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Résumé : Le développement des véhicules
électriques (VEs) est un levier majeur vers
un transport bas carbone. Il s'accompagne
d’'un nombre croissant d'infrastructures de re-
charge qui peuvent étre utilisées comme actifs
flexibles de gestion du réseau. Pour permettre
cette recharge intelligente, une prévision jour-
naliere efficace des comportements de charge
est nécessaire. Dans ce contexte, l'objectif de
cette these est triple : (a) identifier les tech-
niques de modélisation actuelles et les don-
nées ouvertes disponibles (b) proposer de nou-
velles méthodologies de charge des VE pour
caractériser leurs comportements de charge
(c) spécifier des techniques innovantes pour la
prévision des pics de consommation. Le pre-
mier chapitre du manuscrit présente les enjeux
industriels et introduit le cadre de la modélisa-
tion de la charge des VE. Le chapitre 2 présente

un examen approfondi des modeles de charge
de VE a I'état de l'art ainsi qu’'une exploration
de 8 jeux de données ouverts de sessions de
recharge trouvés dans cette recherche. Le cha-
pitre 3 propose une étude comparative de 14
modeéles de charge et d'occupation des VE sur
les 8 jeux de données présentés au cours du
chapitre précédent. Le chapitre 4 propose un
modele pour les arrivées des VE aux points de
charge sous la forme d'un processus de Pois-
son non homogene avec des effets additifs pro-
jetés sur des bases de splines et d'ondelettes.
Enfin, le chapitre 5 présente un modéle pour
la prévision journaliére des pics de demande
électrique avec une approche multi-résolution.
Nous montrons que les approches proposées
dans nos travaux sont compétitives avec les
meilleures alternatives existantes en évaluant
leurs performances sur des données réelles.

Title : Statistical modelling of electric vehicle charging behaviours
Keywords : Non-homogeneous Poisson process, Additive models, Multi-resolution analysis, Smart

charging, Consumption peaks

Abstract : The development of electric ve-
hicles (EV) is a major lever towards low-carbon
transport. It comes with a growing number of
charging infrastructures that can be used as
flexible assets for the grid. To enable this smart-
charging, an effective daily forecast of the char-
ging behaviour is necessary. In this context,
the objective of this thesis is threefold : (a)
to identify current modelling techniques and
open data available (b) to propose new EV char-
ging methodologies to characterise their char-
ging behaviours (c) to specify innovative tech-
niques for daily peak load forecasting. The first
chapter of the manuscript presents the indus-
trial issues and introduces the modelling fra-

mework for EV charging. Chapter 2 is a review
of state of the art EV load models as well as
an exploration of 8 open charging session da-
tasets. Chapter 3 offers a comparative study of
14 EV load and occupancy models on the 8 data-
sets presented in the previous chapter. Chapter
4 introduces a model for EV arrivals as a non-
homogeneous Poisson process with additive
spline and wavelet effects. Finally, Chapter 5 in-
troduces a model for daily electrical peaks with
a multi-resolution approach. We show that the
approaches proposed in our work are compe-
titive with the best existing alternatives by eva-
luating their performance on real-world data.
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The following abbreviations are used in this manuscript :

EV Electric Vehicle

ICEV Internal Combustion Engine Vehicle
[EA International Energy Agency

EVI Electric Vehicle Initiative

EVSE Electric Vehicle Supply Equipment
V2G Vehicle-to-Grid

SoC State of Charge

E Energy Consumption

C Battery Capacity

SoCinit Initial State of Charge

D Distance Travelled

NHTS National Household Travel Survey
GDP Gross Domestic Product

NOAA National Oceanic and Atmospheric Administration
RWI Rheinisch-Westfalisches Institute
RMSE Root Mean Squared Error

KDE Kernel Density Estimator

GKDE Gaussian Kernel Density Estimator
DKDE Diffusion Kernel Density Estimator
HKDE Hybrid Kernel Density Estimator
pdf probabilty density function

SARIMA Seasonal Auto-Regressive Integrated Moving Average
LM Linear Model

SVM Support Vector Machine
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MR Multi-Resolution
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ANN or NN  Artificial Neural Network

k-NN k-Nearest Neighbours
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CNN Convolutional Neural Network
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LSTM Long Short-Term Memory
GHG Greenhouse Gases

10T Internet of Things

NILM Non-Intrusive Load Monitoring






Chapitre 1

De 'importance de la charge des
Véhicules Electriques

Dans ce premier chapitre introductif, le lecteur trouvera un bref historique de I'émer-
gence des véhicules électriques, quelques généralités sur le marché de I'électricité et
certains principes fondamentaux pour une bonne intégration des VE dans le réseau
électrique. De plus, certains faits importants sur le cycle de vie des VE sont rappelés.
Enfin, les variables ainsi que les modélisations communément utilisées de la charge des
VE sont présentées pour aboutir a la problématique générale de ce manuscrit : fournir
une prévision journaliére efficace des comportements de charge des VE.
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1.1 L'émergence du marché des Véhicules Electriques

Cette premiére section propose un bref historique des Véhicules Electriques (VE)
ainsi qu'une classification des différents types de VE, avant de conclure sur les raisons
de leur essor récent. Le but de cette section est de donner une introduction aux enjeux
liés a la mobilité électrique d'un point de vue historique et chronologique.

1.1.1 Un peu d'histoire

Les véhicules électriques (VE) sont souvent présentés comme l'innovation qui nous
permettra de minimiser les problemes environnementaux posés par les véhicules a
combustion interne (ICEV). On imagine alors que d'ici quelques années ces VE empliront
nos rues pour la premiere fois. Pourtant, cette image existait bel est bien il y a plus d'un
siecle. En quelque sorte, notre “future” mobilité ne serait pas si surprenante pour un
New-Yorkais de la fin du 19éme siecle (cf. Figure 1.1).

Anyos Jelkins Thomas Parker présente Les VE disparaissent face Lancement du TESLA
invente le premier un VE adapté a la au voitures a combustion Roadster, ouvrant la
moteur électrique production industrielle interne porte a bien d'autres VE

) J1859) Pissd) ]ﬂ@i]@?i

Embargo pétrolier de

Gaston Planté invente Les VE représentent 28% . . L
. . . 'OPEP qui conduit a un
la premiere batterie des voitures vendues aux o
. nouvel intérét pour les VE
rechargeable Etats-Unis

Figure 1.1 - La voiture électrique en 7 grandes dates

A l'origine

L'histoire des VE débute en 1827 avec Anyos Jedlik, un inventeur hongrois. Cette an-
née la, Jedlik commence a travailler sur des dispositifs rotatifs électromagnétiques, et
en 1828, il invente le premier dispositif contenant les trois composants principaux des
moteurs a courant continu : le stator, le rotor et le commutateur 1.2. Ce premier événe-
ment est néanmoins controversé car son inventeur aurait attendu plusieurs dizaines
d'années avant de la partager avec le grand public. C'est entre 1832 et 1839 que Ro-
bert Anderson, inventeur écossais, présenta le premier modele de véhicule électrique.
Toute l'ingéniosité de ses travaux résidait dans son prototype de batterie qui permet-
tait d'alimenter un moteur électrique qu'il disposa sur un chariot (trés similaire a ceux
tirés par des chevaux a la méme époque). Ce bond technologique était malgré tout ac-
compagné d'une difficulté majeure : la batterie n'était pas rechargeable. Il fallait donc
remplacer la batterie a chaque utilisation ce qui pouvait étre trés colteux. En parallele
des travaux de Anderson, Thomas Davenport, inventeur américain, dévoile une petite

13



Figure 1.2 - Le premier moteur électrique cong¢u par Anyos Jedlik en 1828

locomotive propulsée par le premier moteur électrique a courant continu sur le sol
américain. La ou les inventions précédentes étaient des modeles réduits ou de petites
voitures, la locomotive de Davenport a été le premier véhicule électrique prét a I'em-
ploi jamais congu. Le fort engouement autour de ces nouvelles technologies finit par
s'essouffler faute de technologie viable au niveau de la batterie (pas rechargeable).

Il faudra attendre Gaston Planté, physicien francais, qui inventa la batterie plomb-
acide en 1859, connue comme étant la premiere batterie électrique rechargeable. En
1881, Camille Alphonse Faure, ingénieur francais, mettra au point un modele plus effi-
cace et plus fiable qui connaitra un grand succés pour relancer I'engouement autour
des premiéres voitures électriques. Les améliorations de Faure augmentérent consi-
dérablement la capacité de ces batteries et conduira directement a leur fabrication a
I'échelle industrielle.

L'apogée

L'année 1884 marqua le début de I'age d'or des VE. Cette année la, Thomas Parker
construit la premiere voiture électrique capable d’étre produite a une échelle indus-
trielle a Londres. Ce véhicule utilisait ses propres batteries rechargeables a haute ca-
pacité. En 1888, I'ingénieur allemand Andreas Flocken proposa également son modele
de voiture électrique a quatre roues : la Flocken Elektrowagen. En 1889-1891, William Mor-
rison introduit un wagon électrique trés simple aux Etats-Unis qui n'était pas en soi une
innovation, mais aura un succes retentissant.

Avec cette multitude de voitures électriques qui commencait a voir le jour, les pre-
miers véhicules électriques commerciaux commencerent a entrer dans la flotte de taxis
de New York en 1897. Le constructeur automobile, Pope Manufacturing Co., devient le
premier fabricant de VE & grande échelle aux Etats-Unis. La popularité du VE s'accom-
pagne également de grands records. En effet, la “Jamais contente” a été le premier véhi-
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cule routier a dépasser les 100 kilométres a I'heure. C'était un véhicule électrique belge
avec une carrosserie en alliage Iéger en forme de torpille. Ce record de vitesse terrestre
a été établi entre le 29 avril et le 1er mai 1899 a Acheres (Yvelines) prés de Paris.

En 1900, les voitures électriques deviennent le véhicule routier le plus vendu aux
Etats-Unis, capturant 28% du marché, et le nombre de VE en circulation atteindra un
pic historique en 1912 avec environ 30 000 véhicules sur les routes [2].

La chute

On attribue souvent la chute des véhicules électriques a son compétiteur de tou-
jours, le véhicule a combustion interne (ICEV). En particulier, des 1908 la Ford T de Henry
Ford, fonctionnant a l'essence, est introduite sur le marché. A I'époque, il y avait déja
les mémes points qui séparaient ces deux technologies. En effet, les ICEV permettaient
déja de voyager plus longtemps que les VE. Pourtant les VE rencontraient un franc suc-
cés de part leur propreté et leur entretien facilité (moins de piéces). Pour les personnes
qui pouvaient se le permettre, c'était la solution privilégiée par les citadins. D'ailleurs
il est intéressant de noter que le marketing de ces véhicules était plus tourné vers les
femmes justement pour l'aspect immaculé et discret des VE alors que le ICEV, plus sale
et plus bruyant était réservé aux hommes. La femme de Henry Ford elle-méme possé-
dait une voiture électrique.

En 1912, le démarreur électrique, inventé par Charles Kettering, évite de recourir a
une manivelle pour démarrer les ICEV. Cela rend ces véhicules encore plus facile d'ac-
ces. La suprématie de ces véhicules ne se fit plus trop attendre, en grande partie grace
a leur prix, bien plus abordable que celui des VE. Le Ford T a été un tel succes qu'Henry
Ford en avait vendu 15 millions en 1927, 19 ans seulement apres sa sortie. En 1935, les
VE ont pratiquement disparu de la circulation en raison de la prédominance des ICEV
et de la disponibilité d'essence bon marché.

Le renouveau

Mais les VE n'avaient pas dit leur dernier mot. Pour des raisons environnementales
mais aussi politiques, ils préparent leur retour depuis I'aprés-guerre. Dés 1947 le ra-
tionnement du pétrole au Japon méne le constructeur automobile Tama a lancer une
voiture électrique de 4,5 ch avec une batterie au plomb de 40V. On reprend donc la
technologie pratiguement la ou on l'avait laissée au début des années 1900. En 1966,
le Congres américain dépose une loi pour encourager la production et 'adoption des
véhicules électriques comme moyen de réduire la pollution de l'air. Mais le point crucial
qui a renouvelé l'intérét des politiciens pour le VE est naturellement 'embargo pétro-
lier de 'OPEP en 1973 qui provoqua une forte augmentation des prix du pétrole mais
aussi de longues files d'attente dans les stations-service. La méme année, une percée
majeure a été faite lorsque le chimiste britannique M. Stanley Whittingham a inventé
les premieres batteries lithium-ion rechargeables au monde. Les mémes batteries qui
sont utilisées dans les VE d'aujourd’hui. Suite a la crise pétroliere, en 1976, le gouver-
nement francais lance le programme “PREDIT” pour accélérer la recherche sur les VE.
Mais les prix du pétrole redevenant assez bas assez rapidement, I'intérét autour des
VE sera réduit. En 1996, pour se conformer a la politique zéro émission en Californie et
les exigences relatives aux véhicules antipollution promulgué en 1990, General Motors
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commence a produire et commercialiser la voiture électrique EV1. Considéré comme le
premier VE de I'ere moderne, il ne sera pas un franc succés commercial. En revanche, en
1997 au Japon, Toyota lance la commercialisation de la Prius, premiére voiture hybride
au monde qui sera commercialisée. 18 000 exemplaires sont vendus la premiére année
de production et elle continue d'étre commercialisée de nos jours ce qui constitue le
premier grand retour au premier plan des VE.

En 2008, les prix du pétrole atteignent plus de 145 USD le baril. La méme année,
TESLA lance son premier VE, fontionnant exclusivement a I'électricité, le Roadster. Lors
des tests, le véhicule atteint pres de 400 kilometres sur une seule charge et avait une vi-
tesse de pointe de 200 km/h. La prouesse technologique était retentissante. Il s'agissait
maintenant de continuer a améliorer la capacité des batteries et d’arriver d'une ma-
niere ou d'une autre a baisser les prix pour rendre les VE plus accessibles. Cette année
coincide également avec le début des sujets de recherches proche de ma thése comme
nous pourrons le voir plus tard dans le manuscrit (Section 2).

En 2010, la Nissan LEAF est lancée et elle gagnera le prix de la voiture européenne de
'année en 2011. Cette année-la, le nombre de VE en circulation dépasse le record de 1912
en atteignant 50 000. Toujours cette année la, le plus grand service d'auto-partage de VE
au monde, Autolib, est lancé a Paris avec une cible de 3 000 véhicules électriques. L'état
francais s'engage a acheter 50 000 véhicules électriques sur quatre ans. Ces grands
changements ne sont pas réservés au continent européen. En 2012, la Chevrolet Volt se
vend mieux que la majorité des modeles de voitures sur le marché américain. Et cette
année le nombre de véhicules en circulation a plus que triplé par rapport a 2011 car il
dépasse les 180 000.

1.1.2 Classification

A ce jour, on recense cinqg technologies de VE différentes par leur moteur (cf. Fi-
gure 1.3). Nous utilisons les abréviations anglophones car ce sont celles qui sont le plus
souvent retenues dans la littérature.

VEHICULES ELECTRIQUES (VE)

HYBRID PLUG-IN HYBRID EXTENDED- FUELL-CELL BATTERY
(HEV) (PHEV) RANGE (EREV) (FCEV) (BEV)

Figure 1.3 - Classification des VE, avec leur source d'énergie principale soulignée

Un véhicule électrique hybride (HEV) combine un systeme de propulsion a moteur
a combustion interne (ICE) conventionnel avec un systeme de propulsion électrique
(transmission de véhicule hybride). Dans les modéles modernes, les batteries peuvent
également étre chargées grace al'énergie générée lors du freinage, transformant I'éner-
gie cinétique en énergie électrique. On parle de freinage régénératif. Le VE hybride re-
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chargeable (PHEV) utilise a la fois un moteur électrique et un moteur a essence pour
fonctionner. Son moteur électrique utilise des batteries qui se rechargent en se bran-
chant sur une source d'alimentation électrique (une prise murale ou un chargeur de
VE). Le moteur a essence peut fonctionner avec le moteur électrique, ou séparément,
pour alimenter le groupe motopropulseur. Le VE a autonomie prolongée (EREV) pos-
séde une unité d'alimentation auxiliaire (appelée prolongateur d’autonomie) qui aug-
mente I'autonomie de I'EREV. La plupart des prolongateurs d'autonomie sont de petits
ICE qui entrainent un générateur électrique fournissant de I'électricité aux batteries
électriques et au moteur. Un véhicule électrique a pile a combustible (FCEV) génére de
I'électricité pour alimenter le moteur, généralement en utilisant de I'oxygene de l'air et
de I'nydrogéne comprimé. Enfin, le VE a batterie (BEV) tire toute sa puissance de ses
batteries pour alimenter ses moteurs électriques. Il ne contient pas de moteur a com-
bustion interne (ICE). Son moteur électrique utilise des batteries qui se rechargent en se
branchant sur une source d’alimentation électrique (une prise murale ou un chargeur
de VE). Globalement, seuls deux types de VE fonctionnent exclusivement a I'électricité :
le FCEV et le BEV. Dans cette these, nous nous intéressons plus particulierement aux
PHEV, EREV et BEV (en vert sur la Figure 1.3) car ce sont ceux qui peuvent se brancher
au réseau électrique. Dans la suite, nous appellerons “VE” uniquement ces trois types
de VE a part si 'on précise autrement.

1.1.3 Essor récent

Historiquement, nous pouvons retenir deux raisons majeures pour l'essor des VE.
La hausse des prix et 'épuisement des ressources fossiles. L'impact de 'homme sur le
changement climatique avec le secteur des transports étant souvent montré du doigt
a juste titre comme étant responsables d'une part significative des émissions de gaz
a effet de serre. Cela a amené les états et les entreprises a travailler de concert pour
proposer une mobilité électrique considérée comme étant le bon chemin vers une tra-
jectoire zéro carbone. Nous nuancerons les bienfaits environnementaux des VE dans
la section 1.4. Cela s'est traduit par des chiffres en constant progrés depuis les années
2000. En 2021, pres de 10% des ventes mondiales de voitures étaient électriques, soit
quatre fois plus que la part de marché des VE en 2019. Cela a porté le nombre total de
voitures électriques sur les routes a environ 16,5 millions dans le monde, soit trois fois
plus qu’en 2018 [3].

1.1.4 Scénarios

Trois scénarios principaux d'adoption des VE sont retenus par I'Agence Internatio-
nale de I'Energie (IEA). Le premier est le scénario lié aux lois et réglementations décla-
rées par les différents gouvernements (Stated Policies Scenario). Ce scénario refléte les
politiques et les mesures existantes, ainsi que les ambitions et les objectifs politiques
quiont été légiférés par les gouvernements du monde entier. Il comprend les politiques
et réglementations actuelles liées aux véhicules électriques et les développements fu-
turs basés sur lesimpacts attendus des déploiements annoncés et des plans des parties
prenantes de l'industrie. Il vise a dresser un miroir des plans des décideurs politiques et
aillustrer leurs conséquences. Le deuxieme scénario est le scénario des promesses po-
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Global electric car stock, 2010-2021
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Figure 1.4 - Nombre de véhicules en circulation par type [3]

litiques annoncées (Announced Pledges Scenario). Celui-ci suppose que les ambitions
annonceées et les objectifs fixés par les gouvernements du monde entier, y compris les
plus récents, sont atteints intégralement et dans les délais. En ce qui concerne les VE, il
comprend toutes les annonces majeures récentes d'objectifs d'électrification et d'émis-
sions nettes nulles a plus long terme et d'autres engagements, qu'ils aient ou non été
ancrés dans la législation ou dans des contributions déterminées au niveau national
mises a jour. Enfin, le scénario zéro émission en 2050 (Net Zero by 2050) est un scé-
nario normatif qui définit une voie étroite mais réalisable pour le secteur mondial de
I'énergie pour atteindre zéro émission nette de CO2 d'ici 2050. Ce scénario est associé
avec la limitation de 'augmentation de la température mondiale a 1,5° conformément
aux réductions évaluées par le Groupe d'experts intergouvernemental sur I'évolution
du climat (GIEC). Il existe de nombreuses voies possibles pour atteindre zéro émission
nette de CO2 dans le monde d'ici 2050 et de nombreuses incertitudes qui pourraient
affecter chacun d'entre elles. Par conséquent, le scénario zéro émission n’est qu'une
voie et non la voie vers des émissions nettes nulles.

D’apres la Figure 1.5, il est clair que quel que soit le scénario, 'adoption des VE suit
une évolution exponentielle et continue sur la tendance des dix dernieres années. En
revanche, il est assez inquiétant de voir qu’en I'état, méme en prenant en compte les
promesses faites par les différentes entités gouvernementales, nous sommes encore
loin de pouvoir atteindre le scénario zéro émission qui nous permettrait de tenir les
accords de Paris [4].

1.2 Généralités sur le marché de I'électricité

L'électricité est une denrée locale. Nous entendons par la deux choses fondamen-
tales. La premiére est que |'électricité ne peut étre stockée telle quelle. Il existe bien
des batteries stockant I'électricité sous forme d’énergie chimique pour des appareils
électroniques ou certains batiments, mais il est inenvisageable avec les technologies
actuelles d'utiliser des batteries a une plus grande échelle. La seconde chose est que le
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Recent trends in EV sales and government policies bring projected EV adoption closer to being
on track with the trajectory to net zero emissions by 2050

Global EV stock by mode and scenario, 2021-2030
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Figure 1.5 - Evolution du nombre de VE jusqu’en 2030 selon trois scénarios majeurs [3]

transport de I'électricité obéit a des lois bien spécifiques (lois de Kirchhoff). Par consé-
guent, dans un réseau électrique maillé, I'électricité ira d'un point a un autre en utilisant
tous les chemins possibles, provoquant ainsi d'éventuelles interférences du flux d'élec-
tricité. Cela restreint donc les opportunités d'échanges transfrontaliers qui sont limités
par la capacité de transfert disponible. Ce n'est pas le cas d'autres sources d'énergies
secondaires comme le baril de pétrole qui peut étre relativement aisément transporté
partout dans le monde.

A cela s'ajoute une contrainte physique fondamentale. La puissance soutirée doit
étre égale a chaque instant a la puissance injectée dans le réseau. Cet équilibre s'ex-
prime avec une fréquence constante (e.g., 50 Hz en France). Si la fréquence chute sous
savaleur de référence, la consommation est supérieure a la production. A contrario, sila
fréquence augmente, la production dépasse alors la consommation. Le principal garant
de cet équilibre est le gestionnaire du réseau - Independant System Operator (1ISO) ou
Transport System Operator (TSO) en anglais. Il doit maintenir en permanence I'équilibre
en s'assurant que la déviation de la fréquence de référence n’est pas trop importante.
Des qu'ily a un décrochage il se doit de réagir au plus vite pour éviter des catastrophes
comme le blackout de 2003 en Amérique du Nord [5].

Dans les sections suivantes, nous allons brievement présenter comment I'électricité
est acheminée au consommateur en expliquant les trois étapes fondamentales (géné-
ration, transmission, distribution). Puis nous allons rapidement présenter la structure
générale du marché de I'électricité. Enfin, nous expliquerons en quoi la prévision de
la consommation est un enjeu fondamental pour les différents acteurs du marché de
I'électricité.
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1.2.1 L'acheminement de I'électricité au consommateur

Depuis la mise en concurrence et 'ouverture du marché en 2007 a I'échelle nationale
et européenne la plupart des pays fonctionnent de la maniére suivante : trois étapes
fondamentales accompagnent le voyage de I'électricité de sa production a sa consom-
mation. Tout commence par la génération de I'électricité dans des centrales utilisant
une source d'énergie primaire (e.g., soleil, vent, nucléaire, charbon). L'électricité géné-
rée est alors envoyée dans des transformateurs pour augmenter la tension du courant
afin de lui permettre de parcourir de longues distances tout en minimisant les pertes
par effet Joule. C'est I'étape de transmission permise par les lignes a haute tension
qui s'étendent a travers le pays. Le courant atteint alors une station électrique secon-
daire ou la tension est abaissée afin qu'il puisse étre envoyé sur des lignes électriques
plus petites destinées a la distribution. C'est avec cette derniere étape que I'électricité
atteint les différents batiments mais aussi les infrastructures de recharge des VE.

Génération

L'énergie électrique est une source d'énergie secondaire qui provient d'énergies pri-
maires comme le vent ou le charbon. Elle est générée a un niveau de basse tension
(quelques dizaines de kV) pour un meilleur rapport colt-efficacité dans les centrales.
Les deux principaux acteurs de la génération d'électricité en France sont EDF et ENGIE.
A eux deux, ils génerent 95% de I'électricité sur le sol francais. Les 5% sont constitués
d'autres entreprises et de producteurs indépendants. Ce sont donc eux qui sont res-
ponsables de l'injection de la puissance dans le réseau électrique. Depuis I'ouverture du
marché en 2007 néanmoins, la puissance injectée par EDF ne couvre pas uniquement
des clients mais peut aussi correspondre a des intermédiaires.

Transmission

Une fois I'électricité générée (a basse tension), la tension est ensuite augmentée
dans un transformateur pour baisser l'intensité du courant électrique de l'alimenta-
tion. La réduction du courant entrainera la réduction des pertes ohmiques dans le sys-
teme. Cela peut étre expliqué en utilisant I'équation de puissance instantanée dissipée
par effet joule : P;(t) = RI(t)* avec I l'intensité (ou courant), R la résistance et P; la
puissance instantanée dissipée par effet Joule (chaleur). Une tension plus élevée per-
mettra également de distribuer la puissance a une distance beaucoup plus éloignée. La
transmission longue distance a basse tension entraine une résistance plus élevée. Par
conséquent, la tension est pompée jusqu’a une valeur beaucoup plus élevée avant la
transmission (plusieurs centaines de kV). Il s'agit généralement d’'un courant alternatif
triphasé. Comme les centrales électriques sont généralement situées loin des consom-
mateurs, I'électricité doit parcourir une grande distance. Pour réduire I'énergie perdue
lors d'une transmission a grande distance, I'électricité est transmise a haute tension.
En France, c'est le Réseau de Transport d’Electricité (RTE) qui est en charge de la trans-
mission.
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Distribution

Une fois que I'électricité se rapproche du consommateur un transformateur abaisse
la tension. On repasse ici a une tension aux alentours de quelques dizaines de kV. Deux
types de clients sont distingués : les clients primaires (e.g., les batiments industriels),
les clients secondaires (e.g., les particuliers). A ces deux types de clients sont associés
un voltage spécifique. En France, I'un des acteurs majeur de la distribution est ENEDIS.

1.2.2 La structure du marché

L'électricité étant donc une denrée locale, il existe autant de marchés de I'électri-
cité que d'états. La microstructure du marché dépend fortement de la réglementation
nationale. Néanmoins, une structure commune émerge, portée par la nécessité d'un
équilibre entre consommation et production avec un réle central de I'lSO, (e.g., RTE en
France et ENTSO-E a I'échelle européenne). Il n'y a pas qu'un seul marché mais une sé-
quence de marchés qui peuvent étre classés par horizons temporels (cf. Figure 1.6). Le
marché infra-day (infrajournalier), le marché day-ahead (journalier) et le marché forward
(de quelques jours a plusieurs années). Au moyen/long-terme les contrats bilatéraux
sont négociés de gré a gré. Cela peut couvrir des produits standards ou plus spéciaux
(e.g., profil de puissance, maturité) : on parle de forwards ou de futures. Au court-terme
(a partir de J-1), les négociations ont lieu sur le marché Spot. On y retrouve des pro-
duits standards sur le marché day-ahead et une procédure d'offre/demande en temps
réel sur le marché infrajournalier. Enfin des mécanismes d'ajustement mis en place
par I'ISO entre en jeu pour rééquilibrer le réseau s'il fait face a une déviation de la fré-
quence de référence. Les acteurs qui interviennent sur le marché sont: les producteurs
d'électricité qui négocient et vendent la production de leurs centrales électriques, les
fournisseurs d'électricité qui négocient et s'approvisionnent en électricité et la vendent
ensuite aux clients pour leur consommation, les négociants qui achetent pour revendre
(ou inversement) et favorisent ainsi la liquidité du marché, les opérateurs d'effacement
qui valorisent la consommation de leurs clients a certains instants de la journée.

Marché Spot

Le marché Spot ou marché “physique” fonctionne en deux temps. Tout d'abord en
Day-ahead ou il regroupe les offres de vente et/ou d'achat d'électricité soumises par I'en-
semble des acteurs du marché pour chaque heure du lendemain. Une fois 'ensemble
de ces offres soumises (jusqu’a midi la veille), les courbes d'offres et de demandes sont
croisées pour chaque heure du lendemain et l'intersection de ces deux courbes fixe le
prix pour cette heure (ou pour chaque bloc d’heures). Tous les acteurs ayant soumis
une offre supérieure au prix fixé, voient leur offre validée et doivent régler, non pas
le prix précisé dans leur offre, mais bien celui du prix fixé a posteriori pour 'heure en
question. C'est en quelque sorte un systeme d’enchere a I'aveugle ou 'on ne paye que
le prix fixé a posteriori. Ce mécanisme est utile pour combattre la volatilité des prix qui
peut étre un ennemi de la résilience du réseau. Grace a cette procédure, deux prix de
référence émergent : la moyenne des prix sur toute la journée Baseload et la moyenne
des prix sur la période définie comme étant les heures de pointe Peakload (de 8h a
20h en France). lls seront utilisés pour la création de contrats futures sur le marché
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Figure 1.6 - Les différents marchés de I'électricité

Forward (cf. Section 1.2.2). Le marché Spot Day-ahead regroupe donc des produits ho-
raires (sur une ou plusieurs heures) avec livraison le lendemain. Les offres de vente
se situent généralement légérement au-dessus des colts marginaux des actifs de gé-
nération. Par conséquent, cette courbe suit le principe du merit order ou les actifs de
générations sont sollicités par ordre croissant de leurs colts marginaux. Généralement,
on retrouve parmi les actifs de génération ayant les codts marginaux les plus faibles les
énergies renouvelables (la matiére premiére étant “gratuite”) puis vient le nucléaire et
enfin les énergies fossiles. Les moyens du parc énergétique étant assez stables dans le
temps (moyennant I'évolution du prix des matieres premieres, les périodes de main-
tenance des différentes centrales et l'intermittence des énergies renouvelables) c'est
souvent la demande qui est bien plus volatile et qui peut entrainer des pics de prix
ou a contrario des périodes ou les prix sont moins élevés. Dans un second temps, le
marché Spot infrajournalier regroupe les transactions concernant des produits demi-
horaires, horaires ou par blocs de plusieurs heures, avec livraison le jour méme. C'est la
possibilité pour les différents acteurs d'effectuer des ajustements de derniére minute
apres les offres retenues sur le marché textitday-ahead. En France, ce marché ouvre a
15h la veille du jour de livraison. Le fonctionnement de ce marché repose sur l'offre de
vente et d'achat d’électricité en temps réel (contrairement au marché Spot day-ahead).
Dés qu'une offre de vente correspond a une offre d'achat la transaction est opérée.
La liquidité du Spot infrajournalier est donc limitée. Enfin, ce marché est le plus volatil
car il peut s'avérer tres complexe de combler une demande soudaine en électricité en
raison des contraintes physiques évoquées plus haut.

Marché Forward

Le marché Forward correspond a des produits avec des échéances supérieures a la
journée. Cela regroupe principalement deux types de produits : les contrats forwards et
les contrats futures. En Europe, les différents produits futures sont standardisés et dis-
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ponibles sur I'European Energy Exchange (EEX). Il peuvent couvrir, plusieurs semaines,
trimestres et ce jusqu’a 6 années. Ces produits se déclinent de trois facons : sur toutes
les heures d’'une période (Baseload), uniquement pour les heures de pointes, de 8h a
20h en France (Peakload) et en prenant les blocs de plusieurs heures. Quant aux pro-
duits forwards, ce sont des contrats qui peuvent étre signés directement de gré a gré
ou par lintermédiaire d’'un courtier. lls ne sont donc pas standardisés et les prix sont
négociés pendant la création du contrat. Le but de ce marché est de permettre aux ac-
teurs de sécuriser leurs achats et/ou leurs codts au moyen/long-terme. En effet, les prix
de ces produits sont généralement moins volatils que les prix du marché spot. Pour les
acteurs responsables de la génération d'électricité, cela les engage a maintenir voire
a développer leurs actifs de générations au fur et a mesure du temps. C'est aussi un
moyen pour eux de sécuriser des financements pour I'expansion de leurs actifs venant
de différentes entités gouvernementales.

Réserves et mécanismes d’ajustement

A la suite des transactions effectuées sur les marchés Forward et Spot, I''SO rentre
alors en jeu pour assurer la sécurité du réseau électrique a l'aide de ses réserves et
de mécanismes d'ajustement. Le but est toujours de maintenir I'équilibre en garantis-
sant que la puissance soutirée soit égale a la puissance injectée a chaque instant. Cet
équilibre peut-étre menacé en temps réel par la perte de certaines unités de généra-
tion d'électricité, des erreurs dans les prévisions de consommation ou de production
ou simplement la congestion du réseau. L'ISO dispose de deux moyens fondamentaux
pour rééquilibrer le systéme. Premierement, un systeme de réserves successives. En
France, elles sont au nombre de trois : la réserve primaire, avec un temps de réponse
inférieur a 30 secondes permet de suppléer le réseau avec 500 MW automatiquement.
La réserve secondaire elle aussi s'active automatiquement avec un temps de réponse
inférieur a 3 minutes et une puissance de 600 MW. Enfin, la réserve tertiaire elle s'active
manuellement avec un temps de réponse de 15 minutes et représente une puissance
d’environ 1500 MW. Au-dela de ces réserves, I'ISO peut également mobiliser un méca-
nisme d'ajustement. Ces mécanismes font rentrer en jeu un nouveau type d'acteurs
appelés responsables d'équilibres (RE). Les RE sont des opérateurs du marché qui ont
signés un contrat les engageant aupres de RTE pour régler les écarts observés a pos-
teriori entre I'électricité injectée et celle soutirée sur leur périmetre de clients. Les RE
soumettent alors des offres d'augmentation ou de diminution de leur production ou
consommation et I'ISO sélectionne les offres en fonction de la préséance économique
dans un délai de 30 minutes.

Réglement des écarts

En France, RTE établit, a posteriori, |a facture a payer ou a recevoir par un RE, pour
les écarts observés sur son périmeétre (puissance injectée/soutirée). La formule de re-
glement de ces écart est basée sur le prix spot et les colts de production d'électricité.
L'idée étant d'inciter un comportement vertueux tant pour les producteurs que pour
les consommateurs. Prenons un scénario ou le réseau serait en manque de puissance.
Si EDF est en exces de puissance sur son périmeétre, alors EDF recoit le prix Spot pour
I'instant de la période de la journée considérée. En revanche, si EDF est en manque
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de puissance, alors EDF devra payer des pénalités également en fonction du prix Spot
pour la période considérée.

1.2.3 Modéles de prévision

Jusqu’a présent nous avons détaillé les enjeux ainsi que les activités spéculatives
liées au marché de I'électricité. Minimiser les risques a la fois en terme de sécurité et sur
un plan financier est au cceur des activités des RE. Cela se traduit par la production de
modeles de prévision des différentes inconnues du marché (e.g., les prix, la demande,
la production). Tout comme le marché de I'électricité, ces prévisions peuvent se faire a
long-terme, moyen-terme ou a court-terme avec des objectifs différents dans chacun
de ces cas. De plus, il ne s'agit pas uniquement de produire une prévision ponctuelle
des différentes quantités mais on peut également rencontrer de plus en plus fréquem-
ment des modeles de prévision probabiliste (quantiles) et plus particulierement des
modeles de prévision de pics. L'émergence de ce secteur d'activité n'est pas unique-
ment due a I'ouverture du marché a la compétition mais est aussi rendue de plus en
plus difficile avec I'émergence des énergies renouvelables (intermittentes par nature)
et de nouveaux usages de consommation (e.g., les VE). Les travaux présentés dans ce
manuscrit s'inscrivent précisément dans le contexte de la prévision de la consomma-
tion et en particulier celle du nouveau marché que représente les VE.

1.3 L'intégration des Véhicules Electriques dans le
réseau

Dans cette section, nous introduisons certains points fondamentaux pour l'intégra-
tion des VE dans le réseau électrique. En particulier, nous détaillons les notions liées a
I'infrastructure de recharge et la recharge intelligente ou smart-charging.

1.3.1 Infrastructure de recharge

La recharge des VE s'effectue le plus souvent a domicile mais aussi sur des bornes
publiques (e.g., municipalités, autoroutes) ou privées (e.g., lieu de travail). Quel que
soit le lieu de recharge, nous pouvons trouver différentes normes concernant les in-
frastructures de recharge, qui sont déterminées, principalement, par la région dans la-
quelle elles sont appliquées. Plus précisément, trois normes principales existent actuel-
lement (cf. Table 1.1 [6]) : 1. en Amérique du Nord et dans la zone Pacifique (SAE-J1772),
2.en Chine (GB/T 20234) et 3. en Europe (IEC-62196). En résumé, on retrouve différents
modes de charge délivrant différents niveaux de puissance maximale. Plus la puissance
est élevée plus la charge serarapide. La charge la plus rapide possible peut étre atteinte
avec des infrastructures de recharges en courant direct (DC). Souvent trés larges et en-
combrantes, ces bornes ne sont pas disponibles a 'usage domestique. Elles peuvent
atteindre plusieurs centaines de kW en puissance maximale ce qui par exemple per-
met de charger une Tesla en moins d'une demi-heure. Cependant, le recours a ces in-
frastructures DC doit étre parcimonieux au risque de mettre en péril la durée de vie de
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Norme Mode Voltage (V) Intensité (A) Puissance Maximale (kW)

AC Niveau 1 120 16 1.9
SAE-1772 (Amérique) AC Niveau 2 240 80 19.2
DC Niveau 1 500-200 80 40
DC Niveau 2 5 200 100
230-240 3.8
Mode 1 (AC) 16 480 26
230-240 7.6
IEC-62196 (Europe)  Mode 2 (AC) 32 480 15.3
i 230-240 60
Mode 3 (AC) 32-250 480 120
Mode 4 (DC)  250-400 600-1000 400
10 2,5
250 16 4
AC 32 8
16 7
GB/T-20234 (Chine) 440 32 14
63 27.7
80 80
DC 750-1000 125 125
200 200
250 250

Table 1.1 - Les trois principales normes pour les infrastructures de recharges [6]

la batterie. De plus, charger une multitude de véhicules en DC n'est également pas for-
cément souhaitable a I'échelle du réseau car on pourrait avoir de grosses contraintes
et des problemes en certains endroits.

1.3.2 Impact et contraintes de recharge

Les VE représentent un défi important pour ce qui concerne leur intégration dans le
réseau de distribution a grande échelle [7]. Une mauvaise gestion de ce nouveau mar-
ché peut avoir un impact trés négatif sur la courbe de charge (augmentation des pics
de demande). De plus, cette contrainte ajoutée sur le réseau peut mener a la surcharge
de certains composants du systéme liés a des déséquilibres de tension et fréquence. La
stabilité du réseau de distribution est donc en danger. Un unique VE est loin d’étre un
probléeme pour le réseau électrique. Cependant, une charge simultanée de centaines
de VE dans un quartier pourrait grandement dépasser la capacité du réseau. Pour illus-
trer cela il suffit de regarder la courbe de charge d'un ménage possédant un VE Figure
1.7. Pour autant, si lintégration des VE représente pour beaucoup une contrainte addi-
tionnelle sur le réseau, en modifiant le paradigme du consommateur qui se recharge
quand bon lui semble de fagon non-contrdlée pour passer a un modeéle avec des agré-
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gateurs qui ont pour mission d'optimiser la recharge des VE, on peut imaginer que la
charge des VE pourrait servir différents desseins. Ce modeéle s'appelle la recharge intel-
ligente ou smart charging.

1.3.3 Smart Charging

Le smart charging consiste a connecter les bornes de recharge de VE avec des agré-
gateurs. Chaque fois qu'un VE est branché, la station envoie des informations (e.g., le
temps de charge, la puissance délivrée) par Wi-Fi ou Bluetooth a une plateforme de
gestion centralisée. Des données supplémentaires complétent les informations de la
station pour fournir une vision plus générale du réseau aux agrégateurs (e.g., capacité
du réseau local). Ces données sont analysées et visualisées en temps réel et peuvent
étre utilisées pour prendre des décisions automatiques sur comment et quand les vé-
hicules électriques seront chargés. Grace a cela, les agrégateurs peuvent contrdler et
réguler la consommation d'énergie facilement et a distance via une plate-forme, un
site Web ou une application mobile. Nous présentons ci-dessous les options de smart
charging les plus courantes ou les plus étudiées a ce jour.

Partage de la puissance

Le partage de puissance, également parfois appelé équilibrage de charge ou nivel-
lement, permet aux opérateurs de réseau ou aux entreprises disposant de plusieurs
chargeurs sur site de répartir la capacité énergétique disponible proportionnellement
sur toutes les bornes de recharge actives pour VE. Etant donné que la puissance dis-
ponible est limitée sur chaque site, une plus grande demande d'énergie pourrait en-
gendrer des mises a niveau co(teuses de l'infrastructure électrique. Grace au smart
charging, la puissance peut étre distribuée de maniére optimale afin d'éviter de telles
mises a niveau. C'est le méme principe a une échelle plus grande comme une ville ou
une région. Partager la puissance permet d'éviter de surcharger le réseau en acceptant
un temps de recharge plus long pour les utilisateurs.
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Figure 1.7 - L'impact d'un BEV sur la courbe de charge d'un ménage [&]
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Minimisation d’externalités négatives

Le smart charging pourrait également contribuer a réduire considérablement les
émissions du secteur des transports. Alors que les véhicules électriques sont déja plus
propres que les véhicules ICE, charger 1 million de véhicules électriques au bon moment
sur le réseau actuel équivaut a retirer entre 20 000 et 80 000 véhicules ICE supplémen-
taires de la route avec les technologies actuelles aux Etats-Unis [9]. Dans ce rapport,
plusieurs scénarios de charge de jour et de nuit concernant six RE aux Etats-Unis sont
étudiés. En particulier, la charge non-contrélée est comparée a la charge optimisée par
rapport aux émissions de gaz a effet de serre. Deux facteurs clés conduisent a des
émissions maximales : le mix énergétique du réseau local et le comportement de re-
charge des usagers. Donner la priorité a la charge de niveau 2 (cf. Table 1.1) avec des
temps de séjour plus longs pour maximiser la flexibilité des véhicules électriques en
tant qu'actifs du réseau. Cela pourrait inciter les conducteurs de VE a se brancher tous
les jours ou toutes les nuits de maniere plus consistante et maintenir un certain de-
gré de prévisibilité. De plus, le fait de se brancher tous les jours augmente la flexibilité
de chaque session de charge, maximisant ainsi les économies potentielles en terme
d’émissions. Une autre recommandation de ce rapport est adressée aux services pu-
blics. Il exhorte ces acteurs du réseau d'intégrer I'électrification des transports dans la
planification énergétique. Par exemple, pour les réseaux avec une importante quan-
tité d'énergie solaire diurne, cela signifie accélérer les programmes de recharge sur le
lieu de travail. Pour les réseaux fortement éoliens, le modele opérationnel de recharge
nocturne dans un dépdt centralisé (e.g., pour les bus de la municipalité) s'associe par-
faitement a 'augmentation de la production éolienne pendant la nuit.

Vehicle-to-Grid

La transition énergétique place les fournisseurs d'énergie devant un double défi.
D'une part, ils doivent pouvoir exploiter de plus en plus des sources d'énergie inter-
mittentes comme ['éolien et le solaire, mais sans pouvoir stocker I'énergie qu'ils pro-
duisent a grande échelle. D'autre part, ils doivent pouvoir garantir la stabilité du réseau
etrépondre instantanément a la demande des consommateurs. C'est dans ce contexte
gu'interviennent les technologies vehicle-to-grid (V2G). C'est un changement complet
de paradigme ou la batterie d'un VE est considérée comme une extension du réseau
électrique. Précisément, le paradigme V2G considere la batterie d'un VE comme une ré-
serve d'énergie dans laquelle les fournisseurs d'électricité peuvent puiser si nécessaire.
La charge devient alors un processus bidirectionnel, ce qui signifie que le réseau ne se
contente plus d'alimenter en électricité la batterie du véhicule : il considere également
cette batterie comme une source d'énergie a utiliser pour répondre aux différents be-
soins de consommation d'énergie. Avec le V2G, un utilisateur de VE peut donc décider
de stocker I'électricité lorsque les tarifs sont les plus bas, puis de l'utiliser lorsque le
prix augmente. Un conducteur qui rentre chez lui la nuit pourrait par exemple utiliser
I'énergie stockée dans la batterie de sa voiture électrique pour alimenter ses appareils
électroménagers. Il peut alors recharger cette méme batterie plus tard dans la soirée,
au moment ou le fournisseur d'électricité propose les tarifs les moins chers.

De la méme maniére, la flexibilité apportée par le V2G permet de recharger une bat-
terie pendant les heures ou I'énergie est produite par des sources renouvelables, puis
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d'utiliser I'électricité en cas d'indisponibilité de I'énergie solaire ou éolienne. C'est aussi
le principe des systémes de stockage d'énergie stationnaire sur batteries, qui visent a
donner une seconde vie aux batteries en créant des réserves d'électricité a I'échelle
d’'une maison ou d'une borne de recharge. A I'échelle du réseau national, la capacité de
stockage d'énergie du réseau mise a disposition par V2G aide les opérateurs a mieux
gérer les fluctuations de la demande. Il peut, par exemple, permettre d'absorber un
pic de consommation sans dépendre d'une coupure de courant sélective, ou il peut
compenser les micro-perturbations qui peuvent survenir lors du basculement de la
production d'énergie d'une source a une autre. Dans le cadre de ce modele, les opéra-
teurs rémunérent les clients qui mettent leurs batteries a disposition : le V2G aide ainsi
le consommateur final a réduire ses dépenses énergétiques.

1.4 Le Cycle de Vie des Véhicules Electriques

Les analyses du cycle de vie (ACV) évaluent limpact d'un produit ou d’'un service
sur I'environnement, généralement de sa production a son élimination [10]. Alors que
le nombre de VE vendus dans le monde augmente d'année en année, dans le but de
réduire les émissions de gaz a effet de serre dans le secteur des transports, il devient
de plus en plus important de comprendre dans leur intégralité leurs colts et avantages
d’'un point de vue environnemental. Il nous semble trés important d'un point de vue
déontologique et éthique de détailler ces points trop souvent oubliés ou passés sous
silence.

Le cycle de vie complet des VE peut étre divisé en trois approches clés : cradle-to-
gate (du berceau a la porte), cradle-to-grave (du berceau a la tombe) et cradle-to-cradle
(du berceau au berceau), comme le montre la Figure 1.8. Le cradle-to-gate fait référence
a un cycle de vie partiel du produit, du traitement des matiéres premiéres a la pro-
duction de véhicules, se terminant a la sortie de l'usine. Cette approche ne prend pas
en compte l'usage des consommateurs ni la phase de recyclage en fin de vie des véhi-
cules. Le cradle-to-grave est une évaluation compléte du cycle de vie depuis I'extraction
des matieres premieres, couvrant I'entretien et le ravitaillement tout au long de I'utilisa-
tion des véhicules et se terminant par le démontage et le recyclage des composants du
véhicule. Enfin, le cradle-to-cradle est connu comme un cycle de vie en boucle fermée
ou les matériaux récupérés en fin de vie des véhicules sont réutilisés comme matieres
premieres dans le cycle de vie suivant. Les approches well-to-wheel tiennent compte du
cycle de vie du vecteur énergétique, comme les combustibles fossiles ou I'électricité,
ainsi que des émissions des véhicules résultant de son utilisation. Elles peuvent étre
a nouveau subdivisées en well-to-tank qui se concentre sur la chaine d’approvisionne-
ment en carburant et en électricité et tank-to-wheel qui correspond aux émissions des
véhicules provenant de I'exploitation par le consommateur [11, 12].

Les résultats de I'ACV de différentes études varient en fonction du choix de I'ap-
proche et des sources de données ainsi que des spécifications techniques telles que
le type de véhicule et le poids qui ont été utilisées dans I'analyse. Différents choix de
limites de systéme et d’hypothéses de modélisation peuvent également conduire a des
résultats différents entre les études [13]. Dans la phase de production, la charge envi-
ronnementale des VE a tendance a étre plus élevée que celle des ICEV. Cela est d0 aux
produits chimiques et aux métaux utilisés lors de la production de la batterie. En par-
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Figure 1.8 - Approches classiques pour I'analyse du cycle de vie des VE [11]

ticulier, 'impact des VE sur le potentiel d’eutrophisation (EP) et le potentiel de toxicité
humaine (HTP) a tendance a étre plus élevé que celui des ICEV. Dans une étude, 'impact
de la toxicité humaine des VE a été calculé comme étant environ cinq fois supérieur a
celui des ICEV. Cela est principalement dU aux émissions provenant de I'extraction de
matieres premieres et de la fabrication de produits chimiques et de métaux tels que
I'aluminium, le cuivre, le nickel et le platine qui sont utilisés dans la transmission.

Dans la phase d'utilisation, les VE ont tendance a avoir une performance environ-
nementale plus élevée que les ICEV, mais cela dépend fortement du mix énergétique
du réseau. L'utilisation de combustibles fossiles pour la production d'électricité peut ré-
duire considérablement les avantages environnementaux des VE par rapport aux ICEV
et dans les régions ou la production d'électricité est caractérisée par une grande pro-
portion d'énergie fossile, les VE pourraient entrainer une augmentation des émissions
des gaz a effet de serre. Par conséquent, les sources d'énergie propres doivent étre aug-
mentées et promues aux cbtés des véhicules électriques afin d'atteindre les objectifs
d'atténuation des gaz a effet de serre [14].

La phase de recyclage offre des opportunités pour compenser la charge environ-
nementale élevée de la phase de production. Les batteries Lithium-lon peuvent étre
réutilisées grace a la remise a neuf et a la réaffectation. La remise a neuf fait référence
au processus de réparation ou de reconditionnement des cellules des batteries des EV
destinés a étre utilisés par les équipementiers. Par rapport aux batteries créées a par-
tir de matériaux vierges, la remise a neuf a le potentiel de réduire la consommation
d'énergie et les émissions de gaz a effet de serre [15]. La réaffectation fait référence
au processus de reconfiguration des batteries pour une application différente, comme
le stockage connecté au réseau, l'alimentation de secours ou les services auxiliaires.
L'utilisation de batteries obsoletes pour les systémes de stockage d'énergie peut facili-
ter la transition vers les énergies renouvelables en offrant une énergie propre a faible
codt hors pointe. Ce type de technologie est nécessaire en raison de I'intermittence des
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énergies renouvelables.

L'ACV des batteries dépend des émissions et de la toxicité associées a leur produc-
tion, de la facilité avec laquelle elles peuvent étre recyclées et du mix électrique dans la
région ou elles sont développées. Par exemple, alors que les batteries Pb-Ac et Ni-Cd
peuvent étre facilement recyclées avec l'infrastructure actuelle, elles sont plus toxiques
que les batteries NiMH. Dans I'ensemble, les batteries Lithium-lon ont tendance a avoir
un impact environnemental plus positif que les batteries Ni-Cd, Pb-Ac et NiMH. Le trai-
tement des matériaux cathodiques et le séchage des électrodes ont tendance a étre les
processus associés a une consommation d’énergie et a des émissions élevées.

L'extraction des matieres premiéres pour la production de batteries nécessite, en
outre, de grandes quantités d’'eau et d'énergie. Les matieres premieres (lithium et co-
balt) nécessaires a la fabrication des batteries Lithium-lon sont souvent extraites par
des travailleurs dans des conditions extrémement dangereuses. Environ un tiers de
I'approvisionnement mondial en lithium provient des terres salines d’Argentine et du
Chili et environ 70% de I'approvisionnement en cobalt se trouve en République démo-
cratique du Congo [16].

Une étude examinant les structures de pouvoir, le patriarcat et le travail des enfants
dans l'exploitation miniére artisanale et a petite échelle du cobalt en RDC a conclu que
la facon dont le cobalt est extrait exploite actuellement les populations vulnérables tout
en contribuant a la dégradation de I'environnement et le changement climatique. Les
femmes et lesfilles finissent souvent par accepter des emplois dans les pires conditions
pour un salaire et des conditions inférieurs a ceux des travailleurs masculins et le travail
des enfants est dominant dans de nombreuses mines. Les populations locales ont des
niveaux élevés de métaux toxiques dans leur corps, entrainant le développement de
maladies cardiaques et respiratoires [17].

En résumé, les VE ont le potentiel de réduire les émissions de gaz a effet de serre
dans le secteur des transports par rapport aux ICEV. Afin d'atteindre ce potentiel, la
transition vers les VE doit aller de pair avec une transition vers des sources d’énergie
non fossiles a faible émission de carbone. Cela réduira les émissions associées a la
phase d'utilisation des véhicules ainsi que les émissions associées a la création de la
batterie dans la phase de production. Par rapport aux ICEV, la production de VE est as-
sociée a une toxicité humaine plus élevée et a un épuisement des métaux rares. Cela
concerne la phase de production et est associée a I'extraction des matieres premieres
et a la production ultérieure des batteries. Par conséquent, afin de réduire lI'impact
environnemental des véhicules électriques, des processus de production de batteries
hautement efficaces sont nécessaires ainsi que des matériaux éco-efficaces innovants
utilisés dans la création de batteries afin de réduire la quantité de matiéres premiéres
utilisées dans leur production. De plus, recycler les batteries sera essentiel pour garan-
tir que I'impact environnemental des VE est minimal. Enfin, veiller a ce que I'extraction
des éléments nécessaires a la production de batteries soit durable et équitable sera la
clé de l'avenir de la production des VE. Les fabricants de batteries pourraient viser a
améliorer la responsabilité de la chaine d’approvisionnement liée a I'extraction du li-
thium et du cobalt afin de garantir que les structures électriques en place puissent étre
démantelées et que I'exploitation des mineurs soit éradiquée [17, 13].
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1.5 Comportements de charge des Véhicules Electriques

1.5.1 Variables a modéliser

Les comportements de charge des VE peuvent étre caractérisés de différentes ma-
nieres. En particulier, il est important de comprendre les différentes variables les plus
pertinentes pour la modélisation de la charge des VE ainsi que pour les applications
opérationnelles (smart charging). Dans les sections qui suivent, nous distinguons deux
types d'informations qui sont soit agrégées soit désagrégées. Par agrégé, nous faisons
référence a des informations concernant un ensemble de VE tandis que par désagrégé
nous faisons référence a des informations concernant un seul VE (ou plus précisément
une seule session de charge).

Information agrégée

Au niveau agrégé, plusieurs informations peuvent étre envisagées pour la modéli-
sation. La grandeur la plus couramment modélisée est la courbe de charge car c'est
celle qui refléte le mieux la contrainte apportée par les VE sur le réseau et elle est au
centre de la plupart des défis pour les acteurs du marché de I'électricité. Une grande
expertise a été acquise au cours des derniéres décennies dans le domaine de la pré-
vision de la charge électrique. Le nouveau défi qui accompagne l'adoption des VE est
qgue ce nouveau type de demande n'est pas animé par la méme dynamique ni ne ré-
pond aux mémes contraintes que la demande d'électricité traditionnelle. Il est d'autant
plus crucial d'améliorer les prévisions de pics de charge qui feront I'objet de multiples
approches innovantes dans ce manuscrit. Une autre information est particulierement
utile pour les applications de smart charging. 1l s'agit de la courbe d’occupation. Alors
que la courbe de charge se concentre sur la puissance soutirée par les VE, la courbe
d’'occupation reflete 'occupation réelle en termes de nombre de véhicules aux points
de recharge. Prévoir 'occupation des points de recharge permet de déployer des stra-
tégies de smart charging et contribue également a l'introduction d'un paradigme V2G
dans le réseau.

Information désagrégée

Au niveau désagrégé, il peut étre utile de modéliser une grande variété de variables.
Les plus évidentes sont les variables caractérisant une session de charge : I'neure d'ar-
rivée, 'heure de charge, I'neure de départ et la puissance soutirée au cours du temps
(ou la demande totale d'énergie) par VE. Ce sont des informations qui sont actuelle-
ment facilement collectées aux bornes de recharge. Dans ce manuscrit, nous avons
exploré, en particulier, les arrivées des VE aux points de recharge, car un indicateur di-
rect des moments ou les contraintes sur le réseau sont les plus importantes. De plus,
une autre information désagrégée est particulierement pertinente mais toujours diffi-
cile a collecter : I'état de charge initial (SoC) qui est le pourcentage d'état de la batterie
du VE lorsqu’elle est branchée au réseau. Il est actuellement modélisé en utilisant prin-
cipalement des simulations a partir de distributions statistiques avec des parametres
donnés par des experts ou des analyses globales, mais rarement dérivés de données
réelles collectées aux points de recharge. La collecte du SoC initial aiderait grandement
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a améliorer les modeles de comportements de charge des véhicules électriques car il
contient des informations critiques qui peuvent influencer les autres facteurs influents
susmentionnés.

Agréger I'information désagrégée

Enfin, il est important de noter que les informations désagrégées peuvent étre uti-
lisées pour reconstruire les courbes de charge et d'occupation a l'aide d'un choix judi-
cieux des variables désagrégées modélisées. En particulier, nous verrons dans le cha-
pitre 3 comment cela peut étre fait.

1.5.2 Modélisations proposées

Dans cette section, nous introduisons les différentes modélisations retenues dans
ce manuscrit pour modéliser les différents facteurs influents définis dans la section 1.5

Nombre de sessions de recharge journaliéres

La modélisation du nombre de sessions quotidiennes de recharge de VE est un type
de modele d'occupation ou nous nous concentrons sur le nombre d'arrivées de VE aux
bornes de recharge tout au long de la journée. Une facon typique d'aborder ce pro-
bleme consiste a utiliser la modélisation des séries chronologiques. Bien qu'il existe
une grande variété de modeéles de séries chronologiques, dans notre travail, nous nous
sommes concentrés sur deux options. Le premier est le modele auto-régressif (ARIMA)
qui est un modele statistique concu pour I'analyse et la prédiction de données de sé-
ries chronologiques. Il prévoit les estimations futures sur la base des valeurs prises
par la série chronologique dans le passé. D'autres versions du modele ARIMA appelées
ARIMAX peuvent également intégrer des covariables. Ceci sera détaillé plus loin dans
le manuscrit. Le deuxiéme modéle que nous utilisons pour la modélisation des séries
chronologiques est celui des réseaux de neurones récurrents. Plus particulierement,
nous nous concentrons sur les architectures Gated Recurrent Units (GRU).

Sessions de recharges au niveau désagrégé

Le fait de disposer d'une prévision du nombre quotidien de sessions de recharge
de VE peut étre combiné a un modele multivarié de la distribution des sessions de
recharge pour dessiner des sessions de recharge individuelles et fournir des informa-
tions désagrégées sur les comportements de recharge des VE. En utilisant un modéle de
meélange multivarié des diverses informations désagrégées demandées (par exemple,
heure d'arrivée, durée de charge, demande d'énergie), cela peut étre réalisé. De plus,
en supposant que les arrivées d’EVs sont connues (ou tout autre élément du vecteur
aléatoire multivarié modélisé), conditionnellement a cette information, les autres élé-
ments de la session de charge peuvent étre dérivés avec une régression mixte (voir
chapitre 3).
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Arrivées des Véchicules Electriques aux points de charges

En descendant de la granularité journaliére, il est possible d'envisager de prévoir
les arrivées de VE a une granularité plus fine. En supposant que les arrivées EV sont
la réalisation d'un processus ponctuel, le but est d'estimer sa fonction d'intensité de
premier ordre A. Plusieurs types de processus ponctuels ont été pris en compte dans
notre travail (par exemple, Poisson, Hawkes), mais nous avons constaté que le proces-
sus de Poisson non homogene (NHPP) était le mieux adapté a notre application aux
arrivées EV. La flexibilité des NHPP et leur simplicité nous ont permis d'utiliser diffé-
rentes approches pour estimer \. En particulier, nous avons exploré des modeles non-
paramétriques de l'intensité avec des modeéles additifs avec splines et/ou ondelettes
(voir chapitres 3 et 4). De plus, nous avons également estimé \ avec des approches
utilisant des foréts aléatoires (voir chapitre 3)

Courbes de charge et d’occupation

Enfin, la modélisation agrégée des courbes de charge et d'occupation peut se faire
directement a l'aide d'outils statistiques et d'apprentissage automatique courants tels
gue GAM ou Random Forest. De plus, les informations désagrégées obtenues dans I'ap-
proche susmentionnée peuvent étre utilisées pour reconstruire les courbes de charge
et d’'occupation (voir chapitre 3), nous nous intéressons donc maintenant aux approches
directes. Quant a la modélisation des pics, primordiale en la matiére, nous explorons
également différentes approches de modélisation utilisant les GAM et les réseaux de
neurones (voir chapitre 5).

1.6 Problématique et plan du Manuscrit

Comme nous l'avons rappelé dans les sections précédentes, le développement des
VE est un levier majeur vers un transport bas carbone. Il s'accompagne d'un nombre
croissant d'infrastructures de recharge qui peuvent étre utilisées comme actifs flexibles
de gestion du réseau. Pour permettre la meilleure gestion possible du réseau a court-
terme, une prévision journaliere efficace des comportements de charge est nécessaire.
En particulier, trois enjeux sont au coeur de cette problématique :

1. Quels modéles sont a I'état de I'art pour la modélisation de la charge des VE et
quelles sont les données disponibles?

2. Comment comparer les performances des modeéles de prévisions et ainsi définir
le meilleur modele?

3. Comment prévoir les pics de consommation électrique quotidiens?

Le but de la these est de donner des éléments de réponse a ces trois enjeux. Pour
ce faire, le reste du manuscrit s'articule de la maniére suivante (cf. Figure 1.9) :

Le Chapitre 2 répond au premier axe de la these avec une exploration approfondie
des jeux de données ouverts trouvés au cours de nos travaux et propose une taxono-
mie des modeles de la charge des VE. Pour motiver ce chapitre, de nombreux articles
soulignent le manque de données de recharge des VE disponibles dans la littérature.
Des données ouvertes sont nécessaires pour construire des modeles reproductibles
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et cohérents avec la réalité. Notre hypothése est qu'avec une adoption croissante des
véhicules électriques dans le monde, des données ouvertes peuvent étre disponibles
en ligne. Par conséquent, I'objectif est de chercher des données ouvertes décrivant la
charge des véhicules électriques au niveau des points de charges (e.g., publics, profes-
sionnels, résidentiels). On tient également a tenir compte des données exogénes telles
que le trafic, les enquétes sur les déplacements et la qualité de l'air. Le périmetre de
I'étude est centré sur 14 pays de I'Electric Vehicle Initiative (EVI) classés par part de marché
nationale des VE.

Le Chapitre 3 est une étude comparative de différents modéles entrainés sur 'en-
semble des jeux de données de sessions de recharge présentées dans le chapitre 2.
Bien que la prévision de la recharge des véhicules électriques soit un domaine de re-
cherche en plein essor, aucune étude comparative de référence n'a été proposée sur
des jeux de données ouverts. Cela entrave donc la reproductibilité des méthodes dé-
finies. Nous proposons un benchmark d'une grande variété de modeles adaptés aux
comportements de charge les plus courants. L'objectif est d'unifier les prévisions des
différents modeles en une ultime prévision a l'aide d'une agrégation d'experts. Pour ce
faire, nous avons retenus 3 méthodes innovantes inspirées par |'état de I'art et avons
produits 14 prévisions différentes pour chacun des 8 jeux de données ouverts exploreés
dans le chapitre 2.

Le Chapitre 4 introduit une procédure d'estimation de l'intensité d'un processus
de Poisson non-homogene avec un modeéle additif d'effets splines et ondelettes pénali-
sées. Cette méthode est appliquée a I'estimation d'arrivées des VE aux points de charge.
Aprés avoir donné la caractérisation du modéle, nous proposons une procédure d'es-
timation inspirée du backfitting qui est illustrée par une étude de cas sur les arrivées
réelles de VE aux bornes de recharge. L'idée derriere cette approche de modélisation
est d'évaluer si les pics d'arrivées aux points de charge peuvent étre mieux captureés
en combinant des effets splines et ondelettes. Précisément, les splines, des fonctions
lisses, ont (a priori) pour role de capturer les basses fréquences du signal. Pendant ce
temps, les ondelettes, plus localisées, ont pour but d'intervenir aux instants ou les arri-
vées sont plus erratiques avec des changements drastiques dans la fonction d'intensité
du processus d'arrivées. On utilise ici des données de charge résidentielle (Domestics
UK) et également des données de charge publique (Palo Alto).

Le Chapitre 5 répond directement au troisieme enjeu de la thése avec I'étude d’'une
méthode pour prédire 'ampleur des pics de consommation électrique quotidiens ainsi
que leur timing en utilisant des informations a différentes échelles temporelles. En
effet, lorsque la demande électrique dépasse la capacité du réseau, cela peut entrai-
ner des pannes du systéme électrique. Le marché émergeant des VE ajoute une forte
contrainte au réseau qui pourra étre localisée a certains instants de la journée. Avoir
une prévision précise de 'ampleur des pics de consommation et du moment de ces pics
permet aux fournisseurs d’énergie d’'optimiser le planning de leurs moyens de produc-
tions. Notre hypothese est que les estimations du pic de demande et de l'instant de
pic peuvent étre améliorées en utilisant a la fois des informations a basse résolution
et a haute résolution : ce que nous appelons une approche multi-résolution. L'objectif
est alors de proposer un cadre intégrant des informations a différentes échelles tem-
porelles dans un unique modele et d'apprécier les performances de la méthodologie
proposée sur des données consolidées. Pour ce faire, nous étudions deux classes de
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Figure 1.9 - Plan du manuscrit

modeles : les modeles additifs généralisés et les réseaux de neurones. Les expériences
de ce chapitre sont menées sur les données du réseau national du Royaume-Uni dans
un contexte de prévision avec fenétre glissante.

1.7 Collaboration Industrielle

Cette these académique s'inscrit dans une collaboration industrielle avec EDF R&D
et plus particulierement le département OSIRIS (Optimisation, SImulation, RIsques et
Statistiques pour les marchés de I'Energie). Précisément, cette collaboration a abouti &
la production de plusieurs livrables tout au long de la these. De plus, certains résultats
de la these ont été présentés a différents clients internationaux de I'entreprise et di-
rectement utilisés par le groupe Méthodes, Modéles et Outils d’'Optimisation. L'accés aux
données EDF ainsi que la collaboration avec différents experts du groupe Prévision de
Consommation Court/Moyen-terme ont contribué a enrichir les travaux présentés dans
ce manuscrit.
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Chapitre 2

A taxonomy of EV load models and open
data cartography

This chapter is based on a paper published in MDPI - Energies [15].

The field of EV charging load modelling has been growing rapidly in the last decade.
In light of the Paris Agreement, it is crucial to keep encouraging better modelling tech-
niques for successful EV adoption. Additionally, numerous papers highlight the lack of
charging station data available in order to build models that are consistent with reality.
In this context, the purpose of this chapter is threefold. First, to provide the reader with
an overview of the open datasets available and ready to be used in order to foster re-
producible research in the field. Second, to review electric vehicle charging load models
with their strengths and weaknesses. Third, to provide suggestions on matching the
models reviewed to six datasets found in this research that have not previously been
explored in the literature. The open data search covered more than 860 repositories
and yielded around 60 datasets that are relevant for modelling electric vehicle char-
ging load. These datasets include information on charging point locations, historical
and real-time charging sessions, traffic counts, travel surveys and registered vehicles.
The models reviewed range from statistical characterisation to stochastic processes
and machine learning and the context of their application is assessed.
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2.1 Introduction

Assuming a low-carbon energy mix, Electric Vehicles (EVs) are a credible alternative
to internal combustion engine vehicles (ICEVs) supporting the transportation sector in
its low-carbon transition. A substantial number of governments are heavily investing
in electric mobility with more than 5.1 million electric passenger cars on the roads glo-
bally in 2018, according to the International Energy Agency (IEA) [19]. Several countries
are achieving high rates of EV adoption such as Norway which approached an EV market
share of almost 47% in 2019 [19]. This is due in large part to major incentives implemen-
ted by governments to foster EV uptake [20]. The EV30@30 Campaign [21] sets a target
of 30% EV market share by 2030 for the member countries of the Electric Vehicle Initia-
tive (EVI) [22]. This enthusiasm for EVs comes hand in hand with great concern about
how to manage the surge in electricity demand which could greatly disrupt the current
schedule [23].

In order to overcome potential pitfalls, businesses and researchers are proposing
solutions including pricing strategies [24] and smart charging [25]. The goal of these
solutions is to avoid dramatically shifting EV users’ behaviours and power plants pro-
duction schedules. However, their implementation requires a precise understanding of
charging behaviours. Thus, EV load models are necessary in order to better understand
the impacts of EVs on the grid. With this information, the merit of EV charging strategies
can be realistically assessed.

In this article, the term “EVs” refers to small vehicles (e.g., light motorcycles), passen-
ger vehicles (e.g., cars) and goods-carrying vehicles (e.g., trucks) as per the classification
from the European Commissions' official report “Mobility & Transport : Vehicle Catego-
ries” [26, 27]. Passenger vehicles constitute the majority of EVs. Additionally, all energy
system management that can be plugged to the grid are considered : BEV, EREV or
PHEV [28]. Furthermore, Electric Vehicle Supply Equipment (EVSE) will be referred to as
any type of charging point, be it public or private. Finally, an EV charging session (or
transaction) refers to the period of time an EV has spent charging at an EVSE.

2.1.1 Aims and strategies for EV charging schemes

Electricity distribution occurs such that at any point in time and space, the consump-
tion has to be equal to the production in order to avoid severe consequences such as
blackouts [29]. A significant rise in the number of EVs in circulation leads to an increase
in electricity demand which could cause such a blackout if the balance in the grid is not
effectively maintained. Therefore, EVs have an important role to play in maintaining this
balance [23]. The purpose of this section is to explore the different aims and strategies
required to overcome the potential difficulties caused by increased EV penetration. Fi-
gure 2.1 summarises these aims and strategies.

Load flattening

While some studies show minimal impact of EVs on peak load [30, 31], the consensus
in the field is that the grid will not be able to sustain its operations with the projected
demand from EVs [24, 27, 32, 33, 34, 35, 36, 371.

39



One of the first articles dealing with the impact of EVs on load management was
published in 1983 [38]. In this article, EVs were suggested as a way to minimise the
overall grid load factor f. This factor is defined as the ratio of the average load (L) over
the maximum load in a given period of time : f = avg(L)/maz(L). The maximisation of
this quantity results in a more efficient distribution of resources over time. The article
proposed that using off-peak recharging of EVs will significantly increase the load factor.
This means shifting the EV demand to times when the rest of the demand is low (e.g.,
night time) in order to flatten the load curve. The flexibility analysis produced in [39]
suggests that it is possible to shift the EV charging to the afternoon and night valleys
for different clusters of users without changing their behaviours. This could lead to peak
reduction and load factor maximisation with little change to users’ requirements and
lifestyles.

Articles such as [410] strived to estimate the benefits of this kind of controlled or in-
centivised EV charging. However, these articles do not always account for potential mis-
takes in load forecasting, therefore the benefits calculated could be inaccurate. Hence,
it is critical to improve EV load forecasting models in order to alleviate the risk of un-
realistic optimisation schedules for maximising the load factor.

EV Charging
Load
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Figure 2.1 - The variety of strategies envisaged for handling EV load and their associated
aims. Incentivised flexibility and controlled flexibility are used to achieve specific aims
while uncontrolled charging lets the market decide the prioritisation of these aims. Load
flattening and load balancing are the most common aims found in the literature and
they are the focus of section 2.1.1.
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Load balancing

An early article from 1997 [41] considered using EVs as a source of electricity for the
grid when demand is high. In other words, using EVs plugged-in to the grid as an ancil-
lary service or as way to bring flexibility to the overall shape of the load. According to
a study focused on 400,000 EV charging transactions from 2012 to 2016 in the Nether-
lands, 75% of EVs connected at public EVSEs are already fully charged [42]. This study
therefore supports the strategy of using fully recharged EVs which are still connected,
as a source of energy in order to supply the grid. This paradigm shift, using what could
be a major constraint and treating it as an opportunity, is called “Vehicle-to-grid” (V2G).

Additionally, integrating renewable energy sources onto the grid is also the focus of
numerous studies [25]. Many countries with climate related commitments are aiming
to increase the share of renewables in their energy mix. However, the main drawback
of renewable energies is their intermittent delivery of supply. Indeed, solar panels and
wind farms are highly weather-dependent. In this context, EVs can adequately balance
the energy coming from renewable power plants. This strategy consists in considering
multiple EVs acting as a large battery or electricity storage system which can be dischar-
ged back into the grid when weather conditions do not allow renewable power plants
to produce enough energy [37].

Although V2G has many advantages, one drawback is that it reduces battery lifetime
by adding unnecessary cycles of charge and discharge to the vehicle [43]. Furthermore,
this strategy requires the existence of global and local communication and monitoring
channels which do not exist yet. These channels are necessary for the development of
EVs in general and particularly for V2G and load balancing [44, 45]. Finally, in order to
ensure effective communication, EV load models are critical as they can reduce uncer-
tainty and minimise contradicting signals from what is expected and what is observed
by operations management.

2.1.2 Chapter structure and contributions

The purpose of this chapter is to enable a better understanding of EV load data
available and models produced in the literature. The main contributions of this chapter
are as follows :

— The results of an in-depth open data search with a structured list of datasets

available for use

— Acomprehensive review of EV load models including their strengths, weaknesses

and their application in the literature

— A preliminary study on matching EV load models to six open datasets found in

this research and not previously explored in the literature

The rest of the article is structured as follows. Section 2 defines EV load and its most
common drivers. Section 3 presents the open data found which can be used to model
EV load. Section 4 reviews EV load models comparing the different approaches taken.
Section 5 explores charging session data not previously explored in the literature and
suggestions are provided on the models reviewed that could be applied to these data-
sets. Finally, Section 6 highlights the current knowledge gaps and discusses the different
options in order to pave the way for future work.
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2.2 EVload and its main drivers in the literature

EV load corresponds to the power or energy consumed at EVSEs over time. This in-
formation can also be directly derived from other closely related factors. In particular,
knowing the arrival time and charge duration of EVs allows a deterministic reconstruc-
tion of EV load.

2.2.1 EVload as a model output

EV load can be considered at different levels of aggregation. The total energy de-
mand at all EVSEs can be referred to as the aggregated output of EV load models. The
same model output can be envisaged in a disaggregated fashion. Two setups are widely
used in practice. The first is vehicle-centric which considers the contribution of each EV
member of a fleet to the aggregated load. The second is EVSE-centric which considers
the perspective of one or multiple EVSEs. Neither approach is mutually exclusive and
the two setups can be combined to model EV load.

Aggregated

The aggregated approach is shown in various articles such as [42] and [46] where
the total EV load across multiple EVSEs is modelled. In [42] 1,750 charging stations (2,900
charging points) are used while [46] uses a single station with many charging piles. This
kind of approach usually performs well due to the smoothness of the aggregated load
curve assuming there are enough EVs or charging stations in scope. While they give a
holistic view of the charging load, they can lack detail with regards to the temporal and
spatial distribution of the load which is one of the key concerns raised in the literature

[23].

Vehicle-centric

In order to explore the finer details of EV load, a vehicle-centric approach can be
adopted. In [47] individual EV loads are modelled in order to recover the aggregated
load. This approach can be qualified as a vehicle-centric approach as it uses individual
outputs of EVs. In this case, it is assessed in terms of aggregated load. The same can be
said for [48] and [49] where individual behaviours are modelled. A similar study can be
found in [50] where the EV load outputs are separated into urban and rural behaviours
while [31] looks at public and residential charging. This can give a better understanding
of the spatial and temporal properties of EV load.

Additionally, models which consider the spatial components of EV charge are de-
tailed in [27] and [36]. For instance, in [36] four schedules for EVs are identified which
enables one to better distinguish and evaluate their temporal impact on the grid. Fur-
thermore, the spatial dimension is addressed by modelling EV charging locations. Both
outputs are brought together in order to reconstruct the aggregated EV load.
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EVSE-centric

The EVSE-centric approach is rare in the literature as it usually is superseded by
the vehicle-centric approach. However, there are some occurrences of such work for
instance in [30] where residential charge is envisaged from each household perspec-
tive. The authors used a bottom-up approach to forecast the aggregated EV load using
each household individual load. The debate of using EVSE-centric over vehicle-centric
approaches is illustrated in [51]. In this article, it was found that both approaches yield
comparable prediction errors even though the EVSE-centric approach was slower to
compute.

2.2.2 Input data used for EV load modelling

Battery

Battery inputs are variables which closely relate to the charging demand of EV load
from a “physical/chemical” perspective. The most common ones used across the lite-
rature are the State of Charge (SoC), Energy Consumption (E) and battery capacity (C).
Generally speaking, the SoC is the rate at which the battery is charged whether the EV
is plugged-in, idle or travelling [52]. The SoC when the EV arrives at an EVSE is a critical
influential factor of EV demand. This is referred to as the initial SoC (SoC},,;;) in the lite-
rature. By incorporating the distance travelled (D) by the EV, the following formula can
be written :

SoC;nit = CETXD (2.1)
with Cin kWh, E in kWh/km, D in km and SoCj,,;; in %.

On one hand, battery capacity and other engine specifications are usually assumed
to be known constants. Based on EU MERGE data, probability functions were derived to
characterise EV specifications in [27]. On the other hand, the SoC and energy consump-
tion evolve over time and with vehicle usage. Both are highly correlated and they can
be deduced from each other from the formula above or by a set of assumptions. For
instance, the initial SoC of EVs is assumed to be equal to 0%, 30%, 60% in [53] to match
different scenarios. Similarly, the initial SoC is used as an input in [54] along with D, C
and the charging rate of the EV charging model in [55]. Furthermore, in [48] and [56] bat-
tery specifications and stochastic characteristics are also part of model inputs. Finally,
the EV load itself can be used as an input when considering time series approaches [51].

Travel

From this literature review, it appears that travel behaviours are the most widely
used exogenous factor driving EV load models. It is important to distinguish between
travel inputs extracted from travel surveys [32, 57] or estimated pattern data [48, 58, 27]
(which usually require further statistical treatment to be part of a model), and real-
world traffic patterns (which are deduced either from pilot experiments [59] or direct
GPS driving data [60]).
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The input variables used in most papers (whether they are estimated or recorded)
are the daily distance travelled and travel time. In [60] daily travel distance and indivi-
dual trip distances distributions were extracted from a survey conducted between 2012
and 2013 in Beijing with real-world GPS data collected on 112 volunteer vehicle owners.
Likewise, a pilot experiment was put in place for a week in Germany [59] in order to
record the evolution of daily trips through GPS data.

When such exact data is not available, researchers use travel surveys instead [61].
These datasets hold valuable general information on drivers behaviours and can be
used in order to estimate parameters of statistical distributions for daily distance tra-
velled or travel time. However, they can lack accuracy as the information is usually col-
lected through questionnaires. For instance, in [57] the authors used the 2009 National
Household Travel Survey (NHTS) as well as the New-York State Transportation Federa-
tion Traffic Data Viewer in order to extract traffic statistics such as EV speed travelling
from one charging station to another. In [32] daily trips from a single real-world vehicle
from the NHTS is randomly assigned to a fictional EV used in the model. This proce-
dure is applied to the desired number of EVs to obtain a fictional EV traffic. Similarly,
[48] used Barcelona’s mobility patterns while [62] used the 2008 transportation data
from the Dutch Ministry of Transportation in order to extract traffic statistics.

Weather

EV load models have stemmed from electrical load models. They have been deve-
loped over 100 plus years [63] and are comprised of some strongly established cha-
racteristics. One such characteristic is the thermosensitivity of electrical load [64]. In
short, this means that some obvious patterns can be derived from analysing both load
demand and temperature. Thus, it is natural that the most frequently used input for
EV load models is temperature and its traditionally associated statistics (e.g., average,
maximum, minimum) [30]. Even though temperature is used in most electrical load
models it is rarely used in EV load models. Nevertheless, there exists reasonable argu-
ments to include weather data in EV load models.

[65] explores the influence of different weather variables on daily EV charging de-
mand. This includes, minimum, maximum and mean daily temperature as well as mean
wind speed, maximum gust, rainfall, global radiation and sunny hours. The results of
this study showed that temperature and specifically mean air temperature is the most
correlated weather input to daily EV load relative to the others reaching a 27% correla-
tion relationship in one of the regions considered.

Similarly, in [24] the authors argue that temperature can be used to model EV load
as it is correlated to electricity prices and demand. However, there is no mention of
other potential weather factors which could be included.

Arelational analysis is used in [66] to assess the impact of weather factors on traffic
volume in South Korea. It was found in this case study that maximum and average tem-
perature as well as average humidity are the most influential weather factors on traffic
volume. Average wind speed on the other hand is less influential and was discarded in
their model.

Finally, it is also argued in [67] that temperature has a great impact on EV charging
station load while wind and humidity were discarded.
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Economy

Amongst the articles covered only a few include economical factors such as elec-
tricity prices [46, 24, 57], Gross Domestic Product (GDP) [48] or trends [65, 58]. While
some locations still provide free charging as an incentive to foster EV adoption, most
public EVSEs have a charging price based off a subscription or peak/off-peak tariffs. Ho-
wever, China is one of the countries where real-time electricity pricing affects the price
consumers pay at EVSEs. Thus, for [46] it is natural to include time of use tariffs as this
study was made on EVs in China. In [57], the authors also include electricity prices as it
can have an impact on the decision making undertaken by an EV driver when choosing
which station to charge their vehicle.

Interestingly, GDP is included as a model input in [48] as it was shown in previous
work [68, 69, 70] that GDP and other socio-economical variables such as place of resi-
dence and household characteristics have an impact on EV load and can be leveraged
using an vehicle-centric approach. This is something worth exploring as these variables
are easily accessible in travel surveys and general country statistics. They can be used
to better anticipate charging behaviours in various locations of the grid. Global EV trend
usage with uptake scenarios [58] or calculated trends [65] can also be used as model
inputs.

Calendar

Temporal inputs are used in most model set-ups. They are easy to integrate and
bring consistency as well as performance with the strong explanatory power they hold.
They require no heavy statistical treatment as opposed to other variables (e.g., travel
and battery) which makes them easy to use. For instance, in [49] and [26] day of the
week and time of day are used in EV load models and more generally, EV load is derived
in most research papers from day of the week, time of day and seasonal variation.

2.3 Open Data Search

Few review articles that deal with related topics to EV load modelling have included
information regarding open data with associated references [71]. To the best of the
authors’ knowledge, there exists no article at the time of writing which has attempted
this type of endeavour for EV load models. Indeed, a great majority of articles produced
in the EV load modelling domain are based off simulated data or information owned by
private entities which are very rarely made available [46, 67]. This prevents reproducible
work and slows down research in the field.

Therefore, the objective is to fill this gap by providing the community with a structu-
red and carefully selected list of open datasets ready to be used in order to foster data-
driven research in the field. This open data search was possible in great part thanks
to the open data inception initiative which gathers links to more than 3,500 open data
repositories on their website all across the world [72]".

1. Links to the datasets are provided throughout this section and are up to date at the time of writing
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2.3.1 Research Criteria

This study focuses on datasets which give information on transactions between EVs
and EVSEs. In other words, charging sessions.

Additionally, datasets holding information on exogenous variables such as traffic,
travel surveys and air quality have also been considered. These variables are widely
used in the domain in order to simulate travel behaviours especially when considering
spatiotemporal models. Weather data is also used for EV load modelling and electrical
load modelling in general [64]. However this type of information was excluded from this
data research as global resources which provide high quality weather data already exist.
For example, the riem package [73] written in R retrieves data from airport weather
stations all over the world via the lowa Environment Mesonet website. Alternatively,
the National Oceanic and Atmospheric Administration (NOAA) also provides extensive
weather data [74].

In terms of the perimeter of this research, the top 14 countries active in the EVI
during the period covering 2018 to 2019 have been targeted. They are ranked by mar-
ket share of electric cars according to the IEA [19]. This list includes, Norway, Iceland?,
Sweden, Netherlands, Finland, China, Portugal 3, USA4, Canada, France, New Zealand,
United Kingdom, Germany and Japan [76].

Most of the repositories covered used native language, therefore, the use of direct
query search was minimised as it can be approximate, especially in a foreign language.
Thus the following standardised process was used for each repository covered : every
time a categorical hierarchy was available, datasets under the following categories were
searched for : “Environment”, “Natural Resources”, “Infrastructure”, “Transportation”,
“Traffic”, “Climate & Weather”, “Urban Development”, “Planning”. If a category search
was not enabled, then the following key words were used with their translated variants :
“Travel (Survey)”, “Electric Vehicle (or Car)", “Charge-Charging”, “Traffic”, “Station”, “Air
Quality”, “Mobility".

2.3.2 Open datasets

Overall, more than 860 repositories have been explored and more than 60 relevant
datasets have been found that are directly (endogenous) or indirectly (exogenous) use-
ful for modelling EV load. Table 2.1 summarises the results found across all countries
covered with the most relevant datasets in each category. Regarding EVSE data, a dis-
tinction is made between real-time and historical charging session data. Historical data
gives information on charging sessions which occurred in the past. This is the essential
type of data sought to model EV load. Real-time data refers to EVSE occupation infor-
mation which is updated on short time frames (every few minutes) and not stored. It
requires regular scraping to be transformed into a historical charging session dataset
and only then can it be leveraged for EV load modelling.

2. Iceland is not officially part of the EVI but has the same ICEV ban by 2030 target than other countries
in the EVI and is often mentioned alongside them in IEA reports and charts [75]. The magnitude of its EV
market share makes it highly relevant to this analysis.

3. As an observer

4. Participation was being assessed at the time and at time of writing the USA are no longer part of
the EVI
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EVSE data Exogenous data

Countries Location Charging Sessions Traffic Travel Regis'tered
Historical Real-time ~ Counts Survey Vehicles
Norway [77] [77] [781179] (0]
Iceland [87] [82]
Sweden [83] [77] [64]
Netherlands  [85][86] [67] (5] [8¢] [89] [90]
Finland [77] [77] [97] [92]
China [93] [94]1 [95] [96]

Portugal [97] [98]
USA [99] [100] [101] [102] [103] [104] [61] [105] [106]
Canada [107] [108] [109] [110] [111]
France [112] [113] [114] [115] [116] [117] [118] [119]
New Zealand [120] [121]
UK [122] [123] [124] [125] [126] [127] [128] [129]
Germany [130] [131] [1321 1331 [134]1[135] [136]
Japan [1371 [138]

Table 2.1 - The most relevant open dataset available found in this research with the
associated references.

For each country the corresponding EV market share from the IEA [19] is provided
as well as the estimated value of the number of EVs to which this market corresponds.
The estimated number of EVs sold is calculated by using the number of passenger sales
in 2019 given on [139] multiplied by the EV market share from the IEA [19]. In Figure 2.2,
the national EV market share and estimated number of EVs sold are shown, coloured by
the type of data available for each country. It is interesting to note that countries with
the highest market share and number of EVs sold are not the ones for which historical
charging session data was found. First of all, countries for which historical charging ses-
sion data was found will be discussed as it is the most relevant and rarest information
to find. Then, the information available from countries without historical charging ses-
sion data but with real-time charging session data will be outlined. Finally, the countries
where only traffic information is available will be presented.

Countries with historical charging session data

Netherlands 6.6% national EV market share [19] equating to approximately 29,000 EVs
sold in 2019 [139]

23 repositories were covered in the Netherlands with every type of relevant data
found. First of all, ElaadNL [87] holds historical charging sessions which were studied
in multiple papers [39, 42]. With regards to traffic data, Onderweg in Netherlands is the
national travel survey published on a yearly basis [89]. While its tables are quite hard to
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Figure 2.2 - For each of the 14 countries in scope, the national EV market share [19] and
the estimated number of EVs sold [139] is shown. HCS refers to historical charging ses-
sion data, RTCS refers to real-time charging session data and T refers to traffic counts
and/or travel survey data. This demonstrates the existing gap between EV penetration
in each country and the availability of open charging session data.

study as-is for non-native speakers, they are summarised in another website in English
[28]. Real-time data on utilisation and consumption at public EVSEs installed in Rot-
terdam can be found on the EV-BOX website which is one of the EVSE providers [85].
Registered vehicles [90] and public EVSE locations are also available (e.g., in Eindho-
ven [86]). Additionally, historical traffic data from 2010 extracted from 24,000 measure
points which stores information on vehicles such as speed and travel time [140] was
found.

USA 2.4% national EV market share [19] equating to approximately 130,000 EVs sold in
2019 [139]

The open data search for the USA was extensive. Around 370 repositories were co-
vered in the analysis. Among them three relevant charging session datasets were found
[100, 101, 102]. The first provides a continuous dump of session data from 2018 on EV ses-
sions recorded at city-owned EVSEs in Boulder (Colorado) [100]. The second gives the
same information for charging sessions of EVs in the city of Palo Alto (California) from
2011 to 2017 [101]. Finally, the third provides us with an aggregated monthly view of tran-
sactions in the city of Evanston (lllinois) between 2016 and 2017 [102]. Furthermore, a
charging session open dataset from Caltech, which is continuously updated in colla-
boration with Power Flex, is available at [103] and an exploration of this dataset was
produced in [141]. On top of these charging session datasets, EVSE locations are also
available from the Alternative Fuels Data Center [99], as well as many travel surveys in-
cluding the National Household Travel Survey (NHTS) [61], which are frequently used to
simulate EV behaviours from conventional vehicles. In particular, a mobility survey was
performed in April 2019 for the City of Boulder on 203 residents. Information extracted
from [105] brought together with the EV charging session dataset of the city of Boul-
der [100] could lead to more consistent and accurate representation of EV load than by
using the more general NHTS. Finally, a large proportion of states share traffic volumes
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in various municipalities across the country (e.g., the city of Houston [104]).

France 2.1% national EV market share [19] equating to approximately 46,000 EVs sold in
2019 [139]

France (mainland) also has a large number of open data repositories. In total, 151
repositories were explored. Among them all kinds of relevant data were found. Firstly,
charging sessions were recorded from April to May 2017 on Belib’ stations in Paris [113].
Furthermore, the Paris Data website provides the Belib’ real time availability of public
EVSEs in Paris [115] which can be scraped on a regular basis via an APl in order to re-
construct a historical dataset. Regarding private EVSEs, the charging sessions of a fleet
of EVs owned by SAP Labs France have been recorded from June 2017 [114]. This data-
setis updated every three months. On top of charging session data, registered vehicles
across the territory [119], traffic counts in numerous cities [116], real-time traffic [117],
and a national travel survey [118] are available in order to perform a spatiotemporal
analysis of EV load. Different road traffic open data repositories are gathered on the
Cerema website [142].

United Kingdom 2.1% national EV market share [19] equating to approximately 50, 000
EVs sold in 2019 [139]

72 repositories were covered for the UK mainland which yielded multiple charging
session datasets. Two of them are situated in Scotland : Dundee City [124] and Perth
& Kinross City Councils [125]. The former gathers two years of charging session data
from 2017 to 2018 while the latter covers four years from 2016 to 2019 to the granularity
of each session. Additionally, the UK government led an EVSE analysis over the year
2017, with domestics [143], and public [144], [145] chargers. The raw datasets available
include charging session data for each type of EVSE. There were also some initial trials
led by the UK power networks in 2013-2014 which can yield useful information [146].
Public EVSE locations are available in numerous municipalities of the UK [123] as well as
a national charging point registry [122] with real-time [126] and historical traffic counts
[127]. Moreover, yearly national surveys are also available [128].

Countries with real-time but no historical charging session data

Norway 46.4% national EV market share [19] equating to approximately 69,000 EVs sold
in 2019 [139]

Norway is by far the country which has the highest penetration rate of EVs to date.
Thus, it is no surprise that some highly relevant data for EV load modelling was found
regardless of a relatively small number of repositories available (13). Norway was an
early-mover in fostering EV adoption. In 2009, the first large investments were made
by cities and the government with Oslo being the major contributor [20]. The most
relevant data feed comes from the NOBIL database API [77]. This service provides (after
benefiting of an API key from NOBIL) real-time information on EVSEs all across Norway,
Sweden, Finland and Denmark (e.g., location, usage, details). Historical dumps do not
seem to be available through the API, however a regular scraping may be put in place
in agreement with NOBIL in order to reconstruct historical data. Other data sources
which describes exogenous variables are available such as traffic volumes [78], [79]
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and vehicle registrations by fuel types [80] which gives an overview of the trend in EV
adoption.

Sweden 7.9% national EV market share [19] equating to approximately 28,000 EVs sold in
2019 [139]

Sweden, with 18 repositories covered, also benefits from the NOBIL API which ga-
thers real-time information on public EVSEs activity across the territory [77]. Some of
NOBIL's information is gathered on an external Swedish website which provides his-
torical statistics on EV public charge use [147]. On top of that data source, the map of
public EVSEs [83] and statistics on newly registered vehicles per county, town and fuel
type on a monthly basis are also available [84]. This latter dataset can be used in load
forecasting models as a variable explaining the trend in EV usage particularly thanks to
its monthly granularity.

Finland 4.7% national EV market share [19] equating to approximately 5,700 EVs sold in
2019 [139]

Finland is also one of the countries which has adopted the NOBIL database API[77].
Amongst the 20 repositories covered, exogenous information with traffic in real time
in a few municipalities (e.g., the city of Tampere was found [148]) as well as registered
vehicles between 1922 and 2019 [92] and average distance travelled by vehicles between
1980 and 2015 [91]. Even though these sources, provide us with extensive historical data,
the most recent years are the most relevant for EV load models. These datasets can give
an overall understanding of the overall traffic trends in Finland.

Germany 2% national EV market share [19] equating to approximately 69, 000 EVs sold in
2019 [139]

With regards to Germany, the most relevant datasets found among the 52 reposi-
tories covered were real-time public EVSE usage [131] and real-time traffic data [132] in
the city of Bonn. Scraping both sources and associating these can lead to precise EV
load models. In addition, travel surveys at fine levels of details are available from the
German Mobility Panel [135] as well as the Rheinisch-Westfalisches Institute (RWI) [134].
The RWI dataset was used for a study on mobility patterns in [149]. Furthermore, the
number of vehicles registered [136] and traffic counts in several municipalities [133] can
give an understanding of the trend in EV usage across the country. Finally, as for most
other countries, public EVSE locations are also available [130].

Countries with traffic data and no charging session data

Iceland 17.2% national EV market share [19] equating to approximately 3,100 EVs sold in
2019 [139]

As for Iceland, 4 repositories were covered and the most relevant datasets found
do not include any charging sessions but descriptive statistics on transports in Reykja-
vik [81] as well as vehicles distance and fuel consumption between 1995 and 2019 [82].
This can enable an understanding of the trends in EV adoption and high-level travel
behaviours. However, limited analysis can be conducted as real charging session data
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is unavailable and would have to be simulated from other markets. Additionally, no
real-world traffic data or travel survey was found which also limits spatial studies.

China 4.5% national EV market share [19] equating to approximately 1,100,000 EVs sold
in 2019 [139]

Being the country with the largest volume of EVs, China is at the forefront of EV
deployment worldwide. However, this research did not result in finding any charging
session data for China. One explanation for this is that more than 90% of EVSEs are
owned by private firms [150]. Most of the articles which use data from charging sta-
tions on Chinese territory do not make it available as it is usually part of an agreement
between the researcher and the entity owning the data. Nevertheless some relevant
traffic data [94], [95] for the whole territory was found and travel surveys [96] as well
as EVSE locations [93] specifically in Hong-Kong.

Portugal 3.9% national EV market share [19] equating to approximately 8,900 EVs sold in
2019 [139]

Regarding Portugal’'s open data, traffic statistics with the number of vehicles regis-
tered by type and fuel was found [98]. Additionally, EVSE locations in Lisbon were also
available [97]. No charging session data was found.

Canada 2.3% national EV market share [19] equating to approximately 13,000 EVs sold in
2019 [139]

Being the co-lead of the EVI activities along with China [19], Canada is a major player
in the field of EV deployment. Around 76 repositories were explored with numerous
travel surveys which describe various aspects of drivers’ behaviours [110]. Traffic vo-
lumes [109] and EV registrations [111] are also available with details on EVSEs available
for public use in some municipalities (e.g., the city of Edmonton [107]). Even though
no historical nor real-time charging session data was found, there exists an EV Home
Charging Program [108] which gathers residential charging session data. However, this
dataset is not open at the time of writing but might be accessed with the relevant access
grants.

New Zealand 2.1% national EV market share [19] equating to approximately 2,300 EVs
sold in 2019 [139]

For New Zealand, 22 repositories were covered with successful findings in traffic sta-
tistics and vehicle registrations. Several locations in New Plymouth record traffic count
[120] and the number of vehicles registered by type across the country is also available
[121]. This data as-is is difficult to exploit for EV load modelling as it lacks EVSE locations
and charging sessions.

Japan 1.1% national EV market share [19] equating to approximately 48,000 EVs sold in
2019 [139]

Finally, with Japan, 14 repositories which did not contain any charging session or
station location information were covered. Nevertheless, exogenous data can be ex-
tracted with numerous travel surveys [137] and some statistics on registered vehicles

[138].
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2.4 EVload models

The scope of this review focuses on papers detailing an EV load model as defined in
Section 2. Most often, the model output is the power or energy demand at EVSEs but
it can also be closely related features (e.g., EVs arrival/departure times, charging dura-
tions) from which the load can be reconstructed. In particular, the focus was given on
presenting a wide variety of methods to encompass multiple modelling settings. The
purpose of this section is to enable an understanding of the strengths and weaknes-
sess of the methodologies proposed to model EV load. From the papers considered for
this review, EV load models can be segmented into three categories : statistical charac-
terisation, stochastic processes and machine learning models. The comprehensive list
of models considered in this review is presented in Appendix A.

2.4.1 Statistical Characterisation

The goal of statistical characterisation models is to produce a distributional ana-
lysis for the outputs shall it be data-driven [42] or entirely deduced from exogenous
variables such as travel data and statistical assumptions [32]. The different characteri-
sations of EV load and proxy variables such as charging duration or inter-arrival time
are summarised in Table 2.2.

Model Strengths Weaknesses Ref

Unrealistic as negative
values have a non-zero [32]
probability

Particularly suited for

Gaussian . ;
large simulations

Rapid to implement
Weibull, Lognor- while providing an ap-
mal, Exponential ~ proximation consistent
with reality

Fail to capture signi-
ficantly diverse beha- [31]
viours in the data

Captures significantly . .
different users beha- Unsuitable for medium

Mixtures e.g., . . or large dimension pro-
(e.g viours in the data and & P

Beta, Gaussian) blems with numerous
respects real-world .
covariates

constraints

e B e Bl e B e |
[I—

Highly versatile model
as no explicit prior on
the distribution is re-
quired

Weak interpretability
power in addition to a
sensitivity to outliers

KDE

— e
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Table 2.2 - Statistical characterisation models for EV load

In [32], the authors did not benefit from any EVSE data. Nevertheless, they used the
NHTS [61] ICEV behaviours from 2009 to derive EV travel patterns in order to simulate an
EV fleet and characterise their behaviours. In their work, the simulation showed that the
power consumption can be seen as a normal distribution without any loss of accuracy.
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This can be true in practice, however, it is usually more consistent to assign distributions
which are defined on R* as it is unrealistic to observe negative power demand in that
context. It is however convenient for model conciseness and computational speed.

In [31] a statistical analysis is conducted on data extracted from an EV trial conduc-
ted in Victoria (Australia) on 33 EVs on a 3-month period. This article showed that the
Weibull distribution was the best fit for charging duration compared to the exponen-
tial and lognormal laws. They have also characterised the time to the next charging
event as a mixture of two lognormal distributions. This is a vehicle-centric approach
which considers the time to next charge from the EV perspective. These characteri-
sations were used on a Monte-Carlo simulation which created 4,000 EVs by random
sampling and assessed their overall impact on the grid. While these distributions are
more consistent than a Gaussian distribution, they still fail to capture the irregularity of
EV drivers’ behaviours hidden in the data.

In [42], a dataset provided by Elaad NL [87] has been studied. This paper charac-
terises EV load through a mixture of beta distributions. Its parameters are optimised
by minimising the Root Mean Squared Error (RMSE) of the point-wise difference with
the empirical distribution. Additionally, Kolmogorov-Smirnov testing was used to as-
sess the goodness-of-fit. From the observations that weekly charging sessions present
two peaks (namely a morning and a late afternoon peak) it was reasonable to consider
a mixture of distributions to account for the different modes. In [151], 13 different char-
ging session profiles were identified using Gaussian mixture clustering based on data
provided by the G4 cities of the Netherlands. Other recent studies complement this
work by using Gaussian mixtures to model the triplet (Arrival Time, Charging Duration,
Energy Consumed) in order to characterise EV load. In [141] the triplet is modelled by a
multivariate Gaussian mixture while in [152] only the couple (Charging Duration, Energy
Consumed) is modelled by a Gaussian mixture with the Arrival Time modelled by an
exponential distribution. The results produced are more accurate than for elementary
distributions. However, they are structurally limited to the joint use of few covariates
which keeps from fully integrating exogenous information.

A few articles also modelled EV load with a kernel density estimator (KDE). Two main
types have been used in the literature : the Gaussian kernel density estimator (GKDE)
and the diffusion kernel density estimator (DKDE). These methods are highly versatile
because no prior knowledge over the distribution is hypothesised. Thus, they can reach
high accuracy when fitting empirical data at the cost of weak interpretability. Looking
at[153], a GKDE is used to estimate daily trip distance and end time of the last trip. Both
variables are critical for EV charging schedules and this method improves the accuracy
of the distributions compared to parametric methods. A similar conclusion is drawn
in [154] from a GKDE estimating the triplet (Arrival time, Charging duration, Charging
capacity). In [155] and [156] the authors have compared both the GKDE and DKDE when
estimating EV load. Thanks to its optimal bandwidth selection process, DKDE was found
to produce better load estimations. Finally, in order to make the best of both GKDE
(which is less sensitive to outliers) and DKDE (which has a higher overall accuracy), [157]
has proposed a hybrid density estimator (HKDE). This HKDE reached significantly better
root-mean square performance in estimating the EV load than the DKDE and GKDE on
their own on the dataset used for this study.
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2.4.2 Stochastic Processes

In the context of EV load models, three main types of stochastic processes have
been detailed in the literature : purely temporal, spatiotemporal and queuing theory
viewpoints. The various stochastic processes presented are summarised in Table 2.3.

Table 2.3 - Stochastic Processes for EV load

Model Strengths Weaknesses Ref
]

. Generally assumes ]

Temporal Adequate for modelling independence between ]

one EVSE or one EV

EVSEs

Spatiotemporal

Suited for modelling
clusters of charging sta-
tions simultaneously

Large increase in com-
plexity with scale

[ B e B e Bl e | ~— o — e

Easily scalable with Restricts reality with 1
Queues strong theoretical simplifying  assump- ]
grounds tions :
Temporal

One of the early works on EV temporal load models was completed in [33] where the
authors explored the stochastic nature of EV load by using probabilistic travel patterns
to determine initial SoC and starting time of battery charge. In particular, assuming
battery type is known, recharge starting time is then assumed to be a random variable
with a probability density function (pdf) determined by the tariff structure (scenarios)
and patterns of EV usage. Initial SoC is also considered as a random variable dependent
on the total distance travelled since last charge. Introducing a lognormal pdf for the
daily distance driven, the initial SoC can be derived assuming a linear discharge (also
assuming that it was fully recharged originally). Finally, they obtain a discretised version
of the stochastic process of the load on half hourly intervals for a single EV which is then
extended to an arbitrary number of EVs.

In [158], the authors defined a temporal stochastic process modelling charging pat-
terns at a public EVSE with a Markov Chain comprising three states : unoccupied, char-
ging and plugged-in but not charging. Essentially, the Markov Chains setup assumes
that the current state of the process, conditionally to all past states, only depends on
the previous state. It simplifies the calculation and has been extensively studied in the
literature through many applications [161]. In [158], after initialising the transition proba-
bility matrix which drives the path of the process they let the system evolve and assess
the revenue made by the charging station.

Auto-regressive integrated moving averages (ARIMA) are a particular type of tem-
poral process. Box and Jenkins [162] formalised a precise methodology to estimate the
different orders of ARIMA processes. In [55] the ARIMA process is quantised on hours
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of the day. In other words, 24 sub-processes are estimated in their model. The final
process obtained is thus a day-ahead hourly forecaster of EV load. In a following paper
[159], they improved the performance of their model by forecasting separately conven-
tional load and EV load. The results obtained in this paper reinforces the argument
that EV load is structurally different from conventional load and requires specific load
forecasting models.

Similarly, in [62] the authors modelled household EV load demand by using sto-
chastic behaviours of three random variables : start-time of trip,end-time of trip and
travelled distance. With a vehicle-centric approach, they present a Monte Carlo simula-
tion method to derive overall system load. A particularity of this model is that it used a
copula to characterise the multivariate distribution function of model variables. Then,
using typical EV charging profiles, they derived the electricity demand at different EV
uptake levels while observing the grid impacts.

Purely temporal models are particularly suited for one EVSE or one EV. They are not
consistent for modelling cluster of EVSEs which require spatial considerations.

Spatiotemporal

Spatiotemporal models are usually designed for disaggregated approaches. The EV
load at different stations is modelled separately using temporal features as well as tra-
vel patterns. They are rare in the literature as they require the combination or simula-
tion of both the charging sessions and EV trips. Furthermore, they are limited as they
cannot scale to large geographical scopes. Nevertheless, they can explore in fine details
the intricacy of the relationship between EVs and EVSEs in specific regions.

In [27], the authors introduced a spatiotemporal model using Monte-Carlo simula-
tion to specifically assess EV load demand in urban areas. The core of this method lies
in the origin-destination analysis used to determine daily travel patterns of EVs. Addi-
tionally, probability functions to describe EV characteristics were identified. Using both
travel patterns and EV characteristics, they ran a Monte-Carlo estimation of EV charging
load for each busbar. By construction, this model can also be used for probabilistic as-
sessment which indicates the branches most vulnerable to potential overloading.

In [36], the authors modelled both temporal and spatial stochastic aspects of PHEV
owners behaviours to then derive their pdf. They modelled the temporal dimension
with a uniform distribution for the start and end of charging time. As for the spatial
dimension, they described the number of PHEVs arriving at an EVSE by a Poisson pro-
cess according to driving behavior and traffic state. Assuming that both dimensions are
independent, they derived the joint spatiotemporal pdf by multiplying both individual
pdfs for charging times and arrival at EVSE. Ultimately, they expressed the effect on the
daily load curve under various number of PHEVs for 150 PHEVs dispersed in the test
system.

Finally, [50] proposed another probabilistic approach to characterise the spatiotem-
poral diversity of EV charging demand specifically on peak load demand. A Monte-Carlo
simulation was used to evaluate the impacts of charging demand on the grid in urban
and rural environments. It showed that this diversity of location helped the grid handle
the demand better.
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Queuing theory

Queuing theory models often use Kendall's shorthand notation which describes the
arrival (A), the serving time (B) and the number of servers (C) in a compact form : A/B/C.
EV load models are a suitable context for this theory as it was detailed in numerous
articles [47, 57, 34, 56, ].

One of the early works on EV load modelling was performed in [47]. This simple
theoretical approach proposed to use an M /M /n,,.. queue where the two first com-
ponents characterises the Poisson processes for the number of EVs arriving at a public
EVSE and the number of EVs served while n,,., refers to the number of maximum pa-
rallel charging EVs at charging points. A case study was conducted on the first car pro-
duced by Tesla, the Roadster Model, in order to assess the stochastic power demand
output from the model.

The same queuing model was also used in [56] and was compared to a Monte-Carlo
simulation in order to ultimately fit a distribution for the entire load demand of PHEVs.
Additionally, in [160] the authors also used this queuing model and complemented it
with a fluid traffic model in order to look at EV charging load on highway charging sta-
tions.

In a more general fashion, the authors of [34] have opted for an M,/G1;/oco queue
where the number of arrivals follows an inhomogeneous Poisson process (indicating
that the intensity function varies over time), the serving time is a general time-dependent
distribution with an infinite amount of servers or EVSEs in the EV load context. Using
some established results of queuing theory and previous work on estimating non ho-
mogenous Poisson process rates, the authors managed to forecast each disaggregated
intensity function for day-ahead forecasting. This paper is the only one found for sto-
chastic processes applied to EV load which uses both travel patterns from the NHTS
and real charging session data.

Thus, one important advantage of queuing network analysis applied in a spatio-
temporal context of EV load is that it can capture interactions among multiple charging
stations. In that sense, BCMP networks (named after their inventors : Baskett, Chandy,
Muntz and Palacios) introduced in [163] were applied in [57] to produce an EV load
model. BCMP networks are a type of queuing network which yield a product-form sta-
tionary distribution. This kind of network is commonly used to study interconnected
queues. In the EV load context, it means that it enables the model to take into account
the potential shift of users from one station to another and control it to envisage dif-
ferent scenarios.

It is clear that queuing models are to be reserved for theoretical considerations ra-
ther than for operational implementation. Nevertheless, thanks to their solid mathe-
matical foundations, they bring great insights for understanding EV load behaviours
especially when EVSE data is scarce.

2.4.3 Machine Learning

Four machine learning branches have mainly been explored for modelling EV load :
Linear Model (LM), Support Vector Machine (SVM), Random Forest (RF) and Artificial
Neural Network (ANN). In [49] the authors compare decision trees/tables, SVM and
ANN. SVM demonstrated the best performance while the ANN and decision trees are
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Table 2.4 - Machine Learning models for EV load

Model Strengths Weaknesses Ref
Easily interpretable  Structurally limited for cap-
Linear Model with fast implementa- turing complex and irregular
tion patterns
. . Not suitable for large and 1
Easy implementation ;
Support  Vector L . complex datasets which are 1
. and effective in high- . .
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dimensional spaces

high-dimensional spaces

Random Forest

Versatile model with no
prior assumptions on
the shape of the data

Weak interpretability with no
ability to extrapolate from
training data

Can reach the highest

Architecture selection pro-

cess can be laborious with
long training time

Neural Networks
level of performance
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ten times quicker to test on new data. A limitation of this work is that the dataset does
not come from real charging session data but an aggregated distributional analysis
produced by ECOtotality [164]. In [165], SVM, RF, k-Nearest Neighbours (k-NN) and a me-
thod called Modified Pattern-based Sequence Forecasting (MPSF) which uses k-means
are compared. They found that SVMs and RF reach the best performance with regards
to the Mean Absolute Error while k-NN and MPSF achieve better performance with re-
gards to the Symmetric Mean Absolute Percentage Error. Since, k-NN and MPSF are
much faster to compute predictions, they concluded that MPSF and k-NN were better
suited for operational use. The different machine learning branches studied for EV load
models are gathered in Table 2.4.

Linear Model

It is common practice to start addressing a machine learning problem with simple
models such as LM. In [166], and [167] LM was chosen as a first step to implement a
smart charging strategy. This gives a more realistic operational context as opposed to
other articles which skip predictive models before implementing an optimal charging
strategy. Furthermore, in [168] an assessment of model inputs is presented using LM.
They found that the voltage level of each EV had a critical influence over their model.
However, these models are limited as they cannot capture irregular patterns in the data
which is expected across EV drivers.
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Support Vector Machines

SVM were originally defined by Vapnik [171]. In a nutshell, the idea behind this al-
gorithm is to find the hyperplane which maximises the margin between different sets
of populations. It is easy to implement but yields relatively long training times when
working with large datasets.

In the context of EV load, SVM were compared to a Monte-Carlo forecasting tech-
nique in [26] and showed a better performance on a theoretical charging session data-
set. Additionally, in [51] SVMs are used alongside other machine learning algorithms in
order to model EV load from a vehicle-centric as well as from an EVSE-centric perspec-
tive. Because the EVSE-centric approach requires more data, it demonstrates a signifi-
cantly longer running time as expected for SVMs. This study used a dataset extracted
from UCLA campus parking lots. Thus, it is unlikely that these kinds of models will scale
adequately for a larger scope of charging stations. Furthermore, articles using SVMs
are now becoming rare as other alternatives with similar or better performances can
be found.

Random Forests

RF is a learning algorithm which was popularised by Leo Breiman [172]. In short, it
is an ensemble method which uses decision trees as elementary components for its
construction.

On top of SVMs, [51] also used RF to model EV load. The few hyperparameters requi-
red to be tuned (e.g., number of trees, sampling rates) enables a fast and easy imple-
mentation with the possibility to iterate rapidly. In [30], RF demonstrated their ability to
forecast day-ahead EV load charging blocks for households in an EVSE-centric fashion.
As mentioned in previous paragraphs, the EVSE-centric approach can be difficult to im-
plement as it requires large amounts of data and complex modelling. Thus, the use
of RF for this kind of disaggregated approaches is adequate. [169] precisely illustrates
the ability of RF to handle the EV load problem from both time and spatial dimensions.
This article shows that RF can model both a single station as well as a group of stations
considering spatial and temporal inputs. Single station models are more accurate as
they have more consistent behaviours while the group of station models is slightly less
accurate in terms of the mean absolute percentage error but brings a more holistic
view to the problem. Other ensemble methods which stemmed from the same area of
machine learning such as gradient boosting could also be considered [167], [173].

Neural Networks

ANNSs were initially presented by Frank Rosenblattin 1958 [174] in their most elemen-
tary form in the name of the perceptron. They were extended shortly afterwards to the
Multi-Layer Perceptron (MLP). After being forgotten for a few decades, ANNs have expe-
rienced a rebound in interest from the end of the 8os in particular with the formulation
of the backpropagation algorithm [175] and the breakthroughs in computer vision with
Convolutional Neural Networks (CNN) [176].

In [59] an MLP with tilted loss function is used for probabilistic forecasting of EV
load. It is compared with a kernel density estimator as well as quantile regression and
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it showed the best performance using the same inputs and outputs. It is quite common
across various scientific fields that ANNs reach the highest performance on many pro-
blems compared to other machine learning or statistical methods. The main drawback
is the lack of interpretability of such models which are highly complex [177, 178]. Elabo-
rate ANN architectures such as CNNs [67] and Recurrent Neural Networks (RNNSs) [46]
have been explored for modelling EV load. [170] compares 12 different architectures
including CNNs, RNNs. In this last article, the Long Short-Term Memory (LSTM) archi-
tecture showed the best performance on the dataset studied. From all these articles it
is challenging to decide which ANN architecture is the best overall for EV load model-
ling. However, some clear conclusions can be made. RNNs are particularly performant
as they take into account historical EV load values. In the current operational context,
this is information that is hard to obtain at fine time steps. Thus, until real-time com-
munication channels are available, it is likely that the most useful ANN models will be
CNNs or RNNs with larger timesteps.

2.5 Matching EV load models to open datasets : a preli-
minary study

Six datasets dealing with historical charging session information have been selected
for their completeness and accessibility : Boulder [100], Palo Alto [101], Dundee, [124],
Perth, [125], Paris [113] and Domestics UK [143]. According to this research, none of these
datasets were used in the EV load modelling literature so far. The purpose of this sec-
tion is to identify the variables available and to enable a high-level understanding of
charging behaviours. In addition, an association of the 6 datasets selected with the mo-
dels reviewed in Section 2.4 is proposed.

2.5.1 Variables and data quality

The fields available in each of the six datasets selected are summarised in Figure
2.3. These six datasets provide us with session start and end times as well as the energy
consumed. With the exception of the Domestics UK dataset, the station address (loca-
tion), and the power level of the charging port are available in these datasets. In addi-
tion, the Palo Alto and Boulder datasets contain gasoline and greenhouse gases (GHG)
savings as well as the charge duration which represents the amount of time the vehicle
was plugged-in and actively charging. This is different to the park duration which also
captures the time a vehicle was plugged-in and no longer charging which is a variable
only given in the Palo Alto dataset. However, this park duration can be deduced from
the session start and end times in the remaining datasets. Finally, for customer spe-
cific information, the Paris data provides a unique identifier per customer badge and
the Palo Alto dataset gives the post code registered by the driver. Information regar-
ding postcodes is interesting for models that include travel inputs such as the distance
between the driver's home and stations nearby.

Additionally, a data quality analysis was conducted on the six datasets. In [170], out-
liers were identified by using a set threshold from the variability between current and
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Charging Session ~ Session Start Energy Charging Power Level of Customer GHG and Driver Postal
Dataset and End Times Consumed location Charging Port Identifier Gasoline Savings Code

Boulder

Palo Alto

Dundee

Perth

Paris

Domestics UK

Figure 2.3 - Fields available in the six datasets selected. Fields available are in green and
fields not available are in grey for each dataset considered.

previous values. Instead, in this analysis, fixed boundaries were chosen and the follo-
wing set thresholds were observed :

— Charge and/or Park Duration has to be positive and less than 24 hours

— Energy Consumption needs to be positive and less than 100 kWh

The first criterion is important as some datasets have some obvious errors in the
end times column which are set in 1970. This might indicate a manipulation error from
the customer which led to a computational mistake along the process of data collec-
tion. Also, as most charging sessions last for a few hours, charging sessions that lasted
for more than a day were discarded.Similarly, recorded energy consumption values for
Perth [125] and Dundee [124] are highly variable, reaching anomalously negative and
highly positive values indicative of potential errors. The 100 kWh upper bound was cho-
sen as it is close to the highest capacity of the Tesla Model S which is the EV with the
largest battery capacity amongst the most widespread models [179]. If a transaction
does not fit these criteria, it is discarded from the following analysis. This preparation
had very little impact on the Palo Alto dataset with only 0.17% of transactions discarded,
while the Boulder, Dundee, Perth, Paris and Domestics UK datasets have seen 8%, 11%,
4% , 14% and 7% of their data discarded respectively.

2.5.2 Exploratory analysis

Figure 2.4 shows the trend in the total number of transactions per day over each
dataset specific time frame. Due to increasing EV uptake [19], an increase in EV charging
sessions is expected as illustrated by Palo Alto and Perth. However, this is not the case
for Boulder and Dundee. Instead, a decreasing number of charging sessions at the end
of each time series can be observed. This could be due to external factors such as an
increase in charging session prices. As for the Domestics UK, only one year of data is
available which indicates that the plot shown describes the yearly cycle rather than the
long-term trend. Similarly, the Paris data cannot be extrapolated as it only represents
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two months of data.
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Figure 2.4 - The black dots represent the daily number of sessions while the red curve
is the output of a generalised additive model used to smooth the values. Each model
was produced using the mgcv package in R and its default settings [180].

Overall statistics of the six datasets in scope are provided in Table 2.5. The dataset
which covers the largest time frame is from the city of Palo Alto with 6 years, followed
by Perth with 4 years, Boulder with a little over 2 years, Dundee with 2 years, Domes-
tics UK with 1 years and Paris with 2 months. In terms of the transactions (or sessions),
Domestics UK records the largest number of transactions. Moreover, Dundee and Boul-
der both cover 2 years of data but Dundee has close to three times more transactions.
Naturally, there are consistently more transactions on weekdays than on weekends in
total and on average across all datasets. Furthermore, the average park duration and
charge duration varies significantly across the datasets. Indeed, while for Palo Alto the
average park duration is around 2 hours and 40 minutes, in Perth it is closer to 1 hour
and 15 minutes, so less than half of the time. Additionally, the average Park Duration
for Domestics UK is greater than 9 hours which is expected as this dataset describes
residential charge instead of public charge for the others. The Charge duration on the
other hand is relatively close for Boulder and Palo Alto which are both American cities
(located in Colorado and California). Finally, the average energy demand is consistently
between 8 to 11 kWh across all datasets.

2.5.3 Suggested matching of EVload models with the datasets consi-
dered

From this exploratory analysis, some suggestions can be given on how to match the
EV load models reviewed in Section 4 with the six datasets presented above. The first
criterion identified for this selection is whether the dataset describes public charging
or residential charging. Only two of the models reviewed deal with residential charging
and will thus be assigned to the Domestics UK dataset. They would benefit from the
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Table 2.5 - Overall statistics and high-level information for the six datasets in scope.

Charging Session Dataset Boulder Palo Alto Dundee Perth Paris Domestics UK
First
Transaction 2018-01-01  2011-07-29 2017-01-09 2016-01-09 2017-04-01 2017-01-01
Date
Last
Transaction 2020-03-31 2017-07-31 2018-12-05 2019-12-08 2017-05-30 2017-12-31
Date
Total All 18,052 133,329 47,051 63,936 4,225 2,956,198
Transactions ~ Weekdays 13,487 101,486 34,434 46,607 4,907 2,208,695
Weekends 4,565 31,843 12,617 17,329 1,555 747,503
Average Weekdays 23 65 173 60 101 8,495
Transactions Weekends 20 51 160 55 86 7,119
Park Mean - 2.7 2.29 1.24 1.7 9.16
Duration (h) Standard ] o ] B , ]
Deviation 4 4-5 13 93 49
Charge Mean 1.81 2.05 - -
Duration (h) Standard 1 1 ] )
Deviation 34 39
Energy Mean 8.42 8.18 9.16 11.01 8.51 8.88
Demand (kwh) Standard - . ] . ‘o
Deviation /* 7 .53 49 7 7.55

large number of records and the customer identifier provided in this dataset. Thus, it
is a good setup for vehicle-centric approaches [62] and machine learning models [30].

Looking now at public charging sessions, Boulder and Palo Alto are the only two
datasets which gathered GHG and gasoline savings. These fields are rather uncommon
across charging session datasets and they can enable an environmental impact analysis
of EVs. However, it would be limited to EV usage rather than a holistic environmental
impact with lifecyle assessments [181]. Thus, no mention of this kind of analysis was
found in the articles reviewed.

Nevertheless, Palo Alto also possesses the driver's post code. With this knowledge,
fine spatiotemporal processes can be derived as proposed in [50]. Additionally, the
large amount of records available is suited to test the scalability of queuing models
[34, 57] and spatiotemporal processes [27, 36] which require travel information. It also
provides an ideal setup for deep learning models which require large training sets
[51, 59, 67, 46, 170].

As discussed in Section 3, Boulder not only holds a charging session dataset but also
a travel survey led in 2018 with a focus on EVs [105]. It is a rather qualitative survey and
can be used in combination with the NHTS [671] to address the more specific behaviours
inherent to the city of Boulder. With both travel and charging session data, this is also
a favourable setup to apply spatiotemporal models [27, 36, 50]. Considering that this
dataset is continuously updated and holds recent data, it would also be interesting to
apply models which were precisely built for operational use such as [165] and [169] in
the hope of taking consistent conclusions with real-world applications.
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The Paris dataset holds customer identifier information which encourages vehicle-
centric approaches. However, the small amount of data deters the use of models which
leverage numerous parameters. Instead, statistical characterisation techniques with
unimodal distributions could yield a sufficient approximation of the phenomenon as
proposed in [31] and [32] along with LM [166, , ]. The remaining statistical cha-
racterisation models (mixtures [42, 31, 141, , 151] and KDEs [153, , , , )]
can capture diverse patterns and thus could be applied to medium-sized datasets. The
Paris dataset could also be used to verify the consistency of simple queuing models as
they usually struggle to find concrete applications [47, 160].

As Perth and Dundee are two neighbouring cities of the UK, it would be interes-
ting to compare the difference in charging behaviours between them. Considering that
they have the same fields, it would be interesting to independently compare their be-
haviours as despite their closeness, it is unlikely that there is a significant spatial impact
between these for public charging. Thus, temporal processes produced in [33, 158, 55,

] would be well suited. Additionally, thanks to the medium-size of both datasets,
SVM models described in [51, 26] could also be a good option here.

Table 2.6 - Charging session datasets with associated EV load models suggested.

Charging session dataset Specificities EV load models Models references
Public Charging Sessions Spatiotemporal [50] [27] [36]
Boulder [100] Medium-sized Dataset RF [1651[169]
GHG and Gasoline Savings Mixtures [42] [152] [141] [151]
2 years KDE [1531 11541 [1551 [156] [1571

Public Charging Sessions

Spatiotemporal [50][271136]
L Dataset
oo (1 e b e
6 years ANN [511 [591 [67] [46] [170]
Public Charging Sessions Te?\?&ral (53] [[ ]][[ ]] [159]
Dundee [124] & Perth [125] Medium-sized Datasets Mixtures (2] [e2] [1a] L5 1]
2 years (Dundee) & 4 years (Perth)
KDE [1531 1541, [1551 [1561 [1571
PUinCS?;{%QéESSSionS Unimodal distributions [311[32]
Paris [113] Customer Identifier LM (6610671 e8]
2 months Queues [471[160]
Residential charging sessions
) Large dataset Temporal [62]
Domestics UK [143] Customer ldentifier RF [30]

1year

2.6 Discussion and future work

The purpose of this section is to highlight and discuss the current gaps and limita-
tions from both open data and EV load models perspectives (Table 2.7).

2.6.1 Data usage and privacy issues

With this article, the community has clear visibility on a carefully selected list of open
datasets useful for modelling EV load [191]. In most research papers, datasets obtained
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Table 2.7 - Gaps and future work for EV load data and models. Sections 6.1 and 6.2 deal
with data prospects and limitations while Sections 6.3 and 6.4 describe new ways of
modelling and tie EV load models to optimisation of charging schedules.

Section Keywords References

Variables [741[73]
6.1 Usage and privacy issues Accessibility [59]
Data Regulations [182]

General Electrical Load [711[183]

6.2 Other types of relevant data Non-Intrusive Load Monitoring  [184] [185]
Synthetic data [152]

. Stochastic Processes [1861[187]
6.3 Composite Approaches Machine Learning [155]
Madels Smart Charging [24]
6.4 Link with optimisation Probabilistic Approach [189]
Reinforcement Learning [190]

from system operators or other entities were not explicitly made available and no clear
indication was given on how to retrieve them if it was possible. Our hope is to foster
the practice of sharing supplementary materials with both the data used and code pro-
duced in order to encourage reproducible work in the field.

While the open data search provides visibility on charging session and traffic data,
no repositories merging both was found. Thus, it is likely that the standard will remain
to manipulate separate datasets for charging and traffic data as it is already the case in
the literature [57, 66, 50] at least in the near future. And as such, different locations and
different grains of data will still need to be leveraged in order to perform a complete
data-driven spatiotemporal description of EV load.

Battery inputs are intrinsically complex to obtain. It would involve establishing an
Internet of Things (IOT) between EVs, charging stations and controllers when conside-
ring a smart charging scenario [44, 45]. This type of work is currently in progress [59]
and the community could benefit from new types of information for EV load models
in the near future. However, so far, the articles which include these variables simulate
them from prior statistical distributions.

Some of the datasets presented in Section 3 provide unique identifiers for vehicles
and even driver's registered post codes [101]. However, data regulations (e.g., GDPR
in Europe [182]) may prevent spreading battery and travel inputs openly. Thus, more
elaborate and complex models will be required in order to capture hidden information
for disaggregated approaches.

The other variables of interest pinpointed in this review are easier to retrieve. For
example, weather information can be obtained from the R package riem for a wide
range of locations [73] or on the NOAA website [74]. If finer information is required,
meteorological grid models can be used for that purpose. Economical and calendar
variables can be tailored for each analysis depending on the grain chosen.
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2.6.2 Other types of relevant data

The open data search presented in Section 3 mainly focuses on charging session
and traffic data. However, it is also possible to consider general electrical load open
data [771]. Indeed, if a region switches to EVs in a given time period, this change can
reflect on the regional load curve. In this context, EV load would be a latent or hidden
variable contributing to the general electrical load.

In addition, grid networks data [192] and big cities’ electrical load data [183] are beco-
ming more and more available. Combining them with charging session and traffic data
may lead to models which have a holistic and data-driven understanding of the reality.

To model the load of specific appliances with general electrical load data, Non-
Intrusive Load Monitoring (NILM) methodologies have received a lot of interest in the
related literature [193, 194]. The question addressed is whether it is possible to identify
and characterise EV load within a general electrical load curve [184], [185].

Synthetic data can also be used in order to produce EV load models. In most re-
search papers, simulators rely heavily on assumptions derived from travel surveys and
not so much on real charging session data [158, 33, 32]. Nevertheless, a data-driven si-
mulator has been recently proposed in [152] which was trained on real-world charging
sessions and thus can represent more accurately real world charging behaviours.

Finally, there are semi-open or closed data. Most of these closed datasets are related
to residential load [108, ] as it is less feasible to retrieve them without raising data
privacy concerns.

2.6.3 Composite Approaches

From a methodology perspective, it is interesting to note that very few stochastic
processes approaches used real data [34]. These models are usually theoretical and
can be useful for mid-term or long-term scenarios but less relevant for short-term fore-
casting. Alternatively, the machine learning and statistical characterisation approaches
presented were highly data-driven.

In the corpus of articles considered in this review, there exists no article that deals
both with stochastic processes and machine learning algorithms in the context of EV
load models. Thus, it would be interesting to compare them in terms of performance
but also to assess what they can bring to each other in a composite model [188, 186, 1871].

Furthermore, it was shown in many articles reviewed in Section 4 that the influx of
vehicles at EVSEs is highly time dependent. Consequently, homogenous poisson pro-
cesses used in articles from the corpus will not be enough to capture the reality of
drivers’ behaviours [36]. More elaborate processes such as inhomegenous poisson or
self-exciting point processes [196] have to be considered to account for this time de-
pendence. Using these stochastic processes hand in hand with machine learning algo-
rithms will foster consistency, conciseness and performance of EV load models.

Finally, another gap brought to light in this review is the lack of work on stacking mo-
dels or bottom-up approaches [30] which are indeed more costly from a computational
perspective but can bring a deeper understanding of EV load.
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2.6.4 Link with optimisation

As mentioned in the introduction, EV load models are part of a two-step process.
Firstly, behaviours relating to EV load demand must be understood and then current
schedules optimised depending on the aim (e.g., load flattening or load balancing). The
articles introducing methodologies for optimising charging schedules usually assume
a clear knowledge of the future short-term demand. It is less common to see articles
which account for the potential uncertainty of EV load models. This is also due to the
fact that there has been less focus given to probabilistic EV load models which could
yield confidence intervals for evaluating risks of surpassing the energy supply at a given
time. Additionally, probabilistic forecasting proposes a more exhaustive representation
of the demand as it does not solely focus on the mean demand.

Solutions which include both forecasting and optimisation aspects in the same mo-
del or process are required [24], [197]. Again, using the same data for this purpose is
essential, as it enables the development of solutions by researchers specialised in dif-
ferent fields such as forecasting and optimisation. To unify both, methodologies can be
also developed using reinforcement learning [190]. In addition, specific losses related to
the exploitation of probabilistic forecasts in smart charging strategies could be relevant

[189].

2.7 Conclusion

In this paper, the reader is provided with a comprehensive list of open data that
can be used to model EV load. Additionally, an organised review of EV load models
is presented. Finally, six datasets are explored to provide recommendations on how
they can be matched to the EV load models reviewed. The open data search focused
on the top 14 countries of the EVI ranked by national EV market share. A total of 860+
open data repositories was covered which yielded more than 60 open datasets rele-
vant for modelling EV load. Across the literature, a wide spectrum of EV load models
were reviewed. This includes statistical characterisation models from parametric (uni-
modal distributions and mixtures) to non-parametrical estimation (KDE). Furthermore,
stochastic processes with purely temporal models, spatiotemporal models and queues
were also included. Finally, machine learning models including LM, SVM, RF and ANN
were reviewed.From the open data research, six datasets which have not been pre-
viously studied in the literature were considered. Recommendations were provided on
how the models reviewed could be matched to each dataset. We hope that this article
will encourage the use of the open datasets and models reviewed in order to foster
reproducible work and breakthroughs in the field of EV load modelling.
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Chapitre 3

A benchmark of EV load and occupancy
models on open data

This chapter is based on a paper published in the proceedings of ACM e-Energy 2022 [198].

We propose an extensive benchmark of 14 models for both load and occupancy day-
ahead forecasts, covering 8 open charging session datasets of different types (residen-
tial, workplace and public stations). Two modelling approaches are compared : direct
and bottom-up. The direct approach forecasts the aggregated load (resp. occupation)
directly of an area/station whereas the bottom-up approach models each individual EV
charging session before aggregating them. This second approach is key to the effective
implementation of smart charging strategies. We consider both machine learning mo-
dels (Random Forests and Gated Recurrent Units) and statistical models (Generalised
Additive Models, Poisson Regression, Mixture Regression, Auto-Regressive) in order to
maximise the spectrum of our benchmark. We finally propose an adaptive aggregation
strategy to assess the variety of forecasts at hand. Overall, we demonstrate that direct
approaches reach better performances than bottom-up approaches across all datasets
considered. We further show that the different approaches used can lead to an impro-
ved performance of direct approaches when using an adaptive aggregation strategy. In
fact, our best model produces a forecast which is more than 5 times better relative to
the persistence on residential data.
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3.1 Introduction

Electric Vehicles (EV) represent an important lever for a transition to low-carbon
transport. By carefully managing EV charging load, it can become a flexible asset to
the grid in various ways (e.g., load balancing, load flattening). Operating a system re-
lying on smart charging requires a thorough understanding of the mechanisms under-
pinning charging behaviours. Therefore, over the last decade, numerous papers have
been published to address the question of EV charging load models, and in particular,
EV demand forecasting (see [18] or [199] for extensive reviews of the literature).

As the EV market is stillin its infancy, most papers rely on simulated or private data to
train EV charging load models. The lack of studies using open data has been hindering
reproducible research and the establishment of sensible benchmarks. In the mean-
time, many open datasets have been made available and are still underused by the
community [200]. Only recently, [201] proposed a deep learning graphical network mo-
del to forecast the daily energy demand of public charging stations in Palo Alto (USA). In
addition, [202] proposed a long short-term memory (LSTM) neural network to forecast
occupancy of public charging stations in Dundee (UK) at an intraday horizon. Finally,
[203] is a data centric statistical study which demonstrates the importance of geospa-
tial information on charging behaviours.

Benchmarking statistical and machine learning approaches on multiple existing open
datasets is of crucial interest for the industrial and academic communities. To fill this
gap, we propose an investigation of different state of the art and innovative models
trained on the open datasets considered. These datasets cover all common charging
behaviours : residential, public, and workplace charging. Two main approaches have
been retained for this benchmark : a direct approach where the load or the occupancy
is forecasted at the aggregated level; a bottom-up approach where the load or the oc-
cupancy can be derived from individual charging sessions simulated by the model.

The direct approach uses the traditional electricity load forecasting set-up. If the EV
station is sufficiently large, aggregating the occupancy or the load of each EV will regu-
larize the signal by the law of large numbers. Therefore, we can expect to achieve good
results with similar methods used for aggregated electricity consumption data. Gene-
ralised Additive Models (GAMs), state of the art models for electrical load forecasting
[204] as well as Random Forests (RF) [205] will be considered.

The bottom-up approach is highly relevant for assessing the benefits of smart char-
ging strategies. Forecasting individual charging sessions has many advantages : it al-
lows for the simulation of different charging schemes naturally and can incorporate
individual information (e.g., personal charging constraints, traffic, habits). A charging
session i is characterised by three variables to be estimated : the arrival time (a;), the
charge/park duration (c;/p;) and the energy demand (¢;). Charging sessions are model-
led by methods including non-homogeneous Poisson processes [206], time series, and
multivariate density estimation.

As a result, an in-depth analysis of models’ performances on 8 charging session
open datasets is provided. A rolling-origin forecasting procedure is used to replicate
the operational setting for these models. We hope that this will foster reproducible
research in the field and may be used as a baseline reference for future modelling
work. The key contributions of this paper are (a) a unique framework for comparing EV
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load or occupancy forecasting models, (b) a discussion of 14 model performances on 8
open charging sessions datasets and (c) a demonstration of the benefits of leveraging
the variety of bottom-up and direct forecasts by aggregating them into one forecasting
model. The rest of the paper is structured as follows : Section 3.2 describes the problem
at hand and the datasets in scope. Section 3.3 gives the detail on the methodologies
considered in this benchmark. Finally, Section 3.4 presents the forecasting setting, the
model selection and validation procedure and compares model performances.

3.2 Problem Formulation

The aim of thiswork is to produce day-ahead EV load and occupancy forecasting mo-
dels at a one-minute time resolution. A wide variety of models have been presented in
the literature to address forecasting problems in relation to EVs [18, 199]. These models
either characterise EV charging sessions to then derive information on the load/occupancy
or directly forecast the load/occupancy. This is not surprising as most data used is set at
a charging session level. This is a particularity of EVs as in the electrical load forecasting
literature it is common to use meter readings data which are still scarce for EVs. In the
following sections, we define a procedure for reconstructing a load/occupancy curve
with charging session information. We also briefly present the 8 open datasets used in
this benchmark.

3.2.1 From charging sessions to load and occupancy curves

To reconstruct the load curve, three variables are required for each charging session
i : the arrival time (a;), the charge duration (¢;) and the energy drawn (e;). With these
three variables, an elementary load curve can be reconstructed in the shape of a step
function :

2 ift e ag, a + ¢
L(t) = { 0 otherwise.

The overall load curve is obtained by summing all elementary load curves : L(t) =
>, Li(t) We assume that the electric vehicle supply equipment (EVSE) charges the EV at
a constant power. This assumption is accurate for EVSEs which are not subject to smart
charging. There are some well-known transitional regimes at the beginning and the end
of each charging session in terms of the power delivered due to electrical constraints
but common practice is to assume that this phenomenon is negligible. When smart
charging is involved, the load curve reconstructed with that process may be unrealistic
ifitinvolves drastic and/or frequent changes to the power delivered. This is not the case
for the datasets in the scope of this paper.

As for the occupancy curve, the process is even simpler. Only two charging session
variables are required : the arrival time (a;) and the park duration (p;). Again, an ele-
mentary occupancy curve can be reconstructed for each session i :

. 1 ifte [ai,ai+pi]
0i(t) = { 0 otherwise.
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and the overall occupancy curve is obtained by summing all elementary occupancy
curves: O(t) = >, 0i(t)

3.2.2 Datasets

As highlighted in [141], EV load/occupancy models which are not built on open data
are very common. This drastically hinders reproducible research and a fair comparison
of models. For this benchmark, we consider 8 open charging session datasets which
were identified and thoroughly presented in [18] and [200]. The quality of the datasets
considered and their time span are detailed in Appendix B.1. The datasets used in this
paper cover most common charging types : public, workplace and residential charge. All
datasets record a; and p; for each session i. However, ¢; is recorded by 4 of the 8 data-
sets. Therefore, the load curve will be reconstructed and modelled only for these while
the occupancy curve will be analysed for all datasets (Table 3.1). Note that weekends
are excluded from our analysis due to significantly different charging behaviours com-
pared to working days [42] and a low number of charging sessions observed in most of
the public charging stations in scope.

In terms of the covariates used we want to be consistent and exploit the same ones
across all models and datasets. In the literature, traffic data is often used as it has a na-
tural relationship with EVs. However, this data is mostly simulated because of the lack
of information focusing on EVs. Simulating traffic data goes against the data-driven vi-
sion of this paper. In some rare cases, weather data is also used [65] but it was shown
on multiple occasions that it does not yield any significant improvement to model per-
formances. Therefore, we used calendar information and lags as inputs of our models.
As for the training procedure, we have adopted a rolling-origin forecasting framework
as it is consistent with the day-ahead forecasting set-up we chose for this benchmark.
We suppose that the models are re-estimated every 2 weeks, a reasonable frequency
for practical applications and a good trade off between accuracy and computational
complexity. The test period of all datasets is taken over 8 weeks except for Paris where
the test period is only 4 weeks because of the short time window of the dataset. The
8-weeks testing period is shown on Figure 3.1 for Palo Alto. In particular, we can observe
the weekly and daily patterns of both load and occupancy.

3.3 Methodologies considered

The methodologies considered in this paper can be divided into two approaches :
direct and bottom-up. Figure 3.2 presents a holistic view of the approaches taken. Be-
fore going into the details of each method we briefly present them and explain how
they fit into each approach. When there is no need to distinguish between load and
occupancy, we just refer to both interchangeably as the "target".

3.3.1 Direct Approach

With a direct approach, the target is modelled without any intermediary. Therefore,
we can use state of the art methods for electrical load forecasting such as Generalised
Additive Models (GAMs) as defined by [207] with the implementation from [208] and
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Figure 3.1 - Palo Alto load and occupancy curves over the test period
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Table 3.1- Open datasets considered for the benchmark and relevant fields for charging
session 1.

Dataset Relevant fields Type

Boulder a;, ¢;, p; and e; Public
Caltech a;, ¢;, p; and e; Public
Domestics UK a;, p; and e; Residential
Dundee a;, p; and e; Public
Palo Alto a;, ¢;, p; and e; Public

Paris a;, p; and e; Public
Perth a;, p; and e; Public
SAP a;, ¢;, p;ande;  Workplace

Random Forest (RF) as defined by [172]. In addition, we introduce a baseline persistence
model which in our case consists of using the observed value of the target 24 hours
before. As we only study weekdays, the persistence forecast for Monday 12 :00PM is
the observed value on the previous Friday at 12 :00PM. In the following sections, X
refers to the vector of covariates and Y is the target variable (load or occupancy).

Generalised Additive Models

State of the art models for electrical load forecasting [209], GAMs are semi-parametric
models which can be written in the following fashion : E[¢(Y)|X] = X8+ Y, fi(X),
with ¢ a link function depending on the law of the data, 3 a vector of coefficients to
be estimated, and (f;)~,, L € N*, unknown smoothed functions which we commonly
estimate by projection on a spline basis. The two great advantages of GAMs are the
flexibility enabled by the non-parametric part of the model and their additive formu-
lation which enables interpretability. The downside is that they usually require a more
careful choice of predictors compared to machine learning methods. Since the occu-
pancy is represented as count data, we use a Poisson distribution and a logarithmic
link function. The load forecasts are derived from a classical Gaussian distribution hy-
pothesis.

Random Forest

Breiman [172] proposed the Random Forest (RF) method and algorithms. Since then
it became one of the most popular algorithms in data science. Among many reasons
for this are their automatic computation, their high adaptation to many different pro-
blems and their straightforward tuning. Given a sample of observations (X;, Y;)1<i<n
drawn from random variables (X,Y), the objective is to fit the very generic model
Y; = f(Xi) + € where the error ¢, is such that F [¢;| X;] = 0. RFs estimate the regres-
sion function by computing an ensemble of regression trees [210] using bagging [211]
and random sampling of covariates. The intuition behind RF is to reduce the high va-
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riance of regression trees by generating a diverse set of trees and aggregating them by
a simple mean.

3.3.2 Bottom-up Approach

The bottom-up approach models a vector of variables which defines an EV charging
session. For the load it is a triplet (a;, ¢;, ¢;) made of the arrival time q;, the charge du-
ration ¢;, and the energy demand e;. For the occupancy it is a pair (a;, p;) made of the
arrival time a; and the park duration p;. In the following, we just refer to both vectors in-
terchangeably as the "target vector". Finally, the target curve is reconstructed using the
target vectors forecasted (procedure detailed in section 3.2.1). To model these vectors,
two strategies are considered (see Figure 3.2):

1. Forecasting the number of daily charging sessions to then sample target vectors
from a multivariate distribution

2. Simulating arrivals of a NHPP with a thinning procedure [212] to then forecast the
expected value of target vectors conditionally to the arrivals simulated

GAM or RF
with set of

covariates X t

Bottom-up |

Target
reconstruction

(A,C,E)o (A, P) (.|1A=a;
Joint distribution of Expected value of
the target vector the target vector

t
SARIMA (N®)¢er (a;)ier NHPP-GAM

or Expected value of
GRU daily charging
sessions

or

Point process of NHPP-RF

arrivals

Figure 3.2 - Direct and Bottom-up Approaches
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Two methods fit under the first strategy : (a) Gated Recurrent Units as defined in [213]
and Mixture Model (GRU-MM) (b) Seasonal Auto-Regressive Integrated Moving Average
[214] and Mixture Model (SARIMA-MM). The GRU or SARIMA part predicts the number of
daily charging sessions while the MM models the distribution from which the sessions
will be sampled.

As for the second strategy, two methods are also studied : (c) Non-Homogeneous
Poisson Process estimated with GAM defined in [206] and Mixture Regression (NHPP-
GAM-MR) (d) Non-Homogeneous Poisson Process estimated with RF and Mixture Re-
gression (NHPP-RF-MR). In both cases, the NHPP part enables the simulation of arrivals
while the MR provides the remaining variables of the target vector conditionnaly to
each arrival. In the following sections, we detail the specifics of each of these methods.

Seasonal Auto-Regressive Moving Average

In 1976, [214] introduced and formalised ARIMA models. With their strong theoretical
background and easy implementation, they are one of the first-choice models in time
series modelling, particularly when patterns can be captured by using past values of
the time series. Here, we are trying to model the number of sessions per day which is
presented for Palo Alto on Figure 3.3 for instance. Finally, to account for weekly seasonal
patterns we also include weekly seasonal orders. Apart from the day of the week which
is already taken into account by the seasonal orders, no exogenous variable is available
to the SARIMA model. Therefore, we do not use a SARIMAX model which could be well
suited in a situation where exogenous variables are relevant and available.

Gated Recurrent Units

When addressing time series forecasting problems with neural networks, the most
common architecture used is recurrent neural networks (RNN). It differs from the tradi-
tional feed-forward structure by making the information flow in a loop through recur-
rent cells. In other words, hidden layers have access to their previous state as an input
as well as inputs given by the previous layers. This is particularly suited to sequential
data such as time series. It is different than just using the lags of the time series as in-
puts as the hidden units will produce latent time series which will also be used in the
network.

As far as RNNs are concerned, the most widely used structures are LSTM [215] and
gated recurrent units (GRU) [213]. They both overcome the two major issues of standard
RNNs which are exploding and vanishing gradients by extending the memory of the
recurrent cells to more than the immediate past. We also want the RNN to forecast the
total number of sessions per day. Therefore, we have opted for the GRU architecture
in this benchmark as it requires less parameters to estimate than the LSTM and was
shown to perform as well on small datasets [213].

Non-Homogeneous Poisson Processes

ANHPP is a time-dependant Markovian stochastic process. Itis uniquely determined
by its intensity function \(t), the infinitesimal rate at which an event is expected to occur
attime t. This type of model has already been used successfully in the case of residential
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EV charging demand [216] with a piecewise constant intensity depending only on the
hour of the day. Here, we also assume that the arrivals of EVs at the EVSEs (electric
vehicle supply equipment) in scope are the realisation of a NHPP.

NHPP estimated with GAM Following [206], we model A(t) = Ag(t) with a GAM to
capture the smooth variations of the rate of arrivals with time :

K Dy

log(As(t)) = X" B0+ > Y Brabra(t) (3.1)
k=1 d=1
with basis functions bi4(.) to be specified (typically spline) and coefficients 8 =
(BO, (Bkd)EkK:’]i’j;:U) to be estimated. K is the number of smooth effects we want to have
representing A and D, is their dimension. Estimating the 3 coefficients can be done via
maximum likelihood. In general, the likelihood of a point process defined on [0, 7] can
be written in the following fashion [217] :

L(B) = ]ﬁ)xﬁ(t) exp (— /0 T)\g(u)du) (3.2)

76



with N(T') the total number of arrivals observed on [0, 7. This general form of the
likelihood is intractable. To solve this issue, we can assume that the intensity function is
piecewise constant. Therefore, the integral term of the likelihood can be transformed
into a sum on all timesteps : fOT AMu)du = 37, ey A(E). We assume that A is expressed
in the same unit as the timestep so that the summation index NN |1, 7] does not induce
any multiplication by the timestep within the sum (implicitly multiplied by 1).

Smooth estimates can be obtained by adding the following penalty to the log-likelihood:
%Zszl prBL SKBy with 3;, = (Bra)deqt,...pg}e Pr 1S the parameter which controls the
smoothness of the k' spline basis and S}, is the smoothing penalty matrix composed
of the basis functions of the £ spline basis, Vk € {1,..., K}

Finally, we obtain the following penalised log-likelihood :

K
l,(B) = log L(B) — % > B SiBy (3.3)
k=1

NHPP estimated with RF A more direct way to estimate the intensity function of a
Poisson Process is to perform an approximation of \(¢) before estimating it by minimi-
sing a loss function (here the square loss). We have chosen to use a centered moving
average of the number of arrivals per minute. This approximation of the intensity func-
tion which we write A(t) can then be estimated via virtually any machine learning model.
Here, we chose a RF model as it requires few parameters to be tuned and represents

a good candidate for a benchmark.

Mixture Model

A mixture model represents a population as a set of sub-populations. Each sub-
population is modelled by a specific component (or distribution). The target vector cha-
racterising the individuals are known, however the components to which they belong
is unknown. We assume that the random target vector follows a mixture of multiva-
riate lognormal or Gaussian distribution. Formally the density of the target vector Y is
defined as follows :

K
p(Y) = Zﬂ;%(Y; M, ) (3.4)

k=1
with K the number of components, 7, the mixture component weight and ¢, the
probability density function of component k with parameters 8, = (u, X). The para-
meters of the joint distribution 7, 8, are estimated via the EM (Expected-Maximisation)
algorithm. The only hyperparameter to calibrate is the number of components K of the

mixture.

Mixture Regression

A mixture regression uses a mixture model to derive the parameters of the distri-
bution of a subset of variables conditionally to another (the arrival times in our case).
From the mixture model estimated and in the case of Gaussian and lognormal mix-
tures, a closed form of the conditional distribution density can be directly used [21&]. In
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particular, we are interested in E[(D, E)|A| for the load and E[P|A] for the occupancy.
Let us focus on the Gaussian load case for simplicity. For the k-th component of the
mixture, we separate the mean vector u; and covariance matrix X, as follows :
o by

k,A k,(D,E)A) (3.5)

i = [Nkﬁ(D»E)’ ka] and 3y = (Ek AD.E)  2k,(D,E)

with the mean and covariance matrices associated to each subset of variables. The-
refore, and building up on [219], we can now write an explicit expression for the condi-
tional expected value :

E[(D, E)|A] = th (1k,(D,) + D (DE)AZkA(A i,A)) (3.6)

with, hi,(A) = =% meon(diaona) 1t s this expression that we use to get the pre-
Zk/:1 Tt Pt (Anuk',Aka/,A)

dicted value of the target vector.

3.3.3 Aggregation of experts

Various EV load/occupation models have been proposed in the previous sections.
Each of these models rely on specific hypotheses, producing a set of diverse forecasts.
This is a situation where it can be beneficial to produce an ensemble forecast [220]
where the idea is to aggregate these forecasts into a single one, which is hopefully bet-
ter than each individual forecast. As our data are observed sequentially, we consider
the framework of online aggregation of experts presented in [221, 222]. The objective
is to forecast a bounded sequence of observations Y;,..., Yy € [0, B], B > 0 (here the
occupancy and/or the consumption). At each time ¢, N experts provide forecasts of Y},

denoted (fftl, . ,YtN> € [0, B]". These experts are classically the outputs of a statisti-

cal forecasting model or a numerical model. In our study it corresponds to the different
prediction models previously presented. Based on past expert forecasts and observa-
tion, the aggregation algorithm computes weights p;; € RY, and returns as forecast
for Y, a weighted average Y, = ijzlpﬁfftj of the N forecasts. Then, Y; is revealed and
instance ¢t + 1 begins. Performance of experts and aggregation forecasts are evaluated
according to a convex loss function, here the square loss /;(z) = (Y; — z)? -note that
another option could have been a Poisson loss for the occupancy. Each time ¢, expert &
suffers loss £,(Y}*) = (Y; — Y}¥)? and the aggregation ¢,(Y;) = (Y; — Y;)2 The purpose of
aggregation algorithms is to minimise the total loss ZtT:l(Yt —Y;)2 over the forecasting
period that can be expressed £ 37 (V; — V)2 = L7 (Y, — V) + Ry, where Ry is
the regret term corresponding to the error suffered by our algorithm relatively to the
error of the oracle Y;*, an optimal but unknown before the forecasting run forecast. A
lot of algorithms are proposed to achieve low regrets [223]. In our study we use the
ML-Poly algorithm proposed in [224] and implemented in the R package opera [225].
This algorithm tracks the best expert or the best convex aggregation of experts by gi-
ving more weight to an expert that will generate a low regret. This makes this algorithm
particularly interesting as no parameter tuning is needed.
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3.4 Experiments

In the following section, the experimental procedure is described and the associa-
ted results are shown. We first describe how the data was preprocessed before training
the models, then we detail which procedures were used for model selection and vali-
dation before comparing the performance of each model as well as the aggregation of
all forecasts.

3.4.1 Data preprocessing

Following the data quality assessment of the datasets performed in [200] we have
only kept charging sessions which respect the following criteria : the charge duration
has to be positive and shorter than 24 hours (if the charge duration is not available then
the park duration is used instead); energy demand also needs to be positive and under
100 kWh. Charging sessions lasting for more than a day are likely to be data collection
errors as an EV is usually charged in a few hours. As for the 100 kWh upper bound, it
corresponds to the battery capacity of the Tesla Model S which is the largest amongst
top selling EVs.

Furthermore, as mentioned in Section 3.2, we have only kept working days in the
data as behaviours are significantly different on weekends and there are less charging
sessions for some of the datasets in scope. Finally, as shown on Figure 3.4, there are
periods during which arrivals are rare or non-existent. Therefore, we have set a thre-
shold value for each dataset under which the corresponding times are discarded from
the analysis. More precisely, we keep the largest continuous time interval where all va-
lues are above the threshold. This time interval is shown as a grey shaded rectangle
on Figure 3.4. The threshold is set at 7.5% of the maximum number of arrivals and is
shown on the plots by a red dotted horizontal line. We found that this preprocessing
helps our models to better learn the intensity function of the NHPP.

3.4.2 Model selection

Both statistical and machine learning models considered in this benchmark require
fine tuning in order to exploit them at their best but also to avoid one common pitfall :
overfitting. Therefore, we have chosen to have a careful selection procedure for each
dataset in scope because of the wide variety of EV charging behaviours they represent.

Information criterion

To automate the process of finding the optimal orders of the SARIMA models, we fit
all models with a maximum of 10 total orders to finally keep the model which minimises
the Bayesian Information Criterion (BIC) introduced in [226]. This routine is implemen-
ted in the forecast package detailed in [227]. The BIC helps to keep the model complexity
to a minimum while also minimising its prediction error.
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With regards to the MM, the only hyperparameter to tune is the number of compo-
nents k of the mixture. Therefore we fit all MM for k£ € {2...30} on the training data for
each dataset and we keep the one that minimises the BIC. 30 components might seem
a lot for a mixture model but we've found that for most datasets the optimal number
of components is between 20 and 30. That can be explained by the fact that we are
looking at multivariate mixtures for an EV demand that is still in its infancy and subject
to significant variations in behaviours over time. Also, it is important to note that even
if many components are kept with this procedure, it usually takes only 10 components
to make up for most of the weights.

An example of this is shown on Figure 3.5 with the Gaussian MM fitted on the Boul-
der data. Here we only keep the clusters that have a weight above 5%. This leaves us
with three clusters that make up more than 50% of the components weights. In particu-
lar, these three clusters can be clearly distinguished. Cluster 6 and 11 correspond to late
afternoon/evening arrivals with similar charge durations but with lower average energy
for cluster 6 (¢ = 3.87) than for cluster 11 (¢ = 8.48). This can be interpreted as vehicles
being connected to EVSEs at different power levels. In fact, this corresponds to the two
most widely spread alternative current chargers delivering respectively maximum po-
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wers of 3kW and 7kW. Cluster 6 and 11 already make up 44% of the MM. Finally, cluster
14 is also clearly distinguishable from the two other clusters as its mean arrival time is
at around 1.30AM (a = 1.51). With a weight of 7%, it represents a minor sub-population
of users which charge later at night and benefit from higher power levels as for cluster
1.

Grid search

For each dataset, the first training period is split into a training and validation set. In
particular, the first 80% observations are kept in the training set while the last 20% form
the validation set. That way, the time dependence of the data is respected. The best
hyperparameters are found via grid search and we keep the model which minimises
the loss incurred on the validation set. GRU, NHPP-RF, NHPP-GAM, GAM and RF model
hyperparameters are optimised through that process.

The GRU hyperparameters tuned are the batch size, width/depth of the hidden
layers and the learning rate. For the NHPP-RF and RF models the number of trees as
well as the number of predictors used to determine each split are optimised. In addi-
tion, the GAM and NHPP-GAM models are also tuned through this grid search process.
In particular, the choice of predictors as well as the number of spline functions for the
smooth effects are calibrated. The final sets of hyperparameters obtained are available
in appendix B.3.

Error correction

Until now, even though some of the bottom-up approaches used lags of the num-
ber of arrivals no model used lagged information of the target (load or occupancy). To
account for this lack of information in the models and by taking advantage of the day-
ahead forecasting set-up of this study, an error correction model is proposed to adjust
each model forecast. It consists of a SARIMA model on the residuals of the forecast.
More precisely, one SARIMA model is trained on each minute of the day to respect the
day-ahead forecasting set-up. In other words, a total of 1440 SARIMA models are trained
(one per minute of the day) and each of these model has access to the information of
the previous days at the same minute. Again, the orders of the SARIMA model are cho-
sen by minimising the BIC. As the hypothesis of the SARIMA models used are to have
Gaussian residuals, the load and occupancy forecasts obtained after this correction can
be negative and decimal numbers. Therefore, the error correction forecast is rounded
for the occupancy and put to zero if negative for both the occupancy and the load to
ensure consistency with the phenomenons described. The error correction forecasts
will be identified in the following paragraphs as Model-err. For instance, “GAM-err” is
the forecast produced by the GAM model combined with the error correction model
we have detailed.

3.4.3 Model validation

A model validation procedure is also performed to check the statistical assumptions
made for statistical models in scope. Namely, NHPP, SARIMA and GAM models.
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A student test for NHPP

Following the NHPP validation procedure described in [216], we use a t-test to check
whether the proposed NHPP models are valid. We split the data in training and testing
sets as in Section 3.4.2. 100 versions of the process are simulated on the validation set
from the intensity function estimated on the training set. The validation set is separated
in J equal time windows. For the k-th simulation we define

_ 1 A
G =5 Diy = Digo k€ {1...100) (37)

o,
i M“
Il

with J the total number of time windows over the validation set, DM the total num-
ber of arrivals forecasted in the j-th time window and Dy, ; the total number of arrivals
observed in the j-th time window. Our model is valid if the sample Gy, k € {1...100}
is normally distributed with a mean p = 0. First, we check the sample normality with a
Shapiro-Wilk normality test. Second, a t-test is formulated to check whether y is signi-
ficantly non-zero :

HO M:O

We define the following statistic ty_; = % with G = = 3" | Gy, s, the sample
variance and N = 100 the number of processes simulated. Under the null hypothe-
sis, ty_1 follows a Student distribution with N — 1 degrees of freedom. We chose a
significance level of 5% to assess whether the value obtained for the sample mean G is
beyond the acceptable range and therefore whether Hy is rejected. We take a 15-minute
time interval for aggregating the arrivals as it is becoming the standard time step for
electrical signals meter readings. However, please note that we led the same validation
procedure for windows of 1 hour and 1 day and the results remained the same. For all
models considered the sample mean was well within the acceptable range of the test
and therefore all NHPP models which came out of the model selection step were valid.
The values of the sample means as well as the acceptable range of the Student test for
each relevant model and for all datasets can be found in Appendix B.4.

Ljung-Box test for SARIMA

The Ljung-Box test is commonly used for assessing whether there is a lack of fit for
time series models [228]. The null hypothesis is defined as Hy : VI € {1...L} p(l) =0
with p the auto-correlation function of the time series model residuals. We define the
following statistic for a sample size n:

n —

L 2
QL) =n(n+2)) T’ (3.9)
=1

where (r;)cq1..2) are the sample auto-correlations and L the maximum time lag.
Under Hy, Q(L) asymptotically follows a y2 distribution. Common practice is to set L
to be twice the natural seasonality of the series. Therefore, we chose L. = 10 to consider
a two-week period for the test. If the p-value of the test is above 5%, then we cannot
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reject the null hypothesis of the test and we consider that our model does not show
lack of fit. The models that came out of the model selection procedure all had a p-
value of above 5% at the exception of the model trained on the Perth dataset. Thus we
cannot reject the null hypothesis for 7 out of the 8 datasets in scope. The low p-values
obtained for some of the datasets can be explained by a strong trend in the data as
the market adoption is evolving at a fast pace which prevents the time series modelled
from being stationary. Nevertheless, the great majority of the models passed this test
and it is reasonable to compare their performances. The p-values of the Ljung-Box test
for the SARIMA models and for all datasets are shown in appendix B.4.

Residual analysis for GAM

In addition to selecting the GAM formula via grid search on different candidates, an
analysis of the residuals was applied to check whether the assumptions of the model
were satisfied. A residual analysis applied to the first training period of the Palo Alto
load dataset is shown in Figure 3.6. From left to right, the first plot shows the evolution
of the residuals over time, the second one shows a histogram of the residuals and the
last one, the load values against the fitted values.
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Figure 3.6 - Palo Alto residual analysis for the load forecasting using GAM

The outliers, visible in the three plots, and more evidently in red in the third one,
are holidays forecasts. These days are mainly overestimated and are responsible for
skewing the histogram to the left. Their removal did not impact the overall performance
and the choice was made to keep them in the datasets. Other than the outliers, the
model assumptions seem to hold as the residuals have a normally shaped distribution
with a mean equal to zero.

3.4.4 Model performance

Traditional metrics for evaluating the forecasting performances of load forecasting
models are the Mean Absolute Error (MAE), Root-Mean Squared Error (RMSE) and Mean
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Absolute Percentage Error (MAPE). The latter is not an option in our case as the target
can often be zero which creates notorious problems for the MAPE [229]. The MAE and
RMSE could have been used as zeros are not a problem for these metrics. However, with
8 datasets in scope recording various charging behaviours across multiple countries,
the scale of each dataset varies tremendously.

Comparing these metrics across datasets would require scaling the data as perfor-
med in [230]. Here, we define a metric which will be easily interpreted across all da-
tasets. This metric is the Percentage Improvement from Persistence (PIP). As its name
suggests, the PIP is a metric expressed in percentage which quantifies the forecasting
improvement of a proposed model over the persistence. More formally we can write
the PIP for a given forecast signal  as follows :

pers
PIP = 100 x (M _ 1) (3.10)
Uy, )

with y the observed signal, 47" the persistence forecast signal and [ the loss func-
tion. Here, we take [ as the MAE or the RMSE. Essentially, the percentage improvementis
expressed in terms of a ratio between the MAE (resp. RMSE) of the persistence forecast
and the MAE (resp. RMSE) of the forecast signal considered. When the PIP is positive,
the proposed forecast is more accurate than the persistence on the chosen metric. For
simplicity, we now refer to the MAE (resp. RMSE) as the PIP metric based on the MAE
loss function (resp. RMSE loss function).

Following a similar procedure than the one described in [231] we have used block-
bootstrap resampling to quantify the variability of the PIP metric across all datasets.
This a robust procedure that enables a more holistic comparison of model perfor-
mances. The test set of size n is separated into equal chunks of data of size S = 60 x 24
(equivalent to one day). We sample with replacement these chunks until we get a set
of size n. Then we can calculate the PIP on this newly created dataset. By running this
procedure K = 250 times, K metrics are therefore calculated. The sample mean, me-
dian and variance of this sample provides more information to assess the quality and
robustness of the model forecasts.

Boxplots of the block-bootstrap forecast errors of each methods are presented on
Figures 3.7 and 3.8, means on Table 3.2. It shows that the best forecast is produced by
the GAM-err for the load and Aggregation of Experts (AGG) for the occupancy (note that
AGG followed GAM-err very closely for the Load). This is really in favour of AGG as the
weights of the aggregation are estimated sequentially from the beginning of the test
set and it is likely that better results can be achieved on longer forecasting runs (see
Table B.8 in Appendix B.5 where we show the MAE of AGG on the last test period is the
best on block-bootstrap average).
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Figure 3.7 - Boxplots of the (PIP) MAE block-bootstrap performances on all datasets
and for all models considered
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Figure 3.8 - Boxplots of the (PIP) RMSE block-bootstrap performances on all datasets

and for all models considered

Overall, the direct approaches obtained better results than bottom-up ones. As ex-
pected, the direct approach benefits from a "law of large numbers effect" where sum-
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mation of individual events smooths the signal which becomes easier to forecast. Ne-
vertheless, considering the difficulty induced by the bottom-up approach paradigm, we
can note the relatively good performances of MM based ones. The metrics obtained by
the SARIMA-MM on the occupancy makes it the best model before error correction and
aggregation (see Table 3.2 (b)). Error correction based on ARIMA models always brings
significant improvement. NHPP methods do not perform well for neither load nor oc-
cupancy and we believe it could come from the MR part which connects arrival to the
other components of the target vectors. In fact, bottom up approaches perform better
for occupancy forecasting than load forecasting.

Table 3.2 - Average block-bootstrap model performances for the PIP (MAE and RMSE)

(a) Load

Approach Model MAE [%] RMSE [%]
GAM-err 35.5 40.9
. RF-err 30.4 37.1
Direct GAM 28.4 37.8
RF 23.7 34.4
SARIMA-MM-err 20.6 23.2
GRU-MM-err 17.5 18.6
SARIMA-MM 9.83 1.4
GRU-MM 6.75 7.24
BOtOM-UP  \1ipp.-GAM-MR-err  5.63 6.98
NHPP-RF-MR-err 3.99 5.89
NHPP-RF-MR -5.21 -3.33
NHPP-GAM-MR -6.45 -4.73
AGG 33.3 36.4

(b) Occupancy

Approach Model MAE [%] RMSE [%]
RF-err 711 97.7
. GAM-err 56.4 68.2
Direct RE cc 2 4.6
GAM 341 43.5
SARIMA-MM-err 68.0 97.6
SARIMA-MM 56.0 84.0
GRU-MM-err 51.2 67.0
GRU-MM 28.9 40.0
BOtOM-UP  \1ipp.GAM-MR-err  23.3 36.9
NHPP-RF-MR-err 20.5 35.8
NHPP-GAM-MR -10.0 -0.53
NHPP-RF-MR -14.2 -0.86
AGG 92.6 125
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AGG performances are good due to the diversity of these approaches and all of the
different models have a contribution in terms of weights. This is shown in Table 3.3
where the average weights (over time and data sets) for each method are presented.
For load forecasting (resp. occupancy), the direct approaches (including the persistence
benchmark) achieve a total weight of 0.4 (resp. 0.46) and bottom up approaches contri-
bute to 0.6 (resp. 0.54) in the aggregation.

Figure 3.9 shows the average weight (in time) of each forecast for each data set.
We can see a particular distribution of the weights for Domestics UK where the NHPP-
RF-MR-err achieves significantly more important weights than for other data sets. In-
versely, GAM and GAM-err weights are very low for this data set. A zoom of individual
performances on Domestics UK is presented on Table 3.4. We see that the improve-
ment brought by AGG is of more than 5 times compared to the persistence.

Table 3.3 - Average weight in the aggregation for all relevant models and across all
datasets

(a) Load (b) Occupancy

Model Weight Model Weight
GAM-err 0.12 RF 0.11
GAM 0.1 GAM 0.10
RF 0.10 GAM-err 0.10
RF-err 0.10 RF-err 0.09
GRU-MM-err 0.07 GRU-MM 0.08
NHPP-RF-MR-err 0.07 GRU-MM-err 0.08
SARIMA-MM-err 0.07 SARIMA-MM 0.08
persistence 0.07 SARIMA-MM-err 0.08
GRU-MM 0.06 NHPP-RF-MR-err 0.07
NHPP-RF-MR 0.06 NHPP-RF-MR 0.06
SARIMA-MM 0.06 persistence 0.06
NHPP-GAM-MR 0.05 NHPP-GAM-MR 0.05
NHPP-GAM-MR-err 0.05 NHPP-GAM-MR-err 0.05

Also, bottom-up approaches and MM in particular are better than direct ones here.
Domestics UK being the dataset with the most observations, MM has access to more
data for fitting the multivariate distribution and adjusting the clusters than for other
datasets. Also, this dataset is set on a fixed population of individuals in the UK, which
means that we will definitely observe multiple charging sessions from the same indi-
vidual. For the public charging station datasets this is not at all guaranteed. Having a
fixed population removes the noise brought by one-off users who might have peculiar
behaviours and prevent reaching the best possible fit for MM.
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Figure 3.9 - Average aggregation weights over the test periods for all datasets
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Table 3.4 - Average block-bootstrap model performances for the PIP (MAE and RMSE)
on the Domestics UK dataset

Model MAE [%] RMSE [%]
AGG 402 628
SARIMA-MM-err 309 524
SARIMA-MM 301 508
RF-err 291 463
GRU-MM-err 176 310
NHPP-GAM-MR-err 162 247
GAM-err 149 214
NHPP-RF-MR-err 148 242
RF 146 258
GRU-MM 105 194
NHPP-GAM-MR 48 99
NHPP-RF 24 95
GAM 23 62

persistence 0 0

3.5 Conclusion

This paper presented an extensive benchmark of recent methods to forecast load
and occupancy of EV charging infrastructures. We cover 8 open datasets chosen for
their quality and to represent the diversity of charging behaviours (residential, works-
pace, public stations). We showed significant differences in performance between the
direct approaches and the bottom up ones. Direct approaches perform better for most
of the datasets and this is particularly true for load forecasting. Amongst bottom-up
methods, mixture models coupled with time series model were the best ones. We ex-
hibit the particularity of Domestics UK for which bottom-up approaches outperformed
direct ones.

We proposed an aggregation method which takes advantage of the diversity of the
different approaches developed. We showed that all methods contributed to the aggre-
gation and that even if their individual performances were not the best, bottom-up ap-
proaches contribute largely in the aggregation. Future work includes improving NHPP
models performances by refining either the MR part or the estimation of the intensity.
For the MR part, we believe that adding more covariates to the regression might help
in better capturing the dynamics between the arrival times and the other components
of the target vector. With regards to the intensity of the NHPP, wavelet projection could
help capture drastic changes that can occur at this fine resolution. As for the aggrega-
tion of experts, we could try other types of losses (e.g., Poisson loss for the occupancy).
Also, other popular machine learning models such as boosting trees could be tested
instead of RF.

In addition, this benchmark put an emphasis on point forecasts. Because of the pro-
babilistic nature of the bottom-up approaches, another track for future work would be
to assess probabilistic forecasts in the context of EV load and occupancy. In particular,
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estimating the load/occupancy peaks with quantile forecasts would be possible with
the methods detailed in this paper and highly valuable for various stakeholders of the
EV industry (e.g., EVSE manufacturers, independent system operators). In the hope of
fostering reproducible research in the field, the R and Python codes used to produce
the benchmark will be made available.
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Chapitre 4

Modelling the arrivals of EVs with non-
homogeneous Poisson processes

In this chapter, we introduce an additive model using both spline and wavelet effects
for fitting the intensity of a non-homogeneous Poisson process (NHPP). After giving
some background on the model, we propose a novel estimation procedure inspired
from backfitting which is illustrated by a case study on real-world EV arrivals at charging
points. The idea behind this modelling approach is to assess whether arrival peaks at
charging points can be better captured by combining both spline and wavelet effects.
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4.1 Introduction

Non-homogeneous Poisson Processes (NHPPs) have been used to model a diverse
range of phenomenons in the literature : climate change (e.g., number of excesses over
threshold [232]), seismology (e.g., earthquakes [233]), imaging (e.g., tomography [234]),
extreme weather events (e.g., seasonal rainfall extremes [235]), energy (e.g., electric
vehicle charging demand [216]) and many more. Unlike other point processes counter-
parts (e.g., Hawkes and Aalen [236]) which are more restrictive in their specification, the
NHPP lets its intensity function A(¢) depend on time quite freely. The intensity function
uniquely determines a point process.

To learn the intensity function of such processes, various methods ranging from
parametric models to non-parametric models such as kernel density estimators (KDEs)
have been considered. Recently, additive semi-parametric methods have raised ample
interest for estimating the intensity of NHPPs. In particular, models inspired from the
abundant literature of additive models have been applied to NHPP intensity estima-
tion. An important focus has been given to spline basis for additive models and many
theoretical and experimental results are available. In the meantime, progress has also
been made on regression with additive wavelet effects. An overview of these methods
is proposed in Section 2.

In this chapter we consider an additive model of the intensity function of a NHPP of
the following form :

Lw

log A(t) = Bo + Z Bzl (t) + Z si(x7(t)) + Z wy(x}’(t)) (4.1)
=1

with, gy the intercept, . the coefficients of the linear component, s. and w. res-
pectively spline and wavelet basis expansions. In addition, x(t) = (x”(t), z*(t), “(t))
the vector of covariates evaluated at time ¢t € [0,7] (I' € R™ being the final time
at which we observed the NHPP). x”(t) = {z](t)}q,..1,}, °(t) = {zj()}q,..0.y and

x*(t) = {x"(t)}{1,...L.,) are the vectors of covariates respectively used for the linear,
spline and wavelet effects. The idea behind this model is to decompose the signal into
linear, smooth and irregular components. Also we chose the additive structure to have
an interpretable model with the contribution of each component made clear for analy-
Sis.

The rest of the paper is divided as follows : firstly, Section 2 presents a review of the
related work which inspired our model. In Section 3. we introduce the specificities of the
model and the algorithmic procedure proposed for the estimation. Finally, in Section 4.
we propose a case study on real data for electric vehicle arrival at charging points.

4.2 Related Work

This section provides an overview of the literature of both NHPP intensity estima-
tion and additive regression models with spline and wavelet effects. It was conducted
to identify gaps in the field and led us to the proposed model. Historically, point pro-
cess estimation has been thoroughly detailed in [237] including NHPP. The likelihood
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of a NHPP process with n observed arrival times {t}}ie{lmn} can generally be written as

follows :
L= (ﬁ)\ (})) exp (— /OTA (s) ds) (4.2)

=1

Estimators of the intensity function can thus be obtained by maximising L. Ano-
ther idea worth mentioning is the introduction of a least-square contrast as thoroughly
shown in [236] in the case of the Aalen, Hawkes and Poisson processes. In this pa-
per we focus on maximum likelihood estimates of the first-order intensity function for
NHPPs. In [238], a semi-parametric estimator of the conditional intensity of temporal
point processes was introduced with a Tukey shrinkage procedure. Applications led on
neurophysiological and seismological data were conducted. According to the authors,
the wavelets were used for their smoothing capability. In our work, we want to leave the
smoothing components for the spline basis to then witness more irregular components
of the intensity thanks to high order wavelet coefficients. The theoretical properties of
wavelet coefficient estimators were later studied in [239] for the first-order intensity of
multi-dimensional NHPPs and extended in [240] for second-order intensity functions
of non-homogeneous point processes. In particular, the probability density functions
of the wavelet coefficient estimators are derived in [239]. Also, an unbiased estima-
tor of the second order moment of the intensity was proposed under both linear and
hard thresholding setups.The main results obtained in these two papers are useful in
practice for wavelets with a compact support and with an analytical formulation. Es-
sentially, they are only applicable to Haar wavelets in practice. In [241], Meyer wavelets
are preferred to Haar wavelets for estimating the intensity function for n independent
realisation of a NHPP. While keeping a closed form, these wavelets do not have a com-
pact support. In particular, an adaptive estimator with a hard thresholding procedure
was proposed. The authors have shown that when n goes to infinity, a near-minimax
rate of convergence can be derived for the proposed estimator. A wider class of wave-
lets is studied in [242] with biorthogonal wavelets. The main specificity of this class of
functions is that they have more degrees of freedom than traditional orthogonal wa-
velets and allow for different multi-resolution analysis. Precisely, instead of having one
mother and one father wavelet, there are actually two of each. In [242], the particular
case of biorthogonal spline wavelet basis is developed. As in [241], the authors have
shown that the proposed adaptive estimator achieves minimax convergence rate up
to a logarithmic term. The thresholding strategy adopted is inspired from the univer-
sal threshold proposed in [243]. More recently, [244] and [206] have proposed fitting
procedure for the intensity of non-homogeneous point processes with splines basis.
Precisely, an additive Poisson process is proposed in [244] which focuses on high-order
interactions splines. The idea is to propose an efficient and performant model for cor-
related stochastic processes. The authors shown that it outperforms its counterparts
particularly when facing extremely sparse samples while being more computationally
efficient. Finally, in [206] the intensity is modelled as a smooth function of time and
space depending on a set of covariates. The formulation proposed by the author is
a Generalised Additive Model (GAM) of the intensity and is fitted using the penalised
iterative least-square (PIRLS) procedure described in [208]. Their model is applied to
windstorm peaks with covariates expanded on thin-plate, cubic and cyclic regression
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spline basis. This type of model enhances interpretability with additive effects which is
one of our main concerns for industrial applications.

Moving on from point processes, let us now look at semi-parametric regression.
With the emergence of backfitting procedures, many modelling framework have been
proposed since the 1980s, [245], [207]. They all have in common the projection of co-
variates on adequate function basis, usually splines as the proof of backfitting conver-
gence was originally proposed for cubic spline smoothers [246]. Partially linear models
(PLMs) where only one functional effect is added to a traditional linear predictor have
been thoroughly reviewed in [247]. Partially linear additive models (PLAMs) which in-
clude more than one functional effect have also been thoroughly reviewed and [248].
A general procedure for fitting semi-parametric regression models with additive func-
tional effects waw proposed in [207] with backfitting. In parallel, a General Cross Vali-
dation (GCV) criterion first defined in [249] was used for estimating a single smoothing
spline and extended in [250] to multiple smoothing parameters. This result was used
to propose a PIRLS fitting procedure for generalised additive models (GAMSs) in [251].
Finally, it was further extended and implemented in the R package mgcv [208]. While
splines have been the basis of choice for additive semi-parametric models, wavelet ba-
sis have gained more and more interest over time. [252] proposes to integrate wavelets
into semi-parametric regression in a similar way as it is done for splines in generali-
sed additive models [208]. While splines estimated with PIRLS contain a ridge-like pe-
nalty, wavelets are given a lasso-type penalty. It is mentioned that other penalties can
be applied such as bridge, hard thresholding, smoothly clipped absolute deviation (or
SCAD) and minimax concave penalties. The close relationship of the lasso penalty with
soft thresholding established in [253] is what makes it our choice in our work. Many
papers have studied wavelets for Gaussian PLMs such as [254], [255] and [256]. Also
worth mentioning is the work of [257] which presents a maximum likelihood estima-
tion procedure for Poisson regression using wavelet model selection. The first paper
to expand wavelet PLMs to the exponential family of distributions and which obtains
theoretical guarantees is [258]. In this paper, a PLM is proposed with the functional ef-
fect expanded on a wavelet basis. A backfitting algorithm is used to fit both the linear
and non-parametric parts. The maximum penalised likelihood estimators proposed for
the parametric and non-parametric part achieve near minimax convergence rates. The
author established that the Lasso penalty also leads to an adaptive estimation. Finally,
they compared their approach with a similar PLM estimated with spline and kernel me-
thods. One key takeaway for our work is that their simulation study found that their
proposed wavelet procedure led to worse quality estimates than splines procedure in
a Poisson PLM.

On an additional note, we wanted to highlight some of the currentimplementations.
For Poisson regression, We have already mentioned mgcv for GAMs in R. There are also
the implementations of glm in R fitted by iterative least-square (IRLS) and penalised
glmsimplemented in glmnet fitted using coordinate gradient descent (CGD) [259]. More
details on these algorithms are given in appendix C. These three implementations and
the theory behind them are the stepping stones of our proposed algorithm for fitting
the model presented in equation 4.1. Also, several packages have been introduced for
directly fitting NHPP intensity functions such as [260] for GLMs and [206] for GAMs.

Overall, this literature review showcases that on one hand, papers detailing NHPP
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intensity with PLAMs or GAMs are rare and often distinguish usage between splines and
wavelets. A hybrid model proposed in [261] did combine backfitted splines and kernel
methods. However, very rarely splines and wavelets are combined in the same model
specification. The only occurrence of this kind of work we have found is in [248] where
a hybrid approach for Gaussian regression PALMs is proposed with an application of
this model to electricity demand in [262]. Therefore, in this chapter we want to extend
these papers and study more precisely a PLAM of the first-order intensity function of
NHPPs as presented in equation 4.1.

4.3 Problem Formulation

In practice, the likelihood presented in equation 4.2 is intractable unless approxima-
tions are made. In particular, we can consider that the intensity function is piecewise
constant provided that we take a small enough timestep relative to the phenomenon
modelled. With that approximation, the integral term becomes a discrete sum over the
number of timesteps. Therefore, equation 4.2 becomes :

L= <f[A(t})> exp = Y A) (4-3)

t€[0,T)NN

Here, we express the intensity function in the unit of the timestep chosen so that
there is no need to multiply each term of the sum by the timestep. This approxima-
tion is widely used as it is enough to make the likelihood tractable under reasonable
assumptions on the intensity function. The intensity function of a Poisson process is
often confused with the rate (also denoted by ) in most cases), even though they are
conceptually different. These two quantities coincide exactly when we assume that the
intensity function is piecewise constant. Adopting a Poisson regression approach leads
to another version of the likelihood presented in equation 4.3 which depends on time
through different temporal signals x(¢). In the context of our problem, we observe a
sample {(Y;,x;), i € {1...n}} of size n € N. Therefore the likelihood of the equivalent
regression formulation of the NHPP likelihood from equation 4.3 can be rewritten as
follows :

L(8) = ﬁ exp (—Ai(0)) Ai(0)”

: (4.4)
i=1 Yi:

with theta the vector containing the parameters for all effects. Finally, the log-
likelihood is as follows :

n n

16) = 3 Vilog (M(0)) ~ 3 A(0) ~ 3 log (1) s)

i=1

with the last term of this log-likelihood independent of A which makes it irrelevant
for maximising the log-likelihood.
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4.3.1 Background

In this section we will introduce the different algorithms used as stepping stones for
our proposed approach to maximise this likelihood based on the model presented in
equation 4.1.

Generalised Linear Model

A generalised linear model (GLM) extends the traditional Gaussian linear regression
to a wider range of statistical distributions for the response variable while also adding
a non-linear relationship between the response and the covariates as a link function. In
our case, it directly corresponds to the parametric part of model 4.1 which we can write
as follows :

LP
log A(t) = Bo + > _ Bl (t) (4.6)
=1

this parametric model is generally estimated using an iteratively (reweighted) least-
square (IRLS) algorithm. While for the Gaussian linear regression setting, the maximum
likelihood estimator has a closed form, in general this is not true for GLM. Therefore, as-
suming a least-square objective, IRLS is used to iteratively update the parameters of the
model until convergence. Essentially, the IRLS consists in updating the parameters es-
timate with a gradient descent algorithm. The update slightly differs from a traditional
gradient descent with each observation receiving a weight depending on the magni-
tude of the residuals for that particular observation. It was found that this procedure
handles outliers in non-Gaussian distributions better.

Generalised Additive Model

Now for the non-parametric part of the model we start off with the generalised
additive model (GAM) which can be written as

log A(t) = 3 silai (1) (47)

with the same notations as for equation 4.1. It has been formalised in [207] with a fit-
ting procedure called backfitting. This proof of convergence to an optimal solution can
be found in [263]. More recently, a penalised IRLS (or PIRLS) procedure was proposed in
[251] which led to faster implementation while ensuring the smoothness of estimates
with a penalty term on the integral of second order derivatives of the smooth functions
estimated.

Penalised Wavelet Additive Model

The last stepping stone of our proposed model is the following :
Lw
log A(t) = wy(x(t)) (4.8)
=1
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It is very similar to the GAM apart from the basis functions which are wavelets ins-
tead of splines. It can be referred to as a wavelet additive model. Because of the sparse
nature of wavelets, we have chosen to adopt a LASSO-penalisation approach which can
be written as follows :

7(07°) = 1(6;") + 0], Le{l... Lo} (4.9)

with [;(0;”) the log-likelihood defined in equation 4.5 when it is restricted to to only
one wavelet effect | € {1...L,} of model 4.8. Also, because of the nature of the
problem at hand where we are trying to model a function supposed to be piecewise
constant, we have chosen Haar wavelets but other wavelet basis can be used in prac-
tice. To maximise the LASSO-penalised likelihood defined in 4.9 we have chosen a CGD
approach [259]. Furthermore, a choice needs to be made for the coefficient multiplying
the penalty that we write -, for some [ € {1... L, }. As the optimal 7, is unknown, we
adopt a cross validation procedure by crafting a grid of values. A good choice is to start
with the maximum ~ for which all parameters to be estimated are put to zero. Indeed,
above that 7/"**, we should always have a model with all parameters being null. Then
we take a value for 4/ depending on 7., (usually 7/"**.10~3). And with these two
boundaries we can create a grid on the log-scale for the values of v to try out. One
way to find optimal parameters under this LASSO setting is to use Coordinate Gradient
Descent (CGD). This procedure consists in optimising sequentially the objective func-
tion (penalised likelihood) with regards to each coordinate of the parameter vector. In
this work, we used the implementations proposed in [264] with the package glmnet.
The parameter update step in this procedure can be written as follows :

_ 9uy) v), je{l,...27 =1} (4.10)

ey = T ) — g
J

with 27 — 1 the dimension of the wavelet basis for effect I and with the term O —

8517(3) being the coordinate-wise update without penalisation (and with a step size equal
1
to 1) of parameter 6;". In particular, the soft-thresholding operator 7 resulting from the

LASSO penalty procedure optimised by CGD is as follows [264] :

a—0b ifa>0andb < |a
T (a,b) = sign(a)(la] —b)+ =< a+b ifa<0andb < |q
0 ifa<0andb>a

4.3.2 Proposed approach

Using the stepping stones introduced in Section 4.3.1, we propose two algorithms
which can be used to successfully fit model 4.1. The first one is referred to as 0BO which
stands for “One-By-One”. As its name suggests, the purpose of this first algorithm is
to fit each part of the model (only once) sequentially and in a particular order. The
second algorithm which will be referred to as BAC is a version of backfitting applied to
this model. The following sections unravel the details of each algorithm.
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oBO

The OBO algorithm consists in fitting sequentially the different components of the
model. Firstly, we start by fitting the linear part, then the splines components to finally
end with the wavelet effects. Apart from the linear component which is fitted all at once,
each non-parametric component is fitted separately. The idea behind this algorithm is
to move from the lowest frequency (linear part and splines with not too many degrees
of freedom) to the highest frequency of the signal (wavelet basis of relative high-order).
Algorithm 1 formally presents the implementation of this approach with the notations
introduced in the introduction. In addition, we note n_,(f_,) the additive model without
the [ — th effect which can also be extended to components. For instance, n_,(0_s) =
Bo 4+ 202, Bl (t) + SOk wy(2(t)), which is simply the same model as in equation 4.1
without the spline component.

Algorithme 1: OBO

1 Target:Y;
Number of components to be fitted separately: L =1+ L, + L,,;
Covariates : X = (X7, X* Xv);

N

3

4 Parameters: 6 = (6°,60°,0v);

5 Objective : argmax((0) ;

0

6 00;

7 0 = argmax ((0,Y, X), (IRLS) ; /* Linear component */
or

BYIY_eXp< 5(6 s))

9 0° = argmax[(0,Y, X), (PIRLS); /* Spline component */
03

0wY =Y —exp(n w(& w));

n 0% _argmaxl( .Y, X), (CGD); /* Wavelet component */

Result : 6
BAC

The other algorithm which we want to propose here is inspired from backfitting. Un-
like OBO, the BAC algorithm does not involve an a priori on the order in which the dif-
ferent effects should be fitted. In practice, effects are fitted inarandom order. Each time
an effect is fitted, the rest of the model fitted up until this iteration is subtracted from
the target response. So only the residuals of the current model iteration are fitted at
each step. Like backfitting, this procedure is repeated multiple times until convergence.
Convergence is reached when the L?-norm of the difference between the parameters
estimate at the previous and current iterations for each effect is less than a certain to-
lerance threshold e. In fact, OBO could be seen as one iteration of BAC however set in
a particular order. Algorithm 2 summarises this procedure. For BAC, we have obser-
ved that two additional steps were required to be added for the algorithm to converge.
The first one is that the intercept has to be fitted beforehand and outside any of the
components. The second one is that we need to recenter the functional components
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fitted (splines and wavelets). This is actually common for practical implementations of
backfitting as it guarantees convergence as well as improving its speed.

Algorithme 2: BAC
1 Target:Y;
2 Number of components to be fitted separately: L. =1+ L, + L,;
3 Covariates: X = (X7, X* X%);
4 Parameters: 6 = (67,60°,0v);
5 Objective : argmax((0) ;
0

6 0(0) ~—0;

7 €+ 1073;

s do

9 index = shuffie ({1...L});

10 for [ in index do

1 Y =Y —exp(ni(6-1));

12 if | =1 then

13 08) = arglglaxl(O, f", X), (IRLS); /* Linear component */
14 elseifl <l <=1+ L, then

15 O(St) = argerflaxl(g, f’, X)), (PIRLS) ; /* Spline component */
16 else

7 0 = argelilaxl(e, Y, X), (CGD); /* Wavelet component */
18 end

19 end
20 t<—t+1;

2o whilevi e {1,..., L}, |8 — 8|5 > €]|8||, and t < 100;
Result: 0

4.4 Case Study : EV arrivals at charging points

In this section we propose a case study on EV charging session data explored at a
high level in [18] and [198]. The following sections introduce the experimental protocol
and the results associated.

4.4.1 Data collected

The dataset in the scope of this case study gathers charging session information
in the United Kingdom (UK) during 2017 [143]. It concerns domestic chargers ranging
from 3kW to 22kW. However, it is expected that the great majority of EV chargers in
this dataset are 3kW or 7kW chargers. This data was collected by the UK department of
transport. One key finding on arrival times (or plug-in times) of EVs was that domestic
charging events were more frequent with different patterns on weekdays than on wee-
kends. We have also observed that in the data and that is why we have chosen to focus
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solely on weekdays for this case study. The circumstances of EV uptake in 2017 in the
UK was strong. The total number of plug-in cars on UK roads passed 130,000 that year.
The best BEV seller was the Nissan LEAF with more than 13,000 registrations. Across
the whole country, the largest sales were made in London and Eastern England with
Scotland and South West garnering the fastest growth [143]. While public EV charging
infrastructure is increasing at a fast pace, domestic charging remains the first choice
for a majority of EV users.

In addition to this dataset, we have gathered temperatures in the UK from 8 of the
top 10 cities in terms of population from the lowa Environment Mesonet website [73].
That is, London (8.9 million), Birmingham (1.15 million), Glasgow (612 thousand), Liver-
pool (579 thousand), Bristol (572 thousand), Manchester (554 thousand), Leeds (503
thousand), Edinburgh (508 thousand). The temperature for each city is not particularly
recorded at the same time nor at a regular timestep. Therefore, we have interpolated
all these temperature with cubic splines. In order to have a more compact model, we
propose a weighted average version of the temperature as follows :

8
1
temp(t) = —g——— > popsTss (4.11)
> a1 PODs ;
where T} ; is the temperature recorded at time ¢ by station s and temp(¢) is the weigh-
ted mean temperature which will be used in the modelling experiments.

4.4.2 Experimental setting

The experimental protocol we have chosen to try out our methods is close to the
operational setting. Indeed, it is a rolling-forecasting origin procedure which trains the
model on all data available up until a certain date to then forecast the following week.
The first training set runs from the 1st January to the 1st September 2017. Therefore, it
comprises 17 test weeks from the 4th September to the 31st December 2017 (the 2nd
and 3rd September are a weekend). The two algorithms considered in our experiments
are OBO and BAC as defined in section 4.3.2. Each algorithm have been tested with
three different variations. All of them include a linear part which is simply the indicator
of the day of the week. The first variation only takes into account splines components
for the hour of the day and the weighted temperature defined in equation 4.1 (OBOs
and BACs). The second variation is the same with only wavelet components (OBOw and
BACw). And finally, the third variation includes both splines and wavelet components
(OBOsw and BACsw). Our hope was that the linear and splines components would cap-
ture most of the variations in the intensity function while the wavelets would enhance
the performance during peak times.

To assess the efficiency of the various approaches, we have retained two types of
metrics : performance and parcimony metrics. For performance, 4 metrics have been
chosen : mean absolute error (MAE), root-mean squared error (RMSE), peak RMSE, and
deviance. The MAE and RMSE are performance metrics widely used which we have al-
ready defined in previous chapters. The peak RMSE only focuses on the daily peak. The-
refore, the better the approach captures daily peaks, the lower the peak RMSE should
be. Finally, deviance is used as a goodness of fit test. In the context of Poisson regres-
sion, the deviance formula can be written as follows :
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D=2)" <Yi log (;) —(Yi - YG)) (4.12)
i=1 (

with Y; being the model prediction. This formula can be derived from the likelihood
ratio test comparing the proposed model and the saturated model. The latter predicts
exactly the observed value (like an oracle model). Again, the purpose is to have minimal
deviance.

As for parcimony metrics, we have chosen to take into account the estimated num-
ber of degrees of freedom (d.o.f). In addition, we also collected the number of iterations
(particularly relevant for the BAC algorithm), the number of parameters to be estimated
and the number of non-zero parameters kept and the runtime.

Due to the fact that only one year of data is available and that there is an obvious
yearly cycle, we have attempted to detrend the data by dividing the number of arrivals
by the trend estimated by thin plate regression splines over the whole year. The trend
is divided instead of subtracted in order to ensure that all values are still positive. Pre-
cisely, we perform a euclidian division to make sure that the target is a natural number.
However this did not improve the results on both training and testing sets so we have
finally decided to keep the data in its original form.

4.4.3 Results

Figure 4.1 represents a fitted BACsw approach for a random week of the first training
set. On thisfititis interesting to note that the benefit of the wavelet effect can be clearly
observed on four out of the five peak estimates. The benefit of wavelets is marginally
seen on the ascendant and descendant part of the curve. This reinforces our a priori
which was that wavelets could help better capture peaks. Essentially, we can see that
most of the work is done by the linear and splines part but the wavelet really seem
to do what we wished for them to do which is enhancing the performances on peak
estimates. The grey curve only shows the difference in level for every day estimated by
the linear part. As the department for transport reported and as we observed in the
data, there is marginal variation between the level of different days. Therefore, even
though there is a slight change in value every day of the week, it is not easy to conclude
whether is it significant. The estimate for the intercept is probably enough for the linear
part in our case.

On Figure 4.2 we show the wavelet basis expansion of the hour of day effect. We
have chosen to present this effect because it does not have too many levels and is easy
to understand. However, the idea is obviously to use basis of much higher order like
it is the case for the temperature for example or other potential covariates. Here, we
have chosen to use the Haar basis because we assume that the intensity is piecewise
constant and also for its ease of implementation. However, the proposed procedure is
not restricted to a certain type of wavelet. It is interesting to compare what happens
to this basis after fit. In particular, the soft-thresholding procedure obtained by the
LASSO fit described in section 4.3.1is illustrated by Figure 4.3. It shows the same wavelet
functions than in Figure 4.2 which are multiplied by the coefficients estimated in the
BACsw approach.
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Figure 4.1 - Random week taken in the training set
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Figure 4.2 - Before fit
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Figure 4.3 - After fit
Figure 4.4 shows the sum of all these individual functions which results in the time

of day effect for the BACsw approach. We can observe that the evening peak is clearly
identified and localised between 4 and 7pm.

[
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Time of day [hours]

Figure 4.4 - Time of day wavelet effect fitted

In terms of performances on the training sets, Figure 4.5 represents the boxplot of
the 17 training sets for the 4 performance metrics retained in this analysis. The 4 metrics
seem to agree that the BACsw performs best. Also it seems clear that the BAC algorithm
performs better than the OBO. This can be due to the fact that with multiple iterations
the model can be further refined. Also, it may also mean that the order in which the
components are fitted does not actually matter as the nature of each component might
be enough for the model to use their behaviour as we expect it to.
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Figure 4.5 - Performances on the training sets (Domestics UK)

The performances on the testing sets are harder to distinguish probably because
we are lacking some information to properly generalise the model. In particular, the
metrics are much worse on the testing sets compared to the training sets which could
indicate an overfitting issue. However, because this is the case for all approaches, it is
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Figure 4.7 - Parcimony measures on training sets (Domestics UK)

more likely that we are missing other critical information such as traffic. Also, because
we only have one year of data, the yearly cycle cannot be estimated. Even if we made an
attempt at removing the trend, the yearly cycle still seems to have a significant impact.

Finally, when looking at parcimony measures (Figure 4.7), itis interesting to note that
the estimated d.o.f for the BACsw et 0BOsw is smaller than their wavelet only counter-
parts. Mixing both wavelets and splines leads to a more performant and parcimonious
model than just with wavelets. Also, even though there are more parameters to be es-
timated initially, the number of non-zero parameters is relatively equivalent and the
BACsw runs quicker than the BACw (apart from certain outliers which are probably due
to some limitations of our implementation). Overall, the variation of BAC using wavelets
take longer to fit inherently because of the penalised wavelet implementation with the
cross validation to find the optimal penalisation parameter ~.

4.4.4 Additional study on Palo Alto data

As the results on the testing sets were not conclusive on the Domestics UK dataset,
we have conducted an additional study on Palo Alto (USA, California) data [265]. The
experimental set up is similar to the one used for the Domestics UK experiments except
that thanks to a much larger time period covered by the datasets, we can train our
models on more data. The first training set runs from Monday 4th January 2016 to Friday
4th January 2019. Then the testing sets covers the 20 consecutive weeks starting from
Monday 7th January 2019. Also, the yearly cycle trend is now included by using a time of
year covariate which ranges from o to 1. The rest of the covariates remain the same. The
results of these experiments in terms of performances obtained are shown on Figure

4.8.
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Figure 4.8 - Performances on the testing sets (Palo Alto)

Itis interesting to note that unlike what we previously observed, the 0BO approaches
seems to be equivalent to their BAC counterparts for the RMSE and MAE metrics and
are even marginally better for the peak RMSE and Deviance. Also, it seems that the
0BOsw approach is able to capture peaks better than the other approaches which also
indicates that the combination of spline and wavelets is particularly suited to this ap-
plication. However, it is still unclear whether this improvement is significant as we can
see that for the BAC approaches, all methods seem to be relatively equivalent.

4.5 Conclusion

In this chapter we have studied an additive model with both wavelet and spline com-
ponents for estimating the first-order intensity function of NHPP. Two algorithms were
proposed, 0BO and BAC. We have shown that BAC performs better on fitted residential
data (Domestics UK) but the approaches seems to be fairly equivalent on testing data.
However, we observed that there could be some benefit to use a model with additive
spline and wavelet effects to capture peaks when looking at the peak RMSE metric on
both datasets used in this case studys. The methodology proposed can be extended to
any timestep (as long as it is constant), other wavelet basis (e.g., Daubechies, Meyer).
The convergence speed of the algorithm could be accelerated by fitting first the linear
component to then perform the backfitting of the non-parametric part for instance.
Better performances could be obtained by giving more degrees of freedom (knots) to
splines but it can sometimes lead to overfitting. One limitation of the BAC algorithm
proposed is that despite the empirical evidence of convergence of the algorithm, there
is no unicity of the parameter vector estimated. That is in great part due to the random
path taken to fit the various components. Finally, other metrics could have been used
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to assess peak estimates as it can be argued from an operational perspective that it
is more important to obtain a better estimate of the peak magnitude not too far from
peak time than a worse estimate exactly at peak time. Therefore, it might be interesting
to compare the daily time series forecasted with the observed one with a measure of
similarity thanks to dynamic time warping for instance.
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Chapitre 5

Multi-resolution peak load forecasting

This chapter is based on a paper published in International Journal of Forecasting [266].

In the context of smart grids and load balancing, daily peak load forecasting has
become a critical activity for stakeholders of the energy industry. An understanding of
peak magnitude and timing is paramount for the implementation of smart grid strate-
gies such as peak shaving. The modelling approach proposed in this paper leverages
high-resolution and low-resolution information to forecast daily peak demand size and
timing. The resulting multi-resolution modelling framework can be adapted to different
model classes. The key contributions of this paper are a) a general and formal intro-
duction to the multi-resolution modelling approach, b) a discussion on modelling ap-
proaches at different resolutions implemented via Generalised Additive Models and
Neural Networks and c) experimental results on real data from the UK electricity mar-
ket. The results confirm that the predictive performance of the proposed modelling
approach is competitive with that of low- and high-resolution alternatives.
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5.1 Introduction

The electric daily peak load is the maximum of the electricity power demand curve
over one day. Having an accurate forecast of the daily peak enables independent sys-
tem operators (ISOs) and energy providers to better deliver electricity and optimise
power plant schedules. The importance of such a forecast is increasing as the integra-
tion of intermittent renewable production sources progresses. In particular, renewable
energy sources are at the bottom of the merit order curve which makes them (currently)
the most economical source of energy used to serve the market. However, they are in-
termittent and provide time-varying levels of power generation, which are only partially
under human control. If electricity demand is high and renewables cannot provide for
it alone, ISOs have to deliver electricity from sources with higher marginal costs (e.g.,
gas-fired plants) for the stakeholders as well as for the environment in terms of CO2
emissions. In such a context, accurately forecasting the peak demand magnitude and
timing is essential for determining the generation capacity that must be held in reserve.

Electrical equipment is tailored to support a specific peak load. If the demand comes
close or exceeds the network capacity, it can lead to distribution inefficiencies and ulti-
mately power system failures, such as blackouts. With the increasing number of electric
vehicles (EV) in circulation, a further source of stress is added to the electricity system.
For instance, 46% of vehicles sold in Norway in 2019 were EVs [19]. The challenge po-
sed by the additional EV demand must be met by more tailored management systems
and policies, if expensive infrastructural works are to be avoided. Dynamic electricity
pricing schemes, for example, the Triads in the UK or the Global Adjustment in Ontario,
Canada, have been developed to reduce the system peak load. Consumers who can
correctly estimate and cut their use during peak events can unlock great savings. Peak
demand forecasts will thus be key for the development of such policies.

To account for the increasing demand for electricity and to prevent system failures,
smart grid technologies and policies are being implemented to foster communication
between the various stakeholders of the electricity supply chain to achieve a more effi-
cient use of energy. One major objective is to maximise the load factor. The load factor
is the average load over a specific time period divided by the peak load over the same
period. Maximising it leads to a more even use of energy through time, thus preven-
ting system failures and surges in electricity prices. One of the most common ways to
achieve load factor maximisation is peak shaving, which refers to the flattening of elec-
trical load peaks. Three major strategies have been proposed for peak shaving, namely
integration of Energy Storage System (ESS), integration of Vehicle-to-Grid (V2G) and De-
mand Side Management (DSM) [267]. ESS and V2G integration provide ancillary sources
to balance the grid through batteries while DSM shifts consumer demand to flatten the
peak. To be activated adequately, all these strategies require accurate forecasts of the
demand peak magnitude (DP) and of the instant at which it occurs (IP).

This article proposes novel methods to forecast the DP and the IP by leveraging
information at different time resolutions. In particular, the multi-resolution approach
proposed here is illustrated in the context of two model classes : Generalised Additive
Models (GAMs) and Neural Networks (NNs). Both are state of the art predictive models,
widely used to forecast electrical load in industry and academia. The performance of
the multi-resolution framework under both model classes is assessed using aggregate
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UK electricity demand data from the National Grid [268].

The rest of the paper is structured as follows : Section 2 presents a literature review
of daily peak forecasting methodologies. Section 3 introduces multi-resolution model-
ling using GAMs and neural networks. Section 4 explains how the different models were
set up in the high-resolution, low-resolution and multi-resolution settings. Section 5
analyses the results of the models described in Section 4, using UK demand data.

5.2 Related work

This section provides an extensive literature review of peak forecasting methods
and was conducted to identify gaps in the field. It includes methods ranging from pro-
babilistic approaches to deep learning.

Probabilistic forecasts have been widely adopted in the context of load forecasting
applications (e.g.,[63] for an overview), but little has been done on probabilistic peak
demand forecasting. Two probabilistic set-ups, commonly used for peak load forecas-
ting, were outlined by [260]. The first is block maxima (BM), where data is separated
into time chunks of equal lengths and the maximum of each chunk is assumed to ap-
proximately follow a generalised extreme value (GEV) distribution. The second is peaks
over threshold (POT), which approximates the distribution of the excess load over a
threshold by a generalised Pareto distribution. While the POT and BM settings can be
unified via point processes [270], in this work we are mainly interested in the BM case.

In a long-term forecasting setting, [271] used demand data at the daily resolution
to forecast the magnitude and timing of the yearly peak (i.e., the day characterised
by the largest total demand). They considered a forecasting lead time of one full year
and obtained a probabilistic forecast by simulating year-long trajectories for the wea-
ther variables and plugging them into a deterministic linear regression model. Similarly,
[272] considered a long-term forecasting application, where the aim was to forecast the
probability distribution of the annual and weekly peak electricity demand. They used
semi-parametric additive models to capture the effect of covariates, such as tempera-
ture, on the demand and obtained a probabilistic forecast by adopting a simulation and
scenario-based approach. [273] used quantile regression methods to forecast the DP
one day ahead. Even though they used quantile regression to obtain an upper bound
on demand, quantile estimates at several probability levels could be used to estimate
the full peak demand distribution. Also [274] modelled the DP via a quantile regression
model, but their objective was post-processing daily estimates to forecast the annual
demand peak, rather than modelling the DP probabilistically.

Multivariate regression models using multivariate adaptive regression splines (MARS)
were proposed by [275] to forecast the DP in South Africa. Explanatory variables in-
cluding meteorological variables are aggregated at the daily resolution (e.g., average,
minimum and maximum temperature). The model outperforms piecewise polynomial
regression models with an autoregressive error term. [276] studied time series of the
DP and illustrated its heteroscedastic structure. A SARIMA-GARCH errors model and a
regression-SARIMA-GARCH model are then proposed to forecast it at a short-term hori-
zon. Results show that SARIMA-like models produce forecasts with an accuracy around
1.4 in mean absolute percentage error on a testing period.

[277]1 proposed a hybrid model to forecast whether the following day will be a peak
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load day for the billing period for customers subject to demand charge structure. They
apply their model to optimise the electricity bill of an American University. Load data is
provided every five minutes from January 2013 to April 2016. Here, the POT set-up was
used with a threshold depending on a monthly average and variance of the daily load.
An original combination of 4 forecasts was proposed. First, a linear model is used to
forecast the maximum daily load at a monthly horizon which is then coupled to short-
term load forecasting models (NN and ARIMA) to provide two forecasts. Two other fo-
recasts were computed using binary classifiers (logistic regression and NN) and a syn-
thetic minority over-sampling technique (SMOTE) was used to balance the classes. The
authors demonstrated that their methods led to better statistical accuracy and to re-
duced electricity bills.

NNs are one of the most popular algorithms for peak load forecasting tasks because
of their strong performance in non-linear modelling. Their flexibility is remarkable, but
it is difficult to pick the right architecture and hyperparameters for a specific problem.
One of the first papers proposing a NN peak load forecasting method was produced
by [278]. According to the authors, NNs performed well on load forecasting problems,
but they were much less performant on peak load forecasting tasks. A fuzzy NN was
found to be more robust and accurate than a traditional NN structure. It involved an
additional layer of fuzzification of the inputs before entering the only hidden layer of
the network.

In a more traditional set-up, [279] tested a Fully Connected Neural Network (FCNN)
with different variants of back-propagation algorithms where training was conducted
separately in four periods of time during a year. Their work was further developed by
[280], where numerous weather variables were included (e.g., temperature, rainfall,
wind speed, evaporation per day, sunshine hours and associated statistics). Similarly,
different optimisation procedures were considered and it was found that an adaptive
learning method based on the learning rate and momentum was the most performant.
[281] combined a self-organising map with a NN to find better clusters of training data to
improve forecasting performance. Some authors considered other form of networks.
For instance, [282] adopted abductive networks with the aim of obtaining a better intui-
tion and a more automated way to address peak load forecasting. In particular, these
networks split the overall problem into smaller and simpler ones along the network
with abductive reasoning. It is based on an automated procedure which organises the
data available into different chunks and deals with them separately.

More recently, recurrent Neural Networks (RNNs) have been used by [283] in the
form of Gated Recurrent Units (GRU). In particular, a dynamic time warping (DTW) ana-
lysis was used to produce the GRU inputs. The DTW distance was used to find the most
similar load curve to the one observed before the targeted load curve. Assuming that
subsequentload curves are also very similar, they used the subsequent load curve from
the training data to encode the inputs of the GRU network. A Long Short-Term Memory
(LSTM) architecture has been used by [284] and was found to be more computatio-
nally efficient compared to FCNNs and other RNNSs. Three statistical metrics were used
to evaluate model performance : Mean Absolute Percentage Error (MAPE), Root-Mean
Squared Error (RMSE) and mean bias error. In our work, statistical metrics including
MAPE and RMSE will also be used to avoid introducing any bias towards a particular
operational application.
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The literature on deep learning peak load forecasting is sparse, but deep learning
probabilistic load forecasting is much more common (e.g., [285], [286] and [287]). Such
models do not explicitly focus on the DP or the IP as the objective functions used to
estimate their parameters are based on demand observed at a higher frequency (intra-
day). The high-frequency forecasts thus obtained can be post-processed to produce a
forecast for the DP.

Support Vector Regression (SVR) is another popular class of load forecasting me-
thod, based on structural risk minimisation instead of empirical risk minimisation as in
NNs. [288] used SVR in a local prediction framework. Recently, [289] used an ensemble
forecasting approach with other Machine Learning algorithms such as boosting ma-
chines, tree-based methods and bagging techniques. A compensation process based
on an isolation forest is later added by analysing the predicted values of the ensemble
models to detect outliers in the peak data. SVR are compared to NNs by [290] for a
control strategy of peak load and frequency regulation. LSTM NNs were used to fo-
recast power load and improve the control strategy considered in this particular use
case.

From this literature review, it can be concluded that a wide range of methodologies
have been adopted in peak load forecasting applications. In most short-term applica-
tions, model inputs are manually chosen features that are defined at the same (daily)
time resolution as the peak demand, which is the variable to be forecasted. Conver-
sely, in long-term applications, weather variables are simulated at the original (high)
resolution to produce demand forecasts at the same resolution, which are then post-
processed to obtain low resolution (e.g., yearly) peak forecasts. Hence, to the best of
our knowledge, the existing literature on peak forecasting has not explored methods
that are able to integrate both low- and high-resolution signals in a single model. Ho-
wever, in the field of functional data analysis, hybrid approaches have been used for
clustering and forecasting functional data (e.g., [291] and [292]). Therefore, this paper
aims to exploit functional methods to tackle multi-resolution problems. From a feature
engineering point of view, the goal is to automate feature extraction of high-resolution
signals, that is to let the model decide which hidden features to extract from the signal.
This can be done with signal processing procedures such as tensor product decompo-
sition, wavelets or Fourier transforms [293].

The literature review also suggests that not much effort has been directed towards
forecasting the IP, which is surprising because forecasting the IP is at least as important
as forecasting the DP, for the purpose of short-term smart grid management and ope-
rational planning [294]. To fill this gap, the performance of multi-resolution methods
will be illustrated in this paper on both a DP and an IP forecasting problem.

5.3 Multi-resolution modelling

In this section, the multi-resolution modelling approach is introduced with its gene-
ral principles. It is then developed formally and illustrated with GAMs and NNs.
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5.3.1 General idea

The main idea behind multi-resolution modelling is to build a parsimonious model
that is able to handle input and output variables that are available at different reso-
lutions. In the context of DP load forecasting, low-resolution variables (e.g., day of the
week, maximum daily temperature) are observed daily, while high-resolution variables
(e.g., temperatures or raw demand) are updated every hour or half-hour. Such pro-
blems are usually handled by manually placing all variables at the same resolution. In
particular, one option is to take a high-resolution approach, which consists in doing the
modelling at the highest available resolution, which might require interpolating some
of the low-resolution variables. Such an approach often lacks in parsimony, as the low-
resolution variables are brought to the higher resolution, thus increasing the size of
the data that needs to be processed, while adding no extra useful information. Another
option is to take a low-resolution approach, that is to transform the high-resolution va-
riables into a set of manually chosen daily summaries or features. In this approach, the
size of the data is reduced, but feature engineering is time consuming and some of the
information contained in the high-resolution variables is lost in the process.

The multi-resolution approach proposed here aims at capturing all the information
contained in the high-resolution variable, while avoiding explicit feature engineering
and retaining the parsimony of the low-resolution approach. To describe the multi-
resolution idea more formally, let us considery, = {v:(t) }+cq1,...r} the vector of electri-
city demand at each time step ¢t > 0 of the day ¢ € N . T is the total number of daily
steps (e.g., T=48 for half-hourly steps). Then, the DP of day ¢ is DP; = max(y,) and IP; is
the time step corresponding to DP;. Let xi°* be the i-th vector of covariates observed
daily and let X" be the corresponding vector of covariates containing information at
the intra-day resolution. The multi-resolution approach exploits both sets of covariates
as model inputs to obtain the forecasts of the DAPi or the IT)Z», that is

DP; = 1y (%1, x[9m) (5.1)

IP; = 4y (™, x;"") (52)
where 1, and 1, represent the model for, respectively, the DP and the IP. This general
definition does not specify how the high-resolution inputs should be dealt with in prac-
tice. Several approaches could be considered, the aim being to process the information
contained in a (possibly high-dimensional) signal vector, while avoiding information loss
and retaining computational efficiency. In this paper, two options are considered. In
particular, a description of how high-resolution covariates can be handled within GAMs
and NNs is given below.

5.3.2 Particular instances of the multi-resolution approach

The multi-resolution approach is detailed firstly for GAMs which, due to their perfor-
mance and interpretability [262], are widely used in industry for load forecasting. Then,
the multi-resolution approach is extended to NNs, which often perform well on load
forecasting problems and enable the flexible handling of heterogeneous model inputs

[295].
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Generalised Additive Models

First introduced by [296], GAMs are a semi-parametric extension of generalised li-
near models (GLMs) where the response variable, y;, is assumed to follow a parametric
probability distribution. That is, y; ~ Dist(u;, @) where p; and 8 are model parameters.
While the elements of 8 do not depend on ¢, parameter p; is modelled as follows [208] :

g(w) = x[ v+ fi(xi), (5.3)

where ¢ is a monotonic transformation, which is simply the identity function in this
paper. Two separate terms can be distinguished on the right-hand side of this equation:
a parametric part x! «, where x; is a vector of covariates while ~y is a vector of regression
coefficients, and a non-parametric part >, f;(x;) which is a sum of smooth functions of
covariates. The smooth effects are built via linear combinations of K; basis functions,
while the corresponding basis coefficients are penalised via generalised ridge penalties.
The strength of the penalties is controlled via smoothing hyperparameters, which are
selected using criteria such a generalised cross-validation.

In the context of forecasting DP,, itis interesting to consider for Dist(u;, 0) a genera-
lised extreme value (GEV) distribution. In fact, the GEV model is asymptotically justified
for block-maxima as T" — oo [269]. Thus, when enough steps are available throughout
the day, the GEV distribution is particularly attractive for modelling the DP. The scaled-T
(a scaled version of Student’s t) distribution provides an alternative, which is particularly
suited for heavy tailed data such as peak load. The Gaussian distribution can be used
as a baseline model. As for the IP, an ordered categorical (ocat) distribution based on
a logistic regression latent variable is used. All of these distributions as well as GAM
building and fitting methods are implemented in the mgcv R package [297].

Within the additive structure of GAMs, x/** and x/"*" can be treated as inputs for
different smooth functions. The elements of x!°* can be handled via separate standard
smooth effects, which take scalars as inputs, while the joint effect of several elements of
xl°v can be captured via standard multivariate smooth effects. However, the x/**" cova-
riates have to be treated via functional smooth effects. The latter are smooth functions
which take the vectors of high-resolution covariates as inputs and output a scalar. The-
refore, functional GAMs permit the handling of each covariate at its original resolution,

thus avoiding interpolation and guaranteeing parsimony.

In addition to the principle of parsimony, the goal is also to retain the time depen-
dence of the covariates. In fact, it is important to ensure that the model is aware that
each element of the high-resolution covariates has a different impact on the peak load
distribution, as it belongs to a different time of day. However, modelling the effect of
each element separately would ignore temporal dependencies and might lead to over-
fitting or lack of interpretability. A way to achieve a compromise when modelling high-
resolution covariates is to make them interact with the time of day sequence via tensor
product effects. Such effects can easily be integrated in GAMs, as explained in the fol-
lowing.

In continuous time, the smooth effect for a high-resolution (functional) covariate,
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x;(u), can be written as follows :

f(w) = / o(:(u), u)du (5.4)

where ¢ is the time-dependent effect of the covariate, which needs to be estimated,
while u is the time of day. In practice, on the i-th day, z;(u) is observed at F' discrete
instants 0 < t; < --- < tp < T and the corresponding values of z;(u) are stored in the
vector x;. Hence, approximating the integral with a summation and constructing ¢ via
a tensor product expansion leads to :

f(z)) o(xi(ty), tr)

[M] =

r=1

M~
M)~

> Buaw(@i(t,)b(t) (5.5)

1 1=1

b
Il

r=1
where {a}ayeq,... ky and {bi e,y are known spline basis functions and { B } (ke
are parameters to be estimated. By using such effects, high-resolution information can
be parsimoniously incorporated into the model, while retaining the temporal informa-
tion contained in the covariates.

Neural Networks

NNs are convenient machine learning algorithms to implement a multi-resolution
model. In fact, common architectures such as Convolutional Neural Networks (CNN)
and RNNs already make use of inputs from different scales. Recent work was under-
taken to make tensor inputs available for multi-layer perceptrons with MatNet [295]
which further shows their versatility. From scalars to tensors, the flexibility of NNs is
hard for other machine learning models to compete with.

A FCNN or CNN architecture, without its output layer, can be generally written as
follows :

Hk(X, @) = hk( .. hg(h,g(hl(x, 6‘1), (92), (95) c. 79k) (5.6)

where k is the number of hidden layers of the NN, A; ;c(1. 4y are the transformations
made by the hidden layers (e.g., linear operation, activation and dropout) and © =

WKYx{1,..,L}

{0:}icq1..ky isthe sequence of parameter vectors (weights and biases). In a multi-resolution

approach, one part of the architecture will contain low-resolution information feeding a
FCNN branch and the other one will contain the reshaped high-resolution data feeding
a CNN or RNN branch. In this paper, only CNNs were considered in depth for this latter
branch, with the lags of the response provided as model inputs. The CNN enables a
very close replication of the tensor product construction used for GAMs, thus creating
a consistent set-up for comparing both algorithms.
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Figure 5.1 - Multi-resolution architecture for NNs with a Multi-Layer Perceptron (MLP)
taking low-resolution inputs, and a CNN with high-resolution inputs

Even though the CNN and FCNN branches do not have similarly shaped inputs and
outputs, the unit shapes can be transformed along the network to interact and be
brought together without losing consistency. This process consists in flattening the ten-
sor shapesin order to bounce back onvectorial inputs within some layer of the network.
Itis precisely this flexibility that can be leveraged to build a multi-resolution architecture
(Figure 5.1). More precisely, the CNN branch contains one convolutional block for each
of the high-resolution time series. In this way, each tensor product of the GAM formula
can find its equivalent in the CNN branch of the network. In fact, the multi-resolution
NN architecture can be concisely written as follows :

1 = Fi(H(Xiow, ©), H (Xpigh, ©")) (5.7)

In (7)., Hy is the FCNN which handles low-resolution terms while H; is the CNN which
deals with the high-resolution information. Then, in the final part of the network, both
outputs are concatenated (after flattening the CNN branch) and enter another FCNN
F; which can be reduced to the output layer when j = 1. Here, p;, is the mean of the
random output variable considered. This multi-resolution architecture is summarised
in Figure 5.1.

5.4 Experiments

On the DP and the IP forecasting tasks, the multi-resolution approach is compa-
red to two alternative modelling approaches : a high-resolution approach and a low-
resolution approach (Figure 5.2). The low-resolution approach uses inputs aggregated

at the daily level (e.g., maximum daily temperature, day of the week) to forecast the
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DP and the IP separately. The high-resolution approach uses inputs at the half-hourly
level to forecast the half-hourly demand and then it extracts the DP and the IP by taking
the maximum of the half-hourly forecasted values and the corresponding time of day.
Therefore, the high-resolution approach leverages all the information available by ta-
king half-hourly inputs and outputs while the low-resolution approach directly models
the variables of interest (DP and IP) with less parameters to be estimated. The multi-
resolution approach can be seen as a compromise, aimed at integrating the advantages
of both approaches, and the following experiments are designed to assess whether it
can outperform them.

4 ™~
Half-hourly data > H'gh'zziz'::"": 1M°de' >| Half-hourly demand
\ ] J
Y
4 ™~
\_ ] J
A
Half-hourly data > Multi-Resolution Model
Daily data > Section 4.3
\§ J
INPUTS MODELS TARGETS

Figure 5.2 - The different modelling settings compared in this work

The comparison includes baseline models : a naive persistence model, which sim-
ply consists of forecasting the DP and the IP based on the value taken by the target
variable on the previous day; a low-resolution ARIMA (on daily peaks with horizon 1);
a high-resolution ARIMA aggregated forecast composed of 48 ARIMA models, each fit-
ted on the half-hourly load of a specific time of day with horizon 1. That is, the high-
resolution ARIMA produces 48 forecasts at horizon 1 instead of one forecast at horizon
48. All ARIMA models are fitted using the [298] algorithm without using exogenous in-
formation.

The performance metrics chosen for DP models are the mean absolute percentage
error (MAPE) and the root mean squared error (RMSE). As for IP models, the RMSE is
also used but the MAPE is substituted with a relaxed accuracy (R-Accuracy) metric in
the form of a binary loss function (equal to 1 if the IP forecasted is more than 2 instants
away from the observed IP and o if it is within 2 instants of the observed IP). While the
R-Accuracy metric is also relevant in operational settings where it is crucial to know
the IP within a small time window, the RMSE penalises forecasts proportionally to their
distance from the observed IP.

A rolling-origin forecasting procedure is used to replicate a realistic short-term load
forecasting set-up. Model parameters are updated on a monthly basis with consoli-
dated data since, in an operational setting, threats to data validity and computational
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constraints can emerge when refitting a model too often using real-time data.

The data used in the experiments is the half-hourly load consumption (total national
demand) between 2011-07-01 00 :00 :00 and 2016-06-30 23 :30 :00, available via the UK
[268] website. Temperature data at different locations (London, Sheffield, Manchester,
Leeds, Cardiff, Bristol, Birmingham, Liverpool, Crosby and Glasgow) was downloaded
from the [299] website. The temperature data is at an hourly resolution. It is interpola-
ted (natural cubic spline interpolation) to obtain half-hourly data. Furthermore, if pop;
is the population of the nearest city to station s, a weighted mean temperature is cal-

culated as follows :
10

1

temp(t) = ——— opsTs .8
p(t) foilpops;pp ' (5.8)
where Ty, is the temperature recorded at time ¢ by station s and temp(t) is the weighted
mean temperature which will be used in the modelling experiments. An exponentially
smoothed version of the weighted mean temperature will also be included in the model
features : temp95(t) = a x temp95(t — 1) 4+ (1 — ) x temp(t). It was computed using a

smoothing parameter a = 0.95, based on expert knowledge.

5.4.1 High-resolution approach

Forecasting the electricity hourly or half-hourly demand is a problem that has been
extensively studied in the literature [300]. It is well known that a common driver of elec-
trical load is weather and in particular temperature. In addition, calendar information
can be used to explain the seasonal variation of the demand. Finally, lagged demand va-
lues are highly informative for the subsequent values. These variables are summarised
in Table 1.

Table 5.1 - High-resolution model inputs

Type Name Unit Description
Weather temp [C°] Half-hourly temperature
tempos [C°] Half-hourly smoothed temperature
dow  Categorical Day of the week
Calendar toy None Time of year (between o0 and 1)
t Categorical Time of day (between o0 and 47)
Lag load24  [10! GW]  Half-hourly load on the previous day
Output load [10' GW] Half-hourly load

The GAM chosen to implement this approach is y;(t) ~ N(u;(t), 0?) where the mean
of the Gaussian distribution is modelled by :

pi(t) =1 (dow;) + s (t) + f7°(toy,(t)) + f3° (temp,(t)) + f3* (temp95,(t))
+ ti¥° (temp;, t) + tiy° (temp95,(t), t) + tis° (load24,(t), t) (5.9)
+ tiy” (toy, (1), 1)
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In (9), the ¢ functions are parametric effects, while the f functions are univariate smooth
effects and the ti functions are bivariate tensor product smooth interactions. The num-
ber of basis functions used is indicated in the exponents. For instance, f2° uses 20 basis
functions and ti>” uses 5 basis functions for each marginal. Thin-plate spline bases are
used to build all smooth effects [301]. The model structure (9) was decided on the basis
of previous experience in the field and the statistical significance of each effect.

There are many NN architectures which could be considered for this problem. We
want an architecture with the minimum number of layers possible and using the same
model inputs as the GAM. Adding too many layers would lead to a drastic difference in
degrees of freedom between the NN and the GAM which is not realistic in a short-term
load forecasting scenario. Furthermore, as we are not in the big data regime, adding
too many layers may actually worsen the performance of the network.

Given that the universal approximation theorem ([302] and [303]) guarantees that
a two-layer FCNN can approximate any measurable function on a compact support,
a FCNN carefully built can approximate any non-linear function of the input variables
with only one hidden layer. Therefore, a FCNN architecture was used to build an NN
analogue of the high-resolution GAM baseline model.

In practice, there is no bound for the number of hidden units, which can lead to poor
generalisation of the model when assessed on the test set. Therefore, a dropout layer
was added after the hidden layer to foster the network generalisation. The outcome of
the optimisation of hyperparameters led to an architecture which contains 50 neurons
in the hidden layer and a dropout layer with a 10% dropout rate. The loss optimised is
the mean squared error (MSE) with a Nesterov-accelerated Adaptive Moment (NADAM)
optimiser [304]. In addition, the learning rate is 0.001, the number of epochs is 2000 and
the batch size is 1024.

After obtaining the half-hourly demand forecast for the GAM and the NN, DP; is
estimated as the maximum daily value forecasted and 1P, is estimated as the half-hour
of the day during which DP; occurred.

5.4.2 Low-resolution approach

Table 5.2 - Low-resolution model inputs

Type Name Unit Description
tempMax [C°] Daily maximum temperature
Weather tempgsMax [C°] Daily maximum smoothed temperature
tempMin [C°] Daily minimum temperature
temposMin [C°] Daily minimum smoothed temperature
Calendar dow Categorical Day of the week
toy None Time of year (between o and 1)
Lag DP24 [10' GW] Previous day peak demand
P24 Categorical Previous day instant of peak

Output DP or IP [10* GW] or Categorical Daily demand peak or Daily instant of peak
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In the low-resolution approach, all input variables are at the daily resolution (Table
2). Here several distributions could be considered for GAMs. In particular, the scaled-T
distribution, which is particularly suited for heavy tailed data, as well as the GEV fa-
mily, which encompasses several extreme value distributions (Weibull, Gumbell and
Fréchet), are used to model the DP. For the IP forecasting task, the ordered-logit mo-
del implemented in the mgcv R package [297] is used. The low-resolution GAM can be
written as follows :

pi =y (dow;) + f1°(IP24;) + f3°(toy;(t)) + f3°(DP24;)
+ f2°(tempMax, (t)) + f2°(temp95Max; (t)) (5.10)
+ f2°(tempMin, (¢)) + f2°(temp95Min; (t))

For the DP, p;(t) is the location parameter of the distributions estimated, the other pa-
rameters are assumed to be constants. For the IP, p;(t) is also the location parameter of
a latent logistic distribution. Cut-off points are estimated in the course of model fitting
and do not depend on the covariates. See [305] for details.

The same FCNN architecture as for the high-resolution approach was used (50 neu-
rons in the hidden layer followed by a dropout layer). The optimal set of hyperparame-
ters found is also equivalent. The difference between them lies in the inputs used (Table
2) and the response variable modelled which here is directly the DP or the IP. The res-
ponse structure for the DP is 1 neuron with a ReLU activation while 48 neurons are used
for the IP. Instead of the traditional softmax output used in classification problems, an
ordinal output structure, more suited to model the IP, is implemented as formalised
by [306]. The observed response is structured as a vector of 1 and o. If the peak was
observed att € {1,...,T} all neurons before and including the t-th one will be 1and all
neurons after will be 0. Therefore, sigmoidal activation functions are used.

5.4.3 Multi-resolution approach

The multi-resolution GAMs leverage the same level of information for model inputs
asin the high-resolution GAMs. In addition, the directly targets the DP response variable
as in the low-resolution approach.

Table 5.3 - Multi-resolution model inputs

Type Name Unit Description
Weather matTem [C°] Vector of half-hourly temperatures
matTemgs [C°] Vector of half-hourly smoothed temperatures
dow Categorical Day of the week
Calendar toy None Time of year (between o0 and 1)
matint Categorical Vector of time steps (between 0 and 47)
Lag matLag [10' GW] Vector of half-hourly load from previous day

Output DPorlIP  [10' GW]or Categorical  Daily demand peak or Daily instant of peak

Tensor products defined in Section 3.2.1 are used to capture high-resolution infor-
mation. The mat covariates presented in Table 3 are matrices of dimension (N x 48),
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N being the number of observations of the response variable DP. The multi-resolution
GAM model is:

p1; =1 (dow;) + f2(toy,) + tiy;”'°(matTem;, matInt,)

+ tig‘r’(matTem%i, matInt;) + tig":’(matLagi, matInt;) (5.11)
DP or IP
A
CONCATENATION
A A
FLATTEN DROPOUT: 0.1
A A
1D CONVOLUTIONS: 3 blocks DENSE: 50 neurons

A A
[ (MatTem, Matlnt), (MatTem95), | ( tov. dow )
L (MatLag, Matlint) ) L Y )

Learning rate: 0.0001; Epochs: 300; Batch size: 16;
Loss: MSE; Optimiser: Nadam

Figure 5.3 - Multi-resolution CNN architecture (input variable names are detailed in
Table 3)

Unlike previous approaches, IP and DP lags are not directly included as they can
be captured by the model through the ti3 tensor interaction. As for the low-resolution
approach, Gaussian, scaled-T and GEV distributions are considered for the DP and the
ordered categorical distribution for the IP.

For the multi-resolution NN, the tensor product interactions will be replaced by
convolution layers. The mechanism looked for through these convolution layers is es-
sentially the same as for tensor products : extracting high-resolution information to
directly model the DP or the IP. The high-resolution (half-hourly) data will be passed on
to the convolution layers while the low-resolution (daily) data will go through the same
FCNN architecture used in the previous approaches. As shown in Figure 5.3, these two
sections of the architecture are then concatenated to produce the final forecast of the
DP load. The output structure for the DP and the IP are the same as detailed in Section
4.3 with one neuron for the DP and 48 neurons for the IP.

The convolutions used for the high-resolution information are 1D convolutions on
two channels. Usually, only one convolution funnel is used to capture interactions bet-
ween all inputs. Here, each tensor product interaction will be replicated as a unique
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convolutional block. Thus, three convolution blocks will independently extract the three
high-resolution terms : matTem, matTemgs and matLag. The second channel of each
block is the matrix containing the vectors of time steps matint.

5.5 Results

The performance of the models for the DP and the IP forecasting tasks is evalua-
ted using two statistical metrics. As a rolling-origin forecasting procedure was chosen,
a transitional regime can be observed in the first few iterations, particularly for NNs,
which usually perform better with a large amount of training data. Therefore, Table 4
(DP) and Table 5 (IP) present the models’ performances on the last year of data, that is,
from 2015-07-01 to 2016-06-30 included.

Table 5.4 - Performance on the last year of data for the DP (best model and associated
metrics are in bold)

Resolution Model Metrics

MAPE [%] RMSE [MW]

NA Persistence 4.38 34.3

ARIMA 4.08 27.8

High Gaussian GAM 2.43 15.5

FCNN 1.47 10.3

ARIMA 3.85 26.7

Scat GAM 1.92 12.9

Low GEV GAM 2.67 16.9

Gaussian GAM 2.26 14.4

FCNN 2.1 14.4

GEV GAM 1.52 10.3

Multi Scat GAM 1.41 9.59

Gaussian GAM 1.42 9.63

CNN 1.56 10.5

With the exception of the high-resolution FCNN, the multi-resolution models per-
form better than the alternatives across all metrics (Table 4). The relative strong per-
formance of the high-resolution FCNN can be explained by the large amount of high-
resolution data available, which suits the needs of NNs. Further, the FCNN contains
more parameters to estimate and is thus more flexible than the high-resolution GAMs,
which require the user to manually specify how the effect of each input variable should
be modelled. Nevertheless, the best model on all metrics is the scaled-T GAM, built
using the multi-resolution approach. The GEV GAM performed worse than the other
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distributions, which is surprising given that the GEV distribution is asymptotically justi-
fied for BM. Interestingly, the shape parameter estimated was found to be close to o,
under which value the GEV model is simply a Gumbel distribution.

Table 5.5 - Performance on last year of data for the IP (best model and associated
metrics are in bold)

Resolution Model Metrics
R-Accuracy [%] RMSE [half-hour]

NA Persistence 79.4 5.36
High Gaussian GAM 82.6 4.59
FCNN 81.8 4.39

Low Ocat GAM 79.1 4.22
FCNN 83.2 4.40

Multi Ocat GAM 79.4 4.08
CNN 835 3.85

IP multi-resolution models have a similar or better performance than high- and low-
resolution alternatives within the same model class on the RMSE metric (Table 5) and
the multi-resolution CNN is the best model under all metrics. However, the metrics
are affected by high sampling variability. The reasons for this are detailed later in this
section, where we also argue that the mediocre performance of ocat GAMs for IP fore-
casting is not fundamental, but attributable to the insufficient flexibility of the specific
ocat parametrisation adopted here.

To quantify the variability of the performance metrics considered so far, we used
block-bootstrap resampling. As described by [231], for a test set of size NV, we sample
with replacement data blocks of fixed size B = 7 (i.e., one week) to obtain an eva-
luation sets of size V. Repeating this procedure K times creates K metric samples,
which can be used to estimate the metric's sampling variability. In particular, Figure
5.4 shows block-bootstrapped boxplots for all metrics and models on the last year of
data. Figures 5.4 (a-c) clearly demonstrate that the improvement obtained by adopting
a multi-resolution approach is substantial and robust within the GAM model class. The
HR-FCNN is competitive in terms of prediction but, as we discuss below, it is not ea-
sily interpretable and does not have the computational advantages of multi-resolution
GAMs. For the IP problem, Figures 5.4 (e-d) make clear that the sampling variability is
substantial (reasons for this are discussed below).
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Figure 5.4 - Block-bootstrap boxplots of the two metrics considered for the DP models
(@), (b) and IP models (c), (d) on the last year of data

As mentioned above, the rolling-origin forecasting setting may present a transitional
regime during the first few training iterations. Figure 5.5 and 5.6 show the evolution
of the different cumulative metrics calculated on the prediction signal updated on a
monthly basis. Interestingly, the multi-resolution CNN for the DP (Figure 5.5) starts off
with a very bad prediction error on the first months. With more data, its performance
rapidly improves across all metrics. The other models have a less dramatic performance
trend, with the multi-resolution GAMs consistently performing better than the other
models. The prediction error of these models oscillates during the first few months,
which can be explained by the fact that the models did not have enough information to
adequately estimate the yearly cycle, because they were fitted to only one year of data.
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After a year, the prediction errors has stabilised.
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For the IP forecasting task, the different metrics evolve with similar patterns (Figure
5.6), but the seasonal oscillations in performance persist beyond the first year. Preci-
sely, the performance slightly worsens after the first few months of each year. Figure
5.7 explains why predicting the IP is harder in summer (April to August) than in winter
(September to March). While winter daily demand profiles have a reliable evening peak,
summer load profiles are flatter and on some days the peak distribution becomes bi-
modal. That is, the daily peak might occur on the 25th half-hour (12.30pm) or on the 35th
half-hour (5.30pm) with equal probability. This is shown also by the right plot in Figure
5.8. Hence, it is clear that in the summer the IP point estimates might be unfairly pe-
nalised under the metrics considered here. This implies that a forecasting model might
be better off providing an IP forecast that falls between the two peaks, as MR-CNN is
occasionally doing (see Figure 5.7). Such a forecast might improve the metrics but has
little value in an operational setting. Note also that the ocat model struggles to capture
an IP distribution that is unimodal or bimodal depending on the time of year. In parti-
cular, the ocat model used here is based on a standard ordered-logit parametrisation,
which involves modelling the mean of a latent logistic random variable via an additive
model. It is not possible to transform a unimodal distribution on the ordered catego-
ries (here, IP) into a bimodal one, simply by controlling a location parameter. Hence, a
more flexible model (e.g., [307]) would be preferable.

It is interesting to verify the performance of each model for IP forecasting via a bes-
poke metric. In particular, let t!" be the observed IP on day i and let ¢" be the corres-
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ponding forecast. We propose the following metric :

" 1/2
1

=1

which is based on the difference between the daily peak demand and the demand at
the predicted IP (the d stands for demand). This metric is more relevant to operations
than MSE. For instance, in peak shaving applications, providing a forecast ™ very dif-
ferent from ¢]" might not be a problem if y» and Yim are similar, which is what d-RMSE
quantifies. Figure 5.8 shows a bootstrapped boxplot of d-RMSE for each model. Inter-
estingly, high-resolution methods are best here, by a substantial margin in the case of
HR-FCNN.
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Figure 5.8 - Left : Block-bootstrap boxplots of the d-RMSE metric for the IP problem.
Right : daily demand profile curves during winter (shifted upward by 15 GW) and sum-
mer. The blue curves are profiles with a small absolute difference between the morning
and evening peak (< 50 MW).

The results obtained so far do not provide reliable evidence in favour or against
the adoption of a multi-resolution approach for IP forecasting. In fact, the poor fore-
casting performance of MR-ocat is arguably attributable to the particular ordered-logit
parametrisation used here. MR-CNN does well using standard, statistically motivated
losses but it is inferior to high-resolution approaches on an operationally relevant one
(d-RMSE). It would be interesting to verify whether fitting the MR-CNN model by mini-
mising d-RMSE directly (rather than MSE as done here) would lead to better results.
We leave this, and the search for a more flexible distribution for ordered categorical
responses, for future work.

Implementing the multi-resolution approach on the DP forecasting problem is more
straightforward, hence the results discussed so far are positive and reliable. We further
verify their significance by performing [308] (DM) tests on the absolute and squared
error losses . The null hypothesis of the tests is : “both forecasts have the same expec-
ted loss”. The results of the DM tests are available on Figure 5.9 which confirms that,
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within the GAM class, the multi-resolution forecasts are significantly different to the
low-resolution and high-resolution approaches under both metrics.

Model HR-arima HR-gauss HR-FCNN LR-arima LR-gauss LR-scat LR-gev LR-FCNN MR-gauss MR-scat MR-gev MR-CNN
HR-arima [¢} o} 0.116 0 0 [¢} o} (o] 0 (o] o}
HR-gauss 0 0 0.042 0 0 0.001 ¢} 0 o} 0
HR-FCNN o] o] o] 0 o] 0.729 0.549 0.250 0.029
LR-arima 0 o} [¢} o} [¢] o [¢] (o]
LR-gauss 0 [¢} 0.010 (o] 0 (o] ¢}
LR-scat [¢} 0.122 [¢] o} [¢] o}
LR-gev o} 0 0 (o] ¢}
LR-FCNN [¢] o} (o] ¢}
MR-gauss 0.063 o} 0.001
MR-scat o ¢}
MR-gev 0.143
MR-CNN

(a)
Model HR-arima HR-gauss HR-FCNN LR-arima LR-gauss LR-scat LR-gev LR-FCNN MR-gauss MR-scat MR-gev MR-CNN
HR-arima 0 0 0.161 0 0 0 0 o 0 o 0
HR-gauss 0 0 0.010 o} 0.003 0.18 (o] o} o ¢}
HR-FCNN o] o] o] o] o] 0.400 0.362 0.492 0.016
LR-arima 0 0 [¢} o} (o] 0 (o] ¢}
LR-gauss 0 0 0.938 [0} o] o} 0
LR-scat ¢} 0.026 (o] 0 o 0.002
LR-gev o} (o] 0 o o}
LR-FCNN [¢] o} o] o}
MR-gauss 0.468 [0} 0
MR-scat [¢] (o]
MR-gev 0.015
MR-CNN

(b)

Figure 5.9 - P-values from the Diebold-Mariano test for DP forecasts. The test used is
from the multDM package in R [309]. In black, the null hypothesis is rejected at the 5%
threshold and both forecasts are significantly different. In red, the null hypothesis is not
rejected at the 5% threshold and both forecasts cannot be significantly differentiated;
(a) absolute errors (b) squared errors.

It is interesting to quantify the complexity or parsimony of the models considered
so far. AIC can be interpreted as a parsimony measure, but it requires computing the ef-
fective number of models parameters and we are not aware of any method that would
allow estimating them across all the model classes considered here. Figure 5.10 shows
the AICs of low- and multi-resolution GAMs. The multi-resolution approaches consis-
tently have a smaller AIC than the low-resolution approaches. Furthermore, the slopes
indicate that with more data the gap continues to increase.

For NNs, parsimony is highly dependent on the chosen architecture. In our case,
the low-resolution and high-resolution NNs have a very similar architecture with only
one hidden layer and a dropout layer. Only the inputs, outputs and number of obser-
vations vary. On the other hand, the multi-resolution NN (Figure 5.3) requires the use
of convolutional layers which are leveraged to extract the high-resolution information.
The extraction process requires multiple layers which forces the multi-resolution CNN
to have a larger number of parameters than the low-resolution and high-resolution
NNSs.

132



-800 1 %~
N
~1300 N Model
\ N — —_
-1800 NS — | LR-Gauss
O .. — | LR-Gev
< 2300 Sy LR-Scat
< R § —
-2800 = [—| MR-Gauss
—| MR-Gev
~3300 —| MR-Scat
—-3800

2013 2014 2015 2016
Month

Figure 5.10 - AIC for the low-resolution and multi-resolution DP GAMs

The results discussed in this section show that multi-resolution approaches are su-
perior to low- and high-resolution alternatives for the DP forecasting problem. The fo-
recasting performance of the high-resolution FCNN and the multi-resolution GAMs are
not significantly different but, in an operational peak demand forecasting context, the
multi-resolution GAM would be preferred because it can be decomposed into additive
components, which can be more easily interpreted (and manually adjusted) by opera-
tional staff. In addition, note that adopting a multi-resolution approach can bring sub-
stantial computational advantages, which are easy to quantify within the GAM model
class. In particular, the GAM model matrix X in the multi-resolution case has T' times
less rows than in the high-resolution case, where T'is the number of daily observations
(i.e., T' = 48 for half-hourly data). Therefore, T times less memory is used, and many
computations frequently required during GAM model fitting (such as X” WX, where
W is a diagonal matrix) will take less time.

5.6 Conclusion

This paper proposes a novel modelling approach, which uses both high-resolution
and low-resolution information to forecast the daily electrical load peak magnitude
and timing. The results demonstrate that this multi-resolution approach is flexible en-
ough to be applied to different model classes and that it provides a competitive pre-
dictive performance. In particular, GAMs and NNs with similar input structures were
used to implement the multi-resolution approach and to compare its performance that
of low-resolution, high-resolution and persistence alternatives. On UK aggregate de-
mand data, the multi-resolution models performed significantly better across all me-
trics when forecasting peak magnitude. In addition to improved predictions, adopting a
multi-resolution approach enables faster computation via data compression and leads
to more parsimonious models, as demonstrated by the consistently lower AIC scores
achieved by multi-resolution models within the GAM model class.

The results on the peak timing forecasting problem are mixed, but interesting. A
multi-resolution neural network does marginally better than the alternatives, when per-
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formance is assessed via standard statistical metrics. However, the corresponding fore-
castis occasionally inappropriate (falling between the morning and evening peaks) and
inferior to high-resolution alternatives when assessed via an operationally motivated
metric. The results suggest that the multi-resolution neural network should be fitted to
data by minimising a problem specific performance metric directly. For instance, one
could consider financial metrics on billing periods as done by [277]. The multi-resolution
GAM does poorly on the peak timing problem, but this is attributable to the insufficient
flexibility of the ordered logit parametrisation used here. Obtaining stronger evidence
in favour or against the use of multi-resolution methods for the peak timing problem
would require solving the issues just mentioned, which could be the subject of further
work.

The forecasting methods presented here could be extended in several ways. Firstly,
the set of models described in this paper could be used within an aggregation of ex-
perts or ensemble methods, which might lead to more accurate forecasts. Secondly,
the benefits of multi-resolution methods have been demonstrated in a context where
the covariates were available at different temporal resolutions, but the underlying idea
could be generalised to other settings, such as spatio-temporal data or individual custo-
mer data (see e.g., [310] for an example application of functional quantile GAMs [311] to
residential electricity demand data). Thirdly, the multi-resolution approach could be ex-
tended to RNNs and in particular LSTMs, which are known to be powerful NN architec-
ture for time series modelling. Finally, this paper focused on day-ahead daily peak ma-
gnitude and time forecasting, but multi-resolution methods could be applied to other
short-term windows (e.g., weekly). However, estimating monthly or yearly peaks would
require a different approach, because the number of observed demand peaks would
be too low.
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Conclusions and Perspectives

This research set out to better understand EV charging behaviours. In particular, we
focused on forecasting EV charging load. By modelling EV charging behaviours more ef-
fectively, we can enable more resilience for the grid. To this end, we reviewed existing
methods and proposed innovative statistical modelling approaches to answer three cri-
tical questions : 1. Which models are state-of-the-art for EV charging modeling and what
data is available? 2. How can we implement better forecasts? 3. How can daily electrical
consumption peaks be predicted to avoid blackouts and electricity price surges?.

In Chapter 2, we provide a review of state-of-the-art models spanning the last thirty
years. An exploratory method is adopted to identify the most relevant literature and
data. A taxonomy of models is proposed ranging from stochastic processes to ma-
chine learning. Overall, we covered over 860 databases and explored 8 EV charging
session datasets. These datasets were used in the rest of the PhD to craft innovative
methods and to assess their performances on real-world scenarios. More data reposi-
tories are emerging in relation to EVs and it is crucial to keep collecting them in order
to keep proposing reproducible and relevant work for the community. In Chapter 3,
we compare 14 models with direct and bottom-up approaches to predict the load and
occupancy curves of EV charging points. Overall, we demonstrate that the 14 models
provide efficient forecasts at different times, which allows us to obtain a better model
with an adaptive aggregation strategy. The 14 models emerged from a discussion over
the most promising methods presented in Chapter 2 and novel methods that we intro-
duced throughout the PhD. One advantage of this aggregation strategy is that any new
promising method can be added to this mix and may improve the aggregated forecast.
Future work involves looking at potential benefits of using all the datasets collected in a
holistic way to derive model parameters. Indeed, the models trained in this work were
fitted on each dataset separately. However, it would be interesting to assess whether
a model can benefit from data collected in various municipalities to learn behaviours
that are shared across different locations and thus reach better overall performances.
We also see a strong potential in combining the station data collected with traffic infor-
mation for more accurate models. It is common practice within the electrical load fore-
casting domain to use weather data to model general electrical consumption. However,
when it comes to EVs, weather has little correlation with load consumption relative to
traffic. Faced with the scarcity of traffic data at a fine granularity for EVs, and until access
to this data is provided, a solution could be to scrape real-time traffic data. For example
the city of Bonn in Germany provides both real-time traffic and EVSE usage information
at a fine granularity. In Chapter 4, we studied an additive model with both wavelet and
spline components for Poisson regression. Two algorithms have been proposed, OBO
and BAC. We showed that BAC performs better on one of the training datasets but a
significant conclusion could be reached on the test sets for the first case study. Howe-
ver, we observed that there could be some benefitin using a model with additive spline
and wavelet effects to capture peaks when looking at performances on peak load. The
proposed methodology can be extended to any timestep (as long as it is constant), as
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well as any other wavelet basis. The algorithm'’s convergence speed could be accelera-
ted by fitting first the linear component and then backfitting the non-parametric part.
Giving splines more degrees of freedom (knots) can improve performance, but it can
also lead to overfitting. One limitation of the proposed BAC algorithm is that, despite
empirical evidence of algorithm convergence, there is no unicity of the parameter vec-
tor estimated. This is due in large part to the random path chosen to fit the various
components. Finally, other metrics could have been used to evaluate peak estimates,
as it can be argued from an operational standpoint that obtaining a better estimate
of the peak magnitude not too far from peak time is more important than obtaining a
worse estimate exactly at peak time. As a result, it might be interesting to compare the
forecasted daily time series with the observed one using a measure of similarity, such
as dynamic time warping. Eventually, in Chapter 5, we rely on high- and low-resolution
information to predict the daily peak in consumption. To use them in the same model,
we defined a modelling framework called : “multi-resolution”. The results confirm that
the proposed approach provides better performance on the cases studied. The fore-
casting techniques described here could be expanded in a number of different ways.
First, an aggregation of experts (such as the one proposed in Chapter 3) might be em-
ployed with the set of models provided in this paper to produce predictions that may
be more accurate. Second, although the advantages of multi-resolution methods have
been shown in a setting where the covariates were available at various temporal reso-
lutions, the underlying concept could be applied to other settings, such as spatial and
temporal or individual customer data. Thirdly, since RNNs have shown a large success
for time series modelling, the multi-resolution technique might be extended to RNNs
and in particular LSTMs. Finally, while this chapter focused on daily peak magnitude
and timing forecasting for the day ahead, multi-resolution methods could be applied
to other short-term windows (e.g., weekly). Estimating monthly or yearly peaks, on the
other hand, would necessitate a different approach due to the insufficient number of
observed demand peaks.

Ultimately, while forecasting EV load is currently one of the most important tasks to
ensure that EV charging behaviours do not disrupt the balance of the grid, it has to be
combined with optimisation techniques. In practice, good forecasts of tomorrow’s EV
demand can be useless if there is no plan of action implemented at charging point to
accommodate demand surges. This is the work of optimisers some of who we worked
with during this PhD at EDF R&D. They used our forecasts as an input to their optimi-
sation procedure in order to assess the gains with regards to various metrics (e.g., CO,
emissions, electricity cost). In particular, they used our work on forecasting individual
charging sessions which is what we call bottom-up approaches in Chapter 3. With the
market expanding, some intermediary level forecast might also be required as some
of the methods might not scale as well. In fact, the EV market is still in its infancy which
indicates that many challenges are still to come. We will be highly attentive to new deve-
lopments in the field and we hope that our work will continue to contribute to a resilient
electrical network.
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Annexe A

About Chapter 2

Exhaustive list of models presented in Section 4 with the input dataset(s) used (if

applicable), the approach taken (Aggregated, Vehicle-centric or EVSE-centric) and the
output variable(s) modelled. For the input datasets, the data repositories or data re-
ports are provided as references when they were clearly made available by the authors
of the paper.

Study Model(s) Output variable(s) Approach Input dataset(s)
Gaussian Dis- Vehicle-
[32] tribution Power Demand cjntlsif NHTS daily trips [67]
Charge Duration,
Weibull and Daily Charge Fre- . Charging  sessions
Vehicle- . .
[31] Lognormal quency, Energy centric from the Victorian EV
Distributions Demand, Time to Trial [312]
next charge
Number of plugged- Aggregated . .
[42] Beta Mixture  in and plugged-out and Charging sessions
. vehicle- from ElaadNL [87]
EVs, Charge Duration centric
Charging  sessions
Gaussian Mix- Clusters of EV user provided by the G4
(157 ture profiles i cities of the Nether-
lands
. . Arrival Time, Charge . Charging  sessions
[141] tCLarLéSSIan Mix Duration, Energy De- \c/:thlrSilf- from the ACN data
mand [103]
Poisson  Dis- . .
tribution and gLr;\;iilo:rEi’erChagg; Vehicle- Charging  sessions
[ Gaussian ' gy centric from ElaadNL [87]
: mand
Mixture
Daily Trlp Distance Vehicle- o
[ GKDE and end time of last centric NHTS daily trips [61]

trip
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Arrival Time, Charge

Charging sessions

GKDE Duration, Charge Ca- Vehlc‘le— from an EV charging
acity centric service company
P platform in Nanjing
GKDE and Charge Duration and Vehicle- Charging  sessions
DKDE Energy Demand centric from UCLA campus
Charging  sessions
GKDE and Charge Duration, Vehicle- from UCLA campuls
DKDE Energy Demand centric and from My Electric
&Y Avenue Project trial
[313]
Charging  sessions
Charge Duration and Vehicle- from UCLA campus
HKDE Enerey Demand centric and from My Electric
&Y Avenue Project trial
[313]
Temporal EV charglng Igaq for
<tochastic Vehicle- lead-acid and lithium-
. Power Demand . ion batteries and UK
process with centric :
; National Travel Sur-
scenarios
vey [314]
3-state  tem- Vehicle-
poral Markov Energy Demand : -
. centric
Chain
PJM historical load
ARIMA and data [315], EV drivers
rule-based Power Demand (via Vehicle- simulated data from
probabilistic the SoC after charge) centric the Power Systems
model Engineering Research
Center [316]
ARIMA and
rule-based Power Demand (via Vehicle- PJM historical load
probabilistic the SoC after charge) centric data [315]
model
Monte-Carlo Transportation data
Simulation Energy Demand (via Vehicle- from the Dutch Minis-
with  copulas initial SoC) centric try of Transportation

and scenarios
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Monte-Carlo

Sl'mulatlon' . Vehicle- EU merge EV data-
with origin Power Demand : 1
o centric base
destination
analysis
Spatiotemporal
stochastic
process with BMW Mini E (PHEV)
uniform and Vehicle- battery characteris-
poisson  dis- Power Demand centric tics from the smart
tributions and ag- grid integration pro-
on different gregated  ject (Shanghai expo
schedules garden)
and state
transitions
Spatiotemporal
monte-carlo : Charging  sessions
. ) Vehicle- )
simulation Power Demand centric and EV journeys from
based on EV the Switch EV trial
trial data
Vehicle-
M /M /N Power Demand centric Tesla Roadster EV
queue and EVSE- characteristics [318]
centric
Vehicle- EV drivers simulated
M/M /1 Power Demand centric data from the Power
queue and EVSE- Systems Engineering
centric Research Center [316]
Vehicle-
M /M /o Power Demand centric Traffic fluid model
gueue and EVSE- [319]
centric
Vehicle- NHTS [61], charging
M,/GI; /o Power Demand centric sessions from the UC
queue and EVSE- Davis PH&EV center
centric [320]
NHTS [61], New York
Vehicle- State Transportation
BCMP net- centric Federation Traffic
work Power Demand and EVSE- Data Viewer [321] and
centric Ontario Electricity
prices?
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Residential charging

Decision sessions  provided
trees/tables, Power Demand Aggregated by ECOtatility [164],
SVM, ANN public EVSE data pilot
EV project in France
MPSF, kNN, ¢ D d EVSE gg?r:gﬂ%m Sfasrfn'oﬂi
SVM and RF nergy beman centric P
data
Mean — esti Chargin sessions
mation  and Energy Demand Vehicle- &iNg
. . . : from UCLA campus
Linear Regres- (Charging Profile) centric data
sion
IS_;QEarGlisgir:s; 5 ture ti Vehicle- EV charging records
-~ eparture time centric from SAP Walldorf
Boosting, ANN
Charging  sessions
Linear Regres- Power Demand A ted from EVNET and
sion (Charging Speed) 8ErEEAtEd NuoN energy provi-
ders in Amsterdam
Vehidle- - rain sessions
MPSF, SVM  Energy Demand centric fromg UgCLA CAMmDUS
and RF (Charging Profile) and EVSE- P
. data
centric
SYM - and - er Demand vehicle- 2?#2% EV cilgrm ing
Monte-Carlo ower beman centric . &ing
station
Vehicle- . .
centric Charging  sessions
RF Power Demand from Pecan Street
and EVSE- [105]
centric
RF, SVM and Energy Demand EVSE- Charging sessions in
Decition tree  (Charging capacity) centric Shenzhen
Quantile - re- Trip Distance and Vehicle- Parking events deri-
gression, MLP Parking Duration centric ved from trip data
and KDE & from MiD2008 [322]
L|pn algonthm Charging sessions in
with Niche Im- . :
Power Demand Aggregated one charging station

munity for a
CNN
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ANN, RNN,
LSTM and Ga-
ted Recurrent
Units (GRU)

Energy Demand

Aggregated

Charging sessions in
Shenzhen

ANN, RNN,
GRU, Stacked
auto-encoders
and LSTM

Power Demand

Aggregated

Charging sessions in
Shenzhen
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Annexe B

About Chapter 3

B.1 Data Quality
This section was firstly published in [200]

A data quality check was run on these datasets to evaluate their reliability :

1. Charge and park duration have to be positive and less than 24 hours

2. Energy consumption needs to be positive and less than 100 kWh

The first criterion discards obvious timestamp errors. In addition, as a passenger
EV is fully charged in a few hours maximum, charging sessions lasting for more than
a day were discarded. Negative records for the energy consumption were discarded
as no EV leaves with a battery less charged than when it arrived. The 100 kWh upper
bound was chosen as it is the battery capacity of the Tesla Model S, the largest amongst
top selling EVs at the time of writing this paper. All datasets retained more than 85% of
transactions after discarding irrelevant observations (Table B.1). For instance, only 63
transactions were discarded from the Palo Alto dataset which covers more than g years
of data.

Table B.1 - Transactions retained after data preprocessing

Dataset Timespan Retained Discarded

Bou 01-2018/03-2021 21,569 (89.57%) 2,512 (10.43%)

Pal 07-2011/12-2020 259,352 (99.98%) 63 (0.02%)

Dun 01-2017/12-2018 47,051 (89.19%) 5,701 (10.81%)

Per 01-2016/12-2019 63,936 (95.91%) 2,728 (4.09%)

Par 04-2017/05-2017 5,780 (85.72%) 963 (14.28%)

Cha 01-2017/12-2017 2,956,198 (93.06%) 220,605 (6.94%)

Cal 04-2018/04-2021 56,976 (94.44%) 3,357 (5.56%)
Sap 06-2017/01-2021 26,434 (98.55%) 389 (1.45%)

B.2 Mixture Models and Regression

From the literature and our own exploration of real data, we were led to believe that
unimodal distributions were not enough to capture the variety of profiles of EV users.
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Therefore, one way to characterise the multivariate distribution of the target vector
thereafter noted (A, D, E) which is used for the load curve reconstruction is to use a
Gaussian Mixture Model (GMM).

B.2.1 Gaussian Mixtures

The finite mixture model of probability distributions consists in assuming that the
data comes from a source containing several homogeneous subpopulations called com-
ponents. The total population is a mixture of these subpopulations. The resulting model
is a finite mixture model (which is Gaussian when all subpopulations follow a Gaussian
distribution). Let X = (X},...,X,) be a sample of independent and identically distri-
buted (iid) random variables of finite mixture law with K components, of density f of
which the general formiis :

flz) = Zﬂkfk(iﬂ) (B.1)

with 7, the respective proportions of the subpopulations such that 0 < 7, < 11
and Zle m = 1, and f; the pdf of the the kth component. The mixture model is a
model with missing data. If we sampled in a population formed of K subpopulations,
we should have the pairs (X;, Z;) where X, represents the measurement made on the
ith individual and Z; = k indicates the subpopulation to which this individual belongs.
However Z; is not observed. To estimate this kind of model, we require an algorithm
called Expected-Maximisation (EM). The EM algorithm is an iterative algorithm originally
proposed in [323]. It is @ parametric estimation method falling within the general fra-
mework of maximum likelihood. When there is missing (or latent variables) and/or the
expression of the likelihood is analytically impossible to maximize, the EM algorithm
can be a solution. The EM algorithm takes its name from the fact that at each iteration
it operates two distinct steps :

1. the “Expectation” step, often referred to as the “E-step”, performs the estimation
of unknown data, knowing the observed data and the value of the parameters
determined at the previous iteration

2. the “Maximization” step, or “M-step”, maximises the likelihood, which is now pos-
sible thanks to the estimation of the unknown data in the E-step. It updates the
value of the parameter(s) for the next iteration

In short, the EM algorithm proceeds according to an extremely natural mechanism :
if there is an obstacle to apply the maximum likelihood method, we simply jump this
obstacle then we actually use this method. To formalise this procedure let us detail the
steps of the algorithm at iteration m € N :

1. Let X = (X4,...,X,) be asample of iid variables of likelihood P(X @), with 6 the
parameter vector of the mixture model

2. Maximising P(X |0) cannot be directly achieved

3. We consider hidden data Z = (7, ..., Z,) whose knowledge would make it pos-
sible to maximise the “completed likelihood”: P(X, Z|0)
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4. As Z is unknown, we estimate the completed likelihood by taking into account all
known information : the natural estimator is Ez|x ¢, [P(X, Z|0)] (E-step)

5. Finally, we maximise this estimated likelihood to determine the new value of the
parameter (M-step).

Thus, the transition from iteration m to iteration m + 1 of the EM algorithm consists
in determining :

0,1 = argz)nax {EZ|X,9m [P(X, Z|0)]} (B.2)

B.2.2 Mixture Regression

Assuming that we will have access to the intensity function of the arrival process, we
will need the Conditional Gaussian Mixture Model (CGMM) characterising the distribu-
tion of: (D, E)| A. Essentially, a two-step approach will be used to calculated the CGMM.
Firstly, the GMM will be fitted using the Expected-Maximisation (EM) algorithm in sci-kit
learn. Then, using the gmr package from Alexander Fabisch (Journal of Open Source
Software, 2021), we will be retrieving the CGMM from the joint distribution estimated.
This is called a gaussian mixture regression which gave the name to the package gnmr.

From the GMM estimated, each component k& € {1... K} can be written:

with :
i o o g
pe=| pd |, Ze=| ot PP oPF (B.4)

Therefore, the conditional distribution of each component can be defined as fol-
lows :

Ni (D, E| A= a,up® =PF) (B.5)
with :

D 1 DA
DE K A O
i < NE ) a,;“A( #k) ( UEA )
T o B G R

ED EE ~ A4 DA_EA EA\2
Oy Oy Oj, O Ok (Uk )

(B.6)

With all the individual components having an explicit expression, the CGMM priors
can be calculated as follows :

Ni(A=al . af
wp¥(a) - pMeld=a i of) 8.7)
lelﬂlM(A:a|:uk7ak)

and we eventually get an expression for the CGMM density and the GMR model :
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=

p(D,E|A=a)=> n%(a)N; (D,E | A=a,pg® 5F) (B.8)

k=1

B.3 Grid Search

The following tables present the predictors and hyperparameters found with the
grid search procedure detailed in Section 3.4.2. The abbreviations of the predictors that
were retained for at least one model in the grid search procedure are detailed in Table
B.2. Table B.3 covers NHPP-GAM and GAM models, Table B.4 covers NHPP-RF and RF
models and Table B.5 covers the GRU models for all datasets in scope. Modelling the
number of daily sessions does not leave space for many covariates to use for the GRU.
Therefore, we made the choice that all GRU models would have access to the following
predictors : dow and LAG1 to LAGS.

Table B.2 - Abbreviations of the predictors

Abbreviation Meaning Range
mod Minute of the day 1...1440
hour Hour 1...24
tod32 45-minute period 1...32

winter October to March Oor1l
dow Day of week 1...5
trend Trend N
r_lags Rolling sum of lagged arrivals R*
a_lags Aggregated lagged arrivals N
LAG: Daily number of sessions for day—i N
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Table B.3 - Optimal hyperparameters and predictors for the NHPP-GAM and GAM mo-
dels

Model Dataset Predictors

Boulder mod, tod32

Caltech mod, tod32

Domestics UK mod, tod32

Dundee mod, tod32

NHPP-GAM Palo Alto mod, tod32, winter

Paris mod

Perth mod, tod32

SAP mod, tod32

Boulder mod, dow

Caltech mod, dow

Domestics UK  mod, dow, hour, trend, winter

Dundee mod, dow, hour, trend, winter
Palo Alto mod, dow
GAM (Occupancy) Paris mod, dow
Perth mod, dow, hour, trend, winter
SAP mod, dow, hour, trend

mod, dow, hour

Boulder trend, winter
Caltech mod, dow
GAM (Load) Palo Alto mod, dow, trend, winter
SAP mod, dow, hour, trend, winter
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Table B.4 - Optimal hyperparameters and predictors for the NHPP-RF and RF models

Model Dataset Predictors Hyperparameters
m 2 num.trees :
Boulder . od, tod32, dow, um.trees : 500
winter, trend, r_lags mtry : 1
mod, tod32, num.trees : 100
Caltech a3 _
dow, winter mtry : 2
NHPP-RF
Domestics mod, tod32 dow, num.trees : 500
UK winter, trend, a_lags mtry : 2
mod, tod32, dow, num.trees : 100
Dundee .
winter, trend, r_lags mtry : 1
Palo Alto mod, tod32, num.trees : 100
dow mtry : 2
, num.trees : 200
Paris mod, tod32 ]
mtry : 1
Perth mod, t9d32, num.trees : 200
dow, winter mtry : 2
mod, tod32, num.trees : 500
SAP .
dow, winter mtry : 2
Boulder  mod, hour, dow, winter num.trees: 700, mtry: 2
Caltech  mod, hour, dow, winter num.trees : 1000, mtry : 3
Domestics . ) .
RF (Occupancy) UK mod, hour, dow, winter ~ num.trees : 100,mtry : 3
Dundee  mod, hour, dow, winter num.trees : 500, mtry : 2
Palo Alto  mod, hour, dow, winter num.trees : 500, mtry : 2
Paris mod, hour, dow, winter num.trees : 1000, mtry : 2
Perth mod, hour, dow, winter num.trees : 500, mtry : 2
SAP mod, hour, dow, winter num.trees : 500, mtry : 2
Boulder  mod, hour, dow, winter num.trees : 1000, mtry : 2
RF (Load) Caltech mod, hour, dow, winter num.trees : 700, mtry : 2
Palo Alto  mod, hour, dow, winter num.trees : 100, mtry : 2
SAP mod, hour, dow, winter num.trees : 100, mtry : 3
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Table B.5 - Optimal hyperparameters and predictors for the GRU models

Dataset

Hyperparameters

Boulder

batch_size : 10
hidden_dim : 32
layer_dim : 2
learning_rate : 0.001
n_epochs: 4

Caltech

batch_size : 10
hidden_dim : 64
layer_dim : 6
learning_rate : 0.001
n_epochs : 975

Domestics UK

batch_size : 10
hidden_dim : 16
layer_dim: 4
learning_rate : 0.01
n_epochs: 25

Dundee

batch_size : 10
hidden_dim : 32
layer_dim : 6
learning_rate : 0.01
n_epochs : 698

Palo Alto

batch_size : 5
hidden_dim : 16
layer_dim: 2
learning_rate : 0.001
n_epochs : 297

Paris

batch_size: 2
hidden_dim : 64
layer_dim : 6
learning_rate : 0.01
n_epochs : 566

Perth

batch_size : 30
hidden_dim : 16
layer_dim : 2
learning_rate : 0.01
n_epochs: 2

SAP

batch_size : g
hidden_dim : 16
layer_dim: 4
learning_rate : 0.01
n_epochs : 877
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B.4 Statistical Testing

In this section, the results of the model validation procedure detailed in Section
3.4.3 are given. In particular, Table B.6 presents the 95% confidence interval [b;,, s, bsup)
for the sample mean G. If the sample mean falls within the bounds, we cannot reject
the null hypothesis and therefore the model is considered to be valid. Similarly, Table
B.7 gathers the p-values of the Ljung-Box test led for SARIMA models. If the p-value is
above the 5% threshold, we cannot reject the null hypothesis and the model is therefore

considered valid.

Table B.6 - Bounds of the 95% confidence interval and sample mean G of the Student’s

test for validating NHPP models

Dataset Model bing  bsup G
NHPP-GAM -0.17 0.17 -0.07
Boulder NHPP-RF 047 047 -0.05
NHPP-GAM -0.71 0.71 -0.16
Caltech NHPP-RF  -0.7 0.7 -0.16
. NHPP-GAM -4.48 4.48 -2.9
Domestics UK NHPP-RE  -4.47 4.47 -2.5
NHPP-GAM -0.69 0.69 -0.57
Dundee NHPP-RF  -0.75 0.75 -0.33
NHPP-GAM -0.8 0.8 -041
PaloAlto "\1ippRF 08 0.8 -0
Paris NHPP-GAM -0.45 0.45 0.04
NHPP-RF  -0.44 0.44 o0.02
NHPP-GAM -0.37 0.37 -0.21
Perth NHPP-RF  -0.36 0.36 -0.20
SAP NHPP-GAM -0.41 0.41 -0.4
NHPP-RF  -0.42 0.42 -0.05
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Table B.7 - P-values for the 5% confidence threshold of the Ljung-Box test for validating
SARIMA models

Dataset p-value
Boulder 0.54
Caltech 0.17
Domestics UK 0.78
Dundee 0.88
Palo Alto 0.12
Paris 0.68
Perth 0.02
SAP 0.1

B.5 Additional Metrics

With online aggregation, a transitional regime inevitably occurs in the first testing
weeks. To determine whether itis responsible for GAM-err being more performant than
AGG on Table 3.2(a) we have decided to calculate the block-bootstrap metrics only on
the last testing period for all datasets. This should give enough time for AGG to learn
optimal weights. In fact, on Table B.8 we can see that we were correct and AGG is better
on block-bootstrap average than GAM-err for both load and occupancy forecasting.

Table B.8 - Average block-bootstrap model performances for the PIP on the last testing
period

(a) Load (b) Occupancy

Model MAE [%] Model MAE [%]
AGG 45.7 AGG 116
GAM-err 43.5 GAM-err 109
RF-err 42.9 GAM 107
RF 38.1 RF-err 80.0
GAM 37.5 SARIMA-MM-err 76.0
SARIMA-MM-err 34.4 SARIMA-MM 70.0
GRU-MM-err 29.8 RF 57.4
NHPP-GAM-MR-err 25.3 GRU-MM-err 55.4
SARIMA-MM 22.0 NHPP-GAM-MR-err 34.4
GRU-MM 19.7 GRU-MM 31.4
NHPP-RF-MR-err 16.3 NHPP-RF-MR-err 23.8

NHPP-GAM-MR 7.9 persistence 0

NHPP-RF-MR 5.9 NHPP-GAM-MR -0.7
persistence 0 NHPP-RF-MR -7.3
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Annexe C

About Chapter 4

In the following sections, we introduce the algorithms which are used in Chapter 4
as stepping stones for our proposed estimation procedure. In particular, we recall the
Iteratively Reweighted Least Squares (IRLS) for Generalised Linear Models (GLM) and its
penalised version (PIRLS) for Generalised Additive Models (GAM). In addition, we also
recall some general wavelet properties before explaining how the wavelet basis are
built for the BAC and OBO estimation procedures.

C.1 Iteratively reweighted least squares

The basic GLM structure is the following :

g(p) =XpB (C.)

with . = E(Y) while g is the 'link’ function. The only hypothesis made on this func-
tion is that it needs to be smooth and monotonic. So far, the extension seems rather
narrow. But the second and most important point is that we assume that Y can follow
any distribution from the exponential family. The weighted log-likelihood of a GLM can
be written in the following fashion :

I(B) = Zwili(ﬂ) (C.2)

with [;(3), i € {1...n} the log-likelihood of the model with only one observation.
The goal is to maximize this log-likelihood which we can do by using Newton’s method.
Skipping the heavy calculations, we move directly to the expression of the Newton up-
date :

pH = (XWX) ' XTWz (C.3)
with z; = ¢'(ui) 5y + X8, a(w) = 1+ (v — Ni)(‘\/;((:;)) + gg/,/((;‘j))), V' is a function of
L and W = dlag(wz), W; = #’L‘Z)(M

The trick here is to understand that the right term of equation C.3 exactly coincides
with the least square estimate which is the outcome of the minimisation of the following
least square objective :

|z — X85 = sz(zz — X;8)? (C.4)
=1
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As a result, we can estimate GLMs by the Iteratively Re-Weighted Least Square
(IRLS) algorithm :

1. Initializg :f; = y; +6; and XiB = g(/i;) with §; a number close to o which ensures

that X; [ is well defined
e A\ Yi— 2 o a(fi)

2. Compute: z; := ¢'(4i;) AR X;Band w; = TV

3. Minimize : the quantity C.4 referred to as the weighted least square objective in
order to get the new estimate ( (which is equivalent to a step of Newton’s method)

4. Update : ji; = g~ (7;)
5. Iterate : from step 2 until convergence

And with that algorithm we can obtain our parameter vector estimate B which can
then be used to make predictions with the model and assess its performance.

C.2 Penalised iteratively reweighted least squares

Generalized Additive Models (GAMs) are an extension of the GLM presented pre-
viously. Firstly introduced by Hastie and Tibshirani [207], the main particularity of a
GAM with regards to its formulation lies in the smoothing terms presented in the linear
predictor. Essentially we can write a GAM as follows :

() = Ay + > fi(ji), yi ~ EF (s, 9) (C.5)
J

Thus, we can distinguish two parts within this equation when thinking of estima-
tion. A parametric part Ay, A; being a design matrix while ~ the parameter vector. A
non-parametric part ), f;(z;;) which is essentially a sum of smooth functions of some
predictor variables. As for the response variable, it follows typically an exponential fa-
mily distribution just as in the GLM case. However, this scope of distribution can also
be extended with the use of GAM for location scale and shape formalised by Rigby and
Stasinopoulos [324].

There are two main questions that are fundamental with GAMs : how to determine
the scheme of smooth functions and how to control their smoothness. For the former
point, the answer is relatively concise : GAMs use basis expansion in order to represent
the different f of the model. Thus, a general formulation for the smooth functions is
the following one :

flx) = b(x)p (C.6)

In the GAM vernacular, these basis functions b; are called splines. The most common
ones are cubic splines or cyclic splines. We can notice that by inputting equation (C.6)
in the general GAM formulation (C.5) we bounce back on a linear formulation in the
parameters of the model. Then, we have to estimate the unknown parameters 5, For
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instance, k being fixed, the cubic basis being chosen, it is a special case of generalized
polynomial regression which is linear in the parameters.

The second point which requires our attention is the smoothness or wiggliness of
these functions. In other words how to choose k, the number of basis functions in the
representation (knots), in order to ensure that we do not use too simple or too complex
functions to represent the data. With GAMs, the knots of the splines are evenly spaced.
It means that different choices of k lead to a variety of grids of the predictor space and
as such, cannot be considered as different nested configurations. Thus, backward or
forward selection is not an option for choosing k.

In effect, one solution to this problem is not to attempt to select &, but to introduce
a measure of wiggliness of our functions for a given k. Essentially, the principle lies into
a reformulation of the least square objective. Instead of trying to minimise :

ly — XB|°

we introduce A to control wiggliness with the newly formed objective function to
minimise :

k—1
ly = XBI* + A fa]y) = 2f(x5) + f(},)
=2

with =7, j € {1...k} one of the evenly spaced k knots. That way, providing that
k is large enough to ensure enough flexibility, searching for a good X is now the only
thing to do to optimise wiggliness. Indeed, the choice of k£ and the fact that the knots
z; are evenly spaced has little impact on the final model fit in comparison to A [208]. A
is called the smoothing parameter. In a nutshell, we need to find a way to find both
an estimate for the unknown parameters b, and the "best" possible A\ according to a
defined methodology . Hence, GAMs can be considered as GLMs with a smoothing pe-
nalty. The general formulation of GAMs (C.5) introduces a pitfall in terms of identifiabi-
lity for the non-parametric side of the formula. Indeed, each function can compensate
the constant part of another function. Thus, it is essential to add some identifiability
constraints such as >, f;(x;;) = 0. Now that we have sorted model identifiability requi-
rements we can now define the model matrix. It is made of several sub-matrices from
the parametric and the semi-parametric part of the model. A is the sub-matrix from
the parametric part as defined in (C.5) and we now introduce XUl as the sub-matrices
for each smooth predictor term f;. Hence, by gathering these sub-matrices we get the
global model matrix as such : X = (A, X[ X2 ). The model parameter vector 3
which is linked to this model matrix contains the parameter vector v and the b;; of the
f; stacked together. Furthermore, we can also define penalisation matrices Sl asso-
ciated to each f; in such a way to allow that the term : \;37Sl3 is exactly the penalty
for f;. With this new formalism, the model defined in (C.5) can now be rewritten in the
form of a GLM under additional constraints :

9(pi) = XifB, yi ~ EF (i, 9) (C.7)
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with the following objective function to maximise :
1 .
R . [l
1B) = 35 ; \;87SP8 (C.8)

having the same [(3) as in (2.7) for the GLM. Finally the optimisation problem can
be written as :

1 .
argmax {l(3) — — s TSM
{B,Agl,xz,...}{( ) 2¢2j: ;BTSY B}

we have just multiplied the penalisation part by a constant term ﬁ for normalisa-
tion. This objective is identical to the GLM case (2.9) to which we add a penalisation
term. Consequently, this optimisation problem can be solved with the Penalised Ite-
ratively Reweighted Least Square algorithm (PIRLS) which is very similar to the IRLS
one defined for the GLM case at the end of section 2.2.3.

Assuming a given A the PIRLS algorithm is identical to the IRLS version except for
step 3. which will be looking at minimising the following quantity :

Iz — X85 + ) A87sV3
J

This is a traditional quadratic optimisation problem under constraint which can be
solved efficiently with various methods.

We are now able to estimate model parameters for a given A. But how do we choose
a valid A? We will not dive into too much details on that matter. Let us just note that
there are two main scenarios depending on whether the scale parameter is known. If
it is known, one way to address the choice of A is the Un-Biased Risk Estimator (UBRE)
defined by Craven and Wahba [249]. It is an adapted version of the Akaike Information
Criterion [325]. If it is unknown, then two methods can be considered. The first one re-
lies on cross validation. By watching prediction error, we can perform Ordinary Cross
Validation (OCV) and compare different values for A on a certain grid. For computational
efficiency, the mgcv package created by Simon Wood [180] in R implements a different
type of cross validation called General Cross Validation (GCV) which is more computa-
tionally efficient than OCV. The second one relies on Bayesian considerations. From a
probabilistic perspective it is possible to consider a Bayesian view of smoothing. In that
case, the smoothing parameter A will be associated with a Gaussian prior on model
coefficients. Thus, we define the log of the Bayesian Marginal likelihood as follows :

ML()) = log / f(418)£(8)dB (C9)

In other words, it is the log of the joint density of the response vector and model
coefficients 3. Then we maximise this quantity with regards to A in order to get the
optimal value for the smoothing parameter.
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C.3 Penalised wavelet additive model

In this section, we recall some general wavelet properties before explaining the pro-
cedure we have retained for wavelet basis construction in the case of the model pro-
posed in chapter 4.

C.3.1 Wavelet Properties

A wavelet is an oscillating function v localised in time and frequency which verifies
the following condition :

/ PP, / P, (C10)
Rt -

jwl Wl

with 1/} the Fourier transform of ¢. In particular, ¢) has zero mean and it is usual to
have additional conditions on moments of higher-order to be also null to add smooth-
ness to the wavelet. It is frequent for these functions to be defined with a finite support
which helps with the localised properties of wavelets. However not all wavelets benefit
from a finite support (e.g., Meyer wavelets [254]). In addition, numerous wavelets do
not have an analytical formulation and need to be calculated recursively or through
algorithms in practice. Several examples of wavelet functions are shown in Figure C.1.

e

Hisin Shannon or Sing Daubechics 4 Dranbechies 20
” l\
VY
II 2 | ——
I\
-I i
LY
| Chanssian or Spline Bicrthagenal Mesican Hat Coiflet

Figure C.1 - Illustration of different wavelet functions [326]

From a unique wavelet function, we can generate a family of functions by transla-
tion and dilation called atoms (also referred to as wavelets for conciseness) which are
defined as follows :

1 t—1>
)= —=0——),acR"bER C.1
77Z) ,b( ) \/aw ( a > ( )

we can then define the wavelet transform of any function f with finite energy (f €
L*(R)) as follows :
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Cy(ab) = / FO Tt (C12)

The wavelet coefficients C'; essentially measure the fluctuation of the function f on
the scale a. Precisely, the value of the wavelet coefficient C';(a, b) depends on the values
of f in a neighbourhood of b of size proportional to a. It is common to define a and b
based on (j, k) € Z*as follows :

V(j,k)€Z? a=2, b=ka (Ca3)

When a family of wavelets is orthogonal, a scale function usually noted ¢ is often

associated to . In this case, ¢ is also called the father wavelet and ¢) the mother wavelet.

Afamily of wavelets can also be generated from the father wavelet ¢ in the same way as

presented in equation (C.11). In this special case, the wavelet coefficients of a function
f are given by the following :

o = / F(t)yya(t)dt (Ca)

with ¢, (t) = 2729 (277t — k), V(j,k) € Z? which is equation C.11 where a and
b have been replaced with their definition in equation C.13. From an algebric point of
view, the scale family {¢, .} generates a vector space V; called an approximation space
while the family {¢; ,} generates a vector space W; called a detail space. Two general
properties are particularly useful with regards to these vectorial spaces. The first one
linking both spaces is that V,_; = V; @ W, Vj € Z. We say that an element of the
aprroximation space of level j — 1 can be decomposed in an approximation of level j
(which is more rough) and the detail of level j. The second property is that L*(R) =

@ W;. Therefore, any signal of L?(R) can be written as the sum of all its details. That is,
JEZ
the family {4 c}; 1)ez2 is an orthonormal wavelet basis of L*(R).

A famous example of this class of functions is the Haar father and mother wavelets.
These functions have the rare property amongst wavelets to have an explicit analytical
form and also benefiting from a compact support. The Haar mother wavelet is defined
as follows:

-1 if0o<z<]
Ylr)=¢ 1 ifi<a<l (C.15)
0 otherwise.
and the the Haar father wavelet is defined as follows :

{1ﬁogx<1 (C.16)

o) = 0 otherwise.

This wavelet originated from Alfred Haar in 1909, who first proposed the “Haar trans-
form”. However, it is only in 1987 that Ingrid Daubechies demonstrated that wavelet
transforms, of which the Haar transform is a particular case, were highly relevant in
the field of signal processing (and beyond). The Haar wavelet has the particularity to
be piecewise constant, a property which will be useful for the applications led in this
manuscript. A thorough classification of wavelets accompanied with many examples is
available in [327].
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C.3.2 Wavelet Basis Construction

The way we construct our wavelet basis before estimating our model parameters is
greatly inspired from the work produced in [248]. Essentially, the classical construction
of wavelets on a grid of 2/, J € N* equidistant points on [0, 1] can be summarised as
follows. Let us denote the 27 — 1 wavelets (details) {zx(u), k € {1,...,27 —1}}, defined
on [0, 1), to which we add the constant scale function equal to 3, on [o, 1] (thus Vj is the
space of constant functions on [0,1]). Therefore the usual approximation used for any
function f is given by

K
flz) =B+ Zukzk(ﬂf) (C.17)
k=1

For the sake of this example we write 3, as part of the basis but in OBO and BAC the
Bo is considered to be part of the intercept of the model which was already estimated
before entering the main BAC or OBO routine.

_J i—
Let usthen note W = 272 (Zk(TJl))ke{l 77777 21}, ie1,...27)

matrix of size 27 x 27 known in the literature as the orthonormal basis of wavelets. If
y is the 27 dimensional vector composed of the values of f on the dyadic grid of the 27
points of [0, 1] then it is represented by y = W8 where, by orthogonality of W,

where W is the orthonormal

0=W'W) Wiy =wT'y (C.18)

A fast O(R) algorithm, known as the discrete wavelet transform, exists for the de-
termination of 8. This is implemented in the wavethresh package in R and the wavelet
basis construction as we described above is available trough the wavD function in the
gamwave package [248].
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