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Résumé

La prédiction de systèmes dynamiques non linéaires et chaotiques, comme la météo ou le cycle de l'eau, s'appuie sur la combination de données observées et de modèles numériques. L'assimilation de données (AD) par ensemble est une méthode majeure pour sélectionner les trajectoires du système et compenser les effets de rétroaction non linéaires. Elle s'appuie sur la propagation d'un ensemble de réalisations de modèles perturbés qui est enrichi par l'intégration d'observations. La réalisation de l'AD à diverses échelles est exigeante en terme de calcul. Par exemple, il faut capturer les effets géospatiaux continentaux et mondiaux avec une haute résolution pour prédire avec précision leurs impacts sur les petites échelles. Cela nécessite des super-ordinateurs exploitant des centaines de milliers de noeuds de calcul, interconnectés par des réseaux à haut débit. La mise à l'échelle efficace des algorithmes d'AD sur de telles machines nécessite des processus fortement parallélisés spécialement conçus pour éviter la surcharge des ressources partagées. La tolérance aux pannes est également importante. La probabilité de défaillances matérielles et numériques augmente avec la quantité de ressources utilisées et le nombre d'ensembles simulés.

Les cadres d'AD existants utilisent le système de fichiers comme stockage intermédiaire pour fournir un processus élastique et tolérant aux pannes. Ce procédé est ralenti à grande échelle par la surcharge du système de fichiers. Une autre approche courante s'appuie sur un code monolithique qui souffre d'un déséquilibre de charge intrinsèque et est très sensibles aux fautes numériques et matérielles.

Cette thèse présente un système fortement parallèle, équilibré dynamiquement en charge, élastique et tolérante aux pannes, lui permettant d'exécuter efficacement l'AD par ensemble. Nous étudions deux classes d'algorithmes d'AD, le filtre de Kalman d'ensemble (EnKF), et l'algorithme de filtre particulaire avec rééchantillonnage d'importance séquentiel (SIR). Nous validons notre approche dans des conditions réalistes. Des données de capteurs d'eau souterraine sont assimilées à l'aide d'une simulation hydrologique régionale utilisant le modèle ParFlow. Nous exécutons efficacement EnKF avec jusqu'à 16 384 membres sur 16 240 coeurs de calcul. Une comparaison avec une solution de l'état de l'art, avec 2 500 membres sur 20 000 coeurs, montre que notre approche est environ 50 % plus rapide. Nous présentons également des améliorations de performance en exécutant le filtre de particules avec SIR à grande échelle. Ces expériences assimilent des observations de couverture nuageuse avec 2 555 membres, correspondant ici à des particules, en exécutant le modèle de weather research and forecasting (WRF) sur le domaine européen. Afin de gérer les nombreuses expériences réalisées sur différents superordinateurs, nous avons mis en place une configuration spécifique que nous présentons également.

vii Introduction 1

Many systems whose understanding has a high impact on mankind, like weather and climate, streamflow in the water cycle or biological relations like the predator-prey cycle are governed by chaos. In many other fields, reaching from heart rhythm irregularities to traffic jam prediction, chaotic conditions can be found too. These systems are driven by inner feedback loops that create very different outcomes although using very similar initial conditions. The most popular example of such chaotic behavior is the butterfly effect coined by the meteorologist and mathematician Edward Norton [START_REF] Lorenz | Predictability: Does the Flap of a Butterfly's Wings in Brazil Set Off a Tornado in Texas?[END_REF]. As a metaphor, he claims that the trajectory of a tornado may be influenced by the wing flaps of a distant butterfly several weeks earlier.

The sensitivity to initial conditions that all those systems have in common renders their use for prediction difficult. Given a slightly perturbed input, a model will produce a more perturbed output due to the chaotic nature of the underlying system. To perform predictions further in time, typically, the model is applied on its own (perturbed) output over and over again, strongly amplifying inaccuracy. To avoid this, the intermediate outputs may be corrected using observation data. This process is called Data Assimilation (DA).

It is used in a manifold of situations, not only for chaotic systems that motivated its development at the beginning. DA is applied from operational weather forecasts using more than hundred thousand compute cores1 , to sensor fusion for smartphone's inertial measurement units (IMUs) detecting how the gadget is oriented in 3D space by using only a very limited amount of compute resources [START_REF] Yan | A Modified Kalman Filter for Integrating the Different Rate Data of Gyros and Accelerometers Retrieved from Android Smartphones in the GNSS/IMU Coupled Navigation[END_REF]. While in weather forecasting noisy data from satellites, airplanes, ground measuring stations and much more is assimilated every few hours, smartphone IMUs combine results of simple Newtonian equations with measurements from accelerometers, gyroscopes and more, many times per second.

Model resolutions need to be able to capture important small scale effects impacting larger scales. Thus, modeling continental, or even global scale, Earth science problems, for instance, for numerical weather prediction (NWP), demands a large amount of computation. Typically such models need to run on supercomputers. The fastest supercomputers are capable of performing multiple petaflops up to exaflops (more than 10 15 -10 18 floating-point operations per second) (TOP500 2022). For this purpose, such machines leverage up to millions of compute cores that must be used in parallel to reach peak performance. Supercomputer software must be carefully created, keeping in mind load balancing, synchronization, and access to shared resources like the file system of all the parallel running compute cores, to name just a few requirements to reach top performance. This holds true also for Earth science modelling even if typically less resources (ten to hundred thousand cores) are used [START_REF] Kurtz | TerrSysMP-PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land surfacesubsurface model[END_REF][START_REF] Bauer | The quiet revolution of numerical weather prediction[END_REF]. DA at this large scale becomes increasingly challenging. While model states get larger since their resolution increases, also more observations are available for assimilation since the advent of Big Data [START_REF] Bauer | The quiet revolution of numerical weather prediction[END_REF][START_REF] Bauer | The digital revolution of Earth-system science[END_REF]H. Jain and R. Jain, 2017). Mankind starts logging all kinds of data -be it on personal devices like smartphones and smartwatches, cars, and buildings up to new satellites for remote sensing. All this differently sourced data shall improve model output relying on DA.

Bruno Raffin. The work presented in Chapter 5 is a cooperative work together with Kai Keller (Barcelona Supercomputing Center), but also Yen-Sen Lu (Forschungszentrum Juelich), Bruno Raffin (Inria Grenoble) and Leonardo Bautista-Gomez (Barcelona Supercomputing Center). It was submitted to the IEEE Cluster 2021 conference but got rejected. A revised version is under active development. We encountered difficulties to publish our work. One reason is finding publishers on the interface between computer science and Earth science, since often audiences have either a Earth science or a computer science background and fundamentals of the other discipline must be introduced carefully -but are necessary to understand the principles motivating our proposals.

This work has been presented at the following international events, based on peerreviewed abstract selection:

• International Symposium on Data Assimilation2 (2022): "Melissa-DA: An Elastic and Fault-Tolerant Large-Scale Online Data Assimilation Framework"

• 19th Workshop on high performance computing in meteorology3 (2021): "Elastic Large Scale Ensemble Data Assimilation with Particle Filters for Continental Weather Simulation"

• EnKF Workshop 20214 : "A new framework for elastic ensemble-based data assimilation at large-scale"

This thesis is financed by EoCoE-2 -the Energy-oriented Center of Excellence. Many collaborations, be it with the community of the flagship codes WRF or ParFlow, as well as the collaborations with the FTI team, have originated from EoCoE-2 meetings discussions.

The manuscript is structured as follows: Chapter 2 introduces the bases of DA. We then examine other research done in the field of large scale DA and in situ computing in Chapter 3. Relying on the presented methods and technologies, we introduce our framework to improve the large scale performance of ensemble Kalman filters (EnKF) in Chapter 4. Chapter 5 develops an extension of our proposal to particle filters that allow to perform DA in cases where EnKF struggles. To validate our approaches, large scale experiments on HPC platforms are performed. In Chapter 6 we discuss methodological considerations for such experiments, before a conclusion is drawn and perspectives are elaborated in Chapter 7.

analysis state x a background state x b propagation phase update phase Figure 2.1: Data Assimilation flow. One propagation phase followed by one update phase is called assimilation cycle.

Overview

Data Assimilation (DA) tries to correct system state estimates returned by numerical models of typically chaotic systems, using observation data [START_REF] Wikle | A Bayesian tutorial for data assimilation[END_REF]. The observation data is assimilated into the model. The model state can represent the atmospheric state in Numerical Weather Prediction (NWP), the soil moisture field when calibrating hydrological groundwater models or any other simulated measure that shall be corrected by DA. Observations in the geoscientific domain typically contain a mix of values from remote sensing instruments (satellites, airplanes) and in situ observations by ground-based observatories, buoys, airplanes, etc.

Let us introduce the formalism used in DA. Numerical models operate on the system state x ∈ X ⊆ R n , n ∈ N that cannot be directly observed. Consider a simple case of a model M, i.e., a function, that, from an input state x t , computes a new state

x t+1 , also called the background (or forecast) state in DA. The background state x t+1 represents a new state at a point further in time (t + 1):

x t+1 = M(x t ).

(2.1)

In the standard DA formalism, the model operator M fulfills the Markov property, taking the present state x t as its only input to produce the next state x t+1 . The calculation of such background states happens during the propagation phase.

The output state x t+1 is distorted by numerical errors, initial error on x t , intrinsic error due to the model itself, etc. Following the standard DA notations, we now remove the subscript t + 1 and replace it with b referring to the background state x b .

Let us assume the sum of these errors is unbiased (zero average). Let us also consider that time t + 1 corresponds to a point in time where observation data y t+1 is available.

Observations are provided by another source, typically a scientific measurement instrument. The observations are not necessarily of the same dimension, aligned with, or even of the same nature as the model state. An observation operator H t is introduced to project a model state vector x, into the observation space at time t: ỹt = H t (x).

(2.

2)

The projection is usually defined this way as observation data are often of lower dimension than the model state. Like the background error, the observation error is also considered unbiased. Let the observation at time t be the projection of the true state plus an error ε t with known probability density function (PDF) P (ε t ):

y t = H t (x true t ) + ε t . (2.3)
Given the background state x b from the last model iteration, the operator H t and the observations y t , the corrected system state, called analysis state x a , can be computed. The calculation of meaningful analysis states is the core goal of DA. Assuming only one observation, the analysis state x a will be between background state x b and the observation y t (H t (x a ) will be between H t (x b ) and y t ). If it is closer to the observation or the background state depends on the accuracy of each of them represented by background and observation error terms. Computing the analysis state x a is called the update phase. One propagation phase followed by one update (or analysis) phase makes for one assimilation cycle (see Figure 2.1). For the next propagation phase, the model computes the state at time t+2 from the analysis state x a , and not from the background state x b (or x t+1 ). Note that not only the observations y t are time-dependent, but also the observation error, and the observation operator H t . For readability, the subscript t is omitted in most of the following equations.

Two main branches of methods to calculate the analysis state x a exist, variational and statistical methods. While variational methods only provide corrected system states, i.e., analysis states, as output (e.g., Tomorrow it rains.), statistical methods additionally return uncertainty measures (e.g., rain forecast probability, Tomorrow it rains with 60 % probability.). Often the latter requires higher computational effort, but hybrid methods exist to combine the advantages of both.

We will briefly introduce variational methods (Section 2.2) that will help to give a basic understanding of the challenge behind DA. Then, we go into more detail in Section 2.3, explaining statistical methods which were implemented in the scope of this thesis.

For additional information on DA and methods, we recommend the reader the textbook by [START_REF] Asch | Data assimilation: methods, algorithms, and applications[END_REF].

Variational Data Assimilation

In this section, we dive briefly into variational DA. We will discuss 3D-Var, the most popular variational DA method. More details on this topic can for instance be found in [START_REF] Courtier | The ECMWF implementation of three dimensional variational assimilation[END_REF][START_REF] Lorenc | The Met. Office global threedimensional variational data assimilation scheme[END_REF] As mentioned, the challenge of DA consists in finding the analysis state x a . Thus, observations and model forecasts must be taken into account. The analysis state will have minimal distances to the model forecast and the observations, where both distances are weighted by their uncertainty. When, for instance, the model error is larger than the instrument error of a specific state variable, the variable is shifted closer to the instrument's value in the analysis state. Assuming model and observation errors are unbiased, i.e., have zero mean, and follow Gaussian noise, they can be captured by their covariance only.

In 3D-Var, the model error covariance matrix is denoted as B, and the observation error covariance matrix is denoted as R. These matrices are used to weight the distance of a possible analysis state towards observations y and model output x b . This leads to the 3D-Var cost function:

J(x) = x -x b T B -1 x -x b + y -H(x) T R -1 y -H(x) .
(2.4)

Note that x must be transformed into observation space using H so that the distance to the observations is well defined: y -H(x). 3D-Var defines the analysis state x a as the result from the minimization of J(x):

x a = argmin x J(x).

(2.5)

Typically, gradient descent is used to find the analysis state. Thus, the cost function must be differentiated. This is a major constraint of 3D-Var. The cost function needs to be formulated in a way that allows automatic differentiation, or its adjoint must be given manually. Especially advanced observation operators H may have no easily expressible adjoint.

Let us consider a linear observation operator H(x) ≡ Hx. It follows:

• The analysis state estimate x a is linear in the observed data set. To prove this, one reformulates the minimization problem in Equation (2.4) as d dx J(x) = 0, which is a linear system.

• x a is an unbiased estimate, E(x a ) = E(x true ), since we assume that observation and model errors are Gaussian and unbiased.

• The estimate x a is a best estimate having minimal variance among all linear and unbiased estimates as being the result of Equation (2.5).

Thus, the analysis state x a , retrieved by Equation (2.5), is the best linear unbiased estimate (BLUE) for x true .

Note that 3D-Var only permits assimilating observations every assimilation cycle. Measurements that fall to points in time in between need to be interpolated accordingly. The 4D-Var extension tackles this issue. Spatial and temporal distributions of observations are taken into account. For this purpose, the model becomes part of the 4D-Var cost function. To perform gradient descent, an adjoint of the model is required.

The classical formulation of variational DA assumes stationary model and observation errors. But these errors are not stationary as they vary over time. Weather models, for instance, can well predict calm atmospheric conditions one day, while the next day's turbulent situations are much more error-prone to predict. As we will see in the following chapter, statistical DA can handle such flow-dependent errors.

2.2 Variational Data Assimilation

Statistical Data Assimilation

In the following, statistical DA is discussed. The methodology, vocabulary, and presented formalism will serve for the rest of this thesis, where statistical DA at large scale is considered. In comparison to variational DA, statistical DA allows the tracking of forecasts in a probabilistic way. Instead of one system state, a probability density function (PDF) P (x a ) for the analysis state is obtained.

Statistical DA is based on Bayesian statistics. Events occur with a certain probability dependent on prior events. Following Bayes' theorem, P (A|B)P (B) = P (A ∩ B) = P (B|A)P (A), (2.6) the probability of events A and B coinciding, P (A ∩ B), can be calculated either by multiplying the probability of B by the conditional probability of A with the prior B or vice versa. Statistical DA searches the posterior PDF for the state vector x under the condition that y is observed. This matches the PDF of the analysis state. With Equation (2.6), this can be formulated as P (x|y) = P (y|x)P (x) P (y) .

(2.7) P (y) can be seen as a normalization factor, leading to: P (x|y) ∝ P (y|x)P (x).

(2.8) P (x) represents the knowledge of the simulated state x b . P (y|x) denotes the probability to measure y, given x would be the true state.

P (x a ) ∝ P (y|x b )P (x b ).

(2.9) P (y|x b ) can be obtained putting observations y in the error distribution (P ε ) of the used measurement instruments. When P (x b ) is known, the analysis state can be computed. This is the DA update phase.

Kalman Filter

The Kalman filter [START_REF] Kalman | A New Approach to Linear Filtering and Prediction Problems[END_REF] uses Equation (2.9) for DA in a setting with Gaussian observation and model error distributions. It assumes linear model and observation operators. Kalman filters have their application in many fields of engineering and science, be it for sensor fusion (S.-L. [START_REF] Sun | Multi-sensor optimal information fusion Kalman filter[END_REF] or to de-noise any kind of signals [START_REF] Lakshmanan | Kalman Filtering Technique For Video Denoising Method[END_REF]. We will introduce the Kalman filter in the following for the multidimensional case as it is the base for the ensemble Kalman filter (EnKF), a DA method that is widely used for large scale applications as those considered in this thesis.

Let n denote the dimension of the system state x ∈ R n , and let m denote the dimension of the observation vector y ∈ R m . Observation error and background states are represented by multivariate normal distributions. In n dimensional space such a distribution is defined as .10) by its mean µ ∈ R n and its covariance matrix Σ ∈ R n×n . The PDF for observation and background states are identified as follows y ∼N (y, R), and (2.11)

N (µ, Σ). ( 2 
x b ∼N (x b , P b ).
(2.12) P ∈ R n×n denotes the error covariance matrix of the state estimate. The indices b and a denote the background error returned by the last propagation phase or the analysis error updated by the update phase. The covariance matrix of the observation error is denoted R ∈ R m×m .

The multiplication of two multivariate normal distributions leads to another multivariate normal distribution (after normalization). Thus also the analysis state PDF P (x a ) derived via Equation (2.9) follows the same distribution P (x a ) ∼ N (x a , P a ), where (2.13)

K = P b H T HP b H T + R -1 , (2.14) xa = xb + K (y -Hx b ) , (2.15) P a = (I -KH) P b . (2.16)
The calculation of its mean xa and covariance P a define the update phase of the Kalman filter. Using multivariate normal distributions and a linear observation operator H, the increment between analysis and update state PDF is proportional to the innovation, the difference between observations and background state y -Hx b . The factor of proportionality is expressed as the Kalman gain matrix K ∈ R n×m . K weights the uncertainty of the model results (background states) against the uncertainty of the observations.

The analysis state vector xa returned by the Kalman filter is equivalent to x a calculated by 3D-Var (Section 2.2) under the same assumptions: normal distributed observation and model error distributions with linear operators M and H. Thus, the Kalman filter update phase also calculates the BLUE.

Assuming a linear model operator, the calculation of the DA propagation phase is analytically possible. The propagation of a linear model can be expressed as the matrix multiplication: (2.17) with the matrix M ∈ R n×n being the model operator. Transforming random variables that follow a multivariate normal distribution N (x a , P a ) by matrix multiplication is straightforward:

x t+1 = Mx t ,
xb = Mx a , (2.18)
The propagation of the covariance matrix P a is done by:

P b = MP a M T . (2.19)
Note that Kalman filtering is also successfully used in settings with non-linear model and observation operators or non-Gaussian error PDFs, when good linear and Gaussian approximations exist (Extended Kalman Filter, Jazwinski, 1970). But this is not always the case. Especially in chaotic settings models and observation operators can hardly be linearized.

Current geoscience models that are subject to DA, as the ones presented in Chapter 1, are executed on state vectors with millions of entries. Running the Kalman filter at this scale is hardly possible as the calculation and memory necessary to represent the system covariance P ∈ R n×n grows quadratically in the number of state dimensions n for the Kalman filter.

The ensemble Kalman filter, the Monte Carlo variant of the Kalman filter, which is presented in the following section, circumvents the necessity of linear operators and the direct calculation and representation of the covariance matrices.

The Ensemble Kalman Filter

We introduce the ensemble Kalman filter (EnKF) as a variant of the Kalman filter [START_REF] Evensen | Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[END_REF][START_REF] Evensen | Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[END_REF][START_REF] Houtekamer | Data assimilation using an ensemble Kalman filter technique[END_REF]. The Kalman filter fails in high dimensional spaces. The storage needed for P grows quadratically with the number n of degrees of freedom of the system state. Typical models used with DA, like ParFlow and WRF that we will experiment with in Sections 4.3 and 5.2 have a model state vector with millions of dimensions. This leads to state error covariance matrices P that cannot be efficiently handled anymore in most computing facilities. The EnKF can solve DA problems in high dimensional spaces using a Monte Carlo approach. Instead of expressing the system state covariances explicitly, covariances are sampled stochastically.

An ensemble of M ∈ N perturbed model states is propagated. The covariance estimator of the ensemble of propagated states is given by: (2.20) where < x i b > denotes the mean over all members i ∈ [M ]:

P b = 1 M -1 i∈[M ] (x i b -< x i b >)(x i b -< x i b >) T ,
< x i b >= 1 M i∈[M ] x i b .
(2.21)

Statistical Data Assimilation

The terms used to calculate the Kalman gain K from Equation (2.14) can be rewritten as: (2.22)

P b H T = 1 M -1 i∈[M ] (x i b -< x i b >)(H(x i b )-< H(x i b ) >) T ,
HP b H T = 1 M -1 i∈[M ] (H(x i b )-< H(x i b >)(H(x i b )-< H(x i b ) >) T .
(2.23)

Then P (x a ) is obtained analogously to the Kalman filter following Equations (2.13) to (2.15). In contrast to the Kalman filter, the model error is estimated by the ensemble. Thus, P a does not need to be propagated, removing the constraint to linear models. Plugging Equations (2.22) and ( 2.23) into Equation (2.14), EnKF avoids the costly explicit calculation and representation of the covariance P.

Furthermore, EnKF circumvents the transposed formulation of the observation operator H. Only the forward operator is used. These are major advantages compared to the classical Kalman filter and allow EnKF to be applied in situations where operator linearization is impossible.

To summarize, EnKF follows these steps (Figure 2.2):

1. An ensemble of M states (members)

(x i a /i ∈ [M ]
), statistically representing the assimilated state, is propagated by the model M. The obtained states are the background states

(x i b /i ∈ [M ]).
For the first assimilation cycle, the states are initialized from an ensemble of perturbed states. Later, they correspond to the analysis states resulting from the previous assimilation cycle.

2. The Kalman gain K is calculated from the background error P b and the observation error R, inserting Equations (2.22) and (2.23) in Equation (2.14).

3. Then, for each member state i, multiply the Kalman gain K with the innovation y -H(x i b ) and add to the background states to obtain the new ensemble of analysis states

x i a = x i b + K • y -H(x i b )
4. Start over with the next assimilation cycle (step 1).

Various EnKF variants exist. The localized version, LEKF, for example, allows to speed up the covariance matrix estimation since covariances between spatially distant state vector entries are set to zero [START_REF] Ott | A local ensemble Kalman filter for atmospheric data assimilation[END_REF]. Ensemble transform filters like the local ensemble transform filter (LETKF) reduce necessary computations further [START_REF] Hunt | Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter[END_REF]. The different variants follow the same data flow. An ensemble of states is propagated and needs to be gathered at a central point to prepare for the next assimilation cycle. But varying calculations to transform the ensemble of background states into analysis states are used. Since this thesis is concerned with data flow optimization, we do not detail further the different variants and how they transform background into analysis states. In Chapter 4 we present our approach to executing EnKF efficiently at the large scale. The integration of all these variants in our proposal is straightforward too.

EnKF and its variants have the limitation that probability density functions are only captured by their first two momentums, mean and variance. Especially for some observation errors, such simple statistics may not capture the error distribution imposed by measurement instruments. Furthermore, state updates produced by EnKF are linear in the innovation vector, which might be a miss-fit for very chaotic systems. A further type of DA methods, called particle filters, circumvents some of these limitations. We present particle filters in the next section.

The Particle Filter

Particle filters are another ensemble-based DA method. They circumvent the Gaussian assumption. Following the Monte Carlo approach, state PDFs are directly represented from histograms formed by members, also called particles. The different particles are weighted depending on their alignment with the observations. The weight w i,t of particle i is proportional to the probability that particle i equals the observed system state. Weights are computed comparing particles and observations using the observation error distribution P ε :

w i,t = P (y t |x i,t )P (x i,t ) = P ε y t -H(x i,t ) w i,t-1 . (2.24)
At the beginning, all particle weights are initialized equal: .25) To convert the weighted particles into a PDF, the particle weights need to be normalized so that they sum up to one:

w i,0 = 1 M . ( 2 
ŵi,t = 1 M P (y t |x i,t ) P (y t ) ≈ w i,t j∈[M ] w j,t , (2.26)
where ŵi,t is called normalized weight of the i-th particle at time t. Then the analysis state PDF can be constructed according to Equations (2.7) and (2.9):

P (x a ) = P (y|x)P (x) P (y) = i∈[M ] ŵi,t δ(x t -x i,t ), (2.27) 2.3 Statistical Data Assimilation
where δ is the Dirac measure. Thus, the analysis state PDF can be calculated at each update phase.

Particle filters suffer from ensemble degeneration and weight collapse [START_REF] Van Leeuwen | Particle filters for high-dimensional geoscience applications: A review[END_REF], see also Figure 2.3). All particles spread more and more into the multidimensional space while the variance of the weights increases. Ultimately, only one particle has a normalized weight significantly differing from zero, rendering the analysis state PDF meaningless.

Sequential Importance Resampling (SIR)

The classical approach against ensemble degeneration consists in regularly resampling the particles based on their importance (SIR, Sequential Importance Resampling, [START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estimation[END_REF][START_REF] Liu | A Theoretical Framework for Sequential Importance Sampling with Resampling[END_REF]. A new ensemble of M particles is drawn randomly, i.e., resampled, from the particles, each with its probability ŵi,t . This is also referred to as multinomial resampling. Low weighted particles are discarded, while high weighted ones can become the parent of multiple new particles (Figure 2.4).

After resampling, each resulting particle gets its weight reset to w i,t = 1 M . Particles inheriting the same parent may need to become stochastically perturbed if the model does not contain a stochastic component itself. Otherwise, all particles inheriting the same parent particle would propagate to the same state.

Different flavors of SIR exist. Some perform a resampling step after each propagation phase, while others make this dependent on criteria like the variance of the weights. For our use cases, we leverage SIR with resampling after each propagation phase throughout this work.

Residual Resampling (RR)

For resampling, the standard SIR particle filter draws particles at random (multinomial resampling) with respect to their weights. An alternative to multinomial resampling is residual resampling (RR) as described by Bolic et al., 2003. First, all particles that are expected to be redrawn according to their normalized weights are resampled deterministically. A particle is expected to be redrawn if its normalized weight, i.e., the probability to redraw the particle, leads to at least one expected occurrence when redrawing the full ensemble of M particles: ŵi,t M > 1.

( Formulated differently, such particles are drawn with a probability larger 1 M . These particles are redrawn m i,t times, with m i,t = ŵi,t M .

(2.29)

Second, to keep the ensemble size constant, M r = Mi m i,t remaining particles are chosen similarly to multinomial resampling performed in the standard SIR. The normalized residual weights ŵr i,t define the probability to redraw the particles. They are calculated from the residual weights w r i,t , analogously to Equation (2.26):

w r i,t := ŵi,t - m i,t M , (2.30) ŵr i,t = w r i,t j∈[M r ] w j,t
.

(2.31)

The presented resampling methods allow to assimilate observations in the ensemble of particles without manipulating the particle state vectors. Only the composition of the ensemble is updated. Many other resampling techniques apart from residual resampling exist to perform particle weight (importance) based resampling. Surveys like the one of [START_REF] Li | Resampling Methods for Particle Filtering: Classification, implementation, and strategies[END_REF] introduce them extensively. In Chapter 5 we will consider how to execute them efficiently at large scale.

In contrast, particle filter variants exist that do change the particle state vectors to perform the state update. Transportation particle filters, for instance, transform background particle states into analysis states by modifying the state vector entries, much like EnKF variants do [START_REF] Reich | A non-parametric ensemble transform method for Bayesian inference[END_REF]. They can run efficiently at large scale following the approaches presented for the EnKF context in Chapter 4.

For an extensive review of different particle filter variants covering also combined forms of particle filters and EnKF or variational methods, refer to van Leeuwen et al., 2019.

Discussion

The various DA methods are suited to different use cases. Textbooks and survey articles like the ones by [START_REF] Asch | Data assimilation: methods, algorithms, and applications[END_REF][START_REF] Evensen | Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[END_REF][START_REF] Van Leeuwen | Particle filters for high-dimensional geoscience applications: A review[END_REF][START_REF] Vetra-Carvalho | State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems[END_REF][START_REF] Carrassi | Data Assimilation in the Geosciences -An overview on methods, issues and perspectives[END_REF] give an overview of these methods.

Variational methods convince with their compute efficiency. Only a cost function needs to be optimized. Statistical ensemble-based methods, in contrast, provide flow-dependent model errors and the possibility to rely on large ensembles that are expected to run efficiently on upcoming exascale machines [START_REF] Schulthess | Reflecting on the Goal and Baseline for Exascale Computing: A Roadmap Based on Weather and Climate Simulations[END_REF]. Furthermore, they do not require the definition of an adjoint model or observation operators. EnKF and particle filters are the most common statistical ensemble-based DA methods. Many variants of each of them exist. Together, they cover a wide range of applications. Thus, we focus on these two filtering methods in the following.

EnKF variants enable DA with a comparably small number of members but approximate model and observation errors as Gaussians which is not sufficient in several cases. Gaussians, for instance, cannot accurately capture the uncertainty of positive definite measures like precipitation [START_REF] Lien | Effective assimilation of global precipitation: simulation experiments[END_REF]. Particle filters do not approximate state and observation errors by any parametric, e.g., Gaussian PDF, permitting them to handle non-Gaussian PDFs. But particle filters necessitate more members, i.e., particles, to solve the same DA problem as EnKF at comparable accuracy [START_REF] Pasetto | Ensemble Kalman filter versus particle filter for a physically-based coupled surface-subsurface model[END_REF]. The number of necessary particles is growing exponentially with the effective problem dimension, while the necessary member count for EnKF filters grows linearly in the effective problem dimension [START_REF] Majda | Performance of Ensemble Kalman filters in large dimensions[END_REF].

Shifting system state vectors as performed by EnKF during the update phase is not always possible, especially in some non-linear settings, where it affects important invariants like energy or radiation budgets. The update phase of SIR particle filters, in contrast, conserves the state integrity of every particle. No state corrections at all, possibly unphysical, are introduced. Localized particle filters, e.g., as proposed by Poterjoy, 2016 circumvent the exponential growth in the particle count to adapt to systems of higher dimensions. This enables their use for non-linear high-dimensional problems, outperforming EnKF in such cases as shown by Poterjoy and J. L. 

Large Scale Data Assimilation

Methods like the ensemble Kalman filter [START_REF] Evensen | Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[END_REF][START_REF] Houtekamer | Data assimilation using an ensemble Kalman filter technique[END_REF][START_REF] Burgers | On the Analysis Scheme in the Ensemble Kalman Filter[END_REF][START_REF] Zhang | Multivariate hydrological data assimilation of soil moisture and groundwater[END_REF], 3D/4D-Var [START_REF] Lorenc | The Met. Office global threedimensional variational data assimilation scheme[END_REF][START_REF] Courtier | A strategy for operational implementation of 4D-Var, using an incremental approach[END_REF] or particle filter [START_REF] Van Leeuwen | A Variance-Minimizing Filter for Large-Scale Applications[END_REF], are most relevant to run at large scale. While giving accurate results, ways to parallelize them on HPC systems exist -be it by parallel propagation of different ensemble members, using parallel algorithms for matrix computations, or relying on parallelized model adjoint computation to minimize a cost function via gradient descent. Thousands of compute cores are leveraged for model propagation and to assimilate state vectors with millions of degrees of freedom. Thus, in this section variational methods, EnKF, and particle filter on existing large scale use cases are discussed.

Variational Data Assimilation

As explained in Section 2.2, variational DA (e.g., 3D-Var and 4D-Var) relies on minimizing a cost function evaluating the difference between the model state and the observations. Minimizing the cost function is typically done via gradient descent using the adjoints of the observation operator. When using 4D-Var, an adjoint of the model operator is necessary too. Although using gradient descent for the minimization is compute efficient, necessary adjoints are not always available or may require significant efforts not always accessible. Nowadays, large scale DA applications as used by Numerical Weather Prediction (NWP) operators typically rely on variational DA. For instance, the China Meteorological Administration uses 4D-Var to assimilate about 2.1 million daily observations into a global weather model with more than 7.7 million grid cells. As in L. [START_REF] Zhang | The operational global four-dimensional variational data assimilation system at the China Meteorological Administration[END_REF], the DA itself is parallelized on up to 1,024 processes. But it is unclear if the possibility to execute statistical, ensemble-based methods with an increasing number of ensemble members will outperform variational methods in the future since the parallelization of variational methods on exascale is more challenging.

Statistical Data Assimilation

Statistical DA, as introduced in Section 2.3, takes a different approach relying on Bayesian statistics [START_REF] Asch | Data assimilation: methods, algorithms, and applications[END_REF][START_REF] Evensen | Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[END_REF]. An important subcategory are ensemble-based methods. These run an ensemble of models to compute an estimator of some statistical variables used to express the analysis state PDF. The ensemble-based approach consumes more compute power as the number of members needs to be large enough for the estimators to be relevant, but stands for its simplicity as it only requires the model and observation operator without adjoints as for the variational approach.

But scaling the ensemble size can be challenging, especially when the model is already time-consuming and requires its own internal parallelization. Nevertheless, these methods are expected to become easier to access in the future regarding advances in Big Data and high performance computing (TOP500 2022; [START_REF] Reed | Exascale computing and big data[END_REF].

Two main approaches exist, identified as file-based (offline) and online. For the file-based approach, the ensemble member's simulations, i.e., the member state propagations, are executed independently after loading each member's input from the file system. The resulting background states are saved back to files. Once all members executed for that assimilation cycle, an analysis code runs to load the observations and the states from the different members to produce the analysis states, also saved to files. The members can be started again from these states for the next assimilation cycle. This file-based approach is usually simple to set up, elastic, and fault-tolerant. All the files act as checkpoints isolating the impact of a failing component and making a restart easy. The number of concurrent simulations can vary from cycle to cycle depending on the supercomputer availability, providing elasticity at the granularity of a member. This approach is adopted by the EnTK (Ensemble Toolkit) framework [START_REF] Balasubramanian | Harnessing the Power of Many: Extensible Toolkit for Scalable Ensemble Applications[END_REF], used to manage up to 4,096 members for DA on a molecular dynamics application [START_REF] Balasubramanian | Adaptive Ensemble Biomolecular Applications at Scale[END_REF] [START_REF] Sun | Developing a common, flexible and efficient framework for weakly coupled ensemble data assimilation based on C-Coupler2.0[END_REF], rely on this approach. PDAF, for instance, has been used for the regional Earth system model TerrSysMP using EnKF with up to 256 members [START_REF] Kurtz | TerrSysMP-PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land surfacesubsurface model[END_REF]. DAFCC1, Dart, and PDAF have an offline and online mode. DAFCC1, uses the existing C-Coupler2 to manage the data transfer between member propagation and Assimilation update. This is a straightforward way to parallelize the computations of the assimilation update and the member propagations differently.

Hybrid Methods Mixing Statistical and Variational Methods

As mentioned in Chapter 2, hybrid methods combining variational and statistical DA approaches exist. In some situations, they allow less compute intense calculations but provide flow-dependent error terms [START_REF] Bannister | A review of operational methods of variational and ensemble-variational data assimilation[END_REF]. Hybrid methods are used by some NWP actors. The ECMWF (European Centre for Medium-Range Weather Forecasts), the British Met office (Meteorological Office) and the Canadian Meteorological Centre rely on such approaches, using hundreds of ensemble members, to improve the estimate of the flow-dependent model error, leading to more accurate predictions [START_REF] Bonavita | A Strategy for Data Assimilation[END_REF][START_REF] Clayton | Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office[END_REF][START_REF] Houtekamer | Using the hybrid gain algorithm to sample data assimilation uncertainty[END_REF]. Hybrid methods are currently only rarely supported in existing frameworks. Only the latest PDAF release 2.0 from December 2021 supports some variants2 .

PDAF -An Existing Large Scale DA Framework

To detail the functioning of existing solutions for large scale DA, and, since we make use of PDAF in our proposed framework, this section presents PDAF more closely. At its core, PDAF provides a library with functions to perform the update phase of different DA methods. 

Anytime Particle Filters, Island Particle Filters and Adaptive Ensemble Sizes

This section presents active research, trying to remove the resampling synchronization point persistent in particle filters. It also elaborates propositions to control the ensemble size for a better trade-off between spent compute power, over-and undersampling. The section ends up with a quick discussion how such approaches might be extended to EnKF variants.

Ensemble-based DA and especially particle filtering may require a large number of ensemble members (particles) to avoid undersampling. The necessary ensemble size grows exponentially with the effective system size [START_REF] Snyder | Performance Bounds for Particle Filters Using the Optimal Proposal[END_REF][START_REF] Fearnhead | Particle Filters and Data Assimilation[END_REF]van Leeuwen, 2009). This effect is known as curse of dimensionality. For problems with millions of dimensions, as typical for geoscience applications [START_REF] Van Leeuwen | Particle filters for high-dimensional geoscience applications: A review[END_REF], large amounts of compute resources are necessary. Different particle propagations can be executed independently from each other on different resources in parallel (space sharing). Nevertheless, the assimilation update (resampling) remains a necessary synchronization point and a source of scaling inefficiency. Different approaches exist to loosen the synchronization implied by resampling in particle filters. They are an active topic of research. Anytime or asynchronous particle filter techniques, for instance, allow to decide which particle is reused or thrown away at any time, asynchronously, one by one. [START_REF] Paige | Asynchronous Anytime Sequential Monte Carlo[END_REF] uses the criterion if an arriving particle weight w i,t is better or worse than the iteratively calculated average over all particle weights received so far for decision making.

An other approach to loosen synchronization is based on the island particle model as proposed by [START_REF] Vergé | On parallel implementation of sequential Monte Carlo methods: the island particle model[END_REF] Particles are attached to groups, i.e., islands. Resampling happens within each island only, avoiding global synchronization. Estimates of statistical measures like mean and standard deviation computed within islands are biased towards global ones over all particles in all islands. To lower the bias of each island, some interactions between different islands are necessary. For this, the particles of pairs of randomly selected islands may be mixed before resampling. This adds some interaction but introduces only very limited synchronization. A further option is to attach weights to each island and resample whole islands, i.e., not sample particle by particle but instead duplicate or remove a whole group of particles (island). It is to explore, at which frequency different types of interaction between islands are necessary to keep bias low enough.

So called alive or adaptive particle filtering algorithms as presented by [START_REF] Jasra | The alive particle filter[END_REF][START_REF] Elvira | Adapting the number of particles in sequential Monte Carlo methods through an online scheme for convergence assessment[END_REF] EnKF can be interpreted as a special case of transport particle filters, where the particle ensemble is used to approximate the first and second order momentums of the background state distribution and the calculation of the ensemble transformation matrix is inherited from the Kalman filter formalism [START_REF] Van Leeuwen | Particle filters for high-dimensional geoscience applications: A review[END_REF]. Thus, the methods in this section have relevance for EnKF variants too. For instance, [START_REF] Lermusiaux | Data Assimilation via Error Subspace Statistical Estimation.Part I: Theory and Schemes[END_REF] experiment with an EnKF variant that varies the ensemble size.
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Data Assimilation and Machine Learning

While Data Assimilation greatly improves the forecast skill of numerical models, there are remaining inaccuracies in posterior states. A manifold of sources, like incomplete or interpolated observations as well as numerical approximations in model and observation operators are responsible for those. Machine Learning (ML) was successfully used to reproduce time series of dynamic systems. As such they can also be trained to correct simulation errors [START_REF] Um | Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers[END_REF]. Thus, there is increasing interest in leveraging ML tools to augment DA. In this section we discuss combined approaches between DA and ML.

Data Assimilation can for example be performed on the output of previously trained surrogate models as done by [START_REF] Tang | A deep-learning-based surrogate model for data assimilation in dynamic subsurface flow problems[END_REF]. Surrogate models are machine learning models trained to imitate an existing simulation code. Often they reduce the input space but can return simulation results much quicker. They can also be interpreted as a way to compress model output with the capability to interpolate to never seen model results. Combining with DA, a surrogate, directly using observation data as input, can be created. The augmented model is typically less costly to execute in production than the original model and DA workflow.

DA can also be used to generate higher quality training data for ML models. [START_REF] Brajard | Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model[END_REF]Bocquet et al., 2020 propose to train surrogate models by alternating DA and machine learning steps. First an initial state guess is assimilated using a classical DA scheme. The assimilated state then is used to train a surrogate model. After some training, one can use the output of the surrogate to perform the DA followed by surrogate training again or the surrogate model forwards the state to the next assimilation cycle and another DA step is performed. The loop is closed. Farchi et al., 2021 use a similar approach to train a hybrid surrogate built from an existing meteorological model code but its error is corrected with the help of machine learning, leading to promising results.

Machine learning can also borrow techniques from DA. One example is proposed by [START_REF] Kovachki | Ensemble Kalman Inversion: A Derivative-Free Technique For Machine Learning Tasks[END_REF]. They train machine learning models, replacing the classical stochastic gradient descent with ensemble Kalman inversion (EKI), a gradient free optimization method. It can further be shown that there is an equivalence between some machine learning and DA techniques [START_REF] Abarbanel | Machine Learning as Statistical Data Assimilation[END_REF][START_REF] Bocquet | Data assimilation as a deep learning tool to infer ODE representations of dynamical models[END_REF].

Both techniques try to minimize the discrepancy between model and observations. In some DA methods like 3/4D-Var, this is even done using a loss function similar to the one used in ML.

So far, such approaches have been validated at small scale with simple examples. But they have a big potential and are expected to lead to hybrid solutions using ML and DA

Data Assimilation and Machine Learning

that will help to address more complex and larger problems. In this thesis we did not specifically address such combined ML/DA approaches as they are not yet mature for most realistic use cases. Nevertheless, the modularity of the framework makes it well amenable to more heterogeneous algorithms requiring the integration of ML/DA codes. We will discuss this at the end in Section 7.2 after our approach was introduced in more detail.
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Ensemble Frameworks

Looking beyond DA frameworks, various Python based frameworks are supporting the automatic distribution of tasks, enabling to manage ensemble runs. Dask [START_REF] Rocklin | Dask: Parallel Computation with Blocked algorithms and Task Scheduling[END_REF] is, for instance, used for hyperparameter search with Scikit-Learn, and Ray [START_REF] Moritz | Ray: a distributed framework for emerging AI applications[END_REF] for reinforcement learning [START_REF] Liang | RLlib: Abstractions for distributed reinforcement learning[END_REF]. But they do not support tasks that are built from legacy MPI parallel codes. Other frameworks such as Radical-Pilot (the base framework of EnTK) by [START_REF] Paraskevakos | Task-parallel analysis of molecular dynamics trajectories[END_REF] or Parsl [START_REF] Babuji | Parsl: Pervasive Parallel Programming in Python[END_REF] enable such features but are using files for data exchange. Other domain specific frameworks like Dakota [START_REF] Elwasif | Parameter sweep and optimization of loosely coupled simulations using the DAKOTA toolkit[END_REF], Melissa [START_REF] Terraz | Melissa: Large Scale In Transit Sensitivity Analysis Avoiding Intermediate Files[END_REF] or Copernicus [START_REF] Pronk | Copernicus: A new paradigm for parallel adaptive molecular dynamics[END_REF] enable more direct support of parallel simulation codes but for patterns that require less synchronizations than the ones required for DA.

To our knowledge, map-reduce tools like Spark [START_REF] Zaharia | An Architecture for Fast and General Data Processing on Large Clusters[END_REF] and Flink [START_REF] Alexandrov | The Stratosphere Platform for Big Data Analytics[END_REF] have not been used for DA. Flink has been used for analyzing online the data of a parallel molecular dynamics simulations relying on its distributed stream processing capabilities [START_REF] Zanúz | In-transit molecular dynamics analysis with Apache flink[END_REF]. But performance was significantly below the one achieved with HPC specific in situ data processing tools like Damaris [START_REF] Dorier | Damaris: How to Efficiently Leverage Multicore Parallelism to Achieve Scalable, Jitter-free I/O[END_REF] or FlowVR [START_REF] Dreher | A Flexible Framework for Asynchronous In Situ and In Transit Analytics for Scientific Simulations[END_REF]. Extending such approaches to DA would require to support an ensemble of simulations and efficient linear algebra operations on large matrices as needed for computing the Kalman gain in EnKF, for instance. Map-reduce is not well suited for such operations.

3.4 Ensemble Frameworks

In Situ Computing Frameworks

File-based DA approaches are I/O intensive, limiting their performance. Online approaches enable to bypass I/O but rely on a monolithic architecture. In this section, we look at in situ processing, an approach to couple parallel simulations with online data processing to avoid I/O, and discuss related work.

HPC machines consist of thousands to hundreds of thousands of compute cores connected via high-speed networks, reaching a compute power of multiple PFlop/s. In contrast, HPC machine vendors are unable to scale the I/O performance of their platforms as much as the compute performance, leading to a severe performance bottleneck [START_REF] Kunkel | Exascale storage systems: an analytical study of expenses[END_REF][START_REF] Hu | Storage wall for exascale supercomputing[END_REF]. One approach to alleviate this issue consists in bypassing the storage between different steps of a compute workflow. This approach is often referred to through the umbrella term In Situ Processing, as coined in [START_REF] Ma | In Situ Visualization at Extreme Scale: Challenges and Opportunities[END_REF]. The goal is to process the data as close as possible to the locus and time of data generation. Thus data can be processed online directly on the nodes that actually produced the data (in situ), minimizing data movements, or on nodes dedicated to data processing. This latter case is often referred to as in transit processing. In situ processing tasks are usually allocated on dedicated helper cores on the same compute node which generated the data. Dedicated nodes for in transit data processing are called staging nodes.

A number of frameworks have been developed to support in situ and in transit processing [START_REF] Dorier | Damaris: How to Efficiently Leverage Multicore Parallelism to Achieve Scalable, Jitter-free I/O[END_REF][START_REF] Docan | DataSpaces: an Interaction and Coordination Framework for Coupled Simulation Workflows[END_REF][START_REF] Zheng | FlexIO: I/O middleware for Location-Flexible Scientific Data Analytics[END_REF][START_REF] Dreher | A Flexible Framework for Asynchronous In Situ and In Transit Analytics for Scientific Simulations[END_REF][START_REF] Dreher | Decaf: Decoupled dataflows for in situ highperformance workflows[END_REF][START_REF] Capul | PaDaWAn: a Python infrastructure for loosely coupled in situ workflows[END_REF]. Their main goal is to enable users to harness data processing capabilities to their data producing codes with minimal code intrusion, maximal performance, and flexibility. In situ processing has been successfully applied to various data processing operations like data indexing, compression, and computation of various high-level descriptors up to images and video production, which are eventually saved to disk but that can also be visualized online [START_REF] Rivi | In-situ Visualization: State-of-the-art and Some Use Cases[END_REF]. This effectively reduces the need of file system storage. For instance, the full state of the simulation is saved to disk at a low frequency, with intermediate high-level descriptors being computed in situ in between, while the simulation is running.

An example of one of the most basic in situ workflow is shadowed file writing (also called two-phase I/O). Instead of having each core of a parallel large scale application writing its share of the data to disk (Figure 3.1, left), execution is quicker when data is gathered on helper cores first, which then write larger chunks to disk in the background ( performed by the other cores. Even if some of the resources from the model are cut off from the application (helper cores), the performance impact of shadowed file writing typically stays very good due to the imperfect scaling of most applications on the large scale and the mentioned I/O acceleration. Dreher and Raffin, 2014, for instance, can accelerate the runtime of a molecular dynamics simulation with Gromacs using shadowed file writing by a factor of three.

Ensemble This chapter is a refined and adapted edition of our research report presenting Melissa-DA [START_REF] Friedemann | An elastic framework for ensemble-based large-scale data assimilation[END_REF]. A journal article on the topic was published recently at the International Journal of High Performance Computing Applications (Friedemann and Raffin, 2022).

4.1 Melissa-DA Architecture • Client/Server model. Melissa-DA relies on the standard client/server model extended to the parallel case where both the client and server are parallel codes with potentially different levels of parallelism. No intermediate files are required as all data exchanges occur through direct memory to memory communications between the server and the clients. Additionally, the client/server pattern makes the application more modular. In Melissa-DA, a client runs the simulation code for the propagation phase and the server the code for the update phase. Because the connection between a client and the server is dynamic, a client can be stopped (voluntarily or not) and started anytime. A client failure does not lead the server to fail, thus providing a sound base to support an efficient fault tolerance protocol.

The number of running clients can evolve over time depending on the resources available on the supercomputer, making the application elastic.

• Clients are runners. A Melissa-DA client runs one simulation instance. Once done with the propagation of a given member, it sends the full member state to the server, and a new member propagation can start. The new member state to propagate is loaded from the server. Thus a client can propagate several members per propagation phase. We call such a client runner. Members can be propagated by any runner. We call this member virtualization. There are several benefits of enabling member virtualization:

-No need to pay the full simulation starting cost for each member. Switching from one member to another in a runner is done by switching member states in memory, not requiring a full restart of the simulation code.

-The time to propagate one member can vary, leading to load balancing issues, and inefficiency, as the update phase cannot start as long as not all members have been propagated. Dynamically distributing the members to the runners according to their workload enables to balance the workload between runners, improving the execution efficiency.

• Server. The server collects the states propagated by runners to compute the covariance and the Kalman gain matrices and updates each state to provide the new analysis states in transit. The server is also in charge of implementing the load balancing strategy, distributing the propagation work to runners following a list scheduling algorithm.

• Launcher. A Launcher executable overviews the full workflow progress. The launcher orchestrates the execution, interacting with the supercomputer's batch scheduler to request resources to start new jobs holding runners or the server, kill such jobs, monitor their status, and trigger job restarts in case of failure. It makes a single point of entry for the user to parameterize, control, and monitor the application.

• Code modularity. The runner, server, and launcher are separate codes that interact with each other over dynamic network connections. This makes the application very modular. For instance, changing the code of the server for switching to a different implementation of the update phase can be done without having to recompile the runner code. Turning an existing solver simulation code into a runner requires instrumenting it with the Melissa-DA API, but introduces no dependency to the server code into the solver code.

Putting all pieces together (Figure 4.1), the launcher starts and monitors runners and the server. During the propagation phase, the server distributes member states to the runners one by one. Runners propagate these member states and send them back to the server as background states. The server then performs the assimilation of observations (update phase). This generates a new ensemble of member states (analysis states) used for propagation for the next assimilation cycle. We detail this workflow and its components in the following.

Server

The server is parallel (based on MPI) and runs on several nodes. The number of nodes required for the server is primarily defined by its memory needs. The amount of memory needed is in the order of the sum of the member's state sizes. Member states contain the minimal amount of information needed to restore a given member on any runner. Each member state vector is split into roughly equally sized parts, one per server rank (spatial distribution).

The server needs to be linked against a user-defined function to initialize all the member states (Figure 4.2 init_ensemble). Other functions, e.g., to load the current assimilation cycle's observation data (init_observations) and the observation operator H (observation_operator_H) must be provided to the server for each DA study. In the current version user functions are called sequentially by the server, but we expect to support concurrent calls to init_ensemble and init_observations to further improve the server performance.

The current server embeds PDAF as a parallel assimilation engine. The server parallelization can be chosen independently from the runner parallelization. An N × M data redistribution takes place between each runner and the server to account for different levels of parallelism on the server and runner side. This redistribution scheme is implemented on top of ZeroMQ, an asynchronous networking library extending sockets [START_REF] Hintjens | ZeroMQ, Messaging for Many Applications[END_REF]. ZeroMQ supports a server/client connection scheme allowing dynamic addition or removal of runners.

Care must be taken to coherently store each member's state vector parts. As runners are not synchronized, their state parts might not be received by all server ranks in the same order. For instance, server rank 0 could receive a part of member 3's state vector while rank 1 receives a part of member 4's state (both members propagated by different runners). Even more importantly, the state parts that are sent back must be synchronized so that the ranks of one runner receive the parts of the same member state vector from all the connected server ranks. For that purpose, all received state parts are labeled with the member ID they belong to, enabling the server to assemble coherently distributed member states. State propagation is ensured by the server rank 0, the only one making decisions on which runner shall propagate which member state. This 40 Chapter 4 Ensemble Kalman Filtering at Large Scale decision is next shared amongst all the server ranks using nonblocking MPI broadcasts. This way, communication between the different server and runner ranks overlaps while other runner (-ranks) perform unhindered model integration.

Runners

Melissa-DA runners are based on the simulation code, instrumented using the minimalist Melissa-DA API. This API consists only of two functions: melissa_da_init and melissa_da_expose (Figure 4.2). melissa_da_init must be called once at the beginning to define the size of the member state per simulation rank. This information is then exchanged with the server, retrieving the server parallelization level. Next melissa_da_init opens all necessary connections to the different server ranks.

melissa_da_expose needs to be inserted into the simulation code to enable extraction of the member state held by the runner and to communicate it with the server. When called, this function is given a pointer to the runner's state data in memory that is sent to the server who saves it as background state. Next, melissa_da_expose waits to receive from the server an analysis state that replaces the background state in RAM. Now the runner is ready to start propagating the next member state. The function melissa_da_expose returns the number of timesteps the received analysis state shall be propagated, or a stop signal. Please note that only the part of the model state that changes from timestep to timestep needs to be exposed to Melissa-DA. Variables that are invariant between members and timesteps (such as domain decomposition or constant boundary conditions) do not need to be exposed.

Launcher

To start a Melissa-DA application, a user starts the launcher that then takes care of setting up the server and runners on the supercomputer.

The launcher typically runs on the supercomputer front node but can also be started on any other compute node for unattended DA studies or when the front node may not run long-running jobs. Since its computations are lightweight, the launcher resources can be oversubscribed by another task, e.g., for the Melissa-DA server. The launcher is the only part of the Melissa-DA application that interacts with the machine batch scheduler. The launcher requests resources for starting the server job, and as soon as the server is up, it submits jobs for runners.

If the launcher detects that too few runners are up, it requests new ones, or once notified by the server that the assimilation finished, it deletes all pending jobs and stops the full application. The launcher also periodically checks that the server is up, restarting it from the last checkpoint if necessary. The notification system between the server and the launcher is based on ZeroMQ. There are no direct connections between runners and the launcher. The launcher only observes the information of the batch scheduler on runner jobs.

The launcher prioritizes job submission within the same job allocation (if the launcher itself was started within such an allocation and free resources are left in it). Otherwise, the launcher can also submit jobs as self-contained allocations, e.g., by calling srun outside of any allocation on Slurm [START_REF] Yoo | SLURM: Simple Linux Utility for Resource Management[END_REF] based supercomputers. In the latter case, the server job and some runner jobs maybe do not execute at the same time leading to inefficiency as the server is not well charged by enough runners or even waits for any runner to connect. For that reason, it is recommended to launch at least jobs for the server and some runners within the same allocation. This guarantees that they run at the same time, ensuring the Melissa-DA application operates efficiently, even if no further runner jobs can be executed. It is also possible to instruct the launcher to start jobs within different partitions.

Fault Tolerance

Melissa-DA supports detection and recovery from failures (including straggler issues) of the runners through timeouts, heartbeats, and server checkpoints. Since the server stores the different members' states, no checkpointing is required on the runners. So Melissa-DA ensures fault recovery even if the model simulation code does not support checkpointing. If supported, runners can leverage simulation checkpointing to speed-up runner restart.

The server is checkpointed once during each assimilation cycle using FTI (fault tolerance interface, [START_REF] Bautista-Gomez | FTI: High performance Fault Tolerance Interface for hybrid systems[END_REF]. This enables the recovery from server crashes without user interaction. During the propagation phase, the server process asynchronously saves received member state parts on arrival to file (using threaded background checkpointing). Checkpoints are finalized before each update phase begins. So checkpointing does not impair the server reactivity for its other tasks and does not consume server resources during the update phase when the server is performing work on the critical path of the assimilation cycle.

The server sends heartbeats to the launcher. If missing, the launcher kills the runner and server jobs and restarts automatically from the last server checkpoint. Thus in the case of a server crash, the application restarts from the last complete set of propagation states. In the worst case, only the last update phase and some member propagations of the current assimilation cycle that were not completely checkpointed yet need to be repeated.

The server is also in charge of tracking runner activity based on timeouts. If a runner is detected as failing, the server re-assigns the current runner's member propagation to another active runner. More precisely, if one of the server ranks detects a timeout from a runner, it notifies the server rank 0 that reschedules this ensemble member to a different runner, informing all server ranks to discard state data already received from the failed job. Further, the server sends stop messages to all other ranks of the failing runner. The launcher, also notified of the failing runner, properly stops it and requests the batch scheduler to start a new runner that will connect to the server as soon as ready.

One difficulty are errors that cannot be solved by a restart, typically numerical errors or, e.g., a wrongly configured server job. To circumvent these cases, Melissa-DA counts the number of restarts. If the maximum, a user-defined value, is reached, Melissa-DA stops with an informative error message. In the case of a recurrent error on a given member state propagation, it is possible to avoid stopping the full application. One option is to automatically replace such members with new ones by calling a user-defined function for generating new member states, possibly by perturbing existing ones. Alternatively, when the maximum number of restarts for a member state propagation is reached, this member could simply be canceled. As the number of members is high, removing a small number of members usually does not impair the quality of the DA process. These solutions remain to be implemented in Melissa-DA.

A common fault is jobs being canceled by the batch scheduler once reaching the limit walltime. If this occurs at the server or runner level, the fault tolerance protocol operates.

The launcher is the single point of failure. Upon launcher failure, the application needs to be restarted by the user.

Dynamic Load Balancing

As already mentioned, runners send each member state to the server. Having the full member states on the server brings an additional level of flexibility central to the Melissa-DA architecture: runners become agnostic of the members they propagate. We rely on this property for the dynamic load balancing mechanism of Melissa-DA.

Melissa-DA Architecture

Dynamic load balancing is a very desirable feature when the times to propagate different members varies. This is typically the case with solvers relying on iterative methods, but also when runners are started on heterogeneous resources, for instance, nodes with GPUs versus nodes without, or if the network topology impacts unevenly the data transfer time between the server and runners. The server has to wait for the last member to return its background state before being able to proceed with the update phase computing the analysis states. The worst case in terms of load balancing occurs when state propagation is fully parallel, i.e., when each runner is in charge of a single member. In that case, the runner idle time is the sum of the differences between each propagation time and the slowest one. As we target large numbers of members, each member potentially being a large scale parallel simulation, this can account for a significant resource underutilization.

To reduce this source of inefficiency, Melissa-DA enables 1) to control the propagation concurrency level independently from the number of members, and 2) to dynamically distribute members to runners.

The Melissa-DA load balancing strategy relies on the Graham list scheduling algorithm [START_REF] Graham | Bounds for Certain Multiprocessing Anomalies[END_REF]. The server distributes the members to runners on a first come first serve basis. Each time a runner becomes idle, the server provides it with the state of one member to propagate. This algorithm is simple to implement, has a very low operational cost, and does not require any information on the member propagation time.

The performance of the list scheduling algorithm is guaranteed to be at worst twice the one of the optimal scheduling that requires knowing the member execution time in advance (which is not the case here). More precisely the walltime T ls (called makespan in the scheduling jargon) is bounded by the optimal walltime T opt :

T ls ≤ T opt × (2 - 1 m ), (4.1)
where m is the number of machines used, in our case the number of runners [START_REF] Shmoys | Scheduling parallel machines on-line[END_REF]. This bound is tight, i.e., cannot be lowered, as there exist instances where this bound is actually met.

Static scheduling distributing evenly the members to runners at the beginning of each propagation phase does not guarantee the same efficiency as long as we have no knowledge of the member propagation time. The worst case occurs if one runner gets the members with the longest propagation times.

Also, the list scheduling algorithm is efficient independently of the number of runners, combining well with the Melissa-DA runner management strategy. While the number of expected runners can be statically defined by the user at start time, the actual number of executed runners depends on the machine availability and batch scheduler. Runners can start at different times, they may not all run due to resource limitations, some may crash, and try to restart. With list scheduling, a runner gets from the server the next member to propagate as soon as connected and ready.

From this base algorithm, several optimizations can be considered. In particular, data movements could be reduced by trying to avoid centralizing all member states on the runner using decentralized extensions of list scheduling like work stealing [START_REF] Blumofe | Scheduling multithreaded computations by work stealing[END_REF]. This could be beneficial when only a small part of the member states are changed during the update phase. This is left as future work.

Data Flow

Member states transit between runner and server memory directly. Transfers take place through parallel N × M communications (on top of ZeroMQ), where each runner process exchanges data with the corresponding server processes. A single state is thus never aggregated in a single process memory at any time. The full states that differ from member to member are gathered on the server, even though the EnKF algorithm only needs a subpart of each state for the assimilation update. Full states are transferred to the server to enable dynamic load balancing, a key component for improving execution efficiency, and to allow fault tolerance and elasticity, as presented before. On the server, the states are persisted asynchronously to storage using FTI (Section 4.1.5). The primary purpose is to enable restart from the last completed assimilation cycle on server crash. But as FTI can dump the state variables in HDF5 files, the checkpoints can also be used for post hoc analysis (often, users request to keep intermediate states). Centralizing the full states to the server increases the memory needs, which can often be satisfied by increasing the number of server nodes. Another option would be to leverage FTI multi-level checkpointing capabilities to offload data not fitting in memory to the file system or some fast persistent memory like burst buffers or NVRAM when available.

Code

The code (server and API for model instrumentation) is written in C++, relying on features introduced with cpp14. This is especially handy regarding smart pointers to avoid memory leaks and having access to different containers (sets, lists, maps) used to store scheduling mappings. The assimilation update phase is contained in its own class deriving the Assimilator-interface, which accesses the received background member states and creates a new set of analysis member states to be propagated.

Implementing new ensemble-based DA methods within the Melissa-DA framework is straightforward, requiring to specify how to initialize the ensemble and how to transform the ensemble of background states into an ensemble of analysis states using observations.

A derived class calling the PDAF EnKF update phase methods was implemented and is linked against the user-defined methods to initialize the ensemble and observations and to apply the observation operator (Figure 4.2). From the PDAF perspective, the Melissa-DA server acts as a parallel simulation code assembling a "flexible assimilation system" with one model instance propagating all ensemble members sequentially online 1 . By handing over the server MPI communicator to PDAF, the update phase is parallelized on all server cores.

To let Melissa-DA support other assimilation algorithms implemented in PDAF (e.g., LEKF, LETKF, etc. 2 ) only classes inheriting the Assimilator interface with calls to the desired PDAF filter update methods must be implemented.

The Melissa-DA launcher is written in Python. To execute a Melissa-DA study, a user typically executes a Python script for configuring the runs, importing the launcher module, and launching the study.

The Melissa-DA codebase contains a test suite allowing end-to-end testing against results retrieved using PDAF as a reference implementation. The test suite also contains test cases validating recovery from induced runner and server faults. 

ParFlow

This section introduces ParFlow, a hydrological model from the geoscience domain.

ParFlow is adapted to run at a very large scale and is actively used in DA workflows, for example by [START_REF] Kurtz | TerrSysMP-PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land surfacesubsurface model[END_REF]. Furthermore, it is the subject of some collaborations in the EoCoE-2 project. This makes it an ideal candidate to examine our proposals under realistic circumstances. It is a physically-based, fully coupled water transfer model for the critical zone [START_REF] Ashby | A Parallel Multigrid Preconditioned Conjugate Gradient Algorithm for Groundwater Flow Simulations[END_REF][START_REF] Jones | Newton-Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems[END_REF][START_REF] Maxwell | Development of a Coupled Land Surface and Groundwater Model[END_REF]; S. J. [START_REF] Kollet | Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model[END_REF][START_REF] Maxwell | A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling[END_REF]. The critical zone is the part of the Earth that contains nearly all living organisms. It spans from bedrock to the top of the plant canopy. ParFlow simulates 3D groundwater and overland flow combined with plant processes. It is extensively used in water cycle research -be it to examine the impact of climate change, for agriculture predictions (soil moisture), or to estimate the impact of well water exfiltration. A typical ParFlow domain is depicted in Figure 4.3. ParFlow is part of various coupled simulation systems. For instance, it is coupled with the weather research forecasting model (WRF) or with the community land model (CLM) to insert realistic water cycle components. It is also responsible for groundwater simulation in the regional Earth system model TerrSysMP. ParFlow is successfully applied from hillslope over catchment up to continental scale simulations [START_REF] Lapides | Analytical solutions to runoff on hillslopes with curvature: numerical and laboratory verification[END_REF][START_REF] Herzog | A parametric sensitivity analysis for prioritizing regolith knowledge needs for modeling water transfers in the West African critical zone[END_REF]S. Kollet et al., 2018).

ParFlow is based on an iterative Krylov-Newton solver. This solver performs a changing number of iterations until a defined convergence tolerance is reached at each timestep. ParFlow relies on the Richards equation [START_REF] Richards | Capillary conduction of liquids through porous mediums[END_REF] . Member initialization (init_ensemble function) uses an online approach relying on one initial system state and adding some uniform random noise for each member. Loading terabytes of data for the initial ensemble states is thus avoided.

To further circumvent the influence of file system jitter, assimilation output to disk is deactivated if not stated differently.

The Challenge of Setting Up an Ensemble

One key factor in ensemble-based DA is the choice of the ensemble. The initial ensemble should represent the assumed system uncertainty and be large enough to accurately capture future changes in the uncertainty of the system state estimate. For that purpose, thousands of members can become necessary [START_REF] Zhou | Assessing the Performance of the Ensemble Kalman Filter for Land Surface Data Assimilation[END_REF][START_REF] Xie | Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter[END_REF][START_REF] Rasmussen | Data assimilation in integrated hydrological modeling using ensemble Kalman filtering: evaluating the effect of ensemble size and localization on filter performance[END_REF]. Their initialization can be challenging. Ensemble initialization is especially costly for models requiring to execute some time to reach a steady-state that can be used to define ensemble members and to kick off DA. Reaching this steady-state is called to spin-up. ParFlow, for instance, needs to simulate several years to fill groundwater reservoirs, rivers, lakes, etc., with water content to spin-up.

Often members may have different boundary conditions and soil parameters. Thus, one cannot simply reuse the output of one spin-up run and add randomized perturbation at the end. In the case of ParFlow, this could even generate physically wrong states. For the sake of compute time-saving, this technique is used in some of the following experiments to simplify stress-testing of Melissa-DA at a very large scale -even if that might void the interpretation of the physical assimilation outputs.

The First Assimilation Cycle

In the following experiments, we reserved all the nodes required for the run upfront (Slurm allocation) and then requested Slurm to start jobs into this allocation. The goal was to avoid introducing delays between job starts due to the machine load. For a production run, the upfront resource reservation is not required or can be done for the server and a few runners to ensure a minimal progress speed at start. However, this upfront reservation is not sufficient to ensure a synchronous start ( • The launcher starts first the server and waits for a handshake before submitting runner jobs.

• The launcher submits runner jobs independently and sequentially.

• The scheduler takes significant time -up to some seconds -to process each request and start each job.

• The server initializes its data structures holding the full state ensemble only after a first runner connection to get the full information on the N × M data redistribution scheme. Runners 0 to 60 have to wait ("Waiting for server registration" in Figure 4.4) before they can receive propagation tasks from the server (at 25 s after launcher start).

• ParFlow takes about 14 times longer to converge for member propagations of the first assimilation cycle compared to member propagations of later assimilation cycles. This behavior of ParFlow is due to misfitting initial data challenging the solver. For the case displayed in Figure 4.4, each initial member propagation takes 43 s on average, while later member propagations take about 3 s on average.

These delays are amortized on long production runs, but not here as experiments ran for a few cycles only. So results presented here are based on time measures starting at the second cycle. Future work will try to improve the startup times by relying on, e.g., advanced scheduler features to start multiple runners at once (job arrays). 

Ensemble Propagation

EnKF Update Phase

Figure 4.6 displays the evolution of the update phase walltime depending on the number of members, using Melissa-DA with the PDAF implementation of EnKF. The mean is computed over 25 assimilation cycles, assimilating 288 observations each time. Standard deviation is omitted as not being significant (< 6% of the update phase walltime). The EnKF update phase is executed on 3 JUWELS nodes (144 cores in total). The EnKF update phase relies on the calculation of covariance matrices over M samples resulting in a computational complexity for the EnKF update phase of O(M 2 ), with M being the number of ensemble members. This is confirmed by the experiments that fit a quadratic function. The walltime of the update phase also depends on the number of observations.

Experimental Study

In the following experiments less observations are used, leading to an update phase of about only 1.1 seconds.

We also performed a strong scaling study (Figure 4.7,top), timing the update phase for 1,024 members while varying the number of server cores. The parallelization leads to walltime gains up to 576 cores. Computing the covariance matrix for the update phase is known to be difficult to efficiently parallelize. Techniques like localization enable to push the scalability limit. Localization is not used here as we run with a limited number of observations. As Melissa-DA relies on PDAF which supports localization, localization can be easily activated by changing the API calls to PDAF in the Melissa-DA Dimensioning the Melissa-DA server optimally depends on the assimilated problem dimensions, the used assimilation algorithm, and the target machine. It should be examined in a quick field study before moving to production. The results of such a field study can be seen in Figure 4.7, bottom. In the depicted case, fewer core hours are consumed when not using a large number of server nodes (and cores respectively), since these are idle during the whole propagation phase, outplaying the walltime advantage they bring during the update phase. For the next experiments we assume that the update phase is short compared to the propagation phase leading to the policy: Use the least server nodes able to fulfill memory requirements. Do not use all cores per server node if this would slow down the update phase as the domain is not efficiently splittable anymore (remember that the update phase uses domain distribution for parallelization). While, for instance, compute nodes on JUWELS leverage 48 compute cores, it can be faster to only use a fraction of them for the server. Splitting the domain adds communication overhead. At some point the speedup won from more parallelization of the update phase cannot amortize the increasing communication overhead anymore. Some supercomputers provide special large memory nodes that could be leveraged to run the Melissa-DA server too.

Runner Scaling

We now focus on the member per runner ratio. A single runner avoids idle runner time during the propagation phase while having as many runners as members ensures the shortest propagation time but maximizes idle time. Idle time also comes from the switch between propagation and update phases: the server is mostly inactive during the propagation phase, while, runners are inactive during the update phase. We experiment with a varying number of runners for a fixed number of members (100 and 1,024), and a given server configuration (Figure 4.8). Plotted values result from an average obtained from eight executions, taking for each execution the time of the last two over three assimilation cycles. The efficiency of the propagation phase (Figure 4.8 top) is computed against the time obtained by running the members on a single runner. The compute hours are the total amount of consumed CPU resources (update and propagation phase, runners and server) during the assimilation cycles. For both plots, standard deviations are omitted as being small (relative standard deviations, standard deviation mean , always smaller than 3 %). The server was scaled to meet the memory needs. Each runner executed ParFlow on 48 cores (1 node).
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Efficiency during the propagation phase stays beyond 90 % when each runner propagates at least 7 or 8 members, 95 % for more than 10 members per runner and close to 100 % for 50 or 100 members per runner. The data can also be presented as speedup (Figure 4.9). The speedup flattens if runners get less than 7 members to propagate per propagation phase.

This demonstrates that Melissa-DA's load balancing algorithm maintains high efficiencies down to a relatively small number of members per runner. Obviously these levels of efficiency also depend on the distribution of propagation walltimes (see Section 4.3.3). Note that the update phase takes about 0.1 s and 1 s in the case of 100 and 1,024 members respectively, leading to scaling efficiencies for the full assimilation cycle decreased by at most 3 %. Also, the resources used for the server need to be considered. The total amount of compute hours (Figure 4.8 bottom) shows a U shape curve with a large flat bottom at about 9 members per runner for the 100 members case and at about 20 for the 1,024 members case. Changing the number of members per runner around those sweet spots changes significantly the efficiency of the propagation phase but slightly impacts the total compute hours: the efficiency variation is compensated by the impact on the runner idle time during the update phase that varies inversely (runners are mostly idle during the update phase). This also shows that changing the number of runners in these areas is useful, advocating for leveraging Melissa-DA's elasticity for adding or removing runners according to the machine availability.

If we look at the compute hours, the 10× increase in the number of members to propagate roughly matches the increase in compute hours. Thus, the resource usage is here dominated by the propagation phase, and the server does not appear as a bottleneck. 
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Fault Tolerance and Elasticity

In this experiment, we demonstrate the capability of Melissa-DA to have runners dynamically added or removed, giving Melissa-DA elasticity and the base of its fault tolerance protocol. The number of runners is limited by a target (dashed blue curve, Figure 4.10). The launcher periodically checks if more runners can be started. If so, it starts new runners. If too many resources are used, some runners are stopped. Runners are killed without notice, as in the case of an error. There is a delay between the launcher request to start a new runner and this runner being registered at the server (solid orange curve, Figure 4.10). Runner stops are also recognized after a delay by the server. Only if a runner did not respond for the last 10 seconds the server assumes it stopped. This runner timeout can be modified by the user. Having more or fewer runners impacts the speed at which the data assimilation runs, here indicated by the number of state propagations that finish per interval of 10 seconds (Figure 4.10, solid blue curve).

Notice that here we leverage the batch scheduler capabilities (Slurm). A single allocation encompassing all necessary resources is requested at the beginning. Next, jobs for the server or runners are allocated by Slurm within this envelope, ensuring a fast allocation.

When the runners crash or are stopped, the restarted runners reuse the same envelope. A hybrid scheme is also possible, requesting a minimal first allocation to ensure the data assimilation progresses fast enough, while additional runners are allocated outside the envelope, but whose availability to accept members may take longer depending on the machine load. It is planned to rely in such situations on best effort jobs that are supported by batch schedulers like OAR [START_REF] Capit | A batch scheduler with high level components[END_REF]. Best effort jobs can be deleted by the batch scheduler whenever resources to start other higher prioritized jobs are needed. This way Melissa-DA runners can fill up underutilized resources between larger job allocations on the supercomputer. All these variations on the allocation scheme require only minimal customization of the assimilation study configuration.

Ultra-Large Ensembles

We scale Melissa-DA to ultra-large ensembles, assimilating with up to 16,384 members.

To save compute hours, only a few assimilation cycles ran on up to 448 compute nodes using up to 16,240 cores of the Jean-Zay supercomputer. When doubling both the ensemble size and the number of runners, the propagation phase's execution time stays roughly the same with an average number of about 20 members per runner up to 8,192 cores ( time) during the propagation phase in this case. During the idle time, the runners are either waiting for new state data to arrive or the update phase to begin.

The number of runners was not further doubled after running 16,384 members, as we were not able to get the necessary resource allocation on the machine. Thus, the walltime doubles.

The update phase takes a considerable amount of time when using EnKF on such large member counts (Section 4.3.4). During this time the runners are idle, giving a total scaling efficiency of only about 59 % with 16,384 members. The scalability of the update phase is a well-known issue of DA. Classical solutions exist to reduce the update execution time, like relying on a localized EnKF filter (basically some terms of the covariance matrix are set to zero). Other less classical approaches to shorten the wait time during the update phase could be the iterative calculation of some parts of the EnKF update phase each time a new background state is received [START_REF] Niño | An Effcient Implementation of the Ensemble Kalman Filter Based on Iterative Sherman Morrison Formula[END_REF].

Investigating such algorithms for the update phase is part of future work.

The server is spread on the minimum number of nodes necessary to fulfill the memory requirements to store the ensemble and to perform the update phase computations (Table 4.1). Since Melissa-DA and the underlying EnKF update phase parallelizations are based on domain decomposition, and the domain size does not change when the number of members increases, the number of allocated server processes is kept constant at 240 cores (otherwise communication cost between the server processes would overwhelm calculation).

For each assimilation cycle with 16,384 members, a total of 2.9 TiB of member state data are transferred back and forth over the network between the server and all the runners. By enabling direct data transfers, Melissa-DA avoids the performance penalty that would induce the use of files as intermediate storage. PDAF, as detailed in Section 3.1.4, supports an offline file-based mode and an online mode. The latter is used here as it provides the best performance. In online mode PDAF runs a single large MPI executable whose processes are split into runners, called model tasks in PDAF jargon, where:

• Each runner is assigned a fixed static set of members to propagate in sequence at each cycle.

• Once all propagations are performed, the assimilated states, i.e. the state parts necessary for the update phase, are gathered on a specific master runner.

• Once all data is received, the master runner performs the update phase, the other runners being idle. Then the results are scattered back to their respective runners for the next cycle.

PDAF transfers data between the master runner and the other runners at the beginning and end of each propagation phase, not favoring the overlap of communications with computations. In opposite, Melissa-DA has a dedicated server capable of handling data transfers concurrently with member propagation. PDAF supports neither load balancing nor fault tolerance or elasticity. A single process failure will stop the full application. These features require Melissa-DA to gather the full states on the server. PDAF performs the update phase on one runner, constraining it to use the same number of processes as for one member propagation. This, however, brings some simplicity regarding data transfers as it does not require an N × M data redistribution scheme. In opposite, Melissa-DA can use different parallelization levels for the runner and server executables.

For both frameworks, runners execute on 40 compute cores each (1 node). To keep the runtime of the update phase reasonably fast, we ran no more than 2,500 members. As already mentioned, Melissa-DA also uses PDAF for implementing the update phase. But Melissa-DA enables us to use more processes for the server, a flexibility we leveraged for the experiments. To keep the comparison fair, we always compare runs using the same global amount of resources, so with fewer runners for Melissa-DA than PDAF to compensate for the extra server nodes. 4.2. Two types of runs were performed: runs where runners perform no output to disk, and runs where runners write the member state to disk (state dump) after each propagation. This latter case introduces jitter in the propagation times, and so load imbalance, as the write time is sensitive to the file system load. This also matches a classical scenario when users require states to be saved for post hoc analysis. Melissa-DA outperforms PDAF except at smaller scale with 250 members. Melissa-DA is up to almost 3 times faster than PDAF at 2,500 members with state dumping. Note, that Melissa-DA ran with server checkpointing activated. The server checkpoints contain the information to restore the full ensemble and could also be leveraged to output the full ensemble as we detail it in Section 4.1.7. This would make file output on the runner side useless. So we could compare Melissa-DA without ParFlow's state dump to PDAF with ParFlow's state dump activated as writing equivalent information, giving Melissa-DA an even larger performance advantage on large problem sizes.

Experimental Study

The resources are split differently for PDAF and Melissa-DA. Melissa-DA performs the update phase on a server with 80, 320 and 480 cores for 250, 1,000 and 2,500 members, and 1,920, 7,680 and 19,520 cores are used for runners performing member propagations. PDAF uses always 40 cores for the update phase and 2,000, 8,000 and 20,000 cores for runners performing the member propagations. The update times are similar at 250 members (about 0.4 s) and reach 29 s for PDAF versus 6.5 s for Melissa-DA at 2,500 members. But the performance gain of Melissa-DA is not only related to the performance improvement of the update phase as visible when looking at the propagation times only (Figure 4.11 bottom) or when comparing execution traces (Figure 4.12).

Notice that Melissa-DA is in a less favorable position than PDAF since:

1. The number of members, is chosen to be a multiple of the number of PDAF runners. Exactly 5 members are executed by every runner. That makes for an uneven number of members per runner for Melissa-DA. This is visible in Figure 4.12 where Melissa-DA needs to wait for the propagation of the few runners receiving 6 members before starting the update phase.

2. Even if we compare runs without failures, for all Melissa-DA runs the FTI checkpointing was active on the server, writing at least 23 GiB, 90 GiB, or 225 GiB of state data per assimilation cycle for 250, 1,000 or 2,500 members respectively.

These very likely cause most of the delay Melissa-DA experiences over PDAF for 250 members. But for larger numbers of members, the dynamic load balancing and the capability to overlap state transfer with model propagation offsets this effect and permits Melissa-DA to outperform PDAF. Also, notice that the time of the Melissa-DA propagation phase per cycle stays nearly the same from 50 to 500 compute nodes when state dump is off, showing a strong efficiency gain compared to PDAF.

Allocating more resources to the server for Melissa-DA can be essential for performance. The trace of 500 members (Figure 4.13) shows that with 1 server node (40 cores, right), the server becomes a bottleneck impairing runner progress. At 4 server nodes (160 cores, left), runner idle time during the propagation phase is significantly reduced. We suspect that the ZeroMQ library used for the data transport but not designed and implemented to take full benefit of the underlying high-performance network is partly responsible for these idle times. Changing to native high-speed networking protocols for InfiniBand or Omni-Path hardware could bypass this bottleneck. MPI_Comm_connect could be used to build a fault-tolerant client-server architecture on top of these high-speed networks.

Unfortunately, MPI distributions on the supercomputers we had access to did not fully support this feature yet. The usage of other high-speed networking libraries like libfabric4 or libverbs 5 is to be evaluated in future.

In both cases (4 server nodes or 1 server node) we run 100 runners. So the 500 members can be evenly distributed. But even in this situation, the trace shows that dynamic load balancing is critical for performance. With one server node, some runners get 6 members to propagate, as some other runners experiencing significant delays only get 4 members.

We now compare startup times (Table 4 

Conclusion

In this chapter, we introduced Melissa-DA, a framework for ensemble-based DA. A key feature is the introduced member virtualization that permits decoupling member propagation and resource allocation while avoiding file I/O. The framework can reduce load imbalance during the propagation phase by list scheduling member propagation tasks to different runners. A remaining source of imbalance is the synchronization point imposed by the state update. As soon as there is no member left to propagate for the current propagation phase, runners are idle, waiting for the end of the propagation phase and the server to finish the state updates. For large ensembles, this may take a significant amount of time. The server needs to store and process the whole ensemble. This is especially limiting when ensemble sizes or member state sizes overwhelm the server RAM. Offloading states to the local file system with associated performance impact could be used to circumvent this limitation.

Experiments proved the efficiency of the framework's fault-tolerance, elasticity, and load-balancing features. This enabled to scale EnKF up to 16,384 members for large scale DA with model state vectors of more than 4 M degrees of freedom. We also showed that the framework can compete with existing approaches at common scales, but outperforms them at large scale when processing multiple thousand members.

Experiments quantified the expected limitations of our approach. The update phase, adding synchronization between all members and blocking all runners is responsible for an important amount of runner idle times. This sensibly impacts the scaling efficiency of the framework. The effect worsens the larger the run in terms of members or state sizes.

For our largest run, scaling efficiency reduced from 96% during the propagation phase to 59% for the update and propagation phases combined. To augment the efficiency we would need to avoid the centralization of states on the server and a reduction of the update phase calculations. But this is hardly possible with EnKF since it needs to centralize all states to compute and apply the state update. In the next chapter, we propose to adapt the Melissa-DA architecture to support a less centralized approach as allowed by particle filter DA algorithms.

Conclusion

Large Scale Particle Filtering 5

Particle filters allow to assimilate in very non-linear settings and work also when the model and observation errors cannot be approximated by Gaussian distributions. Nevertheless, much more members, i.e., particles, than for EnKF are needed to keep a comparable accuracy. Thus, particle filters are more compute-intensive.

The following Section 5.1 presents performed changes to enable particle filters in the Melissa-DA framework. A performance analysis of the particle filter implementation is shown in Section 5.2. The chapter is concluded in Section 5.3.

Note that the work presented here results from a collaborative effort with Kai Keller 1 , Yen-Sen Lu for more details on the particle filter.

Our particle filter implementation extends Melissa-DA. Runners propagate particles during the propagation phase and compute locally the unnormalized particle weight. The server distributes propagation tasks and is responsible for the update phase. This enables features like load balancing, fault tolerance, and elasticity. The simple update phase in particle filters (performing only weight normalization and resampling) allows running a sequential server code that does not need to store all member states. It only needs to gather member weights and distribute propagation tasks to runners. A multi-level distributed cache is instead used by runners to store states and enable moving them between runners when needed.

The multi-level distributed cache leverages a runner, in-memory, local cache level and a shared or distributed level. The shared level relies currently on the shared parallel file system (PFS) available on supercomputers. Using the PFS as shared cache fulfills several purposes at once. First, its persistence allows to use states stored there as checkpoints for recovery from faults. Second, it enables to share states between multiple runners. Third, the PFS permits state offloading in situations where the union of all runner local caches is not large enough to store the full ensemble.

In the following, the changes to the different components of the Melissa-DA workflow are detailed. 

Runners

Each runner executes one MPI parallelized model instance to propagate particles, following the same member virtualization principle as for the EnKF runners. The implementation follows an in situ workflow. MPI communicators of the model code are split into app cores and one helper core per node. While the app cores run the model to perform particle propagations and weight calculations, the helper cores manage the cache state loads and stores. This approach enables to overlap state loads and stores with state propagations and weight computations.

The node-local RAM disk is used as a local cache, and the parallel file system (PFS) is leveraged as shared cache. The helper cores copy the particles that result from propagation from the local cache into persistent storage shared between all runners, the shared cache. Then, the helper cores request the server which particle to propagate next. If it is not already available in the local cache, they prefetch it from the shared cache. Note that only app core rank 0 and helper core rank 0 directly contact the server. Messages are then distributed, using MPI, to other ranks of the same kind. As in the approach for EnKF, ZeroMQ is leveraged for the runner-server communication. This workflow is depicted in Figure 5.1.

Architecture

Regularly, the helper core clears outdated particles of previous assimilation cycles from the local cache. If a local runner cache is still full, a helper core requests from the server which particle states are best to remove.

During the whole process, app cores are only interacting with the runner local cache to load and store particles. They do not write and read directly on the PFS. App cores wait only when a particle to be propagated next could not be prefetched by a helper core in time.

Runners also calculate the particle weight w i,t following Equation ( 2 The calculate_weight function provides access to the underlying raw state data (background_particle_state). This function is called in parallel by every app core to permit the parallelization of weight calculation.

Alternatively, scientists can implement weight calculation within the model code and transmit the particle weight to Melissa-DA using the melissa_set_weight API call.

Implementing weight calculation within the model context may make it easier to access the system state: the system state representation stays the same as used through the model code.

Server

In contrast to the EnKF server, which centralizes all member states to apply the state update, the particle filter server only needs to receive the weights of all particles to perform resampling and to distribute new work, i.e., particles to be propagated, to the runners.

For that purpose, runners connect to the server requesting particles to be propagated, prefetched, or removed from the local cache. They notify the server about the weights w i,t of each successfully propagated particle. Once the server received all particle weights w i,t , it resamples the particles for the next assimilation cycle. Only then outstanding job and prefetch requests are answered.

Currently, the server implements the two different resampling schemes that were introduced in Section 2.3.3, multinomial resampling, and RR, but this is easily extensible. Both schemes perform importance resampling, relying on particle weights to define at which probability a particle is resampled.

While the Melissa-DA server for EnKF is a parallel MPI application that handles the full ensemble state data using N × M data redistribution, the particle filter server is sequential and exchanges only lightweight messages. Next to some administrative messages to register runners and launcher, the particle filter server receives:

• particle weights (a scalar value),

• job propagation requests,

• prefetch requests, and

• delete requests from the runners.

All these messages contain only lightweight data identifying the requester and the request type, and possibly a scalar value for a particle weight. The server responds with small messages containing only particle and runner IDs.

Runners/Server Workflow

After the launcher started a runner, the runner requests from the server which particle to propagate (Figure 5.1). The server responds to this request following the scheduling policy (Section 5.1.4). Next, the server notifies the launcher about the successful runner start-up. The helper cores on the runner ensure that the particle state to be propagated is available in the local cache of the runner. If necessary, the app cores are blocked until the helper cores finish loading the required particle state from the PFS. Then, the app cores start propagation.

At the same time, the helper cores already request the next particle to be propagated from the server and load the particle state in the local cache if necessary. This mechanism avoids almost all blocking of the app cores, as we will show in Section 5.2.2. The only situation where runners are idle is at the end of each assimilation cycle. Prefetching and propagation activities are paused since the server cannot tell which particles will be resampled for the next cycle yet. All particles propagated from the same parent state have the same color (9 parents here). The top schedule is optimal with nine compulsory loads (one per parent) and one for the dark blue parent that cannot fit in one runner. The bottom schedule, with two more state loads, is a possible one that our online scheduling algorithm can produce. This is not optimal but still below the general P + R -1 bound, as the algorithm ensures for even propagation runtimes that no more than R -1 "color cuts" occur and avoids the same runner loading more than once a given parent state.

Each time the app cores finish particle propagation, they compute the unnormalized weight w i,t of the resulting particle and store it in the local cache. Finally, they send the unnormalized weight together with some metadata to the helper cores and request the next particle to propagate. Thanks to prefetching, this particle is normally available in the local cache already. Propagation goes on while the helper cores process the received information.

Upon reception of an unnormalized weight, the helper cores know that the according state is available in the local cache. They copy it to the shared cache (PFS). Once finished, unnormalized weight and metadata are forwarded to the server. Thus, the server only handles weights of particles that are checkpointed and available to all runners. The helper cores resume prefetching activity. Note that if a runner local cache is full, but some state still needs to be prefetched, the helper cores first request from the server which state to evict. The server responds to such requests following the eviction strategy described in Section 5.1.5.

Scheduling

This section presents the scheduling algorithm used by the server to distribute the particle propagations to the runners. The presented algorithm is first derived from a theoretical point of view on a simplified problem.

Let us first derive the theoretical base of the used scheduling algorithm. Let R be the number of runners. Let (p i ) 0≤i<P be the P parent particle states selected for the next assimilation cycle. The total number of particles to be propagated is M = 0≤i<P α i , where α i is the number of times the parent p i needs to be propagated.

We first derive a lower and upper bound for the minimum number of particle state loads per assimilation cycle c * in the case where: a) runners do not cache more than one particle, b) the number of runners is constant, and c) all particle propagations take the same amount of time.

In these conditions, each runner needs to propagate M R particles. Because each parent state needs to be loaded at least once, the number of compulsory state loads is P . If α i = 1 for all 0 < i ≤ P , i.e., every parent state is only used for one job, then c * = P . Otherwise, parallelizing the propagation can require some parent particle states to be loaded on more than one runner, accounting for some extra state loads beyond the compulsory ones. Indeed, each p i needs to be loaded into at least s i runners where

s i = α i M R
.

(5.1)

But as we have R runners, the list of M particles to propagate is split at most R -1 times, and so these extra state loads are at most R -1 (Figure 5.2). This occurs if all particles are propagated from a single parent (α 0 = M and α i = 0 for i = 0): c * = R. Thus, in the general case the minimum number of state loads c * is tightly bounded by

P ≤ c * ≤ P + R -1. (5.2)
We can define a static schedule that respects this upper bound: distribute M R particles per runner, where each parent state p i is given to no more than α i M R runners, and by imposing that runners do not switch to the next state without finishing all propagations associated with the current one first. But this static schedule is not suitable in our case as the number of runners can vary during executions, and the time it takes to propagate a given particle state is unknown and can be uneven. Our extension to a dynamic case relies on dynamic list scheduling to ensure an efficient load balancing [START_REF] Graham | Bounds for Certain Multiprocessing Anomalies[END_REF][START_REF] Shmoys | Scheduling parallel machines on-line[END_REF]: when idle, a runner requests work from the server that returns a particle to propagate. The execution time using the list scheduling algorithm is guaranteed to be at worst twice as long as the optimal schedule that requires knowing the particle propagation time in advance (in our case, particle propagation times are 5.1 Architecture unknown in advance). The assigned propagation may require a state load. To ensure a low number of loads, we augment the list scheduling algorithm with a parent state distribution algorithm. The scheduling policy is based on the split factor s i defined in Equation ( 5.1), but recomputed each time needed with the updated values α i and M of the remaining work to do, and the current number of active runners. The split factor tells us among how many runners at most one parent state should be split. To minimize the loads from the PFS, we try to copy parent states into s i different runner caches at maximum. To support this algorithm, the server needs to know the parent state p i currently propagated by each runner and each runner's cache. The following particle scheduling policy was implemented:

1. If a runner requests a state to be prefetched or propagated, try to schedule the same parent state p i again (if α i > 0).

2. Otherwise, try in random order to schedule one of the states from the local runner cache (select p i with p i ∈ runner cache, α i > 0).

3. If still no suitable parent state was found, select another parent state p i with α i > 0 that is in no other runner cache yet and that has a maximal split factor s i (argmax i s i ).

4. If still no fitting parent state was found, select the parent state with α i > 0 with maximal split factor s i that fulfills the criterion s i > k i , where k i denotes the number of runners that have parent state p i in their local cache already. This ensures that p i is not copied to more than s i runners.

5. If all parent states with α i > 0 are in some runner's local cache and no particle with s i > k i is found, select p i that maximizes the split factor (argmax i s i ).

Tests have shown that assimilation cycles finish faster this way due to prefetching, even if it adds some unnecessary PFS loads, violating the invariant k i ≤ s i in few cases.

After scheduling a new parent state, the server's knowledge about the runner caches is updated and α i for the scheduled parent state p i is decreased.

The rules 1 and 2 allow to select a state quickly in O(local runner cache size) steps. To select a state following rules 3 to 5, O(d) split factors need to be tested, where d < P denotes the number of different remaining parent states.

Using optimized data structures to avoid costly recalculation and ordering of split factors, this policy is fast in selecting the next particle for a runner. At the same time, the policy avoids state transfers assuming a reasonable cache eviction strategy (see Section 5.1.5).

Notice that when the server recognizes the loss of one runner, it needs to reintegrate the particle that this runner was propagating to reschedule it to a different runner.

Cache Eviction Strategy

The number of particle states that can be kept in the local runner caches is limited by the node storage capacity. Typically, this is set by the available node memory when using the RAM disk for the cache. The helper cores interact with the server to perform particle eviction from the cache when required. The cache needs to provide at least two slots, one to store the resulting particle state from the current propagation and one to store the next scheduled parent state loaded by prefetching. As explained in Section 5.1.3, each time a state has been stored in the cache by the app cores upon the successful propagation, the helper cores copy it to the PFS. These states can potentially be selected for eviction since they are safely stored. Thus, after copying the particle state, the helper cores check if the cache can fit the output particle state of the next propagation. If not, one particle state has to be evicted.

When an eviction is required, the server selects the state to evict from the cache in the following order:

1. A discarded state from the previous assimilation cycle.

2. A parent state from the current cycle for which all associated particles have already been propagated, and all weights have been received.

3. The propagated state from the current cycle with the lowest weight.

4. A randomly selected state.

The states for cases 1 and 2 can safely be removed from the cache since those states will not be needed anymore for future propagations. In case 3, we select the state with the lowest weight, as this is the least likely state to serve as a parent state in the next cycle. Experiments (Section 5.2) show that this cache management strategy, coupled with the scheduling algorithm, leads to a number of loads from the PFS that is below the lower bound derived in Section 5.1.4.

Fault Tolerance

As for Melissa-DA with EnKF, the framework auto recovers from faults. The server or the launcher may detect runner crashes. If a runner times out, the server will regard

5.1 Architecture it as crashed, notifying the launcher to restart the runner and scheduling the runner's propagation task elsewhere in the meantime. In some situations, the launcher will detect a runner crash first since the runner job is not listed as up in the supercomputer scheduler anymore. In this case, the launcher restarts the runner directly and notifies the server. The server, again, reschedules the canceled particle propagation elsewhere.

Server faults are detected first by the launcher. A missing heartbeat or a server job that is listed as stopped in the batch scheduler of the supercomputer mark a server failure. In both cases, the launcher stops all remaining runners and restarts the server with a new set of runners. The assimilation will restart from the last server checkpoint recovering all necessary particles from the shared cache (PFS).

Due to missing heartbeats, the server can detect launcher failure. In that case, the server checkpoints all progress and stops. Runners will detect the server missing and stop too. Next, the user can restart Melissa-DA using the checkpoints and the particles stored in the shared cache.

Cache Implementation

Particles are stored locally in runner caches (typically leveraging the node-local RAM disk) or in a shared persistent cache, typically on the PFS. All runner local caches together form a distributed cache. The server has complete knowledge of all cache contents. Following the algorithms described in Sections 5.1.4 and 5.1.5, the server selects which runner loads, propagates, or evicts which particle. The runner local caches are further distributed among the different nodes allocated per runner.

The Fault Tolerance Interface (FTI) [START_REF] Bautista-Gomez | FTI: High performance Fault Tolerance Interface for hybrid systems[END_REF] is a multilevel checkpointing/restart library. Its multilevel checkpointing capabilities are leveraged to implement the different cache levels of the particle filter workflow. FTI also provides helper core functionality, originally, to overlap checkpointing with application computations. In Melissa-DA, we extend the FTI helper core functionality to overlap cache access times with propagation and update phase computations.

FTI supports checkpoints in multiple formats. For performance, FTI's binary format is often the best choice. But HDF5 is supported too. This format is readable by many tools that can be used to perform data analysis directly on the checkpoint files. Notice that all particle states are saved to the PFS, and so other state outputs for postmortem analysis purposes, often performed in the simulation code, can be turned off.

Speculative Propagation

To parallelize particle filters, Melissa-DA and many other implementations run multiple particle propagations and weight calculations on different resources (runners) at the same time. During the update phase, the weights of all propagated particles are gathered to perform the resampling. The particles for the next assimilation cycle are drawn (sampled) from the propagated particles of the previous cycle to avoid weight collapse. A resulting particle p i is expected to be propagated ŵi,t M times, where M denotes the ensemble size and ŵi,t is the normalized particle weight as introduced in Section 2.3.3. The normalized particle weights ŵi,t can only be computed after the full ensemble finished propagation and weighting. Thus, resampling adds a synchronization point to the particle filter workflow, leading to runner idle time.

To increase efficiency, we propose the speculative propagation of particles. Runners that would wait for the remaining particle propagations and resampling to finish, begin to propagate particles for the next propagation phase instead. When finally all particle weights are retrieved, the final resampling is performed, and runners receive particles as usual. No further speculative particle propagations are started. Speculative propagations are not interrupted and always run to completion. Some speculated particles may be finally not resampled in the ensemble for the next cycle, making their computation useless. To avoid wasting compute hours and blocking runners from doing useful propagations, the number of useless propagations must stay low. Therefore, it is crucial to predict as accurately as possible the number of times each particle is redrawn in the final ensemble.

Our heuristic for this purpose computes preliminary normalized weights from the particle weights available at the point in time where speculative propagations shall start. The normalized weights are then used for resampling. Multinomial resampling, as we use it in most of the following examples, is not appropriate. It draws each particle at random with the probability given by its normalized weight. Executing two times multinomial resampling on the same set of normalized weights produces different samples. Even with perfect knowledge, preliminary resampling would fail to predict the final sample.

Residual resampling (RR) limits the amount of randomly selected particles to the particles drawn from residual weights. Important particles that are expected to appear in the sample are deterministically put in it. For that reason, we select RR for the speculative particle filter. If the normalized weights do not change a lot between preliminary and final resampling, many of the important (high weighted) particles are sampled deterministically for speculative and non-speculative propagations.

Architecture

The scheduling of speculative particle propagations follows the same strategies as described in Section 5.1.4. The server schedules speculative propagations for the next propagation phase whenever no particle propagation of the current propagation phase can be sent to an idle runner.

The modularity of Melissa-DA made it easy to extend the particle filter server, originally introduced in Section 5.1.2, with speculative particle propagation functionality. The speculative mode can be activated or deactivated by the user. The overall performance of speculative propagations in particle filters and to which extent it is influenced by errors in the heuristic for particle selection is experimented in Section 5.2.7. We rely on the Weather Research and Forecasting (WRF) model [START_REF] Skamarock | A Description of the Advanced Research WRF Version 3[END_REF] for experimentation of our particle filter implementation. Besides being a real-world use case for particle filtering at large scale, it is also used by our EoCoE-2 partners Lu et al. that could provide us with interesting input and validation datasets. WRF is widely employed for weather prediction and reanalysis. WRF provides a solver for the fully compressible non-hydrostatic equations with complete Coriolis and curvature terms while supporting a large set of physics options. The challenge in meteorological modeling using, e.g., WRF emerges from turbulences in atmospheric fluxes producing chaotic behavior and not from non-linear permeability coefficients spanning multiple orders of magnitude as in the hydrological solver that we used before in Section 4.3. The used discretization schemes introduce further numerical errors responsible for chaotic perturbation [START_REF] Ancell | Seeding Chaos: The Dire Consequences of Numerical Noise in NWP Perturbation Experiments[END_REF]. The complexity of atmospheric modeling does not lower its difficulty in performing skillful prediction in climate modeling and weather forecasting (Goswami,
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1996). WRF supports different simulation scales from large eddy simulations (100 m in horizontal resolution), to tropical cyclone (15 km horizontal resolution), and global domain (625 km in x-and 556 km in the y-direction). Benchmark tests on the AMD Epyc 7601 CPU for 12 km and 2.5 km resolution cases over the Continental U.S. domain (CONUS12km, CONUS2.5km) show nearly linear scaling [START_REF] Kashyap | AMD EPYC and WRF Powering the Future of HPC[END_REF].

We perform simulations on a domain covering most of Europe (See Figure 5.3) using 220 × 220 grid cells with a horizontal resolution of 15 km and 49 vertical levels with uneven thickness. This is a typical short-range weather forecasting setting. The 2018-07-19 was randomly chosen to simulate 48 hours by 100-second time steps. WSM6 microphysics, MYNN2 boundary layer physics, Grell-3 cumulus parameterization, Eta Monin-Obukhov similarity surface layer processes and the RUC land surface model were used. For more details on simulated clouds and precipitation, non-hydrostatics were employed. Input, initial, and boundary condition data are based on the reanalyzed ERA5 hourly data 2019. We assimilate cloud cover fraction measurements (CFRACT) from the EUMETSAT CMSAF satellite dataset by [START_REF] Stengel | CLAAS: the CM SAF cloud property data set using SEVIRI[END_REF]. The satellite observations are rescaled to match the simulation grid. A total of 48,400 cloud fraction values are assimilated each assimilation cycle. We chose an assimilation window of one hour. One assimilation cycle was set to 36 model time steps (36 × 100 s = 1 h) to assimilate all observation data and test our approach under high stress.

A snapshot of the meteorological state of this European domain accounts for 2.5 GiB of data. Writing the full output encompassing velocity components, perturbation potential temperature, cloud fraction, cloud water/ice mixing ratio etc., of the 2,555 particle ensemble for the 48 h simulation period produces almost 300 TiB of data.

If not stated differently, the data presented in the following results are from runs over this European domain with 2,555 particles using 20,442 compute cores on 512 Nodes of the Jean-Zay supercomputer to perform SIR with multinomial resampling. Each compute node of Jean-Zay is equipped with 2 Intel Cascade Lake 6,248 processors, summing up to 40 cores with 2.5 GHz and 192 GiB RAM per node. Intel Omni-Path (100 GB/s) connects the compute nodes with each other while an IBM Spectrum Scale (ex-GPFS) parallel file system with SSD disks (GridScaler GS18K SSD) is used for persistent file storage. propagated particles account for a PFS load. We will see in the following that most of these loads are performed by the helper cores in the background and thus do not affect the execution time.

Runner Activity

As visible in Figure 5.4, multiple runners and propagations take place in parallel. The elasticity of the framework allows runners joining the application to start particle propagation as soon as they get ready. The workload gets distributed (balanced) between all available runners at any time.

After the second assimilation cycle, all runners joined. Each of them propagates 5 particles per assimilation cycle. The used WRF setup shows very even propagation times with only 10 % of maximal fluctuation. Figure 5.5 plots propagation times for one cycle. A single particle propagation takes between 24 and 26.5 seconds. During assimilation cycles, only a few places where runners pause propagation for a moment are visible. These correspond to situations where app cores need to wait for particle prefetching to finish. This is only the case in 6 % of the time.

The close-up view in Figure 5.6 shows the most important tasks performed by the application and helper cores of one runner. App cores are almost completely busy with model propagation and weight calculation. Their activity overlaps very well with the prefetching and particle state storing performed by the helper cores. This puts in light the benefit of the in situ approach. General idle periods are only visible at the end of each assimilation cycle when runners need to wait for the last propagations to finish. Only then the server can resample the next set of particles and distribute new work accordingly. The load balancing algorithm keeps app cores busy for 88 % of their time. In 87 % of the time app cores propagate particles, and 1 % of the time is used to weight the propagation result against observations. The remaining 12 % are spent for server communication, including potential waiting time at the end of each cycle (Table 5.1) and the few waits for particle prefetches.
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2.7 % of the compute resources are dedicated to helper cores and the server. In 94 % of all propagations, the states are entirely prefetched in the background by the helper cores. Otherwise, state transfers would take 4.1 s + 2.3 s for loading and storing each particle on the PFS. As a particle propagation takes roughly 25 s, this would increase the particle propagation times by 14 % (see the 2,555 particle case in Table 5.1).

Server Activity

The particle filter server is a sequential Python code. Its reactivity can become an issue. Preliminary versions of the server did not rely on optimized data structures to implement the scheduling policy proposed in Section 5.1.4 leading to slow server response times.

In Helper cores enable keeping app cores busy with particle propagation, except at the end of assimilation cycles when they wait for the server to finish particle resampling (dark blue). Some activities are so thin that they are not visible here (state copies from cache to model).

smoothly on the large scale (using 511 runners). The server responds within hundreds of microseconds. Only some job requests take up to seconds. The reason is that the first jobs of a new assimilation cycle can only be scheduled after the server received all weights of the previous cycle to perform weight normalization and resampling. The 511 runners charge the server with 676 requests per second at maximum. Easy optimizations, like adding parallelization, are at reach if the server needs to be accelerated.

State Transfers to/from PFS

Particles representing the European domain leverage 2.5 GiB of data each. The full ensemble of 2,555 particles accounts for about 6.2 TiB of data (Table 5.1).

Each runner locally caches up to five particles. Leveraging 511 runners, the whole ensemble (2,555 = 511 × 5) of propagated states could fit in the runner caches. But runners need to store parent states of the previous propagation there too. Thus cache eviction and re-population are necessary. With the given cache size, from 1,024 to 1,563 D e l e t e r e q u e s t J o b r e q u e s t P r e f e t c h r e q u e s t P u s h w e i g h t t o s e r v e r particles are loaded from the PFS each assimilation cycle. Between 1,594 and 1,629 different parent particles P were propagated. Thus the derived boundary P + R -1 from Equation (5.2) is always met. Since the runner cache size is larger than 1, our implementation even undercuts the minimal number of P state loads.

Figure 5.8 shows the time to transfer states between runner local caches and the shared cache on the PFS. It is subject to significant variation and increases with the number of runners. While these numbers may be affected by other jobs on the supercomputer, they still suggest that Melissa-DA alone can notably stress the PFS already. However, the framework could completely overlap PFS access time with particle propagation on the tested machines Jean-Zay and JUWELS, as shown in Section 5.2.2.

Applications with propagation times faster than state loads would be impacted by PFS access. Notice that performing hourly resampling already leads to short propagation times in the WRF context. The motivation is to stress the framework. WRF production runs usually do not require such a high resampling frequency. Online data compression could be used to mitigate this issue. Alternatively, node-local persistent storage (SSD or NVRAM) could replace the PFS in the future, for instance, leveraging the functionality of GekkoFS by [START_REF] Vef | GekkoFS -A Temporary Burst Buffer File System for HPC Applications[END_REF], to create a distributed file system on top of node-local storage. 
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Fault Tolerance, Elasticity and Load Balancing

To show fault tolerance and elasticity, 2 out of 63 runners were crashed in a run with 315 particles. The gantt chart of the run is shown in Figure 5.9. The crash of runner 53 leads to a large idle period. It crashed while performing one of the last particle propagations of the fourth assimilation cycle. All runners have to wait until the propagation timed out (the timeout was set to 60 s), runner 53 is acknowledged as unresponsive, and another runner (runner 44) takes over the missing particle propagation to finish the current cycle. Starting with the fifth assimilation cycle, runner 64 replaces the crashed runner. The second crash leads to less idle time since the dynamic load balancing works efficiently. The work stays well distributed among all runners, even after their number changed.

The particle propagation times are relatively even with at most a 10 % variability. Settings with more variability are possible when relying on different physics in WRF or with other simulation codes. It might also lead to more variability in the execution times if runners execute on heterogeneous resources. Some runners might propagate faster than others by leveraging GPUs, for instance. Testing in such contexts is part of future work. 
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Scaling

With 63 runners, the framework reaches a strong scaling efficiency above 90 % compared to the case where one runner would execute all propagations sequentially (Figure 5.10).

On average, at least 5 particles are executed per runner and assimilation cycle. Prefetching enables hiding the I/O costs. Thus, increasing the number of particles propagated by each runner allows to better amortize the cost of the synchronization during the resampling phase and positively influences the scaling efficiency.

Keeping the particle load constant at 5 particles per runner, a weak scaling study is performed (see Figure 5.11). The time of an assimilation cycle increases by 8 % from 52 to 511 runners. These good results suggest that Melissa-DA would also run efficiently at larger scales with more than 2,555 particles and 511 runners, but we did not manage to get access to allocations of more than 20,442 cores.

Running particle filters with WRF on a European domain for short-range weather prediction at this scale is an important advancement of the previous work done by 

Speculative Propagation

The most important remaining source of inefficiency is at the end of each propagation phase. Runners finishing particle propagation earlier than others need to wait for the slowest propagation before resampling can start and new particles to propagate are distributed. At large scale, this may produce significant idle times. In the run depicted in Figure 5.4, the average idle time caused by the update phase, including waiting for the latest propagation and resampling until particle propagations start again, accounts for 13.5 s per runner. Note that a full assimilation cycle is only about 10 times as long (146 s on average, see Table 5.1). This idle time could be much shorter. The runner performing the last propagation only waits 1.4 s, accumulating weight and state transfers, resampling, and redistribution of propagation tasks. This gives an approximate lower bound of idle time for each runner if no load imbalance would occur between runners. The waiting time at the end of each propagation phase is responsible for 85 % of the total runner idle times. We experiment here with the speculative execution of particles for the next assimilation cycle. The implementation follows the description in Section 5.1.8. Residual resampling (RR) is used during the update phase, and speculative propagations are scheduled to runners following the policy introduced in Section 5.1.4.

Experiments on two settings were performed. First, a "dummy" model with a small state size of 1 MiB only, 15 particles, and with randomly chosen propagation times, uniformly distributed between 0.001 s -1.0 s was assimilated. Second, the WRF model, like in Section 5.2, with 63 runners, propagating 315 members, has been tested with speculative particle propagations activated. The local cache on each runner was set to store up to 5 particles for both cases. runner are propagated, the introduced load imbalance at the end of each assimilation cycle is significant. Runners are idle 28 % of their time. Activating speculative scheduling reduces the idle time to 12 %. But, at the same time, between 20 % and 75 % of the speculatively executed particles turn out to be useless each assimilation cycle. Thus, 14 % more particles are propagated each cycle in the speculative case. Even if their propagation overlaps well with some of the idle time of the previous case, the speculative run cannot finish faster. The two cases have roughly the same runtime.

Regarding the WRF use case, execution time of the particle propagations is much more even than in the dummy case (Table 5.2, std mean = 0.07). The smaller fluctuation among the different propagation tasks results in a workload better equilibrated between the different runners. The traces of a run with and without speculative scheduling are shown side-by-side in Figure 5.13. As already described in Section 4.3.2, startup times of Melissa-DA runs can vary a lot. Thus, the time axes were set to begin just when the last particle propagation of assimilation cycle 1 terminates. This way, the total runtimes of the following cycles are easier to compare visually. Again, between 30 % and 75 % of the speculatively propagated particles turn out to be useless. Thus, on average 12 % more particles are propagated each cycle compared to the non-speculative case, where each cycle runs exactly 315 propagations. The overlap with speculative propagations reduces the runner idle time from 8.5 % to 4.1 %.

Still, as for the dummy use case, this configuration for speculative propagations has no positive impact on the overall runtime. Many runners have to perform more than the 5 propagations that were necessary for the non-speculative case in each propagation phase to compensate for useless speculative propagations. Useless propagations that started just before the final resampling are responsible for longer runtimes. Only at the beginning, they do overlap idle time present in the non-speculative case, but later they delay the execution of useful work since there is no way to stop them beforehand. If some runners would propagate only 4 particles per cycle because of useful choices for speculative particles, this could equilibrate the introduced delay. Unfortunately, as visible in Figure 5.14, this is not the case. Too many of the speculatively selected particles are finally not useful, and in consequence, further particles need to be propagated.

The experiments show that the number of speculative but useless particle propagations is too high to make speculative propagation competitive in the dummy and WRF use cases. Nevertheless, these results are assumed to be very sensitive to the used setting, regarding, e.g., duration of particle propagations, weight calculation, or the particle to runner ratio. In the following, we discuss how changing the used setting could improve the performance of the speculative approach. One important aspect influencing the performance of our speculative particle filter is the condition under which speculative propagations are started. As described in Section 5.1.8, the server distributes propagation tasks for the next cycle speculatively as soon as no particle of the current cycle is left. But, as seen, for instance, in Figure 5.13, only the first speculative propagations overlap idle times well. Speculative propagations that were started later and turn out useless, in contrast, first overlap but then delay useful work. Thus, scheduling only the first speculative propagations that insert no delay might be a viable option. To diminish the number of useless particles further, one might only schedule very high-weighted particles speculatively, at the cost of more PFS loads. But this adds parameters to tune, which we did not investigate yet. The number of allowed speculative particles, and how often to ignore cache locality when scheduling them needs to be specified. We expect both parameters to be use case-specific.

Experiments

Alternatively, one could improve the heuristic to predict the resampling, to reduce the number of useless speculatively propagated particles. As we mentioned in Section 5.1.8, the chosen resampling strategy may impact this. As a first guess, we use RR in our experiments. Nevertheless, resampling methods that are entirely deterministic and "stable", not changing much the resampled particles when only a few new weighted particles are added, might lead to further improvement. An existing resampling technique for this might be residual systematic resampling (RSR) as presented for example by [START_REF] Bolic | New resampling algorithms for particle filters[END_REF]. RSR works similarly to RR, but the remaining particles are selected depending on one random draw only. Compared to RR, where each particle of the remainder part is drawn randomly, RSR would reduce the fluctuation in the remainder part of the ensemble.

In each propagation phase, only the last particles per runner are executed speculatively for the next assimilation cycle. Putting more particles on each runner may thus decrease the overall ratio of speculative particle propagations to non-speculative ones, improving preliminary resamplings (of speculative particles) that now rely on a larger percentage of the ensemble's particles.

Experiments

Another approach to improve the performance of speculative particle filters would be to recycle 'useless' particles, for example, to enrich the sample resolution of the analysis state PDF. For the latter, one could perform simple weight correction to include useless particles in the analysis state PDF following Equation (2.27). Particle weights from particles that were propagated too often need to be scaled down. Let w j,t+1 be the weight of particle p j where p j ∈ J, with J being the set of child particles from parent particle p i . As in Section 5.1.4, α i denotes the number of times parent p i was sampled, i.e., the intended count of its children (α i ≤ |J|).

The child particles J were generated by independent propagations of the parent particle p i . The corrected weights w j,t+1 can be computed by

w j,t+1 = α i |J| w j,t .
(5.3)

After normalization according to Equation (2.26), they can be used to express the analysis state PDF P (x a ).

All these strategies could be experimented changing only some parts of the particle filter server source code. Their exploration is left for future investigation. Examining the effect of a combination of these, calibrated for the DA problem to solve could be especially useful.

Conclusion

In this chapter, we presented an extension of the Melissa-DA framework that allows to run particle filters at a large scale in both, the count of particles and the number of state dimensions. While EnKF and many other ensemble-based DA methods shift member state vectors towards observations and therefore must centralize all member states during the update phase, the particle filter does not. The particle filter update phase changes only the composition of the full ensemble (resampling) to hinder weight collapse. This avoids heavy data exchange with a central server and reduces massively its memory requirements. Instead, a multilevel distributed cache architecture leveraging runner local RAM and the shared parallel file system is used to exchange particle states.

State transfers rely on an in situ workflow to overlap with useful computations.

Note that leveraging the PFS might become a bottleneck, but this was not the case for the tested DA problems run on the JUWELS and Jean-Zay supercomputers. Whether a direct runner-to-runner state exchange is competitive is to be explored in the future. But relying on the PFS for particle storage permits the total size of all particle states to exceed the total RAM of all used runner resources.

The particle filter update phase performing resampling is less compute intense than, e.g., an EnKF state update. This reduces the runner idle time during the update phase. Due to the reduced computation effort and memory footprint, fewer resources are necessary for the server.

The framework could easily scale with 87 % efficiency to 2,555 particles executed on 20,442 compute cores. The remaining idle time comes mainly from runners that await the last particle propagations to finish before resampling can be done, and new propagation tasks for the next assimilation cycle are distributed. To circumvent this, we extended our framework to experiment with the possibility of speculative particle propagations. While decreasing the idle time of the workflow, this does not increase its performance for the tested configurations as more particles need to be propagated. We discussed possible adaptations to make speculative propagations efficient, but their validation is left to future investigations.

Conclusion

Reproducible HPC Experimentation -a Case Study 6

This Ph.D. work exposed me to the difficult problem of HPC experiments, how to drive and how to organize them to provide meaningful results and to enable as much reproducibility as possible. Here I present the methodology that I developed during my Ph.D. work. This methodology results from a mix of influences reaching back to the year 2016 when I had my first contact with research involving supercomputers, studying power dissipation of Intel CPUs for an internship at Regionales Rechenzentrum Erlangen (RRZE) up to the current day. Great influence had also the online course "Reproducible research: methodological principles for transparent science"1 that I studied in 2020. It is not per se a scientific result, but I believe that sharing my experience and findings on that topic can be useful to others.

Motivation of Reproducible Research

Reproducibility is essential for comprehensible, transparent, and credible research. It is key to enable others and yourself to retrace the exact track of ideas and experiments that converged into hypotheses [START_REF] Alston | A Beginner's Guide to Conducting Reproducible Research[END_REF][START_REF] Desquilbet | scientifique et technique de Bordeaux[END_REF]. In the Information Age, where ideas, inputs, and algorithms may be stored digitally, and copying them is very cheap and highly efficient, research and especially the part of it running on information systems, should aim to be efficiently reproducible. Reinstalling and rerunning experiments and postprocessing pipelines up to chart generation should necessitate only a few manual steps.

Existing tooling helps to facilitate reproducibility. Digital notebook solutions like Jupyter notebooks2 , R-Studio notebooks3 , or org-mode4 allow to display postprocessing and data analysis side-by-side with the research journal containing proofs, literature research and experiment documetation. Version control systems like Git5 or subversion6 allow to keep track and easily switch between different versions of source files, experimental setups, their input files, and postprocessing pipelines.

After introducing the special challenges concerning reproducibility in HPC experimentation in Section 6.2, we will detail the tools and methods key to enable reproducibility in our work in Section 6.3. In the last section of this chapter, Section 6.4, we conclude which of the challenges were solved using the introduced technologies and methods and which ones stay open issues. We further discuss how difficult reproducibility of some of our research effectively is.

Challenges of Reproducibility in HPC Experimentation

Various computer hardware vendors produce a variety of different hardware used in HPC. Diverse processors, memory and network interfaces on different chipsets are assembled alone for the HPC machines listed on the TOP500 2022. Many HPC experiments are sensitive to the exact hardware configuration used. Heterogeneity within upcoming exascale machines is expected to increase, as stated by [START_REF] O'brien | Towards exascale computing with heterogeneous architectures[END_REF][START_REF] Schulte | Achieving Exascale Capabilities through Heterogeneous Computing[END_REF]. This will make it very important to capture the exact configuration of machines and the part of them that is used as a testbed for experiments. Only this way measurements are transparent, can be interpreted correctly, and possibly be reproduced.

Multiple users run their jobs on those systems concurrently and some resources like network and file systems are shared. As soon as those resources become saturated, slowdown can be observed [START_REF] Skinner | Understanding the causes of performance variability in HPC workloads[END_REF][START_REF] Freed | An Analysis of Network Congestion in the Titan Supercomputer's Interconnect[END_REF]. For instance, can the saturation of the network interface lead to race conditions and unpredictable delays of messages (Figure 4.13). Performance measurements on HPC are sensitive to the overall workload of a machine. Running multiple times the same experiments at moments where a machine is differently charged is crucial to obtain statistically validated results.

But, the statistical validation of results is challenging when it comes to research concerning the large scale, examining effects that are not visible on smaller runs.

Single runs can take thousands to tens of thousands of core compute hours. For this work, for instance, more than 957,000 core compute hours on super computers were used (Appendix A) with largest runs consuming 60,000 core compute hours at once. Besides being extremely costly, repeating experiments at this scale quickly has non-negligible environmental impact. Researchers must carefully evaluate the trade-off between invested resources and the importance of possible results.

HPC experimentation is also sensitive to the used software stack, its version and its configuration. The installed operating system, as well as drivers, libraries, compilers, and compiler flags, can influence experiments or the behavior of postprocessing pipelines.

Using drivers and compilers tailored to the installed hardware often brings performance improvements. Intel compilers, for instance, enable some optimizations to accelerate the execution of compiled code on Intel hardware. But such specialized software is often under restrictive licenses, limiting its availability or the availability of a specific version on many supercomputers.

Challenges of Reproducibility in HPC Experimentation

While users of HPC facilities cannot influence the used operating system and installed drivers, they can install libraries, and sometimes also compilers manually in userspace.

As software packages rely typically on complicated dependency hierarchies, it is a serious effort to manually compile and install them together with userspace applications necessary for experimentation. Installing necessary dependencies or selecting from different preinstalled versions available on many supercomputers is time-consuming, as different configurations need to be carefully tested for performance and inter-compatibility with other dependencies. Additionally, software updates on supercomputers require ongoing maintenance efforts to adapt to newly installed and removed versions of dependencies. We estimate that the installation of the Melissa-DA software stack on the two supercomputers Jean-Zay and JUWELS account for at least several hundred person-hours.

Reproducing large scale runs often leads to difficulties from a different direction too. Their input data, e.g., the boundary datasets of meteorological simulation, can easily account for hundreds of gigabytes to several terabytes. The same is true for the produced raw output data. Storing it for backups and public access is thus costly. Additionally, input data often comes from third-party data mining without permissive licensing. We experimented, for example, with the UMETSAT CMSAF satellite data 7 , which is not freely accessible. While researchers have full control over the copyright of self-written source codes for experiment configuration and postprocessing, guaranteeing public access to terabytes of input and output data, possibly licensed by a third party, is very challenging. Raw output data of the experiments in this thesis can easily reach multiple terabytes of data. As visible in Table 5.1, storing for example 2,555 particle states of the European domain would produce 6.2 TiB per assimilation cycle and is therefore avoided in all cases. Only input and raw output data necessary to rerun experiments or finally used in analysis and visualization are archived. Note that this also contains information on the exact experiment setup, including used software and hardware, which is useful for reproduction. This alone accounts for at least 28 GiB of data in our case. 

Our Approach to Reproducible HPC Research

Many solutions to reproducible research exist. The ones adapted to the kind of research and experiments that shall be driven need to be carefully selected. Different aspects can be of importance. One might be interested in the data-heavy outputs of large scale simulation in one case. In contrast, during this work, we run performance measurements. Metadata of executions, i.e., the time it takes to write the output to disk and not the written output itself, is of interest. In the following, we discuss different key technologies that we used for reproducible research, starting with an overview and then going into more details about the different technologies.

Overview

Our experimentation workflow is shown in Figure 6.1. First, a research question is posed and noted down in the lab notebook (Jupyter notebooks in our case). Possible answers 6.3 Our Approach to Reproducible HPC Research are formulated as hypotheses to be tested. Experiments to falsify the hypothesis are set up. This may involve code changes. Continuous integration testing gives confidence that introduced changes do not break functionality and run on multiple architectures.

To perform large scale experiments deployed on HPC machines, software dependencies are handled by the Spack package manager in our case. The code, subject of experimentation, is installed manually since the experimental versions of it are not yet deployed on Spack.

Our own library, repex, is set up to manage input and output data of the experiment.

Repex also stores software and hardware configurations necessary for reproducibility. As repex facilitates running multiple experiments concurrently, it is advisable to keep track of different running experiments in the lab notebook. Repex runs each experiment in its own folder on the scratch partition. While leveraging the fastest shared file system of the supercomputer, the scratch partition is often not persistent. For example, on JUWELS data gets cleared after 90 days from there.

While running the experiments, bugs in their setup that require code or configuration changes can appear. In this case, the experiments must be rerun. Next, after experiments run successfully, the postprocessing pipeline in the lab notebook is started. It downloads interesting parts of the results to the local machine. This includes information to transparently reproduce the experiments, as well as performance measurements. For our case, large binary input and output files are omitted. The raw data archived per run is in the order of several hundred megabytes for the experiments presented here. This contains traces of the run, logs, and information necessary for reproducibility. Since this data is now locally on the researcher's machine, its persistence is secured by regular full disk backups. Saving results of interest locally in combination with the automated file removal in the scratch partition make further data clean-ups unnecessary.

Any source code, be it to prepare, set up, or start runs, and the lab notebook containing postprocessing instructions are checked into Git repositories to track changes in these iteratively developing artifacts. In contrast, neither the result and input data stored using repex nor large binary for input or output files are checked into any version control system. Their content will not change. This data is only kept for archiving and as input of postprocessing making the ability to track different versions unnecessary.

Next, statistics, charts and tables for analysis of the results are generated within the lab notebook using the downloaded raw data. The researcher interprets generated analysis, leading to analysis refinements, the next research question, a report, or a publication. 

Lab Notebooks

A well written comprehensible lab notebook is central to reproducible research as it keeps track of the ideas, experiments, and conclusions that were driven to get some results. Research questions are written there and possible answers are formulated as hypotheses that shall be validated through literature research, proofs or experimentation.

In the scope of this research work, Jupyter notebooks with Python3 are used. While they provide an easier entry than, e.g., emacs' org-mode, they also enable to note down mathematical proofs, thanks to the supported LaTeX interface. Results from literature can be added as images and hyperlinks to files and websites can be included too. Also, experiments and postprocessing that do not require heavy computations can be performed directly from the lab notebook using the integrated Python or shell interpreter. As parts of the developed framework are written in Python too, code sharing between the framework and some postprocessing pipelines were possible, for instance, to reuse data structures that write and later interpret logs. Figure 6.2 displays some of the key features of Jupyter lab notebooks like text and math formatting, as well as in-line table or chart visualization and source code editing used for this work.

The nature of this work necessitates experiments executed at large scale HPC machines. Although many supercomputers make it possible to directly run Jupyter notebooks, we preferred to run our notebooks on a personal computer instead. This allows accessing our lab notebooks offline, for instance, while the supercomputer is unavailable during maintenance phases and shows better reactivity, especially when using interactive plots.

It is very difficult to entirely set up HPC experiments from within a lab notebook since often this involves compiling, copying, and changing many files on the supercomputer. We thus launched all experiments manually by connecting to the supercomputer, setting up the experiment, and launching the code there. An up to date list of currently running experiments was kept in the local lab notebook to track all running experiments. In contrast, postprocessing pipelines expressed within Jupyter notebooks are automated.

The download and parsing of the results up to the generation of tables, charts, and statistics, are launched by a single function call, parametrized by the folder name of the experiment only. Such pipelines can easily be applied at any time to new experimental data to compare results. To avoid the redownload or reparsing, which can take several seconds to minutes on local computers, caching strategies are used. For instance, all results are downloaded via differential rsync 8 folder synchronization -thus never downloading existing experiment data twice. To avoid reparsing, Python's memoization techniques are used9 .

Capturing the Environment

As mentioned in Section 6.2, capturing the precise experimental environment is crucial for both understanding experiment results in the right context and permitting reproducibility. How this can be automated and how an environment is stored alongside other experiment inputs and outputs is discussed here. Different workflow-oriented tools like JUBE [START_REF] Lührs | Flexible and Generic Workflow Management[END_REF], Cylc [START_REF] Oliver | Workflow Automation for Cycling Systems[END_REF] and ecFlow (ecFlow 2022) exist to capture the experimental environment. But, to keep the dependencies slim and avoid the installation on multiple machines and integration of existing tools in the experimental workflow, in the scope of this thesis, a minimalist library called repex10 (Reproducible Experiments) was developed for experimental environment capturing. Repex is a single file library, which makes it easy to deploy. It can be called from Python3 or bash and takes a command executing the experiment, a list of input files, Git source repositories and CMake build directories as arguments. The states of all user-defined input files like start scripts and parameter files, build configurations and Git repositories are captured. Repex further captures operating system and kernel versions, some hardware information, used nodes, environment variables, and loaded environment modules 11 . Environment modules are used to separate different software stacks on supercomputers.

To make running multiple experiments in parallel as convenient as possible and to keep track of all experiments started through repex, each experiment will be run in its own folder containing a timestamp and some user-defined caption in its name. Thus, the folder name acts as a unique identifier for each experiment. The folder then contains all experiment inputs, the capture of the experiment's environment, including the Git revision numbers of used dependencies, and also the output. In the lab notebook, it is sufficient to call previously defined postprocessing pipelines on this folder name to inspect the experimental output. The output of the postprocessing typically leads to some discussion text and some questions that demand further experimentation, the cycle shown in Figure 6.1 restarts and thanks to repex, the output of the next experiment will be properly packaged in its own folder, conserving side-by-side the inputs and outputs of all runs.

Version Control

While lab notebooks allow very well to track ideas and experiments, it would be very annoying to track changes to source codes and other sets of input files there. Version control tools like subversion 12 , Git 13 or Mercurial 14 exist for this purpose. They can easily keep track of the history of source code, input files, and scripts setting up the experiments. At any time, a user can restore older versions of files and folders, for example, to roll back some changes. Probably the most used 15 and a commonly well-understood version control system is Git. Git can handle even large codebases containing ten thousands of files 16 , and allows to work offline in contrast to version control systems like subversion. Having the entire source history available offline also speeds up operations like showing changes to other versions of the repository.

Originally, Git was made to capture the state of small files that ideally contain text, as source code files do. Files containing binary data can be handled, but the performance of Git can be significantly impacted when handling large files. Efforts like Git LFS 17 or git-annex 18 were made to store large binary files within Git.

Git is used for version control in the scope of this work. There are different Git repositories for source code, lab notebooks, and experiment start scripts. It was not necessary to leverage Git solutions for large files like Git LFS or git-annex. Keeping different versions of large binary input and output files was not necessary in the scope of this work as these files did not evolve. At maximum a single version of them needs to be archived for later reproducibility or postprocessing, a functionality brought by repex.

Deployment

To deploy to supercomputers, software need to be configured to adapt to the machine's hardware and software stack. The paths of all dependencies and architecture-specific compile flags must be set. Originally this was done manually. This is a high effort demanding many iterations of trial and error. Some scientific software packages aimed at HPC ship with install scripts for different machines to simplify this process. The ParFlow source code distribution19 , for instance, contains different build scripts for atlas-, mac-and tux-like infrastructures.

Alternative approaches that try to avoid machine-specific install scripts are package managers. For instance, Nix [START_REF] Bzeznik | Nix as HPC package management system[END_REF], Guix20 and Spack [START_REF] Gamblin | The Spack package manager: bringing order to HPC software chaos[END_REF] find application in the HPC domain. Spack is tailored to multiuser supercomputers, allowing to install multiple software stacks side-by-side and facilitates switching between them. Many HPC software libraries and applications are already available in Spack, and userspace installation is possible too. Spack is also used by some administrators of supercomputers, for instance, on the Jean-Zay machine used for some of the experiments in the previous Chapters 4 and 5. Spack allows to mix packages installed by users and supercomputer administrators, shortening installation and compile times.

This motivated packaging the Melissa-DA framework as a Spack package too. The Spack package simplifies the deployment of Melissa-DA and its dependencies. In most cases, only the few commands shown in Listing 6.1 are necessary to install Melissa-DA using Spack.

$ git clone https://gitlab.inria.fr/melissa/spack $ git checkout add-melissa-da-build2 $ source spack/share/spack/setup-env.sh $ spack install melissa-da $ spack load melissa-da $ Listing 6.1: Installing and loading Melissa-DA using Spack.

For installations using Spack, it is often necessary to rely on the supercomputer's MPI version alongside the respective compilers. Configuring Spack with respect to this can be difficult for users new to a machine as it is not easy to decide which MPI and compilers work best in each situation.

One can also configure Spack to reuse existing package bases and system libraries.

But especially system libraries are often difficult to integrate into Spack manually, and correctly announcing their specifications (used compile options and exact version numbers) is error-prone and possibly needs to be repeated after each system update. According to our experience, it is easier to use only the Spack packages provided by supercomputer administrators, or in doubt, build everything except for compiler and MPI versions through Spack. Building many Spack packages can take a long time, but this makes it more portable, requiring less human resources to adapt to varying infrastructures.

Continuous Integration

To minimize the risk of breaking changes introduced by modifications in the software stack that is later run on HPC machines, Melissa-DA uses continuous integration (CI). This is an effective way to avoid bugs that could be expensive, for example, by deadlocking large scale runs costing thousands of compute hours.

Some problems may be easier to detect under special conditions, e.g., on architectures with different instruction sets or smaller or larger cache and memory sizes. Therefore CI is run on different architectures from Raspberry PI to a virtual cluster, ensuring that our code can be installed and executed on all of those. The virtual cluster is composed of multiple connected LXC Linux containers representing compute and front-end nodes. It runs a Red Hat Linux based operating system on an x86-64 architecture, as found on many real-world HPC systems like JUWELS and Jean-Zay. The virtual cluster can run on one physical host, e.g., the researcher's personal computer permitting quick testing and development cycles as there are no other users. Different schedulers like Slurm or OAR can be installed to test integration with them. Detailed documentation of the test setup can be found online21 .

The test suite is set up to run whenever code changes are uploaded to the source code repository of Melissa-DA22 . After checking that the compilation and installation of all components works on different architectures, end-to-end testing is performed. The end-to-end testing encompasses DA studies with different degrees of parallelism (different numbers of runners, runner cores, and server cores), validated against reference results. The CI also performs forced component crashes to test the fault tolerance system.

Conclusion

We experienced two main challenges for reproducibility in HPC experimentation. The first one concerns reproducing the experimental environment. Logging of the experimental environment and all code parts must be done extensively. In our case the repex library made this possible for experiments, and Git enabled to keep the history of experiment configuration files, source code, and even lab notebooks. Jupyter notebooks were used to document all undertaken research and to post-process the results up to chart and table generation. A bigger issue is the recreation of the necessary software environment on a different or even on the same machine at a later point in time to reproduce some experiments. In our case, continuous integration guaranteed that the code runs across different architectures. We chose Spack to simplify software dependency specifications and installations. This also adds transparency and reproducibility to the installation process. It still takes some effort to set up Spack on the HPC system of choice as it needs to be configured to rely on already installed MPI and compiler versions and possibly existing Spack package bases.

The second issue for reproducibility in HPC is resource availability. Input data may encompass multiple terabytes and possibly is restrictively licensed. While we provide all experimentation scripts under permissive open source licenses, the input data for the large DA runs on the Neckar catchment and on the European domain (Sections 4.3 and 5.2) are only made available upon request to save continuous hosting costs and overcome licensing issues. But to reproduce our research, access and enough compute hours on similar HPC machines are necessary. Additionally, it can be necessary to run experiments multiple times to compensate for fluctuations in measurements, e.g., due to varying machine loads. This can be extremely costly on the large scale, and the trade-off between invested resources and possible results must be carefully evaluated.

For that reason, some experiments in this research work were not repeated multiple times with the exact same parameters at very large scale. Rather runs on a smaller scale help to be confident about the behavior of the setup. On very large scale, runs with different but comparable configurations were performed to explore a larger space of possible configurations while getting some confidence on measured performances if they behave as expected. For instance, some of the runs at largest scales on more than 10,000 compute cores presented in Sections 4.3.7 and 4.3.8 were not repeated for this reason.

Our workflow made it quickly possible to reproduce two years old experiments to test if experienced file system jitter persisted. The experiments were reproduced using the input data archived with repex. In contrast, letting collaborators reproduce our results on their machines required larger efforts. They needed to learn the tooling and adapt it

Conclusion

to their machines. Finally, Kai Keller from the Barcelona Supercomputing Center (BSC) successfully run Melissa-DA at scale on the Marenostrum and Fugaku machines, while our interns Anna Sekuła and Bartłomiej Pogodziński were able to execute Melissa-DA on machines of the Poznan Supercomputing and Networking Center (PSNC).

For research in general, and when planning experimental studies for supercomputers in particular, we recommend putting some efforts into the organization of a transparent and reproducible environment right from the beginning. The cost for this is to pay only once, and it provides great confidence in (experimental) results. In HPC experimentation, it can also enable testing of different parameter sets and code versions in parallel permitting to advance without confusing different experiment runs. In our experience, this quickly amortizes the extra effort at the beginning. Also, the initial effort to implement one-click solutions for postprocessing turned out to pay off quickly. These pipelines can be extended as time goes on, and more analytics are of interest.

For future HPC studies, an effective way to copy, compile, install and run experiment code on a supercomputer from within the lab notebook might be evaluated. While this would greatly improve transparency and automation, it remains questionable if there is much application for this. Often source code development and testing necessitate direct interaction with the supercomputer using a remote shell anyway.

A further topic of investigation might be the use of version control for large files. This might make sense in some use cases, especially when large input files are manipulated over multiple iterations, for instance, to improve the accordance of large scale simulation results with field observations. 

Conclusion

In this work, a novel architecture for ensemble-based DA is developed. It is inspired by in situ and in transit workflows, common concepts to accelerate HPC workflows. Our architecture is designed to run massively parallel ensemble runs at exascale.

While existing offline approaches for ensemble-based large scale DA suffer from file system access times and repeated application initialization costs, online approaches avoid these issues. Nevertheless, existing online approaches run as large monolithic jobs that are very sensitive to faults. Their static scheduling of members to compute resources is responsible for load imbalance as fluctuation in the execution time of member propagations cannot be compensated dynamically. In contrast, our framework, Melissa-DA, permits the dynamic scheduling of member propagations to different model instances, called runners. Runners may accommodate a parallel large scale simulation code that executes different members sequentially. This "member virtualization" is key for load-balancing as it permits to schedule propagation tasks one-by-one to different resources, reacting to fluctuations within the execution time of different propagations. Member virtualization also allows runners to stop, crash, or (re-)start with minimal disruptions. This enables elastic executions that change the amount of used compute resources while running continuously, for instance, to react to evolving resource restrictions imposed by the supercomputer's batch scheduler or to auto-recover from faults without breaking the DA workflow.

Many ensemble-based DA algorithms manipulate member state vectors during the update phase. This requires centralizing all member states. Then state updates can be calculated and applied. EnKF variants, for instance, rely on such a workflow. Our architecture runs this workflow online, transferring states through direct connections to completely avoid file I/O.

But the centralization of member states is not always necessary. Many variants of particle filters require only the centralization of particle weights (one scalar per particle). Thus, our architecture employs a second mode where only weights are gathered, and state vectors are exchanged through a shared cache, possibly leveraging the file system. Member virtualization and cache-locality sensitive scheduling reduce the number of cache misses and permits to overlap computation and cache access nearly perfectly.

Both modes enable to overlap communication and computation thanks to a server component that runs on compute resources distinct from the runners, managing propagation scheduling, data transfers, and update phase in the background. Supporting these two modes, our proposal can be applied to nearly all ensemble-based DA methods, covering a wide range of different use cases.

Melissa-DA is shown to run EnKF for a hydrological use case with 16,384 members on 500 compute nodes (20,000 cores) and particle filtering with 2,555 particles on 20,442 cores with 87 % scaling efficiency for short-range weather forecasting on the European domain. Model state sizes account for 92 MiB and 2.5 GiB per member respectively. Thanks to its load-balancing and avoidance or overlapping of file system access, as well as communication and computation, Melissa-DA shows increased performance at very large scale compared to at least one existing framework.

Many of the properties that are key to execute ensemble-based DA with high efficiency at large scale rely on member virtualization. This feature is the base for load-balanced, fault-tolerant, and elastic runs. Further improvements are obtained from the overlap of useful computation and administrative tasks like communication and file I/O and using a multilevel cache in the case of particle filters. The proposed techniques can thus be key to adapt existing ensemble-based DA methods to the exascale era, where modeling is performed with finer resolution, larger domain sizes, and higher prediction accuracy requiring larger state vectors, and more members to be assimilated.

Conclusion

Perspectives

As shown in Section 4.3.4, the complexity of the EnKF update phase is quadratic in the number of members. At large scale, this leads to an important share of runtime spent during the state update when runners are idle. Using localization and other EnKF filter variants may decrease the necessary computations for the state update, shorten the waiting of the runners and increase efficiency.

Another approach could be based on the work of [START_REF] Niño | An Effcient Implementation of the Ensemble Kalman Filter Based on Iterative Sherman Morrison Formula[END_REF]. They propose the iterative calculation of the error covariance matrices for EnKF. Their algorithm could be implemented by the server. Besides receiving and sending state data during the propagation phase, the server could simultaneously start the heavy calculation necessary for the update phase. This would partly overlap the state update computation with member propagations and shorten the time runners wait for the update phase to finish. [START_REF] Terraz | Melissa: Large Scale In Transit Sensitivity Analysis Avoiding Intermediate Files[END_REF] performed ensemble-based iterative covariance computation for sensitivity analysis at a comparable scale already.

To reduce remaining file output time, in situ post-processing may be leveraged. Thanks to Melissa-DA's modularity, it would require only minor changes to perform post-processing steps in situ by implementing them within the DA update phase. Only higher-order results like ensemble mean and variance, instead of every member state, would be written to disk, diminishing the pressure on the file system.

Our particle filter implementation will experience an important slow down when state access times are higher than the time needed for one particle propagation. In this case, the full state access cannot be overlapped by propagations anymore. While this was not the case in our examples where propagation takes about 25 s and storing or loading the states (2.5 GiB size) takes less than 5 s, it might become an issue for DA problems on high dimensional state vectors where very short assimilation windows are chosen. Persistent RAM (e.g., NVRAM), which will be supported by upcoming supercomputers to some extent, might be used as shared cache instead of the PFS. This would enable to store states persistently to recover in case of failure. However, local persistent RAM is not shared between distant runners. Ephemeral distributed file systems like GekkoFS [START_REF] Vef | GekkoFS -A Temporary Burst Buffer File System for HPC Applications[END_REF] could be used as they provide a shared virtual file system on top of NVRAM distributed on different nodes, i.e., runners.

The modularity of the Melissa-DA framework allows to run more advanced ensemblebased DA methods too. Among these count localized ensemble Kalman filters using a localized error covariance matrix (LEnKF) or the localized ensemble transform Kalman filter (LETKF). Also, methods like the ensemble transform Kalman filter (ETKF) or the Nonlinear Ensemble Transform Filter (NETF) can be easily set up with the Melissa-DA framework, but testing stays future work. The data flows supported by Melissa-DA are common to different types of particle filters. Particle filters with resampling methods like stratified or systematic resampling could be implemented relying on the same data flow as for SIR particle filters. Transportation particle filters and some localized particle filters have a data flow similar to EnKF. Similar to EnKF, they could be implemented with the server centralizing all particle state vectors to change them accordingly.

Implementing one of these ensemble-based DA methods requires to redefine resampling or the update phase calculation. Only the function transforming a set of background states into analysis states for the workflow described in Chapter 4, or the function that samples the next cycle's ensemble from a set of weighted particles for the workflow of Chapter 5 is required respectively. Features like load-balancing, fault tolerance, elasticity and computation-communication overlap are intrinsic to Melissa-DA and do not need to be changed when adding further assimilation or resampling methods.

As mentioned in Section 5.2.7, speculative particle propagation opens possibilities for further development too. To improve its performance, adapting the used resampling strategy to prefer speculatively propagated particles might be an option. Alternatively, a way to "recycle" unnecessary propagated particles enriching the sample resolution could be examined. Different settings and DA problems should be tested too. Possibly the strategy to select particles for speculative execution could be fine-tuned to lower the count of unnecessary particles. A discriminator particle weight separating particles that may be propagated speculatively from particles that are too risky to propagate in advance might be set.

Alternative approaches to reduce the idle time runners experience before the end of each assimilation were presented in Section 3.2. Island particle filters reduce ensemblewide synchronization, cutting groups of particles into islands. Particles within islands are synchronized at each cycle, but inter-island exchanges happen only sporadically. Anytime or asynchronous particle filters try to completely avoid any synchronization between particles by defining criteria to decide particle by particle if and how often it will be resampled for the next cycle. This would nicely coact with the implemented list scheduling of member propagations. At any time when a resource for model propagation requires new work, anytime particle filters would be able to provide the next task. The list of work to be scheduled would never be empty, blocking resources from performing propagation work, as it is the case when waiting for an assimilation cycle to finish. The foundations of such approaches were so far only validated with toy examples. Large scale efficiency remains to be demonstrated.

Another known issue of Monte Carlo methods including ensemble-based DA methods is that accuracy may vary over time when the ensemble size is kept constant. But

Perspectives

Melissa-DA does not require a constant ensemble size, as shown when we ran speculative particle propagations. Its workflow can easily be adapted to support, for instance, (alive) particle filters that adapt the ensemble size to fulfill accuracy requirements while avoiding oversampling too.

Island, anytime and alive particle filters look promising for peta-or exascale runs. Melissa-DA offers a sound base to implement these methods and to run them at according scales. While literature explores these methods primarily within the context of particle filters, we believe that similar extensions also have relevance for EnKF variants, as EnKF can, after all, be expressed as a special case of transport particle filters.

Hydrological groundwater simulators like ParFlow, which was used in Section 4.3, do not express interaction with the biosphere and atmosphere, for instance, responsible for evapotranspiration. ParFlow, for this purpose, is typically coupled with the community land model CLM [START_REF] Dai | The Common Land Model[END_REF]. To assimilate a more realistic setting, CLM is about to be instrumented to run within Melissa-DA. Finally, also atmospheric conditions need to be considered to depict the full water cycle. Meteorologic models need to be included for this purpose. Thus, the Terrestrial Systems Modeling Platform TerrSysMP [START_REF] Shrestha | A Scale-Consistent Terrestrial Systems Modeling Platform Based on COSMO, CLM, and ParFlow[END_REF][START_REF] Gasper | Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP v1.0) in a massively parallel supercomputing environment -a case study on JUQUEEN (IBM Blue Gene/Q)[END_REF] Melissa-DA lets the user implement assimilation update phase modules for centralized workflows and weight calculation functionality for particle filter workflows in Python. In both cases, the full state data is exposed to the user-defined Python code. Machine learning is typically implemented using Python frameworks too, for instance, using PyTorch [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF] or TensorFlow [START_REF] Abadi | TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems[END_REF]. This enables the interception of the data flow to accomplish ML approaches described in Section 3.3. One such approach is online learning by streaming data from Melissa-DA directly into an ML framework. This may, for example, enable combined DA-ML approaches as proposed by [START_REF] Brajard | Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model[END_REF]Bocquet et al., 2020. Note that a similar workflow aimed at surrogate model training (without DA in the loop) is already under active development in another branch of the Melissa software family. This branch aims to online training of deep neural networks from ensemble simulations. Once a surrogate is trained, it can easily be used instead of a traditional solver code as runner within Melissa-DA. Thus, we believe that Melissa1 /Melissa-DA is an excellent starting point to create distributed machine learning applications for the very large scale, especially when relying on very large state vectors. These may already necessitate parallelization to fit memory needs and may imply N × M data redistribution as provided by Melissa-DA.

DA techniques can also be used to solve various inverse problems, for instance, to calibrate model parameters [START_REF] Ramgraber | Data Assimilation and Online Parameter Optimization in Groundwater Modeling Using Nested Particle Filters[END_REF]. Since Melissa-DA is able to run huge numbers of ensemble members necessary to explore high dimensional search spaces, we assume Melissa-DA excels in this kind of application too.

The workflow offered by Melissa-DA is common to many ensemble problems, be it for optimization algorithms or in the field of statistics. We thus imagine applying Melissa-DA to non-DA problems too. Particle swarm optimization [START_REF] Bonyadi | Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review[END_REF], for instance, where the different runners execute a compute intense cost function of multiple particles in parallel. After gathering the results, the server moves the particles following the particle swarm optimization algorithms, and the next set of particles is evaluated until a stop criterion is reached. Melissa-DA can further be easily adapted to perform approximate Bayesian computation [START_REF] Green | Bayesian computation: a perspective on the current state, and sampling backwards and forwards[END_REF] or even run sophisticated algorithms for Markov chain Monte Carlo (MCMC), as the one proposed by [START_REF] Robert | Accelerating MCMC Algorithms[END_REF] at the large scale.

Sources of Greenhouse Gas Emission

A

To give a general idea of the environmental impact of this work, this section tries to enumerate some of the major sources of greenhouse gas emissions produced by it.

Converting the numbers into an actual amount of released greenhouse gas is left to the interested reader since it is out of reach for this thesis to find meaningful data for the conversion between, e.g., kilometers traveled by train and emitted grams of carbon dioxide.

The total number of CPU hours on HPC infrastructure as used by the author, including all intermediate and failed tests that were connected to this work is at about 957,603, split between the JUWELS and the Jean-Zay supercomputers.

This Ph.D. was a three-year effort summing up to about 630 workdays and to at least 4,400 hours at the personal computer -accounting for about 400 KWh of energy consumption, assuming an average power consumption of about 90 W for notebook computers and peripheral hardware like external screen and docking station. These numbers do not contain energy consumption for the production of all used materials, to run servers for backups, mails, or file exchange, and to maintain the workplaces (light, heating, air-conditioning, etc.). Note that in our case the impact of heating and airconditioning of the workplace is limited due to the geothermal heating and cooling installed at the lab building1 .

Another major impact on energy consumption comes from business travels -even if their impact got cut in the second half of this thesis work due to the Covid-19 pandemics. All business trips were done by train, accounting for about 9,000 km.

Since the lab is within bike reach, no greenhouse gas was emitted for daily transport between home and workplace.
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 23 Figure 2.3: Importance sampling particle filter (without resampling). Red stars mark observations. Top: Particle view. Bottom: Corresponding histogram of the analysis state at different times.

Figure 2 . 4 :

 24 Figure 2.4: (inspired by van Leeuwen, 2009, Figure 2) Initially particles are uniformly sampled.They are propagated to T 1 where they are weighted taking into account observation data. Resampling leads to discard some particles with low weights (top and bottom), while others with high weights become parent of several ones (3 here).

Figure 3 . 1 :

 31 Figure 3.1: Shadowed file writing. left: The traditional way, all simulation cores (S 0 -S 7) access the file system in parallel and need to wait for I/O completion. right:Shadowed file write where data is first gathered on one helper core per node (W 0 and W 1). Then the simulation resumes while in parallel the helper cores write the data to the file system.

  the Melissa-DA framework that was developed in the context of this thesis. Melissa-DA is an elastic, online, fault-tolerant, and modular framework for large scale ensemble-based DA. Details on its architecture and important design choices are given in Section 4.1. Section 4.2 presents the hydrological model code ParFlow used in the experiments. In Section 4.3 we present and analyze experimental results.

Figure 4 . 1 :

 41 Figure 4.1: Melissa-DA three-tier architecture. The launcher supervises the execution in a tight link with the batch scheduler. The server distributes the members to propagate to the connected runners dynamically for balancing their workload. A fault-tolerance mechanism automatically restarts failing runners or a failing server.
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 42 Figure 4.2: Melissa-DA runner and server interactions (fault tolerance part omitted for the sake of clarity). Dashed arrows denote messages that are exchanged between different components. Grey boxes are methods that need to be implemented by the user.Yellow boxes are Melissa-DA API calls that need to be introduced in the simulation code to transform it into a runner.
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 43 Figure 4.3: Pressure map at 5 cm depth used to initialize an ensemble member for DA on the Neckar catchment. Pressure values range from -2.76 to 0.5 m. The area covers 214 km × 242 km at 800 m horizontal resolution of the southwest of Germany.
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 44 Figure 4.4: Traces of the startup of a Melissa-DA run with 1,000 members on 192 runners, Melissa-DA launcher starts at 0 s.

Figure 4

 4 

Figure 4 . 5 :

 45 Figure 4.5: Histograms of propagation walltimes for 100 members during multiple assimilation cycles.

Figure 4 . 6 :

 46 Figure 4.6: Assimilating 288 observations into about 4 M grid cells with up to 1,024 members on JUWELS. Mean over 25 update phase walltimes.

Figure 4 .

 4 Figure 4.5 shows the walltime distribution of 100 ParFlow member propagations for multiple assimilation cycles. Member propagation times starting from the second cycle compare Section 4.3.2 can vary significantly from about 1.5 s to 2.5 s, with an average at 1.9 s. The main cause for these fluctuations is the Krylov-Newton solver used by ParFlow that converges with a different number of iterations depending on the member state. As detailed in Section 4.1.6, these variations can impair the execution efficiency. Melissa-DA mitigates this effect by dynamically distributing members to runners following a list scheduling algorithm.

  Assimilator interface. Refer to LarsNerger and[START_REF] Nerger | Software for ensemble-based data assimilation systems-Implementation strategies and scalability[END_REF][START_REF] Nerger | PDAF -THE PARALLEL DATA ASSIMI-LATION FRAMEWORK: EXPERIENCES WITH KALMAN FILTERING[END_REF] for further EnKF/PDAF scaling experiments.
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 48 Figure 4.8: Efficiency of the propagation phase only (top) and total compute hours used per assimilation cycle (update and propagation phase) (bottom) for different numbers of runners while assimilating 25 observations into an about 4 M grid cell ParFlow simulation with 100 and 1,024 ensemble members.

Figure 4 . 9 :

 49 Figure 4.9: Speedup during propagation phase for a ParFlow DA problem, running on a varying number of resources. Top x-axis: cores used. Bottom x-axis: runners, members per runner.

Figure 4 . 10 :

 410 Figure 4.10: Elasticity with Melissa-DA: constraining the resources that may be used by runners (top), impacts the assimilation speed (bottom).

4. 3 . 8

 38 Comparison of Melissa-DA and PDAFWe compare Melissa-DA to PDAF (Lars[START_REF] Nerger | Software for ensemble-based data assimilation systems-Implementation strategies and scalability[END_REF][START_REF] Nerger | PDAF -THE PARALLEL DATA ASSIMI-LATION FRAMEWORK: EXPERIENCES WITH KALMAN FILTERING[END_REF] 3 , one of the most advanced frameworks for large scale ensemble based DA. Both frameworks are configured to run the same DA use case, assimilating the Necker catchment in Germany simulated by ParFlow as introduced at the beginning of Section 4.3.

Figure 4 .

 4 Figure 4.11 compares the assimilation cycle times. Times are measured from the second cycle for the reasons explained in Section 4.3.2. Details on the first cycle can be found in Table4.2. Two types of runs were performed: runs where runners perform no output to disk, and runs where runners write the member state to disk (state dump) after each propagation. This latter case introduces jitter in the propagation times, and so load imbalance, as the write time is sensitive to the file system load. This also matches a classical scenario when users require states to be saved for post hoc analysis. Melissa-DA outperforms PDAF except at smaller scale with 250 members. Melissa-DA is up to almost 3 times faster than PDAF at 2,500 members with state dumping.
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 4114 Figure 4.11: Comparison of the runtime of Melissa-DA and PDAF running the same DA problem on the same amount of resources. Top: full assimilation cycle time. Bottom: propagation phase time of each cycle. S.N.: number of server nodes, R.: number of runners. ParFlow state dump true if runners output each member state to disk.
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 4124 Figure 4.12: Traces of 50 PDAF and Melissa-DA runners. Both runs were performed on 200 nodes used as 200 runners (PDAF) or 192 runners and 8 server nodes (Melissa-DA) to propagate 1,000 members. Every runner in PDAF propagates exactly 5 members, while Melissa-DA runners propagate between 5 and 6 members per cycle. Every member state is dumped during propagation.
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 413 Figure 4.13: Traces of a Melissa-DA run with 500 members on 100 runners. The network buffers of one server node saturate and thus cannot send out all state data at once (right, 40 server cores). Adding extra server nodes fixes this issue (left, 160 server cores). Note that initialization time was cut off in the plot.

Figure 5 . 1 :

 51 Figure 5.1: Runners/server architecture. The app cores perform the state propagation, the helper cores send propagated states to the PFS and prefetch the next scheduled states to the local cache in the background. Communications with the server combine MPI and ZeroMQ data exchanges.

Figure 5 . 2 :

 52 Figure 5.2: Two possible schedules of 24 propagation tasks of equal duration on four runners.All particles propagated from the same parent state have the same color (9 parents here). The top schedule is optimal with nine compulsory loads (one per parent) and one for the dark blue parent that cannot fit in one runner. The bottom schedule, with two more state loads, is a possible one that our online scheduling algorithm can produce. This is not optimal but still below the general P + R -1 bound, as the algorithm ensures for even propagation runtimes that no more than R -1 "color cuts" occur and avoids the same runner loading more than once a given parent state.
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 53 Figure 5.3: The topography of the target domain of Europe for the WRF simulation.
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 55 Figure 5.4 shows an extract of a particle filter execution trace. The runner local caches are not used during the initial propagation. Up to 69 % of the parent states can be found in the runner local caches for the subsequent propagations. Only 31 % of the

Figure 5 . 4 :

 54 Figure 5.4: Gantt chart of particle propagations executed by 15 (out of 511) randomly selected runners over 5 assimilation cycles. Tasks are green when the associated parent state was already present in the runner cache and did not require a load from the PFS (red otherwise).
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 555 Figure 5.5: Histogram of 2,555 WRF model propagation times of one assimilaton cycle.

Figure 5 . 6 :

 56 Figure 5.6: Trace detailing the activity of a runner throughout one assimilation cycle. Helpercores enable keeping app cores busy with particle propagation, except at the end of assimilation cycles when they wait for the server to finish particle resampling (dark blue). Some activities are so thin that they are not visible here (state copies from cache to model).
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 57 Figure 5.7: Server response times on various runner requests.
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 58 Figure 5.8: Mean time to load or store particle states of 2.5 GiB from/to the PFS with different numbers of runners.
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 59 Figure 5.9: Gantt chart as in Figure 5.4. Two runners crashed (black cross) and 2 restarted (top 2 runners).
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 510511 Figure 5.10: Strong scaling efficiency using different numbers of particles with 63 runners. One runner sets the reference case.
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 555 Figure 5.12 shows traces of two runs of the dummy model are shown. Runs without and with speculative particle propagation are shown side-by-side. As propagation times fluctuate a lot in this case (Table 5.2, std mean = 0.61), and only few (4-5) members per
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 5135 Figure 5.13: Non-speculative versus speculative scheduling on the WRF use case. Speculative propagations are marked with a black point.
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 514 Figure 5.14: Propagations done per runner each assimilation cycle according to the trace in Figure 5.13.
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 62 Figure 6.2: Example snippet from a Jupyter lab notebook. Formatted text, math formulas, external image data, tables, code and charts can be mixed.

  [START_REF] Poterjoy | Efficient Assimilation of Simulated Observations in a High-Dimensional Geophysical System Using a Localized Particle Filter[END_REF]. Data Assimilation in Section 3.1.4). Only for strongly non-linear and/or non-Gaussian settings particle filters are the adapted choice as they are more compute intense. This chapter introduces state-of-the-art approaches for large scale DA in Section 3.1. Variational and statistical methods are currently used at large scale, each with its advantages and disadvantages. Possible improvements may evolve from recent work on flexible particle filter variants presented in Section 3.2. DA methods are affected by techniques from the quickly developing field of Machine learning (ML) too. In Section 3.3, mixed forms of ML and DA and the exchange of specific tools between the fields are discussed. Ensemble-based approaches are not only finding application in the field of DA. Many ensemble frameworks for the large scale exist already. Thus we also comment on existing tools and if they may be adapted for large scale DA in Section 3.4. But also in situ computing techniques can augment the performance of ensemble-based DA at large scale. The chapter ends with Section 3.5, discussing existing in situ computing frameworks.

	20	The selection of a DA algorithm is very use-case dependent. When observation/model adjoint operators are available, and the system is not strongly non-linear, variational methods can perform very well. If adjoints are unknown or difficult to obtain, EnKF is easier to add to existing model codes, also due to existing tooling like PDAF (The Parallel Data Assimilation Framework by Lars Nerger and Hiller, 2013 that we will detail Chapter 2 State of the Art 3

  are a further way to improve particle filter performance. They adapt the number of particles to keep the ensemble accurate enough, i.e., alive. This technique actively tackles under-and oversampling. As soon as an accuracy criterion is fulfilled, no more particle needs to be propagated. If results are not accurate enough,

	more particles are sampled. The computation time of each timestep can fluctuate
	but accuracy stays roughly constant. For traditional particle filters as described in
	Section 2.3.3, the opposite is the case. Since the number of particles is constant, one
	can give good estimates for the computational effort for each timestep but no guarantee
	on the ensemble accuracy. As described in the mentioned publications by Jasra et al.
	and Elvira et al., different metrics to decide if more particles are needed, are possible
	and one can start particles one by one or increase and decrease the ensemble size in
	steps of multiple particles at once.

  to calculate soil water transport. The hydrological conductivity spans multiple orders of magnitude. Some materials, like sand, are very permeable, while, e.g., rock layers break the water flow. This leads to non-linearities hard to capture numerically and predict. Measuring groundwater flow remotely is challenging, and in situ measurements, e.g., from soil moisture sensors can only cover limited areas. DA is thus not only necessary to diminish numerical uncertainty but also to interpolate the few existing measurements in a sophisticated way. Typically, observations from soil moisture measuring networks are assimilated to speed up the model spin-up and improve simulation outputs.Experiments inSection 4.3.6, Section 4.3.7 and Section 4.3.8 were performed on the Jean-Zay supercomputer on up to 500 of the 1,528 scalar compute nodes. Each node has 192 GB of memory and two Intel Cascade Lake processors with 40 cores at 2.5 GHz. The compute nodes are connected through an Omni-Path interconnection network with a bandwidth of 100 Gb/s. The other experiments ran on the JUWELS supercomputer (2Intel Xeon processors, in total 48 cores at 2.7 GHz and 96 GB of memory per compute node, EDR-Infiniband (Connect-X4)) (Jülich Supercomputing Centre, 2019).For all experiments we keep nearly the same problem size. Experiments assimilating ParFlow simulations (Section 4.2) leverage ≈ 92.4 MiB per member state containing spatially distributed data for the pressure, density and saturation variables (4,031,700 cells in double precision each). This represents the Neckar catchment in Germany. A typical pressure map used to initialize an ensemble member is depicted in Figure4.3.

	4.3 Experimental Study
	4.2 ParFlow

For our test, we were provided observations from 25 groundwater measuring sensors distributed over the whole catchment. Observation values were taken from a virtual reality simulation

[START_REF] Schalge | Presentation and discussion of the high resolution atmosphere-land surface subsurface simulation dataset of the virtual Neckar catchment for the period 2007-2015[END_REF]

. ParFlow runners are parallelized on one full node (40 processes for experiments on Jean-Zay and 48 processes for JUWELS respectively). For the experiments profiling the EnKF update phase (Section 4.3.4), a toy model from the PDAF examples, parallelized only on half of a node's cores, is used to save compute hours. For this experiment the member state size is smaller (4,032,000 grid cells, ≈ 30.8 MiB)

Table 4

 4 

		.1). Dynamic load balancing leads to 96 % efficiency (or 4 % runner idle
	60	Chapter 4 Ensemble Kalman Filtering at Large Scale

Table 4 . 1 :

 41 Large scale Melissa-DA runs. Scaling efficiency is computed against the walltime of the execution on a single runner.

Table 4 . 2

 42 .2, see "Start 2nd cycle"). PDAF benefits from being a single MPI executable, requiring a single request to the batch scheduler to start. Melissa-DA takes longer mainly due to the multiple requests done to the batch scheduler (Section 4.3.2), as well as its dynamic architecture. Melissa-DA is designed to have runners executed in an elastic mode, started independently as resources become available, rather than waiting to have the full set of resources reserved as required for PDAF.

	Framework	Server nodes	Nodes Runners Sate dump	Start 2nd cycle at time	Avg. propagation time 1st cycle	Avg. propagation time 3rd cycle
	PDAF	-	500	500	off	357.25	41.36	2.58
	PDAF	-	500	500	on	379.70	43.19	5.23
	Melissa-DA	12	500	488	off	471.76	41.57	2.42
	Melissa-DA	12	500	488	on	482.89	41.99	2.95

: Startup times (seconds) of PDAF and Melissa-DA at 2500 members. 68 Chapter 4 Ensemble Kalman Filtering at Large Scale

  Let us describe the architecture and design choices made to create the particle filter framework now. Particle filters propagate an ensemble of members, i.e., particles, that then is updated using observations, leading to the next assimilation cycle. But there are differences in the data dependency graph compared to other ensemble-based DA methods like EnKF. As described in Section 2.3.2, EnKF centralizes all member states after propagation to calculate and apply the state update to each member state. In consequence, the full ensemble of state vectors is processed at each update phase.Particle filters, in contrast, do not require state centralization. After the propagation and weighting of all particles, only weights, i.e., one scalar representing each particle, need to be gathered for normalization. Next, the normalized weights are used as probability to resample a new set of parent particles from the propagated particles. The parent particles are propagated further in the next propagation phase. In contrast to EnKF, this neither necessitates centralizing data-heavy state vectors nor changing them. Instead, only the composition of the ensemble changes during the update phase. Refer toSection 2.3.3 

	5.1 Architecture
	1 Barcelona Supercomputing Center
	2 Forschungszentrum Jülich
	3 Inria Grenoble
	71

2 

, Bruno Raffin 3 and Leonardo Bautista-Gomez 1 . It was submitted to the IEEE Cluster 2021 conference but got rejected. A revised version is under active development.

The proposed particle filter implementation is completely integrated into the Melissa-DA framework. Its source code is available online under https://gitlab.inria.fr/me lissa/melissa-da. More technical documentation is available there too.

  .24) after each particle propagation. Weight calculation is problem-dependent. Assimilating different types of observations requires different weight calculations. For that purpose, scientists can define a Python function that is called from the Melissa-DA API to calculate the weight. The Python function has the signature shown in Listing 5.1:

Listing 5.1: Weight calculation interface

Table 5 . 1 :

 51 Experimental setting and performance overview at four different scales. The times are given as average in all cases.

Table 5 . 2 :

 52 Statistical description of propagation runtimes for experiments traced in Figure 5.12 and Figure 5.13.

	Berndt, 2018. Besides assimilating at a higher frequency, the proposed framework offers
	fault tolerance, automatic load-balancing, and elasticity while minimizing the file I/O
	and the time to calculate weights.

  Experimentation workflow and used technologies in the context of this work.

				Publication/	
				Report	
				Researcher	
		research question research question Research Question	setup experiment setup experiment Setup Experiment	run experiment run experiment Run Experiment	postprocessing postprocessing Postprocessing	analysis analysis Analysis
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			debugging	
		Jupyter notebook			Jupyter notebook
			CI testing		
			spack		
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		Git			Git
		Figure 6.1:			
		7 https://www.eumetsat.int, retrieved the 01.04.2022, see also Stengel et al., 2014
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  couples ParFlow, CLM and the meteorological model COSMO. Ultimately, it is planned to assimilate the full integrated Earth system model TerrSysMP at large scale using Melissa-DA. Instrumenting new models for the use with Melissa-DA can be an important effort that requires a deep understanding of the model code. Similar instrumentation is necessary to include new file I/O modules. PDI[START_REF] Roussel | PDI, an approach to decouple I/O concerns from high-performance simulation codes[END_REF] provides a generic interface for this purpose. After integrating PDI in a model code, different I/O modules can be plugged in. To simplify the instrumentation work that is needed to use an existing model with Melissa-DA, we collaborate with the authors of PDI, Bigot et al., to support Melissa-DA as a Plug-in in near future. Model codes supporting PDI for I/O could easily be launched as Melissa-DA runners then. To evaluate different ensemble-based DA methods for atmospheric particulate matter propagation, the chemistry part of the Ensemble for Stochastic Integration of Atmospheric Simulations ESIAS-chem[START_REF] Franke | Particle-filter-based volcanic ash emission inversion applied to a hypothetical sub-Plinian Eyjafjallajökull eruption using the Ensemble for Stochastic Integration of Atmospheric Simulations (ESIAS-chem) version 1.0[END_REF]) is about to be instrumented with PDI, ultimately running with the Melissa-DA PDI Plug-in to enable our DA framework.As stated by[START_REF] O'brien | Towards exascale computing with heterogeneous architectures[END_REF][START_REF] Schulte | Achieving Exascale Capabilities through Heterogeneous Computing[END_REF], future HPC machines are likely to contain a heterogeneous set of resources, leveraging CPUs, GPUs, FPGAs, and nodes with varying amounts of RAM, NVRAM, or SSD space. Its modular runner/server model paired with intrinsic load-balancing allows efficient Melissa-DA executions on such heterogeneous machines leveraging, e.g., nodes with accelerators or more memory for different components like server and runner. The N × M data redistribution implemented by Melissa-DA enables the connection of components with different levels of parallelization. Load imbalance produced by tasks executed on a heterogeneous set of resources that progress at varying paces, is equilibrated by online list scheduling in Melissa-DA. In future, we want to investigate such settings.

Actors like the European Centre for Medium-Range Weather Forecasts (ECMWF,

2021) or MeteoFrance rely on such machines (TOP500 2022). Largest DA runs even use millions of compute cores[START_REF] Yashiro | A 1024-Member Ensemble Data Assimilation with 3.5-Km Mesh Global Weather Simulations[END_REF].

https://isda-online.univie.ac.at, retrieved the 18.03.2022

https://events.ecmwf.int/event/169, retrieved the 18.03.2022

https://enkf.norceprosjekt.no/previous-workshops/enkf-workshop-2021-free-onlineevent-, retrieved the 18.03.2022
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def calculate_weight(assimilation_cycle, particle_id, background_particle_state, assimilated_index, assimilated_varid, mpi_comm): return weight_as_float
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Data Assimilation 2

This chapter introduces Data Assimilation (DA). Different DA methods adapted for varying use cases are presented. At the end of the chapter, the challenge of performing large scale DA is discussed.
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Abstract

Prediction of chaotic and non-linear systems like weather or the groundwater cycle relies on a floating fusion of sensor data (observations) with numerical models to decide on good system trajectories and to compensate for non-linear feedback effects. Ensemble-based data assimilation (DA) is a major method for this concern. It relies on the propagation of an ensemble of perturbed model realizations (members) that is enriched by the integration of observation data. Performing DA at large scale to capture continental up to global geospatial effects, while running at high resolution to accurately predict impacts from small scales is computationally demanding. This requires supercomputers leveraging hundreds of thousands of compute nodes, interconnected via high-speed networks. Efficiently scaling DA algorithms to such machines requires carefully designed highly parallelized workflows that avoid overloading of shared resources. Fault tolerance is of importance too, since the probability of hardware and numerical faults increases with the amount of resources and the number of ensemble members. Existing DA frameworks either use the file system as intermediate storage to provide a fault-tolerant and elastic workflow, which, at large scale, is slowed down by file system overload, or run large monolithic jobs that suffer from intrinsic load imbalance and are very sensible to numerical and hardware faults. This thesis elaborates on a highly parallel, load-balanced, elastic, and fault-tolerant solution, enabling it to run efficiently statistical, ensemble-based DA at large scale. We investigate two classes of DA algorithms, the ensemble Kalman filter (EnKF), and the particle filter algorithm with sequential importance resampling (SIR), and validate our framework under realistic conditions. Groundwater sensor data is assimilated using a regional hydrological simulation leveraging the ParFlow model. We efficiently run EnKF with up to 16,384 members on 16,240 compute cores for this purpose. A comparison with an existing state-of-the-art solution on the same domain, running 2,500 members on 20,000 cores, shows that our approach is about 50 % faster. We also present performance improvements running particle filter with SIR at large scale. These experiments assimilate cloud coverage observations into 2,555 members, i.e., particles, running the weather research and forecasting (WRF) model over the European domain. To manage the many experiments performed on various supercomputers, we developed a specific setup that we also present.