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Introduction 

In three years, the global data information is expected to reach 181 zettabytes– the equivalent 

of 181 trillion gigabytes, which is 11 times more than the projected storage capacities as 

illustrated in Figure 1 and Figure 2. Specifically, smart sensors and phones are the main data 

producers of the global big data. To meet the huge demand for data storage, around 100 new 

colossal data centers are built every two years. However, it is not enough, and alarming studies 

expect that the number of digital bits would reach an impossible value, exceeding the number 

of all atoms on Earth in 150 years. 

 

Figure 1: Total amount of data created, captured, copied, and consumed in the world from 2010 to 2025 
[1]. 

Therefore, several challenges arise to deal with the serious problem of Big Data worldwide. On 

the one hand, high power efficiency at sensors level is required when processing and 

transmitting very large amount of data. On the other hand, it has been demonstrated from recent 

advances in Deep Learning and Machine Learning fields that Big Data can be a powerful 

weapon in many applications: large training datasets combined with robust models and great 

computational resources open the gate to many breakthroughs like smart object detection, 

intelligent decision-making systems, and smart Internet of Things (IoT) platforms.  

In this context, implementing an IoT platform in Brive-la-Gaillarde has been an obvious research 

direction to experiment several approaches. These experiments aim to optimize the process of 

acquiring, transmitting, and reconstructing data in wireless sensor networks which enables to 

optimize the energy consumption of wireless devices and increases their autonomy. 
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Indeed, the idea of our IoT platform is based on the smart sensors that build up the acquisition 

layer. Data gathering is executed using several sophisticated IoT sensors that are deployed in 

different locations to collect many types of data over an extended period of time depending on 

the application. Collected data from different devices are usually huge and carry some 

redundant information. So, the idea is to firstly transmit data to a pre-processing unit with 

sufficient computational performances to extract meaningful features. The pre-processing unit 

is considered as a gateway to handle important information to the server rather than transmitting 

the entire information, which can remarkably reduce the system bandwidth. Therefore, the so 

called “Compressive Sensing” technique introduces a promising model to be explored in many 

IoT use cases.  

 

Figure 2: Total data storage capacity of all databases installed in the global datasphere from 2020 to 2025 
[2]. 
 

The use of compressive sensing in several applications has allowed to capture impressive 
results, especially in various applications such as image and video processing and it has 
become a promising direction of scientific research. It provides an extensive application value 
in optimizing video surveillance networks. Conventional video compression techniques, such as 
Joint Photographic Experts Group (JPEG), Moving Pictures Experts Group (MPEG) standards 
and H.264 [3]-[4], are well developed and commonly used. Although these compression 
techniques are efficiently using data redundancies to compress video data, they are 
computationally asymmetric since they are composed of complex encoders and very simple 
decoders. Indeed, the encoding step is 5 to 10 times more complex than the decoding step [5]. 
However, in order to effectively exploit compression techniques in WSN, the computational cost 
have to move from the encoding sensor to the decoding server in an optimal manner. In our 
research project, we are interested in a video surveillance context where hundreds of camera 
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systems may be deployed. Thus, it is important to reduce the computational cost of the sensing 
components by reducing the complexity of the encoding process. On a large scale, using current 
video surveillance to encode video data in real-world system can dramatically increase its 
computational cost. This leads also to an effective higher power consumption at the sensor level. 
That’s why, there is an urgent need for new video transmission techniques in smart cities. 

Therefore, to address this issue: one main signal acquisition and compression technique has 

been developed: The Compressive Sensing (CS). It is used to compress and transmit sparse 

signals with a sampling rate much lower that the famous Shannon-Nyquist sampling theorem 

and enable an effective reconstruction of the original signal with very good quality performances. 

In this project, we aim to provide solutions to energy constraints in WSN, in particular for video 

surveillance purposes. The idea is to design and implement a sophisticated framework to collect, 

transmit and store data from wireless video sensors placed in a wireless sensor network platform 

dedicated to smart buildings that is already deployed in the campus of Brive-la-Gaillarde, 

presented in Figure 3. The campus smart grid is composed of several blocks: SCADA (or 

Supervisory Control And Data Acquisition) system that is in charge of retrieving the 

measurements from the sensor network MEDYBAT (Modélisation Energétique DYnamique d’un 

BATiment) and RAMCES (Réseau Avancé de Mesure de Consommation Energétique et 

supervision). Indeed, SCADA, used as interface between users and the processes involved in 

the system to control its main functionalities, allows to: 

• Generate graphics and reports using historical data,  

• Detect alarm and automatically record events,  

• Control the process.  

SCADA is based on ScadaBR which is an open-source tool used in IoT related tasks to store 

and process measurements. ScadaBR enables to collect data from MEDYBAT and RAMCES. 

While RAMCES is a network which consists of measurement stations providing electrical 

measurements, boiler room parameters and gas consumption, MEDYBAT is the building’s 

sensor network allowing to measure parameters like temperature, humidity, and luminosity. The 

idea behind this thesis is to add wireless surveillance systems to MEDYBAT in order to improve 

the campus traffic management and people mobility, making the university of Limoges safer and 

more efficient for every visitor. However, we intend to exploit Video Compressive Sensing (VCS) 

to enhance the energy consumption of different surveillance nodes and optimize the acquisition, 

transmission and recovery processes using advanced Deep Learning techniques. Indeed, Deep 

Learning is getting a lot of attention in Big Data related problems and our purpose in this thesis 

is to devise how to mix both CS and Deep Learning techniques to gain the benefits of both these 

approaches and achieve unprecedented performance in video compression within a WSN. 

The major contributions of this research work are summarized as follows: 

• A complete comparison study of recent Deep Learning-based research works in a video 

compressive sensing context is provided in Chapter 2. These works have been classified 

into different categories. This comparison aims to overview the current approaches video 

compressive sensing and demonstrate their powerful impact in computer vision 

applications when using well designed compressive sensing algorithms. 

• A novel video prediction algorithm called “Robust Spatio Temporal Convolutional Long 

Short-Term Memory” (Robust-ST-ConvLSTM) is introduced. It is a memory flow 

algorithm based on higher order ConvLSTM. This memory flow algorithm is holding the 
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spatiotemporal information to optimize and control the prediction abilities of the 

ConvLSTM cell. This algorithm was developed for a specific compressive sensing 

context. However, some limitations, discussed in Chapter 3, have prevented us to extend 

the work to video compressive sensing applications. 

• A complete framework of Video Compressive Sensing (VCS), from capturing a sequence 

of video frames in one single compressed measurement to reconstructing the original 

frames, is studied in Chapter 4. In this work, we present the first end-to-end sampling 

and recovery network built upon Transformers which are recently explored in vision 

related tasks to capture long-range spatio-temporal relations. Our proposed Video 

Transformer for Snapshot Compressive Imaging recovery (ViT-SCI) is based on Spatio-

temporal Convolutional Multi-Head Attention (ST-ConvMHA) which is an extended 

version of the fully-connected attention adapted for vision problems. Our comprehensive 

qualitative and quantitative experiments on several datasets demonstrate that ViT-SCI 

outperforms previous state of the art methods with much faster reconstruction capacities, 

which pave the way for applying our algorithm in real-time applications. Indeed, ViT-SCI 

achieves high quality reconstruction on 64 × 64 video frames at the unprecedented rate 

of 1 frame per ms. In addition, an important ablation study on the Transformer network 

is provided to inspire future research works aiming to test the abilities of Transformers in 

vision tasks. 

 

Figure 3: Architecture of the wireless sensor network platform dedicated to smart buildings deployed in 
the campus of Brive-la-Gaillarde, France. 
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Chapter I. Introduction to Compressive Sensing and Deep Learning 

I.1. Introduction 

Conventional sensors are based on the sampling theorem of Shannon–Nyquist which is based 

on the following principle: the minimum sampling frequency of a signal that does not distort its 

underlying information, should be the double of its highest frequency component. However, this 

theorem which imposes an unnecessary high sampling rate is becoming outdated for 

applications that require a large amount of data. Thus, the Compressive Sensing paradigm 

seeks to decrease the rate of the Shannon–Nyquist principle and meets the expectations of the 

massive data-intensive applications. To keep it simple, for our application case, a CS camera 

takes several measurements coded from the scene much smaller than the number of 

reconstructed pixels. In fact, CS is an approach that facilitates the efficient acquisition of the 

sparse signals where detection and compression are performed at the same time. In this 

research work, we aim to optimize video compressive sensing frameworks by exploiting Deep 

Learning-based architectures. Therefore, some concepts must be introduced before presenting 

the main contributions of the thesis project. Indeed, in this chapter, Section I.2 provides a general 

introduction to the mathematical background behind compressive sensing and its main 

optimized-based approaches. In section I.3, we present recent Image Compressive Sensing 

methods that can be extended to be applied in a Video Compressive Sensing context. In Section 

I.4, we introduce the main applications of Compressive Sensing. Finally, Section I.5 presents 

the key elements of Deep Learning that will be exploited in this thesis.   

I.2. Key elements of Compressive Sensing 

In this section, mathematical background of Compressive Sensing will be detailed. In addition, 

some well-known optimized based reconstruction algorithms will be highlighted. 

I.2.1. Definition 

Compressive Sensing (CS) is a revolutionary mathematical theory in combining compression 

with sampling. In traditional methods, the compression step is executed after sampling the whole 

signal. However, CS introduces a framework, illustrated in Figure I.1, for spare signals to be 

efficiently recovered from a limited number of linear and non-adaptive measurements [I.1]-[I.2]-

[I.3]. Indeed, CS has considerably surpassed the Shannon-Nyquist sampling theorem in terms 

of the required number of measurements for a reliable reconstruction [I.4]. In addition, this 

number depends on the design measurements and the signal’s sparsity. However, the recovery 

process is non-linear and needs a specific undetermined system of equations to be decoded. 

CS supposes the sparsity or the low dimensionality of a model during recovery steps to limit the 

input signal to a small segment of the vector space, which enables the reconstruction of original 

signals from a small number of measurements [I.5]. 

 

Figure I.1: Block diagram of the basic Compressive sensing framework. 
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I.2.2. Mathematical Introduction 

To understand the mathematics behind the CS technique we recall here some basic principles: 

Instead of acquiring 𝑵 samples of a signal 𝒙 ∈ ℝ𝑁×1, 𝑴 random measurements are acquired 

with 𝑴 ≪  𝑵 (CS theory states that the number of measurements sufficient to reconstruct the 

signal 𝒙 is 𝑴 =  𝑂(𝐾 𝑙𝑜𝑔(𝑁/𝐾)) such that (I.1):  

𝒚 = 𝚽𝒙, (I.1) 

where 𝒚 ∈ ℝ𝑀×1is the known compressed measurement vector and 𝚽 ∈ ℝ𝑀×𝑁 is the sensing 

matrix that will be discussed in section I.2.2. To recover the signal 𝒙 given 𝒚 and 𝚽, 𝒙 must be 

sparse in a given base 𝚿 (I.2): 

𝒙 =  𝜳𝒔, (I.2) 

where 𝒔 is a 𝐾-sparse signal which means that 𝐬 has at most 𝐾 non-zero elements. From (I.1) 

and (I.2), we have (I.3): 

𝒚 = 𝐀𝐬, (I.3) 

where 𝑨 =  𝚽𝚿. Figure I.2 illustrates the compressed sensing framework. However, the 

reconstruction of 𝒙 or 𝒔 from 𝒚 is not possible. Therefore, an approximate solution can be 

obtained by solving the following ℓ1 minimization problem which is a good approximation to the 

original ℓ0 minimization problem (NP-hard problem) [I.6]-[I.7] (I.4): 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝒔‖1 𝑠. 𝑡. 𝑦 = 𝚽𝚿𝐬. (I.4) 

To reconstruct 𝐬 from 𝒚, CS algorithms can use different reconstruction approaches that will be 

discussed in Section I.2.4. Then 𝒙 can be reconstructed from �̂� = 𝚿�̂�.  

Since there is only one measurement vector, the above problem is generally referred to as a 

Single Measurement Vector (SMV) problem in the compressive sensing. However, when the 

input becomes a 3D signal (video) instead of 1D signal, the SMV problem becomes a Multiple 

Measurement Vector (MMV) problem. The sparse vector 𝒔 becomes in this case a set of vectors 

𝒔𝒊 which must be recovered jointly from a set of measurement vectors 𝐲𝒊 [I.8]. 

The set of the known measurement vectors  𝐲𝒊 can correspond to different frames of the video 

signal. In fact, the video could be cut into series of images and then each image obtained could 

be associated to a measurement vector  𝐲𝒊 and then it is possible to apply MMV model on the 

video. Therefore, the common approach used to deal with sequence data is Recurrent neural 

networks (RNN). However, RNN work well when we are dealing with short-term dependencies. 

In other words, these neural networks remember things for short periods of time and if a lot of 

information has been entered, it suffers from important losses. This problem could be solved by 

applying a modified version of the RNN: LSTM (Long Short-Term Memory) [I.9]. The advantage 

of LSTM is that it avoids the problem of long-term dependency i.e., it allows to remember 

information for a long period of time. 

As a result, and in agreement with CS properties, CS has a great potential to be applied to 

images and videos because of their huge spatial and temporal redundancies which allow to 

have sparse representations to enable their reconstruction.  
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Nevertheless, RNNs are not the only Deep Learning approach experimented in video 

compressive sensing recovery phase. Indeed, many methods will be discussed in the following 

sections. 

 

Figure I.2 : Compressive sensing framework. 

I.2.3. Sensing Matrix 

One of the most interesting research directions in compressive sensing is the construction of 

the sensing matrices. Indeed, the sensing matrix must satisfy some constraints. Firstly, it should 

be coherent with the sparsifying matrix 𝚿 to capture the salient 3 information of the initial signal 

with the minimum number of projections. Secondly, it may satisfy the restricted isometry property 

(RIP) to preserve the original signal main information in the compression process. However, it 

has been proved in [I.10] that RIP property is not always required to hold neither the sparsity 

level in a CS context, nor the random model of a signal. In addition, for real-time applications 

and low power requirements, we should design low complexity and hardware friendly sensing 

matrices. In most works, especially for those who are focusing on the reconstruction stage, the 

problem of the sampling matrix is not discussed since it is chosen as a random matrix such as 

Gaussian or Bernoulli matrix which meets the restricted isometry property (RIP) of CS. Although 

random matrices are easy to implement and can ensure better reconstruction results, they have 

many disadvantages. In fact, they require large storage resources and the recovery process 

may be difficult when dealing with large signal dimensions [I.11]. It can also be chosen as 

circulant sensing matrix [I.12]. However, other researchers use some features of the original 

input to design these matrices which is known as data-driven sampling matrix design. Other 

works are oriented to binary and bipolar sampling matrices that can be easily implemented on 

hardware devices and they do not require large computation resources. 

I.2.4. Reconstruction Algorithms 

The reconstruction process is the key to efficiently incorporate compressive sensing in real-

world applications. Therefore, designing and implementing new optimization algorithms is the 

major concern of CS researchers. These algorithms can be categorized into several categories. 

In this section, we will cover the main two types of the recovery algorithms in CS: convex 

optimization algorithms and greedy algorithms. 
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I.2.4.1. Convex Optimization 

To reconstruct the original signal 𝒙, the trivial approach is to solve the 𝑙0 minimization problem 

(I.5): 

�̂� = argmin
𝑥

‖𝒙‖0 𝑠. 𝑡.  𝒚  = 𝚽𝒙.  (I.5) 

Since, 𝑙0 minimization is an NP-hard problem for large-scale matrices, in our case 𝚽 is 

computationally complex, ℓ1 minimization process is proposed to overcome the limitations of ℓ0. 

In this case, the minimization problem, known as basis pursuit (BP) [I.13], becomes (I.6): 

�̂� = argmin
𝑥

‖𝒙‖1 𝑠. 𝑡.  𝒚 = 𝚽𝒙.  (I.6) 

Another approach called basis pursuit denoising (BPDN) [I.14] is adapted when dealing with 

noisy systems. In addition, Least Absolute Shrinkage and Selection Operator (LASSO) [I.15] 

can be used when we have no prior knowledge about the noise level. The minimization process 

of some variational problems can also practically be solved using fast iterative thresholding 

algorithm (FISTA) [I.16], forward-backward splitting (FBS) [I.17] or approximation message 

passing (AMP) [I.18]. 

I.2.4.2. Greedy Algorithms 

Greedy algorithms are commonly used in CS applications because of their low complexity and 

their fast reconstruction. Currently, the most exploited greedy algorithms are classified into 

sequential and parallel greedy pursuit techniques. Sequential methods count gradient pursuit 

[I.19], matching pursuit (MP) [I.20]-[I.21], orthogonal matching pursuits (OMP) [I.22], regularized 

OMP (ROMP) and stagewise OMP (StOMP) [I.23]-[I.24]-[I.25]. Although OMP allows a faster 

signal reconstruction than convex relaxation approaches, it deteriorates the recovery quality for 

signals with low sparsity. Therefore, improved versions of OMP have been proposed to avoid 

these drawbacks such as compressive sampling matching pursuit (CoSaMP) [I.26], subspace 

pursuit (SP) [I.27], Regularized OMP [I.24], Stagewise OMP [I.23], and orthogonal multiple 

matching pursuit [I.28]. Those techniques are considered as parallel greedy pursuit methods. 

Obviously, the performance of the reconstitution algorithms depends on the applications and 

there is no obvious metric to determine the best reconstruction algorithm. However, for some 

algorithms, we can compare their complexity and the minimum measurements required for the 

CS recovery. 

I.3. Image Compressive Sensing 

Recently, deep learning is used in various computer vision tasks, and it shows high performance 

results in several applications such as CS reconstruction algorithms. Since many computer 

vision algorithms applied on 2D signals (e.g., [I.29] in which ISTA-Net is applied in a video CS 

context) are extended to be applied on 3D signals (e.g., videos), we introduce in this section 

recent image CS algorithms. Among the reconstruction methods, various block-by-block 

methods are already proposed such as stacked denoising autoencoder (SDA) [I.30], non-

iterative reconstruction using CNN (ReconNet) [I.31] and DR2-Net [I.32] which are deep 

learning-based end to end reconstruction networks. However, the outputs of these algorithms 

suffer generally from blocky artifacts. Therefore, the use of a BM3D algorithm, as a post 

processed procedure, is compulsory to eliminate the blocky artifacts in reconstructions. Among 

the well mentioned algorithms in image reconstruction, we have the iterative shrinkage 
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thresholding algorithm-based network (ISTA-Net) [I.33] that integrates the traditional ISTA into 

a neural network to achieve superior reconstructed quality, its enhanced version ISTA-NET+, 

trainable ISTA for sparse signal recovery (TISTA) [I.34] and ADMM-Net [I.35] which is proposed 

by adapting ADMM method for CS magnetic resonance imaging (CS-MRI) using neural 

networks. Experimental results in various research works prove that deep learning networks can 

successfully solve the two main issues of compressive sensing: the design of proper sampling 

matrices and the reconstruction process. The performances are significantly increased, and 

lower computation complexity is obtained than traditional methods. Shi et al. [I.36] and T.N. 

Canh et al. [I.37] proposed CNN based methods for 2D image reconstruction that split the 

reconstruction process into two stages. Firstly, the initial reconstruction which aims to recover 

the images from the patches. Secondly, a better-quality reconstruction is obtained from the 

enhancement of the initial reconstruction. In [I.36], deep networks are used in the reconstruction 

phase by imitating the traditional CS image recovery and the training of the sampling matrix 

through a CNN network. These two theoretically separated networks are considered as an 

encoder-decoder approach to generate the CS measurements and to reconstruct the 2D 

images. Deep compressive sensing was extended to multi-scale schemes [I.37]-[I.38]-[I.39] 

utilizing image decomposition. In [I.38], a multiphase reconstruction process is proposed. The 

first phase is dedicated to a multi-scale sampling and an initial reconstruction that are jointly 

trained. Then, the quality of the initial image is enhanced with convolution layers and ReLU 

activation function. The third phase, used in the experimental comparison because of its better 

performances, is enhanced with Multilevel Wavelet Convolution (MWCNN). 

I.4. Applications of Compressive Sensing 

Compressive sensing is becoming a promising field of research and many applications have 

benefited from its powerful models. This section presents the main applications of CS, illustrated 

in Figure I.3: 

 

Figure I.3: Main applications of Compressive Sensing.  
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I.4.1. Compressive Imaging 

Compressive Imaging systems can be classified into two main categories: Single pixel cameras 

and radar imaging systems. In fact, many imaging architectures have been introduced in the 

literature. One of the most popular systems in compressive imaging is single pixel camera 

proposed in [I.40]. In this system and during one exposure time, the video scene is gathered by 

an objective lens and then coded by temporal variant mask (example DMD), Then the output is 

detected by a charge coupled device (CCD) and then integrated into one single measurement 

frame. These measurements can be simply transmitted or stored at the sensor level. 

Furthermore, at the receiver level, the original video clip can be recovered using CS 

reconstruction algorithms. 

I.4.2. Medical Applications 

Imaging is one of the most important facets in medical science. It enables to identify and 

diagnose several health problems. Also, it is used by doctors to treat diseases and monitor the 

response of some therapies. Thus, several radiological imagining systems are invented to deal 

with the complexity and difficulty of human body. Among these complex systems, we have one 

of the most efficient tumor diagnosis methods: The Magnetic Resonance Imaging (MRI) [I.41]. 

CS technique is commonly used in MRI since it decreases the sampling rate without dropping 

useful information. Indeed, reducing the number of detected measurements in MRI is beneficial 

for patients because the number of measurements is proportional to the scrutiny duration, 

defined by the time allowed to excite human body hydrogen atoms. Therefore, CS approaches 

enable to have good quality images and decrease the exposure duration to magnetic fields. The 

key feature of MRI images that enables the use of CS approaches is their potential to have a 

sparse representation in the spatial or a transform domain. The original MRI signals will be 

reconstructed from the sparse data using nonlinear recovery frameworks. Apart from that, CS 

can be applied to some medical signals such as electrocardiogram (ECG) [I.42] and 

electrochemical signals [I.43] by using their sparsity feature. 

I.4.3. Communication systems 

Wireless sensor network (WSN) technology has been identified as one of the key components 

in designing future internet of things platforms [I.44]. It has been gaining a lot of attention since 

smart sensors have become an important part in our daily lives. However, in real life, these 

devices are resource-constrained: the storage resources, the energy capacity and the 

computing performances are all limited. That is why the processing of huge data especially video 

data is becoming very challenging. In order to shift the computation burdens from the sensor 

level to the decoder in WSN, compressive sensing is used as an effective way to reduce the 

complexity of the encoder, which means that by optimizing the way the acquire and transmit 

data over wireless channels, we optimize the computational resources of the devices and 

enhance their performances. In fact, the compressive sensing technique significantly enhances 

the coding efficiency of the wireless devices (considered as encoders) by reducing the sampling 

rate (in comparison with the well-known Shannon–Nyquist) and synchronizing the data sampling 

process. Another problem can be detected from a macro perspective in WSN platforms: the 

sporadic (infrequent) transmission rate. Indeed, not all wireless sensors send their data 

simultaneously to the central server, which means that the WSN architecture sparsity should be 

exploited to reach high data reliability with a limited number of sensors. In addition, IoT platforms 

can easily integrate compressive sensing into their several applications because many real-

world datasets can be well approximated by sparse signals using an appropriate transform (e.g., 
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DCT, DWT… to represent images, videos. . .). So, in many applications related to WSN, energy 

consumption is a principal concern because sensors have to send regularly their sensing data 

to the coordinator node. Data transmission being considered as a principal factor of energy 

consumption, many research efforts are focusing on reducing the amount of data acquired at 

the sensor level. In order to reduce the amount of transmission data, we have to compress them 

inside the network. As a result, compressive sensing (CS) algorithms have led to new ways of 

designing energy efficient WSN with low-cost data acquisition [I.45]. In addition to WSN, CS has 

been commonly exploited in other communication systems such as Antenna arrays [I.46] and 

Cognitive Radio networks [I.47]. 

I.4.4. Computer Vision and Pattern Recognition 

Sparse signal representations approaches have significantly impacted computer vision fields 

[I.48]. It is an important mechanism for collecting, representing and compressing high 

dimensional data. This potential is predominantly due to the fact that most types of signals or 

data such as images and videos have obviously sparse representations in some basis (i.e. 

Fourier, Wavelet). Furthermore, efficient algorithms based on convex optimization, greedy 

pursuit or Deep Learning techniques are commonly used to compute such representations with 

good performances and high fidelity. One famous application of CS in computer vision is pattern 

representation and recognition such as face recognition. Indeed, the fact of considering face 

expression changes as sparse in an entire image has allowed to exploit the powerful tools of 

CS [I.49]. Also, approaches like ℓ1-minimization provide great computational tools to extract 

significant features and structures in order to control the semantics of the data. In [I.50], a 

gesture recognition problem is solved using an ℓ1-minimization approach and the theory of 

random projection. 

I.4.5. Speech Processing  

Although CS has been widely exploited in digital image and video processing for decades, it is 

used today to process speech and audio signals. Recently, speech data is generated at 

exponentially growing rates which increases the pressure on voice communication systems. 

However, the limited capacity of transmission bandwidths and storage resources requires the 

implementation of more performant compression methods for speech signals. Thus, using CS, 

as an emerging compression technique in signal processing for acquiring speech data at much 

lower rate than conventional approaches, was in most cases an efficient and effective solution. 

Among CS based speech processing approaches, few are: Speech processing and 

enhancement based on Bayesian compressive sensing (BCS) [I.51] and speech coding by 

exploiting the sparsity in phonological characteristics [I.52]. In addition, CS is commonly used in 

audio security and speech predictions [I.53]. 

I.4.6. Video Processing  

Video signals have both intraframe and interframe correlations. It is an important feature proving 

the significant information redundancy in video data that can be practically sparse in some 

domains. Accordingly, video signals can be reconstructed from relatively few measurements in 

agreement with the CS theory. In fact, CS has shown tremendous potential for video processing 

applications. It has made real-time video acquisition and reconstruction possible by exploiting 

single pixel cameras [I.54]. The real-time acquisition system is used in various applications such 

as remote sensing and autonomous vehicles. Among video processing models, few are: 

Adaptive video sampling exploiting block-based video compressive sensing reconstruction [I.55] 
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and distributed VCS where the sampling phase of different frames in executed independently 

while the recovery step is done jointly [I.56]. 

I.4.7. Mobile Crowd Sensing 

Mobile crowd sensing (MCS) is a sensing and computing technique exploiting the data 

generated by smartphones to visualize and monitor environmental and urban conditions. 

Traditional MCS techniques use a huge number of smartphones to collect environmental data. 

However, these techniques suffer from the extremely huge power consumption which causes 

high financial costs. Also, many users need to transmit their data simultaneously which causes 

bandwidth occupancy issues. Thus, CS based approaches are proposed to solve this problem. 

CS based approach enable to reduce the number of users collecting environmental data (from 

𝑁 users to 𝑀 users, 𝑀 ≪ 𝑁) and predict the data generated by all 𝑁 smartphones from the 

already received information. Several challenges in MCS are addressed in [I.57] especially 

clustering models aiming to select the optimal nodes with the best coverage abilities and the 

recovery techniques aiming to forecast the estimated data non-sensed by the rest of nodes. In 

addition, several research works have been done to enhance the performances of CS-based 

methods for MCS in terms of decreasing the number of sensing nodes needed for data collection 

[I.58] and ensuring the privacy of the transmission process [I.59]. 

I.4.8. Traffic Monitoring 

In smart cities, traffic monitoring is an important step in designing modern infrastructures. In 

traditional monitoring systems, mobile smart phones and moving vehicles are the main source 

of periodic reports about the state of roads (traffic status, rush hours, speeds of different 

vehicles, …). However, these methods are power consuming since they require a huge number 

of users to cover the whole area of interest. Nevertheless, in real-world applications, the number 

of users is always limited which forces companies to invest more resources on collecting 

meaningful data and increases the projects costs. Thus, in [I.60], it has been proven that CS-

based approaches can successfully be used for traffic surveillance purposes where large 

datasets can be approximated with low rank matrices. So, CS is exploited to predict the entire 

dataset and impute missing values from the sparse dataset already collected by limited 

resources. In [I.60], the CS-based algorithm used showed great performances by predicting 

80% of the entire dataset. This research has inspired industries to reduce the number of sensing 

devices while maintaining the same good quality for the whole traffic dataset. 

I.5. Background Knowledge 

In the last few years, introducing Deep Learning in computer vision applications to learn 

representations of data with various levels of abstraction, has considerably enhanced the state 

of the art and made an incredible advance on solving problems such as pattern recognition, 

visual object detection, frames prediction and many other visions processing related tasks. 

Designing efficient training models enables to achieve better performances that human level 

precision on many use cases. The historical evolution of Deep Learning in presented in Figure 

I.4, where the major milestones of neural networks research is provided. Obviously, the huge 

impact of Deep Learning and the exceptional progress in different domains is the result of 

several research works that have marked the history of science. 

In our research project, especially in terms of reconstructing video signals that have already 

been acquired in a VCS paradigm, Deep Learning is considered as a promising direction to 

exploit VCS in real-time applications. Indeed, since 2006, CS is mainly used for research 
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purposes and deploying this signal processing framework is still challenging. The major 

challenges faced by CS are the quality of the reconstructed signals and the reconstruction time. 

However, the drawbacks of the optimization-based reconstruction methods are the long 

recovery time and the relatively bad reconstruction quality. Therefore, Deep Learning is 

exploited to enhance the performances of the recovery approaches. In this section, some basic 

notions, that will be frequently used in this thesis, will be introduced.  

 

Figure I.4: The history of Neural Networks, Machine Learning and Deep Learning. 

I.5.1. Neural Networks: basics 

Neural Networks (NN) are computational learning systems of hardware and software 

functionalities aiming to extract meaningful features from input data and solve common artificial 

intelligence problems. It is the main backbone of deep learning. It enables to learn an 

approximation of a complex function. It consists of interconnected neurons, updated during the 

training phase. The updating process is based on error functions. Then, the linear combination 

of weights and bias parameters of the neurons is processed through the activation functions to 

generate suitable outputs. This paradigm is the main learning mechanism of deep learning-

based models. 

In order to understand the different Deep Learning architectures, some basic notions will be 

defined in this part. 

I.5.1.1. Neuron 

Inspired by biological neurons, artificial neurons are the basic units of neural networks. 

Technically, they receive input data from either row data sets or from artificial neurons of the 

previous layer, process it and produce outputs to the next hidden layer or to the final generated 

return.  

The output of a neuron can be expressed as follows (I.7): 

𝑂𝑢𝑡𝑝𝑢𝑡 =∑(𝑊𝑒𝑖𝑔ℎ𝑡 × 𝐼𝑛𝑝𝑢𝑡) + 𝐵𝑖𝑎𝑠. 
(I.7) 

Then, the performance of neural networks depends essentially on calculating the optimal values 

for weights and biases by repeatedly updating them. 
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I.5.1.2. Weights 

Weights are learnable parameters of neural networks to transform input data and to impact the 

output. Before starting the training process, weights are initialized randomly. Then, they are 

continuously updated during the learning phase. Higher weights are assigned to more important 

features, thus a weight of zero represents an inconsequential feature. Accordingly, weights are 

in charge of supervising the stability of the connection between two artificial neurons. 

I.5.1.3. Bias 

In addition to weights, bias are also learnable parameters of neural networks [I.61]. It is added 

to modify the range of the input multiplied by the weight value. Bias is the second part of the 

linear transformation of input data. One of the most important utilities of biases is that they 

guarantee that outputs of artificial neurons are not null values even when inputs are zeros. 

I.5.1.4. Activation Function 

Activation functions [I.62], also known as transfer functions, are non-linear transformations 

applied to the linear combination of input data. It is used to regulate the output of neural network. 

As shown in Figure I.5, the output value of an activation function can be defined as follows (I.8): 

𝒚𝒌 = 𝑓 (∑𝑿𝑾𝒌 + 𝒃𝒌

𝒏

𝒌=𝟏

). 
(I.8) 

 
Figure I.5: Activation function. 

Four main activation functions will be cited in this thesis: Sigmoid, Tanh, ReLU and Softmax. 

Sigmoid or logistic activation function - It is defined by the following equation (I.9): 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝒙) =
𝟏

𝟏 + 𝒆−𝒙
. 

(I.9) 
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Since the sigmoid activation function outputs a range of values between 0 and 1, it is used for 

machine learning models to forecast a probability value. 

Hyperbolic tangent activation function (Tanh) - It is better than sigmoid because it has a 

range of values between -1 and 1. Negative values are mapped completely negative and zero 

values are mapped near to zero in the tanh representation. It frequently used in recurrent neural 

network-based model for NLP and speech recognition use cases. The Tanh equation is defined 

as follows (I.10): 

𝑇𝑎𝑛ℎ(𝒙) =
𝒆𝒙 − 𝒆−𝒙

𝒆𝒙 + 𝒆−𝒙
. 

(I.10) 

Rectified Linear Units (ReLU) - ReLU activation function is commonly used for hidden layers. 

It is defined as(I.11): 

𝑅𝑒𝐿𝑈(𝒙) = max(𝒙, 𝟎). (I.11) 

Then, the output of ReLU is 𝒙 when 𝒙 is strictly positive, and 0 otherwise. ReLU is mainly 

exploited because of its constant derivative value for positive inputs. The constant derivative 

allows to fasten the training process. It is the most popular and most advanced function among 

the other activation functions because it attenuates the impacts of the Vanishing Gradient 

problem which accelerate the training phase. 

Softmax - It is frequently used for multi-class classification models. Technically, it transforms a 

vector of 𝑛 values into a vector 𝑛 values, between 0 and 1, that sum to 1. Indeed, each value 

represents the probability of belonging to each class. Then, the classifier classifies the input 

based on the softmax result. 

I.5.1.5. Input/ Output/ Hidden Layer 

Input layers are the first neural networks components to receive input data. Hidden layers are 

the processing layers where the entire learning mechanism is executed. Output layers are the 

final layers in neural network, and they transform data generated from hidden layers to the final 

appropriate output. 

I.5.1.6. Multi-Layer Perceptron 

Multi-Layer Perceptron (MLP) [I.63] is a fully connected feedforward network in which every 

neuron in one layer is connected to all the neurons in the next layer. An MLP network has an 

input layer, one or many hidden layers and an output layer. 

I.5.1.7. Cost Function 

It is considered as the average loss over the whole training data. It is a metric to measure the 

difference between the predicted values and the actual ones. It penalizes the network when 

making prediction errors and enables to update the learnable parameters. Indeed, the main goal 

of the learning process is to minimize the value of this function. Thus, the optimal output is 

associated with the lowest cost value. Many cost functions are used in deep learning-based 

architectures such as mean square error (MSE) [I.64], Root Mean-Square Error (RMSE) [I.65], 

etc. 
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I.5.1.8. Forward Propagation  

It is defined by the movement of information in a single direction forward from the input layer to 

the output layer. It is obvious that backward movement is not executed. 

I.5.1.9. Backpropagation 

The back propagation is the movement of the weight updating process when is done from the 

output layer to the first hidden layer. The weight updating process uses the gradient of the cost 

function. 

I.5.1.10. Gradient Descent  

It is a first order iterative optimization method to find the minimum of a convex function of multiple 

variables (the cost function). It has been widely used to train Artificial Neural Networks (ANN) 

[I.66]. One of the most used gradient descent algorithms is Stochastic Gradient Descent (SGD). 

It takes up some random instances of the training dataset at each iteration and then calculates 

the gradient. The process of finding the minima of the cost function with SGD is slower than 

typical Gradient descent algorithms because only one sample of the dataset is taken randomly 

into consideration and reaching the minima is possible in a significantly longer training time 

(noisy paths). 

I.5.1.11. Learning Rate 

The Learning Rate is defined as the rate, at each iteration, the model descends towards the 

value of the minima in the loss function. A trade-off should be made when selecting this 

hyperparameter. Indeed, the model may start diverging instead of converging and fails to 

determine the minimum if the learning rate is too large and it may take much more time to 

converge when the learning rate is very low. Also, it may get stuck in a fixed local minima. To 

deal with the above challenges, three main techniques can be used to reduce the value of the 

learning rate hyperparameter while training the model: Firstly, a constant 𝝀 can be applied to 

reduce the learning rate with a defined step. Secondly, it can be regulated during the training 

phase using the following equation (I.12): 

𝒍𝒓𝒕 = 𝒍𝒓𝟎 𝜶
𝒕
𝝐, 

(I.12) 

where 𝒍𝒓𝒕 and 𝒍𝒓𝟎 are the 𝑡𝑡ℎ and the initial learning rates, respectively. 𝜶 is predetermined 

decay factor. Finally, the third reduction technique is called the exponential decay and it is 

defined as follows (I.13): 

𝒍𝒓𝒕 = 𝒍𝒓𝟎 𝒆
−𝒌𝒕, (I.13) 

where 𝒌 is an hyperparameter. 

I.5.1.12. Batches 

In general, when training a deep learning model, the dataset is divided into several parts called 

batches. It is an important step before training because in most cases it is impossible to train 

the entire dataset in one go. Training the model on batches makes it more generalizable. 
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I.5.1.13. Epochs 

One epoch is considered as a single iteration when the entire dataset (i.e., all the batches) is 

processed forward and backward through the deep learning model. The number of epochs used 

to train the model is predetermined by the user before starting the training. A trade-off must be 

made when fixing this hyperparameter to have high accuracy without over-fit the network. 

I.5.1.14. Dropout 

Dropout is a regularization approach commonly used to avoid over-fitting in deep learning 

models [I.67]. It consists in removing some neurons, randomly chosen, from one or many hidden 

layers during the training process. It enables to train different DL models (different neurons 

combinations) on the training dataset. Also, it decreases the complexity of the network in order 

to be able to generalize well on new test datasets. 

I.5.1.15. Batch Normalization 

It is a normalization technique processed between the hidden layers of very deep neural 

networks and aims to standardize the input of the next layer [I.68]. It enables to have the suitable 

distribution that can fit into the next hidden layer. In fact, batch normalization is exploited to solve 

the internal covariate shift problem. This internal problem comes from the changes of data 

distribution from one hidden layer to another during the training process. Thus, data should be 

explicitly normalized before sent to the next layer. In general, it allows to regularize the network 

and reduces the use of dropout and other regularization approaches. 

I.5.2. Convolutional Neural Networks 

One of the most established computer vision algorithms among various deep learning models 

is Convolutional Neural Network (CNN) thanks to its extraordinary results in many vision related 

tasks such as object recognition [I.69] using the deep layer structure and back-propagation to 

adaptively learn spatial features. Despite its heavy computational cost, CNNs are able to extract 

useful information from compressed visual signals such as objects and movements which are 

considerably exploited in the reconstruction process. Also, they have notably enhanced context 

learning, object segmentation and classification, and super-resolution. 

It is used by applying convolution operations to the data before using fully connected networks. 

Indeed, Figure I.6 represents the main architecture of CNN used for image classification 

purposes. Each layer of the CNN mechanism converts the input volume into an output of feature 

maps. These feature maps are used by the fully-connected layers to classify the main input. 

 

Figure I.6: CNN: main architecture. 
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I.5.2.1. Filters 

In CNN, filters are considered as weight matrices commonly used to extract spatial patterns 

from images such edges and lines by identifying the variations in intensity values of the input 

frame. In general, the spatial dimensions of a filter are smaller than the size of the input image. 

The filters are updated by executing full convolutional operations on feature maps between the 

convolutional layer and its previous layer. 

I.5.2.2. Pooling 

Pooling is an operation performed to decrease the number of parameters in the network 

(subsampling or down sampling) and avoid over-fitting. It does not impact the depth dimension. 

It is used to generalize features extracted by filters and enable the model to identify features 

independent of their position in the frame. The most used type of pooling is a layer of 2 × 2 filters 

using the max function [I.70], as illustrated in Figure I.7, because it enables faster convergence 

and enhance the generalization abilities of the network. In addition, other pooling function can 

be exploited such as average pooling and min pooling. 

 

Figure I.7: MAX pooling. 

I.5.2.3. Padding 

In an image, the number of pixels appended when features are being extracted by the filter of a 

CNN model is called padding. Technically, it is the fact of adding layers of zeros the frame to 

efficiently extract features from pixels on corners and edges because those pixels are much less 

exploited than those in the middle. Accordingly, padding enables to prevent the shrinkage of an 

input image in consequence of the convolution operations. 

I.5.3. Recurrent Neural Networks 

Recurrent Neural Networks (RNN) [I.71] is another class of Deep Learning method that is 

commonly used to process time-series signals and other sequential data. It is considered as an 

extension to feed-forward networks to process long sequences. The main characteristic of 

recurrent networks is their internal memory to memorize information from previous layers and 

to impact the current input and future outputs. Among the commonly exploited recurrent 

architectures, long short-term memory (LSTM) and gated recurrent units (GRUs) are the most 

popular ones. RNN architectures (Figure I.8) have continuously been improved to model and 

process high dimensional data used in several applications such object tracking, video 

prediction and video synthesis. 



Wael SAIDENI | PhD Thesis | University of Limoges | 2022 40 

Licence CC BY-NC-ND 3.0 

 

Figure I.8: RNN: main architecture. 

I.5.3.1. Recurrent Neuron  

Recurrent Neurons are different from standard artificial neurons because their outputs are sent 

back to them to re-process data. They enable to store data within the network and generate 

more generalized outputs. 

I.5.3.2. Vanishing Gradient Problem 

The Vanishing Gradient Problem [I.72] is caused by a very small value of the gradient of the 

activation function in the network. The weights are multiplied by these very small gradients, they 

become also very small which slows down the training phase and impacts the long-range 

dependency of the recurrent model. To solve this problem many techniques can be used such 

as using ReLU as an activation function. 

I.5.3.3. Exploding Gradient Problem 

In contrast to vanishing gradient problem, the exploding gradient problem happens when the 

gradient of the activation function is very large [I.73]. To solve this problem during the back 

propagation, gradients are clipped to not exceed some threshold. 

I.5.4. Generative Adversarial Networks 

Generative Adversarial Network (Figure I.9), which is a deep learning-based generative 

approach, was designed and developed by Ian Goodfellow in 2014 [I.74]. It is an alternative 

technique to the famous maximum likelihood estimation approach. In a GAN-based algorithm, 

two neural networks, the generator and the discriminator, are implicitly competing against each 

other to generate more accurate estimations. To make it simple, the generator network starts 

with a randomly generated data and the discriminator is designed to judge the accuracy of the 

output of the generator. This learning process stops when the generated data become not far 

from the actual real samples and can be expressed by (I.14): 

𝑚𝑖𝑛𝐺𝑚𝑖𝑛𝐷𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[log(𝐷(𝑥))] + 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑧)[log(1 − 𝐷(𝐺(𝑥)))], 
(I.14) 

in this equation, GAN is considered as a minmax game with the value function 𝑽. The generator 

𝑮 aims to minimize 𝑽 and the discriminator 𝑫 aims to maximize it. 
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Figure I.9: GAN: main architecture. 

I.5.4.1. Generator  

It is a neural network aiming to generate fake data points (e.g. images) that seem to be realistic, 

and feed the discriminator network as a real data.  

In fact, the generator has a random vector drawn from a Gaussian distribution as an input to 

feed the generative mechanism. It aims to make the discriminator network classify its generated 

output into real or fake data. The backpropagation mechanism is exploited to regulate each 

weight in the proper direction by measuring weights impact on the output. 

I.5.4.2. Discriminator 

It is a neural network that enables to differentiate between real and fake data. It is a prominent 

network in the learning strategy of generators.  

In the training process, the discriminator is able to classify the output of the generator using the 

discriminator loss function. Same as generators, the learning process uses the backpropagation 

method to update learnable weights. 

I.5.5. Auto-Encoders (AE) 

Recently, many compression approaches are based on the dimensionality reduction aiming to 

transform signals from a high dimensional space into a low dimensional level. This 

transformation, exploiting the sparsity of some signals can be realized by training auto-encoders 

(AE) (Figure I.10) [I.75], which is another multilayer neural network commonly used for 

unsupervised feature learning to reduce data dimensions. AE are playing an important role in 

computer vision and video processing problems. They are an unsupervised learning technique 

in which the bottleneck enables a compressed knowledge representation of the original data. 
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Figure I.10: AE: main architecture. 

I.5.6. Transformers 

Finally, there is a trend of replacing convolutional and recurrent neural networks with a recent 

topology to improve the network’s abilities to exploit spatiotemporal correlations: Transformers. 

Indeed, a Transformer is a recent deep learning approach based on the mechanism of self-

attention, deferentially measuring the impact of each part of the input training data. It is 

considered as a sequence-to-sequence model but does not include recurrent models. In fact, 

Transformers is an encoder-decoder architecture, as illustrated in Figure I.11. The encoder 

processes the input data/sequence and compresses it into a context representation called 

vector. Then, the decoder generated the output from the context vectors. Since its first 

appearance in 2017 with the well-known paper “attention is all you need” [I.76], Transformers 

have been widely exploited in Natural Language Processing (NLP). However, extended versions 

of Transformers have recently improved some computer vision applications. With enough input 

data, linear layers and matrix multiplications Transformers are revolutionizing the learning 

process of Deep Learning attention-based approaches.  

In this thesis, we worked on exploiting these powerful architectures to build a robust video 

compressive sensing framework. 
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Figure I.11: Transformers: main architecture.  

I.5.6.1. Embedding 

Embedding is the operation of transforming high dimensional vector into low dimensional space. 

It is the vector representation of each token in the input sequence. It is an important step for 

Transformer-based architectures to feed the encoder block with the suitable data representation. 
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I.5.6.2. Attention Mechanism 

Attention is one of the most powerful concepts in Deep Learning. It is an integral component of 

Transformers, which expressly represent the interactions between all units of an input image or 

video sequence for structured forecasting assignment. Attention layers update each unit of an 

input sequence by combining global information from the entire input data. Their main role is to 

extract correlations between different tokens of input data by evaluating the context and the 

structure of the signal (a video sequence in our thesis).  

Mathematically, for an input sequence 𝑿 ∈ ℝ𝑛×𝑑, where 𝑛 is the number of the sequence 

components and 𝒅 is the embedding dimension modeling each unit, the goal of the attention 

mechanism is to detect the interactions between all 𝑛 components. This contextual information 

is calculated by defining 3 learnable matrices to convert Queries (𝑾𝑸∈ ℝ𝑑×𝑑𝑞), Keys (𝑾𝑲∈ 

ℝ𝑑×𝑑𝑘) and Values (𝑾𝑽∈ ℝ𝑑×𝑑𝑣). Then, the input 𝑿 is projected to calculate Queries, Keys and 

Values: 𝑸 = 𝑿𝑾𝑸, 𝑲 = 𝑿𝑾𝑲 and 𝑽 = 𝑿𝑾𝑽. Finally, the output of the attention layer is defined 

by (I.15): 

𝑨 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(
𝑸𝑲𝑻

√𝒅𝒒
)𝑽, 

(I.15) 

where 𝐀 ∈ ℝ𝑛×𝑑𝑣 is the attention map.  

In several research works, multi-head attention is commonly used to capture various complex 

relationships between different elements in the input sequence. It is composed of several self-

attention blocks (for example, 8 self-attention blocks in the original Transformer). Each attention 

unit has its own learnable matrices and its own attention map. In general, the number of attention 

layers depend on the number of objects illustrated in the input sequence. 

I.6. Conclusion 

In this chapter, we have provided an introductory review of Compressive Sensing and its 

applications over the past few years. Then, we introduced the main techniques used Image 

Compressive Sensing frameworks and can be extended in Video Compressive Sensing 

purposes. We also presented the main concepts of Deep Learning that will be discussed in this 

thesis and the major milestones in the history that have influenced the current development of 

deep learning. Indeed, we have explained in detail the different Deep Learning architectures 

exploited in recent Video Compressive Sensing frameworks such as CNN, RNN and the 

Transformers. Also, learnable parameters and hyperparameters were reviewed in detail.  

At the end of this chapter, we believe that these concepts will provide a background knowledge 

to readers. The next chapter will focus on the recent advances in Deep Learning-based Video 

Compressive Sensing frameworks in order to theoretically prove the impact the neural networks 

in the field. Furthermore, a comparative study will be presented to qualitatively and quantitatively 

evaluate the main VCS approaches. 
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Chapter II. Comparison Study of Deep Learning based approaches in Video 

Compressive Sensing 

II.1. Introduction 

Compressive sensing is a technique exploited today in several applications as explained in the 

previous chapter. In fact, CS is a theory which can efficiently acquire and reconstruct sparse 

signals [II.1]. CS theory suggests that the sampling rate necessary to acquire and reconstruct 

the signal can be significantly lower than the minimal rate required by the Nyquist-Shannon 

sampling theorem. This lower sampling rate can reduce the processing and energy requirement 

at the sensor nodes which can lead to revolutionary results for embedded video sensors. In fact, 

the video signal in general is sparse so it contains a significant amount of redundancy in both 

spatial and temporal domains and therefore video compression is one of the most important 

fields where CS can be applied. The advent of CS has led to the emergence of new image 

devices such as Single Pixel Cameras [II.2]. CS techniques are commonly used to deal with 

high transmission throughput and large storage spaces. Indeed, an impressive progress has 

been made in Video Compressive Sensing (VCS) with the appearance of single pixel cameras 

where the video is represented in the Fourier domain [II.3] or the Wavelet domain [II.4]. Then, 

video CS cameras tried to integrate temporal compression into the systems with the arrival of 

the optical flow-based algorithms for video reconstruction [II.5]. In addition, Total Variation (TV) 

[II.6] and Dictionary Learning [II.7] were among the popular approaches used for VCS. TV 

methods suppose the sparsity of the gradient of each video frame and try to minimize the 𝑙1 

norm of the gradient frames. However, dictionary-based approaches consider the video patches 

as a sparse linear extension in the dictionary elements. 

Another challenge of VCS, especially for the video reconstruction process is the complexity of 

the mathematical formulations handled by the reconstruction system. For the sake of simplicity, 

video recovery techniques can be classified into two main categories: Optimization based 

algorithms, categorized also into convex and greedy algorithms, and Deep Learning methods. 

Sections II.3 introduces the main approaches used to reconstruct the main video scenes from 

the compressed measurements. On the one hand, we clearly notice that iterative based 

approaches have high complexity (from few seconds to few minutes to recover an image). 

However, these techniques are not applicable for real-time applications. On the other hand, 

Neural Networks (NN) are applied in our topic of interest: the optimization of the transmission 

and reconstruction of video signals in wireless sensor networks. 

Neural networks have shown excellent performances in terms of quality of image reconstruction 

and reconstruction processing time (in the order of milliseconds). This makes the NN approach 

a good candidate for real-time applications of video-monitoring in a smart city context. Thus, this 

paper aims at better characterizing and comparing existing state of the art NN reconstruction-

based methods. The remaining of the chapter is organized as follows: In Section II.2 we present 

different image compressive sensing architectures, whilst Section II.3 discusses different video 

compressive sensing sampling and reconstruction architectures while classifying them based 

on their sampling strategy. In Section II.4 we classify recent deep learning-based video 

compressive sensing algorithms according to their modulation strategy. In Section II.5, we 

provide recent research results with an experimental study on several VCS approaches to 

compare their performances in terms of the quality of their output and the testing time. Section 

II.6 eventually concludes the chapter by identifying open research challenges and pointing out 

future research directions. 
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II.2. Image Compressive Sensing 

Recently, deep learning is used in various computer vision tasks and it shows high performance 

results in several applications such as CS reconstruction algorithms. Since many computer 

vision algorithms applied on 2D signals (e.g., [II.8] in which ISTA-Net is applied in a video CS 

context) are extended to be applied on 3D signals (e.g., videos), we introduce in this section 

recent image CS algorithms. 

Among the reconstruction methods, various block-by-block methods are already proposed such 

as stacked denoising autoencoder (SDA) [II.9], non-iterative reconstruction using CNN 

(ReconNet) [II.10] and DR2-Net [II.11] which are deep learning based end to end reconstruction 

networks. However, the outputs of these algorithms suffer generally from blocky artifacts. 

Therefore, the use of a BM3D algorithm, as a post processed procedure, is compulsory to 

eliminate the blocky artifacts in reconstructions. Among the well mentioned algorithms in image 

reconstruction, we have the iterative shrinkage thresholding algorithm based network (ISTA-

Net) [II.12] that integrates the traditional ISTA into a neural network to achieve superior 

reconstructed quality, its enhanced version ISTA-NET+, trainable ISTA for sparse signal 

recovery (TISTA) [II.13] and ADMM-Net [II.14] which is proposed by adapting ADMM method 

for CS magnetic resonance imaging (CS-MRI) using neural networks. Experimental results in 

various research works prove that deep learning networks can successfully solve the two main 

issues of compressive sensing: the design of proper sampling matrices and the reconstruction 

process. The performances are significantly increased and lower computation complexity is 

obtained than traditional methods. Shi et al. [II.15] and T.N. Canh et al. [II.16] proposed CNN 

based methods for 2D image reconstruction that split the reconstruction process into two stages. 

Firstly, the initial reconstruction which aims to recover the images from the patches. Secondly, 

a better-quality reconstruction is obtained from the enhancement of the initial reconstruction. In 

[II.15], deep networks are used in the reconstruction phase by imitating the traditional CS image 

recovery and the training of the sampling matrix through a CNN network. These two theoretically 

separated networks are considered as an encoder-decoder approach to generate the CS 

measurements and to reconstruct the 2D images (Figure II.1). 

Deep compressive sensing was extended to multi-scale schemes [II.16]-[II.17]-[II.18] utilizing 

image decomposition. In [II.17], a multiphase reconstruction process is proposed. The first 

phase is dedicated to a multi-scale sampling and an initial reconstruction that are jointly trained. 

Then, the quality of the initial image is enhanced with convolution layers and ReLU activation 

function. The third phase, used in the experimental comparison because of its better 

performances, is enhanced with Multilevel Wavelet Convolution (MWCNN). 

II.3. Video Compressive Sensing 

Obviously, the main function of video compressive sensing systems is to capture video data with 

low-dimensional detectors and then use the optimized based algorithms, as explained above in 

chapter 1, to solve the ill-posed reconstruction problem. These two systems: the hardware 

encoder and the software recovery system enable to optimize encoders resources, especially 

in the transmission process. However, their long running time prevents them from being 

exploited in real-time applications. So, thanks to recent advances in deep learning, we expand 

the variety of algorithms used in the reconstruction phase. Deep learning-based approaches 

enable a fast end-to-end recovery of video scenes with better quality performances despite the 

long training time. Indeed, the basic framework of video compressive sensing is composed of 

two main systems: the hardware encoder and the software decoder, and a channel to transmit 
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video data over it. This is the main digital video delivery system employed by communication 

systems that rely on compressive sensing to acquire, transmit and reconstruct data. In fact, the 

encoder uses special cameras (low-speed cameras such as single pixel cameras) to capture 

and process high speed videos. Then, it generates fewer compressive measurements that could 

be easily transmitted or stored. Finally, a reconstruction algorithm will be applied in order to 

reconstruct the received video at the receiver device (e.g., server). Figure II.1 illustrates the 

basic video compressive sensing framework. 

 

Figure II.1: Basic model of video compressive sensing. 

Video CS algorithms have used various models and architectures to sample and reconstruct the 

signals. According to the way the video signals are sampled, we review these works in the 

following three categories: Temporal VCS, Spatial VCS and Spatiotemporal VCS. 

II.3.1. Temporal VCS 

The sampling phase of the Temporal VCS (TVCS) relies on the 2D measurements obtained 

from the sampling across the temporal axis which means that the compression is done in the 

temporal domain. 

The non-neural networks approach exploits the sparsity of the video scenes and the variety of 

the existing algorithms for optimization problems. In [II.19], J. Yang et al. propose a Gaussian 

mixture model (GMM) based algorithm to reconstruct spatiotemporal video patches from 

temporally compressed measurements. This robust algorithm is less-dependent on the offline 

training dataset which enable to be extended to real-time applications. X.Yuan et al. [II.20] 

solved the compressive sensing problem by exploiting the Generalized Alternating Projection 

(GAP) to solve the Total Variation (TV) minimization mathematical problem. 

Another approach to deal with TVCS, Deep learning has become one of the CS community 

promising trends. In [II.21], the authors present a deep fully connected network and non-iterative 

algorithm to recover the frames already sampled using a 3D Bernoulli sensing matrix to measure 

consecutive frames simultaneously. This article represents the first deep learning architecture 

for temporal compressive sensing reconstruction. The work of this article concerns temporal CS 

where the multiplexing is done through the temporal dimensions and its architecture is based 

on Multi-layer Perceptron (MLP) as shown in Figure II.2 Indeed, the MLP architecture is used to 

learn the non-linear function which maps a measured frame patch 𝒚𝒊 via multiple layers to a 

video block 𝒙𝒊. 

Each hidden layer is defined by (II.1): 

 



Wael SAIDENI | PhD Thesis | University of Limoges | 2022 55 

Licence CC BY-NC-ND 3.0 

where ℎ𝑘  is the k-hidden layer, 𝒃𝒌 is the bias vector and 𝑾𝒌 is the weight matrix. The non-linear 

activation function used in this model is the rectified linear unit (ReLU) defined as 𝜎(𝒚) =

max(0, 𝒚). In this model, the 1st fully connected layer must provide a 3D signal from the 2D 

compressed measurements. The other layers are considered as 3D layers. The size of the video 

blocks used is 8 × 8 × 16 and increasing the block size would considerably increase the network 

complexity. This algorithm is tested by changing either the number of MLP layers (4 or 7) or the 

size of the learning database. The metrics used are the PSNR and SSIM [II.22]. In fact, 

increasing the number of layers for small datasets (not for large datasets) improves the metrics 

because several parameters are trained. However, increasing the number of layers will 

inevitably lead to an increase of the complexity of the network. Compressive sensing allows 

signals to be detected with far fewer measurements than those of Shannon–Nyquist. It entails 

lower costs for IOT projects and a reduction in the acquisition time. In this context, many papers 

have proposed architectures such as Single Pixel Cameras (SPC) providing a framework which 

seems to be effective for images in terms of acquisition using a reduced number of coded 

measurements with low-cost sensors. In [II.23], the authors were able to extend the CS imaging 

model beyond the images to work with the video. In the article quoted above, which talks about 

single-pixel cameras, it is a demonstration of the Deep Learning application with a convolutional 

auto-encoder network to retrieve a 128 × 128 real-time video pixels at 30 frames/s from a 

sampling of single-pixel cameras with a compression ratio of 2%. Thus, the proposed 

architecture is a Deep Convolutional Autoencoder Network (DCAN) architecture which 

represents a powerful and efficient computation pipeline to solve inverse problems with good 

quality and in real time. In this research work, deep neural networks have been exploited to 

produce an algorithm to reconstruct a video signal in real time from a single-pixel camera 

consisting of a Digital Micromirror Device (DMD) as a spatial modulator. 

 

Figure II.2: Video Compressive Sensing Architecture based on an MLP Network. 

It is obvious from the DCAN architecture, represented in Figure II.3, that it is a calculation model 

which includes coding and decoding layers. The main goal of these layers is to reconstruct an 

image or an input scene. The input of this network is measured by M (128×128) binary filters 

and reconstructed using fully connected layers and 3 convolutional blocks. After the fully 

connected layers, each convolution operation is followed by ReLU activation and batch 

normalization. The optimization of the filter weights is done using the gradient descent stochastic 

algorithm while respecting the minimization of the standard cost function in measuring the 

Euclidean distance between the observed and desired output. In order to test the performance 

of this algorithm, three metrics were used: peak-signal-to-noise ratio (PSNR), structural similarity 

index (SSIM) and standard deviation (SD). Thus, since authors can change the input resolution 

ℎ𝑘(𝒚) = 𝜎(𝒃𝒌 +𝑾𝒌𝒚), (II.1) 
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size and compression ratio, the best results in terms of PSNR and SSIM were obtained with a 

resolution size of 128 × 128 and a compression ratio of 98%. 

 

Figure II.3: DCAN architecture. 

Thanks to the evolution in the field of deep learning, another compressive sensing system has 

been proposed in [II.24]. This system allows an instantaneous reconstruction by estimating the 

output from the input measurements. This approach requires a design based on a network 

model of neurons, a computing capability linked to the machine used to run the model designed 

and a large database of learning and validation data. 

However, models based on neural networks are less flexible than iterative models because they 

are based on the learning process and subsequently work only on systems with parameters 

already determined during the learning phase such as image size and compression rate. The 

model proposed in [II.24] is a Snapshot Compressive Imaging (SCI) system which refers to 

compressive sensing systems where multiple frames are mapped into a single measurement 

frame. It is based on a DMD, an end-to-end CNN algorithm (E2E-CNN) and a plug-and-play 

(PnP) environment to solve the reverse problem related to the video compressive sensing. 

This model is inspired from video CS and is shown in Figure II.4. The video is considered to be 

a dynamic scene that is represented as a sequence of images with different chrono-dating 

[(𝑡1, . . . , 𝑡𝐵)]. The coded frames are then integrated over time on a camera forming a 

measurement compressed to a single image. In accordance with the measurement and coding 

models, the iterative algorithms or pre-formed neural networks are used to reconstruct the video. 

The principle of SCI video is based on binary spatial coding. Unlike to traditional image 

processing approaches where signals are acquired directly, in computational imaging, the 

captured measurement may not be visually explainable but includes the original images. After 

reconstruction of the video with the model described in this article, the authors compare these 

performances with those of the best known algorithms in the field of SCI video such as TwIST 

[II.25], GAP-TV [II.20], GMM [II.19] and DeSCI. 

Indeed, the advancement in the field of Deep Learning applied to images have inspired 

researchers to expand their work on the CS video. Among them, we have Deep fully connected 

neural network for video CS, Deep tensor ADMM-Net for video SCI problem or E2E-CNN [II.24]. 
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Figure II.4: Video SCI. 

The learning of this model is done by applying a residual learning for the encoder-decoder in 

order to speed up the video CS. It is important to know that this deployment is based on an 

optical system using a high-speed DMD spatial modulator, because the idea behind this model 

was to apply a spatial modulation to the image sequences at high speed. 

To understand this model, we will detail the mathematical approach behind this video CS model:  

Let 𝑓 represent the dynamic scene that has 𝒙, 𝒚 and 𝒕 as the spatial and temporal variables of 

the video. Let also 𝒙′ , 𝒚′ and 𝒕′ be the coordinates of spatial and temporal measurements. Then 

the measurement formed on the detector plane is given by the function 𝑔  

(II.2): 

where 𝑇 is the time modulation introduced by the DMD, ∆ the pixel pitch, ∆𝑡 the camera 

integration time, 𝑁𝑥 and 𝑁𝑦 the spatial dimensions space, 𝑁𝑡 the temporal dimension, 𝑝 and 𝑝𝑡 

the functions of spatial and temporal pixel sampling. 

The sampling of the pixel is discrete and follows the following equation (II.3): 

where 𝐵 is the number of pixels, 𝑿 is the high speed frames, 𝑪 is the coding patterns, 𝑮 

represents the noise and ∘ is the Hadamard product. 

Let (𝒊, 𝒋) the position of the pixel and thus the above equation becomes (II.4): 

𝑔(𝒙′, 𝒚′, 𝒕′) = ∫ ∫ ∫ [𝑓(𝒙, 𝒚, 𝒕)𝑇(𝒙, 𝒚, 𝒕)
𝑁𝑡

1

𝑁𝑦

1

𝑁𝑥

1

× 𝑝(
𝒙 − 𝒙′

∆
,
𝒚 − 𝒚′

∆
)𝑝𝑡 (

𝒕 − 𝒕′

∆𝒕
)]𝑑𝑥, 𝑑𝑦, 𝑑𝑡, 

 

(II.2) 

𝒚 = ∑𝑿𝒌 ∘ 𝑪𝒌 +𝑮,

𝐵

𝑘=1

 
 

(II.3) 
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We define: 𝒙 = [𝒙𝟏
𝑻, … , 𝒙𝑩

𝑻 ]
𝑻
 where 𝒙𝒌 = 𝑉𝑒𝑐 (𝑿𝒌). We have 𝑫𝒌 = 𝑑𝑖𝑎𝑔 (𝑉𝑒𝑐 (𝑪𝒌)) for 𝑘 =

1,… , 𝐵. 

It is obvious that our problem is a compressive sensing problem (II.5): 

where 𝝋 ∈ ℝ𝑛×𝑛𝐵 is the detection matrix (which is only dense when 𝑛 = 𝑛𝑥𝑛𝑦 ), the signal 𝒙 ∈ 

ℝ𝑛𝐵, 𝒈 ∈ ℝ𝑛 and 𝑛 the noise vector. The matrix 𝝋 = [𝑫𝟏, … , 𝑫𝒌] consists of diagonal matrices. 

It is now clear that the goal of this problem is to reconstruct the signal 𝒙 from the measurements 

𝒚. As a result, the E2E-CNN model has been proposed. However, this model needs a large 

database and huge execution time. In addition, if we change the matrix 𝝋, the neural network 

must execute another learning process which needs another temporal data. To cope with this, 

PnP framework is needed to use pre-trained data in an optimization framework in order to 

establish an equilibrium between the flexibility of the algorithm and its running time. 

 

Figure II.5: E2E-CNN architecture. 

E2E-CNN architecture, represented in Figure II.5, is based on convolutional encoder-decoder 

architecture. It consists of 5 residual blocks for the encoder and 5 other blocks for the decoder 

and the two structures are connected by 2 convolutional layers. Each convolution is followed by 

ReLU activation function and a batch normalization. In addition, the output of a residual block of 

the decoder is added to the input of the residual block of the mapped decoder. In this 

architecture, the authors did not use pooling layers nor the oversampling in order not to lose the 

details of the images. 

The loss function of this model is (II.6): 

𝒚𝒊,𝒋 =∑𝒄𝒊,𝒋,𝒌𝒙𝒊,𝒋,𝒌 + 𝒈𝒊,𝒋.

𝐵

𝑘=1

 
 

(II.4) 

𝒚 = 𝝋𝒙+ 𝒈, (II.5) 
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where 𝑀𝑆. 𝑆𝑆𝐼𝑀 is multiscale structural similarity index between the output of the network. The 

actual values of 𝒙, 𝜶 and 𝜷 are predetermined. 

It has been said before that E2E-CNN suffers from a problem of flexibility (for different tasks and 

different compression ratios) which means that when we change the measurement matrix 𝝋, we 

are forced to retrain our model which requires other databases and more execution time. This 

problem will be corrected by the PnP algorithm that allows to reconstruct 𝒙 from 𝒚 and 𝝋 (II.7): 

where 𝜏 is an equilibrium parameter between the ℓ2 norm and the deep denoising prior 𝑅(𝒙) 

used to solve the minimization problem without re-training the model which enables the flexibility 

of the algorithm. 

To solve equation (II.7), the ADMM technique could be applied [II.24]. In addition, a denoising 

problem could be faced and then FFDNet algorithm is needed to solve it. The only drawback 

with the FFDNet is the undesirable artifacts produced with high compression ratios. This is due 

to the fact that learning with the FFDNet is made with a Gaussian noise for video compressive 

sensing: for each iteration, the noise is different. To conclude this approach, [II.24] proposes an 

implementation of a video compressive sensing algorithm that uses a DMD as a dynamic 

modulator and an E2E-CNN and PnP algorithms with FFDNet for the video reconstruction. 

The most recent research in temporal VCS is presented in [II.26]. It uses 3D CNN from temporal 

compressive imaging and the residual network concept to exploit temporal and spatial 

correlation among successive object frames. The idea of measurement calibration algorithm in 

this approach has improved its final performances on both simulation experiments and optical 

ones. Another recent work is proposed by Zheng et al. [II.27]. It consists of an encoder-decoder 

flexible and concise architecture to reconstruct video frames in a CS framework. The 

reconstruction process is based on deep unfolding structure that uses 2 stages. This 

reconstruction algorithm outperforms recent deep learning-based algorithms as illustrated in 

Section II.5 in terms of quality performances. 

II.3.2. Spatial VCS 

The compression approach in spatial video compressive sensing (SVCS) is based only on the 

spatial domain which means that the sampling step is processed on the scene video frame by 

frame. In the reconstruction phase, the frames are recovered independently. Then, the 

reconstruction algorithm integrates an estimation process to predict the motions of the 

preliminary recovered frames. 

One of the most known conventional (non-neural networks) SVCS methods used is [II.28]. C. 

Zhao et al. propose an initial recovery of each frame independently using the spatial correlation. 

Then, they optimize the output using the inter-frame correlation. 

As in TVCS, Deep leaning is used to solve SVCS problems. In [II.29], K. Xu et al. propose a 

robust algorithm to sample the different frames in the spatial domain. Then, they use CNN and 

RNN to reconstruct the original video and enhance the recovery quality, respectively. The video 

compressive sensing model was proposed to overcome the limitations of CS cameras. 

𝑳𝑪𝑵𝑵 = 𝜶‖𝒙 − �̂�‖𝟐
𝟐 +𝜷[𝟏 −𝑀𝑆. 𝑆𝑆𝐼𝑀(𝒙, �̂�)], (II.6) 

�̂� = argmin
𝑥

1

2
‖𝒚 − 𝝋𝒙‖2

2 + 𝜏𝑅(𝒙), 
(II.7) 
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CSVideoNet was inspired from CNN [II.30], that is a type of deep networks in which filters and 

pooling operations are applied alternatingly on the input images to extract their main features, 

and RNN architectures in order to improve the trade-off between compression ratio and spatial-

temporal resolution of reconstructed videos. High-speed cameras can capture videos with frame 

rates that arrive up to 100 frames/s. This model allows to improve the compression ratio and 

enhance the quality of the video. 

Currently, two types of CS cameras are in use: the spatial multiplexing cameras (SMC) and the 

temporal multiplexing cameras (TMC). Since SMC cameras take fewer measurements than the 

number of pixels, they suffer from low spatial resolution. However, TMC cameras have low frame 

rate sensors in spite of their high spatial resolution. Thus, in [II.29], a new model has been 

proposed in order to overcome the problem of spatial resolution using SMC cameras. This 

model, represented in Figure II.6, consists of 3 parts: a static encoder, a CNN network dedicated 

for the extraction of spatial features for each frame of the compressed data and an LSTM 

network for motion estimation and video reconstruction. 

 

Figure II.6: CSVideoNet architecture. 

In the proposed architecture, the design of the encoder is inspired from the CNN’s architecture 

because the main goal does not only consist in extracting visual features but also in preserving 

the details of the dynamic scenes. For this reason, the authors eliminated the pooling layer which 

causes an information loss. In fact, the pooling layer allows to progressively decrease the spatial 

dimensions to reduce the number of parameters and as a result the complexity of the network. 

In addition, all feature maps have the same dimensions as the reconstructed videos. The first 

fully connected layer enables to convert the m-dimensional video data into 2D feature maps. 

The size of the video block in this model is 32 × 32. All convolutional layers are followed by the 

ReLU activation function except for the last layer. The CNN layers are divided into 2 types: 8 

CNN Key layers and 3 non-key CNN layers. 

The CNN key layers are compressed with a low compression ratio and non-key CNN layers with 

a high compression ratio. The weight of the non-key CNN layers is shared to reduce storage 

requirements. The key frame that represents the input of the CNN key layer is the key image of 

the video sequence and contains more information than the non-key frames of the non-key CNN 
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layers. In the implementation of the CSVideoNet solution, for every 10 frames of the video, the 

1st one is defined as the key frame. 

The LSTM decoder is designed to improve the spatial-temporal resolution. In fact, LSTM is used 

to extract the movement features that are essential to improve the temporal resolution of the 

CNN output. In addition, it allows to reduce the size of the model and therefore to obtain a faster 

speed of reconstruction. For this network, increasing the size of the CNN has been tested, but 

it does not provide any improvement for the reconstruction because the CNN network is unable 

to capture temporal features. So, the LSTM network is important to improve the PSNR, which 

shows that the temporal resolution is processed at this level. This proves the importance of 

LSTM for video reconstruction. Thus, CSVideoNet is a non-iterative algorithm for real-time 

applications. The main goal of CSVideoNet is to improve the reconstruction quality and the 

compression ratio. 

In addition to the SVCS models already mentioned, two famous studies, based on stacked 

denoising autoencoders [II.9] or CNN [II.10] have been proposed for spatial CS to extremely fast 

reconstruct the frames from the compressively sensed measurements. 

In conclusion, it is important to say that the SVCS is originally based on single pixel cameras 

(SPC) to execute spatial multiplexing and enable video reconstruction by accelerating the 

acquisition process. However, there have been many extensions to the SPC. One of the famous 

extensions aims to parallelize the SPC architecture by applying many sensors to separately 

sample spatial areas of the moving scene [II.31]-[II.32]. These prototypes are better than 

traditional SPC not only in terms of the manufacturing cost but also in terms of the measurement 

rate and the quality of the captured frames. 

II.3.3. Spatio-Temporal VCS 

Video compressive sensing approaches are mostly based on either temporal or spatial domain. 

These approaches consider one single domain to compress data which is not optimal. However, 

spatio-temporal data can convey more features that can be used to optimize the sensing and 

the recovery processes. In fact, the spatio-temporal approach consists in sampling both the 

temporal and spatial information simultaneously. In this case, the sensing matrix becomes a 

sensing cube that encode the video in its 3rd dimension. In [II.33], T. Xiong et al. implemented a 

hardware-friendly algorithm for video compressive sensing where the sensing cube, that is 

composed of either 1 or 0, is used to encode the video signal into a single coded image. Then, 

the recovery phase is processed using dictionary and simple sparse recovery. However, the 

computational cost of the recovery process used in [II.33] remains one the major limitations of 

this spatiotempral VCS algorithm. In [II.34], the same research team improved their previous 

work, by adding a CNN layer to extract key features from the frames to enhance the recovery 

process and improve the sensing quality. D. Lam et al. [II.35] propose a video sampling process 

divided into 2 steps. Firstly, the 3D image volume is decomposed by a 3D Wavelet transform. 

Then, a second measurement is obtained by a Noiselet transform. Using this sampling 

paradigm, the CS reconstruction, with Total Variation, performs successfully. 

Motivated by the success of convolutional neural network (CNN) in image processing, 3D CNN 

are commonly used for decades to extract useful features from video signals. In [II.36], the 

authors apply a 3D CNN network to extract spatial and temporal features for action recognition. 

This architecture is used later in [II.37] to design a 3D video compressive sensing algorithm. 

One other similar approach is proposed in [II.38] which proposes a 3D Convolutional network 
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that is more suitable to extract spatiotemporal features compared to 2D ConvNets by exploring 

the effect of different depths and filter sizes. 

In the later work of Weil et al. [II.39], an improved version of ISTA-Net+ is proposed which learns 

an adaptive sampling matrix by simultaneously optimizing the sampling and reconstruction 

procedures. A two-phase joint deep reconstruction is adopted to selectively exploit spatial-

temporal information, consisting of a temporal alignment with a learnable occlusion mask and a 

multiple frames fusion with spatial temporal feature weighting (see Figure II.7). The separated 

frames (key and non-key) reconstructions are based on the attention mechanism that applies 

an adaptive shrinkage-thresholding for discriminative transform coefficients suppression. A 

specific measure loss is also proposed to ease the network optimization by reducing the inverse 

mapping space. Accordingly, the reconstruction network is able to adaptively exploit spatial-

temporal correlations to recover the full video from few 3D samples of the original video tensor. 

 

Figure II.7: Overall architecture of STEM-Net. 

II.4. Video Single-Pixel Imaging and Video Snapshot Compressive Imaging 

According to the modulation, video compressive sensing approaches can be categorized into 

two main groups: Single-Pixel Imaging systems and Video Snapshot Compressive Imaging 

(SCI). 

II.4.1. Single Pixel Imaging  

Single-Pixel Imaging (SPI) is a novel paradigm that enables a device, equipped only with a 

single point detector called single pixel camera (SPC), to produce high-quality images. The 

general implementation of the SPI can be schematized as in Figure II.8. 

 

Figure II.8: Single Pixel Camera diagram.  
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Technically, the single-pixel camera essentially detects the inner product of the video and a set 

of patterns [II.2]. Then, need to solve an inverse problem to reconstruct the original scene from 

the raw measurement. 

Mathematically, let (𝑿𝒕)𝑡∈ℕ ∈ ℝ𝑁×1, where 𝑿𝒕 is the t-th frame of the detected video. The SPC 

enables the access to the measurement vector (𝒚𝒕)𝑡∈ℕ ∈ ℝ𝑀×1 , then the acquisition step can 

be modeled by (II.8): 

where 𝝋 ∈ ℝ𝑀×𝑁 is a dense matrix that encode the list of patterns (one row represents one 

pattern of the modulator) and ∆𝒕 defines the integration time for each pattern. At each time step, 

𝝋 ∈ ℝ𝑀×𝑁 is a matrix containing a set of 𝑀 patterns. Generally, it is an orthogonal basis (e.g., 

Fourier, Wavelet, Hadamard). Indeed, using these structural matrices enables to accelerate the 

computational process because random matrices require huge storage resources which affect 

the computational mechanism (Figure II.9). 

 

Figure II.9: Model of Single Pixel Imaging.  

The most challenging part about single pixel imaging is the reconstruction paradigm. Therefore, 

many approaches were proposed in the last decade. These reconstruction approaches can be 

categorized into two groups: traditional approaches and deep learning-based model. 

In traditional strategies we find 𝑙2-regularized approaches [II.40] and 𝑙1-regularized approaches 

[II.2]-[II.41] called also Total-variation approaches. Each approach has its advantages and 

drawbacks. For 𝑙2-regularized approaches: they are faster but they lead to decreased frame 

quality. However, 𝑙1-regularized approaches are much slower but they lead to better image 

quality. 

Recently, deep neural networks have been used successfully in signal pixel imaging 

reconstruction problems. In [II.42], A. l. Mur et al. have exploited the spatio-temporal features of 

video and proposed a Convolutional Gated Recurrent Units (ConvGRU) based algorithm to 

reconstruct video frames already captured by a single pixel camera. N. Ducros et al. [II.43] 

defined a generic convolutional network to recover the original video. In addition, in [II.23], an 

auto-encoder network is proposed for SPI reconstruction purposes. However, this approach 

does not exploit the temporal features of video scenes since it enables to reconstruct the video 

frames independently. 

𝒚 = 𝝋𝑿𝒕∆𝒕, ∀𝑡, (II.8) 



Wael SAIDENI | PhD Thesis | University of Limoges | 2022 64 

Licence CC BY-NC-ND 3.0 

II.4.2. Video Snapshot Compressive Imaging  

Compressing high-speed videos is already possible due to the huge research work done in video 

snapshot compressive imaging (SCI). The video SCI system is composed of two main networks: 

the hardware encoder and the software reconstruction (decoder) network [II.44]. The hardware 

decoder represents the optical imaging framework and the software decoder denotes the 

reconstruction algorithm. The hardware decoder aims to compress the 3D video signal into a 

2D measurement and the compression is done across the third dimension (the temporal 

dimension in this case). This compression aims to avoid huge memory storage and transmission 

bandwidth. The optical system is called the coded aperture compressive temporal imaging 

(CACTI) [II.45] system. In this system ad during one exposure time, the video scene is gathered 

by an objective lens and then coded by a temporal-variant mask (shifting physical mask [II.45]-

[II.46] or different patterns on a Digital Micromirror Device (DMD) [II.5]-[II.47]. Then, the output 

is detected by a Charge Coupled Device (CCD) and then integrated into one single 

measurement frame. 

From a mathematical perspective, a video SCI system captures a dynamic scene of 𝐵 frames 

𝑿 ∈ ℝℎ×𝑤×𝐵 (ℎ and 𝑤 are the height and the weight of the frame, respectively) is modulated by 

𝐵 masks 𝑪 ∈ ℝℎ×𝑤×𝐵  before being integrated into one single measurement frame 𝒀 ∈ ℝℎ×𝑤 by 

a camera sensor in one exposure time (𝐵 frame). This operation is expressed as follows (II.9): 

where ∘ and 𝑮 ∈ ℝℎ×𝑤 denote the Hadamard product and noise, respectively. Then, we define 

𝒚 = 𝑉𝑒𝑐(𝒀) ∈  ℝℎ𝑤  and 𝒈 =  𝑉𝑒𝑐(𝑮) ∈  ℝℎ𝑤. Correspondingly, we define 𝒙 ∈  ℝℎ𝑤 as (II.10): 

The measurement 𝑦 can then be expressed as (II.11):  

where 𝑫𝑩 = 𝑑𝑖𝑎𝑔 (𝑉𝑒𝑐 (𝑪𝑩)) ∈ ℝℎ𝑤×ℎ𝑤, for 𝑏 = 1 . . . 𝐵. We have in this case a matrix [𝑫𝟏, … , 𝑫𝑩] 

that is highly structured and sparse. Depending on the theoretical study in [II.48], the original 

video can be reconstructed from the single measurement frame 𝑦 (Figure II.10). 

𝒚 = ∑𝑿𝒌 ∘ 𝑪𝒌 +𝑮,

𝑩

𝒌=𝟏

 
 

(II.9) 

𝒙 = 𝑉𝑒𝑐(𝑿) = [𝑉𝑒𝑐(𝑿𝟏)
𝑇 , … , 𝑉𝑒𝑐(𝑿𝑩)

𝑇]𝑇 . (II.10) 

𝒚 = [𝑫𝟏, … , 𝑫𝑩]𝒙 + 𝒈, (II.11) 
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Figure II.10: Model of Snapshot Compressive Imaging. 

The second important part of video SCI is the reconstruction process which aim to recover the 

original video from the 2D measurement frames and the masks. This process is crucial to have 

a practical and efficient video SCI system. In the literature, the reconstruction algorithms could 

be categorized into two categories: optimization-based methods and Deep Learning based 

algorithms. The optimization based algorithms, such as GAP-TV [II.20], GMM [II.19], DeSCI 

[II.49], and PnP-FFDNet [II.50], require huge computational resources and large reconstruction 

time. For instance, DeSCI, that has led recently the state-of-the-art optimization-based 

approaches, takes hours to generate a 256×256×8 video from one single measurement frame). 

However, GAP-TV is a fast algorithm but it cannot provide a good reconstruction. In general, to 

use an algorithm in a real-world application, we need a PSNR 30 which is not the case for GAP-

TV [II.50]. 

In Deep Learning based methods [II.21]-[II.24]-[II.29]-[II.51]-[II.10]-[II.52]-[II.53]-[II.54], these 

problems have been ameliorated.  

Indeed, Z. Cheng et al. [II.51] proposed a bidirectional neural network-based method to 

reconstruct the video frames from the measurement matrix and the masks by exploiting the 

correlation of sequential frames. The idea behind this approach, illustrated in Figure II.11, is 

based on two main sub-networks: A deep convolutional neural network (CNN) with ResBlock 

[II.55] and a self-attention module [II.56] in order to reconstruct the first frame (reference frame), 

and a bidirectional neural network to reconstruct the rest of the frames. To improve the quality 

of the reconstruction, an adversarial training is defined with the Mean Square Error (MSE) loss. 

However, the main drawback of BIRNAT is its impractical computational time in the training 

phase (weeks to train a model of size 256 × 256 × 8 [II.57]) and its huge GPU memory 

consumption that make it unsuitable for large-scale SCI applications especially with the high-

resolution videos used in real life.  
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Figure II.11: BIRNAT architecture. 

The GPU memory storage problem in the training phase is ameliorated in RevSCI-Net [II.57] by 

introducing a reversible CNN network to free the memory from the middle activation generated 

by each layer of the network. This technique enables to reduce the memory cost from 𝑂(𝑁) to 

𝑂(1) (where 𝑁 is the number of layers). RevSCI-Net rely on an end-to-end CNN model exploring 

the temporal and spatial correlations of the original video. 

In addition to the speed issue, some deep learning-based reconstruction algorithms, such as 

BIRNAT, suffer from flexibility and adaptability problems which affect their performances. 

Therefore, Z. Wang et al. [II.58] introduced a Meta Modulated Convolutional Network (MetaSCI) 

as a new scalable and adaptive reconstruction model. MetaSCI is a fully CNN approach that 

exploits the fast adaption encoding paradigm in order to efficiently reconstruct the video frames 

in terms of memory consumption. 

Recently, an ensemble learning based algorithm is proposed in [II.59], originally exploited in 

inverse problems, to enhance the scalability of video SCI reconstruction approaches. Zongliang 

et al. [II.60] still work on combining iterative algorithms and deep neural networks. An online 

Plug-and-play algorithm is proposed to adaptively update the model’s parameters using the PnP 

iteration, which enhance the network’s noise resistance. The second part of the paper focus on 

color SCI videos. The authors present an ADMM optimization and deep neural network to 

improve the output quality. Finally, a deep equilibrium-based model is proposed in [II.61] that 

combines data-driven regularization and stable convergence to deal with the problems of 

memory requirement and unstable reconstruction in some exiting approaches. 

Obviously, both categories have their advantages and drawbacks, which make this research 

direction challenging and very promising for the future if we aim to come up with a memory 

friendly model that consume less computational cost for our daily life applications. 

II.5. Comparative Study 

In this comparative study, we aim to compare the performances of some well-known 

optimization-based VCS algorithms and Deep Learning-based approaches.  

II.5.1. Optimization-Based VCS Algorithms 

Table II.1 presents the complexity of optimization-based sparse recovery algorithms as well as 

the minimum measurement requirement. It shows also some challenging issues considered as 

crucial when designing CS reconstruction algorithms: Sparsity information, Noise resistance and 

hardware feasibility: 

• The sparsity information: it may not be provided for the reconstruction process. 
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• Noise resistance: It is important to design a recovery algorithm where the measurements 

are not affected by measurement noise. 

• Hardware feasibility: low-complexity algorithms can usually be implemented on 

hardware devices for real-world applications. 

Table II.1: Complexity, minimum measurement requirement and crucial properties of CS recovery 

algorithms. 

Algorithms Min. number 

of 

measurements 

Complexity No 

requirement 

of sparsity 

information 

Noise 

resistance 

Hardware 

implementation 

Basis 

Pursuit 

𝑘𝑙𝑜𝑔(𝑁) 𝑂(𝑁3) 
✓  

 
✓  

OMP 𝑘𝑙𝑜𝑔(𝑁) 𝑂(𝑘𝑀𝑁) ✓   ✓  

StOMP 𝑁𝑙𝑜𝑔(𝑁) 𝑂(𝑁𝑙𝑜𝑔(𝑁))  ✓  ✓  

ROMP 𝑘𝑙𝑜𝑔(𝑁)² 𝑂(𝑘𝑀𝑁) ✓   ✓  

CoSaMP 𝑘𝑙𝑜𝑔(𝑁) 𝑂(𝑀𝑁)  ✓  ✓  

Subspace 

Pursuits 
𝑘𝑙𝑜𝑔 (

𝑁

𝑘
) 

𝑂(𝑀𝑁𝑙𝑜𝑔(𝑘))  
✓  

✓  

II.5.2. Deep Learning-Based VCS Algorithms 

A quantitative and a qualitative comparison of Deep Learning-based approaches will be 

presented in this section. 

II.5.2.1. Quantitative Comparison 

Training Details  

It is important to mention that video compressive sensing algorithms (acquisition and 

reconstruction) does not have a particular training dataset and can be applied on any scene. 

Indeed, all experiments are trained on Densely Annotated VIdeo Segmentation (DAVIS2017) 

[II.62] dataset. DAVIS2017 is an object segmentation dataset that contains 90 different videos 

with a resolution of 480 × 894. To efficiently train the state-of-the-art algorithms, 6516 videos of 

size 8 × 256 × 256 are generated from DAVIS2017 to learn different parameters on the same 

compression ratio 
1

8
. Then, all algorithms are tested on 6 simulation datasets: Aerial, Drop, Kobe, 

Runner, Traffic, Vehicle to evaluate their performances. All experiments are tested on the RTX 

2080 GPU and Intel® Core™ i7-9700K CPU (3.6 GHz, 32GB memory). 

Comparison Metrics  

The following three metrics are employed to compare different approaches: 

• Peak Signal to Noise Ratio (PSNR) [II.22]: Quality metric. 
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• Structural Similarity Index (SSIM) [II.22]: Quality metric. 

• Reconstruction Time: this metric is used to prove whether the algorithm can be applied 

in real-time applications at the testing step. 

Benchmark Results  

We present a quantitative comparison to compare the quality performances of the following VCS 

algorithms: GAP-TV [II.20], DeSCI [II.49], PnP-FFDNet [II.50], Pnp-FastDVDNet [II.63], GAP-

FastDVDNet (online) [II.60], DE-RNN [II.61], DE-GAPFFDnet [II.61], E2E-CNN [II.24], BIRNAT 

[II.51], MetaSCI [II.58], RevSCI [II.57], DeepUnfold-VCS [II.27], ELP-Unfolding [II.59]. 

Table II.2: Quantitative comparison of different approaches for video compressive sensing system. The 

average results of PSNR in dB, SSIM and reconstruction time (seconds) per measurement. GAP-TV 

and DeSCI are tested on CPU while other approaches are on GPU. 

Algorithms Year Aerial Drop Kobe Runner Traffic Vehicle Average Time 

GAP-TV 

[II.20] 

2016 25.03 

0.828 

33.81 

0.963 

26.45 

0.845 

28.48 

0.899 

20.90 

0.715 

24.82 

0.838 

26.58 

0.848 

4.2 

DeSCI 

[II.49] 

2019 25.33 

0.860 

43.22 

0.993 

33.25 

0.952 

38.76 

0.969 

28.72 

0.925 

27.04 

0.909 

32.72 

0.935 

6180 

PnP-

FFDNet 

[II.50] 

2020 24.02 

0.814 

40.87 

0.988 

30.47 

0.926 

32.88 

0.938 

24.08 

0.833 

24.32 

0.836 

29.44 

0.889 

3.0 

PnP-

FastDVDNet 

[II.63] 

2021 27.89 

0.897 

41.82 

0.989 

32.73 

0.946 

36.29 

0.962 

27.95 

0.932 

27.32 

0.925 

32.35 

0.942 

18 

GAP-

FastDVDNet 

(online) 

[II.60] 

2022 28.24 

0.897 

41.95 

0.989 

32.95 

0.951 

36.41 

0.962 

28.16 

0.934 

27.64 

0.928 

32.56 

0.944 

35 

DE-RNN 

[II.61] 

2022 24.83 

0.855 

30.16 

0.909 

21.46 

0.697 

27.85 

0.818 

19.47 

0.715 

23.65 

0.832 

24.54 

0.804 

4.68 

DE-GAP-

FFDnet 

[II.61] 

2022 26.02 

0.892 

39.89 

0.992 

29.32 

0.952 

33.06 

0.971 

24.71 

0.907 

25.85 

0.905 

29.81 

0.936 

1.90 

E2E-CNN 

[II.24] 

2020 27.18 

0.969 

36.56 

0.949 

27.79 

0.807 

34.12 

0.947 

24.62 

0.840 

26.43 

0.882 

29.45 

0.882 

0.0312 

BIRNAT 

[II.51] 

2020 28.99 

0.927 

42.28 

0.992 

32.71 

0.950 

38.70 

0.976 

29.33 

0.942 

27.84 

0.927 

33.31 

0.951 

0.16 
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MetaSCI 

[II.58] 

2021 28.31 

0.904 

40.61 

0.985 

30.12 

0.907 

37.02 

0.967 

26.95 

0.888 

27.33 

0.906 

31.72 

0.926 

0.025 

RevSCI 

[II.57] 

2021 29.35 

0.924 

42.93 

0.992 

33.72 

0.957 

39.40 

0.977 

30.02 

0.949 

28.12 

0.937 

33.92 

0.956 

0.19 

DeepUnfold-

VCS [II.27] 

2022 30.86 

0.965 

44.43 

0.997 

35.24 

0.984 

41.47 

0.994 

31.45 

0.977 

30.32 

0.976 

35.63 

0.982 

1.43 

ELP-

Unfolding 

[II.59] 

2022 30.68 

0.943 

44.99 

0.995 

34.41 

0.966 

41.16 

0.986 

31.58 

0.962 

29.65 

0.960 

35.41 

0.969 

0.24 

Table II.2 summarizes the comparison of several VCS algorithms on PSNR, SSIM and the 

reconstruction time. From this table, different performance results are plotted in Figure II.12 and 

Figure II.15 for visualization purposes. From Figure II.12 and Figure II.13, we notice that iterative 

algorithms (GAP-TV, DeSCI, PnP-FFDnet and PnP-FastDVDnet) provide inferior quality 

performance results (both in terms of PSNR and SSIM) with low recovery speed (from one 

second to even hours) which threaten their hardware implementation for real-time applications. 

However, the other deep learning-based algorithms outperforms these iterative approaches in 

terms of quality performances with faster reconstruction time. These performances can prove 

the potential usability of deep learning-based approaches in real-time applications. From Figure 

II.14 and Figure II.15, we notice that DeSCI, the iterative algorithm, provides little improvement 

over some deep learning-based algorithms on the Kobe, Runner and Drop (e.g., PSNR: +2.22%, 

+1.65% and +0.15% over BIRNAT, +6.42%, +10, 39% and +4.7% over MetaSCI on Drop, Kobe 

and Runner, respectively). Indeed, these datasets are characterized by high-speed motions of 

some objects. However, we infrequently find these features in DAVIS2017 dataset, which 

explain these results. As a result, datasets of high-speed motions are recommended while 

training these deep learning-based algorithms to enhance their quality performances. In 

addition, we note that the recent ensemble learning-based algorithm (ELP-Unfolding) is 

proposed to enhance the performance of the previous algorithms by strategically generate and 

combine multiple models which confirm the fact to consider this technique as a promising 

research topic in video reconstruction. In addition, we notice from Figure II.14 and Figure II.15, 

that DeepUnfold-VCS outperforms the rest of the proposed algorithms in terms of quality 

performances (PSNR and SSIM) on almost all experiments. In fact, the authors propose an 

algorithm that combines iterative strategy and deep learning. In addition, they used a deep 

unfolding approach and exploit its interpretability to reconstruct the video scene. In the other 

hand, Meta-SCI is the fastest VCS reconstruction approach with good quality performances. 

Also, in contrast to DeepUnfold-VCS, it proposes a CNN-based network which is much faster 

than recurrent neural nets. It can be used in real-time applications that require prompt capture 

and reconstruction time. To conclude, recent deep learning-based approaches proposed for 

VCS purposes present good quality performances and research in this field becomes very 

competitive and very challenging to come up with the fastest algorithm. 
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 Figure II.12: Trade-off between quality (in PSNR) and testing time of several VCS reconstruction 

algorithms. 

 

Figure II.13: Trade-off between quality (in SSIM) and testing time of several VCS reconstruction 

algorithms. 
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Figure II.14: Performance comparison based on PSNR obtained by several VCS reconstruction 

algorithms on 6 grayscale benchmark data. 

 

Figure II.15: Performance comparison based on SSIM obtained by several VCS reconstruction 

algorithms on 6 grayscale benchmark data. 

II.5.2.2. Qualitative Comparison 

Different VCS approaches, together with their specific advantages and limitations, are 

summarized in Table II.3 and Table II.4 to compare their qualitative performances that should 

be taken into consideration while implementing the network for a particular application. 
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Table II.3: Different algorithms for video compressive sensing (Part 1). 

Classification 

type 

Category Traditional/DL Algorithm’s 

class 

Examples Advantages Limitations 

Sampling 

strategy 

Temporal 

VCS 

Traditional GMM based GMM [II.19] Parallel 

processing can 

be used, good 

quality 

performances, 

flexibility 

Too 

computationally 

slow, slow 

reconstruction 

process, use only 

the temporal 

domain to 

compress the 

video 

   TV based GAP-TV 

[II.20] 

  

  DL  Deep fully 

connected 

network for 

VCS [II.21], 

DCAN 

[II.23], E2E-

CNN [II.24] 

  

 Spatial 

VCS 

Traditional Reweighted 

residual 

sparsity 

VCS-RRS 

[II.28] 

Good 

performances, 

flexibility 

use only the 

spatial domain to 

compress the 

video, Low 

scalability 

   Extended 

architectures 

of SPC 

FPA-CS 

[II.31], 

LiSens 

[II.32] 

High spatial 

resolution, 

flexibility 

Expensive 

 

  DL RNN based CSVideoNet 

[II.29], SDA-

CS [II.9] 

  

   CNN based ReconNet 

[II.10] 
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 Spatio-

temporal 

VCS 

Traditional  ST-

approach 

[II.33] 

Sample the 

temporal and 

spatial 

dimension 

simultaneously 

Huge 

computational 

cost 

   TV based 3D-Wavelet 

and 3D-

Noiselet 

approach 

[II.35] 

  

  DL CNN based [II.35]-

[II.34]-

[II.36]-

[II.37]-[II.38] 

  

Table II.4: Different algorithms for video compressive sensing (Part 2). 

Classification 

type 

Category Traditional/DL Algorithm’s 

class 

Examples Advantages Limitations 

Modulation 

strategy 

Video 

Snapshot 

Compressive 

Imaging 

Traditional Sparse 

based 

Low-Cost 

Compressive 

Sensing for 

Color Video 

and Depth 

Good flexibility Very slow 

algorithms 

   TV based TwIST 

[II.25], GAP-

TV [II.20] 

  

   GMM GMM (Off-

line training) 

[II.19] 

  

   Dictionary 

Learning 

3D K-SVD   

  DL Deep 

Unfolding 

ADMM-Net 

[II.53] 

BIRNAT 

[II.51], 

RevSCI-Net 

[II.57] 

MetaSCI-Net 

[II.58] 

Good 

reconstruction 

quality, Fast 

algorithms, less 

GPU memory 

consumption 

(RevSCI-Net, 

MetaSCI-Net) 

Less flexible, Not 

robust to real 

data noise,huge 

GPU memory 

consumption 

(BIRNAT, 

ADMM-Net) 
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  DL Plug and 

Play 

[II.24]-[II.50] Good trade-off 

between 

accuracy, speed 

and flexibility 

The training 

phase can be 

slow 

   End-to-End E2E-CNN 

[II.24] 

Fast algorithms Low flexibility 

 Single pixel 

Cameras 

Traditional 𝑙1-

regularized 

approach 

 Good quality Slow 

   𝑙2-

regularized 

approach 

 Fast Less good 

quality 

  DL RNN based [II.42] Good 

reconstruction 

quality, 

Huge 

computational 

time 

   CNN based [II.43] Faster training Huge memory 

consumption 

   Auto-

encoder 

based 

[II.23]   

II.6. Conclusions 

In this chapter, after reformulating the compressive sensing paradigm, we have closely reviewed 

the fundamentals of image and video compressive sensing. In addition, we analyzed the 

backbone deep learning based architectures for image and video CS in order to provide the CS 

community the essential background knowledge. Indeed, we classified different concepts of 

compressive sensing in general and image and video compressive sensing in particular into 

categories to facilitate their understanding. The methods have been analyzed in this review from 

different angles: network architecture, contribution, complexity and performance results. In 

conclusion, compressing sensing is a promising research direction in order to optimize data 

gathering and processing. Although there have been great achievements in this field, there is 

still room for improvement in image and video compressive sensing using neural networks. In 

the next chapters, two video approaches will be designed, implemented and deeply discussed. 



Wael SAIDENI | PhD Thesis | University of Limoges | 2022 75 

Licence CC BY-NC-ND 3.0 

References 

[II.1] Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289– 1306. 
doi:10.1109/TIT.2006.871582. 

[II.2] Duarte, M.F.; Davenport, M.A.; Takhar, D.; Laska, J.N.; Sun, T.; Kelly, K.F.; Baraniuk, 
R.G. Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 2008, 
25, 83–91, doi:10.1109/MSP.2007.914730.  

[II.3] Veeraraghavan, A.; Reddy, D.; Raskar, R. Coded Strobing Photography: Compressive 
Sensing of High Speed Periodic Videos. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 
33, 671–686. doi:10.1109/TPAMI.2010.87. 

[II.4] Wakin, M.; Laska, J.N.; Duarte, M.F.; Baron, D.; Sarvotham, S.; Takhar, D.; Kelly, K.F.; 
Baraniuk, R.G. Compressive imaging for video representation and coding. In 
Proceedings of the Picture Coding Symposium, Beijing, China, 24–26 April 2006; pp. 1–
6.  

[II.5] Reddy, D.; Veeraraghavan, A.; Chellappa, R. P2C2: Programmable pixel compressive 
camera for high speed imaging. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011; 
pp. 329–336.  

[II.6] Kittle, D.; Choi, K.; Wagadarikar, A.; Brady, D.J. Multiframe image estimation for coded 
aperture snapshot spectral imagers. Appl. Opt. 2010, 49, 6824–6833.  

[II.7] Hitomi, Y.; Gu, J.; Gupta, M.; Mitsunaga, T.; Nayar, S.K. Video from a single coded 
exposure photograph using a learned over-complete dictionary. In Proceedings of the 
IEEE International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 
November 2011; pp. 287–294. 

[II.8] Xuan, Y.; Yang, C. 2Ser-Vgsr-Net: A Two-Stage Enhancement Reconstruction Based 
On Video Group Sparse Representation Network For Compressed Video Sensing. In 
Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME), 
London, UK, 6–10 July 2020; pp. 1–6, doi:10.1109/ICME46284.2020.9102849.  

[II.9] Mousavi, A.; Patel, A.B.; Baraniuk, R.G. A deep learning approach to structured signal 
recovery. In Proceedings of the 2015 53rd Annual Allerton Conference on 
Communication, Control, and Computing (Allerton), Monticello, IL, USA, 29 September–
2 October 2015; pp. 1336–1343, doi:10.1109/ALLERTON.2015.7447163. 

[II.10] Kulkarni, K.; Lohit, S.; Turaga, P.; Kerviche, R.; Ashok, A. ReconNet: Non-iterative 
reconstruction of images from compressively sensed measurements. In Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 
NV, USA, 27–30 June 2016; pp. 449–458.  

[II.11] Yao, H.T.; Dai, F.; Zhang, S.L.; Zhang, Y.D.; Tian, Q.; Xu, C.S.; DR2 -Net: Deep residual 
reconstruction network for image compressive sensing. Neurocomputing 2019, 359, 
483–493.  

[II.12] Zhang, J.; Ghanem, B. ISTA-Net: Interpretable optimization-inspired deep network for 
image compressive sensing. In Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 1828–
1837. 



Wael SAIDENI | PhD Thesis | University of Limoges | 2022 76 

Licence CC BY-NC-ND 3.0 

[II.13] Ito, D.; Takabe, S.; Wadayama, T. Trainable ISTA for Sparse Signal Recovery. IEEE 
Trans. Signal Process. 2019, 67, 3113–3125. doi:10.1109/TSP.2019.2912879.  

[II.14] Su, H.; Bao, Q.; Chen, Z. ADMM–Net: A Deep Learning Approach for Parameter 
Estimation of Chirp Signals Under Sub-Nyquist Sampling. IEEE Access 2020, 8, 75714–
75727. doi:10.1109/ACCESS.2020.2989507. 

[II.15] Shi, W.; Jiang, F.; Liu, S.; Zhao, D. Image Compressed Sensing Using Convolutional 
Neural Network. IEEE Trans. Image Process. 2020, 29, 375–388. 
doi:10.1109/TIP.2019.2928136.  

[II.16] Canh, T.N.; Jeon, B. Multi-Scale Deep Compressive Sensing Network. In Proceedings 
of the 2018 IEEE Visual Communications and Image Processing (VCIP), Taichung, 
Taiwan, 9–12 December 2018; pp. 1–4, doi:10.1109/VCIP.2018.8698674.  

[II.17] Canh, T.N.; Jeon, B. Difference of Convolution for Deep Compressive Sensing. In 
Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), 
Taipei, Taiwan, 22–25 September 2019; pp. 2105–2109, 
doi:10.1109/ICIP.2019.8803165. 

[II.18] Shi, W.; Jiang, F.; Liu, S.; Zhao, D. Scalable Convolutional Neural Network for Image 
Compressed Sensing. In Proceedings of the 2019 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 
12282–12291. doi:10.1109/CVPR.2019.01257.  

[II.19] Yang, J.; Yuan, X.; Liao, X.; Llull, P.; Brady, D.J.; Sapiro, G.; Carin, L.; Video 
compressive sensing using Gaussian mixture models. IEEE Trans. Image Process. 
2014, 23, 4863–4878.  

[II.20] Yuan, X. Generalized alternating projection based total variation minimization for 
compressive sensing. In Proceedings of the IEEE International Conference on Image 
Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 2539–2543. 

[II.21] Iliadis, M.; Spinoulas, L.; Katsaggelos, A.K. Deep fully-connected networks for video 
compressive sensing. Digit. Signal Process. 2018, 72, 9–18.  

[II.22] Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 
20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 
2010; pp. 2366–2369, doi:10.1109/ICPR.2010.579.  

[II.23] Higham, C.F.; Murray-Smith, R.; Padgett, M.J.; Edgar, M.P. Deep learning for realtime 
single-pixel video. Sci. Rep. 2018, 8, 2369.  

[II.24] Qiao, M.; Meng, Z.; Ma, J.; Yuan, X. Deep learning for video compressive sensing. APL 
Photonics 2020, 5, 030801. doi:10.1063/1.5140721. 

[II.25] Bioucas-Dias, J.M.; Figueiredo, M.A.T. A New TwIST: Two-Step Iterative 
Shrinkage/Thresholding Algorithms for Image Restoration. IEEE Trans. Image Process. 
2007, 16, 2992–3004. doi:10.1109/TIP.2007.909319.  

[II.26] Zhang, L.; Lam, E.Y.; Ke, J. Temporal compressive imaging reconstruction based on a 
3D-CNN network. Opt. Express 2022, 30, 3577–3591.  

[II.27] Zheng, S.; Yang, X.; Yuan, X. Two-Stage is Enough: A Concise Deep Unfolding 
Reconstruction Network for Flexible Video Compressive Sensing. arXiv 2022, 
arXiv:2201.05810. 



Wael SAIDENI | PhD Thesis | University of Limoges | 2022 77 

Licence CC BY-NC-ND 3.0 

[II.28] Zhao, C.; Ma, S.; Zhang, J.; Xiong, R.; Gao, W. Video compressive sensing 
reconstruction via reweighted residual sparsity. IEEE Trans. Circuits Syst. Video 
Technol. 2017, 27, 1182–1195. 

[II.29] Xu, K.; Ren, F. CSVideoNet: A real-time end-to-end learning framework for highframe-
rate video compressive sensing. In Proceedings of the 2018 IEEE Winter Conference on 
Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; 
pp. 1680–1688.  

[II.30] Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural 
network. In Proceedings of the 2017 International Conference on Engineering and 
Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. 
doi:10.1109/ICEngTechnol.2017.8308186. 

[II.31] Chen, H.; Salman, Asif, M.; Sankaranarayanan, A.C.; Veeraraghavan, A. FPACS: Focal 
plane array-based compressive imaging in short-wave infrared. In Proceedings of the 
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 
MA, USA, 7–12 June 2015; pp. 2358–2366, doi:10.1109/CVPR.2015.7298849.  

[II.32] Wang, J.; Gupta, M.; Sankaranarayanan, A.C. LiSens—A Scalable Architecture for 
Video Compressive Sensing. In Proceedings of the 2015 IEEE International Conference 
on Computational Photography (ICCP), Houston, TX, USA, 24–26 April 2015; pp. 1–9, 
doi:10.1109/ICCPHOT.2015.7168369. 

[II.33] Xiong, T.; Rattray, J.; Zhang, J.; Thakur, C.S.; Chin, S.; Tran, T.D.; Etienne-Cummings, 
R. Spatiotemporal compressed sensing for video compression. In Proceedings of the 
2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), 
Boston, MA, USA, 6–9 August 2017.  

[II.34] Wang, X.; Zhang, J.; Xiong, T.; Tran, T.D.; Chin, S.P.; Etienne-Cummings, R. Using deep 
learning to extract scenery information in real time spatiotemporal compressed sensing. 
In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems 
(ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–4. 

[II.35] Lam, D.; Wunsch, D. Video compressive sensing with 3-D wavelet and 3-D noiselet. In 
Proceedings of the 19th IEEE International Conference on Image Processing (ICIP ‘12), 
Orlando, FL, USA, USA, 30 September–3 October 2012. 
doi:10.1109/ICIP.2012.6467004. 

[II.36] Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action 
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221–231.  

[II.37] Zhao, Z.; Xie, X.; Liu, W.; Pan, Q. A hybrid-3D convolutional network for video 
compressive sensing. IEEE Access 2020, 8, 20503–20513.  

[II.38] Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal 
features with 3D convolutional networks. In Proceedings of the IEEE International 
Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 
4489–4497.  

[II.39] Wei, Z.; Yang, C.; Xuan, Y. Efficient Video Compressed Sensing Reconstruction via 
Exploiting Spatial-Temporal Correlation With Measurement Constraint. In Proceedings 
of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, 
China, 5–9 July 2021; pp. 1–6. 



Wael SAIDENI | PhD Thesis | University of Limoges | 2022 78 

Licence CC BY-NC-ND 3.0 

[II.40] Rousset, F.; Ducros, N.; Farina, A.; Valentini, G.; D’Andrea, C.; Peyrin, F. Adaptive Basis 
Scan by Wavelet Prediction for Single-pixel Imaging. IEEE Trans. Comput. Imaging 
2016, 3, 36–46.  

[II.41] Baraniuk, R.G.; Goldstein, T.; Sankaranarayanan, A.C.; Studer, C.; Veeraraghavan, A.; 
Wakin, M.B. Compressive video sensing: Algorithms, architectures, and applications. 
IEEE Signal Process. Mag. 2017, 34, 52–66.  

[II.42] Mur, A.L.; Peyrin, F.; Ducros, N. Recurrent Neural Networks for Compressive Video 
Reconstruction. In Proceedings of the IEEE 17th International Symposium on Biomedical 
Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 1651–1654.  

[II.43] Ducros, N.; Lorente Mur, A.; Peyrin, F. A completion network for reconstruction from 
compressed acquisition. In Proceedings of the 2020 IEEE 17th International Symposium 
on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 619–623.  

[II.44] Yuan, X.; Brady, D.; Katsaggelos, A.K. Snapshot compressive imaging: Theory, 
algorithms and applications. IEEE Signal Process. Mag. 2020, 38, 65–88. 

[II.45] Llull, P.; Liao, X.; Yuan, X.; Yang, J.; Kittle, D.; Carin, L.; Sapiro, G.; Brady, D.J. Coded 
aperture compressive temporal imaging. Opt. Express 2013, 21, 10526–10545. 
doi:10.1364/OE.21.010526.  

[II.46] Koller, R.; Schmid, L.; Matsuda, N.; Niederberger, T.; Spinoulas, L.; Cossairt, O.; 
Schuster, G.; Katsaggelos, A.K. High spatio-temporal resolution video with compressed 
sensing. Opt. Express 2015, 23, 15992–16007.  

[II.47] Sun, Y.; Yuan, X.; Pang, S. Compressive high-speed stereo imaging. Opt Express 2017, 
25, 18182–18190.  

[II.48] Jalali, S.; Yuan, X. Snapshot compressed sensing: Performance bounds and algorithms. 
IEEE Trans. Inf. Theory 2019, 65, 8005–8024.  

[II.49] Liu, Y.; Yuan, X.; Suo, J.; Brady, D.J.; Dai, Q. Rank Minimization for Snapshot 
Compressive Imaging. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2990– 3006. 
doi:10.1109/TPAMI.2018.2873587.  

[II.50] Yuan, X.; Liu, Y.; Suo, J.; Dai, Q. Plug-and-Play Algorithms for Large-Scale Snapshot 
Compressive Imaging. In Proceedings of the 2020 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 1444–
1454, doi:10.1109/CVPR42600.2020.00152. 

[II.51] Cheng, Z.; Lu, R.; Wang, Z.; Zhang, H.; Chen, B.; Meng, Z.; Yuan, X. BIRNAT: 
Bidirectional recurrent neural networks with adversarial training for video snapshot 
compressive imaging. In Proceedings of the European Conference on Computer Vision 
(ECCV), Glasgow, UK, 23–28 August 2020.  

[II.52] Yuan, X.; Pu, Y. Parallel lensless compressive imaging via deep convolutional neural 
networks. Opt. Express 2018, 26, 1962–1977.  

[II.53] Ma, J.; Liu, X.; Shou, Z.; Yuan, X. Deep tensor admm-net for snapshot compressive 
imaging. In Proceedings of the IEEE/CVF Conference on Computer Vision (ICCV), 
Seoul, Korea, 27 October–2 November 2019.  

[II.54] Iliadis, M.; Spinoulas, L.; Katsaggelos, A.K. Deepbinarymask: Learning a binary mask 
for video compressive sensing. Digit. Signal Process. 2020, 96, 102591.  



Wael SAIDENI | PhD Thesis | University of Limoges | 2022 79 

Licence CC BY-NC-ND 3.0 

[II.55] He, K.; Zhang, X.; Ren, S.; J.; S. Deep residual learning for image recognition. In 
Proceedings of the CVPR, Las Vegas, NV, USA, 27–30 June 2016.  

[II.56] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; 
Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing 
Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., 
Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; 
pp. 5998–6008.  

[II.57] Cheng, Z.; Chen, B.; Liu, G.; Zhang, H.; Lu, R.; Wang, Z.; Yuan, X. Memory-efficient 
network for large-scale video compressive sensing. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 
20–25 June 2021. 

[II.58] Wang, Z.; Zhang, H.; Cheng, Z.; Chen, B.; Yuan, X. Metasci: Scalable and adaptive 
reconstruction for video compressive sensing. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 
20–25 June 2021.  

[II.59] Yang, C.; Zhang, S.; Yuan, X. Ensemble learning priors unfolding for scalable Snapshot 
Compressive Sensing. arXiv 2022, arXiv:2201.10419.  

[II.60] Wu, Z.; Yang, C.; Su, X.; Yuan, X. Adaptive Deep PnP Algorithm for Video Snapshot 
Compressive Imaging. arXiv 2022, arXiv:2201.05483.  

[II.61] Zhao, Y.; Zheng, S.; Yuan, X. Deep Equilibrium Models for Video Snapshot Compressive 
Imaging. arXiv 2022, arXiv:2201.06931.  

[II.62] Pont-Tuset, J.; Perazzi, F.; Caelles, S.; Arbelaez, P.; Sorkine-Hornung, A.; Gool, L.V. 
The 2017 DAVIS challenge on video object segmenta tion. arXiv 2017, 
arXiv:1704.00675.  

[II.63] Yuan, X.; Liu, Y.; Suo, J.; Dur,; F.; Dai, Q. Plug-and-play algorithms for video snapshot 
compressive imaging. arXiv 2021, arXiv:2101.04822 

 

 

 

 

 

 

 



Wael SAIDENI | PhD Thesis | University of Limoges | 2022 80 

Licence CC BY-NC-ND 3.0 

Table of contents 

Chapter III. Video Compressive Sensing based on a novel video 

prediction framework 
 

III.1. Introduction ............................................................................................................... 81 

III.2. Related Works ........................................................................................................... 81 

III.2.1. Optical flow-based methods ............................................................................... 81 

III.2.2. Deep Learning based methods .......................................................................... 82 

III.2.2.1. Recurrent models ........................................................................................... 82 

III.2.2.2. Convolutional models ..................................................................................... 83 

III.2.2.3. Generative models ......................................................................................... 84 

III.3. Overview of the proposed Robust Spatiotemporal ConvLSTM algorithm ............ 84 

III.3.1. From LSTM to ConvLSTM ................................................................................. 85 

III.3.1.1. LSTM ............................................................................................................. 85 

III.3.1.2. ConvLSTM ..................................................................................................... 86 

III.3.2. Main contributions in the video prediction context .............................................. 87 

III.3.3. Robust Spatiotemporal ConvLSTM proposed algorithm ..................................... 88 

III.4. Performance evaluation, comparison, and discussion .......................................... 90 

III.4.1. Datasets ............................................................................................................ 90 

III.4.1.1. KTH ................................................................................................................ 91 

III.4.1.2. Moving MNIST ............................................................................................... 91 

III.4.2. Compared methods and performance metrics ................................................... 91 

III.4.2.1. Compared methods ........................................................................................ 91 

III.4.2.2. Performance metrics ...................................................................................... 92 

III.4.3. Implementation details ....................................................................................... 93 

III.4.4. Experimental results .......................................................................................... 93 

III.4.4.1. On KTH dataset.............................................................................................. 93 

III.4.4.2. On Moving MNIST .......................................................................................... 96 

III.4.4.3. Experimental results on the number of predicted frames and the number of 

observations................................................................................................................. 99 

III.4.4.4. Computational Complexity .............................................................................. 99 

III.5. Discussion ............................................................................................................... 100 

III.6. Conclusion .............................................................................................................. 103 

References ........................................................................................................................... 104 

  



Wael SAIDENI | PhD Thesis | University of Limoges | 2022 81 

Licence CC BY-NC-ND 3.0 

Chapter III. Video Compressive Sensing based on a novel video prediction 

framework 

III.1. Introduction  

Recently, many video compression techniques based on prediction frameworks have been 

proposed to enhance their performances. These frameworks are proposed to deal with the 

several challenges faced by almost all traditional video codecs (e.g.H.264) including the large 

computational cost and the huge memory resources needed to store dense matrices. Therefore, 

this idea of prediction may be extended to join the compressive sensing theory in order to 

optimize the computational resources of the transmission devices.  

In this chapter, we noticed that video prediction is a promising research direction and many 

innovations could be done. Indded, we proposed “Robust Spatiotemporal Convolutional Long 

Short-Term Memory” (Robust-ST-ConvLSTM) algorithm as a novel algorithm for video 

prediction. It presents a new internal mechanism that is able to regulate efficiently the flow of 

spatiotemporal information from video signals based on higher order Convolutional-LSTM. The 

remaining chapter is organized as follows: Section III.2 discusses related works in video 

prediction. In Section III.3, we describe the main idea behind our proposed algorithm and its key 

components. In Section III.4.1.1, we evaluate the capability of Robust-ST-ConvLSTM for multi-

step video prediction on two spatiotemporal datasets, including a synthetic dataset of 

handwritten digits and a human motion dataset and report its performance by comparing it 

against the state-of-the-art algorithms. In Section III.5, we discuss the potential perspectives to 

integrate this work in a VCS context. Finally, Section III.6 provides conclusion and the future 

research directions. 

III.2. Related Works 

Video prediction or predicting what happens in the next frames is the key component of 

intelligent decision-making systems. It is also, an emerging field of computer vision and deep 

learning that is facing many challenges [III.1]-[III.2]-[III.3][III.4]-[III.5]-[III.6]. Actually, these 

predictive systems have many real-world applications such as video surveillance or human and 

buildings security which is one of the most frequently debated issues nowadays.  

Video prediction networks are based on historical information gathered from continuous and 

unlabeled video frames. These networks aim to forecast future frames in a video after having 

some previous images. Formally, we suppose 𝑿𝒕 ∈  ℝ
𝑤×ℎ×𝑐   is the t-th frame of a dynamic scene 

𝑿 =  (𝑿𝒕−𝒏, . . . , 𝑿𝒕) with 𝒏 frames, where 𝒘, 𝒉, and 𝒄 denote width, height and number of 

channels, respectively. The main target from this project is to predict the next m frames 𝒀 =

 (𝒀𝒕+𝟏, . . . , 𝒀𝒕+𝒎) from the input 𝒀. 

III.2.1. Optical flow-based methods 

Many research projects have proposed video prediction solutions based on optical flow or dense 

trajectory [III.7]-[III.8]-[III.9]-[III.10]. In fact, optical flow is applied to report motion information 

about objects of successive frames. Technically, these approaches take the given dynamic 

scene as input to forecast the optical flow of the future frame. The obtained result is then merged 

with the last input frame to generate the future predicted video frame. However, those 

approaches that necessitate supervised training, use training datasets that contain optical flow 

information which is not obviously provided in the commonly used video datasets. 
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III.2.2. Deep Learning based methods 

While the optical flow-based models use the motion information to predict the frames, neural 

network approaches analyze the frames and extract their features in order to exploit the 

spatiotemporal representation to forecast the next frames. In this section, recent deep learning 

models for video prediction will be discussed after being classified into three categories: 

recurrent neural networks, convolutional networks and generative networks.  

Although these neural networks-based methods are better than the traditional optical flow-based 

solutions in terms of performances, they are challenging and produce sometimes blurry results. 

Obviously, it is a promising research area. 

III.2.2.1. Recurrent models 

Recurrent networks are commonly used for video sequences related problems since they are 

considered as sequential data with spatio-temporal representation. 

Recurrent neural networks (RNN) have demonstrated considerable success in video prediction 

research works that are detailed in [III.11]-[III.12]-[III.13]-[III.14]-[III.15]-[III.16]-[III.17]-[III.18]-

[III.19]-[III.20]-[III.21]-[III.22]-[III.23]-[III.24]-[III.25]-[III.26]-[III.27]. In fact, along with the 

advancements in neural networks architectures, video prediction has been studied extensively 

in recent years. Zhang et al. proposed a ConvLSTM-based architecture where hidden states are 

updated along a z-order curve [III.16]. The model presents a novel training approach based on 

two Z-Order Recurrent Networks (Znet): Znet-Predictor and Znet-Probe. Since most video 

prediction algorithms based on ConvLSTM have duplicated features with same functionality in 

both cell state and hidden state of the LSTM unit, Znet came up with a novel route updating to 

enhance the hidden states. Technically, to trick the neural network, the model is set to choose 

inputs that minimize the loss function instead of updating weights and biases that minimize the 

cost. 

W. Lotter et al. [III.19] presented a predictive neural network (PredNet) architecture. This 

network aims to forecast future video frames in dynamic scenes. Technically, every layer in the 

network makes local predictions and only sends the deviations from those predictions to the 

following layers. The PredNet model is a series of recurrent blocks that make local predictions 

that are subtracted from the input before being forwarded to the subsequent network layer. 

C. Lu et al. [III.22] propose a Flexible Spatio-Temporal Network (FSTN). This model enables the 

generation of the frames lying between the observed frames in order to output slow-motion video 

sequences. Also, it proposes a novel loss function to optimize the training phase of the model. 

The architecture described above is based on two main models: extrapolation model and 

interpolation model. Both of them are considered as spatio-temporal autoencoders. However, 

the extrapolation model has a guided training phase by the ground truth frames feeding each 

layer by the supervised information needed, while the interpolation model does not need the 

ground truth images. Another difference of the two models lies in their definition. The 

interpolation is the estimation of a value between given data points, but the extrapolation is 

useful when looking for a value that is either higher or lower than the values in the dataset. 

A recent RNN architecture was proposed by Wang et al. in [III.28]. The idea behind this research 

work remains behind the new spatiotemporal LSTM (ST-LSTM) unit that takes out and 

memorizes spatial appearances and temporal variations simultaneously since for video 

prediction we need to consider both the spatial and the temporal structures. In fact, the 

Predictive Recurrent Neural Network (PredRNN) is based on spatiotemporal memory flow which 
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allows the memory cells to move vertically across stacked RNN layers and horizontally through 

all RNN states. This approach is different from stacked LSTM. Actually, in stacked LSTM, 

memory states are updated independently from the visual features which means that the first 

layer of the present time step could ignore the information memorized by the last layer at the 

previous time step. However, in PredRNN, a memory cell is introduced to handle the information 

between different time steps. Another problem is solved in [III.29]. The new memory cell can 

handle long-term and short-term information at the same time which can limit the predictive 

performances of the model. So, a pair of memory cells is used and explicitly decoupled in order 

to satisfy the different variations. This model reduces the loss of visual information from the very 

first layer to the top of the recurrent network. Furthermore, another learning strategy was 

proposed called reverse scheduled sampling. This strategy enables to learn temporal dynamics 

from longer periods of the input video and reduces the training discrepancy between the 

encoding network and the prediction network. 

III.2.2.2. Convolutional models 

Different from recurrent neural networks, convolutional networks are feed-forward neural 

networks that are commonly used for computer vision challenges such as visual prediction. 

Many models are based on convolutions for video prediction. One of these architectures is a 

multi-model combining temporal and spatial sub-networks which is proposed in [III.30] and 

called MixPred. The future frame prediction approach described is divided into two parts: a 

temporal model for modeling the time series of the input video and a spatial sub-network to 

model the spatial texture on the content. Then, the authors tested an information fusion method 

for feature map interaction between the two parts. This approach allows to copy the unchanging 

pixels from the last frame thanks to the temporal mask which means that the predicted frame 

has the same clearness as the original frame. Also, synchronously exchanging temporal and 

spatial information enables to fill the changed pixels in order to have a complete predicted image. 

This model uses only convolutional layers, but it could be theoretically enhanced by using other 

models like the generative networks. The model described above could be used not only in 

future frames prediction but also in several applications such as object tracking, action 

recognition and video compression. 

In [III.31], the model trains a deep neural network to generate video frames by flowing pixel 

values from existing ones instead of initializing them from scratch. The model, called Deep Voxel 

Flow (DVF), usually takes 3 frames from the video scene without pre-processing: two frames 

are taken as input and the third frame is used as the generated target. This approach is based 

on the idea of borrowing voxels (3D-pixels) from the adjacent frames to generate more realistic 

results. The architecture is composed of a convolutional encoder-decoder to forecast the voxel 

flow and a volume sampling layer to generate the target image. 

As in [III.30], the model can predict the in-between frames (interpolation) and the future frames 

(extrapolation) of the input dynamic scene. The voxel flow, used to sample the input frames with 

the volume sampling function to synthesize the target frame, has two main components: the 

spatial component and the temporal one. The spatial element is the optical flow for the predicted 

frame and the temporal part is used to form a color in that frame. 

The framework described above aims to predict one frame, but it can naturally be extended to 

a multi-frame prediction framework with a fairly simple manipulation. In fact, the target becomes 

a 3D volume and not 2D image and the learning rate will be reduced to maintain stability in the 

training phase. In addition, the spatiotemporal coherence is maintained because of the 
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preservation of local correlations due to the convolutions across the temporal layers. The 

strength of this model is that it combines the advantages of the optical-flow-based approach and 

the newer neural network-based models. Also, it can be trained and tested on any real-world 

video with any resolution. However, it fails in scenes with repetitive patterns. Also, it generates 

some blurry scenes, like most of neural network-based implementations. 

III.2.2.3. Generative models 

Generative models are used to generate new samples from the same distribution as the input 

data. The target behind training generative models is to learn a probability distribution that is 

similar to the data’s probability distribution. In video prediction, the models described above aim 

to output a single eventual outcome. However, generative approaches generate a wide 

spectrum of feasible predictions. 

The most common network structure in the field of video prediction and image generation in 

general is Generative Adversarial Networks (GAN). These networks are composed of two sub-

networks jointly trained, the discriminator and the generator, to create fake samples that look 

like real data. Technically, the generator fools the discriminator by generating new samples from 

a random noise (e.g. Gaussian noise). Then the discriminator features the probability distribution 

function that describes real data. Nevertheless, in video prediction, some conditions could be 

added to the general implementation of GAN in order to forecast the future frames. 

In [III.32], a generative approach was proposed to predict frames based on cycle GAN. The 

main model is composed of one generator and two discriminators. In fact, the generator uses 

the retrospective cycle to predict both future and past frames and we train it with reversed input 

sequences. Moreover, one discriminator is dedicated to identify fake frames while the other is 

implemented to distinguish the sequences that contain fake frames which is crucial in 

forecasting temporally consistent frames. Technically, the loss function and the network 

architecture make this approach special when we compare it with the general formulation of 

GAN networks. Since this model enables to predict a limited number of frames before generating 

blurry images, a multi-frame prediction strategy is employed. The model starts by forecasting 

the next frame from an input video. Then, it constructs a new input video by concatenating the 

last frames of the input video and the predicted frame. Finally, the new input video will enable 

the prediction of the next frame. This strategy is repeated until we get the desired number of 

predicted frames. 

In [III.33], the authors insisted on the fact that conditional Generative Adversarial Networks 

(cGAN) are suitable for video frames prediction because it can guarantee the spatio-temporal 

coherence between the predicted frames and the input video. Another approach is discussed in 

[III.34] and is based on the idea of dividing the video signal into two parts: content and motion. 

Content to specify the objects in the sequence and motion to describe their movements. The 

model is based on mapping a sequence of random vectors to a sequence of frames in order to 

generate the predicted videos. These random vectors are composed of two parts: one for the 

content and the other for the motion. Since this framework is based on GAN, discriminators are 

used to learn motion and content decomposition in an unsupervised way by introducing a new 

adversarial learning scheme. 

III.3. Overview of the proposed Robust Spatiotemporal ConvLSTM algorithm 

To understand the idea behind Robust Spatiotemporal ConvLSTM algorithm, it is obvious to 

present the main inspiring recurrent architectures, i.e., LSTM and ConvLSTM. 
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III.3.1. From LSTM to ConvLSTM 

The idea behind the proposed algorithm is based on Convolutional LSTM (ConvLSTM) which is 

Long Short-Term Memory (LSTM) network applied on high dimensional data. 

III.3.1.1. LSTM 

Long short-Term Memory Network is considered as an advanced type of RNN that was designed 

and developed by Hochhreiter and Schmidhhuber (1997) [III.35] to solve the vanishing gradient 

problem of standard RNNs. Theoretically, RNNs are designed to learn long term dependencies. 

However, in practice, many issues appear such as vanishing gradient that prevents those neural 

networks to learn long term dependencies. Therefore, it has been proven that LSTM is a 

powerful tool to remember information for longer period of time. Indeed, the main idea behind 

LSTM consists of connecting the previous information to the future task. 

The main structure of LSTM based neural networks is the same: it consists of a chain of LSTM 

modules. However, the structure of those modules depends on the application. 

One of the most powerful components of LSTM is the cell state which is represented by the 

horizontal line on the top of Figure III.1. It is used to handle the main information through the 

whole network and from one LSTM block to another. This function is controlled by 3 different 

structures: the forget gate, the input gate, and the output gate. 

 

Figure III.1: The structure of a standard LSTM module. 

When we look at the LSTM cell in Figure III.1, we notice that the information coming from the 

cell state 𝒄𝒕−𝟏 which passes through the forget gate that decide which information is going to be 

forgotten thanks to the sigmoid layer that outputs a number between 0 and 1. Then, the input 

gate uses the input 𝒙𝒕 and the hidden state 𝒉𝒕−𝟏 to update the cell state. Then, a tanh layer 

outputs new candidate values �̂�𝒕 that have the possibility to be added to the cell state. The cell 

state update is created from the combination of �̂�𝒕 and 𝒊𝒕. 
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Now, everything is ready to update the cell state. Firstly, the old cell state 𝒄𝒕−𝟏 is multiplied by 

𝒇𝒕 then 𝒊𝒕 ∗ �̂�𝒕 is added. Finally, the output of the LSTM unit will be based on the cell state 𝒄𝒕, 

the input 𝒙𝒕 and the hidden state 𝒉𝒕−𝟏. Indeed, a sigmoid gate is applied to decide the parts of 

the cell state that will be involved in the output process. Then, the cell state 𝒄𝒕 is put through 

tanh and then multiplied by the output of the sigmoid layer. The main target of this last step is to 

output the new hidden state 𝒉𝒕. To sum up the mechanism of LSTM: This neural network unit 

has 3 inputs: the input 𝒙𝒕, the cell state 𝒄𝒕−𝟏 and the hidden state 𝒉𝒕−𝟏 that will be passed through 

3 different gates in order to output 2 structures: the cell state 𝒄𝒕 and the new hidden state 𝒉𝒕. 

The mechanism described above is explained by the following equations (III.1): 

where 𝜎 is the sigmoid function, × is a pointwise multiplication, + is a pointwise addition and ∘ 

denotes the Hadamard product.  

III.3.1.2. ConvLSTM 

Although LSTM is considered as a powerful network for dealing with temporal relationship, its 

main drawback is that it is unable to handle spatial information because we need to flatten high 

dimensional data to 1D vectors to be compatible to the input common structure. However, 

Spatiotemporal data are commonly used in many applications such as video surveillance. So, 

we were forced to look for a new structure where we take advantage of LSTM by integrating 

spatiotemporal data. 

Convolutional LSTM (Figure III.2) is used to capture the spatial dimension for the prediction 

mode. The special feature of ConvLSTM is that the inputs 𝒙𝒕, the cell states 𝒄𝒕, the hidden states 

𝒉𝒕 and the 3 gates are 3D tensors. In addition, the convolution operation is used instead of 

simple matrix multiplication as shown in the following equations (III.2):  

where ⨀ denotes the convolution operation. 

𝒊𝒕 = 𝜎(𝒘𝒊 × 𝒙𝒕 × 𝒔𝒊 × 𝒉𝒕−𝟏), 

𝒇𝒕 = 𝜎(𝒘𝒇 × 𝒙𝒕 × 𝒔𝒇 × 𝒉𝒕−𝟏), 

𝒐𝒕 = 𝜎(𝒘𝒐 × 𝒙𝒕 × 𝒔𝒐 × 𝒉𝒕−𝟏), 

�̂�𝒕 = 𝑡𝑎𝑛ℎ(𝒘�̂� × 𝒙𝒕 × 𝒔�̂� × 𝒉𝒕−𝟏), 

𝒄𝒕 = 𝒇𝒕 ∘ 𝒄𝒕−𝟏 + 𝒊𝒕 ∘ �̂�𝒕, 

𝒉𝒕 = 𝒐𝒕 ∘ tanh(�̂�𝒕), 

 

 

 

 

(III.1) 

𝑰𝒕 = 𝜎(𝑾𝒊⨀ 𝑿𝒕 + 𝑺𝒊⨀ 𝑯𝒕−𝟏), 

𝑭𝒕 = 𝜎(𝑾𝒇⨀ 𝑿𝒕 + 𝑺𝒇⨀ 𝑯𝒕−𝟏), 

𝑶𝒕 = 𝜎(𝑾𝒐⨀ 𝑿𝒕 + 𝑺𝒐⨀ 𝑯𝒕−𝟏), 

�̂�𝒕 = 𝑡𝑎𝑛ℎ(𝑾�̂�⨀ 𝑿𝒕 + 𝑺�̂�⨀ 𝑯𝒕−𝟏), 

𝑪𝒕 = 𝑭𝒕 ∘ 𝑪𝒕−𝟏 + 𝑰𝒕 ∘ �̂�𝒕, 

𝑯𝒕 = 𝑶𝒕 ∘ tanh(�̂�𝒕), 

 

 

 

 

(III.2) 
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Figure III.2: The structure of convolutional LSTM. 

III.3.2. Main contributions in the video prediction context 

The great progress made by RNN architectures in a wide range of applications and research 

fields, has motivated us to explore some recent approaches to predict future video frames. The 

main advantage of these models is their potential to learn adequate features from high-

dimensional data, such as videos, in an end-to-end manner without hand-designed features. 

However, despite the significant progress in deep learning architectures, video prediction is still 

considered as a big challenge especially in terms of output visual quality and long-term 

prediction. Therefore, our Robust Spatiotemporal Convolutional Long Short-Term Memory 

(Robust-ST-ConvLSTM) algorithm is proposed as a long-term prediction algorithm that 

outperforms the state-of-the-art approaches in terms of quality performances. Our algorithm is 

based on a modified version of ConvLSTM cell. Obviously, ConvLSTM is not very efficient in 

handling long sequences. Indeed, ConvLSTM based algorithms focus on stochastic features of 

the data rather than its spatial distortion. Also, a temporal information encoding in ConvLSTM 

unit [III.12] is based on 1st-order Markovian architecture. Thus, making long-range temporal 

correlations hard to extract. In addition, the vanishing gradient problem often occurs in training 

1st-order RNN based predictive algorithms [III.36]. 

Bearing all these drawbacks in mind, we propose our Robust-ST-ConvLSTM algorithm for video 

prediction. With the following properties, we hope our algorithm will pave the way for the 

application of recurrent neural network on real-world datasets: 

• Spatial and temporal data are taken into consideration jointly. 

• The new spatiotemporal memory (STM) cell transfers low-level and semantic aspects of 

the dynamic scene which are the key of generating future frames. 

• The Robust-ST-ConvLSTM new internal mechanism offers new cell state and hidden 

state transition functions to efficiently regulate the flow of spatiotemporal information 

from the input videos. 

• The algorithm aims to rely on 𝑵 previous hidden states, that provide temporal context 

for the motion in video scenes, to update one cell state at every timestep. 
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III.3.3. Robust Spatiotemporal ConvLSTM proposed algorithm 

The proposed Robust Spatiotemporal ConvLSTM (Robust-ST-ConvLSTM) algorithm is a 

memory flow algorithm based on higher order ConvLSTM. To make it simple, the novel algorithm 

aims to decide the cell state 𝑪𝒕 not only from the previous hidden state 𝑯𝒕−𝟏 but also from 𝑵 

previous hidden states (𝑯𝒕−𝟐, … , 𝑯𝒕−𝑵)  (𝑵 will be fixed by the user and it can only affect the 

computational time). The second part of the algorithm is to implement a memory flow to hold 

spatiotemporal information to optimize and control the prediction capacities of ConvLSTM. In 

fact, the memory flow will be a second cell state for spatiotemporal data. However, the cell state 

will not be removed and will handle temporal data. 

Indeed, the novel algorithm uses a stack of ConvLSTM units to learn the spatial correlations and 

the temporal dynamics from the input video. These features will be used later to forecast the 

future frames. So, a novel transition function is introduced based on spatiotemporal memory 

flow and is able to leverage a deterministic number of previous hidden states. In the original 

implementation of ConvLSTM, the temporal memory states 𝑪𝒕 are updated only from one-time 

step to another. However, in video prediction, the consecutive frames are having close data 

distributions in the spatial dimensions and many temporal correlations. Thus, we need to exploit 

these properties to make better predictions in terms of quality performances. Therefore, we 

believe that this higher order ConvLSTM based on memory flow will take advantage from the 

global motion changes of the consecutive frames and the information of the spatiotemporal 

memory to predict future frames. The memory state update process for the original stacked 

ConvLSTM model can be represented graphically with a horizontal diagram flow. We propose 

here to enhance this previous model by updating the memory state horizontally (the cell state) 

and vertically (the spatiotemporal memory state) as illustrated in Figure III.3. This approach 

ameliorates the way we handle the spatiotemporal information from the input to the output and 

enables to connect all the recurrent units of the entire network. 

 

Figure III.3: The main structure of Robust Spatiotemporal LSTM. 

The main equations of the new robust spatiotemporal unit represented in Figure III.4 are (III.3): 
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Figure III.4: Robust Spatiotemporal Unit. 

Where 𝜎 is the sigmoid activation function. Like the original ConvLSTM, 𝑰𝒕 and 𝑰𝒕′: the input 

gates, 𝑭𝒕 and 𝑭𝒕
′: the forget gates, �̂�𝒕 and �̂�𝒕

′: the potential candidates for the cell states, 𝑶𝒕: the 

output gate. 𝑿𝒕 denotes the input at the time step 𝑡. 𝑯𝒕
𝒍 denotes the hidden state of the 𝑙𝑡ℎ layer 

at the time step 𝑡. 𝑪𝒕
𝒍 is the memory state of the 𝑙𝑡ℎ layer at the time step 𝑡. 𝑺𝑻𝑴𝒕

𝒍 denotes the 

spatiotemporal memory of the 𝑙𝑡ℎ layer at the time step 𝑡. 𝑓 is the function that should be 

designed to combine 𝑵 previous hidden states. The design of the 𝑓 is quite difficult since it must 

satisfy the following conditions: the spatial structure of the hidden states must be preserved, the 

size of the filters that control the previous hidden states must increase with the time steps in 

𝑰𝒕 = 𝜎 (𝑾𝒊⨀ 𝑿𝒕 + 𝑓(𝑯𝒕−𝟏
𝒍 , … ,𝑯𝒕−𝑵

𝒍 )), 

𝑭𝒕 = 𝜎 (𝑾𝒇⨀ 𝑿𝒕 + 𝑓(𝑯𝒕−𝟏
𝒍 , … ,𝑯𝒕−𝑵

𝒍 )), 

�̂�𝒕 = tanh (𝑾�̂�⨀ 𝑿𝒕 + 𝑓(𝑯𝒕−𝟏
𝒍 , … , 𝑯𝒕−𝑵

𝒍 )), 

𝑪𝒕
𝒍 = 𝑭𝒕 ∘ 𝑪𝒕−𝟏

𝒍 + 𝑰𝒕 ∘ �̂�𝒕, 

𝑰𝒕
′ = 𝜎(𝑾𝒊

′⨀ 𝑿𝒕 +𝑴𝒊
′⨀ 𝑺𝑻𝑴𝒕

𝒍−𝟏), 

𝑭𝒕
′ = 𝜎(𝑾𝒇

′⨀ 𝑿𝒕 +𝑴𝒇
′⨀ 𝑺𝑻𝑴𝒕

𝒍−𝟏), 

�̂�𝒕
′ = tanh(𝑾�̂�

′⨀ 𝑿𝒕 +𝑴�̂�
′⨀ 𝑺𝑻𝑴𝒕

𝒍−𝟏), 

𝑺𝑻𝑴𝒕
𝒍 = 𝑭𝒕

′ ∘ 𝑺𝑻𝑴𝒕
𝒍−𝟏 + 𝑰𝒕

′ ∘ �̂�𝒕
′ , 

𝑶𝒕 = 𝜎(𝑾𝒐𝒙⨀ 𝑿𝒕 + 𝑓(𝑯𝒕−𝟏
𝒍 , … , 𝑯𝒕−𝑵

𝒍 ) +𝑾𝒐𝒄⨀ 𝑪𝒕
𝒍 +𝑾𝒐𝒔𝒕𝒎⨀ 𝑺𝑻𝑴𝒕

𝒍), 

𝑪𝒕 = 𝑭𝒕 ∘ 𝑪𝒕−𝟏 + 𝑰𝒕 ∘ �̂�𝒕, 

𝑯𝒕
𝒍 = 𝑶𝒕⨀ tanh(𝑾𝟏×𝟏⨀ [𝑪𝒕

𝒍 , 𝑺𝑻𝑴𝒕
𝒍]), 

 

 

 

 

 

 

 

 

 

(III.3) 
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order to capture the context of these structures and finally, the algorithm’s complexity must not 

explode. 

To implement 𝑓 we tested two main approaches. The first approach aims to return the mean 

value of all elements in the input tensor that handle the previous hidden states. In Robust-ST-

ConvLSTM, the feedback signal is generated by combining multiple preceding hidden states. 

Therefore, the state of the 𝑵-order Robust-ST-ConvLSTM is recursively updated with the 

following 𝑓 function (1st approach)  

(III.4): 

Analogous to the filter structures used in signal processing, the second approach in designing 

the 𝑓 function in inspired from recursive least squares filters [III.37]. It is now based on the 

weighted sum of the previous hidden states. Consequently, 𝑓 is straightforward (2nd approach)  

(III.5): 

where 𝜶 is the forgetting factor. The parameter 𝜶 (0 < 𝜶 < 1) gives more weight to recent 

hidden states.  

The gates of the Robust Spatiotemporal unit are no longer dependent on the the hidden state 

and the temporal memory state from the previous time step of the same layer. However, they 

depend on the previous hidden states from previous time steps at the same layer and the 

spatiotemporal memory state. To be clear, the first layer in a stacked ConvLSTM model at time 

step 𝑡 receives the spatiotemporal memory of the last layer in the stacked model of the previous 

time step as illustrated in Figure III.3 (𝑺𝑻𝑴𝒕
𝒍 = 𝑺𝑻𝑴𝒕−𝟏

𝑳  with 𝑳 is the number of stacked layers). 

So, we adopt the original structure of ConvLSTM, and we added a second gated structure for 

the spatiotemporal memory 𝑺𝑻𝑴𝒕
𝒍. However, the final hidden state 𝑯𝒕

𝒍 depends on the 

combination of the temporal memory state 𝑪𝒕
𝒍 and the spatiotemporal memory state 𝑺𝑻𝑴𝒕

𝒍. 

The spatiotemporal memory parameter is dedicated to reduce the loss of spatiotemporal 

information in the video sequences from the first layer to the last layer of the network. Besides, 

the previous hidden states used as input for the ConvLSTM blocks are implemented to expand 

the visibility of the neural units about the context of the current events at different time steps. 

It is clear that the proposed model increases the number of parameters when we compare it 

with the standard ConvLSTM but it will prevent as from unnecessarily expanding the ConvLSTM 

model to obtain the same performances. 

III.4. Performance evaluation, comparison, and discussion  

III.4.1. Datasets 

As far as we are concerned, there are currently no datasets for video prediction because it is an 

emerging area of research. However, researchers basically use motion video datasets such as 

𝑓(𝑯𝒕−𝟏
𝒍 , … ,𝑯𝒕−𝑵

𝒍 ) =
𝟏

𝑵
∑𝑾𝒉𝒏

𝑵

𝒏=𝟏

𝑯𝒕−𝒏
𝒍 . 

 

(III.4) 

𝑓(𝑯𝒕−𝟏
𝒍 , … ,𝑯𝒕−𝑵

𝒍 ) =
𝟏

𝑵
∑𝜶𝒏

𝒏𝑾𝒉𝒏

𝑵

𝒏=𝟏

𝑯𝒕−𝒏
𝒍 , 

 

(III.5) 
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KTH and MovingMNIST used to compare the performances of our proposed algorithm with the 

state-of-the-art approaches. 

III.4.1.1. KTH 

This dataset has 2391 video sequences of 6 human actions (Walking, Jogging, Running, Boxing, 

Hand waving, Hand clapping) performed by 25 people in 4 different scenarios. Static cameras 

were used to capture the video scenes with 25 fps as a frame rate. The sequences have a length 

of 4 seconds in average with a frame size of 160 × 120. The videos are stored in 600 video files 

for each combination of 25 subjects, 6 actions and 4 scenarios. To train different approaches, 

the original frames are resized to 128 × 128. Then, we followed the setup of [III.38], which uses 

persons 1 − 16 to train different algorithms and persons 17 − 25 for testing. Different models are 

trained to forecast 10 frames from 10 input frames. To evaluate the robustness of our algorithms 

compared to state-of-the-art approaches at test step, we widen the predictions abilities to 20 

frames (timesteps). In addition, we trained different models to forecast 10 frames from only 5 

observations to compare their quality performances on a limited number of input frames (Figure 

III.5).  

 

Figure III.5: KTH action dataset.  

III.4.1.2. Moving MNIST 

We followed the original setting of Moving MNIST dataset proposed for video representation 

purposes [III.18]. The idea of this dataset is to generate two moving digits, randomly placed in 

64 ×64 grid, that move around with a constant velocity. To evaluate the performances of different 

algorithms, we generate 10000 sequences for the training process, 3000 for validation and 5000 

for testing. The main performances are obtained by following the common setting in previous 

research works: generating 10 future frames after receiving the previous 5 and 10 observations. 

III.4.2. Compared methods and performance metrics 

III.4.2.1. Compared methods 

To evaluate the performance of our proposed Robust-ST-ConvLSTM, we compare it with the 

performance of some advanced video prediction models: 
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• ConvLSTM: is commonly used for spatiotemporal predictive systems with a traditional 

roadway for the memory state. This algorithm is mentioned in almost every research 

work as the least efficient approach. However, it is the source of inspiration for video 

prediction algorithms based on recurrent neural networks. 

• PredRNN 2017: based on the spatiotemporal LSTM (ST-LSTM) unit that take out and 

memorize spatial appearances and temporal variations simultaneously. 

• PredRNN 2021: In this algorithm, a pair of memory cells is used and explicitly decoupled 

in order to enhance the performances of the previous algorithm and surpass its 

limitations. In addition, another learning strategy was proposed called reverse scheduled 

sampling. 

The differences in results can be explained by the implementation details of the training process: 

we did not use the pretrained checkpoints to test the performances of the existing state of the 

art algorithms, but we actually re-trained ConvLSTM, PredRNNv-2017 and PredRNN-v2021 in 

the same conditions as our approach to achieve a fair and consistent comparison. Some 

hyperparameters are also adjusted to allow the comparison: 

• The training process is stopped after 100.000 iterations (not 80.000 iterations in 

PredRNN). 

• Mini-batch = 2 sequences (not 8 sequences in PredRNN because in this case the mini-

batch of data does not fit onto our GPU memory). 

III.4.2.2. Performance metrics 

Because the results are video frames, we will use the most commonly used metrics to evaluate 

the quality of images between the ground truth and the prediction. Those metrics are Peak 

Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) [III.39] and Learned Perceptual 

Image Patch Similarity (LPIPS) [III.40]. 

• The PSNR measures, in decibels, the quality ratio between the original frame and the 

predicted one. The higher the PSNR, the better the quality of the predicted image. 

The PSNR is calculated by (III.6): 

where 𝒀 is the ground truth, �̂� is the generated prediction, 𝑵 is the number of pixels and 

𝑚𝑎𝑥�̂� is the maximum value of the frame intensities. 

• The SSIM measures the similarity between two images in terms of luminance, contrast, 

and structure. It is calculated as follows (III.7): 

where 𝝁𝒀 and 𝝁�̂� are the average of 𝒀 and �̂�, respectively, 𝝈𝒀 and 𝝈�̂� are the variance 

of 𝒀 and �̂�, respectively, 𝝈𝒀�̂� is the covariance of 𝒀 and �̂�. 𝑪𝟏 and 𝑪𝟐 are constants. The 

higher the SSIM, the greater similarity between two images. 

𝑃𝑆𝑁𝑅 (𝒀, �̂�) = 10𝑙𝑜𝑔10
𝑚𝑎𝑥²�̂�

𝟏
𝑵
∑ (𝒀 − �̂�)

𝟐𝑵
𝒊=𝟏

, 
 

(III.6) 

𝑆𝑆𝐼𝑀 (𝒀, �̂�) =
(2𝝁𝒀𝝁�̂� + 𝑪𝟏) + (2𝝈𝒀�̂� + 𝑪𝟐)

(𝝁𝒀
𝟐+𝝁

�̂�
𝟐 + 𝑪𝟏)(𝝈𝒀

𝟐+𝝈
�̂�
𝟐 + 𝑪𝟐)

, 
 

(III.7) 
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• The LPIPS metric is used to measure the distance between video frames patches. It 

evaluates the perceptual distance between ground truth patches and predicted patches 

to judge how similar they are in a way that agrees with human judgement. This 

perceptual metric is defined by using deep features. In our implementation, it is pre-

trained on AlexNet [III.41] architecture. Lower LPIPS scores indicate better prediction 

results. 

III.4.3. Implementation details 

The proposed algorithm is implemented with Python 3.6 and Pytorch 1.4.0 as a deep learning 

framework. Pytorch is used because it offers an effective way to manipulate tensors or multi-

dimensional matrices needed to store and process multi-dimensional data. 

We use Adam optimizer to train our model which is an optimization algorithm that combines the 

properties of AdaGrad and RMSProp algorithms to provide an optimization algorithm that is 

faster than the commonly used Stochastic Gradient Descent (SGD) algorithm especially with 

sparse data. A mini-batch of 2 sequences is chosen at each training iteration and it is reduced 

to the maximum to handle the out of memory problem of our GPU. We choose a learning rate 

of 0.0001 and the training process is stopped after 100000 iterations. The main architecture of 

our proposed model is composed of 4 ConvLSTM layers for each time step as illustrated in 

Figure III.3. The number of hidden states used to update the cell state is limited (in our case = 

3), we can increase it to enhance the performance of our algorithm. However, an additional 

computational cost will slow down the training process. So, a trade-off between the number of 

hidden states and computational complexity should be done. The entire training process was on 

an NVIDIA GeForce RTX 2060GPU, Intel(R) Core(TM) i7-9700K CPU (3.60 GHz), a 32GB 

device memory, and Windows 10 operating system. 

III.4.4. Experimental results 

The performances of our approach will be evaluated on KTH and Moving MNIST datasets. 

III.4.4.1. On KTH dataset 

Table III.1 presents quantitative results of the proposed algorithm and state-of-the-art networks 

and the corresponding frame-wise comparisons are shown in Figure III.6, Figure III.7 and Figure 

III.8. We adopt PSNR and SSIM as evaluation metrics. We can obviously confirm that our 

proposed algorithm shows significant improvements in terms of short-term and long-term 

forecasting over the commonly used ConvLSTM approach. In fact, it increases the average 

PSNR and SSIM over the same number of predicted frames by 26% and 21.31%, respectively, 

by comparing it with the algorithm mentioned above. Also, it performs favorably against the 

PredRNN-v2017 and the PredRNN-v2021 algorithms of Wang et al. Our Robust-ST-ConvLSTM 

(with 𝜶 = 0.9) performs better than PredRNN-v2021 by 1.72% and 2.77% in terms of PSNR and 

SSIM, respectively. These empirical results demonstrate the effectiveness and the efficiency of 

the Robust Spatiotemporal Convolutional Long Short-Term Memory algorithm in predicting 

future frames. In concordance with PSNR and SSIM results, we clearly notice that our Robust-

ST-ConvLSTM algorithm outperforms the state-of-the-art approaches in terms of LPIPS which 

prove that our algorithm is effectively able to predict high-fidelity video frames. In accordance 

with these results, Figure III.9 that compares representative generated frames, proves that our 

algorithm outperforms the state-of-the-art approaches in terms of future movement and frames 

details. Robust ST-ConvLSTM predicts more accurate motion trajectories into the future 

because of the memory flow component that strengthen the long-term prediction ability of the 
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ConvLSTM cell and also because of updating the ConvLSTM cell using information from some 

previous time steps. 

We can notice also that the second approach in designing 𝑓 which is inspired from recursive 

least squares filters slightly outperforms the first approach in terms of PSNR and SSIM. This 

means that further research work could be done in order to determine the optimal value of 𝜶 

that gives the best PSNR and SSIM performances. In this work, various values of α have been 

tested randomly (0 < 𝜶 < 1) and the optimum one among them was the selected value 0.9. 

The presented results and the computational cost depend on the number of memory units used 

for feedback. In our implementation, we used 3 hidden states which means that we have 3rd 

order Robust-ST-ConvLSTM. Furthermore, the number of hidden states can affect the 

performances of our model in terms of the quality of its output and also in terms of the 

computational process. From the previous observations about the value of 𝛼 and the number of 

hidden states, we can confirm that a trade-off should be done between quality performances 

and computational costs, in future research work, to have the best performances without training 

a computationally very expensive algorithm. 

Table III.1: Quantitative evaluation of different algorithms on KTH dataset. The metrics are averaged 

over the 10 and 20 predicted frames based on 5 and 10 observations, respectively. Higher PSNR and 

SSIM scores and lower LPIPS scores indicate better prediction results. 

 10 → 20 5 → 10 

Model PSNR 

(dB) 

SSIM LPIPS PSNR 

(dB) 

SSIM LPIPS 

ConvLSTM  

(Shi et al., 2015) 

23.009 

 

0.704 0.237 23.300 0.712 0.178 

 

PredRNN 

(Wang et al., 2017) 

27.624 0.839 0.208 28.752 0.845 0.153 

PredRNN 

(Wang et al., 2021) 

28.502 0.831 0.143 28.622 0.860 0.152 

Robust-ST-ConvLSTM 

(1st approach) 

28.828 0.848 0.124 28.785 0.880 0.110 

Robust-ST-ConvLSTM 

(2nd approach) 

28.992 0.854 0.122 28.905 0.892 0.106 



Wael SAIDENI | PhD Thesis | University of Limoges | 2022 95 

Licence CC BY-NC-ND 3.0 

 

Figure III.6: Frame-wise PSNR comparisons of different models on KTH dataset after 100 000 

iterations.  

 

Figure III.7: Frame-wise SSIM comparisons of different models on KTH dataset after 100 000 iterations. 

 
Figure III.8: Frame-wise LPIPS comparisons of different models on KTH dataset after 100 000 

iterations.  
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Figure III.9: Prediction examples on the KTH data set, where we predict 20 frames into the future based 

on the past 10 frames.  

III.4.4.2. On Moving MNIST 

Table III.2 presents the performance of the evaluated models on the Moving MNIST dataset by 

predicting the next 10 frames from the previous 10 input frames. We use the similarity index 

measure (SSIM) and the Peak signal-to-noise ratio (PSNR) for evaluation. As shown from Table 

III.2 and Figure III.10, Figure III.11 and Figure III.123, our architecture performs well against the 

state-of-the-art approaches in both metrics. Figure III.10 and Figure III.11 show the frame-wise 

PSNR and SSIM comparisons of different approaches on MNIST dataset. The results of these 

figures prove the ability of the Robust-ST-ConvLSTM in predicting future frames. Also, they 

prove that our approach outperforms the previous models on all the predicted frames. The 

memory flow algorithm based on 3rd order ConvLSTM with 𝜶 = 0.9 increases the average PSNR 

over the 10 predicted frames by 3.15% by comparing it with PredRNN (Wang et al., 2021). 

However, it outperforms the same approach by 0.22% in terms of SSIM. This means that the 

algorithms have similar performances on MNIST dataset. Moreover, our approach performs 

favorably against the traditional ConvLSTM approach in terms of PSNR and SSIM. It brings 

14.59% PSNR improvement and 26.95% SSIM improvement over ConvLSTM based frames 

prediction approach. In concordance with the previous results, Figure III.12 shows that our 

approach brings also a remarkable improvement in terms of LPIPS. These results on Moving 

MNIST dataset prove that our algorithm generates more realistic predictions of future digits 

movements. These numerical results are confirmed by Figure III.13 that shows the quality of the 

10 predicted frames generated by the different approaches. Robust-ST-ConvLSTM outputs 

clearer frames. However, the state-of-the-art algorithms produce blurry images. This means that 

Robust-ST-ConvLSTM is more precise and surer about the future variations which proves its 

robustness against the other long-term prediction algorithms mentioned above.   

We can notice also that the recursive least squares filters-based approach in designing 𝑓 has 

approximately similar results as the first approach and that for different values of 𝜶. Different 
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from KTH dataset, the value of the parameter 𝜶 does not affect the quality performances of the 

outputs but it affects the computational cost of our algorithm since a number of multiplications 

are added to the calculation process. This means that, for MNIST dataset, only the first approach 

of designing 𝑓, which is based on returning the mean value of the previous hidden states, is 

taken into consideration. 

Table III.2: Quantitative evaluation of different algorithms on Moving MNIST dataset. The metrics are 

averaged over the 10 predicted frames based on 5 and 10 observations. Higher PSNR and SSIM 

scores and lower LPIPS scores indicate better prediction results. 

 10 → 10 5 → 10 

Model PSNR 

(dB) 

SSIM LPIPS PSNR 

(dB) 

SSIM LPIPS 

ConvLSTM  

(Shi et al., 2015) 

28.380 0.705 0.158 27.436 0.686 0.174 

PredRNN 

(Wang et al., 2017) 

30.569 0.869 0.108 29.786 0.806 0.125 

PredRNN 

(Wang et al., 2021) 

31.525 0.893 0.071 30.115 0.854 0.102 

Robust-ST-ConvLSTM 

(1st approach) 

32.490 0.894 0.063 31.785 0.860 0.082 

Robust-ST-ConvLSTM 

(2nd approach) 

32.520 0.895 0.059 31.962 0.865 0.075 

 

Figure III.10: Frame-wise PSNR comparisons of different models on Moving MNIST dataset after 100 

000 iterations.  
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Figure III.11: Frame-wise SSIM comparisons of different models on Moving MNIST dataset after 100 

000 iterations.  

 

Figure III.12: Frame-wise LPIPS comparisons of different models on Moving MNIST dataset after 100 

000 iterations.  
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Figure III.13: Prediction examples on the Moving MNIST dataset, where we predict 10 frames into the 

future based on the past 10 frames. 

III.4.4.3. Experimental results on the number of predicted frames and the number of 

observations 

When designing our prediction approach, one crucial choice is the length of the input video clip. 

However, the input video length directly impacts the complexity of the algorithm. Indeed, the 

number of the previous frames used to train the algorithm as well as the number of the number 

of frames to be predicted have to be fixed before the training. In this ablation study, we study 

the impact these variables on the quality performance of our algorithm. For evaluation, we 

choose 𝐼 =  {5, 10} as sequence length under consideration on KTH and Moving MNIST 

datasets. However, we visualize the quality performances of our approach on the 10 predicted 

frames on Moving MNIST as shown in Figure III.10, Figure III.11 and Figure III.12, and on the 

20 predicted frames on KTH as presented in Figure III.6, Figure III.7 and Figure III.8. In fact, 

Table III.1 and Table III.2 prove that increasing the number of input video frames can significantly 

improve the performances of the model. However, it increases its complexity which leads to 

longer training times. Figure III.10, Figure III.11 and Figure III.12 show that the performances of 

all models trained on Moving MNIST dataset decrease when predicting further frames which 

prove that designing very long-term predictions algorithms is still very challenging. Also, Figure 

III.6, Figure III.7 and Figure III.8 present the degradation of the quality performances of all 

models trained on KTH dataset over time-steps. However, on both datasets, our Robust-ST-

ConvLSTM outperforms the state-of-the-art approaches on all quality metrics which prove the 

robustness and its quality precision against the other long-term prediction approaches. 

III.4.4.4. Computational Complexity 

Table III.3 shows that the computational complexity of our Robust-ST-ConvLSTM is more 

important than other state-of-the-art approaches. This result is due to the fact that we added 

new trainable parameters to the extended version of ConvLSTM cell to enhance its prediction 

abilities and handle spatiotemporal data. However, our RobustST-ConvLSTM slows down the 

training process which can be considered as a major limitation of our proposed algorithm. 
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Table III.3: Computational complexity comparison of the different approaches on Moving MNIST dataset 

as input. 

Model Number of training parameters (×106) 

ConvLSTM 

(Shi et al., 2015) 

16.60 

PredRNN 

(Wang et al., 2017) 

23.85 

PredRNN 

(Wang et al., 2021) 

23.86 

Robust-ST-ConvLSTM 25.73 

III.5. Discussion 

It is obvious that video processing is facing several challenges including energy consumption in 

the transmission phase and limited storage resources. The resolution of these challenges is 

becoming urgent since video data represents today around 80% of the global internet traffic data 

[III.42] which require efficient systems to compress, acquire and transmit data. In this research 

work, we worked on a novel video prediction algorithm that enables to forecast video frames 

using relevant information from previous input frames. Indeed, the theory of conventional video 

codecs systems such as H256/HEVC [III.43] and motion-compensated reconstruction (MC-

BCS-SP) [III.44] is significantly based on classical prediction to deal with complex coding issues. 

While achieving good compression performances, state-of-the-art prediction approaches used 

in this context are encountering various problems [III.45] especially when handling long 

sequences or in other words, long term prediction problems. 

The idea behind this work was to design and implement a VCS framework based on an 

innovative prediction algorithm as presented in Figure III.14. This VCS framework was based 

on 3 main blocks: 

• Key frame extraction module to select a group of the most informative frames of the 

video. 

• Image CS module to acquire and transmit only few random measurements instead of 

the whole key frame. 

• Next frame prediction to predict the non-key frames. 

However, after implementing our novel video forecasting approach, we realized various 

problems in the designed VCS framework. Among these challenges, we had: 

• The system should have the complete video sequence to extract the most relevant 

frames. 

• Key frame extraction module should be run on sensing devices which increases their 

energy consumption. However, our main goal in this project is to optimize different 

resources usage including power consumption. 
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• Our algorithm is designed in a way to forecast a limited number of frames already defined 

by users. However, the number of non-key frames between two key frames is not 

constant and this information had to be transmitted with the random measurements of 

key frames. Also, in case we had a relatively high number of non-key frames, the quality 

performances would be affected and would affect the following frames. 

• While our Robust-ST-ConvLSTM algorithm is based on some key features from previous 

frames to understand the context of the prediction, it is still considered as a limited 

approach because of the limited number of the previous hidden states exploited for the 

prediction process. 

• Recently, an innovative architecture has revolutionized the computer vision field: The 

Transformers. In the last two years, many researchers and high-tech companies are 

working on exploring the advantages of this neural network in different fields. In fact, it 

is designed to process sequential data like RNN based models. Nevertheless, 

Transformers are faster than RNN based approaches because they do not process data 

in a sequential order, and they completely avoid recursion by processing a video as a 

whole to learn different relationships between all the patches using the well-known 

attention mechanism [III.46]. 

Bearing in mind the above considerations, we decided to follow the trend and explore the edges 

of transformers to build an end-to-end VCS framework. This work will be discussed in the next 

chapter. 
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Figure III.14: VCS approach based on video prediction.  
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III.6. Conclusion 

Video prediction is considered as a powerful tool to understand and model dynamic scenes. 

Therefore, in this work, we propose a new recurrent neural network (RobustST-ConvLSTM) for 

video prediction. It is based on new robust spatiotemporal unit inspired from the well-known 

ConvLSTM structure. This spatiotemporal unit rely on two different approaches in order to 

strengthen its prediction abilities: a memory flow to handle the spatiotemporal information and 

a higher order ConvLSTM approach that enable the cell states to decide their values from 

previous hidden states. Our approach outperforms the state-of-the-art research works on 

different datasets, including KTH dataset for human motion and Moving MNIST.  

In conclusion, video prediction is a promising research direction and can be used in different 

applications such as video surveillance, video compression and intelligent decision-making 

systems. In our work, we noticed some limitations of our designed framework which prevent us 

from exploiting it in a VCS context as discussed in Section III.5. Therefore, we will propose, in 

the next chapter, the first end-to-end VCS framework built upon Transformers where we were 

able to explore this novel neural network in a video data compression context. 
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Chapter IV. Video Compressive Sensing based on Vision Transformers 

IV.1. Introduction 

Designing and implementing an efficient end-to-end algorithm in a Video Compressive Sensing 

context has always been a challenging task for researchers and Deep Learning engineers. 

Recently, most of Deep Learning-based VCS frameworks are based on convolutional and 

recurrent architectures. However, since 2017, a groundbreaking architecture has slowly taken 

its place in the Computer Vision field. Therefore, we worked on the first Video Compressive 

Sensing algorithm built upon Transformers. The remaining chapter is organized as follows: 

Section IV.2 discusses related works in video compressive sensing and Transformer based 

architectures. Section IV.3 discusses the advantages of using Transformers over the well-known 

convolutional and recurrent architectures commonly used in a Video Compressive Sensing 

context. In Section IV.4, we present the main architecture behind ViT-SCI. In Section IV.5, we 

evaluate the performance of our proposed algorithm in a video SCI context with an extensive 

ablation study on different hyperparameters. Finally, Section IV.6 provides our conclusion and 

the main perspectives of this research work. 

IV.2. Background and Related Works 

The present section introduces the main research works in Video Snapshot Compressive 

Imaging, which is the main paradigm exploited in our research direction. Also, it presents the 

recent exploitation of Transformers, originally used in Natural Language Processing (NLP), in 

Computer Vision.  

IV.2.1. Video Snapshot Compressive Imaging 

Compressing high-speed videos is already possible due to the huge research work done in video 

snapshot compressive imaging (SCI). The video SCI system is composed of two main networks: 

the hardware encoder and the software reconstruction (decoder) network [IV.1]. The hardware 

encoder represents the optical imaging framework and the software decoder denotes the 

reconstruction algorithm. The hardware encoder aims to compress the 3D video signal into a 

2D measurement matrix and the compression is done across the temporal dimension. This 

compression aims to avoid huge memory storage and transmission bandwidth. The optical 

system is called the coded aperture compressive temporal imaging (CACTI) [IV.2] system 

(Figure IV.1). In this system, and during one exposure time, the video scene is gathered by an 

objective lens and then coded by a temporal-variant mask (shifting physical mask [IV.2]-[IV.3], 

or different patterns on a Digital Micromirror Device (DMD) [IV.4]-[IV.5]]. Then, the output is 

detected by a Charge Coupled Device (CCD) and then integrated into one single measurement 

frame. 

 

Figure IV.1: Schematic of the CACTI system. 

From a mathematical perspective, a video SCI system captures a dynamic scene of 𝑩 frames 

𝑿 ∈  ℝℎ×𝑤×𝐵  (𝒉 and 𝒘 are the height and the weight of the frame, respectively) which is 
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modulated by a number of masks (𝑩) noted 𝑪𝒌 ∈  ℝ
ℎ×𝑤   , 𝒌 =  1 . . . 𝑩, before being integrated 

into one single measurement frame 𝒀 ∈  ℝℎ×𝑤    by a camera sensor in one exposure time (𝑩 

frame). This operation is expressed as follows (IV.1): 

 

𝒀 = ∑𝑿𝒌 ∘ 𝑪𝒌 + 𝑮,

𝑩

𝒌=𝟏

 

 

(IV.1) 

Where 𝑿𝒌 and denotes the 𝑘𝑡ℎ frame, ∘ and 𝑮 ∈  ℝℎ×𝑤  denote the Hadamard product and noise, 

respectively. Then, we define 𝒚 =  𝑉𝑒𝑐(𝒀)  ∈  ℝℎ𝑤 and 𝒈 =  𝑉𝑒𝑐(𝑮)  ∈  ℝℎ𝑤 where 𝑉𝑒𝑐 

represents the vectorization operator. Correspondingly, we define 𝒙 ∈  ℝℎ𝑤𝐵 as (IV.2):  

𝒙 = [𝑉𝑒𝑐(𝑿𝟏)
𝑻, … , 𝑉𝑒𝑐(𝑿𝑩)

𝑻]𝑻.  

(IV.2) 

The measurement 𝒚 can then be expressed as (IV.3): 

𝒚 = [𝑫𝟏, … , 𝑫𝑩]𝒙 + 𝒈,  

(IV.3) 

where 𝑫𝒃  =  𝑑𝑖𝑎𝑔(𝑉𝑒𝑐(𝑪𝒃)) ∈  ℝ
ℎ𝑤×ℎ𝑤 , for 𝒃 = 1 . . . 𝑩 denotes a diagonal matrix. We have in 

this case a matrix [𝑫𝟏, … , 𝑫𝑩] that is highly structured and sparse. Depending on the theoretical 

study in [IV.6], the original video can be reconstructed from a single compressed measurement 

frame 𝑦 and the coding patterns {𝑪𝒌}𝑘=1
𝐵  [IV.6] with a sampling rate of 

𝟏

𝑩
. 

The second important part of video SCI is the reconstruction process which aims to recover the 

original video from the 2D measurement frame and the masks. This process is crucial to have 

a practical and efficient video SCI system. In the literature, the reconstruction algorithms could 

be classified into two categories: optimization-based methods and Deep Learning based 

algorithms. The optimization-based algorithms, such as GAP-TV [IV.7], GMM [IV.8], DeSCI 

[IV.9], and PnP-FFDNet [IV.10], require huge computational resources and large reconstruction 

time. For instance, DeSCI takes hours to generate a 256 × 256 × 8 video from one single 

measurement frame). In Deep Learning based methods [IV.11]-[IV.12]-[IV.13]-[IV.14]-[IV.15]-

[IV.16]-[IV.17]-[IV.18]-[IV.19], this computational problem has been ameliorated. However, 

some architectures need a large memory and a huge amount of time for the training phase. 

BIRNAT [IV.14], for example, can take weeks to train a model of size 256 × 256 × 8 [IV.20]. 

Obviously, both categories have their advantages and drawbacks, which make this research 

direction challenging and very promising for the future if we aim to come up with a memory 

friendly model that consumes less computational cost for our daily life applications. 

IV.2.2. From NLP to computer vision 

Since there are various high-level analogies between video processing and NLP, we decided to 

take advantage of this architecture for our video reconstruction purpose. In fact, video and 

sentences have sequential features. In addition, if a word can be understood from the context 

in a sentence, patches could be reconstructed based on the contextual features gathered from 

the rest of the video or to be precise from the tokens having similar features based on the 

computations of the attention layer. 
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IV.2.3. Transformers in computer vision 

Transformers are originally proposed in 2017 [IV.21] as a simple and scalable architecture in 

language translation and successfully dominate natural language processing (NLP) tasks 

[IV.22]-[IV.23]. Indeed, transformers are based on self-attention mechanism which is a highly 

efficient technique to learn the correlations between input features and update the embeddings 

in parallel. Thus, in contrast to recurrent architectures, transformers-based models allow 

modelling long dependencies between input data components and handle parallel processing. 

Indeed, they are characterized by their scalability to very high-complexity models. Recently, 

transformers started to improve computer vision tasks. They have been used in various 

computer vision applications such as classification [IV.24]-[IV.25], video segmentation [IV.26], 

object detection [IV.27] and video inpainting [IV.28]. 

IV.2.4. Challenges in computer vision applications 

Although transformers are becoming a research trend in the last two years due to their excellent 

performances, they are facing some crucial challenges in the computer vision field. Some 

hindrances include their requirement for large amounts of training data engendering high 

computational costs (in terms of computational time and memory resources needed for 

processing) [IV.29]. 

IV.3. Transformers in a Video Compressive Sensing Context: main contributions 

In this part, we aim to highlight the relevant advantages of Transformer-based architectures in 

comparison with the commonly used CNN and RNN models. Also, we detail our main 

contributions in this research concept.  

IV.3.1. Why are Transformers steadily replacing CNN/RNN architectures?  

With the huge demand for data acquisition and processing, Video Compressive Sensing or 

precisely Video Snapshot Compressive Imaging (SCI) becomes a promising research direction. 

It is the task to indirectly capture high dimensional data and encode it into one single 2D 

compressed measurement to optimize the memory storage of the system and its transmission 

bandwidth. Then, an efficient reconstruction algorithm is needed to reconstruct the original video 

from the compressed measurement. For the last decades, practical video recovery approaches 

are mainly based on convolutional and recurrent neural networks [IV.11]-[IV.12]-[IV.13]-[IV.14]-

[IV.15]-[IV.16]-[IV.17]-[IV.18]-[IV.19]. While these models achieve practical performances, the 

recovery process in video compressive sensing remains very challenging in terms of flexibility, 

scalability and speed of the training and the testing phases [IV.1]-[IV.30]. 

On the one hand, recurrent neural networks are designed to process data sequentially which 

makes the implementation of parallel computing very difficult and slows down the training phase. 

Also, processing long sequences through recurrent networks leads to a loss of information and 

causes the vanishing gradient problem [IV.31]. To deal with the vanishing gradient problem, one 

of the most impactful papers in Deep Learning [IV.21] has proposed the attention mechanism 

which manages and quantifies the interdependence between input elements. This attention 

mechanism has contributed towards the designing and the implementation of transformer 

models. In fact, these models enable the efficient utilization of GPUs by parallelly processing 

input sequences and then speed up the training phase considerably. In addition, it is challenging 

to use transfer learning on recurrent models. However, it is practical to use pretrained 

transformers to reduce the training cost. 
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On the other hand, convolutional neural networks (CNN) are simple to parallelize. Also, for 

various applications, CNN based models are fast to train but for short input sequences. For long 

sequences, convolutional models are unable to learn different dependencies among all the 

possible combinations of the input elements. That’s why, it is practical to process long 

sequences as a whole using transformers. Transformers are thus better than recurrent neural 

networks and convolutional neural networks for the following reasons: 

• Computational complexity per layer: Self-attention layers 𝑂(𝑛². 𝑑) are faster than 

recurrent layers (𝑛. 𝑑²) and convolutional layers 𝑂(𝑘. 𝑛. 𝑑²) when the dimensionality 𝑑 is 

bigger than the input sequence length 𝑛 (which is the case in NLP models) [IV.21]. 

• The computation can be parallelized: Recurrent networks need 𝑂(𝑛) sequential 

operations. However, self-attention layers can be computed in a parallel manner. 

• The path length between long-range dependencies: it is more important with recurrent 

and convolutional layers than with self-attention layers [IV.21]. 

IV.3.2. Main contributions in a VCS context 

Bearing the above problems in mind, in this work, we intend to enhance the reconstruction 

performances by proposing an end-to-end transformers-based model for SCI video 

reconstruction trying to solve the trilemma of flexibility, scalability and speed. 

However, applying efficient transformers for various computer vision applications such as SCI 

reconstruction is still facing several challenges. In fact, famous vision transformers (e.g. ViT 

[IV.24]) divide input 2D images into several patches which may threaten the local spatial 

information [IV.32] because some low-level visual features (e.g. edges, shapes) are divided into 

different patches. After the patch embedding step, global fully connected self-attention is applied 

to extract the global interactions between different tokens which ignores local details. Then, for 

video recovery problems, temporal data may be the key for better performances since missing 

information in one frame can be reconstructed from adjacent frames. 

As a result, the idea is to come up with a new transformer-based architecture for video snapshot 

compressive imaging (SCI) with an attention layer that exploit local and spatio-temporal data 

information. 

In a nutshell, our contributions are summarized as follows: 

• To the best of our knowledge, the proposed algorithm (ViT-SCI) is the first video SCI 

reconstruction method built upon Transformers. 

• We used a convolutional attention mechanism in order to exploit spatiotemporal 

information instead of global fully connected attention layers used in recent vision 

transformers. 

• We provided detailed explanation of our architecture with detailed results and analysis 

which may be used as reference in future research works, especially on video 

transformers. 

• ViT-SCI achieves strong results on DAVIS2017 training dataset in comparison with other 

video SCI reconstruction algorithms based on Deep Learning architectures and 

optimization methods. 
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IV.4. Overview of the proposed architecture; ViT-SCI 

As illustrated in Figure IV.2, ViT-SCI consists of three main modules: low frequency feature 

extraction module, deep feature extraction module and a video reconstruction module. These 3 

modules are preceded by a measurement normalization phase aiming to generate a 

preprocessed video. The entire training process is shown in Algorithm IV.1. 

 

Figure IV.2: The architecture of the proposed ViT-SCI for video reconstruction in Video Snapshot 
Compressive Imaging. 

Require: Measurement 𝒀, Coding Patterns 𝑪𝒌 

  1: Randomly initialize all training parameters  

  2: while not done do 

  3:    for 𝑖 = 1: 𝒏𝒆𝒑𝒐𝒄𝒉𝒔 do 

  4:       for All training video sequences do 

  5:           Load 𝒀, 𝑪𝒌, 𝑮𝒕 

  6:           �̅� ← 𝒀∑ 𝑪𝒌
𝑩
𝒌=𝟏  

  7:           𝑰  ← [�̅� ∘ 𝑪𝟏, … , �̅� ∘ 𝑪𝑩]𝟑 

  8:           𝑭𝒍𝒐𝒘 ← 𝑁𝑓𝑒  (𝑰) 

  9:           𝑭𝒍𝒐𝒘𝑷𝑬 ← 𝑭𝒍𝒐𝒘 + 𝑷𝑬 

10:           for 𝑑 = 1:𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐿𝑎𝑦𝑒𝑟𝑠 do 

11:               for ℎ = 1: 𝑛ℎ𝑒𝑎𝑑𝑠 do 

12:                   𝑨𝒕𝒕𝒉  ← 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑭𝒍𝒐𝒘𝑷𝑬) 

13:               end for 

14:                𝑭𝒅𝒆𝒆𝒑 ← 𝐹𝐹𝑁 (𝑨𝒕𝒕𝒊) 

15:           end for 

16:           𝑶𝒓𝒆𝒄 ← 𝑁𝑟𝑒𝑐  (𝑭𝒅𝒆𝒆𝒑 + 𝑭𝒍𝒐𝒘𝑷𝑬) 

17:           𝑶𝒓𝒆𝒄 ← 𝑶𝒓𝒆𝒄 + 𝑰 

18:           Obtain loss: 𝓛 = ∑ ∑ ‖𝑶𝒇𝒏,𝒌 − 𝑮𝒕𝒏,𝒌‖𝟐
𝟐𝑩

𝒌=𝟏
𝑵
𝒏=𝟏  

19:           Update all parameters via: 𝑾 ← 𝑾−𝐴𝑑𝑎𝑚(𝓛) 

20:       end for 

21:    end for 

22: end while 

Algorithm IV.1: ViT-SCI: the training process. 
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IV.4.1. Preprocessed Video and Measurement Energy Normalization 

The output of the compressive sensing acquisition phase is the measurement matrix 𝒀 ∈  ℝℎ×𝑤 . 

Having the measurement matrix 𝒀 and the coding patterns (masks) 𝑪 ∈  ℝℎ×𝑤×𝐵 , we 

preprocessed the training data before feeding our deep learning algorithm. One of the 

preprocessing techniques that have been applied recently [IV.14]-[IV.20]-[IV.33] is 

measurement energy normalization. In fact, the measurement matrix 𝒀 is not usually energy 

normalized which requires a normalization process to fit into the neural network. Technically, 

the energy-normalized measurement matrix �̅� can be expressed as (IV.4):  

�̅� = 𝒀∑𝑪𝒌,

𝑩

𝒌=𝟏

 

 

(IV.4) 

where represents the matrix dot division. Figure IV.3, which describes the preprocessing 

approach (the illustrated frames are extracted from the training dataset), shows that the energy-

normalized measurement matrix �̅� presents more visual information than the initial 

measurement matrix 𝒀. Obviously, �̅� can be defined as the estimated average of the original 𝐵 

high-speed frames 𝑿 ∈ ℝℎ×𝑤×𝐵. Then, in order to generate a preprocessed video from the 

energy-normalization measurement matrix �̅� and the coding patterns 𝑪 ∈  ℝℎ×𝑤×𝐵, we 

processed the following concatenation along the 3rd dimension (IV.5):  

𝑰 = [�̅� ∘ 𝑪𝟏, … , �̅� ∘ 𝑪𝑩]𝟑 ∈  ℝ
ℎ×𝑤×𝐵.  

(IV.5) 

The preprocessed video 𝑰, preserving the background and some main objects of the frames as 

illustrated in Figure IV.3, will feed the reconstruction network. 

 

Figure IV.3: The preprocessing strategy. 

IV.4.2. Low Frequency Feature Extraction Module 

Given the preprocessed video 𝑰 ∈  ℝ𝐵×𝑐×ℎ×𝑤 (𝑐 denotes the number of channels), we used 5 

residual blocks followed by LeakyReLU activation function in order to learn low frequency 

features 𝑭𝒍𝒐𝒘  ∈  ℝ
𝐵×𝑐×ℎ×𝑤 as (IV.6):  
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𝑭𝒍𝒐𝒘 = 𝑁𝑓𝑒(𝑰), (IV.6) 

where 𝑁𝑓𝑒 denotes the network designed to extract low frequencies features from the input video 

𝑰. 

This module aims to extract low frequencies in images which means the pixels that are changing 

slowly over space which enables to learn the background and the main shapes in the frames 

and to accelerate the learning process of the transformer-based module. 

IV.4.3. Positional encoding 

In contrast to standard neural networks, Transformer based models are permutation-invariant. 

However, ViT-SCI necessitates accurate position information. As a result, we added a fixed 3D 

positional encoding, including spatial and temporal information, to the features generated by the 

low frequency features extraction module of the input 𝐼. The 3D positional encoding (𝑷𝑬) [IV.27] 

is defined as (IV.7): 

𝑃𝐸3𝐷(𝑝𝑜𝑠, 𝑖) = {
sin(𝜷𝒌. 𝒑𝒐𝒔) for 𝒊 = 𝟐𝒌

𝑐𝑜𝑠(𝜷𝒌. 𝒑𝒐𝒔) for 𝒊 = 𝟐𝒌 + 𝟏,
 (IV.7) 

where 𝜷𝒌 =
1

10000
6𝑘
𝑑𝑐

, 𝑝𝑜𝑠 is the position of the corresponding dimension, 𝒅𝒄 represents the size 

of the channel dimension and 𝒌 ∈  ℕ 𝑠. 𝑡. 𝑘 ∈  [0,
𝑑

6
]. 

IV.4.4. Deep Feature Extraction Module 

We have specifically developed a new transformer encoder for video SCI recovery that achieves 

deep features extraction. The idea behind the deep feature extraction module is to build a 

network aiming to learn non-linear mapping to enable video reconstruction. This transformer 

encoder maps the input video space to a higher dimensional feature space. The deep features 

𝑭𝒅𝒆𝒆𝒑  ∈  ℝ
𝐵×𝑐×ℎ×𝑤, extracted by the encoder, can be expressed as (IV.8): 

𝑭𝒅𝒆𝒆𝒑 = 𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑭𝒍𝒐𝒘), (IV.8) 

where 𝑁𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 denotes the application of the deep feature extraction module. 

IV.4.4.1. Spatio-Temporal Convolutional Multi-Head Attention (ST-ConvMHA) 

It has been proved in previous research works [IV.34]-[IV.35] that fully connected self-attention 

originally developed in [IV.21] is not suitable for computer vision tasks and especially for video 

reconstruction models. In fact, fully-connected self-attention is used to extract global interactions 

between different tokens which neglects local information. Also, it ignores the temporal 

dimension which is a crucial information in video processing related tasks. In addition, in [IV.34], 

it has been theoretically proved that fully-connected self-attention layers used for vision tasks 

may cause the vanishing gradient problem destabilizing the training process. 

Bearing in mind the aforementioned limitation of the fully-connected self-attention layer, deep 

feature module, which enables to map the features to a series of continuous models, is mainly 

based on the Spatio-Temporal Convolutional Multi-Head Attention (ST-ConvMHA) layer 

designed to extract spatial-temporal information and the similarities between different tokens. 

Our proposed ST-ConvMHA is a stack of parallel convolutional multi-head attention layers that 

allow a better understanding of the different aspects of the input feature maps 𝑭𝒍𝒐𝒘 ∈  ℝ
𝐵×𝑐×ℎ×𝑤. 
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ST-ConvMHA is based on convolutional projections applied for Query(Q), Key(K) and Value(V) 

embeddings, respectively and a patch-wise non-local attention model using unfold and fold 

operations inspired from [IV.36]. 

The first step in calculating ST-ConvMHA is replacing the existing position-wise linear 

projections in the fully-connected self-attention mechanism [IV.21] with convolutional projections 

using three different convolutional layers with trainable elements 𝑾𝑸, 𝑾𝑲 and 𝑾𝑽. This 

embedding step, aiming to learn the spatial features of the different frames, can be expressed 

as follows (IV.9): 

𝑸 = 𝐸𝑚𝑏𝑄(𝑭𝒍𝒐𝒘) = 𝑾𝑸⨀ 𝑭𝒍𝒐𝒘 

𝑲 = 𝐸𝑚𝑏𝐾(𝑭𝒍𝒐𝒘) = 𝑾𝑲⨀𝑭𝒍𝒐𝒘 

𝑽 = 𝐸𝑚𝑏𝑉(𝑭𝒍𝒐𝒘) = 𝑾𝑽⨀𝑭𝒍𝒐𝒘, 

(IV.9) 

where ⨀ denotes the convolution operation and 𝐸𝑚𝑏 is the embedding step. 

The second step in the calculation process is using the unfold operation to extract sliding local 

tokens from 𝑸, 𝑲 and 𝑽 tensors. The kernel size used in this operation is 𝑯𝒑𝒂𝒕𝒄𝒉 ×𝑾𝒑𝒂𝒕𝒄𝒉 and 

the stride is 𝒔 = 𝑯𝒑𝒂𝒕𝒄𝒉 or 𝒔 = 𝑾𝒑𝒂𝒕𝒄𝒉. As illustrated in Figure IV.4, the output of the unfolding 

operation is three groups of 3D tokens. Each group contains 𝑁 3D tokens (𝑵 =
𝑩𝑾𝑯

𝑾𝒑𝒂𝒕𝒄𝒉×𝑯𝒑𝒂𝒕𝒄𝒉
). 

Each token has the size of 𝒅𝒊𝒎𝒑𝒂𝒕𝒄𝒉 = 𝒄 ×𝑾𝒑𝒂𝒕𝒄𝒉 ×𝑯𝒑𝒂𝒕𝒄𝒉. 

This process is expressed as follows (IV.10): 

𝑸𝟏, 𝑸𝟐, … , 𝑸𝑵 = 𝜃(𝑸) = 𝜃(𝑾𝑸𝑭𝒍𝒐𝒘) 

𝑲𝟏, 𝑲𝟐, … ,𝑲𝑵 = 𝜃(𝑲) = 𝜃(𝑾𝑲𝑭𝒍𝒐𝒘) 

𝑽𝟏, 𝑽𝟐, … , 𝑽𝑵 = 𝜃(𝑽) = 𝜃(𝑾𝑽𝑭𝒍𝒐𝒘), 

(IV.10) 

where 𝜃 is the unfolding operation and 𝑸, 𝑲, 𝑽 ∈  ℝ𝐵×𝑐×𝑊𝑝𝑎𝑡𝑐ℎ×𝐻𝑝𝑎𝑡𝑐ℎ. 

The third step is to reshape the Query and the Key tensors into 1D vectors of size 𝑑𝑖𝑚𝑝𝑎𝑡𝑐ℎ ×𝑵. 

The reshaping operator is subsequently denoted by ∆. Then, we calculated the score (the 

similarity matrix) by calculating the dot product of the matrix of the reshaped query and the matrix 

of the reshaped key. This score (similarity matrix) is related to all embedding patches of the 

video which guarantee the learning of the spatial-temporal details. Then, the obtained scores 

are divided by the square root of each patch in the current head layer since we are implementing 

a muti-head attention layer, motivated by [IV.21]. Then, we passed the result through a softmax 

operation. In fact, the softmax layer will determine the importance of patches corresponding to 

other patches. 

The fourth step is to multiply each value vector by the output of the softmax layer. The third and 

fourth steps are expressed as follows (IV.11): 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸𝒊, 𝑲𝒊, 𝑽𝒊) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

(

 
 
 

𝑸𝒊𝑲𝒊
𝑻

√
𝒅𝒊𝒎𝒑𝒂𝒕𝒄𝒉

𝒏𝒉𝒆𝒂𝒅𝒔 )

 
 
 

𝑽𝒊. (IV.11) 

 

Figure IV.4: The Deep Feature Extraction Module. 

Finally, we applied the folding operation 𝛤 in order to combine the sliding local blocks of size 

𝑵× 𝒄 ×𝑾𝒑𝒂𝒕𝒄𝒉 ×𝑯𝒑𝒂𝒕𝒄𝒉 into one large containing tensor (feature map) of size 𝑩× 𝒄 ×𝑾×𝑯. 

Then, we applied a convolutional layer 𝑾𝒇 to generate the final feature map. 

The 𝑖𝑡ℎ attention head process can be expressed as (IV.12):  

ℎ𝑒𝑎𝑑𝒊 = 𝑾𝒇
𝒊 Γ

(

 
 
 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

 
 
 

𝑸𝑲𝑻

√
𝒅𝒊𝒎𝒑𝒂𝒕𝒄𝒉

𝒏𝒉𝒆𝒂𝒅𝒔 )

 
 
 

𝑽

)

 
 
 

, (IV.12) 

i.e, when expanding the expressions of 𝑸𝒊, 𝑲𝒊 and 𝑽𝒊 (IV.13): 
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ℎ𝑒𝑎𝑑𝒊 = 𝑾𝒇
𝒊 Γ

(

 
 
 
 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

 
 
 𝜃 (∆(𝑾𝑸

𝒊 𝑭𝒍𝒐𝒘)) × 𝜃 (∆(𝑾𝑲
𝒊 𝑭𝒍𝒐𝒘))

𝑻

√
𝒅𝒊𝒎𝒑𝒂𝒕𝒄𝒉

𝒏𝒉𝒆𝒂𝒅𝒔 )

 
 
 

𝜃(𝑾𝑽
𝒊 𝑭𝒍𝒐𝒘)

)

 
 
 
 

. 
(IV.13) 

And the overall process of the St-ConvMHA layer is summarized as follows (IV.14): 

𝑆𝑇 − 𝐶𝑜𝑛𝑣𝑀𝐻𝐴 = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑾
𝑶, (IV.14) 

where 𝒉 is the number of heads or the number of parallel convolutional attention layers and 𝑾𝑶 

is a parameter matrix. 

The implemented ST-ConvMHA enables to deeply learn spatial-temporal features in 

comparison with the fully-connected self-attention mechanism. 

IV.4.4.2. Feed-Forward Network 

As shown in Figure IV.4, the ST-ConvMHA layer is followed by a Feed Forward Network (FFN) 

[IV.21]. It is applied to every attention tensor to transform them into a form that can feed the next 

transformer encoder layer. In fact, the parallelization process is enabled by the FFN, because it 

processed all the attention tensors at one time. 

IV.4.5. Video Reconstruction Module 

In the reconstruction module, we recovered the video frames from processing the deep features 

generated by the transformer encoder as (IV.15): 

𝑂𝑟𝑒𝑐 = 𝑁𝑟𝑒𝑐(𝑭𝒅𝒆𝒆𝒑 + 𝑭𝒍𝒐𝒘), (IV.15) 

where 𝑁𝑟𝑒𝑐 is the reconstruction network. 𝑂𝑟𝑒𝑐 depends on 𝑭𝒅𝒆𝒆𝒑 and 𝑭𝒍𝒐𝒘 to stabilize the training 

phase.  

The final output of our approach is the aggregation of the output of the reconstruction module 

𝑂𝑟𝑒𝑐 while the input preprocessed video 𝑰 (IV.16): 

𝑂𝑓 = 𝑂𝑟𝑒𝑐 + 𝑰. (IV.16) 

IV.4.6. Training Process and Loss Function 

In our implementation (Algorithm IV.1), we optimized the parameters of ViT-SCI by minimizing 

the reconstruction error: the loss function used is the mean square error (MSE) (IV.17): 

𝓛 = ∑∑‖𝑶𝒇𝒏,𝒌 − 𝑮𝒕𝒏,𝒌‖𝟐
𝟐

𝑩

𝒌=𝟏

𝑵

𝒏=𝟏

, 

 

(IV.17) 

where 𝑶𝒇𝒏,𝒌 is the final output or the 𝑘𝑡ℎ reconstructed frame of the 𝒏𝒕𝒉 training video using ViT-

SCI, and 𝑮𝒕𝒏,𝒌 is the corresponding ground truth frame. 
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IV.5. Performance evaluation, comparison and discussion 

In this section, we describe the implementation framework and compare the performances of 

the proposed reconstruction method with several state-of-the-art methods. 

IV.5.1. Datasets 

To train our algorithm, we used the DAVIS2017 [IV.37] dataset, designed for video object 

segmentation applications, since video SCI algorithms can be applied on any video scene and 

there is no specific dataset for the training phase. The original DAVIS2017 dataset has only 90 

video scenes (6242 frames of size 854×480). For an efficient training in a video SCI context, we 

prepared the dataset by transforming and reformatting it. In fact, we generate 6516 video scenes 

of size 8 × 256 × 256 from the 90 videos of DAVIS2017. Then, we tested our trained model on 

six evaluation datasets: Aerial, Drop, Kobe, Runner, Traffic, and Vehicle. 

IV.5.2. Data Augmentation 

In order to deal with the problem of overfitting, data augmentation is a commonly used pre-

processing technique aiming to generate more data than RNN and CNN based models, 

becoming greater in terms of size. Since transformer-based models in general require more 

data, augmenting the diversity of the training dataset will enhance the performances of our 

proposed ViT-SCI [IV.38]. 

After the data augmentation process consisting in cropping, rotating, and flipping input videos, 

the dataset becomes larger with 417024 video scenes (3 336 192 frames). The idea is to 

generate 417024 video scenes of size 8 × 64 × 64 from the 6516 video scenes of size 8 × 256 

× 256.  Data augmentation has significantly enhanced the performances of our model. 

IV.5.3. Compared methods and performance metrics 

This part is dedicated to presenting the VCS methods used in the comparison evaluation and 

the main considered metrics. 

IV.5.3.1. Compared methods 

Several state-of-the-art methods are used to evaluate the performances of our proposed 

approach for the video SCI reconstruction, including two iteration-based reconstruction 

algorithms: 

• GAP-TV [IV.7].  

• DeSCI [IV.9]. 

and a recent deep learning-based reconstruction algorithm: 

• BIRNAT [IV.14].  

IV.5.3.2. Performance metrics 

To quantify the performances of the evaluated algorithms, we use well known frames quality 

evaluation metrics: the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity 

Index(SSIM) [IV.39]. 
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IV.5.4. Implementation details 

The ViT-SCI algorithm has been implemented using Pytorch framework [IV.40]. We used the 

Mean Square Error (MSE) as a loss function in the main implementation. To minimize the MSE 

function, we used Adam optimizer [IV.41] with an initial learning rate of 0.0003 (the learning rate 

is reduced by 5% every 5 epochs). 

The performance evaluation of the different approaches is done on an NVIDIA RTX 2080 GPU 

(8GB GDDR6). Our method is trained for 100 epochs and it took about 190 hours to train the 

entire ViT-SCI network. 

IV.5.5. Network architecture 

In the ST-ConvMHA, we used three convolutional layers to learn the spatial information of each 

frame. The output of the ST-ConvMHA layer passes through a convolutional layer to generate 

the final feature map. To decrease the computational cost of our model, we used gray scale 

frames for the training process (𝑐 = 1). The low frequency feature extraction module has 5 

residual blocks. The deep feature extraction module uses 4 transformer encoder layers. The 

final video reconstruction module has 30 residual blocks. 

IV.5.6. Ablation study 

In this section, we study the core implementation of ViT-SCI through a profound experimental 

study to demonstrate the effectiveness of our model design choices. 

IV.5.6.1. Frame size 

Table IV.1 reports that ViT-SCI has larger computational cost (Training Time) when having 

higher spatial resolution. Indeed, about 155 more hours is required to train our model on DAVIS 

dataset with a spatial resolution of 80 × 80 than on the same dataset with a spatial resolution of 

64 × 64. This large computational cost can threaten the scalability of the model while maintaining 

efficiency. However, we notice from Figure IV.5 and Figure IV.6 that training ViT-SCI on smaller 

images with smaller spatial dimensions does not affect quality performances as much. 

Therefore, we believe that our model can be extended to process larger training datasets. 

Table IV.1: Ablation study on varying the input frame size. 

Input seq. video Params PSNR (dB) SSIM Training Time 

(s) 

8×64×64 25.258.625 31.1859 0.9130 425100 

8×72×72 32.624.785 31.5721 0.9225 768277 

8×80×80 41.090.081 31.1393 0.9218 984910 

8×88×88 Out of Memory 
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Figure IV.5: Ablation study on the effect of the frame size in training video clips: the average quality 

performances (Left: in terms of PSNR; Right: in terms of SSIM) on 6 test datasets. 

 

Figure IV.6: Ablation study on the effect of the frame size in training video clips: Box plots are used to 

visually show the distribution of PSNR and SSIM data and their skewness on 6 test datasets every 10 

epochs, from 10 epochs to 100 epochs in the training process. 
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IV.5.6.2. Positional Embeddings 

In Transformer based architectures, positional embeddings is of huge importance since all 

tokens are taken parallelly. The 3D positional encoding used in this implementation indicates 

the spatial and temporal positional embeddings which refers to the position in the video scene. 

To investigate the importance of our 3D positional embedding module, we conduct the following 

experiments (with 2 attention heads): 

• No 3D positional embedding. 

• 3D (Spatiotemporal) positional embedding. 

The experiments, illustrated in Figure IV.7, shows that the model trained with 3D positional 

embeddings achieves better performances (+4.65% in terms of PSNR by passing from 30.1939 

to 31.5969 and +1, 47% in terms of SSIM by passing from 0.9084 to 0.9218). This result proves 

that the positional information of every token is implicitly provided in the Transformer based 

architectures. However, it is important to enhance this positional information with explicitly 

implemented positional embeddings. 

 

Figure IV.7: Ablation study on positional embeddings. 

IV.5.6.3. Number of heads 

We have carried out a series of experiments by training our model with one single attention head 

and with some independent attention layers applied in parallel to answer the famous question 

that has already been asked in [IV.42]: “Are Sixteen Heads Really Better than One?” or “is more 

than one head even needed?”. From the figures of Table IV.2, it is clear that the training time 

slightly increases with the number of heads, while the performances do not follow a monotonic 

behavior and even don’t show significant differences. 

Table IV.2: Ablation on the number of attention heads. 

Heads PSNR (dB) SSIM Training Time (s) 

1 31.0905 0.9118 421369 

4 31.345 0.9162 423910 

8 31.1859 0.9130 425100 
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We can further notice from Figure IV.8 and Figure IV.9 that the model is not sensitive to the 

number of attention heads. Therefore, one single attention head is sufficient, thus reducing the 

training computational cost. This may be explained by the fact that we have trained our approach 

on small sized video clips where the number of dynamic objects is limited and multiple heads 

are not needed to detect and learn syntactic relations between different objects. However, we 

believe that with higher temporal and spatial resolution datasets, pruning the attention heads in 

our model will result in significant performance degradation. Therefore, as suggested in [IV.43], 

it is advisable to retain more than one attention head and enhance formula (IV.14) to (IV.18): 

𝑆𝑇 − 𝐶𝑜𝑛𝑣𝑀𝐻𝐴 =∑𝐶𝑜𝑛𝑐𝑎𝑡𝑖 (𝝀𝒊ℎ𝑒𝑎𝑑𝑖)𝑾
𝑶

𝑖

, (IV.18) 

where 𝝀𝒊 is a learnable parameter offering the capability to the neural network to learn more 

effective interactions between attention heads.  

 

Figure IV.8: Ablation study on the effect of the number of attention heads: the average quality 

performance (Left: in terms of PSNR; Right: in terms of SSIM) on 6 test datasets. 
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Figure IV.9: Ablation study on the effect of the number of attention heads: Box plots are used to visually 

show the distribution of PSNR and SSIM data and their skewness on 6 test datasets every 10 epochs, 

from 10 epochs to 100 epochs in the training process. 

IV.5.6.4. Number of extraction blocks 

The extraction network is important to extract the main features of input frames. Thus, we trained 

ViT-SCI with different numbers of extraction blocks to evaluate their impact on performances. 

As reported in Table IV.3, the computational cost increases linearly with the number of extraction 

blocks. Indeed, about 11 more hours is needed when increasing the extraction blocks from 1 to 

5. In addition, the average of the quality figures increases also when adding more extraction 

blocks (Figure IV.10). However, Figure IV.11 shows that the optimal number of extraction blocks 

can depend on the testing dataset. On the one hand, Aerial, Kobe and Traffic perform better 

with 5 extraction blocks. While on the other hand, Drop, Runner and Vehicle have better 

reconstruction quality with only 3 extraction blocks. 
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Table IV.3: Ablation study on extraction blocks. 

Extractblocks Params PSNR (dB) SSIM Training Time 

(s) 

1 24.963.201 30.571 0.9027 388767 

3 25.110.913 30.9192 0.907 407600 

5 25.258.625 31.1859 0.913 425100 

Figure IV.10: Ablation study on the effect of the number of extraction blocks: the average quality 

performances (Left: in terms of PSNR; Right: in terms of SSIM) on 6 testing datasets.  
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Figure IV.11: Ablation study on the effect of the number of extraction blocks: Bar plots are used to 

visually show PSNR (upper plot) and SSIM (lower plot) results represented with rectangular bars that 

are proportional to their values for the 6 test datasets: Aerial, Drop, Kobe, Traffic and Vehicle. 

IV.5.6.5. Number of reconstruction blocks 

The reconstruction module can also significantly impact the quality performances of ViT-SCI. 

Therefore, finding an optimal trade-off between the computational cost and the number of 

reconstruction blocks can be very challenging. So, we trained our model on 3 different numbers 

of reconstruction blocks and we compared our model’s quality performances. It is obvious that 

the training time increases when increasing the number of reconstruction blocks since about 

1.000.000 more model parameters must be learned when adding 10 reconstruction blocks. The 

average PSNR and SSIM results on 6 test sets, presented in Figure IV.12, show ViT-SCI 

performs well with 30 reconstruction blocks. However, when we study each dataset separately 

in Figure IV.13, we notice that Aerial, Kobe and Traffic need 30 reconstruction blocks for better 

PSNR and SSIM performances while Drop, Runner and Vehicle are well reconstructed with only 

20 reconstruction blocks (Table IV.4). 

Table IV.4: Ablation study on reconstruction blocks. 

Recblocks Params PSNR (dB) SSIM Training Time 

(s) 

10 23.781.505 30.7795 0.908 258528 

20 24.520.065 29.7892 0.8974 342588 

30 25.258.625 31.1859 0.913 425100 



Wael SAIDENI | PhD Thesis | University of Limoges | 2022 126 

Licence CC BY-NC-ND 3.0 

 
Figure IV.12: Ablation study on the effect of the number of reconstruction blocks: the average quality 

performances (Left: in terms of PSNR; Right: in terms of SSIM) on 6 testing datasets.  

 

 
Figure IV.13: Ablation study on the effect of the number of reconstruction blocks: Bar plots are used to 

visually show PSNR (upper plot) and SSIM (lower plot) results represented with rectangular bars that 

are proportional to their values for the 6 test datasets: Aerial, Drop, Kobe, Traffic and Vehicle. 
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IV.5.6.6. Number of ST-ConvMHA Attention layers or depths 

To explore the impact of the number of ST-ConvMHA attention layers on the performances of 

ViT-SCI, we trained our model with different attention layers or depths. Each layer has 8 

attention heads. 

Table IV.5 shows that the number of learnable parameters increases linearly when increasing 

the number of the encoder layers and the training becomes computationally heavier. This 

ablation study aims to find the smallest number of attention layers that gives better quality 

performances to ensure the trade-off between the output quality and the computational cost. 

Figure IV.14 shows that 2 attention layers performs well, outperforming the same model 

configuration but with 1 and 4 attention layers on the average reconstruction quality on the 6 

testing datasets. However, we notice from Figure IV.15 that these better-quality performances 

are valid on Drop, Runner and Vehicle. For Aerial, Kobe and Traffic, 4 attention layers are 

needed for better reconstruction quality. These results prove that for some datasets deeper is 

better but it is not always the case for every dataset. We notice also, from Table IV.5 and Figure 

IV.14 and Figure IV.15, that the difference in performance is very small because we train our 

model on very short videos of 8 frames so we believe that with larger datasets the difference 

can be more noticeable. 

Table IV.5: Ablation study on Transformer depth or the number of ST-ConvMHA attention layers. 

Depth Params PSNR (dB) SSIM Training Time 

(s) 

1 8.343.617 31.4758 0.9187 327614 

2 13.981.953 31.5969 0.9218 355962 

4 25.258.625 31.1859 0.913 425100 

 
Figure IV.14: Ablation study on the effect of the number of ST-ConvMHA layers: the average quality 

performances (Left: in terms of PSNR; Right: in terms of SSIM) on 6 testing datasets.  
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Figure IV.15: Ablation study on the effect of the number of ST-ConvMHA layers: Box plots are used to 

visually show the distribution of PSNR and SSIM data and their skewness on 6 test datasets evry 10 

epochs, from 10 epochs to 100 epochs in the training process. 

IV.5.7. Main simulation results 

After confirming our design choices by means of the ablation study, we perform experiments to 

compare our proposed ViT-SCI algorithm with the state-of-the-art approaches on video 

compressive sensing. The quantitative results are summarized in Table IV.6, from which we 

compared the reconstruction quality of different reconstruction models and their recovery speed. 

For PSNR and recovery speed measured, our ViT-SCI achieves the best results among the 

video reconstruction methods with good SSIM results. On Arial dataset, ViT-SCI slightly 

outperforms BIRNAT in terms of the reconstruction quality (+1.49% and +0.5% for PSNR and 

SSIM, respectively) and largely outperforms GAP-TV (+32.23% and +10.19% for PSNR and 
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SSIM, respectively) and DeSCI (+28.33% and +8.37% for PSNR and SSIM, respectively) on the 

same metrics. On Kobe dataset, a limited improvement is noticed over DeSCI (+0.55%) in terms 

of PSNR. DeSCI performs better in terms of SSIM on Kobe dataset. The quantitative results 

prove the efficiency of our proposed approach, based on an attention mechanism, on complex 

background datasets. Table IV.6, also shows that DeSCI has better PSNR and SSIM 

performances on Drop, Runner and Traffic datasets over our Transformer based approach. 

These results can be justified because our training dataset rarely includes high speed motions. 

So, our model is not well trained (BIRNAT also) to reconstruct video scenes with very high-

speed motions. 

Table IV.6: Average PSNR (dB), SSIM and run time (in sec) per measurement for different approaches 

on 6 evaluation datasets. Best results are in bold, second best results are in gray. 

Algorithms Aerial Drop Kobe Runner Traffic Vehicle Average 

GAP-TV 22.09 

0.8719 

8.0 

27.73 

0.9141 

8.0 

25.74 

0.7909 

8.1 

31.29 

0.9177 

8.1 

24.17 

0.7515 

8.3 

24.72 

0.8700 

8.2 

25.95 

0.8526 

8.12 

DeSCI 22.76 

0.8866 

6168.2 

36.51 

0.9840 

6336.9 

31.08 

0.9278 

6396.5 

38.48 

0.9609 

6331.5 

31.59 

0.9138 

6215.3 

26.05 

0.9140 

6258.8 

31.07 

0.9311 

6284.5 

BIRNAT 28.74 

0.9560 

0.1050 

32.77 

0.9626 

0.1097 

28.96 

0.8594 

0.1056 

35.41 

0.9337 

0.1057 

26.49 

0.8199 

0.1087 

28.23 

0.9019 

0.1132 

30.10 

0.9056 

0.1079 

Ours 29.21 

0.9608 

0.0092 

35.40 

0.9759 

0.0090 

31.25 

0.9047 

0.0089 

37.67 

0.9509 

0.0079 

28.15 

0.8696 

0.0089 

25.40 

0.8161 

0.0080 

31.18 

0.9130 

0.0086 

In Figure IV.16, we show the qualitative results of our ViT-SCI compared with the-state-of-the-

art. Our ViT-SCI could synthesize finer details and clearer edges on the six evaluation datasets 

which confirm the quantitative results and illustrate the effectiveness of the ST-ConvMHA 

module on the reconstruction process. Further, considering a real-time application, the most 

interesting performances of the experimental results remains those of the recovery time. Our 

algorithm is able to reconstruct a video scene of size 8 × 64 × 64 in about one centisecond which 

is faster than BIRNAT by 12 times and much faster than the leader of the optmization based 

methods DeSCI by 730 × 10+3 times. Specifically, ViT-SCI can achieve good results in only 

8ms. So, it is able to perform real-time reconstruction of up to 125 measurements per second. 

Both the quantitative and qualitative results prove the ViT-SCI can be used as a reconstruction 

model in a video compressive sensing framework in real-time applications because of the good 

quality performances and especially the excellent recovery time. 
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Figure IV.16: Reconstructed frames of GAP-TV, DeSCI, E2E-CNN, BIRNAT and ViTSCI on six 

simulated video SCI datasets. 

IV.5.8. Discussion 

As supported by our ablation study, we want to highlight that optimizing the hyperparameters of 

our proposed architecture is non-trivial and strongly depends on the dynamics and information 

content of the input videos. Owing to limitations in computational resources, we could not 

achieve a fully satisfying optimization of the hyperparameters. Furthermore, the videos size had 

to be restricted to afford the training process. These limitations prevented our algorithm from 

reaching its best potential. Future researches should tackle these limitations by designing a 

memory optimized architecture. Finally, more computational resources must be provided when 

training Deep Learning-based models. Otherwise, training several experiments would take 

several days, even months, on limited spatial dimensional datasets. 

IV.6. Conclusion 

Designing efficient video compressive sensing reconstruction algorithms has been very 

challenging in inverse problems. Inspired by recent advances in Deep learning and motivated 

by the huge success of Transformer-based architectures in NLP, we proposed the first video 

SCI reconstruction algorithm built upon Transformers. in this model, the recovery approach is 

viewed as an end-to-end decoding task. The proposed approach, trained on DAVIS dataset, 

achieves state-of-the-art quality performance on 6 different simulation datasets. Also, it is much 

faster than all existing approaches since it is able to perform real-time acquisition and 

reconstruction of up to 125 measurements per second. A complete ablation study is provided to 

justify the choice of some hyperparameters. We strongly believe that our algorithm will pave the 

way for more research work on video compressive sensing based on recent advances in Deep 

Learning. Also, we assume that ViT-SCI is now ready to be widely exploited in energy-efficient 

real-time applications. 
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Conclusion and Future Work 

A. Conclusion  

Data today is generated at exponentially growing rates which creates unbearable demands on 

the sensing, storage, and processing devices. Indeed, thousands of data centers are built 

worldwide to store this huge amount of data which leads to extremely high power that is 

consumed on acquiring and processing. 

Indeed, IoT based applications in smart cities require a considerable amount of heterogeneous 

intelligent tools and devices to capture, communicate, and visualize environmental data in order 

to monitor urban conditions and empower several services. The large number of intelligent 

devices is creating a huge amount of redundant data that would be the origin of an avoidable 

network congestion which would degrade the overall network performances. Another challenge 

faced by research nowadays is data transmission using limited computational and storage 

resources. 

Therefore, as long as we generate more data, there is an urgent need for novel data acquisition 

and processing concepts such as compressive sensing. Furthermore, we propose in this thesis 

to study and explore Deep Learning-based approaches in a Video Compressive Sensing context 

to reduce the amount of data gathered while maintaining the quality performances of the 

collected videos, thus enhancing the overall system potentials. 

This dissertation started with describing the foremost applications of Compressive Sensing and 

the main Deep Learning architectures exploited in the different video compressive sensing 

approaches studied and developed in this work. 

Chapter 2 provides an overview on the theory of Compressive Sensing, starting from the 

fundamental model of data acquisition to the standards that have to respected while 

implementing the sensing matrix, as well as listing the most recent Video Compressive Sensing 

frameworks used in the literature. Furthermore, this chapter compare the qualitative and 

quantitative performances of these recent VCS algorithms to provide a clear comparative study 

to researchers and businesses. Their choice will obviously depend on the specifications of their 

various applications. 

In Chapter 3, we design a novel video compressive sensing framework based on a video 

prediction paradigm. For that, we started by designing and implementing a novel video 

prediction called “Robust Spatio-Temporal Colvolutional Long-Short Term Memory” (Robust-

ST-ConvLSTM) which is suitable for with data with spatial and temporal correlations such as 

video sequences. Experimental results on two video datasets for random digits and human 

motions, show the advantages of the presented algorithm. We end up this chapter by a complete 

discussion on the main limitations of the designed VCS framework and the proposed research 

direction that will be developed in Chapter 4. 

In Chapter 4, the Deep Learning paradigm for Video Compressive Sensing was extended to a 

novel VCS algorithm built upon Transformers called ViT-SCI. We introduced the first VCS 

framework based on Transformers and explored the advantages of a convolutional multi-head 

attention mechanism. We started this research work by presenting the main benefits of 

Transformers over the well-known convolutional and recurrent reconstruction models. Then, we 

detailed the core architecture of our proposed model. The proposed approach, trained on DAVIS 

dataset, achieves state-of-the-art quality performance on 6 different simulation datasets. 
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Another fascinating result about ViTSCI is its running time. It is much faster than all existing 

approaches which prove that it could be deployed for real-time applications 

B. Future Work 

The Video Compressive Sensing architecture designed and implemented in this research work 

have a significant number of hyper-parameters that can be fine-tuned to improve their 

performances. These performances can be enhanced by further theoretical studies on the 

different parameters or extended ablation studies which definitely will need more computational 

resources. 

• Hybrid Systems and Edge Computing 

Obviously, there is a tremendous intellectual progress in compressive sensing and sparse 

representation systems. Therefore, many mathematical concepts such as probability theory, 

convex optimization and reconstruction algorithms become an essential toolbox for many 

researchers and engineers to design and develop real-world applications. 

Hence, in the future, we are going to talk about designing hybrid systems that integrate hardware 

and software, where these two systems are implemented simultaneously from the beginning 

using the mathematical concepts described above. 

Also, a new research direction has appeared with deploying a video compressive sensing 

system with edge computing to optimize the memory storage and bandwidth [1]. In addition, 

theoretical studies on detection algorithms directly from the snapshot compressed measurement 

have already started [2]. Finally, we can say that compressive sensing allows us to think about 

data, complexity, algorithms, and hardware at the same time. In a nutshell, the answer will be 

an algorithm with better flexibility, accuracy, and speed. 

• Reinforcement Learning based VCS 

Reinforcement Learning (RL) [3] is an online machine learning algorithm originally designed to 

develop behavioral policies by rewarding desired behaviors and penalizing undesired ones. In 

this case, the model is trained from its own interactions with the environment not from historical 

data. Indeed, we can potentially work on an RL based model for VCS to adapt the compression 

ratio (CR). In our research work, we reconstruct a fixed number of frames, captured by a low-

speed camera, from one single measurement frame. However, we can adapt the number of the 

reconstructed frames for different scenes. In fact, the compression ratio will be determined by 

an RL strategy. For that, an object detection algorithm can be used to increase or decrease the 

CR. Then, the detection rate and some image quality performance metrics of the reconstructed 

frames will be sent to the RL algorithm to adjust the CR for different scenes. The idea is to adapt 

the CR with scenes where we have many moving objects to detect and others where we have 

static backgrounds. Also, we adapt the CR with fast and slow scenes i.e. with the movement 

velocities of different moving objects. 

• Efficient Transformers based reconstruction model 

We already mentioned in this thesis that Transformers have become an essential piece in 

modern deep learning architectures. However, to train these models on high dimensional data, 

huge memory resources are required. Indeed, in our research, in particular in Chapter 4, we 

were forced to evaluate the Transformer-based architecture on limited spatial and temporal 

dimensions of the training video dataset. This may affect the performances of the model. 
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Therefore, the most obvious direction for further research is making improvements around 

computational and memory efficiency. Many Transformer variants have been proposed recently, 

such as X-former models [4]-[5], to enhance the memory usage at the training phase. 

These recent works can be an inspiration to design a novel memory efficient Transformer able 

to reconstruct videos in VCS contexts. 

• Applying VCS in a Massive MIMO transmission problem 

One of the most significant problems in wireless telecommunication systems is multipath 

propagation affecting different wireless channels. To overcome this issue, Multiple Input and 

Multiple Output (MIMO) [6] is proposed as effective channels that lead to notable increase in 

link range and data throughput. These features enable to transmit high dimensional data, i.e. 

videos, with good reliability. 

Therefore, another interesting perspective is the design of a new strategy to accurately transmit 

compressed video information through MIMO channels using multiple antenna techniques. This 

approach will aim to optimize both physical and application layers. In fact, a video may be source 

coded by a VCS paradigm where videos are represented by numerical measurement vectors. 

Then, these vectors would be transmitted simultaneously over the available antennas. The next 

step would be to design a power allocation strategy integrated into the transmission scheme. 

The energy would be allocated to the antenna in proportion to the amount of transmitted data. 
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Résumé : 

La technique de compressive sensing joue un rôle important dans le traitement des données 

vu que l’acquisition et la compression se font simultanément grâce à un processus de prise de 

mesures. Cette technique optimise les capacités de stockage des systèmes ainsi que la 

vitesse et le coût d’acquisition. Récemment, cette technique est devenue de plus en plus 

utilisée grâce à l’optimisation des algorithmes de reconstruction en utilisant les architectures 

du Deep Learning. L’objectif principal de cette thèse est de tirer profit des architectures de 

Deep Learning pour optimiser la technique de compressive sensing en l’appliquant sur des 

signaux vidéo et par la suite optimiser l’acquisition, la transmission et la reconstruction des 

vidéos dans les systèmes numériques modernes. Ainsi, la stratégie adoptée au cours de ces 

travaux de recherche consiste à commencer par établir une étude comparative sur les 

approches de vidéo compressive sensing (VCS) basées sur le Deep Learning en évaluant la 

qualité et la vitesse de reconstruction ainsi que les différentes architectures. Puis, deux 

environnements de VCS ont été conçus : le premier se base sur la prédiction des frames vidéo 

en implémentant une approche basée sur un nouveau réseau récurrent et le deuxième exploite 

les dernières performances réalisées avec les Transformers et le mécanisme d’attention. 

Alors, la démarche adoptée dans ces deux approches repose sur une analyse de l’état de l’art 

suivie d’une explication de chaque architecture et une validation expérimentale. Les différentes 

contraintes rencontrées au cours de ces travaux sont discutées et des solutions appropriées 

sont proposées. 

Mots-clés : Acquisition Comprimée, Apprentissage profond, Traitement de vidéo, Vision par 
ordinateur  

Abstract: 

Compressive Sensing, commonly used to approximate solutions for underdetermined linear 

systems of equations, is gaining a lot of attention as an efficient acquisition and compression 

paradigm that combines nonlinear reconstruction algorithms and random sampling on sparse 

basis. It enables to optimize the storage capacity of the wireless systems as well as the speed 

and cost of acquisition. Recently, Deep Learning architectures have frequently been exploited 

to optimize the reconstruction phase. The main objective of this thesis is to take advantage of 

Deep Learning architectures to optimize the compressive sensing technique by applying it on 

video signals and subsequently optimize the acquisition, transmission, and reconstruction of 

videos in modern digital systems. Therefore, the strategy adopted during this research work 

consists in establishing a comparative study on video compressive sensing (VCS) approaches 

based on Deep Learning by evaluating the quality and the speed of reconstruction as well as 

the different architectures. Then, two VCS environments have been designed: the first one is 

based on the prediction of video frames by implementing an approach based on a new 

recurrent network and the second one exploits the latest performances achieved with the 

Transformers and the attention mechanism. So, the approach adopted is based on a state-of-

the-art analysis followed by an explanation of each architecture and an experimental validation. 

The different constraints encountered during this work are discussed and appropriate solutions 

are proposed. 

Keywords: Compressive Sensing, Deep Learning, Video Processing, Computer Vision 


