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grâce à son omniscience et ses relectures pointues, et je suis me suis toujours trouvé inspiré à l'issue de nos discussions. Merci.

Chapitre 1 Introduction

Cette thèse porte sur certaines séries dynamiques associées à des systèmes hyperboliques. Ces derniers participent des systèmes dits chaotiques -fortement récurrents et sensibles aux conditions initiales -, dont l'ambassadeur le plus célèbre est peut-être le système à trois corps célestes, étudié par Poincaré à la fin du XIX e siècle [START_REF] Poincaré | Sur le problème des trois corps et les équations de la dynamique[END_REF]. Si ces dynamiques sont régies par des lois déterministes, les trajectoires d'évolution semblent complètement imprévisibles, voire aléatoires. Néanmoins, certaines d'entre elles se trouvent être périodiques (elles se reproduisent à l'infini, identiques à elles-mêmes) et, dans ce mémoire, c'est principalement sur celles-ci que se portera notre intérêt. L'existence d'orbites périodiques dans un contexte de chaos peut paraître paradoxale ; elles sont pourtant en abondance et la connaissance de leurs périodes permet souvent de récupérer des informations essentielles sur la dynamique qui les a engendrées, notamment via l'utilisation de séries dynamiques et autres fonctions zêta. Avant d'exposer en détails les problématiques dont il sera question dans ce manuscript -et pour les motiver quelque peu -, nous discutons brièvement de certains résultats traitant de la théorie spectrale des systèmes hyperboliques.

Flots d'Anosov et comptage des orbites périodiques

En 1898, Hadamard [START_REF] Hadamard | Les surfaces à courbures opposées et leurs lignes géodésique[END_REF] a montré que le chaos pouvait surgir dans un contexte géométrique très simple, en exhibant l'instabilité des lignes géodésiques sur les surfaces à courbure négative. Il a montré en outre que chaque classe de déformation libre de lacets contenait une unique géodésique fermée ; la distribution des longueurs de ces courbes privilégiées a depuis lors fait l'objet de nombreux travaux. Pour les surfaces hyperboliques -c'est-à-dire de courbure constante égale à -1 -et compactes, Selberg [START_REF] Selberg | Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series[END_REF] a introduit une fonction zêta qui compte les géodésiques fermées et a relié leurs longueurs aux valeurs propres du laplacien hyperbolique via une formule des traces. Huber [START_REF] Huber | Zur analytischen theorie hyperbolischer raumformen und bewegungsgruppen. ii[END_REF] a montré plus tard un analogue géométrique du théorème des nombres premiers : le nombre de géodésiques fermées dont la longueur est inférieure ou égale à L est équivalent à exp(L)/L quand L tend vers l'infini. Margulis [START_REF] Gregorii | Applications of ergodic theory to the investigation of manifolds of negative curvature[END_REF] a ensuite obtenu un résultat similaire pour les surfaces à courbure négative variable.

Les flots géodésiques en courbure négative sont en fait des cas particuliers de systèmes dynamiques hyperboliques, au sens de la définition donnée par Anosov en 1967 dans un article fondateur [START_REF] Victorovich | Geodesic flows on closed riemannian manifolds of negative curvature[END_REF].

1 Définition 1.0.1 (Anosov). Soit ϕ = (ϕ t ) t∈R un flot lisse agissant sur une variété fermée M , et X = d dt t=0 ϕ t son générateur. Le flot ϕ sera dit hyperbolique, ou d'Anosov, si pour tout z ∈ M il existe une décomposition La propriété d'hyperbolicité signifie que certaines directions, dites stables (les directions de E s ), sont contractées par la dynamique, tandis que d'autres, dites instables (les directions de E u ), sont dilatées. Dans ce contexte, le résultat de Margulis évoqué plus haut est toujours valide et s'énonce comme suit.

T z M = RX(z) ⊕ E u (z) ⊕ E s (z)
Théorème 1.0.2. Soit ϕ = (ϕ t ) t∈R un flot d'Anosov topologiquement mélangeant. Alors il existe un réel h > 0 tel qu'on a l'équivalent N (ϕ, t) ∼ e ht ht (1.0.1) quand t tend vers l'infini, où N (ϕ, t) est le nombre d'orbites périodiques primitives du flot ϕ dont la période est inférieure où égale à t.

Le nombre h est l'entropie topologique du flot, c'est une mesure du chaospour les flots géodésiques des surfaces hyperboliques compactes, cette entropie vaut 1 conformément au résultat de Huber. Parry et Pollicott [START_REF] Parry | An analogue of the prime number theorem for closed orbits of axiom a flows[END_REF] ont étendu l'équivalent (1.0.1) aux flots Axiom A (une classe de flots qui généralise les flots d'Anosov introduite par Smale [START_REF] Smale | Differentiable dynamical systems[END_REF]) après d'importantes contributions de Bowen [START_REF] Bowen | The equidistribution of closed geodesics[END_REF].

Fonction zêta et résonances de Ruelle

Contrairement à Margulis qui a recourt à la théorie ergodique, Parry et Pollicott démontrent le théorème des orbites primitives en usant d'une fonction zêta introduite par Ruelle [START_REF] Ruelle | Zeta-functions for expanding maps and anosov flows[END_REF] -une version légèrement modifiée de celle de Selberg -qui compte les orbites périodiques. La fonction zêta de Ruelle est l'homologue dynamique de la fonction zêta de Riemann ; elle est définie par la formule ζ ϕ (s) = γ 1 -e -sτ (γ) -1 , Re(s) > h, où le produit porte sur les orbites périodiques primitives γ du flot ϕ, et τ (γ) est la période de γ. En s'appuyant notamment sur le codage symbolique des flots hyperboliques développé par Bowen [START_REF] Bowen | Symbolic dynamics for hyperbolic flows[END_REF], Parry et Pollicott ont démontré dans [START_REF] Parry | An analogue of the prime number theorem for closed orbits of axiom a flows[END_REF] que ζ s'étend analytiquement à un voisinage ouvert du demi-plan {Re(s) h}, sauf en s = h où elle a un pôle simple. Ils obtiennent alors l'équivalent (1.0.1) en reproduisant la démonstration du théorème des nombres premiers de Wiener-Ikehara [START_REF] Wiener | The Fourier integral and certain of its applications[END_REF] qui repose sur un argument taubérien : la distribution des périodes τ (γ) se lit au travers des singularités analytiques de la fonction ζ ϕ .

Smale [START_REF] Smale | Differentiable dynamical systems[END_REF] s'est demandé s'il était possible, pour les flots Axiom A, d'obtenir un prolongement méromorphe à tout le plan complexe pour la fonction ζ ϕ , s'exclamant à ce sujet : « I must admit that a positive answer would be a little shocking ! ». Cette question a fait couler beaucoup d'encre et il a fallu presque cinquante ans pour qu'elle soit résolue. D'abord, Ruelle [START_REF] Ruelle | Zeta-functions for expanding maps and anosov flows[END_REF] a obtenu un tel prolongement sous la condition que le flot est analytique ainsi que ses distributions stable et instable. Plus tard, Rugh [START_REF] Henrik | Generalized fredholm determinants and selberg zeta functions for axiom a dynamical systems[END_REF] a montré que, pour les flots d'Anosov tri-dimensionnels, l'hypothèse d'analyticité sur les distributions stable et instable (mais pas sur le flot !) pouvait être omise, ce qui a été généralisé en dimension quelconque par Fried [START_REF] Fried | Meromorphic zeta functions for analytic flows[END_REF]. Pour les flots d'Anosov lisses (de classe C ∞ ), Pollicott a obtenu un prolongement de ζ ϕ dans un demi-plan {Re(s) > h-ε} pour un certain ε > 0 dépendant de ϕ, résultat étendu aux flots Axiom A par Parry-Pollicott [START_REF] Parry | Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics[END_REF].

Ces résultats sont typiquement obtenus en codant la dynamique via des partitions de Markov et en exprimant la fonction ζ ϕ comme un produit alterné de déterminants Fredholm de certains opérateurs agissant sur les fonctions höldériennes d'un sousdécalage de type fini, ce qui permet de relier les zéros et pôles de ζ ϕ au spectre desdits opérateurs. Cette méthode présente cependant le désavantage de ne pas prendre en compte la régularité du flot ; or, le travail de Kitaev [START_REF] Yu | Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness[END_REF] suggère que la régularité de la dynamique est intimement liée à la profondeur du demi-plan sur laquelle un prolongement analytique peut être obtenu.

Changeant de paradigme, Blank, Keller et Liverani [START_REF] Blank | Ruelle-perronfrobenius spectrum for anosov maps[END_REF] ont introduit au début des années 2000 des espaces fonctionnels adaptés à un difféomorphisme hyperbolique f (la version discrète des flots d'Anosov), sur lesquels l'opérateur de Koopman u → u • f est quasi-compact. La clé est de considérer des distributions dont la régularité est anisotrope ; grossièrement, ces distributions sont régulières dans les directions stables et irrégulières dans les directions instables. Ces résultats ont ensuite été affinés par Baladi [START_REF] Baladi | Anisotropic Sobolev spaces and dynamical transfer operators : C ∞ foliations[END_REF], Gouëzel-Liverani [START_REF] Gouëzel | Banach spaces adapted to anosov systems[END_REF] et Baladi-Tsujii [START_REF] Baladi | Anisotropic hölder and sobolev spaces for hyperbolic diffeomorphisms (espaces anisotropes de types hölder et sobolev)[END_REF], puis par Faure-Roy-Sjöstrand [START_REF] Faure | Semi-classical approach for anosov diffeomorphisms and ruelle resonances[END_REF] qui ont proposé une approche semi-classique. Liverani [START_REF] Liverani | On contact anosov flows[END_REF] (pour les flots de contact) et Butterley-Liverani [START_REF] Butterley | Smooth anosov flows : correlation spectra and stability[END_REF] ont adapté ces travaux au cadre continu, construisant des espaces fonctionnels sur lesquels le générateur X : u → d dt t=0 u • ϕ t d'un flot d'Anosov (ϕ t ) a une résolvante quasi-compacte. Comme dans le cas discret, Faure-Sjöstrand [START_REF] Faure | Upper bound on the density of ruelle resonances for anosov flows[END_REF] ont ensuite proposé une version micro-locale de ces espaces.

Précisons brièvement ces résultats. Soit ϕ un flot d'Anosov sur une variété M , et X son générateur. Si s est un nombre complexe, la résolvante R ϕ (s) de ϕ est définie par l'intégrale R ϕ (s) = ∞ 0 e -ts ϕ * -t dt, où ϕ * -t est le tiré en arrière par ϕ -t , agissant sur l'espace Ω • (M ) des formes différentielles. Dès que la partie réelle de s est assez grande, cette intégrale est convergente et donne lieu à un opérateur R ϕ (s) : Ω • (M ) → D • (M ), où D • (M ) désigne l'espace des courants -le dual de topologique de Ω • (M ). La terminologie « résolvante » est justifiée par les identités

(L X + s)R ϕ (s) = R ϕ (s)(L X + s) = Id Ω • (M ) ,
où L X est la dérivée de Lie dans la direction X.

Théorème 1.0.3 (Butterley-Liverani, Faure-Sjöstrand). La résolvante R ϕ (s), définie initialement sur un demi-plan {Re(s) > C}, admet un prolongement méromorphe en la variable s, à tout le plan complexe, comme une famille d'opérateurs Ω • (M ) → D • (M ), dont les résidus sont des projecteurs de rang fini. Ses pôles sont appelés résonances de Ruelle de ϕ.

Un spectre de résonances de Ruelle a été obtenu plus tard par Dyatlov-Guillarmou [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] pour les systèmes hyperboliques ouverts (des trajectoires peuvent s'échapper à l'infini) et plus récemment par Meddane pour les flots Axiom A [START_REF] Meddane | A morse complex for axiom a flows[END_REF], après des contributions de Dang-Rivière sur les flots Morse-Smale [START_REF] Viet | Spectral analysis of morse-smale flows i : construction of the anisotropic spaces[END_REF][START_REF] Viet | Spectral analysis of morse-smale flows, ii : Resonances and resonant states[END_REF].

Forts de ces techniques modernes, d'abord Giulietti-Liverani-Pollicott [START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF], puis Dyatlov-Zworski [START_REF] Dyatlov | Dynamical zeta functions for Anosov flows via microlocal analysis[END_REF] avec une approche semi-classique, ont été en mesure d'obtenir le prolongement analytique de ζ ϕ à tout le plan complexe, obtenant ainsi le Théorème 1.0.4 (Giulietti-Liverani-Pollicott, Dyatlov-Zworski). Si ϕ est un flot d'Anosov, la fonction ζ ϕ admet un prolongement méromorphe à tout le plan complexe ; ses pôles et ses zéros sont inclus dans l'ensemble des résonances de Ruelle de ϕ.

Dyatlov-Guillarmou ont ensuite étendu ce théorème aux flots Axiom A [START_REF] Dyatlov | Afterword : Dynamical zeta functions for axiom a flows[END_REF] grâce à leur travail sur les systèmes ouverts, répondant ainsi positivement à la question de Smale. Bien sûr, en dehors de celle de Ruelle, beaucoup d'autres fonctions zêta dynamiques existent dans la littérature -notamment pour les dynamiques discrètes -et une introduction plus complète à ce sujet pourra se trouver dans le livre de Baladi [START_REF] Baladi | Dynamical zeta functions and dynamical determinants for hyperbolic maps[END_REF].

Le théorème 1.0.4 s'obtient en reliant ζ ϕ (s) et la résolvante R ϕ (s) : on peut montrer grâce à la formule des traces de Guillemin [START_REF] Victor Guillemin | Lectures on spectral theory of elliptic operators[END_REF] que si Re(s) est assez grande alors ζ ϕ (s) ζ ϕ (s) = e εs tr gr ϕ * -ε R ϕ (s) , (1.0.2) où ε > 0 est un petit nombre et tr gr désigne la trace bémol graduée -une extension de la trace graduée L 2 qui est bien définie pour les opérateurs satisfaisant certaines condition de front d'onde ; nous renvoyons à l'appendice B.3 pour une définition précise. Grâce à des méthodes semi-classiques (propagation des singularités et estimées radiales), Dyatlov et Zworski ont donné une description précise du front d'onde du noyau de Schwartz de la résolvante et en déduisent que la trace bémol de ϕ * -ε R ϕ (s) est bien définie ; le théorème 1.0.4 est alors une conséquence de l'égalité (1.0.2) et du théorème 1.0.3.

Nous mentionnons finalement un résultat obtenu par Dyatlov et Zworski [START_REF] Dyatlov | Ruelle zeta function at zero for surfaces[END_REF] sur l'ordre de la singularité de ζ ϕ (s) en s = 0 pour les flots géodésiques des surfaces.

Théorème 1.0.5 (Dyatlov-Zworski). Si ϕ est le flot géodésique d'une surface à courbure négative Σ, alors ζ ϕ (s) a un pôle d'ordre |χ(Σ)| en s = 0, où χ(Σ) est la caractéristique d'Euler de Σ.

Ce théorème, connu pour les surfaces hyperboliques depuis le travail de Fried [START_REF] Fried | Fuchsian groups and reidemeister torsion[END_REF], exhibe un lien entre le comportement de la fonction ζ ϕ près de l'origine et la topologie de la variété ambiante. Ce phénomène ne concerne pas seulement les flots géodésiques et nous verrons que certains invariants topologiques peuvent être recouvrés à l'aide des fonctions zêta dynamiques.

Organisation de cette thèse

Dans ce mémoire, nous proposons quelques contributions sur des problématiques d'origine géométrique liées à celles évoquées ci-dessus. Les théorèmes 1.0.2, 1.0.4 et 1.0.5 sont des modèles prototypiques des divers résultats que nous présenterons : comptage d'orbites périodiques, prolongement analytique de fonctions zêta ou de séries dynamiques et nouage d'un lien avec la topologie environnante. Nos résultats seront obtenus en usant systématiquement de la théorie spectrale des flots hyperboliques et en particulier du théorème 1.0.3, ainsi que de son pendant pour les systèmes ouverts. Nous avons choisi de diviser la thèse en trois parties (indépendamment de la trichotomie précédente), comme suit.

Dans la partie I, constituée des chapitres 3 et 4, nous abordons un problème de comptage sous contrainte. Après avoir illustré la problématique sur un modèle jouet au chapitre 3, nous montrons au chapitre 4 un résultat asymptotique dans l'esprit de (1.0.1) pour les géodésiques fermées d'une surface à courbure négative dont on a prescrit les nombres d'intersection avec une famille de courbes simples.

La deuxième partie, formée des chapitres 5 et 6, est plus centrée sur la topologie. Au chapitre 5, nous calulons la valeur à l'origine de certaines séries de Poincaré comptant des arcs géodésiques d'une surface à bord. Puis, dans un cadre assez différent, nous construisons au chapitre 6 un invariant topologique -appelé torsion dynamique -défini à l'aide d'une fonction zêta de Ruelle tordue par une représentation du groupe fondamental ; nous relions enfin la torsion dynamique à un autre invariant topologique, la torsion de Turaev.

La dernière partie est consacrée aux flots de billards associés à une famille finie d'obstacles convexes dans l'espace euclidien et contient les chapitres 7 et 8. D'abord, au chapitre 7, nous étendons au cadre des flots de billards un résultat de comptage sous contrainte obtenu à la première partie. Puis, au chapitre 8, nous montrons que certaines séries de Dirichlet dynamiques liées aux résonances quantiques du système admettent un prolongement méromorphe à tout le plan complexe.

Ces résultats sont exposés plus en détails dans les paragraphes qui suivent.

Comptage des géodésiques sous contrainte d'intersection

Soit (Σ, g) une surface riemannienne fermée, orientée et à courbure strictement négative. Soit P l'ensemble des géodésiques fermées primitives, c'est-à-dire l'ensemble des géodésiques fermées qui ne sont pas multiple d'une géodésique plus courte. Pour tout L > 0, notons N (L) = {γ ∈ P : (γ) L} le nombre de ces géodésiques qui sont de longueur inférieure ou égale à L. Rappelons le résultat de Margulis : quand L tend vers l'infini, on a l'équivalent

N (L) ∼ e hL hL (1.1.1)
où h est l'entropie topologique du flot géodésique. D'autres résultats de comptage similaires existent pour les surfaces de Riemann non compactes, cf. Sarnak [START_REF] Sarnak | Prime geodesic theorems[END_REF], Guillopé [START_REF] Guillopé | Sur la distribution des longueurs des géodésiques fermées d'une surface compacte à bord totalement géodésique[END_REF], ou Lalley [START_REF] Steven P Lalley | Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations and their fractal limits[END_REF] ; nous renvoyons au travail de Paulin-Pollicott-Schapira [START_REF] Paulin | Equilibrium states in negative curvature[END_REF] pour des références précises sur les résultats de comptage existant dans des contextes plus généraux. Avec l'équivalent (1.1.1) en tête, nous nous poserons dans les lignes qui suivent la question suivante : Peut-on compter des géodésiques fermées primitives sujettes à certaines contraintes topologiques ou géométriques ? Avant de préciser les contraintes dont il sera question dans la première partie de ce manuscrit, nous présentons brièvement quelques résultats connus.

Contraintes homologiques

Une première contrainte que l'on peut vouloir imposer est de nature homologique : étant donnée une classe d'homologie fixée, peut-on compter les géodésiques fermées qui appartiennent à cette classe ? Lalley [START_REF] Steven | Closed geodesics in homology classes on surfaces of variable negative curvature[END_REF] et Pollicott [START_REF] Pollicott | Homology and closed geodesics in a compact negatively curved surface[END_REF] ont obtenu indépendamment le résultat suivant.

Théorème 1.1.1 (Lalley, Pollicott). Il existe une constante c > 0 telle que pour toute classe d'homologie ξ ∈ H 1 (Σ, Z), on a l'équivalent

{γ ∈ P : (γ) L, [γ] = ξ} ∼ c e hL L g+1 , (1.1.2)
quand L → ∞, où g est le genre de la surface.

Des résultats similaires avaient déjà été obtenu pour les surfaces hyperboliques (les surfaces à courbure constante, égale à -1) par Phillips-Sarnak [START_REF] Phillips | Geodesics in homology classes[END_REF] et Katsuda-Sunada [START_REF] Katsuda | Homology and closed geodesics in a compact riemann surface[END_REF]. Sans toutefois les énoncer, nous mentionnons que des résultats bien plus précis -par exemple valides pour une classe plus générale de flots hyperboliques, avec des développements asymptotiques comprenant plus de termes, ou encore autorisant la classe d'homologie ξ à dépendre de L -ont été obtenus plus tard par Sharp [START_REF] Sharp | Closed orbits in homology classes for anosov flows[END_REF], Babillot-Ledrappier [START_REF] Babillot | Lalley's theorem on periodic orbits of hyperbolic flows[END_REF], Anantharaman [START_REF] Anantharaman | Precise counting results for closed orbits of anosov flows[END_REF], et Pollicott-Sharp [START_REF] Pollicott | Asymptotic expansions for closed orbits in homology classes[END_REF].

Ces résultats peuvent s'obtenir grâce à un argument taubérien, en considérant les fonctions zêta tordues ζ ϕ,χ (s) = γ 1 -χ([γ])e -s (γ) -1 , où le produit porte sur les géodésiques primitives et χ : H 1 (Σ, Z) → C × est un caractère unitaire. Ces fonctions sont étudiées via l'analyse spectrale d'un opérateur de Ruelle ; ce sont des analogues géométriques des séries L de Dirichlet, utilisées notamment par de La Vallée-Poussin pour montrer le théorème de la progression arithmétique.

Nombres d'auto-intersection

Une seconde contrainte naturelle concerne les nombres d'auto-intersection. Si γ : R/ (γ)Z → Σ est une géodésique fermée paramétrée par longueur d'arc, on définit son nombre d'auto-intersection par i(γ, γ) = 1 2 (τ, τ ) ∈ (R/ (γ)Z) 2 : γ(τ ) = γ(τ ) .

Une géodésique fermée sera dite simple si son nombre d'auto-intersection est nul. Mirzakhani [START_REF] Mirzakhani | Growth of the number of simple closed geodesies on hyperbolic surfaces[END_REF][START_REF] Mirzakhani | Counting mapping class group orbits on hyperbolic surfaces[END_REF] a étudié la croissance asymptotique des géodésiques fermées ayant un nombre d'auto-intersection prescrit.

Théorème 1.1.2 (Mirzakhani). Supposons que (Σ, g) soit hyperbolique. Alors pour tout entier naturel n, il existe c n > 0 telle que, quand L → ∞, {γ ∈ P : (γ) L, i(γ, γ) = n} ∼ c n L 6(g-1) .

(1.1.3) L'article [START_REF] Mirzakhani | Growth of the number of simple closed geodesies on hyperbolic surfaces[END_REF] de Mirzakhani porte sur les géodésiques simples, et le cas n = 1 du théorème précédent a d'abord été prouvé par Rivin [START_REF] Rivin | Geodesics with one self-intersection, and other stories[END_REF] ; nous mentionnons aussi les travaux de Erlandsson-Souto [START_REF] Erlandsson | Counting curves in hyperbolic surfaces[END_REF][START_REF] Erlandsson | Mirzakhani's curve counting[END_REF] qui obtiennent des résultats similaires avec une autre approche. Dans un état d'esprit un peu différent, Sapir [START_REF] Sapir | Orbits of non-simple closed curves on a surface[END_REF] et Aougab-Souto [START_REF] Aougab | Counting curve types[END_REF] ont étudié la croissance asymptotique du nombre de types de courbes sur les surfaces hyperboliques (tandis que prescrire les nombres d'auto-intersection revient à compter des géodésiques appartenant à des types fixés).

Mirzakhani montre le théorème 1.1.2 en utilisant l'ergodicité de l'action du groupe des difféotopies de la surface sur l'espace des lamination mesurées, l'exposant 6g -6 étant la dimension de cet espace. Notons que la croissance des géodésiques fermées dont les nombres d'auto-intersection sont prescrits est polynomiale et non plus exponentielle : il y en a très peu. En fait, un résultat de Lalley [START_REF] Steven P Lalley | Self-intersections of closed geodesics on a negatively curved surface : Statistical regularities[END_REF] (valide aussi pour les surfaces à courbure négative variable) stipule qu'une géodésique fermée typique a un nombre d'auto-intersection proportionnel au carré de sa longueur. Plus précisément, il montre qu'il existe une constante I > 0 telle que pour tout ε > 0, on a

lim L→∞ 1 N (L) γ ∈ P : (γ) L, i(γ, γ) (γ) 2 -I ε = 1. (1.1.4)
La convergence est même exponentielle, comme cela peut être vu en utilisant un principe de grandes déviations de Kifer [START_REF] Kifer | Large deviations, averaging and periodic orbits of dynamical systems[END_REF] (voir Anantharaman [START_REF] Anantharaman | Distribution of closed geodesics on a surface, under homological constraints[END_REF]).

Nombres d'intersection géométriques

Nous détaillons à présent les résultats obtenus au chapitre 4, qui contient notamment l'article Closed geodesics with prescribed intersection numbers [Chab].

Revenons aux surfaces à courbure négative variable. Dans le paragraphe §1.1.1, nous avons contraint la classe d'homologie des géodésiques fermées, ce qui revient à prescrire leurs nombres d'intersection algébriques avec une famille de courbes simples formant une base du premier groupe d'homologie de la surface. Il est alors naturel de se demander si l'on peut, à la place, contraindre leurs nombres d'intersection géométriques avec une famille de courbes simples.

Pour répondre à cette question, fixons d'abord une géodésique fermée simple γ . Pour toute géodésique γ ∈ P, on note i(γ, γ ) = inf η∼γ,η ∼γ |η ∩ η | le nombre d'intersection géométrique entre γ et γ , où l'infimum porte sur les courbes η, η : R/Z → Σ librement homotopes à γ et γ , respectivement, et

|η ∩ η | = {(τ, τ ) ∈ (R/Z) 2 : η(τ ) = η (τ )}.
Si n est un entier naturel, nous souhaitons étudier la croissance asymptotique de la quantité {γ ∈ P : (γ) L, i(γ, γ ) = n} quand L → ∞.

Dans un premier temps, on supposera que la courbe simple γ est non séparante, dans le sens où Σ \ γ est connexe (cette condition sera relaxée plus tard).

Théorème 1.1.3. Supposons que γ n'est pas séparante. Alors il existe des constantes c > 0 et h ∈ ]0, h[ telles que pour tout entier n > 0, on a l'équivalent

{γ ∈ P : (γ) L, i(γ, γ ) = n} ∼ (c L) n n! e h L h L , L → ∞.
(1.1.5)

Le nombre h est l'entropie topologique du flot géodésique de la surface Σ (à bord) obtenue en découpant Σ le long de γ (voir le paragraphe 1.1.4 ci-dessous pour une définition précise). Notons que le cas n = 0 revient à compter les géodésiques fermées de Σ et était déjà connu grâce au travail de Dal'bo [START_REF] Dal | Remarques sur le spectre des longueurs d'une surface et comptages[END_REF], qui a montré que le flot géodésique des surfaces convexe co-compactes est topologiquement mélangeant, lui permettant ainsi d'utiliser le résultat de Parry-Pollicott [START_REF] Parry | An analogue of the prime number theorem for closed orbits of axiom a flows[END_REF]. En revanche, la croissance asymptotique (1.1.5) n'était pas connue pour n > 0, y compris en courbure constante.

Bien que plus faible que celle obtenue par Margulis, cette croissance reste exponentielle ; elle est donc strictement comprise entre celles obtenues par Mirzakhani d'un côté, et Lalley et Pollicott de l'autre. Comme nous l'avons vu, imposer un nombre d'auto-intersection est très contraignant, puisque pour une géodésique γ typique, on a i(γ, γ) ≈ I (γ) 2 . Ici c'est le nombre i(γ, γ ) que nous imposons ; en utilisant le principe de larges déviations de Kifer et la forme d'intersection de Bonahon [START_REF] Bonahon | Bouts des variétés hyperboliques de dimension 3[END_REF], nous verrons qu'on a typiquement i(γ, γ ) ≈ I (γ) où I > 0 ne dépend pas de γ (cf. la proposition 4.8.1 pour un énoncé précis dans l'esprit de (1.1.4)).

Si la courbe γ est séparante, on a le résultat suivant.

Théorème 1.1.4. Si γ sépare Σ en deux surfaces Σ 1 et Σ 2 , on désigne par h j ∈ ]0, h[ l'entropie du système ouvert (Σ j , g| Σ j ) pour j = 1, 2 (cf. le paragraphe suivant), et on définit h = max(h 1 , h 2 ). Alors il existe c > 0 telle que pour tout n ∈ N on l'équivalent, quand L → +∞,

N (2n, L) ∼          (c L) n n! e h L h L if h 1 = h 2 , 2 (c L 2 ) n (2n)! e h L h L if h 1 = h 2 .
(1.1.6)

La démonstration des théorèmes 1.1.3 et 1.1.4 fait notamment appel à un opérateur de diffusion dynamique S(s) agissant sur le bord du fibré unitaire tangent de Σ , étudié par l'intermédiaire de la théorie des résonances pour les systèmes ouverts de Dyatlov-Guillarmou [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] ; la super trace bémol de S(s) n est une série impliquant les géodésiques fermées γ telles que i(γ, γ ) = n. Nous renvoyons à l'introduction du chapitre 4 pour une présentation plus détaillée de la stratégie adoptée. Les mêmes techniques s'emploient aussi pour obtenir des résultats asymptotiques sur des géodésiques fermées dont on a prescrit plusieurs nombres d'intersection géométriques avec une famille de courbes, ce que nous précisons ci-dessous.

Prescription des nombres d'intersection avec une famille de courbes

Soit r 1 un entier et (γ ,1 , . . . , γ ,r ) une famille de géodésiques fermées simples deux à deux disjointes. Pour tout r-uplet n = (n 1 , . . . , n r ) ∈ N r d'entiers naturel, on souhaite comprendre le comportement asymptotique de la quantité N (n, L) = {γ ∈ P : (γ) L, i(γ, γ ,j ) = n j , j = 1, . . . , r} quand L → +∞, où i(γ, γ j ) est le nombre d'intersection géométrique entre γ et γ ,j .

Théorème 1.1.5. Soit n = (n 1 , . . . , n r ) ∈ N r \ {0}. Si N (n, L) > 0 pour un L > 0, alors il existe des constantes

C n > 0, d n ∈ N \ {0} et h n ∈ ]0, h[ telles que N (n, L) ∼ C n L dn-1 e hnL , L → +∞.
En fait, un résultat similaire est valide si l'on impose en plus l'ordre dans lequel on veut que les intersections se produisent, comme suit. Soient Σ 1 , . . . , Σ q les composantes connexes de la surface Σ = Σ \ (γ ,1 ∪ • • • ∪ γ ,r ) obtenue en découpant Σ le long des courbes γ ,1 , . . . , γ ,r (voir la figure 1.2). Si γ ∈ P est une géodésique fermée qui intersecte au moins une des courbes γ ,j , on désigne par ω(γ) la paire (u, v) de séquences u = (u 1 , . . . , u N ) et v = (v 1 , . . . , v N )

avec N 1, ordonnées cycliquement, telles que γ voyage dans Σ v 1 , . . . , Σ v N (dans cet ordre !) et passe de Σ v k à Σ v k+1 en traversant γ ,u k , où v N +1 = v 1 (cf. la figure 1.2) ; ces suites sont bien définies modulo application d'une permutation cyclique. Une telle paire ω de séquences finies est appelée chemin admissible si ω ∼ ω(γ) pour au moins Ici, on a r = 5, q = 3, et ω(γ) ∼ (u, v) avec u = (1, 2, 4, 5, 4, 3, 2) et v = (1, 1, 2, 3, 2, 3, 2) (le point de départ de γ est la flèche orangée).

une géodésique γ ∈ P, où ω ∼ ω(γ) signifie que ω(γ) est une permutation cyclique de ω (la permutation étant la même pour les deux composantes de ω).

Soit SΣ le fibré unitaire tangent de (Σ, g), et (ϕ t ) t∈R le flot géodésique associé, agissant sur SΣ. Soit π : SΣ → Σ la projection naturelle. On désigne par h j > 0 (j = 1, . . . , q) l'entropie du système ouvert (Σ j , g| Σ j ), c'est-à-dire l'entropie topologique du flot ϕ restreint à l'ensemble capté K j = {(x, w) ∈ SΣ : π(ϕ t (x, w)) ∈ Σ j , t ∈ R}, où la fermeture est prise dans SΣ.

Pour tout chemin admissible ω = (u, v) de taille N , on définit

h ω = max{h v k : k = 1, . . . , N } et d ω = {k = 1, . . . , N : h v k = h ω }.
Le nombre h ω est le maximum des entropies des surfaces rencontrées par n'importe quelle géodésique γ ∈ P satisfaisant ω(γ) ∼ ω tandis que d ω est le nombre de fois où une telle géodésique rencontre une surface dont l'entropie est égale à h ω (par exemple, sur la figure 1.2, si l'entropie h 2 de Σ 2 est la plus grande, on a h(ω) = h 2 et d(ω) = 3, puisque γ passe trois fois dans Σ 2 ). En fait, les nombres h ω et d ω ne dépendent que de n(ω) = (n 1 , . . . , n r ) où n j = {k = 1, . . . , N : u k = j} (voir le paragraphe §4.9) ; ainsi, nous les désignons par h n(ω) and d n(ω) respectivement.

Théorème 1.1.6. Soit ω un chemin admissible. Alors il existe c(ω) > 0 telle que {γ ∈ P : (γ) L, ω(γ) ∼ ω} ∼ c(ω)L d n(ω) -1 e h n(ω) L , L → +∞.

Notons que le théorème 1.1.5 peut être déduit du théorème 1.1.6 en sommant sur les chemins admissibles ω tels que n(ω) = n, où n ∈ N r est fixé. En revanche, le théorème 1.1.3 n'est pas une conséquence directe du théorème 1.1.6 ; il découle d'un résultat plus précis -énoncé dans le paragraphe §4.9 -qui permet d'exprimer les constantes c(ω k ), d n(ω k ) et h n(ω k ) en fonction de c(ω), d n(ω) et h n(ω) , où ω k est le chemin obtenu en concaténant k fois le chemin ω.

Séries dynamiques et topologie

Nous relatons ici les résultats obtenus à la partie II. Celle-ci est constituée du chapitre 5, qui contient l'article Poincaré series for surfaces with boundary [Chac], et du chapitre 6, qui retranscrit l'article Dynamical torsion for contact Anosov flows [START_REF] Chaubet | Dynamical torsion for contact anosov flows[END_REF] écrit en collaboration avec Nguyen Viet Dang.

Séries de Poincaré pour les surfaces à bord

Soit (Σ, g) une surface riemannienne connexe, orientée, à courbure négative et dont le bord ∂Σ est totalement géodésique. Soit G ⊥ l'ensemble des orthogéodésiques de Σ, c'est-à-dire l'ensemble des arcs géodésiques γ : [0, ] → Σ (paramétrés par longueur d'arc) tels que γ(0), γ( ) ∈ ∂Σ, γ (0) ⊥ T γ(0) ∂Σ et γ ( ) ⊥ T γ( ) ∂Σ. Si Re(s) est assez grande, la série de Poincaré

η(s) = γ∈G ⊥ e -s (γ) ,
(1.2.1) où (γ) désigne la longueur de γ, converge (voir §5.3.2). Au chapitre 5, nous montrerons le Théorème 1.2.1. La série de Poincaré s → η(s) admet un prolongement méromorphe à tout le plan complexe, et s'annule à l'origine.

Si x et y sont des points distincts de Σ, nous pouvons aussi considérer la série de Poincaré associée aux arcs géodésiques joignant x à y. Plus précisément, on définit η x,y (s) = γ:x y e -s (γ) , où la somme porte sur les arcs géodésiques γ : [0, (γ)] → Σ (paramétrés par longueur d'arc) tels que γ(0) = x et γ( (γ)) = y. Nous avons alors le résultat suivant.

Théorème 1.2.2. La série de Poincaré s → η x,y (s) admet un prolongement méromorphe à tout le plan complexe, et sa valeur à l'origine est donnée par η x,y (0) = 1 χ(Σ) , où χ(Σ) est la caractéristique d'Euler de Σ.

Les nombres η(0) et η x,y (0) peuvent être interprétés comme le nombre d'enlacement de certains noeuds lengendriens dans SΣ ; pour la série η, cet enlacement est nul.

À notre connaissance, le théorème 1.2.1 est le premier résultat sur une série concernant l'orthospectre (l'ensemble des longueurs des orthogéodésiques) d'une surface à bord totalement géodésique, de courbure négative potentiellement variable. Pour les surfaces hyperboliques à bord, l'orthospectre a été largement étudié, notamment par Basmajian [START_REF] Basmajian | The orthogonal spectrum of a hyperbolic manifold[END_REF], Bridgeman [START_REF] Bridgeman | Orthospectra of geodesic laminations and dilogarithm identities on moduli space[END_REF], Calegari [START_REF] Calegari | Chimneys, leopard spots and the identities of basmajian and bridgeman[END_REF] (voir aussi Bridgeman-Kahn [START_REF] Bridgeman | Hyperbolic volume of manifolds with geodesic boundary and orthospectra[END_REF]). En particulier, il est connu que si (Σ, g) est une surface hyperbolique compacte à bord totalement géodésique, on a

(∂Σ) = γ∈G ⊥ 2 log coth( (γ)/2), vol(Σ) = 2 π γ∈G ⊥
R sech 2 ( (γ)/2) , où (∂Σ) est la longueur Σ, vol(Σ) est son volume, et R est la fonction dilogarithmique. Nous renvoyons à [START_REF] Bridgeman | Identities on hyperbolic manifolds[END_REF] pour une exposition détaillée de ces résultats. Afin d'étudier les séries de Poincaré η(s) et η x,y (s), nous adopterons la stratégie élégante de Dang et Rivière [START_REF] Viet | Poincaré series and linking of legendrian knots[END_REF], qui consiste à réécrire les deux séries comme des appariements distributionnels impliquant la résolvante du flot géodésique. Sur une surface fermée à courbure négative, Dang et Rivière ont prouvé que les séries de Poincaré associées aux arcs orthogéodésiques joignant deux géodésiques fermées triviales en homologie, mais aussi celles comptant les arcs géodésiques joignant deux points, admettent un prolongement méromorphe à tout le plan complexe ; ils ont montré que leurs valeurs à l'origine coïncident avec l'enlacement de certains noeuds legendriens dans le fibré unitaire de la surface -pour la série comptant les arcs géodésiques reliant deux points, ils obtiennent (comme ici) que cette valeur coïncide avec l'inverse de la caractéristique d'Euler de la surface. Le travail de Dang-Rivière généralise un résultat antérieur de Paternain [START_REF] Gabriel P Paternain | Topological pressure for geodesic flows[END_REF] qui stipule que si (Σ, g) est fermée et hyperbolique, alors Σ η x,y (s)dvol g (x)dvol g (y) = 4πχ(Σ) 1 -s 2 , où η x,y est la série associée aux arcs reliant x et y, et où vol g est la mesure de volume riemannienne. La principale nouveauté de nos résultats est que nous travaillons avec des surfaces à bords. Ceci nous conduira (encore !) à utiliser la théorie des résonances de Pollicott-Ruelle pour les systèmes ouverts développée par Dyatlov-Guillarmou [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] ainsi qu'un résultat de Hadfield [START_REF] Hadfield | Zeta function at zero for surfaces with boundary[END_REF] sur la topologie des états résonants.

Torsion dynamique pour les flots d'Anosov de contact

Soit M une variété fermée de dimension impaire et (E, ∇) un fibré plat de rang d sur M . Le transport parallèle de la connexion ∇ induit une représentation ρ ∈ Hom(π 1 (M ), GL(C d )) du groupe fondamental. De plus, ∇ induit une différentielle tordue sur le complexe Ω • (M, E) des formes différentielles sur M à valeurs dans E, donnant lieu à des groupes de cohomologie H • (M, ∇) = H • (M, ρ). On dira que ∇ (ou ρ) est acyclique si ces groupes de cohomologie sont triviaux. Si ρ est unitaire (c'est-à-dire s'il existe une structure hermitienne sur E qui est préservée par ∇) et acyclique, Reidemeister [START_REF] Reidemeister | Homotopieringe und linsenräume[END_REF] a introduit un invariant combinatoire τ R (ρ) de la paire (M, ρ), appelé torsion de Franz-Reidemeister (ou R-torsion), qui est un nombre strictement positif. Cela lui a permis de classifier (à homéomorphisme près) les espaces lenticulaires en dimension 3 ; ce résultat a été étendu aux dimensions supérieures par Franz [START_REF] Franz | Über die torsion einer überdeckung[END_REF] et de Rham [dR36].

Côté analytique, Ray-Singer [START_REF] Daniel | R-torsion and the laplacian on riemannian manifolds[END_REF] ont introduit un autre invariant τ RS (ρ) -la torsion analytique -défini grâce à la fonction zêta spectrale du laplacien induit par la structure hermitienne sur E et une métrique riemannienne sur M . Ils ont conjecturé l'égalité entre la torsion analytique et celle de Reidemeister. Cette conjecture a été démontrée indépendamment par Cheeger [START_REF] Cheeger | Analytic torsion and the heat equation[END_REF] et Müller [START_REF] Müller | Analytic torsion and r-torsion of riemannian manifolds[END_REF], dans le cas où on suppose seulement ρ unitaire (la R-torsion et la torsion analytique ont une extension naturelle dans le cas où ρ n'est pas acyclique). Le théorème de Cheeger-Müller a été étendu aux fibrés plats unimodulaires par Müller [START_REF] Muller | Analytic torsion and r-torsion for unimodular representations[END_REF] et à tous les fibrés plats par Bismut-Zhang [START_REF] Bismut | An extension of a theorem by cheeger and müller[END_REF].

Fried [START_REF] Fried | Lefschetz formulas for flows[END_REF] s'est intéressé au lien entre la R-torsion la fonction zêta de Ruelle d'un flot d'Anosov ϕ généré par un champ X et tordue par une représentation ρ. Plus précisément, on pose ζ X,ρ (s) = γ∈G ϕ det 1 -ε γ ρ([γ])e -sτ (γ) , Re(s) 1, où G ϕ est l'ensemble des orbites périodiques primitives de ϕ, τ (γ) est la période de γ et ε γ = 1 si le fibré stable de γ est orientable et ε γ = -1 sinon. Le théorème 1.0.4 s'étend naturellement à ce contexte, et ζ X,ρ admet un prolongement méromorphe à tout le plan complexe. En utilisant la formule des traces de Selberg, Fried [START_REF] Fried | Analytic torsion and closed geodesics on hyperbolic manifolds[END_REF] a pu relier le comportement de ζ X,ρ (s) près de s = 0 avec τ R , dans l'esprit du théorème 1.0.5, comme suit.

Théorème 1.2.3 (Fried). Soit M = SZ le fibré unitaire tangent d'une variété hyperbolique fermée Z, et X le champ de vecteur géodésique associé. Supposons que ρ : π 1 (M ) → O(d) est une représentation unitaire et acyclique. Alors ζ X,ρ (s) est analytique près de s = 0 et |ζ X,ρ (0)| (-1) r = τ R (ρ), (1.2.2)

où 2r + 1 = dim M .
Dans son article [START_REF] Fried | Meromorphic zeta functions for analytic flows[END_REF], Fried a proposé la Conjecture 1.2.1 (Fried). L'égalité (1.2.2) est valable pour les flots géodésiques des variétés à courbure négative.

Fried avait déjà conjecturé la validité de l'égalité (1.2.2) pour les variétés localement symétriques à courbure négative dans [START_REF] Fried | Lefschetz formulas for flows[END_REF] ; cela a été prouvé par Shen [START_REF] Shen | Analytic torsion, dynamical zeta functions, and the fried conjecture[END_REF] après des contributions de Moscovici-Stanton [START_REF] Moscovici | R-torsion and zeta functions for locally symmetric manifolds[END_REF].

Plus généralement, on peut se poser la question de la validité de (1.2.2) pour des flots hyperboliques généraux. Pour les flots d'Anosov analytiques, Sanchez-Morgado [START_REF] Sánchez-Morgado | Lefschetz formulae for anosov flows on 3manifolds[END_REF][START_REF] Sánchez-Morgado | R-torsion and zeta functions for analytic anosov flows on 3-manifolds[END_REF] a montré, en dimension 3, que si ρ est acyclique, unitaire, et vérifie que ρ([γ]) -ε j γ est inversible pour j ∈ {0, 1} pour une certaine orbite γ, alors l'égalité (1.2.2) est satisfaite. La preuve de Sanchez-Morgado repose cependant sur l'existence de partitions de Markov analytiques et ne s'étend donc pas, a priori, aux flots C ∞ .

Dang-Guillarmou-Rivière-Shen [START_REF] Nguyen | The fried conjecture in small dimensions[END_REF] ont contourné le problème en s'appuyant sur la théorie spectrale moderne des flots hyperboliques évoquée plus haut (voir aussi Dang-Rivière [START_REF] Viet | Topology of pollicott-ruelle resonant states[END_REF] pour les flots Morse-Smale). En effet, le théorème 1.0.3 est valide ici et permet de définir un spectre de résonances de Ruelle pour la dérivée de Lie tordue L ∇ X = ∇ι X + ι X ∇, où ι X est le produit intérieur avec X agissant sur Ω • (M, E) ; ce spectre est noté Res(L ∇ X ). Théorème 1.2.4 (Dang-Rivière-Guillarmou-Shen). Soit ρ une représentation acyclique de π 1 (M ). Alors l'application X → ζ X,ρ (0) est localement constante sur l'espace des champs de vecteurs lisses X d'Anosov pour lesquels 0 / ∈ Res(L ∇ X ). Si le flot ϕ t préserve une forme volume lisse et dim(M ) = 3, alors l'égalité (1.2.2) est satisfaite si b 1 (M ) = 0 ou sous la même hypothèse demandée par Sanchez-Morgado [START_REF] Sánchez-Morgado | R-torsion and zeta functions for analytic anosov flows on 3-manifolds[END_REF].

Ce résultat a permis à Dang-Guillarmou-Rivière-Shen, par le biais d'un argument d'approximation, d'utiliser le résultat de Sanchez-Morgado pour montrer que l'égalité (1.2.2) est satisfaite pour les flots d'Anosov qui préservent une forme volume en dimension 3. Il y a cependant deux restrictions au théorème 1.2.4. La première est que l'égalité |ζ X,ρ (0)| (-1) r = τ R (ρ) concerne deux nombres strictement positifs, du fait que la representation ρ est unitaire ; or il se pourrait que, si ρ est non unitaire, la phase du nombre complexe ζ X,ρ (0) contienne des informations topologiques. La seconde concerne l'hypothèse que 0 n'est pas une résonance de Ruelle. À l'exception des petites dimensions étudiées dans [START_REF] Nguyen | The fried conjecture in small dimensions[END_REF], cette hypothèse est difficile à contrôler, même sur des exemples explicites. Par ailleurs, dans le cas non-acyclique, les travaux récents de Cekic-Paternain [START_REF] Cekić | Resonant spaces for volumepreserving anosov flows[END_REF] et Cekic-Dyatlov-Küster-Paternain [START_REF] Cekić | The ruelle zeta function at zero for nearly hyperbolic 3-manifolds[END_REF] montrent que les dimensions des espaces propres de L ∇ X pour la résonance s = 0qui sont étroitement liées à l'ordre de la singularité de ζ X,ρ à l'origine -ne sont pas nécessairement stables par perturbations du champ X. Ainsi, rien ne garantit a priori que le nombre ζ X,ρ (0) soit bien défini, même si la représentation ρ est supposée acyclique.

Pour surmonter ces restrictions (au moins dans le cas où X engendre un flot d'Anosov de contact), nous avons, dans un travail en collaboration avec Nguyen Viet Dang [START_REF] Chaubet | Dynamical torsion for contact anosov flows[END_REF], introduit un nouvel invariant -la torsion dynamique -bien défini pour n'importe quelle représentation ρ et qui coïncide avec ζ X,ρ (0) ±1 si 0 / ∈ Res(L ∇ X ). Avant d'introduire cet invariant, nous discutons de quelques versions raffinées des torsions combinatoire et analytique présentes dans la littérature, dont certaines seront reliées à la torsion dynamique.

Des versions raffinées de la torsion

La torsion de Franz-Reidemeister τ R est donnée par le module d'un certain produit alterné de déterminants ; le module est important, car des choix doivent être faits pour définir la torsion combinatoire, et ces ambiguïtés ont des répercussions sur les valeurs des déterminants. Pour résoudre ce problème, Turaev [START_REF] Vladimir | Reidemeister torsion in knot theory[END_REF][START_REF] Georgievich | Euler structures, nonsingular vector fields, and torsions of reidemeister type[END_REF][START_REF] Turaev | Torsion invariants of spin c -structures on 3-manifolds[END_REF] a introduit une version raffinée de la R-torsion combinatoire, appelée torsion combinatoire raffinée. C'est un nombre τ e,o (ρ) qui dépend d'autres données combinatoires, à savoir une structure d'Euler e et un choix d'orientation cohomologique o de M ; si ρ est acyclique et unitaire, on a |τ e,o (ρ)| = τ R (ρ). Nous renvoyons au paragraphe §6.7.2 pour des définitions précises. Plus tard, Farber-Turaev [START_REF] Farber | Poincaré-Reidemeister metric, Euler structures, and torsion[END_REF] ont généralisé la définition pour les représentations non-acycliques. Dans ce cas, τ e,o (ρ) est un élément du fibré déterminant det H • (M, ρ).

Motivés par le travail de Turaev, Braverman-Kappeler [BK07c, BK + 08, BK07b] ont introduit une version raffinée de la torsion analytique de Ray-Singer, la torsion analytique raffinée τ an (ρ), qui est à valeurs complexe si ρ est acyclique. Leur construction repose sur l'existence d'un opérateur de chiralité

Γ g : Ω • (M, E) → Ω n-• (M, E), Γ 2 g = Id,
une version renormalisée de l'étoile de Hodge associée à une métrique g. Ils ont montré que le ratio ρ → τ an (ρ) τ e,o (ρ)

est une fonction holomorphe sur la variété des representations, donnée par une expression locale explicite, à multiplication par une constante près. Ce résultat généralise le théorème de Cheeger-Müller. Simultanément, Burghelea-Haller [START_REF] Burghelea | Complex-valued ray-singer torsion[END_REF] ont introduit une torsion analytique complexe, étroitement liée à celle de [START_REF] Braverman | Comparison of the refined analytic and the burghelea-haller torsions[END_REF] quand elle est définie ; nous renvoyons au travail de Huang [H + 07] pour plus de détails sur ce sujet.

La torsion dynamique

Supposons maintenant que X = X ϑ est le champ de Reeb associé à une forme de contact ϑ sur M . La forme de contact ϑ induit un opérateur de chiralité

Γ ϑ : Ω • (M, E) → Ω n-• (M, E), Γ 2 ϑ = Id,
cf. §6.4, une version contact de l'étoile de Hodge. Soit C • ⊂ D • (M, E) l'espace (de dimension finie) des états résonants de Ruelle généralisés de L ∇ X pour la résonance 0. Plus précisément, on pose

C • = u ∈ D • (M, E) : WF(u) ⊂ E * u , ∃N ∈ N, L ∇ X N u = 0 ,
où WF est le front d'onde de Hörmander, E * u ⊂ T * M est le fibré co-instable de X 1 , et D (M, E) est l'espace des courants à valeurs dans E. Alors ∇ induit une différentielle sur C • , ce qui nous donne un complexe de co-chaines de dimension finie. Un résultat de Dang-Rivière [START_REF] Viet | Topology of pollicott-ruelle resonant states[END_REF] implique que le complexe (C • , ∇) est acyclique dès que ∇ l'est. Parce que la chiralité Γ ϑ commute avec L ∇ X , elle induit une chiralité sur C • ; en particulier, on peut calculer la torsion τ (C • , Γ ϑ ) du complexe de dimension finie (C • , ∇), respectivement à la chiralité Γ ϑ , comme défini dans [START_REF] Braverman | Refined analytic torsion as an element of the determinant line[END_REF] (voir le paragraphe §6.2). La torsion dynamique τ ϑ est alors définie par τ ϑ (ρ) (-1) q = ± τ (C • , Γ ϑ ) (-1) q torsion en dimension finie × lim s→0 s -m(X,ρ) ζ X,ρ (s) fonction zeta renormalisée (1.2.3) où le signe ± sera donné plus tard, m(X, ρ) ∈ Z est l'ordre de la singularité de ζ X,ρ (s) au point s = 0, et q = (dim(M ) -1)/2 est la dimension du fibré instable de X. Une remarque cruciale est que ni m(X, ρ), ni chacun des deux termes dans le produit (1.2.3), ne sont a priori stables par perturbations de (X, ρ) ; la torsion dynamique τ ϑ a en revanche d'intéressantes propriétés d'invariance, comme nous le verrons dans le paragraphe suivant. Dans le cas où la représentation ρ n'est pas acyclique, il est toujours possible de définir τ ϑ (ρ) comme un élément du fibré déterminant det H • (M, ρ) et cet élément est encore invariant par perturbations de ϑ ∈ A, comme ce sera expliqué dans les remarques 6.4.5 et 6. 

Résultats obtenus

Soit

(ρ u ) u∈(-ε,ε) de Rep ac (M, d), ∂ u log τ ϑ (ρ u ) = ∂ u log τ e,o (ρ u ) De plus, si dim M = 3 et b 1 (M ) = 0, l'application ρ → τ ϑ (ρ)/τ e,o ( 
∂ u log τ η (ρ u ) = ∂ u log τ ϑ (ρ u ) + ∂ u log det ρ u , cs(X ϑ , X η ) topologique où cs(X ϑ , X η ) ∈ H 1 (M, Z)
est la classe de Chern-Simons de la paire (X ϑ , X η ) (voir le paragraphe 6.7.1).

Le terme det ρ, cs(X ϑ , X η ) est topologique car c'est le déterminant de la représentation ρ calculée sur la classe Chern-Simons cs(X ϑ , X η ) ∈ H 1 (M, Z) 3 ; cette dernière mesure l'obstruction à trouver une homotopie connectant X ϑ et X η parmi des champs de vecteurs de s'annulant pas -par exemple, s'il existe une famille continue (X t ) t∈[0,1] de champs de vecteurs sans zéros telle que

X 0 = X ϑ et X 1 = X η , alors cs(X ϑ , X η ) = 0.
Puisque la torsion dynamique est définie à l'aide de la fonction zêta de Ruelle, les résultats énoncés ci-dessus permettent de récupérer des informations sur le comportement de ζ X,ρ près de l'origine (voir en particulier le corollaire 6.1.5).

Travaux liés

Certains analogues de notre torsion dynamique ont été introduits par Burghelea-Haller [START_REF] Burghelea | Torsion, as a function on the space of representations[END_REF] pour les champs de vecteurs admettant une 1-forme de Lyapunov fermée, généralisant des résultats de Hutchings [START_REF] Hutchings | Reidemeister torsion in generalized morse theory[END_REF] et Hutchings-Lee [START_REF] Hutchings | Circle-valued morse theory, reidemeister torsion, and seiberg-witten invariants of 3-manifolds[END_REF][START_REF] Hutchings | Circle-valued morse theory and reidemeister torsion[END_REF] sur les flots de Morse-Novikov. Dans ce cas, la torsion dynamique dépend du choix d'une structure d'Euler et est une fonction définie sur un sous-ensemble de Rep ac (M, d) ; si d = 1, il est montré dans [BH08a] qu'elle s'étend en une fonction rationnelle sur la fermeture de Zariski de Rep ac (M, 1) qui coïncide, au signe près, avec la torsion de Turaev. Dans ces travaux, la torsion considérée est de la forme fonction zêta dynamique en zéro × terme correctif où le terme correctif est la torsion d'un complexe de dimension finie dont les chaînes sont générées par les zéros du champ vecteurs. Le choix de la structure d'Euler donne une base distinguée du complexe et donc une valeur bien définie pour la torsion. Pour les flots d'Anosov, il n'y a pas de choix canonique de courants dans C • ; c'est précisément là où notre chiralité Γ ϑ intervient, puisqu'elle permet de définir une classe de bases de C • invariantes par Γ ϑ .

Nous mentionnons aussi les résultats de Rumin-Seshadri [START_REF] Rumin | Analytic torsions on contact manifolds[END_REF] sur les 3-variétés CR de Seifert, qui relient une fonction zêta dynamique à une certaine torsion de contact analytique. Plus récemment, Spilioti [START_REF] Spilioti | Twisted ruelle zeta function and complex-valued analytic torsion[END_REF] et Müller [START_REF] Mueller | On fried's conjecture for compact hyperbolic manifolds[END_REF] ont été en mesure de comparer la fonction zêta de Ruelle associée à une variété hyperbolique compacte de dimension impaire avec certaines torsions analytiques raffinées. Enfin, pour les flots géodésiques des orbisurfaces hyperboliques compactes, Bénard-Frahm-Spilioti [START_REF] Bénard | The twisted ruelle zeta function on compact hyperbolic orbisurfaces and reidemeister-turaev torsion[END_REF] ont montré que ζ X,ρ (0) coïncide avec la torsion de Turaev (au signe près, pour un certain choix de structure d'Euler) en utilisant la formule des traces de Selberg ; ceci constitue, pour les flots géodésiques des orbisurfaces, une généralisation de notre théorème 1.2.6.

Résultats sur les flots de billards

Nous présentons ici les résultats des chapitres 7 et 8 qui forment la partie III ; ils contiennent respectivement les articles Closed billiard trajectories with prescribed bounces [Chaa] 

D i ∪ D j ) ∩ D k = ∅, i = k, j = k,

Comptage sous contrainte

Dans le chapitre 7, nous généralisons le théorème 1.1.3 au cadre des flots des billards. Plus précisément, on suppose que d = 2 et on se donne un autre obstacle D 0 ⊂ R 2 de sorte que la famille D 0 , . . . , D r satisfasse toujours la condition de non-éclipse. Pour toute trajectoire périodique γ ∈ P, on note m 0 (γ) le nombre de réflexions de γ sur D 0 . 

(γ) t, m 0 (γ) = n} ∼ (ct) n n! e h B t h B t .
Ce résultat sera obtenu grâce à des méthodes similaires à celles utilisées au chapitre 4, notamment en faisant appel à un travail récent de Küster-Schütte-Weich [START_REF] Küster | Resonances and weighted zeta functions for obstacle scattering via smooth models[END_REF] qui permet de voir le flot de billard comme un flot régulier sur une variété lisse, de sorte que la théorie de Dyatlov-Guillarmou [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] peut être utilisée pour comprendre la résolvante du flot.

Séries de Dirichlet et résonances du laplacien

Dans le chapitre 8, nous obtenons un prolongement méromorphe pour certaines séries de Dirichlet liées aux résonances du laplacien sur R d \∪ r j=1 D j . Plus précisément, pour tout entier naturel strictement positif q, posons

η q (s) = m(γ)∈qN τ (γ)e -sτ (γ) |1 -P γ | 1/2 , Re(s) 1,
où la somme porte sur toutes les orbites périodiques (pas nécessairement primitives), m(γ) est le nombre de réflexions de γ sur les obstacles D 1 , . . . , D r , P γ est l'application de Poincaré linéarisée de γ et |1 -

P γ | = | det(1 -P γ )|.
Théorème 1.3.2 (C.-Petkov). La série η q admet un prolongement méromorphe à tout le plan complexe ; ses pôles sont simples avec résidus dans Z/q.

Ce théorème est démontré en faisant usage du modèle lisse de [START_REF] Küster | Resonances and weighted zeta functions for obstacle scattering via smooth models[END_REF], en relevant le flot du billard sur un fibré en grassmanniennes, suivant la méthode de Faure-Tsujii [START_REF] Faure | The semiclassical zeta function for geodesic flows on negatively curved manifolds[END_REF] utilisée pour étudier des flots géodésiques, et en introduisant un fibré de q-réflexion, qui permet de faire abstraction des orbites γ telles que m(γ) / ∈ qZ. En particulier, le théorème 1.3.2 implique le prolongement méromorphe de la série

η D (s) = γ (-1) m(γ) τ (γ)e -sτ (γ) |1 -P γ | 1/2 , Re(s) 1, en écrivant η D (s) = 2η 2 (s) -η 1 (s).
Cette dernière série est intimement reliée aux résonances {µ j } ⊂ C du laplacien de Dirichlet ∆ sur R d \ ∪ r j=1 D j , via la formule des traces de Bardos-Guillot-Ralston [START_REF] Bardos | La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion[END_REF]. Plus précisément, pour µ ∈ C avec Im(µ) < 0, la résolvante La distribution de ces résonances -et notamment l'existence d'un trou spectral -est étroitement liée à la décroissance de l'énergie locale des solutions de l'équation des ondes. Sous des conditions de pression topologique, un trou spectral a été obtenu par Ikawa [START_REF] Ikawa | Decay of solutions of the wave equation in the exterior of several convex bodies[END_REF], puis par Nonnenmacher-Zworski [START_REF] Nonnenmacher | Quantum decay rates in chaotic scattering[END_REF] dans un cadre très général. Plus récemment, en dimension 2, Vacossin [Vac22] a montré que la condition de pression pouvait être omise pour les systèmes d'obstacles.

R ∆ (µ) = (-∆ -µ 2 ) -1 : L 2 (Ω) → L 2 (Ω), où Ω = R d \ D et D = ∪ r j=1 D j ,
Lax-Phillips [START_REF] Lax | Scattering Theory[END_REF] ont conjecturé que si D ⊂ R d est un ensemble compact piégeant (dans le sens où il existe une orbite périodique pour le flot de billard dans R d \ D), alors on peut trouver une suite (µ j k ) de résonances avec Im(µ j k ) → 0. Ikawa [START_REF] Ikawa | Decay of solutions of the wave equation in the exterior of two convex obstacles[END_REF] et Gérard [START_REF] Gérard | Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes[END_REF] ont démontré que cette conjecture était fausse si D est formé de deux obstacles strictement convexes. Cela a conduit Ikawa [START_REF] Ikawa | On the existence of poles of the scattering matrix for several convex bodies[END_REF] à formuler la conjecture de Lax-Phillips modifiée (CLPM), comme suit.

Conjecture 1.3.1 (Ikawa). Si D est piégeant, alors il existe une constante δ > 0 telle qu'il existe une infinité de résonances µ j vérifiant Im µ j < δ.

Si la dimension d est paire, il est implicite qu'on ne considère que les résonances µ j telles que 0 < Im(µ j ) δ avec 0 < arg(µ j ) < π. Ikawa [START_REF] Ikawa | On the existence of poles of the scattering matrix for several convex bodies[END_REF] a montré que cette conjecture est valide dès que la série η D a un pôle -pour les résonances du laplacien avec conditions aux bords de Neumann, la même implication est valide si l'on remplace η D par η 1 ; l'existence d'un pôle est alors automatique, puisque les coefficients de la série η 1 sont strictement positifs. Dans le cas où D est une union finie de boules D j = B(x j , ε) centrées en x j ∈ R d , Ikawa [START_REF] Ikawa | On the existence of poles of the scattering matrix for several convex bodies[END_REF] a montré que η D a un pôle, et donc la CLPM est vérifiée, dès que ε > 0 est assez petit. Plus tard, Stoyanov [START_REF] Stoyanov | Scattering resonances for several small convex bodies and the lax-phillips conjecture[END_REF] a étendu ce résultat à des obstacles généraux, mais toujours sous une condition de petitesse.

En utilisant les travaux d'Ikawa [START_REF] Ikawa | On the existence of poles of the scattering matrix for several convex bodies[END_REF][START_REF] Ikawa | On the distribution of poles of the scattering matrix for several convex bodies[END_REF] et de Fried [START_REF] Fried | Meromorphic zeta functions for analytic flows[END_REF], nous montrerons la CLPM pour des obstacles analytiques.

Chapitre 2 Introduction (anglais)

In this thesis we study certain dynamical series associated to hyperbolic systems. The latter participate in the so-called chaotic systems -strongly recurrent and sensitive to initial conditions -, whose most famous ambassador is perhaps the threebody celestial system, studied by Poincaré at the end of the XIXth century [START_REF] Poincaré | Sur le problème des trois corps et les équations de la dynamique[END_REF]. Even though the dynamics are governed by deterministic laws, the trajectories of evolution seem completely unpredictable, even random. Nevertheless, some of them are found to be periodic (they reproduce themselves indefinitely) and, in this thesis, it is mainly on these periodic trajectories of evolution that we will focus our interest. The existence of periodic orbits in a context of chaos may seem counter-intuitive ; however, they are abundant and the knowledge of their periods is often useful to recover essential information on the system, in particular through the use of dynamical series and other zeta functions. Before exposing in details the problems which will be discussed in this manuscript -and to motivate them a little -we first present some results about the spectral theory of hyperbolic flows.

Anosov flows and periodic orbits

In 1898, Hadamard showed that chaos could arise in a very simple geometric context, exhibiting the instability of geodesic lines on surfaces with negative curvature. He further showed that each free homotopy class of curves contains a single closed geodesic ; the distribution of the lengths of these particular curves has since been the subject of many works. For compact hyperbolic surfaces -that are surfaces of constant curvature -1 -, Selberg [START_REF] Selberg | Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series[END_REF] introduced a zeta function that counts closed geodesics and he related their lengths to the eigenvalues of the hyperbolic Laplacian via a trace formula. Later, Huber [START_REF] Huber | Zur analytischen theorie hyperbolischer raumformen und bewegungsgruppen. ii[END_REF] proved that the number of closed geodesics whose length is not greater than L is asymptotic to exp(L)/L when L goes to infinity ; this is a geometric analogue of the prime number Theorem. Then Margulis [Mar69] obtained a similar result for surfaces with negative curvature variable.

Geodesic flows with negative curvature are special cases of hyperbolic dynamical systems, in the sense of the definition given by Anosov in 1967 in a seminal paper [START_REF] Victorovich | Geodesic flows on closed riemannian manifolds of negative curvature[END_REF].

Definition 2.0.1 (Anosov). Let ϕ = (ϕ t ) t∈R be a smooth flow acting on a closed manifold M , and X = d dt t=0 ϕ t be its generator. The flow ϕ is said to be hyperbolic, or Anosov, if for any z ∈ M there exists a decomposition

T z M = RX(z) ⊕ E u (z) ⊕ E s (z) depending continuously on z, such that dϕ t (z)E b (z) = E b (ϕ t (z)) for b = u, s, and such that |dϕ t (z)v| Ce -νt |v|, t 0, v ∈ E s (z), |dϕ t (z)v| Ce -ν|t| |v|, t 0, v ∈ E u (z),
for some constants C, ν > 0, where

| • | is some norm on T M . z ϕ t (z) Figure 2.1 -An Anosov flow.
The hyperbolicity property means that some directions, called stable (the directions of E s ), are contracted by the dynamics, while others, called unstable (the directions of E u ), are dilated. In this context, the result of Margulis mentioned above is still valid and reads as follows.

Theorem 2.0.2 (Margulis). For any topologically mixing Anosov flow ϕ = (ϕ t ) t∈R there is h > 0 such that it holds

N (ϕ, t) ∼ e ht ht (2.0.1)
as t goes to infinity, where N (ϕ, t) is the number of primitive periodic orbits of the flow ϕ, whose period not greater than t.

Here, the number h denotes the topological entropy of the flow, it is a measure of chaos -for geodesic flows of compact hyperbolic surfaces, this entropy is equal to 1 according to Huber's result. Parry and Pollicott [START_REF] Parry | An analogue of the prime number theorem for closed orbits of axiom a flows[END_REF] proved that (2.0.1) also holds for Axiom A flows (a class of flows which generalizes the Anosov flows introduced by Smale [START_REF] Smale | Differentiable dynamical systems[END_REF]) after important contributions of Bowen [START_REF] Bowen | The equidistribution of closed geodesics[END_REF].

Zeta functions and Ruelle resonances

Unlike Margulis who uses ergodic theory, Parry and Pollicott prove the primitive orbit Theorem by using a zeta function introduced by Ruelle [Rue76] -a slightly modified version of Selberg's zeta function -which counts periodic orbits. The Ruelle zeta function is a dynamical counterpart of the Riemann zeta function ; it is defined by the formula

ζ ϕ (s) = γ 1 -e -sτ (γ) -1 , Re(s) > h,
where the product runs over primitive periodic orbits γ of the flow ϕ, and τ (γ) is the period of γ. Relying in particular on the symbolic coding of hyperbolic flows developed by Bowen [START_REF] Bowen | Symbolic dynamics for hyperbolic flows[END_REF], Parry and Pollicott proved in [START_REF] Parry | An analogue of the prime number theorem for closed orbits of axiom a flows[END_REF] that ζ ϕ extends analytically to an open neighborhood of the half-plane {Re(s) h}, except at s = h, where there is a simple pole. Then they are able to obtain (2.0.1) by reproducing the proof of Wiener-Ikehara of the prime number Theorem [START_REF] Wiener | The Fourier integral and certain of its applications[END_REF] which relies on a Tauberian argument : the distribution of periods τ (γ) can be understood through the analytic singularities of the function ζ ϕ .

Smale [START_REF] Smale | Differentiable dynamical systems[END_REF] wondered if it was possible, for Axiom A flows, to obtain a meromorphic extension to the whole complex plane for the function ζ ϕ , saying « I must admit that a positive answer would be a little shocking ! ». This question was much discussed and took almost fifty years to be solved. Ruelle [START_REF] Ruelle | Zeta-functions for expanding maps and anosov flows[END_REF] obtained such an extension, under the condition that the flow, as well as its stable and unstable distributions, are analytic. Later, Rugh [START_REF] Henrik | Generalized fredholm determinants and selberg zeta functions for axiom a dynamical systems[END_REF] showed that, for three-dimensional Anosov flows, the analyticity assumption on the stable and unstable distributions (but not on the flow !) could be omitted, which was generalized in any dimension by Fried [START_REF] Fried | Meromorphic zeta functions for analytic flows[END_REF]. For smooth Anosov flows (of class C ∞ ), Pollicott obtained an extension of ζ ϕ in a half-plane {Re(s) > h -ε} for some ε > 0 depending on ϕ and this was extended to Axiom A flows by Parry-Pollicott [START_REF] Parry | Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics[END_REF].

These results are typically obtained by encoding the dynamics with the help of Markov partitions and expressing the function ζ ϕ as an alternating product of Fredholm determinants of some operators acting on the space of Hölder functions on a sub-shift of finite type. This allows to relate the zeros and poles of ζ ϕ to the spectrum of the aforementioned operators. However, this method does not take into account the regularity of the flow and the work of [START_REF] Yu | Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness[END_REF] suggests that the regularity of the dynamics is closely related to the depth of the half-plane on which an analytic extension can be obtained.

Blank, Keller and Liverani [START_REF] Blank | Ruelle-perronfrobenius spectrum for anosov maps[END_REF] introduced in the early 2000s some functional spaces tailored for a hyperbolic diffeomorphism f (the discrete version of Anosov flows), on which the Koopman operator u → u • f is quasi-compact. The key is to consider certain distributions with anisotropic regularity, requiring a high level of regularity in stable directions and a low level in unstable directions. These results were then refined by Baladi [START_REF] Baladi | Anisotropic Sobolev spaces and dynamical transfer operators : C ∞ foliations[END_REF], Gouëzel-Liverani [START_REF] Gouëzel | Banach spaces adapted to anosov systems[END_REF] and Baladi-Tsujii [START_REF] Baladi | Anisotropic hölder and sobolev spaces for hyperbolic diffeomorphisms (espaces anisotropes de types hölder et sobolev)[END_REF]. Later, Faure-Roy-Sjöstrand [START_REF] Faure | Semi-classical approach for anosov diffeomorphisms and ruelle resonances[END_REF] proposed a semi-classical approach. Liverani [START_REF] Liverani | On contact anosov flows[END_REF] (for contact flows) and Butterley-Liverani [START_REF] Butterley | Smooth anosov flows : correlation spectra and stability[END_REF] adapted those methods to the continuous setting, constructing functional spaces on which the generator X : u → d dt t=0 u • ϕ t of an Anosov flow (ϕ t ) has a quasi-compact resolvent. As in the discrete case, Faure-Sjöstrand [START_REF] Faure | Upper bound on the density of ruelle resonances for anosov flows[END_REF] then proposed a micro-local version of these spaces.

Let us briefly specify these results. Let ϕ be an Anosov flow on a manifold M , and X be its generator. If s is a complex number, the resolvent R ϕ (s) of ϕ is defined

CHAPITRE 2. INTRODUCTION (ANGLAIS) by the integral R ϕ (s) = ∞ 0 e -ts ϕ * -t dt,
where ϕ * -t is the pull-back by ϕ -t , acting on the space Ω • (M ) of differential forms. As soon as the real part of s is large enough, this integral is convergent and gives rise to an operator R ϕ (s) : Ω • (M ) → D • (M ), where D • (M ) denotes the space of currents -the topological dual of Ω • (M ). The "resolvent" terminology is justified by the identities

(L X + s)R ϕ (s) = R ϕ (s)(L X + s) = Id Ω • (M ) ,
where L X is the Lie derivative in the X direction.

Theorem 2.0.3 (Butterley-Liverani, Faure-Sjöstrand). The resolvent R ϕ (s), which is well defined on a half-plane {Re(s) > C}, admits a meromorphic extension in the variable s, to the whole complex plane, as a family of operators Ω • (M ) → D • (M ), whose residues are finite-rank projectors. Its poles are the Ruelle resonances of ϕ.

A spectrum of Ruelle resonances was later obtained by Dyatlov-Guillarmou [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] for open hyperbolic systems (i.e. systems with trajectories that can escape to infinity) and more recently by Meddane for Axiom A flows [START_REF] Meddane | A morse complex for axiom a flows[END_REF], after contributions of Dang-Rivière on Morse-Smale flows [START_REF] Viet | Spectral analysis of morse-smale flows i : construction of the anisotropic spaces[END_REF][START_REF] Viet | Spectral analysis of morse-smale flows, ii : Resonances and resonant states[END_REF].

With these modern techniques, first Giulietti-Liverani-Pollicott [START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF], then Dyatlov-Zworski [START_REF] Dyatlov | Dynamical zeta functions for Anosov flows via microlocal analysis[END_REF] with a semiclassical approach, were able to obtain the analytic extension of ζ ϕ to the whole complex plane, thus obtaining the following result.

Theorem 2.0.4 (Giulietti-Liverani-Pollicott, Dyatlov-Zworski). If ϕ is an Anosov flow, the function ζ ϕ admits a meromorphic extension to the whole complex plane ; its poles and zeros are included in the set of Ruelle resonances.

Later, Dyatlov-Guillarmou extended this Theorem for any Axiom A flow [START_REF] Dyatlov | Afterword : Dynamical zeta functions for axiom a flows[END_REF] thanks to their work on open systems, thus answering positively Smale's question. The strategy consists in linking ζ ϕ (s) and the resolvent R ϕ (s) : we can show thanks to the Guillemin trace formula [START_REF] Victor Guillemin | Lectures on spectral theory of elliptic operators[END_REF] that if Re(s) is large enough then

ζ ϕ (s) ζ ϕ (s) = e εs tr gr ϕ * -ε R ϕ (s) , (2.0.2)
where ε > 0 is a small number and tr gr denotes the graduated flat trace -an extension of the L 2 graduated trace which is well defined for operators satisfying certain wavefront set conditions ; we refer to Appendix B.3 for a precise definition. Using semi-classical methods (singularity propagation and radial estimates), Dyatlov and Zworski gave a precise description of the wavefront of the Schwartz kernel of the resolvent and deduced that the flat trace of ϕ * -ε R ϕ (s) is well defined ; Theorem 2.0.4 is then a consequence of equality (2.0.2) and Theorem 2.0.3.

We finally mention a result obtained by Dyatlov and Zworski [START_REF] Dyatlov | Ruelle zeta function at zero for surfaces[END_REF] on the order of the singularity of ζ ϕ (s) at s = 0 for geodesic flows of surfaces.

Theorem 2.0.5 (Dyatlov-Zworski). If ϕ is the geodesic flow of a surface with negative curvature Σ, then ζ ϕ (s) has a pole of order |χ(Σ)| at s = 0, where χ(Σ) is the Euler characteristic of Σ. This Theorem, known for hyperbolic surfaces since Fried's work [START_REF] Fried | Fuchsian groups and reidemeister torsion[END_REF], tells us that the behavior of the function ζ ϕ near the origin is related to the underlying topology. We will see in the following that this phenomenon does not only concern geodesic flows and that some topological invariants can be recovered with the help of dynamical zeta functions.

Plan of this thesis

In this dissertation, we propose some contributions on certain questions related to those mentioned above. Theorems 2.0.2, 2.0.4 and 2.0.5 are prototypical models of the various results we will present : counting periodic orbits, analytic extension of zeta functions or dynamical series and weaving a link with the underlying topology. Our results will be obtained by using systematically the spectral theory of hyperbolic flows and in particular Theorem 2.0.3, as well as its counterpart for open systems. We have chosen to divide the thesis in three parts (independently of the previous trichotomy), as follows.

In the first part, consisting of Chapters 3 and 4, we address a counting problem with constraints. After illustrating the problem on a toy model in chapter 3, we show in chapter 4 an asymptotic result in the spirit of (1.0.1) for closed geodesics of a negatively curved surface whose intersection numbers with a family of simple curves are prescribed.

The second part, consisting of Chapters 5 and 6, focuses on topology. In Chapter 5, we compute the value at the origin of some Poincaré series counting geodesic arcs of a surface with boundary. Then, in a rather different framework, we construct in Chapter 6 a topological invariant -called dynamical torsion -defined with the help of a Ruelle zeta function twisted by a representation of the fundamental group ; we finally connect the dynamical torsion to another topological invariant, the Turaev torsion.

The last part is devoted to billiard flows associated with a finite family of convex obstacles in the Euclidean space and contains Chapters 7 and 8. First, in Chapter 7, we extend a counting result obtained in the first part to the setting of billiard flows. Then, in Chapter 8, we show that some dynamical Dirichlet series related to the quantum resonances of the system admit a meromorphic extension to the whole complex plane.

These results are detailed in the following paragraphs.

Counting closed geodesics under constraints

Let (Σ, g) be a closed, oriented, Riemannian surface with negative curvature. Let P be the set of its primitive closed geodesics, i.e. the set of closed geodesics which are not multiple of a shorter geodesic. For all L > 0, we denote by

N (L) = {γ ∈ P : (γ) L} (2.1.1)
the number of these geodesics that are of length less not greater than L. Recall Margulis' result : when L tends to infinity, we have the asymptotics

N (L) ∼ e hL hL
where h > 0 is the topological entropy of the geodesic flow. Other similar counting results exist for non-compact Riemann surfaces, cf. Sarnak [START_REF] Sarnak | Prime geodesic theorems[END_REF], Guillopé [START_REF] Guillopé | Sur la distribution des longueurs des géodésiques fermées d'une surface compacte à bord totalement géodésique[END_REF],

or Lalley [START_REF] Steven P Lalley | Renewal theorems in symbolic dynamics, with applications to geodesic flows, noneuclidean tessellations and their fractal limits[END_REF] ; we refer to Paulin-Pollicott-Schapira [START_REF] Paulin | Equilibrium states in negative curvature[END_REF] for precise references on counting results in more general contexts.

In the rest of this section, we will ask the following question :

Can we count primitive closed geodesics subject to certain topological or geometrical constraints ?

Before specifying the constraints discussed in the first part of this manuscript, we briefly present some known results.

Homological constraints

A first constraint that one may want to impose to the geodesics is of homological nature. Lalley [START_REF] Steven | Closed geodesics in homology classes on surfaces of variable negative curvature[END_REF] and Pollicott [START_REF] Pollicott | Homology and closed geodesics in a compact negatively curved surface[END_REF] independently obtained the following result.

Theorem 2.1.1 (Lalley, Pollicott). There exists a constant c > 0 such that for any homology class ξ ∈ H 1 (Σ, Z), we have

(γ) ∈ P : (γ) L, [γ] = ξ} ∼ c e hL L g+1 , (2.1.2)
when L → ∞, where g is the genus of the surface.

Similar results had already been obtained for hyperbolic surfaces (surfaces with curvature constant, equal to -1) by Phillips-Sarnak [START_REF] Phillips | Geodesics in homology classes[END_REF] and Katsuda-Sunada [START_REF] Katsuda | Homology and closed geodesics in a compact riemann surface[END_REF]. Without stating them, we mention that much more precise results -for example valid for a more general class of hyperbolic flows, with asymptotic developments including more terms or authorizing the homology class ξ to depend on Lwere obtained later by Sharp [START_REF] Sharp | Closed orbits in homology classes for anosov flows[END_REF], Babillot-Ledrappier [START_REF] Babillot | Lalley's theorem on periodic orbits of hyperbolic flows[END_REF], Anantharaman [START_REF] Anantharaman | Precise counting results for closed orbits of anosov flows[END_REF], and Pollicott-Sharp [START_REF] Pollicott | Asymptotic expansions for closed orbits in homology classes[END_REF].

These results are typically obtained by using a Tauberian argument, with the twisted zeta functions

L ϕ (χ, s) = γ 1 -χ([γ])e -s (γ) -1 ,
where the product is on primitive closed geodesics, χ : H 1 (Σ, Z) → C × is a unitary character and [γ] is the homology class generated by γ ; those functions are then studied with the help of the spectral theory of certain Ruelle operators.

Self-intersection numbers

A second natural constraint concerns the self-intersection numbers. If γ : R/ (γ)Z → Σ is a closed geodesic parameterized by arc length, we define its self-intersection number by

i(γ, γ) = 1 2 (τ, τ ) ∈ (R/ (γ)Z) 2 : γ(τ ) = γ(τ ) .
A closed geodesic will be said to be simple if its self-intersection number is zero. Mirzakhani [START_REF] Mirzakhani | Growth of the number of simple closed geodesies on hyperbolic surfaces[END_REF][START_REF] Mirzakhani | Counting mapping class group orbits on hyperbolic surfaces[END_REF] studied the asymptotic growth of closed geodesics with a prescribed number of self-intersections.

Theorem 2.1.2 (Mirzakhani). Suppose that (Σ, g) is hyperbolic. Then for any natural number k, there exists c k > 0 such that, when L → ∞,

{γ ∈ P : (γ) L, i(γ, γ) = k} ∼ c k L 6(g-1) . (2.1.3)
Mirzakhani's paper [START_REF] Mirzakhani | Growth of the number of simple closed geodesies on hyperbolic surfaces[END_REF] deals with simple geodesics, and for k = 1 the previous theorem was first proved by Rivin [START_REF] Rivin | Geodesics with one self-intersection, and other stories[END_REF] ; we also mention the work of Erlandsson-Souto [START_REF] Erlandsson | Counting curves in hyperbolic surfaces[END_REF][START_REF] Erlandsson | Mirzakhani's curve counting[END_REF] who obtain similar results with another approach. In a slightly spirit, Sapir [START_REF] Sapir | Orbits of non-simple closed curves on a surface[END_REF] and Aougab-Souto [START_REF] Aougab | Counting curve types[END_REF] studied the asymptotic growth of the number of types of curves on hyperbolic surfaces (while prescribing the selfintersection numbers amounts to counting geodesics belonging in fixed types).

To obtain the Theorem 2.1.2, Mirzakhani uses the ergodicity of the action of the mapping class group of the surface on the space of measured lamination, the exponent 6g -6 being the dimension of this space. Note that the growth of closed geodesics with prescribed self-intersection numbers is polynomial and not exponential : there are very few of them. In fact, a result of Lalley [START_REF] Steven P Lalley | Self-intersections of closed geodesics on a negatively curved surface : Statistical regularities[END_REF] (valid also for surfaces with variable negative curvature) states that a typical closed geodesic has a number of self-intersections proportional to the square of its length. More precisely, he shows that there exists a constant I > 0 such that for any ε > 0, we have

lim L→∞ 1 N (L) γ ∈ P : (γ) L, i(γ, γ) (γ) 2 -I ε = 1. (2.1.4)
The convergence is in fact exponential, as can be seen by using a principle of large deviations of Kifer [START_REF] Kifer | Large deviations, averaging and periodic orbits of dynamical systems[END_REF] (see Anantharaman [Ana99]).

Geometric intersection constraints

We now detail the results obtained in Chapter 4, which contains the article Closed geodesics with prescribed intersection numbers [Chab].

Let us return to the case of surfaces with variable negative curvature. In §2.1.1, we constrained the homology class of closed geodesics, which amounts to prescribe certain algebraic intersection numbers with a family of simple curves. What happens if we constrain geometric intersection numbers instead ? Let us fix γ a simple closed geodesic. For any γ ∈ P, we denote by

i(γ, γ ) = inf η∼γ,η ∼γ |η ∩ η |
the geometric intersection number between γ and γ , where the infimum runs over curves η, η : R/Z → Σ freely homotopic to γ and γ , respectively, and

|η ∩ η | = {(τ, τ ) ∈ (R/Z) 2 : η(τ ) = η (τ )}.
If n is a natural number, we wish to study the asymptotic growth of the quantity

{γ ∈ P : (γ) L, i(γ, γ ) = n} when L → ∞.
We will first assume that the simple curve γ is non-separating, in the sense that Σ\γ is connected (this condition will be relaxed later). Then we will show in Chapter 4 the following Theorem 2.1.3. Suppose that γ is not separating. Then there exist constants c > 0 and h ∈ ]0, h[ such that for any positive integer n, we have the asymptotics

{γ ∈ P : (γ) L, i(γ, γ ) = n} ∼ (c L) n n! e h L h L , L → ∞. (2.1.5)
The number h is the topological entropy of the geodesic flow of the surface with boundary Σ obtained by cutting Σ along γ (see the paragraph 2.1.4 below for a precise definition). The case n = 0 amounts to counting the closed geodesics of Σ and was already known thanks to the work of Dal'bo [START_REF] Dal | Remarques sur le spectre des longueurs d'une surface et comptages[END_REF], who showed that the geodesic flow of co-compact convex surfaces was topologically mixing, thus allowing the use of Parry-Pollicott's result [START_REF] Parry | An analogue of the prime number theorem for closed orbits of axiom a flows[END_REF]. However, our result was not known for n > 0, even for hyperbolic surfaces.

Note that the asymptotic growth (2.1.5) remains exponential, although weaker than that of Margulis' formula (2.1.1). In particular, this growth is somehow between those obtained by Mirzakhani on the one hand, and Lalley and Pollicott on the other. As said above, prescribing the number of self-intersections is very restrictive, since for a typical closed geodesic γ, we have i(γ, γ) ∼ I (γ) 2 . Here it is rather the number i(γ, γ ) that we constrain ; using Kifer's principle of large deviations, and Bonahon's intersection form [START_REF] Bonahon | Bouts des variétés hyperboliques de dimension 3[END_REF], we will in fact show that typically, the number i(γ, γ ) is proportional to (γ) (see Proposition 4.8.1 for a precise statement in the spirit of (2.1.4)).

If the curve γ is separating, we have the following result.

Theorem 2.1.4. If γ separates Σ into two surfaces Σ 1 and Σ 2 , we denote by h j ∈ ]0, h[ the entropy of the open system (Σ j , g| Σ j ) for j = 1, 2 (cf. the next paragraph), and we define h = max(h 1 , h 2 ). Then there exists c > 0 such that for all n ∈ N we have the asymptotics, when L → +∞,

N (2n, L) ∼          (c L) n n! e h L h L if h 1 = h 2 , 2 (c L 2 ) n (2n)! e h L h L if h 1 = h 2 . (2.1.6)
The proofs of Theorems 2.1.3 and 2.1.4 make use of a dynamical scattering operator S(s), acting on the boundary of the unit tangent bundle of Σ , and studied with the help of the spectral theory of open systems by Dyatlov-Guillarmou [DG16]we refer to the introduction of Chapter 4 for a detailed presentation of the strategy of proof. In fact, our techniques allow to obtain asymptotic results concerning closed geodesic of which several intersection numbers (with a family of simple curves) are prescribed, as we will see below.

Intersection numbers with several curves

Let r 1 be an integer, and take a family γ ,1 , . . . , γ ,r of pairwise disjoint simple closed geodesics. For any r-uplet n = (n 1 , . . . , n r ) ∈ N r of natural numbers, we wish to understand the asymptotic behavior of the quantity

N (n, L) = {γ ∈ P : (γ) L, i(γ, γ ,j ) = n j , j = 1, . . . , r}
when L → +∞, where i(γ, γ j ) is the number of geometric intersection between γ and γ ,j .

Theorem 2.1.5. Let n = (n 1 , . . . , n r ) ∈ N r . If N (n, L) > 0 for an L > 0, then there are constants C n > 0, d n ∈ N \ {0} and h n ∈ ]0, h[ such that N (n, L) ∼ C n L dn-1 e hnL , L → +∞.
In fact, a similar result is valid if we additionally impose the order in which we want the intersections to occur, as follows. Let Σ 1 , . . . , Σ q be the connected components of the surface Σ = Σ \ (γ ,1 ∪ • • • ∪ γ ,r ) obtained by cutting Σ along the curves γ ,1 , . . . , γ ,r (see Figure 2.2). For any γ ∈ P which intersects at least one of the curves γ ,j we denote by ω(γ) the pair (u, v) of sequences

u = (u 1 , . . . , u N ) and v = (v 1 , . . . , v N )
with N 1, cyclically ordered, such that γ travels in Σ v 1 , . . . , Σ v N (in this order !) and passes from Σ v k to Σ v k+1 by crossing γ ,u k , where v N +1 = v 1 (see Figure 2.2) ; these sequences are well defined modulo application of a cyclic permutation. Such a pair ω of finite sequences will be called an admissible path if ω ∼ ω(γ) for at least one closed geodesic γ ∈ P, where ω ∼ ω(γ) means that ω(γ) is a cyclic permutation of ω (the permutation being the same for both components of ω).

Let SΣ be the unit tangent bundle of (Σ, g), and (ϕ t ) t∈R the associated geodesic flow, acting on SΣ. Let π : SΣ → Σ be the natural projection. We denote by h j > 0 (j = 1, . . . , q) the entropy of the open system (Σ j , g| Σ j ), i.e. the topological entropy of the flow ϕ restricted to the trapped set

K j = (x, v) ∈ SΣ : π(ϕ t (x, w)) ∈ Σ j , t ∈ R},
where the closure is taken in Σ.

For any admissible path ω = (u, v) of size N , we define

h ω = max{h v k : k = 1, . . . , N }, d ω = {k = 1, . . . , N : h v k = h ω }. γ ,1 γ ,2 γ ,3 γ ,4 γ ,5 Σ 1 Σ 2 Σ 3 γ Figure 2.2 -A closed geodesic γ on Σ.
Here we have r = 5, q = 3, and ω(γ) ∼ (u, v) where u = (1, 2, 4, 5, 4, 3, 2) and v = (1, 1, 2, 3, 2, 3, 2) (the starting point of γ is the red arrow).

The number h ω is the maximum of the entropies of the surfaces encountered by any γ ∈ P geodesic satisfying ω(γ) ∼ ω while d ω is the number of times such a geodesic encounters a surface whose entropy equals h ω (for example, in Figure 2.2, if the entropy h 2 of Σ 2 is greatest, we have h(ω) = h 2 and d(ω) = 3, since γ passes three times through Σ 2 ).

In fact, the numbers h ω and d ω only depend on n(ω) = (n 1 , . . . , n r ) where n j = {k = 1, . . . , N : u k = j} (see §4.9) ; thus we will denote then by h n(ω) and d n(ω) respectively.

Theorem 2.1.6. Let ω be an admissible path. Then, there is c(ω) > 0 such that

{γ ∈ P : (γ) L, ω(γ) ∼ ω} ∼ c(ω)L d n(ω) -1 e h n(ω) L , L → +∞.
Note that Theorem 2.1.5 may be deduced from Theorem 2.1.6 by summing over admissible paths ω such that n(ω) = n, where n ∈ N r is fixed. However, Theorem 2.1.3 is not an immediate consequence of Theorem 2.1.6 ; it will be a consequence of a more precise result proved in §4.9, which allows to compute the numbers c(ω k ),

d n(ω k ) et h n(ω k ) in terms of c(ω), d n(ω) et h n(ω)
, where ω k is the path obtained by concatenating k times ω.

Dynamical series and topology

We relate here the results obtained in Part II. The latter consists of Chapter 5, which contains the article Poincaré series for surfaces with boundary [Chac], and of Chapter 6, which transcribes the article Dynamical torsion for contact Anosov flows [START_REF] Chaubet | Dynamical torsion for contact anosov flows[END_REF] written in collaboration with Nguyen Viet Dang.

Poincaré series for surfaces with boundary

Let (Σ, g) be a connected, oriented, negatively curved Riemannian surface, with totally geodesic boundary ∂Σ. Let G ⊥ be the set of orthogeodesics of Σ, that is the set of geodesic arcs γ : [0, ] → Σ (parameterized by arc length) such that γ(0), γ( ) ∈ ∂Σ, γ (0) ⊥ T γ(0) ∂Σ and γ ( ) ⊥ T γ( ) ∂Σ. For Re(s) large, the Poincaré series

η(s) = γ∈G ⊥ e -s (γ) , (2.2.1)
where (γ) is the length of γ, converges (see §5.3.2). We will prove the following Theorem 2.2.1. The Poincaré series s → η(s) admits a meromorphic continuation to the whole complex plane, and vanishes at the origin.

If x = y ∈ Σ, we may also consider the Poincaré series associated to the geodesic arcs joining x to y. Namely, we set for Re(s) large enough

η x,y (s) = γ:x y e -s (γ) ,
where the sum runs over all geodesic arcs γ : [0, ] → Σ (parameterized by arc length) such that γ(0) = x and γ( ) = y and (γ) = is the length of γ. Then we have the following result.

Theorem 2.2.2. The Poincaré series s → η x,y (s) extends meromorphically to the whole complex plane and

η x,y (0) = 1 χ(Σ) ,
where χ(Σ) is the Euler characteristic of Σ.

The numbers η(0) and η x,y (0) may be interpreted as some linking numbers of certain Legendrian knots in SΣ ; for the series η, this linking number vanishes.

To the best of our knowledge, Theorem 2.2.1 is the first result on a series involving the orthospectrum (that is, the set of lengths of orthogeodesics) of a surface with totally geodesic boundary which has variable negative curvature. For hyperbolic surfaces (i.e. surfaces with constant curvature -1) with totally geodesic boundary, the orthospectrum has been studied by many authors, among others Basmajian [START_REF] Basmajian | The orthogonal spectrum of a hyperbolic manifold[END_REF], Bridgeman [START_REF] Bridgeman | Orthospectra of geodesic laminations and dilogarithm identities on moduli space[END_REF], Calegari [START_REF] Calegari | Chimneys, leopard spots and the identities of basmajian and bridgeman[END_REF] (see also ). In particular they show that if (Σ, g) is a compact hyperbolic surface with totally geodesic boundary, one has

(∂Σ) = γ∈G ⊥ 2 log coth( (γ)/2), vol(Σ) = 2 π γ∈G ⊥ R sech 2 ( (γ)/2) ,
where (∂Σ) is the length of the boundary of Σ, vol(Σ) is the area of Σ and R is the Rogers dilogarithm function. We refer to [START_REF] Bridgeman | Identities on hyperbolic manifolds[END_REF] for a detailed exposition of those results.

In order to study the Poincaré series η(s) and η x,y (s), we will adopt the elegant approach of Dang and Rivière [START_REF] Viet | Poincaré series and linking of legendrian knots[END_REF], which consists in interpreting both series as distributional pairings involving the resolvent of the geodesic flow. On a closed surface with negative curvature, Dang and Rivière proved that Poincaré series associated to orthogeodesic arcs joining any two homologically trivial closed geodesics, as well as Poincaré series associated to geodesic arcs linking two points, admit a meromorphic extension to the whole complex plane ; moreover they computed their values at zero -for the series associated to geodesic arcs linking two points, they found (as here) that this value coincides with the inverse of the Euler characteristic of the surface.

The work of Dang-Rivière extends a previous result of Paternain [START_REF] Gabriel P Paternain | Topological pressure for geodesic flows[END_REF] which says that if (Σ, g) is a closed hyperbolic surface, then

Σ η x,y (s)dvol g (x)dvol g (y) = 4πχ(Σ) 1 -s 2 ,
where vol g is the Riemannian measure on Σ ; we refer to [START_REF] Viet | Poincaré series and linking of legendrian knots[END_REF] for precise references about Poincaré series counting geodesic arcs.

The main novelty of our work is that we deal with the open case, which leads us to use the theory of Pollicott-Ruelle resonances for open systems developed by Dyatlov and Guillarmou [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF], as well as a result of Hadfield [START_REF] Hadfield | Zeta function at zero for surfaces with boundary[END_REF] about the topology of resonant states for surfaces with boundary.

Dynamical torsion for contact Anosov flows

Let M be a closed odd dimensional manifold and (E, ∇) be a flat vector bundle over M . The parallel transport of the connection ∇ induces a conjugacy class of representation ρ ∈ Hom(π 1 (M ), GL(C d )). Moreover, ∇ defines a differential on the complex Ω • (M, E) of E-valued differential forms on M and thus cohomology groups H • (M, ∇) = H • (M, ρ) (note that we use the notation ∇ also for the twisted differential induced by ∇ whereas it can be denoted by d ∇ in other references). We will say that ∇ (or ρ) is acyclic if those cohomology groups are trivial. If ρ is unitary (or equivalently, if there exists a hermitian structure on E preserved by ∇) and acyclic, Reidemeister [START_REF] Reidemeister | Homotopieringe und linsenräume[END_REF] introduced a combinatorial invariant τ R (ρ) of the pair (M, ρ), the so-called Franz-Reidemeister torsion (or R-torsion), which is a positive number. This allowed him to classify lens spaces in dimension 3 ; this result was then extended in higher dimension by Franz [START_REF] Franz | Über die torsion einer überdeckung[END_REF] and De Rham [dR36].

On the analytic side, Ray-Singer [START_REF] Daniel | R-torsion and the laplacian on riemannian manifolds[END_REF] introduced another invariant τ RS (ρ), the analytic torsion, defined as the derivative at 0 of the spectral zeta function of the Laplacian given by the Hermitian metric on E and some Riemannian metric on M . They conjectured the equality of the analytic and Reidemeister torsions. This conjecture was proved independently by Cheeger [START_REF] Cheeger | Analytic torsion and the heat equation[END_REF] and Müller [START_REF] Müller | Analytic torsion and r-torsion of riemannian manifolds[END_REF], assuming only that ρ is unitary (both R-torsion and analytic torsion have a natural extension if ρ is unitary and not acyclic). The Cheeger-Müller theorem was extended to unimodular flat vector bundles by Müller [START_REF] Muller | Analytic torsion and r-torsion for unimodular representations[END_REF] and to arbitrary flat vector bundles by Bismut-Zhang [START_REF] Bismut | An extension of a theorem by cheeger and müller[END_REF].

In the context of hyperbolic dynamical systems, Fried [START_REF] Fried | Lefschetz formulas for flows[END_REF] was interested in the link between the R-torsion and the Ruelle zeta function of an Anosov flow X twisted by ρ, which is defined by

ζ X,ρ (s) = γ∈G # X det 1 -ε γ ρ([γ])e -s (γ) , Re(s) 0,
where G # X is the set of primitive closed orbits of X, (γ) is the period of γ and ε γ = 1 if the stable bundle of γ is orientable and ε γ = -1 otherwise. Theorem 2.0.4 naturally extends in this framework, and ζ X,ρ admits a meromorphic continuation to the whole complex plane. Using Selberg's trace formula Fried [START_REF] Fried | Analytic torsion and closed geodesics on hyperbolic manifolds[END_REF] could relate, in the spirit of Theorem 2.0.5, the behavior of ζ X,ρ (s) near s = 0 with τ R , as follows.

Theorem 2.2.3 (Fried). Let M = SZ be the unit tangent bundle of some closed oriented hyperbolic manifold Z, and denote by X its geodesic vector field on M . Assume that ρ : π 1 (M ) → O(d) is an acyclic and unitary representation. Then ζ X,ρ extends meromorphically to C. Moreover, it is holomorphic near s = 0 and |ζ X,ρ (0)| (-1) r = τ R (ρ),

(2.2.2)

where 2r + 1 = dim M , and τ R (ρ) is the Reidemeister torsion of (M, ρ).

In his article [START_REF] Fried | Meromorphic zeta functions for analytic flows[END_REF], Fried proposed the Conjecture 2.2.1 (Fried). Equality (1.2.2) is true for any geodesic flow of a negatively curved compact manifold.

Fried had already conjectured that the same holds true for geodesic flows of negatively curved locally symmetric spaces in [START_REF] Fried | Lefschetz formulas for flows[END_REF] ; this was proved by Moscovici-Stanton [START_REF] Moscovici | R-torsion and zeta functions for locally symmetric manifolds[END_REF] and Shen [START_REF] Shen | Analytic torsion, dynamical zeta functions, and the fried conjecture[END_REF]. For analytic Anosov flows, Sanchez-Morgado [START_REF] Sánchez-Morgado | Lefschetz formulae for anosov flows on 3manifolds[END_REF][START_REF] Sánchez-Morgado | R-torsion and zeta functions for analytic anosov flows on 3-manifolds[END_REF] proved in dimension 3 that (2.2.2) holds true if ρ is acyclic, unitary, and satisfies that ρ([γ]) -ε j γ is invertible for j ∈ {0, 1} for some closed orbit γ. However the proof of Sanchez-Morgado relies on the existence of an analytic Markov partition and does not extend, a priori, to C ∞ flows.

Dang-Guillarmou-Rivière-Shen [START_REF] Nguyen | The fried conjecture in small dimensions[END_REF] overcame this problem thanks to the help of the modern spectral theory for hyperbolic systems mentioned above (see also [START_REF] Viet | Topology of pollicott-ruelle resonant states[END_REF] for Morse-Smale flows). Indeed, Theorem 2.0.3 is still valid in this context, and allows to define a spectrum of Ruelle resonances for the twisted Lie derivative

L ∇ X = ∇ι X + ι X ∇,
where ι X is the interior product with X acting on Ω • (M, E) ; this spectrum is denoted by Res(L ∇ X ).

Theorem 2.2.4 (Dang-Rivière-Guillarmou-Shen). Let ρ be an acyclic representation of π 1 (M ). Then the map

X → ζ X,ρ (0) 
is locally constant on the open set of smooth vector fields which are Anosov and for which 0 is not a Ruelle resonance, that is, 0 / ∈ Res(L ∇ X ). If X preserves a smooth volume form and dim(M ) = 3, equation (2.2.2) holds true if b 1 (M ) = 0 or under the same assumption used in [START_REF] Sánchez-Morgado | R-torsion and zeta functions for analytic anosov flows on 3-manifolds[END_REF].

Though the above theorem is the first result dealing with Fried's conjecture for general Anosov flows, there are two restrictions. The first one is that |ζ X,ρ (0)| (-1) r = τ R (ρ) is an equality of positive real numbers and the representation ρ is unitary. For arbitrary acyclic representations ρ : π 1 (M ) → GL(C d ), one could wonder if the phase of the complex number ζ X,ρ (0) contains topological information. For instance, if it can be compared with some complex valued torsion defined for general acyclic representations ρ : π 1 (M ) → GL(C d ). The second restriction concerns the assumption that 0 is not a Ruelle resonance. Apart from the low dimension cases studied in [START_REF] Nguyen | The fried conjecture in small dimensions[END_REF], this assumption is particularly hard to control and is difficult to check for explicit examples. Moreover, in the non-acyclic case, the recent works of Cekic-Paternain [START_REF] Cekić | Resonant spaces for volumepreserving anosov flows[END_REF] and Cekic-Dyatlov-Küster-Paternain [START_REF] Cekić | The ruelle zeta function at zero for nearly hyperbolic 3-manifolds[END_REF] show that the dimension of the spaces of resonant states for L ∇ X for the resonance s = 0 -which are intimately linked with the singularity of ζ X,ρ at the origin -may be unstable under perturbations of X. In particular, nothing guarantees a priori that the number ζ X,ρ (0) is well defined.

In order to partially overcome these two obstacles in the framework of contact Anosov flows, we introduced, in a work in collaboration with Nguyen Viet Dang, a new object -the dynamical torsion -which is defined for any acyclic ρ and which coincides with ζ X,ρ (0) ±1 whenever 0 / ∈ Res(L ∇ X ). Before stating our main results, let us introduce the two main characters of our discussion in the following paragraphs.

Refined versions of torsion

The Franz-Reidemeister torsion τ R is given by the modulus of some alternate product of determinants and is therefore real valued. One cannot get a canonical object by removing the modulus since one has to make some choices to define the combinatorial torsion, and the ambiguities in these choices affect the determinants. To remove indeterminacies arising in the definition of the combinatorial torsion, Turaev [START_REF] Vladimir | Reidemeister torsion in knot theory[END_REF][START_REF] Georgievich | Euler structures, nonsingular vector fields, and torsions of reidemeister type[END_REF][START_REF] Turaev | Torsion invariants of spin c -structures on 3-manifolds[END_REF] introduced in the acyclic case a refined version of the combinatorial R-torsion, the refined combinatorial torsion. It is a complex number τ e,o (ρ) which depends on additional combinatorial data, namely an Euler structure e and a cohomological orientation o of M , and which satisfies |τ e,o (ρ)| = τ R (ρ) if ρ is acyclic and unitary. We refer the reader to subsection 6.7.2 for precise definitions. Later, Farber-Turaev [START_REF] Farber | Poincaré-Reidemeister metric, Euler structures, and torsion[END_REF] extended this object to non-acyclic representations. In this case, τ e,o (ρ) is an element of the determinant line of cohomology det H • (M, ρ).

Motivated by the work of Turaev, but from the analytic side, Braverman-Kappeler [BK07c, BK + 08, BK07b] introduced a refined version of the Ray-Singer analytic torsion called refined analytic torsion τ an (ρ). It is complex valued in the acyclic case. Their construction heavily relies on the existence of a chirality operator Γ g , that is,

Γ g : Ω • (M, E) → Ω n-• (M, E), Γ 2 g = Id,
which is a renormalized version of the Hodge star operator associated to some metric g. They showed that the ratio ρ → τ an (ρ) τ e,o (ρ) is a holomorphic function on the representation variety given by an explicit local expression, up to a local constant of modulus one. This result is an extension of the Cheeger-Müller theorem. Simultaneously, Burghelea-Haller [BH07] introduced a complex valued analytic torsion, which is closely related to the refined analytic torsion [START_REF] Braverman | Comparison of the refined analytic and the burghelea-haller torsions[END_REF] when it is defined ; see [H + 07] for comparison theorems.

Dynamical torsion

We now assume that X = X ϑ is the Reeb vector field of some contact form ϑ on M . Let us briefly describe the construction of the dynamical torsion. In the spirit of [START_REF] Braverman | Refined analytic torsion as an element of the determinant line[END_REF], we use a chirality operator associated to the contact form ϑ,

Γ ϑ : Ω • (M, E) → Ω n-• (M, E), Γ 2 ϑ = Id,
cf. §6.4, analogous to the usual Hodge star operator associated to a Riemannian metric. Let C • ⊂ D • (M, E) be the finite dimensional space of Pollicott-Ruelle generalized resonant states of L ∇ X for the resonance 0, that is,

C • = u ∈ D • (M, E), WF(u) ⊂ E * u , ∃N ∈ N, L ∇ X N u = 0 ,
where WF is the Hörmander wavefront set, E * u ⊂ T * M is the unstable cobundle of X1 , cf. §6.3, and D (M, E) denotes the space of E-valued currents. Then ∇ induces a differential on C • which makes it a finite dimensional cochain complex. Then a result from [START_REF] Viet | Topology of pollicott-ruelle resonant states[END_REF] implies that the complex (C • , ∇) is acyclic if we assume that ∇ is. Because Γ ϑ commutes with L ∇ X , it induces a chirality operator on C • . Therefore we can compute the torsion τ (C • , Γ ϑ ) of the finite dimensional complex (C • , ∇) with respect to Γ ϑ , as described in [START_REF] Braverman | Refined analytic torsion as an element of the determinant line[END_REF] (see §6.2). Then we define the dynamical torsion τ ϑ as the product

τ ϑ (ρ) (-1) q = ± τ (C • , Γ ϑ ) (-1) q finite dimensional torsion × lim s→0 s -m(X,ρ) ζ X,ρ (s) 
renormalized zeta function at s=0

∈ C \ 0,
where the sign ± will be given later, m(X, ρ) is the order of ζ X,ρ (s) at s = 0 and q = dim(M )-1 2 is the dimension of the unstable bundle of X. Note that the order m(X, ρ) ∈ Z is a priori not stable under perturbations of (X, ρ), in fact both terms in the product may not be invariant under small changes of ϑ whereas the dynamical torsion τ ϑ has interesting invariance properties as we will see below.

Statement of the results.

We denote by Rep ac (M, d) the set of acyclic representations π 1 (M ) → GL(C d ) and by A ⊂ C ∞ (M, T M ) the space of contact forms on M whose Reeb vector field induces an Anosov flow. This is an open subset of the space of contact forms. For any ϑ ∈ A, we denote by X ϑ its Reeb vector field. In the spirit of Ray-Singer's result on the invariance of the analytic torsion with respect to the Riemannian metric [START_REF] Daniel | R-torsion and the laplacian on riemannian manifolds[END_REF], our first result shows τ ϑ (ρ) is invariant by small perturbations of the contact form ϑ ∈ A.

Theorem 2.2.5 (C.-Dang). Let (M, ϑ) be a contact manifold such that the Reeb vector field of ϑ induces an Anosov flow. Let (ϑ τ ) τ ∈(-ε,ε) be a smooth family in A. Then ∂ τ log τ ϑτ (ρ) = 0 for any ρ ∈ Rep ac (M, d).

Remark 2.2.6. In the case where the representation ρ is not acyclic, we can still define τ ϑ (ρ) as an element of the determinant line det H • (M, ρ) and this element is invariant under perturbations of ϑ ∈ A, cf Remarks 6.4.5 and 6.5.2.

Our second result aims to compare τ ϑ with Turaev's refined version of the Reidemeister torsion τ e,o , which depends on some choice of Euler structure e and orientation o.

Theorem 2.2.7 (C.-Dang). Let (M, ϑ) be a contact manifold such that the Reeb vector field of ϑ induces an Anosov flow. Then ρ ∈ Rep ac (M, d) → τ ϑ (ρ) is holomorphic 2 and there exists an Euler structure e such that for any cohomological orientation o and any smooth family

(ρ u ) u∈(-ε,ε) of Rep ac (M, d), ∂ u log τ ϑ (ρ u ) = ∂ u log τ e,o (ρ u )
Moreover, if dim M = 3 and b 1 (M ) = 0, the map ρ → τ ϑ (ρ)/τ e,o (ρ) is of modulus one on the connected components of Rep ac (M, d) containing an acyclic and unitary representation.

In [START_REF] Nguyen | The fried conjecture in small dimensions[END_REF], for ρ acyclic, the authors proved that 0 / ∈ Res(L ∇ X ) implies that X → ζ X,ρ (0) is locally constant. Then, the equality |ζ X,ρ (0)| = τ R (ρ) was proved indirectly by working near analytic Anosov flows in dimension 3 or near geodesic flows of hyperbolic 3-manifolds, where the equality is known by the works of Sanchez Morgado and Fried. Whereas in the above theorem, for any contact Anosov flow in any odd dimension, we directly compare the logarithmic derivatives of the dynamical and refined torsions as holomorphic functions on the representation variety : we do not need to work near some vector field X for which the equality |ζ X,ρ (0)| = τ R (ρ) is already known.

Finally, our third result aims to describe how ∂ u log τ ϑ (ρ u ) depends on the choice of the contact Anosov vector field X ϑ .

Theorem 2.2.8 (C.-Dang). Let (M, ϑ) be a contact manifold such that the Reeb vector field of ϑ induces an Anosov flow. Let (ρ u ) |u| ε be a smooth family in Rep ac (M, d). Then for any η ∈ A

∂ u log τ η (ρ u ) = ∂ u log τ ϑ (ρ u ) + ∂ u log det ρ u , cs(X ϑ , X η ) topological
where cs(X ϑ , X η ) ∈ H 1 (M, Z) is the Chern-Simons class of the pair of vector fields (X ϑ , X η ).

The underbraced term is topological since it is defined as the pairing of the representation ρ with the Chern-Simons class cs(X ϑ , X η ) ∈ H 1 (M, Z) which measures the obstruction to find a homotopy among non singular vector fields connecting X ϑ and X η 3 . In particular, if ϑ and η are connected by some path in the space of vector fields without zeros, then cs(Y η , X ϑ ) = 0 which yields det ρ, cs(X ϑ , X η ) = 1 hence ∂ u log τ η (ρ u ) = ∂ u log τ ϑ (ρ u ) for any acyclic ρ. We refer the reader to subsection 6.7.1 for the definition of Chern-Simons classes.

Related works

Some analogs of our dynamical torsion were introduced by Burghelea-Haller [START_REF] Burghelea | Torsion, as a function on the space of representations[END_REF] for vector fields which admit a Lyapunov closed 1-form generalizing previous works by Hutchings [START_REF] Hutchings | Reidemeister torsion in generalized morse theory[END_REF] and Hutchings-Lee [START_REF] Hutchings | Circle-valued morse theory, reidemeister torsion, and seiberg-witten invariants of 3-manifolds[END_REF][START_REF] Hutchings | Circle-valued morse theory and reidemeister torsion[END_REF] dealing with Morse-Novikov flows. In that case, the dynamical torsion depends on a choice of Euler structure and is a partially defined function on Rep ac (M, d) ; if d = 1, it is shown in [START_REF] Burghelea | Dynamics, laplace transform and spectral geometry[END_REF] that it extends to a rational map on the Zariski closure of Rep ac (M, 1) which coincides, up to sign, with Turaev's refined combinatorial torsion (for the same choice of Euler structure). This follows from previous works of Hutchings-Lee [START_REF] Hutchings | Circle-valued morse theory, reidemeister torsion, and seiberg-witten invariants of 3-manifolds[END_REF][START_REF] Hutchings | Circle-valued morse theory and reidemeister torsion[END_REF] who introduced some topological invariant involving circle-valued Morse functions. In both works, the considered object has the form Dynamical zeta function at zero × Correction term where the correction term is the torsion of some finite dimensional complex whose chains are generated by the critical points of the vector field. The chosen Euler structure gives a distinguished basis of the complex and thus a well defined torsion. This is one of the main differences with our work since in the Anosov case, there are no such choices of distinguished currents in C • . However, as described above, the chirality operator allows us to overcome this problem.

We mention some interesting work of Rumin-Seshadri [START_REF] Rumin | Analytic torsions on contact manifolds[END_REF] where they relate some dynamical zeta function involving the Reeb flow and some analytic contact torsion on 3-dimensional Seifert CR manifolds. More recently, Spilioti [START_REF] Spilioti | Twisted ruelle zeta function and complex-valued analytic torsion[END_REF], Müller [START_REF] Mueller | On fried's conjecture for compact hyperbolic manifolds[END_REF] were able to compare the Ruelle zeta function for odd dimensional compact hyperbolic manifolds with some of the complex valued torsions. Finally, for geodesic flows of compact hyperbolic orbisurfaces, Bénard-Frahm-Spilioti [START_REF] Bénard | The twisted ruelle zeta function on compact hyperbolic orbisurfaces and reidemeister-turaev torsion[END_REF] were able to show, with the help of the Selberg's trace formula, that ζ X,ρ (0) coincides (up to sign) with the Turaev torsion, thus generalizing our Theorem 2.2.7 for orbisurfaces.

Obstacle scattering and periodic orbits

Here we present the results of Chapters 7 and 8, which form Part III ; they contain respectively the articles Closed billiard trajectories with prescribed bounces [Chaa] and Dynamical zeta function for billiards [CP22] -the latter is written in collaboration with Vesselin Petkov. Let r 3 be an integer, and D 1 , . . . , D r ⊂ R d a family of smooth, strictly convex obstacles, satisfying the non-eclipse condition

conv(D i ∪ D j ) ∩ D k = ∅, i = k, j = k,
where conv is the convex hull. Those obstacles give rise to a billiard flow, which generalize the geodesic flow, for which trajectories bounce on the boundary of the obstacles according to Fresnel-Descartes' law. We will denote by P B the set of primitive periodic trajectories of the billiard flow. In this setting, we still have the primitive orbit theorem

{γ ∈ P B : τ (γ) t} ∼ e h B t h B t ,
where τ (γ) is the period of γ and h B > 0 is the entropy of the billiard B = {D 1 , . . . D r }.

Constraining the number of bounces

In Chapter 7, we extend Theorem 2.1.3 to the framework of billiard flows. More precisely, assume that d = 2 and take another obstacle D 0 ⊂ R 2 so that the family D 0 , . . . , D r satisfies the non-eclipse condition. For every trajectory γ ∈ P, we denote by m 0 (γ) the number of reflexions of γ on D 0 .

D 1 D 2 D 3 D 4 D 0 γ Figure 2.3 -A closed billiard trajectory γ with m 0 (γ) = 2.
Theorem 2.3.1. There is c > 0 such that for every integer n > 0 there holds, as t → ∞,

{γ ∈ P : τ (γ) t, m 0 (γ) = n} ∼ (ct) n n! e h B t h B t .
This result will be obtained with similar methods that the ones used in Chapter 4. In particular, we also introduce a dynamical scattering operator, and we make use of a recent result by Küster-Schütte-Weich [START_REF] Küster | Resonances and weighted zeta functions for obstacle scattering via smooth models[END_REF] allowing us to see the billiard flow as a smooth flow on a smooth manifold, so that Dyatlov-Guillarmou theory [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] can be used to study the resolvent of the billiard flow.

Dirichlet series and quantum resonances

In Chapter 8, we obtain a meromorphic continuation for certain Dirichlet series linked to the resonances of the Laplacian on R d \ ∪ r j=1 D j . For any positive integer q, we set

η q (s) = m(γ)∈qN τ (γ)e -sτ (γ) |1 -P γ | 1/2 , Re(s) 1,
where the sum runs over all periodic orbits (not necessarily primitive), m(γ) is the number of reflexion of γ on the obstacles D 1 , . . . , D r , P γ is the linearized Poincaré map of γ and |1 -

P γ | = | det(1 -P γ )|.
Theorem 2.3.2 (C.-Petkov). The series η q admits a meromorphic continuation to the whole complex plane, with simple poles and residues in Z/q.

This theorem is proved by using [START_REF] Küster | Resonances and weighted zeta functions for obstacle scattering via smooth models[END_REF] and [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF], lifting the billiard flow to a Grasmannian bundle following the work of Faure-Tsujii [START_REF] Faure | The semiclassical zeta function for geodesic flows on negatively curved manifolds[END_REF] on geodesic flows, and by introducing a q-reflexion bundle, which allows to forget about periodic orbits γ such that m(γ) / ∈ qZ.

In particular, we obtain the meromorphic continuation of the series

η D (s) = γ (-1) m(γ) τ (γ)e -sτ (γ) |1 -P γ | 1/2 , Re(s) 1,
by writing η D (s) = 2η 2 (s) -η 1 (s). The latter series is intimately linked with the quantum resonances {µ j } ⊂ C of Dirichlet Laplacian ∆ on R d \ ∪ r j=1 D j , via the trace formula of Bardos-Guillot-Ralston [START_REF] Bardos | La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion[END_REF]. Those resonances are defined as follows. For µ ∈ C with Im(µ) < 0, the resolvent

R ∆ (µ) = (-∆ -µ 2 ) -1 : L 2 (Ω) → L 2 (Ω),
where Ω = R d \ D and D = ∪ r j=1 D j , is well defined. We know since the work of Lax-Phillips [LP67, LP89] that µ → R ∆ (µ) admits a meromorphic continuation as a family of operators

L 2 comp (Ω) → L 2 loc (Ω), for µ ∈ C if d is odd and for µ in a logarithmic cover {z ∈ C : -∞ < arg(z) < ∞} otherwise.
The distribution of those resonances -namely, the existence of a spectral gap -is intimately linked with the decay of the local energy of solutions to the wave equation. Under certain conditions on the topological pressure, such a gap was obtained by Ikawa [START_REF] Ikawa | Decay of solutions of the wave equation in the exterior of several convex bodies[END_REF] and later by Nonnenmacher-Zworski [START_REF] Nonnenmacher | Quantum decay rates in chaotic scattering[END_REF] in a more general setting. More recently, in dimension 2, Vacossin [Vac22] showed that the pressure condition could be omitted for a system of convex obstacles.

Lax-Phillips [START_REF] Lax | Scattering Theory[END_REF] conjectured that if D ⊂ R d was a trapping set (in the sense that there exists a trapped trajectory for the billiard flow in R d \ D), then one can find a sequence (µ j k ) of resonances such that Im(µ j k ) → 0. Ikawa [START_REF] Ikawa | Decay of solutions of the wave equation in the exterior of two convex obstacles[END_REF] and Gérard [START_REF] Gérard | Asymptotique des pôles de la matrice de scattering pour deux obstacles strictement convexes[END_REF] proved that this conjecture is false in the case where D consists in two disjoint convex obstacles. This led Ikawa [START_REF] Ikawa | On the existence of poles of the scattering matrix for several convex bodies[END_REF] to formulate the modified Lax-Phillips conjecture (MLPC), as follows.

Conjecture 2.3.1 (Ikawa). If D is trapping, then there is δ > 0 such that

{µ j : Im(µ j ) δ} = ∞.
If the dimension d is even, it is implicit that we only consider resonances µ j such that Im(µ j ) δ with 0 < arg(µ j ) < π. Ikawa [START_REF] Ikawa | On the existence of poles of the scattering matrix for several convex bodies[END_REF] showed that this conjecture is true as soon as the series η D has a pole -for the Laplacian with Neumann boundary conditions, the same implication is true if we replace η D by η 1 ; the existence of a pole is then automatic since the coefficients of the series η 1 are positive. If D is a finite union of balls D j = B(x j , ε) centered at x j ∈ R d , Ikawa [START_REF] Ikawa | On the existence of poles of the scattering matrix for several convex bodies[END_REF] proved that the MLPC is true whenever ε > 0 is small enough (depending on the x j 's). Later, Stoyanov [START_REF] Stoyanov | Scattering resonances for several small convex bodies and the lax-phillips conjecture[END_REF] extended this result to general obstacles, but also under a smallness condition.

Using the works of Ikawa [START_REF] Ikawa | On the existence of poles of the scattering matrix for several convex bodies[END_REF][START_REF] Ikawa | On the distribution of poles of the scattering matrix for several convex bodies[END_REF] and Fried [START_REF] Fried | Meromorphic zeta functions for analytic flows[END_REF], we will show that the MLPC holds for analytic obstacles.

Theorem 2.3.3 (C.-Petkov). The modified Lax-Phillips conjecture is true for a union of strictly convex real analytic obstacles obstacles, under the non-eclipse condition.

Première partie

Géodésiques fermées et nombres d'intersection

Chapitre 3

Comptage sur les graphes discrets

Dans ce chapitre, nous donnons la croissance asymptotique du nombre de trajectoires fermées dans un graphe discret fini, quand on impose aux trajectoires de passer un nombre fini de fois à travers une arête donnée. C'est un modèle jouet pour le problème de comptage de géodésiques sur les surfaces que nous allons considérer au chapitre suivant. La méthode présentée pourrait sembler peu naturelle, mais elle illustre parfaitement la stratégie que nous allons adopter pour traiter le cas des surfaces. 

Combinatorial setting

We consider a non-oriented graph G, with vertexes V = {v 1 , . . . , v p } and edges E = {e 1 , . . . , e q } ⊂ V × V. By non-oriented, we mean that (i, j) ∈ E if and only if (j, i) ∈ E for any i, j ∈ {1, . . . , p}. We will write v i ∼ v j whenever (i, j)

∈ E. A closed path in G is a sequence v = (v i 1 , e j 1 , v i 2 , . . . , v ir , e jr )
where r 1 is some integer, and e j k = (i k , i k+1 ) ∈ E for any k ∈ Z/rZ. A loop in G is an equivalence class [v] of a closed path v, where two sequences v and w are identified whenever v is a cyclic permutation of w. The length of a closed trajectory [v] is by definition the integer r and is denoted by |[v]|. A loop will be called primitive if it is not the multiple of a shorter loop. We denote by P(G) (resp. P(G)) the set of loops (resp. primitive loops) of G.

Let A be the adjacency matrix of the graph G, that is, A is the p × p symmetric matrix defined by

A = (a ij ) where a ij = 1 if v i ∼ v j , 0 if not.
We will assume that A is primitive, which means that there is m 1 such that all the coefficients of A m are positive. Under this condition, the Perron-Frobenius theorem applies and gives the existence of r > 0 such that sp(A) ⊂ D(0, r) and sp(A) ∩ ∂D(0, r) = {r}, (3.1.1)

where sp(A) is the spectrum of A and D(0, t) = {z ∈ C : |z| < t}. Moreover r is a simple eigenvalue of A and there is µ ∈ R n with positive coefficients such that Aµ = rµ. Note also that if p 2, then necessarily r > 1. The following result is well known.

Proposition 3.1.1. It holds

{ω ∈ P(G) : |ω| = } ∼ r , → ∞.
Proof. 

1 = tr(A )/ + O(r /2 ) ∼ r /
as → ∞, which concludes the proof.

Imposing a constraint

Next, we fix an edge e = (i , j ) ∈ V 2 such that e ∈ E. We also denote ē = (j , i ), and we consider the graph G which is obtained from G by removing the edges e and ē . We assume that the new adjacency matrix A remains primitive. For n 0 and 1, we denote by N (n, ) the number of loops (resp. primitive loops) in G of length n + passing exactly n times through the edges e or ē . More precisely, for any loop ω = [(v i 1 , e i 1 , . . . , v i n+ , e i n+ )], we denote by i(ω, e ) = j ∈ Z/(r + n)Z : e i j = e or e i j = ē the number of times ω passes through e or ē , and we set

N (n, ) = {ω ∈ P(G) : |ω| = n + , i(ω, e ) = n}.
The purpose of this section is to prove the following result.

Proposition 3.2.1. There is a constant c > 0 such that for any n 0 it holds

N (n, ) ∼ (c ) n n! r , → ∞,
where r ∈ ]1, r[ is the Perron-Frobenius eigenvalue of A .

Remark 3.2.2. In fact, we have

c = 2 v i , µ v j , µ ,
where µ ∈ R d is the unique eigenvector of A associated to the eigenvalue r such that µ > 0 and µ 2 = 1. Here identified the set of vertexes V with the canonical basis or R n , by declaring that v k corresponds the element of R d whose coefficients are zero except for the k-th component whose value is 1.

In what follows, we will denote by P(n, ) (resp. P(n, )) the set of loops (resp. primitive loops) ω of length n + and such that i(ω, e ) = n ; we also set

P(n) = ∞ =0 P(n, ) and P(n) = ∞ =0 P(n, ). Also, if z -1 / ∈ sp(A ), we define a km (z) = v k , (1 -zA ) -1 v m , 1 k, m d.
Then the scattering matrix S (z) associated to e = (i , j ) is the 2×2 matrix defined by

S (z) = a i i (z) a i j (z) a j i (z) a j j (z) , z -1 / ∈ sp(A ).
Finally, we set J = 0 1 1 0 and set S (z) = JS (z).

Proposition 3.2.3 (Trace formula for graphs). For |z| < 1/r and n 1 we have the trace formula

tr S (z) n = nz -n ω∈ P(n) |ω | |ω| z |ω| ,
where the sum runs over all loops ω passing exactly n times through e or ē, and |ω | is the primitive period of ω.

Proof. For every k, m ∈ {1, . . . , d}, n 0 and 1 we denote by C km (n, ) the set of trajectories v = (v i 1 , e i 1 , . . . , e i +n , v i +n+1 ) linking v i 1 = v k to v i +n+1 = v m , of length + n (by convention, the path v = (v i 1 ) is of length zero), and passing exactly n times through e or ē , that is, {k = 1, . . . , + n : e i k = e or e i k = ē } = n.

We set N km (n, ) = C km (n, ). Then we claim that for any n 1 it holds

S (z) n = ∞ =0 z N i j (n -1, ) N i i (n -1, ) N j j (n -1, ) N j i (n -1, ) . (3.2.1)
Indeed, for n = 1 this follows from the computation

a km (z) = v k , (1 -zA ) -1 v m = ∞ =0 z v k , A v m ,
and the fact that v k , A v m = N km (0, ) is the number of paths of length joining v k to v m (and not passing through e or ē ). Next, assume that (3.2.1) holds for some n 1. For m 1 we write

S (z) m = a i j (m, z) a i i (m, z) a j j (m, z) a j i (m, z) .
Then by (3.2.1) we get

a i j (n + 1, z) = ∞ =0 z a i j (z)N i j (n -1, ) + a i i (z)N j j (n -1, ) = ∞ =0 ∞ =0 z + N i j (0, )N i j (n -1, ) + N i i (0, )N j j (n -1, ) .
Now by observing that a path v ∈ C i j (n, β) can be (uniquely) written as a concatenation of the form

u i j • ē • w i j or u i i • e • w j j ,
where u km ∈ C km (0, ), w km ∈ C km (n -1, ) and + = β, we see that

N i j (n, β) = + =β (N i j (0, )N i j (n -1, ) + N i i (0, )N j j (n -1, )) .
Thus a i j (n + 1, z) = β 0 z β N i j (n, β). Similarly one is able to show that a km (n + 1, z) coincides with β 0 z β N km (n, β) for any k, m ∈ {i , j }, and thus we proved by induction that (3.2.1) holds for any n 0. In particular, we get

tr S (z) n = ∞ =0 z N i j (n -1, ) + N j i (n -1, ) . (3.2.2)
Now we consider the map F n, : C i j (n -1, ) ∪ C j i (n -1, ) → P(n, ) which is defined by

F n, (u) = [ue ] if u ∈ C i j (n -1, ), [uē ] if u ∈ C j i (n -1, ).
Then F n, is surjective. Moreover, it is not hard to see that for any ω ∈ P(n, ) we have

F -1 n, ({ω}) = n |ω | |ω| .
Therefore, one obtains

N i j (n -1, ) + N j i (n -1, ) = ω∈ P(n, ) n |ω | |ω| ,
and by (3.2.2), the lemma follows.

A Tauberian argument

Let ε > 0 small so that D(r , ε) ∩ sp(A ) = {r }, where D(r , ε) ⊂ C is the disk or radius ε centered at r . We denote by

Π r = 1 2πi ∂D(r ,ε) (z -A ) -1 dz
the spectral projector of A associated to the eigenvalue r , which is also given by

Π r = µ , • µ .
Then near z = 1/r , we have the development

(1 -zA ) -1 = G(z) + Π r 1 -zr ,
where G is holomorphic near 1/r , and In particular we get, writing

c k = µ , v k > 0 for k = i , j , S (z) = H(z) + 1 1 -zr c i c j c i c i c j c j c j c i
where H is holomorphic near z = 1/r . As the matrix R = c i c j c i c i c j c j c j c i is of rank one, we have tr(R n ) = tr(R) n for any n and thus we finally get

tr S (z) n = (c ) n (1 -zr ) n + O (1 -zr ) -n+1 , z → 1/r , (3.3.1)
where c = 2c i c j .

Proof of Proposition 3.2.1. Proposition 3.2.3 and (3.3.1) give

nz -n ω∈ P(n) |ω | |ω| z |ω| = (c ) n (1 -zr ) n + O (1 -zr ) -n+1 , z → 1/r . (3.3.2) For |z| < 1/r we define f (z) = ∞ =0 a z where a = ω∈ P(n) |ω|= |ω |, 0.
Then by (3.3.2) it holds

f (z) = d dz ω∈ P(n) |ω | |ω| z |ω| = r 1-n (c ) n r n+1 (r -1 -z) n+1 + O((1 -zr ) -n ), z → 1/r . (3.3.3)
We will need the following Lemma 3.3.1. Let (a ) 0 be a sequence of complex numbers such that a z converges absolutely for |z| < r, for some r > 0. Assume that there are n 0 and α 1 , . . . , α n+1 ∈ C with α n+1 = 0, such that the function f : {|z| < r} → C defined by

f (z) = ∞ =0 a z - n+1 k=1 α k (r -z) k , |z| < r,
extends analytically to a disk {|z| < r } where r > r. Then

a ∼ α n+1 n n! r -n , → ∞.
Proof of Lemma 3.3.1. For |z| < r and k = 2, . . . , n + 1, we write

(r -z) -k = ∞ =0 b k, r -z -k+1
where b k, = ( -1)

• • • ( -k + 2)/(k -1)!. Then we have f (z) = ∞ =0 A z where A = a -r --1 - n+1 k=2 α k b k, +k-1 r --k+1 , 0.
As f is analytic on {|z| ρ} for ρ ∈ ]r, r [, the Cauchy formula yields A = O(ρ -) as → ∞. In particular a ∼ α n+1 b n+1, +n r --n , and noting that

b n+1, +n = ( + n) • • • ( + 1) n! ∼ n n! , → ∞,
we conclude the proof.

Applying Lemma 3.3.1 with (3.3.3) yields

ω∈ P(n) |ω|= |ω | ∼ r 1-n (c ) n r n+1 n n! r +n = (c ) n n! r -n , → ∞. (3.3.4)
On the other hand, we have

ω∈ P(n) |ω|= |ω | = m| ω ∈P(n) |ω |=m /m k=1 |ω | = N (n, -n) + m| m /2 ω ∈P(n) |ω |=m 1. By (3.3.4) it holds m| m /2 ω ∈P(n) |ω |=m 1 = O( r /2 ), → ∞.
Thus applying (3.3.4) again we get 

N (n, -n) ∼ (c ) n n! r -n , → ∞,

Introduction

Let (Σ, g) be a closed, oriented, connected, negatively curved Riemannian surface and denote by P the set of its oriented primitive closed geodesics. For L > 0 define

N (L) = {γ ∈ P : (γ) L},
where for γ ∈ P, we denoted by (γ) its length. Then a classical result obtained by Margulis [START_REF] Gregorii | Applications of ergodic theory to the investigation of manifolds of negative curvature[END_REF] states that

N (L) ∼ e hL hL , L → ∞,
where h > 0 is the topological entropy of the geodesic flow of (Σ, g).

In this chapter, we will provide a similar asymptotic result for closed geodesics satisfying certain intersection constraints. Namely, let γ be a simple closed geodesic of (Σ, g). For any γ ∈ P, we denote by i(γ, γ ) the geometric intersection number between γ and γ (see §4.2.1), and we set

N (n, L) = {γ ∈ P : (γ) L, i(γ, γ ) = n}.
We first state a result in the case where γ is assumed to be not separating, in the sense that Σ \ γ is connected. Theorem 4.1.1. Assume that γ is not separating. Then there are c > 0 and h ∈ ]0, h[ such that for any n 1 it holds

N (n, L) ∼ (c L) n n! e h L h L , L → ∞. (4.1.1)
Let (ϕ t ) denote the geodesic flow of (Σ, g), acting on the unit tangent bundle SΣ of Σ. Then the number h in the above statement is the topological entropy of the flow (ϕ t ) restricted the trapped set

K = {(x, v) ∈ SΣ : π(ϕ t (x, v)) ∈ Σ \ γ , t ∈ R},
where the closure is taken in SΣ and π : SΣ → Σ is the natural projection. Also, we provide in §4.7 a description of the constant c in terms of the Pollicott-Ruelle resonant states of the geodesic flow of the surface with boundary Σ obtained by cutting Σ along γ .

If γ is separating then i(γ, γ ) is even and we have the following result.

Theorem 4.1.2. Suppose that γ separates Σ in two surfaces Σ 1 and Σ 2 . Let h j ∈ ]0, h[ denote the entropy of the open system (Σ j , g| Σ j ) and set h = max(h 1 , h 2 ). Then there is c > 0 such that for each n 1 we have, as L → +∞,

N (2n, L) ∼          (c L) n n! e h L h L if h 1 = h 2 , 2 (c L 2 ) n (2n)! e h L h L if h 1 = h 2 ,
As before, the number h j is defined as the topological entropy of the geodesic flow restricted to the trapped set

K j = {(x, v) ∈ SΣ : π(ϕ t (x, v)) ∈ Σ j \ γ , t ∈ R},
where the closure is taken in SΣ.

Remark 4.1.3. As explained in the introduction (see §2.1.4), one is more generally able to obtain similar asymptotics results for closed geodesics of which several intersection numbers with a family of simple curves γ ,1 , . . . , γ ,r are prescribed. However, to make the exposition clearer, we will deal in the major part of this chapter with the case r = 1. The case r > 1 will be obtained later in §4.9 by using identical techniques.

We also mention an equidistribution result. Set

∂ = {(x, v) ∈ SΣ : x ∈ γ } and Γ = Sγ ∪ z ∈ ∂ ϕ t (z) ∈ SΣ \ ∂ , t > 0 where Sγ = {(x, v) ∈ ∂ : v ∈ T x γ }. We define the Scattering map S : ∂ \ Γ → ∂ by S(z) = ϕ (z) (z), (z) = inf{t > 0 : ϕ t (z) ∈ ∂ }, z ∈ ∂ \ Γ.
For any n ∈ N 1 we set

Γ n = ∂ \ z ∈ ∂ \ Γ : S k (z) ∈ ∂ \ Γ, k = 1, . . . , n -1
which is a closed set of Lebesgue measure zero, and

n (z) = (z) + • • • + (S n-1 (z)), z ∈ ∂ \ Γ n .
Theorem 4.1.4. Assume that γ is not separating and let n 1.

For any f ∈ C ∞ ∂ ) the limit lim L→+∞ 1 N (n, L) γ∈P i(γ,γ )=n 1 I (γ) z∈I (γ) f (z)
exists, where for any γ ∈ P, I (γ) = {(x, v) ∈ Sγ : x ∈ γ } is the set of incidence vectors of γ along γ . This formula defines a probability measure µ n on ∂ , whose support is contained in Γ n .

Of course, a similar statement holds even if γ is separating though we will not explicitly state it here. As for c , we will provide a full description of µ n in terms of the Pollicott-Ruelle resonant states of the geodesic flow of (Σ , g) for the resonance h in §4.7. Here as before Σ is the compact surface with boundary obtained by cutting Σ along γ (see §4.2.5).

Strategy of proof

A key ingredient used in the proof of Theorems 4.1.1, 4.1.2 and 4.1.4 is the scattering operator S(s) : where the products runs over all closed geodesics (not necessarily primitive) γ with i(γ, γ ) = n and (γ) is the primitive length of γ. This formula will be obtained by using the Atiyah-Bott trace formula [AB67] (though our scattering map S has singularities that we have to deal with). Furthermore, using a priori bounds on the growth of N (n, L) (obtained in §4.4 by purely geometrical techniques coming from the theory of CAT(-1) spaces), we prove that s → tr s [(χS(s)χ) n ] has a pole of order n at s = h , provided that χ has enough support. For this step, we crucially use the fact that the asymptotics for N (0, L) is already known by [START_REF] Parry | An analogue of the prime number theorem for closed orbits of axiom a flows[END_REF][START_REF] Dal | Remarques sur le spectre des longueurs d'une surface et comptages[END_REF], although we could recover it by using the modern techniques introduced in [DG16] without going through the scattering maps. Finally, letting the support of 1 -χ being very close to Sγ , and estimating the growth of geodesics intersecting n times γ with at least one small angle, we are able to derive Theorems 4.1.1 and 4.1.2 from a classical Tauberian theorem of Delange [START_REF] Delange | Généralisation du théoreme de Ikehara[END_REF].

C ∞ (∂ ) → C ∞ (∂ \ Γ) which is defined by S(s)f (z) = f (S(z))e -s (z) , z ∈ ∂ \ Γ, s ∈ C.
We emphasize on the fact that this strategy of proof follows exactly the method used in Chapter 3. We summarize the commonalities in the following tabular :

Toy model Surfaces G SΣ G SΣ e SΣ| γ (z -A ) -1 (X + s) -1 S (z) S(s) S (z) S(s) J ψ * Lemma 3.2.3 (4.1.2)

Organization of the chapter

The chapter is organized as follows. In §4.2 we introduce some geometrical and dynamical tools. In §4.3 we introduce the dynamical scattering operator which is a central object in this paper and we compute its flat trace. In §4.4 we prove a priori bounds on N (n, L). In §4.5 we use a Tauberian argument to estimate certain quantities. In §4.6 we prove Theorem 4.1.1. In §4.7 we prove an equidistribution result. In §4.8 we show that a typical closed geodesic γ satisfies i(γ, γ ) ≈ I (γ) for some I > 0. Finally in §4.9 we extend the results to the case where we are given more than one closed geodesic.

Geometrical preliminaries

We recall here some classical geometrical and dynamical notions, and introduce the Pollicott-Ruelle resonances that will arise in our situation. Throughout the whole article, (Σ, g) will denote a closed, connected, oriented Riemannian surface of negative curvature.

Geometric intersection numbers

For any two loops α, β : R/Z → Σ, the geometric intersection number between α and β is defined by

i(α, β) = inf α ∼α,β ∼β |α ∩ β|
where the infimum runs over all loops α and β freely homotopic to α and β respectively, and

|α ∩ β| = {(τ, τ ) ∈ (R/Z) 2 : α(τ ) = β(τ )}.
It is well known that in every non trivial free homotopy class of loops c, there is a unique oriented closed geodesic γ c ∈ c which minimizes the length among curves in c. In fact, closed geodesics also minimize intersection numbers, as follows.

Lemma 4.2.1. Let γ 1 , γ 2 be any two non trivial oriented closed geodesics, and assume that γ 1 (resp. γ 2 ) is not freely homotopic to a power of γ 2 (resp. γ 1 ). Then it holds

i(γ 1 , γ 2 ) = |γ 1 ∩ γ 2 |.
The above result is rather classical but for reader's convenience we provide a proof in §4.10.

Structural equations

We recall here some classical facts from [ST76, §7.2] about geometry of surfaces.

We have the Liouville one-form α on M defined by

α(z), w = d (x,v) π(w), v , z =(x, v) ∈ M, w ∈ T (x,v) M.
Then α is a contact form (that is, α ∧ dα is a volume form on M δ ) and it turns out that the geodesic vector field X is the Reeb vector field associated to α, that is, it satisfies

ι X α = 1, ι X dα = 0,
where ι denote the interior product. We set β = R * π/2 α where for θ ∈ R, we denoted by R θ : M → M the rotation of angle θ in the fibers (which is defined thanks to the orientation of Σ). Then the volume form vol g of Σ satisfies [ST76, p. 166]

π * vol g = α ∧ β. (4.2.1)
We denote by ψ the connection one-form (see [ST76, Theorem p.169]), that is, the unique one-form on M satisfying

ι V ψ = 1, dα = ψ ∧ β, dβ = α ∧ ψ, dψ = -(κ • π)α ∧ β, (4.2.2) 
where V is the vector field generating (R θ ) θ∈R and κ is the Gauss curvature of Σ.

Then (α, β, ψ) is a global frame of T * M . We denote by H the vector field on M such that (X, H, V ) is the dual frame of (α, β, ψ). We then have the following commutation relations [ST76, p. 170]

[V, X] = H, [V, H] = -X, [X, H] = (κ • π)V. (4.2.3)
The orientation of M will be chosen so that (X, H, V ) is positively oriented.

The Anosov property

It is known since the work of Anosov [START_REF] Dmitrij | Geodesic flows on closed Riemann manifolds with negative curvature[END_REF] that the flow (ϕ t ) is hyperbolic, that is, for any z ∈ M , there is a dϕ t -invariant splitting

T z M = RX(z) ⊕ E s (z) ⊕ E u (z)
which depends continuously on z, and with the following property. For any norm • on T M , there exist C, ν > 0 such that

dϕ t (z)v Ce -νt v , v ∈ E s (z), t 0, z ∈ M, and 
dϕ -t (z)v Ce -νt v , v ∈ E u (z), t 0, z ∈ M In fact E s (z) ⊕ E u (z) = ker α(z)
and there exists two continuous functions r ± : M → R such that ±r ± > 0 and

E s (z) = R(H(z) + r -V (z)), E u (z) = R(H(z) + r + V (z)), z ∈ M.
Moreover, the functions r ± are differentiable along the flow direction, and they satisfy the Ricatti equation

Xr ± + r 2 ± + κ • π = 0, where κ is the curvature of Σ.
We will denote by

T * M = E * 0 ⊕ E * s ⊕ E *
u the splitting defined by (here the bundle RX is denoted by E 0 )

E * 0 (E u ⊕ E s ) = 0, E * s (E s ⊕ E 0 ) = 0, E * u (E u ⊕ E 0 ) = 0.
Then we have E * 0 = Rα and

E * s = R(r -β -ψ), E * u = R(r + β -ψ). (4.2.4)
Note that this decomposition does not coincide with the usual dual decomposition, but it is motivated by the fact that covectors in E * s (resp. E * u ) are exponentially contracted in the future (resp. in the past) by the symplectic lift Φ t of ϕ t which is defined by

Φ t (z, ξ) = (ϕ t (z), dϕ t (z) -• ξ), (z, ξ) ∈ T * M, t ∈ R, (4.2.5)
where -denotes the inverse transpose. We have the following lemma (see

[DR20a, §3.2]). Lemma 4.2.2. If t = 0, we have ι V Φ t (β) = 0 and ι H Φ t (ψ) = 0.

A nice system of coordinates

In what follows we denote

∂ = {(x, v) ∈ M : x ∈ γ } = SΣ| γ .
Lemma 4.2.3. There exists a tubular neighborhood U of ∂ in M and coordinates

(τ, ρ, θ) on U with U (R/ Z) τ × (-δ, δ) ρ × (R/2πZ) θ ,
where is the length of γ , and such that

|ρ(z)| = dist g (π(z), γ ), S z Σ = {(τ (z), ρ(z), θ) : θ ∈ R/2πZ}, z ∈ U.
Moreover in these coordinates, we have, on {ρ = 0},

X = cos(θ)∂ τ + sin(θ)∂ ρ , H = -sin(θ)∂ τ + cos(θ)∂ ρ , V = ∂ θ , and α = cos(θ)dτ + sin(θ)dρ, β = -sin(θ)dτ + cos(θ)dρ, ψ = dθ.
Proof. For τ ∈ R/ Z we set (x τ , v τ ) = ϕ τ (γ (0), γ (0)). We now define, for δ > 0 small enough,

Ψ(τ, ρ, θ) = R θ-π/2 ϕ ρ (x τ , ν(x τ )), (τ, ρ, θ) ∈ R/ Z × (-δ, δ) × R/2πZ,
where R η : SΣ → SΣ is the rotation of angle η and ν(x τ ) = R π/2 v τ . Then dΨ(τ, 0, θ) is injective for any τ, θ. Indeed, we have

∂ τ (π •Ψ)(τ, 0, θ) = v τ and ∂ ρ (π •Ψ)(τ, 0, θ) = ν(x τ ). Thus dΨ(τ, 0, θ) : R∂ τ ⊕R∂ ρ → T Σ is injective. Moreover, ∂ θ (π •Ψ)(τ, 0, θ) = 0 and ∂ θ Ψ(τ, 0, θ) = V (Ψ(τ, 0, θ)) = 0.
Thus dΨ(τ, 0, θ) is injective for any τ, θ, and in particular, if δ > 0 is small enough, Ψ : U → M is an immersion. In particular, since (τ, θ) → Ψ(τ, 0, θ) is clearly injective, we obtain that Ψ| U is a diffeomorphism onto its image provided that δ is chosen small enough. Because V = ∂ θ and ι V α = ι V β = 0, we may write α(τ, 0, θ) = a(τ, θ)dτ +b(τ, θ)dρ and β(τ, 0, θ) = a (τ, θ)dτ + b (τ, θ)dρ for some smooth functions a, a , b, b . Now since dα = ψ ∧ β we obtain L V α = ι V dα = β, and similarly

L V β = -α. Thus we obtain a = ∂ θ a, b = ∂ θ b and ∂ 2 θ a + a = 0, ∂ 2 θ b + b = 0. In consequence we have a(τ, θ) = a 1 (τ ) cos θ + a 2 (τ ) sin θ and b(τ, θ) = b 1 (τ ) cos θ + b 2 (τ ) sin θ for some smooth functions a 1 , a 2 , b 1 , b 2 . Moreover, by definition of the co- ordinates (τ, ρ, θ), one has X(τ, 0, 0) = ∂ τ and X(τ, 0, π/2) = ∂ ρ . (4.2.6)
Therefore a 1 = b 2 = 1 and a 2 = b 1 = 0. We thus get the desired formulas for α and β. Now writing ψ = a dτ + b dρ + dθ and using

L V ψ = 0, we obtain ∂ θ a = ∂ θ b = 0. As ι X ψ = 0 we obtain a = b = 0 by (4.2.6). The formulae for X, H, V follow. Remark 4.2.4. If ∂ = {ρ = 0}, we get for any z = (τ, 0, θ) ∈ ∂ T z ∂ = RV (z) ⊕ R(cos(θ)X(z) -sin(θ)H(z)), N * z ∂ = R(sin(θ)α(z) + cos(θ)β(z)).

Cutting the surface along γ

As mentioned in the introduction, we may see Σ \ γ as the interior of a compact surface Σ with boundary consisting of two copies of γ . By gluing two copies of the annulus U obtained in the preceding subsection on each component of the boundary of Σ , we construct a slightly larger surface Σ δ ⊃ Σ whose boundary is identified with the boundary of U (see Figure 4.1). Lemma 4.2.5. The surface Σ δ has strictly convex boundary, in the sense that the second fundamental form of the boundary ∂Σ δ with respect to its outward normal pointing vector is strictly negative.

Proof. In the coordinates defined (τ, ρ) given by Lemma 4.2.3, the metric g has the form

dρ 2 + f (τ, ρ)dτ 2 , (4.2.7) for some f > 0 satisfying ∂ ρ f (τ, 0) = 0. Indeed, if ∇ is the Levi-Civita connexion, one has d dρ ∂ ρ , ∂ τ = ∇ ∂ρ ∂ ρ , ∂ τ + ∂ ρ , ∇ ∂ρ ∂ τ = ∂ ρ , ∇ ∂τ ∂ ρ = 1 2 d dτ ∂ ρ , ∂ ρ = 0, since ∇ ∂ρ ∂ ρ = 0 (indeed, ρ → (τ, ρ) is a geodesic curve). Thus ∂ τ , ∂ ρ = ∂ τ , ∂ ρ | ρ=0 = 0,
and in particular g has the form (4.2.7) with f (τ, ρ) = ∂ τ , ∂ τ , and we have

Σ ρ = -δ ρ = δ Σ δ γ Figure 4
.1 -The surfaces Σ (on the left) and Σ δ (on the right), in the case where γ is not separating. In Σ, the darker region corresponds to the neighborhood π(U ) of γ .

∂ ρ f (τ, 0) = ∂ ρ ∂ τ , ∂ τ = 2∂ τ ∂ ρ , ∂ τ | ρ=0 = 0 (indeed, since τ → (τ, 0) is a geodesic curve, we have ∇ ∂τ ∂ τ = 0 on {ρ = 0}). In those coordinates, the scalar curvature reads κ(τ, ρ) = -∂ 2 ρ f (τ, ρ)/f (τ, ρ). As κ < 0 we get ∂ 2 ρ f > 0, which gives ±∂ ρ f > 0 on {±ρ > 0}.
The second fundamental form of ∂Σ δ with respect to ∂ ρ is defined by

∇ ∂τ ∂ τ , ∂ ρ = -∂ ρ f (τ, ρ)/2,
which concludes the proof, since ∂ ρ is outward pointing (resp. inward pointing) on {ρ = δ} (resp. {ρ = -δ}). Lemma 4.2.6. In the coordinates given by Lemma 4.2.3, we have

±X 2 ρ > 0 on {±ρ > 0}.
Proof. Using the fact that in the coordinates (τ, ρ) the metric g has the form (4.2.7), we get that the Christoffel symbols of g are given by

Γ ρ ρρ = Γ ρ τ ρ = 0, Γ ρ τ τ = -∂ ρ f /2.
In particular, if t → (τ (t), ρ(t)) is a geodesic path, we get

ρ(t) -∂ ρ f (τ (t), ρ(t))/2 = 0.
Because ∂ ρ f (τ, 0) = 0 and -∂ 2 ρ f /f = κ < 0 we obtain that ±∂ ρ f > 0 whenever ±ρ > 0. This concludes the proof.

The resolvent of the geodesic flow for open systems

In what follows, we denote by Ω • (M δ ) the set of differential forms on M δ and by

Ω • c (M δ ) the elements of Ω • (M δ ) whose support is contained in the interior of M δ .
Here M δ = SΣ δ is the unit tangent bundle of Σ δ . The set of currents on M δ , denoted by

D • (M δ ) is defined as the topological dual of Ω • c (M δ ). Note that we have an inclusion Ω • (M δ ) → D • (M δ ) via the pairing u, v = M δ u ∧ v, u, v ∈ Ω • (M δ ).
The geodesic flow ϕ on M induces a flow on M δ = SΣ δ which we still denote by ϕ. We set

∂ ± M δ = {(x, v) ∈ ∂M δ : ± v, ν δ (x) > 0}, ∂ 0 M δ = {(x, v) ∈ ∂M δ : ± v, ν δ (x) = 0},
where ν δ (x) is the unit vector orthogonal to ∂Σ δ , based at x, and pointing outward. Next, define

±,δ (z) = inf{t > 0 : ϕ ±t (z) ∈ ∂M δ }, z ∈ int(M δ ) ∪ ∂ ∓ M δ , and ±,δ (z) = 0 for z ∈ ∂ ± M δ ∪ ∂ 0 M δ ,
where int(M δ ) denotes the interior of M δ . The numbers ±,δ (z) are the first exit times of z in the future and in the past. We also set

Γ ±,δ = {z ∈ M δ : ∓ (z) = +∞}, K δ = Γ + δ ∩ Γ - δ
and we define the operators R ±,δ (s) by

R ±,δ (s)ω(z) = ± ∓,δ (z) 0 ϕ * ∓t ω(z)e -ts dt, z ∈ M δ , ω ∈ Ω • c (M δ ), (4.2.8) 
which are well defined as operators

Ω • c (M δ ) → C(M δ , ∧ • T * M δ ) whenever Re(s) 1, where C(M δ , ∧ • T * M δ )
denotes the space of continuous differential forms on M δ . Note that our convention of R ±,δ (s) differs from that of [START_REF] Guillarmou | Lens rigidity for manifolds with hyperbolic trapped sets[END_REF]. The operator R +,δ (s) (resp. R -,δ (s)) is the resolvent of L X in the future (resp. in the past) for the spectral parameter s. More precisely we have

(L X ± s)R ±,δ (s) = Id Ω • c (M δ ) , (4.2.9) 
and for any

(u, v) ∈ Ω • c (M δ \ Γ -,δ ) × Ω • c (M δ \ Γ +,δ ) it holds M δ (R +,δ (s)u) ∧ v = - M δ u ∧ R -,δ (s)v. (4.2.10) Indeed, for such u, v, there is L > 0 such that supp(u) ⊂ { +,δ L} and supp(v) ⊂ { -,δ L}. (4.2.11)
In particular, the forms R +,δ (s)u and R -,δ (s)v are smooth up to the boundary of M δ . Indeed, (4.2.11) implies that for any z ∈ M δ and t ∈ [0, -,δ (z)] we have

ϕ * -t u(z) = 0 =⇒ t L.
Therefore one gets for any

z ∈ M δ R +,δ (s)u(z) = -,δ (z) 0 ϕ * -t u(z)e -ts dt = min( -,δ (z),L+1) 0 ϕ * -t u(z)e -ts dt, and thus R +,δ u is smooth since ϕ * -t u(z) = 0 if L t -,δ (z). Similarly, R -,δ (s)v is smooth.
Finally, note that we have the inclusions

supp(R +,δ (s)u) ∩ ∂M δ ⊂ ∂ + M δ , supp(R -,δ (s)v) ∩ ∂M δ ⊂ ∂ -M δ .
In particular, Stokes' formula and (4.2.9) imply (4.2.10).

Because the boundary of Σ δ is strictly convex, it follows from [DG16, Proposition 6.1] that the family of operators R ± (s) extends to a meromorphic family of operators

R ±,δ (s) : Ω • c (M δ ) → D • (M δ ), satisfying WF (R ±,δ (s)) ⊂ ∆(T * M δ ) ∪ Υ ±,δ ∪ (E * ±,δ × E * ∓,δ ), (4.2.12)
where

∆(T * M δ ) is the diagonal in T * M δ × T * M δ , Υ ±,δ = {(Φ t (z, ξ), (z, ξ)) ∈ T * (M δ × M δ ) : 0 ±t ±,δ (z), X(z), ξ = 0},
and where

E * +,δ = E * u | Γ + δ , E * -,δ = E * s | Γ - δ .
Here, we denoted

WF (R ±,δ (s)) = {(z, ξ, z , ξ ) ∈ T * (M δ × M δ ) : (z, ξ, z , -ξ ) ∈ WF(R ±,δ (s))},
where WF is the classical Hörmander wavefront set [START_REF] Hörmander | The analysis of linear partial differential operators : Distribution theory and Fourier analysis[END_REF]§8]. In fact, by (4.2.12), we mean that s → R ± (s) is meromorphic as a map C → D Γ ± (M δ × M δ ) (we identify R ± (s) and its Schwartz kernel) where Γ ± is given by the right hand side of (4.2.12), Γ ± = {(z, ξ, z , -ξ ) : (z, ξ, z , -ξ ) ∈ Γ ± }, and where

D Γ ± (M δ × M δ ) = {R ∈ D (M δ × M δ ) : WF(R) ⊂ Γ ± } is endowed with its natural topology (see [Hör90, Definition 8.2.2]).
Near any s 0 ∈ C, we have the development

R ±,δ (s) = Y ±,δ (s) + J(s 0 ) j=1 (X ± s 0 ) j-1 Π ±,δ (s 0 ) (s -s 0 ) j ,
where Y ±,δ (s) is holomorphic near s = s 0 , and Π ±,δ (s 0 ) is a finite rank projector satisfying

WF (Π ±,δ (s 0 )) ⊂ E * ±,δ × E * ∓,δ , supp(Π ±,δ (s 0 )) ⊂ Γ ± δ × Γ ∓ δ ,
where we identified Π ±,δ (s 0 ) and its Schwartz kernel.

Restriction of the resolvent on the geodesic boundary

For any ε > 0, define the open sets

A ±,ε = { ±,δ > ε} ∩ { ∓,δ > 0} ⊂ int(M δ ),
and notice that if ε is small we have M δ/2 ⊂ A ±,ε . Then we have diffeomorphisms

ϕ ±ε : A ±,ε → A ∓,ε which induce maps ϕ * ±ε : D • (A ∓,ε ) → D • (A ±,ε ).
Using a slight abuse of notation, we will still denote by ϕ * ±ε :

D • (M δ ) → D • (A ±,ε ) the composition of ϕ * ±ε with the inclusion D • (M δ ) → D • (A ∓,ε ) (which is given by the restriction). Let ∂ = ∂(SΣ ) = {(x, v) ∈ M δ : x ∈ γ γ },
and

∂ 0 = Sγ Sγ ⊂ ∂.
Lemma 4.2.7. For any ε > 0 small enough, we have

WF(ϕ * ∓ε R ±,δ (s)) ∩ N * (∂ × ∂) = ∅,
where

N * (∂ × ∂) = {(z , ξ , z, ξ) ∈ T * (M δ × M δ ) : ξ , T z ∂ = ξ, T z ∂ = 0}.
Proof. We prove the statement for R +,δ (s). By (4.2.12) and multiplicativity of wavefront sets (see [Hör90, Theorem 8.2.14]), we have

WF (ϕ * -ε R +,δ (s)) ⊂ ∆ ε ∪ Υ ε +,δ ∪ (E * +,δ × E * -,δ ), (4.2.13) 
where

∆ ε = {(Φ ε (z, ξ), (z, ξ)) : (z, ξ) ∈ T * M δ } and Υ ε +,δ = {(Φ t (z, ξ), (z, ξ)) : ε t +,δ (z), X(z), ξ = 0}. Now assume that there is Ξ = (z , ξ , z, ξ) lying in N * (∂ × ∂) ∩ ∆ ε ∪ Υ ε +,δ ∪ (E * +,δ × E * -,δ ) . If Ξ ∈ ∆ ε , then necessarily we have z, z ∈ ∂ 0 , because ϕ ε (∂ \ ∂ 0 ) ∩ ∂ = ∅ whenever ε > 0 is smaller than the injectivity radius of the manifold 1 . We thus have ξ ∈ N * z ∂ = Rβ(z) by Remark 4.2.4 ; now Φ ε (β(z)) does not lie in Rβ(ϕ ε (z)) by Lemma 4.2.2, and therefore ξ = 0. If Ξ ∈ Υ ε +,δ , then there is T ε such that Φ T (z, ξ) = (z , ξ ) with ξ, X(z) = 0. However by Remark 4.2.4, if (z, ξ) ∈ N * z ∂ and ξ, X(z) = 0 then z ∈ ∂ 0 .
Thus by what precedes, we obtain ξ = 0.

Finally, (4.2.4) and Remark 4.2.4 imply that

N * ∂ ∩ E * ±,δ ⊂ {0}. Thus we showed that WF (ϕ * -ε R +,δ (s)) ∩ N * (∂ × ∂) = ∅,
which is equivalent to the conclusion of the lemma2 . Remark 4.2.8. This estimate together with [Hör90, Theorem 8.2.4], imply that the operator ι * ι X ϕ * ∓ε R +,δ (s)ι * is well defined and satisfies

WF ι * ι X ϕ * ∓ε R +,δ (s)ι * ⊂ d(ι × ι) WF ϕ * ∓ε R +,δ (s) 
where ι :

∂ → M δ and ι × ι : ∂ × ∂ → M δ × M δ are the inclusions. Indeed, the Schwartz kernel of ι * ι X ϕ * ∓ε R +,δ (s)ι * coincides with the pullback by ι × ι of the kernel of ι X ϕ * ∓ε R +,δ (s). It also follows from [Hör90, Theorem 8.2.14] that the operator ι * ι X ϕ * ∓ε R +,δ (s) maps D • N * ∂ (M δ ) → D • (∂) continuously.
Here the pushforward ι * : Ω

• (∂) → D •+1 (M δ ) is defined as follows. If u ∈ Ω k (∂), we define the current ι * u ∈ D k+1 (M δ ) by ι * u, v = ∂ u ∧ ι * v, v ∈ Ω n-k-1 (M δ ).

The scattering operator

In this section we introduce the dynamical scattering operator S ± (s) associated to our problem. By relating the scattering operator to the resolvent described above, we are able to compute its wavefront set. In consequence we obtain that the composition

(χS ± (s)) n is well defined for χ ∈ C ∞ c (∂ \ ∂ 0 )
, and we give a formula for its flat trace. For each x ∈ ∂Σ , let ν(x) be the normal outward pointing vector to the boundary of Σ , and set

∂ ± = {(x, v) ∈ ∂ : ± ν(x), v g > 0}.

First definitions

We define the exit times in the future and in the past by

± (z) = inf{t > 0 : ϕ ±t (z) ∈ ∂}, z ∈ M \ (∂ ± ∪ ∂ 0 ),
and we declare that

± (z) = ∞ whenever z ∈ ∂ ± ∪ ∂ 0 . Then we set Γ ± = {z ∈ M : ∓ (z) = +∞}.
The set Γ + (resp. Γ -) is the set of points of M which are trapped in the past (resp. in the future). The scattering map S ± :

∂ ∓ \ Γ ∓ → ∂ ± \ Γ ± is defined by S ± (z) = ϕ ± ± (z) (z), z ∈ ∂ ∓ \ Γ ∓ ,
and satisfies S ± • S ∓ = Id ∂ ± \Γ ± . For s ∈ C, the scattering operator

S ± (s) : Ω • c (∂ ∓ \ Γ ∓ ) → Ω • c (∂ ± \ Γ ± ) is given by S ± (s)ω = (S * ∓ ω)e -s ∓ (•) , ω ∈ Ω • c (∂ ∓ \ Γ ∓ ). Remark 4.3.1. If Re(s) is large enough, S ± (s) extends as a map C 0 (∂, ∧ • T * ∂) → C 0 (∂, ∧ • T * ∂) (here C 0 (∂, ∧ • T * ∂)
is the space of continuous forms on ∂), by declaring that

S ± (s)ω(z) = S * ∓ ω(z)e -s ∓ (z) if z ∈ ∂ ± \ Γ ±
and S ± (s)ω(z) = 0 otherwise. Indeed, by Lemma 4.3.9 below and (4.3.16) there is

C > 0 such that S * ∓ ω(z) Ce C ∓ (z) ω ∞ , z ∈ ∂ ± \ Γ ± , ω ∈ Ω • (M ),
where ω ∞ is the uniform norm on C 0 (M, ∧ • T * M ).

The scattering operator via the resolvent

In this paragraph we will see that S ± (s) can be computed in terms of the resolvent. More precisely, we have the following result. Proposition 4.3.2. For any Re(s) large enough we have

S ± (s) = (-1) N e ±εs ι * ι X ϕ * ∓ε R ±,δ (s)ι * as maps Ω • c (∂ \ ∂ 0 ) → D • (∂), where N : Ω • (∂) → N is the degree operator, that is, N (w) = k if w is a k-form.
As a consequence of this proposition and Remark 4.2.8 together with the continuity of the pullback [Hör90, Theorem 8.2.4]

(ι × ι) * : D • Γ ±,ε (M δ × M δ ) → D • (∂ × ∂),
where Γ ±,ε is the right hand side of (4.2.13), we get the Before proving Proposition 4.3.2, we start by an intermediate result.

Lemma 4.3.4. We have S ± (s) = (-1) N e ±εs ι * ι X ϕ * ∓ε R ±,δ (s)ι * as maps

Ω • c (∂ ∓ \ Γ ∓ ) → D • (∂ ± \ Γ ± ).
Remark 4.3.5. (i) Note that Proposition 4.3.2 is not a direct consequence of Lemma 4.3.4. Indeed, the operator Q ε,± (s) = (-1) N e ±εs ι * ι X ϕ * ∓ε R ±,δ (s)ι * could hide some singularities near Γ ± ; Proposition 4.3.2 tells us that is it not the case, at least far from ∂ 0 .

(ii) A consequence of Proposition 4.3.2 is that Q ε,± (s) is identically zero on ∂ ± (in the sense that Q ε,± (s)u = 0 whenever supp(u) ⊂ ∂ ± ), as it is the case for S ± (s). This can be seen directly from using the fact that

supp(ϕ * ∓ε R ±,δ (s)ι * u) ⊂ {ϕ t (z) : z ∈ supp(u), ε ±t ±,δ (z)}. Proof. Let u ∈ Ω • c (∂ -\ Γ -) , and U ⊂ ∂ -be a neighborhood of supp u such that U does not intersect ∂ 0 . Let ε > 0 small such that z ∈ ∂ -=⇒ + (z) > ε.
The existence of such an ε follows from the fact that for each x ∈ ∂Σ, the exponential map exp

x : T x Σ → Σ is injective on B(0, ε) ⊂ T x Σ whenever ε > 0 is small enough (independent of x). Note also that for every z ∈ ∂ -, we have π(ϕ t (z)) ∈ Σ δ \ Σ , --,δ (z) < t < 0,
as it follows from Lemma 4.2.6. Next, let us set

U = {(t, z) ∈ R × U : --,δ (z) < t < ε} . Then U is diffeomorphic to a tubular neighborhood of U in M δ via (t, z) → ϕ t (z) 3 . Let χ ∈ C ∞ (R) such that χ ≡ 1 near ] -∞, 0] and χ ≡ 0 on ]ε/2, +∞[. Set, in the above coordinates, ψ(t, z) = χ(t)e -ts u(z) ∈ ∧ • T * (t,z) M δ ,
where we see u(z) as a form in T * (t,z) M by declaring ι ∂t u(z) = 0. We extend ψ by 0 on M and we set

φ = ψ -R +,δ (s)(L X + s)ψ.
Then φ is smooth by (4.2.8) since supp ψ ∩ Γ -= ∅. Moreover (L X + s)φ = 0, and we have

φ| ∂ -= u, φ| ∂ + = S + (s)u, where S + (s) = S + (s)| Ω • c (∂ -\Γ -) . Let h ∈ Ω • c (M δ \ Γ +,δ ), so that R -,δ (s)h is smooth 3. Indeed, the map G : (t, z) → ϕ t (z)
is clearly smooth on U . By lemma 4.2.6, we have that t → ρ(ϕ t (z)) is strictly increasing for z ∈ ∂ -. Therefore by unicity of the integral curves of X we see that G is injective. The inverse of G is given by G -1 (z ) = (t(z ), z(z )) where t(z ) = inf{t 0 : ϕ t (z ) ∈ ∂} and z(z ) = ϕ -t(z ) (z ), which is smooth on G(U ) by the implicit function theorem.

(see the discussion following (4.2.10)). We have, by (4.2.9) and (4.2.10),

M δ φ ∧ h = M δ ψ ∧ h - M δ R +,δ (s)(L X + s)ψ ∧ h = M δ ψ ∧ h + M δ (L X + s)ψ ∧ R -,δ (s)h = M δ ψ ∧ h - M δ ψ ∧ (L X -s)R -,δ (s)h + ∂M δ ι X (ψ ∧ R -,δ (s)h) = ∂M δ ι X (ψ ∧ R -,δ (s)h) = (-1) deg ψ ∂ -,δ ψ ∧ ι X R -,δ (s)h, since ι X ψ = 0 and ψ has no support near ∂ +,δ . Now we let Φ : ∂ -→ ∂ -,δ be defined by Φ(z) = ϕ --,δ (z) (z).
Assume that the support of h does not intersect U . Then a change of variable gives

Φ * (ι X R -,δ (s)h)| ∂ -,δ = ι X R -,δ (s)he -s -,δ (•) , As we have Φ * (ψ| ∂ -,δ ) = (ψ| ∂ -)e +s -,δ (•) = ue +s -,δ (•) by definition of ψ, we obtain M δ φ ∧ h = (-1) deg u ∂ - u ∧ ι * (ι X R -,δ (s)h). (4.3.1) Now because (L X -s)R -,δ (s)h = h, we get (L X -s)R -,δ (s)h = 0 near U and thus ϕ * ε R -,δ (s)h = e εs R -,δ (s)h near U . Let v ∈ Ω • c (∂ + \Γ + ) ; then U ∩supp(v) = ∅ (because supp(v) ⊂ ∂ + \ Γ + ). As WF(ι * v) ⊂ N * ∂, we may find h n ∈ Ω • c (M δ \ Γ +,δ ), n ∈ N, such that h n → ι * v in D • N * ∂ (M δ )
, and with the property that supp(h n ) ∩ U = ∅ 4 . Then applying (4.3.1) to h = h n and letting n → ∞ yields 5

∂ + (S + (s)u) ∧ v = (-1) deg u e -εs ∂ - u ∧ ι * ι X ϕ * ε R -,δ (s)ι * v, because φ| ∂ + = S + (s)u. Since ∂ + S + (s)u ∧ v = ∂ -u ∧ S -(s)v, we obtain S -(s) = (-1) deg u e -εs ι * ι X ϕ * ε R -,δ (s)ι * as maps Ω • c (∂ + \ Γ + ) → Ω • c (∂ -\ Γ -).
We can replace X by -X to obtain the desired formula for S + (s), which concludes.

Proof of Proposition 4.3.2. Let u ∈ Ω • (∂ \ ∂ 0 ) and write u = u(τ, θ) ∈ T * (τ,θ) ∂. Let χ ∈ C ∞ c (R, [0, 1]) such that R χ = 1, χ(0) = 0, χ ≡ 0 on R \ (-δ/2, δ/2), and χ > 0 on (-δ/2, δ/2). For n ∈ N 1 we set χ n = nχ(n•), so that χ n converges to the Dirac measure on R as n → +∞. We define u n ∈ Ω • c (M δ ) in the (τ, ρ, θ) coordinates by u n = χ n (ρ)u(τ, θ) ∧ dρ.
4. For example, we may take

h n (ρ, τ, θ) = χ n (ρ)v(τ, θ) ∧ dρ where χ n ∈ C ∞ c (]-δ, δ[) converges to the Dirac measure.
5. Here we use that

ι * ι X ϕ * ε R -,δ (s)h n → ι * ι X ϕ * ε R -,δ (s)ι * v in D • (∂) as n → ∞ by Remark 4.2.8 since h n → ι * v in D • N * ∂ (M δ ).
Then

u n → (-1) N ι * u in D N * ∂ (M δ ) since ∂ = {ρ = 0}.
In particular, setting

f n = ι * ϕ * -ε ι X R +,δ (s)u n , n 1, Remark 4.2.8 gives that f n → (-1) N ι * ϕ * -ε ι X R +,δ (s)ι * u in D • (∂). Moreover, if Re(s) is large enough, then for any n ∈ N, we have (-1) N ι * ϕ * -ε ι X R +,δ (s)u n ∈ C 0 (M δ , ∧ • T * M δ ) and thus f n ∈ C 0 (∂, ∧ • T * ∂). Then we claim that f n → S + (s)u in D • (∂ \ ∂ 0 ) when n → +∞, where we recall that S + (s)u(z) = S * -u(z)e -s -(z) if z ∈ ∂ + \ Γ + , 0 if not.
Let F = {|ρ| δ/2}. Since the neighborhood {|ρ| < δ/2} is strictly convex, there exists L > 0 such that for any z ∈ F and T > 0 such that ϕ -T (z) ∈ F , we have

∀t ∈ ]0, T [ , ϕ -t (z) / ∈ F =⇒ T L. (4.3.2) Next, take z ∈ ∂ + \ Γ + . Then the set {t ∈ [ε, -,δ (z)] : ϕ -t (z) ∈ F } is a finite union of closed intervals, say {t ε : ϕ t (z) ∈ F } = K(z) k=0 [a k (z), b k (z)], with a k (z) b k (z) +∞ and b k (z) < a k+1 (z) for every k. We set ρ(t) = ρ(ϕ -t (z))
for any t 0, and we take any smooth norm

• on ∧ • T * M δ . Note that u n = χ n (ρ)u 1 . Moreover, if z ∈ M δ and t < -δ (z), we have ϕ * -t u 1 (z) C u 1 (ϕ -t z) exp(C|t|) (4.3.3) for some C > 0. Let θ 0 > 0 small and h ∈ C ∞ (M δ , [0, 1]) such that h = 1 on supp u 1 and h(τ, ρ, θ) = 0, dist(θ, πZ) < θ 0 (4.3.4) (such a h exists if θ 0 is small enough since u ∈ Ω • (∂ \ ∂ 0 )).
Then there is c = c(θ 0 ) > 0 such that |Xρ| c on supp h, as it follows from Lemma 4.2.3. In particular if Re(s) > C we have by (4.3.3) and (4.3.4)

f n (z) -,δ (z) ε (χ n • ρ)(ϕ -t (z)) ϕ * -t (ι X u 1 )(z) e -ts dt C u ∞ K(z) k=0 e (C-s)a k (z) b k (z) a k (z) χ n (ρ(t))h(ϕ -t (z))dt Cc -1 u ∞ K(z) k=0 e (C-s)a k (z) b k (z) a k (z) χ n (ρ(t))|Xρ(ϕ -t (z))|dt.
Of course, for t < -,δ (z), we have Xρ(ϕ -t (z)) = ρ (t). Moreover by Lemma 4. 

a k (z) χ n (ρ(t))|ρ (t)|dt 2 R χ n (ρ)dρ 2.
By (4.3.2), we have a k (z) kL for any k. Therefore we obtain

f n (z) 2 u ∞ 1 -e (C-Re(s))L , z ∈ ∂ + \ Γ + , n 1. (4.3.5) Moreover, if z ∈ ∂ -, we have that t → ρ(ϕ -t (z)
) is strictly increasing for any z ∈ ∂ - by Lemma 4.2.6. Thus we may reproduce the argument made above to obtain that (4.3.5) also holds for z ∈ ∂ -. Finally, it is shown in [Gui17, §2.4] that Leb(Γ + ∩ ∂ + ) = 0 6 . In particular, since each f n is a continuous, (4.3.5) holds for any z ∈

(∂ + ∪ ∂ -) \ Γ + = ∂. Next, let v ∈ Ω • (∂). By Lemma 4.2.6, the set {ϕ -t (z) : t ε} is included in {ρ ρ(ϕ -ε (z))} for any z ∈ ∂ -. In particular, as supp(u n ) → ∂ when n → ∞, we have f n (z) → 0 for z ∈ ∂ -. By dominated convergence we get as n → ∞ ∂ - f n ∧ v → 0. Next, let η > 0, and χ ± ∈ C ∞ c (∂ ± \ Γ ± ) such that χ -≡ 1 on supp(χ + • S + ) and vol(supp(1 -χ + )) < η. (4.3.6)
Such functions exist as Leb(Γ + ∩ ∂) = 0. We have

∂ + f n ∧ v = ∂ + χ + f n ∧ v + ∂ + (1 -χ + )f n ∧ v.
Note that on supp χ + , we have f n = fn where fn is defined exactly as

f n , replacing u by ũ = χ -u ∈ Ω • (∂ -\ Γ -)
. By Lemma 4.3.4 we have Q ε,+ (s)ũ = S + (s)ũ, and since fn → Q ε,+ (s)ũ we have

∂ + χ + f n ∧ v = ∂ + χ + fn ∧ v → ∂ + χ + S + (s)ũ ∧ v = ∂ + χ + S + (s)u ∧ v
where we used that S + (s)u = S + (s)ũ on supp χ + . On the other hand, as the forms f n are uniformly bounded by (4.3.5) and the discussion below, there is C > 0 such that for any n 1

∂ + (1 -χ + )S + (s)u ∧ v < Cη and ∂ + (1 -χ + )f n ∧ v < Cη,
where we used the second part of (4.3.6). Summarizing the above facts, we obtain that for n 1 big enough, one has

∂ f n ∧ v - ∂ S + (s)u ∧ v 4Cη.
Thus

f n → S + (s)u in D • (∂), which concludes the proof. 6. Actually, [Gui17, §2.4] says that Leb(Γ +,δ ∩ ∂ +,δ ) = 0. However the map J δ : z → ϕ +,δ (z) (z) realizes a local diffeomorphism ∂ + → J δ (∂ +,δ
), and we have J δ (Γ + ) ⊂ Γ +,δ .

Composing the scattering maps

Recall that ∂ has two connected components ∂ (1) and ∂ (2) that we can identify in a natural way. We denote by ψ : ∂ → ∂ the map exchanging those components via this identification (in particular ψ(∂ ± ) = ∂ ∓ ), and we set

S± (s) = ψ * • S ± (s).

Also we denote by

Ψ = T * ∂ → T * ∂ the symplectic lift of ψ to T * ∂, that is Ψ(z, ξ) = (ψ(z), dψ - z ξ), (z, ξ) ∈ T * ∂. Lemma 4.3.6. Let χ ∈ C ∞ c (∂\∂ 0 ). Then for any n 1, the composition χ S± (s)χ n , which is well defined C 0 (∂, ∧ • T * ∂) → C 0 (∂, ∧ • T * ∂)
for Re(s) large and holomorphic with respect to s by Remark 4.3.1, admits a meromorphic continuation as a family of operators

Ω • (∂) → D • (∂).
Proof. We prove the lemma for S + (s). First, assume that n = 2. According to [Hör90, Theorem 8.2.14], it suffices to show that A 1 ∩ B 1 = ∅, where for n 1 we set

A n = (z, ξ) : ∃z ∈ ∂, (z , 0, z, ξ) ∈ WF (χ S± (s)) n , B n = (z, ξ) : ∃z ∈ ∂, (z, ξ, z , 0) ∈ WF (χ S± (s)) n . (4.3.7) 
By Proposition 4.3.2, we have

WF (χS + (s)χ)| supp(χ×χ) ⊂ d(ι × ι) ∆ ε ∪ Υ ε +,δ ∪ (E * +,δ × E * ∓,δ ) , (4.3.8) 
where ∆ ε and Υ ε +,δ are defined in the proof of Lemma 4.2.7. Note that in the coordinates of Lemma 4.2.3, we have ι(z) = (τ, 0, θ) ∈ ∂ for any z = (τ, θ) ∈ ∂ and thus

dι (z, η) = η τ dτ + η θ dθ, η = η τ dτ + η ρ dρ + η θ dθ ∈ T * z M. As χ is supported far from ∂ 0 , we have (ϕ ε (z ), z ) /
∈ ∂ × ∂ for any z ∈ supp χ (see for example Lemma 4.2.6), and for any η ∈ T * z M δ such that X(z ), η = 0, we have

dι (z , η) = 0 =⇒ η = 0 (4.3.9) by Lemma 4.2.3 since ∂ 0 = {(τ, 0, θ) : θ ∈ πZ}. This implies that A 1 is contained in E * -,∂ while B 1 is contained in Ψ(E * +,∂ ), where E * +,∂ = (dι) (E * +,δ ). Now we claim that Ψ(E * +,∂ ) ∩ E * -,∂ ⊂ {0} far from ∂ 0 . By Lemma 4.2.3 and §4.2.3 one has, for any z = (τ, 0, θ) ∈ ∂ (j) ∩ Γ ± , E * +,∂ (z) = R(dι) z (r + (z)β(z) -ψ(z)) = R(-sin(θ)r + (z)dτ -dθ), since ι(τ, θ) = (τ, 0, θ). Then r + (ψ(z)) = r -(z)
for all z. Indeed, the contrary would mean that E s (z ) ∩ E u (z ) = {0} for some z ∈ M (represented by both z and ψ(z) in M δ ), which is not possible. Now we have sin(θ) = 0 for z / ∈ ∂ 0 . As a consequence (4.3.7) is true, since supp χ ∩ ∂ 0 = ∅. This concludes the case n = 2, and by [Hör90, Theorem 8.2.14] we also have the bound

WF (χ S+ (s)χ) 2 ⊂ WF (χ S+ (s)χ) • WF (χ S+ (s)χ) ∪ (B 1 × 0) ∪ (0 × A 1 ),
where 0 denote the zero section in

T * ∂, with A 1 ⊂ E * -,∂ and B 1 ⊂ Ψ(E * +,∂ ). Note that if we set E * s,∂ ± = dι (E * s | ∂ ± ) and E * u,∂ ± = dι (E * u | ∂ ± ), we have A 1 ⊂ E * s,∂ -and B 1 ⊂ Ψ(E * u,∂ + ) = E * u,∂ -.
Next, we proceed by induction and we assume that for some n 2, the composition (χ S± (s)) n is well defined with the bound

WF (χ S+ (s)) n ⊂ WF χ S+ (s)χ) n-1 • WF (χ S+ (s)χ) ∪ (B n-1 × 0) ∪ (0 × A 1 ), (4.3.10) and that A n-1 ⊂ E * s,∂ -and B n-1 ⊂ E * u,∂ -. This formula implies that the set A n is included in (z, ξ) ∈ T * ∂ : ∃z , z ∈ ∂, (z , 0, z , -η) ∈ WF (χ S+ (s)χ) n-1 and (z , η, z, ξ) ∈ WF(χ S+ (s)χ) ∪ A 1 . We have A n-1 ⊂ E * s,∂ -, and note that Ψ(E * +,∂ ) ⊂ E * u,∂ -and E * u,∂ -∩ E * s,∂ -= {0}. Moreover, as mentioned above, we have ϕ ε (z ) / ∈ ∂ whenever z ∈ supp(χ).
Thus we obtain by (4.3.8)

A n ⊂ (z, ξ) : (z , η, z, ξ) ∈ d(ι × ι) (Υ ε +,δ ) for some η ∈ Ψ(E * s,∂ -) ∪ A 1 . Now suppose (z , η, z, ξ) ∈ d(ι × ι) (Υ ε +,δ ) with z , z ∈ supp χ. Note that we have Ψ(E * s,∂ -) = E * s,∂ + and thus, if η ∈ Ψ(E * s,∂ -) ∩ dι(z ) ker X(z ), then η = dι(z ) η for some η ∈ E *
s (z ) by (4.3.9). Since E * s is preserved by Φ -t , we obtain (z, ξ) ∈ dι (E * s ). In particular, this yields A n ⊂ E * s,∂ -. Reversing the roles of (χ S+ (s)) n-1 and χ S+ (s) in (4.3.10), we get that B n is included in

(z, ξ) ∈ T * ∂ : ∃z , z ∈ ∂, (z, ξ, z , -η) ∈ WF(χ S+ (s)χ) and (z , η, z , 0) ∈ WF (χ S+ (s)χ) n-1 ∪ B 1 .
Proceeding as above, one gets

B n ⊂ E * u,∂ -. Finally, we have B n ∩ A 1 = ∅, since E * u,∂ -∩ E * s,∂ -on supp χ by (4.3.9). As a consequence, we obtain that the composition χ S+ (s)χ n+1 = χ S+ (s)χ n • χ S+ (s)χ is well defined by [Hör90, Theorem 8.2.14],
and that (4.3.10) holds with n replaced by n + 1. This concludes the proof.

Remark 4.3.7. Using inductively (4.3.10), one can actually show that the wavefrontset WF (χ S+ (s)χ) n is contained in d(ι × ι) Γε,+ , where

Γε,+ = Φt (z, ξ), (z, ξ) : z, φt (z) ∈ SΣ| γ ∩ ι(supp χ), X(z), ξ = 0, t ε ∪ (E * u × E * s ) | supp(χ×χ) .
Here (and only here), in order to avoid confusion, we denoted by φ (resp. Φt ) the complete geodesic flow on M = SΣ (resp. the symplectic lift of the geodesic flow on T * M ), and by ι : ∂ → SΣ| γ → M the identification of both components of ∂.

The flat trace of the scattering operator

Let A : Ω • (∂) → D • (∂) be an operator such that WF (A) ∩ ∆(T * ∂) = ∅, where ∆(T * ∂) is the diagonal in T * (∂ × ∂).
Then by [Hör90, Theorem 8.2.4] the pullback ι * ∆ K A is well defined, where ι ∆ : z → (z, z) is the diagonal inclusion and

K A ∈ D 3 (∂ × ∂) is the Schwartz kernel of A, defined by ∂ A(u) ∧ v = ∂×∂ K A ∧ π * 1 u ∧ π * 2 v, u, v ∈ Ω • (∂),
where π j : ∂ × ∂ → ∂ is the projection on the j-th factor (j = 1, 2). We then define the (super) flat trace of A by

tr s A = ι * ∆ K A , 1 .
In fact, it is not hard to see that

tr s (A) = 2 k=0 (-1) k tr (A k ), (4.3.11)
where tr is the transversal trace of Attiyah-Bott [AB67] and A k is the operator

A k : C ∞ ∂, ∧ k T * ∂ → D ∂, ∧ k T * ∂
induced by A on the space of k-forms (see also [START_REF] Dyatlov | Dynamical zeta functions for Anosov flows via microlocal analysis[END_REF]§2.4] for an introduction to the flat trace). The purpose of this section is to compute the flat trace of S ± (s). In what follows, for any closed geodesic γ : R/ Z → Σ, we will denote

I (γ) = {z ∈ SΣ| γ : z = (γ(τ ), γ(τ )) for some τ ∈ R/ Z}
the set of incidence vectors of γ along γ , and

I ,± (γ) = p -1 (I (γ)) ∩ ∂ ∓ where p : SΣ → SΣ is the natural projection. Proposition 4.3.8. Let χ ∈ C ∞ c (∂ \ ∂ 0 ).
For any n 1, the operator (χ S± (s)) n has a well defined flat trace and for Re(s) big enough we have

-tr s (χ S± (s)χ) n = n i(γ,γ )=n (γ) (γ) e -s (γ)   z∈I ,± (γ) χ 2 (z)   (γ)/ (γ) , (4.3.12)
where the sum runs over all closed geodesics γ of (Σ, g) (not necessarily primitive) such that i(γ, γ ) = n. Here (γ) is the length of γ and (γ) its primitive length.

This formula should be compared with the formula

tr s (χf * χ) n = γ∈Pern(f ) m (γ) sgn(det(1 -P γ )) z∈γ χ 2 (z) n/m (γ)
which is valid for any smooth Anosov diffeomorphism f : Z → Z of a closed manifold Z which has non degenerate periodic points and χ ∈ C ∞ (Z). Here we denoted by

f * : C ∞ (Z) → C ∞ (Z) the pull-back operator, Per n (f ) is the set of n-periodic orbits of f , m (γ)
is the minimal period of γ and P γ is the linearized Poincaré map of γ (that is, P γ = df n (z) for z ∈ γ). Note that the above sum is finite, unlike the sum in (4.3.12). This is due to the fact that S ± is singular at Γ ± , which allows S ± to have an infinite number of n-periodic points.

Proof. The proof that the intersection

WF (χ S± (s)χ) n ∩ ∆(T * ∂) (4.3.13)
is empty follows from the estimate given in Remark 4.3.7, since

E * u ∩ E * s = {0} and dι(z) is injective ker X(ι(z)) → T * z ∂ for any z ∈ supp(χ).
For any n 1 we define the set Γn ± ⊂ ∂ by

Γn ± = {z ∈ ∂ : ( S± ) k (z) is well defined for k = 1, . . . , n},
where S = ψ • S. Equivalently, we have

Γ1 ± = Γ ± and Γn+1 ± = Γn ± ∩ ( S∓ ) n Γ ± \ Γn ∓ for n 1. Also we set ˜ ±,n (z) = ± (z) + ± ( S± (z)) + • • • + ± ( Sn-1 ± (z)), z ∈ Γn ± , (4.3.14) 
where ± (z) = inf{t > 0 : ϕ ±t (z) ∈ ∂}, with the convention that ˜ ±,n (z) = +∞ if z ∈ Γn ± . We will need the following Lemma 4.3.9. Let n 1. For any k 1, there exists C k,n > 0 such that

d k ±,n (z) C k,n exp(C k,n ±,n (z)), z ∈ Γn ± .
Proof. By induction on n, using (4.3.14) and the fact that S ± ( Γn ± ) = Γn-1 ± , we see that the lemma reduces to proving the estimate

d k ± (z) C k exp(C k ± (z)), z ∈ Γ1 ± . (4.3.15)
In what follows, C k is a constant depending only on k, which may change at each line. First, notice that

d k ϕ t (z) C k e C k |t| for any t ∈ R and z ∈ M δ such that ϕ t (z) ∈ M δ , for some constant C k (see for example [Bon15, Proposition A.4.1]). Moreover, we have dS ± (z) = d[ϕ ± (z) ](z) + X(S ± (z))d ± (z), z ∈ Γ1 ± .
By induction we obtain that for any k

d k S ± (z) C k exp(C k ± (z)) + C k k j=1 d j ± (z) m j , m j ∈ N, j = 1, . . . , k, (4.3.16) 
for any z ∈ Γ1 ± . Let (τ, ρ, θ) be the coordinates defined near ∂ given by Lemma 4.2.3. Then ρ(S ± (z)) = 0 for z ∈ Γ± 1 and thus

(Xρ)(S ± (z))d ± (z) = -dρ(S ± (z)) • d[ϕ ± (z) ](z), z ∈ Γ1 ± . (4.3.17) Let z / ∈ Γ± 1 ; Lemma 4.2.3 gives (Xρ)(S ± (z)) = sin θ(S ± (z)) . (4.3.18)
Set z = S ± (z), and write (τ (t), ρ(t)) = π(ϕ ∓t (z )), so that ρ(0) = 0. By the proof of Lemma 4.2.6, we have that t → |ρ(t)| is strictly increasing (indeed z / ∈ Γ± 1 and thus ρ(0) = ±Xρ(z ) = 0) and whenever |ρ(t)| δ/2 it holds

ρ(t) = G(τ (t), ρ(t)) (4.3.19) for some smooth function G ∈ C ∞ ((R/ Z ) τ ×[-δ/2, δ/2] ρ ) satisfying G(τ, 0) = 0 and ∂ ρ G(τ, ρ) > 0. If D = sup |∂ ρ G|, we have |G(τ, ρ)| D|ρ| and thus |ρ(t)| D|ρ(t)|, with ρ(0) = ρ(0) = 0 and ρ(0) = ±Xρ(S ± (z))
. By comparing the solution of (4.3.19) with the solutions of ÿ(t) = Dy(t), we obtain

|ρ(t)| |Xρ(z )| sh(Dt).
In particular we have |ρ(t)| < δ/2 whenever |Xρ(S ± (z))| sh(Dt) < δ/2, and thus sh(D ∓ (z )) δ/2|Xρ(z )|. By (4.3.18), we conclude that there is C > 0 such that

sin θ(S ± (z)) C exp(-C ± (z)), z ∈ Γ1 ± . (4.3.20) 
We therefore obtain for any z ∈ Γ± 1 ,

d ± (z) C -1 exp(C ± (z)) dρ(S ± (z)) d[ϕ ± (z) ](z) Ce C ± (z) .
Now, using repetively (4.3.16), (4.3.17) and (4.3.20), we obtain (4.3.15) by induction on k.

Consider χ ∈ C ∞ (R, [0, 1]) such that χ ≡ 1 on ] -∞, 1] and χ ≡ 0 on [2, +∞[, and set χ L (z) = χ( ±,n (z) -L) for z ∈ ∂. Then χ L ∈ C ∞ c (∂ \ Γn ± )
and by (7.3.3) we see that the Atiyah-Bott trace formula [AB67, Corollary 5.4] reads in our case

ι * ∆ K χ,±,n (s), χ L = - ( S∓ ) n (z)=z e -s ±,n (z) χ L (z) n-1 k=0 χ 2 S∓ k (z) , (4.3.21)
where K χ,±,n (s) is the Schwartz kernel of (χ S± (s)χ) n . Indeed, a simple computation (for example in the spirit of [DZ16, Appendix B] 7 ) shows that for any diffeomorphism f : ∂ → ∂ with isolated nondegenerate fixed points, it holds

tr (F k ) = f (z)=z tr ∧ k df (z) |det(1 -df (z))| (4.3.22) 7.
Actually in the aforementioned reference the authors deal with flows, but the diffeomorphism case is even simpler.

where

F k : Ω k (∂) → Ω k (∂) is defined by F k ω = f * ω and ∧ k df (z) is the map induced by df (z) on ∧ k T * z ∂. Since k (-1) k tr(∧ k df (z)) = det(1 -df (z)) it holds tr s (F ) = k (-1) k tr (F k ) = f (z)=z sgn det(1 -df (z)). (4.3.23)
Now note that χ L (χ S± (s)χ) n is by definition the operator given by

ω → χ L (•) n k=1 χ • S∓ k χ • S∓ k-1 e -s ±,n (•) S∓ n * w. (4.3.24) Moreover, sgn det 1 -d S∓ n (z) = -1 for any z such that S∓ n (z) = z. Indeed,
for such a z, d S∓ n (z) is conjugated to the linearized Poincaré map

P z = d(ϕ ±,n (z) )(z)| E u (z)⊕E s (z) ,
which satisfies det(1-P z ) < 0 as the matrix of P z in the decomposition E u (z)⊕E s (z) reads λ 0 0 λ -1 for some λ > 1 (since ϕ t preserves the volume form α ∧ dα). Finally, by (4.3.13), the pairing in the left hand side of (4.3.21) is well defined ; morever the proof of (8.3.2) can be revisited for the operator (4.3.24) thanks to the introduction of our cutoff functions χL and χ, yielding (4.3.21).

As L → +∞, the right hand side of (4.3.21) converges to

n i(γ,γ )=n (γ) (γ) e -s (γ)   z∈I ,± (γ) χ 2 (z)   (γ)/ (γ)
, since for any closed geodesic γ : R/Z → Σ such that i(γ, γ ) = n we have {z ∈ ∂ : z = (γ(τ ), γ (τ )) for some τ } = n (γ)/ (γ).

Note that the sum converges whenever Re(s) is large enough by Margulis' asymptotic formula given in the introduction. It remains to see that i * ∆ K χ,±,n (s), 1 -χ L → 0 as L → +∞. Note that Lemma 4.3.9 gives

d k χ L C k e C k L . (4.3.25) By Remark 4.3.1, if s 0 > 0 is large enough, one has S ± (s 0 ) : Ω • (∂) → C 0 (∂, ∧ • T * ∂).
Also for any s ∈ C with Re(s) > 0 we have

S ± (s 0 + s)w = (S ± (s 0 )w)e -s ± (•) , w ∈ Ω • (∂). (4.3.26) Let N ∈ N such that ι * ∆ K χ,±,n (s 0
) extends as a continuous linear form on C N (∂). Then applying Lemma 4.3.9, we see that if Re(s) is large enough, the function exp(-s ±,n (•)) lies in C N (∂). Thus the product e -s ±,n (•) ι * ∆ K χ,±,n (s 0 ) is well defined and by (4.3.25) we have 1 by the right hand side of (4.3.12) extends to a meromorphic function on the whole complex plane.

e -s ±,n (•) ι * ∆ K χ,±,n (s 0 ), (1 -χ L ) = ι * ∆ K χ,±,n (s 0 ), (1 -χ L )e -s ±,n (•) C (1 -χ L )e -s ±,n (•) C N (∂) C N e (C N -Re(s))L , since ±,n L on supp(1-χ L ). Therefore, to obtain that i * ∆ K χ,±,n (s 0 +s), 1-χ L → 0 as L → +∞, it suffices to show that e -s ±,n (•) ι * ∆ K χ,±,n (s 0 ) = ι * ∆ K χ,±,n (s 0 + s). That this equality is valid if Re(s) is large is a consequence of (4.
To prove Theorem 4.1.1, we wish to use a standard Tauberian argument near the first pole of η ±,χ,n to obtain the growth of N (n, L). Indeed, it is known (see §4.5) that s → R ±,δ (s) has a pole at s = h . However since η ±,χ,n is given by the trace of the restriction to ∂ of R ±,δ , it is not clear a priori that η ±,χ,n will have the sought behavior at s = h . However in the next section we obtain some priori bounds on N (n, L) ; this will imply that η ±,χ,n has indeed a pole at s = h of order n.

A priori bounds on the growth of geodesics with fixed intersection number with γ

The purpose of this section is to get a priori bounds on N (1, L) (and N (2, L) in the case where γ is separating), using Parry-Pollicott's bound for Axiom A flows [START_REF] Parry | An analogue of the prime number theorem for closed orbits of axiom a flows[END_REF].

Choose some point x ∈ γ . Let g be the genus of Σ and (a 1 , b 1 , . . . , a g , b g ) be a basis of generators of Σ, so that the fundamental group of Σ is the finitely presented group given by

π 1 (Σ) = a 1 , b 1 , . . . , a g , b g , [a 1 , b 1 ] • • • [a g , b g ] = 1 , (4.4.1) 
where we set π 1 (Σ) = π 1 (Σ, x ) for some choice of x ∈ γ (see Figure 4.4.1 for the case γ is not separating, and Figure 4.4 otherwise).

The case γ is not separating

Up to applying a diffeomorphism to Σ, we may assume that γ is represented by a g ∈ π 1 (Σ). The cutted surface Σ is a topological surface of genus g -1 with 2 punctures and the fundamental group π 1 (Σ ) = π 1 (Σ , x ) 8 is the free group given by a 1 , b 1 , . . . , a g , as it follows from the fact that Σ is homotopically equivalent to a connected sum of 2g-1 circles. We refer to Figure 4.4.1 for a picture of the generators and the choice of x . By the presentation of π 1 (Σ) given above, we have

b g a g b -1 g = a g where a g = [a 1 , b 1 ] • • • [a g-1 , b g-1 ]a g , (4.4.2) 
8. Here, in order not to burden the notations, we still denote by x ∈ Σ a lift of x ∈ Σ by the natural map q : Σ → Σ, see Here γ is assumed not separating and is represented by a 2 in π 1 (Σ).

and note that a g also defines an element of π 1 (Σ ).

Lemma 4.4.1. The map q : Σ → Σ given by the identification of the boundary components of Σ induces a map q , * : π 1 (Σ ) → π 1 (Σ), which is injective.

Proof. Let a g (resp. a g ) be the infinite cyclic subgroup of π 1 (Σ ) generated by a g (resp. a g ). Then by (4.4.1) and (4.4.2), the group π 1 (Σ) is the HNN extension π 1 (Σ ) * φ of π 1 (Σ ) with respect to the the isomorphism φ : a g → a g given by φ(a g ) = a g , that is, π 1 (Σ ) * φ is the finitely presented group defined by

π 1 (Σ ) * φ = a 1 , b 1 , . . . , a g , t : t -1 a g t = a g , see [LS01, §IV.2]
. Now the map q , * : π 1 (Σ ) → π 1 (Σ) coincides with the natural map π 1 (Σ ) → π 1 (Σ ) * φ , and this map is injective by [LS01, Theorem IV.2.1].

We may see the cutted surface Σ as the convex core of a complete, non compact, negatively curved surface, with funnels. Indeed, by Lemma 4.4.1, the group π 1 (Σ ) can be thought as a subgroup of π 1 (Σ), and the convex core of the infinite surface Σ e = π 1 (Σ )\ Σ is canonically isometric to Σ (here Σ is a universal cover of Σ). Another way to obtain this is by gluing two arbitrary funnels, as follows. Recall that near each connected component of the boundary ∂Σ ⊂ Σ δ , we have coordinates (τ, ρ) ∈ R/ Z τ × [-δ, δ] ρ given by Lemma 4.2.3 for which ∂Σ = {ρ = 0} and ∂Σ δ = {ρ = δ}. In those coordinates, the metric has the form dρ 2 + f (τ, ρ)dτ 2 for some smooth function

f satisfying ∂ ρ f (τ, 0) = 0 and κ(τ, ρ) = -∂ 2 ρ f (τ, ρ)/f (τ, ρ). Then we arbitrarily extend f to a smooth function on (R/ Z) τ × [-δ, +∞[ so that for some constants c, C > 0 it holds c ∂ 2 ρ f /f C.
By gluing the funnels (R/ Z) × [0, ∞[ and Σ along the corresponding connected components, we obtain a complete negatively curved surface Σ e , whose metric in the funnels is given by dρ 2 + f (τ, ρ)dτ 2 . We will again denote by (ϕ t ) the geodesic flow on the unit tangent bundle SΣ e of Σ e . Let Σ denote the universal cover of Σ e and let x ∈ Σ such that π(x ) = x where π : Σ → Σ e is the natural projection. Then π 1 (Σ e , x ) = π 1 (Σ ) acts on Σ by deck transformations so that Σ e π 1 (Σ )\ Σ . Moreover, Lemma 4.2.6 implies that the recurrent set of the geodesic flow on SΣ e is compact and included in SΣ ; thus π 1 (Σ ) is convex-cocompact in the sense of [START_REF] Dal | Remarques sur le spectre des longueurs d'une surface et comptages[END_REF]. The aforementioned lemma also implies that every closed geodesic in Σ e which is not contained in ∂Σ is actually contained in the interior of Σ .

It is well known that there is a one-to-one correspondance between oriented closed geodesics on Σ e (all of them belonging to Σ ) and the set of free homotopy classes of loops in Σ e . The latter set is itself in one-to-one correspondance with the set of conjugacy classes of π 1 (Σ ). We set

(w) = dist(x , wx ), w ∈ π 1 (Σ ),
where the distance comes from the metric π * g on Σ . For any w ∈ π 1 (Σ ), we denote by [w] the associated conjugacy class of π 1 (Σ ). Note that if γ [w] denotes the unique geodesic in the free homotopy class of w (which is represented by the conjugacy class [w]), we have (γ [w] ) (w). We also denote by

wl(w) = min n 0 : w = α 1 • • • α n , α j ∈ L g \ {b g , b -1 g } (4.4.3)
the word length of an element w ∈ π 1 (Σ ), where for some A > 0, where h > 0 is the topological entropy of the geodesic flow of (Σ e , g) restricted to the trapped set

L g = g k=1 a k , a -1 k , b k , b -1 k . We will say that a word α 1 • • • α k with α j ∈ L g is reduced if α j = (α j+1 ) -1 for any j = 1, . . . , k -1. As π 1 (Σ ) is free, for each w ∈ π 1 (Σ ), there is exactly one reduced word α 1 • • • α n such that n = wl(w), see [LS01, p.
K e = {(x, v) ∈ SΣ e : ϕ t (x, v) ∈ SΣ , t ∈ R} .
In fact, h > 0 also coincides with the entropy of the geodesic flow of (Σ, g) restricted to the trapped set K mentioned in the introduction,

K = {(x, v) ∈ SΣ : π(ϕ t (x, v)) ∈ Σ \ γ , t ∈ R},
where the closure is taken in SΣ, and we have K e = p -1 (K ) where p : SΣ → SΣ is the natural map given by the identification of both components of ∂SΣ .

Lower bound

In this paragraph we will prove the Proposition 4.4.2. If γ is not separating, then there is C > 0 such that for any L large enough, N (1, L) Ce h L /L.

H -1 (γ ) {0} × R/Z {1} × R/Z Figure 4.3 -Proof of Lemma 4.4.3. The path linking (0, [0]) ∈ {0} × R/Z to (1, [0]) is the image of F .
Note that the bound given in Theorem 4.1.1 is actually N (1, L) ∼ c e h L . We could obtain a better bound with the methods presented in the paragraph 4.4.2 below which deals with the not separating case ; however Proposition 4.4.2 will be sufficient for our purposes.

Lemma 4.4.3. Take w, w ∈ π 1 (Σ ). Then [wb g ] = [w b g ] as conjugacy classes of π 1 (Σ) if and only if w = a n g w a -n g in π 1 (Σ ) for some n ∈ Z. Proof. If w = a n g w b g a -n g b -1
g , then clearly wb g and w b g are conjugated in π 1 (Σ, x ). Reciprocally, assume that [wb g ] = [w b g ]. We may find smooth paths γ and γ representing respectively the elements wb g and w b g , with i(γ, γ ) = i(γ , γ ) = 1 and such that the intersections γ ∩ γ and γ ∩ γ are transversal. As [wb g ] = [w b g ], the loops γ and γ lie in the same free homotopy class. Thus, there is a smooth homotopy H : [0, 1] × R/Z → Σ such that H(0, •) = γ and H(1, •) = γ . We may assume that H is transversal to γ (see for example [GP10, Corollary p.73]) in the sense that

dH(s, τ ) T (s,τ ) ([0, 1] × R/Z) + T H(s,τ ) γ = T H(s,τ ) Σ, H(s, τ ) ∈ γ .
In particular, H -1 (γ ) is a smooth submanifold of [0, 1] × R/Z. As γ and γ intersect transversally γ exactly once, we have H -1 (γ )∩({j}×R/Z) = {j}×{[0]} for j = 0, 1 (here [0] is sent to x by both γ and γ ). Thus, necessarily, there exists an embedding

F : [0, 1] → [0, 1] × R/Z such that Im(F ) ⊂ H -1 (γ ) and F (j) = (j, [ 0 
]) for j = 0, 1 (see Figure 4.3). Write F = (S, T ), and define

H(s, t) = H(S(s), [T (s) + t]), (s, t) ∈ [0, 1] × [0, 1].
It is immediate to check that H realizes an homotopy between γ and γ , and we have H(s, 0) = H(F (s)) ∈ γ for any s ∈ [0, 1]. For any s, let us denote by c s the path [0, 1] u → H(su, 0) which links x to H(S(s), [T (s)]) within γ . The the continuous family of paths s → γ s , where γ s is given by the concatenation c -1 s H(s, •)c s , realizes a continuous interpolation between γ 0 = γ and γ 1 = c -1 1 γ c 1 . As S(1) = 1 and T (1) = [0] we have c 1 (0) = c 1 (1) = x , and since c 1 (u) ∈ γ for each u ∈ [0, 1] we get c 1 = a -n g for some n ∈ Z. This yields wb g = a n g w b g a -n g in π 1 (Σ), and thus w = a n g w a -n g where the equality stands in π 1 (Σ). By lemma 4.4.1, this equality actually holds in π 1 (Σ ), which concludes the proof.

Proof of Proposition 4.4.2. In what follows, C is a constant that may change at each line. For any w ∈ π 1 (Σ ) and n ∈ Z we have by (4.4.4)

(a n g wa -n g ) 1 D wl(a n g wa -n g ) -D. (4.4.6)
Let w be the unique reduce word such that w = wa -n g . Then write w = a -k g w for some w where |k| is maximal, and note that necessarily |k| wl(w) + 1, since

a g = [a 1 , b 1 ] • • • [a g-1 , b g-1 ]a g . Then wl(a n g wa -n g ) = |n| -|k| + wl(w ) = |n| -2|k| + wl(w ) |n| -2(wl(w) + 1) + wl(w ).
Now the triangle inequality for wl gives (4(g-1)+1)|n| = wl(a -n g ) wl(w )+wl(w -1 ) and thus we obtain wl(a n g wa -n g ) C|n| -Cwl(w) -C for each n. Injecting this in (4.4.6) yields (for some different C)

(a n g wa -n g ) C|n| -Cwl(w) -C, n ∈ Z.
In particular, for any L and w such that (w) L, we have where P 1 denotes the set of primitive geodesics γ such that i(γ, γ ) = 19 . In particular we get with (4.4.7) and (7.5.2)

n ∈ Z : (a n g wa -n g ) L CL + C. (4.4.7) Now for w ∈ π 1 (Σ ) set C w = {a n g wa -n g : n ∈ Z} ⊂ π 1 (Σ )
N (1, L) |{C ∈ C : (C) L -C}| 1 CL + C C∈C (C) L-C |{w ∈ C : (w) L -C}| = 1 CL + C |{w ∈ π 1 (Σ ) : (w) L -C}| 1 CL + C exp(h (L -C)), (4.4.8) 
where the equality in the third line comes from the fact that π 1 (Σ ) is the disjoint union of the subsets C with C ∈ C . This completes the proof.

Upper bound

Each γ ∈ P 1 with (γ) L lies in the free homotopy class of w b ±1 g for some w ∈ π 1 (Σ , x ) and (w) L + C. In particular (7.5.2) gives the bound

N (1, L) C exp(h L)
for large L. Now let γ ∈ P 2 with (γ) L. Then we may find a deformation of the loop γ into a loop γ which is represented by the conjugacy class of wb ±1 g w b ±1 g in π 1 (Σ), for some w, w ∈ π 1 (Σ ). This deformation can be made so that (w) + (w ) L + C. Thus we get

N (2, L) C w,w ∈π 1 (Σ ) (w)+ (w ) L+C 1 L+C k=0 C exp(h k)C exp(h (L + C -k)) C L exp(h L).
Iterating this process we finally get, for large L, N (n, L) CL n-1 exp(h L).

The case γ is separating

In this paragraph we assume γ is separating, and we write Σ \ γ = Σ 1 Σ 2 where the surfaces Σ j are connected. Up to applying a diffeomorphism to Σ, we may assume that γ represents the class

[a 1 , b 1 ] • • • [a g 1 , b g 1 ] = [a g , b g ] -1 • • • [a g 1 +1 , b g 1 +1 ] -1 ∈ π 1 (Σ)
(4.4.9) (see Figure 4.4). Here g 1 is the genus of the surface Σ 1 , and the genus g 2 of Σ 2 satisfies g 1 + g 2 = g. We set π 1 (Σ) = π 1 (Σ, x ) and π 1 (Σ j ) = π 1 (Σ j , x ) for j = 1, 2 (we see Σ j as a compact surface with boundary γ so that x lives on both surfaces). Then π 1 (Σ 1 ) (resp.

π 1 (Σ 2 )) is the free group generated by a 1 , b 1 , . . . , a g 1 , b g 1 (resp. a g 1 +1 , b g 1 +1 , . . . , a g , b g ),
and we denote by w ,1 and w ,2 the two natural words given by (4.4.9) representing γ in π 1 (Σ 1 ) and π 1 (Σ 2 ), respectively. Note that we have a well defined map

π 1 (Σ 1 ) × π 1 (Σ 2 ) -→ π 1 (Σ) (w 1 , w 2 ) -→ w 2 w 1
given by the composition of two curves.

Lemma 4.4.4. For j = 1, 2, the map q j, * : π 1 (Σ j ) → π 1 (Σ) induced by the inclusion Σ j → Σ is injective.

Proof. For j = 1, 2 let w ,j be the infinite cyclic group of π 1 (Σ j ) generated by w ,j , and let φ : w ,1 → w ,2 be the isomorphism given by φ(w ,1 ) = w ,2 . By (4.4.1),

x a 1 b 2 a 2 γ Σ 1 Σ 2 b 1 Figure 4.4 -The generators a 1 , b 1 , . . . , a g , b g of π 1 (Σ).
Here γ is assumed separating and g 1 = g 2 = 1.

the group π 1 (Σ) is the free product with amalgamation π 1 (Σ 1 ) * φ π 1 (Σ 2 ), that is, the finitely presented group given by

π 1 (Σ 1 ) * φ π 1 (Σ 2 ) = {a 1 , b 1 , . . . , a g , b g : w ,1 = φ(w ,1 )}, see [LS01, §IV.2].
With this representation the map q j, * coincides with the natural map π 1 (Σ j ) → π 1 (Σ 1 ) * φ π 1 (Σ 2 ), and this map is injective by [LS01, Theorem IV.2.6]. This completes the proof.

For any w ∈ π 1 (Σ), we will denote by [w] its conjugacy class, and by γ w the unique geodesic of Σ such that γ w is isotopic to any curve in w (in fact we will often identify [w] and γ w ). Let ( Σ, g) be the universal cover of (Σ, g), and choose x ∈ Σ some lift of x . Then π 1 (Σ) acts as deck transformations on Σ and we will denote

(w) = dist Σ (x , wx ), w ∈ π 1 (Σ).
As in the preceding subsection, we have the orbital counting

{w j ∈ π 1 (Σ j ) : (w j ) L} ∼ A j e h j L , L → ∞, j = 1, 2, (4.4 

.10)

for some A 1 , A 2 > 0, where h j > 0 is the topological entropy of the geodesic flow restricted to the trapped set

K j = (x, v) ∈ SΣ • j : ϕ t (x, v) ∈ SΣ • j , t ∈ R where Σ • j = Σ j \ ∂Σ j for j = 1, 2.

Lower bound

Unlike the case γ not separating, we will need a better lower bound. Namely, we prove here the following result. Proposition 4.4.5. Assume that γ is separating, and that h 1 = h 2 = h . Then there is C > 0 such that for L large enough,

N (2, L) CLe h L log(L) 4 .
If

h 1 = h 2 we have for L large enough, if h = max(h 1 , h 2 ), N (2, L) Ce h L log(L) 2 . H -1 (γ ) {0} × R/Z {1} × R/Z (0, τ 1 ) (0, τ 2 )
Figure 4.5 -Proof of Lemma 4.4.6. The path linking (0, τ 1 ) to (0, τ 2 ) is the image of F .

The strategy to prove Proposition 4.4.5 is the following. We wish to construct enough closed geodesics intersecting γ exactly twice by considering conjugacy classes of the form [w 2 w 1 ] where w j ∈ π 1 (Σ j ) for j = 1, 2. Lemma 4.4.6 below will tell us that if w j is not a power of w ,j for j = 1, 2, then the closed geodesic representing [w 2 w 1 ] indeed intersects γ exactly twice. Next, in Lemma 4.4.7, we describe the injectivity defect of the map (w 1 , w 2 ) → [w 2 w 1 ]. Finally in Proposition 4.4.8, we show that this injectivity defect is not too harmuful in the sense that there are not too much w j , w j ∈ π 1 (Σ j ) such that [w 2 w 1 ] = [w 2 w 1 ]. This will allow us to obtain the desired bound with a logarithmic loss. Lemma 4.4.6. For two elements w j ∈ π 1 (Σ j ), j = 1, 2, we have i(γ w 2 w 1 , γ ) = 2 except if w j = w k ,j in π 1 (Σ j ) for some k ∈ Z and j ∈ {1, 2}, in which case i(γ w 2 w 1 , γ ) = 0.

Proof. Let γ : R/Z → Σ be a smooth curve in the free homotopy class of w 2 w 1 such that {τ ∈ R/Z : γ(τ ) ∈ γ } = {τ 1 , τ 2 } for some τ 1 = τ 2 ∈ R/Z. We may also choose γ so that γ| [τ 1 ,τ 2 ] (resp. γ| [τ 2 ,τ 1 ] ) is homotopic to some representative γ 1 : [0, 1] → Σ 1 of w 1 (resp. some representative γ 2 : [0, 1] → Σ 2 of w 2 ) relatively to γ , meaning that there is a homotopy between γ| [τ 1 ,τ 2 ] and γ 1 with endpoints (not necessarily fixed) in γ . Here [τ 1 , τ 2 ] ⊂ R/Z is the interval linking τ 1 and τ 2 in the counterclockwise direction.

As

γ w 2 w 1 minimizes the quantity i(γ, γ ) for γ ∈ [γ w 2 w 1 ] (see Lemma 4.2.1) we have either i(γ w 2 w 1 , γ ) = 0 or i(γ w 2 w 1 , γ ) = 2. If i(γ w 2 w 1 , γ ) = 0 then there exists a homotopy H : [0, 1] × R/Z → Σ such that H(0, •) = γ and H(1, •) = γ, so that H(1, τ ) /
∈ γ for any τ . As in the proof of Lemma 4.4.3 we may assume that H is transversal to γ , in the sense that

dH(s, τ ) T (s,τ ) ([0, 1] × R/Z) + T H(s,τ ) γ = T H(s,τ ) Σ, H(s, τ ) ∈ γ , so that the preimage H -1 (γ ) ⊂ [0, 1] × R/Z is an embedded submanifold of [0, 1] × R/Z (see Figure 4.5). As H -1 (γ ) ∩ {s = 0} = {τ 1 , τ 2 } and H -1 (γ ) ∩ {s = 1} = ∅ it follows that there is an embedding F : [0, 1] → [0, 1] × R/Z such that F (0) = (0, τ 1 ), F (1) = (0, τ 2 ) and F (t) ∈ H -1 (γ ), t ∈ [0, 1].
As F is an embedding, we have that F is homotopic (by an homotopy which preserves the endpoints) either to

J [τ 1 ,τ 2 ] or to J [τ 2 ,τ 1 ] , where J [τ,τ ] : [0, 1] → [0, 1] × R/Z is the natural map that sends [0, 1] to {0}×[τ, τ ].
We may assume without loss of generality that

F ∼ J [τ 1 ,τ 2 ] .
In particular, writing F = (S, T ), the map T is homotopic to

I [τ 1 ,τ 2 ] = p 2 • J [τ 1 ,τ 2 ]
, where p 2 : [0, 1] × R/Z → R/Z is the projection over the second factor. This means that there is

G : [0, 1] × [0, 1] → R/Z such that for any s, t ∈ [0, 1], G(s, 0) = τ 1 , G(s, 1) = τ 2 , G(0, t) = τ 1 + t(τ 2 -τ 1 ), G(1, t) = T (t). Now we set H(s, t) = H(sS(t), G(s, t)) for s, t ∈ [0, 1]. Then H(0, t) = γ(τ 1 + t(τ 2 -τ 1 )), H(1, t) = (H • F )(t), t ∈ [0, 1], and 
H(s, 0) = H(0, τ 1 ) = x 1 , H(s, 1) = H(0, τ 2 ) = x 2 , s ∈ [0, 1]. We conclude that t → γ| [τ 1 ,τ 2 ] (τ 1 + t(τ 2 -τ 1 )
), and thus γ 1 , is homotopic (relatively to γ ) to some curve contained in γ . Thus w 1 = w k for some k ∈ Z, in π 1 (Σ). As the inclusion π 1 (Σ j ) → π 1 (Σ) is injective by Lemma 4.4.4, the lemma follows. Now, we need to understand when the geodesics given by [w 2 w 1 ] and [w 2 w 1 ] are the same. This is the purpose of the following Lemma 4.4.7. Take w j , w j ∈ π 1 (Σ j ), j = 1, 2 such that i(γ [w 2 w 1 ] , γ ) = 2. Then it holds [w 2 w 1 ] = [w 2 w 1 ] as conjugacy classes of π 1 (Σ) if and only if there are p, q ∈ Z such that w 2 = w p ,2 w 2 w q ,2 , w 1 = w -q ,1 w 1 w -p ,1 . (4.4.11)

Proof. Again, let γ : R/Z → Σ be a smooth curve intersecting transversely γ such that {τ ∈ R/Z : γ(τ

) ∈ γ } = {τ 1 , τ 2 } for some τ 1 = τ 2 ∈ R/Z, with γ([τ 1 , τ 2 ]) ⊂ Σ 1 and γ([τ 2 , τ 1 ]) ⊂ Σ 2 .
Let x j = γ(τ j ) for j = 1, 2 and chose arbitrary paths c j contained in γ linking x j to x . Note that all the preceding choices can be made so that the curve

γ 1 = c 2 γ| [τ 1 ,τ 2 ] c -1 1 (resp. γ 2 = c 1 γ| [τ 2 ,τ 1 ] c -1
2 ) represents w p w 1 w q (resp. w -q w 2 w -p ) for some p, q ∈ Z. We may proceed in the same way to obtain γ , τ 1 , τ 2 , c 1 , c 2 , p , q so that the same properties hold with w 1 , w 2 replaced by w 1 , w 2 . By hypothesis, we have that γ is freely homotopic to γ . Thus we may find a smooth map H : [0, 1]×R/Z → Σ such that H(0, •) = γ and H(1, •) = γ . As in Lemma 4.4.6, H may be chosen to be transversal to γ , so that

H -1 (γ ) ⊂ [0, 1] × R/Z is a finite union of smooth embedded submanifolds of [0, 1] × R/Z. Let (x, ρ) : Σ → R/Z × (-ε, ε) be coordinates near γ such that {ρ = 0} = γ and |ρ| = dist(γ , •) and such that {(-1) j-1 ρ 0} ⊂ Σ j . As H -1 (γ ) ∩ {s = 0} = {τ 1 , τ 2 } and H -1 (γ ) ∩ {s = 1} = {τ 1 , τ 2 }, we have two smooth embeddings F 1 , F 2 : [0, 1] → [0, 1] × R/Z such that F j ([0, 1]) ⊂ H -1 (γ ) and F j (0) = (0, τ j ) for j = 1, 2, with F j (1) = τ 1 or τ 2
(indeed we have i(γ, γ ) = 2 and thus there is a path in H -1 (γ ) linking {s = 0} to {s = 1}, since otherwise we could proceed as in the proof of Lemma 4.4.6 to obtain that i(γ, γ ) = 0). In fact we have F 1 (1) = (1, τ 1 ) and F 2 (1) = (1, τ 2 ) (we shall prove it later). Set F j = (S j , T j ), and

H(s, t) = H (1 -t)S 1 (s) + tS 2 (s), T 1 (s) + t(T 2 (s) -T 1 (s)) , s, t ∈ [0, 1].
Then it holds

H(0, t) = γ(τ 1 + t(τ 2 -τ 1 )), H(1, t) = γ (τ 1 + t(τ 2 -τ 1 )), and 
H(s, 0) = H(S 1 (s), T 1 (s)), H(s, 1) = H(S 2 (s), T 2 (s)), s ∈ [0, 1].
For j = 1, 2 let c j (s), s ∈ [0, 1], be paths contained in γ depending continuously on s and linking T j (s) to x , such that c j (0) = c j . Then the construction of

H shows that c 2 (0)γ| [τ 1 ,τ 2 ] c 1 (0) -1 ∼ c 2 (1)γ | [τ 1 ,τ 2 ] c 1 (1) -1 ,
and reversing the role of τ 1 and τ 2 in the constructions made above,

c 1 (0)γ| [τ 2 ,τ 1 ] c 2 (0) -1 ∼ c 1 (1)γ | [τ 2 ,τ 1 ] c 2 (1) -1 .
Thus we obtain w p w 1 w q = c 2 (1)c -1 2 w p w 1 w q c 1 c 1 (1) -1 and w -q w 2 w -p = c 1 (1)c -1 1 w -q w 2 w -p c 2 c 2 (1) -1 , which is the conclusion of Lemma 4.4.7 as the paths c 1 (1)c -1 1 and c 2 (1)c -1 2 are contained in γ (and again, the inclusions π 1 (Σ j ) → π 1 (Σ), j = 1, 2, are injective).

Thus it remains to show that F j (1) = (1, τ j ) for j = 1, 2. We extend ρ into a smooth function ρ : Σ → R such that (-1) j-1 ρ > 0 on Σ j \ γ . Now there exists a continuous path G :

[0, 1] → ([0, 1] × R/Z) \ H -1 (γ ) such that G(0) ∈ {0} × ]τ 1 , τ 2 [ and G(1) ∈ {1} × (R/Z \ {τ 1 , τ 2 })
(indeed, otherwise it would mean that there is a continuous path in [0, 1] × R/Z linking (0, τ 1 ) to (0, τ 2 ), which would imply, as in Lemma 4.4.6, that i(γ, γ ) = 0). In particular, we have ρ

•H •G > 0 since ρ(H(0, τ )) > 0 for τ ∈ ]τ 1 , τ 2 [ . Thus necessarily G(1) ∈ {1}×]τ 1 , τ 2 [ since ρ(H(1, τ )) < 0 for τ ∈ ]τ 2 , τ 1 [ . Now, as Im(F 1 )∩Im(F 2 ) = ∅
(again, if the intersection was not empty we could find a path linking (0, τ 1 ) to (0, τ 2 )), we have that

G(1) lies in ]T 1 (1), T 2 (1)[. Since (ρ • H • G)(1) > 0, it follows that T 1 (1) = τ 1 and T 2 (1) = τ 2 .
The lemma is proven.

The above lemma motivates the next result. Proposition 4.4.8. There is a constant C > 0 such that the following holds. For any w ∈ π 1 (Σ j ) such that w is not a power of w ,j . Then there are p w , q w ∈ Z such that if w = w pw ,j ww qw ,j it holds

(w p ,j w w q ,j ) (|p| + |q|) (γ ) + (w ) -C, p, q ∈ Z. (4.4.12)
In what follows, for any x, y ∈ Σ, we will denote by [x, y] the unique geodesic segment joining x and y. Before starting the proof of Proposition 4.4.8, we state a classical result valid in negatively curved spaces. Lemma 4.4.9. For each δ > 0 there exists a constant C > 0 such that the following holds. For any sequence of geodesic segments

[x 0 , x 1 ], [x 1 , x 2 ], [x 2 , x 3 ] in Σ such that dist(x 1 , x 2 )
δ and such that the angle between [x j-1 , x j ] and [x j , x j+1 ] is equal to ±π/2 for j = 1, 2 it holds

dist(x 0 , x 3 ) dist(x 0 , x 1 ) + dist(x 1 , x 2 ) + dist(x 2 , x 3 ) -C. (4.4.13)
Proof. We will need the following intermediate result.

Fact 4.4.10. For any ε > 0, there is C > 0 such that for any pairwise distinct points x, y, z ∈ Σ such that the absolute value of the angle (taken in ]-π, π]) between [x, y] and [y, z] is not smaller than ε, we have

dist(x, z) dist(x, y) + dist(y, z) -C.
Proof of Fact 4.4.10. We prove the result by comparing Σ with a model space of constant curvature, as follows. Let a = dist(x, y), b = dist(y, z), c = dist(x, z), and γ = ∠([x, y], [y, z]). Let Σ k be simply connected complete Riemannian surface with constant curvature -k 2 < 0, such that κ -k 2 everywhere for some k > 0 (recall that κ is the curvature of Σ). Consider any points x, ȳ, z ∈ Σ k such that

dist k (x, ȳ) = a, dist k (ȳ, z) = b and ∠([x, ȳ], [ȳ, z]) = γ,
where dist k is the distance in Σ k , and set c = dist k (x, z). Then by a classical trigonometric formula for spaces of constant negative curvature (see [BH13, I.2.7]), ch(kc) = ch(ka) ch(kb) -sh(ka) sh(kb) cos(γ).

As γ ∈ ]-π, π] \ ]-ε, ε[, we have cos(γ) 1 -η for some η ∈ ]0, 1[ depending on ε. Thus ch(kc) η ch(ka) ch(kb).
Using exp(t)/2 ch(t) exp(t) for t 0 one gets

c a + b + log(η/4) k .
As the scalar curvature of Σ is everywhere not greater than -k 2 , the space Σ is a CAT(-k 2 ) space (see [BH13, Theorem II.4.1]). In particular by comparison one obtains c c (see [BH13, Proposition II.1.7]), which concludes the proof.

We are now in position to prove Lemma 4.4.9. Let x 0 , x 1 , x 2 , x 3 as in the statement. For j = 0, 1, 2 we set d j = dist(x j , x j+1 ). We first assume one of the numbers d 0 or d 2 is not greater than δ, say d 0 δ. Then Fact 4.4.10 (applied with x = x 1 , y = x 2 and z = x 3 ) yields dist(x 1 , x 3 )

d 1 + d 2 -C and thus dist(x 0 , x 3 ) dist(x 1 , x 3 ) -dist(x 0 , x 1 ) d 1 + d 2 + C -a 0 d 0 + d 1 + d 2 + C -2δ. x 0 x 3 x 1 x 2 β k 2 D Figure 4.6 -Proof of Lemma 4.4.9.
Therefore we may assume that d 0 , d 2 δ. Applying Fact 4.4.10 for the points x 0 , x 1 and x 2 yields dist(x 0 , x 2 )

d 0 + d 1 -C. (4.4.14)
For any pairwise distinct x, y, z ∈ Σ, we denote by ∆(x, y, z) the triangle generated by x, y, z. Then as d 0 , d 1 δ, the triangle ∆(x 0 , x 1 , x 2 ) contains some triangle ∆(x, y, z) with a right angle at y and dist(x,

y) = dist(y, z) = δ (namely, y = x 1 , x ∈ [x 1 , x 0 ] and z ∈ [x 1 , x 2 ]).
Clearly the area |∆(x, y, z)| of ∆(x, y, z) is bounded from below by some constant D > 0 depending only on δ > 0 (indeed, it suffices to verify this property for x, y, z lying in a compact set given by a finite union of fundamental domains of Σ). Therefore, |∆(x 0 , x 1 , x 2 )| D. Let α and β be the angles of ∆(x 0 , x 1 , x 2 ) at x 0 and x 2 , respectively (see Figure 4.6). Let μg bet the Riemannian measure of Σ, and κ its scalar curvature. Then, by the Gauss-Bonnet formula [Lee97, Theorem 9.3], it holds

∆(x 0 ,x 1 ,x 2 ) κ dμ g + π/2 + (π -α) + (π -β) = 2π.
This gives

β π/2 -α -k 2 |∆(x 0 , x 1 , x 2 )| π/2 -k 2 D.
Therefore the angle between [x 0 , x 2 ] and [x 2 , x 3 ] is not smaller than k 2 D. In particular, we may apply Fact 4.4.10 to get dist(x 0 , x 3 ) dist(x 0 , x 2 ) + d 2 -C for some C depending only on k 2 D. Combining this with (4.4.14), we conclude the proof.

Proof of Proposition 4.4.8. We fix j ∈ {1, 2} and denote w = w ,j for simplicity. Let w ∈ π 1 (Σ j ) such that w = w k for any k. Then w is not the trivial element and thus it is hyperbolic. Recall that ( Σ, g) is the universal cover of (Σ, g) and that π 1 (Σ) act by deck transformations on Σ. For any u ∈ π 1 (Σ) \ {1}, we denote by

u ± = lim k→+∞ u ±k (z)
the two distinct fixed points of u in the boundary at infinity ∂ ∞ Σ of Σ (here z denotes any point in Σ). We also denote by A u the translation axis of u, that is, the unique complete geodesic of ( Σ, g) converging towards u + (resp. u -) in the future (resp. in the past). Note that A ww w -1 = wA w . As the conjugacy classes [ww w -1 ] and [w ] both represent the geodesic γ , we have either A w = wA w or A w ∩ wA w = ∅.

Since w is not a power of w , we necessarily have A w ∩ wA w = ∅. Write γ = {ϕ s (z ) : t ∈ [0, (γ )]} for some z = (x , v ) ∈ M . By hyperbolicity of the geodesic flow, there is D > 0 such that the following holds. For any z ∈ M such that inf s∈R dist M (z, ϕ s (z )) D, it holds and take p, q ∈ Z. By (4.4.16), we may apply Lemma 4.4.9 with the sequence of geodesic segments [w -p x , x], [x, ỹ], [ỹ, ww q x ] to obtain dist(ww q x , w -p x ) dist(ww q x , ỹ) + dist(ỹ, x) + dist(x, w -p x ) -C for some C > 0 independent of w, p and q (see Figure 4.7). Next, let p w , q w ∈ Z such that dist(x, w -pw x ) < (γ ) and dist(ỹ, ww qw x ) < (γ ).

ϕ (γ ) (z) = z =⇒ z = ϕ s (z ) for some s ∈ R. ( 4 
Then for any p, q ∈ Z we have

dist(x, w -p x ) |p -p w | (γ ) -(γ ), dist(ỹ, ww q x ) |q -q w | (γ ) -(γ ), which yields dist(w p ww q x , x ) (|p -p w | + |q -q w |) (γ ) + dist(x, ỹ) -C -2 (γ ).
Finally, we note that dist(x, ỹ) dist(ww qw x , w -pw x ) -2 (γ ) = (w pw ww qw ) -2 (γ ), which completes the proof. In what follows, C is a positive constant independent of L that may change at each line. First, assume that h 1 = h 2 = h . For j = 1, 2 we denote by w ,j = {w n ,j : n ∈ Z} the infinite cyclic subgroup of π 1 (Σ j ) generated by w ,j , and we set π 1 (Σ j ) = π 1 (Σ j ) \ w ,j . Since (w n ,j ) = |n| (γ ), there is C such that for any large L it holds C -1 e h L N ,j (L) Ce h L (4.4.17) by (4.4.10), where N ,j (L) = {w ∈ π 1 (Σ j ) : (w) L}. For w ∈ π 1 (Σ j ) , we set

C w = {w p ww q : p, q ∈ Z} ⊂ π 1 (Σ j ) ,
and we define C j = {C w : w ∈ π 1 (Σ j ) }. Note that the elements C ∈ C j are pairwise disjoint, and thus we have a partition C∈C j C of π 1 (Σ j ) . We also denote

(C) = inf{ (w) : w ∈ C}, C ∈ C j , j = 1, 2.
Then Proposition 4.4.8 yields

{w ∈ C : (w) L} C(L -(C) + C) 2 for any C ∈ C j such that (C) L. Thus N ,j (L) = C∈C j (C) L {w ∈ C : (w) L} C C∈C j (C) L (L -(C) + C) 2
Let β > 0 be a large number. Then

C∈C j (C) L-β log L (L -(C) + C) 2 (L + C) 2 {C ∈ C j : (C) L -β log L}.
(4.4.18) However, using (4.4.17), we obtain

{C ∈ C j : (C) L -β log L} N ,j (L -β log L) CL -h β e h L .
In particular, if h β > 2, and if A β (L) denotes the left-hand side of (4.4.18), we have the bound A β (L) N ,j (L) as L → ∞. Thus for large L it holds

C -1 N ,j (L) C∈C j (C)∈[L-β log L,L] (L -(C) + C) 2 (β log L + C) 2 C ∈ C j : εL (C) L ,
where ε > 0 is any small number. This finally yields, for any large L,

{C ∈ C j : εL (C) L} C -1 e h L /(β log L + C) 2 . (4.4.19)
For any C ∈ C j , we choose some w C ∈ C such that (w C ) = (C). Next, Lemmata 4.4.6 and 4.4.7 imply that we have a well defined and injective map

C 1 × C 2 → {γ ∈ P : i(γ, γ ) = 2}, (C 1 , C 2 ) → [w C 2 w C 1 ] ≡ γ w C 2 w C 1 .
Obviously, (γ w 2 w 1 ) (w 1 ) + (w 2 ) for any w 1 , w 2 , and thus we get for large

L N (2, L) (C 1 , C 2 ) ∈ C 1 × C 2 : (C 1 ) + (C 2 ) L and (C 1 ), (C 2 ) εL C 1 ∈C 1 εL (C 1 ) L {C 2 ∈ C 2 : εL (C 2 ) L -(C 1 )} C 1 ∈C 1 εL (C 1 ) L C -1 e h (L-(C 1 )) (β log(L -(C 1 )) + C) 2 .
For simplicity, in what follows we will use the notations

f ( ) = C -1 e h /(β log( ) + C) 2 , and N (C 1 , L) = {C ∈ C j : εL (C) L}.
Fix some large number µ > 0. Note that if µ is large enough, there is C > 0 (depending on µ) such that for any large

f ( + µ) -f ( ) C -1 f ( ). (4.4.20) 
Now there holds

N (2, L) C -1 k∈[ εL µ , L µ ] N (C 1 , kµ) -N (C 1 , (k -1)µ) f (L -(k -1)µ) C -1 k∈[ εL µ +1, L µ -1] N (C 1 , kµ) f (L -(k -1)µ) -f (L -kµ) -N (C 1 , εL + µ)f (L -εL), (4.4.21) 
where we used an Abel transformation in the last inequality. Next, note that by (4.4.17) one has N (C 1 , L) N ,1 (L) Ce h L . This yields

N (C 1 , εL + µ)f (L -εL) = O(e h L ) (4.4.22)
as L → ∞. On the other hand, (4.4.20) gives for any large L,

k∈[ εL µ +1, L µ -1] N (C 1 , kµ) f (L -(k -1)µ) -f (L -kµ) k∈[ εL µ +1, L µ -1] N (C 1 , kµ)f (L -kµ) C -1 k∈[ εL µ +1, L µ -1] e h kµ (β log(kµ) + C) 2 e h (L-kµ) (β log(L -kµ) + C) 2 C -1 Le h L (1 -ε) 2µ(log(L) + C) 4 .
We conclude the proof of Proposition 4.4.5 in the case h 1 = h 2 by combining this last estimate with (4.4.21) and ( 4

.4.22).

If h 1 = h 2 , say h 1 > h 2 (the case h 1 < h 2 is identical), one is able to obtain the desired bound by considering for example the injective map C 1 → {γ ∈ P : i(γ, γ ) = 2} given by C → [a g w C ] and by using (4.4.19).

Upper bound

Clearly, each γ ∈ P 2 with (γ) L may be represented by the conjugacy class of w 1 w 2 for some w j ∈ π 1 (Σ j ) with (w 1 ) + (w 2 ) L + C. Therefore (7.5.2) implies

N (2, L) {(w 1 , w 2 ) ∈ π 1 (Σ 1 ) × π 1 (Σ 2 ) : (w 1 ) + (w 2 ) L + C} L+C k=0 C exp(h 1 k) exp(h 2 (L -k + C)), which gives for large L, if h = max(h 1 , h 2 ), N (2, L) CL exp(h L) if h 1 = h 2 , C exp(h L) if h 1 = h 2 .
Iterating this process we obtain (with C depending on n)

N (2n, L) CL 2n-1 exp(h L) if h 1 = h 2 , CL n-1 exp(h L) if h 1 = h 2 .

Relative growth of closed geodesics with a small intersection angle

For x = γ (τ ) ∈ Im(γ ), we let v (x) = γ (τ ). For any η > 0 small, we consider the number N (n, η, L) = P η,n (L) where P η,n (L) is the set of closed geodesics γ : R/ (γ)Z → Σ of length not greater than L, intersecting γ exactly n times, and such that there is

t ∈ R/ (γ)Z with γ(t) ∈ Im(γ ) with angle γ(t), v (γ(t)) < η or angle γ(t), -v (γ(t)) < η.
The purpose of this paragraph is to prove the following estimate. Lemma 4.4.11. Let n 1. For any ε, L 0 > 0, there exists η 0 > 0 such that for any η ∈ ]0, η 0 [ and any large L

N (1, η, L) 4N (1, L -L 0 ) and N (n, η, L) εL n-1 exp(h L), (4.4.23) if γ is not separating and N (2, η, L) 4N (2, L -L 0 ) and N (2n, η, L) εL 2n-1 exp(h L) if h 1 = h 2 , εL n-1 exp(h L) if h 1 = h 2 , (4.4.24)
if γ is separating.

Proof. We first prove the lemma when γ is assumed not separating. Let γ : [0, (γ)] → Σ be an element of P η,n (L) parameterized by arc length. Let 0 t 1 < t 2 < • • • < t n < (γ) be such that γ(t j ) ∈ Im(γ ). For every j = 1, . . . , n, we choose a path c j contained in Im(γ ), of length not greater than (γ ), and linking x j = γ(t j ) to x . Recall that we have a map q : Σ → Σ given by the identification of the boundary components of Σ . Write q -1 (x ) = {x , x }, where we chose some x ∈ Σ with q (x ) = x , as in §4.4.1. Then γ is freely homotopic to the composition

w 1 w 2 • • • w n , where w j = c j+1 γ| [t j ,t j+1 ] c -1 j ∈ π 1 (Σ) , j = 1, .
. . , n, with the convention that t n+1 = (γ) and c n+1 = c 1 . Note also that

(w j ) |t j+1 -t j | + 2 (γ ).
In fact, the elements w j actually define elements of the space π 1 (Σ , {x , x }), that is, the space of equivalence classes of paths c : [0, 1] → Σ with c(0), c(1) ∈ {x , x }, where two paths are equivalent if they are homotopic via an homotopy preserving the endpoints. The space π 1 (Σ , {x , x }) is not a group (we may not be able to concatenate two paths) ; however, we have a natural map π 1 (Σ , {x , x }) → π 1 (Σ). In particular, for any u 1 , . . . ,

u n ∈ π 1 (Σ , {x , x }), the composition u n • • • u 1 is well defined in π 1 (Σ).
For any u ∈ π 1 (Σ , {x , x }), we will denote by (u) the infimum of the lengths of curves in the equivalence class u.

Up to reparameterizing of γ we may assume that t 1 = 0, and either ∠ v, v < η or ∠ v, -v < η, where we set x = γ(0), v = v (x) and v = γ(0). We will first assume that ∠ v, v < η. Let L 0 > 0 be a large number and ε > 0 be small. By continuity of the geodesic flow (ϕ t ), there is η 0 > 0 such that if η < η 0 one has

dist M (ϕ t (v), ϕ t (v )) ε, t ∈ [0, L 0 ]. Let K be a positive integer such that K ∈ [L 0 / (γ ) -1, L 0 / (γ )], so that dist Σ (π(ϕ K (γ ) (v)), x) < ε.
Let c K be a path in Σ of length not greater than ε linking π(ϕ K (γ ) (v)) and x. Then if ε > 0 is small enough, we have 10

c 1 c K γ| [0,K (γ )] c -1 1 = a K g in π 1 (Σ).
In particular, it holds

w 1 = w 1 a K g in π 1 (Σ), where w 1 = c 2 γ| [K (γ ),t 2 ] c -1 K c -1 1 . Note also that (w 1 ) |t 2 -K (γ )| + 2 (γ ) + ε,
where w 1 is seen as an element of π 1 (Σ , {x , x }). Note that if we had assumed ∠ v, -v < η, we would have obtained the same factorization with a -K g instead of a K g . Next, denote by A K,n (L) the set

(w 1 , . . . , w n ) ∈ π 1 (Σ , {x , x }) n : n j=1 (w j ) L + (2n -K) (γ ) + ε ,
10. Indeed, if ε > 0 is small enough, we have the following property. For any x ∈ Σ and L > 0, if we are given two paths c, c

: [0, L] → Σ such that c(0) = c (0) = c(L) = c (L) = x and dist Σ (c(t), c (t)) < ε, then c and c define the same element in π 1 (Σ, x).
and consider the map

Ψ K,n,± : A K,n (L) → P, (w 1 , . . . , w n ) → w 1 • • • w n a ±K g .
Then the discussion above shows that

P η,n (L) ⊂ Im(Ψ K,n,+ ) ∪ Im(Ψ K,n,-).
In particular, N (n, η, L) 2 A K,n (L). Next, we obtain a bound on A K,n (L) as follows. Let c be a path connecting x and x in Σ , so that the image of c -1 in π 1 (Σ) is b g (see Figure 4.4.1). Then it is not hard to see that for any w ∈ π 1 (Σ , {x , x }), there is u ∈ π 1 (Σ , x ) such that w can be written in one of the forms u, c u, uc -1 , or c uc -1 (depending on the endpoints of w), with (u) (w) + 2 (c ). This immediately gives

A K,1 (L) 4 {u ∈ π 1 (Σ ) : (u) L} C exp(h L).
As in §4.4.1.2 we obtain, for some C n > 0 depending only n,

A K,n (L) C n L n-1 exp(h (L -L 0 ))
where we used that K (γ ) L 0 -(γ ). This proves the second part of (4.4.23). For the first part, we proceed as follows. With the notations of the proof of Proposition 4.4.5, one has well defined maps

Ψ K,1,±,r , Ψ K,1,±,l : {C ∈ C : (w) L -K (γ )} → {γ ∈ P 1 : (γ) L + 2C}
given respectively by C → [a ±K g wb g ] and C → [b -1 g wa ±K g ] where w is any element of C. Next, we remark that the above discussion implies that every γ ∈ P η,1 (L) can be written as [a ±K g wb g ] or [b -1 g wa ±K g ] for some w ∈ π 1 (Σ ) with (w) L -K (γ ) + C. Therefore the union of the images of the maps Ψ K,1,±,r , Ψ K,1,±,l contains P η (L + 2C), and thus

N (1, η, L) 4 {C ∈ C : (w) L -K (γ ) + 2C} 4N (1, L -K (γ ) + 3C),
where we used the first inequality of (4.4.8). This gives the first part of (4.4.23).

Next, assume that γ is separating. Then, as above, every γ : [0, (γ)] → Σ such that γ ∈ P 2n,η (L) can be written as a composition

w 1,1 w 1,2 • • • w 1,n w 2,n for some w k,j ∈ π 1 (Σ k ) (k = 1, 2 and j = 1, 2, . . . , n), with n j=1 (w 2,j ) + (w 1,j ) (γ) + 4n (γ ).
Now if η is small, we may proceed as before to obtain (up to reparameterization of γ) that w 1,1 = w ±K ,1 w 1,1 or w 1,1 = w 1,1 w ±K ,1 for some w 1,1 ∈ π 1 (Σ 1 ) with

(w 1,1 ) (w 1,1 ) -K (γ ) + C.
Here K is a large number depending on η (i.e. such that K → ∞ as η → 0) and C > 0 is a constant independent of γ and K. Thus we get

N (2n, η, L) C (w 1,1 , w 2,1 , . . . , w 1,n , w 2,n ) : w k,j ∈ π 1 (Σ k ), n j=1 (w 1,j ) + (w 2,j ) L -K (γ ) + C n .
Then we obtain the second part of (4.4.24) by proceeding as in §4.4.2.2. For the first part of (4.4.24), we proceed as follows. For w j ∈ π 1 (Σ j ) , we denote

C w 1 ,w 2 = {(w 1 , w 2 ) : [w 1 w 2 ] = [w 1 w 2 ]},
and

(C w 1 ,w 2 ) = inf{ (w 1 ) + (w 2 ) : (w 1 , w 2 ) ∈ C (w 1 ,w 2 ) }.
We also introduce the notation C 1,2 = {C w 1 ,w 2 : w j ∈ π 1 (Σ j ) }. By Lemmata 4.4.6 and 4.4.7, we have well defined maps Ψ K,1,±,r , Ψ K,1,±,l , mapping

{C ∈ C 1,2 : (C w 1 ,w 2 ) L -K (γ )} → {γ ∈ P 2 : (γ) L} , given respectively by C → [w 1 w ±K ,1 w 2 ] and C → [w ±K ,1 w 1 w 2 ]
. By the discussion above, the union of the images of those maps contains P 2,η (L). Therefore

N (2, η, L) 4 {C ∈ C 1,2 : (C w 1 ,w 2 ) L -K (γ )} 4N (2, L -K (γ )),
where we used Lemmata 4.4.6 and 4.4.7 again in the last inequality. The first part of (4.4.24) follows.

A Tauberian argument

The goal of this section is to give an asymptotic growth of the quantity

N ± (n, χ, t) = γ∈P i(γ ,γ)=n (γ) t I ,± (γ, χ) as t → +∞, where χ ∈ C ∞ c (∂ \ ∂ 0 ) and I ,± (γ, χ) = z∈I ,± (γ) χ 2 (z).

The case γ is not separating

By [DG16, Theorem 3 and §6.2], we know that the zeta function

ζ Σ (s) = γ∈P 1 -e -s (γ) -1
extends meromorphically to the whole complex plane, and moreover we may write

ζ Σ (s)/ζ Σ (s) = 2 k=0 (-1) k tr e ±εs ϕ * ∓ε R ±,δ (s)| Ω k c (M δ )∩ker ι X ,
where the flat trace is computed on M δ . Here P denote the set of primitive closed geodesics of (Σ , g). By [START_REF] Dal | Remarques sur le spectre des longueurs d'une surface et comptages[END_REF], we may apply [PP83, Proposition 9] (see also [START_REF] Parry | Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics[END_REF]Theorem 9.1]) to obtain that ζ Σ is holomorphic in {Re(s) h } except for a simple pole at s = h , where h > 0 is the topological entropy of the geodesic flow of (Σ , g) restricted to its trapped set. Write the Laurent expansion given in §4.2.6 of R ±,δ (s)

near s = h as R ±,δ (s) = Y ±,δ (s) + Π ±,δ (h ) s -h + J(h ) j=2 (X ± h ) j-1 Π ±,δ (h ) (s -h ) j : Ω • c (M δ ) → D • (M δ ).
By [DG16, Equation (5.8)], we have tr (e ±εh ϕ * ∓ε Π ±,δ (h )) = rank Π ±,δ (h ) and

tr ϕ * ∓ε (X ± h ) j Π ±,δ (h ) = 0, j = 1, . . . , J(h ) -1.
We denote

Ω k = Ω k c (M δ ) and Ω k 0 = Ω k ∩ ker ι X .
Then by [Gui17, Propositions 2.4 and 4.4], the map

s → R ±,δ (s)| Ω 0 0 has no pole in {Re(s) > 0}. Since Ω 2 0 = Ω 0 0 ∧ dα, and R ±,δ (s)| Ω 2 0 = R ±,δ (s)| Ω 0 0 ∧ dα (because ϕ * t α = α), it follows that s → R ±,δ (s)| Ω 2 0 has no poles in {Re(s) > 0}. In particular the residue of ζ Σ (s)/ζ Σ (s) at s = h is given by rank(Π ±,δ (h )| Ω 1 0 ), and since ζ Σ (s) has a simple pole at s = h , this residue is equal to 1. Therefore rank(Π ±,δ (h )| Ω 1 0 ) = 1. In particular (X ± h ) j Π ±,δ = 0 for each j = 1, . . . , J(h ) -1. As R ±,δ (s) commutes with ι X , it preserves the spaces Ω k 0 . Writing Ω k = Ω k 0 ⊕ α ∧ Ω k-1 0 we have for any w = u + α ∧ v with ι X u = 0 and ι X v = 0, Π ±,δ (h )| Ω 2 (u + α ∧ v) = Π ±,δ (h )| Ω 2 0 (u) + α ∧ Π ±,δ (h )| Ω 1 0 (v). Thus Π ±,δ (h )| Ω 2 = α ∧ ι X Π ±,δ (h )| Ω 1 0
. By Proposition 4.3.2, and the fact that ϕ * ±ε Π ±,δ (h ) = e ±εh Π ±,δ (h ), we have near s = h

(-1) N χ S± (s)χ = χY ± (s)χ + χψ * ι * ι X Π ±,δ (h )ι * χ s -h , (4.5.1) 
where s → Y ± (s) is holomorphic in a neighborhood of h and N is the number operator. We denote

Π ±,∂ = ψ * ι * ι X Π ±,δ (h )ι * : Ω • (∂) → D • (∂).
Then by what precedes, and since ι X Π ±,δ (h )| Ω 1 = 0, we obtain that the rank of Π ±,∂ is not greater than 1, and that

Π ±,∂ = Π ±,∂ | Ω 1 (∂) .
In particular, (4.5.1) reads

-χ S± (s)χ = (-1) N +1 χY ± (s)χ + χΠ ±,∂ χ s -h . (4.5.2)
In what follows, we will set

c ± (χ) = tr s (χΠ ±,∂ χ) = -tr χΠ ±,∂ χ| Ω 1 (∂) (see §B.3.3). Lemma 4.5.1. Let χ ∈ C ∞ c (∂ \ ∂ 0 ) and assume that c ± (χ) > 0. Then it holds N ± (n, χ, t) ∼ (c ± (χ)t) n n! e h t h t , t → +∞.
Proof. Because χΠ ±,∂ χ is of rank one, it follows that 11

tr s ((χΠ ±,∂ χ) n ) = -tr (χΠ ±,∂ χ) n | Ω 1 (∂) = -tr χΠ ±,∂ χ| Ω 1 (∂) n = (-1) n+1 c ± (χ) n for any n 1. Writing tr s ((-χ S± (s)χ) n ) = (-1) n tr s ((χ S± (s)χ) n ), one gets, by (4.5.2), -tr s ((χ S± (s)χ) n ) = c ± (χ) n (s -h ) n + O((s -h ) -n+1 ), s → h . (4.5.3)
Note that here, we implicitely used the fact that the flat trace of products of the form 

(χY ± (s)χ) k 1 (χΠ ±,∂ χ) 1 (χY ± (s)χ) k 2 (χΠ ±,∂ χ) 2 • • • (4.
g n,χ (t) = γ∈P i(γ,γ )=n (γ) k 1 k (γ) t I ,± (γ, χ) k , t 0, Now if G n,χ (s) = 0 +∞ g n,χ (t)e -ts dt, a simple computation leads to G n,χ (s) = 1 s i(γ,γ )=n (γ)e -s (γ) I ,± (γ, χ) (γ)/ (γ) = - η n,χ (s) ns ,
where the last equality comes from Proposition 4.3.8. Because one has the expansion

η n,χ (s) = -nc ± (χ) n (s -h ) -(n+1) + O((s -h ) -n ) as s → h by (4.5.3) we obtain G n,χ (h s) = c ± (χ) n h n+2 (s -1) n+1 + O((s -h ) -n ), s → h .
Then applying the Tauberian theorem of Delange [Del54, Théorème III] (see Theorem A.2.1 of Appendix A) there holds

1 h g n,χ (t/h ) ∼ c ± (χ) n h n+2 e t n! t n , t → +∞,
11. Indeed, the equality tr (A n ) = tr (A) n holds whenever A is of rank one and has a smooth kernel. By approximation this remains true for any A of rank one whenever tr (A n ) and tr (A) n make sense. which reads 

g n,χ (t) ∼ (c ± (χ)t) n n!h exp(h t). ( 4 
N ± (n, χ, t) = N ± (n, χ, t/σ) + γ∈P i(γ ,γ)=n t/σ (γ) t I ,± (γ, χ) N ± (n, χ, t/σ) + σ t γ∈P i(γ ,γ)=n t/σ (γ) t I ,± (γ, χ) (γ) N ± (n, χ, t/σ) + σ t g n,χ (t) 
, (4.5.9) which gives, with (4.5.5) and (4.5.8),

lim sup t→+∞ N ± (n, χ, t) n! (c ± (χ)t) n h t e h t σ.
As σ > 1 is arbritrary, the Lemma is proven. Remark 4.5.2. If c ± (χ) = 0, then with the notations of the above proof, the function s → η 1,χ (s) has no pole on the line {Re(s) = h }. In particular we may reproduce the arguments of the aforementioned proof, replacing g n,χ (t) by g n,χ (t) + exp(h t) to obtain that s → ∞ 0 (g n,χ (t)+exp(h t)) exp(-ts)dt has a pole of order 1 at s = h and thus g n,χ (t) + exp(h t) ∼ exp(h t) as t → ∞. This implies g n,χ (t) t→∞ exp(h t), yielding

N ± (1, χ, t) exp(h t)/t, t → ∞,
where we used the last line of (4.5.9) and (4.5.7).

The case γ is separating

If γ is separating, then Σ δ consists of two surfaces Σ

(1) δ and Σ

(2)

δ . We write M δ = M (1) δ M (2) δ where M (j) δ = SΣ (j) δ , j = 1, 2, and ∂ = ∂ (1) ∂ (2) with ∂ (j) ⊂ M (j) δ . As before, fix χ ∈ C ∞ c (∂ \ ∂ 0 ). Note that, if S(j) ± (s) denotes the restriction of S± (s) to ∂ (j) , we have χ S(1) ± (s)χ : Ω • (∂ (1) ) → D • (∂ (2) ), χ S(2) ± (s)χ : Ω • (∂ (2) ) → D • (∂ (1) ).
As in §4.5.1, we have

-χ S(j) ± (s)χ = (-1) N +1 χY (j) ± (s)χ + χΠ (j) ±,∂ χ s -h j , s → h j , (4.5.10) 
where rank(Π

(j) ±,∂ ) = 1, and 
Y (j)
± (s) is holomorphic near s = h j and h j is the topological entropy of the geodesic flow of Σ (j) δ .

The case h

1 = h 2
We may assume h 1 > h 2 and we define

c ± (χ) = tr s χ S(2) ± (h 1 )χ 2 Π (1) ±,∂ χ = -tr χ S(2) ± (h 1 )χ 2 Π (1) ±,∂ χ| Ω 1 (∂ (1) ) .
Because Π

(1)

±,∂ = Π (1) ±,∂ | Ω 1 (∂)
is of rank one, we have, as in §4.5.1,

tr s χ S(2) ± (h 1 )χ 2 Π (1) ±,∂ χ n = (-1) n+1 c ± (χ) n
for any n 1. Therefore, (4.5.10) implies, by cyclicity of the flat trace (see B.3.1),

-tr s (χ S± (s)χ) 2n = -tr s χ S(1) ± (s)χ 2 S(2) ± (s)χ n + χ S(2) ± (s)χ 2 S(1) ± (s)χ n = 2c ± (χ) n (s -h 1 ) n + O((s -h 1 ) -n+1 ).
as s → h 1 . Now we may proceed exactly as in §4.5.1 to obtain that, if c ± (χ) > 0, 

N ± (2n, χ, t) ∼ (c ± (χ)t) n n! e h t h t , t → +∞.
N ± (2, χ, t) exp(h t)/t, t → ∞.

The case h

1 = h 2 = h
In that case, by denoting c ± (χ) = -tr s (χΠ

(1) ±,∂ χ 2 Π (2) ±,∂ χ) we have -tr s (χ S± (s)χ) 2n = 2c ± (χ) n (s -h ) 2n + O((s -h ) -2n+1 ), s → h .
Again, provided that c ± (χ) = 0, we may proceed exactly as in §4.5.1 to obtain

N ± (2n, χ, t) ∼ 2 (c ± (χ)t 2 ) n (2n)! e h t h t .
Remark 4.5.4 (Continuation of Remark 4.5.3). If h 1 = h 2 and c ± (χ) = 0, then the map s → -tr s (χ S± (s)χ) 2 may have a pole at s = h , of order at most 1. Therefore, reproducing the arguments of §4.5.1, we see that this would imply

N ± (2, χ, t) = O(exp(h t)), t → ∞.
Note that here, assuming c ± (χ) = 0 only makes us win a factor t for the bound on N ± (2, χ, t), whereas in Remarks 4.5.2 and 4.5.3 we could win a bit more. This is the reason for which we needed a sharper bound on N (2, L) in §4.4.1.

4.6 Proof of Theorems 4.1.1 and 4.1.2

In this section we prove Theorems 4.1.1 and 4.1.2. We will apply the asymptotic growth we obtained in the last section to some appropriate sequence of functions in

C ∞ c (∂ \ ∂ 0 ). Let F ∈ C ∞ (R, [0, 1]
) be an even function such that F ≡ 0 on [-1, 1] and F ≡ 1 on ] -∞, -2] ∪ [2, +∞[. For any small η > 0, set

F η (t) = k∈Z F ((t -kπ)/η).
Then F η is 2π-periodic and it induces a function F η : R/2πZ → R 0 . In the coordinates from Lemma 4.2.3, we define

χ η (z) = F η (θ), z = (τ, 0, θ) ∈ ∂. Then χ η ∈ C ∞ c (∂ \ ∂ 0 )
for any η > 0 small. Note that the function χ η is introduced in order to forget about trajectories passing at distance not greater than η from the "glancing" set Sγ .

The case γ is not separating

Recall from §4.4 that we have the a priori bounds

C -1 e h L h L N (1, L) Ce h L (4.6.1)
for L large enough. This estimate implies the following fact 12 :

∀ε > 0, ∃L 0 > 0, ∀L 1 > 0, ∃L > L 1 , N (1, L -L 0 ) εN (1, L).
In particular, we see with the first part of (4.4.23) in Lemma 4.4.11 that for any η > 0 small enough, one has

lim inf L→+∞ N (1, η, L) N (1, L) 1 2 , (4.6.2)
where N (1, η, L) is defined in §4.4.3. For η > 0 small and L > 0, neither c ± (χ η ) nor N ± (n, χ η , L) (see §4.5.1) depend on ±, since F is an even function. We denote them simply by c(η) and N (n, χ η , L) respectively. Then we claim that c(η) > 0 if η > 0 is small enough. Indeed, if c(η) = 0 then Remark 4.5.2 implies

N (1, χ η , L) exp(h L)/h L, L → +∞. (4.6.3)
On the other hand we have

N (1, L) = N (1, χ η , L) + R(η, L) with R(η, L) = N (1, L) -N (1, χ η , L) N (1, 2η, L),
and thus, if η is small enough, (4.6.2) gives

lim sup L→+∞ N (1, χ η , L) N (1, L) 1 2 .
Since for large L it holds C -1 exp(h L)/L N (1, L), we obtain that (4.6.3) cannot hold, and thus c(η) > 0.

In particular we can apply Lemma 4.5.1 to get

lim L N (n, χ η , L) n! (c(η)L) n h L e h L = 1.
As N (n, L) N (n, χ η , L) we obtain that for L large enough

C -1 L n n! e h L h L N (n, L) C L n n! e h L h L
(the upper bound comes from §4.4.1.2). Let ε > 0. Then the above estimate combined with the second part of (4.4.23) in Lemma 4.4.11 implies that for η > 0 small enough, one has

lim sup L R(n, η, L) n! L n h L e h L < ε,
12. Indeed, if it does not hold, then there is ε > 0 such that for any L 0 > 0 there is L 1 such that for any n 0, it holds where R(n, η, L) = N (n, L) -N (n, χ η , L). Thus writing

ε < N (1, L 1 + nL 0 ) N (1, L 1 + (n + 1)L 0 ) , which gives N (1, L 1 + (n + 1)L 0 )ε n < N (1, L 1 )
N (n, χ η , L) N (n, L) N (n, χ η , L) + R(n, η, L) we obtain c(η) n lim inf L N (n, L) n! L n h L e h L lim sup L N (n, L) n! L n h L e h L c(η) n + ε
for any η small enough (depending on ε !). As ε > 0 is arbitrary, we finally get

N (n, L) ∼ (c L) n n! e h L h L , L → +∞
where c = lim η→0 c(η) < +∞ (the limit exists as η → c(η) is nonincreasing and bounded by above by (4.6.1)).

4.6.2

The case γ is separating

4.6.2.1 The case h 1 = h 2
In that case recall from §4.4 that we have the bound

C -1 e h L log(L) 2 N (2, L) Ce h L
for L large enough. In particular, using (4.4.24) in Lemma 4.4.11 and Remark 4.5.3 we may proceed exactly as in §4.6.1 to obtain

N (2n, L) ∼ (c L) n n! e h L h L , L → +∞
where c = lim η→0 c ± (χ η ).

The case h

1 = h 2 = h
In that case recall from §4.4 that we have the bound

C -1 Le h L log(L) 4 N (2, L) CLe h L
for L large enough. In particular, using Lemma 4.4.11 and Remark 4.5.4 we may proceed exactly as in §4.6.1 to obtain

N (2n, L) ∼ 2 (c L) n (2n)! e h L h L , L → +∞
where c = lim η→0 c ± (χ η ).

4.7 A Bowen-Margulis type measure

Description of the constant c

In this subsection we describe the constant c in terms of Pollicott-Ruelle resonant states of the open system (M δ , ϕ t ), assuming for simplicity that γ is not separating. By §4.2.6 we may write, since Π ±,δ (h ) is of rank one (see §4.5.1),

Π ±,δ (h )| Ω 1 (M δ ) = u ± ⊗ (α ∧ s ∓ ), u ± , ∈ D 1 E * ±,δ (M δ ), s ∓ ∈ D 1 E * ∓,δ (M δ ),
with supp(u ± , s ± ) ⊂ Γ ±,δ and u ± , s ∓ ∈ ker(ι X ). Using the Guillemin trace formula [START_REF] Victor Guillemin | Lectures on spectral theory of elliptic operators[END_REF] and the Ruelle zeta function ζ Σ , we see that the Bowen-Margulis measure µ 0 (see [START_REF] Bowen | The equidistribution of closed geodesics[END_REF]) of the open system (M δ , ϕ t ), which is given by Bowen's formula

µ 0 (f ) = lim L→+∞ γ∈P δ (γ) L 1 (γ) (γ) 0 f (γ(τ ), γ(τ ))dτ, f ∈ C ∞ c (M δ ), coincides with the distribution f → tr s (f Π ±,δ (h)) = M δ f u ± ∧ α ∧ s ∓ . Note that supp(u ± ∧ α ∧ s ∓ ) ⊂ K ,
where K ⊂ SΣ is the trapped set. On the other hand we have by definition of Π ±,∂ ,

c = -lim η→0 tr s (χ η Π ±,∂ χ η ) = lim η→0 ∂ χ η ψ * ι * u ± ∧ ι * s ∓ χ η .

A Bowen-Margulis type measure

In what follows we set S γ Σ = {(x, v) ∈ SΣ : x ∈ γ } and for any primitive geodesic γ : R/ (γ)Z → Σ,

I (γ) = {z ∈ S γ Σ : z = (γ(τ ), γ(τ )) for some τ }.
For any n 1 we define the set Γ n ⊂ S γ Σ by

Γ n = {z ∈ S γ Σ : S± k (z) is well defined for k = 1, . . . , n}.
Also we set n (z) = max( +,n (z), -,n (z)) where

±,n (z) = ± (z) + ± ( S± (z)) + • • • + ± ( Sn-1 ± (z)), z ∈ Γ n ,
and ± (z) = inf{t > 0 : ϕ ±t (z) ∈ S γ Σ}.

We will now prove Theorem 4.1.4 which says that for any f ∈ C ∞ (S γ Σ) the limit

µ n (f ) = lim L→+∞ 1 N (n, L) γ∈Pn 1 n z∈I (γ) f (z) (4.7.1)
exists and defines a probability measure µ n on S γ Σ supported in Γ n . We will also prove that, in the non separating case,

µ n (f ) = -c -n lim η→0 tr s (f (χ η Π ±,∂ χ η ) n ), (4.7.2) 
where c > 0 is the constant appearing in Theorem 4.1.1. Note that here we identify f with its lift p * f (which is a function on ∂), so that the above formula makes sense (recall that p : SΣ → SΣ is the natural projection which identifies both components of ∂SΣ = ∂). Of course, a similar formula holds in the non separating case but we omit it here.

Proof of Theorem 4.1.4. Let f ∈ C ∞ (S γ Σ) be a non-negative function. Then reproducing the arguments in the proof of Proposition 4.3.8, we get for Re(s) big enough,

tr s f (χ η S± (s)χ η ) n = i(γ,γ )=n   z∈I (γ) f (z)   e -s (γ) I (γ, χ η ),
where χ η is defined in §4.6 and I (γ, χ η ) = I ,± (γ, χ η ) (see §4.5 ; this does not depend on ± as the function F used to construct χ η is even). Now, as f is non-negative, we may proceed exactly as in §4.5, replacing g n,χ (t) by

g n,χη,f (t) = γ∈P i(γ,γ )=n   z∈I (γ) f (z)   k 1 k (γ) t I (γ, χ η ), t 0, to obtain that lim L→∞ n! L n h L e h L γ∈P i(γ ,γ)=n (γ) L   z∈I (γ) f (z)   I (γ, χ η ) = -Res s=h tr s (f (χ η S± (s)χ η ) n ).
(4.7.3) We denote by ν n,η (f ) the left-hand side of (4.7.3). Then η → ν n,η (f ) is a non-negative and nonincreasing function which is bounded by above by nc n f ∞ by Theorem 4.1.1. In particular the formula

µ n (f ) = lim η→0 1 nc n ν n,η (f ), f ∈ C ∞ (S γ Σ, R 0 ),
defines a measure µ n on S γ Σ, whose total mass is not greater than 1. In fact its total mass is equal to 1, since by definition of c one has

µ n (1) = lim η→0 nc ± (χ η ) n nc n = 1. Let ε > 0. Then for each f ∈ C ∞ (S γ Σ, R 0 ) one has by Lemma 4.4.11 γ∈P i(γ ,γ)=n (γ) L   z∈I (γ) f (z)   (1 -I (γ, χ η )) nN (n, η, L) f ∞ εnN (n, L) f ∞
for large L, whenever η is small enough. In particular, setting

µ + n (f ) = lim sup L A f (n, L) nN (n, L) and µ - n (f ) = lim inf L A f (n, L) nN (n, L)
where

A f (n, L) = γ∈P i(γ ,γ)=n (γ) L z∈I (γ) f (z)
, we see that for η small it holds

µ ± n (f ) -ν n,η (f ) ε f ∞ . Indeed, setting A f (n, η, L) = γ∈P i(γ ,γ)=n (γ) L z∈I (γ) f (z) I (γ, χ η ), we have lim sup L 1 nN (n, L) - n!L n nc n e h L A f (n, η, L) = 0 by Theorem 4.1.1, since A f (n, η, L) nN (n, L). Now we may let η → 0 to obtain |µ ± n (f ) -µ n (f )| ε f ∞ . Since ε is arbitrary, one gets µ ± n (f ) = µ n (f
). This implies that the limit (4.7.1) exists, and moreover (4.7.2) holds by (4.7.3) (provided that γ is not separating).

Next, take a general f ∈ C ∞ (S γ Σ) which we no longer assume to be non-negative. We choose some smooth functions f δ,± , δ ∈ ]0, 1[, with the property that f -f δ,+ + f δ,-∞ δ and ±f δ,± 0, and we write f δ = f δ + + f δ -. By nonnegativeness of ±f δ,± , the arguments above imply that

A f δ (n, L)/(nN (n, L)) → µ n (f δ ) as L → ∞. On the other hand |A f (n, L) -A f δ (n, L)| A |f -f δ | (n, L) δnN (n, L). Letting L → ∞ this yields µ n (f δ ) -δ lim inf L A f (n, L) nN (n, L) lim sup L A f (n, L) nN (n, L) µ n (f δ ) + δ.
Since µ n (f δ ) → µ n (f ) as δ → 0, one concludes that (4.7.1) and (4.7.2) are valid for

f . Finally, if f ∈ C ∞ c (S γ Σ \ Γ n ) then there is L > 0 such that n (z) L, z ∈ supp(f ).
In particular for any γ ∈ P such that i(γ, γ ) = n and (γ) > L, we have f (z) = 0 for any z ∈ I (γ). This shows that µ n (f ) = 0 and the support condition for µ n follows.

A large deviation result

The goal of this section, which is independent of the rest of the paper, is to prove the following result, which is a consequence of a classical large deviation result by Kifer [START_REF] Kifer | Large deviations, averaging and periodic orbits of dynamical systems[END_REF].

Proposition 4.8.1. There exists I > 0 such that the following holds. For any ε > 0, there are C, δ > 0 such that for large L

1 N (L) γ ∈ P : (γ) L, i(γ, γ ) (γ) -I ε C exp(-δL). (4.8.1)
In fact, I = 4i( m, δ γ ) where i is the Bonahon's intersection form [START_REF] Bonahon | Bouts des variétés hyperboliques de dimension 3[END_REF], δ γ is the Dirac measure on γ in and m is the renormalized Bowen-Margulis measure on M (here we see the intersection form as a function on the space of ϕ-invariant measures on SΣ, as described below). Lalley [START_REF] Steven P Lalley | Self-intersections of closed geodesics on a negatively curved surface : statistical regularities[END_REF] showed a similar result for self-intersection numbers ; see also [START_REF] Pollicott | Angular self-intersections for closed geodesics on surfaces[END_REF] for self intersection numbers with prescribed angles.

Bonahon's intersection form

Let M ϕ (SΣ) be the set of finite positive measures on SΣ invariant by the geodesic flow, endowed with the vague topology. For any closed geodesic γ, we denote by δ γ ∈ M ϕ (SΣ) the Lebesgue measure of γ parameterized by arc length (thus of total mass (γ)). Let µ ∈ M ϕ (SΣ) be the Liouville measure, that is, the measure associated to the volume form 1 2 α ∧ dα.

Proposition 4.8.2 (Bonahon [START_REF] Bonahon | The geometry of teichmüller space via geodesic currents[END_REF], see also Otal [START_REF] Otal | Le spectre marqué des longueurs des surfaces à courbure négative[END_REF]). There exists a continuous function i :

M ϕ (SΣ) × M ϕ (SΣ) → R +
which is additive and positively homogeneous with respect to each variable, such that i(µ, µ) = 2πvol(Σ) and

i(δ γ , δ γ ) = i(γ, γ ), i(µ, δ γ ) = 2 (γ),
for any closed geodesics γ, γ .

Remark 4.8.3. (i) Actually, Bonahon's intersection form is a pairing on the space of geodesic currents. This space is naturally identified with the space of ϕinvariant measure on SΣ which are also invariant by the flip R : (x, v) → (x, -v). What we mean here by i(ν, ν

) for general ν, ν ∈ M ϕ (SΣ) is simply i(Φ(ν), Φ(ν )) where Φ : ν → ν + R * ν (note that ϕ t R = Rϕ -t for t ∈ R).
(ii) Note that the formulae for i(µ, µ) and i(µ, δ γ ) differ from [START_REF] Bonahon | The geometry of teichmüller space via geodesic currents[END_REF] ; it is due to our convention since here the Liouville measure µ corresponds to twice the Liouville current considered in [START_REF] Bonahon | The geometry of teichmüller space via geodesic currents[END_REF].

Large deviations

For any ν ∈ M ϕ (SΣ) we denote by h(ν) the measure-theoretical entropy of ϕ with respect to ν. Then we have the following result. Proposition 4.8.4 (Kifer [START_REF] Kifer | Large deviations, averaging and periodic orbits of dynamical systems[END_REF]). Let F ⊂ M 1 ϕ (SΣ) be a closed set, where M 1 ϕ (SΣ) is the set of ϕ-invariant probability measures on SΣ. Then

lim sup L 1 L log 1 N (L) {γ ∈ P : (γ) L, δ γ / (γ) ∈ F } sup ν∈F h(ν) -h,
where h is the entropy of the geodesic flow.

Proof of Proposition 4.8.1. We denote by m ∈ M 1 ϕ (SΣ) the unique probability measure of maximal entropy, that is

m = lim L→+∞ γ∈P (γ) L δ γ (γ) ,
where the convergence holds in the weak sense. Let ε > 0. Define

F ε = {ν ∈ M 1 ϕ (SΣ) : |i(ν, δ γ ) -i( m, δ γ )| ε}.
Then F ε is closed in M 1 ϕ (SΣ), and thus compact by the Banach-Alaoglu theorem, and m ∈ F ε so that δ = h -sup ν∈Fε h(ν) > 0. In particular we obtain that for large

L 1 N (L) {γ ∈ P : δ γ / (γ) ∈ F ε } C exp(-δ L)
for some 0 < δ < δ and C > 0. Now, by Proposition 4.8.2,

δ γ / (γ) ∈ F ε reads |i(γ, γ )/ (γ) -i( m, δ γ )| ε. Let I = i( m, δ γ ).
Then it is a well known fact that m have full support in SΣ, which implies I > 0 by definition of i( m, δ γ ) (see [START_REF] Otal | Le spectre marqué des longueurs des surfaces à courbure négative[END_REF]). This concludes the proof. (ii) If (Σ, g) is hyperbolic then m is the renormalized Liouville measure and we find, with Proposition 4.8.2,

I = (γ ) 2π 2 (g -1)
.

(iii) Note that if ε < I , then every closed geodesic γ which does not intersection γ satisfies δ γ / (γ) ∈ F ε . In particular the right hand side of (4.8.1) is bounded from below by C exp((h -h)L), where we used that N (0, L) ∼ exp(h L)/h L and N (L) ∼ exp(hL)/hL as L → ∞.

Extension to multi-curves

In this section, we explain how the methods used before allow to obtain asymptotic results for closed geodesics of which several intersection numbers are prescribed. Namely, let r 1 and γ ,1 , . . . , γ ,r be pairwise disjoint closed geodesics of (Σ, g), and denote by Σ 1 , . . . , Σ q the connected components of Σ \ r i=1 γ ,i .

Notations

For any j = 1, . . . , q, we denote by h j > 0 the topological entropy of the open system (Σ j , g| Σ j ), and by B j the set of indexes i such that γ ,i is a boundary component of Σ j . We decompose B j as

B j = S j O j
where S j is the set of indexes i such that γ ,i lies in the boundary of Σ j for some j = j, and O j = B j \ S j . In fact S j (resp. O j ) is the set of shared (resp. unshared) boundary components of Σ j . For any n = (n 1 , . . . , n r ) ∈ N r we define

n, Σ j = r i=1 n i 1 S j (i) 2 + 1 O j (i) , j = 1, . . . , q.
This quantity represents the number of times a curve has to travel through Σ j if it intersects n i times γ ,i . An admissible path (u, v) is the collection of two words

u = u 1 • • • u n and v = v 1 • • • v n with u ∈ {1, .
. . , r} and v ∈ {1, . . . , q} for = 1, . . . , n, and with the following property. For any ∈ Z/nZ we have u , u +1 ∈ B v and

v = v +1 =⇒ u +1 ∈ O v .
For any admissible path ω = (u, v) we denote n(ω) = (n 1 , . . . , n r ) where we set n i = { : u = i}. An admissible path ω will be called primitive if every non trivial cyclic permutation of ω is distinct from ω.

An element n ∈ N r will be called admissible if n = n(ω) for some admissible path ω. For any admissible n ∈ N r we set

h n = max{h j : n, Σ j > 0} and d n = h j =hn n, Σ j .
The number h n is the maximum of the entropies encountered by a closed geodesic γ satisfying i(γ, γ ) = n i for i = 1, . . . , r, while d n is the number of times γ will travel through a surface Σ j with h j = h n .

Statement

For any primitive geodesic γ ∈ P we denote i(γ, γ ) = (i(γ, γ ,1 ), . . . , i(γ, γ ,r )).

Note that each closed geodesic γ : R/ (γ)Z → Σ intersecting at least one of the γ ,i 's gives rise to an admissible path ω(γ) (which is unique up to cyclic permutation) defined as follows. Let (τ 1 , . . . , τ n ) ∈ (R/ (γ)Z) n be a cyclically ordered sequence such that γ -1 ( i γ ,i ) = {τ 1 , . . . , τ n }. Then there are words

u 1 • • • u n and v 1 • • • v n such that γ(τ ) ∈ γ ,u and γ(τ ) ∈ Σ v for any τ ∈]τ , τ +1 [ and we set ω(γ) = (u, v).
For two paths ω, ω , we will write ω ∼ ω if ω is a cyclic permutation of ω ; for any admissible ω = (u, v), we will denote by w k = (u k , v k ) the path ω concatenated k times.

Theorem 4.9.1. Let ω be an admissible and primitive path. Then there is c ω > 0 such that for any k 1

{γ ∈ P : (γ) L, ω(γ) ∼ ω k } ∼ d n(ω) c ω L d n(ω) k (kd n(ω) )! e h n(ω) L h n(ω) L (4.9.1)
In particular we obtain for any admissible n ∈ N r Note that we recover Theorems 4.1.1 and 4.1.2 : for instance, if r = 1, γ = γ ,1 is separating (so that q = 2), Σ \ γ = Σ 1 Σ 2 and h 1 = h 2 = h > 0, then γ ∈ P intersects 2k times γ if and only if ω(γ) ∼ ω k where ω = (u, v) with u = (1, 1) and v = (1, 2). For this ω, we have n(ω) = (n 1 ) = (2), d n(ω) = 2 and h n(ω) = h , so that (4.9.1) yields

{γ ∈ P : (γ) L, i(γ, γ ) = 2k} ∼ 2 (c ω L 2 ) k (2k)! e h L h L ,
which is Theorem 4.1.2 for the case h 1 = h 2 .

4.9.3 Proof of Theorem 4.9.1

We let Σ = q j=1 Σ j denote the compact surface with geodesic boundary obtained by cutting Σ along γ ,1 , . . . , γ ,r , and set

∂ = {(x, v) ∈ SΣ : x ∈ ∂Σ }.
Then the construction of §4.3 applies perfectly in this context, and we denote by

S ± (s) : Ω • c (∂ \ ∂ 0 ) → D • (∂)
the scattering operator. For any i = 1, . . . , r, we let

F i ∈ C ∞ (∂) defined by F i (z) = 1 if π(p(z)) ∈ γ ,i and F i (z) = 0 if not.
Here we recall that p : SΣ → SΣ and π : SΣ → Σ are the natural projections. Also we denote ψ : ∂ ∂ the smooth map which exchanges the connected components of (π • p ) -1 (γ ,i ) via the natural identification, and we set S± (s) = ψ * S ± (s).

Let ω = (u, v) be a primitive admissible word of length n 1 and

χ ∈ C ∞ c (∂ \ ∂ 0 ) (recall that ∂ 0 = ∪ i p -1 (Sγ ,i ) is the tangential part of ∂). Then set S± (χ, ω, s) = F u 1 χ S(vn) ± (s)χF un • • • F u 2 χ S(v 1 ) ± (s)χF u 1 : Ω • (∂ u 1 ) → D • (∂ u 1 ),
where u = (u 1 , . . . , u n ), v = (v 1 , . . . , v n ) and S(v ) ± is the scattering operator associated to the surface Σ v for = 1, . . . , n, and ∂ u 1 = (π • p ) -1 (γ ,u 1 ). As in §B.3.1, we find

-tr s S± (χ, ω, s) = ω(γ)∼ω e -s (γ) z∈I ,± (γ) χ 2 (z),
where the sum runs over the (necessarily primitive) closed geodesics γ : R/Z → Σ with ω(γ) ∼ ω, and where

I ,± (γ) = {z ∈ ∂ ± : π • p (z) = γ(τ ) for some τ ∈ R/Z}.
More generally, for k 1 we have

-tr s S± (χ, ω k , s) = k ω(γ)∼ω k (γ) (γ) e -s (γ)   z∈I ,± (γ) χ 2 (z)   (γ)/ (γ)
. (4.9.2)

Note that max {h v } = h n(ω) and { ∈ {1, . . . , n} :

h v = h n(ω) } = d n(ω) .
Moreover, as in §4.5.1, the following holds. For any such that h(v ) = h n(ω) we have as s → h v n(ω)

F u +1 χ S(v ) ± (s)χF u = - F u +1 χ Π±,∂v χF u s -h n(ω) + O Ω • (∂u )→D • (∂u +1 ) (1) ,
for some operator Π±,∂v satisfying that F u +1 χ Π±,∂v χF u is of rank one. Thus we get, as s → h n(ω) ,

S± (χ, ω, s) = A ± (χ, ω) (s -h n(ω) ) d n(ω) + O Ω • (∂u 1 )→D • (∂u 1 ) (s -h n(ω) ) 1-d n(ω) , for some operator A ± (χ, ω) : Ω • (∂ u 1 ) → D • (∂ u 1 ) of rank one. Note that S± (χ, ω k , s) = S± (χ, ω, s) k for k 1 ; thus as s → h n(ω) it holds -tr s S± (χ, ω k , s) = c ± (χ, ω) k (s -h n(ω) ) kd n(ω) + O (s -h n(ω) ) 1-kd n(ω) , (4.9.3) 
where we set

c ± (χ, ω) = -tr s (A ± (χ, ω)) = tr (A ± (χ, ω)| Ω 1 (∂) )
, where we used that

tr (A ± (χ, ω) k | Ω 1 (∂) ) = tr (A ± (χ, ω)| Ω 1 (∂)
) k , which follows from the fact that A ± (χ, ω) is of rank 1. Again, we want to apply the Tauberian Theorem A.2.1, and for this we need to know that c ± (χ, ω) > 0 ; as for the case of a single geodesic, we thus need a priori bounds on the growth of {γ ∈ P : (γ) L, ω(γ) ∼ ω}.

We claim that for some C > 0, we have, for L large enough,

C -1 L d n(ω) -1 e h n(ω) L (log L + C) 2d n(ω) {γ ∈ P : (γ) L, ω(γ) ∼ ω} CL d n(ω)
-1 e h n(ω) L . (4.9.4)

Let us sketch the proof. Take some points x 1 , . . . , x q ∈ Σ \ i γ ,i so that x j ∈ Σ j for j = 1, . . . , q. For any = 1, . . . , n, we consider an arbitrary smooth path h : [0, 1] → Σ joining x v to x v +1 (here v n+1 = v 1 ) with h (t) = 0 and crossing γ ,u , such that

c(t) ∈ Σ • v , c(t + 1/2) ∈ Σ • v +1 , t ∈ ]0, 1/2[ . We denote a = h | [0,1/2] , b = h | [1/2,1] and y = a (1/2) = b (1/2) ∈ γ ,u . Then we define a , = a • γ ,u • a -1 ∈ π 1 (Σ v , x v ) and b , = b -1 • γ ,u • b ∈ π 1 (Σ v +1 , x v +1 ),
where we saw γ ,u as an element of π 1 (Σ, y ). If w ∈ π 1 (Σ v , x v ) for = 1, . . . , n, we may consider the concatenation

w 1 h 1 w 2 h 2 • • • w n h n ∈ π 1 (Σ, x v 1 ). (4.9.5)
Then, proceeding as in Lemmas 4.4.3, 4.4.6 and 4.4.7, one is able to show that if w is not a power of a , or b , -1 for each = 1, . . . , n, where b ,0 = b ,n , then we have ω(γ) ∼ ω, where γ is the closed geodesic represented by

[w 1 h 1 w 2 h 2 • • • w n h n ] ; moreo- ver, if [w 1 h 1 w 2 h 2 • • • w n h n ] = [w 1 h 1 w 2 h 2 • • • w n h n ] as conjugacy classes of π 1 (Σ, x v 1 )
for some w ∈ π 1 (Σ v , x v ), then there are p ∈ Z such that

w = (b , -1 ) -p -1 w (a , ) p ∈ π 1 (Σ v , x v ), = 1, . . . , n, (4.9.6) 
where p n = p 0 . Next, for any , we choose a universal cover ( Σ, xv ) of (Σ, x v ).

Note that, as in Lemmas 4.4.1 and 4.4.4, we have natural inclusions π 1 (Σ v , x v ) → π 1 (Σ, x v ) ; we may thus define

,v (w) = dist(x v , w • xv ), w ∈ π 1 (Σ v , x v ).
Next, we denote by

π 1 (Σ v , x v ) , = π 1 (Σ v , x v ) \ a , ∪ b , -1
the set of words in π 1 (Σ v , x v ) that are not powers of a , or b , -1 , and for any w ∈ π 1 (Σ v , x v ) , we set C w, = {(b , -1 ) p w (a , ) q : p, q ∈ Z}.

We also define C = {C w, : w ∈ π 1 (Σ v , x v ) , }, and

,v (C) = inf{ ,v (w) : w ∈ C}, C ∈ C .
Then we may reproduce exactly the proof of Proposition 4.4.8 to obtain that for each = 1, . . . , n, it holds for any L > 0

{w ∈ C : ,v (w) L} C(L -,v (C) + C) 2 , C ∈ C , (4.9.7) 
for some constant C > 0 independent of L and C. Next, using the orbital counting for any small ε > 0. Next, for any C ∈ C , we choose some

{w ∈ π 1 (Σ v , x v ) : ,v (w) L} ∼ A e hv L , (4. 
w C ∈ C such that ,v (w C ) = ,v (C).
Then by (4.9.6) we have a well defined and injective map

C 1 × • • • × C n → P, (C 1 , . . . , C n ) → [w C 1 h 1 • • • w Cn h n ],
and moreover for some C > 0 it holds

([w C 1 h 1 • • • w Cn h n ]) nC + n =1 ,v (C ).
Therefore one obtains that {γ ∈ P : ω(γ) ∼ ω, (γ) L} is bounded from below by

(C 1 , . . . , C n ) : n =1 ,v (C ) L -nC . ( 4 
.9.10) Finally, by induction on d n(ω) = { : h v = h n(ω) } (recall that by definition h n(ω) = max h v ), one may show, by using (4.9.9) and some Abel transformations as in the proof of Proposition 4.4.5, that (4.9.10) is bounded from below by 13

CL d n(ω) -1 e h n(ω) (log L + C) 2d n(ω) .
This yields the lower bound of (4.9.4). The upper bound is obtained as in §4.4.2.2, by noting that every γ ∈ P such that ω ∼ ω(γ) can be obtained by a concatenation of the form 4.9.5.

A suitable version of Lemma 4.4.11 is also valid in this context. Indeed, if γ is given by [w 1 h 1 • • • w n h n ] and intersects one of the γ ,u 's with a small angle η, then proceeding as in the proof of Lemma 4.4.11, one can see that for some , we have w = (b , -1 ) K w or w = w (a , ) K for some w ∈ π 1 (Σ v , x v ) satisfying ,v (w )

,v (w )+|K| (γ )+C ; here K ∈ Z can be chosen so that |K| is very large, depending on η. Therefore, as in Lemma 4.4.11, we get that for any L 0 > 0 and ε > 0, there is η > 0 such that for large L, it holds

N (ω, η, L) C ω N (ω, L -L 0 ) and N (ω k , η, L) εC k,ω L kd n(ω)
-1 e h n(ω) L , (4.9.11) where the constants C ω and C k,ω only depend on ω and k. Here, N (ω, L) (resp. N (ω, η, L)) is the number of geodesics γ of length not greater than L, such that ω(γ) ∼ ω (resp. and intersecting one of the γ ,u 's with an angle smaller than η).

Finally, combining (4.9.2), (4.9.3), (4.9.4) and (4.9.11), we may proceed exactly as in § §4.5,4.6 to obtain Theorem 4.9.1 with

c ω = lim supp(1-χ)→∂ 0 c ± (χ, ω).

Closed geodesics minimize intersection numbers

In this section we prove Lemma 4.2.1. We proceed by contradiction and assume that it holds i(γ 1 , γ 2 ) < |γ 1 ∩ γ 2 |. As γ 1 , γ 2 are not powers of each other, the images of γ 1 and γ 2 intersect transversally (otherwise their images would coincide by unicity of the geodesic equation). Since i(γ 1 , γ 2 ) < |γ 1 ∩ γ 2 |, we may find loops α j : R/Z → Σ, j = 1, 2, with α j ∼ γ j , and

|α 1 ∩ α 2 | < |γ 1 ∩ γ 2 |,
and we may moreover assume that α 1 and α 2 intersect transversally. Let H j : [0, 1] × R/Z → Σ, j = 1, 2, be smooth homotopies between γ j and α j , and define

H : [0, 1] × R/Z × R/Z → Σ × Σ by setting H(s, τ 1 , τ 2 ) = (H 1 (s, τ 1 ), H 2 (s, τ 2 )), (s, τ 1 , τ 2 ) ∈ [0, 1] × R/Z × R/Z.
Let ∆(Σ) = {(x, x) : x ∈ Σ} be the diagonal in Σ. Then H(0, •) and H(1, •) are transversal to ∆(Σ), in the sense that for every k = 0, 1 and (τ 1 , τ 2 ) ∈ R/Z × R/Z 13. Indeed, we construct enough closed geodesics by considering products of the form

[w C1 h 1 • • • w Cn h n ] where ,v (C ) C if h v < h n(ω) and such that : hv =h n(ω) ,v (C ) L. with H(k, τ 1 , τ 2 ) ∈ ∆(Σ), it holds dH(k, τ 1 , τ 2 )T (k,τ 1 ,τ 2 ) R/Z × R/Z + T H(k,τ 1 ,τ 2 ) ∆(Σ) = T H(k,τ 1 ,τ 2 ) (Σ × Σ).
In particular by [GP10, Corollary p.73], we may assume that H is globally transversal to ∆(Σ), so that

H -1 (∆(Σ)) is a smooth 1-dimensional submanifold of [0, 1]×(R/Z) 2 . Now we have |γ 1 ∩ γ 2 | = |H -1 (∆(Σ)) ∩ ({0} × (R/Z) 2 )|, |α 1 ∩ α 2 | = |H -1 (∆(Σ)) ∩ ({1} × (R/Z) 2 )|.
Since

|γ 1 ∩ γ 2 | > |α 1 ∩ α 2 |, and because H -1 (∆(Σ)) is smooth, we may find a smooth path c : [0, 1] → [0, 1] × (R/Z) 2 such that c(0) = c(1) and 
Im(c) ⊂ H -1 (∆(Σ)) and c(0), c(1) ∈ {0} × (R/Z) 2 .
Write c = (S, T 1 , T 2 ) for some smooth functions S : [0, 1] → [0, 1] and T j : [0, 1] → R/Z, and for u ∈ [0, 1] define the path

c u = (uS, T 1 , T 2 ) : [0, 1] → [0, 1] × (R/Z) 2 . Let x k = H(c(k)) ∈ Σ for k = 0, 1.
Then define the paths

β j,u = π j • H • c u : [0, 1] → Σ, j = 1, 2, u ∈ [0, 1],
where π 1 , π 2 : Σ × Σ → Σ are the projections over the first and second factor, respectively. As c 1 = c and Im(c) ⊂ H -1 (∆(Σ)) we have β 1,1 = β 2,1 . In particular, the paths β 1,0 and β 2,0 are homotopic within the space of curves linking x 0 and x 1 , since for each u one has β j,u (k) = x k for j = 1, 2 and k = 0, 1. Moreover, the paths β 1,0 and β 2,0 are subpaths of γ 1 and γ 2 , respectively, and in particular geodesic paths.

Let Σ be a universal cover of Σ and take x0 ∈ Σ a lift of x 0 . For j = 1, 2, let βj : [0, 1] → Σ be the unique lift of β j,0 starting at x0 . Then β1 (1) = β2 (1) since the paths β j,0 , j = 1, 2, are homotopic in Σ via an homotopy preserving endpoints.

In particular, we found two distinct geodesic segments of Σ joining x0 and β0 (1) (the image of the paths βj,0 , j = 1, 2, cannot coincide since c(0) = c(1) and the intersection γ 1 ∩ γ 2 is transversal). Thus the exponential map exp x0 : T x0 Σ → Σ at x0 is not a diffeomorphism, and Σ cannot be negatively curved in virtue of the Cartan-Hadamard theorem (see for example [START_REF] Lee | Riemannian manifolds : an introduction to curvature[END_REF]Theorem 11.5]). This completes the proof.

An elementary fact about pullbacks of distributions

Lemma 4.11.1.

Let K ∈ D (R d × R d ) be a compactly supported distribution. We assume that WF(K) ⊂ Γ where Γ ⊂ T * (R d × R d ) is a closed conical subset such that Γ ∩ N * ∆ = ∅, N * ∆ = {(x, ξ, x, -ξ) : (x, ξ) ∈ T * R d }.
In particular the pullback i * K, where i : x → (x, x), is well defined. Then for N ∈ N 1 large enough, the following holds. Let u ∈ C N c (R d ) and assume that the pullback i * (π * 1 uK) is well defined, where π 1 : (x, x) → x is the projection on the first factor.

Then i * (π * 1 u • K) = u • i * K. Proof. Let K ε ∈ C ∞ (R d × R d ), ε ∈]0, 1], be a sequence of distributions supported in a fixed compact set such that K ε → K in D Γ (R d × R d ). Let Γ ⊂ T * (R d × R d )
an open conical subset containing N * ∆. As K ε is compactly supported we may assume that |t -q| > δ 0 for any (t, q) ∈ Γ × Γ such that |t| = |q| = 1 for some δ 0 > 0. By definition of the convergence in

D Γ (R d × R d ) (see [Hör90, Definition 8.2.2]
), for every N there is C N > 0 such that for any ε > 0 small enough, Then for any q ∈ Γ (2π

K ε (q) C N q -N , q ∈ Γ . ( 4 
) 2d K ε π * 1 u(q) R 2d t | K ε (t)|| π * 1 u(q -t)|dt |t-q|<δ|q| | K ε (t)|| π * 1 u(q -t)|dt + |t-q| δ|q| | K ε (t)|| π * 1 u(q -t)|dt.
Let N 1 , N 2 ∈ N 1 . We have, with t = 1 + |t| 2 , using (4.11.1) and (4.11.2), assu-

ming that u ∈ C N 2 c (R d ) with N 2 2d + 1, |t-q|<δ|t| | K ε (t)|| π * 1 u(q -t)|dt C N 1 ,N 2 |t-q|<δ|q| t -N 1 q -t -N 2 dt C N 1 ,N 2 q -N 1 +N 2 R d t -N 2 dt.
where we used Peetre's inequality. On the other hand, we have with k being the order of K, and any

N 3 ∈ N 1 such that u ∈ C N 3 c (R d ) |t-q| δ|q| | K ε (t)|| π * 1 u(q -t)|dt C k,N 3 |t-q| δ|q| t k q -t -N 3 C k,N 3 q -N 3 +(k+2d+1) R 2d t -2d-1 dt. Therefore, if u ∈ C N (R d ) with N = k + 2d + 1 + N we have (2π) 2d K ε π * 1 u(q) C N q -N , q ∈ Γ . (4.11.3) Note that for ϕ ∈ C ∞ c (R d ) one has i * (K ε π * 1 u), ϕ = R d x ϕ(x) R d ξ ×R d η K ε π * 1 u(ξ, η)e ix(ξ+η) dξdηdx.
Indeed (4.11.3) shows that the integral in (ξ, η) converges near N * ∆ if N 2d + 1, and far from N * ∆ we can use the stationary phase method to get enough convergence in (ξ, η), so that the above integral makes sense as an oscillatory integral and coincides with i * (K ε π * 1 u), ϕ , since this formula is obviously true if u is smooth. Moreover all the above estimates are uniform in ε, and thus letting ε → 0 we obtain the desired result, since obviously i

* (K ε π * 1 u) = u(i * K ε ) for each ε ∈ ]0, 1] .
Chapitre 5

Séries de Poincaré pour les surfaces à bord

Dans ce chapitre, on considère une surface à courbure négative avec un bord totalement géodésique. Nous obtenons un prolongement méromorphe pour la série de Poincaré comptant les orthogéodésiques ainsi que pour des séries qui comptent les arcs géodésiques reliant deux points. Nous calculons aussi leurs valeurs à l'origine ; pour la série comptant les arcs reliant deux points, cette valeur coïncide avec l'inverse de la caractéristique d'Euler de la surface. Ce chapitre contient l'article Poincaré series for surfaces with boundary [Chac]. where (γ) denotes the length of the geodesic arc γ, is well defined (see §5.3.2). In this chapter we will prove the following Theorem 5.1.1. The Poincaré series s → η(s) extends meromorphically to the whole complex plane and vanishes at s = 0.

If x = y ∈ Σ, we may also consider the Poincaré series associated to the geodesic arcs joining x to y. Namely, we set for Re(s) large enough

η x,y (s) = γ:x y e -s (γ) ,
where the sum runs over all geodesic arcs γ : [0, (γ)] → Σ (parameterized by arc length) such that γ(0) = x and γ( ) = y. Then we have the following result.

Theorem 5.1.2. The Poincaré series s → η x,y (s) extends meromorphically to the whole complex plane and

η x,y (0) = 1 χ(Σ) ,
where χ(Σ) is the Euler characteristic of Σ.

We refer to §2.2.1 for a motivation of those results. This chapter is organized as follows. In §5.2 we introduce the geometrical setting and the resolvent Q(s) of the geodesic flow. In §5.3 we express η(s) and η x,y (s) with a pairing formula involving the resolvent Q(s). In §5.4 we compute η(0). Finally, we compute η x,y (0) in §5.5.

Geometrical and dynamical preliminaries

We introduce in this section the main tools that will help us to understand η and η x,y .

Extension to a surface with strictly convex boundary

We extend (Σ, g) into a slightly larger negatively curved surface with boundary (Σ , g ). We take δ > 0 small and we set

Σ δ = {x ∈ Σ : dist g (x, Σ) < δ}.
Then since ∂Σ is totally geodesic and (Σ , g ) is negatively curved, it follows that Σ δ has strictly convex boundary, in the sense that the second fundamental form of ∂Σ δ with respect to the outward normal vector field is negative (see Lemma 4.2.5). We denote by

M δ = SΣ δ = {(x, v) ∈ T Σ δ : v g = 1}
the unit tangent bundle of the surface Σ δ , and by π : M δ → Σ δ the natural projection.

Structural forms

Recall from §4.2.2 the structural forms α, β, ψ ∈ Ω 1 (M δ ). Namely, α is a contact form (that is, α ∧ dα is a volume form on M δ ) whose Reeb vector field is the geodesic vector field X, in the sense that

ι X α = 1, ι X dα = 0,
where ι denote the interior product. Also β = R * π/2 α where for θ ∈ R, R θ : M δ → M δ the rotation of angle θ in the fibers (which is defined thanks to the orientation of Σ δ ). The volume form vol g of Σ δ satisfies

π * vol g = α ∧ β, (5.2.1)
and ψ the connection one-form, that is,

ι V ψ = 1, dα = ψ ∧ β, dβ = α ∧ ψ, dψ = -(κ • π)α ∧ β, (5.2.2)
where V is the vector field generating (R θ ) θ∈R and κ is the Gauss curvature of Σ.

Then (α, β, ψ) is a global frame of T * M δ . Recall also that H is the unique vector field on M δ such that (X, H, V ) is the dual frame of (α, β, ψ). We have the commutation relations

[V, X] = H, [V, H] = -X, [X, H] = (κ • π)V. (5.2.3)
The orientation of M δ will be chosen so that (X, H, V ) is positively oriented. Also recall that, on ∂M , we have a precise description (X, H, V ), as follows (see Lemma 4.2.3).

Lemma 5.2.1. Let γ be a connected component of ∂Σ (which is the image of a closed geodesic) and denote by > 0 its length. Then there is a tubular neighborhood U of π -1 (γ ) and coordinates (ρ, τ, θ) on U with

U (-δ, δ) ρ × (R/ Z) τ × (R/2πZ) θ ,
and such that

|ρ(z)| = dist(z, γ ), S z Σ = {(τ (z), ρ(z), θ) : θ ∈ R/2πZ}, z ∈ U.
Moreover in these coordinates we have, on {ρ = 0} γ ,

X(z) = cos(θ)∂ τ + sin(θ)∂ ρ , H = -sin(θ)∂ τ + cos(θ)∂ ρ , V = ∂ θ .

Extension of the geodesic vector field

We embed M δ into a compact manifold without boundary N (for example by taking the doubling manifold) ; then by [DG16, Lemma 2.1], we may extend the geodesic vector field X to a vector field on N so that M δ is convex with respect to X in the sense that for any T 0,

x, ϕ T (x) ∈ M δ =⇒ ∀t ∈ [0, T ], ϕ t (x) ∈ M δ , (5.2.4)
where ϕ t is the flow induced by X. Let ρ δ ∈ C ∞ (M δ , [0, 1]) be a boundary defining function for M δ , that is, ρ δ > 0 on M δ \ ∂M δ , ρ δ = 0 on ∂M δ and dρ δ = 0 on ∂M δ (for example we can take ρ δ (x, v) = dist(x, ∂Σ δ )). Then the strict convexity of ∂Σ δ implies that ∂M δ is strictly convex in the sense that for every x ∈ ∂M δ one has

Xρ δ (x) = 0 =⇒ X 2 ρ δ (x) < 0 (5.2.5) (see [DG16, §6.3]).

Hyperbolicity of the geodesic flow

We define

Γ ± = {z ∈ M δ : ϕ ∓t (z) ∈ M δ , t 0}, K = Γ + ∩ Γ -⊂ M.
By [Kli11, §3.9 and Theorem 3.2.17] the geodesic flow (ϕ t ) is hyperbolic on K, that is, for every z ∈ K there is a decomposition

T z M δ = E s (z) ⊕ E u (z) ⊕ RX(z)
depending continuously on z, which is invariant by dϕ t and such that, for some C, ν > 0, dϕ t (z)w Ce -νt w , w ∈ E s (z), t 0, and dϕ -t (z)w Ce -νt w , w ∈ E u (z), t 0.

Moreover, by [DG16, Lemma 2.10], there are two vector subbundles

E ± ⊂ T Γ ± M δ (here T Γ ± M δ = T M δ | Γ ± )
with the following properties :

1. E + | K = E u and E -|K = E s and E ± (z) depends continuously on z ∈ Γ ± ;

2. α, E ± = 0 ; 3. For some constants C , ν > 0 we have

dϕ ∓t (z)w C e -ν t w , w ∈ E ± (z), z ∈ Γ ± , t 0; 4. If z ∈ Γ ± and w ∈ T z M δ satisfy w / ∈ RX(z)⊕E ± (z), then as t → ∓∞ dϕ t (z)w → ∞, dϕ t (z)w dϕ t (z)w → E ∓ | K .
Moreover, we have the following description of E ± .

Lemma 5.2.2. There are continuous functions r ± : Γ ± → R such that ±r ± > 0 on Γ ± and

E ± (z) = R (H(z) + r ± (z)V (z)) , z ∈ Γ ± . (5.2.6)
Proof. As the contact form α is preserved by the flow ϕ t , we get by property (2) above E ± (z) ⊂ ker α(z) = R(H(z) ⊕ V (z)). In a first step, we will assume that E ± (z) ∩ RV (z) = {0} for every z ∈ Γ ± (we shall prove it later). Since the bundles E ± are continuous, we deduce that there are two continuous functions r ± : Γ ± → R such that (5.2.6) holds.

Next, we show that ±r ± > 0. The fact that dϕ ∓t (z)E ± (z) ⊂ E ± (z) for t 0 implies that the map t → r ± (ϕ ∓t (z)) is smooth on R + for any z ∈ Γ ± (since R(H ⊕V ) is preserved by dϕ t ). We may thus compute, on Γ ± ,

[X, H + r ± V ] = [X, H] + (Xr ± )V + r ± [X, V ] = (κ • π + Xr ± ) V -r ± H, (5.2.7)
where we used the commutation relations (5.2.3). As E ± is preserved by the flow, we must have [X, H + r ± V ] ∈ E ± ; thus combining (5.2.7) and (5.2.6) we obtain the following Riccati equation : 

Xr ± + r 2 ± + κ • π = 0 on Γ ± . ( 5 
dϕ -t (z)U (0) = exp - t 0 r + (u)du U (t), t 0.
(5.2.9)

On the other hand, equation (5.2.8) implies that for any t 0 we have the implication

r + (t) = 0 =⇒ r + (t) = -Xr + (ϕ -t (z)) < 0
since κ < 0 everywhere. Therefore, if r + (t) 0 for some t, then r + (u) 0 for all u t. This is not possible by (5.2.9) since dϕ -t (z)U (0) → 0 as t → +∞. We therefore proved that r + (t) > 0 for all t 0. Thus r + > 0 on Γ + and similarly, one can show that r -(z) < 0 for all z ∈ Γ -.

It remains to prove that E ± (z) ∩ RV (z) = {0} for any z ∈ Γ ± . Let z ∈ Γ + , and write V (t) = V (ϕ -t (z)) and H(t) = H(ϕ -t (z)) for t 0. Then there are smooth functions a, b : [0, ∞[→ R such that for any t 0 one has

dϕ -t (z)V (z) = a(t)H(t) + b(t)V (t)
The commutation relations (5.2.3) imply that a (t) + b(t) = 0, κ(t)a(t) + b (t) = 0, t 0, where κ(t) = (κ • π • ϕ -t )(z). Thus a (t) + κ(t)a(t) = 0 ; moreover we have a(0) = 0 and a (0) = -b(0) = -1 ; from this it is easy to deduce that a (t) < 0 for every t 0. In particular there are C 1 , C 2 > 0 such that a(t) -C 1 for every t C 2 and thus for some C > 0 we have dϕ -t (z)V (z)

C for any t 0. As a consequence, we obtain that V (z) / ∈ E + (z). Similarly, one can prove that V (z) / ∈ E -(z) for any z ∈ Γ -. This concludes the proof of the lemma. Remark 5.2.3. Looking carefully at the proof of Lemma 5.2.2, we see that for any z and t such that ϕ t (z) ∈ M δ we have ± ϕ * t β(z), V (z) > 0 and ± ϕ * t ψ(z), H(z) > 0 (5.2.10) whenever ±t > 0. Indeed, the first part of (5.2.10) follows from the fact that, with the notations of the proof of Lemma 5.2.2, one has a(t) = ϕ * -t β(z), V (z) < 0 for t > 0 (since a (t) < 0 and a(0) = 0), and reversing the time we get that a(t) > 0 whenever t < 0. The second part of (5.2.10) was not explicitly proven but the proof is very similar.

The resolvent

For Re(s) large enough, consider the operator R(s) defined on Ω • (N ) by R(s) = +∞ 0 e -ts ϕ * -t dt.

(5.2.11)

Here Ω • (N ) denotes the space of smooth differential forms on N . Then it holds

(L X + s)R(s) = Id Ω • (N ) = R(s)(L X + s). Let χ ∈ C ∞ c (M δ \ ∂M δ ) such that χ ≡ 1 on M δ/2
, and let

Q(s) = χR(s)χ.
Then it follows from [DG16, Theorem 1] that the family of operators s → χR(s)χ extends to a family of operators

Q(s) : Ω • c (M • δ ) → D • (M • δ ) meromorphic in s ∈ C, which satisfies, for w ∈ Ω • c (M • δ ) supported in {χ = 1}, (L X + s)Q(s)w = w on {χ = 1}, (5.2.12) 
for any s ∈ C which is not a pole of s → Q(s). Here, M • δ denotes the interior of M δ and if U is a manifold, Ω • c (U ) denotes the space of compactly supported differential forms on U while D • (U ) denote its dual space, that is, the space of currents. In what follows, for any distribution A ∈ D (T * M δ × T * M δ ), we will set

WF (A) = {(z, ξ, z , ξ ) ∈ T * (M δ × M δ ) : (z, ξ, z , -ξ ) ∈ WF(A)},
where WF is the Hörmander wavefront set, see [START_REF] Hörmander | The analysis of linear partial differential operators : Distribution theory and Fourier analysis[END_REF]§8]. The microlocal structure of Q(s) is given by (see [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF]Lemma 4.5], in what follows we identify Q(s) and its Schwartz kernel)

WF (Q(s)) ⊂ ∆(T * M δ ) ∪ Υ + ∪ (E * + × E * -) (5.2.13)
where

∆(T * M δ ) = {(ξ, ξ) : ξ ∈ T * M δ } ⊂ T * (M δ × M δ ) and Υ + = {(Φ t (z, ξ), (z, ξ)) : t 0, ξ, X(z) = 0, z ∈ M δ , ϕ t (z) ∈ M δ }.
Here Φ t denotes the symplectic lift of ϕ t on T * M δ , that is

Φ t (z, ξ) = (ϕ t (z), (d z ϕ t ) -ξ), (z, ξ) ∈ T * M δ , ϕ t (z) ∈ M δ ,
and the subbundles E * ± ⊂ T * Γ ± M δ are defined by E * ± (RX(z) ⊕ E ± ) = 0. In particular, we have

Φ ∓t (z, ξ) → +∞, (z, ξ) ∈ E * ± , t → +∞ and E * ± (z) = R (r ± (z)β(z) -ψ(z)) , z ∈ Γ ± .

Poincaré series

In this section, we give a description of the Poincaré series η(s) in terms of a pairing involving the operator Q(s).

Counting measure

Let Λ, Λ ⊂ M δ be the one-dimensional submanifolds of M δ defined by

Λ = {(x, ν(x)) : x ∈ ∂Σ}, Λ = {(x, -ν(x)) : x ∈ ∂Σ}.
where ν : ∂Σ → M is the outward normal pointing vector to ∂Σ. Those manifolds are oriented according to the orientation of ∂Σ which is itself oriented by ∂ τ in the coordinates of Lemma 5.2.1 ; note also that in the coordinates given by Lemma 5.2.1 we have (here γ is a connected component of ∂Σ)

Λ| γ = {(0, τ, π/2) : τ ∈ R/ Z}, Λ| γ = {(0, τ, -π/2) : τ ∈ R/ Z}; (5.3.1)
in particular it holds

T z Λ = RH(z), T z Λ = RH(z ), (z, z ) ∈ Λ × Λ.
(5.3.2)

For τ 0 and z ∈ Λ such that ϕ -τ (z) ∈ Λ, we will set ε(τ, z) = 1 if

T z Λ ⊕ RX(z) ⊕ d ϕ -τ (z) ϕ τ T ϕ -τ (z) Λ (5.3.3)
has the same orientation as T M δ , and ε(τ, z) = -1 otherwise (note that the sum (5.3.3) is always direct as the component of dϕ τ (z )H(z ) on V (ϕ τ (z )) is positive by Remark 5.2.3, since ϕ τ ( Λ) ∩ Λ = ∅ implies τ > 0).

Lemma 5.3.1. For any τ 0 and z ∈ Λ such that ϕ -τ (z) ∈ Λ it holds

ε(τ, z) = 1. Proof. Indeed, Λ is oriented so that det T z Λ H(z ) > 0 for z ∈ Λ ; moreover the com- ponent of dϕ t (z)H(z) on V (ϕ t (z)) is positive (meaning that ψ(ϕ t (z)), d z ϕ t H(z) > 0) whenever t > 0 (see Remark 5.2.3). Thus, since T z Λ is oriented so that det TzΛ H(z) < 0 we obtain ε(τ, z) is equal to the sign of det TzM δ (-H, X, H + f (z, τ )V ) for some f (z, τ ) > 0, which is 1 as (X, H, V ) is positively oriented.
In what follows, if P is an embedded, oriented, compact, k-dimensional submanifold of N , we will denote by [P ] ∈ D n-k (N ) the associated integration current, which is defined by

N [P ] ∧ ω = P ι P * ω, ω ∈ Ω k (N ),
where ι P : P → N is the inclusion. We then have the following geometrical lemma, which is a direct adaptation of [DR20a, Lemma 4.11] in our context.

Lemma 5.3.2. The expression

µ(t) = τ 0 Λ∩ϕτ ( Λ) =∅   z∈Λ∩ϕτ ( Λ) ε(τ, z)   δ(t -τ ),
makes sense and defines a distribution µ ∈ D (R >0 ). Moreover, it coincides with

t → - N [Λ] ∧ ι X ϕ * -t [ Λ] .
Remark 5.3.3. (i) Lemma 5.3.2 can be reformulated as follows. For any χ ∈ C ∞ c (R + ), the product

A χ = [Λ] ∧ R + χ(t)ι X ϕ * -t [ Λ]dt
is well defined and 1, A χ = -µ, χ (here the first pairing takes place on N while the second one takes place on R + ).

(ii) Lemma 5.3.2 is an elementary result coming from the theory of currents and is not specific to (Λ, Λ, ϕ t ). Indeed, this lemma will hold true for if we replace Λ, Λ and the flow ϕ t by arbitrary submanifolds N 1 , N 2 and another flow ψ t , whenever the sum (5.3.3) is direct (replacing (Λ, Λ, ϕ t ) by (N 1 , N 2 , ψ t )) and dim N 1 + dim N 2 + 1 = dim N ; we refer to [DR20a, Lemma 4.11] for more details.

Proof. We note that Λ ∩ Λ = ∅, and X(z) / ∈ T z Λ for any z ∈ Λ. Moreover, it holds dim(Λ) + dim( Λ) + 1 = dim(N ). Hence by (5.3.3) we can apply [DR20a, Lemma 4.11] to obtain the sought result (note however that here the vector field X on N may have singular points, but this is not a problem since the proof of [DR20a, Lemma 4.11] is local in nature and the singular points are far away from Λ).

A pairing formula for the Poincaré series

Note that (5.2.13) implies that Q(s)ι X [ Λ] is well defined. Indeed, according to [Hör90, Theorem 8.1.9] one has WF(ι X [ Λ]) ⊂ N * Λ where

N * z Λ = {ξ ∈ T * z M : ξ, H(z) = 0} = Rα(z) ⊕ Rψ(z),
where ψ is the connection form. For z ∈ Λ we have T z Λ = RH(z) and thus

N * z Λ = Rα(z) ⊕ Rψ(z), (5.3.4) 
(of course the same formula holds if we replace Λ by Λ). We have

E * -∩ N * Λ ⊂ {0}, since for z ∈ Γ -∩ Λ we have E * -(z) = R(r -(z)β(z) -ψ(z))
, and r -(z) < 0 by Lemma 5.2.2. By (5.2.13) we can apply [Hör90, Theorem 8.2.13] to see that Q(s)ι X [ Λ] is well defined, and

WF(Q(s)ι X [ Λ]) ⊂ E * + ∪ (N * Λ) ∪ {Φ t (z, ξ) : z ∈ Λ, ξ ∈ Rψ(z), t 0}. (5.3.5)
In particular, we have N * Λ ∩ WF(Q(s)ι X [ Λ]) = ∅. Indeed, since r + (z) > 0, we have as before that N * Λ ∩ E * + ⊂ {0} ; also N * Λ ∩ N * Λ = ∅ simply because Λ ∩ Λ = ∅ ; finally, the last term in the right-hand side of (5.3.5) can only intersect N * Λ in a trivial way by Remark 5.2.3 and (5.3.4). Therefore, the product [Λ]∧Q(s)ι X [ Λ] is well defined as a distribution by [Hör90, Theorem 8.2.10]. As s → Q(s) is meromorphic, so is the family s → [Λ] ∧ Q(s)ι X [ Λ], because the bound (5.2.13) is satisfied locally uniformly in s ∈ C \ Res(L X ) (it follows from the proof of (5.2.13) in [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF]).

In what follows, for any closed conical subset Γ ⊂ T * M δ , we will denote 

D • Γ (M • δ ) = {u ∈ D • (M • δ ) : WF(u)
η(s) = -1, [Λ] ∧ Q(s)ι X [ Λ] .
Remark 5.3.5. As we mentioned above, we already know that the pairing 1, [Λ] ∧ Q(s)ι X [ Λ] makes sense by using the wavefront set properties of Q(s) given in [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF]. However, we will prove below that this pairing is a priori well defined provided that Re(s) is large enough (without using the results of [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF]) and we will see (using Lemma 5.3.2) that this implies the convergence of the series η(s).

Corollary 5.3.6. The function s → η(s) extends meromorphically to the whole complex plane.

Proof. We saw above that family s → [Λ] ∧ Q(s)ι X [ Λ] extends meromorphically to the whole complex plane, and so does s → 1, [Λ] ∧ Q(s)ι X [ Λ] . Thus Proposition 5.3.4 immediately implies the meromorphic continuation of η.

Proof of Proposition 5.3.4. We fix ∈ C ∞ (R, [0, 1]) such that (t) = 1 for t ε and (t) = 0 for t ε/2, where ε = min(1/2, inf γ∈G ⊥ (γ)). For n ∈ N 1 we take

n ∈ C ∞ c (R >0 , [0, 1]
) such that n (t) = 1 for t n and n (t) = 0 for t n + 1, and we set χ n = n . Then we have µ, χ n e -s• → η(s), n → +∞, (5.3.6) for Re(s) 1 by Lemma 5.3.2, as ε(τ, z) = +1 for any z ∈ Λ such that ϕ -τ (z) ∈ Λ (note that η(s) could a priori be infinite). Now, consider

A n (s) = χ R + χ n (t)e -ts ι X ϕ * -t [ Λ]dt ∈ D 1 (M • δ ), where χ ∈ C ∞ c (M • δ ) is the cutoff function introduced in §7.2.6. Note that A n (s) → Q (s)ι X [ Λ] (5.3.7) in D 1 (M • δ )
when n → +∞ whenever Re(s) is large enough, where we set 

Q (s) = ∞ 0 (t)e -
[Λ] ∧ A n (s) → 1, [Λ] ∧ Q(s)ι X [ Λ]
(5.3.8)

as n → ∞. To prove (5.3.8) we will show that the convergence

A n (s) → Q (s)ι X [ Λ]
actually takes place in a finer topology than that of D 1 (M • δ ) ; this is the purpose of Lemma 5.3.8 below. Then we will be able to conclude by noting that the set supp((

Q(s) -Q (s))ι X [ Λ]) does not intersect supp([Λ]).
We will need the following result (recall that ψ is the connection form introduced in §5.2.2). Lemma 5.3.7. Let τ > 0. Then there is r > 0 such that the following holds. For any z ∈ M δ and t τ such that ϕ t (z) ∈ M δ , we have ϕ * t ψ(z), H(z) r ϕ * t β(z), H(z) .

(5.3.9)

Moreover we have | ϕ * t β(z), H(z) 1 for any t 0.

Proof. Let z ∈ M δ and τ > 0. Write

ϕ * t β(z) = a(t)β(z) + b(t)ψ(z) and ϕ * t ψ(z) = c(t)β(z) + d(t)ψ(z)
for t ∈ R. We want to show that for t τ one has |c(t)| r|a(t)| for some r > 0. The structural equations (see §5.2.2) imply L X β = ψ and L X ψ = -κβ. We thus obtain that a and b satisfy the following differential equation

y (t) + κ(t)y(t) = 0 (5.3.10)
where κ(t) = κ(ϕ t (z)), with a(0) = 1 = b (0) and a (0) = 0 = b(0). Also a (t) = c(t) and b (t) = d(t). It is easy to see that (5.3.10) and the initial conditions imply a (t), a(t) > 0 for t > 0. Thus we have a (t)a (t) = -κ(t)a (t)a(t) ka (t)a(t) where k = inf Σ δ |κ|. Integrating this, we get

c(t) 2 = a (t) 2 k(a(t) 2 -1).
As a (t) > 0 for t > 0 we have a(t) 2 -1 a(τ ) 2 -1 for t τ , and thus it holds

c(t) 2 Cka(t) 2 , t τ,
where C = 1 -1/a(τ ) 2 > 0 (since a(τ ) > a(0) = 1). Setting r = √ Ck we obtain (5.3.9). We conclude the proof of the lemma by noting that a(t) a(0) = 1.

In what follows we set

J n (s) = χ R + (χ n+1 (t) -χ n (t))e -ts ι X ϕ * -t [ Λ]dt ∈ D 1 (M δ ).
Lemma 5.3.8. There exists a closed conical subset Γ ⊂ T * M δ not intersecting N * Λ such that for any continuous semi-norm q on D 1 Γ (M • δ ) (see [Hör90, Equation (8.2.2)]), there is C > 0 such that q(J n (s)) C|s| C e (C-Re(s))n , n 0.

Proof. Let w ∈ Ω 2 c (M • δ ) supported in a small coordinate patch U of some point z 0 ∈ Λ. Now by definition of J n it holds w, J n (s) = ∞ 0 (χ n+1 (t) -χ n (t))e -ts Λ ι X ϕ * t w dt.
Let ξ ∈ T * z 0 M δ . We identify T * U with V × R 3 for some neighborhood V of 0 ∈ R 3 . Consider the Fourier transform we i ξ,• , J n ; it holds

we i ξ,• , J n = N +2 t=N u∈ Λ(χ n+1 (t) -χ n (t))e -ts f (t, u)e i ξ,ϕt(u) dudt, (5.3.11)
where u is a choice of coordinate on Λ so that ∂ u = H(u) ∈ T u Λ, and f is a smooth function satisfying for any k, 0

|∂ k t ∂ u f (t, u)| C k, e C k, t , t 0, u ∈ Λ,
for some C k, > 0 1 ; note also that, as w is supported in the coordinate patch U , we have that f (t, u) = 0 whenever ϕ t (u) / ∈ U and thus the expression e i ξ,ϕt(u) is well defined on the support of f . Now we have ∂ u ξ, ϕ t (u) = ξ, dϕ t (u)H(u) , ∂ t ξ, ϕ t (u) = ξ, X(ϕ t (u)) .

(5.3.12)

Let Γ = {(z, ξ) ∈ T * M δ : z ∈ Λ, | ξ, H(z) | < ε|ξ|} for ε > 0 small. Let (z, ξ) ∈ Γ , u ∈ Λ and t > 0 such that ϕ t (u) = z ∈ U .
Then t τ where τ > 0 is a fixed number which is smaller than the length of the shortest orthogeodesic. We decompose ξ in the (α(z), β(z), ψ(z)) basis as ξ = ξ α α(z) + ξ β β(z) + ξ ψ ψ(z). We have, since

ϕ * t α(u) = α(u), ξ, dϕ t (u)H(u) = ϕ * t ξ α α(z) + ξ β β(z) + ξ ψ ψ(z) , H(u) = ξ β • ϕ * t β(u) + ξ ψ • ϕ * t ψ(u), H(u) .
Thus by Lemma 5.3.7 and the triangle inequality we have

| ξ, dϕ t (u)H(u) | r|ξ ψ | -|ξ β |, 1. The estimates on f follow from the fact that ι X ϕ * t w C C exp(C |t|) w C (see [Bon15, Proposition A.4.1]). Thus ∂ k t (ι X ϕ * t w) C = ι X (L X ) k ϕ * t w C C k, exp(C k, |t|) w C k+ .
Here we denoted by

• C the C norm on C ∞ (N, ∧ • T * N ).
for some r > 0 depending only on τ (indeed, the above inequality is obviously true even if r|ξ ψ | -|ξ β | 0). As ξ ∈ Γ we have

|ξ β | Cε 1 -ε (|ξ ψ | + |ξ α |) (5.3.13)
for some C > 0. Therefore, we obtain

|∂ u ξ, ϕ t (u) | (r -c(ε))|ξ ψ | -c(ε)|ξ α |, |∂ t ξ, ϕ t (u) | = |ξ α |,
where c(ε) → 0 as ε → 0. Combining the estimate above with (5.3.13) we obtain that there are c, C > 0 such that for any ξ ∈ Γ it holds

C -1 d t,u e i ξ,ϕt(u) (r -c(ε))|ξ ψ | + (1 -c(ε))|ξ α | c(|ξ ψ | + |ξ α |) c 2 |ξ|,
provided that ε is small enough. In particular we may apply the non-stationary phase method (see for example [Zwo12, Lemma 3.14]) to obtain that for any L > 0 we have C L such that

we i ξ,• , J n (s) C L |s| L e (C L -Re(s))n ξ -L , ξ ∈ Γ ,
where ξ = 1 + |ξ| 2 for some norm | • | on T * M δ . By setting Γ = Γ , we obtain the sought result.

This last result implies that for any continuous semi norm q of D 1 Γ (M • δ ), we have

q A n (s) -Q (s)ι X [ Λ] → 0
as n → +∞ if Re(s) is large enough (depending on q). For any finite set Q of continuous semi norms of D Γ (M • δ ) we define

D • Γ,Q (M • δ ) = {u ∈ D • (M • δ ) : q(u) < ∞, q ∈ Q}.
This set is endowed with the following topology : we say that

u n → u in D • Γ,Q (M • δ ) if the convergence holds in D • (M • δ ) and sup n q(u n ) < ∞ for any q ∈ Q. Then, since [Λ] is compactly supported in M •
δ and WF ([Λ]) ∩ Γ = ∅, we may reproduce the proof of the Hörmander's theorem about product of distributions [Hör90, Theorem 8.2.10] to obtain that there exists a finite set Q of semi norms of D

• Γ (M • δ ) (which depends on [Λ]) such that the product [Λ] ∧ u is well defined for any u ∈ D • Γ,Q (M • δ ) and such that the map D • Γ,Q (M • δ ) → D • (M • δ ), u → [Λ] ∧ u, (5.3.14) is continuous. By Lemma 5.3.8, if Re(s) is large enough, the sequence n → q(A n (s)) is bounded for any q ∈ Q and letting n → ∞ yields q(Q (s)ι X [ Λ]) < ∞ for every q ∈ Q. Thus the products [Λ] ∧ A n (s) and [Λ] ∧ Q (s)ι X [ Λ]
are well defined, and by continuity of the map (5.3.14), we get

[Λ] ∧ A n (s) → [Λ] ∧ Q (s)ι X [ Λ], n → ∞,
where the convergence holds in D • (M • δ ). However, we have

(Q(s) -Q (s))ι X [ Λ] = ∞ 0 (1 -(t))e -ts ϕ * -t ι X [Λ],
and thus supp (

Q(s) -Q (s))ι X [ Λ] ∩ supp([Λ]) = ∅, since ϕ t (z) / ∈ Λ for 0 t ε and z ∈ Λ. This yields [Λ] ∧ Q (s)ι X [ Λ] = [Λ] ∧ Q(s)ι X [ Λ],
and in particular, (5.3.8) holds. This completes the proof of Proposition 5.3.4.

Value of the Poincaré series at the origin

In this section we show that η(s) vanishes at s = 0.

Behavior of Q(s) at s = 0

By [DG16, Theorem 2], we have the Laurent development

Q(s) = Y (s) + J j=1 χ(L X ) j-1 Πχ s j (5.4.1)
for some J 1, where s → Y (s) is holomorphic near s = 0, and Π :

Ω • c (M • δ ) → D • (M • δ ) is a finite rank projector satisfying supp(Π) ⊂ Γ + × Γ -and WF(Π) ⊂ E * + × E * -. (5.4.2) 
Moreover, it holds ran(Π) = C • where

C • = u ∈ D • E * + (M • δ ) : supp(u) ⊂ Γ + , (L X ) J u = 0 .
Elements of C • are called generalized resonant states for X (for the resonance 0). A generalized resonant state u is simply called a resonant state if L X u = 0. In what follows, we will set

Ω • 0 = Ω • c (M • δ ) ∩ ker(ι X ) and C • 0 = C • ∩ ker(ι X ). Since L X α = 0 we have the decomposition C • = C • 0 ⊕ α ∧ C •-1 0 , (5.4.3) 
and this decomposition is preserved by Π. We now invoke a result of Hadfield (see [START_REF] Hadfield | Zeta function at zero for surfaces with boundary[END_REF]Propositions 3,4,5]) which implies that

C 0 0 = {0}, C 2 0 = {0} and L X (C 1 0 ) = {0}. (5.4.4)
In particular by (5.4.3) we have L X Π = 0 and thus (5.4.1) yields

Q(s) = Y (s) + χΠχ s .
(5.4.5)

Now let us decompose Π as

Π| Ω 1 c (M • δ ) = r j=1 u j ⊗ β j ,
where (u j , β j ) ∈ D 1

E * + (M • δ ) × D 2 E * -(M • δ )
satisfy supp u j ⊂ Γ + and supp β j ⊂ Γ -(such a decomposition necessarily exists by (5.4.2)). Then β j is a coresonant state for X, meaning that it is a resonant state for -X ; applying [Had18, Propositions 3, 4, 5] for the vector field -X, we therefore obtain that β j = α ∧ s j for some coresonant state

s j ∈ D 1 E * -(M •
δ ) (indeed, we note that (5.4.4) gives C 2 = α ∧ C 1 0 , and we apply this to the vector field -X instead of X). Also, it follows from [Had18, Lemma 6] that the currents u j and s j are closed.

Summarizing the above results, we get

Π = r j=1 u j ⊗ α ∧ s j (5.4.6)
where (u j , s j ) ∈ D 1

E * + (M • δ ) × D 1 E * -(M • δ ) satisfy supp(u j ) ⊂ Γ + , supp(s j ) ⊂ Γ -, du j = ds j = 0, ι X u j = ι X s j = 0.
(5.4.7)

In particular, we have

M • δ ι X [ Λ] ∧ α ∧ s j = M • δ [ Λ] ∧ s j and thus [Λ], Πι X [ Λ] = r j=1 M • δ [Λ] ∧ u j M • δ [ Λ] ∧ s j .
Note that those products make sense since by Lemma 5.2.2 it holds

E * + ∩ N * Λ ⊂ {0} and E * -∩ N * Λ ⊂ {0}. Let η > 0 and set Γ η + = {z ∈ M δ : dist(z, Γ + ) < η}. By [Had18, Lemma 6], we may find f j ∈ D (M • δ ) such that supp(f j ) ⊂ Γ η + , WF(f j ) ⊂ E * + , L X f j ∈ C ∞ c (M • δ
), and such that v j = u j -df j is smooth. Now since [Λ] is compactly supported in M • δ , we have

M • δ [Λ] ∧ df j = 0 (since d[Λ] = 0 as ∂Λ = ∅) and thus M [Λ] ∧ u j = M [Λ] ∧ v j .
(5.4.8)

Finally, take the coordinates (ρ, τ, θ) given by Lemma 5.2.1 near ∂M = {ρ = 0} (here we assume for simplicity that ∂M is connected but the exact same proof applies if it is not). We have Λ = {(0, τ, +π/2) : τ ∈ R/ Z}, and

∂M δ = {(δ, τ, θ) : τ, θ ∈ R/2πZ}. Consider S 1 = {(ρ, τ, π/2) : ρ ∈ [0, 2δ/3], τ ∈ R/ Z} and S 2 = {(2δ/3, τ, θ) : τ ∈ R/ Z, θ ∈ [π/2, 3π/2]}. Let [S] = [S 1 ] + [S 2 ] and note that d[S] = [Λ] -[W ]
by Stokes' theorem, where

W = {(2δ/3, τ, 3π/2) : τ ∈ R/ Z}
is the incoming normal set of {ρ = 2δ/3}, which is oriented with ∂ τ . Now if η is small enough

[Λ] ∧ v j = [W ] ∧ v j = 0 since W ∩ Γ η + = ∅ (indeed, W is at positive distance of Γ + ) and supp v j ⊂ Γ η + .
Thus we obtained that s → η(s) has no pole at s = 0, and by Proposition 5.3.4 it holds

η(0) = -[Λ], Y (0)ι X [ Λ] .

Value at s = 0

In this subsection we prove Theorem 5.1.1, that is, η(0) = 0. Let us define

S 1 = {ϕ t (z) : 0 t δ/2, z ∈ Λ}, S 2 = {R θ (z) : 0 θ π, z ∈ Λ },
where R θ : M δ → M δ is the rotation of angle θ, and Λ = ϕ δ/2 (Λ). We orient Λ with the orientation of Λ. The manifold S 1 is oriented by declaring that (∂ t , ∂ τ ) is positively oriented (here ∂ τ is any positive basis of T Λ), and S 2 is oriented by declaring that the basis (∂ θ , ∂ τ ), where ∂ τ is any positive basis of T Λ . Let Λ = R π (Λ ). Note that (5.2.13) implies, by multiplication of wavefront sets (see [Hör90, Theorem 8.2.14]),

WF(Y (0)ι X [ Λ]) ⊂ E * + ∪ N * Λ ∪ t 0 z∈ Λ RΦ t (ψ(z)), (5.4.9) 
where Y (0) comes from (5.4.5). In what follows, we will set Y = Y (0)ι X [ Λ] for simplicity. Since E * + ∩ N * Λ ⊂ {0}, and because δ is small, we have Now for z ∈ Λ and t ∈ (0, δ/2), we have N * ϕt(z) (S 1 \ ∂S 1 ) ⊂ RΦ t (ψ(z)) and N * (S 2 \ ∂S 2 ) ⊂ {ξ : ξ, V = 0}. In particular, by Lemmas 5.2.2 and 5.3.7, we have

E * + ∩ N * Λ ⊂ {0}. ( 5 
WF(Y ) ∩ N * ϕt(z) (S j \ ∂S j ), j = 1, 2.
(5.4.12)

Finally, for z ∈ Λ, we have for j = 1, 2,

setting z = ϕ δ/2 (z) ∈ Λ , WF([S j ]) ∩ T * z M δ ⊂ Rα(z ) ⊕ RΦ δ/2 (ψ(z)).
(5.4.13) Combining (5.4.9), (5.4.10), (5.4.11), (5.4.12) and (5.4.13), we obtain that the intersection WF([

S j ]) ∩ WF(Y ) is contained in z∈Λ RΦ δ/2 (ψ(z)) ∩ t 0 z∈ Λ RΦ t (ψ(z)) .
However, by Lemma 5.3.7, for any z ∈ Λ and t > 0, we have Φ t (ψ(z)) / ∈ Rψ(ϕ t (z)). Therefore the above intersection is contained in the zero section and we get WF([S j ]) ∩ WF(Y ) = ∅, j = 1, 2, (5.4.14) and in particular the product [S j ] ∧ Y is well defined. By Stokes' theorem, taking into account the orientations, we have

d[S 1 ] = [Λ ] -[Λ], d[S 2 ] = [Λ ] -[Λ ].
(5.4.15)

Then by (8.2.9) and the facts that d[ Λ] = 0, [d, Y (0)] = 0 (on {χ = 1}) and [ι X , Y (0)] = 0 we have, by using (5.4.1),

dY = dι X Y (0)[ Λ] = L X Y (0)[ Λ] = [ Λ] -Π([ Λ]) = [ Λ] on {χ = 1}
as Π([ Λ]) = 0 by §5.4.1 (we showed that M • δ

[Λ] ∧ u j = 0 for all j but the same holds for [ Λ] and s j ). By Stokes' theorem, since 

[S j ] ∧ Y is compactly supported in M • δ and dY = [ Λ] on {χ = 1} ⊃ supp([S j ]) (j = 1, 2), M δ [Λ] ∧ Y = - M δ d[S 1 ] ∧ Y - M δ d[S 2 ] ∧ Y + M δ [Λ ] ∧ Y = M δ [S 1 ] ∧ [ Λ] + M δ [S 2 ] ∧ [ Λ] + M δ [Λ ] ∧ Y.
η(0) = M δ [Λ] ∧ Y = 0.

Poincaré series for geodesic arcs linking two points

We fix x = y ∈ Σ. We consider η x,y (s) = γ:x y e -s (γ) , where the sum runs over all the (oriented) geodesics joining x to y. For a ∈ Σ we will set Λ a = S a Σ. Note that T z Λ a = RV (z) for z ∈ Λ a (this follows from the definition of V in §5.2.2), and we orient Λ a according to V . In this context, we have the counterpart of Proposition 5.3.4, as follows.

Proposition 5.5.1. For Re(s) large enough it holds

η x,y (s) = -[Λ x ], Q(s)ι X [Λ y ] .

Note that the above pairing makes sense, since we have the inclusion WF([Λ

x ]) ⊂ N * Λ x which gives WF(Q(s)ι X [Λ y ]) ∩ WF([Λ x ]) = ∅ (
the emptiness of the last intersection can be seen by proceeding as in §5.3.2).

Sketch of the proof. Using Remark 5.2.3, we see that for t 0 and z ∈ Λ x such that ϕ -t (z) ∈ Λ y , one has the direct sum

T z M = T z Λ x ⊕ RX(z) ⊕ d ϕ -t (z) ϕ t (T ϕ -t (z) Λ y ).
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Moreover we check that the orientation of the right-hand side has the same orientation of M , again by Remark 5.2.3. Thus we have the counterpart of Lemma 5.3.2 in this context and for any χ ∈ C ∞ c (R + ) it holds

γ:x y χ( (γ)) = - N [Λ x ] ∧ R + χ(t)ι X ϕ * -t [Λ y ]dt.
Now we may proceed as in the proof of Proposition 5.3.4 to obtain the sought result, by approximating the function t → exp(-ts) with compactly supported functions of the form t → χ n (t) exp(-ts) and taking the limit as n → ∞ (one should use appropriate versions of Lemmas 5.3.7 and 5.3.8 to justify the convergence of the pairings).

This result implies that s → η x,y (s) extends meromorphically to the whole complex plane, since s → Q(s) does. To compute its value at zero, we will need the following Lemma 5.5.2. There exists

[S] ∈ D 1 c (M • δ ) such that supp([S]) ⊂ M, WF([S]) ∩ WF([Λ y ]) = ∅ and [Λ x ] = - 1 χ(Σ) [ Λ] -d[S], M δ [S] ∧ [Λ y ] = 1 χ(Σ) . (5.5.1) 
Proof. Here we adapt the arguments of [DR20a, §6.3.2]. Let f 1 : Σ δ → R be a smooth function which coincides with -ρ on {|ρ| δ} (here ρ is the coordinate given by Lemma 5.2.1) and such that df 1 (y) = 0 for any y ∈ ∂Σ. The set of Morse functions being open and dense [Lau12, Theorem 5.6] in C ∞ (Σ δ ), we may find a Morse function

f 2 ∈ C ∞ (Σ δ ) which is arbitrarily close to f 1 in the C 1 norm. Let χ 0 ∈ C ∞ (Σ δ , [0, 1])
such that χ 0 = 1 near ∂Σ and supp χ 0 ⊂ {|ρ| δ/2}. Note that df 1 = dρ C on {|ρ| δ} for some C > 0, where • is any norm on T * Σ δ . In particular, if f 2 is chosen close enough to f 1 in the C 1 topology, the function

f = χ 0 f 1 + (1 -χ 0 )f 2 is also a Morse function. Indeed, f coincides with f 2 on Σ δ \ {|ρ| δ} ; moreover f -f 1 = (1 -χ 0 )(f 2 -f 1 ) so that df C/2 on {|ρ| δ} whenever f 2 is close enough to f 1 . Next we set S f = b, ∇ g f (b) ∇ g f (b) : b ∈ Σ \ crit(f ) ⊂ M δ ,
where

∇ g f ∈ C ∞ (Σ δ , T Σ δ )
is the gradient of f with respect to the metric g, and crit(f ) = {df = 0} is the set of critical points of f . We orient S f according to the orientation of Σ. Then by [DR20a, Lemma 6.7] and Stokes' theorem, we obtain that the integration current [S f ] extends to a current on N and we have 2

d[S f ] = -[ Λ] - a∈crit(f ) (-1) ind f (a) [Λ a ],
2. Indeed, the boundary of S f (near ∂M ) is Λ. In the coordinates of Lemma 5.2.1, Λ = {(τ, 0, -π/2)} is oriented by ∂ τ ≡ H ; as the outward normal pointing vector at ∂Σ is ∂ ρ and (∂ ρ , ∂ τ ) is negatively oriented, we obtain that the boundary term coming from Stokes' formula must be -

[ Λ].
where ind f (a) is the index of a as a critical point of ∇ g f , that is, the number of negative eigenvalues of the linearization of ∇ g f at the point a. Note that (up to taking f 2 very close to f 1 ), we have y / ∈ crit(f ). Thus for each a ∈ crit(f ) we may find a path γ a : [0, 1] → Σ joining a to x, and avoiding y. Setting

θ a = (γ a (t), v) : v ∈ S γa(t) Σ, t ∈ [0, 1] , a ∈ crit(f ), we have d[θ a ] = [Λ x ] -[Λ a ]. The Poincaré-Hopf formula (see [MW97, p.35]) yields 3 a∈crit(f ) (-1) ind f (a) = χ(Σ).
In particular, by setting

[S] = 1 χ(Σ) [S f ] - a (-1) ind f (a) θ a ,
we obtain the first part of (5.5.1). For the second part, we first note that θ a ∩ Λ y = 0. Moreover, S f intersects (transversally) Λ y only at the point (y, ∇ g f (y)/ ∇ g f (y) ).

Looking at the orientations we get that N [S f ] ∧ [Λ y ] = 1 (this follows from (5.2.1) and the fact that Λ y is oriented according to ψ). Finally the wavefront set condition follows from the transversality of the intersection, and the lemma follows.

Before proving Theorem 5.1.2, we state a result about regularization of currents ; this is a version of the de Rham regularization procedure (see [dR12, §15, Proposition 1]) which takes into account the wavefront sets.

Lemma 5.5.3. There are operators

R ε : D • (N ) → Ω • (N ), A ε : D • (N ) → D • (N ), ε ∈ [0, 1],
such that for any u ∈ D • (N ), the following holds.

(i) We have the identities R ε -Id = dA ε + A ε d and [d, R ε ] = 0 ;
(ii) The supports of R ε u and A ε u are contained in the Cε-neighborhood of the support of u for some C > 0 independent of ε ;

(iii) For any closed conical neighborhood Γ of WF(u) (i.e. WF(u) ⊂ Γ • ), there is

ε 0 > 0 such that WF(A ε u) ⊂ Γ for each ε ∈ [0, ε 0 ],
and moreover the families

(A ε u) ε∈[0,ε 0 ] and (R ε u) ε∈[0,ε 0 ] are bounded in D • Γ (N ); (iv) We have R ε u → u in D • (N ) as ε → 0.
Proof. Let X 1 , . . . , X n be vector fields on N generating T N everywhere, and denote the associated flows by ϕ 1,t , . . . , ϕ n,t for t

∈ R. Let ε > 0 and χ ∈ C ∞ c (R n , [0, 1]) such that χ = 1 near 0 and R n χ(t)dt = 1. For u ∈ D • (N ) we define R ε u = R n χ(t)ϕ * 1,εt 1 • • • ϕ * n,εtn u dt.
For z ∈ N and t = (t 1 , . . . , t n ) ∈ R n we will set Ψ ε,z (t) = Φ εt (z) where

Φ t = ϕ n,tn • • • • • ϕ 1,t 1 .
We claim that R ε u is smooth. Indeed, if u is a 0-form, then we have

R ε u(z) = χ, Ψ * ε,z u , z ∈ N,
where the pairing is taken in R n . Indeed, this formula is true for u smooth and thus it remains true for any distribution u by continuity of the pullback Ψ * ε,z : D • (N ) → D • (R n ) (this follows from [Hör90, Theorem 6.1.2] as Ψ ε,z is a submersion R n → N whenever ε > 0, since the vector fields X j generate T N ). In particular R ε u is smooth, because Ψ ε,z depends smoothly on the variable z. If u ∈ Ω k (N ), we write locally u = u e for some basis (e ) of ∧ k T * N ; writing Φ * εt e = j α ,j (t)e j we get by what precedes

R ε u(z) = ,j α ,j χ, Ψ * ε,z u e j (z),
and thus R ε u is smooth. It is immediate to see that R ε u → u in the distributional sense as ε → 0, which is point (iv). Next, note that

(R ε -Id)u = ε 0 ∂ r R n χ(t)Φ * rt u dt dr. By Cartan's formula one has ∂ r Φ * rt = dB rt + B rt d where B t : D • (N ) → D •-1 (N ) is defined by B t = n j=1 ϕ * 1,t 1 • • • ϕ * j,t j ι X j ϕ * j+1,t j+1 • • • ϕ * n,tn , t = (t 1 , . . . , t n ) ∈ R n .
Thus by setting A ε = ε 0 R n χ(t)B rt dtdr we obtain (i). Property (ii) is clear and thus it remains to show that (iii) holds. Let u ∈ D • (N ) and let Γ be a conical neighborhood of WF(u). Take (z 0 , ξ 0 ) ∈ Γ, and a conical neighborhood Γ 0 of ξ 0 such that Γ 0 ∩ Γ = ∅. Let ε 0 > 0 small enough so that Φ * εt (Γ 0 ) ∩ Γ = ∅ for any ε ∈ [0, ε 0 ] and t ∈ supp χ. Let ω ∈ Ω • (N ) be supported in a coordinate chart near z 0 ; we have for ξ ∈ Γ 0

N ωe i ξ,• ∧ A ε u = ε 0 R n χ(t) N ωe i ξ,• ∧ B rt u dtdr.
Thanks to the expression of B rt one can see that the right hand side can be written as

ε 0 R n χ(t) N f (t, r)e i Ξ(t,r),• ∧ u dtdr (5.5.2)
where f (t, r) is a smooth function depending smoothly on (t, r) and Ξ : R n × [0, ε] → T * N is a smooth function satisfying Ξ(t, r) ∈ Γ 0 on supp χ and |Ξ(t, r)| C|ξ|. Since Γ does not intersect Γ 0 , the integral on N in (5.5.2) decays rapidly (i.e. faster than ξ -k for any k 0) as ξ → ∞ and ξ ∈ Γ 0 , with speed decay which is locally uniform with respect to (t, r) ∈ supp χ × [0, ε]. The result follows.

Proof of Theorem 5.1.2. By (5.4.8) and Lemma 5.5.2, we have

M δ [Λ x ] ∧ u j = M δ [Λ x ] ∧ v j = - 1 χ(Σ) M δ [ Λ] ∧ v j - M δ d[S] ∧ v j = 0
since supp(v j ) ⊂ Γ η + with Γ η + ∩ Λ = ∅ and dv j = d(u j -df j ) = 0 by (5.4.7). This shows that η x,y (s) has no pole at s = 0 and that η x,y (0

) = -[Λ x ], Y (0)ι X [Λ y ] . Now since Y (0)ι X [Λ y ] is compactly supported in M •
δ we may view this pairing as a pairing on N , so that

η x,y (0) = - N [Λ x ] ∧ Y (0)ι X [Λ y ].
From (8.2.9) we deduce that dY (0)ι X [Λ y ] = [Λ y ] + u for some current u supported far from M δ/2 . Let ε > 0 small. As d[Λ x ] = 0, we have by Lemma 5.5.3 that

[Λ x ] = R ε [Λ x ] -dA ε [Λ x ], with WF(A ε [Λ x ]) close to WF([Λ x ]) ; thus we may compute N [Λ x ] ∧ Y (0)ι X [Λ y ] = N R ε [Λ x ] ∧ Y (0)ι X [Λ y ] - N dA ε [Λ x ] ∧ ([Λ y ] + u) = - N dR ε [S] ∧ Y (0)ι X [Λ y ] - 1 χ(Σ) N R ε [ Λ] ∧ Y (0)ι X [Λ y ] - N dA ε [Λ x ] ∧ ([Λ y ] + u),
where we used Lemma 5.5.2 in the last equality. By point (ii) of Lemma 5.5.3, the second integral vanishes for small ε since Λ ∩ supp(Y (0)ι X [Λ y ]) = ∅ ; the third one also vanishes to zero as supp([Λ x ]) ∩ supp([Λ y ]) = ∅. Finally the first one writes

N R ε [S] ∧ ([Λ y ] + u),
and thus it converges to 1/χ(Σ) as ε → 0 thanks to the second equation of (5.5.1) and points (ii), (iii) and (iv) of Lemma 5.5.3 (since supp([S]) ∩ supp(u) = ∅). This concludes the proof of Theorem 5.1.2.

Chapitre 6

Torsion dynamique pour les flots de contact hyperboliques

Dans ce chapitre, on introduit la torsion dynamique associé à une paire (ϑ, ρ), où ϑ est une forme de contact sur une variété fermée M dont le champ de Reeb induit un flot d'Anosov (ϕ t ) et ρ est une représentation du groupe fondamental de M . Cet objet est défini comme le produit entre la valeur renormalisée de la fonction zêta de Ruelle de (ϕ t ) à l'origine et la torsion du complexe de dimension finie des états résonants de Pollicott-Ruelle pour la résonance zéro. Nous montrons que la torsion dynamique est invariante par perturbations de la forme de contact, et qu'elle se comporte comme la torsion de Turaev -un invariant topologique de (M, ρ) défini de manière purement combinatoire -sur l'espace des représentations. Ce chapitre reproduit l'article Dynamical torsion for contact Anosov flows [START_REF] Chaubet | Dynamical torsion for contact anosov flows[END_REF] 

Introduction

In this chapter, we prove the results regarding the dynamical torsion announced in the introduction of this thesis (see §2.2.2.2). Let M be a closed, oriented n-dimensional manifold, with n odd. Let (E, ∇) be a flat vector bundle over M . Then ∇ induces a differential

∇ : Ω • (M, E) → Ω •+1 (M, E), ∇ 2 = 0,
where Ω • (M, E) is the space of E-valued differential forms on M . Recall that ∇ will be called acyclic if the associated de Rham cohomology groups H • (∇) = ker(∇)/im(∇) are trivial.

We assume that there is a contact form ϑ ∈ Ω 1 (M ) such that its associated Reeb vector field X = X ϑ has the Anosov property, and we denote by

L ∇ X = ι X ∇ + ∇ι X Ω • (M, E) → Ω • (M, E)
the Lie derivative in the X direction twisted by ∇. In §6.4, we will introduce a chirality operator associated to the contact form ϑ,

Γ ϑ : Ω • (M, E) → Ω n-• (M, E), Γ 2 ϑ = Id,
analogous to the usual Hodge star operator associated to a Riemannian metric, such that

Γ ϑ L ∇ X = L ∇ X Γ ϑ . For Re(s) large, we let ζ X,∇ (s) = γ det 1 -ρ([γ])e -sτ (γ) ,
be the twisted Ruelle zeta function of the pair (X, ∇), where the product runs over all primitive periodic orbits of the flow generated by X and where τ (γ) is the period of γ (cf. §6.3.5). Recall from Chapter 2 that this zeta function has a meromorphic extension to the whole complex plane.

Let C • ⊂ D • (M, E) be the finite dimensional space of Pollicott-Ruelle generalized resonant states of L ∇ X for the resonance 0, that is,

C • = u ∈ D • (M, E), WF(u) ⊂ E * u , ∃N ∈ N, L ∇ X N u = 0 ,
where WF is the Hörmander wavefront set, E * u ⊂ T * M is the unstable cobundle of X 1 , cf. §6.3, and D (M, E) denotes the space of E-valued currents. Since ∇ commutes with L ∇ X , it induces a differential ∇ :

C • → C •+1
. Then a result of Dang-Rivière [START_REF] Viet | Topology of pollicott-ruelle resonant states[END_REF] implies that the complex (C • , ∇) is acyclic if we assume that ∇ is. Because Γ ϑ commutes with L ∇ X , it induces a chirality operator on C • . Therefore we can compute the torsion τ (C • , Γ ϑ ) of the finite dimensional complex (C • , ∇) with respect to Γ ϑ , as described in [START_REF] Braverman | Refined analytic torsion as an element of the determinant line[END_REF] (see §6.2).

Then we define the dynamical torsion τ ϑ as the product

τ ϑ (∇) (-1) q = ± τ (C • , Γ ϑ ) (-1) q finite dimensional torsion × lim s→0 s -m(X,ρ) ζ X,∇ (s) 
renormalized zeta function at s=0

∈ C \ 0,
where the sign ± will be given later, m(X, ∇) is the order of ζ X,∇ (s) at s = 0 and q = dim(M )-1 2 is the dimension of the unstable bundle of X. Note that the order m(X, ρ) ∈ Z is a priori not stable under perturbations of (X, ρ), in fact both terms in the product may not be invariant under small changes of ϑ whereas the dynamical torsion τ ϑ has interesting invariance properties as we will see below.

Main properties of the dynamical torsion

We recall here the results announced in §2.2.2.2. Denote by Rep ac (M, d) the set of acyclic representations π 1 (M ) → GL(C d ) and by A ⊂ C ∞ (M, T M ) the space of contact forms on M whose Reeb vector field induces an Anosov flow. This is an open subset of the space of contact forms. For any ϑ ∈ A, we denote by X ϑ its Reeb vector field. In the spirit of Ray-Singer's result on the invariance of the analytic torsion with respect to the Riemannian metric [START_REF] Daniel | R-torsion and the laplacian on riemannian manifolds[END_REF], our first result shows τ ϑ (ρ) is invariant by small perturbations of the contact form ϑ ∈ A. Here, for any representation ρ, the number τ ϑ (ρ) is by definition τ ϑ (∇ ρ ), where (E ρ , ∇ ρ ) is any flat vector bundle whose holonomy is given by ρ. Theorem 6.1.1 (Local invariance of the dynamical torsion). Let (M, ϑ) be a contact manifold such that the Reeb vector field of ϑ induces an Anosov flow. Let (ϑ τ ) τ ∈(-ε,ε) be a smooth family in A. Then ∂ τ log τ ϑτ (ρ) = 0 for any ρ ∈ Rep ac (M, d). Remark 6.1.2. In the case where the representation ρ is not acyclic, we can still define τ ϑ (ρ) as an element of the determinant line det H • (M, ρ) and this element is invariant under perturbations of ϑ ∈ A, cf. Remarks 6.4.5 and 6.5.2.

Our second result aims to compare τ ϑ with Turaev's refined version of the Reidemeister torsion τ e,o , which depends on some choice of Euler structure e and orientation o (see §6.7.2 for a detailed exposition of these notions). Finally, our third result aims to describe how ∂ u log τ ϑ (ρ u ) depends on the choice of the contact Anosov vector field X ϑ . Theorem 6.1.4. Let (M, ϑ) be a contact manifold such that the Reeb vector field of ϑ induces an Anosov flow. Let (ρ u ) |u| ε be a smooth family in Rep ac (M, d). Then for any η ∈ A

∂ u log τ η (ρ u ) = ∂ u log τ ϑ (ρ u ) + ∂ u log det ρ u , cs(X ϑ , X η ) topological
where cs(X ϑ , X η ) ∈ H 1 (M, Z) is the Chern-Simons class of the pair of vector fields (X ϑ , X η ).

The Chern-Simons class cs(X ϑ , X η ) ∈ H 1 (M, Z) measures the obstruction to find a homotopy among non singular vector fields connecting X ϑ and X η (see §6.7.1).

Because the dynamical torsion is constructed with the help of the dynamical zeta function ζ X,ρ , we deduce from the above theorem some informations about the behavior of ζ X,ρ (s) near s = 0, as follows. Corollary 6.1.5. Let M be a closed odd dimensional manifold. Then for every connected open subsets U ⊂ Rep ac (M, d) and V ⊂ A, there exists a constant C such that for every Anosov contact form ϑ ∈ V and every representation ρ ∈ U,

ζ X ϑ ,ρ (s) (-1) q = Cs (-1) q m(ρ,X ϑ ) τ e X ϑ ,o (ρ) τ (C • (ϑ, ρ) , Γ ϑ ) (1 + O(s)) , (6.1.1)
where X ϑ is the Reeb vector field of ϑ, (E ρ , ∇ ρ ) is the flat vector bundle over M induced by ρ, C • (ϑ, ρ) ⊂ D • (M, E ρ ) is the space of generalized resonant states for the resonance 0 of L ∇ρ X ϑ and m(X ϑ , ρ) is the vanishing order of ζ X ϑ ,ρ (s) at s = 0.

Methods of proof

Let us briefly sketch the proofs of Theorems 6.1.1 and 6.1.3 which rely essentially on two variational arguments : we compute the variation of τ ϑ (∇) when we perturb the contact form ϑ and the connection ∇. As we do so, the space C • (ϑ, ∇) of Pollicott-Ruelle resonant states of L ∇ X ϑ for the resonance 0 may radically change. Therefore, it is convenient to consider the space C • [0,λ] (ϑ, ∇) instead, which consists of the generalized resonant states for L ∇

X ϑ for resonances s such that |s| λ, where λ ∈ (0, 1) is chosen so that {|s| = λ} ∩ Res(L ∇ X ϑ ) = ∅. Then using [BK07c, Proposition 5.6] and multiplicativity of torsion, one can show that

τ ϑ (∇) = ±τ C • [0,λ] (ϑ, ∇), Γ ϑ ζ (λ,∞) X ϑ ,ρ (0) (-1) q , (6.1.2) where ζ (λ,∞)
X ϑ ,ρ is a renormalized version of ζ X ϑ ,ρ (we remove all the poles and zeros of ζ X ϑ ,ρ within {s ∈ C, |s| ≤ λ}), see §6.4. Thus we can work with the space C • [0,λ] (ϑ, ∇), which behaves nicely under perturbations of X thanks to Bonthonneau's construction of uniform anisotropic Sobolev spaces for families of Anosov flows [START_REF] Guedes | Perturbation of ruelle resonances and faure-sjöstrand anisotropic space[END_REF], and also under perturbations of ∇. Now consider a smooth family of contact forms (ϑ t ) t for |t| < ε such that their Reeb vector fields (X t ) t induce Anosov flows. Then Theorem 6.5.1 says that for any acyclic ∇, the map t → τ ϑt (∇) is differentiable and its derivative vanishes. This follows from a computation, using a result of [START_REF] Braverman | Refined analytic torsion as an element of the determinant line[END_REF] about the variation of the torsion of a finite dimensional complex when the chirality operator is perturbed, and on a variation formula of the map t → ζ Xt,ρ (s) for Re(s) big enough obtained in [START_REF] Nguyen | Fried conjecture in small dimensions[END_REF].

Next, consider a smooth family of flat connections z → ∇(z), where z is a complex number varying in a small neighborhood of the origin and write ∇(z) = ∇+zα+o(z) where α ∈ Ω 1 (M, End(E)). Then we show in §6.6, in the same spirit as before, that z → τ ϑ (∇(z)) is complex differentiable and its logarithmic derivative reads

∂ z | z=0 log τ ϑ (∇(z)) = -tr s αKe -εL ∇ X ϑ ,
where ε > 0 is small enough, tr s is the super flat trace, cf. §B.3.1, and

K : Ω • (M, E) → D • (M, E) is a cochain contraction, that is, it satisfies ∇K + K∇ = Id Ω • (M,E) .
On the other hand, we can compute, using the formalism of [START_REF] Viet | Spectral analysis of morse-smale flows, ii : Resonances and resonant states[END_REF],

∂ z | z=0 log τ e ϑ ,o (∇(z)) = -tr s α Ke -εL ∇ -X - e tr α,
where e ϑ is an Euler structure canonically associated to ϑ, K is another cochain contraction, X is a Morse-Smale gradient vector field and e ∈ C 1 (M, Z) is a singular one-chain representing the Euler structure e ϑ , cf. §6.7. Now using the fact that K and K are cochain contractions, one can see that α Ke

-εL ∇ X ϑ -Ke -εL ∇ X = αR ε + [∇, αG ε ],
where R ε is an operator of degree -1 whose kernel is, roughly speaking, the union of graphs of the maps e -εXu , where (X u ) u is a non-degenerate family of vector fields interpolating X ϑ and X, cf. §6.7.3, and G ε is some operator of degree -2. Therefore we obtain by cyclicity of the flat trace

∂ z | z=0 log τ ϑ (∇(z)) τ e ϑ ,o (∇(z)) = tr s αR ε - e tr α = 0, (6.1.3)
where the last equality comes from differential topology arguments. Using the analytical structure of the representation variety, we may deduce from (6.1.3) the claim of Theorem 6.1.3. Theorem 6.1.4 then follows from the invariance of the dynamical torsion under small perturbations of the flow, the fact that τ e,o (ρ) = τ e ,o (ρ) det ρ, h for any other Euler structure e , where h ∈ H 1 (M, Z) satisfies e = e + h (we have that H 1 (M, Z) acts freely and transitively on the set of Euler structures, cf. §6.7), and the fact that, in our notations, e η -e ϑ = cs(X ϑ , X η ) for any other contact form η.

Plan of the chapter.

This chapter is organized as follows. In §6.2, we give some preliminaries about torsion of finite dimensional complexes computed with respect to a chirality operator. In §6.3, we introduce Pollicott-Ruelle resonances. In §6.4, we compute the refined torsion of a space of generalized eigenvectors for nonzero resonances and we define the dynamical torsion. In §6.5, we prove that our torsion is unsensitive to small perturbations of the dynamics. In §6.6, we compute the variation of our torsion with respect to the connection. In §6.7, we introduce Euler structures which are some topological tools used to fix ambiguities of the refined torsion. In §6.8, we introduce the refined combinatorial torsion of Turaev using Morse theory and we compute its variation with respect to the connection. We finally compare it to the dynamical torsion in §6.9.

Torsion of finite dimensional complexes

We recall the definition of the refined torsion of a finite dimensional acyclic complex computed with respect to a chirality operator, following [START_REF] Braverman | Refined analytic torsion as an element of the determinant line[END_REF]. Then we compute the variation of the torsion of such a complex when the differential is perturbed.

The determinant line of a complex

For a non zero complex vector space V , the determinant line of V is the line defined by det(V ) = ∧ dim V V . We declare the determinant line of the trivial vector space {0} to be C. If L is a 1-dimensional vector space, we will denote by L -1 its dual line. Any basis

(v 1 , . . . , v n ) of V defines a nonzero element v 1 ∧ • • • ∧ v n ∈ det(V ).
Thus elements of the determinant line of det(V ) should be thought of as equivalence classes of oriented basis of V .

Let

(C • , ∂) : 0 ∂ -→ C 0 ∂ -→ C 1 ∂ -→ • • • ∂ -→ C n ∂ -→ 0
be a finite dimensional complex, i.e. dim C j < ∞ for all j = 0, . . . , n. We define the determinant line of the complex

C • by det(C • ) = n j=0 det(C j ) (-1) j . Let H • (∂) be the cohomology of (C • , ∂), that is H • (∂) = n j=0 H j (∂), H j (∂) = ker(∂ : C j → C j+1 ) ran(∂ : C j-1 → C j ) .
We will say that the complex

(C • , ∂) is acyclic if H • (∂) = 0. In that case, det H • (∂) is canonically isomorphic to C.
It remains to define the fusion homomorphism that we will later need to define the torsion of a finite dimensional based complex [FT00, §2.3]. For any finite dimensional vector spaces V 1 , . . . , V r , we have a fusion isomorphism

µ V 1 ,...,Vr : det(V 1 ) ⊗ • • • ⊗ det(V r ) → det(V 1 ⊕ • • • ⊕ V r ) defined by µ V 1 ,...,Vr v 1 1 ∧ • • • ∧ v m 1 1 ⊗ • • • ⊗ v 1 r ∧ • • • ∧ v mr r = v 1 1 ∧ • • • ∧ v m 1 1 ∧ • • • ∧ v 1 r ∧ • • • ∧ v mr r ,
where m j = dim V j for j ∈ {1, . . . , r}.

Torsion of finite dimensional acyclic complexes.

In the present paper, we want to think of torsion of finite dimensional acyclic complexes as a map ϕ C • from the determinant line of the complex to C. We have a canonical isomorphism

ϕ C • : det(C • ) ∼ -→ C, (6.2.1)
defined as follows. Fix a decomposition

C j = B j ⊕ A j , j = 0, . . . , n, with B j = ker(∂) ∩ C j and B j = ∂(A j-1 ) = ∂(C j-1
) for every j. Then ∂| A j : A j → B j+1 is an isomorphism for every j.

Fix non zero elements c j ∈ det C j and a j ∈ det A j for any j. Let ∂(a j ) ∈ det B j+1 denote the image of a j under the isomorphism det A j → det B j+1 induced by the isomorphism ∂| A j : A j → B j+1 . Then for each j = 0, . . . , n, there exists a unique λ j ∈ C such that c j = λ j µ B j ,A j ∂(a j-1 ) ⊗ a j , where µ B j ,A j is the fusion isomorphism defined in §6.2.1. Then define the isomorphism

ϕ C • by ϕ C • : c 0 ⊗ c -1 1 ⊗ • • • ⊗ c (-1) n n → (-1) N (C • ) n j=0 λ (-1) j j ∈ C,
where

N (C • ) = 1 2 n j=0 dim A j dim A j + (-1) j+1 .
One easily shows that

ϕ C • is independent of the choices of a j [Tur01, Lemma 1.3]. The number τ (C • , c) = ϕ C • (c) is called the refined torsion of (C • , ∂) with respect to the element c.
The torsion will depend on the choices of c j ∈ det C j . Here the sign convention (that is, the choice of the prefactor (-1) N (C • ) in the definition of ϕ C • ) follows Braverman-Kappeler [BK07c, §2] and is consistent with Nicolaescu [START_REF] Nicolaescu | The Reidemeister Torsion of 3-manifolds[END_REF]§1]. This prefactor was introduced by Turaev and differs from [START_REF] Vladimir | Reidemeister torsion in knot theory[END_REF]. See [START_REF] Nicolaescu | The Reidemeister Torsion of 3-manifolds[END_REF] for the motivation for the choice of sign. Remark 6.2.1. If the complex (C • , ∂) is not acyclic, we can still define a torsion τ (C • , c), which is this time an element of the determinant line det H

• (∂), cf. [BK07c, §2 .4] 
.

Torsion with respect to a chirality operator

We saw above that torsion depends on the choice of an element of the determinant line. A way to fix the value of the torsion without choosing an explicit basis is to use a chirality operator as in [START_REF] Braverman | Refined analytic torsion as an element of the determinant line[END_REF]. Take n = 2r + 1 an odd integer and consider a complex (C • , ∂) of length n. We will call a chirality operator an operator Γ :

C • → C • such that Γ 2 = Id C • , and
Γ(C j ) = C n-j , j = 0, . . . , n.
Γ induces isomorphisms det(C j ) → det(C n-j ) that we will still denote by Γ. If ∈ L is a non zero element of a complex line, we will denote by -1 ∈ L -1 the unique element such that -1 ( ) = 1. Fix non zero elements c j ∈ det(C j ) for j ∈ {0, . . . , r} and define

c Γ = (-1) m(C • ) c 0 ⊗ c -1 1 ⊗ • • • ⊗ c (-1) r r ⊗ (Γc r ) (-1) r+1 ⊗ (Γc r-1 ) (-1) r ⊗ • • • ⊗ (Γc 0 ) -1 ,
where

m(C • ) = 1 2 r j=0 dim C j dim C j + (-1) r+j .
Definition 6.2.2. The element c Γ is independent of the choices of c j for j ∈ {0, . . . , r} ; the refined torsion of (C • , ∂) with respect to Γ is the element

τ (C • , Γ) = τ (C • , c Γ ).
We also have the following result which is [BK07c, Lemma 4.7] in the acyclic case about the multiplicativity of torsion. Proposition 6.2.3. Let (C • , ∂) and ( C• , ∂) be two acyclic complexes of same length endowed with two chirality operators Γ and Γ. Then

τ (C • ⊕ C• , Γ ⊕ Γ) = τ (C • , Γ)τ ( C• , Γ).

Computation of the torsion with the contact signature operator

Let B = Γ∂ + ∂Γ : C • → C • .
B is called the signature operator. Let B + = Γ∂ and B -= ∂Γ. Denote

C j ± = C j ∩ ker(B ∓ ), j = 0, . . . , n.
We have that

B ± preserves C • ± . Note that B + (C j + ) ⊂ C n-j-1 + , so that B + (C j + ⊕ C n-j-1 + ) ⊂ C j + ⊕ C n-j-1 + . Note that if B is invertible on C • , B + is invertible on C • + . If B is invertible, we can compute the refined torsion of (C • , ∂) using the following Proposition 6.2.4. [BK07c, Proposition 5.6] Assume that B is invertible. Then (C • , ∂) is acyclic so that det(H • (∂)) is canonically isomorphic to C. Moreover, τ (C • , Γ) = (-1) r dim C r + det Γ∂| C r + (-1) r r-1 j=0 det Γ∂| C j + ⊕C n-j-1 + (-1) j .

Super traces and determinants

Let V • = p j=0 V j is a graded finite dimensional vector space and A : V • → V • be a degree preserving linear map. We define the super trace and the super determinant of A by

tr s,V • A = p j=0 (-1) j tr V j A, det s,V • A = p j=0 (det V j A) (-1) j .
We also define the graded trace and the graded determinant of A by

tr gr,V • A = p j=0 (-1) j j tr V j A, det gr,V • A = p j=0
(det V j A) (-1) j j .

Analytic families of differentials

The goal of the present subsection is to give a variation formula for the torsion of a finite dimensional complex when we vary the differential. This formula plays a crucial role in the variation formula of the dynamical torsion, when the representation is perturbed. Indeed, we split the dynamical torsion as the product of the torsion τ (C • (ϑ, ρ), Γ ϑ ) of some finite dimensional space of Ruelle resonant states and a renormalized value at s = 0 of the dynamical zeta function ζ X,ρ (s). Then the following formula allows us to deal with the variation of τ (C • (ϑ, ρ), Γ ϑ ).

Let (C • , ∂) be an acyclic finite dimensional complex of finite odd length n. If S : C • : C • is a linear operator, we will say that it is of degree s if S(C k ) ⊂ C k+s for any k. Let U be a neighborhood of the origin in the complex plane and ∂(z), z ∈ U , be a family of acyclic differentials on C • which is complex differentiable at z = 0, that is,

∂(z) = ∂ + za + o(z) (6.2.2)
for some operator a :

C • → C • of degree 1. Note that ∂(z) • ∂(z) = 0 implies that [∂, a] = ∂a + a∂ = 0. (6.2.3) We will denote by C • (z) the complex (C • , ∂(z)). Finally let k : C • → C • be a cochain contraction, that is a linear map of degree 1 such that ∂k + k∂ = Id C • . (6.2.4)
The existence of such map is ensured by the acyclicity of (C • , ∂).

Lemma 6.2.5. In the above notations, for any chirality operator Γ on C • , the map z → τ (C • (z), Γ) is complex differentiable at z = 0 and

d dz z=0 log τ (C • (z), Γ) = -tr s,C • (ak).
Note that this implies in particular that tr s,C • (ak) does not depend on the chosen cochain contraction k. This is expected since if k is another cochain contraction,

[∂, akk ] = ∂akk + akk ∂ = a(k -k )
by (6.2.3), and the supertrace of a supercommutator vanishes.

Proof. First note that for non zero elements c, c ∈ det C • , we have

τ (C • (z), c) = [c : c ] • τ (C • (z), c ), (6.2.5)
where

[c : c ] ∈ C satisfies c = [c : c ] • c .
For every j = 0, . . . , n, fix a decomposition

C j = A j ⊕ B j ,
where B j = ker ∂ ∩ C j and A j is any complementary of B j in C j . Fix some basis a 1 j , . . . , a j j of A j ; then ∂a 1 j , . . . , ∂a j j is a basis of B j+1 by acyclicity of (C • , ∂). Now let

c j = a 1 j ∧ • • • ∧ a j j ∧ ∂a 1 j-1 ∧ • • • ∧ ∂a j-1 j-1 ∈ det C j , and c = c 0 ⊗ (c 1 ) -1 ⊗ c 2 ⊗ • • • ⊗ (c n ) (-1) n ∈ det C • .
Now by definition of the refined torsion, we have for |z| small enough

τ (C • (z), c) = ± n j=0 det A j (z) (-1) j+1 (6.2.6)
where the sign ± is independent of z and A j (z) is the matrix sending the basis a 1 j , . . . , a j j , ∂a 1 j-1 , . . . , ∂a j-1 j-1

to the basis a 1 j , . . . , a j j , ∂(z)a 1 j-1 , . . . , ∂(z)a j-1 j-1

(which is indeed a basis of C j for |z| small enough). Let k : C • → C • of degree -1 defined by k∂a m j = a m j , ka m j = 0, for every j and m ∈ {0, . . . , j }. Then k∂ c) by (6.2.5).

+ ∂k = Id C • and det A j (z) = det ∂B j-1 ⊕B j ∂(z)k ⊕ Id . Now (6.2.2) and (6.2.6) imply the desired result, because τ (C • (z), Γ) = [c Γ : c] • τ (C • (z),

Geometrical and dynamical preliminaries

In this section, we introduce our geometrical and dynamical setting. We will adopt the formalism of Harvey-Polking [HP + 79] about currents which will be convenient to compute flat traces and relate the variation of the Ruelle zeta function with topological objects.

Notations

Let M be an oriented closed connected manifold of odd dimension n = 2r + 1. Let (E, ∇) → M be a flat vector bundle over M of rank d 1. We will take the notations of Appendix B ; in particular we will denote by

Ω k (M, E) = C ∞ (M, ∧ k ⊗ E)
the space of E valued k-forms and by D k (M, ∧ k ⊗E) the space of E-valued k-currents.

Here we denoted the bundle ∧ k T * M by ∧ k for simplicity. The space of differential forms is denoted by Ω • (M ). We view the connection as a degree 1 operator (as an operator of the graded vector space Ω • (M, E))

∇ : Ω k (M, E) → Ω k+1 (M, E), k = 0, . . . , n.
The flatness of the connection reads ∇ 2 = 0 and thus we obtain a cochain complex Ω • (M, E), ∇ . We will assume that the connection ∇ is acyclic, that is, the complex Ω • (M, E), ∇ is acyclic, or equivalently, the cohomology groups

H k (M, ∇) = u ∈ Ω k (M, E) : ∇u = 0 ∇v : v ∈ Ω k-1 (M, E)
, k = 0, . . . , n, are trivial.

Anosov dynamics

Let X be a smooth vector field on M and denote by ϕ t its flow. We will assume that X generates an Anosov flow, that is, there exists a splitting of the tangent space

T x M at every x ∈ M T x M = RX(x) ⊕ E s (x) ⊕ E u (x),
where E u (x), E s (x) are subspaces of T x M depending continuously on x and invariant by the flot ϕ t , such that for some constants C, ν > 0 and some smooth metric

| • | on T M one has |(dϕ t ) x v s | Ce -νt |v s |, t 0, v s ∈ E s (x), |(dϕ t ) x v u | Ce -ν|t| |v u |, t 0, v u ∈ E u (x).
We will use the dual decomposition

T * M = E * 0 ⊕ E * u ⊕ E *
s where E * 0 , E * u and E * s are defined by

E * 0 (E s ⊕ E u ) = 0, E * s (E 0 ⊕ E s ) = 0, E * u (E 0 ⊕ E u ) = 0. (6.3.1)

Pollicott-Ruelle resonances

Let ι X denote the interior product with X and

L ∇ X = ∇ι X + ι X ∇ : Ω • (M, E) → Ω • (M, E)
be the Lie derivative along X acting on E-valued forms. Locally, the action of L ∇ X is given by the following. Take U a domain of a chart and write ∇ = d + A where A ∈ Ω 1 (M, End(E)). Take w 1 , . . . , w (resp. e 1 , . . . , e d ) some local basis of ∧ k (resp. E) on U . Then for any 1 i and 1 j d,

L ∇ X (f w i ⊗ e j ) = (Xf )w i ⊗ e j + f (L X w i ) ⊗ e j + f w i ⊗ A(X)e j , f ∈ C ∞ (U )
, where L X is the standard Lie derivative acting on forms. In particular, L ∇ X is a differential operator of order 1 acting on sections of the bundle ∧ • T * M ⊗ E, whose principal part is diagonal and given by X.

Denote by Φ t k the induced flow on the vector bundle

∧ k T * M ⊗ E → M , that is, Φ t k (β ⊗ v) = T (dϕ t ) -1 x β ⊗ P ∇ t (x)v, x ∈ M, (β, v) ∈ ∧ k (T * x M ) × E x , t ∈ R, where P ∇ t (x) is the parallel transport induced by ∇ along the curve {ϕ s (x), s ∈ [0, t]}. This induces a map e tL ∇ X : Ω • (M, E) → Ω • (M, E). For Re(s) big enough, the operator L ∇ X + s acting on Ω • (M, E) is invertible with inverse (L ∇ X + s) -1 = ∞ 0 e -tL ∇ X e -st dt. (6.3.2)
The results of [START_REF] Faure | Upper bound on the density of ruelle resonances for anosov flows[END_REF] generalize to the flat bundle case as in [DR19b, §3] and the resolvent L ∇ X + s -1 , viewed as a family of operators 

Ω • (M, E) → D • (M, E),

Generalized resonant states

Let s 0 ∈ Res(L ∇ X ). By [DZ16, Proposition 3.3] we have a Laurent expansion

L ∇ X + s -1 = Y s 0 (s) + J(s 0 ) j=1 (-1) j-1 L ∇ X + s 0 j-1 Π s 0 (s -s 0 ) j (6.3.3)
where Y s 0 (s) is holomorphic near s = s 0 , and

Π s 0 = 1 2πi Cε(s 0 ) L ∇ X + s -1 ds : Ω • (M, E) → D • (M, E) (6.3.4)
is an operator of finite rank. Here C ε (s 0 ) = {|z -s 0 | = ε} with ε > 0 small enough is a small circle around s 0 such that Res(L ∇ X ) ∩ {|z -s 0 | ε} = {s 0 }. Moreover the operators Y s 0 (s) and Π s 0 extend to continuous operators

Y s 0 (s), Π s 0 : D • E * u (M, E) → D • E * u (M, E). (6.3.5)
The space ,E) is called the space of generalized resonant states of L ∇ X associated to the resonance s 0 .

C • (s 0 ) = ran(Π s 0 ) ⊂ D • E * u (M

The twisted Ruelle zeta function

Fix a base point x ∈ M and identify π 1 (M ) with π 1 (M, x ). Let Per(X) be the set of periodic orbits of X. For every γ ∈ Per(X) we fix some base point x γ ∈ Im(γ) and an arbitrary path c γ joining x γ to x . This path defines an isomorphism ψ γ : π 1 (M, x γ ) ∼ = π 1 (M ) and we can thus define every γ ∈ Per(X)

ρ ∇ ([γ]) = ρ ∇ (ψ γ [γ]).
The twisted Ruelle zeta function associated to the pair (X, ∇) is defined by

ζ X,∇ (s) = γ∈G X det Id -ρ ∇ ([γ])e -sτ (γ) , Re(s) > C, (6.3.6)
where G X is the set of all primitive closed orbits of X (that is, the closed orbits that generate their class in π 1 (M )), τ (γ) is the period of the orbit γ and C > 0 is some big constant depending on ρ and X satisfying

ρ ∇ ([γ]) exp(Cτ (γ)), γ ∈ G X , (6.3.7)
for some norm • on End(E x ).

For every closed orbit γ, we have | det(I -P γ )| = (-1) q det(I -P γ ), (6.3.8)

for some q ∈ Z not depending on γ, where P γ is the linearized Poincaré return map of γ, that is P γ = d x ϕ -τ (γ) | Es(x)⊕Eu(x) for x ∈ Im(γ) (if we choose another point in Im(γ), the map will be conjugated to the first one). This condition is always true when ϕ t is contact, in which case we have q = dim E s . Giuletti-Pollicott-Liverani [START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF] (see also the work of Dyatlov-Zworski [DZ16] for a microlocal proof) showed that ζ X,∇ has a meromorphic continuation to C whose poles and zeros are contained in Res(L ∇ X ) ; moreover, the order of ζ X,∇ near a resonance

s 0 ∈ Res(L ∇ X ) is given by 3 m(s 0 ) = (-1) q+1 n k=0 (-1) k km k (s 0 ), (6.3.9)
where m k (s 0 ) is the rank of the spectral projector Π s 0 | Ω k (M,E) .

Actually, it follows from

[DZ16] that m(s 0 ) = (-1) q n-1 k=0 (-1) k m 0 k (s 0 ), where m 0 k (s 0 ) is the dimension of Π s0 Ω k (M, E) ∩ ker ι X .
We can however repeat the arguments using the identity

det(Id -P γ ) = - n k=0 (-1) k k tr ∧ k d x ϕ -τ (γ) instead of the identity det(Id -P γ ) = n-1 k=0 (-1) k tr ∧ k P γ (see [DZ16, §2.2]
), and study the action of L ∇ X on the bundles ∧ k T * M ⊗ E rather than its action on the bundles ∧ k T * M ∩ ker ι X ⊗ E, to obtain (6.3.9).

Topology of resonant states

Since ∇ commutes with L ∇ X , it induces a differential on the complexes C • (s 0 ) for any s 0 ∈ Res(L ∇ X ). It is shown in [START_REF] Viet | Topology of pollicott-ruelle resonant states[END_REF] that the complexes C • (s 0 ), ∇ are acyclic whenever s 0 = 0. Moreover, for s 0 = 0, the map

Π s 0 =0 : Ω • (M, ∇) -→ C • (s 0 = 0)
is a quasi-isomorphism, that is, it induces isomorphisms at the level of cohomology groups. As the connexion ∇ is assumed to be acyclic, we obtain that the complex C • (s 0 = 0), ∇ is also acyclic.

Perturbation of holonomy

Let γ : [0, 1] → M be a smooth curve and α ∈ Ω 1 (M, End(E)). Let P t (resp. Pt ) be the parallel transport

E γ(0) → E γ(t) of ∇ (resp. ∇ = ∇ + α) along γ| [0,t] . Then Pt = P t exp - t 0 P -τ α( γ(τ ))P τ dτ . (6.3.10)
The above formula will be useful in some occasion. For simplicity, we will denote for any

A ∈ C ∞ (M, End(E)) γ A = t 0 P -τ A(γ(τ ))P τ dτ ∈ End E γ(0)
so that P1 = P 1 expγ α(X) .

Proof. For every vector field u along γ we have

d dt P -t u(t) = P -t ∇ γ(t) u(t). Therefore d dt P -t Pt = P -t ∇ γ(t) Pt = P -t ∇ γ(t) Pt -P -t α( γ(t)) Pt
= -P -t α( γ(t))P t P -t Pt , which concludes.

The dynamical torsion of a contact Anosov flow

From now on, we will assume that the flow ϕ t is contact, that is, there exists a smooth one form ϑ ∈ Ω 1 (M ) such that ϑ ∧ (dϑ) r is a volume form on M , ι X ϑ = 1 and ι X dϑ = 0. The purpose of this section is to define the dynamical torsion of the pair (ϑ, ∇). We first introduce a chirality operator Γ ϑ acting on Ω • (M, E) which is defined thanks to the contact structure. Then the dynamical torsion is a renormalized version of the twisted Ruelle zeta function corrected by the torsion of the finite dimensional space of the generalized resonant states for resonance s 0 = 0 computed with respect to Γ ϑ . This construction was inspired by the work of Braverman-Kappeler on the refined analytic torsion [START_REF] Braverman | Refined analytic torsion as an element of the determinant line[END_REF].

The chirality operator associated to a contact structure

Let V X → M denote the bundle T * M ∩ ker ι X . Note that for k ∈ {0, . . . , n}, we have the decomposition

∧ k T * M = ∧ k-1 V X ∧ ϑ ⊕ ∧ k V X . (6.4.1) Indeed, if α ∈ ∧ k T * M we may write α = (-1) k+1 ι X α ∧ ϑ ∈∧ k-1 V X ∧ϑ + α -(-1) k+1 ι X α ∧ ϑ. ∈∧ k V X
Let us introduce the Lefschetz map

L : ∧ • V X → ∧ •+2 V X u → u ∧ dϑ.
Since dϑ is a symplectic form on V X , the maps L r-k induce bundle isomorphisms 

L r-k : ∧ k V X ∼ -→ ∧ 2r-k V X , k = 0, . . . ,
ϑ : ∧ • T * M → ∧ n-• T * M defined by Γ 2 ϑ = 1 and Γ ϑ (f ∧ ϑ + g) = L r-k g ∧ ϑ + L r-k+1 f, f ∈ ∧ k-1 V X , g ∈ ∧ k V X , k ∈ {0, . . . , r}, (6.4. 
3) where we used the decomposition (6.4.1).

Note that in particular one has for k ∈ {r + 1, . . . , n},

Γ ϑ (f ∧ ϑ + g) = L k-r -1 g ∧ ϑ + L k-1-r -1 f.

The refined torsion of a space of generalized eigenvectors

The operator Γ ϑ acts also on Ω • (M, E) by acting trivially on E-coefficients. Since L X ϑ = 0, Γ ϑ and L ∇ X commute so that Γ ϑ induces a chirality operator

Γ ϑ : C • (s 0 ) → C n-• (s 0 )
for every s 0 ∈ Res(L ∇ X ). Recall from §6.3.6 that the complexes C • (s 0 ), ∇ are acyclic. The following formula motivates the upcoming definition of the dynamical torsion.

Proposition 6.4.2. Let s 0 ∈ Res(L ∇ X ) \ {0, 1}. We have τ (C • (s 0 ), Γ ϑ ) -1 = (-1) Qs 0 det gr,C • (s 0 ) L ∇ X where Q s 0 = r k=0 (-1) k (r + 1 -k) dim C k (s 0 )
and τ (C • (s 0 ), Γ ϑ ) ∈ C \ 0 is the refined torsion of the acyclic complex C • (s 0 ), ∇ with respect to the chirality Γ ϑ , cf Definition 6.2.2.

Let us first admit the above proposition ; the proof will be given in § §6.4.5,6.4.6.

Spectral cuts

If I ⊂ [0, 1) is an interval, we set

Π I = s 0 ∈Res(L ∇ X ) |s 0 |∈I Π s 0 , C • I = s 0 ∈Res(L ∇ X ) |s 0 |∈I C • (s 0 ) and Q I = s 0 ∈Res(L ∇ X ) |s 0 |∈I Q s 0 . (6.4.4)
Note that L ∇ X + s acts on C • (s 0 ) for every s 0 ∈ Res(L ∇ X ) as -s 0 Id +J where J is nilpotent. We thus have for s / ∈ Res(L ∇ X )

det gr,C • I L ∇ X + s (-1) q+1 = s 0 ∈Res(L ∇ X ) |s 0 |∈I (s -s 0 ) m(s 0 ) , (6.4.5)
where det gr is the graded determinant, cf. §6.2.5.

Let λ ∈ [0, 1) such that Res(L ∇ X ) ∩ {s ∈ C : |s| = λ} = ∅. Now define the meromorphic function ζ (λ,∞) X,∇ (s) = ζ X,∇ (s)det gr,C • [0,λ] L ∇ X + s (-1) q . (6.4.6)
Then (6.3.9) and (6.4.5) show that ζ (λ,∞)

X,∇ has no pole nor zero in {|s| λ}, so that the number ζ (λ,∞) X,∇ (0) is well defined.

Definition of the dynamical torsion

Let 0 < µ < λ < 1 such that for every s 0 ∈ Res(L ∇ X ), one has |s 0 | = λ, µ. Using Propositions 6.2.3 and 6.4.2 we obtain, with notations of §6.4.3,

τ C • [0,λ] , Γ ϑ = (-1) -Q (µ,λ] det gr,C • (µ,λ] L ∇ X -1 τ C • [0,µ] , Γ ϑ . (6.4.7)
This allows us to give the following Proposition-Definition 6.4.3 (Dynamical torsion). The number

τ ϑ (∇) = (-1) Q [0,λ] ζ (λ,∞) X,∇ (0) (-1) q • τ C • [0,λ] , Γ ϑ ∈ C \ 0 (6.4.8)
is independent of the spectral cut λ ∈ (0, 1). We will call this number the dynamical torsion of the pair (ϑ, ∇).

Proof. Let 0 < µ < λ < 1 be such that |s 0 | = λ, µ for each s 0 ∈ Res(L ∇ X ). Denote by τ ϑ (∇, λ) the right-hand side of (6.4.8) and define τ ϑ (∇, µ) identically. Then we have, by (6.4.7),

τ ϑ (∇, λ) = (-1) Q [0,λ] ζ (λ,∞) X,∇ (0) (-1) q • τ C • [0,λ] , Γ ϑ = (-1) Q [0,λ] ζ (λ,∞) X,∇ (0) (-1) q (-1) -Q (µ,λ] det gr,C • (µ,λ] L ∇ X -1 τ C • [0,µ] , Γ ϑ . Now, we have Q [0,λ] -Q (µ,λ] = Q [0,µ] by (6.4.4) ; moreover ζ (λ,∞) X,∇ (0) (-1) q det gr,C • (µ,λ] L ∇ X -1 = ζ (µ,∞)
X,∇ (0) (-1) q by (6.4.6). Thus τ ϑ (∇, λ) = τ ϑ (∇, µ), which concludes the proof. Remark 6.4.4. If c X,∇ s m(0) is the leading term of the Laurent expansion of ζ X,∇ (s) at s = 0, then taking λ small enough actually shows that

τ ϑ (∇) = (-1) Q 0 c (-1) q X,∇ • τ C • , Γ ϑ . (6.4.9) In particular, if 0 / ∈ Res(L ∇ X ), τ ϑ (∇) = ζ X,∇ ( 
0) (-1) q . (6.4.10)

Note that we could have taken (6.4.9) as a definition of the dynamical torsion ; however (6.4.8) is more convenient to study the regularity of the τ ϑ (∇) with respect to ϑ and ∇.

Remark 6.4.5. This definition actually makes sense even if ∇ is not acyclic. Indeed, in that case, formula (6.4.8) defines an element of the determinant line det

H • C • [0,λ] ∇ , cf. Remark 6.2.1. Under the identification H • (M, ∇) = H • C • [0,λ] ∇ given by the quasi-isomorphism Π [0,λ] : Ω • (M, E) → C • [0,λ] (cf §6.3.6), we thus get an element of det H • (M, ∇).
The rest of this section is devoted to the proof of Proposition 6.4.2, which computes the value of the torsion τ (C • (s 0 ), Γ ϑ ). The strategy goes at follows. First, we introduce the signature operator B ϑ = Γ ϑ ∇ + ∇Γ ϑ , and show that it is invertible on C • (s 0 ) for s 0 = 0, 1 (Proposition 6.4.6). This property will allow us to use Proposition 6.2.4 in order to compute τ (C • (s 0 ), Γ ϑ ).

Invertibility of the contact signature operator

To prove Proposition 6.4.2 we shall use §6.2.4 and introduce the contact signature operator

B ϑ = Γ ϑ ∇ + ∇Γ ϑ : D • (M, E) → D • (M, E),
where Γ ϑ acts trivially on E. We fix in what follows some In order to prove (6.4.11) (and thus Proposition 6.4.6) and Proposition 6.2.4, we introduce several notations, that will help us understand the action of the operator Γ ϑ ∇ restricted to ker(∇Γ ϑ ). First, because ∇ does not leave the decomposition (7.2.5) stable, we need to introduce an operator Ψ :

s 0 ∈ Res(L ∇ X ) \ {0, 1} and set C • 0 (s 0 ) = C • (s 0 ) ∩ ker(ι X ). Proposition 6.4.6. The operator B ϑ is invertible C • (s 0 ) → C • (s 0 ). Note that, as ∇ 2 = 0 and Γ 2 ϑ = Id, we have that B ϑ is invertible on C • (s 0 ) if and only if ker(Γ ϑ ∇) ∩ ker(∇Γ ϑ ) = {0} ( 
C • 0 (s 0 ) → C •+1 0 (s 0 )
which mimics the action of ∇. More precisely, we define

Ψµ = ∇µ -(-1) k L ∇ X µ ∧ ϑ, µ ∈ C k 0 (s 0 ). (6.4.12)
where L j-r = (L r-j | Λ j V X ) -1 for 0 j r. Indeed, using the decomposition (7.2.5),

Γ ϑ β = (-1) k+1 ι X β ∧ dϑ r-k+1 + β + (-1) k ι X β ∧ ϑ ∧ dϑ r-k ∧ ϑ = (-1) k+1 ι X β ∧ dϑ r-k+1 + β ∧ dϑ r-k ∧ ϑ,
which leads to

∇Γ ϑ β = (-1) k+1 ∇ι X β ∧ dϑ r-k+1 + ∇β ∧ dϑ r-k ∧ ϑ + (-1) k β ∧ dϑ r-k+1 = (-1) k+1 (-1) k+1 ι X ∇ι X β ∧ ϑ ∧ dϑ r-k+1 + (-1) k+1 ∇ι X β + (-1) k ι X ∇ι X β ∧ ϑ ∧ dϑ r-k+1 + ∇β -(-1) k ι X ∇β ∧ ϑ ∧ dϑ r-k ∧ ϑ + (-1) k β + (-1) k ι X β ∧ ϑ ∧ dϑ r-k+1 -ι X β ∧ dϑ r-k+1 ∧ ϑ,
which is exactly the first part of (6.4.20). The second part follows directly from the decomposition (7.2.5). We will set, for 0 k n,

m k = dim C k (s 0 ), m 0 k = dim C k 0 (s 0 ), m ± k = dim C k ± (s 0 ). First, take k ∈ {0, • • • , r -1}. Because B ϑ is invertible on C • (s 0 ), Γ ϑ ∇ induces an isomorphism C k + (s 0 ) → C n-k-1 + (s 0 ). Take any basis γ of C k + (s 0 ). Then Γ ϑ ∇γ is a basis of C n-k-1 + and the matrix of Γ ϑ ∇| C k + (s 0 )⊕C n-k+1 + (s 0 ) in the basis γ ⊕ Γ ϑ ∇γ is 0 (Γ ϑ ∇) 2 γ Id 0 , (6.4.21)
where

(Γ ϑ ∇) 2 γ is the matrix of (Γ ϑ ∇) 2 | C k + (s 0 ) in the basis γ. Define Jk = Id -J k : C k + (s 0 ) → C k + (s 0 ).
Then Jk is a projector (since J k is by Lemma 6.4.7) and J k (and thus Jk ) commutes with L ∇ X (since Ψ commutes with L ∇ X ). Moreover one has

(Γ ϑ ∇) 2 | ker Jk = L ∇ X -Id 2 , (Γ ϑ ∇) 2 | ran Jk = L ∇ X L ∇ X -Id .
As a consequence,

det (Γ ϑ ∇) 2 | C k + (s 0 ) = s 0 (1 + s 0 ) m + k -m 0 k-1 (1 + s 0 ) 2m 0 k-1 = s 0 m + k -m 0 k-1 (1 + s 0 ) m + k +m 0 k-1 ,
because on C • (s 0 ) (and in particular on C k + (s 0 )), one has L ∇ X = -s 0 Id +ν where ν is nilpotent, and one has dim ker Jk = dim ranJ k = m 0 k-1 . Indeed, by (6.4.15) we can view J k as a map C k-1 0 (s 0 ) → C k + (s 0 ), which is obviously injective. We finally obtain with (6.4.21)

det Γ ϑ ∇| C k + (s 0 )⊕C n-k+1 + (s 0 ) = (-1) m + k s 0 m + k -m 0 k-1 (1 + s 0 ) m + k +m 0 k-1 . (6.4.22)
We now deal with the case k = r. Lemma 6.4.9 gives

Γ ϑ ∇| ker Jr = (-1) r L ∇ X -Id , Γ ϑ ∇| ran Jr = (-1) r L ∇ X .
As before, we obtain 

det Γ ϑ ∇| C r + (s 0 ) = (-1) rm + r (-1) m + r s 0 m + r -m 0 r-1 (1 + s 0 ) m 0 r-1 . ( 6 
τ (C • (s 0 ), Γ ϑ ) = (-1) J s 0 K (1 + s 0 ) L (6.4.24)
where

J = r k=0 (-1) k m + k , K = r k=0 (-1) k (m + k -m 0 k-1 ), L = r-1 k=0 (-1) k (m + k -m 0 k ).
Note that for 0 k r-1 one has by acyclicity and because Γ ϑ induces isomorphisms 6.4.26) which leads to L = 0. Moreover, since m 0 k = m 0 2r-k , we get

C k + (s 0 ) C n-k -(s 0 ) (since B ϑ is invertible), m + k = m - n-k = dim ker ∇| C n-k (s 0 ) = dim ran ∇| C n-k-1 (s 0 ) = m n-k-1 -m - n-k-1 = m k+1 -m + k+1 . Therefore m + k + m + k+1 = m k+1 , 0 k r -1, (6.4.25) which leads to m + k + m + k+1 = m 0 k + m 0 k+1 . As a consequence, since m + 0 = m 0 = m 0 0 , we get m + r -m 0 r = -(m + r-1 -m 0 r-1 ) = • • • = (-1) r (m + 0 -m 0 0 ) = 0. This implies m 0 k = m + k , 0 k r, ( 
K = r k=0 (-1) k (m 0 k -m 0 k-1 ) = 2r k=0 (-1) k m 0 k = - n k=0 (-1) k km k = (-1) q m(s 0 ),
where we used (6.3.9) in the last equality. Finally, again because

m 0 k = m 0 2r-k , 2J = (-1) r m 0 r + 2r k=0 (-1) k m 0 k = (-1) r m 0 r - n k=0 (-1) k km k .
We have

(-1) r m 0 r = r k=0 (-1) k m k , n k=0 (-1) k km k = r k=0 (-1) k (2k -n)m k ,
where the first equality comes from (6.4.25) and (6.4.26) and the second from the fact that m k = m n-k . We thus obtained

J = r k=0 (-1) k (r + 1 -k)m k = Q s 0 ,
and finally by (6.4.24)

τ (C • (s 0 ), Γ ϑ ) = (-1) Qs 0 (-s 0 ) (-1) q m(s 0 )
But now recall from (6.4.5) that det gr,C • L ∇ X (-1) q+1 = (-s 0 ) m(s 0 ) . This completes the proof.

Invariance of the dynamical torsion under small perturbations of the contact form

In this section, we are interested in the behaviour of the dynamical torsion when we deform the contact form. Namely, we prove here the Theorem 6.5.1. Assume that (ϑ t ) t∈(-δ,δ) is a smooth family of contact forms such that their Reeb vector fields X t generate a contact Anosov flow for each t. Let (E, ∇) be an acyclic flat vector bundle. Then the map t → τ ϑt (∇) is real differentiable and we have d dt τ ϑt (∇) = 0.

Remark 6.5.2. In view of Remark 6.4.5, if ∇ is not assumed acyclic, then it is not hard to see that the proof (given below) of Theorem 6.5.1 is still valid and we have that ∂ t τ ϑt (∇) = 0 in det H • (M, ∇).

We will thus consider a family of contact forms and set ϑ = ϑ 0 and X = X 0 . We also fix an acyclic flat vector bundle (E, ∇).

Anisotropic spaces for a family of vector fields

To study the dynamical torsion when the dynamics is perturbed, we construct with the help of [Bon20] some anisotropic Sobolev spaces on which each X t has nice spectral properties. We refer to Section §6.11 where we briefly recall the construction of these spaces. By §6.11.4, the set

(t, s), s / ∈ Res(L ∇ Xt ) is open in (-δ, δ) × C. Fix λ ∈ (0, 1) such that Res(L ∇ X ) ∩ {|s| λ} ⊂ {0}. (6.5.1)
Then for t close enough to 0, we have Res(L ∇ Xt ) ∩ {|s| = λ} = ∅ so that the spectral projectors

Π t = 1 2iπ |s|=λ (L ∇ Xt + s) -1 ds : Ω • (M, E) → D • (M, E) (6.5.2)
where Γt = d dt Γt : C • → C • . Since Γ t and Π t commute, and by the two first points of Proposition 6.5.3, we can apply (6.10.2) to get

Γt = ΠΓ t Π| C • + tΠ ΓΠ + o C • →C • (t).

This leads to

ΓΓ = Π ΓΓ| C • ,
where we removed the subscripts t to signify that we take all the t-dependent objects at t = 0. Therefore,

1 2 tr s,C • ΓΓ = 1 2 tr s,C • Π ΓΓ ,
Now notice that Γ 2 t = 1 implies Γ Γ + ΓΓ = 0. Therefore, for every k ∈ {0, . . . , r},

tr C n-k Γ Γ = tr C k ΓΓ ΓΓ = tr C k ΓΓ = -tr C k Γ Γ.
Therefore we only need to compute tr C k Γ Γ for k ∈ {0, . . . , r} to get the full super trace tr s,C • ΓΓ . Since n is odd we have

1 2 tr s,C • ΓΓ = 1 2 tr C • (-1) N +1 ΠΓ Γ = r k=0 (-1) k+1 tr C k ΠΓ Γ .
Let k ∈ {0, . . . , r} and α ∈ Ω k (M ). Using the decomposition

α = (-1) k-1 ι Xt α ∧ ϑ t + α + (-1) k ι Xt α ∧ ϑ t ,
we get by definition of Γ t

Γ t α = (-1) k-1 ι Xt α ∧ (dϑ t ) r-k+1 + α + (-1) k ι Xt α ∧ ϑ t ∧ (dϑ t ) r-k ∧ ϑ t .
Therefore,

Γt α = (-1) k-1 ι Ẋt α ∧ (dϑ t ) r-k+1 + (r -k + 1)(-1) k-1 ι Xt α ∧ d θt ∧ (dϑ t ) r-k + (-1) k ι Ẋt α ∧ ϑ t + ι Xt α ∧ θt ∧ (dϑ t ) r-k ∧ ϑ t + α + (-1) k ι Xt α ∧ ϑ t ∧ (dϑ t ) r-k ∧ θt + (r -k) α + (-1) k ι Xt α ∧ ϑ t ∧ d θt ∧ (dϑ t ) r-k-1 ∧ ϑ t
Now we use the decompositions

d θt = -ι Xt d θt ∧ ϑ t + d θt + ι Xt d θt ∧ ϑ t , θt = θt (X t )ϑ + θt -θt (X t )ϑ , ι Ẋt α = (-1) k ι Xt ι Ẋt α ∧ ϑ t + ι Ẋt α + (-1) k+1 ι Xt ι Ẋt α ∧ ϑ t
to get, again by definition,

Γ Γα = (-1) k-1 ι Ẋ α + (-1) k+1 ι X ι Ẋ α ∧ ϑ ∧ ϑ + (-1) k-1 L r-k -1 (-1) k ι X ι Ẋ α ∧ (dϑ) r-k+1 + (r -k + 1) L r-k+1 -1 (-1) k-1 ι X α ∧ d θ + ι X d θ ∧ ϑ ∧ (dϑ) r-k ∧ ϑ -(r -k + 1) (-1) k-1 ι X α ∧ ι X d θ + (-1) k ι X α ∧ θ -θ(X)ϑ + L r-k+1 -1 α + (-1) k ι X α ∧ ϑ ∧ (dϑ) r-k ∧ θ -θ(X)ϑ ∧ ϑ + α + (-1) k ι X α ∧ ϑ θ(X) + (r -k) L r-k -1 α + (-1) k ι X α ∧ ϑ ∧ d θ + ι X d θ ∧ ϑ ∧ (dϑ) r-k-1 , ( 6 
.5.4) where again we removed the subscripts t to signify that we take everything at t = 0.

Now let A k : C k 0 → C k 0 (note that here C k 0 is C k ∩ ker ι X , cf §6.4
.1, and not C k t at t = 0) defined by

A k u = (r -k) L r-k -1 u ∧ d θ + ι X d θ ∧ (dϑ) r-k-1 .
Note that the maps defined by the second, the fourth, the fifth and the sixth terms of the right hand side of (6.5.4) are anti-diagonal, that is they have the form 0 0 in the decomposition

C • = C •-1 0 ∧ϑ⊕C • 0 . Therefore, since A r = 0 (we also set A -1 = 0), r k=0 (-1) k+1 tr C k ΠΓ Γ = r k=0 (-1) k+1 tr C k Πϑι Ẋ + tr C k 0 Π θ(X) + r k=0 (-1) k+1 tr C k-1 0 ΠA k-1 + tr C k 0 ΠA k = r k=0 (-1) k+1 tr C k Πϑι Ẋ + tr C k 0 Π θ(X) . (6.5.5) But now note that if α = f ∧ ϑ + g ∈ C k-1 0 ∧ ϑ ⊕ C k 0 then ϑ ∧ ι Ẋ α = ϑ( Ẋ)(f ∧ ϑ) + ϑ ∧ ι Ẋ g.
This shows that for every k ∈ {0, . . . , n} one has

tr C k Πϑι Ẋ = tr C k-1 0 Πϑ( Ẋ). (6.5.6)
Injecting this relation in (6.5.5) we obtain, with ϑ( Ẋ) = -θ(X) and the formula

θ(X)| C 2r-k 0 L r-k = L r-k θ(X)| C k 0 , r k=0 (-1) k+1 tr C k ΠΓ Γ = r k=0 (-1) k+1 tr C k-1 0 Πϑ( Ẋ) -tr C k 0 Πϑ( Ẋ) = 2r k=0 (-1) k tr C k 0 Πϑ( Ẋ).
For t ∈ [-t 0 , t 0 ] and s / ∈ Res(L ∇ Xt ) we define 

Y t (s) = L ∇ Xt + s -1 (Id -Π t ). ( 6 
Q t (s) = L ∇ Xt + s -1 e -ε(L ∇ X t +s) .
Then [DGRS18, Proposition 6.3] gives that the map

[-t 0 , t 0 ] × {|s| = λ} (t, s) → Q t (s) ∈ D n Γ (M × M, E ∨ E)
is bounded for some closed conic subset Γ ⊂ T * (M × M ) not intersecting the conormal of the diagonal. Moreover by §6.11.7, we have that [-t 0 , t 0 ] t → Π t is bounded in D n Ws×Wu (M ×M, E ∨ E), and so is the map

[-t 0 , t 0 ]×{|s| = λ} → L ∇ Xt + s -1 Π t .
As a consequence (6.5.12), (6.5.13) and (6.5.14) imply that the map

[-t 0 , t 0 ] × {|s| 3δ/2} (t, s) → Y t (s) ∈ D n Γ (M × M, E ∨ E), (6.5.15) 
is bounded, where Y t (s) is the Schwartz kernel of the operator Y t (s)e -ε(L ∇ X t +s) . We also know that this map is continuous when it is seen as a map valued in D n thanks to the last point of Proposition 6.5.3 ; therefore this map is continuous when valued in

D n Γ (M × M, E ∨ E, cf. [Hör90, §8 .4] 
. Therefore we obtain with §B.3.1 that

tr s ϑι Ẋt Y t (s) ∈ C 0 [-t 0 , t 0 ], Hol {|s| 3δ/2} . (6.5.16) 
But now apply [DGRS18, Theorem 4] to obtain that

tr s ϑι Ẋt Q t (s) ∈ C 0 [-t 0 , t 0 ], Hol V δ ∩ {|s| 5δ/4} . (6.5.17)
Since the flat trace coincides with the usual trace for operators of finite rank,

tr s ϑ t ι Ẋt Q t (s) -tr s,C • Π t ϑ t ι Ẋt (L ∇ Xt + s) -1 = tr s ϑ t ι Ẋt L ∇ Xt + s -1 (Id -Π t )e -ε(L ∇ X t +s) + tr s,C • Π t ϑ t ι Ẋt (L ∇ Xt + s) -1 e -ε(L ∇ X t +s) -Id .
Then (6.5.16), (6.5.17) and (6.5.12) imply that the right hand side of the last equation is continuous with respect to t with values in holomorphic functions on

(V δ ∩ {|s| 5δ/4}) ∪ {|s| 3δ/2} (indeed s → (L ∇ Xt + s) -1 e -ε(L ∇ X t +s) -Id is holomorphic of C • t )
, and so is the left hand side. As a consequence, (6.5.10) shows that both members of (6.5.9) are holomorphic on this region and

ζ (λ,∞) Xt,∇ (0) = ζ (λ,∞) X 0 ,∇ (0) exp - t 0 tr s,C • τ Π τ ϑι Ẋτ dτ (-1) q+1
.

Comparing this with Lemma 6.5.4 we obtain Theorem 6.5.1 by definition of the dynamical torsion, cf §6.4.4.

Variation of the connection

In this section we compute the variation of the dynamical torsion when the connection is perturbed. This formula will be crucial to compare the dynamical torsion and Turaev's refined combinatorial torsion.

Real-differentiable families of flat connections

Let U ⊂ C be some open set and consider ∇(z), z ∈ U , a family of flat connections on E. We will assume that the map z → ∇(z) is C 1 , that is, there exists continuous maps z → µ z , ν z ∈ Ω 1 (M, End(E)) such that for any z 0 ∈ U one has

∇(z) = ∇(z 0 ) + Re(z -z 0 )µ z 0 + Im(z -z 0 )ν z 0 + o(z -z 0 ), (6.6.1) 
where o(z -z 0 ) is understood in the Fréchet topology of Ω 1 (M, End(E)). We will denote for any σ ∈ C

α z 0 (σ) = Re(σ)µ z 0 + Im(σ)ν z 0 ∈ Ω 1 (M, End(E)). (6.6.2) 
Note that since the connections ∇(z) are assumed to be flat, we have

[∇(z), α z (σ)] = ∇(z)α z (σ) + α z (σ)∇(z) = 0. (6.6.3) 

A cochain contraction induced by the Anosov flow

For z ∈ U let L ∇(z) X + s -1 = J(0) j=1 -L ∇(z) X j-1 Π 0 (z) s j + Y (z) + O(s) (6.6.4)
be the development (8.2.10) for the resonance s 0 = 0. Let C • (0; z) = ran Π 0 (z). Recall from §6.3.6 that since ∇(z) is acyclic, the complex (C • (0; z), ∇(z)) is acyclic. Therefore there exists a cochain contraction k(z) :

C • (0; z) → C • (0; z), i.e. a map of degree -1 such that ∇(z)k(z) + k(z)∇(z) = Id C • (0;z) . (6.6.5) 
where

σ H • (L ∇(z) X ) denotes the resolvent set of L ∇(z) X
on H • , and Ω(c, ρ) is defined in (6.5.3). Moreover (6.6.1) and (6.6.9) imply that for any open set Z ⊂ Ω(c, ρ) such that Res L ∇(z 0 ) X ∩ Z = ∅, there exists δ Z > 0 such that for any j ∈ {0, 1},

L ∇(z) X + s -1 ∈ C 1 |z -z 0 | < δ Z , Hol Z s , L H • j , H • j . (6.6.11) 
For all z, the map s → L

∇(z) X + s -1
is meromorphic in the region Ω(c, ρ) with poles (of finite multiplicity) which coincide with the resonances of L ∇(z) X in this region. Moreover, the arguments from the proof of [DZ16, Proposition 3.4] can be made uniformly for the family z → L

∇(z) X + s -1
to obtain that for some closed conic set Γ ⊂ T * (M × M ) not intersecting the conormal to the diagonal and any ε > 0 small enough, the map (s, z)

→ K(s, z) is bounded from Z × {|z -z 0 | < δ Z } with values D Γ (M ×M, π * 1 E ∨ ⊗π * 2 E), where K(s, z) is the Schwartz kernel of the shifted resolvent L ∇(z) X + s -1 e -εL ∇(z) X .

A family of spectral projectors

Fix λ ∈ (0, 1) such that {s ∈ C, |s| λ} ∩ Res L ∇(z 0 ) X ⊂ {0}. (6.6.12) 
Thanks to (6.6.10), if z is close enough to z 0 ,

{s ∈ C, |s| = λ} ∩ Res L ∇(z) X = ∅, (6.6.13) 
by compacity of the circle. For z ∈ U we will denote by

Π(z) = 1 2iπ |s|=λ L ∇(z) X + s -1 ds (6.6.14) the spectral projector of L ∇(z) X
on generalized eigenvectors for resonances in {s ∈ C, |s| λ}, and C • (z) = ran Π(z). It follows from (6.6.11), (6.6.13) and (6.6.14) that the map

z → Π(z) ∈ L(H • j , H • j ) is C 1 for j = 0, 1.
We can therefore apply 6.10.3 to get, for δ small enough,

Π(z) ∈ C 1 {|z -z 0 | < δ} z , L(H • , H • 1 ) . ( 6 
.6.15)

Variation of the finite dimensional part

Because (C • (z 0 ), ∇(z 0 )) is acyclic, there exists a cochain contraction k(z 0 ) : 6. The next lemma computes the variation of the finite dimensional part of the dynamical torsion.

C • (z 0 ) → C •-1 (z 0 ), cf §6.2.
Lemma 6.6.2. The map z → c(z) = τ (C • (z), Γ) is real differentiable at z = z 0 and d(log c) z 0 σ = -tr s,C • Π(z 0 )α z 0 (σ)k(z 0 ), σ ∈ C.
Proof. By continuity of the family z → Π(z), we have that

Π(z)| C • (z 0 ) : C • (z 0 ) → C • (z) is an isomorphism for |z -z 0 | small enough, of inverse denoted by Q(z).
For those z we denote by C • (z) the graded vector space C • (z 0 ) endowed with the differential

∇(z) = Q(z)∇(z)Π(z) : C • (z 0 ) → C • (z 0 ).
Then because Γ commutes with every Π(z) one has

τ ( C • (z), Γ) = τ (C • (z), Γ) (6.6.16) 
By (6.6.15) we can apply (6.10.2) in the proof of Lemma 6.10.2 which gives for any h small enough

∇(z 0 + σ)Π(z 0 ) = Π(z 0 )∇(z 0 )Π(z 0 ) + Π(z 0 )α z 0 (σ)Π(z 0 ) + o C • (z 0 )→C • (z 0 ) (σ).
Therefore the real differentiable version of Lemma 6.2.5 implies the desired result.

Variation of the zeta part

We give a first Proposition which computes the variation of the Ruelle zeta function in its convergence region. Proposition 6.6.3 (Variation of the dynamical zeta function). For Re(s) big enough, the map z → g s (z) = ζ X,∇(z) (s) is C 1 near z = z 0 and we have for every ε > 0 small enough d(log g s ) z 0 σ = (-1) q+1 e -εs tr s α z 0

(σ)ι X L ∇(z 0 ) X + s -1 e -εL ∇(z 0 ) X .
Proof. Let ϕ t denote the flow of X. For γ ∈ G X , dϕ -τ (γ) |γ will denote dϕ -τ (γ) taken at any point of the image of γ ; this ambiguity will not stand long since another choice of base point will lead to a conjugated linear map, and we aim to take traces. We have the standard factorization, for Re(s) big enough and any z near z 0 ,

g s (z) = exp n k=0 (-1) k k γ∈G X # (γ) τ (γ) tr ρ ∇(z) (γ)e -sτ (γ) tr ∧ k (dϕ -τ (γ) )| γ det(I -P γ ) , (6.6.17) 
where

P γ = dϕ -τ (γ)
Eu⊕Es is the linearized Poincaré map of γ, and # (γ) is the primitive period of γ. Now (6.3.10) implies

tr ρ ∇(z 0 +σ) (γ) = tr ρ ∇(z 0 ) (γ) -tr ρ ∇(z 0 ) (γ) γ α z 0 (σ)(X) + o(σ)τ (γ).
As a consequence, the sum in (6.6.17) is C 1 near z = z 0 for Re(s) big enough, and d(log g s ) z 0 σ is equal to

- n k=0 (-1) k k γ∈G X # (γ) τ (γ) tr ρ ∇(z 0 ) (γ) γ α z 0 (σ)(X) e -sτ (γ) tr ∧ k (dϕ -τ (γ) )| γ det(I -P γ ) .
Now a slight extension of Guillemin trace formula [START_REF] Victor Guillemin | Lectures on spectral theory of elliptic operators[END_REF] gives, in D (R >0 ),

tr α z 0 (σ)(X)e -tL ∇ X Ω k (M,E) = γ # (γ) τ (γ) tr ρ ∇(z 0 ) (γ) γ α z 0 (σ)(X) tr ∧ k dϕ -τ (γ) |det(I -P γ )| δ(t -(γ)),
where δ is the Dirac distribution. But now recall from §6.3.5 that | det(I -P γ )| = (-1) q det(I -P γ ). Therefore, if ε > 0 satisfies ε < τ (γ) for all γ, arguing exactly as in [DZ16, §4], with (6.3.2) in mind,

d(log g s ) z 0 σ = e -εs (-1) q+1 tr gr α z 0 (σ)(X) L ∇(z 0 ) X + s -1 e -εL ∇(z 0 ) X .
Now it remains to turn the graded trace tr gr into a super trace tr s keeping in mind the relation tr gr = tr s (N •) where N is the number operator, cf. §B.3.1. Note that

α z 0 (σ)(X) = [α z 0 (σ), ι X ] = α z 0 (σ) • ι X + ι X • α z 0 (σ). We therefore have N α z 0 (σ)(X) = N [α z 0 (σ), ι X ] = N α z 0 (σ)ι X + ι X (N -1)α z 0 (σ) = N α z 0 (σ)ι X -(N -1)α z 0 ι X + [(N -1)α, ι X ]. Since ι X commutes with L ∇(z 0 ) X + s -1 e -εL ∇(z 0 ) X one finally obtains N α z 0 (σ)(X) = α z 0 (σ)ι X L ∇(z 0 ) X + s -1 e -εL ∇(z 0 ) X + (N -1)α z 0 (σ) L ∇(z 0 ) X + s -1 e -εL ∇(z 0 ) X , ι X .
This concludes by cyclicity of the flat trace.

The following lemma is a direct consequence of Lemma 6.10.2 and the fact that Π 0 (z 0 ) = Π(z 0 ) by (6.6.12). Lemma 6.6.4. For Re(s) big enough, the map

z → h s (z) = det gr,C • (z) L ∇(z) X + s (-1) q+1 is C 1 near z = z 0 , and d(log h s ) z 0 σ = (-1) q+1 tr s,C • (z 0 ) Π 0 (z 0 )α z 0 (σ)ι X L ∇(z 0 ) X + s -1 .
6.6.8 Proof of Proposition 6.6.1

Combining the two lemmas of the preceding subsection we obtain for Re(s) big enough, the map z → ζ (λ,∞) X,∇(z) (s) = g s (z)/h s (z) is real differentiable at z = z 0 (and therefore on U since we may vary z 0 ). Moreover for every ε > 0 small enough 

d log g s h s z σ = (-1) q+1 e -εs tr s α z (σ)ι X L ∇(z) X + s -1 e -εL ∇(z) X -tr s,C • (z) Π 0 (z)α z (σ)ι X L ∇(z) X + s -1 . ( 6 
(z) = ζ (λ,∞)
X,∇(z) (0), we can reproduce the arguments made in §6.5.4 to obtain

(-1) q+1 d (log b) z σ = tr s α z (σ)ι X Y (z)(Id -Π 0 (z))e -εL ∇(z) X + tr s,C • (z) Π 0 (z)α z (σ)ι X Q z (ε) , where Q z (ε) = n 1 (-ε) n n! L ∇(z) X n-1 : C • (z) → C • (z). Recall that if c(z) = τ (C • (z), Γ) one has τ (z) = c(z)b(z) (-1
) q . Therefore Lemma 6.6.2 gives, with what precedes,

d(log τ ) z σ = -tr s α z (σ)K(z)e -εL ∇(z) X -tr s,C • (z) Π 0 (z)α z (σ) k(z) Id -e -εL ∇(z) X + ι X Q z (ε) . (6.6.19) We have Id -e -εL ∇(z) X = -L ∇(z) X Q z (ε), which leads to ι X Q z (ε) + k(z) Id -e -εL ∇(z) X = ι X -k(z)L ∇(z) X Q z (ε). But now since k(z) is a cochain contraction, we get ι X -k(z)L ∇(z) X = [∇(z), k(z)ι X ].
Because ∇(z) commutes with Π 0 (z) and L ∇(z) X , we obtain with (6.6.3)

∇(z), Π 0 (z)α z (σ)k(z)ι X Q z (ε) = Π 0 (z)α ι X Q z (ε) + k(z) Id -e -εL ∇(z) X .
This concludes by (6.6.19) and the cyclicity of the trace.

Euler structures, Chern-Simons classes

The Turaev torsion is defined using Euler structures, introduced by Turaev [Tur90], whose purpose is to fix sign ambiguities of combinatorial torsions. We shall use however the representation in terms of vector fields used by Burghelea-Haller [START_REF] Burghelea | Euler structures, the variety of representations and the milnor-turaev torsion[END_REF]. The goal of the present section is to introduce these Euler structures, in view of the definition of the Turaev torsion.

The Chern-Simons class of a pair of vector fields

If X ∈ C ∞ (M, T M ) is a vector field with isolated non degenerate zeros, we define the singular 0-chain

div(X) = - x∈Crit(X) ind X (x)[x] ∈ C 0 (M, Z),
where Crit(X) is the set of critical points of X and ind X (x) denotes the Poincaré-Hopf index of x as a critical point of X 4 . Note also that div (-X) = -div(X) since M is odd dimensional.

Let X 0 , X 1 be two vector fields with isolated non degenerate zeros. Let p : M × [0, 1] → M be the projection over the first factor and choose a smooth section H of the bundle p * T M → M × [0, 1], transversal to the zero section, such that H restricts to X i on {i} × M for i = 0, 1. Then the set H -1 (0) ⊂ M × [0, 1] is an oriented smooth submanifold of dimension 1 with boundary (it is oriented because M and [0, 1] are), and we denote by [H -1 (0)] its fundamental class. Definition 6.7.1. The class

p * [H -1 (0)] ∈ C 1 (M, Z)/∂C 2 (M, Z),
where p * is the pushforward by p, does not depend on the choice of the homotopy H relating X 0 and X 1 , cf. [BH06, §2.2]. This is the Chern-Simons class of the pair (X 0 , X 1 ), denoted by cs(X 0 , X 1 ).

We have the fundamental formulae ∂cs(X 0 , X 1 ) = div(X 1 ) -div(X 0 ), cs(X 0 , X 1 ) + cs(X 1 , X 2 ) = cs(X 0 , X 2 ), (6.7.1)

for any other vector field with non degenerate zeros X 2 . Notice also that if X 0 and X 1 are nonsingular vector fields, then cs(X 0 , X 1 ) defines a homology class in H 1 (M, Z).

Euler structures.

Let X be a smooth vector field on M with non degenerate zeros. An Euler chain for X is a singular one-chain e ∈ C 1 (M, Z) such that ∂e = div(X). Euler chains for X always exist because M is odd-dimensional and thus χ(M ) = 0.

Two pairs (X 0 , e 0 ) and (X 1 , e 1 ), with X i a vector field with non degenerate zeros and e i an Euler chain for X i , i = 0, 1, will be said to be equivalent if

e 1 = e 0 + cs(X 0 , X 1 ) ∈ C 1 (M, C)/∂C 2 (M, Z).
(6.7.2) Definition 6.7.2. An Euler structure is an equivalence class [X, e] for the relation (6.7.2). We will denote by Eul(M ) the set of Euler structures.

There is a free and transitive action of H 1 (M, Z) on Eul(M ) given by

[X, e] + h = [X, e + h], h ∈ H 1 (M, Z).
4. ind X (x) = (-1) dim Es(x) if x is hyperbolic and E s (x) ⊂ T x M is the stable subspace of x.

Homotopy formula relating flows

Let X 0 , X 1 be two vector fields with non degenerate zeros. Let H be a smooth homotopy between X 0 and X 1 as in §6.7.1 and set

X t = H(t, •) ∈ C ∞ (M, T M ). For ε > 0 we define Φ ε : M × [0, 1] → M × M × [0, 1] via Φ ε (x, t) = e -εXt (x), x, t , x ∈ M, t ∈ [0, 1].
Set also, with notations of §B.2,

H ε = Gr(Φ ε ) ⊂ M ×M ×R. Then H ε is a submanifold with boundary of M × M × R which is oriented (since M and R are). Define [H ε ] = (Φ ε ) * ([M ] × [[0, 1]]) ∈ D n (M × M × R)
to be the associated integration current, cf. §B.2. Let g be any metric on M and let ρ > 0 be smaller than its injectivity radius. Then for any x, y ∈ M with dist(x, y) ρ, we denote by P (x, y) ∈ Hom(E x , E y ) the parallel transport by ∇ along the minimizing geodesic joining x to y.

Then P ∈ C ∞ (M × M, π * 1 E ∨ ⊗ π * 2 E
) and we can define

R ε = -π * [H ε ] ⊗ P ∈ D n-1 (M × M, π * 1 E ∨ ⊗ π * 2 E),
where π :

M × M × R → M × M is the projection over the two first factors. Note that R ε is well defined if ε is small enough so that dist x, e -sXt (x) ρ, s ∈ [0, ε], t ∈ [0, 1], x ∈ M, (6.7.3) 
which implies supp π * [H ε ] ⊂ {(x, y), dist(x, y) ρ}. Now, let R ε : Ω • (M, E) → D •-1 (M, E)
be the operator of degree -1 whose Schwartz kernel is R ε .

Lemma 6.7.3. We have the following homotopy formula

[∇, R ε ] = ∇R ε + R ε ∇ = e -εL ∇ X 1 -e -εL ∇ X 0 . (6.7.4) 
Proof. First note that because M is odd dimensional, the boundary (computed with orientations) of the manifold H ε is

∂H ε = Gr(e -εX 0 ) × {0} -Gr(e -εX 1 ) × {1}.
Therefore we have, cf. (B.2.1),

(-1) n d M ×M π * [H ε ] = π * [∂H ε ] = Gr(e -εX 0 ) -Gr(e -εX 1 )
where Gr(e -εX i ) denotes the integration current on the manifold Gr(e -εX i ) for i = 0, 1. Now note that we have by construction ∇ E ∨ E P = 0. Therefore

∇ E ∨ E R ε = (-1) n
Gr(e -εX 1 ) -Gr(e -εX 0 ) ⊗ P.

Note that by definition of e -L ∇ X i (cf §6.3.3), the formula (6.7.3) and the flatness of ∇ imply that the Schwartz kernel of e -εL ∇ X i is Gr(e -εX i ) ⊗ P . This concludes because the Schwartz kernel of

[∇, R ε ] is (-1) n ∇ E ∨ E R ε , cf. [HLJ01, Lemma 2.2].
The next formula follows from the definition of the flat trace and the Chern-Simons classes. It will be crucial for the topological interpretation of the variation formula obtained in §6.6. Lemma 6.7.4. We have for any α ∈ Ω • (M, End(E)) such that tr α is closed and ε > 0 small enough tr s αR ε = tr α, cs(X 0 , X 1 ) . (6.7.5)

Note that because H is transverse to the zero section, we have

WF(R ε ) ∩ N * ∆ = ∅, (6.7.6) 
where N * ∆ denotes the conormal to the diagonal ∆ in M × M , so that the above flat trace is well defined.

Proof. We denote by i :

M → M × M the diagonal inclusion. Note that the Schwartz kernel of αR ε is (-1) n π * 2 α ∧ R ε = -π * 2 α ∧ R ε since n is odd.
From the definition of the super flat trace tr s , we find that

tr s αR ε = tr i * (π * 2 α ∧ π * [H ε ] ⊗ P ) , 1 , (6.7.7) 
where π 2 : M × M → M is the projection over the second factor. Of course we have

i * P = Id E ∈ C ∞ (M, End(E)).
We therefore have

tr i * (π * 2 α ∧ π * [H ε ] ⊗ P ) = tr α ∧ i * π * [H ε ] = tr α ∧ p * j * [H ε ]
where j : M × [0, 1] → M × M × [0, 1], (x, t) → (x, x, t). This leads to

tr s αR ε = tr α ∧ p * j * [H ε ], 1 = p * tr α, j * [H ε ] . Now if ε is small enough, we can see that j * [H ε ] = [H -1 (0)]. Therefore tr s αR ε = tr α, p * [H -1 (0)] = tr α, cs(X 0 , X 1 ) .

Morse theory and variation of Turaev torsion.

We introduce here the Turaev torsion which is defined in terms of CW decompositions. In the spirit of the seminal work of Bismut-Zhang [START_REF] Bismut | An extension of a theorem by cheeger and müller[END_REF] based on geometric constructions of Laudenbach [START_REF] Laudenbach | On the thom-smale complex[END_REF], we use a CW decomposition which comes from the unstable cells of a Morse-Smale gradient flow induced by a Morse function. This allows us to interpret the variation of the Turaev torsion as a supertrace on the space of generalized resonant states for the Morse-Smale flow. This interpretation will be convenient for the comparison of the Turaev torsion with the dynamical torsion.

Morse theory and CW-decompositions

Let f be a Morse function on M and X = -grad g f be its associated gradient vector field with respect to some Riemannian metric g (the tilde notation is used to make the difference with the Anosov flows we studied until now). For any a ∈ Crit(f ), we denote by

W s (a) = y ∈ M, lim t→∞ e t X y = a , W u (a) = y ∈ M, lim t→∞ e -t X y = a ,
the stable and unstable manifolds of a. Then it is well known that W s (a) (resp.

W u (x)) is a smooth embedded open disk of dimension n -ind f (a) (resp. ind f (a)), where ind f (a) is the index of a as a critical point of f , that is, in a Morse chart (z 1 , . . . , z n ) near a, f (z 1 , . . . , z n ) = f (a) -z 2 1 -• • • -z 2 ind f (a) + z 2 ind f (a)+1 + • • • + z 2 n .
For simplicity, we will denote

|a| = ind f (a) = dim W u (a),
and we fix an orientation of every W u (a).

We assume that X satisfies the Morse-Smale condition, that is, for any a, b ∈ Crit(f ), the manifolds W s (a) and W u (b) are transverse. Also, we assume that for every a ∈ Crit(f ), the metric g is flat near a. Let us summarize some results from [Qin10, Theorems 3.2,3.8,3.9] ensured by the unstable manifolds of f . We would like to mention that such results can be found in slightly different form in the work of Laudenbach [START_REF] Laudenbach | On the thom-smale complex[END_REF] and are used in [BZ92] 5 .

First, W u (a) admits a compactification to a smooth |a|-dimensional manifold with corner W u (a), endowed with a smooth map e a : W u (a) → M that extends the inclusion W u (a) ⊂ M . Then the collection W = W u (a) a∈Crit(f ) and the applications e a induce a CW-decomposition on M . Moreover, the boundary operator of the cellular chain complex is given by

∂W u (a) = |b|=|a|-1 #L(a, b)W u (b),
where L(a, b) is the moduli space of gradient lines joining a to b and #L(a, b) is the sum of the orientations induced by the orientations of the unstable manifolds of (a, b), see [Qin10, Theorem 3.9].

The Thom-Smale complex

We set

C • (W, E ∨ ) = n k=0 C k (W, E ∨ ) where C k (W, E ∨ ) = a∈Crit(f ) |a|=k E ∨ a , k = 0, . . . , n.
5. A difference is that Laudenbach only needs to compactify the unstable cells as C 1 -manifolds with conical singularities whereas Qin proves smooth compactification as manifolds with corners.

We endow the complex C • (W, E ∨ ) with the boundary operator ∂ ∇ ∨ defined by

∂ ∇ ∨ u = |b|=|a|-1 γ∈L(a,b) ε γ P γ (u), a ∈ Crit(f ), u ∈ E ∨ a ,
where for γ ∈ L(a, b), P γ ∈ End(E ∨ a , E ∨ b ) is the parallel transport of ∇ ∨ along the curve γ and ε γ = ±1 is the orientation number of γ ∈ L(a, b).

Then by [START_REF] Laudenbach | On the thom-smale complex[END_REF] (see also [START_REF] Viet | Topology of pollicott-ruelle resonant states[END_REF] for a different approach), there is a canonical isomorphism

H • (M, ∇ ∨ ) H • (W, ∇ ∨ ),
where H • (M, ∇ ∨ ) is the singular homology of flat sections of (E ∨ , ∇ ∨ ) and H • (W, ∇ ∨ ) denotes the homology of the complex C • (W, E ∨ ) endowed with the boundary map ∂ ∇ ∨ . Therefore this complex is acyclic since ∇ (and thus ∇ ∨ ) is.

The Turaev torsion

Fix some base point x ∈ M and for every a ∈ Crit(f ), let γ a be some path in M joining x to a. Define

e = a∈Crit(f ) (-1) |a| γ a ∈ C 1 (M, Z). (6.8.1) 
Note that the Poincaré-Hopf index of X near a ∈ Crit(f ) is -(-1) |a| so that ∂e = div( X) (6.8.2) because a∈Crit(f ) (-1) |a| = χ(M ) = 0 by the Poincaré-Hopf index theorem. Therefore e is an Euler chain for X and e = [ X, e] defines an Euler structure. Choose some basis u 1 , . . . , u d of E ∨ x . For each a ∈ Crit(f ), we propagate this basis via the parallel transport of ∇ along γ a to obtain a basis u 1,a , . . . , u d,a of E a . We choose an ordering of the cells W u (a) ; this gives us a cohomology orientation o (see [Tur90, §6.3]). Moreover this ordering and the chosen basis of E ∨ a give us (using the wedge product) an element c k ∈ det C k (W, E ∨ ) for each k, and thus an element c ∈ det C • (W, E ∨ ).

The Turaev torsion of ∇ with respect to the choices e, o is then defined by [FT00, §9.2 p. 218]

τ e,o (∇) -1 = ϕ C•(W,∇ ∨ ) (c) ∈ C \ 0, where ϕ C•(W,∇ ∨ )
is the homology version of the isomorphism (6.2.1). Note that ∇ ∨ (and not ∇) is involved in the definition of τ e,o (∇). Indeed, we use here the cohomological version of Turaev's torsion, which is more convenient for our purposes, and which is consistent with [START_REF] Braverman | Ray-singer type theorem for the refined analytic torsion[END_REF], [BK + 08, p. 252].

Resonant states of the Morse-Smale flow

In [START_REF] Viet | Topology of pollicott-ruelle resonant states[END_REF], it has been shown that we can define Ruelle resonances for the Morse-Smale gradient flow L ∇ X as described in §6.3 in the context of Anosov flows. More precisely, we have that the resolvent

L ∇ X + s -1 : Ω • (M, E) → D • (M, E),
is well defined for Re(s) 0, has a meromorphic continuation to all s ∈ C. The poles of this continuation are the Ruelle resonances of L ∇ X and the set of those will be denoted by Res(L ∇ X ). In fact, the set Res(L ∇ X ) does not depend on the flat vector bundle (E, ∇). Let λ > 0 be such that Res(L ∇ X ) ∩ {|s| λ} ⊂ {0} ; set

Π = 1 2πi |s|=λ L ∇ X + s -1 ds (6.8.3)
the spectral projector associated to the resonance 0, and denote by

C • = ran Π ⊂ D • (M, E)
the associated space of generalized eigenvectors for L ∇ X . Since ∇ and L ∇ X commute, ∇ induces a differential on the complex

C • . Moreover, Π maps D • Γ (M, E) to itself continuously where Γ = a∈Crit(f ) N * W u (a) ⊂ T * M.

A variation formula for the Turaev torsion

Assume that we are given a C 1 family of acyclic connections ∇(z) on E as in §6.6. We denote by Π -(z) the spectral projector (6.8.3) associated to ∇(z) and -X, and set C

• -(z) = ran Π -(z)
. By [START_REF] Viet | Topology of pollicott-ruelle resonant states[END_REF] we have that all the complexes ( C • (z), ∇(z)) are acyclic and there exists cochain contractions k-(z) :

C • -(z) → C •-1 -(z).
As in §6.6.3 we have a variation formula for the Turaev torsion.

Proposition 6.8.1. The map z → τ (z) = τ e,o (∇(z)) is real differentiable on U and for any z ∈ U d(log τ ) z σ = -tr s, C • (z) Π -(z)α z (σ) k-(z) - e tr α z (σ), σ ∈ C
where α z (σ) is given by (6.6.2) and e is given by (6.8.1).

The rest of this section is devoted to the proof of Proposition 6.8.1. For convenience, we will first study the variation of z → τ e,o (∇(z) ∨ ).

A preferred basis

Let a ∈ Crit(f ) and k = |a|. We denote by [W u (a)] ∈ D n-k Γ (M ) the integration current over the unstable manifold W u (a) of X, it is a well defined current far from ∂W u (a). We also pick a cut-off function χ a ∈ C ∞ (M ) valued in [0, 1] with χ a ≡ 1 near a and χ a is supported in a small neighborhood Ω a of a, with Ω a ∩ ∂W u (a) = ∅. Recall from 6.8.3 that we have a basis u 1,a , . . . , u d,a of E a . Using the parallel transport of ∇, we obtain flat sections of E over W u (a) that we will still denote by u 1,a , . . . , u d,a .

Define ũj,a = Π χ a [W u (a)] ⊗ u j,a ∈ C n-k , j = 1, . . . , d. (6.8.4) 
By [START_REF] Viet | Spectral analysis of morse-smale flows, ii : Resonances and resonant states[END_REF] we have that ũj,a , a ∈ Crit(f ), 1 j d is a basis of C • . Adapting the proof of [DR17, Theorem 2.6] to the bundle case, we obtain the following proposition which will allow us to compute the Turaev torsion with the help of the complex C • . Proposition 6.8.2. The map Φ :

C • (W, ∇) → C n-• defined by Φ u j,a = ũj,a , a ∈ Crit(f ), j = 1, . . . , d,
is an isomorphism and satisfies 6

Φ • ∂ ∇ = (-1) • ∇ • Φ.
An immediate corollary is that (using the notation of §6.2.2)

τ e,o (∇ ∨ ) = ϕ C•(W,∇) (u) -1 = τ ( C • , ũ), (6.8.5) 
where

u ∈ det C • (W, ∇) (resp. ũ ∈ det C • )
is the element given by the basis {u j,a } (resp. {ũ j,a }) and the ordering of the cells W u (a).

6.8.7 Proof of Proposition 6.8.1

For any a ∈ Crit(f ) we denote by P γa (z) ∈ Hom(E x , E a ) the parallel transport of ∇(z) along γ a . We set u j,a (z) = P γa (z)P γa (z 0 ) -1 u j,a and ũj,a (z

) = Π(z) χ a [W u (a)] ⊗ u j,a (z) ,
where again we consider u j,a (z) as a ∇(z)-flat section of E over W u (a) using the parallel transport of ∇(z). The construction of Ruelle resonances for Morse-Smale gradient flow follows from the construction of anisotropic Sobolev spaces

Ω • (M, E) ⊂ H • 1 ⊂ H • ⊂ D • (M, E),
see [START_REF] Viet | Spectral analysis of morse-smale gradient flows[END_REF], on which L ∇ X + s is a holomorphic family of Fredholm operators of index 0 in the region {Re(s) > -2}, and such that ∇(z) is bounded H • 1 → H • . Every argument made in §6.6.4 also stand here and z → Π(z) is a C 1 family of bounded operators H • → H • 1 . Note that by continuity, Π(z) induces an isomorphism C • (z 0 ) → C • (z) for z close enough to zero. Let ũ(z) ∈ det C • (z) be the element given by the basis {ũ j,a (z)} and the ordering of the cells W u (a). Then by (6.8.5) and (6.2.5) we have

τ e,o (∇(z) ∨ ) = τ C • (z), ũ(z) = ũ(z) : Π(z)ũ(z 0 ) τ C • (z), Π(z)ũ(z 0 ) , (6.8.6)
where Π(z)ũ(z 0 ) ∈ det C • (z) is the image of ũ by the isomorphism det C • (z 0 ) → det C • (z) induced by Π(z), and ũ(z) = ũ(z) : Π(z)ũ(z 0 ) Π(z)ũ(z 0 ). Doing exactly as in §6.6.6, we obtain that z → τ

(z) = τ C • (z), Π(z)ũ is C 1 and d(log τ ) z 0 σ = -tr s, C • Π(z 0 )α z 0 (σ) k(z 0 ). (6.8.7) 
Therefore it remains to compute the variation of ũ(z) : Π(z)ũ(z 0 ) . This is the purpose of the next formula.

Lemma 6.8.3. We have

ũ(z) : Π(z)ũ(z 0 ) = a∈Crit(f ) det P γa (z)P γa (z 0 ) -1 (-1) n-|a| .
Proof. By definition of the basis {u a,j } in §6.8.3 it suffices to show that for z small enough

Π(z)ũ a,i = d j=1 A j a,i (z)ũ a,j (z), a ∈ Crit(f ), 1 i, j d, (6.8.8) 
where the coefficients A j a,i (z) are defined by u a,i (z 0 )(a) = d j=1

A j a,i (z)u a,j (z)(a).

Consider the dual operator L

∇(z) ∨ -X : Ω • (M, E ∨ ) → Ω • (M, E ∨ ).
The above constructions, starting from a dual basis s 1 , . . . , s d ∈ E ∨

x of u 1 , . . . , u d , give a basis {s a,i (z)} of each Γ(W s (a), ∇(z) ∨ ) (the space of flat section of ∇(z) ∨ over W s (a)), since the unstable manifolds of -X are the stable ones of X. Let C • ∨ (z) be the range of the spectral projector Π ∨ (z) from (6.8.3) associated to the vector field -X and the connection ∇(z) ∨ . We have a basis {s a,i (z

)} of C • ∨ (z) given by sa,i (z) = Π ∨ (z) χ a [W s (a)] ⊗ s a,i (z) 
.

We will prove that for any a, b ∈ Crit(f ) with same Morse index we have for any

1 i, j d, sa,j (z), ũa,i (z 0 ) = s a,j (z)(a), u a,i (z 0 )(a) E ∨ a ,Ea if a = b, 0 if a = b . (6.8.9)
First assume that a = b. Then W u (a)∩W s (b) = ∅ by the transversality condition, since a and b have same Morse index. Therefore for any t 1 , t 2 0, we have

e -t 1 L ∇(z) ∨ -X χ b [W s (b)] ⊗ s b,j (z) , e -t 2 L ∇(z 0 ) X χ a [W u (a)] ⊗ u a,i (z)
= 0, (6.8.10) since the currents in the pairing have disjoint support because they are respectively contained in W s (b) and W u (a). Now notice that for Re(s) big enough, one has

L ∇(z) ∨ -X + s -1 = ∞ 0 e -tL ∇(z) ∨ -X e -ts dt and L ∇(z 0 ) X + s -1 = ∞ 0 e -tL ∇(z 0 ) X e -ts dt.
Therefore the representation (6.8.3) of the spectral projectors and the analytic continuation of the above resolvents imply with (6.8.10) that sb,j (z), ũa,i = 0.

Next assume that a = b. Then W u (a) ∩ W s (a) = {a}. Since the support of sa,i (z) (resp. ũa,i (z 0 )) is contained in the closure of W s (a) (resp. W u (a)), we can compute

Π ∨ (z) χ a [W s (a)] ⊗ s a,j (z) , Π χ a [W u (a)] ⊗ u a,i (z 0 ) = χ a [W s (a)] ⊗ s a,j (z), χ a [W u (a)] ⊗ u a,i (z 0 ) = [a], s a,j (z), u a,i (z 0 ) E ∨ ,E ,
where the first equality stands because sa (z) = [W s (a)] ⊗ s a,j (z) near a by [DR20c, Proposition 7.1]. This gives (6.8.9). This identity immediately yields (6.8.8) with

A j a,i (z) = s a,j (z)(a), u a,i (z 0 )(a) E ∨ a ,Ea since we have Π(z) = a,i sa,j (z), • ũa,j (z) (6.8.11) 
Using the lemma, we obtain, if µ(z) = ũ(z) : Π(z)ũ(z 0 ) ,

d(log µ) z 0 σ = a∈Crit(f ) (-1) n-|a| tr A γa (z 0 , σ)P γa (z 0 ) -1
where A γa (z 0 , σ) = d (P γa ) z 0 σ. Since n is odd, we obtain by definition of e and (6.3.10)

d(log µ) z 0 σ = a∈Crit(f ) (-1) |a| γa tr α z 0 (σ) = e tr α z 0 (σ).
This equation combined with (6.8.6) and (6.8.7) yields, if

τ ∨ (z) = τ e,o (∇(z) ∨ ) d(log τ ∨ ) z 0 σ = -tr s, C • Π(z 0 )α z 0 (σ) k(z 0 ) + e tr α z 0 (σ).
The proof is almost finished. But since we need to formulate our results in terms of the cohomological torsion, we still have to make some tedious formal manipulations to pass to the cohomological formalism. The first step is to replace ∇ by the dual connection ∇ ∨ in the above formula. We also introduce some notation. The operator Π was the spectral projector on the kernel of L ∇ X . Now we need to work with the spectral projector on ker L

∇(z 0 ) ∨ X (resp. L ∇(z 0 ) -X ), which we denote by Π ∨ + (z 0 ) (resp Π -(z 0 ))
where the + (resp -) sign emphasizes the fact that we deal with + X (resp -X). Now note that

∇(z) ∨ = ∇(z 0 ) ∨ -T α z 0 (z -z 0 ) + o(z -z 0 ).
Therefore, applying what precedes to τ (z) we get

d(log τ ) z 0 σ = -tr s, C • ∨,+ Π ∨ + (z 0 ) -T α z 0 (σ) k∨ + (z 0 ) + e tr -T α z 0 (σ) , (6.8.12) 
where Π ∨ + (z 0 ) is the spectral projector (6.8.3) associated to ∇(z 0 ) ∨ and + X, C • ∨,+ = ran Π ∨ + (z 0 ), and k ∨ + (z 0 ) is any cochain contraction on the complex ( C • ∨,+ , ∇(z 0 ) ∨ ). Now, we have the identification

C k ∨,+ ∨ C n-k -,
where C • -is the range of Π -(z 0 ), the spectral projector (6.8.3) associated to ∇(z 0 ) and -X. It is easy to show that under this identification, one has

Π ∨ + T α z 0 (σ) k(z 0 ) ∨ = Π -(z 0 )α z 0 (σ)k -(z 0 ) + Π -(z 0 )α z 0 (σ), k -(z 0 ) ,
where for any j ∈ {0, . . . , n}, we set

k -(z 0 )| C n-j - = (-1) j+1 k∨ + (z 0 )| Cj+1 ∨ : C n-j - → C n-j-1 - .
Then k -(z 0 ) is a cochain contraction on the complex ( C • -, ∇(z 0 )). As a consequence, since n is odd,

tr s, C • ∨,+ Π ∨ + (z 0 ) -T α z 0 (σ) k∨ + (z 0 ) = tr s, C • - Π -(z 0 )α z 0 (σ)k -(z 0 ).
This concludes by (6.8.12) since tr(-T β) = -tr β for any β ∈ Ω 1 (M, End(E)).

Comparison of the dynamical torsion with the Turaev torsion

In this section we see the dynamical torsion and the Turaev torsion as functions on the space of acyclic representations. This is an open subset of a complex affine algebraic variety. Therefore we can compute the derivative of τ ϑ /τ e,o along holomorphic curves, using the variation formulae obtained in § §6.6,6.8. From this computation we will deduce Theorem 6.1.3.

The algebraic structure of the representation variety

We describe here the analytic structure of the space

Rep(M, d) = Hom(π 1 (M ), GL(C d ))
of complex representations of degree d of the fundamental group. Since M is compact, π 1 (M ) is generated by a finite number of elements c 1 , . . . , c L ∈ π 1 (M ) which satisfy finitely many relations. A representation ρ ∈ Rep(M, d) is thus given by 2L invertible d × d matrices ρ(c 1 ), . . . , ρ(c L ), ρ(c -1 1 ), . . . ρ(c -1 L ) with complex coefficients satisfying finitely many polynomial equations. Therefore the set Rep(M, d) has a natural structure of a complex affine algebraic set. We will denote the set of its singular points by Σ(M, d). In what follows, we will only consider the classical topology of Rep(M, d).

We will say that a representation ρ ∈ Rep(M, d) is acyclic if ∇ ρ is acyclic. We 

τ ϑ (ρ) = τ ϑ (∇ ρ ), τ e,o (ρ) = τ e,o (∇ ρ ),
for any Euler structure e and any cohomological orientation o.

Holomorphic families of acyclic representations

Let ρ 0 ∈ Rep ac (M, d) \ Σ(M, d) be a regular point. Take δ > 0 and ρ(z), |z| < δ, a holomorphic curve in Rep ac (M, d) \ Σ(M, d) such that ρ(0) = ρ 0 . Theorems 6.1.3 and 6.1.4 will be a consequence of the following Proposition 6.9.1. Let X be a contact Anosov vector field on M . Let e = [ X, e] be the Euler structure defined in §6.8.3. Note that -cs(-X, X) + e is a cycle and defines a homology class h ∈ H 1 (M, Z). Then z → τ ϑ (ρ(z))/τ e,o (ρ(z)) is complex differentiable and d dz

τ ϑ (ρ(z)) τ e,o (ρ(z)) det ρ(z), h = 0
for any cohomological orientation o. Proposition 6.9.1 relies on the variation formulae given by Propositions 6.6.1 and 6.8.1, and Lemma 6.7.4 which gives a topological interpretation of those.

An adapted family of connections

Following [BV17, §4.1], there exists a flat vector bundle E over M and a C 1 family of connections ∇(z), |z| < δ, in the sense of §6.6.1, such that 7 ρ ∇(z) = ρ(z) (6.9.1) for every z ; we can moreover ask the family ∇(z) to be complex differentiable at z = 0, that is,

∇(z) = ∇ + zα + o(z), (6.9.2) 
where ∇ = ∇(0) and α ∈ Ω 1 (M, End(E)). Note that flatness of ∇(z) implies

[∇, α] = ∇α + α∇ = 0. 7. It is actually stated in [BV17, §4
.1] that one can find a C 1 family of connections satisfying (6.9.1) ; however looking carefully at the proofs one can choose the family ∇(z) to be C 1 in z.

A cochain contraction induced by the Morse-Smale gradient flow

Let

L ∇ -X + s -1 = Π - s + Y + O(s) be the Laurent expansion of L ∇ -X + s -1
near s = 0. The fact that s = 0 is a simple pole comes from [START_REF] Viet | Spectral analysis of morse-smale gradient flows[END_REF]. As in 6.6.2, we consider the operator

K = ι -X Y (Id -Π -) + k-Π -: Ω • (M, E) → D • (M, E),
where kis any cochain contraction on C • -= ran Π -. Note that we have the identity

[∇, K] = ∇ K + K∇ = Id . (6.9.3)
The next proposition will allow us to interpret the term tr s, C • Π -(z)α z (σ) k-(z) appearing in Proposition 6.8.1 as a flat trace similar to the one appearing in Proposition 6.6.1. This will be crucial for the comparison between τ ϑ and τ e,o . Proposition 6.9.2. For ε > 0 small enough, the wavefront set of the Schwartz kernel of the operator ι -X Y (Id -Π -)e -εL ∇ -X does not meet the conormal to the diagonal in M × M and we have for any α ∈ Ω 1 (M, End(E))

tr s αι -X Y (Id -Π -)e -εL ∇ -X = 0.
We refer to Section §6.12 for the proof. An immediate corollary is the formula

tr s, C • - Π -α k-= tr s α Ke -εL ∇ -X .
(6.9.4) Indeed, since L ∇ -X Π -= 0, we have Π -e -εL ∇ -X = Π -. Moreover, since the trace of finite rank operators coincides with the flat trace, we have

tr s, C • - Π -α k-= tr s, C • - Π -α k-e -εL ∇ -X = tr s α k-Π -e -εL ∇ -X .
Therefore we obtain with Proposition 6.9.2

tr s, C • Π -α k-= tr s αι -X Y (Id -Π -)e -εL ∇ -X + tr s α k-Π -e -εL ∇ -X ,
which gives (6.9.4).

6.9.5 Proof of Proposition 6.9.1

Note that we have by (6.9.1)

τ ϑ (ρ(z)) = τ ϑ (∇(z)), τ e,o (ρ(z)) = τ e,o (∇(z)).
We will set f (z) = τ ϑ (∇(z))/τ e,o (∇(z)) for simplicity. Now we apply Proposition 6.6.1, Proposition 6.8.

1 to obtain that z → f (z) is real differentiable (since z → ∇(z)
is) ; moreover it is complex differentiable at z = 0 by (6.9.2) and for ε > 0 small enough we have

d dz z=0 log f (z) = -tr s αKe -εL ∇ X + tr s α Ke -εL ∇ -X + tr α, e , (6.9.5) 
where we used (6.9.4). Let

∆ = ∇∇ + ∇ ∇ : Ω • (M, E) → Ω • (M, E)
be the Hodge-Laplace operator induced by any metric on M and any Hermitian product on E. Because ∇ is acyclic, ∆ is invertible and Hodge theory gives that its inverse ∆ -1 is a pseudo-differential operator of order -2. Define

J = ∇ ∆ -1 : D • (M, E) → D •-1 (M, E).
We have of course

[∇, J] = ∇J + J∇ = Id D • (M,E) . (6.9.6) 
Let R ε be the interpolator at time ε defined in §6.7.3 for the pair of vector fields (-X, X). This implies with (6.7.4)

[∇, R ε ] = e -εL ∇ X -e -εL ∇ -X . (6.9.7) 
Now define

G ε = J Ke -εL ∇ X -Ke -εL ∇ -X -R ε : Ω • (M, E) → D •-2 (M, E).
Let us compute, having (6.9.6) in mind,

[∇, G ε ] = ∇J Ke -εL ∇ X -Ke -εL ∇ -X -R ε -J Ke -εL ∇ X -Ke -εL ∇ -X -R ε ∇ = (Id -J∇) Ke -εL ∇ X -Ke -εL ∇ -X -R ε -J K∇e -εL ∇ X -K∇e -εL ∇ -X -R ε ∇ = Ke -εL ∇ X -Ke -εL ∇ -X -R ε -J [∇, K]e -εL ∇ X -[∇, K]e -εL ∇ -X -[∇, R ε ] ,
where we used that e -εL ∇ X and e -εL ∇ -X commute with ∇. Now note that (6.6.7), (6.7.4) and (6.9.3) imply

[∇, K]e -εL ∇ X -[∇, K]e -εL ∇ -X -[∇, R ε ] = e -εL ∇ X -e -εL ∇ -X -e -εL ∇ X -e -εL ∇ -X = 0.
Therefore we obtained

[∇, G ε ] = Ke -εL ∇ X -Ke -εL ∇ -X -R ε . Because [∇, α] = 0 we have [∇, αG ε ] = -α Ke -εL ∇ X -Ke -εL ∇ -X -R ε .
Using the notations of §B.3.1, we have that WF(J), WF(α) and WF(∇) are contained in the conormal bundle of the diagonal N * ∆ since J, α, ∇ are pseudodifferential operators ; moreover, equation (6.7.6) shows that

WF Ke -εL ∇ X -Ke -εL ∇ -X -R ε ∩ N * ∆ = ∅.
It follows from wave front composition [Hör90, Theorem 8.2.14] that WF(αG ε ) ∩ N * ∆ = ∅. The operators ∇, αG ε satisfy the assumptions of Proposition B.3.1 which gives tr s [∇, αG ε ] = 0 and therefore (6.9.5) reads

d dz z=0 log f (z) = -tr s αR ε + tr α, e . (6.9.8) 
The identity [∇, α] = 0 also implies that d tr α = tr

∇ E⊗E ∨ α = tr[∇, α] = 0.
As a consequence we can apply (6.7.5) to obtain

tr s αR ε = tr α, cs(-X, X) .
Now note that ∂ -cs(-X, X) + e = -div(X) -div(-X) + div( X) = 0 by (6.7.1) and (6.8.2) since X is non singular. Therefore we obtain

d dz z=0 log f (z) = tr α, h
where h = [-cs(-X, X) + e] ∈ H 1 (M, Z). Finally, let us note that by (6.3.10),

d dz z=0 log det ρ(z), h = -tr α, h , since ρ(z) = ρ ∇(z)
. Therefore the proposition is proved for z = 0. However the same argument holds for every z close enough to 0, which concludes.

6.9.6 Proof of Theorems 6.1.3 and 6.1.4

By Hartog's theorem and Proposition 6.9.1, we have that the map M,d) is open and dense in Rep ac (M, d), we get that the map 6.9.9 is locally constant on Rep ac (M, d).

ρ → τ ϑ (ρ) τ e,o (ρ) det ρ, h (6. 
By [FT00, p. 211] we have, if e is another Euler structure, τ e ,o (ρ) = det ρ, ee τ e,o (ρ). As a consequence, if we set e ϑ = [-X, 0] which defines an Euler structure since X is nonsingular (see §6.7.2), we have ee ϑ = h and we obtain that ρ → τ ϑ (ρ)/τ e ϑ ,o (ρ) is locally constant on Rep ac (M, d). Now let η be another contact form inducing an Anosov Reeb flow and denote by X η its Reeb flow. Then if e η = [-X η , 0], we have e η -e ϑ = cs(X, X η ) by definition. Therefore

τ e ϑ ,o (ρ) = τ eη,o (ρ) det ρ, e ϑ -e η = τ eη,o (ρ) det ρ, cs(X η , X)
and we obtain that

ρ → τ ϑ (ρ) τ η (ρ) det ρ, cs(X, X η )
is locally constant on Rep ac (M, d). By Theorem 6.5.1 we thus obtain Theorem 6.1.4. Finally assume that dim M = 3 and b 1 (M ) = 0. Take R a connected component of Rep ac (M, d) and assume that it contains an acyclic and unitary representation ρ 0 . We invoke [DGRS18, Theorem 1] and the Cheeger-Müller theorem [START_REF] Cheeger | Analytic torsion and the heat equation[END_REF][START_REF] Müller | Analytic torsion and r-torsion of riemannian manifolds[END_REF] to obtain that 0 / ∈ Res(L ∇ρ 0 X ) and

|τ ϑ (ρ 0 )| = |ζ X,∇ρ 0 (0)| -1 = τ RS (ρ 0 ),
where the first equality comes from (6.4.10) (we have q = 1 since dim M = 3) and τ RS (ρ 0 ) is the Ray-Singer torsion of (M, ρ 0 ), cf. [START_REF] Daniel | R-torsion and the laplacian on riemannian manifolds[END_REF]. On the other hand, we have by [FT00, Theorem 10.2] that τ RS (ρ 0 ) = |τ e,o (ρ 0 )| since ρ 0 is unitary. Therefore the map ρ → τ ϑ (ρ)/τ e ϑ ,o (ρ) is of modulus one on R. This concludes the proof of Theorem 6.1.3.

Projectors of finite rank

Traces on variable finite dimensional spaces

In what follows, we consider two Hilbert spaces G ⊂ H, the inclusion being dense and continuous. We will denote by L(H, G) the space of bounded linear operators H → G endowed with the operator norm. Let δ > 0 and Π t , |t| δ, be a family of finite rank projectors on H such that ran Π t ⊂ G. Assume that t → Π t is differentiable at t = 0 as a family of bounded operators H → G, that is, 

Π t = Π + tP + o H→G (t) (6 
t → j t = ν j t • Π • Π t ∈ G is differentiable at t = 0. Noting that Π t = m j=1 ϕ j t ⊗ j t : G → F,
we finally obtain that t → Π t ∈ L(G, F) is differentiable at t = 0.

Continuity of the Pollicott-Ruelle spectrum

We describe here the spaces used in § §6.5,6. 6. In what follows, M is a compact manifold, (E, ∇) a flat vector bundle on M and X 0 is a vector field on M generating an Anosov flow, cf. §7.2.3. We denote by T * M = E * u,0 ⊕ E * s,0 ⊕ E * 0,0 its Anosov decomposition of T * M .

Bonthonneau's uniform weight function

We state here a lemma from Bonthonneau which is [START_REF] Guedes | Perturbation of ruelle resonances and faure-sjöstrand anisotropic space[END_REF]Lemma 3]. This gives us an escape function having uniform good properties for a family of vector fields.

A consequence is that one can define some uniform anisotropic Sobolev spaces on which each vector field of the family has good spectral properties. In what follows, | • | is a smooth norm on T * M . Lemma 6.11.1. There exists conical neighborhoods N u and N s of E * u,0 and E * s,0 , some constants C, β, T, η > 0, and a weight function m ∈ C ∞ (T * M, [0, 1]) such that the following holds. Let X be any vector field satisfying X -X 0 C 1 < η, and denote by Φ t its induced flow on T * M and by E * u and E * s its (dual) unstable and stable bundles. Then 1. E * • ⊂ N • , for • = s, u and for any t > 0, ξ u ∈ E * u and ξ s ∈ E * s one has

|Φ t (ξ u )| 1 C e βt |ξ u |, |Φ -t (ξ s )| 1 C e βt |ξ s |.
2. For every t T it holds

Φ t N s ∩ X ⊥ ⊂ N u , Φ -t N u ∩ X ⊥ ⊂ N s ,
where X ⊥ = {ξ ∈ T * M, ξ • X = 0}. 3. If X is the Lie derivative induced by Φ t , then m ≡ 1 near N s , m ≡ -1 near N u , X.m 0.

Anisotropic Sobolev spaces

Take the weight function m of Lemma 6.11.1. Define the escape function g by g(x, ξ) = m(x, ξ) log(1 + |ξ|), (x, ξ) ∈ T * M.

We set G = Op(g) ∈ Ψ 0+ (M ) for any quantization procedure Op. Then by [Zwo12, § §8.3,9.3,14.2] we have exp(±µG) ∈ Ψ µ+ (M ) for any µ > 0. For any µ > 0 and j ∈ Z we define the spaces

H • µG,j = exp(-µG)H j (M, ∧ • ⊗ E) ⊂ D • (M, E),
where H j (M, ∧ • ⊗ E) is the usual Sobolev space of order j on M with values in the bundle ∧ • ⊗ E. Note that any pseudo-differential operator of order m is bounded H • µG,j → H • µG,j-m for any µ, m, j.

Uniform parametrices

Let us consider a smooth family of vector fields X t , |t| < ε, perturbing X 0 . For any c, ρ > 0 we will denote

Ω(c, ρ) = {Re(s) > c} ∪ {|s| ρ} ⊂ C.
The spaces defined in the last subsection yields an uniform version of [DZ16, Proposition 3.4], as follows. Proposition 6.11.2. [Bon20, Lemma 9] Let Q be a pseudo-differential operator micro-locally supported near the zero section in T * M and elliptic there. There exists c, ε 0 > 0 such that for any ρ > 0 and J ∈ N, there is µ 0 , h 0 > 0 such that the following holds. For each µ µ 0 , 0 < h < h 0 , j ∈ Z such that |j| J and s ∈ Ω(c, ρ) the operator

L ∇ Xt -h -1 Q + s : H • µG,j+1 → H • µG,j
is invertible for |t| ε 0 and the inverse is bounded H • µG,j → H • µG,j independently of t.

Continuity of the Pollicott-Ruelle spectrum

We fix ρ, J 4 and µ 0 , µ, h 0 , h, j as in Proposition 6.11.2. We first observe that

L ∇ Xt + s L ∇ Xt -h -1 Q + s -1 = Id +h -1 Q L ∇ Xt -h -1 Q + s -1 . (6.11.1)
Since Q is supported near 0 in T * M , it is smoothing and thus trace class on any H • µG,j . By analytic Fredholm theory, the family s

→ K(t, s) = h -1 Q L ∇ Xt -h -1 Q + s -1 is
a holomorphic family of trace class operators on H • µG,j in the region Ω(c, ρ). We can therefore consider the Fredholm determinant

D(t, s) = det H • µG,j Id +K(t, s) .
It follows from [Sim05, Corollary 2.5] that for each t, s → D(t, s) is holomorphic on Ω(c, ρ). Moreover (6.11.1) shows that its zeros coincide, on Ω(c, ρ), with the Pollicott-Ruelle resonances of L ∇ Xt . In addition, we have for any s ∈ Ω(c, ρ),

L ∇ Xt -h -1 Q + s -1 -L ∇ X t -h -1 Q + s -1 = -L ∇ Xt -h -1 Q + s -1 L ∇ Xt -L ∇ X t L ∇ X t -h -1 Q + s -1 . (6.11.2)
We have 

L ∇ Xt -L ∇ X t t -t -→ t→t L ∇ Ẋt in L(H • µG,j+1 , H • µG,j ). ( 6 
D(t, s) ∈ C 0 [-ε 0 , ε 0 ] t , Hol Ω(c, ρ) s .
(6.11.4)

Regularity of the resolvent

Let Z be an open set of C whose closure is contained in the interior of Ω(c, ρ). We assume that Z∩Res(L ∇ X 0 ) = ∅. Up to taking ε 0 smaller, Rouché's theorem and (6.11.4) imply that there exists δ > 0 such that dist Z, Res(L ∇ Xt ) > δ for any |t| ε 0 . As a consequence, we obtain that for every |j| J, the map

L ∇ Xt + s -1 : H • µG,j → H • µG,j
is bounded independently of (t, s) ∈ [-ε 0 , ε 0 ] × Z. Noting that

L ∇ Xt + s -1 -L ∇ X t + s -1 t -t = -L ∇ Xt + s -1 L ∇ Xt -L ∇ X t t -t L ∇ X t + s -1
, (6.11.5)

we obtain by (6.11.

3) that t → L ∇ X t + s -1 is continuous in L(H • µG,j+1 , H • µG,j
). Therefore, applying (6.11.5) again, we get that

L ∇ Xt + s -1 ∈ C 1 [-ε 0 , ε 0 ] t , Hol(Z s , L(H • µG,j+1 , H • µG,j-2 ) . (6.11.6)
Note that here we need |j -2|, |j + 1| J.

Regularity of the spectral projectors

Let 0 < λ < 1 such that {|s| = λ} ∩ Res(L ∇ X 0 ) = ∅. Applying the last subsection with Z = {|s| = λ}, we get {|s| = λ} ∩ Res(L ∇ Xt ) = ∅ for any |t| ε 0 . We can therefore define for those t

Π t = 1 2πi |s|=λ L ∇ Xt + s -1 ds : H • µG,j → H • µG,j .
Then (6.11.6) gives that

Π t ∈ C 1 [-ε 0 , ε 0 ] t , Z s , L(H • µG,j+1 , H • µG,j-2
. This is true for j = 3 and j = -1 because J 4. Moreover by Rouché's theorem, the number m of zeros of s → D(t, s) does not depend on t. Noting that

∂ s K(t, s)(1 + K(t, s)) -1 = -K(t, s) L ∇ Xt -h -1 Q + s) -1 (1 + K(t, s) -1 ,
we obtain by [START_REF] Dyatlov | Mathematical Theory of Scattering Resonances[END_REF]Theorem C.11] and the cyclicity of the trace that m is equal to

1 2πi tr |s|=λ ∂ s K(t, s)(1 + K(t, s)) -1 ds = - 1 2πi tr |s|=λ L ∇ Xt -h -1 Q + s -1 (1 + K(t, s)) -1 K(t, s)ds = 1 2πi tr |s|=λ L ∇ Xt -h -1 Q + s -1 (1 + K(t, s)) -1 ,
where we used that s → L ∇ Xt -h -1 Q + s -1 is holomorphic on {|s| λ}. The last integral is equal to tr Π t = rank Π t by (6.11.1). As a consequence we can apply Lemma 6.10.3 to obtain that

Π t ∈ C 1 [-ε 0 , ε 0 ] t , L(H • µG,0 , H • µG,1 . (6 
.11.7)

Wavefront set of the spectral projectors

Let (E, ∇ ∨ ) be the dual bundle of (E, ∇). Then (6.3.2) implies, for any Re(s) 0,

u ∈ Ω k (M, E) and v ∈ Ω n-k (M, E ∨ ), L ∇ Xt + s -1 u, v = u, L ∇ ∨ -Xt + s -1
v , (6.11.8) where •, • is the pairing from §B.1. This shows that Res(L ∇ ∨ -Xt ) = Res(L ∇ Xt ). Therefore we can apply the preceding construction with the escape function g replaced by -g (the unstable bundle of -X t is the stable one of X t and reciprocally) and we obtain that

Π ∨ t = 1 2πi |s|=λ L ∇ ∨ -Xt + s -1 ds ∈ C 1 [-ε 0 , ε 0 ] t , L(H • -µG,0 , H • -µG,1 ) .
Note that (6.11.8) implies

Π t u, v = u, Π ∨ t v , u ∈ Ω k (M, E), v ∈ Ω n-k (M, E ∨ ). ( 6 
.11.9)

We denote

C • t = ran Π t , C ∨• t = ran Π ∨ t and m = rank Π t = rank Π ∨ t .
Take ϕ 1 , . . . , ϕ m and ψ 1 , . . . , ψ m some elements of Ω • (M, E) such that Π 0 (ϕ 1 ), . . . Π 0 (ϕ m ) is a basis of C • 0 and Π 0 ϕ i , ψ j = 0 if i = j and Π 0 ϕ i , ψ j = 1 otherwise. For t small enough we set ϕ i t = Π t ϕ i , ψ t j = Π ∨ t ψ j . Like in the proof of Lemma 6.10.3, (6.11.9) implies that .11.11) This means that the map

Π t = m i=1 m ij (t)ϕ i t ψ j t , • , (6 
, ε 0 ], WF(ϕ i t ) ⊂ W u , WF(ψ i t ) ⊂ W s , W u ∩ W s = ∅, i = 1, . . . , m. ( 6 
[-ε 0 , ε 0 ] t → ϕ i t (resp. ψ i t ) is bounded in D • Wu (M, E) (resp. D • Ws (M, E ∨ )).
To proceed, we note that we can construct two weight functions m u , m s satisfying the properties of Lemma 6.11.1 such that {m u 0}∩{m s 0} = ∅ (for example by choosing well the χ from [START_REF] Guedes | Perturbation of ruelle resonances and faure-sjöstrand anisotropic space[END_REF]p. 6]). Let G u , G s ∈ Ψ 0+ (M ) be the associated operators from §6.11.2. Up to choosing ε 0 smaller, we obtain with (6.11.7) that the map t → ϕ i t is bounded in H • µGu,0 for µ > 0 big enough. For any χ ∈ C ∞ (T * M, [0, 1]) such that supp χ ⊂ {m u δ} for some δ > 0, we have by classical rules of pseudo-differential calculus

Op(χ)ϕ i t H δµ (M,∧ • ⊗E) C µ ϕ i t H • µGu,0 C µ , t ∈ [-ε 0 , ε 0 ],
for some constants C µ , C µ independent of t. As a consequence, we obtain (for example using [DR17, Lemma 7.4]) that

[-ε 0 , ε 0 ] t → ϕ i t is bounded in D • Wu (M, E) where W u = {m u 0}.
Doing exactly the same with -m s and -X t we obtain that

[-ε 0 , ε 0 ] t → ψ i t is bounded in D • Ws (M, E ∨ ) with W s = {-m s 0}
. This shows (6.11.11).

The wave front set of the Morse-Smale resolvent

The purpose of this section is to prove Proposition 6.9.2. For simplicity we prove it for X instead of -X. We will denote by Π the spectral projector (6.8.3) for the trivial bundle (C, d). Recall that D Γ (M × M ) denotes distributions whose wave front set is contained in the closed conic set Γ ⊂ T • (M × M ). A family (f t ) t 0 of distributions will be O D Γ (1) if it is bounded in D Γ in the sense of [START_REF] Viet | Renormalization of quantum field theory on curved space-times, a causal approach[END_REF]p. 31]. We will need the following Lemma 6.12.1. Let ε > 0 and a ∈ Crit(f ). There exists c > 0, a closed conic set

Γ ⊂ T * (M × M ) with Γ ∩ N * ∆(T * M ) = ∅ and χ ∈ C ∞ (M, [0, 1]) such that χ ≡ 1 near a such that K χ,t+ε = O D n Γ (M ×M ) (e -tc )
, where for t 0, K χ,t is the Schwartz kernel of the operator χe -tL X Id -Π χ.

Proof. Because X is C ∞ -linearizable, we can take U ⊂ R n to be a coordinate patch centered in a so that, in those coordinates, e -t X (x) = e -tA (x) where A is a matrix whose eigenvalues have nonvanishing real parts. Denoting (x 1 , . . . , x n ) the coordinates of the patch, X reads X = 1 i,j n

A j i x i ∂ j .
We have a decomposition R n = W u ⊕ W s stable by A such that A| W u (resp. A| W s ) have eigenvalues with positive (resp. negative) real parts, d u/s = dim W u/s , this induces a decomposition of the coordinates x = (x s , x u ). We will denote by

A u = A| W u ⊕ 0 W s , A s = 0 W u ⊕ A| W s and c > 0 such that c < inf λ∈sp(A) | Re(λ)|
where sp(A) is the spectrum of A.

Let χ 1 , χ 2 ∈ Ω • (M ) such that supp χ i ⊂ supp χ for i = 1, 2. For simplicity, we identify e -tA and its action on differential forms and currents given by the pullback, δ d (x) denotes the Dirac δ distribution at 0 ∈ R d , π 1 , π 2 are the projections M × M → M on the first and second factor respectively.

K χ,t , π * 1 χ 1 ∧ π * 2 χ 2 = χ 2 , e -tA (Id -Π)χ 1 = χ 2 , e -tA χ 1 -δ du (x u )dx u W s π * s,0 χ 1 = e tAs χ 2 , e -tAu χ 1 - W u π * u,0 χ 2 W s π * s,0 χ 1 = 1 0 U ∂ τ e tAs π * u,τ χ 2 ∧ e -tAu π * s,τ χ 1 dτ,
where π u,τ , π s,τ : U → U are defined by π u,τ (x u , x s ) = (x u , τ x s ) and π s,τ (x u , x s ) = (τ x u , x s ). Now write χ 2 = |I|=k β I dx Is s ∧ dx Iu u . We have 

∂ τ π * u,τ χ 2 (x u , x s ) = ∂ τ I τ |Is| β I (x u , τ x s )dx Iu u ∧ dx Is
∂ τ e tAs π * u,τ χ 2 ∧ e -tAu π * s,τ χ 1 = O χ 1 ,χ 2 (e -tc
). (6.12.1)

Replacing χ 1 and χ 2 by χ 1 e i ξ,• and χ 2 e i η,• with ξ, η ∈ R n , one gets

K χ,t , π * 1 χ 1 e i ξ,• ∧ π * 2 χ 2 e i η,• = 1 0 U
∂ τ e tAs π * u,τ χ 2 ∧ e -tAu π * s,τ χ 1 e i e tAs (xu,τ xs),η e i e -tAu (τ xu,xs),ξ dτ + 1 0 U e tAs π * u,τ χ 2 ∧ e -tAu π * s,τ χ 1 ∂ τ e i e tAs (xu,τ xs),η e i e -tAu (τ xu,xs),ξ dτ.

Denoting g(τ, x u , x s ) = e i e tAs (xu,τ xs),η e i e -tAu (τ xu,xs),ξ we have

∂ τ g(τ, x u , x s ) = i e tAs x s , η s + e -tAu x u , ξ u g(τ, x u , x s ) = O C ∞ (M ) (e -tc ),
because |e tAs x s |, |e -tAu x u | = O(e -tc ). Repeating the process that led to (6.12.1) but for derivatives of χ 1 , χ 2 as test forms with successive integration by parts, we therefore obtain for any N ∈ N :

K χ,t , π * 1 χ 1 e i ξ 1 ,• ∧ π * 2 χ 2 e i ξ 2 ,• C N,χ 1 ,χ 2 e -tc 1 + |e tAs η s | + |e -tAu ξ u | × 1 0 1 + |τ e tAs η s + ξ s | + |τ e -tAu ξ u + η u | -N dτ,
where ξ = (ξ u , ξ s ) and η = (η u , η s ). Now assume (ξ, η) is close to N * ∆(T * M ), say

ξ |ξ| + η |η| < ν and 1 -ν < |ξ| |η| < 1 + ν
for some ν > 0. Then we have for any τ ∈ [0, 1] :

|τ e tAs η s + ξ s | + |τ e -tAu ξ u + η u | 1 -e -tc (1 + ν) (|ξ s | + |η u |).
As a consequence, if ν > 0 is small enough so that (1 + ν)e -(t+ε)c < 1, for every t 0, we obtain

K χ,t+ε , π * 1 χ 1 e i ξ,• ∧ π * 2 χ 2 e i η,• C N,χ 1 ,χ 2 (1 + |ξ| + |η|) -N ,
which concludes.

Proof of Proposition 6.9.2. Fix ε > 0. For a ∈ Crit(f ), take c a , Γ a , χ a as in Lemma 6.12.1. The proof of Lemma 6.12.1 actually shows that for Re(s) > -c a , the integral

G χa,ε,s = ∞ 0
e -ts χ a e -(t+ε) X (Id -Π)χ a dt converges as an operator Ω • (M ) → D • (M ). Moreover, its Schwartz kernel G χa,ε,s is locally bounded in D n Γa (M × M ) in the region {Re(s) > -c a }. We will need the following lemma. Lemma 6.12.2. For any µ > 0, there is ν > 0 with the following property. For every x ∈ M such that dist(x, Crit(f )) µ, it holds dist x, e -(t+ε) X (x) ν, t 0.

Proof. We proceed by contradiction. Suppose that there is µ > 0 and sequences x m ∈ M and t m ε such that dist x m , e -tm X (x m ) → 0 as m → ∞ and dist(x m , Crit(f )) µ. Extracting a subsequence we may assume that x m → x, t m → ∞ (indeed if t m → t ∞ < ∞ then x is a periodic point for X, which does not exist) and for any m, e -t X (x m ) → a and e t X (x m ) → b as t → ∞, for some a, b ∈ Crit(f ). Since the space of broken curves L(a, b) is compact (see [AD]), we may assume that the sequence of curves γ m = e t X (x m ), t ∈ R converges to a broken curve = ( 1 , . . . , q ) ∈ L(a, b) with j ∈ L(c j-1 , c j ) for some c 0 , . . . , c q ∈ Crit(f ) with c 0 = a and c q = b. Because x m → x, the proof of [AD, Theorem 3.2.2] implies x ∈ j for some j so that e -t X x → c j-1 as t → ∞. Therefore replacing x by e -t X (x) for t big enough, we may assume that x is contained in a Morse chart Ω(c j-1 ) near c j-1 . Then c j-1 = a. Indeed if it was not the case then we would have e -tm X x m → a as m → ∞ (since x m would be contained in Ω(a) ∩ W u (a) for big enough m and t m → ∞), which is not the case since dist(x, Crit(f )) µ =⇒ x = a and dist x m , e -tm X (x m ) → 0 as m → ∞. Therefore the flow line of x m exits Ω(c j-1 ) in the past. We therefore obtain, since e -tm X x m → x, that there is i < j -1 so that c i = c j-1 . This is absurd since the sequence ind f (c i ) i=0,...,q is strictly decreasing.

By (6.8.11) we have supp K Π ∩ ∆ = Crit(f ), where K Π is the Schwartz kernel of Π and ∆ is the diagonal in M × M ; the same holds for e -(t+ε) X Π = Π (see [START_REF] Viet | Pollicott-ruelle spectrum and witten laplacians[END_REF]). Moreover, Lemma 6.12.2 implies that if χ ∈ C ∞ (M, [0, 1]) satisfies χ ≡ 1 near ∆ and has support close enough to ∆, we have Now for Re(s) 0, we have as a consequence of the Hille-Yosida Theorem applied to L X acting on suitable anisotropic spaces [DR17, 3.2.3] :

L X + s -1 = ∞ 0 e -ts e -t X dt : Ω • (M ) → D • (M ).
Therefore for Re(s) 0, it holds

G χ,ε,s = χ L X + s -1 (Id -Π)e -ε X χ.
Since both members are holomorphic in the region {Re(s) > -c} and coincide for Re(s) 0, they coincide in the region Re(s) > -c. Let β ∈ Ω 1 (M ). We can compute for Re(s) 0, since ι X Π = 0 by [START_REF] Viet | Pollicott-ruelle spectrum and witten laplacians[END_REF],

tr s βι X L X + s -1 (Id -Π)e -εL X = tr s βι X G χ,ε,s = ∞ 0 e -ts tr s βι X e -(t+ε) X (Id -Π) = ∞ 0 e -ts tr s βι X e -(t+ε) X ,
where we could interchange the integral and the flat trace thanks to the bound obtained in Lemma 6.12.1. Now the Atiyah-Bott trace formula [START_REF] Francis | A Lefschetz fixed point formula for elliptic complexes : I[END_REF] gives tr s βι X e -(t+ε) X = 0 since X vanishes at its critical points. By holomorphy this holds true for any s such that Re(s) > -c. In particular if λ > 0 is small enough

tr s βι X Y (Id -Π)e -ε X = 1 2iπ |s|=λ tr s βι X L X + s -1 s (Id -Π)e -εL X ds = 0,
where

L X + s -1 = Y + Π s + O(s)
. Therefore Proposition 6.9.2 is proved in the case

where (E, ∇) is the trivial bundle. The general case is handled similarly.

Troisième partie

Orbites périodiques et diffusion par des obstacles

Introduction

Consider D 0 , D 1 , . . . , D r ⊂ R 2 (r 3) some compact and strictly convex open sets, with smooth boundaries ∂D 0 , . . . , ∂D r . We assume that D i ∩ D j = ∅ whenever i = j. We moreover assume that the billiard B = {D 0 , D 1 , . . . , D r } satisfies the non-eclipse condition, that is,

conv(D i ∪ D j ) ∩ D k = ∅, k = i, j,
where conv(A) denotes the convex hull of a set A. We will denote D = j D j . A billiard trajectory is a piecewise Euclidian trajectory 1 γ : I → R 2 \ D • (here I ⊂ R is an interval) which rebounds on each ∂D j according to Fresnel Descartes' law (see Figure 7.1). A trajectory γ : [0, τ ] → R 2 \ D • will be said to be closed if γ(0) = γ(τ ) and γ (0) = γ (τ ) ; a closed trajectory will be said to be primitive if γ| [0,τ ] is not closed for every τ < τ. We will identify two closed trajectories γ j : R/τ j Z → R 2 \ D • (j = 1, 2) whenever τ 1 = τ 2 and γ 1 (•) = γ 2 (• + τ ) for some τ ∈ R. Denote by P B the set of primitive closed trajectories of the billiard table B . Then a result of Morita [START_REF] Morita | The symbolic representation of billiards without boundary condition[END_REF] states that there is h B > 0 such that

{γ ∈ P B : τ (γ) t} ∼ e h B t h B t , t → ∞, (7.1.1)
where τ (γ) denotes the period of a periodic trajectory γ.

The purpose of the present paper is to give the asymptotic growth of the number of primitive closed trajectories of B when we additionnaly prescribe their number of rebounds on D 0 . More precisely, for γ ∈ P B we denote by r(γ) the number of rebounds of γ on D 0 ; we have the following result.

Theorem 7.1.1. There are c, h B > 0 such that for every n 1, it holds

{γ ∈ P B : τ (γ) t, r(γ) = n} ∼ (ct) n n! e h B t h B t , t → ∞. (7.1.2) 1.
By "Euclidian" we mean trajectories going in a straight line with constant speed 1.

Moreover h B depends only on the billiard table B = {D 1 , . . . , D r }.

As we will see in §7.5, by using the symbolic representation of the billiard flow and (7.1.1), one can prove that for some constants a, b > 0 we have

at n-1 exp(h B t) {γ ∈ P B : τ (γ) t, r(γ) = n} bt n-1 exp(h B t)
provided t is large enough ; yet this method do not a priori provide the more precise asymptotics (7.1.2).

Our approach for proving (7.1.2) is reminiscent of that of Chapter 4 about the asymptotic growth of the number of closed geodesics on negatively curved surfaces for which certain intersection numbers are prescribed. In particular we make use of the work of Dyatlov-Guillarmou [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] about the existence of Pollicott-Ruelle resonances for open hyperbolic systems (the recent work of Küster-Schütte-Weich [START_REF] Küster | Resonances and weighted zeta functions for obstacle scattering via smooth models[END_REF] details how a hyperbolic billiard flow can be described by the framework of [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF]). This allows to obtain a microlocal description of the transfer operator T (s) associated to the first return map (of the billiard flow) to π -1 (∂D 0 ) (here π : SR2 → R 2 is the natural projection), weighted by exp(-st 0 (•)) where t 0 (•) is the first return time to π -1 (∂D 0 ) (see §7.3), and to apply a Tauberian theorem of Delange to the (transversal) trace of the composition 2 T (s) n (which is linked to some dynamical zeta function involving the periodic orbits rebounding n times on ∂D 0 ).

Similar asymptotics for open dispersive billiards in R d (d 3) could also be obtained with our methods ; however here we restrict ourselves to the case d = 2 for the sake of simplicity.

Related works

In [START_REF] Morita | The symbolic representation of billiards without boundary condition[END_REF] Morita proves the asymptotics (7.1.1) by constructing a symbolic coding of the billiard flow and by using the work of Parry-Pollicott [START_REF] Parry | An analogue of the prime number theorem for closed orbits of axiom a flows[END_REF]. Later, Stoyanov [START_REF] Stoyanov | Non-integrability of open billiard flows and Dolgopyat-type estimates[END_REF] proved the more precise asymptotics

{γ ∈ P B : τ (γ) t} = exp(h B t) 2 du log u + O(e ct ), t → +∞,
for some c ∈ ]0, h B [, by proving some non-integrability condition over the nonwandering set and by using Dolgopyat-type estimates (see also [START_REF] Petkov | Distribution of periods of closed trajectories in exponentially shrinking intervals[END_REF] for an asymptotics of the number of primitive closed trajectories with periods lying in exponentially shrinking intervals.

Organization of the chapter

This chapter is organized as follows. In §7.2 we present some geometrical and dynamical tools. In §7.3 we introduce the weighted transfer operator associated to the first return map to ∂D 0 and we compute its Attiyah-Bott transversal trace. In §7.4 we make use of a Tauberian argument. In §7.5 we prove some a priori estimates on {γ ∈ P B : τ (γ) t, r(γ) = n}. Finally in §7.6 we combine the results of § §7.4,7.5 to prove Theorem 7.1.1.

Preliminaries

In this section we introduce the billiard flow associated to convex obstacles in the Euclidian space R d , and we recall the construction of a smooth model given by [START_REF] Küster | Resonances and weighted zeta functions for obstacle scattering via smooth models[END_REF].

The billiard flow

Let D 1 , . . . , D r ⊂ R d be pairwise disjoint compact convex obstacles, satisfying the condition (8.1.1), where r ∈ N 3 . In the following we will assume that we have the non-eclipse condition

conv(D i ∪ D j ) ∩ D k = ∅, k = i, j, (7.2.1) 
where conv(A) is the convex hull of a set A. We denote by SR d the unit tangent bundle of R d and by π : SR d → R d the natural projection. For x ∈ ∂D j , we denote by n j (x) the outward unit normal vector to ∂D j at the point

x pointing into R d \ D j . Set D = j D j and D = {(x, v) ∈ SR d : x ∈ ∂D}.
We will say that (x, v) ∈ T ∂D j R d is incoming (resp. outgoing) if v, n j (x) > 0 (resp. v, n j (x) < 0), and introduce

D in = {(x, v) ∈ D : (x, v) is incoming}, D out = {(x, v) ∈ D : (x, v) is outgoing}.
We define the grazing set D g = T (∂D) ∩ D. We have

D = D g D in D out .
The billiard flow (φ t ) t∈R is the complete flow acting on SR d \ π -1 ( D) which is defined as follows. For (x, v) ∈ SR d \ π -1 ( D) we set

τ ± (x, v) = ± inf{t > 0 : x ± tv ∈ ∂D}
and for (x, v) ∈ D in/out/g we denote by v ∈ D out/in/g the image of v by the reflexion with respect to

T x ∂D at x ∈ ∂D, that is v = v -2 v, n j (x) n j (x), v ∈ S x R d , x ∈ ∂D j . Then for (x, v) ∈ (SR d \ π -1 (D)) ∪ D g we define φ t (x, v) = (x + tv, v), t ∈ [τ -(x, v), τ + (x, v)],
while for (x, v) ∈ D in/out , we set

φ t (x, v) = (x + tv, v) if (x, v) ∈ D in , t ∈ [0, τ + (x, v)] , or (x, v) ∈ D out , t ∈ [τ -(x, v), 0] ,
and

φ t (x, v) = (x + tv , v ) if (x, v) ∈ D out , t ∈ ]0, τ + (x, v)] , or (x, v) ∈ D in , t ∈ [τ -(x, v), 0[ .
Next we extend (φ t ) to a complete flow (which we still denote by (φ t )) satisfying the property

φ t+s (x, v) = (φ t • φ s )(x, v), t, s ∈ R, (x, v) ∈ SR d \ π -1 (D).
Strictly speaking, (φ t ) is not a flow, since the above flow property does not hold in full generality for (x, v) ∈ D in/out . However we arrange it considering an appropriate quotient space (see §7.2.2 below).

A smooth model for the non-grazing billiard flow

In this paragraph, we briefly recall the construction of [START_REF] Küster | Resonances and weighted zeta functions for obstacle scattering via smooth models[END_REF] which allows to obtain a smooth model for the non-grazing billiard flow. We first define the (nongrazing) billiard table M as

M = B/ ∼, B = SR d \ π -1 ( D) ∪ D g , where (x, v) ∼ (y, w) if and only if (x, v) = (y, w) or x = y ∈ ∂D and w = v .
The set M is endowed with the quotient topology. We will change the notation and pass from φ t to the non-grazing flow ϕ t , which is defined on M as follows. For (x, v) ∈ (SR d \ π -1 (D)) ∪ D in we define

ϕ t ([(x, v)]) = [φ t (x, v)], t ∈ ]τ g -(x, v), τ g + (x, v)[ ,
where [z] denotes the equivalence class of the vector z ∈ B for the relation ∼, and

τ g ± (x, v) = ± sup{t > 0 : φ ±t (x, v) ∈ D g }.
Note that this formula indeed defines a flow on M since each (x, v) ∈ B has a unique representative in

(SR d \ π -1 (D)) ∪ D in .
The flow ϕ t is continuous but not complete and for times t / ∈ ]τ g -(x, v), τ g + (x, v)[ , the flow is not defined.

Following [START_REF] Küster | Resonances and weighted zeta functions for obstacle scattering via smooth models[END_REF], we define smooth charts on M = B/ ∼ as follows. Introduce the surjection map π M : B → M by π M (x, v) = [(x, v)] and note that by the definition of ϕ t one has . For small ε z > 0, we may define the map 

ϕ t • π M = π M • φ t . ( 7 
ψ z : ]-ε z , ε z [ × U z × U z → M by ψ z (t, y, w) = (π M • φ t • F z )(
(x 1 + t 1 v 1 , v 1 ) = (x 2 + t 2 v 2 , v 2 ) if t 1 , t 2 > 0, (x 1 + t 1 v 1 , v 1 ) = (x 2 + t 2 v 2 , v 2 ) if t 1 , t 2 < 0,
where v k is the reflexion of v k with respect to T x k ∂D for k = 1, 2. Thus one concludes that (t 1 , x 1 , v 1 ) = (t 2 , x 2 , v 2 ). As mentioned above, the directions in D in are transversal to the boundary ∂D. This implies that the maps ψ z are open ones. In particular, ψ z realizes a homeomorphism onto its image and we declare the map

ψ -1 z : O z → ]-ε z , ε z [ × U z × U z as a chart. Hence we obtain an open covering G ⊂ z ∈D in O z .
Note that O ∩ O z = ∅ for any z , and clearly the map

(t, x, v) → (π -1 M • ψ z )(t, x, v) = (φ t • F z )(x, v) is smooth on ψ -1 z (O ∩ O z ). On the other hand, assume that O z ∩ O z = ∅ for some z , z ∈ D in . If π M (φ t (F z (x, v))) = π M (φ s (F z (y, w))) ∈ O z ∩ O z ,
then as above this yields t = s, F z (x, v) = F z (y, w) and we conclude that

(ψ -1 z • ψ Λ z )(t, y, w) = ψ -1 z • π M • φ t • F z (y, w) = ψ -1 z • π M • φ t • F z (F -1 z • F z )(y, w) = t, (F -1 z • F z )(y, w) . (7.2.4)
This shows that the change of coordinates ψ -1 z •ψ Λ z is smooth on the set ψ Λ -1 z (O z ∩ O z ), and these charts endow M with a smooth structure. Now it is easy to see that the non-complete flow (ϕ t ) is smooth on M . Indeed, this is obvious far from the gluing region G. Now let z ∈ G and z ∈ D in be such that π M (z ) = z. Then for s, t ∈ R, with |t| + |s| small, and (y, w) ∈ U z × U z , we have By [CE71, Theorem 1.5], Λ is the maximal invariant set in some isolating block. More precisely, there exists a relatively compact neighborhood U ⊂ M of Λ such that ∂U is smooth and

ψ -1 z • ϕ s • ψ z (t, y, w) = ψ -1 z • ϕ s • π M • φ t • F z (y, w) = ψ -1 z • π M • φ t+s • F z (y, w) = (s + t, y, w).
∂ 0 U = {(x, v) ∈ ∂U : v ∈ T x ∂U }
is a smooth submanifold of ∂U of codimension 1, and with the property that for some ε > 0 one has

z ∈ ∂ 0 U =⇒ ∀|t| ∈ ]0, ε[ , ϕ t (z) / ∈ U.
By proceeding as in [GMT17, Lemma 2.3], we may find a vector field Y on M \ T D such that X -Y is supported in an arbitrary small neighborhood of ∂ 0 U , which is arbitrarily small in the C ∞ topology and such that for any boundary defining function ρ : U → R 0 of ∂U3 , we have, for any z ∈ ∂U ,

Y ρ(z) = 0 =⇒ Y 2 ρ(z) < 0.
Moreover, it holds Γ X ± (U ) = Γ Y ± (U ) where we set

Γ X ± (U ) = {z ∈ U : ϕ t (z) ∈ U, ∓t 0}, Γ Y ± (U ) = {z ∈ U : ψ t (z) ∈ U, ∓t 0}.
Here (ψ t ) denotes the non-complete flow generated by Y . Note also that it holds dist(Γ X ± (U ), ∂ 0 U ) > 0. For simplicity, we will denote Γ ± = Γ X ± (U ). By [DG16, Lemma 2.10], there are two vector subbundles E ± ⊂ T Γ ± U with the following properties :

1. E + | Λ = E u , E -| Λ = E s and E ± (z) depends continuously on z ∈ Γ ± ;
2. For some constants C , ν > 0 we have

dψ ∓t (z)v C e -ν t v , v ∈ E ± (z), z ∈ Γ ± , t 0; 3. If z ∈ Γ ± and v ∈ T z U satisfy α(z), v = 0 and v / ∈ E ± (z), then as t → ∓∞ dψ t (z)v → ∞, dψ t (z)v dψ t (z)v → E ∓ | Λ .

The resolvent of the billiard flow

For Re(s) 1, we define the (future and past) resolvents R ± (s) :

Ω • c (U ) → D • (U ) by R ± (s)ω(z) = ± t ∓,U (z) 0 ψ * ∓t ω(z)e -ts dt, ω ∈ Ω • c (U ), z ∈ U,
where we set t ±,U (z) = inf{t > 0 :

ψ ±t (z) ∈ ∂U }, z ∈ U.
Here Ω • c (U ) denotes the space of smooth differential forms which are compactly supported in U while D • (U ) denotes the space of currents in U (that is D k (U ) is the dual space of Ω 3-k c (U ) for k = 0, . . . , 3). Note that

(L Y ± s) R ± (s) = R ± (s) (L Y ± s) = Id Ω • c (U ) .
Then by [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF], the family s → R ± (s) extends to a family of operators meromorphic in the parameter s ∈ C, whose poles have residues of finite rank. Denote by Res(Y ) the set of those poles. Near any s 0 ∈ Res(Y ) we have for some finite rank projector

Π ± (s 0 ) : Ω • → D • R ± (s) = H ± (s) + J(s 0 ) j=1 (X ± s) j-1 Π ± (s 0 ) (s -s 0 ) j
where s → H ± (s) is holomorphic near s 0 . Moreover we have supp(Π ± (s 0 )) ⊂ Γ ± × Γ ∓ and

WF (H ± (s)) ⊂ ∆(T * U ) ∪ Υ ± ∪ (E * ± × E * ∓ ), WF (Π ± (s 0 )) ⊂ E * ± × E * ∓ , (7.2.7)
where

∆(T * U ) = {(ξ, ξ), ξ ∈ T * U } ⊂ T * (U × U ) and Υ ± = {(Φ t (z, ξ), (z, ξ)), ±t 0, ξ, X(z) = 0, z ∈ U ψ t (z) ∈ U }.
Here Φ t denotes the symplectic lift of ϕ t on T * U , that is 

Φ t (z, ξ) = (ϕ t (z), (d z ϕ t ) -ξ), (z, ξ) ∈ T * U, ϕ t (z) ∈ U,

The scattering operator

We define

∂ ± = {z ∈ ∂U : ∓Y ρ(z) > 0} and ∂ 0 = {z ∈ ∂U : Y ρ(z) = 0}.
The scattering map S ± :

∂ ∓ \ Γ ∓ → ∂ ± \ Γ ± is defined by S ± (z) = ψ t ±,U (z) (z), z ∈ ∂ ∓ \ Γ ∓
(see Figure 7.2). The Scattering operator S ± (s) :

Ω • c (∂ ∓ \ Γ ∓ ) → Ω • c (∂ ± \ Γ ± ) is then defined by S ± (s)ω = S * ∓ ω e -st ∓,U (•) , ω ∈ Ω • c (∂ ∓ \Γ ∓ ) . Note that for Re(s) 1, S ± (s) extends as an operator C c (∂ ∓ , ∧ • T * ∂ ∓ ) → C c (∂ ± , ∧ • T * ∂ ± ), where C c (∂ ± , ∧ • T * ∂ ± )
is the space of compactly supported continuous forms on ∂ ± , since for any w ∈ Ω • (U ) and t ∈ R we have

ϕ * t w ∞ Ce C|t| w ∞ .
In what follows we let ι ± : ∂ ± → U be the inclusion and (ι ± ) * : Ω • c (∂ ± ) → D •+1 (U ) be the pushforward operator, which is defined by

U (ι ± ) * u ∧ v = ∂ ± u ∧ ι * ± v, u ∈ Ω • c (∂ ± ), v ∈ Ω • (U ).
Proposition 7.2.2. We have

WF(R ± (s)) ∩ N * (∂ ± × ∂ ∓ ) = ∅. (7.2.8)
In particular by [Hör90, Theorem 8.2.4], the operator (ι ± ) * ι X R ± (s)(ι ∓ ) * is well defined. Moreover, for Re(s) 1 large enough, we have 

S ± (s) = (-1) N (ι ± ) * ι Y R ± (s)(ι ∓ ) * : Ω • c (∂ ∓ ) → D • (∂ ± ), ( 7 
W ± ⊂ ∂ ± . As W ± ∩ ∂ 0 = ∅, there is ε > 0 such that t ∓,U (z) > ε for every z ∈ W ± .
In particular, the proof of Lemma 4.3.4 applies and leads to the fact that (7.2.9) holds when S ± (s) is seen as an operator

Ω • c (∂ ∓ \ Γ ∓ ) → D • (∂ ± \ Γ ± )
. By [BR75, Theorem 5.6], as Λ is not an attractor, we have µ(Γ ± ) = 0 where µ is the measure |α ∧ dα|. Take U ± ⊂ ∂ ± a small neighborhood of Γ ± in ∂ ± and δ > 0 small enough. Since Γ ± ∩ ∂ 0 = ∅, we may assume that the map

U ± × [0, δ) → U, (y, t) → ϕ ∓t (y)
realizes a smooth diffeomorphism onto its image. In particular, because ϕ ∓t (Γ ± ) ⊂ Γ ± for t > 0, we have µ ∂ ± (Γ ± ∩ ∂ ± ) = 0 where µ ∂ ± corresponds to the measure |ι * ± dα|. Thus we may proceed by similar arguments given in the proof of Proposition 7.2.2 to obtain that (7.2.9) holds when S ± (s) is seen as an operator

Ω • c (∂ ∓ ) → D • (∂ ± ).

Adding an obstacle

In this section we add an other obstacle D 0 and we will consider some weighted transfer operator associated to the first return map to π -1 (∂D 0 ) ; we will use the description of its microlocal structure to define and compute its flat trace.

Notations

We add another convex obstacle D 0 , and we will assume that the billiard table (D 0 , D 1 , . . . , D r ) satisfies the non-eclipse condition. We define

M , Λ , Λ , (ϕ t ), T ± , t ± , B ± 4. That is, N (ω) = kω for ω ∈ Ω k c (∂ ± ).
in the same way we defined M, Λ, Λ, (ϕ t ), T ± , t ± , B ± (see §7.2) by replacing the billiard table B = {D 1 , . . . , D r } by the billiard table B = {D 0 , D 1 , . . . , D r }. Let

P ± : Λ (±1) → π -1 (∂D ), z → ϕ ±t ± (z) (z),
where

Λ (±1) = {z ∈ M : t ± (z) < ∞}.
Let V 0 ⊂ π -1 (∂D 0 ) be a relatively compact neighborhood of Λ ∩ π -1 (∂D 0 ) such that V 0 ∩ T ∂D 0 = ∅, and set

V ± = {z ∈ ∂U ∩ Λ (±1) : P ± (z) ∈ V 0 }.
Note that U is a subset of M . However we may see U as a subset of M since U does not intersect π -1 (D 0 ). We also let W ± be a neighborhood of

Λ ± ∩ ∂U in ∂U such that W ± ∩ supp(Y -X) = ∅ and we set Y ± = W ± ∩ V ± . We take φ ± ∈ C ∞ c (V ± , [0, 1]) (resp. ψ Λ ± ∈ C ∞ c (W ± ), [0, 1]) such that φ ± ≡ 1 near (B ± ) -1 (Λ ) (resp. ψ Λ ± ≡ 1 near Λ ± ) ; we define χ ± = φ ± ψ Λ ± ∈ C ∞ c (Y ± ). Note that P ± realizes a diffeomorphism V ± → P ± (V ± ) ⊂ π -1 (∂D 0 ) which we denote by Q ± . We define Q ± (s) : D • c (Y ± ) → D • c (Z ± ), where Z ± = Q ± (Y ± ), by Q ± (s)w = e -st ± (•) Q -1 ± * w, w ∈ Ω • c (Y ± )
(see Figure 7.2). We finally set, with

Z ± = Q ± (Y ± ) ⊂ π -1 (∂D 0 ), D 1 D 2 D 3 D 4 D 0 π(U ) z Q -(z) S + (z) Q + (S + (z)) Figure 7.2 -The maps Q ± and S ± T ± (s) = Q ± (s)χ ± S ± (s)χ ∓ Q ∓ (s) : Ω • c (Z ∓ ) → D • (Z ± ). (7.3.1)
The operator T ± (s) is the transfer operator associated to the first return map to π -1 (∂D 0 ) weigthed by e -st 0,± (•) , where t 0,± (z) = inf{t > 0 : π(ϕ ±t (z)) ∈ ∂D 0 } are the first (future are past) return times to ∂D 0 of a point z ∈ π -1 (∂D 0 ).

Composing the scattering maps

Let Z = Z + ∩ Z -and

= (χ + • Q -1 + )(χ -• Q -1 -) ∈ C ∞ c (Z).
We have the following result. 

WF (S ± (s)) ⊂ d (ι ± × ι ∓ ) (z, z ) • (ξ, ξ ) : (z, z , ξ, ξ ) ∈ WF (R ± (s)) , (7.3.2)
where ι ± × ι ∓ : ∂ ± × ∂ ∓ → U × U is the inclusion. To prove that ( T ± (s)) 2 is well defined, it suffices to show by [Hör90, Theorem 8.2.14] that A ∩ B 1 = ∅ where

A = {(z, ξ) ∈ T * Z : ∃z ∈ Z, (z , 0, z, ξ) ∈ WF ( T ± (s))} and B 1 = {(z, ξ) ∈ T * Z : ∃z ∈ Z, (z, ξ, z , 0) ∈ WF ( T ± (s))} . Note that dι ± (z) | ker X(z) : ker X(z) → T * z ∂ ± is injective for any z ∈ ∂ ± , since X(z) is transverse to T z ∂ ± . Moreover Q ± : Y ± → Z ± is a diffeomorphism and thus dQ -1 ± (z) : T * z ∂ ± → T * z π -1 (∂D 0
) is injective for any z ∈ Y ± . Now by (7.3.1) we have

WF ( T ± (s)) ⊂ d(Q ± × Q ∓ ) (WF (S ± (s)) ∩ supp(χ ± × χ ∓ )) ,
Moreover by (7.2.8) and (7.3.2) we have

WF (S ± (s)) ⊂ d(ι ± × ι ∓ ) Υ ± ∪ (E * ± × E * ∓ ) , since ∆(T * U ) ∩ π -1 (∂ ± × ∂ ∓ ) = ∅. By injectivity of dQ -1 ± (z) : T * z ∂ ± → T * z π -1 (∂D 0 ) we obtain A ⊂ d(Q -1 ∓ ) d(ι ∓ ) E * ∓ and B 1 ⊂ d(Q -1 ± ) d(ι ± ) E * ± .
We claim that this implies

A ∩ B 1 = ∅. Indeed, let (z, ξ) ∈ T * Z ± which lies in d(Q -1 ∓ ) d(ι ∓ ) E * ∓ ∩ d(Q -1 ± ) d(ι ± ) E * ± .
Thus z lies in Λ and there exists (z

± , ξ ± ) in E * ± such that (z, ξ) = d(Q -1 ± ) d(ι ± ) (z ± , ξ ± ).
There are neighborhoods U ± of z ± in M and smooth functions s ± :

U ± → R such that Q ± (z ± ) = ϕ s ± (z ± ) (z ± ) for z ± ∈ U ± and ϕ s ± (z ± ) (z ± ) ∈ Z for z ± ∈ U ± . Because ξ ± ∈ ker X(z ± ) we see that d(Q -1 ± ) d(ι ± ) (z ± , ξ ± ) = dι d z ϕ -s ± (z ± ) ξ ±
where ι : Z → M is the inclusion. Because dι : ker X → T * Z is injective, we obtain

ξ -= d u → ϕ s -(z -)-s + (z + ) (u) (z -) ξ + . Now we have z ± ∈ Λ and since ξ ± ∈ E * ± we obtain ξ + ∈ E * u (z + ) and ξ -∈ E * s (z -). Thus ξ ∈ E * u (z) ∩ E * s (z) = {0}.
Here we denoted by

T z M = RE s (z ) ⊕ RE u (z ) ⊕ RX(z ), z ∈ Λ ,
the hyperbolic decomposition of T M over Λ . We conclude that A ∩ B 1 = ∅, which concludes the case n = 2. By [Hör90, Theorem 8.2.14] we also have the bound

WF(( T ± (s)) 2 ) ⊂ (WF ( T ± (s)) • WF ( T ± (s))) ∪ (B 1 × 0) ∪ (0 × A),
where 0 ⊂ T * M denotes the zero section. Therefore, the set B 2 , which is defined by

B 2 = (z, ξ) ∈ T * Z : ∃z ∈ Z, (z, ξ, z , 0) ∈ WF T ± (s) 2 ,
can be written

(z, ξ) ∈ T * Z : ∃z , z ∈ Z, ∃η ∈ T * z Z, (z, ξ, z -η) ∈ WF( T ± (s)) and (z , η, z , 0) ∈ WF( T ± (s)) ∪ B 1 . As d(Q -1 + ) d(ι + ) E * + ∩ d(Q -1 -) d(ι -) E * -= 0 (as shown above), we obtain B 2 ⊂ (z, ξ) : (z, ξ, z , η) ∈ d(Q -1 ± × Q -1 ∓ ) d(ι ± × ι ∓ ) Υ ± for some η ∈ d(Q -1 ± ) d(ι ± ) (E * ± ) .
This leads to

B 2 ⊂ d(Q -1 ± ) d(ι ± ) Φ t (z, ζ) : (z, ζ) ∈ T * Y ∓ , X(z), ζ = 0, d(ι ∓ ) (z, ζ) ∈ d(Q ± • Q -1 ∓ ) d(ι ± ) E * ± , ϕ t (z) ∈ ∂ ± U, t 0 .
As before, this set cannot intersect d(Q -1 ∓ ) E * ∓ since otherwise we would have z ∈ Λ and ξ ∈ T * z M contracted in the past and in the future by dϕ t . Thus B 2 ∩ A = ∅ and we obtain that ( T ± (s)) 3 is well defined. By iterating this process we obtain that ( T ± (s)) n is well defined for every n 2, which concludes the proof.

The flat trace of T ± (s)

Let A : Ω • c (∂) → D • (Z)
be an operator such that WF (A) ∩ ∆ = ∅, where ∆ is the diagonal in T * (Z × Z). Then the flat trace of A is defined as

tr s A = ι * ∆ K A , 1 , where ι ∆ : z → (z, z) is the diagonal inclusion and A ∈ D n (Z × Z) is the Schwartz kernel of A, i.e. Z A(u) ∧ v = Z×Z K A ∧ π * 1 u ∧ π * 2 v, u, v ∈ Ω • c (Z),
where π j : Z × Z → Z is the projection on the j-th factor (j = 1, 2). In fact we have

tr s (A) = 2 k=0 (-1) k tr (A k ), (7.3.3)
where tr is the transversal trace of Attiyah-Bott [START_REF] Francis | A Lefschetz fixed point formula for elliptic complexes : I[END_REF] and where we denoted by A k the operator C ∞ c Z, ∧ k T * Z → D Z, ∧ k T * Z induced by A on the space of k-forms (see §B.3.1 for more details). The purpose of this subsection is to prove the following result.

Proposition 7.3.2. For n 1, the flat trace of ( T ± (s)) n is well defined and we have

tr s (( T ± (s)) n ) = n r(γ)=n (-1) 1+m(γ) τ (γ) τ (γ) e -sτ (γ)   z∈R(γ) 2 (z)   τ (γ)/τ (γ) (7.3.4)
whenever Re(s) 1, where the sum runs over all periodic trajectories γ rebounding n times on ∂D 0 and m(γ) is the total number of bounds of γ on ∂D 0 , . . . , ∂D r . Here τ (γ) is the primitive length of γ and

R(γ) = {(γ(τ ), γ(τ )) : τ ∈ R} ∩ π -1 (∂D 0 )
is the set of incidence vectors of γ along D 0 .

Corollary 7.3.3. As s → ( T ± (s)) n extends meromorphically to the whole complex plane, so does the right hand side of (7.3.4).

Proof. For z ∈ Z we define the first (future and past) return times to π -1 (∂D 0 ) by t ±,0 (z) = inf{t > 0 : ϕ ±t (z) ∈ π -1 (∂D 0 )}.

We set Λ ±,0 = {z ∈ Z : t ±,0 (z) < ∞}, and we define by B ±,0 : Z → π -1 (∂D 0 ) the first (future and past) return maps to π -1 (∂D 0 ) by B ±,0 (z) = ϕ t ±,0 (z), z ∈ Λ ±,0 .

For n 1 we define the sets Λ (n) ±,0 ⊂ Z by induction as follows. We set Λ

(1)

±,0 = Λ ±,0 and Λ (n+1) ±,0 = z ∈ Λ ±,0 : B ±,0 (z) ∈ Λ (n) ±,0 , n 1. In particular (B ±,0 ) n (z) is well defined for z ∈ Λ (n) ±,0 . We finally set t (n) ±,0 (z) = n-1 k=0 t ±,0 (B ±,0 ) k (z) , z ∈ Λ (n) ±,0 , and 
t (n) ±,0 (z) = +∞ for z ∈ Z \ Λ (n) ±,0 . We now fix n 1. Let g ∈ C ∞ (R, [0, 1]) such that g ≡ 1 on ] -∞, 1] and g ≡ 0 on [2, +∞[. For L > 0 we define g L (z) = g t (n) ±,0 (z) -L , z ∈ Z.
Then by definition of T ± (s), the operator g L ( T ± (s)) n : Ω

• c (Z) → D • (Z) coincides with the operator w -→ g L (•) n k=0 2 (B ∓,0 ) k (•) e -st (n) ±,0 (•) ((B ∓,0 ) n ) * w.
It now follows from the Atiyah-Bott trace formula [AB67, Corollary 5.4] that 5

ι * ∆ K ,± (s), g L = z∈Z B n ∓,0 (z)=z sgn det(1 -d(B ∓,0 ) n (z))e -t (n) ±,0 (z) g L (z) n-1 k=0 2 B k ∓ (z) . (7.3.5) Now it is not hard to see that sgn det(1 -d(B ∓,0 ) n (z)) = sgn det(1 -P γ ) = 1, if m(γ) is odd, -1, if m(γ) is even,
where γ is the closed orbit generated by z. This yields sgn det(1 -d(B ∓,0 ) n (z)) = (-1) 1+m(γ) . Next, it is a classical fact that for every k, n 1, there is

C k > 0 such that d k ((B ±,0 ) n ) (z) C k exp C k t (n) ±,0 (z) , z ∈ Λ (n) ±,0 .
Thus we may proceed exactly as in the proof of Proposition 4.3.8 to take the limit in (7.3.5) when L → +∞ to obtain (7.3.4).

A Tauberian argument

In this section we use a Tauberian theorem of Delange [START_REF] Delange | Généralisation du théoreme de Ikehara[END_REF] to derive an asymptotic growth of a weighted sum of periodic trajectories rebounding a fixed number of times on ∂D 0 .To that aim we wish to work with series having positive coefficients, and we first explain how Proposition 7.3.2 can be adapted to remove the sign (-1) 1+m(γ) .

Doubling manifold

Let us consider the space

M = (N × {-1, 1})/ ∼, N = SR 2 \ π -1 (D • ) ∪ G ,
where G = T ∂D and D = r j=0 D j , and where (x, v, a) ∼ (y, w, b) if and only if, for some j ∈ {0, . . . , r}, it holds x = y ∈ ∂D j , w = v -2 v, n j (x) n j (x) and a = -b.

Let π : M → M be the natural projection, which is a 2-fold covering, and denote by J : M → M the involution induced by (x, v, a) → (x, v, -a). Then there is a unique continuous flow ( ϕ t ) acting on M such that π • ϕ t = ϕ t • π. Clearly, the flow ( ϕ t ) is hyperbolic on Λ = π-1 (Λ ). Moreover, each periodic orbit γ : [0, τ (γ)] → Λ of the flow (ϕ t ) with an even number of bounds on ∂D gives rise to two periodic orbits of ( ϕ t ) which are generated by the two points lying in π-1 (γ(0)) ; every periodic orbit of ( ϕ t ) is obtained in this way.

Next, we define R ± (s), S ± (s), Q ± (s), χ ± , T ± (s) and ˆ in the same way we defined R ± (s), S ± (s), Q ± (s), χ ± , T ± (s) and , by using the flow ( ϕ t ) instead of (ϕ t ). Clearly, Propositions 7.2.2 and 7.3.1 extend for those operators, if we replace Z by Z = π-1 (Z) and ∂ ± by π-1 ( ∂ ± ). Moreover, thanks to the description of the periodic orbits of ( ϕ t ) given above, we may redo the proof of Proposition 7.3.2 to obtain the formula

1 2 tr s (1 -J * )(ˆ T ± (s)) n = -n r(γ)=n τ (γ) τ (γ) e -sτ (γ)   z∈R(γ) 2 (z)   τ (γ)/τ (γ) (7.4.1)
which is valid for Re(s) 1, as it follows from the fact that there is a 2 : 1 correspondance between fixed points of J • ϕ t and fixed points of ϕ t with an odd number of bounds on ∂D .

Zeta functions

Let P B be the set of primitive periodic orbits of (ϕ t ), for the billiard table B. We In what follows, we set U = π-1 (U )

Ω k 0 = {w ∈ Ω k c ( U ) : ι X w = 0},
where X is the generator of ( ϕ t ) on U . Then it follows from the results of [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] (see also [START_REF] Barkhofen | Meromorphic continuation of weighted zeta functions on open hyperbolic systems[END_REF]§4]) that we may write, for Re(s) large enough, any ε > 0 small and χ

∈ C ∞ c ( U , [0, 1]) satisfying χ ≡ 1 on Λ 6 , ζ B (s)/ζ B (s) = - 1 2 2 k=0 (-1) k e ∓εs tr (1 -J * ) χ ϕ * ∓ε R ± (s) χ| Ω k 0 ; (7.4.2)
6. Again, we use that the periodic orbits of ( ϕ t ) in Λ = π -1 (Λ) are in 2 : 1 correspondance with the periodic orbits of (ϕ t ) bouncing an even number of times on ∂D, while the fixed points of J ϕ t are in 2 : 1 correspondance with fixed points of ϕ t bouncing an odd number of times on ∂D.

moreover, the residue of ζ

B (s)/ζ B (s) at s = s 0 is given by - 1 2 2 k=0 (-1) k tr (1 -J * ) χ Π ± (h B ) χ| Ω k 0 . (7.4.3)
where Π ± (s 0 ) is the residue of R ± (s) at s = s 0 (see §7.2.6). Next, we know that s → R ± (s)| Ω 0 0 is holomorphic on {Re(s) > 0}, simply because the integral defining R ± (s)| Ω 0 0 converges absolutely in this region. This implies that

Π ± (s)| Ω 2 0 = 0, Re(s) > 0, since the map u → u ∧ dα realizes an isomorphism ran Π ± (s 0 )| Ω 0 0 → ran Π ± (s 0 )| Ω 2 0 , where we set α = π * α. Finally, let η(s) = γ∈ P B τ (γ)e -sτ (γ) = ζ B (s)/ζ B (s),
where P B is the set of periodic trajectories of (ϕ t ). Also, let η even (s) (resp. η odd (s)) be the series defined similarly by summing over periodic γ's with an even (resp. odd) number of bounces m(γ). Let P even B (resp. P odd B ) be the set of primitive γ ∈ P B such that m(γ) is even (resp. odd). Using the symbolic coding and similar arguments to the ones used in the proof of Lemma 7.5.1 below, it is not hard to construct injective maps F ± : P even/odd B → P odd/even B such that for some C > 0 it holds τ (γ) -C τ (F ± (γ)) τ (γ) + C, γ ∈ P even/odd B . These estimates imply that both η even (s) and η odd (s) have a simple pole at s = h B since η(s) does and η(s) = η even (s) + η odd (s). Moreover, the residues of η even (s) and η odd (s) at s = h B are given respectively by

1 2 tr ( χ Π ± (h B ) χ) and - 1 2 tr ( χJ * Π ± (h B ) χ). (7.4.4) 
The first one coincides with 1 2 rank Π ± (h B ) (see for example [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF]§4]). Moreover, since η even (s) η(s), this number is equal to 1/2 or 1 ; however it cannot be equal to 1, because otherwise η odd (s) would not have a pole at s = h B , since the residue of η(s) at s = h B is equal to 1. Therefore rank Π ± (h B ) = 1, (7.4.5)

and hence both residues in (7.4.4) are equal to 1/2. Thus it follows that 

J * Π ± (h B ) = -Π ± (h B ), (7.4 
: τ (γ) T } ∼ 1 2 e h B T h B T , T → ∞.
More generally, let q ∈ N 1 . Then if we replace the space M defined in §7.4.1 by M q = (N ×Z/qZ)/ ∼ where (x, v, a) ∼ (y, w, b) if and only if, for some j ∈ {0, . . . , r}, it holds

x = y ∈ ∂D j , w = v -2 v, n j (x) n j (x) and a = b + 1 mod q,
we may adapt the arguments above to get

{γ ∈ P B : τ (γ) T, m(γ) ≡ k mod q} ∼ 1 q e h B T h B T , T → ∞,
for each k = 0, . . . , q -1. This is the content of [Gio10, Theorem 2].

A Tauberian argument

Taking the notations of §7.4.1, we set

± = Q ± (h B ) χ± ι * ± ι X Π ± (h B )(ι ∓ ) * χ∓ Q ∓ (h B ) ,
where ι± :

∂ ± = π-1 ( ∂ ± ) → Û is the inclusion. Then we have, as operators Ω • c ( Ẑ) → D • ( Ẑ), 1 -J * 2 (ˆ T ± (s)) n = (1 -J * )( ± ) n 2(s -h B ) n + O((s -h B ) -n+1 ), s → h B . Now note that 1 -J * 2 ± = 1 2 Q ± (h B ) χ± ι * ± ι X (1 -J * ) Π ± (h B )(ι ∓ ) * χ∓ Q ∓ (h B ) = ±
where we used (7.4.6). As ± is of rank one by (7.4.5), we have

tr ( ± ) n | Ω 1 0 = tr ± | Ω 1 0 n Thus, letting c ± = tr A ± | Ω 1 0 , we have 1 2 tr s (1 -J * )(ˆ T ± (s)) n = - (c ± ) n (s -h B ) n + O((s -h B ) -n+1 ), s → h B . (7.4.7) Now we define N (t, n) = γ∈P r(γ)=n τ (γ) t I (γ), t 0,
where we set, for a closed trajectory γ : [0, τ (γ)] → M ,

I (γ) = z∈R(γ) ρ 2 (γ) where R(γ) = π -1 (D 0 ) ∩ {(γ(τ ), γ(τ )) : τ ∈ [0, τ (γ)]}. Note that if r(γ) = n one has R(γ) = nτ (γ)/τ (γ). Proposition 7.4.2. Assume that c ± > 0. Then N (t, n) ∼ (c ± t) n n! e h B t h B t , t → +∞.
Proof. Here we follow the argument of §4.5.1. Define

g n, (t) = γ∈P r(γ)=n τ (γ) k 1 kτ (γ) t I (γ) k , t 0.
For Re(s) large enough we set G n, (s) = ∞ 0 g n, (t)e -ts dt. Then a simple computation starting from (7.4.1) shows that

G n, (s) = 1 s r(γ)=n τ (γ)I (γ) τ (γ)/τ (γ) e -sτ (γ) = ∂ s tr s ((1 -J * )ˆ T ± (s)) n 2ns ,
where the sum runs over all periodic orbits (not necessarily primitive) γ such that r(γ) = n. By (7.4.7) we have 

G n, (h B s) = (c ± ) n h n+2 B (s -1) n+1 + O((s -1) -n ), s → 1.
ζ n, (s) = γ∈P r(γ)=n 1 -I (γ)e -sτ (γ) -1 , Re(s)
1.

Then we have 

ζ n, (s) γ∈P r(γ)=n 1 + I (γ)e -sτ (γ) γ∈P r(γ)=n τ (γ) t 1 + I (γ)e -st e -st N (t). ( 7 
1 - N (t/σ) N (t) -1 = σ.
As σ > 1 is arbitrary, the proof of the lemma is complete, since we have

g n, (t)/t ∼ (c ± t) n n! e h B t
h B t as t goes to infinity.

A priori bounds

In this section we derive some a priori bounds on N (n, t) (the number of primitive periodic orbits bouncing n times on ∂D 0 and of length not greater than t) by using the fact that the billiard flow is conjugated to a subshift of finite type. This will allow us to convert the asymptotics obtained in §7.4 into an asymptotics on N (n, t).

Coding

Let Σ N be the set of finite sequences u = u 1 • • • u N with u j ∈ {0, 1, . . . , r} and u j = u j+1 (with j ∈ Z/N Z), and such that u is distinct from its cyclic permutations. We also define Σ N as above by replacing {0, 1, . . . , r} by {1, . . . , r}. By §7.2.3 we have a one-to-one correspondance

P B ←→ ∞ N =2 Σ N / ∼ (7.5.1)
where u ∼ v if and only if u is a cyclic permutation of v. For any γ ∈ P B we will denote by wl(γ) its word length, that is, the length of (any) word which is associated to γ via the above correspondance.

For any sequence u ∈ Σ N , we will denote by γ u : R → Λ the closed billiard trajectory (parameterized by arc length) starting from the point z u ∈ Λ which is associated to the sequence

• • • uuu • • • ∈ Σ .
Its period is then defined by

τ (γ u ) = N -1 k=0 t + (B k (z u )),
where t + is defined in §7.2.3. We have the following result.

Lemma 7.5.1. There is C > 0 such that the following holds. Let γ : [0, T ] → Λ be a billiard trajectory (parameterized by arc length) such that γ(0), γ(T ) ∈ π -1 (∂D 0 ) and denote by 0 = t 0 < • • • < t N = T the times for which γ hits ∂D and assume that N > 2. Let u = u 1 • • • u N -1 ∈ {0, . . . , r} N -1 be the finite sequence such that it holds π(γ(t k )) ∈ ∂D u k for k = 1, . . . , N -1, and assume that u 1 = u N -1 so that γ u is well defined. Then τ (γ u ) -C T τ (γ u ) + C.

Proof. By Lemma 7.2.1, it holds, for some C > 0 and β > 1 which are independent of γ,

dist(B k (z u ), γ(t k )) Cβ -N/2+|k-N/2| , k = 1, . . . , N -1. Now note that t + : {z ∈ π -1 (∂D) : t + (z) < +∞} → R + is locally Lipschitz continuous.
As Λ is compact, it follows that for some C > 0 we have

t + (B k (z u )) -t + (γ(t k )) C β -N/2+|k-N/2|
and thus

|τ (γ u ) -T | 2L m + C N -1 k=1 β -N/2+|k-N/2| 2L m + C β -1 ,
where L m = sup{dist(x i , x j ) : x i ∈ D i , x j ∈ D j , i = j}. This concludes the proof.

The bounds

Let P B be the set of oriented primitive periodic orbits of the flow associated to the billiard B, and set P B (t) = {γ ∈ P B : τ (γ) t}. Then by [START_REF] Morita | The symbolic representation of billiards without boundary condition[END_REF] we have

{γ ∈ P B : τ (γ) t} ∼ e h B t h B t , t → +∞. (7.5.2)
In what follows, we will denote by P B (n, t) the set of primitive periodic trajectories of the billiard B of period less than t which make exactly n rebounds on ∂D 0 , and N (n, t) = P B (n, t). Finally we denote by P B (t) (resp. P B (n, t)) the set of (not necessarily primitive) periodic orbits for the billiard B (resp. for the billiard B ) of period less or equal than t (resp. and making n rebounds on ∂D 0 ) ; we denote N (t) = P B (t) and N (n, t) = P B (n, t). It is a classical fact that we have

N (t) ∼ N (t), t → +∞, (7.5 
.3) as it can be seen from the equalities Proof. We start with the case n = 1. Consider the map F : Σ N → Σ N +1 defined by

N (t) = τ (γ) t 1 = γ∈P kτ (γ) t 1 = γ∈P t/2<τ (γ) t 1 + γ∈P τ (γ) t/2 t/
F (u 1 • • • u N ) = 0u 1 • • • u N (note that for any word u ∈ Σ N , F ( 
u) is still a primitive word as it contains exactly one zero in its letters). By Lemma 7.5.1, we have

τ (γ u ) -C τ (γ F (u) ) ≤ τ (γ u ) + C, u ∈ Σ N .
The map F is obviously injective. Recalling the correspondance (7.5.1) (for both billiards B and B ), we thus have

N (1, t) ∞ N =2 u∈Σ N τ (γu) t-C 1 = γ∈P B (t-C) wl(γ),
where the last equality comes from the fact that each γ ∈ P B corresponds to exactly wl(γ) words in Σ A . Note that for some C > 0 it holds

C -1 τ (γ) wl(γ) Cτ (γ), γ ∈ P B . (7.5.5) 
In particular we obtain

N (1, t) t 2C (P B (t) \ P B (t/2)) .
By (7.5.2), we obtain that the first inequality of (7.5.4) holds for n = 1. For the second one, consider the set Σ N of finite words u 1 • • • u N with u j = u j+1 for j ∈ Z/N Z (note that Σ N ⊂ Σ N is the set of primitive words within Σ N ). Consider the map

G : Σ N → Σ N +2 defined by G(u 1 • • • u N ) = 0u 1 • • • u N u 1 , u 1 • • • u N ∈ Σ N .
Every primitive periodic orbit bouncing exactly one time on ∂D 0 can be encoded by a finite word of the form F (u) or G(u) for some u ∈ Σ N where N 2 (note that F extends to a map F : Σ N → Σ N +1 ). In particular, by Lemma 7.5.1, we have for some

C > 0 P(1, t) ⊂ N F u ∈ Σ N : τ (γ u ) t + C ∪ G u ∈ Σ N : τ (γ u ) t + C .
With (7.5.5) in mind, this leads to

N (1, t) 2 ∞ N =2 u∈ Σ N τ (γu) t+C 1 2 γ∈ P B τ (γ) t+C wl(γ) 2(t + C) N (t + C) C exp(h B t),
where the last inequality holds for t large enough and comes from (7.5.3). The case n = 1 is proven.

We now proceed by induction and assume that (7.5.4) holds for every n = 1, . . . , m, for some m 1. Similarly to (7.5.3), the estimate (7.5.4) also holds if we replace N (n, t) by N (n, t). Every element of P B (m + 1, t) can be represented by the concatenation of a word (starting from 0) representing an element of P B (m, t 1 ) and a word (starting from 0) representing an element of P B (1, t 2 ), where t 1 + t 2 t + 2C (for some constant C). More precisely, for N, k 1, set

A(k) = u 1 • • • u N ∈ Σ N : N 2, u 1 = 0, u N = 0, {j : u j = 0} = k .
Then every element γ of P B (m + 1, t) can be represented by a word uv (i.e. γ = γ uv ) where u ∈ A(m) and v ∈ A(1). Moreover, by Lemma 7.5.1, we must have

τ (γ) -2C τ (γ u ) + τ (γ v ) τ (γ) + 2C (7.5.6)
for some C which does not depend of γ. Note also that for each periodic trajectory making k rebounds on ∂D 0 , there are at most k words in A(k) representing it (since the words have to start by the letter 0). Summarizing the above facts, we have for t large enough (in what follows C is a constant depending only on m that may change at each line)

N (m + 1, t) u∈A(m) τ (γu) t+C v∈A(1) τ (γv) t-τ (γu)+C 1 u∈A(m) τ (γu) t+C N (1, t -τ (γ u ) + C) u∈A(m) τ (γu) t+C C exp(h B (t -τ (γ u ) + C)) t+C k=1 m N (m, k)C exp(h B (t -k + C)) C t+C k=1 k m-1 exp(h B k) exp(h B (t -k + C)) Ct m exp(h B t),
where we used N (m, t) Ct m-1 exp(h B ) as it follows from the induction hypothesis. For the lower bound, we proceed as follows. The map A(m)×A(1) → A(m+1) defined by (u, v) → uv is injective ; moreover, every element of P B (m + 1, t) is represented by exactly m + 1 elements of A(m + 1). By (7.5.6), we have

N (m + 1, t) 1 m + 1
Let T > 0 large enough (it will be chosen later). By similar computations as above, we have 

N (m + 1, t) C (t-C)/T k=1 N (m, (k + 1)T ) -N (m, kT ) × exp(h B (t -(k + 1)T -C)).
C -1 m [(k + 1)T ] m-1 e h B (k+1)T -C m [kT ] m-1 e h B kT (kT ) m-1 e h B kT C -1 m 1 + 1 k m-1 e h B T -C m .
If T is large enough the last term of the above equation is bounded from below by C(kT ) m-1 e h B kT for some C > 0 independent of k. Injecting this in (7.5.7), we obtain

N (m + 1, t) C (t-C)/T k=1 (kT ) m-1 exp(h B kT ) exp(h B (t -(k + 1)T -C)) Ct m exp(h B t).
Thus we proved that (7.5.4) holds for N (m + 1, t). We now show that this also holds for N (m+1, t), as follows. Because of Lemma 7.5.1 and the fact that any nonprimitive word in A(m + 1) can be written as the concatenation of (m + 1)/d identical words (where d < m + 1 is a divisor of m + 1) we have, for t large enough,

N (m + 1, t) -N (m + 1, t) d | m+1 N d, td m + 1 + C C d | m+1 td m + 1 d-1 exp h B td m + 1 + C ,
where the sums run over the divisors of m + 1 which are stricty less than m + 1. In particular, we have N (m + 1, t) -N (m + 1, t) t (m+1)/2 exp(h B t/2) for t large, and thus N (m + 1, t) also satisfies (7.5.4). This concludes the proof.

Proof of the main result

In this section we prove the estimate annouced in the introduction. In fact, we will prove that N (n, t) ∼ N (n, t) as t → +∞, which will imply the sought result.

First considerations

If γ : R/τ (γ)Z → Λ is a periodic orbit rebounding exactly n times on ∂D 0 , we denote I 1 (γ), . . . , I n (γ) ⊂ R/τ (γ)Z the cyclically ordered sequence of intervals satisfying γ(I • j ) / ∈ ∂D 0 for each j, where I • j denotes the interior of I j (this sequence is unique modulo cyclic permutations). We start by the following easy result. large t by Proposition 7.5.2, which contradicts the fact that N (1, t) exp(h B t). Thus c ± > 0. By Lemmas 7.6.1 and 7.6.2 we have

N (n, t) -N (n, t) N (n, t, t 0 ) Ct n-2 exp(h B t).
Thus, by Propositions 7.4.2 and 7.5.2, we obtain N (n, t) ∼ N (n, t) as t → ∞, which reads

N (n, t) ∼ (c ± t) n n! e h B t h B t , t → ∞.
This concludes the proof of Theorem 7.1.1.

Chapitre 8

Obstacles et séries dynamiques 

Introduction

Let D 1 , . . . , D r ⊂ R d , d 2, be compact strictly convex disjoint obstacles with smooth boundary and let D = r j=1 D j . Throughout this chapter we will assume, as in the preceding one, the following non-eclipse condition

D k ∩ convex hull (D i ∪ D j ) = ∅, (8.1.1)
for any 1 i, j, k r such that i = k and j = k. Under this condition all period rays for the billiard flow in R d \ D • are ordinary reflecting ones without tangent segments to the boundary of D. Notice that if (8.1.1) is not satisfied, for generic perturbations of ∂D all periodic reflecting rays in R d \ D have no segments tangent to ∂D (see Theorem 6.3.1 in [START_REF] Vesselin | Geometry of the generalized geodesic flow and inverse spectral problems[END_REF]). We consider the (non grazing) billiard flow (ϕ t ) t∈R (see §7.2.1 for a precise definition). For any periodic γ, denote by P γ its associated linearized Poincaré map and by τ (γ) its period. Let P be the set of all periodic rays. The counting function of the lengths of periodic rays satisfies the bound {γ ∈ P : τ (γ) τ } e aτ , τ > 0, for some a > 0. Moreover, for some constants C, b 1 , b 2 > 0 we have (see for instance [START_REF] Petkov | Analytic singularities of the dynamical zeta function[END_REF])

Ce b 1 τ (γ) | det(I -P γ )| e b 2 τ (γ) , γ ∈ P.
By using these estimates, for Re(s) 1 we define two Dirichlet series

η N (s) = γ∈P τ (γ)e -sτ (γ) | det(1 -P γ )| 1/2 , η D (s) = γ∈P (-1) m(γ) τ (γ)e -sτ (γ) | det(1 -P γ )| 1/2 ,
where for any periodic γ, we denoted by τ (γ) its primitive period, and by m(γ) the number of reflexions of γ on the obstacles. given by the trace

u(t) = 2tr L 2 (R d ) cos(t -∆ b ) ⊕ 0 -cos(t -∆ 0 ) ,
where ∆ 0 is the free Laplacian in R d and cos(t √ -∆ b ) ⊕ 0 acts as 0 on L 2 (D). Then for d odd, [START_REF] Melrose | Scattering theory and the trace of the wave group[END_REF] (see also [START_REF] Bardos | La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion[END_REF] for a slightly weaker result) proved that in

D (R \ {0}) we have u(t) = j m(µ j )e i|t|µ j ,
where m(µ j ) is the multiplicity of µ j . Here in the notations we omitted the dependence on the boundary conditions. The series above converge in the sense of distributions since we have the bound {µ j : |µ j | r} Cr d for all r > 0 (see [START_REF] Dyatlov | Mathematical Theory of Scattering Resonances[END_REF]). The reader may see also [START_REF] Zworski | Poisson formulae for resonances[END_REF] and [START_REF] Dyatlov | Mathematical Theory of Scattering Resonances[END_REF] for a proof treating the singularity of u(t) at t = 0. For d even, the situation is more complicated since the resonances are defined in a logarithmic covering of C \ {0}. Let Λ = C \ e i π 2 R + and for ρ > 0 let

Λ ρ = {µ ∈ Λ : | Im µ| ρ| Re µ|} be a conic neighborhood of R. Choose a function ψ in C ∞ c (R; [0, 1]
) equal to 1 in a neighborhood of 0 and denote by σ b (λ) the scattering phase related to -∆ b (see [START_REF] Zworski | Poisson formula for resonances in even dimensions[END_REF] for the notation). Following the work of Zworski [START_REF] Zworski | Poisson formula for resonances in even dimensions[END_REF], there exists a function Under the condition (8.1.1), every periodic trajectory γ is an ordinary reflecting ray and the leading singularity of u(t) related to t = τ (γ) was described by Guillemin and Melrose [START_REF] Guillemin | The Poisson summation formula for manifolds with boundary[END_REF]. More precisely, the singularity related to γ has the form

v ρ,ψ ∈ C ∞ (R \ {0}) such that in the sense of distributions D (R \ {0}) one has u(t) = µ j ∈Λρ m(µ j )e iµ j |t| + m(0) + 2 ∞ 0 ψ(λ) dσ dλ (λ) cos(tλ)dλ + v ρ,ψ (t) 
(-1) m(γ) τ (γ)| det(I -P γ )| -1/2 δ(t -τ (γ)) + L 1 loc (R) (see for instance, Corollary 4.3.4 in [PS17]
), where for the Neumann problem the factor (-1) m(γ) must be omitted. Taking the sum of the Laplace transforms of the leading singularities of all γ ∈ P, we obtain the dynamical zeta functions η N (s), η D (s).

The analytic singularities of η N (s) and η D (s) are important for the analysis of the distribution of the resonances (see [Ika88b, Ika90a, Ika90b, Ika92, Sto09, Pet08] and the papers cited there). By using the Ruelle transfer operator and symbolic dynamics (see [START_REF] Ikawa | On the distribution of poles of the scattering matrix for several convex bodies[END_REF][START_REF] Petkov | Analytic singularities of the dynamical zeta function[END_REF][START_REF] Stoyanov | Scattering resonances for several small convex bodies and the lax-phillips conjecture[END_REF][START_REF] Morita | The symbolic representation of billiards without boundary condition[END_REF]), a meromorphic continuation of η N (s), η D (s) has been proved in a domain s 0 -α Re s with a suitable α > 0, where s 0 is the abscissa of absolute convergence of the Dirichlet series η N (s), η D (s). Recently, a meromorphic continuation on C of the series

γ∈P τ (γ)e -sτ (γ) | det(1 -P γ )| , Re(s) 1, (8.1.3)
has been proved by Küster-Schütte-Weich [START_REF] Küster | Resonances and weighted zeta functions for obstacle scattering via smooth models[END_REF] (see also [START_REF] Barkhofen | Meromorphic continuation of weighted zeta functions on open hyperbolic systems[END_REF] for results concerning weighted zeta functions). On the other hand, a meromorphic continuation in the whole complex plan of the semi-classical zeta function for contact Anosov flows was established by Faure-Tsujii [START_REF] Faure | The semiclassical zeta function for geodesic flows on negatively curved manifolds[END_REF]. Their zeta function is similar to the function ζ N defined in (8.1.4) below. The meromorphic continuation of the Ruelle zeta function for general Anosov flows was established by Giulietti-Liverani-Pollicott [START_REF] Giulietti | Anosov flows and dynamical zeta functions[END_REF] (see also the work of Dyatlov-Zworski [START_REF] Dyatlov | Dynamical zeta functions for Anosov flows via microlocal analysis[END_REF] for another microlocal proof). In this paper the series η N (s), η D (s) are simply called dynamical zeta functions following previous works [START_REF] Petkov | Analytic singularities of the dynamical zeta function[END_REF][START_REF] Petkov | Dynamical zeta function for several strictly convex obstacles[END_REF] and we refer to the book of Baladi [START_REF] Baladi | Dynamical zeta functions and dynamical determinants for hyperbolic maps[END_REF] for more references concerning zeta functions for hyperbolic dynamical systems.

One of the main results of this chapter is the following Theorem 8.1.1. The functions η N and η D admit a meromorphic continuation to the whole complex plane with simple poles and integer residues.

One may consider also the zeta functions ζ b (s) associated to the boundary conditions b = D, N, defined for Re s large enough by In fact, we will prove a slightly more general result. For q ∈ N 2 , consider the Dirichlet series

ζ b (s) = exp - γ∈P (-1) m(γ)ε(b) e -sτ (γ) µ(γ)| det(1 -P γ )| 1/2 , ( 8 
η q (s) = m(γ)∈qN τ (γ)e -sτ (γ) |1 -P γ | 1/2 , Re(s) 1,
where the sum runs over all periodic rays γ with m(γ) ∈ qN. We will show that η q admits a meromorphic continuation to the whole complex plane, with simple poles and residues valued in Z/q (see Theorem 8.4.1). In particular, considering the function ζ q (s) defined by

ζ q (s) = exp   - γ∈P, m(γ)∈qN e -sτ (γ) µ(γ)| det(1 -P γ )| 1/2   , Re s 1,
one gets qζ q /ζ q = qη q . Thus the function s → ζ q (s) q extends meromorphically to the whole complex plane since its logarithmic derivative is qη q and by Theorem 4 the function qη q has simple poles with integer residues. One reason for which it is interesting to study those functions is the relation

η D (s) = - d ds log ζ 2 (s) 2 ζ N (s) = 2η 2 (s) -η N (s), (8.1.6)
which allows to express η D (s) for Re s 1 as the difference of two Dirichlet series with positive coefficients. In particular, to show that η D (s) has a meromorphic extension to C, it is sufficient to prove that both series η N (s) and 2η 2 (s) have this property.

The distribution of the resonances µ j depends on the geometry of the obstacles and for trapping obstacles and d odd it was conjectured that there exists δ > 0 such that N 0,δ = {µ j ∈ C : 0 < Im µ j δ} = ∞. Moreover, for d odd (see [START_REF] Petkov | Lower bounds on the number of scattering poles for several strictly convex obstacles[END_REF]) there are constants c 0 , ε 0 > 0 such that for every 0 < ε ε 0 it holds

µ j ∈ C : 0 < Im µ j c 0 ε , |µ j | r C ε r 1-ε .
The situation for the Dirichlet problem is more complicated since η D (s) is analytic for Re s s 0 , s 0 being the abscissa of absolute convergence [START_REF] Petkov | Analytic singularities of the dynamical zeta function[END_REF]. Moreover, for d = 2 [START_REF] Stoyanov | Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows[END_REF] and for d 3 under some conditions [START_REF] Stoyanov | Non-integrability of open billiard flows and Dolgopyat-type estimates[END_REF] Stoyanov proved that there exists ε > 0 such that η D (s) is analytic for Re s s 0 -ε. The reason of this cancellation of singularities is related to the change of signs in the Dirichlet series defining η D (s), as it is emphasized by the relation (8.1.6). Despite many works in the physical literature concerning the n-disk problem (see for example [CVW97, Wir99, LZ02, PWB + 12, BWP + 13] and the references cited there), a rigorous proof of the (MLPC) was established only for sufficiently small balls [START_REF] Ikawa | Singular perturbation of symbolic flows and poles of the zeta functions[END_REF] and for obstacles with sufficiently small diameters [START_REF] Stoyanov | Scattering resonances for several small convex bodies and the lax-phillips conjecture[END_REF]. In this direction we prove the following Theorem 8.1.3. Assume that the boundary ∂D is real analytic. Then the function η D (s) has at least one pole and the (MLPC) holds.

We briefly the ideas of the proofs of Theorems 8.1.1 and 8.1.3. First, in §8.2 we make some geometric preparations. The non-grazing billiard flow ϕ t is defined in

M = B/ ∼, where B = SR d \ (π -1 ( D) ∪ D g ), π : SR d → R d
is the natural projection, D g is the grazing part (see §7.2.1) and (x, v) ∼ (y, w) if and only if (x, v) = (y, w) or x = y ∈ ∂D and w is equal to the reflected direction of v at x ∈ ∂D (see §7.2.1). By using this factorization, the flow ϕ t becomes continuous in M . However, to apply the Dyatlov-Guillarmou theory [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] in order to study the spectral properties of ϕ t -which are intimately related to the dynamical zeta functions -we need to work with a smooth flow. For this reason we use a special smooth structure near the set ∂D with smooth charts introduced in the recent work of Küster-Schütte-Weich [START_REF] Küster | Resonances and weighted zeta functions for obstacle scattering via smooth models[END_REF]. In this smooth model one obtains a smooth flow ϕ t which is uniformly hyperbolic when restricted to the trapped set K of ϕ t , which is compact. The periodic points are dense in K and for any z ∈ K the tangent space T z M has the decomposition T z M = RX(z) ⊕ E u (z) ⊕ E s (z) with unstable and stable spaces E u (z), E s (z), where X is the generator of ϕ t . A meromorphic continuation of the resolvent (X + s) -1 has been established in [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] in a general setting, and as in [START_REF] Dyatlov | Dynamical zeta functions for Anosov flows via microlocal analysis[END_REF] and [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF], estimates on the wavefront set of the resolvent (X + s) -1 allow to define its flat trace which is linked to the series (8.1.3). This implies a meromorphic continuation of this series in C (see [START_REF] Küster | Resonances and weighted zeta functions for obstacle scattering via smooth models[END_REF]).

To prove a meromorphic continuation of the zeta function η N (s) which is defined with factors | det(I -P γ )| -1/2 instead of | det(1 -P γ )| -1 , a natural approach would consist in studying the Lie derivative L X acting on sections of the unstable bundle E u (z) (see for example [FT17, pp. 6-8]). However, E u (z) in general is not smooth with respect to z, but only Hölder continuous. Thus we are led to change the geometrical setting as in the work of Faure-Tsujii [START_REF] Faure | The semiclassical zeta function for geodesic flows on negatively curved manifolds[END_REF] (notice that the Grassmann bundle introduced below also appears in [START_REF] Bowen | The ergodic theory of Axiom A flows[END_REF] and [START_REF] Gouëzel | Compact locally maximal hyperbolic sets for smooth maps : fine statistical properties[END_REF]). One introduces the Grasmannian bundle π G : G → V over a neighborhood V of K ; for every z ∈ V the fiber π -1 G (z) is formed by all (d -1)-dimensional planes of T z N. We define K u = {E u (z) : z ∈ K} ⊂ G and we introduce the natural lifted smooth flow ϕ t on G.

Then by [BR75, Lemma A.3], the set K u is hyperbolic for the flow ϕ t . We introduce the tautological bundle E → G by setting

E = {(ω, v) ∈ π * G (T V ) : v ∈ [ω]},
where [ω] denotes the subspace of T π G (z) V that ω ∈ G represents, and π * G (T V ) is the pull-back of the tangent bundle T V → V by π G . Next, we define the vector bundle

F → G by F = {(ω, W ) ∈ T G : dπ G (w) • W = 0}
which is a subbundle of the bundle T G → G. Finally, we set

E k, = ∧ k E * ⊗ ∧ F, 0 k d -1, 0 d 2 -d,
and define a suitable flow Φ k, t : E k, → E k, as well as a transfer operator (see §8.2)

Φ k, , * -t : C ∞ (G, E k, ) → C ∞ (G, E k, ).
For a periodic orbit γ of ϕ t , this geometrical setting allows to express the term | det(I -P γ )| -1/2 as a finite sum involving the traces of Φ k, τ (γ) along the periodic orbit γ = {(γ(t), E u (γ(t)) : t ∈ [0, τ (γ)]} of the flow ( ϕ t ) (see Lemma 8.3.1). In this context we may apply the Dyatlov-Guillarmou theory for the generators of the transfer operators Φ k, , * -t and by using the Guillemin flat trace formula [START_REF] Victor Guillemin | Lectures on spectral theory of elliptic operators[END_REF] (see also [START_REF] Dyatlov | Dynamical zeta functions for Anosov flows via microlocal analysis[END_REF]Appendix B] or [START_REF] Barkhofen | Meromorphic continuation of weighted zeta functions on open hyperbolic systems[END_REF]), we obtain the meromorphic continuation of η N (s). Finally, the meromorphic continuation of η q (s) is obtained in a similar way, by considering in addition a certain q-reflexion bundle R q → G on which the flow ϕ t can be lifted (see §8.4.1).

The strategy to prove Theorem 8.1.3 goes as follows. First, the representation (8.1.6) tells us that, if η D (s) can be extended to an entire function, then the function ζ 2 (s) 2 /ζ N (s) has neither zeros nor poles on the whole complex plane. For obstacles with real analytic boundary we may use real analytic charts near ∂D to define a real analytic structure on M which makes ϕ t a real analytic flow. In this context we may apply a result of Fried [START_REF] Fried | Meromorphic zeta functions for analytic flows[END_REF] to the billiard flow lifted to the Grassmannian bundle, and we show that the meromorphic functions ζ 2 and ζ N have finite order. This crucial point implies that ζ 2 (s) 2 /ζ N (s) has also finite order. Finally, by using Hadamard's factorisation theorem, one concludes that we may write ζ 2 (s) 2 /ζ N (s) = e Q(s) for some polynomial Q(s). This leads to η D (s) = -Q (s) and we obtain a contradiction. Notice that this argument works if the functions ζ 2 (s) and ζ N (s) have finite order. The recent work of Bonthonneau-Jézéquel [START_REF] Guedes | Fbi transform in gevrey classes and anosov flows[END_REF] about Anosov flows suggests that this should be satisfied for obstacles with Gevrey regular boundary ∂D. In particular, the (MLPC) should be true for such obstacles. However in this paper we are not going to study this generalization.

This chapter is organized as follows. In §2 one introduces the geometric setting of the billiard flow ϕ t and its smooth model. We define the Grasmannian extension G and the bundles E, F, E k,l = Λ k E ⊗ Λ F over G. Next, we discuss the setting, where we apply the Dyatlov-Guillarmou theory [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] for the first order operator

Q k, = ∇ Ỹ + A k, leading to a meromorphic continuation of the cut-off resolvent R k, (s) = χ(Q k, + s) -1 χ. In §3 we treat the flat trace of the resolvent R k, ε (s) = e -ε(Q k, +s) R k, (s) 
, ε > 0 and we obtain a meromoprhic continuation of η N (s). In §4 we study the dynamical zeta functions η q (s) for particular rays γ having number of reflections m(γ) ∈ qN, q 2. Applying the result for η 2 (s), we deduce the meromorphic continuation of η D (s). Finally, in §5 we treat the modified Lax-Philips conjecture for obstacles with real analytic boundary. In Appendix we present a proof for d 2 of the uniform hyperbolicity of the flow ϕ t in the Euclidean metric in R d .

Geometrical setting

In this section, we consider D 1 , . . . , D r ⊂ R d some pairwise disjoint, smooth, strictly convex obstacles, satisfying the Ikawa non-eclipse condition (8.1.1). In particular we are in the same setting as that of the beginning of Chapter 7 and we will take the notations of § §7.2.1, 7.2.2 and 7.2.3.

The Grassmann extension

We consider a neighborhood V of K in M , with smooth boundary. We embed V into a compact manifold without boundary N (for example by taking the doubling manifold of the closure of V ), and we arbitrarily extend X to obtain a smooth vector field on N , which we still denote by X. The associated flow is still denoted by (ϕ t ) (note however that this new flow (ϕ t ) is now complete).

We consider the (d -1)-Grassmann bundle . Thus the lemma will be proven if we show that we have the direct sum

π G : G → N over N , that is, for every z ∈ N , the set π -1 G (z) consists of all (d -1)-dimensional planes of T z N . Moreover, π -1 G (z) can be identified with the Grasmannian G d-1 (R 2d-1 ) which is isomorphic to O(2d -1)/(O(d -1) × O(d)), O(k)
E s (z) = T ω W s,tot (z) = T ω W s (z) ⊕ ker dπ G (ω).
To see this, take a local trivialization W s,tot (z) → W s (z, ε) × G d-1 (R 2d-1 ) sending ω on (z, E 0 ) for some E 0 ∈ G d-1 (R 2d-1 ) and such that W s (z) is sent to W s (z, ε) × {E 0 }. In these coordinates one has the identifications T ω W s (z) E s (z) ⊕ {0} and ker dπ G (ω) {0} ⊕ T E 0 G d-1 (R 2d-1 ).

As T ω W s,tot (z) is identified with E s (z) ⊕ T E 0 G d-1 (R 2d-1 ), the proof is complete.

We conclude this paragraph by noting that for any ω = (z, E) ∈ K u we have

dim E u (ω) + dim E s (ω) = dim E u (z) + dim E s (z) + dim ker dπ G (ω) = dim M -1 + dim π -1 G (z) = dim G -1, since dim G = dim M + dim π -1 G (z).

Vector bundles

We define the tautological vector bundle E → G by 

E k, = ∧ k E * ⊗ ∧ F, 0 k d -1, 0 d 2 -d,
where E * is the dual bundle of E, that is, we repalce the fibre E ω by its dual space E * ω . We consider E * and not E since the map dϕ t (π G (z)) : E ω → E ϕt(ω) is expanding for ω ∈ K u and t → +∞, whereas dϕ t (π G (ω)) -: E * ω → E * ϕt(ω) is contracting. Indeed, for ω = (z, E u (z)) ∈ K u and u ∈ E u (z) * (here E u (z) * is the dual vector space of E u (z) and it does not coincide with E * u (z)) one has dϕ t (z) -u, v = u, dϕ -t (ϕ t (z))v , v ∈ dϕ t (z)E u (z) = E u (ϕ t (z)).

Consequently, dϕ t (π G (ω)) -is contracting on E * ω when ω ∈ K u since dϕ -t (ϕ t (z)) is contracting on E u (ϕ t (z)). This fact will be convenient later for the proof of Lemma 8. 

E k, Φ k, t ---→ E k,     G φt ---→ G   π G   π G N ϕt ---→ N
Now we consider the transfer operator

Φ k, , * -t : C ∞ (G, E k, ) → C ∞ (G, E k, )
defined by Φ k, , * -t u(ω) = Φ k, t u( ϕ -t (ω)) , u ∈ C ∞ (G, E k, ). (8.2.4)

Let P k, : C ∞ (G, E k, ) → C ∞ (G, E k, ) be the generator of Φ k, , * -t , that is,

P k, u = d dt t=0 Φ k, , * -t u , u ∈ C ∞ (G, E k, ).
Then we have the equality

P k, (f u) = ( Xf )u + f (P k, u), f ∈ C ∞ (G), u ∈ C ∞ (G, E k, ).
(8.2.5)

Next, we want to study the spectral properties of the operator P k, applying the work of Dyatlov-Guillarmou [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF]. For this purpose, one needs to find a neighborhood of K u which has convexity properties with respect to X. However, it is not clear that a such neighborhood exists, and one needs to modify slightly X outside a neighborhood of K u to obtain the desired properties. This is down in §8.2.3 below.

Isolating blocks

By [CE71, Theorem 1.5], there exists an arbitrarily small neighborhood V u of K u in G such that the following holds.

(i) The boundary ∂ V u of V u is smooth ;

(ii) The set ∂ 0 V u = {z ∈ ∂ V u : X(z) ∈ T z ∂ V u } is a smooth submanifold of codi- mension 1 of ∂ V u ;
(iii) There is ε > 0 such that for any z ∈ ∂ V u one has In what follows we denote Γ ± ( X) = {z ∈ V u : ϕ t (z) ∈ V u , ∓t > 0}.

X(z) ∈ T z ∂ V u =⇒ ϕ t (z) / ∈ clos V u ,
A function ρ ∈ C ∞ (clos V u , R 0 ) will be called a boundary defining function for V u if we have {z ∈ clos V u : ρ(z) = 0} = ∂ V u and dρ(z) = 0 for any z ∈ ∂ V u . By [GMT21, Lemma 2.3] (see also [KSW21, Lemma 5.2]), we have the following result.

Lemma 8.2.2. For any small neighborhood W 0 of ∂ 0 V u in clos V u , we may find a vector field Y on clos V u which is arbitrarily close to X in the C ∞ -topology, such that the following holds.

(1) supp( Y -X) ⊂ W 0 ;

(2) Γ ± ( X) = Γ ± ( Y ) where Γ ± ( Y ) is defined as Γ ± ( X) by replacing the flow ( ϕ t ) by the flow generated by Y .

(3) For any defining function ρ of V u and any ω ∈ ∂ V u we have Y ρ(ω) = 0 =⇒ Y 2 ρ(ω) < 0. (8.2.6)

From now on, we will fix V u , W 0 and Y as above. By [DG16, Lemma 2.1] we may find a smooth extension of Y on G (still denoted by Y ) so that for every ω ∈ G and t 0, we have 

Dyatlov-Guillarmou theory

Let ∇ k, be any smooth connexion on E k, . Then by (8.2.5) we have

P k, = ∇ k, X + A k,
for some A k, ∈ C ∞ (G, End(E k, )). We define a new operator Q k, by setting

Q k, = ∇ k, Y + A k, : C ∞ (G, E k, ) → C ∞ (G, E k, ).
Note that Q k, coincides with P k, near K u since Y coincides with X near K u . Clearly, we have

Q k, (f u) = ( Y f )u + f (Q k, u), f ∈ C ∞ (G), u ∈ C ∞ (G, E k, ).
(8.2.8)

Consider the transfer operator e -tQ k, : C ∞ (G, E k, ) → C ∞ (G, E k, ), which is characterized by

∂ t e -tQ k, u = -Q k, e -tQ k, u, u ∈ C ∞ (G, E k, ), t ∈ R.
Fix any norm on E k, ; this fixes a scalar product on L 2 (G, E k, ). Then for some C > 0 we have e -tQ k,

L 2 (G,E k, )→L 2 (G,E k, )
Ce C|t| , t ∈ R.

For Re(s) 1, the resolvent (Q k, + s) -1 on L 2 (G, E k, ) is given by

(Q k, + s) -1 = ∞ 0 e -t(Q k, +s) dt : L 2 (G, E k, ) → L 2 (G, E k, ).
(8.2.9)

Let χ ∈ C ∞ c ( V u ) be such that χ ≡ 1 on K u . Define the operator R k, (s) = χ(Q k, + s) -1 χ, Re(s) 1,

from C ∞ c ( V u , E k, ) to D ( V u , E k, )
, where D ( V u , E k, ) denotes the space of distributions valued in E k, . Thanks to (8.2.6), (8.2.7) and (8.2.8), we are in position to apply [DG16, Theorem 1] in order to obtain a meromorphic extension of R k, (s) to the whole plane C. Moreover, according to [DG16, Theorem 2], for every s 0 ∈ C in a small neighborhood of s 0 one has the representation R k, (s) = R H,k, (s) + J(s 0 ) j=1 (-1) j-1 (Q k, + s 0 ) j-1 Π k, s 0 (s -s 0 ) j (8.2.10)

where R H,k, (s) : 

C ∞ c ( V u , E k, ) → D ( V u , E k, )

The dynamical zeta function for the Neumann problem

In this section we prove that the function η N admits a meromorphic continuation to the whole complex plane, by relating η N (s) to the flat trace of the cut-off resolvent R k, (s).

The flat trace

First, we recall the definition of the flat trace for operators acting on vector bundles. Consider a manifold V , a vector bundle E over V and a continuous operator T : C ∞ c (V, E) → D (V, E). Fix a smooth density µ on V ; this defines a pairing

•, • on C ∞ c (V, E) × C ∞ c (V, E * ). Let K T ∈ D (V × V, E E * )
be the Schwartz kernel of T with respect to this pairing, which is defined by

K T , π * 1 u ⊗ π * 2 v = Tu, v , u ∈ C ∞ c (V, E), v ∈ C ∞ c (V, E * ),
where the pairing on D (V × V, E E * ) × C ∞ c (V × V, E E * ) is taken with respect to µ × µ. Here, the bundle E E * = π * 1 E ⊗ π * 2 E * → V is given by the tensor product of the pullbacks π * 1 E, and π * 2 E * , where π 1 , π 2 : V × V → V denote the projections over the first and the second factor, respectively. the restriction of the map Φ k, t : E k, → E k, to the fiber E k, | ω ; again, if we take another reference point ω γ , the map α k, ω γ ,τ (γ) is conjugated to α k, ω γ ,τ (γ) , hence the trace only depends on γ, and this justifies the notation tr(α k, γ ).

Next, we follow the strategy of [BSW21, §4.1] which is based on that used in [START_REF] Dyatlov | Dynamical zeta functions for Anosov flows via microlocal analysis[END_REF]§4] for Anosov flows on closed manifolds to compute the flat trace of the (shifted) resolvent. We may apply formula (8.3.2) with the functions s,T (t) = e -st T (t), where T ∈ C ∞ c (R + ) satisfies supp T ⊂ [ε/2, T + 1] for 0 < ε < d 0 = min γ∈P τ (γ) small and T ≡ 1 on [ε, T ]. Then taking the limit T → ∞, we obtain, with (8.2.9) in mind, where for Re(s) large enough and ε > 0 small, we set

tr R k, ε (s) 
R k, ε (s) = χe -ε(s+Q k, ) (Q k, + s) -1 χ,
where ε is chosen so that e -εQ k, supp( χ) ⊂ V u , so that R k, ε (s) is well defined. The equality (8.3.3) is exactly Equation (4.21) in [START_REF] Barkhofen | Meromorphic continuation of weighted zeta functions on open hyperbolic systems[END_REF], and we refer to the aforecited work for a detailed proof of this identity. Note that the flat trace tr R k, ε (s) is well defined thanks to the information of the wavefront set WF (K R k, ε (s) ) given in (8.2.11), together with the multiplication properties satisfied by wavefront sets, see [Hör90, Theorem 8.2.14].

Next, one states the following result, similar to that in [FT17, Section 2]. This crucial lemma explains the reason to introduce the bundles E k, . For the sake of completeness, we present a detailed proof. For t > 0 the map d ϕ t = (d ϕ -t ) -1 is contracting on ker dπ G ⊂ Ẽs (ω γ ) (resp. dϕ -t is contracting on E u (z)) and these contractions yield det(I -P -1 γ,⊥ ) > 0 (resp. det(I -P γ,u ) > 0). Thus the terms involving P γ,⊥ in (8. Since for every k, the family s → R k, ε (s) extends to a meromorphic family on the whole complex plane, so does s → η N (s). Indeed, it follows from the proof of [DG16, Lemma 4.2] that s → K R k, ε (s) is continuous as a map1 

C \ Res(R k, ε ) → D Γ (G × G, E k, E * k, ).
Here K R k, ε (s) is the Schwartz kernel of R k, ε (s) and

Γ = ∆ ε ∪ Υ +,ε ∪ E * + × E * -,
where ∆ ε = {(Ψ ε (Ω), Ω) : (Ω, Ω) ∈ ∆} and Υ +,ε = {(Ψ t (Ω), Ω) : t ε, Ω, X = 0},

while D Γ (G × G, E k, E * k,
) is the space of distributions valued in E k, E * k, whose wavefront set is contained in Γ. This space is endowed with its usual topology (see [Hör90, §8.2]). In particular, s → tr R k, ε (s) is continuous on C \ Res(R k, ε ) by [Hör90, Theorem 8.2.4]. Finally, Cauchy's formula implies that this map is meromorphic on C and this completes the proof that the Dirichlet series s → η N (s) admits a meromorphic continuation in C. Finally, by proceeding exactly as in [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF]§5], one is able to show that η N has integer residues.

The dynamical zeta function for particular rays

In this section we adapt the above construction to prove the following result.

Theorem 8.4.1. Let q ∈ N 1 . The function η q (s) defined by η q (s) = m(γ)∈qN τ (γ)e -sτ (γ) |1 -P γ | 1/2 , Re(s) 1,

where the sum runs over all periodic rays γ with m(γ) ∈ qN, admits a meromorphic continuation to the whole complex plane with simple poles and residues valued in Z/q.

Note that for large Re(s) we have the formula η D (s) = 2η 2 (s) -η N (s). (8.4.1)

In particular, Theorem 8.4.1 implies that η D (s) also extends meromorphically to the whole complex plane, since η N (s) does by the preceding section. In particular, we obtain Theorem 8.1.1 since 2η 2 (s) has simple poles with residues in Z.

The q-reflection bundle

For q 2 we define the q-reflection bundle R q → M by where A(q) is the q × q matrix with entries in {0, 1} given by

R q = SR d \ π -1 (D • ) ∪ D g × R q ≈, ( 8 
A(q) =      0 1 1 0 . . . . . . 1 0      .
This indeed defines an equivalence relation since (x, v ) ∈ D out whenever (x, v) ∈ D in . Note that A(q) q = Id, tr A(q) j = 0, j = 1, . . . , q -1.

(8.4.3)

Let us describe the smooth structure of R q , using the charts of M and the notations of §7.2.2. For z ∈ D in , we denote by U z the image of ψ z . Then the bundle R q → M can be defined by defining its transition maps, as follows. Let U = ψ(B \ π -1 (∂D)) be the chart domain of ψ. In the coordinates (7.2.3), we have U z ∩ U = U + U - where U + = ]0, ε[ × B 2d-2 (0, δ) and U -= ]-ε, 0[ × B 2d-2 (0, δ).

Then we define the transition map α z : U z ∩ U → GL(R q ) of the bundle R q with respect to the pair of charts (ψ z , ψ) to be the locally constant map defined by

α z (z) = Id if z ∈ U -, A(q) if z ∈ U + .
For z , z ∈ D in , the transition map of R q for the pair of charts (ψ z , ψ z ) is declared to be constant and equal to Id on U z ∩ U z . In this way we obtain a smooth bundle R q over M , which is clearly homeomorphic to the quotient space (8.4.2). Since the transition maps of R q are locally constant, there is a natural flat connexion d q on R q which is given in the charts by the trivial connexion on R q .

Consider a small smooth neighborhood V of K. As in §7.2.3, we embed V into a smooth compact manifold without boundary N , and we fix an extension of R q to N (this is always possible if we choose N to be the doubling manifold of V ). Consider any connexion ∇ q on the extension of R q which coincides with d q near K, and denote by P q,t (z) : R q (z) → R q (ϕ t (z))

the parallel transport of ∇ q along the curve {ϕ τ (z) : 0 τ t}. We have a smooth action of ϕ t on R q which is given by ϕ q t (z, ξ) = (ϕ t (z), P q,t (z) • ξ), (z, ξ) ∈ R q .

From (8.4.3), and the fact that ∇ q coincides with d q near K, we easily deduce that for any periodic orbit γ = (ϕ τ (z)) τ ∈[0,τ (γ)] , we have tr ϕ q τ (γ) (z) = q if m(γ) = 0 mod q, 0 if m(γ) = 0 mod q. (8.4.4)

Transfer operators acting on G

Now consider the bundle

E q k, = E k, ⊗ π * G R q ,
where π * G R q is the pullback of R q by π G and E k, is defined in §8.2.2, so that π * G R q → G is a vector bundle over G. We may lift the flow ϕ q t to a flow Φ k, ,q t on E q k, which is defined locally near K u by Φ k, ,q t (ω, u ⊗ v ⊗ ξ) = ϕ t (ω), b t (ω) • dϕ t (π G (ω)) -∧k (u) ⊗ (d ϕ t (ω)) ∧ (v) ⊗ P q,t (z) • ξ for any ω = (z, E) ∈ G, u ⊗ v ⊗ ξ ∈ E q k, (ω) and t ∈ R. Here b t (ω) is defined in 8.2.2. As in §8.2.4, we consider a smooth connexion ∇ k, ,q = ∇ k, ⊗ π * G ∇ q on E q k, . Define the transfer operator Φ k, ,q, * -t : C ∞ (G, E q k,l ) → C ∞ (G, E q k, ) by Φ k, ,q, * -t u(ω) = Φ k, ,q -t [u( φt (ω)], u ∈ C ∞ (G, E q k, ). Then the operator P k, ,q = d dt t=0 Φ k, ,q, * -t , which is defined near K u , can be written locally as ∇ k, ,q X + A k, ,q for some A k, ,q ∈ C ∞ ( U u , End E q k, ) which is defined in some small neighborhood U u of K u . Next, we choose some B k, ,q ∈ C ∞ (G, End E q k, ) which coincides A k, ,q near K u . We consider V u and Y as in §8.2.3, and set

Q k, ,q = ∇ k, ,q Y + B k, ,q : C ∞ (G, E q k, ) → C ∞ (G, E q k, ).
8.4.3 Meromorphic continuation of η q (s)

For χ ∈ C ∞ c ( V u ) such that χ ≡ 1 near K u , we define R k, ,q ε (s) = χe -ε(Q k, ,q +s) (Q k, ,q + s) -1 χ and by the argument of the preceding section one obtains a meromorphic continuation of R k, ,q ε (s). Now notice that, with the notations of §8.3.2, for any periodic orbit γ of (ϕ t ) we have tr Φ k, ,q τ (γ) (ω γ ) = tr Φ k, τ (γ) (ω γ ) tr ϕ q τ (γ) (z γ ) , where z γ is any point of γ. However, by (8.4.4) one gets tr ϕ q τ (γ) (z γ ) = 1 qN (m(γ)). In particular, proceeding exactly as in the the preceding section, we obtain that for Re(s) large enough, k, (-1) k+ tr R k, ,q ε (s) = q m(γ)∈qN τ (γ)e -sτ (γ) | det(1 -P γ )| 1/2 .

(8.4.5)

Thus, repeating the argument of §8.3, we establish a meromorphic continuation of the function s → η q (s). Finally, by using (8.4.5), we may proceed exactly as in §8.3.3 to show that qη q has integer residues. This completes the proof of Theorem 8.4.1.

The modified Lax-Phillips conjecture for real analytic obstacles

In this section, we assume that each one of the obstacles D 1 , . . . , D r have a real analytic boundary. Then the smooth structure on M defined in §7.2.2 induces an analytic structure on M . Indeed, with the notations of §7.2.2, the local parameterizations F z of D in can be chosen to be real analytic, as D in is a real analytic submanifold of SR 2 . This makes the transition maps (7.2.4) real analytic, and thus we obtain a real analytic structure on M . In the charts ψ z and ψ, the billiard flow is a translation and it defines a real analytic flow. Of course, the Grassmannian bundle G → M also becomes real analytic. Consequently, the lifted flow ϕ t on G, which is defined by (8.2.1), is real analytic as well.

Consider the bundles E q k, → G defined in §8.4.2 for q ∈ N 2 , 1 k d -1 and 1 d 2 -d. If q = 1 the bundles E 1 k, → G are isomorphic to E k, , E k, being the bundles defined in §8.3. As before we naturally extend the flow ϕ t to a flow Φ k, ,q t (which is non complete) on E q k, . We set

E + q =
k+ even E q k, and E - q =

k+ odd E q k, .

Define the flows Φ + t,q and Φ - t,q , acting respectively on the bundles E + q and E - q , by Φ + t,q = k+ even Φ k, ,q t and Φ - t,q = k+ odd Φ k, ,q t . Then Φ ± t,q is a virtual lift of ϕ t to the virtual bundles E ± q , in the sense of [START_REF] Fried | Meromorphic zeta functions for analytic flows[END_REF]p. 176]. Also, following [Fri95, p. 176], given a periodic ray γ, one defines χ γ (E ± q ) = χ γ (E + q ) -χ γ (E - q ). More precisely, given a point ω = (z, E) ∈ G, z ∈ γ, and a bundle ξ → G over G, one considers the transformation Φ τ (γ) : ξ ω → ξ ω , where ξ ω is the fibre over ω and Φ t is the lift of the flow φt to ξ. Then we set χ γ (ξ) = tr Φ τ (γ) . For a period ray γ related to a primitive periodic ray γ one defines µ(γ) ∈ N determined by the equality τ (γ) = µ(γ)τ (γ ).

After this preparation one introduces the zeta function ζ q (s) = exp -1 q γ χ γ (E ± q ) µ(γ)| det(1 -Pγ )| e -sτ (γ) , Re(s) 1.

This function corresponds exactly to the flat-trace function T (s) introduced by Fried [Fri95, p. 177]. On the other hand, one has

χ γ (E ± q ) = k,
(-1) k+ tr Φ k, ,q τ (γ) (ω γ ).

According to the analysis of §8. By the work of Ikawa [START_REF] Ikawa | On the existence of poles of the scattering matrix for several convex bodies[END_REF][START_REF] Ikawa | On the distribution of poles of the scattering matrix for several convex bodies[END_REF] and a slight modification of its proof to cover the case d even2 , it is sufficient to show that the Dirichlet series η D (s) cannot be continued as an entire function on C, that is, η D (s) has at least one pole. We proceed by contradiction and assume that η D (s) is an entire function. Applying the representation (8.5.1), this means that ζ 2 (s) 2 /ζ 1 (s) has neither poles nor zeros. As we have mentioned above, this function has finite order, so by the Hadamard factorisation theorem we deduce that ζ 2 (s) 2 /ζ 1 (s) = exp(Q(s)) for some polynomial Q(s). This implies that η D (s) = -Q (s) is a polynomial, which is impossible. Indeed, since η D (s) → 0 as Re(s) → +∞, this implies that Q (s) must be the zero polynomial. By uniqueness of the development of an absolutely convergent Dirichlet series of the form n a n e -λns [START_REF] Perron | Zur Theorie der Dirichletschen Reihen[END_REF], this leads to a contradiction.

Hyperbolicity of the billiard flow

In this section we show that the non-grazing flow (φ t ) defined in §7.2.1 is uniformly hyperbolic on the trapped set K e . As it was mentioned in §7.2.3, we can obtain the uniform hyperbolicity of the flow (ϕ t ) on K in the smooth model from that for (φ t ) on K e . The flow (φ t ) is hyperbolic on K e if for every z = (x, v) ∈ B ∩ K e we have a splitting

T z R d = RX(z) ⊕ E s (z) ⊕ E u (z),
where X(z) = v and E s (z)/E u (z) are stable/unstable spaces such that dφ t (z) maps E s/u (z) onto E s/u (φ t (z)) whenever φ t (z) ∈ B ∩ K e , and if for some constants C, ν > 0 independent of z ∈ K e , we have

dφ t (z) • v    Ce -νt v , v ∈ E s (z), t 0,
Ce -ν|t| v , v ∈ E u (z), t 0.

(8.6.1) First, we consider the case of periodic points. Our purpose is to define the unstable and stable manifolds E u (z) and E s (z) at a periodic point z, and to estimate the norm of dφ t (z)| E b (z) for b = u, s. Consider a periodic ray γ with reflection points z i = (q i , ω i ), q i ∈ ∂D, ω i ∈ S d-1 , i = 0, . . . , m(γ) = m. We will apply the representation of the Poincaré map established in Theorem 2.3.1 and Proposition 2.3.2 in [START_REF] Vesselin | Geometry of the generalized geodesic flow and inverse spectral problems[END_REF].

To do this, we recall some notations given in Section 2 of [START_REF] Vesselin | Geometry of the generalized geodesic flow and inverse spectral problems[END_REF]. Let Π i ⊂ R d be the plane passing thought q i and orthogonal to the line q i q i+1 and let Π i be the plan passing thought q i and orthogonal to ω i-1 . For j = i (mod m) we set Π j = Π i , q j = q i . Set λ i = q i-1 -q i and let σ i be the symmetry with respect to the tangent plane α i = T q i ∂D. Clearly,

σ i (ω i ) = ω i+1 , σ i (Π i ) = Π i , Π 0 = Π m .
We identify the plans Π i-1 and Π i by using a translation along the line determined by the segment [q i-1 , q i ] and we will write σ i (Π i-1 ) = Π i .

We may identify Π i ×Π i with Σ z i = T z i (T R d )/E z i , where E z i is the two-dimensional space spanned by ω i and the cone axis at z i . We will denote D in = {(x, v) : x ∈ ∂D, |v| = 1, v, n(x) 0}. Then define the billiard ball map This map is well defined near K e ∩ D in . Given (u, v) ∈ Π i-1 × Π i-1 sufficiently close to (0, 0), consider the line (u, v) passing through u and having direction ω i-1 + v (the point v is identified with the vector v). Then (u, v) intersects ∂D at a point p = p(u, v) close to q i . Let (u, v) be the line symmetric to (u, v) with respect to the tangent plane to ∂D at p and let u ∈ Π i be the intersection point of (u, v) with Π i . There exists a unique v ∈ Π i for which ω i + v has the direction of (u, v). Thus we get a map

Ψ i : Π i-1 × Π i-1 (u, v) -→ (u , v ) ∈ Π i × Π i
defined for (u, v) in a small neighborhood of (0, 0) (see Figure 8.6). The smoothness of the billiard ball map implies the smoothness of Ψ i . Next consider the second fundamental form S(ξ, η) = G i (ξ), η for D at q i , where G i = dn j (q i ) : α i -→ α i is the Gauss map. Introduce a symmetric linear map ξ i on Π i defined by for ξ, η ∈ Π i by ξ i σ i (ξ), σ i (η) = -2 ω i-1 , n j (q i ) G i (π i (ξ)), π i (η) , where ., . denotes the scalar product in R d and π i : Π i -→ α i be the projection on α i along Rω i-1 .

Notice that the non-eclipse condition (8.1.1) implies that there exists β 0 ∈ ]0, π/2[ depending only of D such that for all incoming directions ω i-1 and all reflexion points q i ∈ ∂D j , it holds -ω i-1 , n j (q i ) = ω i , n j (q i ) cos β 0 > 0.

Consequently, the symmetric map ξ i has spectrum included in [µ 1 , µ 2 ] with 0 < µ 1 < µ 2 depending only of κ = cos β 0 and the sectional curvatures of ∂D. Finally, define the symmetric map Here we used the estimate w = u 2 + M 0 u 2 1/2 (1 + B 2 0 ) 1/2 u with M 0 Π 0 →Π 0 B 0 and we set C 0 = (1 + B 2 0 ) -1/2 . The constant B 0 can be chosen uniformly for all M k and all periodic points since for every non-negative symmetric map M one has

ξ i = s -1 i ξ i s i : Π m -→ Π m with s i = σ i • σ i-1 • • • • • σ 1 . By Theorem 2.
M (I + λ k M ) -1 1 λ k 1 d 0 ,
and the norms ξ k are uniformly bounded by a constant depending on the sectional curvatures and κ > 0. Hence A k (M ) B 0 (8.6.3) and the same is true for the fixed point M 0 = A m (M m-1 ). Consequently, the estimate (8.6.3) is uniform for all periodic points. Finally, estimating the norm of (1 + d 1 ) -2 C 0 e -β 0 d 1 e β 0 t v .

To determine the stable space E s (z) at z, we will study the flow φ t for t < 0 and repeat the above argument leading to a fixed point. The linear map P -1 γ for a periodic ray γ with m reflexions has the representation

P -1 γ = (dΨ 1 ) -1 • • • • • (dΨ m ) -1 : Π 0 × Π 0 -→ Π 0 × Π 0 ,
where

(dΨ k ) -1 = σ -1 k 0 0 σ -1 k I + λ k ξ k -λ k I -ξ k I .
Recall that Π 0 = Π m . Consider a Lagrangian Q 0 = Q m = {(u, -N m u) : u ∈ Π 0 } with a symmetric non-negative definite map N m ∈ S + 0 . Then Repeating α p infinite times, one obtains an infinite configuration and following the arguments of the proof of Proposition 10.3.2 in [START_REF] Vesselin | Geometry of the generalized geodesic flow and inverse spectral problems[END_REF], there exists a periodic ray γ p following this configuration. Thus we obtain a sequence of periodic rays (γ p 0 +k ) k 0 . Let {q p,k ∈ ∂D i k } be the reflexion points of γ p . For the periodic ray γ p passing through q p,0 ∈ ∂D i 0 consider the linear space L p,0 = {(u, M p,0 u) : u ∈ Π p,0 } ⊂ Π p,0 × Π p,0 .

Our purpose is to show that the symmetric linear maps M p,0 ∈ S + p,0 (ε) composed by some unitary maps converge as p → ∞ to a symmetric linear map M 0 ∈ S + 0 (ε) on Π 0 . This composition is necessary since the maps M p,0 , p p 0 , are defined on different spaces. To do this, we will use Lemmas 10.2.1, 10.4.1 and 10.4.2 in [START_REF] Vesselin | Geometry of the generalized geodesic flow and inverse spectral problems[END_REF]. Consider the rays γ p 0 +q , q 1, and γ. These rays have reflection points passing successively through the obstacles D i -p 0 -1 , D i -p 0 , . . . , D i 0 , . . . , D ip 0 , D i p 0 +1 .

According to Lemma 10.2.1 in [START_REF] Vesselin | Geometry of the generalized geodesic flow and inverse spectral problems[END_REF], there exist uniform constants C > 0 and δ ∈ (0, 1) such that for any |k| p 0 and j = 1, . . . , q, one has q p 0 +1,k -q p 0 +j,k C(δ p 0 +k + δ p 0 -k ) and q p 0 +j,k -q k C(δ p 0 +k + δ p 0 -k ).

We need to introduce some notations from Section 10.4 in [START_REF] Vesselin | Geometry of the generalized geodesic flow and inverse spectral problems[END_REF]. Let x ∈ ∂D i and y ∈ ∂D j with i = j, and assume that the segment [x, y] is transversal to both ∂D i and ∂D j . Let Π be the plane orthogonal to [x, y], passing through x. Let e = (x -y)/ x -y , and introduce the projection π : Π -→ T x (∂D) along the vector e.

As above, we define the symmetric linear map ψ : Π → Π by ψ(u), u = 2 e, n(x) G x (π(u)), π(u) , u ∈ Π, and notice that spec ψ ⊂ [µ 1 , µ 2 ], 0 < µ 1 < µ 2 .

Setting D 0 = 2C, we have the estimates q p 0 +j,k -q k D 0 δ p 0 +k , k = -p 0 + 1, . . . , 0, j = 1, . . . , q.

Fix 1 j q and introduce the vectors e k = q k+1 -q k q k+1 -q k , e k = q p 0 +j,k+1 -q p 0 +j,k q p 0 +j,k+1 -q p 0 +j,k .

Consider the maps ξ k : Π k -→ Π k and ψ k : Π k -→ Π k related to the segments [q k-1 , q k ] and [q p 0 +j,k-1 , q p 0 +j,k ], respectively. Let M -p 0 +1 : Π -p 0 +1 -→ Π -p 0 +1 and M -p 0 +j : Π -p 0 +j -→ Π -p 0 +j be symmetric non-negative definite linear operators. By induction, define

M k = σ k M k-1 (I + λ k M k-1 ) -1 σ k + ξ k , k = -p 0 + 2, . . . , 0,
where λ k = q k-1 -q k and σ k is the symmetry with respect to T q k ∂D. Similarly, we define M k , k = -p 0 + 2, . . . , 0, by replacing ξ k , σ k and λ k by ξ k , σ k , and λ p 0 +j,k = q p 0 +j,k-1 -q p 0 +j,k be the space of E-valued current whose wavefront set is contained in Γ, endowed with its usual topology, cf. 

D • Γ (M × M, π * 1 E ∨ ⊗ π * 2 E) × D • Γ (M × M, π * 1 E ∨ ⊗ π * 2 E) -→ D • Υ (M × M, π * 1 E ∨ ⊗ π * 2 E)
for any closed conical subsets Γ, Γ ⊂ T * (M × M ) such that Γ (2) ∩ Γ (1) = ∅, and where Υ is a closed conical subset given in [Hör90, 8.2.14]. Title : On some geometrical applications of the spectral theory of hyperbolic flows Keywords : Hyperbolic dynamics, microlocal analysis, zeta functions, topology, geometry.

Abstract : In dynamical systems, one of the main objects or quantities that have been studied are the periodic orbits and their periods. In this thesis we make use of certain dynamical zeta functions to study their distribution and their link with the underlying topology ; these zeta functions are studied via recent analytic and micro-local techniques de-veloped in the past decades. We give applications to various geometrical problems, such as counting closed geodesics under intersection constraints, the relation between periodic orbits of contact Anosov flows and the Turaev torsion, or the distribution of quantum resonances for open billiard systems.

  Figure 1.1 -Un flot d'Anosov.

Figure 1

 1 Figure 1.2 -Une géodésique fermée γ sur Σ. Ici, on a r = 5, q = 3, et ω(γ) ∼ (u, v) avec u = (1, 2, 4, 5, 4, 3, 2) et v = (1, 1, 2, 3, 2, 3, 2) (le point de départ de γ est la flèche orangée).

  Rep ac (M, d) l'ensemble des représentations acycliques π 1 (M ) → GL(C d ) du groupe fondamental et A ⊂ C ∞ (M, T * M ) l'ensemble des formes de contact sur M dont le champ de Reeb induit un flot d'Anosov. Dans l'esprit du travail de Ray-Singer [RS71] sur l'indépendance de la torsion analytique relativement à un choix d'une métrique riemannienne, le premier résultat de notre article [CD19] montre que τ ϑ (ρ) est invariant par des petites perturbations de la forme de contact ϑ ∈ A. Théorème 1.2.5 (C.-Dang). Soit (ϑ τ ) τ ∈(-ε,ε) une famille lisse de formes de contact de A. Alors ∂ τ log τ ϑτ (ρ) = 0 pour toute ρ ∈ Rep ac (M, d).

  ρ) est de module 1 sur les composantes connexes de Rep ac (M, d) qui contiennent une représentation acyclique et unitaire. Ce résultat nous permet de comparer directement les comportements de τ ϑ (ρ) et τ e,o (ρ) -en tant que fonctions de la représentation ρ -tandis que dans [DGRS20], les auteurs se basent sur l'existence d'un lien a priori entre ζ X,ρ (0) et τ R (ρ) (donné par Sanchez-Morgado [SM96]). Finalement, énonçons un dernier résultat qui s'intéresse à la façon dont ∂ u log τ ϑ (ρ u ) dépend du choix du champ de vecteurs X ϑ . Théorème 1.2.7 (C.-Dang). Soit (M, ϑ) une variété de contact telle que le champ de Reeb induit un flot d'Anosov. Soit (ρ u ) |u| ε une famille lisse de Rep ac (M, d). Alors, pour tout η ∈ A, on a la formule variationnelle

  et Dynamical torsion for contact Anosov flows [CP22] -ce dernier est écrit en collaboration avec Vesselin Petkov. Soit r 3 un entier, et D 1 , . . . , D r ⊂ R d une famille d'obstacles lisses et strictement convexes, vérifiant la condition de nonéclipse conv(

Figure 1

 1 Figure 1.3 -Une trajectoire fermée γ du flot de billard avec m 0 (γ) = 2.

  est bien définie. On sait depuis le travail de Lax-Phillips [LP67, LP89] que µ → R ∆ (µ) admet un prolongement méromorphe, en tant que famille d'opérateurs L 2 comp (Ω) → L 2 loc (Ω), pour µ ∈ C si la dimension d est impaire et pour µ dans un revêtement logarithmique {z ∈ C : -∞ < arg(z) < ∞} sinon ; les résonances quantiques {µ j } du système sont par définition les pôles de R ∆ (µ).
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Corollary 4 .

 4 3.3. The scattering operator s → S ± (s) : Ω • (∂ \ ∂ 0 ) → D • (∂) extends as a meromorphic family of s ∈ C with poles of finite rank contained in the set of Pollicott-Ruelle resonances of L X , that is, the set of poles of s → R ±,δ (s).

  2.6 we have ±X 2 ρ > 0 if ±ρ > 0. Thus we may separate each interval [a k (z), b k (z)] into two subintervals on which |ρ | > 0 and change variables to get b k (z)

  3.26) and Lemma 4.11.1. Recall from Remark 4.3.7 that s → (χ S± (s)χ) n admits a meromorphic continuation in D 3 Γ ε,± (∂ × ∂) where Γ ε,± does not intersect the conormal to the diagonal in ∂ × ∂. In particular, we have the Corollary 4.3.10. The function s → η ±,χ,n (s) defined for Re(s)

Figure 4 . 4 Figure 4 . 2 -

 4442 Figure 4.2 -The generators a 1 , b 1 , . . . , a g , b g of π 1 (Σ) (on the left) and the generators a 1 , b 1 , .. . , a g of π 1 (Σ ) (on the right) when g = 2. Here γ is assumed not separating and is represented by a 2 in π 1 (Σ).

  4]. It follows from the Milnor-Švarc lemma [BH13, Proposition I.8.19] that for some constant D > 0 we have 1 D wl(w) -D (w) Dwl(w) + D, w ∈ π 1 (Σ ). (4.4.4) Also, as π 1 (Σ ) is convex co-compact we have the classical orbital counting (see [Rob03, §1.F and Corollaire 2]) {w ∈ π 1 (Σ ) : (w) L} ∼ Ae h L , L → ∞ (4.4.5)

  and denote by C the set {C w : w ∈ π 1 (Σ )}. For C ∈ C we set (C) = inf w∈C (w). Then by Lemma 4.4.3, we have a well defined and injective map {C ∈ C : (C) L} → {γ ∈ P 1 : (γ) L + C}, C w → [wb g ],

Figure 4 . 7 -

 47 Figure 4.7 -Proof of Proposition 4.4.8.

  Building on Lemmata 4.4.6 and 4.4.7 and Proposition 4.4.8, we prove Proposition 4.4.5. Proof of Proposition 4.4.5.

Remark 4 . 5 . 3 (

 453 Continuation of Remark 4.5.2). If h 1 = h 2 and c ± (χ) = 0, then the map s → tr s (χ S± (s)χ) 2 has no pole on the line {Re(s) = h }. As in Remark 4.5.2 this yields

Remark 4 .

 4 8.5. (i) It is not hard to see that Proposition 4.8.1 implies 1 N (L) (γ) L i(γ, γ ) ∼ I L as L → +∞. Thus we recover [Pol85, Theorem 4].

  {γ ∈ P : (γ) L : i(γ, γ ) = n} ∼ C n L dn e hnL h n L where C n = d n [ω]:n(ω)=n c ω . Here the sum runs over the equivalence classes [ω] = {ω : ω ∼ ω}.

Sommaireγ

  (0) ⊥ T γ(0) ∂Σ and γ ( ) ⊥ T γ( ) ∂Σ. For large Re(s) the Poincaré series η(s) = γ∈G ⊥ e -s (γ) , (5.1.1)

  .4.10) Next, by analytic continuation and (5.2.11), it holds supp(Y ) ⊂ t 0 ϕ t ( Λ). The right hand side of the above equation is disjoint from Λ by strict convexity of M δ . Thus supp(Y ) ∩ Λ = ∅. (5.4.11)

Finally, we have

  supp([S j ]) ∩ supp([ Λ]) = ∅ and by (5.4.11) we conclude that

Theorem 6 .

 6 1.3 (Comparison with the Turaev torsion). Let (M, ϑ) be a contact manifold such that the Reeb vector field of ϑ induces an Anosov flow. Then the map ρ ∈ Rep ac (M, d) → τ ϑ (ρ) is holomorphic 2 and there exists an Euler structure e 1. That is, E * u is the annihilator of E u ⊕ RX where E u ⊂ T M denotes the unstable bundle of the flow.2. Rep ac (M, d) is a variety over C, see subsection 6.9.2 for the right notion of holomorphicity.such that for any cohomological orientation o and any smooth family(ρ u ) u∈(-ε,ε) of Rep ac (M, d), ∂ u log τ ϑ (ρ u ) = ∂ u log τ e,o (ρ u )Moreover, if dim M = 3 and b 1 (M ) = 0, the map ρ → τ ϑ (ρ)/τ e,o (ρ) is of modulus one on the connected components of Rep ac (M, d) containing an acyclic and unitary representation.

  If S and T are two operators on C • of degrees s et t respectively then the supercommutator of S and T by [S, T ] = ST -(-1) st T S. Cyclicity of the usual trace gives tr s,C • [S, T ] = 0 for any S, T .

  admits a meromorphic continuation to s ∈ C with poles of finite rank ; we will still denote by L ∇ X + s -1 this extension. Those poles are the Pollicott-Ruelle resonances of L ∇ X , and the set of resonances by Res(L ∇ X ).

  6.4.11) on C • (s 0 ). Indeed, assume that (6.4.11) holds and letβ ∈ ker B ϑ . Set µ = Γ ϑ ∇β = -∇Γ ϑ β ; we have Γ ϑ ∇µ = 0 = ∇Γ ϑ µ,hence µ = 0 by (6.4.11), and therefore β = 0, again by (6.4.11), yielding ker B ϑ = {0}.

  .6.18) This gives the variation of ζ (λ,∞) X,∇(z) (s) for Re(s) big enough. To obtain the variation of b

6 .

 6 (-1) • comes from ∂ = (-1) deg +1 d comparing the boundary ∂ and De Rham differential d

  denote by Rep ac (M, d) ⊂ Rep(M, d) the space of acyclic representations. This is an open set (in the Zariski topology, thus in the classical one) in Rep(M, d), see [BH06, §4.1]. For any ρ ∈ Rep ac (M, d) we set

  9.9) is locally constant on Rep ac (M, d) \ Σ(M, d). Moreover, we can reproduce all the arguments we made in the continuous category to obtain that ρ → τ ϑ (ρ)/τ e,o (ρ) is actually continuous on Rep ac (M, d). Because Rep ac (M, d) \ Σ(

I

  |I s |τ |Is|-1 β I (x u , τ x s )dx Iu u ∧ dx Is s + I τ |Is| (∂ xs β I ) (xu,τ xs) (x s )dx Iu u ∧ dx Is s . Therefore ∂ τ e tAs π * u,τ χ 2 = I |I s |τ |Is|-1 β I (x u , τ e tAs x s ) + τ |Is| (∂ xs β I ) (xu,τ xs) (e tAs x s ) e tAs dx I . Because |e tAs x s | = O(e -tc ) and e tAs dx I = O(e -ct|Is| ), I = (I s , I u ) is a multi-index and repeating the same argument for ∂ τ e -tAu π * s,τ χ 1 , we obtain the bound :

  χe -(t+ε) X χ = a χ a e -(t+ε) X χ a . Let c = min a∈Crit(f ) c a . For Re(s) > -c, G χ,ε,s = ∞ 0 e -ts χe -(t+ε) X (Id -Π)χdt defines an operator Ω • (M ) → D • (M ), whose Schwartz kernel G χ,ε,s is locally bounded in D nΓ (M × M ) in the region {Re(s) > -c}, where Γ = a∈Crit(f ) Γ a .

4 Figure 7

 47 Figure 7.1 -A billiard trajectory

  .2.2) We set B = SR d \ π -1 (D). Then π M : B → M is a homeomorphism onto its image O. Let G = π M (D in ) be the gluing region. We consider the map π -1 M : O → B as a chart. Next we wish to define charts in an open neighborhood of G. For every point z = (x , v ) ∈ D in let F z : U z × U z → D in be a local smooth parameterization of D in , where U z is an open small neighborhood of 0 in R d-1

  where V = {z ∈ M : T -(z) = ∅ and T + (z) = ∅} ⊂ M . Here we setT ± (z) = {t ∈ T (z) : ±t > 0}.

  and the subbundles E * ± ⊂ T * Γ ± U are defined by E * ± (RX(z) ⊕ E ± ) = 0. Here we setWF (R ± (s)) = {(z, ξ, z , ξ ) ∈ T * (U × U ), (z, ξ, z , -ξ ) ∈ WF(R ± (s))},where WF(R ± (s)) ⊂ T * (U × U ) is the Hörmander wavefront set of (the Schwartz kernel of) R ± (s), see[START_REF] Hörmander | The analysis of linear partial differential operators : Distribution theory and Fourier analysis[END_REF] §8].

Proposition 7 .

 7 3.1. For any n 2, the composition( T ± (s)) n : Ω • c (Z) → D • (Z) is well defined.Proof. By [Hör90, Theorem 8.2.4] and Proposition 7.2.2 we have

5 .

 5 See the proof of[START_REF] Chaubet | Closed geodesics with prescribed intersection numbers[END_REF] Proposition 3.6] for more details.

  define the Ruelle zeta function ζ B associated to the billiard flow B by ζ B (s) = γ∈P B 1 -e -sτ (γ) -1 , s ∈ C, where the product converges whenever Re(s) is large enough. By [Mor07, Theorem 1.3], there is h B > 0 and c B > 0 such that ζ B admits a meromorphic extension to the half plane {Re(s) > -c B } ; moreover, ζ B is analytic and nonvanishing on the line {Re(s) = h B } except for a simple pole at s = h B (as it follows from [Mor91, Remark 3.1] and [PP83, Proposition 9]) ; hence ζ B /ζ B is analytic on {Re(s) = h B }, except for a simple pole with residue -1 at s = h B .

( 7 . 5 . 7 )

 757 If k is large enough, we have by the induction hypothesis N (m, (k + 1)T )-N (m, kT )

  The series η N (s), η D (s) are related to the resonances of the self-adjoint operators -∆ b , b = N, D, on H = L 2 (R d \D), with Neumann and Dirichlet boundary conditions on ∂D, respectively, and domains D b ⊂ H. To explain this relation, consider the resolvents R b (µ) = -∆ b -µ 2 -1 , which are analytic in {µ ∈ C : Im µ < 0}. Then R b (µ) : H comp -→ D b,loc has a meromorphic continuation to µ ∈ C if d is odd, and in the logarithmic covering of C\{0} if d is even (see [LP89] for d odd and [DZ19] for d 2). The poles µ j , Im µ j > 0, of these continuations are called resonances. Introduce the distribution u ∈ D (R)

  is a constant. The reader may consult[START_REF] Sjöstrand | A trace formula and review of some estimates for resonances[END_REF] for a local trace formula involving the resonances. Concerning the singularities of the distribution u, it follows from [BGR82] that we have sing supp u ⊂ {τ (γ) ∈ R + : γ ∈ P}.

.1. 4 )

 4 where ε(D) = 1, ε(N) = 0 and τ (γ) = µ(γ)τ (γ). Notice that we haveζ b (s) ζ b (s) = η b (s), b = D, N, Re s 1. (8.1.5)In particular, since by the above theorem η b (s) has simple poles with integer residues, it follows by a classical argument of complex analysis that we have the following Corollary 8.1.2. For b = D, N, the function s → ζ b (s) extends meromorphically to the whole complex plane.

  (8.1.7) For d even we must count N 0,δ = {µ j ∈ C : 0 < Im µ j δ, 0 < arg z < π} (8.1.8) since a meromorphic extension of R D (µ) is possible on the Riemann logarithmic surface Λ = {-∞ < arg z < +∞}. This conjecture for d odd was introduced by Ikawa [Ika90a] and it is known as the modified Lax-Phillips conjecture (MLPC). In this direction, for d odd, Ikawa [Ika88b, Ika90a] proved that for strictly convex disjoint obstacles satisfying (8.1.1) the existence of at least one singularity of η N (s) or η D (s) implies the existence of δ > 0 for which (8.1.7) holds for the Neumann or Dirichlet boundary problem. The proof in [Ika90a] can be modified to cover also the case d even, applying the trace formula of Zworski (8.1.2). The existence of a singularity of the dynamical zeta function trivially holds for the Neumann problem since η N (s) is a Dirichlet series with positive coefficients, and by a classical result, η N (s) must have a singularity at s 0 ∈ R, where Re s = s 0 is the line of absolute convergence of η N (s).

E

  = {(ω, u) ∈ π * G (T N ) : ω ∈ G, u ∈ [ω]}, where [ω] = E denotes the (d -1) dimensional subspace of T π G (z) N represented by ω = (z, E) and π * G (T N )is the pullback bundle of T N. Also, we define the vector bundle F → G byF = {(ω, W ) ∈ T G : dπ G (ω) • W = 0}.It is a subbundle of the bundle T G → G. The dimensions of the fibres E ω and F ω of E and F over ω are given bydim E ω = d -1, dim F ω = dim ker dπ G (ω) = dim π -1 G (z) = d 2 -dfor any ω ∈ G with π G (ω) = z. Finally, we set

  3.1 below.In what follows we use the notation ω = (z, η) ∈ G and u ⊗ v ∈ E k, | ω . By using the flow ϕ t , we introduce a flow Φ k, t : E k, → E k, by settingΦ k, t (ω, u ⊗ v) = ϕ t (ω), b t (ω) • dϕ t (π G (ω)) -∧k (u) ⊗ d ϕ t (ω) ∧ (v) , (8.2.3)where -denotes the inverse transpose andb t (ω) = | det dϕ t (π G (ω))| [ω] | 1/2 • | det (d ϕ t (ω)| ker dπ G ) | -1 .Here the determinants are taken with respect to any choice of smooth metrics g N and g G on N and G, as follows. If ω = (z, E) ∈ G and t ∈ R, then the number| det dϕ t (z)| [ω]| is defined as the absolute value of the ratio(dϕ t (z)| [ω] ) ∧ d-1 • µ ω µ ϕt(ω)whereµ ω = e 1,ω ∧ • • • ∧ e d-1,ω ∈ ∧ d-1 [ω] (resp. µ ϕt(ω)) ∈ ∧ d-1 [ ϕ t (ω)])is a volume element given by any basis e 1,ω , . . . , e d-1,ω of [ω] (resp. [ ϕ t (ω)]) which is orthonormal with respect to the scalar product induced by g N | [ω] (resp. g N | [ ϕt(ω)] ). The number | det (d ϕ t (ω)| ker dπ G ) | is defined similarly. Taking local trivializations of E * and F, we see that the action of Φ k, t is smooth. Thus we have a diagram

  |t| ∈ ]0, ε[ , where clos A denotes the closure of a set A.

  = γ e -sτ (γ) τ (γ) tr(α k, γ ) | det(Id -P γ )| ,

=

  Lemma 8.3.1. For any periodic orbit γ related to a periodic orbit γ, we have1 | det(I -P γ )| k+ tr Φ k, τ (γ) (ω γ ) = | det(1 -P γ )| -1/2 .Proof. Let γ(t) be a periodic orbit and letγ(t) = (γ(t), E u (γ(t)), ω γ ∈ γ. Set P γ,u = dϕ -τ (γ) (z)| Eu(z) , P γ,s = dϕ -τ (γ) (z)| Es(z) , P γ,⊥ = d ϕ -τ (γ) (ω γ )| ker dπ G (ω) , P -1 γ,⊥ = d ϕ -τ (γ) (ω γ ) -1 | ker dπ G (ω) . The linearized Poincaré map P γ of the closed orbit γ satisfies det(I -P γ ) = det I -d ϕ -τ (γ) | Es(ω)⊕ Eu(ω) = det (I -P γ ) det (I -P γ,⊥ ) (8.3.4) since E s (ω) E s (z) ⊕ ker dπ G (ω) and E u (ω) E u (z) by Lemma 8.2.1. Recall the well known formula det(I -A) = k j=0 (-1) j tr ∧ j Awhich is valid for any endomorphism A of a k-dimensional vector space. By (8.2.3), we getk, (-1) k+ tr Φ k, τ (γ) (ω γ ) = b τ (γ) (ω γ ) | det(P γ,u )| -1/2 | det(P γ,⊥ )| det(I -P γ,u ) det(I -P -1 γ,⊥ ).(8.3.5)Here we have used the equalityb τ (γ) (ω γ ) = | det dϕ τ (γ) (π G (ω γ ))| [ω γ ] | 1/2 • | det d ϕ τ (γ) (ω γ )| ker dπ G | -1 = | det(P γ,u )| -1/2 | det(P γ,⊥ )|because P γ,u and P γ,⊥ are defined with dϕ -t and d φ-t , respectively. Therefore (8.3.4) yields k,(-1) k+ tr Φ k, τ(γ) (ω γ ) | det(I -P γ )| = det(I -P γ,u ) det(I -P -1 γ,⊥ )| det(P γ,u )| -1/2 | det(I -P γ )|| det(I -P γ,⊥ )|| det(P γ,⊥ )| -1 . (8.3.6) Since P γ is a linear symplectic map, we have det(I -P -1 γ,s ) = det(I -P γ,u ), det(P γ,s ) = det(P -1 γ,u ), and one deduces | det(I -P γ )| = | det(I -P γ,u )|| det(I -P γ,s )| = | det(P γ,s )|| det(I -P γ,u )|| det(I -P -1 γ,s )| = | det(P γ,u )| -1 | det(I -P γ,u )| 2

  3.6) cancel and since| det(I -P γ )| -1/2 = | det(P γ,u )| 1/2 det(I -P γ,u ) -1 , the right hand side of (8.3.6) is equal to | det(I -P γ )| -1/2 .8.3.3 Meromorphic continuation of η NFrom Lemma 8.3.1 and (8.3.3), we deduce that for Re(sk+ tr R k, ε (s),where η N (s) is defined byη N (s) = γ τ (γ)e -τ (γ)s | det(1 -P γ )| 1/2 .

  .4.2)where the equivalence classes of the relation ≈ are defined as follows. For(x, v) ∈ SR d \ (π -1 (D • ) ∪ D g ) and ξ ∈ R q , we set [(x, v, ξ)] = {(x, v, ξ)} if x ∈ R d \ D and [(x, v, ξ)] = {(x, v, ξ), (x, v , A(q) • ξ)} if (x, v) ∈ D in , (x, v ) ∈ D out ,

  3 for the function ζ N (s), one deduces thatd ds log ζ 1 (s) = γ τ (γ )e -sτ (γ) | det(I -P γ )| 1/2 = η N (s), Re s 1.Similarly, the argument of §8.4 impliesd ds log ζ 2 (s) 2 = 2 γ m(γ)∈2N τ (γ )e -sτ (γ) | det(I -P γ )| 1/2 = 2η 2 (s), Re s 1.Consequently, the representation (8.4.1) yields η D (s) =real analytic boundary the flow ϕ t is real analytic and the bundles E ± q are real analytic, too. Thus we are in position to apply the principal result of Fried [Fri95, Theorem p. 180] (see also pp. 177-178) saying that the zeta functions s → ζ k (s), k = 1, 2, are meromorphic in C with finite order ρ(ζ k ). Thus ζ 2 2 /ζ 1 is a meromorphic function with order max{ρ(ζ 1 ), ρ(ζ 2 2 )}. Proof of Theorem 8.1.3. Denote by {µ j } ⊂ C the set of resonances for the wave equation in the domain R d \ D, with Dirichlet boundary conditions. Our purpose is to to prove that there is δ > 0 such that {µ j : | Im µ j | δ} = ∞.

B:

  D in (x, v) -→ (y, R y w) ∈ D in ,where R y : S y R d → S y R d is the reflexion with respect to T y ∂D and(y, w) = φ τ + (x,v) (x, v) where τ + (x, v) = inf{t > 0 : π(φ t (x, v)) ∈ ∂D}.

Figure 8

 8 Figure 8.1 -The mapΨ i : (u, v) → (u , v )
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 0 3.1 in[START_REF] Vesselin | Geometry of the generalized geodesic flow and inverse spectral problems[END_REF], the map dΨ i (0, 0) has the formdΨ i (0, 0) = I λ i I ξi I + λ i ξi σ i 0 0 σ i ,Obviously, the eigenvalues of S are eigenvalues of P γ and we conclude that P γ has (d -1) eigenvalues ν 1 , . . . , ν d-1 satisfying |ν j | e βm , j = 1, . . . , d -1.For 0 < τ < λ 1 , consider a point ρ = φ τ (z) ∈ B ∩ γ, where z = (x, v) ∈ D in . The map φ τ : D in → B is smooth near z and moreover dφ τ (z) : Σ z → Σ φτ (z) . We identify Π 0 × Π 0 with Σ z and Σ φτ (z) with the imagedφ τ (z)Σ z = I τ I 0 I (Π 0 × Π 0 )Next we define the unstable subspace of Σ φτ (z) asE u (φ τ (z)) = dφ τ (z)(L 0 ) = I τ I 0 I (L 0 ).Let 0 < τ < λ 1 , 0 < σ < λ p+1 and p 1, and set t = -τ + p j=1 λ j + σ. Then φ t is smooth near ρ, and we havedφ t (ρ)| Σρ = dφ σ (B p (z)) • dB p (z) • dφ τ (z) -1 : Σ ρ → Σ φt(ρ) .Thus we have the diagramE u (ρ) dφt(ρ) ---→ E u (φ t (ρ))   dφ -τ (ρ)   dφσ(B p (z)) -Π p , where χ 0 : Π 0 u → (u, M 0 u) ∈ L 0 ⊂ Π 0 × Π 0 and χ p : Π p u → (u, M p u) ∈ L p ⊂ Π p × Π p . It is easy to obtain an estimate of the action of dφ t (ρ)| Eu(ρ) for ρ = φ τ (z), v = dφ τ (z)(u, M 0 u) ∈ E u (ρ). Clearly, dφ t (ρ) • v = (dφ σ (B p (z)) • dB p (z))(u, M 0 u).By the above argument we deducedB p (z)(u, M 0 u) = (S p u, M p S p u) ∈ L p with S p = σ p (I + λ p A p-1 (M 0 )) • σ p-1 (I + λ p-1 A p-2 (M 0 )) • • • • • σ 1 (I + λ 1 M 0 ). Setting β 0 = β/d 1 and w = (u, M 0 u) = dφ -τ (ρ) • v,we have dB p (z) • w = (S p u, M p S p u) S (t+τ -σ) u , and hence we get dB p (z) • w C 0 e -β 0 d 1 e β 0 t w = C 0 e -β 0 d 1 e β 0 t dφ -τ (ρ)v . (8.6.2)

  dφ -σ (B p (z)) = I -σI 0 I , we obtain dφ σ (B p (z))ζ (1 + d 1 ) -1 ζ and dφ t (ρ)v (1 + d 1 ) -1 C 0 e -β 0 d 1 e β 0 t dφ -τ (ρ)v

(

  dΨ m ) -1 Q m = σ -1 m (I + λ m (ξ m + N m ))u, -σ -1 m (ξ m + N m )u : u ∈ Π 0 = {(u, -N m-1 u) : u ∈ Π m-1 }, where N m-1 = σ -1 m (ξ m + N m ) I + λ m (ξ m + N m ) -1 σ m : Π m-1 -→ Π m-1 .By induction, introduce the Lagrangian spacesQ k = {(u, -N k u) : u ∈ Π k }, N k = B k (N k+1 ), k = 0, . . . , m -1,whereB k (M ) = σ -1 k+1 (ξ k+1 + M ) I + λ k+1 (ξ k+1 + M ) -1 σ k+1 : Π k -→ Π k .

  [START_REF] Hörmander | The analysis of linear partial differential operators : Distribution theory and Fourier analysis[END_REF] §8]. If Γ is a closed conical subset of T * (M × M ) not intersecting the conormal to the diagonal N * ∆(T * M ) = {(x, x, ξ, -ξ), (x, ξ) ∈ T * M }, then the flat trace is continuous as a mapD • Γ (M × M, π * 1 E ∨ ⊗ π * 2 E) → C.B.3.2 Analytic flat traceIf A : C ∞ (M, F ) → D (M, F ) be an operator acting on sections of a vector bundle F . If A satisfies (B.3.1), we can also define a flat trace tr A as in[START_REF] Dyatlov | Dynamical zeta functions for Anosov flows via microlocal analysis[END_REF] §2.4]. More precisely, let B : C ∞ (M ) → D (M ) be a continuous operator satisfying (B.3.1). Let ω be a smooth volume form on M , and let K B,ω ∈ D (M ×M ) be the Schwartz kernel of B with respect to ω, which is defined byK B,ω , π * 1 (uω) ∧ π * 2 (vω) = Bu, vω , u, v ∈ C ∞ (M ).Then we define the flat trace of B bytr (B) = ι * K B,ω , ωprovided that it is well defined. One easily checks that this definition does not depend on the choice of ω.Next, assume that the kernelK A of A : C ∞ (M, F ) → D (M, F ) is compactly supported in U × U , where U ⊂ M is a chart domain. Take a local basis (f i ) of F ; then we have A(uf i ) = j A ij (u)f j , u ∈ C ∞ c (U ),whereA ij are operators C ∞ c (U ) → D c (U ). Then we define tr A = i tr A ii .To handle the general case, let (U α ) α be an open cover of M with chart domains, and consider a partition of unity (χ α ) α subordinate to (U α ) α . For any α we considerχ α ∈ C ∞ c (U α ) such that χ α = 1 on supp χ α . Then we have A = α χ α Aχ α + Awhere supp K A does not intersect the diagonal, and we definetr A = α tr χ α Aχ αprovided that supp K A is compact. Again, one easily sees that this definition does not depend on the choice of the partition of unity nor on the choice of the χ α 's.B.3.3 Comparison of the tracesLet G : Ω • (M, E) → D • (M, E) be an operator of degree 0. It gives rise to an operator G k : C ∞ (M, F k ) → D (M, F k ) for each k = 0, . . . , n, where we set F k = ∧ k T * M ⊗ E.Then the link between the two notions of flat trace we saw above is given bytr s G = n k=0 (-1) k tr G k . (B.3.3)Indeed, to prove (B.3.3), it suffices to consider the case where the kernel K G is smooth and supported in U × U for some open chart domain U . For simplicity, we assume that E is the trivial bundle C, the general case being handled similarly. Take local coordinates (x i ) and (y j ) onU × U . If I = (i 1 , . . . , i k ) with i 1 < • • • < i k we write dx I = dx i 1 ∧ • • • dx i k .Then we haveK G = I,J g IJ (x, y)dx I ∧ dy Jfor some smooth functions g IJ ∈ C ∞ c (U × U ), where the sum runs over all multiindexes I, J. In particular it holdstr s G = I U g I, I (x, x)dx I ∧ dx I ,where I is the unique multi-index (j 1 , . . . j n-k ) with j 1 < • • • < j n-k and such that {i 1 , . . . , i k , j 1 , . . . j n-k } = {1, . . . , n}. On the other hand, we have by definition of K G , for any (I, J) with |I| = n -k, J = |k|, and uI , v J ∈ C ∞ c (U ), U G(u J dy J ) ∧ v I (x)dx I = U ×U K G ∧ u J (y)dy J ∧ v I (x)dx I = K,L U ×U g KL (x, y)dx K ∧ dy L ∧ u J (y)dy J ∧ v I (x)dx I = (-1) k U U g I, J (x, y)u J (y)dy dx I ∧ v I (x)dx I , with dy = dy 1 ∧ • • • ∧ dy n .In particular, we obtain that G(u J dy J )(x) coincides with (-1) k I U g I, J (x, y)u J (y)dy dx I . Thus with the definition of §B.3.2 we gettr G k = (-1) k |J|=k U g J, J (x, x)dx J ∧ dx J ,which concludes the proof.B.3.4 Cyclicity of the flat traceLet G, H : Ω • (M, E) → D • (M, E) be two homogeneous operators. We denote by G, H their respective kernels. If Γ ⊂ T * (M × M ) is a conical subset, we defineΓ (1) = {(y, η) : ∃x ∈ M, (x, y, 0, η) ∈ Γ},and Γ (2) = {(y, η) : ∃x ∈ M, (x, y, -η, 0) ∈ Γ}. Then under the assumption WF(G) (2) ∩ WF(H) (1) = ∅, the operator F = G • H is well defined by [Hör90, Theorem 8.2.14] and its Schwartz kernel F satisfies the wave front set estimate WF (F) ⊂ (x, y, ξ, η) : ∃(z, ζ), (x, z, ξ, ζ) ∈ WF (G) and (z, y, ζ, η) ∈ WF (H) . If both compositions G • H and H • G are defined, we will denote by [G, H] = G • H -(-1) deg G deg H H • G the graded commutator of G and H. We have the following Proposition B.3.1. Let G, H be two homogeneous operators with deg G+deg H = 0 and such that both compositions G • H and H • G are defined and satisfy the bound (B.3.1). Then we have tr s [G, H] = 0. The above result follows from the cyclicity of the L 2 -trace, the approximation result [DZ16, Lemma 2.8], the relation tr s [G, H] = tr (-1) N F, G , where N is the number operator and tr is the flat trace with the convention from [DZ16], see §B.3.1, and the fact that the map (G, H) → G • H is continuous

Titre:

  Sur quelques applications géométriques de la théorie spectrale des flots hyperboliques Mots clés : Dynamique hyperbolique, analyse microlocale, fonctions zêta, topologie, géométrie. Résumé : Dans cette thèse, nous étudions la distribution des orbites périodiques de certaines dynamiques hyperboliques, et le lien qu'elles entretiennent avec la topologie sous-jacente. Pour cela, nous introduisons certaines fonctions zêta dynamiques que nous étudions via des techniques analytiques et micro-locales développées au cours des dernières décennies -la théorie des résonances de Ruelle. Nous appliquons ces méthodes à divers problèmes géométriques, comme le comptage de géodésiques fermées sous contraintes d'intersection, l'existence d'un lien entre les orbites périodiques des flots d'Anosov de contact et la torsion de Turaev, ou encore la distribution des résonances quantiques pour des systèmes de billards ouverts.

  

  5.2. Nous comparons ensuite τ ϑ avec la torsion de Turaev τ e,o , qui dépend des choix d'une structure d'Euler e et d'une orientation cohomologique o. Théorème 1.2.6 (C.-Dang). Soit (M, ϑ) une variété de contact telle que le champ de Reeb de ϑ induit un flot d'Anosov. Alors ρ → τ ϑ (ρ) est holomorphe 2 et il existe une structure d'Euler e telle que pour toute orientation o et toute famille lisse

  où conv désigne l'enveloppe convexe. Ces obstacles donnent lieu à un flot de billard, qui généralise le flot géodésique, pour lequel les trajectoires se réfléchissent sur le bord des obstacles selon la loi de Fresnel-Descartes. On désignera par P l'ensemble des trajectoires périodiques primitives du flot du billard. Dans ce cadre, on a encore le théorème des orbites primitives{γ ∈ P : τ (γ) t} ∼ e h B t h B t ,où τ (γ) est la période de γ et h B > 0 est l'entropie topologique du flot du billard B = {D 1 , . . . D r }.

  The number of closed paths of length in G is exactly tr(A ). Moreover, for each loop ω ∈ P(G), there are exactly |ω | closed paths generating the equivalence class ω, where ω denotes the primitive loop associated to ω. Thus we may write

	tr(A ) =	|ω |.	(3.1.2)
		ω∈ P(G) |ω|=	
	Then it holds		
	tr(A ) =	+	|ω |,
	|ω |=	|ω |< ∈|ω |Z	
	where the first sum runs over primitive loops of length while the second runs over
	the primitive loops ω of length |ω | < and such that is a multiple of |ω |. This
	last sum is bounded by		
	/2		
	tr(A k ) Cr /2	
	k=0		
	for some constant C by (3.1.1) and (3.1.2). Finally we get
	|ω |=		
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  .5.5) Now note that, if P n is the set of primitive closed geodesics γ with i(γ, γ ) = n, there holds g n,χ (t)

		(γ) t/ (γ) I ,± (γ, χ) tN (n, χ, t).
	γ∈Pn				
	(γ) t				
	As a consequence, one gets				
	lim inf t→+∞	N ± (n, χ, t)	n!h t (c ± (χ)t) n e h t 1.	(4.5.6)
	For the other bound, we use the a priori bound obtained in §4.4.1.2
	N ± (n, χ, t) N (n, t)		Ct n n!	e h t h t	(4.5.7)
	to deduce that for any σ > 1				
	lim sup t→+∞	N ± (n, χ, t/σ)	n! t n	h t e h t = 0.	(4.5.8)
	Now we may write				

  .11.1) Let Γ ⊂ Γ another open conical subset containing N * ∆ and let δ > 0 such that for any q ∈ Γ and t ∈ R 2d one has

	|t -q| < δ|q|	=⇒	t ∈ Γ .	(4.11.2)

  Indeed, for any ω ∈ Ω • (N ) and t ∈ R we have ϕ * t w ∞ C exp(C|t|) w ∞ (see for example [Bon15, Proposition A.4.1]). In particular it holds | w, ι X ϕ * -t [ Λ] | C exp(C|t|) w ∞ , and thus, if Re(s) is large enough,

	A n (s) → χ	0	∞	(t)e -ts ι X ϕ * -t [ Λ]dt
	as n → ∞ by dominated convergence, and the integral defines a current of order 0.
	Now the above integral coincides with Q (s)ι X [ Λ] as it follows by approximating [ Λ]
	with smooth differential forms, and thus (5.3.7) holds.
	Using (5.3.6) and Lemma 5.3.2, we see that Proposition 5.3.4 will hold if we are
	able to show that the pairings [Λ], A n (s) and 1, [Λ] ∧ Q(s)ι X [ Λ] are well defined,
	and that			
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ts ϕ * -t dt.
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  .10.1) for some P ∈ L(H, G), where Π = Π 0 . Denote C t = ran Π t and C = ran Π. Note that by continuity, Π t | C : C → C t is invertible for |t| small enough ; we denote byQ t : C t → C its inverse. Q t Π t = ΠΠ t + o H→G (z).Lemma 6.10.3. Under the above assumptions, assume that Π t is bounded E → F and that Π t is differentiable at t = 0 as a family of L(E, F). Assume also that rank Π t does not depend on t. Then P is actually bounded G → F andΠ t = Π + tP + o G→F (t).Proof. Because E is dense in H we know that C ⊂ F. There exists ϕ 1 , . . . , ϕ m ∈ E such that ϕ 1 t , . . . , ϕ m t is a basis of C t for t small enough where we set ϕ j t = Π t (ϕ j ) ∈ F. * be the dual basis of φ1 t , . . . , φm t . Because C is finite dimensional, Π is actually bounded H → F. As a consequence the map

	Lemma 6.10.1. We have (i) P = ΠP + P Π, (ii) Denote φj t = Π(ϕ j t ) ∈ C. This family t → φj t ∈ C is differentiable at t = 0. Let ν 1 t , . . . , ν m t ∈ C

  endowed with the operator norm. We therefore obtain by Proposition 6.11.2 and because Q is smoothing (and thus trace class H • µG,j → H • µG,j for any µ, j, j ) that K(t , s) → K(t, s) as t → t in L 1 (H • µG,0 ) locally uniformly in s, where L 1 (H • µG,0 ) is the space of trace class operators on H • µG,0 endowed with its usual norm. As a consequence, we obtain with[START_REF] Simon | Trace ideals and their applications[END_REF] Corollary 2.5] 

	.11.3)
	where Ẋt = H • µG,j+1 → H • d dt µG,j X t and L(H • µG,j+1 , H • µG,j ) is the space of bounded linear operators

  .11.10) where t → m ij (t) is continuous near t = 0 and m ij (0) = δ ij .Next we show that there exists open conic neighborhoods of N u and N s such that, uniformly in t ∈ [-ε 0

  y, w). (7.2.3) Shrinking U z and taking ε z smaller, ψ z is a homeomorphism onto its image O z ⊂ M , (seeCorollary 4.3 in [KSW21]). It is easy to prove this. To see thatψ z is injective, let F z (y k , w k ) = (x k , v k ) ∈ D in , k = 1, 2, and assume that π M φ t 1 (x 1 , v 1 ) = π M φ t 2 (x 2 , v 2 ).Since vectors in D in are transversal to ∂D, we see that for each z ∈ O z , there is a unique t ∈ ]-ε z , ε z [ such that ϕ t (z) ∈ G. In particular, we have t 1 = 0 if and only if t 2 = 0. If that is the case, then (x 1 , v 1 ) = (x 2 , v 2 ) since π M : D in → G is injective. If t 1 = 0, t 2 = 0, then t 1 and t 2 have the same sign and by infectivity of π M : B → M and the definition of φ t , we have

  .2.9)where N : D • → D • is the number operator 4 . Proof. By definition Y (z) is transverse to T z ∂ ± for z ∈ ∂ ± . In particular, if (z, ξ) ∈ T * ∂ ± satisfies ξ, Y (z) = 0 and ξ, T z ∂ ± = 0 then ξ = 0. As ∂ + ∩ ∂ -= ∅we obtain (7.2.8) by (7.2.7). Now let W ± ⊂ ∂ ± be open sets such that

  Remark 7.4.1. By a classical Tauberian argument (similar to the one we will present below) we may deduce from the values of the residues in (7.4.4) that

	even/odd B {γ ∈ P

.6) 

since J * preserves ran Π ± (h B ) and J 2 = Id .

  Then applying a Tauberian theorem from Delange [Del54, Théorème III] we obtain

			1 h B	g n, (t/h B ) ∼	(c ± ) n h n+2 B	e t n!	t n , t → +∞,
	which reads g n,χ (t) ∼	(c ± t) n n!h B	exp (h γ∈P	τ (γ) t/τ (γ) I (γ) tN (t)
					r(γ)=n
					τ (γ) t
	which gives lim inf t→+∞	N (t) g n, (t)/t	1. On the other hand, let

B t) as t → +∞. Now note that g n, (t)

  Proposition 7.5.2. For each n 1, there is C n > 0 such that if t is large enough we have C -1 n t n-1 exp(h B t) N (n, t) C n t n-1 exp(h B t).

		(7.5.4)
		τ (γ) ,
	and the fact that	γ∈P
		τ (γ) t/2

t/τ (γ) N (t) as t → +∞ by (7.5.2).
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	Sommaire
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  being the space of k × k realizes an isomorphism. Then by (8.2.2), it is clear that dπ G (ω)| Tω Wu(z) realizes a conjugation between d ϕ t (ω)| Eu(ω) and dϕ t (z)| Eu(z) . Similarly, dπ G | Tω Ws(ω) realizes an isomorphism T ω W s (ω) E s (z), which conjugates d ϕ t | Es(ω) and dϕ t | Es(z)

  Let (ψ t ) t∈R be the flow generated by Y and set Γ ± = Γ ± ( Y ) for simplicity. The extended unstable/stable bundles E * ± ⊂ T * V u over Γ ± are defined byE * ± (ω) = {Ω ∈ T * ω V u : Ψ t (Ω) → t→±∞ 0},where Ψ t is the symplectic lift of ψ t , that isΨ t (Ω) = d ψ t (ω) -• Ω , (ω, Ω) ∈ T * G, t ∈ R,where -denotes the inverse transpose. Then by [DG16, Lemma 2.10], the bundles E * ± (ω) depend continuously on ω ∈ Γ ± , and for any smooth norm | • | on T * G, and moreover for some constants C, β > 0 we have |Ψ ±t (Ω)| Ce -βt |Ω|, t 0, Ω ∈ E * ∓ (ω).

ω, ϕ t (ω) ∈ clos V u =⇒ ϕ τ (ω) ∈ clos V u for every τ ∈ [0, t]. (8.2.7)

  is a holomorphic family of operators near s = s 0 . Let us denote by K R H,k, (s) and K Π k, s 0 the Schwartz kernels of the operators R H,k, (s) and Π k, s 0 , respectively. By [DG16, Lemma 4.5], we haveWF (K R H,k, (s)) ⊂ ∆(T * V u ) ∪ Υ + ∪ ( E * + × E * -). (8.2.11) Here ∆(T * V u ) is the diagonal in T * ( V u × V u ), Υ + = {(Ψ t (ω, Ω), ω, Ω) : (ω, Ω) ∈ T * V u , t 0, Y (ω), Ω = 0},while the bundles E * ± and Ψ t are defined in §8.2.3. Finally, we have

	supp(K Π k, s 0

) ⊂ Γ + × Γ -and WF (K Π k, s 0 (s)) ⊂ E * + × E * -.

(8.2.12)

Rep ac (M, d) est une variété algébrique sur C, cf. §6.9.2.

Il est à noter que le déterminant det ρ, cs(X ϑ , X η ) ne dépend pas du choix du représentant cs(X ϑ , X η ) dans π 1 (M ).

Théorème 1.3.3 (C.-Petkov). La conjecture de Lax-Phillips modifiée est valide pour une union d'obstacles strictement convexes, analytiques réels et satisfaisant la condition de non éclipse.

the annihilator of E u ⊕ RX where E u ⊂ T M denotes the unstable bundle of the flow

Indeed, since the set {(z, ξ, z , ξ ) : (z, ξ, z , -ξ ) ∈ N * (∂ × ∂)} coincides with N * (∂ × ∂), we may use WF or WF indifferently.

Each class [wb g ] defines a geodesic in P 1 . Indeed, it follows from Lemma 4.2.1 that i([wb g ], γ ) 1. On the other hand the absolute value of the algebraic intersection number between wb g and a g is 1, and this implies that there is at least one intersection point between [wb g ] and γ , since the algebraic intersection number is preserved by free homotopies.

Note that ∇ g f is actually inward pointing, but this is irrelevant since dim Σ = 2.

Actually, we compute the trace of ( T (s)) n for some cutoff function ∈ C ∞ (π -1 (∂D 0 ), [0, 1]).

This means that ρ > 0 on U , ρ = 0 on ∂U and dρ = 0 on ∂U .

This follows from the fact that the estimates on the wavefront set of R k, ε (s) given in[START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] are locally uniform with respect to s ∈ C.

for d even one applies the trace formula provided by Zworski[START_REF] Zworski | Poisson formula for resonances in even dimensions[END_REF] and one repeats the argument of[START_REF] Ikawa | On the distribution of poles of the scattering matrix for several convex bodies[END_REF].

Remerciements

Because L X dϑ = 0, the map Ψ satisfies the simple relation Ψ µ ∧ dϑ j = (Ψµ) ∧ dϑ j , µ ∈ C • 0 (s 0 ), j ∈ N, (6.4.13) that is, Ψ commutes with L . Also, observe that

Indeed, using the fact that L ∇ X and ∇ commute,

For k ∈ {0, . . . , r}, we also define the operator J k : C k (s 0 ) → C k (s 0 ) by the formula

for any β = f ∧ ϑ + g ∈ C k (s 0 ) with f ∈ C k-1 0 (s 0 ). We finally set, as in §6.2.4,

Lemma 6.4.7. J k is a projector and is valued in C k + (s 0 ).

Proof. Indeed, we have for any f ∈ C k-1 0 (s 0 ) and g ∈ C k 0 (s 0 ),

= Ψg ∧ dϑ r-k ∧ ϑ + (-1) k g ∧ dϑ r-k+1

+ Ψf ∧ dϑ r-k+1 + (-1) k+1 L ∇ X f ∧ dϑ r-k+1 ∧ ϑ, which implies that β = f ∧ ϑ + g lies in C k + (s 0 ) if and only if

Ψg + (-1) k+1 L ∇ X f ∧ dϑ ∧ dϑ r-k = 0 and Ψf + (-1) k g ∧ dϑ r-k+1 = 0. (6.4.16) But now note that if β = f ∧ϑ+g = J k β = f ∧ϑ-(-1) k Ψf for some β = f ∧ϑ+g then f = f and g = -(-1) k Ψf , and thus β satisfies the second part of (6.4.16). We also obtain Ψg = -(-1) k Ψ 2 f = -(-1) k L ∇ X f ∧ dϑ by (6.4.14), so the first part of (6.4.16) is also satisfied. Therefore J k : C k (s 0 ) → C k + (s 0 ) ; it is obvious that J k is a projector.

We start by a lemma which tells us how (Γ ϑ ∇) 2 acts on C k + (s 0 ) with k < r.

Lemma 6.4.8. Take k ∈ {0, • • • , r -1}. Then for any β ∈ C k + (s 0 ), one has

Proof. Since k < r we can write, thanks to (6.4.20),

Therefore

where we used ∇ι X ∇β = L ∇ X ∇β and ι X ∇ι X ∇β = L ∇ X ι X ∇β. Since β ∈ C k + (s 0 ) one has with (6.4.20)

This leads to

and thus by definition of Γ ϑ

(6.4.17)

Now, writing β = f ∧ ϑ + g where ι X f = 0 and ι X g = 0, we have (6.4.18) Injecting those relations in (6.4.17) we get

which concludes in view of (6.4.12) and (6.4.15).

We now deal with the case k = r. Lemma 6.4.9. One has, for

Proof. We have

We now conclude as in the previous lemma, using (6.4.18).

Proof of Proposition 6.4.6. To prove that B ϑ is invertible on C • (s 0 ), recall that it suffices to show that (6.4.11) holds. Let β ∈ C • (s 0 ) lying in the left-hand side of (6.4.11), and write

Hence g k = 0 by invertibility of L ∇ X , and thus β k = 0. For k = r, Lemma 6.4.9 yields L ∇ X β r = J r β r , which gives, as above, β r = 0. Applying the above arguments to β = Γ ϑ β, which lies in the intersection (6.4.11), yields β n-k = 0 for each k r. Thus β = 0 and the equality (6.4.11) is proven. This completes the proof.

Proof of Proposition 6.4.2

We start from Proposition 6.2.4 which gives us, in view of Proposition 6.4.6, that

We first note that for k ∈ {0, . . . , r} and β ∈ Ω k (M, E), one has

are well defined. The next proposition is a brief summary of the results from §6.11. We will denote for any C, ρ > 0, Ω(c, ρ) = {Re(s) > c} ∪ {|s| ρ} ⊂ C. (6.5.3) Proposition 6.5.3. There is c, ε 0 > 0 such that for any ρ > 0 there exists anisotropic Sobolev spaces

, each inclusion being continuous with dense image, such that the following holds.

For each

For every relatively compact open region

We will thus fix such Hilbert spaces for some ρ > c + 1. We denote

Variation of the torsion part

be the chirality operator associated to X t , c.f. §6.4.1. The next lemma allows us to compute the variation of the finite dimensional torsion part of the dynamical torsion. Lemma 6.5.4. We have that t

where Ẋt = d dt X t .

Proof. By Proposition 6.5.3, the operator

t is invertible for t close enough to 0 and we will denote by Q t its inverse. Then for t close enough to 0, one has 

However by (6.5.6) we have

which concludes the proof.

Variation of the rest

Let us now interest ourselves in the variation of

Xt,∇ (0), cf. §6.4.3. For t close enough to 0, let P t : T M → T M be defined by

For simplicity, we will still denote ∧ k ( T P t ) : ∧ k T * M → ∧ k T * M by P t . Then formula (5.4) of [START_REF] Nguyen | Fried conjecture in small dimensions[END_REF] gives that for Re(s) big enough, t → ζ Xt,∇ (s) is differentiable and we have for every ε > 0 small enough

where Ṗ = d dt t=0 P t . One can show that for every k ∈ {0, . . . , n} and β ∈ ∧ k T * M one has Ṗ β = ϑ ∧ ι Ẋ β. (6.5.7)

Therefore (we differentiated at t = 0 but we can do the same for small t)

+s) . (6.5.8) Now let us compute the variation of the [0, λ] part of ζ (λ,∞) (s).

Lemma 6.5.5. We have

Proof. We are in a position to apply Lemma 6.10.2 which gives

Then one can verify that

which leads to

and the cyclicity of the trace, we get since (L ∇ Xt + s) -1 commute with ι Xt and ∇,

Therefore we conclude the proof by using (6.5.7) again because P t=0 = Id.

6.5.4 Proof of Theorem 6.5.1

Combining this lemma and (6.5.8) we obtain that for Re(s) big enough and t small enough

. (6.5.9)

Note that for every s / ∈ Res(L ∇ Xt ) we have

We now fix s 0 ∈ C with Re(s 0 ) big enough so that (6.5.9) is valid and a smooth path

Let δ, t 0 > 0 small enough so that

where V δ is the open δ-neighborhood of Im c. We moreover ask that

We now define

A crucial property of the operator K is that it satisfies the chain homotopy equation

as follows from the development (6.6.4).

The variation formula

For simplicity, we will set for every z ∈ U

The operators K(z) defined above are involved in the variation formula of the dynamical torsion, as follows.

Proposition 6.6.1. The map z → τ (z) is real differentiable ; we have for every z ∈ U and ε > 0 small enough

The proof of the previous proposition is similar of that of the last subsection, i.e. we compute the variation of each part of the dynamical torsion. The rest of this section is devoted to the proof of Proposition 6.6.1.

Anisotropic Sobolev spaces for a family of connections

Fix some z 0 ∈ U . Recall from §6.5.1 that we chose some anisotropic Sobolev spaces

where

Therefore (6.6.1) implies that L

is a C 1 family of pseudo-differential operators of order 0, and thus forms a C 1 family of bounded operators

1 by construction of the anisotropic spaces and standard rules of pseudodifferential calculus (see for example [START_REF] Faure | Upper bound on the density of ruelle resonances for anosov flows[END_REF]). As a consequence and thanks to Proposition 6.5.3, we are in position to apply [START_REF] Kato | Perturbation theory for linear operators[END_REF]Theorem 3.11] ; thus if δ is small enough we have that

X ) is open, (6.6.10)

Proof. Using (6.10.3) and Π 2 t = Π t we obtain (i). This implies

where all the o(t) are taken in L(H, G). 

where

Now since A t commutes with Π t we have by the second part Lemma 6.10.1

But now the first part of Lemma 6.10.1 gives ΠP Π = 0. We therefore obtain, because A and Π commute,

which concludes.

Gain of regularity

Assume that we are given four Hilbert spaces E ⊂ F ⊂ G ⊂ H with continuous and dense inclusions. Let Π t , |t| < δ be a family of finite rank projectors on H which is differentiable at t = 0 as family of bounded operators G → H (note that this differs from the last subsection where we had H → G instead), that is

for some P ∈ L(G, H). We will denote C t = ran(Π t ) ⊂ H and C = ran(Π).

Consequently, the flow (ϕ t ) is also smooth near G and we obtain a smooth noncomplete flow on M . We will denote by X ∈ C ∞ (M, T M ) the generator of this flow.

We conclude this paragraph by noting that the flow (ϕ t ) is actually a contact flow. Indeed, let α ∈ Ω 1 (SR d ) be defined by

Then it is not hard to see that the form α induces a one-form on M (still denoted by α) which satisfies that α ∧ (dα) d-1 is volume form and

where ι X denotes the interior product.

Uniform hyperbolicity of the flow (ϕ t )

From now on, we will work exclusively with the flow (ϕ t ) defined on the smooth model described in §7.2.2. The trapped set K of (ϕ t ) is defined as the set of points

By definition, ϕ t (z) is defined for all t ∈ R whenever z ∈ K. The flow (ϕ t ) is called uniformly hyperbolic on K, if for each z ∈ K there exists a decomposition

which is dϕ t -invariant (in the sense that dϕ t (E

The spaces E s (z) and E u (z) depend continuously on z and for some constants C, ν > 0 independent of z ∈ K, and some smooth norm • on T M , we have

We may define the trapped set K e for the flow (ϕ t ). Then K = π M (K e ). The uniform hyperbolicity on K e of the flow (φ t ) in the Euclidean metric can be defined by the splitting of the tangent space T z (R d ) for z ∈ B ∩ K e (see Definition 2.10 in [START_REF] Küster | Resonances and weighted zeta functions for obstacle scattering via smooth models[END_REF] and Appendix). Following this definition, one avoids the points (x, v) ∈ K e ∩ D in .

The uniform hyperbolicity of (φ t ) in the Euclidean metric implies the uniform hyperbolicity of (ϕ t ) in the smooth model (see [KSW21, Proposition 3.8]). Thus, to obtain (7.2.5) and (7.2.6), we may apply the uniform hyperbolcity of (φ t ) in the Euclidean metric on B ∩ K e established for d = 2 in [START_REF] Morita | The symbolic representation of billiards without boundary condition[END_REF] and [CM06, §4.4]. For d 2, the same could be obtained by applying the results in [START_REF] Bálint | Geometry of multi-dimensional dispersing billiards[END_REF]§4]. For the sake of completeness, we present in §8.6 a proof of the uniform hyperbolicity of (φ t ) in the Euclidean metric as well as a construction of E s (z) and E u (z) for z ∈ B ∩ K e .

Symbolic coding

We define the first (future and the past) return times to ∂D by

Set Λ = π -1 (∂D) ∩ K, and define

By the non-eclipse condition (7.2.1) and [START_REF] Morita | The symbolic representation of billiards without boundary condition[END_REF], the billiard map B ± : K → K is Hölder conjugated to a subshift of finite type. More precisely, let A = {1, . . . , r} and

). We endow Σ A with the topology coming from the distance

Then there is a homeomorphism ψ Λ : Λ → Σ A , which is Hölder continuous, such that

In fact, ψ Λ is simply given by

Of course the billiard flow (ϕ t ) is conjugated to the suspension of σ ± associated to the time return map t ± • ψ Λ -1 . This means that we have a Hölder homeomorphism

where (z, t + (z)) ∼ (B + (z), 0) for z ∈ Λ. In the coordinates (z, t), X is simply represented by ∂ t . In what follows, we will denote by ψ Λ n (z) the n-th component of the sequence ψ Λ (z). An immediate consequence of the existence of a conjugacy Ψ Λ as above is the following Lemma 7.2.1. There is C > 0 and β > 1 such that the following holds. Assume that z, z ∈ Λ satisfy

Isolating blocks

In this subsection we show that we can work with the framework of [START_REF] Dyatlov | Pollicott-Ruelle resonances for open systems[END_REF] (see also [START_REF] Küster | Resonances and weighted zeta functions for obstacle scattering via smooth models[END_REF]§5] for a more detailed exposition). We have

Lemma 7.6.1. There is t 0 > 0 such that the following holds. For every γ ∈ P B such that (I j (γ)) t 0 , j = 1, . . . , n,

we have I (γ) = 1.

Proof. Let γ as above (for some large t 0 > 0 which will be chosen later) and z ∈ R(γ)

± , where m = m(t 0 ) → +∞ as t 0 → +∞. Here we set Λ (m) ± = {z ∈ M : T ± (z) m}. In particular, by the proof of Lemma 7.5.1 we have dist(z ± , Γ ± )

, also by definition of . Thus, we get

which concludes the proof.

For any t 0 > 0 we will denote N (n, t 0 , t) = P B (n, t 0 , t) where P B (n, t 0 , t) = {γ ∈ P B : r(γ) = n, (I j (γ)) t 0 for some 1 j n}.

Lemma 7.6.2. Let t 0 > 0 and n 2. Then for some C > 0 we have for t large enough N (n, t 0 , t) Ct n-2 exp(h B t).

Proof. By Lemma 7.5.1, there is C > 0 such that the following holds. Every trajectory γ ∈ P B (n, t 0 , t) can be represented by a word in Σ N obtained by the concatenation of two words u ∈ A(n -1) and v ∈ A(1) satisfying

Now for t large enough one has

by Proposition 7.5.2. As {v ∈ A(1) : τ (γ v ) t 0 + C} is finite, the lemma is proven.

Proof of Theorem 7.1.1

First, we note that the constants c ± given in §7.4.3 is positive. Indeed, if we assume that c ± = 0, then s → 1 2 tr s (1 -J * )ˆ T ± (s) would be regular at s = h B by the proof of Proposition 7.4.2. In particular, we would have

However, by Lemma 7.6.1, we have I (γ) = 1 whenever τ (γ) is large enough and r(γ) = 1, which gives

. Note that G is a smooth compact manifold. We may lift the flow ϕ t to a flow ϕ t : G → G which is simply defined by

(8.2.1)

Introduce the set

Clearly, K u is invariant under the action of ϕ t , since dϕ t (z)(E u (z)) = E u (ϕ t (z)). As K is a hyperbolic set, it follows from [BR75, Lemma A.3] that the set K u is hyperbolic for ϕ t and we have a decomposition

Here X is the generator of the flow ( ϕ t ) and the spaces E s (ω) and E u (ω) are defined as follows. For small ε > 0, let

be the local stable and unstable manifolds at z, where dist is any smooth distance on M . For b = s, u, we define

We finally set, for ω = (z,

and also we define E s (ω) as the tangent space at ω of the manifold

where dist is any smooth distance on T N .

Lemma 8.2.1. For any ω = (z, E) ∈ G we have natural isomorphisms

Under these identifications, we have

Proof. Note that if ω = (z, E) ∈ G, by (8.2.1) one has

This equality shows that d ϕ t preserves ker dπ G . Looking at the definitions of W u (z) and W u (z, ε), we see that

where

Then by [Hör90, Theorem 8.2.4], the pull-back ι * ∆ K T ∈ D (V, End(E)) is well defined, where we used the identification ι * ∆ (E E * ) E ⊗ E * End(E). If K T is compactly supported we define the flat trace of T by

where again the pairing is taken with respect to µ. It is not hard to see that the flat trace does not depend on the choice of the density µ.

The flat trace of cut-off resolvent

We introduce a cut-off function

We may apply the Guillemin trace formula [Gui77, §2 of Lecture 2] (we refer to [BSW21, Lemma 3.1] for a detailed presentation based on the argument of [DZ16, Appendix B]), which implies that the flat trace of T k, is well defined, and

where the sum runs over all periodic orbits γ of ( φt ). Here,

is the linearized Poincaré map of the closed orbit

of the flow ( ϕ t ) and ω γ ∈ Im(γ) is any reference point taken in the image of γ. Note that if we take another point

Hence the determinant det(Id -P γ ) does not depend on the reference point ω γ and is well defined. The number tr(α k, γ ) is the trace of the linear map

where for t ∈ R and ω ∈ G, we denote by

and the linearized Poincaré map P γ related to γ is given by

which reads

Next, we repeat without changes the argument of Proposition 2.3.2 in [START_REF] Vesselin | Geometry of the generalized geodesic flow and inverse spectral problems[END_REF]. For k = 0, 1, . . . , m, consider the space S + k of linear symmetric non-negative definite maps

k be the space of maps such that M εI with ε > 0. To study the spectrum of P γ , consider the subspace

which is Lagrangian with respect to the natural symplectic structure on Π 0 × Π 0 . By the action of the map dΨ 1 (0, 0), the space L 0 is transformed into

Introduce the operator

. By recurrence, one defines

The maps A k are contractions from S + k-1 (ε) to S + k (ε), and hence

is also a contraction from S + 0 (ε) to S + 0 (ε). We choose M 0 ∈ S + 0 (ε) as a fixed point of A and notice that ε > 0 can be chosen uniformly for all periodic rays. Thus we deduce

with a map S : Π 0 -→ Π 0 having the form

and β = log(1 + εd 0 ), one obtains

It is easy to see that B k are contractions from S + k+1 (ε) to S + k (ε) since

will be contraction from S + 0 (ε) to S + 0 (ε) and there exists a fixed point N m ∈ S + 0 (ε) of B. Moreover,

where

and

where ε > 0 depends of the sectional curvatures of D. Thus the stable manifold at φ σ (z), -λ m-1 < σ < 0 can be defined as E s (φ σ (z)) = dφ σ (z)(Q m ) and we may repeat the above argument for the estimate of dφ t (φ σ (z)) acting on E s (φ σ (z)) for t < 0.

The intersection of the unstable and stable manifolds at y = φ t (z), 0 < t < λ p is (0, 0). Indeed, we have

where

We proceed by contradiction, and assume that E u (y) ∩ E s (y) = (0, 0). Then there exists 0 = v ∈ L p-1 ∩ dφ -λp (φ λp (z))(Q p ). By the above argument,

This implies the existence of u = 0 for which (M p-1 + N p-1 )u = 0 which is impossible since M p-1 + N p-1 is a definite positive map. Consequently, E u (y) and E s (y) are transversal subspaces of dimension d -1 of Σ y and we have a direct sum Σ y = E u (y) ⊕ E s (y). Now we pass to the estimates of dφ t (z)| Eu(z) , where z ∈ B ∩ K e is not a periodic point. Since z ∈ K e , the trajectory γ = {φ t (z) : t ∈ R} has infinite number successive reflection points q k ∈ ∂D i k , k ∈ Z, with an infinite sequence

For every p p 0 1 define the configuration

where d 0 > 0 and κ > 0 were defined above. If we choose M -p 0 +1 such that M -p 0 +1 B 0 , then by induction, one deduces M k B 0 . Here B 0 > 0 is the constant in (8.6.3). We have uniform estimates 

for any k = -p 0 + 1, . . . , 0. Now we are in position to apply Lemma 10.4.2 in [START_REF] Vesselin | Geometry of the generalized geodesic flow and inverse spectral problems[END_REF] saying that with some constant E > 0, depending only on D, κ, δ and b, it holds, for k = -p 0 + 1, . . . , 0,

6) The norm of the second term on the right hand side is bounded by 2B 0 b 2(k+p 0 -1) and for k = 0 one gets

Applying the above estimate for the rays γ p 0 +q , the maps M 0 , H 0 will depend on the ray γ p 0 +q and for this reason we denote them by M q,0 , H q,0 . Now we use these estimates for the maps M q,0 , M q ,0 related to the rays γ p 0 +q and γ p 0 +q and by the triangle inequality one deduces H q,0 M q,0 H -1 q,0 -H q ,0 M q ,0 H -1 q ,0 2D 0 Ea p 0 1 + 4B 0 b 2(p 0 -1) . (8.6.7)

Here H q,0 (Π q,0 ) = Π 0 and H q ,0 (Π q ,0 ) = Π 0 are some isometries satisfying the estimates (8.6.5). Clearly, one obtain a Cauchy sequence (H q,0 M q,0 H -1 q,0 ) q 1 which converges to a symmetric non-negative linear map M 0 in Π 0 . Moreover, if for every q we have M q,0 εI, then M 0 εI.

After this preparation we define the unstable manifold at φ t (z 0 ) for some 0 < τ < q 1 -q 0 as the subspace

It is important to note that the procedure leading to the estimate (8.6.6) can be repeated starting with M 0 instead of M -p 0 +1 . Then if M k are the maps obtained from M 0 after successive reflexions, we obtain an estimate

We can repeat the above argument for ρ = φ τ (z), v ∈ E u (ρ), and

where 0 < τ < λ 1 and 0 < σ < λ p+1 , to estimate dφ t (ρ) • v . We apply (8.6) with the expansion map S p defined as the composition of the maps (I+λ k A k-1 ( M 0 )) and we get (8.6.4). Finally, the construction of the stable space E s (φ σ (z)), -q -1 -q 0 < σ < 0 can be obtained by a similar argument and we omit the details.

Annexe A Un théorème taubérien

A.1 A basic result

We present a first basic result which will be useful to obtain a weak version of Delange's theorem. A simple proof of this result based on Newman's approach [START_REF] Donald | Simple analytic proof of the prime number theorem[END_REF] for proving the prime number theorem can be found in [START_REF] Vatwani | A simple proof of the wiener-ikehara tauberian theorem[END_REF]. 

A.2 A weak version of a theorem by Delange

In this section we state a Tauberian theorem which is a weak version of a theorem of Delange [Del54, Théorème III]. The latter theorem is itself a generalization of the classical Ikehara's theorem [START_REF] Ikehara | An extension of landau's theorem in the analytical theory of numbers[END_REF] to the case where the singularity of the Laplace transform of the studied function is not necessarily a simple pole. The result goes as follows.

Theorem A.2.1. Let g : [0, ∞[ → R 0 be a nondecreasing function such that for some C > 0 and n 1 it holds

Assume that there are α 1 , . . . , α n ∈ R with α n > 0 such that the function G defined by

extends to a continuous function on {Re(s) 1}. Then it holds

For convenience of the reader, we provide a short proof based on Theorem A.1.1, adapting the strategy of [START_REF] Vatwani | A simple proof of the wiener-ikehara tauberian theorem[END_REF] (the latter work only deals with simple poles).

Proof. We consider the function

Then using the identity ∞ 0 t j-1 e -st dt = Γ(j)s -j = (j -1)!s -j we get

and thus H extends to a continuous function on {Re(s) 0}. Of course the same holds for the function s

and in particular the function A also extends to a continuous function on the half plane {Re(s) 0}. By (A.2.1), the function t → χ(t)h(t)t -(n-1) is bounded and we may apply Theorem A.1.1 to obtain that the integral

converges. Next we proceed by contradiction and we assume that (A.2.2) does not hold. Then we have

say lim sup t g(t)(n -1)!e -t α -1 n t -n+1 > 1 (the other case is treated similarly). This means that there is λ > 1 and infinitely many t's for which

Let δ > 0. Since g is nondecreasing, (A.2.3) implies that for any large t as above,

Note that every term in the above sum goes to zero when t goes to ∞. Moreover it holds

In particular if δ > 0 is chosen small enough we have, for any large t as above,

which contradicts the fact that the integral (A.2.4) converges.

Annexe B Noyaux de Schwartz, courants et trace bémol

In this appendix, we review the conventions we will use about currents, Schwartz kernel, and traces. Throughout this chapter, we will consider a smooth oriented manifold M of dimension n and a smooth vector bundle E → M of dimension d.

B.1 Schwartz kernels as currents

For k = 0, . . . , n, we denote by Ω k (M, E) (resp. Ω k c (M, E)) the space of differential k-forms (resp. compactly supported differential k-forms) valued in E, that is, the space of smooth section of the bundle ∧ k T * M ⊗ E, and we set

We let D k (M, E) denote the space of E-valued k-currents, that is, the dual space of Ω n-k c (M, E ∨ ), and

Note that we have a natural inclusion Ω k (M, E) → D k (M, E) via the non degenerate bilinear pairing

Here, ∧ denotes usual wedge product Ω k (M, E) × Ω n-k (M, E ∨ ) → Ω n (M ).