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Lodz

Rapporteur
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Abstract:
In this thesis, we show that coherent and incoherent
illumination of an optically addressed spatial light
modulator (OASLM) subjected to optical feedback
allows to implement a wide range of nonlinear
oscillator networks exhibiting highly diverse yet
tuneable bifurcation scenarios. We analytically
derive the conditions for implementing pitchfork,
transcritical and saddle-node bifurcations of steady
states without modifying the systems under study,
and by simply tuning the relative optical intensities
of our two-color illumination.
Using an OASLM spatial model, we demonstrate
that the pitchfork and saddle-node bifurcations
allow to control the speed and direction of the
wavefront propagation in bistable spatially-extended
systems. In addition, the pitchfork bifurcation
conditions provide for controlling the symmetry

of bistable systems and we use this to emulate
spin-networks based on the autonomous OASLM’s
dynamics. In particular, leveraging experimental
symmetries, we simplify the corresponding system
equations and demonstrate that OASLM-based
setups allow for the implementation of an Ising
machine. Through experimental characterizations of
a particular OASLM based on nematic liquid crystal
and nano-scale amorphous arsenic trisulfide (a-
As2S3) chalcogenide glassy films, we find that such
a system is capable to implement up to 104 nodes
per mm2, requiring illumination intensities as low as
10 nW/mm2 at 450 nm. Thus, OASLMs appear as
promising candidates for implementing autonomous
photonic neural networks and novel next generation
optical computing architectures with ultra-low energy
consumption.

Titre : Modulateurs spatiaux de lumière tout-optique destinés à la conception de nouveaux processeurs
basés sur des systèmes dynamiques complexes
Mots-clés : Réseau de neurones optique, modulation spatiale de la lumière, bifurcations

Résumé :
Dans cette thèse, nous montrons que l’illumination
cohérente et incohérente d’un modulateur spatial
de lumière à adressage optique (OASLM) soumis
à une rétroaction optique permet d’implémenter
une large gamme de réseaux d’oscillateurs non
linéaires couplés présentant des scénarios de
bifurcation très diversifiés mais ajustables. Nous
dérivons analytiquement les conditions de mise
en œuvre de bifurcations d’états stables, de type
fourche, transcritiques ou nœud-col, sans modifier
les systèmes étudiés et simplement en réglant les
intensités optiques relatives de notre illumination
bicolore à deux longueurs d’onde laser.
En utilisant un modèle spatial d’OASLM, nous
démontrons que les bifurcations de type fourche
et nœud-col permettent de contrôler la vitesse
et la direction de la propagation du front d’onde
dans les systèmes bistables étendus spatialement.
En outre, les conditions de bifurcation fourche
permettent de contrôler la symétrie des systèmes

bistables et nous les utilisons pour émuler des
réseaux de spin basés sur la dynamique de l’OASLM
autonome. En particulier, en exploitant les symétries
expérimentales, nous simplifions les équations
du système correspondant et nous démontrons
qu’un tel système optique utilisant un OASLM
permet de réaliser une machine d’Ising. A l’aide
de caractérisations expérimentales d’un OASLM
particulier basé sur des cristaux liquides nématiques
et des films vitreux amorphes nanométriques de
trisulfure d’arsenic (a-As2S3) chalcogénure, nous
constatons qu’un tel système est capable de mettre
en œuvre jusqu’à 104 nœuds par mm2 en ne
nécessitant des intensités d’éclairage que de 10
nW/mm2 à 450 nm. Avec de telles caractéristiques,
les OASLM apparaissent comme des candidats très
prometteurs pour la mise en œuvre de réseaux
neuronaux photoniques autonomes réalisant de
nouvelles architectures de calcul optique à très faible
consommation d’énergie.
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LIST OF NOTATIONS

ne refractive index of the extraordinary wave
no refractive index of the ordinary wave
∆n birefringence (magnitude of the refractive index difference)
λb wavelength of incident blue light
λg wavelength of incident green light
Γ phase retardation between the ordinary and extraordinary waves produced by OASLM’s LC-layer
V0 DC-voltage applied across the OASLM
is current passing through the OASLM
js electric current density
ψ OASLM’s rotation angle
∆ϕ electric potential difference
dLC thickness of OASLM’s LC-layer
G0 PS-layer’s conductance in the darkness
RLC LC-layer resistance
RPS PS-layer resistance
Is summary light intensity on the left and right PS-layers
~E0,1,2,3 Jones vector for light waves characterised in terms of electro-magnetic fields
S square of illuminated area
Iin incident light intensity
Pin incident light power
Dl lateral diffusion coefficient
I0 incident light intensity in the one-color OASLM model
I0b incident blue light intensity in the two-color OASLM model
I0g incident green light intensity in the two-color OASLM model
αb OASLM’s sensitivity to blue illumination
αg OASLM’s sensitivity to green illumination
β OASLM’s model parameter
γ OASLM’s model parameter
ε OASLM’s response time
R reflection index
D noise intensity
ξ(x, y, t) correlated noise term
τc correlation time of fluctuations
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na(x, y, t) source of additive white Gaussian noise
n(x, y, t) source of correlated Gaussian noise
ϕ0 constant retardation induced by the OASLM without illumination
ϕ1 retardation accumulated in the external cavity round-trip
i imaginary unit
f (Γ) right-hand side function
fT(Γ) Taylor series expression
κ OASLM’s sensitivity to green illumination in the linearised OASLM model
Γ∗ linearised OASLM’s model parameter characterising the response to green illumination
σ medium electric conductivity or spatial resolution of OASLM-based system
Pn(Γ) normalised probability density distribution
W and W̃ coupling matrices
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INTRODUCTION

Dynamics exhibited by photonic nonlinear oscillator systems are very diverse and include
regular and chaotic self-oscillatory behaviour [1], stochastic resonance [2], coherence
resonance [3, 4], noise-induced transitions [5, 6] or complex spatial structures revealed
in the temporal dynamics of delay-feedback oscillators [7–9]. An inherent asset of such
optical systems is its high bandwidth, which makes them attractive for practical appli-
cations such as optical communication [10, 11] and signal processing [12]. However,
an additional fundamental appeal of photonic architectures is their almost unlimited par-
allelism [13] combined with their unique potential for information transduction [14]. All
these features make photonic architectures prime candidates for novel implementation
and technological exploitation [15] of large scale systems, and for network-based con-
cepts in particular [16–19].

One compelling strategy for large-scale optical system synthesis are spatial light modula-
tors (SLMs). The excellent scalability of SLMs (commercial devices now enable up to 107

individual pixels) make them suitable for creating spatially-extended systems with large-
scale ensembles of interacting oscillators [20]. Besides the importance associated with
observing different families of complex dynamics in physical experiments, such systems
are of practical relevance for applications, for example in novel information processing
concepts [17]. Consequently, SLMs have been widely applied in the context of machine
learning using photonic neural networks [16, 18, 21] as well as for the solution of combi-
natorial problems by the implementation of photonic Ising machines [22, 23].

However, the physical composition and construction principles of electrically (EASLMs) or
optically (OASLM) addressed reflective SLMs result in constrains. Reflective illumination
makes coherent interference between the optical state variable and coupling fields chal-
lenging, yet this can substantially enriche the range of dynamical behaviour accessible
to the system. Such interference is straightforward with transmissive OASLMs. Fur-
thermore, EASLMs require extensive control hardware. This implies additional energy
consumption, which is a disadvantage for high energy efficient computing. Transmissive
OASLMs are therefore a smart and powerful solution for a variety of fundamental and
technological challenges.

It is demonstrated in the present PhD-project that a variety of single dynamical sys-
tems and networks can be implemented using transmissive OASLMs under two-colour
illumination. We identify the corresponding bifurcation scenarios by deriving normal
forms through the Taylor-expansion of the equations governing the system’s dynamics.
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2 INTRODUCTION

These we then associate to the conditions specifically realizing pitchfork, transcritical and
saddle-node bifurcations of steady states. However, intermediate configurations are pos-
sible. Simply by adjusting the relative intensities of the two-colored illumination allows
to continuously transition between the different bifurcation scenarios. Here, one color
encodes the system’s dynamical state and its optical coupling, while the other color re-
alizes a constant DC control parameter. Our OASLM model is inspired by I. Abdulhalim
et al. [24], and we used one of their proof of concept devices for obtaining the device
parameters used in analytical derivations and numerical modelling.

THESIS PLAN

This PhD thesis is divided into six chapters. In Chapter 1, we introduce the basic equa-
tions describing the optical system, the bifurcation theory and nonlinear dynamics, and
focus towards relevant aspects that will be explored in the subsequent chapters. More-
over, we explain the main challenge to which this study is dedicated and discuss several
hardware realizations of neural networks.

In Chapter 2, we experimentally study the electronic and optical responses of the OASLM
to blue and green illumination and analyse the underlying electric and optical processes
occurring in the OASLM. The obtained results are used to develop a detailed OASLM
model. After experimental characterization of the OASLM we analyse which phenom-
ena can occur in the presence of optical feedback implemented by a mirror and derive
differential equation models for a couple of modifications to the system.

In Chapter 3, we analyse which bifurcation phenomena can be exhibited by the OASLM
driven by optical feedback. For this purpose, we employ a methodology based on the
Taylor-series expansion of the differential equations in order to obtain their representation
in form of a polynomial series. After the derivation of bifurcation conditions that determine
the particular relationship between the blue and green light intensities, we demonstrate
on the examples of the pitchfork, saddle-node and transcritical bifurcations that the results
of the numerical simulations and analytics are in perfect agreement.

In Chapter 4, we develop the OASLM’s spatially-extended model and apply the bifurcation
conditions derived in Chapter 3 to control its spatial dynamics related to the effects of
wave front propagation and coarsening. In addition, we demonstrate the possibility to
control the system behaviour by varying the intensity of an externally introduced noise
source. Thus, the issues of, both, deterministic and stochastic control are discussed.

Finally, in Chapter 5 we apply the Taylor-series approach for the implementation of spin-
networks. We analyse which modifications provide for simplification of the OASLM-based
systems and further applying them for the solution of a combinatorial optimization prob-
lem.
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The PhD thesis ends with Chapter 6 providing general conclusion and perspectives for
future work.
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1

NEURAL NETWORKS AND

BIFURCATIONS

1.1/ ARTIFICIAL NEURAL NETWORKS

The idea of computational neural network algorithm proposed by W. McCulloch and W.
Pitts [25] has been transformed into the generalized concept of an artificial neural network
(ANN) over time. The principal roots of the original work and further ideas are inspired by
the most simplistic interpretation of the functioning principles of the human brain [26–30].
The most principal and distinct class of cells in the brain is a nerve cell, or a neuron.
Neurons transfer and nonlinearly transform information between each other in the central
nervous system and to other cells in the peripheral nervous system. Thus, the nervous
system, and in particular the human brain, represents a biological neural network (BNN)
which has billions of interconnections. As the brain learns, these connections are either
formed, changed or removed.

Similarly to the BNNs, ANN consists of a large number of interacting elements called ’neu-
rons’ or ’nodes’ and include the adjusting coupling weights that determine the interaction
strength between neurons to account for a new training example. Despite the similarity
between the BNNs and ANNs, the term ’neuron’ can imply vastly different meanings. For
specialists in fields addressing biological issues, the neuron is a morphological and phys-
iological unit with various intrinsic peculiarities such as the sensitivity to external stimulus,
response time, excitability, the ability for spiking, chaotic behaviour, just to name a few.
There is a broad variety of mathematical models reflecting the properties of individual
and collective neural dynamics [31, 32] and exhibiting typical phenomena such as regular
self-sustained and noise-sustained spiking activity [33], chaotic bursting [34], synchro-
nization [33, 35], propagation of neural impulses [33, 36, 37]. In the context of artificial
intelligence, especially in the frameworks of software development, the term ’neuron’ is
mostly considered as an element for the summation of input signals and the functional
nonlinear transformation of this input information. It therefore dominantly excludes as-
pects of the oscillatory dynamics. However, this does not mean that both methodologies
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6 CHAPTER 1. NEURAL NETWORKS AND BIFURCATIONS

cannot be united in principle. For instance, both approaches are merged in the context of
neuromorphic computing addressing applications of spiking neural networks [38–41].

For the last decades, ANNs have drawn attention as machine learning algorithms in-
volved in a wide range of scientific and applied areas. These include computer vision
[42, 43], language processing [44], speech processing and generation [45], robotics and
self-driving cars [42]. Many problems which were previously reserved exclusively for hu-
mans suddenly became automatically solved with ANNs, often with equal or even better
performance. A manifold of artificial neural networks is represented by several classes
distinguished by input/output data properties and for example an ANN’s coupling topol-
ogy.

1.1.1/ FEEDFORWARD NEURAL NETWORKS

Feedforward neural networks (FNNs) consist of multiple layers: input and output layers
(blue circles in Fig. 1.1) and optionally a number of hidden layers (red circles in Fig.
1.1). Coupling interactions are organized such that input signals propagate in only one
direction: from input to output (schematically illustrated in Fig. 1.1). In such a case, the
output of the i-th neuron in l-th layer,yL

i , is a nonlinear transformation of the product of
input signals from the previous layer l− 1. The output signal of such an artificial neuron is
defined as

yl
i = f

Nl−1∑
i=1

W l
i, jy

l−1
j

 , (1.1)

where Nl−1 is the number of elements in the (l−1)-th layer, W l
i, j is a matrix of weights which

determines the unidirectional coupling strength between layers l − 1 and l, and f (·) is a
nonlinear function usually referred to the neuron’s activation function. FNNs are effective
tools for classification problems such as pattern recognition and computer vision as well

Inputs
Outputs

layer 1 layer 2

layer 3

W 3
i,j

W 2
i,j

Figure 1.1: Schematic illustration of a feedforward neural network. Circles are the artificial
neurons (blue circles form the input and output layers, the red ones belong to the hidden
layer), while arrows are the connections described by matrices W2 and W3.
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as for the implementation of single-valued prediction systems (regression solvers) [46].

1.1.2/ RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs) represent a class of ANNs which often are used to
process sequential data or time series. These ANNs are commonly used for ordinal or
temporal problems, such as language translation, natural language processing, speech
recognition, and image captioning. Like FNNs, the RNNs utilize training data to learn.
The principal difference between the FNNs and RNNs is the fact that the RNN topology
provides for feedback connections, such that neurons’ output signals can return back to
the neurons creating self-feedback loops, see Fig. 1.2. This distinguishes RNNs from
simple FNNs: feedback connection provide short term “memory” as they take information
from prior inputs to interact with the current input and through that to modify the output
in the context of past inputs. The output of recurrent neural networks depends on prior
elements within the input sequence.

The progress in areas related to development and applications of the RNNs has given
rise to the appearance of new concepts. One of these reservoir computing (RC) [47, 48]
was developed at the beginning of 2000s and was independently introduced as the echo-
state network [49] and the liquid-state machine [50]. In both cases the authors introduced
a novel way of training using complex networks of nodes. After that the RC approach
was quickly adopted due to its ease of use and its excellent performance. Furthermore,
state-of-the-art results have been obtained in tasks that are considered computationally
difficult, such as chaotic time series prediction [48], or speech recognition [51, 52].

The RC architecture is schematically illustrated in Fig. 1.3. The RC implies using a RNN

Inputs
Outputs

layer 1

layer 2

layer 3

Figure 1.2: Schematic illustration of a recurrent neural network. Blue circles form the
input and output layers, while the red ones belong to the hidden layer. Arrowed lines and
curves are the connections.
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input signal

input weights

output weights

output signal

Reservoir

Figure 1.3: Schematic illustration of reservoir computing. In contrast to Fig. 1.2, only out-
put connections (blue arrowed lines) are adjustable, while the input weights (red arrowed
lines) and internal reservoir connections (black arrowed lines) are fixed.

with the following characteristics: a large and sparsely interconnected dynamical reser-
voir, that is driven by inputs and/or feedback of the outputs. The connection weights of the
reservoir and from the input to the reservoir are not changed by the training, only weights
from the reservoir to the output units are adapted (previous techniques tune all synaptic
connections). Then, training becomes a linear regression task.

There exists a broad variety of physical systems which can be implemented for dynamical
reservoir developments: from photonic systems discussed in Sec. 1.3.3 to electronic (see
review [53]) and mechanical (for instance, see Ref. [54] where the reservoir is the water
in a bucket) setups. For this reason the RC-architecture is especially attractive in the
context of hardware implementation.

1.1.3/ SPIN-NETWORKS AND ISING MACHINE

In its initial sense, a spin network represents the states and interactions between par-
ticles and fields in quantum mechanics. Nowadays, however, spin networks, or spin
glasses, represent a broad class of networks which have provided a canonical mathemat-
ical framework for understanding and analyzing properties of complex interacting systems
across many disciplines including computational biology [55, 56], neuroscience [57], and
data science [58, 59] and other fields. In the past decades, the hardware implementation
of such spin-glass models have generated tremendous interest due to the prospects of
solving NP-hard problems (problems with non-deterministic polynomial-time hardness).
The spin-glass models are widely used for investigations of interacting systems in both
science and engineering [60–66]. One of such models is the Hopfield network [67] com-
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σm

σn

Jnm

Figure 1.4: Schematic illustration of the Ising machine. Here, the spin-network elements
possess either spin-up (red circles) or spin-down (blue circles) states.

monly applied for combinatorial optimization [68, 69] as well as for image recognition,
enhancement and restoration [70–72].

An important class of spin-glass models is the Ising machine, see Fig. 1.4, that can be
applied for a wide range of NP-hard problems. A key observation behind these methods is
that optimization problems can be efficiently mapped onto specific classical Ising models
[73]. Solving the specific optimization problem then translates into finding the ground state
of the corresponding Ising Hamiltonian [74]. The Ising model describes an ensemble of
binary spins σn. In the simplified case the spin states are either in the spin up σn = 1 or
the spin down σn = −1. Interaction between different spins is achieved by coupling them
using the spin coupling topology Jmn. The energy function of an ensemble of N coupled
spins is then given by the Ising Hamiltonian

H = −

N∑
n,m=1

Jnmσnσm − µ

N∑
n=1

Bnσn, (1.2)

where the first sum is over pairs of spins. The model has an external magnetic field Bn

interacting with spin. Parameter µ is the magnetic moment. Generally, the second sum is
optional and can be excluded from the consideration in the simplified modifications of the
model. Under a given Jnm, spins take values σn = ±1 in order to minimize the system’s
total energy H.

One distinguishes two kinds of the spin interaction: ferromagnetic interaction at Jnm > 0

and antiferromagnetic one at Jnm < 0. The system is called ferromagnetic or antiferro-
magnetic if all interactions are either ferromagnetic or antiferromagnetic. The original
Ising models were ferromagnetic, and it is still often assumed that ’Ising model’ refers to
the ferromagnetic Ising model. In a ferromagnetic Ising model, spins desire to be aligned
with parallel orientation: the configurations in which adjacent spins are of the same sign
have higher probability. In an antiferromagnetic model, adjacent spins tend to have oppo-
site signs, i.e. directions.
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In contrast to the Ising model, where the spin states possess two discrete values σn = ±1,
the spin network model called XY-model [75] implies a continuous manifold of spin states.
This can be interpreted as a network of spins lying on a unit circle: σn = cos(Θn)+ i sin(Θn).
Then, for N spins, the classical Hamiltonians for these models can be rewritten as

H = −

N∑
n,m=1

Jnm cos(Θn − Θm) − µ
N∑

n=1

Bn cos(Θn). (1.3)

For the continuous XY-model one therefore has dynamic spin variables with Θn ∈ [0, 2π),
while for the Ising model Θn ∈ {0, π}.

A basic way to develop an Ising spin system with polynomial transfer functions is the pitch-
fork normal form, which is often applied to describe various physical implementations of
the Ising machine: degenerate optical parametric oscillators [76–78], Kerr-nonlinear mi-
croring resonators [79], nonlinear opto-electronic oscillators [22, 80] and polariton con-
densates [81]. The nonlinear transfer function of Ising machines based on the supercriti-
cal pitchfork normal form is given by

Fn
(
~x
)

= bxn − dx3
n + β

∑
m

Jnmxm + γξn(t). (1.4)

Spin systems can be generated by mimicking the shape of the transfer function which
differs from polynomial form (1.4) [80, 82]. One of these approaches is based on sigmoid
functions. While sigmoid functions have so far not been considered for Ising machines,
they are widely used in the context of Hopfield-Tank-networks and other neuromorphic
systems to mimic the activation function of neurons [83]. Efficient ways of implementing
them have been reported for both optical systems and electronic systems [84–87]. Sig-
moid functions are characterized by an s-shaped nonlinearity and can be modelled by a
variety of functions such as the logistic function or the Gompertz function. In particular, a
sigmoid based on the hyperbolic tangent function takes the form

Fn
(
~x
)

= −xn + tanh

αxn + β
∑

m

Jnmxm + γξn(t)

 . (1.5)

Equation (1.5) can be expanded into the third-order Taylor series which allows to facilitate
a simple comparison to the polynomial model of Eq. (1.4) [82].

Periodic transfer functions represent another set of nonlinearities that can be imple-
mented with optical and electric systems [80, 88]. To generate an Ising spin system with
periodic transfer functions, the general shape of the polynomial model (1.4) can be mim-
icked by appropriately shifting cosine or sine functions. For instance, a transfer function
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based on cos2-nonlinearity takes the form

Fn
(
~x
)

= −xn + cos2

αxn −
π

4
+ β

∑
m

Jnmxm + γξn(t)

 − 1
2
. (1.6)

The cos2 nonlinearity models Ising machines based on optical intensity modulators [80]
but is also equivalent to electronic oscillator-based Ising machines [88]. Similarly to sig-
moid models, cos2 and sin2 transfer function can be expressed as the third-order Taylor
series and represented in the form being similar to Eq. (1.4). However, the periodicity
of cos2 and sin2 functions can induce problems for systems exhibiting inhomogeneous
amplitude distributions [82].

1.2/ HARDWARE FOR NEURAL NETWORKS

These days, most ANNs are software simulations executed on electronic computers
[89] based on the von Neumann architecture. Despite plenty of notable achievements
that have been achieved using this strategy [90–92], its limitations are evident: first, as
the transistor counts of central processing units (CPUs) and graphical processing units
(GPUs) increase exponentially, current leakage in nanometric nodes becomes the major
contribution to power consumption, inducing a halt to the growth of microprocessor clock
rates at approximately 4 GHz [93]. Moreover, the breakdown of Dennard scaling [94]
means that smaller transistors do not consume less power; thus, improvements in CPU
or GPU performance may come at the expense of a substantial increase in energy con-
sumption and heat generation. For instance, within the existing von Neumann framework,
to achieve an ANN software simulation at the scale of the human brain in 100% real time,
at least 500 MW of power will be consumed [95] and the required supercomputer would
have to be enormous. The two mentioned limitations indicate that the problem of training
a large ANN on a von Neumann machine that takes a lot of time and energy, and that
this problem will not be significantly alleviated in the near future. Due to the mentioned
facts, the development of alternative hardware-implemented neural networks becomes
more and more important [96, 97].

ANNs can be implemented by means of electronics [98, 99]. Here, one can distinguish
analog and digital circuit approaches. The class of digital electronic ANNs includes a
broad variety of circuits which have the advantage of being easy to design and build.
They rely on existing logic elements and can take full advantage of decades of develop-
ment and optimization in digital circuits. Although adapting digital logic for ANNs leads
to fairly simple designs, the result is inherently not power and area optimized. On the
other hand, integrated circuit design is much more complicated in the case of analog
circuits, especially in a case of scaling to large number of elements. The mentioned
limitations force researchers to develop and evaluate fundamentally new operating princi-
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ples. Field-Programmable Gate Arrays (FPGA) and application-specific integrated circuits
(ASIC) [100] (including Google Tensor Processing Units - TPU - [101] and IBM TrueNorth
[102]) have been specifically designed to implement ANN computations. In addition,
one of the novel concept for electronic implementations of neuromorphic computing sys-
tems involves resistive elements with memory and memristors [103–105]. However, the
main drawback of the memristors concerns the high power dissipation (being resistance-
based), IR-drops (the voltage drop due to energy losses in a resistive element) in the
array [106], the lack of accurate models for mainstream simulation tools, and the absence
of process standards [107].

In recent years, hardware realizations of ANNs based on optical approaches [108] have
attracted more and more attention due to the fact that optical information processing
can inherently be massively parallel [13] and optical approaches provide for the imple-
mentation of scalable systems. Optical systems can have much larger bandwidths than
electronic systems, which results in much faster response time. These characteristics
make optical methods potentially applicable for the implementation of large-scale ANNs
[15–19], which contain a large quantity of neurons and synapses. Furthermore, photonic
neural networks (PNNs) can surpass electronic ANNs in computational efficiency. For ex-
ample, at present, by using realistic optical devices, an energy consumption per multiply-
accumulate (MAC) at the sub-fJ level should be feasible, which is two to three orders
of magnitude smaller than the 1...10-pJ/MAC value for a state-of-the-art complementary
CMOS circuit [109, 110]. Thus, the PNNs are considered to have bright prospects as the
next generation of ANNs.

1.2.1/ SPATIALLY-EXTENDED SYSTEMS AND NETWORKS

Nonlinear spatio-temporal systems are the basis for countless phenomena in such di-
verse fields as ecology [111], biology [112], optics [113] and chemistry [114]. Experimen-
tally realizing different types of dynamical systems, one extends a manifold of spatially-
extended systems and ensembles of interacting oscillators which can be potentially used
for the implementation of an ANN. Among these are optical systems such as spatial
light modulators (discussed in Sec. 1.3.1) and vertical-cavity surface-emitting lasers
[115, 116], optical fibers [117, 118], electronic SQUID metamaterials (Superconducting
QUantum Interference Devices) [119, 120] and electronic transmission lines [121].

Mathematical describing a spatially-extended systems evolving in continuous time is often

carried out through reaction-diffusion equations
du
dt

= f (u) + g(u,∇u,∇2u,~r) for continuous
space ~r which implies a mathematical solution in a functional form u = u(t,~r). Another
approach consists in the space discretisation and rewriting equations in an ensemble
form

ui

dt
= f (ui) + g(~u). The second form allows to distinguish particular elements ui and to

carry out numerical simulations of studied equations using standard integration methods,
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and to implement spatially-complex interaction between different positions of the system.
If, both, time and space are discretised, then the system is considered as an iterating
map ui[n + 1] = f (ui[n]) + g(~u[n]), where n ∈ {1, 2, 3...} is a discrete set of time moments.

1.2.2/ DELAY SYSTEMS

Generally, time-delayed dynamical system are described by
dx
dt

= f (t, x(t), x(t − τ)). As
was first mentioned in Refs. [122], there exists an analogy between the behavior of
time-delayed systems and the dynamics of ensembles of coupled oscillators or spatially
extended systems [123]. The similarity takes place when the delay time is much longer
than system’s response time, which allows the system to exhibit spatio-temporal phenom-
ena (for example, coarsening [8], chimera states [7, 124, 125], soliton dynamics [9, 126])
in the purely temporal dynamics of a time-delay system. This time-space analogy can
be obtained by implementing a space-time transformation of the delay-feedback system,
where the purely temporal dynamics is mapped onto space-time (σ, n) by introducing the
space-time map t = nτ + σ with an integer (slow) time variable n, and a pseudo-space
variable σ ∈ [0, η], where η = τ + δ with a small quantity δ. For each set of parameters
a unique value η can be chosen such that the oscillatory dynamics is periodic with the
period η.

Using such a space-time representation allows to transform a single oscillator into a
single-node reservoir with delayed feedback. Appeltant et al. [127] developed and suc-
cessfully implemented the RC scheme onto a single nonlinear node with a delayed self-
feedback. In the input layer, time-multiplexing is used to create temporally separated
virtual nodes. The reservoir dynamics are hereby given by a delay differential equation,
which exhibit rich high-dimensional dynamics. For the training, the temporally separated
nodes are read out and weighted to solve a given task. The introduction of time-delay
reservoir computing enabled simple optical, electronic and opto-electronic hardware im-
plementations, which led to improvements of computation time scales for supervised
learning [53, 128–131]. Moreover, deep-learning architectures have been adopted for
RC [132–134]. The delay-based reservoirs were successfully applied to a wide range of
tasks, such as chaotic time series forecasting or speech recognition [135].

1.3/ PHOTONIC NEURAL NETWORKS

Photonics has unmatched feats for interconnects and communications in terms of band-
width, which can negate the bandwidth and interconnectivity trade-offs [136–138]. When
PNNs were pioneered by D. Psaltis and N. Farhat [139], the at the time low level of pho-
tonic integration and packaging technologies hindered the practical applications of pho-
tonic neural networks. However, the emergence of large-scale photonic fabrication and



14 CHAPTER 1. NEURAL NETWORKS AND BIFURCATIONS

integration techniques [138, 140–142] has tremendously changed the situation. For in-
stance, among such technologies is silicon photonics, which has significantly extended a
manifold of large-scale and low-cost optical systems [142–144]. As a consequence, these
changes have shed light on new opportunities and directions for photonic neural networks
[145]. The variety of different technologies and solutions for PNNs implementations is ex-
traordinary large, and particular approaches which have to do with the PhD-thesis topics
are discussed below.

1.3.1/ SPATIAL LIGHT MODULATION AND NEURAL NETWORKS

A spatial light modulator (SLM) is an optical device that imposes some form of spatially
varying modulation on a beam of light [146–148]. Spatial modification to a wavefront can
be achieved by modulation of the spatial distribution of the light intensity or phase, or
both of them at the same time. In most cases, spatial light transformation is caused by
the action of a birefringent liquid crystal layer (LC) changing the polarization state of the
transmitted or reflected light. The resulting light polarization state at each point of the
LC’s illuminated area is determined by a liquid crystal molecules state which is dictated
by electric field strength at this point.

Generally, one can classify SLMs into two groups: electrically addressed SLMs (EASLMs)
and optically addressed SLMs (OASLMs), see Fig. 1.5. For the OASLM, the image is
created and changed by shining light encoded with an image on its front or back surface,
see Fig. 1.5 (a,b), respectively. A photosensor layer (PS) allows the OASLM to sense the
brightness at each point of the illuminated area and the PS’s electric conductivity varies
under illumination resulting in varying electric field spatial distribution. A derivation of
the interaction between the local PS conductivity, the local voltage across a LC cell and
the resulting local retardation can be found in Chapter 2 (see Sec. 2.4). A light beam
illuminating the photosensitive layer is called ’write beam’, while the processed light is
mentioned as ’read beam’. OASLMs do not require pixels for the modulation as one can
select PS materials with low lateral carrier mobility. This simplifies device fabrication,
potentially reduces unwanted diffraction from pixels and improves the resolution when
limited by diffusive processes in the PS and LC layers.

On the other hand, the image on an electrically addressed SLM is created and changed
electronically, see Fig. 1.5 (c). Such devices require external hardware for controlling the
electric field distribution. EASLMs usually receive input via a conventional interface such
as USB, VGA or DVI input, and they are available at resolutions determined by the SLM’s
pixel matrix.

The OASLM and EASLM schemes depicted in Fig. 1.5 (a,c) are reflective, meaning that
the information of the modulated light beams is encoded in the reflected optical signal.
However, one can implement transmissive OASLMs, such as illustrated in Fig. 1.5 (b).
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Figure 1.5: Schematic illustration of reflecting (panel (a)) and transmissive (panel (b))
OASLMs, and EASLM (panel (c)).

This is possible by using semi-transparent materials for the PS, such as a-As2S3 [24], C-
doped a-Si:H [149], ZnO [150]. Such devices allow using the same light beam for reading
and writing functions.

SLMs provide for implementations of a wide range of spatially-extended dynamical sys-
tems described by reaction-diffusion models and ensembles of coupled oscillators [20]
as well as in the form of interacting maps [16, 21]. A manifold of phenomena exhibited
by such systems includes regular and chaotic pattern formation, propagating fronts and
soliton structures [20, 151] as well as chimera states characterised by the coexistence of
localized coherent and incoherent states [152].

SLMs are highly attractive in the context of PNN implementations and hardware solution
of machine learning tasks [16, 21, 153, 154]. Different kinds of coupling elements such as
diffractive optical elements [155] or scattering media [154], which can be easily introduced
in such PNNs, complement a variety of systems and exhibited regimes. Moreover, the
SLMs allow for implementations of photonic spin-networks and experimental solutions of
combinatorial optimization problems [22, 23, 156–158].

1.3.2/ OPTICAL HOPFIELD NETWORKS

The first optical implementation of the Hopfield network was proposed by Psaltis et al.
in 1985 [139, 159] which has stimulated the emergence of a new PNN class called op-
tical associative memories [160, 161]. Such systems exhibit remarkable computational
properties such as the ability for recognition from partial input, robustness, and error-
correction capability. The first implementations were based on vector matrix multiplica-
tion with thresholding and feedback scheme, but applied physical phenomena include
holographic storage [162], phase conjugate optics [163, 164], and wavefront modulation
[165, 166] and mixing [167] were used to realize associative memory functions.

Associative memories provides for storing multiple patterns as local minima of an energy
landscape. Moreover, recall of any individual memory is possible even if mistakes are
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(a) (b)

Figure 1.6: Photonic EASLM-based RC schemes applied in Ref. [16] (panel (a)) and in
Ref. [21] (panel (b)).

made when addressing the memory to be recalled. Such networks exhibit a trade-off
between capacity (number of memories stored) and robustness (the size of the basins
of attraction of each memory under pattern completion). Once too many memories are
stored, the basins of attraction cease to be extensive, and the model transitions to a spin
glass regime with exponentially many spurious memories (with subextensive basins of
attraction) that are nowhere near the desired memories [168]. Thus, the relevant direc-
tions in associative memories development is the creation of experimental platforms for
simultaneously store much more memories in comparison with classical solutions. One
of such perspective platforms is based on bosons coupled to a degenerate multimode op-
tical cavity where the associative memory is realized by a confocal cavity QED (quantum
electrodynamics) neural network [169], with the modes serving as the synapses, con-
necting a network of superradiant atomic spin ensembles, which serve as the neurons.

1.3.3/ PHOTONIC RESERVOIR COMPUTING

In principle, all photonic RC schemes are divided into RCs implemented in spatially ex-
tended and delay-feedback architectures [131]. The first approach is illustrated in Fig. 1.6
on an example of EASLM-based reservoirs [16, 21]. Here, the feedback loop being re-
sponsible for recurrent connections is implemented by a personal computer which con-
trols the EASLM’s state according to the system’s state recorded by a camera. A dif-
ference between two such EALSM reservoirs consists in physical realization of internal
connections: by a diffractive optical element in [16] as illustrated in Fig. 1.6 (a), and a
scattering medium in [21], illustrated in Fig. 1.6 (b).

The second approach for photonic reservoir computing is based on long feedback loops
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(a) (b)

Figure 1.7: Opto-electronic delay-based RC architecture implemented in Ref. [128] and
all-optical delay-oscillator scheme presented in Ref. [170].

and a single nonlinear node. To implement such a system one can use opto-electronic
approaches, for instance, FPGA-based setups [128] as depicted in Fig. 1.7 (a). Here, time
delay, injection of input signal and output response generation (adjusting output weights)
are implemented by means of FPGA technology, while the system’s nonlinearity is deter-
mined by photonic processes. This approach requires ADC- and DAC-converters. Mean-
while, all-optical RC schemes allow to implement pure analog reservoirs [170, 171]. For
this purpose, one can use single-mode fibers as a delay line and integrated Lithium Nio-
bate Mach-Zehnder intensity modulator or a semiconductor optical amplifier as depicted
in Fig. 1.7 (b) for the nonlinearity implementation. In the case of delay-feedback-based
reservoir the property of scalability persists due to the possibility to increase the time
delay.

1.4/ DYNAMICAL SYSTEMS AND NEURAL NETWORKS

A dynamical system is any object or process evolving in accordance with a certain law,
and described by a set of quantities uniquely identifying its state at a given time moment.
The evolution law is a functional dependence, which describes the evolution of an initial
state over time. Initially, the term ’Dynamical system’ was introduced in the context of me-
chanical processes described by Newton’s laws of dynamics. Nowadays, the definition of
the dynamical system involves systems and processes of any nature (physical, biological,
chemical, geological, climatic, economical, social, informational, etc.). Depending on the
specifics of the evolution law, the dynamical system can be defined in a different manner.
For example, the evolution law (evolution operator) can be determined using differential
equations or discrete maps. The choice of a description establishes a concrete kind of a
dynamical system model.

It is important to note that in most cases the term ’dynamical system’ is used to refer to its
mathematical model. A dynamical system is defined if the following elements are given:
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• A set of states X forming system’s phase space;

• A set of time moments Q;

• An evolution operator Fτ
t0 , which unambiguously transforms each state ~x0 ∈ X at

initial time moment t0 ∈ Q into state ~xt ∈ X at time t = t0 + ∆t ∈ Q.

A classification of dynamical systems is based on the properties of the evolution operator
and sets X and Q. If Q is a continuous manifold of real numbers Q ∈ R, i.e. time is
given by a continuous set of values, and the evolution operator is continuous, then the
dynamical system is called a continuous system, a continuous-time system or a flow. If
set Q is countable, then the dynamical system is called a discrete-time system, a cascade
or an iterated map. For instance, dynamical systems with a countable manifold of time
moments describe climate changes or changes in animal populations registered with a
certain temporal resolution T . Then a functional dependence has the form x(t0+(n+1)T ) =

f (x(t0 + nT )), where t0 is the initial moment of observation.

Similarly to the set of time moments Q, the set of states X can be continuous or countable
(finite). Typical examples of dynamical systems with the countable sets of states are
cellular automata. Dynamical systems given by the continuous sets of time and states
of dimension N (X ∈ RN) are systems of ordinary differential equations. Set X can be a
functional space. In such a case, the dynamical system is described by partial differential
equations, integro-differential equations or ordinary equations with time delay. Systems
with a finite number of degrees of freedom are called lumped. Their phase space is finite-
dimensional. If the system state is described by a function of spatial coordinates, then
the system is called a distributed system or a medium. If spatial coordinates are defined
on a continuous set, the number of degrees of freedom becomes infinite.

1.4.1/ OSCILLATOR NETWORKS IN OASLM

The current PhD-thesis is focused on the dynamics of OASLM-based dynamical sys-
tems. All equations are derived for the dynamical variable Γ(t, x) , which is the spatially
distributed phase retardation. Derivations are carried out under the condition that light
propagation occurs instantaneously compared to the slow timescales of LC and voltage
dynamics (light beams propagate only in short distances and the finite light propagation
speed is neglected). In such a case, the dynamical evolution time scales are dictated
only by the OASLM response time ε. Then the OASLM state after transient time ∆t = ε

denoted as Γresponse = Γ(t0 + ε) is determined by the initial state Γinitial = Γ(t0) and can

be mathematically expressed in the differential form Γresponse = Γinitial + ε
dΓ

dt
which leads

to the expression ε
dΓ

dt
= −Γinitial + Γresponse. This approach can be applied for low-pass
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systems of any nature and gives rise to the following form of dynamical model

ε
dx
dt

= −x + f (x), (1.7)

which represents a first-order ordinary differential equation. Equation (1.7) is a model
of a single oscillator. If the the considered model is scalable or consists of a set of
identical objects like EASLM’s pixels, Eq. (1.7) is rewritten in the vector form for an array
of interacting oscillators

ε
dxi

dt
= −xi + f (~x), (1.8)

or in the reaction-diffusion form for a variable x evolving in time t and space ~r, x = x(t,~r)

ε
dx
dt

= −x + f (x) + g(x,∇x,∇2x, ...,∇nx). (1.9)

1.4.2/ TAYLOR SERIES

The Taylor series of a function is an infinite sum of terms that contain function’s derivatives
at a single support point x0. For most common functions, the Taylor series can well
approximate the original function near point x0 for a limited number of terms. The Taylor
series of a real or complex-valued function f (x) that is infinitely differentiable at a real or
complex number is the power series

f (x) = f (x0)+
f ′(x0)

1!
(x−x0)+

f ′′(x0)
2!

(x−x0)2+
f ′′′(x0)

3!
(x−x0)3+ ... +

f (n)(x0)
n!

(x−x0)n, (1.10)

where f (n)(x0) denotes the n-th derivative of f (x) evaluated at point x0 and n! denotes the
factorial of n.

In the framework of the PhD-thesis, the Taylor series expression is used to approximate
the considered model equations in the nomenclature of steady-state bifurcation normal
forms. All the expressed functions contain trigonometric dependencies such as sin or cos

and are therefore infinitely differentiable.

1.4.3/ NORMAL FORMS AND BIFURCATIONS

Generally, the term ’bifurcation’ means qualitative changes in the behaviour of dynamical
systems caused by variation of parameters. In terms of qualitative theory of differential
equations, the bifurcations are associated with transformations of limit sets in the phase
space: appearance, disappearance or change of stability.

Bifurcations in deterministic dynamical systems are divided into local and nonlocal bifur-
cations. Local bifurcations are associated with the behaviour of phase trajectories in a
local neighbourhood of limit sets (steady states and limit cycles). Local bifurcations are
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related to transformations of certain limit sets and can be identified by means of linear
stability analysis. Nonlocal bifurcations involve manifolds of saddle limit sets (separatrix
loops, separatrix curves and surfaces, homoclinic and heteroclinic curves). Usually, a
linear approach is insufficient for description of these bifurcations.

Mathematically, a normal form of a certain bifurcation is the simplest equation form that
can exhibit this bifurcation. Such normal forms are often used for determining local bifur-
cations in a system. All systems exhibiting a certain type of bifurcation are locally (around
the equilibrium) topologically equivalent to the normal form of the bifurcation. Three kinds
of bifurcations can be observed in one-dimensional oscillators described by Eq. (1.7),
and they are briefly discussed below on the example of the corresponding normal forms

written in the form
dx
dt

= f (x).

SADDLE-NODE BIFURCATION

The normal form of a saddle-node bifurcation of steady states is

dx
dt

= m − x2. (1.11)

Equilibria, i.e. fixed points of Eq. (1.11) are x∗1 =
√

m and x∗2 = −
√

m. It is evident that
the points x∗1,2 exist only in case m > 0, since coordinates of steady states are always
real quantities. The stability of the fixed points x∗1,2 is determined by a derivative of right-
hand side of Eq. (1.11) d f

dx = −2x∗ calculated at the points x∗1,2. At the equilibrium x∗1
the derivative becomes d f

dx = −2
√

m and is always negative when steady state x∗1 exists.
Steady state x∗1 is therefore stable for any m > 0. Similarly, a value of the derivative
at the equilibrium x∗2 is d f

dx = 2
√

m. It is always positive when steady state x∗2 exists,
and consequently steady state x∗2 is unstable for any m > 0. In summary, the following
bifurcation diagram is obtained for increasing parameter m [Fig. 1.8 (a)]: for m < 0 there
exist no steady states, but two steady states, stable (solid line) and unstable (dashed line)
appear at the bifurcation moment and exist after the bifurcation.

TRANSCRITICAL BIFURCATION

The transcritical bifurcation corresponds to an exchange of stability between two points
of equilibrium. The normal form for this bifurcation is

dx
dt

= mx − x2. (1.12)

Steady states of Eq. (1.12) are x∗1 = 0 and x∗2 = m, and they exist at any value of parameter
m. The derivative d f

dx defining the stability becomes d f
dx = m for steady state x∗1 and d f

dx = −m

for the steady state x∗2. That means the fixed point x∗1 = 0 is stable for m < 0 and unstable
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Figure 1.8: Phase-parametric diagram for the saddle-node bifurcation in Eq. (1.11) (panel
(a)), the transcritical bifurcation in model (1.12) (panel (b)) and the pitchfork bifurcation
in oscillator (1.13) (panel (c)). The solid lines indicate stable equilibria, while the dashed
ones correspond to unstable fixed points.

for m > 0. At the same time steady state x∗2 = m is stable for m > 0 and unstable for
m < 0. In summary, two equilibria bifurcate at m∗ = 0 and the stability exchange occurs,
see Fig. 1.8 (b).

PITCHFORK BIFURCATION

The pitchfork bifurcation typically realizes transitions from monostability to bistability. It
consists in the appearance of two stable states from the point of equilibrium, which was
initially stable before the bifurcation, and is unstable afterwards. The normal form for this
bifurcation takes a cubic form

dx
dt

= mx − x3. (1.13)

The condition for steady state dx
dt = 0 leads to the cubic equation mx−x3 = 0 which has one

solution x∗1 = 0 for m < 0 and three solutions x∗1 = 0 and x∗2,3 = ±
√

m for m > 0. That means
that before the bifurcation only one steady state x∗1 exists. After the bifurcation at m∗ = 0,
two new steady states x∗2,3 appear in the vicinity of equilibrium point x∗1. A derivative d f

dx

takes the value d f
dx = m at steady state x∗1 and d f

dx = −2m for steady states x∗2,3. That means
fixed point x∗1 = 0 is stable for m < 0 and unstable for m > 0. At the same time, fixed points
x∗2,3 are stable over the whole area of the existence. One can plot a complete bifurcation
diagram, Fig. 1.8 (c), which shows the pitchfork bifurcation at m∗ = 0.

1.5/ SUMMARY

SLMs are prime candidates for implementations of large scale photonic systems includ-
ing PNNs. OASLMs are especially attractive in this regard since they simplify the PNN
construction and can potentially reduce the energy consumption. However, the develop-
ment of OASLM-based PNNs requires preliminary experimental and theoretical studies.
The first necessary steps are experimental exploration of the OASLM characteristics and
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further development of OASLM-models including the relevant optical and electronic inter-
actions. Analysis of the OASLM stability is also necessary to estimate the expected
robustness of OASLM-based devices. Further work is to understand which kinds of
OASLM-based dynamical systems can potentially be implemented, and which types of
oscillatory dynamics and bifurcation transitions can be observed in such systems. In ad-
dition, it is significantly important to establish how one can simplify the device construction
while preserving the required dynamics. The present PhD-thesis aims to answer these
questions for further practical applications of the OASLMs in the context of PNN synthesis
and beyond this issue.



2

OPTICALLY-ADDRESSED SPATIAL LIGHT

MODULATOR: PHYSICAL PROCESSES

AND MATHEMATICAL MODELS

In this chapter the optically-addressed spatial light modulator (OASLM) is introduced in
detail, starting from a general description of its structure and action, followed by electric
and optical processes occurring in the OASLM. The relevant aspects will be explored
in detail and will be closely linked to device characterization on the base of the exper-
imental study. Afterwards, a detailed and close to ab-initio mathematical model of the
device is developed. Building on the description of a standalone OASLM, the possibility
to implement optical feedback is discussed and included based on ordinary differential
equations (ODEs). Furthermore, oscillatory regimes exhibited by the developed mathe-
matical models are examined. Finally, it is analysed which OASLM’s modifications can
be introduced to simplify the OASLM construction and to tailor the device for interesting
dynamical properties.

The research presented in the current chapter has the following goals:

• To discuss principle device characteristics such as the energy consumption, reso-
lution, operating range of the incident light intensities.

• To discuss issues regarding temporal stability of the device.

• To develop the OASLM model and to estimate its parameter values.

• To establish which types of the single-oscillator dynamics can be realized.

2.1/ OASLM AND JONES CALCULUS

The OASLM discussed in this thesis was developed and fabricated by Ibrahim Abdulhalim
and colleagues [24]. The OASLM is a light-transmissive device, and it is assumed in the

23
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following that the OASLM fully transmits the incident light, i.e. has zero absorption. An
OASLM operates as an optically controlled birefringent phase plate, the phase retardation
of which is a varying quantity. Suppose that the OASLM, see Fig. 2.1, is illuminated by

light with an polarization state defined by the Jones vector

E0x

E0y

 , where E0x and E0y

are complex quantities. Then one can obtain the Jones vector ~E1 for the wave that has
passed through the OASLM

E1x

E1y

 = exp(iφ0)


cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)



exp (iΓ) 0

0 exp (−iΓ)




cos(ψ) sin(ψ)

− sin(ψ) cos(ψ)



E0x

E0y



= exp(iφ0)


cos (Γ) + i sin (Γ) cos(2ψ) i sin(2ψ) sin (Γ)

i sin(2ψ) sin (Γ) cos (Γ) − i sin (Γ) cos(2ψ)



E0x

E0y

 , (2.1)

where ψ is the OASLM rotation angle of its fast slow (fast) axis relative to the x (y) axis,
φ0 is the constant offset phase retardation caused by the propagation through the liquid
crystal (LC) layer, Γ is the varying phase retardation between the polarization components
of the transmitted light, and i is the imaginary unit. Finally, the incident light intensity is
I0 = |E0x|

2+|E0y|
2 while the transmitted light intensity is I1 = |E1x|

2+|E1y|
2. Since the OASLM

is assumed to be fully transmissive, the input and output light intensities are equal, I0 = I1.

The Jones matrix approach is used for the OASLM characterization as well as for deriva-
tions of mathematical models of the OASLM.

ψ

x

y

φ0

x

y
z

E0y

E0x

E1x

E1y

slow axis
fast axis

Light source

OASLM

Figure 2.1: OASLM illuminated by a light source. Here, the Jones vector components of
the incident and transmitted lights are schematically shown by red arrowed lines.
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2.2/ GENERAL DESCRIPTION OF THE OASLM

Our particular OASLM and its dimensions are depicted on photos in Fig. 2.2. It contains
two wires used for connecting the device to an electrical power source. Two metal plates
on both sides provide the mechanical protection, and the OASLM’s operating area is a
circle with the diameter 10 mm.

The OASLM is based on a nematic liquid crystal (LC) layer, sandwiched between two a-
As2S3 chalcogenide thin films with 60 nm thickness, which form two photosensitive (PS)
layers [Fig. 2.3 (a)]. The PS layer responsivity depends on the incident light wavelength:
a-As2S3 films are almost insensitive to red light while blue illumination induces a notable
reaction by the OASLM even when the incident light intensity is below 10 nW/mm2. We
consider a PS with a thickness significantly smaller than the incident light’s wavelength,
which allows to avoid interference and reflection inside the OASLM.

As LC the devices uses Merck E44 that creates a homogeneous birefringent layer. It is
characterized by refractive indices no and ne of the ordinary and extraordinary axis, and
the refractive index difference quantifies the birefringence, ∆n = ne − no. The relevant
details of the processes regarding this birefringence are discussed in Sec. 2.4. The
corresponding phase retardation is Γ =

2πdLC
λ ∆n, where λ is the incident light wavelength,

dLC is the LC thickness.

The OASLM is connected to the DC-power source and operated when the applied DC-
voltage is larger than the threshold value 4 V. The larger is the applied voltage, the
stronger is the OASLM’s response to incident light. The applied voltage produces an
electric field distribution inside the layer, which is assumed to be uniform in darkness (see
the electric field Ed in Fig. 2.3 (a)). Since only the central area of the OASLM is used,
electric field effects occurring on the OASLM edge are excluded. To avoid the damage to
the OASLM, the applied voltage did not exceed Vmax = 10 V in all our experiments.

When a light source illuminates the OASLM, see Fig. 2.3 (b), the PS layer’s conductivity
locally increases in the illuminated area. This modifies the electric field distribution: the

Figure 2.2: OASLM and its dimensions.
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+ +

OASLM

DC-power

Light
source

supply

DC-power

supply

OASLM
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LC

(a) (b)

!El > !Ed

!El
!Ed

!Ed

ϕ1

ϕ2

Figure 2.3: OASLM in darkness (panel (a)) and under illumination (panel (b)). Here, the
red arrows indicate the electric field Ed in the areas where the illumination is absent, while
the electric field at the illuminated point El is illustrated by the blue arrow.

electric field applied to the LC-layer at the illuminated area increases (see ~El in Fig. 2.3
(b)). As a consequence, LC molecules in the illuminated areas are twisted, and this
reorientation results in modifying retardation at the point of illumination. Thus, individual
areas of the OASLM act as birefringent waveplates the retardation of which nonlinearly
depends on the incident light intensity.

2.3/ ELECTRIC PROCESSES IN THE OASLM

To characterize the resistive properties of the OASLM, the device is approximated as
three resistors connected in series, see Fig. 2.4 (a), where each resistor reflects the elec-
tric conductivity of a corresponding OASLM layer. It has been shown in [24] that the LC’s
conductivity is almost agnostic to the optical irradiation intensity, while the conductivity of
the a-As2S3 PS layers strongly increases with the light intensity. The following assumption
is used for the OASLM electronic-circuit model: RLC =const, RPS = (G0 + αPin)−1, where
G0 is the PS layer conductance in darkness, α is the PS’s conductivity dependence on
the illumination, Pin is the incident light power on a PS layer. According to the circuit in
Fig. 2.4 (a), the current passing through the spatial light modulator takes the form

iS =
V0

RLC + 2RPS
=

V0

RLC + 2(G0 + αPin)−1 . (2.2)

To experimentally determine the OASLM’s opto-electronic properties, the optical setup
depicted in Fig. 2.4 (b) was used. Here, the injected laser light passes through a lens in
order to create a collimated optical beam. The incident light is produced by a laser diode
Roithner SHD4580MG, λ = 450 nm, and collimated by the lens Thorlabs C240TMD-A.
The beam then propagates through the block of ’Polarizer1 - λ/2-plate - Polarizer2’ , and
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Figure 2.4: (a) Electronic circuit interpretation of the OASLM; (b) Experimental setup
developed for the study of OASLM’s electrical properties under blue illumination.

is hence linearly polarized. Rotating the λ/2-plate, one can control Pin illuminating the
OASLM surface without change of the laser’s bias current. Polarizer 2 is rotated such
that the transmitted light is S-polarized. The beamsplitter (BS) reflects 4% of the incident
light to the detector, which allows to measure Pin. The light beam transmitted by the
OASLM is discarded, since here the OASLM’s optical response is not under study. The
voltage applied across the OASLM is V0 = 9 V.

The experimental setup allows to measure the current flowing through the OASLM as a
function of the incident light power, red circles in Fig. 2.5 (a). Experimentally recording
current iS(Pin), one obtains the global OASLM resistance RS = V0/iS, red circles in Fig. 2.5
(b). The parameters RLC, G0, and α in Eq. (2.2) are obtained from a fit to the experimental
data iS(Pin) using the least squares method, blue solid curve in Fig. 2.5 (a), and from this
we obtain the dependence RS(Pin), blue solid curve in Fig. 2.5 (b). As can be seen
from the excellent agreement, the experimental data is well-approximated by the simple
electronic model within four orders of magnitude of the incident light power Pin[10−8; 6 ×

10−4] W.

Interestingly, quantities iS and Pin are integrals that describe the global resistive behaviour
of the OASLM as a function of the global illumination power. To describe the action of the
OASLM at any point of the surface (x,y), quantities iS and Pin are expressed in a surface
integral form as

Pin =

"
S

IindS =

∞∫
−∞

∞∫
−∞

Iin(x, y)dxdy, iS =

"
S

jSdS =

∞∫
−∞

∞∫
−∞

jS(x, y)dxdy, (2.3)

where jS(x, y) is an electric current density, Iin(x, y) is the optical irradiance. Using Eqs.
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Figure 2.5: OASLM under blue laser illumination, λ = 450 nm.: (a) Experimentally mea-
sured dependences of the current through the OASLM, iS, on the incident optical power,
Pin (red circles), and the result of curve fitting (blue solid line) to Eq. (2.2). The obtained
parameters are RLC = 3.08 × 107 [Ω], G0 = 2.65 × 10−8 [Ω−1], α = 5.03 × 10−4 [W−1Ω−1]; (b)
Dependence of OASLM’s resistance, RS, on the incident light power, Pin, obtained from
experimental data (red circles). The blue line corresponds to the parameters obtained
through the fit in panel (a).

(2.3), Eq. (2.2) is transformed into

∞∫
−∞

∞∫
−∞

jS(x, y)dxdy =
V0

RLC + 2
(
G0 + α

∞∫
−∞

∞∫
−∞

Iin(x, y)dxdy
)−1 . (2.4)

Extracting the derivatives d
dx and d

dy from the left and right part of Eq. (2.4), one can derive
the dependence of the electric current density on the optical irradiance. The calculation
of the first derivative d

dx results in

∞∫
−∞

jS(x, y)dy =

2V0α
∞∫
−∞

I(x, y)dy(
RLC

(
G0 + α

∞∫
−∞

∞∫
−∞

Iin(x, y)dxdy
)

+ 2
)2 , (2.5)

while derivation against d
dy gives

jS(x, y) =
2V0αI(x, y)(

RLC

(
G0 + α

∞∫
−∞

∞∫
−∞

Iin(x, y)dxdy
)

+ 2
)2 −

4V0α
2RLC

∞∫
−∞

Iin(x, y)dx
∞∫
−∞

Iin(x, y)dy(
RLC

(
G0 + α

∞∫
−∞

∞∫
−∞

Iin(x, y)dxdy
)

+ 2
)3 .

(2.6)
During the experiment described above, the OASLM was illuminated by a Gaus-
sian beam (schematically shown in Fig. 2.6 (a)) with irradiance according to
Iin(x, y) =

Pin
2πσ2

l
exp

(
− x2

2σl
−

y2

2σl

)
, where σl defines the width. The corresponding power
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Figure 2.6: Different options for the OASLM illumination: Gaussian (panel (a), uniform
(panel (b)), partially-uniform (panel(c)).

is
∞∫
−∞

∞∫
−∞

Pin
2πσ2

l
exp

(
− x2

2σl
−

y2

2σl

)
dxdy = Pin , and the result of multiplying both integrals can be

rewritten as

∞∫
−∞

Iin(x, y)dx
∞∫
−∞

Iin(x, y)dy =
Pin
√

2πσl
exp

(
−

y2

2σl

)
Pin
√

2πσl
exp

(
−

x2

2σl

)

=
P2

in

2πσ2
l

exp
(
−

x2

2σl
−

x2

2σl

)
= PinIin(x, y).

(2.7)

Consequently, Eq. (2.6) takes the form

jS(x, y) = KIin(x, y), where

K =
2V0α

(RLC (G0 + αPin) + 2)2 −
4V0α

2RLCPin

(RLC (G0 + αPin) + 2)3 .

(2.8)

It results from Eq. (2.8) that jS(Iin = 0) = 0. This contradicts the experimental results
which showed a weak but non-zero current flowing through the OASLM in darkness.
Since this range is out of consideration in the following, the mentioned difference between
the experiment and model can be neglected.

Equation (2.8) highlights an important result: the electric current density is linearly pro-
portional to the incident light intensity at any point of the illumination area. Thus, an
increase of the optical intensity induces a proportional electric current density. In terms of
electrodynamics, such an increase in current density growth correspondingly increases
the local electric field ~E which quantitatively is expressed by the differential Ohm’s Law
~jS = σ~E, where σ is the medium’s conductivity. As a consequence, the electric potential
difference between two points on the opposite sides of the illuminated LC-layer (see the
potentials ϕ1 and ϕ2 in Fig. 2.3) becomes ϕ1 − ϕ2 = ∆ϕ = dLCE. Summarising, one can
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derive the dependence of the electric potential difference at any point of the illuminated
area on the incident light irradiance according to ∆ϕ(x, y) =

dLCK
σ Iin(x, y).

Suppose that the OASLM is illuminated such that Iin(x, y) = const = I0 inside the area
x ∈ [x1; x2], y ∈ [y1; y2], and Iin(x, y) = 0 elsewhere [Fig. 2.6 (b)]. For this case Eq. (2.6)

needs to be transformed to the new illumination profile, for which
∞∫
−∞

∞∫
−∞

Iin(x, y)dxdy = Pin.

Particularly, power for uniform illumination is Pin = I0S , where S is the illuminated are,

here a square, and one immediately obtained
∞∫
−∞

Iin(x, y)dx
∞∫
−∞

Iin(x, y)dy =
x2∫

x1

I0dx
y2∫

y1

I0dy =

I2
0

x2∫
x1

dx
y2∫

y1

dy = I2
0S . The relationship between irradiance and the electric current density at

any point of the illuminated area takes the final form

jS =
2V0αI0

(RLC (G0 + αI0S ) + 2)2 −
4V0α

2RLCI2
0S

(RLC (G0 + αI0S ) + 2)3 .
(2.9)

Nonlinear current dependencies only arise for large light intensities, I > 10 W/m2, which is
outside the relevant range since for the retardation reaches saturation much before such
intensities, see Chapter 2.5. As in the OASLM description presented in [24], the maximal
illumination intensity did not exceed Imax = 1.5 W/m2 (for λ = 450 nm). Thus, it can be
assumed in the following that jS = KI0. Applying the same reasoning on an electric
field used for the Gaussian illumination, one obtains the same linear relationship for the
electric potential difference at the illuminated area on the local irradiance ∆ϕ =

dLCK
σ I0.

If the distribution of the incident irradiance is partially uniform such that one can distin-
guish square areas of the uniform illumination, as in Fig. 2.6 (c), and the OASLM reso-
lution allows to separate the areas well, then one can independently consider each area.
In such a case, Eq. (2.9) is assumed to be valid for each particular uniformly illuminated
area which means the applicability of the relationship jS(x, y) = KI0(x, y).

The maximal number of such distinguishable areas on the OASLM is determined by the
device’s resolution. According to [24], OASLM’s maximal spatial resolution is around 135
lp/mm (which corresponds to σOASLM = 3.5 µm). The spatial resolution is associated
to processes occurring at the PS layers. The illumination of the PS-layers induces the
internal photoelectric effect that increases the concentration of charge carriers at the
illuminated area. Mobility of the charge carriers results in diffusion, and the quantitative
characteristics of this carrier diffusion process is lateral diffusion coefficient Dl. It can be
calculated using the Einstein relation Dl = µkBT , where µ is the charge carrier mobility, kB

is Boltzmann’s constant and T is the absolute temperature. Here, the PS-layer manifests
p-type conductivity, where the charge carriers are positive holes whose lateral mobility is
µ = 5.4 × 10−2 [cm2 /(V × s)] (see [24] for details). The lateral diffusion coefficient Dl for
room temperature T = 300 [K] takes the value Dl = 1.4 × 10−3 [cm2/s].

Since the spatial charge carrier distribution gradually changes along positions in (x, y)
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Figure 2.7: LC molecule orientation: a natural state (panel (a)) and the twisted one in the
presence of an external voltage applied across the LC layer (panel (b)); (c) Dependence
of the birefringence on the applied voltage being typical for many kinds of LC mixtures
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curve).

due to carrier diffusion, the PS-layer conductivity varies accordingly. That means that the
electric field inside the LC-layer also continuously varies in space, and hence so does the
resulting electric potential difference ϕ(x, y). That is the dominant factor limiting spatial
resolution.

2.4/ FROM ELECTRIC PROCESSES TOWARDS THE OPTICAL RE-
SPONSE

Nematic liquid crystal molecules are rod-shaped, and the molecule’s refractive index is
different along its short and long axis. While in general they can move with respect to
each other, their long molecular axes usually remain aligned relative to each other [Fig.
2.7 (a)]. Furthermore, alignment layers on the front and backside of the LC cell induce
a global orientation of the LC molecules. For that, the alignment layers exhibit small
surface modulations, which result in a direction-aligned anchoring of the molecules to the
surface [24]. When an external electric field is applied, changes in the molecule alignment
occur [Fig. 2.7 (b)]. The LC molecule reorientation in turn causes a variation of the LC
birefringence ∆n. Panel (c) in Fig. 2.7 illustrates ∆n(Vext), which is typically obtained for
many types of nematic liquid crystal mixtures. Neglecting the fact that the LC-response
is observed for applied voltage values bigger than some threshold Vext > Vthr, ∆n(Vext)

usually follows the dependence ∆n(Vext) = (aVext+b)−1 +c. The phase retardation between
the ordinary and extraordinary components of the transmitted light, Γ = 2πdLC∆n/λ, can
therefore be represented as a function of the applied voltage. Taking into account the fact
that the applied voltage is equivalent to the electric potential difference between positions
on the opposite sides of the LC cell (the electric field distribution is assumed to be uniform
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Figure 2.8: Simplified illustration of the OASLM illuminated by a light source and the
relevant optical intensities.

at this moment), Vext = ∆ϕ, one can derive the dependence of the retardation Γ on the
electric potential difference ∆ϕ in the form

Γ(∆ϕ) =
2πdLC

λ

(
1

a∆ϕ + b
+ c

)
. (2.10)

In the OASLM case, the electric potential difference at any point ∆ϕ(x, y) is linearly
proportional on the incident irradiance I(x, y) at this point (see the previous section),
∆ϕ(x, y) = K0I(x, y) . The dependence of the retardation produced by the OASLM on
the incident irradiance becomes

Γ(x, y) =
2πdLC

λ

(
1

aK0I(x, y) + b
+ c

)
, (2.11)

or simply

Γ(x, y) =
1

αI(x, y) + β
+ γ, (2.12)

where α =
λaK0

2πdLC
, β =

λb
2πdLC

, γ =
2cπdLC

λ
. The validity of Eq. (2.12) is experimentally

examined in the next section.

Considering the individual responses of the left and right PS-layers to the illumination
intensity [Fig.2.8], one can rewrite Γ(I0) in the form Γ(Is), where Is is the summary light
intensity on the left and right PS-layers, Is = Ileft + Iright. If the OASLM is studied in the
transmissive regime, as in Fig. 2.8, then we ignore the low optical losses of the device
and assume Ileft = Iright = I0 and Is = 2I0. Consequently, Eq. (2.12) takes the form

Γ(x, y) =
1

αs2I0(x, y) + β
+ γ, (2.13)

where αs = α/2.
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2.5/ NONLINEAR SPATIAL LIGHT TRANSFORMATION

To experimentally examine the optical action of the OASLM, the experimental setup in Fig.
2.4 (b) has been modified, see Fig. 2.9. Here, microscope objective MO (Olympus UPlan
FL 4x/-0.13) and Lens 2 ( Thorlabs AC127-100-A-ML) are used for imaging the OASLM’s
surface by a camera (IDS U3-3482LE-M). Polarizer 3 only transmits the p-polarized part
of the optical field, and the OASLM’s rotation angle is ψ = π

4 [Rad]. The applied voltage
across the OASLM is V0 = 9 [V]. The s-polarization state of the light illuminating the

OASLM surface is described by the Jones vector

 0

E0y

. Using the matrix expression of

Eq. (2.1), the polarization state after transmission through the OASLM becomes

E1x

E1y

 =i sin(Γ)E0y

cos(Γ)E0y

. Since polarizer 3 transmits only p-polarization, the optical field imaged on the

camera surface takes the form

i sin(Γ)E0y

0

, with corresponding irradiance |i sin(Γ)E0y|
2 =

E2
0y sin2(Γ). Thus, the relationship between the incident light intensity Iin and the detected

irradiance is Iout = Iin sin2(Γ).

The camera records the polarization filtered irradiance at the OASLM surface as a matrix
of pixels, and the optical image resolution is limited by the size of these camera pixels.
The pixel size for the used camera is lpixel = 2.2 µm, then the pixel area is S pixel = l2pixel.
The overall power Pin is an integral quantity, Pin =

∑
Pin

i, j. Taking into consideration the
summary power Pin and the corresponding scanned irradiance distribution, the power at
each camera pixel can be calculated. Then the transition from the light power to the
light intensity can be carried out: I in

i, j = Pin
i, j/S pixel and Iout

i, j = Pout
i, j /S pixel. This allows to

determine the retardation for each camera pixel by determining the irradiance distributions
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Figure 2.9: Experimental setup developed for the exploration of OASLM’s optical re-
sponse to the blue laser illumination.
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Figure 2.10: (a-b) Scanned by the camera brightness spatial distributions of the incident
light beam in front of the OASLM (panel (a)) and of the processed light beam (panel (b)).
Local maxima correspond to the retardation Γ = mπ

2 while the retardations at the local
minima are Γ = mπ. (c) Experimentally established dependence of the retardation on
the incident light intensity built on the base of local extrema in panel (b) (black circles)
and the experimental data for V0 = 9 [V] taken from the paper [24] (black squares). Both
dependences are fitted using the function Γ(Iin) = (αIin + β)−1 + γ (see Eq. (2.12)). The
parameters estimated by means of curve-fitting are: α = 0.234, β = 0.052, γ = −0.55 for
the red solid line (curve-fitting of the current experiment), and α = 2.96, β = 0.13, γ = 0.72
for the blue solid line (curve-fitting of the experiment in [24]).

of the incident and transmitted light beams, see Fig.2.10 (a,b). The incident light has a
Gaussian distribution, while the output irradiance distribution possesses distinctive rings.
The phase retardation is Γ = mπ

2 in the points where the output light has local maxima
(sin2(Γ) = 1 in these points). Similarly, Γ = mπ in the points of local minima. Calculating
the incident light intensity in these points, the dependence of the retardation, Γ, on the
incident light intensity, Iin, can be obtained, see Fig.2.10 (c).

The measured Γ(Iin) is similar to the results presented in [24]. However, quantitative
difference are present. This is due to the fact that particular areas of the OASLM surface
have similar but not exactly the same response to the light illumination.

Curve-fitting using the least squares method allows to estimate the applicability of OASLM
model using Eq. (2.12). As can be seen in Fig. 2.10 (c), the experimental data is well
approximated by Eq. (2.12).

Furthermore, the OASLM under green illumination was studied. For this purpose the light
source and the collimation scheme of the experimental setup in Fig. 2.8 were modified
(see Fig. 2.11 (a)). The experimental dependence Γ(Iin) was measured and fitted via the
same approach as for the OASLM under blue illumination [Fig. 2.11 (b)]. The experiment
revealed that the OASLM sensitivity to green light is much lower than for blue illumination.
However, the functional dependence persists.

All results of the OASLM parameter estimation are summarized in table 2.1.
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Figure 2.11: (a) Modified block of the experimental setup in Fig.2.9 used for the study of
the OASLM under green illumination. This option involves the green laser diode DJ532-
10 (λ=532 nm) and two lenses C110TMD-A (Lens1) and AC254-035-A-ML (Lens2) used
for the light collimation. All the other setup elements are the same as in Fig.2.9; (b)
Experimentally obtained dependence Γ(Iin) for the green illumination of the OASLM (black
circles) and the result of curve-fitting using Eq. (2.12) (red solid curve). The parameters
estimated by means of curve-fitting are: α = 1.97 × 10−4, β = 0.0486, γ = −13.17.

Dependence on the incident light inten-
sity, Iin (see Eq. (2.12))

OASLM under blue
light (experimental data
taken from[24])

αb = 2.96,
βb = 0.13,
γb = 0.72

OASLM under blue light
(current experiment)

αb = 0.234,
βb = 0.052,
γb = −0.55

OASLM under green
light (current experi-
ment)

αg = 1.97 × 10−4,
βg = 0.0486,
γg = −13.17

Table 2.1: Summary results of the OASLM model parameter estimation

2.6/ OPTICAL FEEDBACK

In the previous sections, the OASLM is considered as a light-processing device. Next,
the OASLM is discussed as an element for the implementation of autonomous dynamical
systems. For this purpose, one can create a feedback loop through which the optical sig-
nal transmitted by the OASLM returns back and through that modifies the instantaneous
OASLM state. A simple mirror can be used to realize such feedback, as schematically
illustrated in Fig. 2.12. As before, the light source is characterized by the Jones vector

~E0 =

E0x

E0y

. After passing through the OASLM it transforms into ~E1 =

E1x

E1y

 at the right

PS layer, and this optical field is reflected by the mirror and returns to the right PS layer,
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Figure 2.12: OASLM under illumination and optical feedback implemented through an
external mirror. In contrast to Fig. 2.1, the system with feedback implies the presence of
four optical fields E0,1,2,3.

where it is described by ~E2 =

E2x

E2y

. Finally, the optical wave passes through the OASLM

again and is expressed by ~E3 =

E3x

E3y

 at the left PS layer.

To avoid confusing between experimental studies and numerical simulations, all the math-
ematical models studied below are considered in the dimensionless form, where all the
parameters and variables are normalized by the corresponding units. For this reason,
all the quantities and parameters of mathematical models are mentioned later without
dimensions.

2.7/ INCOHERENT ILLUMINATION

Suppose that the OASLM is illuminated by an incoherent light source, for instance, by a
light-emitting diode (LED) [Fig. 2.13]. The OASLM feedback is implemented by a mirror
whose field-reflectivity is R, and we assume that the incoherent light source’s coherence
time is small compared to the external cavities’ roundtrip time. Consequently, interference
between the incident light wave and the reflected one does not occur. Again, here we
consider a PS with a thickness significantly smaller than the wavelength. If there is no
additional selective element between the OASLM and mirror, the resulting light irradiance
at the left and right PS-layers are Ileft = I0(1 + R2) and Iright = I0(1 + R2) does not depend
on the OASLM’s retardation. For this reason the optical setup in [Fig. 2.13] includes a
polarizer between the OASLM and mirror, which allows to create functional dependences
Ileft(Γ) and Iright(Γ).
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Figure 2.13: OASLM under incoherent illumination of a blue LED and feedback created
by a mirror and a polarizer transmitting p-polarization.

The system in Fig.2.13 is investigated using a constant ψ = π
4 + πm, where m ∈ Z. The

injected blue light field is s-polarized, ~E0 =

E0

0

. When the light beam passes through

the OASLM first time, its state becomes ~E1 = E0 exp(iφ0)

 cos(Γ)

i sin(Γ)

. After that, the po-

larizer transmits only s-polarization component, reaches the mirror and returns to the
right PS-layer. The optical phase shift associated with the propagation along the exter-
nal cavity is φ1, and the polarization state of light which returns to the right PS-layer is

~E2 = RE0 exp(i(φ0 + φ1))

 0

i sin(Γ)

. The light beam passes through the OASLM again

and its Jones vector at the left PS-layer becomes ~E3 = RE0 exp(i(2φ0 + φ1))

− sin2(Γ)
i
2

sin(2Γ)


, and the intensities of the light fields are |E1|

2 = I0, |E2|
2 = |E3|

2 = I0R2 sin2(Γ). Since
interference effect can be neglected, the intensities at the left and right PS-layers are
Ileft = |E0|

2 + |E3|
2 = I0

{
1 + R2 sin2(Γ)

}
and Iright = |E1|

2 + |E2|
2 = I0

{
1 + R2 sin2(Γ)

}
, leading to

an overall detected intensity of Is = Ileft + Iright = 2I0
{
1 + R2 sin2(Γ)

}
.

Light wave propagation along the feedback loop is much faster than the OASLM’s re-
sponse time. That means the OASLM’s temporal dynamics can be written in the differ-
ential form Γ + εdΓ

dt = Γ(Is), where ε is OASLM’s response time. The function Γ(Is) is
determined according to Eq. (2.13), and the dynamical system equations are

ε
dΓ

dt
= −Γ +

1
αIs + β

+ γ, Is = 2I0
{
1 + R2 sin2(Γ)

}
. (2.14)

Let’s consider fixed parameters α = 0.117, β = 0.052, γ = −0.55 (a set of OASLM’s



38 CHAPTER 2. OPTICALLY-ADDRESSED SPATIAL LIGHT MODULATOR

0 5 10 15 20

-2

0

2

4

6

8

0.01 0.1 1.0 2.0

0.0

5.0

10.0

15.0

20.0

(a) (b)
Γ

f
(Γ

)

I0

Γ∗ Untable equilibria 

  Stable equilibria 

Figure 2.14: System (2.14): (a) The evolution of the right-hand side function f (Γ) for
Eq. (2.14) caused by the injected light intensity growth: I0 = 0.02 (blue dashed curve),
I0 = 0.038 (red solid curve), I0 = 0.05 (dark-green dashed curve), I0 = 0.088 (brown solid
curve), I0 = 0.13 (magenta dashed curve), I0 = 0.17 (orange solid curve), I0 = 0.25 (cyan
dashed curve), I0 = 0.35 (green solid curve), I0 = 0.5 (red dashed curve), I0 = 0.9 (blue
solid curve), I0 = 1.5 (brown dashed curve); (b) Phase-parametric diagram reflecting
the existence, appearance, disappearance and motion of steady states for increasing
parameter I0. System parameters are: α = 0.117, β = 0.052, γ = −0.55, ε = 1, R = 0.95.

parameters experimentally obtained in Sec. 2.5 for the blue illumination, see table
2.1), R = 0.95 and varying I0. Increasing I0 gives rise to multiple transitions be-
tween monostable and bistable steady-state regimes occurring via the saddle-node bi-
furcation. This process is illustrated in the evolution of the right-hand side function
f (Γ) = −Γ + (2αI0(1 + R2 sin2(Γ)) + β)−1 + γ for Eq. (2.14) [Fig. 2.13 (a)] and the corre-
sponding phase-parametric diagram [Fig. 2.13 (b)]. There, different colors correspond
to different I0. The transition from monostability to bistability manifests itself through the
appearance of a pair of stable and unstable steady states, while the initially monostable
fixed point does not bifurcate. The transition from bistability to monostability represents
the opposite process when the unstable steady state approaches either fixed point, col-
lides and finally disappears with it. The bistable dynamics of Eq. (2.14) is observed in the
parameter ranges I0 ∈ [0.035 0.042], I0 ∈ [0.076 0.105], I0 ∈ [0.147 0.2], I0 ∈ [0.3 0.405],
and I0 ∈ [0.85 0.95], while the system is monostable elsewhere.

If the polarizer in Fig. 2.13 is horizontally oriented, the system equation becomes ε dΓ
dt =

−Γ + (2αI0(1 + R2 cos2(Γ)) +β)−1 +γ, yet the dynamics remains to be qualitatively the same:
the saddle-node bifurcations of steady states are possible, but the bifurcation parameter
values differ.

Crucially, here we talk about the OASLM as a single oscillator, i.e. without coupling
between different spatial positions of the the device. For such a system, any other kinds
of the oscillatory behaviour besides the existence of one stable steady state and the
coexistence of two stable equilibria cannot be found for systems described by Eq. (2.14).
To extend a manifold of oscillatory regimes demonstrated by the OASLM with the optical
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feedback, one will need to rely on the interference effects provided by coherent light.

2.8/ COHERENT ILLUMINATION

Suppose that the OASLM is illuminated by laser light [Fig. 2.15], which usually has coher-
ence lengths significantly larger than meters. This implies the injected light wave’s initial
phase is assumed to be constant during the time of propagation through the OASLM and
between the OASLM and the mirror. Again, here we consider a PS with a thickness sig-
nificantly smaller than the wavelength. In contrast to the incoherent illumination case, the
optical setup in Fig. 2.15 does not contain the polarizer between the OASLM and the mir-
ror. Due to the now present interference between coherent optical fields, the optical fields
at the left and right PS layers are ~Eleft = ~E0 + ~E3 and ~Eright = ~E1 + ~E2 , respectively, with

their corresponding overall intensity I = Ileft + Iright =
∣∣∣∣~Eleft

∣∣∣∣2 +
∣∣∣∣~Eright

∣∣∣∣2. Generally, the sum-
mary intensity is a function of the OASLM parameters including the rotation angle, of the
feedback characteristics, and of the laser light intensity and polarization state. Concrete
configurations are studied below.

2.8.1/ OASLM FOR AMPLITUDE MODULATION

Consider the model of the optical setup in Fig. 2.15 for the following assumptions: the

OASLM’s rotation angle is ψ = π/4, the injected light polarization state is ~E0 =

E0

0

, and

ψ
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Figure 2.15: OASLM under coherent illumination of a blue laser and mirror feedback.
In contrast to the system depicted in Fig. 2.14, the system with coherent illumination
involves interference between fields E0,3 on the left side of the OASLM, and between
fields E1,2 on the right side.
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the Jones vectors for the light fields ~E1,2,3 are

~E1 = E0 exp(iφ0)

 cos(Γ)

i sin(Γ)

 , ~E2 = RE0 exp(i(φ0 + φ1))

 cos(Γ)

i sin(Γ)

 ,
~E3 = RE0 exp(i(2φ0 + φ1))

 cos(2Γ)

i sin(2Γ)

 .
(2.15)

The phase retardation Γ appears in the expressions for the complex field amplitudes. The
OASLM therefore is operated in the amplitude modulation configuration, and we obtain

~Eleft = ~E0 + ~E3 = E0

1 + R exp(i(2φ0 + φ1)) cos(2Γ)

iR exp(i(2φ0 + φ1)) sin(2Γ)

 ,
~Eright = ~E1 + ~E2 = E0(exp(iφ0) + R exp(i(φ0 + φ1)))

 cos(Γ)

i sin(Γ)

 ,
(2.16)

with
Ileft = |~Eleft|

2 = I0
{
1 + R2 + 2R cos(2φ0 + φ1) cos(2Γ)

}
,

Iright = |~Eright|
2 = I0

{
1 + R2 + 2R cos(φ1)

}
.

(2.17)

Taking into account that the global optical intensity controlling the OASLM state is Is =

Ileft + Iright, the model equations become

ε
dΓ

dt
= −Γ +

1
αIs + β

+ γ,

Is = 2I0
{
1 + R2 + R cos(2φ0 + φ1) cos(2Γ) + R cos(φ1)

}
.

(2.18)

The nonlinearity of Eq. (2.18) is most pronounced at φ1 = mπ, φ0 = n(1 + 1/2)π, where
m, n ∈ Z. In this case, the corresponding expression for the summary light irradiance
takes the form Is = 2I0

{
1 + R2 − R + R cos(2Γ)

}
, and we use R = 0.95, ε = 1, α = 0.117,

β = 0.052, γ = −0.55. In such a case, increasing I0 gives rise to a cascade steady-state
saddle-node bifurcations which is indicated in the evolution of the right-hand side function
f (Γ) = −Γ + (2αI0(1 + R2 −R + R cos(2Γ)) + β)−1 + γ for Eq. (2.18), see Fig. 2.16 (a), and the
corresponding phase-parametric diagram in Fig. 2.16 (b). In contrast to the incoherent
system described by Eq. (2.14), the saddle-node bifurcations in Eq. (2.18) realizes the
transition from the monostability all the way to the coexistence of six steady states. The
bifurcations occur at I0 ≈ 0.0205, I0 ≈ 0.054, I0 ≈ 0.11, I0 ≈ 0.21, I0 ≈ 0.48. In contrast to
the case of incoherent illumination, the saddle-node bifurcations in Eq. (2.18) result only
in the appearance of new steady states, and their associated basins of attraction.
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Figure 2.16: (a) The evolution of the right-hand side function f (Γ) for Eqs. (2.18) and
(2.22) caused by increasing the parameter I0: I0 = 0.003 (blue solid line), I0 = 0.04
(red solid line), I0 = 0.08 (green dashed line), I0 = 0.15 (magenta solid line), I0 = 0.4
(cyan dashed line), I0 = 0.7 (orange solid line); (b) Phase-parametric diagram reflecting
the existence, appearance, disappearance and motion of steady states for increasing
parameter I0 (stable steady states are coloured in blue, the unstable ones are coloured
in red). System parameters are: α = 0.117, β = 0.052, γ = −0.55, ε = 1, R = 0.95, φ0 = π,
φ0 = π/2.

2.8.2/ OASLM FOR PHASE MODULATION

Next, the system in Fig. 2.15 is studied for an OASLM rotation angle ψ = mπ, m ∈ Z, and

the injected light Jones vector ~E0 =

E0

0

. The Jones vectors for the light fields are

~E1 = exp(iφ0)

E0(cos(Γ) + i sin(Γ))

0

 = exp(i(φ0 + Γ))

E0

0

 ,
~E2 = R exp(i(φ0 + φ1 + Γ))

E0

0

 , ~E3 = R exp(i(2φ0 + φ1 + 2Γ))

E0

0

 .
(2.19)

Here, phase retardation Γ is present only in the optical phase-term exp(i(...)) which de-
termines the light wave phase for, both, x− and y−components. Therefore, the explored
configuration corresponds to the phase modulation configuration of the OASLM, for which
the optical fields at the left and right PS layers are

~Eleft = ~E0 + ~E3 =

E0
{
1 + R exp(i(2φ0 + φ1 + 2Γ))

}
0

 ,
~Eright = ~E1 + ~E2 =

E0
{

exp(i(φ0 + Γ)) + exp(i(φ0 + φ1 + Γ))
}

0

 ,
(2.20)
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with the corresponding light intensities

Ileft = I0b
{
1 + R2 + 2R cos(2φ0 + φ1 + 2Γ)

}
,

Iright = I0b
{
1 + R2 + 2R cos(φ1)

}
.

(2.21)

The summary light intensity is Is = Ileft + Iright, and then the system’s dynamical equation
is

ε
dΓ

dt
= −Γ +

1
αIs + β

+ γ,

Is = 2I0
{
1 + R2 + R cos(φ1) + R cos(2φ0 + φ1 + 2Γ)

}
.

(2.22)

When the system phase parameters are φ1 = mπ, φ0 = n(1 + 1/2)π, where m, n ∈ Z, the
summary light intensity takes the form Is = 2I0

{
1 + R2−R + R cos(2Γ)

}
. In such a case, Eqs.

(2.22) and (2.18) fully correspond and all bifurcation phenomena caused by increasing
the parameter I0 (see Fig. 2.16) are identical up to the degree of a direct quantitative
correspondence.

2.9/ OASLM UNDER SIMULTANEOUS TWO-COLOR ILLUMINATION

Suppose that the OASLM is simultaneously illuminated by coherent blue and green light,
as illustrated in Fig. 2.17. Again, here we consider a PS with a thickness significantly
smaller than the wavelength. One can write the PS-layer resistance as a function on
the corresponding incident light powers Pin

b and Pin
g as RPS = (G0 + αbPin

b + αgPin
g )−1. The

expression for the current through the OASLM then takes the form (similar to Eq. (2.2)):

iS =
V0

RLC + 2RPS
=

V0

RLC + 2(G0 + αbPin
b + αgPin

g )−1
. Following to the same logic as in Secs.

2.3 and 2.4 and repeating all the procedures presented there, one obtains the following
expressions for the retardation of the green and blue light produced by the OASLM at
spatial position

Γb(x, y) =
1

αbIb(x, y) + α∗gIg(x, y) + βb
+ γb,

Γg(x, y) =
1

α∗bIb(x, y) + αgIg(x, y) + βg
+ γg,

(2.23)

where Ib and Ig are the light combined irradiance at the left and right PS-layers of the
blue and green lights at the left and right PS-layers, the expressions for a∗g and a∗b will be
derived below. For the configuration in Fig. 2.17, the summary irradiances are Ib = 2I0b

and Ig = 2I0g.

Due to the different wavelengths, the same birefringence produces different retardations
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Figure 2.17: OASLM under simultaneous blue and green illumination.

for light with different colors according to
Γb =

2πd
λb

∆n,

Γg =
2πd
λg

∆n,
⇒ Γg =

λb

λg
Γb. (2.24)

If the OASLM operates in the saturation regime at Ib → ∞ or Ib → ∞, then the corre-
sponding retardation of the blue light tends to the value Γb → γb. Meanwhile, the same
birefringence at the illuminated OASLM area corresponds to the green light retardation
Γg → γg =

λb
λg
γb. If the considered irradiance is negligibly small, Ib → 0 and Ib → 0,

then the retardation values are Γg →
1
βg

+ γg and Γb →
1
βb

+ γb. Taking into account that

Γg =
λb

λg
Γb and γg =

λb
λg
γb, one obtains that βg =

λg
λb
βb. Substituting the relationships for the

parameters γb,g and βb,g into Eq. (2.23), parameters α∗b,g can be identified as α∗g =
λg
λb
αg,

α∗b =
λb
λg
αg. Finally, the retardation accumulated upon transmission for the different wave-

lengths is

Γb(x, y) =
1

αbIb(x, y) +
λg

λb
αgIg(x, y) + βb

+ γb,

Γg(x, y) =
1

λb

λg
αbIb(x, y) + αgIg(x, y) + βg

+ γg,

(2.25)

where parameters λb,g, βb,g and γb,g can be established by experimental characterization
in the same way as in Sec. 2.5.

Here, an important aspect should be noted. One cannot relate the parameter values for
γb,g and βb,g estimated in physical experiments (see Sec. 2.5) as γg =

λb
λg
γb and βg =

λg
λb
βb.

This is due to the fact that different OASLM’s areas were illuminated in the experiments
with the green and blue lasers. As noted in Sec. 2.5, the OASLM’s response to the same
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Figure 2.18: OASLM under simultaneous blue and green illumination when the blue light
beam is reflected by the dichroic mirror and creates feedback.

illumination varies depending on the illuminated sector of the OASLM surface.

For the two-color illumination, the configuration study is the OASLM illuminated by blue
and green lasers and blue light feedback [Fig. 2.18], and such wavelength discriminat-
ing feedback can be implemented using a dichroic mirror. Here it is assumed that the
dichroic mirror fully transmits the green light beam and fully reflects the blue one. The
same interference phenomenon as in the previous section occurs in the context of the
blue light, while the green beam passes through the OASLM only once. Interference be-
tween blue and green light waves can be neglected, since the blue and green lasers are
independent light sources and already less than a nanometer spectral detuning results in
beat-frequencies beyond the detection range of standard electronics.

For blue laser illumination the Jones vector is ~E0 =

E0

0

 and the OSALM operating in the

amplitude modulation configuration (ψ = π/4), one obtains

ε
dΓb

dt
= −Γb +

1

αbIb + 2
λg

λb
αgI0g + βb

+ γb,

Ib = 2I0b
{
1 + R2 + R cos(2φ0 + φ1) cos(2Γ) + R cos(φ1)

}
.

(2.26)

The model corresponding to the OASLM in the phase modulation configuration takes the
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form
ε

dΓb

dt
= −Γb +

1

αbIb + 2
λg

λb
αgI0g + βb

+ γb,

Ib = 2I0b
{
1 + R2 + R cos(φ1) + R cos(2φ0 + φ1 + 2Γ)

}
.

(2.27)

The term 2
λg

λb
αgI0g plays the important role of an additional parameter that allows to vary

a slope of the OASLM’s response function Γ(Ib), and I0g is used in the next chapter to
enable control over the precise nature of the bifurcation phenomena observed in the two-
color OASLM-based system.

The equations for the OASLM under blue and green incoherent illumination are simpler
than ones for the coherent case. To demonstrate this, we suppose that the light sources
in Fig. 2.18 operate in the LED regime and the experimental setup contains a vertically
oriented polarizer between the OASLM and the mirror, just as in Fig. 2.13. As in the

previous sections, the injected blue light polarization state is assumed to be ~E0 =

E0

0

.
Then the corresponding model equation becomes

ε
dΓb

dt
= −Γb +

1

αbIb + 2
λg

λb
αgI0g + βb

+ γb,

Ib = 2I0b
{
1 + R2 sin2(Γ)

}
.

(2.28)

Thus, the model does not involve terms including the phases φ0 and φ1.

2.10/ LINEARIZATION OF RETARDATION OF THE OASLM UNDER

TWO-COLOR ILLUMINATION

Returning to Fig. 2.17 and considering a constant I0g while Ib varies due to the OASLM’s
phase retardation and interference between illumination and feedback. In such a case the
dependence of the blue light-wave’s retardation on Ib has the distinctive shape (see blue
curve in Fig. 2.19) given by the properties of function Γb(Ib, Ig) in Eqs. (2.25). We can then
simplify the OASLM’s response Γb(Ib) for a fixed I0g if the dynamic variations for Γb(Ib, Ig)

is small compared to the retardation offset Γ∗ by using the linearization Γb(Ib) = Γ∗ − κIb

(red curve in Fig.2.19). In case Ib → 0, the linear function tends to Γ∗. The linear model
for the blue light retardation produced by the OASLM under simultaneous blue and green
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Figure 2.19: Schematic illustration to the linear approximation of the OASLM’s response.

illumination takes the form

Γb = Γ∗ − κIb, where Γ∗ =
1

2
λg

λb
αgI0g + βb

+ γb. (2.29)

The linearized two-color OASLM model with feedback as in Fig. 2.18becomes ε
dΓb
dt =

−Γb + Γ∗ − κIb(I0b,R, φ1, φ0,Γb). Specifically, for the OASLM in the amplitude modulation
regime (see Eq. (2.26)) the dynamical model is

ε
dΓb

dt
= −Γb + Γ∗ − 2κI0b

{
1 + R2 + R cos(2φ0 + φ1) cos(2Γ) + R cos(φ1)

}
. (2.30)

Similarly, the linearized model corresponding to the phase modulation regime (see Eq.
(2.27)) becomes

ε
dΓb

dt
= −Γb + Γ∗ − 2κI0b

{
1 + R2 + R cos(φ1) + R cos(2φ0 + φ1 + 2Γ)

}
. (2.31)

In the limit case R→ 1, φ0 = π/2, φ1 = π, both, Eqs. (2.30) and (2.31) are transformed into
the Ikeda-family oscillator ε dΓb

dt = −Γb + Γ∗ − 4κI0b cos2(Γb).

Applying the linear approximation to the case of incoherent illumination (see Eq. (2.28)),
one obtains

ε
dΓb

dt
= −Γb + Γ∗ − 2κI0b

{
1 + R2 sin2(Γ)

}
. (2.32)

2.11/ POTENTIAL MODIFICATIONS OF THE OASLM

An important question is how one can meaningfully modify, and how can one simplify
the OASLM’s construction without principal changing in the dynamics of OASLM-based
devices. The first option implies the substitution of new photosensitive and birefringent
materials. Using C-doped a-Si:H films as a photoconductor (see [149]) provides for an
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OASLM spatial modulation resolution of the retardation up to 370 lp mm−1. A resolution
527 lp mm−1 was achieved using a nematic LC with C60-doped poly(N-vinylcarbazole) at
an applied DC-voltage 80 V (see [172]). As reported in [150], the substitution of ZnO-
based PS-layers allows to sufficiently increase the device resolution up to 825 lp mm−1.

The second option for the OASLM-modification consists in changing the OASLM struc-
ture. As shown below, such an approach simplifies the ordinary differential equations of
the OASLM under optical feedback without losing bifurcation transitions observed in the
initial model.

2.11.1/ OASLM WITH SINGLE PS-LAYER

The nonlinearity of Eqs. (2.26) and (2.27) is most pronounced at φ1 = mπ, φ0 = n(1 +

1/2)π, where m, n ∈ Z. The second condition corresponds to the destructive interference
of fields ~E1 and ~E2 (see Fig. 2.18). In this case, the action of the right OASLM PS-
layer is suppressed. This fact suggests that the OASLM architecture for a dynamical
system based on optical feedback can be further simplified without loss of bifurcation
transitions by using only a single PS-layer, see Fig. 2.20 (a), and parameters α, β, and γ

estimated before can be applied for the single-PS-layer model. The difference between
the OASLMs with single- and double-PS-layer consists in the light intensity controlling the
OASLM state. For the OASLM with two PS-layer the controlling intensity is a sum of two
intensities, Is = Ileft + Iright, which gives Is = 2I0 for the the case without feedback (see Fig.
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Figure 2.20: (a) Illustration of the single-PS-layer OASLM illuminated by a light source; (b)
Single-PS-layer OASLM under simultaneous blue and green illumination when the blue
light beam is reflected by the dichroic mirror and creates feedback.
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2.8). In a case of the single PS-layer OASLM, the controlling intensity equals only to Ileft

or Iright.

Consider the single-PS-layer OASLM simultaneously illuminated by green and blue lasers
with feedback got the blue light, see Fig. 2.20 (b). Suppose that the OASLM rotation

angle is ψ = mπ (where m ∈ Z), and the injected blue light Jones vector is ~E0 =

E0

0

 .

The expressions for the optic fields are the same as in the case of the OASLM with two
PS-layers (see Eqs. (2.19)) as well as the summary field at the PS-layer ~Eleft (see the
expression for ~Eleft in Eqs. (2.20)). Considering the phase-modulation configuration, the
blue light irradiance at the single PS-layer and the system equation become

ε
dΓb

dt
= −Γb +

1

αbIb +
λg

λb
αgI0g + βb

+ γb,

Ib = I0b
{
1 + R2 + 2R cos(2φ0 + φ1 + 2Γ)

}
.

(2.33)

To simplify the system given by Eq. (2.33), the green light source is excluded from the
setup in Fig. 2.20 (b), I0g = 0. For 2φ0 + φ1 = 2mπ, where m ∈ Z, and reflection R

being close to unity, the system dynamics is very close to the one obtained from Eqs.
(2.18) and (2.22). Qualitatively, the bifurcation transitions caused by increasing I0b are
the same: one observes the steady-state saddle-node bifurcations corresponding to the
transition ’monostability-bistability-threestability’. Thus, at R = 0.95 the transformations of
the right-hand side function f (Γb) = −Γb + (αbI0b(1 + R2 + 2R cos(2φ0 + φ1 + 2Γ)) + βb)−1 + γb

for Eq. (2.33), and the corresponding phase-parametric diagram are very close to the
ones presented in Fig. 2.16 for Eqs. (2.18) and (2.22) at φ0 = π/2, φ1 = π, R = 0.95.
The quantitative difference of bifurcation parameter values I0b does not exceed 1−2 % as
well as the difference in the steady state positions at fixed I0b. Moreover, in the limit case
R→ 1, φ0 = π/2, φ1 = π, Eqs. (2.18) and (2.22) and model (2.33) at I0g = 0 fully coincide.

Thus, one can conclude that this simplification of the OASLM does not qualitatively
change the bifurcation phenomena, and the corresponding dynamical regimes in the
system with feedback and coherent illumination. For the system involving incoherent
illumination (Eq. 2.28) this modification also does not principally transform the dynamics.
In such a case, the equation for the single-PS-layer OASLM becomes

ε
dΓb

dt
= −Γb +

1

αbIb +
λg

λb
αgI0g + βb

+ γb,

Ib = I0b
{
1 + R2 sin2(Γ)

}
.

(2.34)

The only difference between Eqs. (2.28) and (2.34) is a factor of 2 in the terms for the
combined optical irradiance.
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2.12/ CONCLUSION

Based on the results presented in [24], the OASLM was considered as a birefringent wave
plate the phase retardation of which nonlinearly depends on the incident light intensity.
The exploration started from the characterization of the single OASLM under green and
blue illumination. The carried out experiments have shown that the optical response of
the particular OASLM areas depends only on the illumination irradiance, wavelength (the
larger the incident light wavelength the weaker the OASLM sensitivity) and the OASLM ro-
tation angle. The device sensitivity to the polarization state and to the coherent properties
of the incident light has not been detected.

Based on the experimental study and further characterisation of the OASLM in terms of
electronics and optics, the OASLM model has been developed and the OASLM param-
eter values have been estimated for the device under blue and green illumination. The
resulting device model describes the electric and optical processes inside the OASLM
well across a wide range of the incident light power.

After the development of single-OASLM model, a dynamical system for the OASLM with
feedback formed by the reflected light beam has been derived. The first case under
consideration implies the single-colour illumination. The second modification describes
the OASLM under simultaneous illumination of two independent light sources with dif-
ferent wavelengths of the injected light. All the derived dynamical models exhibit the
saddle-node bifurcations of steady states. If the OASLM driven by feedback is illumi-
nated by incoherent light, the system exhibits only monostable and bistable regimes. In
such a case, the saddle-node bifurcations result in appearance and disappearance of
steady states. In contrast, for coherent illumination the each further saddle-node bifurca-
tions gives rise to the appearance of a new attractor. Thus, the transition ’monostability-
bistability-threestability-...-six-stability’ occurs. Any other transitions except of the saddle-
node bifurcations have not been revealed (the possibility to observe other bifurcations is
analysed in the further chapter).

Finally, it was analysed how the OASLM could be modified to simplify its construction and
to improve its characteristics. Excluding either PS-layer in most relevant cases mostly
only decreases the OASLM’s sensitivity in a transmissive regime (feedback is absent) and
does not induce the significant changes in the dynamics of the system with feedback.

During all the experiments the OASLM’s electrical power consumption did not exceed 1
µW, and the operating range of the incident light power did not exceed 0.25 µW for λ
= 450 nm and 1 mW for λ = 532 nm in an area of 1 mm2. Moreover, increasing the
incident light power of 150 nW for λ = 450 nm and of 40 µW for λ = 532 nm is enough
for the light retardation change π in the area 1 mm×1 mm. In contrast to electronically-
addressed spatial light modulators, the OASLM does not need any supporting equipment
except of the DC-power supply that could be provided by a 9 V-battery and is hence
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Figure 2.21: Evolution of the OASLM response to invariable Gaussian illumination (the
corresponding experimental setup is depicted in Fig. 2.9): (a) initial moment; (b) after 40
minutes; (c) after 80 minutes; (d) after 130 minutes.

autonomous. Lateral carrier diffusion being responsible for local coupling determines the
maximum possible number of nodes up to 104 nodes per mm2. Thus, such OASLMs are
promising candidates for the implement of autonomous small-size PNNs with ultra low
energy consumption. In particular, creating a cascade of several OASLMs is potentially
useful for the feed-forward PNN implementation while the system with coherent feedback
seems to be attractive in the context of recurrent PNNs.

However, the prospects for OASLM practical application are restrained by a destructive
effect. The OASLM optical response to long-term irradiation unfortunately was not stable.
After several hours of experiments, the spatial distribution of the retardation produced
by OASLM becomes non-uniform and independent on the incident light intensity, see
Fig.2.21. After that, the illuminated particular OASLM area cannot be used anymore. The
reason for the observed OASLM response degradation consists in the ionic contamina-
tion, which occurs when a LC-based OASLM is driven by a DC-power supply [173, 174].
However, it is trivial to modify the OASLM’s structure such that it has a shorter electrical
response time, which in turn allows for operating the device in an AC mode. Under such
conditions, this deteriorating effect is entirely avoided.



3

OASLM-BASED NONLINEAR SYSTEMS

It has been shown in Chap. 2 that OASLM-based systems with optical feedback can
exhibit the saddle-node bifurcation of steady states. In the current chapter the objective
is the identification of other bifurcations that occur in the studied systems, and which
conditions must be fulfilled for that. Since the systems implying two-color illumination
have one more parameter and hence are more flexible. The study therefore is focused on
optical OASLM setups containing two light sources.

The models described in Chap. 2 are single oscillators governed by real variables. Three
kinds of bifurcation transition can be observed in this class of dynamical systems: the
pitchfork bifurcation, the saddle-node bifurcation and the transcritical bifurcation. All three
bifurcations are characterised by their normal forms. The main question addressed in this
chapter is whether one can implement the three possible bifurcations in OASLM-based
optical oscillators such that the dynamical equations precisely correspond to the respec-
tive normal forms. To answer this question, the dynamical system’s ODE’s are developed
as a Taylor series. After that, the conditions for concrete bifurcations are mathematically
derived. Finally, the conclusions on the possibility to implement these bifurcations are
drawn.

3.1/ OASLM UNDER INCOHERENT TWO-COLOR ILLUMINATION

Consider Eq. (2.28) for the OASLM with feedback in the presence of blue and green
incoherent illumination. To simplify the following mathematical derivations the system’s
response time ε is set to unity. The system is described by the dynamical variable of the
blue light retardation Γb, and for simplicity of the notations we use in the following Γb = Γ,
as well as βb = β and γb = γ. The right-hand side function f (Γ) is developed until the
cubic function fT(Γ) using the Taylor series around some point Γ0

fT(Γ) = a + b(Γ − Γ0) + c(Γ − Γ0)2 + d(Γ − Γ0)3. (3.1)

51
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The Taylor series coefficients are a = f (Γ0), b = f ′(Γ0), c = 1
2 f ′′(Γ0), d = 1

6 f ′′′(Γ0), where
f ′ =

d f
dΓ

, f ′′ =
d2 f
dΓ2 and f ′′′ =

d3 f
dΓ3 . The right-hand side function of Eq. (2.28) takes the form

f (Γ) = −Γ +

(
αbIb + 2

λg

λb
αgI0g + β

)−1

+ γ, where Ib = 2I0b
{
1 + R2 sin2(Γ)

}
. The corresponding

Taylor series approximation becomes

fT(Γ) = a + b(Γ − Γ0) + c(Γ − Γ0)2 + d(Γ − Γ0)3, with

a = −Γ0 +

(
αbIb + 2

λg

λb
αgI0g + β

)−1

+ γ,

b = −1 − 2αbI0bR2 sin(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−2

,

c = −2αbI0bR2 cos(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−2

+4α2
bI2

0bR4 sin2(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−3

,

d =
4
3
αbI0bR2 sin(2Γ0)

(
αbIb + 2

λg

λb
αgI0g + β

)−2

+4α2
bI2

0bR4 sin(4Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−3

−8α3
bI3

0bR6 sin3(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−4

,

Ib = 2I0b
{
1 + R2 sin2(Γ0)

}
.

(3.2)

Importantly, Γ0 is not assumed to be fixed, but can be adjusted as a free parameter
when the system parameters are correspondingly modified. Using the conditions that the
neccessary Taylor series coefficients are equal to zero, the function fT(Γ) is transformed
into the normal form of a certain bifurcation. After that, the physical realizability of such
conditions is analyzed.

3.1.1/ PITCHFORK BIFURCATION

The pitchfork bifurcation normal form is dx
dt = bx − dx3, where d > 0. The approximation

function fT(Γ) (see Eqs. 3.2) coincide with the pitchfork bifurcation normal form (except
of horizontal shift caused by the term (Γ − Γ0)) when the Taylor series coefficients a and c
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equal to zero. Mathematically, this results in the following conditions

a = 0⇒
(
αbIb + 2

λg

λb
αgI0g + β

)−1

= Γ0 − γ,

c = 0⇒ −2αbI0bR2 cos(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−2

+4α2
bI2

0bR4 sin2(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−3

= 0.

(3.3)

Dividing the second expression by 2αbI0bR2, which is always positive, and substituting the

expression for
(
αbIb + 2

λg

λb
αgI0g + β

)−1

from the first condition into the second one, one

obtains the transformed condition corresponding to c = 0 as

− cos(2Γ0)(Γ0 − γ)2 + 2αbI0bR2 sin2(2Γ0)(Γ0 − γ)3 = 0. (3.4)

Since light intensities cannot be negative, the term
(
αbIb + 2

λg

λb
αgI0g + β

)−1

is always pos-

itive, which is equivalent to (Γ0 − γ) > 0. Then the second pitchfork condition finally
transforms into

− cos(2Γ0) + 2αbI0bR2 sin2(2Γ0)(Γ0 − γ) = 0, (3.5)

which allows to extract the incident blue light intensity

I0b =
cos(2Γ0)

2αbR2 sin2(2Γ0)(Γ0 − γ)
. (3.6)

The green light intensity I0g is expressed from the first pitchfork condition, a = 0 (see Eqs.
(3.3))

I0g =
λb

λg

1
Γ0 − γ

− αbIb − β

2αg
,

⇓

I0g =
λb

λg

1
Γ0 − γ

− 2αbI0b
{
1 + R2 sin2(Γ0)

}
− β

2αg
.

(3.7)

The expression for I0g includes the parameter I0b which is determined by Eq. (3.6) as a
function of Γ0. Thus, the green light intensity is a function of Γ0 according to Eq. (3.7).

Eqs. (3.6) and (3.7) define both light intensities as functions of Γ0. Thus, for each Γ0

one can calculate concrete values I0b and I0g at which the Taylor series approximation
corresponds to the pitchfork bifurcation normal form.

When the pitchfork bifurcation occurs, the Taylor series coefficient b equals to zero. Taking
into account the condition for a = 0 (see Eqs. (3.3)), the Taylor series coefficient b can be
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Figure 3.1: Pitchfork conditions determined by Eq. (2.28): (a) Taylor series coefficient b
(Eq. (3.9)); (b-c) I0b and I0g according to Eqs. (3.6) and (3.7); (d) I0b(I0g) for I0b and I0g
in panels (b) and (c) corresponding to the same argument Γ0. System parameters are:
αb = 0.117, αg = 0.985 × 10−4, β = 0.052, γ = −0.55, λb = 450 × 10−9, λg = 532 × 10−9,
R = 0.95.

presented as

b = −1 − 2αbI0bR2 sin(2Γ0)(Γ0 − Γ)2. (3.8)

Substituting I0b from Eq. (3.6), one obtains a simplified expression for the Taylor series
coefficient b

b = −1 − cot(2Γ0)(Γ0 − γ), (3.9)

Equation (3.9) represents the Taylor series coefficient b as a function of Γ0 and equals to
zero at Γ0 ≈ 7.13, Γ0 ≈ 5.58, Γ0 ≈ 4.0, Γ0 ≈ 2.5, Γ0 ≈ 1.02.

Next, the discussion turns towards the neighbourhood of point Γ0 ≈ 5.58. The range
Γ0 ∈ [5.5 : 5.7] is used in the following as a range for the analysis of I0b(Γ0) and I0g(Γ0)

( Eqs. (3.6) and (3.7)). As can be seen in Fig. 3.1 (a), the Taylor series coefficient b

changes its sign at Γbif
0 ≈ 5.58, which hence corresponds to a potential bifurcation point.

If both light intensities are tuned according to the curve in Fig. 3.1 (d), the dependence
of I0b and I0g on Γ0 disappears, and to bifurcate the system along the parameters always
maintaining the system in conditions corresponding to the pitchfork normal form, I0b and
I0g are tuned according to the curve in Fig. 3.1 (d). As shown before, f (Γ) and its Taylor
series approximation fT(Γ) evolve as a cubic function such that the central point Γ0 shifts
in the range [5.5 : 5.7], see Fig. 3.2 (a). This assumption is examined by data shown in
Fig. 3.2, which was determined using ft(Γ). These results confirm
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• That the Taylor series approach allows to approximate the function f (Γ) with high
accuracy, except of well-developed bistability after the pitchfork bifurcation (see Fig.
3.2 (e)).

• That the pitchfork bifurcation can be observed in Eq. (2.28) when intensities I0b and
I0g vary according to conditions determined by Eqs. (3.6) and (3.7).

The second result well illustrates the reason why the second laser with a different color
was introduced into the optical setup: it is very convenient in physical experiments to
adjust I0b and I0g with high accuracy, while continuous tuning OASLM parameters αb,
αg, β, γ is near impossible, and tuning the OASLM rotation angle ψ is impractical as it
commonly introduces misalignment.

3.1.2/ SADDLE-NODE BIFURCATION

As shown in Chap. 2, Eq. (2.28) exhibits multiple saddle-node bifurcations. The further
issue discussed in this section is whether the saddle-node bifurcation in Eq. (2.28) can
occur exactly as in the normal form dx

dt = a + cx2. In terms of the Taylor series in Eq. (3.2),
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the conditions for the saddle-node bifurcation in Eq. (2.28) are

b = 0⇒ αbI0bR2 sin(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−2

= −
1
2
,

d = 0⇒
4
3

αbI0bR2 sin(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−2
+

8
3

(αbIb + 2
λg

λb
αgI0g + β

)−2

αbI0bR2 sin(2Γ0)

2

cot(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)
−8

(αbIb + 2
λg

λb
αgI0g + β

)−2

αbI0bR2 sin(2Γ0)

3 (
αbIb + 2

λg

λb
αgI0g + β

)2

= 0,

⇓

−
2
3

+
2
3

cot(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)
+

(
αbIb + 2

λg

λb
αgI0g + β

)2

= 0.

(3.10)

The last expression results from the condition d = 0, which leads to a quadratic equation

for k =

(
αbIb + 2

λg

λb
αgI0g + β

)
that is required to have only positive values. The corre-

sponding solution is k = −1
3 cot(2Γ0) +

√
1
9 cot2(2Γ0) + 2

3 . From condition b = 0 one then
obtaines √

−2αbR2I0b sin(2Γ0) =

(
αbIb + 2

λg

λb
αgI0g + β

)
. (3.11)

Then the incident blue light intensity needs to satisfy

I0b =

−1
3

cot(2Γ0) +

√
1
9

cot2(2Γ0) +
2
3

2

−2αbR2 sin(2Γ0)
, (3.12)

which is a function of Γ0. After that, Eq. (3.11) allows to express the incident green light
intensity as

I0g =
λb

λg

√
−2αbR2I0b sin(2Γ0) − 2αbI0b(1 + R2 sin2(Γ0)) − β

2αg
, (3.13)

where I0b is a function of Γ0 according to Eq. (3.12).

The substitution of Eq. (3.11) into the expression for Taylor series coefficient a allows to
express it as a function of Γ0

a = −Γ0 +
1√

−2αbR2I0b sin(2Γ0)
+ γ, (3.14)

where I0b is a function of Γ0 according to Eq. (3.12), and the results is illustrated in Fig.
3.3. Substituting Eq. (3.12) into Eq.(3.14), coefficient a is finally represented as a function
of Γ0

a = −Γ0 + γ +
1

−
1
3

cot(2Γ0) +

√
1
9

cot2(2Γ0) +
2
3

. (3.15)
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The saddle-node bifurcation point corresponds to a = 0, which is achieved at some points
Γbif

0 . However, in the neighbourhood of all points Γbif
0 , either I0b(Γ0) or I0g(Γ0) take negative

values. This situation is illustrated in Fig. 3.3 on the example of the range Γ0 ∈ [6.3 : 6.4].
Coefficient a (see Eq. (3.15)) is zero in the point Γbif

0 ≈ 6.357 (see Fig. 3.3 (a)). However,
I0b(Γ0 ≈ 6.357) is negative, which is unphysical and the saddle-node bifurcation in Eq.
(2.28) cannot occur exactly as in the bifurcation normal form. However, this does not
mean that the saddle-node bifurcation cannot be implemented in principle, and it also and
does not contradict the results presented in Chapter 2 where saddle-node bifurcations in
Eq. (2.28) at I0g = 0 are shown.

It follows from Eq. (3.15) that the position of bifurcation point Γbif
0 and the ability to imple-

ment the saddle-node bifurcation can change when the parameter γ varies. However, the
parameter γ estimated from the experimental characterization of the OASLM cannot be
easily adjusted, as it is determined by the properties of the OASLM LC-layer.

3.1.3/ TRANSCRITICAL BIFURCATION

The transcritical bifurcation normal form is dx
dt = bx + cx2. In terms of the Taylor series

expressed by Eq. (3.2), the right-hand side function f (Γ) of Eq. (2.28) can evolve as the
transcritical bifurcation normal form in some neighbourhood of Γ0 when two conditions
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are obeyed as

a = 0⇒
(
αbIb + 2

λg

λb
αgI0g + β

)−1

= Γ0 − γ,

d = 0⇒
4
3
αbI0bR2 sin(2Γ0) +

4
3

(
αbR2I0b

)2
sin(4Γ0)

(
αbIb + 2

λg

λb
αgI0g + β

)−1

−8
(
αbI0bR2 sin(2Γ0)

)3
(
αbIb + 2

λg

λb
αgI0g + β

)−2

= 0,

⇓

1 + 2 cot(2Γ0)(Γ0 − γ)
(
αbR2I0b sin(2Γ0)

)
− 6(Γ0 − γ)2

(
αbI0bR2 sin(2Γ0)

)2
= 0.

(3.16)

The last expression follows from d = 0 and represents a quadratic equation for the
variable k = αbI0bR2 sin(2Γ0). It has two solutions k =

(
cot(2Γ0) ±

√
cot2(2Γ0) + 6

)
/(6(Γ0 −

γ)), which results in

I0b =
cot(2Γ0) +

√
cot2(2Γ0) + 6

6αbR2 sin(2Γ0)(Γ0 − γ)
, (3.17)

I0b =
cot(2Γ0) −

√
cot2(2Γ0) + 6

6αbR2 sin(2Γ0)(Γ0 − γ)
. (3.18)
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Using a = 0, the expression for the incident green light intensity is

I0g =
λb

λg

1
Γ0 − γ

− 2αbI0b
{
1 + R2 sin2(Γ0)

}
− β

2αg
, (3.19)

where I0b varies as a function of Γ0 according to Eqs. (3.17) or (3.18). In addition, a = 0

allows to express coefficient b (see Eqs. (3.2)) as a function of Γ0 illustrated in Fig. 3.4(a,
b)

b = −1 −

(
cot(2Γ0) +

√
cot2(2Γ0) + 6

)
(Γ0 − γ)

3
, (3.20)

b = −1 −

(
cot(2Γ0) −

√
cot2(2Γ0) + 6

)
(Γ0 − γ)

3
. (3.21)

If I0b(Γ0) varies according to Eq. (3.17), then coefficient b becomes a function of Γ0

according to Eq. (3.20) and does not become zero at any Γ0 (see Fig. 3.4 (a)). In such a
case the transcritical bifurcation is impossible is principle.

If I0b(Γ0) follows Eq. (3.18), then b takes the form corresponding to Eq. (3.21). In such a
case b(Γ0) can become zero at certain values Γbif

0 . However, in the neighbourhood of any
Γbif

0 , either I0b or I0g become negative, which is depicted in Fig. 3.4 (b-d) for Γbif
0 ≈ 4.81

where b = 0. As negative intensities are unphysical, the transcritical bifurcation cannot
occur in an oscillator described by Eq. (2.28).

Analysis of Eqs. (3.20) and (3.21) allows to conclude that the position of bifurcation
point Γbif

0 and the ability to implement the transcritical bifurcation can change when the
parameter γ varies. However, this would result in the same problem as in the case of the
saddle-node bifurcation: parameter γ cannot be readily adjusted.

3.2/ OASLM UNDER COHERENT ILLUMINATION WITH FEEDBACK:
THE AMPLITUDE MODULATION REGIME

Consider Eq. (2.26) for the OASLM with feedback corresponding to the amplitude modu-
lation regime. Again, we set ε to unity. The system is described by Γb, and similarly to the
previous section, this variable is mentioned without index, Γb = Γ, as well as βb = β and
γb = γ. The system right-hand side function f (Γ) is represented as a cubic function fT(Γ)

using the Taylor series around some point Γ0. The right-hand side function of Eq. (2.26)
takes the form

f (Γ) = −Γ +

(
αbIb + 2

λg

λb
αgI0g + β

)−1

+ γ, where

Ib = 2I0b
{
1 + R2 + R cos(2φ0 + φ1) cos(2Γ) + R cos(φ1)

}
.

(3.22)
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The corresponding Taylor series approximation becomes

fT(Γ) = a + b(Γ − Γ0) + c(Γ − Γ0)2 + d(Γ − Γ0)3, where

a = −Γ0 +

(
αbIb + 2

λg

λb
αgI0g + β

)−1

+ γ,

b = −1 + 4αbI0bR cos(2φ0 + φ1) sin(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−2

,

c = 4αbI0bR cos(2φ0 + φ1) cos(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−2

+16α2
bI2

0bR2 cos2(2φ0 + φ1) sin2(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−3

,

d = −
8
3
αbI0bR cos(2φ0 + φ1) sin(2Γ0)

(
αbIb + 2

λg

λb
αgI0g + β

)−2

+16α2
bI2

0bR2 cos2(2φ0 + φ1) sin(4Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−3

+64α3
bI3

0bR3 cos3(2φ0 + φ1) sin3(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−4

,

Ib = 2I0b
{
1 + R2 + R cos(2φ0 + φ1) cos(2Γ0) + R cos(φ1)

}
.

(3.23)

In the further subsections the conditions for the transformation of fT(Γ0) into the certain
bifurcation normal form are mathematically analyzed.

3.2.1/ PITCHFORK BIFURCATION

Function fT(Γ) coincides with the pitchfork bifurcation normal form when coefficients a

and c are zero. Taking into account Eqs. (3.23), two conditions take the form

a = 0⇒
(
αbIb + 2

λg

λb
αgI0g + β

)−1

= Γ0 − γ,

c = 0⇒ 4αbI0bR cos(2φ0 + φ1) cos(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−2

+16α2
bI2

0bR2 cos2(2φ0 + φ1) sin2(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−3

= 0.

(3.24)

Dividing the second expression by 4αbI0bR, which is always positive, and substituting

the expression for
(
αbIb + 2

λg

λb
αgI0g + β

)−1

from the first condition into the second, the
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Figure 3.5: Pitchfork bifurcation conditions for Eq. (2.26): (a) Dependence of b on Γ0 (Eq.
(3.29)); (b-c) I0b and I0g according to Eqs. (3.27) and (3.28); (d) I0b(I0g) which consists of
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parameters are: αb = 0.117, αg = 0.985 × 10−4, β = 0.052, γ = −0.55, φ0 = π/2, φ1 = π,
λb = 450 × 10−9, λg = 532 × 10−9, R = 0.95.

transformed condition c = 0 becomes

cos(2φ0 + φ1) cos(2Γ0)(Γ0 − γ)2 + 4αbI0bR cos2(2φ0 + φ1) sin2(2Γ0)(Γ0 − γ)3 = 0. (3.25)

Since light intensities cannot be negative,
(
αbIb + 2

λg

λb
αgI0g + β

)−1

always needs to be

positive and (Γ0 − γ) > 0. Then the second pitchfork condition transforms into

cos(2φ0 + φ1) cos(2Γ0) + 4αbI0bR cos2(2φ0 + φ1) sin2(2Γ0)(Γ0 − γ) = 0, (3.26)

which allows to extract the incident blue light intensity under the condition
cos(2φ0 + φ1) , 0

I0b = −
cos(2Γ0)

4αbR cos(2φ0 + φ1) sin2(2Γ0)(Γ0 − γ)
. (3.27)

I0g is expressed from the first pitchfork condition a = 0 (see Eq. (3.24))

I0g =
λb

λg

1
Γ0 − γ

− αbIb − β

2αg
,

⇓

I0g =
λb

λg

1
Γ0 − γ

− 2αbI0b
{
1 + R2 + R cos(2φ0 + φ1) cos(2Γ0) + R cos(φ1)

}
− β

2αg
.

(3.28)
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System parameters are: αb = 0.117, αg = 0.985 × 10−4, β = 0.052, γ = −0.55, φ0 = π/2,
φ1 = π, λb = 450 × 10−9, λg = 532 × 10−9, R = 0.95.

I0g includes I0b, which is determined by Eq. (3.27) as a function of Γ0. Equations (3.27)
and (3.28) represent I0b and I0g in order to match the pitchfork bifurcation conditions.
Next, I0b and I0g are considered as functions of Γ0 at fixed parameter values. Taking into
account a = 0 (see Eqs. (3.24)), coefficient b takes the form

b = −1 − cot(2Γ0)(Γ0 − γ). (3.29)

b(Γ0) equals to zero at certain values Γbif
0 , but in some cases, Γ0 = Γbif

0 correspond to neg-
ative values I0b or I0g for which the pitchfork bifurcation cannot be realized. Meanwhile,
I0b(Γ0) (Eq. (3.27)) and I0g(Γ0) (Eq. (3.28)) possess positive values at other Γ0 = Γbif

0 , and
this situation is illustrated in Fig. 3.5. There, b(Γ0) passes through zero at Γ0 = 16.523

[Fig. 3.5 (a)] and I0b(Γ0) and I0g(Γ0) take positive values [Fig. 3.5 (b,c)].

Similarly to the derivations presented in Sec. 3.1.1, Fig. 3.5 (b-c) are united and the con-
sideration changes to the exploration of I0b(I0g), see Fig. 3.5 (d). When two intensities I0b

and I0g varies according to the curve in Fig. 3.5 (d), one implements the pitchfork bifur-
cation, as can be seen comparing f (Γ) and its Taylor series approximation fT(Γ) depicted
in Fig. 3.6 (a-d). The corresponding phase-parametric diagram fully corresponds to the
pitchfork bifurcation, see Fig. 3.6 (e).
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3.2.2/ SADDLE-NODE BIFURCATION

The saddle-node normal form is dx
dt = a+cx2. In terms of the Taylor series (see Eq.(3.23)),

the conditions for the saddle-node bifurcation in Eq. (2.26) are

b = 0⇒ 4αbI0bR sin(2Γ0) cos(2φ0 + φ1)
(
αbIb + 2

λg

λb
αgI0g + β

)−2

= 1,

d = 0⇒ −
2
3

4αbI0bR sin(2Γ0) cos(2φ0 + φ1)
(
αbIb + 2

λg

λb
αgI0g + β

)−2
+

(αbIb + 2
λg

λb
αgI0g + β

)−2

4αbI0bR sin(2Γ0) cos(2φ0 + φ1)

2

2 cot(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)
+

(αbIb + 2
λg

λb
αgI0g + β

)−2

αbI0bR sin(2Γ0) cos(2φ0 + φ1)

3 (
αbIb + 2

λg

λb
αgI0g + β

)2

= 0,

⇓

−
2
3

+ 2 cot(2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)
+

(
αbIb + 2

λg

λb
αgI0g + β

)2

= 0.

(3.30)
The last expression followed from d = 0, which is a quadratic equation for the variable
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k =

(
αbIb + 2

λg

λb
αgI0g + β

)
which can possess only positive values. Then solution is k =

− cot(2Γ0) +

√
cot2(2Γ0) + 2

3 , and it follows from condition b = 0 that

√
4αbRI0b sin(2Γ0) cos(2φ0 + φ1) =

(
αbIb + 2

λg

λb
αgI0g + β

)
. (3.31)

Then the incident blue light intensity is

I0b =

− cot(2Γ0) +

√
cot2(2Γ0) +

2
3

2

4αbR sin(2Γ0) cos(2φ0 + φ1)
, (3.32)

which is a function of Γ0. After that, the condition b = 0 allows to express the incident
green light intensity as

I0g =
λb

λg

√
cot2(2Γ0) +

2
3
− cot(2Γ0) − αbIb − β

2αg
,

(3.33)

where Ib = 2I0b
{
1+R2 +R cos(2φ0 + φ1) cos(2Γ0)+R cos(φ1)

}
(here I0b is sought as a function

of Γ0 according to Eq. (3.32)).

Using equality
(
αbIb + 2

λg

λb
αgI0g + β

)
= − cot(2Γ0) +

√
cot2(2Γ0) + 2

3 , coefficient a (see Eqs.

(3.23)) can be expressed as a function of Γ0

a = −Γ0 + γ +
1

− cot(2Γ0) +

√
cot2(2Γ0) +

2
3

. (3.34)

The saddle-node bifurcation moment a(Γ0) = 0 can be achieved at certain argument
values Γ0 = Γbif

0 , some of which correspond to positive values of I0b(Γbif
0 ) (see Eq. (3.32))

and I0g(Γbif
0 ) (see Eq. (3.33)). Such a bifurcation transition is illustrated in Fig. 3.7.

Coefficient a passes through zero in point Γ ≈ 3.4847 where I0b and I0g are positive (see
point 2 in Fig . 3.7).

Similarly to the derivations presented in the previous section, Fig. 3.7 (b-c) are merged
and the consideration changes to the exploration of I0b(I0g), see Fig. 3.7 (d). When I0b

and I0g vary according to Fig. 3.7 (d), one can implement the saddle-node bifurcation
as in the normal form, as reflected in the evolution of the f (Γ) and fT(Γ) depicted in Fig.
3.8 (a-c). The phase-parametric diagram corresponding to the saddle-node bifurcation is
shown in Fig. 3.8 (d). It is important to note that the described saddle-node bifurcation is
local and involves only one stable steady state, while the second stable equilibrium does
not bifurcate.



3.2. OASLM UNDER COHERENT ILLUMINATION WITH FEEDBACK 65

0.2 0.225 0.25

2.5

3

3.5

4

4.5

5

5.5

3 4 5

-1.5

-1

-0.5

0

0.5

1

1.5

3 4 5

-1.5

-1

-0.5

0

0.5

1

1.5

3 4 5

-1.5

-1

-0.5

0

0.5

1

1.5

(d)

f
(Γ

)

Γ

(a) (b)

(c)

Γ

f(Γ)

fT(Γ)

f(Γ)

fT(Γ)1

3

2

Stable equilibria

Unstable equilibrium

I0b

Γ∗

f
(Γ

)

f
(Γ

)

f(Γ)

fT(Γ)

Figure 3.8: Saddle-node bifurcation in Eq. (2.26): (a-c) function f (Γ) (red solid curve) and
fT of (3.23) (blue dotted curve) at points 1-3 in Fig. 3.7: I0b = 19.56 × 10−2 and I0g = 415.8
(point 1), I0b = 21.8 × 10−2 and I0g = 471.2 (point 2), I0b = 25.36 × 10−2 and I0g = 552.7
(point 3); (d) Phase-parametric diagram for I0b and I0g varying according to the curve in
Fig. 3.7 (d). System parameters are: αb = 0.117, αg = 0.985 × 10−4, β = 0.052, γ = −0.55,
φ0 = π/2, φ1 = π, λb = 450 × 10−9, λg = 532 × 10−9, R = 0.95.

3.2.3/ TRANSCRITICAL BIFURCATION

The transcritical bifurcation normal form is dx
dt = bx + cx2. In terms of the Taylor series de-

scribed by Eq. (3.23), function f (Γ) of Eq. (2.26) can evolve as the transcritical bifurcation
normal form in some neighbourhood of Γ0 when two conditions are obeyed

a = 0⇒
(
αbIb + 2

λg

λb
αgI0g + β

)−1

= Γ0 − γ,

d = 0⇒ −
2
3

(4αbI0bR sin(2Γ0) cos(2φ0 + φ1)(Γ0 − γ))

+2 cot(2Γ0) (4αbI0bR sin(2Γ0) cos(2φ0 + φ1)(Γ0 − γ))2

+ (4αbI0bR sin(2Γ0) cos(2φ0 + φ1)(Γ0 − γ))3 = 0.

(3.35)

Under the condition 4αbI0bR sin(2Γ0) cos(2φ0 + φ1)(Γ0 − γ) , 0 the expression d = 0 takes
the form

−
2
3

+ 2 cot(2Γ0) (4αbI0bR sin(2Γ0) cos(2φ0 + φ1)(Γ0 − γ))

+ (4αbI0bR sin(2Γ0) cos(2φ0 + φ1)(Γ0 − γ))2 = 0,
(3.36)
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which is a quadratic equation form for k = 4αbI0bR sin(2Γ0) cos(2φ0 + φ1)(Γ0−γ). The equa-
tion has two solutions k = − cot(2Γ0)±

√
cot2(2Γ0) + 2

3 , which allows to express two options
for the incident blue light intensity

I0b =

− cot(2Γ0) −

√
cot2(2Γ0) +

2
3

4αbR sin(2Γ0) cos(2φ0 + φ1)(Γ0 − γ)
, (3.37)

I0b =

− cot(2Γ0) +

√
cot2(2Γ0) +

2
3

4αbR sin(2Γ0) cos(2φ0 + φ1)(Γ0 − γ)
. (3.38)

Using a = 0, the required incident green light intensity is

I0g =
λb

λg

1
Γ0 − γ

− 2αbI0b
{
1 + R2 + R cos(2φ0 + φ1) cos(2Γ0) + R cos(φ1)

}
− β

2αg
, (3.39)

where I0b varies as a function of Γ0 according to Eq. (3.37) or Eq.(3.38). In addition, the
condition a = 0 also allows to express coefficient b (see Eq. (3.23)) as a function of Γ0

(illustrated in Fig. 3.9(a, b))

b = −1 +

− cot(2Γ0) −

√
cot2(2Γ0) +

2
3

 (Γ0 − γ) , (3.40)

b = −1 +

− cot(2Γ0) +

√
cot2(2Γ0) +

2
3

 (Γ0 − γ) . (3.41)

If the incident blue light intensity I0b(Γ0) varies according to Eq. (3.37), then coefficient b

becomes a function of Γ0 according to Eq. (3.40) and does not possess zero value at any
Γ0 (see Fig. 3.9 (a)). In this case, the transcritical bifurcation is impossible is principle.

If the incident blue light intensity I0b(Γ0) follows Eq. (3.38), then the Taylor series coeffi-
cient b takes the form given by Eq. (3.41). In such a case, b(Γ0) equals to zero at certain
values Γbif

0 , some of which correspond to positive values of I0b(Γbif
0 ) (see Eq. (3.38)) and

I0g(Γbif
0 ) (see Eq. (3.39)) which means the transcritical bifurcation can occur in Eq. (2.26).

The bifurcation transition is illustrated in Fig. 3.9 (b). Coefficient b passes through zero at
Γ ≈ 3.4845 where I0b and I0g are positive (see point 2 in Fig . 3.9).

Similarly to the derivations presented in the previous sections, two graphics in Fig. 3.9
(c-d) are merged and the consideration changes to the exploration of I0b(I0g), see Fig. 3.9
(e). When I0b and I0g vary according to Fig. 3.9 (e), one can implement the transcritical
bifurcation as in the normal form, which can be seen by inspecting f (Γ) and fT(Γ) depicted
in Fig. 3.10 (a-c). The corresponding phase-parametric diagram corresponds to the
bifurcation, see Fig. 3.10 (d). Similarly to the saddle-node bifurcation described in the
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Figure 3.9: Transcritical bifurcation conditions for Eq. (2.26): (a-b) Dependences of coef-
ficient b on Γ0 (Eqs. (3.40) and (3.41 )) when I0b varies according to Eqs. (3.37) (panel
(a)) and (3.38) (panel (b)); (c-d) I0b and I0g according to Eqs. (3.38) and (3.39); (e) I0b(I0g)
which consists of values I0b and I0g in panels (c) and (d) corresponding to the same ar-
gument Γ0. System parameters are: αb = 0.117, αg = 0.985 × 10−4, β = 0.052, γ = −0.55,
λb = 450 × 10−9, λg = 532 × 10−9, R = 0.95.

previous section, the transcritical bifurcation is local and involves only one stable steady
state while the second stable equilibrium does not bifurcate.

3.3/ OASLM UNDER COHERENT ILLUMINATION WITH FEEDBACK:
THE PHASE MODULATION REGIME

As mentioned in Chap. 2, Eqs. (2.26) and (2.27) that describe the OASLM driven by
feedback in the amplitude and phase modulation regimes fully coincide at φ0 = π/2 + nπ,
φ1 = π + 2mπ, where n,m ∈ Z. Thus, for these values all conclusions on the possibility
to implement the pitchfork bifurcation, the saddle-node bifurcation and the transcritical
bifurcation in Eq. (2.26) can be extended to the system described by Eq. (2.27). In
addition, all the dependence in Figs. 3.5-3.10 are also valid for the phase modulation
regime at φ0 = π/2 + nπ, φ1 = π + 2mπ.

The results for the bifurcations in Eq. (2.27) are summarised below. The Taylor series
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Figure 3.10: Transcritical bifurcation in Eq. (2.26): (a-c) f (Γ) (red solid curve) and fT
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curve in Fig. 3.9 (e). System parameters are: αb = 0.117, αg = 0.985 × 10−4, β = 0.052,
γ = −0.55, φ0 = π/2, φ1 = π, λb = 450 × 10−9, λg = 532 × 10−9, R = 0.95.

takes the form

fT(Γ) = a + b(Γ − Γ0) + c(Γ − Γ0)2 + d(Γ − Γ0)3, where

a = −Γ0 +

(
αbIb + 2

λg

λb
αgI0g + β

)−1

+ γ,

b = −1 + 4αbI0bR sin(2φ0 + φ1 + 2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−2

,

c = 4αbI0bR cos(2φ0 + φ1 + 2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−2

+16α2
bI2

0bR2 sin2(2φ0 + φ1 + 2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−3

,

d = −
8
3
αbI0bR sin(2φ0 + φ1 + 2Γ0)

(
αbIb + 2

λg

λb
αgI0g + β

)−2

+16α2
bI2

0bR2 sin(4φ0 + 2φ1 + 4Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−3

+64α3
bI3

0bR3 sin3(2φ0 + φ1 + 2Γ0)
(
αbIb + 2

λg

λb
αgI0g + β

)−4

,

Ib = 2I0b
{
1 + R2 + R cos(2φ0 + φ1 + 2Γ0) + R cos(φ1)

}
.

(3.42)
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Using the same approach as in Sec. 3.2, the expression for I0b, I0g and bifurcation param-
eters can be derived for all three bifurcations. For the pitchfork bifurcation the expressions
are

I0b = −
cos(2φ0 + φ1 + 2Γ0)

4αbR sin2(2φ0 + φ1 + 2Γ0)(Γ0 − γ)
, (3.43)

I0g =
λb

λg

1
Γ0 − γ

− 2αbI0b
{
1 + R2 + R cos(2φ0 + φ1 + 2Γ0) + R cos(φ1)

}
− β

2αg
, (3.44)

b = −1 − cot(2φ0 + φ1 + 2Γ0)(Γ0 − γ). (3.45)

In contrast to dependence described by Eq. (3.29) for b(Γ0) in the amplitude modula-
tion regime, the dependence b(Γ0) according to Eq. (3.45) contains parameters φ0 and
φ1. Thus, the phase modulation regime is more flexible, since the bifurcation point Γbif

0

corresponding to b(Γ0) = 0 can be shifted by adjusting φ0 and φ1.

The dependences I0b(Γ0), I0g(Γ0) and a(Γ0) corresponding to the saddle-node bifurcation
conditions b = 0 and d = 0 in Eq. (2.27) are

I0b =

− cot(2φ0 + φ1 + 2Γ0) +

√
cot2(2φ0 + φ1 + 2Γ0) +

2
3

2

4αbR sin(2φ0 + φ1 + 2Γ0)
, (3.46)

I0g =
λb

λg

√
cot2(2φ0 + φ1 + 2Γ0) +

2
3
− cot(2φ0 + φ1 + 2Γ0) − αbIb − β

2αg
,

(3.47)

a = −Γ0 + γ +
1

− cot(2φ0 + φ1 + 2Γ0) +

√
cot2(2φ0 + φ1 + 2Γ0) +

2
3

, (3.48)

where Ib = 2I0b
{
1 + R2 + R cos(2φ0 + φ1 + 2Γ0) + R cos(φ1)

}
. Equation (3.48) contains param-

eters φ0, φ1 and γ. As discussed, it is difficult to vary γ, but φ0 and φ1 can be readily tuned
in experiments. The principal difference between the saddle-node bifurcation conditions
for the amplitude and phase modulation regimes therefore is that Γbif

0 corresponding to
a(Γ0) = 0 in the phase modulation regime can be shifted by varying φ0 and φ1.

The dependences I0b(Γ0), I0g(Γ0) and b(Γ0) following from the transcritical bifurcation con-
ditions a = 0 and d = 0 in Eq. (2.27) take the form

I0b =

− cot(2φ0 + φ1 + 2Γ0) +

√
cot2(2φ0 + φ1 + 2Γ0) +

2
3

4αbR sin(2φ0 + φ1 + 2Γ0)(Γ0 − γ)
, (3.49)

I0g =
λb

λg

1
Γ0 − γ

− 2αbI0b
{
1 + R2 + R cos(2φ0 + φ1 + 2Γ0) + R cos(φ1)

}
− β

2αg
, (3.50)
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b = −1 +

− cot(2φ0 + φ1 + 2Γ0) +

√
cot2(2φ0 + φ1 + 2Γ0) +

2
3

 (Γ0 − γ) . (3.51)

As in the cases of the pitchfork and saddle-node bifurcations, the value Γbif
0 corresponding

to the transcritical bifurcation moment, b(Γbif
0 ) = 0, can be tuned by varying φ0 and φ1 in

the phase modulation regime.

3.4/ SINGLE-PS-LAYER OASLM UNDER COHERENT ILLUMINA-
TION WITH FEEDBACK: THE PHASE MODULATION REGIME

Suppose that the OASLM is modified as in Sec. 2.11.1 (single-PS-layer OASLM model)
and is driven by feedback in the phase modulation regime. Then the system under study
takes form of Eq. (2.33). As in the previous section, Eq. (2.33) is studied at ε = 1.
To further simplify the equations, Γb = Γ, as well as γb = γ, βb = β. The objective of
this section is to identify a potential fundamental difference between the models implying
single-PS and double-PS layer in terms of the bifurcation transitions. For that, right-hand
side function f (Γ) is represented using the Taylor series

fT(Γ) = a + b(Γ − Γ0) + c(Γ − Γ0)2 + d(Γ − Γ0)3, where

a = −Γ0 +

(
αbIb +

λg

λb
αgI0g + β

)−1

+ γ,

b = −1 + 4αbI0bR sin(2φ0 + φ1 + 2Γ0)
(
αbIb +

λg

λb
αgI0g + β

)−2

,

c = 4αbI0bR cos(2φ0 + φ1 + 2Γ0)
(
αbIb +

λg

λb
αgI0g + β

)−2

+16α2
bI2

0bR2 sin2(2φ0 + φ1 + 2Γ0)
(
αbIb +

λg

λb
αgI0g + β

)−3

,

d = −
8
3
αbI0bR sin(2φ0 + φ1 + 2Γ0)

(
αbIb +

λg

λb
αgI0g + β

)−2

+16α2
bI2

0bR2 sin(4φ0 + 2φ1 + 4Γ0)
(
αbIb +

λg

λb
αgI0g + β

)−3

+64α3
bI3

0bR3 sin3(2φ0 + φ1 + 2Γ0)
(
αbIb +

λg

λb
αgI0g + β

)−4

,

Ib = I0b
{
1 + R2 + 2R cos(2φ0 + φ1 + 2Γ0)

}
.

(3.52)

The Taylor series components for the double- (Eq. (3.42)) and single-PS-layer OASLM
(Eq. (3.52)) in the phase modulation regime are similar, but the difference consists in the
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expressions for Ib and the factor 2 in the term
λg

λb
αgI0g in Eq. (3.42).

3.4.1/ PITCHFORK BIFURCATION

To derive the dependences I0b(Γ0), I0g(Γ0), b(Γ0), the same approach as in the previous
sections was used. The resulting equations are

I0b = −
cos(2φ0 + φ1 + 2Γ0)

4αbR sin2(2φ0 + φ1 + 2Γ0)(Γ0 − γ)
, (3.53)

I0g =
λb

λg

1
Γ0 − γ

− αbI0b
{
1 + R2 + 2R cos(2φ0 + φ1 + 2Γ0)

}
− β

αg
, (3.54)

b = −1 − cot(2φ0 + φ1 + 2Γ0)(Γ0 − γ). (3.55)

The dependences I0b(Γ0) and b(Γ0) for the single- and double-PS OASLM in the phase
modulation regimes are identical (compare Eqs. (3.43),(3.45),(3.53),(3.55)) while the de-
pendences for I0g (see Eqs. (3.44) and (3.54) ) differ. Moreover, for φ0 = π/2 + nπ,
φ1 = π + 2mπ, where n,m ∈ Z, I0b(Γ0) for the amplitude and phase modulation regimes
(Eqs. (3.27),(3.43) and (3.53)) fully coincide as well as for b(Γ0) (Eqs. (3.29), (3.45),
(3.55)). The curves in Fig. 3.5(a-b) therefore also illustrate Eqs. (3.53) and (3.55). Then
the pitchfork bifurcation in Eq. (2.33) can occur if I0g(Γ0) takes a positive value at the
bifurcation moment Γ0 = Γbif

0 ≈ 16.5256. It is seen in Fig. 3.11 that I0g(Γ0 ≈ 16.5256) is
positive, which indicates that the pitchfork bifurcation in Eq. (2.33) occurs exactly as in
Fig. 3.6 when the intensities I0b and I0g are varied according to Eqs. (3.53) and (3.54).
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Figure 3.11: I0g(Γ0) corresponding to Eq. (3.54), where I0b(Γ0) varies according to Eq.
(3.53). The red point corresponds to the pitchfork bifurcation moment b(Γ0 ≈ 16.5256) = 0.
Parameters are: αb = 0.117, αg = 0.985 × 10−4, β = 0.052, γ = −0.55, φ0 = π/2, φ1 = π,
λb = 450 × 10−9, λg = 532 × 10−9, R = 0.95.
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3.4.2/ SADDLE-NODE BIFURCATION

The dependences I0b(Γ0), I0g(Γ0) and a(Γ0) corresponding to the saddle-node bifurcation
conditions b = 0 and d = 0 in Eq. (2.33) are

I0b =

− cot(2φ0 + φ1 + 2Γ0) +

√
cot2(2φ0 + φ1 + 2Γ0) +

2
3

2

4αbR sin(2φ0 + φ1 + 2Γ0)
, (3.56)

I0g =
λb

λg

√
cot2(2φ0 + φ1 + 2Γ0) +

2
3
− cot(2φ0 + φ1 + 2Γ0) − αbIb − β

αg
,

(3.57)

a = −Γ0 + γ +
1

− cot(2φ0 + φ1 + 2Γ0) +

√
cot2(2φ0 + φ1 + 2Γ0) +

2
3

, (3.58)

where Ib = I0b
{
1 + R2 + 2R cos(2φ0 + φ1 + 2Γ0)

}
.

In the phase modulation regime I0b(Γ0) and a(Γ0) for the single- and double-PS-layer
OASLM are identical. Moreover, for the particular values φ0 = π/2+nπ and φ1 = π+2πm the
expressions for I0b (see Eqs. (3.32),(3.46) and (3.56)) and a(Γ0) (see Eqs. (3.34),(3.48)
and (3.58)) corresponding to the amplitude and phase modulation regimes are identical.
Thus, Fig. 3.7(a,b) describe Eqs. (3.58) and (3.56) for φ0 = π/2 and φ1 = π. Then the
potential bifurcation point where a(Γ0) = 0 is Γ0 = Γbif

0 ≈ 3.4847. Figure 3.12 shows that
I0g(Γ0) (see Eq. 3.57) is positive in the neighbourhood of point Γbif

0 . That means the
saddle-node bifurcation can be implemented in Eq. (2.33) exactly as in the normal form.
If I0b and I0g vary according to Eqs. (3.56) and (3.57), then the saddle-node bifurcation is
observed as in Fig. 3.8.

3.4 3.45 3.5 3.55 3.6

500

1000

1500

I0g

Γ0

Figure 3.12: Dependence I0g(Γ0) (Eq. (3.57) where I0b(Γ0) varies according to Eq. (3.56)).
The red point corresponds to the saddle-node bifurcation moment b(Γ0 ≈ 3.4847) = 0.
Parameters are: αb = 0.117, αg = 0.985 × 10−4, β = 0.052, γ = −0.55, φ0 = π/2, φ1 = π,
λb = 450 × 10−9, λg = 532 × 10−9, R = 0.95.
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3.4.3/ TRANSCRITICAL BIFURCATION

The dependences I0b(Γ0), I0g(Γ0) and a(Γ0) corresponding to the transcritical bifurcation
conditions a = 0 and d = 0 in Eq. (2.33) take the form

I0b =

− cot(2φ0 + φ1 + 2Γ0) +

√
cot2(2φ0 + φ1 + 2Γ0) +

2
3

4αbR sin(2φ0 + φ1 + 2Γ0)(Γ0 − γ)
, (3.59)

I0g =
λb

λg

1
Γ0 − γ

− αbI0b
{
1 + R2 + 2R cos(2φ0 + φ1 + 2Γ0)

}
− β

αg
, (3.60)

b = −1 +

− cot(2φ0 + φ1 + 2Γ0) +

√
cot2(2φ0 + φ1 + 2Γ0) +

2
3

 (Γ0 − γ) . (3.61)

In the phase modulation regime, the expressions for I0b(Γ0) and a(Γ0) for transcritical
bifurcation conditions in the systems with the single- and double-PS-layer OASLM are
identical. Moreover, in case φ0 = π/2 + nπ and φ1 = π + 2mπ the expressions for I0b (see
Eqs. (3.38),(3.49) and (3.59)) and a(Γ0) (see Eqs. (3.41),(3.51) and (3.61)) corresponding
to the amplitude and phase modulation regimes are identical. Thus, Fig. 3.9(b,c) describe
dependences by Eqs. (3.61) and (3.59) for φ0 = π/2 and φ1 = π. Then the potential
bifurcation point where b(Γ0) = 0 is Γ0 = Γbif

0 ≈ 3.4845. Figure 3.13 shows that I0g(Γ0)

(see Eq. 3.60) is positive in the neighbourhood of point Γbif
0 . That means the transcritical

bifurcation can be implemented in Eq. (2.33) exactly as in the normal form. If I0b and I0g

vary according to Eqs. (3.59) and (3.60), then the transcritical bifurcation is observed as
in Fig. 3.10.
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Figure 3.13: Dependence I0g(Γ0) corresponding to Eq. (3.60) where I0b(Γ0) varies ac-
cording to Eq. (3.59)). The red point corresponds to the transcritical bifurcation moment
b(Γ0 ≈ 3.4845) = 0. Parameters are: αb = 0.117, αg = 0.985 × 10−4, β = 0.052, γ = −0.55,
φ0 = π/2, φ1 = π, λb = 450 × 10−9, λg = 532 × 10−9, R = 0.95.
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3.5/ CONCLUSION

The presented results shows that a manifold of the bifurcation transitions in OASLM-
based systems is possible. In particular, incoherent illumination can create the pitchfork
bifurcation in addition to the saddle-node bifurcations described in Chap. 2. To observe
the pitchfork bifurcation, one must vary the incident light intensities according to the cer-
tain rule which was analytically derived.

The variety of bifurcation transitions which can be implemented in the OASLM-based sys-
tems under coherent illumination is even broader. Actually, coherent illumination enables
any bifurcation possible with one dimensional real-valued dynamical systems: the pitch-
fork bifurcation, the saddle-node bifurcation and the transcritical bifurcation. The Hopf
bifurcation is excluded since the corresponding normal form is written in complex form
and hence is two-dimensional. To implement these bifurcations, one must adjust the inci-
dent light intensities according to analytically derived relationships. Generally, the phase
modulation regime is more flexible in comparison with the amplitude modulation regime.
This is due to the fact that the phase modulation regime additionally provides for the bi-
furcation moment to be shifted by adjusting φ0 and φ1, which in an experiment readily can
be changed by tuning of the wavelength and by moving the dichroic mirror.

The bifurcation conditions for the systems implying the single-PS-layer and double-PS-
layer OASLM have no principal difference. For the concrete case φ0 = π/2 and φ1 = π they
are identical except of the expression for the incident green light intensity: in the case of
the single-PS-layer OASLM the bifurcations occur at twice as high values of I0g.



4

DETERMINISTIC AND STOCHASTIC

CONTROL OF COARSENING

It is demonstrated in the fourth chapter how the bifurcation conditions established in Chap.
3 allow for controlling spatio-temporal dynamics based on the example of wavefront prop-
agation and coarsening. It is important to note that the term ’wavefront’ does not refer to
the surface over which an optical wave has a constant phase. Here, a wavefront refers to
the context of, for example, fluid dynamics and describes a boundary between domains
corresponding to different quiescent steady state regimes in bistable reaction-diffusion
systems. The effect of coarsening is considered as a particular case of propagating front
phenomena in bistable spatially-extended systems, which can occur in two-dimensional
space.

A spatial model of the OASLM with feedback is derived, based on which spatial dynamics
is illustrated and explained. After that, the bifurcation normal form conditions are ap-
plied in order to control the front propagation’s speed and direction based on tuning the
system’s parameters.

A second approach for front propagation control discussed in this chapter leverages dif-
ferent properties of noise. Here, the noise intensity is used as an additional system pa-
rameter. Varying the noise strength allows for tuning the wavefront propagation’s speed,
and in turn the dynamics of coarsening. First, this effect is described on the example of
a phenomenological coarsening model. Then, it is demonstrated that identical phenom-
ena occur in a stochastic spatial model of the OASLM with feedback. In this case, noise
implies a fluctuating green illumination in the two-color illumination setup introduced in
Chapter 2, which in an experiment can be readily controlled.

4.1/ INTRODUCTION

A reaction-diffusion system was naturally introduced in chemistry to represent substances
reacting and diffusing over the spatial domain. Now, the definition of reaction-diffusion

75
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systems refers to phenomena of any nature. Mathematically, reaction-diffusion systems
take the form of partial differential equations. Besides the well-known Turing patterns,
reaction-diffusion systems exhibit a big variety of spatio-temporal dynamics [175–178] in-
cluding traveling fronts, solitary and periodic pulses, spiral turbulence, scroll waves and
noise-induced pattern formation. In particular, bistable reaction-diffusion media can ex-
hibit dynamics where for the case when two kinds of domains are formed and evolve
in space, separating fronts between them are formed and propagate. Such propagat-
ing fronts are of frequent occurrence in chemistry, see, for instance, the Schlögl model
[179–181] developed for the explanation of an autocatalytic reaction mechanism, as well
as in electronics [182], flame propagation theory [183], just to name a few. In the sim-
plest case, front propagation can be observed in 1D-space. If a studied bistable media
evolves in 2D-space, then the peculiarities of front propagation is also determined by the
shape of domains formed by such fronts. In such a case, one observes an effect often
referred to as ’coarsening’. It is characterised by identical manifestations when compared
to front propagation, and coarsening consists in the expansion of domains which invade
the entire space on the cost of other domains. Coarsening represents a fundamental phe-
nomenon demonstrated in the context of different areas: physics of liquid crystals [184]
and magnetism [185–188], physics and chemistry of materials [189–192], laser physics
[193–195], electronics [196] and animal population statistics [197]. It can occur in bistable
spatially-extended systems [185] and time-delay oscillators [193, 194, 196], and universal
approaches to control such effects are proposed in the fourth chapter.

4.1.1/ DETERMINISTIC CONTROL OF THE FRONT PROPAGATION IN BISTABLE

REACTION-DIFFUSION MODELS

Pitchfork bifurcation conditions imply asymmetry control in OASLM-based systems in
terms of the right-hand side function f (Γ): if the pitchfork bifurcation conditions are ful-
filled, asymmetry in f (Γ) in respect to its shape relative to a unstable fixed point disap-
pears. It is well-known that the presence of asymmetry in bistable spatially-extended
systems has a principal impact on the wavefront propagation speed, for instance, in
bistable reaction-diffusion models [181, 198]: the bigger is the asymmetry, the faster
is the wavefront propagation. Moreover, control of the system’s asymmetry allows to stop
the wavefront propagation or to even invert its direction. Here, this fact is demonstrated
on a concrete example.

The phenomenological model for the wavefront propagation in bistable systems takes the
form

du
dt

= k∇2u − u(u − a)(u + b), (4.1)

where a, b > 0 are parameters defining the system nonlinearity, and parameter k is the dif-
fusion strength. Equation (4.1) represents a particular modification of the Schlögl model
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Figure 4.1: Eq. (4.2): (a-b) Schematic illustration of the profile evolution (panel (a1))
according to Eq. (4.3) and more complicated solutions (panels (a1) and (a2)) for a = 1,
b = 0.75, k = 0.1. The space time plot corresponding to the solution in panel (a3) is
depicted in panel (b). (c) Space-time plot illustrating a stationary wave front in a symmetric
system for a = b = 1, k = 0.1.

[179, 180], but it was initially discussed in 1937 by Zel’dovich and Frank-Kamenetsky in
connection with flame propagation [183]. The symmetry condition in Eq. (4.1) is a = b. In
such a case, the reaction term f (u) = −u(u − a)(u + b) fully coincides with the right-hand
side function of the pitchfork bifurcation normal form.

Equation (4.1) possesses the two stable equilibrium states u∗1 = a, u∗2 = −b and unsta-
ble steady state u∗3 = 0 located in between them. If the spatially-distributed initial state
u0(~r) = u(~r, t = 0) is fully located inside the basin of attraction of either steady state u∗1
or u∗2, then the system exhibits a quiescent steady state regime inside the corresponding
equilibrium. However, the deterministic dynamics becomes more complex if the initial
state u0(~r) = u(~r, t = 0) contains values from both basins of attraction. In this case, Eq.
(4.1) can experience a non-equilibrium transition when the system evolves from its initial
state distributed across the two basins of attraction towards its final state, where the sys-
tem is exclusively located inside one basin. This process is accompanied by the growth
of domains, the previously introduced coarsening, which results in extending domains of
either equilibrium (phase) in space ~r. The intrinsic peculiarities of this transition depend
on the system’s symmetry properties [181], and on the dimensionality of the system’s
phase space.

First, Eq. (4.1) is considered in the simplest case using one-dimensional space x. Then
the equation takes the form

du
dt

= k
d2u
dx2 − u(u − a)(u + b), (4.2)

which has two quiescent steady state solutions u(t, x) = a and u(t, x) = −b, and the third
solution describing a propagating front profile [181, 198] in the form

u(x, t) =
a − b

2
−

a + b
2

tanh
(

a + b

2
√

2k
(x − ct)

)
, (4.3)
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Figure 4.2: Spatial pattern evolution of Eq. (4.1) in 2D-space for a = 1, b = 0.9, k = 0.1:
evolution of a plane-wave profile (panels (a-c)) and the effect of coarsening in the case of
random initial conditions (panels (d-f)).

where c =

√
k
2

(a − b) is the front propagation speed. A solution to Eq. (4.3) is depicted

in Fig. 4.1 (a1). The front velocity is nonzero for a , b. In such a case, the solution
by Eq. (4.3) corresponds to the situation when a globally stable state tends to invade the
entire available space, hence developing an expanding or retracting front that increasingly
displaces a metastable domain. There exists a solution where the front moves to the
left and to the right at the same velocity. Then the evolution of the symmetric u-profile
including both fronts [Fig. 4.1 (a2)] exhibits a propagation with the same speed in opposite
directions. More complicated profiles [Fig. 4.1 (a3)] evolve according to the same rule.
Space-time plots illustrating such dynamics contain typical triangle patterns [Fig. 4.1 (b)].

(a)

f(u)

u
(b)

f(u)

u

1
2

3

4

Figure 4.3: Evolution of the reaction-term function f (u) (red solid curves) according to the
pitchfork (panel (a)) and saddle-node (panel (b)) bifurcation and its Taylor series expan-
sion using a quadratic function (blue dashed curves).

If Eq. (4.2) is symmetric (a = b), the wave front becomes stationary and the space-time
plots consist of typical stripes corresponding to u(x, t) = a and u(x, t) = −b [Fig. 4.1 (c)].
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The behaviour of Eq. (4.1) in 2D-space (x, y) depends on the initial pattern configuration
and on the presence of asymmetry. In the simplest case, the initial state has a uniform
structure [Fig. 4.2 (a)]. In such a case the asymmetry condition plays a principal role. If
the system is symmetric, then the wavefront persists at a fixed position. If the system is
asymmetric, then the wavefront moves in space at a constant speed [Fig. 4.2 (a-c)]. The
direction of front propagation depends on the parameter values, and for case a > b state
u(x, y, t) = a invades the whole space. If a < b, then the front propagation has the opposite
direction and state u(x, y, t) = b invades the whole space.

If the initial pattern u(x, y, t = 0) is more complex (for example, see the state in Fig. 4.2 (d)
obtained from random initial conditions), then the impact of diffusion is non-uniform, as
it contracts domains in the areas that are fully or partially encircled (see white arrows
Fig. 4.2 (e)). During some finite time, the spatial domains expand [Fig. 4.2 (d-f)], and ei-
ther state u(x, y, t) = a or u(x, y, t) = b invades the entire space. If Eq. (4.1) is asymmetric,
then this asymmetry can speed up or slow down the propagation of fronts. Moreover,
large asymmetry can invert front propagation, and under such conditions even a fully
encircled domain expands. The process illustrated in Fig. 4.2 (d-e) shows such domain
growth in two-dimensional space. Despite the fact that such dynamics represent a par-
ticular case of front propagation, in most cases it is considered as a distinguished effect
called ’coarsening’.

To adjust the front propagation (and coarsening) speed and direction in a bistable
reaction-diffusion model, one must control the asymmetry in the reaction term of the
model equation. The first approach is using the pitchfork bifurcation conditions as dis-
cussed in Chap. 3. Then the reaction-term takes the form as in Fig. 4.3 (a). The
symmetric case provides for the slowest front propagation. The second proposed ap-
proach for coarsening control is associated with the saddle-node bifurcation of steady
states. It consists in the adjustment of the vertical shift of some part of the reaction-term
function. To achieve this, the function is developed until quadratic function fT = a + cu2

using the Taylor series around some point (blue dashed lines in Fig 4.3 (b)). Despite the
saddle-node bifurcation conditions allow to modify only a part of the curve f (u), controlling
parameter a allows to induce the saddle-node bifurcation in the similar way as in Chap.
3 and to vary a distance between the steady states appeared after the bifurcation, as
illustrated in Fig. 4.3 (b). The initial state in Fig. 4.3 (b) described by curve 1 corresponds
to monostability. Coefficient a allows to shift the curve down and to induce the transi-
tion to bistability through the saddle-node bifurcation (curve 2 in Fig. 4.3 (b)). Further
shift achieves a maximally symmetric configuration (curve 3 in Fig. 4.3 (b)), where the
distances between the attractors and the unstable fixed point are almost identical, which
corresponds to the slowest front propagation. Continuing in the same direction (curve 4 in
Fig. 4.3 (b)) can produce the opposite asymmetry, and hence invert the front propagation.
Both approaches of deterministic coarsening control are applied below on the example
of a particular OASLM-based spatially-extended model with local interactions emulating
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diffusion.

4.1.2/ STOCHASTIC CONTROL OF FRONT PROPAGATION

In order to investigate the interaction between noise and front propagation, the model of
Eq. (4.1) is modified to include parametric noise sources according to

du
dt

= k∇2u − u(u − a0 +
√

2Dana(~r, t))(u + b0 +
√

2Dbnb(~r, t)), (4.4)

where a0, b0 > 0 are fixed parameters, na,b are statistically independent spatially dis-
tributed sources of white Gaussian noise with intensities Da,b. The term ’spatial white
Gaussian noise’ means that in any point ~r0 the mean value of the noise terms equals
to zero, <na,b(~r0, t)>= 0, and that correlation between different values na,b(~r0, t) in time
and space is absent. The function corresponding to zero correlation in space and time
is the Delta-function described as <na(~r0, t)na(~r0, t + τ)>= δ(τ), <nb(~r0, t)nb(~r0, t + τ)>= δ(τ),
<na(~r0, t)na(~r0 + ~rd, t)>= δ(~rd), <nb(~r0, t)nb(~r0 + ~rd, t)>= δ(~rd). In the case of one-dimensional
space x, the stochastic equation becomes

du
dt

= k
d2u
dx2 − u(u − a0 +

√
2Dana(x, t))(u + b0 +

√
2Dbnb(x, t)). (4.5)

It has been shown by A. Engel in [198] that adjusting noise intensities allows to control the
speed of front propagation in Eq. (4.4). This effect is illustrated in Fig. 4.4 for the evolution
in one-dimensional space x. In the presence of asymmetry (a = 1, b = 0.75) and in the
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Figure 4.4: Stochastic control of coarsening in Eq. (4.5) by increasing the noise intensity
Db (panels (a-d)) and Da (panels (e-f)). Other parameters are: a = 1, b = 0.75, k = 0.1.
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Figure 4.5: Spatial evolution of Eq. (4.4) in 2D-space (x,y) starting from the same initial
conditions for a = 1, b = 0.75, k = 0.1 and varying noise intensities: Da = 0, Db = 0 (panels
(a-c)), Da = 0, Db = 10−3 (panels (d-f)), Da = 7 × 10−4, Db = 0 (panels (g-i)).

absence of noise, the system exhibits the effect of coarsening [Fig. 4.2 (b)]. Increasing the
noise intensity Db slows down the front propagation [Fig. 4.4 (a-b)], then it stops the front’s
motion [Fig. 4.4 (c)]. After that, the front propagation occurs in the opposite direction
[Fig. 4.4 (d)]. At the same time, growth of intensity Da results in the opposite effect: it
accelerates front propagation along the original direction, i.e. the direction without noise
[Fig. 4.4 (e-f)].

The same effects take place for Eq. (4.4) evolving in two-dimensional space (x,y). Figure
4.5 illustrates the evolution of the same state, the domains in initial state at t = 0 shown in
Fig. 4.5 (a,d,g) are identical. As in the one dimensional case, increasing noise intensity
Db slows down coarsening or inverts its direction, as can be seen by comparing the
evolutions shown in Fig. 4.5 (a-c) and Fig. 4.5 (d-f)). At the same time, increasing
intensity Da speeds up the process, as can be seen from the comparison of Fig. 4.5 (a-c)
and Fig. 4.5 (g-i).
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Figure 4.6: Evolution of the normalised probability density function Pn(u) caused by vary-
ing noise intensities Da,b in Eq. (4.6). System parameters are a0 = b0 = 1, D = 0.1.

The stochastic control of front propagation in Eq. (4.4) has been explained by A. Engel in
[198] based on the fact that multiplicative noise sources have an impact on the symmetry
properties of the reaction-term. To demonstrate this in more detail, let us consider the
system describing the reaction-term evolution

du
dt

= −u(u − a0 +
√

2Dana(t))(u + b0 +
√

2Dbnb(t)) +
√

2Dn(t). (4.6)

In contrast to the full form given by Eq. (4.5), Eq. (4.6) contains only the reaction part
and represents an ordinary differential equation. The oscillatory dynamics of Eq. (4.6) is
explored by means of the evolution of a stationary probability density function (PDF), P(u),
in its normalized form Pn(u) = P(u)/Pmax(u). The PDF is used to specify the probability of
a dynamical variable falling within a particular range of values u ∈ [u1; u2]. This probability
is given by the integral of this variable’s PDF over that range, which is the area under
the PDF function within the relevant range in u. The PDF is nonnegative everywhere,
and its integral over the entire space u ∈ (−∞; +∞) is unity. A set of values u(t) was
created by numerical simulations of Eq. (4.6). The obtained time realizations must be
large and contain a big enough number of transitions between two coexisting attractors in
the resulting stochastic phase trajectories to obtain a stationary PDF. However, Eq. (4.6)
with multiplicative noise does not often exhibit transitions between the two attractors. To
induce noise-sustained jumps between two stable steady states, and hence to obtain a
stationary PDF, we introduced an additive source of white Gaussian noise,

√
2Dn(t), into

Eq. (4.6), which has no impact on the PDF’s symmetry properties [198].

For the symmetric case a0 = b0 = 1, fixed additive noise intensity D = 0.1, and without
parametric noise, the distribution Pn(u) is symmetric (the green solid curve in Fig. 4.6).
The position of local maxima in Pn(u) correspond to the stable equilibria u∗1,2 = ±1, while
the local minimum of the distribution Pn(u) indicates the unstable steady state u∗3 = 0. In-
creasing intensities Da and Db causes a transformation of the PDF-function such that P(u)

becomes asymmetric, see the red and blue dashed curves in Fig. 4.6. This corresponds
to the stochastic dynamics of the asymmetric bistable system. The loss of symmetry
under multiplicative noise is reflected in noise-induced front motion in the full reaction-
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Figure 4.7: Single-PS-layer OASLM under simultaneous blue and green illumination when
the blue light beam is reflected by the dichroic mirror and creates feedback. In contrast
to Fig. 2.20, the system contains a defocusing lens to emulate local diffusion by spatially
broadening the field distribution of the back-reflected optical field. Lenses L1 and L2
create 4f-imaging of the OASLM’s state back on itself after reflection by the mirror.

diffusion model described by Eq. (4.4) for a0 = b0 = 1 and noise intensities Da , Db,
which was called ’noise-induced front propagation’ [198].

Rigorously speaking, the evolution of the PDF function does not explain noise-dependent
front propagation, but it can be used as an indicator illustrating the symmetry property
of the reaction term changes when varying Da,b. The theoretical explanation of noise-
controlled front propagation in bistable reaction-diffusion models is given in [178]. Using
the ’Small-Noise-Expansion approach’, the authors have shown that the multiplicative
noise also influences the systematic part of the front dynamics. The same methodology
has been used for the explanation of the front propagation in bistable population models
[199].

4.2/ SPATIALLY-EXTENDED MODEL OF THE FEEDBACK-DRIVEN

OASLM

Consider the model for the system depicted in Fig. 4.7. Here, the single-PS-layer OASLM
operates in the phase modulation regime (OASLM rotation angle ψ = mπ where m ∈ Z)
under simultaneous blue and green laser illumination, and the blue light is reflected from
the dichroic mirror (the corresponding reflective index is R) to form optical feedback and
potentially coupling. It is assumed that the PS’s thickness is significantly smaller than the
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Figure 4.8: Coarsening in an OASLM as described by Eq. (4.8). The considered area
is 1mm2. Parameters are: ε = 1, αb = 0.117, αg = 0.985 × 10−4, β = 0.052, γ = −0.55,
φ0 = π/2, φ1 = π, λb = 450×10−9, λg = 532×10−9, R = 0.95, I0b = |~E0|

2 = 0.01506, I0g = 30.1.

wavelength. In contrast to the model described by Eq. (2.33) and depicted in Fig. 2.20 (b),
the spatial model of the setup in Fig. 4.7 contains two optical lenses to create 4f-imaging
of the OASLM’s state back on itself after reflection by the mirror, and a defocusing lens
within the optical feedback path. Defocusing leads to blurred imaging, as illustrated in Fig.
4.7, and its impact can be mathematically described as a convolution with a Gaussian of
controllable width. Applying this to the system in Fig. 4.7, one obtains a spatial distribution
of the returned light Jones vector ~E2(x, y) as

~E2(x, y) =

(
R exp(φ1)~E1(x, y)

)
∗

(
1

2πσ2 exp
(
−

x2

2σ2 −
y2

2σ2

) )
, (4.7)

where the symbol ’∗’ means the convolution and Gaussian function plays a role of a point
spread function widened from the normal imaging setup via the defocusing lens.

To simplify the model, diffusive processes inside the OASLM discussed in Chap. 2 are
neglected and parameter σ in Eq. (4.7) is assumed to be several times greater than the
OASLM resolution, σOASLM = 3.5µm (see Sec. 2.3). In such a case, the model equations
take the form

~E0(x, y) =

E0

0

 , ~E1(x, y) = exp (i(φ0 + Γ(x, y)))

E0

0

 ,
~E2(x, y) =

(
R exp(φ1)~E1(x, y)

)
∗

(
1

2πσ2 exp
(
−

x2

2σ2 −
y2

2σ2

) )
,

~E3(x, y) = R exp(i(2φ0 + φ1 + 2Γ(x, y)))

E0

0

 , Ib(x, y) =
∣∣∣∣~E0(x, y) + ~E3(x, y)

∣∣∣∣2 ,
ε

dΓ(x, y)
dt

= −Γ(x, y) +
1

αbIb(x, y) +
λg

λb
αgI0g + β

+ γ.

(4.8)

The action of the convolution operation is associated with homogenous coupling of the
system state at any point on the plane (x,y) with its neighbour states in some range
x ∈ [x − ∆x; x + ∆x], y ∈ [y − ∆y; y + ∆y]. If the coupling radius does not exceed the
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OASLM’s linear pixel size, one deals with local coupling, whose impact is identical to
the action of diffusion. Then one can expect to observe the effects of wave propagation
and coarsening in Eq. (4.8), where the system parameters correspond to the regime
of bistability. Moreover, the effects are expected to occur in a similar way as compared
to the phenomenological model described by Eq. (4.1). These assumptions have been
confirmed in numerical simulations starting from random initial conditions [Fig. 4.8]. It is
discussed in the further sections how to control these effects.

4.3/ DETERMINISTIC COARSENING CONTROL

4.3.1/ PITCHFORK BIFURCATION CONDITIONS

Let us fix light intensities I0g = 22, I0b = |~E0|
2 = 0.01506 in Eq. (4.8), while the other pa-

rameters are the same as in the previous section. This parameter set corresponds to the
regime of bistability, but the pitchfork bifurcation conditions derived for the corresponding
single-oscillator model (see Sec. 3.4) are not fulfilled and the right-hand side function of
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Figure 4.9: Evolution of the right-hand side function of Eq. (2.33) and coarsening in Eq.
(4.8) for increasing green light intensity: I0g = 22 (panels (a) and (b)), I0g = 30.1 (panels
(c) and (d)), I0g = 36 (panels (e) and (f)). Other parameters are: ε = 1, αb = 0.117,
αg = 0.985 × 10−4, β = 0.052, γ = −0.55, φ0 = π/2, φ1 = π, λb = 450 × 10−9, λg = 532 × 10−9,
R = 0.95, I0b = 0.01506, σ = 10−5.
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Eq. (2.33) is asymmetric, see Fig. 4.9 (a). In that case, the spatially extended model
described by Eq. (4.8) exhibits the effect of coarsening, see Fig. 4.9 (b1-b3). The system
asymmetry is reflected in the fact that the basin of attraction of state B is larger than the
one of state A, and the unstable fixed point is closer to attractor A than to the stable steady
state B. The domination of dynamics by state B results in the spatial evolution of Eq. (4.8)
such that the red domains corresponding to state B extend and invade the whole space
(x,y), see Fig. 4.9 (b1-b3).

Increasing I0g allows to fulfil the pitchfork bifurcation conditions at I0g ≈ 30.1, for which the
asymmetry the right-hand side function f (Γ) is removed, see Fig. 4.9 (c), and coarsening
is substantially slower. Consequently, a longer time is necessary for the transformation
of the same initial metastable state as in Fig. 4.9 (b1) (the initial spatial states in Fig.
4.9(b1,d1,f1) are identical) into the quiescent regime when either steady state A or B
invades the whole space, see Fig. 4.9 (d1-d3). It must be noted that in the case of
minimal asymmetry the probabilities to observe the final state Γ(x, y) = A or Γ(x, y) = B

starting from random initial conditions is similar.

If one continues to increase the green light intensity, the phase space structure in com-
parison with the initial configuration is inverted, as can be seen from comparison of f (Γ)

in Fig. 4.9(a,e). The motion of fronts separating domains reverses, and coarsening has
the opposite effect: steady state A invades the whole space, see Fig. 4.9(f1-f3).

4.3.2/ SADDLE-NODE BIFURCATION CONDITIONS

Varying I0b and I0g according to the curve obtained using the saddle-node bifurcation
conditions, see Eqs. (3.56) and (3.57), allows to move the right-hand side function of
Eq. (2.33) up and down, see Fig. 4.10 (a,c,e). A symmetric configuration of f (Γ) can
be achieved, see Fig. 4.10 (c), and the same effects as in the previous section can be
observed. First, the system asymmetry is well-pronounced, as illustrated in Fig. 4.10 (a),
and the state B rapidly invades the space (x,y), see Fig. 4.10 (b1-b3). When I0b and
I0g are adjusted such that the saddle-node bifurcation conditions are fulfilled, the system
passes through the symmetric state [Fig. 4.10 (c)], and the coarsening effect maximally
slows down, see Fig. 4.10 (d1-d3). Further changing I0b and I0g inverts the asymmetry
[Fig. 4.10 (e)] and the motion of fronts separating blue and red domains reverses its
direction, see Fig. 4.10 (f1-f3).

4.4/ STOCHASTIC COARSENING CONTROL

Consider a stochastic model of the optical setup in Fig. 4.7. For that purpose, it is
assumed that the green light illumination contains a stochastic contribution according to
I0g(x, y) = I0g+ξ(x, y). Here, ξ(x, y) represents a source of spatial coloured noise described
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Figure 4.10: Evolution of the right-hand side function of Eq. (2.33) and coarsening in Eq.
(4.8) when I0b and I0g vary according to the saddle-node bifurcation conditions for Eq.
(2.33) (see Sec. 3.4): I0b = 0.228, I0g = 990 (panels (a) and (b)), I0b = 0.241, I0g = 1050
(panels (c) and (d)), I0b = 0.2645, I0g = 1153 (panels (e) and (f)). Other parameters are:
ε = 1, αb = 0.117, αg = 0.985× 10−4, β = 0.052, γ = −0.55, φ0 = π/2, φ1 = π, λb = 450× 10−9,
λg = 532 × 10−9, R = 0.95, σ = 10−5.

by the first-order Ornstein-Uhlenbeck process

τc
dξ(x, y)

dt
= −ξ(x, y) +

√
2Dgτcn(x, y, t), (4.9)

where τc is the coloured noise correlation time, n(x, y, t) is a normalized source of white
Gaussian noise, Dg plays a role of the noise intensity. The temporal and spatial correlation
properties of the noise source n(x, y, t) at any point ~r0 are described by the delta function:
< n(~r0, t) >= 0, < n(~r0, t)n(~r0, t + τ) >= δ(τ), < n(~r0, t)n(~r0 + ~rd, t) >= δ(~rd) (here, the brackets
< ... > denote the mean value), which means that the correlation time of the source
n(x, y, t) equals zero and the noise signal values n(x, y, t) at any different points (x1,y1) and
(x2,y2) are statistically independent.

Similarly to the presence of a stochastic contribution in green light, one can consider the

presence of random blue illumination: I0b(x, y) = I0b + ξ(x, y) or ~E0(x, y) =

E0 + ξ(x, y)

0

.
This case is more complicated, since the resulting blue light intensity at the OASLM PS-
layer contains the stochastic component, which in turn depends on the instantaneous
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state Γ, and as a consequence blue illumination noise becomes multiplicative. The third
way to naturally introduce noise into the model under study is to suppose that the voltage
applied across the OASLM comprises a constant DC-power signal and a noise generator
signal. As the voltage equally addresses all spatial positions, all LC-layer molecules are
driven by the same random forcing and the corresponding model describes the dynamics
under common noise ξ(t).

Physically, random spatial component ξ(x, y) can be included into the green illumination
by adding an electronically-addressed spatial light modulator that spatially modifies the
green illumination. Regardless of technical implementation details, the spatial random
illumination will be characterised by finite temporal correlation associated with finite re-
sponse of the EASLMs and defined by the parameter τc. For this reason, the stochastic
model of the setup in Fig. 4.7 implies the presence of coloured noise. It is assumed
in the following that the noise correlation time τc is much smaller than the OASLM re-
sponse time ε. In addition, all the instantaneous values ξ(x, y, t) < −I0g are changed to
ξ(x, y, t) = −I0g since the summary green light intensity I0g + ξ(x, y, t) cannot be negative.
Finally, the stochastic spatial model of the setup in Fig. 4.7 takes the form

~E0(x, y) =

E0

0

 , ~E1(x, y) = exp (i(φ0 + Γ(x, y)))

E0

0

 ,
~E2(x, y) =

(
R exp(φ1)~E1(x, y)

)
∗

(
1

2πσ2 exp
(
−

x2

2σ2 −
y2

2σ2

) )
,

~E3(x, y) = R exp(i(2φ0 + φ1 + 2Γ(x, y)))

E0

0

 , Ib(x, y) =
∣∣∣∣~E0(x, y) + ~E3(x, y)

∣∣∣∣2 ,
ε

dΓ(x, y)
dt

= −Γ(x, y) +
1

αbIb(x, y) +
λg

λb
αg(I0g + ξ(x, y)) + β

+ γ,

τc
dξ(x, y)

dt
= −ξ(x, y) +

√
2Dgτcn(x, y, t).

(4.10)

First, Eq. (4.10) is considered for a set of parameters corresponding to Fig. 4.9 (a) when
the basin of attraction of steady state B is larger than the basin of state A. Then, Eq.
(4.10) exhibits the effect of coarsening and the system state Γ(x, y) = B invades the whole
space in the absence of noise, Dg = 0 (see Fig. 4.11 (a-c)). Increasing noise intensity
Dg, one slows down the effect of coarsening, see Fig. 4.11 (d-f), and above a threshold
of D ≈ 3.7 × 103, noise inverts the the front propagation dynamics and state A dominates,
see Fig. 4.11 (g-i).

Similarly, if the system parameter set corresponds to Fig. 4.9 (e), one observes invading
state A [Fig. 4.12 (a-c)]. In such a case increasing the noise intensity speeds up the
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Figure 4.11: Coarsening in Eq. (4.10) for increasing noise intensity: Dg = 0 (panels (a-
c)), Dg = 3 × 103 (panels (d-f)), Dg = 4 × 103 (panels (g-i)). Other parameters are: ε = 1,
αb = 0.117, αg = 0.985 × 10−4, β = 0.052, γ = −0.55, φ0 = π/2, φ1 = π, λb = 450 × 10−9,
λg = 532 × 10−9, R = 0.95, I0b = |~E0|

2 = 0.01506, I0g = 22, σ = 10−5,τc = 0.01.
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Figure 4.12: Coarsening in Eq. (4.10) for increasing noise intensity: Dg = 0 (panels (a-c)),
Dg = 1.5 × 103 (panels (d-f)). Other parameters are: ε = 1, αb = 0.117, αg = 0.985 × 10−4,
β = 0.052, γ = −0.55, φ0 = π/2, φ1 = π, λb = 450 × 10−9, λg = 532 × 10−9, R = 0.95,
I0b = |~E0|

2 = 0.01506, I0g = 36, σ = 10−5,τc = 0.01.
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Figure 4.13: Evolution of the normalised probability density function Pn(Γ) caused by
the varying noise intensity Dg in Eq. (4.11). Parameters are: ε = 1, αb = 0.117, αg =

0.985 × 10−4, β = 0.052, γ = −0.55, φ0 = π/2, φ1 = π, λb = 450 × 10−9, λg = 532 × 10−9,
R = 0.95, I0b = 0.01506, I0g = 22, ,τc = 0.01.

process [Fig. 4.12 (d-f)]. Thus, it is demonstrated in Fig. 4.11 and Fig. 4.12 that,
depending on the particular system configuration, noise can speed up coarsening, slow
it down or to invert the process.

The theoretical explanation of the stochastic coarsening control in OASLM-based spa-
tial models using the ’Small-Noise-Expansion approach’ discussed in Sec. 4.1.2 seems
to be significantly more difficult in comparison with the explanations presented in Refs.
[178, 199] on the examples of basic reaction-diffusion models with multiplicative noise.
This is due to the fact that any polynomial expression of Eq. (4.10) is challenging to ob-
tain, and, will furthermore give rise to stochastic terms in all the polynomial components.
Consequently, it becomes impossible to distinguish the systematic part of the noise in-
fluence. However, the similarity between the processes observed in the basic models
used in references [178, 198, 199] and in OASLM-based spatial model described by Eq.
(4.10) is evident. To visualise the fact that stochastic forcing has an asymmetric impact
on Eq. (4.10), a single-oscillator stochastic model corresponding to Eq. (4.10) at σ → 0

is taken into consideration. If σ → 0, the spatial coupling is absent and the retardation Γ

individually evolves according to Eq. (2.33) at each point of the illuminated area, but in
the presence of the noise term ξ

ε
dΓ

dt
= −Γ +

1

αbIb +
λg

λb
αg(I0g + ξ) + β

+ γ +
√

0.02na(t),

τc
dξ
dt

= −ξ +
√

2Dgτcn(t),

Ib = I0b
{
1 + R2 + 2R cos(2φ0 + φ1 + 2Γ)

}
,

(4.11)

where the additive white Gaussian noise term
√

0.02na(t) used to obtain the PDF has no
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impact on the system’s symmetry and is included to obtain a stationary distribution of
the normalised probability density function for the dynamical variable, Pn(Γ), in numerical
simulations. The evolution of Pn(Γ) caused by increasing noise intensity Dg illustrated in
Fig. 4.13 indicates that the left peak gets smeared out faster than the right one. Thus,
the action of noise ξ(t) is significantly stronger in the vicinity of the left steady state Γ∗ =

A. This effect is similar to the noise-induced evolution of Pn(u) in the phenomenological
model defined by Eq. (4.6) (compare Fig. 4.6 and Fig. 4.13).

4.5/ CONCLUSION

The spatial model of the OASLM with mirror feedback takes into consideration the impact
of a defocusing lens. Defocusing represents a natural physical approach for the homoge-
neous coupling implementation similarly to diffusive effects occurring inside the OASLM.
But in contrast to the internal diffusive processes in the OASLM which were neglected,
one can control the coupling radius by moving the defocusing lens of the dichroic mirror.

Bifurcation transitions to the bistable dynamics discussed in Chap. 2 and 3 in the context
of single-oscillator models, are reflected in the behaviour of the corresponding spatially-
extended systems,as for example in Eq. (4.8) or similar models corresponding to different
OASLM’s rotation angles or incident light polarization states, as formation of localized
spatial domains corresponding to the attraction of two coexisting steady states. Then, if
the system right-hand side function is asymmetric, the steady state characterized by the
larger basin of attraction, invades the entire space. This process is accompanied by the
effect of coarsening, which is determined by both asymmetry and the shape of evolving
domains.

Applying the saddle-node or pitchfork bifurcation conditions derived in Chap. 3, one can
remove the system asymmetry and then the dominating domain expansion is slowed
down. Moreover, if the incident green and blue light intensities vary and obey the saddle-
node bifurcation condition, one can controllably invert the front propagation direction.
However, the saddle-node bifurcation conditions do not allow to rigorously define the
absolutely symmetric state, while applying the pitchfork bifurcation conditions provide for
mathematical derivation of appropriate parameter values.

The second approach to control coarsening is the introduction of noise into the system.
In particular, the presence of parametric noise modulating the green light intensity gives
rise to slowing down and inverting the effects of front propagation and coarsening. The
ability to control the dynamics by increasing noise intensity strength is explained by the
fact that fluctuation growth changes the system symmetry.





5

OASLM FOR ISING MACHINE

IMPLEMENTATIONS

The spatial OASLM-based model considered in the previous chapters implies the action
of homogenous coupling. Introducing additional optical devices in between the OASLM
and the dichroic mirror, one can experimentally realize a wide range of coupling topolo-
gies. If the coupling element provides for the coupling weight control, it offers great oppor-
tunities for photonic neural network implementations, for example see the seminal work
by Farhat et al. who implemented a Hopfield network [159]. A broad variety of potential
applications includes classical machine learning tasks such as time series reconstruction
and pattern recognition as well as combinatorial optimization problems. Particularly, the
application to combinatorial problems is discussed in this chapter in the context of imple-
menting a photonic Ising machine. Here, we address the question wether an OASLM can
be used for the photonic Ising machine. In other words, the main discussed question is
’can the dynamical equations of an OASLM with optical feedback be transformed into the
form of an Ising-model?’.

5.1/ OASLM-BASED MODEL UNDER STUDY

During the process of developing the OASLM-based model for any configuration in Chap.
2 it became clear that the resulting equations became very complex. For this reason,
the first steps to derive an OASLM-based Ising machine are focused on identifying a
experimental and hardware configuration which could significantly simplify the dynami-
cal equations of the system. The most appropriate configuration is depicted in Fig. 5.1,
where the OASLM operates in the amplitude modulation regime (ψ = π/4). In contrast to
the previous hardware configurations, here a single PS-layer is situated on the right side
of the OASLM. Again, here we consider a PS with a thickness being significantly smaller
than the wavelength. Furthermore, we here assume that the PS-layer’s conductivity de-
pends on the polarization state of the resulting summary light, hence acts as a polariza-
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Figure 5.1: Single-PS-layer OASLM under simultaneous blue and green illumination when
the blue light beam is reflected by the dichroic mirror and creates feedback. In contrast
to Fig. 4.7, the PS-layer is polarization-sensitive and situated on the right side of the
OASLM.

tion sensitive detector. Consequently, the retardation induced by the OASLM depends
only on the vertical component of the optical intensity at the PS-layer. Such anisotropic
photosensitive films, characterised by a periodic grating structure of their surface, have
been recently demonstrated in Refs. [200–202], and we assume that for example similar
nano-structuring of the chalcogenide PS layer could induce similar polarization sensitivity
for our device. However, these are assumptions and need to be confirmed indepen-
dently; the focus on this chapter is proposing an OASLM with particular properties and to
demonstrate that it can serve as a simulator of an Ising model. Finally, we assume that
the OASLM fully transmits the horizontally polarized light.

5.1.1/ SINGLE-OSCILLATOR MODEL

Consider the optical setup in Fig. 5.1 for the injected blue light polarization state

~E0 =

E0

0

. For the single-oscillator mode, the Jones vectors for the blue light fields
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~E1,2,3 are

~E1 = E0 exp(iφ0)

 cos(Γ)

i sin(Γ)

 , ~E2 = RE0 exp(i(φ0 + φ1))

 cos(Γ)

i sin(Γ)

 ,
~E3 = RE0 exp(i(2φ0 + φ1))

 cos(2Γ)

i sin(2Γ)

 .
(5.1)

If the blue light is coherent, the combined blue light field at the right PS layer takes the
form

~Eright =

Eright
x

Eright
y

 = ~E1 + ~E2 = E0(exp(iφ0) + R exp(i(φ0 + φ1)))

 cos(Γ)

i sin(Γ)

 . (5.2)

However, the blue light phase retardation is determined only by the vertical component,

Γ = Γ

(∣∣∣∣Eright
y

∣∣∣∣2). Following the procedures described in the second chapter, one obtains

the expression for the retardation
∣∣∣∣Eright

y

∣∣∣∣2 = I0b sin2(Γ)
(
1 + R2 + 2R cos(φ1)

)
and the dynam-

ical system equation takes the form

ε
dΓ

dt
= −Γ +

1

αb

∣∣∣∣Eright
y

∣∣∣∣2 +
λg

λb
αgI0g + β

+ γ,

∣∣∣∣Eright
y

∣∣∣∣2 = I0b sin2(Γ)
{
1 + R2 + 2R cos(φ1)

}
.

(5.3)

Equations (5.3) can be simplified using the assumption that OASLM’s response is linear

as in Sec. 2.10: Γ = Γ∗ − κ
∣∣∣∣Eright

y

∣∣∣∣2, which for the case of coherent illumination results in

ε
dΓ

dt
= −Γ + Γ∗ − κI0b sin2(Γ)

{
1 + R2 + 2R cos(φ1)

}
,

Γ∗ =

(
λg

λb
αgI0g + β

)−1

+ γ.
(5.4)

In such a case, the nonlinearity is fully determined by sin2(Γ), and the model takes the
Ikeda-like oscillator form.

Equation (5.4) describes the situation for coherent illumination, for which the intensity at

the PS-layer is
∣∣∣∣~E1 + ~E2

∣∣∣∣2. If, however, the illumination is incoherent, then the overall light

intensity is not determined by the coherent sum, but instead by
∣∣∣∣~E1x

∣∣∣∣2+
∣∣∣∣~E1y

∣∣∣∣2+
∣∣∣∣~E2x

∣∣∣∣2+
∣∣∣∣~E2y

∣∣∣∣2.
Since the OASLM PS-layer is sensitive only to the vertical polarization component of the

illuminating light, the retardation becomes Γ = Γ

(∣∣∣∣~E1y

∣∣∣∣2 +
∣∣∣∣~E2y

∣∣∣∣2) and the expression for the

intensity controlling the OASLM state is Ib = I0b sin2(Γ)
{
1 + R2

}
. Then the model for linear
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OASLM’s response for the case of incoherent illumination becomes

ε
dΓ

dt
= −Γ + Γ∗ − κI0b sin2(Γ)

{
1 + R2

}
,

Γ∗ =

(
λg

λb
αgI0g + β

)−1

+ γ.
(5.5)

5.1.2/ NETWORK MODEL

5.1.2.1/ COHERENT ILLUMINATION

Suppose that a coherent light beam illuminating the OASLM (see Fig. 5.1) are spatially
distributed. Under such conditions, the horizontally polarised incident blue light can be
described via its spatially discertized field distribution on the PS’s surface, using a set of
N pixels, and its optical field at different positions can then be expressed in the form of
the two n-dimensional vectors

~E0x =


E0
...

E0

 , ~E0y =


0
...

0

 . (5.6)

It is assumed that the pixels are large enough such that the diffusive processes occurring
inside the OASLM, see Chap. 2, can be excluded. Since the OASLM is operated in the
amplitude modulation regime, the light passing through the OASLM at any pixel of the
illuminated area is

~E1x = E0 exp(iφ0) cos
(
~Γ
)
, ~E1y = E0 exp(iφ0)i sin

(
~Γ
)
, (5.7)

where ~Γ is a 1 × N vector of local retardation values at particular pixels, i.e. ~Γ is the
N-dimensional spatial birefringence distribution of the OASLM.

When placing a coupling element between OASLM and the dichroic mirror, the expres-
sions for the optical feedback field ~E2 components become

~E2x = E0R exp(i(φ0 + φ1))
{
W × cos

(
~Γ
)}
,

~E2y = iE0R exp(i(φ0 + φ1))
{
W × sin

(
~Γ
)}
,

(5.8)

where W is a N × N coupling matrix without birefringence, sin
(
~Γ
)

and cos
(
~Γ
)

are 1 × N

vectors. The products
{
W × sin

(
~Γ
)}

and
{
W × cos

(
~Γ
)}

are 1 × N vectors of elements{
W × sin

(
~Γ
)}

k
=

N∑
l=1

Wk,l sin(Γl) and
{
W × cos

(
~Γ
)}

k
=

N∑
l=1

Wk,l cos(Γl), respectively. The resulting
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light field components at the PS-layer ~Es = ~E1 + ~E2 therefore becomes

~Esx = E0 exp(iφ0)
(
cos

(
~Γ
)

+ R exp(iφ1)
{
W × cos

(
~Γ
)})
,

~Esy = iE0 exp(iφ0)
(
sin

(
~Γ
)

+ R exp(iφ1)
{
W × sin

(
~Γ
)})
.

(5.9)

The phase retardation of the blue light is determined by the vertical component of the
intensity at the PS, hence, Γ = Γ

(∣∣∣Esy
∣∣∣2), and finally the network’s dynamical equation for

oscillator k become

ε
dΓk

dt
= −Γk +

1

αbIb
k +

λg

λb
αgI0g + β

+ γ,

Ib
k = I0b

(
sin2(Γk) + R2

{
W × sin

(
~Γ
)}2

k
+ 2R

{
W × sin

(
~Γ
)}

k
sin(Γk) cos(φ1)

)
.

(5.10)

For φ1 = 0 the model simplifies into

ε
dΓk

dt
= −Γk +

1

αbIb
k +

λg

λb
αgI0g + β

+ γ,

Ib
k = I0b

(
sin(Γk) + R

{
N∑

l=1
Wk,l sin(Γl)

})2

.

(5.11)

Some further simplification can be achieved under the assumption of the linear OASLM
response (similarly applied in the previous section for the single-oscillator model)

ε
dΓk

dt
= −Γk + Γ∗ − κI0b

sin2(Γk) + 2R sin(Γk)
{

N∑
l=1

Wk,l sin(Γl)
}

+ R2
{

N∑
l=1

Wk,l sin(Γl)
}2 ,

Γ∗ =

(
λg

λb
αgI0g + β

)−1

+ γ.

(5.12)

5.1.2.2/ INCOHERENT ILLUMINATION

Suppose that the blue illumination is incoherent. In such a case all the phase relation-
ships inducing interference between the fields of different oscillators disappear. The ex-
pressions for intensities are transformed from the coherent-light form of squares-of-sums∣∣∣∣∣∣ N∑
k=1

~Ek

∣∣∣∣∣∣2 to the incoherent form of sum-of-squares
N∑

k=1

∣∣∣∣~Ek

∣∣∣∣2. The phase retardation be-

comes Γ = Γ

(∣∣∣E1y
∣∣∣2 +

∣∣∣E2y
∣∣∣2) and the network model takes the form

ε
dΓk

dt
= −Γk +

1

αbIb
k +

λg

λb
αgI0g + β

+ γ,

Ib
k = I0b

(
sin2(Γk) + R2

{
N∑

l=1
W2

k,l sin2(Γl)
})
,

(5.13)
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which can be rewritten for the linearized OASLM-response

ε
dΓk

dt
= −Γk + Γ∗ − κI0b

(
sin2(Γk) + R2

{
N∑

l=1
W2

k,l sin2(Γl)
})
,

Γ∗ =

(
λg

λb
αgI0g + β

)−1

+ γ,

(5.14)

At this stage, the principal difference between given by Eqs. (5.12) and Eqs. (5.14) must
be emphasized. Since the expression for the blue light intensity Ib in Eq. (5.12) is the

square-of-sums of two terms, one obtains the additional term 2R sin(Γk)
{

N∑
l=1

Wk,l sin(Γl)
}

,

and crucially individual node dynamics according to, sin(Γk) are intertwined with the net-

works dynamics projected through the coupling matrix
{

N∑
l=1

Wk,l sin(Γl)
}

. Thus, one can-

not separate the terms determining the individual dynamics and network topology in
Eq. (5.12). Meanwhile, the expression for the resulting intensity Ib in the coherent net-
work model of Eqs. (5.14) is a sum of the local retardation value Γk and the coupling

R2
{

N∑
l=1

W2
k,l sin2(Γl)

}
. That means the terms responsible for the individual dynamics and

coupling in Eq. (5.14) can clearly be separated. This fact is important for the opportunity
of photonic Ising machine implementations by using the OASLM, as the additional mod-
ifications appearing in the coherent network model can potentially modify the potential
energy landscape of the system [80].

5.2/ PITCHFORK BIFURCATION CONDITIONS AND SPIN-NETWORK

DYNAMICS

To represent the OASLM-based system as a network of interacting spins, the model equa-

tions are expressed in the form
dxk

dt
= bxk + dx3

k +
N∑

k=1
Jk,lxl. The pitchfork bifurcation con-

ditions derived by means of the Taylor series approximation are applied below for this
purpose.

5.2.1/ INCOHERENT ILLUMINATION (FULL MODEL)

First, the pitchfork bifurcation conditions are derived for a single-oscillator model. For the
incoherent illumination the model equations are

ε
dΓ

dt
= −Γ +

1

αbI0b sin2(Γ)
{
1 + R2

}
+
λg

λb
αgI0g + β

+ γ.
(5.15)
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The equation right-hand side function f (Γ) is represented by its Taylor series approxima-
tion fT(Γ) in the similar way as in Chap. 3

f (Γ) = −Γ +

(
k sin2(Γ) +

λg

λb
αgI0g + β

)−1

+ γ,

fT(Γ) = a + b(Γ − Γ0) + c(Γ − Γ0)2 + d(Γ − Γ0)3, where

a = −Γ0 +

(
k sin2(Γ0) +

λg

λb
αgI0g + β

)−1

+ γ,

b = −1 − k sin(2Γ0)
(
k sin2(Γ0) +

λg

λb
αgI0g + β

)−2

,

c = −k cos(2Γ0)
(
k sin2(Γ0) +

λg

λb
αgI0g + β

)−2

+ k2 sin2(2Γ0)
(
k sin2(Γ0) +

λg

λb
αgI0g + β

)−3

,

d =
2
3

k sin(2Γ0)
(
k sin2(Γ0) +

λg

λb
αgI0g + β

)−2

+ k2 sin(4Γ0)
(
k sin2(Γ0) +

λg

λb
αgI0g + β

)−3

−k3 sin3(2Γ0)
(
k sin2(Γ0) +

λg

λb
αgI0g + β

)−4

,

k = αbI0b
{
1 + R2

}
.

(5.16)
For further analysis one therefore obtaines the pitchfork bifurcation conditions a = 0 and
c = 0

a = 0⇒
(
k sin2(Γ0) +

λg

λb
αgI0g + β

)−1

= Γ0 − γ,

c = 0⇒ − cos(2Γ0) + k sin2(2Γ0)(Γ0 − γ) = 0,

(5.17)

and the blue light intensity is expressed

I0b =
cos(2Γ0)

αb
{
1 + R2} sin2(2Γ0)(Γ0 − γ)

. (5.18)

The green light intensity I0g is expressed from the first pitchfork condition, a = 0

I0g =
λb

λg

1
Γ0 − γ

− αbI0b
{
1 + R2

}
sin2(Γ0) − β

αg

(5.19)

The expression for I0g includes the parameter I0b which is the one to be determined
according to Eq. (5.18) as a function of Γ0. Thus, the green light intensity also is a function
of Γ0. If the pitchfork bifurcation conditions are fulfilled, the Taylor series coefficient b takes
the same form as for Eq. (2.28): b = −1− (Γ0−γ) cot(2Γ0). Following the same procedures
as in Chap. (3) for different OASLM-based models, the curve I0b(I0g) corresponding to
the pitchfork bifurcation conditions is obtained [Fig. 5.2 (a)]. If I0b and I0g vary according
to the curve in Fig. 5.2 (a), one observes the pitchfork bifurcation [Fig. 5.2 (b-f)].
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Figure 5.2: Pitchfork bifurcation in the incoherent network according to Eqs. (5.15) for the
absence of the reflected feedback light (R = 0): (a) Dependence I0b(I0g) obtained from
the pitchfork bifurcation conditions (see Exps. (5.18) and (5.19)); (b-f) Right-hand side
function f (Γ) (red solid curve) and its Taylor series approximation (5.16) (blue dashed
curve) at control points 1-5 in panel (a): I0b = 0.1477 and I0g = 894.8 (point 1), I0b = 0.2316
and I0g = 857 (point 2), I0b = 0.2434 and I0g = 852.1 (point 3), I0b = 0.2642 and I0g = 843.7
(point 4), I0b = 0.388 and I0g = 799 (point 5). The system parameters are: αb = 0.117,
αg = 0.985 × 10−4, β = 0.052, γ = −0.55, λb = 450 × 10−9, λg = 532 × 10−9.

Using the substitution W̃k,l = W2
k,l, network model of Eqs. (5.13) is rewritten as

ε
dΓk

dt
= −Γk +

1

αbIb
k +

λg

λb
αgI0g + β

+ γ,

Ib
k = I0b

(
sin2(Γk) + R2

{
N∑

l=1
W̃k,l sin2(Γl)

})
,

(5.20)

To demonstrate that the model of Eqs. (5.20) can exhibit the basic properties of the the
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Figure 5.3: Illustration of the coupling matrix.
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Figure 5.4: Antiferromagnetic interaction in the model of Eqs. (5.20). System parameters
are: αb = 0.117, αg = 0.985 × 10−4, β = 0.052, γ = −0.55, λb = 450 × 10−9, λg = 532 × 10−9,
I0b = 0.2434 and I0g = 852.1, R = 0.95. Parameters I0b and I0g correspond to the f (Γ)
configuration depicted in Fig. 5.2 (d).

Ising machine dynamics, the model is studied in the bistable regime close to the pitchfork
bifurcation. The chosen pair of parameters I0b and I0g corresponds to the configuration
f (Γ) depicted in Fig. 5.2 (d). The action of this particular coupling matrix is illustrated in
Fig. 5.3: it splits the input signal at any pixel into four and distributes it across the pixel’s
nearest neighbours according to negative coupling weights, and hence corresponds to
the antiferromagnetic interactions model of a Ising spin system. Noteworthy, here we treat
a network based on incoherent illumination, and diffractive optics hence cannot generally
provide the required coupling mechanism, yet one would potentially need to consider
difference in spatial and temporal coherence. If the initial conditions are initialized in the
neighbourhood of the unstable fixed point, then Eqs. (5.20) exhibits the alternating-spin
regime illustrated in Fig. 5.4 which in its final state and for this simple interaction topology
corresponds to the solution of the Ising model [80].

5.2.2/ INCOHERENT ILLUMINATION (LINEARISED MODEL)

Consider the linearised model of Eqs. (5.5). To establish the conditions for the pitchfork
bifurcation, the Taylor series is
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Figure 5.5: Right-hand side function f (Γ) of Eq. (5.5) (red solid curve) and its Taylor
series approximation (5.21) (blue dashed curve) for a set of parameters: I0b = 0.2434 and
I0g = 860.3 (corresponds to Γ∗ = 6.021), κ = 4.3, R = 0, αb = 0.117, αg = 0.985 × 10−4,
β = 0.052, γ = −0.55, λb = 450 × 10−9, λg = 532 × 10−9.

f (Γ) = −Γ + Γ∗ − κI0b sin2(Γ0)
{
1 + R2

}
,

fT(Γ) = a + b(Γ − Γ0) + c(Γ − Γ0)2 + d(Γ − Γ0)3, where
a = −Γ0 + Γ∗ − κI0b sin2(Γ)

{
1 + R2

}
,

b = −1 − κ
{
1 + R2

}
I0b sin(2Γ0),

c = −κ
{
1 + R2

}
I0b cos(2Γ0),

d =
2
3
κ
{
1 + R2

}
I0b sin(2Γ0).

(5.21)

The pitchfork bifurcation conditions a = 0 and c = 0 take the form

a = 0⇒ Γ∗ = Γ0 + κI0b sin2(Γ0)
{
1 + R2

}
,

c = 0⇒ cos(2Γ0) = 0,

(5.22)

which means that the symmetric cubic function fT(Γ) = b(Γ−Γ0)+d(Γ−Γ0) can be achieved
only at Γ0 = ±

π

4
+
πn
2

(n ∈ Z). The linearised model is used below to reproduce the pattern
formation dynamics illustrated in Fig. 5.4. Then the further assumptions are applied for
the reconstruction of the curve f (Γ) in Fig. 5.2 (d) for the case of linearised model given
by Eq. (5.5). The nearest point Γ0 corresponding to the symmetric bistable regime in the

neighbourhood of the point Γ0 ≈ 5.579, which corresponds to n = 3, hence Γ0 =
π

4
+

3π
2

.
The chosen parameter values I0b = 0.2434 and R = 0 are the same as for Fig. 5.2 (d). The
main aim is therefore to estimate values κ and Γ∗ such that the cubic form of the right-hand
side function is similar to the original one in Fig. 5.2 (d) and the conditions according to
Eqs. 5.22 are fulfilled, which is the case at κ = 4.3. The corresponding value Γ∗ = 6.021 is
calculated according to the condition a = 0 (see Eq. (5.22)). The resulting right-hand side
function f (Γ) is depicted in Fig. 5.5. It is important to note that in contrast to the full model
of Eq. (5.15) where the pitchfork bifurcation conditions are fulfilled at I0b = 0.2434 and
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Figure 5.6: Antiferromagnetic interaction in Eq. (5.14). System parameters are: αb =

0.117, αg = 0.985× 10−4, β = 0.052, γ = −0.55, λb = 450× 10−9, λg = 532× 10−9, I0b = 0.2434
and I0g = 860.3 (corresponds to Γ∗ = 6.021), κ = 4.3, R = 0.95. The chosen set of
parameters corresponds to the f (Γ) configuration depicted in Fig. 5.5.

I0g = 852.1 (see Fig. 5.2 (d)), the pitchfork bifurcation conditions in Eq. (5.5) are fulfilled
at the same I0b = 0.2434 and a slightly different I0g =

λb
λgαg

(
(Γ∗ − γ)−1 − β

)
= 860.3.

After all parameter values corresponding to the symmetric cubic configuration f (Γ) have
been identified, this set of parameters is used for modelling network model according to
Eqs. (5.14) with the same antiferromagnetic coupling matrix elements W̃k,l = W2

k,l as in
the full model by Eq. (see Fig. 5.3). The resulting patterns obtained from random initial

conditions in the vicinity of the point Γ0 =
π

4
+

3π
2

are shown in Fig. 5.6. Similarly to the
patterns observed in the full model [Fig. 5.4], the system state in Fig. 5.6 corresponds to
the antiferromagnetic interaction.

5.2.3/ COHERENT ILLUMINATION (LINEARISED MODEL)

As demonstrated in Sec. 5.1.2, the model equations corresponding to coherent illumina-
tion are more complex. In such a case the system under study cannot be represented
as the canonic model for the Ising machine. To demonstrate this fact, the system is con-
sidered for the linearised case (see Eqs. (5.12)) chosen as the simplest equation form.
Substituting the coupling matrix as being

W̃ =



W1,1 +
1
R

W1,2 . . . W1,N

W2,1 W2,2 +
1
R

. . . W2,N

...
...

...
...

WN,1 WN,2 . . . WN,N +
1
R


(5.23)

one can rewrite Eqs. (5.12) as

ε
dΓk

dt
= −Γk + Γ∗ − κI0bR2

{
N∑

l=1
W̃k,l sin(Γl)

}2

,

Γ∗ =

(
λg

λb
αgI0g + β

)−1

+ γ.

(5.24)
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Expressing the square of the sum in the brackets, the final equation form is obtained

ε
dΓk

dt
= −Γk + Γ∗ − κI0bR2

{
N∑

l=1
W̃2

k,l sin2(Γl) +
N∑

l=1
k=1
l,k

W̃k,lW̃k,h sin(Γl) sin(Γh)
}
,

Γ∗ =

(
λg

λb
αgI0g + β

)−1

+ γ.

(5.25)

The second sum complicates the equations and presents a deviation of the pure Ising
model’s form. Furthermore, one cannot explicitly distinguish the terms describing the
individual dynamics of the k-th oscillator, and then represent them using the Taylor series
approximation for further pitchfork bifurcation condition derivations. Any of our attempts
to apply the Taylor series approach give rise to the presence of the coupling terms in
the expressions for a(Γ0), b(Γ0), c(Γ0), d(Γ0). The possibility to implement symmetric spin
dynamics at a(Γ0) = c(Γ0) = 0 for each partial oscillator depends, both, on individual
dynamics determined by parameter values, on the coupling topology and the global state
of the whole system (the retardation at other pixels).

The carried out simulations have shown that the antiferromagnetic interaction states can
be exhibited by other configurations of the OASLM with optical feedback. In particu-
lar, such states can be achieved by the OASLM with a PS-layer being not polarization-
sensitive. However, the corresponding model equations for these systems are more com-
plex and cannot be reduced to the classical Ising model. In some cases the difference
can be minimized by choosing special kinds of the coupling matrices, but the rigorous
mathematical similarity cannot be reached. These complex systems are interesting in the
context of further studies.

5.3/ CONCLUSION

It has been demonstrated that modifying the OASLM-design allows simplifying the sys-
tem’s nonlinear model equations. In particular, the introduction of the OASLM with a sin-
gle polarization-sensitive PS-layer provides for the implementation of a sin2-nonlinearity.
In such a case, the model implying incoherent illumination is most simplified and can be
represented as a particular manifestation of the Ising model. The advantage of incoher-
ent illumination is the fact that the corresponding system equation can be represented

as a sum of two separated functions: ε
dΓk

dt
= f (Γk) + g

(
W × sin

(
~Γ
))

, where the function f

is responsible for the individual dynamics, while function g consists of the coupling terms
(here, the symbol × corresponds to matrix multiplication). Thus, applying the Taylor series
approach and deriving the pitchfork bifurcation conditions, one can transform the model

equations as being ε
dΓk

dt
= b(Γ−Γ0)+d(Γ−Γ0)3+g

(
W × sin

(
~Γ
))

, which represents a particu-
lar manifestation of the Ising model. It has been shown by means of numerical simulations
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that the studied model can relax into a final state corresponding to the antiferromagnetic
interaction of an Ising model. As a consequence, OASLMs are potentially promising for
the implementation of spin-networks for solution of combinatorial optimisation problems
[73].

In contrast to the incoherent illumination model, the dynamical system equations for co-
herent illumination are more complicated since the phase terms due to the interference
between the field of coupled oscillators. The generalised form for the model equations

takes the form ε
dΓk

dt
= f (Γk) + q

(
sin (Γk) ,W × sin

(
~Γ
))

+ g
(
W × sin

(
~Γ
))

. Thus, the represen-

tation of the right-hand side function as b(Γ−Γ0) + d(Γ−Γ0)3 + g
(
W × sin

(
~Γ
))

is impossible.
However, this does not mean that the system cannot exhibit the distinguishable stable
states of the Ising model such as the case of the antiferromagnetic interaction, but the
rigorous mathematical correspondence could not be achieved within the framework of
this thesis. This is due to the fact that for the case of coherent illumination the pitchfork
bifurcation condition fulfilment is dictated by, both, the individual dynamics parameters
and by the coupling weights.
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CONCLUSION

In this thesis, we experimentally explored a nematic liquid crystal OASLM using nano-
dimensional dichalcogenide (a-As2S3) glassy thin-films as photo sensors and alignment
layers OASLM. We used device parameters obtained from experimental characterization
to develop the general nonlinear-dynamical model of the OASLM and various OASLM-
based optical systems. Numerical simulations of the different developed models revealed
fundamental properties of their dynamics, which is of major importance for the growing
field of special purpose hardware implementations of novel computing concepts.

The first part of this thesis is focused on experimental characterizations of OASLM pa-
rameters and its energy consumption. The carried out experiments demonstrated that
the OASLM is characterized by a very low energy consumption and is able to operate
at very low powers of incident light. However, during characterizations it was also found
that the device response is not stable in the case of long-term illumination, since the
studied OASLMs can only be operated using a DC-power supply, which in turn induced
destructive effects inside the LC-layer of the OASLM.

Next, it was analysed which kinds of the dynamics can be realized in OASLM-based
systems by the implementation of optical feedback loops. One of the simplest ways to
achieve such feedbacks is using mirrors. This option was examined by means of numeri-
cal simulations of single-oscillator models corresponding to OASLM-based setups. It has
been shown that transitions from monostability to multistability of steady-state regimes
are typical for such systems. In particular, transitions from monostability to bistability
were observed in a case of incoherent illumination, while the coherent illumination allows
to achieve the coexistence of up to six stable equilibrium points.

Besides the consideration of single-colour models of OASLM-based setups, a manifold
of models implying instantaneous two-colour (here blue and green) illumination of the
OASLM has been analysed. The two-colour model contains an additional parameter and
hence is more flexible. This was used to achieve the occurrence of different bifurcation
scenarios in two-colour models of the OASLM. A Taylor series expansion-based tech-
nique allows deriving mathematical conditions for the observation of the pitchfork, trans-
critical and saddle-node bifurcations of steady states. The successful demonstration of

107



108 CONCLUSION

the different bifurcation conditions in numerical experiments has enabled us to emphasize
the universality of OASLM-based models described by one dynamical variable: all three
bifurcations which can occur in such systems were demonstrated in numerical experi-
ments simply by varying the two different light intensities. Furthermore, simplification of
the OASLM from two PS layers to a single-PS layer does not result in principal changes
in the dynamics, and the possibility to observe the discussed bifurcation persists.

Besides the achievement of particular bifurcation transitions, adjusting the incident light
intensities enables controlling the spatial dynamics. In particular, the established pitchfork
bifurcation conditions provide for controlling the system symmetry. We use this to control
the effect of coarsening in a spatially-extended model of the OASLM with optical feedback.

Finally, we showed that one can apply OASLMs for the emulation of dynamics highly
similar or identical to networks of spin 1/2 particles in the context of Ising machines. To
achieve maximal correspondence with the Ising model, the OASLM must be transformed
to a single PS-layer, where PS-layer’s photosensitivity depends on a resulting light polar-
ization state, i.e. a polairization selective PS layer. Such PS can be achieved, for example
using nano-structuring of the PS layer similar to a wire-grid polarizer.

In summary, the obtained results indicate that OASLMs offer great opportunities for PNN
implementations due to a wide spectrum of coupling elements state the OASLMs poten-
tial for further modifications. Using a series of OASLMs without feedback connections
provides for development of FNNs, while the introduction of additional optical elements
for feedback connections, such as mirrors, could establish RNNs. In particular, using the
pitchfork bifurcation conditions one can achieve a system state being very close the the
bifurcation point where transients are maximally long. Such states could be applied for
transient computing architectures such as reservoir computing. In addition, OASLMs are
promising in the context of synthesis of photonic spin-networks. Thus, a variety of practi-
cal applications of OASLM-based PNNs is not limited by typical machine learning tasks,
such as pattern recognition or time series reconstruction, but also includes combinatorial
optimization problems.

Concerning further researches addressing OASLMs, the most relevant one is transition
from numerical modelling of OASLM-based setup models to creation of real PNNs for
further study in physical experiments. For this purpose, one must use OASLMs with a
thicker PS layer in order to enable sufficient response times allowing for an operation
using a AC-power supply. In addition, one can simplify OASLMs construction as the
two PS-layers are not necessary: all the dynamical regimes and occurred bifurcation
transitions are also observed in a case of the OASLM with a single PS-layer. If one need
to create a photonic Ising machine and a full correspondence with the theoretical model
is principally important, then OASLM must be equipped with a PS-layer being sensitive to
a polarization state of the incident light.
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[33] LINDNER, B., GARCÍA-OJALVO, J., NEIMAN, A., AND SCHIMANSKY-GEYER, L. Ef-
fects of noise in excitable systems. Physics Reports 392, 6 (2004), 321–424.

[34] SHILNIKOV, A., AND KOLOMIETS, M. Methods of the qualitative theory for the
hindmarsh–rose model: A case study – a tutorial. International Journal of Bifur-
cation and Chaos 18, 8 (2008), 2141–2168.

[35] NEIMAN, A., PEI, X., RUSSELL, D., WOJTENEK, W., WILKENS, L., MOSS, F.,
BRAUN, H., HUBER, M., AND VOIGT, K. Synchronization of the noisy elec-
trosensitive cells in the paddlefish. Phys. Rev. Lett. 82, 3 (1999), 660–663.

[36] NAGUMO, J., ARIMOTO, S., AND YOSHIZAWA, S. An active pulse transmission
line simulating nerve axon. Proceedings of the IRE 50, 10 (1962), 2061–2070.
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[148] ROSALES-GUMÁN, C., AND FORBES, A. How to Shape Light with Spatial Light
Modulators. SPIE PRESS, 2017.

[149] WICK, D., MARTINEZ, T., WOOD, M., WILKES, J., GRUNEISEN, M., BERENBERG,
V., VASIL’EV, M., ONOKHOV, A., AND BERESNEV, L. Deformed-helix ferroelectric
liquid-crystal spatial light modulator that demonstrates high diffraction effi-
ciency and 370-line pairs/mm resolution. Applied Optics 38, 17 (1999), 3798–
3803.

[150] SHRESTHA, P., CHUN, Y., AND CHU, D. A high-resolution optically addressed
spatial light modulator based on zno nanoparticles. Light: Science & Applica-
tions 4, 3 (2015), e259.

[151] PICCARDI, A., BORTOLOZZO, U., RESIDORI, S., AND ASSANTO, G. Spatial soli-
tons in liquid-crystal light valves. Optics Letters 34, 6 (2009), 737–739.

[152] VERSCHUEREN, N., BORTOLOZZO, U., CLERC, M., AND RESIDORI, S. Spatiotem-
poral chaotic localized state in liquid crystal light valve experiments with op-
tical feedback. Phys. Rev. Lett. 110, 10 (2013), 104101.

[153] ZUO, Y., ZHAO, Y., CHEN, Y.-C., DU, S., AND LIU, J. Scalability of all-optical
neural networks based on spatial light modulators. Phys. Rev. Applied 15, 5
(2021), 054034.

[154] DONG, J., RAFAYELYAN, M., KRZAKALA, F., AND GIGAN, S. Optical reservoir
computing using multiple light scattering for chaotic systems prediction.
IEEE Journal of Selected Topics in Quantum Electronics 26, 1 (2020), 1–12.

[155] BRUNNER, D., AND FISHER, I. Reconfigurable semiconductor laser networks
based on diffractive coupling. Optics Letters 40, 16 (2015), 3854–3857.

[156] MARCUCCI, G., PIERANGELI, D., AND CONTI, C. Adiabatic evolution on a
spatial-photonic ising machine. Optica 7, 11 (2020), 1535–1543.

[157] STRINATI, M., PIERANGELI, D., AND CONTI, C. All-optical scalable spatial co-
herent ising machine. Phys. Rev. Applied 16, 5 (2021), 054022.

[158] JACUCCI, G., DELLOYE, L., PIERANGELI, D., RAFAYELYAN, M., CONTI, C., AND

GIGAN, S. Tuneable spin-glass optical simulator based on multiple light scat-
tering. arXiv:2111.07893 (2021).

[159] FARHAT, N., PSALTIS, D., PRATA, A., AND PAEK, E. Optical implementation of
the hopfield model. Applied Optics 24, 10 (1985), 1469–1475.

[160] FARHAT, N. Optical associative memories. Optics & Photonics News 13 (1987),
15–16.



130 BIBLIOGRAPHY

[161] KUMAR, B., AND WONG, P. Optical associative memories. Machine Intelligence
and Pattern Recognition 11 (1991), 219–241.

[162] WHITE, H., AND WRIGHT, W. Holographic implementation of a hopfield model
with discrete weightings. Applied Optics 27, 2 (1988), 331–338.

[163] SOFFER, B., DUNNING, G., OWECHKO, Y., AND MAROM, E. Associative holo-
graphic memory with feedback using phase-conjugate mirrors. Optics Letters
11, 2 (1986), 118–120.

[164] DECUSATIS, C., DAS, P., AND LITYNSKI, D. Integrated optical implementation
of the hopfield neural network model. In Proc.SPIE (1988), vol. 0963.

[165] ABU-MOSTAFA, Y. S., AND PSALTIS, D. Optical neural computers. Scientific
American 256, 3 (1987), 88–95.

[166] YEH, S., LO, R., AND C.Y., S. Optical implementation of the hopfield neural
network with matrix gratings. Applied Optics 43, 4 (2004), 858–865.

[167] BELOV, M., AND MANYKIN, E. Optical associative memories based on time-
delayed four-wave mixing. In Optical Memory and Neural Networks (1991),
vol. 1621, pp. 268–279.

[168] AMIT, D., GUTFREUND, H., AND SOMPOLINSKY, H. Storing infinite numbers of
patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55, 14
(1985), 1530–1533.

[169] MARSH, B., GUO, Y., KROEZE, R., GOPALAKRISHNAN, S., GANGULI, S., KEELING,
J., AND LEV, B. Enhancing associative memory recall and storage capacity
using confocal cavity qed. Phys. Rev. X 11, 2 (2021), 021048.

[170] DUPORT, F., SCHNEIDER, B., SMERIERI, A., HAELTERMAN, M., AND MASSAR, S.
All-optical reservoir computing. Optics Express 20, 20 (2012), 22783–22795.

[171] NAKAJIMA, M., TANAKA, K., AND HASHIMOTO, T. Scalable reservoir computing
on coherent linear photonic processor. Communications Physics 4, 1 (2021),
20.

[172] YAO, F., PEI, Y., ZHANG, Y., HOU, C., AND SUN, X. High-resolution photore-
fractive gratings in nematic liquid crystals sandwiched with photoconductive
polymer film. Appl. Phys. B 92, 4 (2008), 573.

[173] PERLMUTTER, S., DOROSKI, D., AND MODDEL, G. Degradation of liquid crystal
device performance due to selective adsorption of ions. Appl. Phys. Lett. 69, 9
(1996), 1182–1184.



BIBLIOGRAPHY 131

[174] REGRETTIER, T. Optically addressed light modulators using an organic photo-
voltaic layer. PhD thesis, Micro and nanotechnologies/Microelectronics. Université
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population dynamics in spatially extended predator–prey systems. Journal
of Physics A 51, 6 (2018), 063001.

[198] ENGEL, A. Noise-induced front propagation in a bistable system. Phys. Lett. A
113, 3 (1985), 139–142.
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