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Thesis abstract
Asteroseismology has revolutionised our understanding of stellar interiors, through the observations of oscil-

lations on the surface of stars. In solar-like oscillators, which exhibit a convective envelope, the turbulent motions
caused by convection have a substantial impact on the properties of the acoustic modes, whether on their fre-
quencies or their amplitude. This impact results from a turbulence/oscillation coupling, which must therefore be
understood and realistically modelled in order to allow for accurate seismic diagnosis. In turn, this coupling offers
a way to constrain the little-understood properties of convection using the observed acoustic mode properties. This
last point forms the overarching motivation behind the work presented in this thesis.

The first part of this thesis focuses on the asymmetry displayed by the line profiles of solar-like oscillations,
which carries the signature of the localisation of the driving source close to the surface of the star. In this context,
I developed a formalism designed to give quantitative predictions for solar-like mode asymmetry, and to directly
relate the observed asymmetries to the underlying properties of turbulence in this region. Applying this formalism
to the solar case allowed me to successfully reproduce the observations throughout the entire p-mode spectrum for
spectroscopic measurements, as well as in the low-frequency part of the spectrum for photometric measurements.
In particular, it led me to the determination of the sign of the asymmetry depending on the stochastic excitation
occurring above or beneath the photosphere. It also allowed be to shed a new light upon the issue of asymmetry
reversal between the velocity and intensity measurements.

In a second part, I interested myself with the modelling of the turbulence/oscillation modelling more gener-
ally. I investigated Lagrangian stochastic models of turbulence as an alternative way, compared to more traditional
approaches, to model the coupling between turbulent convection and solar-like oscillations. First, a linear pertur-
bative treatment of this class of models led me to establish a wave equation which, by construction, contains a
stochastic part representing the impact of turbulence on the modes. This stochastic wave equation includes the
effect of turbulence, and therefore the effect of the coupling with oscillations, in a consistent way, while allowing
for the introduction of a realistic model of turbulence, taking into account the large range of time and spatial scales
characterising stellar turbulent convection. This formalism then allowed me to simultaneously build physically-
grounded prescriptions for the driving and damping of the modes, as well as for the modal part of the surface
effects. In parallel, I developed a more direct numerical implementation of Lagrangian stochastic models, which
allows, in conjunction with my analytical formalism, to explore the impact of the physical parameters of turbulent
convection on the observed properties of the solar-like modes. I propose a test case where exact analytical results
can be derived, and the close agreement reached between those and numerical results validates this implementation.
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Résumé de la thèse
L’astérosismologie a révolutionné notre compréhension des intérieurs stellaires, grâce à l’observation des os-

cillations à la surface des étoiles. En ce qui concerne les oscillateurs de type solaire, qui possèdent une enveloppe
convective, les mouvements turbulents dus à la convection ont un impact important sur les propriétés des modes
acoustiques, tant du point de vue de leur fréquence que de leur amplitude. Cet impact résulte d’un couplage entre
convection et oscillations, qui doit donc être compris et correctement modélisé pour permettre des diagnostics
sismiques fiables dans ces étoiles. En retour, ce couplage offre l’opportunité d’utiliser les propriétés observées des
modes pour contraindre la convection stellaire – dont les propriétés restent encore relativement mal comprises à ce
jour. C’est ce dernier point qui constitue la motivation sous-tendant le travail présenté dans cette thèse.

La première partie de cette thèse se concentre sur l’asymétrie exhibée par les profils des modes dans le spectre
des oscillateurs de type solaire, qui porte la signature de la localisation de leur source d’excitation proche de la
surface de l’étoile. Dans ce contexte, j’ai développé un formalisme conçu pour fournir des prédictions quantitatives
concernant ces asymétries, mais également pour relier directement les asymétries observées aux propriétés sous-
jacentes de la convection turbulente dans cette région. L’application de ce formalisme au cas du Soleil m’a permis
de reproduire les observations à travers tout le spectre des modes acoustiques pour les mesures spectroscopiques,
ainsi que pour les modes acoustiques de basse fréquence pour les mesures photométriques. En particulier, elle m’a
permis de déterminer la dépendance du signe de l’asymétrie en fonction de la position de la source relativement
à la photosphère, ainsi que d’apporter un éclairage nouveau sur la question de l’inversion d’asymétrie entre les
observations effectuées en vitesse et en intensité.

Dans une seconde partie, je me suis penché sur la question de la modélisation du couplage turbulence/oscillation
de manière plus générale. J’y examine les modèles de turbulence Lagrangiens stochastiques en tant qu’alternative
aux approches traditionnelles pour le traitement du couplage entre convection turbulente et oscillations de type
solaire. Premièrement, un traitement perturbatif linéaire de ce type de modèle m’a permis d’exhiber une équation
d’onde possédant, par construction, un caractère stochastique représentant l’impact de la turbulence sur les modes.
Cette équation d’onde stochastique présente l’avantage d’inclure dès le début l’effet de la turbulence, et par suite
celui du couplage, de manière cohérente, tout en permettant l’introduction d’un modèle de turbulence réaliste,
et prenant en compte le large éventail d’échelles temporelles et spatiales caractérisant la convection turbulente
stellaire. Ce formalisme m’a ensuite permis de construire une prescription simultanée, sur la base de relations
de fermeture physique, pour le taux d’excitation et d’amortissement des modes acoustiques, mais également pour
la partie modale des effets de surface. En parallèle, j’ai développé une implémentation numérique plus directe
des modèles Lagrangiens stochastiques, qui permet, en conjonction avec mon formalisme analytique, d’explorer
l’impact des paramètres physiques contrôlant la convection turbulente sur les propriétés observées des modes de
type solaire. Le très bon accord obtenu en comparant les résultats numériques à un cas test dans le cadre duquel
des résultats analytiques exacts peuvent être établis m’a permis de valider cette implémentation.
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Foreword
Asteroseismology has enabled us to make a significant leap forward in our understanding of the physics of

stellar interiors. Stars play the role of a resonant cavity for the waves that they feature, so that these waves take the
form of resonant global modes. The frequencies of these modes carry the signature of the mechanical and thermal
structure of the star in which they develop, thus allowing us to probe the stellar interior without having direct
observational access to it. But the Fourier power spectrum of these oscillations gives us access to more than just
their frequencies, it also provides us with the shape of their line profile in the Fourier domain. In the case of solar-
like oscillations – that is, oscillations featuring the same behaviour and properties as the oscillations of the Sun –,
these line profiles bear the mark of the energetic processes pertaining to the oscillations – how they are driven, and
how they are damped. These energetic aspects are tightly related to the physics of the convective envelope in these
stars, and more specifically of their highly turbulent superficial layers. The same way mode frequencies tell us a
lot about stellar structure, mode line profiles tell us as much about the behaviour of the turbulent convection just
beneath the surface of solar-like stars.

Since the early days (only 60 years ago!), when solar “5-minute oscillations” had just been discovered, we
have come far. Observations of solar-like oscillations have become increasingly accurate, and have spanned across
increasingly long periods of time. As a result, observed power spectra are now considerably more resolved, and
contain substantially more information, than before. Not only have thousands of modes now been resolved for the
Sun, but modes are also being observed in the spectrum of an ever-increasing number of other solar-like stars. The
advent of the space-borne mission CoRoT, shortly followed by Kepler, as well as the more recent mission TESS,
has made this number quite literally explode, going from one (the Sun) to several thousands in a matter of years.
And the road does not stop here, since the mantle is about to be picked up by the PLATO mission in a few years,
bringing with it the promise of yet another blow in the amount of seismic data at our disposal. The fact that one
has to plot the evolution of the number of known oscillators available for study on a logarithmic plot is perhaps
the clearest sign of the vigour currently characterising the field of asteroseismology. And of course, the larger the
amount of data, and the more accurate the data is, the more information can be extracted on the physics underlying
the oscillations, and the stars at the surface of which they are observed.

But in order for this incredible wealth of data to be exploited, our theoretical understanding of solar-like
oscillations, and of how their properties relate to those of the medium in which they develop, has to be continuously
improved. This is particularly the case when it comes to the question of how the properties of the modes relate to
the properties of turbulent convection in solar-like stars. Our ability to use the observed characteristics of solar-like
mode line profiles to learn more about the behaviour of the convective envelope in these stars is contingent on our
theoretical understanding of the coupling between the two: one cannot evolve much faster than the other. This,
in one sentence, summarises the overarching motivation behind the projects that I undertook during my PhD, and
that I present in this thesis: to build a theoretical framework in which the properties of turbulent convection can be

constrained using the observed line profile of solar-like modes of oscillation.

The first project I undertook in this context has to do with an aspect of observed solar-like mode line profiles
that has not recently received as much attention as others – like their amplitude or their linewidth for instance –,
namely the asymmetry they feature in the Fourier domain. Since observations have uncovered this asymmetry, first
in the Sun, and very recently in other solar-like oscillators observed with the Kepler telescope, it was discovered
that this asymmetry mainly stems from a combination of two different aspects of the physics of the mode: the
fact that the source of excitation of the modes is localised in a thin layer just beneath the surface of the star; and
the correlation that exists between the motions entailed by the resonant modes and those due to the convective
background noise, also close to the surface of the star. A puzzling aspect of mode asymmetry is the observation
that they are not the same depending on how the modes are observed, through spectroscopy (i.e in terms of surface
velocity), or through photometry (i.e in terms of emergent intensity). Not only are the asymmetries not the same
between the two observables, they are even reversed in sign. Upon discovery, this was dubbed the “asymmetry
reversal puzzle”, and several conflicting explanations have been proposed to explain it. Solving this puzzle is
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essential in order to understand how – and why – asymmetries vary across the Hertzsprung–Russell (HR) diagram:
at the present time, asymmetries in solar-like oscillators other than the Sun can only be observed in intensity.

Observed asymmetries can be used to constrain both the properties of the source of excitation, and of the corre-
lated background. But so far, the models that were developed to that end are extremely simplified; in particular, the
source of excitation is almost systematically prescribed empirically, both in its radial dependence and its frequency
dependence. By contrast, physical models have been developed for mode excitation for a long time, but mainly to
account for the observed amplitudes of the modes. This first project, therefore, consisted in adapting these excita-
tion models to yield not only theoretical predictions for the amplitude of the modes, but more generally a synthetic
oscillation power spectrum from which the exact shape of the mode line profiles can be extracted, including their
asymmetry. My goal, in taking on this first project, was to then compare the predictions made with this theoretical
model to observations, in order to constrain the physical properties of the source of excitation. Conversely, the
model I developed also contains the effect of the correlated background, so that it allowed me to determine the
dominant process at hand in solar-like mode asymmetry. For the moment, I focused exclusively on the Sun, as
a first validating step. First, I considered the solar oscillation power spectrum as observed spectroscopically, i.e
in terms of surface velocity, because, for the Sun, it is the easiest to model. In a second part of the project, I
also considered the solar oscillation spectrum as observed photometrically, i.e in terms of emergent intensity. This
required to adapt my model to intensity measurements instead of simply velocity, and allowed me to tackle the
asymmetry reversal puzzle.

The second project I undertook concerns turbulence–oscillation coupling as a whole, instead of focusing on
one specific observational aspect of this coupling. Traditional approaches designed to model stellar convection
and its interaction with pulsations in solar-like oscillators are either based on mixing-length theories, or else on
3D hydrodynamic or magnetohydrodynamic (MHD) simulations. These approaches show unavoidable limitations,
among which the impossibility to include the full effect of the turbulent cascade in a realistic way. The starting idea
behind this second project, therefore, was to exploit mesh-free, Lagrangian Probability Density Function (PDF)
models – the kind of which has been used in the fluid dynamics community to model turbulence for a long time – in
the context of stellar turbulent convection, to circumvent the limitations of classical approaches. In these models,
the turbulent medium is no longer described by grid-based quantities pertaining to a flow, but by a set of fluid
particles whose position and properties are tracked over time. Because of the turbulent nature of stellar convection,
the particle properties evolve according to a system of stochastic differential equations. This method is coupled
with a Smoothed Particle Hydrodynamics (SPH) procedure to extract the relevant mean flow quantities directly
from the set of fluid particles. The stochastic evolution of the set of fluid particles is perfectly equivalent, from a
statistical point of view, to the temporal evolution of the PDF of all Eulerian quantities pertaining to the turbulent
convection. By construction, this PDF contains the information on both the turbulence and the oscillations. That
means this method is perfectly suited for the study of the coupling between the two.

The first step of this second project was to derive the stochastic equations for the temporal evolution of the fluid
particles that are relevant in the stellar context. Once this was done, I pursued two different avenues of research.
First, I developed a code to numerically implement these methods. As a first step, I focused on a “1.5D” model
in the sense that both vertical and horizontal velocities are modelled, but only their vertical position is accounted
for. The simulated box features modes of oscillation that can be directly extracted from the simulation, including
not only their frequency, but also the shape of their line profile. The second path I followed is more analytical:
I used this Lagrangian stochastic formalism to derive an intrinsically stochastic, linear wave equation, governing
the behaviour of the oscillating modes, while at the same time encompassing the impact of turbulent convection
on the waves. This stochastic wave equation naturally contains the information on every aspect of turbulence–
oscillation coupling: not only the effect on mode frequency (commonly referred to as “surface effects”), but also
every energetic aspect of solar-like oscillations, namely the driving and damping of the modes by the turbulent
convection.

The structure of this manuscript follows the summary given above. It is split into three parts. In Part I, I propose
a short discussion designed to introduce the two subjects of this thesis: first the turbulent convection occurring in
stellar interiors (Chapter 1); and secondly the stellar oscillations, with a particular focus on the core subject of
the work presented in the main body of this thesis, namely the various ways in which turbulent convection and
solar-like oscillations are entangled and coupled (Chapter 2). Emphasis will be put on the work already produced
on the subject, the questions that have been answered, and those that have not. My motivations and goals, which
I summarised above, will perhaps appear more clearly in the end of this first introductory part, and particularly
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CHAPTER 0. FOREWORD

in Chapter 3. Part II is devoted to my work in the scope of the first project mentioned above, on solar-like
mode asymmetry. I introduce the subject and the literature thereon in Chapter 4, while Chapter 5 is devoted to
the theoretical development of the synthetic velocity power spectrum model on which I worked, as well as its
application to the solar case, and Chapter 6 is devoted to the adaptation of this model to intensity measurements.
In Part III, I present the work I produced in the scope of the second project mentioned above. I introduce the
basics of the theory of stochastic processes in Chapter 7, which are central in the subsequent chapters. I then set
out to describe how Lagrangian stochastic models can be applied to the case of solar-like oscillations. I present
the analytical developments briefly described above in Chapter 8, while the numerical implementation of the
aforementioned Lagrangian stochastic model is the subject of Chapter 9. Finally, I end each of the last two parts
by summarising not only my findings, but also the perspectives opened by these findings, as well as the multiple
open paths which I have yet to walk.
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Introduction
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1 Turbulent convection in the stellar context

Contents

1.1 Energy transport in stellar interiors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Prevalence of convective transport: the Schwarzschild criterion . . . . . . . . . . . . . . 4

1.1.2 Convective zones in stellar interiors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Modelling convection: a complicated task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Exact equations and Large-Eddy Simulations . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Mixing-length formalisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Reynolds-stress models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Etre toujours paisible, cela ne dépend pas
plus du progrès que du fleuve ; n’y élevez
point de barrage ; n’y jetez pas de rocher
; l’obstacle fait écumer l’eau et
bouillonner l’humanité. De là des
troubles ; mais, après ces troubles, on
reconnaît qu’il y a du chemin de fait.

Victor Hugo

Convection happens whenever a large temperature difference exists between two layers in a fluid, in the direc-
tion of gravity. From there, indeed, troubles; or to be more exact – albeit less literal –, any small displacement of a
parcel of fluid, caused by a seemingly random local fluctuation, gives birth to an instability, and leads to motions of
the fluid over distances similar to the largest scale of the system. This happens, for instance, in a pan full of water
when the bottom is heated up; or in the lower Earth atmosphere, when the ocean or the ground is hot enough (in
this context, it is referred to as a Convective Boundary Layer); or else, in certain regions of stellar interiors. Stellar
convection is no different than convection in any other context1, and is characterised by a very efficient mixing of
all quantities pertaining to the fluid – in particular momentum, energy and chemical composition. For that reason,
convection is key to understanding stellar structure and evolution.

But stellar convection is also incredibly hard to understand, and the reason is that it is characterised by very
turbulent motions, hence my consistent association of the word “convection” with the word “turbulent” in this
entire manuscript. As always when studying turbulence, the properties of the flow must be studied from a statistical
point of view: the question is not “what is the velocity of the flow?”, but “what is the average velocity of the flow,
and how much, on average, does the actual velocity deviate from the mean?”. The uncertainty regarding turbulence
modelling is directly at the heart of the uncertainty regarding convection modelling in the stellar context.

The work presented in this thesis pertains to the interplay between these convective motions and stellar oscil-
lations. Following the advice of the King to Alice, I start from the beginning, and devote this first chapter to an
introductory discussion of stellar convection. This is in no way, naturally, an exhaustive account of our current
understanding of every aspect of stellar convection. Rather, this chapter is structured in two parts. In a first part,
I present how the phenomenon of convection naturally arises from first principles, and I outline some of its most
general properties. In a second part, I focus on the various ways stellar physicists have found to describe and study

1I do not dare take the leap and state that the star itself is no different than the pan, because at least pans are not partially ionised, and
do not host nuclear fusion reactions, however bad the cook is.
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1.1. ENERGY TRANSPORT IN STELLAR INTERIORS

convective transport in the stellar context: 3D hydrodynamic simulations, as well as analytical models based on
the Mixing Length Theory (MLT), or the more refined Reynolds-stress models.

1.1 Energy transport in stellar interiors

Stars, in the broadest definition of the term, are self-gravitating bodies comprised of a more or less ionised
gas. In particular, stellar matter is sufficiently dense that it can be described as a continuous medium, and its
motion modelled through the equations of hydrodynamics. Those are the fundamental equations governing the
behaviour of the plasma constituting the stars, directly derived from first principles, and all phenomena described
in this manuscript are, at some point or another, contained within these equations – although some digging may
be necessary to unveil them. I give a detailed derivation of the equations of hydrodynamics in Appendix A.
In particular, Equation A.36 governs the evolution of the internal energy of the fluid, with the divergence term
representing all modes of non-local transport of energy, while the right-hand side contains all the source terms,
which happen to be entirely due to the conversion of macroscopic kinetic energy into microscopic internal energy.
In the stellar context, the transport terms are of particular interest, as they describe how the energy “created”2

in the center of the star travels outwards to be finally radiated by its surface, allowing it to shine. Provided
conduction is neglected – as I did in deriving Equation A.36 –, the transport of internal energy can be due to
viscous transport, represented by the flux Fvisc (Equation A.34), radiative transport, represented by the flux Frad,
and convective transport, represented by the flux Fconv (Equation A.32). The question of which process dominates
energy transport in a given region of the star is important to predict its evolution, and is the subject of the following
section.

1.1.1 Prevalence of convective transport: the Schwarzschild criterion

Viscous transport can already be ruled out as a dominant contribution. Indeed, the prevalence of viscous effects
can be measured by the Reynolds number associated to the flow, and which corresponds to the ratio between the
advection and viscous terms in the Navier-Stokes equation (Equation A.24). The Reynolds number is defined by
(e.g. Lesieur 2008)

Re ≡ UL

ν
, (1.1)

where U is the characteristic velocity of the flow, L its characteristic length scale, and ν is the kinematic viscosity
of the fluid. For a fully ionised hydrogen plasma, the kinematic viscosity may be estimated by ν ∼ 1.2 × 10−20 ×
T 5/2ρ−1 m2.s−1 (Miesch 2005). For instance, close to the surface of the Sun, this yields ν ∼ 0.01 m2.s−1. With
typical velocities U ∼ 3 km.s−1 and typical length scales L ∼ 3 Mm, one would find Re ∼ 1012. For a rotating star,
typical values of the Reynolds number would be ∼ 1016 (Kippenhahn and Weigert 1994). At any rate, in the stellar
context, the Reynolds number characterising the flow is always much larger than unity, meaning that the effect of
viscosity – and in particular viscous transport of energy – is negligible compared to the radiative or convective
flux.

The question that remains now is this: on which condition is convective transport more efficient than radiative
transport – or indeed, efficient at all? Equation A.32 shows that convective transport stems from the fact that
parcels of fluid carry the enthalpy of the medium where they initially lie and transport it to other regions of the
flow during their movement. More specifically, parcels that are travelling upwards take enthalpy from a hot region
to a cold region. Once it is there, it gives away its enthalpy by cooling down. On the other hand, parcels that are
travelling downwards take less enthalpy with them, precisely because they come from a cooler medium, therefore
characterised by a lesser specific enthalpy. As a result, the enthalpy transported by the upwards travelling parcels is
greater than the enthalpy transported by the downwards travelling ones, resulting in a net flux of enthalpy directed
upwards. It is apparent, therefore, that in order for convective transport to be efficient, the medium has to allow
for fluid parcels to travel as far as possible before giving away their enthalpy. This only happens if the medium is
subjected to a convective instability, which I now describe.

2Naturally, energy cannot be created out of nowhere, although that would probably solve a lot of problems. This energy is actually
stored in the form of potential energy in the bonds maintaining the integrity of the nuclei present in the center of the star, and is released
when these nuclei undergo fusion reactions.

4



CHAPTER 1. TURBULENT CONVECTION IN THE STELLAR CONTEXT

The question of whether a medium is unstable to convective motions can be formulated thus: when will a
fluid parcel accidentally displaced upwards continue to travel upwards instead of falling back down? While being
displaced, the parcel undergoes a change in density, due to the fact that it is travelling to a region characterised by
a different thermodynamic state. Therefore, the answer is: the parcel will continue travelling upwards if it ends
up with a lower density – or in other words, a higher temperature3 – than that of its surroundings, because of the
same buoyancy force that keeps balloons in the air. But when does that happen? If we consider that the parcel
does not have time to exchange any heat with its surroundings during its upwards travel, then the thermodynamic
transformation it undergoes is adiabatic. Therefore, if the parcel goes from a region characterised by a pressure p

to a region characterised by a pressure p + δp, its temperature will change by

δTparcel =

(
dT

dp

)

ad
δp ≡ T

p
∇adδp , (1.2)

where ∇ad ≡ (d ln T/ d ln p)ad is called the adiabatic gradient, and only depends on the thermodynamic equation of
state associated to the fluid. On the other hand, the background temperature ‘felt’ by the parcel will have changed
by an amount

δTmedium =

(
dT

dp

)

medium
× δp ≡ T

p
∇radδp , (1.3)

where δp is identical because mechanical equilibrium is reached at all times, and the background gradient (d ln T/ d ln p)medium

is equal to the radiative gradient because the background is in radiative equilibrium. Resulting from this is the fol-
lowing proposition: that a medium is subjected to a convective instability if and only if we have (Böhm-Vitense
1992)

∇ad < ∇rad . (1.4)

This criterion is known as the Schwarzschild criterion for convective instability. In regions where this criterion is
verified, the convective instability can develop, and the energy is efficiently transported by convection. Although
radiative transfer is still responsible for a non-negligible portion of the total energy flux, these regions are still
called convective zones. On the other hand, regions where the Schwarzschild criterion is not verified exhibit a
very inefficient convective transport of energy, and the energy flux is exclusively due to radiative transfer: they are
called radiative zones.

1.1.2 Convective zones in stellar interiors

The question remains: when is the Schwarzschild criterion verified? For which type of stars, and where in the
star? The plasma in stellar interiors behaves like an ideal gas to a satisfactory degree, so that its pressure p, density
ρ, temperature T and molecular weight µ (assumed constant for the sake of this discussion) are related through

p =
ρRT

µ
, (1.5)

where R is the ideal gas constant. Then, introducing the first adiabatic exponent Γ1 ≡ cp/cV , where cP and cV are
the specific heat per unit mass at constant pressure and volume respectively, and using the fact that cP − cV = R,
one finds that the adiabatic gradient is simply (Böhm-Vitense 1992)

∇ad =
Γ1 − 1
Γ1

. (1.6)

For instance, for a monoatomic ideal gas, Γ1 = 5/3, so that ∇ad = 0.4. However, this value drops substantially
in ionisation regions (i.e. regions where the temperature is high enough to strip electrons away from atoms of
a given element, but not so high that the element in question is completely ionised). Indeed, part of the energy

3The reason a lower density means a higher temperature relates to the fact that mechanical equilibrium can be considered to be reached
instantaneously, and therefore the pressure associated to the parcel is identical to the pressure of its surroundings. At equal pressure, a
hotter element is lighter. If the chemical composition of the fluid is also susceptible to vary, then the thermodynamic variance of the system
is 3, and not 2, so that even at equal pressure, the temperature – which now depends on composition in addition to density –, does not
necessarily decrease with density. Then the criterion derived here must be modified to account for adiabatic composition gradient.
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provided to the gas will be used to ionise the gas, instead of heating it. As a result, the energy needed to increase
the temperature of one kilogram of gas by one degree – which is the definition of cV – is considerably higher in an
ionisation region. Then Γ1 = R/cV + 1 becomes much closer to unity, and ∇ad becomes much smaller. According
to Equation 1.4, it results in the following statement: that ionisation regions are more susceptible to convective

instability (Böhm-Vitense 1992).
I now turn to the radiative gradient. Under the assumption that the star behaves like a black body in radiative

and mechanical equilibrium4, then it is given by (Böhm-Vitense 1992)

∇rad =
3πκR p

16σgT 4
Frad . (1.12)

According to Equation 1.4, convective instability happens when the radiative gradient is sufficiently high, which
we now see happens, for a given temperature T , if either the product κR p or the radiative flux Frad is high enough.

When is the product κR p high? Roughly speaking, for a given optical depth5, the opacity is inversely propor-
tional to pressure. In the atmosphere, the opacity and pressure are both low. In deeper layers of the star, pressure
increases, but if opacity remains sensibly the same, the pressure increase is not sufficient to put the radiative gradi-
ent above the instability threshold. If opacity increases steeply with depth, however, pressure is still high (because
opacity in the atmosphere remains low, and p ∝ κ−1

R ), and opacity is much higher as well. If the increase in opac-
ity is steep enough, this can be sufficient to give rise to a convective instability. Therefore, convective instability

arises in regions where the opacity increases steeply with depth (Böhm-Vitense 1992), rather than where the ab-
solute opacity is high. It so happens that those precisely correspond to ionisation regions, which I already argued
have a small adiabatic gradient, and are therefore even more likely to be unstable to convection.

When is the radiative flux high? This flux describes the amount of radiative energy which flows through a
given layer per unit surface. As such, it is not the raw amount of radiative energy generated by nuclear fusion
that is important, so much as the concentration in space of the region in which these reactions take place. In
main-sequence stars, there are mainly two types of fusion reaction chains that can be responsible for the radiative
flux coming out of the core, both of which ultimately lead to the fusion of hydrogen into helium. The pp-chain
involves the direct fusion of two hydrogen nuclei into deuterium, and the generation rate of energy ǫ scales as T 4;
the CNO-chain involves the fusion of hydrogen nuclei with heavier nuclei of carbon, oxygen and nitrogen, and
its generation rate of energy is much more sensible to temperature, with ǫ ∝ T 16. As such, the pp-chain is the
dominant process for stars with a cooler core – with temperature T < 1.7× 107 K –, while the CNO-chain prevails

4I recall that, in that case, the radiative flux Frad is given by

Frad = − 4
3κRρ

dB

dr
, (1.7)

where κR is the Rosseland mean opacity per unit mass, defined by

1
κR

∫ +∞

0

dBλ

dT
dλ ≡

∫ +∞

0

1
κλ

dBλ

dT
dλ , (1.8)

and κλ is the monochromatic opacity per unit mass at wavelength λ; and

B(T ) =
∫ +∞

0
Bλ(T ) dλ , (1.9)

where Bλ(T ) is the Planck function associated to the wavelength λ, which represents the energy radiated per unit surface, solid angle,
wavelength and time by a body at thermodynamic equilibrium, also referred to as black body radiation. It only depends on the temperature
T of the body, and is given by

Bλ(T ) =
2hc2

λ5

1
exphc/λkT −1

, (1.10)

where h is the Planck constant, c the speed of light in vacuum, and k the Boltzmann constant. The total specific intensity associated to a
black body is obtained by integrating the monochromatic specific intensity Bλ over all wavelengths, and yields

B(T ) =
σ

π
T 4 , (1.11)

where σ = 2π5k4/(15c2h3) is the Stefan-Boltzmann constant.
5The optical depth is a non-dimensional variable defined through its differential form by dτ = −κRρ dr, where r is the radial coordinate,

and the minus sign ensures that τ decreases towards the surface. The optical depth can be thought of as the radial coordinate counted in
units of the local photon mean free path.

6
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for stars with a hotter core. In the latter case, because energy generation is so strongly dependent on temperature,
it only occurs in a very concentrated region in the very center of the star, in which case the radiative flux is very
high. On the other hand, in stars where energy is generated through pp-chains predominantly, energy generation
occurs in a larger central region, and the radiative flux is much weaker. In light of Equation 1.4, it results that the

center of the star is subjected to convective instability if the core is hot enough for CNO-chains to be dominant

over pp-chain in energy generation (Böhm-Vitense 1992).
The above discussion allows me to draw the following qualitative picture

• hot stars where Teff & 9000 K feature a convective core, because CNO-chain reactions prevail in the core
of stars with such effective temperatures. On the other hand, the star is so hot that all the hydrogen and
helium is already ionised, even close to the surface, so that there cannot be any convective instability in the
envelope;

• cooler stars with Teff . 9000 K have a radiative core, because pp-chains prevail over CNO-chains. However,
these stars are cold enough to feature ionisation regions in their envelope, meaning they have a convective
envelope. More precisely, in the effective temperature range [7000 − 9000] K, there is only a hydrogen
ionisation region, which means the convective zone is very thin. Below 7000 K, the hydrogen ionisation
region is adjacent to the first helium ionisation region (i.e. the region where He is partially ionised in He+),
which is in turn adjacent to the more deeply located second helium ionisation region (i.e. the region where
He is partially ionised in He++), so that the convective envelope is much thicker;

• in the intermediate range, stars are too hot to have ionisation-driven convective instabilities, and too cold to
feature core convection: these stars are mainly radiative;

• in very cool stars, like M stars for instance, the hydrogen and helium convective regions extend so far down
the center that they actually take up the entire volume of the star. These stars are entirely convective – with
the exception of a very thin radiative surface layer, where the density is too low to allow for an efficient
convective transport;

• in evolved stars, there may be ionisation regions for elements other than hydrogen and helium, in which case
the corresponding convective zones are the regions where the temperature lies within the range where the
element in question is partially ionised. This is also the case for main-sequence stars of spectral type O or B
for instance, which feature iron ionisation zone in regions where T ∼ 2 × 106 K.

In the rest of this manuscript, I will interest myself with solar-like stars, with masses and effective temperatures
similar to the Sun. These stars – and the Sun in particular – fall in the second category, and possess a convective
envelope (with an outer part due to hydrogen ionisation, and an inner part due to helium ionisation), and a radiative
core.

1.2 Modelling convection: a complicated task

As it transpired from Section 1.1, in regions that are prime for a convective instability, the convective flux
plays a crucial role in transporting energy outwards. This has a number of implications as regards stellar structure
and evolution. For instance, the extra energy loss due to convection ‘forces’ the star to increase its internal energy
generation rate in order to stay at thermodynamic equilibrium. This requires increasing the core temperature,
which the star does by contracting: convection makes stars shrink. In turn, because of the increase in the core
temperature, the luminosity of the star is also increased. The presence of a convective flux also decreases the part
played by the radiative flux in the total energy flux. This means that the actual temperature gradient is less steep
than what it would be without convection. Therefore, the density profile in the interior of the star is also impacted
by convection.

In addition, while the previous discussion focused on the energetic aspects of convection, it must be under-
stood that such large-scale convective motions also transport momentum, as represented by the term ∂i(ρuiu j) in
Equation A.24, and therefore also angular momentum. In parallel, convection also transports chemical elements,
in such a way that convective zones can be considered fully mixed – meaning that their chemical composition
is uniform. Convective motions are also known to penetrate, by inertia, into neighbouring radiative zones over
a certain distance, so that the convective transport also has a non-negligible impact just outside the convective
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zones – a phenomenon known as convective overshooting if the convective elements quickly loose their thermal
integrity, or convective penetration if they travel further away and transfer their enthalpy much less efficiently to
the convectively stable background (Zahn 1991). This convective mixing is susceptible to drastically alter the later
evolutionary stages of the star, by changing the spatial distribution of fuel in its interior.

These quick considerations are enough to make it clear that the modelling of the convective flux – both in terms
of energy and momentum – is a crucial task for improving the accuracy of our stellar evolutionary and structural
models. Sure enough, the modelling of convection has been the subject of considerable efforts, which I outline in
the following.

1.2.1 Exact equations and Large-Eddy Simulations

The exact equations

The equations of hydrodynamics, governing the motions of the fluid, are expressed in their exact form by
the continuity equation (Equation A.15), the Navier-Stokes equation (Equation A.24) and the energy equation
(Equation A.36), which stem from the conservation of mass, momentum and energy respectively. I reproduce
them for more clarity here

∂ρ

∂t
+
∂ρui

∂xi
= 0 , (1.13)

∂ρui

∂t
+
∂(pδi j + ρuiu j − σi j)

∂x j
= ρgi , (1.14)

∂ρe

∂t
+

∂

∂xi

(
ρhui + Frad

i + σi ju j

)
= ui

∂p

∂xi
− ui

∂σi j

∂x j
, (1.15)

where I recall that ρ is the fluid density, ui its velocity, p the gas pressure, σi j the viscous tensor, gi the gravitational
acceleration, e the internal energy per unit mass, h the enthalpy per unit mass and Frad

i
the radiative flux. I also recall

that the decomposition of the stress force is such that −p δi j constitutes its isotropic part, and σi j its deviatoric part.
As such, the viscous tensor is constrained to be traceless; however, up to now, I have given no further information
on σi j, which I have left in an undetermined form. As it happens, it can be expressed solely in terms of the velocity
field, in the form (e.g. Lesieur 2008)

σi j = νρ

(
∂ui

∂x j
+
∂u j

∂xi

)
− 2

3
νρδi j

∂uk

∂xk
, (1.16)

where ν is the kinematic viscosity of the fluid, and µ ≡ νρ the dynamic viscosity coefficient. It is immediately seen
that the viscous stress tensor is traceless, as indicated above. If the dynamic viscosity µ is known, σi j is in closed
form.

This set of equations must be supplemented with a model for the pressure p. As density ρ and internal energy
e are both modelled, all one needs to do is to add an equation of state of the form p = p(ρ, e) to the system. For
instance, the ideal gas law (Equation 1.5) can be used6, where T = e/cV . Concerning the radiative flux Frad, one
would also need to add a treatment for radiative transfer. We already saw that if the gas can be considered at local
thermodynamic equilibrium, the radiative flux is given by Equation 1.12, as a function of Rosseland mean opacity
per unit mass κR, density ρ and temperature T . As for pressure p, the opacity κR can be obtained through a suitable
equation of state7 in the form κR = κR(ρ, e), in which case Frad is now known as a function of modelled variables

6The ideal gas law also requires the molecular weight, or equivalently the chemical composition, to be known. This would be true of
any equation of state: the indetermination of the chemical composition increases the variance of the system, thus requiring an additional
constraint. Either the composition can be considered known in advance, or a transport equation for chemical composition must be derived.
I will follow the former course in this discussion, and consider the chemical composition known.

7In fact, except for very approximate relations valid only in certain regions of the star, there exists no such simple analytical relation
for opacity. Physically, the opacity κR represents the fractional change per unit length in specific intensity of a photon flux, and is due
to the absorption of the photons by the medium, and especially by the electrons – the energy of the destroyed photon then being made
available to the matter for ionisation, dissociation or heating. The total opacity is therefore the result of all possible state transitions for the
electrons present in the medium – with the numerous bound-bound transitions allowed by the quantisation of bound energy states around
atoms resulting in a multitude of frequency-selective absorption lines, while bound-free transitions (i.e. ionisation processes) and free-free
transitions (if the gas is already fully ionised) are responsible for continuous absorption (in terms of frequency). Because of the complexity
of this picture, κR is usually provided as a function of two independent thermodynamic variables – for instance density and temperature, but
this choice is not unique – in the form of opacity tables. Fundamentally, however, this is no different than giving an analytical expression,
and still constitutes an equation of state.
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only. Of course, the assumption that the gas is at local thermodynamic equilibrium is a strong one, and while it
is valid in the bulk of the star, it must be supplemented with a more realistic treatment of radiative transfer in the
superficial layers of the star, close to its atmosphere. For the sake of the following discussion, I leave this matter
aside, and consider that the radiative flux is in closed form.

On the applicability of Direct Numerical Simulations, or lack thereof

The entire system of equations described above is in closed form, and with the exception of rotation or magnetic
fields – which can be incorporated into these equations if need be –, the gas-related behaviour in the stellar interior,
including convection, is contained exactly and in its entirety within these equations. One could therefore naively
ask oneself: why are we even discussing this? Modelling convective transport seems to be a matter for Direct
Numerical Simulations (DNS thereafter), where the integration of the above differential equations forward in time
should tell us anything we might want to know about convection. Then, the only remaining complications would
concern the initial state from which one should start, the boundary conditions which one should enforce, and the
numerical scheme one should adopt for the integration in time.

As the reader is no doubt aware, the answer to this naive question is this: that the computational cost of such
an operation would be so tremendously enormous that it cannot even remotely begin to be applicable in the stellar
context. The reason for this, as we will now see, is the highly turbulent nature of the flow. I briefly touched upon
the subject of the Reynolds number characterising the gas flow in stellar interiors in Section 1.1.1, only to point
out its high typical value. By construction of the Reynolds number, this means that the advection term in the
Navier-Stokes equation (Equation 1.14) largely dominates the linear contribution from the viscous stress force,
and therefore the equation of motion is strongly non-linear. As a consequence, the different scales of motion are
coupled together, and can exchange energy8. As such, even if the flow is initially characterised by a very coherent
velocity field with only one typical scale, the kinetic energy will eventually be distributed over a wide range of
scales, and the flow will feature a much more complicated structure. Resulting from these considerations is the
familiar observation that flows with a high Reynolds number are very turbulent.

More specifically, the flow of kinetic energy from scale to scale is described by the idea of turbulent cascade,
first introduced by Richardson (1922). The idea is that kinetic energy from the mean flow is injected in the
turbulence at the largest scale of motion – corresponding to the mean-flow scale –, and is then transferred to smaller
and smaller scales, until the scale of motion becomes so small that viscous effects can no longer be neglected, and
the kinetic energy is dissipated into heat. This cascade of energy from large to small scales reaches an equilibrium
when the rate at which energy is injected at large scales equals the rate at which it is dissipated at small scales.
Can the smallest scale of turbulence be quantified? The answer is given by the historical work by Kolmogorov
(1941), and happens to be ‘yes’. One of the fundamental hypotheses underlying this work is the assumption that
all the information about the specific geometry of the large-scale eddies – imposed by the geometry of the flow –
is lost along the way as energy is transferred through the turbulent cascade. As such, the statistics of the small-
scale flow take a somewhat universal form, in the sense that they should exhibit some degree of similarity. The
important quantities characterising the turbulent cascade are the rate ǫ at which energy is injected at large scales,
and the viscosity ν controlling the small scales at which it is dissipated. This led the author to his first similarity

hypothesis, which can loosely be expressed in the following terms: for flows with a high Reynolds number, there
exists a scale lmax such that for any scale l < lmax, the statistics of the flow take the form of a universal function of

8This statement may need a clearer definition of the notion of ‘scales of motion’. An intuitive picture is to regard the flow as a
superposition of vaguely defined regions – usually called eddies – over which the velocity field is somewhat coherent. These eddies are of
very different sizes l, and large eddies are susceptible to contain smaller ones. These eddy-sizes are referred to as the scales of motion of
the flow. However, a more rigorous definition can be constructed from the Fourier decomposition of the velocity field at a given time

û(k, t) ≡ 1
√

2π

∫
d3x u(x, t) exp− jk·x , (1.17)

where k denotes a 3-dimensional wavevector. Instead of being described in real space, the velocity field is now described in wavevector
space: for a given k, the quantity l ≡ 2π/|k| is the scale of motion represented by this wavevector component, and E(k, t) ≡

∣∣∣̂u(k, t)
∣∣∣2 is

the specific kinetic energy per unit wavevector characterising this region of wavevector space, which gives a much firmer definition for the
otherwise somewhat vaguely defined energy of the eddies of size l. An equation of transport in wavevector space for E(k, t) can be derived
from the Navier-Stokes equation (Equation 1.14), and the non-linear advection term gives rise to a non-local energy flux, meaning that
kinetic energy can flow from scale to scale. This is really what is meant by the statement that, in high Reynolds number flows, the different

scales of motion are coupled together, and can exchange energy – a statement that would not be true if the equation of motion were linear.
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ǫ and ν only. The range l < lmax defines the universal equilibrium range of turbulence9.
From these two parameters, a unique, universal typical length and velocity can be constructed (e.g. Pope 2000)

η ≡ (ν3/ǫ)1/4 , (1.18)

uη ≡ (ǫν)1/4 , (1.19)

which are the Kolmogorov scale and velocity respectively. It can be seen that the Reynolds number associated
with the scale η is unity, meaning that the Kolmogorov scale actually represents the smallest, dissipative scale of
turbulence. In order to quantify η, one still need to quantify ǫ. If l0 is the size of the largest eddies, u0 their typical
velocity and τ0 their typical timescale, then the rate at which energy is injected in the turbulent cascade is given,
through dimensional arguments, by ǫ ∼ u2

0/τ0 ∼ u3
0/l0. Making the large-scale Reynolds number appear, one can

write

ǫ ∼ Re3ν3

l40
. (1.20)

Plugging Equation 1.20 into Equation 1.18, one finally obtains the ratio of the smallest to largest scales of turbu-
lence as (Pope 2000)

η

l0
∼ Re−3/4 . (1.21)

In other words, the higher the Reynolds number, the larger the range of length scales that need to be resolved in

order to describe the entire turbulent cascade.
Let me quickly compute an estimate of how ridiculously expensive this can become in the stellar context. For

the above-mentioned value of the Reynolds number Re ∼ 1012, we have η/l0 ∼ 10−9. Roughly speaking, this
means the number of grid points for a 3D DNS of turbulence, if one wished to resolve all of these scales, would
be of the order of 1027. The current record for the number of operations performed by a computer per second is
held by the Fugaku supercomputer in Kobe, at 442 petaflops (https://www.top500.org/). It would take about
3 × 109 seconds, or 100 years, for this computer to advance the simulation by one time step, and provided the size

of the box is l0 – i.e. provided the simulation is very local. This is the reason why there is no such thing as a Direct

Numerical Simulation of stellar turbulent convection: all such simulations are incapable of resolving all relevant
length scales, and must be regarded as what they really are, Large-Eddy Simulations.

Large-Eddy Simulations (LES)

LES have been used to model convection in the stellar context ever since computers became fast and powerful
enough to run the simulations in a reasonable amount of time, whether it be global simulations of an entire con-
vection zone, or more local simulations focused on the transition region between a convection zone and a radiative
zone – in particular the surface layers of a star with a convective envelope. Since the early 2D simulations of
convection using only limited microphysical ingredients (see for instance the early works of Graham (1975) or
Latour et al. (1976)), LES have been considerably refined, with simulations now ranging from 1D to 3D, more
realistic treatments of radiative transfer (with the non-local, and sometimes non-grey equation of radiative transfer
having long since replaced, for surface convection, the more simplistic diffusion approximation), and the inclusion
of magnetic fields in the scope of the magneto-hydrodynamics (MHD) equations, as well as rotation. LES have
been used to study, for instance, surface granulation (e.g. Stein and Nordlund 1998), the effect of convection on the
surface abundances and the formation of spectral lines in stellar atmospheres (e.g. Allende Prieto et al. 2001, 2002;
Asplund et al. 2000a,b; Asplund 2000; Asplund et al. 2004, 2005b,a), its interplay with rotation or magnetic fields
in dynamo processes (e.g. Glatzmaier and Roberts 1995), or the overshooting into neighbouring radiative regions
(e.g. Freytag et al. 1996; Tremblay et al. 2015; Kupka et al. 2018). The range of applications of LES for stellar
convection is so vast that being exhaustive in that regard would require a volume of its own. I refer the interested

9This must not be confused with the inertial subrange of turbulence, for which the Kolmogorov second similarity hypothesis is needed.
This second hypothesis states that there exists a lower limit scale lmin – in addition to the upper limit lmax – such that for any scale
lmin < l < lmax, the statistics of the flow take the form of a universal function of ǫ only. This second hypothesis is stronger than the first one,
because now the statistics are independent of ν, but on the other hand it is only valid in the inertial subrange lmin < l < lmax, instead of the
larger universal range.
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reader to the many reviews dedicated to that very question, among which Nordlund et al. (2009) or Kupka and
Muthsam (2017) for instance.

However, let me discuss briefly the ways in which the resolution issue raised above is tackled in such simula-
tions. In a DNS, nearly all of the computational efforts are focused on the small, dissipative scales, deep within
the universal range of turbulence. But these scales only contain a negligible fraction of the total energy of the flow,
while almost all of the energy is contained in the largest eddies (also called, as a result, the energy-bearing eddies).
This observation naturally leads to the conclusion that only the largest scales need to be described by the exact
equations of hydrodynamics, while the smaller scales – also referred to as the subgrid scales, SGS thereafter –,
having more universal statistical properties, can be described by a much simpler model that does not require them
to be resolved. It is useful to make a distinction between two different approaches, namely 1) the LES where the
numerical viscosity inherent to the numerical scheme is implicitly expected to contain all phenomena occurring at
scales smaller than the grid resolution, and 2) those where the SGS are explicitly modelled.

When it comes to modelling stellar convection, most LES fall into the first category. With a typical grid step of
∼ 10 km in local “box-in-a-star” simulations, and a typical Kolmogorov scale of ∼ 1 cm, the effective viscosity is
some 6 orders of magnitude higher than the actual viscosity in the real system (see Table 1 of Freytag et al. 2012,
for more details). Naturally, the picture is more dire still in global “star-in-a-box” simulations of an entire stellar
convection zone. This effective viscosity – which I recall is not explicitly enforced in the integrated equations,
but rather stems from the numerical scheme – is used to mimic the effect of all the unresolved scales. However,
in order to lower the relative effect of these scales on the large-scale flow, and thus reduce the influence of this
artificial dissipation, it is common practice to include hyperdiffusion – or hyperviscosity – in the scheme. For the
sake of this short discussion, let me remark that the viscous term in the Navier-Stokes equation, which is given by
the divergence of the viscous tensor (Equation 1.16), reduces in the incompressible limit (where ∇ · u = 0) to

∂u

∂t
= ... + ν ∇2u . (1.22)

The hyperdiffusion approach (Borue and Orszag 1995, 1996) consists in replacing the Laplacian-based viscous
force by an expression using a higher derivative of the velocity

∂u

∂t
= ... + νH(−1)m+1∇2mu , (1.23)

where νH is referred to as the hyperviscosity, and m is an integer, usually equal to 2 or 4. The effect of this
modification is best viewed in Fourier space, where the original νk2û(k) is replaced by νHk2mû(k). For large
scales (i.e small values of |k|), the dissipative effects are therefore reduced, while they are enhanced for small
scales. Effectively, this causes the dissipative range to be narrower in wavevector space, thus reducing the amount
of energy-containing k-components (or modes) of the velocity. As a result, the effect of not resolving all the
modes is drastically reduced, at the expense of the model equation not being the Navier-Stokes equation anymore.
Hydrodynamic codes for stellar convection using hyperviscosity include, for instance, the MURaM code (Vögler
et al. 2005), the Stagger code (Stein and Nordlund 1998; Magic et al. 2013), or the MUSIC code (Viallet et al.
2011, 2016).

An alternative to letting the numerical viscosity represent unresolved scales is to derive a model for the effect
of the small scales on the large scales. In this approach, a spatial filtering operation is applied to the flow, in order
to separate the total flow into a filtered component (corresponding to the large scales) and a residual component
(corresponding to the small scales). The idea of spatial filtering makes this approach conceptually different than
the one described above, which instead relies on a completely uncontrolled separation between the resolved and
unresolved components. Now, the spatial filtering is explicit, and is independent from the resolution of the grid.
This perhaps makes the term Large Eddy Simulation more befitting of this approach alone, while the one described
above is more of a ‘poorly-resolved DNS’ approach. However, as we will now see, this approach also ultimately
takes the form of an effective viscosity, so that this is more of a debate on semantics.

For the sake of this discussion, let me consider the velocity u(x, t) as the only flow variable that needs to
be modelled, and let me consider an incompressible flow. In an ‘explicit’ LES, a new variable u(x, t) is created
beforehand, which is defined by

u(x, t) ≡
∫

d3x′ u(x′, t)G(x − x′, x) , (1.24)
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where G is a filtering operator, whose properties can depend on the slow variable x in addition to the fast variable
x−x′. This new quantity is the filtered component of the velocity, while u′ ≡ u−u refers to its residual component.
Instead of the Navier-Stokes equation, it is the filtered Navier-Stokes equation that needs to be integrated. It is
obtained by applying the filtering operation to Equation 1.14, which yields (for an incompressible flow)

∂ui

∂t
+
∂(pδi j/ρ + ui u j − η∂ jui − σR

i j)

∂x j
= gi . (1.25)

Formally, the filtered Navier-Stokes equation is almost identical to the full, exact Navier-Stokes equation, with the
key difference that a new stress tensor appears, called the residual stress tensor, in the form of10

σR
i j ≡ uiu j − ui u j . (1.26)

I insist on the fact that in this approach, Equation 1.25 is still an exact equation, stemming directly and without
assumptions from the Navier-Stokes equation itself. However, the quantity σR

i j is not known, and needs to be
expressed as a function of u itself and the filtering operator G: this is where the modelling part begins.

The most common model for σR
i j is the Smagorinsky model, which is essentially a down-gradient approxima-

tion for the transport of momentum by residual motions. It yields (Smagorinsky 1963)

σR
i j = −2νS S i j , (1.27)

where S i j is the filtered rate of strain

S i j ≡
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
, (1.28)

the eddy viscosity is given by

νS = l2S S ≡ l2S

√
2S i jS i j , (1.29)

and lS is the Smagorinsky lengthscale. The fundamental assumption is that this lengthscale is comparable to the
width ∆ of the spatial filter G, so that lS = CS∆, and CS is a somewhat universal constant of order unity.

A useful limit in order to understand the implications of this model is the case where the characteristic filtered
rate of strain S can be approximated by its standard-deviation (in the sense of ensemble average). In that case,
νS becomes uniform (Pope 2000), and the filtered Navier-Stokes equation becomes identical to the exact Navier-

Stokes equation, where ν is replaced with νeff = ν + νS . In flows with very high Reynolds number, ν ≪ νS and the
effective Kolmogorov scale is equal to lS , which is itself of the order of the filtering width ∆: ultimately, from the
point of view of the large-scale flow, adopting the Smagorinsky model amounts to artificially enhancing viscosity.
Hydrodynamic codes for stellar convection that use a Smagorinsky SGS model include, for instance, the work of
Robinson et al. (2003), the CO5BOLD code (Freytag et al. 2012), the StellarBox code (Wray et al. 2015) or the
ANTARES code (Muthsam et al. 2010).

Albeit not exhaustive, this introductory discussion shows that all LES strategies – the implicit use of numerical
viscosity to mimic the effect of the unresolved scales, the additional inclusion of hyperdiffusion, or explicit SGS
modelling, through the Smagorinsky model or otherwise – ultimately rely on the same fundamental assumption:
that the resulting effective viscosity accurately represents the effect of the entire turbulent cascade (which is impos-
sible to resolve) on the volume-averaged flow (which is the part that can be resolved). As such, a natural question
is this: to what degree is this assumption verified? How sensitive are LES to the treatment of small scales? The
answer to this kind of question always depends on what one wishes to achieve with the simulation. For instance,
Stein and Nordlund (1998), Robinson et al. (2003), Kupka (2009) or Kitiashvili et al. (2013) showed that in a star
with a convective envelope, such as the Sun, the properties of convection close to the surface – and more specif-
ically in the super-adiabatic region – tend to depend on the grid resolution and the treatment of the SGS. On the
other hand, the bulk of the convection zone is rather insensitive to such considerations (Kupka 2009; Beeck et al.

10The reader already familiar with Reynolds-stress models will undoubtedly have noticed the similarity between the filtered Navier-
Stokes equation and the Reynolds-averaged Navier-Stokes equation, or equivalently between the residual stress tensor and the Reynolds
stress tensor. It must be understood, however, that these are fundamentally different quantities and approaches, as one is the result of spatial
filtering while the other is the result of ensemble averaging. In particular, we have in general u , u, so that u′ , 0.
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2012). As far as oscillation excitation goes, it was shown by Jacoutot et al. (2008) that excitation rates are very
sensitive to these matters as well (see also Prentice and Dyt 2003). All in all, the takeaway message is this: unlike
the bulk of the convective region, surface convection is rather sensitive to the specific treatment of small scales
in the simulation. Fundamentally, this is because the structure of convection becomes more complex as one gets
closer to the surface, where the fluid parcels travelling upwards are suddenly forced to go back down; in particular,
mode excitation is particularly sensitive to the detailed properties of the turbulent convection (as we will see in
much more details in Section 2.2), which explains the sensitivity of the numerically computed excitation rates with
the small-scale treatment in the LES.

1.2.2 Mixing-length formalisms

Mean equations and the closure problem in the Boussinesq approximation

As we saw in Section 1.2.1, the core problem in considering the exact equations of hydrodynamics directly is
that the ensuing spatial structure of the turbulent flow is too complicated and involves too wide a range of scales to
be exactly simulated. On the other hand, the mean flow, defined as an average over a large number of realisations
of the same flow (or ensemble average), does not exhibit such a complex behaviour, while containing most of the
information in which one may be interested anyway. It is only natural, therefore, that one may wish to consider
the mean equations of hydrodynamics, rather than the exact ones. To do this, one first needs to separate each flow
variable into an average and a residual (or fluctuating) part. There are several ways of performing this separation.
The natural decomposition is

Q = Q + Q′ , (1.30)

where Q corresponds to the actual ensemble average11 (or Reynolds average) of Q, and Q′ refers to the fluctuations
of Q around its ensemble average. But another possibility is to write

Q = Q̃ + Q′′ , (1.31)

where Q̃ ≡ ρQ/ρ is called the mass average (or Favre average) of Q (Favre 1969), and Q′′ refers to the fluctuations
of Q around its Favre average. In particular, while it stems immediately from Equations 1.30 and 1.31 that Q′ =
Q̃′′ = 0, we have Q′′ , 0 and Q̃′ , 0. It can already be seen from Equations 1.13 to 1.15 that the Favre average is
a more natural choice of decomposition: indeed, the exact equations naturally take the form of transport equations
not for ρ, u and e, but for ρ, ρu and ρe (or, in other words, for the momentum and energy per unit volume rather
than per unit mass). Therefore, we will consider the following decomposition

ρ ≡ ρ + ρ′ , p ≡ p + p′ , σi j ≡ σi j + σ
′
i j , u ≡ ũ + u′′ ,

g ≡ g̃ + g′′ , e = ẽ + e′′ , h = h̃ + h′′ . (1.32)

The choice of which variable should be decomposed according to its Reynolds average, and which according to
its Favre average is completely arbitrary. However, this choice happens to simplify the subsequent equations, as
we will see below. Plugging this decomposition into Equations 1.13 to 1.15 and taking the ensemble average, one
finds

∂ρ

∂t
+
∂ρũi

∂xi
= 0 , (1.33)

∂ρũi

∂t
+
∂
(
pδi j + ρũi ũ j + ρũ′′

i
u′′

j
− σi j

)

∂x j
= ρg̃i , (1.34)

∂ρ̃e

∂t
+

∂

(
ρ̃h ũi + ρh̃′′u′′

i
+ Frad

i
+ σi jũ j + σ

′
i j

u′′
j

)

∂xi
= ũi

∂p

∂xi
− u′′

i

∂p′

∂xi
− ũi

∂σi j

∂x j
− u′′

i

∂σ′i j

∂x j
. (1.35)

Those are still exact equations, but the key difference is that they do not model the evolution of the total flow
variables ρ, u and e, but the mean flow variables ρ, ũ and ẽ instead. These equations can be integrated exactly

11This notation must not be confused with the filtering operator introduced in LES (see Section 1.2.1). I will not come back to this
filtering process in the future, and this notation will always be meant as a Reynolds average from now on.
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without having the scale resolution problem that DNS have. The price to pay, however, is heavy: the non-linear,
quadratic advection terms in both the Navier-Stokes equation and the energy equation give rise, once they are
averaged, to second-order terms in the fluctuating quantities, which are not directly expressed in terms of the mean
flow variables themselves. In other words, the system of equations is no longer closed, and must be supplemented
with some model for the unclosed terms.

In semi-analytical models of convection based on these mean equations, it is very common to adopt the Boussi-

nesq approximation, which renders the task of closing the equations slightly less daunting (Houdek and Dupret
2015). The Boussinesq approximation consists in i) neglecting the fluctuations of the fluid density ρ′ everywhere,

except in the gravitational force, and ii) neglecting the fluctuations of the gas pressure p′ everywhere. In essence,
this amounts to considering that 1) when a fluid parcel is displaced to a neighbouring region, the difference in den-
sity is too small to have an effect on the inertia of the parcel, but 2) that gravity is sufficiently strong to make even
this small change in density appreciable in the gravitational force; and finally, that 3) the dynamical time is much
smaller than any other time scale in the system, so that the fluid always has time to adapt to the new condition for
mechanical equilibrium. Of course, the second remark is not anecdotal, since the difference in gravitational force
is precisely what is usuqlly referred to as the Archimedes force (or buoyancy force), and is responsible for the
convective instability in the first place. The Boussinesq approximation is similar to considering the incompressible
limit, but not perfectly equivalent to it. Indeed, in the incompressible limit, there is no buoyancy force, and the
pressure is mechanically constrained by the Poisson equation instead of evolving as a thermodynamic variable.
The Boussinesq approximation is justified if two conditions are verified (Spiegel and Veronis 1960): any given
parcel of fluid must remain confined within a layer whose thickness is much smaller than the local density scale
height Hρ ≡ | d ln ρ0/ dz|−1, where ρ0 is the equilibrium density and z is the vertical coordinate (i.e. the coordinate
along the direction of the gravitational acceleration); and the typical density fluctuations must remain much smaller
than the average density value. The full impact of the Boussinesq approximation will be seen later, upon writing
the equations on the fluctuating part of the flow. But it already allows us to simplify the mean equations. Indeed,
the fact that we neglect p′ makes the velocity-pressure-gradient correlation (i.e. the second term on the right-hand
side of Equation 1.35) vanish from the energy equation.

Furthermore, another common approximation is to consider that the mean viscous stress tensor is negligible
– otherwise stated, that the viscous force has no effect on the large-scale mean flow. This is justified by the
very high Reynolds number characterising stellar convection. This means that the term σi j is discarded in both
Equations 1.34 and 1.35. However, the viscous-stress-velocity correlation (which appears both on the left-hand
side and the right-hand side of Equation 1.35) cannot a priori be neglected, because it is where turbulent dissipation
originates from. By definition, the turbulent dissipation tensor is defined by (e.g. Pope 2000)

ǫi j ≡ σ′ik
∂u′′j
∂xk
+ σ′

jk

∂u′′i
∂xk

. (1.36)

Under the assumption that the dissipation tensor is isotropic, one can define a scalar turbulent dissipation ǫ in such
a way that

ǫi j =
2
3
ρǫδi j . (1.37)

The isotropy of the dissipation tensor is also a consequence of the high Reynolds number of the flow, and stems
directly from the Kolmogorov hypotheses (Kolmogorov 1941). Essentially, the idea is that by the time the turbulent
kinetic energy has trickled down the entire turbulent cascade, and is ready to be dissipated into heat at the viscous
scales of motion, all directional information has already been lost.

Putting everything together – the Boussinesq approximation, the neglect of the mean viscous stress force, the
isotropy of dissipation –, Equations 1.33 to 1.35 become

∂ρ

∂t
+
∂ρũi

∂xi
= 0 , (1.38)

∂ρũi

∂t
+
∂
(
pδi j + ρũi ũ j + ρũ′′

i
u′′

j

)

∂x j
= ρg̃i , (1.39)

∂ρ̃e

∂t
+

∂

(
ρ̃h ũi + ρh̃′′u′′

i
+ Frad

i

)

∂xi
= ũi

∂p

∂xi
+ ρǫ . (1.40)
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Furthermore, taking the average of the ideal gas equation of state (Equation 1.5), and recalling that for an ideal gas
e = cVT , one obtains

p =
Rρ ẽ

µcV
, (1.41)

meaning that the mean gas pressure is already in closed form (provided the molecular weight µ is known). Let me
also assume that the radiative flux is taken care of through the appropriate treatment of radiative transfer – not that
this task is trivial, of course, but this is not the core subject of the discussion here, so that I will leave this question
aside in the following –, so that the mean radiative flux Frad is known as a function of the mean flow quantities ρ,
ũ and ẽ.

Then there are two quantities left to close: the Reynolds stress tensor and the mean convective flux, defined
respectively by

σt
i j ≡ ρũ′′

i
u′′

j
, (1.42)

Fi
conv ≡ ρh̃′′u′′

i
. (1.43)

These two quantities are fundamental to the modelling of convection, because they describe the transport of mean

momentum and enthalpy by the residual fluctuating flow. In the Boussinesq approximation, all modelling efforts

are therefore focused on these two quantities.

A general picture of convective transport in a static background

In general, we are particularly interested in the vertical components of these two second-order moments, be-
cause these are the only components that need to be modelled in order to include convection in 1D stellar models.
We will denote the vertical component of the convective flux as Fc, and the vertical-vertical component of the
Reynolds-stress tensor as pt, also commonly referred to as the turbulent pressure. In the following, I will discuss
these two scalar quantities, which pertain only to the vertical motions of the gas.

A common picture of the convective motions of the gas consists in describing the flow as a set of convective
cells. Locally, the flow can be viewed as being comprised of vertical columns of gas, some of them flowing
upwards, other downwards. Let me denote the relative cross-section, density, vertical velocity and temperature of
the upwards-travelling columns as σu, ρu, vu and Tu respectively, and those of the downwards-travelling columns
asσd, ρd, vd and Td respectively, all of these quantities being defined at a given depth in the star. Then during a time
dt, the upwards-travelling (resp. downwards-travelling) gas carry a mass σuρuvu dt dS , a momentum σuρuv2

u dt dS

and an enthalpy σuρucPTuvu dt dS (resp. idem with d indices) through a horizontal surface dS 12 at this depth, from
bottom to top (resp. from top to bottom). Then the net mass, momentum and enthalpy flux (i.e. the net quantity
flowing through the layer per unit time and per unit surface) is given by the difference between the quantity carried
upwards and the quantity carried back down, so that

Fm = σuρuvu − σdρdvd , (1.44)

pt = σuρuv2
u − σdρdv2

d , (1.45)

Fc = σuρucPTuvu − σdρdcPTdvd , (1.46)

where Fm is the vertical mass flux. Of course, there can actually be no net mass flux in any direction, as this would
quickly either deplete the star of all its matter (although that would considerably simplify the treatment of the
convective flux, we would still like the star to exist), or on the contrary end up concentrating all the matter in an
arbitrarily small central region (which would violate the condition of hydrostatic equilibrium). As such, we have
Fm = 0, which yields the following constrain

σuρuvu = σdρdvd . (1.47)

In turn, this condition allows us to rewrite the convective flux and turbulent pressure thus

pt = σuρuvu (vu − vd) , (1.48)

Fc = σuρucPvu (Tu − Td) . (1.49)

12The relative cross-sections σu and σd are defined in such a way that the upflows (resp. downdrafts) take up a portion σu (resp. σd) of
the surface dS . As such, they have no dimension, and σu + σd = 1.
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Then, because the velocity difference vu − vd and the temperature difference Tu − Td are already first-order differ-
ences compared to v ≡ (vu + vd)/2 and T0 ≡ (Tu + Td)/2 respectively, one can remark that replacing σu, ρu and
vu by 0.5, ρ0 and v respectively would only result in second-order corrections to the above expressions. Following
that remark, one finally obtains

pt = ρ0v∆v (1.50)

Fc = ρ0cPv∆T , (1.51)

where ∆v ≡ (vu − vd)/2 is the difference between vu (or vd) and the mean velocity v, and ∆T ≡ (Tu − Td)/2 is the
difference between Tu (or Td) and the mean temperature T0.

The hard question still remains however: how to quantify the velocity difference ∆v and the temperature
difference ∆T , as well as the mean norm of the velocity v? This is where the mixing-length theory (thereafter
shortened to MLT) kicks in.

Standard MLT

The following discussion is based on Böhm-Vitense (1992), where the focus is on the convective flux only.
Therefore, I will only consider Fc in the following, even though pt can be treated similarly.

Let me take a closer look at the gas. Each column can be thought of as a set of individual small volumes of
gas, usually referred to as gas bubbles, which all travel up or down over different distances, with their own velocity
and temperature. If we consider the set of bubbles which, at a given time, have arrived at a given layer of vertical
coordinate z, we find that these bubbles have all come from different layers, either lower if they are travelling up,
or higher if they are travelling down. Let us consider one such upwards-travelling bubble, initially coming from a
layer of vertical coordinate z− s, meaning that its temperature at z− s was equal to the mean temperature T0(z− s).
Upon arriving at the layer z, the bubble has undergone a change of temperature due to energy exchanges with
the background, which is proportional to the travel distance s, and which we denote as (dT/ dz)bubble × s, where
(dT/ dz)bubble < 0 because the bubble is giving energy to its surroundings. But the background seen by the bubble
has also changed, due to the temperature stratification, by an amount (dT0/ dz) × s. Therefore, the bubble has
developed a net temperature difference with the background

∆T (s) =
[(

dT

dz

)

bubble
− dT0

dz

]
s . (1.52)

This can be rewritten by remarking that
(
dT

dz

)

bubble
=

(
d ln T

d ln p

)

bubble
× T0

p0
×

(
dp

dz

)

bubble
, (1.53)

where (d ln T/ d ln p)bubble only depends on the nature of the thermodynamic transformation undergone by the
bubble during its travel, and will be denoted as ∇bubble in the following, and (dp/ dz)bubble = dp0/ dz, where p0 is
the equilibrium gas pressure, because, as we mentioned before, the pressure in the bubble instantaneously adapts to
the ceaselessly changing mechanical equilibrium condition, so that it is equal to the pressure of the background at
all time. Introducing the pressure scale height Hp ≡ −1/(d ln p0/ dz), one obtains (dT/ dz)bubble = −T0∇bubble/Hp.
By the same token, one also has dT0/ dz = −T0∇/Hp, where ∇ ≡ d ln T0/ d ln p0 is the background gradient. With
these notations, Equation 1.52 can be rewritten

∆T (s) =
T0

Hp
(∇ − ∇bubble) s . (1.54)

From this, one can also derive the velocity with which the bubble arrives at the layer of depth z. Indeed,
during its travel time, a buoyancy force is exerted on the bubble, which can be expressed in terms of the difference
between the density of the bubble and the density of the background ∆ρ

fb = −∆ρg = ρ0
dv
dt

, (1.55)

where fb is the buoyancy force per unit volume, g is the norm of the gravitational acceleration, and the second
equality then stems from Newton’s second law. Let me discard, for simplicity, the possibility that the chemical
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composition of the gas may also change during its motion, because of changes in the ionisation processes in the
different regions through which the bubble is travelling. Let me also remark, as I did before, that the pressure in
the bubble is equal to the pressure of the background at all time. Then the ideal gas law simply yields ∆ρ/ρ0 =

−∆T/T0, and we obtain

dv
dt
=
∆T

T0
g . (1.56)

Multiplying by v dt, this yields

v dv =
∆T

T0
gv dt =

∆T

T0
g dz′ , (1.57)

which can then be integrated over z′ between z − s and z. But here, ∆T refers to the difference in temperature
between the bubble and the background after the bubble has risen from the initial layer at z − s to the layer z′. As
such, it is equal to ∆T (z′ − (z − s)). Performing the change of variables s′ ≡ z′ − z + s, we now have

v dv =
g

T0
∆T (s′) ds′ , (1.58)

which should now be integrated between s′ = 0 and s′ = s, using Equation 1.54 for ∆T (s′). Assuming the bubble
is initially at rest, one finds

v(s) =
[
g (∇ − ∇bubble)

Hp

]1/2

s . (1.59)

Equations 1.54 and 1.59, valid for one gas bubble with a travel distance s, must now be averaged over all bub-
bles. If l is the average distance over which gas bubbles travel before they are assimilated to their new environment
(meaning the bubble can be considered as having been ‘destroyed’), then for any given layer, the distance over
which a bubble travels before reaching the layer is l/2 – in other words, on average, the bubbles that do go through
a given layer spend as much time travelling to the layer from birth than from the layer to their demise. Then, an
average temperature difference (resp. average velocity) can be obtained by setting s = l/2 in Equation 1.54 (resp.
Equation 1.59), and the total convective flux given by Equation 1.51 becomes

Fc =
ρ0cPT0

√
g

H
3/2
p

(∇ − ∇bubble)3/2
(

l

2

)2

. (1.60)

The equilibrium quantities ρ0, cP, T0, g and Hp are considered known; then the convective flux only depends on the
difference between the bubble gradient and the background gradient (i.e. how fast does the temperature difference
between the bubble and its surroundings grow as the bubble rises?), and the average length travelled by the bubble
l (i.e. how far away do the bubbles go before they die?).

Let me first discuss the temperature gradient of the bubble ∇bubble. On the one hand, it must be smaller than
the background temperature gradient, because only then would the temperature of the bubble fall off more slowly
than that of its surroundings, thus allowing for an upwards buoyancy force to drag the bubble further up. On the
other hand, it must be steeper than the adiabatic gradient, because otherwise the cooler surroundings would heat
up the bubble instead of the other way around, thus violating the second law of thermodynamics. We therefore
have ∇ad < ∇bubble < ∇, and I can already say this about the efficiency of the convective transport of enthalpy: the
closer ∇bubble is to ∇ad, the longer it takes for the bubble to be ‘destroyed’, and the higher the convective efficiency
is; on the contrary, the closer it is to ∇, the smaller the buoyancy force driving convection, and the smaller the
convective efficiency. This qualitative picture can be rendered more quantitative by introducing the convective

efficiency Γ. This quantity is constructed on the basis of the following enthalpy budget: if no enthalpy was lost to
heat exchange during the bubble’s travel over the distance l (i.e. if the thermodynamic transformation undergone
by the bubble were adiabatic), then the total enthalpy carried upwards by the bubble per unit volume would be
given by htotal = ρ0cP∆Tad(l), with ∆Tad(l) being given by Equation 1.54 with ∇bubble = ∇ad, so that

htotal =
ρ0cPT0

Hp
(∇ − ∇ad) l . (1.61)
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In reality, the motion is not adiabatic: the enthalpy per unit volume effectively carried upwards is only

hgain =
ρ0cPT0

Hp
(∇ − ∇bubble) l , (1.62)

while the difference originates from heat loss by radiation

hloss = htotal − hgain =
ρ0cPT0

Hp
(∇bubble − ∇ad) l . (1.63)

Then the efficiency of convection is defined by the ratio of the enthalpy effectively transported upwards to the
enthalpy lost along the way, so that (Böhm-Vitense 1992)

Γ ≡
hgain

hloss
=
∇ − ∇bubble

∇bubble − ∇ad
. (1.64)

As such, Γ is an alternative way of describing how close the actual bubble gradient is to the adiabatic gradient.
In particular, I reiterate the remark I made earlier: the more adiabatic the transformations of the bubble, the more
efficient the convective transport of enthalpy.

But on the other hand, the convective efficiency can be expressed as the ratio of the radiative transfer through
the surface of the bubble to the enthalpy change of the bubble during its lifetime, both of which are ultimately
proportional to the temperature difference between the bubble and its surroundings, so that ∇bubble − ∇ ends up
disappearing from the expression. I do not detail the entire derivation, which involves the specific geometry of
the bubble, as well as the exact temperature stratification inside the bubble, and can become quite complicated. I
simply give the estimate by Böhm-Vitense (1958)

Γ =
ρ2

0cPT0κRlv

24σT 4
. (1.65)

This relation does not give, as one may be tempted to suggest, a closed form for the bubble gradient ∇bubble,
because the velocity v appearing in Equation 1.65 depends itself on ∇bubble. However, this expression allows for
an estimation of Γ in the stellar context. More specifically, in the bulk of the stellar convective zone, because
of the high density ρ0 and mean-Rosseland opacity κR, we have Γ ≫ 1. Equation 1.65 then tells us that this
is only possible if ∇bubble ∼ ∇ad = (Γ1 − 1)/Γ1. This means that throughout most of the convective zone, the
radiative transfer between the bubble and its surroundings is so inefficient that the bubble keeps almost all of its
enthalpy to be given back to the background only once the bubble is dissolved. In that case, the convective flux
is given by Equation 1.60 with ∇bubble now being a known quantity, so that Fc only depends on l. Only close
to the surface of the star does the efficiency of convection drop to a value comparable to unity, in which case a
non-negligible portion of the enthalpy of the bubbles is now lost to radiation, and the convective transport is not
as efficient as in the bulk. This region is referred to as the superadiabatic region, because ∇bubble > ∇ad. In this
region, determining the convective flux is much more complicated (see Böhm-Vitense (1958) for German-speaking
readers, or (Kippenhahn et al. 1967) for the less fortunate).

Apart from the superadiabatic region, the convective flux is given throughout the stellar interior as a function of
the average travelling distance l of the bubbles, also referred to as the mixing length. The mixing length constitutes
a free parameter in MLT, whether it be the standard form presented until now, or the more refined variants that I will
present below. It is therefore necessary to give a prescription for l. A simple argument can be used to justify that
it cannot exceed Hp by much. Indeed, Hp represents the e-folding length of the background gas pressure. Since
the expansion of the gas bubbles during their ascension happens at mechanical equilibrium, it also corresponds
to the e-folding length for the expansion of the bubbles, and therefore also for the relative upflow cross-section
σu. But σu cannot exceed unity: in other words, the expansion of the bubbles must stop before they take up more
space than is physically available. As a consequence, the mixing length is at most of the order of Hp. In practical
applications, l is usually chosen to actually be of the order of the pressure scale height, even though it could a

priori be much smaller. In that spirit, a mixing length parameter αMLT is introduced so that

l = αMLTHp . (1.66)

The free parameter of the theory is now αMLT, which is a non-dimensional parameter that takes typical values
between ∼ 0.1 and ∼ 1. There is no way to physically constrain the value of this parameter, because it stems from
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introduce in Section 2.1). In order to describe the effect of the oscillations on the behaviour of convection – or
the other way around –, it is necessary to account for the time-dependence of the mean flow in the treatment of
the convective flux Fc and the turbulent pressure pt. This yields what is commonly referred to as time-dependent

MLT, which I briefly discuss here.
Subtracting the average flow equations (Equations 1.33 to 1.35) from the total equations (Equations 1.13

to 1.15), one finds the equations on the convective fluctuations in the following form

∂ρ′

∂t
+
∂ρ′ũi

∂xi
+
∂ρu′′i
∂xi
+
∂ρ′u′′i
∂xi

= 0 , (1.67)

∂
(
ρ′ũi + ρu′′i

)

∂t
+
∂
(
ρ′ũiu

′′
j + ρ

′u′′i ũ j + ρ
′u′′i u′′j + ρũiu

′′
j + ρu′′i ũ j − ρũ′′

i
u′′

j
+ p′δi j − σ′i j

)

∂x j
= ρ′g̃i + ρg′′i ,

(1.68)

∂ (ρ′̃e + ρe′′)
∂t

+
∂
(
ρ′ũih

′′ + ρ′u′′i h̃ + ρ′u′′i h′′ + ρũih
′′ + ρu′′i h̃ − ρũ′′

i
h′′ + F

′ rad
i

)

∂xi

= −u′′i
∂p

∂xi
− ũi

∂p′

∂xi
− u′′

i

∂p′

∂xi
+ u′′i

∂σi j

∂x j
+ ũi

∂σ′i j

∂x j
+ ũi

∂σi j

∂x j
. (1.69)

I already mentioned that the Boussinesq approximation simplifies the mean equations, but it simplifies the convec-
tive equations even more drastically, because it allows to neglect all the terms containing ρ′, with the exception of
ρ′g̃i, and all the pressure-work terms on the right-hand side of the energy equation. Furthermore, it is customary
in MLT to neglect not only the mean viscous force, but also all viscous effects completely. Finally, in a local
framework, the gravitational acceleration is assumed to have a constant value, so that g̃i = gi and g′′i = 0. Under
these approximations, one obtains

∂u′′i
∂xi
= 0 , (1.70)

∂ρu′′i
∂t
+
∂
(
ρũiu

′′
j + ρu′′i u j + ρ

(
u′′i u′′j − ũ′′

i
u′′

j

)
+ p′δi j

)

∂x j
= ρ′gi , (1.71)

∂ρe′′

∂t
+
∂
(
ρũih

′′ + ρu′′i h̃ + ρ
(
u′′i h′′ − ũ′′

i
h′′

)
+ F

′ rad
i

)

∂xi
= 0 . (1.72)

The continuity equation is no longer a transport equation for the fluctuating density ρ′, but becomes a mechanical
constraint on the fluctuating velocity u′′i . As for the other two equations, they can be rearranged with the help of
the mean continuity equation (Equation 1.33) and the mean energy equation (Equation 1.35), to yield the following
transport equations for u′′i and the temperature fluctuations around its Reynolds average T ′ ≡ T −T (Gough 1977a)

∂u′′i
∂t
+

u′′j
∂u′′i
∂x j
− u′′

j

∂u′′i
∂x j

 − u′′3 δi3
∂r2ρ

∂t
= −1

ρ

∂p′

∂xi
+ δ

T ′

T
gi , (1.73)
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∂t
+

u′′i
∂T ′

∂xi
− u′′

i

∂T ′

∂xi

 +

(
cPT − δ

) ∂ ln T

∂t
− ∇ad δT

∂ ln p

∂t

 T ′ − βu′′3 = −
1
ρ cP

∂F
′ rad
i

∂xi
, (1.74)

where r denotes the radial coordinate, u′′3 is the radial component of u′′i , δ ≡ −(∂ ln ρ/∂ ln T )p is the expansion
coefficient at constant pressure, cPT and δT are the partial derivatives of cP and δ with respect to T at constant
pressure, and β ≡ δ∂r p/cP − ∂rT/ρ is the superadiabatic temperature gradient. In Equation 1.73, the third term
on the left-hand side stems from u′′i ∂ j

(
ρũ j

)
on the left-hand side of Equation 1.71, where the mean continuity

equation makes the time derivative of the mean density appear; the second term on the right-hand side corresponds
to the buoyancy force ρ′gi, where the density fluctuations are expressed in terms of temperature fluctuations. In
Equation 1.74, the third term on the left-hand side stems from h′′∂i (ρũi) on the left-hand side of Equation 1.72,
and the fourth term stems from u′′i ∂i

(
ρ̃h

)
, where the mean continuity equation, the relation between fluctuating

enthalpy and fluctuating temperature, and the mean energy equation have been used.
Equations 1.73 and 1.74 are almost linear, including the divergence of the radiative flux which is usually linear

in the temperature fluctuations. In fact, they would be completely linear, were it not for the term ui∂
′′
i u′′j −u′′

i
∂iu
′′
j

in
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the momentum equation, and the term u′′i ∂iT
′ −u′′

i
∂iT ′ in the temperature equation. Different versions of the MLT

(and a fortiori time-dependent MLT) differ only in their treatment of these non-linear terms. There are mainly two
such versions of time-dependent MLT currently in use in the context of stellar convection

• The formalism developed by Gough (1969), later generalised to the time-dependent case by Gough (1977b),
and later used, for instance, by Balmforth (1992b); Houdek et al. (1995); Rosenthal et al. (1995); Chaplin
et al. (2005), whereby the eddies grow linearly in time (the non-linear terms are discarded) until they die.
Then Equations 1.73 and 1.74 form a system of linear differential equations14, into which an Ansatz ∝
exp( jk · r + σct) can be injected for both u′′i and T ′. This yields a dispersion relation between the linear
growth rate σc of the eddies and their wavevector k. Together with the introduction of an eddy survival
probability, this gives an expression for the flux of u′′i and T ′ (i.e. for the convective flux and the turbulent
pressure). It is necessary to introduce a mixing length for two reasons: the eddy wavevectors are given
by a unique eddy size which acts as a free parameter in the model; and the eddy survival probability is
defined in such a way that the eddy has a probability dx/l of being destroyed over a travelling distance
dx, where l is the total distance travelled by the eddy on average, and therefore corresponds to a mixing
length. A time-independent version of MLT can be recovered by neglecting the explicit time derivatives
in Equations 1.73 and 1.74 and considering that the eddy wavevector is time-independent. Otherwise, the
instantaneous properties of the background both at the instant t considered and the time of birth t0 of the
eddy must be explicitly taken into account;

• The formalism developed by Unno (1967), later generalised to the time-dependent case by Unno (1977),
and later used, for instance, by Grigahcène et al. (2005); Dupret et al. (2005c,b,a, 2009); Belkacem et al.
(2008, 2009, 2012), whereby the non-linear advection term acts as a dragging force that exactly balances
the buoyancy force. In a static atmosphere (i.e. in the time-independent limit of MLT), all time derivatives
are neglected in Equations 1.73 and 1.74, including the acceleration terms ∂tu

′′
i and ∂tT

′, and the non-
linear terms are written in a down-gradient approximation in the form u′′i ∂iu

′′
j − u′′

i
∂iu
′′
j
= 2u′′23 /l and

u′′i ∂iT
′ − u′′

i
∂iT ′ = 2u′′3 T ′/l, where a mixing length is necessary to describe the divergence of the second-

order moments. This yields algebraic equations for u′′i and T ′, from which the convective flux Fc and
turbulent pressure pt can be directly extracted. In the time-dependent generalisation, the acceleration terms
are restored, but all the mean variables are supposed to be time-independent.

Each of these formalisms yields an equilibrium value for Fc and pt in the limit of a static convection zone,
after which a perturbative approach gives a time-dependent correction δFc and δpt as a function of the more readily
available fluctuations of the mean density, temperature, etc. This gives a prescription for the convective flux and
turbulent pressure which accounts for the varying properties of the background from which the eddies are born,
through which they travel, and to which they give their energy back when they are dissolved. This is at the expense
of having to set not only a value for the static mixing length l, but also now an expression for its time-dependent
fluctuations δl.

The non-local Mixing-Length Theory

Another important approximation underlying the standard MLT is the assumption that the mixing length l is
much smaller than the stratification length scale, so that the mean variables are considered uniform over one eddy
travel distance. However, this is far from the truth: the mixing-length parameter αMLT being of order unity, this
means l is of the order of the pressure scale height Hp. Spiegel (1963) proposed to generalise the standard MLT to
cases where l is not necessarily small, in a way which I summarise below.

The turbulent eddies are described in phase space, by means of a density of eddies per unit phase-volume
ψ(t, x,u), meaning that at time t, the number of eddies whose position lie within d3x of x and whose velocity
lies within d3u of u is ψ(t, x,u) d3x d3u. The evolution equation for the density function ψ takes the form of a
Fokker-Planck equation (Gardiner 1994), and can be written as (Spiegel 1963)

∂ψ

∂t
+
∂uiψ

∂xi
+
∂(dui/ dt)ψ

∂ui
= q+ − q− , (1.75)

14The pressure fluctuations p′ is eliminated, as usual, by taking the curl of Equation 1.73, or rather, in this case, the curl of its curl.
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where the second term on the left-hand side represents the fact that the velocity ui of the eddies entails a variation
of eddy positions, and therefore a flow of ψ in x-space, the third term on the left-hand side represents the fact that
the acceleration dui/ dt of the eddies (due to buoyancy and pressure forces) entails a variation of eddy velocities,
and therefore a flow of ψ in u-space, the term q+ represents the rate of creation of convective eddies, and the term
q− represents the rate at which they are annihilated. Immediately, the flux of ψ in u-space can be assimilated in the
source term q+, so that one can define

Q+ ≡ l

(
q+ −

∂(dui/ dt)ψ
∂ui

)
. (1.76)

Furthermore, by definition of the mixing length, eddies travel over a distance l before they are annihilated, meaning
that eddies of vertical velocity v are annihilated at a rate v/l. As such

q− ≡
vψ
l
. (1.77)

Equation 1.75 then becomes

∂ψ

∂t
+
∂uiψ

∂xi
=

Q+

l
− vψ

l
. (1.78)

For a static convection zone, the time derivative can be dropped, and if, in addition, the convection zone is
assumed to have plane-parallel geometry, then ∂uiψ/∂xi = µ d(vψ)/ dz, where z is the vertical coordinate, and µ is
the cosine of the angle between the direction of ui (i.e. the eddy trajectory) and the vertical direction. Then one
obtains

µ
dΨ
dz
=

Q+

l
− Ψ

l
, (1.79)

where Ψ ≡ vψ. Equation 1.79 immediately strikes by its formal similarity with the equation for radiative transfer
(Mihalas and Mihalas 1984), and must therefore be thought of as an equation for convective transfer, where Ψ is
the specific convective intensity (i.e. the amount of convective energy that passes through a surface whose normal
vector is inclined by an angle of cosine µ with respect to the vertical direction, per unit time, surface area and
solid angle), and the mixing length l is a mean free path for the convective eddies, and plays the role of opacity for
radiative transfer. It is only natural, therefore, to redefine the vertical coordinate in units of the mean free path l, in
the form of a ‘convective depth’ σ, so that dσ = dz/l, in which case the equation of convective transfer becomes

µ
dΨ
dσ
= Q+ − Ψ , (1.80)

whose formal solution is given for µ > 0 by (Mihalas and Mihalas 1984)

Ψ(σ, µ) =
∫ +∞

σ

ds

µ
exp(σ−s)/µ Q+(s) , (1.81)

and for µ < 0

Ψ(σ, µ) =
∫ 0

σ

ds

µ
exp(σ−s)/µ Q+(s) . (1.82)

Let me now denote the excess enthalpy (with respect to the local surroundings) of the eddies of position x and
velocity u as h+ for the eddies flowing upwards, and h− for those flowing downwards (with the understanding that
h− = −h+, and h+ > 0). Then the total upwards (resp. downwards) enthalpy fluxes are obtained by multiplying
Ψ(σ, µ > 0) (resp. Ψ(σ, µ < 0)) by µh+ (resp. µh−) and integrating over all solid angles covering the top (resp.
bottom) hemisphere, so that

Fc,+ = 2π
∫ 1

0
dµ

∫ +∞

σ

ds exp(σ−s)/µ h+(s)Q+(s) , (1.83)

and

Fc,− = 2π
∫ 0

−1
dµ

∫ 0

σ

ds exp(σ−s)/µ h−(s)Q+(s) . (1.84)
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The net enthalpy flux is obtained by forming the sum of Fc,+ and Fc,−. After permutation of the integrals over s

and µ, and after having substituted µ for µ−1, one finally obtains

Fc(σ) = 2π
∫ +∞

0
h+(s)Q+(s)E2 (|σ − s|) ds , (1.85)

where E2 is the second exponential integral defined by

E2(x) =
∫ +∞

1

dt

t2
exp−xt . (1.86)

This is perfectly equivalent to the Milne equation obtained from the equation of radiative transfer for the radiative
energy flux – or, to a factor 4π, the Eddington flux (Mihalas and Mihalas 1984). Essentially, h+Q+ plays the role
of a convective source, and the local convective flux is a non-local combination of all convective sources in the
vicinity, with a weighting function given by E2 and therefore having a typical width of the order of l. If l is much
smaller than the stratification length scale, then Fc ∼ 2πh+Q+, meaning the convective flux is equal to the local
convective source only: one recovers the local, standard MLT. In general, however, Equation 1.85 is not closed,
because the convective source inside the integral is itself a function of the convective flux. As such, one now has an
integro-differential equation to solve in order to find Fc, very similar to the integro-differential equation obtained
for the radiative flux when the radiative source is a function of the specific intensity (when scattering is taken into
account for instance).

The fact that Equation 1.85 is integro-differential makes the numerical treatment of convective transfer substan-
tially more complex. Spiegel (1963) suggested that the source function h+Q+ be taken to be equal to the convective
heat flux as computed in the local MLT. However, this is only valid for high convective depths σ, and also requires
the total enthalpy flux to be exclusively convective (without a contribution from radiation). If σ is small, or l high,
then the buoyancy force felt by an eddy, instead of depending on the local superadiabatic gradient β ≡ ∇ − ∇ad,
becomes an average buoyancy force over the trajectory of the eddy, and therefore depends on a non-local mean
value of the superadiabatic gradient. The author therefore suggested that the source function should equal the local
convective flux where the superadiabatic gradient is replaced by a non-local average over a vicinity of height l.
The mean is weighted by a sine squared, peaking at the center of the trajectory, and vanishing at its starting and
ending points.

To further extend this formalism to high values of l, and in analogy with radiative transfer, Gough (1977b)
suggested to adopt a convective version of the Eddington approximation, whereby Ψ is considered to be a linear
function of µ, in which case the ratio of the second- to zero-order moments of Ψ with respect to µ is exactly 1/3.
In radiative transfer, this relation is then used to close the infinite hierarchy of moment equations at second order,
thus yielding (Mihalas and Mihalas 1984)

1
3

d2J

dτ2
= J − S , (1.87)

where J is the specific radiative intensity, τ the optical depth, and S the local radiative source (which, if the medium
is in radiative equilibrium, is equal to the Planck function). Similarly, for convective transfer, this approximation
yields

1
b2

d2Fc

dσ2
= Fc − Fc,local , (1.88)

1
c2

d2β

dσ2
= β − βlocal , (1.89)

where Fc,local is the convective flux computed in the local MLT with the non-local superadiabatic gradient β, for
which one therefore needs the second equation, where βlocal is the local superadiabatic gradient. The turbulent
pressure is obtained through a similar equation

1
a2

d2 pt

dσ2
= pt − pt,local . (1.90)

Instead of adopting the radiative pressure-to-density ratio of 1/3, this factor is supplemented by the factors
1/a2, 1/b2 and 1/c2. The local, standard MLT corresponds to the limit a, b, c→ +∞. These three non-dimensional
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parameters therefore control the ‘non-locality’ of the theory, with a controlling how far away a convective source
acts upon the turbulent pressure, b controlling how far away it acts upon the convective flux, and c controlling how
far away the stratification acts upon the eddy buoyancy force. To reflect the uncertainty in the formalism, they are
left as free parameters in the model, and as for the mixing length, they need to be calibrated, for example through
the use of 3D simulations (see for instance Dupret et al. 2006).

A final note on Mixing-Length Theories

The above introductory discussion only scratches the surface of the wealth of mixing-length theories that were
developed over the years, and the numerous and still ongoing efforts to refine them. I refer the reader who wishes to
know more to the review by Houdek and Dupret (2015), from which a large portion of this discussion is inspired.
From this limited account, however, one can already spot a common denominator to all these approaches: the
physical picture of convection is always somewhat simplified in MLT, in order to allow for tractable derivations;
each step in the simplification comes at the price of an increasing uncertainty in the theory, which is illustrated
by the presence of a certain number of free parameters (mixing length l, or equivalently mixing-length parameter
αMLT; perturbation of the mixing length δl for time-dependent MLT; parameters of non-locality a, b and c for non-
local MLT). Because the underlying picture of convection is too simple, these parameters cannot be constrained by
physical arguments, and it will always be necessary to calibrate them against observations, laboratory experiments,
or else numerical models such as 3D simulations. For the same reason, the question of their universality is also a
very complex one – why should the mixing length, which is a construction of the mind rather than a creation of
Nature, be the same in all stars? As such, it has been argued that MLT, whether in its standard form or its more
refined versions, does not deserve the name of ‘theory’ so much as that of ‘empirical prescription’15. However, with
simplicity comes applicability, so that MLT is still to this day a tool of choice to describe the effect of convection,
in evolutionary models for instance.

1.2.3 Reynolds-stress models

As we have seen in Section 1.2.2, averaging the exact equations of hydrodynamics yields equations for the
mean flow that feature second-order moments in the fluctuating quantities – namely the Reynolds stress tensor in
the mean momentum equation, and the convective flux in the mean energy equation. In MLT, the overarching
goal was to provide with algebraic expressions for both these quantities as a function of the mean flow itself, so
as to close the system. Alternatively, one can use the exact equations of hydrodynamics again to derive transport
equations for these second-order moments. Instead of integrating differential equations for the mean flow where the
second-order correlations are injected as algebraic expressions in the system, one ends up integrating differential
equations for the mean flow and at least the second-order correlations. This is at the heart of Reynolds-stress

models. Let me immediately remark that this solution does not free us from having to close the system, as it might
appear at first glance. Indeed, the transport equations for second-order correlations derived from the equations of
hydrodynamics contain third-order correlations, for which one has the same problem all over again. This procedure
leads to an infinite hierarchy of transport equations for correlation products of higher and higher order, so that there
will always be more unknowns than equations. If, up to this point, the reader has not yet lost the candid and naive
hope that a convection model can be derived from first principles only, let me cruelly dispel this illusion: turbulence

needs closure, always has, and always will (whether it be in the context of a convectively unstable region or not).
Reynolds-stress models have been used for a long time in the hydrodynamics community to model turbulent

flows (see seminal papers by Chou (1945); Rotta (1951), or else Chapter 11 of Pope (2000)). However, it was
some time before they found applications in the stellar context. Xiong (1989) followed this approach to derive
transport equations for the velocity variance, the temperature variance and the velocity-temperature covariance,
which correspond to all the second-order moments one can form with the fluctuating velocity and temperature.
In order to derive these equations, the author made a number of approximations to simplify the formalism: the
fluctuations of the gravitational potential are neglected under the Cowling approximation (the validity of which
I will discuss in Section 2.1.1), the radiative flux is described in the diffusion approximation, the turbulence is
assumed subsonic (i.e. the relative fluctuations of density and temperature are supposed to be much smaller
than unity) and anelastic (i.e. the material derivative of the fluctuating density is taken to be zero), the density
fluctuations are assumed to only be due to temperature changes, without contribution from the pressure changes.

15In the words of Spiegel (1963): “It should be stressed that the word theory in [the] context [of MLT] is perhaps a misnomer.”
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Those are approximations pertaining directly to the nature of the fluctuating fields, and are not so much closure
relations as physically grounded approximations. But, as I mentioned above, one also needs to adopt closure
relations. Here the author chose to assume that 1) the Reynolds stress tensor is isotropic, so that only a scalar
(the turbulent kinetic energy) is needed to describe the entire tensor, 2) the fluctuating velocity is completely
uncorrelated with the fluctuating pressure gradient, and therefore vanishes from the energy equation, and 3) all
third-order moments can be written in the down-gradient approximation. These are strong assumptions, especially
in the superadiabatic region. The third assumption is important, in particular, because third-order moments are
responsible for the non-local behaviour of convection. In the down-gradient approximation (also referred to as
diffusion approximation), any third order moment is written as

u′
k
xy = −νxy

∂xy

∂xk
, (1.91)

where u′
k

is the fluctuating k-th component of the velocity, x and y are any scalar turbulent quantities, and νxy is a
diffusion coefficient pertaining to the transport of xy by the small-scale motions u′

k
. Because this mode of transport

is due to the turbulent motion of the gas, νxy is often called turbulent viscosity, and in analogy with the actual fluid
viscosity, is prescribed by

νxy =

√
u′

i
u′

i
lxy , (1.92)

where lxy is the mean free path of the turbulent eddies transporting the fluctuating quantities. This mean free path
is perfectly equivalent to the notion of mixing length already introduced above for MLT, and must likewise be
given an arbitrary value (here the author chose all lxy to be equal to the local pressure scale height to within a
factor of order unity, which is of course akin to the free parameter αMLT in MLT). It becomes apparent, then, that
Reynolds-stress models actually rely on the same mixing length idea underlying the MLT, although the notion of
mixing length appears at higher order.

Going beyond Xiong’s work, Canuto (1993), and later Canuto (1997), proposed a refined version of this
approach, where the velocity-pressure-gradient correlations are not neglected, the turbulent dissipation evolves
according to its own transport equation, and most importantly, transport equations are derived for the third-order
moments as well, meaning that the equations are closed at fourth order, and the non-local fluxes are modelled
exactly. As such, his model is comprised of

• transport equations for the first-order moments: mean density ρ, mean velocity ũi and mean temperature T̃ ;

• transport equations for the second-order moments: Reynolds stress tensor ũ′′
i

u′′
j
, convective flux cPũ′′

i
T ′′

and temperature potential T̃ ′′2/2;

• transport equations for the third-order moments: Πi jk ≡ u′′
i

u′′
j
∂k p′, Πθ

i j
≡ u′′

i
T ′′∂ j p′ and Πθθ

i
≡ T ′′2∂i p′;

• transport equation for the turbulent dissipation rate ǫ (which I recall is defined by Equations 1.36 and 1.37);

• algebraic expressions for u′′
i

, T ′′, p′u′′
i

, p′∂iu
′′
i

, u′′
i

Dp′/Dt and T ′′Dp′/Dt.

Insofar as transport equations are derived up to third order, the small scale advection terms in the first- and second-
order moment equations have their own transport equations, and therefore do not need to be closed, which is
a considerable improvement compared to Reynolds-stress models stopping at second order. As an illustrative
example, let us consider the transport equation on the Reynolds stress tensor. It is obtained by the following
procedure: first, one multiplies Equation 1.14 on ρui by u j

u j
∂ρui

∂t
+ u j

∂ (pδik + ρuiuk − σik)
∂xk

= ρu jgi . (1.93)

Then by permuting indices i and j and making use of Equation 1.13 to pull the density out of the derivatives, one
obtains

ρui

∂u j

∂t
+ ρuiuk

∂u j

∂xk
+ ui

∂
(
pδ jk − σ jk

)

∂xk
= ρuig j . (1.94)
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Then, forming the sum of Equations 1.93 and 1.94 yields

∂ρuiu j

∂t
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∂ρuiu juk

∂xk
= −

(
u j
∂p

∂xi
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∂p
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)
+ (u jgiρ + uig jρ) +

(
ui
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∂σik

∂xk

)
. (1.95)

Taking the Reynolds average and remarking that

ρuiu j = ρũiũ j + ρũ′′
i

u′′
j
, (1.96)
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, (1.97)

one finds

∂ρũiũ j

∂t
+
∂ρũ′′
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(1.98)

Here, I have already neglected the mean viscous stress tensor σi j, and I have considered g to be unperturbed by
the turbulence. From this one must subtract the equation on ρũiũ j. The latter is obtained by performing the exact
same operation on Equation 1.34, which yields

∂ρũiũ j
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+
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)
. (1.99)

Again, the mean viscous stress tensor has been neglected. Subtracting Equation 1.99 from Equation 1.98, and
using Equation 1.33 to pull ρ out of the time derivative, one finally obtains
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+ ũ′′

j
u′′

k

∂ũi
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On the left-hand side, we recognise the mean material derivative (i.e. the material derivative following the mean
flow velocity ũ instead of the actual flow velocity u), as well as the non-local flux of turbulent kinetic energy. This
quantity, which is closed using the mixing-length hypothesis in Xiong (1989) for instance, does not need to be

closed here, because the system of equations contains a transport equation for u′′i u′′j u′′
k

:
itself. As for the right-hand

side, only the second and third brackets need to be closed. The quantities that are not closed in the second bracket
(u′′

i
and the velocity-pressure-gradient correlation – or acoustic energy flux – u′′

i
∂ j p′) are expressed by assuming

that the density, pressure and temperature fluctuations follow polytropic relations. The last bracket, on the other
hand, is rewritten

u′′
i

∂σ jk

∂xk
+ u′′

j

∂σik

∂xk
=
∂
(
u′′

i
σ jk + u′′

j
σik

)

∂xk
−

σ jk

∂u′′i
∂xk
+ σik

∂u′′j
∂xk

 . (1.101)

The first term corresponds to the viscous flux, and can be incorporated in the total non-local transport term, with
the kinetic energy flux. It is then argued that the viscous flux is negligible compared to the kinetic energy flux, and
can therefore be discarded. The second term, on the other hand, defines the turbulent dissipation tensor ǫi j, in such
a way that ǫi j ≡ u′′

i
∂kσ jk + u′′

j
∂kσik (see Equation 1.36). In turn, for high-Reynolds number flows, the turbulent

dissipation tensor is assumed to be isotropic, which defines the scalar turbulent dissipation rate ǫ, in such a way
that ǫi j ≡ 2ρǫδi j/3 (see Equation 1.37). All in all, the last bracket on the right-hand side of Equation 1.100 only
depends on ǫ, and is closed by adding to the system a transport equation for the turbulent dissipation rate.
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This brief derivation makes salient the key points in deriving a Reynolds-stress model, namely that 1) the
non-local transport terms only need to be closed at the last order of the system of equations, 2) certain additional
moments appearing in the equations, essentially involving either the compressibility16 term u′′

i
and the fluctuation

of the pressure gradient ∇p′ require special treatment (in Canuto (1997) this is done by considering a polytropic
gas), and 3) special care must be taken to model the turbulent dissipation rate ǫ. This last point, in particular,
constitutes one of the major difficulties in deriving a Reynolds-stress model, because while it is possible to derive
an exact equation for ǫ from first principle (Pope 2000) – by plugging Equation 1.16 into the definition of the
turbulent dissipation –, this exact equation proves very impractical to close. It is important to understand that the
impossibility to close the exact equation on ǫ is not just a purely mathematical tantrum thrown by the equation,
but instead has a more fundamental, physical origin: this definition of ǫ makes it pertain to the dissipative scales
of motion, which, for high-Reynolds number flows such as those considered here, are far removed from the large
scales of motion. While closure relations can reasonably be linked to the large scales, it is extremely difficult to
link them to what is happening at the other end of the turbulent spectrum. Therefore, in order to ‘derive’17 a model
equation for ǫ, it is best viewed in terms of its effect on the large scales, namely as a sink of energy corresponding
to the rate of injection of energy into the turbulent cascade. This invariably leads to a model equation that is

purely empirical in nature, and moreover relies on the mixing-length hypothesis to close the non-local transport
of ǫ (Pope 2000) – more specifically, the term corresponding to the advection of ǫ by the small-scale turbulent
motions is closed by the down-gradient approximation (Equation 1.91). For instance, Canuto (1997) considered
two different forms, one of which is an extension of the standard form to compressible flows
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∂xi
− ǫ ∂ũi
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, (1.102)

where k ≡ ũ′′
i

u′′
i
/2 is the turbulent kinetic energy, m is the polytropic index of the gas, γ the polytropic exponent,

νi j ≡ Cǫ,5kũ′′
i

u′′
j
/ǫ is an anisotropic viscosity tensor describing the small-scale, turbulent transport of ǫ, and Cǫ,i

(i = 1 to 5) are empirical, dimensionless parameters of order unity.
As a final note on Reynolds-stress models, let me remark that closing the system of equations at third order

requires a closure relation for fourth-order correlation products. This is often done by adopting the Eddy-Damped
Quasi-Normal Approximation, which I briefly discuss now. The idea stems from the mathematical identity that,
if Xi (i = 1 to N) are N random variables that each follow a normal distribution, regardless of their mutual
correlations, then (Millionshchikov 1941) any correlation product formed using an odd number of Xi is zero, and

any correlation product formed using an even number of Xi can be written as a function of the covariance matrix

associated to the vector of random variables X only. The function in question becomes increasingly complex as the
order of the correlation product considered becomes higher. However, the special case of fourth-order correlation
products yields the simple following relation

XiX jXkXl = XiX j XkXl + XiXk X jXl + XiXl X jXk . (1.103)

When the random vector X does not follow a multivariate Gaussian distribution, it is customary to define the
fourth-order cumulant Ci jkl of the distribution as the difference between the actual fourth-order moment and the
Gaussian fourth-order moments, so that

XiX jXkXl = XiX j XkXl + XiXk X jXl + XiXl X jXk +Ci jkl . (1.104)

Then closing the fourth-order moments amounts to closing the fourth-order cumulant. The most drastic approxi-
mation one can adopt is the Quasi-Normal Approximation (QNA), which consists in setting Ci jkl = 0. However,
this poses a number of problems as regards the predicted evolution of the third-order moments. In particular, since
the third-order moments (of velocity for instance) are no longer non-locally transported by the turbulent motions

16The reason this moment is referred to as the compressibility becomes apparent when it is rewritten thus: u′′i = −ρ′u′′i /ρ, where ρ′ ≡ ρ−ρ.
As such, if the fluid is incompressible (or even in the slightly less strict Boussinesq approximation), we have ρ′ = 0, and therefore u′′i = 0.

17Model equations for the turbulent dissipation are not so much derived as they are guessed, and then confronted to laboratory experi-
ments on turbulence, or else – for Reynolds numbers that are not too high – direct numerical simulations.
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of the gas, they locally accumulate without any way to escape anywhere. This non-physical accumulation of third-
order moment leads to an ever-increasing skewness of the statistical velocity distribution, and as a result eventually
violates the condition that the flow must be realisable18 – more specifically, some wavevectors can end up with
a negative energy. In order to circumvent this unwanted behaviour, the next level of approximation consists in
modelling the effect of the non-vanishing cumulant by adding an extra viscosity in the third-order equation: this
is the Eddy-Damped Quasi-Normal Approximation (or ED-QNA, Lesieur 2008). This approximation requires the
introduction of a typical damping time τ, which must be prescribed accordingly. This poses two problems. First,
there are multiple time scales in the problem (for instance, the acoustic time scale τa ≡ L/c, where L is the typical
scale of the mean flow, and c the speed of sound, the shear time scale τs ≡ (∂iũ j∂iũ j)1/2, as well as the local thermal
time scale that can become relevant for third-order moments involving the temperature), which can be very differ-
ent from one another. There is no physical justification for one to be chosen over the others. The second problem
is the unavoidable – and undoubtedly unsurprising by now – consequence that a non-dimensional parameter of
order unity must be introduced to account for the uncertainty not only on the exact value of the damping time τ,
but more generally on the very notion of the cumulant being modelled by a damping time. The hope in closing
the system of equations at such a high order, therefore, is that this uncertainty will have but a small effect on the
predicted behaviour of the large-scale flow, compared, for instance, with the large sensitivity of the predictions
made by MLT depending on the chosen value of αMLT. Nevertheless, even the ED-QNA fails to correctly predict
the fourth-order moments observed in 3D Large-Eddy Simulations (Kupka and Montgomery 2002; Montgomery
and Kupka 2004; Kupka and Robinson 2007), so that more refined closure relations are necessary (e.g Gryanik
and Hartmann 2002; Gryanik et al. 2004).

1.2.4 Concluding remarks

Each method listed in Section 1.2 for the modelling of stellar turbulent convection has its own strengths, but
also its own weaknesses. Mixing length formalisms are historically the first models that were used to describe
the convective flux in stars, and to include the effect of convection in 1D stellar evolutionary models. Standard
MLT yields very simple expressions for the convective flux and the turbulent pressure, and is therefore easy to
implement. As a result, it remains, to this day, a widely used tool for convection modelling. More refined versions
of MLT, accounting for the time-dependence of the background in which convection arises, as well as the non-
local nature of convection, have been developed. Nevertheless, the core assumptions underlying MLT have always
remained the same, in particular the Boussinesq or anelastic approximation, and the mixing length hypothesis.
Consequently, some aspects of turbulent convection are inherently discarded in all versions of MLT, in particular
the spatial and temporal structure of the turbulent cascade, which is reduced to a single spatial scale and timescale.
As we will see in Chapter 2, while this may be sufficient to describe the equilibrium state of convection in the bulk
of the convectively unstable region, the effect of turbulent convection on the waves that travel in the stellar medium
is highly sensitive to these approximations. Furthermore, MLT being more of an empirical prescription than a bona

fide theory, it depends on a number of free parameters that are very complicated to constrain physically. The more
refined Reynolds-stress models suffer from the same fundamental limitations.

On the other hand, 3D hydrodynamic simulations have become the subject of an increasing interest in the
context of stellar convection modelling, especially (but not only) in the uppermost layers of stellar convective
zones (Kupka and Muthsam 2017). The advantage of these simulations lies in the fact that the flow is computed
from first principles, instead of relying on ad-hoc prescriptions. However, there are substantial caveats, not the
least of which concerns the grid resolution achieved in these simulations. Because of the highly turbulent nature
of stellar convection, all relevant length scales cannot be resolved, so that ad-hoc prescriptions must be adopted
to model the small, unresolved scales, very often through the introduction of an effective viscosity – of through
the introduction of nothing, in which case the numerical scheme ‘takes care’ of the unresolved scales. Because
of this resolution problem, the flow no longer evolves according to the exact equations of hydrodynamics, and the
equations therefore are not derived directly from first principles. Nevertheless, these large-eddy simulations have
found an increasing use to describe surface stellar convection, in particular to build patched stellar models, because

18In the vocabulary of statistics, the term realisability usually refers to the Probability Density Function (or PDF) associated to the
considered random variables. A PDF is said to be realisable if it is everywhere positive (or at least non-negative), and if it is normalised
to unity. In the scope of fluid dynamics, and more particularly of Reynolds stress models of turbulence, the term realisability more often
than not refers to the flow itself. In that case, the flow is said to be realisable if the determinant of the Reynolds stress tensor is everywhere
positive. A corollary of that condition is that the energy spectrum must be positive for every wavevector Pope (2000)
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they significantly improve the realism of the superficial layers of 1D stellar models, compared to MLT (Schlattl
et al. 1997). However, as for MLT, they show their limitations when it comes to modelling the detailed structure of
turbulence in the superadiabatic region, which, as will become apparent in Chapter 2, is of particular importance
for the coupling of convection with the waves that travel in its midst. Furthermore, these simulations have a high
computational cost, which limits their use for parametric studies, where the physics of convection may be explored
through the use of various control parameters.

I conclude on the matter of stellar convection by saying this: that many modelling approaches have been de-
veloped, which have considerably deepened our understanding of the structure and dynamics of stellar convective
regions; but that there is still much that is not understood, in particular as far as surface convection is concerned,
and that no ideal approach seems to stand out as the ultimate method. Consequently, the question of how to model
convection is not a closed one. This is particularly the case in regard to the interaction of convection with stellar
oscillations, as I will show in Chapter 2, and more specifically in Sections 2.2 to 2.4.
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2 Impact of turbulent convection on solar-like
oscillations
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La lumière ne peut-elle pénétrer ces
masses ? Revenons à ce cri : Lumière ! et
obstinons-nous-y ! Lumière ! Lumière !
Qui sait si ces opacités ne deviendront
pas transparentes ?

Victor Hugo

To the utter dismay of generations of astronomers, this most passionate cry has fallen into the deaf ears of
Nature, who, as usual, could not care less that it does not make our task easy: no, stars are not transparent, and
with the exception of their most superficial atmospheric layers, their deep interior eludes our direct gaze. While
stellar interiors are opaque to light, however, they are transparent to other kinds of waves, in particular sound waves.
Acoustic oscillations can propagate through the stratified gaseous medium constituting the star, and by rebounding
on its surface, lead to the development of global modes of oscillation. These modes check two very important
boxes: they carry the signature of the physical conditions prevailing in a substantial portion of the interior of the
star; and they can be observed through the perturbations they entail at the visible surface of the star, either by
means of the velocity power spectrum measured via the Doppler effect incurred by spectral absorption lines in the
atmosphere, or by means of the intensity power spectrum measured via the total emergent intensity. From there,
the idea that observing surface oscillations gives us access to the internal structure of the star: this is at the heart
of helioseismology – when applied to the Sun –, and its younger brother asteroseismology – when applied to other
stars. In the immortal1 words of Marie-Antoinette: if they have no electromagnetic waves, let them have acoustic
ones! And undoubtedly, the advent of asteroseismology has revolutionised our understanding of stellar interiors.
In this chapter, I start by giving a quick and general introduction on stellar oscillations in Section 2.1, particularly
from a theoretical point of view. As for Chapter 1, this outline is not meant as an exhaustive account of all the

1albeit wrongly attributed
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refinements brought to stellar oscillation analysis over the decades of existence of asteroseismology, but is rather
meant as a simple theoretical framework in which the rest of the discussion can be articulated. It is largely, if not
entirely, inspired by Unno et al. (1989), and more particularly their Chapter III; naturally, this is where I would
refer the interested reader, should he or she want to know more.

I will specifically focus on solar-like oscillations, which are modes of acoustic nature that develop partly in
the convective envelope of solar-type stars, and are therefore susceptible to be coupled with turbulent convection.
In solar-like oscillators, oscillation-convection coupling is at its strongest close to the surface of the star, where
the convective transport is not as efficient as in the bulk. This coupling is a burden, as much as it is a blessing.
A burden, because convection changes the frequency of the modes. This frequency change is primarily due to
a combination of physical processes happening at the surface of the star, and collectively referred to as surface

effects. If one wishes to use individual mode frequencies to probe the interior of the star, one has to treat or
avoid the surface effects in some way. The problem of correcting the surface effects, therefore, is the same as
the problem of modelling turbulent convection, which, as we saw in Chapter 1, is not a small one. Additionally,
turbulent convection plays a very important role in the energetic aspects of solar-like oscillations. Indeed, the
turbulent motions entailed by convection inject energy in the modes, and are therefore directly responsible for
their excitation. In parallel, the same turbulent motions can also take energy from the modes (in other words, damp
them), therefore affecting their typical life time, or even their linear stability.

A burden, yes, but also a blessing in disguise. Because solar-like oscillations bear the mark of turbulent
convection, observations on the former give information on the latter. The difficulties we encounter to model
stellar convection, preventing us from deploying the full arsenal of p-mode frequencies to probe stellar interiors,
are indeed great. But this winter of despair can also be seen as a spring of hope, as an opportunity to use observed
p-mode properties precisely to constrain our stellar convection models. To that end, it is necessary to gain a better
theoretical knowledge of the coupling between what we can observe (the p-modes), and what we wish to study (the
turbulent convection). This is the overarching motivation behind the work I present in this thesis. In the second
part of this chapter, I present the extent to which the turbulence-oscillation coupling, and all of its consequences,
have been studied before, more particularly the energetic aspects pertaining to the driving (Section 2.2) and the
damping (Section 2.3) of the modes by turbulent convection, as well as the surface effects (Section 2.4). In doing
so, I will focus as much on what has been done, as on what still needs to be done; as much on what is fairly
well understood, as on what remains unclear; as much on the closed questions, as on the open ones; as much on
the basis of the work presented in this thesis, as on the reason why it is necessary. By the end of this Chapter, I
will therefore be able to present, in Chapter 3, both the context, and the research problems underlying the work
presented in this manuscript.

2.1 Stellar oscillations: a quick introduction

I presented in detail the equations of hydrodynamics in Appendix A, in the form of a transport equation for
density (which I later put in the form of Equation 1.13), momentum (which I later put in the form of Equation 1.14),
and internal energy (which I later put in the form of the entropy equation A.39). Those are the starting equations,
from which all the properties of the oscillations can be derived (with the exception of the impact of magnetic
fields, which I neglected above, and will continue to neglect in this entire manuscript). During the course of this
introductory discussion, I will be led to adopt a certain number of approximations without which the derivation
would become unnecessarily complicated. I can already list those we adopt from the very beginning

• I will neglect all viscous effects, which amounts to setting σi j = 0 in the momentum equation and in the
entropy equation;

• I will neglect all effects of turbulence – or, in other words, all effects of convection. This amounts to
discarding the contribution of turbulence to the velocity u of the flow, which now only contains a contribution
from the equilibrium background and a contribution from the oscillations;

• I will, as I did before, discard the energy generation due to nuclear reactions.

These approximations are important ones – for instance, energy generation is actually not negligible in the core of
the star, while the effect of convection is not negligible in convective regions, and in particular in the superadiabatic
region, as we will see later on in this Chapter. However, they are sufficient for the sake of this basic discussion. I
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will be led to relax the first hypothesis for the energy equation, as well as the second hypothesis, after this Section.
However, I will continue to adopt the third hypothesis throughout the rest of this thesis. With these approximations
in mind, the continuity, Navier-Stokes2 and entropy equations become
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where I have used the continuity equation to rearrange the first term in the momentum equation, and I have
introduced the gravitational potential Φ, defined in such a way that g = ∇Φ. To this system of equations I
must add one on the gravitational potential Φ and another one on the radiative flux. The former only depends on
the mass distribution inside the star, and is locally given by the Poisson equation

∇
2Φ = 4πGρ , (2.4)

where ∇
2 is the Laplacian operator, and G = 6.67 × 10−11 m3.kg−1.s−2 is the gravitational constant. As for the

radiative flux, it is given in the diffusion limit by Equation 1.12, which I recall here for the sake of clarity

Frad = −16σT 3

3πκRρ
∇T . (2.5)

The system comprised of Equations 2.1 to 2.5, in addition to equations of state for pressure p(ρ,T ), entropy s(ρ,T )
and opacity κR(ρ,T ), form the basis on which oscillations can be described.

2.1.1 Linear perturbation theory for adiabatic oscillations

Linearisation of the equations of hydrodynamics

Setting all time derivatives to zero in this system, and furthermore setting the velocity to zero (in the absence
of rotation and convection, there is no background velocity), one obtains the equations of stellar equilibrium. The
standard form of these equations is found by further assuming spherical symmetry for the star, which amounts to
neglecting all external forces which could break the spherical symmetry by imposing a preferred direction, such
as global or differential rotation, magnetic fields, or the presence of a binary companion for instance. If there is
spherical symmetry, then the resulting equilibrium quantities only depend on the radial coordinate r. I now set out
to linearly perturb the full system of equations around this state, meaning that I will derive the Taylor development
of each of these equations and truncate the development at first-order in the fluctuating quantities. In that spirit,
one can define the Eulerian perturbation of a quantity f as3

f ′(x, t) ≡ f (x, t) − f0(x) , (2.6)

with the understanding that f ′ ≪ f0. The reason this perturbation is called Eulerian is because it corresponds to
the difference between f as measured in a Eulerian frame of reference and its equilibrium counterpart. Naturally,
one can do the exact same thing in a Lagrangian frame. For any given Eulerian position x, there is a parcel of fluid
which would lie at this position in the absence of oscillations – i.e. in the equilibrium state. In the presence of
oscillations, this parcel is displaced, and I denote its actual position at time t as X(x, t). This allows me to define
the fluid displacement at x as

ξ(x, t) ≡ X(x, t) − x . (2.7)

2which now corresponds to the Euler equation
3I warn the reader that the notation f ′ in this chapter must not be confused with the similar notation adopted in the previous chapter,

where it referred to fluctuations around a time-dependent ensemble average. Here, it refers to fluctuations around a time-independent
equilibrium value.
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The Lagrangian frame is the frame in which the fluid parcel is immobile – otherwise stated, the frame which
follows the movement of the parcel –, so that one can define the Lagrangian perturbation of f as

δ f (x, t) ≡ f (x + ξ(x, t), t) − f0(x) . (2.8)

This constitutes an exact definition of the Lagrangian perturbation. However, in a linear perturbation framework,
the fluid displacement is assumed to be much smaller than all other length scales in the system, so that Equation 2.8
can be linearised thus

δ f (x, t) ∼ f (x, t) + ξ(x, t) ·∇ f − f0(x)

∼ f ′(x, t) + ξ(x, t) ·∇ f0 . (2.9)

In order to obtain the second equality, I used the definition of f ′ (Equation 2.6), as well as the fact that the additional
term ξ ·∇ f ′ is of second-order in the fluctuating quantities, and can therefore be discarded.

I express the linear, homogeneous system of partial differential equations yielded by the linearisation of the
system using the Eulerian decomposition

∂ρ′

∂t
+ ui

∂ρ0

∂xi
+ ρ0

∂ui

∂xi
= 0 , (2.10)

ρ0
∂ui

∂t
= −∂p′

∂xi
− ρ′ ∂Φ0

∂xi
− ρ0

∂Φ′

∂xi
, (2.11)

ρ0T0
∂s′

∂t
+ ρ0T0ui

∂s0

∂xi
= −

∂F
′rad
i

∂xi
, (2.12)

∂2Φ′

∂xi∂xi
= 4πGρ′ , (2.13)

F
′rad
i = −

16σT 3
0

3πκR,0ρ0

∂T0

∂xi

(
3

T ′

T0
−

κ′R
κR,0
− ρ

′

ρ
+
∂iT
′

∂iT0

)
, (2.14)

to which must be added the linearisation of the equations of state

δp =

(
∂p

∂ρ

)

T

δρ +

(
∂p

∂T

)

ρ

δT , (2.15)

δs =

(
∂s

∂ρ

)

T

δρ +

(
∂s

∂T

)

ρ

δT , (2.16)

δκR =

(
∂κR

∂ρ

)

T

δρ +

(
∂κR

∂T

)

ρ

δT . (2.17)

These last three equations must necessarily be written in terms of Lagrangian perturbations: indeed, they pertain to
thermodynamic transformations undergone by a given parcel of fluid, so that only in the Lagrangian frame do the
coefficients (∂X/∂Y)Z correspond to actual thermodynamic coefficients. Of course, the same kind of relation can
be derived for Eulerian quantities instead, by plugging Equation 2.9 into these last three relations. However, the
coefficients appearing in front of ρ′ and T ′ would not coincide with the thermodynamic coefficients, and would also
contain a contribution from the stratification. In other words, they would not depend only on the thermodynamic
state of the gas, but also on the specific structure of the star.

This system of twelve equations has twelve unknowns in the form of ρ′, u, Φ′, s′, F
′rad, p′, T ′ and κ′R (I recall

that the only reason why the velocity perturbation u is not denoted with a ′ is that we considered u0 = 0, so that the
velocity perturbation corresponds to the total velocity). All the other quantities depend on the equilibrium structure
of the star only, including all the thermodynamic coefficients in the last three equations. However, several changes
of variables will help put this system in a more practical form. First, I adopt an Ansatz of the form

f ′(x, t) ≡ F′(x) exp jωt (2.18)

for every Eulerian perturbation f ′, where ω represents the angular frequency associated to the oscillations. For the
sake of clarity, I will not change the notations of the wave variables; it must be noted, however, that from this point
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onwards, the wave variables actually refer to the time-independent F′ rather than the time-dependent f ′. Adopting
Equation 2.18 transforms the system of equations into differential equations on the space variable only, the entire
time-dependence being contained within ω. Secondly, I replace the Eulerian perturbation of velocity u by the fluid
displacement ξ. To do this, let me remark that by definition of these two quantities, we have Dξ/Dt = u. But
the advection term in the material derivative of ξ then yields (u ·∇)ξ, which is of second-order in the fluctuating
quantities, so that it can be discarded, and we simply have ∂ξ/∂t = u, or using the Ansatz above, u = jωξ.

With these changes in mind, let me derive the new form of the system of equations. Equation 2.10 becomes

jωρ′ + jωξi
∂ρ0

∂xi
+ ρ0

∂ jωξi

∂xi
= 0 . (2.19)

Dividing by jω, we recognise that the first two terms together equal the Lagrangian perturbation of density, so that
the linearised continuity equation reads

δρ + ρ0
∂ξi

∂xi
= 0 . (2.20)

Similarly, the velocity equation reads

−ω2ξi = −
1
ρ0

∂p′

∂xi
− ρ′

ρ0

∂Φ0

∂xi
− ∂Φ

′

∂xi
, (2.21)

which can be further split into a radial and horizontal parts

− ω2ξr = −
1
ρ0

∂p′

∂r
− ρ′

ρ0

dΦ0

dr
− ∂Φ

′

∂r
, (2.22)

− ω2ξh = −∇h

(
p′

ρ0
+ Φ′

)
, (2.23)

where ξr is the radial component of ξ, ξh is the horizontal displacement defined by ξh ≡ ξ − ξrer (er is the unit
radial vector pointing outwards), the operator ∇h is the horizontal gradient defined by ∇h ≡ ∇ − er∂r, and we
have used the spherical symmetry of the static equilibrium state to justify that the horizontal gradient of both ρ0

and Φ0 vanishes.
The horizontal displacement equation can be used to eliminate ξh from Equation 2.20. One finds

δρ +
ρ0

r2

∂r2ξr

∂r
+
ρ0

ω2
∇

2
h

(
p′

ρ0
+ Φ′

)
= 0 , (2.24)

where ∇
2
h

is the horizontal Laplacian operator, defined by ∇
2
h
≡∇

2−∂2
r , and I recall that in spherical coordinates,

the divergence operator contains a curvature term, which explains the presence of r2 inside the radial derivative of
ξr. Using a similar decomposition, one can rewrite the Poisson equation

1
r2

∂

∂r

(
r2 ∂Φ

′

∂r

)
+∇

2
hΦ
′ = 4πGρ′ . (2.25)

Let me now turn to the entropy equation. Replacing ui by jωξi and using Equation 2.9, it reads

jωρ0T0δs = −
∂F

′rad
i

∂xi
. (2.26)

As for the radiative flux, it can be split into its radial and horizontal components, so that

F
′rad
r = −

16σT 3
0

3πκR,0ρ0

dT ′

dr
−

16σT 3
0

3πκR,0ρ0

∂T0

∂r

(
3

T ′

T0
−

κ′R
κR,0
− ρ′

ρ0

)
, (2.27)

F
′rad
h = −

16σT 3
0

3πκR,0ρ0
∇hT ′ , (2.28)
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where I have used the spherical symmetry of the star to write ∇h f0 = 0 for all equilibrium quantities. Using
Equation 2.28 to eliminate F

′rad
h

from Equation 2.26, one finds

jωρ0T0δs = − 1
r2

∂r2F
′rad
r

∂r
+∇

2
h


16σT 3

0

3πκR,0ρ0
T ′

 , (2.29)

where I have once again used the spherical symmetry of the star to justify that the equilibrium radiative diffusion
coefficient only depends on the radial coordinate, and therefore commutes with the horizontal gradient.

Finally, one can decrease the order of the system by expressing the Eulerian and Lagrangian density perturba-
tions ρ′ and δρ as functions of the Eulerian pressure perturbation p′ and the Lagrangian entropy perturbation δs.
To do this, I start by considering p as a function of the two thermodynamic state variables ρ and s, so that

δp =

(
∂p

∂ρ

)

s

δρ +

(
∂p

∂s

)

ρ

δs . (2.30)

Since the quantities p/ρ2 and ρ, on the one hand, and T and s on the other hand, are conjugated pairs of state
variables4, one can write

(
∂T

∂ρ

)

s

=

(
∂p/ρ2

∂s

)

ρ

, (2.31)

and pulling 1/ρ2 from the constant-density derivative on the right-hand side, this yields

(
∂p

∂s

)

ρ

= ρ2
(
∂T

∂ρ

)

s

= ρ2
(
∂T

∂p

)

s

(
∂p

∂ρ

)

s

. (2.32)

Plugging this into Equation 2.30, and rearranging to isolate δρ instead, one finds

δρ =

(
∂ρ

∂p

)

s

δp − ρ2
(
∂T

∂p

)

s

δs . (2.33)

We recognise the adiabatic exponent Γ1 ≡ (∂ ln p/∂ ln ρ)s and the adiabatic gradient ∇ad ≡ (∂ ln T/∂ ln p)s, both
of which have already been introduced in Chapter 1, and finally, splitting δp into p′ and ξ ·∇p0, and since the
equilibrium pressure p0 only depends on the radial coordinate

δρ =
ρ0

p0Γ1
p′ +

ρ0ξr

p0Γ1

dp0

dr
−
ρ2

0T0∇ad

p0
δs . (2.34)

Using Equation 2.9, one can obtain a similar relation for ρ′

ρ′ =
ρ0

p0Γ1
p′ +

ρ0ξr

p0Γ1

dp0

dr
−
ρ2

0T0∇ad

p0
δs − ξr

dρ0

dr
. (2.35)

Eliminating all occurrences of δρ or ρ′ from the other equations using Equations 2.34 and 2.35 respectively,

4I recall that the pairs (A, B) and (C,D) of state variables are said to be conjugated if there exists a fifth state variable X such that for any

elementary thermodynamic transformation, we have dX = A dB + C dD. In our case, X is the internal energy per unit mass, as illustrated
by the thermodynamic relation we already used above to write the entropy equation in the first place. Then it is straightforwardly seen
that, on the one hand, (∂(∂X/∂B)D/∂D)B = (∂A/∂D)B, and on the other hand, (∂(∂X/∂D)B/∂B)D = (∂C/∂B)D. But the Schwarz theorem
stipulates that these two second derivatives are equal, so long as the function X checks all the necessary regularity boxes, which leads to
what is usually referred to as the Maxwell relation (∂A/∂D)B = (∂C/∂B)D.
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one obtains

ρ0

p0Γ1
p′ +

ρ0ξr

p0Γ1

dp0

dr
−
ρ2

0T0∇ad

p0
δs +

ρ0
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∂r2ξr
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+
ρ0
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2
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(
p′

ρ0
+ Φ′

)
= 0 , (2.36)

ω2ξr −
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dp0
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ρ0

dρ0
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dΦ0

dr
− ∂Φ

′

∂r
= 0 , (2.37)
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(
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)
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(
T ′ + ξr
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κ′R =

(
∂κR
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T

(
p′ + ξr

dp0
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+

(
∂κR
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)

p

(
T ′ + ξr
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)
− ξr

dκR,0

dr
. (2.42)

Since I have eliminated the density variable as well as the two horizontal components of the fluid displacement
and of the radiative flux from the system, there are now only seven equations, with seven unknowns in the form
of p′, ξr, δs, Φ′, F

′rad
r , T ′ and κ′R. However, there actually is an eighth unknown in the system, in the form of the

angular frequency ω. Therefore the system cannot be solved without an additional constraint: I will return to this
matter later on.

On the adiabaticity of stellar oscillations and validity of the Cowling approximation

It is possible, under certain circumstances, to approximate the Lagrangian perturbation of entropy δs by a
much more practical expression, which frees us from having to include it in the set of wave variables. The most
drastic of these approximations is to consider that all thermodynamic transformations undergone by a given parcel

of fluid are isentropic, that is to say both adiabatic (so that there is no transfer of entropy between the parcel and
the neighbouring gas), and reversible, or quasi-static (so that there is no creation of entropy inside the parcel). This
assumption is commonly referred to as the adiabatic approximation, even though it is actually stronger than mere
adiabaticity. The adiabatic approximation translates best in the Lagrangian frame of reference: indeed, only in
this frame does the variation of a thermodynamic variable correspond to an actual thermodynamic transformation
undergone by a physical system. The mathematical translation of that approximation, therefore, is simply δs = 0
(this is the reason, incidentally, why we chose to write all variables in a Eulerian frame, except for δs). This
substantially simplifies the system comprised of Equations 2.36 to 2.42: not only does δs vanish, but that also
makes Equations 2.38 and 2.40 to 2.42 useless, as the only reason I needed them in the first place was to describe
the non-adiabatic density perturbation.

To what extent can the oscillations be considered adiabatic? To answer this question, one has to compare
timescales, more specifically the typical timescale associated to the oscillations, and the typical timescale asso-
ciated to the thermal processes responsible for heat transfer. The former corresponds to the typical period of the
modes: about 5 minutes in the Sun. The latter requires a bit more thought. At first glance, one may be tempted
to use the Kelvin-Helmholtz time scale, defined as the ratio of the total gravitational potential energy stored in the
star to its luminosity: τKH ≡ GM/LR2, where M is the mass of the star, L its luminosity, and R its radius. This
corresponds to the time it would take for the star to radiate its energy away if there were no supply from nuclear
reactions in the core. For the Sun, this is of the order of thirty million years, which is much longer than the os-
cillation timescale. However, this is only an averaged value of the thermal timescale over the entire star, and does
not account for its large variability between the core and the surface. A local Kelvin-Helmholtz time scale can be
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defined, in the form (e.g. Dziembowski and Koester 1981)

τKH(m) =
∫ M

m

cPT

L
dm , (2.43)

where the virial theorem5 was used to equate the opposite of the gravitational potential energy of a given layer
with twice its internal energy (the factor 2 was then omitted, because I am only after an order of magnitude), cP,
T and L are now local quantities, and m(r) is the mass coordinate, defined as the total mass contained below the
layer of radius r. Throughout most of the interior of the star, the local thermal timescale is still much greater than
the period of the oscillations. In that case, the gas has no time to exchange heat during a cycle of the modes, so
that they can indeed be considered adiabatic to a very good approximation. However, this ceases to be true close
to the surface of the star, where the two timescales become comparable. The adiabatic approximation is no longer
valid in this region, and the entropy perturbations must then be accounted for. For the sake of this introduction,
however, and because I simply aim at presenting some very basic properties of stellar oscillations, I will adopt the
adiabatic approximation throughout the entire star.

In the following discussion, and because it further simplifies the formalism while being fairly accurate, espe-
cially for modes that have a large number of nodes in the radial direction, I will also adopt the Cowling approxima-
tion (Cowling 1941), which consists in neglecting the Eulerian perturbation of the gravitational potential: Φ′ = 0.
The basis for this approximation is that, if the spherical symmetry of the star is not broken by the oscillations to
too large an extent, then the total potential Φ at radius r is given by the total gas mass enclosed by the sphere of
radius r centered on the center of the star. The idea, then, is to state that at any given time, the regions of the star
where there is an excess of mass due to the oscillations compensate the regions where there is a default, so that
in total, the deviation of Φ from its equilibrium value is negligible. As a result of the Cowling approximation, Φ′

vanishes from the system of equations, and Equation 2.39 becomes useless.
Under these two approximations – the isentropic character of the oscillations, and the Cowling approximation

–, the system of Equations 2.36 to 2.42 reduces to the much simpler form

1
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p0Γ1
+
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dp0
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+

1
ω2

∇
2
h
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ρ0

)
= 0 , (2.44)
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+
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1

p0Γ1

dp0

dr

dΦ0

dr
− 1
ρ0

dρ0

dr

dΦ0

dr
− ω2

)
ξr = 0 . (2.45)

Now, there are only two equations, and three unknowns, in the form of the radial displacement ξr and the Eule-
rian pressure perturbation p′ (both of which are functions of the three space coordinates), as well as the angular
frequency ω. Of course, the remark I made earlier about needing an additional constraint still holds.

Splitting the radial and horizontal component

For the moment, the wave variables depend both on the radial and horizontal coordinates. However, I have al-
ready split all vector variables and operators into a radial and horizontal parts. Therefore, Equations 2.44 and 2.45
is prime for a separation of variables, which can be performed thus. The radial displacement and pressure pertur-
bation can both be written in the form

f (r, θ, φ) = F(r)Y(θ, φ) , (2.46)

where θ and φ are the latitudinal and azimuthal angles, F contains the radial dependence of f , and Y its angular
dependence. In the following, I will retain the notation ξr and p′ for the wave variables, with the understanding
that they now refer to the radial function F(r) rather than the 3D function f (r). Plugging this in Equation 2.44, and
rearranging to isolate the radial terms from the angular terms, one obtains

r2ρ0ω
2

p′

(
1
r2

∂r2ξr

∂r
+

p′

p0Γ1
+

ξr

p0Γ1

dp0

dr

)
= −

r2
∇

2
h
Y

Y
. (2.47)

5The virial theorem states that if the Lagrange function of a system is homologous of degree k – meaning that it goes as the k-th power
of the generalised coordinates –, then the time average of the kinetic and potential energy (respectively 〈T 〉 and 〈Ep〉) are related through
2〈T 〉 = k〈Ep〉, with the only requirement being that all trajectories of the system in phase space must remain bounded (Landau and Lifshitz
1976). In our particular case, the average kinetic energy is of microscopic origin, and corresponds to the internal energy U of the gas, and
the mean potential energy – being of gravitational origin – is homologous of degree −1, so that 〈U〉 = −〈Egrav〉/2.
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The left-hand side only depends on r, while the right-hand side6 only depends on θ and φ. Since they are identically
equal, neither depends on anything, and they are simply constant. Let me denote this constant as C, then one has

∇
2
hY = −C

r2
Y , (2.48)

which constitutes a second-order differential equation for Y , with the additional constraint that Y must be 2π-
periodic in both θ and φ. Solving this equation is equivalent to finding the eigenfunctions of the operator ∇

2
h
.

Those are given by

Ym
l (θ, φ) = Pm

l (cos θ) exp jmφ , (2.49)

where Pm
l

is the associated Legendre polynomial7 of degree l and order m, and l is given by C = l(l + 1). If we
leave it at that, C can take any value, and therefore so can l: this relation just transforms the unknown C into the
unknown l. However, the function Y is subjected to certain boundary conditions: the periodicity of Y forces m

to take an integer value, and the associated Legendre polynomials can only be regular at the poles if l is also an
integer. Therefore, the entire angular dependency of the wave variables is only parameterised by the two integers

l and m (with the additional constraint that |m| < l, otherwise Ym
l

vanishes everywhere).
Now that the angular part of the wave equation is taken care of, one can transform Equations 2.44 and 2.45

into purely radial equations. This is done by replacing the horizontal Laplacian operator by its expression (Equa-
tion 2.48), with C = l(l+1). Furthermore, let me remark that dΦ0/ dr = g0, where g0 is the norm of the equilibrium
gravitational acceleration8, and let me use the hydrostatic equilibrium condition to write dp0/ dr = −ρ0g0. One
then obtains

1
r2

dr2ξr
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+
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L2

l
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ξr = 0 , (2.50)

1
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dp′
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ρ0c2
p′ +

(
N2 − ω2

)
ξr = 0 , (2.51)

where c2 ≡ p0Γ1/ρ0 is the square of the celerity at which sound waves propagate, and I have introduced the two
characteristic squared frequencies

N2 ≡ g0

(
1

p0Γ1

dp0

dr
− 1
ρ0

dρ0

dr

)
, (2.52)

L2
l ≡

l(l + 1)c2

r2
, (2.53)

respectively referred to as the square of the Brünt-Väisälä frequency and of the Lamb frequency. When the stratifi-
cation is such that N2 > 0, the buoyancy force acts as a stabilising force, dragging a parcel back down when a local
fluctuations displaces it upwards. In this case, the buoyancy force acts as a restoring force, allowing for buoyancy

waves (or gravity waves) to propagate: the Brünt-Väisälä frequency represents the frequency of these waves. On
the other hand, if N2 < 0, then

√
−N2 represents the linear growth rate associated to the convective instability.

As for the Lamb frequency, it is better represented in terms of the local horizontal wave vector associated to the
angular degree l, kh ≡

√
l(l + 1)/r. Then we simply have Ll = khc, and it can be seen that the Lamb frequency

corresponds to the angular frequency associated to the horizontal propagation of waves.

2.1.2 Stellar oscillations as resonant modes

The boundary value problem

As I mentioned above, the system comprised of Equations 2.50 and 2.51 has one more unknown than equations,
because the angular frequency ω of the waves is also to be determined. Boundary conditions must therefore be

6I recall that in spherical coordinates, ∇
2
h
=
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r2 sin2 θ

(
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(
sin θ

∂
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)
+

∂2

∂φ2

)
. As such, while the operator ∇

2
h

does depend on r, this

is not the case of r2
∇

2
h
.

7The associated Legendre polynomials differ from the actual Legendre polynomials, in the sense that they depend on an additional
parameter m – Legendre polynomials do not have an order, only a degree. As it happens, if m is odd, the associated Legendre polynomials
are actually not polynomials at all.

8In general, we have ∇Φ0 = −g0; but in the spherically symmetric case, g0 = −g0er.
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added to these two equations, and because the system is of second order in the radial coordinate r, two boundary
conditions are needed: one at the center of the star and one at its surface.

The equations can be simplified at the center, because both the gravitational acceleration g0 and the Brünt-
Väisälä frequency vanish, whereas the Lamb frequency diverges. Furthermore, the gradient of ρ0 vanishes, for
regularity reasons. Therefore, the system of equations becomes

d
(
r2ξr

)

dr
=

l(l + 1)
ω2

p′

ρ0
, (2.54)

dp′/ρ0

dr
= ω2ξr , (2.55)

which amounts to the following second-order differential equation

d2
(
r2ξr

)

dr
= l(l + 1)ξr . (2.56)

Assuming that the radial displacement goes as a power function of r close to the center, characterised by an
exponent α, one finds

(α + 2)(α + 1) = l(l + 1) , (2.57)

with two possible solutions: α = l − 1 and α = −l. Naturally, ξr must remain regular at r = 0, so that the
second solution is not physical. That leaves us with ξr ∝ rl−1, from which one also obtains p′ ∝ rl. This
constitutes the first boundary condition at the center. Concerning the surface, multiple boundary conditions can
be adopted. The simplest one consists in assuming that while the surface can be distorted under the influence of
the oscillations – meaning that the surface radius changes with time –, the pressure must remain identically null
there, lest mechanical work be exerted on the star by a medium that does not contain matter. In other words, the
Lagrangian perturbation of the gas pressure must vanish: δp(r = R) = 0. This constitutes one possible second
boundary condition at the surface, although others exist (Unno et al. 1989).

The second-order system of equations, together with these two boundary conditions, form a well-posed bound-
ary value problem, to which a discrete spectrum of eigenfrequencies can be associated. It is common to put this
kind of system of equations and boundary conditions in the following canonical form (e.g. Hartman 2002)

d
dr

(
p(r)

d f

dr

)
+ q(r) f (r) = −σ2w(r) f (r) , (2.58)

where the unknowns are the function f (r) and the scalar σ2, and the functions p(r), q(r) and w(r) are known
functions of the radial coordinate r. This canonical form, known as a Sturm-Liouville type equation, is very useful,
because the solutions f (r) and σ2 are then given as the eigenvectors and eigenvalues of the linear Hermitian
operator

L = − 1
w(r)

[(
1

p(r)
d
dr

)
+ q(r)

]
. (2.59)

If, in addition, boundary conditions of the form α1 f (r1) + β1 f ′(r1) = 0 and α2 f (r2) + β2 f ′(r2) = 0 are imposed
(where r1 and r2 are the two radial boundaries, and f ′ denotes the first derivative of f with respect to r), this
becomes a Sturm-Liouville problem: the acceptable eigenfunctions are filtered according to whether or not they
verify the boundary conditions, and the spectrum of solutions to the problem becomes discrete, with real eigen-

frequencies σ2
n that can be indexed with an integer n (referred to as the radial order of the solution), and a unique

function fn(r) associated to each of these real eigenfrequencies having exactly n − 1 zeros between r1 and r2

(Hartman 2002).
Unfortunately, Equations 2.50 and 2.51 do not constitute a Sturm-Liouville type equation. While it might

look like a mere mathematical coincidence, this problem actually has a much deeper and physical origin. The
fundamental reason is that there are two different restoring forces: the buoyancy force, and the pressure force; and
therefore, two different kinds of waves that can propagate in the interior of the star: gravity waves and acoustic

waves (or sound waves)9. The coexistence of these two restoring forces is what prevents us from putting the system

9With the exception of radial waves, i.e. if l = 0: then, gravity waves do not exist, and only acoustic ones can propagate.
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in the form of Equation 2.58. However, in the limit of high frequencies (σ2 → +∞), the buoyancy restoring force
becomes negligible, and only acoustic waves remain. On the contrary, in the limit of low frequencies (σ2 → 0), the
pressure force becomes negligible, and only gravity waves remain. In these two limits, the problem does reduce to
a Sturm-Liouville type, provided simple boundary conditions as those described above are adopted. Whether σ2

is high or low enough or not, however, the solutions can still be associated each to their own radial order n.

Trapping of stellar oscillations

While the system does not generally constitute a Sturm-Liouville type equation, it can still be put into a more
canonical form, by changing variables one last time. Let me introduce the new wave variables (Unno et al. 1989)

ξ̃r(r) ≡ r2ξr(r) exp
(
−

∫ r

0

g0(r′)
c2(r′)

dr′
)
, (2.60)

η̃(r) ≡ p′(r)
ρ0(r)

exp
(
−

∫ r

0

N2(r′)
g0(r′)

dr′
)
. (2.61)

Then, forming the derivative of these variables with respect to r and using Equations 2.50 and 2.51, one finds

dξ̃r

dr
= h(r)

r2

c2


L2

l

ω2
− 1

 η̃(r) , (2.62)

dη̃
dr
=

1
r2h(r)

(
ω2 − N2

)
ξ̃r(r) , (2.63)

where

h(r) ≡ exp
(∫ r

0

N2(r′)
g0(r′)

− g0(r′)
c2(r′)

dr′
)
. (2.64)

Let me perform a local analysis, meaning that I will consider the coefficients in these equations to be independent
of r. Then one can inject an Ansatz for the radial dependence of ξ̃r and η̃, in the form

f (r) ≡ f exp jkrr , (2.65)

where the radial function f (r) is replaced with a constant f , and the entire radial dependence is contained within
the exponential factor. One can then derive a dispersion relation between the time dependence and the radial
dependence of the perturbations – in other words, between ω and kr

k2
r =

(
ω2 − L2

l

) (
ω2 − N2

)

c2ω2
. (2.66)

As a first remark, it can be seen that the dispersion relation, like the original wave equation, is independent of the
azimuthal order m of the solution. As such, in this simple framework, there is a degeneracy among all modes that
share the same radial order n and angular degree l. This degeneracy is lifted whenever the spherical symmetry
assumed from the beginning is broken, whether it be by rotation, magnetic fields, etc., in which case modes of
different azimuthal order are split from each other. However, in the present discussion, I discard the effect of
these symmetry-breaking processes. Equation 2.66 shows that the squared Brünt-Väisälä frequency N2 and Lamb
frequency L2

l
are key to study the local nature of the oscillations. More precisely, considering a particular solution

to the system of equations, characterised by a known angular eigenfrequency ω verifying the boundary conditions
described above, and a known angular degree l, then any region in the star falls into either one of these categories

• if the local values of N2 and L2
l

are such that ω2 > N2, L2
l

or ω2 < N2, L2
l
, then we have k2

r > 0, and the radial
wavevector is real. The Ansatz exp jkrr then shows that the perturbations are oscillatory in nature. In other
words, they are associated to waves that can propagate in the radial direction. Naturally, they also propagate
in the horizontal direction, with a horizontal wave number (already introduced above) kh =

√
l(l + 1)/r.

These regions are therefore referred to as propagative regions;
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• if the local values of N2 and L2
l

are such that N2 < ω2 < L2
l

or L2
l
< ω2 < N2, then we have k2

r < 0, and
the radial wavevector is purely imaginary. The Ansatz exp jkrr then shows that the perturbations either grow
or decay exponentially with r, and cannot propagate. More specifically, the direction of variation must be
increasing in the direction of the closest propagative region (increasing with r if the propagative region is
located above, decreasing if it is located below). In other words, the perturbations vanish exponentially the
further away they are from their propagative regions. These regions are therefore referred to as evanescent

regions.

From this local analysis stems that fact: that the solutions to the wave equation are only oscillatory in nature
in certain regions of the star, depending on their frequency and angular degree. The waves propagate in these
regions, and are reflected on the boundary of these regions – also called turning points –, only leaving evanescent,
non-propagating waves leaking into the neighboring regions. In other words, the oscillations are trapped. Because
of the multiple reflections of the waves on the turning points, the propagative regions act as resonant cavities,
and the waves actually take the form of stationary modes of oscillation10. Unlike what one may have thought
at first, it is therefore not the boundary conditions imposed at the center and the surface of the star that trap the
oscillations, but the physical conditions reigning inside the star. The eigenfrequencies ω, however, still stem
from the global boundary conditions, not to boundary conditions at the turning points of the resonant cavities11,
although the structure of the trapping regions has much more impact than that of the evanescent regions on the
eigenfrequencies.

p-modes versus g-modes

The condition of wave trapping depends on the Brünt-Väisälä and Lamb frequency profiles N2(r) and L2
l
(r),

which allows the visualisation of the locations of the resonant cavities in the form of a propagation diagram. The
propagation diagram largely depends on the type and the mass of the star considered. However, for the sake of this
discussion, I do not delve into the entire zoology of stars that can be found in the Universe; rather, I focus on the
case of solar-like stars, and more particularly the Sun, as these are the stars in which I will interest myself in this
manuscript.

The definition of the Lamb frequency shows that it diverges at the center. In addition, if c decreases with r –
which is the case throughout most of the star, with the exception of the chromosphere –, then L2

l
itself decreases

monotonously outwards. This behaviour is quite independent of the type of star considered. The behaviour of
N2(r), however, is much less universal. As we mentioned in Section 2.1.1, it is negative in convective regions,
and positive in radiative regions. In the Sun, that means we have N2(r) > 0 up to r/R ∼ 0.7 (where r/R is the
fractional radial coordinate), and N2(r) < 0 from 0.7 to almost 1. Then, because of the fast transition between
the convective envelope and the radiative surface, N2 quickly increases again, and takes positive values in the
very superficial layers of the star. We show this behaviour in Figure 2.1. It can be seen, then, that depending on
the eigenfrequency, a given mode is either going to be trapped in a central region, where ω2 < N2 < L2

l
, or in

an envelope region, where N2 < L2
l
< ω2. In the case of the Sun, those two types of trapping regions are quite

distinctly separated12, and are referred to the G-trapping region and P-trapping region respectively. The modes that
are trapped in the G region are called g-modes, or gravity modes, and the modes that are trapped in the P region are
called p-modes, or acoustic modes. The reason for the denomination “gravity” and “acoustic” modes will become
apparent in a moment.

Let me consider briefly each type of mode, starting with the p-modes. These modes are trapped between a
certain point in the interior, referred to as the inner turning point rt, and another point very close to the surface.
The inner turning point is reached when the angular frequency of the mode is no longer larger than the local Lamb

10As such, the term “propagative region” is perhaps a bit misleading, seeing as stationary modes cannot propagate.
11Besides, this would lead to a circular definition, since the turning points themselves – corresponding to the locations where ω2 = N2

or ω2 = L2
l

– depend on the frequency
12For stars where the distinction is not as clear, there can exist modes that have two important trapping regions – one of type G, and one

of type P–, separated by a thin evanescent region coupling the two main cavities. Those are referred to as mixed modes, and are particularly
important in more evolved stars, such as red giants. The reason is that the core contraction increases the Brünt-Väisäiä frequency in the
radiative core, while the envelope swelling decreases the Lamb frequency. While mixed modes are a very important subject of study, I
choose to focus the discussion on the solar case here, and I only mention them for the sake of completeness.
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Figure 2.1: Solar propagation diagram, as a function of the fractional radial coordinate r/R⊙ (where R⊙ is the solar
radius). The solid line represents the Brünt-Väisälä frequency N, where negative values in the convective envelope
are not shown. The dashed lines represent the Lamb frequency Ll for different values of the angular degree l. The
horizontal lines show the extent of the propagative regions for two different modes of frequency ν = 100 µHz and
2000 µHz respectively (we recall that the frequency ν and angular frequency ω are related through ω = 2πν.), the
second one having an angular degree l = 20. Credits: Aerts et al. (2010).

frequency. Therefore, it is given by the following implicit relation

ω2 =
l(l + 1)c2(rt)

r2
t

. (2.67)

In particular, since L2
l

increases with l, so does rt: the higher the angular degree of a p-mode, the narrower the
cavity in which it is trapped. When the wave reaches the inner turning point, Equation 2.66 shows that kr = 0:
in other words, the wave propagates horizontally. We see now, therefore, that the reason the wave “reflects” at
r = rt has actually nothing to do with an actual reflection, but is due to the refraction of the wave that continuously
curves its trajectory13, until it becomes horizontal and goes back up again. This is illustrated in Figure 2.2 for
several value of the angular degree l.

As for the outer turning point, it is due to the sudden increase of N2 at the surface, which in turn provokes a
sudden increase of the acoustic cut-off angular frequency ωac. The outer turning point is therefore independent
of angular degree, and only has a very weak dependence on frequency. It is because of this behaviour of N2 – or
equivalently of ωac – that the p-modes are consistently trapped below the photosphere, and that the atmosphere
itself plays the role of an evanescent region. There, of course, the local analysis conducted above is no longer valid,
because of the very small scale associated to the stratification. From the point of view of the wave, the change
in the physical conditions amounts to a discontinuity, which means that, unlike what happens at the inner turning
point, the wave actually undergoes reflection at the surface.

The nature of the p-modes can be unveiled by looking at their dispersion relation. As we have seen in Chapter 1,
the bulk of stellar convection zones is characterised by a very efficient convective transport, which means that N2,
which must be negative for the convective instability to arise, is actually barely below zero. As such, we can
consider |N2| ≪ ω. Then the dispersion relation (Equation 2.66) takes the simpler form

k2
r ∼

ω2 − L2
l

c2
. (2.68)

This is further rearranged by remarking that the horizontal wave vector associated to the angular degree l is given
by kh =

√
l(l + 1)/r, meaning that Ll = khc. Therefore, this dispersion relation simply reduces to

k2 =
ω2

c2
, (2.69)

13The trajectory of the wave must be understood as the curve defined in the scope of the ray theory, by analogy with geometrical optics.
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Figure 2.2: Propagation of sound rays in the solar interior for two acoustic modes of different angular degree. The
lower turning points rt of the two modes are represented. The mode with the smaller value of rt has the lowest
angular degree. On the other hand, the upper turning point of the two modes is relatively similar, and located just
beneath the surface of the Sun. Credits: Di Mauro (2012).

where k2 = k2
r + k2

h
is the norm of the total wave vector, including its radial and horizontal components. This is

identical to the dispersion relation for acoustic waves, which shows that in a p-mode cavity, the waves are acoustic
in nature. This is, in fact, not surprising: indeed, I already remarked that there are two restoring forces leading
to the propagation of waves in a star. But in a convective zone, the buoyancy force is destabilising, and as such
cannot act as a restoring force. This leaves the pressure force as the only possible restoring force, and explains
why the waves propagating in a convective zone are necessarily acoustic waves. This could have been seen from
the start; but it is also instructive to see it arise naturally from the dispersion relation.

As for g-modes, Figure 2.1 shows that they are trapped in a more central region of the star. This is because the
condition ω2 < N2 can only be fulfilled if N2 > 0, i.e. in a radiative zone. Additionally, the condition ω2 < L2

l

cannot be fulfilled for l = 0, because Ll=0 = 0. In other words, all g-modes are non-radial. This time, both the inner
and outer turning points are given by the condition ω2 = N2. While the inner turning point is not too dependent
on frequency, the outer turning point is deeper in the core for higher frequency modes. Unlike the p-mode turning
points, the g-mode turning points are completely independent of l. Similarly to p-modes, the dispersion relation
associated to the g-modes tells us about their nature. One can see from Figure 2.1 that in the g-mode frequency
range, one pretty much always has ω ≪ Ll, so that the dispersion relation (Equation 2.66) reduces to

k2
r =

L2
l

c2ω2
(N2 − ω2) , (2.70)

which can be rearranged by introducing the horizontal wave vector

k2
r

k2
h

=
N2

ω2
− 1 . (2.71)

This reduces exactly to the dispersion relation of internal gravity waves, which is why these modes are called g-
modes, or gravity modes, in the first place. In particular, the g-modes dispersion relation is anisotropic, in the sense
that it does not only depend on the norm k of the wave vector (like the p-mode dispersion relation), but also on its
direction. This is not surprising, of course: while the pressure force, responsible for the propagation of acoustic
waves, is isotropic (by definition of the gas pressure), the gravitational force responsible for the propagation of
internal gravity waves has a preferred direction – the local direction of the gravitational acceleration.

Solar-like oscillations: what about the effect of convection?

In this introductory discussion, we saw that a star is subjected to a discrete set of resonant oscillating modes.
As I hinted in the introduction of this Chapter, these modes can be observed through the oscillating pattern of either
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of existing models for stellar surface convection in solar-like oscillators causes a discrepancy between the observed
and predicted p-mode frequencies, known as “surface effects”. This is a part of convection–oscillation coupling
that is very important to understand.

The central frequency of the peaks is not the only information that can be extracted from the observed power
spectrum: if observations are performed over a sufficiently long period of time, the line profile of the p-modes
can also be resolved. In particular, their width in the Fourier domain, as well as their amplitude, can be extracted
individually. While the frequencies of the modes are related to the equilibrium structure of the star, their amplitude
and linewidth are markers of the energetic aspects of the modes. In solar-type stars, those are also related to surface
convection, which is responsible both for the stochastic excitation of the modes, and their linear damping. For all
these reasons, therefore, turbulent convection has a significant impact on the p-modes in solar-like oscillators. In
this introductory discussion, I have so far elected to neglect convection in the treatment of stellar oscillations: the
remainder of this Chapter is dedicated to restoring convection in the linearly perturbed equations governing stellar
oscillations, or equivalently, in the wave equation that stems from these linear perturbations. I will split the rest
of this discussion three ways: in Sections 2.2 and 2.3, I will focus on the two energetic aspects mentioned above
– respectively the stochastic excitation and the linear damping of the modes by convection. I will then discuss
‘surface effects’ in Section 2.4.

2.2 Mode driving

As I just mentioned, the turbulent convective motions of the gas are responsible for the stochastic driving of the
modes. The coexistence of linear damping and inhomogeneous forcing leads to the establishment of a stationary
state as regards the energetic behaviour of the modes. This stationary state is responsible for the observed amplitude
of the modes, and results from a balance between the damping and driving processes. Understanding the observed
mode amplitudes, and, perhaps more importantly, inferring properties of turbulent convection from these observed
amplitudes, therefore requires a thorough theoretical understanding of both mode driving and mode damping. Let
me, in this section, discuss our current understanding of the former.

2.2.1 An illustrative toy-model for excited harmonic oscillators

Before we dive into the core subject of this section, that is the excitation mechanisms for solar-like p-modes, let
us briefly examine the general case of a linear, harmonic oscillator that is both linearly damped and stochastically
excited. This illustrative toy model will allow me to introduce a certain number of general properties that will be
useful for the rest of the discussion.

Driving-damping balance

Let me denote the oscillating variable as z(t), the linear damping rate as η, the angular eigenfrequency as ω0,
and the forcing term as f (t). Then the equation of evolution governing the behaviour of the oscillator is

d2z

dt2
+ 2η

dz

dt
+ ω2

0z(t) = f (t) . (2.72)

The general solution of the corresponding homogeneous equation – i.e. the same equation where f (t) has been set
to zero – is

zh(t) = A exp−ηt− j
√
ω2

0−η2t +B exp−ηt+ j
√
ω2

0−η2t , (2.73)

where A and B are two constants that only depend on the initial state. Without loss of generality, we can define
the time t = 0 in such a way that B = 0. The solution of the inhomogeneous equation is then found by varying the
constant A. Setting

z(t) = A(t) exp−ηt− j
√
ω2

0−η2t , (2.74)

and plugging this into Equation 2.72, one finds

d2A

dt2
− 2 j

√
ω2

0 − η2 dA

dt
= f (t) expηt+ j

√
ω2

0−η2t , (2.75)
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which can be immediately integrated once with respect to time t to yield

dA

dt
− 2 j

√
ω2

0 − η2A =

∫ t

−∞
dt′ f (t′) expηt′+ j

√
ω2

0−η2t′ . (2.76)

This first-order differential equation governs the evolution of A(t), which is the instantaneous amplitude of the
oscillation. While this is the exact form of the equation, it can be drastically simplified in the case where η ≪ ω0,
i.e. if the lifetime of the oscillation is much longer than its period. This approximation is relevant to the case
of solar-like oscillations, where the typical damping rate does not exceed ∼ 10 µHz, while the frequencies are

of the order of a few mHz. In this case, not only can the square root
√
ω2

0 − η2 be approximated by ω0, but the
first term on the left-hand side becomes negligible compared to the second term on the left-hand side. The reason
is that the amplitude of the oscillation varies over time scales comparable to the lifetime of the mode, so that
|dA/ dt| ∼ ηA ≪ ω0A. As such, Equation 2.76 transforms into an algebraic equation. The amplitude becomes

A(t) =
j

2ω0

∫ t

−∞
dt′ f (t′) expηt′+ jω0t′ , (2.77)

and the solution of the inhomogeneous equation (Equation 2.72) becomes

z(t) =
j

2ω0

∫ t

−∞
dt′ f (t′) expη(t′−t)+ jω0(t′−t) . (2.78)

The instantaneous value of the oscillating variable is therefore the combination of a continuum of kicks f (t′) for
all times t′ in the past, and each kick leads to an oscillating response which dies away after a time ∼ 1/η. Because
there are always more kicks to replenish the energy lost to damping, the oscillation always has the same typical
amplitude. This is perhaps better seen in terms of the energy of the mode. It is proportional to the modulus square
of z(t), and therefore

E(t) ∝ exp−2ηt

4ω2
0

∫ t

−∞
dt1

∫ t

−∞
dt2 f (t1) f (t2) expη(t1+t2)+ jω0(t2−t1) . (2.79)

Because f (t) is a stochastic process, so is E(t). The relevant quantity, in practice, is therefore the ensemble

average 〈E(t)〉 of the power spectrum, i.e. its average over a large number of realisations15. Using the linearity
of the ensemble average to pull it inside the integrals yields an expression of 〈E(t)〉 as a function of the two-time
correlation product of the driving source f (t). Then, changing variables from (t1, t2) to (τ, t′), where t′ = (t1 + t2)/2
and τ = t1− t2, and further casting the boundary of the integral over τ to infinity (on the grounds that the correlation
product 〈 f (t) f (t + τ)〉 vanishes quickly when τ is large), one obtains

〈E(t)〉 ∝ exp−2ηt

4ω2
0

∫ t

−∞
dt′

∫ +∞

−∞
dτ〈 f (t′) f (t′ + τ)〉 exp2ηt′+ jω0τ . (2.80)

Forming the time derivative of this expression finally yields

d〈E〉
dt
= −2η〈E〉 +C

∫ +∞

−∞
dτ〈 f (t′) f (t′ + τ)〉 exp2η(t′−t)+ jω0τ

︸                                               ︷︷                                               ︸
≡P

, (2.81)

where C is a constant which, for the purposes of this illustrative toy-model, we do not attempt to quantify, and the
last term on the right-hand side correspond to the power injected in the oscillator by the driving source. We denote
this power as P.

This last equation governs the evolution of the energy of the mode, which contains two terms: one is a positive
contribution from the driving source, and does not depend on the energy itself; the other is a negative contribution

15Obviously, if we were to actually observe this oscillator, this would not be true, because we would only have access to one realisation.
But if the observations are made over sufficiently long time scales, then the total observation time can be split into shorter periods that are
long enough for the definition of the power spectrum to still hold, but short enough that each of these sub-periods are independent of each
other. Then the average over the sub-periods is considered to be equivalent to an actual ensemble average: this is the ergodic principle.
Everything hinges on this principle, which is both indispensable and unverifiable – since there is only one Universe that we can observe.
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from the linear damping, and is proportional to the energy itself. In particular, the stationary state of the mode is
found by setting the time derivative of the average energy to zero, in which case one finds

〈E〉stat =
P
2η

. (2.82)

This illustrates perfectly a key property of damped and stochastically excited oscillators: that their observed energy
is the result of a balance between the injected power P and the damping rate η.

Line profile in the power spectrum

In practice, solar-like oscillations are observed not in the time domain, but in the Fourier domain – in other
words, the observations provide with the power spectrum of the oscillating quantities. In this toy-model, this is
given by

P(ω) =
1

2T 2
obs

∣∣∣̂z(ω)
∣∣∣2 , (2.83)

where Tobs is the total observation time, and the Fourier transform of z in time is defined by

ẑ(ω) ≡ 1
√

2π

∫ +∞

−∞
dt z(t) exp− jωt . (2.84)

Plugging Equation 2.84 into Equation 2.83 gives an expression of the power spectrum in terms of z(t)

P(ω) =
1

8πT 2
obs

x

dt1 dt2 z⋆(t1)z(t2) exp jω(t1−t2) , (2.85)

where the notation ⋆ refers to a complex conjugate. In turn, plugging Equation 2.78 yields an expression of the
power spectrum in terms of the driving source f (t), in the form of a quadruple integral

P(ω) =
1

32πω2
0T 2

obs

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2

∫ t1

−∞
dt3

∫ t2

−∞
dt4 f (t3) f (t4) expη(t1+t4−t3−t2)+ jω0(t1+t4−t3−t2) exp jω(t1−t2) . (2.86)

Performing the usual integral permutation, it can be shown that the power spectrum is expressed as

〈P(ω)〉 = 1

16πTobsω
2
0

F(ω)
(ω − ω0)2 + η2

, (2.87)

in terms of the correlation spectrum of the driving source f (t)

F(ω) ≡ 1

T 2
obs

√
2π

∫ +∞

−∞
dt′ exp jω(t′−t) 〈 f (t) f (t′)

〉
, (2.88)

provided the stochastic process f (t) is stationary (i.e its multi-time statistics are independent of absolute time,
and only depend on time differences). This shows that the Fourier representation of a stochastically excited and
linearly damped harmonic oscillator is a Lorentzian profile, centered around the eigenfrequency ω0 of the mode,
and whose linewidth is 2η (this is why the damping rate of a mode can be inferred from observation if the line
profile of the mode is resolved, a point on which I will have the opportunity to return in Section 2.3.1). This is
only on the condition that F(ω) does not depend too much on ω over the frequency range

[
ω0 − 2η ; ω0 + 2η

]

– i.e. on the condition that the driving source is not too frequency dependent. This is the case if the driving
source is incoherent, which is the case in the stellar context. When the observations of the solar power spectrum
became precise enough to allow for the spectral resolution of the solar p-mode line profiles, they revealed that
the line profiles indeed feature a Lorentzian shape (Gabriel 1995), as illustrated in Figure 2.4, which was a robust
giveaway that solar p-modes were indeed stable, and that their observed amplitudes were indeed due to stochastic
excitation.

On a final note, let me remark that, while this toy-model may be useful to understand some of the most
general properties of stochastically excited oscillators, the picture is very simplified compared to actual solar-like
oscillations. This is especially due to the fact that the wave variables, in the stellar context, are not just function
of time, but also of space. Therefore, the spatial correlation of the driving source is as important as its temporal
correlations, and the spatial structure of the eigenfunctions also have an important role to play.
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and

f = −∇ ·

ρ2

0

ρ
vv

 , (2.92)

e =
Γ1 − 1

2
c2

ρ0
ρ2

1 +
ρ0

2c2
v

s2
1 +

c2

cv
ρ1s1 , (2.93)

h =
ρ1

ρ0
(v ·∇)s0 − (v ·∇)s1 , (2.94)

the subscript 0 refers to equilibrium values, and the subscript 1 denotes perturbations around the equilibrium
values. In writing Equation 2.89, the authors separated the linear part L – which they expressed solely as a
function of the velocity wave variable – from all other, non-linear contributions N. They identified these non-
linear terms to inhomogeneous forcing terms (akin to the driving force f (t) in the Section 2.2.1). The three
terms in the definition of N can be categorised according to the multipolar expansion one usually encounters, for
instance, in electromagnetism, depending on the spatial structure of the acoustic emission each term produces. The
emission can either be monopolar (stemming from isotropic gas expansion and contraction), dipolar (stemming
from fluctuations of a body force locally exerted on the fluid, in which case the direction of the force corresponds
to the axis of the dipole) or quadrupolar (stemming from fluctuations in a stress force locally exerted on the fluid).
For instance, the first term on the right-hand side of Equation 2.91 is a quadrupolar source (where the emitting
stress force is the Reynolds stress force), while the third term is predominantly dipolar (where the emitting body
force is the buoyancy force, directed in the local direction of g0).

Then, the authors derived scaling relations for each of the non-linear terms. To evaluate the amplitude of the
fluctuating quantities, they used 1) the Kolmogorov scaling relations relevant in the inertial subrange of the turbu-
lent cascade, 2) the standard MLT description of convection to relate the entropy, pressure and density fluctuations
to the velocity fluctuations, and 3) the hypothesis that the turbulent eddies whose typical size should be used in
the scaling relations are those with lifetimes comparable to the period of the mode – i.e. the resonant eddies.
The authors found that for modes whose period is shorter than the local lifetime of the energy-bearing eddies, the
quadrupolar contribution from the Reynolds stress dominates, while it is the dipolar contribution from the buoy-
ancy force that prevails for modes whose period is longer. The latter condition is only verified close to the surface
of the star, and only for the lowest order modes: they concluded that Reynolds stress fluctuations are responsible
for most of the mode driving. Finally, they derived an expression for the excitation rate due to Reynolds stress
force fluctuations, using the same kind of analysis as the one I very crudely presented in Section 2.2.1. In particu-
lar, as I hinted above, the two-time, two-point correlation product of N is of crucial importance for mode driving.
For want a better representation of these correlations, the authors chose to describe the two-time correlation as
Gaussian, with a typical width given by the lifetime of the resonant eddies, and to get rid of two-point correlations
by integrating over the corresponding space difference. Eventually, they obtained an integral expression for the
excitation rates of solar radial p-modes of order n = 0 to n = 21, and therefore could infer the velocity amplitude
of these modes, which they could compare to observations. They found values ranging from ∼ 1 to ∼ 6 cm.s−1.
While these values are several times lower than the actual observed amplitudes (which can reach as high as ∼ 30
cm.s−1 for the Sun), their analysis still provided with the right order of magnitude for excitation rates.

The approach of Goldreich and Keeley (1977b) was later refined by other studies (e.g. Dolginov and Muslimov
1984; Balmforth 1992c; Goldreich et al. 1994; Samadi and Goupil 2001; Samadi et al. 2003; Chaplin et al. 2005;
Belkacem et al. 2006, 2008, 2010). The question of the relative importance of the quadrupolar excitation by the
Reynolds stress force and the dipolar excitation by the buoyancy force was, at some point, the subject of some
disagreement (Stein and Nordlund 1991; Goldreich et al. 1994). The current accepted picture, however, is that the
former contribution is indeed dominant. In that case, the two-time, two-point correlation of N, being equivalent to
its Fourier spectrum in time and space, is directly related to the turbulent velocity spectrum, which is defined as

φi j(k, ω,X) ≡ 1
√

2π

∫
d3x

∫
dτ 〈ui(X, t)u j(X + x, t + τ)〉 exp j(ωτ+k·x) , (2.95)

with the understanding that the turbulent velocity u has stationary statistical properties, which therefore do not
depend on t, but only on τ. As a result, solar-like p-mode excitation rates can be used as a way to constrain the
properties of the turbulent spectrum φi j (Balmforth 1992c; Samadi and Goupil 2001). In particular, Samadi and
Goupil (2001) built on the formalism of Goldreich and Keeley (1977b) to include both quadrupolar and dipolar
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forced harmonic oscillators, or do their amplitude grow exponentially due to some instability process? Some stars
do indeed exhibit such unstable modes, which develop in the interior through the advent of self-excited instabilities.
Two such important instabilities, for instance, are the κ-mechanism and the γ-mechanism (e.g. Samadi et al. 2015).
In the κ-mechanism, the key ingredient is the dependence of the Rosseland mean opacity on temperature: if the
local equation of state is such that a small local increase in temperature, due to local random fluctuations, leads
to a corresponding increase in opacity, then the matter absorbs the outwards photon flux more efficiently, which
heats up the gas, thus leading to a further increase in temperature, etc. This runaway mechanism constitutes
an instability, and translates into global modes of oscillation being self-excited, and therefore having considerable
amplitudes. By nature of the κ-mechanism, however, the perturbation of the radiative flux plays a crucial role in the
behaviour of the mode, so that this mechanism cannot possibly arise from the adiabatic framework we introduced
in Section 2.1: a non-adiabatic framework is necessary. This is also the case of the γ-mechanism, whereby the
variation of the radiative flux is responsible for the instability, through its dependence on the adiabatic exponents.
The mechanism is based on the fact that the adiabatic exponents are lower inside ionisation regions (where part
of the energy brought to the gas serves for ionisation, rather than for heating) than outside. As a result, during a
compression phase, the radiative flux is increased by a smaller amount inside the ionisation region than outside.
This creates a gradient of the radiative flux perturbation at the boundary of the ionisation region, and if the gradient
is in the correct direction – i.e. directed inwards –, this leads to a local heating of the gas. Ultimately, as for the κ-
mechanism, the temperature increase also runs away. Once again, the γ-mechanism cannot arise from an adiabatic
framework for the pulsations. Both mechanisms arise in or close to ionisation regions, where the κ(T ) relation or
the dependence of radiative flux variation on the adiabatic exponents allows for the instability to develop. Even
though other mechanisms exist – like the convective flux blocking mechanism, or the ǫ-mechanism for instance–,
these two are primarily responsible for classical pulsators, which encompasses all classes of stars that exhibit
large-amplitude, linearly overstable modes of oscillation. Because of their large amplitudes, these oscillations,
which are also sometimes called opacity-driven oscillations, were historically the first to be discovered – hence the
term ‘classical’ –, for instance in Mira stars, or the classical Cepheids that are still used, as they were more than a
century ago, for the measure of distances in the Universe16.

Comparatively, the discovery of solar oscillations – and, a fortiori, oscillations in other solar-like stars – is
much more recent, with the 5-minute oscillations measured on the surface of the Sun (Leighton et al. 1962)
only having been ascribed to global modes of oscillation in the 1970’s by Ulrich (1970) and Leibacher and Stein
(1971). The question of their stability was tackled shortly thereafter, for example by Ando and Osaki (1975) or
Antia et al. (1982), with an early consensus on the unstable nature of solar oscillations. On the contrary, other
studies (Goldreich and Keeley 1977a; Balmforth 1992a), including the effect of turbulent pressure and dissipation
of turbulent kinetic energy into heat, predicted that solar oscillations should be stable. Once the instrumental
capabilities allowed for the resolution of the line profile of the resonant peaks in the p-mode spectrum, it became
clear that they feature the Lorentzian profile characteristic of linearly stable oscillators (see Section 2.2.1). The
characteristic of such oscillations is that the background in which they develop takes more energy from it than
it provides during a cycle of the mode. From the point of view of the mode, this leads to a net loss of energy
each cycle, and in the long run, to a decay – or damping – that is only counterbalanced by the forcing of the
waves (see Section 2.2 for more details). To this decay of mode energy is associated a decay rate – or damping
rate – η, which is defined as half the e-folding time of energy loss. The inverse of the damping rate corresponds
to the typical lifetime of the mode17, and therefore corresponds, in the observed p-mode spectrum of the star, to
the linewidth associated to the resonant mode: if the resolution is sufficient, it can therefore be directly inferred
from observations. The dependence of the solar damping rates with frequency is illustrated by Figure 2.6, where
the observed linewidths of the solar p-modes are plotted against frequency – each dot representing one mode.
More precisely, the top panel represents the linewidth at half maximum Γnl ≡ η/π (Baudin et al. 2005) (where
n and l are the radial order and angular degree of the modes), while the bottom panel represents the linewidths
weighted by a factor Qnl, which depends on the radial order n and the angular degree l of the modes, and defined

16It was indeed discovered that the intrinsic luminosity of Cepheid pulsators is tightly correlated with the period of their pulsation.
Therefore, measuring their period gives a measure of their luminosity, which can then be combined with the measurement of their apparent
luminosity – which goes as the inverse square of the distance between the object and the observer – to yield an estimate of their distance.

17That is, the time it would take for a mode to be reduced to a negligible amplitude if the mode energy was not constantly replenished by

the forcing processes.
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predictive theoretical models. This became more important, in particular, with the advent of space-borne missions
that considerably increased the amount of asteroseismic observations at our disposal, like the CoRoT (Baglin et al.
2006) or the Kepler missions (Borucki et al. 2010). It became apparent that the properties of the modes, including
their damping rate, follow distinct trends with global parameters, such as effective temperature and surface gravity
for instance. These trends constitute valuable clues as to the nature of the underlying physical processes respon-
sible for mode damping; on the other hand, they give observed mode damping the potential to serve as a way to
constrain stellar global parameters. Both require an accurate and precise theoretical knowledge of the coupling
between the turbulent convection and solar-like oscillations.

On the difficulty of modelling p-mode damping

The fact that it is necessary to include the effect of turbulent pressure and turbulent dissipation to explain even
the stable nature of the modes shows that the turbulence–oscillation coupling is crucial in understanding why the
modes are damped instead of being self-excited, and are a fortiori essential in predicting to what extent they are
damped. More precisely, it is this coupling close to the surface of the star that is responsible, because this is
the region where it is at its most efficient. The reason has to do with characteristic timescales, and coincidence
thereof. Here, three timescales are relevant to the problem: the typical period of the modes Π, the local thermal
timescale τth, and the eddy turn-over timescale τto associated to the turbulent convection. I already mentioned the
coincidence between Π and τth in Section 2.1.1, when I discussed the validity of the adiabatic approximation for
oscillations. I remarked that while they are very different throughout most of the star, they become similar close to
its surface, with typical timescales of ∼ 5 minutes. As for τto, it represents the time it takes for a turbulent eddy to
be dissolved into the neighbouring background once it has been born from random fluctuations at its birth location
(see Section 1.2.2 for more details), and it is also related to the typical dissipation timescale for turbulent kinetic
energy. In the MLT picture, it is given by the ratio of the mixing length l to the convective velocity (Equation 1.59).
In most of the convective zone, the convection is extremely efficient, so that the eddies can live a long time before
they die: their turn-over timescale is much longer than the period of the modes. However, close to the surface,
convection becomes superadiabatic, and therefore much less efficient. As a result, the lifetime of the eddies is
much shorter, and happens to be comparable with the period of the modes.

We therefore have three timescales that are very different from one another in most of the stellar interior, but
which converge towards one another in its superficial layers. This assertion is true not only of the Sun, but of
solar-like oscillators in general. The fact that Π ∼ τto explains why the coupling between turbulent convection and
solar-like oscillations is so strong in the superadiabatic region. On the other hand, the fact that Π ∼ τth explains
why non-adiabatic effects become prominent in this region, and why they must necessarily be accounted for to
understand the properties of the modes therein. In addition, the typical length scales associated with convection
(i.e the mixing length l), oscillations (i.e. the wavelength λ) and stratification (i.e. the pressure scale height Hp)
also coincide in the superficial layers of the star. As a result, understanding the physical processes responsible for
the damping of the modes requires not only a time-dependent treatment of turbulent convection, but also a non-
adiabatic one. This makes the task of theoretically prescribing these processes an immensely complicated one, as
I will show in the remainder of this section.

2.3.2 The work integral

Mode damping as a counterpart of mode frequency

In Section 2.1.2, I introduced the mode frequencies as the eigenvalues associated to a boundary value problem
comprised of Equations 2.50 and 2.51, to which I added the boundary conditions at the center and on the surface.
The wave variables are complex functions of the radial coordinate r, and therefore the eigenvalues themselves are
complex, a point that I have left aside until now. In writing the temporal Ansatz for the wave variables in the form
of Equation 2.18, it is customary to denote it as exp jσt, and to reserve the notation ω to the real part of σ. Then
ω does indeed correspond to the angular frequency at which the mode oscillates, while the imaginary part of σ
corresponds to the e-folding time of either the decay or the growth of the wave amplitude, depending on its sign.
As such, we see that it corresponds to the damping rate η defined in Section 2.3.1, and we have

σ = ω + jη , (2.98)
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so that a positive value of η corresponds to a decaying mode, and a negative value to an unstable, linearly growing
mode. From a theoretical point of view, mode damping and mode frequency are therefore one and the same, and
in particular the question: how does turbulent convection affect mode damping? is the same as the question: how
does it affect mode frequency? In other words, modelling mode damping and modal surface effects is the same
task; I will come back to this statement upon introducing surface effects, in Section 2.4.

I also take this opportunity to remark that, while the importance of adopting a non-adiabatic framework to
study mode damping is made clear by the coincidence between the period of the mode and the local thermal
timescale in the superadiabatic region, it could actually have been outlined as early as in Section 2.1. Indeed, I
briefly discussed in Section 2.1.2 the nature of the boundary value problem associated to the oscillations in the
adiabatic framework, and remarked that while the full problem was not of Sturm-Liouville type, it becomes of
Sturm-Liouville type in both asymptotic limits σ→ 0 and σ→ +∞, i.e. both high-order g-modes and high-order
p-modes. One of the key characteristics of a Sturm-Liouville problem is the fact that all of its eigenvalues are

real. I recall that the eigenvalue associated to the boundary value problem associated to stellar oscillations is σ2:
if σ2 is real, then σ is either real or purely imaginary. The solution has an oscillating behaviour only in the first
case, in which case σ = ω, and η = 0. Otherwise stated, in the adiabatic framework presented in Section 2.1,

and in the asymptotic limit, neither p-modes nor g-modes can be damped. Therefore, the stability of solar-like
p-modes can only stem from either the effect of turbulent convection (which we also discarded in Section 2.1), or
from non-adiabatic effects. As I will now show, both are responsible.

Definition and interpretation of the work integral

In general, the correct computation of the damping rate of a mode requires the full non-adiabatic linear eigen-
value problem to be solved, where, as I remarked above, the imaginary part of the complex eigenvalues corresponds
to the damping rates. This would be the correct, rigorous way to obtain them; however, there is a more practical
and convenient way to proceed, based on the work integral, which I introduce now. For the sake of simplicity,
I will only consider radial modes in this discussion. Multiplying the perturbed vertical displacement equation
(Equation 2.22) by ξ⋆r , integrating over the entire stellar volume, and taking the imaginary part, one finds the work
integral in the form (e.g. Samadi et al. 2015)

η =
1

2ωI

∫ M

0
dm Im


δρ⋆

ρ2
0

δp

 , (2.99)

where the mass variable m is defined through its differential form

dm = 4πr2ρ0 dr , (2.100)

and the inertia I of the mode is defined by Equation 2.97. Equation 2.99 yields the damping rate η of the mode,
provided the oscillatory angular frequency ω and the inertia I of the mode are known, in addition to its complex
eigenfunctions written in terms of density and pressure. Here, δp refers to the Lagrangian perturbation of the total

pressure: with the inclusion of turbulent convection, it contains both the gas pressure pg and the turbulent pressure
pt. It is immediately seen that the damping rate depends on the phase difference between the pressure fluctuations
and the gas expansion due to the modes, and is intimately related to the total pressure work exerted on the mode
by the background. Let me interpret this relation further. The quantity under the integral can be rewritten in terms
of the change in the material volume dV occupied by the layer dm

dm
δρ⋆

ρ2
0

= − dmδ

(
1
ρ

)⋆
= −δ

(
dm

ρ

)⋆
= −δ dV⋆ , (2.101)

so that the quantity under the integral is simply −Re
(− jωδ dV⋆δp

)
/ω. I made − jω appear on purpose inside the

real part: indeed, the quantity − jωδ dV⋆ is the (conjugated) complex representation of the rate of change of the
local material volume, and the entire real part is the real representation of the power transferred by the background

to the mode in the layer dm through the pressure mechanical work −p dV. Integrating over m, and taking the extra
minus sign into account, yields the total power transferred by the mode to the background through pressure work,
which I will denote as Pp. With these new quantities in mind, Equation 2.99 is simply (e.g. Samadi et al. 2015)

η =
Pp

2ω2I . (2.102)
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It can immediately be seen that η has the same sign as Pp, which is consistent with the idea that η > 0 if the
mode loses energy to the background each cycle – i.e. if it is damped. Furthermore, ω2I corresponds to the
total kinetic energy contained in the mode (this can be seen by inserting ω inside the integral defining the inertia
in Equation 2.97, and remarking that |ωξr |2 is the modulus squared of the modal velocity). As such, the ratio
Pp/(ω2I) is the ratio of the mode energy loss rate to the mode energy itself, and does indeed correspond to the
inverse time scale associated to the energy loss. Finally, the factor 1/2 stems from the fact that the square of a
decaying quantity decreases twice as fast as the quantity itself: if the amplitude of the mode decreases at a rate η,
the energy does so at a rate 2η.

One can go one step further and break down the pressure perturbation into its different components. This
is done by expressing the gas pressure perturbation in terms of density and entropy perturbations through Equa-
tion 2.34, and replacing the entropy perturbation with its expression given by Equation 2.26. One finds (Samadi
et al. 2015)

η =
1

2ωI

∫ M

0
dm Im

[
δρ⋆

ρ0

(
δpt

ρ0
+
∇adΓ1

jω

(
dδLrad

dm
+

dδLconv

dm
+ δǫ2

))]

= ηpt + ηrad + ηconv + ηdiss , (2.103)

where the radiative and convective luminosities are defined by

Lrad ≡ 4πr2Frad
r , (2.104)

Lconv ≡ 4πr2Fconv
r . (2.105)

In addition to the extra contributions from turbulent pressure and convective flux, the inclusion of convection in
this expression also yields a modification of the dissipation in the entropy equation, which now takes the form
ǫ2 ≡ ǫ + vconv ·∇pg, where the second term corresponds to the mechanical work exerted by the gas pressure force
on the fluid moving with the convective velocity.

The form of the work integral given by Equation 2.103 makes it clear that mode damping can come from
two different processes: the work of turbulent pressure, and the work of the non-adiabatic part of the fluctuating
pressure. The adiabatic pressure perturbation, being in phase with the density perturbation, yields a vanishing
imaginary part, and therefore does not contribute to the work integral. This is easily interpreted: the adiabatic
pressure fluctuations being perfectly in phase with the volume changes, the amount of work exerted in the expan-
sion phases exactly compensates the work exerted in the contracting phases, so that no net work is done during an
entire cycle of the mode. As for the other contributions, there are four: one from turbulent pressure, one from the
radiative flux (which contains, among other things, the κ-mechanism mentioned above), one from the convective
flux, and one from the turbulent dissipation rate18. The last three contributions collectively correspond to the effect
of the non-adiabatic pressure perturbation. In general, an extra contribution should come from the perturbation of
the energy generation rate in the core. Since I am only concerned with processes happening close to the surface
of the star, I do not include this contribution here. Equation 2.103 is only valid for radial modes, but a generalised
expression valid for radial and non-radial modes alike can be derived (e.g. Grigahcène et al. 2005).

For completeness, I should also add two more contributions that do not arise directly from the work integral
formalism. One is the leaking of the acoustic waves into the evanescent region above the upper turning point,
especially for high-frequency modes close to the acoustic cut-off frequency νac (Balmforth and Gough 1990). The
other is the incoherent scattering of the waves in the superadiabatic layer (Goldreich and Murray 1994). The
authors showed that this layer is subjected to large density inhomogeneities in the horizontal direction, with the
RMS value of the density fluctuations being proportional to the turbulent Mach number19 squared. These inhomo-
geneities scatter the waves, which the authors showed leads to a coupling between modes of similar frequencies
and different angular degrees. They further showed that the energy exchange stemming from this coupling between
different modes is unfavorable to the p-modes, thus creating, in effect, an additional source of p-mode damping. It
is usually recognised, however, that these two additional sources of damping are negligible compared to the ones
included in Equation 2.103.

18This denomination is perhaps a bit of a misnomer, seeing as ǫ2 contains the turbulent dissipation rate ǫ in addition to the buoyancy

work vconv ·∇pg. Nevertheless, I will conserve this designation in the following.
19The turbulent Mach number is defined as the ratio between the RMS turbulent velocities to the local sound speed, the former being

given, for instance, by Equation 1.59 in standard MLT.
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2.3.3 Solar mode damping predictions

Equation 2.103 is both very simple in its form, and extremely complicated to apply. The reason is that the
complexity is hidden behind the different modal perturbations appearing in the expression of the damping rate,
and that are not directly related to the wave variables δρ or ξr for instance. The reason is that they pertain to
the turbulent convection, and their accurate assessment requires a time-dependent and non-adiabatic treatment of
convection. If one wishes to better understand solar-like mode damping, and to answer the questions: what are the
dominant contributions?, and: can we predict the damping rates in a given stellar model?, one encounters the exact
same obstacles and has to face the exact same challenges as for stellar turbulent convection modelling, which I
have discussed in detail in Chapter 1.

Naturally, the work integral is useful not only for solar-like oscillators, but for stellar oscillations in general.
It can be used to predict the stable or unstable nature of global modes of oscillation in a given star, thus allowing
for a determination of the physical processes responsible for self-excitation in classical pulsators, as well as the
boundaries of the instability strips in the HR diagram. As such, the wealth of results produced by mode stability
analysis far outstrips the realm of solar-like oscillators. Here, however, I am only concerned with this realm, and I
will leave aside the question of classical pulsators entirely. I refer the reader who wishes a more general discussion
to the review by Houdek and Dupret (2015) for more details.

Predictions based on MLT

Balmforth (1992a) made use of the time-dependent, non-local, non-adiabatic formalism of Gough (1977a)
to compute complex eigenfrequencies for a solar model. His model is such that the only contributions to η that
he considered are ηpt, ηrad and ηconv (see Equation 2.103), where the radiative flux is described in the Eddington
approximation, and the quasi-adiabatic approximation was adopted. The author found the solar modes to be stable
– with the exception of a few low-frequency modes –, in agreement with observations. He also found orders of
magnitude similar to the observations, as illustrated in Figure 2.7. However, the high-frequency modes are found
to be much less stable than observed. Furthermore, while for low-frequency modes the predicted damping rate do
not depend too much on the free parameters chosen in the MLT treatment of convection – unsurprisingly, since low
frequency modes are reflected in deeper layers of the star, and are therefore much less sensitive on the physics of
the surface –, by contrast this is not the case for higher-frequency modes. This work was extended by Houdek et al.
(1999) for other solar-like oscillators on the main-sequence. The authors found that the contribution ηrad+ηconv has
a destabilising effect (except for high-frequency modes), while ηpt has a stronger stabilising effect, which explains
the overall stability of the modes. In particular, they predicted that the compensation peaks just below 3 mHz, thus
explaining the damping plateau. Chaplin et al. (2005) used the same model, but allowed the Reynolds stress tensor
to be anisotropic; this requires the introduction of yet another free parameter, in the form of an anisotropy factor
defined as the ratio of the vertical-vertical Reynolds stress component to the trace of the Reynolds stress tensor.
They adjusted all the free parameters to fit the data, which led them to a somewhat reasonable agreement.

On the other hand, Dupret et al. (2004) used the formalism of Unno (1967) in the form presented by Grigahcène
et al. (2005) to perform similar calculations. However, they also considered the contribution of turbulent dissipation
ηdiss. In addition to the usual free parameters inherent to MLT, the authors needed to introduce an additional free
parameter β, which is a complex non-dimensional damping time for the entropy perturbation20. The results of this
study are very different from the ones of Balmforth (1992a) or Houdek et al. (1999): the authors found that it is
ηconv that has a stabilising effect, while ηpt has a destabilising effect. Furthermore, they found that the contribution
ηdiss cancels out with ηpt to a large extent, with the cancellation being exact in the limit of adiabatic, isotropic
turbulence. They also found an agreement with observations, but the agreement is found for completely different
reasons than in Chaplin et al. (2005) for instance. This is particularly illuminating, because it shows that the
resulting stability analysis largely depends on the MLT empirical prescription used in the pulsation computations.
Belkacem et al. (2012) extended these calculations to a non-local treatment of convection (although they still
retained β as a model parameter, but constrained its value by matching the resulting frequency of maximum spectral
height νmax with the value yielded by scaling relations), and applied their model on a variety of solar-like oscillators

20This parameter is necessary to remove the non-physical fast spatial oscillations of the eigenfunction δL that otherwise arise. This
happens when the typical entropy perturbation have a typical length scale that is much smaller than the mixing length: in a purely local
treatment of convection such as considered here, this leads to abnormally fast entropy eigenfunctions. This can otherwise be avoided by
treating convection non-locally.
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representation of reality than MLT, it still suffers from the same overall problems, in particular the wealth of
free parameters, and the reliance on the Boussinesq approximation, and more importantly, on the mixing length
hypothesis. As such, the Reynolds-stress approach does not address the core issues posed by MLT treatments of
turbulent convection.

The invaluable input of 3D hydrodynamic simulations in this context has become apparent more recently, and
its potential for calibrating turbulent convection models – and in particular MLT – was outlined, for instance,
by Stein and Nordlund (2001) – although their focus was mainly on the excitation rate of the modes –, or more
recently by Houdek et al. (2017) or Aarslev et al. (2018). While the procedure provides with an agreement with
observations, there still remains the problem that the agreement is obtained after fitting a certain number of free
parameters. For instance, Houdek et al. (2017) chose to calibrate the non-local parameter a for turbulent pressure
so that the maximum of the equilibrium turbulent pressure in the 3D atmosphere and in the 1D model coincide,
while the other non-local parameters b and c are fitted to obtain the best possible agreement between theoretical
and observed linewidths, the anisotropy of the Reynolds stress tensor is approximated with an analytical function
designed to agree as best as possible with the anisotropy ‘observed’ in 3D simulations, and the mixing-length
parameter is calibrated so that the depth of the convective zone matches the value inferred from helioseismic
measurements. Because of these numerous free parameters, and the multiple ways in which each is calibrated,
these models do not allow for any theoretical predictions, nor do they shed light on the physical processes at stake.
Building on the idea of using 3D hydrodynamic simulations, Belkacem et al. (2019) suggested to investigate
directly the normal modes that develop in a 3D LES of stellar superficial layers, and whose properties can be
extracted directly from the simulation. They applied this idea to a solar model, and managed to extract three
different radial modes, which they identified with corresponding non-radial modes in the actual Sun, having a
node at the layer corresponding to the bottom of the simulation, and whose angular degree matches the boundary
conditions on the lateral sides of the simulation box. They compared the measured linewidths with the predictions
from the work integral (Equation 2.103), and found reasonable agreement for the only two modes they managed
to resolve. Using the work integral, they also managed to split the ‘observed’ linewidths of the simulated modes
into their different physical contributions, and furthermore identified the damping regions (where the work integral
is positive) and the driving regions (where it is negative). Their results are in stark contrast with those presented
above in the MLT framework: they found that it is the radiative and convective contributions ηrad and ηconv that
nearly cancel each other, with the former having a destabilising effect, and the latter a stabilising effect of similar
importance. Furthermore, also in contrast with previous results, they found that the overall non-adiabatic gas
pressure perturbation and the turbulent pressure perturbation were both stabilising factors, and equally contribute
to the stability of the modes.

Zhou et al. (2019) followed a similar path, with the notable difference that they found a way to enhance the
visibility of any given normal mode of the box in the simulation. To do so, they modified the bottom boundary
condition of their simulation to introduce a forced sinusoidal oscillation of thermal pressure while at the same
time ensuring that the entropy remains constant. In effect, this injects energy into the Fourier component of the
spectrum that coincides with the imposed frequency, so that the target mode has a much larger amplitude than any
other mode, or than the convective noise. This procedure allowed the authors to extract the eigenfunctions of the
mode directly from the simulation; and what is more, this gave them access to many more modes in the simulation
than if they were ‘observed’ without artificial excitation. The authors then used the work integral to obtain the
different contributions to the damping rate of the modes. For the Sun, they found a perhaps slightly less obvious
agreement with observations, which still reproduces the qualitative behaviour of damping rate with frequency –
in particular the damping plateau –, and, in contrast with all MLT-based approaches, is independent of any free
parameters. In contrast with Belkacem et al. (2019), however, they found that the non-adiabatic gas pressure
perturbation has a destabilising effect, and the turbulent pressure perturbation a stabilising effect, in accordance
with Balmforth (1992a) for instance. This approach was then extended to other stellar models by Zhou et al.
(2020).

While the input of 3D simulations is indeed valuable, and makes it possible to disentangle the various physical
contributions to mode damping, this kind of approach still has its own limitations. First, it is absolutely impossible
to assess the contribution ηdiss from a 3D simulation, because in such LES, the turbulent dissipation is either
completely dominated by numerical dissipation (which cannot be controlled, and is completely non-physical), or
explicitly described by equally non-physical models (see Section 1.2.1 for more details). Secondly, this approach
requires a considerable simulation running time, so as to resolve the modes and be able to measure their linewidths.
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This precludes the use of such simulations for a parametric study, for instance. Finally, the results are much more
dependent on the boundary conditions, and in particular at the top boundary of the box, than in full stellar models,
primarily because of the relative size of the regions under consideration. These observations, and the discussion
I conducted in this section in general, showcase what I already hinted in Section 2.3.1, namely that theoretical
efforts to prescribe the relation between the properties of turbulent convection and solar-like damping rates are met
with considerable difficulties, directly stemming from our lack of knowledge on turbulent convection itself, and
illustrated by the lack of consensus, still lingering to this day, concerning the dominant physical process for mode
damping. It would therefore be of much interest to go beyond these approaches, whether they be based on MLT,
Reynolds-stress models or LES: I will come back to this last point in Chapter 3.

2.4 Surface effects

2.4.1 Definition and observed properties

In Section 2.1, I introduced the stellar global modes of oscillation in a framework that discarded a certain
number of aspects in the physics of stellar interiors. While this allowed me to conduct a simple discussion,
adapted to the brevity called for in the context of this introduction, one must realise that each approximation,
each discarded phenomenon, increases the inaccuracy of the model. On the contrary, if one wishes to accurately
predict the properties of the modes in a given star, one has to include much more realistic physics in the stellar
model. Many studies have been devoted to the inclusion of better physics in stellar models for more accurate
eigenfrequency predictions: rotation, whether it be slow (e.g. Cowling and Newing 1949; Hansen et al. 1977;
Dziembowski and Goode 1992; Goupil et al. 1996; Soufi et al. 1998; Townsend 2003) or fast (e.g. Dintrans and
Rieutord 2000; Lignières et al. 2006; Reese et al. 2006, 2009; Ouazzani et al. 2015); magnetic fields (e.g. Kurtz
1982; Dziembowski and Goupil 1998; Bigot and Dziembowski 2002); the non-adiabaticity of the oscillations (e.g.
Christensen-Dalsgaard and Gough 1975; Dziembowski 1977; Saio and Cox 1980; Christensen-Dalsgaard 1981;
Pesnell 1990; Balmforth 1992a; Rosenthal et al. 1995; Houdek 1996; Dupret 2001; Dupret et al. 2002; Reese et al.
2017); or the impact of element diffusion (e.g. Guzik and Cox 1993; Günther 1994; Guzik and Swenson 1997;
Deal et al. 2017), are several examples. Each step helps close the gap between the predicted frequencies and the
observed frequencies.

But despite these refinements to stellar modelling, their still remains a substantial discrepancy, and what is
more, one that largely dominates the errors stemming from the observational techniques or the reduction of the
observational data (Christensen-Dalsgaard et al. 1996). This discrepancy has been given the name surface effects,
for reasons that will become clear in an instant. Since these surface effects do not originate from uncertainties
in the observations, they must come from uncertainties in the models. In a large part, this discrepancy is due to
the fact that the effect of convection was ignored in the analysis conducted in Section 2.1. Figure 2.8 shows, as
a function of frequency, the difference between the p-mode frequencies inferred from solar observations by the
GONG network, and those computed through an adiabatic standard solar model, without convection – i.e. in the
framework presented in Section 2.1.1. More precisely, the frequency differences are weighted by the same factor
Qnl that we introduced for damping rates in Section 2.3, and defined by Equation 2.96. For the same reasons
detailed in Section 2.3.1, the scaled frequency difference Qnl

(
νnl,obs − νnl,th

)
is a more relevant quantity to compare

between different modes than the raw frequency differences.
Figure 2.8 presents some striking features: it shows that the scaled frequency differences are very small for

frequencies . 2 mHz, but start rising significantly for higher frequency modes, and ends up reaching as far high
as ∼ 15 mHz at the high-frequency end of the p-mode spectrum. Furthermore, the frequency differences always
have the same sign, with the theoretically predicted frequencies being systematically overestimated compared to
the observed frequencies. Finally, the scaled frequency difference is quite independent of angular degree, and
collapses to a unique, slowly varying function of frequency only. These features tend to support the hypothesis
that the frequency discrepancy is primarily due to the uncertainties in the modelling of convection close to the

surface of the star, where the convective motions are at their most turbulent – hence the name: surface effects.
Indeed, at the surface, modes with lower frequencies have their upper turning point21 more deeply located than
high frequency modes, which means that they are much less affected by the phenomena occurring at the surface

21We recall, from Section 2.1.2, that the upper turning point ru of solar-like p-modes is defined by the implicit relation ω2 = N2(ru).
With N2 rapidly increasing with r in the superficial layers of the star, ru does indeed increase with ω.
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Nevertheless, for the sake of this discussion, I will introduce them separately.

Structural surface effects

Turbulent convection acts on the momentum equation through the additional Reynolds stress force, which
represents the diffusive transport of momentum by the small scale turbulent motions of the gas (see Chapter 1). In
general, it is assumed to be isotropic, and in analogy with the viscous stress force, this isotropic part is characterised
by the scalar quantity pt, referred to as the turbulent pressure. The turbulent pressure thus adds up with the
gas pressure, so that in the momentum equation, the gas pressure p must be replaced by the total pressure23

ptot ≡ p + pt. While a majority of stellar models disregard the effect of pt altogether, it actually does become
non-negligible in the superficial layers of the star, and especially in the superadiabatic region, as shown by 3D
hydrodynamic simulations (Stein and Nordlund 2001). In fact, the ratio pt/p can reach as high as ∼ 0.15 in the
Sun (Rosenthal et al. 1999): turbulent pressure must therefore be accounted for in the oscillation analysis. It is
common to separate the contributions of turbulent pressure to the surface effects into two components: one due to
the equilibrium turbulent pressure pt,0, and one due to the perturbation of the turbulent pressure δpt.

The time-averaged, equilibrium turbulent pressure modifies the hydrostatic equilibrium condition, and with it
the state around which the equations are perturbed. Then the hydrostatic equilibrium condition must be modified
to

∂ptot,0

∂xi
+ ρ0

∂Φ0

∂xi
= 0 , (2.106)

where ptot,0 ≡ p0 + pt,0 is the equilibrium total pressure. Essentially, the extra pressure term elevates the radius of
the star, and therefore increases the size of the resonant cavity associated to the p-modes. With the increase of the
cavity size comes a decrease in the eigenfrequencies: this partially explains why the frequencies are overestimated
when turbulent pressure is not accounted for. The effect of the equilibrium turbulent pressure was investigated, for
example, by Rosenthal et al. (1995). The authors considered several treatments of convection-oscillation coupling.
Their model number 2, in particular, focuses solely on the effect of the equilibrium turbulent pressure, and discards
the perturbation to the turbulent pressure. They computed the interior of the model, excluding the superficial
layers, by treating convection in the standard MLT approach (see Section 1.2.2), but without turbulent pressure.
In parallel, they used a 3D hydrodynamic simulation of solar convection, and averaged all quantities horizontally
and temporally for each horizontal layer in the simulation, in order to obtain a more realistic equilibrium model
for the outer 2% of the Sun. In particular, by averaging the quantity ρu2

r (ρ being the density and ur the vertical
velocity), they obtained pt,0 as a function of radius in the superficial layers of their model. The authors then
patched the averaged surface layers on top of the more crudely modelled interior, making sure, in doing so, that
the sound speed profile remained continuous at the transition, thus obtaining what is commonly referred to as a
patched model. While this procedure yields a much more realistic equilibrium turbulent pressure than the standard
MLT for instance, it tells us nothing of the turbulent pressure perturbations δpt. The authors argued, on the basis
of results obtained with non-local MLT (see Section 1.2.2) as well as hydrodynamic simulations, that δpt varies
in quadrature with the other forces, and in particular with δp. As such, they considered that this perturbation
only impacts the imaginary part of the eigenfrequency, and not its real part – in other words, not the oscillatory
frequency. For the sake of computing the real part of the frequencies, the authors therefore considered δpt = 0. In
the linearly perturbed equations, everything remains the same, except that δp/p0 now actually refers to δptot/ptot,0,
with

δptot

ptot,0
=
δp

p0

p0

ptot,0
=
Γ1 p0

ptot,0

δρ

ρ0
. (2.107)

In other words, the linear analysis presented in Section 2.1 remains exactly the same, with the first adiabatic

exponent being replaced by an effective exponent Γr
1, called the reduced adiabatic exponent. Because of the

averaging process performed to obtain the model, the reduced exponent must also be carefully averaged, and the
authors found

Γr
1 ≡
〈Γ1 p〉0
ptot,0

, (2.108)

23Since I do not account for the radiative pressure here, this is actually not really the total pressure. For the sake of this discussion,
however, I will disregard this point.
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they both amount not only to considering adiabatic oscillations, but additionally to neglecting two effects in the
linear perturbation of the equations of hydrodynamics that are a priori not negligible, namely the mechanical work
exerted by the buoyancy force, and the dissipation of turbulent kinetic energy into heat. In order to account for the
entirety of the surface effects, it is therefore necessary to go beyond both approximations – the adiabaticity, and
the GGM/RGM treatment of δpt.

Modal surface effects

The combined effect of non-adiabaticity and δpt on the p-mode frequencies is usually considered to correspond
to the modal surface effects, i.e. the part of the surface effects that are due to a poor modelling of the perturbation
of turbulent pressure and convective flux (or even absent, in the standard adiabatic approach introduced in Sec-
tion 2.1). However, this simplified picture of structural and modal surface effects being separate effects, and the
subsequent hope that one may be able to study them in a completely separate manner, does not exactly correspond
to reality. Indeed, in studies focusing on the structural surface effects, the very assumptions made about δpt en-
tail that part of the modal surface effects are also included. Therefore, the two kinds of surface effects are only
artificially separated, and as a result, including both non-adiabaticity and realistic turbulent pressure perturbations
must be seen not as a way to add modal surface effects to otherwise purely structural effects, but simply as a way
to model the entirety of the surface effects.

To this end, it is necessary to use a description of the turbulent convection that is both non-adiabatic and time-
dependent. One of the first use of a time-dependent, non-adiabatic MLT formalism to describe the full extent
of the surface effects is due to Balmforth (1992b). The author used a formalism that he presented in Balmforth
(1992a), which is a hybrid between the time-dependent formalism of Gough (1977b) and the non-local formalism
of Spiegel (1963), both of which I introduced in Section 1.2.2. This entails the presence of several free parameters
in the model, more specifically the MLT non-dimensional parameter αMLT, and the three parameters of non-
locality a, b and c. The author showed that the influence of both the entropy perturbation and turbulent pressure
perturbation – which he referred to as intrinsic surface effects – is heavily dependent on the values taken by these
free parameters, as shown in Figure 2.11. For instance, for a2 = b2 = c2 = 300 (all three then being exactly 10
times higher than their counterpart in the radiative transfer equation), varying αMLT even moderately (between 1.6
and 2.0 in Figure 2.11) entails frequency differences that can go from ∼ 0.5 to ∼ 2 µHz for frequencies above
3 mHz, and can even change sign for higher-frequency modes. Predicted surface effects are equally impacted
by the values taken by the parameters of non-locality, as illustrated by the difference between the two panels of
Figure 2.11, where the parameters of non-locality are only multiplied by a factor

√
2. Throughout most of the

p-mode spectrum, and almost independently of the values taken by the various free parameters of the model, the
author found that the intrinsic surface effect to be positive, in the sense that the obtained frequencies are larger than
those obtained without either δs or δpt. Therefore, the intrinsic surface effects partially compensate the effect of the
modified equilibrium state – or, in the vocabulary of the author, extrinsic surface effects –, so that the non-adiabatic
frequencies actually get closer to the standard adiabatic frequencies without equilibrium turbulent pressure than
the adiabatic frequencies with the extrinsic effect. However, the extrinsic effect still largely dominates, so that this
compensation is only limited. A similar result was found by Rosenthal et al. (1995), except that the compensation
is much more important, and the frequency shift with both extrinsic and intrinsic effects is much smaller (with
values not exceeding 5 µmHz, while Balmforth (1992b) predicted values close to 10 µmHz). Balmforth (1992b)
was further able to separate the frequency shift ascribed to entropy perturbations from those attributed to turbulent
stress perturbations, and showed that while the turbulent stress part is larger for low-frequency modes, neither
dominates the other from ∼ 3 mHz onwards. Similar conclusions were reached for the hotter and more evolved star
η Boo by Christensen-Dalsgaard et al. (1995), and later by Straka et al. (2006), although the equilibrium turbulent
pressure and kinetic energy used to assess the structural surface effects were extracted from a solar model.

Other uses of time-dependent convection theories to describe the modal surface effects include the work of
Grigahcène et al. (2012), who used the time-dependent mixing length formalism developed by Unno (1967), later
refined by Gabriel (1996) and Grigahcène et al. (2005), and implemented in the MAD pulsation code Dupret (2001).
The authors used this local, time-dependent convection model to compute non-adiabatic pulsation frequencies
for the Sun as well as 3 other stars. They then compared them to adiabatic frequencies obtained in the same
equilibrium state, and investigated whether or not the time-dependent treatment of convection gives better results
than adiabatic frequencies corrected through empirical formulations of the surface effects (see Section 2.4.3). They
concluded that this is indeed the case, but that the frequency differences still remain significantly larger than the
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predicted linewidths (see Section 2.3.3). The authors report that the agreement with observations is the result of
a large compensation of the structural effects (which lower the frequencies) and the non-adiabatic modal effects
(which increase them). While this is in accordance with the conclusions of Balmforth (1992b), it is directly at odds
with the conclusions of Grigahcène et al. (2012) or Sonoi et al. (2017), where the effect of the turbulent pressure
perturbation is dominant.

Final note on the theoretical modelling of surface effects

Even this brief and non-exhaustive review of the treatment of surface effects through theoretical modelling,
whether it be structural or modal effects, allows me to make this general observation: that there is currently no
real consensus, and that this is due to the uncertainty in the treatment of convection-oscillation coupling itself.
The underlying assumptions are either too crude – as is illustrated by the GGM and RGM –, or, to the best of our
current capabilities, impossible to constrain physically, and therefore too heavily parameterised. This prevents us
from making real predictions when it comes to surface effects. As a result of this uncertainty, the conclusions drawn
in different studies, through different treatments of convection, are at odds with each other, and when agreements
are found, it is seldom for the same physical reasons, even for a star as well known as the Sun. For this reason, in
most asteroseismic diagnosis where accurate frequencies are needed, two alternative approaches are adopted. First,
it is possible to study not the observed frequencies individually, but combinations of these frequencies that happen
to not be affected by the physics at the surface of the star. For instance, Roxburgh and Vorontsov (2003) proposed
to use the ratio of the small to large separations, instead of both quantities separately. They showed that the ratio
was much less impacted by the structure of the outer layers of the Sun, and therefore does not need surface effect
correction to be used for seismic diagnosis purposes. Roxburgh (2005) later extended this conclusion to other
solar-like stars (see also Otí Floranes et al. 2005). While this prevents us from having to treat surface effects, it
presents the distinct disadvantage of reducing the amount of information at our disposal in the p-mode spectrum,
and therefore decreases the precision of the ensuing seismic diagnosis. Secondly, the other alternative approach
for the correction of surface effects is the use of purely empirical formulations, which I introduce now.

2.4.3 Empirical formulations

Let me denote as νobs(n) the observed eigenfrequency associated to the radial p-mode of order n in a given star;
and let me suppose that a best-fit stellar model25 has been constructed for this star, whose radial eigenfrequencies
I denote as νbest(n). Then to design an empirical formula for the surface effects is to answer this question: can
one find a simple function f (n,Θ), where Θ is a limited set of free parameters, which closely fits the frequency
difference νobs(n)− νbest(n) regardless of the star under consideration for the same value of Θ? If this last condition
can be reached, then the situation would be ideal: the values of the free parameters could be constrained with
observations of a very well known star – like the Sun for instance –, and could then be used to predict – and
therefore correct – the surface effects in any other star, or at least any other star of the same type. Unfortunately,
while several functions have been proposed by different studies, the free parameters associated to these functions
are never even remotely universal. For instance, Kjeldsen et al. (2008) proposed a simple power law

f (n, (a, b, ν0)) = a

(
νobs(n)
ν0

)b

, (2.110)

with three free parameters in the form of a characteristic frequency ν0, an exponent b and a prefactor a. This
was proposed on the basis of an analysis conducted by Christensen-Dalsgaard and Gough (1980), who quantified,
in the case of a polytropic atmospheric model, the frequency discrepancy entailed by neglecting the phase shift
incurred by the waves whose frequency is similar to the acoustic cut-off frequency νac of the star, and can therefore
penetrate further into the upper layers before being reflected. In this simplified polytropic model, they found the
discrepancy to be larger as frequency is increased (because higher-frequency modes are reflected higher in the
atmosphere), and to take the form of a power law, with an exponent directly related to the average polytropic index
considered in the atmospheric model. In the analysis conducted by Kjeldsen et al. (2008), the parameters a, b

and ν0 are supplemented by an additional parameter r used to modify the stellar model to yield a more accurate
estimation of the mean density of the star, under the assumption that the structure of the star is homologous. The

25By that, I mean a standard model – in particular, where the convection is treated in the standard MLT – that most closely matches the
global parameters of the star, such as its mass, radius and effective temperature.
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parameters b and r are in fact degenerate, as the value of one constrains the value of the other. The authors first
determined the best-fit parameter values for a, b, ν0 and r for the Sun. Then they used the same procedure on other
stars, where they fixed a value of ν0 for each star, used the solar value of b to constrain r for each star, and finally
left a as a free parameter. The authors found that the large separations ∆ν – i.e. the mean star density – were
accurately recovered after this surface effect correction for the sample of stellar models considered.

As I mentioned in Section 2.4.1, the surface effects become increasingly prominent as the frequency of the
modes get closer to the acoustic cut-off frequency νac of the star. Building on this observation, Christensen-
Dalsgaard (2012) proposed that the surface effects be a self-similar function of frequency, with the frequency of
reference being chosen as νac. The author hypothesised the existence of a somewhat universal function G⊙(x) such
that

f (n, (̃a,G⊙)) = ãG⊙
(
νobs(n)
νac

)
. (2.111)

The notation G⊙ stems from the fact that this function is calibrated on the Sun, and then assumed to be the same
for all stars. The factor ã still needs to be adjusted, in addition to the same homology factor r as in Kjeldsen
et al. (2008). The agreement found with observation, once the frequencies are surface-effect-corrected, is better
than with the simpler power law, which is understandable, as a functional form such as Equation 2.111 is much
more flexible than the one given by Equation 2.110. On the other hand, the assumption that G is universal is more
of a leap to take than the assumption that the exponent b is universal, because one is a function, and the other
a simple scalar. An alternative empirical relation was proposed by Sonoi et al. (2015), to alleviate the fact that
Equation 2.110 overestimates surface effects for high frequencies, in the form

f (n, (α, β)) = ανmax

[
1 − 1

1 + (νbest(n)/νmax)β

]
, (2.112)

where νmax is the frequency of maximum spectral height in the p-mode spectrum of the star.
These empirical relations pertain to the raw frequency differences, which may seem incompatible with the

observation I made in Section 2.4.1 that the modes with a high angular degree, having a much smaller mode mass,
are associated with a much larger surface effect than radial modes of similar frequencies, and therefore scaled
frequency differences should be considered instead. So long as only low angular degrees are considered (or even
exclusively radial modes), this is not a problem. However, this ceases to be true for stars featuring mixed modes,
in which case it is necessary to include mode inertia in the empirical relation. This was done by Ball and Gizon
(2014), who proposed both a cubic law

f (n, l, (a3, ν0)) =
a3

In,l

(
νobs(n, l)

ν0

)3

, (2.113)

and a composite cubic and inverse law

f (n, l, (a3, a−1, ν0)) =
a3

In,l

(
νobs(n, l)

ν0

)3

+
a−1

In,l

(
νobs(n, l)

ν0

)−1

, (2.114)

where In,l is the inertia of the mode of radial order n and angular degree l, defined by Equation 2.97. The authors
found that including the inertia of the modes in the empirical relation considerably improves the fit, and that the
second formulation in particular gives better results than a simple power law.

All these empirical relations provide accurate frequency corrections, which can be used, for instance, for the
correct determination of stellar parameters from the observed frequencies. They perform differently depending on
the type of star considered, and more importantly yield global stellar parameters that can be degenerate (meaning
that several equally probable solutions can be found). Another problem of these approach is that even if surface
effects are indeed corrected, there is no way to relate the correction to physical arguments, which becomes prob-
lematic when extending the corrective formula to a vaster sample of stars. Indeed, it is impossible to assess how
adequate the extrapolation of a given surface effect empirical formula is to stars for which it has not been tested,
and in particular, to assess the degree of universality of the coefficients in said formula. Finally, in extrapolating
these relations to other stars, it is implicitly assumed that the discrepancy between the observed and modelled
frequencies remain solely attributed to surface effects. In reality, all sources of uncertainties from the modelling
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point of view are corrected simultaneously, and the assumption that it only comes from surface effects leads to an
‘overcorrection’ of the frequencies, if other modelling inaccuracies are present in the analysis. As a result, there is
absolutely no guarantee that the corrected frequencies can be safely compared with observations. Although these
relations have subsequently been used in numerous asteroseismic analysis (Metcalfe et al. (2012); Mathur et al.
(2012); Metcalfe et al. (2014) for the formulation of Kjeldsen et al. (2008); Bellinger et al. (2017); Ball and Gizon
(2017); Compton et al. (2018); Di Mauro et al. (2018) for the composite formulation of Ball and Gizon (2014),
perhaps the mostly widely used; Buldgen et al. (2019); Farnir et al. (2019) for the formulation of Sonoi et al.
(2015)), there is to this day no consensus on which form should be adopted, and no way to assess the accuracy of
the resulting correction.

On a final note, Gruberbauer et al. (2012) advocated for the use of Bayesian inference to treat the systematic
frequency bias entailed by surface effects, with the idea that no ad hoc empirical relation is needed in this approach.
The improved flexibility, and the fact that the frequencies do not need to be corrected beforehand, is certainly an
improvement compared to the other approaches presented above. However, this kind of Bayesian approach is
fundamentally based on the assumption that the asteroseismic grid used for the stellar parameter inference is only
impacted by the uncertainty related to the surface effects. But since the results of such Bayesian analysis are
model-dependent, there is, once again, no reason why additional model deficiencies could not arise elsewhere, and
significantly bias the results. Furthermore, as noted by the authors, enough low-order modes, less impacted by
surface effects, are needed to obtain less biased results.
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3.1 A summary of the context

In this introductory discussion, I presented the current state-of-the-art regarding our theoretical knowledge of
the main aspects of the coupling between solar-like oscillations and turbulent convection, namely mode driving
(Section 2.2), mode damping (Section 2.3), and surface effects (Section 2.4). The amount of asteroseismic data
provided by ground-based observations, and more recently space-borne missions (with the huge impact of CoRoT
and Kepler in particular) has grown exponentially, and this led to a much better and more refined understanding
of the processes underlying these aspects of mode physics. In solar-like oscillations, this is important for two
mutually complementary reasons. First, the properties of the modes are tightly related to the physics of the tur-
bulent convection close to the surface of the star, which means that the observed mode properties can serve as a
way to constrain the behaviour of turbulent convection. This is of paramount importance, because, as I outlined
in Chapter 1, the way convection is modelled in stellar evolutionary models heavily impacts the results. Secondly,
asteroseismic indices, such as the frequency of maximum spectral height νmax, the acoustic cut-off frequency νac,
the damping and excitation rates, and the velocity and bolometric amplitudes for instance, are subjected to scaling
relations, meaning that they follow somewhat universal trends with the stellar parameters (radius, mass, effective
temperature, surface gravity). As such, measuring the former can give an estimate for the latter, especially when
large samples are used, in the scope of ensemble asteroseismology.

But all of these challenges require an accurate and realistic theoretical knowledge of the mechanisms at play
concerning the interaction between turbulent convection and solar-like oscillations. While the stochastic driving
of the modes by turbulence is, to this day, fairly well understood, this is not the case of surface effects or damping
mechanisms, and this lack of understanding, which has been more and more clearly revealed by the wealth of
seismic data on this age of ensemble asteroseismology, prevents us from using the full potential of asteroseismic
measurements – whether it be frequencies for internal probing, or energetic aspects of solar-like modes for the
use of realistic scaling relations. This lack of understanding is related to the absence of a satisfactory description
of stellar turbulent convection, a point which I attempted to make clear in Section 1.2. The most widely used
prescriptions are based on Mixing-Length Theory, which leaves to be desired on a certain number of points (Sec-
tion 1.2.2), especially in that it overly simplifies the description of the turbulent cascade – a simplification that
directly impacts predictions on turbulence–oscillation coupling, since the large range of sizes and life times of tur-
bulent eddies close to the star surface has, as we saw, an important role to play. We also mentioned Reynolds-stress
models as an alternative approach (Section 1.2.3); however, its use has remained limited in the present context, and
the predictions stemming from it have not necessarily done well when confronted to observations (Section 2.3.3).
Another very important avenue of research in this area is the use of 3D simulations to constrain turbulent convec-
tion prescriptions, or more directly mode properties (Section 1.2.1). Compared to other approaches, this has only
become possible recently, with the ever increasing1 computational capabilities of our computers. In particular,
the possibility to use properly averaged 3D simulations to replace the outer layers of 1D models has considerably

1but for how long still?
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improved the physics of the superficial layers in stellar evolutionary models and pulsation calculations. However,
from the point of view of turbulence–oscillation coupling, there is only so much that we can learn from these
simulations. This is primarily because of the artificial treatment of unresolved small scales, which is unavoidable
with our current computational power, and has an important impact on the behaviour of the turbulent cascade.
On another point, 3D simulations can only serve to constrain preestablished analytical prescriptions: they do not

provide with the prescriptions themselves. In particular, they are, more often than not, used to constrain the free
parameters in such or such MLT formalism, thus circling back to the weaknesses of MLT itself. Lastly, these
simulations remain, to this day, very heavy to run, so that they cannot be reasonably used in parametric studies
designed to explore the physics of turbulence–oscillation coupling. In summary, our theoretical understanding of
this coupling still leaves to be desired, and this shows in the large uncertainties surrounding our understanding of
mode physics itself, and in particular the surface effects, as well as the damping mechanisms responsible for the
stabilisation of solar-like oscillations.

3.2 Structure of this manuscript

It is in this very open context that I undertook the work that I present in the rest of this manuscript. It was done
in two stages, seemingly independent from one another, but nevertheless related, and which are the subject of the
two remaining parts of this work.

3.2.1 Part II: Solar-like p-mode asymmetries

The first part of my work has to do with an aspect of turbulence-oscillation coupling that I deliberately left
behind until now: the asymmetry shown by the line profile of solar-like p-modes in the observed power spectrum.
This asymmetry skews the line profile in such a way that they feature slightly more power on their left side than
their right side in velocity observations, while it is reversed in intensity observations. In essence, this is tightly
related to the stochastic excitation of the mode, just like the observed amplitude; unlike the observed amplitudes,
however, the depth of the driving region is very important in explaining the observed asymmetries. Historically,
observed asymmetries have been used to infer to position of the excitation region inside the star, with mitigated
success, primarily because of the lack of realism of the prescriptions that were used. I summarise these efforts in
much more details in Chapter 4. My motivation, by contrast, consisted in using a more realistic excitation model,
coupled with a 3D hydrodynamic simulation of the superficial layers of the star, to constrain the prescription of the
turbulent velocity spectrum – with the same philosophy as Samadi and Goupil (2001). I present this model, and
apply it to the observed solar asymmetries in velocity data, in Chapter 5. I also present how I adapted this model
to intensity measurements, thus shedding light on the physical origin of the asymmetry reversal between the two
observables, in Chapter 6. Chapters 5 and 6 are the subject of two articles that were published in Astronomy and
Astrophysics (Philidet et al. 2020a,b).

Even though many details still need some consideration, the question of mode driving, and the subsequent
asymmetry it entails in solar-like p-mode line profiles, is quite satisfactorily understood. However, the other as-
pects of turbulence-oscillation coupling that constitute mode damping and surface effects are, as I showed in Sec-
tions 2.3 and 2.4, much more sensitive to the specific properties of the coupling. Further theoretical investigation
was therefore needed on this subject, which led me to the second part of my PhD.

3.2.2 Part III: A combined stochastic Lagrangian/SPH approach to turbulence–oscillation cou-

pling

In the second part, I will interest myself with a new approach designed to theoretically describe the turbulent
convection in the presence of oscillations, with the short-term goal of describing the impact of the former on the
latter 1) without having to rely on the hypotheses inherent to MLT prescriptions or Reynolds-stress models, i.e. the
mixing-length hypothesis and the reduction of the entire range of timescales relevant in the turbulent cascade to a
unique typical turbulence timescale, and 2) in a way that allows to relate the underlying properties of turbulence to
the observed properties of the modes, in a direct and physical manner. To that effect, I investigate turbulence models
based on the evolution of the joint-Probability Density Function (or PDF) associated to the turbulent quantities,
and more particularly, I investigate the possibility of modelling this evolution by representing turbulence as a
large set of individual fluid particles, evolving according to stochastic differential equations (or SDE) – a class of
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models referred to as Lagrangian stochastic models. I will first introduce the subject of stochastic processes and
SDE – a necessary mathematical tool in these models –, as well as PDF methods, and in particular Lagrangian
stochastic models and their use in the context of turbulent flow modelling, in Chapter 7. The motivation, in
Part III, is to propose an alternative to both MLT formalisms, Reynolds-stress formalisms, and the use of 3D LES
for our description of the aspects of turbulence-oscillation coupling that we presented in this chapter. In practice,
I followed two different avenues, one analytical, one numerical, which, while distinct in their implementation, are
nevertheless related to each other, and benefit from being developed alongside one another

• in Chapter 8, I will present how a Lagrangian stochastic model can be handled analytically to yield a wave
equation that is stochastic in nature, and consistently encompasses the full effect of turbulent convection.
I will then show how this stochastic wave equation can serve as a baseline framework where surface ef-
fects, damping mechanisms and driving mechanisms alike can be studied, from an analytical point of view.
This formalism offers a way to physically construct analytical prescriptions for the relation between turbu-
lence properties and observed mode properties. Furthermore, it can be used to help disentangle the various
physical contributions to turbulence-oscillation coupling, and therefore shed light into the results obtained
numerically;

• in Chapter 9, I will present a direct, numerical implementation of the Lagrangian stochastic model itself,
in a simplified 1D framework. More particularly, I will show how normal modes of oscillations can be
extracted from the resulting simulation, and their coupling with turbulence studied efficiently. This numerical
approach may become preferable over the analytical approach for more complex Lagrangian stochastic
models, and can also serve as a more efficient way to quantify the prescription offered by the analytical
formalism presented in Chapter 8.

The work presented in Chapter 8 is the subject of an article that was published in Astronomy and Astrophysics
(Philidet et al. 2021), as well as another article in preparation. By contrast, the work presented in Chapter 9 is
only in its first stages, and the only results I detail in this chapter are preliminary results, aiming at validating the
numerical approach.

73



3.2. STRUCTURE OF THIS MANUSCRIPT

74



Part II

Asymmetries of solar-like oscillations

75





4 Mode asymmetry: history and context
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- Permettez-moi de vous dire que ce soir,
je ne suis pas le Premier ministre, et vous
n’êtes pas le président de la République,
nous sommes deux candidats à égalité
[...], vous me permettrez donc de vous
appeler monsieur Mitterrand.
- Mais vous avez tout à fait raison,
monsieur le Premier ministre.

François Mitterrand à Jacques Chirac

I had the opportunity, in Sections 2.2 to 2.4, to show that stochastically excited and damped oscillations, such as
solar-like oscillations, are characterised, in their observed power spectrum, by a Lorentzian line profile. However,
as the resolution reached in helioseismic measurements (both ground-based and space-borne) have increased, it
has become apparent that, just as French politics, the observed line profiles are actually skewed and asymmetric,
in such a way that one side of the line profile has more power than the other. This was first measured in the solar
spectrum, but later confirmed in other stars as well. More precisely, the line profiles in the velocity power spectrum
have more power on their left side than right side, while the opposite occurs in the intensity power spectrum. This
last result, in particular, was particularly puzzling at the time, as one would assume the two power spectra to be
simply proportional to one another: it was quickly dubbed the asymmetry reversal puzzle.

This phenomenon was quickly ascribed to several physical mechanisms. First, it was recognised that the
asymmetries had to do with the p-mode excitation process, and more particularly to the localisation of the source
of excitation in a narrow layer just beneath the surface of the star. This constitutes the dominant mechanism
at play for mode asymmetry, but alternative processes were proposed to explain the asymmetry reversal puzzle:
non-adiabatic effects, correlation of the mode with incoherent convective noise, or opacity effects for instance.

The subject of p-mode asymmetries has been studied through the prism of mainly two different questions. The
first question concerns exclusively the asymmetries in velocity data. Since they are caused by the localisation of
the excitation source, it was not long after their discovery before several authors attempted to constrain the position
of the source using observed asymmetries, in the hope of bringing a better understanding of driving mechanisms.
The second question concerns the asymmetry reversal puzzle, and is twofold: what is the underlying mechanism
at play? and what does observed asymmetry reversal tell us about the physics of the mode? This introduction
is therefore structured in two parts. I first give an account of the observational aspects of solar-like p-mode
asymmetry; after which, in a second part, I present the efforts already made to bring answers to the set of questions
raised above, and why there is still much to be done. As I will show, while considerable progress has been made,
these questions still remain very open.
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where R is the reflection coefficient in amplitude associated to the upper turning point; D is the amplitude reduction
factor undergone by the wave after it has traveled in the evanescent region between the source outside the cavity
to the cavity itself; the frequency variable is recast in the form of the phase shift θ of the wave after a trip back and
forth in the cavity

θ ≡
∫ r2(ν)

r1(ν)
dr kr(ν) , (4.2)

where r1, r2 and kr are the lower turning point, upper turning point and radial wave vector, all dependent on ν (see
Section 2.1.2), and δθ is an additional phase shift incurred by the waves upon each reflection. This latter quantity is

a measure of the asymmetry of the modes. Indeed, the resonant modes correspond to values of θ that are multiples
of π, and in the neighbourhood of such a resonant mode, one has approximately

θ =
π(ν − ν0)
∆ν

+ nπ , (4.3)

where ν0 is the eigenfrequency of the mode, and ∆ν is the difference between the eigenfrequencies of two con-
secutive resonant modes. Plugging this into Equation 4.1, and Taylor-developing the cosines around δθ = 0 and
θ = nπ, one finds

P(θ) ∼ P0
(1 − R + D)2 + Rx2 − D(x − 2δθ)2 + RDδθ2

(1 − R)2 + Rx2
, (4.4)

with

x =
2π(ν − ν0)
∆ν

. (4.5)

As such, it is immediately seen that the line profile P(ν) is symmetric if and only if δθ = 0. In fact, the line profile
then takes the form of a combination between a flat background and a peaked Lorentzian profile, centered around
x = 0 (i.e. ν = ν0), and whose linewidth is given by

Γ =
∆ν(1 − R)

π
√

R
. (4.6)

As a result, the better the reflection, the narrower the resonant peak. This is not surprising, given the analogy with
a Fabry-Perot interferometer whence this analysis stems. If, on the other hand, δθ , 0, the line profile features
asymmetry: the parameter δθ therefore constitutes an asymmetry parameter for the line profile. The authors fitted
the observed line profiles with Equation 4.1, the free parameters of the fit being R, D, ν0, δθ and P0. This allowed
the authors to extract values of δθ for each mode, among other things. The results are shown in Figure 4.4, where
each point represents one mode. This plot has several interesting features. First, the asymmetry parameter δθ
seems to only be weakly dependent on l, and all dots seem to collapse to a unique, slowly varying function of
frequency only. This is very similar to the behaviour of surface effects (see Section 2.4.1), and suggests that the
asymmetries are yet another marker of the physics of the superficial layers of the star. Secondly, the authors found
that δθ takes non-zero, positive values for low-frequency modes, but vanishes around νmax ∼ 3 mHz. Concerning
frequencies higher than ∼ 3 mHz, the authors argued that the formula given by Equation 4.1 is no longer valid,
because then the upper turning point becomes higher than the driving source, meaning that the latter ends up inside
the cavity instead of outside.

Nigam and Kosovichev (1998) proposed an alternative fitting formula for asymmetric line profiles, based on a
polynomial expansion of the profile obtained for an oscillating mode in a non-stratified equilibrium background,
and excited by a point-like driving source (i.e. characterised by a Dirac spatial distribution). They found

P(x) = A
(1 + Bx)2 + B2

1 + x2
+ Bl , (4.7)

where

x =
2(ν − ν0)

γ
. (4.8)
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scales with the linewidth of the mode, which itself vary with the solar activity cycle. To avoid the linewidth-
dependence of the asymmetry parameter, Gizon (2006) proposed to recast it as

χ =
2Bν0

Γ
. (4.12)

This definition also has the advantage of relating the asymmetry directly to the relative position of the peaks (local
maxima) and valleys (local minima) in the power spectrum. Indeed, if ν1 is the frequency of the nearest valley and
ν2 the frequency of the nearest peak, then one has χ = ν2/(ν2 − ν1): the closer the consecutive peak and valley are
to each other, the more pronounced the asymmetry. Because the linewidths of the solar-like p-modes depend so
much on frequency (see Section 2.3.1), it is perhaps more relevant to measure mode asymmetry with the parameter
χ rather than with B.

An alternative fitting model for asymmetric line profiles was used by Severino et al. (2001) on the n = 10,
l = 17 solar p-mode, and later extended to a larger frequency range in the solar p-mode spectrum by Barban et al.
(2004). Their model is based on the assumption that the asymmetries are caused by the presence of convective noise
partially correlated to the coherent, resonant modes (see Section 4.2.2 for more details on the matter). Although
the model can be used regardless of the actual physical origin of p-mode asymmetry, the interpretation of the
best-fit parameter values as representing the properties of the correlated convective noise is of course contingent
on the validity of this assumption. The novelty of their approach is to fit simultaneously the p-mode spectra
in both observables – velocity and intensity –, in addition to the amplitude and phase of the coherent velocity-
intensity cross-spectrum. Each observable is decomposed into a p-mode component (Vp(ν) and Ip(ν)), a coherent,
correlated background component (Vcc and Icc), a coherent uncorrelated background component (Vcu and Icu), and
an incoherent, uncorrelated background component (Vn and In). The p-mode component is assumed to be the
only one that depends on frequency over a given line profile frequency range: if the mode under consideration
is thin enough in the power spectrum, the behaviour of all background components can indeed be considered
frequency-independent. Each component is written thus

Vp(ν) =
∣∣∣Vp(ν)

∣∣∣ exp jΦVp (ν) , Ip(ν) =
∣∣∣Ip(ν)

∣∣∣ exp jΦIp (ν) , Vcc = |Vcc| exp jΦVcc ,

Icc = |Icc| exp jΦIcc , Vcu = |Vcu| exp jΦVcu , Icu = |Icu| exp jΦIcu ,

Vn = |Vn| , In = |In| , (4.13)

where Vn and In only impact the observed spectra through their modulus square, so that their phase is irrelevant
to the model. The p-mode components are assumed Lorentzian, and are characterised by an amplitude, a phase, a
central frequency and a linewidth. Naturally, phases are only defined in terms of phase differences, and the time
origin can be set such that

∣∣∣Vp(ν)
∣∣∣2 =

∣∣∣Vp(ν − ν0)
∣∣∣2 η2

(ν − ν0)2 + η2
, (4.14)

∣∣∣Ip(ν)
∣∣∣2 =

∣∣∣Ip(ν − ν0)
∣∣∣2 η2

(ν − ν0)2 + η2
, (4.15)

ΦVp
(ν) = − arctan

(
η

ν − ν0

)
, (4.16)

ΦIp
(ν) = − arctan

(
η

ν − ν0

)
+ ΦIp−Vp

. (4.17)

Then the four observed spectra (velocity power spectrum, intensity power spectrum, coherence I-V cross-spectrum
and phase of the I-V cross-spectrum respectively) are fitted with the following formulae

PV (ν) =
∣∣∣Vp(ν) + Vcc

∣∣∣2 + |Vcu|2 + |Vn|2 , (4.18)

PI(ν) =
∣∣∣Ip(ν) + Icc

∣∣∣2 + |Icu|2 + |In|2 , (4.19)

COH(ν) =

(
Ip(ν) + Icc

) (
Vp(ν) + Vcc

)⋆
+ IcuV⋆

cu
√

PI(ν)PV (ν)
, (4.20)

ΦI−V (ν) = Arg
[(

Ip(ν) + Icc

) (
Vp(ν) + Vcc

)⋆
+ IcuV⋆

cu

]
, (4.21)
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where ⋆ denotes a complex conjugate. The fit has 14 different parameters for each mode, in the form of 8 ampli-
tudes (Vp(ν = ν0), Ip(ν = ν0), |Vcc|, |Icc|, |Vcu|, |Icu|, |Vn| and |In|), 4 phase differences (ΦIp−Vp

, ΦVcc
, ΦIcc−Vcc

and
ΦIcu−Vcu

), the central frequency ν0 and the linewidth η. The authors showed, in particular, that the resulting fit is
more robust when all four spectra are fitted simultaneously than when each observable is treated separately.

It was noted as early as Duvall et al. (1993) that neglecting asymmetry in the fit leads to a systematic error in the
measurement of mode frequency. The authors remarked that using a fitting formula with and without asymmetry
yields a frequency difference ∆ν ∼ 1.7 δθ, where δθ is their asymmetry parameter. Similar scalings were found for
the Sun by Abrams and Kumar (1996) or Chaplin et al. (1999) for instance – provided the frequency differences
are normalised by the linewidth of the modes –, as well as for other solar-like oscillators by Benomar et al. (2018).
Frequencies obtained with a symmetric fit are systematically found to be higher than those obtained with an
asymmetric fit if B > 0, and vice-versa if B < 0. This is fairly easily understood: a symmetric fit will compensate
the impossibility of giving more power to the wing that deserves it by shifting the central frequency towards it. It
can also be understood in terms of the maximum of the line profile. Indeed, taking Equation 4.7 for instance, one
easily finds that, to leading order in B, the maximum is reached for x ∼ B, i.e for ν = ν0 + BΓ/2. Assuming that
the symmetric fit places the central frequency at the maximum of the line profile, while the asymmetric fit places
it correctly at ν0, then the frequency difference normalised by the linewidth becomes

νB=0
0 − νB,0

0

Γ
∼ B

2
. (4.22)

For the Sun, where B ∼ 0.05 and the linewidth reaches ∼ 10 µHz for the highest frequencies (see Section 2.3.1),
the frequency bias can reach values as high as ∼ 0.5 µHz. While this is negligible compared with the frequency
bias entailed by surface effects (see Section 2.4), it remains largely superior to the spectral resolution attained in
solar observations, and more importantly to the statistical error stemming from the fitting procedure that yields the
inferred value of the mode frequencies, so that it is important to account for the asymmetry of the p-mode line
profiles for an accurate determination of mode frequency, especially for higher frequency modes, characterised by
a larger linewidth. However, as noted by Roxburgh and Vorontsov (2003), frequency differences are less affected
by this bias than absolute frequencies, especially close to the damping plateau, so that seismic indices such as
the large or small separation are likely to constitute less biased diagnosis tools than indices based on absolute
frequencies. Accounting for mode asymmetry is also important so as not to mix observational and theoretical
biases together: as it stands, the surface effect correction applied on frequencies obtained by symmetric fitting
formulae actually correct for both surface effects and the effect of asymmetry at the same time, meaning that any
conclusion drawn on surface effects is biased.

For a long time, asymmetry measurements were limited to the solar spectrum. The reason is that the spectrum
needs to be very well resolved in order for p-mode asymmetries to be accurately inferred. This only became
possible for other solar-like oscillators with Kepler data, once the observation duration was sufficient. Recently,
asymmetries were inferred by Benomar et al. (2018) from the intensity power spectrum of 43 stars from the Kepler

LEGACY sample (whose signal-to-noise ratio is highest). They used Equation 4.7 to fit the observed line profiles,
and quantified the asymmetry parameter with χ (see Equation 4.12). Even though their targets were chosen to
have the highest possible signal-to-noise ratio, it was necessary, in order to improve the robustness of the fit, to
assume a unique asymmetry parameter over the entire measured frequency range for any given star. As I showed
for solar measurements, this assumption is an oversimplification; nevertheless, the authors tested the consistency
of this assumption by comparing the solar asymmetries measured in the different photometric channels (red, green
and blue) of the SPM/Virgo instrument aboard the SoHO spacecraft. They found that the best-fit value of χ is
similar in all channels for high-frequency and high-signal-to-noise ratio modes, but that it is no longer the case for
lower frequency modes, whose signal-to-noise ratio is much smaller. The authors chose to consider an average
of χ over all three channels, banking on the fact that the strong assumption that a unique value of χ exists for all
modes under consideration in a given star is sufficient to compare the asymmetries across the HR diagram. Their
results are shown in Figure 4.6. Shown in the figure is the asymmetry χ as a function of the stellar parameters Teff

(effective temperature) in the right panel, and g (surface gravity) in the left panel, where each point represents one
star. The figure shows a clear trend, with intensity asymmetries being negative for hotter and more massive stars
and positive for colder and less massive stars. They place the limit at Teff ∼ 5700 K, and log(g) ∼ 4.4, which is
incidentally not too far from the solar parameters. The authors also investigated, as it had been done for the Sun,
the effect on the frequency determination of not accounting for mode asymmetry. They found that, because of
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where c is the speed of sound, N the Brünt-Väisälä frequency, and h is defined by Equation 2.64. The first-
derivative-term can be eliminated by introducing the new wave variable

Ψ(r) ≡ c

rh1/2
ξ̃r(r) ≡ ξ̃r

x
, (4.24)

in which case one gets a Schrödinger-type equation

d2Ψ

dr2
+

[
ω2

c2
− V(r)

]
Ψ = 0 , (4.25)

with an acoustic potential given by

V(r) ≡ −1
x

d2x

dr2
+

2
x2

(
dx

dr

)2

+
N2

c2
. (4.26)

The shape of the acoustic potential defines the cavity within which the modes develop: in particular, for a mode
of angular frequency ω, the regions where ω2/c2 > V form the resonant cavity (where the eigenfunction Ψ(r)
has an oscillatory behaviour), whereas the regions where ω2/c2 < V form the evanescent regions (where the
eigenfunction has a decaying exponential behaviour). With this in mind, let me consider the simplest case where
the acoustic potential forms a square well. Since I consider a radial mode, the inner turning point is at the center
of the star, while the upper turning point is almost at the surface. The boundary condition at the center imposes
perfect reflection, but this is not the case at the surface, where part of the energy of the mode is lost through the
evanescent region. Therefore, the well should have a wall of infinite height at the center, and a wall of finite height
at the surface. Furthermore, I will consider that the equilibrium sound speed is uniform throughout the entire star,
so that I can replace the radial variable r with an acoustic depth variable τ, defined through its differential form
dτ ≡ dr/c. Finally, I will add, ‘by hand’, the effect of the linear damping as an additional linear term on the left-
hand side of the wave equation (Equation 4.25), and the effect of the localised driving as a point-like source with
no frequency dependence. Piecing all these ingredients together yields the following toy model wave equation

d2Ψ

dτ2
+

(
ω2 − V(τ) + jωγ

)
Ψ = δ(τ − τs) , (4.27)

where γ is the damping rate of the mode, δ is the Dirac distribution, τs is the acoustic depth of the point-like source,
and the acoustic potential has a square-well shape

V(r) = +∞ if τ < 0 ,

0 if 0 < τ < a ,

α2 if a < τ . (4.28)

In this model, a represents the acoustic length of the cavity, and corresponds to the time it takes for the sound waves
to travel from one side of the stellar radius to the other. As for α, it represents the acoustic cut-off frequency, above
which waves are no longer confined within the square well. This toy model corresponds to the wave equation
considered, for instance, in Section II of Abrams and Kumar (1996). The wave equation, together with appropriate
boundary conditions (namely that Ψ should vanish at the center, and the growing exponential solution should be
filtered out at the surface) is straightforwardly solved: the detailed calculations can be found in Appendix C of
Philidet et al. (2020a). The value of the acoustic depth related to the layer at which the modes are observed (which
we will denote as τobs) being fixed, the observed wave variable becomes a function of angular frequency ω alone,
and depending on whether the source is inside or outside the well, one finds1 (Abrams and Kumar 1996)

Ψobs(ω) = −N(ω)
D(ω)

exp−ωo(τobs−a) , (4.29)

with

D(ω) = ωi cosωia + ωo sinωia , (4.30)

1The solution given here is only valid if a, τs < τ, meaning the layer at which the mode is observed is located higher than both the upper
turning point of the mode and the point-like source of excitation. This corresponds to what happens in practice, since modes are observed
in the atmosphere of the star, outside the acoustic cavity of the modes.
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and

N(ω) = sinωiτs if τs < a (4.31)

ωi cosωia sinhωo(τs − a) + ωo sinωia coshωo(τs − a) if a < τs . (4.32)

(see also Philidet et al. 2020a, Appendix C), where ω2
i ≡ ω2+ jωγ and ω2

o ≡ α2−ω2− jωγ. The observed quantity,
then, is |Ψobs(ω)|2.

Naturally, because I considered an inhomogeneous wave equation with a forcing term, non-trivial solutions are
found for every value of ω, not just for the eigenvalues of the corresponding homogeneous system. This solution
can be split three ways

• the denominator D(ω) of the fraction, which is the same whether the source is inside or outside the mode
cavity, corresponds to the Wronskian2 of two homogeneous solution of the wave equation, one verifying the
boundary solution at the center, the other verifying the boundary solution at the surface. I plot 1/|D(ω)|2 as
a function of ω in the left panel of Figure 4.7. In the absence of damping (i.e. if γ = 0), D would vanish
for all values of the angular frequency ω that coincides with an eigenvalue of the homogeneous system, so
that 1/|D(ω)|2 would diverge for all eigenfrequencies. This is due to the definition of the Wronskian: if ω
is an eigenfrequency, then the solution to the homogeneous system verifies both boundary conditions, and
the Wronskian of two identical solutions if obviously zero. In the presence of a linear damping contribution,
such as in the case of Equation 4.27, 1/|D(ω)|2 does not diverge, and instead takes the form of a set of
Lorentzian profiles centered on each eigenfrequency of the system, each having a width at half maximum
equal to γ. As such, the corresponding spectrum feature regularly spaced resonant peaks, so long as ω < α.
For ω > α, one still finds peaks in the spectrum, but they are much less pronounced, because these waves
are no longer confined modes, and do not undergo any reflection at the surface. Regardless of whether ω is
smaller and greater than the acoustic cut-off frequency, 1/|D(ω)|2 alone yields symmetric line profiles;

• the exponential factor simply represents the evanescent nature of the region outside the cavity: the higher in
the atmosphere the mode is observed, the lower its apparent amplitude. This factor is almost independent of
ω, and does not participate in the shape of the line profiles, except in the sense that it decreases its overall
amplitude;

• the numerator N(ω) of the fraction is the only component that depends on the position of the source τs.
I plot the quantity |N(ω)/D(ω)|2 in the right panel of Figure 4.7. The difference with the left panel is
striking: the line profiles are now distinctly asymmetric. The reason is that N(ω) is not symmetric around
an eigenfrequency of the system. More specifically, if N(ω) increases with ω in the vicinity of an angular
eigenfrequency ω0, then |Ψobs(ω)|2 takes slightly higher values for ω > ω0 than for ω < ω0, and the line
profile will feature positive asymmetry. The argument is reversed if N(ω) decreases with ω in the vicinity of
ω0: then the line profile will feature negative asymmetry. The right-panel of Figure 4.7 also shows that the
amplitude of the modes drastically vary from mode to mode: this is also due to the fact that N(ω) can take
very different values depending on ω0.

The asymmetry of a given mode, therefore, is primarily determined by the direction of variation of |N(ω)|2
with ω. But it can be seen from the calculations carried out in Appendix C of Philidet et al. (2020a) that N(ω)
corresponds to the value of the wave variable Ψω(τ) at τ = τs (to a ω-independent factor), i.e. at the position of
the point-like source of excitation. Since, in these expression, ω and τ systematically appear together in the form
of the product ωiτ, the direction of variation of |N(ω)|2 with ω is exactly the same as the direction of variation of

the wave variable |Ψω(τ)| with τ around the source position. Since the wave variable has an oscillatory behaviour
for 0 < τ < a, and behaves as an evanescent wave for a < τ, the following conclusions can be drawn

1) if τs < a (i.e. if the source is inside the cavity), then the sign of the asymmetry of a mode depends on
the location of the source compared to the nodes and antinodes of the associated eigenfunction. More
specifically, if the source is located between a node below and an antinode above, then the modulus square

2In general, given a n-th order system of linear differential equations, and n solutions to the homogeneous system, then the Wronskian

of these n solutions is the determinant of the n × n matrix consisting of the n first derivatives of each solution. One of its fundamental
properties is that it does not depend on the variable of the linear system. If, in addition, the solutions are linearly degenerate (i.e. if one can
be written as a linear combination of the others), then the Wronskian vanishes.
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predicted asymmetries in the velocity power spectrum to agree as best as possible with observations, quadrupolar
sources have to be located between 700 and 1050 km below the photosphere, while the depth only has to be
between 120 and 350 km for dipolar sources. However, they did not consider the possibility of a mix between the
two kinds of sources, and could not discriminate between a purely dipolar and purely quadrupolar source using
observed asymmetries. Kumar and Basu (2000) extended this analysis to both low- and high-frequency modes.
Using this wider frequency range, they discarded the possibility that the high-frequency modes be excited by a
dipolar source, thus leaving only the possibility of a quadrupolar source. They further concluded that a quadrupolar
source should be located between 60 and 250 km below the photosphere to reproduce the observed asymmetries for
high-frequency modes. Chaplin and Appourchaux (1999) followed a slightly different approach. They considered
only modes of low angular degree l, observed both in velocity with 3 years worth of solar data from BiSON,
and in intensity with the full-disk intensity observations made with SPM/Virgo aboard the SoHO spacecraft, and
extracted their line profiles. In parallel, they computed theoretical line profiles by using the same inhomogeneous
wave equation presented above (Equation 4.27). Then they adjusted the model to match each observed line profile
individually, resulting in a best-fit value for the position of the source for each mode individually. They found that
all modes are excited by sources located between ∼ 50 km and ∼ 400 km. However, they considered the same
simplified square-well potential as I did above, instead of a more realistic solar potential.

This account strikes by the variety of results obtained by different, independent studies, as regards the depth of
the excitation source for solar p-modes. The results either disagree too much with each other, or are subjected to
uncertainties that are too large, which prevents the inferred source position from providing with a realistic picture of
solar-like p-mode excitation, even in the case of the Sun. This begs the question: can the properties of the source
actually be inferred from observations? This question was investigated by Jefferies et al. (2003), by using the
model of Severino et al. (2001) described in Section 4.1 (making use simultaneously of the velocity and intensity
power spectra, as well as the coherence velocity-intensity cross-spectrum, and their relative phase difference), to
fit the observed line profiles, by including both the effect of the source localisation, and the correlation of the
resonant mode with the convective noise, which can also lead to some sense of mode asymmetry (see Section 4.2.2
for more details). They concluded that the depth of the acoustic source cannot be uniquely determined, despite
the simultaneous use of the information contained in all four spectra, thus replying to the above question with a
resounding ‘no’. The exact same conclusion was reached by Wachter and Kosovichev (2005) as well. To conclude
on the subject of source position inference from observed asymmetries, we point out that all the studies presented
above either consider a point-like source of excitation, without any spatial extent, or include the spatial extent of the
source as an additional free parameter, but systematically simplify the spatial profile of the source to be Gaussian
(e.g. Gabriel 1992; Abrams and Kumar 1996; Chaplin and Appourchaux 1999). As I will show in Chapter 5,
these constitute oversimplifying assumptions, and the lack of a realistic description of the spatial profile of the
excitation source is a major drawback of these models, preventing them from enabling the inference of accurate
source properties through the use of observed p-mode asymmetries.

4.2.2 Correlated background

Another source of asymmetry is the partial statistical correlation of the resonant mode with the convective noise
in the background. The correlation stems from the fact that the modes are precisely excited by the turbulent motions
at the top of the convective zone: therefore, there can be interference between the mode and the background
noise, which, as I will now show, can skew the line profile of the modes. This is perfectly equivalent to another
phenomenon occurring in atomic spectroscopy: when a given atomic bound-bound transition can be subjected to
auto-ionisation (i.e. when an electron can be excited or deexcited through interaction with a continuum of free-
free or bound-free transitions of similar energy), then the resulting resonant spectral line can interfere with the
continuum, and the spectral line becomes asymmetric. Such asymmetric atomic line profiles are referred to as
Fano profiles (Fano 1961). The similarity between this phenomenon and the asymmetry of solar-like p-modes was
noted by Gabriel et al. (2001), and gives an invaluable insight into the physical mechanism at play in the realm of
helioseismology.
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Physical mechanism

Let us assume that the resonant mode is intrinsically characterised by a Lorentzian line profile, without asym-
metry3. Then the amplitude of the Fourier transform in time of the signal associated to the mode can be written as

fmode(ω) =
Am

x + j
, (4.33)

where Am is a complex constant representing the amplitude and phase of the mode (although one can always
redefine the time origin so that Am is real), and

x =
2(ω − ω0)
Γ

, (4.34)

ω0 is the angular eigenfrequency of the mode, and Γ its linewidth. If only the mode itself were observed, the
modulus squared of this signal would yield a symmetric, Lorentzian profile. However, there is also noise, part of
which is correlated to the mode, and part of which is not. Denoting the former as Ac exp( jΦc) and the latter as
Au exp( jΦu) (where Ac and Au are the real amplitude of the correlated and uncorrelated background respectively,
and Φc and Φu their phase difference with the mode), then the total, observed power spectrum is

P(ω) =
∣∣∣∣∣

Am

x + j
+ Ac exp jΦc

∣∣∣∣∣
2

+ A2
u . (4.35)

After some algebra, one finds

P(ω) =
A2

m

1 + x2
+

2AmAc√
1 + x2

sin (arctan x + Φc) + A2
c + A2

u . (4.36)

The first term corresponds to the Lorentzian profile one would have obtained if only the mode were there, and
the last two terms correspond to the frequency-independent background. Both these contributions are symmetric
about the angular eigenfrequency ω0 (i.e. around x = 0). But the second term, in general, is not: unless the mode
and the correlated background are in quadrature (i.e. their phase difference Φc = ±π/2), this interference term is
clearly not an even function of x. In fact, if Φc = 0 or π, this term is an odd function of x. In other words, the
interference between the mode and the correlated background is either destructive for x < 0 and constructive for
x > 0, or the other way around. As a result, one of the wings of the mode is elevated by the interference pattern,
and the other is lowered: the mode has an asymmetric line profile. It is apparent, then, that while the degree of
asymmetry depends on a number of properties of the background, including its overall amplitude and its degree
of correlation with the mode, the sign of the asymmetry, on the other hand, only depends on the phase difference
between the mode and the correlated background – that is, between the mode and its source of excitation. Let me
remark, before going further, that a similarity can be drawn between the asymmetries caused by source localisation
(see Section 4.2.1) and the asymmetries caused by the correlated background: they can both be described in terms
of an interference pattern. This begs the question: is there a physical reason for separating the two? or is this
distinction purely artificial, and these two mechanisms really two sides of the same process? Gabriel et al. (2001)
hinted that this was indeed the case. Here, I content myself with remarking that as a result of this similarity, both
mechanisms have the same formal effect on the line profiles: it is therefore rigorously impossible to disentangle

the contribution of source localisation from the contribution of the correlated background using only observations.

Constraints on the solar correlated background

Originally, this mechanism was proposed by Nigam et al. (1998) to explain the asymmetry reversal puzzle
between the velocity and intensity observables. The authors included the correlated background into their model
in the following manner: they considered different source types – monopolar, dipolar, quadrupolar –, and for each

3Of course, that is not true, since we just saw that the localisation of the mode driving source also creates an intrinsic asymmetry.
However, for the sake of this discussion, I will consider that the correlated background is the only source of asymmetry.
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source type computed the Green’s function4 associated to the wave equation

d2Ψ

dr2
+

[
ω2

c2
− V(r)

]
Ψ = S (r) , (4.38)

V(r) =
1
c2

[
ω2

c + L2
l

(
1 − N2

ω2

)]
, (4.39)

where ωc is the acoustic cut-off frequency. They considered that the Green’s function is the same for the ve-
locity and intensity observables. They then expressed the full observed signal by adding an arbitrary frequency-
dependence for the point-like source S (ν), the correlated background C(ν) and the uncorrelated background U(ν)

P(ν) ≡ S (ν, rs) (C(ν) +G(ν)) + U(ν) , (4.40)

where the position of the source rs and the position at which the modes are observed robs are fixed in advance. The
authors then tweaked the position of the source, the relative weight of each source type, as well as the amplitude
of both the correlated and uncorrelated background in each observables, to reproduce the observed power spectra
as best they could. They found that they could only explain the asymmetry reversal between the two observables if
the amplitude of the correlated background was different in velocity than in intensity; varying any other parameter
also changes the sign of the asymmetries, but does so in both observables simultaneously. As a result, the authors
argued that the asymmetry reversal is caused by a much higher correlated background in intensity (where it can be
so high as to reverse the sign of the asymmetries) than in velocity (where it cannot). They remarked, as I did earlier,
that the presence of a correlated background can be explained by the presence of granulation overshoot, which is
responsible both for part of the noise and for the excitation of the modes. However, they offer no explanation as
to why it should be higher in one observable than in the other. Around the same time, Roxburgh and Vorontsov
(1997) proposed the same explanation, except they considered that the correlated background is more important in
velocity rather than in intensity. They argued that the kinematic velocity of the turbulent eddies shooting upwards
while exciting the modes is responsible for the correlated noise signal. On the other hand, Nigam and Kosovichev
(1999) proposed that the higher degree of correlation between the background and the modes in intensity is due
to the slight local photospheric darkening occurring before an acoustic emission event in the superadiabatic layer,
as observed on the surface of the Sun by Goode et al. (1998), as well as in 3D simulations (Stein and Nordlund
1991). Although Rast and Bogdan (1998) only considered uncorrelated, additive background, they remarked that
another explanation for the noise impacting asymmetries differently in both observables could stem from the fact
that modes stand out above noise level much more significantly in velocity than in intensity. They argued that, as
a result, one observes the wings of the modes much further away from the center in velocity than in intensity, so
that the line profiles in velocity are more sensitive to the frequency-dependence of the noise than the line profile in
intensity.

Regardless of the exact physical origin of the difference between the correlated noise levels in velocity and in-
tensity, observed solar asymmetry reversal was used by several authors to constrain the properties of the correlated
background. Kumar and Basu (1999b), for instance, considered that the correlated background could be neglected
in velocity, and only included it in the intensity spectrum. More specifically, they parameterised it through two
different parameters, namely the relative amplitude β of the correlated background compared to the amplitude of
the mode, and their phase difference φ. They computed theoretical asymmetries in velocity (i.e. with β = 0) and in
intensity (i.e. with β , 0) for dipolar and quadrupolar sources, and found that they could explain the asymmetry
reversal provided the parameter β′ ≡ β exp(−η) (where η is the acoustic depth difference between the upper turning
point of the modes and the layer at which the observations are performed) exceeds ∼ 0.1. However, they consid-
ered the oversimplified toy model that I presented in the Section 4.2.1, instead of a more realistic solar acoustic
potential, which makes this figure a somewhat rough approximation. Nevertheless, they computed the expected

4For any given linear differential equation L(Ψ) = S , where L is a linear operator, Ψ the variable of the equation, and S the inhomoge-
neous source term, the Green’s function G(r, rs) is defined as the unique solution to the differential equation, with its associated boundary
conditions, when S (r) = δ(r − rs). Knowing the Green’s function for every value of r and rs is sufficient to solve the full equation with an
arbitrary source term S (r), because the general solution is simply

Ψ(r) =
∫

drs G(r, rs)S (rs) . (4.37)
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value of β for the Sun, using a more realistic wave equation, and found the values to be in the range leading to
a reversal of asymmetry. A more systematic determination of this parameter was performed by Chaplin and Ap-
pourchaux (1999), who also included it only in intensity measurements, but adjusted its value for a set of observed
solar p-modes individually. They found that the ratio αcorrel between the correlated background and the maximum
of the real part of the Green’s function of the modes reaches a minimum around νmax, and a maximum for very
low and very high frequency modes, with values ranging from ∼ 2% to ∼ 5%. However, the authors remarked
that the frequency dependence of αcorrel was primarily due to the difference in the amplitude of the modes them-
selves. Considering instead the product of αcorrel and the amplitude of the modes in intensity – in other words, the
absolute amplitude of the correlated background in intensity –, they found a much less pronounced, monotonously
decreasing frequency dependence.

The idea that only the intensity signal should contain correlated noise was then challenged by Skartlien and
Rast (2000), who used both observed asymmetries in intensity and velocity as well as observed phase differences
between the two spectra to conclude that both observables contain a certain measure of correlated background.
They argued that this was in agreement with the observation that acoustic emission event are systematically ac-
companied not only by a local darkening of the photosphere, but also by the creation of a local downdraft, quickly
followed by a subsequent upflow to take the place of the evacuating gas (Stein and Nordlund 1991; Rast and
Toomre 1993; Rast 1999). The same conclusion was reached by Severino et al. (2001), and later by Barban et al.
(2004), who used the information contained in all four observed spectra (velocity, intensity, and amplitude and
phase velocity-intensity cross-spectra) and fitted the observations with their model consisting of Equations 4.18
to 4.21. However, by construction, their model ascribes the entirety of the asymmetry of the modes and the ob-
served velocity-intensity phase difference to the correlated background, whereas, as I showed in the Section 4.2.1,
part of it is due to the localisation of the source. This analysis was improved by Wachter and Kosovichev (2005),
who included the non-adiabatic effects due to radiative transfer into their model, thus freeing them from having
to include an ad hoc intensity-velocity p-mode phase difference as a free parameter in the fit, and also included
the effect of source localisation on the asymmetry of the modes. Instead of focusing on the dependence of the
noise on frequency, like Severino et al. (2001) and Barban et al. (2004), the authors focused on the simultaneous
determination of source properties (position and multipolar decomposition) and noise properties (amplitude and
phase). While they did not manage to constrain the properties of the source, they did succeed in determining those
of the correlated and uncorrelated background. More specifically, they found that the fraction of the noise that is
correlated to the oscillations is indeed higher in intensity (∼ 4%), but still exists in velocity (< 3%). As for the
phase difference, the authors found it to be almost in phase opposition (between −155◦ and −162◦). However,
these results are considerably tainted by the uncertainty surrounding the source properties. The idea that the ve-
locity signal should also contain a correlated background component is also supported by the findings of Tripathy
et al. (2003) or Sánchez Cuberes et al. (2003) for instance, who reported that the asymmetry reversal is stronger
when the asymmetries are observed locally close to the center of the solar disk than when they are observed near
its limb. The only explanation is that the velocity field we observe is radial in the center and horizontal in the limb;
but only the radial velocity is correlated with the oscillations, so that the correlated background component in the
velocity signal is lower near the limb than near the center. Naturally, this only works if the velocity signal contains
a correlated noise component in the first place. However, these results were contradicted by Tripathy et al. (2009),
who concluded, at complete odds with these earlier results, that their is no difference between measurements near
the limb and near the center, and that therefore only the intensity signal contains a contribution from the correlated
background.

Attempts were also made at predicting the effect of the correlated background on mode asymmetry, for instance
by Chaplin et al. (2008). The authors managed to give a theoretical prescription for the asymmetry parameter
B caused by the correlated background, for any given observable and any given geometrical factor related to
the observational technique. However, they still need to leave the fraction of noise correlated to the source of
excitation as a free parameter, which is precisely that part of the calculations on which concentrates a large part of
the modelling complexity. They also assume that the noise level is the same for all modes. Were these obstacles
to be lifted, however, one could find out what portion of B is caused by the correlated background, with the
understanding that the leftover, compared to observations, is due to source localisation alone, and can therefore be
used for a more accurate determination of the source properties. I conclude on the matter by remarking that in the
absence of such a predictive model, and as I hinted in the beginning of this section, it is extremely complicated to
disentangle the various contributions to mode asymmetry, and therefore it is very complicated to infer properties
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of either the excitation source or the correlated background from observed asymmetries. This is illustrated, in
particular, by the absence of consensus concerning the question of which mode observable is correlated with the
convective noise, an absence of consensus that mirrors the one I already mentioned regarding the properties of the
source (see Section 4.2.1), and that still lingers to this day.

4.2.3 Opacity effect

Physical mechanism

A third physical mechanism that is susceptible to be responsible for mode asymmetry, and more specifically for
asymmetry reversal between velocity and intensity, was proposed by Georgobiani et al. (2003), and has to do with
the modulation of the radiative flux by the oscillations, and more specifically the modulation of the optical depth
that they bring about. The authors used a 3D hydrodynamic simulation of the solar atmosphere calculated with the
STAGGER code (Stein and Nordlund 1998), which they had already used in Georgobiani et al. (2000) to directly
extract normal modes of oscillation from the simulation, and to ‘observe’ the asymmetry reversal directly in the
simulation. This approach presents the distinct advantage of allowing for a precise exploration of the physical
mechanisms at hand, since they are all contained in the output of the simulation5. The authors isolated one normal
mode of oscillation in their simulation box, and ‘observed’ it alternatively at fixed geometrical depth r0 (chosen
such that the horizontal and time average of the optical depth τ at r0 equals unity), and at fixed optical depth
τ = 1. In the following, I will refer to the former as the r-frame, and to the latter as the τ-frame. Because of the
fluctuations due to the noise and to the modes, the layer of optical depth τ = 1 depends on both time and horizontal
coordinates. In particular, one sees deeper in the cooler – and therefore more transparent – intergranular lanes than
in the hotter granules. Therefore, the r-frame and the τ-frame are different. First, the authors remarked that the
amplitude of the modes in temperature was considerably reduced in the τ-frame compared to the r-frame, while
the amplitude in velocity remains unaffected. Furthermore, they remarked that the asymmetry of the line profile
was the same in velocity and temperature in the r-frame, but that the asymmetry in temperature became opposite in
sign in the τ-frame. They also observed the line profile in the emergent intensity spectrum, which features the same
reversed asymmetry as temperature in the τ-frame. Real solar observations are done in the τ-frame: indeed, the
emergent intensity is observed at the τ = 2/3 layer (due to the Eddington-Barbier relations, Mihalas and Mihalas
1984), and the Doppler measurements are made at the formation height of the spectral absorption line under
consideration, which is also τ-dependent. Based on this observation, the authors proposed the following picture:
modal fluctuations of the temperature entail fluctuations of the opacity; opacity fluctuations perturb the geometrical
depth at which modes are observed; because of the steep background temperature gradient at the photosphere,
the observed background temperature undergoes fluctuations in phase with the observation height fluctuations;
the background temperature fluctuations adds up with the modal temperature fluctuations, thus modifying the
observed intensity spectrum. Because the background temperature fluctuations are in phase opposition with the
modal temperature fluctuations, the τ-frame intensity spectrum has a reduced amplitude compared to the r-frame
intensity spectrum. Because there is no background mean velocity gradient at the photosphere (at least in their
simulation), the τ-frame velocity spectrum is identical to the r-frame velocity spectrum. Finally, because the κ− T

relation is non-linear, the intensity spectrum reduction between the two frames depends on the amplitude of the
starting modal fluctuations, which explains why the wing of the temperature line profile that has more power in the
r-frame is more drastically reduced than the other once observed in the τ-frame, so much so that the asymmetry is
reversed.

A toy-model for the opacity effect

In the simulation studied by Georgobiani et al. (2003), the authors showed that the opacity effect described
above is responsible for the asymmetry reversal between velocity and intensity observables. However, their ex-
planation is based on an intrinsically non-linear mechanism. This begs the question: while this effect might be
important in a 3D simulation, where modes have a very high amplitude, does it remain important in the real solar
case, where the modes have much smaller amplitudes? In order to answer this question, I propose the following
toy-model to quantify the extent to which the opacity effect impacts the shape of the line profile of a resonant mode

5On the other hand, the simulation presents the distinct disadvantage of not being the Sun, which, as will become clear later on, makes
the transposition of these results to the real solar case complicated.
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in the temperature power spectrum, both in terms of its overall amplitude and of its asymmetry. It is similar, at
least in its spirit, to the model presented by Severino et al. (2008), although they applied it to the numerical results
of Georgobiani et al. (2003) rather to the actual Sun.

In the following, I denote the Lagrangian temperature perturbation as δT in the r-frame, and the τ-frame
temperature perturbation as δTτ. The two kinds of fluctuations are related through

δTτ = δT −
dT0

dτ
δτ , (4.41)

where δτ refers to the Lagrangian perturbation of the optical depth, and T0(τ) is the unperturbed, equilibrium
temperature. I recall that the optical depth is defined through its differential form by

dτ ≡ −ρκR dr , (4.42)

where ρ is the density and κR the mean Rosseland opacity per unit mass. The minus sign ensures that the optical
depth is zero far away from the star, and increases as one goes deeper into it. Perturbing this linearly, one finds

dδτ = −δρκR dr − ρδκR dr − ρκR dξr , (4.43)

where ξr is the radial fluid displacement. Integrating this between the radius ro at which the mode is observed and
infinity (where δτ = 0), one finds

δτ = −
∫ +∞

ro

dr ρκR

(
δκR

κR
+
δρ

ρ
+

dξr

dr

)
. (4.44)

There is a bit of a subtlety here. Indeed, I argued only moments ago that the modes are observed in the τ-frame,
which means that the geometrical height at which the observations are done is not fixed: in other words, ro depends
on time. However, the difference between the instantaneous and average values of ro can be treated as a first-order
quantity in the perturbative framework of the oscillations. Since the integral is already first-order, accounting
for the perturbation of ro would only add a second-order correction to this expression, which can therefore be
neglected. As such, the value of ro that appears in Equation 4.44 is actually the average geometrical height of
observation, and is constant. Plugging Equation 4.44 into Equation 4.41, one obtains

δTτ = δT +
1

κR,oρo

dT0

dr

∫ +∞

ro

κRρ

(
δκR

κR
+
δρ

ρ
+

dξr

dr

)
dr , (4.45)

where κR,o and ρo are the equilibrium opacity and density at the average height of observation ro.
To close this relation, one has to express the density, opacity and displacement perturbations δκR, δρ and ξr

as a function of the temperature perturbation δT . Using the perturbed continuity equation, one can write δρ/ρ +
dξr/ dr = −2ξr/r. Because the modes are observed in the atmosphere of the star, this curvature term is negligible6.
As such, only the opacity perturbation need be retained in Equation 4.45. Assuming an equation of state of the
form κR ∝ T β, one easily derives

δκR

κR
=
δ
(
T β

)

T β
=

(
1 +

δT

T

)β
− 1 . (4.46)

Note that I do not linearise this expression, because the asymmetry change between the r-frame and τ-frame
intensity spectra are precisely brought about by the non-linearity of this relation (Georgobiani et al. 2003). Close
to the photosphere, the opacity is mainly due to H− absorption, for which the exponent in the κ − T relation
is approximately β ∼ 7.5 for the Sun (Kippenhahn and Weigert 1994). One can then combine Equations 4.45
and 4.46 to obtain the following relationship between Lagrangian and τ-frame temperature perturbations

δTτ = δT −
To

HT κR,oρo

∫ +∞

ro

κρ

[(
1 +

δT

T

)β
− 1

]
dr , (4.47)

6For an order of magnitude: in the Sun ξr is typically of the order of a few tens of meters, while r refers to the radius of the Sun,
∼ 700, 000 km. The ratio between the two is ∼ 10−8, which is indeed negligible compared to the few parts per million of the relative
opacity perturbation entailed by the modes.
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where x = 2(ν − ν0)/Γ is the reduced frequency, the notation y refers to δT/To, the subscript r refers, as before,
to quantities measured in the Lagrangian frame, and j is the imaginary unit. The modulus squared of the above
expression, which corresponds to the power spectrum of the quantity y, indeed yields an asymmetric line profile
corresponding to Equation 4.7

∣∣∣ŷr

∣∣∣2 (ν) = Hr
(1 + Br x)2 + B2

r

1 + x2
. (4.51)

Naturally, the same is true for the τ-frame counterpart of y, where the eigenfrequency ν0 and the linewidth Γ
remain the same, but the height and asymmetry may differ. The inverse Fourier transform of Equation 4.50 is
readily derived, and one finds

yr(t) = Ar exp−πΓt+2π jν0t Θ(t) + j
ArBr

πΓ
δ(t) (4.52)

yτ(t) = Aτ exp−πΓt+2π jν0t Θ(t) + j
AτBτ

πΓ
δ(t) , (4.53)

where the functionsΘ and δ are the Heaviside and Dirac distributions respectively, Ar refers to the amplitude of the
mode in the Lagrangian frame: Ar ≡

√
πΓHr, and Aτ is its τ-frame counterpart. Note that the time series derived

from the Fourier transform should be subjected to a normalising factor, depending both on the convention used
for the definition of the Fourier transform and the total observation time. However, since this factor is identical
for yr and yτ, it is not relevant to the following calculations, and we take it as unity. Plugging Equation 4.52 into
Equation 4.49 and expanding the β-th power, one finds

yτ(t) = (1 − αβ)
(
Ar exp−πΓt+2π jν0t Θ(t) + j

ArBr

πΓ
δ(t)

)
− α

∞∑

i=2

Ci
β

(
Ar exp−πΓt+2π jν0t Θ(t) + j

ArBr

πΓ
δ(t)

)i

, (4.54)

where I simply separated the terms i = 0 and i = 1 from all others in the expansion, and Ck
n refers to the ‘k among

n’ binomial coefficient. Among the many terms arising from the expansion in the second term on the right-hand
side, only the term i = 2 affects the mode under consideration. Indeed, it can be seen that all other terms are either
proportional to exp(2πn jν0t), with n > 2, in which case its influence on the ν = ν0 mode is negligible, or it is of
second or higher order in Br, in which case, given the small typical values of the asymmetry, it is also negligible.
For the same reason, in the i = 2 term, only the crossed term in the expansion of the square is retained. As such,
one finds

yτ(t) = (1 − αβ)
(
Ar exp−πΓt+2π jν0t Θ(t) + j

ArBr

πΓ
δ(t)

)
− αβ(β − 1)

2
× 2 j

A2
r Br

πΓ
δ(t) . (4.55)

Finally, identifying the Θ(t) and δ(t) terms in Equation 4.55 with those of Equation 4.53, one finds

Aτ = (1 − αβ)Ar , (4.56)

Bτ = Br

(
1 − αβ(β − 1)

1 − αβ

)
, (4.57)

which gives the amplitude and asymmetry of the τ-frame intensity spectrum as a function of their Lagrangian-
frame counterparts.

Equations 4.56 and 4.57 encompass every qualitative aspect of the opacity effect as I described them above.
Let me consider separately the effect on mode amplitude and the effect on mode asymmetry

• it can be seen from Equation 4.56 that the amplitude reduction due to the opacity effect is a purely linear
phenomenon, as the ratio Aτ/Ar does not depend on the amplitude of the oscillation. This is further supported
by the fact that it only depends on the i = 0 and i = 1 terms in the expansion of Equation 4.54, which are
precisely the terms that would have been retained, had I linearised the expression from the start. Since both
α and β are positive, we further have Aτ < Ar; if, in addition, the product αβ is sufficiently close to unity –
which, as can be seen from Figure 4.9, is the case throughout the entire p-mode spectrum –, the amplitude
reduction becomes quite significant. As a crude estimate, for instance, taking β = 7.5 and α−1 ∼ 8.5, one
finds Aτ/Ar ∼ 0.1. This is in agreement with the results of Georgobiani et al. (2003), who report in their
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simulation a temperature amplitude reduction from ∼ 30 K to ∼ 2 K (see their Figures 6 and 7 respectively).
Since this ratio does not depend on the amplitude of the modes, a similar amplitude reduction is to be
expected in the real solar case. What this means, therefore, is that the Lagrangian temperature perturbation

is not an appropriate proxy for the emergent intensity spectrum: adopting δT as proxy would lead to a severe
overestimation of the mode amplitude in intensity. I will have the opportunity to elaborate on this point in
Chapter 6, and more specifically in Section 6.3;

• on the other hand, Equation 4.57 shows that the asymmetry change due to the opacity effect is a non-linear
effect, as the ratio Bτ/Br does depend on the mode amplitude Ar. This is further supported by the fact
that, had I linearised the expression for δTτ given by Equation 4.49 from the start, the i > 1 terms in the
above expansion would have vanished, and I would simply have obtained Bτ = Br. As such, in the limit
Ar → 0, the asymmetry remains unchanged by the opacity effect. Equation 4.57 gives us an estimate for the
amplitude threshold above which Bτ starts significantly departing from Br

Athreshold ∼
1 − αβ
αβ(β − 1)

. (4.58)

Again, because the product αβ is fairly close to unity, this threshold is substantially smaller than unity.
Adopting the same crude estimates as above (β = 7.5, α−1 ∼ 8.5), one finds Athreshold ∼ 0.02. In the
3D simulation studied by Georgobiani et al. (2003), plugging in visually-estimated values of the spectral
height and linewidth of the r-frame modal temperature line profile as illustrated in their Figure 6, one finds
Ar ∼ 5 × 10−3, which is only slightly below the predicted value of Athreshold. This explains why their τ-
frame asymmetry Bτ differs from its Lagrangian frame counterpart, but not so much as to have a reversed
sign, as can be visually inferred from their Figure 7. Actual solar modes are, however, of much smaller
amplitude: indeed, they are of the order of several parts per million (ppm) in intensity, meaning that, in
terms of temperature fluctuations, Ar ∼ 10−6 ≪ Athreshold. The solar p-mode asymmetries in intensity
therefore need not be corrected for the non-linear opacity effect, which is negligible at such low amplitudes.

I conclude from this toy model that while the opacity effect is likely to have a drastic impact on the amplitude
of the modes observed in the intensity power spectrum, its effect on mode asymmetry is completely negligible in
the real solar case, and cannot explain the observed asymmetry reversal puzzle. The reason is that the impact of
opacity effects on mode asymmetry is non-linear, and therefore negligible for low-amplitude modes such as the
solar p-modes.

4.3 My work in the context of solar-like p-mode asymmetry

There are two main questions surrounding the subject of solar-like p-mode asymmetry, both of which I tackle
in the scope of this thesis

1) how can the observed asymmetries help us constrain the properties of the source of excitation of the modes,
as well as the properties of the part of the background convective noise that is correlated with the modes?

2) to what physical mechanism is due the asymmetry reversal between the velocity and intensity observables?
and how can we use it to further constrain the properties of the source of excitation and the correlated
background?

As I showed during the course of this introduction, these two questions have been extensively investigated in the
past, but still remain open. Furthermore, the recent observation of skewed line profiles in the power spectrum of
solar-like oscillators other than the Sun (Benomar et al. 2018) not only calls for a revisiting of these two questions,
but also opens up a third one

3) how can the observed scaling law for asymmetry as a function of the stellar parameters (effective temperature
or surface gravity) be used as a tool for seismic diagnosis?

Concerning the first question: as I showed in Section 4.2.1 (for the localised source) and Section 4.2.2 (for
the correlated background), our ability to infer their properties from observations is tightly related to the degree
of realism that goes in the modelled p-mode power spectrum. It is clear from the account given above that all
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attempts, so far, are either based on overly simplified models (in particular concerning the spatial extent of the
source of excitation – which is assumed to follow either a Dirac or a Gaussian distribution –, but also the frequency
or wavelength dependence of the driving source or the correlated background), or on models that contain so many
free parameters that best-fit solutions cannot be uniquely determined (more particularly, since the effect of the
localised source and of the correlated background on mode asymmetry takes rigorously the same form, there is a
strong degeneracy between the inferred properties of both these components). Using observed asymmetries as a
way to constrain these properties therefore requires two things: a model for p-mode excitation that is much more
realistic than what has been tried in the context of mode asymmetry so far; and one, what is more, that contains
much fewer free parameters – in other words, not an empirical prescription, but a physically-grounded model.
In the larger context of solar-like p-mode excitation, several such realistic and physically-grounded models have
been proposed and applied to constrain the properties of the source from observed amplitudes – as I showed in
Section 2.2.2. But these models have so far found very few uses in the context of p-mode asymmetry.

The first task I undertook, in the beginning of my PhD, was therefore to develop a realistic oscillation synthetic
power spectrum model, largely based on the p-mode excitation formalism of Samadi and Goupil (2001). The
model contains a limited number of physical parameters, which allowed me to successfully predict not simply
the amplitude of the modes, but also the full shape of their line profiles, and in particular their asymmetry, while
providing with useful constraints on the few physical parameters present in the model, pertaining to the spatial
and temporal properties of the turbulent velocity spectrum. In the next two chapters, I only concern myself with
radial modes (since, as I had the opportunity to point out in Section 4.1, the observed asymmetry are relatively
independent of the angular degree l, and mainly depend on the frequency of the modes). Furthermore, the work
presented in this first part concerns new theoretical developments, and the short-term goal of this work was to test
the validity of these developments. As such, for the moment, I have only applied it to the case of the most finely
understood solar-like oscillator: the Sun. Chapter 5, then, is devoted to presenting this synthetic power spectrum
model, as well as the results it yielded when applied to the case of solar radial p-modes, with a focus on the velocity
power spectrum only.

Answering the second question requires a model with the same qualities as mentioned above. Having at
my disposal a synthetic power spectrum model for the solar-like radial p-modes in velocity, it was only natural
that I should investigate whether the model could be adapted to intensity observations as well. The short-term
goal, in doing so, was to investigated the second question. But the longer-term motivation was to prepare for
an investigation of the third question. Indeed, at the present time, for stars other than the Sun, only photometric
measurements are resolved enough to allow for a determination of mode asymmetry. Otherwise stated, velocity
asymmetry are only observationally available for the Sun, not for other stars. As such, fully understanding question
2) is actually a prerequisite to even starting to consider question 3). The adaptation of my model to photometric
measurements is the subject of Chapter 6.
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Indulge your passion for science... but let
your science be human, and such as may
have a direct reference to action and
society. Be a philosopher; but amidst all
your philosophy, be still a man.

David Hume

This chapter is devoted to the work of Philidet et al. (2020a). All the details of this work are presented in this
article, which I reproduce in the end of this chapter. I will not present all these details in the body of the thesis,
as this would be redundant. Instead, I focus on the main building steps of my formalism, after which I present the
main results of the application of this model to the solar case.

5.1 The formalism

I showed in Chapter 4 that solar-like p-mode asymmetry stems primarily from two physical sources: the
localisation of the source of excitation, and the convective background correlated with the oscillations. In this
chapter, I build on the excitation formalism of Samadi and Goupil (2001) to describe the shape of the p-mode
line profiles as a function of the turbulent velocity spectrum Φi j (see Equation 2.95), in such a way that both
sources of asymmetry are contained in the model. The first step is to express the observed power spectrum in
terms of the Fourier transform in time of the fluid velocity. To do this, I decompose the flow velocity in an
oscillatory component vosc corresponding to the modes, and a background component un corresponding to the
turbulent convection. The total velocity is then Fourier transformed in time, projected along the observer line of
sight, and integrated over the entire solar disk. Then the modulus squared is expanded, yielding three components
in the synthetic power spectrum: one due to the oscillatory component alone, one due to the turbulent background
alone, and a crossed term. Neglecting the turbulent background, on account of its small amplitude compared to the
resonant mode, and the fact that it constitutes an additive noise, and therefore cannot impact the asymmetry of the
modes, one finds (see Philidet et al. 2020a, Eq. 4)

P(ω) =
(∫

dΩ µ̃h(µ)
)2 〈∣∣∣v̂osc(ω)

∣∣∣2
〉
+ 2

∫
dΩ µ̃h(µ)Re

(∫
dΩ h̃(µ)

〈
v̂osc(ω)ûn

⋆(ω)
〉)
, (5.1)

where the integrals span over the observed solar disk, and represent the variable visibility of the radial fluid velocity
between the center and the limb, weighted by the reduced limb-darkening factor h̃(µ), and v̂osc and ûn are the
Fourier transform in time of the oscillatory and background components of the velocity respectively. The observed
power spectrum P(ω) contains two terms. The first term is the contribution of the p-modes to the total observed
velocity: the mode line profiles due to this term only contain the asymmetry due to the source localisation. On the
other hand, the second term is the contribution of the correlated background to the total observed velocity: this
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additional term is susceptible to modify the shape of the mode line profiles, and contains the aforementioned effect
of the correlated background on mode asymmetry.

I now need to model v̂osc(ω). To this end, I use the adiabatic wave equation that I presented in Chapter 2, with
three modifications

• the first modification has to do with the fact that I only consider radial p-modes, so that the Lamb frequency
Ll=0 vanishes. This also means that the Cowling approximation becomes useless, as the perturbation Φ′ of
the gravitational potential is now easily related to the fluid radial displacement ξr. This is done by plugging
Equation 2.24 into Equation 2.25, and discarding all horizontal gradients of the wave variables and the
equilibrium quantities. One finds (Unno et al. 1989)

−dΦ′

dr
= 4πGρ0ξr . (5.2)

Because of this simple relation, the order of the system is not increased by taking Φ′ into account, and the
wave equation remains of second-order in the radial coordinate;

• the second modification consists in not discarding the convective velocity in the wave equation any longer.
More precisely, I retain the non-homogeneous forcing term stemming from the non-linear advection term
in the momentum equation. This results in a source term in the wave equation, which represents turbulent
emission from the perturbation of the Reynolds stress force which I introduced in Section 2.2.2;

• the third modification consists in including the effect of linear damping by adding, by hand, a damping
contribution in the wave equation, similarly to what I did in Equation 4.27 (see also Abrams and Kumar
1996). This extra damping term is characterised by a damping rate γ, for which I use observed solar values
(see Philidet et al. 2020a, Table 1).

With these three modifications, the inhomogeneous wave equation becomes (see Philidet et al. 2020a, Eq. 8)

d2Ψω

dr2
+

(
ω2 + jωΓω

c2
− V(r)

)
Ψω = S (r) , (5.3)

where the wave variable Ψω(r) is related to v̂osc(r, ω) through (see Philidet et al. 2020a, Eq. A.28)

Ψω(r) =
rc(r)

√
ρ0(r)

jω
v̂osc(r, ω) , (5.4)

the acoustic potential is slightly modified compared to Equation 4.26 (because of the inclusion of the perturbed
gravitational potential) to

V(r) =
N(r)2 − 4πGρ0(r)

c(r)2
+

2
x(r)2

(
dx

dr

)2

− 1
x(r)

d2x

dr2
, (5.5)

and the source term is given by (see Philidet et al. 2020a, Eq. 7)

S (r) ≡ r

c(r)
√
ρ0(r)

dp′t
dr
=

r

c(r)
√
ρ0(r)

d
dr

[
ρurur − 〈ρurur〉

]
, (5.6)

where p′t is the Eulerian perturbation of the turbulent pressure, and ur the turbulent part of the radial velocity. As I
mentioned in Section 4.2.1, the general solution of this inhomogeneous wave equation is

Ψω(r) =
∫

drsGω(r, rs)S (rs) , (5.7)

where Gω(r, rs) is the Green’s function associated to the wave equation, i.e. its solution when the source term is
replaced by a Dirac distribution centered on r = rs

S (r) = δ(r − rs) . (5.8)
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It becomes apparent, then, that modelling the wave variable Ψω(r) – and therefore, through Equations 5.1 and 5.4,
modelling the observed power spectrum – requires two ingredients: the Green’s function and the source term.

The first ingredient is obtained numerically, according to the procedure described in Section 3.2 of Philidet
et al. (2020a). In broad lines, I use a solar equilibrium model constructed with the 1D evolutionary code CESTAM,
on top of which a solar atmosphere computed with the CO5BOLD code, averaged temporally and horizontally, is
patched. This provides with the equilibrium quantities appearing in the homogeneous part of the wave equation
(Equation 5.3). The total inhomogeneous wave equation, where the source term is given by Equation 5.8, is then
integrated numerically using a fourth-order Runge-Kutta scheme, with boundary conditions imposing a null radial
displacement at the center, and a vanishing Lagrangian pressure perturbation at the surface. This procedure allows
me to compute the radial profile of the Green’s function Gω(r, rs) for any given angular frequencyω and any source
position rs: it can be considered completely known.

The second ingredient is the statistical properties of the turbulent source of excitation S (r), i.e. those of the
turbulent velocity field. It is precisely those properties that I strive to constrain. More precisely, the first term in
the right-hand side of Equation 5.1 depends on the fourth-order correlation product of the turbulent velocity, while
the second term in the right-hand side depends on its third-order correlation product. The challenge, therefore,
consists in prescribing the form taken by these high-order correlations in the case of stellar turbulent convection.
First, they must be expressed in terms of second-order correlations, through adapted closure relations. This is done,
for fourth-order terms, by adopting the Quasi-Normal Approximation1 (see Philidet et al. 2020a, Eq. 14), and for
third-order terms, by adopting the closure relation of Belkacem et al. (2006), in the scope of the Plume Closure
Model (see Philidet et al. 2020a, Eq. 15). The core idea behind the Plume Closure Model (PCM thereafter) is
the assumption that the gas close to the surface of the star is organised in separate upflows and downflows, each
being characterised by a turbulent velocity that follows a Gaussian distribution. The total velocity field is therefore
characterised by a bi-Gaussian distribution, and the asymmetry between the upflows and downflows – the latter
being more turbulent – skews the total distribution, thus yielding non-zero third-order moments2

Once this is done, only the second-order moment of the turbulent velocity – i.e. its two-point, two-time
covariance – needs to be prescribed. I adopt exactly the same prescription as Samadi and Goupil (2001), and details
of this prescription can be found both in their paper or in the one reproduced in the end of this chapter. In short,
the second-order moment is described in terms of its Fourier transform in space and time Φi j (see Equation 2.95),
which takes the form (see Philidet et al. 2020a, Eqs. 17 and 18)

Φi j(k, ω) ≡
∫

d3k

∫
dω

〈
ui(R, t)u j(R + r, t + τ)

〉
exp j(ωτ+k·r)

=
E(k)
4πk2

(
δi j −

kik j

k2

)
×G × χk(ω) , (5.9)

where the first factor on the right-hand side of Equation 5.9 is the spatial part, written in the case of isotropic
incompressible turbulence, and only depends on the energy spectrum E(k); the second factor G is an anisotropy
factor, relevant in the stellar context where the turbulent eddies are distorted in the radial direction, and given by
(see Philidet et al. 2020a, Eq. B.10)

G ≡
∫ 1

−1
dµ

(
1 − Q2µ2

(Q2 − 1)µ2 + 1

)
, (5.10)

Q2 ≡

〈
u2
θ

〉
〈
u2

r

〉 =
〈
u2
φ

〉
〈
u2

r

〉 , (5.11)

where uθ and uφ are the two horizontal components of the turbulent velocity; and the third factor is the tempo-
ral turbulent spectrum. The spatial turbulent energy spectrum E(k) is then given by the Kolmogorov spectrum,

1I already discussed the shortcomings of this approximation in Section 1.2.3, and it may seem odd that I should adopt it here. But these
shortcomings were related, as I showed, to the third-order moments of the turbulent velocity. By contrast, the dependence of the two-point,
fourth-order moment on space increment is relatively well reproduced by the QNA, as shown by Belkacem et al. (2006). As far as mode
asymmetry is concerned, therefore, the QNA is acceptable to model the fourth-order moment of the turbulent velocity.

2Let me note that the PCM also yields fourth-order moments that are different than in the QNA, so that, strictly speaking, it would have
been more consistent to adopt the PCM for both third- and fourth-order moments at the same time. However, the fourth-order moments
yielded by the PCM and the QNA are not too dissimilar from one another, in particular when it comes to the dependence of the two-point
correlation products on the space increment. Since it is precisely this dependence that is primarily important for mode asymmetry, as the
rest of the derivation presented in this Chapter shows, this apparent inconsistency has, in reality, no bearing on the resulting asymmetries.
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extended to small wavevectors by a constant function, so that (see Philidet et al. 2020a, Eq. 19)

E(k) = 0.652
u2

0

k0
if 0.2 k0 < k < k0 (5.12)

0.652
u2

0

k0

(
k

k0

)−5/3

if k0 < k , (5.13)

where u2
0 ≡

(
u2

r + u2
θ
+ u2

φ

)
/3, the factor 0.652 is introduced so that the turbulent energy spectrum is properly

normalised, and k0 is the injection scale, i.e. the norm of the wavevectors at which the turbulent kinetic energy is
injected into the turbulent cascade (see Section 1.2.1). The turbulent energy spectrum, in this prescription, only
depends on k0 and u0. As for the temporal spectrum, we follow Belkacem et al. (2010) and write it as a truncated
Lorentzian function (see Philidet et al. 2020a, Eq. 23)

χk(ω) =
1

2ωk arctan(ωE/ωk)
1

1 + (ω/ωk)2
if ω < ωE , (5.14)

0 if ωE < ω ,

where ωE is the frequency at which the spectrum is truncated, and ωk is a typical angular frequency associated
to the turbulent eddies of size k. The first factor in the right-hand side of Equation 5.14 is introduced so that the
spectrum is properly normalised. This form is justified by the following arguments: large eddies, having a long
lifetime – i.e. a small value of ωk – have an evolution in time that is dominated by the intrinsic processes happening
inside these eddies, which makes them decay exponentially, thus leading to a Lorentzian spectrum; on the other
hand, the evolution of the small eddies is dominated by their advection by large eddies – an assumption referred
to as the sweeping hypothesis –, thus leading to a Gaussian spectrum (Belkacem et al. 2010). Since the Gaussian
function decreases much more rapidly with frequency than the Lorentzian function, the Lorentzian part of the
temporal spectrum largely dominates the Gaussian part, so that I neglect the latter, and set it to zero. In the scope
of the Kolmogorov hypotheses (Kolmogorov 1941), the typical angular frequency ωk associated to the turbulent
eddies of size k scales as kuk, where uk is the typical velocity of these eddies, given by (Stein 1967)

u2
k =

∫ 2k

k

dk E(k) . (5.15)

However, following Balmforth (1992a), I account for the uncertainty in this scaling relation by introducing a
dimensionless parameter λ such that

ωk =
2kuk

λ
. (5.16)

As for the cut-off frequency ωE in the spectrum, it is related to the timescale over which the eddies of size k are
advected, or swept, by the energy-bearing eddies. It is also referred to as the Eulerian microscale, and is given by
(Belkacem et al. 2010)

ωE = ku0 . (5.17)

The temporal spectrum therefore only depends on u0 and λ.
Putting these two ingredients together – the Green’s function and the statistical properties of the turbulent

velocity – for a set of possible source positions rs located in the region covered by the 3D CO5BOLD simulation
yields, through Equation 5.7, an expression forΨω(r) for any given angular frequencyω. Then, using Equations 5.1
and 5.4, I obtain the observed power spectrum P(ω) for any given angular frequency ω, and for any observation
radius I want. Once the computation is performed for a set of different angular frequencies ω, this provides with an
analytical expression for the velocity p-mode spectrum, containing both the effect of the modes themselves and the
effect of the correlated background, and whose shape can be reconstructed point by point. Naturally, this synthetic
spectrum features resonant peaks centered on the eigenfrequencies of the problem, and if the power spectrum is
computed for a sufficient number of angular frequencies within the linewidth of such a mode, its line profile can
be ‘resolved’, and adjusted with Equation 4.7. This entire procedure yields a value of the asymmetry parameter B

for any given solar radial p-mode.
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However, the implementation of this procedure is contingent on the estimation of the various parameters in-
troduced in the statistical model for the turbulent velocity (i.e. u0, k0, Q2 and λ). Some of these parameters are
accessible directly through the 3D hydrodynamic simulation of the solar atmosphere mentioned above: this is the
case for all one-point statistics of the turbulent velocity, i.e. u0 and Q2. However, k0 and λ depend on the two-point
statistics of the turbulent velocity, and are not as easily extracted from the simulation. I followed two different
models

• in the ‘numerical spectrum’ model, I extracted E(k) directly from the simulation, with the idea that the
relevant part of the energy spectrum pertains to the large, resolved scales of motion, so that the spectrum in
the simulation is a realistic depiction of the actual large-scale spectrum in the Sun. I isolated each horizontal
slice in the simulation, and computed a 2D power spectrum of turbulent velocity in each of them. Integrating
over the angular variable gave me a numerical estimation of E(k) in the simulation. In this model, k0 is no
longer needed, and λ is the only free parameter that remains;

• in the ‘theoretical spectrum’ model, I left k0 as a free parameter, but assumed that it could only take two
values, one below the photosphere and one above. This assumption stems from a similar behaviour observed
for the vertical profile of k0 in 3D simulations (Samadi et al. 2003). The injection scale, therefore, is de-
scribed in terms of its value above the photosphere k0,atm as well as the ratio Rk ≡ k0,int/k0,atm between the
injection scale in the two regions. In this model, the only free parameters that remain are λ, k0,atm and Rk.

These two models are complementary. The ‘theoretical spectrum’ model contains multiple free parameters, so
that no prediction can be made with it; but since they are physical parameters, they can act as control parameters
allowing us to explore the effect of the physics of turbulence on p-mode asymmetry. On the other hand, the
‘numerical spectrum’ model only contains one free parameter, and since this parameter can be related to its physical
role (i.e. the how the lifetime of the turbulent eddies depend on their size), it can actually be constrained by other
means (see for instance Samadi et al. (2001) who constrained it using observed solar p-mode amplitudes); this
model allows me to give quantitative predictions regarding the p-mode asymmetries in any stellar model.

As I warned the reader in the beginning of this chapter, I have not detailed all the calculations leading to
this formalism. However, it is important, for more clarity, to explicitly spell out the hypotheses and assumptions
I made in the course of these derivations. While the prescription for the turbulent spectrum is similar to the
choice of Samadi and Goupil (2001), this approach significantly diverges from their, in the sense that they were
only interested in the overall amplitude of the modes, while I explicitly solve for their entire line profile, through
the derivation of the Green’s function for all individual frequencies within the line profile of the modes, and its
convolution with the source term. Nevertheless, several underlying hypotheses are common to their work, namely

(H1) I assumed that the length scale of turbulence (i.e. the energy-bearing eddy size) is separated from the scale

of stratification (i.e. the pressure scale height) as well as the scale of the modes (i.e. their wavelength). This
scale separation is not valid in the subsurface layers of the star, where, in particular, the mode wavelength
becomes comparable to the eddy size responsible for the driving of the p-modes. For want of a better
alternative, I nevertheless adopt this approximation;

(H2) I assumed a plane-parallel geometry for the atmosphere of the star. Since I only consider radial modes,
which have radial wavevectors, this assumption is physically justified;

(H3) I considered adiabatic oscillations. As I showed in Section 2.1, this assumption is not verified in the super-
ficial layers of the star. Nevertheless, as I am interested in the velocity power spectrum, and that velocity is a
dynamical variable rather than a thermal variable, non-adiabatic effects are much less likely to significantly
impact the properties of the modes;

(H4) in prescribing the second-order correlation product of turbulent velocity, I assumed a stationary, homo-

geneous and incompressible turbulence. The stationarity is a consequence of the mechanical and thermal
equilibrium conditions. The homogeneity is justified by the fact that the stratification of the equilibrium
medium has very little impact on the driving of the modes (Stein 1967). The incompressible limit requires
a bit more thought, but can ultimately be justified by the fact that the flow remains subsonic in the entire
superficial region of the star, as shown, for instance, by Stein and Nordlund (2001);
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(H5) the one-point statistical properties of the turbulent velocity field – i.e. u0 and Q2 – are extracted from the
CO5BOLD 3D hydrodynamic simulation. Therefore, I only have access to these quantities in the superficial
layers overlapping with the simulation box, meaning that I only considered mode driving in the first outer

2% of the Sun. This assumption is not restrictive, seeing as this is where most of the stochastic excitation
occurs.

Hypotheses (H2) to (H5) are physically justified. This is not so much the case for hypothesis (H1), more specif-
ically for high-frequency modes that have smaller wavelengths, so that the scale separation assumption becomes
questionable3. Nevertheless, observed p-mode excitation rates are correctly reproduced theoretically under hy-
pothesis (H1), so that I adopt the latter throughout the entire p-mode spectrum.

5.2 Results and discussion

In the ‘theoretical spectrum’ model, I tweaked every control parameter to observe how the asymmetry profile4

B(ν) varies with the physics of the solar surface turbulence. The results are collected in Figures 5, 6 and 7 of
Philidet et al. (2020a), which I reproduce in Figure 5.1. In broad strokes, I find that 1) the asymmetry profile
hardly depends on the absolute value of the injection scale k0, but instead 2) it largely depends on the relative value
of the injection scale between the regions located above and below the photosphere, especially for high-frequency
modes; and 3) the asymmetry profile only starts depending on λ if the latter is decreased below ∼ 1.

The first two points show that the relative contribution of the subsurface layers (below the photosphere) and of
the atmospheric layers (above the photosphere) to mode driving is of primary importance for p-mode asymmetry,
more particularly for high-frequency modes. This is in accordance with the introductory discussion proposed in
Section 4.2.1, where I remarked that a source located within the acoustic cavity of the modes creates asymmetry
depending on its position relative to the nodes and antinodes of the eigenfunctions of the cavity, whereas a source
located outside always creates negative asymmetry. When the spatial extent of the driving region is correctly
accounted for, the total asymmetry is a combination of both cases, and it is only natural that it should drastically
depend on the relative weight with which each region contributes to the total driving of the modes. A logical
corollary is that any model for p-mode asymmetry that either considers point-like driving sources, or accounts
for the spatial extent of the source in a non-physical manner – and, to the best of my knowledge, all preexisting
models until now fell into one of these categories–, cannot possibly hope to make any correct inference of the

source properties using observed p-mode asymmetries. I insist, however, on the fact that in the present study,
unlike prior studies on the subject, the goal is not to infer the position or spatial extent of the source: rather, I use
an analytical prescription for the turbulent velocity spectrum to input the position and spatial extent of the source,
and it is the parameters of the turbulence prescription that I infer from the model.

The third point listed above is not as straightforwardly interpreted, but can be ascribed to the two limiting
behaviour of the temporal turbulent velocity spectrum χk(ω). It is flat for low angular frequencies, and follows an
inverse square law for high angular frequencies. The threshold between the two regimes is ω ∼ ωk: depending
on whether the angular frequency of the modes is smaller or greater than ωk, the properties of mode driving –
and therefore, those of the asymmetry profile – are susceptible to be different in the two regimes. Equation 5.16,
with typical solar values of k ∼ 10−6 m−1, uk ∼ 103 m.s−1 and ω ∼ 10−3 rad.s−1, shows that this threshold in ωk

translates into a threshold for λ ∼ 1, which corresponds to the observation I made earlier. Finally, to the results
listed above, I add 4) that the effect of the correlated background on p-mode asymmetry – in the velocity power
spectrum – is negligible compared to the effect of the source localisation, with a relative weight never exceeding
∼ 3%.

Concerning the ‘numerical spectrum’ model, the resulting asymmetry profile is shown in Figure 12 of Philidet
et al. (2020a), which I reproduce in Figure 5.2, and where the value λ = 0.5 constrained by Samadi et al. (2001) is

3If the scale separation is no longer valid, then it is no longer the k = 0 component of the Fourier transform of the fourth-order moment

of the turbulent velocity that interacts with the mode, but a finite k-component instead, where k is the wavevector of the mode. In turn,
this means that the driving of the modes involves two-wavevector-interaction of the turbulent cascade between pairs of wavevectors p and
q such that p + q = k instead of 0. But two such wavevectors p and q are much less likely to be simultaneously characterised by a high
energy in the turbulent cascade if p + q = k than if p + q = 0: mode driving becomes much less efficient.

4In the following, I will use the phrase asymmetry profile to refer to the curve obtained when the asymmetry parameter B of the radial
modes are plotted against the frequency of the modes. Since, as I mentioned in Section 4.1, p-mode asymmetry hardly depends on angular
degree, the asymmetry profile corresponds to the slowly varying function of frequency onto which the asymmetry of all solar p-modes
collapses.
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ABSTRACT

Context. The advent of space-borne missions has substantially increased the number and quality of the measured power spectrum of
solar-like oscillators. It now allows for the p-mode line profiles to be resolved and facilitates an estimation of their asymmetry. The
fact that this asymmetry can be measured for a variety of stars other than the Sun calls for a revisiting of acoustic mode asymmetry
modelling. This asymmetry has been shown to be related to a highly localised source of stochastic driving in layers just beneath the
surface. However, existing models assume a very simplified, point-like source of excitation. Furthermore, mode asymmetry could also
be impacted by a correlation between the acoustic noise and the oscillating mode. Prior studies have modelled this impact, but only
in a parametrised fashion, which deprives them of their predictive power.
Aims. In this paper, we aim to develop a predictive model for solar radial p-mode line profiles in the velocity spectrum. Unlike the
approach favoured by prior studies, this model is not described by free parameters and we do not use fitting procedures to match the
observations. Instead, we use an analytical turbulence model coupled with constraints extracted from a 3D hydrodynamic simulation
of the solar atmosphere. We then compare the resulting asymmetries with their observationally derived counterpart.
Methods. We model the velocity power spectral density by convolving a realistic stochastic source term with the Green’s function
associated with the radial homogeneous wave equation. We compute the Green’s function by numerically integrating the wave equa-
tion and we use theoretical considerations to model the source term. We reconstruct the velocity power spectral density and extract
the line profile of radial p-modes as well as their asymmetry.
Results. We find that stochastic excitation localised beneath the mode upper turning point generates negative asymmetry for ν < νmax

and positive asymmetry for ν > νmax. On the other hand, stochastic excitation localised above this limit generates negative asymmetry
throughout the p-mode spectrum. As a result of the spatial extent of the source of excitation, both cases play a role in the total observed
asymmetries. By taking this spatial extent into account and using a realistic description of the spectrum of turbulent kinetic energy,
both a qualitative and quantitative agreement can be found with solar observations performed by the GONG network. We also find
that the impact of the correlation between acoustic noise and oscillation is negligible for mode asymmetry in the velocity spectrum.

Key words. methods: numerical – turbulence – Sun: helioseismology – Sun: oscillations – line: profiles

1. Introduction

Solar-like oscillations are known to be stochastically excited and
damped by turbulence occurring close to the surface of low-mass
stars (see e.g. Goldreich & Keeley 1977a,b or Samadi et al. 2015
for a review). The power spectral density of such oscillations
is expected to feature a Lorentzian-shaped peak centred around
their eigenfrequencies. This idealised line profile has been exten-
sively used to fit observations (see e.g. Jefferies et al. 1991).
However, as the resolution reached in helioseismic measure-
ments (both ground-based and space-borne) has increased, it has
become apparent that the observed line profiles feature a certain
degree of asymmetry (see e.g. Duvall et al. 1993 for observations
made at the geographic South Pole; Toutain et al. 1998 for data
from the MDI and SPM instruments aboard the SOHO space-
craft).

Since the discovery of this skew symmetry in solar p-
mode line profiles, several studies have been devoted to explain-
ing this feature. In particular, it had been recognised early on
that a source of excitation that is highly localised compared
to the mode wavelength (which we refer in the rest of the

paper as “source localisation”) could lead to a certain degree
of mode asymmetry, depending on the position of the source
(Gabriel 1992, 1993; Duvall et al. 1993; Abrams & Kumar 1996;
Roxburgh & Vorontsov 1995, 1997). Line profile asymmetries
have then been used to infer some properties of the turbulent
source, especially its radial location and its multipolar nature
(see e.g. Roxburgh & Vorontsov 1997; Nigam et al. 1998).

Furthermore, Duvall et al. (1993) noticed an inversion of
the sense of asymmetry between spectrometric and photomet-
ric measurements, with line profiles in the velocity spectrum
featuring more power in their low-frequency wing than in their
high-frequency wing and vice-versa for line profiles in the inten-
sity spectrum. Since intensity perturbations were expected to be
proportional to velocity perturbations, one would have expected
the asymmetries to be the same. Many hypotheses were posited
to explain this puzzling result. Duvall et al. (1993) suggested
that it was due to non-adiabatic effects lifting the proportionality
relationship between the two kinds of perturbations (fluid dis-
placement and temperature) but this hypothesis was later contra-
dicted by Rast & Bogdan (1998). Non-adiabaticity was brought
up again later on by Georgobiani et al. (2003) who suggested
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that the explanation resided in radiative transfer between the
mode and the medium. Indeed, the observed radiation temper-
ature corresponds to the gas temperature at local optical depth
τ = 1. But optical depth depends on opacity, which non-linearly
depends on temperature. Therefore, the temperature fluctuations
due to the oscillating mode entails opacity fluctuations, which
in turn impacts the “observed” radiation temperature. Given the
non-linear nature of the κ−T relation, this modulation decreases
the observed temperature fluctuations more significantly in the
low-frequency wing of the mode than in its high-frequency
wing. Since this radiative transfer does not impact the veloc-
ity measurements, this could explain the asymmetry reversal
between velocity and intensity spectra. Using 3D simulations,
Georgobiani et al. (2003) computed mode line profiles in both
the velocity and the intensity power spectrum alternatively at
mean unity optical depth and instantaneous unity optical depth.
Their results indeed show that the modulation of the “observed”
intensity fluctuations due to radiative transfer could be signif-
icant enough to reverse the sense of mode asymmetry. One of
the hypothesis enjoying the most support for asymmetry rever-
sal, however, is based on the effect of turbulent perturbations
partially correlated with the mode, which thus impact its line
profile (Nigam et al. 1998; Roxburgh & Vorontsov 1997; Rast
& Bogdan 1998; Kumar & Basu 1999). Indeed, a part of these
perturbations is coherent with the mode and, thus, leads to inter-
ference. This interference term may be constructive or destruc-
tive, depending on the phase difference between the mode and
the coherent turbulent perturbations. For frequencies at which
the interference is constructive, the power spectral density is
slightly elevated, whereas it drops slightly for frequencies at
which it is destructive. Typically, in the vicinity of a resonant
mode, the dependence of the phase difference between mode and
turbulent perturbation is such that the interference term is con-
structive for frequencies located in one wing of the mode and
destructive in the other. Therefore, as a result of this interference
behaviour, one of the wings falls off more slowly and the other
more rapidly, leading to mode asymmetry. It has been suggested
that the degree of correlation between the turbulent perturbations
and the oscillation it excites is higher in intensity than in veloc-
ity, so that it changes the sign of mode asymmetry only in the
intensity spectrum. While it is widely accepted that correlated
turbulent perturbations must be taken into account to explain
asymmetries in the intensity spectrum, the question of whether
it has a significant impact on the velocity spectrum remains an
open issue (see e.g. Jefferies et al. 2003).

The possibility that correlated turbulent fluctuations have an
affect on mode asymmetry has led many authors to include them
in their models for the power spectrum. Even though correlated
noise was introduced to explain the particular puzzle of asymme-
try reversal between velocity and intensity measurements, sev-
eral models include correlated noise in the velocity spectrum
as well as in the intensity spectrum. This is the case for the
model developed by Severino et al. (2001) and later used, for
instance, by Barban et al. (2004), which includes three types of
noise (coherent-correlated, coherent-uncorrelated and incoher-
ent) in both the velocity spectrum, the intensity spectrum, and the
velocity-intensity cross-spectrum. They considered, however,
that the “pure oscillation” (without the noise) has a Lorentzian
shape, thus discarding the contribution of source localisation.
This model was later refined by Wachter & Kosovichev (2005)
to take this contribution into account.

These prior studies have one thing in common, however,
and that is that they all treat the various sources of asymmetry
(mainly source localisation and correlated noise) in a simplified,

parametrised fashion. Indeed, the excitation is consistently mod-
elled as a point-like source, with radial position and multipolar
development left as free parameters. This prescription remains
somewhat unsatisfactory in the sense that it does not take into
account the finer properties of the source of excitation, such as
its spatial extent or its dependence on frequency, for instance.
As such, these prior models lack a realistic description of the
source of excitation. Likewise, for models including the effect of
noise on the power spectrum, the various relative amplitudes and
phase differences between modal oscillation and correlated noise
in both spectra are also left as free parameters. The approach
followed by these studies is to find best-fit values for all their
free parameters by fitting their model to observations in order to
localise the source.

In contrast, in the present paper, we follow a different
approach: we model both the source of excitation and the cor-
related background by constraining their properties using an
analytical model of stochastic excitation, coupled with a 3D sim-
ulation of the solar atmosphere. The novelty of our approach lies
in the fact that we do not fit a parametrised model to the obser-
vations but, instead, we predict the dependence of mode asym-
metry on frequency, which we then compare to observations in
order to validate our model. Our model of mode asymmetry is,
therefore, both more realistic (in its description of the source of
excitation) and more complete (in its lack of freely adjustable
parameters). It can then be used to deepen our understanding
of the underlying physical mechanisms behind mode asymmetry
by exploring how varying a given physical constraint impacts
the results yielded by our model. Finally, our model allows for a
much higher predictability of mode asymmetry, which is essen-
tial when it comes to applying these results to other solar-like
oscillators. We note that this paper is devoted to the modelling
of the velocity power spectrum only and, as a result, we do not
address the problem of asymmetry reversal, which is a separate
challenge altogether.

These efforts to model the line profiles of solar-like oscilla-
tions are also necessary in order to correctly infer mode proper-
ties from observations. Indeed, it was discovered early on that
using a Lorentzian shape to fit skew symmetric line profiles
led to a significant bias in the eigenfrequency determination,
which may be higher than the frequency resolution achieved
by helioseismic measurements (Duvall et al. 1993; Abrams &
Kumar 1996; Chaplin et al. 1999; Thiery et al. 2000; Toutain
et al. 1998). Such eigenfrequency determination bias has also
been revealed for solar-like oscillations in stars other than the
Sun by Benomar et al. (2018). Inversion methods used to infer
the internal structure of solar-like oscillators, whether they be
analytical or numerical, require a very accurate determination
of the mode eigenfrequencies. For spectra extracted from very
long time series, the resolution is high enough that this bias in
eigenfrequencies impacts the results obtained by inversion meth-
ods (see e.g. Toutain et al. 1998, who show that the difference
between the sound speed squared inferred from symmetric and
asymmetric fits can reach 0.3% in the core). When fitting these
observations, mode asymmetry must, therefore, be taken into
account. Since it has proven very difficult to determine accurate
mode eigenfrequency without prior knowledge on its line shape,
obtaining an a priori model of p-mode line profiles is of primary
importance.

In this paper, we present a predictive model of solar radial
p-mode line profile in the velocity spectrum. In particular,
we use a realistic model for stochastic excitation, following a
method similar to that of Samadi & Goupil (2001). Furthermore,
we include the effect of correlated turbulent perturbations in the
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model in a non-parametrised way, unlike what was done in previ-
ous works (see e.g. Severino et al. 2001). The paper is structured
as follows: we present the analytical model of the Sun’s velocity
power spectral density in Sect. 2 and its numerical implementa-
tion in Sect. 3. We then present the results yielded by our model
concerning mode asymmetry in Sect. 4. In Sect. 5, we briefly
describe the development of a toy model to describe the impact
of source localisation on mode asymmetry and use it to inter-
pret our results; we also investigate the matter of the influence of
correlated turbulent perturbations. We then confront our results
with the related observations in Sect. 6 and discuss the issue of
eigenfrequency determination bias entailed by the skewness of
the mode line profiles.

2. Modelling the p-mode line profiles

To extract the asymmetries of solar radial p-modes, we first need
to model their line profile in the velocity power spectrum. In this
section, we present the analytical developments that led us to
this model. First, we define the disc-integrated velocity power
spectrum in terms of the radial fluid displacement. We then
present the inhomogeneous, radial wave equation associated to
the acoustic modes and detail how convolving its Green’s func-
tion with its inhomogeneous part gives us access to the velocity
power spectral density.

2.1. Definition of the velocity power spectral density

Before embarking on a discussion of the actual modelling of
the line profiles, the spectrum from which they are extracted
needs to be defined. In this paper, we restrict ourselves to the
study of radial acoustic modes in the Sun. Furthermore, as part
of the definition of the spectrum, we include the effect of limb-
darkening and of disk integration that affect the Sun-as-a-star
measurements. We note, however, that other instrumental effects –
in particular mode leakage – are not accounted for.

To derive an expression for the observed power spectral den-
sity, we separate the total surface velocity into an oscillatory part
uosc and a turbulent part u, where it is understood that the modes
are described by the oscillatory part. The observations made
for the Sun-as-a-star are obtained by integrating the velocities
over the entire solar disk. Neither the mode velocity (for radial
modes), nor the turbulent perturbations depend on the point of
the disk at which it is estimated; however, the projection on
the line of sight n does. This integration over the solar disk is
affected by limb-darkening h(µ) (where µ refers to the cosine of
the angle between the local radial direction and the line of sight).
Furthermore, since it is the turbulent perturbations that excite the
mode, a certain fraction of the former must be correlated with
the latter, so that the contribution of turbulent perturbations to
the velocity spectrum must be considered.

With these considerations, the observed velocity power spec-
tral density can be expressed as

P(ω) =
1∫

dΩ h(µ)

〈∣∣∣∣∣
∫

dΩ h(µ)
(
ûosc(ω) + û(ω)

)
.n

∣∣∣∣∣
2〉
, (1)

where the integration is performed over the solar disk, Ω refers
to the solid angle, n is the unit vector along the line of sight, uosc
is the mode velocity, u represents the fluctuations of the turbu-
lent velocity around its mean value, ω is the angular frequency,
the notation

(
.̂
)

refers to temporal Fourier transform, and 〈.〉

refers to ensemble average. Since we are only considering radial
modes, uosc is exclusively radial. Thus, Eq. (1) becomes

P(ω) =
〈∣∣∣∣∣v̂osc(ω)

∫
dΩ µ̃h(µ) +

∫
dΩ h̃(µ)ûn(ω)

∣∣∣∣∣
2〉
, (2)

where un is the component of the turbulent velocity along the
line of sight. We introduced the reduced limb-darkening h̃(µ) so
that its integral over the solar disk is normalised to unity.

We expand the square in the above expression and we con-
sider that the term containing 〈|ûn|2〉 is negligible compared to
the terms that contain 〈|v̂osc|2〉 and Re

(
〈ûnv̂osc

⋆〉
)

, respectively.
Indeed, the power spectral density is several orders of magnitude
higher for the mode velocity than for the turbulent velocity (typ-
ically, the former is of order 105 m2 s−2 Hz−1, while the latter is
of order 10 m2 s−2 Hz−1, e.g. Turck-Chièze et al. 2004, Fig. 2),
so that

〈|ûn|2〉 ≪ Re
(
〈ûnv̂osc

⋆〉
)
≪ 〈|v̂osc|2〉, (3)

where the notation Re refers to the real part of a complex quan-
tity, and ⋆ refers to its complex conjugate. Finally, we obtain

P(ω) =
(∫

dΩ µ h̃(µ)
)2 〈∣∣∣v̂osc(ω)

∣∣∣2
〉

+ 2
∫

dΩ µ h̃(µ)Re
(∫

dΩ h̃(µ)
〈
v̂osc(ω)ûn

⋆(ω)
〉)
. (4)

The first term corresponds to the spectral power density of
the mode velocity vosc. In itself, the line profile generated by this
term is already asymmetric; indeed, it has been known for a long
time that source localisation can generate line profile asymmetry
(see e.g. Abrams & Kumar 1996; Roxburgh & Vorontsov 1997;
Chaplin & Appourchaux 1999). The second term corresponds
to what the literature commonly refers to as correlated turbulent
perturbations and which is also expected to significantly impact
mode asymmetry in photometric measurements (see e.g. Nigam
et al. 1998; Roxburgh & Vorontsov 1997; Kumar & Basu 1999),
although its importance in velocity measurements is not as clear.

2.2. The inhomogeneous wave equation

Going further, we write the radial wave equation associated to
vosc with the same formalism as Unno et al. (1989). We detail its
derivation in Appendix A. Although we included both the source
terms due to Reynolds stress fluctuations and non-adiabatic pres-
sure fluctuations in the computation detailed in Appendix A,
we only consider the former in the following. Indeed, it is the
dominant source of excitation for acoustic modes in the Sun
(e.g. Belkacem et al. 2008). When it is temporally Fourier trans-
formed, the inhomogeneous wave equation for radial modes
reads:

d2Ψω

dr2
+

(
ω2

c2
− V(r)

)
Ψω = S (r), (5)

where c is the sound speed, the wave variable Ψω(r) is related to
the radial fluid displacement ξr(r) through

Ψω(r) = rc(r)
√
ρ0(r)ξr(r), (6)
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and the acoustic potential and source term are given by

V(r) =
N2 − 4πGρ0

c2
+

2
x2

(
dx

dr

)2

− 1
x

d2x

dr2
,

x(r) =
r
√

I

c
,

S (r) =
r

c
√
ρ0(r)

dp′t
dr

,

I(r) = exp
(∫ r

0

N2

g0
− g0

c2
dr′

)
,

(7)

where r is the radial coordinate, ρ0 is the density, N is the Brunt-
Väisälä frequency, g0 is the gravitational acceleration, G is the
gravitational constant, and p′t refers to the fluctuations of the
Reynolds stress around its mean value. Indeed, only the fluc-
tuating part of the Reynolds stress contributes to the source term
S (r) and its mean value only modifies the equilibrium structure.
The subscript 0 refers to the equilibrium structure and all the
above quantities are dependent on the radius at which they are
estimated, even when not explicitly specified. We note that we
only model radial modes in this paper, so that the wave equation
(Eq. (5)) is of the second order despite the fact that we did not
use the Cowling approximation.

Mode damping is not included in Eq. (5). Indeed, we did not
take into account the feedback of modal oscillations on the equi-
librium state through modulations in the fluid density, pressure,
opacity, etc. Such feedback allows mechanical work and ther-
mal transfer to occur from the mode to the medium in which
it develops; depending on the phase-lag between these differ-
ent modulations energy can be exchanged with the surrounding
medium. However, the modelling of damping rates of solar-like
oscillations is extremely difficult (Samadi et al. 2015). Thus, we
directly introduce damping in the wave equation in the form of
a mode lifetime, or, equivalently, by a (frequency-dependent)
linewidth Γω, so that the wave equation takes the following form

d2Ψω

dr2
+

(
ω2 + jωΓω

c2
− V(r)

)
Ψω = S (r), (8)

where j denotes the imaginary unit and the linewidths Γω are
inferred from observations. We used the line-widths presented
in Baudin et al. (2005) (see their Table 2), which were inferred
from GOLF data. Note, however, that our definition of Γω corre-
sponds to their Γ multiplied by 2π, or equivalently to twice their
damping rate η. We completed these data with low-frequency
line-widths obtained by Davies et al. (2014) through BiSON,
which go as low as ∼900 µHz (see their Table 1). We reproduce
the dependence of the linewidth we used on frequency in Table 1.
We note that damping can potentially be a source of mode asym-
metry. However, the impact of damping on mode asymmetry is
very weak compared to the other sources of asymmetry (Abrams
& Kumar 1996), so that the direct introduction of observed line-
widths in our model is unlikely to have an impact on our results.

2.3. Expression of the velocity power spectral density

By definition, the Green’s function Gω(ro, rs) is the value taken
by the function Ψω at the radius r = ro (the variable ro refers to
the height in the atmosphere at which the spectrum is observed
and the variable rs refers to the position of the point-like source
term), where Ψω is the solution to the inhomogeneous wave
equation,

d2Ψω

dr2
+

(
ω2 + jωΓω

c2
− V(r)

)
Ψω = δ(r − rs), (9)

Table 1. Observational linewidth Γω used in Eq. (8) as a function of
frequency ν.

ν (µHz) Γω (µHz) ν (µHz) Γω (µHz)

972.615 0.0055 2828.15 0.94
1117.993 0.0091 2963.29 0.80
1263.198 0.022 3098.16 1.08
1407.472 0.033 3233.13 1.12
1548.336 0.082 3368.56 1.84
1686.594 0.20 3504.07 2.83
1749.33 0.26 3640.39 3.85
1885.10 0.28 3776.61 5.90
2020.83 0.47 3913.49 8.09
2156.79 0.54 4049.46 10.73
2292.03 0.74 4186.98 12.69
2425.57 0.88 4324.79 16.39
2559.24 0.94 4462.08 17.35
2693.39 0.92 4599.96 26.42

Notes. The data are extracted from Baudin et al. (2005) for frequencies
higher than 1750 µHz, and from Davies et al. (2014) below. When a
frequency laid between these points, linear interpolation was used.

and δ refers to the Dirac function. Once the Green’s function is
known, it can be used to express explicitly vosc in Eq. (4). Indeed,
on the one hand, the general solution to the inhomogeneous wave
equation with a source term S (rs) is

Ψω(ro) =
∫

drs Gω(ro, rs)S (rs), (10)

where the source term is given by Eq. (7). The pulsational veloc-
ity vosc is related to the variable Ψω through

vosc(ro) =
jω

roc(ro)
√
ρ0(ro)

Ψω(ro) . (11)

Using the source term given by Eq. (7) in Eqs. (10) and (11)
and after finally performing an integration by part, we write the
velocity Fourier transform at angular frequency ω as

v̂osc(ω, ro) = − jω

roc(ro)
√
ρ0(ro)

×
∫

d3rs ∇

Gω(rs, ro)
||rs||

c(rs)
√
ρ0(rs)

 .
(
ρ0ûru)(rs)

)
.

(12)

In the following, the observation height ro will be fixed, so
that we drop it for ease of notation. However, since the obser-
vation height depends on the transition line used for the obser-
vations and on whether the observations rely on spectrometric
or photometric measurements, it significantly varies from instru-
ment to instrument (see Sect. 6 for more details).

Using Eq. (12) in Eq. (4) then gives an expression for the
velocity power spectral density in terms of Green’s function
Gω(rs):

P(ω) =
(∫

dΩ µ h̃(µ)
)2 [〈∣∣∣v̂osc(ω)

∣∣∣2
〉
+C(ω)

]
, (13)

where
〈∣∣∣v̂osc(ω)

∣∣∣2
〉

and C(ω) are given, respectively, by

Eqs. (B.19) and (B.28). We note that the effects of limb-
darkening and disk integration are now contained in a single fac-
tor and, thus, these will only have an effect on mode amplitude.
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Since the asymmetry of a mode does not depend on its ampli-
tude, it is not impacted by such a factor.

The calculations leading from Eqs. (4)–(13) are detailed in
Appendix B. In the following, we only provide the main steps
and assumptions. We split the calculations two ways, focussing
separately on the first term inside the brackets of Eq. (13), which
we hereby refer to as the leading term, and on its second term,
which we hereby refer to as the cross term.

2.3.1. Closure models

The calculations leading from Eqs. (4)–(13) involve the eval-
uation of fourth-order and third-order two-point correlation
moments of the turbulent velocity. Therefore, an appropriate clo-
sure model is needed to express these high-order moments as a
function of second-order moments. We devote the following sub-
section to presenting and developing these closure models.

Fourth-order moments. To describe the fourth-order corre-
lation moments of the turbulent velocity, we make use of the
quasi-normal approximation (QNA). This closure model con-
sists in considering that all turbulent quantities are normally dis-
tributed, in which case fourth-order moments can be analytically
expressed as a combination of second-order moments (Lesieur
2008):

〈abcd〉 = 〈ab〉〈cd〉 + 〈ac〉〈bd〉 + 〈ad〉〈bc〉, (14)

where a, b, c, and d refer to any turbulent scalar quan-
tity. Applying the QNA to isotropic, homogeneous turbulence
inhibits energy transfers among modes of different wave num-
bers, thus leading to violations of the energy conservation prin-
ciple (Kraichnan 1957). This is due to the fact the QNA entails
vanishing third-order correlation moments. When it comes to
estimating the fourth-order moments, however, the picture is dif-
ferent. Belkacem et al. (2006a) have studied the validity of the
QNA for two-points, fourth-order correlation moments of the
vertical turbulent velocity, in the form of 〈u2

r,1u2
r,2〉 (where the

indices 1 and 2 refer to two different points in space), using 3D
simulations of the solar atmosphere. They found that the depen-
dence of this correlation moment on the distance ∆X between
the two points is correctly estimated by the QNA but that its
absolute value (which can be taken as the corresponding one-
point moment) is not. Consequently, the amplitude of the modes
are largely underestimated when the QNA is used. However, the
asymmetry of the modes does not depend on their amplitude,
so that mode asymmetry will be unaffected by a discrepancy in
the absolute value of the two-points, fourth-order moments. As
such, the decomposition given by Eq. (14) can be considered
valid when it comes to studying mode asymmetry.

Third-order moments. While the QNA provides an ade-
quate closure relation for fourth-order moments, as mentioned
above, it assumes vanishing third-order moments. Therefore, in
order to estimate these third-order moments, we make use of
another closure model, the Plume closure model (PCM), which
was developed by Belkacem et al. (2006b). The idea behind this
closure model is to separate the flows directed upwards from
those directed downwards (the latter being referred to as plumes)
and to apply the QNA to both separately. The anisotropy between
the two types of flow – in particular, turbulence is more promi-
nent in the downwards plumes (e.g. Goode et al. 1998) – yields
non-vanishing third-order correlation moments:

〈ur(R, t)2ur(R + r, t + τ)〉 =
[
a(1 − a)3 − a3(1 − a)

]
δu3

− a(1 − a)
[
2〈ũd(R, t)ũd(R + r, t + τ)〉

+ 〈ũd(R, t)2〉
]
δu, (15)

where ur is the vertical component of the turbulent velocity, a is
the relative horizontal section of the upflows, δu is the difference
between the mean velocity of the two types of flows (consider-
ing their respective signs, it actually is the sum of their absolute
values), and ũd is the fluctuation of the vertical velocity around
its mean value in the downflows.

We note that, strictly speaking, the third-order moment given
by Eq. (15) and yielded by the PCM are centred. However, we
consider that the mean value of the overall vertical velocity of the
flow is sufficiently low (compared to its standard deviation for
instance) to be neglected. Therefore, these moments may inter-
changeably refer here either to centred or non-centred moments.

We also note that this closure relation is written here in terms
of ũd (i.e. the turbulent fluctuations in the downflows only). It
would be more practical to rewrite it in terms of ur (i.e. the total
turbulent fluctuations). The two are related through

〈ũd(R, t)ũd(R+ r, t+ τ)〉 = 1
1 − a

〈ur(R, t)ur(R+ r, t+ τ)〉 − aδu2.

(16)

2.3.2. The leading term

In the following, we detail the derivation of the first term of
Eq. (13). This term corresponds to the pulsational velocity itself,
without correlated turbulent perturbations. As such, any asym-
metry featured by this term alone represents the effect of source
localisation. The first step consists in separating the scales rele-
vant to the turbulent velocity u from the scales relevant to both
the medium stratification and the oscillating mode (respectively,
the pressure scale height and the mode wavelength). The scale
separation approximation is not realistic in the subsurface layers
(in particular, the mode wavelength is comparable to the typi-
cal correlation length associated with turbulence); however, for
want of a better alternative, we are led to use this approximation
in the following.

Since the integral defining v̂osc(ω) in Eq. (12) contains the
turbulent velocity fluctuations squared, expanding the square of
its modulus will raise these fluctuations to the fourth. The contri-
bution of turbulence to the expression of vosc thus takes the form
of two-points, fourth-order correlation moments of the turbu-
lent velocity. We use the closure relation presented and detailed
in Sect. 2.3.1 to express them as a function of second-order
moments.

We then use analytical expressions for the second-order
moments of the turbulent velocity. We describe the second-order
moment of the ith and jth component of the turbulent velocity in
terms of its spatial and temporal Fourier transform φi j(k, ω). For
isotropic turbulence, it reads (Batchelor 1953):

φi j(k, ω) =
E(k, ω)
4πk2

(
δi j −

kik j

k2

)
, (17)

where E(k, ω) is the specific turbulent kinetic energy spectrum, k
is the norm of the wavevector k, ki and k j are its ith and jth com-
ponent, and δi j is the Kronecker symbol. The integration over
the solid angle of wave vectors k is straightforward, and only
an integral over the norm of k remains. However, solar turbu-
lence close to the photosphere is known to be highly anisotropic.
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To take this anisotropy into account, we follow the formalism
developed by Gough (1977). In this formalism, the integral over
the solid angle of k is simply readjusted by adding an anisotropy
factor given by Eq. (B.10) (see Appendix B in Samadi & Goupil
2001).

Following Stein (1967), we then decompose E(k, ω) into
a spatial part E(k), which describes how the turbulent kinetic
energy is distributed among modes of different wave numbers,
and a temporal part χk(ω), which describes the statistical distri-
bution of the life-time of eddies of wavenumber k

E(k, ω) = E(k)χk(ω). (18)

In order to model the spatial and temporal part of the spec-
trum of turbulent kinetic energy, we followed two different
approaches, described in the following.

The “theoretical spectrum” model. We use theoretical
prescriptions to model both the spatial spectrum E(k) and the
temporal spectrum χk(ω) of turbulent velocity. Based on the
assumption that turbulent flows are self-similar, Kolmogorov’s
theory of turbulence leads to a spatial spectrum E(k) ∝ k−5/3

in the inertial range, between k = k0 (where k0 is the scale at
which the kinetic energy is injected in the turbulent cascade, and
is henceforth referred to as the injection scale) and the dissipa-
tion scale (at which the turbulent kinetic energy is converted into
heat). Given the very high Reynolds number characterising solar
turbulence (Re ∼ 1014), we cast the dissipation scale to infinity.
Then, following Musielak et al. (1994), we extend the turbulent
spectrum below the injection scale by considering that E(k) takes
a constant value for k < k0. This extended spectrum, referred to
as the broadened Kolmogorov spectrum (BKS) was introduced
to account for the broadness of the maximum of E(k). The BKS
can be written as

E(k) =



0.652
u2

0

k0
if 0.2 k0 < k < k0

0.652
u2

0

k0

(
k

k0

)−5/3

if k0 < k,

(19)

where u2
0 ≡ 〈u2(r)〉/3 and the 0.652 factor is introduced so

that the total specific kinetic energy of the turbulent spectrum
matches u2

0/2. Therefore, the spatial spectrum is parametrised
solely by the injection scale k0. However, the injection scale
varies significantly between the sub-surface layers and the atmo-
sphere (Samadi et al. 2003), so that we keep it free in our model
and allow for it to depend on the radial coordinate r.

Following Samadi et al. (2003), we consider a Lorentzian
shape for the temporal spectrum χk(ω), which is supported both
by numerical simulations (Samadi et al. 2003) and by theoretical
arguments. Indeed, a noise described by a stationary, Gaussian
Markov process in time is expected to relax exponentially, mean-
ing that the resulting eddy-time correlation is expected to be a
decreasing exponential, and its Fourier transform a Lorentzian
function (Belkacem et al. 2011). The width ωk associated to
eddy-time correlation is linked to the life-time of the eddies
of wavenumber k. Dimensional arguments would suggest that
ωk ∝ kuk, where uk is the typical velocity associated to the eddies
of wavenumber k. However, there remains a substantial indeter-
mination on the actual value of ωk, so that, following Balmforth
(1992), we consider:

ωk = 2kuk/λ, (20)

where λ is a dimensionless, constant parameter. Overall, the only
input parameters of this model are k0(r) and λ.

The “numerical spectrum” model. In the second model,
we extract the spatial spectrum E(k) from a 3D hydrodynamic
simulation of the solar atmosphere, provided by the CO5BOLD
code (see Sect. 3 for details). This simulation gives us access to
the velocity field as a function of all three spatial coordinates and
time. In order to extract the turbulent spectrum E(k), we average
the velocity field temporally, then isolate each horizontal slice in
the simulated cube and perform a 2D Fourier transform of each
slice separately, thereof which we only retain the radial part. This
gives us a spectrum E(k) for each vertical point in the simulation.
Finally, we renormalise each spectrum so that
∫ +∞

0
dk E(k) =

u2
0

2
, (21)

where u0 is also extracted from the 3D atmospheric simulation,
by averaging the fluid velocity squared temporally and horizon-
tally, and using the definition u2

0 = 〈u2(r)〉/3.
The temporal spectrum χk(ω) is also treated in a slightly dif-

ferent manner than in the “theoretical model” above. Indeed,
the arguments invoked above to justify the Lorentzian shape of
the spectrum, while valid for most of the relevant time scales
associated to turbulent eddies, are no longer valid for shorter
time scales, that is, for higher angular frequencies. Belkacem
et al. (2010) argued that if the time correlation associated to
small eddies indeed originates from their advection by larger,
energy-bearing eddies – a hypothesis referred to as the sweep-
ing assumption – one recovers a Gaussian spectrum instead of
a Lorentzian one. The transition between a Lorentzian spec-
trum, valid for low angular frequencies, and a Gaussian spec-
trum, valid for high angular frequencies, occurs at the cut-off
angular frequency ωE , which is given by the curvature of the
eddy-time correlation function at τ = 0 (Belkacem et al. 2010):

ωE = ku0. (22)

Since a Gaussian spectrum would fall offmuch more rapidly
than a Lorentzian spectrum, we simply consider that χk vanishes
entirely for ω > ωE ,

χk(ω) =



1
2 arctan(ωE/ωk)ωk

1
1 + (ω/ωk)2

if ω < ωE

0 if ωE < ω.
(23)

We modified the prefactor so that χk meets the normalisa-
tion condition. The typical life time of eddies of wavenumber k,
parametrised by ωk, is still given by Eq. (20). We note that the
convolution of the function χk(ω) with itself must be computed
to evaluate the leading term (see Eq. (B.13)). While the convolu-
tion of a Lorentzian function with itself straightforwardly yields
a Lorentzian function with a width twice as large, the convolu-
tion of the modified spectrum above with itself is slightly differ-
ent, but can be obtained analytically as

(χk ∗ χk)(ω) =
1

2πωk

1
1 + (ω/2ωk)2

×
π

(
arctan

(
ωE

ωk

)
− arctan

(
ω − ωE

ωk

))

4 arctan2

(
ωE

ωk

) · (24)

Physically, taking the cut-off frequency into account signif-
icantly decreases the predicted amplitudes for high frequency
modes. As far as mode asymmetry is concerned, we found that
it did not have a significant impact in the “theoretical spectrum”
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5.1. Origin of mode asymmetry

5.1.1. Effect of source localisation on mode asymmetry:
generic arguments

The fact that the source of excitation of a mode is spatially
localised can affect the skewness of the mode line profile in
Fourier space. There are several ways of describing the impact
of source localisation on mode asymmetry.

One way is to make use of the analogy between the develop-
ment of acoustic modes in the stellar cavity and the phenomenon
of optical interference in a Fabry-Pérot cavity. This analogy was
used to account for the acoustic mode asymmetry in the Sun by
Gabriel (1992), Duvall et al. (1993), among others. The idea is
that acoustic, stationary modes in the Sun can be described by
means of two progressing waves, propagating in opposite direc-
tions. Each of these waves follows the same cycle: they prop-
agate one way, get refracted on the lower turning point of the
acoustic cavity, then propagate backwards, get reflected on the
upper turning point, and so forth. As a result of these multiple
reflections and refractions on both turning points, the acoustic
waves pass multiple times through the same regions and, there-
fore, interfere with each other (and with themselves). This inter-
ference pattern leads to the development of resonant modes in
the cavity. What we observe then is the evanescent tail of these
modes in the atmosphere, which lies outside the resonant cavity.

Let us now consider that the source of the waves is located
at a certain point within the cavity. The waves propagating out-
wards and inwards will have travelled over different distances
before interfering with one another and this difference of travel
times will depend on the location of the source. The shape of
the mode line profile is directly related to the dependence of the
phase difference between the outwards and inwards interfering
waves on frequency. Since this phase difference is not exactly
symmetric about the mode eigenfrequency, neither is its line pro-
file; and given that it depends on the source location, mode asym-
metry is indeed a marker of source localisation.

Another physical interpretation of how source localisa-
tion can bring about mode asymmetry has been proposed by
Rast & Bogdan (1998), and later refined by Rosenthal (1998).
They remarked that mode asymmetry could be mathematically
described by the relative position of local maxima (or peaks)
and local minima (or troughs) in the power spectrum. Peaks
located exactly halfway between their neighbouring troughs fea-
ture symmetric, Lorentzian line profiles. However, if one of the
neighbouring trough is closer than the other, the peak in ques-
tion appears skewed and, depending on which trough is closest,
its asymmetry parameter is either positive or negative.

The position of the peaks are simply related to the eigen-
modes of the solar acoustic cavity. As for the position of the
troughs, in the special case of a point-like source of excitation,
with a given multipolar decomposition, the authors showed that
it is related to the eigenmodes of the atmosphere truncated at the
source position, with a vanishing external boundary condition
depending on the multipolar nature of the source. In that inter-
pretation, the position of the troughs thus depends on both the
position and the multipolar decomposition of the source.

Yet another way to describe the impact of source localisa-
tion on mode asymmetry is to consider the eigenfunction of the
mode. In order to illustrate this, we present in Appendix C a
very simplified toy-model of mode excitation, where the source
is considered point-like and the acoustic cavity is simplified to a
square well potential. From this toy-model we draw the follow-
ing conclusion: for a given frequency, the amplitude of the wave
is proportional to the eigenfunction associated with the wave

at the source of excitation. In particular, excitation at a mode’s
antinode is much more efficient than at a mode’s node.

With this conclusion in mind, let us consider the situation
illustrated by Fig. 9. The blue and red curves represent the radial
profile of the acoustic wave for two different angular frequen-
cies. It can be seen that an increase of ω causes the radial profile
of the oscillation to “shrink” radially. Therefore, the amplitude
of the oscillation as seen by the source will either increase or
decrease with ω, depending on its position. More specifically, a
source at r = r1 (see illustration in Fig. 9) will see the amplitude
of the oscillation increase with ω, and a source at r = r2 will
see it decrease. In light of the conclusion presented in the previ-
ous paragraph, it can be deduced that if the source is located at
r = r1, the right wing of the mode line profile will be slightly ele-
vated compared to the left wing, thus leading to positive asym-
metry. Likewise, the asymmetry generated by a source at r = r2
will be negative.

From the illustration in Fig. 9, it is straightforward to see
that the dichotomy between the r = r1 case and the r = r2 case
is based on the relative position of the source and the nodes and
antinodes of the mode, or, in other words, on the sign of the
derivative of the absolute value of the eigenfunction. To be more
specific, one has to separate the case of a source inside and out-
side the acoustic cavity. If the source is inside the cavity, the
r = r1 case (i.e. case where source localisation entails positive
asymmetry) corresponds to any source position located above a
node and below an antinode of the oscillation profile, whereas
the r = r2 case (i.e. the case where source localisation entails
negative asymmetry) corresponds to any source position located
above an antinode and below a node. Here we recall that a node
is a point at which the wave amplitude is zero and an antinode is
a point at which it is maximal. If the source is outside the cavity,
however, it is always as in the r = r2 case and, thus, it always
generates negative asymmetry: indeed, the outside of the cavity
corresponds to an evanescent zone for the acoustic waves so that
the absolute value of the eigenfunction always decreases in this
region.

It should be noted that we only consider this toy-model in
the present subsection. In the following sections, we return to
the discussion of our model, simply using the conclusions drawn
above to interpret the results which it yields.

5.1.2. Correlated turbulent fluctuations

Acoustic modes in the Sun are excited by fluctuations of tur-
bulent nature – more specifically by turbulent fluctuations of
the Reynolds stress or non-adiabatic pressure perturbations. It is
therefore natural that a part of the turbulent fluctuations should
be not only coherent, but statistically correlated with the oscil-
lating mode.

The resulting interference between the mode and the tur-
bulent fluctuations leads, in turn, to mode asymmetry. In order
to illustrate this, let us consider a mode whose line profile is
intrinsically Lorentzian and turbulent fluctuations whose power
spectral density is constant over the width of the mode under
consideration. We then have

P(x) =
∣∣∣∣∣

Am

x + j
+ Ane jφn

∣∣∣∣∣
2

, (31)

where P is the total power spectral density, x = 2(ω − ω0)/Γω
is the reduced frequency (ω0 is the angular eigenfrequency of
the mode, and Γω its linewidth), Am and An are the (real) ampli-
tudes associated to the mode and the noise respectively, φn is the
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Once the power spectral density is reconstructed, we extract its
resonant modes and study their asymmetry. In particular, and
unlike previous attempts to such modelling, we included in our
model the correlation of the oscillating modes with the fluctua-
tions associated to turbulent velocity.

First, the Green’s function associated with the wave equa-
tion was computed numerically. We put the wave equation in
the form of a 1D stationary Schrödinger equation, whose poten-
tial only depends on the equilibrium structure of the Sun. We
extracted the acoustic potential from a solar patched model:
the solar interior is calculated using the 1D evolutionary code
CESTAM and the solar atmosphere is calculated using the 3D
hydrodynamic code CO5BOLD and horizontally averaged. We
integrated the wave equation along the solar radius, and added a
point-like, normalised source to the integration scheme in order
to compute the Green’s function.

Secondly, the source term of the wave equation being of
stochastic nature, we modelled the statistical properties of the
source by means of theoretical developments. We made use of the
adequate closure relation to express the third and fourth-order cor-
relation products of the turbulent velocity as functions of second-
order products; more specifically on their spatial and temporal
Fourier transform. We developed two distinct models: one is based
on theoretical prescriptions for the spatial and temporal spectrum
of turbulent kinetic energy; the other is based on theoretical mod-
elling of the temporal spectrum only, whereas the spatial spec-
trum is extracted from a 3D hydrodynamic simulation of the solar
atmosphere. We refer to the former as the “theoretical spectrum”
model, and to the latter as the “numerical spectrum” model.

The asymmetry B displayed by the modes in our model dras-
tically depends on their frequency ν. This is because the shape of
the eigenfunctions close to the photosphere is very dependent on
ν. We find that B is negative throughout the p-mode spectrum,
and that its behaviour weakly depends on the input parameters
of our model. It drops from −0.01 to −0.05 between 1 mHz and
1.7 mHz, then rises to 0.015 at 3 mHz, and decreases again from
3 mHz to 4 mHz. Above 4 mHz, the behaviour of B(ν) is much
more dependent on the value given to our input parameters and,
in particular, on the injection scale associated to the turbulent
cascade above the photosphere, compared to below the photo-
sphere. This is related to the fact that the contribution of atmo-
spheric turbulence to mode excitation only becomes significant
at high frequency, so that only in this part of the spectrum it may
have an impact on mode asymmetry.

The asymmetry of the modes can have two different ori-
gins: localisation of their source of excitation within a region of
lesser spatial extent than the mode wavelength and correlation
between the oscillating modes and the fluctuations associated
to turbulent velocity. Formally, these two phenomena have the
same impact on mode asymmetry, so that they cannot be sep-
arated using observational data only. Our model allows us to
make this distinction and to study their relative weight in the
total mode asymmetry. We find that the correlation with turbu-
lent fluctuations is negligible in the velocity spectrum, and that
the observed asymmetries are exclusively due to source locali-
sation. More precisely, we interpret the results of our model in
terms of the source position with respect to the various nodes
and antinodes featured by the eigenfunctions of the modes. In
the case of a point-like source of excitation, mode asymmetry
drastically depends on whether it is located within or outside the
mode acoustic cavity. In our model, however, the source of exci-
tation has a certain spatial extent, so that the total asymmetry is
a combination of the contributions from the source outside and
inside the mode acoustic cavity.

We find that it is impossible to interpret even the qualita-
tive behaviour of the asymmetry profile B(ν) by considering that
the source of excitation is point-like (either outside or inside the
modes cavity). On the contrary, taking into account the spatial
extent of the source allows us to reproduce the observed asym-
metries, not only qualitatively, but also quantitatively. This posi-
tive result shows that our model is indeed relevant to describe –
and, more importantly, to predict – acoustic mode asymmetry in
solar-like oscillators. It also shows that any model that assumes
a point-like source of excitation cannot give reliable results as
far as mode asymmetry is concerned. In particular, such a model
would predict positive asymmetries for high-frequency modes,
whereas observations show that all asymmetries are negative
when measured in terms of velocity power spectral density.

Finally, we study the eigenfrequency bias entailed by
neglecting to fit observations with an asymmetric profile. We
find that for the most asymmetric modes, this bias can reach sev-
eral percent of the mode linewidth. Therefore, this bias is higher
for high frequency modes, which are the widest. In particular,
for ν ∼ 4 mHz, the asymmetry parameter is of order B ∼ −0.04,
and the linewidth is of order Γ ∼ 10 µHz, so that the eigenfre-
quency bias is of order δν ∼ 0.2 µHz. This is in perfect accor-
dance with actual biases obtained from observation fit of the
solar spectrum (see Benomar et al. 2018, Fig. 6, topmost panel).
Since the eigenfrequency bias is most pronounced for higher fre-
quency (because it is proportional to the mode line-width, which
is widest at high frequency), it is likely to have a non-negligible
impact on inversion methods, especially those based on asymp-
totic formulae. One must keep in mind, however, that the devi-
ation of the modelled eigenfrequencies from the observed ones,
induced by surface effects, largely dominates the eigenfrequency
bias entailed by symmetric fits.

In this paper, we have restricted ourselves to the study of
solar radial p-modes. Our formalism can be easily adapted to the
study of non-radial modes simply by using a non-radial wave
equation instead of the radial one. However, since the eigen-
function associated to p-modes in solar-like oscillators are very
weakly independent on angular degree l close to the photo-
sphere, which is precisely where the excitation takes place, the
mode asymmetry is not expected to vary significantly with l, at
least as long as l remains reasonably small. Observational data
tend to confirm this (see e.g. Vorontsov & Jefferies 2013, who
report that the spectral parameters of individual modes collapse
to slowly varying functions of frequency only for modes with
l . 100).

We only considered one type of acoustic source in this study,
that is, the turbulent fluctuations of the Reynolds stress. Indeed,
it has been shown by Stein & Nordlund (2001) that this is the
dominant source of excitation of solar acoustic modes (see also
Chaplin et al. 2005; Samadi et al. 2007; Nordlund et al. 2009).
Therefore, our objective was to start by considering only this
source. However, further refinements of the model will have to
include other sources of excitation, in the form of non-adiabatic,
turbulent pressure fluctuations.

Our formalism can also be easily applied to other solar-like
oscillators. Comparing the asymmetries featured by the veloc-
ity spectra of several solar-like oscillators as modelled by the
method presented in this paper and, in particular, the trend fol-
lowed by mode asymmetry with stellar parameters such as effec-
tive temperature or surface gravity, undoubtedly constitutes the
next step of this study. In the long run, mode asymmetry may
serve as a useful tool for seismic diagnoses of solar-like oscil-
lators. However, the one major difference that remains between
the solar case and other stars is that the Sun is the only solar-like
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oscillator for which spectra obtained by spectrometric measure-
ments are sufficiently resolved to allow for a determination of
their mode asymmetry. The asymmetry of acoustic modes of all
other stars can only be observed in intensity spectra. As has been
reported numerous times (see e.g. Duvall et al. 1993), asymme-
try in intensity and in velocity spectra are drastically different.
It is, therefore, necessary to adapt our formalism to the intensity
spectrum, which is another key element of any further consider-
ations on the matter treated here.
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Appendix A: The inhomogeneous wave equation

(Eq. (8))

A.1. Hydrodynamic equations and their linearisation

We linearise the governing, hydrodynamic equations in order
to derive the wave equation with its source term. We consider
that the mode velocity and the turbulent velocity obey separately
their own continuity equation. Furthermore, we only consider
radial modes, such that the mode velocity may we written in
terms of the radial fluid displacement as uosc = dξr/dt er. In this
context, the governing equations are as follows:

– the continuity equation associated to the mode velocity can
be written as

∂ρ

∂t
+ ∇(ρuosc) = 0. (A.1)

Writing ρ = ρ0 + ρ
′ (where ρ′ is the Eulerian density per-

turbation corresponding to the mode), linearising this equa-
tion around a motionless state, and integrating with respect
to time yields

ρ′ + ∇(ρ0ξ) = 0. (A.2)

We then introduce the Lagrangian density perturbation δρ =
ρ′ + (ξ.∇)ρ0, which allows us to write the linearised continu-
ity equation in its final form:

δρ

ρ0
+

1
r2

d(r2ξr)
dr

= 0; (A.3)

– the Euler equation:

∂ρu

∂t
+ ∇:(ρuu) = −∇P + ρg. (A.4)

Unlike what we did for the continuity equation, the veloc-
ity u now includes the mode velocity uosc as well as the tur-
bulent velocity uturb. We further decompose the latter into a
mean value U ≡ 〈uturb〉 (where the notation 〈.〉 refers to an
ensemble average) and fluctuations around this mean value
u ≡ uturb − U. As such, we have

u = U + uosc + u = U + dξr/dt er + u. (A.5)

The last two terms are treated as small perturbations com-
pared to the first one. In the term ∂ρu/∂t, the contribution
of U vanishes because we consider that U is independent of
time (in other words, we consider a stationary turbulence),
and the contribution of u vanishes after ensemble averag-
ing. Concerning the advection term, among the 9 terms of
its development, only 2 survive after the linearisation and
ensemble averaging, namely ∇ : (ρUU) and ∇ : (ρuu). The
first one can be rewritten as ∇pt, where pt is the turbulent
pressure, and is of order zero, so that it will only impact
the equilibrium structure. The second one can be equiva-
lently rewritten as ∇p′t , where p′t refers to the perturbation
of the turbulent pressure. Finally, performing a Fourier trans-
form with respect to time, the radial component of the Euler
equation reads:

−ω2ξr +
1
ρ0

dp′

dr
+
ρ′

ρ0
g0 − g′ = −

1
ρ0

dp′t
dr

, (A.6)

where p′ is the Eulerian pressure perturbation, g0 is the mean
gravitational acceleration, g′ is its Eulerian perturbation and
dp′t/dr refers to the turbulent fluctuations of the Reynolds

stress around its mean value. Since we only aim at modelling
radial modes, using the Cowling approximation to eliminate
g′ would not reduce the order of the final wave equation, and
is therefore of no particular use. Instead, we follow Unno
et al. (1989) and express g′ as a function of the radial fluid
displacement (see their Eq. (14.36)):

g′ = −dφ′

dr
= 4πGρ0ξr· (A.7)

One can note that this is equivalent to saying that the
Lagrangian perturbation of the gravitational potential is zero.

– the equation of state we will use to close the system: after
some algebra, a linearised version of the equation of state in
terms of the Lagrangian perturbations can be derived:

δρ

ρ0
=

1
Γ1

δp

p0
− ρ0T0

p0
∇adδs, (A.8)

where δs corresponds to the turbulent fluctuation of the spe-
cific entropy of the fluid and we define the various thermo-
dynamic coefficients as

Γ1 ≡
(
∂ ln p

∂ ln ρ

)

s

∇ad ≡
(
∂ ln T

∂ ln p

)

s

· (A.9)

In order to facilitate the following calculations, we replace
the Lagrangian pressure perturbation δp with the Eulerian
one p′, and we derive two versions of the linearised equa-
tion of state, one with the Lagrangian density perturbation,
one with the Eulerian one. Noting that the hydrostatic equi-
librium gives us

dp0

dr
= −ρ0g0 , (A.10)

and that by definition of the Brunt-Väisälä frequency, we
have

N2

g0
=

1
Γ1

d ln p0

dr
− d ln ρ0

dr
, (A.11)

and we finally obtain

δρ

ρ0
=

1
Γ1

p′

p0
− g0ρ0

Γ1 p0
ξr −

ρ0T0

p0
∇adδs

ρ′

ρ0
=

1
Γ1

p′

p0
+

N2

g0
ξr −

ρ0T0

p0
∇adδs. (A.12)

A.2. Changing variables

The two variables that we wish to keep in these equations are ξr

and p′. We first make use of Eq. (A.12) to eliminate the density
fluctuations. Noting that c2 = Γ1 p0/ρ0 (where c is the sound
speed), the continuity and Euler equations then yield:

d(r2ξr)
dr

− g0
r2

c2
ξr +

r2

ρ0c2
p′ = r2∇ad

ρ0T0

p0
δs

1
ρ0

dp′

dr
+
g0

c2

p′

ρ0
+ (N2 − ω2 − 4πGρ0)ξr =

ρ0g0T0

p0
∇adδs − 1

ρ0

dp′t
dr
·

(A.13)
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In order to remove ξr from the 0th order term in the ξr equa-
tion, and same for p′, the required variable change is then (Unno
et al. 1989):

r2ξr(r) = ξ̃(r) exp
(∫ r

0

g0

c2
dr′

)
(A.14)

p′ = ρ0η̃(r) exp
(∫ r

0

N2

g0
dr′

)
·

Plugging this into Eq. ((A.13)), we obtain

dξ̃
dr
+

r2

c2
exp

(∫ r

0

N2

g0
− g0

c2
dr′

)
η̃

= r2 exp
(
−

∫ r

0

g0

c2
dr′

)
∇ad

ρ0T0

p0
δs, (A.15)

and

dη̃
dr
+

1
r2

exp
(∫ r

0

g0

c2
− N2

g0
dr′

)
(N2 − ω2 − 4πGρ0 )̃ξ

= exp
(
−

∫ r

0

N2

g0
dr′

) [
∇ad

ρ0g0T0

p0
δs − 1

ρ0

dp′t
dr

]
, (A.16)

where we denote the right-hand side terms of Eqs. (A.15)
and (A.16) as S 0 and S 1 respectively in the following. We also
define

I(r) ≡ exp
(∫ r

0

N2

g0
− g0

c2
dr′

)

x(r) ≡ r
√

I

c
(A.17)

k2 ≡ ω2 − N2 + 4πGρ0

c2
·

The above set of equations can be rewritten as

dξ̃
dr
+ x2η̃ = S 0 (A.18)

dη̃
dr
− k2

x2
ξ̃ = S 1.

We can now eliminate η̃ to get a single second-order wave
equation. Using the first of Eq. (A.18) to express η̃ as a function
of ξ̃, and plugging it in the second equation, we get the following
equation:

d2ξ̃

dr2
− 2

x

dx

dr

dξ̃
dr
+ k2ξ̃ =

dS 0

dr
− 2

x

dx

dr
S 0 − x2S 1· (A.19)

Similarly to what has been done for the first change of vari-
ables, we wish for the left-hand side to contain no first-order
term, but only second-order and 0th-order ones. Thus we intro-
duce yet another variable: Ψ(r) ≡ ξ̃/x. Plugging this new vari-
able into Eq. (A.19), we easily obtain a wave equation that
assumes the form of a 1D stationary Schrödinger equation

d2Ψ

dr2
+

(
ω2

c2
− V(r)

)
Ψ =

1
x

(
dS 0

dr
− 2

x

dx

dr
S 0 − x2S 1

)
, (A.20)

with an acoustic potential V(r) that only depends on the star’s
equilibrium state:

V(r) =
N2 − 4πGρ0

c2
+

2
x2

(
dx

dr

)2

− 1
x

d2x

dr2
· (A.21)

A.3. The source term

With the above notations, the parameters intervening in the
source term of Eq. (A.20) have the following expressions:

S 0(r) = r2 exp
(
−

∫ r

0

g0

c2
dr′

)
∇ad

ρ0T0

p0
δs

S 1(r) = exp
(
−

∫ r

0

N2

g0
dr′

) [
∇ad

ρ0g0T0

p0
δs − 1

ρ0

dp′t
dr

]
(A.22)

x(r) =
r

c
exp

(
1
2

∫ r

0

N2

g0
− g0

c2
dr′

)
·

Furthermore, one can easily derive the following relation-
ship between ∇ad and αs ≡ (∂P/∂s)ρ by means of the adequate
Schwarz relation:

∇ad
ρ0T0

p0
=

αs

ρ0c2
· (A.23)

After some manipulations, one finally obtain the source term in
the form:

S (r) =
r

cρ0
exp

(
−1

2

∫ r

0

N2

g0
+
g0

c2
dr′

)

×
[
αsδs

d
dr

ln
(
αsδs

ρ0

)
− αsδs

(
N2

g0
+
g0

c2

)
+

dp′t
dr

]
· (A.24)

Finally, since

N2

g0
+
g0

c2
= −d ln ρ0

dr
, (A.25)

this expression can be drastically simplified to

S (r) =
r

c
√
ρ0(r = 0)ρ0(r)

(
d(αsδs)

dr
+

dp′t
dr

)
· (A.26)

This form clearly shows that the source term can be split
three ways: a monopolar source term (proportional to δsdαs/dr)
due to non-adiabatic pressure fluctuations in a stratified environ-
ment, a dipolar term (proportional to αsdδs/dr) due to a strat-
ification in the non-adiabatic pressure fluctuations themselves,
and a quadripolar term (proportional to dp′t/dr) due to Reynolds
stress fluctuations. In the following, we only consider this last
term but we also show here how the effect of non-adiabaticity
can be introduced as well.

To conclude, note that the value of the fluid density at the
centre of the star ρ0(r = 0) appears both in the definition of
the variable Ψ and in the source term S (r). This is due to the
particular change of variable we have performed, and it can be
factored out of the wave equation. Finally, we can put the wave
equation in the following form:

d2Ψ

dr2
+

(
ω2

c2
− V(r)

)
Ψ = S (r), (A.27)

with V(r) given by Eq. (A.21), and the source term and wave
variable are given by

S (r) =
r

c
√
ρ0(r)

(
d(αsδs)

dr
+

dp′t
dr

)
(A.28)

Ψ(r) = rc(r)
√
ρ0(r)ξr(r).
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Appendix B: From the Green’s function to the

power spectral density

Here we detail the calculations carried out to obtain the expres-
sion of the velocity power spectral density (Eq. (13)) as a func-
tion of the Green’s function associated with the homogeneous
wave Eq. (8). Note that these calculations correspond to the “the-
oretical spectrum” model described in Sect. 2.3.2. The calcula-
tions in the “numerical spectrum” model being fairly similar, we
do not detail it. We start with the development given by Eq. (4),
with the expression of v̂osc given by Eq. (12). We detail the treat-
ment of both terms in the development (4) (leading term and
cross term) separately.

B.1. The leading term

For more clarity, in the following, we introduce

Xω(r) ≡ Gω(r)
||r||

c(r)
√
ρ0(r)

· (B.1)

We then have
〈∣∣∣v̂osc(ω)

∣∣∣2
〉

=

〈
ω2

r2
oc2

oρ0(ro)
×

"

d3rs1d3rs2

(
∇Xω.ρ0ûru

)
(rs1)

×
(
∇X⋆

ω .ρ0ûru
⋆
)

(rs2)
〉
, (B.2)

where ro is the radius at which the spectrum is observed, co is
the speed of sound at that radius, and the notation ⋆ refers to the
complex conjugate.

We then perform the following change of variable: R =

(rs1 + rs2)/2 and r = (rs1 − rs2)/2, the former being a “slow”
variable, and the latter a “fast” variable. This allows us to sepa-
rate the scales relevant to the turbulent velocity u from the scales
relevant to the medium stratification and the mode wavelength,
with turbulent quantities only relevant in the r scale and the strat-
ification and Green function only relevant in the R scale. The
scale separation approximation is not realistic in the subsurface
layers (in particular, the mode wavelength is comparable to the
typical correlation length associated with turbulence); however,
for want of a better alternative, we are led to use this approxima-
tion in the following.

Therefore, we make the assumption that the second-order
correlation product of the turbulent velocity vanishes for lengths
much shorter than the scale associated to the variations of the
equilibrium structure. Being able to separate the two scales, as
well as the fact that, for radial modes, Xω only depends on the
radial coordinate, allows us to rewrite the leading term as

〈∣∣∣v̂osc(ω)
∣∣∣2
〉
=

ω2

r2
oc2

oρ0(ro)

×
∫

dm

∣∣∣∣∣
dXω

dR

∣∣∣∣∣
2

ρ0(R)
∫

d3r

〈
û2

r (0, ω)û2
r

⋆

(r, ω)
〉
, (B.3)

where we have dropped the variable R in favor of the more prac-
tical mass variable m. We note that we can only perform this
change of variable because the wave equation is radial so that
the function Xω(r) only depends on the radial coordinate.

In the following, we focus on establishing the expression of
the integral over the fast variable r. By definition of the temporal

Fourier transform appearing in said integral, we have
∫

d3r

〈
û2

r (0, ω) û2
r

⋆

(r, ω)
〉

=
1

(2π)2

"

d3rdτ e− jωτ
〈
u2

r (0, 0) u2
r (r, τ)

〉
. (B.4)

We then use the Quasi-Normal Approximation (hereby
abbreviated QNA), under which any fourth-order correlation
product can be decomposed into a sum of three second-order
correlation products, so that (Lesieur 2008)

〈
u2

r (0, 0)u2
r (r, τ)

〉
= 2 〈ur(0, 0)ur(r, τ)〉2 + 〈ur(0, 0)〉2 〈ur(r, τ)〉2 .

(B.5)

The last term does not depend on τ or r if the turbulence
is homogeneous and uniform, and thus yields zero when the
Fourier transform is performed. We can then write
∫

d3r

〈
û2

r (0, ω)û2
r

⋆

(r, ω)
〉

=
2

(2π)2

"

d3rdτ e− jωτ 〈ur(0, 0)ur(r, τ)〉2 . (B.6)

Using the Parseval identity, we can express this as an integral
over wave vectors k and angular frequencies ω
∫

d3r

〈
û2

r (0, ω)û2
r

⋆

(r, ω)
〉

= 2 × (2π)2

×
"

d3 kdω′ TF
[
e− jωτ 〈ur(0, 0)ur(r, τ)〉

]

× TF [〈ur(0, 0)ur(r, τ)〉] , (B.7)

where the notation TF[.] refers to temporal and spatial Fourier
transform.

We then proceed to describe the second-order correlation
product not in terms of time and space increments, but in terms
of angular frequencies ω and spatial modes k. We denote the
temporal and spatial Fourier transform of the second-order cor-
relation product of the ith and jth component of the turbulent
velocity as φi j(k, ω), so that
∫

d3r

〈
û2

r (0, ω)û2
r

⋆

(r, ω)
〉

= 8π2
"

d3 kdω′ φrr

(
k, ω′ − ω)

φrr

(
k, ω′

)
. (B.8)

For isotropic turbulence, φi j can be expressed analytically
(Batchelor 1953) as

φi j =
E(k, ω)
4πk2

(
δi j −

kik j

k2

)
, (B.9)

where E(k, ω) is the specific turbulent kinetic energy spectrum,
k, ki and k j are the norm, ith component and jth component of
the wave vector k, and δi j is the Kronecker symbol. The inte-
gration over the solid angle of k is straightforward and only an
integral over its norm remains. However, solar turbulence close
to the photosphere is known to be highly anisotropic. To take
this anisotropy into account, we follow the formalism developed
by Gough (1977). In this formalism, the integral over the solid
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angle of k is simply readjusted by adding an anisotropy factor
G, given by (see Appendix B in Samadi & Goupil 2001)

G =

∫ 1

−1
dµ

(
1 − Q2µ2

(Q2 − 1)µ2 + 1

)2

, (B.10)

where

Q2 =

〈
u2

x

〉
〈
u2

r

〉 =
〈
u2

y

〉
〈
u2

r

〉 , (B.11)

ux and uy referring to the two horizontal components of the tur-
bulent velocity.

This anisotropy factor depends on the ratio between horizon-
tal and vertical turbulent velocities, and therefore depends on the
slow R variable – or equivalently, on the mass variable m. Under
this formalism, the integral over k and ω remains the same as in
the isotropic case.

Following Stein (1967), we decompose E(k, ω) into a spa-
tial part E(k), which describes how the turbulent kinetic energy
is distributed among modes of different wave numbers, and a
temporal part χk(ω), which describes the statistical life-time dis-
tribution of eddies of wavenumber k

E(k, ω) = E(k)χk(ω). (B.12)

Finally, the integral given by Eq. (B.8) can be rewritten as
∫

d3r

〈
û2

r (0, ω)û2
r

⋆

(r, ω)
〉

= 2πG

∫
dk

E(k)2

k2

∫
dω′ χk(ω′ − ω)χk(ω′). (B.13)

As mentioned in the main body of the paper, we have fol-
lowed two different leads to model the functions E(k) and χk(ω)
in this study. In the following, we only detail what we refer to as
the “theoretical spectrum” model, which is based on theoretical
prescriptions.

Based on the assumption that turbulent flows are self-similar,
Kolmogorov’s theory of turbulence leads to a spatial spectrum
E(k) ∝ k−5/3 in the inertial range, between k = k0 (where k0
is the scale at which the kinetic energy is injected in the turbu-
lent cascade, and is henceforth referred to as the injection scale)
and the dissipation scale (at which the turbulent kinetic energy
is converted into heat). Given the very high Reynolds number
characterising solar turbulence (Re ∼ 1014), we cast the dissi-
pation scale to infinity. Then, following Musielak et al. (1994),
we extend the turbulent spectrum below the injection scale by
considering that E(k) takes a constant value for k < k0. This
extended spectrum, referred to as the BKS was introduced to
account for the broadness of the maximum of E(k). Finally, the
BKS can be written thus:

E(k) =



0.652
u2

0

k0
if 0.2 k0 < k < k0

0.652
u2

0

k0

(
k

k0

)−5/3

if k0 < k,

(B.14)

where u2
0 ≡

〈
u2(r)

〉
/3 and the 0.652 factor is introduced so

that the total specific kinetic energy of the turbulent spectrum
matches u2

0/2.
Following Samadi et al. (2003), we consider a Lorentzian

shape for the temporal spectrum χk(ω), which is supported
both by numerical simulations (Samadi et al. 2003) and by

theoretical arguments (if the noise is characterised by a time-
correlation function which decays exponentially, its spectrum is
Lorentzian). Thus:

χk(ω) =
1
πωk

1
1 + (ω/ωk)2

· (B.15)

The width of the Lorentzian is the inverse of the typical
correlation time-scale and by dimensional arguments, it is pro-
portional to kuk, where uk is the typical velocity of eddies
of wavenumber k. However, there remains a substantial inde-
termination on the actual value of ωk. To account for this
indetermination, we follow Balmforth (1992) and introduce the
dimensionless parameter λ, so that

ωk = 2kuk/λ. (B.16)

For a Kolmogorov spectrum, uk scales as k−1/3, which means
that we have

ωk = ωk0

(
k

k0

)2/3

≡ 2k0uk0

λ

(
k

k0

)2/3

, (B.17)

There is a temptation to approximate the typical velocities
of eddies of wavenumber k0 with u0. This assumption requires
some discussion, however. Indeed, Stein (1967) has pointed out
that eddies of all sizes have the same Eulerian velocity fluctua-
tions u0. As far as Lagrangian fluctuations go, the fluctuations uk

can be expressed as (Stein 1967)

u2
k =

∫ 2k

k

dk E(k). (B.18)

Using the expression of E(k) given in Eq. (B.14) and apply-
ing it to k = k0, we finally find uk0 = 0.602u0. Under all these
assumptions, all further calculations being carried out, we ulti-
mately obtain the leading term,

〈∣∣∣v̂osc(ω)
∣∣∣2
〉
=

0.353λω2

r2
oc2

oρ0(ro)

∫
dm

ρ0G

∣∣∣∣∣
dXω

dr

∣∣∣∣∣
2 u3

0

k4
0(∫ 1

0.2
f1(K)dK +

∫ ∞

1
f2(K)dK

)]
, (B.19)

with

f1(K) =
K−8/3

1 +
(

λω

2.408u0k0

)2

K−4/3

f2(K) =
K−6

1 +
(

λω

2.408u0k0

)2

K−4/3

,

(B.20)

and where K is the reduced inverse eddy scale (K ≡ k/k0). We
note that all the terms appearing in the integrand depend on the
mass variable m, particularly u0 and k0, even when the depen-
dence does not appear explicitly. Free parameters are left in this
description of the leading term in the form of λ and k0(m); solar
turbulence close to the photosphere being as poorly constrained
as it is today, we cannot hope to achieve a non-parametrised
description of stochastically excited modes of oscillation.
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B.2. The cross term

Similarly to the leading term, the cross term in the development
of P(ω) shown in Eq. (4) can be written as

Re
(∫

dΩ h̃(µ)
〈
v̂osc(ω)ûn

⋆(ω)
〉)

= − ω

roco

√
ρ0(ro)

×
∫

dΩ h̃(µ)Re
(

j

∫
d3 rs ρ0

dXω

dr

〈
û2

r (rs)ûn(ro)
⋆〉)

,

(B.21)

where µ is the cosine of the angle between the local vertical
direction and the direction of the line of sight.

We note that this time, one of the velocities in the correla-
tion product is estimated at a fixed location corresponding to the
observation height, so that only one variable is left. Expressing
the line-of-sight component of u as un = ur cos θ − uθ sin θ, this
transforms into

Re
(∫

dΩ h̃(µ)
〈
v̂osc(ω)ûn

⋆(ω)
〉)

= − ω

roco
√
ρ0(ro)

×
[
Re

(
j

∫
dm

dXω

dr

〈
̂u2
r (rs)ûr(ro)

⋆
〉) ∫

dΩ h̃(µ)µ

+Re
(

j

∫
dm

dXω

dr

〈
̂u2
r (rs)ûθ(ro)

⋆
〉) ∫

dΩ h̃(µ)
√

1 − µ2

]
.

(B.22)

Since uθ is a horizontal component of the turbulent velocity,
if we consider there is no preferential horizontal direction as far
as turbulence goes, the third-order correlation product appearing
in the second integral cancels out, so that we are left with the
first integral only. The latter can be rewritten thus:∫

dm
dX

dr

〈
û2

r (rs)ûr(ro)
⋆〉

=

∫
d3 rs1d3 rs2 ρ0(rs1)

dX

dr
(rs1)

〈
û2

r (rs1)ûr(rs2)
⋆〉
δ(rs2 − ro),

(B.23)

where we have artificially introduced a second spatial variable
rs2, so as to get an expression formally similar to that of the
leading term above. Performing the same change of variables,
and plugging the definition of the temporal Fourier transform,
we have
∫

dm
dX

dr

〈
û2

r (rs)ûr(ro)
⋆〉

=
1

(2π)2
ρ0(ro)

dX

dr
(ro)

∫
dτd3r e− jωτ

〈
u2

r (0, 0)ur(τ, r)
〉
.

(B.24)

The challenge in estimating the contribution of correlated
turbulent perturbations fundamentally lies in the correct deter-
mination of non-local, third-order correlation products. While
the QNA provides an adequate closure relationship for fourth-
order moments, it yields vanishing third-order moments, which
is known to lead to serious violations of the energy conservation
principle, as well as an impossibility for the turbulent cascade to
develop (see Kraichnan 1957).

In order to estimate the third-order moments, we follow
Belkacem et al. (2006b) and use the Plume closure model, which
consists of separating the flow into upward flows and down-
ward plumes, each normally distributed, with different mean val-
ues and standard deviations. In addition, we consider that the
downflows are much more turbulent than the upflows (which is

supported by Goode et al. 1998, according to whom the inter-
granular lanes harbour stronger turbulence than the granules
themselves at the Sun’s surface), and that the two types of flows
considered separately have zero third-order correlation products.
In Belkacem et al. (2006b), the authors use the same approxima-
tions but focused on one-point correlation products; however, the
calculations can be easily extended to the two-point correlation
products that we need and the model yields

〈ur(R, t)2ur(R + r, t + τ)〉 =
[
a(1 − a)3 − a3(1 − a)

]
δu3

− a(1 − a)
[
2〈ũd(R, t)ũd(R + r, t + τ)〉

+〈ũd(R, t)2〉
]
δu, (B.25)

where a is the relative horizontal section of the upflows, δu is the
difference between the mean velocity of the two types of flows
(considering their respective signs, it actually is the sum of their
absolute values), and ũd is the fluctuation of the downflow veloc-
ity around its mean value. The only additional approximation we
make to adapt these calculations to two-point correlation prod-
ucts is that the parameters of the model a and δu vary on scales
much greater than the typical correlation length, which is another
illustration of the scale separation approximation, which we have
already used for the leading term (see above).

Note that strictly speaking, the third-order moment appear-
ing in Eq. (B.25) and yielded by the PCM are centred. However,
we consider that the mean value of the overall vertical velocity
of the flow is sufficiently low (compared to its standard deviation
for instance) to be neglected. Therefore, the moment described
by Eq. (B.25) may interchangeably refer either to a centred or
non-centred moment.

Also note that this closure relation is written here in terms
of ũd (i.e. the turbulent fluctuations in the downflows only). It
would be more practical to rewrite it in terms of ur (i.e. the total
turbulent fluctuations). The two are related through

〈ũd(R, t)ũd(R+ r, t+τ)〉 = 1
1 − a

〈ur(R, t)ur(R+ r, t+τ)〉−aδu2 .

(B.26)

Plugging Eq. (B.26) into Eq. (B.25), we obtain a closure
model that allows us to write the third-order moments as a func-
tion of second-order moments only, after which we can use the
same prescriptions for turbulence as we did for the leading term.
We note that while this closure relation contains many terms, not
many survive the Fourier transform in Eq. (B.24) as all terms not
depending on r or τ will not contribute to the Fourier transform.
The integral over m appearing in Eq. (B.21) becomes
∫

dm
dX

dr

〈
û2

r (rs)ûr(ro)
⋆〉
= −8π2aδuρ0(ro)

dX

dr
(ro)φrr(0, ω).

(B.27)

Formally, the integration over r makes the value of φrr at
k = 0 appear. Physically, that means only the largest eddies have
a significant impact on the correlation between the mode and the
turbulent perturbations. Since considering eddies characterised
by k = 0 does not actually make physical sense, we considered
a comprise by assuming that the largest contributing eddies are
those at the injection scale k0, so that the correlated turbulent
perturbations term finally becomes

Re
(∫

dΩ h̃(µ)
〈
v̂osc(ω)ûn

⋆(ω)
〉)
= C(ω)

∫
dΩ h̃(µ)µ

C(ω) = −1.083λaωu0δu

rocok4
0
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×
√
ρ0(ro)

dImXω

dr

∣∣∣∣∣
ro

×
1 +

(
λω

1.204k0u0

)2
−1

, (B.28)

where every parameter is estimated at the observation height ro,
even when not specified explicitly. Note that we introduce no
new free parameter compared to those used for the leading term,
as the parameters a and δu appearing in the PCM are extracted
from numerical hydrodynamic simulations of the stellar atmo-
sphere. Plugging Eqs. (B.19) and (B.28) in the expression of
the velocity power spectral density given by Eq. (4), we obtain
Eq. (13).

Appendix C: A simplified toy model

Here we consider a simplified model of solar acoustic mode exci-
tation, which has already been developed, used, and analysed
in previous works (see e.g. Abrams & Kumar 1996; Chaplin &
Appourchaux 1999). In the scope of this toy-model, the acoustic
potential appearing in Eq. (8) takes the form of a square well, and
the sound speed c is considered constant throughout the entire
stellar radius. The latter approximation allows us to substitute the
radial coordinate r in the wave equation for the acoustic depth τ,
defined such that dτ = dr/c. In this approximation, the wave
equation simply yields

d2Ψ

dτ2
+ (ω2 − V(τ) + jωγ)Ψ = δ(τ − τs), (C.1)

where we have introduced a point-like source at acoustic depth
τs, and the acoustic potential is

V(τ) =



+∞ if τ < 0
0 if 0 ≤ τ ≤ a
α2 if a < τ.

(C.2)

In this model, a represents the acoustic length of the cavity
(for radial modes, it corresponds to the time it takes for sound
waves to propagate throughout the entire stellar radius) and α is
the acoustic cut-off angular frequency above which waves are no
longer confined. We added an infinite step at τ = 0 to force the
wave variable Ψ to vanish at the centre.

C.1. Analytic solution of Eq. (C.1)

In order to solve the wave equation, it should be rewritten in
terms of matrices:

dX

dτ
= AX + B, (C.3)

where

X =

[
Ψ

dΨ/dτ

]

A =

[
0 1

V(τ) − ω2 − jωγ 0

]

B =

[
0

δ(τ − τs)

]
.

(C.4)

The general solution to the homogeneous equation is Xh(τ) =
exp(Aτ)C, where C is a constant vector. A particular solution
to the inhomogeneous equation can then be sought in the form

Xp(τ) = exp(Aτ)C(τ). For each domain in which the matrix A is
constant, injecting this form in Eq. (C.3) yields

C(τ) =



[
0
0

]
if τ < τs

[
0

exp(−Aτs)

]
if τs 6 τ.

(C.5)

A being piecewise constant, we can thus write the general
solution to Eq. (C.3) as

X(τ) =



exp(Aτ)C if τ < τs

exp(Aτ)
(
C +

[
0

exp(−Aτs)

])
if τs 6 τ,

(C.6)

where the integration constant C is constant on whichever
domain A is; in other words, C is piecewise constant on the same
domains as A, that is, between 0 and a, and above a separately.
In the following, we denote the column vector C as [Ai Bi] in
the former domain, and [Ao Bo] in the latter, the indices i and o
referring to the inner and outer regions, respectively.

The simple form of A allows for a straightforward computa-
tion of its exponential. We obtain

exp(Aτ) =




cosωiτ

sinωiτ

ωi
−ωi sinωiτ cosωiτ

 if 0 < τ < a


coshωoτ

sinhωoτ

ωo
ωo sinhωoτ coshωoτ

 if a < τ,

(C.7)

where ω2
i = ω

2 + jωγ and ω2
o = α

2 − ω2 − jωγ (with the under-
standing that 0 < ω < α).

Finally, injecting this into the general solution (C.6) and only
keeping the first line (at this point, the second one only gives
the derivative of the solution and is redundant with the solution
itself) yields the following expression, depending on whether the
source is inside the cavity or not:

Ψi(τ) =



Ai cosωiτ +
Bi

ωi
sinωiτ if τ < τs

Ai cosωiτ +
Bi

ωi
sinωiτ

+
1
ωi

sinωi(τ − τs) if τs < τ < a

Ao coshωoτ +
Bo

ωo
sinhωoτ if a < τs,

(C.8)

and

Ψo(τ) =



Ai cosωiτ +
Bi

ωi
sinωiτ if τ < a

Ao coshωoτ +
Bo

ωo
sinhωoτ if a < τ < τs

Ao coshωoτ +
Bo

ωo
sinhωoτ

+
1
ωo

sinhωo(τ − τs) if τs < τ,

(C.9)

where Ψi is the solution if the source is inside the cavity (τs < a)
and Ψo is the solution if the source is outside (a < τs). Pre-
dictably, this general solution contains 4 constants of integration
(in the form of Ai, Bi, Ao and Bo), and we therefore need 4 bound-
ary conditions to find Ψi and Ψo. We impose that Ψ(τ = 0) = 0
and that the solution do not diverge when τ→ +∞; furthermore,
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we impose that both Ψ and its derivative be continuous at τ = a.
With all calculations having been carried out, this set of bound-
ary conditions finally gives us:

Ψi,o(τ) = − fi,o(τs)
ωi cosωia + ωo sinωia

exp−ωo(τ−a)

fi(τs) = sinωiτs (C.10)
fo(τs) = ωi cosωia sinhωo(τs − a)
+ ωo sinωia coshωo(τs − a).

We note that the above expression is only valid if τ > a
and τ > τs. Since the first condition means that we observe
the mode of oscillation above the upper turning point (which
is always the case in practice) and since the second condition
means that the excitation of the mode occurs in layers located
deeper than the observation height in the atmosphere (which is
also always the case in practice, at least for spectrometric mea-
surements), these are not restrictive conditions.

C.2. Discussion

In each case (source inside or outside the cavity), the solution
Ψi,o can be decomposed into three parts:

– the denominator corresponds to the Wronskian W(ω) of
the wave equation. |1/W(ω)|2 peaks at the eigenfrequencies
associated to the acoustic cavity and is responsible for the
presence of resonant modes in the spectrum. The line profile
it generates have a Lorentzian profile, so long as the damping
rate of the modes are much smaller than their frequency;

– the exponential part accounts for the fact that the modes are
evanescent outside the acoustic cavity, so that the higher in
the atmosphere the mode is observed, the lower its ampli-
tude as we observe it. Therefore, it only affects the observed
amplitude of the mode, not its line profile;

– the numerator fo,i(τs) is responsible for the mode line profile
asymmetry. Because it is the only term that depends on the
source position τs, it is commonly said that mode asymmetry
is caused by source localisation.

Regardless of whether the source is located inside or outside the
cavity, it can be seen from Eqs. (C.8) and (C.9) that the third
term fo,i(τs) actually corresponds to the amplitude of the solu-
tion Ψi,o at τ = τs. This leads us to the following conclusion,
which we reproduce in the main body of the paper: for a given
frequency, the amplitude of the excited wave is proportional
to the radial profile associated with the wave at the source of
excitation.
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Marcel Proust, à propos de Paris

This chapter is devoted to the work of Philidet et al. (2020b). All the details of this work are presented in this
article, which I reproduce in the end of this chapter. I will not present all these details in the body of the thesis, as
this would be redundant. Instead, I focus on the main steps of the adaptation of the model presented in Chapter 5
to intensity measurements, and on the results yielded by the application of this adapted model to the solar case.

6.1 Adaptation of the formalism to intensity measurements

In Chapter 5, I described how I modelled the wave variable Ψω(r) for any angular frequency ω. I then used
Equation 5.4 to relate this wave variable to the oscillatory component of the velocity v̂osc(ω). In order to adapt this
model to intensity measurements, the challenge is therefore to find a similar relation between the modelled Ψω(r)
and the oscillatory component of the luminosity perturbation δ̂L(ω)/L. This is done in Sections 2.1 and 2.2 of
Philidet et al. (2020b). I do not detail the calculations here; however, let me list the approximations I adopted and
the assumptions I made in order to carry them out. In addition to hypotheses (H1) to (H5) listed in Section 5.1,
those are the following

(H6) following Dupret et al. (2002), I treat the superficial layers responsible for the driving of the modes as a
grey atmosphere. This assumption is justified by the fact that the photometric measurements leading to the
observed intensity power spectrum correspond to the continuum intensity, on which the atomic absorption
lines that form in the atmosphere have almost no impact. As a result of this assumption, the gas temperature
becomes a function of optical depth and effective temperature only1, in the form (see Philidet et al. 2020b,
Eq. 3)

T (τ,Teff) =
(
3
4

(τ + q(τ))
)1/4

Teff , (6.1)

1In general, it is also a function of the surface gravity. However, as I mentioned in Section 2.1.1, the perturbation of the gravitational
acceleration by the oscillations is negligible, thus leading to the well-established Cowling approximation. The surface gravity remaining
constant, it can be discarded from the list of variables on which the gas temperature depends.
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where q(τ) is the Hopf function (Mihalas and Mihalas 1984). I adopt a solar-calibrated Hopf function, based
on solar spectroscopic measurements performed by Vernazza et al. (1981). The Hopf function reads (Sonoi
et al. 2019)

q(τ) = 1.036 − 0.3134 exp−2.448 τ − 0.2959 exp−30.0 τ . (6.2)

(see also Philidet et al. 2020b, Eq. 16).

(H7) I consider that the atmosphere is in radiative equilibrium, so that the perturbed emergent radiative flux is the
same as the perturbed radiative flux at the photosphere;

(H8) I consider that the convective flux is frozen, meaning that its Lagrangian perturbation vanishes. This is
typically the case when the convective timescale τto (i.e. the turnover time of the turbulent eddies) is much
greater than the modal timescale Π (i.e. the period of the modes). Indeed, in that case, the convective flux
never has time to adapt to the continuously changing physical conditions, and the effect of the modes over
an entire cycle cancels out, so that the convective luminosity always remains the same. Unfortunately, as I
made abundantly clear in Section 2.3, the two timescales become similar close to the surface of the star, so
that the convective flux must be treated in a time-dependent manner. Nevertheless, until the model is refined,
and as a first step, I will neglect the perturbation of the convective flux. This allows me to write δL = δLrad,
where Lrad is the radiative luminosity defined by Equation 2.104;

(H9) I place myself in the quasi-adiabatic approximation, in the sense that I neglect the Lagrangian perturbation
of entropy in the expression of the temperature fluctuations. This allows me to write

δT

T
= Γ1∇ad

δρ

ρ
. (6.3)

Similarly to hypothesis (H3), the quasi-adiabatic approximation is not valid close to the surface of the star
(see Section 2.1.1). But going beyond this approximation would require adopting a fully non-adiabatic
framework for the oscillations, which would drastically increase the complexity of the formalism. Fur-
thermore, as I hinted in Section 4.1, since the asymmetries are only affected by differential effects – i.e.
processes that affect the line profiles differently in one wing than in the other –, non-adiabatic effects are
likely to only have a weak impact on mode asymmetry. Therefore, as a first step, I adopt this approximation
in the following;

(H10) I discard the effect of the correlated background on the synthetic intensity power spectrum, meaning that I
only retain the first term on the right-hand side of Equation 5.1 (or rather its intensity equivalent). While
this contribution is negligible in the velocity power spectrum (as was showed in Philidet et al. (2020a)), it
does not necessarily have the same impact in the intensity power spectrum, where it can have a higher rela-
tive amplitude, as I showed in Section 4.2.2. However, the same way including the effect of the correlated
background in the velocity p-mode spectrum required describing the third-order moment of the turbulent
velocity (see Chapter 5), including this contribution in the intensity p-mode spectrum would require mod-
elling third-order moments involving both the turbulent velocity and the turbulent entropy fluctuations. For
lack of an appropriate closure relation for these third-order moments, I do not include this contribution in
the synthetic intensity power spectrum model. As a result of this approximation, the intensity asymmetries
I obtain only contain the effect of source localisation;

(H11) as in Philidet et al. (2020a), I consider that the driving of the modes is primarily due to perturbations of the

Reynolds stress force, and in particular, I do not account for the non-adiabatic perturbation of the pressure
force. As shown by Samadi et al. (2003), the Reynolds stress force is the dominant contribution to p-mode
excitation, meaning that this hypothesis is justified.

These hypotheses do not share the same degree of validity. More specifically, hypotheses (H6), (H7) and (H11) are
valid to a satisfactory degree, and are not restrictive assumptions. On the other hand, hypotheses (H8), (H9) and
(H10) are strong approximations, which I only adopt as a first step, because circumventing them would require a
considerably more complex approach. Nevertheless, with all these assumptions in mind, the formalism described
in Chapter 5 can be adapted to photometric measurements, thus yielding a synthetic intensity power spectrum

136





6.3. WHAT ABOUT MODE AMPLITUDES?

first lines of Section 6.1. This relation is given by (see Philidet et al. 2020b, Eq. 20)

δ̂L

L
=

Lrad

L

(
ALΨω + BL

dΨω
dr
+CL

d2Ψω

dr2

)
, (6.4)

where Lrad is the equilibrium radiative luminosity (see Equation 2.104 for a definition), L is the total equilibrium
luminosity, and AL, BL and CL are coefficients given by Eqs. (21) and (22) in Philidet et al. (2020b), and only
depend on the equilibrium structure of the star. Instead of the simple proportionality relation between v̂osc(ω) and
Ψω given by Equation 5.4, one now obtains a much more complex relation involving not only Ψω, but also its first
and second derivatives with respect to the radial coordinate2. Since Ψω and its derivatives do not have the same
ω-dependence, the total line profiles does not necessarily have the same shape in intensity as it does in velocity.
It is therefore not overly surprising to obtain different asymmetries between the two, and even a reversal in sign.
To further establish that it is the presence of several terms in the right-hand side of Equation 6.4 that entails the
asymmetry reversal, I performed the exact same calculations by adopting the following, overly simplified relation
instead

δT

T
=
δTeff

Teff
. (6.5)

The asymmetry profile B(ν) obtained in this approximation is shown in Figure 3 of Philidet et al. (2020b), where it
is apparent that no asymmetry reversal is observed in that case. It is clear, therefore, that the key in understanding
the asymmetry reversal puzzle does not lie in an extra physical mechanism, like the presence of a high amplitude
correlated background in one of the observables for instance, but instead in the complicated relation between the

Green’s functions in intensity and temperature. In many studies on the subject of asymmetry reversal, this relation
is assumed to be extremely simple: either they are considered identical, which amounts to adopting Equation 6.5
(e.g. Duvall et al. 1993; Rast and Bogdan 1998; Nigam et al. 1998; Kumar and Basu 1999b), or it is the velocity
and intensity Green’s function that are considered identical (e.g. Roxburgh and Vorontsov 1997; Chaplin and
Appourchaux 1999). All these studies share this common point, that they do not fully account for the more
complicated relation given, for instance, by Equation 6.4: this is the reason why an alternative mechanism has
always been invoked to explain the asymmetry reversal puzzle.

On the other hand, the second key point mentioned above – about the quantitative predictions no longer being
accurate for frequencies higher than ∼ 3 mHz – shows that this picture has its limits. For higher-frequency modes,
Figure 6.1 shows that there is some ingredient missing in this model. A number of explanations can be given
to explain this discrepancy: it could be due to a failure of the quasi-adiabatic approximation (see hypothesis
H9); or another physical process could become non-negligible at these higher frequencies – a contribution from
the perturbed convective flux (see hypothesis H8), or from the correlated background (see hypothesis H10) for
instance. This may also be due to the fact that the scales of oscillation and turbulence are no longer separable for
high-frequency modes (see hypothesis H1). Answering this question would require getting rid of at least one of
these simplifying approximations – something which would require more work.

6.3 What about mode amplitudes?

The formalism developed in Chapter 5 for velocity measurements and extended in this chapter for intensity
measurements gives access to the shape of the radial p-mode line profiles for a given stellar model. So far, I have
focused on the asymmetry displayed by these line profiles, but of course one also has access to their amplitude.
This naturally begs the question: do the amplitudes predicted by this model accurately agree with the observed
amplitudes? I delve into this question in this section.

2It may seem odd that the second derivative of Ψω should appear in this relation, seeing as the wave equation (Equation 5.3) is of second
order, and therefore relates d2Ψω/ dr2 to lower derivatives. However, because the wave equation is inhomogeneous, it would also relate it
to the source term, which would therefore appear in Equation 6.4 if I were to eliminate the second derivative of the wave variable. It is
therefore much more practical to retain this second derivative in Equation 6.4.
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6.3.1 Extraction of mode amplitude

The procedure described above involves the adjustment of the synthetic line profiles with the formula given by
Equation 4.7, which I recall here for clarity

P(ω) = H
(1 + Bx)2 + B2

1 + x2
, (6.6)

where

x = 2(ω − ω0)/Γ . (6.7)

The adjustment of an individual line profile provides with four quantities: its height H, corresponding to the max-
imum reached by its spectral height; its angular eigenfrequency ω0; its linewidth Γ; and its asymmetry parameter
B. Then, the physical amplitude A of the mode is obtained by integrating the area under the line profile – corre-
sponding to the energy of the mode –, and then taking the square root. For low values of the asymmetry parameter,
the amplitude barely depends on asymmetry, and it can be estimated by assuming B = 0, in which case one finds
the integral of a simple Lorentzian function. This yields3

AV,I =
√
πΓHV,I , (6.8)

where the subscripts V and I refer to velocity and intensity respectively: while the two spectra feature the same
linewidths, they have different spectral heights, and therefore different amplitudes. The velocity amplitude is
expressed in m.s−1, and the intensity amplitude in ppm (parts per million).

The velocity amplitudes are straightforwardly extracted from the model. This is not the case for the intensity
amplitudes. The reason has to do with the fact, which I already mentioned in Section 6.1, that the quasi-adiabatic
approximation (see hypothesis H8) severely overestimates the intensity amplitudes: this is illustrated in Figure 4 of
Philidet et al. (2020b), where the observed velocity amplitudes are fairly well reproduced by the model predictions,
but there is a factor ∼ 5 between intensity predictions and observations. One of the reasons for this discrepancy
is the fact that in the formalism presented in Section 6.1, the intensity power spectrum is rather sensitive to the
τ-derivative of the eigenfunctions associated to the mode. Therefore, to alleviate the impact of adopting the quasi-
adiabatic approximation on amplitude predictions, an alternative approach would be to replace the differential form
of the optical depth perturbation

dδτ
dτ
=
δκ

κ
+
δρ

ρ
+
∂ξr

∂r
, (6.9)

by its τ-integrated counterpart

δτ =

∫ τ

0
dτ

(
δκ

κ
+
δρ

ρ
+
∂ξr

∂r

)
. (6.10)

The good news is that the resulting expression of the intensity power spectrum no longer relies on τ-derivatives, so
that the predicted intensity line profiles stemming from it are much less sensitive on the effects of non-adiabaticity.
The bad news is that the expression of the intensity power spectrum now takes an integral form, and becomes
drastically inconvenient to use. However, while this precludes me from extracting the exact shape of the line
profiles in intensity, it is possible to extract their overall amplitude. This is done in two steps.

First, I compute the temperature power spectrum. This is done by adopting the following adiabatic relation
between temperature and density Lagrangian perturbations

δT

T
= ∇adΓ1

δρ

ρ
, (6.11)

3This is in contrast with the usual formula A =
√
πCobsΓH (e.g. Baudin et al. 2005), where Cobs is a factor encompassing the effect

due to the observational techniques as well as the geometrical effects. In our case, the power spectrum is not inferred from observations,
and the geometrical effects are encompassed in the limb-darkening factor in Equation 5.1 (in the form of the integral over solid angle Ω).
Therefore, I can discard Cobs so long as this limb-darkening factor is also discarded from the model presented above.
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where

r(τ) ≡ τ + q(τ) , (6.16)

and q(τ) is the Hopf function associated with the grey atmosphere model, so that

(
∂ ln T

∂ ln Teff

)

τ

= 1 , (6.17)

(
∂ ln T

∂ ln τ

)

Teff

=
τr′(τ)

4r
. (6.18)

The optical depth perturbation is given by Equation 6.10, which can be rewritten by using the continuity equation
and discarding its curvature term (see the toy-model in Section 4.2.3, where I performed the exact same simplifi-
cation). One finds

δτ

τ
=

1
τ

∫ τ

0
dτ′

δκ

κ
. (6.19)

As for the effective temperature perturbation, it is directly related to the desired luminosity fluctuations through

δL

L
= 4

δTeff

Teff
+ 2

ξr

r
. (6.20)

I will again neglect the curvature term. Finally, isolating the luminosity perturbation in Equation 6.14 yields

δL

L
= 4

δT

T
− r′(τo)

r(τo)

∫ τo

0
dτ

δκ

κ
, (6.21)

where τo refers to the optical depth at which the modes are observed.
Then, I express the opacity fluctuations in terms of temperature and density fluctuations, thus

δκ

κ
= κT

δT

T
+ κρ

δρ

ρ
=

(
κT +

κρ

∇adΓ1

)
δT

T
, (6.22)

where κT ≡ (∂ ln κ/∂ ln T )ρ and κρ ≡ (∂ ln κ/∂ ln ρ)T . Equation 6.21 can finally be rewritten

δL

L

∣∣∣∣∣
τo

= 4
(
1 − αr′(τo)

4r(τo)

)
δT

T

∣∣∣∣∣
τo

, (6.23)

where I have defined

α ≡

∫ τo

0
dτ

(
κT +

κρ

∇adΓ1

)
δT

T

(δT/T )|τo

. (6.24)

By construction, the parameter α does not depend on the amplitude of the mode, but only on the radial profile of
its temperature eigenfunction. Ultimately, the temperature and intensity amplitudes are related through

AI = F × AT , (6.25)

where

F = 4
∣∣∣∣∣1 −

αr′(τo)
4r(τo)

∣∣∣∣∣ , (6.26)

α is given by Equation 6.24, and the function r(τ) only depends on the Hopf function characterising the grey
atmosphere.
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6.3.2 Results

I compile the velocity and intensity amplitudes yielded by the ‘numerical spectrum’ model, and compare them
to solar observations, in Figure 6.2. Velocity amplitudes are shown in blue, and intensity amplitudes in orange.
Specifically, I show two predicted intensity amplitudes, both of them computed with the procedure previously de-
scribed, but with two different values of the parameter α in Equation 6.26: one given by Equation 6.24 (in orange),
and one given by α = 0 (in green). The intensity amplitudes are computed by assuming that the observation height
is the layer at which the equilibrium temperature is equal to the effective temperature of the Sun Teff = 5780 K. I
used the same CO5BOLD 3D simulation of the solar atmosphere that I considered in Chapter 5 to estimate the optical
depth corresponding to this observation height, and found τo = 0.45. The parameter α appearing in the factor F

was computed from ADIPLS eigenfunctions for a solar model.
Figure 6.2 shows that the velocity amplitudes, as I mentioned earlier, are correctly predicted by this model.

In addition, it shows that the intensity amplitudes are also correctly predicted, so long as a realistic value of α
is adopted. The α = 0 case is particularly illuminating, because then one simply obtains F = 4: this amounts
to assuming that the gas temperature at the observation height is always equal to the instantaneous effective tem-
perature. As I showed in Section 6.2, this oversimplifying approximation has a severe impact on the intensity
asymmetries, and therefore on the velocity–intensity asymmetry reversal. Figure 6.2 shows that it also has a
drastic impact on intensity amplitude: assuming that the gas temperature at the photosphere equals the effective

temperature leads to an overestimation of the photometric amplitudes by a factor of ∼ 2. I conclude, therefore, that
a realistic treatment of the radiative transfer is absolutely necessary to understand the properties of the observed
intensity power spectrum of solar-like oscillators, including both the amplitude and asymmetry exhibited by their
p-mode line profiles. Mistaking the actual gas temperature at the photosphere for the effective temperature is too
crude an approximation, and precludes us from using intensity observations to constrain the physics of the modes,
or those of the turbulence at the top of the convective zone. The question still requires some investigation however;
in particular, the temperature power spectrum is still computed in the adiabatic limit, and a full, consistent picture
on the subject would require going beyond this approximation (i.e. including the entropy Lagrangian perturbation
in Equation 6.11).
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ABSTRACT

The development of space-borne missions has significantly improved the quality of the measured spectra of solar-like oscillators.
Their p-mode line profiles can now be resolved, and the asymmetries inferred for a variety of stars other than the Sun. However, it
has been known for a long time that the asymmetries of solar p-modes are reversed between the velocity and the intensity spectra.
Understanding the origin of this reversal is necessary in order to use asymmetries as a tool for seismic diagnosis. For stars other
than the Sun, only the intensity power spectrum is sufficiently resolved to allow for an estimation of mode asymmetries. We recently
developed an approach designed to model and predict these asymmetries in the velocity power spectrum of the Sun and to successfully
compare them to their observationally derived counterpart. In this paper we expand our model and predict the asymmetries featured in
the intensity power spectrum. We find that the shape of the mode line profiles in intensity is largely dependent on how the oscillation-
induced variations of the radiative flux are treated, and that modelling it realistically is crucial to understanding asymmetry reversal.
Perturbing a solar-calibrated grey atmosphere model, and adopting the quasi-adiabatic framework as a first step, we reproduce the
asymmetries observed in the solar intensity spectrum for low-frequency modes. We conclude that, unlike previously thought, it is
not necessary to invoke an additional mechanism (e.g. non-adiabatic effects, coherent non-resonant background signal) to explain
asymmetry reversal. This additional mechanism is necessary, however, to explain asymmetry reversal for higher-order modes.

Key words. methods: analytical – Sun: helioseismology – Sun: oscillations – stars: atmospheres – stars: oscillations –
stars: solar-type

1. Introduction

The power spectral density of solar-like oscillations is expected
to feature Lorentzian peaks centred on their eigenfrequencies.
However, observations show that their line profiles are slightly
asymmetric (Duvall et al. 1993). This asymmetry is primarily
due to the fact that stochastic excitation occurs in a localised
region just beneath the surface of the star. Several studies have
consequently used observed line profile asymmetries to infer
properties of the turbulent source of excitation of solar p-modes,
in particular its radial position and its multipolar nature (see e.g.
Roxburgh & Vorontsov 1997; Nigam et al. 1998). These prior
studies used parametrised models, and aimed to find best-fit val-
ues for their free parameters by applying fitting procedures to
individual peaks in the observed spectrum. Philidet et al. (2020)
followed a different approach, which consisted in modelling
mode asymmetry without fitting any free parameters to the avail-
able observational data. Instead, they developed an analytical
model of stochastic excitation, coupled with a 3D hydrodynami-
cal simulation of the stellar atmosphere. This allowed the authors
to reproduce the asymmetries of solar p-modes as measured
in the observed velocity power spectrum, and to subsequently
demonstrate the role of the spatial extent of the mode driving
region, together with the differential properties of turbulent con-
vection (namely the variation of the injection length-scale below
and above the photosphere).

The recent measurement of p-mode asymmetries in
solar-like oscillators by Benomar et al. (2018), using Kepler

observations, opened the way to constrain the properties of
stochastic excitation, and therefore of turbulent convection,
throughout the HR diagram. Unlike in the solar case, however,
only observations made by Kepler in intensity have the resolu-
tion necessary for mode asymmetry to be inferred. But it is well
known that asymmetries are very different between velocity and
intensity observations (Duvall et al. 1993; Toutain et al. 1997).
More precisely, line profiles in the velocity power spectrum have
more power on their low-frequency side, whereas line profiles in
the intensity power spectrum have more power on their high-
frequency side. This is known as the asymmetry reversal puzzle.

Several hypotheses have been proposed to explain this rever-
sal, but no consensus has emerged. Duvall et al. (1993) sug-
gested that modal entropy fluctuations could affect intensity
asymmetries while leaving asymmetries in velocity unaffected.
Following this argument, Rast & Bogdan (1998) quantified these
non-adiabatic effects, and found that radiative cooling has a neg-
ligible impact on line profile asymmetry, so that it can hardly
explain the asymmetry reversal. Gabriel (1998) then remarked
that in order for such heat transfers to impact line asymmetry, it
is necessary that they affect the wave equation beyond the second
order, which was not the case in the model of Rast & Bogdan
(1998).

Shortly afterwards, another candidate was found to explain
the asymmetry reversal puzzle. Roxburgh & Vorontsov (1997)
remarked that adding a coherent, non-resonant background (i.e.
a signal with a very broad spectrum but whose Fourier compo-
nent close to an oscillating mode would be coherent with it, and
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would therefore be able to interfere with it) to a resonant sig-
nal could affect its line profile, and thus its asymmetry. They
argued that the overshooting of turbulent eddies into the lower
layers of the atmosphere should act as a coherent non-resonant
background in the velocity signal, while keeping the intensity
signal unaffected, thus explaining the asymmetry reversal. On
the other hand, Nigam et al. (1998) argued that both signals con-
tain a coherent background component, and that the asymmetry
reversal stems from the fact that it is much stronger in the inten-
sity signal than in the velocity signal. Subsequently, several stud-
ies have undertaken the task of estimating the level of correlated
background in the intensity signal using the observed asymme-
try reversal (e.g. Kumar & Basu 1999; Chaplin & Appourchaux
1999; Severino et al. 2001; Barban et al. 2004).

Yet another candidate to explain asymmetry reversal was
recognised by Georgobiani et al. (2003). They noticed that
p-modes featured in the velocity and intensity power spectra
of 3D hydrodynamic simulations of the stellar uppermost lay-
ers have opposite asymmetries when they are computed at fixed
optical depth, but identical asymmetries when they are computed
at fixed geometrical depth. They therefore proposed the follow-
ing picture: the velocity and intensity line profiles are intrinsi-
cally proportional to one another, but the height of unity optical
depth, at which the intensity fluctuations are observed, oscillates
with the mode. Since there is a strong temperature gradient there,
the observed background temperature also oscillates, which adds
a component to the resonant intensity signal. They showed that
this added component tends to reduce the amplitude of the inten-
sity fluctuations. However, because the κ − T relation is highly
non-linear at the photosphere, this reduction is not uniform over
the entire line profile, and thus it changes its asymmetry. Since
there is no equilibrium velocity gradient, there is no correspond-
ing additional component in the velocity signal, and the velocity
asymmetry remains unaffected.

At the core of these models lies the assumption that the gas
temperature at the photosphere and the effective temperature
are equal, and therefore have equal relative fluctuations. This
assumption means that the velocity and intensity line profiles
should have the same asymmetry, so that the key to understand-
ing the asymmetry reversal puzzle must be sought elsewhere.
While this assumption is not problematic when it is used as
a photospheric boundary condition in the framework of fully
non-adiabatic calculations (Dupret et al. 2002), it becomes more
questionable when used to justify that luminosity and temper-
ature eigenfunctions are simply proportional to one another. In
this context, our objective is to question this assumption, and
to show that the radiative flux reacts in a more complex way to
temperature variations, which has a crucial impact on line pro-
file asymmetry in the intensity spectra. To this end, we extend
the model of Philidet et al. (2020) for intensity observations. We
show that, unlike previously thought, source localisation impacts
velocity and intensity observations differently, so that an addi-
tional physical mechanism is not necessary to account for asym-
metry reversal, except maybe at high frequency.

This paper is structured as follows. In Sect. 2 we describe
the steps necessary for the adaptation of our model to intensity
observations. We then present its predictions pertaining to asym-
metry reversal in Sect. 3, and discuss these results in Sect. 4.

2. Modelling the intensity power spectrum

In order to adapt our p-mode stochastic excitation model
to intensity observations, it is first necessary to model the
intensity Green’s function associated with radial p-modes. In

Philidet et al. (2020), the wave equation was written in terms of
a wave variable Ψω, related to the velocity fluctuations through

v̂osc(r) =
jω

rc
√
ρ
Ψω(r) , (1)

where ρ is the equilibrium density, c is the sound speed, ω the
angular frequency, j the imaginary unit. The notation .̂ refers
to Fourier transform in time. The radial inhomogeneous wave
equation then reads

d2Ψω

dr2
+

(
ω2 + jωΓω

c2
− V(r)

)
Ψω = S (r) , (2)

where V(r) is the acoustic potential, Γω is the frequency-
dependent damping rate of the oscillations, and S (r) is a source
term proportional to the divergence of the fluctuating Reynolds
stresses. The damping rates Γω are inferred from observa-
tions; we use the same values as those presented in Table 1 of
Philidet et al. (2020).

For a given value of ω, convolving the Green’s function in
Eq. (2) with the source term S (r) allows us to predict the value
of the power spectrum in terms of Ψω. Then the velocity power
spectrum is given by Eq. (1). Following the same approach, the
goal of this section is to relate the intensity fluctuations to the
wave variable Ψω, so that from the Ψω power spectrum we have
access to the intensity power spectrum.

2.1. Intensity fluctuations in a grey atmosphere

Because the p-mode intensity power spectrum is observed close
to the photosphere, we only need to model the oscillation-
induced intensity variations in this region. In order to model
these variations, we treat the atmosphere as a grey atmosphere.
This is justified, in part, by the fact that the observed inten-
sity power spectrum corresponds to the continuum intensity, on
which absorption spectral lines have little impact.

A grey atmosphere is, by definition, in radiative equilibrium.
When studying p-mode-driven intensity fluctuations, working
under the radiative equilibrium assumption is justified by the
large gap existing between the modal period and the local ther-
mal timescale. The period of the modes is of the order of several
minutes, while the thermal timescale is about ten seconds at the
photosphere. As such, the radiative flux reacts almost instantly
to the oscillations induced by the p-modes, and the atmosphere
remains at radiative equilibrium at all times. One of the con-
sequences of radiative equilibrium is that the radiative flux is
uniform, and its relative fluctuations are proportional to the rel-
ative fluctuations of the effective temperature Teff . The equality
between the relative luminosity fluctuations at the photosphere
and at the observation height of the modes is further supported
by the fact that the modes are observed very close to the pho-
tosphere. The goal of the present section is therefore to relate
the variations of Teff to the gas fluctuations brought about by the
oscillating modes, and in particular to the gas temperature fluc-
tuations. In doing so, we follow the same treatment of p-mode-
induced atmospheric perturbation as Dupret et al. (2002).

In a grey atmosphere, the temperature of the gas is given by
a unique function of the optical depth τ and effective tempera-
ture Teff , expressed by means of the Hopf function q(τ) (Mihalas
1978)

T (τ,Teff) =
(

3
4

(τ + q(τ))
)1/4

Teff . (3)
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An arbitrary relation T = T (τ,Teff) can be perturbed as

δT

T
=

(
∂ ln T

∂ ln Teff

)

τ

δTeff

Teff
+

(
∂ ln T

∂ ln τ

)

Teff

δτ

τ
, (4)

where the fluctuations of the optical depth can be expressed as

dδτ
dτ
=
δκ

κ
+
δρ

ρ
+
∂ξr

∂r
, (5)

where κ is the Rosseland mean opacity and ξr the radial displace-
ment of the gas.

Taking the partial derivative of Eq. (4) with respect to τ, and
eliminating dδτ/dτ alternatively through Eqs. (4) and (5), we
find

∂(δT/T )
∂ ln τ

=
∂ ln T

∂ ln τ

(
δκ

κ
+
δρ

ρ
+
∂ξr

∂r

)

−
(
1 − ∂

2 ln T/∂ ln τ2

∂ ln T/∂ ln τ

) (
δT

T
− ∂ ln T

∂ ln Teff

δTeff

Teff

)

+
∂2 ln T

∂ ln τ∂ ln Teff

δTeff

Teff
. (6)

Isolating the perturbation of the effective temperature, this
can be rearranged as

δTeff

Teff
=

(
∂2 ln T

∂ ln τ∂ ln Teff
+

∂ ln T

∂ ln Teff

(
1 − ∂

2 ln T/∂ ln τ2

∂ ln T/∂ ln τ

))−1

×
[
∂(δT/T )
∂ ln τ

− ∂ ln T

∂ ln τ

(
δκ

κ
+
δρ

ρ
+
∂ξr

∂r

)

+
δT

T

(
1 − ∂

2 ln T/∂ ln τ2

∂ ln T/∂ ln τ

)]
. (7)

When the temperature law as given by Eq. (3) is used, Eq. (7)
reduces to

δTeff

Teff
=

(
τr′(τ)
r(τ)

− τr′′(τ)
r′(τ)

)−1 [
∂(δT/T )
∂ ln τ

−τr′(τ)
4r(τ)

(
δκ

κ
+
δρ

ρ
+
∂ξr

∂r

)
+
δT

T

(
τr′(τ)
r(τ)

− τr′′(τ)
r′(τ)

)]
,

(8)

where we have introduced

r(τ) ≡ τ + q(τ) , (9)

and ′ and ′′ respectively refer to the first and second derivatives
with respect to τ. The first term in the brackets can be rearranged
as

∂(δT/T )
∂ ln τ

=
τr′(τ)
4r(τ)

(
∂δT/∂r

dT/dr
− δT

T

)
. (10)

Finally, using Eqs. (8) and (10), the fluctuations of the effective
temperature can be written

δTeff

Teff
=

1
4

(
1 − r(τ)r′′(τ)

r′(τ)2

)−1 [(
3 − r(τ)r′′(τ)

r′(τ)2

)
δT

T

+
∂δT/∂r

dT/dr
− δκ
κ
− δρ
ρ
− ∂ξr

∂r

]
. (11)

The fluctuations in the effective temperature do not depend
on τ, and therefore neither does the right-hand side of Eq. (11),
even though its individual terms do. The atmosphere being in

radiative equilibrium, and the height of observation being fairly
close to the photosphere, the radiative flux is uniform and equal
to its value at the photosphere. This also holds true for the fluc-
tuations of the radiative luminosity, which, by definition of the
effective temperature, are therefore given by

δLR

LR

= 4
δTeff

Teff
+ 2

ξr

r
, (12)

which, thanks to Eq. (11), becomes

δLR

LR

= 2
ξr

r
+

1
1 − x(τ)

[
(3 − x(τ))

δT

T
+
∂δT/∂r

dT/dr
− δκ
κ
− δρ
ρ
− ∂ξr

∂r

]
,

(13)

where we have introduced

x(τ) ≡ r(τ)r′′(τ)
r′(τ)2

=
(τ + q(τ))q′′(τ)

(1 + q(τ))2
. (14)

Finally, we neglect the Lagrangian perturbations of the con-
vective luminosity LC compared to those of the radiative lumi-
nosity LR. Including the convective contribution in this model
would require a non-local, time-dependent treatment of turbu-
lent convection; furthermore, the oscillations would have to be
treated in a non-adiabatic framework. Until subsequent refine-
ments are made to this model, and as a first approximation, we
therefore consider δL = δLR, in which case we have

δL

L
=

LR

L

(
2
ξr

r
+

1
1 − x(τ)

[
(3 − x(τ))

δT

T

+
∂δT/∂r

dT/dr
− δκ
κ
− δρ
ρ
− ∂ξr

∂r

])
. (15)

In the following we adopt a solar-calibrated Hopf function,
which is based on a numerical solution to the non-LTE radia-
tive transfer equation derived by Vernazza et al. (1981) to match
the observed solar spectrum. This Hopf function is furthermore
consistent with 3D hydrodynamic atmospheric simulations pro-
vided by CO5BOLD, which we use to model the source term in
Eq. (2). The Hopf function reads (see Sonoi et al. 2019)

q(τ) = 1.036−0.3134 exp(−2.448τ)−0.2959 exp(−30.0τ) . (16)

In Fig. 1, we plot the quantity x(τ) against τ, where the Hopf
function given by Eq. (16) is adopted. As expected, x(τ) is much
smaller than unity at high optical depth. This is in accordance
with the condition that the Hopf function must reduce to a con-
stant in the deeper layers of the star. At lower optical depth,
however, x(τ) is no longer negligible. The height of observation
of the continuum intensity power spectrum (τ ∼ 2/3, vertical
dashed line in Fig. 1) lies halfway between these two extreme
cases; we therefore account for the quantity x(τ) in the follow-
ing, even though it should not be of much significance.

On a side note, comparing Eq. (15) to the perturbed radiative
diffusion equation (see Eq. (21.15) of Unno et al. 1989)

δL

L
=

LR

L

(
2
ξr

r
+ 3

δT

T
− δκ
κ
− δρ
ρ
+
∂δT/∂r

dT/dr
− ∂ξr

∂r

)
, (17)

it can be seen that the intensity fluctuations of a grey atmosphere
with an arbitrary Hopf function q(τ) reduce to their diffusive
counterpart when the following condition is met:

x(τ) ≪ 1 . (18)
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where the Einstein convention on index summation is used for
the indices i and j, the superscript star (⋆) denotes complex con-
jugation, Re denotes the real part of a complex quantity, and Xω,
X′ω and X′′ω are defined in terms of the Green’s function as

Xω(rs) =
r

c
√
ρ

Gω(ro; rs) ,

X′ω(rs) =
r

c
√
ρ

∂Gω

∂ro

∣∣∣∣∣
ro;rs

,

X′′ω(rs) =
r

c
√
ρ

∂2Gω

∂r2
o

∣∣∣∣∣∣
ro;rs

,

(25)

where the variables ro and rs in the Green’s function refer to
the radius of observation and the radius of the source respec-
tively. We note that the coefficients AL, BL, and CL in Eq. (23)
are only evaluated at the height of observation of the modes. This
means, as we pointed out above, that we only need to model the
oscillation-induced radiative flux variations at the photosphere,
whereas the effect of the spatial extent of the source is entirely
contained within the function Iω. In particular, this is the reason
why the value of the quantity x(τ) is only important at the height
of observation (illustrated by the vertical dashed line in Fig. 1).

It is worth mentioning that Eq. (23) does not involve any
further modelling than when the velocity power spectrum is cal-
culated. Except for additional equilibrium thermodynamic quan-
tities, both the Green’s function and the fourth-order correlation
term in Eq. (24) were already modelled in Philidet et al. (2020).
In other words, this means that modelling the contribution of
source localisation to asymmetries in intensity does not require
additional physical constraints, nor does it require new input
parameters to be introduced, provided the non-adiabatic terms
(not accounted for in this model) indeed remain small in the stel-
lar superficial layers.

3. Results for intensity asymmetries and

comparison with observations

3.1. Numerical computation of intensity asymmetries

The system comprised of (23) to (25) constitutes a closed, semi-
analytical form of the intensity power spectrum. The equilibrium
quantities involved, as well as the turbulent quantities needed as
inputs for the analytical model of turbulence, are all extracted
from a 3D hydrodynamic simulation of the solar atmosphere
computed using the CO5BOLD code, which, after horizontal
and time average, we patched on top of a 1D solar model pro-
vided by the evolutionary code CESTAM (for more details, see
Manchon et al. 2018). Once the intensity power spectrum is cal-
culated, we fit the obtained synthetic line profiles using the fol-
lowing formula (Nigam & Kosovichev 1998):

P(ω) = H0
(1 + Bx)2 + B2

1 + x2
. (26)

Here x = 2(ω − ω0)/Γω0 is the reduced pulsation frequency, ω0
the angular eigenfrequency, and Γω0 the linewidth of the mode.
The parameter B corresponds to the asymmetry parameter. The
terms positive and negative asymmetry refer to the sign of B, and
in the special case B = 0 we recover a Lorentzian line profile.

In order to compare our results to observational data, we
used the numerical spectrum model developed in Philidet et al.
(2020). It contains only one parameter in the form of λ (see
their Sect. 2.3.2 for a definition), which illustrates the rela-
tive uncertainty pertaining to the temporal spectrum associated

with the turbulent cascade in the solar superficial layers. Phys-
ical arguments allow us to constrain the value of this parame-
ter (see e.g. Samadi & Goupil 2001); to be consistent with these
constraints, they retained the value λ = 0.5. This led to a satis-
factory quantitative agreement between their model and obser-
vations in the velocity spectrum. Here, we retain the same value
for λ, and compare the resulting intensity asymmetries to obser-
vations; there is therefore no parameter adjustment in what
follows.

3.2. Observational datasets

To compare the asymmetries predicted by the model with obser-
vations, we use the same observational data as for the velocity
power spectrum in Philidet et al. (2020). These data points were
extracted from the spectrum analysis conducted by Barban et al.
(2004) on observations made by the GONG network. We used
these observations because they are particularly fitting for the
study of asymmetry reversal; the GONG network provides veloc-
ity and intensity measurements simultaneously. We recall that
the spectral analysis of Barban et al. (2004) considers non-radial
modes (15 < l < 50), whereas our model was developed for
radial modes. However, the dependence of asymmetry on angu-
lar degree is very weak, and the asymmetry observations col-
lapse to a slowly varying function of frequency, so long as
l . 100 (see e.g. Vorontsov & Jefferies 2013) Therefore, the
frequency-dependence of asymmetry for the modes observed
by GONG is expected to be almost identical to that of radial
modes.

To obtain the asymmetries in the intensity spectrum,
Barban et al. (2004) used approximately one year of GONG
data, allowing us to resolve about 600 modes. Following
Severino et al. (2001), they simultaneously fitted the velocity
spectrum, intensity spectrum, and I–V cross spectrum (both
coherence and phase difference), which is known to yield more
reliable results. The observed asymmetries we used in velocity
and intensity are not obtained independently, but through the
same fitting procedure. The model used for the spectral anal-
ysis, however, considered that the asymmetry was entirely due
to a coherent non-resonant background component, so that their
results were presented in terms of noise level and phase dif-
ferences. This is a different mathematical description for the
same line profile shape as given by Eq. (26). In order to extract
the asymmetry parameter B as defined by Eq. (26), we recon-
structed the line profiles using the best-fit values obtained by
Barban et al. (2004), and then fitted these reconstructed line pro-
files using Eq. (26) instead.

We also consider intensity asymmetries inferred from HMI
observations, and extracted from the spectral analysis proce-
dure described in Korzennik (2005). The asymmetry profile B(ν)
resulting from this spectral analysis, while in agreement with the
values inferred by Barban et al. (2004), shows less dispersion,
and thus allows for a more robust comparison of our results with
observations. The dataset used contains four periods of 72 days
each. In Korzennik (2005) the asymmetries are already directly
given in terms of a parameter α, which is easily related to the
parameter B through B = α/2. We only considered angular
degrees between l = 0 and l = 20, and we averaged the values of
B over bins of width 30 µHz.

3.3. Modelled asymmetries compared with observations

Our model allows us to predict the mode asymmetries in both
the velocity and intensity spectra simultaneously. However,
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Conclusion and perspectives of Part II
Summary

My objective was to develop a realistic and predictive formalism designed to model the shape of the solar radial
p-mode line profiles. This constitutes a different approach compared to prior studies, whose goal was to adjust
parameterised and simplified synthetic power spectrum models to observations. I first developed this formalism for
the velocity power spectrum (Philidet et al. 2020a), and next adapted it to the intensity power spectrum (Philidet
et al. 2020b). This formalism, based on the work of Samadi and Goupil (2001), allowed me to include the statistics
of the turbulent velocity field responsible for the stochastic driving of the modes – and more specifically the
turbulent spectrum – in the most general way possible, while still allowing for quantitative predictions to be made.
The model combines analytical derivations with the use of a 3D hydrodynamic simulation of the stellar atmosphere
computed with the CO5BOLD code, to extract certain properties of the turbulent motions close to the surface of the
star. As a first validating step, I applied this formalism to the case of solar radial p-modes.

For asymmetries in the velocity power spectrum, I used two different models: one with a certain number of
free physical parameters, enabling the exploration of the impact of changing the physics of the turbulence on the
asymmetry of the modes; and one only containing one free parameter in the form of λ, which can additionally be
constrained through other methods, allowing to make quantitative predictions concerning the shape of the mode
line profiles. With the first model, which I dubbed ‘theoretical spectrum’ model, I showed that the spatial extent
of the source of stochastic excitation is of primary importance to explain the degree of mode asymmetry. More
specifically, the asymmetries of the high-frequency modes are quite sensitive to the relative weight of the region
above and below the photosphere in the total excitation rate of the modes. As such, it is impossible to infer any
property of the source of excitation using observed asymmetries with a model that does not account for its spatial
extent in a realistic manner. Furthermore, I showed that the effect of the source localisation to mode asymmetry is
largely dominant, and the effect of the correlated background negligible. The second ‘numerical spectrum’ model,
on the other hand, allowed me to predict the asymmetries in the solar case, and to compare them to observations,
in order to validate the model. A good agreement is found throughout the p-mode spectrum, thus supporting the
validity of the approximations adopted in this formalism. Furthermore, I was able to shed light on the physical
origin of the frequency dependence of mode asymmetry in the Sun. For low-frequency modes ν . 3 mHz, the
direction of variation of the asymmetry profile B(ν) largely stems from the linewidth dependence on frequency –
the parameter B being proportional to the width of the modes. On the other hand, for higher-frequency modes,
the dependence of asymmetry on frequency is much more dependent on the relative weight of the contributions
to mode driving of the regions located above and below the photosphere respectively, or otherwise stated, on the
spatial extent of the source of excitation.

For asymmetries in the intensity power spectrum, I only considered the second model, as my goal was to assess
whether this formalism is able to correctly predict the asymmetries in both observables at the same time. I showed
that a certain degree of asymmetry reversal can be explained by source localisation alone. This is in stark contrast
with all other studies, which had to rely on an additional physical mechanism to explain this puzzle: indeed, under
simplified hypotheses concerning the oscillation-induced intensity variations, one should expect the asymmetries
in intensity and velocity to be identical. The reason the asymmetry reversal constituted a puzzle in the first place
is that these studies consider a simplified expression for the intensity perturbation, thus missing out on the finer
details of the intensity mode line profiles, and failing to correctly assessing intensity mode asymmetry. By contrast,
not only does the more realistic treatment of Lagrangian luminosity perturbations adopted here make asymmetry
reversal occur for low-frequency modes (ν . 3 mHz), I also find good quantitative agreement. However, the
agreement fails for higher-frequency modes, where other physical mechanisms may need to be accounted for to
correctly recover asymmetry reversal – correlated background, non-adiabatic effects or a contribution from the
convective flux for instance. Nevertheless, the fact that a good agreement is found for all modes in velocity, and
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for low-frequency modes in intensity, is a solid indicator that the formalism presented here is valid. In particular,
it supports the specific form I adopted for the turbulent velocity spectrum, both spatial and temporal.

Perspectives

I already validated the model for a large part, as abundantly explained above. However, there still remain large
discrepancies between predicted and observed asymmetries in intensity for high-frequency modes, which warrants
further investigation, either into additional mechanisms as mentioned above, or into the assumptions underlying
the formalism presented in Chapters 5 and 6 – in particular the quasi-adiabatic approximation. Furthermore,
it is possible to support the formalism more firmly still, by exploring the question of mode amplitude, and in
particular the comparison between intensity and velocity amplitudes, which can also be studied in the framework
of this model. Beyond the motivation to further validate the model, the comparison between the two kinds of
mode amplitude also constitutes an interesting subject of study in itself. Indeed, as I mentioned in Section 2.2,
observed mode amplitude form a powerful tool for seismic diagnosis, whether they are used for individual stars to
constrain the properties of turbulent convection – the same way I presented in these last two Chapters with mode
asymmetry –, or in conjunction with scaling relations in the context of ensemble asteroseismology. At any rate, it
is necessary to shed as much light as possible on the driving processes pertaining to solar-like oscillations, and how
that translates in terms of mode amplitude. This is especially true for intensity amplitudes, which are less readily
predicted by theory than velocity amplitude, as was made apparent in Section 6.3. We began this exploration with
solar amplitudes, with a focus on the p-mode amplitudes in intensity, in collaboration with Marc-Antoine Dupret.
I already described the first efforts we made in that direction in Section 6.3. However, there is still some work to be
done in that regard. More specifically, it would be important to try and apply these calculations to the case of other
solar-like oscillators, which would allow, for instance, to physically constrain the scaling relations pertaining to
the ratio between the spectrometric and bolometric mode amplitudes, but also to the absolute amplitudes as well.

In the same spirit, I started investigating, in collaboration with Hans-Günther Ludwig, the possibility of apply-
ing this formalism not to real solar-like oscillators, but to oscillations developing in 3D hydrodynamic simulations.
This would help support the validity of this approach even further, but the motivations behind this endeavour are
deeper. 3D hydrodynamic simulations present the crucial advantage of offering many more observables than real
stars: one has access to all fluid variables at any position in the cube as well as any instant in time – although one is,
of course, limited by the time discretisation. Therefore, the simulation provides with fluid properties at any depth,
without any observational hurdle, and averages can be performed in any way one could want. In short, the output
of a 3D LES is much more controlled, by nature, than the output of the observations of a real solar-like oscillator,
even the Sun. As a result, they offer the opportunity to explore more efficiently the relation between the observed
properties of mode driving and the underlying physics of turbulence. As a concrete example, such a simulation
provides with the ‘observed’ amplitude of the oscillating modes of the box at any observational depth, and in any

frame of reference (whether it be Eulerian, Lagrangian, or in the fixed-optical-depth frame I already discussed in
Section 4.2.3). We hope to be able to develop theoretical tools that are more efficient still for constraining turbulent
convection properties from observed mode properties pertaining to mode driving, in particular from the observed
velocity/intensity relation.

Last, but certainly not least, now that the validating steps have been successfully taken, it is time to look at the
longer-term goals, which were the motivations for this work in the first place. As I explained in the end of Sec-
tion 4.1, mode asymmetry in intensity is now observed in solar-like oscillators other than the Sun. It is observed, in
particular, that the asymmetry of the modes, like their amplitude and their linewidth, follow clear trends with stellar
parameters, like surface gravity of effective temperature (Benomar et al. 2018). These trends offer the opportunity
to use observed asymmetries for seismic diagnosis purposes. But this requires a thorough theoretical understand-
ing of the relation between stellar parameters and p-mode asymmetry, especially in intensity. Our formalism is
prime for use in this context. More concretely, I intend to use a grid of patched stellar models corresponding to an
sample of solar-like oscillators – like the CO5BOLD or Stagger grid – characterised by different stellar parameters.
My goal is to apply the formalism presented in Chapters 5 and 6, and therefore obtain quantitative predictions
for the asymmetry profile B(ν), for each of these stellar models separately. My hope is to be able to use these
predictions to shed a brighter light, from a theoretical and physical point of view, on the dependence of B(ν) on the
stellar parameters, in particular close to νmax. This undoubtedly constitutes the next step in this work.

Another next step, much bigger this time, would be to consider the other aspects of turbulence-oscillation
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CHAPTER 6. CONCLUSION AND PERSPECTIVES OF PART II

coupling. So far, I have focused exclusively on one aspect of this coupling: the stochastic driving of the modes
by the turbulent motions close to the surface of the star. It is this stochastic driving that is responsible for the
asymmetry of the mode line profiles, in addition to their amplitude. The physical processes at play behind mode
driving are fairly well understood, and even though there still remain some details to investigate, we have made
considerable progress in this context. However, other aspects of turbulence-oscillation coupling – namely mode
damping and surface effects – are much more sensitive to the properties of this coupling, and our understanding
of these aspects is therefore much less consensual. As was made clear in Sections 2.3 and 2.4, it is necessary to
further investigate alternative theoretical approaches to tackle these more sensitive issues, in order to go beyond
the Mixing-Length Theory for instance. More particularly, it is necessary to investigate turbulence-oscillation
coupling as a whole, instead of focusing on one single aspect at a time, like I did in Part II. This is the subject of
Part III, into which I now delve.
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Part III

Lagrangian stochastic models for

turbulence–oscillation coupling
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7 Stochastic models of turbulence: an introduction
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- Give me a break! That wasn’t my fault.
- Yeah, no. I mean, obviously this was all
due to the butterfly effect.
- The what?
- Butterfly effect. You know, a butterfly in
Africa lands on a giraffe’s nose, the
giraffe sneezes, that spooks a gazelle, the
gazelle bonks into a rhinoceros, and the
rhinoceros blindly stampedes into a
phone booth, calls New York somehow,
and says “Hey, go kill this idiot Ron, for a
suitcase”, because the rhinoceros speaks
English! [...] What’s in the suitcase, Ron?

Sterling Archer to Ron Cadillac

In Section 1.2, I presented an overview of the various modelling approaches traditionally followed for the treat-
ment of stellar turbulent convection, either through the use of Large-Eddy Simulations (see Section 1.2.1), through
Mixing-Length Theories (see Section 1.2.2), or through Reynolds-stress models (see Section 1.2.3). In particular,
I insisted on the difficulties inherent to the theoretical description of convection in a highly turbulent medium, as
well as on the shortcomings of these approaches. In Sections 2.2 to 2.4, I described how these approaches are used
to tackle the various issues associated with the coupling between the turbulent convection at the top of the con-
vective envelope of solar-type stars and the global acoustic modes of oscillation developing in these stars. In this
context, the shortcomings of these methods become more visible still: they require that the turbulent convection
and the oscillations be separated into two distinct sets of equations from the start, usually through a separation
of timescales, length scales, or between an average and a fluctuating component, which is problematic when it
comes to modelling their coupling; the mixing-length hypothesis underlying all versions of MLT oversimplifies
the behaviour of convection close to the surface of the star, by reducing the turbulent cascade to a unique time
and length scale, thus only crudely modelling turbulent dissipation; closure relations, whether introduced in MLT
or Reynolds-averaged Navier-Stokes (RANS) formulations, or implemented in conjunction with 3D LES (like the
GGM or RGM for instance) are very difficult to relate to the underlying physical assumptions, which makes it
impossible to assess whether they are relevant to the stellar context or not; as a corollary, the free parameters in
these models are not physical, and therefore difficult to constrain. As I concluded in Chapter 3, these limitations
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are both crippling when it comes to modelling the coupling between turbulent convection and stellar oscillations,
and unavoidable, because inherent to these methods. It is therefore necessary to go beyond these approaches, and
to propose something new.

To this end, I explore the realm of stochastic models of turbulent media, and its potential for the study of
turbulence–oscillation coupling in solar-type stars. The original idea is simple: instead of being described by a
set of transport equations for the means (as in MLT formulations), or for the means, variances, and higher-order
moments (as in RANS models), the fluid is now described by a transport equation for the joint Probability Density
Function (PDF thereafter) associated to every turbulent quantity. This is at the heart of PDF models of turbulence,
and more specifically, when the PDF is associated to Lagrangian quantities, Lagrangian PDF models. Knowing
the PDF is equivalent to knowing all the moments of the turbulent quantities. However, its transport equation
takes the form of a Fokker-Planck equation, which can prove very complicated to handle both analytically and
numerically. To circumvent this problem, the PDF itself can be represented by a large set of individual particles,
whose position and physical properties are evolved through time to mimic the evolution of the PDF. When the
medium is highly turbulent, the equations used to model the evolution of the fluid particles are no longer ordinary
differential equations, but become stochastic differential equations (SDE thereafter), i.e. equations containing a
random component. Such models are referred to as Lagrangian stochastic models of turbulence: the term ‘La-
grangian’ is called for because the equations pertain to fluid parcels followed along their trajectories, while the
term ‘stochastic’ refers to the nature of the equations. Lagrangian stochastic models have been used to describe
turbulent media by the fluid dynamics community for a long time (e.g. Pope 1981; Anand et al. 1989; Haworth and
El Tahry 1991; Roekaerts 1991; Hsu et al. 1994; Delarue and Pope 1997; Welton and Pope 1997; Welton 1998;
Das and Durbin 2005; Bakosi and Ristorcelli 2011), and have allowed for a considerable improvement of our un-
derstanding of high-Reynolds-number flows. These models have also found wide-spread use in the meteorological
community, more specifically to model turbulent diffusion in the Convective Planetary Boundary Layer (or CPBL)
here on Earth – on the subject, I warmly invite the curious reader to consult the excellent monograph by Rodean
(1996). The CPBL is the lowermost layer of the atmosphere, which is in contact with the ground and the bodies of
water, and therefore most directly influenced by the solar heating of the Earth’s surface. When the heating is strong
enough, this layer becomes convectively unstable, and upon arising, the instability entails the onset of turbulent
atmospheric motions, responsible for an increased mixing of the scalar properties of the air (like its temperature
and density for instance). The CPBL is extremely similar, in its behaviour and its general properties, to the exter-
nal layers of stellar convective zones1 Nevertheless, the use of Lagrangian stochastic models has not crossed the
seemingly impenetrable barrier separating such distant fields as meteorology and stellar physics, and its use has
remained rare in the context of stellar turbulent convection.

My goal, in this context, is to try and remedy this situation, and to show that these methods, that have proved so
beneficial in other realms, offer a great potential for deepening our understanding of stellar turbulent convection. In
the following chapters, I will focus, more specifically, on the issues related to its coupling with stellar oscillations
in solar-type stars. Before I do that, however, it is necessary to offer some background information concerning
the basic mathematical tools that I will use throughout the rest of this thesis. This is the goal of this chapter. I
start with a short introduction to stochastic processes, stochastic differential equations, and the formalism of Ito
calculus that overarches all these mathematical concepts. Then, I present in a non-exhaustive manner the various
implementations of Lagrangian stochastic models of turbulent flows that have been developed since the concept
of stochastic equations has been invented – which was, after all, only some 60 years ago. The great advantages
offered by these models in the context of this thesis will then become apparent.

7.1 Stochastic processes: the basics

Before I show how the concept of stochastic process, and the mathematical artillery that stands behind it, can be
used in the context of turbulent flows, it is necessary to give some formal definitions, which I do in the following.
These definitions can be found in any textbook on stochastic processes; I refer the reader, for instance, to Gardiner
(1994) or Øksendal Bernt Karsten (1992), from which the structure of this section is inspired.

1In fact, were it not for the fact that the gas in stellar interiors is at least partially ionised, there would virtually be no qualitative
difference between the two.
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CHAPTER 7. STOCHASTIC MODELS OF TURBULENCE

7.1.1 Stochastic processes: a formal definition

Random variables

Let Ω be a given set, and F be a family of subsets of Ω which verifies the three following properties: 1) F
contains the empty set, 2) if a subset is contained in F , then so is its complementary – i.e. the subset of all elements
of Ω that are not in F –, and 3) the union of any number of elements of F is also in F . Such a family F is said to
be a σ-algebra on Ω. Then a probability measure P is defined as a function that maps F onto [0, 1] in such a way
that 1) the empty set is mapped to 0, 2) Ω is mapped to 1, and 3) if Ai is a disjoint subset of F – i.e. any element
of one of the Ai cannot be in any of the other A j –, then the measure of their union is equal to the sum of their
measures. If all of these properties are verified, the triplet (Ω,F , P) is called a probability space. These definitions
may seem a bit formal: what do they intuitively mean? Ω is the Universe in which events can happen in the scope
of a given experiment, and F is the total set of events that can happen within this Universe. As for the function P,
it relates any event in the Universe to the probability of its occurrence. In particular, the first property of P means
that something impossible is given probability 0, the second property means that an unavoidable outcome is given
probability 1, and the third property means that if several outcomes are mutually exclusive, then the probability of
either one of them to occur is the sum of their individual probabilities.

In this context, a random variable X is defined as a function mapping F onto R
n (for a given positive integer

n), with the only requirement being that X must be F -measurable – i.e. any open subset of R
n must be the image by

X of a given element of F . In other words, for any given ensemble of real numbers, there should always be at least
one event that is associated to this ensemble through the random variable X. In that case, X is invertible, and the
function µ ≡ P◦X−1 (where ◦ denotes function composition) is properly defined: it corresponds to the distribution

of the random variable X. Essentially, it maps the real number associated to a given event to the probability of the
event. The expectation of the random variable X is defined as

E[X] ≡
∫

Ω

X(ω) dP(ω) =
∫

Rn

x dµ(x) , (7.1)

where the first equality is the definition, and the second equality stems from the definition of µ. It is easily seen
that for any function g of R

n into R
m, the expectation of g(X) is

E[g(X)] =
∫

Rn

g(x) dµ(x) . (7.2)

The differential form of the distribution µ can be rewritten, in the integral defining the expectation, in terms of the
infinitesimal element dnx over which the integral is performed. Let us write dµ(x) = f (x) dnx. Then we have

E[g(X)] =
∫

Rn

g(x) f (x) dnx . (7.3)

By construction, f (x0) dnx is the probability of all the events that are associated, through the random variable X, to
values of x that are located within dnx of x0. Intuitively, it corresponds to a density of probability in the R

n space
onto which the outcomes of the experiment are mapped: it is accordingly referred to as the Probability Density

Function (PDF thereafter) of the random variable X. Accordingly, the joint PDF of two random variables X1 and
X2 can be defined thus: if fjoint(x1, x2) dnx1 dmx2 is the probability of all the events that are associated, through
X1 to real values within dnx1 of x1, and, simultaneously, through X2 to real values within dmx2 of x2, then fjoint is
the joint PDF of the two random variables. Naturally, the definition can be extended to more than two variables.
Finally, the conditional PDF fX2(X1) of X1 knowing X2 is defined as the ratio between their joint PDF and the PDF
of X2 alone. fX2(x1|x2) dnx1 corresponds, perhaps more intuitively, and as the name ‘conditional’ suggests, to the
probability of all the events associated through X1 to real values within dnx1 of x1, and through X2 to exactly x2.

From random variables to stochastic processes

These notions are undoubtedly familiar to the reader. From there, the leap to stochastic processes is but a small
one: indeed, a stochastic process is simply a parameterised collection {Xt}t∈T of random variables. In general,
the set T with which these random variables are indexed can be absolutely anything – finite or infinite, discrete or
continuous –, but in the remaining of this manuscript, T will represent the set of all instants in time, and be equal to
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R. In that case, a stochastic process can roughly be thought of as a random variable that evolves through time. For
any given time t, Xt is a classical random variable, the kind of which everyone is familiar with. On the other hand,
for any experiment ω ∈ Ω, the function t → Xt(ω) that maps R onto R

n is called a sampling path of the stochastic

process. Let me briefly interpret all of these notions if the system under consideration is a turbulent flow. Then for
any fixed time t, Xt can be, for instance, a function that associates to a given realisation ω of the flow the velocity
of the flow realisation at a predetermined point and time t; and for any given realisation of the flow, the sampling
path of Xt is the time evolution of the flow velocity at a predetermined point for this realisation. Then the velocity
of the flow at this given point is a set of random variables associated to each instant: we have a stochastic process.

I introduced above the notion of PDF for a random variable. This notion is easily extended to stochastic
processes: the PDF f (x, t) of a stochastic process is defined as the PDF of Xt. It now depends both on the real
variable x associated to the random variable, and on time t. Let me also extend the definition of the joint PDF of the
stochastic process by defining f (x1, t1; x2, t2; ...) as the joint PDF of Xt1 , Xt2 , ... Note that, in the following, I will
drop the subscript ‘joint’: the context will always make it clear when a PDF is joint and when it is not. Similarly,
the conditional PDF of Xt1 , Xt2 , ..., knowing Yτ1 , Yτ2 , ... is defined as

f (x1, t1; x2, t2; ...|y1, τ1 : y2, τ2; ...) ≡ f (x1, t1; x2, t2; ...; y1, τ1 : y2, τ2; ...)
f (y1, τ1 : y2, τ2; ...)

. (7.4)

In the context of stochastic processes, it is useful to remark that the PDF contains the knowledge of the system at
one given time, the joint PDF contains the simultaneous knowledge of the state of the system at several different
times, and the conditional PDF contains the knowledge of the future state of the system provided its past state is
perfectly known. Note that this is only the case if the times are ordered according to ... 6 τ2 6 τ1 6 ... 6 t2 6 t1:
in the following, I will always assume that this is the case.

7.1.2 Markov processes

Definition

A stochastic process is said to have the Markov property, or to verify the Markov assumption, or to be a Markov

process, if its conditional PDF verify

f (x1, t1; x2, t2; ...|y1, τ1 : y2, τ2; ...) = f (x1, t1; x2, t2; ...|y1, τ1) . (7.5)

In common language, a Markov process is a stochastic process whose future evolution only depends on the present

state. Such a process therefore has absolutely no memory of the past. It is immediately seen that the multi-time
joint PDF of a Markov process, whatever its complexity, can always be written in terms of two-times joint PDF
only. Indeed, let us consider the three-time joint PDF f (x1, t1; x2, t2; y1, τ1). By definition of the conditional PDF,
one has

f (x1, t1|x2, t2; y1, τ1) =
f (x1, t1; x2, t2|y1, τ1)

f (x2, t2|y1, τ1)
. (7.6)

But the Markov property stipulates that f (x1, t1|x2, t2; y1, τ1) = f (x1, t1|x2, t2). As such, one obtains

f (x1, t1; x2, t2|y1, τ1) = f (x1, t1|x2, t2) f (x2, t2|y1, τ1) . (7.7)

Finally, using the definition of the conditional PDF, this can be rewritten

f (x1, t1; x2, t2; y1, τ1) = f (x1, t1|x2, t2) f (x2, t2|y1, τ1) f (y1, τ1) . (7.8)

This is easily extended to the case of any multi-time joint PDF, and we find the following general property of
Markov processes

f (x1, t1; x2, t2; ...; xn, tn) = f (x1, t1|x2, t2) f (x2, t2|x3, t3)... f (xn−1, tn−1|xn, tn) f (xn, tn) . (7.9)

This property means that the knowledge of the evolution of a Markov process is only contained in how the system

jumps from state to state in short time scales. This is extremely important, as this is the key property that makes
the modelling of Markov processes possible without too much hassle.
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By definition of the joint PDF, one has

f (x1, t1) =
∫

Rn

dnx2 f (x1, t1; x2, t2) , (7.10)

which no longer depends on the reference time t2, because I have integrated over the only variable pertaining to
this instant. Similarly, one has

f (x1, t1|x3, t3) =
∫

Rn

dnx2 f (x1, t1; x2, t2|x3, t3) =
∫

Rn

dnx2
f (x1, t1; x2, t2; x3, t3)

f (x3, t3)
. (7.11)

For the moment, this is valid for any stochastic process. But using Equation 7.9, this transforms, for Markov
processes only, into the Chapman-Kolmogorov equation

f (x1, t1|x3, t3) =
∫

Rn

dnx2 f (x1, t1|x2, t2) f (x2, t2|x3, t3) . (7.12)

As will seen in the following, this equation alone contains everything one needs in order to model the evolution of
a Markov process.

All of this was the good news. Here is the bad news: there is no such thing as a Markov process in real life.
Any system conserves at least a certain amount of memory of the past, even if it is very short, and this memory
can be perceived if measurements are made at sufficiently close time intervals. However, if these real memory
timescales cannot be perceived, then for all intents and purposes the system can accurately be described by a
Markov process. For instance, a fluid parcel in a turbulent flow is subjected to highly fluctuating forces, so that its
velocity undergoes unceasing kicks in every directions. But it also has a certain measure of inertia, which means its
velocity retains some degree of coherence with the immediate past state of the parcel. In other words, the velocity
of the parcel is not strictly speaking a Markov process. However, if the inertia is low enough, and the random
forces fluctuating enough, then the memory time of the parcel is very short, and the sample path of its velocity can
be approximately considered to have the Markov property. The same can be said of its position: if the velocity
itself fluctuates rapidly enough, then the particle is almost never in a uniform rectilinear motion, and its position
can be approximated by a Markov process (see Section 12.3.1 of Pope 2000, for a more detailed discussion on the
subject).

The differential Chapman-Kolmogorov equation

The Chapman-Kolmogorov equation (Equation 7.12) describes the evolution of a Markov process. But the fact
that the times t1 and t3 are two completely separated instants, not at all close to one another, makes this equation
quite impractical. It would be better to have a form of this evolution equation for arbitrarily close instants t and
t + dt. This would yield a differential equation, much more practical to model the evolution of the system. Let us
suppose that the conditional PDF f (x1, t1|x2, t2) does not depend on the absolute times t1 and t2, but only on the
time difference τ between the two2

f (x1, t1|x2, t2) ≡ Tτ(x1|x2) . (7.13)

Tτ(x1|x2) corresponds to the transition probability from the state x2 to the state x1 per unit state x1, during the time
interval τ. With this notation, the Chapman-Kolmogorov equation becomes

Tτ+τ′(x1|x3) =
∫

Rn

dnx2 Tτ′(x1|x2)Tτ(x2|x3) . (7.14)

Then, as τ′ → 0, one can describe the density of probability for state transition in the following way

Tτ′(x1|x2) = (1 − a0τ
′)δn(x2 − x1) + τ′J(x1|x2) + O(τ

′2) , (7.15)

where δn is the Dirac distribution on R
n, and J(x1|x2) is the transition probability per unit time from state x2 to

state x1. In terms of dimension, both T and the n-dimensional Dirac distribution have the dimension of an inverse
volume in the space of random variables, while J has the dimension of an inverse volume (also in random variable

2Provided the laws of physics are invariant by translation in time, this is not a very restrictive condition.
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space) per unit time, and a0 is simply an inverse time. The meaning of Equation 7.15 is the following: during a time
interval τ′, the system either remains in the same state, which happens with probability 1 − a0τ

′, where a0 is the
probability per unit time for the system to change state; or the system state changes once, which is represented by
the second term on the right-hand side; or the system state changes several times, which happens with a probability
that is non-linear in τ′, and is represented by the third term on the right-hand side. The quantity a0 is constrained
by the normalisation condition

∫

Rn

dny Tτ′(y|x2) = 1 , (7.16)

which immediately yields

a0(x2) =
∫

Rn

dny J(y|x2) . (7.17)

Replacing Tτ′(x1|x2) in Equation 7.14 by the expression given by Equation 7.15, one finds

Tτ+τ′(x1|x3) =
∫

Rn

dnx2

[
(1 − a0(x2)τ′)δn(x2 − x1) + τ′J(x1|x2) + O(τ

′2)
]

Tτ(x2|x3) . (7.18)

Then, replacing a0 by its expression given by Equation 7.17, and using the definition of the Dirac distribution, one
finds

Tτ+τ′(x1|x3) − Tτ(x1|x3)

= τ′
[∫

Rn

dnx2 J(x1|x2)Tτ(x2|x3) −
∫

Rn

dnx2

∫

Rn

dny J(y|x2)δn(x2 − x1)Tτ(x2|x3)
]
+ O(τ

′2)

= τ′
[∫

Rn

dnx2 J(x1|x2)Tτ(x2|x3) −
∫

Rn

dny J(y|x1)Tτ(x1|x3)
]
+ O(τ

′2) . (7.19)

Finally, replacing the variable y by x2 in the second integral, dividing by τ′ and taking the limit τ′ → 0, one finds
the differential Chapman-Kolmogorov equation, also referred to as the master equation

∂Tτ(x1|x3)
∂τ

=

∫

Rn

dnx2 (J(x1|x2)Tτ(x2|x3) − J(x2|x1)Tτ(x1|x3)) . (7.20)

Considering that the initial state x3 and the initial time t3 are both fixed, the master equation can be rewritten in
terms of the PDF f in a perhaps more familiar form

∂ f (x, t)
∂t

=

∫

Rn

dnx′
(
J(x|x′) f (x′, t) − J(x′|x) f (x, t)

)
. (7.21)

The physical meaning of the master equation is simply that the rate of change of the probability density associated
to the state x is the result of a balance between the probability flow from all neighbouring states x′ to the state x

(which increases f ) and the probability flow to all neighbouring states x′ from the state x (which decreases f ).

The Fokker-Planck equation

From now on, in order to simplify the discussion, let me suppose that the stochastic process Xt is a scalar
variable. Usually, J is separated into two components: one due to discontinuous jumps, and one due to continuous
transitions. In the context of turbulent flows, I will neglect the contribution from discontinuous jumps, and consider
that all the contributions come from continuous transitions: such a Markov process is referred to as a diffusion

process. Then the function J(x|x′) only takes non-zero values for x very close to x′. Rewriting J(x|x′) = J(x′, r),
where r ≡ x − x′, it can be stated that J peaks at r = 0, and is a slowly varying function of x′ (in comparison with
its dependence on r). Then Equation 7.21 can be rewritten

∂ f (x, t)
∂t

=

∫

R

dr J(x − r, r) f (x − r, t) − f (x, t)
∫

R

dr J(x,−r) . (7.22)

162



CHAPTER 7. STOCHASTIC MODELS OF TURBULENCE

In the first integral on the right-hand side of Equation 7.22, one can consider the Taylor expansion of the integrand
in the following form

J(x − r, r) f (x − r, t) =
+∞∑

i=0

(−r)i

i!
∂i

∂xi

[
J(x, r) f (x, t)

]
, (7.23)

in which case Equation 7.22 becomes

∂ f (x, t)
∂t

=

∫

R

dr

+∞∑

i=1

(−r)i

i!
∂i

∂xi

[
J(x, r) f (x, t)

]
, (7.24)

where the i = 0 term in the Taylor expansion cancels out with the second term on the right-hand side of Equa-
tion 7.22. Finally, let me define the moments of the transition probability as

µi(x) ≡
∫

R

dr riJ(x, r) . (7.25)

I recall, in particular, that the first moment of a distribution corresponds to its mean, while the second moment
corresponds to the difference between its variance and the square of its mean3. Then one finally obtains the
Kramers-Moyal expansion of the master equation

∂ f (x, t)
∂t

=

+∞∑

i=1

(−1)i

i!
∂i

∂xi

[
µi(x) f (x, t)

]
. (7.26)

In general, one should keep all the orders i in the Kramers-Moyal expansion. However, as it happens, the PDF f

is only realisable (i.e. remains positive and normalised to unity at all times) in either one of two cases (Pawula
1967): if all its moments are non-zero, or if only its first two moments are non-zero (in which case it is Gaussian).
In addition, Sawford and Borgas (1994) showed, in the context of turbulent flows, that if any µi , 0 for i > 3,
then the sampling paths of the stochastic velocity process is necessarily discontinuous, and additionally ends up
violating the Kolmogorov hypotheses (Kolmogorov 1941). As such, any transitional probability density J (also
sometimes referred to as random forcing) must either be Gaussian, or lead to discontinuous phase-space trajectories
(Thomson 1987). If one wishes to retain continuous sampling paths for the flow velocity, J must necessarily be
Gaussian, in which case µi = 0 for i > 3. Then the Kramers-Moyal expansion of the master equation reduces to
the Fokker-Planck equation

∂ f (x, t)
∂t

= − ∂
∂x

[
µ1(x) f (x, t)

]
+

1
2
∂2

∂x2

[
µ2(x) f (x, t)

]
. (7.27)

The Fokker-Planck equation is only an approximation to the master equation, but becomes exact if J is Gaussian
– in which case the PDF itself is Gaussian. This equation governs the evolution of the PDF as a function of µ1 and
µ2 only, and therefore allows for the determination not only of every moment of the statistical distribution of the
stochastic process Xt at any time, but also all multi-time statistics of Xt – which I recall systematically reduce to
two-times statistics, on account of the Markov property verified by Xt.

The physical role played by the two coefficients µ1 and µ2 can be inferred from their definition. The first one,
µ1, is defined as the mean of the state transition probability over all possible neighbouring states. If it is non-zero
– i.e. if the state transitions towards a given direction are preferred over all other directions –, then, on average, Xt

will have a tendency to drift away from its initial value in this preferred direction. On the contrary, if µ1 = 0, then
Xt will tend, on average, to remain in place. This means that µ1 tends to make the PDF drift in phase-space in a

deterministic manner: for that reason, µ1 is referred to as the drift coefficient. The second one, µ2, is defined as the
variance of the state transition probability over all possible neighbouring states. It describes how far away from
its initial value Xt will tend to travel at ulterior times. If µ2 is non-zero, then Xt will diffuse away from its initial
state. But is µ2 = 0, there will be no such diffusion; in fact, Xt will only be affected by the deterministic drift, and
its evolution will not be random at all. This means that µ2 tends to widen the PDF in phase-space, thus increasing

the randomness of the variable Xt: this is why µ2 is referred to as the diffusion coefficient.

3It is the centered second moment of the distribution that corresponds to its variance. Here, however, I have considered non-centered

moments.
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These results are readily generalised to the case of a multivariate stochastic process, i.e. if Xt maps F onto
R

n. Then the first-order term in the Kramers-Moyal expansion (Equation 7.26) is written in terms of a gradient,
and the second-order term in terms of a Hessian matrix. Furthermore, in general, the transition probability J – and
therefore the moments µ1 and µ2 – can depend on time. Then the Fokker-Planck equation takes the more general
form

∂ f (x, t)
∂t

= − ∂

∂xi

[
Ai(x, t) f (x, t)

]
+

1
2

∂2

∂xi∂x j

[
Bi j(x, t) f (x, t)

]
, (7.28)

which now depends on a drift vector Ai and a diffusion matrix Bi j. A particular case is obtained if Ai = 0 and
Bi j = δi j: then the stochastic process is called a Wiener process, and is usually denoted as Wt.

7.1.3 Stochastic differential equations

The Fokker-Planck equation (Equation 7.28) completely describes the statistical properties of the stochastic
process Xt. Indeed, if the initial state is known, the solution of this equation provides with the PDF f for any time
t, and the PDF at time t contains all the statistical moments of Xt – such as its expectation and variance for instance
– through Equation 7.3. However, the Fokker-Planck equation is complicated to solve, whether it be analytically
or numerically: this is because the PDF depends on all the random variables described by the stochastic process Xt

(for instance, for turbulent flows, at least the three components of velocity), in addition to the time variable t. This
is why the Fokker-Planck equation is usually solved through Monte-Carlo methods: different realisations of the
stochastic process Xt are integrated forward in time according to a carefully designed evolution equation, in such
a way that the set of realisations mimics the PDF at any time t. The question, therefore, is this: what evolution
equation should be chosen?

The Langevin equation

For the moment, let me suppose that X(t) is a scalar stochastic process4. If X(t) were an ordinary function, it
would be associated with a deterministic evolution equation which, in its most general form, would read dX/ dt =

a(X, t). But X(t) being a stochastic process, its evolution equation must obviously contain an additional random
component. One can formally write the evolution equation for X(t) as

dX

dt
= a(X, t) + b(X, t) η(t) , (7.29)

where the stochasticity of the evolution of X is entirely brought about by the second term on the right-hand side.
This kind of equation is referred to as a Langevin equation. Without loss of generality, one can consider that the
fluctuating component η(t) is of zero mean: indeed, any non-zero mean can be absorbed in the definition of a.
Furthermore, to reflect the fact that the fluctuating term should vary rapidly in time, and not have any memory
from the past – i.e. to ensure that X is indeed a Markov process –, it is necessary for η(t) and η(t′) to be statistically
independent5 for t , t′. The two-time variance of η(t) should therefore be proportional to the Dirac distribution.
There again, the coefficient of proportionality can be absorbed in the definition of b, and therefore be taken as
unity. To summarise, one has

E[η(t)] = 0 and E[η(t)η(t′)] = δ(t − t′) . (7.30)

In particular, setting t = t′, it can be seen that η(t) as an infinite variance at all times, so that Equation 7.29,

in this naive form, necessarily leads to a pathological behaviour. Mathematically speaking, the function η(t)
does not exist, and neither does Equation 7.29. The question, therefore, is this: how can one give a consistent,

4Starting now, I will occasionally drop the subscript t from the notation Xt, and instead refer to this stochastic process as X(t). Although
the notation is less rigorous, it present the advantage of making clear that the random variable is, in a way, a function of time.

5Two random variable are said to be independent from one another if their joint PDF is equal to the product of their individual, marginal
PDF. I already remarked above that in reality, there is always going to be a timescale, however small, on which η(t) retains some degree of
memory of its past state. If this timescale is much smaller than any other timescale in the system, however, η(t) can be safely approximated
by this independence property.
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mathematically rigorous meaning to Equation 7.29? Instead of considering η(t), let me consider its integral, which
should exist on account of the fact that the solution Xt to Equation 7.29 itself exists

ζ(t) ≡
∫ t

0
dt′ η(t′) . (7.31)

In order for Xt to be a continuous Markov process (i.e. to have only continuous sampling paths), ζ(t) itself must
be continuous. Then, one has

ζ(t′) − ζ(t) =
∫ t′

t

ds η(s) (7.32)

ζ(t) =
∫ t

0
ds η(s) = lim

ǫ→0

[∫ t−ǫ

0
ds η(s)

]
, (7.33)

where the second equality in the second line stems from the continuity of ζ(t). But all the η(s) in the integral on
the right-hand side of Equation 7.32 are independent from the η(s) in the integral on the rightmost-hand side of
Equation 7.33, since η(t) is a Markov process and the time intervals involved in the two integrals do not overlap.
Therefore, the two terms are statistically independent. Otherwise stated, ζ(t′) − ζ(t) is independent from ζ(t). A
fortiori, the increment ζ(t′) − ζ(t) is also independent of any anterior ζ(t′′), which means that ζ(t′) itself is fully
determined from the state of ζ(t). Naturally, t can be chosen arbitrarily close to t′, which means that ζ(t′) only
depends on the present state of ζ: this is a Markov process.

As such, the PDF of ζ(t) evolves according to a Fokker-Planck equation. Its coefficients can be computed
through their definition given by Equation 7.25: the drift coefficient is the expectation of the increment of ζ per
unit time, knowing its initial state

A(ζ0, t) ≡ lim
∆t→0

E
[
(ζ(t + ∆t) − ζ0) | ζ0, t

]

∆t
= lim
∆t→0

1
∆t

E

[∫ t+∆t

t

ds η(s)
]
= lim
∆t→0

1
∆t

∫ t+∆t

t

ds E
[
η(s)

]
= 0 , (7.34)

where the last equality stems from the zero mean of η(s). Similarly, the diffusion coefficient is the expectation of
the increment squared of ζ per unit time, knowing its initial state

B(ζ0, t) ≡ lim
∆t→0

E
[
(ζ(t + ∆t) − ζ0)2 | ζ0, t

]

∆t
= lim
∆t→0

1
∆t

E


(∫ t+∆t

t

ds η(s)
)2

= lim
∆t→0

1
∆t

∫ t+∆t

t

ds

∫ t+∆t

t

ds′ E
[
η(s)η(s′)

]
= lim
∆t→0

1
∆t

∫ t+∆t

t

ds = 1 . (7.35)

Therefore, one obtains the important result that, in Equation 7.29, and in order for Xt to be a continuous Markov
process, the integral ζ(t) of the fluctuating term η(t) must necessarily coincide with the Wiener process W(t)
described in the end of Section 7.1.2. Then let me define

dW(t) ≡ W(t + dt) −W(t) = η(t) dt , (7.36)

in which case Equation 7.29 can be rewritten in integral form

x(t) − x(0) =
∫ t

0
ds a[x(s), s] +

∫ t

0
dW(s) b[x(s), s] . (7.37)

For the moment, Equation 7.37 is only a formal rewriting of Equation 7.29. However, it is possible to give
mathematical meaning to the second integral, in which case this integral form is actually the only one that can be
interpreted consistently, while Equation 7.29 makes no sense.

Ito stochastic differential equations

In mathematical terms, the second term on the right-hand side of Equation 7.37 constitute a Stieltjes integral6

where the sample function is the Wiener process W(t). But since W(t) varies over very small timescales, the choice

6An ordinary integral, or Riemann integral, is denoted as I =

∫ b

a

f (x) dx, and defined as the limit of the Riemann sum S =
∑n

i=1 f (τi) (ti − ti−1) when n → +∞ while t0 = a, tn = b, and each τi is restricted to lie between ti and ti−1. This concept is extended
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of the intermediary points τi in the sum whose limit defines this integral (Equation 7.38) is very important. Several
such choices can be adopted: the choice τi ≡ ti−1 defines the Ito stochastic integral of the function f

∫ t

0
f (s) dW(s) ≡ lim

n→∞

n∑

i=1

f (ti−1) (W(ti) −W(ti−1)) , (7.39)

where the limit is taken so that the {ti}i=1..n are properly ordered between 0 and t, and entirely cover the interval
between the two. Then, by definition, the stochastic process Xt is said to follow the Ito stochastic differential

equation formally written as

dX(t) = a(X(t), t) dt + b(X(t), t) dW(t) , (7.40)

if it verifies the integral form given above for any time t and initial time t0

X(t) = X(t0) +
∫ t

t0

a(X(s), s) ds +

∫ t

t0

b(X(s), s) dW(s) , (7.41)

where the second integral is defined as an Ito stochastic integral. Since W(s) for any s > t0 is independent of x(s)
for any s < t0, Equation 7.41 shows that one only needs to know X(t0) in order to know X(t). But t0 can be chosen
arbitrarily close to t: in other words, the future evolution of Xt is only determined by its present state, meaning that
any solution to an Ito stochastic differential equation is a Markov process.

Connection between the Ito SDE and the Fokker-Planck equation

Because the solution of Equation 7.40 is a Markov process, its PDF follows a Fokker-Planck equation. Is it
possible to relate the coefficients in the Ito SDE to those of the corresponding Fokker-Planck equation? The answer
is yes. Before I do this, let me derive an important intermediary result. Let me define, for any given function g, the
sum

S ≡ lim
n→+∞

E




n∑

i=1

gi−1

(
∆W2

i − ∆ti
)2


 , (7.42)

where gi ≡ g(ti), and ∆Wi ≡ W(ti) −W(ti−1). Expanding the square in the expectation, one finds

S = lim
n→+∞

E


n∑

i=1

g2
i−1

(
∆W2

i − ∆ti
)2
+

n∑

i> j ; i, j=1

2gi−1g j−1

(
∆W2

i − ∆ti
) (
∆W2

j − ∆t j

)
 . (7.43)

In the first sum, g2
i−1 is independent from

(
∆W2

i − ∆ti
)2

, and in the second sum, gi−1g j−1

(
∆W2

j − ∆t j

)
is independent

from
(
∆W2

i − ∆ti
)
, because of the properties of the Wiener process (in particular the fact that it has the Markov

property). Therefore, one has

S = lim
n→+∞


n∑

i=1

E
[
g2

i−1

]
E

[(
∆W2

i − ∆ti
)2

]
+

n∑

i> j ; i, j=1

2E
[
gi−1g j−1

(
∆W2

j − ∆t j

)]
E

[
∆W2

j − ∆t j

]
 . (7.44)

But I recall that, according to Equation 7.35, one has E
[
∆W2

i

]
= ∆ti. Furthermore, since W is a diffusion process,

it exhibits a Gaussian PDF, so that its fourth-order moment is equal to three times the square of its variance, and

E

[(
∆W2

i − ∆ti
)2

]
= E

[
∆W4

i

]2 − 2∆tiE
[
∆W2

i

]
+ ∆t2

i

= 3E
[
∆W2

i

]2 − 2∆tiE
[
∆W2

i

]
+ ∆t2

i

= 3∆t2
i − 2∆t2

i + ∆t2
i

= 2∆t2
i . (7.45)

to Stieltjes integrals denoted as I =

∫ b

a

f (x) dg(x), and defined as the limit of the sum

S =

n∑

i=1

f (τi) (g(ti) − g(ti−1)) (7.38)

under the same restrictions as for the Riemann integral. If g is differentiable, I is none other than the ordinary integral of f × g′. But the
integral is also properly defined if g is not differentiable.
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Eventually, the sum S reduces to

S = lim
n→+∞

n∑

i=1

2∆t2
i E

[
g2

i−1

]
. (7.46)

Because the time increment ∆ti appears at second order in the sum, its limit vanishes, and one actually finds S = 0.
Using the original definition of S , one finds

lim
n→+∞

n∑

i=1

2gi−1∆W2
i = lim

n→+∞

n∑

i=1

2gi−1∆ti , (7.47)

and using the definitions of the Riemann and Stieltjes integrals respectively, this yields
∫ t

t0

g(s) [dW(s)]2 =

∫ t

t0

g(s) ds . (7.48)

Since this is true for any function g, one can formally write the following, very important identity

dW2 = dt . (7.49)

Therefore, the increment of a Wiener process is an order 1/2 in terms of the time increment, which has important
implications as regards changes of variable in Ito calculus, as I will now show.

Let me consider any function g(X(t)) of the stochastic process Xt. Then, in forming the rate of change of
g(X(t)) with time at first order in dt, it is actually necessary to go as far as second order in dW. One obtains

dg(X(t)) = g(X(t) + dX(t)) − g(X(t))

∼ g′(X(t)) dX(t) +
1
2

g′′(X(t)) dX2(t)

= g′(X(t))
[
a(X(t), t) dt + b(X(t), t) dW(t)

]
+

1
2

g′′(X(t))
[
b(X(t), t) dW(t)

]2

, (7.50)

where I have discarded all terms of order higher than 1 in dt. Injecting Equation 7.49, one finds

dg(X(t)) =
[
a(X(t), t) g′(X(t)) +

1
2

b(X(t), t)2 g′′(X(t))
]

dt + b(X(t), t) g′(X(t)) dW(t) , (7.51)

which constitutes the Ito’s formula for change of variables. Notice the additional term in g′′(X(t)) compared to the
usual chain rule in ordinary calculus, which stems directly from the fact that dW is a quantity of order 1/2 in terms
of dt. In particular, estimating the expectation of Equation 7.51, one finds

d
dt

E
[
g(X(t))

]
= E

[
a(X(t), t)g′(X(t)) +

1
2

b(X(t), t)2g′′(X(t))
]
, (7.52)

and, using Equation 7.3, since the stochastic process Xt has a PDF f (x, t), one finds

d
dt

(∫

R

dx f (x, t) g(x)
)
=

∫

R

dx f (x, t)
[
a(x, t) g′(x) +

1
2

b(x, t)2 g′′(x)
]
. (7.53)

Pulling the time derivative in the integral on the left-hand side, and performing integrations by part on the right-
hand side, one finds

∫

R

dx g(x)
∂ f (x, t)
∂t

=

∫

R

dx g(x)
[
−∂a(x, t) f (x, t)

∂x
+

1
2
∂2b(x, t)2 f (x, t)

∂x2

]
, (7.54)

where I have discarded the surface term, on account of the random variable Xt being bounded (if it is the velocity
of the turbulent flow, for instance, this is not a very restrictive condition). Since this equality must be valid for any
function g, one necessarily has

∂ f (x, t)
∂t

= −∂a(x, t) f (x, t)
∂x

+
1
2
∂2b(x, t)2 f (x, t)

∂x2
. (7.55)
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turbulent quantities are considered. Of course, the caveat is that in using the stochastic differential equation instead,
the numerical implementation involves Monte-Carlo methods, which means that a large number of realisations is
needed to reconstruct the PDF.

7.2 Lagrangian stochastic models of turbulence

Because high-Reynolds number flows are characterised by turbulent motions that have a random nature7,
stochastic processes and the mathematical formalism that comes with them, introduced in Section 7.1.1, are per-
fectly suited for their modelling. All modelling approaches of turbulent flows based on this formalism constitute
PDF methods. In the following, I describe how such models are designed, and how they relate to other models
of turbulence, in particular Reynolds-stress models (see Section 1.2.3). This discussion is based on the excellent
review of Pope (1994a), to which I refer the reader for further details.

7.2.1 General principles

Eulerian versus Lagrangian flow PDF

How should the PDF of the turbulent flow be defined? This question may seem odd at first glance: as I showed
in Chapter 1, the variables describing the flow are readily identified as having to be the density, the velocity and
the internal energy of the flow. The difficulty arises because, unlike the stochastic process Xt that I introduced in
Section 7.1.1, these variables do not only depend on time, they also depend on space. As I mentioned in the very
beginning of Appendix A, there are two different ways of describing the time and space dependence of the flow
variables, based on two different representations of the flow: the Eulerian and Lagrangian frames of reference.
These two representations accordingly lead to two distinct definitions of the flow PDF.

In the remainder of this section, I will restrict the discussion to incompressible flows. This is done for the sake
of simplicity in this introductory discussion. Naturally, this restriction is irrelevant in the stellar context, and I will
touch upon the extension of these models to compressible flows in Chapter 8. The first variable to describe, then,
is the velocity of the flow. In the Eulerian description, the velocity u(x, t) is associated to a fixed position x at any
given time t. The PDF fE(V; (x, t)) associated to this quantity8 is referred to as the Eulerian PDF of the flow. On
the other hand, in the Lagrangian description, fluid particles9 are followed along their trajectory. Let me denote
as x+(x0, t) the position at time t of the fluid particle that was located at x0 at a fixed reference time t0. Then the
Lagrangian velocity is defined by

u+(x0, t) ≡ u
(
x+(x0, t), t

)
. (7.58)

In this description, the PDF considered is the joint PDF associated to u+ and x+, conditioned on the initial state
of the particle. In other words, it is the joint PDF of the events u+(x0, t) = V and x+(x0, t) = X, conditioned on
the events u+(x0, t0) = V0 and x+(x0, t0) = x0. This PDF is denoted as fL((V,X), t|V0, x0), and is referred to as the
Lagrangian PDF of the flow.

7Naturally, the equations of hydrodynamics are deterministic; therefore, the turbulent motions are not intrinsically random. However,
very similar starting conditions can lead to drastically different future evolution of the flow – in other words, the flow is subjected to
deterministic chaos. As a result, accurately predicting this evolution would require knowing exactly the initial microscopic state of the
fluid, like the initial position and velocity of each molecule. But this is impossible, since one only has access to macroscopic quantities
(like the velocity of fluid parcels for instance). For all intents and purposes, this inability to predict the future state of the flow is perfectly
similar to actual randomness. In other words, it is our own lack of knowledge on the initial state of the flow that makes its subsequent

evolution apparently random, not its intrinsic behaviour.
8Note the difference in notation between the Eulerian velocity of the flow u and its sampling variable V. The former is a stochastic

variable – i.e. a family of functions, indexed by the time variable, each mapping the set of all set of events to an element of R
3 –, while the

latter is simply an element of R
3.

9In the context of hydrodynamics, there is always a very large separation between the large scales of the flow, or macroscopic scales

(i.e. the scales on which the flow variables typically vary) and the molecular scales, or microscopic scales. This allows for the definition of
a whole range of mesoscopic scales in between. Then, any portion of fluid whose size lies in the mesoscopic range is called a fluid particle.
This concept is useful to define the quantity of the flow, because flow quantities can be considered uniform throughout the fluid particle –
meaning that the phrase ‘temperature of the fluid particle’, for instance, makes sense –, while the fluid particle contains a large number of
fluid molecules or atoms, so that microscopic processes need not be described exactly.
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Different PDF methods

Eulerian PDF methods consist in solving the Fokker-Planck equation associated to either the Eulerian or the
Lagrangian PDF of the flow. Let me derive this Fokker-Planck equation in a simple case. Let me suppose that the
velocity of the flow is the only variable to model. Then from the Navier-Stokes equation (Equation 1.14) applied
to the case of a constant, unity density flow

∂ui

∂t
+ u j

∂ui

∂x j
= − ∂p

∂xi
− ∂p′

∂xi
+ gi +

∂σi j

∂x j
, (7.59)

where I have separated the ensemble averaged pressure p from its fluctuations p′, and I have made use of Einstein’s
convention on index contraction, one obtains the following Fokker-Planck equation for the Eulerian PDF (Pope
2000)

∂ fE

∂t
+ Vi

∂ fE

∂xi
+

(
− ∂p

∂xi
+ gi

)
∂ fE

∂Vi
=

∂

∂Vi

(
fEE

[
∂p′

∂xi
−
∂σi j

∂x j

∣∣∣∣∣∣ V
])
. (7.60)

Provided the mean pressure gradient is known, the entire left-hand side is in closed form. This is not the case of the
right-hand side, which depends on the expectation of the fluctuating force conditioned on the local flow velocity.
Modelling these conditional expectations can prove a challenging task, which is why Eulerian PDF methods are
seldom implemented in turbulence models.

An entirely different modelling approach consists in considering the Ito stochastic differential equation equiv-
alent to the Fokker-Planck equation, instead of the Fokker-Planck equation itself. This is more readily done in a
Lagrangian frame of reference: then, the stochastic model is constructed to simulate the evolution of individual
fluid particles – i.e. both their position and their physical properties. Let me denote the position and velocity of one
such fluid particle as x⋆(t) and u⋆(t) respectively. It is important to realise that these Lagrangian particle variables
are constructed in a completely different manner than the Lagrangian flow variables x+(x0, t) and u+(x0, t) defined
above. While there is, as I will soon show, a strong connection between the two, they are a priori associated
to different PDFs. Now, the PDF under consideration is the joint PDF of the events x⋆(t) = X and u⋆(t) = V

conditioned on the joint event x⋆(t0) = X0 and u⋆(t0) = V0. This PDF is denoted as f⋆
L

((V,X); t|V0,X0), and is
referred to as the Lagrangian PDF of the fluid particles. The goal, therefore, is to construct the stochastic model

for the two stochastic processes x⋆(t) and u⋆(t) in such a way that the equivalent Fokker-Planck equation for f⋆
L

accurately mimics the evolution of the actual Lagrangian PDF of the flow fL. In other words, one wants

fL((V,X), t|V0, x0) = f⋆L ((V,X), t|V0, x0) . (7.61)

This class of approaches is referred to as Lagrangian PDF methods, and the constructed Ito SDE are called La-

grangian stochastic models of turbulence.
To implement Lagrangian PDF methods, Monte-Carlo methods are systematically employed. The idea is to

assume a certain initial distribution for the position and velocity of the fluid particles, and then to draw N distinct
realisations of this initial state, after which the evolution of each of these fluid particles is computed by integrating
the Lagrangian stochastic model forward in time. If N is sufficiently large, the Lagrangian PDF of the fluid
particles, and therefore the Lagrangian PDF of the flow, can be reconstructed. From there, the Eulerian PDF of the
flow is obtained through

fE(V; (x, t)) =
∫

d3x0

∫
d3V0 fE(V0; (x0, t)) fL((V,X), t|V0, x0) , (7.62)

provided that the initial Eulerian PDF is known. This relation makes it clear that fL plays the role of a transitional
PDF from a given initial time t0 to any ulterior time t. The two PDF fE and fL are perfectly equivalent to one
another, the same way the Eulerian and Lagrangian representation of the flow are perfectly equivalent: one contains
just as much statistical information as the other. In particular, Lagrangian PDF methods give access to both
PDF indifferently: the dichotomy between Eulerian and Lagrangian PDF has absolutely nothing to do with the
dichotomy between Eulerian and Lagrangian PDF methods. Here, it is the method that is Lagrangian, not the
PDF. This somewhat complicated picture is summarised in Figure 7.2.
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Using the Langevin equation, and recalling that dW2 = dτ, one finds

D⋆
L (τ) =

2u′2τ

T
, (7.71)

provided τ ≪ T . In order for the Langevin equation to be consistent with the Kolmogorov hypotheses, the
Lagrangian integral time must be given by

T−1 =
C0ǫ

2u′2
=

3C0ǫ

4k
. (7.72)

Then the Langevin equation can be rewritten in the following form

du⋆ = −3
4

C0
ǫ

k
u⋆ dt +

√
C0ǫ dW . (7.73)

Equation 7.73 only depends on the parameters k and ǫ. The former is a second-order moment of the particle
velocity, which is actually in closed form: indeed, the Lagrangian stochastic model contains the information on the
PDF, and in turn, on any statistical moment of the flow velocity. I will describe in Section 7.2.4 how the extraction
of the moments of the velocity can be performed in practice. As for the other parameter ǫ, it is not in closed form,
and one needs a prescription for this quantity. I will describe in Section 7.2.3 how this can be done.

7.2.2 Lagrangian stochastic models for velocity in inhomogeneous flows

The Simplified and Generalised Langevin Models

The first extension of the Langevin equation consists in lifting the condition of homogeneity. This requires
the displacement equation (Equation 7.63) to be integrated forward in time alongside the velocity equation (Equa-
tion 7.73), because now the instantaneous position of the particles may influence their behaviour – for example
through the background felt by the particle, if the medium is stratified. But the velocity equation itself also needs
to be modified to take the inhomogeneous nature of turbulence into account. All these modifications pertain to
the drift term, because the diffusion term, as I mentioned in Section 7.2.1, is fully determined by the Kolmogorov
hypotheses, which remain the same in an inhomogeneous medium. The first modification consists in adding the
forces that vanished in the homogeneous limit, namely the mean pressure force and the gravitational force. The
second modification concerns the decay contribution in the drift term: it should now make the velocity of the
particles decay towards the local mean velocity of the flow, instead of zero. Finally, the third modification con-
sists in modifying the rate at which the particle velocity decays towards the local mean: the reason why this last
modification is necessary will become apparent in a moment. The modifications listed above yield the Simplified

Langevin Model (or SLM)

dx⋆i = u⋆i dt , (7.74)

du⋆i =

[
−1
ρ

∂p

∂xi
+ gi −

(
1
2
+

3
4

C0

)
ǫ

k

(
u⋆i − ui

)]
dt +

√
C0ǫ dWi , (7.75)

where I recall that . refers to ensemble averages of the corresponding Eulerian quantity – namely, in the context
of hydrodynamics, Reynolds averages –, and the mean fields p, ρ, ui, k and ǫ are estimated at the instantaneous
position x⋆ of the particle. This constitutes the simplest possible extension of the Langevin model to inhomoge-
neous turbulence that remains consistent with the basic properties of the flow (i.e. the conservation of momentum
and energy). A generalisation of this extension was proposed by Pope (1983), and later more systematically de-
veloped by Haworth and Pope (1986, 1987), for anisotropic10 incompressible stationary turbulence, in the form of
the Generalised Langevin Model (or GLM)

dx⋆i = u⋆i dt , (7.76)

du⋆i =

[
−1
ρ

∂p

∂xi
+ gi +Gi j

(
u⋆j − u j

)]
dt +

√
C0ǫ dWi , (7.77)

10By anisotropic, I mean that the statistical properties of the flow are no longer invariant by arbitrary rotations in space. In particular,
the Reynolds stress tensor can be anisotropic. However, the dissipation scales – being much smaller than the large scales of the system in
high-Reynolds-number flows, and therefore being insensitive to the particular global geometry of the flow – remain isotropic, in accordance
with the Kolmogorov hypotheses (Kolmogorov 1941, 1962). This is the reason why, even when the isotropy condition is lifted, the diffusion
term in the stochastic equation remains unchanged.
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characterised by the drift tensor Gi j. In the most general case, Gi j is a function of the mean shear tensor ∂ui/∂x j,
the Reynolds stress tensor11 u′′

i
u′′

j
(where u′′i ≡ ui − ui denotes the fluctuation of the velocity around its ensemble

average), and the turbulent dissipation rate ǫ. The Generalised Langevin Model is therefore a class of Lagrangian
stochastic models for incompressible turbulence, specified by the Kolmogorov constant C0, the functional form of
the drift tensor Gi j, and an extra model equation for the turbulent dissipation ǫ. The Simplified Langevin Model is
contained in this more general class of models, in the form Gi j = −(1/2 + 3C0/4)ǫ/kδi j.

In the GLM, the process u⋆(t) is no longer an Orstein-Uhlenbeck process; however, the Fokker-Planck equation
followed by the Lagrangian PDF of the particles can still be determined from Equation 7.57

∂ f⋆
L

∂t
= −

∂Vi f⋆
L

∂xi
+

(
1
ρ

∂p

∂xi
− gi

)
∂ f⋆

L

∂Vi
− ∂

∂Vi

(
f⋆L Gi j(V j − u j)

)
+

1
2

∂2C0ǫ f⋆
L

∂xi∂xi
. (7.78)

This is the Fokker-Planck equation on f⋆
L

: the understanding is that if the Lagrangian stochastic model is rep-
resentative of the flow, then fL verifies the exact same equation. Then, Equation 7.62 gives the Fokker-Planck
equation on the Eulerian PDF of the flow fE . In fact, because no coefficient in Equation 7.78 depends on X0, V0

or t0, the Fokker-Planck equation on fE is exactly the same as the Fokker-Planck equation on fL. In that particular
case, Equation 7.78 is common to all three PDF. In turn, the Fokker-Planck equation can be used to derive the
corresponding evolution equations for any statistical moment of velocity. For instance, multiplying Equation 7.78
by ui and integrating over all values of V yields the equation for the mean velocity ui, while multiplying it with
(ui − ui)(u j − u j) yields the equation for the Reynolds stress tensor u′′

i
u′′

j
. One finds (Pope 2000)

D ui

Dt
+
∂u′′

i
u′′

j

∂x j
= −1

ρ

∂p

∂xi
+ gi , (7.79)

D u′′
i

u′′
j

Dt
+
∂u′′

i
u′′

j
u′′

k

∂xi︸     ︷︷     ︸
≡Ti j

= −u′′
i

u′′
k

∂u j

∂xk
− u′′

j
u′′

k

∂ui

∂xk︸                       ︷︷                       ︸
≡Pi j

+G jku′′
i

u′′
k
+Giku′′

j
u′′

k
+C0ǫδi j , (7.80)

where D/Dt ≡ ∂t + ui∂i represents the material derivative following the mean velocity (and not the actual material
derivative). Equation 7.79 reduces to the Reynolds average of the incompressible Navier-Stokes equation in its
exact form (i.e. as derived from first principles only). In particular, it includes the Reynolds stress force, without
having to include it explicitly in the Lagrangian stochastic model. This is actually a general property of Lagrangian
stochastic models of turbulence, that the transport terms, whether due to large scale advection or to small-scale

turbulent transport, are modelled exactly in Lagrangian stochastic models of turbulence. The right-hand side
of Equation 7.79, on the other hand, is modelled exactly because they are included in their exact form in the
stochastic equations. By contrast, the Reynolds stress equation (Equation 7.80) depends on the specification for
C0, Gi j and ǫ. Let me compare it to the exact form of the Reynolds stress equation, which I derived directly from
the Navier-Stokes equation in Section 1.2.3 (see Equation 1.100), and which reduces in the incompressible case
to12

D u′′
i

u′′
j

Dt
+
∂u′′

i
u′′

j
u′′

k

∂xk
= −u′′

i
u′′

k

∂u j

∂xk
− u′′

j
u′′

k

∂ui

∂xk
−1
ρ

u′′i
∂p′

∂x j
+ u′′

j

∂p′

∂xi


︸                      ︷︷                      ︸

≡Πi j

−2
3
ǫδi j , (7.81)

where Πi j is the velocity-pressure-gradient tensor. Comparing the exact and modelled Reynolds stress equations,
one can see that, once again, the transport terms represented by the advection term in D/Dt and the turbulent
transport tensor Ti j are modelled exactly. It is also the case of the turbulent production tensor Pi j. However, the
acoustic flux – represented by the velocity-pressure-gradient tensor – and the dissipation are not modelled exactly:

11Since I only consider incompressible flows in this discussion, the definition of the Reynolds stress tensor given here does not contain
ρ inside the ensemble average. I recall from Chapter 1 that, in general, it does.

12In the incompressible limit, Favre and Reynolds averages coincide. Furthermore, the compressibility u′′i of the turbulent velocity
vanishes. Finally, the last term of Equation 1.100 can be rewritten in terms of the turbulent dissipation rate ǫ through Equations 1.36
and 1.37.
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they are collectively contained within the last three terms in the right-hand side of Equation 7.80, in such a way
that

Πi j = Giku′′
j
u′′

k
+G jku′′

i
u′′

k
+

(
2
3
+C0

)
ǫδi j . (7.82)

One of the fundamental properties of the velocity-pressure-gradient tensor is that, in homogeneous incompressible
turbulence, it is traceless, since

1
2
Πii = −

1
ρ


∂u′′

i
p′

∂xi
− p′

∂u′′i
∂xi

 = 0 , (7.83)

with the first term in the brackets vanishing because the turbulence is homogeneous, and the second term vanishing
because it is incompressible. In inhomogeneous turbulence, the first term – i.e. the non-local acoustic flux – is no
longer zero, but is usually either explicitly neglected, or implicitly included with the other transport terms in Ti j

(Pope 2000) (the exception being near-wall regions, in which I am not interested in this discussion). Neglecting
the acoustic flux, the velocity-pressure-gradient tensor is necessarily traceless, which physically means that it
does not lead to a net creation of turbulent kinetic energy, but instead redistributes the energy among the different
components of the Reynolds stress tensor. Taking the trace of Equation 7.82 thus immediately yields the following
constraint for the coefficients of the GLM

Gi ju
′′
i

u′′
j
= −

(
1 +

3
2

C0

)
ǫ . (7.84)

In particular, since the trace of the Reynolds stress tensor corresponds to half the turbulent kinetic energy, if the

drift tensor is restricted to be isotropic, one finds

G
isotrop
i j

= −
(
1
2
+

3
4

C0

)
ǫ

k
δi j . (7.85)

This corresponds exactly to the prescription of the SLM. The necessity to modify this coefficient compared to
Equation 7.73 becomes apparent now: it ensures that the turbulent kinetic energy evolves according to its exact,
analytically derived equation in the case of inhomogeneous, incompressible, isotropic turbulence, by contrast with
the homogeneous turbulence where the turbulent kinetic energy must not decay at all.

Equivalence between Reynolds-stress models and Lagrangian stochastic models

As illustrated by Equation 7.81, in the incompressible case, a Reynolds-stress model is entirely characterised
by the velocity-pressure-gradient tensor Πi j and the turbulent dissipation rate ǫ. Temporarily leaving the question
of the prescription of ǫ aside, the modelling efforts are therefore focused on the redistribution tensor, which, in the
general case, is written as (Pope 1994b)

Πi j = Π
⋆
i j

(
∂u j

∂xi
, u′′

i
u′′

j
, ǫ

)
. (7.86)

Apart from the restriction, already mentioned above, that this tensor must be traceless, specific forms of the func-
tion Π⋆

i j
are found empirically – through experimental data or direct numerical simulations. In parallel, as I just

mentioned, a given prescription of the GLM is characterised – provided one leaves ǫ aside for the moment – by
a specification of the Kolmogorov constant C0 and the drift tensor Gi j. The two approaches may be radically dif-
ferent in their philosophy, but there exists an equivalence between the Reynolds-stress models and the Lagrangian

stochastic models, in the sense that in certain specifications, both will lead to the same evolution of the statistical
properties of the flow. More specifically, to any specification of the drift tensor Gi j is associated a unique equivalent
redistribution tensor Πi j, through Equation 7.82. However, in general, the opposite is not true: several different
drift tensor specifications can lead to the same Reynolds-stress model13. In addition, finding the drift tensor(s)
equivalent to a given velocity-pressure-gradient tensor can prove challenging, as the corresponding relation is im-
plicit. Pope (1994b) studied in details this relation between Reynolds-stress models and Lagrangian stochastic
models. In particular

13This is due to the more general fact that while a given Ito stochastic differential equation has a unique corresponding Fokker-Planck
equation, a given Fokker-Planck equation can be modelled by multiple distinct Ito SDE (e.g. Gardiner 1994).
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• the gas pressure fluctuations p′ due to turbulence are usually separated into ‘slow’, ‘rapid’, and ‘harmonic’
fluctuations (Pope 2000): the slow fluctuations are due to the action of the turbulent shear on the turbulent
velocity itself (i.e. turbulence-turbulence interaction), while the rapid fluctuations are due to the interaction
of the mean shear on the turbulent shear (i.e. mean flow-turbulence interaction). As for the harmonic
fluctuations, they represent the decay of pressure fluctuations in the absence of any source. The simplest
model for the velocity-pressure-gradient tensor consists in only accounting for the slow pressure fluctuations,
and considering that they tend to make the Reynolds stress tensor return to isotropy. This yields the Rotta’s

model (Rotta 1951)

Πi j = −2C1ǫbi j , (7.87)

bi j ≡


u′′

i
u′′

j

u′′
i

u′′
i

− 1
3
δi j

 , (7.88)

characterised by the constant C1, and where bi j is the anisotropy tensor (in particular, it vanishes if the
Reynolds stress tensor is isotropic). The equivalent Lagrangian stochastic model is the SLM, with

C1 = 1 +
3
2

C0 , (7.89)

so that the standard value of C0 = 2.1 gives C1 = 4.15 (Pope 1994b). However, when Rotta’s model for
the slow pressure fluctuations is used in conjunction with another model for the rapid fluctuations, a smaller
portion of the effect is contained in C1, so that a lower value is in order for this coefficient;

• in order to model the rapid pressure fluctuations, Naot et al. (1973) proposed the isotropisation of production

model (or IPM), whereby to the Rotta’s term above is added the following contribution

Πi j = Π
Rotta
i j −C2

(
Pi j −

1
3
Pkkδi j

)
, (7.90)

where Pi j is the turbulent production tensor. The IPM is characterised by the constant C2, in addition to
C1 in the slow pressure variation term: standard values are C1 = 1.8 and C2 = 0.6 (Pope 1994b). Several
specifications for Gi j can lead to this Reynolds-stress model; one of them, for instance, is (Pope 1994b)

Πi j =
ǫ

k

(
α1δi j + α2bi j + α3bikbk j

)
+
∂uk

∂xl

(
β2δikδ jl + β3δilδ jk + γ5bikδ jl + γ6bilδ jk

)
, (7.91)

α2 = 3.5 , α3 = −10.5 , β2 = 0.8 , β3 = −0.2 , γ5 = −γ6 = 0.6 ,

α1 = −
1
2
− 3

4
C0 +

1
2

C2
Pii

ǫ
+ 3α2bikbklbk j .

This is therefore an example of a specification of the Generalised Langevin Model (comprised of Equa-
tions 7.76 and 7.77) that goes beyond the Simplified Langevin Model (comprised of Equations 7.74 and 7.75).

Numerous other specifications of the velocity-pressure-gradient tensor exist, like the Launder, Reece and Rodi
model (or LRR; Launder et al. 1975), the Shih-Lumley model (or SL; Shih and Lumley 1986) or the Speziale,
Sarkar and Gatski model (or SSG; Speziale et al. 1991) for instance. Ultimately, they all amount to some spec-
ification of the Generalised Langevin Model. The relation between the two approaches makes them mutually
beneficial: new advances in Reynolds-stress models can be converted in refinements in Lagrangian stochastic
models, and vice versa. However, it can already be seen that Lagrangian stochastic models have an advantage
over Reynolds-stress models: by construction, they always lead to realisable turbulence models – i.e. the PDF
evolving to the equivalent Fokker-Planck equation is necessarily positive and normalised to unity. In other words,
Lagrangian stochastic models constructed through the process described above constitute physical turbulence

models: it is much easier to derive closure relations in such models than in Reynolds-stress models.

7.2.3 Joint velocity-dissipation turbulence models

Lagrangian stochastic model for dissipation

Until now, I have deliberately left aside the question of how to prescribe the turbulent dissipation rate ǫ,
in order to focus on the velocity-pressure-gradient tensor Πi j. A possibility is to supplement the Lagrangian
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stochastic model on velocity with a model equation for ǫ, in the same form as in k−ǫ or k−ω models of turbulence
(also referred to as two-equation models). An alternative approach, proposed by Pope and Chen (1990), consists
in considering the dissipation as being a property of the fluid particles themselves, for which an additional Ito
SDE must be developed and integrated forward in time, in conjunction with the position and velocity equations
described above. Let me define the turbulent frequency

ωt(x, t) ≡
ǫ(x, t)
k(x, t)

, (7.92)

where k is the turbulent kinetic energy. The turbulent frequency ωt has the dimension of an inverse time, and
represents the inverse of the typical timescale over which the turbulent kinetic energy is dissipated into heat by the
Kolmogorov viscous scales at the end of the turbulent cascade. Pope and Chen (1990) developed a Lagrangian
stochastic model for the turbulent frequency associated with a give fluid particle ω⋆t (t) on account of observations
made in direct numerical simulations of low- and moderate-Reynolds-number flows that 1) the dissipation rate
follows a log-normal distribution14, and 2) the autocorrelation function of its logarithm takes the form of a decaying
exponential, with an integral time Tχ which is proportional to the inverse of the mean turbulent frequency itself.
In terms of stochastic processes, if we defined

χ⋆(t) ≡ ln
(

ω⋆t (t)
ωt(x⋆(t), t)

)
, (7.93)

then χ⋆(t) is necessarily an Orstein-Uhlenbeck process, with the integral time Tχ ≡ 1/(Cχωt), and a certain
variance σ

dχ⋆ = −(χ⋆ − χ)
dt

Tχ
+

√
2σ2

Tχ
dW . (7.94)

Then the turbulent frequency is given by ω⋆t = ωt exp
(
χ⋆

)
. The quantity χ⋆ is already modelled, but if one wants

to change variables to ω⋆t , one also needs a prescription for ωt. This prescription must necessarily be empirical:
as I already remarked for turbulent dissipation ǫ in Section 1.2.3, this is the only way to obtain a model equation
for dissipation that may be applicable. The standard model equation assumes that ωt – or equivalently ǫ – decays
towards zero at a rate that is itself proportional to ωt. This yields (Pope 2000)

dωt

dt
= −ωt

2Sω , (7.95)

where Sω is the non-dimensional rate of change of ωt, given by

Sω = (Cǫ2 − 1) − (Cǫ3 − 1)
Pii

ǫ
. (7.96)

Finally, since, by construction, the expectation of ln(χ⋆) is unity, and since for any random variable X one has
exp(X) = exp X + Var(X)/2 (where Var(X) denotes the variance of X), the mean value of χ is simply −σ2/2. With
all these ingredients pieced together, the change of variable from χ⋆ to ω⋆t can be performed in Equation 7.94 by
means of the Ito’s formula (Equation 7.51), and one finds (Pope and Chen 1990)

dω⋆t = −ω⋆t ωt

[
Sω +Cχ

(
ln

(
ω⋆t

ωt

)
− 1

2
σ2

)]
dt + ω⋆t

√
2Cχωtσ2 dW . (7.97)

Refined Langevin Model

Combining the velocity stochastic equation introduced in Section 7.2.2 with this dissipation stochastic equation
allows for the inclusion of dissipation in the velocity equation in a much more physically realistic manner. But the
velocity equation must be modified accordingly. First, the fact that ω⋆t is modelled allows to describe the internal

14A random variable X is said to follow a log-normal distribution if ln(X) follows a normal distribution.
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intermittency15 inherent to the turbulent motions: under the refined Kolmogorov hypotheses (Kolmogorov 1962),
the second-order structure function is proportional to ǫ⋆τ instead of ǫτ. A direct consequence is that ǫ should be
replaced with ǫ⋆ in the diffusion term of the velocity SDE. But this cannot be the only modification: indeed, in the
Fokker-Planck equation (Equation 7.78), the last term has been substituted thus

1
2

∂2(C0ǫ f⋆
L

)

∂xi∂xi
→ 1

2

∂2(C0ω
⋆
t k f⋆

L
)

∂xi∂xi
. (7.98)

In order to alleviate this substitution, and retain the exact same Fokker-Planck equation, the drift tensor Gi j must
be replaced with G′i j in such a way that

−
∂( f⋆

L
G′i j(V j − u j))

∂Vi
+

1
2

∂2(C0ω
⋆
t k f⋆

L
)

∂xi∂xi
= −

∂( f⋆
L

Gi j(V j − u j))

∂Vi
+

1
2

∂2(C0ǫ f⋆
L

)

∂xi∂xi
. (7.99)

If one assumes that the marginal velocity PDF is Gaussian, with its mean corresponding to the mean velocity and
its covariance matrix corresponding to the Reynolds stress tensor, then this relation can be solved for G′i j, and one
finds (Pope and Chen 1990)

G′i j = Gi j −
3
4

C0

(
ω⋆t − ωt

)
A−1

i j , (7.100)

where Ai j ≡ u′′
i

u′′
j
/(2k/3). Finally, the experimentally constrained value of C0 being different in the Generalised

Langevin Model (∼ 2.1) than when a dissipation equation is added (∼ 3.5), the drift tensor must also be modified
accordingly, with the same goal in mind that the velocity part of the Fokker-Planck equation must remain the same
as in the GLM. Finally, the velocity SDE becomes

du⋆i =

[
−1
ρ

∂p

∂xi
+ gi + Li j

(
u⋆j − u j

)]
dt +

√
C0ω

⋆
t k dW , (7.101)

where

Li j = Gi j −
3
4

[
C0

(
ω⋆t − ωt

)
+ ∆C0ωt

]
A−1

i j , (7.102)

and ∆C0 = 3.5 − 2.1. Together, Equations 7.96, 7.97, 7.101 and 7.102 form the Refined Langevin Model of
turbulence (or RLM), which ensures, in particular, that the PDF associated both to the velocity of the flow and to
the turbulent dissipation rate evolves in accordance with numerically and experimentally determined constraints.

The RLM was subsequently extended to inhomogeneous flows by Pope (1991), where the author also discarded
the assumed Gaussian form of the velocity PDF and the assumed independence of u⋆

i
and ω⋆t . This allowed

him to derive a joint velocity-dissipation Lagrangian stochastic model of turbulence with a much wider range of
application. Similarly, the approach can be adapted to a wide range of more complex flows. In particular – and
this is of course important in the stellar context –, it can be adapted to compressible flows as well. This requires
the inclusion of properly defined means in the Lagrangian stochastic model (namely Favre averages), as well as
an equation for an additional thermodynamic variable (like temperature, energy, enthalpy or entropy for instance).
This will be the subject of a part of the discussion in Chapter 8.

7.2.4 How to evaluate the means?

The Lagrangian stochastic models introduced in Sections 7.2.2 and 7.2.3 explicitly contain the mean fields
associated to the flow – like the mean density, gas pressure, velocity, etc. These need to be estimated at the
instantaneous positions of the fluid particles at every time step, in order to integrate the SDE forward in time.
Furthermore, and perhaps more fundamentally, one is ultimately interested in mean flow quantities, like the mean

15The intermittency of turbulence is a vast concept that has many different concrete aspects. Essentially, it refers to the very long tails
developed by the PDF associated to the turbulent properties of the flow, so that very strong events are likely to happen at regular intervals.
One of the many consequences is the development of strong velocity gradients for instance. But this is in direct and complete contradiction
with the concept of a global, average dissipation rate, which would, on the contrary, smooth such strong gradients as soon as they start to
develop. Since intermittency is a known experimental fact, the dissipation rate has to be defined locally, as a quantity susceptible to vary
over very short length scales.
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velocity or the Reynolds stress tensor for instance, rather than the particle properties themselves. Therefore, one
needs to be able to evaluate the means. In Eulerian PDF methods, such as those used for studying turbulent
dispersion in free turbulence for instance, the means are considered known (either through explicit constraints
related to the specific setup under consideration, or computed separately in Large-Eddy Simulations), and plugged
in as external inputs in the Lagrangian stochastic model (see Pope 1985, for a review on PDF methods for turbulent
reactive flow). However, in the context of my work – i.e. in the context of turbulence-oscillation coupling –, this
does not constitute a viable approach. The reason is that the mean fields, being Reynolds or Favre averages,
contain the information on the oscillations, while the turbulent quantities correspond to the fluctuation of the flow
quantities around these averages. Therefore, by treating the mean fields as external inputs into the Lagrangian
stochastic model for turbulence, one effectively decouples the oscillation from the turbulence, which defeats the
entire purpose of the model.

Consequently, I deliberately chose to follow an alternative path, which consists in directly using the fluid

particles themselves to evaluate the means.

Indeed, it is important to realise that the mean fields are already in closed form, since they can be written in
terms of the PDF of the flow, whose information is contained in the set of modelled particles. In order to follow
that path, one needs to be able to extract the flow PDF – or at least its statistical moments – directly from the set of
fluid particles. I describe how this can be done in this section.

Basic particle representation for homogeneous turbulence

As I remarked earlier, Lagrangian stochastic models of turbulence are fundamentally based on the idea that
the flow can be represented by a set of N individual fluid particles. This corresponds to the particle representation

of the system. By contrast, describing the system with flow variables, whether the description be given in a
Eulerian or Lagrangian frame, corresponds to the flow representation of the system. Ideally, one would like
both representations to be equivalent, at least in the limit N → +∞. An important question, therefore, is this:
how are the particle and flow representation related to each other? For instance, how is the set

{
u⋆ (i)

}
i=1..N

of
all particle velocities related to the Eulerian or Lagrangian velocity PDF of the flow? This question is far from
straightforwardly answered, and requires a bit of thought.

Let me denote the velocity of the particle indexed i as u⋆ (i)(t). I define the discrete PDF fN(V, t) as

fN(V, t) ≡ 1
N

N∑

i=1

δ3
(
V − u⋆ (i)(t)

)
. (7.103)

The expectation of the discrete PDF then follows (Pope 1985)

fN(V, t) = f (V, t) , (7.104)

where f can refer either to the Lagrangian or Eulerian PDF of the flow, since they are the same for homogeneous
flows, and I have substituted the notation E[ . ] for the notation . , more familiar in the context of turbulent flows, to
represent ensemble averages. The discrete PDF is therefore an accurate, unbiased representation of the flow PDF.
Furthermore, this is the case regardless of the value of N: the representation is even valid for N = 1. However, a
large number of realisations is still needed in order to extract the expectation of the discrete PDF.

An alternative procedure would be to estimate the moments of the PDF directly, instead of estimating the PDF
itself. By definition of the PDF, one has, for any function Q(u, t) of the velocity

Q(u, t) =
∫

R3
d3V f (V) Q(V, t) . (7.105)

A natural estimator for this statistical expectation is obtained by replacing f by fN , which leads to the following
definition

〈Q(u, t)〉N ≡
∫

R3
d3V fN(V) Q(V, t) =

∫

R3
d3V Q(V, t)

1
N

N∑

i=1

δ3
(
V − u⋆ (i)(t)

)
=

1
N

N∑

i=1

Q(u⋆ (i), t) . (7.106)

But in parallel, because the expectation of fN equals f , one has

〈Q(u, t)〉N = Q(u, t) , (7.107)

179



7.2. LAGRANGIAN STOCHASTIC MODELS OF TURBULENCE

which means that averaging the quantity Q(u⋆ (i), t) over all particles i yields an unbiased estimator for the en-

semble average of Q(u, t). Again, this is true for any value of N, but in general, the quantity 〈Q(u, t)〉N needs to
be computed for several independent realisations of the entire set of particles, in order for its expectation to be
computed. This ceases to be necessary if N is high enough: indeed, the central limit theorem16 stipulates that the
variance of 〈Q(u, t)〉N vanishes as 1/

√
N if N → +∞, in which case this estimator is no longer a random variable.

In other words, one has

lim
N→+∞

〈Q(u, t)〉N = Q(u, t) . (7.108)

This is a stronger statement, since it means that if the number of fluid particles is sufficiently high, one only needs

to integrate their Lagrangian stochastic model once, instead of having to integrate it many times.

Extension to inhomogeneous flows: Smoothed Particle Hydrodynamics

In inhomogeneous flows, the discrete PDF fN must be modified to account for the position of the particles in
addition to their velocity. For incompressible flows, this is done by defining

fN(V; x, t) ≡ V
N

N∑

i=1

δ3
(
x⋆ (i)(t) − x

)
δ3

(
u⋆ (i)(t) − u

)
, (7.109)

where the constant V is determined by the following normalisation condition: since the expectation of fN should
equal the actual flow PDF, one has

1 =
∫

R3
d3V fN(V; x, t) = Vδ3 (

x⋆ (i)(t) − x
)
. (7.110)

In order for this condition to be satisfied, it is necessary for δ3 (
x⋆ (i)(t) − x

)
to not depend on x: in other words, the

x⋆ (i) must be uniformly distributed, in which case its PDF equals the inverse of the volume of the domain under
consideration. Therefore, the constant V in the definition of the discrete PDF is none other than the volume of

the domain. Through the exact same procedure as for homogeneous flows, one finds that the estimator for mean
quantities Q(u; x, t) should be extended to inhomogeneous flows in the following form

〈Q(u; x, t)〉N ≡
V
N

N∑

i=1

Q
(
u⋆ (i), t

)
δ3

(
x⋆ (i)(t) − x

)
. (7.111)

In other words, the means are now estimated by averaging the particle-level quantity over all fluid particles
conditioned on their being located exactly at x. But implementing this estimator in this exact form, does not yield
the required result: indeed, for any given position x, any individual fluid particle has exactly zero probability of
finding itself at this exact location. Therefore, it is necessary to relax the condition on particle position, and instead
of computing means over particles exactly located at x, it is necessary to compute them over particles within a
given, compact-support vicinity of x. This is done by replacing the Dirac distribution δ3 by a wider kernel function

Kh(r), which serves as a weighting function to implement the particle-position condition in the estimation of the
means, thus leading to the following kernel estimator for the means

〈Q(u; x, t)〉h,N ≡
V
N

N∑

i=1

Q
(
u⋆ (i), t

)
Kh

(
x⋆ (i)(t) − x

)
, (7.112)

where h denotes the size of the compact support of the kernel function Kh. Many different specifications of the
kernel function can be chosen, but some properties are mandatory: I already mentioned the fact that it must have a
compact support, which ensures that the distant particles cannot impact local means; the kernel function must also
be normalised to unity, so that the mean estimates are not biased. One must also have

lim
h→0

Kh = δ
3 . (7.113)

16Let {Xk}k∈N be a sequence of random variables, independent and identically distributed, each having mean µ and variance σ2. Defining
the random variable Xn ≡

∑n
k=0 Xn/n, it is easily seen that Xn has mean µ and variance σ2/n, so that one can define the reduced and centered

random variable Zn ≡ (Xn − µ)/(σ/
√

n), which has mean 0 and variance 1. Then, the central limit theorem states that the sequence {Zn}n∈N
converges in law towards a normal distribution of mean 0 and variance 1.

180



CHAPTER 7. STOCHASTIC MODELS OF TURBULENCE

An example is the kernel function used by Welton and Pope (1997)

K(r) = c

(
1 + 3

|r|
h

) (
1 − |r|

h

)3

if |r| < h ,

0 if |r| > h ,

(7.114)

where r is the position of the particle with respect to the center of the kernel (where the mean is estimated), and
the constant c is given by the normalisation condition17. This expression ensures that the kernel function and its
first two derivatives are continuous at the surface of its support.

Whichever kernel function is chosen, the choice of h is crucial. Indeed, in the homogeneous case, I men-
tioned that 〈Q〉N becomes an unbiased estimator of zero variance when N → +∞. This is no longer true in the
inhomogeneous case, where the estimator 〈Q〉N,h exhibits both a systematic bias (Pope 1994a)

〈Q〉N,h − Q =
1
2

h2
∇

2Q + O(h4) , (7.115)

and a statistical error

Var
(
〈Q〉N,h

)
∝ V

NhD
=

(L/h)D

N
, (7.116)

where D is the dimension of the domain, and L ≡ V1/D its typical length. Physically, the systematic bias stems
from the inclusion of particles in the mean that are not exactly located at x, and are therefore characterised by a
slightly different mean value. The bias grows with h2, and vanishes as h → 0. On the other hand, the statistical
error stems from the limited number of particles used to estimate the mean. It decreases as h−D: indeed, the smaller
h is, the fewer particles are used in the mean, the larger the statistical fluctuations of the mean estimate is. It is
therefore impossible to have an estimator that is simultaneously accurate and precise: increasing accuracy will
always come at the price of a decreased precision, and vice versa. The condition that the best possible compromise
between the two must be reached yields an optimal value for h, in the form (Pope 1994a)

h

L
∼ N−1/(4+D) . (7.117)

The kernel estimator is readily adapted to compressible flows, where the density is susceptible to vary in time
and space, and the particle position PDF is no longer uniform. Then the exact same building procedure leads to

〈Q〉N,h ≡
N∑

i=1

V⋆ (i)Q
(
u⋆ (i), t

)
Kh

(
x⋆ (i)(t) − x

)
, (7.118)

where this time V⋆ (i) denotes the lumped volume of fluid represented by the particle i. In the homogeneous
limit, this lumped volume equals the total volume of the domainV divided by the number of particles N, and one
recovers Equation 7.112. In inhomogeneous flows, while each particle, by construction, carries a fixed mass ∆m(i),
local fluctuations of the density make the volume occupied by the particle vary, in such a way that

V⋆ (i) ≡ ∆m(i)

ρ⋆ (i)
, (7.119)

where ρ⋆ (i) denotes the mass density characterising the i-th fluid particle.
Setting Q = ρ⋆, Q = ρ⋆u⋆ and Q = ρ⋆(u⋆

i
− ũi)(u⋆j − ũ j) alternatively in Equation 7.118, one finds a

kernel estimator for the local Reynolds-averaged density, mass-averaged velocity, and the Reynolds stress tensor
respectively (Welton and Pope 1997)

ρ(x, t) =
N∑

i=1

∆m(i)Kh(x⋆(i)(t) − x) , (7.120)

ũ(x, t) =
1

ρ(x, t)

N∑

i=1

∆m(i)u⋆(i)(t)Kh(x⋆(i)(t) − x) , (7.121)

ũ′′
i

u′′
j
(x, t) =

1
ρ(x, t)

N∑

i=1

∆m(i)
(
u
⋆(i)
i

(t) − ũi(x, t)
) (

u
⋆(i)
j

(t) − ũ j(x, t)
)

Kh(x⋆(i)(t) − x) . (7.122)

17If the model is 1D, one finds (Welton and Pope 1997) c = 4/(5h). In 3D, the normalisation constant becomes c = 105/(16πh3).
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In particular, let me remark that the local mean density is computed by ‘counting’ the particles present in the
vicinity. This means that the continuity condition is automatically met in the particle representation, thus lowering
the order of the set of equations needed to describe the flow.

The conclusion is that the kernel estimator allows for the estimation of mean fields directly from the particle
properties. In order to integrate a Lagrangian stochastic model forward in time, these means must be estimated
not at fixed Eulerian positions, but at the instantaneous position of the particles: the use of the kernel estimator
to compute mean fields at constantly varying positions is at the heart of Smoothed Particle Hydrodynamics (SPH

thereafter). The direct computation obviously has O
(

h

L
N2

)
complexity – because it requires the computation of

the sum of ∼ hN/L terms for each of the N particles separately. However, it is possible to reduce the complexity
of the operation to O(N) (Welton 1998), provided the kernel function exhibits some extra properties (namely, it
must be expressed as a product of several 1D piecewise polynomial functions involving only one dimension each):
I will introduce this algorithm in Section 9.1.2. I refer the reader to Liu and Liu (2010) or Monaghan (1992) for a
comprehensive review on the use of SPH in turbulent flow modelling, or to Springel (2010) for its more specific
use in the astrophysical context.

7.3 My work in this context

Let me summarise the theoretical basis for Lagrangian stochastic models of turbulence, and their implementa-
tion with particle methods like SPH. Instead of considering the evolution in time of the various statistical moments
associated to the turbulent flows, one considers the evolution in time of their joint-PDF. This is governed by a
Fokker-Planck equation, which is very challenging to solve directly for two reasons, one being of practical nature
(the analytical solving of the Fokker-Planck equation is only feasible in a handful of very simple cases, and its
numerical solving by grid-based methods – which forms the basis of Eulerian PDF methods – requires the dis-
cretisation of the entire parameter space), and one being of a more fundamental nature (the Fokker-Planck equation
contains the expectation of the force acting on the flow conditioned on the local Eulerian velocity, which is ex-
tremely complicated to model). Instead of solving the Fokker-Planck equation directly, it is better to mimic the
evolution of the flow PDF by representing the flow as a set of individual fluid particles, each evolving according
to a system of Ito stochastic differential equations, carefully constructed to be statistically equivalent to the actual
Fokker-Planck equation: this is at the core of Lagrangian PDF methods, and the system of SDE used to model
the evolution of the fluid particles is referred to as a Lagrangian stochastic model of the turbulent flow. A mix
of analytical arguments based on the Kolmogorov hypotheses and experimentally and numerically observed be-
haviour of turbulent flows in certain limits allows for the development of Lagrangian stochastic models on physical
grounds, either for velocity only, or for joint velocity and dissipation. Naturally, the account given in this chapter
only scratches the surface of this subject. In particular, I have left aside Lagrangian stochastic models for the
acceleration of the particles – because they reduce to velocity stochastic models in flows with high Reynolds num-
ber (see Heinz 2013, Section 5.1) –, but also the question of the joint modelling of velocity and thermodynamic
variables that goes along with the consideration of compressible non-adiabatic flows, upon which I will touch in
the next chapter. Finally, central to the implementation of Lagrangian stochastic models of turbulence is the idea
of the particle representation of the system, i.e. the idea that the information on the PDF of the flow can be directly
extracted from the set of fluid particles themselves. The Smoothed Particle Hydrodynamics (SPH) formalism is
an example of particle method that allows for the estimation of all statistical moments of the turbulent properties
of the flow at each particle position, by computing the average of the corresponding particle-level quantity over all
neighbouring particles. The conditional mean on particle position is performed through a kernel estimator which,
if chosen wisely, entails mean field estimates that are neither too biased, nor prone to significant statistical errors.
Thanks to this kernel estimator, all mean fields appearing in the Lagrangian stochastic model are in closed form –
in addition to being the output in which one was interested in the first place.

This approach in turbulence modelling exhibits several key advantages that make it highly beneficial regarding
the modelling of the coupling between stellar turbulent convection and stellar oscillations, and especially allows to
circumvent some of the fundamental limitations to the more traditional approaches detailed in Sections 2.2 to 2.4

• the Fokker-Planck equation governing the evolution of the PDF of the flow – whether Eulerian or Lagrangian
– contains the same amount of information as an infinite hierarchy of transport equations on every statistical

moments of the turbulent quantities. A fortiori, it contains more information than simply the mean equations
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(as in MLT) or the mean and second-order equations (as in Reynolds-stress models);

• the PDF – and, therefore, the set of fluid particles used to represent it – contains the information on both
the turbulent motions and the global oscillations at the same time. Therefore, it also contains the coupling

between the two in a naturally consistent manner. This means there is no longer any need to separate the
equations of the flow into turbulence equations and oscillation equations beforehand, which is problematic
when one is interested in the interaction between the two components;

• the Lagrangian point of view adopted in the particle representation entails that all advection processes –

whether they be due to the large scale convection, or due to the small-scale turbulent transport – are mod-

elled exactly without having to include them explicitly in the equations. Lagrangian stochastic models of
turbulence therefore completely circumvent the need to adopt the mixing-length hypothesis, which is a cru-
cial asset, seeing as this hypothesis is both almost inescapable in current convection modelling, and very
invalid close to the surface of the star;

• the stochastic differential equations are closed at particle level, instead of at mean flow level. Therefore,
it is much easier to relate a given closure relation to the underlying physical assumptions than in MLT

or Reynolds-stress models for instance. As a result, Lagrangian stochastic models do not contain free pa-
rameters pertaining to an empirical prescription, but physical parameters, firmly physically grounded, and
therefore easier to constrain with the help, for instance, of 3D hydrodynamic simulations;

• the particle representation is, by construction, completely mesh-free, so that it is immune to the grid resolu-
tion problem one runs into when dealing with Large-Eddy Simulations. That means there is no longer any

difficulty in including very different length scales in the system, which significantly improves the description
of turbulence;

• the turbulent dissipation rate is also modelled much more realistically than in more traditional approaches,
since it is included as a particle-level quantity, and evolves according to its own Ito stochastic differential
equation. As a result, Lagrangian stochastic models of turbulence allow for the inclusion of all turbulent

timescales relevant to the problem – although, unlike length scales, one is still limited by the discretisation
of time in numerical implementations.

Naturally, this does not mean this method is ideal: in particular, one still needs an empirical prescription for
the turbulent dissipation rate – or equivalently for the mean turbulent frequency. However, Lagrangian stochastic
models allow for a better, more realistic representation of the turbulent fluctuations of the turbulent frequency,
and therefore of intermittency. Furthermore, the use of Ito stochastic differential equations to model the evolution
of the fluid particles presupposes that their PDF is Gaussian, whereas stellar turbulent convection is much bet-
ter described by bimodal distributions, due to the skewness between the upflows and downdrafts constituting the
structure of the convective motions. There are ways to incorporate this bimodal behaviour in the model however
(see Rodean 1996, Chapter 10). Finally, if one wishes to implement these methods in the 3D case, the simula-
tions can become as heavy as the 3D LES traditionally employed in stellar atmosphere modelling. Nevertheless,
for all the reasons listed above, Lagrangian stochastic models of turbulence are perfectly suited for the study of
turbulence-oscillation coupling, and allow to alleviate some fundamental limitations inherent to Mixing-Length
Theories, Reynolds-stress models or the use of Large-Eddy Simulations in that regard. In using this novel mod-
elling approach, the underlying motivation is mainly to answer the following questions

1) how can it help physically relate the observed properties of the modes (i.e. their amplitude and linewidth)
to the underlying detailed physical properties of turbulent convection at the top of the convective zone, thus
allowing to use the former in order to constrain the latter?

2) how can it help predict the frequency correction to apply to theoretically computed eigenfrequencies, in
order to obtain surface-effect-free frequencies that can be accurately compared to observations for seismic
diagnosis purposes?

Answering these questions is a very long-term motivation; the shorter-term goal I set for myself in this second
part of my PhD, therefore, was (and still is) to lay the groundwork for the implementation, both analytical and
numerical, of the methods presented in this introductory discussion in the context of solar-like oscillations.
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First, I used the kind of procedure outlined in Sections 7.2.2 and 7.2.3 to derive a Lagrangian stochastic model
relevant in the context of stellar convective zones. In the rest of this second part, however, and as a first, preliminary
step, I only considered a very simplified version of this Lagrangian stochastic model, corresponding to the Sim-
plified Langevin Model described in Section 7.2.2. Using this simplified model, I followed two approaches, one
analytical and one numerical, which are different in nature, but perfectly complementary and mutually beneficial.

Concerning the analytical approach, the challenge is to linearly perturb the Lagrangian stochastic model to
obtain an intrinsically stochastic linear wave equation, designed to govern the evolution of the stellar oscillations,
while simultaneously containing the effect of turbulence in a self-consistent manner. This stochastic wave equa-
tion can then be used to derive stochastic differential equations – referred to as simplified amplitude equations

(Stratonovich 1965) – for the complex amplitudes of any given normal mode of oscillation in the star, including
the impact of turbulence. I show that these simplified amplitude equations simultaneously contain the information
on the excitation and damping rates of the modes, and also on the shift incurred by the mode frequencies under
the influence of turbulence – in other words, surface effects. The motivations behind this analytical model are
related to the fact that it allows to obtain a better physical understanding of the interplay between turbulence and
oscillations than with the direct numerical implementation of the Lagrangian stochastic model, and additionally,
to derive analytical prescriptions for this coupling, something which is, by nature, never possible with numerical
methods. Furthermore, the analytical approach can serve to better understand results obtained numerically, or
even to validate the numerical approach in some simplified limit cases. Chapter 8 is devoted to these analytical
developments.

Concerning the numerical approach, I set out to numerically implement the forward integration in time of the
Lagrangian stochastic model, in the simplified case mentioned above, corresponding to the Simplified Langevin
Model, in conjunction with the Smoothed Particle Hydrodynamics formalism presented in Section 7.2.4 for the
estimation of the mean fields. I show that normal modes of oscillation can be directly extracted from such a
simulation, and their line profile resolved in the ‘observed’ power spectrum. This allows for a direct determination
of the frequency, amplitude and linewidth of these modes. The motivations behind this numerical implementation
are based on the fact that it allows for the inclusion of much more complex physics than analytical developments;
in addition, it allows to properly quantify the analytical prescriptions; not to mention the fact that the numerical
approach can help validate the analytical approach: in that regard, both truly benefit from each other. Chapter 9 is
devoted to this numerical implementation. I conclude, in the end of this part, on the many perspectives opened by
this work.

184



8 Lagrangian stochastic model for
turbulence-oscillation coupling: analytical
approach

Contents

8.1 The stochastic wave equation for solar-like oscillations . . . . . . . . . . . . . . . . . . . . . 187

8.1.1 The stochastic model in closed form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.1.2 Linear perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.1.3 Hypotheses and approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.2 Simplified amplitude formalism: the general framework . . . . . . . . . . . . . . . . . . . . 191

8.2.1 Amplitude equation for solar-like oscillations . . . . . . . . . . . . . . . . . . . . . . . 192

8.2.2 The Fokker-Planck equation for mode amplitude . . . . . . . . . . . . . . . . . . . . . 194

8.2.3 Simplified amplitude equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.2.4 General analytical results: driving, damping and frequency correction . . . . . . . . . . 196

8.3 Simplified Amplitude Equations for solar-like oscillations . . . . . . . . . . . . . . . . . . . 197

8.3.1 Specification of the autocorrelation spectra αi . . . . . . . . . . . . . . . . . . . . . . . 198

8.3.2 Qualitative properties of mode driving, damping and surface effects . . . . . . . . . . . 200

8.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Philidet et al. (2021): Coupling between Turbulence and Solar-like Oscillations: a combined La-

grangian PDF/SPH approach. I – The stochastic wave equation . . . . . . . . . . . . . . . . 203

Dip a person into one particular specialty
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In Section 7.2, I introduced Lagrangian PDF methods as a way to model turbulence through the joint PDF of
the random variables describing the flow. More specifically, I showed how these methods can be implemented, in
practice, by means of Lagrangian stochastic models, i.e. stochastic differential equations designed to model the
evolution of individual fluid particles, which are used to represent the flow. My goal, in this chapter, is to use
a Lagrangian stochastic model of turbulence to build a new theoretical formalism specifically tailored to study
the impact of turbulent convection on solar-like oscillations. As I mentioned in Section 7.2, this requires the La-
grangian stochastic models introduced in Chapter 7 to be adapted to stellar turbulent convection. In broad strokes,
I start from the Refined Langevin Model introduced in Section 7.2.3, and lift several hypotheses pertaining to this
model. More specifically, I allow the flow to be compressible, which requires an adaptation of stochastic differen-
tial equations (SDE) governing the evolution of the velocity and turbulent frequency associated to the individual
fluid particles. In turn, the modification to the velocity equation makes it necessary to add a thermodynamic vari-
able to the quantities required to determine the state of a given fluid particle, in the form of the internal energy. As
a result, a new SDE must be derived for the internal energy. Identifying the modelled Reynolds-averaged equations
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– i.e. the mean equations to which this modified Lagrangian stochastic model reduces – with their exact counter-
parts – i.e. those derived from first principles – allows for the determination of the coefficients appearing in the
stochastic equations. These constitute, very schematically, the main step of the derivation; the interesting reader
can find all the details in Appendix B. However, for the sake of simplicity, I will base all analytical developments
in the remainder of this chapter on a much lighter Lagrangian stochastic model, corresponding to a compressible
version of the Simplified Langevin Model (see Section 8.1.1). This is only done as a first step, for illustration
purposes.

This new formalism is built in three parts, which constitute the three sections into which this chapter is divided.
In Section 8.1, I linearly perturb the starting Lagrangian stochastic model, in order to obtain a linear, stochastic
wave equation designed to govern the time evolution of the oscillations, while at the same time directly and
consistently containing the effect of the turbulent behaviour of the flow. By construction, such a wave equation
naturally contains the information on the turbulence-oscillation coupling. It constitutes the baseline framework in
which the rest of the formalism can be developed. This section is the subject of an article that has been published
in Astronomy and Astrophysics (Philidet et al. 2021), and which is reproduced in the end of this chapter. As such,
I will not present all of the details of the calculations in the body of this thesis, as this would be redundant. Instead,
I focus on the main steps of the derivation, and especially the physical assumptions underlying this derivation.

It was shown by Buchler and Goupil (1984) that the partial differential equations governing the physics of
stellar oscillations can be dimensionally reduced to a small set of ordinary differential equations governing the
complex amplitudes of a limited number of resonant modes, in the scope of the Amplitude Equation formalism.
The authors later showed, in Buchler et al. (1993), how the effect of the stochastic, convective noise can be included
consistently in the Amplitude Equation formalism, thus yielding stochastic differential equations for the complex
amplitudes of the modes. In particular, they showed how the exact stochastic amplitude equations can be reduced
to a much simpler form, called simplified amplitude equations, containing the same statistical information, while
being much easier to handle. This is done first by deriving the Fokker-Planck equation equivalent to the stochastic
amplitude equations; and then by exploiting the fact that there are an infinity of stochastic models that reduce
to the exact same Fokker-Planck equations, so that the original amplitude equations can be replaced by much
simpler ones, containing the same amount of one-time statistical information. Originally, this formalism was
developed to study the non-linear mode coupling that can occur in classical pulsators, where the oscillations are
intrinsically unstable, i.e. self-excited. However, this formalism is also perfectly adapted to the case of non-
adiabatic linear oscillations in interaction with turbulence, as is the case of solar-like oscillations. What is more, it
allows to extract, from the full wave equation, more specific information regarding the resonant modes, including
their amplitude, their damping rate, and the shift undergone by their frequency because of the stochastic noise
in the wave equation. I detail the principles behind the Simplified Amplitude Equations formalism, and apply it
to the linear case, in Section 8.2. Finally, in Section 8.3, I apply this formalism to the wave equation derived in
Section 8.1. The advantages of this method are tightly related to the pros listed in Section 7.3. More specifically,
1) it does not initially rely on a separation between convection equations and oscillation equations, but instead
encompasses both components, and therefore naturally contains their coupling, 2) it avoids the reduction of spatial
and timescales in the problem to a unique scale, thus allowing for the full description of the turbulent cascade,
3) it simultaneously describes all aspects of the coupling between turbulent convection and solar-like oscillations
– their excitation rate stemming from stochastic driving, their linear damping rate, as well as the frequency shift
incurred by these modes under the influence of turbulent convection (in other words, the surface effects1) –, and
4) it includes the properties of turbulence directly, which allows to easily relate the predicted properties of the
modes to the input physics of turbulence. This method will allow, in the long run, to properly infer properties of
turbulence-oscillation coupling, and therefore to properly constrain the properties of turbulent convection itself,
from asteroseismic observations.

1For the moment, because I consider a simplified Lagrangian stochastic model, only the adiabatic part of the surface effects is accounted
for, i.e. the contribution from turbulent pressure. This is not a limitation of the method however, and eventually all contributions to surface
effects can be described in this formalism.
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8.1 The stochastic wave equation for solar-like oscillations

8.1.1 The stochastic model in closed form

A lighter version of the Lagrangian stochastic model

My first short-term goal, in tackling the analytical part of this project, is to prove that the present approach is
relevant to the study of turbulence-oscillation coupling. As such, the theoretical developments presented in this
chapter serve as a proof of concept for this approach, so that I deliberately choose not to use the most realistic
Lagrangian stochastic model possible. Instead, I wish to limit the level of complexity of the model so that the
basics of the method may be understood as efficiently as possible. In that spirit, I start not from the Lagrangian
stochastic model presented in Appendix B, but from a much lighter version, corresponding to a compressible
version of the Generalised Langevin Model, and given by

dx⋆i = u⋆i dt , (8.1)

du⋆i =

[
−1
ρ

∂p

∂xi
+ gi +Gi j

(
u⋆j − ũ j

)]
dt +

√
C0ωtk dWi , (8.2)

where I leave the drift tensor unspecified for the moment, and only recall (see Section 7.2.2) that in general it is
written as a function of the Reynolds stress tensor, mean shear tensor, and turbulent dissipation rate

Gi j = f
(
ũ′′

i
u′′

j
, ∂iũ j, ǫ

)
, (8.3)

and I also recall that the turbulent dissipation rate is related to the turbulent frequency through ǫ = ωtk =

ωt ũ′′
i

u′′
i
/2.

Adopting this model implies two important assumptions. The first one consists in simplifying the description

of the thermodynamic state of the gas by adopting a polytropic relation between the gas pressure and density.
Compared to the model presented in Appendix B, this amounts to replacing the ideal gas law (Equation B.15) by

ln
(

p

p0

)
= γ ln

(
ρ

ρ0

)
, (8.4)

where γ is the polytropic index associated to the relation, and ρ0 and p0 are the equilibrium density and gas
pressure, defined as averages of the fluid density and gas pressure over timescales longer than both the turbulent
timescale and the period of the oscillations. Such a polytropic relation is relevant, for instance, in regions where
the convective transport is very efficient, and the instantaneous temperature gradient can be considered to be
equal to the adiabatic gradient at all times (see Section 1.1.1 for definitions). Note that γ is not an intrinsic
thermodynamic property of the gas itself, but a property of the thermodynamic transformations undergone by the
gas in the specific, extrinsic conditions prevailing in the flow under consideration. For instance, if one considers
that these transformations are adiabatic, then one has γ = Γ1, where the first adiabatic exponent Γ1, unlike γ, is a
thermodynamic property of the gas itself. This was, however, only an example: for the moment, I do not specify
γ. On the other hand, both ρ0 and p0 are considered known, in which case p is a function of ρ and γ only. This
simplification of the thermodynamic description of the gas also leads me to discard the term proportional to the
internal energy fluctuation in the velocity equation, in which case the stochastic quantity e⋆, and a fortiori the
energy SDE, is no longer needed.

The second assumption consists in simplifying the temporal behaviour of turbulence, and in particular discard-
ing internal intermittency, by reducing the turbulent frequency to a fixed, time-independent value of ωt, externally
input in the model. Compared to the model presented in Appendix B, this amounts to replacing every occurrence
of ω⋆t and ω̃t by ωt, in which case the turbulent frequency SDE is no longer needed. However, I still allow the
mean turbulent frequency ωt to depend on x. These two approximations are important ones; I discuss them further
in a later part of this section (see hypotheses H6 and H7 below).

From Lagrangian to Eulerian variables

I mentioned earlier, in Section 7.3, that one of the strengths of Lagrangian stochastic models is the fact that
the non-linear advection terms are modelled exactly, due to the Lagrangian nature of these models. While this is
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extremely important in numerical implementations – as I will show in Chapter 9 –, when it comes to analytically
handling this sort of model, it is unfortunately necessary to switch from a Lagrangian point of view to an Eulerian
point of view. Indeed, in order to obtain a wave equation where the wave variables can be easily related to the
observed properties of the modes, one must ensure that the stochastic variables pertain to the stochastic properties
of the flow at a fixed point, and not to fluid particles followed along their trajectories. Otherwise stated, I must
perform a change of variables, from the Lagrangian x⋆ and u⋆ to properly defined Eulerian counterparts. The
necessity to change variables also shows in the absence of an advection term in Equation 8.2: in the Lagrangian
frame, the turbulent pressure does not appear in the momentum equation. But, as I showed in Section 2.2.2, and
more generally throughout Part II, the fluctuations of the turbulent pressure gradient is precisely responsible for
the stochastic driving of solar-like oscillations. This illustrates the inadequacy of the Lagrangian frame to describe
the oscillations2.

A very general approach to this change of variables is the Lagrangian-mean trajectories formalism (Soward
1972; Andrews and McIntyre 1978). Essentially, the Lagrangian position of the fluid particles is decomposed into
an average position x and a fluctuating position ξ. Since I am interested in the coupling between the turbulent
and oscillatory components of the flow, it is necessary that both components be simultaneously contained in the

fluctuating position ξ, leaving only the static background state in the average part x. In that regard, the generality
of the Lagrangian-mean trajectories formalism is a crucial asset, because it allows the averaging process leading

to the separation between x and ξ to be defined however one wishes: it can be an ensemble average, a time
average, a horizontal average... Seeing as I wish the turbulence and the oscillations to be encompassed in the
fluctuating part, I chose to use a time average over very long timescales – i.e. long compared both to the period
of the modes and to the typical turn-over time of the turbulent eddies. As a result, the mean part does indeed
correspond to the static equilibrium state of the star, while the fluctuations contain both the turbulent motions and
the oscillations. This decomposition allows me to treat x as a fixed, Eulerian position, with respect to which all the
other quantities can be described in the Eulerian frame, while ξ represents a fluid displacement at x, containing

both the displacement due to the oscillations and the displacement due to the turbulent motions, and is interpreted

as an Eulerian variable. Furthermore, the velocity of the fluid particles is now regarded as the Eulerian velocity
of the flow at x + ξ, and naturally becomes a Eulerian variable. Therefore, the Lagrangian variables x(i)⋆(t) and
u(i)⋆(t), indexed by the integer i identifying each fluid particle, are substituted by the Eulerian variables3 ξ(x, t)
and u(x + ξ(x, t), t), indexed by the Eulerian space variable x. I note, in particular, that by construction, the time
average of both these variables is zero, while the fluctuation around the time average simultaneously contains the
turbulent and oscillatory motions. This change of variables must be carried out in Equations 8.1 and 8.2: this is
done in details in Section 2.2.1 of Philidet et al. (2021), to which I refer the interested reader if need be. Eventually,
I find (see Philidet et al. 2021, Eqs. 25 and 26)

∂ξi

∂t
= ui(x + ξ, t) , (8.5)

∂ui

∂t
+ u j

∂ui

∂x j
= −1

ρ

∂p

∂xi
+ gi +Gi j

(
u j − ũ j

)
+

√
C0ωtk ηi , (8.6)

where ηi (i = 1, 2, 3) are the “time derivatives” of three independent Wiener processes (see beginning of Sec-
tion 7.1.3 for more details). It must be noted that while the velocity appearing in the right-hand side of Equa-
tion 8.5 is evaluated at the Lagrangian position x + ξ(x, t), every mean quantity in Equation 8.6, by contrast, is
evaluated at the Eulerian position x. In this new Eulerian version, the velocity SDE now makes the turbulent
pressure contribution explicitly appear, in the form of the advection term in the left-hand side of Equation 8.6.

Evaluating the mean fields

The only quantities left to close in this model are the mean density ρ, the mean velocity ũ, and the Reynolds
stress tensor ũ′′

i
u′′

j
– which appears both in the turbulent kinetic energy k in the velocity diffusion coefficient, and in

2This statement may seem odd, as Lagrangian variables are actually often used in the analysis of stellar oscillations (see Section 2.1).
However, here, the term Lagrangian refers to a frame of reference attached to the total velocity of the flow, including both the turbulent
velocity and the oscillation velocity, while the usual sense is rather meant to describe a frame attached to the oscillations alone, and actually
only ever refers to a pseudo-Lagrangian frame.

3Knowing the latter for any position x is, as I had the opportunity to point out in the very beginning of Appendix A, perfectly equivalent
to knowing u(x, t) for any position x. Therefore, the new velocity variable is none other than the Eulerian velocity.
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the drift tensor Gi j. I make use of the Smoothed Particle Hydrodynamics (or SPH) method to evaluate the means,
as I explained in the framework of the particle representation in Section 7.2.4. However, this formalism ought to
be adapted to the change of variables described above, which is done in Section 2.2.2 of Philidet et al. (2021). This
yields

ρ(x, t) =
∫

d3y ρ0(y) K(y + ξ(y, t) − x) , (8.7)

ũ(x, t) =
1

ρ(x, t)

∫
d3y ρ0(y) u(y + ξ(y, t), t)K(y + ξ(y, t) − x) , (8.8)

ũ′′
i

u′′
j
(x, t) =

1
ρ(x, t)

∫
d3y ρ0(y)

(
ui(y + ξ(y, t), t) − ũi(y, t)

) (
u j(y + ξ(y, t), t) − ũ j(y, t)

)
K(y + ξ(y, t) − x) ,

(8.9)

where the integrals formally span across the entire volume of the star, but actually only involve the compact
support vicinity of x defined by the kernel function K. Equations 8.7 to 8.9 give an estimation of the mean fields
as a function of the Eulerian variables ξ(x, t) and u(x, t) only – in other words, they are now in closed form. I do
not specify the explicit form of the kernel function K underlying the SPH formalism; a valid example is given, for
instance, by Equation 7.114.

Summary

To summarise, the stochastic variables in the model are the fluid displacement ξ(x, t) and the Eulerian velocity
u(x, t) for every Eulerian position x. The Ito stochastic differential equations governing their evolution are Equa-
tions 8.5 and 8.6. The drift tensor Gi j is given by Equation 8.3, while the mean gas pressure, density, velocity
and Reynolds stress tensor are given by Equations 8.4 and 8.7 to 8.9 respectively. The only external inputs of the
model are 1) the equilibrium density ρ0(x) and gas pressure p0(x), which can be extracted from an equilibrium
model of the star, defined as an average of its structure over a timescale much longer than the turbulent and os-
cillation typical timescales; 2) the polytropic index γ(x) (which I allow to depend on space), which is given by
specifying the type of thermodynamic transformation undergone by the gas – for instance, in the case of adiabatic
transformations, γ = Γ1, where Γ1(x) can be extracted from an equilibrium model of the star, like ρ0 and p0; 3) the
functional form of the drift tensor Gi j (see Equation 8.3), which I discussed at length in Section 7.2.2; and 4) the
equilibrium turbulent frequency ωt(x), which acts as a control parameter for turbulence.

8.1.2 Linear perturbation

These equations can then be linearly perturbed around an appropriate zeroth order state, in order to yield a
stochastic linear wave equation. This is done in details in Section 3.1 of Philidet et al. (2021). Essentially, I
decompose the displacement and velocity variables into a turbulent and an oscillatory components, thus

∂ξosc

∂t
− uosc − (ξosc ·∇)ut − (ξt ·∇)uosc = (ξt ·∇)ut , (8.10)

u(x, t) = ut(x, t) + uosc(x, t) . (8.11)

Eventually, and under a set of assumptions and approximations that I explicitly discuss below, I find the following
wave equation

∂ξosc

∂t
− uosc − (ξosc ·∇)ut = 0 , (8.12)

∂uosc

∂t
− Ld

1 − Ls
1 = L0 , (8.13)

where

Ld
1,i =


1
ρ0

∂p0

∂xi
−
∂c2

0

∂xi


1
ρ0

∫
d3y ρ0(y)

(
ξosc,j∂ jK

x
)∣∣∣∣

y,t
+

c2
0

ρ0

∫
d3y ρ0(y)

(
ξosc,j∂ j∂iK

x
)∣∣∣∣

y,t

+Gi j,0

(
uosc,j −

1
ρ0(x)

∫
d3y ρ0(y)uosc,j(y)Kx(y)

)
, (8.14)
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Ls
1,i = −uosc,j∂ jut,i − ut, j∂ juosc,i −Gi j,0

1
ρ0

∫
d3y ρ0(y)

(
ξosc,k∂k

(
ut, jK

x
))∣∣∣∣

y,t

+


∂Gi j

∂ũ′′
k

u′′
l

ũ′′
k

u′′
l 1 +

∂Gi j

∂(∂kũl)
∂kũl +

∂Gi j

∂ǫ
ωtk1

 ut, j +
1
2

√
C0ωt

k0
k1ηi , (8.15)

L0,i = −
1
ρ0

∂
(
ρ0ut,iut, j − ρ0ut,iut, j

)

∂x j
, (8.16)

c2
0 ≡ γp0/ρ0 is the equilibrium sound speed, Gi j,0 and k0 are the equilibrium drift tensor and turbulent kinetic energy

respectively, the fluctuation of the Reynolds stress tensor, turbulent kinetic energy and mean shear tensor ũ′′
k

u′′
l 1,

∂kũl1 and k1 are respectively given by Eqs. C.15, C.11 and C.16 in Philidet et al. (2021), and I have introduced
the x-centered kernel function Kx(y) ≡ K(y − x). Formally, Equations 8.12 and 8.13 take the form of a linear,
stochastic, inhomogeneous wave equation in a completely closed form, in the sense that the various terms on their
right-hand side are written as explicit functions of the wave variables ξosc and uosc themselves or the turbulent fields
ξt and ut, whose statistical properties are considered known (see hypothesis H4 below). In writing Equation 8.13,
I have split the velocity equation into three components. Ld

1 contains all the terms that are linear in ξosc and uosc

but do not explicitly contain either stochastic processes ξt, ut and η. It represents the deterministic contribution
to the homogeneous part of the wave equation, and corresponds to the classical propagation of acoustic waves,
without any impact from the turbulence. On the other hand, Ls

1 contains all the terms that are linear in ξosc and
uosc and explicitly depend on ξt, ut or η. It represents the turbulence-induced perturbation to the linear operator
describing the propagation of the waves, and encompasses the effect of turbulent convection on both the damping
of the modes and their frequency. Finally, L0 contains all the terms that are independent from ξosc and uosc. It
represents all inhomogeneous forcing terms, and encompasses the driving source of the modes.

8.1.3 Hypotheses and approximations

In order to obtain this linear, stochastic wave equation, a number of hypotheses were assumed. These are
extensively discussed in Philidet et al. (2021), but since this is an important part of the discussion, I reproduce
them here. (H1) through (H5) pertain to the linearisation process, while (H6) through (H8) concern the elaboration
of the stochastic model itself

(H1) I considered |uosc| ≪ |ut|. This ordering is justified by the fact that, at the top of the convective envelope
of solar-like oscillators, the typical turbulent velocities have much higher amplitudes than the oscillatory
velocities, with the former being of the order of a few km.s−1, while the latter are of the order of a few
tens of cm.s−1. This allows to treat uosc as a first-order perturbation compared to ut, and any second- or
higher-order occurrence of uosc will be discarded;

(H2) I considered |ξosc| ≪ h,Hp , where I recall that h is the size of the averaging kernel function K, and Hp ≡
−(d ln p0/ dr)−1 is the pressure scale height. In other words, the modal fluid displacement is assumed to be
much smaller than the stratification length scale, and the width of the kernel function must be sufficiently
large. The first hypothesis is justified by the fact that, in the Sun for instance, the modal displacement
is of the order of a few tens of meters, while Hp is of the order of a few hundreds of kilometers. The
second hypothesis, on the other hand, constitutes a constraint on h. This allows to treat ξosc as a first-
order perturbation compared to all length scales relevant to the problem, and any second- or higher-order
occurrence of ξosc will be discarded;

(H3) I adopted the anelastic approximation for turbulence, in the sense that I considered ρt ≪ ρ0, where ρt is
the turbulent fluctuation of density, and ρ0 the equilibrium density. This is the most severe approximation
I make in this section. Nevertheless, the anelastic approximation is widely used in analytical models of
turbulent convection, on the grounds that the flow is subsonic (with turbulent Mach numbers peaking at
around 0.3 in the superadiabatic region), as shown by 3D hydrodynamic simulations of the atmosphere of
these stars (Nordlund et al. 2009). Using the continuity equation, this amounts to neglecting the quantity
∇ · (ρ0ξt). As will become apparent in the following, this allows to discard all ξt-dependent contributions
in the linearisation of the ensemble averages in the SPH formalism;
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(H4) I considered that the turbulent fields ξt and ut are the same as what they would be without the presence
of an oscillating displacement ξosc and velocity uosc – in other words, I neglected the back-reaction of the
oscillations on the turbulent motions of the gas. I justify this approximation in Appendix B of Philidet et al.
(2021). This assumption allows to consider ξt and ut as an input to the model, whose statistical properties –
average, covariance, autocorrelation function – are considered completely known;

(H5) I considered that the gravitational potential is perturbed neither by the turbulent motions of the gas, nor
by its oscillatory motions. Those are actually two separate approximations. The first one is justified by
the fact that the Reynolds-averaged mass flow through any given horizontal layer due to turbulence is zero,
meaning the total mass present beneath this layer is always the same. The second one corresponds to the
Cowling approximation, and is justified for modes that feature a large number of radial nodes. These two
approximations put together allow to replace the gravitational acceleration g by its equilibrium value g0,
which only depends on the hydrostatic equilibrium of the star;

(H6) I considered the flow to be adiabatic, in the sense that the only fluid particle properties that need to be
described in the Lagrangian stochastic model are the position and velocity of the particles. In the scope of
this hypothesis, the energy equation is replaced with a relation between the mean density and pressure that
I chose to be polytropic, without specifying the associated polytropic exponent γ. That means that the non-
adiabatic effects pertaining to the oscillations are not contained in the formalism presented in this chapter.
This includes the perturbation of the convective flux and the radiative flux by the oscillations, which are in
reality susceptible to affect the damping rate of the modes as well as the surface effects. Avoiding hypothesis
(H6) would allow for the inclusion of all non-adiabatic effects in the model. This can be done, for instance,
by starting from the more refined Lagrangian stochastic model presented in Appendix B;

(H7) I considered that the turbulent frequency ωt – defined as the ratio of the dissipation rate ǫ with the turbulent
kinetic energy k – takes a constant value. The turbulent frequency represents the rate at which k would
decay towards zero if there was no production of turbulence whatsoever, and can be interpreted as the
inverse lifetime of the energy-containing turbulent eddies. In essence, this amounts to assuming the existence
of a single timescale associated to the entire turbulent cascade, which is at odds with even the simplest
picture of turbulence. Avoiding hypothesis (H7) would allow for a much more realistic modelling of the
turbulent dissipation and its perturbation by the oscillations, which is susceptible to play an important role
in both mode damping and surface effects. This can be done, for instance, by starting from the more refined
Lagrangian stochastic model presented in Appendix B;

(H8) I considered that the time average of the flow velocity over a very long time – in other words the velocity
associated to the equilibrium background – is zero. This amounts to neglecting rotation, whether in be global
or differential. Taking rotation into account would require either a non-zero velocity field to be included in
the Lagrangian-to-Eulerian change of variables described above, or else a Coriolis inertial force to be added
in the velocity SDE.

Hypotheses (H1), (H2) and (H4) are fundamental in building the formalism, and cannot be avoided, but they are
also firmly and physically grounded. Hypotheses (H3) and (H5) are simplifying assumptions that are not strictly
speaking necessary, nor as clearly valid, but which are unavoidable given the current state of our capabilities.
Finally, hypotheses (H6), (H7) and (H8) are also simplifying assumptions, and are very much invalid; however, I
adopted them here to provide with a simple framework serving as a proof-of-concept for the formalism presented
in this chapter. In particular, hypotheses (H6) and (H7) must be discarded as soon as possible if one wishes to
adopt a realistic model of turbulence. As regards these hypotheses, I insist on the fact, of particular importance
in this model, that none of them concern the mean fields; indeed, a linearised form of these mean fields naturally

arises from the SPH formalism and the hypotheses (H1) through (H4).

8.2 Simplified amplitude formalism: the general framework

The linear stochastic wave equation comprised of Equations 8.12 and 8.13 forms the baseline framework
in which the observed properties of solar-like oscillations can be related to the underlying physics of turbulent
convection. More specifically, the inhomogeneous forcing term L0 given by Equation 8.16 – and its counterpart in
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the displacement equation – contains the information on the stochastic driving of the modes, while the stochastic
perturbation to the propagative linear operator Ls

1 given by Equation 8.15 contains the joint effect of mode damping
and surface effects. However, both are of stochastic nature, so that a large part is actually incoherent or statistically
uncorrelated with the oscillating modes themselves4. It is therefore necessary to filter the part of these stochastic
perturbations to the wave equation that indeed leads to a significant impact on the modes. This can be done in
the framework of the Simplified Amplitude Equation formalism. It is the goal of this section to introduce this
formalism, and in particular to apply it to the case of linear stellar oscillations.

The Simplified Amplitude Equation formalism was developed by Stratonovich (1965) (who is one of the
founding fathers of stochastic process theory) to describe the effect of noise on harmonic oscillators in the most
general case – although his interest in building this formalism was primarily concerned with the effect of noise
in electrical circuitry, and its impact on the transfer of information. It was later applied, by Buchler et al. (1993),
to the case of stellar pulsations impacted by convective noise. However, the authors’ motivation was to study the
non-linear coupling between distinct oscillating modes, while in the present case, I am interested in the linear limit
of this formalism, where each mode can be studied individually, in isolation from each other. The philosophy
behind this formalism can be divided into two distinct parts

• first, the full stochastic wave equation derived in Section 8.1 can be transformed into a finite set of ordinary
differential equations governing the evolution of the complex amplitudes of a few normal modes of oscilla-
tion of the star. This can be done by treating the stochastic part of the wave equation as perturbations to an
otherwise deterministic wave equation. This leads to the amplitude equations (Buchler and Goupil 1984);

• because the perturbations are stochastic, the amplitude equations are also stochastic. However, they are
very impractical to handle, both analytically and numerically. The reason is that the stochastic part of the
amplitude equation has a finite memory time which involves a large, continuous range of timescales: the
process it describes is therefore not a Markov process (see Section 7.1.2 for a definition). However, the
exact stochastic amplitude equation can be transformed into an equivalent simplified amplitude equation,
which does describe a Markov process, and where the effect of the finite memory time is incorporated in a
rigorous manner in the drift and diffusion coefficients of the stochastic amplitude equations. This procedure
is carried out in two stages: first the stochastic amplitude equation can be substituted for an equation for
the PDF of the complex amplitude of the modes, in the form of a Fokker-Planck equation; then, from this
Fokker-Planck equation, another stochastic differential equations on the complex amplitude of the modes
can be deduced, under the constraint that it must be equivalent to the exact same Fokker-Planck equation,
while only involving Markov processes.

The procedure outlined here can be summarised thus: 1) the full amplitude equations are derived directly from
the stochastic model previously described, which is done in Section 8.2.1; then 2) the equivalent Fokker-Planck
equation is deduced, whose drift and diffusion coefficients properly encompass the full effect of the finite memory
time of the coefficients in the amplitude equations, which is done in Section 8.2.2, after which 3) an alternative set
of stochastic differential equations, corresponding to the exact same Fokker-Planck equation, while being much
simpler in its form, and only involving Markov stochastic processes, is derived, which is done in Section 8.2.3.
The simple form of these simplified amplitude equations makes it possible to derive general analytical results;
in particular, I show that their ensemble average directly and simultaneously yields the excitation rate and the
damping rate of the mode by the stochastic perturbations, as well as the modal part of the surface effects. This is
done in Section 8.2.4.

8.2.1 Amplitude equation for solar-like oscillations

Let me recast the stochastic wave equation in the following, very general form

d |z〉
dt
= L(t) |z〉 + |Θ(t)〉 , (8.17)

4Here, I mean the word incoherent in the wave physics sense of the term, i.e. meaning that two signals operate at lengths or timescales
too different from each other to allow for an efficient interaction between the two. Since, as I had the opportunity to point out in Sec-
tion 1.2.1, high-Reynolds-number flows exhibit a wide range of such scales, it is only natural that only a small portion of it should be able
to effectively couple with solar-like p-modes. Likewise, two phenomenon have to be statistically correlated to be able to interact with each
other.
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where |.〉 denotes a ket in Dirac notation, L is a stochastic linear operator in the Hilbert space describing the
oscillations, and |Θ〉 is a stochastic vector in this space, both of which are discussed below. In this section, I do not
specify the physical content of the ket |z〉, the nature of the Hilbert space in which it lies, the linear operatorL(t) or
the stochastic ket |Θ(t)〉, as this formalism is very general. However, from Section 8.1, the reader should already be
aware that the ket |z〉 contains the fluid displacement ξosc and oscillatory velocity uosc at every Eulerian location x

in the star. The Hilbert space in which |z〉 lies is therefore of infinite dimension. Furthermore, |z〉 only depends on
time, because the space dependence is already contained in the infinite set of Eulerian positions to which pertain
each separate component of |z〉. As a result, d/ dt is a total time derivative, not partial. L(t) is a time-dependent
linear operator, which can be further decomposed into an average, deterministic, time-independent part Ld, and a
zero-mean, stochastic, fluctuating part Ls(t), so that

L(t) = Ld +Ls(t) . (8.18)

The term in Ld corresponds to the unperturbed wave equation, without any turbulent fluctuations. Therefore,
it models the classical propagation of sound waves in the stellar medium. In turn, Ls(t) can be thought of as
modelling the impact of turbulence on the propagation of these waves. As for |Θ(t)〉, it corresponds to the impact
of turbulence on the background equilibrium structure itself, and takes the form of an additive noise component to
the wave equation.

The stochastic amplitude equations can then be obtained in two steps (Stratonovich 1965): first, a deterministic
amplitude equation can be derived as if there were no stochastic perturbations; then the stochastic part can be
treated in a perturbative framework, and stochastic corrections added to the deterministic amplitude equations
after the fact. First, let me consider the non-perturbed wave equation (Equation 8.17), which is simply

d |z〉
dt
= Ld |z〉 , (8.19)

where 〈.|.〉 refers to the scalar product in the |z〉 Hilbert space, and will be explicitly defined in the beginning of
Section 8.3. The linear operator Ld can be diagonalised, and any vector |z〉 can be decomposed on a basis of
eigenvectors for Ld. Because this linear operator is real, the associated eigenvalues are either real, or come in
pairs of complex conjugates. Each such pair of eigenvectors with complex-conjugated eigenvalues correspond to
a single mode of oscillation of the system, which can be studied in isolation from every other mode. Therefore,
let me denote this pair of eigenvectors as |Ψ〉 and |Ψ†〉, and their associated eigenvalues as κ ± jω. Without loss of
generality, I will consider that both eigenvectors are normalised to unity

〈Ψ|Ψ〉 = 〈Ψ†|Ψ†〉 = 1 . (8.20)

Limiting the ket |z〉 to its projection on this oscillating mode, I can write the solution to Equation 8.19 in the
following form (Buchler et al. 1993)

|z(t)〉 = 1
2

a(t) exp jωt |Ψ〉 + c.c , (8.21)

where ‘c.c’ denotes the complex conjugate. In general, |z〉 would be written as an arbitrary linear combination of
|Ψ〉 and |Ψ†〉; however, if |z〉 is initially real, it is obvious from Equation 8.19 that it will remain real at all later
times (because Ld is Hermitian), so that the |Ψ†〉-component of |z〉 is necessarily the complex conjugate of its
|Ψ〉-component. As for a(t), it denotes the slowly-varying complex amplitude of the mode. Plugging the solution
given by Equation 8.21 into Equation 8.19, one finds the following, very simple amplitude equation for a(t)

da

dt
= κa . (8.22)

As expected, while the imaginary part ω of the eigenvalue associated with the mode represents its oscillatory
angular frequency, its real part κ represents the rate at which its amplitude varies – either a growth rate or a
damping rate, depending on the intrinsic stability of the mode in the absence of turbulence. In particular, in
the adiabatic case, and as I already mentioned in Section 2.3.1, the boundary value problem associated to stellar
oscillations forms a Sturm-Liouville problem, so that its eigenvalues σ2 = (κ + jω)2 are purely real. This means
that either ω = 0, or κ = 0, so that oscillating modes (with ω , 0) are characterised by κ = 0. Otherwise stated, in

the absence of turbulence, adiabatic oscillations are neither damped nor self-excited, and a(t) remains constant.
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In a non-adiabatic framework, however, one has κ , 0, and this quantity contains, for example, the κ-mechanism,
γ-mechanism and ǫ-mechanism.

Turning now to the full, stochastically perturbed wave equation (Equation 8.17), it can be seen that the addition
of the two terms Ls(t) |z〉 and |Θ(t)〉 leads to the addition of three terms in the amplitude equation (Buchler and
Goupil 1984)

da = κa dt + c1(t) exp− jωt dt + c2(t) a dt + c3(t) a⋆ exp−2 jωt dt , (8.23)

where

c1(t) = 2 〈Ψ|Θ(t)〉 , (8.24)

c2(t) = 〈Ψ|Ls(t)|Ψ〉 , (8.25)

c3(t) = 〈Ψ|Ls(t)|Ψ†〉 . (8.26)

The form of the stochastic linear operatorLs(t) and stochastic vector |Θ(t)〉 being completely specified by the linear
stochastic wave equation derived in Section 8.1, the stochastic processes ci(t) (i = 1, 2, 3) constitute knowns of the
system. Therefore, the stochastic differential equation given by Equation 8.23 governing the temporal evolution of
the complex amplitude of the mode a(t) is in a closed form. It will be more practical, in the following, to separate
the complex amplitude of the mode into its real amplitude A(t) and its phase Φ(t), both being real functions of
time, so that

a(t) = A(t) exp jΦ(t) . (8.27)

In place of a single complex stochastic equation for the evolution of a(t), I therefore obtain two distinct, real
stochastic equations for the evolution of A(t) and Φ(t), which take the following form

dA = κA dt + Re
(
c1(t) exp− j(ωt+Φ)

)
dt + ARe

(
c2(t) + c3(t) exp−2 j(ωt+Φ)

)
dt ≡ G(A,Φ, t) dt , (8.28)

dΦ =
1
A

Im
(
c1(t) exp− j(ωt+Φ)

)
dt + Im

(
c2(t) + c3(t) exp−2 j(ωt+Φ)

)
dt ≡ H(A,Φ, t) dt , (8.29)

where Re and Im denote the real and imaginary parts respectively. Note that the function G(A,Φ, t) must not be
confused with the drift tensor Gi j introduced above; the fact that the two will never appear together in the same
equation, and that one is a scalar and the other a tensor, should help keep the confusion to a minimum.

8.2.2 The Fokker-Planck equation for mode amplitude

In this section, I do not yet specify the form or the physical content of either Ld, Ls(t) or |Θ(t)〉. The only
hypothesis I make concerning the last two quantities is that their correlation timescale is very small compared to
the timescale over which the amplitude and the phase of the mode typically vary. The correlation timescale of these
stochastic perturbations correspond to the turnover time of the turbulent eddies, which I argued in Section 2.3 is
similar to the period of the modes (i.e. ∼ 5 minutes in the superficial layers of the Sun). On the other hand, the
amplitude and phase of the modes vary over a typical timescale that corresponds to their lifetime, which is indeed
much longer than their period (τ ∼ η−1 ∼ 3 hours for the shortest-lived solar modes). As such, this hypothesis is
largely verified in solar-like oscillators. A consequence of this assumption is that all turbulent, fluctuating terms in
the wave equation (Equation 8.17) can be approximated by Markov processes (in the sense that their memory time,
while finite, is much smaller than the evolution timescale of the amplitude of the mode), and consequently, so can
the stochastic processes A(t) andΦ(t). It is then possible to replace the two stochastic differential equations on these
quantities with an equivalent, single Fokker-Planck equation governing the evolution of their joint PDF w(A,Φ, t),
but whose coefficients are carefully defined to incorporate in a rigorous manner the effect of the finite memory time

of the processes A(t) and Φ(t). The Fokker-Planck equation takes the general form (see Equation 7.28)

∂w

∂t
= −∂wG

∂A
− ∂wH

∂Φ
+

1
2
∂2wD
∂A2

+
1
2
∂2wE
∂A∂Φ

+
1
2
∂2wF
∂Φ2

, (8.30)

where G and H represent the probability fluxes in (A,Φ) space, D and F are the diagonal components of the
2 × 2 symmetric diffusion matrix associated to these processes, and E is its off-diagonal component. The explicit
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derivation of the probability fluxes and diffusion coefficients is detailed in Appendix C, and these coefficients read

G(A) = A

(
κ + αR

2 +
3
2

Re(α3)
)
+

1
2A

Re(α1) , (8.31)

H(A) = Im(α3) , (8.32)

D(A) = A2
(
2αR

2 + Re(α3)
)
+ Re(α3) , (8.33)

E(A) = 0 , (8.34)

F (A) =
1
A2

Re(α1) + 2αI
2 + Re(α3) , (8.35)

where the αi correspond to the autocorrelation spectra of the stochastic processes ci(t)

α1 =

∫ 0

−∞
dτ

〈
c1(t)c⋆1 (t + τ)

〉
exp jωτ , (8.36)

αR
2 =

∫ 0

−∞
dτ

〈
Re(c2(t))Re(c2(t + τ))

〉
, (8.37)

αI
2 =

∫ 0

−∞
dτ

〈
Im(c2(t))Im(c2(t + τ))

〉
, (8.38)

α3 =

∫ 0

−∞
dτ

〈
c3(t)c⋆3 (t + τ)

〉
exp2 jωτ . (8.39)

It can already be seen, without having to specify the stochastic processes ci(t), that their autocorrelation spectra
are independent of the two stochastic variables A and Φ. Furthermore, under the assumption that the turbulence
characterising the convective motions at the top of the envelope of solar-like oscillators is stationary, the autocor-
relation functions appearing in the definition of these coefficients only depend on the time increment τ, and not on
the absolute time t. As such, the αi are also independent of time t. All things considered, they are therefore simply

complex constants.

8.2.3 Simplified amplitude equations

As I have mentioned above, either the stochastic differential equations given by Equations 8.28 and 8.29
together, or the Fokker-Planck equation (Equation 8.30), both of which are equivalent to one another, can be used
to model the time evolution of the real amplitude and phase of a given mode. However, both are equally impractical
to use, albeit for different reasons. Numerically integrating the stochastic equation proves extremely expensive,
because a large range of very different timescales must be resolved. Indeed, the total integration time must far
exceed the typical timescale of the slowly-varying mode amplitude. But at the same time, the rapidly-varying
phase ωt appearing in Equation 8.23 must be accurately resolved. Finally, the whole range of memory timescales
associated to the processes ci(t) must also be resolved, which is problematic, as it corresponds to the range of
timescales in the turbulent cascade, and is therefore very wide in high Reynolds number flows (see Section 1.2.1
for more details). Consequently, the numerical integration of Equations 8.28 and 8.29 requires an unreasonably
small time step compared to the total integration time. By contrast, the Fokker-Planck equation (Equation 8.30)
does not have this timescale problem. Indeed, in computing its probability fluxes and diffusion coefficients, I have
filtered out all rapidly-oscillating features (see Appendix C), and as such, the numerical integration of the Fokker-
Planck equation does not require these very short timescales to be resolved. However, it poses other difficulties
inherent to the integration of Fokker Planck equations in general, and which I already had the opportunity to
mention in Chapter 7. In brief, because the PDF w is a function of the entire parameter space (i.e. not only of time,
but also of the two stochastic variables A and Φ), its numerical integration would require the discretisation of all
three variables. For that reason, it is usually very impractical to directly integrate the Fokker-Planck equation in
time.

Fortunately, while a given stochastic differential equation is equivalent to a unique Fokker-Planck equation,
the inverse is not true. Indeed, there exists an infinite number of stochastic models for the mode amplitude A and
phase Φ which possess the same Fokker-Planck equation (Equation 8.30), and therefore contain the exact same
statistical information on A and Φ as Equations 8.28 and 8.29, while having a much simpler form. Those are the
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simplified amplitude equations (Stratonovich 1965)

dA =

(
G − 1

4
∂D
∂A

)
dt +

√
D dWA , (8.40)

dΦ =
(
H − 1

4
∂F
∂Φ

)
dt +

√
F dWΦ , (8.41)

where dWA and dWΦ are the increments of two independent Wiener processes over the time step dt. Let me remark
that in writing Equations 8.40 and 8.41, I made use of Equation 8.34, i.e E = 0, from which stems the fact that the
diffusion matrix associated to the set of stochastic variables (A,Φ) is diagonal. Plugging Equations 8.31 to 8.35
into Equations 8.40 and 8.41, one finally finds

dA =

(
A(κ + Re(α3)) +

Re(α1)
2A

)
dt +

(
A2

(
2αR

2 + Re(α3)
)
+ Re(α1)

)1/2
dWA , (8.42)

dΦ = Im(α3) dt +

(
1
A2

Re(α1) + 2αI
2 + Re(α3)

)1/2

dWΦ . (8.43)

These equations are much more practical to handle than either the exact amplitude equations derived in Sec-
tion 8.2.1 or the Fokker-Planck equation derived in Section 8.2.2, in the sense that they allow us to circumvent
the problems outlined above. Indeed, as in the Fokker-Planck equation, all rapidly-oscillating terms have been
averaged out, which means that the short timescales ∼ ω−1 need not be resolved. Furthermore, the stochastic part
of these equations now have zero memory – because the effect of the finite width of the turbulent cascade timescale
range has been properly and rigorously incorporated in the coefficients of the Fokker-Planck equation –, which also
drastically reduces the range of timescales that one needs to resolve. On the other hand, Equations 8.42 and 8.43
are much easier to integrate numerically than the corresponding Fokker-Planck equation, as only the time variable
needs to be discretised, with the only cost being that a large number of independent realisations must be integrated
in order to reconstruct the moments of the mode amplitude.

8.2.4 General analytical results: driving, damping and frequency correction

In fact, Equations 8.42 and 8.43 are so simple that general analytical results can easily be derived regarding the
slow evolution of mode amplitude. In particular, let me denote the mean energy of the mode as Em(t) ≡ 〈A(t)2〉 and
the mean phase of the mode as Φm(t) ≡ 〈Φ(t)〉. It must be understood that the word ‘mean’ here refers to ensemble
average, and not time average. As such, Em and Φm are susceptible to depend on time. I derive equations for these
quantities by taking the ensemble average of Equation 8.42 (preliminarily multiplied by 2A) and Equation 8.43.
Because WA(t) and WΦ(t) are Wiener processes, the diffusion part of these equations (i.e. the second, stochastic
term on their right-hand side) is always of zero-mean, even when the diffusion coefficient depends explicitly on
the stochastic variables themselves. The procedure yields

dEm

dt
= 2Em

(
κ + Re(α3)

)
+ Re(α1) , (8.44)

dΦm

dt
= Im(α3) . (8.45)

Each of the contributions to the right-hand sides of Equations 8.44 and 8.45 can be interpreted thus

• depending on its sign, the first term on the right-hand side of Equation 8.44 gives either the growth rate or
the damping rate of the mode. For solar-like oscillations, which are intrinsically stable, the damping rate of
the mode is therefore given by5

η ≡ −
(
κ + Re(α3)

)
. (8.46)

The damping rate is made up of two different contributions. The first corresponds to the non-turbulent,
deterministic contribution κ, which, in the case of sound waves, can be attributed to non-adiabatic energy

5The notation η, which I have used to denote the damping rate of the modes since Section 2.3, must not be confused with the notation
η(t), which I have used in Section 7.1.3 to denote the random part of the Langevin equation (see Equation 7.29). Throughout this thesis,
the context should make it clear which one is referred to at any given occurrence.
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exchanges between the wave and the medium in which it propagates. The second corresponds to the impact
of the turbulence-induced, stochastic fluctuations in the wave equation on mode damping. It encompasses a
whole array of individual physical contributions from turbulent pressure, turbulent dissipation or convective
enthalpy flux for instance (see Section 2.3 for more details);

• the second term on the right-hand side of Equation 8.44 gives the excitation rate of the mode. It can be seen
that, unlike the damping rate, the excitation rate only contains contributions from the turbulence-induced
stochastic perturbation of the wave equation (Equation 8.17), which is in accordance with the widely ac-
knowledged picture of solar-like oscillations being stochastically excited by highly turbulent motions of the
plasma at the top of the convection zone (see Section 2.2 for more details). Furthermore, assuming the mode
has reached a stationary state, one can take dEm/ dt = 0 in Equation 8.44. This yields the stationary average
energy of the mode

Estat ≡
Re(α1)

2η
, (8.47)

which is in perfect accordance with Eq. (42) of Goldreich and Keeley (1977b) for instance, or Eq. (40) of
Buchler et al. (1993). This result also echoes the discussion in Section 2.2.1, where I mentioned that the
energy of the modes results from a balance between driving and damping processes;

• the equation for the evolution of the mean phase is easily integrated to

Φm(t) = Im(α3) t + Φm,0 , (8.48)

where Φm,0 is an arbitrary initial average phase. In turn, this yields the following expression for the average

global phase of the mode φ(t) ≡ ωt + Φm(t)

φ(t) =
(
ω + Im(α3)

)
t + Φm,0 . (8.49)

This amounts to a systematic shift in the angular frequency of the mode

δω = Im(α3) . (8.50)

This shift actually represents what is commonly referred to as the modal part of surface effects, i.e. the
contribution of turbulent convection not to the equilibrium structure, but to the propagation of the waves
themselves (see Section 2.4 for more details).

All aspects of turbulence-oscillation coupling – driving and damping processes as well as surface effects – are
therefore modelled simultaneously and consistently in this framework. Furthermore, they can be quantified using
only the two complex constants α1 and α3, which depend on the specific form of the turbulence-induced stochastic
perturbation to the linear operator L(t) in the wave equation, and that of the additive convective noise |Θ(t)〉, as
well as on the structure of the mode under consideration. Of particular interest is the fact that the part of the
damping rate stemming from these turbulent fluctuations, on the one hand, and the frequency shift entailed by
these same fluctuations on the other hand, are modelled respectively by the real and imaginary parts of the same
complex autocorrelation spectrum α3. This is not quite surprising: I had already remarked in the beginning of
Section 2.3.2 that the damping rate and oscillatory frequency of a mode are themselves simply two sides of the
complex eigenvalue associated to the mode – more specifically, its real and imaginary parts.

8.3 Simplified Amplitude Equations for solar-like oscillations

I now set out to apply the very general Simplified Amplitude Equation formalism in its linear form, as intro-
duced in Section 8.2, to the linear stochastic wave equation developed in Section 8.1. In particular, one of the
strengths of said stochastic wave equation, on which I have not yet lingered, but which become of crucial impor-
tance in this section, is the fact that it contains the turbulent displacement ξt and velocity ut in their most general
form, as an input of the model. Therefore, this formalism allows for the inclusion of any prescription one could

wish for concerning the turbulent velocity spectrum. As such, in the long run, this formalism will eventually allow

to test any such prescription against asteroseismic observations, by comparing the resulting theoretical excitation
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rate, damping rate or frequency correction by turbulent convection (see Section 8.2.4) with their observationally

available counterparts. This will be seen perhaps more clearly later in this section, but I already remark upon it
here, because it is one of the key points of this formalism. Before I dive in, however, I wish to warn the reader
that this section is the subject of a work that is still very much under way, which is why it may, at times, look
incomplete.

I first need to explicitly cast the stochastic wave equation derived in Section 8.1 in the form given by Equa-
tion 8.17. A ket |z〉 can be constructed in such a way that it contains the 6 components of ω ξosc and uosc for each
Eulerian position x, as follows6

|z〉 ≡
∣∣∣{ωξosc(x),uosc(x)}x∈R3

〉
, (8.51)

where ω refers to the angular frequency of the mode, and must not be confused with the turbulent frequency ωt

introduced in Section 8.1.1. Then the linear operators Ld and Ls(t), and the stochastic ket |Θ(t)〉 appearing in
Equation 8.17 are determined from the vector operators Ld

1, Ls
1 and L0 defined by Equations 8.14 to 8.16, in the

following form

∣∣∣Ld |z
〉
=

∣∣∣∣
{
ωuosc ; Ld

1

}
x∈V

〉
, (8.52)

∣∣∣Ls(t)|z〉
=

∣∣∣∣
{
ω(ξosc ·∇)ut + ω(ξt ·∇)uosc ; Ls

1

}
x∈V

〉
, (8.53)

|Θ(t)〉 =
∣∣∣{ω(ξt ·∇)ut ; L0}x∈V

〉
, (8.54)

where, on the right-hand side of Equations 8.52 to 8.54, the two quantities in the set notation refer to the com-
ponent of the ket associated to ωξosc(x) and uosc(x) respectively, and V refers to the volume of the star. Now
that the Hilbert space in which the ket |z〉 lies is properly defined, I also need to specify the scalar product 〈. | .〉
in this Hilbert space. A necessary condition is that distinct eigenvectors |Ψ〉 of the unperturbed wave equation
(Equation 8.19) – i.e. of the linear operator Ld – must be orthogonal to one another in the sense of this scalar
product. For adiabatic, non-radial oscillations, one has (Unno et al. 1989)

∫
d3x ρ0(x) ξn,l,m(x) · ξ⋆n′,l′,m′(x) ∝ δnn′δll′δmm′ , (8.55)

where ξn,l,m denotes the oscillatory displacement ξosc associated to the mode of radial order n, angular degree l and
azimuthal order m. But the components of |Ψ〉 are precisely proportional to ξosc – the displacement part is ωξosc,
while the velocity part is uosc = jωξosc. Therefore, the eigenvectors |Ψ〉 are orthogonal with respect to the scalar
product

〈Ψ1|Ψ2〉 ≡
∫

d3x ρ0(x)
(
Ψ1,ξ(x) ·Ψ⋆

2,ξ(x) +Ψ1,u(x) ·Ψ⋆
2,u(x)

)
, (8.56)

where Ψξ(x) (resp. Ψu(x)) is the part of |Ψ〉 associated with the oscillatory displacement (resp. velocity) at location
x: in other words, they are the space-dependent normalised eigenfunctions written in terms of displacement and
velocity. In particular, they are related to each other through

Ψu = jΨξ . (8.57)

In the following, I will adopt the scalar product defined by Equation 8.56, which also corresponds to the scalar
product adopted by Buchler and Goupil (1984) – although they included the non-adiabatic component of the
oscillations in the ket |Ψ〉 as well.

8.3.1 Specification of the autocorrelation spectra αi

In order to exploit the stochastic simplified amplitude equations given by Equations 8.42 and 8.43, or their
ensemble average given by Equations 8.44 and 8.45, it is necessary to compute the complex autocorrelation spectra
αi given by Equations 8.36 to 8.39, where the stochastic processes ci(t) are given by Equations 8.24 to 8.26.

6Note that, naturally, the two are simply related through uosc = jωξosc. The inclusion of both wave variables in |z〉 allows to keep the
wave equation in the form of Equation 8.17, i.e. without any second-derivatives with respect to time. Let me also note that the oscillatory
fluid displacement ξosc is multiplied by the mode frequency ω so that all components of |z〉 have the same dimension, i.e. that of a velocity.
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With the definitions of the ket |Ψ〉 given by Equation 8.51, and the definition of the scalar product 〈. | .〉 in the
corresponding Hilbert space given by Equation 8.56, I find the following expressions for the stochastic processes
ci(t)

c1(t) = 2
∫

d3x ρ0

[
Ψξ,iξt, j(t)∂ jut,i(t) + Ψu,iL0,i(t)

]
(8.58)

c2(t) =
∫

d3x ρ0

[
Ψξ,iΨ

⋆
ξ, j∂ jut,i(t) + ωΨξ,iξt, j(t)∂ jΨ

⋆
u,i + Ψu,iL

s⋆
1,i (t)

]
, (8.59)

c3(t) =
∫

d3x ρ0

[
Ψξ,iΨξ, j∂ jut,i(t) + ωΨξ,iξt, j(t)∂ jΨu,i + Ψu,iL

s
1,i(t)

]
. (8.60)

From there, the coefficients αi can be computed using the explicit expressions of Ls
1 (Equation 8.15) and L0

(Equation 8.16). In fact, while all the coefficients αi appear in Equations 8.42 and 8.43, only α1 and α3 play an
actual role in the equations on the mean energy and phase of the mode (Equations 8.44 and 8.45), so that I only
need to detail the derivation of these two coefficients. Equations 8.36 and 8.39 show that α1 and α3 are defined in
terms of the second-order correlation product of c1(t) and c3(t) respectively. In turn, c1(t) and c3(t) depend in the
turbulent velocity field ut. But I already mentioned, in Chapter 5 in particular, that the autocorrelation product of
the turbulent velocity, or even the turbulent velocity itself, is best described in terms of its Fourier components in
space and time. As a result, the autocorrelation spectra α1 and α3 can be described in terms of the autocorrelation

spectrum of the turbulent velocity, more specifically the second- and fourth-order spectra defined by

φ2
i j(k, ω) ≡

∫ 0

−∞
dτ

∫
d3δx

〈
ut,i (X) uτt, j(X + x)

〉
exp j(ωτ−k·δx) , (8.61)

φ4a
i jkl(k, ω) ≡

∫ 0

−∞
dτ

∫
d3δx

〈
ut,i (X) uτt, ju

τ
t,kuτt,l(X + x)

〉
exp j(ωτ−k·δx) , (8.62)

φ4b
i jkl(k, ω) ≡

∫ 0

−∞
dτ

∫
d3δx

〈
ut,iut, j (X) uτt,kuτt,l(X + x)

〉
exp j(ωτ−k·δx) , (8.63)

φ4c
i jklmn(k, ω) ≡

∫ 0

−∞
dτ

∫
d3δx

〈
ut,i∂mut, j (X) uτt,k∂nuτt,l(X + x)

〉
exp j(ωτ−k·δx) , (8.64)

φ4d
i jklm(k, ω) ≡

∫ 0

−∞
dτ

∫
d3δx

〈
ut,i∂mut, j (X) uτt,kuτt,l(X + x)

〉
exp j(ωτ−k·δx) . (8.65)

The derivation of the autocorrelation spectra α1 and α3 is detailed in Appendix D, and I eventually obtain

α1 =
2

ω2I

∫
d3X ρ2

0k jkluosc,iu
⋆
osc,kφ

4b
i jkl(k, ω) , (8.66)

α3 =
1

4I2ω4

∫
d3X ρ2

0

(
F1

i F1⋆
j (X)φ2

i j(2k, 2ω) + 2 Re
[
F1

i F3b⋆
jkl (X)φ4a

i jkl(2k, 2ω)
]
+ F2

i jF
2⋆
kl (X)φ4b

i jkl(2k, 2ω)

+F3a
i jmF3a⋆

kln (X)φ4c
i jklmn(2k, 2ω) + 2 Re

[
F3a

i jmF2⋆
kl (X)φ4d

i jklm(2k, 2ω)
])
, (8.67)

where k is the (space-dependent) wavevector of the mode, the functions F1, F2, F3a and F3b are given by7

F1
i = 4 jk juosc,iuosc,j + jkiuosc,juosc,j +

Gi j,0

ω
kkuosc,juosc,k +

∂Gi j

∂ũ′′
k

u′′
l

ũ′′
k

u′′
l 0

ω
kmuosc,muosc,j

+
∂Gi j

∂(∂kũl)
jkkuosc,juosc,l +

∂Gi j

∂ǫ

ωtk0

ω
kmuosc,juosc,m , (8.68)

F2
i j =


∂Gki

∂ũ′′
j
u′′

l

+
∂Gki

∂ũ′′
l

u′′
j

 uosc,luosc,k +
∂Gki

∂ǫ
ωtuosc,juosc,k , (8.69)

F3a
i jk =

∂Gli

∂(∂kũ j)
1
ω

jkmuosc,luosc,m , (8.70)

F3b
i jk = −

∂Gli

∂ũ′′
j
u′′

k

1
ω

kmuosc,luosc,m −
1
2
∂Gli

∂ǫ

ωt

ω
kmuosc,luosc,mδ jk , (8.71)

7The subscript j, used as a coordinate index, must not be confused with the in-line notation j, which refers to the imaginary unit.
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and the velocity eigenfunction uosc associated to the mode is no longer normalised – since the normalisation
condition 〈Ψ|Ψ〉 = 1 is taken care of in Section D.4 by the inclusion of the inertia I of the mode, defined by (see
Equation 2.97)

I =
∫

d3x ρ0(x) |ξosc(x)|2 . (8.72)

The functions F1, F2 and F3, given by Equations 8.68 to 8.71, are broken down into several contributions,
which allows me to separate the effect of each physical process to the turbulence–oscillation coupling. In the
present case, of course, seeing as the Lagrangian stochastic model from which I started is extremely simple, there
are not many such physical processes: the turbulent pressure, represented by the advection term in the stochastic
velocity equation (Equation 8.6), is responsible for the entirety of α1, as well as the first two terms on the right-hand
side of Equation 8.68. On the other hand, all the other contributions to α3 stem from the Gi j term in Equation 8.6,
which I recall encompasses the collective effect of the buoyancy force, the fluctuating gas pressure gradient force,
and the turbulent dissipation. Let me note, additionally, that Equations 8.66 and 8.67 being written in the form of
spatial integrals spanning across the entire volume of the star, this formalism also allows to determine the regions
of the star are most responsible for the coupling between the turbulent motions and the oscillatory motions.

8.3.2 Qualitative properties of mode driving, damping and surface effects

In the following, I deduce from the above expressions some basic, qualitative properties of the excitation rate,
mean energy, damping rate and intrinsic surface effect of the modes.

Mode driving

In the simplified amplitude equation formalism, the stationary energy of the mode is given by Equation 8.47,
which I reproduce here for clarity

Estat =
Re(α1)

2η
. (8.73)

In other words, as I mentioned in Section 8.2.4, it is the result of a balance between the rate at which the mode is
being damped (namely η) and the rate at which it is being excited by the turbulence. This is in accordance with
the commonly accepted picture of energy balance for intrinsically stable modes of oscillation (see Section 2.2.1).
Furthermore, it can be seen that the excitation rate P of the mode is simply equal to the real part of α1, so that

P = 2
Iω2

∫
d3X ρ2

0k jklRe
(
uosc,iu

⋆
osc,kφ

4b
i jkl(k, ω)

)
. (8.74)

This expression is extremely similar to the formulation obtained by previous models for the excitation of solar-
like oscillations (see, for instance Samadi and Goupil 2001; Chaplin et al. 2005), which gives further support to
the consistency and validity of the method presented here. First, it is inversely proportional to the inertia of the
mode: the larger the mass flow entailed by an oscillating mode, the harder it is to get the flow to actually move.
Secondly, it appears that the efficiency of mode driving by turbulence is directly related to the spectrum of the
fourth-order moment of turbulent velocity, which must be interpreted as the source of excitation of the mode being
of quadrupolar nature. This is in accordance with the widely accepted picture of stochastic driving of solar-like
oscillations. Finally, the integrand is weighted by a quantity which takes the form of the product of two different
components of the wavevector and two different components of the velocity modal fluctuations. Qualitatively, it
can be seen that this is closely related to the square of the mode compressibility |∇ · uosc|. In other words, the
turbulence drives the mode much more efficiently in regions where the compressibility of the mode is high. This
is also not surprising, as the turbulent pressure must actually be able to transfer mechanical work to the mode in
order to give it energy, and mechanical work is only transferable if the flow undergoes successive compression and
dilatation phases.

Mode damping and modal surface effects

Perhaps more interestingly, the simplified amplitude equation also provides with an expression for the damping
rate η of the mode, as well as for the frequency shift δω entailed by turbulence. This is a very interesting aspect
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of this model, as mode excitation on the one hand, and mode damping and surface effects on the other hand, are
usually modelled through completely separate procedures, while the model presented here encompasses all of them
in the same, consistent framework. First, let me remark that in the adiabatic framework considered throughout this
chapter, there can be no entropy exchange between the sound waves and the medium, and therefore all loss of
energy must come from the interaction of the mode with turbulence. Then, Equations 8.46 and 8.50 yield

ηturb = −Re(α3) , (8.75)

δω = Im(α3) . (8.76)

As such, it appears that the damping rate and the intrinsic surface effect are simply two sides of the same effect, the
exact same way the oscillatory frequency of the mode and its growth or damping rate are simply the imaginary and
real part of the same complex eigenfrequency. This echoes the same remark I made several times in Sections 2.3
and 2.4. As a result, most of the following qualitative discussion on the damping rate η is also valid for δω. Using
the expression for α3 given by Equation 8.67, one finds

η = − 1
4I2ω4

∫
d3X ρ2

0Re


F1

i F1⋆
j (X)φ2

i j(2k, 2ω)
︸                     ︷︷                     ︸

dipolar

+ 2F1
i F3b⋆

jkl (X)φ4a
i jkl(2k, 2ω)

︸                          ︷︷                          ︸
dipolar

+ F2
i jF

2⋆
kl (X)φ4b

i jkl(2k, 2ω)
︸                       ︷︷                       ︸

quadrupolar

+ F3a
i jmF3a⋆

kln (X)φ4c
i jkl(2k, 2ω)

︸                           ︷︷                           ︸
quadrupolar

+ 2F3a
i jmF2⋆

kl (X)φ4d
i jkl(2k, 2ω)

︸                           ︷︷                           ︸
quadrupolar


(8.77)

and

δω =
1

4I2ω4

∫
d3X ρ2

0Im


F1

i F1⋆
j (X)φ2

i j(2k, 2ω)
︸                     ︷︷                     ︸

dipolar

+ F2
i jF

2⋆
kl (X)φ4b

i jkl(2k, 2ω)
︸                       ︷︷                       ︸

quadrupolar

+ F3a
i jmF3a⋆

kln (X)φ4c
i jkl(2k, 2ω)

︸                           ︷︷                           ︸
quadrupolar


,

(8.78)

from which some general results can be unveiled.
First, it can be seen that the damping rate of the mode goes as I−2: similarly to the excitation rate P, the higher

the mass flow pertaining to the oscillation, the harder it is to take energy from it. This is in stark contrast with the
work integral formulation presented in Section 2.3.2, where the damping rate goes as I−1. The reason is that in
the work integral formulation, the damping rate is written as a second-order quantity in the wave variables. By
contrast, in the formalism presented here, it is the instantaneous damping rate that is a second-order quantity. But
in order to derive the mean, effective impact of the turbulence-induced damping on the mode, I needed to derive the
autocorrelation spectrum of the instantaneous damping – i.e. its Fourier component coinciding with the angular
frequency of the mode. This is a fourth-order quantity in terms of the wave variables. The exponent of the scaling
of η – or any other mode property for that matter – with inertia is just a by-product of the order with which the
wave variables appear in its expression.

Secondly, it can also be seen that the different physical contributions to mode damping and intrinsic surface
effect are hidden in F1, F2, F3a and F3b, which are given by Equations 8.68 to 8.71 respectively. As indicated
above, the first two terms on the right-hand side of Equation 8.68 represent the effect of turbulent pressure, while
everything else originates from the combined effect of the buoyancy, the fluctuating gas pressure gradient, and
the turbulent dissipation. It is immediately apparent that, depending on the frequency regime, one of these con-
tributions will dominate the other. More precisely, if ω ≪ Gi j, then the effect of turbulent pressure, which is
inertial by nature, acts on timescales much larger than the other contributions, and its impact on mode damping
and surface effect will be negligible. On the other hand, if Gi j ≪ ω, then it is the combined effects of the turbulent
dissipation, buoyancy and fluctuating gas pressure gradient on the mechanical work exerted on the mode that will
be negligible compared to the contribution of turbulent pressure. The threshold between the two regimes can be
easily interpreted by remarking that the different components of the drift tensor Gi j are of the order of magnitude
of the (inverse) eddy turn-over time, i.e. the turbulent frequency ωt. Let me remark, however, that this picture is a
simplistic one, as it stems primarily from the fact that the Lagrangian stochastic model from which we started in
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Section 8.1 only contains one typical turbulent time scale instead of a wide continuous range – otherwise stated,
it stems from hypothesis (H7) (see Section 8.1.3). In a more realistic picture, one can assume that within the
continuous range of turbulent timescales, the eddies whose turnover time τto is much larger than the period of
the mode would damp it through turbulent pressure, while those a much shorter lifetime would damp it through
the other contributions. As a result, depending on the frequency of the modes, it is either the turbulent pressure
(for high-frequency modes) or the other mechanical contributions (for low-frequency modes) that dominates. This
analysis illustrates how the formalism presented here allows to break down the relative importance of the various
physical contributions to mode damping and surface effect, as a function of mode frequency.

Finally, it can be seen that, while the driving source was shown to be of quadrupolar nature (see Equation 8.74
for the excitation rate P), the damping source and the source of frequency shift have both dipolar and quadrupolar
contributions, which are explicitly broken down in Equations 8.77 and 8.78. However, in the limit ωt ≪ ω, the
dipolar contribution largely predominates. Note that while the correlation product defining φ4a

i jkl
is fourth-order, its

QNA decomposition yields (see Equation 1.103)
〈
uA

t,iu
B
t, ju

B
t,kuB

t,l

〉
=

〈
uA

t,iu
B
t, j

〉 〈
uB

t,kuB
t,l

〉
+

〈
uA

t,iu
B
t,k

〉 〈
uB

t, ju
B
t,l

〉
+

〈
uA

t,iu
B
t,l

〉 〈
uB

t,iu
B
t, j

〉
, (8.79)

where a quantity with the superscript A is evaluated at location X and time t, and a quantity with the superscript B

is evaluated at location X+δx and time t+τ. In each of these three terms, only the second-order moment involving
ut,i is a two-point, two-time correlation product, while the other is simply an element of the one-point, one-time
covariance matrix of the turbulent velocity ut (i.e. a component of the equilibrium Reynolds stress tensor). This is
the reason why the contribution of φ4a

i jkl
is dipolar, and not quadrupolar.

8.4 Concluding remarks

Let me shortly summarise the formalism developed in this chapter. First, a Lagrangian stochastic model of
turbulence is linearly perturbed to yield a linear, stochastic wave equation, which governs the behaviour of the
solar-like oscillations, while consistently containing the effect of the turbulent convective noise. This stochastic
wave equation contains the information on the driving and damping of the modes by the turbulent motions, as well
as the shift in frequency due to the convective noise. However, those are present in the wave equation in the form
of instantaneous, random fluctuations: by contrast, it is only the long-term effect of these random fluctuations on
the modes that are observationally available. Therefore, intuitively, I needed to average the effect of the stochastic
perturbation on the wave equation over long time scales, in order to yield the effective impact of turbulence on
the observed properties of the modes. This is done through the Simplified Amplitude Equation formalism, which
yields two Ito stochastic differential equations on the real amplitude and the phase of the modes, in the form of
Equations 8.28 and 8.29. The coefficients in these two equations are directly extracted from the linear stochastic
wave equation governing the oscillations, and are given in terms of the complex autocorrelation spectra α1 and α3

defined by Equations 8.36 and 8.39, and expressed, in the special case of the stochastic wave equation derived in
Section 8.1, by Equations 8.66 and 8.67.

The simplified amplitude equations are fully determined by 1) the equilibrium state of the star, 2) the structure
of the mode under consideration, i.e. its velocity eigenfunction, and 3) the statistical properties of the turbulent
velocity, and in particular its second- and fourth-order spectra. As I hinted in the beginning of Section 8.3, these
expressions are valid regardless of the specific form of the turbulent velocity power spectrum. Different prescrip-
tions of the turbulent spectrum – i.e. of φ2

i j and φ4a
i jkl

to φ4d
i jkl

, defined by Equations 8.61 to 8.65 respectively – lead
to different theoretical excitation rates, damping rates and modal surface effect, which can then be compared to
observations. This will be the subject of a work that is yet to be done. However, one can already see that the qual-
itative results obtained from this formalism are promising – in particular, I recover the exact same semi-analytical
formula for the excitation rate of solar-like p-modes (see Equation 8.74) as the formulation of prior studies on
solar-like mode driving Samadi and Goupil (2001); Chaplin et al. (2005). The key difference is that the present
formalism, unlike theirs, describes all aspects of turbulence-oscillation coupling at the same time, not simply mode
driving. Nevertheless, the fact that this method yields the same mode excitation rates as these other formalisms is
a solid support for the validity of this method.

Finally, and I will conclude this chapter on this hopeful note, the analytical developments presented here form
a promising lead regarding the motivations I listed in the end of Section 7.3. Indeed, since the properties of turbu-
lence can be input freely in the model, in the form of the second- and fourth-order spectra of the turbulent velocity,
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and that all other inputs are easily extracted from appropriate stellar models and 3D hydrodynamic simulations,
this formalism allows to relate directly the physics of the turbulent cascade with the observationally available prop-
erties of the mode. Therefore, it offers an efficient way of constraining such or such prescription for turbulence,
and can also, if sufficiently strong constraints are obtained, help predict in a non-empirical manner the surface
effects that so inconveniently taint our asteroseismic measurements. A caveat however: the Lagrangian stochastic
model from which I started was deliberately oversimplified, in order to serve as a proof-of-concept for this whole
approach. Obtaining realistic constraints would obviously require starting from a more realistic stochastic model
of turbulence. The subsequent analytical derivation may then prove too challenging to carry out; in that case,
numerical integration can help shed some light. This is the subject of the next chapter.
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ABSTRACT

Context. The development of space-borne missions such as CoRoT and Kepler now provides us with numerous and precise astero-
seismic measurements that allow us to put better constraints on our theoretical knowledge of the physics of stellar interiors. In order
to utilise the full potential of these measurements, however, we need a better theoretical understanding of the coupling between stellar
oscillations and turbulent convection.
Aims. The aim of this series of papers is to build a new formalism specifically tailored to study the impact of turbulence on the global
modes of oscillation in solar-like stars. In building this formalism, we circumvent some fundamental limitations inherent to the more
traditional approaches, in particular the need for separate equations for turbulence and oscillations, and the reduction of the turbulent
cascade to a unique length and timescale. In this first paper we derive a linear wave equation that directly and consistently contains
the turbulence as an input to the model, and therefore naturally contains the information on the coupling between the turbulence and
the modes through the stochasticity of the equations.
Methods. We use a Lagrangian stochastic model of turbulence based on probability density function methods to describe the evolution
of the properties of individual fluid particles through stochastic differential equations. We then transcribe these stochastic differential
equations from a Lagrangian frame to a Eulerian frame more adapted to the analysis of stellar oscillations. We combine this method
with smoothed particle hydrodynamics, where all the mean fields appearing in the Lagrangian stochastic model are estimated directly
from the set of fluid particles themselves, through the use of a weighting kernel function allowing to filter the particles present in
any given vicinity. The resulting stochastic differential equations on Eulerian variables are then linearised. As a first step the gas is
considered to follow a polytropic relation, and the turbulence is assumed anelastic.
Results. We obtain a stochastic linear wave equation governing the time evolution of the relevant wave variables, while at the same
time containing the effect of turbulence. The wave equation generalises the classical, unperturbed propagation of acoustic waves in a
stratified medium (which reduces to the exact deterministic wave equation in the absence of turbulence) to a form that, by construction,
accounts for the impact of turbulence on the mode in a consistent way. The effect of turbulence consists of a non-homogeneous forcing
term, responsible for the stochastic driving of the mode, and a stochastic perturbation to the homogeneous part of the wave equation,
responsible for both the damping of the mode and the modal surface effects.
Conclusions. The stochastic wave equation obtained here represents our baseline framework to properly infer properties of turbulence-
oscillation coupling, and can therefore be used to constrain the properties of the turbulence itself with the help of asteroseismic
observations. This will be the subject of the rest of the papers in this series.

Key words. Methods: analytical – Stars: oscillations – Stars: solar-type – Turbulence

1. Introduction

Solar-like oscillations are coupled with turbulent convec-
tion in a complex manner, especially in the highly turbulent
subsurface layers of the star (see Samadi et al. 2015; Houdek
& Dupret 2015, for a review). This coupling impacts the be-
haviour of the modes in several major ways. One of the most
prominent effects concerns mode frequencies, and explains in
a large part the systematic discrepancy between the theoretical
and observed p-mode frequencies (Dziembowski et al. 1988;
Christensen-Dalsgaard et al. 1996; Rosenthal et al. 1999). The
variety of physical processes responsible for the impact of tur-
bulent convection on p-mode frequencies is collectively referred
to as ‘surface effects’. These surface effects constitute a major
obstacle preventing us from using the full potential of modal

frequencies for an accurate probing of stellar interiors or for a
precise inference of stellar global parameters.

Many efforts have thus been devoted to the correction of
surface effects, either from theoretical modelling (e.g. Gabriel
et al. 1975; Balmforth 1992b; Houdek 1996; Rosenthal et al.
1999; Grigahcène et al. 2005) or through empirical formulae
(e.g. Kjeldsen et al. 2008; Christensen-Dalsgaard 2012; Ball &
Gizon 2014; Sonoi et al. 2015). Some aspects, however, are very
complicated to model, and existing models make use of assump-
tions that can barely be justified, if at all. For instance, turbu-
lent pressure modulations are usually described in the Gas-Γ1
(GGM) or reduced-Γ1 (RGM) approximations (Rosenthal et al.
1999), which amounts to neglecting the effects of turbulent dis-
sipation and buoyancy on the mode (Belkacem et al. 2021). An-
other problem is the use of time-dependent mixing-length for-
malisms (Unno 1967; Gough 1977) to account for modal surface
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effects (e.g. Gabriel et al. 1975; Houdek 1996; Grigahcène et al.
2005; Sonoi et al. 2017; Houdek et al. 2017, 2019). While useful
for the bulk of the convective region, the mixing-length hypothe-
sis is no longer valid in the superadiabatic region just beneath the
surface of the star, as shown by 3D hydrodynamic simulations of
stellar atmospheres (see Nordlund et al. 2009, for a review). Fi-
nally, such formalisms require that the oscillations be separated
from the convective motions, thus yielding separate equations.
This is done either by assuming a cut-off in wavelength space,
with oscillations having much shorter wavelengths than turbu-
lent convection (Grigahcène et al. 2005), or by using 3D hydro-
dynamic simulations and separating the oscillations from con-
vection though horizontal averaging (Nordlund & Stein 2001).
The necessity to separate the equations for oscillations and con-
vection is fundamentally problematic as there is no rigorous way
to disentangle the two components, mainly because, in solar-type
stars, they have the same characteristic lengths and timescales
(Samadi et al. 2015). This is even truer if one wishes to model
their mutual coupling.

Turbulent convection also has a crucial impact on the ener-
getic aspects of solar-like oscillations. Solar-like p-modes are
stochastically excited and damped by turbulent convection at
the top of the convective zone. As such, understanding the en-
ergetic processes pertaining to the oscillations leads to better
constraints on the highly turbulent layers located beneath the
surface of these stars. Many theoretical modelling efforts were
deployed on the subject of mode driving (e.g. Goldreich & Kee-
ley 1977a,b; Balmforth 1992a,c; Samadi & Goupil 2001; Chap-
lin et al. 2005; Samadi et al. 2005, 2006; Belkacem et al. 2006,
2008, 2010), as well as mode damping (e.g. Goldreich & Kumar
1991; Balmforth 1992a; Grigahcène et al. 2005; Dupret et al.
2006; Belkacem et al. 2012). The fact that these energetic pro-
cesses take place in the superadiabatic region, however, makes
any predictive model extremely complicated to design as this
requires a time-dependent non-adiabatic turbulent convection
model able to include the oscillations. Subsequently, modelling
attempts have focused on the use of mixing-length formalisms
to account for mode damping. This approach, however, presents
the considerable disadvantage of reducing the turbulent cascade
to a single length scale, and is therefore unable to correctly ac-
count for the contribution of turbulent dissipation or turbulent
pressure to mode damping. Alternative approaches have been
followed in an attempt to go beyond the mixing-length hypoth-
esis, either through a Reynolds stress model (Xiong et al. 2000)
or through the use of 3D hydrodynamic simulations of stellar at-
mospheres to directly measure mode linewidths (Belkacem et al.
2019; Zhou et al. 2020).

These traditional approaches therefore show some funda-
mental limitations, which prevent them from being able to fully
describe the interaction between turbulent convection and oscil-
lations, whether it be to explain the surface effects on mode fre-
quency or the energetic aspects of global modes of oscillation
regarding their driving and damping physical processes. Among
these limitations, we can include the following.

These approaches require that the turbulent convection and
the oscillations be separated into two distinct sets of equations
from the start. This is usually justified either by a separation of
spatial scales or timescales, or else by performing some aver-
aging process designed to separate an average component from
a fluctuating component. The necessity of artificially separating
these two intertwined phenomena from the outset is problematic
when it comes to modelling their coupling.

Most of these approaches are based on a time-dependent
mixing-length formalism, which oversimplifies the behaviour of

convection in the superadiabatic region. In addition to poorly de-
scribing the structure of the convective motions close to the sur-
face, it reduces the turbulent cascade to a single characteristic
length scale, thus only offering a crude understanding of turbu-
lent dissipation, a phenomenon deemed crucial to turbulence–
oscillation coupling.

In these approaches, designing a closure relation for the
model equations is a complicated process. In particular, it is
very difficult to properly relate the chosen closure to the underly-
ing physical assumptions. This is illustrated, for instance, by the
wealth of free parameters that need to be adjusted in approaches
based on mixing length theory (MLT) or in Reynolds stress ap-
proaches where higher-order moments need to be closed at the
mean flow level. Approaches based on 3D simulations are not
spared, as is illustrated by the need to rely on assumptions like
the GGM or RGM, which are not clearly physically grounded.

The multiple free parameters needed in these approaches,
and the fact that they are not easily constrained physically, also
presents the distinct disadvantage of robbing these models from
their predictive power. This becomes problematic when, for ex-
ample, mode damping rates are used in scaling relations for seis-
mic diagnosis purposes (Houdek et al. 1999; Chaplin et al. 2009;
Baudin et al. 2011; Belkacem et al. 2012). The exponent in these
scaling relations is difficult to determine, and varies substantially
across the Hertzsprung–Russell diagram. Being able to predict
the damping rates of stars with different global parameters would
go a long way towards a more effective use of this quantity in
such scaling relations.

Model parameters for the surface effects on the one hand, and
mode damping rates on the other are usually constrained by com-
pletely separate adjustment procedures. This is also problematic,
as these two quantities are closely related, and are actually just
two sides of the same phenomenon: the real and imaginary part
of the turbulence-induced shift in the complex eigenfrequency of
the modes.

These limitations form substantial hurdles towards a correct
turbulence–oscillation coupling model, and circumventing them
requires going beyond the methods presented above. Therefore,
this series of papers follows a completely different approach.
More precisely, the fundamental motivation behind this work is
to provide a method that 1) does not initially rely on a separation
between convection equations and oscillation equations, but in-
stead encompasses both components at the same time, and there-
fore naturally contains their coupling; 2) avoids the reduction of
length scales in the problem to a unique scale, but instead ac-
counts for the full description of the turbulent cascade; 3) simul-
taneously describes all effects of turbulent convection on mode
properties, including the surface effects and the energetic aspects
pertaining to mode driving and damping, in a single consistent
framework; and 4) includes the properties of turbulence in such
a way that they can be easily related to the observed properties
of the modes.

In this paper we therefore build a formalism for the mod-
elling of turbulence–oscillation coupling, which is based on
probability density function (PDF) models of turbulence (e.g.
O’Brien 1980; Pope 1985; Pope & Chen 1990; Pope 1991, 1994;
Van Slooten & Jayesh 1998). The quantity we model is the PDF
associated with the random flow variables, whose evolution fol-
lows a transport equation that takes the form of a Fokker-Planck
equation (Gardiner 1994). Because the Fokker-Planck equation
is impractical to handle both analytically and numerically, the
PDF is usually represented by a set of fluid particles constitut-
ing the flow. The properties of the particles evolve according to
stochastic differential equations, and are then used to reconstruct
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any given statistics of the flow. This is at the heart of Lagrangian
stochastic models of turbulence, which have been used exten-
sively by the fluid dynamics community, first for incompressible
flows (e.g. Pope 1981; Anand et al. 1989; Haworth & El Tahry
1991; Roekaerts 1991), and then for compressible flows as well
(e.g. Hsu et al. 1994; Delarue & Pope 1997; Welton & Pope
1997; Welton 1998; Das & Durbin 2005; Bakosi & Ristorcelli
2011). In this series of papers we present a general way of us-
ing such a Lagrangian stochastic model of turbulence to derive
a linear stochastic wave equation applicable to the stellar con-
text. The wave equation is designed to govern the physics of
the modes, while simultaneously and consistently encompass-
ing the impact of turbulent convection thereon. This first paper
describes how the linear stochastic wave equation is obtained.
A subsequent paper will present how this wave equation can be
used to simultaneously model the turbulence-induced surface ef-
fects, as well as the stochastic driving and damping of the modes
by turbulent convection.

This paper is structured as follows. In Section 2 we introduce
the stochastic model of turbulence that we will use throughout
this study in terms of Lagrangian variables. Then we carry out
a variable transformation to obtain stochastic equations on Eu-
lerian quantities, which are more suitable for stellar oscillation
analysis. In Section 3 we linearise the Eulerian stochastic equa-
tions to obtain a linear stochastic wave equation, and then discuss
how it relates to other more familiar forms of the wave equa-
tion found in the literature and obtained through more traditional
methods. Finally, in Section 4 we return to the various simplifica-
tions and approximations adopted in the present derivation, and
what they entail as regards the resulting properties of turbulence-
oscillation coupling. Conclusions are drawn in Section 5.

2. Stochastic model of turbulence

In MLT formalisms the modelled quantities pertain to the
mean flow (e.g. mean density, velocity, entropy), and the second-
order moments appearing in the mean equations must be ex-
pressed in terms of the mean flow in order to close the system. In
Reynolds stress formalisms the closure at second-order level is
replaced by equations on second-order moments, where third-
order moments must be similarly closed. These moments are
all defined as ensemble averages of stochastic processes such
as flow velocity and entropy. The core idea behind PDF models
is to replace these numerous equations on various statistical mo-
ments of turbulent quantities by a single equation on the PDF of
these quantities, in the form of a Fokker-Planck equation. These
models present several advantages, which are of special inter-
est given the issues raised in the previous section. By nature, the
modelled PDF contains all the required statistical information on
the flow, which includes both the turbulent convection and the
oscillating modes. As such, this type of model is perfectly suited
for the study of turbulence–oscillation coupling. In addition, all
the usual quantities can be obtained from the PDF.

However, the direct modelling of the PDF, using its time evo-
lution equation, can quickly become very cumbersome. The rea-
son is that the PDF is a function not only of space and time,
but also of each of the turbulent quantities used to represent the
flow (starting with the three components of the velocity and the
entropy). This makes the PDF equation computationally heavy
to integrate, and quite impractical to handle analytically. This is
why PDF models are often implemented in a Lagrangian par-
ticle framework, where the flow is no longer represented by a
set of Eulerian, grid-based fluid quantities, but rather by a set of
individual fluid particles whose properties (including their posi-

Symbol Definition

f0 Time-averaged equilibrium value of the quantity f

f Instantaneous Reynolds average of f

f̃ Instantaneous Favre average of f
〈 f 〉L Lagrangian-mean of f
f1 Fluctuation of f around f0
f ′ Fluctuation of f around f

f ′′ Fluctuation of f around f̃
ai, bi j Drift and diffusion coefficients in velocity stochastic

differential equation (SDE)
C0 Kolmogorov constant
c0 Equilibrium sound speed
ǫ Turbulent dissipation rate
ηi Time derivative of Wiener process
gi Gravitational acceleration
Gi j Drift tensor in velocity SDE
γ Polytropic exponent
Γ1 First adiabatic exponent
k Turbulent kinetic energy
K Kernel weighting function in SPH formalism
p Gas pressure
ρ Gas density
ui Flow velocity in Eulerian frame
u⋆i Fluid particle velocity in Lagrangian frame
ui,t Turbulent part of ui

ui,osc Oscillatory part of ui

Wi Wiener process
xi Eulerian average position of fluid particle

(used as Eulerian space variable)
x⋆i Fluid particle position in Lagrangian frame
Xi Instantaneous fluid particle position, as a

function of Eulerian average position
ξi Fluctuation of Xi around xi

ξi,t Turbulent part of ξi

ξi,osc Oscillatory part of ξi

ωt Turbulent frequency

Table 1: Glossary of the notations used in this paper.

tion) are tracked over time. Using Monte Carlo methods, the flow
PDF can be reconstructed directly from the set of particles, so
that the set contains the exact same statistical information as the
PDF itself. In order to represent the turbulent nature of the flow,
and to model the PDF accurately, particle properties must evolve
according to stochastic differential equations rather than ordi-
nary ones. Therefore, PDF models of turbulence go hand in hand
with the implementation of Lagrangian stochastic methods, pri-
marily because it makes their numerical integration much easier
and more tractable. In this section we introduce the Lagrangian
stochastic model, and we present how it can be rearranged to
yield stochastic differential equations for Eulerian quantities in-
stead.

We note that this paper aims to show that the method we
present is relevant to the study of turbulence–oscillation cou-
pling, and therefore serves as a proof of concept for this ap-
proach. As such, we do not claim to use the most realistic tur-
bulence model possible, but rather we wish to limit the level of
complexity so that the basics of this method may be understood
in the most efficient way. We leave the use of a more realistic
turbulence model for a later paper.
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2.1. Lagrangian description: The generalised Langevin
model

We consider the simplified case of an adiabatic1 flow, in the
sense that we do not include an energy equation in the system,
and instead adopt a polytropic relation between the pressure and
the density of the gas. In terms of Eulerian transport equations
that would mean only considering the density, the mean velocity,
and the Reynolds stress tensor as relevant fluid quantities, with
the mean pressure being given, for instance, by the ideal gas law.
In the framework of a Lagrangian stochastic model, however,
that means that the only fluid particle properties whose evolution
we need to put into equations are their position and velocity.

The equation for the particle position is derived by stating
that it must evolve according to its own velocity. It reads

dx⋆i = u⋆i dt , (1)

where x⋆ and u⋆ are the position and velocity of the fluid par-
ticle, which only depend on the time variable (as well as the
initial state). In general, in the following the notation ⋆ will de-
note a stochastic variable. In order to account for the turbulent
nature of the flow, the equation on velocity must take the form of
a stochastic differential equation (SDE), instead of an ordinary
one. In its most general form, an SDE takes the form (Gardiner
1994, Chap. 3)

du⋆i = ai(x⋆,u⋆, t) dt + bi j(x⋆,u⋆, t) dW j , (2)

where we use the Einstein convention on repeated indices, ai and
bi j are functions of the particle properties (and time), and W(t) is
an isotropic Wiener process. The last is a stochastic process (i.e.
a random variable whose statistical properties depend on time)
whose PDF at any given time t is Gaussian, and which verifies

W(t) = 0 , (3)

Wi(t′)W j(t) = (t′ − t) δi j , (4)

where δi j is the Kronecker symbol and the notation . refers to
an ensemble average. We note that this is not a simplifying as-
sumption regarding the stochastic part of the SDE, but rather a
very general property, which is necessary for the resulting parti-
cle trajectory in phase-space to be continuous in time (Gardiner
1994). In terms of dimension, the drift vector ai is an acceler-
ation, while W is the square root of a time, and the diffusion
tensor bi j is a velocity divided by the square root of a time.

On the right-hand side of Eq. (2) the first term corresponds
to the deterministic part of the force exerted on the fluid particle,
while the randomness of the equation is only brought about by
the second term. Physically, the stochastic part of Eq. (2) stems
from the fluctuating components of both the pressure and viscous
stress forces, which in turn are brought about by the underlying
highly fluctuating turbulent velocity field. An illuminating anal-
ogy to consider is Brownian motion, which can also be described
by means of Eq. (2), and where the stochastic part describes the
random collision undergone by the colloidal particle from the
water molecules. In the vocabulary of stochastic processes the
function ai(x⋆,u⋆, t) is the i-th component of the drift vector,

1 In the vocabulary of asteroseismology, the term ‘adiabatic’ can some-
times be used to express the absence of energy transfer between the os-
cillations and the background. We insist that this is not the case here.
This term is meant to apply to the thermodynamic transformations un-
dergone by the flow, not to the oscillations. In particular, the background
can still inject energy into the modes or take energy from them, allowing
the modes to be driven and damped.

while bi j(x⋆,u⋆, t) is the i, j-component of the diffusion tensor.
In order to close the system, an explicit expression is needed for
these two coefficients.

The specification of the drift and diffusion terms in Eq. (2)
is the subject of an abundant amount of literature on turbulence
modelling (see Heinz & Buckingham 2004, for a review). It has
long been recognised that, in order to be consistent with the Kol-
mogorov hypotheses, both original (Kolmogorov 1941) and re-
fined (Kolmogorov 1962), the diffusion coefficient has to take
the form (Obukhov 1959)

bi j(x⋆, t) =
√

C0ǫ(x⋆, t) δi j , (5)

where C0 is a dimensionless constant and ǫ is the local dissipa-
tion rate of turbulent kinetic energy into heat. This is especially
verified in the high Reynolds number limit (which is relevant
in the stellar context), where C0 then actually corresponds to the
Kolmogorov constant. This constant is not universal per se; how-
ever, it tends asymptotically to a universal value for very high
Reynolds numbers, in which case its value is fairly well con-
strained. An accepted experimental value is C0 = 2.1 (Haworth
& Pope 1986).

For the drift term we adopt the general expression given by
the generalised Langevin model (Pope 1983)

ai(x⋆,u⋆, t) = −
1
ρ

∂p

∂xi

+ gi +Gi j

(
u⋆j − ũ j

)
, (6)

where ρ, p, and g are the Reynolds average of the fluid density,
gas pressure, and gravitational acceleration, respectively; Gi j is
a second-order tensor that has the dimension of an inverse time,
to which we refer as the drift tensor; and ũ is the Favre average
of the fluid velocity, with the mass-average (or Favre average) of
any quantity φ being defined as

φ̃ ≡ ρφ

ρ
. (7)

All these Reynolds or Favre averages are local and instantaneous
quantities, and therefore depend on both time and space. In Eq.
(6) they are evaluated at time t and at the position x⋆ of the par-
ticle.

The various terms in Eq. (6) can be interpreted in the follow-
ing way. The first two terms are the mean pressure gradient and
the gravitational force exerted on the particle, and correspond to
the mean force in the momentum equation, the only ones that
remain in the absence of turbulence; we note that rotation and
magnetic fields are not accounted for in this model. On the other
hand, the last term ensures that, were the turbulent sources to dis-
appear, the particle velocity would decay towards the local mean
velocity, thus ensuring that the Reynolds stresses are dissipated.
More precisely, the drift tensor can be thought of as the rate at
which the various Reynolds stresses decay towards zero. In this
paper we need not specify the form of the drift tensor, only to
say that in the standard approach it is written as a function of the
Reynolds stresses, the mean velocity gradients, and the turbulent
dissipation (Haworth & Pope 1986)

Gi j = f
(
ũ′′

i
u′′

j
, ∂iũ j, ǫ

)
, (8)

where u′′ ≡ u−ũ denotes the fluctuation of the turbulent velocity
around its local Favre average. In particular, Gi j only depends on
the mean fields and not on the particle properties themselves.
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Putting together Eqs. (1), (2), (5), and (6), we obtain

dx⋆i = u⋆i dt , (9)

du⋆i =

[
−1
ρ

∂p

∂xi

+ gi +Gi j

(
u⋆j − ũ j

)]
dt +

√
C0ǫ dWi . (10)

The mean fields ρ, p, ũ, Gi j, and ǫ still need to be closed; we
return to this matter in Section 2.3.

The stochastic equations (9) and (10) contain more infor-
mation than the corresponding average equations on the mean
velocity and Reynolds stress tensor, the same way the PDF of
a distribution carries more statistical information than its first
few moments. We do not make use of these corresponding mean
equations in the following; nevertheless, we provide them ex-
plicitly in Appendix A, to which the reader can refer for a better
grasp on the origin of the SDE used in this study.

2.2. From Lagrangian to Eulerian variables

2.2.1. The Lagrangian mean trajectory formalism

By construction, the turbulence model given by Eqs. (9) and
(10) is a Lagrangian model as it pertains to the properties of
fluid particles followed along their trajectories. By contrast, we
would like to obtain equations on stochastic variables pertain-
ing to the stochastic properties of the flow at a fixed point. This
would allow us to ultimately obtain a wave equation where the
wave variables can be easily related to the known properties of
the modes, something for which a purely Lagrangian2 descrip-
tion is extremely impractical.

A very general approach to this transcription from La-
grangian to Eulerian variables is the Lagrangian mean trajec-
tories formalism (Soward 1972; Andrews & McIntyre 1978). In
the following, we give the general ideas and the main steps of the
derivation; more detailed calculations are provided in Appendix
B, to which we will refer each time an important step is reached.
Let us consider a fluid particle whose time-independent average
position is denoted by x. Its instantaneous position at time t is
written as an explicit function of x and t

X(x, t) = x + ξ(x, t) , (11)

where ξ is the particle displacement around its mean position3,
the mean position being interpreted as an Eulerian variable.

For any given Eulerian quantity φ, we define its Lagrangian
counterpart as

φL(x, t) ≡ φ(X(x, t), t) . (12)

In particular, we denote by uL the velocity field evaluated at X, in
other words the Lagrangian velocity, and by ui,L the i-th compo-
nent of this velocity. Similarly, for any Eulerian averaging pro-
cess 〈.〉, we define the corresponding Lagrangian mean 〈.〉L as

〈φ〉L ≡ 〈φ(X(x, t), t)〉 . (13)

2 This statement may seem odd, as Lagrangian variables are actually
often used in the analysis of stellar oscillations. However, in this study
the term Lagrangian refers to a frame of reference attached to the total
velocity of the flow (including both the turbulent velocity and the os-
cillation velocity), while the usual sense is rather meant to describe a
frame of reference attached to the oscillations alone, and actually only
ever refers to a pseudo-Lagrangian frame.
3 The variable ξ contains the particle displacement due to the oscilla-
tions and to the turbulence. As such, it must not be confused with the
fluid displacement due to the oscillations only, and to which the notation
ξ usually refers.

For the time being, we do not yet specify the averaging process
〈.〉 as this formalism is very general and can be used regardless
of how the means are defined. It is important to note here that
the mean position x of the particle is defined in terms of this yet-
to-be-determined averaging process. In the following we simply
refer to 〈.〉 as the ‘Eulerian mean’, but let us keep in mind that it
does not necessarily correspond to an ensemble average.

With the above notations and definitions, the following iden-
tity can be derived (Andrews & McIntyre 1978)
(

Dφ

Dt

)

L
= 〈D〉L (φL) , (14)

where D/Dt ≡ ∂t + u ·∇ denotes the particle time derivative,
and the operator 〈D〉L is defined by

〈D〉L ≡ ∂t + 〈u〉L ·∇ , (15)

and 〈u〉L is the Lagrangian mean of the flow velocity. For a de-
tailed derivation of this identity, we refer the reader to Appendix
B.1. Because the Lagrangian and Eulerian frames are in motion
with respect to one another, the index L does not commute with
either the space or time derivative. For instance, ∂(φL)/∂t cor-
responds to the time derivative of the quantity φ as seen from
the point of view of a fluid parcel (i.e. in the Lagrangian frame),
while (∂φ/∂t)L is the time derivative of the quantity φ as seen
from an Eulerian point of view, and then evaluated at a given
Lagrangian coordinate, after the fact. Essentially, Eq. (14) de-
scribes how the material time derivative commutes with the pas-
sage from Lagrangian to Eulerian variables, and will therefore
be useful for transcribing our Lagrangian model into a Eulerian
one.

Applying Eq. (14) on position and velocity respectively
yields

∂ξi

∂t
= ui,L − 〈ui〉L − 〈u j〉L∂ jξi , (16)

∂
(
ui,L

)

∂t
=

(
∂ui

∂t

)

L

+
[
u j,Lδ jk − 〈u j〉Lδ jk − 〈u j〉L∂ jξk

] ( ∂ui

∂xk

)

L

.

(17)

The derivation of these two equations is given in detail in Ap-
pendix B.2. We note that, for the moment, the displacement ξ
and velocity u are flow variables, which is why they are not de-
noted with a ⋆. We now relate these flow quantities to the posi-
tion x⋆ and velocity u⋆ of the fluid particles. Since ξ and uL cor-
respond to the displacement and velocity of the particle whose
mean position is x, then for any fixed x we have

x⋆(t) = x + ξ(x, t) , (18)

u⋆(t) = uL(x, t) , (19)

so that

dx⋆

dt
=
∂ξ

∂t
, (20)

du⋆

dt
=
∂ (uL)
∂t

. (21)

Putting together Eqs. (10), (17), and (21) we obtain

(
∂ui

∂t

)

L

+

[
u j,L − 〈u j〉L − 〈uk〉L

(
∂ξ j

∂xk

)

L

] (
∂ui

∂x j

)

L

= − 1
ρL

(
∂p

∂xi

)

L

+ gi,L +Gi j,L

(
u j,L − ũ j,L

)
+

√
C0ǫLηi,L . (22)
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in the diffusion tensor, and the Reynolds stress tensor ũ′′
i

u′′
j

and
shear tensor ∂iũ j on which the drift tensor Gi j depends. These
equations must therefore be supplemented with a model for the
mean fields.

One possibility is to make use of a large-eddy simulation
(LES) (or direct numerical simulation) to simulate the large-
scale flow using the exact equations of hydrodynamics, and then
use the mean fields yielded by this simulation as external in-
puts into the stochastic model. However, the mean fields appear-
ing in Eq. (26) are instantaneous averages (for example, ρ is the
Reynolds-averaged density at a given time t), not time averages.
As a result, the ergodic principle cannot be used to extract the
means from a LES. The only way to do this would be to con-
sider that horizontal averages in a 3D LES provide an accurate
estimate of instantaneous ensemble averages, and would only
work in the scope of a 1D model. Furthermore, this procedure
would defeat the purpose of what we are trying to achieve; since
the mean fields contain the information on the oscillations, with-
out containing the turbulence, treating them as external inputs
would effectively amount to modelling the turbulence and the
oscillations in a separate manner, which is what we are trying to
avoid.

An alternative method makes use of the particle representa-
tion we adopt in Section 2.1. The set of fluid particles used to
represent the flow contains all the required statistical informa-
tion, so that the mean fields can actually be estimated directly
from the set of fluid particles themselves (Welton & Pope 1997).
This is the core idea behind particle methods, and particularly
smoothed particle hydrodynamics (SPH). The reader can refer
to Liu & Liu (2010) or Monaghan (1992) for a comprehensive
review on the subject, or to Springel (2010) for the use of SPH in
the astrophysical context, but we give an outline of this method
in the following.

Ideally, we would like to estimate all local means at a given
Eulerian position x by averaging the corresponding particle-level
quantity over all fluid particles conditioned on their being lo-
cated at x. However, implementing this last condition exactly
does not yield the required result: for any given position x, any
individual fluid particle has exactly zero probability of finding
itself at this exact location. Therefore, it is necessary to relax the
condition on particle position, and instead of computing means
over particles exactly located at x, we compute them over parti-
cles within a given compact-support vicinity of x.

Thus, a kernel function K(r) is introduced, which serves as a
weighting function to implement the particle-position condition
in the estimation of the means. The exact form of K is not impor-
tant here, but we mention some of its properties, namely that it
is a compact-support function, it is normalised to unity, and it is
isotropic. The first two properties are mandatory, as the first one
ensures that distant particles cannot impact local means, and the
second that the estimation of the means is unbiased. The third
property makes the subsequent calculations much easier to carry
out. A good example is the kernel function used by Welton &
Pope (1997)

K(r) = c

(
1 + 3

|r|
h

) (
1 − |r|

h

)3

if |r| < h ,

= 0 if |r| > h ,

(27)

where r is the position of the particle with respect to the centre
of the kernel (where the mean is estimated), c = 105/(16πh3) is

defined by the normalisation condition5, and h is the size of the
kernel compact support. This expression ensures that the kernel
function and its first two derivatives are continuous at the surface
of its support.

The SPH formalism is best formulated if we temporarily re-
turn to the representation of the flow as a large set of N particles,
whose position and velocity we denote by x⋆(i) and u⋆(i), respec-
tively, where i is the index used to identify each particle. For any
quantity Q pertaining to the flow representation, if there is an
equivalent quantity Q⋆ in the particle representation, we can es-
timate the mean value of Q at any Eulerian position x and time t
through the following kernel estimator

Q(x, t) =
∑N

i=1

∆m(i)

ρ(i)
Q⋆(i)(t)K

(
x⋆(i)(t) − x

)
, (28)

where ∆m(i) is the mass carried by the particle i, and ρ(i) is
the mass density characterising particle i. As such, the quantity
∆m(i)/ρ(i) appearing under the sum corresponds to the lumped
volume of fluid that the particle represents.

Setting Q⋆ = ρ, Q⋆ = ρu⋆, and Q⋆ = ρ(u⋆i −ũi)(u⋆j −ũ j) alter-
natively in Eq. (28), we find respectively the Reynolds-averaged
density, the mass-averaged velocity, and the Reynolds stress ten-
sor

ρ(x, t) =
∑N

i=1
∆m(i)K(x⋆(i)(t) − x) , (29)

ũ(x, t) =
1

ρ(x, t)

∑N

i=1
∆m(i)u⋆(i)(t)K(x⋆(i)(t) − x) , (30)

ũ′′
i

u′′
j
(x, t) =

1
ρ(x, t)

∑N

i=1
∆m(i)

(
u
⋆(i)
i

(t) − ũi(x, t)
)

×
(
u
⋆(i)
j

(t) − ũ j(x, t)
)

K(x⋆(i)(t) − x) . (31)

In particular, we note that in the SPH formalism, the local mean
density is computed by counting the particles present in the
vicinity. This means that the continuity condition is automati-
cally met in the particle representation, thus lowering the order
of the set of equations needed to describe the flow.

We then rewrite Eqs. (29), (30), and (31) in the represen-
tation chosen in Section 2.2, specifically in terms of ξ(x) and
u(x) rather than x⋆(i) and u⋆(i). To do so, we perform the change
of variables given by Eqs. (18) and (19). Furthermore, the sum
over infinitesimally small masses can be replaced by a contin-
uous integral over dm ≡ ρ0(y) d3y, where ρ0 is the equilibrium
fluid density (which can be thought of as an average of the local
fluid density over very long timescales so as to only contain the
background value). Finally, in this new representation, the SPH

5 The reason the value of c given here is different from the value c =
4/(5h) given in Welton & Pope (1997) is that they considered the 1D
case, whereas we consider the 3D case.
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formalism yields

ρ(x, t) =
∫

d3y ρ0(y)K(y + ξ(y, t) − x) , (32)

ũ(x, t) =
1

ρ(x, t)

∫
d3y ρ0(y)u(y + ξ(y, t), t)K(y + ξ(y, t) − x) ,

(33)

ũ′′
i

u′′
j
(x, t) =

1
ρ(x, t)

∫
d3y ρ0(y)

(
ui(y + ξ(y, t), t) − ũi(y, t)

)

×
(
u j(y + ξ(y, t), t) − ũ j(y, t)

)
K(y + ξ(y, t) − x) . (34)

While these integrals span across the entire volume of the star,
we note that they actually only involve the compact support
vicinity of x defined by the kernel function K.

Two more points need to be addressed here. The first con-
cerns the mean pressure p. For the sake of simplicity, we con-
sider a polytropic relation between the gas pressure and density
in the form

ln
(

p(x, t)
p0(x)

)
= γ(x) ln

(
ρ(x, t)
ρ0(x)

)
, (35)

where p0 is the equilibrium gas pressure (defined in the same
way as ρ0), and we allow the polytropic exponent γ to depend
on space. We note that we do not consider the possibility that the
oscillations may entail fluctuations in the polytropic index itself.
We also note that we can recover the isentropic case at any point
by setting γ = Γ1, where Γ1 is the equilibrium first adiabatic
exponent.

The second point concerns the turbulent dissipation rate ǫ, or
equivalently the turbulent frequency ωt defined through

ωt ≡
ǫ

k
=

2ǫ

ũ′′
i

u′′
i

, (36)

where k is the turbulent kinetic energy. Physically, ωt can be in-
terpreted as the inverse of the characteristic lifetime associated
with the energy-bearing eddies. The turbulent kinetic energy k is
given in closed form by the velocity part of the model (here it is
given by half the trace of Eq. 34), and we still need to model ωt.
Usually, this is done either by adding a model equation for the
mass-averaged dissipation rate ω̃t, which is very similar to the
approach followed in two-equation models of turbulence, such as
the k− ǫ model (Jones & Launder 1972), or else by adding ω⋆t to
the particle properties in the Lagrangian stochastic model, such
as in the refined Langevin model (Pope & Chen 1990). However,
in the present work, and in the scope of the generalised Langevin
model, we regard ωt as a time-independent equilibrium quantity,
which can still, however, depend on x. Physically, this amounts
to assuming that all eddies have the same typical lifetime, regard-
less of their size, but that it can depend on the depth at which they
are located. In the long run, it will be necessary to go beyond this
drastic assumption.

To recap Section 2, the model equations are Eqs. (25) and
(26), which are stochastic differential equations governing the
evolution of the fluid displacement ξ(x, t) and the Eulerian ve-
locity u(x, t) for any given Eulerian position x. The mean den-
sity ρ, the mass-averaged velocity ũ, and the Reynolds stress
tensor ũ′′

i
u′′

j
are given by Eqs. (32), (33), and (34), respectively,

as explicit functions of ξ(x, t) and u(x, t) only. The mean pres-
sure is given by Eq. (35) as a function of mean density, and the

turbulent dissipation rate ǫ is given by Eq. (36). Therefore, all
the quantities appearing in the model equations are written ex-
plicitly as functions of the modelled variables ξ(x, t) and u(x, t)
themselves: the model is in closed form. The only inputs of the
model are 1) the equilibrium density ρ0(x), gas pressure p0(x),
and polytropic exponent γ(x), which can be extracted from an
equilibrium model of the star; 2) the functional form of the drift
tensor Gi j (see Eq. 8), which can be constrained using direct nu-
merical simulations or experimental measurements (Pope 1994);
and 3) the equilibrium turbulent frequency ωt(x), which can be
constrained using a 3D hydrodynamic simulation of the atmo-
sphere of the star, or on the contrary serve as a control parameter
for turbulence, which can be varied for a parametric study.

3. The stochastic wave equation

We now set out to linearise the closed set of equations de-
rived in Section 2 to obtain a linear stochastic wave equation that
was designed to govern the physics of the mode while simulta-
neously encompassing the effect of turbulence on the mode. We
then discuss the properties of this wave equation, and how it re-
lates to other forms of the wave equation obtained in previous
studies.

3.1. Linearisation of the stochastic model

The system to linearise is comprised of Eqs. (25), (26), (32),
(33), (34), (35), and (36). The only variables in these equa-
tions are the fluid displacement ξ(x, t) and the Eulerian velocity
u(x, t). We define

ξosc(x, t) ≡ ξ(x, t) − ξt(x, t) , (37)
uosc(x, t) ≡ u(x, t) − ut(x, t) , (38)

where ξt and ut are the fluid displacement and velocity that
would be obtained if there were no oscillations, and that rep-
resent the turbulent component of the fluid displacement and ve-
locity, and ξosc and uosc are the oscillatory displacement and ve-
locity. We note that while the variables are split into a turbulent
and an oscillatory component, the system of equations itself is
not split into equations for turbulence and equations for oscil-
lations; instead, there is still only one system of equations con-
taining both components. This is in contrast, for instance, with
MLT or Reynolds-Averaged Navier-Stokes (RANS) approaches
where the equations are averaged from the start, thus implicitly
separating the two components whose coupling we wish to study.

Obtaining a linear wave equation requires the adoption of
a certain number of hypotheses regarding the fluid variables,
which we itemise here.

(H1) We consider |uosc| ≪ |ut |. This ordering is justified by
the fact that, at the top of the convective envelope of solar-like
oscillators, the typical turbulent velocities have much higher am-
plitudes than the oscillatory velocities; the former are of the or-
der of a few km.s−1, while the latter are of the order of a few tens
of cm.s−1. This allows us to treat uosc as a first-order perturbation
compared to ut, and any second- or higher-order occurrence of
uosc will be discarded.

(H2) We consider |ξosc| ≪ h,Hp , where we recall that
h is the size of the averaging kernel function K, and Hp ≡
−(d ln p0/ dr)−1 is the pressure scale height. In other words, the
modal fluid displacement is much smaller than the stratification
length scale, and the width of the kernel function must be suffi-
ciently large. The first hypothesis is justified by the fact that, in
the Sun for instance, the modal displacement is of the order of a
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few tens of meters, while Hp is of the order of a few hundreds
of kilometers. The second hypothesis, on the other hand, consti-
tutes a constraint on h. This allows us to treat ξosc as a first-order
perturbation compared to all length scales relevant to the prob-
lem, and any second- or higher-order occurrence of ξosc will be
discarded.

(H3) We adopt the anelastic approximation for turbulence,
in the sense that we consider ρt ≪ ρ0, where ρt is the turbu-
lent fluctuation of density, and ρ0 the equilibrium density. This
is the most severe approximation we make in this section. Never-
theless, the anelastic approximation is widely used in analytical
models of turbulent convection in these regions, on the grounds
that the flow is subsonic (with turbulent Mach numbers peaking
at around 0.3 in the superadiabatic region), as shown by 3D hy-
drodynamic simulations of the atmosphere of these stars (Nord-
lund et al. 2009). Using the continuity equation, this amounts to
neglecting the quantity ∇ · (ρ0ξt). As will become apparent in
the following, this allows us to discard all ξt-dependent contri-
butions in the linearisation of the ensemble averages in the SPH
formalism.

(H4) We consider that the turbulent velocity field ut is the
same as it would be without the presence of an oscillating ve-
locity uosc; in other words, we neglect the back-reaction of the
oscillations on the turbulent motions of the gas. We justify this
approximation in Appendix C on the basis of a discussion that
can be found in Bühler (2009, see their Section 5.1.1). We note
that the back-reaction being neglected here concerns both the
equilibrium part and the stochastic part (i.e. both the equilib-
rium structure of the star and the turbulent velocity field). This
assumption allows us to consider ut as an input to the model,
whose statistical properties (average, covariance, autocorrelation
function) are considered completely known.

(H5) We consider that the gravitational potential is not per-
turbed by the turbulent motions of the gas or by its oscillatory
motions. These are actually two separate approximations. The
first is justified by the fact that the Reynolds-averaged mass flow
through any given horizontal layer due to turbulence is zero,
meaning the total mass present beneath this layer is always the
same. The second corresponds to the Cowling approximation,
and is justified for modes that feature a large number of radial
nodes. These two approximations put together allow us to re-
place the gravitational acceleration g by its equilibrium value g0,
which only depends on the hydrostatic equilibrium of the star.

We insist on the fact that these approximations, with the ex-
ception of (H5), only concern the fluid displacement and veloc-
ity. By contrast, no specific approximation is adopted concerning
the mean fields; a linearised form of these mean fields naturally
arises from the SPH formalism and the hypotheses (H1) through
(H4). As an example, let us consider the mean density ρ. Plug-
ging Eq. (37) into Eq. (32), we find

ρ(x, t) =
∫

d3y ρ0(y)K (y + ξt(y, t) + ξosc(y, t) − x) . (39)

Then, using (H2) to linearise in terms of the displacement, we
find

ρ(x, t) =
∫

d3y ρ0(y)K(y−x)+
∫

d3y ρ0(y) (ξosc(y, t) ·∇) K|y−x

+

∫
d3y ρ0(y) (ξt(y, t) ·∇) K|y−x . (40)

The first term on the right-hand side corresponds to the kernel
estimate of ρ0 at x. By construction, kernel estimation is a rep-
resentation of ensemble averaging, but ρ0 is already an equilib-

rium quantity, and therefore is equal to its own ensemble aver-
age. Furthermore, the last term on the right-hand side can be dis-
carded on account of hypothesis (H3). Performing an integration
by part makes the quantity ∇ · (ρ0ξt) appear under the integral
sign. Therefore, we eventually find

ρ(x, t) = ρ0(x) +
∫

d3y ρ0(y) (ξosc(y, t) ·∇) K|y−x

︸                                      ︷︷                                      ︸
≡ρ1(x,t)

. (41)

The quantity ρ1 represents the Eulerian modal fluctuations of
density, but of important note is the fact that at no point did we
explicitly decompose ρ into an equilibrium value ρ0 and a resid-
ual, oscillatory part; instead, the decomposition (41) arises natu-
rally from the SPH formalism, and hypotheses (H2) and (H3).

The linear wave equation is derived in detail in Appendix D
using the hypotheses listed above. Ultimately, we obtain

∂ξosc

∂t
− uosc − (ξosc ·∇)ut − (ξt ·∇)uosc = (ξt ·∇)ut , (42)

∂uosc

∂t
− Ld

1 − Ls
1 = L0 , (43)

where

Ld
1,i =


1
ρ0

∂p0

∂xi

−
∂c2

0

∂xi


1
ρ0

∫
d3y ρ0(y)

(
ξosc,j∂ jK

x
)∣∣∣∣

y,t

+
c2

0

ρ0

∫
d3y ρ0(y)

(
ξosc,j∂ j∂iK

x
)∣∣∣∣

y,t

+Gi j,0

(
uosc,j −

1
ρ0(x)

∫
d3y ρ0(y)uosc,j(y)Kx(y)

)
, (44)

Ls
1,i = −uosc,j∂ jut,i − ut, j∂ juosc,i

−Gi j,0
1
ρ0

∫
d3y ρ0(y)

(
ξosc,k∂k

(
ut, jK

x
))∣∣∣∣

y,t

+


∂Gi j

∂ũ′′
k

u′′
l

ũ′′
k

u′′
l 1 +

∂Gi j

∂(∂kũl)
∂kũl +

∂Gi j

∂ǫ
ωtk1

 ut, j

+
1
2

√
C0ωt

k0
k1ηi , (45)

L0,i = −
1
ρ0

∂
(
ρ0ut,iut, j − ρ0ut,iut, j

)

∂x j

, (46)

ũ′′
i

u′′
j 1
= −

ũ′′
i

u′′
j 0

ρ0

∫
d3y ρ0ξosc,k∂kKx

+
1
ρ0

∫
d3y ρ0ξosc,k∂k

(
ut,iut, jK

x
)

+
1
ρ0

∫
d3y ρ0ut,iuosc,jK

x

+
1
ρ0

∫
d3y ρ0ut, juosc,iK

x ,

(47)
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(∂iũ j)1 = −
1
ρ0

∫
d3y ρ0uosc,j∂iK

x − 1
ρ0

∫
d3y ρ0ξosc,k∂kut, j∂iK

x

− 1

ρ2
0

∂ρ0

∂xi

∫
d3y ρ0uosc,jK

x

− 1

ρ2
0

∂ρ0

∂xi

∫
d3y ρ0ξosc,k∂k

(
ut, jK

x
)
, (48)

k1 =
1
2

ũ′′
i

u′′
i
, (49)

where c2
0 ≡ p0γ/ρ0 is the equilibrium sound speed squared,

and we have introduced the x-centred kernel function Kx(y) ≡
K(y − x). The right-hand sides of Eqs. (42) and (43) constitute
inhomogeneous forcing terms (see Section 3.2 for more details),
and it was therefore possible to filter out certain negligible con-
tributions. We refer the reader to the details given in Section D.3,
where we essentially argue first that the non-stochastic zeroth-
order terms in the linearised equations vanish under the unper-
turbed hydrostatic equilibrium condition, and then that the linear
forcing (i.e. the stochastic zeroth-order terms that are linear in
the stochastic processes ξt, ut or η) is negligible. The last point
is related to the fact that the turbulent spectrum has most of its
power in wavevectors and angular frequencies far removed from
those characteristic of the modes, and therefore unable to pro-
vide with efficient mode driving.

Formally, Eqs. (42) and (43) take the form of a linear stochas-
tic, inhomogeneous wave equation in a completely closed form,
in the sense that the various terms on their right-hand side are
written as explicit functions of the wave variables ξosc and uosc
themselves or the turbulent fields ξt and ut, whose statistical
properties are considered known (see hypothesis H4). In writ-
ing Eq. (43), we split the velocity equation into three compo-
nents. Ld

1 contains all the terms that are linear in ξosc and uosc,
but do not explicitly contain either stochastic processes ξt, ut,
or η. It represents the deterministic contribution to the homoge-
neous part of the wave equation, and corresponds to the classical
propagation of acoustic waves, without any impact from the tur-
bulence. On the other hand, Ls

1 contains all the terms that are
linear in ξosc and uosc and explicitly depend on ξt, ut, or η. Fi-
nally, L0 contains all the terms that are independent of ξosc and
uosc. The reason for this specific decomposition will become ap-
parent in a moment, when we discuss the physical role played by
each term.

3.2. Effects of turbulence on the wave equation

The last term on the left-hand side of Eq. (43), together with
its right-hand side, contain the contribution of turbulence to the
wave equation, which arises from the action of the turbulent
fields on the oscillations. We can see that one effect of turbulence
is to add the inhomogeneous part L0 to the wave equation. This
part acts as a forcing term, and Eq. (46) shows that it corresponds
to the fluctuations of the turbulent pressure around its ensemble
average. This is in perfect accordance with the widely accepted
picture that the stochastic excitation of the global modes of os-
cillation in solar-like stars is due mainly to quadrupolar turbu-
lent acoustic emission (Samadi & Goupil 2001). Furthermore,
we note that we only kept the contributions to mode excitation
that are not linear in the turbulent velocity field as linear con-
tributions turn out to be negligible (see Section D.3 for a more
developed discussion). We note that the non-linear Lagrangian,
turbulent fluctuations of entropy, which is widely recognised as

another source of stochastic driving for solar-like p-modes, does
not arise from the above formalism. The only reason is because
we considered a polytropic equation of state from the start, and
as such neglected to model entropy fluctuations in both the os-
cillations and the turbulence.

The second effect of the turbulent fields on the oscillations
is to modify the linear part, that is to say the propagation of the
waves. This stochastic correction corresponds to the term Ls

1 de-
fined by Eq. (45). This term models two effects that are usually
studied as distinct phenomena, but are actually intertwined and
cannot be considered separately: a shift in the eigenfrequency
of the resonant modes of the system (commonly referred to as
the modal or ‘intrinsic’ part of the surface effects), and the ab-
sorption, or damping, of the energy of the waves as they travel
through the turbulent medium. Equation (45) shows that these
phenomena arise either from the non-linear advection term in the
momentum equation, as represented by the first two terms on its
right-hand side, or from the joint effect of turbulent dissipation,
buoyancy, and pressure-rate-of-strain correlations, as jointly rep-
resented by all the other terms. It is apparent, in particular, that
while the former is linear in ut, the latter has a more complicated
multipolar decomposition in terms of ut, with first-, second-, and
third-order contributions alike. As a whole, the term Ls

1 in the ve-
locity equation plays the same role, for instance, as D (vosc) in
Samadi & Goupil (2001) (see their Eq. 26).

3.3. Limiting case: The standard wave equation

We now explore the limiting case where there is no turbu-
lence, in which case the only term that remains in Eq. (43) is Ld

1.
In the absence of turbulence the integrals appearing in Eq. (44)
are drastically simplified because, in this limit, the wave vari-
ables ξosc and uosc are equal to their own ensemble average, that
is to say to their own kernel estimate. This allows us to write, for
instance
∫

d3y ρ0(y)ξosc,i(y, t)
∂K

∂x j

∣∣∣∣∣∣
y−x

= −∂ρ0ξosc,i

∂x j

. (50)

Ultimately, this leads to the following simplification of Eq. (44):

Ld
1,i =


∂c2

0

∂xi

− 1
ρ0

∂p0

∂xi


1
ρ0

∂ρ0ξosc,j

∂x j

+
c2

0

ρ0

∂2ρ0ξosc,j

∂xi∂x j

. (51)

Hence from Eqs. (42) and (43), which in this limit read

∂ξosc

∂t
− uosc = 0 , (52)

∂uosc

∂t
− Ld

1 = 0 , (53)

we obtain the following homogeneous, second-order wave equa-
tion
(
∂2

∂t2
− L

)
uosc = 0 , (54)

with

L (uosc) =
1
ρ0

[(
∇c2

0(∇ · ρ0uosc)
)
− 1
ρ0

∇p0(∇ · ρ0uosc)
]
. (55)

We recover the equation for free acoustic oscillations in a strat-
ified medium in its exact form, provided the Cowling approx-
imation is adopted (see hypothesis H5). It corresponds exactly
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to the homogeneous part of the wave equation derived, for in-
stance by Goldreich & Keeley (1977b) (see their Eq. 16); or,
equivalently, to the equation presented in Unno et al. (1989) (see
their Eqs. 14.2 and 14.3), although these are written in terms of
displacement and pressure fluctuation rather than displacement
and velocity (see also Samadi & Goupil 2001, their Eq. 16). The
only exception is the absence of the term depending on the en-
tropy gradient (which does not appear here because the gas is
polytropic).

4. Discussion

The linear stochastic wave equation comprised of Eqs. (42)
and (43) was obtained in the scope of a certain number of hy-
potheses and approximations, whose validity we now discuss.
We can split these hypotheses into two categories: those pertain-
ing to the establishment of the stochastic differential equations,
and those pertaining to the linearisation of these equations.

All the hypotheses we adopted in the linearisation are
itemised in Section 3.1. Hypotheses (H1) through (H5) are actu-
ally of two different natures. Hypotheses (H1) on the smallness
of uosc, (H2) on the smallness of ξosc, and (H4) on the absence
of back-reaction of the oscillations on the turbulence define the
framework in which we performed the linearisation, and are
therefore necessary assumptions. On the other hand, hypothe-
ses (H3) on the neglect of ∇ · (ρ0ξt) and (H5) on the neglect of
the perturbed gravitational potential are simplifying assumptions
that are not necessary, strictly speaking, but help simplify the for-
malism considerably. Hypothesis (H5) is a common assumption
in the analysis of stellar oscillations: without it, because grav-
ity is an unscreened force acting on long distances, the resulting
equations would be highly non-local. As we mention in Section
3.1, its domain of validity is the high-radial-order modes of oscil-
lation, but it is usually adopted throughout the entire oscillation
spectrum. Hypothesis (H3), on the other hand, may require some
more discussion. As we briefly mention above, it corresponds to
the anelastic approximation, and amounts to neglecting the tur-
bulent fluctuations of the fluid density ρt. Taking these fluctua-
tions into account would require having knowledge of the statis-
tical properties of ρt, the same way we consider the properties of
ut known. However, current models of compressible turbulence
are not yet able to fully account for ρt without any underlying
simplifying assumptions, such as the Boussinesq approximation
or the anelastic approximation. It is difficult to assess how sen-
sible to this assumption the results obtained for the behaviour
of turbulent convection are, and a fortiori its coupling with os-
cillations, but for lack of a more realistic treatment of turbulence
compressibility, we nevertheless chose to adopt hypothesis (H3).

We have also adopted a number of approximations in order
to establish the closed system of equations (Eqs. (25), (26), (32),
(33), (34), (35), and (36)) in Section 2. All of them consist in
simplifying assumptions, that we adopt not because they are nec-
essary to build the formalism, but because the aim of this paper
is to make the basics of this method as clear as possible, rather
than adopting the most realistic turbulence model possible. As
such, we do not attempt to give a physical justification for the
following hypotheses, but instead discuss how they affect the fi-
nal stochastic wave equation, and how one would go about cir-
cumventing these simplifications.

(H6) We consider the flow to be adiabatic, in the sense that
the only fluid particle properties that need to be described in the
Lagrangian stochastic model are the position and velocity of the
particles. In the scope of this hypothesis, the energy equation is
replaced with a relation between the mean density and pressure

that we chose to be polytropic, without specifying the associ-
ated polytropic exponent γ, which means that the non-adiabatic
effects pertaining to the oscillations are not contained in the for-
malism presented in this paper. This includes the perturbation
of the convective flux and the radiative flux by the oscillations,
which are in reality susceptible to affect the damping rate of the
modes as well as the surface effects. Avoiding hypothesis (H6)
would allow for the inclusion of all non-adiabatic effects in the
model. Essentially, adopting a non-adiabatic framework would
require an additional SDE for the internal energy of the fluid
particles (or any other alternative thermodynamic variable), thus
leading to the introduction of an additional thermodynamic wave
variable eosc, to be linearised around the turbulence-induced en-
ergy fluctuations et. This would then increase the order of the
system of equations, and would require the statistical properties
of the additional turbulent field et, including its correlation with
ut, to be known.

(H7) We consider that the turbulent frequency ωt, defined
by Eq. (36) as the ratio of the dissipation rate ǫ to the turbu-
lent kinetic energy k, takes a constant value. The turbulent fre-
quency represents the rate at which k would decay towards zero
if there were no production of turbulence whatsoever, and can
be interpreted as the inverse lifetime of the energy-containing
turbulent eddies. In essence, this amounts to assuming the exis-
tence of a single timescale associated with the entire turbulent
cascade, which is at odds with even the simplest picture of tur-
bulence. Avoiding hypothesis (H7) would allow a much more re-
alistic modelling of the turbulent dissipation and its perturbation
by the oscillations, which is likely to play an important role in
both mode damping and surface effects. This would require in-
cluding the turbulent frequency as a fluid particle property, with
its own SDE. As for velocity or internal energy (see hypothesis
(H6) above), this would lead to the introduction of ωt,osc as an
additional wave variable, to be linearised around a new turbulent
field ωt,t, whose statistical properties would have to be input in
the model.

(H8) We consider that the time average of the flow velocity
over very long timescale, in other words the velocity associated
with the equilibrium background, is zero. This amounts to ne-
glecting rotation, whether it be global or differential. Taking ro-
tation into account would require either a non-zero 〈u〉L field to
be included, or else a Coriolis inertial force to be added in the
velocity SDE.

In summary, hypotheses (H1), (H2), and (H4) are fundamen-
tal in building the formalism, and cannot be avoided, but they are
also firmly and physically grounded. Hypotheses (H3) and (H5)
are simplifying assumptions that are not strictly necessary, nor as
clearly valid, but which are unavoidable given the current state
of our capabilities. Finally, hypotheses (H6), (H7), and (H8) are
also simplifying assumptions, and are very much invalid; how-
ever, we adopted them here to provide a simple framework serv-
ing as a proof of concept for the formalism presented in this pa-
per. In particular, hypotheses (H6) and (H7) must be discarded
as soon as possible if a realistic model of turbulence is to be
adopted. This is left to a future work in this series.

5. Conclusion

In this series of papers we investigate Lagrangian stochastic
models of turbulence as a rigorous way of modelling the vari-
ous phenomena arising from the interaction between the highly
turbulent motions of the gas at the top of the convection zone in
solar-like stars and the global acoustic modes of oscillation de-
veloping in these stars. These include the stochastic excitation of
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the modes, their stochastic damping, and the turbulence-induced
shift in their frequency called surface effects.

In this first paper we presented a very simple polytropic La-
grangian stochastic turbulence model, serving as a proof of con-
cept for the novel method presented here, and we showed how
it can be used to derive stochastic differential equations (SDEs)
governing the evolution of Eulerian fluid variables relevant to the
study of oscillations. We then linearised these SDEs to obtain
a linear stochastic wave equation containing, in the most self-
consistent way possible, the terms arising from the turbulence-
oscillation coupling. This wave equation correctly reduces to
the classical propagation of free acoustic waves in a stratified
medium in the limit where turbulence is neglected. It also ex-
actly models the stochastic forcing term due to turbulent acous-
tic emission, arising from coherent fluctuations in the turbulent
pressure. In addition, the resulting stochastic wave equation con-
tains the turbulent-induced correction to the linear operator gov-
erning the propagation of the waves, thus allowing for the mod-
elling of both mode damping and modal surface effects. The
method presented here offers multiple, key advantages:

• At no point does it require separating the equations of the
flow into a turbulent equation and an oscillation equation,
thus allowing the turbulent contribution to naturally and con-
sistently arise in the wave equation. Instead, we leave the
statistical properties of the turbulence as known oscillation-
independent inputs to the model.
• All aspects of turbulence-oscillation interaction are modelled

simultaneously, within the same stochastic wave equation,
thus shedding a more consistent light on these intertwined
phenomena.
• This method completely circumvents the need to adopt the

mixing-length hypothesis, which is crucial as this hypothesis
is both almost inescapable in current convection modelling,
and very invalid close to the radiative-convective transition
zone. The reason we do not need to adopt this assumption
stems from the fact that the starting model is at particle level,
where equations are much easier to close.
• The parameters appearing in Lagrangian stochastic models

are much more easily linked to the underlying physical as-
sumptions, and therefore easier to constrain, with the help
of 3D hydrodynamic simulations. They are also more firmly
physically grounded.
• In addition, this formalism applies to radial and non-radial

oscillations alike.

However, this paper only constitutes a first step. In the fol-
lowing paper in this series we will show how such a stochastic
wave equation can be used to yield a set of stochastic differen-
tial equations governing the temporal evolution of the complex
amplitude of the modes. These simplified amplitude equations
(Stratonovich 1965) are much more practical for the study of
turbulence-oscillation coupling, and in particular explicitly and
simultaneously yield the excitation rates of the modes, their life-
times, as well as their turbulence-induced frequency corrections.
Finally, as we mentioned in Section 4, extending this work to
a non-adiabatic model (i.e. discarding hypothesis H6), and with
a more realistic treatment of eddy lifetimes (i.e. discarding hy-
pothesis H7), constitutes an essential and unavoidable step to
apply this formalism to the actual stellar case, and will be the
subject of a subsequent paper.
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Appendix A: The equivalent Reynolds stress model

The procedure leading from a given Lagrangian stochastic
model to the equivalent Reynolds stress model (i.e. the corre-
sponding transport equations for the first- and second-order mo-
ments of the flow velocity) can be found, for instance, in Pope
(2000, Chap. 12). For the generalised Langevin model consid-
ered in this paper, it yields

Dρ

Dt
+ ρ

∂ũi

∂xi

= 0 , (A.1)
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k
+ C0ǫδi j , (A.3)

where δi j denotes the Kronecker symbol, and we have introduced
the pseudo-Lagrangian particle derivative D/Dt ≡ ∂t + ũi∂i.

Equation (A.1) yields the continuity equation in its exact
form, without having to include an evolution equation for den-
sity at particle level. This is due to the fact that particle positions
are advanced through time using their own individual velocities;
since each particle carries its own unchanging mass, then by con-
struction there can be no local mass loss or gain.

Equation (A.2) also yields the mean momentum equation in
its exact form, primarily because the mean force in the stochastic
model is already included in its exact form from the start. We
note, however, that the transport term (i.e. the second term on the
left-hand side of Eq. A.2) is also modelled exactly, even though
it is not explicitly included in any way in Eqs. (9) and (10). This
is, once again, because of the Lagrangian nature of the stochastic
model, and is incidentally one of its most interesting features: all
advection terms are implicitely and exactly modelled because
trajectories integrated through Eqs. (9) and (10) coincide with
actual fluid particle trajectories.

Equation (A.3) differs slightly from the exact Reynolds
stress equation derived directly from the Navier-Stokes equation,
which reads
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where ‘sym’ refers to the symmetric part of the tensor inside the
brackets. Several contributions are still modelled in their exact
form, including the transport term (the second term on the left-
hand side), but also the production term (the first three terms
on the right-hand side). However, the last three terms are not
modelled exactly, and are (from left to right) the buoyancy con-
tribution, the pressure-rate-of-strain tensor, and the dissipation
tensor. Comparing Eqs. (A.3) and (A.4), it can be seen that these
contributions are collectively modelled by the last two terms in
Eq. (10), which correspond to the fluctuating part of the force
acting upon the fluid particle. More specifically, we obtain
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(A.5)

This equation is more readily interpreted if we remember that,
in the high Reynolds number limit, the dissipation tensor is
isotropic, which allows for the definition of the scalar dissipa-
tion ǫ appearing in the stochastic model:

ǫi j ≡
2
3
ǫδi j . (A.6)

Furthermore, the drift tensor is usually decomposed into an
isotropic and anisotropic part, according to

Gi j = −
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1
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3
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ǫ
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δi j +Ga

i j , (A.7)

where k ≡ ũ′′
i

u′′
i
/2 is the turbulent kinetic energy. This decompo-

sition ensures that, in the special case of incompressible, homo-
geneous, isotropic turbulence, if we take Ga

i j = 0, the evolution
of the Reynolds stress tensor reduces to the exact, analytical so-
lution.

Equation (A.5) can be rearranged to yield
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Equation (A.8) allows us to interpret the collective effect of
buoyancy and pressure-rate-of-strain correlation on the evolu-
tion of the Reynolds stresses. First, all the terms on the right-
hand side are traceless, which means that they only have a redis-
tributive role; they redistribute energy among the different com-
ponents of the Reynolds stress tensor, without ever resulting in
a net loss or gain of energy. By contrast, it is the scalar dissi-
pation ǫ which is responsible for the decay of kinetic turbulent
energy, an effect that is only counterbalanced by the shear- and
compression-induced production term (i.e. the first three terms
on the right-hand side of Eq. (A.4)).

Furthermore, it is readily seen that the last term on the right-
hand side of Eq. (A.8) tends to isotropise the Reynolds stress
tensor since for isotropic turbulence we would precisely have
ũ′′

i
u′′

j
= 2kδi j/3. The rate at which this term makes the Reynolds

stress decay towards isotropy is equal to (1+3C0/2)ωt, where ωt

is the turbulent dissipation rate defined by Eq. (36). On the other
hand, the other two terms on the right-hand side of Eq. (A.8)
create anisotropy in the Reynolds stress tensor, and we can intu-
itively understand that the anisotropy of the stationary Reynolds
stress results from a balance between these two effects.

Appendix B: A detailed derivation for the

Lagrangian-to-Eulerian change of variables

The goal of this appendix is to provide a detailed derivation
of the various steps in the procedure described in Section 2.2. We
first derive the general identity (14), which is valid for any fluid
quantity; we then apply this general identity to the displacement
and velocity variables.

Appendix B.1: Derivation of identity (14)

Let us consider, for the moment, that the function ξ(x, t) is
an arbitrary function of space and time, which we do not specify
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at first. We recall the following notations

X(x, t) ≡ x + ξ(x, t) , (B.1)
φL(x, t) ≡ φ(X(x, t), t) , (B.2)

where φ is an arbitrary quantity. The usual chain rules for deriva-
tion then yield

∂(φL)
∂t
=

(
∂φ

∂t

)

L

+
∂Xi

∂t

(
∂φ

∂xi

)

L

, (B.3)

∂(φL)
∂xi

=
∂X j

∂xi

(
∂φ

∂x j

)

L

. (B.4)

If the function x 7→ X(x, t) (the time t being fixed) is bijective,
then for any velocity field u(x, t), there necessarily exists an asso-
ciated field V(x, t) such that, were point x to move with velocity
V, point X would then move with the actual fluid velocity uL.
Otherwise stated, V corresponds to the advective velocity in the
material derivative of X, so that

∂Xi

∂t
+ V j

∂Xi

∂x j

= ui,L . (B.5)

Plugging Eq. (B.5) into Eq. (B.3), we find

∂(φL)
∂t
=

(
∂φ

∂t

)

L

+

(
ui,L − V j

∂Xi

∂x j

) (
∂φ

∂xi

)

L

=

(
Dφ

Dt

)

L
− V j

∂Xi

∂x j

(
∂φ

∂xi

)

L

, (B.6)

where D/Dt ≡ ∂t + ui∂i. In turn, plugging Eq. (B.4), this trans-
forms into

∂(φL)
∂t
=

(
Dφ

Dt

)

L
− V j

∂(φL)
∂x j

, (B.7)

thus yielding the required identity
(

Dφ

Dt

)

L
= 〈D〉L(φL) , (B.8)

where 〈D〉L ≡ ∂t + Vi∂i.
This is all valid regardless of the definition of the function

ξ(x, t). However, let us now consider that x does actually corre-
spond to a mean6 position, and that the function ξ(x, t) actually
denotes the fluctuating fluid displacement around this mean po-
sition x. Then by construction, we have

〈ξi〉 = 0 . (B.9)

Point x now corresponding to a mean position, the velocity V at
which it is displaced must itself be a mean quantity, so that

〈V〉 = V . (B.10)

Let us now apply the mean operator 〈.〉 to Eq. (B.5); since V j can
be pulled out of the mean, we obtain

〈ui〉L =
∂〈Xi〉
∂t
+ V j

∂〈Xi〉
∂x j

=
∂xi

∂t
+
∂〈ξi〉
∂t
+ V j

(
∂xi

∂x j

+
∂〈ξi〉
∂x j

)

= 0 + 0 + V j

(
δi j + 0

)
, (B.11)

6 We recall that throughout this discussion, the word ‘mean’ refers to
the as-yet-unspecified averaging process 〈.〉 (see the main body of the
paper for more details).

or in other words

V = 〈u〉L . (B.12)

To summarise, the identity (B.8) is always verified, but in
general, the velocity V appearing in the definition of the oper-
ator 〈D〉L is not easily specified. Only when the displacement
function ξ is judiciously defined as a fluctuating particle dis-
placement does the velocity V reduce to the mean Lagrangian
velocity 〈u〉L.

Appendix B.2: Derivation of Eqs. (16) and (17)

Let us apply Eq. (B.8) to φ = xi and φ = ui alternatively.
First, if φ = xi, then φL = Xi, and Eq. (B.8) becomes
(
∂xi

∂t

)

L

+ u j,L

(
∂xi

∂x j

)

L

=
∂Xi

∂t
+ 〈u j〉L

∂Xi

∂x j

. (B.13)

The mean position x having no explicit time dependence, we
have (∂xi/∂t)L = 0, (∂xi/∂x j)L = δi j, ∂Xi/∂t = ∂ξi/∂t, and
∂Xi/∂x j = δi j + ∂ξi/∂x j. The above equation then becomes

ui,L =
∂ξi

∂t
+ 〈u j〉L

(
δi j +

∂ξi

∂x j

)
, (B.14)

thus immediately yielding Eq. (16).
Secondly, if φ = ui, then φL = ui,L, and Eq. (B.8) becomes

(
∂ui

∂t

)

L

+ u j,L

(
∂ui

∂x j

)

L

=
∂(ui,L)
∂t
+ 〈u j〉L

∂(ui,L)
∂x j

. (B.15)

But Eq. (B.4) allows us to write

∂(ui,L)
∂x j

=
∂Xk

∂x j

(
∂ui

∂xk

)

L

, (B.16)

where we recall that

∂Xk

∂x j

= δk j +
∂ξk

∂x j

. (B.17)

Plugging these into Eq. (B.15), we find

(
∂ui

∂t

)

L

+ u j,L

(
∂ui

∂x j

)

L

=
∂(ui,L)
∂t
+ 〈u j〉L

(
δ jk +

∂ξk

∂x j

) (
∂ui

∂xk

)

L

.

(B.18)

Isolating the first term on the right-hand side yields Eq. (17).

Appendix C: The insignificance of the back-reaction

of the oscillations on the turbulence

Let us formally write the governing equations of the flow in
the following abstract form

∂U

∂t
+L(U) + B(U,U) = 0 , (C.1)

where U represents the flow variables, L is a linear operator,
and B a bilinear operator containing the advection terms. In the
limit of small amplitudes, which are relevant for solar-like oscil-
lations, the wave variables can be expanded as

U = U0 + aU1 + a2U2 , (C.2)
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where a is small ordering parameter. Plugging Eq. (C.2) into Eq.
(C.1) and isolating the various orders in a, we obtain the follow-
ing hierarchy of equations

∂U0

∂t
+L(U0) + B(U0,U0) = 0 , (C.3)

∂U1

∂t
+L(U1) + B(U0,U1) + B(U1,U0) = 0 , (C.4)

∂U2

∂t
+L(U2) + B(U0,U2) + B(U2,U0) = −B(U1,U1) , (C.5)

where the first equation governs the basic flow, the second equa-
tion governs the waves, and the third equation governs the back-
reaction of the waves on the basic flow. In particular, Eq. (C.5)
takes the form of a forced linear wave, where the linear part
L′ ≡ L + B(U0, .) + B(.,U0) is identical to the linear part in
the actual wave equation (C.4), and the forcing term is given by
the right-hand side of Eq. (C.5). Because L′ is common to both
Eqs. (C.4) and (C.5), if we denote the angular frequency of the
wave as ω, we can write the homogeneous solution of Eq. (C.5)
as

U2,h(t) = A exp jωt , (C.6)

and the total solution (including the forcing, inhomogeneous
part) formally reads

U2(t) = −
∫ t

0
dt′ exp− jω(t′−t) B (

U1(t′),U1(t′)
)
. (C.7)

The back-reaction of the waves on the turbulence is therefore
driven by its resonance with the non-linear oscillation-induced
advection. In the limit t → +∞, this formal solution yields

|U2(t)|2 ∼
∣∣∣∣∣TF [B(U1,U1)] (ω)

∣∣∣∣∣
2

, (C.8)

where ‘TF’ denotes the Fourier transform. But U1 refers to the
wave, so that its Fourier spectrum only has power around the
angular frequency ω of the wave. In turn, this means that the
quadratic operator B applied to the velocity U1 has a Fourier
spectrum whose power is concentrated around ω = 0 (i.e. the
continuous component) as well as 2ω (twice the frequency of
the waves). By contrast, it contains little to no power around the
actual frequency ω of the oscillation, which justifies that the im-
pact of the back-reaction U2(t) on the mean flow U0(t) may be
neglected.

Appendix D: Derivation of the linear wave equation

In this appendix we linearise the system comprised of Eqs.
(25), (26), (32), (33), (34), (35), and (36), using the hypotheses
outlined in Section 3.1. We start, in Section D.1, by linearising
all the ensemble averages described in the SPH formalism (i.e.
Eqs. (32), (33), (34), (35), and (36)). In Section D.2, we then
plug these linearised ensemble averages to derive the linearised
version of Eqs. (25) and (26). Finally, in Section D.3, we discuss
which terms should be retained in the inhomogeneous forcing
term of the resulting wave equation. For more clarity in the no-
tations, we dropped all dependence on the space variable x, the
space variable y used inside the integrals, and time t. It must be
understood that all the quantities outside the integrals depend on
x and t, and all quantities inside depend on y and t.

Appendix D.1: Linearising the mean fields

A general remark can be made beforehand concerning all en-
semble averages described in the SPH formalism: the occurrence
of ξt vanishes completely from their linearised version by virtue
of hypothesis (H3). We have already shown, in the main body of
this paper, that this is the case for the mean density ρ, but this is
also the case for the mean velocity and Reynolds stress tensor.
They can both formally be written as

Q̃ =
1
ρ

∫
d3y ρ0Q(y + ξ)Kx(y + ξ) , (D.1)

where Q is a function of velocity only (Q = u for the mean
velocity, and Q = (ui − ũi)

(
u j − ũ j

)
for the Reynolds stress

tensor), and we have introduced the x-centred kernel function
Kx(y) ≡ K(y − x). Because Q only depends on the velocity vari-
able u, and not on the displacement variable ξ, the only occur-
rence of ξt in the linearisation of Q̃ comes from the term

Q̃ = [...] +
1
ρ

∫
d3y ρ0ξt ·∇

(
QKx) . (D.2)

Performing an integration by part yields

Q̃ = [...] − 1
ρ

∫
d3y QKx

∇ · (ρ0ξt) , (D.3)

where the surface term vanishes because of the compact sup-
port of the kernel function Kx. By virtue of hypothesis (H3), the
quantity ∇ · (ρ0ξt) is negligible, and therefore this contribution
can be safely discarded.

As we have just shown, this is true of the mean density, mean
velocity, and Reynolds stress tensor. In turn, this is also true of
the gas pressure p (because it is given as a function of the mean
density), as well as the turbulent kinetic energy k and the turbu-
lent dissipation rate ǫ (because they are both given as a function
of the Reynolds stress tensor). Therefore, ξt can indeed be ne-
glected in the linearised version of every single ensemble aver-
age appearing in Eqs. (25) and (26).

Appendix D.1.1: Mean density

Using hypotheses (H2) and (H3), Eq. (32) can be linearised
as

ρ =

∫
d3y ρ0

[
Kx + ξosc,i∂iK

x] . (D.4)

The first term on the right-hand side corresponds to the kernel
estimator of the equilibrium density ρ0 at x, and therefore rep-
resents the ensemble average of ρ0 at x. Since ρ0 is already an
equilibrium quantity, it is equal to its own ensemble average, and
this term reduces to ρ0(x) itself. Finally,

ρ = ρ0 + ρ1 , (D.5)

with

ρ1 =

∫
d3y ρ0ξosc,i∂iK

x . (D.6)
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Appendix D.1.2: Mean gas pressure

The fluctuating mean density ρ1 is much lower than the equi-
librium density ρ0 on account of hypothesis (H2). Therefore, Eq.
(35) can be linearised, immediately yielding

p = p0 + p1 , (D.7)

with

p1 =
p0γ

ρ0
ρ1 ≡ c2

0ρ1 , (D.8)

where c2
0 is the equilibrium sound speed squared.

Appendix D.1.3: Mean velocity

Using hypotheses (H1), (H2), and (H3), Eq. (33) can be lin-
earised as

ũ =
1
ρ0

∫
d3y ρ0utK

x − ρ1

ρ2
0

∫
d3y ρ0utK

x

+
1
ρ0

∫
d3y ρ0uoscKx +

1
ρ0

∫
d3y ρ0Kxξosc,i∂iut

+
1
ρ0

∫
d3y ρ0utξosc,i∂iK

x ,

(D.9)

where ρ1 is given by Eq. (D.6). This expression can be simplified
by remarking that
∫

d3y ρ0utK
x = ρũt , (D.10)

because kernel averages represent ensemble averages. Since
mass is locally conserved by the turbulent velocity field (i.e. the
upflows carry as much mass upwards as the turbulent downdrafts
carry downwards), it immediately follows that ũt = 0, and there-
fore the first two terms in Eq. (D.9) vanish. Rearranging the re-
maining terms, we obtain

ũ = ũ0 + ũ1 , (D.11)

where ũ0 = 0 and

ũ1 =
1
ρ0

∫
d3y ρ0uoscKx +

1
ρ0

∫
d3y ρ0ξosc,i∂i

(
utK

x) . (D.12)

Appendix D.1.4: Mean shear tensor

We also need to express the linearised shear tensor ∂iũ j be-
cause this quantity appears in the drift tensor Gi j. Differentiat-
ing Eq. (D.12) with respect to xi, and noting that ∇x(Kx(y)) =
−∇y(Kx(y)) (because we considered an isotropic kernel func-
tion), we obtain

∂iũ j = (∂iũ j)0 + (∂iũ j)1 , (D.13)

where (∂iũ j)0 = 0 and

(∂iũ j)1 = −
1
ρ0

∫
d3y ρ0uosc,j∂iK

x − 1
ρ0

∫
d3y ρ0ξosc,k∂kut, j∂iK

x

− 1

ρ2
0

∂ρ0

∂xi

∫
d3y ρ0uosc,jK

x

− 1

ρ2
0

∂ρ0

∂xi

∫
d3y ρ0ξosc,k∂k

(
ut, jK

x
)
. (D.14)

Appendix D.1.5: Reynolds stress tensor

The linearised Reynolds stress tensor is obtain from Eq. (34),
using hypotheses (H1), (H2), and (H3). We find

ũ′′
i

u′′
j
=

1
ρ0

∫
d3y ρ0ut,iut, jK

x − ρ1

ρ2
0

∫
d3y ρ0ut,iut, jK

x

+
1
ρ0

∫
d3y ρ0ut,iξosc,k

(
∂kut, j

)
Kx

+
1
ρ0

∫
d3y ρ0ut, jξosc,k

(
∂kut,i

)
Kx

+
1
ρ0

∫
d3y ρ0ut,iut, jξosc,k∂kKx

− 1
ρ0

∫
d3y ρ0ut,iuosc,jK

x +
1
ρ0

∫
d3y ρ0ut, juosc,iK

x

− 1
ρ0

∫
d3y ρ0ut,iũ j1Kx +

1
ρ0

∫
d3y ρ0ut, jũi1Kx ,

(D.15)

where ρ1 is given by Eq. (D.6) and ũ1 by Eq. (D.12). In the
last two terms, ũi1 can be pulled from the integral. The kernel
estimator is a representation of ensemble averages, and ũi1 is
already an ensemble average. Once this quantity is pulled out, we
recognise the same integral defined by Eq. (D.10), meaning that
these terms vanish. Additionally, the third, fourth, and fifth terms
can be conveniently merged together, and ρ1 can be replaced by
its explicit expression (D.6), so that we finally obtain

ũ′′
i

u′′
j
= ũ′′

i
u′′

j 0
+ ũ′′

i
u′′

j 1
, (D.16)

where

ũ′′
i

u′′
j 0
=

1
ρ0

∫
d3y ρ0ut,iut, jK

x (D.17)

and

ũ′′
i

u′′
j 1
= −

ũ′′
i

u′′
j 0

ρ0

∫
d3y ρ0ξosc,k∂kKx

+
1
ρ0

∫
d3y ρ0ξosc,k∂k

(
ut,iut, jK

x
)

+
1
ρ0

∫
d3y ρ0ut,iuosc,jK

x

+
1
ρ0

∫
d3y ρ0ut, juosc,iK

x .

(D.18)

Additionally, we immediately deduce the linearisation of the
turbulent kinetic energy, which corresponds to half the trace of
the Reynolds stress tensor

k = k0 + k1 =
ũ′′

i
u′′

i 0

2
+

ũ′′
i

u′′
i 1

2
. (D.19)

Likewise, from Eq. (36), we find the linearised turbulent dissi-
pation

ǫ = ǫ0 + ǫ1 = ωtk0 + ωtk1 . (D.20)
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Appendix D.1.6: Drift tensor

The drift tensor Gi j being dependent on the mean flow, it also
needs to be linearised. We recall that, in its most general form,
it can be written as an arbitrary function of the Reynolds stress
tensor, the shear tensor and the turbulent dissipation

Gi j = Gi j

(
ũ′′

k
u′′

l
, ∂kũl, ǫ

)
, (D.21)

and therefore its linearisation reads

Gi j = Gi j,0 +Gi j,1 , (D.22)

with

Gi j,0 = Gi j

(
ũ′′

k
u′′

l 0, 0, ǫ0

)
(D.23)

and

Gi j,1 =
∂Gi j

∂ũ′′
k

u′′
l

ũ′′
k

u′′
l 1 +

∂Gi j

∂(∂kũl)
(∂kũl)1 +

∂Gi j

∂ǫ
ǫ1 . (D.24)

In Eq. (D.23), ũ′′
k

u′′
l 0 is given by Eq. (D.17) and ǫ0 by Eq. (D.20).

In Eq. (D.24), the derivatives ∂Gi j/∂ũ′′
k

u′′
l

, ∂Gi j/∂(∂kũl), and
∂Gi j/∂ǫ only depend on the functional form of the drift tensor;
ũ′′

k
u′′

l 1 is given by Eq. (D.18); (∂kũl)1 is given by Eq. (D.14); and
ǫ1 is given by Eq. (D.20).

Appendix D.2: Linearising the displacement and motion
equations

Hypotheses (H1) and (H2), in addition to the linearised mean
fields computed in the previous section, allow us to write the
linearised version of Eqs. (25) and (26) as

∂ξosc,i

∂t
= ut,i + uosc,i + ξosc,j

∂ut,i

∂x j

+ ξt,j
∂ut,i

∂x j

+ ξt,j
∂uosc,i

∂x j

(D.25)

and

∂uosc,i

∂t
+ ut, j

∂ut,i

∂x j

+ uosc,j
∂ut,i

∂x j

+ ut, j

∂uosc,i

∂x j

=

− 1
ρ0

∂p0

∂xi

+
ρ1

ρ2
0

∂p0

∂xi

− 1
ρ0

∂p1

∂xi

+ gi,0 +Gi j,0ut, j

+Gi j,0

(
uosc,j − ũ j1

)
+Gi j,1ut, j +


√

C0ωtk0 +
1
2

√
C0ωt

k0
k1

 ηi ,

(D.26)

where ρ0 and p0 are the equilibrium density and gas pressure, ρ1
is given by Eq. (D.6), p1 by Eq. (D.8), Gi j,0 by Eq. (D.23), Gi j,1
by Eq. (D.24), ũ1 by Eq. (D.12), and k0 and k1 by (D.19).

Furthermore, we split the right-hand side of Eq. (D.26) three
ways: we gather all the terms that do not depend on the oscil-
latory variables uosc and ξosc in a quantity L0, all the terms that
depend on ξosc and/or uosc but not on any of the turbulent fields
ξt or ut in a quantity Ld

1, and all the terms that depend on both
the oscillatory variables and the turbulent fields in a quantity Ls

1.
This leads us to the following linear equations

∂ξosc

∂t
− uosc − (ξosc ·∇)ut − (ξt ·∇)uosc = ut + (ξt ·∇)ut ,

(D.27)

∂uosc

∂t
− Ld

1 − Ls
1 = L0 , (D.28)

where

Ld
1,i =


1
ρ0

∂p0

∂xi

−
∂c2

0

∂xi


1
ρ0

∫
d3y ρ0(y)

(
ξosc,j∂ jK

x
)∣∣∣∣

y,t

+
c2

0

ρ0

∫
d3y ρ0(y)

(
ξosc,j∂ j∂iK

x
)∣∣∣∣

y,t

+Gi j,0

(
uosc,j −

1
ρ0(x)

∫
d3y ρ0(y)uosc,j(y)Kx(y)

)
, (D.29)

Ls
1,i = −uosc,j∂ jut,i − ut, j∂ juosc,i

−Gi j,0
1
ρ0

∫
d3y ρ0(y)

(
ξosc,k∂k

(
ut, jK

x
))∣∣∣∣

y,t

+


∂Gi j

∂ũ′′
k

u′′
l

ũ′′
k

u′′
l 1 +

∂Gi j

∂(∂kũl)
∂kũl +

∂Gi j

∂ǫ
ωtk1

 ut, j

+
1
2

√
C0ωt

k0
k1ηi , (D.30)

L0,i = −ut, j∂ jut,i −
1
ρ0

∂p0

∂xi

+ gi,0 +Gi j,0ut, j +
√

C0ωtk0ηi , (D.31)

where c2
0 ≡ p0γ/ρ0 is the equilibrium sound speed squared, and

the quantities ũ′′
k

u′′
l 1, ∂kũl1, and k1 are given by Eqs. (D.18),

(D.14), and Eq. (D.19) respectively.

Appendix D.3: The forcing term

In Eqs. (D.27) and (D.28) the right-hand side represent in-
homogeneous stochastic forcing terms. For the moment we have
kept all zeroth order terms (i.e. all the terms that are indepen-
dent of the wave variables ξosc and uosc) on these right-hand
sides, but L0 can be rearranged into a more compact form, and
some terms will in fact prove negligible. Firstly, let us rewrite
the first term on the right-hand side of Eq. (D.31). Using hypoth-
esis (H4), we write the continuity equation for ut without any
contribution from the oscillatory component

∂ρ

∂t
+ ρ

∂ut, j

∂x j

+ ut, j

∂ρ

∂x j

, (D.32)

where ρ is the sum of the equilibrium value ρ0 and the turbulent
fluctuations of the density ρt. Building on hypothesis (H3), we
neglect ρt in Eq. (D.32), so that

∂ut, j

∂x j

= −
ut, j

ρ0

∂ρ0

∂x j

, (D.33)

finally allowing us to write

ut, j∂ jut,i = ∂ j(ut, jut,i) − ut,i∂ jut, j

= ∂ j(ut, jut,i) − ut,i

(
−

ut, j

ρ0

∂ρ0

∂x j

)

=
1
ρ0

∂ρ0ut, jut,i

∂x j

. (D.34)

Secondly, it does not come as a surprise that the non-
stochastic part of Eq. (D.31) corresponds to the hydrostatic equi-
librium condition. If radiative pressure is neglected, we have

− 1
ρ0

∂ρ0ut,iut, j

∂x j

− 1
ρ0

∂p0

∂xi

+ gi,0 = 0 , (D.35)
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so that

L0,i = −
1
ρ0

∂(ρ0ut,iut, j − ρ0ut,iut, j)

∂x j

+Gi j,0ut, j +
√

C0ωtk0ηi .

(D.36)

It thus becomes clear that the forcing term contains the usual
contribution from the fluctuations of the turbulent pressure, a
contribution that is linear in ut, and a contribution that is linear
in η, and therefore completely uncorrelated in space. Following
the discussion from Samadi & Goupil (2001), we argue that all
linear contributions are negligible. The contribution of a linear
term to the excitation rate of the modes has an efficiency that
is based on the resonance between the lifetime of the large-scale
energy-bearing eddies and the period of the modes, which the au-
thors showed was negligible. Naturally, the same argument can
be used to neglect the third term as well since it has no coherence
in either space or time. The non-linear term, on the other hand,
is able to couple different length scales together, and therefore
leads to a non-negligible contribution to the excitation rate. Fi-
nally, after having filtered out those terms we deemed negligible,
we obtain

L0,i = −
1
ρ0

∂
(
ρ0ut,iut, j − ρ0ut,iut, j

)

∂x j

. (D.37)

The right-hand side of Eq. (D.27) can be treated similarly:
the term ut being linear in the turbulent fields, its contribution
to mode driving can be neglected, thus only leaving the second
term.
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Real stupidity beats artificial intelligence
every time.

Sir Terry Pratchett

In the previous chapter, I regarded Lagrangian stochastic models as a way to analytically determine the relation
between the properties of turbulence and the observed properties of the modes in solar-like oscillators. However, as
I warned in the concluding remarks therein, should a more complex Lagrangian stochastic model be adopted to start
with, this analytical description may quickly become too challenging to build, or may else lead to a formulation that
is too impractical to handle in a purely analytical manner. In that case, an alternative would consist in numerically

implementing these models. More generally, analytical prescriptions for the coupling between turbulent convection
and solar-like oscillations, the kind of which is provided by the formalism developed in Chapter 8, are much more
efficiently quantified by means of numerical simulations based on the Lagrangian stochastic model itself. For these
reasons, and as I already hinted in the end of Section 7.3, the theoretical side of my work largely benefits from a
more direct, numerical implementation of the same methods. This is the subject of this chapter.

Fundamentally, the implementation makes use of the exact same mathematical tools presented in Chapters 7
and 8. Except for a few specific numerical points, there is therefore nothing conceptually new in the details of the
implementation. It was originally inspired by the work of Welton and Pope (1997), who had already combined
Lagrangian stochastic models of turbulence with the Smoothed Particle Hydrodynamics formalism. However,
their study was conducted from the point of view of the hydrodynamics community, and they considered the case
of a forced flow in an axisymmetric pipe. By contrast, I am interested in free turbulence in the stellar context,
and in particular in the oscillations developing in the simulation. I describe the specific procedure designed to
extract the oscillations from the output of the simulation, and to determine their properties (frequency, amplitude,
linewidth, eigenfunction), in Section 9.2. Finally, in Section 9.3, I conduct the validation of the numerical approach
by comparing the output of the simulation with exact analytical results that can be derived in the simple case
considered in this chapter, based on the same Lagrangian stochastic model as I considered in Chapter 8, and by
showing that the agreement between numerical and exact analytical results is excellent.
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9.1. SIMULATIONS BASED ON LAGRANGIAN STOCHASTIC MODELS OF
TURBULENCE

9.1 Simulations based on Lagrangian stochastic models of turbulence

In this section, I describe the ways in which the same Lagrangian stochastic model that I considered in Chap-
ter 8 is numerically integrated forward in time. This essentially involves two main issues, namely 1) how are the
stochastic differential equations integrated in time for each particle? and 2) how are the means appearing in these
stochastic differential equations – and additionally constituting the output of the simulation – evaluated? These
two questions are the subjects of Sections 9.1.1 and 9.1.2 respectively. Let me take this opportunity, as I did in
Chapter 8, to recall that the Lagrangian stochastic model considered here is not meant to be a realistic stochastic

model in the stellar context, and is rather meant as a first step to validate the numerical approach.

9.1.1 Integration of the stochastic differential equations

Stochastic Differential Equations in a plane-parallel geometry

I recall here the Lagrangian stochastic model used in Chapter 8, and which I will also consider here

dx
⋆(n)
i
= u

⋆(n)
i

dt , (9.1)

du
⋆(n)
i
=

[
−1
ρ

∂p

∂xi
+ gi +Gi j

(
u
⋆(n)
j
− ũ j

)]
dt +

√
C0ωtk dWi , (9.2)

where x⋆(n) and u⋆(n) are the position and velocity of the n-th fluid particle (the system in its entirety being
comprised of N such particles), the notation d · denotes an increment over the infinitesimal time interval dt,
W is a vector consisting of three independent Wiener processes (see the end of Section 7.1.2 for a definition), and
the mean density ρ, mean gas pressure p, gravitational acceleration g, drift tensor Gi j, mass-averaged velocity ũ

and turbulent kinetic energy k are all evaluated at the position x⋆(n) of the particle. As I described in Section 7.2.4,
these mean fields can be estimated directly from the set of N fluid particles used to represent the flow; let me leave
aside this aspect of the numerical implementation for the moment, and let me return to it in Section 9.1.2.

Equations 9.1 and 9.2 constitute a three-dimensional form of the stochastic differential equations for the posi-
tion and velocity of a fluid particle. In the following, however, I will consider the special case of a flow following

a plane-parallel geometry, exactly as I did in Appendix B, upon deriving a more realistic Lagrangian stochastic
model for stellar turbulent convection. I recall that assuming a plane-parallel geometry amounts to considering that
the statistics of the flow are invariant by horizontal translations as well as rotations around the vertical axis. Other-
wise stated, 1) the moments of the random variables characterising the turbulent flow – in particular the turbulent
velocity – only depend on the vertical coordinate, which I will denote as z in the following, 2) the mean fields
appearing in Equations 9.1 and 9.2 also only depend on z, and 3) the Reynolds stress tensor is diagonal, and its two
horizontal diagonal components are equal. This geometry is relevant in the particular case of radial p-modes, but
becomes invalid for non-radial modes, as it does not allow for any horizontal oscillatory motion. At first glance,
it may look like the three-dimensional equations given above should be reduced to one-dimensional equations in-
stead, with the vertical position z⋆(n) and the vertical velocity u

⋆(n)
v being the only two quantities needed to describe

the state of the n-th fluid particle. However, this is not true: indeed, the evolution of the vertical velocity of the
particle still depends on all the components of the Reynolds stress tensor, through the dependence of the drift ten-
sor Gi j on ũ′′

i
u′′

j
, but also through the turbulent kinetic energy k appearing in the diffusion coefficient (i.e. the last

term on the right-hand side of Equation 9.2). Physically, this is due to the fact that the velocity-pressure-gradient
tensor in the Reynolds stress equation redistributes the energy among the various components of the Reynolds
stress tensor, meaning that the turbulent fluctuations of the vertical velocity can be fueled by the horizontal mo-
tions of the gas. Consequently, it is necessary to keep the horizontal velocity as a variable describing the state of
the fluid particles, although it is not necessary to know their horizontal position. This leads me to the following
‘one-point-five-dimensional’ form of the Lagrangian stochastic model

dz⋆(n) = u
⋆(n)
v dt , (9.3)

du
⋆(n)
v =

[
−1
ρ

∂p

∂z
+ g +Gvv

(
u
⋆(n)
v − ũv

)]
dt +

√
C0ωtk dWv , (9.4)

du
⋆(n)
h
= Ghhu

⋆(n)
h

dt +
√

C0ωtk dWh , (9.5)
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where z⋆(n), u
⋆(n)
v and u

⋆(n)
h

are the vertical position, the vertical velocity, and one arbitrary1 horizontal component
of the horizontal velocity of the n-th fluid particle, g is now the vertical component of g, and Gvv and Ghh are the
vertical and horizontal diagonal components of the drift tensor. Note that in expanding the drift term Gi j (ui − ũi),
I have discarded all off-diagonal components of the drift tensor: this is another consequence of the plane-parallel
geometry.

Numerical scheme for the forward integration in time

One of the main differences between the stochastic differential equations given by Equations 9.3 to 9.5 and
the equations of hydrodynamics implemented, for instance, in Large-Eddy Simulations, is that the former involve
variables that only depend on time, while the latter involve variables that depend on time and space. In the case
of LES, establishing a numerical scheme requires taking care of the spatial discretisation in the time scheme. In
Lagrangian stochastic models implemented through particle methods, this aspect is completely circumvented, and
the question of the time scheme concerns scalar quantities, not spatial arrays: this makes the task of designing
an appropriate numerical scheme considerably easier. In general, there are mainly three properties that one may
wish a numerical scheme to possess: consistency, convergence, stability2. In very broad strokes, and without going
into the rigorous mathematical definitions of these properties, a numerical scheme is said to be convergent if the
solution of the discretised differential equation tends to a fixed function when the time step in the discretisation
tends to zero; it is said to be consistent if this fixed solution corresponds to the actual solution of the exact, non-
discretised differential equation; and it is said to be stable if similar initial conditions lead to similar solutions, with
the ratio between the solution difference and the initial condition difference remaining bounded if the time step is
small enough. The issue, in dealing with stochastic differential equations, is that numerical schemes that possess
one or several of these properties for deterministic equations may lose them upon direct, heuristic application
to stochastic equations. Furthermore, the notion of consistency and convergence for time-discretised stochastic
equations is not defined as straightforwardly as for deterministic equations. Indeed, assessing the quality, i.e.
the accuracy, of a time discrete approximation, heavily depends on the task one wishes to accomplish with the
simulation. One can be interested in the individual paths of each realisation of the stochastic process, in which
case one should aim for a good pathwise approximation. Alternatively, it may happen that one is only interested in
the moments of the stochastic process – i.e. its expectation, variance, etc. –, in which case one should instead aim
for a good expectation approximation. Each objective leads to a different consistency and convergence criterion.
In order to obtain a good pathwise approximation, it is necessary that the expectation of the absolute value between
the sample path of a stochastic process and its time-discretised counterpart should vanish when the time step tends
to zero: this defines the strong convergence criterion. If, in addition, the stochastic process in question is a solution
of the actual stochastic differential equation, the numerical scheme is said to be strongly consistent. On the other
hand, in order to obtain a good expectation approximation, it is only necessary that the moments of the solution
of the time-discretised stochastic differential equation tend to fixed values when the time step tends to zero (this
defines the weak convergence criterion), and that the fixed values in question correspond to the moments of the
actual solution of the exact stochastic differential solution (this defines the weak consistency criterion). In the
present context, since I am ultimately interested in the oscillations naturally present in the simulation, I only wish
for a good expectation approximation, and would therefore be content with a weakly consistent and convergent
scheme.

The vast variety of existing numerical schemes for the time-discretisation of differential equations, the ways in
which deterministic schemes can be adapted to the stochastic case, and the respective advantages and drawbacks
of these methods as regards their convergence, consistency or stability, stretches far beyond the scope of this thesis.
Should the reader be interested in such matters, I would gladly refer them to the textbook by Kloeden and Pletten
(1992), and in particular their Parts IV to VI. In the following, I merely present the specific time scheme that I
adopted to integrate Equations 9.3 to 9.5 forward in time for each fluid particle individually. Following Welton and
Pope (1997), I chose a Predictor-Corrector scheme, which, as its deterministic counterpart, is mainly used for its
numerical stability, and happens to be weakly consistent and convergent of order 1.0 – meaning that the difference
between the time-discrete solution and the actual solution weakly converges towards zero proportionally to the

1In the plane-parallel geometry considered here, all horizontal directions are equivalent, in the sense that the statistical moments of the
turbulent quantities are invariant by rotation around the vertical axis. This is the reason why only one horizontal component of the velocity
is needed.

2Any potential resemblance with the official motto of past political regimes is purely fortuitous.

225



9.1. SIMULATIONS BASED ON LAGRANGIAN STOCHASTIC MODELS OF
TURBULENCE

time step. Let me denote the discrete times used for the numerical integration as tk, where t0 is the initial time, and
the k-time step as ∆k ≡ tk+1 − tk. Then for any stochastic process {Xt}t∈R, if the corresponding Ito SDE is

dX = a(X, t) dt + b(X, t) dW , (9.6)

then the value Xk+1 of the stochastic process at time tk+1 is given as a function of its value Xk at time tk through the
corrector

Xk+1 = Xk +
[
α aβ (Xk, tk) + (1 − α) aβ

(
Xk+1, tk+1

)]
∆k +

[
β b (Xk, tk) + (1 − β) b

(
Xk+1, tk+1

)]
∆Wk , (9.7)

where the modified drift coefficient aβ is given by

aβ ≡ a − β b
∂b

∂X
, (9.8)

Xk+1 is the value of the stochastic process at time tk+1 given by the following predictor (which is simply a first-
order, explicit Euler scheme)

Xk+1 = Xk + a (Xk, tk) ∆k + b (Xk, tk) ∆Wk , (9.9)

∆Wk is a random variable drawn at each time step according to a normal distribution of zero mean and variance ∆k,
and α, β ∈ [0, 1] are two parameters in the numerical scheme that can be chosen arbitrarily, and control the level
of implicitness in the time-difference scheme for the drift and diffusion coefficients respectively. In the following,
I have chosen α = β = 0.5. Of important note is the fact that ∆Wk is only drawn once per time step, with the same
value being used in the predictor and the corrector steps.

This numerical scheme is not unconditionally stable, and the time step is subjected to a Courant-Friedrichs-
Lewy (or CFL) constraint, i.e. an upper boundary above which the scheme becomes unstable. When combined with
the Smoothed Particle Hydrodynamics formalism for the estimation of the means, the CFL constraint becomes3

Welton and Pope (1997)

∆k 6 Ct
h

maxn=1..N

(∣∣∣∣u⋆(n)
v,k

∣∣∣∣ + c
(n)
s

) , (9.10)

where c
(n)
s is the mean sound speed at the location of the n-th particle, h is the size of the kernel function used in

the SPH formalism (see Section 7.2.4), and Ct is a non-dimensional empirical constant, for which numerical tests
prescribe Ct ∼ 0.75.

Boundary conditions for the particles

What happens when a fluid particle exits the simulation box? Particle methods, coupled with SPH, offer several
ways of enforcing boundary conditions, depending on the situation under consideration (see Liu and Liu 2010, for
a review). Periodic boundary conditions are straightforwardly implemented – at least in simple domain geometries
–, because one simply has to reinject exiting particles on the other side with the same properties. Solid boundaries
are less easy to implement. It is possible to simply keep the exiting particles in the box as if they had been reflected
on the boundary; this can be used to implement slip or non-slip boundary conditions alike (e.g. Allen et al. 1989;
Frenkel et al. 1997; Revenga et al. 1998, 1999; Willemsen et al. 2000; Duong-Hong et al. 2004; Wang et al. 2006).
Other, more refined solid boundary treatments can be implemented, primarily based on the inclusion of ghost or
virtual particles (i.e. artificial fluid particles added on the boundary or even outside the domain), which can be
used, for instance, to exert a strong repulsive force on the real particles, so as to prevent them from exiting the
box (e.g. Campbell 1989; Libersky et al. 1993; Monaghan 1994; Morris et al. 1997; Rapaport 2004). On the other
hand, inflow or outflow boundary conditions can be enforced by using buffer zones at each boundary, as in Welton
and Pope (1997) for instance. The idea is to 1) compute boundary values for the mean fields, by using both the

3It may seem odd that a CFL constraint even exists for Lagrangian stochastic models: indeed, the usual physical interpretation is that a
wave should not be able to travel from one grid point to the next during one time step, which presupposes the existence of grid points. In
SPH, there are no grid points, but instead the new constraint is that a fluid particle should not be able to see a wave travel through the entire
width of the weighting kernel in its frame of reference during one time step.
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known properties of the inflow and outflow, and the fact that there should not be any outgoing waves at the inlet
or ingoing waves at the outlet, then 2) enforcing these boundary mean fields by inserting new particles in buffer
zones just outside the domain, drawing their position and velocities according to the mean and variances previously
computed, and finally 3) letting the buffer particles evolve as if they were real particles, discarding any particle
that has exited the domain after the end of the time step, and retaining any particle that ended the time step inside
the domain, regardless of whether it was a real or a buffer particle to begin with.

However, when SPH is used in conjunction with Lagrangian stochastic models – i.e. when the particles are
advanced through time using stochastic equations –, an alternative method, particularly interesting for open domain
boundaries such as those considered in the context of stellar turbulence, consists in discarding any exiting fluid
particle, and resupplying the domain with as many new incoming particles, whose properties are drawn randomly

according to the local Eulerian PDF at the boundary, reconstructed by means of the SPH formalism. This method
was proposed by Meyer and Jenny (2007), and is based on the arguments laid out in the following. Let me consider
a boundary located at zb, such that the region z > zb is inside the domain, and the region z < zb is outside. If the time
step ∆t is small enough that the typical spatial scale of variation of the Eulerian PDF of the flow at the boundary is
much larger than the distance travelled by the particles during ∆t, then the probability that a particle with vertical
velocity uv and vertical position z < zb crosses the boundary during ∆t is given by

fb(uv|z) = β f (uv; zb) if (uv − ũv(zb))∆t > zb − z and z < zb ,

0 otherwise , (9.11)

where β is a normalisation constant. Using the definition of the conditional PDF (see Section 7.1.1), the uncondi-
tional PDF of the velocity of the particle entering the domain from the outside during the time interval ∆t is then
given by

fb(uv) =
∫ zb

−∞
dz fb(uv|z) f (z) if uv > ũv(zb) ,

0 otherwise , (9.12)

where f (z) is the PDF of the particle positions. But under the assumption that the PDF does not vary significantly
over the typical distances traveled by the particles during ∆t, f (z) is uniform, and one obtains

∫ zb

−∞
dz fb(uv|z) f (z) ∝

∫ zb

−∞
dz fb(uv|z) ∝

∫ zb

zb−uv∆t

dz f (uv; z) ∝ uv f (uv; zb) , (9.13)

where the first equality stems from the uniformity of the position PDF f (z), the second equality comes from
Equation 9.11, and the third equality is a first order expansion in ∆t. The proportionality constant is given by the
normalisation condition

∫ +∞

−∞
duv fb(uv) = 1 . (9.14)

Therefore, knowing the Eulerian PDF of the flow velocity f (uv; zb) at the boundary zb immediately yields the PDF
of the velocity of entering particles. Assuming the PDF of the vertical velocity of the flow is Gaussian for instance,

with mean ũv and variance ũ′′2v , one obtains

fb(uv) =
uv

ũ′′2v

exp

−
(uv − ũv)2

2ũ′′2v

 if uv > ũv ,

0 otherwise . (9.15)

This PDF is clearly not Gaussian: its typical form is given in Figure 9.1. In particular, it can be seen that particles
that are too slow cannot penetrate the boundary, while fast particles are favoured by contrast. Note that while
Equation 9.15 is only valid if the Eulerian flow PDF is Gaussian, equivalent expressions for non-Gaussian PDF
can be derived just as easily, and implemented simply by computing more moments of the PDF through the SPH
formalism.
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This reassignment of exiting particles only depends on uv,new and uh,new (which are drawn randomly from the
distributions described by Equations 9.17 and 9.20 respectively, and independently for each particle), as well as

the mean fields ũv, ũ′′2v and ũ′′2
h

at the boundary, all of which are evaluated through the SPH formalism (see
Section 9.1.2). Note that the mapping given above is only valid at the bottom boundary of the simulation; a similar
mapping is found for particles exiting through the top boundary of the simulation box.

Initial conditions for the particles

In grid-based numerical methods, the initial conditions can be chosen to match a given equilibrium model, and
are therefore easily prescribed. In Lagrangian stochastic particle methods, however, the fluid particles are supposed
to represent the flow PDF, including the underlying variance of the turbulent quantities. To reflect this, the initial
properties of the particles cannot be chosen in a deterministic manner, but instead drawn randomly from a relevant
distribution. Concerning their initial velocity, I assume that it is Gaussian, and therefore draw it according to

u
⋆(n)
v (t = 0), u⋆(n)

h
(t = 0) ∼ N

(
0, A c

2(n)
s

)
, (9.21)

where c
2 (n)
s is the equilibrium sound speed squared at the initial location of the n-th particle, and A is a non-

dimensional constant that I chose to equal unity, so that the initial standard deviation of the turbulent velocity

equals the local sound speed. The equilibrium sound speed profile is considered to be a known input of the
simulation, so that I only need to know the initial position of the particles in order to randomly draw their initial
velocity. The initial particle positions are determined in such a way that the initial mean density ρ, as determined

from the SPH formalism, coincides with the equilibrium density profile ρ0, which is also considered to be a known

input of the simulation. Otherwise stated, the position of the fluid particles is drawn according to a PDF f (z, t =
0) ∝ ρ0(z) – with the proportionality coefficient being given by the normalisation condition for f (z, t = 0). Since
the PDF in question is not in an analytical form, it is necessary to draw the particle positions numerically. This is
done through a rejection algorithm, which can be summarised thus: for each particle

1) I draw a random position z uniformly distributed in the entire simulated domain;

2) I draw a random variable u uniformly distributed between 0 and ρ0,max, where the latter is the maximum of
the equilibrium density profile across the entire simulated domain;

3) I check whether or not ρ0(z) < u. If so, the position z is accepted for the fluid particle. If not, I come back to
step 1, and draw a new position for the particle.

Once this is done, I obtained an initial vertical position, vertical velocity and horizontal velocity for each fluid
particle, which is sufficient information to initialise the simulation.

9.1.2 Numerical implementation of the Smoothed Particle Hydrodynamics formalism

Expression of the mean fields in SPH

The drift and diffusion coefficients in the velocity SDE given by Equations 9.4 and 9.5, as I had the opportunity
to point out in Section 9.1.1, depend on the value of the mean fields at the location of the particle – namely the
mean density ρ, the mean gas pressure gradient ∂z p, the mass-averaged vertical velocity ũv, and the vertical and

horizontal diagonal components of the Reynolds stress tensor ũ′′2v and ũ′′2
h

. To estimate these mean fields, I use
the procedure described in detail in Section 7.2.4, which consists in averaging the corresponding particle-level
quantities over all neighbouring particles, the latter being filtered by means of a kernel function K. I recall the
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expressions already given in Section 7.2.4 (see Equations 7.120 to 7.122)

ρ
(
z⋆(n)

)
=

N∑

k=1

∆m(k)K
(
z⋆(k) − z⋆(n)

)
, (9.22)

ũv

(
z⋆(n)

)
=

1
ρ(z⋆(n))

N∑

k=1

∆m(k)u
⋆(k)
v K

(
z⋆(k) − z⋆(n)

)
, (9.23)

ũ′′2v

(
z⋆(n)

)
=

1
ρ(z⋆(n))

N∑

k=1

∆m(k)
(
u
⋆(k)
v − ũv(z⋆(k))

)2
K

(
z⋆(k) − z⋆(n)

)
, (9.24)

ũ′′2
h

(
z⋆(n)

)
=

1
ρ(z⋆(n))

N∑

k=1

∆m(k)
(
u
⋆(k)
h

)2
K

(
z⋆(k) − z⋆(n)

)
, (9.25)

where ∆m(k) is the mass of fluid carried by the k-th fluid particle. If all particles carry the same mass, then it is
given by

∆m =
1
N

∫ zt

zb

dz ρ0(z) , (9.26)

where zb and zt are the vertical coordinates corresponding to the bottom and top boundaries of the simulation box
respectively. As far as the mean gas pressure is concerned, I use the same polytropic relation already assumed in
Chapter 8 (see Equation 8.4)

p = p0

(
ρ

ρ0

)γ
, (9.27)

where the equilibrium gas pressure p0(z) and the polytropic exponent γ(z) are treated as known inputs of the
simulation. Finally, the turbulent kinetic energy reads, by definition

k =
1
2

ũ′′2v + ũ′′2
h
. (9.28)

Together, Equations 9.22 to 9.28 provide with closed expressions for every mean field appearing in the Lagrangian
stochastic model, as a function of the inputs of the simulation – namely ρ0(z), p0(z) and γ(z) – and the state of
the fluid particles themselves – namely z⋆(n), u

⋆(n)
v and u

⋆(n)
h

for each particle n. Note that the SPH formalism also
provides with an expression for the gradient of these mean quantities; for instance, the mean density gradient, on
which depends the mean gas pressure gradient appearing in the vertical velocity SDE, is given by

∂ρ

∂z

∣∣∣∣∣
z⋆(n)
=

N∑

k=1

∆m(k) dK

dz

∣∣∣∣∣
z⋆(k)−z⋆(n)

. (9.29)

In other words, it is obtained by averaging the corresponding particle-level quantity weighted by the gradient of
the kernel function instead of the kernel function itself. Since the gradient of the kernel is an analytical function,
the estimation of the mean gradients is formally performed in exactly the same way as the mean fields themselves:
this is also one of the strengths of the SPH formalism.

O(N) algorithm

Directly using these expressions to compute the mean fields at the location of each particle, however, is quite
impractical. Indeed, this requires the computation of N sums containing ∼ hN/L terms each, where h/L is the ratio
of the kernel size and the domain size – hN/L then representing the average number of particles contributing to
each kernel estimate. Using Equation 7.117 for the optimal kernel size h – i.e. the value of h leading to the best
compromise between precision and accuracy –, one finds that the direct computations of these sums constitutes
an operation of complexity O

(
N9/5

)
. In the 1D case, however, it is possible to reduce the complexity to O(N),
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provided the kernel function K is piece-wise polynomial, which is the case of the kernel function chosen by Welton
and Pope (1997), and that I also choose in the following (see Equation 7.114)

K(r) = c

(
1 + 3

|r|
h

) (
1 − |r|

h

)3

if |r| < h ,

0 if |r| > h ,

(9.30)

where c = 5/(4h). Let me denote an arbitrary particle-level quantity as ρ⋆(n)Q⋆(n), and its kernel estimate as ρQ(z).
Then the fundamental idea is that if K is piecewise polynomial, so is ρQ(z) – since the latter is a linear combination
of kernel functions centered on each fluid particle. Therefore, ρQ

(
z⋆(n)

)
can be estimated from one particle to the

next (provided they are ordered by increasing vertical position) by using its exact Taylor expansion, which only

contains a finite number of terms.
This idea can be formalised thus. The p-th derivative of ρQ is given, in the SPH formalism, by

D(p)(z) = ∆m

∑N

k=1
Q⋆(k)K(p)

(
z⋆(k) − z

)
. (9.31)

Its Taylor expansion yields, in general, the following infinite series

D(p)(z + ∆z) = ∆m

N∑

k=1

Q⋆(k)
+∞∑

q=0

∆zq

q!
K(p+q)

(
z⋆(k) − z

)

=

+∞∑

q=0

∆zq

q!
D(p+q)(z) . (9.32)

If the kernel function is given by Equation 9.30, then D(p) vanishes everywhere for p > 4. Therefore, this infinite
series becomes a finite sum

D(p)(z + ∆z) =
4−p∑

q=0

∆zq

q!
D(p+q)(z) for p = 0 to 4 . (9.33)

Therefore, knowing D(p) at a particle location for p = 0 to 4, this expression yields D(p) at any point in the region
located just after the particle as a sum of only 5 terms (the computation thereof thus only involving operations
of complexity O(1)). However, Equation 9.33 is only valid if all derivatives of K are continuous over the range[
z⋆(k) − z − ∆z; z⋆(k) − z

]
for all particles k. By contrast, if there exists a particle k such that z⋆(k) − z−∆z coincides

with a discontinuity of the p-th derivative of K, then D(p) incurs a jump at z+∆z, which can be explicitly calculated.
Denoting the discontinuity in K(p) as ∆K(p) and the jump incurred by D(p) as ∆D(p), one simply obtains

∆D(p) = ∆m Q⋆(k)∆K(p) . (9.34)

Then the procedure for computing ρQ
(
z⋆(n)

)
for all particles n is the following

1) the particles are ordered by increasing vertical positions, so that z⋆(1)
6 z⋆(2)

6 ... 6 z⋆(N−1)
6 z⋆(N);

2) the position of every discontinuity of D(p) is computed. For instance, the kernel function K given by Equa-
tion 9.30 has three discontinuities: the third and fourth derivatives have discontinuities at r = ± h, with the
jumps being given by ∆K(3)(h) = ∆K(3)(−h) = 24 c/h3 and ∆K(4)(h) = ∆K(4)(−h) = 72 c/h4; and the third
derivative is also discontinuous at r = 0, with a jump ∆K(3)(0) = 96 c/h3. Therefore, each location in the
box coinciding with z⋆(n) − h or z⋆(n) + h for any particle n corresponds to a discontinuity for D(3) and D(4),
and each particle location also corresponds to a discontinuity for D(3). These discontinuities are also ordered
by increasing vertical position;

3) the value of D(p) is explicitly computed for the first particle, and for p = 0 to 4, using Equation 9.31. This
constitutes an opertion of complexity O(hN/L);

4) the values of D(p) are computed up to the first discontinuity through Equation 9.33;
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5) the jumps incurred by D(3) and/or D(4) at the discontinuity are computed through Equation 9.34;

6) steps 4) and 5) are repeated until the position of the second particle is reached. The value of D(0), cor-
responding to the value of ρQ at the position of the second fluid particle, is saved, along with D(1) if the
gradient of the mean field is also needed;

7) steps 4) through 6) are repeated until the last particle has been reached. Each such loop has O(1) complexity,
and there are N of them, so that the entire set of loops has O(N) complexity.

Eventually, it can be seen that the entire algorithm indeed has O(N) complexity. In the end of the procedure, one
has obtained ρQ

(
z⋆(n)

)
for every particle n, as required. Concretely, this procedure must be implemented twice:

first, it is used with Q = 1, Q = uv and Q = u2
h

to yield ρ, ũv and ũ′′2
h

at every particle location respectively; then a

second round, with Q = uv − ũv, yields ũ′′2v at every particle location.

Restoring SPH consistency

I briefly mentioned the concept of consistency for the finite-difference scheme in time in Section 9.1.1, whereby
the time-discretised solution should converge, when∆t → 0, towards an actual solution of the stochastic differential
equations. Since the Lagrangian stochastic model is coupled with the kernel estimates obtained through the SPH
formalism, it is also necessary for the SPH formalism to be consistent. More specifically, it is said to have k-th

order consistency if it can reproduce exactly a polynomial function of z up to k-th degree (Liu and Liu 2010,
Section 4). The concept of consistency is further divided into two different criteria, namely the kernel consistency

and the particle consistency. The SPH approximation is kernel-consistent of order k if the kernel approximation of
any polynomial of degree k is equal to the actual polynomial. For first-order consistency, for instance, one should
have

∫
d3x′ (c0 + c1x′) K(x′ − x) = c0 + c1 x . (9.35)

Setting c1 = 0, one immediately finds the first condition for first-order kernel consistency
∫

d3x′ K(x′ − x) = 1 . (9.36)

Multiplying Equation 9.36 by x, one finds x =
∫

d3x′ x K(x′ − x), and plugging this in Equation 9.35, one finds
the second condition for first-order kernel consistency

∫
d3x′ (x′ − x) K(x′ − x) = 0 . (9.37)

The particle consistency, by contrast, is achieved if the discrete kernel estimation exactly reproduces polynomial
functions. For first order, this amounts to the following conditions (see Liu and Liu 2010, Eq. 58 and 59)

∑N

k=1

∆m

ρ⋆(k)
K

(
x⋆(k) − x

)
= 1 ∀x , (9.38)

∑N

k=1

∆m

ρ⋆(k)
(x⋆(k) − x)K

(
x⋆(k) − x

)
= 0 ∀x , (9.39)

where ρ⋆(k) is the density associated to the k-th particle, i.e. the ration between the mass carried by the particle
and the lumped volume that it occupies, and which can be estimated on the fly in the simulation. While the kernel
consistency stems from the properties of the kernel function K only, the particle consistency also depends on the
specific particle distribution in the system.

There are therefore two sources of inconsistency, illustrated in the 1D case in Figure 9.2: it is either due to

the truncation of the kernel support domain by the boundary of the domain, or to an irregular particle distribution

inside the support domain. In the first case, limited to the boundaries of the domain, both kernel and particle
consistency are lost, while in the second case, which can happen at the boundaries or in the bulk of the simulation
alike, only the particle consistency is lost. In both cases, it is necessary to restore the consistency of the SPH

232





9.2. EXTRACTION OF THE OSCILLATIONS FROM THE SIMULATION

• the size of the compact support of the kernel function was chosen such that h/L = 0.01, where L is the total
length of the simulation domain;

• the simulation domain corresponds to the region of the Sun located between r/R⊙ = 0.995 and r/R⊙ = 1.002,
where R⊙ denotes the photospheric radius of the Sun. As such the domain contains the superadiabatic region,
located just beneath the photosphere, but also the lower layers of the atmosphere;

• I assumed that the polytropic exponent in the pressure-density relation (Equation 9.27) corresponds to the
first adiabatic gradient Γ1. The equilibrium density ρ0(z), p0(z) and Γ1(z) are extracted from the exact same
solar patched model I already considered in Chapters 5 and 6: all details regarding this patched model can
be found in Philidet et al. (2020a). All three equilibrium profiles are shown in Figure 9.3. In particular, the
Γ1(z) behaviour originates from the fact that the bottom part of the simulation corresponds to the top of the
hydrogen ionisation region, thus explaining the drop in the first adiabatic exponent compared to the top of
the domain (see bottom panel of Figure 9.3), and the ‘bump’ in density at the top of the domain (see top
panel of Figure 9.3) stems precisely from this Γ1 behaviour;

• the initial velocities were drawn according to Equation 9.21, with the non-dimensional constant A = 1.0;

• I let the simulation relax before starting to save the output used to extract the oscillations. Concretely, this is
done by ensuring that the two modelled components of the Reynolds stress tensor (vertical and horizontal)
have reached a somewhat stationary state5.

9.2.1 Extraction of the raw power spectra

The properties of the oscillations are best described by means of the power spectrum of the flow quantities,
i.e. the modulus squared of the time Fourier transform of their kernel estimate. One of the strengths of the SPH
formalism is that it allows for the estimation of these flow quantities at whichever location one wishes. These
locations are not restricted to lie on the nodes of a predefined spatial grid, which not only means that there is no
spatial resolution constraint on the positions at which the power spectra are ‘observed’, but also means that those
can be ‘observed’ in any frame of reference. I will consider two different frames of reference for the definition of
the time series

1) the most natural way consists in measuring time series in an Eulerian frame, so that wave variables measured
in this frame correspond to Eulerian perturbations (see Section 2.1). To that effect, I preliminarily define a
set of fixed Eulerian positions zi, and I save the value of each of the aforementioned mean field at each of
the Eulerian locations zi at the end of each time step. This results in a set of time series ρ(zi, t), ũv(zi, t), etc.
for each zi;

2) it is also possible to extract time series in a pseudo-Lagrangian frame, i.e. a frame of reference attached to the
mean flow (only to the oscillations), by contrast with the purely Lagrangian frame, which is attached to the
total fluid motions, including the oscillations and the turbulence. In the absence of turbulence, the two frames
are of course identical. Wave variables computed in this frame correspond to Lagrangian perturbations (see
Section 2.1 for a definition). To compute time series in the pseudo-Lagrangian frame I preliminarily define
a set of fixed mass column densities6 τi, regularly distributed between 0 and M, where M is the total mass
of fluid present in the simulation domain. Then, at the end of each time step, I use the instantaneous mean
density profile ρ(z, t) to compute τ(z, t), which allows me to numerically determine the positions zi(t) such
that τ(zi(t), t) = τi. Once this is done, I save the value of each mean field at each zi(t). This results in a
set of time series ρ(τi, t), ũv(τi, t), etc. for each τi. Placing oneself in a frame of fixed mass column density
amounts to following the mean mass flow, i.e. the mass-averaged velocity ũv. In other words, it does indeed
corresponds to a pseudo-Lagrangian frame.

5By that I mean the time when the oscillation-induced variations of the Reynolds stress tensor occur around a time-independent state.
6In the present context, I define τ such that the mass column density is zero at the bottom boundary. Therefore, one has

τ(z, t) ≡
∫ z

0
dz′ ρ(z′, t) . (9.43)

234







CHAPTER 9. NUMERICAL IMPLEMENTATION

The fitting procedure is performed in two steps: first, a Maximum Likelihood Estimator (MLE) is used for a first
estimation of mode properties; then, these results are refined by means of a Markov Chain Monte-Carlo (MCMC)
method.

Maximum Likelihood Estimator

Let X be a random variable following a PDF f (x,λ), where x is the sampling variable associated to X, and λ

is a vector of parameters controlling the form of the PDF. Maximum Likelihood Estimators (MLE) are used when
the form of the PDF f is known, but not the value of the parameters λ, in which case the aim is to find the best fit

values for these parameters. If N independent random experiments are performed, each yielding a value xk for X,
one can define the logarithmic likelihood function (Brandt 1970)

l(λ) ≡ −
∑N

k=1
ln f (xk,λ) . (9.44)

Then the fundamental idea behind MLE is that the position of the minimum of l in λ-space gives an estimate for
the most likely value of the parameters; this estimator will be denoted as λ in the following. In other words, λ is
the solution of

∇λl = 0 . (9.45)

Furthermore, if N → +∞, the central limit theorem states that the estimator λ of the best-fit parameters value
tends to a multivariate Gaussian distribution, uniquely described by its vector mean and covariance matrix. The
estimator being unbiased, the mean of the distribution is λ itself. As for its covariance matrix, it is given by (Brandt
1970)

σ2
i j

(
λ
)
= h−1

i j , (9.46)

where h−1
i j is the (i, j)-th component of the inverse Hessian matrix of l, the latter being defined by

hi j ≡ E

[
∂2l

∂λi∂λ j

]
. (9.47)

In particular, the diagonal components σ2
ii of the covariance matrix provide with the square of the statistical error

associated to each parameter λi in the Maximum Likelihood estimation procedure. If f has a known analytical

form, so does hi j, and the statistical error in the best-fit value estimation for the PDF parameters can be computed

analytically.
I then follow the work of Toutain and Appourchaux (1994), who argued that the line profile of a solar-like

p-mode follows a χ2 distribution7 with 2 degrees of freedom and with a Lorentzian-shaped mean, so that the
PDF f (ν,λ) associated to the random variable S (ν), where S (ν) is the value of the observed power spectrum at
frequency ν, is given by

f (ν,λ) =
1

S 0(ν,λ)
exp

(
− S (ν)

S 0(ν,λ)

)
, (9.48)

where S 0(ν,λ) is the expected value of the power spectrum at frequency ν, as a function of the parameters defin-
ing the line profile. Each frequency bin in the power spectrum is then treated as an independent measurement
made according to the same PDF, so that, denoting these frequency bins as νk (with k = 1 to N), and plugging
Equation 9.48 into Equation 9.44, the logarithmic likelihood function becomes

l(λ) =
∑N

k=1

(
ln S 0(νk,λ) +

S (νk)
S 0(νk,λ)

)
. (9.49)

In the present case, the power spectrum is comprised of a set of Lorentzian-shaped resonant peaks, so that

S 0(ν,λ) =
Nm∑

i=1

Ai(Γi/2)2

(ν − ν0,i)2 + (Γi/2)2
+ B , (9.50)

7By definition, the χ2 distribution with k degrees of freedom is the law followed by the sum of the squares of k independent, centered
and reduced normal random variables.
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where Ai, Γi and ν0,i are the amplitude, linewidth at half maximum and central frequency of the i-th mode, Nm is
the number of modes in the spectrum, and B is a background component, which I consider to be flat across the
frequency range under consideration. The vector of parameters λ is comprised of Ai, Γi and ν0,i for i = 1 to Nm,
and the background noise B.

As for the Hessian matrix of l, plugging Equation 9.49 into Equation 9.47, one finds

hi j = E


∑N

k=1

S 0(νk,λ) − S (νk)

S 2
0(νk)

∂2S 0

∂λi∂λ j
+

2S (νk) − S 0(νk)

S 3
0(νk)

∂S 0

∂λi

∂S 0

∂λ j

 . (9.51)

Toutain and Appourchaux (1994) then argue that while the expected spectrum S 0 and the observed spectrum S

differ greatly for any given frequency bin, the expectation of their integral weighted by any arbitrary smooth
function of frequency φ(ν) is very similar, so that one has, to a very good approximation

∑N

k=1
S 0

(
νk,λ

)
φ(νk) ∼

∑N

k=1
S (νk) φ(νk) , (9.52)

in which case the Hessian matrix reduces to

hi j ∼ E


∑N

k=1

∂ ln S 0

∂λi

∣∣∣∣∣
νk ,λ

∂ ln S 0

∂λ j

∣∣∣∣∣∣
νk ,λ

 , (9.53)

which can further be considered as an approximation to the corresponding integral (Toutain and Appourchaux
1994)

hi j ∼ Tsimu

∫ νmax

νmin

dν
∂ ln S 0

∂λi

∣∣∣∣∣
ν,λ

∂ ln S 0

∂λ j

∣∣∣∣∣∣
ν,λ

, (9.54)

where νmin and νmax are the lower and upper limits of the frequency range over which the fitting procedure is
performed, and Tsimu is the total duration of the simulation. Plugging Equation 9.50 into Equation 9.54 yields an
explicit integral expression for each component of the Hessian matrix – the bounds of which can be considered
to be ±∞, seeing as the contribution of frequencies far away from the resonant peaks are negligible anyway. The
analytical Hessian matrix can also be inverted analytically (see for instance Toutain and Appourchaux 1994, Eqs.
19 to 21, for a single resonant mode). However, for the sake of simplicity, and because it yields equally accurate
results, I chose to numerically compute the integral defining the Hessian matrix, as well as numerically invert it.
The diagonal elements of the Hessian matrix, as I indicated above, correspond to the variance associated to the
estimate of each parameter in the fit.

Concretely, for each raw power spectrum S (ν) extracted from the simulation, I first isolate the part that contains
the most visible modes – typically the first ten overtones. I then numerically find the minimum value of the
logarithmic likelihood function l(λ) given by Equation 9.49, with S 0 given by Equation 9.50, by means of a
Limited-Memory BFGS algorithm. Essentially, this algorithm starts from a predetermined position in parameter
space (provided by hand on the basis of visual estimates), and iteratively walks through parameter space, using
the gradient ∇λl of the function to be minimised in order to determine the direction and amplitude of the steps at
each iteration of the process (the algorithm will always go in the direction of the steepest descent of l). The BFGS
algorithm does not rely on the Hessian matrix for the iteration; I only need to compute it in the end, once the
best-fit parameter values are found. Eventually, this procedure yields best-fit values for the amplitude, linewidth
and frequency of each mode simultaneously, as well as for the background noise level, and it also yields statistical
errors for all these estimates. I provide with an illustration of the fitting procedure in Figure 9.5, where the left panel
is a full picture of the power spectrum, showing the entire frequency range over which the fitting procedure was
performed, while the right panel is a zoom-in on one of the resonant peaks in the spectrum (more specifically the
fifth one from the left). The blue line represents the raw power spectrum; notice the similarity between its jagged,
erratic aspect and the typical mode line profiles observed in actual asteroseismic measurements (Figure 2.4). The
orange line is the initial guess, obtained by visually inferring approximated values for the properties of the modes,
and the green line represents the MLE fit to the spectrum.

Markov Chain Monte-Carlo method

The estimation of mode properties provided by the MLE are then refined by applying a Markov Chain Monte-
Carlo (MCMC) method to the problem. I made use of a numerical implementation provided by Réza Samadi; I
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the covariance matrix – without the temperature correction, which only serves to enhance or inhibit the diffusion
of the walkers in parameter space – provide with a rigorous estimation of the statistical error inherent to the
fitting procedure. As I indicated above, the interesting properties are the frequency of the modes ν0,i ± ∆ν0,i, their
linewidth at half maximum Γi ± ∆Γi, and their amplitude Ai ± ∆Ai. The background noise level must be included
as a free parameter in the fitting procedure, but its value is not of much interest in the following. Unlike ν0 and
Γ, the amplitude A of a given mode is a function of the Eulerian or pseudo-Lagrangian coordinate at which the
power spectrum is ‘observed’. Extracting the power spectra for several such coordinates provides with a function
of space A(z) or A(τ) representing the spatial profile of the real amplitude of the mode. However, the phase of
the mode must also be accounted for in order to extract the real and imaginary parts of the eigenfunction of the
mode. The phase of the complex spectrum is extracted in exactly the same way as its modulus squared, for each
coordinate z or τ for which a time series was extracted from the simulation, and for every frequency bin. The phase
Φ(z) or Φ(τ) of each mode is then evaluated by considering the frequency bin coinciding with its eigenfrequency.
Finally, the real and imaginary parts of the eigenfunction are given by A cosΦ and A sinΦ respectively. In this
simplified test case, the density, gas pressure and displacement eigenfunctions are in phase with each other, in
accordance with the adiabatic approximation, so that (to within a redefinition of the time origin) only their real
part is of interest. As for the turbulent pressure eigenfunction, I redefined the time origin independently, so as
to also make it purely real. Note, however, that this does not mean that there is no phase difference between the

turbulent pressure spectrum and the other spectra. I showcase in Figure 9.6 the numerical eigenfunctions extracted
from the simulation described in the beginning of this section for the n = 5 mode, where the blue dots represent the
velocity eigenfunction, the orange dots represents the gas pressure eigenfunction, and the green dots represent the
turbulent pressure eigenfunction, all of which are considered in a pseudo-Lagrangian frame. While the velocity
and gas pressure eigenfunctions extracted from the simulation are satisfactorily smooth functions of the mass-
column-density coordinate τ, it is not so much the case for the turbulent pressure eigenfunction. The reason is
that the modes are much less visible in the turbulent pressure spectrum (bottom-right panel of Figure 9.4) than in
the other spectra. This explains, in particular, the apparent discontinuity in the turbulent pressure eigenfunction
(green dots in Figure 9.6): because the modes in the turbulent pressure spectrum is partially drowned in the noise
level, even at the location of a node of a given mode, a certain amplitude is detected. This non-zero amplitude
jumps from positive to negative values – and vice-versa – upon crossing each node, because the phase of the mode
itself incurs a ∼ 180◦ jump there. The same numerical eigenfunction discontinuity is exhibited by the gas pressure
eigenfunction (orange dots in Figure 9.6), although it is much less visible: this is because the noise level in the gas
pressure spectrum is much lower compared to the modes.

9.3 Validation of the numerical implementation

I mentioned, in the beginning of Section 9.1, that the Lagrangian stochastic model used to advanced the fluid
particles through time is a very simplified model, not meant to be realistic, but instead to provide with a test case
to validate the numerical approach. In order to perform the validation, the numerical results obtained through the
procedure detailed in Sections 9.1 and 9.2 must be compared to the exact analytical results to which the test case
should reduce. I describe how these exact analytical results are derived in Section 9.3.1, after which I compare
them to the output of the simulation in Section 9.3.2.

9.3.1 Exact analytical results

Exact wave equation

The Lagrangian stochastic model comprised of Equations 9.3 to 9.5, is a special case of the more refined
version developed in Appendix B. As such, the mean equations stemming from the present model are straightfor-
wardly derived from Equations B.107 to B.110, by setting Gvv = Ghh = −(1/2 + 3/4C0)ωt, ω̃t = ωt, Fe = 0, and
by neglecting the third-order moments in the Reynolds stress equations (on account of the turbulence modelled by
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where δpt = Rv,0δρ + ρ0δRv. Equations 9.61 and 9.62 can be combined to yield δRv, and therefore the turbulent
pressure perturbation δpt, in terms of δuv only. After some elementary algebra, and using Equation 9.59 to rewrite
dδuv/ dz in terms of δρ/ρ0, one finds

δpt

pt,0
=

−3ζ2 + jζ

(
4 +

5
2

C0

)
+

(
1 +

3
2

C0

)

−ζ2 + jζ

(
2 +

3
2

C0

)
+

(
1 +

3
2

C0

)

︸                                       ︷︷                                       ︸
≡Γt

δρ

ρ0
, (9.63)

where ζ ≡ ω/ωt represents the ratio between the turbulent timescale and the period of the oscillation (in that order).
Alternatively, one can deduce an expression for the total pressure perturbation as a function of density perturbation

δptot

ptot,0
=
Γ1 p0 + Γt pt,0

p0 + pt,0

δρ

ρ0
, (9.64)

where I used the fact that δp/p0 = Γ1δρ/ρ0.
The quantity Γt plays for turbulent pressure the role that Γ1 plays for gas pressure. It reduces to Γt = 3 for

ζ ≫ 1 (i.e. if the period of the oscillation is much shorter than the turbulent timescale), and to Γt = 1 for ζ ≪ 1
(i.e. if the period is much longer). Of particular interest is the fact that the Gas-Γ1 and Reduced-Γ1 Models (GGM
and RGM respectively) are also recoverable by Equation 9.63. I recall (see Section 2.4.2 for more details) that
the RGM amounts to neglecting the turbulent pressure perturbation, which corresponds to the Γt = 0 case. On the
other hand, the GGM amounts to equating the relative turbulent and gas pressure perturbations, which corresponds
to the Γt = Γ1 case. Notice that neither the GGM nor the RGM seem to correspond to a natural limiting case of
Equation 9.63.

Plugging Equation 9.63 into Equations 9.59 and 9.60 yields the following second-order system of differential
equations

jωδρ + ρ0
dδuv

dz
= 0 , (9.65)

jωρ0δuv = −
d
dz

(
pt,0Γt

Γ1

δρ

ρ0
+ δp

)
− gδρ , (9.66)

from which the density perturbations can be eliminated through the relation

δρ

ρ0
=

1
Γ1

δp

p0
. (9.67)

The system can be rendered non-dimensional by setting

y1 ≡
ξ

z
=
δuv

jωz
, y2 ≡

δp

p0
, Z ≡ ln z , (9.68)

where ξ is the vertical flow displacement. Then one obtains the linear second-order system

dy1

dZ
= A1(Z) y1(Z) + B1(Z) y2(Z) , (9.69)

dy2

dZ
= A2(Z) y1(Z) + B2(Z) y2(Z) , (9.70)

where the coefficients are given by

A1(Z) ≡ −1 , B1(Z) ≡ − 1
Γ1

, A2(Z) ≡ zρ0ω
2

p̂
, B2(Z) ≡ −d ln p̂

dz
+

gρ0

Γ1 p̂
, (9.71)

and I have introduced

p̂ ≡ p0 +
Γt

Γ1
pt,0 . (9.72)

In particular, the quantity p̂ reduces to the gas pressure p0 in the RGM (since Γt = 0), and to the total pressure
p0 + pt,0 in the GGM (since Γt = Γ1).
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Shooting algorithm

The system comprised of Equations 9.69 and 9.70, combined with the boundary conditions y1 (Zmin) = y1 (Zmax) =
0, forms a linear eigenvalue problem, because the coefficient B2(Z) contains the eigenvalue ω2, which is not known
a priori. Apart from ω2, the coefficients A1(Z), A2(Z), B1(Z) and B2(Z) are completely determined from the equi-
librium profile in the simulation, which can be obtained by time-averaging the mean flow quantities. The angular
eigenfrequencies ω of the linear problem, as well as the corresponding eigenfunctions y1(Z) and y2(Z), can be
numerically determined by a shooting algorithm. The idea is the following

1) a first guess is chosen for ω, and two values ω1 and ω2 are arbitrarily chosen close to this initial value;

2) for each of these angular frequencies, the linear system is numerically integrated from Zmin to Zmax, with
initial conditions y1 (Zmin) = 0 and y2 (Zmin) = 1 (this last value is arbitrary, I chose unity for convenience).
A fourth-order Runge-Kutta scheme is used for the integration;

3) each of the angular frequencies ω1 and ω2 yields a value y
(1)
1 (Zmax) and y

(2)
1 (Zmax) for the function y1. The

goal, naturally, is to find the value of ω that will yield the correct top boundary condition y1 (Zmax) = 0.
Therefore, a new estimate for the target value ω is obtained by replacing

ω1 7→ ω1 −
ω2 − ω1

y
(2)
1 (Zmax) − y

(1)
1 (Zmax)

y
(1)
1 (Zmax) . (9.73)

A new arbitrary value for ω2 is also chosen close to ω1;

4) the steps 1) to 3) are repeated until the difference between two consecutive values of ω1 becomes smaller
than a preliminarily determined epsilonesque value. When this is the case, I consider that the algorithm has
converged: the last value of ω1 constitutes an estimate for the angular eigenfrequency of the target mode.
I integrate the linear system one last time with this final value of ω, so that the solutions y1(Z) and y2(Z)
constitute the eigenfunctions associated to ω.

The shooting algorithm is used for each mode analysed in the numerical implementation, where I adopt the central
frequency ν0,i from the fitting procedure (multiplied by 2π) as the initial guess for ω1.

9.3.2 Comparison with numerical results

I start by comparing the frequencies obtained through the shooting procedure, i.e. the exact analytical result,
with the frequencies obtained through the fitting procedure described in Section 9.2, i.e. the numerical frequencies.
More specifically, I implement the shooting procedure for three different values of Γt (see Section 9.3.1 for a
definition), namely 1) the exact value given by Equation 9.63, 2) the value Γt = 0 corresponding to the RGM,
and 3) the value Γt = Γ1 corresponding to the GGM. This allows me to assess the validity of the GGM and
RGM compared to the exact expression in this test case. I compile the results in Figure 9.7, where the exact
expression is shown in blue, the GGM in orange and the RGM in green. The right panel, in particular, clearly
shows that an agreement is found to a satisfactory extent: the relative error does not exceed ∼ 0.15% for the first
nine overtones, and the discrepancy is of the order of the statistical error stemming from the fitting procedure
described in Section 9.2 (shown as error bars in both panels of Figure 9.7). On the other hand, the GGM clearly
yields biased frequencies, with the relative bias being fairly independent of radial order: the analytical frequencies
computed in the scope of the GGM systematically underestimate the numerical frequencies by ∼ 2%. In the RGM,
the discrepancy is even larger, reaching ∼ 4%.

In Figure 9.8, I compare the gas pressure and velocity eigenfunctions extracted from the simulation to their
exact counterparts, computed with the shooting algorithm described in Section 9.3.1. It can be seen that the
agreement is excellent for both variables. However, the agreement becomes slightly less satisfactory for the higher
overtones of the simulation box (see in particular the n = 9 mode, in the bottom-right panel of Figure 9.8). This is
most likely due to the fact that the higher frequency modes also have smaller wavelengths. If the wavelength of a
mode locally becomes similar to, or smaller than the kernel size h used for the SPH formalism (see Section 9.1.2),
then it is to be expected that the structure of the mode in this region will not be accurately recovered. In this
setup, I chose h/L = 0.01, which indeed starts being non-negligible compare to the n ∼ 10 mode wavelength
close to the top boundary (the modes oscillate faster close to the surface). This is an important point, as this
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results with the output of the simulation therefore serves as a validating step for the numerical approach as a whole.
The comparison between the frequencies and eigenfunctions of the modes, as extracted from the simulation, with
the setup described in the beginning of Section 9.2, and their exact counterparts as derived through the procedure
described in Section 9.3.1, leads to an excellent agreement, as I illustrated in Section 9.3.2. This brings significant
support to the consistency of the numerical approach. This, along with the advantages inherent to Lagrangian
stochastic models of turbulence and already listed in details in Section 7.3, shows that this implementation does
indeed provide with a well-suited method for relating the properties of stellar turbulent convection to the observed
properties of solar-like oscillations.

I note, as a concluding remark, that the numerical approach described in this chapter, far from supplanting
the analytical approach presented in Chapter 8, actually supplement it. On the one hand, while the application
of the analytical approach to more complex – and more realistic – stochastic models might involve convoluted
derivations, thus rendering the approach impractical, the numerical implementation described in this chapter is
much lighter to carry out: the addition of other stochastic variables to describe the state of the particles, and of
other Ito SDE to model their evolution, does not increase the complexity of the implementation in any way; neither
does the inclusion of additional mean fields to estimate in the SPH formalism. For example, the implementation
of the Lagrangian stochastic model developed in Appendix B would not involve any heavy modifications to the
already existing numerical machinery. The transition from 1D to 2D/3D, by contrast, may require a bit more work,
in particular as regards the SPH part of the algorithm; it is nevertheless feasible (e.g. Welton 1998). On the other
hand, the analytical prescriptions derived by means of the formalism developed in Chapter 8 can help disentangle
the numerical results obtained through the method developed here, concerning, for instance, the various physical
contributions to mode damping or surface effects. In short, the two approaches can mutually benefit from each
other, and much insight can be gained by developing them alongside each other, instead of one after the other. I
already had the opportunity to point this out in Section 7.3, but it is perhaps clearer now that the two have been
presented in detail.
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Conclusion and perspectives of Part III
Summary

In Part III, I investigated Lagrangian stochastic models of turbulence as an alternative way to study the cou-
pling between turbulent convection and acoustic modes of oscillations in solar-type stars, compared to the more
traditional approaches based on Mixing Length Theory, Reynolds-stress models or Large-Eddy Simulations. The
core idea behind these models is to describe the evolution of individual fluid particles, followed along their respec-
tive trajectories, instead of the evolution of flow variables. The highly turbulent nature of the flow at the top of the
convective zone in solar-type stars entails the stochastic nature of the equations governing the evolution of the fluid
particles. I have discussed extensively, in Section 7.2 as well as in Appendix B, the ways in which the relevant form
of these stochastic differential equations can be determined, in particular in the context of stellar convection. The
evolution of the fluid particles is intrinsically coupled with the instantaneous mean flow – for example, the mean
pressure gradient exerts a force on these parcels. In the particle representation, the mean flow can be determined
directly from the set of modelled fluid particles themselves, by averaging the corresponding particle-level quantity
over all neighbouring parcels of fluid. This is at the heart of Smoothed Particle Hydrodynamics, which allows all
mean fields in the Lagrangian stochastic model to be put in closed form, and which also allows for the exploitable
output of the model to be extracted in an efficient way. Such Lagrangian stochastic models, by contrast with Mix-
ing Length Theory for instance, provide with a method which 1) does not initially rely on a separation between
convection equations and oscillation equations, but instead encompasses both components, and therefore naturally
contain their mutual coupling; 2) avoids the reduction of spatial scales and timescales in the problem to a unique
scale, but instead accounts for the full description of the turbulent cascade; 3) simultaneously describes all effects
of turbulent convection on mode properties, namely the surface effects and the energetic aspects pertaining to mode
driving and damping, in a single consistent framework; 4) includes the properties of turbulence in the most gen-
eral way possible, thus allowing to freely investigate the relation between any given prescription for the turbulent
velocity field – and, more specifically, for the turbulent spectrum – and the observed properties of the modes. My
short-term goal, in this context, and indeed throughout Part III, was (and still is) to provide with a proof-of-concept
for the use of the above-described method to study turbulence-oscillation coupling. Consequently, I deliberately
investigated a simple Lagrangian stochastic model, which consists of an extension to compressible flows of the
Generalised Langevin Model (see Section 7.2.2). I did so both through purely analytical developments – described
in Chapter 8 – and through the numerical implementation of these methods – described in Chapter 9 –, in parallel.

Concerning the analytical part, I started by linearly perturbing the Lagrangian stochastic model, in order to
extract a wave equation governing the behaviour of the linear oscillations. This is the subject of the work presented
in Philidet et al. (2021). Because the model is stochastic, this linear wave equation is itself comprised of stochastic
differential equations. By construction, it contains the effect of the turbulent background on the oscillations,
based on the closure relation underlying the Lagrangian stochastic model in the first place. Therefore, it naturally
contains all aspects of turbulence-oscillation coupling, and within it lies the information after which I am, namely
the shift in frequency incurred by the modes under the influence of convection, as well as the rate at which they
are excited by the turbulent motions, and finally the contribution of turbulence to the rate at which the modes
are damped. However, the stochastic wave equation contains the instantaneous information on these quantities,
which are not very useful, as one does not have access to them from observations. What one does have access
to, by contrast, is the average, effective impact of turbulence on the oscillations, which is the result of an average
over long timescales of these instantaneous quantities. Some work was required, therefore, to manipulate the
stochastic wave equation in order to extract this effective impact of turbulence on the modes. I made use of the
Simplified Amplitude Equation formalism, originally developed by Stratonovich (1965), and applied to the case of
stellar oscillations perturbed by turbulent convection by Buchler et al. (1993). The fundamental idea is to reduce
the infinite set of partial stochastic differential equations governing the evolution of the fluid variables (infinite
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because pertaining to each location in the star) to a finite set of ordinary stochastic differential equations governing
the evolution of the complex amplitude of a few normal modes of oscillation of the star. In fact, in the linear
case relevant to solar-like oscillations, it actually reduces to a unique SDE on the complex amplitude of a single
mode, which can be described in isolation from every other mode: indeed, mode coupling only arises from non-
linearities. This results in a complex amplitude equation, which can be further decomposed into two equations
on the real amplitude and the phase of the mode under consideration. However, the information after which I am
is still not easily extracted from these equations. The reason lies in the nature of the stochastic perturbation in
the amplitude equations: because it stems from turbulent motions characterised by a very large Reynolds number,
these perturbations act on a very wide range of different timescales. Even from a numerical implementation point
of view, this would become a problem, because each of these timescales would have to be resolved – a problem
not too dissimilar to that into which one runs with Large-Eddy Simulations for spatial scales. But there is also this
more fundamental issue: that it is the averaged, effective influence of turbulence on the oscillations in which I am
interested, something which is very complicated to extract from an equation with such a wide variety of timescales.
In order to circumvent the problem, I transform the amplitude equations into simplified amplitude equations. The
idea is to properly and rigorously incorporate all effects of the finite memory time of the stochastic processes at
play into effective drift and diffusion coefficients in the Ito SDE for the amplitude and phase of the mode, which can
be done by computing the Fokker-Planck equation associated to the amplitude equations, and then exploiting the
fact that a given Fokker-Planck equation has an infinity of equivalent SDE, some much simpler than the original
one. The much simpler form of the simplified amplitude equations, and the fact that their stochastic part is now
δ-correlated in time, allows me to extract the effective impact of turbulence on the mode under consideration. The
end result consists of semi-analytical expressions for the observationally available properties of the modes that are
related to their interaction with stellar turbulent convection – i.e. their excitation rate P, their linewidth η, and
the difference δω between their observed angular eigenfrequency and the value computed in the absence of any
turbulence, which constitutes the ‘modal’ part of the surface effects (see Section 2.4.2 for more details). These
are obtained as functions of 1) the equilibrium state of the star, 2) the structure of the mode under consideration
in the absence of turbulence, and 3) the statistical properties of the turbulent velocity field, and more particularly
its second- and fourth-order autocorrelation spectrum. The first two ingredients are available from 1D stellar
evolutionary models or 3D hydrodynamic simulations. As such, this semi-analytical formalism allows to directly
relate the observed properties of the modes to the input physics of turbulence: the former can therefore be used
to constrain the latter, and when it comes to surface effects, good enough constraints on the latter can be used to
predict the former.

Concerning the numerical part, I implemented directly the same Lagrangian stochastic model considered in
Chapter 8, additionally adopting a plane-parallel geometry, thus allowing to reduce the dimension of the simulation
to 1D. A large set of N individual fluid particles is used to represent the flow. Each particle is initialised in
such a way that the corresponding mean density matches the equilibrium density profile prescribed externally –
and extracted from a 1D equilibrium stellar model. Because the particle properties only depend on time, and
not explicitly on space, the finite-difference scheme for the time integration is quite light to implement: I chose
a Predictor/Corrector scheme properly adapted to stochastic differential equations, where the increment of the
Wiener processes in the Lagrangian stochastic model is drawn randomly, and independently for each particle, from
a normal distribution with zero mean and whose variance is equal to the time step. The coefficients in the finite-
difference scheme, as well as the desired output of the simulations, depend on the ensemble average of the flow
quantities – density, gas pressure, velocity, Reynolds stress tensor. One of the strengths of Lagrangian stochastic
models is that they contain these ensemble averages in closed form at the particle level, and the SPH formalism can
be used to estimate them directly from the particle properties, by performing averages over particles weighted by a
kernel function designed to filter the neighbouring particles only. I had already used this method in the analytical
formalism presented in Chapter 8, but it is also perfectly suited to the present numerical implementation. More
specifically, a O(N) algorithm is implemented to efficiently compute the means at every particle location, and also
at every location in the box where I wish to save an output. Boundary conditions are enforced by re-injecting
exiting particles into the domain, but randomly re-initialising their properties according to the local Eulerian PDF
– which can also be reconstructed by way of the SPH formalism – at the boundary. While this may look similar to a
reflection of the particles on the boundaries, the old particle must be considered as being lost, while the new particle
must be seen as originating either from an upflow coming from below (at the bottom boundary), or a downdraft
coming from above (at the top boundary). Eventually, this numerical implementation allows for the extraction of
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the power spectral density associated to any output of the simulation – more particularly gas density, gas pressure,
turbulent pressure and velocity. Furthermore, the fact that the output can be saved at each time step at arbitrary,
time-dependent nodes in the simulations, allows me to ‘observe’ time series in any given frame of reference: I take
this opportunity to measure power spectra in both Eulerian and pseudo-Lagrangian frames – where the latter refers
to a frame attached to the mean flow, without the erratic turbulent contribution to the flow. Resonant modes are
extracted, and fitted against Lorentzian profiles, in each of these power spectra, which allows for a determination
of the frequency, linewidth and amplitude of the modes, directly from the simulation. The mode amplitude also
depends on space, and with the help of the phase of the complex spectrum – which is also available from the
simulation –, the eigenfunctions of the modes can also be extracted numerically. For the moment, the Lagrangian
stochastic model on which this implementation is based is extremely simple, and is not meant to realistically
represent stellar turbulence. However, its simplicity allows for exact analytical results to be derived: comparing
them to the numerical results is a necessary step to validate the numerical approach as a whole. I perform this
validating step in the end of Chapter 9, where I show that the analytical and numerical results are indeed in very
good agreement, thus supporting the consistency of the method. Furthermore, I compare these exact results with
the GGM and RGM prescriptions, and I show that these systematically yield biased results for the frequency of
the modes – with the RGM results exhibiting larger discrepancies than the GGM results. Those only constitute
preliminary results, and a considerable amount of refinements still need to be brought to this numerical method – as
explained in more detailed in the next section. Nevertheless, the fact that I managed to validate the method makes
it a promising lead indeed to study the relation between stellar turbulent convection and the observed properties of
the modes.

Perspectives

The analytical developments described in Chapter 8 led me simultaneously, as I explained above, to a semi-
analytical formula for the driving and the damping of the modes, as well as the modal part of the surface effects
incurred by solar-like oscillations, as a function of the second- and fourth-order autocorrelation spectra of the tur-
bulent velocity field. The immediate follow-up of this work will consist in using specified prescriptions for the
autocorrelation spectra, which I will then be able to plug into the expressions for the excitation rate, damping rate
and surface effects of any given oscillating mode. In essence, this is very similar to the kind of investigation I
performed in Part II of this thesis, except I was then only interested in one of these aspects, i.e. mode driving. This
operation will allow me to compare the theoretically computed values of these quantities to their observationally
inferred counterparts, which will not only help validate – or invalidate – the chosen turbulence prescription, but
will also bring constraints on the parameters introduced in the turbulence prescription. These parameters directly
pertain to the turbulent velocity field, and are therefore easily related to the underlying physics of turbulent con-
vection. This is in stark contrast, in particular, with the calibration of the parameters of Mixing Length Theory –
starting with the mixing length parameter itself – through similar comparisons between the theoretically computed
and observationally inferred mode properties: because the Mixing Length Theory constitutes an empirical pre-
scription not of the turbulent fields themselves, but of their effect on the mean flow, it is much more complicated
to relate them to the physics of turbulence, and, a fortiori, to assess the range of validity of the constraints put on
these parameters. In addition, the present approach is more flexible, as it allows for any prescription for turbulence
to be tested against observations.

As I have mentioned several times above, for the moment, I applied the analytical formalism presented in
Chapter 8 and the numerical implementation described in Chapter 9 to a deliberately oversimplified Lagrangian
stochastic model. The goal was to prove the validity of the approach, and to showcase its added value compared
to other methods, which I set out to do in these two chapters. But this simplified Lagrangian stochastic model was
never intended to realistically describe stellar turbulent convection in the slightest. In particular, it suffers from
two major drawbacks, whose circumvention is absolutely necessary, should one wish to consider a model that even
remotely begins to accurately represent the properties of the turbulent flow in the convective envelope of solar-type
stars. The first one has to do with the fact that there is no energy equation in this simplified model. Instead of
modelling the evolution of the internal energy associated to each fluid particle, I consider a polytropic relation
between the ensemble average of the gas pressure and the density, characterised by a polytropic exponent that acts
as an external input in the model (see, in particular, hypothesis H6 in Section 8.1.3). While this frees me from
having to include an extra stochastic differential equation for internal energy (or any equivalent thermodynamic
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variable), this also amounts to discarding all non-adiabatic effects in the flow – in particular the impact of the
radiative flux. This is problematic, as solar-like oscillations are known to exhibit a significant degree of non-
adiabaticity (see Section 2.1.1), especially close to the surface of the star, where the coupling with turbulent
convection is precisely at its strongest. The second drawback has to do with the fact that this simplified model

assumes the existence of a single timescale for turbulence, in the form of the externally fixed turbulent frequency

ωt. This is in direct and complete disagreement with the experimentally observed and theoretically predicted
properties of the turbulent cascade at high Reynolds number, which is known to exhibit a wide range of different
timescales, associated to turbulent eddies with very different sizes. Instead of using a fixed unique value for ωt, it
is necessary, therefore, to include the turbulent frequency as a particle property, and to include an extra stochastic
differential equation for its evolution. Both these issues are addressed by the more refined Lagrangian stochastic
model presented in Appendix B, and a natural next step will be to apply both the analytical formalism of Chapter 8
and the numerical implementation of Chapter 9 to this more realistic model – both components being mutually
beneficial, and therefore having to be developed alongside each other.

In addition, it will also be necessary, at some point, to do away with the assumption that the PDF of the
turbulent flow is Gaussian. Indeed, the form of the Lagrangian stochastic models, whether it be the simple version
considered throughout Chapters 8 and 9 or the more refined version developed in Appendix B, are constructed
under the implicit assumption that the equivalent Fokker-Planck equation yields a multivariate Gaussian PDF.
By contrast, as shown by 3D hydrodynamic simulations, stellar turbulent convection is characterised by a typical
structure comprised of upflows and downdrafts, each separately exhibiting Gaussian turbulence, so that the total
flow has a bimodal distribution. Because of the asymmetry between the upflows and the downdrafts – the latter
being colder and more turbulent than the former –, the total distribution is not Gaussian. This problem is well-
known by meteorologists, because the same situation arises in the Convective Planetary Boundary Layer (CPBL),
and their community has come up with ways of taking this ‘bi-Gaussianity’ of turbulence into account (e.g. Rodean
1996). One such solution is to use a two-flow model, where the distribution is determined by the mean and variance
of two Gaussian distributions, or equivalently by the first four moments of the whole distribution. In that case, to
the mean and the variance must be added the skewness and the kurtosis of the distribution. It is possible to
implement two-flow prescriptions in Lagrangian stochastic models: the idea would be to use different sets of Ito
stochastic differential equations to model the evolution of the fluid particles, depending on whether their vertical
velocity is positive or negative, and depending on whether their temperature is higher or lower than the local mean
temperature. This would also constitute an important task to make the approach more realistic, and its results more
applicable to solar-like oscillators.

As I had the opportunity to explain in Section 7.3, the analytical and numerical approaches described in the
previous two chapters are mutually beneficial. Indeed, when it comes to prescribing the effect of turbulent con-
vection on solar-like oscillations, only theoretical arguments can provide with the form of the prescription, while
only the numerical implementation – except in some simple cases – can provide with a quantification of the pa-

rameters in the prescription. Furthermore, exact analytical results, if they can be obtained, can help validate the
numerical approach, while on the other hand, in more complicated cases, the numerical implementation may be
the only way to obtain tangible results. Both approaches being mutually beneficial, it is preferable to develop them
alongside each other; while I did work on both approaches in parallel, for the moment, I have not truly related them
together, which is something towards which I will have to work in the future. In particular, one of the task lying
on the path ahead will be to confront the analytical prescriptions derived in Chapter 8 with the results obtained
through the numerical implementation of the same Lagrangian stochastic model, which would allow me to assess
the self-consistency of the method, but also to quantify said analytical prescriptions. This will involve, for instance,
comparing the mode linewidths inferred from the simulation to the theoretically computed value. Furthermore, a
considerable insight can be gained by exploring the impact of the different control parameters in the simulation on
the subsequent mode properties: this therefore calls for parametric studies based on the numerical implementation
presented in Chapter 9. One of the main immediate difficulties, however, concerns the way the turbulent pressure
spectrum is extracted from the simulation: as I showed in Chapter 9, the turbulent pressure eigenfunctions, for
instance, are subjected to more uncertainty than the other eigenfunctions, a situation which needs remedying.

Those constitute short-term follow-up avenues of research on this project. But once these methods are more
firmly established, their potential range of application will far exceed the realm of solar-like oscillations and their
coupling with turbulent convection. Another possible application of these methods, for instance, concerns the
phenomenon of convective penetration or convective overshoot (depending on the efficiency of the entropy trans-
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fer between the convectively unstable turbulent eddies and the background) that occurs at the transition between
convective and radiative regions, i.e. the fact that convective gas elements, upon reaching the transition, do not
abruptly stop there, but instead penetrate into the neighbouring radiative zone over a certain distance. This exten-
sion of the convective region has an important impact, for example, on the chemical evolution of the star (because
the mixing brought about by convection helps refuel the core of the star, thus extending its lifetime), but convective
penetration is also partly responsible for the excitation of the internal gravity waves propagating in the radiative
zone, and is therefore important as regards the transport of angular momentum (Press 1981; Zahn et al. 1997;
Lecoanet and Quataert 2013; Pinçon et al. 2016). Accounting for convective penetration or overshoot requires
a non-local model of turbulent convection9, and is usually incorporated in 1D stellar models through prescrip-
tions based on non-local formulations of the MLT (see Section 1.2.2), or other similar empirical prescriptions. By
contrast, Lagrangian stochastic models of turbulence would allow to include a more physical closure relation, at
particle level, and would allow for the determination of more physically-grounded prescriptions for the mutual
coupling between the convective penetration into the radiative zone, the internal gravity waves, the rotation (global
or differential) and the chemical mixing. Essentially, this would require implementing the numerical method de-
scribed in Chapter 9 in a region straddling the tachocline (i.e. the transition between the radiative core and the
convective envelope), so that the bottom of the simulation domain would contain the top of the radiative zone –
down to a sufficient depth, so that the convectively unstable eddies can comfortably overshoot once they cross the
tachocline –, and the top of the domain would contain the bottom of the convective zone. This would also require a
transition from a 1D domain to a multidimensional one. This is not too heavy to do for Lagrangian stochastic mod-
els coupled with SPH: the main difficulties would be 1) to extend the Ito SDE for fluid particle evolution beyond
the plane-parallel geometry assumed in both Chapter 9 and Appendix B, and 2) to implement a multidimensional
version of the O(N) algorithm for the kernel estimate of the means (on this subject, see Welton 1998). Once
these obstacles are overcome, the idea would be to use the individual trajectories of the fluid particles to directly
measure the transport due to convective penetration from the simulation. This exact same approach has already
been used in the context of convective penetration on the basis of LES, where the trajectories of artificial trackers
are reconstructed from the flow variables in the simulation (e.g Freytag et al. 1996; Cunningham et al. 2019). By
construction, however, Lagrangian stochastic models are much more suited to this kind of analysis: the fact that
they are implemented with particle methods directly provides with the trackers to be followed. Their trajectory
can then be used to estimate the variance of the particle displacement as a function of time, which would directly
provide with a diffusion matrix characterising convective penetration – i.e. not only a quantitative estimation of
the importance of this transport, as well as of the typical depth of penetration, but also the degree of anisotropy of
this phenomenon, which is indeed expected to be non-negligible, seeing as convection obviously has a preferred
direction. This avenue of research would constitute an important next step for the numerical part of my work.

Yet another domain of application of this approach would concern not solar-like oscillators, but classical pul-
sators instead. The Simplified Amplitude Equation formalism described in Section 8.2, as I mentioned in the
beginning of Chapter 8, was originally applied by Buchler et al. (1993) to study non-linear mode coupling. Indeed,
the global modes of oscillation in classical pulsators are characterised, by contrast with solar-like oscillations,
by their intrinsic instability. As such, they are self-excited, in the sense that they systematically lead to the de-
velopment of a runaway mechanism, which makes their amplitude grow exponentially in time. The amplitude
of these modes, therefore, is not limited by a balance between driving and damping processes, like in solar-type
stars; instead, their observed amplitude is the result of non-linearities which come into play when they become
too large, and which redistribute energy between these modes. The Lagrangian stochastic model approach de-
scribed in Part III, and its implementation in the scope of the Simplified Amplitude Equation formalism, allows
for an investigation of this non-linear coupling. Additionally, it also allows for an investigation of the impact of
turbulent convection on the stability of the modes: indeed, an additional stabilising or destabilising contribution
from turbulence, however small, can make the difference between a star exhibiting self-excited pulsations and a
star only exhibiting stable oscillations. This is susceptible to have an impact on the location of the instability
strips in the Hertzsprung-Russell diagram – i.e. the region, in stellar parameter space, occupied by the stars whose

9If convection is considered to be purely local, then the behaviour of the convectively unstable gas elements only depends on the flow
quantities at their exact, instantaneous location. This means that the moment they enter a region where the Schwarzschild criterion (see
Section 1.1.1 for more details) is not verified, they cease to be subjected to the convective instability, and they stop abruptly in their tracks.
Of course, in reality, their inertia does not allow for such behaviour: their future evolution depends on their history, i.e. on the properties
of the background they traversed before arriving at the boundary of the convective region. Otherwise stated, convection must be described
non-locally to explain the convective penetration.
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internal structure is precisely in the right range to allow for self-excited pulsations to develop. Finally, turbu-
lent convection is also susceptible to play a role, along with non-linearities, in the saturation of the self-excited
mode amplitude, thus impacting the observed amplitude of these modes. Investigating these issues by means of
a Lagrangian stochastic model, however, would require going beyond the linear case considered in Chapter 8,
and instead considering the higher-order terms in the Taylor expansion of the Ito stochastic differential equations
derived in Section 8.1.1. In that case, the wave equation is no longer linear, and the full power of the Simplified
Amplitude Equation formalism can be deployed. By contrast with the results of Chapter 8, where each mode
had its own independent simplified amplitude equation, and where analytical results could be derived easily, for
classical pulsators the Ito SDE for different modes are coupled with each other, and lead to two-mode resonances,
three-mode resonances, or more. In that case, it would undoubtedly be necessary to numerically integrate the set
of coupled, non-linear stochastic differential equations for the real amplitude and phase of the modes. Solving
these equations would provide with a stationary solution for the joint PDF of all these amplitudes – if a stationary
solution exists –, which would directly yield the expectations of every mode amplitude under consideration. This
would allow to shed light into the saturation process leading to the observed amplitude of these modes.

These last two applications – i.e. the idea to apply this formalism, either analytically or numerically, to the issue
of convective penetration, or to extend it to the realm of classical pulsators – undoubtedly constitute longer-term
motivations to go further in this project, and still require a significant amount of work. They do show, however,
that the ideas presented in Part III are not limited in their range of application, but instead open a good number
of doors, each letting the tantalising light of exciting future prospects shine through. Whether or not these doors
actually lead somewhere is for time to tell; nevertheless, and allow me to conclude this thesis on this note, I can
truthfully assert that it is with as much anticipation and wonderment as I did three years ago, upon starting this
PhD, that I contemplate that light.
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Stars, in the broadest definition of the term, are self-gravitating bodies comprised of a more or less ionised
gas. In particular, stellar matter is sufficiently dense that it can be described as a continuous medium, and its
motion modelled through the equations of hydrodynamics. Those are the fundamental equations governing the
behaviour of the plasma constituting the stars, directly derived from first principles, and all phenomena described
in this manuscript are, at some point or another, contained within these equations – although some digging may be
necessary to unveil them. I present and discuss these fundamental equations in this Appendix.

A.1 Eulerian vs Lagrangian descriptions

There are two possible descriptions of any continuous fluid, equally important and complementary, which set
themselves apart through the frame of reference in which the motion of the fluid is measured. In the Eulerian

description, the flow is viewed in the fixed laboratory frame, and any property Q of the fluid is a function of time
t and a fixed position x. On the other hand, in the Lagrangian description, a specific parcel of fluid is chosen, and
the flow is viewed in the moving frame attached to that parcel1. Any property Q+ of that parcel is only a function
of time. The ordinary time derivative of the Lagrangian property Q+ defines a new kind of time derivative for the
Eulerian property Q

DQ

Dt
≡ dQ+

dt
, (A.1)

where Q is the Eulerian property at time t and at whichever position x the parcel followed in the Lagrangian
description happens to be at that particular time. This new time derivative does not correspond to the actual partial
derivative of Q with respect to time, as will become apparent below. It goes by many names: Lagrangian derivative,
material derivative, comoving derivative and substantial derivative are some of them.

The two descriptions are perfectly equivalent to one another: knowing the Lagrangian property Q+ at any time
t for any given parcel of fluid gives the same amount of information as knowing the Eulerian property Q at any time
t and position x. If the motion of the fluid is non-relativistic, then the choice of description is simply a matter of
convenience, and the two can be easily related. In particular, the material derivative in the Lagrangian description
can be related to the time and space derivatives in the Eulerian description, in the following way. By virtue of the
definition given above, one has

DQ

Dt
= lim
∆t→0

Q(x + ∆x, t + ∆t) − Q(x, t)
∆t

, (A.2)

where ∆x is the displacement, during the time step ∆t, of the parcel of fluid which happens to be located at x at
time t. By definition of the Eulerian velocity u at location x and time t, one has ∆x = u ∆t, so that one may write

1In Heraclitus’ words, ‘you cannot step into the same river twice, for other waters are continually flowing on’. To which one can reply:
yes you can, but only in a Lagrangian frame.
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the Taylor expansion of Q(x + ∆x, t + ∆t) at first order

Q(x + ∆x, t + ∆t) = Q(x, t) +
∂Q

∂t
∆t +

∂Q

∂xi
∆xi

= Q(x, t) +
(
∂Q

∂t
+ ui

∂Q

∂xi

)
∆t , (A.3)

where I have used the Einstein notation for contracted indices. Naturally, any second or higher order term in the
expansion will yield a vanishing contribution once ∆t → 0. Then Equation A.2 yields the following identity

DQ

Dt
=
∂Q

∂t
+ ui

∂Q

∂xi
. (A.4)

Equation A.4 means that there are two contributions to the rate of change of a quantity Q as seen by a given parcel
of fluid: the first one is due to the fact that the property Q explicitly depends on time; and the second one is due to
the fact that the parcel of fluid travels through regions characterised by different values of the property Q.

A.2 Conservation laws for a fluid

Because the laws of conservation concern material parcels of fluid rather than the flow as seen from a fixed
point of view, they are best formulated in a Lagrangian point of view. As I will now show, however, it is possible
to transcribe conservation laws in the Eulerian description.

Let me consider a portion of fluid comprised of all parcels of fluid whose position X is enclosed within the
infinitesimal volume dV ≡ dX1 dX2 dX3 at an initial time t = 0. After a time t, each of these particles will have
moved with the flow, so that their position is now x, and they form a new volume dV ′ ≡ dx1 dx2 dx3. The new
volume dV ′ is given by

dV ′ = J dV , (A.5)

where J is the Jacobian of the change of variables X 7→ x, that is to say

J =

∣∣∣∣∣∣
∂xi

∂X j

∣∣∣∣∣∣ . (A.6)

In this context, J is also referred to as the expansion of the fluid, as it describes how a given element of fluid
expands or contracts through time. Let me express the rate of change of this quantity: by multilinearity of the
determinant, one has

J = ǫi jk
∂x1

∂Xi

∂x2

∂X j

∂x3

∂Xk
, (A.7)

where ǫi jk is the Levi-Civita tensor defined by

ǫi jk =

∣∣∣∣∣∣∣∣∣

δi1 δi2 δi3

δ j1 δ j2 δ j3

δk1 δk2 δk3

∣∣∣∣∣∣∣∣∣
. (A.8)

The material derivative of the expansion can be expressed thus

DJ

Dt
= ǫi jk

∂u1

∂Xi

∂x2

∂X j

∂x3

∂Xk
+ ǫi jk

∂x1

∂Xi

∂u2

∂X j

∂x3

∂Xk
+ ǫi jk

∂x1

∂Xi

∂x2

∂X j

∂u3

∂Xk

= ǫi jk
∂u1

∂xl

∂xl

∂Xi

∂x2

∂X j

∂x3

∂Xk
+ ǫi jk

∂x1

∂Xi

∂u2

∂xl

∂xl

∂X j

∂x3

∂Xk
+ ǫi jk

∂x1

∂Xi

∂x2

∂X j

∂u3

∂xl

∂xl

∂Xk

= ǫi jk
∂u1

∂x1

∂x1

∂Xi

∂x2

∂X j

∂x3

∂Xk
+ ǫi jk

∂x1

∂Xi

∂u2

∂x2

∂x2

∂X j

∂x3

∂Xk
+ ǫi jk

∂x1

∂Xi

∂x2

∂X j

∂u3

∂x3

∂x3

∂Xk

= (∇ · u)J . (A.9)
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The first equality stems from the fact that the material derivative follows the same product rule as regular deriva-
tives, as can be seen from Equation A.4, as well as the fact that, by construction, the material derivative of a parcel
position coincides with its velocity u; the second equality stems from the chain rule for derivation; the third equal-
ity is due to the fact that ǫi jk is an antisymmetric tensor, and therefore its contraction with any symmetric tensor
vanishes; and the fourth equality stems from the definition of the divergence operator. The physical interpretation
of Equation A.9 is the no doubt familiar notion that the local expansion or contraction of a fluid is the direct result
of a growing or decreasing relative distance between the different fluid parcels in the vicinity.

The identity given by Equation A.9 allows the derivation of the following useful result, that for any physical
quantity Q(t) written as the integral of an extensive quantity Q(x, t) over a given material volumeV of fluid

Q(t) ≡
∫

V
Q(x, t) d3x , (A.10)

then the material rate of change of Q is

DQ
Dt
=

D

Dt

(∫

V0

Q(X, t)J d3X

)

=

∫

V0

(
DQ

Dt
J + Q

DJ

Dt

)
d3X

=

∫

V0

(
DQ

Dt
+ Q∇ · u

)
J d3X

=

∫

V

(
DQ

Dt
+ Q∇ · u

)
d3x , (A.11)

where V0 is the initial volume of fluid. This identity relates the rate of change of an integral quantity to the rate
of change of the more practical, corresponding local quantity, and is invaluable when deriving the equations of
hydrodynamics, as will become clear below. One can already see that if Q is a conserved quantity for any given
material volumeV, then one automatically obtains a local equation on Q by setting the integrand to zero.

The interpretation of Equation A.11 as representing the conservation of Q is even clearer when it is rewritten
as

DQ
Dt
=

∫

V

(
∂Q

∂t
+∇ · (Qu)

)
d3x

=

∫

V

∂Q

∂t
d3x +

∫

S
Qu · dS , (A.12)

with the use of Equation A.4, as well as the divergence theorem, and where S is the surface enclosing the volume
V. Then the physical interpretation of each term is clear: Q can vary in time either because Q varies locally (first
term on the right-hand side), or because Q is transported out of the material volume by the flow itself (second
term on the right-hand side). While the second form helps physically interpret this identity, its first form given by
Equation A.11 is more practical, and I will use this one in the following.

A.3 Continuity equation

The first equation of hydrodynamics stems from the conservation of mass for a given material volume. Indeed,
by definition, a given material volume V is comprised of a set of fluid particles that remains identical through
time, and whose mass therefore does not change. Let me denote the mass of the material volume asM, and the
local density of the fluid as ρ, then one has

M(t) =
∫

V
ρ(x, t) d3x , (A.13)

so that Equation A.11 is applicable and yields

0 =
DM
Dt
=

∫

V

(
Dρ

Dt
+ ρ∇ · u

)
d3x . (A.14)
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Since this is true of any material volume V, the quantity under the integral must vanish everywhere, and one
obtains a local equation for the conservation of mass, also referred to as the continuity equation (Mihalas and
Mihalas 1984)

Dρ

Dt
+ ρ∇ · u = 0 . (A.15)

A.4 Navier-Stokes equation

Equation A.15 features the velocity field u, for which one therefore also needs an equation. Like I did for
mass, let me denote the i-th component of the momentum of a material volume of fluid as Pi, so that one has

Pi =

∫

V
ρui d3x . (A.16)

Unlike mass, however, Pi is not a conserved quantity, because any material volume of fluid is subjected to external
forces. These forces can fall into two different categories. First, there are the body forces, which act remotely, and
therefore concern the entire material volume. Those contain, for instance, the gravitational force, as well as the
Lorentz force exerted by an external magnetic field if the fluid is ionised. All these forces can be written as

Fb
i (t) =

∫

V
fi(x, t) d3x , (A.17)

where f is the force per unit volume acting on the small element of volume d3x. Secondly, there are the forces
that only act by contact, and therefore only concern the boundary of the material volume. Those are referred to
as stresses, and contain, for instance, the pressure, the viscous force, as well as radiative pressure if the system is
strongly influenced by radiation. All these forces can be written as2

F s
i (t) =

∫

S
Ti jn j dS =

∫

V

∂Ti j

∂x j
d3x , (A.18)

where Ti j is the stress tensor associated to the stress force F s, n is the unit vector locally orthogonal to the surface
S and directed outwards, and I have used the divergence theorem for the second equality.

Newton’s second law gives DPi/Dt = Fb
i
+ F s

i
, so that, using Equation A.11 with Q = ρui, one finds

∫

V

(
Dρui

Dt
+ ρui

∂u j

∂x j
− fi −

∂Ti j

∂x j

)
d3x = 0 . (A.19)

Since this must be true of any material volumeV, the quantity under the integral must vanish everywhere, which
gives a local equation for the fluid momentum. More specifically, using Equation A.15 to expand the first term,
one finds

ρ
Dui

Dt
= fi +

∂Ti j

∂x j
. (A.20)

In particular, only accounting for the gravitational force in fi, and for the pressure and viscous forces in Ti j, one
has

fi = ρgi , (A.21)

Ti j = −p δi j + σi j , (A.22)

where g is the gravitational acceleration, p is the gas pressure, and σi j is the viscous stress tensor. The stress tensor
Ti j has been decomposed into an isotropic part and a deviatoric part, so that p describes the normal part of the
stress force per unit surface, while the viscous stress tensor describes the tangential part of the stress force per unit

2Here I have implicitly assumed the existence of a second-order tensor Ti j defined in such a way that the force per unit surface f s acting
on an element of surface characterised by a unit orthogonal vector n verifies f s

i = Ti jn j. The existence of such a tensor is the direct result
of the isotropy of space, and has absolutely nothing to do with the specific nature of the stress force per unit surface f s.
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surface. Then the momentum equation takes the well known form of the Navier-Stokes equation (Mihalas and
Mihalas 1984)

ρ
Dui

Dt
= ρgi −

∂p

∂xi
+
∂σi j

∂x j
. (A.23)

This equation can be cast in a different but equally useful form by expanding the material derivative on the left-hand
side, and using the continuity equation

∂ρui

∂t
+
∂(pδi j + ρuiu j − σi j)

∂x j
= ρgi . (A.24)

The momentum equation is therefore almost exclusively in a conservative form (with the exception of the grav-
itational force, because it is a body force), where the flux of momentum contains a contribution from the fluid
pressure, one from the viscous transport of momentum, to which one must add the advection of momentum by the
flow itself. From the force budget point of view, advection therefore takes the form of an additional stress force.
This is not very surprising, as all stress forces correspond to a local, molecular mode of transport of momentum.

A.5 Energy equation

Equation A.23 features the gas pressure p, for which one therefore needs an equation. Usually, instead of
deriving an equation for the evolution of pressure, it is more practical to derive an equation for an alternative
thermodynamic variable (for instance entropy, internal energy or enthalpy) and then relate p to the duo of variables
formed by this new thermodynamic variable and the density ρ – which is already modelled – through a constitutive
equation of state3.

As I did for mass and momentum, the energy equation can be obtained through the principle of energy con-
servation for any material volumeV. Let me denote the total energy as E(t), and the local internal energy per unit
mass as e(x, t), then one has

E(t) =
∫

V

(
ρe +

1
2
ρu2

)
d3x , (A.25)

which simply amounts to writing that the total energy of the fluid is the sum of its internal and kinetic energy. Like
momentum, the energy E is not conserved per se, as the material volume can exchange energy with the fluid on
the outside. This energy can be exchanged either through mechanical work from the body forces exerted on the
volume

Pb =

∫

V
f · u d3x , (A.26)

the mechanical work from the stresses exerted on the surface

Ps =

∫

S
Ti jn jui dS =

∫

V

∂Ti jui

∂x j
d3x , (A.27)

or through heat exchange characterised by a heat flux Fh, so that the heat transfered to the material volume from

the outside is

PQ = −
∫

S
Fh

i ni dS = −
∫

V

∂Fh
i

∂xi
d3x . (A.28)

Conservation of energy, stemming from the first principle of thermodynamics, dictates that4

DE
Dt
= Pb + Ps + PQ , (A.29)

3This is only possible if the chemical composition of the gas, and therefore its mean molecular weight µ, is known in advance. Otherwise,
p is also a function of µ, which also requires its own transport equation. In order to keep the discussion simple, I will not delve into this
matter any further in the following, and will consider µ known.

4Note that I have not considered the possibility that energy sources may be present within the material volumeV. In the stellar context,
the source term originates from nuclear fusion reactions in the core of the star, which adds a creation term on the right-hand side of the
energy equation. In this entire thesis, however, I will interest myself with more external regions of the star, where there are no such nuclear
reactions, and therefore no source term in the energy equation.
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so that, using the expressions above and Equation A.11, one finally obtains the total energy equation

ρ
D

Dt

(
e +

1
2

u2
)
= fiui +

∂Ti jui

∂x j
−
∂Fh

j

∂x j
, (A.30)

where I recall that fi = ρgi, Ti j = −pδi j + σi j, and I will consider that the only contribution to the heat flux comes
from the radiative transfer (in particular, I neglect the effect of heat conduction). Explicitly expanding the material
derivative, and using the continuity equation, the total energy equation becomes (Mihalas and Mihalas 1984)

∂

∂t

(
ρe +

1
2
ρu2

)
+

∂

∂xi

(
Fconv

i + Frad
i + Fkin

i + Fvisc
i

)
= ρgiui , (A.31)

where the various energy fluxes are given by

Fconv
i = (ρe + p)ui ≡ ρhui , (A.32)

Fkin
i =

1
2
ρu2ui , (A.33)

Fvisc
i = σi ju j , (A.34)

and h is the enthalpy per unit mass of the fluid. Similarly to the Navier-Stokes equation, the energy equation takes
an almost exclusively conservative form, with the exception of the gravitational term. The keen-eyed reader will
have noticed, in particular, that because of the pressure work, the advection term Fconv

i
in the energy equation

corresponds to the enthalpy flux, and not to the internal energy flux. It is this contribution that is commonly
referred to as the convective flux. I discuss the importance of this mode of energy transport in Section 1.1.1.

One can also derive an equation for the internal energy alone. Forming the dot product of the velocity equation
with u itself, and using the continuity equation, yields the following equation for the specific kinetic energy

∂

∂t

(
1
2
ρu2

)
+

∂

∂xi

(
1
2
ρu2ui

)
= ρgiui − ui

∂p

∂xi
+ ui

∂σi j

∂x j
. (A.35)

Subtracting Equation A.35 from Equation A.31, one finds (Mihalas and Mihalas 1984)

∂ρe

∂t
+

∂

∂xi

(
Fconv

i + Frad
i + Fvisc

i

)
= ui

∂p

∂xi
− ui

∂σi j

∂x j
. (A.36)

The gravitational term no longer appears in the internal energy equation. This would actually be the case for any
other body force: internal energy can only be impacted by stress forces. The convective, radiative and viscous
fluxes are still present, whereas the kinetic energy flux, unsurprisingly, appears to only affect the kinetic energy
budget, and disappears from the internal energy equation.

Furthermore, two source terms appear on the right-hand side of Equation A.36, so that the internal energy
equation is not conservative. Those are related to the mechanical work exerted by the pressure and viscous forces,
and actually also appear in the kinetic energy budget given by Equation A.35 with a minus sign. This means that
these two terms actually represent the conversion of kinetic energy into heat, and do not have any net effect on the
total energy budget (as can be seen from the absence of these terms in Equation A.31).

A.6 Entropy equation in the inviscid limit

When I introduce stellar oscillations in Chapter 2, it becomes apparent that an entropy equation is more prac-
tical than the energy equation (Equation A.36). I recall the thermodynamic identity dU = T dS − p dV , valid
for any closed system for any thermodynamic transformation, where U is the internal energy of the system, T its
temperature, S its entropy, p its pressure and V its volume. Dividing by the mass of the system yields an equivalent
relation where the extensive quantities U, S and V are replaced by the intensive quantities e (internal energy per
unit mass), s (entropy per unit mass) and 1/ρ. This is only valid for a closed system5; in particular, if applying this

5By definition, a closed system is one that cannot exchange matter with the outside, but is still allowed to exchange energy (by contrast,
an isolated system can exchange neither). If matter exchanges are allowed, then an additional term must be added, and the more general
relation dU = T dS − p dV + µ dN must be used instead, where N is the number of particles in the system, and µ its chemical potential.
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relation to a material volume, and then dividing it by dt, one obtains a relation between material time derivatives,
and not partial time derivatives. As such

De

Dt
= T

Ds

Dt
− p

D1/ρ
Dt

= T
Ds

Dt
+

p

ρ2

Dρ

Dt

= T
Ds

Dt
− p

ρ

∂ui

∂xi
, (A.37)

where I have used the continuity equation (Equation A.15) for the last equality. Let me now rearrange the first
term on the left-hand side of Equation A.36, as well as the convective flux term

∂ρe

∂t
+
∂ρhui

∂xi
=
∂ρe

∂t
+
∂ρeui

∂xi
+
∂pui

∂xi

= ρ
∂e

∂t
+ e

∂ρ

∂t
+ ρui

∂e

∂xi
+ e

∂ρui

∂xi
+
∂pui

∂xi

= ρ
De

Dt
+ e

(
∂ρ

∂t
+
∂ρui

∂xi

)

︸         ︷︷         ︸
=0

+
∂pui

∂xi

= ρT
Ds

Dt
− p

∂ui

∂xi
+
∂pui

∂xi

= ρT
Ds

Dt
+ ui

∂p

∂xi
. (A.38)

Plugging this into Equation A.36 yields an equation for the entropy per unit mass s. In particular, in the inviscid
limit where the viscous tensor σi j is neglected, one finds

ρT

(
∂

∂t
+ ui

∂

∂xi

)
s = −

∂Frad
i

∂xi
. (A.39)

One sees that the pressure contribution disappears, leaving only a contribution from radiative transfer. This is not
surprising, of course, seeing as the rate of change of entropy is only a matter of heat transfer, and does not depend
on the mechanical work exerted by the pressure forces.
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In this Appendix, I explicitly describe how the Lagrangian stochastic models of turbulence introduced in
Section 7.2 can be adapted to the case of stellar turbulent convection. First, in Section B.1, I describe how the
Eulerian and Lagrangian PDF of the flow are related to each other for compressible flows – Equation 7.62 only
being valid in the incompressible limit. In Section B.2, I then derive the evolution equations for the means (mean
density, mean velocity and means internal energy) and second-order moments (Reynolds stress tensor, variance
of the internal energy and convective flux) of the turbulent flow, from first principles. Finally, in Section B.3, I
present the core part of this Appendix, i.e. the adaptation of the Refined Langevin Model to compressible flows, in
such a way that the equivalent mean equations coincide with the mean equations derived in Section B.2 from first
principles.

B.1 Lagrangian vs Eulerian PDF for compressible flows

As I showed in Section 7.2, a Lagrangian stochastic model provides with a Fokker-Planck equation for the
Lagrangian flow PDF fL. By contrast, I am interested in Eulerian quantities, that can only be obtained through the
Eulerian flow PDF fE: it is therefore necessary to relate fL to fE . In Section 7.2.1, I gave the relation between the
Eulerian and Lagrangian PDF of the flow fE and fL in the incompressible case, in the form of Equation 7.62. But
in the compressible case, density must be added to the set of variables needed to describe the state of the flow, so
that Equation 7.62 must be modified accordingly.

For the sake of simplicity, let me consider a 1D system where the only two variables one needs to describe
the state of the flow are the velocity (as in the incompressible case) and the density. In an Eulerian frame of
reference, the flow is described by means of the velocity and density at fixed location x, denoted as u(x, t) and
ρ(x, t) respectively. Denoting their joint Eulerian PDF as fE((ρ,V); (x, t)), any quantity Q(ρ(x, t), u(x, t)), defined
as an arbitrary function of ρ and u, has an expectation given by

Q(x, t) ≡
∫

dρ′
∫

dV ′ Q(ρ′,V ′) fE((ρ′,V ′); (x, t)) , (B.1)
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which I recall defines the Reynolds average of the quantity Q. On the other hand, in a Lagrangian frame of
reference, the flow is described by means of the position X+(x0, t) and velocity U+(x0, t) of the fluid particle
located at x0 at a fixed reference time t0. Denoting their joint conditional Lagrangian flow PDF1 as fL((x,V); t|x0),
then any arbitrary quantity Q+(X+(x0, t),U+(x0, t)) pertaining to the fluid particle that was at the position x0 at time
t0, has an expectation given by

E
[
Q+(x0, t)

]
=

∫
dx′

∫
dV ′ Q(x′,V ′) fL((x′,V ′); t|x0) . (B.2)

Let me, furthermore, define the fine-grained Lagrangian PDF

f ′L((x,V); t|x0) ≡ δ (U+(x0, t) − V
)
δ
(
X+(x0, t) − x

)
, (B.3)

where δ is the Dirac distribution. The usefulness of the fine-grained Lagrangian PDF becomes apparent when one
computes its expectation

E
[
f ′L((x,V); t|x0)

]
=

∫
dx′

∫
dV ′ δ(V ′ − V) δ(x′ − x) fL((x′,V ′); t|x0)

= fL((x,V); t|x0) , (B.4)

where I have used Equation B.2 with Q = f ′L, and the properties of the Dirac distribution respectively.
In an incompressible flow, upon integrating fL over x0, one recovers fE , as shown by Equation 7.62. In a

compressible flow, however, things are not that simple, and it is much more practical to make the density appear in
the integration, for reasons which will become clear in a moment. Let ρ(x0, t0) be the density of the flow at point
x0 and time t0. Since this quantity relates to the state of the flow at the initial time, it is not a random variable. One
has

∫
dx0 ρ(x0, t0) fL((x,V); t|x0) =

∫
dx0 ρ(x0, t0) E

[
f ′L((x,V); t|x0)

]

= E
[∫

dx0 ρ(x0, t0) f ′L((x,V); t|x0)
]

= E
[∫

dx0 ρ(x0, t0) δ
(
U+(x0, t) − V

)
δ
(
X+(x0, t) − x

)]
, (B.5)

where I have used Equation B.4, the linearity of the expectation operator E, and Equation B.3, respectively. I then
perform the change of variable x0 7→ x′ ≡ X+(x0, t). This change of variable is possible because for any given
realisation of the flow, there is a one-to-one mapping between the positions of the particles at time t0 and their
positions at time t – in other words, there can be no empty space in the flow, and two fluid particles cannot be
at the same place at the same time. The Jacobian J(x0, t0, x

′, t) of this change of variable, which is unity for an
incompressible flow, is now equal to the ratio of density between the two space-time points considered

J(x0, t0, x
′, t) =

ρ(x0, t0)
ρ(x′, t)

, (B.6)

where ρ(x′, t), unlike ρ0(x0, t0), is a random variable. The introduction of the density in the beginning finds its
usefulness here, because one has

∫
dx0 ρ(x0, t0) fL((x,V); t|x0) = E

[∫
dx′ ρ(x′, t) δ(u′ − V) δ(x′ − x)

]
, (B.7)

where u′ is defined as the velocity, at time t, of the particle which is at position x′ at the same time t. But by
definition of the Eulerian velocity, u′ = u(x′, t), and one has

∫
dx0 ρ(x0, t0) fL((x,V); t|x0) = E

[∫
dx′ ρ(x′, t) δ(u(x′, t) − V) δ(x′ − x)

]

= E
[
ρ(x, t) δ(u(x, t) − V)

]
(B.8)

1Note that, compared to the Lagrangian flow PDF defined in the main body of this thesis (see Section 7.2.1), I have integrated the PDF
over all values of the initial velocity V0, so that the condition now only involves the initial position x0. Also note that, while ρ is included as
a random variable in fE , it does not appear in fL: this is because in the Lagrangian frame of reference, the information on density is actually
contained in the positions X+(x0, t) of the fluid particles.
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where we have used the properties of the Dirac distribution. Notice that the expectation now only contains the
Eulerian quantities ρ and u (V , x and t being constant here), so that it coincides with the Reynolds average. As a
result, we have

∫
dx0 ρ(x0, t0) fL((x,V); t|x0) = ρ(x, t) δ(u(x, t) − V)

=

∫
dρ′

∫
dV ′ ρ′ δ(V ′ − V) fE((ρ′,V ′); (x, t))

=

∫
dρ′ ρ′ fE((ρ′,V); (x, t)) , (B.9)

where I have used Equation B.1 and the properties of the Dirac distribution respectively.
Equation B.9 constitutes a relation between the Eulerian and Lagrangian flow PDF, which must replace Equa-

tion 7.62 for compressible flows. It will prove essential in Section B.3, upon relating Lagrangian stochastic models
to their corresponding Reynolds-averaged equations. Note that Equation B.9 can be extended to flows for which
more turbulent quantities are modelled. In that case, the variable V must be replaced with the vector of all random
variables describing the flow – with the exception of the density ρ. Equation B.9 remains otherwise unchanged.

B.2 Mean equations

In Section B.3, I will modify the Refined Langevin Model in such a way that the corresponding Reynolds-
averaged equations of the flow coincide, as best as possible, with those that can be derived from first principles.
I had already started to derive the ‘exact’ Reynolds-averaged equations in Section 1.2.3, with the example of
the Reynolds stress equation: in this section, I set out to complete the derivation. I start from the equations of
hydrodynamics derived in Appendix A, and which I slightly rearrange thus

∂ρ

∂t
+
∂ρui

∂xi
= 0 , (B.10)

∂ρui

∂t
+
∂ρuiu j

∂x j
= − ∂p

∂xi
+ ρgi +

∂σi j

∂x j
, (B.11)

∂ρe

∂t
+
∂ρeui

∂xi
= −p

∂ui

∂xi
+ σi j

∂u j

∂xi
−
∂Frad

i

∂xi
, (B.12)

where all the notations correspond to those of Appendix A, and I decompose each variable into a mean and
fluctuating part, where the mean is an ensemble average defined either as a Reynolds average or a Favre average

ρ ≡ ρ + ρ′ , ui ≡ ũi + u′′i , p ≡ p + p′ ,

σi j ≡ σi j + σ
′
i j , e ≡ ẽ + e′′ , Frad

i ≡ Frad
i
+ F

′rad
i , (B.13)

where I recall that . denotes a Reynolds average, ′ denotes fluctuations around a Reynolds average, .̃ denotes a
Favre average and ′′ denotes fluctuations around a Favre average.

I will consider that the flow exhibits a plane-parallel geometry, meaning that the mean flow is assumed to only
depend on the radial coordinate, and to have no preferred horizontal direction. These assumptions are verified
in the superficial layers of a star, both by the background turbulent part of the flow and by the oscillations, even

non-radial modes. The reason is that, as I mentioned in Section 2.1.2, even non-radial modes exhibit quasi-vertical
wavevectors close to the surface of the star. I will also consider that the gas is characterised by a polytropic relation
between its various thermodynamic properties, which allows me to write (Canuto 1997)

p′

p
= γ

ρ′

ρ
= γm

ρe′′

ρ̃e
, (B.14)

where γ is the polytropic index characterising the relation, and m ≡ 1/(γ − 1). Finally, I consider that the gas
behaves like an ideal gas, so that

p = (Γ1 − 1)ρ̃e , (B.15)

where Γ1 is the first adiabatic exponent. Note that Γ1 is a perfectly determined thermodynamic property of the
fluid, whereas γ (or equivalently m) is a free parameter which controls how the fluid temperature reacts to heat
transfers. In particular, in the adiabatic limit, we have γ = Γ1.
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B.2.1 Mean continuity equation

The Reynolds average of Equation B.10 yields

∂ρ

∂t
+
∂ρũi

∂xi
= 0 . (B.16)

As a consequence of the plane-parallel geometry, the only non-zero component of the Favre-averaged velocity
is the vertical component, which I will simply denote as ũv in the following. Furthermore, every mean value –
whether it be a Reynolds or Favre average – depends only on time t and the vertical coordinate x. The mean
continuity equation therefore becomes

Dρ

Dt
+ ρ

∂ũv

∂x
= 0 , (B.17)

where the operator D/Dt, in the remainder of this Appendix, does not refer to the material time derivative defined

by Equation A.4, but to the ‘Favre-averaged particle time derivative’ D/Dt ≡ ∂t + ũv ∂z.

B.2.2 Moments of the velocity

Mean momentum equation

Taking the Reynolds average of the vertical component of Equation B.11, one finds

∂ρũv

∂t
+
∂ρũvui

∂xi
= − ∂p

∂xi
− ρg +

∂σiv

∂xi
, (B.18)

where g is the norm of the gravitational acceleration, which I will consider not being perturbed by either the
turbulence or the oscillations in the following. The second term on the left-hand side can be expanded thus

ũvui = ũvũi + ũ′′v u′′
i
=

(
ũv

2
+ ũ′′2v

)
δiv , (B.19)

where the second equality stems from the plane-parallel geometry. On the other hand, molecular forces only play
a significant dissipative role for the small scale motions of the fluid, and can be disregarded in the large scale flow
equation. Therefore

∂ρũv

∂t
+
∂ρũv

2

∂x
+
∂ρũ′′2v

∂x
= −∂p

∂x
− gρ . (B.20)

Finally, I derive the following identity from the mean continuity equation and the definition of the operator D/Dt

∂ρQ

∂t
+
∂ρQũv

∂x
= ρ

DQ

Dt
, (B.21)

where Q is an arbitrary physical quantity. Using this identity for Q = ũv, the mean momentum equation finally
reads

ρ
Dũv

Dt
+
∂ρũ′′2v

∂x
= −∂p

∂x
− gρ . (B.22)

Reynolds stress equation

It can be seen that the quantity ũ′′2v appears in Equation B.22. This is one component of the Reynolds stress
tensor Ri j ≡ ũ′′

i
u′′

j
, for which one needs an evolution equation as well. The plane-parallel geometry entails that

only the diagonal components of this tensor are non-zero. Furthermore, the two horizontal components are equal.
As a result, the entire Reynolds stress tensor is described by only two components, which are the vertical and
horizontal diagonal stresses, denoted Rv and Rh in the following. In order to derive their evolution equations, let
me write Equation B.11 in two different forms

∂ρui

∂t
+
∂ρuiuk

∂xk
= − ∂p

∂xi
+ giρ +

∂σi j

∂x j
, (B.23)

ρ
∂u j

∂t
+ ρuk

∂u j

∂xk
= − ∂p

∂xi
+ giρ +

∂σi j

∂x j
, (B.24)
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where I used Equation B.10 to switch from one to the other. Multiplying Equation B.23 by u j, Equation B.24 by
ui, and adding them together, one finds

∂ρuiu j

∂t
+
∂ρuiu juk

∂x
= −

(
u j
∂p

∂xi
+ ui

∂p

∂x j

)
+

(
u jgiρ + uig jρ

)
+

(
u j

∂σi j

∂x j
+ ui

∂σ ji

∂xi

)
. (B.25)

Taking the Reynolds average of this equation, and remarking that

ρuiu j = ρũiũ j + ρRi j , (B.26)

ρuiu juk = ρũiũ jũk + ρũiR jk + ρũ jRik + ρũkRi j + ρ ˜u′′
i

u′′
j
u′′

k
, (B.27)

one finds

∂ρũiũ j

∂t
+
∂ρRi j

∂t
+

∂

∂xk
ρ

(
ũiũ jũk + ũiR jk + ũ jRik + ũkRi j + u′′i u′′j u′′k

:)

= −
ũ j

∂p

∂xi
+ ũi

∂p

∂x j
+ u′′

i

∂p′

∂x j
+ u′′

j

∂p′

∂xi
+ u′′

j

∂p′

∂xi
+ u′′

i

∂p′

∂x j

 + ρ(ũ jgi + ũig j) +

u′′j
∂σi j

∂x j
+ u′′

i

∂σ ji

∂xi

 .

(B.28)

Note that, as I did for the mean momentum equation, I neglected the term ũi

∂σi j

∂x j
, which is negligible compared

to the effect of the other large scale forces. However, the correlation of the molecular forces with the small scale
velocity – represented by the last term in Equation B.28 – must be accounted for.

The first order terms – i.e. the terms only depending on mean values – can be rearranged by using Equa-
tion B.22. They are non-zero only if i = j = v, in which case one has

∂ρũv
2

∂t
+
∂ρũv

3

∂x
= ρ

Dũv
2

Dt
= 2ρũv

Dũv

Dt
, (B.29)

where I used Equation B.21 with Q = ũv
2 for the first equality. Replacing Dũv/Dt with Equation B.22, one finds

∂ρũv
2

∂t
+
∂ρũv

3

∂x
= −2ũv

∂ρRv

∂x
− 2ũv

∂p

∂x
− 2ũvρg . (B.30)

Replacing the first and third term in Equation B.28 by this expression, it can be seen that all the first-order terms
on the right-hand side actually vanish, and one finds

∂ρRv

∂t
− 2ũv

∂ρRv

∂x
+ 3

∂ρũvRv

∂x
+
∂ρũ′′3v

∂x
= −2u′′v

∂p

∂x
− 2u′′v

∂p′

∂x
+ 2u′′v

∂σv j

∂x j
, (B.31)

∂ρRh

∂t
+
∂ρũvRh

∂x
+
∂ρ˜u′′2

h
u′′v

∂x
= −2u′′

h

∂p′

∂xh
+ 2u′′

h

∂σh j

∂x j
. (B.32)

The indices h are not to be contracted over both horizontal directions; they simply refer to one arbitrary horizontal
axis. Finally, using Equation B.21 for Q = Rv and Rh respectively, one obtains

∂ρRv

∂t
− 2ũv

∂ρRv

∂x
+ 3

∂ρũvRv

∂x
=
∂ρRv

∂t
+
∂ρũvRv

∂x
+ 2ρRv

∂ũv

∂x
= ρ

DRv

Dt
+ 2ρRv

∂ũv

∂x
, (B.33)

∂ρRh

∂t
+
∂ρũvRh

∂x
= ρ

DRh

Dt
, (B.34)

so that the Reynolds stress equations finally read

ρ
DRv

Dt
+
∂ρũ′′3v

∂x
= −2ρRv

∂ũv

∂x
− 2u′′v

∂p

∂x
− 2u′′v

∂p′

∂x
+ 2u′′v

∂σv j

∂x j
, (B.35)

ρ
DRh

Dt
+
∂ρ˜u′′2

h
u′′v

∂x
= −2u′′

h

∂p′

∂xh
+ 2u′′

h

∂σh j

∂x j
. (B.36)
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B.2.3 Moments of the internal energy

Mean energy equation

Taking the Reynolds average of Equation B.12, one finds

∂ρ̃e

∂t
+
∂ρũĩe

∂xi
+
∂ρũ′′

i
e′′

∂xi
= −p

∂ui

∂xi
+ σi j

∂u j

∂xi
−
∂Frad

i

∂xi
. (B.37)

It can be seen that the mean energy equation features the second-order moment Fe ≡ ũ′′v e′′, which corresponds to
the vertical component of the energy convective flux (the other components vanish because of the plane-parallel
geometry). Let me note that Fe does not correspond to the actual convective flux Fconv defined by Equation A.32,
because the latter was defined as the enthalpy flux due to convection. However, if the plasma behaves as an
ideal gas – which it does to a very good approximation in the stellar context –, the internal energy and enthalpy
fluctuations are related through h′′ = Γ1e′′, so that Fconv = Γ1Fe.

Using Equations 1.36 and 1.37, and neglecting the mean viscous stress tensor σi j, the second-to-last term on
the right-hand side of Equation B.37 can be rewritten in terms of the turbulent dissipation rate ǫ as

σi j

∂u j

∂xi
= ρǫ . (B.38)

Then, Equation B.37 becomes

∂ρ̃e

∂t
+
∂ρ̃eũv

∂x
+
∂ρFe

∂x
= −p

∂ũv

∂x
− p

∂u′′v
∂x
− p′

∂u′′i
∂xi
+ ρǫ −

∂Frad
i

∂xi
, (B.39)

where I have used the plane-parallel geometry several times to simplify the indices contractions. The first two
terms on the left-hand side can be rearranged through Equation B.21 with Q = ẽ, and the mean energy equation
finally reads

ρ
Dẽ

Dt
+
∂ρFe

∂x
= −p

∂ũv

∂x
− p

∂u′′v
∂x
− p′

∂u′′i
∂xi
+ ρǫ − ∂Frad

∂x
, (B.40)

where Frad now refers to the vertical component of the radiative flux.

Energy variance equation

Let me write Equation B.12 in two different forms, using Equation B.10 to switch from one to the other

∂ρe

∂t
+
∂ρeui

∂xi
= −p

∂ui

∂xi
+ σi j

∂u j

∂xi
−
∂Frad

i

∂xi
, (B.41)

ρ
∂e

∂t
+ ρui

∂e

∂xi
= −p

∂ui

∂xi
+ σi j

∂u j

∂xi
−
∂Frad

i

∂xi
. (B.42)

Multiplying both equations by e and adding them together, one finds

∂ρe2

∂t
+
∂ρe2ui

∂xi
= −2ep

∂ui

∂xi
+ 2eσi j

∂u j

∂xi
− 2e

∂Frad
i

∂xi
. (B.43)

The Reynolds average of these various terms yields

ρe2 = ρ̃e2 + ρẽ′′2 , (B.44)

ρe2ui = ρ̃e2ũi + 2ρ̃eẽ′′u′′
i
+ ρũiẽ′′2 + ρẽ′′2u′′

i
, (B.45)

ep
∂ui

∂xi
= ẽp

∂ũi

∂xi
+ e′′p

∂ũi

∂xi
+ ẽp

∂u′′
i

∂xi
+ e′′p′

∂ũi

∂xi
+ pe′′

∂u′′i
∂xi
+ ẽp′

∂u′′i
∂xi
+ p′e′′

∂u′′i
∂xi

, (B.46)

eσi j
∂ui

∂x j
= ẽρǫ + e′′σi j

∂ui

∂x j
, (B.47)

e
∂Frad

i

∂xi
= ẽ

∂Frad
i

∂xi
+ e′′

∂Frad
i

∂xi
. (B.48)
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For the moment, I only make two approximations regarding the energy variance equation, namely that 1) the last,
third-order term in Equation B.46 is negligible in front of all others, especially the third-to-last term, which is only
second-order, and 2) the fluctuating contribution of molecular forces (i.e. the second term on the right-hand side
of Equation B.47) is negligible compared to its radiative counterpart (i.e. the last term in Equation B.48). Other
than that, we retain all other terms, and, using the plane-parallel geometry to simplify several indices contractions,
one finds

∂ρ̃e2

∂t
+
∂ρẽ′′2

∂t
+
∂

∂x
ρ

(
ẽ2ũv + 2̃eFe + ũvẽ′′2 + ẽ′′2u′′v

)

= −2̃ep
∂ũv

∂x
− 2e′′p

∂ũv

∂x
− 2̃ep

∂u′′v
∂x
− 2e′′p′

∂ũv

∂x
− 2pe′′

∂u′′i
∂xi
− 2̃ep′

∂u′′i
∂xi
+ 2̃eρǫ − 2̃e

∂Frad

∂x
− 2e′′

∂Frad
i

∂xi
.

(B.49)

The first-order terms on the left-hand side can be expanded to reveal that they all vanish. Indeed, using
Equation B.21 with Q = ẽ2, one finds

∂ρ̃e2

∂t
+
∂ρ̃e2ũv

∂x
= ρ

Dẽ2

Dt
= 2ρ̃e

Dẽ

Dt
. (B.50)

Replacing Dẽ/Dt by Equation B.12, the energy variance equation becomes

∂ρẽ′′2

∂t
+ 2ρFe

∂̃e

∂x
+
∂ρũvẽ′′2

∂x
+
∂ρẽ′′2u′′v
∂x

= −2e′′p
∂ũv

∂x
− 2e′′p′

∂ũv

∂x
− 2pe′′

∂u′′i
∂xi
− 2e′′

∂Frad
i

∂xi
. (B.51)

Finally, using Equation B.21 with Q = ẽ′′2, the first and third terms on the left-hand side of Equation B.51 yield
ρDẽ′′2/Dt. To shorten notations, and in analogy to the notations I used for the Reynolds stress tensor, I will denote
the energy variance ẽ′′2 as Re, in which case the energy variance equation finally reads

ρ
DRe

Dt
+
∂ρẽ′′2u′′v
∂x

= −2ρFe
∂̃e

∂x
− 2e′′p

∂ũv

∂x
− 2e′′p′

∂ũv

∂x
− 2pe′′

∂u′′i
∂xi
− 2e′′

∂Frad
i

∂xi
. (B.52)

B.2.4 Convective flux

Multiplying Equation B.11 by e and Equation B.12 by uv, and adding them together, one finds

∂ρeuv

∂t
+
∂ρeuvui

∂xi
= −e

∂p

∂x
− puv

∂ui

∂xi
− ρeg + e

∂σvi

∂xi
+ uvσi j

∂u j

∂xi
− uv

∂Frad
i

∂xi
. (B.53)

The Reynolds average of these various terms yields

ρeuv = ρ̃eũv + ρFe , (B.54)

ρeu2
v = ρ̃eũv

2
+ 2ρũvFe + ρ̃eRv + ρ

˜e′′u′′2v , (B.55)

e
∂p

∂x
= ẽ

∂p

∂x
+ e′′

∂p

∂x
+ e′′

∂p′

∂x
, (B.56)

puv
∂ui

∂xi
= pũv

∂ũv

∂x
+ pũv

∂u′′v
∂x
+ pu′′v

∂ũv

∂x
+ p′u′′v

∂ũv

∂x
+ ũv p′

∂u′′i
∂xi
+ pu′′v

∂u′′i
∂xi
+ p′u′′v

∂u′′i
∂xi

, (B.57)

ρeg = ρ̃eg , (B.58)

e
∂σvi

∂xi
= ẽ

∂σvi

∂xi
+ e′′

∂σvi

∂xi
, (B.59)

uvσi j

∂u j

∂xi
= ρǫũv + u′′v σi j

∂u j

∂xi
, (B.60)

uv

∂Frad
i

∂xi
= ũv

∂Frad
i

∂xi
+ u′′v

∂Frad
i

∂xi
. (B.61)
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Similarly to what I did with the energy variance equation, I only make two approximations for the moment: 1) I
neglect the last term on the right-hand side of Equation B.56 compared to the second-to-last term, and 2) I neglect
the correlation of molecular forces with fluctuating velocity and energy (i.e. the last terms on the right-hand sides
of Equations B.59 and B.60) compared to their radiative counterpart (i.e. the last term on the right-hand side of
Equation B.61). Furthermore, the first-order terms can be rearranged using Equations B.22 and B.40

∂ρ̃eũv

∂t
+
∂ρ̃eũv

2

∂x
= ρ

Dẽũv

Dt
= ρ̃e

Dũv

Dt
+ ρũv

Dẽ

Dt

= ẽ

(
−∂ρRv

∂x
− ∂p

∂x
− ρg +

∂σvi

∂xi

)
+ ũv

−
∂ρFe

∂x
− p

∂ũv

∂x
− p

∂u′v
∂x
− p′

∂u′′v
∂xi
+ ρǫ −

∂Frad
i

∂xi

 .

(B.62)

Replacing the first and third terms on the left-hand side of Equation B.53 by this expression, the equation simplifies
considerably, and one finds

∂ρFe

∂t
+ ρRv

∂̃e

∂x
+
∂ρũvFe

∂x
+ ρFe

∂ũv

∂x
+
∂ρ˜e′′u′′2v

∂x

= −e′′
∂p

∂x
− e′′

∂p′

∂x
− u′′v p

∂ũv

∂x
− p′u′′v

∂ũv

∂x
− pu′′v

∂u′′i
∂xi
− u′′v

∂Frad
i

∂xi
. (B.63)

Finally, I use Equation B.21 with Q = Fe to rearrange the first and third terms on the right-hand side, so that the
convective flux equation finally reads

ρ
DFe

Dt
+
∂ρ˜e′′u′′2v

∂x
= −ρRv

∂̃e

∂x
− ρFe

∂ũv

∂x
− e′′

∂p

∂x
− e′′

∂p′

∂x
− u′′v p

∂ũv

∂x
− p′u′′v

∂ũv

∂x
− pu′′v

∂u′′i
∂xi
− u′′v

∂Frad
i

∂xi
. (B.64)

B.2.5 Dissipation equation

I follow the model of Canuto (1997) for the turbulent dissipation rate in compressible flows, based on an earlier
incompressible model by the same author (Canuto 1992). The exact expression for the scalar dissipation ǫ is given
by

ǫ = ν

(
ω′′

i
ω′′

i
+

4
3

d2

)
+ 2ν

∂

∂x j


∂u′′

i
u′′

j

∂xi
− 2du′′

j

 , (B.65)

where ν is the fluid kinematic viscosity, ωi is the velocity anti-symmetric strain tensor contracted with the Levi-
Civita symbol, and d is the divergence of u′′i . The last bracket is a diffusion term, and could be included in the
formalism. But because the Reynolds number associated to stellar turbulent convection is so large, this term would
be negligible compared to the other diffusion terms, so that there is not much point accounting for it in the first
place. The two remaining terms – i.e. the first bracket on the right-hand side – are referred to as the solenoidal
dissipation ǫs and the dilation dissipation ǫd. In the incompressible case, ǫd = 0 and ǫ = ǫs. In the compressible
case, ǫd/ǫs typically scales as the Mach number squared. In the low Mach number limit, characteristic of the
turbulent convection close to the surface of solar-like stars, it is therefore reasonable to consider ǫd ≪ ǫs, and I
will, in the following, consider that ǫ ∼ ǫs. Following Canuto (1997), I adopt (see his Eq. 28d, reformulated with
my notations)

ρ
Dǫ

Dt
+
∂ρǫ̃′′u′′v
∂x

= Cǫ1ρ
∂ũv

∂x


2
3
−

(
1
2
+

Rh

Rv

)−1 ǫ −Cǫ2

(
1
2

Rv + Rh

)−1

ρǫ2

− Cǫ3u′′v

(
1
2

Rv + Rh

)−1
∂p

∂x
ǫ − 4

3
ρ
∂ũv

∂x
ǫ , (B.66)

where I deliberately left the second term on the left-hand side – i.e. the small-scale advection term – in its exact
form. The phenomenological constants appearing in this equation are given by Sarkar et al. (1989): Cǫ1 = 1.44,
Cǫ2 = 4/3, Cǫ3 = 0.1 and Cǫ4 = 1.83.
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B.2.6 Closure relations

So far, the system of Reynolds-averaged equations, to which the Lagrangian stochastic model developed in
Section B.3 should reduce, is comprised of Equations B.17, B.22, B.35, B.36, B.40, B.52, B.64 and B.66. But
these equations still feature several second-order moments which require closing. I split them into three categories
in the following.

Algebraic moments

Those are the second-order moments which do not include any gradient. They can be closed by using Equa-
tions B.14 and B.15, as well as the following identity, valid for any quantity Q decomposed according to its Favre
average, and readily deduced from the fact that Q̃′′ = 0

Q′′ = −ρ
′Q′′

ρ
. (B.67)

One finds

u′′v = −
m

ẽ
Fe , (B.68)

p′u′′v = γm(Γ1 − 1)ρFe , (B.69)

e′′ = −m

ẽ
Re , (B.70)

e′′p′ = γm(Γ1 − 1)ρRe . (B.71)

(B.72)

Gradient moments

Those are the second-order moments featuring a fluctuating gradient, either of pressure or velocity. I already
discussed one of them in Section 7.2.2 in the scope of incompressible flows, namely the velocity-pressure-gradient

tensor Πi j, which I recall is defined by

Πi j ≡ u′′
i

∂p′

∂x j
+ u′′

j

∂p′

∂xi
. (B.73)

It is customary to decompose this tensor in the following way

Πi j =
∂p′u′′

i

∂x j
+
∂p′u′′

j

∂xi
+ p′


∂u′′j
∂xi
+
∂u′′i
∂x j


︸              ︷︷              ︸

≡Ri j

, (B.74)

where Ri j is the pressure-rate-of-strain tensor (not to be confused with the Reynolds stress tensor Ri j). In Sec-

tion 7.2.2, I discussed the various models for Πi j with the assumption that
∂p′u′′

i

∂x j
+
∂p′u′′

j

∂xi
= 0, so that Πi j = Ri j.

But here, the acoustic flux p′u′′
i

is already in closed form (see Equation B.69), so that the velocity-pressure-
gradient and pressure-strain tensors are not equal: the closure models discussed in Section 7.2.2 then pertain to
Ri j, not Πi j. I will consider the simplest model possible for this tensor, which is Rotta’s return-to-isotropy model
(see Section 7.2.2)

Ri j = −2CRρǫbi j , (B.75)

where bi j is the normalised anisotropy tensor

bi j =
Ri j

Rkk
− 1

3
δi j . (B.76)
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This model ensures that bi j decays linearly in homogeneous incompressible turbulence. The decay rate depends
on the phenomenological constant CR, which must be greater than unity, lest the anisotropy tensor grows linearly
instead of decaying. Regarding its value, I follow the specification of Pope (1994b), CR = 4.15.

Next, let me consider the moment e′′∂iu
′′
i

. Using Equations B.14 and B.15, one obtains

e′′
∂u′′i
∂xi
= γm

ρ̃e

p

p′

ρ

∂u′′i
∂xi

=
γmẽ

p

(
1 +

ρ′

ρ

)−1

p′
∂u′′i
∂xi

∼ γmẽ

p
p′
∂u′′i
∂xi

. (B.77)

Here, I neglected the third order moment ρ′p′∂iu
′′
i

, which is most likely not going to yield a dominant contribution
to the energy variance equation. Using the definition of the pressure-rate-of-strain tensor, as well as Equation B.15,
one finds

e′′
∂u′′i
∂xi
=

γm

(Γ1 − 1)ρ
Rii . (B.78)

Considering Rotta’s return-to-isotropy model, the pressure-rate-of-strain tensor is traceless, and this straightfor-
wardly reduces to e′′∂iu

′′
i
= 0.

Next, let me consider the moment e′′∂x p′

e′′
∂p′

∂x
= e′′

∂

∂x

(
γmp

ρ̃e
ρe′′

)

=
γmp

ρ̃e
e′′
∂ρe′′

∂x
+ ρe′′2

∂

∂x

(
gammamp

ρ̃e

)

∼ γmp

2ρ̃e

∂ρe′′2

∂x
+ ρe′′2

∂

∂x

(
gammamp

ρ̃e

)
, (B.79)

where I have simplified the first term by considering that the scales on which e′′ varies is much smaller than the
scales on which ρ varies, so that the ρ derivative can be disregarded compared to the e′′ derivative. Using the
definition of Re and Equation B.15, one finds

e′′
∂p′

∂x
=
γm(Γ1 − 1)

2
∂ρRe

∂x
+ ρRe

∂gammam(Γ1 − 1)
∂x

. (B.80)

As for u′′v ∂iu
′′
i

, I will simply retain the most dominant term, so that

u′′v
∂u′′i
∂xi
∼ 1

2
∂Rv

∂x
. (B.81)

Radiative moments

Those are all the moments that involve the radiative flux Frad, i.e. its Reynolds average Frad, as well as the

second-order moments u′′v
∂Frad

i

∂xi
and e′′

∂Frad
i

∂xi
. These second-order moments describe how the radiative transfer

correlates with the turbulent motions, and should be accounted for appropriately in a more refined model. How-
ever, for the sake of simplicity, I will discard them from the equations on the variance of the energy Re and the
energy convective flux Fe respectively. As for the mean radiative flux, it can be expressed solely in terms of the
mean quantities of the flow – for instance, in the diffusion approximation, it depends on the gradient of the mean
temperature, i.e. the gradient of the mean internal energy ẽ. I will leave it in the form Frad in the following.
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B.2.7 Final form of the mean equations

The system of evolution equations for all first- and second-order moments of the velocity and internal energy
(mean density ρ, mean vertical velocity ũv and mean internal energy ẽ for the former; vertical Reynolds stress Rv,
horizontal Reynolds stress Rh, internal energy variance Re and energy convective flux Fe for the latter) as well as
the turbulent dissipation rate ǫ, comprised of Equations B.17, B.22, B.35, B.36, B.40, B.52 and B.66, combined
with the closure relations derived in Section B.2.6, yield the following system of Reynolds-averaged equations, to
which I will consistently refer when developing the Lagrangian stochastic model in Section B.3

Dρ

Dt
+ ρ

∂ũv

∂x
= 0 , (B.82)

ρ
Dũv

Dt
+
∂ρRv

∂x
= −∂p

∂x
− gρ , (B.83)

ρ
DRv

Dt
+
∂ρũ′′3v

∂x
= −2ρRv

∂ũv

∂x
+

2mFe

ẽ

∂p

∂x
− 2

(
∂γm(Γ1 − 1)ρFe

∂x
+

2CRρǫ(Rv − Rh)
3(Rv + 2Rh)

)
− 2

3
ρǫ , (B.84)

ρ
DRh

Dt
+
∂ρ˜u′′2

h
u′′v

∂x
= −2CRρǫ(Rh − Rv)

3(Rv + 2Rh)
− 2

3
ρǫ , (B.85)

ρ
Dẽ

Dt
+
∂ρFe

∂x
= −p

∂ũv

∂x
+ p

∂mFe/̃e

∂x
+ ρǫ − ∂Frad

∂x
, (B.86)

ρ
DRe
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+
∂ρẽ′′2u′′v
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= −2ρFe
∂̃e

∂x
+

2mRe

ẽ
p
∂ũv

∂x
− 2γm(Γ1 − 1)ρRe

∂ũv

∂x
, (B.87)

ρ
DFe

Dt
+
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∂x
= −ρRv

∂̃e

∂x
− ρFe

∂ũv

∂x
+

mRe

ẽ
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− 1

2
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− 1

2
ρRe

∂γm(Γ1 − 1)
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+
mFe

ẽ
p
∂ũv

∂x
− γm(Γ1 − 1)ρFe

∂ũv

∂x
− 1

2
p
∂Rv

∂x
, (B.88)

ρ
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1
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(
1
2

Rv + Rh

)−1
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+Cǫ3
mFe

ẽ

(
1
2

Rv + Rh

)−1
∂p

∂x
ǫ − 4

3
ρ
∂ũv
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ǫ . (B.89)

B.3 Lagrangian stochastic model for stellar turbulent convection

In Section 7.2.3, I presented the Refined Langevin Model as a Lagrangian stochastic model for incompressible
flows where the turbulent frequency ω⋆t associated to fluid particles is modelled alongside their velocity, according
to the stochastic differential equations recalled here

dx⋆i = u⋆i dt , (B.90)

du⋆i =

[
−1
ρ

∂p

∂xi
+ gi + Li j

(
u⋆j − u j

)]
dt +

√
C0ω

⋆
t k dWi , (B.91)

dω⋆t = −ω⋆t ωt

[
Sω +Cχ

(
ln

(
ω⋆t

ωt

)
− 1

2
σ2

)]
dt + ω⋆t

√
2Cχωtσ2 dWω , (B.92)

where

Li j = Gi j −
3
4

[
C0

(
ω⋆t − ωt

)
+ ∆C0ωt

]
A−1

i j (B.93)

is the modified drift tensor, compared to the original drift tensor Gi j used in the Generalised Langevin Model,
∆C0 = 1.4 is the difference between the values of the Kolmogorov constants calibrated for the GLM and RLM,
and Ai j ≡ u′′

i
u′′

j
/(2k/3). In the following section, I start from the RLM and modify it in order for the underlying,

corresponding Reynolds-averaged equations to coincide with the mean equations derived in Section B.2. First,
I adapt the velocity SDE – both vertical and horizontal – in Section B.3.1, and the turbulent frequency SDE in
Section B.3.2. Furthermore, an additional thermodynamic variable is needed, in the form of the internal energy
per unit mass e⋆ associated to each fluid particle individually, for which I derive a SDE, on the same template as
the velocity SDE, in Section B.3.3.
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B.3.1 Stochastic differential equations for velocity

Adapting Equation B.91

Let me compare the mean momentum and Reynolds stress equations obtained in the incompressible case
from first principles (Equations 7.79 and 7.81 respectively), on the one hand, and their compressible counterparts
Equations B.83 to B.85 on the other hand. There are several key differences between the two, each of which will
lead me to modify the RLM accordingly

• the modelled quantities are now Favre-averages, not Reynolds-averages. As I will soon show, this is only a
consequence of Equation B.9, and does not require any modification to the stochastic model;

• some of the mean fields present in the coefficients of the mean equations are also Favre averages. This
only requires the Reynolds averages appearing in the RLM (for instance k in the diffusion coefficient) to be
changed to Favre averages;

• the convective flux acts as an additional source of vertical Reynolds stress compared to the incompressible
case. This term needs to be added to the drift coefficient in Equation B.91. Given the definition of the
convective flux, it will be proportional to the internal energy fluctuations e′′. The addition of this term in the
velocity equation makes it necessary to add a stochastic differential equation for the particle internal energy
e⋆, which is the subject of Section B.3.3.

Implementing these changes in Equation B.91 yields the following stochastic model for position and velocity

dx⋆ = u⋆v dt , (B.94)

du⋆v =

(
−1
ρ

∂p
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− g +Gvv

(
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+Ghvu⋆h −C0
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1
4
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)
+

m

ρ̃e
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+
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⋆
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Rv

2
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))1/2

dWv , (B.95)

du⋆h =

(
Gvh

(
u⋆v − ũv

)
+Ghhu⋆h −C0

(
Rv

4Rh
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1
2

) (
ω⋆t − ω̃t

)
u⋆h

)
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(
C0ω

⋆
t

(
Rv

2
+ Rh

))1/2

dWh , (B.96)

where I have developed the index contraction between Gi j and
(
u j − ũ j

)
– the definition of Gvv, Gvh, Ghv and Ghh

are quite straightforward in that context –, and I used the fact that, the Reynolds stress tensor being diagonal, one
simply has A−1

i j = 1/Ai j. I have also redefined k as a Favre average rather than a Reynolds average, so that

k ≡ 1
2

(
ũ′′x u′′x + ũ′′y u′′y + ũ′′z u′′z

)
=

Rv

2
+ Rh . (B.97)

Equivalent mean velocity and Reynolds stress equations

First, let me derive the Fokker-Planck equation governing the evolution of the particle Lagrangian PDF

f⋆
L

((x⋆, u⋆v , u
⋆
h

); t|x0) from Equations B.94 to B.96, using the relation between an Ito SDE and its underlying
Fokker-Planck equation introduced in Section 7.1.3
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 , (B.98)

where I have used the fact that the drift tensor Gi j, as well as the various mean quantities, do not depend on the
stochastic variables themselves, and can therefore be pulled out of the derivatives with respect to x⋆, u⋆v and u⋆

h
.

Then, the fundamental assumption behind stochastic particle models is that for any x0, one has

f⋆L (x⋆, u⋆v , u
⋆
h , t|x0) = fL(x = x⋆, uv = u⋆v , uh = u⋆h , t|x0) , (B.99)
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so that Equation B.98 also governs the evolution of the flow Lagrangian PDF fL. From there, Equation B.9 allows
me to derive the Eulerian PDF equation. Indeed, the initial density ρ(x0, t0) depends on neither x, t, uv nor uh, so
that multiplying Equation B.98 by ρ(x0, t0), the latter can be included within all derivatives. I then integrate over
x0, and use Equation B.9 to obtain

∂
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∂uh
−Ghh

∫
dρ′

∂ρ′uh fE

∂uh
+C0

(
Rv

4Rh
+

1
2

) ∫
dρ′

∂ρ′(ωt − ω̃t)uh fE

∂uh

+
1
2

C0

(
Rv

2
+ Rh

) ∫
dρ′
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∂2ρ′ωt fE
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 , (B.100)

where I have used the fact that Gi j, C0, as well as the mean fields, depend on x and t, but not uv or uh.
Then, multiplying Equation B.100 by any arbitrary quantity Q(uv, uh, x, t) and integrating over both uv and uh,

it can be seen that one obtains an evolution equation for the Favre average of Q(x, t), not its Reynolds average.
Applying this for Q = 1, uv, (uv − ũv)2 and u2

h
respectively, one finds the following mean equations

∂ρ

∂t
= −∂ρuv

∂x
, (B.101)

∂ρuv

∂t
= −∂ρu2
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1
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h
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1
4
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2Rv

)
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ρ̃e

∂p

∂x
ρe′′ , (B.102)

∂ρu′′2v

∂t
= −2ρu′′v

∂ũv

∂t
− ∂ρu′′2v uv

∂x
− 2ρu′′v uv
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1
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)
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(
Rv

2
+ Rh

)
ρωt , (B.103)

∂ρu′′2
h
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∂ρu′′2
h
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∂x
+ 2Ghhρu′′2

h
+ 2Gvhρu′′v u′′

h
− 2C0

(
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4Rh
+

1
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)
ρω′′t u′′2

h
+C0

(
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2
+ Rh

)
ρωt . (B.104)

The evaluation of the time and space derivatives in the PDF equation for Q = (uv − ũv)2 involves a tiny subtlety,
because unlike the other quantities, it explicitly depends on x and t (through ũv). As such, it does not commute
with the partial derivatives with respect to t or x. The corresponding terms can however be computed thus

∫
duv

∫
duh (uv − ũv)2 ∂

∂t

(∫
dρ′ ρ′ fE

)

=

∫
duv

∫
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∫
dρ′ (uv − ũv)2 ∂ρ

′ fE

∂t
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∫
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∫
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∫
dρ′

∂ρ′(uv − ũv)2 fE

∂t
−

∫
duv

∫
duh

∫
dρ′ ρ′ fE

∂(uv − ũv)2

∂t

=
∂

∂t

(∫
duv

∫
duh

∫
dρ′ ρ′(uv − ũv)2 fE

)
+

∫
duv

∫
duh

∫
dρ′ ρ′ fE × 2(uv − ũv)

∂ũv

∂t

=
∂ρu′′2v

∂t
+ 2ρu′′v

∂ũv

∂t
, (B.105)

and similarly

∫
duv

∫
duh(uv − ũv)2 ∂

∂x

(∫
dρ′ ρ′uv fE

)
=
∂ρu′′2v uv

∂x
+ 2ρu′′v uv

∂ũv

∂x
. (B.106)

The last term of both equations lead to the first and third terms on the right-hand side of both Equations B.103
and B.104, which is why they have no equivalent in the other mean equations.
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Using Equation B.101 to rearrange the left-hand side and the first term of the right-hand side on each of
Equations B.102 to B.104, and using the definition of the Favre fluctuations to write ρQ′′ = 0 for any quantity Q,
Equations B.101 to B.104 can be drastically reduced. It can be even more drastically reduced if one remembers
that the RLM from which I started was derived with the assumption that the random variables uv and ω (or uh

and ω) are independent. In that case, the terms proportional to ρu′′v ω′′, ρω′′u′′2v and ρω′′u′′2
h

vanish. Finally, one
obtains

Dρ

Dt
+ ρ

∂ũv

∂x
= 0 , (B.107)

Dũv

Dt
+

1
ρ

∂ρRv

∂x
= −1

ρ

∂p

∂x
− g , (B.108)

DRv

Dt
+

1
ρ

∂ρũ′′3v

∂x
= −2Rv

∂ũv

∂x
+ 2GvvRv +

2m

ρ̃e

∂p

∂x
Fe +C0

(
Rv

2
+ Rh

)
ω̃t , (B.109)

DRh

Dt
+

1
ρ

∂ρ˜u′′2
h

u′′v
∂x

= 2GhhRh +C0

(
Rv

2
+ Rh

)
ω̃t . (B.110)

Upon comparing Equations B.107 to B.110, on the one hand, to Equations B.82 to B.85 on the other hand, it is
apparent that, exactly as in the RLM, the mean continuity and momentum equations are identical, while the only
terms that are not modelled exactly in the Reynolds stress equations are the velocity-pressure-gradient and the
dissipation. Identifying the two sets of equations with one another, one finds

1
ρ

∂γm(Γ1 − 1)ρFe

∂x
+

(
2CR(Rv − Rh)
3(Rv + 2Rh)

+
1
3

)
ǫ = −GvvRv −

1
2

C0

(
Rv

2
+ Rh

)
ω̃t , (B.111)

(
CR(Rh − Rv)
3(Rv + 2Rh)

+
1
3

)
ǫ = −GhhRh −

1
2

C0

(
Rv

2
+ Rh

)
ω̃t , (B.112)

where I recall that ǫ = kω̃t. I mentioned in Section 7.2.2 that the drift tensor Gi j is usually decomposed into

Gvv ≡ Ga
vv −

(
1
2
+

3
4

C0

)
ω̃t , (B.113)

Ghh ≡ Ga
hh −

(
1
2
+

3
4

C0

)
ω̃t , (B.114)

where Ga
i j

constitutes the anisotropic part of the drift tensor and the other term is the isotropic drift tensor, to
which Gi j reduces exactly in the incompressible homogeneous limit. Injecting Equations B.113 and B.114 in
Equations B.111 and B.112, one finds the following expressions for the anisotropic drift tensor

Ga
vv = −

1
ρRv

∂γm(Γ1 − 1)ρFe

∂x
+ ω̃t

(
Rh

Rv
− 1

) [
1
3

(CR − 1) − 1
2

C0

]
, (B.115)

Ga
hh = ω̃t

(
Rv

Rh
− 1

) [
1
6

(CR − 1) − 1
4

C0

]
. (B.116)

It appears, in particular, that the two sources of drift anisotropy are the anisotropy of the Reynolds stress tensor
itself, and the gradient of the vertical convective flux. With the drift tensor given by these specifications, the
Kolmogorov constant given by C0 = 3.5 in the scope of the RLM, and the Rotta constant given by CR = 1+3C0/2 =
6.25 (Pope 1994b), then Equations B.94 to B.96 forms a closed stochastic model for the position and velocity of
the fluid particles representing the flow.

B.3.2 Stochastic differential equation for dissipation

I will retain the same SDE for turbulent frequency as in the RLM (see Equation B.92), with the only change
being in the specific form taken by Sω, which I recall represents the nondimensional decay rate of the mean
turbulent frequency ω̃t. The inclusion of Equation B.92 in the Lagrangian stochastic model leads to the addition
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of the following contributions in the Fokker-Planck equation on the Eulerian flow PDF fE

∂

∂t

(∫
dρ′ρ′ fE

)
= [...] + ω̃tSω

∫
dρ′

∂ρ′ωt fE

∂ωt

+ Cχω̃t

∫
dρ′

∂

∂ωt

(
ρ′ωt

(
ln
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ω̃t
− 1

2
σ2

)
fE

)
+ Cχω̃tσ

2
∫

dρ′
∂2ρ′ω2

t fE

∂ω2
t

, (B.117)

where [...] refers to the right-hand side of Equation B.100.
In order to derive which form Sω should take, let me derive the mean dissipation equation for ǫ stemming from

Equation B.92, which I will then be able to compare to Equation B.89. Making use of Ito’s formula (Equation 7.51)
to perform the change of stochastic variables ω⋆t 7→ ǫ⋆ ≡ ω⋆t k(x⋆), one finds

dǫ⋆ =
(
u⋆v ǫ

⋆ ∂ ln k

∂x

∣∣∣∣∣
x⋆
− 1

k
ǫ⋆ǫ̃

[
Sω +Cχ

(
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(
ǫ⋆

ǫ̃

)
− 1

2
σ2

)])
dt + k−3/2ǫ⋆

√
2Cχǫ̃σ2 dW . (B.118)

This yields the following evolution equation for ǫ̃

ρ
Dǫ̃

Dt
+
∂ρǫ̃′′u′′v
∂x

= ρǫ̃uv
∂ ln k̃

∂x
− ρ ǫ̃

2

k̃
Sω . (B.119)

Comparing this mean dissipation equation with Equation B.89, one finds

ρǫ̃uv
∂ ln k
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ǫ̃ . (B.120)

Remarking that the model was derived with the assumption that dissipation and velocity are independent, so that
ǫ̃uv = ǫ̃ũv, one can finally isolate Sω to find
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∂ũv

∂x
−Cǫ3

mFe

ρ̃ek

∂p
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 +Cǫ2 . (B.121)

One can give a succinct physical interpretation of each term

• the first term is a consequence of the implicit assumption that it is ǫ̃, rather than ω̃t, which is conserved when
a particle moves through a region of inhomogeneous turbulent kinetic energy. Had I made the opposite
assumption, this term would have disappeared from the definition of Sω, but a similar term would have
appeared instead in Equation B.89;

• the second term is a compressibility term, which vanishes in the incompressible limit. It is comprised of an
isotropic contribution (the 4/3 in the brackets) and an anisotropic contribution, which vanishes in isotropic
turbulence (because then one would have Rh = Rv). This term tends to make ω̃t decay faster as the mean
density locally decreases;

• the third term represents the fact that the convective flux acts as a source of turbulence: the stronger the
convective flux, the faster ω̃t increases (or decreases, depending on whether the convective flux works along
or against the mean pressure gradient);

• the last constant contribution corresponds to the nondimensional decay rate to which Sω reduces in homo-
geneous turbulence in the standard dissipation model.

Together, Equation B.92, Equation B.121 and the specifications of the phenomenological constants σ2, Cχ and Cǫi

(i = 1, 2, 3) form a closed stochastic model for dissipation. I follow Pope and Chen (1990) and adopt the values
σ2 = 1, Cχ = 1.6, Cǫ1 = 1.44, Cǫ2 = 1.83 and Cǫ3 = 0.1.
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B.3.3 Stochastic differential equation for internal energy

Following the same template as Equation B.91 for the velocity SDE in the RLM, I write the SDE for internal
energy as (see also Heinz 2013, Eq. 5.90c)

de⋆ =

(
A +Gee(e⋆ − ẽ) +Gev(u⋆v − ũv) +Gehu⋆h

)
dt +

√
3
2

Ceω
⋆
t Re dW , (B.122)

characterised by 1) a mean energy drift coefficient A, 2) the coefficients Gee, Gev and Geh, which extend the
velocity drift tensor Gi j to a joint velocity-energy drift tensor, and 3) the diffusion coefficient Ce, which plays for
internal energy the role that the Kolmogorov constant plays for velocity. These coefficients may depend on the
mean fields, but not on the stochastic variables themselves. Furthermore, they may be constrained by comparing
the equivalent Reynolds-averaged equations for mean energy, energy variance and convective flux, to their first-
principles respective counterparts given by Equations B.86 to B.88, which I set out to do in the following.

Equivalent mean energy and energy variance equations

The inclusion of Equation B.122 in the Lagrangian stochastic model leads to the addition of the following
contributions in the Fokker-Planck equation on the Eulerian flow PDF fE

∂

∂t

(∫
dρ′ρ′ fE

)
= [...] − A

∫
dρ′

∂ρ′ fE
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−Gee
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−Geh

∫
dρ′

∂ρ′uh fE

∂e
+

3
4

CeRe

∫
dρ′

∂2ρ′ω fE

∂e2
, (B.123)

where [...] refers to the sum of the right-hand sides of Equations B.100 and B.117. Multiplying Equation B.100 +
Equation B.117 + Equation B.123 by e and (e− ẽ)2 alternatively, and integrating over the entire parameter space –
i.e. over uv, uh, ωt and e –, one finds the evolution equations for ẽ and Re

∂ρe

∂t
= −∂ρuve

∂x
+ Aρ , (B.124)

∂ρe′′2

∂t
= −∂ρe′′2uv

∂x
− 2ρe′′uv

∂̃e

∂x
+ 2Geeρe′′2 + 2Gevρe′′u′′v + 2Gehρe′′u′′

h
+

3
2

CeReρωt , (B.125)

or, using the definition of the Favre average, the plane-parallel geometry of the flow, as well as Equation B.21

ρ
Dẽ

Dt
+
∂ρFe

∂x
= Aρ , (B.126)

ρ
DRe

Dt
+
∂ρẽ′′2u′′v
∂x

= −2ρFe
∂̃e

∂x
+ 2ρGeeRe + 2GevρFe +

3
2
ρCeReω̃t . (B.127)

Comparing Equations B.126 and B.127 with Equations B.86 and B.87 respectively, it is apparent that the
coefficient Gev should vanish (because the mean ẽ equation does not contain any term proportional to the convec-
tive flux), that the coefficient Geh has no impact whatsoever, so that it can also be considered zero, and that the
remaining coefficients A, Gee and Ce are related to the “knowns” of the system through

A =
p

ρ

∂

∂x

(
mFe

ẽ
− ũv

)
+ ǫ − 1

ρ

∂Frad

∂x
, (B.128)

Gee +
3
4

Ceω̃t =

(
mp

ρ̃e
− γm(Γ1 − 1)

)
∂ũv

∂x
= −(Γ1 − 1)

∂ũv

∂x
, (B.129)

where I used the ideal gas law (Equation B.15), as well as the identity m(γ−1) = 1, to simplify the second equation.
In analogy with Equations B.113 and B.114 for Gi j, I decompose the coefficient Gee into

Gee ≡ Ga
ee −

(
1
2
+

3
4

Ce

)
ω̃t , (B.130)
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so that the above constraints do not depend on the ‘energy Kolmogorov constant’ Ce anymore. Indeed, one obtains

A =
p

ρ

∂

∂x

(
mFe

ẽ
− ũv

)
+ ǫ − 1

ρ

∂Frad

∂x
, (B.131)

Ga
ee =

1
2
ω̃t − (Γ1 − 1)

∂ũv

∂x
, (B.132)

Gev = Geh = 0 . (B.133)

Together, Equations B.122 and B.130 to B.133 form a closed stochastic model for specific internal energy, so long
as a value is specified for Ce. As a first approximation, I will consider that Ce = C0.

Equivalent energy convective flux equation

Multiplying Equation B.100 + Equation B.117 + Equation B.123 by (e − ẽ)(uv − ũv) and integrating over the
entire parameter space – i.e. over all values of uv, uh, ωt and e –, one obtains

ρ
DFe

Dt
+ ρFe
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∂x
+ ρRv
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∂x
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3
4

Ceω̃tFe , (B.134)

where I replaced Gee by its expression given by Equations B.130 and B.132, but I kept Gvv in this unspecified
form for clarity. Comparing Equation B.134 to Equation B.88, it can be seen that several terms are already exactly
modelled, without having to modify the stochastic model. On the right hand side of Equation B.88, the first two
terms arise directly from the advective term in the Fokker-Planck equation; the third term stems from the buoyancy
term in Equation B.95; the sixth and seventh terms, when put together using the ideal gas law (Equation B.15), are
due to the return-to-local-mean contribution in Equation B.122. Of all the right-hand side terms, only the fourth,
fifth and eighth terms are not modelled exactly. The identification with Equation B.134 yields

(
ρGvv −

3
4
ρCeω̃t

)
Fe = −e′′

∂p′

∂x
− pu′′v

∂u′′i
∂xi

. (B.135)

Note that there is no one-to-one correspondence between the two.

B.3.4 Final form of the Lagrangian stochastic model

Let me summarise in one place the Lagrangian stochastic model developed in this Appendix. The state of each
fluid particle is entirely described by the position x⋆, the vertical component of the velocity u⋆v , any horizontal
component of the velocity u⋆

h
, the turbulent frequency ω⋆t , and the internal energy e⋆. Each evolves according to

an Ito stochastic differential equation, given by

dx⋆ = u⋆v dt , (B.136)
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where dWv, dWh, dWω and dWe are four independent Wiener processes, one has

p = (Γ1 − 1)ρ̃e , (B.141)
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Rv + Rh , (B.142)
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and the various non-dimensional control parameters have the following values

C0 = 3.5 ; Cǫ1 = 1.44 ; Cǫ2 = 1.83 ; Cǫ3 = 0.1 ; Cχ = 1.6 ; σ2 = 1.0 ; CR = 4.15 . (B.150)

All the mean fields appearing in the Lagrangian stochastic models – ρ, ũv, Rv, Rh, ω̃t, ẽ, Fe and Re – are al-
ready in closed form, as they can be extracted from the properties of the fluid particles themselves. I describe in
Section 7.2.4 how this can be done in practice.
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The goal of this Appendix is to detail the derivation of both the probability fluxes G andH and the components
of the diffusion matrixD, E andF appearing in the joint-amplitude-phase Fokker-Planck equation (Equation 8.30).
In order to account for the finite memory time of G(A,Φ, t) and H(A,Φ, t) (defined as the right-hand sides of
Equations 8.28 and 8.29 respectively), Stratonovich (1965) showed that one can define effective probability fluxes
and diffusion coefficients thus

G = 〈G〉 +
{
∂G

∂A
; Gτ

}
+

{
∂G

∂Φ
; Hτ

}
, (C.1)

H = 〈H〉 +
{
∂H

∂A
; Gτ

}
+
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∂Φ
; Hτ

}
, (C.2)

D = 2
{

G ; Gτ

}
, (C.3)

E =
{

G ; Hτ

}
+

{
H ; Gτ

}
, (C.4)

F = 2
{

G ; Gτ

}
, (C.5)

where 〈.〉 denotes an ensemble average, and the bilinear operator {.; .} is defined by

{
f1; f τ2

}
≡

∫ 0

−∞
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[〈
f1(t) f2(t + τ)

〉
−

〈
f1(t)

〉 〈
f2(t + τ)

〉]
. (C.6)

Let me write each of the stochastic processes ci(t) (i = 1, 2, 3) in polar form, so that

ci(t) = Ci(t) exp jφi(t) , (C.7)

where Ci(t) and φi(t) are both real. Then the functions G(A,Φ, t) and H(A,Φ, t) can be rewritten

G(A,Φ, t) = κA +C1(t) cos
(
φ1(t) − φ(t)

)
+ AC2(t) cos

(
φ2(t)

)
+ AC3(t) cos

(
φ3(t) − 2φ(t)

)
, (C.8)

H(A,Φ, t) =
1
A

C1(t) sin
(
φ1(t) − φ(t)

)
+C2(t) sin

(
φ2(t)

)
+C3(t) sin

(
φ3(t) − 2φ(t)

)
, (C.9)

where I have introduced the global phase of the mode φ(t) ≡ ωt + Φ.

C.1 Probability fluxes

Let me first derive the probability fluxes in parameter space G (in the A-direction) andH (in the Φ-direction).
By construction, the stochastic processes ci(t) have zero mean, and as a result, the first term on the right-hand side
of Equations C.1 and C.2 straightforwardly reduce to

〈G〉 = κA , (C.10)

〈H〉 = 0 . (C.11)
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As for the expansion of the bilinear operators { . ; . }, it can seem at first that a large number of terms must be
computed. However, I am interested in the long-term variations of the mode amplitude, which occur on timescales
much larger than ω−1. As such, all terms oscillating at frequencies comparable to ω can be averaged out. As is
customary in this type of situation, it appears that only contributions initially oscillating at the same frequency
can ‘interact’ through the operator { . ; . } to yield a non-oscillating contribution. As an illustrative example, let
me compute the following contribution arising from the expansion of the very last term on the right-hand side of
Equation C.1

{
C1(t) sin

(
φ1(t) − φ(t)

)
; C3(t + τ) sin

(
φ3(t + τ) − 2φ(t + τ)

)}

=

∫ 0

−∞
dτ

〈
C1(t)C3(t + τ) sin

(
φ1(t) − ωt − Φ

)
sin

(
φ3(t + τ) − 2ω(t + τ) − 2Φ

)〉

=
1
2

∫ 0

−∞
dτ

〈
C1(t)C3(t + τ) cos

(
ωt + ...

)〉
dτ +

1
2

∫ 0

−∞

〈
C1(t)C3(t + τ) cos

(
3ωt + ...

)〉
. (C.12)

This particular contribution therefore features a part oscillating at angular frequency ω, and another at 3ω. Under
the hypothesis that the complex amplitude of the mode varies over timescales much longer than the period of the
mode – a hypothesis that, as I already had the opportunity to show in the main body of this thesis, is valid for
solar-like oscillations –, the impact of these two rapidly-oscillating contributions to the Fokker-Planck equation
cancels out on average. This is fundamentally due to the fact that the two terms in the bilinear operator { . ; . },
in the contribution we considered in this example, oscillate in time with different angular frequencies (ω and 2ω
respectively). It becomes apparent that only the contributions where the two terms are synchronous will effectively
impact the Fokker-Planck equation. Keeping only these synchronous contributions into account in Equations C.1
and C.2, one finds

G = κA +

{
κ ; κA

}
+

{
C2 cos

(
φ2

)
; ACτ

2 cos
(
φτ2

)}
+

{
C3 cos

(
φ3 − 2φ

)
; ACτ

3 cos
(
φτ3 − 2φτ

)}

+

{
C1 sin

(
φ1 − φ

)
;

1
A

Cτ
1 sin

(
φτ1 − φ

τ
)}
+

{
2AC3 sin

(
φ3 − 2φ

)
; Cτ

3 sin
(
φτ3 − 2φτ

)}
, (C.13)

H =
{
− 1

A2
C1 sin

(
φ1 − φ

)
; Cτ

1 cos
(
φτ1 − φ

τ
)}
+

{
− 1

A
C1 cos

(
φ1 − φ

)
;

1
A

Cτ
1 sin

(
φτ1 − φ

τ
)}

+

{
− 2C3 cos

(
φ3 − 2φ

)
; Cτ

3 sin
(
φτ3 − 2φτ

)}
, (C.14)

where the time-dependent quantities are evaluated at time t + τ when the superscript τ is present, and at time t

otherwise.

The second term on the right-hand side of Equation C.13 vanishes. Indeed, one has 〈κ2A〉 − 〈κ〉〈κA〉 = 0, since
all of these quantities are deterministic. As for all the other contributions, they can be computed in the fashion of
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Equation C.12. I obtain, for the contributions of G

{
C2 cos

(
φ2

)
; ACτ

2 cos
(
φτ2

)}
= A

∫ 0

−∞
dτ 〈Re(c2(t))Re(c2(t + τ))〉 , (C.15)

{
C3 cos

(
φ3 − 2ωt − 2Φ

)
; ACτ

3 cos
(
φτ3 − 2ω(t + τ) − 2Φ

)}

=
1
2

A

∫ 0

−∞
dτ

〈
C3Cτ

3 cos
(
φ3 − φτ3 + 2ωτ

)〉
+ osc. =

1
2

A

∫ 0

−∞
dτ Re

(〈
c3(t)c⋆3 (t + τ)

〉
exp2 jωτ

)
+ osc. ,

(C.16)
{

C1 sin
(
φ1 − ωt − Φ

)
;

1
A

Cτ
1 sin

(
φτ1 − ω(t + τ) − Φ

)}

=
1

2A

∫ 0

−∞
dτ

〈
C1Cτ

1 cos
(
φ1 − φτ1 + ωτ

)〉
+ osc. =

1
2A

∫ 0

−∞
dτ Re

(〈
c1(t)c⋆1 (t + τ)

〉
exp jωτ

)
+ osc. ,

(C.17)
{

2AC3 sin
(
φ3 − 2ωt − 2Φ

)
; Cτ

3 sin
(
φτ3 − 2ω(t + τ) − 2Φ

)}

= A

∫ 0

−∞
dτ

〈
C3Cτ

3 cos
(
φ3 − φτ3 + 2ωτ

)〉
+ osc. = A

∫ 0

−∞
dτ Re

(〈
c3(t)c⋆3 (t + τ)

〉
exp2 jωτ

)
+ osc. ,

(C.18)

and for the contributions ofH

{
− 1

A2
C1 sin

(
φ1 − ωt − Φ

)
; Cτ

1 cos
(
φτ1 − ω(t + τ) − Φ

)}

= − 1
2A2

∫ 0

−∞
dτ

〈
C1Cτ

1 sin
(
φ1 − φτ1 + ωτ

)〉
+ osc. = − 1

2A2

∫ 0

−∞
dτ Im

(〈
c1(t)c⋆1 (t + τ)

〉
exp jωτ

)
+ osc. ,

(C.19)
{
− 1

A
C1 cos

(
φ1 − ωt − Φ

)
;

1
A

Cτ
1 sin

(
φτ1 − ω(t + τ) − Φ

)}

= − 1
2A2

∫ 0

−∞
dτ

〈
C1Cτ

1 sin
(
− φ1 + φ

τ
1 − ωτ

)〉
+ osc. =

1
2A2

∫ 0

−∞
dτ Im

(〈
c1(t)c⋆1 (t + τ)

〉
exp jωτ

)
+ osc. ,

(C.20)
{
− 2C3 cos

(
φ3 − 2ωt − 2Φ

)
; Cτ

3 sin
(
φτ3 − 2ω(t + τ) − 2Φ

)}

= −
∫ 0

−∞
dτ

〈
C3Cτ

3 sin
(
− φ3 + φ

τ
3 − 2ωτ

)〉
+ osc. =

∫ 0

−∞
dτ Im

(〈
c3(t)c⋆3 (t + τ)

〉
exp2 jωτ

)
+ osc.

(C.21)

In these expressions, the variables A and Φ are not explicit functions of time, but actual, independent variables on
which the PDF w depends. This is the reason why I was able to pull A out of the time integrals, and also why Φ
disappears entirely from the above expressions. Additionally, I have gathered all oscillatory components into the
notation ‘osc.’, which will be filtered out in the following. Summing all these contributions together, one finds the
expressions G(A,Φ, t) andH(A,Φ, t) given in the main body of this thesis (Equations 8.31 and 8.32).
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C.2 Diffusion coefficients

The derivation of the diffusion coefficients is performed similarly. The only contributions that yield a non-
oscillatory (and, therefore, non-vanishing) contribution to the Fokker-Planck equation are, forD

2
{

C1 cos
(
φ1 − ωt − Φ

)
; Cτ

1 cos
(
φτ1 − ω(t + τ) − Φ

)}

=

∫ 0

−∞
dτ

〈
C1Cτ

1 cos
(
φ1 − φτ1 + ωτ

)〉
+ osc. =

∫ 0

−∞
dτ Re

(〈
c1(t)c⋆1 (t + τ)

〉
exp jωτ

)
+ osc. , (C.22)

2
{

AC2(t) cos
(
φ2

)
; ACτ

2 cos
(
φτ2

)}
= 2A2

∫ 0

−∞
dτ 〈Re(c2(t))Re(c2(t + τ))〉 , (C.23)

2
{

AC3 cos
(
φ3 − 2ωt − 2Φ

)
; ACτ

3 cos
(
φτ3 − 2ω(t + τ) − 2Φ

)}

= A2
∫ 0

−∞
dτ

〈
C3Cτ

3 cos
(
φ3 − φτ3 + 2ωτ

)〉
+ osc. = A2

∫ 0

−∞
dτ Re

(〈
c3(t)c⋆3 (t + τ)

〉
exp2 jωτ

)
+ osc. ,

(C.24)

and for F

2
{

1
A

C1 sin
(
φ1 − ωt − Φ

)
;

1
A

Cτ
1 sin

(
φτ1 − ω(t + τ) − Φ

)}

=
1
A2

∫ 0

−∞
dτ

〈
C1Cτ

1 cos
(
φ1 − φτ1 + ωτ

)〉
+ osc. =

1
A2

∫ 0

−∞
dτ Re

(〈
c1(t)c⋆1 (t + τ)

〉
exp jωτ

)
+ osc. ,

(C.25)

2
{

C2 sin
(
φ2

)
; Cτ

2 sin
(
φτ2

)}
= 2

∫ 0

−∞
dτ 〈Im(c2(t))Im(c2(t + τ))〉 , (C.26)

2
{

C3 sin
(
φ3 − 2ωt − 2Φ

)
; Cτ

3 sin
(
φτ3 − 2ω(t + τ) − 2Φ

)}

=

∫ 0

−∞
dτ

〈
C3Cτ

3 cos
(
φ3 − φτ3 + 2ωτ

)〉
+ osc. =

∫ 0

−∞
dτ Re

(〈
c3(t)c⋆3 (t + τ)

〉
exp2 jωτ

)
+ osc. . (C.27)

As for E, it can be immediately seen that all the integrands appearing in {G; Hτ} are odd functions of τ. Therefore,
since {H; Gτ} = {G; H−τ}, one simply obtains

E = {G; Hτ} + {G; H−τ} = 0 . (C.28)

Summing all these contributions together, one finds the expressions D(A,Φ, t), E(A,Φ, t) and F (A,Φ, t) given in
the main body of the thesis (Equations 8.33 to 8.35).
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D Simplified amplitude formalism – Derivation of
the autocorrelation spectra αi
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The evolution equations for the mean mode energy and phase, given by Equations 8.44 and 8.45, only depend
on the constant, complex values of both coefficients α1 and α3. I recall here, for clarity, that those are defined as
the complex autocorrelation spectra of the stochastic processes c1(t) and c3(t) evaluated at angular frequencies ω
and 2ω respectively (see Equations 8.36 and 8.39)

α1 =

∫ 0

−∞
dτ

〈
c1(t)c⋆1 (t + τ)

〉
exp jωτ , (D.1)

α3 =

∫ 0

−∞
dτ

〈
c3(t)c⋆3 (t + τ)

〉
exp2 jωτ . (D.2)

In turn, these stochastic processes are given by (see Equations 8.58 and 8.60)

c1(t) = 2
∫

d3x ρ0

[
Ψξ,iξt, j(t)∂ jut,i(t) + Ψu,iL0,i(t)

]
, (D.3)

c3(t) =
∫

d3x ρ0

[
Ψξ,iΨξ, j∂ jut,i(t) + ωΨξ,iξt, j(t)∂ jΨu,i + Ψu,iL

s
1,i(t)

]
, (D.4)

where Ψξ and Ψu are the normalised displacement and velocity eigenfunctions respectively, one has (see Equa-
tions 8.15 and 8.16)

L0,i = −
1
ρ0

∂
(
ρ0ut,iut, j − ρ0ut,iut, j

)

∂x j
, (D.5)

Ls
1,i = −Ψu, j∂ jut,i − ut, j∂ jΨu,i −

Gi j

ωρ0

∫
d3y ρ0(y)

(
Ψξ,k∂k

(
ut, jK

x
))∣∣∣∣

y

+


∂Gi j

∂ũ′′
k

u′′
l

ũ′′
k

u′′
l 1 +

∂Gi j

∂(∂kũl)
∂kũl1 +

∂Gi j

∂ǫ
ωtk1

 ut, j +
1
2

√
C0ωt

k0
ηik1 , (D.6)

and the perturbation of the Reynolds stress tensor, mean shear tensor and turbulent kinetic energy are respectively
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given by (see Eqs. C.15, C.11 and C.16 in the article reproduced in the end of Chapter 8)

ũ′′
i

u′′
j 1
= −

ũ′′
i

u′′
j 0

ωρ0

∫
d3y ρ0(y)

(
Ψξ,k∂kKx

)∣∣∣∣
y
+

1
ωρ0

∫
d3y ρ0(y)

(
Ψξ,k∂k

(
ut,iut, jK

x
))∣∣∣∣

y

+
1
ρ0

∫
d3y ρ0(y)

(
ut,iΨu, jK

x
)∣∣∣∣

y
+

1
ρ0

∫
d3y ρ0(y)

(
ut, jΨu,iK

x
)∣∣∣∣

y
, (D.7)

∂iũ j1 = −
1
ρ0

∫
d3y ρ0(y)

(
Ψu, j∂iK

x
)∣∣∣∣

y
− 1
ωρ0

∫
d3y ρ0(y)

(
Ψξ,k∂k

(
ut, j∂iK

x
))∣∣∣∣

y

− 1

ρ2
0

∂ρ0

∂xi

∫
d3y ρ0(y)

(
Ψu, jK

x
)∣∣∣∣

y
− 1

ωρ2
0

∂ρ0

∂xi

∫
d3y ρ0(y)

(
Ψξ,k∂k

(
ut, jK

x
))∣∣∣∣

y
, (D.8)

k1 = −
k0

ωρ0

∫
d3y ρ0(y)

(
Ψξ,k∂kKx

)∣∣∣∣
y
+

1
ωρ0

∫
d3y ρ0(y)

(
Ψξ,k∂k

(
1
2

u2
t Kx

))∣∣∣∣∣∣
y

+
1
ρ0

∫
d3y ρ0(y)

(
ut,iΨu,iK

x)∣∣∣
y
. (D.9)

The apparition of the factor ω−1 in front of every integral involving the displacement eigenfunction Ψξ stems from
the fact that the latter is defined in terms of ωξosc rather than simply ξosc (see Equation 8.51).

D.1 Contribution of the turbulent displacement field

In Section 8.1, I used a certain number of approximations to derive the present formalism. One of these
approximations – which I labelled (H3) – consisted in adopting the anelastic approximation for turbulence, in the
sense that I considered ρt ≪ ρ0, where ρt is the turbulent fluctuation of density, and ρ0 is the equilibrium density.
Using the continuity equation, this amounts to neglecting the quantity ∇ · (ρ0ξt). As I will now show, this allows
me to discard the first term on the right-hand side of Equation D.3 and the second term on the right-hand side of
Equation D.4. Let me consider the former: performing an integration by part, I can put it in the following form

c1(t) = [...] + 2
∫

S
d2x ρ0Ψξ,iut,i ξt · n − 2

∫
d3x ut,i∇ ·

(
ρ0Ψξ,iξt

)
, (D.10)

where the surface integral vanishes, on account of the product ρ0Ψξ vanishing on the surface of the star. Further-
more, the typical length scale over which ξt varies is much smaller than the wavelength of the mode. This allows
me to pull Ψξ,i out of the gradient in the last term, and one recognises ∇ · (ρ0ξt), which I neglected on account of
hypothesis (H3). The same procedure can be applied to the second term on the right-hand side of Equation D.4.
As a result, in Equations D.3 and D.4, the only source of stochasticity comes from the turbulent velocity field ut

and the Wiener process η, with no contribution from the turbulent displacement field ξt.

D.2 Derivation of α1

Plugging Equation D.5 into Equation D.3, one finds

〈
c1(t)c⋆1 (t + τ)

〉
= 4

〈∫
d3x Ψ⋆u,i(x)

[
∂ j

(
ρ0ut, jut,i

)∣∣∣∣
x,t

]′
×

∫
d3x′ Ψu,k(x′)

[
∂l

(
ρ0ut,lut,k

)∣∣∣
x′,t+τ

]′〉

=

∫
d3x

∫
d3x′ Ψ⋆u,i(x)Ψ⋆u,k(x′)

〈[
∂ j

(
ρ0ut, jut,i

)∣∣∣∣
x,t

]′ [
∂l

(
ρ0ut,lut,k

)∣∣∣
x′,t+τ

]′〉
. (D.11)

It is only the fluctuation of the turbulent pressure gradient around its equilibrium, time-independent state that
appears in this integral. Explicitly expanding this fluctuation into the difference between the total turbulent pressure
gradient and the equilibrium turbulent pressure gradient leads to four different integrals. However, it is readily seen
that only one of them – the one not involving the equilibrium turbulent pressure gradient at all – will have a non-
zero ω-component in its Fourier transform in time, and therefore will contribute to α1. As such, the fluctuating
turbulent pressure gradient can be replaced with the total turbulent pressure gradient. After a double integration by
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part, one obtains

〈
c1(t)c⋆1 (t + τ)

〉
= 4

∫
d3x

∫
d3x′ ρ0(x)ρ0(x′)

∂Ψ⋆
u,i

∂x j

∣∣∣∣∣∣∣
x

∂Ψu,k

∂xl

∣∣∣∣∣∣∣
x′

〈
ut,iut, j(x, t)ut,kut,l(x′, t + τ)

〉
. (D.12)

The surface contribution of the integration by part systematically vanishes, because the surface integral involves
ρ0Ψu at the outer boundary of the star, where the oscillation is evanescent.

In the scope of the JWKB approximation, the velocity eigenfunction can be locally approximated by the
following expression

Ψu,i(x) = Ψu,i,0(x) exp jk(x)·x , (D.13)

where Ψu,0(x) is the slowly-varying amplitude in space of the velocity eigenfunction, and k(x) is the space-
dependent wavevector of the mode. Both Ψu,0 and k are slowly varying functions of space (meaning that they
vary on length scales much larger than |k|−1). As such, one has

∂Ψu,i

∂x j
∼ jk j(x)Ψu,i,0(x) exp jk(x)·x , (D.14)

so that

〈
c1(t)c⋆1 (t + τ)

〉
= 4

∫
d3x

∫
d3x′ ρ0k jΨ

⋆
u,i,0(x)ρ0klΨu,k,0(x′)

〈
ut,iut, j(x, t)ut,kut,l(x′, t + τ)

〉
exp j(k(x′)·x′−k(x)·x) .

(D.15)

Then, I implement the following change of variables

X ≡ x , (D.16)

δx ≡ x′ − x , (D.17)

where X and δx represent the slow and fast space variables respectively. The implementation of this change of
variables in Equation D.15 allows me to completely decouple the slowly-varying contributions of Ψu,0 and k on
the one hand, and the rapidly-varying contributions of exp( jk · x) and the turbulent velocity two-point correlations
on the other hand. Indeed, one obtains1

〈
c1(t)c⋆1 (t + τ)

〉
= 4

∫
d3X

∫
d3δx ρ2

0k jklΨ
⋆
u,i,0Ψu,k,0(X)

〈
ut,iut, j (X, t) ut,kut,l (X + δx, t + τ)

〉
exp jk(X)·δx) .

(D.18)

Taking advantage of the scale decoupling, I can separate the integrals over X and δx

〈
c1(t)c⋆1 (t + τ)

〉
= 4

∫
d3X ρ2

0k jklΨ
⋆
u,i,0Ψu,k,0(X)

∫
d3δx

〈
ut,iut, j (X, t) ut,kut,l (X + δx, t + τ)

〉
exp jk(X)·δx .

(D.19)

Finally, using Equation D.1, the auto-correlation spectrum α1 can be expressed thus

α1 = 4
∫

d3X ρ2
0k jklΨu,i,0Ψ

⋆
u,k,0φ

4b
i jkl(k, ω) , (D.20)

where I have dropped all dependence on X for ease of notation (now that there is no longer any ambiguity), and
φ4b

i jkl
is the fourth-order correlation spectrum of the turbulent velocity ut, defined as

φ4
i jkl(k, ω) ≡

∫ 0

−∞
dτ

∫
d3δx

〈
ut,iut, j (X, t) ut,kut,l (X + δx, t + τ)

〉
exp j(k·δx+ωτ) . (D.21)

Naturally, φ4b
i jkl

also depends on the slow variable X and time t, even though these dependence do not appear
explicitly in Equation D.20.

1The Jacobian of the change of variable (x, x′) 7→ (X, δx) is straightforwardly estimated, and happens to equal unity.
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D.3 Derivation of α3

Plugging Equation D.6 into Equation D.4, one obtains

c3(t) =
∫

d3x ρ0(x)Ψξ,i(x)Ψξ, j(x)∂ jut,i(x, t) −
∫

d3x ρ0(x)Ψu,i(x)Ψu, j(x)∂ jut,i(x, t)

−
∫

d3x ρ0(x)Ψu,i(x)ut, j(x, t)∂ jΨu,i −
∫

d3x Ψu,i(x)
Gi j,0

ω

∫
d3y ρ0(y)Ψξ,k(y)∂k

(
ut, jK

x
)∣∣∣∣

y,t

+

∫
d3x ρ0(x)Ψu,i(x)ut, j(x, t)

∂Gi j

∂ũ′′
k

u′′
l

ũ′′
k

u′′
l 1(x) +

∫
d3x ρ0(x)Ψu,i(x)ut, j(x, t)

∂Gi j

∂(∂kũl)
∂kũl1(x)

+

∫
d3x ρ0(x)Ψu,i(x)ut, j(x, t)

∂Gi j

∂ǫ
ωtk1(x) +

∫
d3x ρ0(x)Ψu,i(x)

1
2ω

√
C0ωt

k0(x)
ηi(x, t)k1(x) , (D.22)

where the perturbation of the Reynolds stress tensor, mean shear tensor and turbulent kinetic energy are given by
Equations D.7 to D.9 respectively.

Let me consider the first four terms of Equation D.22, which I will denote as c3a(t) through c3d(t) in the
following. They can be rearranged with integration by parts to yield

c3a(t) = −
∫

d3x ut,i(x, t)∂ j

(
ρ0Ψξ,iΨξ, j

)∣∣∣∣
x
, (D.23)

c3b(t) =
∫

d3x ut,i(x, t)∂ j

(
ρ0Ψu,iΨu, j

)∣∣∣∣
x
, (D.24)

c3c(t) =
∫

d3x ρ0(x)ut, j(x, t)Ψu,i(x) ∂ jΨu,i

∣∣∣
x
, (D.25)

c3d(t) =
∫

d3x Ψu,i(x)
Gi j,0

ω

∫
d3y ut, j(y, t)Kx(y) ∂k

(
ρ0Ψξ,k

)∣∣∣∣
y
. (D.26)

(D.27)

The last term can be further simplified by permuting the integrals over x and y, which yields

c3d(t) =
∫

d3y ut, j(y, t) ∂k

(
ρ0Ψξ,k

)∣∣∣∣
y

∫
d3x Ψu,i(x)

Gi j,0

ω
Ky(x) , (D.28)

where I have used the isotropy2 of the kernel function K to write Kx(y) = Ky(x). It can be seen that the integral over
x corresponds to the kernel estimation at point y of the quantityΨu,iGi j,0/(ωρ0), which only involves quantities that
are not stochastic. As such, this kernel estimation equals the actual value of this quantity at y, and c3d(t) reduces
to

c3d(t) =
∫

d3y
Gi j

ω
ut, j(y, t)Ψu,i(y) ∂k

(
ρ0Ψξ,k

)∣∣∣∣
y
. (D.29)

As for the fifth, sixth and seventh terms on the right-hand side of Equation D.22, once they are expanded, they
yield the following contributions: for the fifth term

c3e(t) =
∫

d3x

∫
d3y ut, j(x)Ψu,i(x)

∂Gi j

∂ũ′′
k

u′′
l

∣∣∣∣∣∣∣
x

ũ′′
k

u′′
l 0

ω

∂ρ0Ψξ,m

∂xm

∣∣∣∣∣∣
y

Kx(y) , (D.30)

c3 f (t) = 2
∫

d3x

∫
d3y ut, j(x)ut,k(y)Ψu,i(x)

∂Gi j

∂ũ′′
k

u′′
l

∣∣∣∣∣∣∣
x

ρ0(y)Ψu,l(y)Kx(y) , (D.31)

c3g(t) = −
∫

d3x

∫
d3y ut, j(x)ut,k(y)ut,l(y)

1
ω
Ψu,i(x)

∂Gi j

∂ũ′′
k

u′′
l

∣∣∣∣∣∣∣
x

∂ρ0Ψξ,m

∂xm

∣∣∣∣∣∣
y

Kx(y) , (D.32)

2I have not mentioned the isotropy property in Section 7.2.4, when I introduced the kernel function in the first place. In SPH, this
property is required in order to yield unbiased mean gradients (see Section 9.1.2 for more details).
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for the sixth term

c3h(t) =
∫

d3x

∫
d3y ut, j(x)Ψu,i(x)

∂Gi j

∂(∂kũl)

∣∣∣∣∣∣
x

∂ρ0Ψu,l

∂xk

∣∣∣∣∣
y

Kx(y) , (D.33)

c3i(t) = −
∫

d3x

∫
d3y ut, j(x)

ρ0(y)
ρ0(x)

Ψu,i(x)
∂Gi j

∂(∂kũl)

∣∣∣∣∣∣
x

∂ρ0

∂xk

∣∣∣∣∣
x

Ψu,l(y)Kx(y) , (D.34)

c3 j(t) =
∫

d3x

∫
d3y ut, j(x)ut,k(y)

1
ω
Ψu,i(x)

∂Gi j

∂(∂lũk)

∣∣∣∣∣∣
x

∂ρ0Ψu,m

∂xm

∣∣∣∣∣
y

∂Kx

∂xl

∣∣∣∣∣
y

, (D.35)

c3k(t) =
∫

d3x

∫
d3y ut, j(x)ut,k(y)

1
ωρ0(x)

Ψu,i(x)
∂Gi j

∂(∂lũk)

∣∣∣∣∣∣
x

∂ρ0

∂xl

∣∣∣∣∣
x

∂ρ0Ψu,m

∂xm

∣∣∣∣∣
y

Kx(y) , (D.36)

and for the seventh term

c3l(t) =
∫

d3x

∫
d3y ut, j(x)Ψu,i(x)

∂Gi j

∂ǫ

∣∣∣∣∣∣
x

ωtk0(x)
ω

∂ρ0Ψξ,m

∂xm

∣∣∣∣∣∣
y

Kx(y) , (D.37)

c3m(t) =
∫

d3x

∫
d3y ut, j(x)ut,k(y)ωtΨu,i(x)

∂Gi j

∂ǫ

∣∣∣∣∣∣
x

ρ0(y)Ψu,k(y)Kx(y) , (D.38)

c3n(t) = −
∫

d3x

∫
d3y ut, j(x)ut,k(y)ut,l(y)

1
2
ωtΨu,i(x)

∂Gi j

∂ǫ

∣∣∣∣∣∣
x

∂ρ0Ψξ,m

∂xm

∣∣∣∣∣∣
y

δklK
x(y) . (D.39)

Finally, in the last term on the right-hand side of Equation D.22, the quantity under the integral is proportional
to the stochastic process ηi(x, t), which, by construction, is δ-correlated in both space and time. In particular, its
correlation length scale is infinitesimally small compared to that of the turbulent velocity ut(x, t). But as I showed
in Section D.2, it is precisely the spatial coherence of the stochastic perturbations to the wave equation that explains
its ability to impact the complex amplitude of the modes. As such, this part will not actually contribute to the final
expression of α3, or to the stochastic amplitude equations in any way, and I will discard it in the following.

Formally, c3(t) can be written as a sum of contributions that are either first-, second- or third-order in terms of
the turbulent velocity ut

c3(t) =
∫

d3x

∫
d3y

(
f1,i(x, y)ut,i(x, t) + f2,i j(x, y)ut,i(x, t)ut, j(y, t) + f3,i jk(x, y)ut,i(x, t)ut, jut,k(y, t)

)
,

(D.40)

where

f1,i(x, y) ≡
[
−∂ j

(
ρ0Ψξ,iΨξ, j

)
+ ∂ j

(
ρ0Ψu,iΨu, j

)
+ ρ0Ψu, j∂iΨu, j +

G ji,0

ω
Ψu, j∂k

(
ρ0Ψξ,k

)]∣∣∣∣∣∣
x

δ(x − y)

+

Ψu, j(x)
∂G ji

∂ũ′′
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f2,i j(x, y) ≡
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, (D.42)

f3,i jk(x, y) ≡ −
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1
ω
Ψu,l(x)
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 Kx(y) . (D.43)
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These expressions depend on the structure of the eigenmode both in terms of displacement Ψξ and velocity Ψu.
However, I recall that these are simply related through

Ψu(x) = jΨξ(x) , (D.44)

so that f1,i, f2,i j and f3,i jk actually only depend on the normalised velocity eigenfunction Ψu and the equilibrium
state of the star.

Forming the autocorrelation product of c3(t) from Equation D.40, it can be seen that the expansion involves
correlation products of the turbulent velocity field ut of various orders, ranging from 2 to 6. In the following, I
will make the assumption, often used in the context of Gaussian turbulence, that 1) these moments can be cut at
fourth order, and 2) the contribution of the third-order moment can be neglected compared to that of the second-
or fourth-order. With this approximation in mind, I then proceed to adopt the JWKB approximation in the same
form as in Section D.2 (see Equation D.13), which yields

〈c3(t)c⋆3 (t + τ)〉 =∫
d3X d3δx d3δy1 d3δy2 ρ
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i (X)F1a⋆
j (X)
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where the subscript τ means that the turbulent velocity field is evaluated at time t + τ, and I have introduced

F1a
i = 4 jk jΨu,i,0Ψu, j,0 + jkiΨu, j,0Ψu, j,0 +

Gi j,0

ω
kkΨu, j,0Ψu,k,0 , (D.46)
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∂ũ′′
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ω
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F3a
i jk =
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Equation D.45 can be drastically simplified by remarking that any integral involving the product of a function
f with the kernel function K correspond, by construction, to the ensemble average of said function f (see Philidet
et al. (2021) for more details). Similarly, if the integral is weighted by the gradient of the kernel function, then
it corresponds to the ensemble average of the gradient of f (with a minus sign). But every quantity appearing in
Equation D.45 is either already an ensemble average, or an equilibrium quantity, or else the normalised velocity
eigenfunction Ψu. Neither of these are stochastic quantities, which means they are equal to their own ensemble
average. This allows me to perform the kind of simplification illustrated by Eq. (50) of Philidet et al. (2021), and
I eventually find

〈c3(t)c3(t + τ)〉 =∫
d3X ρ2

0F1
i F1⋆

j (X)
∫

d3δx
〈
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∫
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∫
d3δx

〈
ut,iut, j(X)uτt,kuτt,l(X + δx)

〉
exp−2 jk(X)·δx
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〉
exp−2 jk(X)·δx , (D.51)

where I defined F1 ≡ F1a + F1b.

Finally, plugging this into Equation D.2, one finds the following expression

α3 =

∫
d3X ρ2

0

(
F1

i F1⋆
j (X)φ2
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kl (X)φ4d
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])
, (D.52)

291



D.4. MODE NORMALISATION AND FINAL FORM OF αI

where I have defined the following spectra on the same template as Equation D.21

φ2
i j(k, ω) ≡

∫ 0

−∞
dτ

∫
d3δx

〈
ut,i (X) uτt, j(X + x)

〉
exp j(ωτ−k·δx) , (D.53)

φ4a
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−∞
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ut,i (X) uτt, ju

τ
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exp j(ωτ−k·δx) , (D.54)
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−∞
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〈
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i jkl(k, ω) ≡

∫ 0

−∞
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∫
d3δx

〈
ut,i∂mut, j (X) uτt,k∂nuτt,l(X + x)

〉
exp j(ωτ−k·δx) , (D.56)

φ4d
i jkl(k, ω) ≡

∫ 0
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dτ

∫
d3δx

〈
ut,i∂mut, j (X) uτt,kuτt,l(X + x)

〉
exp j(ωτ−k·δx) . (D.57)

Let me remark, as I did in Section D.2, that F1, F2, F3a and F3b are functions of X, and that φ2
i j, φ

4a
i jkl

, φ4b
i jkl

, φ4c
i jkl

and φ4d
i jkl

also depend on both X and t, even though these dependence do not appear explicitly in Equation D.52.

D.4 Mode normalisation and final form of αi

The last remaining modification to the explicit expressions of α1 and α3 concerns the normalisation condition
on the mode |Ψ〉. Indeed, one needs to relate Ψu,0(x) to the actual velocity modal fluctuations uosc(x), as it can
be obtained through an oscillation code for instance. By construction of the ket |Ψ〉, one has this very simple
proportionality relation

Ψu(x) =
uosc(x)
√

2ω2I
, (D.58)

where the proportionality factor 1/
√

2ω2I is given by the condition that |Ψ〉 must be normalised to unity, so that

〈Ψ|Ψ〉 = 1 . (D.59)

Plugging Equations 8.51 and 8.56 into Equation D.59, this becomes
∫

d3x ρ0(x)
( ∣∣∣Ψξ

∣∣∣2 + |Ψu|2
)
= 1 , (D.60)

and since Ψu = jΨξ

2
∫

d3x ρ0(x) |Ψu(x)|2 = 1 . (D.61)

Finally, plugging Equation D.58, I find

I =
∫

d3x ρ0(x) |ξosc(x)|2 , (D.62)

which one recognises as the inertia of the mode (see Equation 2.97). One then finds the relation between Ψu,0

and uosc by plugging Equation D.13 into Equation D.58. In turn, plugging Equation D.58 into Equations D.20
and D.52, one finds the final expressions for α1 and α3 reproduced in the main body of this thesis

α1 =
2

ω2I

∫
d3X ρ2

0k jkluosc,iu
⋆
osc,kφ

4b
i jkl(k, ω) , (D.63)

α3 =
1

4ω4I2

∫
d3X ρ2

0

(
F1

i F1⋆
j (X)φ2

i j(2k, 2ω) + 2 Re
[
F1

i F3b⋆
jkl (X)φ4a

i jkl(2k, 2ω)
]
+ F2

i jF
2⋆
kl (X)φ4b

i jkl(2k, 2ω)

+ F3a
i jmF3a⋆

kln (X)φ4c
i jkl(2k, 2ω) + 2 Re

[
F3a

i jmF2⋆
kl (X)φ4d

i jkl(2k, 2ω)
])
, (D.64)
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and I recall, as a summary of the calculations detailed above, that

F1
i = 4 jk juosc,iuosc,j + jkiuosc,juosc,j +

Gi j,0

ω
kkuosc,juosc,k +

∂Gi j

∂ũ′′
k

u′′
l

ũ′′
k

u′′
l 0

ω
kmuosc,muosc,j

+
∂Gi j

∂(∂kũl)
jkkuosc,juosc,l +

∂Gi j

∂ǫ

ωtk0

ω
kmuosc,juosc,m , (D.65)

F2
i j =


∂Gki

∂ũ′′
j
u′′

l

+
∂Gki

∂ũ′′
l

u′′
j

 uosc,luosc,k +
∂Gki

∂ǫ
ωtuosc,juosc,k , (D.66)

F3a
i jk =

∂Gli

∂(∂kũ j)
1
ω

jkmuosc,luosc,m , (D.67)

F3b
i jk = −

∂Gli

∂ũ′′
j
u′′

k

1
ω

kmuosc,luosc,m −
1
2
∂Gli

∂ǫ

ωt

ω
kmuosc,luosc,mδ jk , (D.68)

and

φ2
i j(k, ω) ≡

∫ 0

−∞
dτ

∫
d3δx

〈
ut,i (X) uτt, j(X + x)

〉
exp j(ωτ−k·δx) , (D.69)

φ4a
i jkl(k, ω) ≡

∫ 0

−∞
dτ

∫
d3δx

〈
ut,i (X) uτt, ju

τ
t,kuτt,l(X + x)

〉
exp j(ωτ−k·δx) , (D.70)

φ4b
i jkl(k, ω) ≡

∫ 0

−∞
dτ

∫
d3δx

〈
ut,iut, j (X) uτt,kuτt,l(X + x)

〉
exp j(ωτ−k·δx) , (D.71)

φ4c
i jkl(k, ω) ≡

∫ 0

−∞
dτ

∫
d3δx

〈
ut,i∂mut, j (X) uτt,k∂nuτt,l(X + x)

〉
exp j(ωτ−k·δx) , (D.72)

φ4d
i jkl(k, ω) ≡

∫ 0

−∞
dτ

∫
d3δx

〈
ut,i∂mut, j (X) uτt,kuτt,l(X + x)

〉
exp j(ωτ−k·δx) . (D.73)
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