
HAL Id: tel-03852414
https://theses.hal.science/tel-03852414v1

Submitted on 15 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New challenges in designing polar code decoders for 5G
Oualid Mouhoubi

To cite this version:
Oualid Mouhoubi. New challenges in designing polar code decoders for 5G. Electronics. Ecole na-
tionale supérieure Mines-Télécom Atlantique, 2022. English. �NNT : 2022IMTA0298�. �tel-03852414�

https://theses.hal.science/tel-03852414v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE
BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Télécommunications

Par

Oualid MOUHOUBI
Nouveaux défis dans la conception de décodeurs de codes po-
laires pour la 5G
Thèse présentée et soutenue à IMT Atlantique, Brest, France, le 23 Septembre 2022
Unité de recherche : Lab-STICC
Thèse No : 2022IMTA0298

Rapporteurs avant soutenance :

Fabrice MONTEIRO Professeur, Université de Lorraine
Vahid MEGHDADI Professeur, Université de Limoges/ENSIL-ENSCI

Composition du Jury :
Président : Catherine DOUILLARD Professeur, IMT Atlantique
Examinateurs : Fabrice MONTEIRO Professeur, Université de Lorraine

Vahid MEGHDADI Professeur, Université de Limoges/ENSIL-ENSCI
Camille LEROUX Maître de conférences, Bordeaux INP/ENSEIRB-MATMECA

Dir. de thèse : Amer BAGHDADI Professeur, IMT Atlantique
Encadrant : Charbel ABDEL NOUR Maître de conférences, HDR, IMT Atlantique
Invité : David GNAEDIG CTO, TurboConcept

Summary (English)

Proposed in the last few years, polar codes represent one of the latest additions to
the family of forward error correction (FEC) codes. They have been adopted as the
coding scheme in the control channel of the 3rd Generation Partnership Project (3GPP)
New Radio (NR) standard for the fifth generation of cellular mobile communications
(5G). However, the challenging requirements introduced by the 5G control channel in
terms of block length and code rate flexibility render unsuitable most of the previously
published hardware polar decoder implementations. Indeed, these latter focused mainly
on successive cancellation decoders with high throughput, limited flexibility and error
correction capabilities. With stringent constraints on end-to-end delay and error correction,
the 5G NR steers towards low-latency list-based decoder architectures. In this context,
several original contributions are proposed in this thesis work. The first major contribution
is related to design space exploration and concerns the study of the impact of main code
and decoder design parameters on the latency, throughput, and the hardware complexity
of semi-parallel decoding architectures. The impact of these parameters on the hardware
efficiency of semi-parallel architectures is significant. Therefore, we propose two multi-
frame decoding approaches that increase the throughput and improve the utilisation rate
of the processing units of these architectures. Detailed analytical and logic synthesis
results are provided and compared for a large range of values in order to constitute a
reference for the implementation of flexible, yet efficient FEC decoders for polar codes.
Furthermore, a complete software simulation environment of polar coding/decoding is
proposed for performance evaluation under different algorithms in both floating-point
and fixed-point data representation. The second major contribution concerns the design
of an original flexible and low-latency list-based hardware architecture for decoding 5G
NR polar codes. This was achieved based on the design space exploration study, and
motivated by the need to provide a hardware-efficient polar decoder that supports the
required flexibility and latency levels for 5G NR. The proposed design supports all the
frame sizes and code rates defined in 3GPP with throughput and latency values meeting
the standard requirements. Furthermore, the decoder architecture has been extended to
support the proposed multi-frame decoding scheme, particularly suited for blind decoding
of downlink control information.

Résumé (Français)

Proposés ces dernières années, les codes polaires représentent l’un des derniers apports
à la famille des codes correcteurs d’erreurs (FEC). Ils ont été adoptés comme schéma de
codage pour le canal de contrôle de la norme 5G NR (New Radio) pour la cinquième
génération de communications mobiles cellulaires. Cependant, les exigences élevées intro-
duites par le canal de contrôle de la 5G en termes de flexibilité de la longueur de code et du
rendement de codage font que la plupart des décodeurs matériels de codes polaires publiés
antérieurement sont inadaptés. En effet, ces derniers se sont principalement focalisés sur
des décodeurs à annulation successive offrant un débit élevé, une flexibilité limitée et des
pouvoirs de correction d’erreurs réduits. Avec des contraintes strictes sur le délai de bout
en bout et sur la correction d’erreurs, la 5G NR nécessite des architectures de décodeurs à
liste à faible latence. Dans ce contexte, plusieurs contributions originales sont proposées
dans ce travail de thèse. La première contribution majeure est liée à l’exploration de
l’espace de conception et concerne l’étude de l’impact des principaux paramètres du code
et du décodeur sur la latence, le débit et la complexité matérielle des architectures de
décodage semi-parallèles. L’impact de ces paramètres sur l’efficacité matérielle des archi-
tectures semi-parallèles est important. Par conséquent, nous proposons deux approches
de décodage multi-trames qui augmentent le débit et améliorent le taux d’utilisation des
unités de traitement de ces architectures. Des résultats analytiques détaillés et des résultats
de synthèse logique sont fournis et comparés pour une large gamme de valeurs afin de
constituer une référence pour la mise en œuvre de décodeurs FEC flexibles mais efficaces
pour les codes polaires. Par ailleurs, un environnement logiciel complet de simulation du
codage/décodage de codes polaires est proposé pour évaluer les performances de différents
algorithmes dans une représentation des données en virgule flottante et en virgule fixe.
La deuxième contribution majeure concerne la conception d’une architecture matérielle
originale, flexible et à faible latence, basée sur le décodage à liste des codes polaires de
la 5G NR. Ce résultat a été obtenu sur la base de l’étude d’exploration de l’espace de
conception, et motivé par le besoin de fournir un décodeur polaire efficace qui supporte les
niveaux de flexibilité et de latence requis pour le standard. Le décodeur proposé supporte
toutes les tailles de trame et tous les rendements de code définis dans la 5G avec des
valeurs de débit et de latence conformes aux exigences de la norme. En outre, l’architecture
du décodeur a été étendue pour supporter le schéma de décodage multi-trame proposé,
particulièrement adapté au décodage aveugle des informations de contrôle de la liaison
descendante.

Introduction

L’énorme croissance de la connectivité et la demande grandissante de trafic de données,
de vidéo et de messagerie qui ont conduit au développement de la quatrième génération
de téléphonie mobile (4G), n’ont cessé de se développer. En outre, le besoin d’une fiabilité
supérieure et d’une latence réduite où les réseaux de communication mobile devraient
prendre en charge des milliards d’appareils connectés, a poussé la 4G/LTE à ses limites
et a motivé le développement de la norme de cinquième génération de téléphonie mobile
(5G).

La nouvelle vague de révolution technologique est la raison de l’émergence de nouvelles
applications et de nouveaux services tels que l’intelligence artificielle, la maison intelligente,
les véhicules autonomes, les systèmes de livraison par drones, les villes intelligentes,
les usines intelligentes, etc. Les services de réseaux mobiles ont été classés en trois
scénarios d’utilisation de la 5G pour 2020 et au-delà par l’Union Internationale des
Télécommunications, à savoir:

— Enhance Mobile BroadBand (eMBB) : il s’agit d’une évolution continue du service
haut débit mobile classique (MBB) de la 4G/LTE. Il implique des cas d’utilisation
axés sur les données et nécessitant des débits de données élevés, ce qui se traduit
par une expérience utilisateur plus rapide et de meilleure qualité de service.

— Ultra Reliable Low Latency Communication (uRLLC) : ce service est soumis à des
exigences strictes en matière de latence et de fiabilité et vise à prendre en charge
des applications critiques dans les domaines de la fabrication, de la transmission
d’énergie, des transports et des soins de santé.

— Massive Machine Type Communications (mMTC) : ce service concerne les appli-
cations industrielles et IoT et vise à fournir l’accès au réseau sans fil à un grand
nombre de dispositifs qui échangent des informations et génèrent des données via de
petits paquets.

Avec tous ces services nécessitant de coexister dans un environnement sans fil unique,
la 5G doit répondre à un large éventail de performance clés tels que la faible latence, le
haut débit et le faible coût/consommation d’énergie. Afin de répondre à ces nouvelles
exigences de la 5G, le projet de partenariat de troisième génération (3GPP) New Radio
(NR) adopte et spécifie un ensemble de techniques avancées.

Les codes correction d’erreur (ECC) sont considérés comme l’un des composants clés
de la technologie 5G NR. Deux nouveaux schémas de codage de canal ont été sélectionnés

vi

au cours du processus de normalisation de la 5G. Les codes de contrôle de parité à faible
densité (LDPC) ont été adoptés comme schéma de codage des données. Ils sont conçus
pour supporter un débit élevé, un rendement de code et une longueur de code variables
ainsi qu’une Hybrid Automatic Repeat Request (HARQ), en plus d’une très bonne capacité
de correction des erreurs. D’autre part, les codes polaires ont été adoptés comme un
nouveau schéma de codage pour les informations de contrôle et sont conçus pour produire
une bonne performance de correction d’erreurs avec des longueurs de bloc courtes et des
rendement de code très variés tout en imposant des contraintes strictes sur la latence
de décodage [27]. Dans ce contexte, le travail de thèse présenté est dédié à l’étude et à
l’exploration des techniques de décodage des codes polaires dans le but de proposer des
solutions de décodage efficaces pour les codes polaires de la 5G NR.

Au début de ce travail de thèse, l’état de l’art manquait de publications relatives aux
décodeurs de codes polaires qui répondent conjointement aux exigences de la 5G NR en
termes de performance de correction d’erreur, de latence et de flexibilité en termes de
longueur de bloc et de rendement de code. Cependant, au cours de la thèse, la communauté
scientifique a constamment amélioré les algorithmes de décodage, en proposant de nouvelles
techniques ainsi que de nouvelles conceptions de décodeurs matériels. Pourtant, les
exigences strictes introduites sur le canal de contrôle de la 5G en termes de longueur de
bloc et de flexibilité liée au rendement de code rendent inadaptés la plupart des décodeurs
de codes polaires matériels déjà publiés à ce moment-là. Ceci motive notre travail de
thèse en proposant une architecture matérielle flexible originale pour le décodage des codes
polaires de la 5G NR et qui peut supporter toutes les tailles de trame et les rendements de
code définis dans la norme avec une faible latence de décodage. L’approche utilisée dans
le cadre de ce travail est d’abord de mener une étude complète sur les codes polaires et
leurs algorithmes de décodage, puis d’effectuer une exploration approfondie de l’espace de
conception des architectures de décodeurs de codes polaires pour enfin proposer une nouvelle
architecture matérielle efficace ciblant les technologies FPGA. Motivés par l’importance du
décodage aveugle dans le canal de contrôle 5G NR, nous étudions le décodage de multiples
trames dans le but de prendre en charge efficacement cette fonctionnalité également.

Plan du manuscrit et contributions

Ce manuscrit de thèse commence par présenter les concepts de base liés aux codes
polaires, y compris leur processus d’encodage et de décodage, en mettant l’accent sur les

vii

codes polaires adoptés dans la norme 5G NR. Dans un premier temps, le principe de la
polarisation des canaux est introduit. Ensuite, l’algorithme de décodage par annulation
successive (SC) et son extension basée sur le décodage par liste (SCL) sont décrits, suivis
d’un bref aperçu des autres formes de décodage des codes polaires. Suite à cela, des
variantes simplifiées de décodage par annulation successive appliquant ce que l’on appelle
l’élagage des arbres sont présentées comme des techniques de réduction de la latence et
d’augmentation du débit. Enfin, un aperçu des codes polaires adoptés dans la norme 5G
NR ainsi que leur schéma d’encodage est présenté.

Les exigences strictes introduites par la norme 5G en termes de longueur de bloc et
de flexibilité liée au rendement de code, ainsi qu’une faible latence de bout en bout et
des performances élevées en matière de correction d’erreurs représentent un défi majeur
pour leur mise en œuvre matérielle. Afin d’adresser ce problème, les contributions de ce
travail de thèse ont été divisées en deux parties principales. Dans la première partie une
exploration approfondie de l’espace de conception des architectures de décodeurs polaires
a été menée avec de plusieurs contributions.

Une étude sur les performances de correction d’erreurs des codes polaires 5G NR en
termes de taux d’erreurs binaires (BER) et de taux d’erreurs de trames (FER) a d’abord
été menée. En effet, les performances des algorithmes simplifiés basés sur des techniques
d’élagage de l’arbre de décodage des décodeurs SCL sont évaluées et comparées aux
performances du décodeur SCL classique pour une taille de liste de huit. Pour éviter que
les performances de correction d’erreurs des codes polaires ne se dégradent au niveau de la
conception matérielle, plusieurs niveaux de quantification pour le passage des messages
et les métriques internes, à savoir les Log Likelihood Ratios (LLR) et les Path Métriques
(PM), sont étudiés. Pour cela, les performances de simulation du décodeur en virgule fixe
et en virgule flottante sont comparées.

Un simulateur logiciel dédiée aux codes polaires a été développé et présenté dans
le chapitre 3. Le simulateur inclut l’ensemble de la chaîne d’encodage et de décodage,
depuis l’allocation des canaux binaires, l’insertion des bits de CRC (contrôle de redondance
cyclique) et les schémas d’entrelacement jusqu’à l’adaptation du rendement (rate-matching)
telle que définie dans la 5G NR, ainsi que leurs opérations inverses pour assurer le processus
de la phase de décodage. Grâce à la complétude du simulateur logiciel, les performances en
termes de taux d’erreurs binaires des codes polaires 5G NR sous une diversité d’algorithmes
de décodages sont évaluées en virgule flottante mais aussi en virgule fixe, fournissant ainsi
un outil efficace pour sélectionner le meilleur schéma de quantification pour les décodeurs

viii

polaires matériels.

Étant donné que l’algorithme de décodage SC augmentée par liste est le mieux adapté
pour décoder les codes polaires du canal de contrôle 5G NR, principalement grâce à ses
bonnes performances de correction d’erreurs notamment lorsqu’il est assisté par des codes
externes tels que le CRC et des bits de parité. Cependant, il n’est pas facile de trouver
l’architecture matérielle la mieux adaptée au décodage, particulièrement en raison des
exigences strictes de conformité aux flexibilités de longueurs de bloc et de rendements de
code, tout en maintenant une latence de décodage et une complexité matérielle faibles.
Dans ce contexte, une exploration de l’espace de conception des décodeurs de codes polaires
a été menée. Par conséquent, une analyse détaillée de l’impact des principaux paramètres
de conception de code et du décodeur sur la latence, le débit, la complexité matérielle et
l’efficacité matérielle des architectures de décodage de codes polaires, en particulier ceux
de la 5G NR est fourni. Dans ce contexte, le modèle d’architecture semi-parallèle s’avère
être le plus adapté grâce à une plus grande flexibilité algorithmique et architecturale au
niveau de la conception. Par conséquent, sur la base d’une étude analytique détaillée
et des résultats de synthèse logique, la latence, le débit et la complexité du décodeur
ont été évalués pour de multiples variantes d’algorithmes de décodage SCL et pour un
nombre variable d’éléments de traitement (processing element). Les résultats ont montré
que les conceptions flexibles en termes de longueur de code et de rendement de code
limitent l’avantage d’augmenter le nombre d’éléments de traitement et préconisent de
définir divers types de codes spéciaux au sein de l’arbre de décodage des codes polaires
tout en augmentant le niveau d’élagage de l’arbre. En effet, si l’utilisation d’un grand
nombre d’éléments de traitement permet une réduction significative de la latence pour les
codes polaires de longueur élevée, cet avantage devient négligeable pour les codes polaires
de petites longueurs, ce qui pénalise l’efficacité matérielle du décodeur. En outre, certains
types de codes constitutifs spéciaux sont plus susceptibles d’apparaître à des rendements
de code faibles, comme les codes à rendement nul (codes R0) et les codes à répétitions
(codes REP), tandis que d’autres sont plus susceptibles d’apparaître à des rendements de
codes élevés, comme les codes spéciaux de rendement égale à 1 (codes R1) et les code de
contrôle à parité unique (SPC). De plus, la longueur de ces codes constitutifs spéciaux en
nombre de bits impliqués diminue avec la taille de la trame du code polaire. Cela peut
avoir un impact important sur les mesures d’efficacité de l’implémentation matérielle. Par
conséquent, de multiples compromis entre les paramètres algorithmiques et architecturaux
peuvent être tirés de ces résultats. À cet égard, nous avons proposé deux approches de

ix

décodage multi-trame augmentant le débit et améliorant l’activité des unités de traitement
au prix de ressources mémoire et d’une latence supplémentaire.

Dans la deuxième partie et sur la base des résultats obtenu dans le chapitre 3, de
multiples choix d’implémentation de décodeurs de codes polaires se présentent et un large
spectre de compromis complexité/performance est fourni. Ainsi, ces résultats sont utilisés
pour proposer dans le chapitre 4 une architecture matérielle originale pour le décodage des
codes polaires 5G NR des deux canaux de contrôle de la liaison montante (PUCCH) et de
la liaison descendante (PDCCH). L’architecture de décodage en top-level et présentée en
début du chapitre et les différents éléments qui composent l’architecture sont détaillés au
fur et à mesure. L’architecture de décodage basé sur l’algorithme à annulation successive
nécessite le stockage en mémoire de plusieurs types de données. Une structure de mémoire
adaptée à la nature séquentielle de l’algorithme de décodage à annulation successive est
proposée et détaillée pour chaque type de mémoire utilisée. Par exemple, trois types de
gestion de la mémoire des données LLR sont présentés afin d’assurer un acheminement
cohérent des données LLRs entre les éléments de traitement et la mémoire de données et
de maintenir une latence de décodage minimale. Au lieu de décoder les noeuds spéciaux
individuellement, nous avons proposé de concevoir une architecture de décodeur des nœuds
spéciaux qui regroupe les opérations communes effectuées par les différents nœuds spéciaux.
Ensuite, un module d’identification dynamique des noeuds spéciaux est proposé afin que le
décodeur puisse continuer de bénéficier des techniques d’élagage d’arbre pour accélérer le
décodage tout en maintenant la conformité avec la 5G NR et les différentes combinaisons
définies de rendement de de longueur de code. Enfin, d’autres contributions en relation
directe avec le décodage de plusieurs bits en parallèle sont présenté dans ce chapitre
notamment le calcul de sommes partielles et le calcul des bits de CRC.

Le décodeur proposé a ensuite été décrit en VHDL, validé et synthétisé pour la
technologie cible FPGA. Une analyse approfondie des principales performances clés du
décodeur, y compris la latence de décodage, le débit et l’utilisation des ressources du
FPGA, a été fournie et des comparaisons avec les implémentations FPGA de code polaire
les plus récentes ont été effectuées. En effet, les valeurs mesurées de débit et de latence du
décodeur proposé obtenues avec une cible FPGA sont capables de répondre aux exigences
de la norme de la 5G. De plus, les résultats de synthèse ont montré une efficacité matérielle
qui se compare favorablement aux implémentations FPGA de codes polaires de l’état de
l’art. La conception du décodeur que nous proposons réduit la latence et la complexité
du décodage par rapport au décodeur polaire de Xilinx récemment disponible, et le seul

x

décodeur publié et entièrement conforme à la norme 5G NR. Enfin, nous avons proposé
une nouvelle façon de décoder plusieurs trames de codes polaires simultanément sur la
base de l’architecture du décodeur proposée avec seulement une modification mineure qui
préserve toujours la flexibilité du décodeur. Une implémentation de cette technique a été
réalisée et les résultats de synthèse logique ont été discutés.

Conclusion et perspectives

Le travail présenté dans ce manuscrit visait à étudier l’impact des principaux paramètres
de conception de code et du décodeur sur la latence, le débit, la complexité matérielle et
l’efficacité matérielle des architectures de décodage semi-parallèles, ainsi qu’à proposer et
à implémenter une architecture matérielle originale pour le décodage des codes polaires
5G NR.

Dans le chapitre 2, les concepts de base des codes polaires ont été rappelés, ainsi
qu’une présentation détaillée de l’algorithme de décodage par annulation successive et
des différentes variantes de cet algorithme récemment proposées dans la littérature pour
améliorer les performances de décodage. Un accent particulier a été mis dans ce chapitre
sur les techniques d’élagage des arbres, motivées par leur impact positif sur la latence et le
débit. Le chapitre a également introduit la spécification des codes polaires adoptés dans
les 5G NR, nécessaire à la compréhension des contributions proposées dans les chapitres
suivants.

Dans le chapitre 3, le modèle de simulation développé pour intégrer le schéma complet
d’encodage et de décodage des codes polaires de la 5G NR est présenté, en plus du canal de
communication et des différentes opérations d’entrelacement et d’adaptation de rendement
(rate-matching). Ce simulateur logiciel a été utilisé pour évaluer les performances des
codes polaires sous différents types d’algorithmes SC de décodage rapide et a été utilisé
pour évaluer les performances de l’architecture du décodeur avec différents paramètres
liés en particulier à la quantification. L’espace de conception du décodeur semi-parallèle
de codes polaires a été exploré en termes de choix de parallélisme, d’algorithme et de
complexité matérielle. Les niveaux de conception algorithmique et architecturale ont été
pris en considération, ainsi que diverses techniques d’élagage des arbres, afin d’évaluer la
relation entre la complexité matérielle et les principales performances clés des décodeurs
polaires. En particulier, les performances de latence et de débit des décodeurs basés sur le
décodeur SC ont été ciblées. De plus, l’activité des différentes unités de traitement des

xi

décodeurs basés sur le décodeur SC, y compris les éléments de traitement et les décodeurs
de nœuds spéciaux, a été évaluée.

Dans le chapitre 4, nous avons proposé une architecture matérielle originale pour le
décodage des codes polaires spécifiés dans la 5G NR pour le canal de contrôle des liaisons
physiques montantes et descendantes. Nous avons détaillé les différents éléments qui
composent l’architecture proposée, à savoir la structure mémoire, les unités de calcul et
les réseaux de permutation. Un décodeur original des nœuds spéciaux dans le cadre d’un
décodage par liste, un calcul multi-bits de sommes partielles et un contrôle CRC (adapté
au décodage multi-bits) ont également été proposés et détaillés dans ce chapitre. Grâce
à un identificateur des nœuds spéciaux en temps réel, le décodeur proposé continue de
bénéficier des techniques d’élagage d’arbre pour accélérer le décodage tout en maintenant
la conformité avec les exigences de la norme 5G NR et les diverses combinaisons définies
de rendements et de longueurs de code. Le décodeur proposé a été décrit en VHDL, validé
et synthétisé pour la technologie cible FPGA. Une analyse approfondie des principales
performances clés du décodeur, y compris la latence de décodage, le débit et l’utilisation des
ressources du FPGA, a été fournie et des comparaisons avec des implémentations FPGA
de code polaire ont été effectuées. En effet, les valeurs mesurées de débit et de latence du
décodeur proposé obtenues avec une cible FPGA sont capables de répondre aux exigences
de la 5G. De plus, les résultats de synthèse ont montré une efficacité matérielle qui se
compare favorablement aux implémentations FPGA de codes polaires de l’état de l’art. La
conception du décodeur que nous proposons réduit la latence et la complexité du décodage
par rapport au décodeur polaire de Xilinx récemment disponible, et le seul décodeur
publié et entièrement conforme à la norme 5G NR. Enfin, nous avons proposé une nouvelle
méthode pour décoder simultanément plusieurs trames de code polaire. Bien qu’elle soit
basée sur l’architecture du décodeur proposée, elle n’introduit qu’une modification mineure
qui préserve toujours la flexibilité du décodeur. Une implémentation simple de cette
technique a été réalisée et les résultats ont été discutés.

Les recherches menées dans le cadre de ce travail de thèse ont montré qu’il était difficile
de satisfaire simultanément les contraintes de latence de décodage, de flexibilité extrême
en termes de taille de trame et de rendement de code, de performances de décodage et
d’implémentation efficace, compte tenu de la courte histoire des codes polaires. Cependant,
motivée par leur adoption dans la 5G, la communauté scientifique a fait et fait encore
des progrès importants à cet égard. Ce travail constitue une contribution à cet effort. En
effet, l’architecture proposée est capable de fonctionner avec une latence dans les ordres

xii

du µs avec une complexité de décodage relativement faible et peut donc s’adapter aux
contraintes strictes requises par la norme 5G qui a sélectionné les codes polaires pour
couvrir le canal de contrôle. Cependant, des extensions et des améliorations sont encore
possibles en ce qui concerne le travail effectué. Nous citons ci-dessous quelques suggestions
d’études qui peuvent être menées :

1. Une voie à suivre suite aux résultats du chapitre 3 est d’étudier et d’analyser l’impact
du décodage d’autres types de nœuds spéciaux [40] et des nœuds spéciaux généralisés
[22] sur la latence, la complexité et le débit. L’analyse menée dans ce chapitre
a ciblé l’ensemble des codes polaires 5G NR. Par conséquent, des paramètres de
conception de code et de décodeur limités ont été considérés. Ainsi, les travaux futurs
pourraient prendre en considération des tailles de liste variables, des codes polaires
plus grands et différents ensembles de constructions de codes polaires. En outre,
d’autres algorithmes de décodage pourraient être envisagés pour une comparaison et
une analyse plus larges.

2. Dans les dernières parties du Chapitre 3, nous avons étudié le décodage simultané de
plusieurs trames de codes polaires en proposant deux approches efficaces de décodage
multi-trames. Une implémentation simple pour le décodage parallèle de deux trames,
qui utilise alternativement les mêmes éléments de traitement et nœuds spéciaux,
du même code polaire a été conçue. L’étape suivante consisterait à concevoir une
nouvelle architecture de décodage multi-trames mettant en œuvre les algorithmes
très rapides basés sur le décodage SC. Une telle architecture basée sur la deuxième
approche présentée au chapitre 3 consistant à dupliquer le nombre d’éléments de
traitement tout en utilisant un décodeur de nœuds spéciaux unique augmenterait de
manière importante le débit du décodeur tout en bénéficiant de la flexibilité fournie
par le décodeur proposé au chapitre 4. En outre, l’extension de cette architecture
pour prendre en charge le décodage simultané de plusieurs trames de différentes
longueurs de bloc et de différents rendements de code pourrait également être étudiée.

3. Les deux approches de décodage multi-trame ont été introduites dans le but
d’augmenter le débit et l’efficacité matérielle du décodeur. De plus, une telle
approche est très utile pour le décodage aveugle des codes polaires de la liaison
physique descendante (PDCCH) [23, 69]. En effet, 44 candidats sont décodés au
niveau de l’équipement utilisateur (UE) pour identifier l’information de contrôle de
liaison descendante (DCI) portant l’information de contrôle de l’UE [1]. Cependant,
au niveau du récepteur, l’UE n’a pas besoin de décoder les candidats PDCCH qui

xiii

appartiennent à l’espace de recherche avec l’algorithme SCL. Par conséquent, une
étude de recherche consisterait à examiner l’utilisation du décodeur SCL à liste
proposé (L = 8) en tant que L décodeurs SC (L-SC) afin de réduire l’espace de
recherche des candidats dans une première phase du décodage aveugle [24]. Ensuite,
le décodeur SCL peut être utilisé pour décoder un nombre réduit de candidats dans
la deuxième phase du décodage.

xiv

Acknowledgement

Young of 24 years, I was fascinated by the digital electronics field and especially the
design of hardware architectures and circuits dedicated to implement specific and complex
functions. Indeed, Forward Error Correcting codes are one of the most complex topics to
address from both algorithmic and design point of view.

With these considerations, I found a Master’s level internship on Reed-Muller codes in
Brest, and 4 years later I am a doctor of philosophy, who dedicated the last words of his
manuscript to acknowledge the people who made this adventure possible, rewarding and
successful. First of all, I would like to thank my dad Abdelkader and my mom Nadira
for their support and all the efforts they have made to allow me to receive a good quality
education since my first year of schooling until the final day of my thesis. Special thanks to
my advisors Amer Baghdadi, Charbel Abdel Nour and David Gnaedig for their guidance,
their efforts and all the advice they gave me during this work. And certainly for teaching
me how to work. I sincerely believe that thanks to your work I have become a different
person. Thank you for agreeing to work with me, I have learned a lot from your great
knowledge.

A great thank is also addressed to my sister Nihad, my brother Imad and the people I
was interacting with on a daily basis, including lab colleagues especially Jérémy, Rami
and Khaled and friends Said, Réda, Ghouti, Aomar, Mounia, Mouna, Mokrane, Youssef,
Mehdi, Hamza, Amine, all ES Locmaria team, and all the people I didn’t mention here.

At the end of the journey, obtaining a Ph.D. degree is a pleasant prize for long
hours, weeks and years of exploration that led to a mental (and physical) growth. Every
single detail, every work meeting, every deception/achievement of this adventure was an
increment, a positive perturbation that contributed to building the person I am today.

Table of Contents

Summary (English) iii

Résumé (Français) v

Acknowledgement xvii

1 Introduction 3

2 Polar codes 11
2.1 Polar codes . 12

2.1.1 Channel polarization . 12
2.1.2 Polar coding . 14

2.2 Decoding algorithms of polar codes . 15
2.2.1 Successive Cancellation decoding algorithm 16
2.2.2 List-SC decoding algorithms . 18
2.2.3 Iterative decoders . 21
2.2.4 Other forms of decoding polar codes 23

2.3 Tree-pruning techniques of polar codes . 24
2.3.1 Tree representation of SC polar decoders 24
2.3.2 SC and SCL tree-pruning techniques 25
2.3.3 Fast SCL decoders . 28

2.4 The polar code of 3GPP 5G NR . 33
2.4.1 CRC-bits attachment, scrambling and interleaving 33
2.4.2 Sub-channel allocation and bits insertion 35
2.4.3 Rate matching . 35

2.5 Summary . 36

3 Design space exploration for polar decoders 37
3.1 Performance of 5G NR polar codes . 38

3.1.1 Proposed polar code simulator . 39
3.1.2 Performance of 5G NR polar codes with tree-pruning decoders . . . 42
3.1.3 Impact of quantization on the performance 42

3.2 Hardware architectures . 46
3.2.1 Unrolled architectures . 46
3.2.2 Semi-parallel architectures . 47

TABLE OF CONTENTS

3.2.3 Architectural and algorithmic parameters 49
3.3 Latency analysis . 50

3.3.1 Influence of N and the number of PE on latency 52
3.3.2 Influence of tree-pruning on latency 54

3.4 Hardware complexity and throughput analysis 58
3.4.1 Influence of the number of PE on hardware complexity 58
3.4.2 Influence of tree pruning on hardware complexity 59
3.4.3 Influence of PE and tree pruning on throughput 61

3.5 Hardware efficiency analysis . 65
3.5.1 Activity of SC decoders . 65
3.5.2 Proposed multi-frame decoding techniques 70

3.6 Summary . 74

4 Proposed 5G Polar Decoder 77
4.1 Proposed decoder architecture . 78

4.1.1 Memory structure . 80
4.1.2 Special nodes decoding . 85
4.1.3 Partial sum network . 88
4.1.4 CRC calculation . 90
4.1.5 Proposed on-the-fly rate-flexible decoding of polar codes 92
4.1.6 Control unit . 96

4.2 Results and performance analysis . 96
4.2.1 Synthesis results . 96
4.2.2 Comparison with state-of-the-art FPGA implementations 98

4.3 Multi-frame decoding . 99
4.4 Summary . 102

5 Conclusion and future work 105

Bibliography 109

xviii

List of Figures

1.1 Design criteria of the NR polar codes. 5

2.1 Polarization transformation for polar codes of length N = 2 and N = 8. . . 14
2.2 Butterfly representation of the SC decoder for N = 8. 17
2.3 Factor graph of partial sums computation. 18
2.4 Synchronous sequential logic of decoding polar code of length N = 8. . . . 19
2.5 List SC decoding of polar code (4,4) with L = 2 19
2.6 Encoding and decoding schemes of CA-SCL decoder [72]. 21
2.7 Factor graph and processing unit of BP decoder. 22
2.8 Tree representation of SC decoding for N = 4. 24
2.9 SC based decoder tree and its corresponding pruned tree of PC(16,8). . . . 25
2.10 Decoding tree of new special nodes Type-I to Type-V. 27
2.11 The 3GPP 5G NR Polar coding and decoding chain. 34

3.1 Block diagram of the developed software simulator for polar codes. 39
3.2 FER performance comparison of Fast-SSCL and Fast-SSCL-SPC decoders

of PC(256,128) for L = 8 and different values of SR1 and SSPC. 43
3.3 Effect of LLR and PM quantizations on the error-correction performance of

three different PUCCH polar codes of lengths N = 1024, 512 and 128. . . . 44
3.4 Effect of the selected LLR and PM quantization levels and of the channel

quantization on the error-correction performance of a PUCCH 1024 polar
code. 45

xix

LIST OF FIGURES

3.5 Fully-unrolled deeply-pipelined decoder for a (8, 5) polar code. 46
3.6 Processing element architecture. 47
3.7 Semi-parallel architecture model for SCL decoders. 48
3.8 Number of clock cycles required to decode one polar code frame for a varying

number of PEs. Worst-case latency is reported while varying the value of R.
Results are given for SCL and five related variants of simplified algorithms. 53

3.9 Number of clock cycles required to decode one polar code frame as N varies
from 64 to 1024. Average latency is reported while varying the value of
R. Results are provided for various values of M and are reported for four
different algorithms. 55

3.10 Number of clock cycles required to decode one polar code frame for a
varying number of PEs and different pruning techniques. Average latency
is reported and results are given for low and high code lengths. 56

3.11 Hardware complexity and information throughput as function of P for
N = 1024. Operating frequency is set to 100 MHz. 57

3.12 The architecture of the SNLD designed to decode special nodes. 59
3.13 Number of FFs and LUTs required by SNLD to decode special nodes R0,

REP, R1 and SPC as a function of M according to three scenarios. 60
3.14 Number of FFs and LUTs required by SNLD to decode special nodes R0,

REP, R1 and SPC when considering the second approach with accumulator
registers to reduce the number of adders, comparators and XOR gates. . . 61

3.15 Throughput comparison between different decoder types for different values
of P and M . Two code lengths are considered N = 1024 and N = 128. . . 62

3.16 Maximum information throughput of SCL decoder and various polar code
decoders with different pruning techniques as a function of P . Low and
high code rates are considered with N = 1024. 64

3.17 Number and type of active (hashed squares) and inactive (blank squares)
PEs (P = 4) and special node decoders at each stage activation of PC(16,8)
of Fig. 2.9. 65

3.18 Average utilization rates of several SC-based decoders of length N = 1024
(solid lines) and N = 128 (dotted lines): (a) αP (P), (b) αSND(P), (c)
αdec(P), (d) αdec(M) . 68

3.19 Decoding one and two codewords of the same polar code using SSCL algorithm. 69

xx

LIST OF FIGURES

3.20 Latency and throughput as a function of code length N for a multi-frame
SSCL decoder. 73

3.21 Latency and throughput as a function of code length N for a multi-frame
Fast-SSCL-1 decoder. 73

4.1 Top-level architecture of the proposed decoder. 79
4.2 Internal LLR memory structure: (a) RAM-based memory structure of

internal LLRs and their pathway to PEs, (b) Organisation of RAMk,l. . . . 82
4.3 Intra-list selection network between LLRs of internal memories and PEs:

(a) LLRs and PEs connection, (b) Selection network π-IntraL. 83
4.4 Pointer memory architecture. 84
4.5 Path memory access architecture. 85
4.6 Proposed SNLD architecture supporting different special node types. . . . 86
4.7 Shift registers bank of the top-node LLRs. 89
4.8 Parallel part of LHPPSN supporting multi-bit decoding for P = 4. 90
4.9 Architecture of the proposed parallel CRC check. 92
4.10 Proposed module for identification of constituent codes of different length:

(a) identification of the different special nodes of length two, (b) identification
of the different special nodes of length four and above. 94

4.11 Identification of special nodes illustrated for a PC(8,4). This corresponds
to the architecture of an M-SNI with M = 8. 94

4.12 Architecture of the proposed on-the-fly identification of special nodes (SNI). 95
4.13 Path memory access architecture of multiple polar code frames. 101

xxi

List of Tables

2.1 Information, encoded block and mother polar code lengths supported by
polar coding in the NR physical channels. 33

3.1 Polar code simulator features. 41

4.1 Identification of the different special nodes based on the frozen set couple
a0a1 for special nodes of length two, and based the on the 2-bit vectors v0v1

and v′0v′1 indicating the type of the two nodes to merge for special nodes of
length higher than two. 93

4.2 FPGA synthesis results of the proposed 5G NR polar decoder 97
4.3 Average and maximum latency measured for the proposed decoder. 98
4.4 Comparison with existing FPGA-based SCL Architectures. 99
4.5 Synthesis results of the proposed decoder in FPGA for different value of T . 101
4.6 Latency and throughput of decoding one frame and two parallel frames

with the proposed decoder for different code lengths and code rates. 102

xxii

List of Acronyms

3GPP Third Generation Partnership Project.
4G 4th generation of cellular mobile communications.
5G 5th generation of cellular mobile communications.
ALM Adaptive Logic Module.
ASIC Application Specific Integrated Circuit.
AWGN Additive White Gaussian Noise.
B-DMC Binary Discrete Memoryless Channel.
BER Bit Error Rate.
BP Belief Propagation.
BPSK Binary Phase-Shift Keying.
BRAM Block Random Access Memory.
BSC Binary Symmetric Channel.
CASCL CRC-Aided Successive Cancellation List.
CRC Cyclic Redundancy Check.
DCI Downlink Control Information.
ECC Error Correction Codes.
eMBB enhanced Mobile BroadBand.
FASCL Fully Adaptive Successive Cancellation List.
Fast SSCL Fast Simplified Successive Cancellation List.
Fast SSCL-SPC Fast Simplified Successive Cancellation List- Single Parity Check.
FER Frame Error Rate.

xxiii

List of Acronyms

FF Flip-Flop.
FPGA Field-Programmable Gate Array.
FSM Finite State Machine.
HARQ Hybrid Automatic Repeat reQuest.
IoT Internet of Things.
ITU International Telecommunication Union.
LDPC Low Density Parity Check.
LLR Log Likelihood Ratio.
LTE Long Term Evolution.
LUT Look-Up Table.
ML Maximum-Likelihood.
mMTC Massive Machine Type Communications.
NR New Radio.
PASCL Partially Adaptive Successive Cancellation List.
PBCH Physical Broadcast CHannel.
PC Parity Check.
PDCCH Physical Downlink Control CHannel.
PE Processing Element.
PM Path Metric.
PS Partial Sum.
PSN Partial Sum Network.
PU Processing Unit.
PUCCH Physical Uplink Control CHannel.
PUSCH Physical Uplink Shared CHannel.
REP Repetition.
RNTI Radio Network Temporary Identifier.
SC Successive Cancellation.
SCAN Soft CANcellation.
SCF Successive Cancellation Flip.
SCL Successive Cancellation List.
SCS Successive Cancellation Stack.
SM Sign and Magnitude.
SNLD Special Node List Decoder.
SNR Signal-to-Noise Ratio.

xxiv

List of Acronyms

SPC Single Parity Check.
SSC Simplified Successive Cancellation.
SSCL Simplified Successive Cancellation List.
SSCL-SPC Simplified Successive Cancellation List- Single Parity Check.
UCI Uplink Control Information.
URLLC Ultra-Reliable Low-Latency Communication.
VHDL VHSIC Hardware Description Language.
XOR eXclusive-OR.

1

Chapter 1

Introduction

Context of the 5G communication standard and ser-
vices

The tremendous amount of growth in connectivity and the increasing demand for data,
video and messaging traffic that led to the 4th Generation mobile communication standard
(4G) [83, 88], has continued to expand. Furthermore, the need for superior reliability and
reduced latency for the massive internet of things (IoT) ecosystem [21, 80] where networks
are expected to support billions of connected devices has pushed 4G/LTE to its limits
and motivated the development of the 5th Generation of mobile communications standard
(5G) [12, 74].

The new wave of technological revolution is the reason of the emergence of new
applications and services such as artificial intelligence, smart home, autonomous vehicles,
drone-based delivery systems, smart cities, smart factories, etc. Mobile network services
have been categorized into three 5G usage scenarios [2] for 2020 and beyond by the
International Telecommunication Union (ITU) radio communications [6]:

— Enhanced Mobile Broadband (eMBB) service: which is a continuing evolution of the
conventional Mobile Broadband (MBB) service of 4G/LTE. It involves data-driven
use cases requiring high data rates, resulting in a faster and better user experience.

— Ultra-reliable and Low-latency Communications (uRLLC) service: which has strin-

3

Chapter 1 – Introduction

gent requirements on latency and reliability and aims to support mission critical
applications in the areas of manufacturing, energy transmission, transportation and
healthcare.

— Massive Machine Type Communications (mMTC) service: which concerns industrial
and IoT applications and aims to provide the access to the wireless network for
a large number of devices that exchange information and generate data via small
packets per connection.

With all these services needing to coexist in a unique wireless environment, 5G is
expected to cope with a broad range of various key performance indicators such as low
latency, high throughput and low cost/energy consumption. In order to address these 5G
new requirements, the third Generation Partnership Project (3GPP) New Radio (NR) is
adopting and specifying a set of advanced enabling techniques.

Error Correction Codes (ECC) are considered as one of the key components of 5G NR
technology. Two new capacity-approaching channel coding schemes have been selected
during the 3GPP standardization process. Low-density parity-check (LDPC) codes have
been adopted as the coding scheme for data. They are designed to support high throughput,
a variable code rate and length and hybrid automatic repeat request in addition to good
error correcting capability [39]. On the other hand, polar codes have been adopted as
a new coding scheme for control information and are designed for producing good error
correcting performance [47, 75] under short block length and various code rates while
placing stringent constraints on the decoding latency [27]. In this context, the presented
PhD thesis work is dedicated to the study and exploration of polar decoding techniques in
the aim of proposing efficient decoder solutions for the 5G NR polar codes.

Motivation of the thesis

The design criteria [27] of the 5G NR polar codes include multiple key performance
indicators and are summarized in Fig. 1.1.

At the starting of this PhD work, the state-of-the-art was lacking publications related
to polar decoders that jointly meet the 5G NR requirements in terms of error correcting
performance, latency, and flexibility in frame size and code rate. However, during the
thesis time, the scientific community has consistently improved the decoding algorithms,
proposing new techniques as well as new hardware decoder designs. Yet, the challenging
requirements introduced by the 5G control channel in terms of block length and code

4

Low

≈10s Low

Low

Low ≈10s

Single bit

granularity

Block

error rate

False alarm

Power

consumption

Processisng

Throughput

(Mbps)

Hardware

resource

usage

Block

length

flexibility

Processisng

Latency

(𝝁𝒔)

Figure 1.1 – Design criteria of the NR polar codes.

rate flexibilities render unsuitable most of the already published hardware polar decoder
implementations at that time. This motivates our thesis work in proposing an original
flexible hardware architecture for decoding 5G NR polar codes that can support all the
frame sizes and code rates defined in 3GPP with a low decoding latency. The approach
used as part of this work is to first conduct a comprehensive study on polar codes and
their decoding algorithms, then to carry out a thorough design space exploration of polar
decoder architectures to finally propose a novel efficient hardware architecture targeting
FPGA devices. Motivated by the importance of blind decoding in 5G NR control channel,
we investigate decoding multiple frames aiming at supporting efficiently this feature as
well.

Contributions

The main contributions of this PhD thesis work can be summarized as follows:

Design space exploration of polar decoder architectures for 5G NR polar codes:
The stringent requirements introduced by the 5G standard in terms of block length and code
rate flexibility, together with low end-to-end latency and high error correction performance

5

Chapter 1 – Introduction

represent a major challenge for their hardware implementation. Therefore, a thorough
design space exploration of polar decoder architectures has been conducted with the
following main contributions:

— The development of a complete software simulation environment of polar cod-
ing/decoding for performance evaluation under different algorithms in both floating
point and fixed point data representation.

— The study of the impact of main code and decoder design parameters on the latency,
throughput, and the hardware complexity of semi-parallel decoding architectures.
The impact of these parameters on the hardware efficiency of semi-parallel architec-
tures is significant.

— The proposal of two multi-frame decoding approaches that increase the throughput
and improve the utilisation rate of the processing units of these architectures.

— The elaboration of detailed analytical and logic synthesis results for a large range
of parameters values in order to constitute a reference for the implementation of
flexible, yet efficient FEC decoders for polar codes.

Novel low latency efficient decoder design for 5G NR polar codes:
Based on the design space exploration study mentioned above, and motivated by the need
to provide a hardware-efficient polar decoder that supports the required flexibility and
latency levels for 5G NR, we proposed a novel efficient hardware architecture offering the
following features:

— Downlink and uplink 5G NR control channel compliance with full rate and frame
size support, ranging from N = 32 to N = 1024 bits.

— CRC-aided L = 8 SCL decoder with a semi-parallel architecture [55] for best
performance.

— Dedicated specific constituent-code decoders for reduced latency.

— Measured FPGA-based worst-case decoding latency of 23.91 µs, in compliance with
target 5G NR constraints.

— Favourable comparison with previously-published designs.

— Support of multi-frame decoding.

The above-mentioned features were obtained thanks to the following hardware architecture-
related contributions:

6

— The proposal and implementation of on-the-fly identifier for the number of constituent
codes in addition to their type and length.

— The introduction of an original special node decoder capable of decoding all identified
constituent-code types.

— The development of hardware-efficient partial-sum (PS) and CRC modules supporting
multi-bit decoding.

List of publications

The results of this thesis work have led to the following publications:

Conference papers

1. O. Mouhoubi, C. Abdel Nour and A. Baghdadi, "On the Latency and Complexity
of Semi-Parallel Decoding Architectures for 5G NR Polar Codes," International
Symposium on Signal, Image, Video and Communications (ISIVC), 2022.
This conference paper presents the first results on the design space exploration of
semi-parallel hardware architectures for decoding 5G NR polar codes. The impact
of main code and decoder design parameters on the latency and the hardware
complexity are studied and analysed.

2. O. Mouhoubi, C. Abdel Nour and A. Baghdadi, "Low Latency Architecture Design for
Decoding 5G NR Polar Codes," International Workshop on Design and Architectures
for Signal and Image Processing (DASIP), 2022.
This conference paper proposes an original special node list decoder and a special
node identifier which help the proposed decoder to continue to benefit from tree
pruning techniques to speed-up the decoding whilst maintaining compliance with
the 5G NR and the various defined combinations of code rate and code length. The
first part of Chapter 4 discusses the contributions of this paper.

Journal papers

1. O. Mouhoubi, C. Abdel Nour and A. Baghdadi, "Latency and Complexity Analysis
of Flexible Semi-Parallel Decoding Architectures for 5G NR Polar Codes," IEEE
Access, 2022, doi: 10.1109/ACCESS.2022.3216292. (Published).
This journal paper presents a detailed design space exploration of semi-parallel

7

Chapter 1 – Introduction

hardware architectures that we conducted and that can be used to design efficient
decoders for 5G NR polar codes. It extends the ISIVC’2022 conference paper
with results on throughput, hardware efficiency, activity and utilisation rate of the
hardware resources, and the proposal of two multi-frame decoding approaches to
increase the throughput and improve the utilisation rate of the decoder processing
units. Chapter 3 discuss the contributions of this paper.

2. O. Mouhoubi, C. Abdel Nour and A. Baghdadi, "Hardware Design and FPGA
Implementation of Low Latency Decoder for 5G NR Polar Codes," IEEE Access
(Submitted).
This journal paper proposes an original hardware architecture for decoding the 5G
NR polar codes of the uplink and the downlink control information channel. Results
of this paper are discussed and compared to the state-of-the-art FPGA polar deocder
implementations in Chapter 4.

Manuscript organization

The rest of this manuscript is organized in three chapters as follows:

Chapter 2 reviews the basic concepts related to polar codes including their encoding
and decoding process. After introducing the principle of polarization, numerous
approaches for decoding polar codes with various levels of complexity, throughput,
latency and efficiency are presented. The low-complexity successive cancellation
decoder and its list-based extension are detailed, along with their simplified variants
based on tree-pruning techniques. Since our interest is focused on 5G NR polar
codes, a detailed presentation of their encoding and decoding process is provided.

Chapter 3 is dedicated to the presentation of the proposed design space exploration
of polar decoder architectures for 5G NR polar codes. The chapter starts by
describing the developed software simulation environment of polar coding/decoding
for performance evaluation under different algorithms in both floating point and
fixed point data representation. Then, the study of the impact of main code and
decoder design parameters on the latency, throughput, and the hardware complexity
of semi-parallel decoding architectures is provided. The impact of these parameters
on the hardware efficiency of semi-parallel architectures is significant. Therefore,
two multi-frame decoding approaches are proposed to increase the throughput and

8

improve the utilisation rate of the processing units of these architectures. Detailed
analytical and logic synthesis results are provided and compared for a large range
of values in order to constitute a reference for the implementation of flexible, yet
efficient FEC decoders for polar codes.

Chapter 4 presents our contributions related to the design of a novel hardware-efficient
polar decoder that supports the required flexibility and latency levels for 5G NR.
While offering multiple features in compliance with target 5G NR constraints in-
cluding a full rate and frame size handling of downlink and uplink control channel,
this novel hardware architecture targeting FPGA devices compares favourably with
previously-published designs. Furthermore, an efficient multi-frame decoding scheme
particularly suited for blind decoding of downlink control information is proposed
with an efficient implementation.

9

Chapter 2

Polar codes

Contents
2.1 Polar codes . 12

2.1.1 Channel polarization . 12

2.1.2 Polar coding . 14

2.2 Decoding algorithms of polar codes 15

2.2.1 Successive Cancellation decoding algorithm 16

2.2.2 List-SC decoding algorithms 18

2.2.3 Iterative decoders . 21

2.2.4 Other forms of decoding polar codes 23

2.3 Tree-pruning techniques of polar codes 24

2.3.1 Tree representation of SC polar decoders 24

2.3.2 SC and SCL tree-pruning techniques 25

2.3.3 Fast SCL decoders . 28

2.4 The polar code of 3GPP 5G NR 33

2.4.1 CRC-bits attachment, scrambling and interleaving 33

2.4.2 Sub-channel allocation and bits insertion 35

2.4.3 Rate matching . 35

2.5 Summary . 36

11

Chapter 2 – Polar codes

This chapter introduces the basic concepts related to polar codes including their
encoding and decoding process with an emphasis on the polar codes adopted in 5G NR. It
starts by introducing the founding concept of channel polarization. Then, the successive
cancellation decoding algorithm and its list-based extension are described followed by a
brief review on other forms of decoding polar codes. Afterwards, simplified successive
cancellation decoding variants applying what is known by tree-pruning are presented as
means to significantly reduce the latency and increase the throughput. Finally, an overview
of the polar codes adopted in 5G NR is provided.

2.1 Polar codes

Proposed in the last few years, polar codes [9] represent one of the latest additions
to the family of forward error correction (FEC) codes. When the codeword length N

tends to infinity, they have been shown to achieve channel capacity in binary discrete
memoryless channels under the low complexity successive-cancellation (SC) algorithm
[10]. However, their performance starts to degrade at practical code lengths. Thanks to
their low complexity encoding and decoding under SC algorithm that have attracted the
attention of academia and industry in the past decade, they have been recently adopted in
the New Radio (NR) 5G standard for uplink and downlink control channels where polar
codes with short to moderate block lengths are specified [3]. LDPC code family [35, 71]
is meanwhile adopted for the data channel of the enhanced mobile broadband (eMBB)
service.

2.1.1 Channel polarization

The particularity of polar codes is linked to the polarization phenomenon. In order to
explain this, we consider a binary discrete memoryless channel (B-DMC) W with input
and output alphabet X and Y, respectively. Moreover, transition probability W(y|x),
where x ∈ X and y ∈ Y . We can now define the symmetric capacity I(W) as the highest
rate at which reliable communication can occur over W . Hence, when I(W) tends to 1, it
indicates error-free transmission; however, when it tends to 0, it indicates that information
transmission is impossible. Furthermore, we define the Bhattacharyya parameter Z(W)
as a measure that provides an upper limit on the probability of erroneous detection when
Maximum Likelihood (ML) is used to estimate a single received symbol y. These two

12

2.1. Polar codes

metrics are expressed as a function of W(y|x) as follows:

I(W) =
∑
y∈Y

∑
x∈X

1
2W(y|x) log W(y|x)

1
2W(y|0) + 1

2W(y|1) (2.1)

and
Z(W) =

∑
y∈Y

√
W(y|0)W(y|1). (2.2)

Both metrics have values between 0 and 1 and are related by these two inequalities on the
B-DMC channel:

I(W) ≥ log 2
1 + Z(W) , (2.3)

I(W) ≤
√

1− Z(W)2, (2.4)

from which it can be observed that I(W) and Z(W) are inversely proportional. The
group consisting of polar encoder/decoder and channel can be seen as a set of N channels
where each channel transmits one bit. The mutual information between the information
(u0, u1) ∈ X 2 and received values y0, y1 ∈ Y2, when the transmission is carried out using
two independent instances of W , is given by :

I(Y0, Y1;U0) = I(W) = I(Y0, Y1;U1). (2.5)

The polarization term conveys that the N channels are split into two groups. A group
of very reliable channels with a very low probability of error, and a group of unreliable
channels, with a high probability of error. Equivalently, if u0, u1 are transformed into
(x0, x1) as shown if Fig. 2.1a so that x0 = u0 ⊕ u1 and x1 = u1, the mutual information
values between the information and received symbols become:

I(Y0, Y1;U0) ≤ I(W) ≤ I(Y0, Y1;U1) . (2.6)

This means that the probability of correctly estimating u1 increases while correctly
estimating u0 decreases. Fig. 2.1b shows the polarization transformation for N = 8. Proof
of this inequality is presented in [9]. It is now possible to show that the proportion of
reliable channels for a given code rate R asymptotically achieve the channel capacity as
defined in information theory [81] when the number of transformations increases and code
length N tends to infinity.

13

Chapter 2 – Polar codes

𝑊

𝑊

𝑢0

𝑢1

𝑥0

𝑥1

𝑦0

𝑦1

(a) N=2
𝑊

𝑊

𝑊

𝑊

𝑊

𝑊

𝑊

𝑊

𝑢0

𝑢7

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑢6

𝑥0

𝑥1

𝑥7

𝑥6

𝑥5

𝑥4

𝑥3

𝑥2

𝑦0

𝑦7

𝑦1

𝑦2

𝑦3

𝑦4

𝑦5

𝑦6

(b) N=8

Figure 2.1 – Polarization transformation for polar codes of length N = 2 and N = 8.

2.1.2 Polar coding

Polar codes apply the channel polarization transform that divides the bit-channels
into either perfect or completely noisy channels. Then they allocate information bits
to the K most reliable bit-channels while the remaining bits are frozen, i.e., are all set
to a known value, usually ’0’. Equivalently, for a codeword length N = 2n, n ≥ 1, a
(N,K) polar code is a block code with K input bits and N output bits whose generator

matrix G is the n−th Kronecker power of matrix F =
1 0

1 1

 , i.e., GN = F⊗n =F⊗n−1 0n−1

F⊗n−1 F⊗n−1

. The encoding process is performed by matrix multiplication x = u.G,

where u = (u0, u1, . . . , uN−1) stands for the sequence input vector consisting of information
bits and frozen bits, and x = (x0, x1, . . . , xN−1) stands for the encoded vector.

Example 2.1.1 for the polar code PC(8,4) and u = [0, 0, 0, u3, 0, u5, u6, u7] the corre-
sponding codeword is:

14

2.2. Decoding algorithms of polar codes

[0, 0, 0, u3, 0, u5, u6, u7]×

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

=

u3 + u5 + u6 + u7

u3 + u5 + u7

u3 + u6 + u7

u3 + u7

u5 + u6 + u7

u5 + u7

u6 + u7

u7

The codeword obtained by the multiplication of U and F⊗n, as illustrated in the Exam-
ple 2.1.1, is non-systematic since information bits are not members of the codeword. A
forward error correction code is systematic if information and parity bits can be clearly
distinguished. Systematic codes have the advantage that the parity data can simply be
appended to the source block, and receivers do not need to recover the original source
symbols if received correctly.

2.2 Decoding algorithms of polar codes

Typically, a decoding algorithm is a process in which the received information at the
output of the channel is treated to retrieve the transmitted information with the least
amount of possible errors. Decoding algorithms are more or less complex, fast, and efficient.
To date, numerous approaches for efficient decoding of polar codes have been reported
since the first decoding algorithm for polar codes has been proposed in [9], successive
cancellation decoder (SC). Although SC yields very good performance for long polar codes,
it is significantly degraded with respect to Maximum Likelihood decoding performance at
short to moderate block length. To overcome this issue, Successive Cancellation List (SCL)
[87], Flip Successive Cancellation (SCF) [4], and Stack Successive Cancellation (SCS) [73],
all derived from the SC decoders, have been proposed to the detriment of extra complexity.
However, due to the serial processing nature of the SC-based decoding algorithm, all the
algorithms mentioned above have a high decoding latency and low throughput, which has a
significant impact on their practical applications. While these algorithms are characterized
by having hard outputs (i.e., output are bits), fully parallel decoding algorithm, such as
belief propagation (BP) with soft output have drawn lots of attention. The performance
of the BP decoding was studied in [11, 51] based on Forney’s factor graph representation

15

Chapter 2 – Polar codes

[8]. Results demonstrated that BP decoding outperform SC decoding in terms of decoding
latency and throughput.

2.2.1 Successive Cancellation decoding algorithm

Suitable for hardware design, the low complexity successive-cancellation (SC) algorithm
is one of the most common decoding techniques proposed for polar codes [9]. Although
sufficient for long polar codes, its error correction performance degrades significantly
for medium and short code lengths. We denote the source vector as uNi , consisting of
information and frozen bits. As the name suggests, the SC decoding algorithm estimates
u0, then u1 and so on until un−1 sequentially by observing the channel output yN . The
estimate ûi is obtained based on all the previous estimates û0 to ûi−1, denoted by ûi−1,
according to the following rule:

ûi =

 0 if Pr(y|ûi−1,ui=0)
Pr(y|ûi−1,ui=1) > 1,

1 otherwise.
(2.7)

The decoding flow of the SC decoder follows the butterfly structure (bipartite graphs) of
Fig. 2.2, illustrated for a polar code of length N = 8 bits. The graph consists of log2N − 1
stages, where each stage is made up of N nodes. The decoder soft-inputs denoted by Ln,i,
where (0 ≤ i ≤N−1) is the index of the graph row, are provided at the right side of Fig. 2.2.
These inputs are processed in several steps during decoding while proceeding towards the
left side by applying functions f and g drawn in white and grey colors, respectively. Each
node f has two input LLRs denoted by Lj,i and Lj,i+2j and each node g has two input
LLRs denoted by Lj,i−2j and Lj,i, where j (0 ≤j ≤ log2N − 1) is the index of the decoding
stage. A hardware-friendly version of soft value updating is carried out in log-likelihood
ratio (LLR) domain. The f function applies the Min-Sum approximation as follows:

f(Lj+1,i, Lj+1,i+2j) = sign(Lj+1,i.Lj+1,i+2j).min(|Lj+1,i|, |Lj+1,i+2j |). (2.8)

The bit-estimates are provided sequentially from top to bottom at the left side of the
butterfly structure. To do so, i.e. to apply the decoding steps, these estimates are combined
and fed-back to the decoder. Denoted by ŝi,j, the combination of the previously decoded
codeword bits results into a partial sum at node i within the decoding stage j. These
partial sums are also computed sequentially based on the already-decoded source bits as

16

2.2. Decoding algorithms of polar codes

𝑓

𝑓

𝑓

𝑓

𝑔

𝑔

𝑔

𝑔

𝑓

𝑓

𝑔

𝑔

𝑓

𝑓

𝑔

𝑔

𝑓

𝑔

𝑓

𝑔

𝑓

𝑔

𝑓

𝑔

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

ො𝑢0

ො𝑢1

ො𝑢4

ො𝑢5

ො𝑢6

ො𝑢7

ො𝑢2

ො𝑢3

መ𝑆0,0

መ𝑆0,2

መ𝑆0,4

መ𝑆0,6 መ𝑆1,5 መ𝑆2,3

መ𝑆2,2

መ𝑆2,1

መ𝑆2,0

መ𝑆1,4

መ𝑆1,1

መ𝑆1,0

𝐿3,0

𝐿3,1

𝐿3,4

𝐿3,5

𝐿3,6

𝐿3,7

𝐿3,2

𝐿3,3

𝑗 = 0 𝑗 = 1 𝑗 = 2

𝑡t+1t+2

t+3

t+4t+5

t+8

t+6

t+7t+9

t+10

t+11t+12

t+13

t+7

t+7

t+7

𝑡

𝑡

𝑡

t+11

t+8

t+4

t+1

𝑓 𝐿𝑗+1,𝑖

𝐿𝑗+1,𝑖+2𝑗
𝐿𝑗,𝑖

𝑓 function node

𝑔𝐿0,𝑖𝑑𝑒𝑐ො𝑢𝑖 𝐿𝑗+1,𝑖−2𝑗𝐿𝑗,𝑖
መ𝑆𝑗,𝑖−2𝑗

𝑔 function nodeHard decision

𝐿𝑗+1,𝑖

Figure 2.2 – Butterfly representation of the SC decoder for N = 8.

illustrated by Figure 2.3. Furthermore, they are required for the computation of the g
function according to the following rule:

g(Lj+1,i−2j , Lj+1,i) = (1− 2ŝj,i−2j).Lj,i−2j + Lj,i . (2.9)

In the example of Fig. 2.2, ŝ1,1 = û1 is the partial-sum needed to compute the g function
of the first visited node of stage j = 1 while ŝ1,4 = û4 ⊗ û5 is the partial sum needed to
compute the g function of the third visited node of the same stage. At every decoding
stage j of the butterfly structure, 2j LLRs are used and half of them are produced for the
next lower stage j − 1. Moreover, each stage j is activated N

2j times during the decoding of
a frame of length N . Assuming that the processing of an activated stage can be performed
in one clock cycle, the total number of clock cycles required to decode one frame is:

Lref =
n−1∑
j=0

2n−j = 2N − 2. (2.10)

This corresponds to Lref = 14 in the example of Fig. 2.2 where the followed schedule for
node activation is indicated by the label (t+lref) with 0 ≤ lref< Lref . Considering the case

17

Chapter 2 – Polar codes

𝑢0

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑢6

𝑢7

መ𝑆0,0 = 𝑢0

መ𝑆0,2 = 𝑢2

መ𝑆1,0 = 𝑢0⨁ 𝑢1

መ𝑆1,1 = 𝑢1

መ𝑆2,0 = 𝑢0⨁ 𝑢1⨁ 𝑢2⨁ 𝑢3

መ𝑆2,1 = 𝑢1⨁ 𝑢3

መ𝑆2,2 = 𝑢2⨁ 𝑢3

መ𝑆2,3 = 𝑢3

መ𝑆0,4 = 𝑢4 መ𝑆1,4 = 𝑢4⨁ 𝑢5

መ𝑆1,5 = 𝑢5

መ𝑆0,6 = 𝑢6

t+2 t+3

t+3

t+5

t+6

t+6

t+6

t+6

t+9 t+10

t+10

t+12

Figure 2.3 – Factor graph of partial sums computation.

of a practical SC decoding process of a polar code of length N = 8, synchronous sequential
logic analysis is illustrated in Fig. 2.4. The rising edges of the clock corresponding to the
different time periods of the decoding steps labeled at the top of each node of Fig. 2.2.
The first f operation starts at clock cycle t, which corresponds to the activation of stage
j = 2. The produced LLRs are stored in a dedicated memory and used at the second rising
edge of the clock to perform f functions of stage j = 1. When the clock cycle t+ 2 arrives,
the first node f of stage j = 0 is updated, and the first estimate û0 is obtained through
hard decision. In the meantime, û0 is fed into the decoding circuit as partial sum bit ŝ0,0.
They are used together with the L1,0 and L1,1, calculated at t+ 1 in order to update the
first g node of stage j = 0 at t+ 3. In this way, û1 is estimated and partial sums ŝ1,0 = û1,
ŝ1,1 = û0 ⊗ û1 are produced. This enables the computation of L1,2 and L1,3 by the two
first g nodes of stage j = 1 at the rising edge of clock cycle t+ 4. The remaining bits are
estimated in the same way during the next clock cycles until the estimation of û7 at the
rising edge of clock cycle t+ 13.

2.2.2 List-SC decoding algorithms

The major drawback of the SC algorithm resides in its inability to recover from wrong
bit estimates, especially at the early stages of decoding. This leads to erroneous partial
sum computations and potential error propagation. Based on this observation, a SCL
algorithm was proposed in [87] to avoid resorting to hard decisions when computing partial
sums during the sequential decoding phase. Indeed, hard decisions were replaced by soft
hypotheses for the error-prone bits identified by low reliability values. This leads to the
simultaneous exploration of several codeword candidates or equivalently paths in the graph

18

2.2. Decoding algorithms of polar codes

Stage 2

P-Sum

Stage 1

P-Sum

Stage 0

P-Sum

Stage 2

LLR

Stage 1

LLR

Stage 0

LLR

ො𝑢0⨁ො𝑢1⨁ො𝑢2⨁ො𝑢3 , ො𝑢1⨁ො𝑢3 , ො𝑢2⨁ො𝑢3, ො𝑢3

ො𝑢0 , ො𝑢0⨁ො𝑢1 ො𝑢4 , ො𝑢4⨁ො𝑢5

ො𝑢0 ො𝑢1 ො𝑢2 ො𝑢3 ො𝑢4 ො𝑢5 ො𝑢6 ො𝑢7

𝑓𝑓

𝑓 𝑔 𝑓 𝑔

𝑓 𝑔 𝑓 𝑔 𝑓 𝑔 𝑓 𝑔

t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12 t+13

Figure 2.4 – Synchronous sequential logic of decoding polar code of length N = 8.

𝑓

𝑓

𝑔

𝑔

𝑓

𝑔

𝑓

𝑔

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

ො𝑢0 = 0

መ𝑆0,0

መ𝑆0,2 መ𝑆1,1

መ𝑆1,0

𝐿2,0

𝐿2,1

𝐿2,2

𝐿3,3

𝑓

𝑓

𝑔

𝑔

𝑓

𝑔

𝑓

𝑔

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

ො𝑢0 = 1

መ𝑆0,0

መ𝑆0,2 መ𝑆1,1

መ𝑆1,0

𝐿2,0

𝐿2,1

𝐿2,2

𝐿3,3

𝑓

𝑓

𝑔

𝑔

𝑓

𝑔

𝑓

𝑔

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

መ𝑆0,0

መ𝑆0,2 መ𝑆1,1

መ𝑆1,0

𝐿2,0

𝐿2,1

𝐿2,2

𝐿3,3

𝑓

𝑓

𝑔

𝑔

𝑓

𝑔

𝑓

𝑔

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

ො𝑢0 = 0

መ𝑆0,0

መ𝑆0,2 መ𝑆1,1

መ𝑆1,0

𝐿2,0

𝐿2,1

𝐿2,2

𝐿3,3

𝑓

𝑓

𝑔

𝑔

𝑓

𝑔

𝑓

𝑔

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

ො𝑢0 = 0

መ𝑆0,0

መ𝑆0,2 መ𝑆1,1

መ𝑆1,0

𝐿2,0

𝐿2,1

𝐿2,2

𝐿3,3

𝑓

𝑓

𝑔

𝑔

𝑓

𝑔

𝑓

𝑔

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

ො𝑢0 = 1

መ𝑆0,0

መ𝑆0,2 መ𝑆1,1

መ𝑆1,0

𝐿2,0

𝐿2,1

𝐿2,2

𝐿3,3

𝑓

𝑓

𝑔

𝑔

𝑓

𝑔

𝑓

𝑔

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

𝑑𝑒𝑐

ො𝑢0 = 1

መ𝑆0,0

መ𝑆0,2 መ𝑆1,1

መ𝑆1,0

𝐿2,0

𝐿2,1

𝐿2,2

𝐿3,3

ො𝑢1 = 0

ො𝑢1 = 1

ො𝑢1 = 0

ො𝑢1 = 1

𝐿 = 1𝐿 = 2𝐿 = 2

Figure 2.5 – List SC decoding of polar code (4,4) with L = 2

19

Chapter 2 – Polar codes

of Fig.2.2, each corresponding to one or more varying bit-hypotheses. Hence, for each bit
ui decoding step, both its possible values 0 and 1 are considered and 2L new candidate
paths are explored. It should be noted that when the encountered bit is frozen, path
duplication is not applied since the value of the frozen bits is unchanged. However, in
order to break the exponential growth in the number of candidate paths, a subset L of
the most likely paths is set to survive as illustrated in figure 2.5. The choice is made by
selecting the L lowest [15, 18, 52, 54, 58, 91] path metric (PM) values computed as follows:

PM−1l = 0,

PMil =

PMi−1l +|Ll0,i|, if ûil 6= 1
2

(
1− sgn

(
Ll0,i

))
,

PMi−1l , otherwise.
(2.11)

In terms of complexity, the SCL decoder can be seen as the concatenation of L
competing SC decoders. Assuming that a path selection can be performed in one clock
cycle, the latency of the SCL decoder with K information bits becomes:

LSCL(N,K) = Lref +K = 2N +K − 2. (2.12)

The operation of path duplication involved in the SCL algorithm occurs O(LN) times and
requires the copy of a data structure of at least O(N). The complexity of a straightforward
implementation is at least O(LN2). Nevertheless, authors in [86] propose a way to
implement the SCL decoder with time complexity O(LN logN) instead of O(LN2). by
the use of the copy-lazy technique. Simulation results in [86] show that for a (2048, 1024)
polar code, a list size of L = 32 is able to achieve an error correction performance close to
the ML decoder.

In [87], authors observe that in the majority of cases where list decoding fails to find a
correct codeword, the latter appears among the L − 1 remaining paths that have been
declassified by the decoder since they have been considered to be less likely. Therefore,
they conclude that if the decoder can be assisted in its final choice, it would improve
significantly the performance of polar codes. The best candidate error-detecting code to
carry out this task is the cyclic redundancy check (CRC) code which is widely used in
practical communication systems. To do so, a LCRC bits are added to the underlying polar
code to form K + LCRC non-frozen bits while the effective code rate of the code is still
unchanged. A combination of the SCL decoder with a CRC detector was proposed in [72]

20

2.2. Decoding algorithms of polar codes

Polar

encoder
Channel

SCL

decoder

CRC

detector
CRC

𝐿𝑐𝑟𝑐 bits
𝑘 + 𝐿𝑐𝑟𝑐

bits 𝑁 bits
𝐿 codewords

CRC check

result

CA-SCL decoder ©2012
IEEE

Figure 2.6 – Encoding and decoding schemes of CA-SCL decoder [72].

and [57]. The corresponding encoding and decoding scheme is depicted in figure 2.6. At
the receiver side, when the decoding process is completed, the SCL decoder outputs the
final L most likely codewords to the CRC detector and the most likely one that passes the
CRC check would be selected as the output codeword. Such a decoding scheme is referred
to as CRC-aided SCL (CA-SCL).

While the CA-SCL algorithm significantly improves the decoding performance of the
SC algorithm, it increases its computational complexity. In [57], a new algorithm is
proposed where both SC and CA-SCL algorithms are combined to create an adaptive
variant that can benefit simultaneously from the error correction capability of the former
and approach the low complexity of the latter. starting from a size 2-list decoder, the
Partially Adaptive SCL (PASCL) algorithm of [57] increases gradually the list size every
time the current paths fail the CRC check operation until reaching the maximum list size
Lmax. In a another approach, the Fully Adaptive SCL (FASCL) algorithm of [78], starts
as SC until a CRC check is negative, the decoder is switched to SCL going directly from
one-list size to Lmax-list size decoding. The downside of these type of algorithm is the
high decoding latency which is equal to the sum of the latency of decoding SC and the
intermediate SCL decoders.

An evaluation of polar code decoders, in particular, SCL, SSCL, Fast-SSCL, and
Partitioned SCL (PSCL) [48] decoders, is provided in [29]. The implementation results
of these decoders have shown that polar decoders have reduced area, power and energy
consumption and a comparable error-correction performance with comparison to the
WiMAX LDPC architectures [50, 64, 65], which make them suitable for 5G communications.

2.2.3 Iterative decoders

The Belief propagation (BP) decoder

Unlike SC-based algorithms, the Belief Propagation (BP) algorithm [11, 101] provides
soft decision values at the end of the decoding process instead of hard decision bits. Thus,

21

Chapter 2 – Polar codes

𝑗 = 0 𝑗 = 1

𝐿𝑖,𝑗+1
𝑡−1𝐿𝑖,𝑗

𝑡

𝑅𝑖,𝑗+1
𝑡

𝐿
𝑖+𝑁/2𝑗,𝑗+1
𝑡−1

𝑅
𝑖+𝑁/2𝑗,𝑗+1
𝑡

𝑅𝑖,𝑗
𝑡

𝑅
𝑖+𝑁/2𝑗,𝑗
𝑡

𝐿
𝑖+𝑁/2𝑗,𝑗
𝑡

(a) BP factor graph for N = 4. (b) BP processing unit

Figure 2.7 – Factor graph and processing unit of BP decoder.

the output of this algorithm can be used as input vector to other soft-input decoders. The
BP algorithm was first proposed by Arikan [10]. It consists of passing LLRs iteratively
through the nodes of the factor graph which are used for updating propagated messages.
It allows the messages to be exchanged in both directions from left to right and from right
to left. The decoding process of the BP algorithm over the factor graph is illustrated
in figure 2.7.a for N = 4 where each node is associated with two messages Lti,j and Rt

i,j

denoting the left-to-right and the right-to-left likelihood messages of the ith node at the jth

stage and the tth iteration, respectively. These messages are propagated between adjacent
nodes and updated by a processing element using the min-sum approximation according
to the following equations:

Lti,j = sign(Lt−1
i,j+1) · sign(Lt−1

i+N/2j ,j+1 +Rt
i+N/2j ,j) ·min(|Lt−1

i,j+1|, |Rt
i+N/2j ,j|).

Lti+N/2j ,j = Lt−1
i+N/2j ,j+1 + sign(Lt−1

i,j+1) · sign(Rt
i,j) ·min(|Lt−1

i,j+1|, |Rt
i,j|).

Rt
i,j+1 = sign(Rt

i,j) · sign(Lt−1
i+N/2j ,j+1 +Rt

i+N/2j ,j) ·min(|Rt
i,j|, |Lt−1

i+N/2j ,j+1 +Rt
i+N/2j ,j|).

Rt
i+N/2j ,j+1 = Rt

i+N/2j ,j + sign(Lt−1
i,j+1) · sign(Rt

i,j) ·min(|Lt−1
i,j+1|, |Rt

i,j|)
(2.13)

During an iteration the N/2 processing units implemented by the BP decoder are
activated at each stage in the left-right direction. When the number of iterations I reaches
Imax, the decoder outputs the estimated information bits based on the hard decision of the
right-most messages RImax

i,log2 N+1. The processing unit operations are illustrated in Fig. 2.7.b

22

2.2. Decoding algorithms of polar codes

The Soft CAncellatioN (SCAN) decoder

Similarly to the BP decoder, the Soft Cancellation (SCAN) decoder proposed in [33] is
a soft output iterative message passing algorithm. The decoding schedule of the SCAN
decoder is similar to the one of the SC algorithm. However, the real LLR value which
corresponds to the bit estimate is retained instead of applying a hard decision. Afterwards,
the LLR value is used to update the LLRs exchanged in the left to right direction on the
decoder factor graph. After reaching a maximum number of iterations defined beforehand,
SCAN decoding applies hard decisions on left-hand side LLRs corresponding to estimates
of the û vector. When compared to the BP decoder, SCAN converges faster and requires
less iterations since it relies on the natural SC scheduling. For instance, it only takes two
iterations to SCAN in order to outperform the SC and the BP (with 40 iterations) when
decoding a (256, 128) polar code [76].

2.2.4 Other forms of decoding polar codes

The SC flip decoder

The SC flip decoder originally proposed in [4] is an alternative way of decoding polar
codes under the SC algorithm. A CRC detector is associated to the SC decoder in order to
improve its error-correction capability at the cost of a resulting variable decoding latency.
However if the CRC verification indicates an erroneous codeword at the end, the decoding
process is restarted by flipping the decision made on the least reliable LLR. The CRC
check is performed at the end. This process is repeated for a predefined number of times
specified beforehand. Several studies looked into improving SC flip decoding by expanding
it to list SC flip decoding and then proposing the dynamic, partitioned and BP SC flip
decoding [19, 20, 25, 30, 31, 82, 97, 98, 103].

The SC Stack decoder

The SC stack algorithm [73, 84] is a variant of the SCL algorithm, which as the name
implies, uses a stack of a certain depth to pile up the path metrics associated to the
different L candidate paths. Indeed, while the SCL performs candidate competition of
the L paths simultaneously, the SC stack extends candidate paths with the ML in the
stack, and therefore paths in the stack no longer keep the same length. When a leaf node
is reached, the decoder extends the most probable path from the stack. A CRC check is

23

Chapter 2 – Polar codes

𝐿2,0 𝐿2,1 𝐿2,2 𝐿2,3
𝑆2,0 𝑆2,1 𝑆2,2 𝑆2,3

𝐿1,0 𝐿1,1
𝑆1,0 𝑆1,1

𝐿0,0
𝑆0,0

𝐿1,2 𝐿1,3
𝑆1,2 𝑆1,3

𝐿0,1
𝑆0,1

𝐿0,2
𝑆0,2

𝐿0,3
𝑆0,3

λ = 0

λ = 1

λ = 2

Fonction 𝑓 Fonction 𝑔 Partial sums

Figure 2.8 – Tree representation of SC decoding for N = 4.

performed after decoding the last bit and the decoding ends if a CRC check is successful
or until a maximum of tested path candidates is reached [94].

2.3 Tree-pruning techniques of polar codes

2.3.1 Tree representation of SC polar decoders

The butterfly structure of Fig. 2.2 is not the only way to represent polar codes. Indeed,
a binary tree is another natural way to do so. Due to its recursive construction, a polar
code of length N can be represented as the concatenation of two polar codes of length
N/2. The tree representation of SC decoding of polar code of length N = 4 is shown in
Fig. 2.8. The two types of data that are processed during the decoding, in this case, LLRs
and partial sums are arranged on log2 N + 1 stages. Each stage λ, with (0 ≤λ ≤ log2 N),
comprises N

2λ node. The root node (λ = log2 N) includes the channel LLRs and the final
partials sums. in the case of decoding a non systematic polar code, the root node includes
the decoded sequence ûn−1 instead of final partial sums. Bit estimation is performed at
leaf nodes, i.e., λ = 0. In the intermediate tree-stages (0 < λ < log2 N), N LLRs and N
partial sums are calculated in N

2λ nodes at different period times. The nodes compute 2λ

and LLRs produce 2λ−1 LLRs. The decoding process starts from the root node where
all the N available LLR values are computed to produce N/2 LLRs for left node of the
foremost adjacent decoding stage. This latter uses its LLRs to produce, in turn, N/4

24

2.3. Tree-pruning techniques of polar codes

λ =0

λ =1

λ =2

λ =3

λ=4
𝛼

𝛽

𝛼l

𝛽l 𝛼r

𝛽r

λ =2

λ =3

λ =4 Frozen

Rate-0

Info.

Rate-1

Repetition

SPC

(a) SC decoder tree

(b) SC decoder pruned tree

Figure 2.9 – SC based decoder tree and its corresponding pruned tree of PC(16,8).

LLRs for the left node to which it is connected at the next lower decoding stage and so
forth up until reaching the leaf node with a single LLR value. This tree representation of
the decoder highlights better the parallelism degree of the decoder which is progressively
reduced from N to 1 from root node to leaf nodes.

2.3.2 SC and SCL tree-pruning techniques

A simplified version of the SC decoding algorithm (SSC) was presented in [5] in which
the SC decoding tree is pruned. In fact, a tree with only frozen bits at leaves does not need
to be traversed since its output is already known and is equal to an all-zero vector. This
type of node is referred to as R0. Moreover a tree with only information bits can directly
be decoded by applying a threshold decision on the tree root. This type of node is referred
to as R1. Furthermore, the authors in [79] have identified two new types of nodes among
the constituent codes of rate 0 <R <1. Hence, a repetition node (REP) is a constituent
code where all the bits are frozen except for the last one. The partial sum values of a Rep
node are either all equal to 0 or all equal to one. All of the LLR values of the considered
node are added together to decide which values the partial sums should take. If the total
of the summation is greater than 0, all partial sums are set to 0, otherwise they are all
set to 1. Furthermore, the single parity check (SPC) node is a constituent code where at

25

Chapter 2 – Polar codes

the exception of the first bit, all the bits are information. The decoding of this type of
nodes requires multiple steps. First, hard decision is applied to each LLR value similarly
to the decoding of R1 nodes. The parity of the obtained partial sums is then checked. If
the parity check yields a value of 0, partial sums are retained and decoding of the SPC
node is complete, if not, the partial sum associated with the lowest absolute LLR value
is inverted beforehand. The original SC decoding tree of PC(16,8) and the pruned SC
decoder tree of the Fast-SSC decoder are illustrated in Fig.2.9 where the four types of
constituent codes are colored differently.

The pruning mechanism can also be applied on a SCL [45] and a SCF [26, 36, 102]
decoders. However, the decoding of the pruned sub-trees is different from the case of SC.
Indeed, in SCL decoding, the number of paths is duplicated when meeting an information
bit. Except for R0 node whose leaves are frozen, the remaining specific constituent codes
that feature at least one information bit need to perform one or multiple duplications as
part of their decoding process. The decoding steps of these nodes in SCL decoding are
detailed as follows:

— R0 node: Although it is not required to perform path duplication, the PM needs to
be updated as was the case with SCL decoder. Each LLR value related to the top
R0 node is compared to the 0-value. The PM is then penalized with the absolute
value of the LLR if its LLR value is negative.

— Rep node: it includes only one information bit. Thus, the paths are duplicated
one time considering both possibilities corresponding to all-zero and all-one partial
sum vectors. The PM of each candidate is computed by considering both possible
hypothesis, i.e., 0 and 1, on the single information bit. This is done by summing up
the absolute value of all the negative LLRs on one side and summing up the absolute
value of all the positive LLRs on the other side.

— R1 node: All the bits of this node are information, the number of path duplications
required to decode such a node is equal to the length of the node. For each LLR
value, a partial sum is estimated and both its possible values 0 and 1 are considered.
The two candidate paths generated for these values update the PM following the
sign of the LLR. Indeed, the paths that take the 0-valued partial sum maintain the
value of the PM if the LLR is positive as well. Moreover, the paths that take the
1-valued partial sum maintain the value of the PM if the LLR is negative. Otherwise,
the absolute value of the LLR is added to the PM of the path. When all the PMs
are split, they are sorted and the paths identified having lowest PMs are kept to

26

2.3. Tree-pruning techniques of polar codes

(b) Type-I, Type-II and Type-V decoding tree

B B

(a) Type-III and Type-IV decoding tree

Figure 2.10 – Decoding tree of new special nodes Type-I to Type-V.

pursue the decoding. This path split process is applied to all the LLRs of the node.

— SPC node: It is similar to the R1 node in the way that it needs multiple path
forks to decode information bits. However, it comprises a single frozen bit which
is decoded first. Using the LLR values at the top of the sub-tree node, the least
reliable bit corresponding to the minimum absolute value is found and the parity
equation is tested. If the latter is not satisfied the PMs are initialized by adding the
absolute value of the least reliable bit. In the second step, the remaining bits are
decoded the same way R1 bits are decoded applying as many time path forks as the
number of information bits. However, PM update is slightly different. In this case,
the minimum LLR value is either deduced from the PM or added to it depending on
the parity check result, i.e if the partial sums and the sign of LLRs do not match.
The final step consists of satisfying the parity check, the least reliable bit partial
sum takes its value in accordance with that.

In addition to that, five others special nodes were observed later in the code tree of
a polar code [41]. The decoding trees of these nodes are shown in Fig. 2.10, where the
node B is a R1 of length 2, SPC of length 4 or REP-SPC node of length 8 for the Type-I,
the Type-II, and the Type-V node, respectively. Fast decoders for the SC algorithm were
efficiently designed to decode these new special nodes. They are identified as follows:

— Type-I: In this node, all bits are frozen except for the last two ones which are infor-
mation bits. The frozen bit sequence that corresponds to this node is: {0, . . . , 1, 1}.

— Type-II: In this node, all bits are frozen except for the last three ones which
are information bits. The frozen bit sequence that corresponds to this node is:
{0, . . . , 1, 1, 1}.

— Type-III: In this node, all bits are information except for the first two ones which are

27

Chapter 2 – Polar codes

frozen bits. The frozen bit sequence that corresponds to this node is: {0, 0, 1, . . . , 1}.

— Type-IV: In this node, all bits are information except for the first three ones
which are frozen bits. The frozen bit sequence that corresponds to this node is:
{0, 0, 0, 1, . . . , 1}.

— Type-V: In this node, all bits are frozen except for the last three and the fifth (from
last) ones which are information bits. The frozen bit sequence that corresponds to
this node is: {0, . . . , 1, 0, 1, 1, 1}.

Furthermore, a generalization approach of merging special nodes was proposed in [22],
in which the above-mentioned special nodes are merged to constitute multi-node subcodes
and allow to apply fast decoding to larger subsets of bits. It follows that Type-I to Type-V
nodes are particular cases of these generalized special nodes.

— Generalized REP node (G-REP) is a node whose descendants are all R0 nodes,
except the rightmost one, that is a generic. This node is decoded using only the
partial sums of the rightmost one and repeating it as many times as the number of
the descendants R0 nodes.

— Generalized parity check node (G-PC) is a node whose descendants are all R1 nodes,
except the leftmost one, that is R0. The decoding of this node is performed according
to [42] by considering multiple parallel independent SPC nodes.

— Relaxed G-PC (RG-PC) node is a particular case of G-PC node in which additional
frozen bits are present so that some of R1 nodes are in fact generic nodes whose rates
are close to one. A sub-optimal decoding of this node that introduces a trade-off
between error-correction performance and decoding latency is proposed in [22]. This
node is decoded in the same manner as G-PC node since the additional frozen bits
are ignored.

2.3.3 Fast SCL decoders

SSCL decoder

The tree representation in Fig. 2.9a corresponds to the polar code of length N =
16 and information block K = 8 denoted by PC(16,8). Each node includes α =
{α0, α1, . . . , αNλ−1} LLR values and β = {β0, β1, . . . , βNλ−1} estimated bits i.e., partial-
sums. At leaf nodes, the frozen and information bits are represented by white and black
circles respectively. After computing path metrics, the decoding process searches the tree

28

2.3. Tree-pruning techniques of polar codes

for the L most reliable LLR subset. To do so, computed soft values αl transit from parent
to child nodes across the tree providing αl = {αl

0, α
l
1, . . . , α

l
Nλ

2 −1
} to the left child node and

αr = {αr
0, α

r
1, . . . , α

r
Nλ

2 −1
} to the right child node by performing f and g operations respec-

tively. Estimated bits i.e, partial sums βl transit from child to parent and are computed
by means of the received estimated bits of the left child node βl = {βl

0, β
l
1, . . . , β

l
Nλ

2 −1
}

and of the right child node βr = {βr
0, β

r
1, . . . , β

r
Nλ

2 −1
} as follows:

βi =

βl
i ⊕ βr

i , if i < Nλ
2 ,

βr
i−Nλ2

, otherwise.
(2.14)

The polar code of Fig. 2.9a features four constituent codes at stage λ = 2 which are
R0, REP, R1 and SPC nodes all of length four. The pruned tree obtained following the
identification of these constituent codes is provided in Fig. 2.9b.

A Simplified Successive Cancellation (SSCL) algorithm was proposed in [45] in order to
reduce the time-complexity of the SCL algorithm by benefiting from the advantages of the
previously-mentioned tree-pruning techniques. based on the idea of list sphere decoding
[44], the SSCL algorithm proposes a computation of the PMs for three special nodes R0,
REP, R1 from the LLRs of their top node. In addition to being much faster than SCL,
the advantages of the SSCL algorithm include no perceived error-correction penalty and
the reuse of the same sorter as the conventional SCL algorithm. With vectors αl and βl
representing the LLR values at top of a R0, REP and R1 nodes, a hardware-friendly path
metric computation for these nodes was proposed in [46]. The computation rules and the
decoding of these special nodes in the case of list decoding successive cancellation follows:

PMl
Nλ−1 = 1

2

Nλ−1∑
i=0

sgn (αil)αil − αil , (2.15)

PMNλ−1l = 1
2

Nλ−1∑
i=0

sgn (αil)αil −
(
1− 2βNλ−1l

)
αil , (2.16)

PMNλ−1l = 1
2

Nλ−1∑
i=0

sgn (αil)αil − (1− 2βil)αil , (2.17)

where 1 − 2βNλ−1l is the information bit estimate in the Rep node. A SSCL decoder
achieves a decoding latency around 3.52 times smaller than the conventional SCL decoder

29

Chapter 2 – Polar codes

when decoding a PC(2048, 1024) optimized for Eb/N0 = 2 dB [45].

SSCL-SPC decoder

An efficient way to decode SPC nodes was proposed in [42] as an extension to the SSCL
decoder. It guarantees the preservation of the error-correction performance of the SCL
decoder for a list size of 2 and entails a negligible degradation of ≤0.05 dB for other list
sizes. Therefore, the pruned tree of the SSCL-SPC decoder becomes shorter by merging
the Rep and R1 nodes of size 2 in the SSCL pruned tree into a single SPC node of size 4.
A decoder architecture was designed in [42] with results showing an improved throughput
by a factor of 3.16 at the cost of a 14.2% increase in area occupation when compared to the
SSCL decoder. Following this technique, the computation of path metrics is obtained as
follows: The least reliable bit which corresponds to the even-parity constraint is decoded
first. In a SPC node of length Nλ, it is determined by

imin = arg min
0≤i<Nλ

(|αi|), (2.18)

and the parity is derived as

γ =
Nλ−1⊕
i=0

(1
2 (1− sgn (αi))

)
. (2.19)

To satisfy the even-parity constraint, γ is computed for each path based on (2.19). The
PMs are then initialized as

PM0 =

PM−1 +|αimin|, if γ = 1,

PM−1 , otherwise.
(2.20)

For the remaining parity check bits, the PM is updated by

PMi =

PMi−1 +|αi|+ (1− 2γ)|αimin|, if (1− 2βil) 6= sgn (αi) ,

PMi−1 , otherwise.
(2.21)

30

2.3. Tree-pruning techniques of polar codes

Finally, when all the bits are estimated, the least reliable bit is set to preserve the
even-parity constraint following

βimin =
Nλ−1⊕
i=0

i 6=imin

βi. (2.22)

Fast SSCL-SPC decoder

In the aim of reducing decoding latency and increasing the throughput, further special
node decoding improvements were proposed in [43]. In fact, it was shown in [43] that
the number of path splits required to decode R1 and SPC nodes can be further reduced
and does not depend on the special nodes lengths anymore. The called Fast-SSCL and
Fast-SSCL-SPC are an improved version of SSCL and SSCL-SPC decoders that result
in faster decoders while keeping the error-correction performance unaltered. Therefore,
in fast-SSCL decoding and list size L, the minimum number of path duplications in R1
nodes of length Nλ required to obtain the same results as the SSCL decoder is:

min(L− 1, Nλ). (2.23)

Thus, any number of duplications smaller than this limit results in potential performance
degradation. On the contrary, any number of duplications beyond this limit is redundant.
The PM splitting is performed on the min(L− 1, Nλ) least reliable bits of R1 nodes, i.e.,
those exhibiting the smallest absolute LLR values, the same way as they would in a SSCL
decoder:

PMl
i =

PMl
i−1 +|αil |, if (1− 2βil) 6= sgn (αi) ,

PMl
i−1 , otherwise.

(2.24)

The remaining bits are obtained through hard decision following:

βi =

 0, if αi ≥ 0,

1, otherwise.
(2.25)

on the other hand, the number of path duplication in SPC node of length Nλ required
to obtain the same results as the SSCL-SPC decoder is:

min(L,Nλ). (2.26)

31

Chapter 2 – Polar codes

If min(L − 1, Nλ) = Nλ in the case of a R1 node and min(L,Nλ) = Nλ in the case of a
SPC node. The total number of path forks is equal to the number of information bits in
the node and the decoding process reverts to that of [45] and [42], respectively. However,
in practical polar codes, the number of occurrences where L − 1 < Nλ and L < Nλ for
R1 and SPC nodes respectively, are often encountered. Therefore, using Fast-SSCL and
Fast-SSCL-SPC algorithms, can significantly reduce the decoding latency in comparison
with SSCL and SSCL-SPC algorithms, respectively.

A trade-off between error-correction performance and speed was also proposed in [43]
where a new definition of the number of path splittings called SR1 and SSPC generally
smaller than the optimal number defined in (2.23) and (2.26) is applied in the decoding
of R1 and SPC nodes, respectively. Simulation results of PC(1024 ,512) for L = 8 under
Fast-SSCL, have shown a small degradation in error-correction (0.1 dB) at FER = 10−5 by
choosing SR1 = 1. This error-correction performance gap with respect to the optimal value
of SR1 = 7 was compensated for when choosing SR1 = 2. Similarly, the selection of SR1 =
2 and SSPC = 4 under Fast-SSCL-SPC results in the same error-correction performance as
the optimal values of SR1 = 7 and SSPC = 8. Hardware architectures implementing both
algorithms were proposed in the same work and have demonstrated a throughput of 1.86
Gb/s.

Fast SCL decoder for the new special nodes

Efficient decoders for the new identified special nodes, namely Type-I, Type-II, Type-
III, Type-IV, and Type-V were proposed in [40] to improve the speed of SCL decoding
and the afore-mentioned Fast SCL decoders without affecting the bit-error-rate and block-
error-rate performance. Therefore, the Type-I to Type-V decoders require only 2, 2,
1 + min (L− 1, Nλ − 2), 1 + min (L− 1, Nλ − 4), and 2 clock cycles, respectively. These
latencies are smaller than that of the Fast SCL decoders. For instance, a Type-III node is
decoded in 8 clock cycles when implemented in hardware, while it is decoded in 29 clock
cycles with Fast-SSCL-SPC decoder for Nλ = 32 and L = 8. Furthermore, the decoding of
these nodes was extended to SC flip (SCF) decoders in [7].

However, since all these nodes include at least two information bits, their decoding
requires the estimation of multiple bits at a time. Specifically, Type-I needs to estimate two
bits at the same time, Type-II needs to estimate three bits and Type-V needs to estimate
four bits. At each decoding step, they produce 4L, 8L, and 16L codeword candidates,
respectively, before selecting L. In this case, a larger sorter is required when implementing

32

2.4. The polar code of 3GPP 5G NR

Table 2.1 – Information, encoded block and mother polar code lengths supported by polar
coding in the NR physical channels.

Physical channel Supported information
block lengths

Supported encoded
block lengths

Supported polar
code lengths

Physical Uplink Control
Channel (PUCCH)

A ∈ [12, 1706] See equation (2.27) 32, 64, 128, 256, 512, 1024

Physical Broadcast
Channel

32 864 512

Physical Uplink Control
Channel (PUCCH)

A ∈ [12, 140] G ∈ [A+ 24, 8192] 32, 64, 128, 256, 512

the decoder in hardware. In addition, two and four parallel SPC decoders are required to
decode Type-III and Type-IV nodes, respectively, [40].

2.4 The polar code of 3GPP 5G NR

In this section we provide a short overview of the encoding process for the 5G NR
polar code following the block diagrams of Fig. 2.11a and Fig. 2.11b. This code family was
adopted as forward error correction for the Uplink and the Downlink Control Information
(UCI and DCI) . More precisely, it is used over the Physical Uplink Control/Shared Channel
(PUCCH/PUSCH), the physical downlink control channel and the Physical Broadcast
Channel (PDCCH/PBCH). In Fig. 2.11a and Fig. 2.11b, the component in orange applies
only for downlink while those in green apply only to uplink. The supported information
block lengths, encoded block lengths and mother polar code lengths by the 5G standard
are summarized in Table 2.1. Bounds on the encoded block length for the UCI are given
by:

E ∈

[A+ 9, 8192], if A ∈ [12, 19],

[A+ 11, 8192], if A ∈ [20, 359],

[A+ 11, 16385], if A ∈ [360, 1012],

[2[A/2] + 22, 16385], if A ∈ [1013, 1706].

(2.27)

2.4.1 CRC-bits attachment, scrambling and interleaving

LCRC CRC bits are appended to the information sequence to allow error detection
and improve the performance of the list polar decoder. Three different CRC generator

33

Chapter 2 – Polar codes

Segmentation
CRC

Encoder

Parity-check

calculation

Polar

Encoder

Rate

Matching

Channel

Interleaving

CRC

Interleaving

Information

block

𝐴 𝐾 𝐾 𝑁 𝐸 𝐸𝐾+𝑃

Coded bits

Uplink only

Downlink only

(a) Block diagram for channel encoding in 3GPP 5G NR PUCCH/PUSCH.

Parity/CRC-

Aided SCL

Decoder

De-rate

Matching

Channel

De-interleaving

Information

Extraction 𝐸𝐸𝑁𝑁𝐴

Information

block
Soft coded

bits

Uplink only

Distributed

CRC-Aided

SCL Decoder
𝑁

Downlink only

(b) Block diagram for channel decoding in 3GPP 5G NR PDCCH.

Figure 2.11 – The 3GPP 5G NR Polar coding and decoding chain.

polynomials were carefully chosen for the various physical control channels as follows:

g6(x) = x6 + x5 + 1.
g11(x) = x11 + x10 + x9 + x5 + 1.
g24(x) = x24 + x23 + x21 + x20 + x17 + x15 + x13 + x12 + x8 + x4 + x2 + x+ 1.

(2.28)

The polynomials g6 and g11 are used in PUCCH when the information block length is
A ∈ [12, 19] and A ∈ [20, 1706] bits, respectively. In the case of PDCCH and PBCH a
larger number of CRC bits is needed to enable early termination in the case of failures
and to reduce the incidence of false alarms during blind decoding [23]. Therefore, g24 with
LCRC = 24 CRC bits are used. Following their computation, the last 16 CRC bits are
scrambled by performing XORs with the Radio Network Temporary Identifier (RNTI)
as defined in [3]. Moreover only in the downlink case, CRC interleaving is employed
following CRC attachment and scrambling. The CRC bits are then shuffled according to a
specific interleaving pattern of length Amax + LCRC = 164 bits. All interleaver patterns
for A ≤Amax may be derived from this single mother pattern. The CRC interleaver is
designed to ensure that each CRC bit depends only on the previously decoded information
bits. This allows the CRC bit value to be calculated without waiting for the following
information bits in the interleaved sequence. Hence, the CRC check operation can be
performed early during decoding allowing an early termination when it fails. However,
when at least one candidate path verifies the CRC check, the inverse interleaving pattern
is applied to restore the original order of the vector including information and included
CRC bits. A final CRC check may be performed at the end of the decoding process. To

34

2.4. The polar code of 3GPP 5G NR

do so, the A+ LCRC decoded bits are sent to the CRC decoder and the last LCRC-bits of
the obtained syndrome are compared to LCRC zero-valued bits to verify the check pass.

2.4.2 Sub-channel allocation and bits insertion

For the NR polar code, a so called universal reliability sequence QNmax−1
0 consisting of

a list of integers between 0 and Nmax − 1, with Nmax = 1024, sorted in reliability order
is provided. Included integer values correspond to the reliabilities of the sub-channels
together with the rate-matching scheme. It is used in order to determine the set of the
frozen, information, CRC and PC bit positions. The set of frozen bits is first identified.
It consists basically of the non transmitted bits removed by the rate-matching scheme
and the remaining least reliable bits. Next, the information and CRC bits are placed in
the most reliable sub-channel positions. The PC bits that are used in the PUCCH when
A ∈ [12, 19] take the remaining most reliable positions. The sub-channel allocation process
is detailed in [17]. The computation of the PC bits is obtained through a length-5 cyclic
shift register [90]. The calculation of the PC bits is obtained through a PC bit generator
consisting of a length-5 cyclic shift register. On the decoder side, the determination of
frozen, info, CRC and PC bits positions follow the same process that is used with the
encoding. Unlike frozen bits which are already known by the decoder, the PC bits take
their values from the PC bit generator.

2.4.3 Rate matching

The obtained vector u following CRC bits attachment and insertion of information bits
is encoded to vector x of length N following x = u ·G⊗nN , where G⊗nN is the nth Kronecker

power of
1 0

1 1

.
The first step of rate matching consists in dividing the encoded vector x into 32

sub-blocks, each of length N/32 then applying the sub-block interleaver. The interleaved
vector is then subject to three different types of rate matching to obtain the encoded
block length G from the mother polar code length N through a circular buffer. If G ≤ N ,
the encoded bit vector x is either punctured when R ≤ 7

16 and the first N −G bits are
not transmitted, or shortened when R > 7

16 and the last N − E bits are not transmitted.
Otherwise the vector y is repeated by transmitting twice the first N −G bits. The received
LLRs are obtained depending on the applied rate-matching scheme before transmission.

35

Chapter 2 – Polar codes

Hence, the LLRs corresponding to the repeated bits are accumulated, those corresponding
to punctured bits are set to zero and finally, those used for shortening are set to infinity and
appended to the set of G received LLRs. A final step of channel interleaving concerning
PUCCH and PUSCH UCIs is performed to improve the error correction capability of the
polar code when associated with high order modulation schemes.

2.5 Summary

In this chapter we provided an overview of polar codes including the polarization concept
on which they are based and the way they are constructed. A special focus was made on
the decoding algorithms and in particular on the low-complexity successive cancellation
decoding. Based on different binary-tree representations, tree-pruning techniques at the
origin of various simplified polar decoders were presented, motivated by their positive
impact on latency and throughput. Finally, in the aim of developing an efficient polar
decoder for the recently adopted 5G NR polar codes, an overview of their specific encoding
and decoding processes was provided at the end of this chapter.

36

Chapter 3

Design space exploration for polar
decoders

Contents
3.1 Performance of 5G NR polar codes 38

3.1.1 Proposed polar code simulator 39

3.1.2 Performance of 5G NR polar codes with tree-pruning decoders 42

3.1.3 Impact of quantization on the performance 42

3.2 Hardware architectures . 46

3.2.1 Unrolled architectures . 46

3.2.2 Semi-parallel architectures . 47

3.2.3 Architectural and algorithmic parameters 49

3.3 Latency analysis . 50

3.3.1 Influence of N and the number of PE on latency 52

3.3.2 Influence of tree-pruning on latency 54

3.4 Hardware complexity and throughput analysis 58

3.4.1 Influence of the number of PE on hardware complexity 58

3.4.2 Influence of tree pruning on hardware complexity 59

3.4.3 Influence of PE and tree pruning on throughput 61

3.5 Hardware efficiency analysis . 65

37

Chapter 3 – Design space exploration for polar decoders

3.5.1 Activity of SC decoders . 65
3.5.2 Proposed multi-frame decoding techniques 70

3.6 Summary . 74

The list-augmented SC decoding algorithm is best suited to decode the polar codes
of the 5G NR control channel mainly thanks to its good error-correction performance
when aided with outer codes such as CRC and parity bits. However, finding the best
suitable hardware architecture for decoding is not trivial, particularly under the stringent
requirements to comply with block length and code rate flexibilities while maintaining low
decoding latency and hardware complexity.

This chapter presents our first major contribution related to design space exploration
and concerning the study of the impact of main code and decoder design parameters on
latency, throughput and the hardware complexity of semi-parallel decoding architectures.
The impact of these parameters on the hardware efficiency of semi-parallel architectures
is significant. Therefore, we propose two multi-frame decoding approaches that increase
the throughput and improve the utilization rate of the processing units of these archi-
tectures. Detailed analytical and logic synthesis results are provided and compared for
a large range of relevant code parameters in order to draw general tendencies towards
building a framework for implementing flexible yet efficient FEC decoders for polar codes.
Furthermore, a complete software simulation environment of polar coding/decoding is
proposed for performance evaluation under different algorithms in both floating-point and
fixed-point data representation. The chapter is organized as follows. Section 3.1 presents
the developed software simulator, its features, and the performance of the 5G NR polar
codes using various decoding algorithms and several quantization levels of the decoder
metrics. Section 3.2 presents the hardware architectures used to implement polar codes,
together with the algorithmic and architectural parameters considered in the proposed
study. Section 3.3 provides latency performance analysis. Hardware complexity results
and throughput analysis are discussed in Section 3.4, while the hardware efficiency analysis
of semi-parallel decoding architectures together with two multi-frame decoding approaches
are provided in Section 3.5. Finally, Section 3.6 concludes the chapter.

3.1 Performance of 5G NR polar codes

In this section, we propose to study the error-correcting performance of 5G NR polar
codes in terms of Bit-Error-Rate (BER) and Frame-Error-Rate (FER). The simplified

38

3.1. Performance of 5G NR polar codes

family of algorithms based on tree-pruning techniques has shown significant benefits in
reducing the latency of the SCL decoders, which makes it particularly suitable for low
latency and low complexity implementation of the control channel polar decoders. The
performance of the underlying algorithms with list-decoding is evaluated and compared to
the performance of the SCL decoder for a list size of eight. To prevent the error-correction
performance of polar codes from degradation at hardware level design, several quantization
levels for message passing and internal metrics, namely LLRs, and PMs, are studied.
For this, both fixed-point and floating-point simulation performance of the decoder are
compared. A software simulator that integrates the entire encoding and decoding schemes
of polar codes as described in [3] is designed and simulation results are reported accordingly.

Encoder

PCC-0

PCC-1

PCC-2

5G

reliability

sequence

PC bit

calculation

CRC

Encoder

subBlock

interleaver

Rate

matching

De-Rate

matching

subBlock

Deinterleaver

Communication

Channel

SC

DSCA-SCL

(CA)-SCL

Polar code construction

Bit

Interleaver

Polar code Decoder and bit Deinterleaver

En_SIL
Rate-matching

scheme
Systematic/

Non-systematic
PC-Bits

CRC length

and type

PCCA-SCL

Triangular

interleaver

Triangular

Deinterleaver

Uplink only

Downlink only

En_TLEn-BI

Transmitter

Receiver
BER, FER

performance

Special node

identification

Random

binary bits

generation

Input

parameters
Select Algo.

and quantization

Output BER,

FER

Output decoder

test vectors

Figure 3.1 – Block diagram of the developed software simulator for polar codes.

3.1.1 Proposed polar code simulator

A software simulator for polar codes is designed to evaluate performance corresponding
to efficient hardware decoders for polar codes. The block diagram of this simulator is
represented in Fig. 3.1. It integrates all the components of a digital communication system
model [81], excluding the source encoding/decoding, and provides several simulation choices.
The software simulator is composed of three major parts: transmitter, communication
channel, and receiver. The transmitter generates random messages, encodes them according
to specific schemes, maps them onto a constellation, then sends them over the desired

39

Chapter 3 – Design space exploration for polar decoders

communication channel model. The applied channel function depends on the channel type.
Typically an Additive White Gaussian Noise (AWGN) is applied. In the receiver part,
received messages are de-mapped from the chosen constellation and decoded according to
a particular algorithm selected in advance. Finally, the BER and FER performance of the
decoder is performed based on the original and decoded codewords.

In addition to that, the developed simulator includes a plurality of features and choices
at the algorithmic level, in code construction methods, and in using specific interleaving
and rate matching operations. These features are detailed in Table 3.1. Therefore, the
classical and most commonly polar code construction methods [53, 59, 85, 92] presented
in [89], namely PCC-0, PCC-1, and PCC-2, are included to divide bit-channels into those
that are good and those that are bad. However, in the context of 5G NR polar codes, a
reliability sequence provided in the 3GPP standard is used in the sub-channel allocation
process instead of using polar code construction algorithms. Furthermore, using algorithms
that rely on tree-pruning techniques, a list of special nodes is created based on the frozen
set generated in a previous step. Various tree-pruning options are considered depending on
the choice of the algorithm and the maximum size of the special nodes defined in advance.

Alongside the simple encoding operation of polar codes, the 5G NR polar code complete
encoding and decoding chain is integrated into this simulator. Moreover, outer codes
such as CRC and parity check codes are included and can be used in association with
the polar code depending on the selected encoding scheme. The calculation of CRC bits
is performed using cyclic generator polynomials. In addition to those defined in (2.28),
other polynomials and other options for initializing the CRC bits are available, allowing
the error-detection capability to be evaluated under different polynomials. Parity bits are
calculated in three different forms, as described in [3].

The information and the encoded bits can be subject to different interleaving and rate
matching types, particularly in the 5G NR control channel. Therefore, Three interleaving
operations, called bit interleaving, sub-block interleaving, and channel interleaving, are
included in the encoding process. Also, three types of rate matching procedures are
included: puncturing, shortening, and repetition. At the receiver, the reverse operations
of interleaving and rate matching are performed first if already processed during the
encoding scheme. These operations can be applied independently on both transmitter and
receiver sides. This provides flexibility in running various simulation types for assessing the
performance of polar codes not limited to the ones in 5G NR. However, in the case of the
5G NR polar codes of the control channel, all these operations are systematically applied to

40

3.1. Performance of 5G NR polar codes

Table 3.1 – Polar code simulator features.

Initialization Encoding operations Decoding algorithms

• PCC-0
• PCC-1
• PCC-2
• 5G reliability
sequence
• List of
special nodes

• CRC bit computation
• Bit Interleaving
• PC generation
• Systematic encoding
• Non-Systematic encoding
• Sub-block Interleaving
• Rate Matching
• Channel Interleaving
• Triangular De-Interleaver
• De-Rate-Matching
• Sub-block
De-Interleaving

• SC
• SCL
• CA-SCL
• Bit De-Interleaver
• PC-SCL
• SSCL decoding
• SSCL-SPC decoding
• Fast-SSCL decoding
• Fast-SSCL-SPC decoding
• Various code length N
• Various list size L
• quantization schemes
• Hardware/algorithmic
design approach
• FER and BER
computation

match the specified encoding and decoding schemes. A unique variable is used to select the
type of physical channel used for the simulation. Moreover, to increase the flexibility of the
proposed simulator, all the integrated functions apply an easily modifiable programming
method based on C language structures. Therefore, it provides better portability and
handling of the simulator and facilitates the integration of additional functions. On top of
that, it facilitates the validation of any encoding and decoding processes, in addition to
those from the 5G NR polar code.

The received soft message is then decoded using one of the various implemented polar
code decoders, which are summarized in Table 3.1. Furthermore, thanks to a hardware-
oriented design of the decoding algorithms, the software polar code simulator constitutes
a powerful tool to produce and support the validation of efficient hardware architectures
for polar codes. Indeed, memory pointers are preferred to lazy copying techniques of the
decoder data when candidate competition is involved in the list-decoding of polar codes.
This design approach leads to producing software polar decoders that come as close as
possible to the hardware version of these decoders, which simplifies their validation process
by providing reference test vectors. A study was carried out using the proposed simulator

41

Chapter 3 – Design space exploration for polar decoders

to evaluate the impact of data quantization on the error-correcting performance of polar
codes. It offers a wide choice of quantization schemes thanks to a fixed-point representation
of the decoder data (channel LLRs, internal LLRs, and path metrics). It performs FER
and BER calculations on both floating-point and fixed-point decoders. Finally, thanks to
the portability of this simulator, all developed features are programmed independently
and can be easily extracted to be used for any future development purpose. An example
of using a group of functions and operations (in bold characters) to perform a FER
simulation of a polar code is shown in Table 3.1.

3.1.2 Performance of 5G NR polar codes with tree-pruning de-
coders

A trade-off between the error-correcting performance and the speed of decoders is
proposed in [43] based on reducing the number of path splittings SR1 and SSPC when
decoding R1 and SPC nodes. It was shown that only a small performance degradation
is reported with few combinations of small values of SR1 and SSPC. To expand this
observation to the polar codes that have been specified for the 5G NR control channel,
we propose to evaluate the impact of varying SR1 and SSPC below their optimal values
on the performance of the uplink PC(256,128). Fig. 3.2a shows the FER performance
comparison of the Fast-SSCL decoder for L = 8 and different values of SR1 = 0, 1, 3, L− 1.
Therefore, reducing the number of maximum path splittings in R1 nodes from SR1 = 7
to SR1 = 2 does not seem to introduce any loss in error correction. However, we notice
a small loss in performance less than 0.1 dB at 10−5 with SR1 = L − 1 compared to
the optimal Fast-SCCL decoder, i.e., SR1 = L − 1. In Fig. 3.2b, we show the FER
performance comparison of the Fast-SSCL-SPC decoder for L = 8 and different values of
SR1 = 1, 2, L − 1 and SSPC = 2, 3, 4, L. For SR1 values larger than two and SSPC values
larger than 4, the Fast-SSCL-SPC decoder provides the same FER compared to the one
using the optimal values of SR1 = L− 1 and SSPC = L. However, a small degradation in
the FER performance is seen for values lower than these.

3.1.3 Impact of quantization on the performance

Different quantization schemes are used during the implementation of hardware archi-
tectures for SC and SCL decoders. In [16], to avoid saturation of the LLR values, the
number of bit quantization is increased by one bit at each decoding stage. In this way,

42

3.1. Performance of 5G NR polar codes

3 4 5 6 7

10−6

10−5

10−4

10−3

10−2

10−1

100

Es/N0 [dB]

FE
R

SSCL
SR1 = 0
SR1 = 1
SR1 = 2
SR1 = 3
SR1 = 7

(a) Fast-SSCL

3 3.5 4 4.5 5 5.5 6
10−6

10−5

10−4

10−3

10−2

10−1

100

Es/N0 [dB]
FE

R

SSCL
SR1 = 1, SSPC = 2
SR1 = 1, SSPC = 3
SR1 = 1, SSPC = 4
SR1 = 2, SSPC = 3
SR1 = 2, SSPC = 4
SR1 = 7, SSPC = 8

(b) Fast-SSCL-SPC

Figure 3.2 – FER performance comparison of Fast-SSCL and Fast-SSCL-SPC decoders of
PC(256,128) for L = 8 and different values of SR1 and SSPC.

the quantization of the channel LLRs is the only source of performance degradation in
comparison to the floating-point implementation. The robustness of this technique comes
at the cost of a large number of bits and additional complexity in the processing elements.
However, All the LLRs in [13] use a 6-bits uniform quantization with a constant step
size ∆ = 1 between the different level of quantization step size, while 8-bits are set to
represent the PM values. A Memory efficient quantization technique is proposed in [62]
to reduce the number of bits to store in the initial decoding stages at the cost of a slight
error performance degradation. In [77], the authors proposed a logarithmic non-uniform
quantization scheme using look-up tables which outperforms the uniform quantization at
any code length and provides an error-correcting performance close to the floating-point
case.

In the aim of producing an efficient hardware architecture to decode the 5G NR polar
code, we propose to study the effect of quantization on the performance of these codes.
Several quantization levels of the received LLRs, internal LLRs, and PMs metrics are
investigated, and the FER performance of the quantized decoder is compared to the
floating-point one. Therefore, We assume a sign and magnitude (SM) representation
of LLR values with one bit dedicated to the sign of the LLR. However, since PMs are
positive real values, all the quantization bits are dedicated to represent the magnitude.
Furthermore, we propose to represent LLRs and PMs following a uniform quantization

43

Chapter 3 – Design space exploration for polar decoders

−3 −2 −1 0 1 2 3 4

10−8

10−6

10−4

10−2

100

Es/N0 [dB]

FE
R

float, N=128
Qi=8, N=128
Qi=6, N=128
Qi=5, N=128
float, N=512
Qi=8, N=512
Qi=6, N=512
Qi=5, N=512
float, N=1024
Qi=8, N=1024
Qi=6, N=1024
Qi=5, N=1024

(a) Effect of LLR quantization.

−3 −2 −1 0 1 2 3 4

10−8

10−6

10−4

10−2

100

Es/N0 [dB]
FE

R

float, N=128
Qp=8, N=128
Qp=7, N=128
Qp=6, N=128
float, N=512
Qp=8, N=512
Qp=7, N=512
Qp=6, N=512
float, N=1024
Qp=8, N=1024
Qp=7, N=1024
Qp=6, N=1024

(b) Effect of PM quantization

Figure 3.3 – Effect of LLR and PM quantizations on the error-correction performance of
three different PUCCH polar codes of lengths N = 1024, 512 and 128.

scheme with a step size ∆ = 1. We denote by (Qi, Qc, Qp) the quantization format where
Qc is the number of bits to represent channel LLR values. Qi is the number of bits
to represent the internal LLR values and Qp is the number of bits to represent path
metrics values. In Fig. 3.3a and Fig. 3.3b, we show the effect of LLR quantization and
PM quantization on error-correction of three different PUCCH polar codes of lengths
N = 1024, 512, and 128 bits. Note that when LLRs are quantized, PMs are represented in
floating-point and vice-versa. Three values of Qi are used in this study, Qi = 5, 6 and 8,
and channel LLRs are quantized with the same number of bits as internal LLRs, Qi = Qc.
And three values of Qp, Qp = 6, 7 and 8. We can clearly identify a relationship between
quantization and polar code length N . Fig. 3.3a and Fig. 3.3b show that the number
of LLRs and PMs quantization bits that guarantee a negligible degradation in the FER
performance of polar codes depends directly on the code length. Indeed, a number of
quantization bits that yield a good error-correction of a given length are insufficient to
yield the same error-correction of a larger length. This is because longer codes require more
decoding stages. Note that LLR values keep increasing from one stage to another. At 10−5

of FER, only 5-bit quantization is sufficient to preserve the error-correction capability of
polar codes of length 128 compared to the floating-point decoder. However, one more bit,
i.e., 6 bits, is required with polar codes of length N = 512 to keep the FER performance
within 0.1 dB of the floating-point decoder. The same loss in performance occurs with

44

3.1. Performance of 5G NR polar codes

−2.5 −2 −1.5 −1 −0.5 0 0.5
10−6

10−5

10−4

10−3

10−2

10−1

100

Es/N0 [dB]

FE
R

double
Qi = 6, Qp = 7

(a) combined Qi = 6 and Qp = 7 quantization.

−2 −1 0 1

10−5

10−4

10−3

10−2

10−1

100

Es/N0 [dB]

FE
R

double
Qc = 6
Qc = 4
Qc = 3

(b) Effect of channel LLR quantization

Figure 3.4 – Effect of the selected LLR and PM quantization levels and of the channel
quantization on the error-correction performance of a PUCCH 1024 polar code.

polar codes of length N = 1024 when using 7 or 8 bits of quantization. This small loss
of performance will slightly increase to 0.19 dB for N = 1024 while using only 6 bits of
quantization. For code lengths lower than N = 256, no loss in performance is noticed.
However, for each code length, the performance starts to diverge from the floating-point
simulations at a specific Es/N0 where the range of an internal LLR increases. For instance,
the performance of the polar code of length N = 128 starts to diverge at Es/N0 = 2.6 dB
with Qi = 5. Increasing Qi to 6 will guarantee that all polar codes of lengths N≤ 1024
perform closely to the floating-point case at FER = 10−5 and lower. On the other hand,
Fig. 3.3b shows that when LLRs are represented in floating-point, 7 bits are sufficient to
represent the PM values. A parallel analysis of the received channel LLRs have shown
that their range of values is small compared to internal LLR values, especially at low
decoding stages. Indeed, their dynamic range increase when moving towards stage 0 as
multiple additions of LLR pairs are performed by g function. Consequently, there is a
potential interest in further reducing the number of quantization bits of the channel LLRs.
In this case, two distinct memories are required to store the internal and the channel LLRs
at the hardware design level. Fig. 3.4b shows the effect of channel LLR quantization on
the error-correcting performance of a PUCCH polar code of length N = 1024, 512 with
Qi = 6 and Qp = 7. Therefore, reducing the number of channel LLR quantization bits
from Qc = Qi = 6 to Qc = 4 does not introduce any performance loss. Consequently,

45

Chapter 3 – Design space exploration for polar decoders

𝛼 𝛼 𝛼 𝛼𝑟 𝛽𝑟 𝛽

F4 𝛼𝑙 𝛽𝑙 𝛽𝑙 𝛽𝑙

G4

R0

R1 H𝛼 𝛽

Clock

cycle
1 2 3 4 5 6

Figure 3.5 – Fully-unrolled deeply-pipelined decoder for a (8, 5) polar code.

the (6,4,7) quantization scheme is the minimum number of integer quantization bits that
yields performance around 0.1 dB from the floating-point decoder.

3.2 Hardware architectures

In the last decade, multiple hardware implementations dedicated to decode polar codes
have been proposed for both FPGA and ASIC targets [14, 28, 43, 66, 68, 93, 99] Two
main architecture models are investigated in the literature: unrolled and semi-parallel
architectures.

3.2.1 Unrolled architectures

Unrolled architecture model consists in allocating a dedicated hardware resource for
each of the operations that occur during the decoding process. This allows the decoder
to process multiple frames simultaneously. Indeed, A deeply-pipelined fully-unrolled
architecture is able to output one decoded frame at every clock cycle by introducing
pipeline stages between the operations. Consequently, such decoder architecture can
reach hundreds of Gbps of throughput on ASIC technology at the cost of high memory
requirements. However, the quadratic increase with code length of the hardware resources
used to support this kind of parallelism leads to a high-complexity decoders [37]. An
example of a deeply-pipelined decoder of a PC(8,3) is illustrated in Fig. 3.5. The internal
LLRs and partial sums vectors denoted by α and β are stored in the registers illustrated
in light red. The white blocks are the operations performed by the decoder. The output of
each operation is stored in pipeline registers as long as they are needed by further functions.

46

3.2. Hardware architectures

Compare

MUX

MUX

MUX
2’sC

MUX

Adder

MUX

MUX

|L(1,2)(a,b)|

f/g
s
sgn(a)

|a|

sgn(b)

|b|

sgn(L(1,2)(a,b))

Figure 3.6 – Processing element architecture.

For instance, two registers βl are needed to retain the estimate bits during 4th and 5th clock
cycles and one register αl is needed to store the left-child LLR that are fed to the R0 node.
At every clock cycle a new frame is loaded in the most left register and a codeword is output,
i.e., the architecture is decoding as many codeword as there are pipeline stages. This kind
of unrolled architectures is described in [37]. A compromise between high throughput and
memory reduction is proposed in [38] where a partially-pipelined architecture is obtained
by removing the dashed register which reduce the required memory. The main idea behind
unrolling a decoder is to increase its throughput. However, this results in limited length
and rate flexibility implementations, in particular when tree-pruning algorithms are used
to decode polar codes. Indeed, bringing a small change to the location of the information
and the parity bits withing the frozen set of the polar code leads to a completely different
list of special node types and sizes. This limits their suitability for low-latency flexible 5G
NR polar decoders.

3.2.2 Semi-parallel architectures

Semi-parallel architecture model consists in integrating a certain number of processing
elements (PEs) dedicated to compute a single or multiple operation types regardless of
the length or the rate of the targeted set of polar codes. In the case where the number
of operations to perform in parallel at a given time is greater than the instantiated PEs,
these operations are scheduled in sub-groups to be processed sequentially. Therefore, the
achievable throughput is typically lower than that of the unrolled fully-parallel architecture
model. However, semi-parallel architectures enable the use of specific hardware optimiza-
tions such as arithmetic resource sharing and memory access sharing. Considering the

47

Chapter 3 – Design space exploration for polar decoders

Decoding

of special

node

𝐿 × 𝑃
Processing

elements

LLR

memory Channel

LLR

Partial-Sum

Computation

Partial-

Sums

memory

Control

unit

2𝑃 × 𝐿

𝑃 × 𝐿

2𝑃 × 𝐿

Frozen

set

memory

Input

Frozen

set

Control

signals

Multiplexing

network

𝑃 × 𝐿codewords

memory

𝐿

𝐿

𝐿

𝐿
𝑃 × 𝐿

𝑃 × 𝐿

Bits

out

𝐿

Path

selection

Figure 3.7 – Semi-parallel architecture model for SCL decoders.

flexibility requirement, this leads to improved hardware efficiency. Due to the sequential
decoding nature of SC algorithm, its two main operations f and g cannot be overlapped
and are always performed in two distinct time periods. Thus, an area-efficient combined
processing element is proposed in [55] in which these two operations are carried out by
a single PE that exploits resource sharing and can perform both operations alternately.
The architecture of a processing element is depicted in Fig. 3.6. The LLR values are in
sign-magnitude (SM) format. a compare and select (CS) component is used as a first step
to either support the minimum search operation needed for performing f or to support
the signed addition/subtraction performed by g, three xor logical gates are used to provide
the sign of the output LLR and determine whether an addition or subtraction has to be
carried out by the adder during the g operation.

Semi-parallel decoder architectures are scalable and offer a broad spectrum of al-
gorithmic and architectural options to explore and to adapt depending on the desired
performance and hardware limits imposed at the implementation level. This makes them
a first choice for a flexible implementation. The semi-parallel architecture model for SCL
decoders used in this study is depicted in Fig. 3.7. It includes a set of processing elements,
path selection unit and partial sum computation unit. The architecture comprises in
addition multiplexing networks to interface between memories and computation units. A
control unit is used to produce all control signals required in the decoding process. This
architecture model may include in addition a unit to decode special nodes when they are
considered (dotted block). Four memory blocks store the LLRs, partial sums, decoded
codewords and the frozen set are used in the proposed semi-parallel architecture (red
colored blocks). The purpose of these memories is:

48

3.2. Hardware architectures

— LLR memory: the decoding relies on dedicated memories to keep the LLR values
available for the computation units as long as they are needed. Therefore, up to
N − 1 LLR values are needed to be kept in memory during the decoding process. In
some SC and SCL decoder implementations, input Channel and internal LLRs are
stored in two distinct memories. First to avoid duplicating the memory for storing
channel LLRs since they are common to all the L path of an SCL decoder. Second,
to reduce the memory footprint by reducing their quantization bits.

— Partial sum memory: The PE must be provided with partial sums as part of g
function computation. It was found that N − 1 bit registers are sufficient for that.
However, RAM-based memory are also used to read and store PS without lowering
the throughput.

— Codewords memory: A N × L memory is used to store the codewords bits as and
when decoded.

— Frozen bit memory : A N−bits length or an equivalent list of special nodes is
required to store the frozen set or the special nodes of a specific polar codes when
tree-pruning techniques are used.

For SCL semi-parallel decoder, the lazy copy technique that occur after path selection
can be replaced with pointers and require a further memory to keep track of the survived
paths after candidate competition.

3.2.3 Architectural and algorithmic parameters

Targeting a semi-parallel architecture model to design low-latency flexible polar de-
coders, the impact of several algorithmic and architectural parameters needs to be investi-
gated. The main parameters that are considered in this work are listed below:

— Number of instantiated PEs: The number of processing elements is a main architec-
tural parameter of the semi-parallel architecture model. Selecting the right number is
not straightforward and needs a thorough analysis with respect to the other flexibility
parameters.

— Tree-pruning techniques: Identifying special nodes in the polar decoder tree and
applying tree-pruning techniques with corresponding special decoding algorithms
impact significantly the performance metrics of the polar decoder. The influence of
different pruning techniques cited in Section 2.3.2 are analysed in this work.

49

Chapter 3 – Design space exploration for polar decoders

— Code length N : A length-flexible implementation increases the complexity of the
decoder. Furthermore, the code length may significantly alter the influence of the
the above-mentioned parameters on the performance metrics of the polar decoder.
For this parameter, the following lengths specified in 5G NR will be considered:
N = 64, 128, 256, 512 and 1024.

— Code rate R: A rate-flexible implementation decreases the hardware efficiency of
the decoding architecture especially when supporting a wide range of values. In this
work, we consider the polar codes of PUCCH 5G NR with R ranging from 1/8 to
5/6.

Typical values, convenient for 5G NR polar codes, are considered for other parameters
such as data format, quantization scheme, and list size for SCL algorithms. LLR values
are represented in sign and magnitude (SM) format and quantized on five and seven bits
in PEs and special nodes decoders, respectively, whereas the list lize L is set to eight.

3.3 Latency analysis

In this section, we propose to evaluate the decoding latency of the 5G NR polar codes
under the architectural and algorithmic parameters defined in the previous section. For
the upcoming equations of latency and for the analytical results we assume that each
elementary operation of the decoding process requires one time-step. Therefore, the
reported number of clock cycles (CC) required to decode a single frame corresponds to that
number of time-steps, which represents the latency. Following this assumption, the latency
of decoding one codeword of length N with K information bits using SC on semi-parallel
(SP) architecture can be expressed as:

LSP
SC =

p∑
j=0

2n−j

︸ ︷︷ ︸
non-affected stages

+
n−1∑
j=p+1

2n−j2j−p

︸ ︷︷ ︸
affected stages

.

= 2N + N

P
log

(
N

4P

) (3.1)

where p = log2 P and n = log2 N . This expression is derived from (2.12) by taking into
consideration both affected and non-affected decoding stages j by the introduction of P
PEs [55]. For an SCL decoder that comprises P PEs per list, this latency is increased by
K as path selection needs to be performed K times [14].

50

3.3. Latency analysis

However, if fast decoding techniques relying on decoding simple constituent codes
are used, the latency formula will be sensitive to any change of the rate R. Therefore,
assuming having the size of all the constituent codes defined for a given N and R, we define
E such as E = {E0, E1, . . . , Elog2 M−1} is the set whose element Em, 0 ≤ m ≤ log2 M − 1,
represents the number of constituent codes of length 2m+1 and M is the size of the largest
constituent codes that are considered during the tree-pruning technique. Therefore, to
derive the latency of the Pruned Decoder (PD) on a semi-parallel architecture, we should
remove the latency of traversing the sub-trees corresponding to the identified special nodes
(constituent codes) from the latency of the semi-parallel decoder provided in (3.1) for
N = 2n. This latency reduction can be computed through (2.10) with N = 2m+1 for
special nodes that satisfy m ≤ p, and through (3.1) with N = 2m+1 for the remaining
special nodes. We should also add the latency that is required to decode each of the
identified special nodes and add K ′ which is the number of remaining information bits that
do not constitute special nodes. Thus, the latency of the SCL PD semi-parallel decoder
can be expressed as:

LSP
SCL PD = LSP

SC + LSN
SCL +K ′ −

(
2 · E0 + (4+2) · E1 + . . .+ Ep ·

p∑
k=0

2p−k+1

+ Ep+1 ·
p∑

k=0
2p+1−k+1 + . . .+ Em-1 ·

p∑
k=0

2m-1−k+1
)
−
(

(2 · 2) · Ep+1

+ (4 · 2 + 2 · 4) · Ep+2 + . . .+ Em−1 ·
m−1∑
k=p+1

2(m−k) · 2(k−p)
)

+ LSN +K ′.

= LSP
SC + LSN

SCL +K ′ −
p∑

m=0

 m∑
j=0

Em · 2m−j+1

︸ ︷︷ ︸

L1

−
log2 M−1∑
m=p+1

 p∑
j=0

Em · 2m−j+1

︸ ︷︷ ︸

L2

−
log2 M−1∑
m=p+1

 m∑
j=p+1

Em · 2m−j+1 · 2j−p

︸ ︷︷ ︸
L3

.

= LSP
SC + LSN

SCL +K ′ −
p∑

m=0
Em ·

(
2 · 2(m+1) − 2

)

−
log2 M−1∑
m=p+1

Em ·
(

2 · 2(m+1) + 2(m+1)

P
log

(
2(m+1)

4P

))
,

(3.2)

where LSP
SC and LSN

SCL refer to the latency of the SC semi-parallel decoder (3.1) and the

51

Chapter 3 – Design space exploration for polar decoders

latency required to decode the constituent codes (special nodes), respectively. Also, L1 is
the reduced latency due to constituent codes {E0, E1, . . . , Ep} of length smaller or equal to
2p+1 = 2P while L2 and L3 represent the reduced latency due to the presence of constituent
codes {Ep+1, . . . , Elog2 M−1} of lengths greater than 2P .

3.3.1 Influence of N and the number of PE on latency

In the case of semi-parallel architectures, algorithmic and architectural parameters are
likely to have a strong impact on the latency when they are considered during the design
of polar decoders. In order to study the influence of N and the number of PE P on the
decoding latency, we plot the number of clock cycles required to decode one frame of the
5G NR polar code of four different lengths N = {64, 128, 512, 1024} with P varying from
2 to 64.

For each value of P , three different algorithms are considered and consist of SCL,
SSCL-SPC and the Fast-SSCL-SPC. Based on the speed optimization proposed for the
latter [43], three additional values of {SR1, SSPC} = {1, 2} , {1, 4} , {2, 4} are considered
in addition to the optimal variant of this algorithm {SR1, SSPC} = {L− 1, L}. We refer
to them as Fast-SSCL-SPC-12, Fast-SSCL-SPC-14 and Fast-SSCL-SPC-24. SR1 is the
number of path splits in a R1 node and SSPC is the number of path splits in a SPC node.
Simulation results are reported in Fig. 3.8 while limiting the length of constituent codes
to M = 16.

As expected, the decoding latency decreases as P increases. However the reduction
rate of latency is not linear with respect to P as observed in (3.1) and this is due to the
fact that the degree of parallelism offered by the SC decoder is reduced by half from one
higher decoding stage to another lower one. This can be seen in Fig. 3.8a and Fig. 3.8d
when Fast-SSCL-SPC-12 is used where the latency is reduced by 70% and 52% when P
varies from 2 to 8, respectively, while it is reduced by a smaller ratio of 58% and 13%
when P varies from 8 to 64, respectively. In addition to that, the same latency is obtained
with P = 64 and P = 32 when N = 64 since a maximum number of 32 parallel operations
are available to be processed in parallel.

Furthermore, we can clearly observe the impact of the algorithmic choice on the
decoding latency. Therefore, using SSCL-SPC instead of SCL with P = 8 leads to 44%,
50%, 52% and 49% reduction in latency when N =1024, 512, 128 and 64, respectively.
However, a less significant reduction in latency is measured when using Fast-SSCL-SPC
instead of SSCL-SPC with P = 8. The latency reduction in this case is equal to 22%,

52

3.3. Latency analysis

21 22 23 24 25 26
0

2

4

6

·103

P

#
cl
oc
k
cy
cl
es

F-SSCL-SPC12 F-SSCL-SPC14 F-SSCL-SPC24 Fast-SSCL-SPC SSCL-SPC SCL

21 22 23 24 25 26
0

1

2

3

·103

P

#
cl
oc
k
cy
cl
es

21 22 23 24 25 26
0

2

4

6
·102

P

#
cl
oc
k
cy
cl
es

21 22 23 24 25 26
0

1

2

3
·102

P

#
cl
oc
k
cy
cl
es

(a) N = 1024 (b) N = 512

(c) N = 128 (d) N = 64

Figure 3.8 – Number of clock cycles required to decode one polar code frame for a varying
number of PEs. Worst-case latency is reported while varying the value of R. Results are
given for SCL and five related variants of simplified algorithms.

53

Chapter 3 – Design space exploration for polar decoders

22%, 13% and 4% when N =1024, 512, 128 and 64, respectively. That disparity in latency
between the different values of N is due to the fact that for short polar codes the presence
of constituent codes is less significant in comparison to relatively long codes. In addition
to that, when they are identified, their size is usually smaller than M = 16.

3.3.2 Influence of tree-pruning on latency

The decoding tree of polar codes may feature multiple constituent codes of different
types and sizes. However, some of these identifiable constituent codes are most likely to
appear at low code rates such as R0 and REP while others are most likely to appear at
high code rates such as R1 and SPC. Supporting a wide range of code rates, as required in
5G NR, does not offer much flexibility in this regard. On the other hand, large constituent
codes are increasingly encountered as the code length increases. To show the impact of M
on latency, we plot in Fig. 3.9 the number of clock cycles required to decode one frame
of polar codes of lengths N = {64, 128, 256, 512, 1024} for M = {4, 8, 16, 32}. The same
analysis is repeated with SSCL, SSCL-SPC, Fast-SSCL and Fast-SSCL-SPC.

As expected, the number of clock cycles required to decode a constituent code varies
according to its type and size. Furthermore, the identification of constituent codes highly
depends on M . Some polar codes may benefit better from increasing M than others,
especially when they feature large low-latency decoding constituent codes. Indeed, among
the set of considered polar codes, the one which achieves the best latency reduction for a
fixed value of M does not necessarily produce the same achievement with M ′, (M 6= M ′).
This means that relying on the worst-case latency to evaluate the reduction brought by
varying M on a set of rate-variable polar codes that share the same code length leads
to an unfair comparison. Therefore, we consider in this analysis the average latency
reduction that is obtained as M is varied. We can see from Fig. 3.9 that a decoder
that can decode constituent codes of size M = 32 when targeting polar codes of length
N = 1024 reduces the latency by 24%, 24%, 36% and 42% in comparison with M = 4
under SSCL, SSCL-SPC, Fast-SSCL and Fast-SSCL-SPC, respectively. However, a very
small improvement in latency is noticed beyond M = 32 and is not worth to be considered.
Moreover, we notice that setting M to 32 for N = 64 does not bring any improvement in
latency since most of the polar codes at this length do not feature constituent codes larger
than M = 4.

On the other hand, the influence of tree-pruning on latency also depends on the type of
special nodes. As a result of using pruning techniques, the reduction in latency obtained

54

3.3. Latency analysis

26 27 28 29 210
0

0.5

1

1.5

·103

N

#
cl
oc
k
cy
cl
es

M = 32 M = 16 M = 8 M = 4

26 27 28 29 210
0

0.5

1

1.5

·103

N

#
cl
oc
k
cy
cl
es

26 27 28 29 210
0

0.5

1

1.5

·103

N

#
cl
oc
k
cy
cl
es

26 27 28 29 210
0

0.5

1

1.5

·103

N

#
cl
oc
k
cy
cl
es

(a) SSCL (b) SSCL-SPC

(c) Fast-SSCL (d) Fast-SSCL-SPC

Figure 3.9 – Number of clock cycles required to decode one polar code frame as N varies
from 64 to 1024. Average latency is reported while varying the value of R. Results are
provided for various values of M and are reported for four different algorithms.

55

Chapter 3 – Design space exploration for polar decoders

21 22 23 24 25 26
0

2

4

6
·103

P

#
cl
oc
k
cy
cl
es

R0-REP-R1-SPC R0-REP SCL

21 22 23 24 25 26

2

4

6

·103

P

#
cl
oc
k
cy
cl
es

(a) 1
8 ≤ R ≤ 1

4 (b) 3
4 ≤ R ≤ 5

6

Figure 3.10 – Number of clock cycles required to decode one polar code frame for a varying
number of PEs and different pruning techniques. Average latency is reported and results
are given for low and high code lengths.

in Fig. 3.8 and Fig. 3.9 does not come from the same special nodes. In fact, the latency of
decoding polar codes increases as the rate R increases. This observation is true for the
SCL algorithm, which requires more path selection operations. Nevertheless, it is also
true for simplified SCL algorithms, which feature more R1 and SPC nodes as R increases;
hence several clock cycles are required to decode them. Following this observation, The
considered worst-case latency reported in Fig. 3.8 is, in fact, the latency obtained from a
polar code whose code rate is close enough or equal to the maximum value of R ∈ [1

8 ,
5
6].

Therefore, this latency reduction comes directly from using R1 and SPC nodes and does
not underline the impact of using R0 and REP nodes in reducing the decoding latency.
Similarly, the average latency reported in Fig. 3.9 does not either provide information on
the impact of special node types, except the sizes, on latency reduction. Indeed, special
node types have a varying impact in reducing the average latency of several polar codes of
different code rates. The different types of special nodes do not show an impact in latency
reduction with the same proportion when R is varied. Therefore, to underline the impact
of special node types in reducing latency, we show in Fig. 3.10 the average number of clock
cycles required to decode one polar code frame at low code rates, 1/8≤ R ≤1/4, and high
code rates 3/4≤ R ≤5/6, distinctively. For this analysis we set M to eight.

As expected, the impact of R0 and REP nodes in reducing the decoding latency is

56

3.4. Hardware complexity and throughput analysis

21 22 23 24 25 26

0

2

4

·103

P

#
LU

Ts

Estimated Ref. [55]

21 22 23 24 25 26

0

20

40

P

In
fo
.
T
P

(M
bp

s)
×
R

Figure 3.11 – Hardware complexity and information throughput as function of P for
N = 1024. Operating frequency is set to 100 MHz.

more significant at low code rates. Only a few information bits are present within the
frozen set, which leaves space for numerous and large low rate constituent codes, i.e., R0
and REP nodes, to be identified. Therefore, these two special nodes significantly reduce
the latency of the conventional SCL algorithm from 30% to 58% for P varying from 2
to 64. However, the impact of these special nodes is less significant at high code rates.
Latency is reduced by only 7% to 12% for P varying from 2 to 64. On the other hand, the
impact of R1 and SPC nodes in reducing the decoding latency is more significant at high
code rates where the polar code features numerous and large special nodes of type R1
and SPC. The latency reduction brought to the decoder by further adding R1 and SPC
nodes to the previous SCL algorithm, which already includes the decoding of R0 and REP
nodes, is minor for the polar codes of low code rates. At the same time, it is significant
for the polar codes of high code rates. It can be observed from Fig. 3.10 that only 10% to
28% reduction is reported at low code rates against 32% to 57% at high code rates, for P
varying from 2 to 64.

57

Chapter 3 – Design space exploration for polar decoders

3.4 Hardware complexity and throughput analysis

3.4.1 Influence of the number of PE on hardware complexity

As the latency is decreased with increasing P , the complexity of the decoder increases.
In order to analyse the relation between the complexity of the semi-parallel architecture
and P , we propose to implement the processing element of [55] and estimate the complexity
considering the published results for N = 1024 as reference. In [55], two semi-parallel
architectures are designed with P = 16 and P = 64. Taking as reference the design
with P = 16, and the logic synthesis results obtained from the design of a single PE, we
estimated the hardware complexity for P = 2, 8, 32, and 64. In this estimation, we simply
add and subtract from the reference design the hardware resources (lookup tables and
flip-flops) corresponding to the number of PEs, while assuming the remaining components
of the decoder unchanged. Complexity results in terms of look-up tables (LUTs), which
are predominant in quantity and variation compared to flip-flops (FFs), are reported in
Fig. 3.11. Comparing the results for P = 64 reveals a slight inaccuracy in the complexity
estimation approach, which is expected as part of the design was assumed unchanged.
Nevertheless, the relative comparison with respect to different values of P provides good
insights on their impact on the hardware complexity. The results show that the impact of
the number of PE on complexity is relatively limited. In fact, when P increases by a factor
of ×32, from 2 to 64, the overall number of LUTs of the semi-parallel decoder architecture
increases by only a factor of ×1.55. On the other hand, this increase in the number of
PEs leads to an increase in information throughput by a factor of ×2.7 when considering
the latency expression provided in (3.1) and an operating frequency of 100 MHz. It is
interesting to notice here that the increase in the information throughput when varying P
gradually from 2 to 64 is not linear. It is higher for small values of P . For instance, the
throughput increases by 57% when P increases from 2 to 4, whereas it increases by only
by 3% when P increases from 32 to 64. This is due to the parallelism bottleneck of SC
algorithms. Indeed, as the number of PEs increases, less stages of the decoding tree of
polar codes can benefit from the added PEs. In the example of Fig. 3.11 for N = 1024,
when P = 64 only the highest four stages make a full use of the 64 PEs. However, no
change in decoding speed happens for the lowest seven stages when increasing P from 32
to 64. Extended analysis on throughput is provided in Section 3.4.3.

58

3.4. Hardware complexity and throughput analysis

L× LLR

register array
L×Adders

Accumulator register

L× XOR Array
Accumulator register

L× Min finder
Accumulator register

Path

split

Estimated bit

management

Pointers

memory

L× parity

check update

Sorter unit

Input

LLR

𝐿 bits

out

Pointers

PM

memory

cro
ssb

ar

Figure 3.12 – The architecture of the SNLD designed to decode special nodes.

3.4.2 Influence of tree pruning on hardware complexity

The decoding of constituent codes obtained with tree-pruning techniques requires
dedicated hardware resources, beyond those required by the classical SCL semi-parallel
decoder. A specific hardware unit namely Special Node List Decoder (SNLD), depicted
in Fig. 3.12, is designed to support decoding the constituent codes R0, REP, R1 and
SPC according to SSCL and SSCL-SPC algorithms independently from the PEs. The
complexity due to tree-pruning techniques is then evaluated taking into consideration the
implementation of the SNLD for L = 8.

To do that, the proposed SNLD unit has been described in VHDL and synthesized
on a Xilinx Virtex-7 XC7VX-485T FPGA device for three different scenarios. In the
first scenario, the SNLD is designed to support only the decoding of R0 and REP nodes.
The support of R1 nodes is added in the second scenario through the addition of the
green-colored blocks in Fig. 3.12. The third scenario supports in addition R1 and SPC
nodes through the addition of the orange-colored blocks (Fig. 3.12). SNLD allows resource
sharing of the operations that are common to the different special nodes. In the synthesis
results, the contribution of the sorter unit has been removed as it is unchanged for all the
explored decoding algorithms. The LLR values are represented in SM format, and both
LLR and PM values are quantized to 7 bits. For each of the three scenarios, M is varied
from 2 to 32 assuming each time that P = M so that the SNLD receives its LLRs in one
clock cycle. From the synthesis results presented in Fig. 3.13, we note that the number of
FFs used to decode R0-REP special nodes is almost constant regardless of M . However,

59

Chapter 3 – Design space exploration for polar decoders

21 22 23 24 25
0

1

2

·103

M

#
FF

s

21 22 23 24 25
0

0.5

1

1.5
·104

M

#
LU

Ts
R0-REP R0-REP-R1 R0-REP-R1-SPC

Figure 3.13 – Number of FFs and LUTs required by SNLD to decode special nodes R0,
REP, R1 and SPC as a function of M according to three scenarios.

the number of FFs starts to increase with M when decoding R1 nodes. This is due to the
register array, implemented to store the input LLRs until they are all processed one by
one. Since the SC-based decoder does not process multiple nodes simultaneously due to
its sequential nature, R1 and SPC nodes do not overlap and the same LLR register array
is used store the LLRs of both nodes. Therefore no additional FFs are required during the
third scenario that includes further the decoding of SPC nodes. On the other hand, the
number of LUTs involved in the first scenario increases linearly with M . This is due to the
fact that M − 1 adders, designed as a tree-structure fully parallel adder, are implemented
to decode R0 and REP nodes. Furthermore, the number of LUTs is increased when R1
nodes start to be considered for M = 2 and keep increasing as M increases. This is due
to the use of crossbars required to support candidate competition during the successive
decoding of the bits of R1 nodes. The decoding of SPC nodes implies performing a parity
check equation via a XOR array and searching for a minimum LLR value. Yet, similarly
to the first scenario, the complexity of these operations grows linearly with M .

The number of LUTs used by the R0-REP-R1-SPC decoder for M = 8 is 3.9 times
larger than that for M = 2, and that for M = 32 is 3.43 times larger than that for M = 8.
This significant increase in the number of LUTs is mainly due to the growth in the number
of used adders and comparators in the minimum finder unit.

In a second approach, we consider an accumulator register based implementation

60

3.4. Hardware complexity and throughput analysis

21 22 23 24 25
0

1

2

·103

M

#
FF

s

R0-REP R0-REP-R1 R0-REP-R1-SPC

21 22 23 24 25
0

2

4

6

·103

M

#
LU

Ts

Figure 3.14 – Number of FFs and LUTs required by SNLD to decode special nodes R0,
REP, R1 and SPC when considering the second approach with accumulator registers to
reduce the number of adders, comparators and XOR gates.

(dotted blocks in Fig. 3.12) with reduced tree size for the adders, comparators and XOR
gates. This leads to a semi-parallel architecture of the SNLD with D adders, comparators,
and XOR gates, where D < M − 1. Synthesis results when using this second approach
are shown in Fig. 3.14 for D = 8. When compared to the results of Fig. 3.13 for the
third scenario, a significant improvement can be observed where the number of LUTs is
reduced by 26% and 55% for M = 16 and M = 32, respectively. This comes at the cost of
a slight increase in the number of FFs due to the presence of accumulator registers. With
this approach, the increase in the number of LUTs when moving from M = 8 to M = 32
drops from ×3.42 to ×1.42. This significantly reduces the influence of tree pruning on the
hardware complexity.

3.4.3 Influence of PE and tree pruning on throughput

Due to data dependency between nodes of the SC decoding tree, only a subset of nodes
can be activated at a time. Hence, the parallelism level offered by the SC algorithm is
limited. The number of operations allowed to be performed in parallel is equal to N/2
in the first decoding stage. However, it is continuously halved as we evolve towards leaf
nodes, where only a single operation can be performed by visiting one node.

Pruning the decoder tree of SC algorithms using direct decoding of specific constituent

61

Chapter 3 – Design space exploration for polar decoders

21 22 23 24 25 26

0

50

100

150

P

In
fo
.
T
P

(M
bp

s)

SCL R0-REP SSCL SPC F-SSCL-SPC F-SSCL-SPC12

21 22 23 24 25 26
0

50

100

P

In
fo
.
T
P

(M
bp

s)

22 23 24 25
0

20

40

60

M

In
fo
.
T
P

(M
bp

s)

22 23 24 25
0

20

40

60

80

M

In
fo
.
T
P

(M
bp

s)

(a) N = 1024 (b) N = 128

(c) N = 1024 (d) N = 128

Figure 3.15 – Throughput comparison between different decoder types for different values
of P and M . Two code lengths are considered N = 1024 and N = 128.

62

3.4. Hardware complexity and throughput analysis

codes at earlier stages reduces the number of nodes to visit. Also, this increases the
exploitable parallelism degrees of SC-based decoders since parallel decoding of bits of
a special node overcomes data dependency. In this context, we propose to analyze the
information throughput of 5G polar codes under the SCL algorithm and fast decoding
algorithms, used so far, as a function of P then as a function of M . Throughput is
calculated analytically based on the latency equation and assuming an operating frequency
of 100 MHz. First, we plot in Fig. 3.15a and Fig. 3.15b the average throughput of decoding
polar codes of lengths N = 1024 and N = 128 with 1/8≤ R ≤5/6. The maximum length
M of special nodes is set to 16. As discussed earlier, the throughput of SCL decoder
increases as P increases. Nevertheless, this increase is not linear when varying P gradually
from 2 to 64. Indeed, the throughput of polar codes of lengths N = 1024 and N = 128
increases by 49% and 37%, respectively, when P increases from 2 to 4, whereas it increases
by only 2% and less than 1%, respectively, when P increases from 32 to 64. Furthermore,
we can observe from these figures the significant addition to the throughput as soon as
fast decoding algorithms relying on tree-pruning are used. For instance, the throughput
of the SSCL-SPC decoder, with P = 8, is 2.2 times larger than the throughput of the
SCL decoder for N = 1024. Moreover, It is 3 times higher with a larger P (P = 64). By
tolerating a loss of 0.1 dB in error correction performance for N = 1024, the average
achievable throughput with Fast-SSCL-1 (SR1 = 1) is 144 Mbps, 7.3 times larger than
with SCL.

Moreover, decoding multiple bits in parallel overcomes the drawbacks related to the
limited exploitable parallelism levels of SCL algorithm. Indeed, fewer nodes are visited
to compute LLRs, which reduces the number of access to the stages that do not benefit
from increasing P , especially when large and various types of special nodes are considered.
Consequently, the increase in throughput tends to be more linear with respect to P

compared to SCL.

In order to evaluate the impact of decoding large special nodes on the information
throughput, we propose to vary M from 4 to 32 and set P to 8 while using different
decoding algorithms. The average throughput of decoding polar codes of lengths N = 1024
and N = 128 with 1/8 ≤ R ≤ 5/6 are reported in Fig. 3.15c and Fig. 3.15d. Thus,
varying M from 4 to 8 improves the average throughput by 19% and 16% for N = 1024
andN = 128, respectively. However, varying it from 16 to 32 improves the throughput by
only 6% and 2% for N = 1024 and N = 128, respectively. Furthermore, one can notice
that increasing M from 4 to 8 barely improves the throughput of the Fast-SSCL decoder,

63

Chapter 3 – Design space exploration for polar decoders

21 22 23 24 25 26
0

20

40

60

80

P

In
fo
.
T
P

(M
bp

s)

SCL R0-REP R0-REP-R1-SPC F-SSCL-SPC S12

21 22 23 24 25 26
0

100

200

300

P
In
fo
.
T
P

(M
bp

s)
(a) 1

8 ≤ R ≤ 1
4 (b) 3

4 ≤ R ≤ 5
6

Figure 3.16 – Maximum information throughput of SCL decoder and various polar code
decoders with different pruning techniques as a function of P . Low and high code rates
are considered with N = 1024.

contrary to when M increases from 8 to 16. In fact, the added value of the Fast-SSCL
algorithm compared to SSCL occurs on special nodes of size greater than L. However, this
condition is not satisfied in our context, i.e., L = 8. Therefore, the Fast-SSCL decoder can
enhance the throughput of the SSCL decoder starting from M = 16 only.

On the other hand, as shown with latency analysis, the influence of the algorithms
based on pruning the decoder tree of polar codes on the throughput depends on the
type of special nodes used by the decoder. The large range of rates used in the previous
simulation does not reveal the importance of each special node type on improving the
throughput. To analyze this effect, we present in Fig. 3.16a and Fig. 3.16b the throughput
obtained for decoding the polar codes of lengths N = 1024 and N = 128 at low code
rates, 1/8≤ R ≤ 1/4, and at high code rates 3/4≤ R ≤ 5/6, respectively. As expected,
the impact of R0 and REP special nodes is more important at low code rates, while it is
almost negligible at higher code rates. For instance, these two special nodes increase the
throughput of the SCL decoder by 2.15 times and 2.42 times when R is low for P = 16 and
P = 64, respectively. However, they increase the throughput by only 1.03 times and 1.11
times when R is high for P = 16 and P = 64, respectively. Now, when R1 and SPC nodes
are considered in addition to R0 and REP nodes, a significant throughput enhancement
is observed for high code rates. Indeed, R1 and SPC nodes increase throughput by 2.25

64

3.5. Hardware efficiency analysis

𝜆 = 0 𝜆 = 1 𝜆 = 2 𝜆 = 3 𝜆 = 3𝜆 = 0, 1

(b) SCL pruned decoder(a) SC decoder

R0

REP

SPC

R1

PE0

PE1

PE2

PE3

𝜆 = 2

𝑡0𝑡1𝑡2𝑡3

Figure 3.17 – Number and type of active (hashed squares) and inactive (blank squares)
PEs (P = 4) and special node decoders at each stage activation of PC(16,8) of Fig. 2.9.

times and 2.53 times for P = 16 and P = 64 when SSCL-SPC decoding is considered and
by 6 times and 10.72 times when Fast-SSCL-SPC and {SR1, SSPC} = {1, 2}. Contrary to
R0 and REP nodes which only bring minor throughput improvements at high code rates,
the consideration of R1 and SPC nodes still enhances the throughput of the decoder at
low code rates. Certainly, this increase is less significant compared to the one observed at
high code rates, but quite noticeable considering that the throughput of the SCL decoder
is improved by 2.67 times when Fast-SSCL-SPC and {SR1, SSPC} = {1, 2} are considered
with 64 PEs.

3.5 Hardware efficiency analysis

The strong data dependency of the SC algorithm limits the performance of the SC
decoder in terms of latency and throughput. The solution, based on increasing the
number of implemented PEs, becomes less efficient when this number is relatively high
compared to the length of the polar code. In addition, the use of a large number of
PEs decreases the efficiency of the SC decoders in terms of resource utilization rate. On
another note, decoding a group of bits in parallel using tree-pruning algorithms breaks
the data dependency of the SC decoder and enhances its performance. To summarize,
adding further resources to the conventional decoder does not systematically improve its
hardware efficiency.

3.5.1 Activity of SC decoders

To characterize the hardware efficiency of the semi-parallel SC decoder, we propose to
analyze the activity of the processing units. We count the number of active processing

65

Chapter 3 – Design space exploration for polar decoders

units (PE, special node decoders) during the time periods spent decoding one polar code
frame. Fig. 3.17a shows the number of active (hashed squares) and inactive (blank squares)
PEs at each stage required for the decoding of the PC(16,8) represented by the SC decoder
tree of Fig. 2.9a. The number of PEs used for this example is four. We can notice that
all of the implemented PEs are used during the activation of stages λ = 3 and λ = 2.
However, only half and a quarter of the number of implemented PEs are used during the
activation of stages λ = 1 and λ = 0, respectively. Given that a stage λ is activated 2n−λ

times, the number of times the semi-parallel SC decoder fully benefits from the PEs when
decoding the PC(16,8), considering the additional clock cycles required to update nodes
of stages λ = 3, is equal to 2× 2 + 4× 1 = 8. On the other hand, 2 and only 1 of the 4
PEs are used 8 and 16 times respectively at stages λ = 1 and λ = 0. This means that the
activation of each PE occurs 8 + 8× 1

2 + 16× 1
4 = 16 times. Therefore, for this example,

the activity γP of the available PEs is equal to 16 × P = 64. For any p = log2 P and
n = log2 N , such as (0≤ p< n), the value of γP is expressed as:

γP =
p∑

λ=0
2n−λ 2P

2p−λ +
n−1∑
λ=p+1

2n−λ2λ−pP . (3.3)

On the contrary, two and three PEs are left unused 8 and 16 times respectively at stages
λ = 1 and λ = 0 for the example of Fig. 3.17a. This means that each PE is inactive
8 × 1

2 + 16 × 3
4 = 16 times. The inactivity of PEs γ̄P is equal to 16 × P = 64 and is

expressed as:

γ̄P =
p∑

λ=0
2n−λ

(
2− 1

2p−λ
)
P +

n−1∑
λ=p+1

2n−λ2λ−pP . (3.4)

To describe the hardware efficiency of the decoder, we use γP and γ̄P to derive the
utilization rate α. In the case of a SC semi-parallel architecture, αSP

SC is expressed as:

αSP
SC = γP

γP + γ̄P
. (3.5)

One can notice that αP = 1 is only reached with one PE (P = 1), which means the
PE is always active during the decoding process. In the above example, where N = 16
and P = 4, the utilization rate of the decoder αP = 1/2. Furthermore, if we assume
that one PE implementing f and g operations represents twice the complexity of one PE
implementing either f or g, (3.5) results in an exact reformulation of the utilization rate
of the SC decoder defined in [55] as the average number of active nodes per clock cycle,

66

3.5. Hardware efficiency analysis

which is given by:
αSP

SC = N log2 N

2PLSP
SC

, (3.6)

Following this assumption, the maximum value of the utilization rate is αP = 0.5
for P = 1. This is obvious since the implemented PE is always active during decoding.
However, this same PE is used alternately to execute f or g functions per node activation.
We plot in Fig. 3.18a the utilization rate as a function of P of the decoders SC, SCL,
SSCL, Fast-SSCL, and Fast-SSCL-1 (SR1 = 1) of lengths N = 1024 and N = 128. Only
the activity of the PEs is studied, while that of the special node decoder is ignored. First,
we can see that for the same number of PEs, the αP of N = 1024 is higher than the αP
of N = 128. This is because n− p, the number of stages where all the P PEs are used,
increases with N . Then, it can be noticed that the αP of the SCL decoder is worse than that
of the SC decoder. This is due to the additional decoding clock cycles required to perform
candidate competition between different codeword paths when decoding information bits.
The value of αP , in this case, depends on the code rate R. However, for N = 1024 and
M = 16, the SSCL algorithm improves αP by 1.14 times and 1.85 times for P = 4 and 32,
respectively, compared to the SCL decoder. This improvement is more significant with the
faster Fast-SSCL-1 and results in a 1.34 times and 2.85 times increase in αP . This is due to
the latency reduction acquired by pruning the decoder tree at low decoding stages where a
relatively large proportion of the PEs is idle. The PC(16,8) of Fig. 2.9 is pruned at j = 2.
Thus, nodes at stages one and zero are not visited anymore during the decoding process.
Instead, special node decoders are implemented. The number of active (hashed squares)
and inactive (blank squares) PEs together with the special node decoders (colored squares)
for R0, REP, SPC, and R1, is shown in Fig. 3.17b. Since special nodes are decoded in
different time periods, their respective decoders are duplicated four times at stages j = 0,
1 to show which decoder is active (hashed square) and in what order. We see that all the
PEs are used whenever stages j = 3 and j = 2 are active and idle during special node
decoding. In case the Fast-SSCL-SPC-12 decoder is used, the activation of each PE occurs
eight times during the 14 clock cycles required to decode one frame, which is higher than
the SCL decoder, where it occurs 16 times during 40 clock cycles. The decoding of R0
nodes consists in summing up to M LLR values, and the decoding of REP nodes consists
in summing up to M positive LLR values and M negative LLR values, then decoding
the information bit. Thus, their computational complexity is equal to M and 2M + 1,
respectively. Following this, the utilization rate of αR0 and αREP of the example of Fig. 2.9

67

Chapter 3 – Design space exploration for polar decoders

24 8 16 32 64
0

1

2

3

4

·10−1

P

α
P

SC SCL SSCL F-SSCL F-SSCL-1

24 8 16 32 64

0.5

1

1.5

2

2.5

3

·10−2

P

α
R

0,
R

E
P,

R
1

24 8 16 32 64
0

1

2

3

4

·10−1

P

α
de

c

4 8 16 32
2

4

6

8

10

12

14

16
·10−2

M

α
de

c

(a) (b)

(c) (d)

N = 1024 (solid lines) / N = 128 (dotted lines)

Figure 3.18 – Average utilization rates of several SC-based decoders of length N = 1024
(solid lines) and N = 128 (dotted lines): (a) αP (P), (b) αSND(P), (c) αdec(P), (d) αdec(M)

68

3.5. Hardware efficiency analysis

t0+23t0 t0+2 t0+28

𝜆 =2

𝜆 =3

R0

𝜆=4

R1 REP

Frame 1

Frame 2

PE

Special node

decoder

Parallel

processing

clk

F1

F2

F1,2

Clock

cycle

R1

t0

𝑃1 𝑃2 𝑃3 𝑃4
F1

𝑆1 𝑆2 𝑆3 𝑆4

Figure 3.19 – Decoding one and two codewords of the same polar code using SSCL
algorithm.

in the case of SSCL decoding is αR0 = M/17M and αREP = 2M/(34M + 2). Furthermore,
the utilization rate α(Q) of an architecture which comprises Q processing units including
PEs and various computational complexity special node decoders is expressed as a function
of γq and γ̄q as:

α(Q) =
∑Q
q=1 γq∑Q

q=1 γq + γ̄q
, (3.7)

where γq and γ̄q are the activity and the inactivity of the processing unit q (1≤ q≤ Q).

We plot in Fig. 3.18b αR0,REP,R1, the average utilization rate of the decoders SSCL,
Fast-SSCL, and Fast-SSCL-1 as a function of P while setting M to 16. We consider the
activity of the special node decoders of R0, REP, and R1 nodes and ignore the activity of
the PEs. As expected, when P increases, the processing of nodes f and g becomes faster,
and the activation rate of special node decoders during the decoding period increases,
which improves αR0,REP,R1. However, this utilization rate is very low compared to αP
presented in Fig. 3.18a. This is due to the high computation complexity of the special
node decoders compared to that of a PE. In addition, the PEs are more used during the
decoding process than any of the implemented special node decoders. We also note that,
unlike αP , αR0,REP,R1 is better for N = 1024 than for N = 128, especially for P ≥ 16.
This is because the decoder of length N = 1024 benefits better from increasing P beyond
P = 16 than the decoder of length N = 128. On top of that, using special node decoders
of size M with the knowledge that polar codes of length N = 128 rarely comprise special
nodes of this size leads to poor hardware efficiency. Also, we can observe that αR0,REP,R1

of the SSCL decoder is better than αR0,REP,R1 of the Fast-SSCL. In fact, since Fast-SSCL-1
searches for the minimum LLR out of M LLR values, its computational complexity is M
times larger than the SSCL. Hence, its reduced latency benefit is not worth the penalty
in terms of hardware efficiency. However, the αR0,REP,R1 of the Fast-SSCL-1 decoder is
much better than that of the Fast-SSCL since, for the same computational complexity,

69

Chapter 3 – Design space exploration for polar decoders

the Fast-SSCL-1 decoder is much faster. In Fig. 3.18c we plot αdec, the average utilization
rate of the decoders SC, SCL, SSCL, Fast-SSCL and Fast-SSCL-1 (SR1 = 1) as a function
of P for M = 16 using (3.7). All the processing units are considered, including PEs and
special node decoders of R0, REP, and R1. We can clearly see that for P < 16, the SCL
algorithm presents a better hardware efficiency than all the simplified algorithms used
for this study. When P < 16, the number of clock cycles to process non-pruned nodes is
very large compared to the number of clock cycles to decode special nodes, i.e., special
node decoders are longer idle than active. However, starting from P = 16 and P = 32
respectively, Fast-SSCL-1 and SSCL become more efficient than the SCL decoder. Using
special node decoders increases the decoder throughput, reduces the latency of decoding
one polar code frame but decreases the efficiency of the decoder in terms of hardware
complexity. Indeed, additional computational units proportional to M are needed to
compute the M data inputs related to the top constituent codes nodes. In addition to
that, polar codes often include special nodes of variable lengths, which means that a
special node decoder designed for M does not frequently take total usage of its hardware
resources, especially when M is relatively large. This is shown in Fig. 3.18d, where the
average utilization factor of SSCL, Fast-SSCL and Fast-SSCL-1 decoders is computed for
P = 8 and various values of M for N = 1024 and N = 128. It clearly demonstrates that
increasing the special node decoder size M reduces the hardware efficiency. Recall that
the complexity of one PE is assumed to be twice the complexity of a processing element
able to process either f or g operation in the analytical computation of utilization rates of
Fig. 3.18. In addition to that, special node decoders are considered as separate hardware
designs. Each decoder has a specific computational resource complexity related to the
type and size of the special node. Therefore, when specific hardware optimizations such as
arithmetic resource sharing are used, the utilization rate of the decoders is improved.

3.5.2 Proposed multi-frame decoding techniques

The poor hardware efficiency of SC decoders is not restricted to semi-parallel SC
architectures but also to line and tree architectures [55]. Also pipelined, the tree architecture
comprises N − 1 PEs, where 2j−1 PEs are instantiated at each stage j to perform the
available operations whenever the stage is activated. In this way, PEs that belong to
non-active stages remain inactive. After duplicating some decoding stages and by adding
some PEs, a vector overlapped SC architecture that uses these stages to decode multiple
received frames in parallel was presented in [56]. However, memory is also duplicated as

70

3.5. Hardware efficiency analysis

many times as the number of vectors decoded in parallel. As a result, this architecture
can decode a maximum of n = log2 N codewords in parallel without duplicating all the
computational resources of the decoder. On the other hand, semi-parallel SC and SCL
architectures do not offer many options to overlap the decoding of multiple codewords.
The idea of using the idle PEs requires additional hardware complexity to maintain the
routing network, but this comes at the cost of a added control complexity. Nevertheless, at
the cost of added memory, a semi-parallel decoding architecture similar to the one studied
in the previous sections and featuring dedicated special node decoders can be used to
enhance the level of parallelism without duplicating computational resources. Precisely, an
added memory for holding codeword bits is only required for a length-flexible design when
the total length of codewords decoded in parallel does not exceed the designed decoder
length. It was shown in Fig. 3.17 that PEs and special node decoders work alternately
during the decoding process. When PEs are used, the special node decoders are not,
and vice versa. Therefore, two codewords can be decoded simultaneously with the same
hardware resources by alternately updating stages j = 2, 3 and j = 0, 1. This improves
the throughput and hardware efficiency but also increases the decoding latency. Fig. 3.19
shows the timeline of decoding a sub-tree of one and two received frames of the same polar
code using the SSCL algorithm. The polar code selected for this example comprises four
consecutive constituent codes of length four, which are R0, two R1s, and REP codes. The
number of PEs used by the decoder is P = 2. The SSCL decoder alternates between PEs
and special node decoders during 23 clock cycles to decode the four special nodes of the
sub-tree starting at t0. Over this time period, PEs are activated 12 times while special
node decoders are activated 11 times. The decoding process time is almost equally shared
between PEs and special node decoders. This motivates the study of parallel decoding
of two frames, F1 and F2, using the same architecture. The timeline of decoding F1 and
F2 shows that these frames can proceed to use the available processing units, i.e., PEs
and special node decoders without conflict. However, they cannot use the same type of
processing units simultaneously. Therefore, F1 starts using PEs during two clock cycles
denoted by P1 then uses the special node decoder to decode R0 for one clock cycle denoted
by S1, letting F2 uses the freed PEs, in turn, for two clock cycles. Nevertheless, since
P1 > S1, F1 has to wait for P1 − S1 clock cycles to resume decoding. Similarly, F2 has to
wait for P2 − S1 clock cycles in order to use PEs the second time around. The remaining
special nodes can be similarly decoded with the same schedule and resource sharing process.
F1,2 highlights the different time periods where both PEs and special node decoders are

71

Chapter 3 – Design space exploration for polar decoders

activated simultaneously by the decoding process of frames F1 and F2 (16 clock cycles).
The total amount of time required to output the codeword bits of one frame corresponds
to 28 clock cycles against 23 clock cycles previously. As a consequence, latency is increased
by five clock cycles compared to the case where multiple frame decoding is not applied.
The total latency of decoding F frames can be expressed as:

LM =
∑
q

(F − 1) max(Pq, Sq) + max(Pq+1, Sq), (3.8)

where Pq is the number of clock cycles required to process nodes of the pruned decoder
tree before decoding the next special node, which requires Sq clock cycles. The average
latency and maximum throughput of the 5G polar code over several R values when two
frames are decoded in parallel is measured using (3.8) for P = 16 and M = 16. The results
are provided in Fig. 3.20 for various polar code lengths. We can see that the latency is
increased by 36%, 39%, 43% and 47% while throughput is increased by 20%, 21%, 24% and
28% for N = 64, 128, 256 and 512. This increase in latency is more significant compared
to the latency analysis conducted above on the simple example of Fig. 3.19.

Although the overall decoding time is equally shared between PEs and special node
decoder, it is frequently uneven between two successive activation of PEs and special node
decoders, which results in relatively high decoding latency. For instance, two consecutive 16-
length R1 special nodes that share the same parent node lead to increasing the decoder’s
latency by 15 clock cycles. However, using such a technique guarantees a latency of
decoding F frames of length N/F lower than the worst-case latency of decoding one frame
of polar codes of length N .

The proposed technique of decoding multiple received frames of the same polar code
in parallel presented in this section is based on the notion that the different frames
must alternate between using PEs and special nodes with a similar time budget during
the decoding process. Therefore, with the same resource, this technique provides good
hardware efficiency under the SSCL algorithm but quickly reaches its limits after only two
frames are decoded in parallel. However, if faster algorithms are used, particularly the
sub-optimal Fast-SSCL, i.e., SR1 < L− 1, the time required to decode the set of identified
special nodes is much lower than the time required to perform f and g operations.

In this context, we propose another technique that consists in duplicating the PEs as
many times as the number of decoded frames in parallel. These multiple frames share the
same special node decoder, which increases its utilization rate. Therefore, the decoder

72

3.5. Hardware efficiency analysis

26 27 28 29 210
0

500

1,000

1,500

N

La
te
nc
y
(µ
s)

1 Frame 2 Frames

26 27 28 29 210
0

50

100

N
In
fo
.
T
P

(M
bp

s)

Figure 3.20 – Latency and throughput as a function of code length N for a multi-frame
SSCL decoder.

26 27 28 29 210
0

1,000

2,000

3,000

N

La
te
nc
y
(µ
s)

1 Frame 2 Frames 4 Frames 8 Frames 16 Frames

26 27 28 29 210
0

500

1,000

1,500

N

In
fo
.
T
P

(M
bp

s)

Figure 3.21 – Latency and throughput as a function of code length N for a multi-frame
Fast-SSCL-1 decoder.

73

Chapter 3 – Design space exploration for polar decoders

architecture includes F × P PEs and one special node decoder, where F is the number
of frames to decode in parallel. The maximum latency and maximum throughput of
the Fast-SSCL-1 decoder of lengths N ∈ [64, 1024] when decoding F = 1, 2, 4, 8 and 16
received frames of the same polar code are reported in Fig. 3.21. The number of PEs and
the maximum length of special nodes used in this analysis are P = 16× F and M = 16,
respectively. We see that the latency of decoding two frames is the same as decoding one
frame, which is reflected by doubling the throughput of the decoder. A small increase in
latency follows increasing F above F = 2. Indeed, it reaches an average of 51% and 80%
on all the considered code lengths N ∈ [64, 1024] when increasing F from two to four and
eight to sixteen, respectively. This increase in latency is very low compared to the latency
required to decode multiple frames when they are decoded one at a time. For instance,
in the latter case, the latency of decoding N = 128 and F = 8 equals 3272 clock cycles
while it is equal to 1007 clock cycles (30%) using the proposed technique. Consequently,
the throughput of the decoder is significantly enhanced. For instance, it is 3.13, 4.46, and
5.66 times better when decoding four, eight, and sixteen frames of length N = 256 in
parallel than decoding a single polar code frame. Nearly similar results are obtained for
other code lengths than N = 256, as shown in the figure. Far from being limited to F = 2,
this technique of decoding several received frames in parallel when using the Fast-SSCL
decoder provides many advantages in terms of throughput and hardware efficiency at the
expense of high memory requirement and duplicated processing elements. Finally, latency
and throughput analysis results presented in this section for both multiple frame decoding
techniques are performed considering frames from the same polar code, i.e., the same
frozen set. Further analysis can be done by considering decoding multiple frames of a
variable rate and length.

3.6 Summary

A software simulation platform dedicated for polar codes was developed and presented
in this chapter. It includes the whole encoding and decoding chain, from bit-channel
allocation, CRC bits attachment and interleaving schemes to rate matching as defined in
the 5G NR, and their reverse operations to ensure the decoding phase process. Thanks
to the completeness of the software platform, bit error rate performance of 5G NR polar
codes under fast decoding algorithms was evaluated and various fixed-point decoders were
compared to the floating-point ones providing by this opportunity an efficient tool to select

74

3.6. Summary

the best quantization scheme for hardware polar decoders.
Furthermore, we presented in this chapter a design space exploration of polar decoders

and provided a detailed analysis of the impact of main code and decoder design parameters
on latency, throughput, hardware complexity and hardware efficiency for polar decoding
architectures when targeting the flexible 5G NR polar code. In this context, the semi-
parallel architecture model proves to be the most suited thanks to a broader algorithmic
and architectural flexibility at design level. Therefore, based on a detailed analytical study
and logic synthesis results, the latency, throughput and complexity of the decoder were
evaluated for multiple variants of fast SCL decoding algorithms and for a varying number
of processing elements. Results have shown that length- and rate-flexible designs limit the
benefit of increasing the number of processing elements and advocate for defining various
types of constituent codes while increasing the level of tree pruning. Indeed, while the use
of a large number of processing elements brings a significant latency reduction at large
frame sizes, this benefit becomes negligible for short frame sizes, hence penalizing the
hardware efficiency of the decoder. Furthermore, some special constituent code types are
more likely to appear at low code rates, such that R0 and REP, while others are more likely
to appear at high code rates, such as R1 and SPC. Adding to that, the length of these
special constituent codes in number of involved bits decreases with the polar code frame
size. This can significantly impact implementation efficiency metrics. Therefore, multiple
trade-offs between algorithmic and architectural parameters can be drawn from these
results. In this regard, we proposed two multi-frame decoding approaches increasing the
throughput and improving the processing units activity at the cost of additional memory
resources and latency. Finally, the analysis conducted in this chapter can be further
performed on any other set of polar codes and extended to support list size variation.

Based on the results of this chapter, multiple implementation choices of polar decoder
are offered while providing a large spectrum of complexity/performance compromises. In
the next chapter, these results are used to propose a flexible decoder for 5G NR polar codes,
taking into consideration the stringent constraint on latency while being of comparable
complexity to state-of-the-art polar decoders.

75

Chapter 4

Flexible 5G polar decoder architecture

Contents
4.1 Proposed decoder architecture 78

4.1.1 Memory structure . 80
4.1.2 Special nodes decoding . 85
4.1.3 Partial sum network . 88
4.1.4 CRC calculation . 90
4.1.5 Proposed on-the-fly rate-flexible decoding of polar codes 92
4.1.6 Control unit . 96

4.2 Results and performance analysis 96
4.2.1 Synthesis results . 96
4.2.2 Comparison with state-of-the-art FPGA implementations . . . 98

4.3 Multi-frame decoding . 99
4.4 Summary . 102

77

Chapter 4 – Proposed 5G Polar Decoder

Motivated by the need to provide a hardware-efficient polar decoder that supports
the required flexibility and latency levels for 5G NR, we propose in this chapter a novel
hardware architecture targeting FPGA devices and offering several features. In particular,
downlink and uplink 5G NR control channel compliance with full rate and frame size
support. Thanks to a special node identifier, the proposed decoder continues to benefit
from tree pruning techniques to speed-up the decoding whilst maintaining compliance with
the 5G NR and the various defined combinations of code rate and code length. A special
node decoder is designed to efficiently decode the specific constituent codes identified for
each polar code. This chapter is organized as follows. Section 4.1 presents the top-level
architecture of the proposed decoder and provides a detail description of the different
elements that compose it. Section 3.2 presents the implementation results and detailed
comparisons. Section 4.3 presents the implementation of multi-frame decoding architecture
and latency performance analysis. Finally, Section 3.6 concludes the chapter.

4.1 Proposed decoder architecture

Based on the decoding flow of the SCL algorithms described in Sections. 2.2.2 and 2.3.3,
an efficient polar decoder architecture for the NR code is designed. Hence, most of the
decoder components are duplicated L times to ensure a parallel decoding of the list of
L candidate codewords (paths). The top-level architecture of the decoder is depicted
in Fig. 4.1. Due to the sequential nature of the SCL decoding algorithm and the high
dependency between the internal LLRs and bit estimates, the LLR computation and bits
estimation are performed alternately. Therefore, the overall architecture is divided into
two separate parts called Soft Data Part (SDP) and Hard Data Part (HDP). The proposed
architecture features the following main units:
— L×P Processing Elements (PE) to compute and update the LLRs of the L coexistent

paths.
— Memory resources to meet the different storage needs of different data types of the

decoder such as LLRs, PMs and codewords. The main block memories are: Channel
LLRs, Internal LLR, Paths, Path Metrics and Pointer Memories in addition to some
register-based local arrays that will be described shortly.

— Crossbars to manage candidate competition at different areas whether for copying
data to some freed memory locations or to ensure a correct routing of data as a
result of the use of pointer memories

78

4.1. Proposed decoder architecture

— Special Nodes List Decoder (SNLD) to perform the arithmetic operations required
to decode special nodes, path split and path selection operations and to produce
the codeword bits. To do this, SNLD is designed to be in charge of decoding the
different constituent code types when encountered and to perform, in the absence of
the latter (i.e. single bit), the classical SCL decoding.

— Partial Sum Network (PSN) to produce PS used by the PEs whenever the g- function
is performed. It is designed to handle multi-bit decoding techniques.

— CRC bits calculation unit to perform CRC check operations in the case of multi-bit
decoding as soon as new bit estimates are available. This operation is performed in
parallel to the decoding process.

— Extraction bits unit to output serially the A information bits of the final path selected
on the basis of the results of CRC checks using the input de-interleaver values.

— Control unit including a Finite State Machine (FSM) to generate all the control
signals needed for the different decoder units.

— Special node identifier (SNI) to search and identify special nodes on-the-fly.

Internal

LLRs

memories

Channel

memory

𝜋
−

In
tr

a-
li

st

Pointer

memory

𝜋
−

In
te

r-
li

st

PEp-1

PE0

× L

Channel

LLR

CRC bits

calculation

Paths

memory

Partial-sum

network

Information

bits extraction

Special node

list decoder

Soft Data Part (SDP)

Hard Data Part (HDP)

Information

bits

Control

unit

Special node

identifier
Frozen

set

N-to-2P

MUX

MUX

To pointer

memories

𝑁

𝑁

De-interleaver

index

Control

signals

crc state

Code

length 𝑁

CRC inputs

Figure 4.1 – Top-level architecture of the proposed decoder.

79

Chapter 4 – Proposed 5G Polar Decoder

Referring to the SC decoding tree of Fig. 2.9.b and starting from a given node, the
LLR values are produced in the SDP by a group of processing elements P and passed
from parent to child nodes until either a leaf node or a special node is reached. The
semi-parallel architecture of [55] in which only one stage is activated at a time is used for
that purpose. LLR values are stored in a dedicated memory bank in order to be used later
during the second activation of the nodes to feed the next parent’s child in the decoding
tree. Next, the decoding process moves to the SNLD where the different constituent-code
types described in Section 2.3.2, i.e., R0, REP, SPC and R1, are decoded and path selection
is performed while PEs remain inactive. The hard bit estimates including information
codeword bits and partial sums are generated in the SNLD and are sent to the HDP. In
the latter, the CRC bits are calculated while the decoded bits are fed back to the SDP
in the form of partial sums to resume the computation of the LLRs. When decoding the
PDCCH polar codes, the decoding process may stop at any time if the CRC verification
fails (early termination), otherwise the decoding process continues. Besides the SDP and
HDP, on-the-fly identification of special nodes and a control unit is designed in order to
generate all the required control signals that the decoder needs. The different components
of the decoder architecture are detailed in the following subsections.

4.1.1 Memory structure

In the tree structure of the SCL decoder, each parent node is connected to two child
nodes to which it sends its LLR value in distinct time periods. Consequently, the decoding
relies on dedicated memories to keep the LLR values available for the computation units
as long as they are needed. For instance, the channel input LLRs are needed twice, at the
very beginning of the decoding and at halfway, for the computation of the internal LLRs.
Meanwhile, they are stored in a register of N × Qc bits, where Qc is the quantization
level of the channel LLRs. However, internal LLRs are stored in a dual-port RAM-based
memory configured with one write port and one read port. This choice is motivated by the
ability to activate the PEs in the next clock cycle following LLR updates. In this way, one
port of the dual-port RAM is dedicated to reading the previously updated LLRs and the
other is used for writing the currently updated LLRs. The total number of LLR updates
performed before proceeding to the lower j − 1 stage is equal to 2j . However, only P LLR
updates are allowed to be performed at once. Thereby for stages j where 2j > 2P , a total
of 2j/(2P) time steps are needed before proceeding to the lower stage while only one time

80

4.1. Proposed decoder architecture

step is needed for the other stages. The depth of this memory is thus:

MEMLLR =
n−1∑
j=p+1

2j/2P +
p∑
1

1 = N

2P + log2 P − 1, (4.1)

while 2 × P × Qi represents its width and Qi is the number of quantization bits of the
internal LLRs. Given that the LLRs produced by the PEs at decoding stage j are indexed
from 0 to 2j − 1, the input LLRs to the PEs have to follow the bit-reversed indexing
scheme. For example, considering the PC(16, 8) of Fig. 2.2 (Chapter 2), the decoder at
stage 2 computes L2,2 by using L3,2 and L3,6 and computes L2,3 by using L3,3 and L3,7.
Hence, the produced LLRs at a given stage by the PEs need a certain reordering before
being mapped back to these same PEs to produce the LLRs of the lower stage. To avoid
the need for multiplexing the LLRs at the input of the PEs, the equivalent operation is
directly embodied in the control unit and two RAMs (instead of one), each of width PQi,
named RAM0,l and RAM1,l are implemented for each path l. For higher stages, where
2j > 2P , LLRs are first stored in RAM0,l during half of the 2j/(2P) time period required
for computation before storing the remaining produced LLRs during the second half of
the time period in RAM1,l.
However for lower stages, all the LLRs produced during one time period are stored in
RAM0,l. In this way, the LLRs contiguity is ensured with no additional complexity.
The memory structure used to store internal LLRs is illustrated in Fig. 4.2a while the
component RAM0,l is drawn in Fig. 4.2b. The control logic for mapping the output of the
processing elements PEp to RAM0,l and RAM1,l described above is given by the following
expression:

MAPPE−→RAM
LLR (t, l) = RAMkl

k∈0,1

n−1∑
q=j

2q
2P + t (mod 2j

4P),PEp

 , (4.2)

where t is the time step at which the LLRs are updated, 2j is the number of LLRs to
update at stage j. However, this mapping can no-longer keep providing the PEs with
the appropriate inputs from RAM blocks when operating at lower stages. This is due to
the fact that one single memory, RAM0,l, is sufficiently large in this case to store all the
LLRs relative to a single decoding stage. As a consequence, the LLR pairs used by each
PE are not stored in two separate locations as planned. Therefore, an extra network of
multiplexers called π-intra-list is implemented as shown in Fig. 4.3b for P = 8. It allows

81

Chapter 4 – Proposed 5G Polar Decoder

𝜋 − Intra-list

𝜋 − Inter-list

2 × 𝐿 × 𝑃

𝑅𝐴𝑀0𝑙0 𝑅𝐴𝑀1𝑙0 𝑅𝐴𝑀0𝑙𝐿−1 𝑅𝐴𝑀1𝑙𝐿−1

𝑎
0 →

𝑃
2−1

𝑎𝑃
2 → 𝑃−1

𝑏
0 →

𝑃
2−1

𝑏𝑃
2 → 𝑃−1

𝐿
0 →

𝑃
2−1

𝐿𝑃
2 → 𝑃−1

𝐿
𝑃 →

3𝑃
2 −1

𝐿3𝑃
2 →2𝑃−1

𝜋 − Intra-list

𝑎
0 →

𝑃
2−1

𝑎𝑃
2 → 𝑃−1

𝑏
0 →

𝑃
2−1

𝑏𝑃
2 → 𝑃−1

𝐿
0 →

𝑃
2−1

𝐿𝑃
2 → 𝑃−1

𝐿
𝑃 →

3𝑃
2 −1

𝐿3𝑃
2 →2𝑃−1

(a)

Q×P

⌈𝑁
𝑚
𝑎
𝑥

2
/

2
.P
⌉

⌈𝑁
𝑚
𝑎
𝑥

2
/

4
.P
⌉

1

1

L
o

w
st

ag
es

H
ig

h
 s

ta
g

es

(b)

Figure 4.2 – Internal LLR memory structure: (a) RAM-based memory structure of internal
LLRs and their pathway to PEs, (b) Organisation of RAMk,l.

the following mapping:

MAPPEa←−RAM
LLR (j, l) = RAM0l

 n−1∑
q=j+1

2q
2P + t,PEp

 , (4.3)

MAPPEb←−RAM
LLR (j, pep, l) =

RAM0l

 n−1∑
q=j+1

2q
2P + t,

2j
2 + PEp

 , Nλ ≤ P.

RAM1l

 n−1∑
q=j+1

2q
2P + t,PEp

 , otherwise,
(4.4)

where a and b are the first and second LLRs input values to a single PE respectively.

Bypass buffer

At low decoding stages, the produced LLRs need to be immediately reused by the
processing elements since they require only one clock cycle to be fully updated. Therefore,
L× P buffer is used in order to process again these generated LLRs directly during the
following clock cycle without causing a combinatorial loop in the circuit or adding extra
latency to the decoding process. Thus, a set of MUX are used to select the appropriate
LLRs to process from internal LLR RAMs or the bypass buffer.

82

4.1. Proposed decoder architecture

𝐿7𝐿11𝑏3

𝐿6𝐿10𝑏2

𝐿5𝐿9𝑏1

𝐿4𝐿8𝑏0

𝐿3

𝐿2 𝐿1

𝐿12→15𝑏4→7

𝐿0→7𝑎0→7 𝐿0→7 𝐿0→7 𝐿0→7

𝐿12→15 𝐿12→15 𝐿12→15

𝐿9

𝐿10 𝐿10

𝐿11 𝐿11

𝑗 ≥ 3 2 1 0

(a)

𝑙3

𝑙1

𝑙8

𝑙2
𝑙4

𝑙5
𝑙9

𝑙6

𝑙10

𝑙7

𝑙11

𝑙12 −15

𝑏0

𝑏1

𝑏2

𝑏3

𝑙0 −7

𝑏4−8

𝑎0−7

(b)

Figure 4.3 – Intra-list selection network between LLRs of internal memories and PEs: (a)
LLRs and PEs connection, (b) Selection network π-IntraL.

Pointer memory

The SCL decoder can also be seen as L SC decoder cores working in parallel with
their own LLRs and memory resources. Nonetheless, the cores may share the same LLRs
at some stages. Indeed, after each path selection, some of the initial L paths may be
duplicated to give birth each to two new ones that differ from one another only in the last
bit estimates. Moreover, they shall inherit all their LLRs related to the higher stages from
the original path that gave them birth. If not discarded later, these paths keep sharing the
LLRs relative to the stages that are not yet activated, when this is once done, each of them
will produce its own LLRs. Thereby, to avoid copying the corresponding LLR memory, a
pointer memory is introduced instead. Hence, each SC decoder core can read its inputs
from one of the L RAM memories. To do so, a permutation network using a set of 2PL
L-to-1 MUX called π-inter-list is implemented between internal LLR memories and PEs
in order to select the appropriate LLRs. The introduced pointer memory is designed as a
(log2 N − 1)× L register array. A register at row j and column l stores a pointer of log2 L

bits indicating the index of the RAM where the LLRs of path l at decoding stage j are
stored. Initially, column l contents are all initialized with l−value stating that paths have

83

Chapter 4 – Proposed 5G Polar Decoder

M
U

X

𝑗=0

𝑗=1

𝑗=n-1

𝜋-interList

𝐿 ∙ 𝑙𝑜𝑔2𝐿

𝑙=L-1𝑙=1𝑙=0

𝐿 ∙ 𝑙𝑜𝑔2𝐿

𝐿 ∙ 𝑙𝑜𝑔2𝐿

𝑛 ∙ 𝑙𝑜𝑔2𝐿

0 1 L-1

Surviving

Paths

Reset0

Decoding

stage

Reset1 ResetL-1

en

Figure 4.4 – Pointer memory architecture.

all their LLRs located in their respective own RAMs. During the decoding process, the
pointers are updated in two different situations: (1) after path selection where the contents
of the column l pointer memory are duplicated to column l′ by means of L× L crossbar,
and (2) after the decoding stage j is activated where each single path computes its own
LLRs, the pointers of row j are reset to their initial values, i.e., implying that LLRs of
path l at decoding stage j are stored in RAMl. The structure of the pointer memory is
illustrated in Fig. 4.4 where en and Resetl are the control signals that ensure the pointers
are updated following the first and second situations respectively.

Path memory

Once the path metrics have been sorted and the surviving path identified, an array
register of LN Flip-Flop (FF) is used to store the values of the L codeword bits. However,
to avoid a high complexity search of information bits among the final codeword bits, only
information and CRC bits are stored. The architecture of the path memory access is
portrayed in Fig. 4.5. Being mutually independent, all FFs can be accessed simultaneously.
This is made possible thanks to a N -bit enable vector. When a path l needs to be
duplicated, all its so far decoded bits are copied to the registers that has been freed as
their corresponding path has been discarded. Enable signals for the FFs are generated
by the log2N -to-N decoder which takes the currently decoded information bit index as
input. To simplify the control, all the registers that are not accessed yet are enabled when

84

4.1. Proposed decoder architecture

FF0,0 FF1,0 FFN-1,0

𝑊𝑟

𝐿 − 1

𝐸𝑛1𝐸𝑛0

FF0,L-1 FF1,L-1 FFN-1,L-1𝑊𝑟

𝐸𝑛1𝐸𝑛0 𝐸𝑛𝑁 − 1

ො𝑢0,0 ො𝑢1,0 ො𝑢𝑁−1,0

ො𝑢0,𝐿−1 ො𝑢1,𝐿−1 ො𝑢𝑁−1,𝐿−1

ො𝑢𝑖→𝑖+𝑃−1,0

ො𝑢𝑖→𝑖+𝑃−1,𝐿−1

𝑃

𝑃

n-to-N

decoder

𝑁𝑚𝑎𝑥Bit index

MUX MUX MUX

MUX MUX MUX

M
U

X

Information bits path 𝑙𝐿−1

Information bits path 𝑙0

𝐸𝑛𝑁 − 1

𝐿 − 1 𝐿 − 1

𝐿 − 1 𝐿 − 1 𝐿 − 1

copy/store

Node type

Figure 4.5 – Path memory access architecture.

storing input decoded information bits. This allows decoupling the registers that contain
the previous decoded bits from the remaining ones. In this way, the same enable signals,
when inverted, can ensure the copying of the surviving paths that occurs before storing
the new bits. To do so, N MUXes are used to select between the copy/store operation
to perform. Since by using a multi-bit decoding algorithm up to P information bits are
stored at once, the FFs are virtually organized in N/P groups of P FFs, so that the
bit of index p where 0 ≤ p ≤ P − 1 is connected to to the FFs of indices φ such that
φ = p, P + p, . . . ,

(
N
P
− 1

)
P + p. However, when reaching a tree node of length P that

is not identified as one of the special node types considered by our decoder or any node
other than R1 of size greater or equal than P , the number of information bits decoded in
parallel has to be smaller than P . To manage this flexibility in decoding variable special
node lengths, bits of a given path are routed to their respective FFs by means of a P × P
crossbar.

4.1.2 Special nodes decoding

Instead of decoding every constituent code type individually, a special nodes list decoder
(SNLD) which federates the common operations performed by the different special nodes
is designed. Considering that the tree should be traversed sequentially with a node by
node processing schedule, special node decoders are able to share most of the memory and

85

Chapter 4 – Proposed 5G Polar Decoder

L × P-Adder

L × P-min

finder

L ×
P-Xoring

Circuit

L × Parallel

Load Shift

Registers

LLRs

from

PEs

L
×

L

cro
ssb

ar

L × P-Adder

LLR≥ 0

LLR< 0

L
×

L

cro
ssb

ar

L
×

L

cro
ssb

ar

MUX

L
×

L

cro
ssb

ar

min

index

MUX
𝟎

MUX
𝟏

LLR load and arithmitic

operations

PM register

P
ath

 sp
lit

2
L

 P
M

 so
rter

MUX

Pointer

Memory

Update

(PMU)

PM computation

and pointers update

L× log2(L)

To Pointer

Memory

Bit estimation

L × P-polar encoder

MUX

To partial

sum network

To path memory&

CRC calculation unit

L

MUXM-1MUX1MUX0

𝛽𝐿−1
𝑀−1𝛽𝐿−1

1𝛽𝐿−1
0

𝟎 𝟏 𝟎 𝟏 𝟎 𝟏

×L

L×L

crossbar

M×L

M×L

LRB

insertion

L×XOR

LRBL-1

L×L

crossbar

L

L L

L

L×P-bit register

M-to-P

MUX×L

PC bits calculation

×L

×L

×L

L×L

crossbar

5L

L× log2(L)

Figure 4.6 – Proposed SNLD architecture supporting different special node types.

the computational resources. Hence, hardware duplication is avoided. The architecture of
the SNLD is portrayed in Fig. 4.6.

Since the R0 nodes comprise only frozen bits, no path splitting is needed to estimate
the NR0 bits. It consists of summing up NR0 values. A tree-structure fully parallel adder is
preferred to this purpose in order to guarantee no extra decoding latency. The complexity
and the critical path of this adder structure are high especially when M is large. As long
as P ≤M , the computations on the special node LLRs takes multiple clock cycles and a
maximum of P LLRs can be processed at a time. Therefore, smaller tree-structure adder
can provide the same computational speed as the fully parallel adder. To this purpose,
a sum-accumulate operation is used instead, by introducing an accumulator register at
the output of the adder in order to limit the depth of the tree from log2 M to log2 P + 1
stages and to reduce the number of adders from M − 1 to P . As a result, NR0 values can
be added up during dNR0/P e clock cycles, where dxe represents the closest integer value
larger than x.

A Repetition node of length NRep is identified by the presence of one information bit
and NRep − 1 frozen bits. However a minimum of two steps are required for the estimate
of the single information bit. The first one consists of updating the path metrics as part
of path fork process including both 0 and 1 decisions on the single information bit of

86

4.1. Proposed decoder architecture

the Rep node while the second consists of sorting the split path metrics to perform path
selection. Unlike NR0 codes, two independent summations are needed by Rep node. Indeed,
according to whether the bit estimate is considered to be 0 or 1, Rep decoder has to
add up all the negative valued or positive valued LLRs, respectively. For the purpose of
performing both summations in parallel, the R0 node adders are duplicated.

R1 nodes comprise only information bits which are decoded one-by-one as in the SCL
algorithm. The speed-up lies in the fact that a set of bits is estimated at the root of
the node. For each bit estimate, paths are duplicated, sorted and some of them are
discarded. Since more than one bit is decoded in a row without going back to PEs, the
SNLD comprises a Pointer Memory Update (PMU) unit that keeps track of the surviving
paths from the beginning of each R1 and SPC nodes decoding.

A SPC node is identified by the presence of one frozen bit while all the remaining
bits are information. These latter are estimated one-by-one as with R1 nodes. The
least reliable bit is found as a first step for decoding a SPC node. It corresponds to the
minimum LLR value at the top of the SPC node tree. An accumulation-minimum-finder
tree-based structure similar to the one used for the adder units of R0 and Rep nodes with
P comparators is used in this regard. The parity-check evaluation, in turn, is performed
through an accumulator-XOR tree-based structure using P XOR gates. while the evolving
even-parity constraint is performed for each of the existing L paths after each bit estimate
through L XOR gates and stored in dedicated LRB registers. The final value of the latter
is retained to preserve the even-parity constraint and inserted within the estimated bit
vectors directly in its appropriate location provided by the minimum value index found in
the first step (green arrow in Fig. 4.6).

Except for a classical bit decoding case, more than one LLR are admitted by the
SNLD. Since they are immediately used, it would be costly in both latency and hardware
complexity to write them in RAMs then read them back one-by-one as it is specified by the
algorithm. However, they are stored in a bank of parallel-load shift registers, as illustrated
in Fig. 4.7. Assuming P ≤M , they are seen as an array of M Qi-bits registers grouped in
M/P independent columns which can be accessed independently thanks to M/P enable
signals. Qi is the quantization level of the internal LLRs. LLR nodes are stored in different
columns in the same order they are produced, starting from the rightmost column to
the leftmost one during

⌈
2j
P

⌉
clock cycles. During the PM calculation phase, registers

are shifted both horizontally and vertically until all the LLRs are used and bit-nodes are
estimated during the decoding phase of R1 and SPC nodes as follows:

87

Chapter 4 – Proposed 5G Polar Decoder

— Vertical shift: The LLR values implied in the estimation of R1 and SPC bits are
used one-by-one by the decoder. They are accessed by shifting the P registers of the
rightmost column from top to bottom whose outputs are connected to the inputs of
the adjacent register.

— Horizontal shift: After P−1 vertical shifts, the next P LLRs to use in decoding, when
they exist, are obtained by shifting registers of the different columns horizontally
from left to right, where each register output is connected to the adjacent register
input.

Excluding the last loaded register columns, the remaining ones can accept their LLRs
from either their adjacent one or from input. This is made possible thanks to P ·

(
M
P
− 1

)
2-to-1 MUX.

Since the least reliable bit in a SPC node is decoded first, its LLR value should be
skipped whenever it is encountered. To do this, the LLR bank register in Fig. 4.7 is
designed to output two adjacent LLR values instead of one. A MUX is used to select the
output based on the least reliable bit index. When the PC bits are used in uplink, they are
decoded using the length-5 cyclic shift register (Fig. 4.6). To support path competition,
the generated intermediate paths read their values, i.e., LLRs, even-parity check and
minimums by means of L × L crossbars. Newly estimated bits are temporarily stored
in dedicated registers. A straightforward copy operation allows, by means of one L× L
crossbar with port width M bits, to move all the contents of each of the L surviving paths
from a register to another after each path selection. The process of PM sorting and bit
estimation is repeated NR1 or NSPC − 1 times. The PM register is updated directly from
the 2L sorter in the same clock cycle. When all bits are estimated at their top tree, the
source word bits are obtained through a polar encoder, the PMU updates the pointer
memory and the search procedure of the next nodes in the polar code tree resumes. The
partial sums needed to update LLRs through the g-function are computed and the CRC
check process is initiated. In order to avoid extra latency, partial sums computations and
g-function are performed in parallel.

4.1.3 Partial sum network

The decoded bits go through a XOR network in order to generate the appropriate partial
sums required for the computation of the g function ((2.9)). Due to data dependency, the
hard bit decisions must be generated at the same time as LLRs are computed in PEs.

88

4.1. Proposed decoder architecture

MUX

MUX MUX

MUX

MUX

MUX

MUX

To Path Split
P

M/P

Figure 4.7 – Shift registers bank of the top-node LLRs.

Many types of PSN architectures have been devised for semi-parallel decoders [55], [100]
[32] [63]. The List High-Performance (LHP)PSN proposed in [70] is composed of serial and
parallel parts for area efficiency. Indeed, due to the semi-parallel decoder architecture, the
parallel part allows only P partial sums to be updated in parallel instead of N/2 which
are exclusively used at low stages g functions. However, at high stages, the partial sums
are serially generated in the serial part from previously produced partial sums. To do so,
L dual-port RAMs of N/2 bits each are used to store partial sums of the higher stages of
each path. The newly updated partial sums are obtained using a XOR array of P gates
and results are stored back in the RAMs to be used in future partial sums generation.
Since candidate competition in SCL algorithm causes frequent discarding and duplicating
of codeword paths, instead of copying PS of a duplicated paths from one RAM to another
corresponding to a discarded path, a specific pointer memory register array similar to
that used for LLRs is used (see Fig. 4.4). In this way, for each decoding stage, PS of a
given path can be found in any of the L RAMs. PSN is provided with a crossbar that
contains L L-to-1 multiplexers to supply the L sets of PEs with the appropriate PS. The
same architecture of the PSN serial part described in [70] is used here. In the parallel
part of the LHPPSN [70], the PS are computed only for the g function that occurs at low
stages (j ≤ log2 P). To this purpose, for each path l, P registers are used to update the
partial sums generated from special nodes of maximum length of P . When the length of
the decoded special node is higher than P , the partial sums are directly generated from
the SNLD and do not need to be computed in the parallel part. They are directly fed to
the PEs. In order to accommodate candidate competition that occurs between successive
partial sum updates of nodes smaller than P , L × L crossbar with port width P bits
is implemented to copy the surviving paths to the registers that have been freed in the
meantime. When the decoding stage j such that (j > log2 P) is activated, the content of

89

Chapter 4 – Proposed 5G Polar Decoder

r0

r1

r3

‘1’

b0

b1

r2

a0

a1

a2

a0

a1

To

Serial

Part

𝛽0 𝛽1 𝛽2 𝛽3

AND

AND

AND

AND

AND

AND

AND

b0

b1

MUX

MUX

MUX

Figure 4.8 – Parallel part of LHPPSN supporting multi-bit decoding for P = 4.

the P registers of the parallel part are used in the PE and stored in RAM of the serial part
to be next used in the generation of other high stages partial sums. These registers are
then reset. In [70], the source input to the parallel part of the PSN is supposed to be 1-bit
length, an array of ANDs and XORs logic gates is used to generate the partial sums after
each input. The set of partial sums that need to be updated following the decoding of the
i-th bit is obtained thanks to a G row vector derived from GN as described in [32]. To
support multi-bit decoding in which the source input is a vector of P bits, the parallel part
of the LHPPSN has been adjusted. The proposed architecture is depicted in Fig. 4.8 for
P = 4. Since the special nodes considered in our decoder are length-variable, the actual
number of input bits following the decoding of a special node is also variable and is equal
to 1, 2 or 4 following the example where P = 4. Therefore, if the input bits are smaller
than P , only part of the P PS needs to be updated and the registers that store these PS
need to be identified. To do so, two parameters are to be taken into consideration. First,
the size of the special node (a2, a1, a0) which will determine the correct bit-location within
the input vector β. Second, the first log2 P bits (b1, b0) of the index i, (0≤ i≤ N − 1) that
correspond to the index of the first decoded bit in the current special node.

4.1.4 CRC calculation

The CRC bits are scrambled and interleaved in downlink prior to encoding as explained
in 2.4. The interleaving of CRC bits does not foster a straightforward polynomial CRC
check implementation. However, the same interleaved CRC generator matrix used to
provide and interleave CRC bits, the CRC bits locator and scrambler provided by the

90

4.1. Proposed decoder architecture

polar code construction are in turn used to check CRC bits. The architecture of the CRC
check operation is presented in Fig. 4.9.

A CRC checksum vector defined as the modulo-2 operation of the CRC generator
matrix and an all-one LCRC vector is initialized before the decoding process starts which
is particular to the polar code information length A. It is then updated each time an
information or a CRC bit is encountered. K XOR gates are needed to update it in
one clock cycle. The CRC checksum vector is specific to each path. Therefore, it is
subject to duplication and discarding processes. a CRC checksum bit is compared to
its corresponding index in scrambling pattern vector when the last 1-valued bit in the
i-th line of the interleaved CRC generator matrix is reached by means of AND gate. If
the comparison disagrees then the CRC check has failed. A combinational logic block
is introduced to check whether the currently decoded bit is indeed a CRC bit or not.
When using the muti-bit decoding algorithm, up to M bits can be produced each time
the SNLD is activated while a subset with P bits can be produced simultaneously. The
lowest amount of clock cycles between two consecutive activation of SNLD is equal to
four and occurs when two consecutive special nodes share the same parent, i.e., they
are the left and right direct children of the same parent. Thus, in order to avoid extra
latency, all the produced bits by the SNLD shall go through the CRC verification in at
most M

P
= 4 clock cycles. This is always true if all the P decoded bits are handled in

parallel during the CRC check operation. Therefore, a P-parallel checksum update is
implemented to this end. Moreover the CRC checksum of a set of P bits depends upon the
last 1-valued information bit which in turn depends on the previous one and so on. The
toggling property of the XOR operation is the reason why a CRC check fail may occur
but in fact is hidden due to successive clearing, justifying the need to keep track of all the
intermediate checksums. A P-recursive structure of K × P XOR gates is implemented to
this end. As a result of this dependency, the recursive structure leads to a long critical
path and hence a low throughput. The validity of path candidate is indicated by the CRC
state register that keeps track of whether any of the checks associated with the CRC bits
has failed. it is updated by the P − AND array. Depending from the special node type
and size, information and CRC bits may be located anywhere between the M decoded bits.
The currently decoded information bit indices are provided and additional combinational
logic is however added to manage finding the location of information bits within the P
decoded sequence. Note that none of the codeword candidates shall be pruned from the list
of the L surviving paths, even though we know that they will fail the CRC or have already

91

Chapter 4 – Proposed 5G Polar Decoder

Combinational

logic

L × K

checksum

registers

L×P

checksum

update

network

K L × K

K bits

K bits

crc state

registers

update

circuit

P × K bits

P bits

P- decoded

checksuminit

Information

bit Indices

L × P × K

L

crc state

registers

crc generator

matrix inputs

crc scrambler

crc bit positions K

K

K

K

L × K

L

Figure 4.9 – Architecture of the proposed parallel CRC check.

failed it with respect to the CRC state registers. The decoding of all the L competing
candidate paths should continue, otherwise the error detection capability brought by the
CRC will be damaged.

4.1.5 Proposed on-the-fly rate-flexible decoding of polar codes

To apply dedicated special node decoders for the 5G NR polar code, the types and
sizes of the nodes within the current frame need to be provided. The large flexibility in
frame and code rate leads to a large number of different frozen bit sets. This increases the
number of different special nodes, making it difficult to store in memory their number and
positions. To tackle this issue, we propose a new method to identify the different special
node structures (R0, Rep, SPC and R1) on-the-fly directly in hardware without the need to
store any list in memory. Their determination is done from the frozen set and by merging
different lower size special nodes into a new special node type of larger size. Whereas, the
node identification circuit proposed in [49] uses the bit-channel relative reliability vector
and should be instantiated at every decoding stage of the Layered-Partitioned SCL [49].

In order to illustrate our approach, let a0 and a1 be frozen set bits and v0 and v1 be
the two bits of the vector indicating the special node type. The sequence of v0 and v1 is
00 , 01 , 10 and 11 referring to R0, Rep, SPC, and R1 nodes respectively. For hardware
optimization purposes, we define a new special node type corresponding to the only case
where two bits from the frozen set do not represent any of the particular constituent
code listed above, i.e., the sequence {information , frozen} and is called No type node.
Henceforth, the sequence 10 (v0 = 1 and v1 = 0) refers to both No type and SPC nodes.
However, assuming having additional information on their size, these two special nodes

92

4.1. Proposed decoder architecture

cannot be overlapped. Indeed, SPC nodes start to be considered from length-4 patterns
by merging two special nodes of length greater or equal to two. Table 4.1 summarizes the
logic equations that identify the different above-mentioned special nodes.

Table 4.1 – Identification of the different special nodes based on the frozen set couple a0a1
for special nodes of length two, and based the on the 2-bit vectors v0v1 and v′0v′1 indicating
the type of the two nodes to merge for special nodes of length higher than two.

Node type R0 Rep R1 No type/
SPC

M = 2 ā0ā1 ā0a1 a0a1 a0ā1

M = 4
v̄0v̄1v̄′0v̄

′
1 v̄0v̄1v̄′0v

′
1 v̄0v1v

′
0v
′
1

v̄0v1v
′
0v
′
1

M ≥ 8 v0v̄1v
′
0v
′
1

Starting from a given frozen set, the structure of Fig. 4.10a is capable of determining
the different special node types of length two. For higher length nodes, the structure of
Fig. 4.10b intends to merge different lower size special nodes into a new special node type
of larger size based on the 2-bit vector v0v1 and v′0v′1 indicating the type of the two nodes
to merge. With one difference, a SPC node of length four is obtained by merging R1 and
Rep nodes of length two while a SPC node of length greater than four is obtained by
merging a R1 node and another SPC node (highlighted in red), hence the presence of the
MUX. Therefore, the two structures of Fig. 4.10a and Fig. 4.10b represent the building
blocks of the identifier intended to determine the different supported special node types of
any length.

To determine all the special node types for a polar code of length N and special nodes
of maximum length M , N/2 identifications of special nodes of length two (Fig. 4.10a)
followed by ∑logM−1

m=1 2logM−(m+1) identifications of special nodes of length greater that two
(Fig. 4.10b) are performed. The PC(8,4) given as an example in Fig. 4.11 comprises a
length-4 Rep node and a length-4 SPC node, highlighted in red. To obtain the list of all
existing special node types and sizes for this code, four instances of the structure depicted
in Fig. 4.10a and three instances of the structure depicted in Fig. 4.10b are needed for a full
parallel search. The output v0v1 (in blue) of each identification module, which corresponds
to the type of the special node, is appended by three additional bits to form the vector
V = [v0, v1, v2, v3, v4]. The two bits v2, v3 (in black) indicate the size of the encountered
node while v4 (in green) is a flag that tells whether it is a valid special node or not.

The set of instantiated modules used for determining the special nodes of length 2

93

Chapter 4 – Proposed 5G Polar Decoder

4
-to

-2
 en

co
d

er

a

a

a

a

Rate-0

Rep

Rate-1

No type
𝑣0

a

a𝑣1

𝑣0
′

𝑣1
′

4
-to

-2
 en

co
d

er

a

a
𝑣0
′

𝑣1
′ a

a
𝑣0
′

𝑣1
′

a𝑣1

a

a

a𝑣1

𝑣0

𝑣0
Rate-1

SPC

Rep

Rate-0

M

U

X

a

(b)(a)

𝑣0𝑣1
𝑣0𝑣1

𝑎0
𝑎1

𝑎0
𝑎1

𝑎0
𝑎1

𝑎0
𝑎1

Rate-1

Rate-1

Rep

Rate-0

Rate-0

Rep

SPC

Figure 4.10 – Proposed module for identification of constituent codes of different length:
(a) identification of the different special nodes of length two, (b) identification of the
different special nodes of length four and above.

01010

01010

11010

01101

10101

01110

Length-2

special

nodes

00010

𝑉

Fig. 4.10a Fig. 4.10b Valid special node

REP

SPC

Length-4

special

nodes

Length-8

special

node

Figure 4.11 – Identification of special nodes illustrated for a PC(8,4). This corresponds to
the architecture of an M-SNI with M = 8.

94

4.1. Proposed decoder architecture

M-SNI
M (M-1)q

(M
-1

)

log2M-bits

Counter

(M
-1

)-to
-1

 M
U

X
+

V

𝑉 registers

F
ro

zen
 set

N

Frozen

sub-set

M
×

(N
/M

-to
-1

) M
U

X

Figure 4.12 – Architecture of the proposed on-the-fly identification of special nodes (SNI).

to length M (Fig. 4.11) is called M-Special Node Identifier (M-SNI). Therefore, for a
polar code of length N and special nodes of maximum length M , N

M
M-SNI are required

for identifying in a single step all the existing special nodes. The identified special and
non-special nodes are stored together in register arrays in the same order as they are
searched during the decoding process. This reduces the complexity of multiplexing the
special node vectors V compared to the case where only valid ones are retained. Since the
successive cancellation decoder is sequential, the V vectors are read from the register one
at a time through a N

M
· (M − 1)-to-1 MUX. A log2 N -bit counter is used to generate the

register-based memory addresses. At each special node iteration search, the next vector
to read from the set of registers depends on the size and address of the previous one.
The complexity of the proposed architecture increases linearly with the code length N .
However, since the special nodes are searched only upon request, a low complexity serial
implementation is favoured. Thanks to the sequential nature of the SC-based decoding
algorithms, a single M-SNI used serially is able to produce the same results as the full
parallel search of special nodes with less hardware resources. Therefore, M × (N

M
)-to-1

multiplexers are used to process serially the frozen set bits in groups of M . The proposed
architecture for on-the-fly serial search of special nodes is depicted in Fig. 4.12. We refer
to this proposed architecture as Special Node Identifier (SNI).

95

Chapter 4 – Proposed 5G Polar Decoder

4.1.6 Control unit

The control signals needed by the different components of the decoder architecture
are provided by the control unit. It includes a Finite State Machine (FSM) that defines
the various phases of the decoding process. Several counters are used to generate the
addresses of the required memories previously described. To simplify the control, the PSN
memory addresses are also stored in a dedicated memory. The control unit includes a
couple of adders to update the information bit index after decoding a special node or
an information bit and to increment the bit index i. It also includes a shift register to
determine the current decoding stage. In order to manage the different control signals
of all the components supposed to operate in parallel to the main decoding process and
may last longer than one clock cycle depending on the length of decoded bits in SNLD,
pipeline registers are used. They first allow delaying CRC check, path memory writing
and PSN control signals and then hold these signals active as long as necessary during
the different states of the FSM. Finally, the control unit keeps checking if at least one
codeword candidate validates the CRC check, otherwise it triggers the early termination
of decoding.

4.2 Results and performance analysis

The devised decoder architecture has been described in VHDL using generic forms
for flexibility and scalability purposes. Application-specific VHDL packages that include
key functions and generic quantization signal types have been defined to support this
genericity. The validation of the decoder was done for each code length and for both
uplink and downlink polar codes through VHDL testbenchs. To do so, a Matlab software
implementation compatible with the design specifications supported by the proposed
decoder was developed and used as a reference during the validation process. It generates
the channel LLRs for the hardware testbench and performs as well the fixed point decoding
of the polar codes in software. At the end of the decoding process, the output of both
hardware and software decoders are compared.

4.2.1 Synthesis results

The proposed hardware architecture for decoding 5G NR polar codes has been imple-
mented on a Xilinx Virtex 7-xc7vx485t FPGA. Based on the quantization study presented

96

4.2. Results and performance analysis

Table 4.2 – FPGA synthesis results of the proposed 5G NR polar decoder

Block name LUTs FFs BRAMs
Soft data part (SDP) 8414 4672 64
Hard data part (HDP) 34533 11652 4

Special nodes list decoder (SNLD) 7482 3839 0
Special node identifier (SNI) 442 78 0

Control unit (CU) 469 223 0

in Section 3.1.3, the number of bits used to represent internal LLR, PM and channel LLR
values is Qi = 6, Qp = 7 and Qc = 4, respectively. Eight PEs are instantiated in the
architecture for each of the L paths, where L = 8. The maximum size of special nodes M
is set to 32. Internal LLRs and partial sum bits are stored in the FPGA dual-port Block
RAMs (BRAMs) while input LLRs and partial sum memory addresses are stored using
look-up tables (LUTs).

To analyze the impact of each hardware unit on the final hardware complexity, the
two parts SDP and HDP of Fig. 4.1 besides the special nodes list decoder, special node
identifier and control unit are synthesized separately and presented in Table 4.2. The
results show that the HDP occupies 67% and 57% of used LUTs and Flip-Flops (FF),
respectively. The high number of resources needed in this part comes from the path
memory unit where N × L 2-to-1 MUXes are used to perform copy/write operations of
the decoded bits stored in N × L FFs to allow the competition between codewords to
populate the list all along the decoding process. Furthermore, the SCL decoder relies on
interconnect networks to apply path selection function and routing of internal LLRs for
each of the L SC decoders. This significantly impacts the overall complexity. The total
number of BRAMs used to store the internal LLRs is 64, configured as 128 × 18kb RAMs,
which corresponds to the 8 pairs of RAM depicted in Fig. 4.2. On the other hand, the
RAMs used to store the partial sums require 4 BRAMs configured as 8 × 18Kb RAMs.

Decoding latency is the main critical performance metric when considering the 5G
NR polar codes that protect the control channel. A target end-to-end latency of 0.5 ms
implies a physical layer latency of 50 µs [34, 67]. Flexibility and low latency are the driving
priority for the design of this channel decoder, which is the main demanding component
of the physical layer. For 5G NR polar codes, the latency for decoding one codeword is
not constant and is highly affected by the choice of the operating code length and code
rate. In order to give a full analysis of the latency, all combinations of code lengths and

97

Chapter 4 – Proposed 5G Polar Decoder

Table 4.3 – Average and maximum latency measured for the proposed decoder.

Worst-case latency Average Latency
N # code cc [µs] cc [µs]

Downlink

64 435 146 1.35 121 1.11
128 3451 284 2.63 207 1.91
256 9452 483 4.47 376 3.47
512 2286 780 7.22 719 6.65

Uplink 1024 3491 2583 23.91 1914 17.72

code rates ranging from R = 1/8 to R = 5/6 are evaluated through simulations. Table 4.3
provides the average and the worst-case latency for decoding one codeword. The latency
is measured in number of clock cycles (cc) and in µs considering the maximum clock
frequency fmax = 108 MHz. The results show that the maximum latency recorded by the
decoder is 23.91 µs which is 2.1 times lower than the physical layer latency constraint.
This worst-case latency appears in the uplink scenario, whereas it is only 7.22 µs in the
downlink.

4.2.2 Comparison with state-of-the-art FPGA implementations

Logic synthesis and performance results are summarized in Table 4.4. Implementations
that are fully compatible with 5G code specifications, in terms of code structure and
flexibility, allow for direct and fair comparisons. Therefore, the recently available Xilinx
polar decoder [95] is the most relevant reference with respect to the available decoder
designs in the literature. Performance results of Xilinx decoder are available, yet with no
published details on the architecture. Compared to this decoder, our proposed architecture
has 60% and 70% less decoding latency for the uplink (1024,512) and the downlink (512,40)
polar codes, respectively. Our design consumes 38% less Flip-Flops (FFs), but 11% more
LUTs and 25% more BRAMs. The throughput, however, does not compare favorably, yet
still compliant with the 5G NR requirement for this code used for the control channel.

In order to extend the comparison, we have considered recent designs that targeted
FPGA implementation with similar code length, yet not compliant with 5G NR polar
codes. For that, a second configuration of our proposed architecture has been designed and
synthesized with L = 4 while keeping the number of PEs per list unchanged. Compared
to the folding polar decoder of [61], our decoder uses 74% less LUTs and 6% less FFs

98

4.3. Multi-frame decoding

Table 4.4 – Comparison with existing FPGA-based SCL Architectures.

Decoder [61] [96] [60] This work Xilinx [95] This work

List size 4 8

Algorithm SCL SCL SSCL1 SSCL2 NA SSCL2

Flexibility Limited Limited Limited High High High
Quantization NA 5 NA (4,6,7) 8 (4,6,7)

PE 64 64 64 8 NA 8
fop (MHz) N/A 42.66 445.2 108 223 108

FPGA Device stratix V Kintex 7 stratix V xc7vx485t xc7vx485t xc7vx485t
ALMs/LUTs 101160 142961 8146 26049 45569 51262

FFs 13544 19795 2862 12603 33063 20270
BRAMs 0 0 0 34 51.5 68

(N,R) (1024,0.5) (1024,0.5) (1024,0.5) (1024,0.5) (512,0.07) (1024,0.5) (512,0.07) (1024,0.5)
Latency (µs) 40643 8.9 1177 10.73 11.35 46.41 4.76 18.37
TP (Mbps) N/A 40.93 0.452 47.7 28.68 88.4 8.4 34.4

1 Stochastic SCL with 2-level decoding
2 Simplified SCL with four constituent codes
3 Number of cycle cycles

while decoding the (1024,512) code in less than half the time (converted in clock cycles).
However, without any reported clock frequency, the latency comparison is not complete.
Compared to the stochastic SCL decoder of [60] targeting wearable and IoT devices with
strict hardware constraints, our decoder supporting rate and frame size flexibility exhibits
109 times less latency while requiring 3.2 times and 4.4 times the numbers of LUTs and
FFs, respectively.

4.3 Multi-frame decoding

In the previous chapter, we have shown the impact of P on the decoding latency of
polar codes in particular those selected in 5G NR. We have come to the conclusion that
the utilization rate of PEs is relatively low in particular at low decoding stages where the
ratio of used PEs to P tends to zero especially when P is high. In this section, we aim
to improve the hardware utilization of the proposed decoder using the first multi-frame
decoding approach presented in Chapter 3 based on the re-use of the available hardware
resources to increase the throughput of the decoder. To do this, we take advantage of
the flexibility required by the 5G NR polar codes in terms of block length to use this
feature of the decoder to support the parallel decoding of two frames of lengths N≤ 512.
The proposed decoder architecture is similar to the one proposed earlier in this chapter
with additional improvements, in particular in terms of memory storage management.
Therefore, it preserves all the features of flexibility required in the context of 5G NR polar

99

Chapter 4 – Proposed 5G Polar Decoder

codes. Thus, the same memory structure, computational and logical operation units are
used for the different storage needs and for LLR update rules, partial sums and CRC check
computation. However, some of these functional components and memory resources are
duplicated to support concurrent decoding of two polar code frames without increasing
the control complexity of the decoding.

Following this approach, the memories used to store the different types of data and
metrics of the polar decoder are either duplicated or managed to support the multi-frame
decoding process. In this design, we propose to duplicate partial-sum memory as part
of duplicating the entire partial-sum network described in Section 4.1.3 and to duplicate
the pointers memory to keep track of the surviving L codewords for each decoded frame.
Furthermore, the same memories designed in Section 4.1.1 are used to store LLRs of both
frames. The depth of the internal memory required to store these LLRs is:

MEMLLR = T ·
log2

N
T
−1∑

j=p+1
2j/2P + T ·

p∑
1

1 = Nmax

2P + T · (log2 P − 1) , (4.5)

where, T , the number of frames decoded in parallel, is equal to two.
The number of FFs dedicated to store the estimated bits in the former decoder is

sufficient to store the estimated bits of the different frames. Therefore, a new control
management is introduced for this purpose. A generic architecture of the path memory
access is proposed, in which the N FFs used to store codeword bits of a polar code frame
of length N = 1024 bits are used to store the codeword bits of multiple frames of length
(N/T ≤ 1024). The path memory access to a single entrance list for T = 8 is illustrated in
Fig. 4.13. The set of FFs is divided in T groups of N/T . Each group is associated with a
log2(N/T)-to-N/T decoder that provides it with enable signals. A combinational circuit
is used to generate the write signal to select the group(s) of FFs that are addressed in a
given time depending on the frame index and length.

The decoder architecture offering the capability of decoding two frames according to
the proposed multi-frame decoding approach is designed. With this architecture, the
decoder is still compliant with the 5G NR polar codes in terms of code length and code rate
flexibility. This architecture is then described in VHDL. Synthesis results on Xilinx Virtex
7-xc7vx485t FPGA device are presented in Table 4.5 for one and two-frame decoding
architectures. The number of bits used to represent internal LLR, PM and channel LLR
values is Qi = 6, Qp = 7 and Qc = 4, respectively. Eight PEs are instantiated in the
architecture for each of the L paths, where L = 8. The maximum size of special nodes M

100

4.3. Multi-frame decoding

FF0,0 FF0,1 FF0,127 FF0,128 FF0,129 FF0,255 FF0,896 FF0,897 FF0,1023

Frame 8Frame 2Frame 1

MUX

Log2

7-to-128

Decoder

MUX

Log2

7-to-128

Decoder

MUX

Log2

7-to-128

Decoder

Combinational

logic

Number

of frames

Current

frame

index

Wr

Wr’1

Informa-

tion

index

Wr’2

Wr’8

Wr’1

Wr

Wr’2

Wr

Wr’8

ො𝑢𝑖→𝑖+𝑃−1,0

MUX MUX MUX MUX MUX MUX MUX MUX MUX

𝐿 𝐿 𝐿 𝐿 𝐿 𝐿 𝐿 𝐿 𝐿

𝑃

× 𝐿

Codeword(s) bits of one path: 𝑙 = 0

Enable

signal

Enable load

New bit

estimates

Enable

Load Path

competition

Figure 4.13 – Path memory access architecture of multiple polar code frames.

Table 4.5 – Synthesis results of the proposed decoder in FPGA for different value of T .

T LUTs FFs BRAMs
1 50793 20047 68
2 52982 21748 72

is set to 32. The synthesis results do not include the control unit. Nonetheless, all the
control signals required by the decoder are included into the architecture sub-block and
are seen as external signals of the top-level decoder architecture by the synthesis tool.

As we dedicate a partial sum network unit for each frame including partial sum
memories, we note that the number of 18kb BRAMs is increased by L = 8. It should be
noted that 68 BRAMs would be enough to store partial sums of both frames if control
management was introduced to manage partial sum memory addresses. When it comes to
LUTs, we see that their number is increased by only 4.3% when compared to the original
proposed decoder. This increase corresponds to the duplicated CRC unit and partial-sum
network in addition to the added multiplexing resources required by the decoder. Finally,
the number of required FFs is increased only by 8.4% when compared to the originally
proposed decoder.

The latency for decoding one and two frames with the proposed decoder was measured

101

Chapter 4 – Proposed 5G Polar Decoder

Table 4.6 – Latency and throughput of decoding one frame and two parallel frames with
the proposed decoder for different code lengths and code rates.

N R
T = 1 T = 2

Lat.(µs) TP(Mbps) Lat.(µs) TP(Mbps)

128

1/4 1.68 20.50 2.38 28.93
1/3 1.96 23.65 2.8 32.67
1/2 2.08 33.17 3.13 44.04
2/3 2.49 36.85 3.84 47.78

256

1/4 3.65 18.89 5.11 27.04
1/3 3.55 25.81 5.49 33.43
1/2 3.88 35.54 6.12 45.17
2/3 4.68 38.95 7.52 48.49

512

1/4 6.28 21.98 9.60 28.79
1/3 6.88 26.49 10.80 33.78
1/2 7.75 35.63 12.27 45.03
2/3 9.22 39.58 14.90 48.97

for various code rates, in particular R =1/4, 1/3, 1/2 and 2/3, for the 5G uplink polar
codes of lengths N =128, 256 and 512. Latency results and corresponding information
throughput considering the maximum clock frequency fmax = 108 MHz are provided in
Table 4.6. As expected, the latency of decoding one frame is increased when two frames are
decoded in parallel. For the selected code rates, the increase in latency ranges from 41% to
54%, from 39% to 60% and from 52% to 61% for N = 128, 256 and 512 bits, respectively.
On the other hand, the throughput is increased as also expected. This increase ranges
from 29% to 41%, from 24% to 43% and from 23% to 30% for N = 128, 256 and 512,
respectively.

4.4 Summary

In this chapter we proposed an original hardware architecture for decoding the 5G
NR polar codes of the uplink and the downlink control channels. We have detailed all
the different elements that compose the proposed architecture, in this case, the memory
structure, the computational units and the permutation networks. An original special node
list decoder and multi-bit calculation of partial sums and CRC were also proposed and
detailed in this chapter. Thanks to a special node identifier, the proposed decoder continues

102

4.4. Summary

to benefit from tree pruning techniques to speed-up the decoding whilst maintaining
compliance with the 5G NR and the various defined combinations of code rate and code
length. The proposed decoder was described in VHDL, validated and synthesized for
FPGA target technology. A thorough analysis of the key performance indicators of the
decoder, including decoding latency, throughput and FPGA utilization resources was
provided and comparisons with state-of-the-art polar code FPGA implementations were
conducted. Indeed, measured throughput and latency values of the proposed decoder
obtained with an FPGA target are able to meet 5G requirements. Moreover, synthesis
results have shown a hardware efficiency that compared favourably with state-of-the-art
FPGA implementations of polar codes. Our proposed decoder design reduces decoding
latency and complexity compared to the recently available Xilinx polar decoder, the
only published fully-compliant 5G NR. Finally, we have proposed a new way of decoding
multiple frame of polar codes on the basis of the proposed decoder architecture with
only a minor modification that still preserves the decoder flexibility. A straightforward
implementation of this idea has been performed and results have been discussed.

103

Chapter 5

Conclusion and future work

Conclusion

The work presented in this manuscript targeted the investigation of the impact of
main code and decoder design parameters on the latency, throughput, and the hardware
complexity of semi-parallel decoding architectures and the proposition and implementation
of an original hardware architecture for decoding the 5G NR polar codes.

In Chapter 2, the basic concepts of polar codes have been reviewed together with
detailed presentation of the successive cancellation decoding algorithm and the different
recent variants proposed in the literature to improve the decoding performance. Particular
emphasis has been placed in this chapter on tree-pruning techniques, motivated by their
positive impact on latency and throughput. The chapter has introduced, in addition,
the specification of the polar codes adopted in 5G NR, necessary for comprehending the
contributions proposed in the subsequent chapters.

In Chapter 3, the simulation model developed to integrate the full encoding and
decoding scheme of the polar codes of 5G NR is presented alongside the communication
channel and the different operations of interleaving and rate-matching. This software
model was used to evaluate the performance of 5G polar codes under different types of
fast decoding SC algorithms and was used to evaluate the performance of the decoder
architecture with different parameters related to quantization and parallelism. The design
space of the semi-parallel polar decoder was explored in terms of algorithm parallelism

105

Chapter 5 – Conclusion and future work

choices and hardware complexity. Both algorithmic and architectural design levels were
taken into consideration in addition to various tree-pruning techniques in order to evaluate
the relationship between hardware complexity and key performance indicators of polar
decoders. In particular, the latency and throughput performance of the SC-based decoders
were targeted. Moreover, the activity of the different processing units of the SC-based
decoders, including processing elements and special node decoders, was evaluated. The
possibility of decoding multiple codewords with a minimum amount of added resources
while preserving the flexibility of the architecture was studied and a suitable solution
was provided. This latter was motivated by the resulting improvement in the decoding
throughput and the need for devising an efficient solution for blind decoding particularly
for the physical downlink control channel.

In Chapter 4, an original hardware architecture for decoding the 5G NR polar codes
of the uplink and the downlink control channel was proposed. We have detailed all the
different elements that compose the proposed architecture, i.e. the memory structure, the
computational units and the permutation networks. An original special node list decoder,
multi-bit calculation of partial sums and CRC check were also proposed and detailed
in this chapter. Thanks to a special node identifier, the proposed decoder continues
to benefit from tree pruning techniques to speed-up the decoding whilst maintaining
compliance with the 5G NR and the various defined combinations of code rates and code
lengths. The proposed decoder was described in VHDL, validated and synthesized for
FPGA target technology. A thorough analysis of the key performance indicators of the
decoder, including decoding latency, throughput and FPGA utilization resources was
provided and comparisons with state-of-the-art polar code FPGA implementations were
conducted. Indeed, measured throughput and latency values of the proposed decoder
obtained with an FPGA target are able to meet 5G requirements. Moreover, synthesis
results have shown a hardware efficiency that compared favourably with state-of-the-art
FPGA implementations of polar codes. Our proposed decoder design reduces decoding
latency and complexity compared to the recently available Xilinx polar decoder, the only
published fully-compliant 5G NR. Finally, we have proposed a new way to decode multiple
polar code frames simultaneously. While it is based on the proposed decoder architecture,
it introduces only a minor modification that still preserves the flexibility of the decoder.
A straightforward implementation of this idea has been performed and results have been
discussed.

106

Future work

The research conducted in this work showed that it was challenging to satisfy simultane-
ously decoding latency, extreme frame size and code rate flexibility, decoding performance
and efficient implementation constraints taking into account the short history of polar
codes. However, motivated by their adoption in 5G, the scientific community has made
and is still making important progress in this regard. This work constitutes a contribution
to this effort. Indeed, the proposed architecture is capable of operating in µs orders with
a relatively low decoding complexity and hence can fit the stringent constraints required
by the standard that selects polar codes to cover the control channel. However, extensions
and improvements are still possible in regards of the performed work. Below is a list of
suggested research study items:

1. A way forward following the results of Chapter 3 is to study and analyse the impact
of decoding other new special nodes [40] and generalized special nodes [22] on latency,
complexity and throughput. The analysis conducted in that chapter targeted the set
of 5G NR polar codes. Consequently, limited code and decoder design parameters
were considered. Therefore, future work could take into consideration variable list
sizes, larger polar codes and different sets of polar code constructions. Moreover,
other decoding algorithms such as SCF and BP could be considered for a broader
comparison and analysis.

2. In the last parts of Chapter 3, we have investigated the simultaneous decoding of
multiple frames of polar codes through the proposition of two efficient multi-frame
decoding approaches. A straightforward implementation for parallel decoding of two
frames, that uses alternately the same PEs and special nodes, of the same polar
code was designed. The next step, would be to design a new multi-frame decoding
architecture implementing the Fast-SSCL algorithm. Such an architecture based
on the second approach presented in Chapter 3 consists of duplicating the number
of PEs while using a unique special node decoder would significantly increase the
throughput while benefiting from the flexibility provided by the proposed decoder in
Chapter 4. Furthermore, extending this architecture to support simultaneous multi-
frame decoding of different block lengths and code rates could also be investigated.

3. The two multi-frame decoding approaches were introduced in the purpose of increasing
the throughput and the hardware efficiency of the decoder. Moreover, such an
approach is very useful for the blind decoding of the PDCCH polar codes [23, 69].

107

Chapter 5 – Conclusion and future work

Indeed, 44 PDCCH candidates are decoded at the user equipment (UE) to identify
the downlink control information (DCI) carrying the UE control information [1].
However, at the receiver, the UE does not need to decode the PDCCH candidate
that belongs to the search space with the list-augmented SC algorithm. Therefore, a
research study item would be to investigate the use of the proposed list-augmented
decoder (L = 8) as multiple SC decoder cores (L-SC) in order to reduce the search
space of candidates as a first phase of blind decoding [24]. Then, the list-augmented
SC decoder can be used for decoding a reduced number of candidates in the second
phase of decoding.

108

Bibliography

[1] 3GPP, “Physical layer procedures,” document 3GPP TS 36.213 V.8.2.0 (2018-06),
3rd Generation Partnership Project (3GPP), 2008. (Cit. on pp. xiii, 108).

[2] Technical specification group radio access network; study on scenarios and require-
ments for next generation access technologies, release 15, v15.0.0,” 3GPP, Valbonne,
France, 3GPP Rep. TR 38.913, May 2018. (Cit. on p. 3).

[3] 3GPP, “NR; Multiplexing and Channel Coding (Release 15),” Tech. Rep. TS
38.212V15.2.0 (2018-06), Jan. 2018. [Online]. Available: https://www.3gpp.org/
DynaReport/38-series.htm (cit. on pp. 12, 34, 39, 40).

[4] Orion Afisiadis, Alexios Balatsoukas-Stimming, and Andreas Burg, « A low-complexity
improved successive cancellation decoder for polar codes », 2014 48th Asilomar
Conference on Signals, Systems and Computers, IEEE, 2014, pp. 2116–2120 (cit. on
pp. 15, 23).

[5] Amin Alamdar-Yazdi and Frank R Kschischang, « A simplified successive-cancellation
decoder for polar codes », IEEE communications letters 15.12 (2011), pp. 1378–1380
(cit. on p. 25).

[6] NGMN Alliance, « 5G white paper », Next generation mobile networks, white paper
1.2015 (2015) (cit. on p. 3).

[7] Maryam Haghighi Ardakani et al., « Fast successive-cancellation-based decoders of
polar codes », IEEE Transactions on Communications 67.7 (2019), pp. 4562–4574
(cit. on p. 32).

109

https://www.3gpp.org/DynaReport/38-series.htm
https://www.3gpp.org/DynaReport/38-series.htm

BIBLIOGRAPHY

[8] Erdal Arikan, « A performance comparison of polar codes and Reed-Muller codes »,
IEEE Communications Letters 12.6 (2008), pp. 447–449 (cit. on p. 16).

[9] Erdal Arikan, « Channel polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels », IEEE Transactions on
information Theory 55.7 (2009), pp. 3051–3073 (cit. on pp. 12, 13, 15, 16).

[10] Erdal Arikan, « Channel polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels », IEEE Transactions on
information Theory 55.7 (2009), pp. 3051–3073 (cit. on pp. 12, 22).

[11] Erdal Arıkan, « Polar codes: A pipelined implementation », Proc. 4th ISBC (2010),
pp. 11–14 (cit. on pp. 15, 21).

[12] Jung Hyun Bae et al., « An overview of channel coding for 5G NR cellular commu-
nications », APSIPA Transactions on Signal and Information Processing 8 (2019)
(cit. on p. 3).

[13] Alexios Balatsoukas-Stimming, Mani Bastani Parizi, and Andreas Burg, « LLR-
Based Successive Cancellation List Decoding of Polar Codes », IEEE Transactions
on Signal Processing 63.19 (2015), pp. 5165–5179, doi: 10.1109/TSP.2015.2439211
(cit. on p. 43).

[14] Alexios Balatsoukas-Stimming, Mani Bastani Parizi, and Andreas Burg, « LLR-
based successive cancellation list decoding of polar codes », IEEE transactions on
signal processing 63.19 (2015), pp. 5165–5179 (cit. on pp. 46, 50).

[15] Alexios Balatsoukas-Stimming, Mani Bastani Parizi, and Andreas Burg, « On
metric sorting for successive cancellation list decoding of polar codes », 2015 IEEE
International Symposium on Circuits and Systems (ISCAS), IEEE, 2015, pp. 1993–
1996 (cit. on p. 20).

[16] Alexios Balatsoukas-Stimming et al., « Hardware Architecture for List Successive
Cancellation Decoding of Polar Codes », IEEE Transactions on Circuits and Systems
II: Express Briefs 61.8 (2014), pp. 609–613, doi: 10.1109/TCSII.2014.2327336
(cit. on p. 42).

[17] Valerio Bioglio, Carlo Condo, and Ingmar Land, « Design of polar codes in 5G new
radio », IEEE Communications Surveys & Tutorials (2020) (cit. on p. 35).

110

https://doi.org/10.1109/TSP.2015.2439211
https://doi.org/10.1109/TCSII.2014.2327336

BIBLIOGRAPHY

[18] Valerio Bioglio et al., « Two-step metric sorting for parallel successive cancellation
list decoding of polar codes », IEEE Communications Letters 21.3 (2016), pp. 456–
459 (cit. on p. 20).

[19] Ludovic Chandesris, Valentin Savin, and David Declercq, « An improved SCFlip
decoder for polar codes », 2016 IEEE Global Communications Conference (GLOBE-
COM), IEEE, 2016, pp. 1–6 (cit. on p. 23).

[20] Fengyi Cheng et al., « Bit-flip algorithm for successive cancellation list decoder of
polar codes », IEEE Access 7 (2019), pp. 58346–58352 (cit. on p. 23).

[21] Lalit Chettri and Rabindranath Bera, « A comprehensive survey on Internet of
Things (IoT) toward 5G wireless systems », IEEE Internet of Things Journal 7.1
(2019), pp. 16–32 (cit. on p. 3).

[22] Carlo Condo, Valerio Bioglio, and Ingmar Land, « Generalized fast decoding of
polar codes », 2018 IEEE Global Communications Conference (GLOBECOM),
IEEE, 2018, pp. 1–6 (cit. on pp. xiii, 28, 107).

[23] Carlo Condo, Seyyed Ali Hashemi, and Warren J Gross, « Blind detection with
polar codes », IEEE Communications Letters 21.12 (2017), pp. 2550–2553 (cit. on
pp. xiii, 34, 107).

[24] Carlo Condo et al., « Design and implementation of a polar codes blind detection
scheme », IEEE Transactions on Circuits and Systems II: Express Briefs 66.6
(2018), pp. 943–947 (cit. on pp. xiv, 108).

[25] Bin Dai et al., « Parity Check Aided SC-Flip Decoding Algorithms for Polar Codes »,
IEEE Transactions on Vehicular Technology 70.10 (2021), pp. 10359–10368 (cit. on
p. 23).

[26] Nghia Doan, Seyyed Ali Hashemi, andWarren J Gross, « Fast Successive-Cancellation
List Flip Decoding of Polar Codes », IEEE Access (2022) (cit. on p. 26).

[27] Zeynep B Kaykac Egilmez et al., « The development, operation and performance
of the 5G polar codes », IEEE Communications Surveys & Tutorials 22.1 (2019),
pp. 96–122 (cit. on pp. vii, 4).

[28] Furkan Ercan, Thibaud Tonnellier, and Warren J Gross, « Energy-efficient hardware
architectures for fast polar decoders », IEEE Transactions on Circuits and Systems
I: Regular Papers 67.1 (2019), pp. 322–335 (cit. on p. 46).

111

BIBLIOGRAPHY

[29] Furkan Ercan et al., « On error-correction performance and implementation of polar
code list decoders for 5G », 2017 55th annual allerton conference on communication,
control, and computing (allerton), IEEE, 2017, pp. 443–449 (cit. on p. 21).

[30] Furkan Ercan et al., « Partitioned successive-cancellation flip decoding of polar
codes », 2018 IEEE International Conference on Communications (ICC), IEEE,
2018, pp. 1–6 (cit. on p. 23).

[31] Furkan Ercan et al., « Practical dynamic SC-flip polar decoders: Algorithm and
implementation », IEEE Transactions on Signal Processing 68 (2020), pp. 5441–
5456 (cit. on p. 23).

[32] YouZhe Fan and Chi-ying Tsui, « An efficient partial-sum network architecture for
semi-parallel polar codes decoder implementation », IEEE Transactions on Signal
Processing 62.12 (2014), pp. 3165–3179 (cit. on pp. 89, 90).

[33] Ubaid U Fayyaz and John R Barry, « Low-complexity soft-output decoding of
polar codes », IEEE Journal on Selected Areas in Communications 32.5 (2014),
pp. 958–966 (cit. on p. 23).

[34] Gerhard P. Fettweis, « The Tactile Internet: Applications and Challenges », IEEE
Veh. Technol. Mag. 9.1 (2014), pp. 64–70 (cit. on p. 97).

[35] Robert Gallager, « Low-density parity-check codes », IRE Transactions on infor-
mation theory 8.1 (1962), pp. 21–28 (cit. on p. 12).

[36] Pascal Giard and Andreas Burg, « Fast-SSC-flip decoding of polar codes », 2018
IEEE Wireless Communications and Networking Conference Workshops (WCNCW),
IEEE, 2018, pp. 73–77 (cit. on p. 26).

[37] Pascal Giard et al., « 237 Gbit/s unrolled hardware polar decoder », Electronics
Letters 51.10 (2015), pp. 762–763 (cit. on pp. 46, 47).

[38] Pascal Giard et al., « Multi-mode unrolled architectures for polar decoders », IEEE
Transactions on Circuits and Systems I: Regular Papers 63.9 (2016), pp. 1443–1453
(cit. on p. 47).

[39] Fatemeh Hamidi-Sepehr, Ajit Nimbalker, and Gregory Ermolaev, « Analysis of
5G LDPC codes rate-matching design », 2018 IEEE 87th Vehicular Technology
Conference (VTC Spring), IEEE, 2018, pp. 1–5 (cit. on p. 4).

112

BIBLIOGRAPHY

[40] Muhammad Hanif, Maryam H Ardakani, and Masoud Ardakani, « Fast list decoding
of polar codes: Decoders for additional nodes », 2018 IEEE Wireless Communica-
tions and Networking Conference Workshops (WCNCW), IEEE, 2018, pp. 37–42
(cit. on pp. xiii, 32, 33, 107).

[41] Muhammad Hanif and Masoud Ardakani, « Fast successive-cancellation decoding
of polar codes: Identification and decoding of new nodes », IEEE Communications
Letters 21.11 (2017), pp. 2360–2363 (cit. on p. 27).

[42] Seyyed Ali Hashemi, Carlo Condo, and Warren J Gross, « A fast polar code list
decoder architecture based on sphere decoding », IEEE Transactions on Circuits
and Systems I: Regular Papers 63.12 (2016), pp. 2368–2380 (cit. on pp. 28, 30, 32).

[43] Seyyed Ali Hashemi, Carlo Condo, and Warren J Gross, « Fast and flexible
successive-cancellation list decoders for polar codes », IEEE Transactions on Signal
Processing 65.21 (2017), pp. 5756–5769 (cit. on pp. 31, 32, 42, 46, 52).

[44] Seyyed Ali Hashemi, Carlo Condo, and Warren J Gross, « List sphere decoding of
polar codes », 2015 49th Asilomar Conference on Signals, Systems and Computers,
IEEE, 2015, pp. 1346–1350 (cit. on p. 29).

[45] Seyyed Ali Hashemi, Carlo Condo, and Warren J Gross, « Simplified successive-
cancellation list decoding of polar codes », 2016 IEEE International Symposium on
Information Theory (ISIT), IEEE, 2016, pp. 815–819 (cit. on pp. 26, 29, 30, 32).

[46] Seyyed Ali Hashemi, Carlo Condo, and Warren J. Gross, « Simplified Successive-
Cancellation List decoding of polar codes », IEEE International Symposium on
Information Theory (ISIT), 2016, pp. 815–819, doi: 10.1109/ISIT.2016.7541412
(cit. on p. 29).

[47] Seyyed Ali Hashemi et al., « On the performance of polar codes for 5G eMBB control
channel », 2017 51st Asilomar Conference on Signals, Systems, and Computers,
IEEE, 2017, pp. 1764–1768 (cit. on p. 4).

[48] Seyyed Ali Hashemi et al., « Partitioned successive-cancellation list decoding of
polar codes », 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Ieee, 2016, pp. 957–960 (cit. on p. 21).

[49] Seyyed Ali Hashemi et al., « Rate-flexible fast polar decoders », IEEE Transactions
on Signal Processing 67.22 (2019), pp. 5689–5701 (cit. on p. 92).

113

https://doi.org/10.1109/ISIT.2016.7541412

BIBLIOGRAPHY

[50] Jui-Hui Hung and Sau-Gee Chen, « A 1.45 Gb/s (576,288) LDPC decoder for
802.16 e standard », 2007 IEEE International Symposium on Signal Processing and
Information Technology, IEEE, 2007, pp. 916–921 (cit. on p. 21).

[51] Nadine Hussami, Satish Babu Korada, and Rudiger Urbanke, « Performance of
polar codes for channel and source coding », 2009 IEEE International Symposium
on Information Theory, IEEE, 2009, pp. 1488–1492 (cit. on p. 15).

[52] Byeong Yong Kong, Hoyoung Yoo, and In-Cheol Park, « Efficient sorting architecture
for successive-cancellation-list decoding of polar codes », IEEE Transactions on
Circuits and Systems II: Express Briefs 63.7 (2016), pp. 673–677 (cit. on p. 20).

[53] Satish Babu Korada, Eren Şaşoğlu, and Rüdiger Urbanke, « Polar codes: Characteri-
zation of exponent, bounds, and constructions », IEEE Transactions on Information
Theory 56.12 (2010), pp. 6253–6264 (cit. on p. 40).

[54] Bertrand Le Gal et al., « Low-latency sorter architecture for polar codes successive-
cancellation-list decoding », 2020 IEEE Workshop on Signal Processing Systems
(SiPS), IEEE, 2020, pp. 1–5 (cit. on p. 20).

[55] Camille Leroux et al., « A Semi-Parallel Successive-Cancellation Decoder for Polar
Codes », IEEE Transactions on Signal Processing 61.2 (2013), pp. 289–299, doi:
10.1109/TSP.2012.2223693 (cit. on pp. 6, 48, 50, 57, 58, 66, 70, 80, 89).

[56] Camille Leroux et al., « Hardware architectures for successive cancellation decoding
of polar codes », IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2011, pp. 1665–1668 (cit. on p. 70).

[57] Bin Li, Hui Shen, and David Tse, « An adaptive successive cancellation list decoder
for polar codes with cyclic redundancy check », IEEE communications letters 16.12
(2012), pp. 2044–2047 (cit. on p. 21).

[58] Huan Li, « Enhanced metric sorting for successive cancellation list decoding of
polar codes », IEEE Communications Letters 22.4 (2018), pp. 664–667 (cit. on
p. 20).

[59] Huijun Li and Jinhong Yuan, « A practical construction method for polar codes in
AWGN channels », IEEE 2013 Tencon-Spring, IEEE, 2013, pp. 223–226 (cit. on
p. 40).

[60] Xiao Liang et al., « Efficient stochastic successive cancellation list decoder for polar
codes », Science China Information Sciences 63.10 (2020), pp. 1–19 (cit. on p. 99).

114

https://doi.org/10.1109/TSP.2012.2223693

BIBLIOGRAPHY

[61] Xiao Liang et al., « Hardware efficient and low-latency CA-SCL decoder based on
distributed sorting », 2016 IEEE Global Communications Conference (GLOBE-
COM), IEEE, 2016, pp. 1–6 (cit. on pp. 98, 99).

[62] Jun Lin, Chenrong Xiong, and Zhiyuan Yan, « A high throughput list decoder
architecture for polar codes », IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 24.6 (2015), pp. 2378–2391 (cit. on p. 43).

[63] Jun Lin and Zhiyuan Yan, « A hybrid partial sum computation unit architecture
for list decoders of polar codes », IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, 2015, pp. 1076–1080 (cit. on p. 89).

[64] Chih-Hao Liu et al., « An LDPC decoder chip based on self-routing network for
IEEE 802.16 e applications », IEEE Journal of Solid-State Circuits 43.3 (2008),
pp. 684–694 (cit. on p. 21).

[65] Chih-Hao Liu et al., « Design of a multimode QC-LDPC decoder based on shift-
routing network », IEEE Transactions on Circuits and Systems II: Express Briefs
56.9 (2009), pp. 734–738 (cit. on p. 21).

[66] Xiaocheng Liu et al., « A 5.16 Gbps decoder ASIC for polar code in 16nm FinFET »,
2018 15th International Symposium on Wireless Communication Systems (ISWCS),
IEEE, 2018, pp. 1–5 (cit. on p. 46).

[67] Robert G Maunder, « The 5G channel code contenders », AccelerComm white paper
(2016), pp. 1–13 (cit. on p. 97).

[68] Anadi Mishra et al., « A successive cancellation decoder ASIC for a 1024-bit polar
code in 180nm CMOS », 2012 IEEE Asian solid state circuits conference (A-SSCC),
IEEE, 2012, pp. 205–208 (cit. on p. 46).

[69] Reza Moosavi and Erik G Larsson, « A fast scheme for blind identification of
channel codes », 2011 IEEE Global Telecommunications Conference-GLOBECOM
2011, IEEE, 2011, pp. 1–5 (cit. on pp. xiii, 107).

[70] Mahsa Mousavi et al., « Efficient partial-sum network architectures for list successive-
cancellation decoding of polar codes », IEEE Transactions on Signal Processing
66.14 (2018), pp. 3848–3858 (cit. on pp. 89, 90).

[71] Seho Myung, Kyeongcheol Yang, and Jaeyoel Kim, « Quasi-cyclic LDPC codes for
fast encoding », IEEE Transactions on Information Theory 51.8 (2005), pp. 2894–
2901 (cit. on p. 12).

115

BIBLIOGRAPHY

[72] Kai Niu and Kai Chen, « CRC-aided decoding of polar codes », IEEE communica-
tions letters 16.10 (2012), pp. 1668–1671 (cit. on pp. 20, 21).

[73] Kai Niu and Kai Chen, « Stack decoding of polar codes », Electronics letters 48.12
(2012), pp. 695–697 (cit. on pp. 15, 23).

[74] Klaus Pedersen and Troels Kolding, « Overview of 3GPP New Radio Industrial
IoT Solutions », Wireless Networks and Industrial IoT: Applications, Challenges
and Enablers, ed. by Nurul Huda Mahmood et al., Cham: Springer International
Publishing, 2021, pp. 3–20, isbn: 978-3-030-51473-0, doi: 10.1007/978-3-030-
51473-0_1, url: https://doi.org/10.1007/978-3-030-51473-0_1 (cit. on
p. 3).

[75] Charles Pillet, Valerio Bioglio, and Carlo Condo, « On list decoding of 5G-NR
polar codes », 2020 IEEE Wireless Communications and Networking Conference
(WCNC), IEEE, 2020, pp. 1–6 (cit. on p. 4).

[76] Charles Pillet, Carlo Condo, and Valerio Bioglio, « SCAN list decoding of polar
codes », ICC 2020-2020 IEEE International Conference on Communications (ICC),
IEEE, 2020, pp. 1–6 (cit. on p. 23).

[77] Mohammad Rowshan et al., « Logarithmic Non-uniform Quantization for List
Decoding of Polar Codes », 2021 IEEE 11th Annual Computing and Communication
Workshop and Conference (CCWC), IEEE, 2021, pp. 1161–1166 (cit. on p. 43).

[78] Gabi Sarkis et al., « Fast list decoders for polar codes », IEEE Journal on Selected
Areas in Communications 34.2 (2015), pp. 318–328 (cit. on p. 21).

[79] Gabi Sarkis et al., « Fast Polar Decoders: Algorithm and Implementation », IEEE
Journal on Selected Areas in Communications 32.5 (2014), pp. 946–957, doi:
10.1109/JSAC.2014.140514 (cit. on p. 25).

[80] Kinza Shafique et al., « Internet of things (IoT) for next-generation smart systems:
A review of current challenges, future trends and prospects for emerging 5G-IoT
scenarios », Ieee Access 8 (2020), pp. 23022–23040 (cit. on p. 3).

[81] Claude Elwood Shannon, « A mathematical theory of communication », The Bell
system technical journal 27.3 (1948), pp. 379–423 (cit. on pp. 13, 39).

[82] Yifei Shen et al., « Enhanced belief propagation decoder for 5G polar codes with
bit-flipping », IEEE Transactions on Circuits and Systems II: Express Briefs 67.5
(2020), pp. 901–905 (cit. on p. 23).

116

https://doi.org/10.1007/978-3-030-51473-0_1
https://doi.org/10.1007/978-3-030-51473-0_1
https://doi.org/10.1007/978-3-030-51473-0_1
https://doi.org/10.1109/JSAC.2014.140514

BIBLIOGRAPHY

[83] Zukang Shen et al., « Overview of 3GPP LTE-advanced carrier aggregation for 4G
wireless communications », IEEE Communications Magazine 50.2 (2012), pp. 122–
130 (cit. on p. 3).

[84] Wenqing Song et al., « Efficient successive cancellation stack decoder for polar
codes », IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27.11
(2019), pp. 2608–2619 (cit. on p. 23).

[85] Ido Tal and Alexander Vardy, « How to construct polar codes », IEEE Transactions
on Information Theory 59.10 (2013), pp. 6562–6582 (cit. on p. 40).

[86] Ido Tal and Alexander Vardy, « List decoding of polar codes », 2011 IEEE In-
ternational Symposium on Information Theory Proceedings, 2011, pp. 1–5, doi:
10.1109/ISIT.2011.6033904 (cit. on p. 20).

[87] Ido Tal and Alexander Vardy, « List decoding of polar codes », IEEE Transactions
on Information Theory 61.5 (2015), pp. 2213–2226 (cit. on pp. 15, 18, 20).

[88] TechSpot, Everything you need to know about 4g wireless technology, TechSpot
https://www.techspot.com/guides/272-everything-about-4g/. 2010 (cit. on
p. 3).

[89] Harish Vangala, Emanuele Viterbo, and Yi Hong, « A comparative study of polar
code constructions for the AWGN channel », arXiv preprint arXiv:1501.02473
(2015) (cit. on p. 40).

[90] Tao Wang, Daiming Qu, and Tao Jiang, « Parity-check-concatenated polar codes »,
IEEE Communications Letters 20.12 (2016), pp. 2342–2345 (cit. on p. 35).

[91] Xiumin Wang et al., « Improved metric sorting for successive cancellation list
decoding of polar codes », IEEE Communications Letters 23.7 (2019), pp. 1123–
1126 (cit. on p. 20).

[92] Daolong Wu, Ying Li, and Yue Sun, « Construction and block error rate analysis
of polar codes over AWGN channel based on Gaussian approximation », IEEE
Communications Letters 18.7 (2014), pp. 1099–1102 (cit. on p. 40).

[93] ChenYang Xia et al., « An implementation of list successive cancellation decoder
with large list size for polar codes », 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), IEEE, 2017, pp. 1–4 (cit. on p. 46).

117

https://doi.org/10.1109/ISIT.2011.6033904
https://www.techspot.com/guides/272-everything-about-4g/

BIBLIOGRAPHY

[94] Luping Xiang et al., « CRC-aided logarithmic stack decoding of polar codes for
ultra reliable low latency communication in 3GPP new radio », IEEE Access 7
(2019), pp. 28559–28573 (cit. on p. 24).

[95] Xilinx, Intelectual property Polar Encoder/Decoder, https://www.xilinx.com/
products/intellectual-property/ef-di-polar-enc-dec.html#overview,
Reno, USA, November 2016 (cit. on pp. 98, 99).

[96] Chenrong Xiong et al., « An FPGA emulation platform for polar codes », 2016
IEEE International Workshop on Signal Processing Systems (SiPS), IEEE, 2016,
pp. 148–153 (cit. on p. 99).

[97] Yu Yongrun et al., « Successive cancellation list bit-flip decoder for polar codes »,
2018 10th International Conference on Wireless Communications and Signal Pro-
cessing (WCSP), IEEE, 2018, pp. 1–6 (cit. on p. 23).

[98] Yongrun Yu et al., « Belief propagation bit-flip decoder for polar codes », IEEE
Access 7 (2019), pp. 10937–10946 (cit. on p. 23).

[99] Bo Yuan and Keshab K Parhi, « Low-latency successive-cancellation polar decoder
architectures using 2-bit decoding », IEEE Transactions on Circuits and Systems I:
Regular Papers 61.4 (2013), pp. 1241–1254 (cit. on p. 46).

[100] Chuan Zhang and Keshab K Parhi, « Low-latency sequential and overlapped
architectures for successive cancellation polar decoder », IEEE Transactions on
Signal Processing 61.10 (2013), pp. 2429–2441 (cit. on p. 89).

[101] Si-yu Zhang and Behnam Shahrrava, « Enhanced BP decoding schemes of polar
codes », IET Communications 15.9 (2021), pp. 1133–1142 (cit. on p. 21).

[102] Yangcan Zhou, Jun Lin, and Zhongfeng Wang, « A new fast-ssc-flip decoding of
polar codes », ICC 2019-2019 IEEE International Conference on Communications
(ICC), IEEE, 2019, pp. 1–6 (cit. on p. 26).

[103] Yangcan Zhou, Jun Lin, and Zhongfeng Wang, « Improved fast-SSC-flip decoding
of polar codes », IEEE Communications Letters 23.6 (2019), pp. 950–953 (cit. on
p. 23).

118

https://www.xilinx.com/products/intellectual-property/ef-di-polar-enc-dec.html#overview
https://www.xilinx.com/products/intellectual-property/ef-di-polar-enc-dec.html#overview

Titre : Nouveaux défis dans la conception de décodeurs de codes polaires pour la 5G.
Mot clés : Codes correcteurs d’erreurs, codes polaires, décodage à annulation successive,

décodage à liste, faible latence, implémentation matérielle, flexibilité, FPGA.

Résumé : Proposés ces dernières années, les codes po-
laires représentent l’un des derniers apports à la famille des
codes correcteurs d’erreurs (FEC). Ils ont été adoptés comme
schéma de codage pour le canal de contrôle de la norme 5G NR
(New Radio) pour la cinquième génération de communications
mobiles cellulaires. Cependant, les exigences élevées intro-
duites par le canal de contrôle de la 5G en termes de flexibilité
de la longueur de code et du rendement de codage font que la
plupart des décodeurs matériels de codes polaires publiés anté-
rieurement sont inadaptés. En effet, ces derniers se sont princi-
palement focalisés sur des décodeurs à annulation successive
offrant un débit élevé, une flexibilité limitée et des pouvoirs de
correction d’erreurs réduits. Avec des contraintes strictes sur
le délai de bout en bout et sur la correction d’erreurs, la 5G
NR nécessite des architectures de décodeurs à liste à faible la-
tence. Dans ce contexte, plusieurs contributions originales sont
proposées dans ce travail de thèse. La première contribution
majeure est liée à l’exploration de l’espace de conception et
concerne l’étude de l’impact des principaux paramètres du code
et du décodeur sur la latence, le débit et la complexité maté-
rielle des architectures de décodage semi-parallèles. L’impact
de ces paramètres sur l’efficacité matérielle des architectures
semi-parallèles est important. Par conséquent, nous proposons
deux approches de décodage multi-trames qui augmentent le

débit et améliorent le taux d’utilisation des unités de traitement
de ces architectures. Des résultats analytiques détaillés et des
résultats de synthèse logique sont fournis et comparés pour une
large gamme de valeurs afin de constituer une référence pour
la mise en œuvre de décodeurs FEC flexibles mais efficaces
pour les codes polaires. Par ailleurs, un environnement logi-
ciel complet de simulation du codage/décodage de codes po-
laires est proposé pour évaluer les performances de différents
algorithmes dans une représentation des données en virgule
flottante et en virgule fixe. La deuxième contribution majeure
concerne la conception d’une architecture matérielle originale,
flexible et à faible latence, basée sur le décodage à liste des
codes polaires de la 5G NR. Ce résultat a été obtenu sur la
base de l’étude d’exploration de l’espace de conception, et mo-
tivé par le besoin de fournir un décodeur polaire efficace qui
supporte les niveaux de flexibilité et de latence requis pour le
standard. Le décodeur proposé supporte toutes les tailles de
trame et tous les rendements de code définis dans la 5G avec
des valeurs de débit et de latence conformes aux exigences de
la norme. En outre, l’architecture du décodeur a été étendue
pour supporter le schéma de décodage multi-trame proposé,
particulièrement adapté au décodage aveugle des informations
de contrôle de la liaison descendante.

Title: New challenges in designing polar code decoders for 5G
Keywords: Forward error correction, polar codes, successive cancellation decoding, list de-
coding, low latency, hardware design, flexibility, FPGA.

Abstract: Proposed in the last few years, polar codes rep-
resent one of the latest additions to the family of forward er-
ror correction (FEC) codes. They have been adopted as the
coding scheme in the control channel of the 3rd Generation
Partnership Project (3GPP) New Radio (NR) standard for the
fifth generation of cellular mobile communications (5G). How-
ever, the challenging requirements introduced by the 5G control
channel in terms of block length and code rate flexibility ren-
der unsuitable most of the previously published hardware polar
decoder implementations. Indeed, these latter focused mainly
on successive cancellation decoders with high throughput, lim-
ited flexibility and error correction capabilities. With stringent
constraints on end-to-end delay and error correction, the 5G
NR steers towards low-latency list-based decoder architectures.
In this context, several original contributions are proposed in
this thesis work. The first major contribution is related to de-
sign space exploration and concerns the study of the impact
of main code and decoder design parameters on the latency,
throughput, and the hardware complexity of semi-parallel de-
coding architectures. The impact of these parameters on the
hardware efficiency of semi-parallel architectures is significant.

Therefore, we propose two multi-frame decoding approaches
that increase the throughput and improve the utilisation rate of
the processing units of these architectures. Detailed analyti-
cal and logic synthesis results are provided and compared for
a large range of values in order to constitute a reference for
the implementation of flexible, yet efficient FEC decoders for
polar codes. Furthermore, a complete software simulation envi-
ronment of polar coding/decoding is proposed for performance
evaluation under different algorithms in both floating-point and
fixed-point data representation. The second major contribution
concerns the design of an original flexible and low-latency list-
based hardware architecture for decoding 5G NR polar codes.
This was achieved based on the design space exploration study,
and motivated by the need to provide a hardware-efficient polar
decoder that supports the required flexibility and latency levels
for 5G NR. The proposed design supports all the frame sizes
and code rates defined in 3GPP with throughput and latency val-
ues meeting the standard requirements. Furthermore, the de-
coder architecture has been extended to support the proposed
multi-frame decoding scheme, particularly suited for blind de-
coding of downlink control information.

	Summary (English)
	Résumé (Français)
	Acknowledgement
	Introduction
	Polar codes
	Polar codes
	Channel polarization
	Polar coding

	Decoding algorithms of polar codes
	Successive Cancellation decoding algorithm
	List-SC decoding algorithms
	Iterative decoders
	Other forms of decoding polar codes

	Tree-pruning techniques of polar codes
	Tree representation of SC polar decoders
	SC and SCL tree-pruning techniques
	Fast SCL decoders

	The polar code of 3GPP 5G NR
	CRC-bits attachment, scrambling and interleaving
	Sub-channel allocation and bits insertion
	Rate matching

	Summary

	Design space exploration for polar decoders
	Performance of 5G NR polar codes
	Proposed polar code simulator
	Performance of 5G NR polar codes with tree-pruning decoders
	Impact of quantization on the performance

	Hardware architectures
	Unrolled architectures
	Semi-parallel architectures
	Architectural and algorithmic parameters

	Latency analysis
	Influence of N and the number of PE on latency
	Influence of tree-pruning on latency

	Hardware complexity and throughput analysis
	Influence of the number of PE on hardware complexity
	Influence of tree pruning on hardware complexity
	Influence of PE and tree pruning on throughput

	Hardware efficiency analysis
	Activity of SC decoders
	Proposed multi-frame decoding techniques

	Summary

	Proposed 5G Polar Decoder
	Proposed decoder architecture
	Memory structure
	Special nodes decoding
	Partial sum network
	CRC calculation
	Proposed on-the-fly rate-flexible decoding of polar codes
	Control unit

	Results and performance analysis
	Synthesis results
	Comparison with state-of-the-art FPGA implementations

	Multi-frame decoding
	Summary

	Conclusion and future work
	Bibliography

