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Abstract

The study of the mechanical properties of flexible helical structures and of their in-
teractions with flows is of importance for both fundamental science and technological
applications. Better comprehension of the physics of flexible helices is critical to unders-
tand the swimming behavior of microorganisms and may lead to better design of flow
micro-sensors, micro-swimmers for targeted cargo delivery or nanosprings actuators. In
this work, micro-fabrication techniques, optical microscopy, cantilever measurements,
microfluidic systems and shape reconstruction by image analysis are combined to build
a fully integrated experimental set-up. This set-up allows investigation of the physics of
flexible helices, from the characterization of their mechanical properties to the study of
their interactions with flows.

For the first time, fabrication of highly flexible micron-sized helices with full shape
control is reported. Building upon a spontaneous formation technique of helical ribbons,
we demonstrate that the creep properties of materials can be leveraged to shape helical
ribbons into any desired geometry. The mechanical properties of helical ribbons are then
characterized by measuring the force-extension relationship. Taking advantage of the
newly achieved control on the helix geometry, influence of the helical pitch on the me-
chanical response is quantified. Experimental results are found to agree qualitatively and
quantitatively with existing models of inextensible elastic strips. Finally, the deformation
of helical ribbons in viscous axial flows is studied and influence of the helical pitch is
for the first time investigated experimentally. An effective stiffening is highlighted as the
pitch increases, which is unexplained by existing models. A new analytical framework is
developed and experimental results are found to be well described by a combination of an
inextensible elastic strip model and of slender-body theory to model the hydrodynamic
forces. Overall the methods and results reported in this work pave the way for a better
understanding of the physics of flexible helices. The presented helical ribbons constitute an
ideal model system to explore the complex interactions between flexible helical structures
and viscous flows.

Keywords: fluid-structure interaction, helical ribbon, flexible helix, micro-fabrication,
viscous flow, microfluidic
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Résumé

De nombreux systèmes naturels ou artificiels sont de forme hélicoïdale et sont haute-
ment déformables : double-hélice de l’ADN, vrille végétale ou structure hélice alpha dans
les protéines. L’étude des propriétés mécaniques de telles structures et de leurs compor-
tements en écoulement est critique à de nombreux égards. Une meilleure connaissance
de ses effets participerait à mieux comprendre la propulsion des micro-organismes et
mènerait à de nombreuses innovations technologiques : micro-capteurs de débit, nageurs
artificiels ou nano-ressorts pouvant servir de capteur de force ou d’actionneur. Dans cette
thèse, diverses techniques de micro-fabrication, de micro-fluidique, de microscopie op-
tique et de mesure de force par poutre cantilever sont combinées. Elles permettent de
mener plusieurs expériences rigoureusement contrôlées explorant la physique des hé-
lices flexibles. Un dispositif expérimental complet est conçu, intégrant la fabrication de
micro-hélices flexibles, la caractérisation de leurs propriétés mécaniques et l’étude des
interactions fluide-structure.

Une méthode de fabrication de rubans hélicoïdaux micrométriques hautement défor-
mables est mise au point, permettant pour la première fois un contrôle complet de tous les
paramètres géométriques. En nous basant sur une technique de formation spontanée de
rubans hélicoïdaux, nous démontrons que les propriétés de fluage des matériaux peuvent
être exploitées pour modifier à volonté la géométrie de la structure. Les propriétés méca-
niques sont ensuite caractérisées par la mesure de la loi force-extension. Tirant parti du
contrôle nouvellement accru de la géométrie, l’influence du pas de l’hélice sur la réponse
mécanique est quantifiée. Les résultats expérimentaux concordent qualitativement et
quantitativement avec les modèles existants de rubans élastiques inextensibles. Enfin,
l’extension de rubans hélicoïdaux soumis à un écoulement axial visqueux est étudiée. Pour
la première fois expérimentalement, l’influence du pas de l’hélice est quantifiée. Une rigi-
dification effective de l’hélice est observée lorsque le pas augmente, phénomène qui n’est
pas décrit par les modèles existants. Une nouvelle approche analytique est développée.
Il apparaît que le comportement expérimental est bien décrit par une combinaison d’un
modèle de ruban élastique inextensible et de "slender-body theory" pour la modélisation
des forces visqueuses. L’ensemble des méthodes et résultats présenté ici ouvre la voie à une
meilleure compréhension de la physique des hélices flexibles. Le dispositif expérimental
permet notamment une étude approfondie des interactions entre de telles structures et
des écoulements complexes.

Mots-clés : interaction fluid-structure, ruban hélicoïdal, hélice flexible, micro-fabrication,
écoulement visqueux, micro-fluidique
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Glossary

Symbols

Re Reynolds number

η liquid viscosity

ε̇ extension rate

γ̇ shear rate

U flow velocity

R helix radius

p helix pitch

L total filament length

α helix pitch angle

H helix axial length

N number of turns in helix

s contour position

t time

B filament bending modulus

C filament twisting modulus

E Young’s modulus

µ shear modulus

ν Poisson’s ratio

w ribbon width

t ribbon thickness

γ liquid surface tension

T temperature

ξ2 drag coefficient along the ribbon width

ξ3 drag coefficient along the ribbon length

ρ = ξ3/ξ2 drag coefficient ratio

Mw molecular weight

Acronyms

PMMA poly(methyl methacrylate)

PDMAEMA poly(dimethylaminoethyl me-
thacrylate)

PAA polyacrylic acid

PSS polystyrene sulfonate

RFT resistive-force theory

SBT slender-body theory
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CHAPTER 1. INTRODUCTION

General Introduction

Helical structures play a crucial role in many chemical, biological and mechanical
contexts. Nature offers many examples, spanning several orders of magnitude in length,
including double-stranded DNA, alpha helix structures in proteins or plant tendrils. Helical
structures are of special importance for the propulsion of microorganisms, as many propel
themselves by rotating flexible helically-shaped flagella [1]. Finally, many technologies rely
on helical structures, including metallic nanosprings [2, 3], artificial micro-swimmers [4],
or flow sensors [5, 6]. The study of the mechanics of helical structures and of their inter-
actions with flows is thus of importance for both fundamental science and technological
applications.

For helices and more generally for chiral objects in flows, a coupling exists between
translational and rotational motions. Chiral particles in flows typically drift across stream-
lines in a direction that depends on their handedness [7–9]. This phenomenon has been
used to separate objects of opposite chirality, a process crucial in food or pharmaceutical
industries. Influence of the chirality has been investigated in various situations, such as
particle sedimentation [10] or particle transport in shear flows [8, 11]. Bacteria and artificial
micro-swimmers are typically constituted of one or multiple helical flagella attached to a
non-chiral body. For these systems, the chirality-induced drift force creates a torque that
can reorient the swimmer [12]. Across these studies, a key finding is that for helical objects,
magnitude of the chiral effects is mainly controlled by the helical pitch i.e. the distance
between two consecutive loops. A zero pitch helix corresponds to a ring, which is not chiral,
and an infinite pitch helix to a straight rod, which is again not chiral. Therefore, chirality
effects are maximized for a finite non-zero pitch.

But most of these studies only consider rigid particles, although most natural and artifi-
cial structures motivating them are highly flexible. For flexible helices, additional degrees
of liberty are added, such as axial elongation/compression or buckling. A very complex
coupling is thus created between translational motion, rotational motion and deformation.
For example, deformation may vary the helical pitch, which will in turn modulate the
magnitude of the chiral effects. Only a small number of studies have investigated this
coupling between chirality and flexibility, most of them analytical or numerical [13–17].

On the experimental side, two approaches, at different length scales, have been ex-
plored. One the one hand, working at the macro-scale allows easy fabrication of flexible
helices with controlled properties. Control of flows is however complex and free transport
of helices is unpractical, as it requires the channel length to be much greater than the
typical helix size. This approach is thus especially adapted to still fluid situations [14, 15].
On the other hand, working at the micro-scale allows easy flow control through microfludic
techniques and arbitrary channel size can be reached, allowing free transport. But the fa-
brication and characterization of flexible helices at the micro-scale are a challenge. Indeed,
very few methods exist for the fabrication of micron-sized flexible helices with tunable
geometry. Notably, control of the helical pitch, which is crucial in setting the magnitude
of chiral effects, is very rarely achieved. These shortcomings in experimental methods
hamper progress in the study of the coupling between chirality and flexibility.

Within this context, this work aims at developing a fully integrated experimental set-
up, from the fabrication of flexible micron-sized helices to the characterization of their
mechanical properties and to the study of their interactions with flows. Strong emphasis
is put on control of the helix shape and mechanical properties. The developed platform
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CHAPTER 1. INTRODUCTION

builds upon the spontaneous formation of highly flexible micron-sized helical ribbons
evidenced by Crosby et al. [18–20]. Our work was conducted in close collaboration with
Dylan M. Barber and Alfred J. Crosby from the University of Massachusetts, Amherst,
USA. Anirban Jana and Andrea de la Sen contributed to this work during their Master
research internship. Most of the work reported here is experimental but is complemented
by analytical and numerical approaches, in which some assistance has been provided by
Lyndon Koens from Macquarie University, Sidney, Australia.

In the following chapter, we present the state of the art and start in section 1.1 with
a general introduction of fluid-structure interaction problems. In section 1.2 we review
in details the studies dedicated to helical structures and introduce in section 1.3 the
analytical, numerical and experimental tools leveraged for these studies. We discuss the
various fabrication methods for flexible micron-sized helices.

The rest of this manuscript is organized as follows. In chapter 2 we describe the general
experimental set-up and the experimental techniques used throughout the study. We detail
the fabrication method of helical ribbons on which we rely and underline that control of
the helical pitch is not achieved. In chapter 3 we address this issue by implementing an
in-situ pitch modification process. We thus demonstrate a fabrication method for flexible
helices with full shape control. In chapter 4 we characterize the mechanical properties
of flexible helical ribbons by measuring the force-extension relationship. Leveraging the
newly achieved control of the pitch angle, we examine for the first time experimentally
influence of this parameter on the mechanical properties of helical ribbons. In chapter 5
we investigate experimentally the deformation of flexible helical ribbons subjected to
viscous axial flows and quantify for the first time the influence of the pitch angle. We thus
demonstrate applicability of our experimental platform to study the complex interactions
between flexible helices and flows. Highlighting the insufficiencies of previous analytical
derivations, we develop in chapter 6 a new analytical framework to understand the defor-
mation of helical ribbons in flows. In chapter 7 we compare the analytical findings to our
experimental results and discuss various models for estimating the viscous forces acting
on helical structures. Overall the methods and results presented in this work pave the way
for a better understanding of the mechanics of flexible helices and of the interplay between
flexibility and chirality. Future possible works are highlighted in chapter 8 .

1.1 Fluid-Structure Interactions

Fluid-structure interactions describe a very wide range of physical situations where
deformable or movable objects and fluids interact. These problems arise everywhere
around us, from the effects of wind on kilometer-tall skyscrapers to the flagellar beating
of micron-sized sperm cells. Nature provides numerous examples: gliding of birds in
hot air current, collective swimming of fish schools or blood flow in deformable vessels.
Fluid-structure interactions are a crucial consideration in the design of many engineering
systems: wind turbines, planes or bridges for example.

Fluid-structure interactions are, by definition, multi-phase problems and coupling
exists between the dynamics of the solid and of the fluid phase. Flow of the fluid exerts
forces that deform and/or move the solid structure, and in return, motion or deformation of
the structure disturbs the flow field. As a result of this coupling, fluid-structure interaction
problems are often very intricate and typically do not exhibit analytical solutions: they
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CHAPTER 1. INTRODUCTION

have to be analyzed through experimental or numerical means. In recent years, following
the development of new experimental techniques and the improvement of computational
capacities, increasingly complex problems can be tackled. Complexity can originate from
the structure, for example as a result of non-symmetrical or highly deformable objects.
Complexity can also originate from the fluid flow, either from the fluid itself through non-
linear or non-local properties for example, or from the flow. In this case, complexity usually
rises for disordered or turbulent flows.

1.1.1 Viscous Flows

Behavior of the fluid can be characterized by the dimensionless Reynolds number Re,
which helps predict flow patterns. The Reynolds number is a property of the flow and is
defined as the ratio of inertial forces to viscous forces

Re = ρLv

η
(1.1.1)

with ρ fluid density, η dynamic viscosity of the fluid, v typical flow velocity and L charac-
teristic flow length scale. At low Reynolds number Re ¿ 1, viscous forces dominate and
flows tend to be laminar. As viscous forces are linear with flow velocity, forces exerted by
low Reynolds number flows scale linearly with flow velocity. In contrast, at high Reynolds
number Re À 1, inertial effects dominate and flows tend to turbulent. Forces exerted by
high Reynolds number flows tend to scale quadratically with flow velocity.

In this work, we focus on low Reynolds number flows, also called viscous flows. Low
Reynolds number flows are typically flows of highly viscous fluids, such as lava or honey, or
flows at the micro-scale. Indeed, as the typical length L and speed v are decreased, Re ¿ 1
can be achieved even for low viscosity fluids, such as water for which η = 1×10−3 Pa · s.
Thus, sub-millimetric objects or particles in liquids are typically displaced and deformed by
viscous flows. Notably, most microorganisms, such as bacteria, or other biological objects,
such as cells, move and live at low Reynolds number. Examples include transport and
deformation of red blood cells in vessels, which happens for Re ≈ 10−3 −10−1 depending
on the size of the vessel [21] ; swimming of human sperm cells, which happens at Re ≈ 10−2

[22] ; or swimming of bacteria, which happens at Re ≈ 10−5 −10−4 [1].

In the common case of incompressible Newtonian fluids, the dynamics of viscous flows
are described by the Stokes equations, which correspond to the inertial-free limit of the
Navier-Stokes equations

−#»∇p +η∇2 #»u + #»

f = #»
0 (1.1.2)

#»∇ · #»u = 0 (1.1.3)

with p hydrodynamic pressure, #»u flow field and
#»

f external volumic forces. Specifying the
boundary conditions is necessary to fully solve the Stokes equations. This is typically here
that motion and/or deformation of objects come into play. In general, a no-slip condition
is used at the surface of the object, which assumes that the fluid has zero velocity relative to
the surface. The Stokes equations are linear, meaning that a linear combination of solutions
is also a solution, and time-reversible, meaning that a time-reversed solution to the Stokes
equation is also a solution.
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CHAPTER 1. INTRODUCTION

1.1.2 Decomposition of the General Problem

A general fluid-structure interaction problem consists of an object immersed in an
external flow field #»u ∞. In the vicinity of the particle, a Taylor series expansion can be
performed

#»u ∞ (
#»r

)= #»u ∞ (#»
0

)+∇#»u ∞ (#»
0

) · #»r + . . . (1.1.4)

where we have taken #»r = #»
0 center of mass of the object, the flow field being expressed

in the reference frame associated to the object. As the Stokes equations are linear, a fluid-
structure interaction problem at low Reynolds number can be decomposed into smaller
and simpler problems, following the decomposition of the flow field. Total response of
the system is the sum of the responses to each term appearing in eq. (1.1.4) . In most
cases, the typical length scale over which the flow varies is much larger than the object size
and second order terms and highest can be neglected. More complicated problems arise
in the case of objects in highly confined geometries where highest order terms must be
considered [23–27] or in quickly evolving flows, oscillatory flows [28–30] for example.

The zeroth order term, given by #»u ∞ (#»
0

)
, is naturally a uniform flow. The first order term

is given by ∇#»u ∞ (#»
0

) · #»r . For a uniaxial flow, in the x direction for example i.e. #»u ∞ = u∞ #»e x ,
this expression rewrites

∇#»u ∞ (#»
0

) · #»r = ∂u∞

∂x
(0)x #»e x + ∂u∞

∂y
(0)y #»e y + ∂u∞

∂z
(0)z #»e z (1.1.5)

expressed in the Cartesian coordinate system {x, y, z}. Again, because of the linearity of
the Stokes equation, each term can be considered individually. The term along the x
direction corresponds to an extensional or compressional flow, depending on the sign

of the extension rate ε̇= ∂u∞

∂x
. As incompressibility of the fluid imposes

#»∇ · #»u = 0, which

rewrites
∂u∞

∂x
= 0 in the case of a uniaxial flow, an extensional or compressional uniaxial

flow cannot exist. A common implementation of extensional/compressional flows is the
planar elongation flow, depicted in fig. 1.1 (a). Uniaxial extension is then achieved on the
(y = 0)-line and uniaxial compression is achieved on the (x = 0)-line.

The two terms along the y and z directions are similar and both correspond to a shear
flow, with shearing direction perpendicular to the flow direction. Magnitude of the shearing

FIGURE 1.1 – Velocity field for (a) a planar elongation flow with extension rate ε̇ and (b) a shear flow with

shear rate γ̇, itself decomposed into a tilted planar elongation flow and a rotational flow.
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is given by the shear rate γ̇= ∂u∞

∂y
. We illustrate such situation in fig. 1.1 (b). Shear flows

themselves can be decomposed into the sum of a rotational flow and of a planar elongation
flow oriented at 45° relative to the flow direction

#»u = γ̇y #»e x = 1

2
γ̇

(
y #»e x −x #»e y

)
︸ ︷︷ ︸
Rotational flow

+ 1

2
γ̇

(
y #»e x +x #»e y

)
︸ ︷︷ ︸

Planar elongation flow

(1.1.6)

Overall, three elementary fluid-structure interaction problems appear at low Reynolds
number: interaction with uniform flows, interaction with shear flows and interaction with
extensional flows. We now detail some fundamental results for objects in uniform flows
and shear flows.

1.1.3 Objects in Uniform Viscous Flows

Earliest studies of fluid-structure interactions at low Reynolds number have investi-
gated the forces exerted by uniform viscous flows on various objects, and the reciprocal
disturbance in the flow field. The classical work of Stokes has established the drag force
exerted by uniform viscous flows on hard spheres [31]. With a sphere radius a and a flow
velocity U , the drag force is given by F = 6πηaU . As underlined previously, the force varies
linearly with the flow velocity and also varies linearly with the particle size. Oberbeck
tackled a similar problem for hard spheroidal particles [32]. Expression of the drag force
is then much more complex and is notably not linear with particle size. Furthermore, the
drag force depends on the particle orientation with respect to the flow direction.

Linearity with the particle size is however recovered in the case of elongated spheroids
i.e. when one of the two dimensions is much larger than the other. In this case, the drag
force is roughly twice as strong when the largest dimension is oriented perpendicularly
to the flow direction than when it is parallel to the flow direction. In details, with length l
(large dimension) and radius a (small dimension), the perpendicular force is given by

F⊥ ≈ 8πηlU

ln(2l/a)
≈ 2F∥ (1.1.7)

The total drag force in the general case is recovered by decomposing the velocity
#»
U into

two components, one parallel to the length direction and the other perpendicular. Again,
due to the linearity of the Stokes equations, the total response is the sum of the responses
to each component

#»
F = 4πηl

ln(2l /a)
(

#»
U · #»e ∥) #»e ∥+ 8πηl

ln(2l /a)

[
#»
U − (

#»
U · #»e ∥) #»e ∥

]
(1.1.8)

with #»e ∥ unit vector oriented along the object length. As a result of the force anisotropy,
the total drag force exerted by viscous flows on rigid elongated spheroids is in general
not oriented in the velocity direction. These results are preserved for all axisymmetric
elongated objects [33]. Recent works extended these results in the case of rigid elongated
ellipsoids [34]. These findings are key in modeling the viscous forces acting on complex or
flexible fibers, which is discussed in section 1.3.1 .

18



CHAPTER 1. INTRODUCTION

1.1.4 Objects in Shear Flows

The dynamics of particles in shear flows was first studied by Jeffery, who derived the
motion of rigid spheroids in shear flows [35]. Jeffery found that rigid spheroids perform
closed periodic rotation with typical time scale γ̇−1, the period being set by the aspect
ratio of the object. Qualitatively, elongated particles rotate with a longer period and in
an unsteady fashion: they spend a long time aligned with the flow but quickly flip from
one aligned position to the next, which corresponds to a 180° change in orientation. Less
elongated particles rotate with a shorter period and in a smoother manner, the limiting
case being the sphere, which rotates at uniform speed. The precise rotational motion is
determined within an infinity of solutions, called ’Jeffery orbits’, by the initial orientation
of the particle. This motion is driven by the rotational component of shear flows, while the
extensional component has little impact on rigid objects. It was later shown by Bretherton
[36] that these findings are also valid for all rigid axisymmetric particles, provided an
effective aspect ratio is substituted to the particle actual aspect ratio.

Jeffery orbits also arise for more complex particles. For Brownian particles in shear
flows i.e. objects small enough to be affected by thermal noise, particle orientation may
diffuse from one Jeffery orbit to another, creating a statistical distribution of orientations
[37, 38]. This orientation distribution plays a key role in setting the rheological properties
of particle suspensions [39, 40]. For non-axisymmetric particles in shear flows, a doubly
periodic motion is observed: at short time particles approximately follow Jeffery orbits,
but at long time the trajectory evolves. This longer time scale evolution may be periodic,
quasi-periodic or chaotic, depending on the particle shape and initial orientation [41, 42].

For deformable objects in shear flows, influence of the extensional component becomes
significant. Objects are compressed in one direction and stretched in the other. Combined
with the rotational component, a complex interplay is created between deformation and
rotation: objects are successively compressed and stretched as they rotate. The deformation
behavior is then typically set by a dimensionless number which compares the viscous
forcing to the restorative force. This restorative force can be surface tension in the case
of droplets and bubbles [43] or thermal entropy in the case of polymers [44, 45]. For
polymers, entropy favors coiled configurations, hence when viscous stretching forces
increase and eventually overcome entropy, a coil-stretch transition is observed. These
microscopic effects are again crucial in setting the rheological properties of polymer
suspensions, leading to rod climbing effects for example [46]. More complex dynamics
occur for biological capsules and vesicles in shear flows. These objects are typically self-
assembled bilayers of lipids, which can freely rearrange at the surface. The restorative
force is then a complex combination of elasticity, surface tension and viscosity [47]. As a
result, a rich variety of phenomenon is observed for capsules and vesicles in shear flows:
tank-treading, Jeffery-like tumbling or shape oscillations [48–52].

Finally, in the case of flexible filaments, the restorative force is elasticity and more
precisely elastic bending. Very long objects can indeed be considered inextensible and
their deformations are dominated by bending effects. Flexible filaments in shear flows may
undergo buckling as a result of the compressive viscous forces. This straight-to-buckled
transition happening under compressive forces can be compared to the coil-stretch tran-
sition happening for polymer molecules under stretching forces. As the viscous forces
increase, a variety of buckling modes is observed [53, 54]. For very strong compressive
viscous forces, buckling into three-dimensional helical shapes can even be observed [55].
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Combined with the rotational component, a ’snaking’ motion of the filament emerges: a
’U-turn’ curvature wave initiates at one end and propagates towards the other end [56, 57].

The case of flexible filaments in shear flows is of notable interest to biology. Several
crucial biological processes, such as intracellular motion or microorganism locomotion,
indeed involve interactions of flexible filaments with viscous flows. A notable example
among these biological filaments is the case of helically-shaped filaments, which we detail
in the next section.

1.2 Helices and Chiral Objects in the Micro-World

Before moving forward, the basic parameters of helices are specified. A helical shape is
completely defined by its helical radius R, helical pitch p and total contour length L. For
the helical axis aligned along the z direction, the filament centerline is given by

#»r =
{

R cos
2πz

p
,δR sin

2πz

p
, z

}
(1.2.1)

expressed in the Cartesian coordinate system {x, y, z} and with δ chirality index: δ=+1 for
right-handed helices and δ=−1 for left-handed helices. Definition of the pitch angle α
varies within the literature but it is defined in this work as the angle between a circum-
ferential line and the filament tangent. The pitch angle is expressed as a function of the
rescaled helical pitch by tanα= p/2πR. α= 0° corresponds to a zero pitch helix i.e. a ring
and α = 90° to a straight rod. Finally, the axial length H = L sinα is the filament length
projected on the helical axis. Helix geometrical parameters are illustrated in fig. 1.2 (a) for
a helical ribbon.

1.2.1 Motivations

Micron-sized helical structures indeed play a crucial role in several biological contexts,
the most noteworthy being microorganism locomotion. This stems from the fact that, as
viscous flows are time-reversible, reciprocal motion, such as the back and forth of a rigid
oar or the opening and closing of a scallop hinge, cannot generate thrust in viscous envi-
ronments [58, 59]. Microorganisms have thus evolved a variety of propelling mechanisms,
which all rely on non-reciprocal motions, such as beating of flexible filaments or rotation
of helical flagella [1].

Figure 1.2 shows several examples of microscopic helices for locomotion. We show
in fig. 1.2 (b) images of a tethered E. coli bacteria, reproduced from Turner et al. [60]. E.
coli bacteria propel themselves in viscous media by rotating a bundle of helical flagella.
As shown, the helical flagella of bacteria such as E. coli are very flexible and can undergo
significant changes in morphology. These morphological transformations enabled by
flexibility are exploited for the bundling and synchronization of multiple flagella [61, 62],
bacterial reorientation [60, 63] or swimming in crowded environments [64]. The bending
modulus of E. coli flagella has been experimentally measured at B ∼ 1−4×10−24 Pa ·m4

[65, 66], which corresponds to a persistence length of lp = B/kB T ∼ 10−3 m. Given typical
flagella length of L ∼ 10−20µm, flagella of E. coli can be deformed by forces ∼ 50−100
times stronger than thermal fluctuations. Generally for bacterial flagella, bending moduli
range within B ∼ 10−24 −10−22 Pa ·m4 [67]. We show in fig. 1.2 (c) image of a spirochete
bacteria, reproduced from Wolgemuth [68]. For spirochetes, the entire bacterial body is
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FIGURE 1.2 – Examples of microscopic helices for locomotion. (a) Helix geometrical parameters. (b) Tethered

E. coli bacteria, reproduced from [60]. (c) Swimming of B. burgdorferi spirochete bacteria. Yellow and red

lines show a traveling wave undulation, reproduced from [68]. (d) Electron microscopy image of a fabricated

flagellated micro-robot, reproduced from [69].

helical, and they propel themselves by rotations and/or undulations of the full body [68].
Flexibility of the helical structure is thus key in achieving locomotion. Such locomotion
strategies are exploited to fabricate self-propelled micro-robots [4]. We show in fig. 1.2 (d)
image of a flagellated micro-robot, reproduced from Zhang et al. [69].

Helical structures also arise in other biological and chemical contexts. Examples include
double-stranded DNA or the alpha helix motif, a common secondary structure of proteins.
Moreover, many molecules, despite not being helically shaped, are chiral. This property,
shared with helices, significantly influences their physical and mechanical behavior. Study
of the behavior of helices, and specifically of the chirality-induced effects, may thus lead to
a better understanding of the physics of all chiral objects.

Finally, to the difference of polymer molecules that are only stretched in flows and to
the difference of elastic filaments that are only compressed in flows, flexible helices can
potentially be both compressed and stretched. Furthermore, several modes of deforma-
tion are possible for helices, axial compression/extension or buckling for example. We
therefore expect a very wide range of behavior for flexible helices in flows. This may lead
to interesting or useful properties for suspensions of flexible helices. We now review the
literature investigating the physics of helices in viscous flows, with emphasis put on the
studies considering flexibility.

1.2.2 Helices in Viscous Flows

We follow the decomposition of fluid-structure interactions at low Reynolds number
introduced in section 1.1 . We first review the behavior of helices in uniform flows, then in
shear flows and finally the behavior of rotating helices in still fluids.

Helices in Uniform Flows

The interactions between helices and uniform viscous flows is naturally a central
question. Even in the case of rigid helices, no analytical solution exists for the viscous forces
acting on helices and the reciprocal disturbance in flow. Researchers have thus developed
several analytical and numerical methods to estimate the viscous forces acting on helices,
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which are detailed in the next section. The work of Rodenborn et al. reviewed these different
methods and compared the respective estimations to experimental measurements [70].
The basic scaling for the total drag force D acting on helix immersed in a flow with velocity
U is D ∼ ηU L. Rodenborn et al. showed that greater precision can be achieved with a
logarithmic correction D ∼ ηU L/ln(L/R).

In the case of flexible helices, these viscous forces naturally deform the helix. The
deformation of flexible helices in uniform axial flows (uniaxial flows oriented parallelly to
the helical axis) has notably been addressed. The restorative force is elastic bending, which
scales as F ∼ B/R2 with B bending modulus of the filament. Equilibrium gives the helix
deformation, expressed as the change in axial length

∆H

L
∼ R2

B
ηU L (1.2.2)

The work of Kim et al. and the work of Katsamba et al., both relying on the same analytical
framework, validated this scaling [13, 71]. Both works also investigated the influence of the
helical pitch on the extension of helices in axial flows. They found vanishing influence of
the helical pitch in the limit of long helices i.e. L À R. This condition may seem restrictive
but, as L/R is given by the geometrical relation L/R = 2πN /cosα with N number of turns,
even for a 3-turn helix L/R & 20.

Leveraging the relation between the axial extension in flow and the filament modulus,
Hoshikawa et al. subjected helically-shaped bacterial flagella to viscous axial flows and
measured the bending modulus of these biological structures [72]. They further confirmed
the linear relationship between the axial extension ∆H and the flow velocity U . Much later,
Pham et al. studied experimentally the deformation of micro-fabricated flexible helices in
axial viscous flows [73]. Using helices of various radii and lengths, the geometrical scaling
∆H ∝ R2L2 was confirmed. They however highlighted that, as the velocity is increased, the
relation ∆H (U ) becomes non-linear. The observed non-linear effects are accurately descri-
bed by a finite extensibility correction, which accounts for the fact that helix extension is
limited by the total filament length L. Non-linear effects typically occur for ∆H/L & 0.1.
Using a similar experimental system, these results were confirmed by Daieff et al [74]. The
finite extensibility effect was highlighted again by Li et al. [6] using metallic micro-springs,
and confirmed that maximum extension is reached when the helix is fully uncoiled. Again
however, influence of the helical pitch on the extension was not studied.

Finally, this problem was tackled numerically by Jawed et al. [15], who similarly found
a finite extensibility effect. They showed that the non-linear ∆H(U ) relationship can be
characterized by an exponential saturation ∆H ∝ (1− e−U /Uc ) with Uc typical velocity
needed to stretch the helix. These results are discussed in more details in section 7.2 .

Helices in Shear Flows

For helical structures in shear flows, a coupling exists between rotational and transla-
tional motion. In addition to Jeffery-like tumbling, rigid helices in shear flows experience a
lateral drift out of the shear plane (plane formed by the flow direction and the shearing
direction) [75]. The direction of drift is determined by the handedness of the helix. The
lateral drift of helices was observed experimentally by Marcos et al. using as experimental
system the helical body of spirochete bacteria [8]. Based on these findings, separation by
shear flows of helical or chiral objects depending on their handedness has been demons-
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trated [7–9]. This chiral sorting process is of interest to the pharmaceutical industry to
separate chiral molecules from their enantiomers (molecule having opposite handedness).

The dynamics of flexible helices in shear flows was studied numerically by Li et al.
[17]. For rather stiff helices or weak shearing, a periodic Jeffery-like tumbling motion
accompanied by an oscillatory axial extension/compression is found. The overall helix
shape is thus preserved and lateral drift is observed, whose magnitude is mainly set by the
rescaled helical pitch p/R. As a zero pitch helix corresponds to a ring, which is not chiral,
and an infinite pitch helix to a straight rod, again not chiral, we indeed expect chiral effects
to be maximized for a finite non-zero pitch. The drift velocity is here maximized for p/R ∼ 8.
For softer helices or strong shearing, a destabilization mechanism is observed: the tumbling
motion becomes chaotic, and the helical shape is highly deformed. As a consequence, the
drift velocity decreases as the helix gets softer until complete suppression for the softest
conditions. This study highlights a complex interplay between chirality and flexibility in
the behavior of flexible helices in shear flows. To our knowledge, no experimental work has
been reported yet on this topic.

Rotating Helices

A sizable literature is dedicated to the study of helical flagella rotating in viscous fluids,
this case being of special relevance for the propulsion of microorganisms [1, 4, 76]. As
these studies overwhelmingly consider rigid helices, we will not detail them. We however
highlight that a key finding across multiple studies is that the rescaled helical pitch p/R
is again crucial in setting the propulsion behavior. This is consistent with the fact that
the propelling phenomenon ultimately originates from the helix chirality. As such, these
effects are expected to be maximized for a finite non-zero pitch. For a rigid helical flagellum
rotating in a Newtonian fluid, Rodenborn et al. found experimentally and numerically a
maximum propulsive thrust for a rescaled helical pitch p/R ∼ 6 [70]. For a rigid helical
flagellum rotating in a viscoelastic fluid, Liu et al. found experimentally a maximum
swimming speed for p/R ∼ 5 [77] while a very similar value was found numerically by
Leshansky for a rigid helical flagellum rotating in a viscous fluid laden with hard spheres
[78].

A few studies investigated the influence of the flexibility on the propulsion behavior.
Jawed et al. quantified experimentally and numerically the propulsive thrust for a flexible
helix rotating in a Newtonian fluid and described a buckling instability that occurs above a
critical rotation velocity [14]. They hypothesized that this destabilization mechanism may
be leveraged by microorganisms to change orientation. Katsamba et al. tackled a similar
problem analytically [71]. They again found an optimal pitch value for propulsion and
highlighted an interplay between flexibility and propulsion.

Overall, review of the literature has evidenced the complex coupling between flexibility
and chirality at play in the fluid-structure interactions between flexible helices and vis-
cous flows. Better comprehension of this coupling is critical to understand the swimming
behavior of microorganisms and may lead to better design of micro-swimmers or flow
micro-sensors. We have highlighted the significant influence of the rescaled helical pitch
p/R on the chirality-induced effects. But despite significant analytical and numerical pro-
gress, experimental studies remain scarce. For example, influence of the helical pitch on the
extension of helices in flows has not been addressed experimentally. And no experimental
study has been reported for the behavior of flexible helices in shear flows. We attribute this
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scarcity to a lack of adapted experimental methods. Specifically, very few methods exist for
the controlled fabrication of flexible helices at the micro-scale. This is detailed in the next
section, along with the numerical and analytical methods.

1.3 Methods of Study

1.3.1 Theoretical and Numerical Tools

When studying analytically or numerically the behavior of flexible filaments in viscous
flows, two distinct questions naturally arise: the modeling of the filament mechanics and
the modeling of the flow behavior.

For the mechanics of flexible filaments, the common approach is to approximate the
filament to a one-dimensional elastic rod. The mechanical behavior is then governed by
the classical Kirchhoff rod equations [79]. The material stress and strain and the external
forcing are averaged over the cross-section of the filament, and filament dynamics are
thus solely parametrized by the arc-length of the centerline s and time t . The mechanical
properties of the filament are described by three moduli, associated to filament bending in
the two possible directions and to filament torsion. These moduli are determined by the
filament cross-sectional shape and bt the material Young’s modulus E and Poisson’s ratio
ν. We implement such a method in chapter 6 where more details can be found.

Resistive-Force Theory

For the modeling of the flow behavior, several approaches have been developed. The
simplest approach, which is also the only one with an analytical formulation, is resistive-
force theory (RFT). Within RFT, the disturbance in the external flow field created by the
filament is neglected. The question is thus reduced to the calculation of the viscous forces
exerted on the structure by the undisturbed external flow field. The basic idea is then to
consider the filament, whose configuration can be highly complex, as a linear collection of
straight elongated objects. The hydrodynamic interactions between each portion of the
filament are neglected. The viscous forces acting on each of these portions can thus be ap-
proximated to the forces acting on an isolated elongated object, for which an approximate
expression is possible. This expression is given by eq. (1.1.8) and is usually rewritten as a
force per unit length

#»

f = lim
∆s→0

#»
F

∆s
= ξ∥(

#»
U · #»

t )
#»
t +ξ⊥

[
#»
U − (

#»
U · #»

t )
#»
t

]
(1.3.1)

with∆s length of a portion and
#»
t tangent unit vector. ξ∥ and ξ⊥ are drag coefficients, taken

as constant for all portions. Expression of these coefficients is given from eq. (1.1.7)

ξ⊥ ≈ 8πη

ln(2l/a)
≈ 2ξ∥ (1.3.2)

The relevant value for the parameter l , which is in eq. (1.1.7) the length of the object,
has been subject to debate. In the case of helical structure, Lighthill suggested to use
l = 0.09Λ with Λ helical wavelength i.e. the filament contour length corresponding to one
helical loop [80]. Because of its analytical formulation, RFT is widely used to estimate
the viscous forces acting on elongated filaments and usually provides good qualitative

24



CHAPTER 1. INTRODUCTION

understanding. This approach is used in the already mentioned works of Kim et al. and
of Katsamba et al. [13, 71] to estimate the viscous forces acting on a flexible helix. But
errors can get significant when the different portions of the structure are close-by and
that hydrodynamics interactions become significant. This is the case for highly curved or
three-dimensional structures. For rigid helices, Rodenborn et al. [70] found that RFT yields
a very poor estimation of the viscous forces.

Slender-Body Theory and Other Methods

A more complex and accurate approach is slender-body theory (SBT), which takes into
account the hydrodynamic interactions. The so-called local SBT consists in calculating the
flow field created by a moving filament as the flow field created by a discrete collection
of point forces placed along the filament centerline. At this stage, the magnitude of the
point forces are unknown, which corresponds to 3N unknown quantities with N number
of point forces. Due to the linearity of the Stokes equations, the total flow field is simply
calculated as the sum of the flow contribution from each point force. As a no-slip condition
is enforced at solid boundaries, the velocity of the fluid at the filament position is known: it
is simply the velocity of the filament. By equating the calculated flow field to the known
velocities at each position of the point forces, 3N equations are obtained. By inverting the
system, the magnitude of the point forces can be obtained. Thus, both the disturbance
in flow created by the filament and the forces acting on the filament can be calculated. A
more elaborate method, called non-local SBT, adds a discrete collection of force dipoles
along the filament centerline. Naturally, this approach is numerical and no analytical
formulation exists. In the case of rigid helices, and in contrast to RFT, Rodenborn et al. [70]
found excellent agreement between SBT predictions and experimental measurements.

Several other approaches have been developed, notably when the filament cannot
be considered slender. One of them is the so-called Multi-Particle Collision Dynamics
method (MPC) [81]. This numerical approach models the fluid as a collection of point
particles, each defined by its velocity and position. The algorithm consists of alternating
streaming and collision steps. In the streaming step, the particles simply move ballistically.
In the collision step, the particles are sorted into collision groups based on proximity and
interchange momentum with all the other particles within the group. MPC accurately
captures hydrodynamic interactions and potential Brownian fluctuations. This method is
used in the already mentioned study of Li et al. to simulate the behavior of flexible helices
in shear flows [17].

1.3.2 Experimental Approaches

On the experimental side, two approaches, at different length scales, have been explo-
red. On the one hand, working at the macro-scale allows easy fabrication and characteriza-
tion of flexible helices. However, it requires a highly viscous fluid to fall into the viscous
regime and in significant quantity. Control of background flow is complex, and transport
of helices is unpractical, as it requires the channel length to be much greater than the
typical helix size. Furthermore, obtaining high values of shear rate or extension rate is very
difficult. For example, considering glycerol as the fluid, which is a common choice for
macro-scale viscous flows, we have η∼ 1Pa · s and ρ ∼ 103 kg ·m−3. To satisfy Re ¿ 1, we
must therefore satisfy Lv ¿ 10−3 m2 · s−1. For a centimetric object L ∼ 10−2 m, this imposes

25



CHAPTER 1. INTRODUCTION

v ¿ 10−1 m · s−1. Hence, even in a highly confined geometry i.e. with centimetric confining
length, we can reach at most γ̇∼ 1s−1. This approach is thus especially adapted to still fluid
situations and was followed by Jawed et al. to study the rotation of flexible helices in still
fluids [14, 16].

On the other hand, working at the micro-scale allows easy flow control through micro-
fludic techniques and any fluid can be used, including water and water-based suspensions.
Recent advances in micro-fabrication have enabled precise control of small-scale flows in
microfludic devices: various flow fields can be obtained through control of the channel
geometry [82]. Arbitrary channel size can be reached, which allows free transport. Further-
more, very high values of shear rate or extension rate can be obtained. Considering water as
the fluid, we have η∼ 10−3 Pa · s and ρ ∼ 103 kg ·m−3. For a micron-sized object L ∼ 10µm,
falling into the viscous regime requires v ¿ 10−1 m · s−1. Hence, even for a weakly confined
flow, of typical confining length ∼ 100µm, the shear rate value can easily reach γ̇∼ 100s−1.
The micro-scale approach was followed by all the works that studied experimentally the
behavior of flexible helices in moving fluids [6, 72–74]. But the fabrication and characteri-
zation of flexible helices at the micro-scale are a challenge. Indeed, very few methods exist
for the fabrication of micron-sized flexible helices with tunable geometry.

1.3.3 Strategies for Micro-Helix Fabrication

Firstly, helically-shaped biological structures can be used. For example, Marcos et al.
used spirochete bacteria to evidence the lateral drift of flexible helices in shear flows [8].
But the mechanical and geometrical properties are then biologically determined and thus
hardly tunable, which prevents any parametric study. Micro-fabricated model systems are
preferable as they allow more control.

Numerous methods have been reported for the fabrication of micron-sized helices,
using either direct fabrication or spontaneous helix formation. A quantity of methods
have also been proposed for sub-micron helices [83] but such objects require electron
microscopy for imaging, which considerably complexifies experiments. Direct fabrication
methods rely on complex manufacturing techniques, such as 3D-printing [84, 85] or electro-
spinning [86]. For the spontaneous formation methods, a wide variety of mechanisms have
been exploited: bilayer or trilayer systems [87–90], differential swelling [91, 92], material
anisotropy [6, 93, 94], molecular chirality [95, 96], mechanical frustration [97] or surface
tension [20].

The direct fabrication methods usually allow full shape control but result in rigid
structures. Meanwhile, several of the spontaneous formation methods result in flexible
structures [6, 20, 92, 94, 97] but lack control of the helix shape. The characteristics of these
methods are synthesized in table 1.1 and the obtained helices are shown in fig. 1.3 . For
some of these structures, the flexibility is apparent but has not been precisely quantified.
For reference, we recall the typical bending modulus of bacterial flagella B ∼ 10−24 −
10−22 Pa ·m4 [67].

Zastavker et al. reported self-assembly of helical ribbons from a multi-component
solution containing bile salt, a fatty acid and a steroid analog of cholesterol [94]. Images
of the obtained helical ribbons are shown in fig. 1.3 (a). The helical radius can be varied
within R = 5−50µm by tuning the solution composition. However, these helical ribbons
can only adopt three different values for the pitch angle α = 11°,41°,54°. Flexibility of
these structures was demonstrated and quantified by the latter work of Smith et al. [98],
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Study Filament Mechanism Radius Flexibility Shape control

[94] Ribbon Self-assembly R = 5−50µm B ∼ 10−18 −10−17 Pa ·m4 Only 3 possible

pitch angles

α= 11°,41°,54°

[20] Ribbon Surface tension R = 2−100µm B ∼ 10−21 −10−18 Pa ·m4 No control on pitch

angle

[6] Ribbon Strain anisotropy R = 5−30µm B ∼ 10−17 −10−16 Pa ·m4 Full shape control

[92] Ribbon Differential swel-

ling

R = 2−8µm Not measured Inter-dependency

between radius and

pitch angle

[97] Hollow tube Self-assembly R = 0.2−2µm Not measured Full shape control

TABLE 1.1 – Synthesis of the available fabrication methods for micron-sized flexible helices. For two studies,

filament flexibility is apparent but has not been precisely quantified. Full shape control means that all

geometrical parameters i.e. radius, pitch and length, are independently tunable.

FIGURE 1.3 – Various micro-fabricated flexible helices. (a) Self-assembled cholesteric helical ribbons obtained

by Zastavker et al. [94] with (left) low pitch helical ribbon α= 11° and (right) high pitch helical ribbon α= 54°.

(b) Helical ribbons of various materials obtained by Pham et al. [20]. (c) Titanium-made helical ribbons of

various pitch angles α= 20°,50°,70° obtained by Li et al. [6]. (d) Dynamic handedness reversal of a hydrogel

helical ribbon triggered by temperature change, obtained by Zhang et al. [92]. (e) Helical DNA tile tubes with

various pitch angles, obtained by Maier et al. [97].

obtaining a bending modulus of B ∼ 10−18 −10−17 Pa ·m4 i.e. stiffer than typical bacterial
flagella.

Pham et al. reported a self-coiling mechanism from two-dimensional ribbons driven
by surface tension [20]. When the ribbons are immersed in a fluid, they self-coil into a
helical shape. The helical radius is tunable at will and various materials can be used, as
illustrated in fig. 1.3 (b). However, although slightly different values can be obtained for
the helical pitch depending on the material, control of the pitch is not achieved. The
bending modulus varies depending on the ribbon width and thickness and ranges within
B ∼ 10−21 −10−18 Pa ·m4 i.e. close to the typical values for bacterial flagella. Applicability
of this fabrication method to investigate fluid-structure interaction problems has already
been demonstrated, in combination with microfludic flow control techniques [73, 74]. In
this work we adopt this method to produce flexible helices. More details on this method
and on the fabrication process are given in chapter 2 .
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Li et al. obtained helical ribbons by deposition of anisotropic titanium nanomembranes
cut into ribbons [6]. Typical helical ribbons are shown fig. 1.3 (c). Interestingly, full shape
control is reported, which would allow parametric study of the fluid-structure interac-
tions. And applicability of this system for fluid-structure interactions studies has already
been demonstrated. However, the bending modulus was estimated at B ∼ 10−17 Pa ·m4

i.e. significantly stiffer than bacterial flagella. As a result, strong stress must be applied to
deform these structures. Furthermore, the helices ribbons are soldered to the substrate,
thus preventing study of the behavior in shear flows or in extensional flows.

Zhang et al. reported buckling of gold-coated hydrogel ribbons into helices as a result
of differential swelling [92]. The radius and pitch can be varied but are co-dependent, as
shown in fig. 1.3 (d). It is apparent that these helical ribbons are flexible, since morpholo-
gical changes are possible, but the bending modulus was not quantified. Finally, Maier et
al. reported self-assembly of micron-sized helical DNA nanotubes, achieved by selectively
adding or deleting base pair in the DNA filaments [97]. Full shape control is demonstrated
but helical radii do not exceed 2µm. High flexibility is expected given that the filament
diameter is nanometric, but the bending modulus was not quantified.

Overall, most of the presented methods result in ribbon-like filaments with only the
work of Maier et al. producing circular filaments. This comes in contrast with biological
helices, for which the filament is usually cylindrical. This difference in filament cross-
section may induce some variations in behavior between fabricated helical ribbons and
biological helices. So far, the experimental studies relying on micro-fabricated helical
ribbons as model systems have neglected these differences [73, 74, 99]. The fabrication
methog proposed by Maier et al. would allow fabrication of helically-shaped cylindrical
filaments but integrability within a microfludic set-up has not been demonstrated yet.

In this chapter, we have introduced fluid-structure interaction problems and reviewed
some fundamental results. We have underlined the interest of studying the interactions
between flexible helices and viscous flows. The state of the art of this topic was discussed
and we highlighted the crucial coupling between chirality and flexibility. Influence of
the chirality is mainly set by the rescaled helical pitch p/R (equivalent to the pitch angle
α) while influence of the flexibility is set by the filament bending modulus. Accurate
characterization and control of these parameters is thus crucial. Within an analytical or
numerical approach, this is easily achieved but within an experimental approach at the
micro-scale, fabrication of flexible helices with controlled geometrical and mechanical
parameters is a challenge. We reviewed the existing fabrication methods and found that no
method results in flexible helices with full shape and flexibility control.

In this work, we experimentally investigate the mechanics of flexible helices and their
behavior in viscous flows. We rely on the fabrication method of helical ribbons developed
by Pham et al. [20], combined with microfludic flow control techniques. The obtained
helices are highly flexible and control of the radius and length is already achieved. In the
next chapter, we detail the experimental methods as well as the rest of the experimental
set-up.
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CHAPTER 2. FABRICATION OF FLEXIBLE MICRO-HELICES AND EXPERIMENTAL APPARATUS

In this chapter, we describe the experimental methods and techniques leading to
the formation of micron-sized helical ribbons, the characterization of their mechanical
properties and the study of their behavior in flows. Most preparation and fabrication
steps are performed at the PMMH laboratory or at the IPGG micro-fabrication platform.
Notably, the fabrication set-up for helical ribbons was adapted and installed at the PMMH
laboratory. In previous works [1], the fabrication was performed by the Crosby group at
the University of Massachusetts, Amherst, USA. This gives us much more control on the
fabrication settings, as well as a quicker and more efficient feed-back loop to optimize the
obtained helices.

The chapter is organized as follows. In section 2.1 we introduce the principles of the
helix fabrication method and explain the underlying physical phenomenon. In section 2.2
we describe the helix fabrication set-up and the successive experimental steps followed
to obtain helical ribbons. We discuss control of the helix properties, geometrical and
mechanical. We then identify in section 2.3 the key parameters that ensure optimal ribbon
fabrication and helix formation. Finally, in section 2.4 we describe the experimental
apparatus.

2.1 Principle of the Helix Fabrication

The fabrication method relies on the spontaneous coiling of ribbons exhibiting flat
triangular cross-sections. This phenomenon was highlighted and explained by several
works from the Crosby group at UMass [2–4]. Ribbons are prepared through an evaporative
assembly technique. They display, as a result of the fabrication process, a flat triangular
cross-section of width w (typically few micrometers) and thickness t ¿ w (typically tens
of nanometers), as depicted in fig. 2.1 (a). Upon release of the ribbons into a liquid, they
spontaneously coil into a helical geometry. We show in fig. 2.1 (b) a chronophotography of
the coiling process for a ribbon in water. The driving force of the coiling is the reduction of
the surface area induced by bending, and hence of the surface free energy associated with
the ribbon/liquid interface. This bending-induced energy decrease is made possible by the
asymmetry of the ribbons’ cross-section.

Indeed, for a triangular cross-section, the center of area Xca and the center of perimeter
Xcp do not coincide in general. They only coincide in the case of an equilateral triangle,
which is far from our experimental conditions. We set y = 0 at the base of the triangle, the
center of area then corresponds to

yca = 1

A

Ï
y dA = 2

w t

∫ t

0
y w

(
1− y

t

)
dy = t

3
(2.1.1)

while the center of perimeter corresponds to

ycp = 1

P

∮
y dP = 1

P

∫ t

0

y

t

√
4t 2 +w 2 dy = t

2

(
1− w

P

)
(2.1.2)

with the perimeter P = w +
p

w 2 +4t 2 and area A = w t/2. For flat triangular cross-sections,
we have t ¿ w so ycp ≈ 1/4 < yca: there is more perimeter below the center of area than
above the center of area. We consider bending of the ribbon around the width direction,
as represented in fig. 2.1 (c). The intersection of the neutral axis of deformation with the
cross-section is the center of area. The material above the neutral axis is stretched while the
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FIGURE 2.1 – (a) Schematic of a triangular cross-section with thickness t and width w . The ratio t/w is not at

scale with typical experimental values. Xca and Xcp indicate respectively the position of the center of area

and of the center of perimeter. (b) Chronophotography of a ribbon, made with poly(methyl methacrylate)

(PMMA), coiling in water. The time step between pictures is 2 seconds. (c) Schematic illustrating the bending

mode around the width direction, for a triangular ribbon. We draw on the non-curved configuration an

element of the ribbon surface, characterized by its length ds and contribution to the cross-section perimeter

dP .

material below the neutral axis is compressed. Naturally, this corresponds to an increase
in the surface area above the neutral axis and a decrease in the surface area below the
neutral axis. For symmetrical cross-sections, these changes in area would compensate: no
net change in area would be obtained. But for asymmetrical cross-sections, because more
perimeter is situated below the neutral axis than above, a net change in area is obtained.

In more details, we denote #»n the vector normal to the neutral axis andκ the curvature of
the neutral axis. We consider an element of the ribbon surface of length ds and contribution
dP to the total cross-section perimeter. We draw in fig. 2.1 (c) such an element. We denote
#»
X its position. The change of area of this surface element induced by a change of curvature
∆κ is given by

dA =∆κ#»n ·
(

#»
X − #   »

Xca

)
ds dP (2.1.3)

with
#   »
Xca position of the center of area. Integrating over the perimeter gives

dA =∆κP #»n ·
(

#   »
Xcp − #   »

Xca

)
ds (2.1.4)

with
#   »
Xcp position of the center of perimeter. In the case of a flat triangular cross-section,

the surface area change per unit length is simply given by

dA

ds
=−∆κP

t

12
=−∆κ t w

6
(2.1.5)

We do obtain that bending of the ribbon decreases the total surface area. This decrease
in the surface area is associated with a decrease in the surface free energy. It is apparent
from eq. (2.1.4) that this phenomenon is a consequence of the cross-section asymmetry,
allowing

#   »
Xcp 6= #   »

Xca.
Ribbon equilibrium is given by balance with the elastic energy cost associated to

bending. The elastic energy cost per unit length associated with a change of curvature ∆κ
is

dU

ds
= B∆κ2 (2.1.6)
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with B = E I ribbon bending modulus, B = (1/36)Ew t 3 for triangular cross-sections. Mi-

nimization of the total energy per unit length
dE

ds
= B∆κ2 −G∆κ

t w

6
yields a preferred

curvature

κ0 = 1

12

Gt w

B
= 3

G

Et 2
(2.1.7)

where G is the liquid/ribbon interfacial tension. The quantity G/E is the elasto-capillary
length of the material. In most cases we will have G ∼ γ surface tension of the liquid. This
law and the scaling κ0 ∝ 1/t 2 was predicted and experimentally confirmed by the work of
Pham et al. [3]. Interestingly, the mechanism for helix formation is not specific to a material
but stems only from the cross-section geometry.

Flat triangular ribbons hence exhibit a preferred curvature, but there is no energetic
incentive to twisting the ribbons. The preferred ribbon torsion is thus zero, favoring tightly
coiled helices. As shown in fig. 2.1 (b), the helix shape does converge towards a tight
configuration. A non-zero pitch is observed nonetheless due to ribbon non-intersection:
the pitch is determined by ribbon self-contact. The pitch is thus of the order of the ribbon
width w . The resulting object is a uniform tightly packed helical ribbon.

2.2 Experimental Protocol: from Ribbons to Helices

The evaporative assembly technique that produces these flat triangular ribbons is
called the flow-coating method. Here, we describe the successive steps involved, following
the method established by Lee et al. [2].

2.2.1 Preparation of the Slides and Spin-Coating

Firstly, we prepare glass slides coated with a sacrificial layer. In the overwhelming
majority of cases, ribbons will be released in water or in water-based solutions. Thus, the
sacrificial layer is usually water dissoluble. The preparation of the coated slides goes as
follows. Commercially bought glass slides, of size 24mm×40mm×170µm, are carefully
cleaned. The glass slides are sonicated for 15 minutes in three successive solutions: water
and soap, then water, and finally isopropanol. The glass slides are then dried using an air
gun and introduced in an oxygen plasma cleaner during a few minutes. This step further
cleans the surface and enhances the hydrophilicity of the surface. This improves the affinity
between the glass surface and the sacrificial layer that will be coated onto it.

To deposit a thin and homogeneous sacrificial layer, we use a spin-coating method.
The material chosen for the sacrificial layer is suspended in a solvent. Depending on the
ribbon material, we use either a 25mg ·mL−1 solution of polyacrylic acid (PAA, Mw = 1800,
Sigma-Aldrich) in pure water or a 20mg ·mL−1 solution of polystyrene sulfonate (PSS,
Mw = 70×103, Sigma-Aldrich) in pure water. The solution is applied onto the cleaned
and hydrophilized glass surface by spin-coating (using the spin-coater POLOS Spin150i).
For PAA, slides are spun at 3000 rpm (rotation per minute) for 30s, which creates a ho-
mogeneous ∼ 25nm thick layer. For PSS, slides are spun at 500 rpm for 10s, then at 2000
rpm for 40s, which creates a homogeneous ∼ 50nm thick layer. Once the spin-coating is
done, the glass slides are ready for flow-coating. Ribbon can also be prepared on mica
slides. In this case, due to the hydrophilic properties of mica, no sacrificial layer is required.
Commercially bought mica slides are simply cleaved and are ready for flow-coating. The
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freshly cleaved mica slides need to be flow-coated immediately, as they catch dust very
easily.

2.2.2 The Flow-coating Method

The flow-coating method is inspired by the coffee-ring effect, which we illustrate in
fig. 2.2 (a). The coffee-ring effect is the phenomenon of particle accumulation along the
perimeter of a drying droplet of suspension, at the triple-line of contact. The pattern
originates from the outward flow induced by differential solvent evaporation: the liquid
evaporating at the pinned edge is replenished by flow from the bulk. The flow-coating
method leverages this phenomenon to fabricate ribbons.

The material of interest is suspended in a highly volatile solvent (usually toluene). We
denote c the suspension concentration. The materials we work with are poly(methyl metha-
crylate) (PMMA, Mw = 120×103, Sigma-Aldrich) and modified poly(dimethylaminoethyl
methacrylate) (PDMAEMA). The suspension concentration c for PMMA was varied but
typical value is c = 1mg ·mL−1. To the PMMA solution, we add a fluorescent dye (Couma-
rin 153, Sigma-Aldrich) to afford fluorescence of the samples, with typical concentration
1− 5µg ·mL−1. PMMA ribbons are prepared on a PAA sacrificial layer or on mica. The
PDMAEMA was prepared by Dylan Barber at UMass by free radical copolymerization of
dimethylaminoethyl methacrylate (DMAEMA) with 5mol% of benzophenone methacry-
late (BPMA) and 1mol% of fluorescein-o-methacrylate (FMA). Addition of BPMA enables

FIGURE 2.2 – (a) Schematic of the coffee-ring effect in the case of a suspension of particles (represented here

by red disks). The differential evaporation drives the particles to the triple-line of contact. (b) Experimental

apparatus for the flow-coating method. The blade is positioned as to form an angle relative to the substrate

and so that the bottom edge of the blade is parallel to the substrate, at a distance hgap. The solution is loaded

in the wedge. (c) Typical stop-and-go motion prescribed to the stage mounted with the coated glass slide.

The moving time is set by the inter-ribbon distance δ and the moving speed V . (d) Oxygen plasma etching to

remove the inter-ribbon scum layer. Typical thickness of the scum layer is ∼ 5nm. The treatment modifies

the thickness and width of the ribbons.
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pH response while addition of FMA contributes fluorescence. More details on the polymer
preparation can be found in the publication [5]. The suspension concentration c for PD-
MAEMA ribbons is typically c = 16mg ·mL−1. PDMAEMA ribbons are prepared on a PSS
sacrificial layer.

Figure 2.2 (b) illustrates the experimental apparatus used for flow-coating. A centimetric
rigid straight blade sits at an angle relative to the substrate and the bottom edge of the
blade is set parallel to the substrate, at a height hgap. 5µL of solution is loaded in the wedge
between the blade and the substrate. Due to capillary forces, the droplet is pinned under
the blade and the triple-line of contact on the substrate arranges into a straight line. Hence,
the accumulation of particles driven at the edge spontaneously creates a straight ribbon.
Finally, the substrate performs a stop-and-go motion prescribed through a motorized
stage: between intermittent stopping times τs, the stage translates of a fixed distance δ
at a fixed velocity V . We show in fig. 2.2 (c) the typical velocity profile applied during the
stop-and-go motion of the stage. As the stage moves, the meniscus is stretched by the
relative motion of the blade. The contact angle eventually goes below the critical receding
angle, at which point the contact line slips and translates from the same distance δ. This
stop-and-go motion thus leads to well-aligned stripes of the chosen material. We typically
fabricate 10 to 15 ribbons on a given slide, as to increase the total number of helices that
would form.

During the stop-and-go motion, the moving time is much smaller than the stopping
time. Despite this, some particles are still deposited during the stage translation, i.e. bet-
ween the ribbons. This forms a very thin layer of particles between each ribbon termed
the ’scum layer’, as illustrated in fig. 2.2 (d). The scum layer links the ribbons together and
thus prevents ribbon coiling upon release from the substrate. In order to get rid of the
scum-layer, the ribbons are etched by exposure to oxygen plasma after the flow-coating.
This technique is very similar to the reactive ion etching method (RIE), which was used in
previous works [1]. Oxygen plasma etching is isotropic while RIE provides a more directio-
nal etching (downwards usually). Although this difference is essential for some applications
like semiconductor engineering, it is not crucial for us. The oxygen plasma etching is fur-
ther used to control the ribbon thickness and we will describe the method in details in the
next section. Once the scum-layer is removed, the samples are ready for experiments. We
show in fig. 2.3 various examples of fully formed helices, once the ribbons have coiled. The
obtained helices span a very wide range of size, radii ranging from a few microns to more
than 50 microns. PDMAEMA ribbons are fabricated much thicker and forms bigger helices
than PMMA ribbons. PDMAEMA helices tend to exhibit a non-vanishing pitch i.e. p 6= w
but the reason for this remains unclear.

2.2.3 Control of Ribbon Properties

The flow-coating is a highly versatile method to fabricate helical ribbons. As the coiling
phenomenon is not material related, any material can be used in principle, as long as it
can be suspended in a volatile solvent. We work with PMMA and modified PDMAEMA,
but Cd-Se quantum dots and gold nano-particles have also been used [3]. Thus, a wide
range of material properties can be achieved. The material properties (Young’s modulus
E and Poisson’s ratio ν) naturally dictate the mechanical properties of the ribbon. The
geometrical dimensions of the ribbon, thickness t and width w , are controlled by the flow-
coating settings. Together with the mechanical properties, they set the ribbon bending
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FIGURE 2.3 – Various examples of fully formed helical ribbons, made (a) to (g) from PMMA ribbons or (h) to

(j) from PDMAEMA ribbons. Helices span a wide range of radius R0 = 5−70µm and length L = 0.2−3mm.

Images with a dark background are taken using fluorescence microscopy and images with a light background

are taken using phase-contrast bright-field microscopy.

modulus B = Ew t 3/36 and twisting modulus C = µw t 3/12 [6] with µ = E

2(1+ν)
shear

modulus. From these equations, it is apparent that the ribbon thickness is the most crucial
parameter for determining the ribbon moduli.

Please note that fabrication and processing of the PDMAEMA ribbons were done
by Dylan Barber at UMass. We focus specifically in this section on the processing of
PMMA ribbons, giving typical values for this material only. However, the methods that we
implement would be identical to characterize and control PDMAEMA ribbons. We recall
that typical concentration for PMMA and toluene solutions is c = 1mg ·mL−1 and that
PMMA ribbons are prepared on a PAA sacrificial layer.

The work of Choudhary et al. [7] has established the precise influence of the flow-
coating settings, notably the stopping time τs and the gap distance hgap, on the ribbon
geometrical properties. These results were established for both PMMA ribbons and Cd-
Se quantum dots so we can assume they hold true also for PDMAEMA ribbons. They
found that t ∝ τ(3/5)

s and t ∝ h(1/3)
gap . The influence of the concentration was not addressed,

but we can reasonably expect that the obtained thickness would increase with solution
concentration. The translating velocity V was also found to have a weak influence on the
thickness. These findings enable better control of the ribbon dimensions. However, some
fabrication settings are difficult to control, the gap height hgap in particular. Precise control
of this parameter would require mounting the flow-coating apparatus with a camera, thus
complexifying the set-up. We rely on these findings only to control qualitatively the ribbon
dimensions: decreasing gap height, stopping time or suspension concentration to decrease
the ribbon thickness and width and inversely.
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To control precisely the ribbon dimensions, we rather measure the dimensions and use
oxygen plasma etching to decrease the thickness and width. Typical thickness after flow-
coating lies in the range 30−150nm so measurements cannot be performed with a standard
optical microscope. Measurements are performed with an optical profilometer, which uses
a differential interferometry technique (Veeco Wyko NT9100 Optical Profilometer). One
should note that the profilometer only measures the height difference between the ribbon
and the flat surface around it. Therefore, the measured height difference does not include
the scum layer thickness, as illustrated in fig. 2.2 (d). The total ribbon thickness is thus the
addition of the measured height and of the scum layer thickness. For a translating speed of
V = 5mm · s−1 and concentration c = 1mg ·mL−1, typical scum layer thickness is ∼ 5nm.
To estimate the scum layer thickness, we prepare ribbons on bare glass. We then scratch
the surface with a blade and as glass is much more resistant than the scum layer, only
the PMMA scum layer is scratched. Measuring the depth of the scratch, using the optical
profiler, gives the thickness of the scum layer. Once the ribbon thickness is known, the
exposure time to oxygen plasma etching is set to obtain the desired thickness. Knowledge
of the etching rate, i.e. the etching depth per unit time, is naturally also needed. Although
some values have been tabulated in the literature [8], the etching rate is highly dependent
on the etched material and on the machine used and precise etching parameters. The
etching rate therefore needs to be calibrated.

Very critically, in the presence of a sacrificial layer, the ribbon thickness can no longer
be measured after etching was performed. This issue is illustrated in fig. 2.2 (d). Indeed,
as the sacrificial layer is also etched by the oxygen plasma treatment, there is no stable
point of reference conserved during the etching treatment. The thickness measured after
etching includes both the ribbon of interest and some sacrificial layer, which will dissolve
upon release. Hence, the final ribbon thickness before experiments is not measured but
rather computed from the initial thickness, the exposure time to plasma and the etching
rate. Unfortunately, this entails a not so good accuracy in determining the ribbon thickness
prior to experiments.

This sacrificial layer-related problem needs nonetheless to be circumvented in order to
calibrate the etching rate. We proceed simply by preparing ribbons on bare glass. As glass
is not affected by the plasma treatment, the glass surface serves as a point of reference
for the thickness measurements. We can thus track the ribbon thickness before and after
the plasma treatment. Relating the thickness change to the treatment duration gives the
etching rate. Another method is to prepare thick ribbons on a sacrificial layer. A preliminary
etching is done as to completely remove both the scum layer and the sacrificial layer bet-
ween the ribbons. This is ensured by making a scratch with a blade on the substrate. Again,
only the sacrificial layer and the scum layer are scratched and not the glass. Therefore, as
the scum layer and sacrificial layer are completely etched, the scratch disappears. Once
the sacrificial layer is fully etched, the bare glass is exposed and serves again as the point
of reference. For PMMA ribbons processed with a Plasma Diener Pico set with an oxygen
pressure of P = (0.40±0.02)mbar at 90% power, we obtain for both methods an etching
rate of (0.58±0.02)nm · s−1.

2.2.4 Control of the Helix Geometry

The ribbon properties and notably its thickness are also critical in determining the
helix geometry. As described by eq. (2.1.7) , the preferred ribbon curvature is determined
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by the ribbon thickness and by the elasto-capillary length of the material G/E . The ribbon
curvature κ0 is itself linked to the helix radius and pitch angle by the relation κ0 = cos2α/R .
As we have α ∼ 0, the helix radius is directly determined by the ribbon thickness R =
Et 2

3G
. For a given material, the elasto-capillary length is fixed but the helix radius can

be tuned through control of the ribbon thickness, which was described in the previous
section. However, this means that the ribbon bending modulus and the helix radius are
codependent and cannot be freely tuned independently: decreasing the ribbon thickness
decreases the ribbon modulus as well as the helix radius and inversely. The work of Pham
et al. [9] has proposed an empirical relationship between the bending modulus and the
helical radius B = B0 exp(βR) with B0 = (2.6±1.1)N ·m2 and β= (3.5±0.5)×105 m−1.

The helix total length L is directly given by the ribbon length. Immediately after the
flow-coating, the ribbon length is the minimum of the glass slide width and the blade
length. But the length can be very easily tuned by cutting the ribbons prior to experiments.
This is achieved using either a razor blade or a CO2 laser cutter for a more controlled cut.

Finally, as mentioned previously, the preferred ribbon torsion is zero. As the pre-
ferred ribbon torsion τ0 is linked to the helix radius and pitch angle by the relation
τ0 = cosαsinα/R, we indeed have vanishing pitch angle α∼ 0 and vanishing pitch p ∼ 0.
Due to ribbon non-intersection we observe p ∼ w . This is problematic, firstly because a
very tight helix is analogous to a hollow tube, which is not a chiral object. In section 1.2
we have underlined the importance of the chirality in the behavior of flexible helices in
flows. Secondly because this means that we do not have control of the pitch or pitch angle.
Control of the helix geometry is thus incomplete, both radius and length can be freely and
independently tuned but the pitch angle cannot. We describe in chapter 3 the method that
we have developed to achieve control of this parameter, resulting in a fully controllable
helical ribbon.

2.3 Factors for Optimal Helix Fabrication

We recently adapted and installed at the PMMH laboratory the flow-coating apparatus.
Consequently, at the beginning of this work, the fabrication process was not completely
mastered and controlled. Several experimental issues were observed and had to be over-
come. We hence acquired a good knowledge on the factors participating in an optimal
ribbon fabrication and helix formation. This work was done in collaboration with Andrea
de la Sen during her Master research internship. Once again, this analysis was performed
solely for PMMA ribbons.

2.3.1 Ribbon Fabrication Issues

Firstly, in some case, the flow-coating process would not create straight ribbons but
rather pearled-like ribbons, with highly heterogeneous thickness along the ribbon length.
Upon immersion in liquid and release of the ribbons, these pearled ribbons would not
coil into a helix but break up into smaller straight ribbons. A similar problem is observed
for ribbons that would arrange into a wavy pattern, with again highly heterogeneous
thickness. This problem would typically not affect all the ribbons on a given substrate,
only the ones deposited last. The ones being fabricated first would form straight ribbons
as expected. This suggests that this problem is related to the duration of the fabrication
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process, perhaps through a destabilization of the contact line. To test this hypothesis,
we modify the flow-coating stopping time τs. Decreasing the stopping time significantly
reduces this phenomenon, with complete suppression for τs = 500ms. We thus set this as
the default value for the stopping time. We also notice that reducing the gap height hgap

seems to decrease occurrence of this phenomenon. But as precise quantification of the
gap height is difficult, this hypothesis is not confirmed.

2.3.2 Ribbon Detachment Issues

Secondly, in some cases, the sacrificial layer would not correctly dissolve upon im-
mersion in fluid and hence the ribbon would not lift-off and would remain stuck to the
substrate. In order to understand this phenomenon, we test the integrity and the functio-
nality of the sacrificial layer at different steps of the process. First we prepare the sacrificial
layer without any ribbon. To test the integrity of the sacrificial layer, the substrate is scrat-
ched with a blade. As the slide is immersed, the scratch disappears from the substrate,
showing good functionality of the layer. We then prepare ribbons on a sacrificial layer
but do not apply the plasma etching treatment (meant to remove the scum layer). Upon
immersion, we observe full lift-off of the ribbons, linked together by the inter-ribbon scum
layer. Again, the sacrificial layer works as intended. Finally, we prepare ribbons on a sa-
crificial layer and etch the ribbons with varying times of exposure. We find that there is
a critical exposure time to plasma over which the functionality of the sacrificial layer is
altered and ribbons do not detach. Below this value, no significant problems are observed.
This critical exposure time depends on the sacrificial layer thickness, which is controlled
by the spinning speed imposed during spin-coating. For all spinning speeds, slides are
spun for 30s. For spinning speeds below 1000 rpm, centrifugal forces are too weak to coat
uniformly the glass slide. Table 2.1 gives the results.

Spinning speed Sacrificial layer thickness Critical exposure time

1000 rpm (46±5) nm (1.7±0.3) min

1500 rpm (37±5) nm (1.3±0.2) min

2000 rpm (31±5) nm (1.1±0.1) min

2500 rpm (24±5) nm (0.9±0.1) min

3000 rpm (20±5) nm (0.7±0.1) min

TABLE 2.1 – Critical exposure time to oxygen plasma treatment over which the functionality of the sacrificial

layer is altered, for varying sacrificial layer thickness. The sacrificial layer thickness is controlled by the

spinning speed. Below the critical exposure time, no significant problems are observed for the sacrificial

layer: all ribbons lift-off as intended upon immersion.

As shown in table 2.1 , the critical exposure time decreases as the sacrificial layer gets
thinner. As a matter of fact, the critical exposure time roughly corresponds to the time
needed for complete etching of the sacrificial layer. This is tested again by scratching the
substrate before etching and tracking disappearance of the scratch. It remains however
unclear why the complete removal of the sacrificial layer would prevent ribbon lift-off,
since some sacrificial layer is expected to remain below the ribbon. So keeping the exposure
time to plasma below this critical value is a solution to the ribbon detachment problem.
However, this solution caps the exposure time and thus imposes a lower limit to the
obtainable ribbon thickness. The ribbon thickness can also be decreased by decreasing
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the concentration c of the PMMA and toluene solution or by decreasing the stopping time
τs. But default values for these parameters are already fairly low i.e. c = 1mg ·mL−1 and
τs = 500ms, which limits further decrease.

2.3.3 Ribbon Coiling Issues

Finally, in some cases, ribbons would detach as expected but would not coil into a
helical shape. Various shapes were observed, fig. 2.4 gives some examples of unsuccessfully
coiled PMMA ribbons. Commonly in these cases, ribbons would adopt two-dimensional
wavy shapes, constituted of alternating portions of circles, as illustrated in fig. 2.4 (a) &
(b). Sometimes, the coiling process seems to have started but did not complete, leaving a
single loop followed by a wavy pattern, as illustrated in fig. 2.4 (c). We hypothesize that
the issue stems from the PMMA and toluene solution, rather than from the flow-coating
method, which has been shown to work very consistently in the past. Furthermore, as
these coiling issues appeared after several months of experiments, the problem could lie
on the aging of the solution and/or of the components. Specifically, newly bought toluene
is anhydrous while the solubility of water in toluene is 0.3mol% [10]. Similarly, PMMA is
initially anhydrous but can absorb up to ∼ 2wt% of water, which has been shown to affect
its mechanical properties [11, 12]. So we hypothesize that toluene, PMMA or PMMA and
toluene solutions could hydrate over time through ambient humidity, thus affecting the
functionality of the solution.

At first the role of the toluene was investigated. In order to explore the aging hypothesis,
we prepare three different solutions: a first one with months old toluene stored in standard
conditions in the laboratory (simply covered with a stripe of parafilm) ; a second one with
newly bought toluene ; and a third one for which molecular sieves were immersed into the
toluene to induce further desiccation. For all three solutions the same batch of PMMA is
used. We produce several samples with each solution: no significant differences are found
between them, and the coiling issues persist. We thus conclude that aging of the toluene
does not participate in the frustration of helix formation.

We similarly explore the role of PMMA. Three solutions are prepared: a first one with
months old PMMA stored in standard conditions in the laboratory ; a second one with
PMMA stored in vacuum ; and a third one with newly bought PMMA. For all three of these
solutions, the same batch of toluene is used. Again, several samples are prepared with

FIGURE 2.4 – Unsuccessfully coiled PMMA ribbons after lift-off from the substrate. Images are taken using

phase-contrast bright-field microscopy.
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each solution. Interestingly, for the two last solutions i.e. in cases where we expect that the
anhydrous quality of the PMMA was preserved, some helices do successfully coil. But the
coiling issue is only partly suppressed. So hydration of the PMMA does negatively affect
the optimal coiling of helices. This problem can be mitigated by storing PMMA in vacuum.

Finally, we investigate the role of the fluorescent dye (Coumarin 153). We simply prepare
a PMMA and toluene solution without the addition of the dye. In this case, coiling issues
are completely suppressed: all helices coil successfully. This is surprising given the very low
amount of dye typically used in solutions (dye concentration∼ 1−5µg ·mL−1). We conclude
that the main factor frustrating helix formation is the aging of the fluorescent dye. A simple
fix is thus to remove the fluorescent dye from the solution, at the cost of non-fluorescent
helices. But as helices can be imaged by phase-contrast bright-field microscopy (as shown
in fig. 2.3 ), fluorescence is not a critical feature. Surprisingly, removing the fluorescent
dye also solved the detachment issues exposed in section 2.3.2 : any etching time can be
applied while preserving the functionality of the sacrificial layer. This indicates that aged
Coumarin 153 also modifies the interactions between the ribbons and the sacrificial layer
underneath. We expect that using newly bought dye or vacuum-stored dye would also
solve the coiling issues but this hypothesis was not tested.

In conclusion, we optimize the ribbon fabrication method for ribbon lift-off and helix
coiling. The flow-coating stopping time is set at τs = 500ms and the fluorescent dye is
removed from the PMMA and toluene solutions. Both PMMA and toluene are stored in
vacuum prior to solution preparation. The solutions are then also stored in vacuum prior
to their use for flow-coating.

2.4 General Experimental Set-Up

The ribbons are released into a pool of liquid, usually water, connected to a microfluidic
channel. Figure 2.5 (a) illustrates schematically the experimental set-up and fig. 2.5 (d)
shows a picture of the set-up. The channel is printed in polydimethylsiloxane (PDMS,
Sylgard 184, Corning) using standard soft lithography techniques. Dimensions of the
channel vary depending on the intended experiment and will be detailed in the relevant
chapters. Its inlet and outlet are respectively connected to the pool and to a syringe. Flow
rates in the microchannel are controlled by a syringe pump (NeMESYS, Cetoni). Two
micro-manipulators (TransferMan, Eppendorf) mounted each with an open glass capillary
connected to a syringe allow capture and release of the helices by pumping or expelling
liquid. This allows precise manipulation of the helices in all directions. One of the open
glass capillaries can be replaced by a carbon fiber cantilever for force measurements. The
tip of each capillary is coated with bovine serum albumin (BSA) by immersion in a 2wt%
water and BSA solution for 15min. This decreases the non-specific contact forces between
the capillaries and the helices, allowing helix release. The tip of the cantilever is not treated
as to afford adhesion with helices. The whole set-up is mounted on an inverted optical
microscope (Zeiss Axio Observer) connected to a numerical camera (Hamamatsu Orcaflash
LT 4.0). When using fluorescent microscopy, a UV-source is used (HXP 120 lamp, Zeiss)
combined with a filter set matching the Coumarin 153 excitation bandwidth (filter set 40,
Zeiss). UV light influx is controlled by a shutter (Shutter Uniblitz V25).

Upon release in the pool, the ribbons quickly adopt a tight helical configuration. A
helix is selected, and one of its ends is caught and clamped by the first capillary, which we
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FIGURE 2.5 – (a) Schematic of the experimental set-up. The capillary puller can be replaced by a carbon fiber

cantilever to conduct force measurements. The whole set-up is mounted on an inverted microscope equipped

with a numerical camera for imaging. (b) PMMA helix clamped at one end, using the holder capillary. (c)

PMMA helix clamped at both ends, using both open glass capillaries. (d) Picture of the experimental set-up

with 1© syringe pump for control of the flow in the channel, 2© & 3© two micro-manipulators, 4© motorized

stage, 5© digital camera, 6© outlet of the channel connected to a syringe, 7© & 8© respectively puller and

holder capillary and 9© fluid pool connected to the PDMS microchannel.
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call the holder, by pumping liquid into the capillary. Figure 2.5 (b) shows an example of
a PMMA helix clamped at its right end by the holder. We can then approach the second
capillary, which we call the puller, or the carbon fiber cantilever in order to manipulate
the helix or to conduct force measurements. Figure 2.5 (c) shows a PMMA helix clamped
at both ends, using the holder and the puller. The helix can also be positioned inside the
microfluidic channel, in order to conduct flow experiments. All experiments are conducted
at room temperature T = 22°C.

Open Glass Capillary

The glass capillaries are prepared from standard glass tubes with 1mm outside diameter
and 0.58mm inner diameter, using a micropipette puller system (P-1000 Flaming/Brown,
Sutter). This creates a very thin closed tip, of typical diameter ∼ 1.5µm. The closed tip is
then melted to open the capillary, using a heated glass bead (MF-830 Microforge, Narishige
International). The final tip diameter of the open glass capillary ranges within 5−20µm.

Carbon Fiber Cantilever

The cantilever is cut from a circular carbon fiber to L ∼ 1cm in length and glued to the
end of a glass tube. The cantilever radius is r = 4µm. The glass tube is mounted on one of
the micro-manipulators, in place of the puller capillary. To calibrate the stiffness modulus
B of the cantilever, the cantilever is dragged perpendicularly to the cantilever direction
and at constant velocity v in still water. This is equivalent to immersing the cantilever in a
uniform flow with flow velocity v . The tip deflection δ is measured from the experimental
images. The imposed flow velocity is at most v ∼ 6mm · s−1 so the Reynolds number is at
most Re ∼ 2×10−2, r being the relevant dimension of the flow. The flow is thus viscous. We
model the viscous hydrodynamic forces as a uniform distributed load, with f the force per

unit length. We use resistive-force theory to estimate the load f = ξ⊥v with ξ⊥ = 8πη

ln(2L/r )
,

η being the fluid viscosity. In this case, the tip deflection is given by δ= ξ⊥vL4

8B
. Table 2.2

gives the experimental results with data plotted in fig. 2.6 .

Dragging speed Tip deflection

0.50 mm · s−1 8.0µm

0.99 mm · s−1 15.4µm

1.98 mm · s−1 31.7µm

2.96 mm · s−1 48.0µm

3.95 mm · s−1 64.8µm

4.94 mm · s−1 82.2µm

5.94 mm · s−1 101.5µm

TABLE 2.2 – Experimental results for the calibration

of the cantilever stiffness

FIGURE 2.6 – Cantilever tip deflection δ as a function

of dragging speed v

As shown, the obtained results are accurately fitted by a linear relationship (correlation
coefficient 0.999), which confirms the viscous nature of the flow. From these results we
calculate B = (1.55±0.02)×10−11 Pa ·m4. As B = Eπr 4/4 for a cylindrical fiber, this corres-
ponds to a Young’s modulus E = (77.3±1.1)GPa for the carbon fiber, consistent with typical
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values. For the case of an end-load with force F , the tip deflection is δ = F L3/3B . With
typical cantilever length L ∼ 1cm, a deflection of ∼ 10µm is associated with an end-load
∼ 4×10−10 N. Thus, sub-nanonewton forces can be measured with the cantilever.

In this chapter, we have introduced the various experimental methods and techniques
that we will use throughout this work, and the general experimental apparatus was descri-
bed. We have detailed the fabrication process of flexible micron-sized helical ribbons. We
have highlighted that the helical radius is set by the ribbon thickness t and by the material
elasto-capillary length γ/E

R = Et 2

3γ
(2.4.1)

Control of the ribbon thickness is achieved through oxygen plasma etching prior to experi-
ments, which in turn affords control of the helical radius. Total filament length L is tuned
by simple cutting of the samples. Control of the pitch angle is however missing, and helices
tend to arrange into tightly coiled geometries, with thus very weak chirality. In the next
chapter, we address this issue by implementing an in-situ pitch modification process.

Several experimental issues were observed, affecting detrimentally ribbon fabrication
and the self-coiling phenomenon. These issues appear to be related to aging of the chemi-
cal compounds, PMMA and fluorescent dye specifically, through hydration by ambient
humidity. These issues are mitigated by storing components in vacuum prior to their use.
Removal of the fluorescent dye also participate in lessening these effects.
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CHAPTER 3. CONTROL OF THE HELICAL PITCH

In the previous chapter we have described the flow-coating method to produce flexible
helical ribbons. As we mentioned, several materials can be used, allowing a wide range of
material properties. Furthermore, both the total filament length L and the helical radius
R can be freely and independently tuned. The length is tuned by cutting the ribbons
prior to experiments to the desired value. The helical radius is controlled by the ribbon
thickness, which can be tuned by modifying the flow-coating settings or by plasma etching
the samples prior to experiments. However, the helical pitch p and pitch angle α are not
controlled and cannot be tuned. Control of the helix geometry is incomplete.

In this chapter, we address this issue by implementing an in-situ pitch modification
process. The overall helix fabrication method is now a two-step process: the first step
is the flow-coating and helix coiling and the second step is the newly developed pitch
tuning process. The full workflow is illustrated in fig. 3.2 . Our method triggers irreversible
deformation in the material to shape helices into the desired geometry. Depending on
the desired final geometry, different methods can be applied. Several materials are tested:
PMMA, PDMAEMA and Cd-Se quantum dots, demonstrating the method’s versatility. The
chapter is organized as follows. In section 3.1 we explain the general principles of the
method. In section 3.2 we introduce several mechanical concepts necessary to better
describe and understand the method. We study in more details the mechanics of deformed
helices in chapters 4 and 6 . Section 3.3 describes and characterizes specifically the method
resulting in a uniform non-zero pitch. We describe in section 3.4 how more complicated
shapes can be obtained. Finally in section 3.5 we discuss these experimental findings and
identify the physical phenomenon at play.

3.1 Principles of the Method

We observe that when stress is exerted on a helical ribbon, some deformation persists in
the structure even after the stress is relaxed. These observations were made since the first
works making use of these helical ribbons. In their 2013 work [1], Pham et al. submitted
quantum dot helical ribbons to a series of axial viscous flows, by dragging helices at
constant velocity in still water. We reproduce in fig. 3.1 (a) the force-extension curves that
they obtained. Hysteresis of the deformation is clearly visible, especially at high strain:

FIGURE 3.1 – (a) Force-extension curves for a quantum dot helical ribbon submitted to a series of three flow

steps at increasing velocity, reproduced from [1]. The force is the total drag force induced by the flow and is

measured using a cantilever. Inset zooms on the two small strain curves. (b) Stretch ratio H/H0 for a PMMA

helical ribbon submitted to a series of three identical flow steps, reproduced from [2].
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when the force is relaxed, the initial axial length is not recovered. Similar observations
were made in their 2015 work [2] for PMMA helical ribbons similarly submitted to viscous
axial flows. We reproduce in fig. 3.1 (b) the stretch ratio H/H0 as a function of time while a
series of three identical flow steps is applied. H0 is the initial axial length of the helix. As the
helical ribbon is extended by the imposed flow, it never reaches equilibrium. Furthermore,
when the flow is stopped, the initial axial length is not recovered i.e. H/H0 > 1: the resting
axial length has slightly increased as a result of the flow step. These observations were
confirmed by the work of Daieff et al. [3] again for PMMA helices in viscous flows.

We show that this phenomenon can be leveraged to tune the helical pitch. The process
is executed in-situ, after release and coiling of the ribbons. For all methods, a helix is
selected and one of its end is caught and clamped by the holder capillary. This helix end
remains clamped throughout the whole experiment. The process consists in creating a
persistent stress in the material by extending the helix for a long period of time, typically
several minutes. The helix is then allowed to relax to equilibrium. Different stress profiles
can be applied to locally control the final helix geometry, as shown in fig. 3.2 (a) to fig. 3.2
(c): uniform stress, piecewise uniform stress or non-uniform stress.

Uniform stress is achieved by end-loading the whole helix, as shown in fig. 3.2 (a).
Piecewise uniform stress is achieved by end-loading only a fraction of the helix, as shown
in fig. 3.2 (b). Finally a gradient stress profile is realized by immersing the helix in an axial
viscous flow, as shown in fig. 3.2 (c). Each stress profile is associated to a different change in
geometry. These pitch control methods cannot be used to decrease the pitch since inward
forces buckle the helix instead of compressing it. But as helices display vanishing pitch in
their initial state, arbitrary values for the helical pitch can be reached nevertheless.

FIGURE 3.2 – Fabrication work-flow: firstly ribbons are fabricated and coiled into helices ; secondly, the

pitch is encoded. (a) to (c): different methods for pitch tuning, depending on the stress applied, either (a)

uniform stress, (b) piecewise uniform stress or (c) non-uniform stress. For each method we show a schematic

of the method, a representation of the stress profile along the filament and corresponding before/after

experimental images. For all experimental images, no stress is applied: the helix is at equilibrium. Images

are taken using phase-contrast bright-field microscopy (light background) or fluorescent microscopy (dark

background).

3.2 Mechanics of Deformed Helical Ribbons

The helical structure is highly slender (R/t ∼ 300− 1000) so deformation of helical
ribbons is dominated by bending and twisting of the filament, filament elongation being
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FIGURE 3.3 – Schematic of the two modes of ribbon bending. (a) Bending around the width, the corresponding

bending modulus is B . (b) Bending around the thickness, the corresponding bending modulus is A.

negligible. The corresponding material moduli are B bending modulus and C twisting
modulus. The bending modulus B corresponds to bending of the ribbon around the
width direction, as illustrated in fig. 3.3 (a). Both scale similarly C ∼ B ∼ Ew t 3 but are

not equal. More precisely, for a flat triangular cross-section, we have B = 1

36
Ew t 3 and

C = 1

12
µw t 3 with µ shear modulus [4]. We finally introduce the stresses corresponding

to material bending and torsion, respectively the local bending stress σbend and the local
torsional shear τshear. As the helix is deformed, their maximum values on the cross-section
are respectively: σbend = 2

3 Et∆κ and τshear = µt∆τ [4]. ∆κ is the local change in material
curvature and ∆τ is the local change in material torsion, both calculated between the
deformed state of the helix and the reference state.

The second bending modulus A scales symmetrically A ∼ Ew 3t . The bending modulus
A corresponds to bending of the ribbon around the thickness direction, as illustrated
in fig. 3.3 (b). The filament being a flat ribbon (t ¿ w), A is much higher than B and
C . The elastic energy cost associated to bending around the thickness direction is hence
much higher than for the two other modes of deformation: bending around the thickness
direction can be neglected. In this case, the material frame coincides with the Frenet
frame of the centerline [5, 6]. The material curvature and material torsion can thus be
computed as the Frenet curvature and Frenet torsion of the centerline. Therefore, ∆κ and
∆τ can be calculated as the local change of Frenet curvature and the local change of Frenet
torsion between the deformed state and the reference state. The exact value for the Frenet
curvature or torsion depends in a complex way of the precise geometry of the helix. For
a uniform helix (uniform radius and angle), the Frenet curvature is κ= cos2α/R and the
Frenet torsion is τ= cosαsinα/R . So we can establish that changes in curvature or torsion
both scale as ∆κ ∼ ∆τ ∼ 1/R. And thus, the bending stress and the torsional shear scale
similarly σbend ∼ τshear ∼ E (t/R).

Specific to the cases of end-loading and partial end-loading, illustrated in fig. 3.2 (a)
& (b), we introduce the axial force F , force necessary to increase the axial length by ∆H .
The work of Love [7] has established that the tension force scales as F ∼ (C /R2)× (∆H/L).
Thus the tensile stress σtens scales as σtens ∼ F /w t ∼ E (t/R)2. Given that t ¿ R, we have
σtens ¿σbend,τshear: bending and twisting effects are indeed dominant while the filament
can be considered inextensible. The exact value of the tension force depends in a complex
way on the helix geometry. For weak forces or equivalently for small deformations, Starostin
et al. [8] obtained analytically

F = C

R2

∆H

L

1

cos2α
(
cos2α+ (C /B)sin2α

) (3.2.1)
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3.3 Uniform Stress: the Stretching Treatment

3.3.1 Method and Observations

The uniform stress method, termed ’stretching treatment’, is done in three steps de-
picted in fig. 3.4 (a). First the free end of the helix is grabbed by the puller capillary. We
then impose to the helix a fixed axial extension ∆Himp for several minutes by displacing
the puller. Finally, the free end is released from the puller by expelling liquid out of the
capillary and the helix is let to relax. As a result from this process, we observe a permanent
increase in the helical pitch and thus in the axial length (comparison between top and
bottom images of fig. 3.4 (a)). The resulting change in axial length is noted ∆Hres.

We show in fig. 3.4 (b) the changes in geometry resulting from several successive
stretching treatments, applied to a PMMA helical ribbon. The helix mean pitch angle
gradually increases from 8° to 48°. Around twenty stretching treatments were performed
during this experiment, but we only show a selection of experimental images in fig. 3.4
(b). Three stretching treatments were performed between each image. The corresponding
pitch angle distributions along the filament length are shown in fig. 3.4 (c). The increase in
pitch angle is uniform along the length, which tends to minimize initial heterogeneities in
the pitch angle distribution. This uniform increase is consistent with the fact that, for an
end-loading, the elastic stress and the elastic deformation are uniform along the filament
length.

For the same experiment, the temporal evolution of the helix mean pitch angle fol-
lowing the successive stretching treatment is plotted in fig. 3.4 (d). This time the full
evolution of the helix is shown, after each stretching treatment is performed. The data
points corresponding to the images shown in fig. 3.4 (b) are highlighted. As shown, the
pitch angle can only increase throughout the experiment and does so as a consequence of
the stretching treatments. We can therefore use the helix mean pitch angle to track progress
of a given experiment. The pitch angle is preferable to the pitch because the pitch angle
is expressed as the rescaled pitch p/R: this allows easier comparison between different
helices, exhibiting different sizes.

Figure 3.4 (e) & (f) show respectively the evolution of the helix axial length H and helix
radius R as a function of mean pitch angle, the angle being used to track progress of the
experiment. The evolution of H is accurately fitted by the expected geometrical relation
H = L sinα, meaning that the total filament length L is kept constant throughout the
experiment. This was expected considering the high slenderness of the filament: uniaxial
elongation of the ribbon is negligible (see section 3.2 for more details). However, we note
that the helical radius R evolves slightly as a side effect of the treatment. The radius change
is negligible until ∼ 30° pitch angle but then increases up to ∼ 25% of its initial value. This
change in helical radius causes a change in the number of turns, which is visible in fig. 3.4
(b).

3.3.2 Characterization of the Stretching Treatment

To describe more accurately and characterize the stretching treatment, we measure the
resulting increase in axial length ∆Hres as a function of imposed axial elongation ∆Himp

for several PMMA helices. The duration of the treatment ∆t is kept constant for a given
helix but varies from helix to helix. We also characterize the process for the other materials
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FIGURE 3.4 – (a) Experimental images illustrating the uniform pitch increase process through end-loading,

termed stretching treatment. The helix right end is clamped by the holder capillary. The left end is grabbed

by pumping liquid into the puller capillary. By displacing the puller capillary, an axial extension ∆Himp

is imposed to the helix. After several minutes, the left end is released by expelling liquid out of the puller

capillary. The resulting increase in axial length is denoted ∆Hres. Images are taken using phase-contrast

bright-field microscopy. (b) One PMMA helix after several successive stretching treatments, the first image

corresponds to the initial state of the helix. (c) Corresponding pitch angle distribution along the filament

length. (d) Temporal evolution of the helix mean pitch angle as the experiment progresses. (e) Axial length

H as a function of mean helix pitch angle following the successive stretching treatments, fitted (one fitting

parameter) by the expected geometrical relation H = L sinα. (f ) Evolution of the helical radius R as a function

of mean helix pitch angle.

(PDMAEMA and quantum dots), but in less details, in section 3.3.3 .

Results are presented in fig. 3.5 (a). For all tested helices, the resulting increase in
axial length is linear with the imposed stretching: ∆Hres ∝∆Himp. The linear relationship
is preserved even for the smallest imposed stretching, suggesting that there is no strain
or stress threshold to trigger the pitch increase phenomenon. Furthermore the slope of
this linear relationship is itself linear with the treatment duration ∆t , as shown in inset
of fig. 3.5 (a). The resulting increase in axial length is thus both linear with time and with
the imposed stretching: ∆Hres ∝∆Himp×∆t . Naturally, we expect the axial length increase
to saturate for very long stretch time. Specifically we expect that lim∆t→∞∆Hres =∆Himp.
But this saturation effect is not observed within the range of treatment duration that we
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FIGURE 3.5 – Outcome of successive stretching treatments applied to several PMMA helices. (a) Resulting

increase in axial length ∆Hres as a function of imposed axial stretching ∆Himp, both rescaled by the total

length L. Dashed colored lines are linear fitting. Inset shows the slopes of the linear fittings as a function

of treatment duration ∆t , with linear fitting (blue dashed line). (b) Time-corrected ratio r /∆t with r =
∆Hres/∆Himp as a function of helix pitch angle and (c) as a function of force F applied to stretch the helix.

have tested i.e. up to 3 minutes. The ratio r =∆Hres/∆Himp divided by the duration time
∆t is therefore roughly constant throughout all PMMA helices: r /∆t = (5.0±1.0)% ·min−1.
This time-corrected ratio can be interpreted as follows: for each minute of treatment, the
helix axial length is permanently increased by ∼ 5% of the imposed stretching. This ratio is
characteristic of the material, independently of the helix geometrical parameters. However,
the geometrical parameters were varied in a quite narrow range, radii ranging within
5−12µm and lengths within 250−850µm. Hence, a weak influence of the geometrical
parameters on the time-corrected ratio cannot be excluded.

We check that this time-corrected ratio does not vary with pitch angle, as shown in
fig. 3.5 (b). We recall that the pitch angle tracks progress of a given experiment and acts
as a proxy for time and number of applied treatments. The non-correlation with pitch
angle means that neither time nor repeated treatments have an influence on the stretching
treatment. The history of the system has no influence on its subsequent evolution. We
also check that the time-corrected ratio does not vary with the tension force applied, as
shown in fig. 3.5 (c). Equation (3.2.1) is used to compute the tension force. The tension
force applied during the treatment has no influence on the output of the treatment, only
the displacement matters. This highlights the convenience of imposing the displacement
during the stretching treatment, rather than imposing the force.

Finally, we calculate the typical stress values (bending stress and torsional shear) impo-
sed during stretching treatments, using the expressions given in section 3.2

σbend = 2

3
Et∆κ and τshear =µt∆τ (3.3.1)

with ∆κ and ∆τ the change in Frenet curvature and Frenet torsion respectively, calculated
between the deformed state and the reference state. We calculate these quantities by
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approximating both the reference state and the deformed state to a uniform helix (uniform
radius and angle). The curvature change and the torsion change can thus be calculated as

∆κ= cos2α′

R ′ − cos2α

R
and ∆τ= cosα′ sinα′

R ′ − cosαsinα

R
(3.3.2)

with α′ and R ′ taken respectively as the mean pitch angle and the mean radius in the
deformed state. For both stresses, we obtain vanishing values: σbend/E = 10−4 −10−3 and
τshear/µ= 10−4−10−3 . Hence, the local material strains are at most 10−3 during a stretching
treatment.

In conclusion, control of the stretching treatment is very convenient: the increase
in axial length is directly proportional to the imposed stretching and to the treatment
duration. No stress or strain threshold is observed. The effectiveness of the treatment,
quantified by the time-corrected ratio r /∆t is a property of the material: no influence
of the geometrical parameters is found. Furthermore, the time-corrected ratio does not
vary with time or repeated stretching treatments. From our experimental data for PMMA
helices, we calculate (r /∆t )PMMA = (5.0±1.0)% ·min−1.

3.3.3 Other Materials

The stretching treatment, yielding uniform pitch increase, gives similar results for the
two other tested materials: PDMAEMA and quantum dots. Figure 3.6 (a) shows an example
of two successive stretching treatments applied to a quantum dot helix. Fabrication of the
quantum dot helices and data collection was performed by John Pham (University of Ken-
tucky). The quantum dot helices consist of highly packed, 8nm semiconductor Cadmium
Selenide (Cd-Se) quantum dots functionalized with chemically reactive undecenylthiol
(UDT) ligands. Quantum dots are inherently fluorescent. More details on fabrication and
set-up can be found in a previous publication [9].

For quantum dot helices, we similarly obtain a uniform increase in the helical pitch
as a result of the stretching treatment. We show in fig. 3.6 (b) the result of one stretching
treatment applied to a PDMAEMA helix. Again, uniform pitch increase is observed. For
these two materials, a detailed characterization was not conducted. We assume that the
findings made for PMMA hold true, notably that the time-corrected ratio is intrinsic
to the material. From these two experiments, we estimate the time-corrected ratio for
quantum dot helices and for PDMAEMA helices. For quantum dots helices, we found

FIGURE 3.6 – Examples of stretching treatments applied to other materials: (a) two successive stretching

treatments applied to a quantum dot helix ; (b) a single stretching treatment applied to a PDMAEMA helix.

Images are taken using fluorescent microscopy.
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(r /∆t)QD ∼ 7% · s−1 (notice the change in the time unit). The value of the time-corrected
ratio is significantly higher than for PMMA helices. For PDMAEMA helices we estimate the
time-corrected ratio to an intermediate value (r /∆t )PDMAEMA ∼ 1% · s−1.

The value of the time-corrected ratio r /∆t , specific to a material, is highly important. On
the one hand, a high value would make the helical ribbons unusable in other contexts as any
stress applied to the helix would deform it irreversibly within seconds. One the other hand,
a vanishing value would make the stretching treatment very slow and thus inconvenient to
conduct. A value of a few percent per minute is desirable. The stretching treatment can
be performed in reasonable time (several minutes), and irreversible deformations can be
neglected during other experiments, as long as experiment duration does not exceed a few
minutes. Overall PMMA helices display the most favorable time-corrected ratio for control
of the pitch angle.

3.4 Towards More Complex Shapes

3.4.1 Piecewise Uniform Stress: the Double-Helix

As shown in the previous section, end-loading the helix increases the pitch uniformly
along the whole filament. We demonstrated that the increase in axial length is directly
proportional to the stretching imposed during the treatment. Consistently with these
observations, loading only a fraction of the helix yields a uniform pitch increase only in
the loaded part. This partial stretching treatment is similarly conducted in three steps: an
arbitrary point of the filament is clamped by the puller capillary, the helix portion between
the two capillaries is extended by displacement of the puller and finally the helix is let to
relax to equilibrium. The stress applied during the treatment is piecewise uniform. We
illustrate this process in fig. 3.7 using a PMMA helix. In this case, we stretch roughly the
right half of the helix. This process results in a two-part helix, each part displaying uniform
but distinct pitch distribution. We can thus locally control the pitch and pitch angle by
selectively applying the stretching treatment to different sections of the helix.

FIGURE 3.7 – Fabrication of a PMMA double-helix by selectively applying the stretching treatment, here only

on the right part of the helix. Each part displays a uniform but distinct pitch distribution. Images are taken

using phase-contrast bright-field microscopy.

Local control of the helix geometry allows many applications. The double-helix may
be used as a model system for a uni-flagellated bacteria: a chiral helically-shaped flexible
flagella attached to a non-chiral cylindrical body. Most geometrical properties can be tuned
at will: body and flagella length as well as pitch angle of the flagella. This allows detailed
parametric exploration of the interactions between uni-flagellated bacteria and viscous
flows. The double-helix may also be used as a force sensor with extended measurement
range. The pitch angle indeed has a strong influence on the stiffness constant of a helical
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ribbon: increasing the pitch angle effectively stiffens the helix. The work of Starostin et al.
[8] gives the spring constant k of a helical ribbon

k ∼ C

R2L

1

cos2α

The double-helix is hence constituted of a softer sensor (small angle part) and a stiffer
sensor (high angle part). This effectively increases the measurement range: the small angle
part measuring weak forces and the high angle part measuring strong forces. The added
measurement range is quantified by the ratio of the spring constants k ′/k, with k spring
constant of the small angle part and k ′ spring constant of the high angle part. In the simple
case were both parts have same length and radius, the spring constant ratio is simply
k ′/k = (cosα/cosα′)2 = 1/cos2α′ since for the small angle part has vanishing pitch angle
i.e. α ∼ 0. In theory, the ratio of the spring constants and thus the added measurement
range can be set at will. In practice we can reach up to 70° for the high angle part, which
would result in a spring constant ratio of k ′/k ∼ 8. But the ratio can be further increased by
decreasing the length and/or radius of the stiffer section.

3.4.2 Non-Uniform Stress: the Flow Treatment

The helix can finally be loaded by a non-uniform stress. We achieve non-uniform stress
by immersing the helix in an axial viscous flow. For this method, termed ’flow treatment’,
the helix is positioned at the center of the microfluidic channel and a flow is applied from
the clamped end towards the free end, extending the helix. In this case, we use a simple
rectangular channel of height H = 650µm and width W = 250µm. The flow is parabolic
in the channel but as the typical helical radii are small compared to the channel size, we
consider that the helix is immersed in a locally uniform flow. After several minutes, the
flow is stopped, and the helix relaxes to equilibrium. Figure 3.8 (a) illustrates the different
steps of the process. The overall axial length is increased as a result of the flow treatment
but this time the pitch distribution is not uniform.

Figure 3.8 (b) shows the result of several successive flow treatments applied to a PMMA
helix. The corresponding pitch distributions, plotted in fig. 3.8 (c), are accurately fitted by a
linear function of the contour position s/L. The pitch increase is maximum at the clamped
end (s/L = 1) and zero at the free end (s/L = 0). The pitch increase distribution matches
the distribution of elastic deformation imposed during the flow treatment, which can be
approximated to a linear function of contour position [2]. This confirms that, similarly to
the stretching treatment, the local deformation resulting from the flow treatment is directly
proportional to the imposed local elastic stretching.

In contrast to the stretching treatment, the flow treatment is force-controlled, since we
impose the velocity of the flow and thus the viscous forces acting on the helix. Control of the
flow treatment is hence less practical than control of the stretching treatment. Furthermore,
precise calculation of the viscous forces acting on the helix is not straightforward, requiring
the use of numerical tools such as slender-body theory [10]. Fabrication of helices with
controlled geometry using this method is therefore impractical.

However, our experiments show that these helical ribbons can serve as a detailed
sensor of the flow history imposed upon the helix. The total length increase tracks the
total solution volume moved through the channel and the pitch increase distribution gives
information on the local flow geometry. Notably, a uniform flow results in a linear increase
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FIGURE 3.8 – (a) Experimental images illustrating the flow treatment. The helix right end is clamped by

the holder capillary and the helix is positioned at the center of the microchannel. Flow is applied from

the clamped end to the free end. Images are taken using fluorescent microscopy and hence the capillary

is not visible. (b) One PMMA helix after several successive flow treatments, the first image corresponds to

the initial state of the helix. The images marked A© and B© are the same as in (a). (c) Corresponding pitch

distribution along the filament length, with linear fit in dashed lines. s = 0 corresponds to the free end while

s = L corresponds to the clamped end.

of the helical pitch. For non-uniform flows, we expect the pitch increase distribution to
simply match the distribution of the elastic stretching imposed by the flow. The different
materials can be used to tune the sensitivity of the sensor: quantum dot helices for short
times or weak flows or PMMA helices for long times or strong flows.

3.5 Discussion of the Physical Phenomenon

The irreversible deformations that we observe, and on which the methods for shape
control rely, happen under persistent stress at a slow rate. They occur at very low strain
and stress: typical values calculated for the local strains range within 0.01−0.1% during
deformations. These vanishing local strain values are obtained despite significant glo-
bal displacement: this is a consequence of the high slenderness of the helical structure,
specifically that the ribbon thickness is much smaller than the helical radius.

Such sizable irreversible deformations are not expected for bulk materials, especially
considering the vanishing strain values. For bulk PMMA under uniaxial tension for example,
typical yield stress is σmax ∼ 60MPa and typical Young’s modulus is ∼ 3GPa, leading to a
typical yield strain of εmax =σmax/E ∼ 2% [11, 12]. For bulk PMMA under shear deforma-
tion, values reported for the yield strain are even higher, around 10% [13, 14]. But in recent
years, multiple studies have highlighted significant changes in the mechanical properties
of polymeric materials in confined geometry compared to bulk. In the following, we review
the literature to identify the origin of these deformations.
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3.5.1 Yield Behavior of Confined Polymers

Firstly, we focus on the yield behavior of confined polymers. Several authors have
reported a decrease in the yield stress for polymers in highly confined geometries [15–17].
This effect could effectively limit the range of the material linear regime, thus leading to
an enhanced susceptibility to plastic deformations. Confinement is observed when the
typical thickness of the geometry hF is reduced below the polymer radius, typically given
by the chain end-to-end radius Ree. The magnitude of the confinement is then given by
the ratio of the film thickness to the polymer radius hF /Ree. In our case, ribbons are made
out of PMMA with Mw = 120kDa, the end-to-end radius is Ree ≈ p

0.425×Mw = 23nm,
calculated from the classical literature expression [18, 19]. As typical ribbon thickness is
t ∼ 10nm, the polymer chains are indeed confined in our experimental conditions.

For PMMA thin films specifically and using a similar molecular weight (Mw = 104kDa),
Bay et al. [20] have reported a ∼ 40% decrease in the tensile strength compared to the
bulk value, as the film thickness was lowered down to hF /Ree ≈ 1/2. The tensile strength
is expected to further decrease with the film thickness but experimental data are lacking
for hF . Ree/2. This decrease in yield stress is usually interpreted as a consequence of a
loss of interchain entanglements due to the free surface [21–23] and an increased mobility
of polymer chains near the free surface [24]. Similar confinement effects are achieved
by loading the material with hard nano-particles: confinement is then observed when
the inter-particle distance is smaller than the polymer radius [25, 26]. The presence of
particles acts in a similar fashion than a free surface and decreases the amount of interchain
entanglement. But Bay et al. also observed a decrease in the Young’s modulus E as the film
thickness was decreased below the typical polymer radius, confirming findings of previous
studies [27, 28]. Thus the yield strain may be only weakly affected by the confinement,
although this is not examined by the work of Bay et al. Such a phenomenon has been
reported for polystyrene (PS) thin films [16], which exhibit an increase in yield strain
compared to bulk while the yield stress decreases. This is a consequence of a comparatively
larger decrease in Young’s modulus.

Several differences exist between these studies and our experimental conditions that
we must discuss before drawing conclusions. Firstly, the results of Bay et al., much like
most of the cited literature, are obtained for polymer thin films submitted to uniaxial
tension, while in our experimental conditions, materials are mainly submitted to torsional
shear. To our knowledge, no literature is available on the yield behavior of polymeric thin
films submitted to torsional shear. But for bulk PMMA, the shear yield strain is higher
than the tensile yield strain and so we can expect that it is also the case for PMMA thin
films. Hence, this difference probably drives an increase in the yield strain compared to
the results of Bay et al. Secondly, the literature only addresses the case of uniformly thick
films i.e. with rectangular cross-sections. In our experimental conditions, ribbons exhibit a
triangular cross-section. This probably results in a lower effective thickness: 25% of the
ribbon total mass is situated in regions where the local thickness is below t/2. Moreover,
the perimeter-to-area ratio is 2/t for rectangular cross-sections, while the ratio is 4/t for
triangular cross-sections. Hence there is more free surface per mass for our ribbons than
for uniformly thick films. As both the reduction in thickness and the presence of free
surfaces are known to decrease the yield stress, we expect the difference in cross-section to
drive a decrease in the yield stress. Finally, in our experimental conditions, the ribbons are
submitted to oxygen plasma etching prior to experiments. This treatment probably cuts
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some of the polymer chains, effectively decreasing the mean polymer chain length. As a
decrease in chain length is associated with a decrease in yield stress for bulk polymers [29],
a similar behavior is expected.

Overall, solid experimental evidence point towards a decrease in yield stress for PMMA
taken in our experimental conditions compared to bulk. But the magnitude of decrease is
fairly limited, usually up to a factor 4. Furthermore decrease in yield stress may originate
from a decrease in Young’s modulus rather than from a change in yield strain. Therefore, we
conclude that PMMA yield strain is not lowered down to a value within our experimental
range (0.01−0.1%). The observed irreversible deformations happen within the material
linear regime and are not a consequence of yield. This is further confirmed by the overall
linearity of the process, both in time and in imposed stretching.

3.5.2 Creeping Behavior of Confined Polymers

If material yield is not the phenomenon at play, material creep probably is. Creep is
the tendency of solid materials to slowly flow under stress. Creep can occur in polymeric
materials, which typically exhibit a viscoelastic behavior. Such sizable creeping effects
are not expected in bulk: the viscosity of polymeric materials diverges at low temperature
i.e. below the glass-transition temperature Tg . The glass-transition temperature separates
a hard and brittle state for T < Tg from a viscous or rubbery state for T > Tg . For bulk
PMMA, the standard value is Tg = 115°C. Carriere et al. measured the viscosity of bulk
PMMA with molecular weight Mw = 26.9kDa over a wide range of temperature [30]: at
T = 140°C > Tg , they found η= (4.8±0.2)×107 Pa · s. Meanwhile, from the time-corrected
ratio obtained in section 3.3.2 we estimate an equivalent viscosity for PMMA in our
experimental conditions to η∼ 107 Pa · s. Estimation of the viscosity is detailed in the next
paragraph. We find the same order of magnitude than the results of Carriere et al., which
were obtained for ∼ 4 times smaller chains and for a temperature above the glass-transition
temperature. We plot in fig. 3.9 the full experimental data obtained by Carriere et al., along
with an empirical expression from the classical work of Berry et al. [31]. We also plot this
empirical expression for the molecular weight matching our experimental conditions. As
shown, viscosity of bulk PMMA with Mw = 120kDa does not reach η∼ 107 Pa · s until a least
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FIGURE 3.9 – Experimental data for the shear viscosity of bulk PMMA obtained by Carriere et al. [30] as

a function of temperature, along with the empirical law from Berry et al. [31] for two different molecular
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conditions. The gray line represents the estimation η∼ 107 Pa · s for PMMA in our experimental conditions.
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T = 180°C = Tg +65°C. We recall that experiments are conducted at room temperature
T = 22°C. At this temperature, viscosity of bulk PMMA diverges.

To estimate the value of the viscosity, we relate the macroscopic deformation of the
helix to the microscopic deformations in the material. As a consequence of the stretching
treatment, a permanent increase in axial length ∆Hres is observed, which corresponds to a
permanent change in pitch angle ∆sinαres =∆Hres/L. The change in preferred material
torsion is the same as the change in Frenet torsion ∆τ = ∆(cosαsinα/R). The radius R
remains roughly constant and we suppose that the angle remains small so that cosα ≈
cst = 1. Hence, the change in material torsion is ∆τres ∼ (∆Hres/L)/R . The exact irreversible
microscopic deformations in the material resulting from this change in preferred filament
torsion are very difficult to model. Keeping in mind that the irreversible deformations are
proportional to the local elastic stretching, we model them as the elastic deformation of a
straight filament submitted to simple torsion. This situation is illustrated in fig. 3.10 .

FIGURE 3.10 – Simple torsion of a straight filament of length L with flat triangular cross-section.

The change in filament torsion is naturally ∆τres so the twist angle β is given by β =
L∗∆τres ∼∆Hres/R . Typical irreversible material deformation resulting from this change in
filament torsion is u ∼βt . Hence, if we denote ∆t typical treatment duration, the velocity
of the polymer chains is v ∼ u/∆t ∼ βt/∆t . Overall, using the standard definition of the
shear viscosity, the torsional shear τshear is given by

τshear = η∇v ∼ ηv

t
∼ η 1

∆t

∆Hres

R
(3.5.1)

Comparison with the known value of the torsional shear τshear =µt∆τimp imposed during
the treatment yields

τshear ∼µt
1

R

∆Himp

L
∼ η 1

∆t

∆Hres

R
(3.5.2)

And finally

η∼µ t

L

∆Himp

∆Hres
∆t (3.5.3)

where we recognize the inverse of the time corrected ratio
∆t

r
= ∆Himp

∆Hres
∆t . Estimation of

the numerical value simply gives

η∼ 1GPa∗ 10nm

1mm
∗ 1

5% ·min−1 ∼ 107 Pa · s (3.5.4)

As mentioned, such sizable creeping effects are not expected in bulk. But similarly to
the yield behavior, many authors have reported significant changes in the creep behavior
of polymers in confined geometries. The first approach is simply to characterize these
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changes by examining the shear viscosity as the film thickness is decreased. Focusing
mainly on PS thin films, several authors have reported a decrease in the material viscosity
as the polymer chains are confined [32–34]. Experimental data for PMMA are limited, only
the work of Li et al. [35] has investigated the viscosity of PMMA thin films. Their work
reports a non-divergent viscosity down to T = 80°C = Tg −35°C as the film thickness was
decreased to hF /Ree ≈ 1. But the viscosity still diverges for T . 60°C. However, in this
study the PMMA thin films are supported on silica, which exhibits strong interactions
with PMMA, while in our experimental conditions ribbons are freestanding in water. The
polymer/substrate interactions have been shown to influence the creep response: in cases
with strong interactions, an increase in viscosity can even be observed [36].

The second approach, followed by most of the literature, examines the confinement-
induced changes in the viscoelasticity of polymeric materials as an effective change in the
glass-transition temperature. A lower glass-transition temperature shifts the temperature-
viscosity curve to the left, decreasing the viscosity for a given temperature. And reciprocally
a higher glass-transition temperature shifts the curve to the right. The two approaches
are naturally not mutually exclusive. Again, polymer/substrate interactions have been
shown to strongly influence the creeping behavior [37] so we focus on results reported for
freestanding films. Within this approach, our observations would correspond to a ∼ 170K
decrease in the glass-transition temperature. Although such a dramatic decrease in Tg has
not been reported yet, for PMMA or for any other material, several studies did report sharp
decreases in Tg [38, 39]. This decrease is similarly interpreted as a consequence of a loss of
interchain entanglements and an increased chain mobility near free surfaces [40]. Again,
similar confinement effects are observed for particle-loaded polymers [41]. The changes
in creeping properties and in yield behavior thus originate from the same fundamental
mechanisms.

For freestanding PMMA films specifically, Roth et al. reported a ∼ 30K decrease in Tg as
the film thickness is lowered to hF = 20nm ≈ 0.8∗Ree [42]. Based on their measurements,
and following previous theoretical works [43], they proposed an empirical law

∆Tg (hF ) =−T bulk
g

(
a

hF

)δ
with a = 2.9nm and δ= 1.4 (3.5.5)

At low molecular weight i.e. Mw < 240kDa, Mw was found to have no influence on the
parameters a and δ, which replicates findings made for PS thin films [44]. Our PMMA
ribbons typically display a thickness of t ∼ 10nm. We take the effective confinement
thickness as t/2 ∼ 5nm to account for the added free surface, compared to films with
rectangular cross-section. The empirical expression then predicts a Tg -shift of ∆Tg ∼
−180K, very close to our experimental estimation. But this calculation extrapolates very far
out of the tested thickness range: validity of the empirical expression for such a vanishing
thickness still has to be demonstrated.

This still suggests that the underlying phenomenon responsible for the strong suscepti-
bility of our system to irreversible deformations is the enhancement of creeping properties
for highly confined polymeric materials. This enhancement is evidenced by a sharp de-
crease in the glass-transition temperature. If this hypothesis is confirmed, our observations
would constitute the highest decrease in Tg ever reported. For freestanding polycarbonate
thin films, O’Connell at al. [45] reported a 120K decrease in the glass-transition tempera-
ture at hF = 1nm. For freestanding PS thin films, Pye et al. [46] reported a 85K Tg -decrease
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at hF = 30nm. Finally, we recall that for freestanding PMMA thin films, a Tg -decrease of
30K at hF = 20nm was reported by Roth et al. [42].

The fundamental mechanism at play during deformation is thus flow of the polymer
chains. The increased susceptibility to creep originates from the loss of interchain en-
tanglements and the increased mobility of chains near free surfaces. Considering this
fundamental mechanism, we expect the mechanical properties of the material, notably the
Young’s modulus, to remain unaffected by the pitch increase processes. As we have shown
that the total length L is conserved during treatment and that the helical radius R hardly
varies, all helix properties would be conserved during treatment, except for the pitch angle.
But to our knowledge, no work has yet investigated potential modulus change resulting
from creep in polymeric materials. Thus, change in the material mechanical properties
during treatment cannot be fully excluded.

In this chapter, we have presented a set of in-situ methods to locally control the pitch
and pitch angle of helical ribbons fabricated from the flow-coating method. All geometrical
parameters of the helix are now controllable, as control of the length and radius was
already achieved. Furthermore, the geometrical parameters can be tuned independently
of one another. We do not expect any change in the material mechanical properties during
treatments, although experimental validation would be beneficial. Very few fabrication
methods results in flexible helical structures with full shape control [47, 48], and we report
for the first time local control of the pitch angle. The various methods for pitch modification
were tested for three different materials, demonstrating versatility in the material choice:
PMMA, modified PDMAEMA and Cd-Se quantum dots. This comes in contrast with the
methods cited above for which the material choice is constrained: DNA nanotubes for the
work of Maier et al. [48] and metal composites for the work of Li et al. [47].

Our method leverages the enhanced susceptibility of confined materials to creep to
shape helices into the desired geometry. The susceptibility of each material to creep
was characterized by the time-corrected ratio r /∆t . PMMA helices were found to display
the most favorable ratio, which validates the use of this material in future experiments.
PDMAEMA and quantum dot helices were found to be too susceptible to creep.

In the next chapter, we investigate the mechanical properties of helical ribbons. We
leverage the newly achieved control of the pitch angle to probe the influence of this
parameter. Evolution of the mechanical properties as the angle is modified are tracked. We
can thus verify that no change in the material properties is triggered by the pitch increase
process.
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CHAPTER 4. MECHANICAL CHARACTERIZATION OF HELICAL RIBBONS

Helical structures display very interesting mechanical properties. Thanks to their tightly
packed geometry, they store a high amount of elastic energy in a small volume. Further-
more, these structures are usually highly slender: in our case helical ribbons are more
than 1 order of magnitude larger in total length than radius, and 3 orders of magnitude
larger in radius than ribbon thickness. High stretch ratios of the overall geometry can be
achieved with comparatively very little material strain and very little force applied. Such
structures are widespread at the macro-scale: helical springs can store energy, absorb
shocks, measure forces or serve as actuators.

In recent years, considerable efforts have been dedicated to implement such structures
at the micro-scale [1, 2]. In regards to these applications, it is critical to accurately charac-
terize the mechanical properties of micro-helices. Mechanical characterization is usually
carried out by measuring the force-extension response of the helical structure under an
end-loading. At the micro scale, experiments are typically conducted under a microscope
to measure deformations and a cantilever is used to measure forces [3–8]. These studies
often rely on theoretical derivations to analyze the force-extension relationship and link the
overall response to the helix geometry and to the material properties. But few of these stu-
dies investigated the case of helical ribbons. Pham et al. [4, 9] followed such an approach to
probe the mechanical response of PMMA helical ribbons fabricated using the flow-coating
method described in section 2.2 . The influence of the pitch angle was not studied, as
precise control of this parameter was not achieved yet. The work of Khaykovich et al. [8]
has measured experimentally the spring constant of cholesterol helical ribbons. But for
these cholesteric helices the pitch angle is always either 11° or 54°, and thus influence of
the pitch angle was again not addressed. To our knowledge, only the work of Starostin et al.
[10] has addressed the influence of the pitch angle on the mechanical response of helical
ribbons. They proposed an analytical model, supported by numerical simulations.

In this chapter, we experimentally characterize the mechanical properties of helical
ribbons by measuring the force-extension relationship under an axial end-loading. We
leverage the newly developed stretching treatment (described in chapter 3 ) to investigate
the influence of the pitch angle on the helix mechanical response. Experimental results
are compared to the theoretical modeling proposed by Starostin et al. Moreover, we check
whether the irreversible deformations triggered during the pitch increase process have
an effect on material properties. This chapter is organized as follows. In section 4.1 we
describe the experimental protocol that we have implemented. Section 4.2 presents the
experimental results and how the ribbon modulus is obtained from the experimental data.

4.1 Experimental Protocol and Methods

The general experimental set-up is described in section 2.4 . As we conduct force
measurements, the puller capillary is replaced by a carbon fiber cantilever and experiments
are conducted in the fluid pool. The bending modulus of the carbon fiber cantilever was
calibrated at Bcant = (1.55±0.02)×10−11 Pa ·m4 (see section 2.4 for more details). We recall
that when submitted to a force perpendicular to the cantilever direction, the cantilever
tip deflection is given by δ = F L3

cant/3Bcant. With typical cantilever length Lcant ∼ 1cm,
sub-nanonewton forces can be measured.

The experimental workflow is illustrated in fig. 4.1 . As previously mentioned, samples
are released into a pool of water, helices detach from the substrate and self-coil (step 1). A
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FIGURE 4.1 – Experimental workflow for the mechanical characterization of helical ribbons. Samples are

immersed in water: ribbons lift-off following the dissolution of the sacrificial layer and self-coil into a tight

helical shape. A helix is selected and captured by the open glass capillary. Contact is made between the tip of

the cantilever and the other helix end. The two next steps are repeated until the end of the experiment: firstly

establishing the force-extension curve for a given helix geometry and secondly increasing the pitch angle

using the stretching treatment method.
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FIGURE 4.2 – Example of a series of measurements made for (a) the helix axial length and (b) the cantilever

tip, as steps of increasing extension are imposed to a PMMA helical ribbon, for a given helix geometry.

The filament length is L = 240µm, the resting pitch angle is α0 = 41° and the resting radius is R = 4.0µm.

Significant noise is observed on both the axial length and the tip deflection, which probably originates from

ambient flow in the fluid pool. As the helix is held between the cantilever tip and the capillary, fluctuations

on ∆H and δ are strongly correlated. Horizontal lines represent the mean value for each condition.
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helix is selected and one of its end is caught and clamped by the open glass capillary. The
cantilever, mounted on a micro-manipulator, is approached and contact is made between
the cantilever tip and the other end of the helix (step 2). Non-specific contact forces allow
strong adhesion between the cantilever and the helix. Two steps are then repeated until
the end of the experiment: first establishing the force-extension curve (step 3) and then
varying the pitch angle using the stretching treatment (step 4), both steps are detailed in
the following sections.

4.1.1 Establishing the Force-Extension Curve

Firstly, the force-extension curve is established. A series of increasing elongation steps
is imposed to the helix by successively displacing the capillary. As the helix is held at its
right end by the capillary, the helix is extended by displacing the capillary to the right. The
capillary is quickly displaced from one position to another (typically 6 to 8 positions) and
is held still for a few seconds at each position (typically 5 seconds). At each position and
for the few seconds the capillary is held still, the geometry of the deformed helix and the
cantilever tip displacement are recorded. From the experimental images, we extract the
cantilever tip position and the helix axial length. Knowing the reference position of the
cantilever tip, the tip deflection is simply obtained. We show in fig. 4.2 (a) a typical series of
measurements made for the helix axial length as a function of time, for successive positions
of the capillary. Figure 4.2 (b) shows the corresponding tip deflection. As expected, as the
axial length is further increased, the cantilever tip is further deflected: the force applied to
stretch the helix is recorded by the cantilever.

We observe, as shown in fig. 4.2 (a) & (b), that noise is significant. Noise probably
originates from ambient flow in the fluid pool, which, combined to the very long length
of the cantilever fiber, creates large fluctuations in the cantilever tip position. As the
helix is held between the cantilever tip and the capillary, these fluctuations also impact
measurements of the helix axial length. To mitigate the effects of noise, the cantilever
tip deflection δ and the helix axial length H are averaged over the 5 seconds recordings.
Horizontal lines in fig. 4.2 (a) & (b) represent the averaged values. The tension force F
is then simply computed from the tip deflection δ, the cantilever fiber length Lcant and
the cantilever bending modulus Bcant. The cantilever length is measured optically prior to
experiments.

Before and after each force-extension curve is established, the helix end clamped by
the open glass capillary is released (by expelling liquid out of the capillary) and the axial
length is measured. No force is then applied, the helix is thus in its reference configuration.
The value for the resting axial length H0 is taken as the average over these two measure-
ments. Once the resting axial length is known, the axial extension is simply computed
∆H = H − H0. As stress is necessarily exerted on the helix during force measurements,
irreversible deformations are triggered: the resting axial length is increased as a result of
the force measurements. Therefore, the geometric parameters of the helix (resting pitch
angle notably) may change during the flow cycle. But these effects are mitigated by mi-
nimizing the total experiment time, typically below 1 minute. Furthermore, the ribbon
material is chosen to be poly(methyl methacrylate) (PMMA), which is the material that
minimizes creep among the materials that we have tested. The increase in resting axial
length resulting from establishing a given force-extension curve is always below 2% of the
total length L. This corresponds to a variation in resting pitch angle of less than 1°, which
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we neglect. The helix geometrical parameters (resting axial length, radius and angle) are
thus considered constant for a given force-extension curve.

4.1.2 Increasing the Pitch Angle

Secondly, we apply the stretching treatment to uniformly increase the helix resting pitch
angle α0. The treatment is conducted as described in chapter 3 . The helix is grabbed at its
two ends, one by the cantilever and one by the capillary, a fixed axial extension is imposed
for several minutes by displacing the capillary and the helix is finally let to relax. This
treatment results in an irreversible increase in the resting pitch angle. Once the stretching
treatment has been performed, the resting axial length H0 and resting pitch angle α0 are
measured again as to track evolution of the helix geometry.

The force-extension curve is then measured for this new reference geometry before
another stretching treatment is performed and so on. At the end of the experiment, the
helix is completely stretched to measure the total filament length L. This protocol yields a
series of force-extension curves as the reference geometry of a given helix is varied: each
force-extension curve corresponds to a different resting pitch angle. As demonstrated in
chapter 3 the total filament length is not affected by the stretching treatment and thus
remains constant throughout the whole experiment. Similarly to what was observed in
chapter 3 the resting radius may vary slightly as a by-product of the successive stretching
treatments. But as influence of the radius on the force is well established (F ∝ 1/R2), these
variations are easily corrected.

4.2 Experimental Results

4.2.1 Force-Extension Curves

We show in fig. 4.3 (a) the measured force F , computed from the cantilever tip de-
flection δ, as a function of rescaled axial length H/L, for a given PMMA helix as the helix
geometry is varied. Each curve on the plot corresponds to a different resting pitch angle.
The corresponding resting axial length H0 for each geometry is represented at the bottom
of the plot. The error bars for the force and the axial length are the standard deviations over
the 5 seconds-long recordings (see example of a recording in fig. 4.2 ). Figure 4.3 (b) shows,
for the same data, the force F as a function of rescaled axial extension ∆H/L. Some points
are obtained for ∆H < 0 to allow measurement of the cantilever reference position. For
these points we observe F ≈ 0N, which shows that the helix is then not axially compressed
but rather buckle out of its axis. For an axial compression, we would indeed expect symme-
try of the F (∆H ) curve. For this example, we observe that the helical ribbon seems to stiffen
as the pitch angle is increased. Indeed, for the light-colored curves, which correspond
to higher resting pitch angles, a higher force is necessary to extend the helix than for the
dark-colored ones. The same observation is repeated for other PMMA helical ribbons.
But before we can interpret this stiffening, we must understand how the geometrical and
mechanical properties of the helix determine the force-extension response.

As shown in fig. 4.3 (a) the imposed elongation can be significant, the axial length
reaching up to 95% of the total length L i.e. almost to full elongation. In this high stretch
regime, close to full helix extension (corresponding to H = L), the force-extension relation-
ship is not linear. Examining the helix deformation only within the linear regime is thus not

77



CHAPTER 4. MECHANICAL CHARACTERIZATION OF HELICAL RIBBONS

relevant. The work of Starostin et al. [10] has examined in the general case the deformation
of a helical ribbon submitted to an axial end-loading. The ribbon was modeled as an
inextensible elastic strip. Under the assumption that the deformed helix remains a uniform
helix (uniform radius and angle), they proposed the following expression for the force

F = C

R2

(
cosα0 cosα+ C

B sinα0 sinα
)

(
cos2α+ C

B sin2α
)2

sin(α−α0)

cosα
(4.2.1)

with α0 = arcsin H0/L resting pitch angle and α= arcsin H/L pitch angle of the deformed
helix (supposedly uniform along the filament length). We recall that B = E I and C =µJ are
respectively the bending and twisting modulus of the ribbon, with I second-moment of
area, µ shear modulus and J polar moment of inertia. Because of the multiplicative terme
1/cosα, the force diverges as the helix is fully extended (corresponding to α→ 90°), which
models the finite extensibility of the helical structure.

In the linear limit α−α0 ¿ 1, the expression simplifies

F = C

R2

1

cos2α0
(
cos2α0 + C

B sin2α0
) ∆H

L
(4.2.2)

In the case of helices with cylindrical filaments, the classical work of Love [11] found a very
similar expression

Fcylinder =
C

R2

1(
cos2α0 + C

B sin2α0
) ∆H

L

The general scaling is thus the same but an additional 1/cos2α0 is found by Starostin et al.
in the case of helical ribbons. This additional term drives an effective stiffening of helical
ribbons as the resting pitch angle is increased, which could correspond to our observations.
This effect seems thus to be specific to helical ribbons and would not be observed for
helices with cylindrical filaments. We now compare the results of Starostin et al. to our
experimental measurements.

We take for the ratio C /B its standard value in the case of a flat triangular cross-section
C /B = 3/2(1+ν). The Poisson’s ratio ν for bulk PMMA is usually estimated within the range
ν= 0.35−0.4. We consider that the Poisson’s ratio is not affected by the vanishing thickness
of ribbons and we take ν= 0.375. Each force-extension curve is fitted by eq. (4.2.1) , with
thus a single fitting parameter C /R2. In theory, the twisting modulus C = 1

12µw t 3 can be
measured prior to experiments by measuring the ribbon thickness t and width w . But
in practice and as we discussed in section 2.2.3 , accurate measurement of the ribbon
thickness prior to experiments is very difficult with our experimental system. Furthermore,
determining the material Young’s modulus E and shear modulus µ would require further
investigation. The bulk values are not relevant, as confined geometries have been shown
to influence the Young’s modulus. This is discussed in more details in section 3.5 .

We show in fig. 4.3 (c) the force-extension curves fitted by the proposed theoretical
model. The successive curves are shifted by an arbitrary amount to better distinguish
between the different curves. The reference point ∆H = 0 is shown for each curve at the
bottom of the plot. For most resting pitch angles, the proposed expression accurately fits
the experimental data. Notably, the fitting accurately captures the non-linearity of the force-
extension curves. The experimental protocol is repeated for several other PMMA helices
(4 in total). We show in fig. 4.4 the fitted force-extension curves for another PMMA helix.
Agreement between the experimental data and the proposed model is again very good at all
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FIGURE 4.3 – Force-extension curves for a PMMA helix under axial end-loading, as the helix geometry is

varied using the stretching treatment. Each curve corresponds to a different resting pitch angle α0. The

total filament length is L = 670µm and the starting helical radius is R = 12.1µm. (a) Force F as a function of

rescaled axial length H/L. For each curve, the corresponding resting axial length H0 is represented at the

bottom of the plot. The points H < H0 allow measurement of the cantilever reference position. (b) Force F as

a function of rescaled axial extension ∆H/L. (c) Force-extension curves fitted with the expression proposed

by Starostin et al. (1 fitting parameter). Curves are shifted by an arbitrary amount to better distinguish

between the different curves. The reference point ∆H = 0 is shown.
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FIGURE 4.4 – Force-extension curves for another PMMA helical ribbon submitted to axial end-loading, as

the helix geometry is varied, fitted with the expression proposed by Starostin et al. (1 fitting parameter).

Each curve corresponds to a different resting pitch angle α0. The total filament length is L = 480µm and the

starting helical radius is R = 5.0µm. Curves are shifted by an arbitrary amount to better distinguish between

the different curves. The reference point ∆H = 0 is shown for each curve.
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resting pitch angles. And again, we notice an effective stiffening of the helical ribbon as the
resting pitch angle increases. This is evidenced by the initial slopes of the force-extension
curves, which get steeper as the resting pitch angle is increased. Our experimental results
thus provide strong validation for the relationship F (α) obtained analytically by Starostin
et al. Variation of the mechanical response with the resting pitch angle α0 is discussed in
the next section.

This validation comes despite some differences between their assumptions and our
experimental conditions. Most importantly, they assumed a force-controlled stretching
while in our experiments the stretching is displacement-controlled, the applied force being
measured through the cantilever. This entails differences in the boundary conditions.
Specifically, in our experimental conditions both ends of the helix are clamped and thus
the applied stretching force is not purely axial, a tangential component may also exist. This
tangential component is not recorded, as it is applied parallelly to the cantilever axis. Thus,
the very good agreement between the predictions of Starostin et al. and our experimental
results suggests that boundary conditions have only a weak impact on the overall helix
deformation.

4.2.2 Measuring the Twisting Modulus of Ribbons

Once the quantity C /R2 is obtained from the fitting, the twisting modulus C is compu-
ted. The resting radius R is measured for each geometry as to account for possible change in
the helical radius induced by the stretching treatment. Hence, fitting of the force-extension
curves yields an estimation of the twisting modulus C at each given geometry. We can thus
track potential evolution of the mechanical properties of ribbons that may result from the
stretching treatment.

We show in fig. 4.5 (a) the successive measurements for the twisting modulus as the
resting pitch angle is increased, for all four tested helices. In all four cases and within the
experimental errors, no significant change is observed for the twisting modulus. Overall,
the resting pitch angle spans a wide range 15−70°. Therefore, we conclude that the twisting
modulus C is not affected by the stretching treatment: its value remains constant throu-
ghout the experiment. C is expressed from the Young’s modulus and from the ribbon cross-
sectional geometry C ∼ Ew t 3. As it is very unlikely that E , w and t would vary while keeping
C constant, we conclude that these parameters also remain unaffected by the stretching
treatment. Overall, all mechanical properties remain constant. These results further vali-
dates the modeling proposed by Starostin et al. The stiffening observed as the resting pitch
angle increases is accurately captured by the factor 1/cos2α0

(
cos2α0 + C

B sin2α0
)
. Conver-

sely, this means that the model proposed by Love for the extension of helically-shaped
cylindrical filaments would not describe accurately our experimental measurements. It
thus seems that the observed stiffening effect is specific to helical ribbons.

As we mentioned, the work of Pham et al. [9] already studied the mechanical response
of PMMA helical ribbons. The twisting modulus C was measured for several PMMA helical
ribbons of various radii R. They proposed a empirical relation between C and R, C =
C0 exp(βR) with C0 = (2.6±1.1)N ·m2 and β= (3.5±0.5)×105 m−1. As the pitch angle was
not controlled, it is safe to assume that these results were obtained for helices in their initial
configuration after coiling i.e. with vanishing pitch angles. Influence of the pitch angle on
the mechanical response being weak at small angles (the geometrical stiffening factor goes
as ∼ 1/cos2α), this effect is negligible within the work of Pham et al. At small pitch angle
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FIGURE 4.5 – (a) Estimation of the twisting modulus C obtained from fitting the force-extension curves as a

function of resting pitch angle for 4 different PMMA helical ribbons. Error bars represent numerical errors

from the fitting. (b) Twisting modulus C averaged over all resting pitch angles as a function of starting helical

radius R. Colored dots show our experimental results while gray dots show the results of Pham et al. (also

obtained for PMMA helical ribbons) [9]. The gray dashed line shows the empirical relation proposed by Pham

et al.

and in the linear limit, the force-extension relationship simplifies to F = (C /R2)∗ (∆H/L).
Pham et al. mistakenly used a different relation F = (B/R2)∗ (∆H/L). Their results are thus
presented as measurements of the bending modulus B while they actually measured the
twisting modulus.

We reproduce in fig. 4.5 (b) the results of Pham et al. along with our results as well
as the empirical relation proposed by Pham et al. Our measurements are very consistent
with the previous results and agree qualitatively with the proposed empirical relation.
We obtain C ∼ 10−20 − 10−19 Pa ·m4 for radii within 5− 10µm. In details however, some
measurements (including results from Pham et al.) deviate quite significantly from the
proposed empirical relation, at small radii notably. As we have R ∼ Et 2/γ and C ∼ Ew t 3,
the following theoretical relation can be proposed C ∼ E∗(w/t )∗(γR/E )2. Thus, a universal
relation between C and R would require a constant value for w/t i.e. a universal aspect
ratio for the cross-section of ribbons.

Precisely, the work of Choudhary et al. [12] has investigated the influence of various
parameters on the aspect ratio w/t . They highlighted a significant influence of the gap
distance hgap, distance between the blade and the substrate during flow-coating, and of the
plasma etching time. For both parameters, a change up to a factor 8 in the aspect ratio was
observed. Therefore it is not surprising to observe helices for which the twisting modulus
deviates by an order of magnitude away from the empirical relation proposed by Pham et
al.

In this chapter, we have experimentally characterized the mechanical properties of
helical ribbons by measuring the force-extension relationship. An axial extension was
imposed, and the corresponding force was measured using a cantilever beam. Benefiting
from the newly achieved control on the pitch angle, influence of this parameter was
investigated. At a given reference geometry, the relation F (∆H) was found to be non-
linear. As the resting pitch angle α0 was increased, a stiffening of the helical ribbons was
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observed. We found that both the non-linear force-extension relation and the effective
stiffening are accurately described by the analytical model proposed by Starostin et al. [10].
Equation (4.2.1) gives their analytical results, obtained using an inextensible curved elastic
strip model. Our results thus provide strong experimental validation for this expression
and for the approach followed by Starostin et al. Comparison with a model previously
established for helically-shaped cylindrical filaments [11] suggests that the stiffening effect
is specific to helical ribbons.

From the force-extension curves, the filament twisting modulus C was extracted. We
tracked potential changes in C as the resting pitch angle was varied. No change was found,
confirming that the material mechanical properties are not affected by the irreversible
deformations triggered during the pitch increase process. Our measurements for C were
compared with previous results from Pham et al., who used the same experimental system
[9]. Excellent agreement was found, further validating our results.

We have now established the basic mechanical response of our experimental system,
and we have confirmed that the stretching treatment only modifies the pitch angle. We now
investigate the fluid-structure interactions between flexible helical ribbons and viscous
flows and start by the simple case of a uniform viscous flow.
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In the previous chapters, we have described and implemented a general method to
obtain highly flexible helical ribbons of arbitrary geometry. All geometrical parameters
(radius, length and pitch angle) can be precisely controlled, independently of one another.
Furthermore, we have characterized the mechanical properties of helical ribbons under
end-point loading. This experimental framework thus constitutes an ideal model system
to explore systematically the complex interactions between flexible helical structures and
viscous flows. In this chapter, we demonstrate this by investigating experimentally the
deformation of clamped PMMA helical ribbons immersed in uniform viscous axial flows.

The position of the problem is fairly simple: a helical ribbon is clamped at one end and
is immersed in a uniform viscous flow in the same direction as the helical axis, with flow
velocity U . As the flow is applied to the helix, the helix deforms: ∆H is the change in axial
length between the deformed situation and the resting situation (no flow). As discussed
in chapter 1 , multiple studies have already tackled this problem, experimentally [1, 2],
numerically [3] or theoretically [4, 5]. We recall that these works have established the scaling
for the axial extension: ∆H ∼ R2L2(ηU /B). But so far, the influence of the pitch angle on
the extension in flow remains obscure. Analytical works have obtained vanishing influence
of the pitch angle [4, 5] but these predictions have not been validated experimentally.
Leveraging the newly developed stretching treatment to accurately control the pitch angle,
we address in detail the influence of this parameter on the deformation in flow.

The chapter is organized as follows. In section 5.1 we describe the experimental pro-
tocol that we have implemented to isolate the influence of the pitch angle. Section 5.2
presents the experimental results for the extension of helical ribbons in flow. A significant
stiffening of the helical ribbons in flow is found as the pitch angle increases. In section 5.3
we analyze the shape of the flow-deformed helices as to better understand this stiffening
effect.

5.1 Experimental Protocol and Methods

5.1.1 Experimental Workflow

The general experimental set-up is described in chapter 2 . For the flow experiments,
the two open glass capillaries are used (termed holder capillary and puller capillary). Na-
turally a microfluidic channel is needed: we use a simple rectangular channel of height
H = 650µm and width W = 250µm. Flow experiments are conducted in a very similar man-
ner than the force characterization experiments: the experimental workflow is illustrated
in fig. 5.1 . Samples are released into water (with viscosity η= 1.0×10−3 Pa · s) and helices
form, from which we select and capture one helix (step 1 & 2 in fig. 5.1 ). A cycle of two
steps is then repeated. Firstly, the helix is clamped and immersed in a uniform viscous axial
flow and the induced elastic axial extension ∆H is measured (step 3). This step is called the
’flow cycle’. The flow profile applied during a flow cycle is typically a series of flow steps
at increasing velocity, as to also probe the influence of the flow velocity. Secondly, a pitch
increase process is applied to the helix, by extending the helix for several minutes (step 4)
using the puller capillary. This process results in an increase in the resting pitch angle α0.
We then repeat these two steps, flow cycle and pitch increase process, until the end of the
experiment. Finally, at the end of the experiment, the helix is fully stretched by imposing
a very strong flow, as to measure the total length L of the filament. This experimental
workflow results in a series of flow-extension curves as the helix geometry is varied.
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FIGURE 5.1 – Experimental workflow for studying the deformation of clamped helical ribbons in viscous axial

flows. Samples are immersed in water: ribbons lift-off following the dissolution of the sacrificial layer and

self-coil into a tight helical shape. A helix is selected and captured by the holder capillary. The two next steps

are repeated until the end of the experiment: firstly establishing the flow-extension relationship for a given

helix geometry and secondly increasing the resting pitch angle using the stretching treatment method.

To conduct the immersion in flow, the helix is positioned at the center of the microflui-
dic channel. The flow is parabolic in the channel but as typical helical radii (R ∼ 5−10µm)
are small compared to the channel size (H = 250µm), we consider that the helix is immer-
sed in a locally uniform flow. The effect of the flow non-uniformity is further mitigated by
placing helices at the center of the channel, where the flow is most uniform. For a given
helical ribbon in the microfluidic channel, the velocity U acting on the helix is taken as the
average of the flow field velocity over all the positions occupied by the ribbon. The flow
field in the channel is computed from the channel dimensions using a derivation from
White [6] and the position of the ribbon is measured from the experimental images.

The flow profile imposed onto the object during a flow cycle is kept identical for all flow
cycles, as to minimize the number of parameters changing. The filament is highly slender
and thus inextensible (L = cst) and we further showed in chapter 4 that the mechanical
properties of the helix are not affected during the pitch increase process (B = cst and
C = cst). We do observe small changes in the helical radius R (up to ∼ 25% of its initial
value) during the pitch increase process. But as the radius influence is well established
(∆H ∝ R2), these variations can easily be corrected. Therefore, using this experimental
protocol, we can unequivocally isolate the influence of the helix pitch angle on the helix
extension.
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5.1.2 Flow Cycles and Creep Effects in the Material

The material creep properties, leveraged during the pitch increase process, become
a problem during a flow cycle. Creeping deformation will indeed add up to the elastic
helix response. Furthermore, the geometric parameters of the helix (resting radius and
angle) might change during the flow cycle. In order to mitigate these effects, we minimize
both the number of flow steps (usually three) and the step duration (less than 10 seconds
usually) for a total duration of less than 1 minute for each flow cycle. Furthermore, the
ribbon material is chosen to be poly(methyl methacrylate) (PMMA), which is the material
that minimizes creep effects among the ones we have tested.

A typical velocity profile imposed during a flow cycle is shown in fig. 5.2 (a), along with
the measured helical axial length H , re-scaled by the total filament length L. We further
present in fig. 5.2 (b) a zoom onto the first flow step. As underlined previously, we have
minimized both the number of steps and the step duration to minimize creep effects
during the flow cycle. Overall the duration of this flow cycle is around 40 seconds. Despite
these precautions, material creep effects are still visible. Indeed, as seen in fig. 5.2 (a) &
fig. 5.2 (b), the helical axial length does not reach an equilibrium state over the duration
of one flow step. Furthermore, the value for the axial length is higher at the end than at
the beginning of the flow cycle: we observe a ∼ 1% increase in the dimensionless axial
length H/L. This corresponds to an increase of ∼ 0.5° in resting pitch angle, resulting from
the flow cycle. Hence, a small uncontrolled angle increase occurs during the flow cycle,
then followed by a large and controlled increase during the pitch increase process. Overall
we observe that the increase resulting from flow cycles never exceeds 1° and is negligible
compared to the controlled increase. We can thus consider that the geometric parameters
(resting radius and angle) are constant during a flow cycle.

But during a single flow step, these creeping effects are fairly visible and prevent a
simple measurement of the helix elastic response. In order to quantify the elastic response
during a single flow step, we implement an analysis that decouples the elastic and creep
components of the axial extension. Assuming constant pulling force and friction, the elastic
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FIGURE 5.2 – (a) Typical velocity profile (in black) imposed during a flow cycle and rescaled axial length

H/L (in blue) as a function of time. (b) Zoom onto the first flow step shown in (a): measured axial length

H/L fitted by a semi-phenomenological expression to differentiate the helix elastic response from the creep

deformation. Three fitting parameters are used: the elastic response Helastic, the response time τ and µ (see

eq. (5.1.1) for more details).
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component is expressed under the form Helastic
(
1−e−t/τ

)
, where Helastic corresponds to

the amplitude of the elastic deformation and τ to the timescale of the helix recovery. We
add a phenomenological term, µt , that denotes the susceptibility of the material to creep.
The extension curve H (t ) is hence fitted by the following semi-phenomenological function

H(t )−H0 = Helastic
(
1−e−t/τ)+µt (5.1.1)

H0 is the resting axial length, which is measured and thus not a fitting parameter.
Experimentally we find the extension timescale τ to be always under 1s while the

creeping timescale H0/µ is always above 100s. This significant difference in the timescales
allows a clear separation of the elastic deformation from the creeping deformation. As
seen in fig. 5.2 (b), agreement with experimental data is good. With this fitting method,
we recover the elastic extension ∆H = Helastic as well as the helix recovery timescale τ, as
a function of the helix geometrical parameters and of the flow velocity U . ∆H sets the
magnitude of the elastic extension while τ sets the dynamics of extension and recovery.
In the following we focus on the study of ∆H but the study of the elongation dynamics
through the timescale τ would be a natural continuation of this work.

5.2 Experimental Results

The results of the experimental investigation are presented in fig. 5.3 . First we show
in fig. 5.3 (a) the rescaled axial extension ∆H/L as a function of resting pitch angle α0, for
a given PMMA helix and for three different flow velocities. The error bars correspond to
the numerical errors associated with the fitting procedure. We then show in fig. 5.3 (b) the
axial extension normalized by the flow velocity U , for the same data. A good collapse of the
data is observed: helix deformation seems to happen within the linear regime i.e. ∆H ∝U .
Collapse is however not so good at small angles. As it is precisely at small angles that the
highest deformations are observed, these discrepancies could be interpreted as non-linear
effects, consequence of the helix finite extensibility. But the extension rate ∆H/L is fairly
small throughout the experiment (∆H/L ∼ 4−8% for the strongest flow), whereas previous
studies typically reported non-linear effects for ∆H/L & 10% [1]. Furthermore, because of
the finite extensibility, non-linear effects have been observed to stiffen the helix [1]. And
thus we would expect ∆H/U to decrease with increasing velocity, which is not what is
observed here. We rather attribute these discrepancies at small angles to experimental
issues.

As mentioned previously, the resting helical radius R may evolve slightly during the
experiment, as a consequence of the pitch increase process. We recall the scaling obtained
by previous studies ∆H ∼ (ηU /B)R2L2. Therefore, we rescale ∆H/U by R2 as to correct the
influence of the changes in radius. We further rescale by L2 (constant for each given helix),
as to compare different helices more practically. We hence plot the corrected extension
∆H/(U R2L2), whose variations only originates from changes in the resting pitch angle,
as a function of resting pitch angle in fig. 5.3 (c). The corrected extension ∆H/(U R2L2)
scales as η/B so given typical values of η= 1×10−3 Pa · s and B ∼ 10−20 −10−19 Pa ·m4, we
expect that ∆H/(U R2L2) ∼ 1016 −1017 s ·m−4. This estimation of the order of magnitude
is consistent with our observations. In detail, we observe a roughly constant extension at
small angles followed by a sharp decrease in extension as the angle increases. The regime
change happens for α0 ∼ 25−30°.
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FIGURE 5.3 – Experimental results for the extension in flow of a given PMMA helical ribbon. For this helix, the

total filament length is L = 350µm and the initial helical radius is R = 6.0µm. (a) Rescaled axial extension

∆H/L as a function of resting pitch angle α0 for three different velocities. The error bars correspond to the

numerical errors associated with the fitting procedure. (b) Axial extension normalized by the flow velocity

∆H/U as a function of resting pitch angle α0. (c) Normalized axial extension, corrected for radius change,

∆H/U R2L2 as a function of resting pitch angle. (d) Corrected axial extension ∆H/U R2L2 for all five PMMA

helical ribbons that we have tested. Data shown in (a) to (c) correspond to the black dots. Error bars are

omitted for clarity of the figure.

This experimental protocol was reproduced for five different PMMA helical ribbons.
Helical radii span a range R = 3− 12µm while lengths span L = 120− 650µm. We show
the corrected extension ∆H/(U R2L2) for all five PMMA helical ribbons in fig. 5.3 (d).
For all helices, the same behavior is observed: constant extension at small angles until
α0 ∼ 25−30°, followed by a decrease as the angle increases. One exception is the helix
represented by the orange dots, for which the starting resting angle was ∼ 40°. For this helix,
we consistently only observe a decrease in corrected extension. The overall value of the
corrected extension is naturally different from helix to helix, as it depends on the filament
bending modulus B . So to further normalize the data, the bending modulus B ∼ Ew t 3

needs to be measured for each helical ribbon. But as already discussed in section 2.2.3
accurate measurement of the ribbon dimensions prior to experiments is very difficult with
our experimental system.

To circumvent this problem and obtain a master-curve, we normalize the rescaled
extension by the value of the extension plateau observed at small angles. The obtained
quantity is called the extensibility f and encapsulates the influence of the resting pitch
angle on the axial extension in flow. For the helix represented by the orange dots (starting
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angle of ∼ 40°), no plateau is observed. For this helix, the rescaled extension is normalized
so that in the region where the curves overlap, the averaged extensibility is matched with
the four other helices. We naturally have f (α0 = 0°) = 1 given the definition of f . We also
expect f (α0 = 90°) = 0 as this corresponds to a straight rod, which cannot extend. Overall,
the axial extension is thus expressed as follows

∆H = M
ηU

B
R2L2 f (α0) with f (α0 = 0) = 1 (5.2.1)

with M being a numerical constant. Given the way the extensibility is obtained, i.e. by
normalizing by the value of the plateau, we cannot access the value of this numerical
quantity M . The value of the corrected extension plateau is indeed Mη/B . A combined
experiment including both a mechanical characterization to calibrate the filament modulus
(as described in chapter 4 ) and an investigation of the extension in flow would allow access
to the value of M .

We present in fig. 5.4 the extensibility f as a function of resting pitch angle for all five
tested PMMA helical ribbons. Consistently with the definition of f , we obtain good collapse
of the curves at small angles. But we also observe a very good collapse for the remainder of
the data, suggesting universality of the extensibility function f . The extensibility is constant
at small angles i.e. for closed-loop helices (up to α0 ∼ 25−30°): at small angles, the pitch
angle has no influence on the helix extension in flow. This regime is followed by a sharp
decrease in extensibility for α0 & 25−30°. As the pitch angle increases, towards open-loop
helices, helical ribbons are less and less deformable by viscous axial flows. The magnitude
of this stiffening effect in flow is quite significant: the extensibility decreases by a factor 5
between α0 = 10° and α0 = 60°.

Naturally, these experimental observations come in stark contrast with analytical results
from the literature [4, 5], which predicted vanishing influence of the pitch angle on the
extension in flow. In order to understand more precisely this stiffening effect in flow, we
now analyze in detail the shape of helices as they are deformed by hydrodynamic viscous
forces.
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FIGURE 5.4 – Extensibility f , as defined by eq. (5.2.1) , as a function of resting pitch angle α0 for five different

PMMA helical ribbons.
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5.3 Shape Analysis of the Deformed Helices

So far, we have only used the axial extension ∆H as a measure of the helix deformation.
But we have not yet examined distribution of that deformation along the filament length.
Qualitatively, we expect high deformation near the clamped end and almost no deforma-
tion near the free end. To conduct this investigation, we extract from the experimental
images the pitch and radius distribution. This work was done in collaboration with Anirban
Jana, during his Master research internship.

5.3.1 Method for Image Analysis

Obtaining the full three-dimensional helix shape from a two-dimensional experimental
image is very challenging. Instead, we focus on obtaining the local pitch and local radius at
each loop of the helix, as these quantities are easily measured from the 2D shape. This is
done in both the reference state and the deformed state as to compute the local changes in
pitch and radius induced by the flow. To obtain these quantities, the experimental images
are processed in Python using the OpenCV package. Figure 5.5 illustrates the successive
steps, starting from the raw experimental image, depicted by fig. 5.5 (a). After removing the
background, an enhancement in contrast and noise reduction of the images is performed.
Adaptive thresholding is used to segment the experimental images: greyscale images are
taken as input and the algorithm outputs binary images representing the segmentation. A
threshold is calculated for each pixel, based on the average grey value of the area around
this given pixel. If the pixel value is below this calculated threshold, the pixel is set to the
background value, otherwise, it assumes the foreground value. Using this approach, an
approximation of the two-dimensional filament shape is obtained. Typical binary image is

FIGURE 5.5 – Successive image analysis steps to extract the two-dimensional filament shape: (a) starting

raw experiment image ; (b) processed (noise reduction and contrast enhanced) and binarized image and (c)

binarized image with outermost edges isolated. Red points indicate the mean position of each group and

correspond to the filament position every half-period.

FIGURE 5.6 – Detailed decomposition of the filament two-dimensional shape, yielding measurement of the

local pitch p and local radius R, measured for each helix loop.
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shown in fig. 5.5 (b). Once the binarization is obtained, we extract the filament position
every half period, which corresponds to the outermost edges. This is done by calculating
the mean linear axis of the helix, followed by deletion of the points in the vicinity of this
line. Once the outermost edges are isolated, the mean position of each is calculated. We
represent in fig. 5.5 (c) the isolated groups of points representing the outermost edges and
the mean position of each, plotted as red dots.

Hence, the image analysis procedure yields the filament position every half-period. The
pitch p and radius R of each loop are then calculated. Figure 5.6 illustrates measurements
of p and R once the image analysis process is done. The local pitch for a given loop is taken
as the distance between the two points delimiting the loop i.e. points situated a period
apart. The successive measurements are represented as the yellow and red lines in fig. 5.6 .
The local radius is calculated as the half-height of the triangle defined by the two points
delimiting the loop and the point in-between. We then calculate the local pitch angle α
using the geometrical relation tanα= p/2πR.

5.3.2 Pitch and Radius Distribution

Figure 5.7 presents the pitch and radius distribution for a given PMMA helical ribbon
at a given geometry, as the helix is deformed by a viscous axial flow. Total filament length is
L = 350µm, helical radius is R = 6.0µm and resting pitch angle isα0 = 10° i.e. corresponding
to the small angle regime. The corresponding resting pitch is p0 = 2πR tanα0 = 6.6µm. We
show in fig. 5.7 (a) the change in local pitch ∆p, calculated between the deformed state
and the reference state, for three different flow velocity U . The change in pitch is plotted
as a function of contour position s/L, s/L = 0 being the free end and s/L = 1 being the
clamped end. As shown, the pitch change is not uniformly distributed along the contour
length but rather linearly distributed: maximum deformation is measured at the clamped
end and almost no deformation is measured at the free end. A previous study by Pham
et al. [1] found a similar distribution, directly following from the fact that viscous forces
scale linearly with length. Normalizing the pitch change ∆p by the flow velocity yields very
good collapse of all three curves, as depicted in fig. 5.7 (b), showing linearity of the local
helix deformation i.e. ∆p ∝U all along the filament. This is consistent with the linearity of
the overall helix deformation, which is quantified by the axial extension ∆H . Figure 5.7 (c)
shows the distribution of radius change ∆R along the filament length. Radius change is at
most a few percents of the reference value R = 6µm: radius change, in this case, is negligible
during deformation. Finally, fig. 5.7 (d) shows the pitch angle change distribution ∆α as a
function of contour position. The angle change distribution is also roughly linear along the
filament length.

We reproduce this analysis for the same helix but as the geometry was varied using the
stretching treatment. The filament length is not affected L = 350µm and the radius has
only slightly varied R = 6.4µm. But the pitch angle was significantly increased to α0 = 50°
i.e. well into the high angle regime. The corresponding resting pitch is p0 = 48µm. Results
are shown in fig. 5.8 . Similar results are found: the pitch change, shown in fig. 5.8 (a),
is linearly distributed. The magnitude of the pitch change is similar to what was found
at small angles but as the resting pitch is much higher, the relative deformation is much
smaller. The radius change, shown in fig. 5.8 (b), is again small compared to the resting
radius and can be neglected. Thus, the deformation is distributed very similarly for small
or high angle helices: linearly distributed change in pitch and almost no change in radius.
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FIGURE 5.7 – Distribution of the flow-induced deformation for a PMMA helical ribbon immersed in a viscous

axial flow. The helix geometry is fixed with L = 350µm, R = 6.0µm, α0 = 10° and so p0 = 6.6µm. (a) Change in

local pitch ∆p between the deformed state and the reference state, as a function of contour position s/L,

with linear fitting. (b) Flow-induced change in local pitch normalized by the flow velocity ∆p/U as a function

of contour position s/L. (c) Flow-induced change in local radius ∆R as a function of contour position. (d)

Flow-induced change in local pitch angle ∆α as a function of contour position.
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FIGURE 5.8 – Distribution of the flow-induced deformation for the same PMMA helical ribbon as in fig. 5.7

with increased resting pitch angle. The helix geometry L = 350µm, R = 6.4µm, α0 = 50° and so p0 = 48µm. (a)

Change in local pitch ∆p as a function of contour position s/L, with linear fitting. (b) Flow-induced change

in local radius ∆R as a function of contour position.

So the stiffening effect in flow observed at high angles cannot be explained by a change in
the deformation distribution alone.

5.3.3 Torsion to Bending Transition

Material deformation is very poorly described by the changes in pitch or in radius.
Material deformation is rather captured by changes in filament curvature or in filament
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torsion, noted respectively ∆κ and ∆τ. As explained in section 3.2 , due to the high aniso-
tropy of the cross-section i.e. w À t , the material frame coincides with the Frenet frame
of the filament centerline. And hence ∆κ and ∆τ can be computed respectively as the
local change in Frenet curvature and in Frenet torsion of the centerline. We approximate
each loop to a single-loop helix with uniform radius and pitch angle and so, as we have
κ= cos2α/R and τ= cosαsinα/R for a uniform helix, we can calculate

∆κ=∆
(

cos2α

R

)
=

[
cos2(α0 +∆α)

R +∆R
− cos2α0

R

]
(5.3.1)

∆τ=∆
(

cosαsinα

R

)
=

[
cos(α0 +∆α)sin(α0 +∆α)

R +∆R
− cosα0 sinα0

R

]
(5.3.2)

Thus, knowing the radius and angle distribution, we can compute the change in material
curvature and in material torsion for each loop.

Figure 5.9 presents the distribution of curvature change and of torsion change for a
given PMMA helical ribbon, for different resting pitch angles (varied using the stretching
treatment). Experimental data are the same as in fig. 5.7 and fig. 5.8 . Again the change is
calculated between the deformed state and the reference state. The pitch angle starts in the
small angle regime α0 = 10° and increases up to α0 = 50°, well into the high angle regime.
Data for α0 = 10° and for α0 = 50° are the same as in fig. 5.7 and fig. 5.8 but are shown for
a single flow velocity (U = 0.17mm · s−1) for clarity. Figure 5.9 (a) shows the distribution
of the torsion change ∆τ normalized by the reference value τ0, as the resting pitch angle
is varied. As shown, torsion change is significant at small angles, reaching up to ∆τ∼ τ0,
and is linearly distributed along the filament length. As the resting pitch angle increases,
magnitude of the torsion change decreases sharply, with almost no change in torsion for
α0 = 42° and α0 = 50°. An inverse evolution is found for the curvature change ∆κ, whose
distribution is shown in fig. 5.9 (b): curvature change is almost zero at small angles then
increases sharply as the resting pitch angle increases. The magnitude of the curvature
change remains however limited, reaching up to ∆κ ∼ 0.2∗κ0. The relative change in
curvature at high angles in thus way less than the relative change in torsion at small angles.
This seems consistent with the fact that high angles helices are way less deformed than
small angle helices.
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FIGURE 5.9 – Torsion change ∆τ and curvature change ∆κ distribution, both rescaled by their reference value

τ0 and κ0, for a PMMA helical ribbon deformed by flow with velocity U = 0.17mm · s−1, as the resting pitch

angle α0 is varied.
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Overall, deformation of small angle helices is dominated by filament torsion while
deformation of high angle helices is dominated by filament bending. These two modes of
deformation are each associated to a different modulus, C and B for torsion and bending
respectively. The transition between the two regimes happens for α0 ∼ 20− 35°, which
matches the angle range for which the stiffening effect in flow is triggered. Such a transition
from torsion to bending was already highlighted in previous studies investigating the
deformation of helical structures. For example, the work of Starostin et al. [7] has tackled the
deformation of helical ribbons under axial end-point forces. This situation was investigated
in chapter 4 and we highlighted good agreement between their analytical approach and
our experimental results. They found that, in the linear regime, the force necessary to
extend the helix by ∆H is

F = C

R2

1

cos2α0
(
cos2α0 + C

B sin2α0
) ∆H

L
(5.3.3)

At small angles i.e. α0 ¿ 1, this expression rewrites F ' C

R2

1

cos4α0

∆H

L
while at high angles

i.e. α0 → 90°, the expression rewrites F ' B

R2

1

cos2α0 sin2α0

∆H

L
.

Hence, a transition happens from a regime where C is the relevant modulus i.e. domi-
nated by filament torsion to a regime where B is the relevant modulus. Both scale similarly
B ∼C ∼ Ew t 3 but have different values, which may drive a change in the extensibility. Ho-
wever, if considering only this torsion-to-bending effect, the transition happens atα0 ∼ 45°,
which does not match the typical angle range for which the changes in extensibility are
observed. Therefore the torsion-to-bending transition alone cannot explain the observed
behavior of helical ribbons in flow. The influence of the hydrodynamic viscous forces and
how these forces vary with the pitch angle must also be considered.

In this chapter, we have presented experimental results for the extension of helical
ribbons immersed in viscous axial flows. Leveraging the newly developed stretching treat-
ment to precisely control the pitch angle, influence of this parameter on the extension in
flow was investigated. We introduced the extensibility function f , which encapsulates the
influence of the resting pitch angle on the extension. We report constant extensibility at
small angles (closed-loop helices) followed by a sharp decrease at high angles (towards
open loop helices). Thus, at small angles, the pitch angle has no influence on the deforma-
tion while at high angles, increasing the pitch angle leads to a decrease in the extension.
The regime change happens around α0 ∼ 25−30°. The magnitude of this stiffening effect
in flow is quite significant: the extensibility decreases by a factor 5 between α0 = 10° and
α0 = 60°. Previously reported analytical results for the deformation of helices in viscous
flows fail to describe this effect [4, 5].

We have then analyzed the shape of the flow-deformed helices, highlighting a change
in the mode of deformation as the resting pitch angle was increased. At small angles, the
filament is mainly twisted while at high angles, the filament is mostly bent. This transition
in the mode of deformation and the stiffening effect are reminiscent of the observations
made in the previous chapter. But considering only the influence of the ribbon mechanics
cannot describe accurately the behavior in flow. Influence of the hydrodynamic viscous
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forces must be taken into account. Qualitatively, for small angle helices, the geometry is
highly packed and the filament is oriented perpendicularly to the flow direction. As the
pitch angles increases, the geometry gets more open and the filament is oriented more
parallelly to the flow direction. Given these simultaneous changes in both compactness
and filament orientation, it is difficult to estimate how the viscous forces will vary with the
resting pitch angle. In the next chapter, we propose a modeling of the viscous forces and
investigate the interplay with the torsion-to-bending transition.
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In this chapter, we implement analytical and numerical tools to better analyze and
understand the experimental results, notably the stiffening of helical ribbons observed
in the previous chapter. We set up an analytical framework to model the deformation
of slender helically-shaped filaments submitted to viscous flows. The viscous forces are
modeled using resistive-force theory: forces are simplified by introducing constant local
drag coefficients. Although shown to inaccurately estimate the viscous forces acting on a
helix [1], RFT is still widely used and usually provides good qualitative understanding.

The filament, of arbitrary cross-section, is modeled as a uni-dimensional rod. Its me-
chanical properties are hence solely described by the two bending moduli A,B and the
twisting modulus C , which are determined by the filament cross-sectional shape and the
material mechanical properties. We use the well-known Kirchhoff rod equations [2] to
establish the force and moment equilibrium along the filament. This approach is espe-
cially relevant in the case of isotropic or near-isotropic filaments i.e. for cross-sections
such as circles, squares or equilateral triangles. Naturally, this corresponds to isotropic or
near-isotropic moduli A ∼ B ∼C . For anisotropic cross-sections, such as thin ribbons in
our case, we extrapolate this approach by simply adjusting the moduli to the geometry of
the cross-section. It must however be noted that, in the case of vanishingly thin ribbons,
previous works have found Kirchhoff rod equations to fail to describe accurately the ribbon
mechanics [3, 4]. In the literature, this problem is typically solved by constructing a uni-
dimensional energy functional from an inextensible elastic strip model [5, 6]. Force and
moment equations resembling the Kirchhoff rod equations can then be obtained. Such
approach is followed by Starostin et al. to establish the deformation of end-loaded helical
ribbons [7]. However this approach is beyond the scope of our work. This analytical work
was realized with initial insights of Lyndon Koens (Macquarie University, Sidney). Results
are derived using the SymPy library for Python.

This chapter is organized as follows. Section 6.1 establishes the general constitutive re-
lations. Section 6.2 specifically investigates the deformation of a helix submitted to a weak
axial flow. We find significant differences between our results and previous derivations
[8, 9]. In section 6.3 we implement numerical simulations to confirm our analysis. The
simulations rely on the same general equations: Kirchhoff rod equations and resistive-force
theory. We find very good agreement between our results and the simulations, which vali-
dates our derivation. Finally, in section 6.4 we further test our framework by investigating
the deformation of end-loaded helices and compare our results with the literature.

6.1 General Framework and Constitutive Relations

6.1.1 Filament Parametrization

We consider an inextensible slender filament of length L, with uniform cross-section
of arbitrary shape. We use Kirchhoff rod equations to describe the mechanical behavior
of the filament. The material stress and strain and the external forcing are averaged over
the cross-section of the filament, and these quantities are thus parametrized solely by
the filament contour length s and time t , with 0 ≤ s ≤ L. We only address the equilibrium
problem and hence drop all time dependency.

The filament 3D shape is given by the position of the centerline #»x (s) and by a unit
vector

#»

d1(s) normal to the filament centerline, which gives the orientation of the filament
body relative to the centerline. We introduce the vector basis attached to the filament body
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{
#»

d1,
#»

d2,
#»

d3}. The vector
#»

d3 is the centerline tangent vector so
#»

d3 = #»x ′ where ′ denotes the
derivative with respect to s. The vector

#»

d2 = #»

d3 ∧ #»

d1 is chosen so that the vector basis is a
right-handed orthonormal basis. Since this basis is attached to the body of the filament, it
rotates and twists with the material. The twist vector (also called the Darboux vector) of
the material #»κ = {κ1,κ2,κ3}, expressed in the vector basis attached to the body, is defined
so that

~di
′ = #»κ ∧ #»

di with i = 1,2,3 (6.1.1)

κ1 and κ2 are the two components of the filament curvature and κ3 is the filament twist.
We finally introduce I1 and I2 the second moments of area with respect respectively to

#»

d1

and
#»

d2 as well as the torsion constant J . The bending moduli are hence given by A = E I1

and B = E I2 with E Young’s modulus, and the twisting modulus by C = µJ with µ shear
modulus.

We then introduce the Frenet triad {
#»
t , #»n ,

#»

b } attached to the filament centerline. The
vector

#»
t is the centerline tangent vector so

#»
t = #»

d3. The Frenet curvature κ and the Frenet
torsion τ are defined by

#»
t = #»x ′, #»

t ′ = κ#»n ,
#»

b = #»
t ∧ #»n ,

#»

b ′ =−τ#»n (6.1.2)

To relate the vector basis {
#»

d1,
#»

d2,
#»

d3} to the Frenet triad, and following previous approach
[10], we introduce the excess twist ζ(s) as the angle between the Frenet normal vector #»n (s)
and the vector

#»

d1(s). This leads to

#»

d1 = cosζ#»n + sinζ
#»

b ,
#»

d2 =−sinζ#»n +cosζ
#»

b (6.1.3)

and
#»κ = {κ1,κ2,κ3} = {κsinζ,κcosζ,τ+ζ′} (6.1.4)

This equation relates the position of the filament centerline, expressed by its Frenet curva-
ture and torsion, to the material strain rates.

6.1.2 Filament Intrinsic Curvature

The intrinsic curvature describes the property of a filament to display a non-vanishing
curvature while no stress is applied. The intrinsic curvature is quantified by the reference
twist vector #»κ (0). In the following, the (0) exponent relate to the reference value of a quantity,
when no external constraint is applied. A filament with no intrinsic curvature is therefore
straight in its reference configuration. Naturally, a helically-shaped filament must possess
an intrinsic curvature. In the general case, the twist vector in the reference state is #»κ (0) =
{κ(0)

1 ,κ(0)
2 ,κ(0)

3 }.
In our experimental conditions, although the preferred state of the material is #»κ (e) = #»

0 ,
an intrinsic curvature is created nonetheless by the effect of surface tension. The elastic

energy of the filament in the reference state is thus: Eb = L
(

A(κ(0)
1 )2 +B(κ(0)

2 )2 +C (κ(0)
3 )2

)
.

As the reference state is given by total energy minimization (taking into account surface
energy) and considering that A ∝ Ew 3t while B ∝ Ew t 3 with t ¿ w , we can assume that
κ(0)

1 = 0. The argument can be extended to all ribbon-like filaments, as we expect a ribbon
to be curved in the direction of the lowest bending modulus.

We also address the case of helically-shaped cylindrical filaments. For a round cross-
section, all choices for

#»

d1 are equivalent and we therefore chose
#»

d1 to align with #»n in the
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absence of external forcing. The reference value of the excess twist is then simply given by
ζ(0) = 0. Comparison with eq. (6.1.4) yields a similar result than for ribbon-like filaments:
κ(0)

1 = 0. In the following, we hence assume κ(0)
1 = 0.

6.1.3 Kirchhoff Rod Equations

The Kirchhoff rod equations are, in the static case
#»
M ′+ #»

d3 ∧ #»
F = 0 (6.1.5)

#»
F ′+ #»

f = 0 (6.1.6)

where
#»
M is the elastic torque,

#»
F = F1

#»

d1 +F2
#»

d2 +F3
#»

d3 is the elastic stress and
#»

f = f1
#»

d1 +
f2

#»

d2 + f3
#»

d3 is the external forcing per unit length. Both are expressed in the vector basis
attached to the filament body. In the linear limit of the material (i.e. small material strain),
we can express the elastic torque

#»
M = A(κ1 −κ(0)

1 )
#»

d1 +B(κ2 −κ(0)
2 )

#»

d2 +C (κ3 −κ(0)
3 )

#»

d3 (6.1.7)

The external forcing results from the viscous drag of the fluid on the filament. In the
general case, the filament cross-section does not admit an axis of symmetry, so the classical
resistive-force theory with two anisotropic drag coefficients cannot be applied. Instead,
following recent developments on the hydrodynamics of slender ribbons [11], we introduce
three different drag coefficients and propose the following form for the external forcing (in
the static case)

#»

f = (ξ1
#»

d1 ⊗ #»

d1 +ξ2
#»

d2 ⊗ #»

d2 +ξ3
#»

d3 ⊗ #»

d3) · #»
U (6.1.8)

where ξi is the drag coefficient along the
#»

di direction and
#»
U is the background flow. Clas-

sical resistive-force theory is easily recovered by taking ξ1 = ξ2 = ξ⊥ and ξ3 = ξ∥. The
expression of the external forcing, which ultimately determines the material stress, de-
pends on the local orientation of the filament. Equation (6.1.4) provides another relation
between the filament position (through the Frenet curvature and torsion) and the mate-
rial stresses. Thus a coupling exists between the mechanical equations and the filament
position.

Finally we need to specify the boundary conditions to close the system. At the free end,
which we chose to correspond to (s = 0), we have

#»
F (s = 0) = #»

0 (6.1.9)
#»
M(s = 0) = #»

0 (6.1.10)

6.1.4 Helical Reference Configuration

When no external constraint (i.e.
#»
U = #»

0 ) is applied, the filament is in its reference
configuration. Solving the Kirchhoff static equations in this case simply yields

#»
F (s) = #»

0
and

#»
M(s) = #»

0 . Comparison with the preferred state of the ribbon (see section 6.1.2 ) gives

κ(0)
1 = 0, κ(0)

2 = κ0, κ(0)
3 = τ0 (6.1.11)

Using eq. (6.1.4) , we obtain a constant Frenet curvature and a constant Frenet torsion in
the reference configuration, respectively equal to κ0 and τ0. This, as expected, corresponds
to a helical shape. Additionally we have ζ(s)(0) = 0 which leads to

#»

d1
(0) = #»n (0),

#»

d2
(0) = #»

b (0) (6.1.12)
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The reference configuration of the filament is hence a helix, characterized by its pitch
p0 and its radius R0. We define the reference helix pitch angle α0 as the angle between a
circumferential line and the filament centerline, such that tanα0 = p0/2πR0. The position
of the filament centerline is given by the following parametric equation:

#»x (0)(s) =
{

R0 cos

(
cosα0

R0
s

)
,δR0 sin

(
cosα0

R0
s

)
, s sinα0

}
(6.1.13)

expressed in the cartesian coordinate system {x, y, z}, where we have chosen (Oz) to be the
helical axis. The chirality index δ denotes the chirality of the helix ; δ=+1 for right-handed
helices and δ=−1 for left-handed helices.

In the reference configuration, the tangent vector is given by

#»
t (0) = ( #»x (0))′ =

{
−cosα0 sin

(
cosα0

R0
s

)
,δcosα0 cos

(
cosα0

R0
s

)
, sinα0

}
(6.1.14)

and we check that
∥∥#»

t (0)
∥∥= 1. The rest of the reference Frenet triad is then simply expressed,

still in the cartesian coordinate system, as well as the reference Frenet curvature and torsion

κ(0) =
∥∥∥∥∂#»

t (0)

∂s

∥∥∥∥= cos2α0

R0
= κ0 (6.1.15)

#»n (0) = 1

κ(0)

∂
#»
t (0)

∂s
=

{
−cos

(
cosα0

R0
s

)
,−δsin

(
cosα0

R0
s

)
,0

}
(6.1.16)

#»

b (0) =#»
t (0) ∧ #»n (0) =

{
δsinα0 sin

(
cosα0

R0
s

)
,−sinα0 cos

(
cosα0

R0
s

)
,δcosα0

}
(6.1.17)

τ(0) =∂
#»n (0)

∂s
· #»

b (0) = δ sinα0 cosα0

R0
= τ0 (6.1.18)

6.2 Helices in Viscous Axial Flows: the Weak Flow Limit

The equations presented above are non-linear and strongly coupled. They usually do
not exhibit analytic solutions. Analytic solution can however be obtained in weak flow limit.
In this limit, we linearize the constitutive equations around the reference configuration.
The validity range of this approximation is discussed later. We address the case of a viscous
uniform axial flow and we seek the following explicit expansion (with ε¿ 1)

#»
U = εU #»e z
#»
F = εF (1)

1

#»

d1 +εF (1)
2

#»

d2 +εF (1)
3

#»

d3

κ1 = εκ(1)
1

κ2 = κ0 +εκ(1)
2

κ3 = τ0 +εκ(1)
3

As we have chosen (s = 0) to be the free end, a positive flow U > 0 corresponds to a flow from
the free end to the fixed end, we therefore expect compression of the helix. Reciprocally,
we expect extension of the helix for U < 0.

103



CHAPTER 6. THEORETICAL ANALYSIS AND NUMERICAL SIMULATIONS

6.2.1 Force and Stress Solutions

In this subsection, we drop the (1) exponent for clarity. The linearized Kirchhoff equa-
tions, given by eqs. (6.1.5) and (6.1.6) , are

Aκ′1 −Bτ0κ2 +Cκ0κ3 −F2 = 0

Bκ′2 + Aτ0κ1 +F1 = 0

Cκ′3 − Aκ0κ1 = 0

F ′
1 −τ0F2 +κ0F3 + f1 = 0

F ′
2 +τ0F1 + f2 = 0

F ′
3 −κ0F1 + f3 = 0

which can be rearranged to

κ′′′3 + (κ2
0 +τ2

0)κ′3 =
κ0

C
(2F ′

2 + f2) (6.2.1)

Bκ0κ
′
2 =

κ0

τ0
(F ′

2 + f2)−Cτ0κ
′
3 (6.2.2)

κ1 = C

A

κ′3
κ0

(6.2.3)

F ′′
1 + (κ2

0 +τ2
0)F1 = κ0 f3 −τ0 f2 − f ′

1 (6.2.4)

F ′
2 =−τ0F1 − f2 (6.2.5)

F ′
3 = κ0F1 − f3 (6.2.6)

The set of eqs. (6.2.1) to (6.2.6) provides a clear workflow for computing the elastic stress
#»
F

and the twist vector #»κ once the external forcing is known. Using eq. (6.1.8) in the weak
flow limit writes

f1 = ξ1U
#»

d1
(0) · #»ez = 0 (6.2.7)

f2 = ξ2U
#»

d2
(0) · #»ez = δξ2U cosα0 (6.2.8)

f3 = ξ3U
#»

d3
(0) · #»ez = ξ3U sinα0 (6.2.9)

As f1, f2, f3 are constant, the eqs. (6.2.1) to (6.2.6) are easily solved. The weak flow limit
decouples the constitutive equations: the force equations are solved in the reference
configuration of the filament. The deformed configuration of the filament is then actuated
from the obtained elastic force and torque.

Solving eqs. (6.2.4) to (6.2.6) with boundary condition eq. (6.1.9) yields

F (1)
1 (s) = 1

k2
(κ0 f3 −τ0 f2)(1−cosks) (6.2.10)

F (1)
2 (s) = τ0

k3
(κ0 f3 −τ0 f2)sinks − κ0

k2
(τ0 f3 +κ0 f2)s (6.2.11)

F (1)
3 (s) =−κ0

k3
(κ0 f3 −τ0 f2)sinks − τ0

k2
(τ0 f3 +κ0 f2)s (6.2.12)

where we define k such that k2 = τ2
0 +κ2

0 =
cos2α0

R2
0

. We can then solve eqs. (6.2.1) to (6.2.3)

with boundary condition eq. (6.1.10)

κ(1)
3 (s) = κ0

C k4

[−2κ0τ0 f3 + (τ2
0 −κ2

0) f2
]

s + κ0

C k5

[
3κ0τ0 f3 + (κ2

0 −2τ2
0) f2

]
sinks

+ κ0τ0

C k4
(−κ0 f3 +τ0 f2)s cosks (6.2.13)
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κ(1)
2 (s) = κ0

Bk4

[(
τ2

0 −κ2
0

)
f3 +2κ0τ0 f2

]
s + 1

Bk5

[
κ0

(
κ2

0 −2τ2
0

)
f3 +τ0

(−2κ2
0 +τ2

0

)
f2

]
sinks

+ τ2
0

Bk4

(
κ0 f3 −τ0 f2

)
s cosks (6.2.14)

κ(1)
1 (s) = 1

Ak4

[
2κ0τ0 f3 +

(
κ2

0 −τ2
0

)
f2

]
(cosks −1)+ τ0

Ak3

(
κ0 f3 −τ0 f2

)
s sinks (6.2.15)

6.2.2 Actuation of the Filament Configuration

Similarly to the mechanical quantities, we seek a linear expansion for the Frenet curva-
ture κ, the Frenet torsion τ and the excess twist ζ

κ= κ0 +εκ(1)

τ= τ0 +ετ(1)

ζ= εζ(1)

Using eq. (6.1.4) we can simply write

κ(1) = κ(1)
2 (6.2.16)

τ(1) = κ(1)
3 − 1

κ0
(κ(1)

1 )′ (6.2.17)

ζ(1) = 1

κ0
κ(1)

1 (6.2.18)

which provides the full expressions in the deformed configuration of the filament.
We now have to solve the inverse problem, which consists in determining the para-

metric equation of the centerline #»x knowing its Frenet curvature and torsion. The excess
twist ζ encapsulates the twist of the material relative to the filament centerline and is
therefore not a parameter of the centerline. To circumvent this difficult problem, and
following our linearized approach, we prescribe a parametric near-helical shape for the
deformed filament. The parameters of the shape are determined as to ensure equality with
the Frenet curvature and torsion obtained above. We adopt the following parametrization
of the filament centerline

#»x (s) = {
R(s)cosψ(s),δR(s)sinψ(s), z(s)

}
(6.2.19)

where ψ is the arclength angle. The pitch angle α(s) is similarly defined as the local angle
between a circumferential line and the centerline tangent. We therefore have (see fig. 6.1 ):
cosα= Rψ′ and sinα= z ′.

The filament centerline is hence fully characterized by two functions: the radius R
and the pitch angle α, which matches the number of known quantities (the Frenet curva-
ture and the Frenet torsion). We similarly seek a linear expansion around the reference
configuration

R = R0 +εR1

α=α0 +εα1

Finally we need to specify boundary conditions for these geometric quantities. We suppose
that the fixed end is clamped so that

R1(L) = 0, R ′
1(L) = 0 (6.2.20)

α1(L) = 0, α′
1(L) = 0 (6.2.21)
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FIGURE 6.1 – Schematic of a right-handed helix and chosen parameters in the deformed configuration.

In the deformed configuration, the tangent vector and its norm are given by

#»
t = #»x ′ = {

R ′ cosψ−cosαsinψ,δR ′ sinψ+δcosαcosψ, sinα
}

∥∥#»
t

∥∥=
√

1+ (R ′)2 =
√

1+ε2(R ′
1)2 ≈ 1

which shows that the inextensibility of the filament is only verified in the linearized approxi-
mation. The proposed centerline parametrization is thus only valid within this limit. The
perturbation of the Frenet curvature κ(1) and of the Frenet torsion τ(1) are then expressed
as a function of the two parameters R1 and α1

κ(1) =−κ0

R0
R1 −R ′′

1 −2δτ0α1 (6.2.22)

τ(1) = δ 1

κ0

(
κ2

0 −τ2
0

)
α1 +δ 1

κ0
α′′

1 −
τ0

R0
R1 − τ0

κ0
R ′′

1 (6.2.23)

Equations (6.2.22) and (6.2.23) can be rearranged

α1 =− 1

2δτ0

(
κ(1) + κ0

R0
R1 +R ′′

1

)
(6.2.24)

R ′′′′
1 +2(τ2

0 +κ2
0)R ′′

1 +
κ2

0

R2
0

R1 =−(κ(1))′′− (
κ2

0 −τ2
0

)
κ(1) −2κ0τ0τ

(1) (6.2.25)

Using the results from eqs. (6.2.16) and (6.2.17) , we obtain the following differential
equation for R1

R ′′′′
1 +2k2R ′′

1 +k4R1 = a1s +a2k−1 sinks +a3s cosks (6.2.26)

with



a1 =
2κ2

0τ0

C k4

[
2κ0τ0 f3 +

(
κ2

0 −τ2
0

)
f2

]+ κ0
(
κ2

0 −τ2
0

)
Bk4

[(
κ2

0 −τ2
0

)
f3 −2κ0τ0 f2

]
a2 =−2κ2

0τ0

C k4

[
3κ0τ0 f3 +

(
κ2

0 −2τ2
0

)
f2

]+ 2κ0τ
2
0

Bk4

[(
2κ2

0 −τ2
0

)
f3 −3κ0τ0 f2

]− 2κ0τ0

Ak2

(
τ0 f3 +κ0 f2

)
a3 =

2τ2
0

k4

(
κ2

0

C
+ τ2

0

B
+ k2

A

)(
κ0 f3 −τ0 f2

)
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The general solution is

R1(s) = a1s

k4
+

(
C1 +C2s − a2s2

8k3

)
sin(ks)+

(
C3 +C4s − a3s2

8k2

)
cos(ks) (6.2.27)

In a similar fashion, we rewrite eq. (6.2.16) using eq. (6.2.14)

κ(1)(s) = b1s +b2k−1 sinks +b3s cosks (6.2.28)

with



b1 = κ0

Bk4

[(
τ2

0 −κ2
0

)
f3 +2κ0τ0 f2

]
b2 = 1

Bk5

[
κ0

(
κ2

0 −2τ2
0

)
f3 +τ0

(−2κ2
0 +τ2

0

)
f2

]
b3 =

τ2
0

Bk4

(
κ0 f3 −τ0 f2

)
C1, C2, C3 and C4 are determined by solving the boundary conditions, which are given by
eqs. (6.2.20) and (6.2.21) . The full expressions as a function of a1, a2, a3,b1,b2,b3 are given
in Appendix A. Using these two expressions in eq. (6.2.24) , we easily express α1

δα1(s) =− 1

2τ0k2

(
a1 +b1k2) s + 1

8τ0k3

(
8C4k4 +a2 −4b2k2 −2a3k2s

)
sinks

+ 1

8τ0k2

[
(a3 −8C2k3)+ (2a2 −4b3k2)s

]
cosks (6.2.29)

6.2.3 Helical Axial Extension

During experiments, we characterize the deformed helices by measuring their axial
length, defined as the projected length of the filament on the helical axis

H =
∫ L

s=0
d z =

∫ L

s=0
sinα(s) d s

In the reference configuration, we simply have H0 = L sinα0. In the deformed configuration,
we have

H = H0 +εcosα0

∫ L

s=0
α1(s) d s (6.2.30)

The helical axial extension is defined as ∆H = H −H0. Within the weak flow limit, we have

∆H = εcosα0

∫ L

s=0
α1(s)d s. We can already point out that, asα1 does not diverge, we always

have ∆H = 0 when α0 =π/2. This is consistent, as this case corresponds to the limit case
where the helix is a straight inextensible filament, which naturally cannot extend. In the
general case, using eq. (6.2.29) , the helical axial extension ∆H is given by

∆H =− cosα0

8δτ0k4

[−8C4k4 +2L2a1k2 +2L2b1k4 +a2 +4b2k2 −4b3k2

+ (
8C2k4 −2La2k +4Lb3k3 +a3k

)
sinkL

+(
8C4k4 −2La3k2 −a2 −4b2k2 +4b3k2)coskL

]
(6.2.31)

In our experimental conditions, we have R0 ¿ L and hence kL À 1 as long as cosα0 6= 0.
This approximation is called the long helix approximation. Therefore, we keep in the above
expression only the terms scaling as L2, as it is the highest order term

∆H =−cosα0

4δτ0

(
b1 + a1

k2

)
L2 (6.2.32)

=−L2

2

κ0 cosα0

k6

[κ0

C
(2κ0τ0 f3 + (κ2

0 −τ2
0) f2)+ τ0

B
(2κ0τ0 f2 − (κ2

0 −τ2
0) f3)

]
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We rewrite the expression under the form

∆H =−R2
0L2

2

ξ2U

C
f (α0) (6.2.33)

where we have introduced the dimensionless helix extensibility f

f (α0) = cos4α0 +
(
2ρ+2

C

B
−1−ρC

B

)
cos2α0 sin2α0 +ρC

B
sin4α0 (6.2.34)

with ρ = ξ3/ξ2 that denotes the drag anisotropy. The helix extensibility f encapsulates the
influence of the reference pitch angle α0 on the axial extension in flow.

Now that the axial extension has been derived, we address the validity of the weak flow
approximation. Equations (6.2.13) and (6.2.14) provide scaling laws for the material stress:
κ(1)

3 ∼ (Uη/C )R0L and κ(1)
2 ∼ (Uη/B)R0L, as we have ξ2 ∼ ξ3 ∼ η viscosity of the surrounding

fluid. The weak flow limit is valid as long as κ(1)
3 ¿ τ0 and κ(1)

2 ¿ κ0. As we have B ∼ C ,
these two conditions both rewrite (Uη/B)R2

0L ¿ 1, which is equivalent to ∆H ¿ L. Hence
the weak flow limit is valid as long as∆H ¿ L.

Our results come in contrast with previous derivations form the literature. The work of
Kim et al. [8] and the work of Katsamba et al. [9] tackled the same problem using the same
constitutive relations i.e. Kirchhoff rod equations and resisitve-force theory. In both works,
under the assumption that A = B = C , the axial extension ∆H was found to depend on
the reference pitch angle α0 only through the boundary conditions. This dependency was
found to vanish in the limit of long helices (kL À 1), which is the case we have considered.
The helix axial extension was hence found to be constant within this limit, the expression
being

∆H =−R2
0L2

2

ξ2U

C
This was obtained with the assumptions that A = B =C and ρ = 1/2. In our work, we find
similarly a vanishing effect of the boundary conditions in the limit of long helices and
we obtain a similar expression, but the dependency on the reference pitch angle remains.

Indeed, even when considering B =C and ρ = 1/2, we still have f (α0) = 1

2
+ cos2α0

2
6= cst.

6.3 RFT-Based Numerical Simulations

In order to confirm our methodology and our derivation, we implement numerical
simulations based on the recent work of Walker et al. [12]. The simulation code is freely
available online 1. These simulations rely on a coarse-grained implementation of Kirchhoff
rod equations and RFT to simulate the behavior of slender filaments in viscous fluids. The
constitutive equations are the same as our analytical modeling, with hence the same limi-
tations, notably when modeling vanishingly thin ribbons. Both time and space parameters
are coarse-grained, the space parameter being the filament length. The filament shape
is hence approximated with N piecewise-linear segments, each of constant length L/N .
The simulation framework was developed and optimized to tackle cylindrical filaments so
most comparison with our analytical results is done in this case. But the framework can
also tackle the case of flat triangular ribbon-like filaments, by simply adjusting the filament
moduli A,B ,C . The high efficiency and low computational cost of the method allows easy

1. https://gitlab.com/bjwalker/3d-filaments
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parametric exploration. Typical simulations have indeed a runtime below a few minutes,
on a standard lab computer.

6.3.1 Parametric Set-Up

We simulate the extension of a helically-shaped filament, clamped at one end, submit-
ted to a uniform viscous axial flow. At t = 0, the helix is in its reference configuration and
the flow is turned on. We follow the deformation dynamics by tracking the helical axial
length H(t ). We focus on the influence of the reference pitch angle α0 so we set the total
length to a constant L = 1. We also set to a constant the number of turns Nturn = 3. As we
have kL = 2πNturn, this choice ensures that kL ≈ 19 À 1: the long helix approximation is
always verified. We vary the reference pitch angle α0 in the widest possible range, from 0°
to 80°. Above 80°, simulation instabilities are observed. We know however that we always
have ∆H(α0 = 90°) = 0. This data point is hence added to the simulation results. As the
total length and number of turns are constant, the choice of pitch angle sets the helical

radius R0 = L cosα0

2πNturn
: as the pitch angle varies, so does the helical radius. These variations

are accounted for when calculating the extensibility f .
The equation system is non-dimensionalized through the elasto-hydrodynamic num-

ber Eh = 8πηL3U0

B
, with U0 nominal flow velocity. This number compares the hydrody-

namic viscous forcing to the restorative filament elasticity. The nominal flow velocity U0

represents the typical flow velocity required to stretch the helix. For U ¿U0 the helix is
hardly stretched and remains in its reference configuration: the filament elasticity domi-
nates. For U ÀU0, the helix is completely stretched: viscous forces dominate. For simplicity
we set U0 = 1 and we set Eh to a value close to our experimental conditions, Eh = 1000.
Typical flow velocities are taken so that U ¿U0, to ensure that helix deformation happens
within the linear regime. The typical helix response time is given by t0 ∼ L/U0 ∼ 1 so in
order to observe the full stretching dynamic and equilibrium, we set the simulation time
to T = 5 with 1000 time-steps. Finally we place ourselves in the limit of infinitely slender
filaments so that ρ = ξ3/ξ2 = 1/2.
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FIGURE 6.2 – Simulated dynamics of a helically-shaped cylindrical filament (ν= 0.5) submitted to a uniform

viscous axial flow, with varying N number of segments. The flow, with velocity U = 0.1, is turned on at t = 0.

Inset zooms on the late part of the evolution (t > 2). The reference pitch angle is taken in (a) α0 = 10° and in

(b) α0 = 60°.

The number of segments N needs to be finely tuned. On the one hand, increasing the
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number of segments improves precision but at the cost of exponentially increasing the
computational time. On the other hand, simulation errors are observed for low values of
N . In order to set the value, we conduct a series of simulations at fixed angle and velocity,
while varying the number of segments. We show in fig. 6.2 the rescaled axial length H/L as
a function of time, in the case of a cylindrical filament, for varying number of segments.
In fig. 6.2 (a) we set α0 = 10° and U = 0.1 while in fig. 6.2 (b) we set α0 = 60° and again
U = 0.1. We can thus check that the choice for N is relevant throughout the whole angle
range. In both cases, we observe that numerical results converge to a unique curve as we
increase the number of segments. For the highest number of segments, the differences
are vanishing: for example less than 0.05% of difference between the results for N = 200
and N = 240. Meanwhile, the running time is more than 40% higher for N = 240 than for
N = 200. Considering these observations, we set N = 200. This is in line with previous
numerical works. As an example, the numerical work of Jawed et al. [13] used 173 segments
to simulate a 4-turn helix.

We also observe in fig. 6.2 that an equilibrium state is never quite reached at long
time, despite setting the simulation time much higher than the typical helix response
time. The helix response is indeed observed within ∼ 1s, consistently with the estimation.
The later evolution, evidenced by the insets in fig. 6.2 , is hence likely to be simulation-
related. In order to decouple the elasto-hydrodynamic response from this simulation-
related drift, we fit the simulated results by a semi-phenomenological function. Similarly
to the procedure adopted for the experimental results, we fit by the following function
H(t) = H0 +∆H

(
1−e−t/τ

)+µt , with 3 fitting paramaters ∆H ,τ,µ. The fitted parameter
∆H is taken as the helix axial extension.

6.3.2 Simulation Results

Using this procedure, we obtain the helix axial extension ∆H as a function of the
reference pitch angle α0 and flow velocity U . We plot in fig. 6.3 (a) the rescaled axial
extension ∆H/L as a function of reference pitch angle, for different flow velocities, in
the case of a cylindrical filament (with ν = 0.5). We plot in fig. 6.3 (b) the rescaled axial
extension, normalized by the flow velocity U . We obtain a good collapse of the data for
U < 0.1: in these cases deformation happens within the linear regime, consistently with
the value of the nominal flow velocity U0 = 1. For U > 0.1, non-linear effects are observed:
∆H/U decreases with increasing velocity. This corresponds to a stiffening of the helix at
high speed, consistent with previous observations [14]. Good collapse is however observed
for all velocities at high angle (α0 > 60°). At high angle, the deformation verifies ∆H/L ¿ 1
for all velocities. It suggests, as we proposed in our analysis, that this criteria ultimately
assesses the validity of the linear regime.

The extensibility f is computed from the simulation results by inverting eq. (6.2.33)

f = C

ξ2U

2∆H

R2
0L2

All quantities are known, either as parameters or as outputs of the simulation. We plot in
fig. 6.3 (c) the extensibility f as a function of reference pitch angle for the same simulation
results (cylindrical filament with ν= 0.5). The analytical prediction for this case is plotted
as the blue dashed line. Very good agreement is obtained between the simulation results
and the analytical predictions, throughout the whole angle range.
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FIGURE 6.3 – Simulation results for a cylindrical filament with ν= 0.5. (a) Rescaled axial extension ∆H/L as

a function of reference pitch angle α0 for different flow velocities. We recall that we have set the nominal

flow velocity to U0 = 1. (b) Rescaled axial extension, normalized by the flow velocity U . (c) Extensibility f

compared with analytical predictions (blue dashed line) given by eq. (6.2.33) .

In order to further validate our derivation against the numerical results, we conduct
the same investigation for a cylindrical filament for a different value of the Poisson’s ratio:
we set ν= 0. This change has an influence on the moduli ratio C /B which is an important
parameter of the model. We remain in the limit of infinitely slender filaments, so we still
have ρ = ξ3/ξ2 = 1/2. Figure 6.4 (a) shows the simulated extensibility in this case for
different flow velocities, along with the model prediction as the blue dashed line. This
time we have only explored U < 0.1, the collapse of the different curves (corresponding to
different flow velocities) is consistently better than previously. Again very good agreement
with the model prediction is obtained. Finally we investigate the case of a ribbon-like
filament with flat triangular cross-section and with ν= 0.5. This changes the ratio C /B as
well as the ratio A/B . For cylindrical filaments we indeed have A = B while for ribbon-like
filaments we have B ¿ A. We again keep ρ = 1/2. Figure 6.4 (b) shows the simulation
results for different flow velocities along with the model prediction. Once again very good
agreement between simulation results and the model prediction is obtained. In short, the
numerical simulations we have implemented fully validate our analytical methodology
and derivation.
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FIGURE 6.4 – Simulation results for (a) a cylindrical filament with ν = 0; (b) a flat triangular ribbon-like

filament with ν= 0.5. In both cases we plot the extensibility as a function of reference pitch angle as well as

the prediction given by eq. (6.2.33) (blue dashed line).

6.4 End-Loaded Helices

Finally, as to further test our framework, we investigate the deformation of an end-
loaded helix. As this problem does not include the difficult question of modeling the
viscous forces, much more literature is available on this topic, and in more details. The
classical work of Love has established the deformation of a helically-shaped filament under
a torque-free axial load [15]:

∆HLove = F

C
R2

0L

(
cos2α0 + C

B
sin2α0

)
(6.4.1)

where F is the axial load. Love made use of Kirchhoff rod equations and assumed that
the deformed helix remains a uniform helix (i.e. with uniform angle and radius along the
filament length).

6.4.1 Helical Axial Extension

Contrary to the assumptions from the work of Love, we do not assume torque-free
loading. We assume an axial load as well as clamped boundary conditions at both ends, as
this corresponds more closely to our experimental conditions. We however assume that no
torque is applied around the helical axis i.e.

#»
F · #»

M = 0 at both ends. Otherwise, rotation is
not permitted around the filament axis, which prevents any change in the total filament
torsion. We set the helix ends to correspond to (s =−L/2) and (s = L/2). The problem is
hence symmetrical, which allows several simplifications in the derivation. Clamping at the
helix ends determines the filament position and the filament tangent vector. As we have
allowed rotation around the filament axis, we cannot determine the normal and bi-normal
vector at the ends. The clamped boundary conditions are hence given by

R1(L/2) = 0 α1(L/2) = 0 R ′
1(L/2) = 0 (6.4.2)

and similarly at (s =−L/2).
Similarly to the weak flow limit, we place ourselves in the weak force limit

#»
F (s = 0) = εF0

#»ez (6.4.3)
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with ε¿ 1. As there are no distributed forces, the force equilibrium given by eq. (6.1.5) is
readily solved

F (1)
1 = cst = 0 (6.4.4)

F (1)
2 = cst = F0 cosα0 = F0

κ0

k
(6.4.5)

F (1)
3 = cst = F0 sinα0 = F0

τ0

k
(6.4.6)

We can then solve eqs. (6.2.1) to (6.2.3), and input the boundary condition
#»
F · #»

M(s = L/2) = 0.
The solutions are

κ(1)
1 =−C D1k

Aκ0
sinks (6.4.7)

κ(1)
2 =−C D1τ0

Bκ0
cosks − F0κ0τ0

Bk3
(6.4.8)

κ(1)
3 = D1 cosks + F0κ

2
0

C k3
(6.4.9)

As we have not specified full boundary conditions for the moment, one unknown constant
D1 remains at this point. One could expect that 2 unknowns would remain as we have
specified only one scalar condition. But the symmetry of the system imposes a supplemen-
tary condition. Specifically, κ(1)

2 and κ(1)
3 must be even functions, while κ(1)

1 must be an odd
function.

The differential equation on R1 given by eq. (6.2.25) writes as

R ′′′′
1 +2k2R ′′

1 +k4R1 = a1 +a2 cosks (6.4.10)

with


a1 = F0κ0τ0

Bk3

(
κ2

0 −τ2
0

)− 2F0κ
3
0τ0

C k3

a2 =−2D1
τ0

κ0

(
κ2

0 +
C

B
τ2

0 +
C

A
k2

)
Using the symmetry of the system, R1 must be an even function and the general solution is

R1(s) = a1

k4
+D2s sinks +

(
D3 − a2s2

8k2

)
cosks (6.4.11)

with D2 and D3 two additional unknown constants. Following the approach followed
previously, we rewrite the solution for κ(1)

2 as

κ(1)
2 = b1 +b2 cosks (6.4.12)

with


b1 =−F0κ0τ0

Bk3

b2 =−C D1τ0

Bκ0

We can then simply express α1 as

δα1 =− 1

2τ0

(
b1 + a1

k2

)
+ 1

τ0

(
a2

8k2
− b2

2
−D2k

)
cosks − a2s

4τ0k
sinks (6.4.13)

D1,D2,D3 are given by solving the clamped boundary conditions at (s = L/2), given by
eq. (6.4.2) We give in Appendix B the complete expressions. We then compute ∆H using
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eq. (6.2.30) and place ourselves in the long helix approximation kL À 1. This time, the
highest order terms scale as L, and thus only these terms are kept. ∆H is simply written as

∆H =− L

2τ0

(
b1 + a1

k2

)
= F0

C
R2

0L

(
cos2α0 + C

B
sin2α0

)
(6.4.14)

6.4.2 Discussion and Consequences for the Modeling of Helical Ribbons

We recover exactly the result from Love given in eq. (6.4.1) . This again validates our
analytical approach and the derivation. Interestingly, this result is recovered even as we
have considered different boundary conditions. A similar effect was found when calculating
the axial extension in flow: the influence of the boundary conditions (represented in this
case by the value of D1, D2 and D3) vanishes in the limit of long helices. Again similarly
to the case of deformations in flow, the axial extension is independent from the bending
modulus A.

The work of Starostin et al. [7] has addressed specifically the case of end-loaded helical
ribbons, without making use of Kirchhoff rod equations. The ribbon was rather modeled
as an inextensible elastic strip. Under assumptions similar to the work of Love (axial load
and uniformity of the deformed helix), the axial extension of end-loaded helical ribbons is
expressed in the weak force limit as

∆HRibbon = F

C
R2

0L cos2α0

(
cos2α0 + C

B
sin2α0

)
(6.4.15)

The expression is very similar to the result of Love and to our results. However a additional
multiplicative term (cos2α0) is found. This term probably originates from the elastic strip
model considered by Starostin et al. We recall that in chapter 4 very good agreement was
obtained between these predictions and our experimental results. Conversely, the expres-
sion of Love or our predictions would badly fit our experimental results. This confirms
once again, like previously stated in the literature [3], that the elastic strip model describes
more accurately the mechanics of ribbon-like filaments than the classical Kirchhoff rod
equations. Incorporating this approach in our analytical framework would hence greatly
benefit the model but is beyond the scope of this work.

We can however speculate that in the case of helical ribbons submitted to viscous axial
flows, a similar multiplicative term (cos2α0) would result from considering an elastic strip
model. We thus propose a corrected expression for the axial extension of helical ribbons
submitted to viscous axial flows by adding this multiplicative term

∆H =−R2
0L2

2

ξ2U

C
cos2α0 f (α0) (6.4.16)

In this chapter, we have implemented an analytical framework to model the deforma-
tion of helically-shaped filaments of arbitrary cross-section in viscous flows. The mechanics
of filaments are described using Kirchhoff rod equations and viscous forces are approxi-
mated using resistive-force theory. We have specifically addressed the case of helices in
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uniform axial flows. Under the assumption that the helix axial extension is small ∆H ¿ L,
we found that the axial extension is expressed as

∆H = R2
0L2

2

ξ2U

C
f (α0)

with f (α0) = cos4α0 +
(
2ρ+2

C

B
−1−ρC

B

)
cos2α0 sin2α0 +ρC

B
sin4α0

ρ = ξ3/ξ2 denotes the drag anisotropy specific to elongated objects. Our results come in
contrast with previous analytical works, which found a vanishing influence of the pitch
angle [8, 9] despite using the same elementary equations. We compared our results with
numerical simulations based on the work of Walker et al. [12]. These simulations rely again
on the same constitutive relations (Kirchhoff rod equations and RFT). We found excellent
agreement between our analytical approach and simulation results, which validates our
derivation. The discrepancies with previously published models remain unexplained.

We then adapted our framework to tackle the case of end-loaded helices. We recovered
the classical result of Love [15], again validating our approach. In the specific case of
helical ribbons, we compared our results to the work of Starostin et al. [7], which proposed
a different model of the ribbon mechanics. Some differences were highlighted and we
proposed a correction to the model in the case of helical ribbons. We speculated that
addition of a multiplicative term cos2α0 to our analytical results would account for the
specific mechanics of ribbons.
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Appendix A

In the following, we give the full expression for C1, C2, C3 and C4 as defined in eq. (6.2.27) .
Please refer to eqs. (6.2.26) and (6.2.28) for the expression of a1, a2, a3,b1,b2,b3.

16k5C1 =
(−2L2a2k2 +8L2b3k4 −4La3k2 +3a2 −4b2k2 −4b3k2)+ (2La2k −3a3k)sin2kL

+ (−24La1k −8Lb1k3)sinkL+ (
2La3k2 +3a2 −4b2k2 −4b3k2)cos2kL

+ (
8L2a1k2 +8L2b1k4 −24a1 −8b1k2)coskL

8k4C2 =
(
2La2k −4Lb3k3 +2a3k

)+ (−a2 +2b3k2)sin2kL+ (
4a1 +4b1k2)sinkL

−a3k cos2kL+ (−4La1k −4Lb1k3)coskL

16k5C3 =
(−2L2a3k3 +4La2k −8Lb2k3 −8Lb3k3 +3a3k

)
+ (−2La3k2 −3a2 +4b2k2 +4b3k2)sin2kL

+8
(−L2a1k2 −L2b1k4 +3a1 +b1k2)sinkL

+k (2La2 −3a3)cos2kL−8k
(
3La1 +Lb1k2)coskL

8k4C4 =
(
2La3k2 −2a2 +4b2k2 +2b3k2)+a3k sin2kL+ (

4La1k +4Lb1k3)sinkL

+ (−a2 +2b3k2)cos2kL+ (
4a1 +4b1k2)coskL

Appendix B

In the following, we give the full expression for D1, D2 and D3 as defined in eq. (6.4.11) .
Please refer to eq. (6.4.10) for the expression of a1 and a2.

D3 =
1

32 L2a2k2 (Lk − sin(Lk))−a1

(
Lk cos

(
Lk
2

)
+2sin

(
Lk
2

))
k4 (Lk + sin(Lk))

D2 =
La2k cos2

(
Lk
2

)
−8a1 sin

(
Lk
2

)
4k3 (Lk + sin(Lk))

2C k3
[

ABL2κ2
0k2 sin

(
Lk

2

)
+ ABLκ2

0k sin

(
Lk

2

)
sin(Lk)+2ABLκ2

0k cos3
(

Lk

2

)
− ABLκ2

0k cos

(
Lk

2

)
− ABκ2

0 sin(Lk)cos

(
Lk

2

)
− AC L2κ2

0k2 sin

(
Lk

2

)
+ AC L2k4 sin

(
Lk

2

)
− AC Lκ2

0k sin

(
Lk

2

)
sin(Lk)−2AC Lκ2

0k cos3
(

Lk

2

)
+ AC Lκ2

0k cos

(
Lk

2

)
+ AC Lk3 sin

(
Lk

2

)
sin(Lk)

+2AC Lk3 cos3
(

Lk

2

)
+ AC Lk3 cos

(
Lk

2

)
+ ACκ2

0 sin(Lk)cos

(
Lk

2

)
+ AC k2 sin(Lk)cos

(
Lk

2

)
+BC L2k4 sin

(
Lk

2

)
+BC Lk3 sin

(
Lk

2

)
sin(Lk)+2BC Lk3 cos3

(
Lk

2

)
−BC Lk3 cos

(
Lk

2

)
−BC k2 sin(Lk)cos

(
Lk

2

)]
D1

= 8AFκ2
0

(−BLκ2
0k +Bκ2

0 sin(Lk)+C Lκ2
0k −C Lk3 −Cκ2

0 sin(Lk)
)
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CHAPTER 7. DISCUSSION OF THE EXPERIMENTAL RESULTS

In chapter 5 we have presented experimental results for the axial extension of helical
ribbons in uniform viscous axial flows. Experiments were conducted in water, with viscosity
η= 1×10−3 Pa · s. We have investigated the influence of the pitch angle, highlighting signi-
ficant stiffening of the helical ribbons in flow as the resting pitch angle was increased. In
chapter 6 we proposed a model based on resistive-force theory to model the hydrodynamic
viscous forces and Kirchhoff rod equations to model the filament mechanics. Analytical
predictions for the extension of helices in viscous axial flows were obtained. In this chapter,
we compare model predictions to our experimental results. We thus assess validity of our
model to describe the deformation of helical ribbons in flow and discuss the relevance of
resistive-force theory to model the viscous forces acting on helices.

This chapter is organized as follows. In section 7.1 we compare our experimental results
with the analytical model developed in chapter 6 and we highlight major discrepancies.
Inspired by the results of Startostin et al., who investigated the deformation of end-loaded
helical ribbons [1], we propose a correction to the model. The correction accounts for
the specific mechanics of ribbons, which were evidenced in chapter 4 . Addition of this
correction into the model vastly improves the agreement with the experimental results,
although some discrepancies are still observed. In section 7.2 we build upon the corrected
model and incorporate slender-body theory to better estimate the hydrodynamic forcing.
As discussed in section 1.3.1 , the use of SBT to compute the viscous forces acting on
helices has been validated several times [2–4]. Analytical results incorporating SBT are
compared to our experimental data. Finally, we apply our findings to predict the extension
of helices with cylindrical filaments in viscous flows.

7.1 RFT-Based Analytical Model

We recall that the model established in chapter 6 relies on Kirchhoff rod equations to
model the ribbon mechanics coupled with RFT to model the hydrodynamic viscous drag.
Within the weak flow regime, we obtained the following expression for the axial extension
∆H associated with a flow velocity U

∆H = R2
0L2

2

ξ2U

C
f (α0) (7.1.1)

with f (α0) = cos4α0 +
(
2
ξ3

ξ2
+2

C

B
−1− ξ3

ξ2

C

B

)
cos2α0 sin2α0 + ξ3

ξ2

C

B
sin4α0 (7.1.2)

We showed that the weak flow condition is equivalent to a small deformation condition
given by ∆H ¿ L. During experiments, we observed at most ∆H/L ∼ 0.1. Considering
furthermore the observed linearity of the deformations∆H ∝U , the weak flow assumption
is verified within our experiments.

7.1.1 Discussion of the Analytical Results

The obtained analytical scaling is consistent with previous derivations i.e. ∆H ∝
R2L2(ηU /C ). But as we mentioned, previous analytical studies found vanishing influence
of the pitch angle α0 [5, 6]. Within our model, this dependency results from two effects.
The first is that, as the resting pitch angle varies from 0° to 90° (the helix going from a
closed circle to a straight rod), the predominant drag force goes from perpendicular to the
filament to tangential to the filament. The drag coefficients along these directions being
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different, the helix extensibility varies. The second effect is that, as the resting pitch angle
varies from 0° to 90°, the filament goes from being mostly twisted (C being the relevant
modulus) to mostly bent (B being the relevant modulus). Both scale similarly B ∼C ∼ Ew t 3

but have different values, which drives a change in the extensibility.
The two limits of the obtained expression eq. (7.1.1) are consistent with this analysis.

For α0 → 0°, we obtain

∆H = R2
0L2

2

ξ2U

C
cos4α0

i.e. dominated by normal viscous forces and filament torsion, whereas when α0 → 90°, we
obtain

∆H = R2
0L2

2

ξ3U

B
sin4α0

i.e. dominated by tangential viscous forces and filament bending. In the case of an isotropic
drag force i.e. ξ3 = ξ2, the extensibility simplifies to f = cos2α0 + (C /B)sin2α0: only the
effects of the torsion-to-bending transition remain. An isotropic drag force on a fiber is
not a realistic description but the case of an isotropic distributed force corresponds to a
vertically suspended helix deformed under its own weight. This case is simply recovered
by substituting the drag per unit length ξU by the weight per unit length ρrSg , where S
is the cross-sectional area and ρr density of the ribbon material. Conversely, if B =C , the
extensibility simplifies to f = cos2α0 +ρ sin2α0: only the effects of the drag anisotropy
remain. Finally if C = B and ρ = 1, we obtain f = cst = 1: the influence of the resting pitch
angle then vanishes.

7.1.2 Comparison with Experimental Results

We consider the case corresponding to our experimental conditions: a helically-shaped
ribbon with flat triangular cross-section, of width w and thickness t with t ¿ w . The
relevant expressions for the moduli are B = E (1/36)w t 3 and C =µ(1/12)w t 3 [7] and hence
C /B = 3/2(1+ν), where ν is the material Poisson’s ratio. To estimate the drag coefficients,
we consider the cross-section to be equivalent to a ellipsoidal section of width w and
vanishing thickness. The work of Koens et al. [8] then provides an expression for the ratio
of the drag coefficients

ρribbon = ξ3

ξ2
= 1

2

ln(4L/w)+1

ln(4L/w)−1/2
(7.1.3)

This expression for the drag coefficient ratio is very similar to the one obtained for cylindri-
cal filaments:

ρcylinder =
ξ3

ξ2
= ξ∥
ξ⊥

= 1

2

ln(4L/d)+1/2

ln(4L/d)−1/2
(7.1.4)

where d = 2r is the filament diameter. As was already underlined in section 1.1.3 , this
suggests a very weak influence of the cross-sectional shape on the viscous forces and
validates the approximation of the ribbon cross-section to a flat ellipse. In the high slender
case i.e. L À w or L À d , we recover the familiar result ρ = 1/2.

But these expressions were developed to compute the forces acting on straight fila-
ments. Studying the case of helically-shaped cylindrical filaments, Lighthill suggested [9]
that substituting the total length L by an effective length q yields better estimations of
the viscous forces. Using a slender-body approximation, Lighthill proposed the following
expression q = 0.09Λ where Λ= 2πR/cosα0 is the filament wavelength i.e. the filament
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contour length corresponding to one helical loop. Considering the closeness of the coeffi-
cients’ expression between cylinders and ribbons, we similarly substitute the total length
L by the effective length q proposed by Lighthill in eq. (7.1.3) . The drag coefficients for
helical ribbons are thus given by

ξ2 = 8πη

ln(0.36Λ/w)+1
≈ 8πη

ln(2.26R0/w cosα0)+1
(7.1.5)

ξ3 = 4πη

ln(0.36Λ/w)−1/2
≈ 4πη

ln(2.26R0/w cosα0)−1/2
(7.1.6)

and the drag coefficient ratio by

ρribbon = 1

2

ln(0.36Λ/w)+1

ln(0.36Λ/w)−1/2
≈ 1

2

ln(2.26R0/w cosα0)+1

ln(2.26R0/w cosα0)−1/2
(7.1.7)

We notice that, because of Lighthill’s correction, the drag coefficients ξ2 and ξ3 now de-
pend on the resting pitch angle α0. As per eq. (7.1.1) , the axial extension is proportional to
ξ2 f . Thus, influence of the resting pitch angle α0 on the extension is not fully encapsulated
by the extensibility function f . We thus correct f so that it fully captures the influence of
the pitch angle

f ∗(α0) = ξ2

ξ2(α0 = 0°)
f (α0) (7.1.8)

We normalize by ξ2(α0 = 0°) so that f ∗ verifies f ∗(α0 = 0°) = 1, We plot in fig. 7.1 (a) the
corrected extensibility f ∗ as a function of resting pitch angle α0 for different values of ν
and R0/w . In all cases, we also obtain a smooth decrease in the extensibility: similarly to
what was observed experimentally, increasing the pitch angle effectively decreases the
helix extension in flow.

We now compare the model predictions to our experimental results. For bulk PMMA,
the Poisson’s ratio is usually estimated within ν= 0.35−0.40 so we take ν= 0.375. In our
experimental conditions, the helical radius varies within R = 3−12µm. Precise measure-
ments of the ribbon width are difficult to achieve, but we estimate w ≈ 0.5−1µm. The
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FIGURE 7.1 – (a) Model predictions for the helix dimensionless extensibility f ∗ in the case of flat triangular

ribbon-like filaments, with ribbon width w and helical radius R0, for different values of the material Poisson’s

ratio ν and of R0/w . (b) Comparison between model predictions and the experimental results obtained for

five different PMMA helical ribbons. The Poisson’s ratio is taken as ν= 0.375 and two different values for

R0/w are considered. The purple shaded area represents a 5% deviation, which is typical in the experimental

results.
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ratio R0/w therefore varies at most within ∼ 5−20. But the variations in radius and width
usually originate from the same factor, which is a change in the filament thickness. So we
expect little variation in the ratio R0/w , for which we take R0/w = 10. Furthermore, the
influence of this parameter is introduced through a logarithmic correction and is thus
weak.

Figure 7.1 (b) shows the model predictions for these parameters along with the experi-
mental results. Consistently with the definition of the extensibility, we have f ∗(α0 = 0°) = 1
and the model correctly predicts weak influence of the pitch angle at small angles. But
for α0 & 30°, there is no qualitative or quantitative agreement between our experimental
results and the model. The model does predict a stiffening but the magnitude of this effect
is very small, at most a 25% change in extensibility, compared to the factor 5 observed
experimentally. Moreover, the predicted change in extensibility happens smoothly over
the whole angle range: no clear regime change is observed, in contrast to experimental
findings. Finally, we verify that the influence of the parameter R0/w is indeed negligible,
the curves for R0/w = 5 and R0/w = 20 being very close.

This weakness in the predicted stiffening results from the fact that, for PMMA flat
triangular ribbons, we have C /B = 3/2(1+ν) = 3/2(1+0.375) ≈ 1.1. The torsion-to-bending
transition thus plays a very weak role. Furthermore, we obtain C > B . So as the resting
pitch angle increases, and that the mode of deformation changes from torsion to bending,
the relevant filament modulus is actually decreased. The torsion-to-bending transition
drives an increase in extensibility. Meanwhile, due to the drag anisotropy, we have ρ < 1
and the drag coefficient ξ2 decreases with resting pitch angle. So the changes in the ribbon
hydrodynamics drive a decrease in extensibility. These two competing effects partially
cancel each other, leading to a weak predicted stiffening.

7.1.3 Correcting the Ribbon Mechanics

It is clear that this modeling, which relies on Kirchhoff rod equations and resistive-force
theory, does not accurately describe the extension of helical ribbons in flow. As already
discussed in section 6.4.2 , several works [10, 11] already pointed out that Kirchhoff rod
equations usually fail to describe accurately the mechanics of thin ribbons. Considering the
results from Starostin et al. [1], we hypothesized that an accurate modeling of the ribbon
mechanics would add a multiplicative term cos2α0 to the expression of the extension. We
thus propose a new corrected extensibility f ?(α0) = cos2α0 f ∗(α0). f ? fully encapsulates
the influence of the resting pitch angle and verifies again f ?(α0 = 0°) = 1.

In fig. 7.2 , we plot the corrected extensibility f ? as a function of resting pitch angle
along with the experimental results. Strikingly, we find good agreement between the expe-
rimental data and the corrected model, especially in the high angle regime where stiffening
is observed. The corrected model accurately predicts the overall stiffening. In the small
angle regime however, agreement is not so good. Specifically, the corrected model predicts
a smooth stiffening over the whole angle range whereas the actual stiffening evolves more
sharply, with almost no change in extensibility until α0 ∼ 25−30°. But before we can draw
conclusions on the mechanics of helical ribbons, and notably on the relevance of Kirchhoff
rod equations, we must consider in more details the hydrodynamic forces.

So far, the viscous viscous forces were modeled using resistive-force theory, which has
been shown to inaccurately estimate the viscous forces acting on helical objects [2]. As
RFT does not account for the hydrodynamic interactions between neighbors, we expect

123



CHAPTER 7. DISCUSSION OF THE EXPERIMENTAL RESULTS

10 20 30 40 50 60

Reference angle α0 [˚]

0.2

0.4

0.6

0.8

1.0

1.2

Ex
te

ns
ib

ili
ty

 f
⋆

Different helices
Corrected model R0/w=5
Corrected model R0/w=20

FIGURE 7.2 – Comparison between the model predictions, corrected to account for the specific mechanics of

ribbons, and the experimental results obtained for five different PMMA helical ribbons. The Poisson’s ratio is

taken as ν= 0.375 and two different values for R0/w are considered. The purple shaded area represents a 5%

deviation, which is typical in the experimental results.

RFT to especially fail for small angle helices, since the loops are closer together and thus
hydrodynamic interactions are stronger. As it is precisely at small angles that agreement
between the corrected model and data is not good, a more accurate modeling of the viscous
forces may correct these discrepancies. Given the much better agreement between the
corrected model and the experimental results, the corrective term cos2α0 is kept.

7.2 Towards Slender-Body Theory

7.2.1 Proposed Approach

To model more accurately the viscous viscous forces, a slender-body theory formulation
is implemented, which takes into account the hydrodynamic interactions. In contrast to
RFT, SBT does not exhibit an analytical formulation and thus cannot be incorporated into
our analytical framework. But, in our experimental conditions i.e. PMMA flat triangular
ribbons, we have C /B ≈ 1.1 and so we approximate C = B . Given this approximation and
considering the corrected analytical model (thus including the cos2α0 term), the axial
extension in flow is rewritten

∆H = R2
0L2

2

U

C
cos2α0

(
ξ2 cos2α0 +ξ3 sin2α0

)= R2
0L

2
cos2α0

DRFT

C
(7.2.1)

where we have recognized the total drag force DRFT =U L
(
ξ2 cos2α0 +ξ3 sin2α0

)
calculated

using RFT. This expression corresponds to the drag force acting on the helix in its refe-
rence configuration, which is consistent with the linearized approach we have followed
in chapter 6 . We recall that the linearization decoupled calculation of the forces from
actuation of the helix shape: the force equations were solved in the helix reference state and
the helix shape was then actuated from the obtained forces. The drag force is calculated
in the reference state, which is equivalent to the drag force acting on a rigid helix with
identical geometrical parameters.

Given this equation, we propose to incorporate slender-body theory within our model
by substituting the RFT drag force DRFT by the drag force DSBT calculated using slender-
body theory. Similarly to the RFT drag force, the SBT drag force DSBT is calculated in the

124



CHAPTER 7. DISCUSSION OF THE EXPERIMENTAL RESULTS

reference state of the helix, which is equivalent to the drag force acting on a rigid helix with
identical geometrical parameters. This procedure assumes, beyond the assumption B =C ,
that the drag distribution along the filament length is the same for SBT and for RFT. Within
RFT, the drag coefficients are constant along the filament length, the drag distribution is
thus uniform. Validity of this assumption will be discussed later.

7.2.2 Computation of the SBT Drag Force

The work of Rodenborn et al. [2] provides a numerical implementation of SBT to calcu-
late the viscous forces acting on helices with cylindrical filaments for various geometrical
parameters. We are here interested in the drag force D, total drag force acting on a rigid
helix immersed in a uniform axial flow. The simulation code is freely available online 1.
Two different methods were implemented, Johnson slender-body theory [12] and Lighthill
slender-body theory [9]. Johnson SBT was found to better describe experimental data, so
this method is preferred. Koens et al. [8] performed a similar implementation for helical rib-
bons but the simulation code is not available. The authors kindly provided the calculated
drag force on helical ribbons for some geometrical parameters.

We first compare these two approaches. In both cases, we set the helical radius to a
constant and we chose for simplicity R = 1. Guided by the respective expression of the RFT
drag coefficients (see eqs. (7.1.3) and (7.1.4) for the respective ratio), we hypothesize that
the cylinder diameter and the ribbon width play an identical role. We set both to the same
value d = w = 0.1 so that R/d = 10, which is representative of our experimental conditions.
The total filament length varies significantly in experimental conditions, so we consider
several values for this parameter.

We show in fig. 7.3 (a) the calculated SBT drag force DSBT, as a function of resting pitch
angle α0, for helical with cylindrical filaments and with ribbon-like filaments. The drag
force is normalized by the scaling ηU L. We first notice that, in contrast to RFT, the SBT

1. mathworks.com/matlabcentral/fileexchange/39265-helical-swimming-simulator
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FIGURE 7.3 – (a) Rescaled total drag force D/ηU L acting on a rigid helix immersed in a uniform viscous

axial flow, calculated using slender-body theory, as a function of pitch angle α0. The implementation of

Rodenborn et al. for cylindrical filaments (set with cylinder diameter d = 0.1∗R) and the implementation

of Koens et al. for ribbon-like filaments (set with ribbon width w = 0.1∗R) are compared. In both case we

set the helical radius R = 1. (b) Rescaled drag force D/ηU L acting on a rigid helix with a cylindrical filament,

estimated from SBT and from RFT with Lighthill’s correction, as a function of pitch angle. We again set the

filament diameter d = 0.1∗R and helical radius R = 1.
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drag force does not scale linearly with the total filament length L. We find that results
for cylindrical and ribbon-like filaments are very close throughout the whole angle range
and for all tested lengths. This confirms that the cross-sectional shape has a very weak
influence: the drag force is mainly set by the largest dimension of the cross-section (width
for a ribbon, diameter for a cylinder). Considering these small differences in the results,
we approximate the drag acting on our helical ribbons to the drag acting on helices with
cylindrical filaments, with the filament diameter taken equal to the ribbon width. As the
simulation code for cylindrical filaments is freely available, this allows easier access to SBT
estimation and more flexibility.

We then compare the SBT results to the RFT approximation (with Lighthill’s drag
coefficients) for helices with cylindrical filaments. Figure 7.3 (b) shows the rescaled drag
force D/ηU L as a function of resting pitch angle α0, for both methods. The settings are
again d = 0.1 and R = 1. As shown, RFT estimations differ significantly from SBT results, for
all angles and all filament lengths. As expected, discrepancies are especially high at small
angles i.e. for tightly coiled helices. Specifically, RFT predicts very poorly the evolution
of the drag force as the pitch angle varies. RFT predicts a smooth and sizable decrease
in the drag force (roughly a factor 3.5 in decrease overall) as the pitch angle increases
whereas the actual drag evolution is non-monotonic: the drag first increases with pitch
angle, followed by a decrease. The overall variation in drag is at most ∼ 40%. This confirms
previous findings of the literature [2, 13], which already pointed out that hydrodynamic
interactions are crucial in determining the viscous forces acting on helical structures.

7.2.3 Drag Distribution along the Filament Length

As we mentioned, we propose to include SBT into our analytical model by substituting
the SBT drag force to the RFT drag force. If we consider the corrected model (to account for
the specific mechanics of ribbons) the extension therefore writes

∆H = R2
0L

2
cos2α0

DSBT

C
(7.2.2)

This procedure assumes, as we mentioned, uniform drag distribution along the filament
length. The implementation of Rodenborn et al., used to compute SBT viscous forces, does
not explicitly provide the drag distribution. But this is recovered by adapting the simulation
code. The filament is subdivided into N consecutive segments of equal length ∆s = L/N
and we calculate the drag increment ∆D acting on each of these segments. Naturally the
total drag is expressed as D = ∑

N ∆D. The drag distribution is given by the differential
∆D/∆s, the case of uniform drag corresponding to ∆D/∆s = D/L for all segments. For

simplicity, we consider the rescaled differential
L

D

∆D

∆s
. We set again R = 1 and d = 0.1 and

we consider several values for the pitch angle α0 and length L.
We show in fig. 7.4 the SBT drag force distribution along the filament length, for various

resting pitch angles α0. Figure 7.4 (a) shows the distribution for L = 30R while fig. 7.4
(b) shows the distribution for L = 60R. Firstly, we remark that the drag distribution is
symmetrical with respect to the middle of the helix s = L/2. We indeed expect that, in the
case of a rigid helix, reversing the flow direction i.e. changing the flow speed from U to −U
would yield the same drag distribution. Overall, the drag is rather uniformly distributed,
variations being at most ∼ 20% in most cases. We notice however that for α0 . 20°, the
non-uniformity is more pronounced and further increases with the filament length. For
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FIGURE 7.4 – Drag distribution for helices with cylindrical filaments, calculated from SBT, with R = 1, d = 0.1,

various resting pitch angles and for (a) L = 30R (b) L = 60R.

the highest length L = 60R and for α0 = 10°, variations in drag reach up to ∼ 70%. Hence,
the proposed inclusion of SBT into our model is overall valid but we expect discrepancies
at small angles. It is however difficult to predict the effects of this non-uniformity on the
extension in flow. One could argue that a stronger local drag would increase the local
deformation, thus potentially triggering non-linear effects, which would stiffen the local
portion. But we have shown in section 5.3 that helix deformation is locally linear along the
whole filament.

7.2.4 Results of the Twice-Corrected Model

The analytical model has now been twice corrected, firstly to account for the specific
mechanics of ribbons and secondly to account for hydrodynamic interactions. The axial
extension in flow is now expressed as

∆H = R2
0L

2
cos2α0

D

C
= R2L2

2

ηU

C
cos2α0

D

ηU L
(7.2.3)

with D = DSBT total drag force acting on the helix in its reference state, calculated using
SBT. We now compare the twice-corrected model to our experimental results. We recall
that experimental observations are quantified by the extensibility f , which encapsulates
influence of the pitch angle. Within the corrected model, influence of the pitch angle is

given by the quantity cos2α0
D

ηU L
.

In our experimental conditions, the width-to-radius ratio w/R varies only slightly
and the influence of this parameter is weak, we therefore set w/R = 0.1. The length-to-
radius ratio L/S varies within 20− 70 so we consider several values within this range.

Figure 7.5 (a) shows the quantity cos2α0
D

ηU L
as a function of pitch angle, for various

filament lengths. Evolution of this quantity with pitch angle is reminiscent of what is
observed experimentally: little evolution at small angles, followed by a decrease at high
angles. Transition between the two regimes happens for α0 ∼ 20−30°, depending on the
filament length, which again is close to experimental findings. At small angles however, we
do not observe a plateau but rather a slight increase, which contrasts with experimental
results.
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FIGURE 7.5 – (a) Quantity cos2α0D/ηU L, calculated from the SBT simulations, as a function of pitch angle

α0, for various filament lengths. The filament diameter is set to d = 0.1R and the helical radius to R = 1. (b)

Predicted extensibility, obtained by normalizing the quantity cos2α0D/ηU L, for various filament lengths,

along with the experimental results (in grey dots). The yellow shaded area represents a 5% deviation, which

is typical in the experimental results.

To further compare the corrected model with the experimental results, we need to com-
pute the predicted extensibility. We recall that for experimental results, the extensibility
was obtained by normalizing the quantity ∆H/U R2L2 by the value of the plateau observed
at small angles. As per eq. (7.2.3) , the quantity cos2α0D/ηU L is directly proportional
to ∆H/U R2L2. The extensibility can thus be obtained by normalizing cos2α0D/ηU L. No
plateau is observed for this quantity so we normalize by the maximum value over all pitch
angles. Figure 7.5 (b) shows the predicted extensibility, calculated for various filament
lengths, as a function of pitch angle along with the experimental results in grey dots. As
expected from the evolution of cos2α0D/ηU L shown in fig. 7.5 (a), qualitative agreement
with experimental data is very good. Both the small and the high angle regime are accu-
rately described, and a sharp transition is obtained between the two regimes, consistent
with experimental observations. Quantitative agreement is also good although the model
slightly overestimates the extensibility in the high angle regime. Differences in extensibility
between the different curves, each corresponding to a different filament length, are very
small. Again this is consistent with experimental observations.

We conclude that the twice-corrected model accurately describes the evolution of the
extensibility, which validates the expression proposed for the axial extension of helical
ribbons in flow

∆H = R2
0L2

2

ηU

C
cos2α0

D

ηU L

The scaling ∆H ∝ R2L2ηU /C was already demonstrated but we have now established the
dependency with the pitch angle. The exact value of the numerical factor, here 1/2, remains
to be validated. The stiffening at high angles is mainly driven by the cos2α0 term, as the
drag force is roughly constant at high angles (see fig. 7.3 for more details). In the small
angle regime, the plateau results from two competing effects. The total drag increases with
pitch angle, thus increasing the extensibility, while the added term cos2α0 drives a decrease
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in extensibility. Overall, this results in little variation of the extensibility at small angles.
Addition of the cos2α0 term into the model, which accounts for the specific mechanics of
ribbon-like filaments, is therefore validated. Analytical justification remains to be provided,
but is beyond the scope of this work.

7.2.5 Predictions for Cylindrical Filaments

The twice-corrected model accurately describes the axial extension of helical ribbons in
viscous axial flows. But in most applications, like bacterial flagella, filaments rather exhibit
circular cross-sections, to which this model cannot apply. Indeed, for cylindrical filaments,
the corrective term cos2α0 is naturally not relevant. Furthermore, the ratio C /B is given
by C /B = 1/(1+ν) ≈ 0.7, as for most materials ν∼ 0.3−0.5. The assumption B =C does
not hold true and we thus expect a much stronger influence of the torsion-to-bending
transition. As a consequence, SBT can no longer be included into the model by simple
substitution of the drag force: an interplay exists between changes in the drag force and
the torsion-to-bending transition.

In the case of cylindrical filaments however, Zhang et al. [13] have proposed an ana-
lytical implementation of SBT. The authors suggested modifications to the RFT drag co-
efficients ξ2 and ξ3 so that the viscous forces computed from RFT match experimen-
tal and numerical measurements. The total drag force is thus still expressed as D =
U L

(
ξ2 cos2α0 +ξ3 sin2α0

)
but the drag coefficients are now given by

ξ2 = SdragCn
ln(30)

ln(L/R)
(7.2.4)

ξ3 = SdragCt
ln(30)

ln(L/R)
(7.2.5)

with

Cn = 4.05πη/ln

(
0.271p

r (sinα0)3.1−6.23r /R

)
(7.2.6)

Ct = 2.21πη/ln

(
0.105p

r (sinα0)1.77

)
(7.2.7)

Sdrag =
(
0.359−1.252

r

R

)( p

R

)0.21+r /R
(7.2.8)

with p helical pitch, R helical radius and r filament radius. Zhang et al. compared this
approach to the experimental and numerical results obtained by Rodenborn at al. [2],
finding very good agreement. Validity of this approach was verified for α0 = 10−70° and
r < R/10. Discrepancies are expected outside of these ranges.

Therefore, in the case of helices with cylindrical filaments, we propose to include SBT
into our analytical framework simply by adopting for the RFT drag coefficients the values
proposed by Zhang et al. This procedure again assumes uniform drag distribution. We
showed that this hypothesis is valid for α0 & 20°, so predictions at small angles may be
inaccurate. No further modification of the model is needed and eq. (7.1.1) simply gives the
axial extension in flow. Similarly to the Lighthill’s correction, the drag coefficient ξ2 now
depends on the pitch angle α0. Expression of the extensibility f is thus again modified to
fully encapsulate influence of the pitch angle. This time, the modified extensibility is taken
as

f ∗(α0) = ξ2

η
f (α0) (7.2.9)
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FIGURE 7.6 – (a) Predicted extensibility for helices with cylindrical filaments as a function of resting pitch

angle α0, for various filament lengths. Results are obtained from the analytical model combined with the

RFT drag coefficients proposed by Zhang et al. [13]. (b) Normalized extension as a function of resting pitch

angle, extracted and adapted from the numerical results of Jawed et al. [14]. Each set of points corresponds

to a different number of turns N . The inset shows the extensibility predicted by the analytical model for the

same angle range. Colors correspond to the color code used in (a).

and thus the axial extension is expressed as

∆H = R2
0L2

2

ηU

C
f ∗(α0) (7.2.10)

As limα0→0°ξ2 = 0, the modified extensibility cannot verify f ∗(α0 = 0°) = 1. As we do not
expect ∆H (α0 = 0°) = 0, this confirms that the expressions proposed by Zhang et al. are not
valid at small angles.

The geometrical parameters are set with similar values as in the case of ribbon-like
filaments: r = d/2 = 0.05R, R = 1 and several values are considered for the total filament
length L. The pitch is given by the geometrical relation p = 2πR tanα0. Figure 7.6 (a) shows
the extensibility f ∗ as a function of pitch angle α0, for different filament lengths. The angle
range is limited to α0 = 10−70° to ensure validity of the expressions proposed for the drag
coefficients Interestingly, evolution of the extensibility for helices with cylindrical filaments
is inverse to what was found for ribbon-like filaments. At small angles, the extensibility
increases with the pitch angle, followed by a slight decrease at high angles. The maximum
is observed for α0 ∼ 45°. Qualitatively, at small angles, increasing the pitch angle effectively
loosens the helix, while at high angles, influence of the pitch angle is weak.

As our experimental system consists of helical ribbons, experimental validation of the
analytical model cannot be performed in the case of cylindrical filaments. But the extension
of helices with cylindrical filaments in viscous axial flows was studied numerically by Jawed
et al. [14]. The numerical method they used combines Lighthill SBT [9] to model the
hydrodynamics forces and a discretized form of Kirchhoff rod equations [15] to simulate
the filament mechanics. The deformation of helices was similarly characterized by the
axial extension ∆H . A notable difference with our approach is that the flow velocity U was
varied in a very wide range, including beyond the weak flow regime.

Jawed et al. [14] found that the ∆H(U ) relationship is described by

∆H = H0C∗(1−e−U /Uc ) (7.2.11)

with C∗ elongation parameter and Uc characteristic velocity, both obtained as fitting
parameters. H0 is again the resting axial length. In the weak flow regime, this equation
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simply rewrites ∆H ≈ H0C∗U /Uc . We extract from the work of Jawed et al. the values
obtained for C∗ and Uc as the helix geometry was varied. The rescaled axial extension
∆H/U is thus obtained in the weak flow regime for various geometrical parameters. The
resting axial length is kept constant for all simulations H0 = 0.2 as well as the filament
radius r = H0/126. For each set of simulations, the number of turns N is fixed and the
pitch angle is varied within the range ∼ 30−65°. As both H0 and N are fixed while the pitch
angle varies, the total filament length L and the helical radius R0 vary for a given set of
simulations. In order to correct these changes, and similarly to the procedure adopted
in chapter 5 for the experimental data, we compute the quantity ∆H/U R2L2. Variations
in this quantity only originate from changes in the resting pitch angle. Finally, guided by
eq. (7.2.10) , this quantity is multiplied by 2C /η for further normalization. The obtained
quantity is called the normalized extension. Both C and η are known as they are parameters
of the simulations.

Figure 7.6 (b) shows the adapted simulation results. For all conditions, we find weak
influence of the resting pitch angle and very little difference is found between each set
of simulations, each corresponding to a different number of turns N . The normalized
extension is roughly constant, although small oscillatory variations are observed. Influence
of the boundary conditions has been shown to create oscillatory variations on the axial
extension [5, 6], but given the high length of the simulated helices (L > 20R), these effects
are negligible. The origin of the oscillations remains unclear. The values found for the
normalized extension are around 0.8, which confirms the validity of the scaling ∆H ∼
R2L2(ηU /C ). Within the tested angle range, the analytical model correctly predicts a weak
influence of the pitch angle, as shown in the inset of fig. 7.6 (b). Moreover, the values
for the modified extensibility f ∗ are rather close to the ones obtained for the normalized
extension, around 0.8. Further comparison with the numerical results is complex, since
each set of simulations was computed with constant resting axial length H0 while our
analytical framework assumes constant filament length L. We conclude that within the
tested angle range, good qualitative and quantitative agreement is obtained. But a wider
angle range must be explored for stronger validation, especially in the regime where helix
loosening is predicted. Furthermore, experimental validation would be beneficial. We
conclude that for the tested angle range α0 = 30− 65°, eq. (7.2.10) constitutes a good
approximation to compute the axial extension of helically-shaped cylindrical filaments in
viscous axial flows.

In this chapter, we have compared our experimental results for the extension of helical
ribbons in uniform viscous axial flows to the newly developed analytical model, which
relies on Kirchhoff rod equations and resistive-force theory. We have demonstrated that
neither Kirchhoff rod equations nor RFT are relevant in this situation.

As already underlined in the literature [10, 11], Kirchhoff rod equations do not accura-
tely describe the mechanics of thin ribbons. We found in chapter 4 that an inextensible
elastic strip model is preferable. We have hypothesized that inclusion of this approach
within our model would add a multiplicative term cos2α0 to the expression obtained for
the axial extension. Analytical justification remains to be provided and would constitute
a natural continuation of this work. Addition of this term vastly improved the agreement
between the experimental data and the model, which validated its addition.
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Guided by the work of Rodenborn et al. [2], we have again highlighted that RFT poorly
approximates the viscous forces acting on helical ribbons. Slender-body theory is preferable
as it takes into account the hydrodynamic interactions. We have shown that the viscous
forces acting on a helical ribbon can be calculated as if the cross-section was circular, with
a section diameter equal to the ribbon width. We have proposed an inclusion of SBT into
our analytical model, at the cost of two reasonable approximations, namely that B =C and
that the drag force is uniformly distributed along the filament length. Overall the analytical
model was twice corrected, firstly to account for the specific mechanics of ribbons and
secondly to include SBT.

We have found very good agreement, both qualitative and quantitative, between the
twice-corrected model and our experimental data. Overall, we have shown that, in the
linear regime i.e.∆H/L . 0.1, the axial extension of a helical ribbon immersed in a uniform
viscous axial flow is given by

∆Hribbon = R2L

2
cos2α0

D

C
(7.2.12)

with D total drag force acting on the helix in its reference configuration. The value of the
numerical constant (here 1/2) remains to be validated.

Finally, leveraging our new understanding of the deformation of helical ribbons in flow,
we have made predictions for the deformation of helices with cylindrical filaments in flow.
Our predictions were compared to the numerical results of Jawed et al. [14], finding good
agreement.
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8.1 General Conclusion

In this work, we have developed a fully integrated experimental set-up to study the phy-
sics of flexible helices, from their mechanical properties to their interactions with viscous
flows. We used micro-fabricated flexible helical ribbons as a model system, combined with
cantilever force measurements and microfludic techniques for flow control. Helical radii
range within R = 2−50µm and typical filament length within L = 0.1−2mm.

The fabrication method builds upon the spontaneous coiling of flat triangular ribbons
driven by surface tension, which results into helical ribbons of controllable radius but
vanishing pitch [1]. We have demonstrated that the creep properties of materials can be
leveraged to shape the helical ribbons into any desired geometry. Full shape control is
thus achieved: the helical radius, the helical pitch and the total filament length can all
be independently tuned. We have highlighted the importance of accurately controlling
the helical pitch, since this parameter sets the magnitude of the chirality-induced effects
(notably propulsion and lateral drift in shear flows). Furthermore, we have shown that
material properties are not affected by creep deformations.

This fabrication method was validated for several materials: poly(methyl methacrylate),
poly(dimethylaminoethyl methacrylate) and quantum dots, demonstrating its versatility.
We found that each material is characterized by a typical creeping timescale, which denotes
its susceptibility to creep deformations. PMMA helices were shown to exhibit the most
favorable timescale whereas PDMAEMA helices and quantum dots helices were found
to be too susceptible to creep. Subsequent experiments are thus conducted with PMMA
helices.

We have then investigated the mechanical properties of helical ribbons by establishing
the force-extension relationship. At a given geometry, a non-linear relationship is found:
the force diverges as the helix approaches the fully uncoiled state. Leveraging the newly
achieved control on the pitch angle, we quantified for the first time experimentally the
influence of this parameter on the mechanical properties. We found that an increase in
pitch angle is associated to an effective stiffening of the helical ribbons. Both the non-
linearity of the force-extension relation and the effective stiffening are accurately described
by the analytical model proposed by Starostin et al. [2]. Comparison with other established
models [3] showed that the stiffening effect is specific to helical ribbons. We conclude that
the tension force F associated to an axial extension ∆H is given by

F = C

R2

(
cosα0 cosα+ C

B sinα0 sinα
)

(
cos2α+ C

B sin2α
)2

sin(α−α0)

cosα
(8.1.1)

with C twisting modulus of the filament, B bending modulus, α0 resting pitch angle and
α pitch angle of the deformed helix. The axial extension verifies ∆H = L(sinα− sinα0).
Benefiting from this analytical expression, the twisting modulus of the helical ribbons
was measured. The obtained values range within C ∼ 10−20 −10−19 Pa ·m4 for helical radii
within 5−10µm, close to the typical stiffness of bacterial flagella.

Finally, we have investigated the deformation of clamped helical ribbons immersed
in uniform viscous axial flows. For the first time experimentally, influence of the pitch
angle on the extension in flow was studied. For small angle helical ribbons, the pitch angle
was found to have a very weak influence. For high angle helical ribbons, we found that
an increase in pitch angle is associated with a decrease in extension: the overall decrease
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is significant, up to a factor 5 between α0 = 10° and α0 = 60°. Transition between the two
regimes happens for α0 ∼ 25−30°.

A new analytical framework was developed, relying on Kirchhoff rod equations and
resistive-force theory. Comparison with experimental results highlighted that Kirchhoff rod
equations do not accurately describe the mechanical behavior of thin ribbons, confirming
the findings of previous studies [4, 5]. An inextensible elastic strip model, similar to the
approach followed by Starostin et al. [2], is preferable. The model was corrected to account
for the specific mechanics of ribbons, vastly improving its accuracy. Guided by the work of
Rodenborn et al. [6], which showed that slender-body theory is preferable to estimate the
viscous forces acting on helices, we proposed a second correction of the model to include
SBT into the analytical framework. We showed that the viscous forces acting on a helical
ribbon can be calculated as if the filament cross-section was circular, with section diameter
equal to the ribbon width. Excellent agreement, both qualitative and quantitative, was
found between the twice-corrected model and the experimental results. We conclude that,
in the linear regime, the axial extension of a clamped helical ribbon immersed in a uniform
viscous axial flow is given by

∆H = R2L

2
cos2α0

D

C
(8.1.2)

with D total drag force acting on the helical ribbon in its reference configuration. The linear
regime approximation is valid for ∆H/L . 0.1. The exact value of the numerical prefactor
(here 1/2) remains to be validated.

Overall, we have demonstrated fabrication of highly flexible micron-sized helical rib-
bons with controlled chirality and well-characterized flexibility. We have demonstrated
that these micro-fabricated helical ribbons can be combined with microfludic flow control
techniques to carry out well-controlled and detailed experiments. These helical ribbons
constitute an ideal model system to explore and study the behavior of flexible helices in
viscous flows and notably the interplay between chirality and flexibility.

We have however pointed out that the properties of helical ribbons are significantly
affected by the ribbon-like nature of the filament. The specific mechanical properties of
ribbons drive significant stiffening effects as the pitch angle increases. Hence, care must be
taken when applying our results to helically-shaped cylindrical filaments. Specifically, the
relation between the helix flexibility and the geometrical parameters is different depending
on the filament cross-section. But at a given flexibility and chirality, the exact shape of the
cross-section should be of little importance.

8.2 Future Works and Perspectives

8.2.1 Helices in Extensional Flows, Shear Flows and More

The experimental set-up we have developed can naturally be leveraged to tackle more
intricate fluid-structure interaction problems of flexible helices in viscous flows. Notable
among them is the behavior of flexible helices in extensional/compressional flows or in
shear flows. No studies have yet investigated the behavior of flexible helices in extensio-
nal/compressional flows and only the numerical work of Li et al. [7] has investigated the
behavior of flexible helices in shear flows. Experimental study of these situations would
thus be highly beneficial.
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FIGURE 8.1 – (a) Geometry of an optimized hyperbolic channel, resulting in a constant extension rate ε̇ over

a long distance, reproduced from Liu et al. [9]. (b) Series of bright-field images of a PMMA helical ribbon

transported in such a hyperbolic channel, successively extended then compressed. The thick dark lines in

images 4 to 7 are the channel walls.

The experimental study of flexible helical ribbons in extension/compressional flows
has been initiated during this PhD and is being continued during the PhD of Andrea de la
Sen. We use, in this case, hyperbolic microfludic channels, optimized to obtain constant
extension rates over long distances [8]. We show in fig. 8.1 (a) the geometry of a such an
optimized channel with the computed extension rate ε̇, reproduced from Liu et al. [9].
As shown, the flow is purely extensional before the channel mid-point and then purely
compressional. Combined with a tracking algorithm developed by Liu et al. [9], we can
follow the transport and deformation of flexible helices in such flows.

We show in fig. 8.1 (b) preliminary observations of a PMMA helical ribbon transported
in an extensional and then compressional flow. The helix starts in its initial equilibrium
configuration (image 1). As the flow is started, the helix is transported towards the channel’s
constriction. As expected, in the first part of the flow (extensional), the helix is stretched
with respect to its initial configuration (images 2 to 5). In the second part of the flow
(after the mid-point i.e. compressional), the helix is compressed as expected (images 6
and 7). But we also observe that the helix seems to rotate about its vertical axis along the
trajectory. The probable reason is that the helix is not perfectly centered in the channel and
thus experiences a shear flow, which drives a rotation of the object. Several experimental
hurdles, such as mitigating helix sedimentation and precise centering of the helix in the
channel, have yet to be overcome for well-controlled experiments.

The experimental study of flexible helices in shear flows can also be conducted. A simple
shear flow can be obtained by using a vertical Hele-Shaw cell i.e. a rectangular channel
much higher than wide. The vertical flow profile (along the height) is then a plug flow while
the horizontal flow profile (along the width) is parabolic. Provided the object size is much
smaller than the channel width, the object experiences a simple shear in the horizontal
plane. The shear plane then matches the observation plane (also horizontal) allowing
observation of the rotational motion associated with shear flows. Such an approach was
followed for example by Liu et al. to study experimentally the behavior of elastic filaments
in shear flows [10].

In this study we have focused our attention on the effects of the flow on the structure
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but the reciprocal disturbance in the flow field created by the structure has not been
investigated. This topic remains unexplored in the literature. Continuation of our work
could investigate in more detail the disturbed flow field, through the use of Particle Image
Velocimetry (PIV) for example. Furthermore, a better understanding of the reciprocal flow
disturbance may allow the study of the hydrodynamic interactions between neighboring
helices in flow. Finally, the macroscopic properties of a suspension of flexible helices may
be studied and eventually the link between the microscopic effects (at the size of the
particle) and the macroscopic properties of the suspension might be elucidated.

8.2.2 Multi-Component Assemblies

Moving past the study of an isolated object, these helical ribbons can participate in
the assembly of multi-component structures. Nature provides various examples of such
assemblies, a notable one being a bacteria, which is the assembly of one or multiple
helical flagella with a cellular body. The behavior of a bacteria in flow is determined by
the coupling between the helical flagella and the vesicle-like body. A replication of such
assemblies may allow fabrication of artificial bacteria, for the study of their behavior or for
medical applications, such as targeted drug delivery [11].

Within this goal, we collaborated with Dylan M. Barber (D. M. B.), Zhefei Yang, Todd
Emrick and Alfred J. Crobsy (UMass, Amherst, USA) to produce assemblies of droplets
with fibers and helices. Materials exhibiting pH response were designed by D.M.B., and
used to fabricate helical ribbons whose three-dimensional shape and interfacial properties
respond to pH. At high pH for example, the self-coiling phenomenon was suppressed.
Moreover, ribbons with patterned properties were designed by D.M.B. to modulate the
ribbon dimensions, mechanical properties or interfacial properties along the ribbon length.
The assembly of the obtained helices and fibers with oil droplets was studied. We repro-
duce the published paper [12] in Appendix I and supporting information in Appendix II.
We highlight the fabrication of oil droplets with arms (see Figure 1 and Figure 6 of the
paper), which bear a strong resemblance with multi-flagellated bacteria. We contributed
to the design of the experimental system, notably to produce oil droplets and to precisely
manipulate the various objects involved. Furthermore, we conducted flow experiments
to characterize the mechanical properties of the newly synthesized materials. Further
progress in this direction may include achieving self-propulsion of the assemblies, by the
rotation of helical ribbons for example.
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Chapter 9

Résumé Substantiel

9.1 Introduction

Les structures hélicoïdales jouent un rôle crucial dans de nombreux contextes chi-
miques, biologiques et mécaniques. La nature offre de nombreux exemples, couvrant
plusieurs ordres de grandeur en longueur, y compris l’ADN double brin, les structures
dites ’alpha-hélice’ dans les protéines ou encore les vrilles des plantes. Les structures héli-
coïdales revêtent une importance particulière pour la propulsion des micro-organismes,
car nombre d’entre eux se propulsent par la rotation de flagelles flexibles hélicoïdales [1].
Enfin, de nombreuses technologies reposent sur des structures hélicoïdales, notamment
des nano-ressorts métalliques pouvant servir d’actionneur ou de capteur de force [2, 3],
des micro-nageurs artificiels [4], ou des micro-débitmètres [5, 6]. L’étude des propriétés
mécaniques de telles structures hélicoïdales et de leurs interactions avec les écoulements
est donc importante tant pour la science fondamentale que pour des applications techno-
logiques.

Pour les hélices et plus généralement pour les objets chiraux en écoulement, un cou-
plage existe entre les mouvements de translation et de rotation. Les particules chirales en
écoulement dérivent donc à travers les lignes de courant dans une direction qui dépend de
leur chiralité [7–9]. Ce phénomène a été utilisé pour séparer des objets de chiralité opposée,
un processus crucial dans les industries alimentaires ou pharmaceutiques. L’influence
de la chiralité a été étudiée dans diverses situations, telles que la sédimentation de parti-
cules [10] ou le transport de particules dans un flux de cisaillement [8, 11]. Les bactéries
et les micro-nageurs artificiels sont typiquement constitués d’une ou plusieurs flagelles
hélicoïdales attachées à un corps non chiral, et sont donc partiellement chiraux. Pour
ces systèmes, la force de dérive induite par la chiralité crée un couple qui peut réorienter
le nageur [12]. L’une des principales conclusions de ces études est que, pour les objets
hélicoïdaux, l’ampleur des effets induits par la chiralité est principalement contrôlé par le
pas de l’hélice, c’est-à-dire la distance entre deux boucles consécutives. Une hélice à pas
nul correspond à un anneau, qui n’est pas chiral, et une hélice à pas infini à un filament
droit, qui n’est pas non plus chiral. Par conséquent, les effets de chiralité sont maximisés
pour un pas fini non nul.

Mais la plupart de ces études ne considèrent que des particules rigides, alors que la
plupart des structures naturelles et artificielles qui les motivent sont très flexibles. Pour
les hélices flexibles, des degrés de liberté supplémentaires sont ajoutés, tels que l’élonga-
tion/compression axiale ou le flambage. Un couplage très complexe est ainsi créé entre le
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mouvement de translation, le mouvement de rotation et la déformation. Par exemple, la
déformation peut faire varier le pas de l’hélice, ce qui modulera à son tour l’ampleur des
effets de chiralité. Seul un petit nombre d’études ont examiné ce couplage entre la chiralité
et la flexibilité, la plupart d’entre elles étant analytiques ou numériques [13–17].

Sur le plan expérimental, deux approches, à des échelles de longueur différentes, ont été
explorées. D’une part, travailler à l’échelle macroscopique permet de fabriquer facilement
des hélices flexibles aux propriétés contrôlées. Le contrôle des écoulements est cependant
complexe et l’étude du transport des hélices par des écoulements est difficile, car une
telle expérience nécessite que la longueur du canal soit beaucoup plus grande que la taille
typique de l’hélice. Cette approche est donc particulièrement adaptée aux situations où
le fluide est immobile [14, 15]. D’autre part, travailler à l’échelle microscopique permet
de contrôler facilement l’écoulement grâce aux techniques de microfludique et une taille
de canal arbitraire peut être atteinte, permettant l’étude du transport. Mais la fabrication
et la caractérisation d’hélices flexibles à l’échelle microscopique sont particulièrement
compliquées. En effet, très peu de méthodes existent pour la fabrication d’hélices flexibles
de taille micrométrique et de géométrie précisément contrôlée. En particulier, le contrôle
du pas de l’hélice, qui est crucial pour déterminer l’ampleur des effets induits par la
chiralité, est très rarement réalisé. Ces lacunes dans les méthodes expérimentales entravent
les progrès dans l’étude du couplage entre la chiralité et la flexibilité.

Dans ce contexte, ce travail vise à développer un dispositif expérimental complet, de
la fabrication d’hélices flexibles de taille micrométrique à la caractérisation de leurs pro-
priétés mécaniques et à l’étude de leurs interactions avec des écoulements L’accent est
mis sur le contrôle de la forme de l’hélice et de ses propriétés mécaniques. La plate-forme
développée s’appuie sur la formation spontanée de rubans hélicoïdaux microscopiques
hautement flexibles mise en évidence par Crosby et al. [18–20]. Nos travaux ont été me-
nés en étroite collaboration avec Dylan M. Barber et Alfred J. Crosby de l’Université du
Massachusetts, Amherst, États-Unis. Anirban Jana et Andrea de la Sen ont contribué à ce
travail pendant leur stage de recherche de Master. La plupart des travaux rapportés ici sont
expérimentaux mais sont complétés par des approches analytiques et numériques, pour
lesquelles nous avons été assistés par Lyndon Koens de l’Université Macquarie, Sidney,
Australie.

9.2 Contenu

Dans le chapitre 2, nous avons présenté les différentes méthodes et techniques ex-
périmentales que nous utilisons tout au long de ce travail, et le dispositif expérimental
général a été décrit. Nous avons notamment détaillé le processus de fabrication des rubans
hélicoïdaux flexibles de taille micrométrique. Nous avons mis en évidence que le rayon de
l’hélice R est déterminé par l’épaisseur du ruban t et par la longueur élasto-capillaire du
matériau γ/E

R = Et 2

3γ
(9.2.1)

Le contrôle de l’épaisseur du ruban est obtenu par gravure au plasma des échantillons
avant les expériences, ce qui permet de contrôler le rayon de l’hélice. La longueur totale du
filament L est réglée par simple découpe des échantillons. Le contrôle du pas de l’hélice
est cependant absent, et les hélices présentent typiquement une géométrie étroitement
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enroulée, avec donc une chiralité très faible. Plusieurs problèmes expérimentaux ont été
observés, affectant de façon négative la fabrication des rubans et le phénomène d’auto-
enroulement. Ces problèmes semblent être liés au vieillissement des composés chimiques,
en particulier le polyméthacrylate de méthyle (PMMA) et le colorant fluorescent (Coumarin
153), par hydratation sous l’effet de l’humidité ambiante. Ces problèmes sont atténués par
le stockage des composants sous vide avant leur utilisation. Enlever le colorant fluorescent
participe également à l’atténuation de ces effets, au prix d’hélices non fluorescentes. Mais
comme les hélices peuvent être visualisées par microscopie à contraste de phase en champ
clair, la fluorescence n’est pas une caractéristique essentielle.

Dans le chapitre 3, nous avons présenté un ensemble de méthodes exécutées in-situ
permettant de contrôler localement le pas de nos rubans hélicoïdaux. Le procédé consiste
à créer une contrainte persistante dans le matériau en étirant l’hélice pendant une longue
période de temps, généralement plusieurs minutes. Une fois la contrainte relâchée, une
augmentation irréversible du pas de l’hélice est observée. Différents profils de contrainte
peuvent être appliqués pour contrôler localement cette augmentation. Notamment, l’ap-
plication d’une contrainte uniforme résulte en une augmentation uniforme du pas. Tous
les paramètres géométriques de l’hélice sont maintenant contrôlables, le contrôle de la lon-
gueur et du rayon ayant déjà été réalisé. En outre, les paramètres géométriques peuvent être
modifiés indépendamment les uns des autres. Aucun changement n’est attendu dans les
propriétés mécaniques du matériau lors des traitements, mais une validation expérimen-
tale serait bénéfique. Nous avons démontré que notre méthode exploite la susceptibilité
accrue au fluage des matériaux confinés pour donner aux hélices la géométrie souhaitée.
La susceptibilité de chaque matériau au fluage a été caractérisée par un coefficient r /∆t .
Les hélices en PMMA présentent le rapport le plus favorable, ce qui valide l’utilisation de
ce matériau lors des expériences futures. Les hélices en PDMAEMA et en boîtes quantiques
se sont avérées trop sensibles au fluage.

Très peu de méthodes de fabrication aboutissent à des structures hélicoïdales flexibles
avec un contrôle total de la forme et nous rapportons pour la première fois un contrôle
local du pas. Les différentes méthodes de modification du pas ont été testées pour trois
matériaux différents, démontrant la polyvalence du procédé : PMMA, polyméthacrylate de
diméthylamino-éthyle (PDMAEMA) modifié et boîtes quantiques Cd-Se. Cette polyvalence
contraste avec les méthodes précédentes pour lesquelles le choix du matériau est limité :
nanotubes d’ADN pour les travaux de Maier et al. [21] ou composites métalliques pour les
travaux de Li et al. [6].

Dans le chapitre 4, nous avons caractérisé expérimentalement les propriétés méca-
niques des rubans hélicoïdaux en mesurant la relation force-extension F (∆H). L’extension
axiale est imposée, et la force correspondante est mesurée à l’aide d’une poutre cantilever.
En profitant du contrôle nouvellement obtenu sur le pas de l’hélice, l’influence de ce
paramètre a été étudiée. Pour une géométrie de référence donnée, la relation F (∆H) s’est
avérée non linéaire. Au fur et à mesure que l’angle de pas α0 augmente, un raidissement
des rubans hélicoïdaux est observé. Nous avons constaté que la non-linéarité de la relation
force-extension et le raidissement effectif sont décrits avec précision par le modèle analy-
tique proposé par Starostin et al. [22], obtenu en utilisant un modèle de bande élastique
inextensible. Nos résultats fournissent donc une forte validation expérimentale de l’ap-
proche suivie par Starostin et al. La comparaison avec un modèle précédemment établi
pour des hélices dont le filament est cylindrique [23] suggère que l’effet de raidissement
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est spécifique aux rubans hélicoïdaux. A partir de la relation force-extension, le module
de torsion du ruban C a été extrait. Nous avons suivi les changements potentiels de C
alors que l’angle de pas varie. Aucun changement n’a été constaté, ce qui confirme que
les propriétés mécaniques du matériau ne sont pas affectées par les déformations irréver-
sibles déclenchées pendant le processus d’augmentation du pas. Nos mesures de C ont
été comparées aux résultats antérieurs de Pham et al., qui ont utilisé le même système
expérimental [24]. Un excellent accord a été trouvé, validant davantage nos résultats.

Dans le chapitre 5, nous avons présenté des résultats expérimentaux pour l’extension
de rubans hélicoïdaux immergés dans des écoulements axiaux visqueux. En s’appuyant
sur les méthodes nouvellement développées de contrôle du pas de l’hélice, nous avons
étudié l’influence de ce paramètre sur l’extension en écoulement. Nous avons introduit
la fonction d’extensibilité f , qui englobe l’influence de l’angle de pas α0 sur l’extension.
Nous rapportons une extensibilité constante aux petits angles (géométrie compacte) suivie
d’une forte diminution aux angles élevés (vers une géométrie ouverte). Ainsi, aux petits
angles, l’angle de pas n’a aucune influence sur la déformation alors qu’aux angles élevés,
l’augmentation de l’angle de pas conduit à une diminution de l’extension. Le changement
de régime se produit autour de α0 ∼ 25−30°. L’ampleur de cet effet de raidissement en
écoulement est significatif : l’extensibilité diminue d’un facteur 5 entre α0 = 10° et α0 = 60°.
Les résultats analytiques précédemment rapportés pour la déformation d’une hélice en
écoulement visqueux ne parviennent pas à décrire cet effet [13, 25].

Nous avons ensuite analysé la forme des hélices déformées par l’écoulement, mettant
en évidence un changement du mode de déformation lorsque l’angle de pas augmente.
Aux petits angles, le ruban est principalement sollicité en torsion (associée au module
de torsion C ) alors qu’aux angles élevés, le ruban est principalement sollicité en flexion
(associée au module de flexion B). Cette transition dans le mode de déformation et l’effet
de raidissement rappellent les observations faites dans le chapitre 4. Mais considérer uni-
quement l’influence de la mécanique du ruban ne permet pas pas de décrire précisément
le comportement en écoulement. L’influence des forces visqueuses hydrodynamiques doit
être prise en compte. Qualitativement, pour les hélices à petit angle, la géométrie est très
compacte et le filament est orienté perpendiculairement à la direction de l’écoulement.
Lorsque l’angle de pas augmente, la géométrie devient plus ouverte et le filament est
orienté plus parallèlement à la direction de l’écoulement. Étant donné ces changements
simultanés de compacité et d’orientation du filament, il est difficile d’estimer comment les
forces visqueuses varient avec l’angle de pas.

Dans le chapitre 6, nous avons développé un cadre analytique pour modéliser la dé-
formation d’une hélice flexible dont le filament est de section arbitraire, immergée dans
un écoulement visqueux. Le comportement mécanique du filament est décrit à l’aide des
équations de Kirchhoff et les forces visqueuses sont approximées à l’aide de la "resistive-
force theory" (RFT). Nous avons spécifiquement détaillé le cas d’une hélice immergée dans
un écoulements axial visqueux de vitesse uniforme U . En supposant que l’extension axiale
de l’hélice est petite (soit ∆H ¿ L), une expression pour l’extension axiale a été obtenue

∆H = R2
0L2

2

ξ2U

C
f (α0)

où f (α0) = cos4α0 +
(
2ρ+2

C

B
−1−ρC

B

)
cos2α0 sin2α0 +ρC

B
sin4α0

avec ρ = ξ3/ξ2 représentant l’anisotropie de traînée spécifique aux objets allongés. Nos
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résultats contrastent avec les travaux analytiques précédents, qui ont trouvé une influence
négligeable de l’angle de pas [13, 25] malgré l’utilisation des mêmes équations élémen-
taires. Nous avons comparé nos résultats avec des simulations numériques basées sur les
travaux de Walker et al. [26]. Ces simulations reposent à nouveau sur les mêmes relations
constitutives (équations de Kirchhoff et RFT). Nous avons trouvé un excellent accord entre
notre approche analytique et les résultats de la simulation, ce qui valide notre dérivation.
Les divergences avec les modèles précédemment publiés restent inexpliquées.

Nous avons ensuite adapté notre cadre pour traiter le cas d’une hélice chargée à son
extrémité. Nous avons retrouvé le résultat classique de Love [23], validant à nouveau
notre approche. Dans le cas spécifique des rubans hélicoïdaux, nous avons comparé nos
résultats aux travaux de Starostin et al. [22], qui reposent sur une modélisation différente
de la mécanique des rubans. Certaines différences ont été mises en évidence et nous avons
proposé en conséquence une correction ad-hoc du modèle pour traiter le cas des rubans
hélicoïdaux. Nous avons émis l’hypothèse que l’ajout d’un terme multiplicatif cos2α0

à nos résultats analytiques rendrait compte de la mécanique spécifique des rubans. La
justification analytique reste à fournir et constituerait une suite naturelle de ce travail.

Dans le chapitre 7, nous avons comparé nos résultats expérimentaux concernant
l’extension de rubans hélicoïdaux immergés dans des écoulements axiaux visqueux à nos
prédictions analytiques, obtenues en combinant les équations de Kirchhoff et la RFT. Nous
avons démontré que ni les équations de Kirchhoff ni la RFT ne sont pertinentes dans cette
situation. Comme déjà souligné dans la littérature [27, 28], les équations de Kirchhoff ne
décrivent pas correctement la mécanique des rubans. Nous avons constaté dans chapter 4
qu’un modèle de bande élastique inextensible est préférable. L’ajout du terme multiplicatif
ad-hoc cos2α0 a grandement amélioré l’accord entre les données expérimentales et le
modèle, ce qui a validé son ajout.

Guidés par les travaux de Rodenborn et al. [29], nous avons mis en évidence que la RFT
approxime mal les forces visqueuses agissant sur les rubans hélicoïdaux. La "slender-body
theory" (SBT) est préférable car elle prend en compte les interactions hydrodynamiques.
Nous avons montré que les forces visqueuses agissant sur un ruban hélicoïdal peuvent
être calculées comme si la section était circulaire, avec un diamètre égal à la largeur du
ruban. Nous avons proposé une inclusion de la SBT dans notre modèle analytique, au prix
de deux approximations raisonnables, à savoir que B = C et que la force de traînée est
uniformément distribuée le long du ruban. Le modèle analytique a donc été corrigé deux
fois, d’abord pour tenir compte de la mécanique spécifique des rubans et ensuite pour
inclure la SBT. Nous avons constaté un très bon accord, tant qualitatif que quantitatif, entre
le modèle doublement corrigé et nos données expérimentales. Nous avons conclus que,
dans le régime linéaire i.e. ∆H/L . 0.1, l’extension axiale d’un ruban hélicoïdal immergé
dans un écoulement axial visqueux est donnée par

∆Hribbon = R2L

2
cos2α0

D

C
(9.2.2)

avec D la force de traînée totale agissant sur l’hélice dans sa configuration de référence. La
valeur de la constante numérique (ici 1/2) reste à valider.
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9.3 Conclusion

En conclusion, nous avons démontré la fabrication de rubans hélicoïdaux de taille
micrométrique hautement flexibles avec une chiralité contrôlée et une flexibilité bien
caractérisée. Nous avons démontré que ces rubans hélicoïdaux micro-fabriqués peuvent
être combinés avec des techniques de microfludique pour réaliser des expériences dé-
taillées. Ces rubans hélicoïdaux constituent un système modèle idéal pour explorer et
étudier le comportement des hélices flexibles en écoulement visqueux et notamment
l’interaction entre chiralité et flexibilité. Nous avons cependant souligné que les proprié-
tés des rubans hélicoïdaux sont significativement affectées par la mécanique spécifique
des rubans Ces propriétés mécaniques entraînent notamment des effets de raidissement
importants lorsque l’angle de pas augmente. Les résultats obtenus dans le cas de rubans
hélicoïdaux ne peuvent donc pas s’appliquer directement à des hélices dont le filament est
de section différente. Notamment, la relation entre la flexibilité de l’hélice et les grandeurs
géométriques (rayon, pas et longueur) est différente selon la section du filament. Mais à
une flexibilité et une chiralité données, la forme exacte de la section devrait être de peu
d’importance.
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ness, allowing interfacial energy to drive mesoscale assembly. By exploiting 
these interfacial driving forces, mesoscale polymers are demonstrated as 
a powerful platform that underpins the preparation of sophisticated hybrid 
structures in fluids.
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damage-preventing mechanisms activated 
upon impact-driven disassembly and 
reassembly. Another example is the inte-
gration of flagella and fimbriae with the 
membrane of bacteria. These long, flexible 
mesostructures couple with the vesicle-
like core to modulate interfacial interac-
tions with their surroundings.[4–11] These 
examples illustrate how assemblies of 
fibers and spheroids with well-controlled 
interactions and length scales give rise to 
advantageous properties and performance. 
While some synthetic systems demon-
strate isolated principles of such natural 
phenomena,[12,13] a robust platform with 
material-, interfacial-, and geometry-ena-
bled tuning of fiber-spheroid assemblies 
has yet to be realized.
Figure 1a describes our use of polymer 

ribbons, termed mesoscale polymers 
(MSPs), at the interface of oil-in-water droplets, in which three 
modes of interaction were identified: nonadhesion, adhesion 
without wrapping, and spontaneous wrapping. These inter-
actions are dictated by the critical strain energy release rate, 
Gc = γow + γpw − γop (comprising the oil–water, polymer–water, 
and oil–polymer interfacial tensions), and the critical elastoad-
hesive length, R = Et /Gc

3
c , a droplet radius defined by MSP 

mechanics (Young’s modulus E), interfacial strength (Gc), 
and geometry (thickness t), above which an adhesive MSP 
spontaneously wraps droplets.[12,13] A pH-responsive trigger 
embedded in the MSPs controls the observed assembly mode. 
Figure 1b describes MSPs with segments of alternating com-
positions, termed mesoscale block copolymers (MSBCPs), 
such that Gc and Rc are partitioned along the ribbon length. 
When brought into contact with a droplet of radius R, selec-
tive wrapping is designed to afford droplets with one or many 
pendent arms. In this paper, we realize the vision in Figure 1, 
starting from monomer and copolymer synthesis, fabrication 
of MS(BC)Ps (thickness t ≈ 100–600 nm, width w ≈ 10–35 µm, 
and length 2–4  mm), and MS(BC)P contact with emulsion 
droplets (radius R  = 6–350  µm). Key structures were derived 
from different ribbon interactions with droplets, including 
weak adhesion (Figure  1c, far left), spontaneous wrapping 
(Figure  1c, center left), and selective wrapping by specific 
MSBCP segments to afford structures with one (Figure  1c 
center right) or many (Figure 1c far right) arms extending into 
the surrounding fluid, or a mesoscale micelle. By embedding 
responsive chemistry into MSPs, we modulate the resulting 

1. Introduction

Nature provides striking examples of mesoscale assemblies fea-
turing properties and architectures that inspire synthetic rep-
lication. Some naturally occurring structures take the form of 
long, fibrous building blocks that act in concert with spheroids, 
such as droplets, colloidal particles, or live cells. For example, 
fiber-in-droplet packing is exemplified by spooling observed in 
spider capture silk,[1–3] in which a fiber is periodically wetted 
with aqueous droplets and winds into an internally spooled 
configuration. The balance between interfacial energy and fiber 
bending energy drives such assembly, as well as the dissipative, 
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ribbon/droplet architecture and in turn produce a new mate-
rials toolbox of hybrid structures. Moreover, by providing 
access to a broad array of structures from mesoscale ribbons 
and droplets, we build a platform of increasingly sophisticated 
soft materials that begin to emulate the exquisite examples 
found in Nature.

2. Materials Preparation

The MSPs described in this work were prepared with reac-
tive and functional polymers using flow-coating methods 
we described previously.[14–16] The polymers were designed 
to exhibit pH response (polymer 1) and amenability to 
photopatterning (polymer 2), as shown in Figure 2a. Polymer 
1 (Mn  = 38  kDa, Đ  = 2.7) was prepared by free radical copo-
lymerization of dimethylaminoethyl methacrylate (DMAEMA) 
with 5 mol% of benzophenone methacrylate (BPMA) and 1 
mol% of fluorescein-o-methacrylate (FMA). The tertiary amines 
enable pH response by transitioning from charge neutral to 
cationic with increasing acidity,[17–20] while BPMA imparts a 
crosslinking mechanism and FMA contributes fluorescence 
to aid visualization. Copolymer 2 (Mn  = 21  kDa, Đ  = 2.2) was 
prepared by free radical polymerization of t-butyl methacrylate 
(TBMA) with 2 mol% of glycidyl methacrylate (GMA), 4 mol% 
of triphenylsulfonium 4-vinylbenzenesulfonate (TPS4VBS), and 
0.2 mol% of rhodamine B methacrylate (RBMA). In polymer 
2, the aromatic sulfonium sulfonate comonomer functions as 

a photoacid generator upon UV exposure to trigger acid-cata-
lyzed deprotection of the t-butyl esters and crosslinking via the 
glycidyl ethers, affording MSPs with segments of alternating 
composition, termed MSBCPs.[21]

To prepare the MSPs, a clean glass slide (24 mm × 40 mm 
× 170  µm) was coated with an ≈50  nm layer of poly(styrene 
sulfonate) (PSS, sodium salt) at 2 or 4 mm intervals to afford 
stripes of bare glass ≈100 µm wide, over which was flow-coated 
a toluene solution of polymer 1 or 2 (Figure  2b left).[14–16] The 
substrate was translated in 1  mm intervals at 3  mm s−1

, with 
a 1.1–1.5 s delay between steps to deposit the MSPs. The rib-
bons were then irradiated i) at λ  = 365  nm (3300 mJ cm−2) 
(copolymer 1) to afford a crosslinked polyDMAEMA net-
work (schematic Figure  2b, purple) or at ii) λ  = 254  nm 
(200–695 mJ cm−2) through a photomask, then heated to 150 °C 
for 60 s (copolymer 2), to afford MSBCPs with alternating 
segments of hydrophobic, glassy poly(t-butyl methacrylate) 
(PTBMA) and hydrophilic, crosslinked poly(methacrylic acid) 
(PMAA, Figure 2b, red and blue, Figure S1, Supporting Infor-
mation). The ribbons were cut into 2–4  mm long segments 
with a CO2 laser engraver (λ = 10.6 µm) and subjected to reac-
tive ion etching with O2 plasma for 30 s to remove any residual 
polymer film between the MSPs. The MSPs were released from 
the substrate by submerging the sample in an aqueous solu-
tion to dissolve the underlying PSS layer, then brought into 
contact with oil-in-water droplets; the resulting assemblies were 
studied as a function of their interfacial activity (Gc) and critical 
elastoadhesive length (Rc).

Figure 1.  System design. MS(BC)P–droplet interactions are dictated by controlling material properties (Gc, E) and geometry (t, R) via pH and spatial 
partitioning: a) MSPs adopt nonadhesive (left), adhesive (center), and wrapped (right) interaction modes, stemming from the pH-dependent work of 
adhesion (Gc) and the relative size of the droplet radius R and critical elastoadhesive length Rc; b) MSBCPs, with segments of alternating composition, 
Gc, and Rc, enable selective wrapping for all droplet radii Rc2a < R < Rc2b, affording droplets with 1 (left) or many (right) arms; c) micrographs (left to 
right) of MSPs in adhesive (R < Rc1) and wrapped (R > Rc1) modes, and MSBCPs in selectively wrapped (Rc2a < R < Rc2b) modes with one or many arms.
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3. Controlling Ribbon–Droplet Architectures with pH

Experiments with MSPs prepared from copolymer 1 were 
performed in pH 1–10 buffer solutions using individual 
perfluorodecalin (PFD) droplets (R  = 6–350  µm) to avoid 
coalescence. Pendent drop tensiometry revealed the oil–water 
surface tension γow to be roughly constant (≈50 mN m−1) across 
this pH range. Droplet-to-MSP contact was achieved using a 
glass microcapillary fixed to a hand-controlled micromanipu-
lator (Figure 3a,b). Droplets were introduced by inflation at the 
microcapillary tip or by emulsification and injection via pipette. 
The optical micrograph in Figure 3b features an MSP adhered 
end-on to the surface of a PFD droplet, alongside the microcap-
illary tip. The schematics in Figure 3c illustrate a typical experi-
mental setup. The microcapillary tube and translating stage 
are used to probe MSP/droplet interactions by moving droplets 
through the fluid phase; pH-dependent assembly spans weak 
adhesion, possibly mediated by nonuniformities on the MSP 
surface, to spontaneous wrapping. We note that MSPs were 
observed to spontaneously curve into wavy structures or well-
defined helices, especially in aqueous environments from pH 
1–6; the observed curvature, a function of MSP mechanical 
properties and interfacial interactions with the surrounding 
aqueous phase, was used to estimate a pH-independent copol-
ymer modulus of ≈200 MPa by helix extension in viscous flow 
(details in the Supporting Information).[15,22,23]

3.1. Weak Adhesion Modes: Ribbon Stretching 
and Flagellum-Like Assemblies

From pH 1–6, MSPs and droplets were observed to slide past one 
another upon contact, with adhesion occurring randomly along 
the MSP. Figure 3d (left) shows sequential frames from Video S1  

in the Supporting Information, in which a coiled MSP (helix 
radius = 38  µm) is suspended between the substrate and an 
adhered droplet (R = 132 µm). By translating the substrate, the 
helix transitions from unstretched (top) to extended (center), to 
fully detach from the droplet (bottom), recoiling like a stretched 
spring. This adhesion is too weak to macroscopically deform the 
droplet before detachment. Video S2 in the Supporting Infor-
mation illustrates similar adhesion at pH 4, while Video S3 in 
the Supporting Information displays an example of interfacial 
slip along a smooth MSP helix at pH 6. At pH 8, the adhesion 
occurred at the MSP ends (Figure  3c,d center) to afford fla-
gellum-like structures. Video S4 in the Supporting Information 
shows a droplet attached to an MSP segment (length ≈400 µm) 
that is pushed through the fluid with the capillary tip to demon-
strate i) adhesion between the droplet and MSP end and ii) a lack 
of adhesion along the MSP face. This flagellum-like assembly 
was maintained while the MSP was stretched (Figure 3d center; 
Video S4, Supporting Information), but when the droplet was 
brought into contact with the MSP face (time T ≈ 0.4–0.8 s) the 
two faces slid past one another without adhering. We speculate 
that these distinct adhesion modes may result from laser cutting 
(CO2 laser, λ = 10.6 µm) of the MSPs after flow-coating, which 
heats the material[24] and potentially alters its surface composi-
tion (i.e., via oxidation), Gc, and roughness.[25,26] We note that 
MSPs that were stored under ambient conditions for ≈3 weeks 
before release into pH 8 buffer qualitatively exhibited a decrease 
in selectivity for adhesion at the end.

3.2. Capillary Wrapping

At pH 10, the MSPs were observed to spontaneously wrap the 
droplets upon contact between the ribbon face and fluid–fluid 
interface, suggesting both large Gc and R > Rc. This wrapping 

Figure 2.  Experimental design. a) Structure of PDMAEMA copolymer 1 and PTBMA copolymer 2 used to prepare ribbons; b) copolymers were flow-
coated onto a PSS-coated glass slide to afford ribbons of thickness t and width w, with functionality determined by copolymer selection, then irradiated 
to afford MSPs or MSBCPs (structural representations simplified for clarity).
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event is in stark contrast to the weak adhesion observed at 
lower pH and marks a transition from polycation (in acidic 
solution) to neutral polymer (in basic solution, Figure 3c inset 

structures),[17–20] while a pH-independent E and γow implicate 
the polymer surface chemistry as the driving force for wrap-
ping. Wrapping continued until terminated by one of several 

Figure 3.  pH-Dependent MSP interfacial activity. a) Schematic of experimental apparatus: a submerged microcapillary tube was fixed to a micromanipu-
lator and used to move MSPs and droplets through the solution; b) a frame of data featuring a flagellum-like MSP–droplet assembly; c) schematics of 
experimental design: at pH 1–6 (left), the droplet was fixed to the microcapillary tube and the MSP manipulated via translation of the substrate-adhered 
end; flagellum-like assemblies at pH 8 (center) and spooled assemblies (right) were manipulated by translation of the microcapillary tube and the 
substrate; d) sequential frames of MSP–droplet assemblies: (left, pH 1) weak, defect-mediated adhesion (R < Rc) that detached without macroscopic 
droplet deformation; (center, pH 8) flagellum-like assembly, and (right, pH 10) unwrapping an assembly where R > Rc. Red and blue arrows indicate 
relative motion of the droplet and the MSP fixed end. Scale bars 200 µm.
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mechanisms, including: i) onset of tension in the MSP, sup-
plied by MSP adhesion to the substrate or microcapillary tip; 
ii) wrapping over an existing coil rather than available oil–water 
interface; or iii) consumption of the entire MSP length, to afford 
droplets with partial interfacial coverage. The wrapped droplets 
were subsequently unwrapped by withdrawing the MSP via 
the microcapillary tube (Video S5, Supporting Information). 
Figure 3c (right) schematically depicts the experimental design, 
while Figure  3d (right) displays frames from Video S5 in the 
Supporting Information that show clean unwinding of millim-
eters of an MSP while it maintains its structural integrity. The 
unwound MSPs then wrap the droplets again when tension is 
released and the wrapping/unwrapping cycles were repeated 
up to three times, without noticeable change, for a given MSP–
droplet pair. Videos S6 and S7 in the Supporting Information 
demonstrate cases of partial rewrapping to create assemblies 
in which droplets are decorated with arms that extend into 
the continuous phase. Because wrapping stops when the MSP 
wraps upon itself, we infer that it is confined to the oil–water 
interface, and further, that the wrapping mechanism requires 
an uninterrupted 3-phase contact line at the wrapping edge.

From a mechanics standpoint, the MSP-wrapped droplets 
can be described by a thin, wide elastic beam confined to a 
curved oil–water interface.[12] The components of a wrapped 
assembly of contact length Lc include bending (Ub = EIyyLc/2R2) 
and adhesion (Uγ  = GcwLc) energies, where E is the elastic 
modulus, Iyy is the second moment of inertia for axial wrap-
ping, and Gc is critical strain energy release rate. When R = Rc, 
the wrapped and unwrapped states are energetically equiva-

lent, affording R =
EI

2G w
~

Et

G
c

yy

c

3

c

. Thus, for R  < Rc we expect 

adhesion without wrapping, while for R  > Rc we expect spon-
taneous wrapping. This relationship was studied as a function 
of droplet radius R in the experiments shown in Figure  4. 
In Figure  4a (and Video S8, Supporting Information), the 

microcapillary tip was positioned adjacent to an MSP and used 
to introduce a droplet, which grew until it contacted the MSP. 
Figure  4a (left) shows the system at T  = 0.4 s, immediately 
before contact and wrapping. To the left, the MSP is fixed to the 
glass substrate, and to the right, it is unconstrained and free to 
wrap the droplet. At T = 11 s (Figure 4a, center), wrapping had 
nearly advanced one turn around the droplet, and the two wrap-
ping edges passed by one another at T = 1.4 s. Approximating 
wrapping at the droplet circumference, each wrapping edge 
advanced at ≈350 µm s−1. After T = 1.6 s, the free MSP end was 
completely wrapped, while the slack between the droplet and 
the fixed end was pulled tight at T = 7.6 s (Figure 4a (right) and 
final frames of Video S8, Supporting Information).

To examine the impact of droplet size on wrapping, a ribbon-
wrapped droplet with radius R  = 279  µm was pierced with 
the microcapillary tip and oil was continuously withdrawn to 
reduce the droplet radius (Figure 4b). At R = 136 µm, deflation 
stopped as applied force from the tip translated the droplet 
without piercing the surface. Despite the decrease in droplet 
dimensions, the droplet remained wrapped, with an appearance 
of more substantial interfacial coverage. Even in the presence 
of small droplets (R  ≈ 6–30  µm) prepared by emulsification 
via pipette, wrapping occurred such that MSPs effectively con-
nected multiple droplets in series. For example, Figure  4c 
shows brightfield (left) and fluorescence (right) micrographs 
of an MSP (w  = 14  µm) wrapped around 13 droplets as small 
as R  = 6  µm (droplet 7). For even smaller droplets, where 
R  < w, we anticipate edgewise wrapping dictated by a lateral 
moment of inertia Ixx, which becomes infinitesimally small as 
MSP thickness tapers toward the edges (Figure S2, Supporting 
Information). Accordingly, we expect wrapping even in cases 
where the thickness t of the MSP central axis might otherwise 
prohibit lengthwise wrapping.

3.3. Evaluating MSP–Droplet Interactions

The energy landscape of elastoadhesive MSP wrapping, as 
described by Gc, in pH 10 buffer was probed by measuring 
the peel force, Fc, required to separate a wrapped MSP from 
the fluid–fluid interface. As described in Figure 5, these meas-
urements utilized deflection of a single carbon fiber fixed 
to the end of a glass capillary tube that was dipped into a 
cyanoacrylate glue and cured to afford a cantilever with a hydro-
phobic, adhesive bead near the tip. A sample of MSPs was 
released into the buffer and PFD droplets were introduced by 
pipette. The cantilever was brought into contact with a PFD 
droplet via a micromanipulator, which adhered to the cured 
poly(cyanoacrylate) bead, then the cantilever-bound droplet 
was brought into contact with an MSP to initiate spontaneous 
wrapping (Figure  5a). For ribbons with one end fixed to the 
substrate, the MSP–droplet assembly was loaded by substrate 
translation, enabling direct quantification of the applied force 
by measuring cantilever deflection. The applied force increased 
linearly as the MSP stretched and the droplet deformed, as 
shown by the 3-phase contact line meniscus (Figure  5b), 
until unwrapping began at a critical force, Fc. Figure 5c,d and 
Video S9 in the Supporting Information follow the progress 
of an experiment with droplet radius R = 88 µm through two 

Figure 4.  Critical elastoadhesive dimension Rc1. a) Time points of a 
droplet inflated until (left) ribbon contact, (center) during wrapping, 
and (right) pulled tight against the substrate-adhered end; b) deflating 
a wrapped droplet to R = 136 µm without any unwrapping; c) bright-field 
(left) and fluorescence (right) micrographs showing complete wrapping 
of droplets with diameter ≤ w = 14 µm.
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complete loading cycles, with an unloading step in between the 
cycles. Force (Figure 5c, left) and the applied energy release rate 
G (right, describing the energetics of separating the interface) 
are plotted as a function ribbon length (LR) between its fixed 
end and the droplet contact point; on the second cycle, the MSP 
was unwrapped until detachment, when the ribbon contact 
length was exhausted. The loading curve exhibited two distinct 
regimes: linear loading, in which the force increased monotoni-
cally with the droplet-to-fixed-end MSP length (LR), followed 
by a plateau of sustained peel at constant force (Fc, blue data 
points) of 2.6 µN. The initial loading slope was consistent from 
cycle to cycle, as was Fc. During unloading, the linear force–LR 
curve matched the slope of the loading curve, suggesting elastic 
recovery in the stretched MSP. At F = 0, ≈50 µm of visible slack 
spontaneously rewrapped the droplet.

The second load cycle followed a similar stretch-plateau 
shape and loading continued until the MSP detached com-
pletely from the fluid–fluid interface and dispersed in water. 
Figure  5d corresponds to red data points in Figure  5c during 
the second loading cycle, with wrapped lengths of i) ≈140 µm, 
ii) ≈85  µm, and iii) ≈0  µm (end-adhered), iv) marking con-
tinuous unwrapping before detachment. The critical force for 
unwrapping is divided by w (≈22  µm, measured from video 
frames) to define a critical energy release rate, Gc = 116 mN m−1 
for the copolymer 1-PFD interface in this solution (Figure  5c, 
reference line). For an MSP of thickness t  = 300  nm and 

modulus 200  MPa, the critical elastoadhesive dimension for 
axial wrapping (bending in Iyy) Rc  ≈7  µm. We note that Rc is 
readily decreased by reducing t, which is accomplished easily 
during ribbon fabrication by flow-coating.[14–16]

4. Building Droplets with Arms by 
Photopatterning Ribbons
Photopatterned ribbons prepared from copolymer 2 were used 
to study additional MSP–droplet assembly modes. Here, com-
position, geometry, and interfacial chemistry are partitioned 
to afford MSBCPs, reflecting spatial control of Rc such that 
only predetermined segments wrap the droplets. Remarkably, 
only the hydrophobic segments (composed of PTBMA) were 
observed to wrap PFD droplets, while the hydrophilic PMAA 
segments exhibited no wrapping tendency, suggesting that for 
droplet radii R ≈ 60–150 µm, Rc,PTBMA < R < Rc,PMAA.

Droplet–ribbon assemblies with appendages extended into 
the aqueous phase were realized by photochemically pro-
grammed wrapping with specific MSP segments, enabled by 
controlling domain size via the photomask and the number 
of segments via laser engraving. Figure  6a describes MSBCP 
assembly consisting of 1 segment each of deprotected PMAA 
and protected PTBMA (block length 500  µm) with a PFD 
droplet (R ≈ 110 µm) in water; false color (frame 1) highlights the 

Figure 5.  Measuring MSP peel force and Gc by cantilever deflection. a) Schematic of experimental apparatus: a droplet is adhered to the tip of a carbon 
fiber cantilever and partially wrapped by an MSP of suspended length LR. The assembly is loaded by substrate translation to deflect the cantilever by 
distance  δ; b) false color micrographs of the system at low load (left, no MSP–droplet meniscus) and while peeling (right, meniscus formation); c) 
force–LR plot of a typical experiment, in which the sample is cycled through two load-peel events, then peeled until rupture. Blue data points denote a 
visible meniscus and correspond to Fc and Gc; cycle averages were combined to estimate peel force and Gc (dashed reference line with 95% confidence 
in gray); red points i–iv) correspond to frames di–iv); d) sequential frames from the same peel experiment. The MSP unwraps i,ii) from the droplet 
surface until only the end adheres iii), then is released from the interface iv). False coloration highlights the MSP. Scale bars b) 50 µm and d) 100 µm.
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distinct blocks. Upon contact, the hydrophobic PTBMA block 
wrapped the droplet until reaching the junction point, affording 
a droplet with a single PMAA arm (Figure  6a frame 2 and 
Video S10, Supporting Information). We note that this mecha-
nism of pendent arm formation is distinct from the pH-
dependent methods used to prepare extended structures from 
MSPs of copolymer 1. Subsequent contact with additional 
MSBCPs decorated the droplet with a second arm (Figure  6a 
frame 3 and Video S11, Supporting Information), and up to ten 
arms using mixed assembly modes spanning i) selective wrap-
ping, ii) weak adhesion of PMAA domains, and iii) end-on adhe-
sion (Figure 6a, frame 4 and Video S12, Supporting Information).

Related structures were obtained by using PMAA–PTBMA–
PMAA triblock MSBCPs, decorating droplets with two pendent 
arms per wrapping step. Figure 6b and Video S13 in the Sup-
porting Information describe the use of a droplet of R ≈ 150 µm 
to pick up the ribbons, which are resting on a substrate in 
500 × 10−3 m NaOH solution. The central PTBMA block was 

500  µm in length, with shorter blocks of approximate length 
≈250  µm in PMAA domains. Here, the crosslinked PMAA 
domains coiled tightly into helices of R ≈ 3.5 µm upon release 
into solution, suggesting swelling-dependent coiling consistent 
with MSBCP architectures reported previously.[21] In contrast, 
the hydrophobic PTBMA domains remained straight until con-
tact with a droplet initiated bending. False coloration in frame 1 
of Figure 6b highlights the coiled helical end blocks (blue) and 
rigid core block (red) of an MSBCP immediately before droplet 
contact and wrapping. Frames 2–4 represent subsequent 
frames from Video S13 in the Supporting Information as the 
droplet is used to remove additional ribbons from the substrate 
surface by selective wrapping. Wrapping of additional MSBCPs 
advances until overlap with those present already. Notably, 
this does not stop the wrapping events as observed for longer, 
substrate-adhered PDMAEMA MSPs at pH 10; rather, wrap-
ping was seen to continue by pushing the previously wrapped 
segments across the interface (T ≈ 7.2–14.0 s).

Figure 6.  Droplet–MSBCP assemblies. Assembly of droplets with a) “diblock” MSP in reverse osmosis water and b) “triblock” MSP in 500 × 10−3 m 
NaOH: a) The droplet and ribbon (false color, top, red = hydrophobic; blue = hydrophilic) are brought into contact; selective wrapping affords a droplet 
with an arm (frame 2); subsequent ribbon addition allows installation of 2 (frame 3) or many (frame 4) arms; b) assembly of MSBCPs (false color, top) 
enables shorter arms driven to coil in basic solution; c) cantilever deflection of an MSBCP with one wrapped segment to quantify peel force; d) plot of 
measured force F (left axis) and G (right axis) as a function of peel length of an adhered MSBCP subjected to three load-peel cycles. Red data points 
correspond to frames ci–iv); blue data points denote peeling (Fc, Gc); cycle averages were combined to calculate peel force and Gc (dashed reference 
line with 95% confidence in gray). Scale bars a,b) 200 µm and c) 100 µm.
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4.1. Quantifying MSBCP Segment–Droplet Interactions

The peel force of PTBMA segments at the PFD–water interface 
was measured by cantilever deflection. MSBCPs of alternating 
50 µm blocks were prepared with one end fixed to the substrate 
surface, released into pH 10 buffer solution, then brought into 
contact with a cantilever-bound droplet (R  ≈ 60  µm). Measure-
ments were made by translating the substrate with the adhered 
MSBCP end, pulling on the droplet, and measuring the deflec-
tion of the attached cantilever. The system was taken through 
two complete load–unload cycles, then loaded until detaching 
completely from the droplet surface (Video S14, Supporting 
Information). Figure  6c represents successive frames from 
the first cycle in this experiment, including: i) an unstretched 
MSBCP; ii) loading until slack is removed; iii) hydrogel seg-
ment stretching and droplet deformation; and iv) peeling (false 
coloration highlights the hydrophobic (red) and hydrogel (blue) 
domains). The measured force is shown in Figure 6d, revealing 
continued loading, without peeling, until a critical load of ≈1460 
nN is reached, when the system transitions to a partially peeled 
state. For each cycle, the average peel force Fc is taken from blue 
data points, with a typical value of ≈1100 nN. Four data points 
are highlighted as red triangles, corresponding to Figure 6ci–iv, 
revealing the load at each stage of the measurement. ii) The 
initially curved PMAA domains (i) straighten under relatively 
little force (≈60 nN, ii), then stretch from ≈115 microns (low 
load) to ≈160 microns as the load increases to 1470 nN (iii). The 
load decreases to 990 nN immediately after peel (iv) and the gel 
domains elastically recover during unloading, consistent with 
expectations for a crosslinked hydrogel. Notably, this strain con-
centration within hydrophilic PMAA gel domains enabled direct 
measurement of gel modulus EPMAA ≈ 2 MPa by tracking the seg-
mental junction points between PMAA and PTBMA domains. By 
contrast, we estimated EPTBMA on the order of 1 GPa based on the 
known Tg,PTBMA of 116–118 °C,[27,28] a 500-fold modulus difference 
achieved simply by photopattern-mediated swelling.

The measured Fc represents the energy per unit length 
required to unwrap ribbons from the curved oil–water inter-
face. Having demonstrated that capillary interactions dominate 
bending stiffness at the selected length scales in PDMAEMA 
MSPs of modulus 200 MPa (Gc = 116 mN m−1, Rc = 7 µm for 
t  = 300  nm), we applied the same assumption when meas-
uring MSBCP segments. Dividing Fc by segment width 
w  = 12  µm (measured via optical profilometry before release), 
Gc  ≈ 93 mN m−1 (Figure  6d reference line) was calculated. 
Thus, for a hydrophobic MSBCP segment with t  = 300  nm, 
Rc  = 17  µm, while smaller values are readily accessible by 
printing thinner MSBCPs. Notably, Gc for MSPs (≈116 mN m−1) 
and hydrophobic MSBCP segments (≈93 mN m−1) are compa-
rable to the oil–water interfacial tension γow = 51 mN m−1 meas-
ured by pendent drop tensiometry; moreover, MSBCP adhesion 
at the oil–water interface ceased upon the addition of a polymer 
surfactant, further connecting the high energy oil–water and 
polymer–water interfaces to adhesion and wrapping phe-
nomena. Together, our measurements of Gc and γow combined 
with loss of adhesion in the presence of surfactant implicate 
the oil–water and polymer–water interfaces as a primary driving 
force for large scale assembly of mesoscale ribbons. Notably, 
despite a modulus approximately three orders of magnitude 

smaller than the glassy PTBMA domains, the PMAA gel seg-
ments adhered to droplets without wrapping, suggesting an 
equally dramatic change in Gc from segment to segment. Thus, 
MSBCPs possess partitioned domains of alternating physical 
and mechanical properties, including a 500-fold difference in 
elastic modulus, and dramatic differences in Gc and Rc that 
enable selective wrapping and assembly upon contact with oil-
in-water droplets.

5. Conclusion

In summary, we described the use of compliant, surface-
active, mesoscale polymer ribbons to build assemblies with 
liquid droplets via the fluid–fluid interface of the droplets. We 
adapted a model of cylindrical filaments at droplet surfaces to 
describe the uniquely flat geometry of MSPs in contact with 
an oil-in-water droplet, spanning wrapping and nonwrapping 
interaction modes as a function of a modulus-, geometry-, 
and Gc-dependent elastoadhesive dimension Rc. Using photo-
crosslinked MSPs derived from copolymer 1, we mapped pH-
dependent interactions, ranging from i) weak adhesion (Rc > R) 
from pH 1–8, including flagellum-like architectures formed by 
selective adhesion at the MSP tip, to ii) spontaneous wrapping at 
pH 10, producing spools amenable to unwrapping, rewrapping, 
and addition of pendent arms. We employed the “built-in” pho-
toacid generators in copolymer 2 to effect chemically amplified 
deprotection and crosslinking, using a photomask to parti-
tion distinct properties into segments along the ribbon length. 
Within the resulting MSBCP structures, hydrophobic PTBMA 
segments were observed to selectively wrap oil-in-water drop-
lets independent of pH, enabling the construction of droplets 
with 1, 2, or many arms extended into solution. Moreover, quan-
tification of Gc and thickness-dependent Rc confirms that the 
bending compliance and strong interfacial activity of MSPs 
and MSBCPs affords elastoadhesive lengths of microns or 
smaller. Together, these pH-, light-, and spatially programmable 
structures provide a robust platform to transform simple soft 
materials building blocks and interaction modes into sophisti-
cated meso-to-macroscale bio-inspired assemblies.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.

Acknowledgements
This project was supported by the Department of Energy, Office of Basic 
Energy Sciences, Division of Materials Science and Engineering under 
award number DE-SC0008876 and a National Defense Science and 
Engineering Graduate (NDSEG) Fellowship awarded to D.M.B. A.L., 
L.P., and D.M.B. acknowledge funding from the ERC Consolidator Grant 
PaDyFlow (Grant Agreement no. 682367).

Conflict of Interest
The authors declare no conflict of interest.

Adv. Funct. Mater. 2020, 2002704

159



www.afm-journal.dewww.advancedsciencenews.com

2002704  (9 of 9) © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Keywords
bioinspired architectures, capillary assemblies, mesoscale, photopatterning, 
responsive materials

Received: March 25, 2020
Revised: May 17, 2020

Published online: 

[1]	 F. Vollrath, D. T. Edmonds, Nature 1989, 340, 305.
[2]	 H. Elettro, S. Neukirch, A. Antkowiak, F. Vollrath, Science Nat. 2015, 

102, 41.
[3]	 H. Elettro, S. Neukirch, F. Vollrath, A. Antkowiak, Proc. Natl. Acad. 

Sci. USA 2016, 113, 6143.
[4]	 S. M. King, W. S. Sale, Mol. Biol. Cell 2018, 29, 698.
[5]	 G. L.  Takei, M.  Fujinoki, K.  Yoshida, S.  Ishijima, MHR: Basic Sci. 

Reprod. Med. 2017, 23, 817.
[6]	 D. M. Woolley, G. G. Vernon, J. Exp. Biol. 2001, 204, 1333.
[7]	 T. C. Adhyapak, H. Stark, Soft Matter 2016, 12, 5621.
[8]	 M. Jabbarzadeh, H. C. Fu, Phys. Rev. E 2018, 97, 012402.
[9]	 T. Rehman, L. Yin, M. B. Latif, J. Chen, K. Wang, Y. Geng, X. Huang, 

M.  Abaidullah, H.  Guo, P.  Ouyang, Microb. Pathog. 2019, 137, 
103748.

[10]	 V. M. Suchanek, M. Esteban-López, R. Colin, O. Besharova, K. Fritz, 
V. Sourjik, Mol. Microbiol. 2019, 113, 728.

[11]	 P. Horváth, T. Kato, T. Miyata, K. Namba, Biomolecules 2019, 9, 462.
[12]	 R. D.  Schulman, A.  Porat, K.  Charlesworth, A.  Fortais, T.  Salez, 

E. Raphaël, K. Dalnoki-Veress, Soft Matter 2017, 13, 720.

[13]	 B. Roman, J. Bico, J. Phys.: Condens. Matter 2010, 22, 493101.
[14]	 H. S.  Kim, C. H.  Lee, P. K.  Sudeep, T.  Emrick, A. J.  Crosby, Adv. 

Mater. 2010, 22, 4600.
[15]	 J. T.  Pham, J.  Lawrence, D. Y.  Lee, G. M.  Grason, T.  Emrick, 

A. J. Crosby, Adv. Mater. 2013, 25, 6703.
[16]	 D. Y. Lee, J. T. Pham, J. Lawrence, C. H. Lee, C. Parkos, T. Emrick, 

A. J. Crosby, Adv. Mater. 2013, 25, 1248.
[17]	 C.-A. Ghiorghita, F. Bucatariu, E. S. Dragan, Int. J. Biol. Macromol. 

2018, 107, 1584.
[18]	 P. Van De Wetering, E. E. Moret, N. M. E. Schuurmans-Nieuwenb

roek, M. J.  Van Steenbergen, W. E.  Hennink, Bioconjugate Chem. 
1999, 10, 589.

[19]	 Z. Guo, X. Chen, J. Xin, D. Wu, J. Li, C. Xu, Macromolecules 2010, 43, 
9087.

[20]	 S. B. Abbott, W. M. de Vos, L. L. E. Mears, M. Skoda, R. Dalgliesh, 
S.  Edmondson, R. M.  Richardson, S. W.  Prescott, Macromolecules 
2016, 49, 4349.

[21]	 D. M. Barber, A. J. Crosby, T. Emrick, Adv. Mater. 2018, 30, 1706118.
[22]	 J. T. Pham, J. Lawrence, G. M. Grason, T. Emrick, A. J. Crosby, Phys. 

Chem. Chem. Phys. 2014, 16, 10261.
[23]	 J. T. Pham, A. Morozov, A. J. Crosby, A. Lindner, O. du Roure, Phys. 

Rev. E 2015, 92, 011004.
[24]	 D.  Fried, S. F.  Borzillary, S. M.  McCormack, R. E.  Glena, 

J. D. B. Featherstone, W. D. Seka, Proc. SPIE 1994, 2128, 319.
[25]	 D. G.  Waugh, J.  Lawrence, C. D.  Walton, R. B.  Zakaria, Opt. Laser 

Technol. 2010, 42, 347.
[26]	 S. Prakash, S. Kumar, Precis. Eng. 2017, 49, 220.
[27]	 J. M. Yu, P. Dubois, R. Jérôme, Macromolecules 1996, 29, 8362.
[28]	 S. Watanabe, T. Ohmura, K. Ueno, M. Murata, Y. Masuda, Polym. J. 

2008, 40, 743.

Adv. Funct. Mater. 2020, 2002704

160



  

1 

 

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020. 

 

Supporting Information  
 

 

Programmed Wrapping and Assembly of Droplets with Mesoscale Polymers 

 

Dylan M. Barber, Zhefei Yang, Lucas Prévost, Olivia du Roure, Anke Lindner, Todd Emrick,* 

and Alfred J. Crosby* 

 

Methods 

Chemicals. Methacryloyl chloride, rhodamine B, 4-dimethylaminopyridine (DMAP), N,N’-

dicyclohexylcarbodiimide (DCC), 2-hydroxyethyl methacrylate (HEMA), triphenylsulfonium 

chloride (TPSCl), fluorescein-O-methacrylate (FOMA), toluene, perfluorodecalin (PFD), 

buffer solutions, basic alumina, lithium chloride (LiCl), poly(sodium 4-styrenesulfonate) (PSS, 

MW 70 kDa, Aldrich), 4-hydroxybenzophenone (4HBP, TCI America), methanol (MeOH), 

dimethylformamide (DMF), hexanes, isopropanol (IPA, Fisher Scientific), sodium 4-

vinylbenzenesulfonate (Na4VBS, Alfa Aesar), and silica gel (Sorbent Technologies) were 

used as received without further purification. Triethylamine (TEA, Aldrich) and 

dichloromethane (DCM, Fisher Scientific) were dried over calcium hydride and distilled. 

2.1% aqueous ammonium hydroxide solution was prepared by diluting 28 wt% ammonium 

hydroxide solution (Aldrich) into stirring RO water. 100 mM HCl solution was prepared by 

dropwise addition of 12.1 N HCl (Fisher Scientific) to a beaker of stirring RO water. 2-

(Dimethylamino)ethyl methacrylate (DMAEMA), tert-butyl methacrylate (TBMA), and 

glycidyl methacrylate (GMA, Aldrich) were purified by passage through a plug of basic 

alumina. 2,2’-Azobisisobutyronitrile (AIBN, Aldrich) was recrystallized from MeOH. 

Tetrahydrofuran (THF, Fisher Scientific) was dried over sodium benzophenone ketyl, then 

distilled. N2 gas was dried by passing through Drierite (W.A. Hammond Drierite Company). 
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Instrumentation. 
1
H NMR (500 MHz) spectroscopic data was collected using a Bruker 

Ascend TM500 spectrometer with a Prodigy cryoprobe. Copolymer molecular weight was 

estimated against PMMA standards by gel permeation chromatography (GPC), eluting in a 

mobile phase of 0.01 M LiCl in DMF at 1 mL min
-1

 flow rate (Agilent 1260 Infinity isocratic 

pump) through a 50 × 7.5 mm PL gel mixed guard column, a 300 × 7.5 mm PL gel 5 μm 

mixed C column, and a 300 × 7.5 mm PL gel 5 μm mixed D column at 50 °C. Solute was 

detected using an Agilent 1260 Infinity refractive index detector. UV-ozone (UVO) surface 

treatment was conducted with a Jelight Company, Inc. Model 342 UVO-Cleaner®. Laser 

engraving was carried out using a Universal Laser Systems VLS3.50 laser engraver equipped 

with a 30W CO2 (10.6 m) laser with 0.005“ z-axis offset, 2% power, 40% speed, and 1000 

ppi pulse rate. Flow-coating was carried out using a SmarAct, Inc SLC-1780s linear actuator. 

365 nm UV-irradiation was performed on a Newport 97435 lamp housing with a Newport 

69910 power supply and Newport 6285 Mercury arc lamp or a Suss Micro Tec MA6 Mask 

Aligner. An OAI Instruments 1000 Watt DUV Exposure System equipped with a DUV 1000 

lamp (Advanced Radiation Corporation) was used for all 254 nm UV irradiation. Reactive Ion 

Etch (RIE) experiments employed an Advanced Vacuum Vision 320 MkII Reactive Ion Etch 

System with 50 sccm O2(g) flow rate, 50 mTorr chamber pressure, 100 W RF power, and 

13.56 MHz RF frequency. Microscopy was conducted on an Axio Observer 7 Materials 

microscope equipped with a Hamamatsu C11440 Orca-Flash4.0 Digital Camera, 2 Eppendorf 

TransferMan 4r micromanipulators, an X-Cite 120LED (Excelitas Technologies), and Zeiss 

filter set 38 HE (green fluorescence, copolymer 1) or 45 (red fluorescence, copolymer 2). 

Fourier-transform Infrared (FT-IR) data were collected in attenuated total reflectance mode 

using a PerkinElmer Spectrum One FT-IR Spectrometer equipped with a Universal ATR 

Sampling Accessory. Optical profilometry data was collected using a Zygo NewView 7300 

Optical Surface Profiler (Amherst) or a Veeko Instruments Wyko NT9100 (Paris). 

Microcapillary tubes were prepared by drawing glass capillary tubes (ChemGlass, 1.0-1.1 mm 
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O.D.) in a P-1000 Flaming/Brown
TM

 Micropipette Puller System (Sutter Instrument) and the 

melted ends were opened using an MF-830 Microforge (Narishige International). 

 

Synthesis of benzophenone methacrylate (BPMA) monomer. BPMA synthesis was adapted 

from a reported procedure.
[1]

 In brief, a 500 mL round-bottom flask with a stir bar was flame-

dried and purged with dry nitrogen, then 4-hydroxybenzophenone (5.1 g, 25.7 mmol, 1 

equivalent) was added against a positive flow of dry N2(g). The flask was sealed with a 

septum.  Dry TEA (8 mL, 57.4 mmol, 2 equivalents) and dry DCM (75 mL) were added by 

syringe against positive N2(g) pressure; the solution was stirred until homogeneous then 

cooled to 0 °C.  Methacryloyl chloride (4.8 mL, 49.6 mmol, 1.93 equivalents) in dry DCM 

(25 mL) was added dropwise while stirring. The solution was allowed to return to 20 °C 

where it was stirred for 15.5 h, then concentrated under vacuum, redissolved in ether, and 

washed with 2.1% aqueous ammonium hydroxide solution. The product was purified by 

column chromatography (basic alumina as stationary phase, 90:10 hexanes:ethyl acetate as 

eluent) to afford the desired product as white crystals (4.0 g, 58% yield). 
1
H NMR (500 MHz, 

CDCl3, δ) 7.82-7.77 (m, 2H, aromatic), 7.75-7.70 (d, 2H, aromatic, J = 7.02 Hz), 7.54-7.49 (t, 

1H, aromatic, J = 7.43 Hz), 7.45-7.38 (t, 2H, aromatic, J = 7.68 Hz), 7.21-7.15 (m, 2H, 

aromatic), 6.34-6.29 (s, 1H, vinyl), 5.75-5.71 (t, 1H, vinyl J = 1.39 Hz), 2.03-1.99 (s, 3H, 

CCH3). 

 

Synthesis of rhodamine B methacrylate (RBMA) monomer. The RBMA synthesis was also 

adapted from a reported procedure.
[2,3]

 In brief, a 2-neck, 250 mL round-bottom flask with stir 

bar was flame-dried and purged with dry nitrogen gas, then rhodamine B (10 g, 20.9 mmol, 1 

equivalent), DMAP (150 mg, 1.23 mmol, 0.06 equivalents), and DCC (5.2 g, 25.2 mmol, 1.21 

equivalents) were added against positive flow of dry N2(g). The flask was sealed with a 

septum, then dry DCM (105 mL) and HEMA (3.1 mL, 25 mmol, 1.20 equivalents) were 
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added by syringe. The solution was stirred at 20 °C for 25 h, then concentrated under reduced 

pressure and purified by column chromatography (silica gel stationary phase, 90:10 

DCM:MeOH eluent) and dried under high vacuum to afford a dark purple powder (6.15 g, 

50% yield). 
1
H NMR (500 MHz, CDCl3, δ) 8.33-8.26 (d, 1H, aromatic, J = 7.90 Hz), 7.88-

7.81 (t, 1H, aromatic, J = 7.45 Hz), 7.79-7.72 (t, 1H, J = 7.68 Hz), 7.35-7.30 (d, 1H, J = 7.50 

Hz), 7.10-7.03 (d, 2H, J = 9.45), 6.97-6.90 (dd, 2H, J1 = 9.45 Hz, J2 = 2.25 Hz), 6.82-6.77 (d, 

2H, J = 2.20 Hz), 6.05-5.98 (s, 1H, vinyl), 5.58-5.52 (s, 1H, vinyl), 4.33-4.28 (t, OCH2CH2O, 

J = 4.95 Hz), 4.21-4.16 (t, 2H OCH2CH2O, J = 4.68 Hz), 3.70-3.63 (8H, q, NCH2CH3, J = 

7.20 Hz), 1.90-1.85 (s, 3H, methacrylate CCH3), 1.37-1.29 (t, 12H, NCH2CH3, J = 7.05 Hz) 

 

Synthesis of triphenylsulfonium 4-vinylbenzenesulfonate (TPS-4-VBS) monomer. TPS-4-VBS 

was synthesized by adapting a procedure from a literature report.
[4]

 In brief, 94% TPSCl (1.06 

g, 3.33 mmol, 1 equivalent) and 90% Na4VBS (767 mg, 3.35 mmol, 1 equivalent) were 

combined and shaken with 3.3 mL RO water in a 20 mL scintillation vial to afford a brown 

emulsion. The brown organic phase was removed, and the aqueous phase extracted with 6 x 1 

mL DCM. The combined organic phase was diluted to 12 mL, washed with 4 x 1 mL RO 

water, filtered to remove residual brown solid, concentrated, then diluted with hexanes (1 mL) 

to induce crystallization. Residual solvent was removed under reduced pressure to afford the 

desired product as white crystals (1.24 g, 83 % yield). 
1
H NMR: (500 MHz, CDCl3, ): 7.86-

7.81 (d, 2H, 4-vinylbenzenesulfonate aromatic, J = 8.23 Hz), 7.76-7.72 (d, 6H, S
+
(C6H5)3, J = 

7.51 Hz), 7.70-7.66 (t, 3H, S
+
(C6H5)3, J = 7.42 Hz), 7.64-7.59 (t, 6H, S

+
(C6H5)3, J = 7.62 Hz), 

7.30-7.27 (d, 2H, 4-vinylbenzenesulfonate aromatic, J = 8.20 Hz), 6.70-6.60 (dd, 1H, 4-

vinylbenzenesulfonate vinyl, J = 10.89, 17.61 Hz), 5.74-5.65 (d, 1H, 4-vinylbenzenesulfonate 

vinyl, J = 17.61 Hz), 5.24-5.17 (d, 1H, 4-vinylbenzenesulfonate vinyl, J = 10.97 Hz). 
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Synthesis of copolymer 1. DMAEMA (3.2 mL, 19 mmol, 197 equivalents), BPMA (289 mg, 

1.1 mmol, 11 equivalents), FOMA (83 mg, 0.21 mmol, 2 equivalents), and AIBN (15.8 mg, 

0.10 mmol, 1 equivalent) were dissolved in a mixture of THF (9 mL) and DMF (1 mL) in a 20 

mL scintillation vial containing a stir bar. The vial was sealed with a rubber septum, then 

degassed with dry N2(g) for 30 minutes while stirring at 20 °C. After removing needles, the 

septum was covered with a piece of electrical tape and the vial transferred to an aluminum 

heating block, where the mixture was stirred for 22 hours at 60 °C. The reaction mixture was 

then precipitated three times in stirring hexanes at 20 °C and dried under vacuum at 60 °C for 

18 h to afford the desired product (1.22 g, 36 % yield). 
1
H NMR: (500.13 MHz, CDCl3, ): 

8.07-7.97 (br s, aromatic), 7.89-7.70 (br m, 4H, BPMA aromatic), 7.63-7.54 (br m, 1H, 

BPMA aromatic), 7.52-7.41 (br m, 2H, BPMA aromatic), 7.30-7.16 (br m, 2H, BPMA 

aromatic), 6.85-6.42 (br m, FOMA aromatic), 4.25-3.85 (br m, 2H, DMAEMA OCH2CH2N), 

2.70-2.45 (br m, 2H, DMAEMA OCH2CH2N), 2.44-2.11 (br m, 6H, N(CH3)2, 2.11-0.73 (br m, 

aliphatic backbone, CH2CCH3). 
13

C NMR: (125.76 MHz, CDCl3, ): 195.85-195.12 (s, 1C, 

BPMA ketone), 178.63-173.61 (br m, ester carbonyl), 154.45-153.66 (m, 1C, BPMA 

aromatic), 137.86-137.22 (m, 1C, BPMA aromatic), 135.43-134.83 (m, 1C, BPMA aromatic), 

132.81-132.43 (m, 1C, BPMA aromatic), 131.98-131.46 (m, 2C, BPMA aromatic), 130.26-

129.85 (s, 2C, BPMA aromatic), 128.69-128.28 (s, 2C, BPMA aromatic), 121.57-121.00 (m, 

2C, BPMA aromatic), 63.77-62.55 (m, 1C, DMAEMA OCH2), 57.63-56.98 (m, 1C, 

DMAEMA CH2N), 55.40-51.52 (br m, 1C, backbone methylene), 46.30-45.47 (s, 2C, 

DMAEMA N(CH3)2), 45.47-44.49 (br m, 1C, backbone quaternary), 19.42-15.94 (br m, 1C, 

backbone CH3). GPC: (DMF with 10 mM LiBr, PMMA standards): Mn = 38 kDa, Mw = 104 

kDa, Ð = 2.70. 
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Synthesis of copolymer 2. TBMA (2.3 mL, 14 mmol, 89 equivalents), TPS-4-VBS (200 mg, 

0.45 mmol, 2.8 equivalents), GMA (39 L, 0.29 mmol, 1.9 equivalents), RBMA (20 mg, 34 

mol, 0.2 equivalents), and AIBN (26 mg, 0.16 mmol, 1 equivalent) were dissolved in DMF 

(5 mL) in a 20 mL scintillation vial equipped with a stir bar, then degassed by bubbling for 30 

minutes with dry N2(g) while stirring at 20 °C. After degassing, the septum was covered with 

a piece of electrical tape and the vial was transferred to an aluminum block, where the mixture 

was stirred at 80 °C for 22 h. The reaction was stopped by cooling to -20 °C, then purified by 

precipitating into 65:35 water:MeOH, re-dissolving in THF, precipitating three times in 

stirring hexanes, and finally drying under high vacuum at 20 °C for 18 h to yield the desired 

product. (1.03 g, 45%). 
1
H NMR: (500.13 MHz, CDCl3, ): 7.88-7.80 (d, 6H, S

+
(C6H5)3, J = 

7.69 Hz), 7.79-7.71 (br s, 2H, 4-vinylbenzene aromatic), 7.74-7.69 (t, 3H, S
+
(C6H5)3, J = 7.39 

Hz), 7.69-7.61 (t, 6H, S
+
(C6H5)3, J = 7.64 Hz), 7.10-6.93 (br s, 2H, 4-vinylbenzene aromatic), 

4.37-4.03 (br m, overlapping (1H, GMA COOCHH)
[5]

 and (4H, RBMA OCH2CH2O), 3.97-

3.78 (br s, 1H, GMA COOCHH),
 [5]

 3.70-3.57 (br m, 8H, RBMA (N(CH2CH3)2)2), 3.27-3.13 

(br s, 1H, GMA COOCH2CHOCHH),
 [5]

 2.91-0.14 (br m, aliphatic backbone), 2.86-2.77 (br s, 

1H, GMA COOCH2CHOCHH),
 [5]

 2.69-2.57(br s, 1H, GMA COOCH2CHOCHH),
 [5]

 1.50-

1.35 (br m, 9H, TBMA C(CH3)3). GPC: (DMF with 10 mM LiBr, PMMA standards): Mn = 

21 kDa, Mw = 46 kDa, Ð = 2.16. 

 

Characterization of copolymer photoactivity. Copolymer 1 was dissolved to 10 mg mL
-1

 in 

MeOH, then drop-cast onto a glass slide heated to 60 °C to afford a polymer film on the slide 

surface. The film was irradiated (3000 mJ cm
-2

,  = 365 nm) then placed in a beaker 

containing a 100 mM HCl solution. Upon contact with the aqueous solution, the colorless film 

became yellow then colorless as pendent fluorescein moieties were protonated. The film 

swelled and delaminated from the glass substrate surface within ~2 minutes of contact with 
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the acid solution and remained fully intact in solution for at least 25 hours after delamination. 

Copolymer 2 was dissolved to 100 mg mL
-1

 in toluene, and drop-cast (5 L) onto glass slides 

and allowed to dry without heating. Then, the films were characterized by ATR IR i) without 

further processing, ii) after heating to 150 °C for 60 s; and iii) after irradiating at  = 254 nm 

for a dose of 900 mJ cm
-2

, then heating to 150 °C for 60 s. The change in thickness resulting 

from cleavage of t-butyl esters during photopatterning was quantified by optical profilometry 

after irradiation ( = 254 nm) at doses of 12, 25, 50, 100, 200, 450, and 900 mJ cm
-2

 and 

heating to 150 °C for 60 s. 

 

Substrate preparation, flow-coating, release, and droplet experiments. Glass slides (24 x 40 x 

0.17 mm
3
, Fisher Scientific) were cleaned by sonication for 15 minutes each in soapy water, 

reverse osmosis water, and isopropanol, followed by 15 minutes of surface treatment by UV-

ozone to render the surface hydrophilic. Immediately afterwards, a solution of PSS in RO 

water (20 mg mL
-1

) was applied by spin-coating onto the hydrophilized glass surface (10 s at 

500 RPM, then 40 s at 2000 RPM). Samples were partitioned into 2 groups: 1) for 

experiments with substrate-adhered MS(BC)Ps (Figure 3d, 4, 5, 6c, and S1), PSS-coated 

slides were laser engraved (2% power, 40% speed, 1000 PPI) at 2-4 mm intervals to afford 

stripes of bare glass to which MS(BC)Ps would adhere upon flow-coating and release; 2) for 

experiments with free-floating ribbons (MSDCPs and MSTCPs in Figure 6a-b), the substrate 

was not laser-engraved. Then, the substrates were fixed to a translating stage, and a razor 

blade bolted to a stationary mount was lowered to a height of ~ 200 m above the substrate 

surface. A polymer-in-toluene solution (5-15 µL of 16 mg mL
-1

 1 or 4 L of 4 mg mL
-1

 2) 

was injected between the blade and substrate to afford a capillary bridge 24-36 mm in length. 

The substrate was translated in 1 mm intervals at 3 mm s
-1

, with a 1.1-1.5 s delay between 

steps to deposit the MSPs, which were irradiated at i) 3300 mJ cm
-2

 at  = 365 nm (copolymer 
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1) to afford a crosslinked PDMAEMA network, or ii) 200-695 mJ cm
-2

 at  = 254 nm through 

a photomask, then heated to 150 °C for 60 s (copolymer 2), to afford an MSBCP with 

alternating segments of hydrophobic PTBMA and hydrophilic PMAA. MS(BC)Ps were then 

cut into 1-4 mm segments via laser engraver and subjected to reactive ion etching with O2
 

plasma for 30 s to remove any residual inter-MS(BC)P polymer film. To release MS(BC)Ps, 

an aqueous solution was prepared by filling a polystyrene Petri dish (Fisher Scientific, 60 mm 

diameter, 15 mm depth) with 10 mL of pH buffer solution or RO water. Then, a coated 

substrate was gently floated on top of the solution and quickly submerged using tweezers. 

Upon submersion, the underlying PSS layer dissolved to release the MS(BC)Ps. In the case of 

samples in which the PSS layer was cut before flow-coating, MS(BC)Ps were adhered at one 

end to the glass surface but were otherwise free to twist, bend, and stretch; for those not 

subjected to laser cuts, MS(BC)P movement was completely unrestricted. Drawn glass 

microcapillary tubes were inserted into a Capillary Holder 4 (Eppendorf), which was mounted 

in a TransferMan 4r micromanipulator (Eppendorf) and connected to a syringe loaded with 

PFD for injection and withdrawal of the oil phase. Thus equipped, the microcapillary tip was 

lowered into the aqueous solution to enable hand-controlled manipulation of MS(BC)Ps and 

droplets. Droplets were introduced by either i) emulsifying a mixture of PFD and the chosen 

aqueous continuous phase in a 7 mL scintillation vial by ~5 cycles of rapid injection and 

withdrawal of both liquids (~1 mL aqueous and ~100 L PFD) through a Pasteur pipette, then 

quickly injecting the mixture into the Petri dish with released MS(BC)Ps, or ii) directly 

injecting oil via the microcapillary tube. 

 

Force measurements using a carbon fiber cantilever. An individual carbon fiber was cut to ~5 

mm length, then glued to the end of a capillary tube using Loctite superglue. The cantilever 

was cut to ~1 mm in length, and the tip dipped into a drop of Loctite superglue then 

withdrawn to leave a liquid bead attached near the fiber tip. This was cured for a minimum of 
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12 h, then the capillary tube with affixed cantilever was inserted into a holder, clamped into 

the hand-controlled micromanipulator, rotated until parallel with the focal plane of the 

microscope objective, and deflected by bringing it into contact with a glass slide to verify that 

tip displacement was due exclusively to cantilever deflection. Then, the capillary tube was 

rotated until the cantilever orientation was out of the objective focal plane and lowered into an 

aqueous solution reservoir containing MS(BC)Ps and droplets. The superglue bead at the 

cantilever tip was brought into contact with i) a PFD droplet, then ii) an MS(BC)P that 

spontaneously wrapped the droplet. The substrate (with attached MS(BC)P end) was 

translated to load the ribbon-droplet-cantilever assembly and deflect the cantilever, with video 

data collected at 30 fps. Individual frames were saved in .tif format. Videos were converted 

to .avi file format using ImageJ image processing software, and the pixel (x,y) positions of 

key features, including cantilever tip, droplet-cantilever attachment point, MS(BC)P fixed end, 

and MSBCP inter-segment boundaries were tracked frame-by-frame using Tracker Video 

Analysis and Modeling Tool. The ribbon vector  ⃑⃑    〈  ,  ,0〉 was calculated by subtracting 

the point of ribbon-droplet contact (for MSPs) or an arbitrary inter-segment junction point (for 

MSBCPs) from the point of cantilever-droplet contact, with assumed 0 z-component because 

the entire visible ribbon length was within the focal plane. The x- and y-components of the 

cantilever vector  ⃑⃑    〈  ,  ,  〉 were calculated by subtracting the position of the cantilever 

tip from the superglue bead center point, while the z-component was calculated using the 

Pythagorean theorem   
 
     

 
     

 
       

 , where Ltip is the actual length between bead and tip, 

measured when the cantilever was parallel to the objective focal plane. The applied force 

angle was then calculated using the dot product  ⃑⃑   ⃑⃑    | ⃑⃑ || ⃑⃑ |    . Cantilever displacement 

was measured from the point of cantilever-droplet contact, with 0 deflection defined by the 

average (x,y) position before MS(BC)P attachment, after MS(BC)P detachment, and/or during 

periods of slack in the MS(BC)P. The y position was plotted as a function of x position for 
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every frame, and a line of best fit crossing the origin was calculated. The data was then 

rotated about the origin via the rotation matrix with - the angle between the best-fit line and 

the x axis to afford 

[
        

       
] *

  
 
 
+ [


 

] , 

where  describes cantilever deflection in the equation 

   
3    

 3    
 

with cantilever modulus E = 230 GPa, moment of inertia for circular cross-section    
   

4

4
, 

radius rc = 3.5 m,
15

 and cantilever length L measured as the distance between the cantilever 

fixed end and the center of droplet attachment (approximated as a point load). In this way, 

force was calculated for every video frame. Suspended ribbon length (LR, MSPs) was 

calculated as the distance between the MSP fixed end and the point of ribbon-droplet 

attachment. Peel length (MSBCPs) was calculated as the distance between the end of the 

wrapped segment and the point of segment-droplet contact. Moduli of deprotected PMAA 

MSBCP gel domains were measured from cycle 1 of the same video used for peel force 

measurements (Video S14) by tracking the (x,y) pixel locations of the segment junction points 

between PTBMA and PMAA domains; uniaxial swelling ratio was determined by dividing 

the PMAA segment length (defined as the measured length when cantilever deflection began) 

by the initial mask feature size (50 m), while cross-sectional area was determined by 

multiplying the cross-sectional area (estimated by optical profilometry) by the square of the 

uniaxial swelling ratio. 

 

Modulus estimate of copolymer 1 

i. Experimental design. The Young’s modulus, E, for copolymer 1 MSPs was estimated by 

examining the deformation of coiled helical MSPs under viscous flow, inspired by a general 
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strategy reported previously.
[7]

 For each selected pH (1, 4, 6, 8, and 10) helical MSPs were 

subjected to a series of flow steps at increasing flow rate. The helical axial elongation, H, was 

measured as a function of flow velocity (Figure S4). We characterized the obtained velocity-

extension curves by the slope of the linear regime. The measured slope was combined with an 

estimated drag coefficient || and several geometrical parameters in a theoretical model to 

estimate MSP bending modulus B that was then used with measured values of t and w to 

estimate E.
[7,8]

 

ii. Apparatus. Helical extension measurements were conducted in PDMS channels (Sylgard 

184, DOW Corning) printed using standard soft lithography methods. The channels were 

coated with a 10% bovine serum albumin (Sigma Aldrich) solution for 15 minutes in order to 

avoid adsorption on the channel walls. Glass capillaries were similarly coated with a 2% 

bovine serum albumin solution for 15 minutes. MSPs were released in a pool of the selected 

buffer solution and displaced using an open glass capillary controlled by a micro-manipulator. 

The glass capillary was connected to a syringe to catch MSPs by withdrawing and released by 

expelling liquid. MSPs were captured at one end, then placed in a microfluidic channel 

connected to the pool. A flow rate Q of the buffer solution was applied to the channel and the 

resultant helix deformation was tracked by measuring H via fluorescence microscopy. The 

flow velocity V adopted a parabolic distribution in the channel, but as typical helix radii are 

small compared to the channel size, we estimate a locally uniform flow near the helix. For a 

given helical MSP, V was taken as the average of the flow field velocity over all the positions 

occupied by the MSP. The flow field in the channel was computed from the channel 

dimensions using a derivation from White,
[9]

 and the position of the MSP was measured from 

captured micrographs.  

iii. Axial elongation measurements. As seen in Figure S4a, the H does not reach an 

equilibrium state over the duration of one flow step (usually 30 seconds to 1 minute), verified 

by immersing helical MSPs in flow for over 1 hour. Moreover, we observed that the helical 
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MSP do not recover the initial length after a flow step (Figure S4a) and that the resting length 

evolves considerably over the duration of a multi-cycle experiment (Figure S4c). These 

observations are likely due to creeping of the material under stress induced by the viscous 

forces. In order to quantify the elastic contribution that is controlled by E, we implemented an 

analysis that decouples the viscous and elastic components of axial extension.  

 

During a single flow step, the deformation has two components: the elastic deformation of the 

material and the creeping-induced deformation. Assuming constant pulling force and friction, 

the elastic component is expressed under the form Helastic (1 – exp( - t / )), where Helastic 

corresponds to the amplitude of the elastic deformation and  to the timescale of the helix 

recovery. We also add a phenomenological term,  t, where  denotes the susceptibility of the 

material to creeping. The extension curve H(t) is hence fitted by the following semi-

phenomenological function: H(t) – H0 = Helastic (1 – exp(-t / )) +  t. H0 is the resting axial 

length, which is measured and thus not a fitting parameter. Experimentally we find the 

timescale  (typically under 1 s) to be significantly smaller than the typical creeping time H0 / 

 (typically above 100 s). This allows us to clearly separate the elastic regime and the 

creeping regime. As seen in Figure S4b, agreement with experimental data is good. With this 

fitting method we recover the elastic extension ΔH = Helastic – H0 as a function of the flow 

velocity V. The elastic extension, ΔH, as a function of V for 6 different helical MSPs at the 

same pH is plotted in Figure S5a. To characterize the flow-extension curve, we used the 

heuristic expression proposed by Jawed et al.,
[10]

 based on the simulation of flexibles helices 

in uniform flow: ΔH = ΔHlim (1 – exp( -V/Vc )).  Here, the parameter ΔHlim is the maximum 

elongation, and the parameter Vc is the characteristic flow speed separating the linear and non-

linear regime. As seen in Figure S5a, this expression provides a good description of the 

helical MSP extension, particularly at low speed. The discrepancies at high speed are likely 
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due to creeping effects. Using this fitting method, we estimated the slope in the small 

deformation limit as ΔHlim / Vc. 

iv. Modeling. For a flexible helix immersed in a uniform flow of velocity V, the helix elastic 

axial extension ΔH can be expressed
[7,8]

 in the small deformation limit as ΔH =  ²  ² (|| / B) 

V where || is the drag coefficient along the tangential direction, B is the bending modulus, R 

is the helix radius, and L is the total length along the curvilinear abscissa. The MSP cross 

section is a very shallow triangle with width w >> thickness t. The general form for B of a 

triangular cross section is B = (1/36) E w t
3
. || was estimated by approximating the cross 

section as a rectangle of negligible thickness, giving || = 4  / (2 ln(8L / w) – 1),
[11]

 where  

is the fluid viscosity. The Young’s modulus was calculated as 

    
 44 p

2 ln (
8 
 

  )
 
    

   3
 (

 c

ΔH   

)  

v. MSP width and thickness measurements. The t and w in the above expressions correspond 

to the immersed state of the material. w (typically ~ 20 m) was measured optically in situ. 

However, t (typically 100-400 nm) is below the optical resolution limit and was determined 

by applying a pH-dependent swelling ratio
[12,13]

 to the dry thickness, measured by optical 

profilometry. 

vi. Results. The measured values of E are presented in Figure S5b. Overall, E for copolymer 1 

in the immersed state is approximately constant at 100-350 MPa across the pH 1-10 range. 
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Supplementary Figures 

 

Photoactivity of copolymer 2 was verified by ATR IR spectroscopy in drop-cast films (Figure 

S1a). A 100 mg mL
-1

 solution of 2 in toluene was drop-cast in 5 L drops onto glass slides, 

then characterized i) without further treatment (black spectrum), ii) after heating to 150 °C for 

60 s (red spectrum), and iii) after irradiating with  = 254 nm for a dose of 900 mJ cm
-2

, then 

heating to 150 °C for 60 s (blue spectrum). The carbonyl peaks were normalized to 20 % 

absorbance at max, then converted to % transmittance and offset by 1%. The untreated and 

heat only samples were identical, with no carboxylic acid -OH signal and a maximum 

carbonyl signal of 1719 cm
-1

, while a carboxylic acid stretch (3700-2400 cm
-1

) evolved and 

the carbonyl maximum shifted to 1697 cm
-1

 after irradiation and heating, confirming 

successful deprotection of t-butyl esters. Moreover, ribbons were observed to undergo a 

change in thickness upon irradiation and heating. In Figure S1b-c, irradiated domains are 

Figure S1. Copolymer 2 photoactivity and MSBCP characterization. a) Drop-cast thick films of copolymer 2  

were characterized by ATR IR spectroscopy before any treatment (black line), after heating to 150 °C for 60 s 

(red line), and after irradiating at a dose of 900 mJ cm
-2

 ( = 254 nm) and then heating to 150 °C for 60 s, 

revealing carboxylate evolution after irradiation and heating. MSBCPs are prepared by b) irradiating an array of 

copolymer 2 ribbons through a photomask to afford segments of alternating thickness, shown in 3D (top) and 2D 

cross-section slices (bottom); c) irradiated domains (blue) are composed of crosslinked poly(methacrylic acid), 

while masked domains (red) are composed of PTBMA; the false color micrograph represents a typical MSBCP 

of 50 m segment length in RO water, with alternating twisted, compliant hydrogel and rigid, brightly 

fluorescent, hydrophobic domains; scale bar 50 m. 
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schematically depicted in blue, while masked domains are shown in red. Optical profilometry 

(Figure S1b) reveals a thickness loss of up to 0.45x in irradiated segments (labelled 1, 3, 5, 

and 7) at UV doses of 200 mJ cm
-2

 or larger, while masked domains (labelled 2,4, and 6) 

retained the original ribbon thickness, consistent with other chemically amplified ribbon and 

photoresist compositions.
[2,14,15]

 The 3D optical profile data (Figure S1b top) reveals the 

structure of a typical MSBCP patterned in alternating segments of 50 m, while the 2D cross 

section data of each segment (Figure S1b bottom) shows the uniformity in thickness in 

masked versus irradiated domains. Figure S1c describes a released MSBCP, with schematic 

structure and inset structure (top) and a micrograph of a typical MSBCP in RO water, 

including false coloration of a compliant, photobleached, and deprotected hydrogel segment 

(blue), and a stiff, brightly fluorescent masked segment (red). Crosslinking of pendent 

epoxides after irradiation and heating was verified by analysis of deprotected domains, which 

begin to bear load at length ~93 m in pH 10 buffer solution, an approximate 86% uniaxial 

strain due to swelling from the original patterned length of 50 m. This suggests a water 

volume fraction H2O ~ 0.85 while cyclically bearing the loads required to unwrap an adjacent 

hydrophobic segment from a PFD droplet. 
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Figure S2 describes the R- and w-dependent wrapping modes accessible through moments of 

inertia Ixx and Iyy. In the case where R > w, MSP wrapping depends on the thickness t at the 

MSP center, and wrapping is observed to proceed along the long ribbon axis, defined as y in 

Figure S2a. This axial wrapping phenomenon is shown schematically in Figure S2b; because 

R > w, the entire width of the MSP is in contact with the droplet and wrapping proceeds by 

consuming MSP length and is dependent on bending moment Iyy. In contrast, we anticipate 

edgewise wrapping in the case of a droplet with radius R < w (Figure S2c) In this case, MSP 

bending stiffness becomes vanishingly small toward the MSP edges as t decreases, so droplet 

contact is predicted to elicit wrapping via a rolled-in edge. 

Figure S2. Axial and edgewise wrapping. The MSP wrapping axis is expected 

to depend on the relative size of R and w: a) an MSP with a small (left, R < w) and 

large (right R > w) droplet. The magnified segment shows the directions of the y- 

and x-axis relative to the MSP long axis; b) axial wrapping where R > w: bending 

occurs along the y-axis as described by I
yy

; c) edgewise wrapping where R < w: 

bending is anticipated along the x-axis as described by I
xx

, which decreases with t 

toward the tapered edges of the MSP. 
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Before measurement of cantilever deflection, a test deflection was carried out at low 

magnification (Figure S3a) by bringing into contact with a glass slide on a translating stage 

(Figure S3a inset). Frames from this experiment were used to ensure that the cantilever fixed 

end remained stationary during deflection and to measure the full cantilever length L and the 

distance from the superglue bead to the cantilever tip Ltip. Accurate force measurement 

required quantification of cantilever deflection  and applied force angle . The ribbon vector 

 ⃑⃑   (Figure S3b) was assumed to have negligible z-component because the ribbon was in the 

focal plane of the lens, while the x- and y- components were tracked frame-by-frame (see 

Methods). The cantilever vector  ⃑⃑  had a significant z-component that was determined using 

  
 
     

 
     

 
       

 , where   
 
     

 
 was determined visually frame by tracking the bead center 

and cantilever tip, and Ltip was a constant as measured in Figure S3a.  was calculated via the 

dot product of  ⃑⃑  and  ⃑⃑  (see Methods). Similarly, cantilever deflection was determined by 

tracking the (x,y) pixel location of the point of cantilever-droplet contact (in the case of 

Figure 6, Figure S3, and Video S14, this was taken to be the center of the superglue bead) 

against an origin defined by the average position in the absence of load. This raw data was 

converted to microns (Figure S3c top), then rotated about the origin such that the line of best 

Figure S3. Cantilever video data acquisition and frame-by-frame processing to determine  and . a) The 

total length L and bead-to-tip length L
tip

 were imaged and measured, then the cantilever was deflected (inset) 

using a glass slide on a translating; b) video data of an MSBCP-droplet-cantilever system under applied load. 

(x,y) pixel locations of key features, including cantilever tip, cantilever-droplet contact point, ribbon-droplet 

contact point, and MSBCP inter-segment junctions were tracked frame-by-frame. The force angle  was 

calculated via the dot product of the cantilever and ribbon vectors  ⃑⃑   and  ⃑⃑   in each frame, while cantilever 

deflection  was determined from the raw (x,y) displacement data of the cantilever-droplet contact point by 

rotating about the origin to lie on the x-axis.  
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fit was y = 0;  was defined for each frame as the rotated x displacement data (Figure S3c 

bottom). 

 

 

Figure S4. Helix extension under axial flow. a) Typical applied flow step and following relaxation: the 

measured buffer solution flow rate (black) and measured helical axial length (blue) are plotted as a function of 

time. The flow is not completely stopped during the relaxation phase, keeping instead a vanishing value Q = 2 

nL/s. The syringe pump responds more quickly when changing the flow rate than when starting the flow. The 

viscosity of the buffer solution is always 1.0 mPa.s. For all experiments, the channel width is 250 m and height 

is 650 m. b) Fitting of the previous helix extension curve using a semi phenomenological function (3 fitting 

parameters). c) Typical full flow cycle applied; Figure S4a is extracted from this curve. 

Figure S5. a) Flow-extension curves for 6 different copolymer 1 helical MSPs immersed in a pH 4 buffer 

solution with heuristic fitting. b) Measured values for the Young’s modulus E across the 1-10 pH range. 
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Figure S6. 
1

H NMR spectrum of copolymer 1 

Figure S7. 
13

C NMR spectrum of copolymer 1 
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Figure S8. 
1

H NMR spectrum of copolymer 2 

Figure S8. GPC traces of copolymers 1 and 2. 
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Supplementary Videos 

Video S1. A helical MSP (copolymer 1, helix radius r = 38 m) in pH 1 buffer solution with 

one end fixed to the substrate surface in contact with a PFD droplet (R = 132 m). As the 

substrate with adhered MSP end is translated to the left, the coiled helical MSP stretches until 

it detaches from the droplet surface and recoils through the solution. 

Video S2. A helical MSP (copolymer 1, helix radius r = 55 m) in pH 4 buffer solution with 

one end fixed to the substrate surface in contact with a PFD droplet (R = 335 m). As the 

substrate with adhered MSP end is translated to the left, the coiled helical MSP stretches until 

4 coils detach from the droplet surface (time T ~ 2.3 s). Upon further stretching, the droplet is 

pulled from the microcapillary tip by the adhered MSP spring. 

Video S3. A helical MSP (copolymer 1) in pH 6 buffer solution. The left end of the helix is 

attached to the substrate, while the right end became fixed to the substrate after release, 

affording a structure with 2 fixed ends. As a PFD droplet is brought into contact with the 

helical ribbon, the two bodies slide past each other without apparent adhesion. 

Video S4. A short MSP segment (copolymer 1, length ~ 400 m) in pH 8 buffer solution is 

adhered at one end to the surface of a droplet and at the far end to the substrate. Ribbon and 

droplet are manipulated through the solution via microcapillary tip and translating stage, 

revealing selective adhesion at the ribbon tip. 

Video S5. MSPs (copolymer 1) in pH 10 buffer solution wrapped around a droplet. The 

droplet is anchored in place by the fixed end of a wrapped ribbon, while the microcapillary 

tube and translating stage are used to “unwrap” the droplet. 

Video S6. An MSP (copolymer 1) is held in tension by the microcapillary tip to control 

wrapping in pH 10 buffer solution. As slack is added to the system by bringing the MSP end 

toward the wrapped droplet, the MSP continues to wrap until it overlaps an existing coil, 

arresting the wrapping event. 
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Video S7. A droplet is inflated next to an MSP (copolymer 1) in pH 10 buffer solution. To the 

left (out of frame), the MSP is fixed to the substrate surface; to the right it floats freely. When 

the droplet touches the MSP, spontaneous wrapping occurs until a defect in the ribbon causes 

self-overlap, stopping the wrapping event before the ribbon length is consumed and creating a 

droplet with a pendent arm. To the left, wrapping continues until the ribbon is pulled tight 

against the substrate-adhered end. 

Video S8. A droplet is inflated until it comes into contact with an MSP (copolymer 1) in pH 

10 buffer solution. The ribbon is fixed to the substrate to the left (out of frame) and floats 

freely to the right. Upon contact, the ribbon spontaneously wraps the droplet until the free end 

is consumed and the ribbon is pulled tight against the substrate-bound end to the left, final 

droplet radius R = 360 m. 

Video S9. An MSP (copolymer 1) in pH 10 buffer with one end adhered to the substrate 

surface (left, out of frame) is partially wrapped around a droplet (R = 88 m) that is adhered 

to a superglue bead near the end of a carbon fiber cantilever. The ribbon-droplet and 

cantilever-droplet interfaces are loaded by translating the substrate to the left to pull on the 

ribbon. Cantilever deflection is used to quantify the applied loads as the system is loaded, 

unloaded, and then loaded until detachment of the ribbon from the droplet surface. 

Video S10. Copolymer 2 MSBCP with 500 m block length has selectively wrapped a 

droplet (R = 110 m) in pH 10 buffer solution to afford a droplet with a single arm extended 

into solution. 

Video S11. An MSBCP in pH 10 buffer solution attached to the same droplet as in Video S11 

via selective wrapping to add a second arm. 

Video S12. More MSBCPs in pH 10 buffer solution adhered to and selectively wrapped 

around the same droplet as in Videos S10 and S11. In this case, we observe mixed assembly 
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modes, including end-on adhesion, adhesion of the hydrophilic segment without wrapping (R 

< Rc), and selective segmental wrapping of the hydrophobic block (R > Rc). 

Video S13. MSBCPs are picked up from the substrate using a PFD droplet (R = 150 m) 

adhered to the microcapillary tip in 500 mM NaOH solution. 

Video S14. Cantilever deflection of an MSBCP (patterned segment length 50 m) with one 

end adhered to the substrate surface, and a far segment adhered to a cantilever-bound droplet 

(R = 60 m). The system is twice subjected to a full cycle of loading until peel initiation and 

unloading until re-wrap. On the third cycle, peel is initiated, then propagated until complete 

detachment of the adhered segment. 
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