Albert Cohen

Rachel Bawden

Ronan Collobert

Rahma, Mathilde, Timothée, Évrard Angela Louis

Pierre-Alexandre Laurent

Virginie Charlotte

Stéphane Merci

Mark, Camille, Lowik, Matteo Alessandro Jie

Mariia

Nathanaël, Vlad, Hanhe, Fabien Jialin Andry

J'aimerais remercier les membres de mon jury : mes rapporteurs

Élisa Fromont. Merci d'avoir pris le temps de lire et d'évaluer ce manuscrit, ainsi que ma future soutenance. Je remercie aussi Tristan, mon directeur de thèse. Merci pour le temps que tu as accordé à mon encadrement, tes conseils avisés, et l'aide que tu m'as apportée. Merci aussi à mon directeur de thèse à Facebook: Olivier. Merci pour tes conseils, aussi bien professionnels que scientifiques qui m'ont aidé pendant ma thèse et m'aideront encore après. Merci pour la bienveillance dont tu as toujours su faire preuve tout a long de ma thèse. Tu as toujours été attentif et soucieux avant tout de mon bien être et de ma réussite professionnelle. Je voudrais aussi remercier tout particulièrement Guillaume, qui a été comme un troisième encadrant de thèse pour mes travaux sur le machine learning pour les langages de programmation et m'a appris à m'améliorer au baby-foot lorsque le bureau était encore ouvert. Merci à Marie-Anne, ma principale collaboratrice, et qui faisait partie avec moi des contributeurs principaux pour TransCoder et DOBF. Merci à Marc, avec qui je collabore aujourd'hui. Merci aussi à Gabriel, qui m'a beaucoup appris scientifiquement et sur l'organisation de projets et a été d'une aide précieuse.

Résumé

Un transcompilateur est un système qui convertit le code source d'un langage de programmation de haut niveau (tel que C++ ou Python) vers un autre. Les transcompilateurs sont principalement utilisés pour l'interopérabilité et pour transférer des bases de code écrites dans un langage obsolète (par exemple COBOL ou Python 2) vers un langage plus moderne. Ils reposent généralement sur des règles de réécriture manuelles, appliquées à l'arbre de syntaxe abstraite du code source.

Malheureusement, les traductions qui en résultent manquent souvent de lisibilité, ne respectent pas les conventions du langage cible et nécessitent des modifications manuelles pour fonctionner correctement. Le processus global de traduction prend du temps et nécessite une expertise à la fois dans les langages source et cible, ce qui rend les projets de traduction de code coûteux. Bien que les modèles neuronaux surpassent considérablement leurs homologues basés sur des règles dans le cadre de la traduction en langues naturelles, leurs applications à la transcompilation ont été limitées en raison de la rareté des données parallèles dans ce domaine. Nous proposons des méthodes pour entraîner des transcompilateurs neuronaux efficaces sans données supervisées.

Les traducteurs de langues naturelles sont évalués avec des métriques basées sur la cooccurrence de tokens entre la traduction et la référence. Nous remarquons que ces métriques ne capturent pas la sémantique des langages de programmation. Nous construisons et publions donc une base de données de tests composée de 852 fonctions parallèles, ainsi que de tests unitaires pour vérifier l'exactitude sémantique des traductions. Nous exploitons d'abord les objectifs conçus pour les langues naturelles afin d'apprendre des représentations multilingues du code source, et entraînons un modèle à traduire, en utilisant seulement le code monolingue de projets open source GitHub. Ce modèle surpasse les méthodes basées sur des règles pour la traduction de fonctions entre C++, Java et Python. Ensuite, nous développons une méthode de pré-entraînement, amenant le modèle à apprendre des représentations sémantiques du code. Cela conduit à des performances améliorées sur plusieurs tâches, y compris la traduction de code non supervisée. Enfin, nous utilisons des tests unitaires automatisés pour créer des exemples de traductions de programmes. Entraîner un modèle sur ces exemples conduit à des améliorations significatives des performances de nos transcompilateurs neuronaux. Nos méthodes reposent exclusivement sur du code source monolingue, ne nécessitent aucune expertise dans les langues source ou cible, et peuvent facilement être généralisées à d'autres langages.

Chapter 1 Introduction

A transcompiler, transpiler, or source-to-source compiler, is a translator which converts between programming languages that operate at a similar level of abstraction.

Transcompilers differ from traditional compilers that translate source code from a high-level to a lower-level programming language (e.g. assembly language) to create an executable. Initially, transcompilers were developed to port source code between different platforms (e.g. convert source code designed for the Intel 8080 processor to make it compatible with the Intel 8086). More recently, new languages have been developed (e.g. CoffeeScript, TypeScript, Dart, Haxe) along with dedicated transcompilers that convert them into a popular or omnipresent language (e.g. JavaScript).

These new languages address some shortcomings of the target language by providing new features such as list comprehension (CoffeeScript), object-oriented programming and type checking (TypeScript), while detecting errors and providing optimizations.

These languages are designed to be compiled to another high-level programming language with a perfect accuracy (i.e. the compiled language does not require manual adjustments to work properly). In this thesis, we are more interested in the traditional type of transcompilers, where typical use cases are to translate an existing codebase written in an obsolete or deprecated language (e.g. COBOL, Python 2) to a recent one, or to integrate code written in a different language to an existing codebase.

Migrating an existing codebase to a modern or more efficient language like Java or C++ requires expertise in both the source and target languages, and is often costly. For instance, the Commonwealth Bank of Australia spent around $750 million and 5 years of work to convert its platform from COBOL to a more modern language.

Using a transcompiler and manually adjusting the output source code may be a faster and cheaper solution than rewriting the entire codebase from scratch. In natural language, recent advances in neural machine translation have been widely accepted, even among professional translators, who rely more and more on automated machine translation systems. A similar phenomenon could occur in programming language translation in the future.

Translating source code from one Turing-complete language to another is always possible in theory. Unfortunately, building a translator is difficult in practice: different languages can have a different syntax, and rely on different platform APIs and standard-library functions. Currently, the majority of transcompilation tools are rule-based; they essentially tokenize the input source code and convert it into an Abstract Syntax Tree (AST), on which they apply handcrafted rewrite rules.

Creating them requires a lot of time, and advanced knowledge in both the source and target languages. Moreover, translating from a dynamically-typed language (e.g. Python) to a statically-typed language (e.g. Java) requires to infer the variable types which is difficult in itself, if not impossible.

The applications of neural machine translation (NMT) to programming languages have long been limited, mainly because of the lack of parallel resources available in this domain. In this thesis, we propose unsupervised machine translation approaches, leveraging a large amount of monolingual source code from GitHub to train a model, to translate between three popular languages: C++, Java and Python. To evaluate our models, we create a test set of 852 parallel functions, along with associated unit tests.

Although never provided with parallel data, our models manage to translate functions with a high accuracy, and to properly align functions from the standard libraries across the three languages, outperforming rule-based and commercial baselines by a significant margin. Our approaches require little knowledge in the source or target languages, and can easily be extended to most programming languages with sufficient available data. Although not perfect, our methods could help reduce the amount of work and the level of expertise required to successfully translate a codebase. The main contributions of this thesis are the following:

• We introduce novel approaches to translate functions from a programming language to another, that is purely based on monolingual source code and requires no expertise in either the source or the target languages.

• We show that our methods successfully manage to grasp complex patterns specific to each language, and to translate them to other languages.

Chapter 1. Introduction

• We demonstrate that fully unsupervised methods outperform commercial systems that leverage rule-based methods and advanced programming knowledge.

• Using automatically generated unit tests, we generate tens of thousands of aligned functions, which can substantially improve the performance of unsupervised translation models.

• We build and release a validation and a test set composed of 852 parallel functions in 3 languages, along with unit tests to evaluate the correctness of generated translations.

• Our code and pre-trained models are publicly available1 .

Thesis Structure

This thesis presents novel unsupervised approaches for source code translation. They brought significant improvements to the state-of-the-art in code translation, which are illustrated in Figure 1.1 and detailed in each chapter.

Chapter 2 In this chapter, we survey related works in sequence modelling, code synthesis, code comprehension and program translation. We also introduce key tools and concepts that influenced our choices and enabled some of our approaches.

Chapter 3: In this chapter, we introduce TransCoder, which learns to translate programming languages using only monolingual data. This model views code as sequences and leverages objective functions designed for Natural Language Processing.

It does not use the particularities of source code, except at validation and test time, but still significantly outperforms baselines on source code translation.

Chapter 4: In this chapter, we question the use of the Masked Language Modelling (MLM) and Denoising Auto Encoding (DAE) objectives for pre-training models on source code. These objectives, which were designed for natural languages and mask tokens randomly, often do not force the model to understand the semantics of the code. Hence, we introduce a complementary objective which leverages the particularities of source code: DOBF. It is based on identifier deobfuscation, and leads the model to generate embeddings that represent the semantics of the code. DOBF 1.2. Publications improves the performance of machine learning models on several tasks, including unsupervised code translation.

Chapter 5: The capacity of TransCoder and DOBF to learn multilingual embeddings of source code from monolingual data is essential for their performance for code translation. These embeddings are multilingual due to anchor words such as operators, identifiers, syntax tokens, or keywords that are common to several programming languages. However, it is difficult to learn that the semantics of a given sequence of tokens can differ depending on the programming language (e.g. due to different operator precedence). In this chapter, we present a novel method that leverages automatically generated unit tests to create datasets of aligned functions.

It solves the aforementioned issues and substantially improves the performance of the unsupervised source code translation models described in the previous chapters.

Chapter 6: In this final part of the thesis, we review the contributions made in the other chapters and present directions for future research in source code translation and synthesis.

Publications

Several contributions presented in this thesis were published in peer-reviewed conferences. The content may differ slightly due to small updates of the experimental framework. Additional machine learning works, which are not directly related to the subject of this thesis, are presented briefly in this section.

Machine Learning for Programming Languages.

• TransCoder (Roziere et al., 2020a) use unsupervised methods to translate between programming languages. This work is detailed in chapter 3. Marie-Anne Lachaux is an equal contributor for this work.

• DOBF (Roziere et al., 2021a) provide a new method for pre-training machine learning models for source code, which is presented in chapter 4. Marie-Anne Lachaux is an equal contributor for this work. In orange, a rule-based baseline called j2py. In shades of blue, the unsupervised methods detailed in this thesis. TransCoder, described in Chapter 3, is our initial method for unsupervised translation of programming languages. DOBF is a novel pre-training objective for programming languages detailed in Chapter 4. In Chapter 5, we present TransCoder-ST, which is trained on aligned data generated using automated unit tests. The y axis is the computational accuracy for a single generation. It measures the percentage of generations that pass a series of unit tests.

Latent space optimization for Generative Adversarial Networks. These works study the use of gradient-based and evolutionary methods to optimize the latent space of Generative Adversarial Networks (GAN).

• EvolGAN (Roziere et al., 2020b) optimize either the technical or artistic quality of images to improve the output of GANs generating many types of pictures.

• Tarsier (Roziere et al., 2021b) use a custom loss and an image quality assessment network to improve the output of GANs for super-resolution.

• In Inspirational adversarial image generation [START_REF] Baptiste Rozière | Inspirational adversarial image generation[END_REF], we allow the generation of images similar to input inspirational images or corresponding to human preferences.

Miscellaneous

• [START_REF] Garcelon | Adversarial attacks on linear contextual bandits[END_REF] study theoretical adversarial attacks on linear contextual bandit algorithms, and validate the feasibility of these attacks on synthetic and real-world datasets. Evrard Garcelon and Laurent Meunier are equal contributors for this work.

Chapter 2

Related Work

Neural Machine Translation

Transformer architecture

The transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF] leverages the self-attention mechanism to translate or perform other tasks without any recurrent cells. This architecture improves parallelization at training time and has a better capacity to learn long-term dependencies.

Parallelization. While recurrent layers are sequential in nature, transformer layers can compute representations of each token in parallel, making them more efficient on GPUs or dedicated hardware.

Long-term dependencies. Long-term dependencies are notoriously difficult to learn with recurrent neural networks. The length of the path that the forward and backward signals have to traverse to learn such dependencies can grow up to the length of the sequence, which makes them difficult to learn. In practice, these networks are generally trained with truncated backpropagation through time [START_REF] Sutskever | Training recurrent neural networks[END_REF][START_REF] Pascanu | On the difficulty of training recurrent neural networks[END_REF], which further hinders the learning of long term dependencies.

In contrast, in attention layers, there is a path involving a constant number of operations between any two tokens, making learning long-term dependencies easier.

Encoder-decoder architecture. [START_REF] Vaswani | Attention is all you need[END_REF] uses an encoder-decoder architecture inspired by those developed for recurrent neural networks [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF][START_REF] Cho | Learning phrase representations using rnn encoder-decoder for statistical machine translation[END_REF]. In the context of machine translation, the encoder learns 2.1. Neural Machine Translation high-level representations of each token in the source sentence, using information from tokens on the left and right. The decoder generates tokens in an auto-regressive manner, using the representation of the entire source sentence outputted by the encoder and the previously generated target tokens.

Encoder-only architectures. Alternative transformer architectures have been proposed. For instance, models in the BERT family [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF][START_REF] Liu | Roberta: A robustly optimized bert pretraining approach[END_REF][START_REF] Yang | Xlnet: Generalized autoregressive pretraining for language understanding[END_REF][START_REF] Sanh | Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter[END_REF] contain only an encoder and are used for natural language understanding. They are generally tested on the GLUE benchmark (Wang et al., 2018a), which contains tasks such as question to answer matching, paraphrase detection, and sentiment analysis. Such models only generate high-level representations of tokens in the source sentence. They are not trained to generate new tokens in an auto-regressive manner, and are generally not used to generate new sentences of arbitrary length in the context of machine translation.

Decoder-only architectures. Models such as GPT [START_REF] Radford | Improving language understanding by generative pre-training[END_REF][START_REF] Radford | Language models are unsupervised multitask learners[END_REF][START_REF] Tom B Brown | Language models are few-shot learners[END_REF] train only a decoder in an auto-regressive manner. This type of architecture is especially suitable for text completion. Using carefully selected prompts, it is also applicable to a wide range of tasks. For instance, for translation, a well trained model can be expected to complete a prompt formatted as "Translate English to French: cheese => " with "fromage", which is the translation of the English word "cheese". [START_REF] Tom B Brown | Language models are few-shot learners[END_REF] show improved few-shot performance when providing several examples of translations in the prompt.

Scaled dot product attention. [START_REF] Vaswani | Attention is all you need[END_REF] defines the scaled dot product attention by adding a scaling factor 1 d to dot product attention, with d the dimension of the keys: Feed-forward network (FFN). Each transformer layer contains a feed-forward network (FFN), which is applied after the attention mechanism. It consists in two linear fully-connected layers and an activation function in between (generally ReLU [START_REF] Fred | Deep learning using rectified linear units (relu)[END_REF] or GELU [START_REF] Hendrycks | Gaussian error linear units (gelus)[END_REF]). This network is applied to each position separately with the same weights.

Attention(Q, K, V) = sof tmax(QK T √ d)V (2.1) With Q, K,
Multi-head attention. Instead of performing a single attention operation at each layer, transformer models perform such operations with independently learned query, key, and value projection matrices. The outputs of the attention heads are then concatenated and passed through the FFN.

Positional encodings. The attention mechanism defined in Equation 2.1 processes tokens independently of their positions in the sequence. Hence, with only stacked selfattention layers computed on sequences of token embeddings, transformers would not be able to make use of the sequential nature of the input. [START_REF] Vaswani | Attention is all you need[END_REF] use positional encodings [START_REF] Gehring | Convolutional sequence to sequence learning[END_REF], which are added to the token embeddings and allow the model to learn representations of positions in a sentence. They obtain similar performance with sinusoidal and learned encodings. In our experiments, we use learned positional encodings as we observed that it improved our performance.

Linear attention. The time and space complexities of the self-attention are quadratic with respect to the sequence length. It makes vanilla transformers difficult to scale to large sequences. Several methods have been proposed to reduce the complexity of attention layers and make it linear. [START_REF] Beltagy | Longformer: The long-document transformer[END_REF] replace the full attention with a linear number of windowed, dilated, and global attention patterns. [START_REF] Zaheer | Big bird: Transformers for longer sequences[END_REF] propose a similar approach but replace the dilated attention pattern with a sparse random attention. In both cases, the global attention tokens attend to all tokens and all tokens attend to them. They allow signal to flow between any pair of tokens after two attention layers. Instead, Wang et al. (2020a) demonstrate that the self-attention can be approximated by a low-rank matrix

Language modeling

A language model assigns a probability distribution over sequences of tokens. In deep learning, language models are usually trained by evaluating the probability of the next token in a sequence, given the previous tokens. Then, the probability of the sequence can be written as follows:

P (w 1 . . . w m |θ) = m 1 P (w i |w i-1 . . . w 1 , θ) (2.2)
with m the size of the sequence, w i the i-th token and θ the weights of the model. It is common to maximize the estimated probability of real sequences by minimizing the average negative log-likelihood of the sequence.

Unsupervised Machine Translation

The quality of NMT systems depends on the quality of the available parallel data.

However, for the majority of languages, parallel resources are rare or nonexistent.

Since creating parallel corpora for training is not realistic (creating a small parallel corpus for evaluation is already challenging [START_REF] Guzmán | Two new evaluation datasets for low-resource machine translation: Nepali-english and sinhala-english[END_REF]), some approaches have investigated the use of monolingual data to improve existing machine translation systems [START_REF] Gulcehre | On using monolingual corpora in neural machine translation[END_REF][START_REF] He | Dual learning for machine translation[END_REF]Sennrich et al., 2015a;Zheng et al., 2017).

Several methods were proposed to train a machine translation system exclusively from monolingual corpora, using either neural models (Lample et al., 2018a;Artetxe et al., 2018b) or statistical models (Lample et al., 2018c;Artetxe et al., 2018a). In

Chapter 3, we describe how these methods can be instantiated in the setting of unsupervised transcompilation. More recently, [START_REF] Tom B Brown | Language models are few-shot learners[END_REF] showed that large language models are able to translate with few-shot prompts, and [START_REF] Michael Han | Unsupervised neural machine translation with generative language models only[END_REF] proposed to bootstrap an unsupervised neural translation system using a pre-trained generative language model.

Program Synthesis and Translation

Code synthesis from natural language.

Early methods. Program synthesis generally refers to the generation of code from natural language prompts, and has been a longstanding dream of artificial intelligence [START_REF] Backus | The fortran automatic coding system[END_REF][START_REF] David E Shaw | Inferring lisp programs from examples[END_REF][START_REF] Manna | Toward automatic program synthesis[END_REF]. [START_REF] Hindle | On the naturalness of software[END_REF] were the first to use a n-gram language model on source code, followed by [START_REF] Tuan Nguyen | Lexical statistical machine translation for language migration[END_REF]. [START_REF] Raychev | Code completion with statistical language models[END_REF] combined statistical models (i.e. n-gram models and recurrent neural networks) and code analysis tools for code completion. Later, recurrent neural networks were shown to outperform n-gram models and several studies trained neural networks on source code at character [START_REF] Karpathy | Visualizing and understanding recurrent networks[END_REF][START_REF] Cummins | Synthesizing benchmarks for predictive modeling[END_REF] or token level (Lin et al., 2017;[START_REF] Ling | Latent predictor networks for code Bibliography generation[END_REF].

A common issue with standard seq2seq models, is that the generated functions are not guaranteed to compile, and even to be syntactically correct. To address this issue, several approaches proposed to use additional constraints on the decoder, to ensure that the generated functions respect the syntax of the target language (Alon et al., 2019a,b;[START_REF] Amodio | Neural attribute machines for program generation[END_REF][START_REF] Rabinovich | Abstract syntax networks for code generation and semantic parsing[END_REF]. Large language models. Recently, large language models for code have shown impressive capabilities for code synthesis from natural language prompts, such as docstrings and problem statements (Chen et al., 2021a;[START_REF] Austin | Program synthesis with large language models[END_REF][START_REF] Li | Competition-level code generation with alphacode[END_REF][START_REF] Chowdhery | Palm: Scaling language modeling with pathways[END_REF]. They also showed non-trivial performance for few-shot program translation with well-selected prompts.

Synthesis from docstrings. Docstrings are used to document a specific segment of code (e.g. a function). [START_REF] Clement | Pymt5: multi-mode translation of natural language and python code with transformers[END_REF] trained a model on a large python dataset, in which they separated function signatures, docstrings and bodies. Then, they trained a model to generate any of these elements from some of the others (e.g. function bodies from signatures and docstrings). Chen et al. (2021a) showed that a prompt, containing only the function signature and its docstring, is enough to generate functions that pass all the tests for close to 30% of the elements in their HumanEval dataset. In practice, docstrings vary in quality, and are often not enough to perfectly specify the behavior of complex functions.

Synthesis from competitive programming questions.

Competitive programming questions often remove ambiguity by providing input ranges, example input/output pairs, and target time/space complexities. However, writing well-specified problem statements in a natural language is difficult in practice, and coding platforms also allow users to remove ambiguity by comparing their code to the ground truth on custom inputs. Moreover, such specific prompts would be difficult to obtain for much larger projects or non-isolated code snippets. While docstrings aim to give clear indications about the semantics of the code, problem statements often use non-standard wording to obfuscate the meaning and do not describe a particular solution. [START_REF] Hendrycks | Measuring coding challenge competence with apps[END_REF] and [START_REF] Li | Competition-level code generation with alphacode[END_REF] used language models to generate solutions to competitive programming questions.

Synthesis from pseudo-code. [START_REF] Kulal | Spoc: Search-based pseudocode to code[END_REF] create a parallel pseudo-codeto-code datasets. They train a model, and use sampling to synthesize compilable source code from pseudo-code.

Program Translation

Program translation can be seen as a type of program synthesis, where the input prompt is also source code. Contrarily to natural languages, source code is unambiguous if the corresponding compiler or interpreter is known. Hence, code translation is generally a better-specified task than code synthesis.

The particularities of some languages allow the creation of very successful rulebased transcompilers for a few language pairs (e.g. Java → Scala, CoffeeScript → JavaScript). [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF] to evaluate their translations [START_REF] Aggarwal | Using machine translation for converting python 2 to python 3 code[END_REF][START_REF] Valerio Miceli-Barone | A parallel corpus of python functions and documentation strings for automated code documentation and code generation[END_REF][START_REF] Karaivanov | Phrase-based statistical translation of programming languages[END_REF][START_REF] Tuan Nguyen | Lexical statistical machine translation for language migration[END_REF], which is not a reliable metric, as a generation can be a valid translation while being very different from the reference. Methods leveraging verified lifting [START_REF] Kamil | Verified lifting of stencil computations[END_REF], which offer formal guarantees, can significantly speed up some pre-defined code fragments [START_REF] Bin | Leveraging parallel data processing frameworks with verified lifting[END_REF][START_REF] Bin | Automatically translating image processing libraries to halide[END_REF].

Evaluation Metrics

The goal of program synthesis and translation is to help developers to perform specific tasks. However, getting production metrics about the usage of such models can be difficult in practice. Given two models, it is important to be able to compare

Perplexity.

Sequence synthesis and translation tasks are often based on language models, which learn a probability distribution over sequences of words. These models can be evaluated by measuring how well they predict the probability of real unseen samples.

The perplexity score is defined as the exponential of the average negative log-likelihood (or equivalently, of the cross-entropy) of the sequence, which is computed by the model.

perplexity(W) = 2 -1 N log(P (w 1 w 2 ...w N))
(2.3)

Exact match accuracy.

The exact match score, also called perfect match accuracy score, is a simple metric for evaluating code synthesis and code translation methods [START_REF] Rabinovich | Abstract syntax networks for code generation and semantic parsing[END_REF][START_REF] Chen | Tree-to-tree neural networks for program translation[END_REF]. It computes the percentage of generated programs that are exactly the same as the ground truth. The main drawback of this metric is that it considers programs that are semantically equivalent to the ground truth but differ by one or several tokens as negatives. It is too strict, especially in the context of source code, where there are often many correct and idiomatic ways to implement a function. For instance, identifiers (e.g. variable names, function names) can be chosen arbitrarily, some instructions can be reordered or rewritten without impacting the semantics of the code.

BLEU score.

Machine translation methods for natural languages are generally evaluated using the BLEU score [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF][START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF][START_REF] Wu | Google's neural machine translation system: Bridging the gap between human and machine translation[END_REF][START_REF] Vaswani | Attention is all you need[END_REF]. In the context of programming languages, early works used the same metric to evaluate their code synthesis or translation outputs [START_REF] Aggarwal | Using machine translation for converting python 2 to python 3 code[END_REF][START_REF] Valerio Miceli-Barone | A parallel corpus of python functions and documentation strings for automated code documentation and code generation[END_REF][START_REF] Karaivanov | Phrase-based statistical translation of programming languages[END_REF][START_REF] Tuan Nguyen | Lexical statistical machine translation for language migration[END_REF]

BP = min 1, e 1-r c (2.5)
With r and c respectively the lengths of the reference and candidate sentences.

Then, the BLEU-K is defined as BP multiplied with the geometric mean of the n-grams precisions. In practice it is computed with the mathematically equivalent formula:

BLEU-K = BP • exp 1 K K n=1 log(precision n) (2.6)
When K is not given, the BLEU score generally refers to the BLEU-4 scores which is computed using the 1, 2, 3 and 4-gram overlaps between the source and the target.

In this thesis, we also use the term BLEU to refer to the BLEU-4 score.

Criticisms of the BLEU score. Despite its pervasiveness in machine translation models evaluation, BLEU has been criticised in the NLP community [START_REF] Callison-Burch | Re-evaluating the role of bleu in machine translation research[END_REF][START_REF] Kocmi | To ship or not to ship: An extensive evaluation of automatic metrics for machine translation[END_REF]

Other Machine Learning Tasks for Programming Languages

This section surveys other tasks in machine learning for programming languages that are especially relevant to this thesis. Allamanis et al. (2018a) and the living literature website2 provide information on more tasks.

Translating from source code

Other studies have investigated the use of machine translation from source code. For instance, [START_REF] Oda | Learning to generate pseudo-code from source code using statistical machine translation (t)[END_REF] et al., 2021), including the code summarization task. Since then, many pre-trained Chapter 2. Related Work models were evaluated on translating from source code to comments [START_REF] Feng | Codebert: A pre-trained model for programming and natural languages[END_REF]Roziere et al., 2021a;[START_REF] Dong | Unified language model pre-training for natural language understanding and generation[END_REF][START_REF] Wang | Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation[END_REF].

Bug Detection and Repair

Bug detection consists in finding bugs in software without human intervention. It is often associated with the repair task, which consists in automatically finding solutions to bugs [START_REF] Monperrus | Automatic software repair: a bibliography[END_REF]. Bug detection was traditionally tackled using static analysis tools such as FindBugs [START_REF] Ayewah | Evaluating static analysis defect warnings on production software[END_REF], ErrorProne [START_REF] Aftandilian | Building useful program analysis tools using an extensible java compiler[END_REF] and Infer [START_REF] Calcagno | Moving fast with software verification[END_REF]. These tools typically rely on hard-coded rules to detect patterns commonly associated to bugs in the code, AST, or dataflow graph.

However, they cannot generalize to new bug patterns, or propose automatic fixes to complex bugs, prompting the development of several machine learning methods for this task [START_REF] Gupta | Deepfix: Fixing common c language errors by deep learning[END_REF]Wang et al., 2018b;[START_REF] Tufano | An empirical study on learning bug-fixing patches in the wild via neural machine translation[END_REF][START_REF] Fu | Coda: An end-to-end neural program decompiler[END_REF]Allamanis et al., 2018b;[START_REF] Mesbah | Deepdelta: learning to repair compilation errors[END_REF][START_REF] Tarlow | Learning to fix build errors with graph2diff neural networks[END_REF][START_REF] Dinella | Hoppity: Learning graph transformations to detect and fix bugs in programs[END_REF][START_REF] Yasunaga | Graph-based, self-supervised program repair from diagnostic feedback[END_REF][START_REF] Tufano | An empirical study on learning bug-fixing patches in the wild via neural machine translation[END_REF][START_REF] Drain | Deepdebug: Fixing python bugs using stack traces, backtranslation, and code skeletons[END_REF][START_REF] Jiang | Cure: Code-aware neural machine translation for automatic program repair[END_REF][START_REF] Allamanis | Self-supervised bug detection and repair[END_REF]. [START_REF] Tufano | An empirical study on learning bug-fixing patches in the wild via neural machine translation[END_REF] mined commits containing bug fixes from GitHub, using simple patterns, and framed the repair problem as a translation from buggy to fixed code. Other methods used either recurrent [START_REF] Fu | Coda: An end-to-end neural program decompiler[END_REF], convolutional [START_REF] Lutellier | Coconut: combining context-aware neural translation models using ensemble for program repair[END_REF][START_REF] Jiang | Cure: Code-aware neural machine translation for automatic program repair[END_REF], or graph neural networks working on AST features [START_REF] Dinella | Hoppity: Learning graph transformations to detect and fix bugs in programs[END_REF][START_REF] Tarlow | Learning to fix build errors with graph2diff neural networks[END_REF]Chen et al., 2021b) to generate the fix.

Monperrus (2018a) provides a comprehensive and regularly-updated survey on program repair.

Model pre-training.

Masked Language Modeling pre-training. Large pre-trained transformers such as BERT [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF] and RoBERTa [START_REF] Liu | Roberta: A robustly optimized bert pretraining approach[END_REF] [START_REF] Lample | Cross-lingual language model pretraining[END_REF][START_REF] Liu | Roberta: A robustly optimized bert pretraining approach[END_REF] showed that training MLM on a stream of sentences to leverage longer context, and removing the NSP objective, improves the quality of pre-training. To improve the sample-efficiency of MLM (where only 15% of tokens are predicted), Electra [START_REF] Clark | Electra: Pre-training text encoders as discriminators rather than generators[END_REF] proposed to replace (and not mask) some tokens with plausible alternatives, and to train a network to detect the tokens that have been replaced. They showed that this new Replaced Token Detection (RTD) objective matches the performance of RoBERTa while using four times less computational resources. [START_REF] Dong | Unified language model pre-training for natural language understanding and generation[END_REF] proposed a model that combines multiple pre-training tasks, including bidirectional, but also left-to-right and right-to-left language modeling objectives. Lewis et al. propose to train an encoder-decoder model similarly to BART [START_REF] Lewis | Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF] instead, and obtain good results on several tasks in the CodeXGLUE benchmark [START_REF] Lu | Codexglue: A machine learning benchmark dataset for code understanding and generation[END_REF].

Other methods propose to leverage the structure of programming languages to pre-train models for source code. Recovered code int = partition(a, MASK, high); MASK(a, low, 1 piv -) quicksort a, piv+, high);

Corrupted code

int piv = partition(a,low,high); quicksort(a, low, piv-1); quicksort(a, piv+1, high);

Recovered code

int piv = partition(a,low,high); quicksort(a, low, piv-1); quicksort(a, piv+1, high);

Input code

Mask tokens

Corrupt code In this chapter, we present TransCoder, an unsupervised model leveraging objectives developed for NLP to translate between programming languages.

Model

We consider a sequence-to-sequence (seq2seq) model with attention [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF][START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF], composed of an encoder and a decoder with a transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF]. We use a single shared model for all programming languages. We train it using the three principles of unsupervised machine translation identified in Lample et al. (2018c), namely initialization, language modeling, and back-translation. In this section, we summarize these principles and detail how we instantiate them to translate programming languages. An illustration of our approach is given in Figure 3.1.

3.1. Model

Cross Programming Language Model pretraining

Pretraining is a key ingredient of unsupervised machine translation Lample et al. (2018c). It ensures that sequences with a similar meaning are mapped to the same latent representation, regardless of their languages. Originally, pretraining was done by initializing the model with cross-lingual word representations (Lample et al., 2018a;Artetxe et al., 2018b). In the context of unsupervised English-French translation, the embedding of the word "cat" will be close to the embedding of its French translation "chat". Cross-lingual word embeddings can be obtained by training monolingual word embeddings and aligning them in an unsupervised manner (Lample et al., 2018b;[START_REF] Artetxe | Learning bilingual word embeddings with (almost) no bilingual data[END_REF].

Subsequent work showed that pretraining the entire model (and not only word representations) in a cross-lingual way could lead to significant improvements in unsupervised machine translation [START_REF] Lample | Cross-lingual language model pretraining[END_REF][START_REF] Lewis | Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF][START_REF] Song | Mass: Masked sequence to sequence pre-training for language generation[END_REF]. In particular, we follow the pretraining strategy of [START_REF] Lample | Cross-lingual language model pretraining[END_REF], where a Cross-lingual Language Model (XLM) is pretrained with a masked language modeling objective [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF] on monolingual source code datasets.

The cross-lingual nature of the resulting model comes from the significant number of common tokens (anchor points) that exist across languages. In the context of English-French translation, the anchor points consist essentially of digits and city and people names. In programming languages, these anchor points come from common keywords (e.g. for, while, if, try), and also digits, mathematical operators, and English strings that appear in the source code. In practice, the "cross-linguality" of the model highly depends on the amount of anchor points across languages. As a result, an XLM model trained on English-French will provide better cross-lingual representations than a model trained on English-Chinese, because of the different alphabet, which reduces the number of anchor points. In programming languages, the majority of strings are composed of English words, which results in a fairly high number of anchor points, and the model naturally becomes cross-lingual. Figure 3.2: Cross-lingual token embedding space. We show a t-SNE visualization of our cross-lingual token embeddings. These embeddings are obtained by encoding programming language tokens into TransCoder's lookup table. We show the embeddings of C++, Java, and Python keywords. Keywords of different programming languages that are used in similar contexts are very close in the embedding space. For instance, except in Python and catch in Java and C++, which are both used to catch exceptions, are mapped to very similar embeddings. The same phenomenon is observed for implementations of maps (Map, map and dict), for c_str and toCharArray which are used to transform a string into a char array, and for similar primitive types (e.g. Long, long, Integer, and int).

3.1. Model

Denoising auto-encoding

We initialize the encoder and decoder of the seq2seq model with the XLM model pretrained in Section 3.1.1. The initialization is straightforward for the encoder, as it has the same architecture as the XLM model. The transformer decoder, however, has extra parameters related to the source attention mechanism [START_REF] Vaswani | Attention is all you need[END_REF].

Following [START_REF] Lample | Cross-lingual language model pretraining[END_REF], we initialize these parameters randomly.

XLM pretraining allows the seq2seq model to generate high quality representations of input sequences. However, the decoder lacks the capacity to translate, as it has never been trained to decode a sequence based on a source representation. To address this issue, we train the model to encode and decode sequences with a Denoising Auto-Encoding (DAE) objective [START_REF] Vincent | Extracting and composing robust features with denoising autoencoders[END_REF]. The DAE objective operates like a supervised machine translation algorithm, where the model is trained to predict a sequence of tokens given a corrupted version of that sequence. To corrupt a sequence, we use the same noise model as the one described in Lample et al. (2018a). Namely, we randomly mask, remove and shuffle input tokens. Masking spans of tokens instead of single tokens similarly to BART [START_REF] Lewis | Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF] leads to similar performances.

The first symbol given as input to the decoder is a special token indicating the output programming language. At test time, a Python sequence can be encoded by the model, and decoded using the C++ start symbol to generate a C++ translation.

The quality of the C++ translation will depend on the "cross-linguality" of the model: if the Python function and a valid C++ translation are mapped to the same latent representation by the encoder, the decoder will successfully generate this C++ translation.

The DAE objective also trains the "language modeling" aspect of the model, i.e. the decoder is always trained to generate a valid function, even when the encoder output is noisy. Moreover it also trains the encoder to be robust to input noise, which is helpful in the context of back-translation where the model is trained with noisy input sequences. DAE is illustrated in the middle of Figure 3.1.

Back-translation

In theory, XLM pretraining and denoising auto-encoding alone are enough to generate translations. However, the quality of these translations tends to be low, as the model [START_REF] Bojar | Improving translation model by monolingual data[END_REF] was initially applied to improve the performance of machine translation in the supervised setting (Sennrich et al., 2015a). It turned out to be an important component of unsupervised machine translation (Lample et al., 2018a,c;Artetxe et al., 2018b).

In

Experiments

We implement the model described above, and perform experiments to evaluate its performance for code translation.

Training details

We use a transformer with 6 layers, 8 attention heads, and set the dimensionality of the model to 1024. We use a single encoder and a single decoder for all programming languages. During XLM pretraining, we alternate between batches of C++, Java, and Python, composed of 32 sequences of source code of 512 tokens. At training time,

we alternate between the denoising auto-encoding and back-translation objectives, and use batches of around 6000 tokens. We optimize TransCoder with the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF], a learning rate of 10 -4 , and use the same learning rate scheduler as [START_REF] Vaswani | Attention is all you need[END_REF]. We implement our models in PyTorch [START_REF] Paszke | Automatic differentiation in pytorch[END_REF] and train them on 32 V100 GPUs. We use float16 operations to speed up training and to reduce the memory usage of our models.

Training data

We download the GitHub public dataset available on Google BigQuery.

Function extraction

We train and evaluate our translation model on functions only. We differentiate class functions and standalone functions. By standalone functions, we refer to functions that can be used without instantiating a class. In C++ and Python, this corresponds to static methods of classes, and functions outside classes. In Java, it only corresponds to static methods. In GeeksforGeeks, solutions are implemented with standalone functions, and our evaluation protocol only involves these functions. In Table 3.1, the functions statistics are given for all kind of functions. In C++ and Python, 50%

of functions are standalone functions. In Java, standalone functions only represent 15% of the dataset. We tried to train our model on standalone functions only, and observed better results than when training on all functions. Thus, all the results in this work are given for models pretrained on all available data and trained on standalone functions only.

Preprocessing

Recent approaches in multilingual natural language processing tend to use a common tokenizer [START_REF] Kudo | Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing[END_REF], and a shared vocabulary for all languages.

This reduces the overall vocabulary size, and maximizes the token overlap between languages, improving the cross-linguality of the model [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF][START_REF] Lample | Cross-lingual language model pretraining[END_REF] We use the javalang2 tokenizer for Java, the tokenizer of the standard library for Python3 , and the clang4 tokenizer for C++. These tokenizers ensure that meaningless modifications in the code (e.g. adding extra new lines or spaces) do not have any impact on the tokenized sequence. An example of tokenized code is given in Figure 3.3. We learn common BPE codes (Sennrich et al., 2015b) on extracted tokens, and split tokens into subword units. The BPE codes are learned with fastBPE5 on the concatenation of tokenized C++, Java, and Python files. We also use a common vocabulary for all languages.

Evaluation

GeeksforGeeks is an online platform6 with computer science and programming articles.

It gathers many coding problems and presents solutions in several programming languages. From these solutions, we extract a set of parallel functions in C++, Java, and Python, to create our validation and test sets. These functions not only return the same output, but also compute the result with similar algorithm. In Figure 3.5, we show an example of C++-Java-Python parallel function that determines whether an integer represented by a string is divisible by 13.

The majority of studies in source code translation use the BLEU score to evaluate the quality of generated functions [START_REF] Aggarwal | Using machine translation for converting python 2 to python 3 code[END_REF] 2017; [START_REF] Karaivanov | Phrase-based statistical translation of programming languages[END_REF][START_REF] Tuan Nguyen | Lexical statistical machine translation for language migration[END_REF], or other metrics based on the relative overlap between the tokens in the translation and in the reference. A simple metric is to compute the reference match, i.e. the percentage of translations that perfectly match the ground truth reference [START_REF] Chen | Tree-to-tree neural networks for program translation[END_REF]. A limitation of these metrics is that they do not take into account the syntactic correctness of the generations. Two programs with small syntactic discrepancies will have a high BLEU score while they could lead to very different compilation and computation outputs.

Conversely, semantically equivalent programs with different implementations will have low BLEU scores. Instead, we introduce a new metric, the computational accuracy, that evaluates whether the hypothesis function generates the same outputs as the reference when given the same inputs. We consider that the hypothesis is correct if it gives the same output as the reference for every input. We run the generated function on 10 input examples, and compare its output to that of the ground truth.

Unit test generation.

We generate some unit tests to check that the functions are semantically correct and to compute the computational accuracy. These unit tests are contained in a script, which contains a reference function -named f_gold -from the parallel dataset, a commented TOFILL marker which is to be replaced with a generated function, and a main which runs both functions on a series of inputs and compares the behaviors of the two functions. We have one script per function and In order to generate these scripts, we extract the parameters and their types from the Java implementation of the solution. Then, we generate 10 random inputs for these types, which are hardcoded in the test script and used to test the function. We test the generated scripts by injecting the reference function a second time with the name f_filled instead of the TOFILL comment and running it. We keep only the scripts that return a perfect score in less than 10 seconds. As Python is dynamically typed, we need to infer the Python parameters types from the Java types, and to assume that the order and types of the parameters is the same in Java and Python.

When this assumption happens to be wrong, the generated script fails the tests and is discarded. As this approach is quite effective, we generated the C++ scripts in a similar manner and barely use the C++ parameter types which can be extracted from the function definition.

Equality tests. We adapt the tests checking that the reference and gold function behave in the same way based on the output type of the function (extracted from its Java implementation). For instance, we test the equality of int outputs with ==, while we use equals for String outputs and relative tests for double outputs. If the function is inplace (the output type is void), we check the side effects on all its mutable arguments instead.

Special cases for random input generation. The goal of our scripts is to decide whether a function is semantically equivalent to from the reference function, and the way we generate the random inputs is critical to how discriminative the script will be.

For instance, if the input of the reference function is a string, a naive solution may be to generate strings of random length and with characters sampled randomly from the set of all characters. However, our dataset contains several functions such as checkDivisibility in Figure 3.5 which considers the string to be a representation of a long integer. This type of function could always return the same result (e.g. False)

on inputs strings that do not contain only digits. As many functions in our dataset assume the input strings or characters to be representations of long integers or representations of integers in base 2, we alternate between sampling the characters from (i) the set of all lowercase and uppercase letters plus the space character, (ii) the set of all digits, and (iii) the set containing 0 and 1. For similar reasons, when there is an integer array in the function parameters, we alternate between the sets {0 . . . 100}, {-100 . . . 100} and {0, 1} to sample the integers inside the array. When We report the number of function with unit tests for C++, Java, and Python, for the validation and test sets. We also show the average number of tokens per function. A unit test checks whether a generated function is semantically equivalent to its reference. For each function, we have 10 unit tests, each testing it on a different input. As a result, the number of functions with unit tests per language gives the size of the validation and test sets of each pair of languages. For instance, we have 231 C++ functions with unit tests for the validation set, which means that we have a validation set of 231 functions for Java → C++ and Python → C++. Manual verifications. In order to ensure that our unit tests are appropriate, we manually check and modify the scripts when the output of the function is the same on all 10 inputs, when the function is inplace, or when the function contains prints.

C++ Java

As we only check the side effects affecting the mutable arguments, we remove all the functions which mainly print or write to a file. Table 3.2 shows some statistics on the final validation and test sets that we create and open-source.

At inference time, TransCoder can generate multiple translations using beam search decoding [START_REF] Koehn | Pharaoh: a beam search decoder for phrase-based statistical machine translation models[END_REF]. In machine translation, the considered hypotheses are typically the ones with the highest log-probabilities in the beam. In our case, we have access to unit tests to verify the correctness of the generated hypotheses, so we report two sets of results for our computational accuracy metric: CA@N, the percentage of functions with at least one correct translation in the beam, and N Beams -CA@1 the percentage of functions where the hypothesis in the beam with the highest log-probability is a correct translation. We select our best model using greedy decoding (CA@1) for speed efficiency.

Results

We report the results on our test set in Table 3.3, using greedy decoding (beam size 1), for the three metrics presented in Section 3.2.4. In results with beam search decoding, and compare TransCoder to existing baselines.

We give an example of unsupervised translation from Python to C++ in Figure 3.4. Evaluation metric differences. In Table 3.3, we observe that a very large fraction of translations differ from the reference, and are considered as invalid by the reference match metric although they successfully pass the unit tests. For instance, when translating from C++ to Java, only 3.1% of the generations are strictly identical to the ground truth reference, although 60.9% of them return the expected outputs.

Moreover, the performance in terms of BLEU is relatively flat and does not correlate well with the computational accuracy. These results highlight the issues with the traditional reference match and BLEU metrics commonly used in the field. Beam search decoding. In Table 3.4, we study the impact of beam search, either by considering all hypotheses in the beam that pass the unit tests (CA@N) or by only considering the ones with the highest log-probabilities (N Beams -CA@1). Compared to greedy decoding (CA@1), beam search significantly improves the computational accuracy, by up to 24.6% in Python → C++ with 25 beams (CA@25). When the model only returns the hypothesis with the highest log-probability, the performance drops, indicating that TransCoder often finds a valid translation, although it sometimes gives a higher log-probability to incorrect hypotheses. More generally, beam search allows minor variations of the translations which can make the unit tests succeed, such as changing the return or variable types in Java and C++, or fixing small errors such as the use of / instead of the // operator in Python. More examples of errors corrected by beam search are presented in Figure 3.11.

Experiments

In a real use-case, checking whether the generated functions are syntactically correct and compile, or creating unit tests from the input function would be better approaches than comparing log-probabilities in order to select an hypothesis from the beam. Table 3.5 shows that many failures come from compilation errors when the target language is Java or C++. It suggests that the "N Beams -CA@1" metric could easily be improved. We explored that in Chapter 5: the beam reordering line in Table 5.6 shows that reordering the elements based on automatically generated unit tests slightly improves the computational accuracy.

Comparison to existing baselines. We compare TransCoder with two existing approaches: j2py7 , a framework that translates from Java to Python, and a commercial solution from Tangible Software Solutions8 , that translates from C++ to Java.

Both systems rely on rewrite rules manually built using expert knowledge. handles the conversion of many elements, including core types, arrays, some collections (Vectors and Maps), and lambdas. In Table 3.4, we observe that TransCoder significantly outperforms both baselines in terms of computational accuracy, with 74.8% and 67.8% in the C++ → Java and Java → Python directions, compared to 61% and 38.3% for the baselines. TransCoder particularly shines when translating functions from the standard library. In rule-based transcompilers, rewrite rules need to be manually encoded for each standard library function, while TransCoder learns them in an unsupervised way. In Figure 3.12, we present several examples where TransCoder succeeds, while the baselines fail to generate correct translations.

Discussion -Analysis

In Figure 3.4, we give an example of TransCoder unsupervised translation from C++ to Java. Additional examples can be found in Figure 3.6 and Figure 3.8, 3.7.

We observe that TransCoder successfully understands the syntax specific to each language, learns data structures and their methods, and correctly aligns libraries across programming languages. For instance, it learns to translate the ternary operator "X ? A : B" in C++ or Java to "if X then A else B" in Python, in an unsupervised way. In Figure 3. Table 3.5 gives detailed results on failure cases. It shows that a large proportion of errors happen at compilation time and could be caught automatically. There are no compilation errors when translating to Python since it is an interpreted language, but many of the runtime errors could be caught by static analysis tools. Finally, In the second column, we use greedy decoding and the translations are incorrect. In the third column, we use beam search and obtain accurate translations. A common error corrected by beam search for C++ → Python is the usage of the double instead of the integer division operator (first example). Beam search is also able to correct errors such as the ++ and --operators that do not exist in Python (second example Figure 3.12:

Examples of incorrect baseline translations versus correct TransCoder translations. When translating from Java to Python, the baseline fails to translate the System.getenv, System.err.println, and Files.delete functions from the standard library, and the contains, subList, and IndexOf methods of the Java List interface. Instead, it simply copies them, showing the limitations of a rule-based system. On the other hand, TransCoder converts properly all of these functions into their Python equivalents. In the C++ → Java direction, baseline translations are made at token-level, and are incorrect. For instance, the first example shows that the baseline tries to translate the sizeof function, and leaves memset unchanged although it does not exist in Java. Instead, TransCoder correctly uses Arrays.fill to fill the array prime with zeros. In these examples, it fails to account for the variable types when using a method or an operator. In particular, the NOT operator ! in C++ should have been translated to ~in Java, because it is applied to an integer. Similarly, the Math.min function in Java cannot be applied to arrays.

Conclusion

In this chapter, we show that approaches of unsupervised machine translation can be applied to source code to create a transcompiler in a fully unsupervised way.

TransCoder can easily be generalized to any programming language, does not require any expert knowledge, and outperforms commercial solutions by a large margin.

Our results suggest that a lot of mistakes made by the model could easily be fixed by adding simple constraints to the decoder to ensure that the generated functions are syntactically correct, or by using dedicated architectures [START_REF] Chen | Tree-to-tree neural networks for program translation[END_REF]. Leveraging the compiler output or other approaches such as iterative error correction [START_REF] Fu | Coda: An end-to-end neural program decompiler[END_REF] could also boost the performance. Moreover, our training objectives were all designed for natural language processing. We could wonder if they are well suited to programming languages, or if there could be a way to design objectives leveraging the strict syntax of source code. irreversible and has a substantial impact on code comprehension [START_REF] Edward | An investigation of procedure and variable names as beacons during program comprehension[END_REF][START_REF] Armstrong A Takang | The effects of comments and identifier names on program comprehensibility: an experimental investigation[END_REF][START_REF] Lawrie | What's in a name? a study of identifiers[END_REF].

By analyzing the overall structure of an obfuscated file, an experienced programmer can always, with time, understand the meaning of the obfuscated code. For instance, in the obfuscated example in Figure 4.1, one can recognize the function and guess that it implements a breadth-first search algorithm. We also expect neural networks, which excel in pattern recognition, to perform well on this task.

We propose to pre-train a model to revert the obfuscation function, by training a sequence-to-sequence (seq2seq) model to convert obfuscated functions, where names of functions and variables have been replaced by uninformative names, back to their original forms. Suggesting proper variable and function names is a difficult task that requires to understand what the program does. In the context of source code, it is a more sensible, but also a more difficult task than MLM. Indeed, we observe (c.f. Figure 4.1) that predicting the content of randomly masked tokens is usually quite simple, as it often boils down to making syntax-related predictions (e.g. predicting that was has been masked out is a parenthesis, a semi-column, etc.). These simple predictions actually provide little training signal to the model. In practice, MLM also masks out variable names, but if a given variable appears multiple times in a function, it will be easy for the model to simply copy its name from one of the other occurrences. Our model does not have this issue, as all occurrences of masked variables are replaced by the same VAR_i special tokens. In this chapter, we make the following contributions:

• We present DOBF, a new pre-training objective based on deobfuscation, and show its effectiveness on multiple programming languages.

• We show that DOBF significantly outperforms MLM (e.g. BERT) on multiple tasks such as code search, code summarization and unsupervised code translation. We show that pre-training methods based on DOBF outperform all existing pre-training methods on all the considered tasks.

• We show that, by design, models pre-trained with DOBF have interesting applications and can be used to understand functions with uninformative identifier names. Besides, the model is able to successfully deobfuscate fully obfuscated source files. Languages Figure 4.1: Illustration of the MLM and DOBF objectives. Given an input function, the masked language modeling (MLM) task randomly samples tokens to mask out. With source code, a large fraction of these tokens are related to the language syntax (e.g. commas, parentheses, etc.) that are trivial for the model to predict, and provide a poor training signal. Instead, we propose to obfuscate the code by masking the name of functions and variables, and to train the model to recover the original function by deobfuscating the code (DOBF). When a variable is masked out, we mask all occurrences of this variable with the same mask symbol (e.g. all occurrences of "visited" are replaced by "V0") to prevent the model from copying names. The DOBF objective is more difficult and provides a better learning signal.

Context

Code Generation Pre-training. Recent studies showed that pre-training methods developed for natural language processing are also effective for programming languages. For instance, [START_REF] Feng | Codebert: A pre-trained model for programming and natural languages[END_REF] proposed CodeBERT, a RoBERTa-based model trained on source code using the MLM and RTD objectives. With GraphCode-BERT (Guo et al., 2020), the MLM objective is complemented by an edge-prediction objective, in which the model predicts edges in the data flow graph to make the model understand the structure of the code. In [START_REF] Jain | Contrastive code representation learning[END_REF], a model is trained on JavaScript code using a contrastive loss ensuring that the representations are robust to some semantic-preserving transformations. They showed that their model performs well on downstream code generation tasks and outperforms previous pre-training approaches. [START_REF] Kanade | Learning and evaluating contextual embedding of source code[END_REF] applied MLM and the next sentence prediction objectives to pre-train models on Python code. In chapter 3, we trained a model on monolingual source code from GitHub using MLM, denoising auto-encoding and back-translation. We showed that the resulting model, TransCoder, was able to and lead to fewer bugs [START_REF] Armstrong A Takang | The effects of comments and identifier names on program comprehensibility: an experimental investigation[END_REF][START_REF] Liblit | Cognitive perspectives on the role of naming in computer programs[END_REF][START_REF] Butler | Relating identifier naming flaws and code quality: An empirical study[END_REF]. It motivated other works studying deobfuscation of identifier names and identifier name proposal using n-grams [START_REF] Allamanis | Learning natural coding conventions[END_REF](Allamanis et al., , 2015a)), probabilistic models [START_REF] Raychev | Predicting program properties from" big code[END_REF][START_REF] Bichsel | Statistical deobfuscation of android applications[END_REF][START_REF] Vasilescu | Recovering clear, natural identifiers from obfuscated js names[END_REF][START_REF] Alon | A general path-based representation for predicting program properties[END_REF], and recurrent neural networks [START_REF] Bavishi | Context2name: A deep learningbased approach to infer natural variable names from usage contexts[END_REF][START_REF] Lacomis | Dire: A neural approach to decompiled identifier naming[END_REF]. [START_REF] Alon | A general path-based representation for predicting program properties[END_REF] extract features from Abstract Syntax Tree (AST) paths and train a Conditional Random Field to predict variable and method names, and infer types for several languages. DIRE [START_REF] Lacomis | Dire: A neural approach to decompiled identifier naming[END_REF] uses a commercial decompiler to obtain C code with uninformative identifier names from binaries. They also use AST features, which go through a Graph Neural Network trained jointly with a LSTM model on the sequence of C tokens to retrieve relevant identifier names. More recently, David et al.

(2020) used a transformer, together with augmented representations obtained from static analysis, to infer procedure names in stripped binary files. These models are already used to understand obfuscated and compiled source code. However, none of these studies investigated the use of deobfuscation for model pre-training.

Model

MLM and denoising for Programming Languages

A countless number of pre-training objectives have been introduced in the literature [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF][START_REF] Clark | Electra: Pre-training text encoders as discriminators rather than generators[END_REF][START_REF] Lewis | Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF][START_REF] Liu | Roberta: A robustly optimized bert pretraining approach[END_REF]Dong et al., Chapter 4. DOBF: A Deobfuscation Pre-Training Objective for Programming Languages 2019). Most of them rely on hyper-parameters and seemingly arbitrary decisions (Should we mask individual tokens or spans? Which fraction of them? What do we do with masked out tokens? etc.). These choices are typically based on intuition and validated empirically on natural language processing tasks. However, source code is much more structured than natural language, which makes predicting masked tokens much easier for programming languages.

The first row in Figure 4.1 shows an example of input / output for the MLM objective. We can see that the majority of tokens are composed of Python keywords or symbols related to syntax: , [while = if) return. These symbols are easy to recover, and a model will quickly learn to predict them with perfect accuracy. This effect is accentuated by the verbosity of the language. For instance, we would see significantly more of these tokens in Java. Retrieving the obfuscated graph token is also relatively simple: the model only needs to retrieve the most relevant variable in the scope. More generally, retrieving an identifier name is often easy when given its full context, including its definition and usages. The denoising-auto-encoding (DAE) objective [START_REF] Vincent | Extracting and composing robust features with denoising autoencoders[END_REF], which trains an encoder-decoder model to retrieve masked token and recover randomly modified input sentences, is quite similar to MLM and the model can also retrieve identifier names easily by finding their definition or usages. Overall, we suspect that the MLM objective is too simple in programming languages and we introduce a new objective, DOBF, which encourages the model to learn a deeper understanding of code semantics.

Deobfuscation Objective

Instead of MLM, we propose a new pre-training objective, DOBF, that leverages the particular structure of programming languages. We obfuscate code snippets by replacing class, function and variable names with special tokens, and train a model to recover the original names. When an identifier is selected, all of its instances in the code are replaced by the same special token. This differs from MLM where the name of a variable can appear multiple times while being masked a single time. For instance, in Figure 4.1, DOBF will replace the two occurrences of node by the same symbol V5, while MLM will only mask one of these occurrences. As a result, the fraction of meaningful tokens masked by the objective is language independent: for more verbose languages (e.g. Java), the less informative syntax-related tokens will not be masked out by the DOBF objective.

Each identifier is replaced with probability p obf ∈ [0, 1]. We ensure that the 4.2. Model original input is modified: if no identifier is replaced, we draw a random one to obfuscate. When p obf = 0, we always obfuscate exactly one random identifier in the input. When p obf = 1, we obfuscate all the identifiers defined in the file. We ensure that the obfuscated code has the same behavior as the original. The second row in Figure 4.1 shows an example of obfuscated code with p obf = 1, where we obfuscate a function bfs which implements a breadth-first search. The function append is not obfuscated as it is a standard Python function not defined in the file. The model is given the obfuscated code as input and has to restore the original name of each special token CLASS_i, FUNC_i and VAR_i. In other words, the model needs to output a dictionary mapping special tokens to their initial values.

Finding informative names for obfuscated identifiers requires the model to learn a deep understanding of code semantics, which is desirable for a pre-training task.

MLM will mask only some of the occurrences of the identifiers and leave the other ones unchanged so that the model can simply copy identifier names. In Figure 4.1, with MLM masking, the model can simply notice that a variable named queue is called on the fourth line. Since the variable is not defined, the model can easily guess that queue has to be defined on the third line, and infer the value of the corresponding [MASK] token. With the deobfuscation objective, the model needs to analyze code patterns and understand the semantics of the variable to infer that, since its elements are popped with .pop(0), the variable V3 implements a queue. If its elements were popped with .pop(), our model would name it stack instead of queue (c.f. Figure 4.8).

Implementation

Overall, the deobfuscation objective operates like a supervised machine translation objective, where a seq2seq model is trained to map an obfuscated code into a dictionary represented as a sequence of tokens. At inference time, the model is able to suggest meaningful class, function and variable names for a piece of code with an arbitrary number of obfuscated identifiers. Obfuscated classes, functions, and variables, are replaced with associated special tokens: CLASS_0 . . . CLASS_N, FUNC_0 . . . FUNC_N and VAR_0 . . . VAR_N. We serialize the output dictionary as a sequence of tokens where the entries are separated by a delimiter symbol |.1

Experiments

We train DOBF with the deobfuscation objective. First, we evaluate our model on two straightforward deobfuscation applications. Then, we show its performance on multiple downstream tasks.

Deobfuscation

We evaluate our model on two applications of the deobfuscation task: when p obf = 0 (the model has to retrieve a single identifier name), and p obf = 1 (the model has to retrieve all the identifier names).

Deobfuscating a single identifier When p obf = 0, only one identifier is obfuscated. In that case, the model has to propose a relevant name for that identifier using the rest of the non-obfuscated file as context. It can be used as a tool that suggests relevant variable names. Integrated development environments (e.g. PyCharm, VSCode) already perform this task, often using handcrafted rules.

Deobfuscating all identifiers

Obfuscators are commonly used to make code smaller and more efficient or to protect it by making it more difficult to understand and reuse. They typically apply several transformations, one of them being to replace every identifier name with short and uninformative names (e.g. a, b, c). In our work, such a transformation corresponds to obfuscating a file with p obf = 1. To measure our model's ability to revert the obfuscation operation, we evaluate its accuracy when obfuscating all identifier names. Another application would be to help understand source code written with uninformative variable names.

Evaluation metric

We evaluate the ability of our model to retrieve identifier names from the original non-obfuscated code. We report the accuracy, which is the percentage of recovered tokens that exactly match the ground truth. Following previous works (Allamanis et al., 2015a[START_REF] Allamanis | A convolutional attention network for extreme summarization of source code[END_REF][START_REF] Alon | A general path-based representation for predicting program properties[END_REF][START_REF] Alon | code2vec: Learning distributed representations of code[END_REF], we also report the subtoken score, a more flexible metric which computes the precision, recall, and F1 scores for retrieving the original case-insensitive subtokens. Each token is broken into subtokens using uppercase letters for CamlCase and underscores for snake_case. For instance, decoderAttention would be considered to be a perfect match for decoder_attention or attentionDecoder. attention would have a perfect precision but a recall of 0.5, so a F1 score of 66.7. crossAttentionDecoder would have a perfect recall but a precision of 2 3 , corresponding to a F1 score of 80.0. We compute the overall subtoken precision, recall and F1 scores averaged over each file in our validation and test datasets.

Fine-tuning on downstream tasks

In order to evaluate DOBF as a pre-training model, we fine-tune DOBF on TransCoder and on three tasks from CodeXGLUE [START_REF] Lu | Codexglue: A machine learning benchmark dataset for code understanding and generation[END_REF], a benchmark for programming languages. The data, code and models from CodeXGLUE and TransCoder are available respectively under the MIT and the Creative Commons license. We only consider the Java and Python tasks with an encoder in the model architecture for which the training, validation, and test sets are publicly available.

CodeXGLUE Clone Detection This task is a binary classification problem

where the model has to predict whether two code snippets are semantically equivalent.

It is evaluated using the macro F1 score. The model is composed of a single encoder and a classification layer. An input consists in two snippets of code, which are concatenated before being fed to the model. This task is available in Java.

CodeXGLUE Code Summarization

Given a code snippet, the model is trained to generate the corresponding documentation in natural language. The architecture is a sequence-to-sequence transformer model evaluated using the BLEU score [START_REF] Papineni | Bleu: a method for automatic evaluation of machine translation[END_REF]. The dataset includes Java and Python source code.

CodeXGLUE NL Code Search

Given a code search query in natural language the model has to retrieve the most semantically related code within a collection of code snippets. This is a ranking problem evaluated using the Mean Reciprocal Rank (MRR) metric. The model is composed of two encoders. The natural language query and the code are encoded separately, and we compute the dot product between the first hidden states of the encoders' last layers. This task is available in Python.

TransCoder TransCoder is the model described in Chapter 3. It is pretrained with MLM, and trained with denoising auto-encoding and back-translation.

TransCoder is evaluated using the Computational Accuracy metric, which computes the percentage of correct solutions according to series of unit tests. In this chapter, we only consider a single model output (CA@1), with beam sizes of 1 and 10. The code on the left has been fully obfuscated. The code on the right was recovered using DOBF by replacing the function name and every variable name using the generated dictionary. DOBF is able to suggest relevant function and variable names. It makes the code much more readable and easier to understand.

parameters: p obf ∈ {0, 0.5, 1}. For each p obf value, we train models with multiple initial learning rates ranging from 10 -4 to 3.10 -4 and select the best one using the average subtoken F1 score computed on the validation dataset.

Fine-tuning details Depending on the fine-tuning tasks, we consider different model architectures: seq2seq models with encoder and decoder, architectures with two encoders or a single encoder. In all cases, we initialize the encoders of these models with the encoder of DOBF and fine-tune all parameters. For fair comparison, we rerun all baselines, and train models with the same architectures, number of GPUs, batch sizes and optimizers. For CodeXGLUE, we noticed that the tasks are quite sensitive to the learning rate parameter used during fine-tuning. We perform a grid search on five learning rate parameters ranging from 5.10 -6 to 10 -4 and we select the best parameter on the validation dataset. For TransCoder, we use a learning rate of 10 -4 as in Chapter 3 and we train the models for 2 day on 32 Tesla V100 GPUs.

Results

Deobfuscation

In Table 4.2, we evaluate the ability of our model to recover identifier names, either when only one identifier is obfuscated (p obf = 0) or when all identifiers are obfuscated (p obf = 1), for models trained with p obf ∈ {0, 0.5, 1}. Even when evaluating with p obf = 0, training with p obf = 0 is less efficient than p obf = 0.5 since the model is only trained to generate a single variable for each input sequence. Training with p obf = 0.5 is a more difficult task that requires the model to learn and understand more about code semantics. Forcing the model to understand the structure of the Chapter 4. DOBF: A Deobfuscation Pre-Training Objective for Programming Languages Table 4.2: Results on partial and full deobfuscation. Token accuracy and subtoken F1 score of DOBF evaluated with p obf = 0 (i.e. name proposal, where a single token is obfuscated) and p obf = 1 (i.e. full deobfuscation, where all tokens are obfuscated). We consider models trained with different obfuscation probabilities p obf . DOBF 0.5 performs well for both tasks, and it even performs better than DOBF 0 for Identifier Name Proposal. DOBF 0 and DOBF 1 perform poorly when evaluated on other p obf parameters. Pre-training DOBF with MLM further improves the performance. code may be useful even when testing with p obf = 0, as some identifier names cannot be guessed only from the names of other identifiers. When DOBF has to recover a fully obfuscated function, it obtains the best accuracy when trained with p obf = 1.

It manages to recover 45.6% of the initial identifier names. We also observe that, for every configuration, initializing DOBF with MLM improves the performance.

Downstream tasks

Our results on downstream tasks using the same architecture as CodeBERT and

GraphCodeBERT are shown in Table 4.3 and discussed below. Our results using the architecture of TransCoder are shown on Table 4.4. For fine-tuning, we considered models pre-trained with p obf = 0.5 and p obf = 1. Since they gave very similar results on downstream tasks, we only use models pre-trained with p obf = 0.5 in the rest of this thesis. We initialize DOBF with MLM as it leads to better performance on our deobfuscation metrics. We still consider DOBF initialized randomly as a baseline in Table 4.3. We also consider a version where DOBF is trained together with a denoising auto-encoding (DAE) objective [START_REF] Vincent | Extracting and composing robust features with denoising autoencoders[END_REF] natural language and may benefit from CodeBERT's dataset that contains code documentation, we obtained very similar results on this task using a simpler dataset.

However, our MLM baseline did not match their performance on clone detection.

We also tried to initialize our MLM model with RoBERTa, but did not observe any substantial impact on the performance on downstream tasks.

The models based on DOBF obtain state-of-the-art results on all downstream tasks, outperforming GraphCodeBERT, CodeBERT and MLM. The deobfuscation objective is already effective as a pre-training task. Even when initialized randomly, it leads to results comparable to MLM on most tasks and is much more effective on clone detection. The DOBF+DAE model outperforms MLM on all downstream tasks, the major improvement being for NL code search, which is also the task that benefited the most from MLM pre-training For unsupervised translation, DOBF+DAE increases the computational accuracy by 1.9% when translating from Python to Java, and by 6.8% when translating from Java to Python with beam size 10. Also, DOBF beats

CodeBERT by a wide margin on NL code search and code summarization, showing that programming language data aligned with natural language is not necessary to train an effective model on those tasks. DOBF initialized with MLM and combined with DAE yields higher scores than both DOBF alone and MLM, on most tasks. It

shows that objectives such as MLM and DAE that provide unstructured noise are complementary to DOBF.

Results

Table 4.4: Results on downstream tasks with the architecture of TransCoder.

This architecture has less layers (6 instead of 12), a higher embedding dimension (1024 instead of 768) and less activation heads (8 instead of 12) resulting in a slightly larger model (143M parameters instead of 126M). It also uses ReLU activations instead of GELU. Models pre-trained with MLM and DOBF significantly outperform both CodeBERT and models trained with MLM only. MLM+DOBF outperforms CodeBERT by 7% on natural language code search (NLCS), and MLM by 6% in Java → Python computational accuracy. It also beats CodeBERT on every task except Clone Detection, on which CodeBERT scores much higher than our MLM. GraphCodeBERT only beats our model on python summarization and Python to Java translation by a shallow margin and is below on other tasks. The tasks where MLM provides large improvements over the transformer baseline (first row) are also those where DOBF provides the largest gains (i.e. clone detection, natural language code search, and unsupervised translation).

Clone Det Sum Java Sum Py NLCS Py→Ja Ja→Py (F1 score) (BLEU) (BLEU) (MRR) (CA@1) (CA@1) k=1 k=10 k=1 k=10 for j in range(m): DOBF is able to suggest relevant function names for a variety of Java methods and demonstrates its ability to understand the semantics of the code. In the first two examples, the first element in the beam shows that it is able to select relevant names in the context to find a function name: it uses Files.delete and Files.createDirectories to suggest the tokens deleteFile and createDir. DOBF finds relevant names for Java methods without copying any part of the other tokens. For example for the third method combining two lists as in the python zip function, for the fourth method which computes the n-th element of the Fibonacci series and for the last method which computes the dot product between two vectors.

FUNC_0 VAR_0 VAR_1 tail s n def FUNC_0(VAR_0): return sum((VAR_1 for VAR_1 in VAR_0 if ((VAR_1 % 2) == 0))) FUNC_0 VAR_0 VAR_1 even_sum nums n
res[i][j] = m1[i][j] + m2[i][

Deobfuscation examples Input Code

Proposals for Highlighted Identifiers goes well beyond copying tokens from the context. For instance, in the first example, it understands that this function is used to get environment variables. In the second example, it proposes names related to what this function actually does (removing duplicates in a list) instead of the individual operations it uses (converting to set and then to list). The last two rows show proposals for two different identifiers in a function computing the list of prime numbers below n using the sieve of Eratosthenes. The proposals for the function name are all relevant, and the third one names exactly the algorithm which is used. The variable v is a list of booleans. At the end of the algorithm, v[i] is true if and only if i is prime. The proposed names prime and isPrime are very relevant as they describe what the list contains. Although l and a are not very informative, they indicate that the variable is a list or an array. is able to identify the key tokens in each function, to properly infer its purpose, and to suggest appropriate names along with a confidence score. In particular, even though the first two code snippets are very similar in terms of edit distance, they implement very different functions and DOBF is able to name them appropriately. 4.9. While the accuracy of the model is far from perfect, the tokens it retrieves generally make sense and facilitate the comprehension of the code.

: v = [True for i in range(n + 1)] p = 2 while (p * p <= n): if (v[p] == True): for i in range(p * 2, n + 1, p): v[i] = False p += 1 v[0]= False v[1]= False return [p for p in range(n+1) if v[p]]

BFS Implementation

Conclusion

In this chapter, we introduce a new deobfuscation objective and show that it can be used for three purposes: recover fully obfuscated code, suggest relevant identifier names, and pre-train transformer models for programming language related tasks.

Although it does not require any parallel corpora of source code aligned to natural language, methods based on DOBF outperform GraphCodeBERT, CodeBERT and MLM pre-training on multiple downstream tasks, including clone detection, code summarization, natural language code search, and unsupervised code translation.

These results show that DOBF leverages the particular structure of source code to add noise to the input sequence in a particularly effective way. Other noise functions or surrogate objectives adapted to source code may improve the performance further.

For instance, by training a model to find the type of given variables, the signature of a method, or to repair a piece of code which has been corrupted.

Since models pre-trained on source code benefit from structured noise, it would be interesting to see whether these findings can be applied to natural languages as well, where identifiers could be seen as analogous to named entities. More TransCoder leverages back-translation (Sennrich et al., 2015a), an effective dataaugmentation scheme where the model translates source sequences to generate training data for the target-to-source direction, and vice versa. Although being highly effective in low-resource translation, back-translation also has issues, as the model is trained on potentially invalid input-output pairs. Neural machine translation models being highly sensitive to input noise [START_REF] Belinkov | Synthetic and natural noise both break neural machine translation[END_REF][START_REF] Khayrallah | On the impact of various types of noise on neural machine translation[END_REF], this can severely deteriorate the performance. Fortunately, many programming languages come with relatively mature tools and technologies for automated test data generation. In this chapter, we propose to leverage these tools to guide the translation process, weeding out unsuccessful translations, thereby increasing the overall confidence in the machine translation process.

The topic of automated test data generation has been active for over three decades in the software engineering research community [START_REF] Glenford | The Art of Software Testing[END_REF]Miller and Spooner, 5.1. Context learning community (Zhang et al., 2020). In this chapter, we propose to use automatically created unit tests to guide unsupervised translation models for programming languages. More precisely, we create unit tests automatically for a large number of functions from the source dataset. Since the unit tests are composed of simple inputs and asserts, they can easily be translated to semantically equivalent tests in the target languages using simple scripts. Using our unit-tests and a pre-trained unsupervised translation model, we create parallel datasets by translating functions and selecting the translations that have the same semantics as the original function for the tested inputs. In this chapter, we make the following contributions:

• We introduce a novel approach, TransCoder-ST (for Self-Trained), that leverages an automated unit test generation pipeline to filter out invalid translations and reduce the noise coming from the back-translation process in unsupervised machine translation.

• We present two implementations of this approach (online and offline), and show that it significantly outperforms the previous state of the art in code translation on all the language pairs we considered. In particular, we improve the state of the art for translating between Java, Python and C++ by an average of 12.6% Computational Accuracy (CA@1), corresponding to an average relative improvement of 25.5%. For Python → C++, we improve the CA@1 by 24%, reducing the error rate by 35.7% compared to previous models.

• We generate multilingual unit tests for hundreds of thousands of Java functions and create a large parallel dataset of 135,000 parallel functions between Java, Python, and C++.

• Our method is completely unsupervised and could easily be generalized to other programming languages and unit test creation tools.

Context

Unit Test Generation. Software testing is challenging due to the large number of possibilities to be tested, and the inherent cost of covering reasonable representative sample [START_REF] Glenford | The Art of Software Testing[END_REF]. When test design is performed by humans, the cost can be prohibitive. To reduce such cost, much research over the last three decades has focused on automating the process of test generation [START_REF] Anand | An orchestrated survey of methodologies for automated software test case generation[END_REF]. Although automated test generation has been studied since the mid-1970s [START_REF] Miller | Automatic generation of floating-point test data[END_REF], it was only in the last decade that industrial-strength tools have become widely available. There are now several test data generation tools for languages, including C [START_REF] Cadar | unassisted and automatic generation of high-coverage tests for complex systems programs[END_REF][START_REF] Lakhotia | AUSTIN: An open source tool for search based software testing of C programs[END_REF] and Java [START_REF] Fraser | EvoSuite: automatic test suite generation for object-oriented software[END_REF]. Popular test data generation techniques include symbolic execution of the code [START_REF] Cadar | Symbolic execution for software testing: Three decades later[END_REF], dynamic execution guided by a fitness function [START_REF] Harman | Achievements, open problems and challenges for search based software testing[END_REF], and hybrids of these two techniques [START_REF] Baars | Symbolic search-based testing[END_REF]. Recently, neural networks have also been used successfully to generate unit tests [START_REF] Tufano | Unit test case generation with transformers[END_REF].

One of the most well-established and widely-used open source tools for test data generation is the EvoSuite system [START_REF] Fraser | EvoSuite: automatic test suite generation for object-oriented software[END_REF]. EvoSuite uses search based software engineering (SBSE) [START_REF] Harman | Search based software engineering: Trends, techniques and applications[END_REF]). The test framework can be considered as a parameter in our overall approach and could be substituted with another.

In order to assess the effectiveness of the test suites generated, we use mutation testing, a topic also widely-studied since the 1970s [START_REF] Demillo | Hints on test data selection: Help for the practical programmer[END_REF]. A mutant is a version of the program into which a fault is deliberately inserted, thereby assessing the test suite's fault detection ability [START_REF] Jia | An analysis and survey of the development of mutation testing[END_REF][START_REF] Papadakis | Mutation testing advances: an analysis and survey[END_REF].

For a given set of mutants and a test suite, the mutation score is defined to be the proportion of mutants for which the test suite distinguishes the behavior of the mutant from that of the original program. The mutation score is thus a proxy for the fault-revealing power of the test suite on a set of simulated faults (the mutants).

Mutation scores have been empirically demonstrated to be correlated to real fault revelation [START_REF] Thierry Titcheu Chekam | An empirical study on mutation, statement and branch coverage fault revelation that avoids the unreliable clean program assumption[END_REF], motivating our adoption of this approach.

Translation of Programming Languages

Several studies used statistical methods to translate between programming languages. Early methods extracted parallel datasets and trained phrase-based models to translate between C# and Java [START_REF] Tuan Nguyen | Lexical statistical machine translation for language migration[END_REF][START_REF] Karaivanov | Phrase-based statistical translation of programming languages[END_REF] or from Python 2 to Python 3 [START_REF] Aggarwal | Using machine translation for converting python 2 to python 3 code[END_REF]. Later, [START_REF] Chen | Tree-to-tree neural networks for program translation[END_REF] proposed a tree-to-tree neural network to translate between CoffeeScript and JavaScript and between C# and Java using the dataset cre-5.2. Method ated by [START_REF] Tuan Nguyen | Lexical statistical machine translation for language migration[END_REF]. However, these approaches are limited to a few language pairs for which small parallel datasets were created manually (e.g. C#-Java) or can be created with rule-based tools (e.g. Python 2-Python 3 and CoffeeScript-JavaScript).

Instead, in Chapter 3, we proposed TransCoder, an unsupervised model that leverages the principles of unsupervised machine translation (Lample et al., 2018c), to translate between Python, Java and C++. We showed that our method outperforms well-established rule-based baselines, does not require any parallel data or expert knowledge, and can easily be generalized to other languages. We pre-trained our model with the Masked Language Modeling (MLM) objective of [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF], and trained it with the denoising auto-encoding (DAE) [START_REF] Vincent | Extracting and composing robust features with denoising autoencoders[END_REF] and the back-translation (BT) (Sennrich et al., 2015a) objectives. In Chapter 4, we showed that augmenting MLM with a deobfuscation objective (dubbed DOBF) can substantially improve the performance of TransCoder. In the rest of the chapter, we will refer to the transpiler pre-trained with DOBF as simply DOBF.

Even though unsupervised methods can be trained on large amounts of data, they sometimes lack the signal needed to differentiate between semantically different tokens that often occur in similar contexts (see Figure 5.1). There is a need for a method providing supervised signal directly related to the semantics of the code without manually crafted parallel datasets.

Method

In this paper, we present the methods we used to automatically generate parallel data and improve code translation models.

Mutation score

In mutation testing, mutants are programs transformed from the original programs based on a series of syntactic transformation rules called mutation operators. Mutation testing consists in introducing minor syntactic faults on the code and running the tests against the mutated code. A strong test suite is expected to detect the code changes by having at least one test failing. Table 5.1 shows the examples of mutation operators adopted in EvoSuite when generating mutants [START_REF] Fraser | Achieving scalable mutation-based generation of whole test suites[END_REF].

A mutant is said to be killed by a test case if the output of this test case on the mutant is different from its output on the original program (i.e., the test fails the mutant). Otherwise, the mutant is said to have survived.

Evaluation

In the context of natural languages, machine translation models are generally benchmarked against a reference solution using the BLEU score [START_REF] Koehn | Statistical machine translation[END_REF][START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF][START_REF] Vaswani | Attention is all you need[END_REF]. Early studies on source code translation used the same metric to evaluate the quality of the generated functions [START_REF] Tuan Nguyen | Lexical statistical machine translation for language migration[END_REF][START_REF] Karaivanov | Phrase-based statistical translation of programming languages[END_REF][START_REF] Aggarwal | Using machine translation for converting python 2 to python 3 code[END_REF][START_REF] Valerio Miceli-Barone | A parallel corpus of python functions and documentation strings for automated code documentation and code generation[END_REF], or the exact match score which requires the translation to be exactly equal to the ground truth [START_REF] Chen | Tree-to-tree neural networks for program translation[END_REF]. However, these metrics fail to capture the semantics of the code and typically correlate poorly with the correctness of We evaluate our models on the full validation and test sets of TransCoder. It contains a few hundreds of parallel functions extracted from GeeksforGeeks along with associated unit tests. As our TransCoder and DOBF baselines, we evaluate our models with the CA@N metric, which checks if any of the top-N solutions proposed by the model passes all the corresponding unit tests. This metric can be computed independently of the beam size (as long as the beam size is greater or equal to N).

Experiments

Training details

Model architecture. We use a sequence-to-sequence model with attention composed of an encoder and a decoder model with a transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF]. In order to provide fair comparisons, we use the exact same architecture as TransCoder: an encoder and a decoder of 6 layers each, a hidden dimension of 1024 and 8 attention heads. We limit the size of the input to 512 tokens. In Chapter 4, we train models with two different architectures. For Java ↔ Python, we compare ourselves to the version of DOBF using the same architecture as TransCoder. We initialize our models with either the best TransCoder checkpoint for Java → C++ or the best DOBF checkpoint for Java → Python with C++ language embeddings initialized with those of Java.

Datasets. As TransCoder and DOBF, we use the GitHub public dataset available on Google BigQuery filtered to keep only projects with open-source licenses1 . As our unit test creation tool can only be used on Java code, we only use the Java files and we select only the functions that can be compiled in isolation. We obtain a dataset containing 333,542 Java functions. We run EvoSuite with a budget of 20 seconds and a criterion including the line, branch, cbranch and output coverages, as well as the weak and strong mutation scores. We set the maximum absolute value of integers that can be generated as an input to √ 2 31 -1 to limit the number of overflows. We manage to obtain high-quality (mutation score > 0.9 and at least two asserts) test During beam decoding, we compute the score of generated sequences by dividing the sum of token log-probabilities by l α where l is the sequence length. We found that taking α = 0.5 (and penalizing long generations) leads to the best performance on the validation set.

Reproducibility. We made sure to use the same architecture and framework as previous works in source code translation so that our results are comparable (see Section 5.3.1). We submit our code with this submission, along with a ReadMe file detailing clear steps to reproduce our results, including a script to set-up a suitable environment. We will open-source our code and release our trained models.

Our models were trained using standard hardware (Tesla V100 GPUs) and libraries (e.g. PyTorch, Cuda) for machine-learning research.

Results and discussion

Results. In Tables 5.3 and 5.4, we compare the results of our offline and online training methods with those of TransCoder and DOBF. DOBF outperforms TransCoder for the Java ↔ Python pair. We compare our models against the best baseline for each language pair and direction.

Training on the generated parallel examples brings substantial improvements for every language pair, direction, and metric. Offline training already provides clear improvements over the baseline after one iteration. The computational accuracy (CA@1) computed with beam size 10 is higher for every direction and it is substantially Table 5.3: Computational accuracy scores for our methods and baselines.

We show the CA@1 metric computed with beam size 10. Both the offline and online self-training methods lead to significant improvements over our baselines for every language pair and direction. Online self-training outperforms offline self-training, even after several iterations.

C++ → Ja C++ → Py Ja → C++ Ja → Py Py → C++ Py → Ja AVG Table 5.4: CA@N metric for several beam sizes averaged on all language pairs. The value k corresponds to the beam size. For instance, CA@1 k=10 means that we use beam decoding to generate 10 translations, and select the one with the highest score.

The best baseline corresponds to taking the best model between TransCoder and DOBF for every language pair and direction. The error rate reduction of the offline and online self-training methods over the best baseline are high (> 20%) across all CA@N metrics and beam sizes.

CA@1 k=1 CA@1 k=10 CA@1 k=20 CA@10 k=10 CA@20 k=20 It results in average improvements of 2% points between the first and third iteration.

Although the model for the fourth iteration is trained on more parallel samples, its performance on the test set of TransCoder is actually worse than after the third iteration. After three iterations, the model learned to generate more samples that pass the unit tests but some of them are actually incompatible with the types of translations expected by TransCoder (e.g. example with overflows in Figure 5.8),

causing the computational accuracy score to go down.

Table 5.5: Ablation study. We show the CA@1 metric computed with greedy decoding at evaluation time except for the last line where the beam size is set to 10. We evaluate models trained with no cache system, without initializing the cache (with or without selecting the tests with a minimum mutation score of 0.9), and a beam size of 1 when generating examples. We also compare the CA@1 score of our full model when evaluating with greedy decoding and with beam size 10. Using a pre-filled cache and selecting only the tests with a high mutation score lead to substantially better performance, although these steps are not necessary to outperform our baseline. The online method already performs well with greedy decoding at generation time, but generating with beam size 20 further improves the results. errors can be found in Figure 5.1 and 5.4. Overall, all our models significantly improve previous results. As shown in Table 5.4, these improvements are stable across several beam sizes and CA@N metrics. The CA@20 metric shows that the number of examples for which none of the 20 elements in the beam are correct is reduced by more than 22% with online self-training. It indicates that, even though we train only on the output of the model, our method does much more than reordering the elements in the beam and allows the model to find correct solutions that were not assigned a high probability by the baseline model. See Table 5.6 for more results.

Beam reordering

We also evaluate a simpler method where we create unit tests for the Java functions in the test dataset and use them to reorder the elements of the beam at test time. We compute the results of the tests for every proposed C++ or Python translation and prioritize the elements that pass the unit tests.

As shown on Table 5.6, reordering the elements of the beam at test time when translating from Java leads only to small improvements compared to the best baseline (up to 1.7% CA@1 for Java → Python) and the scores of this method are far from Chapter 5. Leveraging Automated Unit Tests for Unsupervised Code Translation those obtained when requiring any of the 10 element of the beam to be correct (i.e. CA@10). It can be explained by the fact that the tests generated by EvoSuite on these functions can have low mutation scores and be insufficient to thoroughly test the semantics of the functions. Moreover, the tests we create are sometimes incompatible with those of our test set (see Figure 5.8 for an example). Ablation study. The results of our ablation study are shown in Table 5. Evaluating with beam size 10 (still returning only the first element) leads to some improvements for every language pair.

Limitations. We found that the unit tests we create with this method are sometimes incompatible with those of the test set of TransCoder, and that the capacity In the first example, which returns whether a given string corner is present at the beginning and at the end of a string str, TransCoder completely fails to translate the last logical expression correctly while TransCoder-ST manages to translate the logic to get the right substrings and to return the right output. The second example is a line defining a priority queue extracted from the kthLargestSum function in the test set of TransCoder. The PriorityQueue object in Java returns the smallest elements first by default, while priority_queue in C++ returns the largest. TransCoder, which was not trained on any semantic signal, manages to instantiate a priority queue object but instantiates a max queue instead of a min queue. TransCoder-ST, which was trained with some supervised signal directly linked to the semantics of the code, manages to instantiate the right type of priority queue.

Conclusion

In this chapter, we introduced a novel method to grow a parallel corpus for automated code translation, from completely monolingual data. We leverage multilingual unit tests to filter good pseudo-labels, improving the model, and in turn the candidate translations. We show that both offline and online methods substantially improve the state of the art in unsupervised code translation, with an average improvement of 12.6% points in computational accuracy, and up to 24% points for Python → C++, corresponding to translation error rate reductions of 25.5% and 35.7% respectively, without using any unit test generation tool for Python and C++ (exclusively for Java).

Our method would automatically gain from improvements of automatic unit test generation tools. We could also increase the size of the dataset we generate by using test creation tools written for other languages in addition to Java, or by generating tests with EvoSuite on translated examples. Similarly, we could also extract the semantics of human-written unit tests found in open-source projects to obtain larger, and possibly higher-quality datasets. In this chapter, we focused on translation correctness and our parallel example validation criterion was only based on semantics.

It could be supplemented with other requirements, such as a specific code formatting or the output of linters to generate code verifying arbitrary criteria.

Chapter 6

Conclusion and perspectives

In this thesis, we developed unsupervised methods for translating between high-level programming languages. Transformer networks provided us with a general and versatile architecture, to learn multilingual embeddings of source code, and translate between C++, Java and Python. We exhibited the shortcomings of previous metrics, such as the BLEU and exact match scores, and created a new test set and metrics evaluating the semantics of our translations with unit tests. We showed significant improvements compared to existing rule-based translators.

Then, we identified that pre-training methods designed for natural languages, such as MLM, are sub-optimal in the context of programming languages. Hence, we designed a novel pre-training method for programming languages based on identifier deobfuscation. Identifier names contain rich semantic information, and our objective leads the model to understand the meaning of the code. When used together with random masking schemes, it leads to significant gains on several programming languages tasks, including code translation.

After improving the model pre-training for programming languages, we decided to use another one of their distinct properties. Contrarily to natural languages, source code can be compiled and run. We used an automated unit test creation tool, to generate datasets of tens of thousands of translation examples. We proposed an online training method, and a cache mechanism, to use this signal and significantly improve our unsupervised transcompiler. [START_REF] Weisz | Better together? an evaluation of ai-supported code translation[END_REF] conducted an experiment in which 32 software engineers translated code with and without the assistance of our unsupervised translator described in Chapter 3. They showed that our tool improves the translation quality, and that the participants overwhelmingly felt like it was useful. Such generative Chapter 6. Conclusion and perspectives models provide a starting point to work with, and can teach new constructs or standard functions in the target language. However, the programmers also reported wasting time and feeling frustrated when having to fix bugs in the imperfect outputs of the program, showing improving neural transcompilers would be needed and impactful. We identify the following areas for future works:

Constrained generations An important difference between natural and programming languages is that the later have a stricter syntax and better-defined semantics.

Popular languages come with several compilers, linters, and other static analysis tools, which can find errors in generated code. This information, as well as runtime data, can be used to filter the outputs of the model. However, these methods significantly increase the computational resources and latency at generation time. Other methods using these tools to retrain the model, or constraining the generations of auto-regressive models could also be explored.

Parallel data

In this thesis, we described only unsupervised methods for source code translation. Parallel data, composed of aligned code snippets in two programming languages, could also be used to either align the representations at the beginning of training or fine-tune our models. Such data would be expensive to create manually, since translating functions requires expertise in both the source and the target languages. The value of existing parallel datasets, such as the validation and test set that we released and solutions to competitive programming problems, has still not been estimated for training parallel models. This type of data leads to improved performance for translating functions from the same domain, but it is unclear whether they would help translate real-world functions. Noisy alignments with simple rules could also be explored.

Larger contexts Most machine learning methods for source code-including those presented in this thesis-consider either files or functions independently. However, real-world software engineering requires to dive into large codebases. Changes need to account for the way the codebase is organized, and can often be simplified by using classes and functions defined in other files. Even with linear attention transformers, there is a limit to the number of tokens that can be included in the context. Hence, methods adapting machine learning systems to the context of specific codebases would require to find another way to encode large contexts. Methods such as hierarchical models or retrieval could be explored.

•

 TransCoder-ST (Roziere et al., 2022) use automated unit tests to create datasets of aligned functions, and self-training to improve upon both TransCoder and DOBF. It is detailed in chapter 5.

Figure 1 . 1 :

 11 Figure 1.1: Illustration of the improvements brought by our methods for Java to Python Translation. In orange, a rule-based baseline called j2py. In shades of blue, the unsupervised methods detailed in this thesis. TransCoder, described in Chapter 3, is our initial method for unsupervised translation of programming languages. DOBF is a novel pre-training objective for programming languages detailed in Chapter 4. In Chapter 5, we present TransCoder-ST, which is trained on aligned data generated using automated unit tests. The y axis is the computational accuracy for a single generation. It measures the percentage of generations that pass a series of unit tests.

 and V the matrices containing the queries, keys, and values, which are computed as linear transformations of token representations. In self-attention, the keys, queries, and values are computed from the same token representations. In the encoder, each position can attend to any other position in the previous layer. In the decoder, they use masking to ensure that no element can attend to positions after its own. It guarantees that the information flows only forward and that the Chapter 2. Related Work tokens are generated in an auto-regressive manner. Another type of attention is the cross-attention. It is present in the decoder and allows each generated token to attend to any token representation at the last layer of the encoder. It is done by computing the keys and values from the encoded input sequence, and the queries from the output tokens generated by the decoder.

2. 1 .

 1 Neural Machine Translation and propose to project the keys and values matrices to a lower dimensional space.It reduces the complexity of self-attention from quadratic to linear and provides substantial speedups and memory usage improvements empirically.Encoding tree structures. Programming languages are strictly structured, and are generally designed to be parsed into semantically rich structures such as Abstract Syntax Trees (AST). ASTs contains all the semantic information required to understand the code and compile it further. They represent concepts such as scopes and token types clearly, and are often used to perform static analysis. Several methods have been proposed to leverage the information contained in ASTs.[START_REF] Shiv | Novel positional encodings to enable tree-based transformers[END_REF] propose to encode the position of each node by its path from the root.[START_REF] Kim | Code prediction by feeding trees to transformers[END_REF] develop relative tree positional encodings, where the number of up and down moves in the unique path to go from A to B in the AST is used to compute the attention matrix.[START_REF] Chirkova | Empirical study of transformers for source code[END_REF] compare the performance of sequential positional encodings to tree positional encodings, and graph neural networks from Hellendoorn et al. (2019) on four tasks. They observe that sequential relative attention[START_REF] Shaw | Self-attention with relative position representations[END_REF] performs well in average and that transformers are generally capable of understanding the structure of the code without tree positional encodings.Chen et al. (2021b) propose several alternative representations of code as graphs, and show that leveraging graph representations leads to significant gains for several tasks on source code.

(2020)

 2020 also proposed different pre-training objectives, for instance to detect whether input sentences have been permuted, or tokens have been deleted or inserted. Code Generation Pre-training. Pre-training methods developed for natural languages are also effective for programming languages. For instance, Kanade et al. (2020); Feng et al. (2020) rely mostly on the MLM objective to pre-train models Chapter 2. Related Work similar to BERT[START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF] on programming languages. It leads to significant improvement gains on several downstream tasks.[START_REF] Ahmad | Unified pre-training for program understanding and generation[END_REF]

 [START_REF] Jain | Contrastive code representation learning[END_REF] train a model with a contrastive loss, ensuring that the representations are robust to some semantic-preserving transformations. InGraphCodeBERT (Guo et al., 2020), the MLM objective is complemented by an edge-prediction objective, in which the model predicts edges in the data flow graph to make the model understand the structure of the code. DOBF (detailed in Chapter 4) leverages the structure of the programming languages to train a model to deobfuscate identifiers. CodeT5[START_REF] Wang | Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation[END_REF] improves it by adding other tasks specific to programming languages, such as identifier tagging, docstring generation, and code generation from docstrings.

Figure 3 . 1 :

 31 Figure3.1: Illustration of the three principles of unsupervised machine translation used by our approach. The first principle initializes the model with cross-lingual masked language model pretraining. As a result, pieces of code that express the same instructions are mapped to the same representation, regardless of the programming language. Denoising auto-encoding, the second principle, trains the decoder to always generate valid sequences, even when fed with noisy data, and increases the encoder robustness to input noise. Back-translation, the last principle, allows the model to generate parallel data which can be used for training. Whenever the Python → C++ model becomes better, it generates more accurate data for the C++ → Python model, and vice versa. Figure3.2 provides a representation of the cross-lingual embeddings we obtain after training.

 Figure 3.2 shows a t-SNE vizualization of the embeddings of a few C++, Java and Python tokens. Thanks to anchor words, tokens with similar semantics in different languages such as map and dict have similar embeddings. For the masked language modeling (MLM) objective, at each iteration we consider an input stream of source code sequences, randomly mask out some of the tokens, and train TransCoder to predict the tokens that have been masked out based on Chapter 3. Unsupervised Translation of Programming Languages with Multilingual Pre-Training their contexts. We alternate between streams of batches of different languages. This allows the model to create high quality, cross-lingual sequence representations. An example of XLM pretraining is given on the top of Figure 3.1.

 the unsupervised setting, a source-to-target model is coupled with a backward target-to-source model trained in parallel. The target-to-source model is used to translate target sequences into the source language, producing noisy source sequences corresponding to the ground truth target sequences. The source-to-target model is then trained in a weakly supervised manner to reconstruct the target sequences from the noisy source sequences generated by the target-to-source model, and vice versa. The two models are trained in parallel until convergence. An example of back-translation is illustrated in Figure 3.1.

 Chapter 3. Unsupervised Translation of Programming Languages with Multilingual Pre-Training per programming language.

Figure 3 . 4 :

 34 Figure 3.4: Example of unsupervised Python to C++ translation. TransCoder successfully translates the Python input function SumOfKsubArray into C++. TransCoder infers the types of the arguments, of the variables, and the return type of the function. The model maps the Python deque() container, to the C++ implementation deque<>, and uses the associated front, back, pop_back and push_back methods to retrieve and insert elements into the deque, instead of the Python square brackets [], pop and append methods. Moreover, it converts the Python for loop and range function properly.

 2, we present a t-SNE[START_REF] Van Der Maaten | Visualizing data using t-sne[END_REF] visualization of cross-lingual token embeddings learned by the model. TransCoder successfully map tokens with similar meaning to the same latent representation, regardless of their languages. Figure3.10 shows that TransCoder can adapt to small modifications. For instance, renaming a variable in the input may result in different translated types, still with valid translations. In Figure3.13, we present 40 3.2. Experiments some typical failure cases where TransCoder fails to account for the variable type during generation. For instance, it copies the C++ NOT operator ! applied to an integer in Java, while it should be translated to ~. It also translates the Python min function on lists to Math.min in Java, which is incorrect when applied to Java arrays.

Figure 3 . 8 :

 38 Figure 3.8: Examples of correct translations from Python using TransCoder. When translating from Python, TransCoder successfully infers types. Here, TransCoder infers the Python list type and translates it into its C++ equivalent std::vector. The last two examples show that TransCoder does not modify the call to the non-standard function bar or the global variable PI.

 true if the integer is positive) but it only works on boolean in Java. int summingSeries(long n){ return pow(n, 2); } static int summingSeries(long n){ return Math.pow(n, 2); } In Java, Math.pow(n, 2) returns a double which should be cast to int to match the function return type. def minSum(A): min_val = min(A) return min_val * (len(A) -1) static double minSum(double[] A){ double minVal = Math.min(A); return minVal*(A.length -1); } Math.min is a Java function but does not take as input a double[] array but a pair of double.

Figure 3 .

 3 Figure 3.13: Examples of failed TransCoder translations. TransCoder fails to translate these C++ and Python functions into Java, showing its limitations.In these examples, it fails to account for the variable types when using a method or an operator. In particular, the NOT operator ! in C++ should have been translated to ~in Java, because it is applied to an integer. Similarly, the Math.min function in Java cannot be applied to arrays.

Figure 4 . 2 :

 42 Figure 4.2: Full deobfuscation of a breadth-first-search function by DOBF.

Figure 4 .

 4 Figure 4.2 shows an example of a fully obfuscated function recovered by our model. DOBF successfully manages to understand the purpose of the function and to predict appropriate variable names.Figure 4.4 shows examples of function name proposal by DOBF for functions implementing matrix operations in Python. We observe that DOBF manages to identify the key tokens and to properly infer the purpose of similar but very different functions. Figures 4.5, 4.6, and 4.7 show additional examples of function name proposals by DOBF in Java and Python.Figure 4.8 shows additional examples where we show that DOBF also leverages non-obfuscated identifier names to understand the meaning of input functions. Figures 4.9 and 4.3 show examples of deobfuscation of fully obfuscated Python code snippets using DOBF. It is able to understand the semantics and purposes of a variety of obfuscated classes and functions, including a LSTM cell.

 , which was shown to be effective at learning code representations in Chapter 3. With DAE, the model is trained to recover the original version of a sequence which has been corrupted (by removing and shuffling tokens). As baselines, we consider a randomly initialized model and a model pre-trained with MLM only, and a model pre-trained with denoising and initialized with MLM. For CodeXGLUE tasks, we also consider Chapter 4. DOBF: A Deobfuscation Pre-Training Objective for Programming Languages CodeBERT as a baseline. We compare results for DOBF trained from scratch and DOBF initialized with MLM, and report results in Table 4.3. The randomly initialized model is useful to measure the importance of pre-training on a given task. Pre-training is particularly important for the NLCS task: without pre-training, the model achieves a performance of 0.025 MRR while it goes up to 0.308 with MLM pre-training. The main differences between our MLM baseline and CodeBERT, are that 1) CodeBERT was trained on a different dataset which contains functions with their documentation, 2) it uses an additional RTD objective, and 3) is initialized from a RoBERTa model. Although code summarization and NL code search involve

Figure 4 . 3 :

 43 Figure 4.3: Examples of full deobfuscations of Python functions. Even when every identifier is obfuscated, DOBF is able to propose relevant names. The proposed function name is informative and relevant in all examples since the first function computesa dot product, the second downloads a HTML page and returns its content, the third evaluates whether the input contains only unique elements, the fourth computes the tail of an iterable, and the fifth computes the sum of the even elements of an iterable.

Figure 4 . 4 :

 44 Figure 4.4: Examples of function name proposals for matrix operations in Python.DOBF is able to find the right name for each matrix operation, showing that it learned to attend to the most important parts of the code. Even when the functions are similar, DOBF successfully and confidently (c.f. scores) understands the semantics of the function and its purpose.

Figure 4 . 5 :

 45 Figure 4.5: Examples of name proposal in Java. DOBF is able to suggest relevant

Figure 4 . 6 :

 46 Figure 4.6: Examples of name proposal in Python. Our model trained with DOBF

Figure 4 . 7 :

 47 Figure 4.7: Examples of function name proposal in Python using DOBF. DOBF

Figure 4 . 8 :

 48 Figure 4.8: Deobfuscation on graph traversal functions. These three functions perform graph traversals.The only difference between the first and the second function is that the first uses a queue to select the next element (.pop(0)) while the second uses a stack (.pop()). The first function implements a breadth-first search (bfs) in the graph and the second implements a depth-first search (dfs). DOBF is able to find the right function and variable names in each case. In the last function, we replaced the anonymized VAR_0 variable with queue in the implementation of depth-first search. This erroneous information leads DOBF to believe that this function performs breadth-first search. It shows that, just like human programmers, DOBF uses the names of the other variables to understand programs and choose relevant identifier names. When working on code with misleading identifier names, it is often preferable to obfuscate several identifiers.

 generally, natural languages also have an underlying structure. Leveraging the constituency or dependency parse trees of sentences (as opposed to abstract syntax trees in programming languages) may help designing better pre-training objectives for natural languages.This method still relies only on anchor words to align the representations and learn to translate without any parallel data. However, source code can also be compiled and executed, and software developers use this type of signals in their daily work. For instance, using unit tests to verify the semantics of a function on a series of carefully-chosen examples is a standard procedure in software engineering. In the next chapter, we show how to leverage this type of signal to improve unsupervised translation methods for source code. Chapter 3) showed that unsupervised methods can be used to translate source code. However, it is trained without any supervised signal and only learns the semantics of tokens from their contexts. As shown in Figure5.1, it can confuse tokens that have different semantics in different languages, for instance the float division in Python and integer division in C++ and Java which use the token / or more subtle operator priority differences (e.g. Java prioritizes == over &, unlike Python). While small inaccuracies often merely hinder comprehension in natural languages, they often make the entire translation erroneous in the context of programming languages.

 Figure 5.2: Our iterative self-training method. Using EvoSuite, we generate unit tests in Java, Python and C++ corresponding to several input Java functions. With a machine translation model (e.g. TransCoder), we generate several candidate translations of the Java function in Python and C++. Generated translations that pass the unit tests are used to create a parallel dataset on which we fine-tune the model. Discarding translations that fail the unit tests reduces the noise of data coming from the back-translation process, and significantly improves the overall performance of the model.

Chapter 5 .

 5 Leveraging Automated Unit Tests for Unsupervised Code Translation the generated function, prompting the use of new metrics checking if the generated solution passes series of test cases (see Chapter 3, Kulal et al. (2019); Hendrycks et al. (2021); Chen et al. (2021a); Drain et al. (2021)).

 5. Training online with no cache makes the training much less stable. The model improves at the beginning of training and we can select a few checkpoints where it performs well, but it ends up over-fitting a few examples it generated and the performance drops after a few epochs. Starting with an empty cache slows down the training and hinders generalization, leading to a clear drop in performance. We also try removing the minimum mutation score requirement for the model with no initial cache, which leads to even lower scores as the model is trained partly on lower-quality parallel data. All these models were trained using a self-training beam size of 20 when generating new examples. Training with greedy decoding is much faster since computing the results for all the 20 elements of the beam is costly. However, generating new examples with greedy decoding leads to a loss of about two percentage points in average compared to our full model using beams of size 20. It shows that initializing the cache of the model with beam size 20 is not sufficient and creating new examples with beam search is necessary to reach our best performance. Our full model provides 5.3. Experiments some improvements over the ablated versions for every language pair and direction, except over the model trained with greedy decoding for Python → C++ translation.

 Figure 5.8: Example of disagreement between our multilingual tests and the test set of TransCoder. The gold translation is only equivalent to the input Java function on a small domain where there is no integer overflow and does not pass our unit tests. The version that passes the unit tests casts uses the np.int32 type, reproducing the behaviour of the original Java code but causing it to fail some of the unit tests of TransCoder.

Figure 5 . 13 :

 513 Figure5.13: Java to C++ translation examples. In the first example, which returns whether a given string corner is present at the beginning and at the end of a string str, TransCoder completely fails to translate the last logical expression correctly while TransCoder-ST manages to translate the logic to get the right substrings and to return the right output. The second example is a line defining a priority queue extracted from the kthLargestSum function in the test set of TransCoder. The PriorityQueue object in Java returns the smallest elements first by default, while priority_queue in C++ returns the largest. TransCoder, which was not trained on any semantic signal, manages to instantiate a priority queue object but instantiates a max queue instead of a min queue. TransCoder-ST, which was trained with some supervised signal directly linked to the semantics of the code, manages to instantiate the right type of priority queue.

1

 It contains more than 2.8 million open source GitHub repositories. We filter projects whose 3.2. Experiments license explicitly permits the re-distribution of parts of the project, and select the C++, Java, and Python files within those projects. Ideally, a transcompiler should be able to translate whole projects. In this work, we decide to translate at function level. Unlike files or classes, functions are short enough to fit into a single batch, and working at function level allows for a simpler evaluation of the model with unit tests (c.f. Section 3.2.4). We pretrain TransCoder on all source code available, and train the denoising auto-encoding and back-translation objectives on functions only.Please refer to Section 3.2.2 and Table3.1 for more details on how the functions are extracted, and for statistics about our training set. We carry out an ablation study to determine whether it is better to keep or remove comments from source code. Keeping comments in the source code increases the number of anchor points across languages, which results in a better overall performance. Therefore, we keep them in our final datasets and experiments.

 Statistics of our GitHub dataset. We show the statistics for our entire GitHub dataset (All) and for the extracted functions. We give the size in GigaBytes, the number of files and functions, and the number of tokens.The logical operators && and || exist in C++ where they should be tokenized as a single token, but not in Python. The indentations are critical in Python as they define the code structure, but have no meaning in languages like C++ or Java.

	Chapter 3. Unsupervised Translation of Programming Languages with Multilingual
	Pre-Training			
	Table 3.1: C++	Java Python
	All -Size	168 GB 352 GB 224 GB
	All -Nb of files	15 M	56 M	18 M
	All -Nb of tokens	38 B	75 B	50 B
	Functions -Size	93 GB 185 GB 152 GB
	Functions -Nb of functions	120 M	402 M	217 M

. In our case, a universal tokenizer without pre-tokenization would be suboptimal, as different languages use different patterns and keywords.

 Example of function tokenization. We show two versions of the same Python function and their common tokenization. These function versions differ by extra spaces and one extra new line. Our Python tokenizer is robust to extra spaces and extra new lines except in strings. In strings, spaces are tokenized as (U+2581). Indentation is meaningful in Python: indented blocks are surrounded by INDENT DEDENT tokens.

		3.2. Experiments
	Python function v1	Python function v2
	def rm_file(path):	def rm_file(path):
	try:	
	os.remove(path)	try:
	print("Deleted")	os.remove(path)
	except:	print("Deleted")
	print("Error while deleting file", path)	except :
		print("Error while deleting file", path)
	def rm_file (path) : NEWLINE try : NEWLINE INDENT os . remove (path) NEWLINE print (" Deleted ")
	DEDENT except : NEWLINE INDENT print (" Error _ while _ deleting _ file " , path) DEDENT
	Figure 3.3:	
		; Miceli-Barone and Sennrich,

Table 3 .2: Number of functions with unit tests for our validation and test sets.

 3

Table 3

 3

	.4, we report our

Table 3 .3: Results of TransCoder on our test set with greedy decoding.

 3 We evaluate TransCoder with different metrics: reference match, BLEU score, and computational accuracy. Only 3.1% of C++ to Java translations match the ground truth reference, although 60.9% of them successfully pass the unit tests, suggesting that reference match is not an accurate metric to evaluate the quality of translations. Similarly, the BLEU score does not correlate well with the computational accuracy.C++ → Java C++ → Python Java → C++ Java → Python Python → C++ Python → Java

	Reference Match	3.1	6.7	24.7	3.7	4.9	0.8
	BLEU	85.4	70.1	97.0	68.1	65.4	64.6
	Computational Accuracy	60.9	44.5	80.9	35.0	32.2	24.7

Computational accuracy with beam search decoding and comparison to baselines.

 Increasing the beam size improves the performance by up to 24.6% in Python → C++. When the model only returns the hypothesis with the highest logprobability (10 Beams -CA@1), the performance drops, indicating that the model often finds a correct translation, although it does not necessarily assign it with the highest probability. TransCoder significantly outperforms the Java → Python baseline (+29.5%) and the commercial C++ → Java baseline (+13.8%), although it is trained in a fully unsupervised manner and does not leverage human knowledge.

	Chapter 3. Unsupervised Translation of Programming Languages with Multilingual
	Pre-Training						
	Table 3.4: Baselines	61.0	-	-	38.3	-	-
	TransCoder CA@1	63.0	42.3	80.0	46.9	31.6	32.6
	TransCoder 10 Beams -CA@1	64.9	43.4	78.8	48.8	33.7	35.6
	TransCoder CA@5	70.9	57.5	86.1	60.7	43.6	42.4
	TransCoder CA@10	73.4	62.0	88.8	64.6	49.4	47.6
	TransCoder CA@20	74.8	65.4	91.0	67.8	56.2	51.6
							The latter

C++ → Java C++ → Python Java → C++ Java → Python Python → C++ Python → Java

Table 3 .

 3 6 gives the model accuracy for different function lengths. It shows that the accuracy of the model decreases with the length of the generated sequences.Table3.5: Detailed results for greedy decoding. Many failures come from compilation errors when the target language is Java or C++. It suggests that our method could be improved by constraining the decoder to generate compilable code. Runtime errors mainly occur when translating from Java or C++ into Python. Since Python code is interpreted and not compiled, this category also includes syntax errors in Python. The majority of remaining errors are due to the program returning the wrong output on one or several of the unit tests. Timeout errors are generally caused by infinite loops and mainly occur in the Java ↔ Python pair.#tests success Compilation Runtime Wrong output Timeout

	C++ → Java	481 63.0%	27.5%	4.2%	5.2%	0.2%
	C++ → Python	463 42.3%	0.0%	38.0%	19.0%	0.7%
	Java → C++	466 80.0%	12.5%	1.1%	6.2%	0.2%
	Java → Python	463 46.9%	0.0%	32.0%	20.3%	0.9%
	Python → C++	466 31.6%	38.6%	3.9%	25.3%	0.6%
	Python → Java	481 32.6%	31.2%	10.4%	24.5%	1.3%

Table 3

 3

	Number of Tokens CA@1
	0 ≤ n < 30	93.0%
	30 ≤ n < 50	91.7%
	50 ≤ n < 61	93.5%
	61 ≤ n < 72	71.7%
	72 ≤ n < 85	70.2%
	85 ≤ n < 99	56.3%
	99 ≤ n < 121	37.0%
	121 ≤ n < 147	42.2%
	147 ≤ n < 179	39.6%
	179 ≤ n < 326	28.3%

.6: Performance v.s. function lengths. CA@1 metric for various function lengths (in number of tokens) for C++ → Python with 10 beams.

Example of parallel function from our test set.

 We extracted parallel functions from GeeksforGeeks to create validation and test sets. Here, we have the parallel implementations in C++, Java, and Python of the checkDivisibility function, which determines whether a long integer represented as a string is divisible by 13.

	Chapter 3. Unsupervised Translation of Programming Languages with Multilingual
	Pre-Training	
	Input	TransCoder Translation
	Python	C++
	def sum_elements(values):	template <typename T> T
	return sum(values)	sum_elements(const std::vector<T> &values){
		return std::accumulate(values.begin(), values.end(),
		0);
		}
	def no_letters(s):	static bool noLetters(const QString& str){
	return s.lower() == s.upper()	return str.toLower() == str.toUpper();
		}
	def get_env_variable(name):	const char* GetEnvVariable(const char* name){
	return os.environ[name]	return getenv(name);
		}
	Python	Java
		0
		|| str.charAt(i) == 1
		|| res < 2){
		res += (int)(str.charAt(i) -48);
		}
		else{
		res *= (int)(str.charAt(i) -48);
		}
		}
		return res;
		}
	def foo(x):	public static int foo(int x){
	return bar(x) + 1	return bar(x) + 1;
		}
	def area(r):	public static double area(double r){
	return 2 * PI * r ** 2	return 2 * PI * r * r;
		}

def calcMaxValue(str): res = ord(str[0]) -48 for i in range(1, len(str)): if(str[i] == 0 or str[i] == 1 or res < 2): res += ord(str[i]) -48 else: res *= ord(str[i]) -48 return res public static int calcMaxValue(String str){ int res = (int)(str.charAt(0) -48); for(int i = 1; i < str.length(); i++){ if(str.charAt(i) ==

). Pre-Training

	Input	Baseline translation	TransCoder translation	
	Java	Python	Python	
	static String getEnvVariable(def getEnvVariable(name):	def getenvh(name):	
	String name){	return System.getenv(name)	return os.environ.get(name,)
	return System.getenv(name);			
	}			
	static List<Integer> truncate(def truncate(l, e):	def truncate(l, e):	
	List<Integer> l,	if l.contains(e):	if l.count(e) > 0:	
	Integer e){	return l.subList(0,	return l[: l.index(e)]	
	if(l.contains(e)){	l.indexOf(e))	else:	
	return l.subList(0,	else:	return l	
	l.indexOf(e));	return l		
	}			
	else{			
	return l;			
	}			
	}			
	static void deleteFile(Path path){	def deleteFile(path):	def delete_file(path):	
	try{	try:	try:	
	Files.delete(path);	Files.delete(path)	os.remove(path)	
	}	except Exception as e:	except:	
	catch(Exception e){	System.err.println(sys.stderr.write(
	System.err.println("Error deleting " + path)	"Error deleting %s\n"	
	"Error deleting " + path);		% path	
	})	
	}			
	C++	Java	Java	
	memset(prime, 0, sizeof(prime));	memset(prime, 0,	Arrays.fill(prime, 0);	
		(Integer.SIZE/Byte.SIZE));		
	sort(a, a + n);	sort(a, a + n);	Arrays.sort(a);	

for(char ch : str) for(char ch : str) for(char ch : str.toCharArray())

Table 4 .3: Results on downstream tasks for different pre-training configura- tions.

 4 Models pre-trained with DOBF initialized with MLM significantly outperform both CodeBERT and models trained with MLM only. DOBF+DAE outperforms other models on every task but clone detection, on which CodeBERT scores much higher than our MLM. It outperforms GraphCodeBERT by 0.02 MRR (+5.3%) on natural language code search (NLCS), and by 4.6% in Java → Python computational accuracy with beam size 10 (+12.2% correct translations). The tasks where MLM provides large improvements over the transformer baseline (first row, no pre-training) are also the tasks where DOBF provides the largest gains (clone detection, NL code search, unsupervised translation). The DAE baseline (initialized with MLM) already provides substantial improvements over MLM on most tasks and yields the best results for Python to Java translation while its results are poor for Java to Python.

		Clone Det Code Sum Java Code Sum Python NLCS Python→Java Java→Python
		(F1 score)	(BLEU)	(BLEU)	(MRR)	(CA@1)	(CA@1)
						k=1	k=10	k=1	k=10
	Transformer	88.1	16.6	16.4	0.025	24.0	28.4	29.0	29.7
	MLM	91.9	18.6	18.0	0.308	44.8	45.4	34.5	35.6
	DAE	96.3	19.2	18.3	0.380	48.3	49.2	32.1	32.8
	CodeBERT	96.5	18.3	18.2	0.315	40.8	45.6	36.5	36.7
	GraphCodeBERT	96.4	18.8	18.5	0.377	44.3	44.1	35.6	37.8
	DOBF init scratch	96.5	18.2	17.5	0.272	43.9	44.1	35.2	34.7
	DOBF	95.9	19.1	18.2	0.383	43.5	44.1	38.7	40.0
	DOBF+DAE	95.8	19.4	18.6	0.397	46.6	47.3	40.6	42.4

). DOBF is able to find the right function and variable names in each case. In the last function, we replaced the anonymized VAR_0 variable with queue in the implementation of depth-first search. This erroneous information leads DOBF to believe that this function performs breadth-first search. It shows that, just like human programmers, DOBF uses the names of the other variables to understand programs and choose relevant identifier names. When working on code with misleading identifier names, it is often preferable to obfuscate several identifiers. Table 4.5: Table of ground truth and recovered tokens for the obfuscated LSTM cell shown in Figure

	ID	Ground Truth	DOBF
	CLASS_0 LSTM	LSTM
	FUNC_0	reset_parameters init_weights
	FUNC_1	forward	forward
	VAR_0	self	self
	VAR_1	input_size	input_size
	VAR_2	hidden_size	hidden_size
	VAR_3	bias	bias
	VAR_4	i2h	h1
	VAR_5	h2h	h2
	VAR_6	self	self
	VAR_7	std	stdv
	VAR_8	hidden_size	hidden_size
	VAR_9	w	m
	VAR_10	parameters	modules
	VAR_11	self	self
	VAR_12	x	x
	VAR_13	hidden	prev_state
	VAR_14	h	prev_h
	VAR_15	c	prev_c
	VAR_16	preact	h
	VAR_17	gates	s
	VAR_18	g_t	c
	VAR_19	i_t	r
	VAR_20	f_t	g
	VAR_21	o_t	o
	VAR_22	c_t	c
	VAR_23	h_t	h

 to generate test cases. Like all SBSE techniques, EvoSuite is guided by fitness functions, in this case aimed at capturing the test suite's coverage and mutation score of the code being tested. We use EvoSuite in our work for three reasons: it is publicly available in open source (thereby facilitating replication), it is under current active development (thereby supporting future work), and it is widely used by other researchers (thereby enabling interoperability

Table 5 .1: Examples of mutation operators in EvoSuite.

 5 While most of the unit tests are translated correctly, the translation sometimes fails due to EvoSuite generating test cases expecting exceptions. Our analysis shows that it happens for about 5.6% of all tests and less than 2% of the tests with high mutation scores. In that case, the candidate translations cannot pass the translated tests and no parallel examples are created.

	Mutation operator	Explanation
	Delete call operator	Remove a method invocation
	Delete field operator	Remove a field access and replaces it with a default value (0 / null)
	Insert Unary Operator	Add 1 to, subtract 1 from, or negate a numerical value after it was loaded on the stack
	Replace arithmetic operator Replace an arithmetic operator in an expression with other operators. E.g., + → -, * → /
	Replace constant operator	Replace constants with the special values -1, 0, +1
	Replace variable operator	Replace variables with other variables of the same type
	an example of a mutant generated by changing the < in the return statement into
	>. The test with input (-800, -800, -1), as shown by Figure 5.7, does not kill this
	generated mutant, because its outputs on the original program and the mutant are
	the same. The mutation score is defined as the percentage of mutants that are killed
	by the test suite.	
	Mutation score is considered as the most effective criteria in accessing the fault-
	revealing ability of test suites. Other criteria, such as code coverage, are weak:
	they check only whether the test executes the code, but do not check whether the

execution result is correct. A test suite without any assertions can achieve 100% code coverage, but could not detect any faults.

5.2. Method

Figure

5

.6: Histogram of mutation scores for our generated unit tests. We select about 40% of the unit tests with our threshold at 0.9. Many of the remaining unit tests have a mutation score of 0.

Java tests into C++ and Python tests with identical inputs and expected outputs and side effects (i.e., assertions). In practice, we selected the Java functions which can be compiled and run in isolation and with simple output and parameter types.

These types are the Java primitive types (e.g. int, long, bool, float. . .), standard data types (e.g. Integer, Double, String. . .), array and List or ArrayList types of elements of supported types (e.g. double[], List<Integer>. . .). It makes it easy to map parameter and return types in Java to Python or C++ types in the translated unit tests.

Size of the parallel datasets generated offline at each iteration.

 Python and Java → C++ using the validation dataset and using them to generate new parallel datasets, which can in turn be used to train a better model. We iterate this process until convergence, i.e. when we see no significant improvements on the validation set. With the online method, we create parallel examples on the fly while training the model. Compared to the offline method, it allows to always use the latest model to generate new examples and it is much more convenient to automate. However, this process can be unstable if done naively. For instance, the

	Languages	First iteration Second iteration Third iteration Fourth iteration
	Java ↔ C++	27,875	37,769	47,729	60,495
	Java ↔ Python 33,496	43,194	43,956	45,311
	C++ ↔ Python 14,935	21,026	27,080	32,869
	process by selecting the best checkpoints for Java → Online training.	

model can start over-fitting only a few examples and stop generating anything that passes the unit tests for any other example. In order to stabilize the training, we follow Likhomanenko et al. (2020) and implement a cache mechanism storing the previous examples that passed the unit tests. At each step, the model can either train on parallel functions sampled from the cache or create new parallel functions to add to the cache. When an example is sampled, we remove it from the cache with a given probability. The online training allows the model to always benefit from the performance of the latest model and the cache mechanism ensures that the model does not forget the correct examples that it was able to generate at previous time steps.

 During the training, we alternate between batches for every source and target language so that language pairs for which we managed to create more parallel examples are not over-represented in our training batches. For the online version, we set a cache warm-up parameter to ensure that we always generate new parallel examples if there are less than 500 examples in the cache for any language pair. Otherwise, we sample from the cache with probability 0.5, or generate new examples, train on them once and put them in the cache also with probability 0.5. The sampled elements are removed from the cache with probability 0.3, so that each element we create is trained on about 4 times in average before being removed from the cache. We initialize the cache with parallel examples created offline.

	5.3. Experiments
	cases for 103,488 functions. See Figures 5.7 and 5.3, 5.4 for examples of selected and
	filtered out test suites.
	Training details.

 higher for the language pairs involving Python. It allows to reduce the error rate of the best baseline by 25.5% for Java → Python. In average, it increases the CA@1 by 7.4% over the best previous models, and reduces the error rate by 16.6%. In the two next iterations, the model is trained on significantly more examples (see Table5.2).

	Best baseline	52.2	53.7	53.4	67.3	70.5
	Offline ST 1	60.8	61.1	61.1	72.9	75.3
	Offline ST 2	61.4	61.6	61.4	73.3	75.8
	Offline ST 3	61.7	63.1	63.0	73.3	75.8
	Offline ST 4	58.5	59.4	59.2	70.8	73.6
	Online ST	64.7	66.3	66.3	75.4	77.2

 Ja C++ → Py Ja → C++ Ja → Py Py → C++ Py → Ja AVG The online self-training method provides further improvements over training on the pseudo-labeled examples offline. It outperforms every other method in every case except the third iteration of offline training for Java → C++. In average, this model outperforms the baseline by 12.6% points, corresponding to an error rate reduction of 25.5%. For Python → C++, it improves previous performance by more than 24% points, which corresponds to reducing the error rate by 35.7%. Examples of avoided

	No cache	66.5	52.7	83.7	60.3	41.2	51.8	59.4
	Cache not initialized	64.9	51.6	82.4	62.4	46.6	52.6	60.1
	+ No min mut. score	64.0	50.1	82.6	60.9	47.4	47.0	58.7
	ST greedy decoding	65.9	54.2	82.2	60.9	56.2	56.6	62.7
	Full model (ST beam 20)	66.7	61.1	84.1	67.8	52.2	56.7	64.7
	+ Eval beam 10	68.0	61.3	84.6	68.9	56.7	58.2	66.3

C++ →

Table 5 .

 5 6: Extra results table. We show the CA@1 metric computed with beam size 10 for our baselines, and our offline and online methods, the beam reordering, and a model trained from scratch with our dataset. Beam reordering leads only to small improvements compared to our offline and online self-training methods. Training on our generated parallel dataset from scratch leads to decent performances, but that are still below those of TransCoder and TransCoder-ST.C++ → Ja C++ → Py Ja → C++ Ja → Py Py → C++ Py → Ja AVG

	TransCoder	65.1	47.1	79.8	49.0	32.6	36.6	51.7
	DOBF	-	-	-	52.7	-	45.7	-
	Beam reordering	-	-	80.3	54.4	-	-	-
	Offline ST scratch	43.0	41.3	54.3	43.2	31.1	39.7	42.1
	Offline ST 1	65.5	56.2	81.6	61.8	46.8	55.1	61.1
	Offline ST 2	65.5	58.3	83.7	63.3	46.4	52.2	61.6
	Offline ST 3	66.5	56.2	85.2	66.3	48.1	56.6	63.1
	Offline ST 4	65.3	48.2	81.1	58.1	48.9	54.7	59.4
	Online ST	68.0	61.3	84.6	68.9	56.7	58.2	66.3

https://github.com/facebookresearch/CodeGen

https://ml4code.github.io/

https://console.cloud.google.com/marketplace/details/github/github-repos

https://github.com/c2nes/javalang

https://docs.python.org/3/library/tokenize.html

https://pypi.org/project/clang

https://github.com/glample/fastBPE

https://practice.geeksforgeeks.org

https://github.com/natural/java2python

https://www.tangiblesoftwaresolutions.com/

In the obfuscated example given in Figure 4.1, the model is trained to generate: FUNC_0 bfs | VAR_0 graph | VAR_1 root | VAR_2 visited | VAR_3 queue | VAR_4 neighbor | VAR_5 node.

We select the open-source licenses: 'apache-2.0', 'mit', 'gpl-2.0', 'gpl-3.0', 'bsd-2-clause', 'bsd-3clause'

Remerciements

Model

translate source code between Python, Java, and C++, in a fully unsupervised way.

In this chapter, we propose to use a code-specific objective to better pre-train models designed to be fine-tuned on code generation tasks: code deobfuscation. Machine learning is frequently used on tasks involving programming languages, including code completion [START_REF] Li | Code completion with neural attention and pointer networks[END_REF][START_REF] Liu | A self-attentional neural architecture for code completion with multi-task learning[END_REF][START_REF] Kim | Code prediction by feeding trees to transformers[END_REF][START_REF] Svyatkovskiy | Fast and memory-efficient neural code completion[END_REF], bug detection and code repair (Allamanis et al., 2018b; Wang et al., 2018b;[START_REF] Fu | Coda: An end-to-end neural program decompiler[END_REF][START_REF] Murali | Industryscale ir-based bug localization: A perspective from facebook[END_REF][START_REF] Tufano | An empirical study on learning bug-fixing patches in the wild via neural machine translation[END_REF][START_REF] Tarlow | Learning to fix build errors with graph2diff neural networks[END_REF], code summarization (Alon et al., 2019a;[START_REF] Hu | Deep code comment generation[END_REF][START_REF] Xie | Exploiting method names to improve code summarization: A deliberation multi-task learning approach[END_REF], clone detection [START_REF] Wei | Supervised deep features for software functional clone detection by exploiting lexical and syntactical information in source code[END_REF][START_REF] Ul Ain | A systematic review on code clone detection[END_REF] Wang et al., 2020b), code search [START_REF] Gu | Deep code search[END_REF][START_REF] Cambronero | When deep learning met code search[END_REF] and code translation (see Chapter 3). Most of these tasks can benefit from pre-trained models that capture code semantics.

Code deobfuscation. Empirical studies show that naming conventions and the use of informative identifier names make code more understandable, easier to maintain

Input

Java

Python TransCoder is able to translate C++ and Java functions and idioms to python correctly. For instance, to initialize a list with n -1 integers in the first example, or for inline if conditions and safely creating a directory in the second and third examples.

Translation examples

C++ input

TransCoder Java translation

.9: TransCoder robustness to variable names. We consider the C++ function minPalPartion, with a parameter char* parameter named str indicating that it could be translated to a str parameter. In Figure 3.10, we study the influence of the parameter name on the output of TransCoder.

.10: TransCoder robustness to variable names. We take the C++ function minPalPartion from Figure 3.9, change the parameter name from str to arr and input and show the three corresponding TransCoder Java translations. All translations are correct. In the Figure 3.9 and second cases, TransCoder translates char* str and char* input into Java String and uses the charAt method to retrieve elements. This shows that TransCoder is robust to variable name changes and that it remembers variable types along the whole translation to apply the appropriate methods. In the first example, TransCoder translates char* arr into Java char[] and uses [] to retrieve elements, showing that TransCoder can adjust its translations to parameter names while remaining accurate.

Chapter 4 DOBF: A Deobfuscation

Pre-Training Objective for

Programming Languages

Model pre-training with self-supervised methods such as BERT [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF], RoBERTa [START_REF] Liu | Roberta: A robustly optimized bert pretraining approach[END_REF], XLM [START_REF] Lample | Cross-lingual language model pretraining[END_REF] or XLNet [START_REF] Yang | Xlnet: Generalized autoregressive pretraining for language understanding[END_REF], has become ubiquitous in Natural Language Processing (NLP), and led to significant improvements in many tasks. These approaches are based on the Masked Language Modeling (MLM) objective, which is presented in Section 2.3.3.

In this chapter, we are interested in pre-training deep learning models for programming languages. We argue that MLM is actually sub-optimal in the context of programming languages, and propose a new objective based on deobfuscation of identifier names in source code.

Code obfuscation consists in modifying source code in order to make it harder for humans to understand, or smaller while keeping its behaviour unchanged. In some ancient interpreted languages, name minimization could also reduce the memory usage of the program. Today, it is used to protect intellectual property by preventing people from understanding and modifying the code, to prevent malware detection, and to compress programs (e.g. JavaScript code) to reduce network payload sizes.

Moreover, C compilers discard variable names, and current rule-based and neuralbased decompilers generate obfuscated C code with uninformative variable names [START_REF] Fu | Coda: An end-to-end neural program decompiler[END_REF]. Obfuscators typically apply several transformations to the code. While some operations can be reversed (e.g. dead code injection), the obfuscation of identifier names-renaming every variable, method and class with uninformative names-is Languages

Experimental details

Model Architecture We consider a seq2seq model with attention, composed of an encoder and a decoder using a transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF]. We train models with the same architecture and tokenizer as CodeBERT [START_REF] Feng | Codebert: A pre-trained model for programming and natural languages[END_REF] and GraphCodeBERT (Guo et al., 2020) in order to provide fair comparisons: 12 layers, 12 attention heads and a hidden dimension of 768. We also train a model with the same parameters as TransCoder (see Figure 4.4).

Training dataset As in Chapter 3, we use the GitHub public dataset available on Google BigQuery and select all Python and Java files within the projects with licenses authorizing use for research purposes. Following [START_REF] Lopes | Déjàvu: a map of code duplicates on github[END_REF] and [START_REF] Allamanis | The adverse effects of code duplication in machine learning models of code[END_REF], we remove duplicate files. We also ensure that each fork belongs to the same split as its source repository. We obfuscate each file and create the corresponding dictionary of masked identifier names, resulting in a parallel (obfuscated file -dictionary) dataset of 19 GB for Python and 26 GB for Java. We show some statistics about this dataset in Table 4.1. For comparison purposes, we apply either the BPE codes used in Chapter 3 or in [START_REF] Feng | Codebert: A pre-trained model for programming and natural languages[END_REF]. In practice, we train only on files containing less than 2000 tokens, which corresponds to more than 90% and 80% of the Java and Python files respectively. Training details We train DOBF to translate obfuscated files into lists of identifier names. During DOBF training, we alternate between batches of Java and Python composed of 3000 tokens per GPU. We optimize DOBF with the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] and an inverse square-root learning rate scheduler [START_REF] Vaswani | Attention is all you need[END_REF]. We implement our models in PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] and train them on 32 V100 GPUs for eight days. We use float16 operations to Figure 4.9: Deobfuscation of an LSTM cell. DOBF is able to recover several of the original tokens, including the class name (LSTM) and the full signature of the __init__ method. The table of ground truth and recovered tokens is provided in Table 4.5. Even though DOBF does not always recover the original token, it generally proposes very relevant tokens which improves code readability. In particular, for some tokens the accuracy and subtoken scores would be zero but the recovered tokens are still very relevant. For instance, reset_parameters (FUNC_0) was renamed to init_weights, std (VAR_7) was renamed to stdv, and hidden (VAR_13) was renamed to prev_state. In those instances, the original and recovered tokens share no subtoken despite having very similar semantics.

Chapter [START_REF] Fraser | EvoSuite: automatic test suite generation for object-oriented software[END_REF][START_REF] Lakhotia | AUSTIN: An open source tool for search based software testing of C programs[END_REF][START_REF] Cadar | unassisted and automatic generation of high-coverage tests for complex systems programs[END_REF], and production testing systems [START_REF] Alshahwan | Deploying search based software engineering with Sapienz at Facebook[END_REF][START_REF] Tillmann | Transferring an automated test generation tool to practice: From Pex to Fakes and Code Digger[END_REF].

Because of its pivotal impact on practical software engineering, automated testing remains a highly active research area [START_REF] Anand | An orchestrated survey of methodologies for automated software test case generation[END_REF], with the result that future automated testing advances will lead to ongoing improvement in automated translation.

We The mutation score of this test suite is 95% and we selected it in our dataset for pseudolabelling. The third test case (i.e. test2) may be too strict as it would make translations using the python int type fail the unit tests. Even though it contains only one test and one assert, this test suite tests the semantics of the function on the left properly since it only returns a constant and its mutation score is 100%. We found that test suites with good mutation scores and only one assert generally correspond to uninteresting input functions. Removing these functions and tests from our dataset for self labelling improves the performance of our model.

Parallel data creation

Parallel unit test generation: We use EvoSuite to automatically generate unit tests for Java functions. EvoSuite is a well-established open source tool for automated test generation in Java, which is still under active development and frequently used.

It is designed for Java programs but its search-based technique is general and could be used for any programming language. Unit tests can be thought of as lists of inputs and asserts testing the semantics of a program (e.g., the output of the function, the side effects on its arguments such as sorting the input list). EvoSuite uses evolutionary methods to derive tests that maximize criteria such as code coverage or mutation score. During its search, each candidate solution in EvoSuite is a test input. Parallel test suites selection: Some test suites created by EvoSuite only cover a few parts of the semantics of functions. We only trust the translations verified by test suites which examine the function semantics thoroughly. We use the mutation score, which is the most effective test assessment metric in the literature [START_REF] Jia | An analysis and survey of the development of mutation testing[END_REF], to pick out these test suites. The mutation score is computed through mutation testing, in which mutants (i.e., program variants with syntactic changes) are generated from the original program based on a set of transformation rules (more details in Section 5.2.1). A mutant is said to be killed if at least one test from the test suite has different results on the mutant and the original program.

Otherwise, the mutant is said to survive. The mutation score is the ratio of killed mutants. A test suite with a higher mutation score checks the code semantics more thoroughly. We adopt a strict strategy in test suite selection: we keep only the Unit test suites with a mutation score larger than 90% for building the parallel dataset.

In practice, we observe that more than half of the mutation scores are either above 0.9 or below 0.1 for tests generated on our dataset (see Figure 5.6). In practice, we did not observe significant differences on translation performances for mutation score thresholds varying between 0.3 and 0.95.

Parallel dataset building:

The generated test suites can be used to test the semantics of programs written in any programming language as long as there is a clear mapping between the types of the output and parameters in the original language and the language of the translated unit tests. We transform the generated

Training method

Our parallel data generation method relies on a pre-existing model to translate from Java to Python and C++. There is little parallel data for these tasks and the best performing published models are unsupervised. TransCoder (see Chapter 3) is trained using the MLM, denoising and back-translation objectives and is able to translate between Java, C++ and Python. DOBF (see Chapter 4) provides clear improvements over TransCoder for translating between Java and Python but was not trained on C++. Therefore, we use DOBF to translate from Java to Python and TransCoder to translate from Java to C++. When fine-tuning, we also reload these models. For DOBF, we initialize the C++ language embeddings with those of Java.

The parallel examples we generate can be used to improve the performance of pre-existing translation models. Since the number of examples we generate also depends on the performance of the translation model, it creates a positive feedback loop where improving the model allows to improve the parallel dataset which in turn can be used to improve the model again. We propose offline and online approaches to use our method to maximize the unsupervised translation performance.

Offline training.

With the offline training method, we use the method described in Section 5.2.2 to create parallel Java ↔ Python, Java ↔ C++ and Python ↔ C++ datasets using every input Java function we selected. For the first iteration, we fine-tune the model on these parallel examples until convergence. We can iterate this

Translation examples

Input Python function

TransCoder Java translation TransCoder-ST Java translation

) return 2; return 2 * power(n -1); } def power(n):

if n == 1: return 2 return 2 ** power(n -1) def power(n):

if n == 1: return 2 return 2 * power(n -1) This value is used in similar contexts (i.e. to compute a maximum instead of a minimum) but is inappropriate here. TransCoder-ST manages to correct this and outputs a function with the right semantics. In the second example, where the function computes the size of the largest subset of elements of the list that could form a sequence of consecutive integers, TransCoder-ST manages to translate the semantics of S.find(arr[i]-1)==S.end() appropriately while TransCoder translates it into its negation. sum=1.0 for i in range (n, 0, -1): sum=1+x*sum/i print("e^x =", sum) void exponential(int n, double x){ double sum=1.0; for(int i=n; i>0; i--) sum=1+x*sum/i ; cout << "e^x =" << sum << endl ; } template <typename T> void exponential(int n, T x) { T sum=1.0; for(int i=n; i>0; i--) sum=1+x*sum/i; cout << "e^x =" << sum << endl; } Figure 5.15: Our parallel unit tests lead to the generation of more general solutions using templates. Solutions using templates can pass the unit tests for several parameter types, while guessing the wrong parameter type can lead to some errors. Solutions using templates succeed more often, are more likely to appear in the parallel data we generate and, as a result, in our model's generations. It leads to our model generating more templates (three times more often for our online model trained the longest).

Code translation as a well-specified code synthesis task. Code translation aims to synthesize a program in the target language, given a program written in the source language. At the level of the entire program, assuming that the input domain and the interpreter for the source language are known, it provides a perfect specification of the problem. The source can even be compiled and run on custom input, in order to compare its output and complexity to those of the translation.

Hence, systems translating real-world codebases may be significantly easier to evaluate than those synthesizing code from natural language prompts. The specificity of programming language prompts also makes code translation systems suitable to test the capacity of machine learning models to generate programs, independently of their capacity to disambiguate prompts. Insights from programming languages translation research could provide directions for more general code synthesis tasks.

MOTS CLÉS

transcompilation, langages de programmation, synthèse de code, traduction, réseaux de neurones, apprentissage profond RÉSUMÉ Un transcompilateur est un système qui convertit le code source d'un langage de programmation de haut niveau (tel que C++ ou Python) vers un autre. Les transcompilateurs sont principalement utilisés pour l'interopérabilité et pour transférer des bases de code écrites dans un langage obsolète (par exemple COBOL ou Python 2) vers un langage plus moderne. Ils reposent généralement sur des règles de réécriture manuelles, appliquées à l'arbre de syntaxe abstraite du code source. Malheureusement, les traductions qui en résultent manquent souvent de lisibilité, ne respectent pas les conventions du langage cible et nécessitent des modifications manuelles pour fonctionner correctement. Le processus global de traduction prend du temps et nécessite une expertise à la fois dans les langages source et cible, ce qui rend les projets de traduction de code coûteux. Bien que les modèles neuronaux surpassent considérablement leurs homologues basés sur des règles dans le cadre de la traduction en langues naturelles, leurs applications à la transcompilation ont été limitées en raison de la rareté des données parallèles dans ce domaine. Nous proposons des méthodes pour entraîner des transcompilateurs neuronaux efficaces sans données supervisées. Les traducteurs de langues naturelles sont évalués avec des métriques basées sur la cooccurrence de tokens entre la traduction et la référence. Nous remarquons que ces métriques ne capturent pas la sémantique des langages de programmation. Nous construisons et publions donc une base de données de tests composée de 852 fonctions parallèles, ainsi que de tests unitaires pour vérifier l'exactitude sémantique des traductions. Nous exploitons d'abord les objectifs conçus pour les langues naturelles afin d'apprendre des représentations multilingues du code source, et entraînons un modèle à traduire, en utilisant seulement le code monolingue de projets open source GitHub. Ce modèle surpasse les méthodes basées sur des règles pour la traduction de fonctions entre C++, Java et Python. Ensuite, nous développons une méthode de pré-entraînement, amenant le modèle à apprendre des représentations sémantiques du code. Cela conduit à des performances améliorées sur plusieurs tâches, y compris la traduction de code non supervisée. Enfin, nous utilisons des tests unitaires automatisés pour créer des exemples de traductions de programmes. Entraîner un modèle sur ces exemples conduit à des améliorations significatives des performances de nos transcompilateurs neuronaux. Nos méthodes reposent exclusivement sur du code source monolingue, ne nécessitent aucune expertise dans les langues source ou cible, et peuvent facilement être généralisées à d'autres langages.

ABSTRACT

A transcompiler, also known as source-to-source translator, is a system that converts source code from a high-level programming language (such as C++ or Python) to another. Transcompilers are primarily used for interoperability, and to port codebases written in an obsolete or deprecated language (e.g. COBOL, Python 2) to a modern one. They typically rely on handcrafted rewrite rules, applied to the source code abstract syntax tree. Unfortunately, the resulting translations often lack readability, fail to respect the target language conventions, and require manual modifications in order to work properly. The overall translation process is time-consuming and requires expertise in both the source and target languages, making code-translation projects expensive. Although neural models significantly outperform their rule-based counterparts in the context of natural language translation, their applications to transcompilation have been limited due to the scarcity of parallel data in this domain. In this thesis, we propose methods to train effective and fully unsupervised neural transcompilers. Natural language translators are evaluated with metrics based on token co-occurences between the translation and the reference. e identify that they do not capture the semantics of programming languages. Hence, we build and release a test set composed of 852 parallel functions, along with unit tests to check the semantic correctness of translations. We first leverage objectives designed for natural languages to learn multilingual representations of source code