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Summary

A transcompiler, also known as source-to-source translator, is a system that converts
source code from a high-level programming language (such as C++ or Python) to
another. Transcompilers are primarily used for interoperability, and to port codebases
written in an obsolete or deprecated language (e.g. COBOL, Python 2) to a modern
one. They typically rely on handcrafted rewrite rules, applied to the source code
abstract syntax tree. Unfortunately, the resulting translations often lack readability,
fail to respect the target language conventions, and require manual modifications
in order to work properly. The overall translation process is time-consuming and
requires expertise in both the source and target languages, making code-translation
projects expensive. Although neural models significantly outperform their rule-based
counterparts in the context of natural language translation, their applications to
transcompilation have been limited due to the scarcity of parallel data in this
domain. In this thesis, we propose methods to train effective and fully unsupervised
neural transcompilers.

Natural language translators are evaluated with metrics based on token co-
occurences between the translation and the reference. e identify that they do not
capture the semantics of programming languages. Hence, we build and release a test
set composed of 852 parallel functions, along with unit tests to check the semantic
correctness of translations. We first leverage objectives designed for natural languages
to learn multilingual representations of source code, and train a model to translate,
using source code from open source GitHub projects. This model outperforms rule-
based methods for translating functions between C++, Java, and Python. Then, we
develop an improved pre-training method, which leads the model to learn deeper
semantic representations of source code. It results in enhanced performances on
several tasks including unsupervised code translation. Finally, we use automated
unit tests to automatically create examples of program translations. Training on
these examples leads to significant improvements in the performance of our neural
transcompilers. Our methods rely exclusively on monolingual source code, require
no expertise in the source or target languages, and can easily be generalized to other
programming languages.
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Résumé

Un transcompilateur est un système qui convertit le code source d’un langage
de programmation de haut niveau (tel que C++ ou Python) vers un autre. Les
transcompilateurs sont principalement utilisés pour l’interopérabilité et pour trans-
férer des bases de code écrites dans un langage obsolète (par exemple COBOL ou
Python 2) vers un langage plus moderne. Ils reposent généralement sur des règles
de réécriture manuelles, appliquées à l’arbre de syntaxe abstraite du code source.
Malheureusement, les traductions qui en résultent manquent souvent de lisibilité,
ne respectent pas les conventions du langage cible et nécessitent des modifications
manuelles pour fonctionner correctement. Le processus global de traduction prend
du temps et nécessite une expertise à la fois dans les langages source et cible, ce qui
rend les projets de traduction de code coûteux. Bien que les modèles neuronaux
surpassent considérablement leurs homologues basés sur des règles dans le cadre
de la traduction en langues naturelles, leurs applications à la transcompilation ont
été limitées en raison de la rareté des données parallèles dans ce domaine. Nous
proposons des méthodes pour entraîner des transcompilateurs neuronaux efficaces
sans données supervisées.

Les traducteurs de langues naturelles sont évalués avec des métriques basées sur
la cooccurrence de tokens entre la traduction et la référence. Nous remarquons que
ces métriques ne capturent pas la sémantique des langages de programmation. Nous
construisons et publions donc une base de données de tests composée de 852 fonctions
parallèles, ainsi que de tests unitaires pour vérifier l’exactitude sémantique des
traductions. Nous exploitons d’abord les objectifs conçus pour les langues naturelles
afin d’apprendre des représentations multilingues du code source, et entraînons un
modèle à traduire, en utilisant seulement le code monolingue de projets open source
GitHub. Ce modèle surpasse les méthodes basées sur des règles pour la traduction
de fonctions entre C++, Java et Python. Ensuite, nous développons une méthode de
pré-entraînement, amenant le modèle à apprendre des représentations sémantiques
du code. Cela conduit à des performances améliorées sur plusieurs tâches, y compris
la traduction de code non supervisée. Enfin, nous utilisons des tests unitaires
automatisés pour créer des exemples de traductions de programmes. Entraîner un
modèle sur ces exemples conduit à des améliorations significatives des performances
de nos transcompilateurs neuronaux. Nos méthodes reposent exclusivement sur du
code source monolingue, ne nécessitent aucune expertise dans les langues source ou
cible, et peuvent facilement être généralisées à d’autres langages.
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Chapter 1

Introduction

A transcompiler, transpiler, or source-to-source compiler, is a translator which con-
verts between programming languages that operate at a similar level of abstraction.
Transcompilers differ from traditional compilers that translate source code from a
high-level to a lower-level programming language (e.g. assembly language) to create
an executable. Initially, transcompilers were developed to port source code between
different platforms (e.g. convert source code designed for the Intel 8080 processor to
make it compatible with the Intel 8086). More recently, new languages have been
developed (e.g. CoffeeScript, TypeScript, Dart, Haxe) along with dedicated transcom-
pilers that convert them into a popular or omnipresent language (e.g. JavaScript).
These new languages address some shortcomings of the target language by providing
new features such as list comprehension (CoffeeScript), object-oriented programming
and type checking (TypeScript), while detecting errors and providing optimizations.
These languages are designed to be compiled to another high-level programming
language with a perfect accuracy (i.e. the compiled language does not require manual
adjustments to work properly). In this thesis, we are more interested in the tradi-
tional type of transcompilers, where typical use cases are to translate an existing
codebase written in an obsolete or deprecated language (e.g. COBOL, Python 2)
to a recent one, or to integrate code written in a different language to an existing
codebase.

Migrating an existing codebase to a modern or more efficient language like Java
or C++ requires expertise in both the source and target languages, and is often
costly. For instance, the Commonwealth Bank of Australia spent around $750 million
and 5 years of work to convert its platform from COBOL to a more modern language.
Using a transcompiler and manually adjusting the output source code may be a faster
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and cheaper solution than rewriting the entire codebase from scratch. In natural
language, recent advances in neural machine translation have been widely accepted,
even among professional translators, who rely more and more on automated machine
translation systems. A similar phenomenon could occur in programming language
translation in the future.

Translating source code from one Turing-complete language to another is always
possible in theory. Unfortunately, building a translator is difficult in practice:
different languages can have a different syntax, and rely on different platform APIs
and standard-library functions. Currently, the majority of transcompilation tools
are rule-based; they essentially tokenize the input source code and convert it into
an Abstract Syntax Tree (AST), on which they apply handcrafted rewrite rules.
Creating them requires a lot of time, and advanced knowledge in both the source
and target languages. Moreover, translating from a dynamically-typed language
(e.g. Python) to a statically-typed language (e.g. Java) requires to infer the variable
types which is difficult in itself, if not impossible.

The applications of neural machine translation (NMT) to programming languages
have long been limited, mainly because of the lack of parallel resources available in
this domain. In this thesis, we propose unsupervised machine translation approaches,
leveraging a large amount of monolingual source code from GitHub to train a model, to
translate between three popular languages: C++, Java and Python. To evaluate our
models, we create a test set of 852 parallel functions, along with associated unit tests.
Although never provided with parallel data, our models manage to translate functions
with a high accuracy, and to properly align functions from the standard libraries
across the three languages, outperforming rule-based and commercial baselines by a
significant margin. Our approaches require little knowledge in the source or target
languages, and can easily be extended to most programming languages with sufficient
available data. Although not perfect, our methods could help reduce the amount of
work and the level of expertise required to successfully translate a codebase. The
main contributions of this thesis are the following:

• We introduce novel approaches to translate functions from a programming
language to another, that is purely based on monolingual source code and
requires no expertise in either the source or the target languages.

• We show that our methods successfully manage to grasp complex patterns
specific to each language, and to translate them to other languages.

9



Chapter 1. Introduction

• We demonstrate that fully unsupervised methods outperform commercial sys-
tems that leverage rule-based methods and advanced programming knowledge.

• Using automatically generated unit tests, we generate tens of thousands of
aligned functions, which can substantially improve the performance of unsu-
pervised translation models.

• We build and release a validation and a test set composed of 852 parallel
functions in 3 languages, along with unit tests to evaluate the correctness of
generated translations.

• Our code and pre-trained models are publicly available 1.

1.1 Thesis Structure

This thesis presents novel unsupervised approaches for source code translation. They
brought significant improvements to the state-of-the-art in code translation, which
are illustrated in Figure 1.1 and detailed in each chapter.

Chapter 2 In this chapter, we survey related works in sequence modelling, code
synthesis, code comprehension and program translation. We also introduce key tools
and concepts that influenced our choices and enabled some of our approaches.

Chapter 3: In this chapter, we introduce TransCoder, which learns to translate
programming languages using only monolingual data. This model views code as
sequences and leverages objective functions designed for Natural Language Processing.
It does not use the particularities of source code, except at validation and test time,
but still significantly outperforms baselines on source code translation.

Chapter 4: In this chapter, we question the use of the Masked Language Modelling
(MLM) and Denoising Auto Encoding (DAE) objectives for pre-training models
on source code. These objectives, which were designed for natural languages and
mask tokens randomly, often do not force the model to understand the semantics
of the code. Hence, we introduce a complementary objective which leverages the
particularities of source code: DOBF. It is based on identifier deobfuscation, and leads
the model to generate embeddings that represent the semantics of the code. DOBF

1https://github.com/facebookresearch/CodeGen
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1.2. Publications

improves the performance of machine learning models on several tasks, including
unsupervised code translation.

Chapter 5: The capacity of TransCoder and DOBF to learn multilingual em-
beddings of source code from monolingual data is essential for their performance
for code translation. These embeddings are multilingual due to anchor words such
as operators, identifiers, syntax tokens, or keywords that are common to several
programming languages. However, it is difficult to learn that the semantics of a
given sequence of tokens can differ depending on the programming language (e.g. due
to different operator precedence). In this chapter, we present a novel method that
leverages automatically generated unit tests to create datasets of aligned functions.
It solves the aforementioned issues and substantially improves the performance of
the unsupervised source code translation models described in the previous chapters.

Chapter 6: In this final part of the thesis, we review the contributions made in the
other chapters and present directions for future research in source code translation
and synthesis.

1.2 Publications

Several contributions presented in this thesis were published in peer-reviewed con-
ferences. The content may differ slightly due to small updates of the experimental
framework. Additional machine learning works, which are not directly related to the
subject of this thesis, are presented briefly in this section.

Machine Learning for Programming Languages.

• TransCoder (Roziere et al., 2020a) use unsupervised methods to translate
between programming languages. This work is detailed in chapter 3. Marie-
Anne Lachaux is an equal contributor for this work.

• DOBF (Roziere et al., 2021a) provide a new method for pre-training machine
learning models for source code, which is presented in chapter 4. Marie-Anne
Lachaux is an equal contributor for this work.

• TransCoder-ST (Roziere et al., 2022) use automated unit tests to create datasets
of aligned functions, and self-training to improve upon both TransCoder and
DOBF. It is detailed in chapter 5.
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Chapter 1. Introduction

Figure 1.1: Illustration of the improvements brought by our methods for
Java to Python Translation. In orange, a rule-based baseline called j2py. In shades
of blue, the unsupervised methods detailed in this thesis. TransCoder, described
in Chapter 3, is our initial method for unsupervised translation of programming
languages. DOBF is a novel pre-training objective for programming languages
detailed in Chapter 4. In Chapter 5, we present TransCoder-ST, which is trained on
aligned data generated using automated unit tests. The y axis is the computational
accuracy for a single generation. It measures the percentage of generations that pass
a series of unit tests.

Latent space optimization for Generative Adversarial Networks. These
works study the use of gradient-based and evolutionary methods to optimize the
latent space of Generative Adversarial Networks (GAN).

• EvolGAN (Roziere et al., 2020b) optimize either the technical or artistic quality
of images to improve the output of GANs generating many types of pictures.

• Tarsier (Roziere et al., 2021b) use a custom loss and an image quality assessment
network to improve the output of GANs for super-resolution.

• In Inspirational adversarial image generation (Rozière et al., 2021), we allow
the generation of images similar to input inspirational images or corresponding
to human preferences.
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1.2. Publications

Miscellaneous

• Garcelon et al. (2020) study theoretical adversarial attacks on linear contextual
bandit algorithms, and validate the feasibility of these attacks on synthetic
and real-world datasets. Evrard Garcelon and Laurent Meunier are equal
contributors for this work.
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Chapter 2

Related Work

2.1 Neural Machine Translation

2.1.1 Transformer architecture

The transformer architecture (Vaswani et al., 2017) leverages the self-attention
mechanism to translate or perform other tasks without any recurrent cells. This
architecture improves parallelization at training time and has a better capacity to
learn long-term dependencies.

Parallelization. While recurrent layers are sequential in nature, transformer layers
can compute representations of each token in parallel, making them more efficient
on GPUs or dedicated hardware.

Long-term dependencies. Long-term dependencies are notoriously difficult to
learn with recurrent neural networks. The length of the path that the forward and
backward signals have to traverse to learn such dependencies can grow up to the length
of the sequence, which makes them difficult to learn. In practice, these networks are
generally trained with truncated backpropagation through time (Sutskever, 2013;
Pascanu et al., 2013), which further hinders the learning of long term dependencies.
In contrast, in attention layers, there is a path involving a constant number of
operations between any two tokens, making learning long-term dependencies easier.

Encoder-decoder architecture. Vaswani et al. (2017) uses an encoder-decoder
architecture inspired by those developed for recurrent neural networks (Bahdanau
et al., 2015; Cho et al., 2014). In the context of machine translation, the encoder learns
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2.1. Neural Machine Translation

high-level representations of each token in the source sentence, using information
from tokens on the left and right. The decoder generates tokens in an auto-regressive
manner, using the representation of the entire source sentence outputted by the
encoder and the previously generated target tokens.

Encoder-only architectures. Alternative transformer architectures have been
proposed. For instance, models in the BERT family (Devlin et al., 2018; Liu
et al., 2019; Yang et al., 2019; Sanh et al., 2019) contain only an encoder and are
used for natural language understanding. They are generally tested on the GLUE
benchmark (Wang et al., 2018a), which contains tasks such as question to answer
matching, paraphrase detection, and sentiment analysis. Such models only generate
high-level representations of tokens in the source sentence. They are not trained to
generate new tokens in an auto-regressive manner, and are generally not used to
generate new sentences of arbitrary length in the context of machine translation.

Decoder-only architectures. Models such as GPT (Radford et al., 2018, 2019;
Brown et al., 2020) train only a decoder in an auto-regressive manner. This type
of architecture is especially suitable for text completion. Using carefully selected
prompts, it is also applicable to a wide range of tasks. For instance, for translation,
a well trained model can be expected to complete a prompt formatted as “Translate
English to French: cheese => ” with “fromage”, which is the translation of the
English word “cheese”. Brown et al. (2020) show improved few-shot performance
when providing several examples of translations in the prompt.

Scaled dot product attention. Vaswani et al. (2017) defines the scaled dot
product attention by adding a scaling factor 1

d
to dot product attention, with d the

dimension of the keys:

Attention(Q, K, V ) = softmax(QKT

√
d

)V (2.1)

With Q, K, and V the matrices containing the queries, keys, and values, which are
computed as linear transformations of token representations. In self-attention, the
keys, queries, and values are computed from the same token representations. In the
encoder, each position can attend to any other position in the previous layer. In
the decoder, they use masking to ensure that no element can attend to positions
after its own. It guarantees that the information flows only forward and that the
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Chapter 2. Related Work

tokens are generated in an auto-regressive manner. Another type of attention is
the cross-attention. It is present in the decoder and allows each generated token to
attend to any token representation at the last layer of the encoder. It is done by
computing the keys and values from the encoded input sequence, and the queries
from the output tokens generated by the decoder.

Feed-forward network (FFN). Each transformer layer contains a feed-forward
network (FFN), which is applied after the attention mechanism. It consists in
two linear fully-connected layers and an activation function in between (generally
ReLU (Agarap, 2018) or GELU (Hendrycks and Gimpel, 2016)). This network is
applied to each position separately with the same weights.

Multi-head attention. Instead of performing a single attention operation at each
layer, transformer models perform such operations with independently learned query,
key, and value projection matrices. The outputs of the attention heads are then
concatenated and passed through the FFN.

Positional encodings. The attention mechanism defined in Equation 2.1 processes
tokens independently of their positions in the sequence. Hence, with only stacked self-
attention layers computed on sequences of token embeddings, transformers would not
be able to make use of the sequential nature of the input. Vaswani et al. (2017) use
positional encodings (Gehring et al., 2017), which are added to the token embeddings
and allow the model to learn representations of positions in a sentence. They obtain
similar performance with sinusoidal and learned encodings. In our experiments, we
use learned positional encodings as we observed that it improved our performance.

Linear attention. The time and space complexities of the self-attention are
quadratic with respect to the sequence length. It makes vanilla transformers difficult
to scale to large sequences. Several methods have been proposed to reduce the
complexity of attention layers and make it linear. Beltagy et al. (2020) replace
the full attention with a linear number of windowed, dilated, and global attention
patterns. Zaheer et al. (2020) propose a similar approach but replace the dilated
attention pattern with a sparse random attention. In both cases, the global attention
tokens attend to all tokens and all tokens attend to them. They allow signal to flow
between any pair of tokens after two attention layers. Instead, Wang et al. (2020a)
demonstrate that the self-attention can be approximated by a low-rank matrix
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and propose to project the keys and values matrices to a lower dimensional space.
It reduces the complexity of self-attention from quadratic to linear and provides
substantial speedups and memory usage improvements empirically.

Encoding tree structures. Programming languages are strictly structured, and
are generally designed to be parsed into semantically rich structures such as Ab-
stract Syntax Trees (AST). ASTs contains all the semantic information required
to understand the code and compile it further. They represent concepts such as
scopes and token types clearly, and are often used to perform static analysis. Several
methods have been proposed to leverage the information contained in ASTs. Shiv
and Quirk (2019) propose to encode the position of each node by its path from
the root. Kim et al. (2021) develop relative tree positional encodings, where the
number of up and down moves in the unique path to go from A to B in the AST
is used to compute the attention matrix. Chirkova and Troshin (2021) compare
the performance of sequential positional encodings to tree positional encodings, and
graph neural networks from Hellendoorn et al. (2019) on four tasks. They observe
that sequential relative attention (Shaw et al., 2018) performs well in average and
that transformers are generally capable of understanding the structure of the code
without tree positional encodings. Chen et al. (2021b) propose several alternative
representations of code as graphs, and show that leveraging graph representations
leads to significant gains for several tasks on source code.

2.1.2 Language modeling

A language model assigns a probability distribution over sequences of tokens. In
deep learning, language models are usually trained by evaluating the probability of
the next token in a sequence, given the previous tokens. Then, the probability of the
sequence can be written as follows:

P (w1 . . . wm|θ) =
m∏
1

P (wi|wi−1 . . . w1, θ) (2.2)

with m the size of the sequence, wi the i-th token and θ the weights of the model. It
is common to maximize the estimated probability of real sequences by minimizing
the average negative log-likelihood of the sequence.
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2.1.3 Unsupervised Machine Translation

The quality of NMT systems depends on the quality of the available parallel data.
However, for the majority of languages, parallel resources are rare or nonexistent.
Since creating parallel corpora for training is not realistic (creating a small parallel
corpus for evaluation is already challenging (Guzmán et al., 2019)), some approaches
have investigated the use of monolingual data to improve existing machine translation
systems (Gulcehre et al., 2015; He et al., 2016; Sennrich et al., 2015a; Zheng et al.,
2017).

Several methods were proposed to train a machine translation system exclusively
from monolingual corpora, using either neural models (Lample et al., 2018a; Artetxe
et al., 2018b) or statistical models (Lample et al., 2018c; Artetxe et al., 2018a). In
Chapter 3, we describe how these methods can be instantiated in the setting of
unsupervised transcompilation. More recently, Brown et al. (2020) showed that large
language models are able to translate with few-shot prompts, and Han et al. (2021)
proposed to bootstrap an unsupervised neural translation system using a pre-trained
generative language model.

2.2 Program Synthesis and Translation

2.2.1 Code synthesis from natural language.

Early methods. Program synthesis generally refers to the generation of code
from natural language prompts, and has been a longstanding dream of artificial
intelligence (Backus et al., 1957; Shaw et al., 1975; Manna and Waldinger, 1971).
Hindle et al. (2012) were the first to use a n-gram language model on source code,
followed by Nguyen et al. (2013). Raychev et al. (2014) combined statistical models
(i.e. n-gram models and recurrent neural networks) and code analysis tools for code
completion. Later, recurrent neural networks were shown to outperform n-gram mod-
els and several studies trained neural networks on source code at character (Karpathy
et al., 2015; Cummins et al., 2017) or token level (Lin et al., 2017; Ling et al., 2016).
A common issue with standard seq2seq models, is that the generated functions are
not guaranteed to compile, and even to be syntactically correct. To address this
issue, several approaches proposed to use additional constraints on the decoder, to
ensure that the generated functions respect the syntax of the target language (Alon
et al., 2019a,b; Amodio et al., 2017; Rabinovich et al., 2017). Maddison and Tarlow
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(2014); Allamanis et al. (2015b) and Yin and Neubig (2017) developed syntactic
models generating ASTs. They generate syntactically correct code by construction
but are more difficult to train efficiently.

Large language models. Recently, large language models for code have shown
impressive capabilities for code synthesis from natural language prompts, such as
docstrings and problem statements (Chen et al., 2021a; Austin et al., 2021; Li et al.,
2022; Chowdhery et al., 2022). They also showed non-trivial performance for few-shot
program translation with well-selected prompts.

Synthesis from docstrings. Docstrings are used to document a specific segment
of code (e.g. a function). Clement et al. (2020) trained a model on a large python
dataset, in which they separated function signatures, docstrings and bodies. Then,
they trained a model to generate any of these elements from some of the others
(e.g. function bodies from signatures and docstrings). Chen et al. (2021a) showed
that a prompt, containing only the function signature and its docstring, is enough to
generate functions that pass all the tests for close to 30% of the elements in their
HumanEval dataset. In practice, docstrings vary in quality, and are often not enough
to perfectly specify the behavior of complex functions.

Synthesis from competitive programming questions. Competitive program-
ming questions often remove ambiguity by providing input ranges, example input/out-
put pairs, and target time/space complexities. However, writing well-specified prob-
lem statements in a natural language is difficult in practice, and coding platforms
also allow users to remove ambiguity by comparing their code to the ground truth
on custom inputs. Moreover, such specific prompts would be difficult to obtain for
much larger projects or non-isolated code snippets. While docstrings aim to give
clear indications about the semantics of the code, problem statements often use
non-standard wording to obfuscate the meaning and do not describe a particular
solution. Hendrycks et al. (2021) and Li et al. (2022) used language models to
generate solutions to competitive programming questions.

Synthesis from pseudo-code. Kulal et al. (2019) create a parallel pseudo-code-
to-code datasets. They train a model, and use sampling to synthesize compilable
source code from pseudo-code.
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2.2.2 Program Translation

Program translation can be seen as a type of program synthesis, where the input
prompt is also source code. Contrarily to natural languages, source code is unambigu-
ous if the corresponding compiler or interpreter is known. Hence, code translation is
generally a better-specified task than code synthesis.

The particularities of some languages allow the creation of very successful rule-
based transcompilers for a few language pairs (e.g. Java → Scala, CoffeeScript
→ JavaScript). However, source-to-source translation between arbitrary Turing-
complete languages remains an open problem. Several studies have investigated
the use of machine learning for translating between programming languages. For
instance, Nguyen et al. (2013) trained a Phrase-Based Statistical Machine Translation
(PBSMT) model, Moses (Koehn et al., 2007), on a Java-C# parallel corpus. They
created their dataset using the implementations of two open source projects, Lucene
and db4o, developed in Java and ported to C#. Similarly, Karaivanov et al. (2014)
developed a tool to mine parallel datasets from ported open source projects. Aggarwal
et al. (2015) trained Moses on a Python 2 to Python 3 parallel corpus created with
2to3, a Python library 1 developed to port Python 2 code to Python 3. Chen et al.
(2018) used the Java-C# dataset of Nguyen et al. (2013) to translate code with tree-
to-tree neural networks. They also use a transcompiler to create a parallel dataset
CoffeeScript-Javascript. Unfortunately, all these approaches are supervised, and rely
either on the existence of open source projects available in multiple languages, or on
existing transcompilers, to create parallel data. Moreover, they essentially rely on
BLEU score (Papineni et al., 2002) to evaluate their translations (Aggarwal et al.,
2015; Miceli-Barone and Sennrich, 2017; Karaivanov et al., 2014; Nguyen et al., 2013),
which is not a reliable metric, as a generation can be a valid translation while being
very different from the reference. Methods leveraging verified lifting (Kamil et al.,
2016), which offer formal guarantees, can significantly speed up some pre-defined
code fragments (Ahmad and Cheung, 2016; Ahmad et al., 2019).

2.2.3 Evaluation Metrics

The goal of program synthesis and translation is to help developers to perform
specific tasks. However, getting production metrics about the usage of such models
can be difficult in practice. Given two models, it is important to be able to compare

1https://docs.python.org/2/library/2to3.html
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them offline, without having to expose users to the outputs of experimental models.
Similarly to other machine learning methods, machine translation and program
synthesis models can be evaluated on held-out test examples, which are not seen at
training time. In this section, we briefly present the metrics that are generally used
for that purpose.

Perplexity.

Sequence synthesis and translation tasks are often based on language models, which
learn a probability distribution over sequences of words. These models can be
evaluated by measuring how well they predict the probability of real unseen samples.
The perplexity score is defined as the exponential of the average negative log-likelihood
(or equivalently, of the cross-entropy) of the sequence, which is computed by the
model.

perplexity(W ) = 2− 1
N

log(P (w1w2...wN )) (2.3)

Exact match accuracy.

The exact match score, also called perfect match accuracy score, is a simple metric
for evaluating code synthesis and code translation methods (Rabinovich et al., 2017;
Chen et al., 2018). It computes the percentage of generated programs that are
exactly the same as the ground truth. The main drawback of this metric is that it
considers programs that are semantically equivalent to the ground truth but differ
by one or several tokens as negatives. It is too strict, especially in the context of
source code, where there are often many correct and idiomatic ways to implement
a function. For instance, identifiers (e.g. variable names, function names) can be
chosen arbitrarily, some instructions can be reordered or rewritten without impacting
the semantics of the code.

BLEU score.

Machine translation methods for natural languages are generally evaluated using the
BLEU score (Papineni et al., 2002; Bahdanau et al., 2015; Wu et al., 2016; Vaswani
et al., 2017). In the context of programming languages, early works used the same
metric to evaluate their code synthesis or translation outputs (Aggarwal et al., 2015;
Miceli-Barone and Sennrich, 2017; Karaivanov et al., 2014; Nguyen et al., 2013). For
K ∈ N, the BLEU-K score computes the n-gram precision score precisionn for each
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n ∈ [1, . . . , n] as follows:

precisionn =

∑
C∈Candidates

∑
n-gram∈C

Countclip (n-gram, ref)∑
C′∈Candidates

∑
n-gram’∈C′

Count (n-gram’, candidate) (2.4)

The count in the numerator, Countclip, is clipped to ensure that any n-gram cannot
be counted more times than it appears in the reference text. For instance, the
unigram precision of a sequence repeating the word def n times, compared to a
reference containing one python function and a single def token, is clipped to 1

n

instead of 1 with the unclipped version. However, a candidate sequence containing a
single def token would still have a perfect unigram precision, motivating the need
for a brevity penalty (BP) penalizing short sentences:

BP = min
(
1, e1− r

c

)
(2.5)

With r and c respectively the lengths of the reference and candidate sentences.
Then, the BLEU-K is defined as BP multiplied with the geometric mean of the

n-grams precisions. In practice it is computed with the mathematically equivalent
formula:

BLEU-K = BP · exp
(

1
K

K∑
n=1

log(precisionn)
)

(2.6)

When K is not given, the BLEU score generally refers to the BLEU-4 scores which is
computed using the 1, 2, 3 and 4-gram overlaps between the source and the target.
In this thesis, we also use the term BLEU to refer to the BLEU-4 score.

Criticisms of the BLEU score. Despite its pervasiveness in machine translation
models evaluation, BLEU has been criticised in the NLP community (Callison-Burch
et al., 2006; Kocmi et al., 2021). In the context of programming languages, it does
not take the semantic correctness of the generations into account. Two programs
with small syntactic discrepancies will have a high BLEU score while they could
lead to very different compilation and computation outputs. Conversely, semantically
equivalent programs with different implementations can have low BLEU scores. In
practice, the BLEU score correlates poorly with the correctness of the generated
code (Roziere et al., 2020a; Ren et al., 2020; Austin et al., 2021). Ren et al. (2020)
proposed CodeBLEU, which is a weighted mean between the BLEU score, a weighted
n-gram match score similar to BLEU, and structural matches based on the AST and
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dataflow graphs of the program.

Computational accuracy.

Metrics based on token match fail to capture the semantics of the code and typically
correlate poorly with the correctness of the generated function, prompting the use
of new metrics checking if the generated solution passes series of test cases. The
pass@k (Kulal et al., 2019) or computational accuracy (CA@k)(Roziere et al., 2020a)
are defined based on unit tests. More precisely, a generated solution is considered
correct if it passes a series of corresponding test cases. Hendrycks et al. (2021); Chen
et al. (2021a); Drain et al. (2021) and Austin et al. (2021) adopted the same metric
and, in the context of program synthesis, Hendrycks et al. (2021) and Austin et al.
(2021) noticed that semantics-based metrics correlate poorly with BLEU score. This
metric is presented in detail in Section 3.2.4 in the context of code translation.

2.3 Other Machine Learning Tasks for Program-
ming Languages

This section surveys other tasks in machine learning for programming languages
that are especially relevant to this thesis. Allamanis et al. (2018a) and the living
literature website2 provide information on more tasks.

2.3.1 Translating from source code

Other studies have investigated the use of machine translation from source code. For
instance, Oda et al. (2015) trained a PBSMT model to generate pseudo-code. To
create a training set, they hired programmers to write the pseudo-code of existing
Python functions. Miceli-Barone and Sennrich (2017) built a corpus of Python
functions with their docstrings from open source GitHub repositories. They showed
that a neural machine translation model could be used to map functions to their
associated docstrings, and vice versa. Similarly, Hu et al. (2018) proposed a neural
approach, DeepCom, to automatically generate code comments for Java methods.
Husain et al. (2019) introduced a dataset of aligned functions and docstrings in 6
languages. It was integrated in several tasks of the CodeXGLUE benchmark (Lu
et al., 2021), including the code summarization task. Since then, many pre-trained

2https://ml4code.github.io/
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models were evaluated on translating from source code to comments (Feng et al.,
2020; Roziere et al., 2021a; Dong et al., 2019; Wang et al., 2021).

2.3.2 Bug Detection and Repair

Bug detection consists in finding bugs in software without human intervention. It is
often associated with the repair task, which consists in automatically finding solutions
to bugs (Monperrus, 2018b). Bug detection was traditionally tackled using static
analysis tools such as FindBugs (Ayewah et al., 2007), ErrorProne (Aftandilian et al.,
2012) and Infer (Calcagno et al., 2015). These tools typically rely on hard-coded rules
to detect patterns commonly associated to bugs in the code, AST, or dataflow graph.
However, they cannot generalize to new bug patterns, or propose automatic fixes
to complex bugs, prompting the development of several machine learning methods
for this task (Gupta et al., 2017; Wang et al., 2018b; Tufano et al., 2019; Chen
et al., 2019; Allamanis et al., 2018b; Mesbah et al., 2019; Tarlow et al., 2020; Dinella
et al., 2020; Yasunaga and Liang, 2020; Tufano et al., 2019; Drain et al., 2021; Jiang
et al., 2021; Allamanis et al., 2021). Tufano et al. (2019) mined commits containing
bug fixes from GitHub, using simple patterns, and framed the repair problem as a
translation from buggy to fixed code. Other methods used either recurrent (Chen
et al., 2019), convolutional (Lutellier et al., 2020; Jiang et al., 2021), or graph neural
networks working on AST features (Dinella et al., 2020; Tarlow et al., 2020; Chen
et al., 2021b) to generate the fix.

Monperrus (2018a) provides a comprehensive and regularly-updated survey on
program repair.

2.3.3 Model pre-training.

Masked Language Modeling pre-training. Large pre-trained transformers
such as BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) led to significant
improvements in most natural language processing tasks. The quality of pre-training
mainly comes from the Masked Language Modeling (MLM) objective (i.e. the cloze
task Taylor (1953)), which allows the model to make predictions by leveraging
left and right contexts, unlike causal language modeling (CLM), where the model
predictions are only conditioned on previous words. In Masked Language Modeling
(MLM), the model takes a sentence as input and uniformly selects 15% of its tokens.
Of the selected tokens, 80% are replaced by a special symbol [MASK], 10% are
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left unchanged, and the remaining 10% are replaced by random tokens from the
vocabulary. The MLM objective consists in recovering the initial sentence given
the corrupted one. Lample and Conneau (2019) noticed that the masked words are
often easy to predict, and proposed to sample the 15% masked words according
to their frequencies instead of uniformly. This way, rare words are sampled more
often, making the pre-training task more difficult for the model, which results in an
improved learning signal and a faster training. Sun et al. (2019) also noticed that
recovering the tokens masked by MLM is too simple in some contexts (e.g. predicting
the two tokens “Harry Potter” is much harder than predicting only “Harry” if you
know the next word is “Potter”). To address this issue, they proposed to mask
phrases and named entities instead of individual tokens. Joshi et al. (2020) and Song
et al. (2019) made a similar observation and proposed to mask random spans of
text. They showed that this simple modification improves the performance on many
downstream NLP tasks.

Alternative objectives. Other pre-training objectives have been proposed in
addition to MLM. For instance, Devlin et al. (2018) also use the next sentence
prediction (NSP) objective, a binary classification task that consists in predicting
whether two input sentences follow each other in the original corpus. The NSP
objective was originally designed to improve the performance on downstream NLP
tasks, but recent studies (Lample and Conneau, 2019; Liu et al., 2019) showed that
training MLM on a stream of sentences to leverage longer context, and removing the
NSP objective, improves the quality of pre-training. To improve the sample-efficiency
of MLM (where only 15% of tokens are predicted), Electra (Clark et al., 2020)
proposed to replace (and not mask) some tokens with plausible alternatives, and to
train a network to detect the tokens that have been replaced. They showed that
this new Replaced Token Detection (RTD) objective matches the performance of
RoBERTa while using four times less computational resources. Dong et al. (2019)
proposed a model that combines multiple pre-training tasks, including bidirectional,
but also left-to-right and right-to-left language modeling objectives. Lewis et al.
(2020) also proposed different pre-training objectives, for instance to detect whether
input sentences have been permuted, or tokens have been deleted or inserted.

Code Generation Pre-training. Pre-training methods developed for natural
languages are also effective for programming languages. For instance, Kanade et al.
(2020); Feng et al. (2020) rely mostly on the MLM objective to pre-train models
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similar to BERT (Devlin et al., 2018) on programming languages. It leads to
significant improvement gains on several downstream tasks. Ahmad et al. (2021)
propose to train an encoder-decoder model similarly to BART (Lewis et al., 2020)
instead, and obtain good results on several tasks in the CodeXGLUE benchmark (Lu
et al., 2021).

Other methods propose to leverage the structure of programming languages
to pre-train models for source code. Jain et al. (2020) train a model with a con-
trastive loss, ensuring that the representations are robust to some semantic-preserving
transformations. In GraphCodeBERT (Guo et al., 2020), the MLM objective is
complemented by an edge-prediction objective, in which the model predicts edges in
the data flow graph to make the model understand the structure of the code. DOBF
(detailed in Chapter 4) leverages the structure of the programming languages to
train a model to deobfuscate identifiers. CodeT5 (Wang et al., 2021) improves it
by adding other tasks specific to programming languages, such as identifier tagging,
docstring generation, and code generation from docstrings.
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MT	Model
Python	-	C++

MT	Model
C++	-	Python

Back-translation

Denoising	auto-encoding

Cross-lingual	Masked	Language	Model	pretraining

int max(int a, int b){
 	 	return a > b ? a : b; 
}

C++	translation

MT	Model
Java	-	Java

Cross-Lingual
Masked	LM

def	max(a,	b):
 	 	return	a	if	a	>	b	else	b

Python	code
def	max(a,	b):
 	 	return	a	if	a	>	b	else	b

Python	reconstruction

if	(prime[p])
 	for	(int	i=p*p;	i<=n;	i+=p)
 	 	prime[i]	=	false;

Input	code
MASK	(prime[p])
 	for	(MASK i=p*p;	i<=n;	i+=p)
 	 	prime[MASK]	=	false;

Masked	code
if	(prime[p])
 	for	(int	i=p*p;	i<=n;	i+=p)
 	 	prime[i]	=	false;

Recovered	code

int	=	partition(a,	MASK,	high);
MASK(a,	low, 1 piv -)
quicksort a,	piv+,	high);

Corrupted	code

int	piv =	partition(a,low,high);
quicksort(a,	low,	piv-1);
quicksort(a,	piv+1,	high);

Recovered	code
int	piv =	partition(a,low,high);
quicksort(a,	low,	piv-1);
quicksort(a,	piv+1,	high);

Input	code

Mask tokens

Corrupt code

Figure 3.1: Illustration of the three principles of unsupervised machine transla-
tion used by our approach. The first principle initializes the model with cross-lingual
masked language model pretraining. As a result, pieces of code that express the same in-
structions are mapped to the same representation, regardless of the programming language.
Denoising auto-encoding, the second principle, trains the decoder to always generate valid
sequences, even when fed with noisy data, and increases the encoder robustness to input
noise. Back-translation, the last principle, allows the model to generate parallel data which
can be used for training. Whenever the Python → C++ model becomes better, it generates
more accurate data for the C++ → Python model, and vice versa. Figure 3.2 provides a
representation of the cross-lingual embeddings we obtain after training.

In this chapter, we present TransCoder, an unsupervised model leveraging objec-
tives developed for NLP to translate between programming languages.

3.1 Model

We consider a sequence-to-sequence (seq2seq) model with attention (Sutskever
et al., 2014; Bahdanau et al., 2015), composed of an encoder and a decoder with a
transformer architecture (Vaswani et al., 2017). We use a single shared model for
all programming languages. We train it using the three principles of unsupervised
machine translation identified in Lample et al. (2018c), namely initialization, language
modeling, and back-translation. In this section, we summarize these principles and
detail how we instantiate them to translate programming languages. An illustration
of our approach is given in Figure 3.1.
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3.1.1 Cross Programming Language Model pretraining

Pretraining is a key ingredient of unsupervised machine translation Lample et al.
(2018c). It ensures that sequences with a similar meaning are mapped to the same
latent representation, regardless of their languages. Originally, pretraining was done
by initializing the model with cross-lingual word representations (Lample et al., 2018a;
Artetxe et al., 2018b). In the context of unsupervised English-French translation, the
embedding of the word “cat” will be close to the embedding of its French translation
“chat”. Cross-lingual word embeddings can be obtained by training monolingual word
embeddings and aligning them in an unsupervised manner (Lample et al., 2018b;
Artetxe et al., 2017).

Subsequent work showed that pretraining the entire model (and not only word
representations) in a cross-lingual way could lead to significant improvements in
unsupervised machine translation (Lample and Conneau, 2019; Lewis et al., 2020;
Song et al., 2019). In particular, we follow the pretraining strategy of Lample and
Conneau (2019), where a Cross-lingual Language Model (XLM) is pretrained with
a masked language modeling objective (Devlin et al., 2018) on monolingual source
code datasets.

The cross-lingual nature of the resulting model comes from the significant number
of common tokens (anchor points) that exist across languages. In the context of
English-French translation, the anchor points consist essentially of digits and city and
people names. In programming languages, these anchor points come from common
keywords (e.g. for, while, if, try), and also digits, mathematical operators, and
English strings that appear in the source code. In practice, the “cross-linguality” of
the model highly depends on the amount of anchor points across languages. As a
result, an XLM model trained on English-French will provide better cross-lingual
representations than a model trained on English-Chinese, because of the different
alphabet, which reduces the number of anchor points. In programming languages,
the majority of strings are composed of English words, which results in a fairly high
number of anchor points, and the model naturally becomes cross-lingual. Figure 3.2
shows a t-SNE vizualization of the embeddings of a few C++, Java and Python
tokens. Thanks to anchor words, tokens with similar semantics in different languages
such as map and dict have similar embeddings.

For the masked language modeling (MLM) objective, at each iteration we consider
an input stream of source code sequences, randomly mask out some of the tokens,
and train TransCoder to predict the tokens that have been masked out based on
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their contexts. We alternate between streams of batches of different languages. This
allows the model to create high quality, cross-lingual sequence representations. An
example of XLM pretraining is given on the top of Figure 3.1.

Figure 3.2: Cross-lingual token embedding space. We show a t-SNE visualization
of our cross-lingual token embeddings. These embeddings are obtained by encoding
programming language tokens into TransCoder’s lookup table. We show the embeddings of
C++, Java, and Python keywords. Keywords of different programming languages that are
used in similar contexts are very close in the embedding space. For instance, except in
Python and catch in Java and C++, which are both used to catch exceptions, are mapped
to very similar embeddings. The same phenomenon is observed for implementations of
maps (Map, map and dict), for c_str and toCharArray which are used to transform a
string into a char array, and for similar primitive types (e.g. Long, long, Integer, and
int).
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3.1.2 Denoising auto-encoding

We initialize the encoder and decoder of the seq2seq model with the XLM model
pretrained in Section 3.1.1. The initialization is straightforward for the encoder, as it
has the same architecture as the XLM model. The transformer decoder, however, has
extra parameters related to the source attention mechanism (Vaswani et al., 2017).
Following Lample and Conneau (2019), we initialize these parameters randomly.

XLM pretraining allows the seq2seq model to generate high quality representations
of input sequences. However, the decoder lacks the capacity to translate, as it has
never been trained to decode a sequence based on a source representation. To address
this issue, we train the model to encode and decode sequences with a Denoising Auto-
Encoding (DAE) objective (Vincent et al., 2008). The DAE objective operates like a
supervised machine translation algorithm, where the model is trained to predict a
sequence of tokens given a corrupted version of that sequence. To corrupt a sequence,
we use the same noise model as the one described in Lample et al. (2018a). Namely,
we randomly mask, remove and shuffle input tokens. Masking spans of tokens instead
of single tokens similarly to BART (Lewis et al., 2020) leads to similar performances.

The first symbol given as input to the decoder is a special token indicating the
output programming language. At test time, a Python sequence can be encoded by
the model, and decoded using the C++ start symbol to generate a C++ translation.
The quality of the C++ translation will depend on the “cross-linguality” of the
model: if the Python function and a valid C++ translation are mapped to the same
latent representation by the encoder, the decoder will successfully generate this C++
translation.

The DAE objective also trains the “language modeling” aspect of the model,
i.e. the decoder is always trained to generate a valid function, even when the encoder
output is noisy. Moreover it also trains the encoder to be robust to input noise,
which is helpful in the context of back-translation where the model is trained with
noisy input sequences. DAE is illustrated in the middle of Figure 3.1.

3.1.3 Back-translation

In theory, XLM pretraining and denoising auto-encoding alone are enough to generate
translations. However, the quality of these translations tends to be low, as the model
is never trained to do what it is expected to do at test time, i.e. to translate functions
from one language to another. To address this issue, we use back-translation, which is
one of the most effective methods to leverage monolingual data in a weakly-supervised
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scenario. Back-translation Lambert et al. (2011); Bojar and Tamchyna (2011) was
initially applied to improve the performance of machine translation in the supervised
setting (Sennrich et al., 2015a). It turned out to be an important component of
unsupervised machine translation (Lample et al., 2018a,c; Artetxe et al., 2018b).

In the unsupervised setting, a source-to-target model is coupled with a backward
target-to-source model trained in parallel. The target-to-source model is used to
translate target sequences into the source language, producing noisy source sequences
corresponding to the ground truth target sequences. The source-to-target model
is then trained in a weakly supervised manner to reconstruct the target sequences
from the noisy source sequences generated by the target-to-source model, and vice
versa. The two models are trained in parallel until convergence. An example of
back-translation is illustrated in Figure 3.1.

3.2 Experiments

We implement the model described above, and perform experiments to evaluate its
performance for code translation.

3.2.1 Training details

We use a transformer with 6 layers, 8 attention heads, and set the dimensionality of
the model to 1024. We use a single encoder and a single decoder for all programming
languages. During XLM pretraining, we alternate between batches of C++, Java,
and Python, composed of 32 sequences of source code of 512 tokens. At training time,
we alternate between the denoising auto-encoding and back-translation objectives,
and use batches of around 6000 tokens. We optimize TransCoder with the Adam
optimizer (Kingma and Ba, 2015), a learning rate of 10−4, and use the same learning
rate scheduler as Vaswani et al. (2017). We implement our models in PyTorch (Paszke
et al., 2017) and train them on 32 V100 GPUs. We use float16 operations to speed
up training and to reduce the memory usage of our models.

3.2.2 Training data

We download the GitHub public dataset available on Google BigQuery.1 It contains
more than 2.8 million open source GitHub repositories. We filter projects whose

1https://console.cloud.google.com/marketplace/details/github/github-repos
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license explicitly permits the re-distribution of parts of the project, and select the
C++, Java, and Python files within those projects. Ideally, a transcompiler should
be able to translate whole projects. In this work, we decide to translate at function
level. Unlike files or classes, functions are short enough to fit into a single batch,
and working at function level allows for a simpler evaluation of the model with unit
tests (c.f. Section 3.2.4). We pretrain TransCoder on all source code available, and
train the denoising auto-encoding and back-translation objectives on functions only.
Please refer to Section 3.2.2 and Table 3.1 for more details on how the functions
are extracted, and for statistics about our training set. We carry out an ablation
study to determine whether it is better to keep or remove comments from source
code. Keeping comments in the source code increases the number of anchor points
across languages, which results in a better overall performance. Therefore, we keep
them in our final datasets and experiments.

Function extraction

We train and evaluate our translation model on functions only. We differentiate class
functions and standalone functions. By standalone functions, we refer to functions
that can be used without instantiating a class. In C++ and Python, this corresponds
to static methods of classes, and functions outside classes. In Java, it only corresponds
to static methods. In GeeksforGeeks, solutions are implemented with standalone
functions, and our evaluation protocol only involves these functions. In Table 3.1,
the functions statistics are given for all kind of functions. In C++ and Python, 50%
of functions are standalone functions. In Java, standalone functions only represent
15% of the dataset. We tried to train our model on standalone functions only, and
observed better results than when training on all functions. Thus, all the results
in this work are given for models pretrained on all available data and trained on
standalone functions only.

3.2.3 Preprocessing

Recent approaches in multilingual natural language processing tend to use a common
tokenizer (Kudo and Richardson, 2018), and a shared vocabulary for all languages.
This reduces the overall vocabulary size, and maximizes the token overlap between
languages, improving the cross-linguality of the model (Devlin et al., 2018; Lample
and Conneau, 2019). In our case, a universal tokenizer without pre-tokenization
would be suboptimal, as different languages use different patterns and keywords.
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Table 3.1: Statistics of our GitHub dataset. We show the statistics for our entire
GitHub dataset (All) and for the extracted functions. We give the size in GigaBytes, the
number of files and functions, and the number of tokens.

C++ Java Python
All - Size 168 GB 352 GB 224 GB
All - Nb of files 15 M 56 M 18 M
All - Nb of tokens 38 B 75 B 50 B
Functions - Size 93 GB 185 GB 152 GB
Functions - Nb of functions 120 M 402 M 217 M

The logical operators && and || exist in C++ where they should be tokenized as
a single token, but not in Python. The indentations are critical in Python as they
define the code structure, but have no meaning in languages like C++ or Java.
We use the javalang2 tokenizer for Java, the tokenizer of the standard library
for Python3, and the clang4 tokenizer for C++. These tokenizers ensure that
meaningless modifications in the code (e.g. adding extra new lines or spaces) do
not have any impact on the tokenized sequence. An example of tokenized code
is given in Figure 3.3. We learn common BPE codes (Sennrich et al., 2015b) on
extracted tokens, and split tokens into subword units. The BPE codes are learned
with fastBPE5 on the concatenation of tokenized C++, Java, and Python files. We
also use a common vocabulary for all languages.

3.2.4 Evaluation

GeeksforGeeks is an online platform6 with computer science and programming articles.
It gathers many coding problems and presents solutions in several programming
languages. From these solutions, we extract a set of parallel functions in C++, Java,
and Python, to create our validation and test sets. These functions not only return
the same output, but also compute the result with similar algorithm. In Figure 3.5,
we show an example of C++-Java-Python parallel function that determines whether
an integer represented by a string is divisible by 13.

The majority of studies in source code translation use the BLEU score to evaluate
the quality of generated functions (Aggarwal et al., 2015; Miceli-Barone and Sennrich,

2https://github.com/c2nes/javalang
3https://docs.python.org/3/library/tokenize.html
4https://pypi.org/project/clang
5https://github.com/glample/fastBPE
6https://practice.geeksforgeeks.org
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Python function v1 Python function v2
def rm_file(path):

try:
os.remove(path)
print("Deleted")

except:
print("Error while deleting file", path)

def rm_file(path):

try:
os.remove( path )
print( "Deleted" )

except :
print("Error while deleting file", path)

def rm_file ( path ) : NEWLINE try : NEWLINE INDENT os . remove (path) NEWLINE print ( " Deleted " )
DEDENT except : NEWLINE INDENT print ( " Error _ while _ deleting _ file " , path ) DEDENT

Figure 3.3: Example of function tokenization. We show two versions of the same
Python function and their common tokenization. These function versions differ by extra
spaces and one extra new line. Our Python tokenizer is robust to extra spaces and extra
new lines except in strings. In strings, spaces are tokenized as (U+2581). Indentation
is meaningful in Python: indented blocks are surrounded by INDENT DEDENT tokens.

2017; Karaivanov et al., 2014; Nguyen et al., 2013), or other metrics based on the
relative overlap between the tokens in the translation and in the reference. A simple
metric is to compute the reference match, i.e. the percentage of translations that
perfectly match the ground truth reference (Chen et al., 2018). A limitation of
these metrics is that they do not take into account the syntactic correctness of the
generations. Two programs with small syntactic discrepancies will have a high BLEU
score while they could lead to very different compilation and computation outputs.
Conversely, semantically equivalent programs with different implementations will
have low BLEU scores. Instead, we introduce a new metric, the computational
accuracy, that evaluates whether the hypothesis function generates the same outputs
as the reference when given the same inputs. We consider that the hypothesis is
correct if it gives the same output as the reference for every input. We run the
generated function on 10 input examples, and compare its output to that of the
ground truth.

Unit test generation. We generate some unit tests to check that the functions are
semantically correct and to compute the computational accuracy. These unit tests are
contained in a script, which contains a reference function — named f_gold — from
the parallel dataset, a commented TOFILL marker which is to be replaced with a
generated function, and a main which runs both functions on a series of inputs and
compares the behaviors of the two functions. We have one script per function and
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per programming language.
In order to generate these scripts, we extract the parameters and their types from

the Java implementation of the solution. Then, we generate 10 random inputs for
these types, which are hardcoded in the test script and used to test the function. We
test the generated scripts by injecting the reference function a second time with the
name f_filled instead of the TOFILL comment and running it. We keep only the
scripts that return a perfect score in less than 10 seconds. As Python is dynamically
typed, we need to infer the Python parameters types from the Java types, and to
assume that the order and types of the parameters is the same in Java and Python.
When this assumption happens to be wrong, the generated script fails the tests and
is discarded. As this approach is quite effective, we generated the C++ scripts in a
similar manner and barely use the C++ parameter types which can be extracted
from the function definition.

Equality tests. We adapt the tests checking that the reference and gold function
behave in the same way based on the output type of the function (extracted from its
Java implementation). For instance, we test the equality of int outputs with ==,
while we use equals for String outputs and relative tests for double outputs. If
the function is inplace (the output type is void), we check the side effects on all its
mutable arguments instead.

Special cases for random input generation. The goal of our scripts is to decide
whether a function is semantically equivalent to from the reference function, and the
way we generate the random inputs is critical to how discriminative the script will be.
For instance, if the input of the reference function is a string, a naive solution may
be to generate strings of random length and with characters sampled randomly from
the set of all characters. However, our dataset contains several functions such as
checkDivisibility in Figure 3.5 which considers the string to be a representation of
a long integer. This type of function could always return the same result (e.g. False)
on inputs strings that do not contain only digits. As many functions in our dataset
assume the input strings or characters to be representations of long integers or
representations of integers in base 2, we alternate between sampling the characters
from (i) the set of all lowercase and uppercase letters plus the space character, (ii)
the set of all digits, and (iii) the set containing 0 and 1. For similar reasons, when
there is an integer array in the function parameters, we alternate between the sets
{0 . . . 100}, {−100 . . . 100} and {0, 1} to sample the integers inside the array. When
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Table 3.2: Number of functions with unit tests for our validation and test sets.
We report the number of function with unit tests for C++, Java, and Python, for the
validation and test sets. We also show the average number of tokens per function. A unit
test checks whether a generated function is semantically equivalent to its reference. For
each function, we have 10 unit tests, each testing it on a different input. As a result, the
number of functions with unit tests per language gives the size of the validation and test
sets of each pair of languages. For instance, we have 231 C++ functions with unit tests for
the validation set, which means that we have a validation set of 231 functions for Java →
C++ and Python → C++.

C++ Java Python
Nb of functions with unit tests - valid set 231 234 237
Nb of functions with unit tests - test set 466 481 463
Average #tokens per function 105.8 112.0 103.1

the function takes no argument, we do not generate any input for it and only check
that the output is the same for the reference function and the generated function.

Manual verifications. In order to ensure that our unit tests are appropriate, we
manually check and modify the scripts when the output of the function is the same
on all 10 inputs, when the function is inplace, or when the function contains prints.
As we only check the side effects affecting the mutable arguments, we remove all the
functions which mainly print or write to a file. Table 3.2 shows some statistics on
the final validation and test sets that we create and open-source.

At inference time, TransCoder can generate multiple translations using beam
search decoding (Koehn, 2004). In machine translation, the considered hypotheses
are typically the ones with the highest log-probabilities in the beam. In our case, we
have access to unit tests to verify the correctness of the generated hypotheses, so
we report two sets of results for our computational accuracy metric: CA@N, the
percentage of functions with at least one correct translation in the beam, and N
Beams - CA@1 the percentage of functions where the hypothesis in the beam with
the highest log-probability is a correct translation. We select our best model using
greedy decoding (CA@1) for speed efficiency.

3.2.5 Results

We report the results on our test set in Table 3.3, using greedy decoding (beam
size 1), for the three metrics presented in Section 3.2.4. In Table 3.4, we report our
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Python input Unsupervised C++ translation
def SumOfKsubArray(arr, n, k):

Sum = 0
S = deque()
G = deque()
for i in range(k):

while (len(S) > 0 and arr[S[-1]] >= arr[i]):
S.pop()

while (len(G) > 0 and arr[G[-1]] <= arr[i]):
G.pop()

G.append(i)
S.append(i)

for i in range(k, n):
Sum += arr[S[0]] + arr[G[0]]
while (len(S) > 0 and S[0] <= i - k):

S.popleft()
while (len(G) > 0 and G[0] <= i - k):

G.popleft()
while (len(S) > 0 and arr[S[-1]] >= arr[i]):

S.pop()
while (len(G) > 0 and arr[G[-1]] <= arr[i]):

G.pop()
G.append(i)
S.append(i)

Sum += arr[S[0]] + arr[G[0]]
return Sum

int SumOfKsubArray(int arr[], int n, int k){
int Sum = 0;
deque <int> S;
deque <int> G;
for(int i = 0; i < k; i ++){

while((int) S.size() > 0 && arr[S.back()] >= arr[i])
S.pop_back();

while((int) G.size() > 0 && arr[G.back()] <= arr[i])
G.pop_back();

G.push_back(i);
S.push_back(i);

}
for(int i = k; i < n; i ++){

Sum += arr[S.front()] + arr[G.front()];
while((int) S.size() > 0 && S.front() <= i - k)

S.pop_front();
while((int) G.size() > 0 && G.front() <= i - k)

G.pop_front();
while((int) S.size() > 0 && arr[S.back()] >= arr[i])

S.pop_back();
while((int) G.size() > 0 && arr[G.back()] <= arr[i])

G.pop_back();
G.push_back(i);
S.push_back(i);

}
Sum += arr[S.front()] + arr[G.front()];
return Sum;

}

Figure 3.4: Example of unsupervised Python to C++ translation. TransCoder
successfully translates the Python input function SumOfKsubArray into C++. TransCoder
infers the types of the arguments, of the variables, and the return type of the function.
The model maps the Python deque() container, to the C++ implementation deque<>,
and uses the associated front, back, pop_back and push_back methods to retrieve and
insert elements into the deque, instead of the Python square brackets [], pop and append
methods. Moreover, it converts the Python for loop and range function properly.

results with beam search decoding, and compare TransCoder to existing baselines.
We give an example of unsupervised translation from Python to C++ in Figure 3.4.

Evaluation metric differences. In Table 3.3, we observe that a very large fraction
of translations differ from the reference, and are considered as invalid by the reference
match metric although they successfully pass the unit tests. For instance, when
translating from C++ to Java, only 3.1% of the generations are strictly identical to
the ground truth reference, although 60.9% of them return the expected outputs.
Moreover, the performance in terms of BLEU is relatively flat and does not correlate
well with the computational accuracy. These results highlight the issues with the
traditional reference match and BLEU metrics commonly used in the field.
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Table 3.3: Results of TransCoder on our test set with greedy decoding. We
evaluate TransCoder with different metrics: reference match, BLEU score, and computa-
tional accuracy. Only 3.1% of C++ to Java translations match the ground truth reference,
although 60.9% of them successfully pass the unit tests, suggesting that reference match is
not an accurate metric to evaluate the quality of translations. Similarly, the BLEU score
does not correlate well with the computational accuracy.

C++ → Java C++ → Python Java → C++ Java → Python Python → C++ Python → Java
Reference Match 3.1 6.7 24.7 3.7 4.9 0.8
BLEU 85.4 70.1 97.0 68.1 65.4 64.6
Computational Accuracy 60.9 44.5 80.9 35.0 32.2 24.7

Beam search decoding. In Table 3.4, we study the impact of beam search, either
by considering all hypotheses in the beam that pass the unit tests (CA@N) or by only
considering the ones with the highest log-probabilities (N Beams - CA@1). Compared
to greedy decoding (CA@1), beam search significantly improves the computational
accuracy, by up to 24.6% in Python → C++ with 25 beams (CA@25). When the
model only returns the hypothesis with the highest log-probability, the performance
drops, indicating that TransCoder often finds a valid translation, although it some-
times gives a higher log-probability to incorrect hypotheses. More generally, beam
search allows minor variations of the translations which can make the unit tests
succeed, such as changing the return or variable types in Java and C++, or fixing
small errors such as the use of / instead of the // operator in Python. More examples
of errors corrected by beam search are presented in Figure 3.11.

In a real use-case, checking whether the generated functions are syntactically
correct and compile, or creating unit tests from the input function would be better
approaches than comparing log-probabilities in order to select an hypothesis from
the beam. Table 3.5 shows that many failures come from compilation errors when
the target language is Java or C++. It suggests that the “N Beams - CA@1” metric
could easily be improved. We explored that in Chapter 5: the beam reordering line
in Table 5.6 shows that reordering the elements based on automatically generated
unit tests slightly improves the computational accuracy.

Comparison to existing baselines. We compare TransCoder with two existing
approaches: j2py7, a framework that translates from Java to Python, and a commer-
cial solution from Tangible Software Solutions8, that translates from C++ to Java.
Both systems rely on rewrite rules manually built using expert knowledge. The latter

7https://github.com/natural/java2python
8https://www.tangiblesoftwaresolutions.com/
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Table 3.4: Computational accuracy with beam search decoding and comparison
to baselines. Increasing the beam size improves the performance by up to 24.6% in
Python → C++. When the model only returns the hypothesis with the highest log-
probability (10 Beams - CA@1), the performance drops, indicating that the model often
finds a correct translation, although it does not necessarily assign it with the highest
probability. TransCoder significantly outperforms the Java → Python baseline (+29.5%)
and the commercial C++ → Java baseline (+13.8%), although it is trained in a fully
unsupervised manner and does not leverage human knowledge.

C++ → Java C++ → Python Java → C++ Java → Python Python → C++ Python → Java
Baselines 61.0 - - 38.3 - -
TransCoder CA@1 63.0 42.3 80.0 46.9 31.6 32.6
TransCoder 10 Beams - CA@1 64.9 43.4 78.8 48.8 33.7 35.6
TransCoder CA@5 70.9 57.5 86.1 60.7 43.6 42.4
TransCoder CA@10 73.4 62.0 88.8 64.6 49.4 47.6
TransCoder CA@20 74.8 65.4 91.0 67.8 56.2 51.6

handles the conversion of many elements, including core types, arrays, some collec-
tions (Vectors and Maps), and lambdas. In Table 3.4, we observe that TransCoder
significantly outperforms both baselines in terms of computational accuracy, with
74.8% and 67.8% in the C++ → Java and Java → Python directions, compared to
61% and 38.3% for the baselines. TransCoder particularly shines when translating
functions from the standard library. In rule-based transcompilers, rewrite rules need
to be manually encoded for each standard library function, while TransCoder learns
them in an unsupervised way. In Figure 3.12, we present several examples where
TransCoder succeeds, while the baselines fail to generate correct translations.

3.2.6 Discussion - Analysis

In Figure 3.4, we give an example of TransCoder unsupervised translation from
C++ to Java. Additional examples can be found in Figure 3.6 and Figure 3.8, 3.7.
We observe that TransCoder successfully understands the syntax specific to each
language, learns data structures and their methods, and correctly aligns libraries
across programming languages. For instance, it learns to translate the ternary
operator “X ? A : B” in C++ or Java to “if X then A else B” in Python, in an
unsupervised way. In Figure 3.2, we present a t-SNE (Maaten and Hinton, 2008)
visualization of cross-lingual token embeddings learned by the model. TransCoder
successfully map tokens with similar meaning to the same latent representation,
regardless of their languages. Figure 3.10 shows that TransCoder can adapt to
small modifications. For instance, renaming a variable in the input may result in
different translated types, still with valid translations. In Figure 3.13, we present
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some typical failure cases where TransCoder fails to account for the variable type
during generation. For instance, it copies the C++ NOT operator ! applied to an
integer in Java, while it should be translated to ~. It also translates the Python min
function on lists to Math.min in Java, which is incorrect when applied to Java arrays.
Table 3.5 gives detailed results on failure cases. It shows that a large proportion of
errors happen at compilation time and could be caught automatically. There are no
compilation errors when translating to Python since it is an interpreted language,
but many of the runtime errors could be caught by static analysis tools. Finally,
Table 3.6 gives the model accuracy for different function lengths. It shows that the
accuracy of the model decreases with the length of the generated sequences.

Table 3.5: Detailed results for greedy decoding. Many failures come from compilation
errors when the target language is Java or C++. It suggests that our method could be
improved by constraining the decoder to generate compilable code. Runtime errors mainly
occur when translating from Java or C++ into Python. Since Python code is interpreted
and not compiled, this category also includes syntax errors in Python. The majority of
remaining errors are due to the program returning the wrong output on one or several of
the unit tests. Timeout errors are generally caused by infinite loops and mainly occur in
the Java ↔ Python pair.

#tests success Compilation Runtime Wrong output Timeout
C++ → Java 481 63.0% 27.5% 4.2% 5.2% 0.2%
C++ → Python 463 42.3% 0.0% 38.0% 19.0% 0.7%
Java → C++ 466 80.0% 12.5% 1.1% 6.2% 0.2%
Java → Python 463 46.9% 0.0% 32.0% 20.3% 0.9%
Python → C++ 466 31.6% 38.6% 3.9% 25.3% 0.6%
Python → Java 481 32.6% 31.2% 10.4% 24.5% 1.3%
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Table 3.6: Performance v.s. function lengths. CA@1 metric for various function
lengths (in number of tokens) for C++ → Python with 10 beams.

Number of Tokens CA@1
0 ≤ n < 30 93.0%
30 ≤ n < 50 91.7%
50 ≤ n < 61 93.5%
61 ≤ n < 72 71.7%
72 ≤ n < 85 70.2%
85 ≤ n < 99 56.3%
99 ≤ n < 121 37.0%
121 ≤ n < 147 42.2%
147 ≤ n < 179 39.6%
179 ≤ n < 326 28.3%
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3.3 Translation examples

C++ Java Python
bool checkDivisibility(string num){

int length = num.size();
if(length == 1 && num[0] == '0')

return true;
if(length % 3 == 1){

num += "00";
length += 2;

}
else if(length % 3 == 2){

num += '0';
length += 1;

}

int sum = 0, p = 1;
for(int i = length - 1;

i >= 0; i–){
int group = 0;
group += num[i–] - '0';
group += (num[i–] - '0') * 10;
group += (num[i] - '0') * 100;
sum = sum + group * p;
p *= (-1);

}

sum = abs(sum);
return (sum % 13 == 0);

}

static boolean checkDivisibility(
String num){

int length = num.length();
if(length == 1 && num.charAt(0) == '0')

return true;
if(length % 3 == 1){

num += "00";
length += 2;

}
else if(length % 3 == 2){

num += "0";
length += 1;

}

int sum = 0, p = 1;
for(int i = length - 1; i >= 0; i–){

int group = 0;
group += num.charAt(i–) - '0';
group += (num.charAt(i–) - '0') * 10;
group += (num.charAt(i) - '0') * 100;
sum = sum + group * p;
p *= (-1);

}

sum = Math.abs(sum);
return (sum % 13 == 0);

}

def checkDivisibility(num):
length = len(num)
if(length == 1 and num[0] == '0'):

return True
if(length % 3 == 1):

num = str(num) + "00"
length += 2

elif(length % 3 == 2):
num = str(num) + "0"
length += 1

sum = 0
p = 1
for i in range(length - 1, -1, -1):

group = 0
group += ord(num[i]) - ord('0')
i -= 1
group += (ord(num[i]) - ord('0')) * 10
i -= 1
group += (ord(num[i]) - ord('0')) * 100
sum = sum + group * p
p *= (-1)

sum = abs(sum)
return (sum % 13 == 0)

Figure 3.5: Example of parallel function from our test set. We extracted parallel
functions from GeeksforGeeks to create validation and test sets. Here, we have the parallel
implementations in C++, Java, and Python of the checkDivisibility function, which
determines whether a long integer represented as a string is divisible by 13.
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C++ Input Unsupervised Java Translation
int maxLen(int arr[], int n){

unordered_map<int, int> hM;
int sum = 0;
int max_len = 0;
int ending_index = - 1;
for(int i = 0; i < n; i++)

arr[i] = (arr[i] == 0) ? -1 : 1;
for(int i = 0; i < n; i++){

sum += arr[i];
if(sum == 0){

max_len = i + 1;
ending_index = i;

}
if(hM.find(sum + n) != hM.end()){

if(max_len < i - hM[sum + n]){
max_len = i - hM[sum + n];
ending_index = i;

}
}
else hM[sum + n] = i;

}
for(int i = 0; i < n; i++)

arr[i] = (arr[i] == -1) ? 0 : 1;
printf("%d to %d\n",

ending_index - max_len + 1,
ending_index);

return max_len;
}

public static int maxLen(int arr[], int n){
HashMap<Integer, Integer> hM

= new HashMap<Integer, Integer>();
int sum = 0;
int maxLen = 0;
int endingIndex = - 1;
for(int i = 0; i < n; i++){

arr[i] = (arr[i] == 0) ? - 1 : 1;
}
for(int i = 0; i < n; i++){

sum += arr[i];
if(sum == 0){

maxLen = i + 1;
endingIndex = i;

}
if(hM.containsKey(sum + n)){

if(maxLen < i - hM.get(sum + n)){
maxLen = i - hM.get(sum + n);
endingIndex = i;

}
}else{

hM.put(sum + n, i);
}

}
for(int i = 0; i < n; i ++){

arr[i] = (arr[i] == -1) ? 0 : 1;
}
System.out.println(endingIndex - maxLen + 1

+ " to " + endingIndex);
return maxLen;

}

std::unordered_set<int> uniqueElements(
const std::vector<int>& l){

return std::unordered_set<int>(l.begin(), l.end());
}

public static Set<Integer> uniqueElements(
Collection<Integer> l){

return new HashSet<Integer>(l);
}

std::vector<int> squareList(const std::vector<int>& l){
std::vector<int> result = {};
for(int elmt : l){

result.push_back(elmt * elmt);
}
return result;

}

public static List<Integer> squareList(
List<Integer> l){

List<Integer> result = new ArrayList<>();
for(Integer elmt : l) result.add(elmt*elmt);
return result;

}

Figure 3.6: Examples of correct translations using TransCoder. In all these
examples, TransCoder converts properly the primitive types, find the equivalent data
structures and the corresponding methods, and libraries between languages. For instance,
in the maxLen function, TransCoder converts the C++ unordered_map container into the
Java implementation of the Map interface, HashMap, and properly uses the associated get
and put methods to retrieve and insert keys and values into the map, instead of the C++
square brackets [].
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Input TransCoder Translation
C++ Python

void worstFit(int blockSize[],int m,int processSize[],int n){
int allocation[n];
memset(allocation, -1, sizeof(allocation));
for(int i = 0; i < n; i ++){

int wstIdx = - 1;
for(int j = 0; j < m; j++){

if(blockSize[j] >= processSize[i]){
if(wstIdx == - 1)

wstIdx = j;
else if(blockSize[wstIdx] < blockSize[j])

wstIdx = j;
}

}
if(wstIdx != -1){

allocation[i] = wstIdx;
blockSize[wstIdx] -= processSize[i];

}
}
cout « "\nProcess No.\tProcess Size\tBlock no.\n";
for(int i = 0; i < n; i++){

cout « " " « i+1 « "\t\t" « processSize[i] « "\t\t";
if(allocation[i] != -1) cout « allocation[i] + 1;
else

cout « "Not Allocated";
cout « endl;
}

}

def worstFit(blockSize, m, processSize, n):
allocation = [-1] * n
for i in range(n):

wstIdx = -1
for j in range(m):

if blockSize[j] >= processSize[i]:
if wstIdx == -1:

wstIdx = j
elif blockSize[wstIdx] < blockSize[j]:

wstIdx = j
if wstIdx != -1:

allocation[i] = wstIdx
blockSize[wstIdx] -= processSize[i]

print("\nProcess No.\tProcess Size\tBlock no.\n")
for i in range(n):

print(" " + str(i+1) + "\t\t" +
str(processSize[i]) + "\t\t")

if allocation[i] != -1:
print(allocation[i] + 1)

else:
print("Not Allocated")

print()

Java Python
public static int max(int a, int b){

return a > b ? a : b;
}

def max(a, b):
return a if a > b else b

public static void createDirectory(Path path)
throws IOException{

if(!Files.exists(path)){
Files.createDirectories(path);

}
}

def create_directory(path):
if not os.path.exists(path):

os.makedirs(path)

Figure 3.7: Examples of correct translations to Python using TransCoder.
TransCoder is able to translate C++ and Java functions and idioms to python correctly.
For instance, to initialize a list with n -1 integers in the first example, or for inline if
conditions and safely creating a directory in the second and third examples.
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Input TransCoder Translation
Python C++

def sum_elements(values):
return sum(values)

template <typename T> T
sum_elements(const std::vector<T> &values){

return std::accumulate(values.begin(), values.end(),
0);

}

def no_letters(s):
return s.lower() == s.upper()

static bool noLetters(const QString& str){
return str.toLower() == str.toUpper();

}

def get_env_variable(name):
return os.environ[name]

const char* GetEnvVariable(const char* name){
return getenv(name);

}

Python Java
def calcMaxValue(str):

res = ord(str[0]) - 48
for i in range(1, len(str)):

if(str[i] == '0' or str[i] == '1' or res < 2):
res += ord(str[i]) - 48

else:
res *= ord(str[i]) - 48

return res

public static int calcMaxValue(String str){
int res = (int)(str.charAt(0) - 48);
for(int i = 1; i < str.length(); i++){

if(str.charAt(i) == '0'
|| str.charAt(i) == '1'
|| res < 2){

res += (int)(str.charAt(i) - 48);
}
else{

res *= (int)(str.charAt(i) - 48);
}

}
return res;

}

def foo(x):
return bar(x) + 1

public static int foo(int x){
return bar(x) + 1;

}

def area(r):
return 2 * PI * r ** 2

public static double area(double r){
return 2 * PI * r * r;

}

Figure 3.8: Examples of correct translations from Python using TransCoder.
When translating from Python, TransCoder successfully infers types. Here, TransCoder
infers the Python list type and translates it into its C++ equivalent std::vector. The
last two examples show that TransCoder does not modify the call to the non-standard
function bar or the global variable PI.
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C++ input TransCoder Java translation
int minPalPartion(char* str){

int n = strlen(str);
int C[n][n];
bool P[n][n];
int i, j, k, L;
for(i = 0; i < n; i ++){

P[i][i] = true;
C[i][i] = 0;}

for(L = 2; L <= n; L ++){
for(i = 0; i < n - L + 1; i ++){

j = i + L - 1;
if(L == 2) P[i][j] = (str[i] == str[j]);
else P[i][j] = (str[i] == str[j])

&& P[i+1][j-1];
if(P[i][j] == true) C[i][j] = 0;
else{

C[i][j] = INT_MAX;
for(k = i; k <= j - 1; k ++)

C[i][j] = min(C[i][j],
C[i][k]+C[k+1][j]+1);

}
}

}
return C[0][n - 1];

}

public static int minPalPartion(String str){
int n = str.length();
int[][] C = new int[n][n];
boolean[][] P = new boolean[n][n];
int i , j , k , L;
for(i = 0; i < n; i ++){

P[i][i] = true;
C[i][i] = 0;}

for(L = 2; L <= n; L ++){
for(i = 0; i < n - L + 1; i ++){

j = i + L - 1;
if(L == 2){

P[i][j] = (str.charAt(i) == str.charAt(j));}
else{

P[i][j] = (str.charAt(i) == str.charAt(j))
&& P[i + 1][j - 1];}

if(P[i][j] == true){
C[i][j] = 0;}

else{
C[i][j] = Integer.MAX_VALUE;
for(k = i; k <= j - 1; k ++){

C[i][j] = Math.min(C[i][j],
C[i][k] + C[k + 1][j] + 1);}}}}

return C[0][n - 1];
}

Figure 3.9: TransCoder robustness to variable names. We consider the C++
function minPalPartion, with a parameter char* parameter named str indicating that
it could be translated to a str parameter. In Figure 3.10, we study the influence of the
parameter name on the output of TransCoder.
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C++ input TransCoder Java translation
int minPalPartion(char* arr){

int n = strlen(arr);
int C[n][n];
bool P[n][n];
int i, j, k, L;
for(i = 0; i < n; i ++){

P[i][i] = true;
C[i][i] = 0;}

for(L = 2; L <= n; L ++){
for(i = 0; i < n - L + 1; i ++){

j = i + L - 1;
if(L == 2) P[i][j] = (arr[i] == arr[j]);
else P[i][j]= (arr[i] == arr[j])

&& P[i+1][j-1];
if(P[i][j] == true) C[i][j] = 0;
else{

C[i][j] = INT_MAX;
for(k = i; k <= j - 1; k ++)

C[i][j] = min(C[i][j],
C[i][k]+C[k+1][j]+1);

}
}

}
return C[0][n - 1];

}

public static int minPalPartion(char[] arr){
int n = arr.length;
int[][] C = new int[n][n];
boolean[][] P = new boolean[n][n];
int i , j , k , L;
for(i = 0; i < n; i ++){

P[i][i] = true;
C[i][i] = 0;}

for(L = 2; L <= n; L ++){
for(i = 0; i < n - L + 1; i ++){

j = i + L - 1;
if(L == 2){

P[i][j] = (arr[i] == arr[j]);}
else{

P[i][j] = (arr[i] == arr[j])
&& P[i + 1][j - 1];}

if(P[i][j] == true){
C[i][j] = 0;}

else{
C[i][j] = Integer.MAX_VALUE;
for(k = i; k <= j - 1; k ++){

C[i][j] = Math.min(C[i][j],
C[i][k] + C[k + 1][j] + 1);}}}}

return C[0][n - 1];
}

int minPalPartion(char* input){
int n = strlen(input);
int C[n][n];
bool P[n][n];
int i, j, k, L;
for(i = 0; i < n; i ++){

P[i][i] = true;
C[i][i] = 0;}

for(L = 2; L <= n; L ++){
for(i = 0; i < n - L + 1; i ++){

j = i + L - 1;
if(L == 2) P[i][j] = (input[i] == input[j]);
else P[i][j] = (input[i] == input[j])

&& P[i+1][j-1];
if(P[i][j] == true) C[i][j] = 0;
else{

C[i][j] = INT_MAX;
for(k = i; k <= j - 1; k ++)

C[i][j] = min(C[i][j],
C[i][k]+C[k+1][j]+1);

}
}

}
return C[0][n - 1];

}

public static int minPalPartion(String input){
int n = input.length();
int[][] C = new int[n][n];
boolean[][] P = new boolean[n][n];
int i , j , k , L;
for(i = 0; i < n; i ++){

P[i][i] = true;
C[i][i] = 0;}

for(L = 2; L <= n; L ++){
for(i = 0; i < n - L + 1; i ++){

j = i + L - 1;
if(L == 2){

P[i][j] = (input.charAt(i) == input.charAt(j));
}

else{
P[i][j] = (input.charAt(i) == input.charAt(j))

&& P[i + 1][j - 1];}
if(P[i][j] == true){

C[i][j] = 0;}
else{

C[i][j] = Integer.MAX_VALUE;
for(k = i; k <= j - 1; k ++){

C[i][j] = Math.min(C[i][j],
C[i][k] + C[k + 1][j] + 1);}}}}

return C[0][n - 1];
}

Figure 3.10: TransCoder robustness to variable names. We take the C++ function
minPalPartion from Figure 3.9, change the parameter name from str to arr and input and show
the three corresponding TransCoder Java translations. All translations are correct. In the Figure 3.9
and second cases, TransCoder translates char* str and char* input into Java String and uses
the charAt method to retrieve elements. This shows that TransCoder is robust to variable name
changes and that it remembers variable types along the whole translation to apply the appropriate
methods. In the first example, TransCoder translates char* arr into Java char[] and uses [] to
retrieve elements, showing that TransCoder can adjust its translations to parameter names while
remaining accurate.
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C++ input TransCoder Python translation
Greedy decoding Beam search

int compute_average(int a, int b){
return (a + b) / 2;

}

def compute_average(a, b):
return (a + b) / 2

def compute_average(a, b):
return (a + b) // 2

bool isPalindrome(string str){
int l = 0;
int h = str.length() - 1;
while(h > l)

if(str[l++] != str[h–])
return false;

return true;
}

def isPalindrome(str):
l = 0
h = len(str) - 1
while h > l:

if str[l] != str[h–]:
return False

return True

def isPalindrome(str):
l = 0
h = len(str) - 1
while h > l:

if str[l] != str[h]:
return False

l += 1
h -= 1

return True

Figure 3.11: Examples of incorrect greedy decoding translations versus cor-
rect beam translations. We take C++ inputs and translate them into Python with
TransCoder. In the second column, we use greedy decoding and the translations are
incorrect. In the third column, we use beam search and obtain accurate translations. A
common error corrected by beam search for C++ → Python is the usage of the double
instead of the integer division operator (first example). Beam search is also able to correct
errors such as the ++ and −− operators that do not exist in Python (second example).

49



Chapter 3. Unsupervised Translation of Programming Languages with Multilingual
Pre-Training

Input Baseline translation TransCoder translation
Java Python Python

static String getEnvVariable(
String name){

return System.getenv(name);
}

def getEnvVariable(name):
return System.getenv(name)

def getenvh(name):
return os.environ.get(name, '')

static List<Integer> truncate(
List<Integer> l,
Integer e){

if(l.contains(e)){
return l.subList(0,

l.indexOf(e));
}
else{

return l;
}

}

def truncate(l, e):
if l.contains(e):

return l.subList(0,
l.indexOf(e))

else:
return l

def truncate(l, e):
if l.count(e) > 0:

return l[ : l.index(e)]
else:

return l

static void deleteFile(Path path){
try{

Files.delete(path);
}
catch(Exception e){

System.err.println(
"Error deleting " + path);

}
}

def deleteFile(path):
try:

Files.delete(path)
except Exception as e:

System.err.println(
"Error deleting " + path)

def delete_file(path):
try:

os.remove(path)
except:

sys.stderr.write(
"Error deleting %s\n"
% path

)

C++ Java Java
memset(prime, 0, sizeof(prime)); memset(prime, 0,

(Integer.SIZE/Byte.SIZE));
Arrays.fill(prime, 0);

sort(a, a + n); sort(a, a + n); Arrays.sort(a);

for(char ch : str) for(char ch : str) for(char ch : str.toCharArray())

Figure 3.12: Examples of incorrect baseline translations versus correct
TransCoder translations. When translating from Java to Python, the baseline fails to
translate the System.getenv, System.err.println, and Files.delete functions from
the standard library, and the contains, subList, and IndexOf methods of the Java List
interface. Instead, it simply copies them, showing the limitations of a rule-based system.
On the other hand, TransCoder converts properly all of these functions into their Python
equivalents. In the C++ → Java direction, baseline translations are made at token-level,
and are incorrect. For instance, the first example shows that the baseline tries to translate
the sizeof function, and leaves memset unchanged although it does not exist in Java.
Instead, TransCoder correctly uses Arrays.fill to fill the array prime with zeros.
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Input Java failed translations Description
bool isEven (int n){

return (!(n & 1));
}

static boolean isEven(int n){
return (!(n & 1));

}

The ! operator works on

boolean and integers in C++

(it returns true if the integer

is positive) but it only works

on boolean in Java.

int summingSeries(long n){
return pow(n, 2);

}

static int summingSeries(long n){
return Math.pow(n, 2);

}

In Java, Math.pow(n, 2) re-

turns a double which should

be cast to int to match the

function return type.

def minSum(A):
min_val = min(A)
return min_val * (len(A) - 1)

static double minSum(double[] A){
double minVal = Math.min(A);
return minVal*(A.length - 1);

}

Math.min is a Java function

but does not take as input a

double[] array but a pair of

double.

Figure 3.13: Examples of failed TransCoder translations. TransCoder fails to
translate these C++ and Python functions into Java, showing its limitations. In these
examples, it fails to account for the variable types when using a method or an operator.
In particular, the NOT operator ! in C++ should have been translated to ~ in Java,
because it is applied to an integer. Similarly, the Math.min function in Java cannot be
applied to arrays.

3.4 Conclusion

In this chapter, we show that approaches of unsupervised machine translation can
be applied to source code to create a transcompiler in a fully unsupervised way.
TransCoder can easily be generalized to any programming language, does not require
any expert knowledge, and outperforms commercial solutions by a large margin.
Our results suggest that a lot of mistakes made by the model could easily be
fixed by adding simple constraints to the decoder to ensure that the generated
functions are syntactically correct, or by using dedicated architectures (Chen et al.,
2018). Leveraging the compiler output or other approaches such as iterative error
correction (Fu et al., 2019) could also boost the performance.

Moreover, our training objectives were all designed for natural language processing.
We could wonder if they are well suited to programming languages, or if there could
be a way to design objectives leveraging the strict syntax of source code.
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Chapter 4

DOBF: A Deobfuscation
Pre-Training Objective for
Programming Languages

Model pre-training with self-supervised methods such as BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), XLM (Lample and Conneau, 2019) or XLNet (Yang
et al., 2019), has become ubiquitous in Natural Language Processing (NLP), and
led to significant improvements in many tasks. These approaches are based on the
Masked Language Modeling (MLM) objective, which is presented in Section 2.3.3.

In this chapter, we are interested in pre-training deep learning models for pro-
gramming languages. We argue that MLM is actually sub-optimal in the context
of programming languages, and propose a new objective based on deobfuscation of
identifier names in source code.

Code obfuscation consists in modifying source code in order to make it harder for
humans to understand, or smaller while keeping its behaviour unchanged. In some
ancient interpreted languages, name minimization could also reduce the memory
usage of the program. Today, it is used to protect intellectual property by preventing
people from understanding and modifying the code, to prevent malware detection,
and to compress programs (e.g. JavaScript code) to reduce network payload sizes.
Moreover, C compilers discard variable names, and current rule-based and neural-
based decompilers generate obfuscated C code with uninformative variable names (Fu
et al., 2019). Obfuscators typically apply several transformations to the code. While
some operations can be reversed (e.g. dead code injection), the obfuscation of identifier
names—renaming every variable, method and class with uninformative names—is
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irreversible and has a substantial impact on code comprehension (Gellenbeck and
Cook, 1991; Takang et al., 1996; Lawrie et al., 2006).

By analyzing the overall structure of an obfuscated file, an experienced program-
mer can always, with time, understand the meaning of the obfuscated code. For
instance, in the obfuscated example in Figure 4.1, one can recognize the function
and guess that it implements a breadth-first search algorithm. We also expect
neural networks, which excel in pattern recognition, to perform well on this task.
We propose to pre-train a model to revert the obfuscation function, by training a
sequence-to-sequence (seq2seq) model to convert obfuscated functions, where names
of functions and variables have been replaced by uninformative names, back to their
original forms. Suggesting proper variable and function names is a difficult task that
requires to understand what the program does. In the context of source code, it is
a more sensible, but also a more difficult task than MLM. Indeed, we observe (c.f.
Figure 4.1) that predicting the content of randomly masked tokens is usually quite
simple, as it often boils down to making syntax-related predictions (e.g. predicting
that was has been masked out is a parenthesis, a semi-column, etc.). These simple
predictions actually provide little training signal to the model. In practice, MLM
also masks out variable names, but if a given variable appears multiple times in
a function, it will be easy for the model to simply copy its name from one of the
other occurrences. Our model does not have this issue, as all occurrences of masked
variables are replaced by the same VAR_i special tokens. In this chapter, we make
the following contributions:

• We present DOBF, a new pre-training objective based on deobfuscation, and
show its effectiveness on multiple programming languages.

• We show that DOBF significantly outperforms MLM (e.g. BERT) on multiple
tasks such as code search, code summarization and unsupervised code trans-
lation. We show that pre-training methods based on DOBF outperform all
existing pre-training methods on all the considered tasks.

• We show that, by design, models pre-trained with DOBF have interesting
applications and can be used to understand functions with uninformative
identifier names. Besides, the model is able to successfully deobfuscate fully
obfuscated source files.
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Figure 4.1: Illustration of the MLM and DOBF objectives. Given an input
function, the masked language modeling (MLM) task randomly samples tokens to mask
out. With source code, a large fraction of these tokens are related to the language syntax
(e.g. commas, parentheses, etc.) that are trivial for the model to predict, and provide
a poor training signal. Instead, we propose to obfuscate the code by masking the name
of functions and variables, and to train the model to recover the original function by
deobfuscating the code (DOBF). When a variable is masked out, we mask all occurrences
of this variable with the same mask symbol (e.g. all occurrences of “visited” are replaced
by “V0”) to prevent the model from copying names. The DOBF objective is more difficult
and provides a better learning signal.

4.1 Context

Code Generation Pre-training. Recent studies showed that pre-training meth-
ods developed for natural language processing are also effective for programming
languages. For instance, Feng et al. (2020) proposed CodeBERT, a RoBERTa-based
model trained on source code using the MLM and RTD objectives. With GraphCode-
BERT (Guo et al., 2020), the MLM objective is complemented by an edge-prediction
objective, in which the model predicts edges in the data flow graph to make the model
understand the structure of the code. In Jain et al. (2020), a model is trained on
JavaScript code using a contrastive loss ensuring that the representations are robust
to some semantic-preserving transformations. They showed that their model performs
well on downstream code generation tasks and outperforms previous pre-training
approaches. Kanade et al. (2020) applied MLM and the next sentence prediction
objectives to pre-train models on Python code. In chapter 3, we trained a model
on monolingual source code from GitHub using MLM, denoising auto-encoding and
back-translation. We showed that the resulting model, TransCoder, was able to
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translate source code between Python, Java, and C++, in a fully unsupervised way.
In this chapter, we propose to use a code-specific objective to better pre-train models
designed to be fine-tuned on code generation tasks: code deobfuscation. Machine
learning is frequently used on tasks involving programming languages, including
code completion (Li et al., 2018; Liu et al., 2020; Kim et al., 2021; Svyatkovskiy
et al., 2021), bug detection and code repair (Allamanis et al., 2018b; Wang et al.,
2018b; Chen et al., 2019; Murali et al., 2021; Tufano et al., 2019; Tarlow et al., 2020),
code summarization (Alon et al., 2019a; Hu et al., 2018; Xie et al., 2021), clone
detection (Wei and Li, 2017; Ain et al., 2019; Wang et al., 2020b), code search (Gu
et al., 2018; Cambronero et al., 2019) and code translation (see Chapter 3). Most of
these tasks can benefit from pre-trained models that capture code semantics.

Code deobfuscation. Empirical studies show that naming conventions and the use
of informative identifier names make code more understandable, easier to maintain
and lead to fewer bugs (Takang et al., 1996; Liblit et al., 2006; Butler et al., 2009). It
motivated other works studying deobfuscation of identifier names and identifier name
proposal using n-grams (Allamanis et al., 2014, 2015a), probabilistic models (Raychev
et al., 2015; Bichsel et al., 2016; Vasilescu et al., 2017; Alon et al., 2018), and recurrent
neural networks (Bavishi et al., 2018; Lacomis et al., 2019). Alon et al. (2018) extract
features from Abstract Syntax Tree (AST) paths and train a Conditional Random
Field to predict variable and method names, and infer types for several languages.
DIRE (Lacomis et al., 2019) uses a commercial decompiler to obtain C code with
uninformative identifier names from binaries. They also use AST features, which
go through a Graph Neural Network trained jointly with a LSTM model on the
sequence of C tokens to retrieve relevant identifier names. More recently, David et al.
(2020) used a transformer, together with augmented representations obtained from
static analysis, to infer procedure names in stripped binary files. These models are
already used to understand obfuscated and compiled source code. However, none of
these studies investigated the use of deobfuscation for model pre-training.

4.2 Model

4.2.1 MLM and denoising for Programming Languages

A countless number of pre-training objectives have been introduced in the literature
(Devlin et al., 2018; Clark et al., 2020; Lewis et al., 2020; Liu et al., 2019; Dong et al.,
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2019). Most of them rely on hyper-parameters and seemingly arbitrary decisions
(Should we mask individual tokens or spans? Which fraction of them? What do we
do with masked out tokens? etc.). These choices are typically based on intuition and
validated empirically on natural language processing tasks. However, source code is
much more structured than natural language, which makes predicting masked tokens
much easier for programming languages.

The first row in Figure 4.1 shows an example of input / output for the MLM
objective. We can see that the majority of tokens are composed of Python keywords
or symbols related to syntax: , [ while = if ) return. These symbols are easy
to recover, and a model will quickly learn to predict them with perfect accuracy.
This effect is accentuated by the verbosity of the language. For instance, we would
see significantly more of these tokens in Java. Retrieving the obfuscated graph token
is also relatively simple: the model only needs to retrieve the most relevant variable
in the scope. More generally, retrieving an identifier name is often easy when given
its full context, including its definition and usages. The denoising-auto-encoding
(DAE) objective (Vincent et al., 2008), which trains an encoder-decoder model to
retrieve masked token and recover randomly modified input sentences, is quite similar
to MLM and the model can also retrieve identifier names easily by finding their
definition or usages. Overall, we suspect that the MLM objective is too simple in
programming languages and we introduce a new objective, DOBF, which encourages
the model to learn a deeper understanding of code semantics.

4.2.2 Deobfuscation Objective

Instead of MLM, we propose a new pre-training objective, DOBF, that leverages
the particular structure of programming languages. We obfuscate code snippets by
replacing class, function and variable names with special tokens, and train a model
to recover the original names. When an identifier is selected, all of its instances in
the code are replaced by the same special token. This differs from MLM where the
name of a variable can appear multiple times while being masked a single time. For
instance, in Figure 4.1, DOBF will replace the two occurrences of node by the same
symbol V5, while MLM will only mask one of these occurrences. As a result, the
fraction of meaningful tokens masked by the objective is language independent: for
more verbose languages (e.g. Java), the less informative syntax-related tokens will
not be masked out by the DOBF objective.

Each identifier is replaced with probability pobf ∈ [0, 1]. We ensure that the
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original input is modified: if no identifier is replaced, we draw a random one to
obfuscate. When pobf = 0, we always obfuscate exactly one random identifier in
the input. When pobf = 1, we obfuscate all the identifiers defined in the file. We
ensure that the obfuscated code has the same behavior as the original. The second
row in Figure 4.1 shows an example of obfuscated code with pobf = 1, where we
obfuscate a function bfs which implements a breadth-first search. The function
append is not obfuscated as it is a standard Python function not defined in the file.
The model is given the obfuscated code as input and has to restore the original name
of each special token CLASS_i, FUNC_i and VAR_i. In other words, the model needs
to output a dictionary mapping special tokens to their initial values.

Finding informative names for obfuscated identifiers requires the model to learn
a deep understanding of code semantics, which is desirable for a pre-training task.
MLM will mask only some of the occurrences of the identifiers and leave the other
ones unchanged so that the model can simply copy identifier names. In Figure 4.1,
with MLM masking, the model can simply notice that a variable named queue is
called on the fourth line. Since the variable is not defined, the model can easily
guess that queue has to be defined on the third line, and infer the value of the
corresponding [MASK] token. With the deobfuscation objective, the model needs to
analyze code patterns and understand the semantics of the variable to infer that,
since its elements are popped with .pop(0), the variable V3 implements a queue. If
its elements were popped with .pop(), our model would name it stack instead of
queue (c.f. Figure 4.8).

4.2.3 Implementation

Overall, the deobfuscation objective operates like a supervised machine translation
objective, where a seq2seq model is trained to map an obfuscated code into a
dictionary represented as a sequence of tokens. At inference time, the model is
able to suggest meaningful class, function and variable names for a piece of code
with an arbitrary number of obfuscated identifiers. Obfuscated classes, functions,
and variables, are replaced with associated special tokens: CLASS_0 . . . CLASS_N,
FUNC_0 . . . FUNC_N and VAR_0 . . . VAR_N. We serialize the output dictionary as a
sequence of tokens where the entries are separated by a delimiter symbol |.1

1In the obfuscated example given in Figure 4.1, the model is trained to gen-
erate: FUNC_0 bfs | VAR_0 graph | VAR_1 root | VAR_2 visited | VAR_3 queue | VAR_4
neighbor | VAR_5 node.
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4.3 Experiments

We train DOBF with the deobfuscation objective. First, we evaluate our model on
two straightforward deobfuscation applications. Then, we show its performance on
multiple downstream tasks.

4.3.1 Deobfuscation

We evaluate our model on two applications of the deobfuscation task: when pobf = 0
(the model has to retrieve a single identifier name), and pobf = 1 (the model has to
retrieve all the identifier names).

Deobfuscating a single identifier When pobf = 0, only one identifier is obfus-
cated. In that case, the model has to propose a relevant name for that identifier
using the rest of the non-obfuscated file as context. It can be used as a tool that sug-
gests relevant variable names. Integrated development environments (e.g. PyCharm,
VSCode) already perform this task, often using handcrafted rules.

Deobfuscating all identifiers Obfuscators are commonly used to make code
smaller and more efficient or to protect it by making it more difficult to understand
and reuse. They typically apply several transformations, one of them being to replace
every identifier name with short and uninformative names (e.g. a, b, c). In our work,
such a transformation corresponds to obfuscating a file with pobf = 1. To measure
our model’s ability to revert the obfuscation operation, we evaluate its accuracy when
obfuscating all identifier names. Another application would be to help understand
source code written with uninformative variable names.

Evaluation metric We evaluate the ability of our model to retrieve identifier
names from the original non-obfuscated code. We report the accuracy, which is
the percentage of recovered tokens that exactly match the ground truth. Following
previous works (Allamanis et al., 2015a, 2016; Alon et al., 2018, 2019c), we also
report the subtoken score, a more flexible metric which computes the precision, recall,
and F1 scores for retrieving the original case-insensitive subtokens. Each token is
broken into subtokens using uppercase letters for CamlCase and underscores for
snake_case. For instance, decoderAttention would be considered to be a perfect
match for decoder_attention or attentionDecoder. attention would have a
perfect precision but a recall of 0.5, so a F1 score of 66.7. crossAttentionDecoder
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would have a perfect recall but a precision of 2
3 , corresponding to a F1 score of 80.0.

We compute the overall subtoken precision, recall and F1 scores averaged over each
file in our validation and test datasets.

4.3.2 Fine-tuning on downstream tasks

In order to evaluate DOBF as a pre-training model, we fine-tune DOBF on TransCoder
and on three tasks from CodeXGLUE (Lu et al., 2021), a benchmark for programming
languages. The data, code and models from CodeXGLUE and TransCoder are
available respectively under the MIT and the Creative Commons license. We only
consider the Java and Python tasks with an encoder in the model architecture for
which the training, validation, and test sets are publicly available.

CodeXGLUE Clone Detection This task is a binary classification problem
where the model has to predict whether two code snippets are semantically equivalent.
It is evaluated using the macro F1 score. The model is composed of a single encoder
and a classification layer. An input consists in two snippets of code, which are
concatenated before being fed to the model. This task is available in Java.

CodeXGLUE Code Summarization Given a code snippet, the model is
trained to generate the corresponding documentation in natural language. The
architecture is a sequence-to-sequence transformer model evaluated using the BLEU
score (Papineni et al., 2002). The dataset includes Java and Python source code.

CodeXGLUE NL Code Search Given a code search query in natural language
the model has to retrieve the most semantically related code within a collection of
code snippets. This is a ranking problem evaluated using the Mean Reciprocal Rank
(MRR) metric. The model is composed of two encoders. The natural language query
and the code are encoded separately, and we compute the dot product between the
first hidden states of the encoders’ last layers. This task is available in Python.

TransCoder TransCoder is the model described in Chapter 3. It is pre-
trained with MLM, and trained with denoising auto-encoding and back-translation.
TransCoder is evaluated using the Computational Accuracy metric, which computes
the percentage of correct solutions according to series of unit tests. In this chapter,
we only consider a single model output (CA@1), with beam sizes of 1 and 10.
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4.3.3 Experimental details

Model Architecture We consider a seq2seq model with attention, composed of an
encoder and a decoder using a transformer architecture (Vaswani et al., 2017). We
train models with the same architecture and tokenizer as CodeBERT (Feng et al.,
2020) and GraphCodeBERT (Guo et al., 2020) in order to provide fair comparisons:
12 layers, 12 attention heads and a hidden dimension of 768. We also train a model
with the same parameters as TransCoder (see Figure 4.4).

Training dataset As in Chapter 3, we use the GitHub public dataset available
on Google BigQuery and select all Python and Java files within the projects with
licenses authorizing use for research purposes. Following Lopes et al. (2017) and
Allamanis (2019), we remove duplicate files. We also ensure that each fork belongs
to the same split as its source repository. We obfuscate each file and create the cor-
responding dictionary of masked identifier names, resulting in a parallel (obfuscated
file - dictionary) dataset of 19 GB for Python and 26 GB for Java. We show some
statistics about this dataset in Table 4.1. For comparison purposes, we apply either
the BPE codes used in Chapter 3 or in Feng et al. (2020). In practice, we train only
on files containing less than 2000 tokens, which corresponds to more than 90% and
80% of the Java and Python files respectively.

Table 4.1: Dataset statistics.

Java Python
All - Size 26 GB 19 GB
All - Nb files 7.9M 3.6M
Av. nb of tokens / file 718 1245
Av. nb of identifiers / file 25.9 41.8

Training details We train DOBF to translate obfuscated files into lists of
identifier names. During DOBF training, we alternate between batches of Java
and Python composed of 3000 tokens per GPU. We optimize DOBF with the
Adam optimizer (Kingma and Ba, 2015) and an inverse square-root learning rate
scheduler (Vaswani et al., 2017). We implement our models in PyTorch (Paszke et al.,
2019) and train them on 32 V100 GPUs for eight days. We use float16 operations to
speed up training and to reduce the memory usage of our models. We try different
initialization schemes: training from scratch and with a Python-Java MLM model
like in Chapter 3. We train DOBF with three different obfuscation probability
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def FUNC_0(VAR_0, VAR_1):
VAR_2 = [VAR_1]
VAR_3 = [VAR_1]
while VAR_3:

VAR_4 = VAR_3.pop(0)
for VAR_5 in VAR_0[VAR_4]:

if (VAR_5 not in VAR_2):
VAR_2.add(VAR_5)
VAR_3.append(VAR_5)

return VAR_2

def bfs(graph, start):
visited = [start]
queue = [start]
while queue:

node = queue.pop(0)
for neighbor in graph[node]:

if (neighbor not in visited):
visited.add(neighbor)
queue.append(neighbor)

return visited

Figure 4.2: Full deobfuscation of a breadth-first-search function by DOBF.
The code on the left has been fully obfuscated. The code on the right was recovered
using DOBF by replacing the function name and every variable name using the generated
dictionary. DOBF is able to suggest relevant function and variable names. It makes the
code much more readable and easier to understand.

parameters: pobf ∈ {0, 0.5, 1}. For each pobf value, we train models with multiple
initial learning rates ranging from 10−4 to 3.10−4 and select the best one using the
average subtoken F1 score computed on the validation dataset.

Fine-tuning details Depending on the fine-tuning tasks, we consider different
model architectures: seq2seq models with encoder and decoder, architectures with
two encoders or a single encoder. In all cases, we initialize the encoders of these
models with the encoder of DOBF and fine-tune all parameters. For fair comparison,
we rerun all baselines, and train models with the same architectures, number of
GPUs, batch sizes and optimizers. For CodeXGLUE, we noticed that the tasks are
quite sensitive to the learning rate parameter used during fine-tuning. We perform a
grid search on five learning rate parameters ranging from 5.10−6 to 10−4 and we select
the best parameter on the validation dataset. For TransCoder, we use a learning rate
of 10−4 as in Chapter 3 and we train the models for 2 day on 32 Tesla V100 GPUs.

4.4 Results

4.4.1 Deobfuscation

In Table 4.2, we evaluate the ability of our model to recover identifier names, either
when only one identifier is obfuscated (pobf = 0) or when all identifiers are obfuscated
(pobf = 1), for models trained with pobf ∈ {0, 0.5, 1}. Even when evaluating with
pobf = 0, training with pobf = 0 is less efficient than pobf = 0.5 since the model is
only trained to generate a single variable for each input sequence. Training with
pobf = 0.5 is a more difficult task that requires the model to learn and understand
more about code semantics. Forcing the model to understand the structure of the
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Table 4.2: Results on partial and full deobfuscation. Token accuracy and subtoken
F1 score of DOBF evaluated with pobf = 0 (i.e. name proposal, where a single token is
obfuscated) and pobf = 1 (i.e. full deobfuscation, where all tokens are obfuscated). We
consider models trained with different obfuscation probabilities pobf . DOBF0.5 performs
well for both tasks, and it even performs better than DOBF0 for Identifier Name Proposal.
DOBF0 and DOBF1 perform poorly when evaluated on other pobf parameters. Pre-training
DOBF with MLM further improves the performance.

Eval pobf = 0 Eval pobf = 1
Acc F1 Acc F1

DOBF0 56.3 68.0 0.4 0.9
DOBF0.5 61.1 71.2 41.8 54.8
DOBF1 18.1 27.0 45.6 58.1
DOBF0.5 init MLM 67.6 76.3 45.7 58.0
DOBF1 init MLM 20.0 28.3 49.7 61.1

code may be useful even when testing with pobf = 0, as some identifier names cannot
be guessed only from the names of other identifiers. When DOBF has to recover a
fully obfuscated function, it obtains the best accuracy when trained with pobf = 1.
It manages to recover 45.6% of the initial identifier names. We also observe that, for
every configuration, initializing DOBF with MLM improves the performance.

Figure 4.2 shows an example of a fully obfuscated function recovered by our model.
DOBF successfully manages to understand the purpose of the function and to predict
appropriate variable names. Figure 4.4 shows examples of function name proposal
by DOBF for functions implementing matrix operations in Python. We observe that
DOBF manages to identify the key tokens and to properly infer the purpose of similar
but very different functions. Figures 4.5, 4.6, and 4.7 show additional examples of
function name proposals by DOBF in Java and Python. Figure 4.8 shows additional
examples where we show that DOBF also leverages non-obfuscated identifier names
to understand the meaning of input functions. Figures 4.9 and 4.3 show examples
of deobfuscation of fully obfuscated Python code snippets using DOBF. It is able
to understand the semantics and purposes of a variety of obfuscated classes and
functions, including a LSTM cell.
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Table 4.3: Results on downstream tasks for different pre-training configura-
tions. Models pre-trained with DOBF initialized with MLM significantly outperform
both CodeBERT and models trained with MLM only. DOBF+DAE outperforms other
models on every task but clone detection, on which CodeBERT scores much higher than
our MLM. It outperforms GraphCodeBERT by 0.02 MRR (+5.3%) on natural language
code search (NLCS), and by 4.6% in Java → Python computational accuracy with beam
size 10 (+12.2% correct translations). The tasks where MLM provides large improvements
over the transformer baseline (first row, no pre-training) are also the tasks where DOBF
provides the largest gains (clone detection, NL code search, unsupervised translation).
The DAE baseline (initialized with MLM) already provides substantial improvements over
MLM on most tasks and yields the best results for Python to Java translation while its
results are poor for Java to Python.

Clone Det Code Sum Java Code Sum Python NLCS Python→Java Java→Python
(F1 score) (BLEU) (BLEU) (MRR) (CA@1) (CA@1)

k=1 k=10 k=1 k=10

Transformer 88.1 16.6 16.4 0.025 24.0 28.4 29.0 29.7
MLM 91.9 18.6 18.0 0.308 44.8 45.4 34.5 35.6
DAE 96.3 19.2 18.3 0.380 48.3 49.2 32.1 32.8
CodeBERT 96.5 18.3 18.2 0.315 40.8 45.6 36.5 36.7
GraphCodeBERT 96.4 18.8 18.5 0.377 44.3 44.1 35.6 37.8
DOBF init scratch 96.5 18.2 17.5 0.272 43.9 44.1 35.2 34.7
DOBF 95.9 19.1 18.2 0.383 43.5 44.1 38.7 40.0
DOBF+DAE 95.8 19.4 18.6 0.397 46.6 47.3 40.6 42.4

4.4.2 Downstream tasks

Our results on downstream tasks using the same architecture as CodeBERT and
GraphCodeBERT are shown in Table 4.3 and discussed below. Our results using the
architecture of TransCoder are shown on Table 4.4. For fine-tuning, we considered
models pre-trained with pobf = 0.5 and pobf = 1. Since they gave very similar results
on downstream tasks, we only use models pre-trained with pobf = 0.5 in the rest
of this thesis. We initialize DOBF with MLM as it leads to better performance
on our deobfuscation metrics. We still consider DOBF initialized randomly as a
baseline in Table 4.3. We also consider a version where DOBF is trained together
with a denoising auto-encoding (DAE) objective (Vincent et al., 2008), which was
shown to be effective at learning code representations in Chapter 3. With DAE,
the model is trained to recover the original version of a sequence which has been
corrupted (by removing and shuffling tokens). As baselines, we consider a randomly
initialized model and a model pre-trained with MLM only, and a model pre-trained
with denoising and initialized with MLM. For CodeXGLUE tasks, we also consider
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CodeBERT as a baseline. We compare results for DOBF trained from scratch
and DOBF initialized with MLM, and report results in Table 4.3. The randomly
initialized model is useful to measure the importance of pre-training on a given task.
Pre-training is particularly important for the NLCS task: without pre-training, the
model achieves a performance of 0.025 MRR while it goes up to 0.308 with MLM
pre-training. The main differences between our MLM baseline and CodeBERT, are
that 1) CodeBERT was trained on a different dataset which contains functions with
their documentation, 2) it uses an additional RTD objective, and 3) is initialized
from a RoBERTa model. Although code summarization and NL code search involve
natural language and may benefit from CodeBERT’s dataset that contains code
documentation, we obtained very similar results on this task using a simpler dataset.
However, our MLM baseline did not match their performance on clone detection.
We also tried to initialize our MLM model with RoBERTa, but did not observe any
substantial impact on the performance on downstream tasks.

The models based on DOBF obtain state-of-the-art results on all downstream
tasks, outperforming GraphCodeBERT, CodeBERT and MLM. The deobfuscation
objective is already effective as a pre-training task. Even when initialized randomly, it
leads to results comparable to MLM on most tasks and is much more effective on clone
detection. The DOBF+DAE model outperforms MLM on all downstream tasks, the
major improvement being for NL code search, which is also the task that benefited the
most from MLM pre-training For unsupervised translation, DOBF+DAE increases
the computational accuracy by 1.9% when translating from Python to Java, and by
6.8% when translating from Java to Python with beam size 10. Also, DOBF beats
CodeBERT by a wide margin on NL code search and code summarization, showing
that programming language data aligned with natural language is not necessary to
train an effective model on those tasks. DOBF initialized with MLM and combined
with DAE yields higher scores than both DOBF alone and MLM, on most tasks. It
shows that objectives such as MLM and DAE that provide unstructured noise are
complementary to DOBF.
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Table 4.4: Results on downstream tasks with the architecture of TransCoder.
This architecture has less layers (6 instead of 12), a higher embedding dimension (1024
instead of 768) and less activation heads (8 instead of 12) resulting in a slightly larger
model (143M parameters instead of 126M). It also uses ReLU activations instead of GELU.
Models pre-trained with MLM and DOBF significantly outperform both CodeBERT and
models trained with MLM only. MLM+DOBF outperforms CodeBERT by 7% on natural
language code search (NLCS), and MLM by 6% in Java → Python computational accuracy.
It also beats CodeBERT on every task except Clone Detection, on which CodeBERT
scores much higher than our MLM. GraphCodeBERT only beats our model on python
summarization and Python to Java translation by a shallow margin and is below on other
tasks. The tasks where MLM provides large improvements over the transformer baseline
(first row) are also those where DOBF provides the largest gains (i.e. clone detection,
natural language code search, and unsupervised translation).

Clone Det Sum Java Sum Py NLCS Py→Ja Ja→Py
(F1 score) (BLEU) (BLEU) (MRR) (CA@1) (CA@1)

k=1 k=10 k=1 k=10
Transformer 88.1 16.6 16.4 0.025 37.6 38.9 31.8 42.1
CodeBERT 96.5 18.3 18.2 0.315 - - - -
GraphCodeBERT 96.4 18.8 18.5 0.377 - - - -
MLM 91.9 18.6 18.0 0.308 40.3 42.2 44.7 46.6
DOBF 96.5 18.2 17.5 0.272 38.9 45.7 44.7 46.4
MLM+DOBF 95.9 19.1 18.2 0.383 43.5 44.9 49.2 52.5

65



Chapter 4. DOBF: A Deobfuscation Pre-Training Objective for Programming
Languages

4.5 Deobfuscation examples

Input Code Deobfuscated Identifiers

def FUNC_0(VAR_0, VAR_1):
return sum(map(operator.mul, VAR_0, VAR_1))

FUNC_0
VAR_0
VAR_1

dotProduct
list1
list2

def FUNC_0(VAR_0):
VAR_1 = urllib2.urlopen(VAR_0)
VAR_2 = VAR_1.read()
return VAR_2

FUNC_0
VAR_0
VAR_1
VAR_2

get_html
url
response
html

def FUNC_0(VAR_0):
VAR_1 = set(VAR_0)
return (len(VAR_1) == len(VAR_0))

FUNC_0
VAR_0
VAR_1

all_unique
iterable
s

def FUNC_0(VAR_0, VAR_1):
return list(collections.deque(VAR_0, maxlen=VAR_1))

FUNC_0
VAR_0
VAR_1

tail
s
n

def FUNC_0(VAR_0):
return sum((VAR_1 for VAR_1 in VAR_0 if ((VAR_1 % 2) == 0)))

FUNC_0
VAR_0
VAR_1

even_sum
nums
n

Figure 4.3: Examples of full deobfuscations of Python functions. Even when
every identifier is obfuscated, DOBF is able to propose relevant names. The proposed
function name is informative and relevant in all examples since the first function computes
a dot product, the second downloads a HTML page and returns its content, the third
evaluates whether the input contains only unique elements, the fourth computes the tail of
an iterable, and the fifth computes the sum of the even elements of an iterable.
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Input Code Function Name Proposals
def FUNC_0 (m1, m2):

assert m1.shape == m2.shape
n, m = m1.shape
res = [[0 for _ in range(m)]

for _ in range(n)]
for i in range(n):

for j in range(m):
res[i][j] = m1[i][j] + m2[i][j]

return res

matrix_add
matrixAdd
matrixadd
matrix_sum
matrix_addition

25.9%
22.5%
18.8%
16.7%
16.1%

def FUNC_0 (m1, m2):
assert m1.shape == m2.shape
n, m = m1.shape
res = [[0 for _ in range(m)]

for _ in range(n)]
for i in range(n):

for j in range(m):
res[i][j] = m1[i][j] - m2[i][j]

return res

matrix_sub
matrix_subtract
matrix_subtraction
sub
sub_matrix

26.1%
21.5%
19.7%
17.6%
15.0%

def FUNC_0 (matrix):
n, _ = matrix.shape
for i in range(n):

for j in range(i,n):
matrix[i][j], matrix[j][i] = \

matrix[j][i], matrix[i][j]

transpose
rotate
rotate_matrix
symmetric
rotate_matrix_by_row

36.7%
29.5%
17.1%
8.9%
7.7%

def FUNC_0 (m1, m2):
n1, m1 = m1.shape
n2, m2 = m2.shape
assert n2 == m1
res = [[0 for _ in range(m2)]

for _ in range(n1)]
for i in range(n1):

for j in range(m2):
res[i][j] = sum([m1[i][k] * m2[k][j]

for k in range(n2)])
return res

matrix_product
mat_mult
matmul_mat
matprod
matrixProduct

28.8%
23.8%
17.0%
16.0%
14.4%

Figure 4.4: Examples of function name proposals for matrix operations in
Python. DOBF is able to find the right name for each matrix operation, showing that it
learned to attend to the most important parts of the code. Even when the functions are
similar, DOBF successfully and confidently (c.f. scores) understands the semantics of the
function and its purpose.
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Input Code Proposed Function Name

public static void FUNC_0 (String path){
try {

Files.delete(path);
}
catch (Exception e) {

System.err.println("Error deleting file " + path);
}

}

deleteFile
remove
DeleteFile
removeFile
deleteFileQuietly

48.3%
16.9%
13.2%
13.1%
8.4%

public static void FUNC_0 (String path){
if (!Files.exists(path)) {

Files.createDirectories(path);
}

}

createDir
createDirectory
createDirIfNotExists
ensureDirectoryExists
createDirectoryIfNotExists

23.5%
20.9%
20.8%
18.5%
16.3%

public static List<Pair<String, Double>> FUNC_0 (List<String> list1,
List<Double> list2)

{
return IntStream.range(0, Math.min(list1.size(), list2.size()))

.mapToObj(i -> new Pair<>(list1.get(i), list2.get(i)))

.collect(Collectors.toList());
}

zip
intersect
combine
merge
intersection

28.6%
20.0%
17.9%
17.5%
16.0%

public static int FUNC_0 (int n){
int a = 0, b = 1;
int tmp;
for (int i = 0; i < n; i ++){

tmp = a + b;
a = b;
b = tmp;

}
return a;

}

fib
fibonacci
fibon
fibo
fibonacci_series

41.5%
36.6%
9.1%
8.8%
4.0%

public static float FUNC_0 (List<Float> vec1,
List<Float> vec2) {

float size = vec1.size();
assert size == vec2.size();
float result = 0.0f;
for (int i = 0; i < size; i++) {

result += vec1.get(i) * vec2.get(i);
}
return result;

}

dotProduct
dot
dot_product
dotproduct
inner

40.9%
23.9%
16.5%
10.5%
8.3%

Figure 4.5: Examples of name proposal in Java. DOBF is able to suggest relevant
function names for a variety of Java methods and demonstrates its ability to understand
the semantics of the code. In the first two examples, the first element in the beam shows
that it is able to select relevant names in the context to find a function name: it uses
Files.delete and Files.createDirectories to suggest the tokens deleteFile and
createDir. DOBF finds relevant names for Java methods without copying any part of the
other tokens. For example for the third method combining two lists as in the python zip
function, for the fourth method which computes the n-th element of the Fibonacci series
and for the last method which computes the dot product between two vectors.
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Input Code Proposals for Highlighted Identifiers

def FUNC_0 (name):
return os.environ[name]

get_env
get_envvar
env
getenv
get_env_variable

25.3%
19.3%
19.2%
18.5%
17.7%

def FUNC_0 (l):
return list(set(l))

unique
remove_duplicates
removeDuplicates
uniquify
unique_items

24.8%
23.8%
18.8%
18.7%
13.8%

def FUNC_0 (path):
with gzip.open(path, 'rb') as f:

content = f.read()
return content

read_gzip_file
read_gzip
ungzip
gzip_content
gzip_read

22.9%
22.1%
20.8%
18.2%
16.0%

def FUNC_0 (n):
v = [True for i in range(n + 1)]
p = 2
while (p * p <= n):

if (v[p] == True):
for i in range(p * 2, n + 1, p):

v[i] = False
p += 1

v[0]= False
v[1]= False
return [p for p in range(n+1) if v[p]]

sieve
prime_sieve
sieve_of_eratosthenes
primes
eratosthenes

36.1%
18.5%
15.5%
15.3%
14.5%

def f(n):
VAR_0 = [True for i in range(n + 1)]

p = 2
while (p * p <= n):

if ( VAR_0 [p] == True):
for i in range(p * 2, n + 1, p):

VAR_0 [i] = False
p += 1

VAR_0 [0]= False

VAR_0 [1]= False

return [p for p in range(n+1) if VAR_0 [p]]

prime
l
isPrime
a
primes

30.6%
20.5%
18.0%
16.4%
14.6%

Figure 4.6: Examples of name proposal in Python. Our model trained with DOBF
goes well beyond copying tokens from the context. For instance, in the first example, it
understands that this function is used to get environment variables. In the second example,
it proposes names related to what this function actually does (removing duplicates in a
list) instead of the individual operations it uses (converting to set and then to list). The
last two rows show proposals for two different identifiers in a function computing the list
of prime numbers below n using the sieve of Eratosthenes. The proposals for the function
name are all relevant, and the third one names exactly the algorithm which is used. The
variable v is a list of booleans. At the end of the algorithm, v[i] is true if and only if
i is prime. The proposed names prime and isPrime are very relevant as they describe
what the list contains. Although l and a are not very informative, they indicate that the
variable is a list or an array.
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Input Code Proposed Function Name

def FUNC_0 (v1, v2):
assert len(v1) == len(v2)
return [a * b for a, b in zip(v1, v2)]

multiply_lists
multiply_list
multiply
multiply_vectors
mul

28.7%
23.5%
18.1%
14.9%
14.8%

def FUNC_0 (v1, v2):
assert len(v1) == len(v2)
return sum([a * b for a, b in zip(v1, v2)])

dotproduct
dot_product
dotProduct
dot
multiply_by_addition

34.8%
19.2%
18.1%
15.6%
12.3%

def FUNC_0 (v1, v2):
assert len(v1) == len(v2)
return [a ^ b for a, b in zip(v1, v2)]

xor
XOR
vector_xor
xors
xor_lists

62.9%
12.8%
10.8%
7.4%
6.1%

def FUNC_0 (v1, v2):
assert len(v1) == len(v2)
return [a ** b for a, b in zip(v1, v2)]

power
list_power
lcm
power_list
powersum

29.8%
20.9%
19.9%
15.1%
14.3%

def FUNC_0 (v1, v2):
assert len(v1) == len(v2)
return [a + b for a, b in zip(v1, v2)]

add_lists
add
sum_lists
list_concat
list_add

27.0%
22.9%
17.9%
17.7%
14.5%

def FUNC_0 (v1, v2):
assert len(v1) == len(v2)
return [a - b for a, b in zip(v1, v2)]

minus
subtract
difference
subtract_lists
substract

30.4%
29.8%
14.1%
13.3%
12.4%

Figure 4.7: Examples of function name proposal in Python using DOBF. DOBF
is able to identify the key tokens in each function, to properly infer its purpose, and to
suggest appropriate names along with a confidence score. In particular, even though the
first two code snippets are very similar in terms of edit distance, they implement very
different functions and DOBF is able to name them appropriately.
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BFS Implementation DFS Implementation DFS with Erroneous
Variable Name

def FUNC_0 (graph, node):
visited = [node]

VAR_0 = [node]
while VAR_0 :

s = VAR_0 .pop(0)
for neighbour in graph[s]:

if neighbour not in visited:
visited.add(neighbour)
VAR_0 .append(neighbour)

return visited

def FUNC_0 (graph, node):
visited = [node]

VAR_0 = [node]
while VAR_0 :

s = VAR_0 .pop()
for neighbour in graph[s]:

if neighbour not in visited:
visited.add(neighbour)
VAR_0 .append(neighbour)

return visited

def FUNC_0 (graph, node):
visited = [node]
queue = [node]
while queue:

s = queue.pop()
for neighbour in graph[s]:

if neighbour not in visited:
visited.append(neighbour)
queue.append(neighbour)

return visited

FUNC_0 bfs | VAR_0 queue FUNC_0 dfs | VAR_0 stack FUNC_0 bfs

Figure 4.8: Deobfuscation on graph traversal functions. These three functions
perform graph traversals. The only difference between the first and the second function is
that the first uses a queue to select the next element (.pop(0)) while the second uses a
stack (.pop()). The first function implements a breadth-first search (bfs) in the graph
and the second implements a depth-first search (dfs). DOBF is able to find the right
function and variable names in each case. In the last function, we replaced the anonymized
VAR_0 variable with queue in the implementation of depth-first search. This erroneous
information leads DOBF to believe that this function performs breadth-first search. It
shows that, just like human programmers, DOBF uses the names of the other variables to
understand programs and choose relevant identifier names. When working on code with
misleading identifier names, it is often preferable to obfuscate several identifiers.
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Obfuscated Code Code Deobfuscated using DOBF

class CLASS_0(nn.Module):

def __init__(VAR_0, VAR_1, VAR_2, VAR_3):
super(CLASS_0, VAR_0).__init__()
VAR_0.VAR_1 = VAR_1
VAR_0.VAR_2 = VAR_2
VAR_0.VAR_4 = nn.Linear(VAR_1, (4 * VAR_2), bias=VAR_3)
VAR_0.VAR_5 = nn.Linear(VAR_2, (4 * VAR_2), bias=VAR_3)
VAR_0.FUNC_0()

def FUNC_0(VAR_6):
VAR_7 = (1.0 / math.sqrt(VAR_6.VAR_8))
for VAR_9 in VAR_6.VAR_10():

VAR_9.data.uniform_((- VAR_7), VAR_7)

def FUNC_1(VAR_11, VAR_12, VAR_13):
(VAR_14, VAR_15) = VAR_13
VAR_14 = VAR_14.view(VAR_14.size(1), (- 1))
VAR_15 = VAR_15.view(VAR_15.size(1), (- 1))
VAR_12 = VAR_12.view(VAR_12.size(1), (- 1))
VAR_16 = (VAR_11.VAR_4(VAR_12) + VAR_11.VAR_5(VAR_14))
VAR_17 = VAR_16[:, :(3 * VAR_11.VAR_8)].sigmoid()
VAR_18 = VAR_16[:, (3 * VAR_11.VAR_8):].tanh()
VAR_19 = VAR_17[:, :VAR_11.VAR_8]
VAR_20 = VAR_17[:, VAR_11.VAR_8:(2 * VAR_11.VAR_8)]
VAR_21 = VAR_17[:, (- VAR_11.VAR_8):]
VAR_22 = (th.mul(VAR_15, VAR_20) + th.mul(VAR_19, VAR_18))
VAR_23 = th.mul(VAR_21, VAR_22.tanh())
VAR_23 = VAR_23.view(1, VAR_23.size(0), (- 1))
VAR_22 = VAR_22.view(1, VAR_22.size(0), (- 1))
return (VAR_23, (VAR_23, VAR_22))

class LSTM(nn.Module):

def __init__(self, input_size, hidden_size, bias):
super(LSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.h1 = nn.Linear(input_size, (4 * hidden_size), bias=bias)
self.h2 = nn.Linear(hidden_size, (4 * hidden_size), bias=bias)
self.init_weights()

def init_weights(self):
stdv = (1.0 / math.sqrt(self.hidden_size))
for m in self.modules():

m.data.uniform_((- stdv), stdv)

def forward(self, x, prev_state):
(prev_h, prev_c) = prev_state
prev_h = prev_h.view(prev_h.size(1), (- 1))
prev_c = prev_c.view(prev_c.size(1), (- 1))
x = x.view(x.size(1), (- 1))
h = (self.h1(x) + self.h2(prev_h))
s = h[:, :(3 * self.hidden_size)].sigmoid()
c = h[:, (3 * self.hidden_size):].tanh()
r = s[:, :self.hidden_size]
g = s[:, self.hidden_size:(2 * self.hidden_size)]
o = s[:, (- self.hidden_size):]
c = (th.mul(prev_c, g) + th.mul(r, c))
h = th.mul(o, c.tanh())
h = h.view(1, h.size(0), (- 1))
c = c.view(1, c.size(0), (- 1))
return (h, (h, c))

Figure 4.9: Deobfuscation of an LSTM cell. DOBF is able to recover several of the
original tokens, including the class name (LSTM) and the full signature of the __init__
method. The table of ground truth and recovered tokens is provided in Table 4.5. Even
though DOBF does not always recover the original token, it generally proposes very relevant
tokens which improves code readability. In particular, for some tokens the accuracy and
subtoken scores would be zero but the recovered tokens are still very relevant. For instance,
reset_parameters (FUNC_0) was renamed to init_weights, std (VAR_7) was renamed to
stdv, and hidden (VAR_13) was renamed to prev_state. In those instances, the original
and recovered tokens share no subtoken despite having very similar semantics.
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ID Ground Truth DOBF
CLASS_0 LSTM LSTM
FUNC_0 reset_parameters init_weights
FUNC_1 forward forward
VAR_0 self self
VAR_1 input_size input_size
VAR_2 hidden_size hidden_size
VAR_3 bias bias
VAR_4 i2h h1
VAR_5 h2h h2
VAR_6 self self
VAR_7 std stdv
VAR_8 hidden_size hidden_size
VAR_9 w m
VAR_10 parameters modules
VAR_11 self self
VAR_12 x x
VAR_13 hidden prev_state
VAR_14 h prev_h
VAR_15 c prev_c
VAR_16 preact h
VAR_17 gates s
VAR_18 g_t c
VAR_19 i_t r
VAR_20 f_t g
VAR_21 o_t o
VAR_22 c_t c
VAR_23 h_t h

Table 4.5: Table of ground truth and recovered tokens for the obfuscated LSTM cell
shown in Figure 4.9. While the accuracy of the model is far from perfect, the tokens
it retrieves generally make sense and facilitate the comprehension of the code.
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4.6 Conclusion

In this chapter, we introduce a new deobfuscation objective and show that it can
be used for three purposes: recover fully obfuscated code, suggest relevant identifier
names, and pre-train transformer models for programming language related tasks.
Although it does not require any parallel corpora of source code aligned to natural
language, methods based on DOBF outperform GraphCodeBERT, CodeBERT and
MLM pre-training on multiple downstream tasks, including clone detection, code
summarization, natural language code search, and unsupervised code translation.
These results show that DOBF leverages the particular structure of source code to
add noise to the input sequence in a particularly effective way. Other noise functions
or surrogate objectives adapted to source code may improve the performance further.
For instance, by training a model to find the type of given variables, the signature of
a method, or to repair a piece of code which has been corrupted.

Since models pre-trained on source code benefit from structured noise, it would
be interesting to see whether these findings can be applied to natural languages
as well, where identifiers could be seen as analogous to named entities. More
generally, natural languages also have an underlying structure. Leveraging the
constituency or dependency parse trees of sentences (as opposed to abstract syntax
trees in programming languages) may help designing better pre-training objectives
for natural languages.

This method still relies only on anchor words to align the representations and
learn to translate without any parallel data. However, source code can also be
compiled and executed, and software developers use this type of signals in their daily
work. For instance, using unit tests to verify the semantics of a function on a series
of carefully-chosen examples is a standard procedure in software engineering. In the
next chapter, we show how to leverage this type of signal to improve unsupervised
translation methods for source code.
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Chapter 5

Leveraging Automated Unit Tests
for Unsupervised Code Translation

TransCoder (see Chapter 3) showed that unsupervised methods can be used to
translate source code. However, it is trained without any supervised signal and
only learns the semantics of tokens from their contexts. As shown in Figure 5.1, it
can confuse tokens that have different semantics in different languages, for instance
the float division in Python and integer division in C++ and Java which use the
token / or more subtle operator priority differences (e.g. Java prioritizes == over
&, unlike Python). While small inaccuracies often merely hinder comprehension in
natural languages, they often make the entire translation erroneous in the context of
programming languages.

TransCoder leverages back-translation (Sennrich et al., 2015a), an effective data-
augmentation scheme where the model translates source sequences to generate
training data for the target-to-source direction, and vice versa. Although being
highly effective in low-resource translation, back-translation also has issues, as the
model is trained on potentially invalid input-output pairs. Neural machine translation
models being highly sensitive to input noise (Belinkov and Bisk, 2018; Khayrallah
and Koehn, 2018), this can severely deteriorate the performance. Fortunately, many
programming languages come with relatively mature tools and technologies for
automated test data generation. In this chapter, we propose to leverage these tools
to guide the translation process, weeding out unsuccessful translations, thereby
increasing the overall confidence in the machine translation process.

The topic of automated test data generation has been active for over three decades
in the software engineering research community (Myers, 1979; Miller and Spooner,
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Input function TransCoder TransCoder-ST

def is_odd(x):
return x & 1 == 1

static boolean isOdd(int x) {
return x & 1 == 1;

}

static boolean isOdd(int x) {
return ( x & 1 ) == 1;

}
static void printb(int x){

while (x > 0){
System.out.println(x % 2);
x /= 2;

}
}

def printb(x):
while x > 0:

print(x % 2)
x /= 2

def printb(x):
while x > 0:

print(x % 2)
x //= 2

static String reverse(char[] str){
Stack <Character> st = new Stack<>();
for(int i = 0; i<str.length; i++)

st.push(str[i]);
for(int i = 0; i<str.length; i++){

str[i] = st.peek();
st.pop();

}
return String.valueOf(str);

}

def reverse(str):
st = Stack()
for i in range(len(str)):

st.push(str[i])
for i in range(len(str)):

str[i] = st.pop()
st.push(str[i])

return str

def reverse(data):
st = []
for c in data :

st.append(c)
for i in range(len(data)):

data[i] = st[-1]
st.pop()

return ''.join(data)

Figure 5.1: Improvements over TransCoder. The first function returns whether an
input integer is odd and is translated from Python to Java. The translation of TransCoder
does not compile because the == operator has precedence over & in Java, and parentheses
are required unlike in Python. The second example is a function that prints an integer
in base two, which is translated from Java to Python. TransCoder translates does not
modify the expression x/=2, even though it corresponds to the integer division in Java and
to the float division in Python. In the third example, a function reversing a char array,
TransCoder does not manage to translate the Java Stack object into the right Python object
and uses the unsafe str parameter name. In all three cases, TransCoder-ST (described in
this chapter) manages to leverage the semantics contained in unit tests to translate the
function correctly.

1976). There are now many existing mature tools for test data generation, both open
source research tools (Fraser and Arcuri, 2011; Lakhotia et al., 2013; Cadar et al.,
2008), and production testing systems (Alshahwan et al., 2018; Tillmann et al., 2014).
Because of its pivotal impact on practical software engineering, automated testing
remains a highly active research area (Anand et al., 2013), with the result that
future automated testing advances will lead to ongoing improvement in automated
translation.

We use one such open source automated test generation tool, EvoSuite (Fraser
and Arcuri, 2011), in this thesis. EvoSuite is a well-established test generation tool
for Java which uses coverage metrics (Chekam et al., 2017) and mutation scores (Jia
and Harman, 2011) to generate high-quality tests. It has been widely used in the
Software Testing research literature for test data generation although it has not,
hitherto, been used as part of an automated code translation approach, the topic of
the present chapter.

More generally, software testing tools have been largely ignored by the machine
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learning community (Zhang et al., 2020). In this chapter, we propose to use automat-
ically created unit tests to guide unsupervised translation models for programming
languages. More precisely, we create unit tests automatically for a large number
of functions from the source dataset. Since the unit tests are composed of simple
inputs and asserts, they can easily be translated to semantically equivalent tests in
the target languages using simple scripts. Using our unit-tests and a pre-trained
unsupervised translation model, we create parallel datasets by translating functions
and selecting the translations that have the same semantics as the original function
for the tested inputs. In this chapter, we make the following contributions:

• We introduce a novel approach, TransCoder-ST (for Self-Trained), that lever-
ages an automated unit test generation pipeline to filter out invalid translations
and reduce the noise coming from the back-translation process in unsupervised
machine translation.

• We present two implementations of this approach (online and offline), and show
that it significantly outperforms the previous state of the art in code translation
on all the language pairs we considered. In particular, we improve the state
of the art for translating between Java, Python and C++ by an average of
12.6% Computational Accuracy (CA@1), corresponding to an average relative
improvement of 25.5%. For Python → C++, we improve the CA@1 by 24%,
reducing the error rate by 35.7% compared to previous models.

• We generate multilingual unit tests for hundreds of thousands of Java functions
and create a large parallel dataset of 135,000 parallel functions between Java,
Python, and C++.

• Our method is completely unsupervised and could easily be generalized to
other programming languages and unit test creation tools.

5.1 Context

Unit Test Generation. Software testing is challenging due to the large number of
possibilities to be tested, and the inherent cost of covering reasonable representative
sample (Myers, 1979). When test design is performed by humans, the cost can be
prohibitive. To reduce such cost, much research over the last three decades has
focused on automating the process of test generation (Anand et al., 2013). Although
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automated test generation has been studied since the mid-1970s (Miller and Spooner,
1976), it was only in the last decade that industrial-strength tools have become
widely available. There are now several test data generation tools for languages,
including C (Cadar et al., 2008; Lakhotia et al., 2013) and Java (Fraser and Arcuri,
2011). Popular test data generation techniques include symbolic execution of the
code (Cadar and Sen, 2013), dynamic execution guided by a fitness function (Harman
et al., 2015), and hybrids of these two techniques (Baars et al., 2011). Recently,
neural networks have also been used successfully to generate unit tests (Tufano et al.,
2020).

One of the most well-established and widely-used open source tools for test data
generation is the EvoSuite system (Fraser and Arcuri, 2011). EvoSuite uses search
based software engineering (SBSE) (Harman et al., 2012) to generate test cases. Like
all SBSE techniques, EvoSuite is guided by fitness functions, in this case aimed at
capturing the test suite’s coverage and mutation score of the code being tested. We
use EvoSuite in our work for three reasons: it is publicly available in open source
(thereby facilitating replication), it is under current active development (thereby
supporting future work), and it is widely used by other researchers (thereby enabling
interoperability). The test framework can be considered as a parameter in our overall
approach and could be substituted with another.

In order to assess the effectiveness of the test suites generated, we use mutation
testing, a topic also widely-studied since the 1970s (DeMillo et al., 1978). A mutant is
a version of the program into which a fault is deliberately inserted, thereby assessing
the test suite’s fault detection ability (Jia and Harman, 2011; Papadakis et al., 2019).
For a given set of mutants and a test suite, the mutation score is defined to be
the proportion of mutants for which the test suite distinguishes the behavior of the
mutant from that of the original program. The mutation score is thus a proxy for
the fault-revealing power of the test suite on a set of simulated faults (the mutants).
Mutation scores have been empirically demonstrated to be correlated to real fault
revelation (Chekam et al., 2017), motivating our adoption of this approach.

Translation of Programming Languages Several studies used statistical meth-
ods to translate between programming languages. Early methods extracted parallel
datasets and trained phrase-based models to translate between C# and Java (Nguyen
et al., 2013; Karaivanov et al., 2014) or from Python 2 to Python 3 (Aggarwal et al.,
2015). Later, Chen et al. (2018) proposed a tree-to-tree neural network to translate
between CoffeeScript and JavaScript and between C# and Java using the dataset cre-
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ated by Nguyen et al. (2013). However, these approaches are limited to a few language
pairs for which small parallel datasets were created manually (e.g. C#-Java) or can be
created with rule-based tools (e.g. Python 2-Python 3 and CoffeeScript-JavaScript).

Instead, in Chapter 3, we proposed TransCoder, an unsupervised model that
leverages the principles of unsupervised machine translation (Lample et al., 2018c), to
translate between Python, Java and C++. We showed that our method outperforms
well-established rule-based baselines, does not require any parallel data or expert
knowledge, and can easily be generalized to other languages. We pre-trained our
model with the Masked Language Modeling (MLM) objective of (Devlin et al., 2018),
and trained it with the denoising auto-encoding (DAE) (Vincent et al., 2008) and
the back-translation (BT) (Sennrich et al., 2015a) objectives. In Chapter 4, we
showed that augmenting MLM with a deobfuscation objective (dubbed DOBF) can
substantially improve the performance of TransCoder. In the rest of the chapter, we
will refer to the transpiler pre-trained with DOBF as simply DOBF.

Even though unsupervised methods can be trained on large amounts of data,
they sometimes lack the signal needed to differentiate between semantically different
tokens that often occur in similar contexts (see Figure 5.1). There is a need for a
method providing supervised signal directly related to the semantics of the code
without manually crafted parallel datasets.

5.2 Method

In this paper, we present the methods we used to automatically generate parallel
data and improve code translation models.

5.2.1 Mutation score

In mutation testing, mutants are programs transformed from the original programs
based on a series of syntactic transformation rules called mutation operators. Muta-
tion testing consists in introducing minor syntactic faults on the code and running
the tests against the mutated code. A strong test suite is expected to detect the code
changes by having at least one test failing. Table 5.1 shows the examples of mutation
operators adopted in EvoSuite when generating mutants (Fraser and Arcuri, 2015).

A mutant is said to be killed by a test case if the output of this test case on
the mutant is different from its output on the original program (i.e., the test fails
the mutant). Otherwise, the mutant is said to have survived. Figure 5.5 shows
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Figure 5.2: Our iterative self-training method. Using EvoSuite, we generate unit
tests in Java, Python and C++ corresponding to several input Java functions. With a
machine translation model (e.g. TransCoder), we generate several candidate translations of
the Java function in Python and C++. Generated translations that pass the unit tests are
used to create a parallel dataset on which we fine-tune the model. Discarding translations
that fail the unit tests reduces the noise of data coming from the back-translation process,
and significantly improves the overall performance of the model.

Table 5.1: Examples of mutation operators in EvoSuite.
Mutation operator Explanation
Delete call operator Remove a method invocation
Delete field operator Remove a field access and replaces it with a default value (0 / null)
Insert Unary Operator Add 1 to, subtract 1 from, or negate a numerical value after it was loaded on the stack
Replace arithmetic operator Replace an arithmetic operator in an expression with other operators. E.g., + → −, ∗ → /
Replace constant operator Replace constants with the special values -1, 0, +1
Replace variable operator Replace variables with other variables of the same type

an example of a mutant generated by changing the < in the return statement into
>. The test with input (-800, -800, -1), as shown by Figure 5.7, does not kill this
generated mutant, because its outputs on the original program and the mutant are
the same. The mutation score is defined as the percentage of mutants that are killed
by the test suite.

Mutation score is considered as the most effective criteria in accessing the fault-
revealing ability of test suites. Other criteria, such as code coverage, are weak:
they check only whether the test executes the code, but do not check whether the
execution result is correct. A test suite without any assertions can achieve 100%
code coverage, but could not detect any faults.
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Java function Generated test suite

public static int pow (int b, int e) {
int r = 1;
while (e > 0) {

if ((e & 1) == 1)
r = r * b;

b = b * b;
e = e >> 1;

}
return r;

}

public void test0() throws Throwable {
int int0 = Example.pow((-1), (-1));
assertEquals(1, int0);

}

public void test1() throws Throwable {
int int0 = Example.pow(0, 1);
assertEquals(0, int0);

}

public void test2() throws Throwable {
int int0 = Example.pow((-13133), 2743);
assertEquals((-1787379173), int0);

}

public void test3() throws Throwable {
int int0 = Example.pow(1, 1);
assertEquals(1, int0);

}

Figure 5.3: A generated unit test suite with high mutation score. The
mutation score of this test suite is 95% and we selected it in our dataset for pseudo-
labelling. The third test case (i.e. test2) may be too strict as it would make
translations using the python int type fail the unit tests.

Java function Generated test suite

public static int sizeBits_cmd() {
return 8;

}

public void test0() throws Throwable {
assertEquals(8, Example.sizeBits_cmd());

}

Figure 5.4: A test suite with a good mutation score but only one assert.
Even though it contains only one test and one assert, this test suite tests the
semantics of the function on the left properly since it only returns a constant and
its mutation score is 100%. We found that test suites with good mutation scores
and only one assert generally correspond to uninteresting input functions. Removing
these functions and tests from our dataset for self labelling improves the performance
of our model.

5.2.2 Parallel data creation

Parallel unit test generation: We use EvoSuite to automatically generate unit
tests for Java functions. EvoSuite is a well-established open source tool for automated
test generation in Java, which is still under active development and frequently used.
It is designed for Java programs but its search-based technique is general and could
be used for any programming language. Unit tests can be thought of as lists of inputs
and asserts testing the semantics of a program (e.g., the output of the function,
the side effects on its arguments such as sorting the input list). EvoSuite uses
evolutionary methods to derive tests that maximize criteria such as code coverage or
mutation score. During its search, each candidate solution in EvoSuite is a test input.
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Original Java function Mutant

public class CLAMP_CLASS{
public static double clamp(
double a, double min, double max){

return a<min?min:(a>max?max:a);
}

}

public class CLAMP_CLASS{
public static double clamp(
double a, double min, double max){

return a>min?min:(a>max?max:a);
}

}

Figure 5.5: A mutant generated by the “Replace arithmetic operator”
mutation in EvoSuite. The < operator in the return statement is replaced with >.

The candidate inputs are evolved using crossover and mutation, and filtered by a
fitness function (e.g., mutation score). With each generation the fitness improves
until it reaches a plateau or the budget is exhausted. The final test inputs are
wrapped up as test cases. Each program is associated to a test suite containing a
series of test cases. Figure 5.7 shows an example of a test case generated by EvoSuite.

Parallel test suites selection: Some test suites created by EvoSuite only cover a
few parts of the semantics of functions. We only trust the translations verified by
test suites which examine the function semantics thoroughly. We use the mutation
score, which is the most effective test assessment metric in the literature (Jia and
Harman, 2011), to pick out these test suites. The mutation score is computed
through mutation testing, in which mutants (i.e., program variants with syntactic
changes) are generated from the original program based on a set of transformation
rules (more details in Section 5.2.1). A mutant is said to be killed if at least one
test from the test suite has different results on the mutant and the original program.
Otherwise, the mutant is said to survive. The mutation score is the ratio of killed
mutants. A test suite with a higher mutation score checks the code semantics more
thoroughly. We adopt a strict strategy in test suite selection: we keep only the Unit
test suites with a mutation score larger than 90% for building the parallel dataset.
In practice, we observe that more than half of the mutation scores are either above
0.9 or below 0.1 for tests generated on our dataset (see Figure 5.6). In practice, we
did not observe significant differences on translation performances for mutation score
thresholds varying between 0.3 and 0.95.

Parallel dataset building: The generated test suites can be used to test the
semantics of programs written in any programming language as long as there is
a clear mapping between the types of the output and parameters in the original
language and the language of the translated unit tests. We transform the generated
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Figure 5.6: Histogram of mutation scores for our generated unit tests. We
select about 40% of the unit tests with our threshold at 0.9. Many of the remaining
unit tests have a mutation score of 0.

Java tests into C++ and Python tests with identical inputs and expected outputs
and side effects (i.e., assertions). In practice, we selected the Java functions which
can be compiled and run in isolation and with simple output and parameter types.
These types are the Java primitive types (e.g. int, long, bool, float. . . ), standard
data types (e.g. Integer, Double, String. . . ), array and List or ArrayList types
of elements of supported types (e.g. double[], List<Integer>. . . ). It makes it easy
to map parameter and return types in Java to Python or C++ types in the translated
unit tests. While most of the unit tests are translated correctly, the translation
sometimes fails due to EvoSuite generating test cases expecting exceptions. Our
analysis shows that it happens for about 5.6% of all tests and less than 2% of the
tests with high mutation scores. In that case, the candidate translations cannot pass
the translated tests and no parallel examples are created.

We use the best unsupervised translation models available for Java to Python
and Java to C++ translation, namely TransCoder (see Chapter 3) for Java to C++
and DOBF (see Chapter 4) for Java to Python. For each Java function, we generate
20 Python and C++ translations with beam search and select the first element in
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Java function A generated unit test

public class CLAMP_CLASS{
public static double clamp(
double a, double min, double max){

return a<min?min:(a>max?max:a);
}

}

@Test(timeout = 4000)
public void test0() throws Throwable {

double double0 = Example.clamp(
742.0, 0.0, 0.0);
assertEquals(0.0, double0, 0.01);

}

Figure 5.7: A unit test generated by EvoSuite. The Java function clamps the
given value a between the given min and max. This test case is not sufficient to test
the semantics of the function thoroughly but could be part of a suitable test suite. See
Figure 5.3 for a generated test suite with a high mutation score.

the beam that passes the unit tests. The created tests are executed against the
translated functions. If all the tests pass, the Python and C++ functions have
the same semantics assessed by the generated tests. Our method is illustrated in
Figure 5.2.

5.2.3 Training method

Our parallel data generation method relies on a pre-existing model to translate
from Java to Python and C++. There is little parallel data for these tasks and the
best performing published models are unsupervised. TransCoder (see Chapter 3)
is trained using the MLM, denoising and back-translation objectives and is able to
translate between Java, C++ and Python. DOBF (see Chapter 4) provides clear
improvements over TransCoder for translating between Java and Python but was
not trained on C++. Therefore, we use DOBF to translate from Java to Python and
TransCoder to translate from Java to C++. When fine-tuning, we also reload these
models. For DOBF, we initialize the C++ language embeddings with those of Java.

The parallel examples we generate can be used to improve the performance of
pre-existing translation models. Since the number of examples we generate also
depends on the performance of the translation model, it creates a positive feedback
loop where improving the model allows to improve the parallel dataset which in turn
can be used to improve the model again. We propose offline and online approaches
to use our method to maximize the unsupervised translation performance.

Offline training. With the offline training method, we use the method described
in Section 5.2.2 to create parallel Java ↔ Python, Java ↔ C++ and Python ↔
C++ datasets using every input Java function we selected. For the first iteration, we
fine-tune the model on these parallel examples until convergence. We can iterate this
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Table 5.2: Size of the parallel datasets generated offline at each iteration.

Languages First iteration Second iteration Third iteration Fourth iteration
Java ↔ C++ 27,875 37,769 47,729 60,495
Java ↔ Python 33,496 43,194 43,956 45,311
C++ ↔ Python 14,935 21,026 27,080 32,869

process by selecting the best checkpoints for Java → Python and Java → C++ using
the validation dataset and using them to generate new parallel datasets, which can
in turn be used to train a better model. We iterate this process until convergence,
i.e. when we see no significant improvements on the validation set.

Online training. With the online method, we create parallel examples on the
fly while training the model. Compared to the offline method, it allows to always
use the latest model to generate new examples and it is much more convenient to
automate. However, this process can be unstable if done naively. For instance, the
model can start over-fitting only a few examples and stop generating anything that
passes the unit tests for any other example. In order to stabilize the training, we
follow Likhomanenko et al. (2020) and implement a cache mechanism storing the
previous examples that passed the unit tests. At each step, the model can either
train on parallel functions sampled from the cache or create new parallel functions
to add to the cache. When an example is sampled, we remove it from the cache with
a given probability. The online training allows the model to always benefit from the
performance of the latest model and the cache mechanism ensures that the model
does not forget the correct examples that it was able to generate at previous time
steps.

5.2.4 Evaluation

In the context of natural languages, machine translation models are generally bench-
marked against a reference solution using the BLEU score (Koehn, 2009; Bahdanau
et al., 2015; Vaswani et al., 2017). Early studies on source code translation used
the same metric to evaluate the quality of the generated functions (Nguyen et al.,
2013; Karaivanov et al., 2014; Aggarwal et al., 2015; Miceli-Barone and Sennrich,
2017), or the exact match score which requires the translation to be exactly equal
to the ground truth (Chen et al., 2018). However, these metrics fail to capture
the semantics of the code and typically correlate poorly with the correctness of
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the generated function, prompting the use of new metrics checking if the generated
solution passes series of test cases (see Chapter 3, Kulal et al. (2019); Hendrycks
et al. (2021); Chen et al. (2021a); Drain et al. (2021)).

We evaluate our models on the full validation and test sets of TransCoder. It
contains a few hundreds of parallel functions extracted from GeeksforGeeks along
with associated unit tests. As our TransCoder and DOBF baselines, we evaluate our
models with the CA@N metric, which checks if any of the top-N solutions proposed
by the model passes all the corresponding unit tests. This metric can be computed
independently of the beam size (as long as the beam size is greater or equal to N).

5.3 Experiments

5.3.1 Training details

Model architecture. We use a sequence-to-sequence model with attention com-
posed of an encoder and a decoder model with a transformer architecture (Vaswani
et al., 2017). In order to provide fair comparisons, we use the exact same architecture
as TransCoder: an encoder and a decoder of 6 layers each, a hidden dimension of 1024
and 8 attention heads. We limit the size of the input to 512 tokens. In Chapter 4,
we train models with two different architectures. For Java ↔ Python, we compare
ourselves to the version of DOBF using the same architecture as TransCoder. We
initialize our models with either the best TransCoder checkpoint for Java → C++
or the best DOBF checkpoint for Java → Python with C++ language embeddings
initialized with those of Java.

Datasets. As TransCoder and DOBF, we use the GitHub public dataset available
on Google BigQuery filtered to keep only projects with open-source licenses1. As our
unit test creation tool can only be used on Java code, we only use the Java files and
we select only the functions that can be compiled in isolation. We obtain a dataset
containing 333,542 Java functions. We run EvoSuite with a budget of 20 seconds and
a criterion including the line, branch, cbranch and output coverages, as well as the
weak and strong mutation scores. We set the maximum absolute value of integers
that can be generated as an input to

√
231 − 1 to limit the number of overflows. We

manage to obtain high-quality (mutation score > 0.9 and at least two asserts) test
1We select the open-source licenses: ‘apache-2.0’, ‘mit’, ‘gpl-2.0’, ‘gpl-3.0’, ‘bsd-2-clause’, ‘bsd-3-

clause’
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cases for 103,488 functions. See Figures 5.7 and 5.3, 5.4 for examples of selected and
filtered out test suites.

Training details. During the training, we alternate between batches for every
source and target language so that language pairs for which we managed to create
more parallel examples are not over-represented in our training batches. For the
online version, we set a cache warm-up parameter to ensure that we always generate
new parallel examples if there are less than 500 examples in the cache for any
language pair. Otherwise, we sample from the cache with probability 0.5, or generate
new examples, train on them once and put them in the cache also with probability
0.5. The sampled elements are removed from the cache with probability 0.3, so that
each element we create is trained on about 4 times in average before being removed
from the cache. We initialize the cache with parallel examples created offline.

During beam decoding, we compute the score of generated sequences by dividing
the sum of token log-probabilities by lα where l is the sequence length. We found
that taking α = 0.5 (and penalizing long generations) leads to the best performance
on the validation set.

Reproducibility. We made sure to use the same architecture and framework as
previous works in source code translation so that our results are comparable (see
Section 5.3.1). We submit our code with this submission, along with a ReadMe
file detailing clear steps to reproduce our results, including a script to set-up a
suitable environment. We will open-source our code and release our trained models.
Our models were trained using standard hardware (Tesla V100 GPUs) and libraries
(e.g. PyTorch, Cuda) for machine-learning research.

5.3.2 Results and discussion

Results. In Tables 5.3 and 5.4, we compare the results of our offline and on-
line training methods with those of TransCoder and DOBF. DOBF outperforms
TransCoder for the Java ↔ Python pair. We compare our models against the best
baseline for each language pair and direction.

Training on the generated parallel examples brings substantial improvements for
every language pair, direction, and metric. Offline training already provides clear
improvements over the baseline after one iteration. The computational accuracy
(CA@1) computed with beam size 10 is higher for every direction and it is substantially
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Table 5.3: Computational accuracy scores for our methods and baselines.
We show the CA@1 metric computed with beam size 10. Both the offline and online
self-training methods lead to significant improvements over our baselines for every language
pair and direction. Online self-training outperforms offline self-training, even after several
iterations.

C++ → Ja C++ → Py Ja → C++ Ja → Py Py → C++ Py → Ja AVG

TransCoder 65.1 47.1 79.8 49.0 32.6 36.6 51.7
DOBF - - - 52.7 - 45.7 -
Offline ST 1 65.5 56.2 81.6 61.8 46.8 55.1 61.1
Offline ST 2 65.5 58.3 83.7 63.3 46.4 52.2 61.6
Offline ST 3 66.5 56.2 85.2 66.3 48.1 56.6 63.1
Offline ST 4 65.3 48.2 81.1 58.1 48.9 54.7 59.4
Online ST 68.0 61.3 84.6 68.9 56.7 58.2 66.3

Table 5.4: CA@N metric for several beam sizes averaged on all language pairs.
The value k corresponds to the beam size. For instance, CA@1 k=10 means that we
use beam decoding to generate 10 translations, and select the one with the highest score.
The best baseline corresponds to taking the best model between TransCoder and DOBF
for every language pair and direction. The error rate reduction of the offline and online
self-training methods over the best baseline are high (> 20%) across all CA@N metrics
and beam sizes.

CA@1 k=1 CA@1 k=10 CA@1 k=20 CA@10 k=10 CA@20 k=20

Best baseline 52.2 53.7 53.4 67.3 70.5
Offline ST 1 60.8 61.1 61.1 72.9 75.3
Offline ST 2 61.4 61.6 61.4 73.3 75.8
Offline ST 3 61.7 63.1 63.0 73.3 75.8
Offline ST 4 58.5 59.4 59.2 70.8 73.6
Online ST 64.7 66.3 66.3 75.4 77.2

higher for the language pairs involving Python. It allows to reduce the error rate of
the best baseline by 25.5% for Java → Python. In average, it increases the CA@1 by
7.4% over the best previous models, and reduces the error rate by 16.6%. In the two
next iterations, the model is trained on significantly more examples (see Table 5.2).
It results in average improvements of 2% points between the first and third iteration.
Although the model for the fourth iteration is trained on more parallel samples, its
performance on the test set of TransCoder is actually worse than after the third
iteration. After three iterations, the model learned to generate more samples that
pass the unit tests but some of them are actually incompatible with the types of
translations expected by TransCoder (e.g. example with overflows in Figure 5.8),
causing the computational accuracy score to go down.
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Table 5.5: Ablation study. We show the CA@1 metric computed with greedy decoding
at evaluation time except for the last line where the beam size is set to 10. We evaluate
models trained with no cache system, without initializing the cache (with or without
selecting the tests with a minimum mutation score of 0.9), and a beam size of 1 when
generating examples. We also compare the CA@1 score of our full model when evaluating
with greedy decoding and with beam size 10. Using a pre-filled cache and selecting only the
tests with a high mutation score lead to substantially better performance, although these
steps are not necessary to outperform our baseline. The online method already performs
well with greedy decoding at generation time, but generating with beam size 20 further
improves the results.

C++ → Ja C++ → Py Ja → C++ Ja → Py Py → C++ Py → Ja AVG

No cache 66.5 52.7 83.7 60.3 41.2 51.8 59.4
Cache not initialized 64.9 51.6 82.4 62.4 46.6 52.6 60.1

+ No min mut. score 64.0 50.1 82.6 60.9 47.4 47.0 58.7
ST greedy decoding 65.9 54.2 82.2 60.9 56.2 56.6 62.7
Full model (ST beam 20) 66.7 61.1 84.1 67.8 52.2 56.7 64.7

+ Eval beam 10 68.0 61.3 84.6 68.9 56.7 58.2 66.3

The online self-training method provides further improvements over training on
the pseudo-labeled examples offline. It outperforms every other method in every case
except the third iteration of offline training for Java → C++. In average, this model
outperforms the baseline by 12.6% points, corresponding to an error rate reduction
of 25.5%. For Python → C++, it improves previous performance by more than 24%
points, which corresponds to reducing the error rate by 35.7%. Examples of avoided
errors can be found in Figure 5.1 and 5.4. Overall, all our models significantly
improve previous results. As shown in Table 5.4, these improvements are stable
across several beam sizes and CA@N metrics. The CA@20 metric shows that the
number of examples for which none of the 20 elements in the beam are correct is
reduced by more than 22% with online self-training. It indicates that, even though we
train only on the output of the model, our method does much more than reordering
the elements in the beam and allows the model to find correct solutions that were
not assigned a high probability by the baseline model. See Table 5.6 for more results.

Beam reordering We also evaluate a simpler method where we create unit tests
for the Java functions in the test dataset and use them to reorder the elements of
the beam at test time. We compute the results of the tests for every proposed C++
or Python translation and prioritize the elements that pass the unit tests.

As shown on Table 5.6, reordering the elements of the beam at test time when
translating from Java leads only to small improvements compared to the best baseline
(up to 1.7% CA@1 for Java → Python) and the scores of this method are far from
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those obtained when requiring any of the 10 element of the beam to be correct
(i.e. CA@10). It can be explained by the fact that the tests generated by EvoSuite
on these functions can have low mutation scores and be insufficient to thoroughly
test the semantics of the functions. Moreover, the tests we create are sometimes
incompatible with those of our test set (see Figure 5.8 for an example).

Table 5.6: Extra results table. We show the CA@1 metric computed with beam
size 10 for our baselines, and our offline and online methods, the beam reordering, and
a model trained from scratch with our dataset. Beam reordering leads only to small
improvements compared to our offline and online self-training methods. Training on our
generated parallel dataset from scratch leads to decent performances, but that are still
below those of TransCoder and TransCoder-ST.

C++ → Ja C++ → Py Ja → C++ Ja → Py Py → C++ Py → Ja AVG

TransCoder 65.1 47.1 79.8 49.0 32.6 36.6 51.7
DOBF - - - 52.7 - 45.7 -
Beam reordering - - 80.3 54.4 - - -
Offline ST scratch 43.0 41.3 54.3 43.2 31.1 39.7 42.1
Offline ST 1 65.5 56.2 81.6 61.8 46.8 55.1 61.1
Offline ST 2 65.5 58.3 83.7 63.3 46.4 52.2 61.6
Offline ST 3 66.5 56.2 85.2 66.3 48.1 56.6 63.1
Offline ST 4 65.3 48.2 81.1 58.1 48.9 54.7 59.4
Online ST 68.0 61.3 84.6 68.9 56.7 58.2 66.3

Ablation study. The results of our ablation study are shown in Table 5.5. Training
online with no cache makes the training much less stable. The model improves at
the beginning of training and we can select a few checkpoints where it performs
well, but it ends up over-fitting a few examples it generated and the performance
drops after a few epochs. Starting with an empty cache slows down the training and
hinders generalization, leading to a clear drop in performance. We also try removing
the minimum mutation score requirement for the model with no initial cache, which
leads to even lower scores as the model is trained partly on lower-quality parallel
data.

All these models were trained using a self-training beam size of 20 when generating
new examples. Training with greedy decoding is much faster since computing the
results for all the 20 elements of the beam is costly. However, generating new
examples with greedy decoding leads to a loss of about two percentage points in
average compared to our full model using beams of size 20. It shows that initializing
the cache of the model with beam size 20 is not sufficient and creating new examples
with beam search is necessary to reach our best performance. Our full model provides

90



5.3. Experiments

some improvements over the ablated versions for every language pair and direction,
except over the model trained with greedy decoding for Python → C++ translation.
Evaluating with beam size 10 (still returning only the first element) leads to some
improvements for every language pair.

Limitations. We found that the unit tests we create with this method are some-
times incompatible with those of the test set of TransCoder, and that the capacity
of a model to generate functions that pass these unit tests is not perfectly correlated
to its score on the test set. It raises the deeper issue of defining what constitutes
a correct translation. For instance, most programmers would translate a factorial
function implemented with long integers into a factorial function implemented with
Python’s integer type. However, these functions are not semantically equivalent since
the Java implementation would return a negative number for the input 21 due to
integer overflow while the Python implementation would return 21! correctly. The
human developers who wrote the parallel functions in the test set of TransCoder
often assumed that these functions would only be used on a limited domain where no
overflow occurs (see Figure 5.8). However, the test cases of EvoSuite and TransCoder
are not limited to this domain and they sometimes assert different semantics. By
using the test suites from EvoSuite as source of truth, we sometimes train the model
to generate translations that are more rigorous but also less natural.

Input Java function Gold translation Translation passing multilingual tests

static int factorial(int n){
if (n < 2) return 1;
return n * factorial(n - 1);

}

def factorial(n):
if n < 2:

return 1
return n * factorial(n-1)

def factorial(n):
n = np.int32(n)
if n < 2:

return np.int32(1)
return n * factorial(n - 1)

Figure 5.8: Example of disagreement between our multilingual tests and the test
set of TransCoder. The gold translation is only equivalent to the input Java function on
a small domain where there is no integer overflow and does not pass our unit tests. The
version that passes the unit tests casts uses the np.int32 type, reproducing the behaviour
of the original Java code but causing it to fail some of the unit tests of TransCoder.
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5.4 Translation examples

Input Python function TransCoder C++ translation TransCoder-ST C++ translation

def rangeGCD(n, m):
return n if (n==m) else 1

int rangeGCD(int n, int m){
return n == (n==m) ? 1: -1;

}

int rangeGCD(int n, int m){
return (n==m) ? n:1;

}

def countSetBits(n):
if(n == 0):

return 0
else:

return(n & 1) \
+ countSetBits(n » 1)

int countSetBits(int n) {
if((n == 0) ||(n == 1))

return 0;
else

return(n & 1)
+ countSetBits(n » 1);

}

int countSetBits(int n) {
if((n == 0))

return 0;
else

return(n & 1)
+ countSetBits(n » 1);

}

Figure 5.9: Python to C++ translation examples. TransCoder sometimes
fails to capture the semantics of the incoming code and translates them to other
expressions that could occur in similar contexts. Self-training helps the model to
avoid such mistakes.

Input Python function TransCoder Java translation TransCoder-ST Java translation

def cassini(n):
return - 1 if(n & 1) else 1

public static int cassini(int n) {
return - 1 ==(n & 1) ? 1: - 1;

}

public static int cassini(int n) {
return(n & 1) != 0 ? - 1: 1;

}
def turnOffK(n, k):

if(k <= 0):
return n

return(n & ~(1 «(k - 1)))

static int turnOffK(int n, int k){
if((k <= 0) (k > n))

return n;
return(n & ~(1<<(k - 1)));

}

static int turnOffK(int n, int k){
if((k <= 0))

return n;
return(n & ~(1<<(k - 1)));

}
def isNumber(s):

for i in range(len(s)):
if s[i].isdigit() != True:

return False
return True

static boolean isNumber(String s) {
for(int i = 0; i<s.length(); i++){

if(s.charAt(i) != ' ') {
return false;

}
}
return true;

}

static boolean isNumber(String s){
for(int i = 0; i<s.length(); i++){

if(Character.isDigit(s.charAt(i))
!= true

){
return false;

}
}
return true;

}

Figure 5.10: Python to Java translation examples. Similarly to Python to C++,
TransCoder often fails to get the right semantics, especially for conditions where it
can hallucinate extra clauses or write incorrect comparisons. TransCoder-ST often
solves these issues.

92



5.4. Translation examples

Input Python function TransCoder Java translation TransCoder-ST Java translation

int cassini(int n) {
return(n & 1) ? - 1: 1;

}

def cassini(n):
return(n & 1)

def cassini(n):
return - 1 if(n & 1) != 0 else 1

int power(int n) {
if(n == 1) return 2;
return 2 * power(n - 1);

}

def power(n):
if n == 1:

return 2
return 2 ** power(n - 1)

def power(n):
if n == 1:

return 2
return 2 * power(n - 1)

Figure 5.11: C++ to Python translation examples. For C++ to Python
translation, many of the errors of TransCoder come from incorrectly translated
conditions, wrong operators and badly translated functions. TransCoder-ST better
comprehends the semantics of the code and is generally able to solve these issues.

Input C++ function TransCoder Java translation TransCoder-ST Java translation

int minXOR(int arr[], int n){
int min_xor = INT_MAX;
for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j++)
min_xor = min(min_xor,

arr[i]^arr[j]);
return min_xor;

static int minXOR(int arr[], int n){
int min_xor = Integer.MIN_VALUE;
for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j++)
min_xor = Math.min(min_xor,

arr[i]^arr[j]);
return min_xor;

}

static int minXOR(int arr[], int n){
int minXor = Integer.MAX_VALUE;
for(int i = 0; i < n; i++)

for(int j = i + 1; j < n; j++)
minXor = Math.min(minXor,

arr[i]^arr[j]);
return minXor;

}

int findLongestConseqSubseq(
int arr[], int n

){
unordered_set<int> S;

for(int i = 0; i < n; i++)
S.insert(arr[i]);

int ans = 0;
for(int i = 0; i < n; i++) {

if(S.find(arr[i]-1)==S.end()){
int j = arr[i];
while(S.find(j) != S.end())

j++;
ans = max(ans, j - arr[i]);

}
}
return ans;

}

public static
int findLongestConseqSubseq(

int arr[], int n
){
HashSet<Integer> S =

new HashSet<Integer>();
for(int i = 0; i < n; i++) {

S.add(arr[i]);
}
int ans = 0;
for(int i = 0; i < n; i++) {

if(S.contains(arr[i] - 1)) {
int j = arr[i];
while(S.contains(j)) {

j++;
}
ans = Math.max(ans, j - arr[i]);

}
}
return ans;

}

public static
int findLongestConseqSubseq(

int arr[], int n
){
HashSet<Integer> S = new HashSet<>();

for(int i = 0; i < n; i++) {
S.add(arr[i]);

}
int ans = 0;
for(int i = 0; i < n; i++) {

if(S.contains(arr[i] - 1)==false){
int j = arr[i];
while(S.contains(j)) {

j++;
}
ans = Math.max(ans, j - arr[i]);

}
}
return ans;

}

Figure 5.12: C++ to Java translation examples. The first example computes the
minimum XOR between two elements of an array, TransCoder erroneously translates
INT_MAX into Integer.MIN_VALUE. This value is used in similar contexts (i.e. to
compute a maximum instead of a minimum) but is inappropriate here. TransCoder-
ST manages to correct this and outputs a function with the right semantics. In
the second example, where the function computes the size of the largest subset of
elements of the list that could form a sequence of consecutive integers, TransCoder-ST
manages to translate the semantics of S.find(arr[i]-1)==S.end() appropriately
while TransCoder translates it into its negation.
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Input Java function TransCoder C++ translation TransCoder-ST C++ translation

static boolean isCornerPresent(
String str,
String corner

) {
int n = str.length();
int cl = corner.length();
if(n < cl) return false;
return(str.substring(0,cl)

.equals(corner)
&& str.substring(n - cl, n)

.equals(corner));
}

bool isCornerPresent(
string str,
string corner

) {
int n = str.length();
int cl = corner.length();
if(n < cl) return false;
return(str[0] == corner[0]

&& str[n - cl] == corner[n]);
}

bool isCornerPresent(
string str,
string corner

) {
size_t n = str.length();
size_t cl = corner.length();
if(n < cl) return false;
return(str.substr(0, cl)==corner

&& str.substr(n-cl, n)==corner);
}

...
PriorityQueue <Integer> Q =

new PriorityQueue <Integer>();
...

...
priority_queue < int > Q;
...

...
priority_queue<int,

vector<int>,
greater<int>

> Q;
...

Figure 5.13: Java to C++ translation examples. In the first example, which
returns whether a given string corner is present at the beginning and at the end
of a string str, TransCoder completely fails to translate the last logical expression
correctly while TransCoder-ST manages to translate the logic to get the right
substrings and to return the right output. The second example is a line defining
a priority queue extracted from the kthLargestSum function in the test set of
TransCoder. The PriorityQueue object in Java returns the smallest elements first
by default, while priority_queue in C++ returns the largest. TransCoder, which
was not trained on any semantic signal, manages to instantiate a priority queue
object but instantiates a max queue instead of a min queue. TransCoder-ST, which
was trained with some supervised signal directly linked to the semantics of the code,
manages to instantiate the right type of priority queue.
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5.4. Translation examples

Input Java function TransCoder Python Translation TransCoder-ST translation

static int divisorSum(int n) {
int sum = 0;
for(int i = 1; i <= n; ++i)

sum +=(n / i) * i;
return sum;

}

def divisor_sum(n):
sum = 0
for i in range(1 , n + 1):

sum +=(n / i) ** i
return sum

def divisor_sum(n):
sum = 0
for i in range(1 , n + 1):

sum +=(n // i) * i
return sum

static
boolean check(int degree[], int n){

int deg_sum = 0;
for(int i = 0; i < n; i ++) {

deg_sum += degree[i];
}
return(2*(n-1)==deg_sum);

}

def check(degree, n):
deg_sum = 0
for i in range(n):

deg_sum += degree[i]
return(2**(n-1)==deg_sum)

def check(degree, n):
deg_sum = 0
for i in range(n):

deg_sum += degree[i]
return(2*(n-1)==deg_sum)

static int decimalToBinary(int N){
int B_Number = 0;
int cnt = 0;
while(N != 0) {

int rem = N % 2;
double c = Math.pow(10, cnt);
B_Number += rem * c;
N /= 2;
cnt ++;

}
return B_Number;

}

def decimal_to_binary(N):
B_Number = 0
cnt = 0
while N != 0:

rem = N % 2
c = pow(10, cnt)
B_Number += rem * c
N /= 2
cnt += 1

return B_Number

def decimal_to_binary(N):
B_number = 0
cnt = 0
while N != 0:

rem = N % 2
c = pow(10, cnt)
B_number += rem * c
N //= 2
cnt += 1

return B_number

Figure 5.14: Translation examples for Java to Python. When translating to
Python, TransCoder was often failing to distinguish between float division (/) and
integer division (//). It also often confuses other operations, for instance * and **.
Training on self-created labels often solves this issue.

Input Python function TransCoder C++ translation TransCoder-ST C++ translation

def transpose(A, B):
for i in range(N):

for j in range(N):
B[i][j]=A[j][i]

void transpose (
const double* A ,
double* B[N][N]
) {

for(int i=0; i<N; i++)
for(int j=0; j < N; j++)

B[i][j]=A[j][i];
}

template<typename T>
void transpose (T* A, T* B){

for(int i=0; i<N ; i++){
for(int j=0; j<N; j++){

B[i][j] = A[j][i];
}

}
}

def exponential(n, x):
sum=1.0
for i in range (n, 0, -1):

sum=1+x*sum/i
print("e^x =", sum)

void exponential(int n, double x){
double sum=1.0;
for(int i=n; i>0; i--)

sum=1+x*sum/i ;
cout << "e^x =" << sum << endl ;

}

template <typename T>
void exponential(int n, T x) {

T sum=1.0;
for(int i=n; i>0; i--)

sum=1+x*sum/i;
cout << "e^x =" << sum << endl;

}

Figure 5.15: Our parallel unit tests lead to the generation of more general
solutions using templates. Solutions using templates can pass the unit tests for
several parameter types, while guessing the wrong parameter type can lead to some
errors. Solutions using templates succeed more often, are more likely to appear in
the parallel data we generate and, as a result, in our model’s generations. It leads to
our model generating more templates (three times more often for our online model
trained the longest).
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5.5 Conclusion

In this chapter, we introduced a novel method to grow a parallel corpus for automated
code translation, from completely monolingual data. We leverage multilingual unit
tests to filter good pseudo-labels, improving the model, and in turn the candidate
translations. We show that both offline and online methods substantially improve
the state of the art in unsupervised code translation, with an average improvement of
12.6% points in computational accuracy, and up to 24% points for Python → C++,
corresponding to translation error rate reductions of 25.5% and 35.7% respectively,
without using any unit test generation tool for Python and C++ (exclusively for Java).

Our method would automatically gain from improvements of automatic unit test
generation tools. We could also increase the size of the dataset we generate by using
test creation tools written for other languages in addition to Java, or by generating
tests with EvoSuite on translated examples. Similarly, we could also extract the
semantics of human-written unit tests found in open-source projects to obtain larger,
and possibly higher-quality datasets. In this chapter, we focused on translation
correctness and our parallel example validation criterion was only based on semantics.
It could be supplemented with other requirements, such as a specific code formatting
or the output of linters to generate code verifying arbitrary criteria.
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Chapter 6

Conclusion and perspectives

In this thesis, we developed unsupervised methods for translating between high-level
programming languages. Transformer networks provided us with a general and
versatile architecture, to learn multilingual embeddings of source code, and translate
between C++, Java and Python. We exhibited the shortcomings of previous metrics,
such as the BLEU and exact match scores, and created a new test set and metrics
evaluating the semantics of our translations with unit tests. We showed significant
improvements compared to existing rule-based translators.

Then, we identified that pre-training methods designed for natural languages,
such as MLM, are sub-optimal in the context of programming languages. Hence, we
designed a novel pre-training method for programming languages based on identifier
deobfuscation. Identifier names contain rich semantic information, and our objective
leads the model to understand the meaning of the code. When used together
with random masking schemes, it leads to significant gains on several programming
languages tasks, including code translation.

After improving the model pre-training for programming languages, we decided
to use another one of their distinct properties. Contrarily to natural languages,
source code can be compiled and run. We used an automated unit test creation tool,
to generate datasets of tens of thousands of translation examples. We proposed an
online training method, and a cache mechanism, to use this signal and significantly
improve our unsupervised transcompiler.

Weisz et al. (2022) conducted an experiment in which 32 software engineers
translated code with and without the assistance of our unsupervised translator
described in Chapter 3. They showed that our tool improves the translation quality,
and that the participants overwhelmingly felt like it was useful. Such generative
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models provide a starting point to work with, and can teach new constructs or
standard functions in the target language. However, the programmers also reported
wasting time and feeling frustrated when having to fix bugs in the imperfect outputs
of the program, showing improving neural transcompilers would be needed and
impactful. We identify the following areas for future works:

Constrained generations An important difference between natural and program-
ming languages is that the later have a stricter syntax and better-defined semantics.
Popular languages come with several compilers, linters, and other static analysis
tools, which can find errors in generated code. This information, as well as runtime
data, can be used to filter the outputs of the model. However, these methods signifi-
cantly increase the computational resources and latency at generation time. Other
methods using these tools to retrain the model, or constraining the generations of
auto-regressive models could also be explored.

Parallel data In this thesis, we described only unsupervised methods for source
code translation. Parallel data, composed of aligned code snippets in two pro-
gramming languages, could also be used to either align the representations at the
beginning of training or fine-tune our models. Such data would be expensive to
create manually, since translating functions requires expertise in both the source and
the target languages. The value of existing parallel datasets, such as the validation
and test set that we released and solutions to competitive programming problems,
has still not been estimated for training parallel models. This type of data leads
to improved performance for translating functions from the same domain, but it is
unclear whether they would help translate real-world functions. Noisy alignments
with simple rules could also be explored.

Larger contexts Most machine learning methods for source code—including those
presented in this thesis—consider either files or functions independently. However,
real-world software engineering requires to dive into large codebases. Changes need
to account for the way the codebase is organized, and can often be simplified by using
classes and functions defined in other files. Even with linear attention transformers,
there is a limit to the number of tokens that can be included in the context. Hence,
methods adapting machine learning systems to the context of specific codebases would
require to find another way to encode large contexts. Methods such as hierarchical
models or retrieval could be explored.
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Code translation as a well-specified code synthesis task. Code translation
aims to synthesize a program in the target language, given a program written in
the source language. At the level of the entire program, assuming that the input
domain and the interpreter for the source language are known, it provides a perfect
specification of the problem. The source can even be compiled and run on custom
input, in order to compare its output and complexity to those of the translation.
Hence, systems translating real-world codebases may be significantly easier to evaluate
than those synthesizing code from natural language prompts. The specificity of
programming language prompts also makes code translation systems suitable to test
the capacity of machine learning models to generate programs, independently of their
capacity to disambiguate prompts. Insights from programming languages translation
research could provide directions for more general code synthesis tasks.
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MOTS CLÉS

transcompilation, langages de programmation, synthèse de code, traduction, réseaux de neurones,
apprentissage profond

RÉSUMÉ

Un transcompilateur est un système qui convertit le code source d'un langage de programmation de haut niveau (tel
que C++ ou Python) vers un autre. Les transcompilateurs sont principalement utilisés pour l'interopérabilité et pour
transférer des bases de code écrites dans un langage obsolète (par exemple COBOL ou Python 2) vers un langage plus
moderne. Ils reposent généralement sur des règles de réécriture manuelles, appliquées à l'arbre de syntaxe abstraite du
code source. Malheureusement, les traductions qui en résultent manquent souvent de lisibilité, ne respectent pas les
conventions du langage cible et nécessitent des modifications manuelles pour fonctionner correctement. Le processus
global de traduction prend du temps et nécessite une expertise à la fois dans les langages source et cible, ce qui rend les
projets de traduction de code coûteux. Bien que les modèles neuronaux surpassent considérablement leurs homologues
basés sur des règles dans le cadre de la traduction en langues naturelles, leurs applications à la transcompilation ont été
limitées en raison de la rareté des données parallèles dans ce domaine. Nous proposons des méthodes pour entraîner
des transcompilateurs neuronaux efficaces sans données supervisées.
Les traducteurs de langues naturelles sont évalués avec des métriques basées sur la cooccurrence de tokens entre
la traduction et la référence. Nous remarquons que ces métriques ne capturent pas la sémantique des langages de
programmation. Nous construisons et publions donc une base de données de tests composée de 852 fonctions parallèles,
ainsi que de tests unitaires pour vérifier l'exactitude sémantique des traductions. Nous exploitons d'abord les objectifs
conçus pour les langues naturelles afin d'apprendre des représentations multilingues du code source, et entraînons un
modèle à traduire, en utilisant seulement le code monolingue de projets open source GitHub. Ce modèle surpasse les
méthodes basées sur des règles pour la traduction de fonctions entre C++, Java et Python. Ensuite, nous développons
une méthode de pré-entraînement, amenant le modèle à apprendre des représentations sémantiques du code. Cela
conduit à des performances améliorées sur plusieurs tâches, y compris la traduction de code non supervisée. Enfin, nous
utilisons des tests unitaires automatisés pour créer des exemples de traductions de programmes. Entraîner un modèle
sur ces exemples conduit à des améliorations significatives des performances de nos transcompilateurs neuronaux. Nos
méthodes reposent exclusivement sur du code source monolingue, ne nécessitent aucune expertise dans les langues
source ou cible, et peuvent facilement être généralisées à d'autres langages.

ABSTRACT

A transcompiler, also known as source-to-source translator, is a system that converts source code from a high-level
programming language (such as C++ or Python) to another. Transcompilers are primarily used for interoperability, and to
port codebases written in an obsolete or deprecated language (e.g. COBOL, Python 2) to a modern one. They typically
rely on handcrafted rewrite rules, applied to the source code abstract syntax tree. Unfortunately, the resulting translations
often lack readability, fail to respect the target language conventions, and require manual modifications in order to
work properly. The overall translation process is time-consuming and requires expertise in both the source and target
languages, making code-translation projects expensive. Although neural models significantly outperform their rule-based
counterparts in the context of natural language translation, their applications to transcompilation have been limited due
to the scarcity of parallel data in this domain. In this thesis, we propose methods to train effective and fully unsupervised
neural transcompilers.
Natural language translators are evaluated with metrics based on token co-occurences between the translation and the
reference. e identify that they do not capture the semantics of programming languages. Hence, we build and release a
test set composed of 852 parallel functions, along with unit tests to check the semantic correctness of translations. We
first leverage objectives designed for natural languages to learn multilingual representations of source code, and train a
model to translate, using source code from open source GitHub projects. This model outperforms rule-based methods for
translating functions between C++, Java, and Python. Then, we develop an improved pre-training method, which leads
the model to learn deeper semantic representations of source code. It results in enhanced performances on several tasks
including unsupervised code translation. Finally, we use automated unit tests to automatically create examples of program
translations. Training on these examples leads to significant improvements in the performance of our neural transcompilers.
Our methods rely exclusively on monolingual source code, require no expertise in the source or target languages, and
can easily be generalized to other programming languages.

KEYWORDS

transcompilation, programming languages, program synthesis, translation, neural networks, deep learning,
transformer
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