictly speaking, it would have
been more consistent to adopt the PCM for both third- and fourth-order moments at the same time. However, the fourth-order moments
yielded by the PCM and the QNA are not too dissimilar from one another, in particular when it comes to the dependence of the two-point
correlation products on the space increment. Since it is precisely this dependence that is primarily important for mode asymmetry, as the
rest of the derivation presented in this Chapter shows, this apparent inconsistency has, in reality, no bearing on the resulting asymmetries.
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extended to small wavevectors by a constant function, so that (see Philidet et al. 2020a, Eq. 19)

2

u
E@):Q&Qz9ﬂ02k0<k<ko (5.12)
0
MZ -5/3
0 .
062—«—) ifko <k, (5.13)
ko \ ko

where u% = (u% + uz + ué) /3, the factor 0.652 is introduced so that the turbulent energy spectrum is properly

normalised, and kg is the injection scale, i.e. the norm of the wavevectors at which the turbulent kinetic energy is
injected into the turbulent cascade (see Section 1.2.1). The turbulent energy spectrum, in this prescription, only
depends on ky and ugy. As for the temporal spectrum, we follow Belkacem et al. (2010) and write it as a truncated
Lorentzian function (see Philidet et al. 2020a, Eq. 23)

1 1
2wy arctan(wg /wy) 1 + (w/wg)?

Yir(w) = if w<wg, (5.14)

0 if wg<w,

where wg is the frequency at which the spectrum is truncated, and wy is a typical angular frequency associated
to the turbulent eddies of size k. The first factor in the right-hand side of Equation 5.14 is introduced so that the
spectrum is properly normalised. This form is justified by the following arguments: large eddies, having a long
lifetime —i.e. a small value of wy —have an evolution in time that is dominated by the intrinsic processes happening
inside these eddies, which makes them decay exponentially, thus leading to a Lorentzian spectrum; on the other
hand, the evolution of the small eddies is dominated by their advection by large eddies — an assumption referred
to as the sweeping hypothesis —, thus leading to a Gaussian spectrum (Belkacem et al. 2010). Since the Gaussian
function decreases much more rapidly with frequency than the Lorentzian function, the Lorentzian part of the
temporal spectrum largely dominates the Gaussian part, so that I neglect the latter, and set it to zero. In the scope
of the Kolmogorov hypotheses (Kolmogorov 1941), the typical angular frequency wy associated to the turbulent
eddies of size k scales as kuy, where u is the typical velocity of these eddies, given by (Stein 1967)

2k
@:j‘%ﬂm. (5.15)
k

However, following Balmforth (1992a), I account for the uncertainty in this scaling relation by introducing a
dimensionless parameter A such that

_ 2kuy

1 (5.16)

Wk
As for the cut-off frequency wg in the spectrum, it is related to the timescale over which the eddies of size k are
advected, or swept, by the energy-bearing eddies. It is also referred to as the Eulerian microscale, and is given by
(Belkacem et al. 2010)

WE = kuo . (5.17)

The temporal spectrum therefore only depends on uy and A.

Putting these two ingredients together — the Green’s function and the statistical properties of the turbulent
velocity — for a set of possible source positions 7, located in the region covered by the 3D CO’BOLD simulation
yields, through Equation 5.7, an expression for ¥, (r) for any given angular frequency w. Then, using Equations 5.1
and 5.4, I obtain the observed power spectrum P(w) for any given angular frequency w, and for any observation
radius I want. Once the computation is performed for a set of different angular frequencies w, this provides with an
analytical expression for the velocity p-mode spectrum, containing both the effect of the modes themselves and the
effect of the correlated background, and whose shape can be reconstructed point by point. Naturally, this synthetic
spectrum features resonant peaks centered on the eigenfrequencies of the problem, and if the power spectrum is
computed for a sufficient number of angular frequencies within the linewidth of such a mode, its line profile can
be ‘resolved’, and adjusted with Equation 4.7. This entire procedure yields a value of the asymmetry parameter B
for any given solar radial p-mode.
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However, the implementation of this procedure is contingent on the estimation of the various parameters in-
troduced in the statistical model for the turbulent velocity (i.e. ug, ko, 0% and ). Some of these parameters are
accessible directly through the 3D hydrodynamic simulation of the solar atmosphere mentioned above: this is the
case for all one-point statistics of the turbulent velocity, i.e. ug and Q%. However, ko and A depend on the two-point
statistics of the turbulent velocity, and are not as easily extracted from the simulation. I followed two different
models

e in the ‘numerical spectrum’ model, I extracted E(k) directly from the simulation, with the idea that the
relevant part of the energy spectrum pertains to the large, resolved scales of motion, so that the spectrum in
the simulation is a realistic depiction of the actual large-scale spectrum in the Sun. I isolated each horizontal
slice in the simulation, and computed a 2D power spectrum of turbulent velocity in each of them. Integrating
over the angular variable gave me a numerical estimation of E(k) in the simulation. In this model, kg is no
longer needed, and A is the only free parameter that remains;

e in the ‘theoretical spectrum’ model, I left kg as a free parameter, but assumed that it could only take two
values, one below the photosphere and one above. This assumption stems from a similar behaviour observed
for the vertical profile of ky in 3D simulations (Samadi et al. 2003). The injection scale, therefore, is de-
scribed in terms of its value above the photosphere kg aim as well as the ratio Ry = ko int/ko arm between the
injection scale in the two regions. In this model, the only free parameters that remain are A, kg gm and Ry.

These two models are complementary. The ‘theoretical spectrum’ model contains multiple free parameters, so
that no prediction can be made with it; but since they are physical parameters, they can act as control parameters
allowing us to explore the effect of the physics of turbulence on p-mode asymmetry. On the other hand, the
‘numerical spectrum’ model only contains one free parameter, and since this parameter can be related to its physical
role (i.e. the how the lifetime of the turbulent eddies depend on their size), it can actually be constrained by other
means (see for instance Samadi et al. (2001) who constrained it using observed solar p-mode amplitudes); this
model allows me to give quantitative predictions regarding the p-mode asymmetries in any stellar model.

As I warned the reader in the beginning of this chapter, I have not detailed all the calculations leading to
this formalism. However, it is important, for more clarity, to explicitly spell out the hypotheses and assumptions
I made in the course of these derivations. While the prescription for the turbulent spectrum is similar to the
choice of Samadi and Goupil (2001), this approach significantly diverges from their, in the sense that they were
only interested in the overall amplitude of the modes, while I explicitly solve for their entire line profile, through
the derivation of the Green’s function for all individual frequencies within the line profile of the modes, and its
convolution with the source term. Nevertheless, several underlying hypotheses are common to their work, namely

(H1) I assumed that the length scale of turbulence (i.e. the energy-bearing eddy size) is separated from the scale
of stratification (i.e. the pressure scale height) as well as the scale of the modes (i.e. their wavelength). This
scale separation is not valid in the subsurface layers of the star, where, in particular, the mode wavelength
becomes comparable to the eddy size responsible for the driving of the p-modes. For want of a better
alternative, I nevertheless adopt this approximation;

(H2) I assumed a plane-parallel geometry for the atmosphere of the star. Since I only consider radial modes,
which have radial wavevectors, this assumption is physically justified;

(H3) I considered adiabatic oscillations. As I showed in Section 2.1, this assumption is not verified in the super-
ficial layers of the star. Nevertheless, as I am interested in the velocity power spectrum, and that velocity is a
dynamical variable rather than a thermal variable, non-adiabatic effects are much less likely to significantly
impact the properties of the modes;

(H4) in prescribing the second-order correlation product of turbulent velocity, I assumed a stationary, homo-
geneous and incompressible turbulence. The stationarity is a consequence of the mechanical and thermal
equilibrium conditions. The homogeneity is justified by the fact that the stratification of the equilibrium
medium has very little impact on the driving of the modes (Stein 1967). The incompressible limit requires
a bit more thought, but can ultimately be justified by the fact that the flow remains subsonic in the entire
superficial region of the star, as shown, for instance, by Stein and Nordlund (2001);
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(H5) the one-point statistical properties of the turbulent velocity field — i.e. ug and Q> — are extracted from the
CO°BOLD 3D hydrodynamic simulation. Therefore, I only have access to these quantities in the superficial
layers overlapping with the simulation box, meaning that I/ only considered mode driving in the first outer
2% of the Sun. This assumption is not restrictive, seeing as this is where most of the stochastic excitation
occurs.

Hypotheses (H2) to (HS) are physically justified. This is not so much the case for hypothesis (H1), more specif-
ically for high-frequency modes that have smaller wavelengths, so that the scale separation assumption becomes
questionable’®. Nevertheless, observed p-mode excitation rates are correctly reproduced theoretically under hy-
pothesis (H1), so that I adopt the latter throughout the entire p-mode spectrum.

5.2 Results and discussion

In the ‘theoretical spectrum’ model, I tweaked every control parameter to observe how the asymmetry profile*
B(v) varies with the physics of the solar surface turbulence. The results are collected in Figures 5, 6 and 7 of
Philidet et al. (2020a), which I reproduce in Figure 5.1. In broad strokes, I find that 1) the asymmetry profile
hardly depends on the absolute value of the injection scale kg, but instead 2) it largely depends on the relative value
of the injection scale between the regions located above and below the photosphere, especially for high-frequency
modes; and 3) the asymmetry profile only starts depending on A if the latter is decreased below ~ 1.

The first two points show that the relative contribution of the subsurface layers (below the photosphere) and of
the atmospheric layers (above the photosphere) to mode driving is of primary importance for p-mode asymmetry,
more particularly for high-frequency modes. This is in accordance with the introductory discussion proposed in
Section 4.2.1, where I remarked that a source located within the acoustic cavity of the modes creates asymmetry
depending on its position relative to the nodes and antinodes of the eigenfunctions of the cavity, whereas a source
located outside always creates negative asymmetry. When the spatial extent of the driving region is correctly
accounted for, the total asymmetry is a combination of both cases, and it is only natural that it should drastically
depend on the relative weight with which each region contributes to the total driving of the modes. A logical
corollary is that any model for p-mode asymmetry that either considers point-like driving sources, or accounts
for the spatial extent of the source in a non-physical manner — and, to the best of my knowledge, all preexisting
models until now fell into one of these categories—, cannot possibly hope to make any correct inference of the
source properties using observed p-mode asymmetries. 1 insist, however, on the fact that in the present study,
unlike prior studies on the subject, the goal is not to infer the position or spatial extent of the source: rather, I use
an analytical prescription for the turbulent velocity spectrum to input the position and spatial extent of the source,
and it is the parameters of the turbulence prescription that I infer from the model.

The third point listed above is not as straightforwardly interpreted, but can be ascribed to the two limiting
behaviour of the temporal turbulent velocity spectrum yx(w). It is flat for low angular frequencies, and follows an
inverse square law for high angular frequencies. The threshold between the two regimes is w ~ wy: depending
on whether the angular frequency of the modes is smaller or greater than wy, the properties of mode driving —
and therefore, those of the asymmetry profile — are susceptible to be different in the two regimes. Equation 5.16,
with typical solar values of k ~ 107° m™', u; ~ 103> m.s™! and w ~ 1073 rad.s™!, shows that this threshold in wy
translates into a threshold for 4 ~ 1, which corresponds to the observation I made earlier. Finally, to the results
listed above, I add 4) that the effect of the correlated background on p-mode asymmetry — in the velocity power
spectrum — is negligible compared to the effect of the source localisation, with a relative weight never exceeding
~ 3%.

Concerning the ‘numerical spectrum’ model, the resulting asymmetry profile is shown in Figure 12 of Philidet
et al. (2020a), which I reproduce in Figure 5.2, and where the value A = 0.5 constrained by Samadi et al. (2001) is

3If the scale separation is no longer valid, then it is no longer the k = 0 component of the Fourier transform of the fourth-order moment
of the turbulent velocity that interacts with the mode, but a finite k-component instead, where k is the wavevector of the mode. In turn,
this means that the driving of the modes involves two-wavevector-interaction of the turbulent cascade between pairs of wavevectors p and
q such that p + q = k instead of 0. But two such wavevectors p and q are much less likely to be simultaneously characterised by a high
energy in the turbulent cascade if p + q = k than if p + q = 0: mode driving becomes much less efficient.

“In the following, I will use the phrase asymmetry profile to refer to the curve obtained when the asymmetry parameter B of the radial
modes are plotted against the frequency of the modes. Since, as I mentioned in Section 4.1, p-mode asymmetry hardly depends on angular
degree, the asymmetry profile corresponds to the slowly varying function of frequency onto which the asymmetry of all solar p-modes
collapses.
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adopted. Very good quantitative agreement is found across the entire p-mode spectrum, from which I conclude that
the approach presented here is valid for the inference of p-mode asymmetries in solar-like oscillators. However,
as I mentioned in the last section of Chapter 4, asymmetries are only observed in the intensity power spectrum for
solar-like oscillators other than the Sun. Therefore, this model alone is only of limited use until it is adapted to
photometric measurements. This is the subject of the next chapter.
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Figure 5.2: Asymmetry profile obtained through
the ‘numerical spectrum’ model (solid red line),
with 4 = 0.5, compared to the observed asymme-
try profile (blue crosses). The data points are taken
from Barban et al. (2004). For more readability,
only data points corresponding to modes with an-
gular degrees 15 < [ < 20 have been retained. The
asymmetry profile is given in terms of the parame-
ter B defined by Equation 4.7 (top), and in terms
of the asymmetry parameter y defined by Equa-
tion 4.12 (bottom). The error bars in the top panel
correspond to the uncertainty on the observed val-
ues of the mode linewidths, which propagates to
the asymmetry parameter B. Credits: Philidet et al.
(2020a).
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ABSTRACT

Context. The advent of space-borne missions has substantially increased the number and quality of the measured power spectrum of
solar-like oscillators. It now allows for the p-mode line profiles to be resolved and facilitates an estimation of their asymmetry. The
fact that this asymmetry can be measured for a variety of stars other than the Sun calls for a revisiting of acoustic mode asymmetry
modelling. This asymmetry has been shown to be related to a highly localised source of stochastic driving in layers just beneath the
surface. However, existing models assume a very simplified, point-like source of excitation. Furthermore, mode asymmetry could also
be impacted by a correlation between the acoustic noise and the oscillating mode. Prior studies have modelled this impact, but only
in a parametrised fashion, which deprives them of their predictive power.

Aims. In this paper, we aim to develop a predictive model for solar radial p-mode line profiles in the velocity spectrum. Unlike the
approach favoured by prior studies, this model is not described by free parameters and we do not use fitting procedures to match the
observations. Instead, we use an analytical turbulence model coupled with constraints extracted from a 3D hydrodynamic simulation
of the solar atmosphere. We then compare the resulting asymmetries with their observationally derived counterpart.

Methods. We model the velocity power spectral density by convolving a realistic stochastic source term with the Green’s function
associated with the radial homogeneous wave equation. We compute the Green’s function by numerically integrating the wave equa-
tion and we use theoretical considerations to model the source term. We reconstruct the velocity power spectral density and extract
the line profile of radial p-modes as well as their asymmetry.

Results. We find that stochastic excitation localised beneath the mode upper turning point generates negative asymmetry for v < vpax
and positive asymmetry for v > v, On the other hand, stochastic excitation localised above this limit generates negative asymmetry
throughout the p-mode spectrum. As a result of the spatial extent of the source of excitation, both cases play a role in the total observed
asymmetries. By taking this spatial extent into account and using a realistic description of the spectrum of turbulent kinetic energy,
both a qualitative and quantitative agreement can be found with solar observations performed by the GONG network. We also find
that the impact of the correlation between acoustic noise and oscillation is negligible for mode asymmetry in the velocity spectrum.

Key words. methods: numerical — turbulence — Sun: helioseismology — Sun: oscillations — line: profiles

1. Introduction

Solar-like oscillations are known to be stochastically excited and
damped by turbulence occurring close to the surface of low-mass
stars (see e.g. Goldreich & Keeley 1977a,b or Samadi et al. 2015
for a review). The power spectral density of such oscillations
is expected to feature a Lorentzian-shaped peak centred around
their eigenfrequencies. This idealised line profile has been exten-
sively used to fit observations (see e.g. Jefferies et al. 1991).
However, as the resolution reached in helioseismic measure-
ments (both ground-based and space-borne) has increased, it has
become apparent that the observed line profiles feature a certain
degree of asymmetry (see e.g. Duvall et al. 1993 for observations
made at the geographic South Pole; Toutain et al. 1998 for data
from the MDI and SPM instruments aboard the SOHO space-
craft).

Since the discovery of this skew symmetry in solar p-
mode line profiles, several studies have been devoted to explain-
ing this feature. In particular, it had been recognised early on
that a source of excitation that is highly localised compared
to the mode wavelength (which we refer in the rest of the

paper as “source localisation”) could lead to a certain degree
of mode asymmetry, depending on the position of the source
(Gabriel 1992, 1993; Duvall et al. 1993; Abrams & Kumar 1996;
Roxburgh & Vorontsov 1995, 1997). Line profile asymmetries
have then been used to infer some properties of the turbulent
source, especially its radial location and its multipolar nature
(see e.g. Roxburgh & Vorontsov 1997; Nigam et al. 1998).
Furthermore, Duvall et al. (1993) noticed an inversion of
the sense of asymmetry between spectrometric and photomet-
ric measurements, with line profiles in the velocity spectrum
featuring more power in their low-frequency wing than in their
high-frequency wing and vice-versa for line profiles in the inten-
sity spectrum. Since intensity perturbations were expected to be
proportional to velocity perturbations, one would have expected
the asymmetries to be the same. Many hypotheses were posited
to explain this puzzling result. Duvall et al. (1993) suggested
that it was due to non-adiabatic effects lifting the proportionality
relationship between the two kinds of perturbations (fluid dis-
placement and temperature) but this hypothesis was later contra-
dicted by Rast & Bogdan (1998). Non-adiabaticity was brought
up again later on by Georgobiani et al. (2003) who suggested
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that the explanation resided in radiative transfer between the
mode and the medium. Indeed, the observed radiation temper-
ature corresponds to the gas temperature at local optical depth
7 = 1. But optical depth depends on opacity, which non-linearly
depends on temperature. Therefore, the temperature fluctuations
due to the oscillating mode entails opacity fluctuations, which
in turn impacts the “observed” radiation temperature. Given the
non-linear nature of the x — T relation, this modulation decreases
the observed temperature fluctuations more significantly in the
low-frequency wing of the mode than in its high-frequency
wing. Since this radiative transfer does not impact the veloc-
ity measurements, this could explain the asymmetry reversal
between velocity and intensity spectra. Using 3D simulations,
Georgobiani et al. (2003) computed mode line profiles in both
the velocity and the intensity power spectrum alternatively at
mean unity optical depth and instantaneous unity optical depth.
Their results indeed show that the modulation of the “observed”
intensity fluctuations due to radiative transfer could be signif-
icant enough to reverse the sense of mode asymmetry. One of
the hypothesis enjoying the most support for asymmetry rever-
sal, however, is based on the effect of turbulent perturbations
partially correlated with the mode, which thus impact its line
profile (Nigam et al. 1998; Roxburgh & Vorontsov 1997; Rast
& Bogdan 1998; Kumar & Basu 1999). Indeed, a part of these
perturbations is coherent with the mode and, thus, leads to inter-
ference. This interference term may be constructive or destruc-
tive, depending on the phase difference between the mode and
the coherent turbulent perturbations. For frequencies at which
the interference is constructive, the power spectral density is
slightly elevated, whereas it drops slightly for frequencies at
which it is destructive. Typically, in the vicinity of a resonant
mode, the dependence of the phase difference between mode and
turbulent perturbation is such that the interference term is con-
structive for frequencies located in one wing of the mode and
destructive in the other. Therefore, as a result of this interference
behaviour, one of the wings falls off more slowly and the other
more rapidly, leading to mode asymmetry. It has been suggested
that the degree of correlation between the turbulent perturbations
and the oscillation it excites is higher in intensity than in veloc-
ity, so that it changes the sign of mode asymmetry only in the
intensity spectrum. While it is widely accepted that correlated
turbulent perturbations must be taken into account to explain
asymmetries in the intensity spectrum, the question of whether
it has a significant impact on the velocity spectrum remains an
open issue (see e.g. Jefferies et al. 2003).

The possibility that correlated turbulent fluctuations have an
affect on mode asymmetry has led many authors to include them
in their models for the power spectrum. Even though correlated
noise was introduced to explain the particular puzzle of asymme-
try reversal between velocity and intensity measurements, sev-
eral models include correlated noise in the velocity spectrum
as well as in the intensity spectrum. This is the case for the
model developed by Severino et al. (2001) and later used, for
instance, by Barban et al. (2004), which includes three types of
noise (coherent-correlated, coherent-uncorrelated and incoher-
ent) in both the velocity spectrum, the intensity spectrum, and the
velocity-intensity cross-spectrum. They considered, however,
that the “pure oscillation” (without the noise) has a Lorentzian
shape, thus discarding the contribution of source localisation.
This model was later refined by Wachter & Kosovichev (2005)
to take this contribution into account.

These prior studies have one thing in common, however,
and that is that they all treat the various sources of asymmetry
(mainly source localisation and correlated noise) in a simplified,
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parametrised fashion. Indeed, the excitation is consistently mod-
elled as a point-like source, with radial position and multipolar
development left as free parameters. This prescription remains
somewhat unsatisfactory in the sense that it does not take into
account the finer properties of the source of excitation, such as
its spatial extent or its dependence on frequency, for instance.
As such, these prior models lack a realistic description of the
source of excitation. Likewise, for models including the effect of
noise on the power spectrum, the various relative amplitudes and
phase differences between modal oscillation and correlated noise
in both spectra are also left as free parameters. The approach
followed by these studies is to find best-fit values for all their
free parameters by fitting their model to observations in order to
localise the source.

In contrast, in the present paper, we follow a different
approach: we model both the source of excitation and the cor-
related background by constraining their properties using an
analytical model of stochastic excitation, coupled with a 3D sim-
ulation of the solar atmosphere. The novelty of our approach lies
in the fact that we do not fit a parametrised model to the obser-
vations but, instead, we predict the dependence of mode asym-
metry on frequency, which we then compare to observations in
order to validate our model. Our model of mode asymmetry is,
therefore, both more realistic (in its description of the source of
excitation) and more complete (in its lack of freely adjustable
parameters). It can then be used to deepen our understanding
of the underlying physical mechanisms behind mode asymmetry
by exploring how varying a given physical constraint impacts
the results yielded by our model. Finally, our model allows for a
much higher predictability of mode asymmetry, which is essen-
tial when it comes to applying these results to other solar-like
oscillators. We note that this paper is devoted to the modelling
of the velocity power spectrum only and, as a result, we do not
address the problem of asymmetry reversal, which is a separate
challenge altogether.

These efforts to model the line profiles of solar-like oscilla-
tions are also necessary in order to correctly infer mode proper-
ties from observations. Indeed, it was discovered early on that
using a Lorentzian shape to fit skew symmetric line profiles
led to a significant bias in the eigenfrequency determination,
which may be higher than the frequency resolution achieved
by helioseismic measurements (Duvall et al. 1993; Abrams &
Kumar 1996; Chaplin et al. 1999; Thiery et al. 2000; Toutain
et al. 1998). Such eigenfrequency determination bias has also
been revealed for solar-like oscillations in stars other than the
Sun by Benomar et al. (2018). Inversion methods used to infer
the internal structure of solar-like oscillators, whether they be
analytical or numerical, require a very accurate determination
of the mode eigenfrequencies. For spectra extracted from very
long time series, the resolution is high enough that this bias in
eigenfrequencies impacts the results obtained by inversion meth-
ods (see e.g. Toutain et al. 1998, who show that the difference
between the sound speed squared inferred from symmetric and
asymmetric fits can reach 0.3% in the core). When fitting these
observations, mode asymmetry must, therefore, be taken into
account. Since it has proven very difficult to determine accurate
mode eigenfrequency without prior knowledge on its line shape,
obtaining an a priori model of p-mode line profiles is of primary
importance.

In this paper, we present a predictive model of solar radial
p-mode line profile in the velocity spectrum. In particular,
we use a realistic model for stochastic excitation, following a
method similar to that of Samadi & Goupil (2001). Furthermore,
we include the effect of correlated turbulent perturbations in the
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model in a non-parametrised way, unlike what was done in previ-
ous works (see e.g. Severino et al. 2001). The paper is structured
as follows: we present the analytical model of the Sun’s velocity
power spectral density in Sect. 2 and its numerical implementa-
tion in Sect. 3. We then present the results yielded by our model
concerning mode asymmetry in Sect. 4. In Sect. 5, we briefly
describe the development of a toy model to describe the impact
of source localisation on mode asymmetry and use it to inter-
pret our results; we also investigate the matter of the influence of
correlated turbulent perturbations. We then confront our results
with the related observations in Sect. 6 and discuss the issue of
eigenfrequency determination bias entailed by the skewness of
the mode line profiles.

2. Modelling the p-mode line profiles

To extract the asymmetries of solar radial p-modes, we first need
to model their line profile in the velocity power spectrum. In this
section, we present the analytical developments that led us to
this model. First, we define the disc-integrated velocity power
spectrum in terms of the radial fluid displacement. We then
present the inhomogeneous, radial wave equation associated to
the acoustic modes and detail how convolving its Green’s func-
tion with its inhomogeneous part gives us access to the velocity
power spectral density.

2.1. Definition of the velocity power spectral density

Before embarking on a discussion of the actual modelling of
the line profiles, the spectrum from which they are extracted
needs to be defined. In this paper, we restrict ourselves to the
study of radial acoustic modes in the Sun. Furthermore, as part
of the definition of the spectrum, we include the effect of limb-
darkening and of disk integration that affect the Sun-as-a-star
measurements. We note, however, that other instrumental effects —
in particular mode leakage — are not accounted for.

To derive an expression for the observed power spectral den-
sity, we separate the total surface velocity into an oscillatory part
Uosc and a turbulent part u, where it is understood that the modes
are described by the oscillatory part. The observations made
for the Sun-as-a-star are obtained by integrating the velocities
over the entire solar disk. Neither the mode velocity (for radial
modes), nor the turbulent perturbations depend on the point of
the disk at which it is estimated; however, the projection on
the line of sight n does. This integration over the solar disk is
affected by limb-darkening h(u) (where u refers to the cosine of
the angle between the local radial direction and the line of sight).
Furthermore, since it is the turbulent perturbations that excite the
mode, a certain fraction of the former must be correlated with
the latter, so that the contribution of turbulent perturbations to
the velocity spectrum must be considered.

With these considerations, the observed velocity power spec-

1

tral density can be expressed as
2
—_— > , (1)
f dQ h(u)

where the integration is performed over the solar disk, Q refers
to the solid angle, n is the unit vector along the line of sight, v
is the mode velocity, u represents the fluctuations of the turbu-
lent velocity around its mean value, w is the angular frequency,
the notation () refers to temporal Fourier transform, and {.)

P(w) =

<‘ f dQ h(u) (Vese(w) + W(w)) .0

refers to ensemble average. Since we are only considering radial
modes, v, is exclusively radial. Thus, Eq. (1) becomes

2
> ; @)

where u, is the component of the turbulent velocity along the
line of sight. We introduced the reduced limb-darkening h(u) so
that its integral over the solar disk is normalised to unity.

We expand the square in the above expression and we con-
sider that the term containing {|it;|>) is negligible compared to
the terms that contain (|vow|?) and Re ((@V;;*)) , respectively.
Indeed, the power spectral density is several orders of magnitude
higher for the mode velocity than for the turbulent velocity (typ-
ically, the former is of order 10° m? s~ Hz™!, while the latter is
of order 10m?s~2Hz !, e.g. Turck-Chieze et al. 2004, Fig. 2),
so that

Pw) = <m(w) f 40 () + f 4 (i ()

(in?) < Re (Vo)) < ([Tosel),

(€)

where the notation Re refers to the real part of a complex quan-
tity, and * refers to its complex conjugate. Finally, we obtain

Pw) = ( [ au h(u)) (=0l
+2 f dQ u h(wRe ( f dQ h(w) (V;(w)ﬁ;,*(w»). )

The first term corresponds to the spectral power density of
the mode velocity ves. In itself, the line profile generated by this
term is already asymmetric; indeed, it has been known for a long
time that source localisation can generate line profile asymmetry
(see e.g. Abrams & Kumar 1996; Roxburgh & Vorontsov 1997;
Chaplin & Appourchaux 1999). The second term corresponds
to what the literature commonly refers to as correlated turbulent
perturbations and which is also expected to significantly impact
mode asymmetry in photometric measurements (see e.g. Nigam
et al. 1998; Roxburgh & Vorontsov 1997; Kumar & Basu 1999),
although its importance in velocity measurements is not as clear.

2.2. The inhomogeneous wave equation

Going further, we write the radial wave equation associated to
Vosc With the same formalism as Unno et al. (1989). We detail its
derivation in Appendix A. Although we included both the source
terms due to Reynolds stress fluctuations and non-adiabatic pres-
sure fluctuations in the computation detailed in Appendix A,
we only consider the former in the following. Indeed, it is the
dominant source of excitation for acoustic modes in the Sun
(e.g. Belkacem et al. 2008). When it is temporally Fourier trans-
formed, the inhomogeneous wave equation for radial modes
reads:

2 2
d’¥,, (a) 5)

ek V(r)) ¥, = S(r),

where c is the sound speed, the wave variable ¥, (r) is related to
the radial fluid displacement &,(r) through

Yo (r) = re(r) Vpo(ré (r), Q)
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and the acoustic potential and source term are given by

N? — 47Gpy dx 1 d%x
osTa e (d) xdr
1
x(r)=%f,
s =—— v
r
¢ po(r) dr’

or=e [ L2 a)

where r is the radial coordinate, py is the density, N is the Brunt-
Viisdld frequency, g is the gravitational acceleration, G is the
gravitational constant, and p; refers to the fluctuations of the
Reynolds stress around its mean value. Indeed, only the fluc-
tuating part of the Reynolds stress contributes to the source term
S (r) and its mean value only modifies the equilibrium structure.
The subscript O refers to the equilibrium structure and all the
above quantities are dependent on the radius at which they are
estimated, even when not explicitly specified. We note that we
only model radial modes in this paper, so that the wave equation
(Eq. (5)) is of the second order despite the fact that we did not
use the Cowling approximation.

Mode damping is not included in Eq. (5). Indeed, we did not
take into account the feedback of modal oscillations on the equi-
librium state through modulations in the fluid density, pressure,
opacity, etc. Such feedback allows mechanical work and ther-
mal transfer to occur from the mode to the medium in which
it develops; depending on the phase-lag between these differ-
ent modulations energy can be exchanged with the surrounding
medium. However, the modelling of damping rates of solar-like
oscillations is extremely difficult (Samadi et al. 2015). Thus, we
directly introduce damping in the wave equation in the form of
a mode lifetime, or, equivalently, by a (frequency-dependent)
linewidth I',,, so that the wave equation takes the following form

v,
dr?

where j denotes the imaginary unit and the linewidths I, are
inferred from observations. We used the line-widths presented
in Baudin et al. (2005) (see their Table 2), which were inferred
from GOLF data. Note, however, that our definition of I',, corre-
sponds to their I multiplied by 27, or equivalently to twice their
damping rate . We completed these data with low-frequency
line-widths obtained by Davies et al. (2014) through BiSON,
which go as low as ~900 uHz (see their Table 1). We reproduce
the dependence of the linewidth we used on frequency in Table 1.
We note that damping can potentially be a source of mode asym-
metry. However, the impact of damping on mode asymmetry is
very weak compared to the other sources of asymmetry (Abrams
& Kumar 1996), so that the direct introduction of observed line-
widths in our model is unlikely to have an impact on our results.

-V |¥, =50,

+(w + jwl, ®)

2.3. Expression of the velocity power spectral density

By definition, the Green’s function G (7, rs) is the value taken
by the function ¥,, at the radius r = r, (the variable r, refers to
the height in the atmosphere at which the spectrum is observed
and the variable r; refers to the position of the point-like source
term), where ¥, is the solution to the inhomogeneous wave
equation,

a2y, . (w2 +jol, Ve

dr? c?
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Table 1. Observational linewidth I, used in Eq. (8) as a function of
frequency v.

v (uHz) I', uWHz) v wHz) T, (uHz)
972.615 0.0055  2828.15 0.94
1117.993  0.0091 2963.29 0.80
1263.198 0.022 3098.16 1.08
1407.472 0.033 3233.13 1.12
1548.336 0.082 3368.56 1.84
1686.594 0.20 3504.07 2.83
1749.33 0.26 3640.39 3.85
1885.10 0.28 3776.61 5.90
2020.83 0.47 3913.49 8.09
2156.79 0.54 4049.46 10.73
2292.03 0.74 4186.98 12.69
2425.57 0.88 4324.79 16.39
2559.24 0.94 4462.08 17.35
2693.39 0.92 4599.96 26.42

Notes. The data are extracted from Baudin et al. (2005) for frequencies
higher than 1750 uHz, and from Davies et al. (2014) below. When a
frequency laid between these points, linear interpolation was used.

and 9§ refers to the Dirac function. Once the Green’s function is
known, it can be used to express explicitly vos. in Eq. (4). Indeed,
on the one hand, the general solution to the inhomogeneous wave
equation with a source term S () is
Pulr) = [ dn Gt r)S 1) (10)
where the source term is given by Eq. (7). The pulsational veloc-
ity Vo 1s related to the variable ¥, through
Wu(ro) . (1D

Jjw
vOSC(rO) - —
roc(ro) VpO(ro)

Using the source term given by Eq. (7) in Egs. (10) and (11)
and after finally performing an integration by part, we write the
velocity Fourier transform at angular frequency w as

Vose(W, 7o) = —

_Je
roc(ro) VpO(ro)
Il

X d3rs V[Gw(r57 o)— . 7‘)("%) .
f ’ C(rs) VpO(rs) (pou )

12)

In the following, the observation height r, will be fixed, so
that we drop it for ease of notation. However, since the obser-
vation height depends on the transition line used for the obser-
vations and on whether the observations rely on spectrometric
or photometric measurements, it significantly varies from instru-
ment to instrument (see Sect. 6 for more details).

Using Eq. (12) in Eq. (4) then gives an expression for the
velocity power spectral density in terms of Green’s function

Go(ry):

P(w)=( f a0 h(u)) (o)) + c@)|. (13)
where <|V(;(a))|2> and C(w) are given, respectively, by

Egs. (B.19) and (B.28). We note that the effects of limb-
darkening and disk integration are now contained in a single fac-
tor and, thus, these will only have an effect on mode amplitude.
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Since the asymmetry of a mode does not depend on its ampli-
tude, it is not impacted by such a factor.

The calculations leading from Egs. (4)—(13) are detailed in
Appendix B. In the following, we only provide the main steps
and assumptions. We split the calculations two ways, focussing
separately on the first term inside the brackets of Eq. (13), which
we hereby refer to as the leading term, and on its second term,
which we hereby refer to as the cross term.

2.3.1. Closure models

The calculations leading from Egs. (4)—(13) involve the eval-
uation of fourth-order and third-order two-point correlation
moments of the turbulent velocity. Therefore, an appropriate clo-
sure model is needed to express these high-order moments as a
function of second-order moments. We devote the following sub-
section to presenting and developing these closure models.

Fourth-order moments. To describe the fourth-order corre-
lation moments of the turbulent velocity, we make use of the
quasi-normal approximation (QNA). This closure model con-
sists in considering that all turbulent quantities are normally dis-
tributed, in which case fourth-order moments can be analytically
expressed as a combination of second-order moments (Lesieur
2008):

(abcd) = {ab){cd) + {ac){bd) + {(ad){bc), 14)

where a, b, ¢, and d refer to any turbulent scalar quan-
tity. Applying the QNA to isotropic, homogeneous turbulence
inhibits energy transfers among modes of different wave num-
bers, thus leading to violations of the energy conservation prin-
ciple (Kraichnan 1957). This is due to the fact the QNA entails
vanishing third-order correlation moments. When it comes to
estimating the fourth-order moments, however, the picture is dif-
ferent. Belkacem et al. (2006a) have studied the validity of the
QNA for two-points, fourth-order correlation moments of the
vertical turbulent velocity, in the form of (ui 1”3,2> (where the
indices 1 and 2 refer to two different points in space), using 3D
simulations of the solar atmosphere. They found that the depen-
dence of this correlation moment on the distance AX between
the two points is correctly estimated by the QNA but that its
absolute value (which can be taken as the corresponding one-
point moment) is not. Consequently, the amplitude of the modes
are largely underestimated when the QNA is used. However, the
asymmetry of the modes does not depend on their amplitude,
so that mode asymmetry will be unaffected by a discrepancy in
the absolute value of the two-points, fourth-order moments. As
such, the decomposition given by Eq. (14) can be considered
valid when it comes to studying mode asymmetry.

Third-order moments. While the QNA provides an ade-
quate closure relation for fourth-order moments, as mentioned
above, it assumes vanishing third-order moments. Therefore, in
order to estimate these third-order moments, we make use of
another closure model, the Plume closure model (PCM), which
was developed by Belkacem et al. (2006b). The idea behind this
closure model is to separate the flows directed upwards from
those directed downwards (the latter being referred to as plumes)
and to apply the QNA to both separately. The anisotropy between
the two types of flow — in particular, turbulence is more promi-
nent in the downwards plumes (e.g. Goode et al. 1998) — yields
non-vanishing third-order correlation moments:

(U (R, )2 u,(R+r,t+7)) = [a(l —ay -d1 - a)] o’
— a(1 - @)[2(ia(R, Diig(R + 1.1 + 1)

+ (iig(R, 1)) |ou, (15)
where u, is the vertical component of the turbulent velocity, a is
the relative horizontal section of the upflows, du is the difference
between the mean velocity of the two types of flows (consider-
ing their respective signs, it actually is the sum of their absolute
values), and u is the fluctuation of the vertical velocity around
its mean value in the downflows.

We note that, strictly speaking, the third-order moment given
by Eq. (15) and yielded by the PCM are centred. However, we
consider that the mean value of the overall vertical velocity of the
flow is sufficiently low (compared to its standard deviation for
instance) to be neglected. Therefore, these moments may inter-
changeably refer here either to centred or non-centred moments.

We also note that this closure relation is written here in terms
of uy (i.e. the turbulent fluctuations in the downflows only). It
would be more practical to rewrite it in terms of u, (i.e. the total
turbulent fluctuations). The two are related through

(g(R, Hug(R+r, 1+ 7)) = 11TQ<M’(R’ Du(R+r,t+7)) —adu®.
(16)

2.3.2. The leading term

In the following, we detail the derivation of the first term of
Eq. (13). This term corresponds to the pulsational velocity itself,
without correlated turbulent perturbations. As such, any asym-
metry featured by this term alone represents the effect of source
localisation. The first step consists in separating the scales rele-
vant to the turbulent velocity # from the scales relevant to both
the medium stratification and the oscillating mode (respectively,
the pressure scale height and the mode wavelength). The scale
separation approximation is not realistic in the subsurface layers
(in particular, the mode wavelength is comparable to the typi-
cal correlation length associated with turbulence); however, for
want of a better alternative, we are led to use this approximation
in the following.

Since the integral defining Voso(w) in Eq. (12) contains the
turbulent velocity fluctuations squared, expanding the square of
its modulus will raise these fluctuations to the fourth. The contri-
bution of turbulence to the expression of vy thus takes the form
of two-points, fourth-order correlation moments of the turbu-
lent velocity. We use the closure relation presented and detailed
in Sect. 2.3.1 to express them as a function of second-order
moments.

We then use analytical expressions for the second-order
moments of the turbulent velocity. We describe the second-order
moment of the ith and jth component of the turbulent velocity in
terms of its spatial and temporal Fourier transform ¢;;(k, w). For
isotropic turbulence, it reads (Batchelor 1953):

E(k, w) ( k,-k,)
10 ij 5

dnk2 \"7 K2 1n

dij(k,w) =
where E(k, w) is the specific turbulent kinetic energy spectrum, k
is the norm of the wavevector k, k; and k; are its ith and jth com-
ponent, and ¢;; is the Kronecker symbol. The integration over
the solid angle of wave vectors k is straightforward, and only
an integral over the norm of k remains. However, solar turbu-
lence close to the photosphere is known to be highly anisotropic.
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To take this anisotropy into account, we follow the formalism
developed by Gough (1977). In this formalism, the integral over
the solid angle of k is simply readjusted by adding an anisotropy
factor given by Eq. (B.10) (see Appendix B in Samadi & Goupil
2001).

Following Stein (1967), we then decompose E(k, w) into
a spatial part E(k), which describes how the turbulent kinetic
energy is distributed among modes of different wave numbers,
and a temporal part y(w), which describes the statistical distri-
bution of the life-time of eddies of wavenumber k

E(k, w) = E(k)xi(w). (18)

In order to model the spatial and temporal part of the spec-
trum of turbulent kinetic energy, we followed two different
approaches, described in the following.

The “theoretical spectrum” model. We use theoretical
prescriptions to model both the spatial spectrum E(k) and the
temporal spectrum y;(w) of turbulent velocity. Based on the
assumption that turbulent flows are self-similar, Kolmogorov’s
theory of turbulence leads to a spatial spectrum E(k) o k™>/3
in the inertial range, between k = ko (where k; is the scale at
which the kinetic energy is injected in the turbulent cascade, and
is henceforth referred to as the injection scale) and the dissipa-
tion scale (at which the turbulent kinetic energy is converted into
heat). Given the very high Reynolds number characterising solar
turbulence (Re ~ 10'#), we cast the dissipation scale to infinity.
Then, following Musielak et al. (1994), we extend the turbulent
spectrum below the injection scale by considering that E(k) takes
a constant value for k < kq. This extended spectrum, referred to
as the broadened Kolmogorov spectrum (BKS) was introduced
to account for the broadness of the maximum of E(k). The BKS
can be written as

2

0.6520 i£0.2 ko < k < ko
E(k) = 2 (15 (19
0.652-2 | = if ko < k,
ko (ko) I Ky <

where u% = (u?(r))/3 and the 0.652 factor is introduced so
that the total specific kinetic energy of the turbulent spectrum
matches ué /2. Therefore, the spatial spectrum is parametrised
solely by the injection scale ky. However, the injection scale
varies significantly between the sub-surface layers and the atmo-
sphere (Samadi et al. 2003), so that we keep it free in our model
and allow for it to depend on the radial coordinate r.

Following Samadi et al. (2003), we consider a Lorentzian
shape for the temporal spectrum y;(w), which is supported both
by numerical simulations (Samadi et al. 2003) and by theoretical
arguments. Indeed, a noise described by a stationary, Gaussian
Markov process in time is expected to relax exponentially, mean-
ing that the resulting eddy-time correlation is expected to be a
decreasing exponential, and its Fourier transform a Lorentzian
function (Belkacem et al. 2011). The width wy associated to
eddy-time correlation is linked to the life-time of the eddies
of wavenumber k. Dimensional arguments would suggest that
wy o kuy, where uy, is the typical velocity associated to the eddies
of wavenumber k. However, there remains a substantial indeter-
mination on the actual value of wy, so that, following Balmforth

(1992), we consider:
wy = 2ku /A, 20)

where A is a dimensionless, constant parameter. Overall, the only
input parameters of this model are ky(r) and A.
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The “numerical spectrum” model. In the second model,
we extract the spatial spectrum E(k) from a 3D hydrodynamic
simulation of the solar atmosphere, provided by the CO°BOLD
code (see Sect. 3 for details). This simulation gives us access to
the velocity field as a function of all three spatial coordinates and
time. In order to extract the turbulent spectrum E(k), we average
the velocity field temporally, then isolate each horizontal slice in
the simulated cube and perform a 2D Fourier transform of each
slice separately, thereof which we only retain the radial part. This
gives us a spectrum E(k) for each vertical point in the simulation.
Finally, we renormalise each spectrum so that

—+00 u(2)
f dk E(k) = —,
0

> 21

where u is also extracted from the 3D atmospheric simulation,
by averaging the fluid velocity squared temporally and horizon-
tally, and using the definition i} = (@?(r))/3.

The temporal spectrum y(w) is also treated in a slightly dif-
ferent manner than in the “theoretical model” above. Indeed,
the arguments invoked above to justify the Lorentzian shape of
the spectrum, while valid for most of the relevant time scales
associated to turbulent eddies, are no longer valid for shorter
time scales, that is, for higher angular frequencies. Belkacem
et al. (2010) argued that if the time correlation associated to
small eddies indeed originates from their advection by larger,
energy-bearing eddies — a hypothesis referred to as the sweep-
ing assumption — one recovers a Gaussian spectrum instead of
a Lorentzian one. The transition between a Lorentzian spec-
trum, valid for low angular frequencies, and a Gaussian spec-
trum, valid for high angular frequencies, occurs at the cut-off
angular frequency wg, which is given by the curvature of the
eddy-time correlation function at 7 = 0 (Belkacem et al. 2010):

wg = kuy. (22)

Since a Gaussian spectrum would fall off much more rapidly
than a Lorentzian spectrum, we simply consider that y; vanishes
entirely for w > wg,

1 1

if w <
2 arctan(wg /wp)wy 1 + (w/wi)? nesor
0

Xi(w) = (23)

if wg < w.

We modified the prefactor so that y; meets the normalisa-
tion condition. The typical life time of eddies of wavenumber &,
parametrised by wy, is still given by Eq. (20). We note that the
convolution of the function y;(w) with itself must be computed
to evaluate the leading term (see Eq. (B.13)). While the convolu-
tion of a Lorentzian function with itself straightforwardly yields
a Lorentzian function with a width twice as large, the convolu-
tion of the modified spectrum above with itself is slightly differ-
ent, but can be obtained analytically as

1
2wy 1+ (w/2wy)?

WE w — WE
m|arctan | — | — arctan
Wy Wy

x Q4
4 arctan? (ﬂ)

Ok * x)(w) =

Wi

Physically, taking the cut-off frequency into account signif-
icantly decreases the predicted amplitudes for high frequency
modes. As far as mode asymmetry is concerned, we found that
it did not have a significant impact in the “theoretical spectrum”
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model. In contrast, it substantially changes mode asymmetry at
high frequency in the “numerical spectrum” model, which is why
we only introduce it in the latter. The reason is the following: the
spatial spectrum of turbulent energy falls off much more rapidly
with & in the “theoretical spectrum” than in the “numerical spec-
trum”. Therefore, small spatial scales play a more important role
in the latter. Since the cut-off frequency only impacts these small
scales, it is natural that taking it into account should only have a
significant impact on the “numerical spectrum” model.

2.3.3. The cross term

The derivation of the cross term follows essentially the same
steps as for the leading term. The main difference is that the
turbulent velocity correlation moments that appear are now
two-point, third-order moments. We use the closure relation
presented in Sect. 2.3.1 to express them, as we did with the
fourth-order moments, as a function of two-point, second-order
moments of the turbulent velocity. We then use the same ana-
Iytical description of second-order moments as the one we used
for the leading term. The rest of the calculations is very similar
to those described in Sect. 2.3.2 and leads to the second term in
Eq. (13).

These two models — the “theoretical spectrum” and “numer-
ical spectrum” models — are complementary in the sense that
the first one allows us to explore the impact of the properties
of turbulence on mode asymmetries and gives physical insight
into this problem, whereas the second one relies on fewer input
parameters and, therefore, has more predictive capability (we
recall here that the former requires the parameters A and ko(r)
to be set, while the latter only requires 1). Consequently, in the
following, we present and develop the results yielded by both.

3. Numerical implementation

In this section, we detail how we numerically implemented the
model presented in Sect. 2. We describe how we obtained the
solar equilibrium state in which the acoustic modes develop
and how we integrated the inhomogeneous wave equation given
by Eq. (8). Having obtained the solar radial p-mode line pro-
files, we then detail how we extracted their asymmetries and
perform several tests to validate our model and its numerical
implementation.

3.1. The solar equilibrium state

The acoustic potential given by Eq. (7) depends only on the equi-
librium structure of the Sun. We extracted the potential from
a 1D solar model provided by the evolutionary code CESTAM
(Morel 1997; Marques et al. 2013). The 1D model includes treat-
ment of the convective flux (using standard mixing-length theory
with no overshoot) and of the radiative flux (using the Eddington
approximation). On the other hand, turbulent pressure, rotation,
and diffusion processes are ignored.

However, 1D stellar models do not fully take into account the
more complex physical phenomena taking place in the upper-
most layers of a star; in particular, the rapid transition between
the convective zone and the superficial radiative region (Kupka
& Muthsam 2017). This leads to significant biases in the equilib-
rium structure. Since the excitation of solar oscillations precisely
takes place in these layers, it is essential that we model them
more accurately. To do so, we use a 3D hydrodynamic simula-
tion of the solar atmosphere computed using the CO’BOLD code

x 107
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Fig. 1. Acoustic potential V(r) used in Eq. (8), calculated using Eq. (7)
and the equilibrium state of the Sun given by the solar patched model
described in the text. The radius is normalised by the photospheric
radius R, and only the outermost region is shown. We note that the
acoustic potential is normalised by R;* here (where Ry, is the radius of
the solar photosphere) so that it is dimensionless.

(Freytag et al. 2012). The modelled region includes the super-
adiabatic peak just below the photosphere and goes up to the
lower atmosphere of the star.

It is now possible to construct a “patched” model of the solar
interior. We use the solar patched model computed by Manchon
et al. (2018). The process of constructing patched models has
been extensively discussed (e.g. Trampedach 1997; Samadi et al.
2008) and the particular case of the patched model used in this
paper is described in much detail in Manchon et al. (2018). The
basic idea is to transform the 3D atmosphere into a 1D atmo-
sphere through temporal and horizontal averaging and then to
replace the surface layers of the 1D stellar interior with this
1D atmosphere. We note that the input parameters of the CES-
TAM model used to describe the solar interior (age, total stel-
lar mass, mixing-length parameter ayrt, and helium abundance)
are chosen so that the top layers match the bottom layers of the
CO’BOLD atmosphere. Here the model was computed with the
mixing-length parameter aypr = 1.65, an initial helium abun-
dance of Yinir = 0.249, and an initial metallicity of Zi,;; = 0.0135.
Figure 1 shows the acoustic potential profile V(r) given by this
solar patched model, computed using Eq. (7).

Finally, we use the same simulation of the solar atmosphere
to extract the various parameters appearing in the analytical
description of the source term; in particular, the standard devia-
tion 1 associated to turbulent velocities, the anisotropy factor G
given by Eq. (B.10), as well as the parameters used in the Plume
closure model (see Eq. (15)). Specifically, the ensemble average
appearing in the definition of uy was computed by performing
a temporal and horizontal average of the norm of the velocity
squared in the 3D simulation of the solar atmosphere. We also
used this same simulation to extract the spatial spectrum of tur-
bulent kinetic energy in the “numerical spectrum” model (see
Sect. 2).

3.2. Integration of the inhomogeneous wave equation

To compute one value of P(w) for one value of the angular fre-
quency w (i.e. one point in the velocity power spectrum), we con-
volve the Green’s function G,,(rs) associated to Eq. (8) with the
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stochastic source term S (r) (see Sect. 2). It is then possible to
reconstruct the velocity power spectral density, and in particular
the line profile of the resonant modes, point by point (typically,
we only need 10 points regularly spaced between wg — Iy, and
wo + I'y,, where wy is the angular eigenfrequency of the mode
and I',,, its linewidth). In the following, we describe how the
wave equation was integrated and how we extracted its Green’s
function.

For a given angular frequency w, we carry out the integration
using a 4th-order Runge-Kutta scheme (Press et al. 1986) with
the acoustic potential V(r) given by the solar equilibrium state
(see Sect. 3.1). Given that radial modes develop in the entire
solar volume, we perform this integration over the entire solar
radius, between r = 0 and r = ry,x. We note that r,,x refers not
to the photospheric radius, but to the maximum radial extent of
the solar model described in Sect. 3.1, so that rmax > photosphere-

We imposed Dirichlet boundary conditions on the wave
equation. The condition at the centre is straightforward: by def-
inition, Y,(r = 0) = 0. At rpu, we impose a vanishing
Lagrangian pressure perturbation (which physically means that
the atmosphere of the Sun is force-free). The continuity equation
and the equation of state allow us to rewrite this latter condition
in terms of ¥,:

dy
Fo  d (- )|w, =o.
dr dr c/po

The use of Dirichlet boundary conditions leads us to imple-
ment a shooting method: we perform the integration with ¥, (r =
0) = 0, and tune the initial slope (i.e. the value of d¥,/dr
at r = 0) until the other boundary condition is met. Note that
this method is not similar to the shooting method usually imple-
mented to solve the eigenvalue problem associated to the deter-
mination of acoustic mode eigenfrequencies: here, the pulsation
w is fixed, and it is the initial slope that is tuned to meet the
boundary condition at the surface. The difference between these
two methods is that in the inhomogeneous problem, the initial
slope (or, alternatively, the amplitude of the mode) is fixed by
the amplitude of the source of excitation. The shape of the eigen-
function, however, remains the same as in the homogeneous
problem.

This method enables us to extract the Green’s function asso-
ciated to the wave equation (Eq. (8)). To obtain one value of the
Green’s function G, (r), for one value of the pulsation w and
one value of the source position rs, we carry out the integra-
tion of the inhomogeneous equation as described above, adding
a point-like source term to the numerical scheme. The source
is normalised in such a way that the right-hand side equals 1/A
when the source falls within the integration radial step, and 0
otherwise (4 is the radial step of the integration).

This integration gives us the radial oscillation profile ¥, (r),
and we simply extract its value at a fixed radius r,, which cor-
responds to the height in the atmosphere at which the spectrum
is measured. We note that the presence of damping in the wave
equation implies that it is complex-valued. As such, the Green’s
function is complex-valued as well.

Finally, to calculate the integrals over source positions which
appear in Egs. (B.19) and (B.28), we compute the Green’s func-
tion using the above method for a grid of source positions 7,
while w is kept constant. This grid corresponds to the radial grid
provided by the 3D atmospheric model described in Sect. 3.1.

We also use the aforementioned 3D model to extract the
physical quantities appearing in both the leading term of Eq. (13)
(the anisotropy factor G, the turbulent velocity fluctuations uy),

(25)
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Fig. 2. Dependence of the line profile given by Eq. (26) on the asym-
metry parameter B. The line profiles are normalised with Hy = 1.

and the cross term (the parameters a and éw in the PCM; see
Sect. 2 for a definition of these parameters).

Using Eq. (13) provided by the model developed in Sect. 2
and the radial grid of Green’s functions computed using the
above method finally allows us to extract the value of P(w) for
each value of w.

3.3. Fitting of the mode asymmetries

We fit the line profile of the modes following Nigam &
Kosovichev (1998) with the formula

(1 + Bx)? + B?

Plw) = Ho=—""5

. (26)
where x = 2(w — wp)/T,, is the reduced pulsation frequency.
The fit contains three free parameters (Hy, vy and B), the last of
which is defined as the asymmetry parameter. We illustrate the
dependence of the line profile on B in Fig. 2. In particular, B < 0
means that the peak contains more power in the low-frequency
side (that corresponds to negative asymmetry), B > 0 means that
the high-frequency side contains more power (that corresponds
to positive asymmetry), while with B = 0 we recover a classic,
Lorentzian profile. Figure 2 also shows that the mode does not
peak exactly at the eigenfrequency, but rather at a slightly higher
(for B > 0) or lower value (for B < 0). This can have important
repercussions for the determination of the mode eigenfrequen-
cies from observations, as we discuss in Sect. 6.3.

Note that several other definitions of the asymmetry param-
eters can be found in the literature. Korzennik (2005) prefers to
adjust the mode line profiles with

1 +alx—a/2)
x2+1

P(w) « , (27)
and defines the asymmetry parameter as «,;. Meanwhile,
Vorontsov & Jefferies (2013) use the following formula:

2
p= H[(/M) + B, (28)

1-R?

where the frequency variable is ¢, and the asymmetry parameter
is defined as S. While these three formulas have been derived in
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different ways, they are perfectly equivalent close to the eigen-
frequency (for x < 1, or equivalently for ¢ = 0 (mod 7)), with
S ~B~a/2

Finally, Gizon (2006) provides the asymmetry parameter
defined as (see also Benomar et al. 2018):

X = 2Bwy/T. (29)

The author quantified the mode asymmetry by means of
the relative positions of the local maxima (peaks) and minima
(troughs) in the power spectral density: minima located half-way
between the neighbouring maxima lead to symmetric line pro-
files, while a deviation from this behaviour leads to asymmetric
line profiles. The parameter y derived from these considerations
is independent from both the amplitude and the line-widths of
the modes.

The formulas presented above only lead to different line pro-
files far from the central frequency, whereas they are equivalent
in our range of interest. We opted for the definition given by
Nigam & Kosovichev (1998) (Eq. (26)) because it is the most
commonly used.

To ensure the significance of fitting an asymmetric profile to
the mode obtained through our model, we compared the results
produced by the fitting formula Eq. (26) and by a symmetric,
Lorentzian profile (that is, imposing B = 0 in Eq. (26)). The
asymmetric fits led to excellent agreement with the modelled line
profiles; however, the symmetric fits led to substantial discrepan-
cies, with one wing consistently falling off more rapidly than the
numerical line profile and the other too slowly. Finally, it should
be noted that the excellent fit given by Eq. (26) to the numeri-
cal line profile is independent from the number of points used
for the adjustment; we have indeed performed a similar fit with
thrice the number of points, without any loss of accuracy and the
resulting asymmetry parameter B was the same to an excellent
approximation.

3.4. Validation of the method

Using the method presented above, we extracted solar radial
modes of radial orders n = 6 to n = 30. Indeed, the formula
used for the fit and given by Eq. (26) does not converge properly
for higher-order modes (because the increasing linewidths lead
to mode overlapping), while we did not have access to observed
linewidths for lower-order modes. In addition to their line pro-
file asymmetries, we also extract other fundamental properties,
namely their eigenfrequencies, amplitudes, and eigenfunctions.
In the following, to support the validity of our model, we com-
pare the mode properties we obtained with similar properties
obtained through other methods.

First, we compare the eigenfrequencies obtained through
our model to the eigenfrequencies of the 1D adiabatic oscilla-
tions calculated using the ADIPLS code (Christensen-Dalsgaard
2011). For this validation, we did not make use of the patched
model described in Sect. 3.1 but, rather, the corresponding
unpatched model. The reason is that the patching procedure
produces a small discontinuity of the physical quantities at the
patching point, which can affect the eigenfrequencies calcu-
lated by ADIPLS. We recover the correct eigenfrequencies, with
errors not exceeding ~0.1%. Since mode asymmetry is only
expected to vary on the scale of ~mHz, modelled asymmetries
will not be significantly affected by such small discrepancies of
the eigenfrequencies.

Our numerical method also allows us to extract the radial
profile W(r) of the eigenmodes. We compare them in Fig. 3
to the eigenfunctions calculated using the same 1D adiabatic
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Fig. 3. Eigenfunction W(r) of several radial acoustic modes (black:
n =10 (vy = 1.580 mHz); red: n = 20 (vy = 2.912 mHz); blue: n = 30
(vp = 4.267 mHz)) as computed by our model (solid lines), and calcu-
lated using the ADIPLS code (dashed lines). The radial axis is zoomed
to show only the outermost region. The eigenfunctions have been nor-
malised so that their maximum over the entire solar interior equals 1.

oscillations obtained through the ADIPLS code and presented
above. The figure shows that the modes obtained through our
model have eigenfunctions that are very similar to those obtained
through this dedicated code, which further supports the validity
of the model we have used.

Finally, we compare the mode amplitudes obtained through
our model to the observed ones. To that end, we estimated the
velocity power spectrum at an observation height of 340km,
which corresponds to the observation height of the GOLF instru-
ment as estimated by Baudin et al. (2005), following Bruls et al.
(1992). By definition, the velocity amplitude squared is the total
area under the mode peak, so that it depends both on its maxi-
mum H and on its width T,

Vose = VrHT. (30)

We note that when it is used to treat observational data, this for-
mula also contains a geometric factor to account for instrumental
effects, including mode visibility. This factor is, however, irrele-
vant in our case.

We show in Fig. 4 the comparison between the mode ampli-
tudes vosc Obtained through our “numerical spectrum” model and
the mode amplitudes inferred from observations performed by
the GOLF instrument (Baudin et al. 2005). The free parameter
A of our model (cf. Sect. 2) has been adjusted so as to obtain
the best possible agreement. As a consequence, our model does
not hold any predictive power when it comes to mode ampli-
tudes. However, the fact that we manage to retrieve a very good
agreement with observational data by using reasonable values of
the input parameters is still a solid sign that our model is valid.
In particular, we correctly recover the frequency at maximum
amplitude v, as well as the slopes on both the low-frequency
and the high frequency limit. To conclude on the matter, we
emphasise that the asymmetry parameter B is independent from
the mode amplitude, so that potential discrepancies concerning
the latter should not affect the former.

4. Results for the asymmetry profile B(v)

Using the model presented in Sect. 2, numerically implemented
using the method presented in Sect. 3, we extract the solar
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Fig. 4. Velocity amplitudes of radial acoustic modes as computed by our
model, using Eq. (30) (black dashed line), and as observed by GOLF
(black points). The data points are taken from Baudin et al. (2005). The
free parameters in the model have been tuned to obtain the best possible
agreement with observational data.

p-modes line profile asymmetries B(v) throughout a large
part of the spectrum, between n=6 (v~1mHz) and n=30
(v~4.3mHz). In this section, we present the results yielded by
our model, focusing on the dependence of the asymmetry param-
eter B on frequency (which we hereafter shorten to the expres-
sion “asymmetry profile”) and on the impact of our different
input parameters on the asymmetry profile.

As we detailed in Sect. 2, we followed two different
approaches to model the turbulent kinetic energy spectrum. The
first one, which we refer to as the “theoretical spectrum” model,
uses the prescription given by Kolmogorov’s theory of turbu-
lence and which we have described in detail in Sect. 2. The sec-
ond approach, which we refer to as the “numerical spectrum”
model, uses the turbulent spectrum extracted from the 3D hydro-
dynamic simulation of the solar atmosphere described in Sect. 3.
In this section, we present separately the asymmetry profile B(v)
yielded by both models.

4.1. The “theoretical spectrum” model

This model relies on a prescription for the properties of turbu-
lence. It contains the following input parameters: the temporal
spectrum of turbulent kinetic energy, parametrised by the dimen-
sionless quantity A, which is defined by Eq. (20), and its spatial
spectrum, parametrised by ky(r), which is defined as the (radius-
dependent) injection wavenumber of turbulent kinetic energy.
We let the latter depend on r in order to account for the fact
that the typical size of turbulent eddies drastically depends on
where they are located with respect to the photosphere. It is
known that the size of the energy-bearing eddies increases with
height, so that the injection scale ky decreases with r (Samadi
et al. 2003). We simplify the situation by considering that the
injection rate only takes two values: ko(r) = ko jnc below the pho-
tosphere, and ko(r) = ko am above the photosphere. This picture
crudely corresponds to what is observed in 3D atmospheric sim-
ulations (Samadi et al. 2003). In the following, we denote the
ratio between the two as Ry = kg .int/ko atm- This leaves only three
input parameters in our model: A, ko int, and ko aem; Or equivalently
/1, kO,ints and Rk.

In Fig. 5, we keep A and Ry, constant, and we show the asym-
metry profile B(v) for several values of kg in.. Despite the fact that
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Fig. 5. Asymmetry parameter B as a function of frequency obtained
by the “theoretical spectrum” model, for different values of k;,, with
A =1 and R, = 2 fixed. The sub-photospheric injection scale kg iy is
expressed in Mm™!.

we vary ko iy across almost one order of magnitude, the asym-
metry profile B(v) does not depend significantly on the abso-
lute value of kg, except close to v ~ 1.7mHz. By comparison,
its dependence on both R; and A is more substantial, especially
at high frequencies (cf. Figs. 6 and 7). Since kg, does not
seem to play an important role, we keep it fixed in the follow-
ing, and focus on the impact of the other two input parameters,
Aand Ry.

Figure 5 illustrates the main qualitative features of the asym-
metry profile B(v). In fact, together with Figs. 6 and 7, it
shows that the qualitative behaviour of the asymmetry profile
is largely model-independent. Thus the asymmetries of the solar
radial p-mode line profiles are negative across a large part of
the spectrum, in agreement with solar observations (see for
instance Duvall et al. 1993). Furthermore, the asymmetry pro-
file B(v) exhibits three distinct local extrema: the absolute value
of B increases below ~1.7 mHz, decreases between ~1.7 and
~3mHz, increases again between ~3 mHz and ~4 mHz, and
finally decreases again above ~4 mHz. Note, however, that this
last extremum is, unlike the other ones, somewhat impacted
by the values given to the different input parameters of the
model.

The first two local extrema (~1.7 and ~3 mHz) correspond
respectively to the beginning and end of the damping rate
plateau. Indeed, the asymmetry parameter B depends on the
linewidth of the modes, so it is natural that a sudden change
in the behaviour of the latter should reflect on the former. The
third extrema is not so easily explained and it will be discussed
in Sect. 5.

Figure 6 shows how the asymmetry profile B(v) depends on
Ry. An increase of this parameter attenuates low-frequency mode
asymmetries (below vim,x ~ 3 mHz), while on the contrary, the
high-frequency modes (above vy,x) become more asymmetric.
The effect is significantly more substantial for the latter than for
the former. Asymmetries close to vy, however, are not affected
by the parameter R; whatsoever.

Figure 7 shows that the impact of A on the asymmetry pro-
file B(v) is quite similar, albeit inverted, in the sense that |B|
increases with A for low-frequency modes and decreases for
high-frequency modes. Similarly, B is barely impacted by a
change of A close to vp,x. Furthermore, the asymmetry profile
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Fig. 7. Same as Fig. 5, but only A varies, R, = 2 and ke = 2Mm™!.

B(v) undergoes saturation, in the sense that it ceases to depend
on A when it is increased above a certain value. In the following,
we denote this threshold as Ag. Figure 7 shows that Age ~ 1.
This dichotomy between 4 < 1 and 4 > 1 originates in the
Lorentzian nature of the temporal turbulent spectrum: depend-
ing on the value of A, the angular frequencies relevant to solar
p-modes are either in the low frequency part or in the high fre-
quency part of the spectrum. We do not go into too much detail
here as we discuss this matter further in Sect. 5.

4.2. The “numerical spectrum” model

In the “numerical spectrum” model, which describes the prop-
erties of turbulence more realistically, there is only one input
parameter left, A. In this sense, it has a greater predictive power
than the previous model. The qualitative behaviour of the asym-
metry profile B(v) and, in particular, the positions of the different
local extrema featured by B(v), are, in this model, rather inde-
pendent from A and in agreement with what we observed in the
scope of the previous model.

However, the input parameter A does have an impact on the
quantitative behaviour of the asymmetry profile B(v). We show
in Fig. 8 the asymmetry profile B(v) obtained with the “numer-
ical spectrum” model (see Sect. 2) for several values of A. As
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Fig. 8. Asymmetry parameter B as a function of frequency obtained by
the “numerical spectrum” model, for several values of A.

for the “theoretical spectrum” model, B is always negative and
features several local extrema at v ~ 1.7, 3 and 4 mHz.

As for the dependence of B(v) on 4, two distinct regimes can
be separated. Below vin,x ~ 3 mHz, we recover the same depen-
dence of the asymmetry parameter B with 1 as we obtained in the
scope of the “theoretical spectrum” model, with absolute values
of B increasing with A. The picture at frequencies higher than
Vmax 18, however, somewhat different. The asymmetry profile
B(v) features a local minimum at v ~ 4 mHz; the curve inflexion
grows sharper as A increases up to A ~ 1, after which this part of
the asymmetry profile does not significantly depend on A. In this
sense, the asymmetry profile B(v) seems to undergo the same
saturation behaviour as in the “theoretical spectrum” model (see
Sect. 4.1), for the same value Ag,; ~ 1. The fact that we recover
approximately the same threshold gives us confidence that this
particular feature of the asymmetry profile B(v) is not a mere
artefact of one model or the other but, rather, it is a genuine effect
based on a physical origin. Again, we postpone the discussion of
the physical origin of this behaviour to Sect. 5.

5. Impact of the properties of turbulence on mode
asymmetry

Line profile asymmetry of solar-like oscillations have two main
causes: localisation of the source of excitation (see for instance
Duvall et al. 1993) and correlation with the turbulent pertur-
bations (see for instance Nigam et al. 1998). In the following,
we investigate both contributions in light of the results yielded
by the “theoretical spectrum” model and presented in Sect. 4.1.
With its various input parameters, the “theoretical spectrum”
model allows us to understand the physical origin of mode asym-
metry. In this section, then we only consider this model, although
the conclusions are valid for the “numerical spectrum” model
as well. We first discuss how source localisation and correlated
turbulent perturbations can skew the mode line profiles. In par-
ticular, we support the discussion concerning source localisa-
tion with a simplified toy-model of mode excitation, which we
describe in Appendix C. We then use this discussion to inter-
pret the results yielded by our model. Additionally, we show
that the contribution of the correlated turbulent perturbations
to the mode asymmetries is negligible in the velocity power
spectrum.
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5.1. Origin of mode asymmetry

5.1.1. Effect of source localisation on mode asymmetry:
generic arguments

The fact that the source of excitation of a mode is spatially
localised can affect the skewness of the mode line profile in
Fourier space. There are several ways of describing the impact
of source localisation on mode asymmetry.

One way is to make use of the analogy between the develop-
ment of acoustic modes in the stellar cavity and the phenomenon
of optical interference in a Fabry-Pérot cavity. This analogy was
used to account for the acoustic mode asymmetry in the Sun by
Gabriel (1992), Duvall et al. (1993), among others. The idea is
that acoustic, stationary modes in the Sun can be described by
means of two progressing waves, propagating in opposite direc-
tions. Each of these waves follows the same cycle: they prop-
agate one way, get refracted on the lower turning point of the
acoustic cavity, then propagate backwards, get reflected on the
upper turning point, and so forth. As a result of these multiple
reflections and refractions on both turning points, the acoustic
waves pass multiple times through the same regions and, there-
fore, interfere with each other (and with themselves). This inter-
ference pattern leads to the development of resonant modes in
the cavity. What we observe then is the evanescent tail of these
modes in the atmosphere, which lies outside the resonant cavity.

Let us now consider that the source of the waves is located
at a certain point within the cavity. The waves propagating out-
wards and inwards will have travelled over different distances
before interfering with one another and this difference of travel
times will depend on the location of the source. The shape of
the mode line profile is directly related to the dependence of the
phase difference between the outwards and inwards interfering
waves on frequency. Since this phase difference is not exactly
symmetric about the mode eigenfrequency, neither is its line pro-
file; and given that it depends on the source location, mode asym-
metry is indeed a marker of source localisation.

Another physical interpretation of how source localisa-
tion can bring about mode asymmetry has been proposed by
Rast & Bogdan (1998), and later refined by Rosenthal (1998).
They remarked that mode asymmetry could be mathematically
described by the relative position of local maxima (or peaks)
and local minima (or troughs) in the power spectrum. Peaks
located exactly halfway between their neighbouring troughs fea-
ture symmetric, Lorentzian line profiles. However, if one of the
neighbouring trough is closer than the other, the peak in ques-
tion appears skewed and, depending on which trough is closest,
its asymmetry parameter is either positive or negative.

The position of the peaks are simply related to the eigen-
modes of the solar acoustic cavity. As for the position of the
troughs, in the special case of a point-like source of excitation,
with a given multipolar decomposition, the authors showed that
it is related to the eigenmodes of the atmosphere truncated at the
source position, with a vanishing external boundary condition
depending on the multipolar nature of the source. In that inter-
pretation, the position of the troughs thus depends on both the
position and the multipolar decomposition of the source.

Yet another way to describe the impact of source localisa-
tion on mode asymmetry is to consider the eigenfunction of the
mode. In order to illustrate this, we present in Appendix C a
very simplified toy-model of mode excitation, where the source
is considered point-like and the acoustic cavity is simplified to a
square well potential. From this toy-model we draw the follow-
ing conclusion: for a given frequency, the amplitude of the wave
is proportional to the eigenfunction associated with the wave
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at the source of excitation. In particular, excitation at a mode’s
antinode is much more efficient than at a mode’s node.

With this conclusion in mind, let us consider the situation
illustrated by Fig. 9. The blue and red curves represent the radial
profile of the acoustic wave for two different angular frequen-
cies. It can be seen that an increase of w causes the radial profile
of the oscillation to “shrink” radially. Therefore, the amplitude
of the oscillation as seen by the source will either increase or
decrease with w, depending on its position. More specifically, a
source at r = ry (see illustration in Fig. 9) will see the amplitude
of the oscillation increase with w, and a source at r = r, will
see it decrease. In light of the conclusion presented in the previ-
ous paragraph, it can be deduced that if the source is located at
r = ri, the right wing of the mode line profile will be slightly ele-
vated compared to the left wing, thus leading to positive asym-
metry. Likewise, the asymmetry generated by a source at r = r;
will be negative.

From the illustration in Fig. 9, it is straightforward to see
that the dichotomy between the » = r; case and the r = r, case
is based on the relative position of the source and the nodes and
antinodes of the mode, or, in other words, on the sign of the
derivative of the absolute value of the eigenfunction. To be more
specific, one has to separate the case of a source inside and out-
side the acoustic cavity. If the source is inside the cavity, the
r = ry case (i.e. case where source localisation entails positive
asymmetry) corresponds to any source position located above a
node and below an antinode of the oscillation profile, whereas
the » = r, case (i.e. the case where source localisation entails
negative asymmetry) corresponds to any source position located
above an antinode and below a node. Here we recall that a node
is a point at which the wave amplitude is zero and an antinode is
a point at which it is maximal. If the source is outside the cavity,
however, it is always as in the r = r, case and, thus, it always
generates negative asymmetry: indeed, the outside of the cavity
corresponds to an evanescent zone for the acoustic waves so that
the absolute value of the eigenfunction always decreases in this
region.

It should be noted that we only consider this toy-model in
the present subsection. In the following sections, we return to
the discussion of our model, simply using the conclusions drawn
above to interpret the results which it yields.

5.1.2. Correlated turbulent fluctuations

Acoustic modes in the Sun are excited by fluctuations of tur-
bulent nature — more specifically by turbulent fluctuations of
the Reynolds stress or non-adiabatic pressure perturbations. It is
therefore natural that a part of the turbulent fluctuations should
be not only coherent, but statistically correlated with the oscil-
lating mode.

The resulting interference between the mode and the tur-
bulent fluctuations leads, in turn, to mode asymmetry. In order
to illustrate this, let us consider a mode whose line profile is
intrinsically Lorentzian and turbulent fluctuations whose power
spectral density is constant over the width of the mode under
consideration. We then have

2

+ Ayl (31

Am
P =
(X) ‘ X+

where P is the total power spectral density, x = 2(w — wo)/T,
is the reduced frequency (wy is the angular eigenfrequency of
the mode, and I',, its linewidth), A,, and A, are the (real) ampli-
tudes associated to the mode and the noise respectively, ¢, is the
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Fig. 9. Illustration of the importance of source position with respect
to nodes and antinodes of the eigenfunction associated to a mode to
explain its asymmetry. The blue and red lines show the radial profile
of the oscillation for two angular frequencies very close to one another
(Wred < Wp1e)- The bold vertical dashed lines show two source positions
generating opposite mode asymmetries: positive for r|, negative for r.
The third vertical dashed line marks the edge of the acoustic cavity
r=a.

phase difference between the mode and the noise, and j is the
imaginary unit. Expanding the module squared, we obtain

A2 2,4, .
P(x) = ; +’"xz + W sin (arctan x + ¢,,) + A2 (32)

The first term of the right-hand side of Eq. (32) corresponds
to a Lorentzian profile and is symmetric about x = 0. The third
term simply acts as an offset and does not introduce any mode
asymmetry. The second term, however, is clearly not symmetric
at x = 0, unless ¢,, = +7/2. For instance, if ¢,, = 0, this term is
even antisymmetric. In other words, the interference between the
mode and the noise is destructive in the left wing of the mode and
constructive in its right wing. As such, the power spectral den-
sity P(x) is higher than the Lorentzian profile in the right wing
and lower in the left wing, thus entailing positive mode asymme-
try. The sign and magnitude of the mode asymmetry depends on
the amplitude A, that is, on the degree of correlation between
the mode and the turbulent fluctuations, as well as on the phase
difference ¢,,, both of which are included in the model we devel-
oped in Sect. 2.

5.2. Contribution of source localisation to B(v)

In the previous subsection, we summarised the impact of source
localisation on mode asymmetry by stating the following: a
source within the resonant cavity of a mode entails negative
asymmetry if it is located above an antinode and below a node of
the associated eigenfunction and positive asymmetry otherwise;
a source outside the resonant cavity always entails negative mode
asymmetry. With this in mind, we set out to interpret the results
obtained in Sect. 4 in the scope of the “theoretical spectrum”
model.

Once applied to the case of solar p-mode excitation, this rule
can be rephrased in the following way. There is a dichotomy
between the effect of the turbulent eddies located below the
upper turning point of the mode and those located above. The
former skew the mod<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>