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Abstract/Résumé

Reduced basis method for parameter-dependent linear equations.
Application to time-harmonic problems in electromagnetism and in

aeroacoustics.
Abstract

Many engineering applications require the solutions of a partial differen-
tial equation (PDE) for a vast set of parameter configurations. Despite
the use of efficient numerical methods and algorithms to solve the PDE,
the computational costs associated with repeated solves for different pa-
rameter configurations can be prohibitive. In this thesis, we explore the
use of the reduced basis method (RBM) to accelerate parametric simula-
tion campaigns with linear PDEs. The first part of this thesis is mainly
focused on error estimation strategies. We propose an easy-to-implement
heuristic method for problems with smooth and slow-varying inf-sup stabil-
ity constants. For close-to-degenerate and potentially resonant problems,
we introduce a rigorous error estimator based on the dual natural-norm
of the residual. We generalize the error estimation approach to problems
with multiple sources and derive a block version of the RBM. The sec-
ond part of this thesis is mostly concerned with applications of the RBM to
frequency-parametrized time-harmonic Maxwell’s equations in electromag-
netism and impedance-parametrized time-harmonic linearized Euler equa-
tions in aeroacoustics. We propose a non-intrusive RBM specifically tai-
lored for frequency-sweeps with surface integral equations discretized with
the boundary element method. Numerical illustrations confirm the benefits
of the RBM, in particular when applied to real-world industrial problems.

Key words: Reduced basis method, model order reduction, finite element method, bound-
ary element method, computational aeroacoustics, computational electromagnetism
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Méthode de base réduite pour des problèmes linéaires dépendants de
paramètres. Application aux problèmes harmoniques en

éléctromagnétisme et en aéroacoustique.
Résumé

De nombreuses applications en sciences appliquées nécessitent la résolution
successive d’une équation aux dérivées partielles (EDP) pour un vaste en-
semble de valeurs de paramètres. Malgré la mise en œuvre de méthodes
numériques et d’algorithmes efficaces pour résoudre l’EDP, les coûts de cal-
cul associés à de nombreuses résolutions successives pour des paramètres
différents peuvent être prohibitifs. Dans cette thèse, nous considérons
la méthode de base réduite pour accélérer les campagnes de résolution
paramétrique des EDPs linéaires. Dans la première partie de la thèse, nous
nous focalisons sur la problématique d’estimation d’erreur. Nous proposons
une méthode heuristique d’estimation d’erreur facile à implémenter et per-
tinente pour des problèmes caractérisés par une constante de stabilité inf-
sup régulière et peu dépendante des paramètres. Pour les problèmes po-
tentiellement résonants, nous introduisons un estimateur d’erreur rigoureux,
basé sur la norme naturelle duale du résidu. Nous généralisons l’estimation
d’erreur au cas des problèmes multi-sources et dérivons une version block de
la méthode de base réduite. Dans la deuxième partie de la thèse, nous nous
intéressons aux applications de la méthode aux équations de Maxwell har-
moniques en contexte multi-fréquences et aux équations d’Euler linéarisées
harmoniques en contexte multi-impédances. Pour les problèmes multi-
fréquences en diffraction électromagnétique résolus par des équations
intégrales de surface discrétisées par la méthode des éléments de frontière,
nous proposons une version non-intrusive originale de la méthode de base
réduite. Des exemples numériques illustrent l’intérêt de la méthode, en par-
ticulier pour des problèmes de taille industrielle.

Mots clefs : Méthode base réduite, réduction d’ordre, réduction de modèle, éléments fi-
nis, éléments finis de frontière, aéroacoustique, électromagnétisme
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très précieux, ainsi que ton soutien. J’ai vraiment apprécié travailler avec toi. Merci !
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v
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d’étude : tu as été une excellente stagiaire, tu as fourni un travail remarquable et j’ai été
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d’occuper le bureau à côté du tien pendant ces trois années, car tu es bien le seul à être
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Introduction

Context

Many fields in engineering or applied sciences rely on numerical simulation for their pre-
dictive power or for system design and optimization [107]. Clearly, the ever-increasing
available computational resources cannot answer the growing demand for fast and high-
fidelity numerical simulations alone. Indeed, the development of efficient numerical meth-
ods and algorithms is crucial not only to ensure the reliability of the simulations, but also
to make the best use of the available computational power.

This thesis deals with numerical simulation of partial differential equations (PDEs) in
time-harmonic electromagnetism and aeroacoustics. Using ad-hoc discretization tech-
niques such as the finite element method [38], the computation of the solution field (i.e.,
the electric and magnetic fields in electromagnetism or the acoustic pressure and velocity
fields in aeroacoustics) at given geometry, material properties and frequency is brought
down to solving a large-scale linear system. A plethora of dedicated methods can be used
to efficiently solve such a large-scale linear system on parallel architectures [106]. How-
ever, when the user is interested in varying the material properties or the frequency, which
typically occurs in an optimization context, the cost of repeatedly solving large-scale lin-
ear systems can be computationally demanding and may involve several hours or days on
supercomputers.

Model order reduction is a possible, well-known approach to relieve the computational
burden associated with numerical simulations with varying parameters. It consists in
replacing the large-scale, high-fidelity numerical model by a reduced model, featuring
much less degrees of freedom [109]. Evaluating the solution of the reduced model at
any parameter query is very fast. However, this approach only makes sense if a reduced
model producing reliable solutions is able to be built. Typically, it is expected from the
reduced model to provide cheap reduced solutions which are ”adequately close” to the
costly high-fidelity solutions. Of course, the costly high-fidelity solutions should not have
to be computed in order to check whether or not the reduced solutions are ”adequately
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close”, hence the key notion of a posteriori error estimation [96, 123, 83].

Among the various model order reduction techniques, the focus of this thesis is on the
reduced basis method (RB method or RBM) [97, 54]. It consists in seeking the reduced
solutions as linear combinations of a small number of high-fidelity solutions computed for
a small set of parameter values. The overall goal of this thesis is to investigate all aspects
of the reduced basis method (both theoretical and algorithmic) in order to set up the best
strategies for parameter-dependent linear equations. The objectives are:

• efficiency, for the best computational performance and

• reliability, in order to certify the quality of the output of the reduced models.

In terms of applications, this thesis is specifically concerned with time-harmonic problems
in electromagnetism and aeroacoustics. In particular, we will focus on three applications
of the reduced basis method:

• for antenna applications in electromagnetism, we want to solve the pattern of radi-
ating antennas over a frequency band,

• for RADAR applications in electromagnetism, we are interested in resolving the
scattering of a plane wave on a metallic object over a frequency band,

• finally, for liner applications in aeroacoustics, we seek to vary the material prop-
erties of an aircraft engine nacelle in order to identify the best material properties
such that the noise attenuation is maximized.

Notice that the two applications in electromagnetism are concerned with the efficient pre-
diction of input/output responses, while the last application in aeroacoustics deals with the
efficient optimization of a system. Different discretization techniques are used for each
application: the antenna applications rely on edge finite elements, the scattering applica-
tions employ the boundary element method and finally the aeroacoustic applications use
the discontinuous-Galerkin method. Our aim is to show that the reduced basis method is
relevant in various discrete frameworks.

Content of the thesis

This thesis is divided into seven chapters. The first four chapters are general and not
necessarily thought for any particular application, while the chapters 5, 6 and 7 tackle the
specific applications motivating this thesis.

Chapters 1 and 2

The first two chapters provide a quick introduction to high fidelity discretization tech-
niques and a short survey of reduced basis methods. The focus is on the finite element
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approximation of coercive and weakly coercive PDEs, which is the proper mathematical
framework to address the time-harmonic problems in electromagnetism and aeroacoustics
targeted in this thesis. Two contributions are to be found in Chapter 2: (i) a robust formu-
lation of the least-squares reduced basis problem and (ii) a heuristic method for approx-
imating the inf-sup stability factor. For illustration, we propose academic numerical ex-
amples on a conductivity-parametrized Laplace equation and on a frequency-parametrized
Helmholtz equation.

Chapter 3

Chapter 3 is an original contribution, where we introduce a dual natural-norm for mea-
suring the reduced basis residual. We derive a posteriori error estimators approach based
the dual natural-norm which drastically reduces the amount of overestimation compared
to the classical a posteriori error estimation approach based on the inf-sup stability con-
stant. Numerical examples on a resonant Helmholtz problem confirm the potential of the
dual-natural norm for estimating the reduced basis approximation error.

Chapter 4

In chapter 4, we explore the reduced basis method in the context of parametrized prob-
lems with multiple sources. The originality of our work is that we successively enrich the
reduced basis not with one basis function (corresponding to the PDE solution at a given
parameter value and with given source term), but with multiple basis functions (corre-
sponding to the PDE solution at a given parameter value and with multiple source terms).
We show on an academic Laplace problem that this strategy can bring down the number
of operator factorizations when building a reduced basis.

Chapters 5 and 6

Chapters 5 and 6 are concerned with applications of the reduced basis method to fre-
quency sweep analysis in electromagnetism. In chapter 5, we consider radiating sources
in a bounded domain (with absorbing boundary conditions to simulate an unbounded do-
main). We illustrate the reduced basis method on numerical examples of industrial interest
in antenna applications using edge finite elements. We use the FETI-2LM domain decom-
position in order to make the best use of parallel computing architectures.

In chapter 6, we consider electromagnetic scattering problems in unbounded domain
brought to integral equations on the surface of the scattering object and discretized us-
ing the boundary element method. We introduce the concept of non-intrusive local affine
approximations of the discretized integral operators and use this concept in an original
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non-intrusive reduced basis method for frequency analysis with discretized surface inte-
gral equations. Our approach is illustrated on numerical examples of industrial interest in
electromagnetic scattering applications. Our work uses the state-of-the-art Fast-Multipole
Method (FMM) for accelerating the matrix-vector operations.

Chapter 7

The last chapter of this thesis is devoted to the application of the reduced basis method
to accelerate simulation campaigns in acoustic liner optimization in a discontinuous-
Galerkin framework with domain decomposition. Such simulation campaigns usually
consist in successively solving the time-harmonic linearized Euler equations at different
acoustic impedance values (typically, thousands of different acoustic impedance values).
In this context, the reduced basis method builds fast and reliable approximations of the
fluid pressure and velocity fields, which significantly accelerates the process of finding the
optimal impedance value (i.e., such that the noise attenuation is maximized). We provide
numerical illustrations on an industrial aircraft engine nacelle configuration.
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Chapter 1
Basic principles and properties of the
reduced basis method

Summary. In this chapter, we recall the notion of parametrized linear equation, their
high-fidelity discretization and their reduced basis approximation. We review the Galerkin
and Least-Squares reduced basis approximations and detail the so-called offline/online
computational strategy, for which the concept of affine operator and right-hand side is
key. We present the Empirical Interpolation Method (EIM), which is an indispensable tool
to recover approximate affine operators and right-hand sides when these are non-affine.
Two academic model problems serve as illustrations: a wavenumber-parametrized 1-
dimensional Helmholtz equation and a 2-dimensional conductivity-parametrized Laplace
equation.

Contents
1.1 Introduction to parametrized PDEs . . . . . . . . . . . . . . . . . . 6

1.1.1 Two parametrized problems . . . . . . . . . . . . . . . . . . . 6

1.1.2 Weak forms and well-posedness . . . . . . . . . . . . . . . . . 7

1.1.3 High-fidelity approximation . . . . . . . . . . . . . . . . . . . 8

1.1.4 Mathematical framework for parametrized PDEs . . . . . . . . 10

1.2 The reduced basis method . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Model order reduction and Kolmogorov width . . . . . . . . . 12

1.2.2 Choice of subspace . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Choice of approximation . . . . . . . . . . . . . . . . . . . . . 15

1.3 Efficiency of the reduced basis method . . . . . . . . . . . . . . . . 18

1.3.1 Affine operators and right-hand sides . . . . . . . . . . . . . . 18

1.3.2 Computational strategy in the affine case . . . . . . . . . . . . 19
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1.3.3 The non-affine case . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.1 Model problem 1: Helmholtz . . . . . . . . . . . . . . . . . . 24

1.4.2 Model problem 2: Laplace . . . . . . . . . . . . . . . . . . . . 27

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.1 Introduction to parametrized PDEs

1.1.1 Two parametrized problems

Let us introduce two model parametrized PDEs: a wavenumber-parametrized Helmholtz
equation and a conductivity-parametrized Laplace equation. We consider a bounded and
regular domain Ω ⊂ Rd, with d = 1, 2, 3 the spatial dimension. Let C0(Ω) denote the
space of all continuous functions defined on the closure of Ω and let L2(Ω) denote the
space of all square-integrable functions defined on Ω. Finally, we introduce the usual
Sobolev space

H1(Ω) = {v ∈ L2(Ω), ∇v ∈ L2(Ω)d}. (1.1.1)

Model problem 1: the parametrized Helmholtz equation

The first model problem is the Helmholtz problem with homogeneous Dirichlet boundary
conditions on the segment Ω =]0, 1[: find p ∈ H1(]0, 1[), such that{

− d2

dx2p− µ2p = S in ]0, 1[,

p(0) = p(1) = 0,
(1.1.2)

with a given source term S ∈ L2(]0, 1[). The unknown p typically represents the ampli-
tude of a pressure perturbation in a static fluid. In this context, µ represents the wavenum-
ber of the acoustic pressure wave.

Here, we do not want to simply solve eq. (1.1.2) for one given value of the wavenumber
µ, but rather we want to solve this problem for all possible values of µ in a given interval
[µmin, µmax] ⊂ R. Denoting p(µ) the solution of eq. (1.1.2) at the wavenumber µ, the
problem that we are interested in is finding the manifold {p(µ), µ ∈ [µmin, µmax]}.
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Model problem 2: the parametrized Laplace equation

The second model problem is the Laplace problem with homogeneous Dirichlet boundary
conditions on the 2D square domain Ω =]0, 1[×]0, 1[: find T ∈ H1(Ω), such that{

−div (κ∇T ) = S in Ω,

T = 0 on ∂Ω,
(1.1.3)

with a given source term S ∈ L2(Ω) and a given conductivity κ ∈ L∞(Ω). The unknown
field T typically represents a temperature field.

In the fashion of [66], we consider a Gaussian conductivity, whose peak is localized at
some point µ = (µ1, µ2) in the domain. Thus, the conductivity not only depends on the
spatial variable x = (x1, x2) ∈ Ω but also on the choice of µ = (µ1, µ2), following the
expression,

κ(x;µ) = exp(µ1 + µ2)

[
1 + 2exp

(
−(x1 − µ1)2 + (x2 − µ2)2

0.02

)]
. (1.1.4)

Clearly, since the conductivity depends on µ, then so does the PDE that we want to solve.
Our original PDE is expressed as the parametrized problem: find T (µ) ∈ H1(Ω), such
that {

−div (κ(µ)∇T (µ)) = S in Ω,

T (µ) = 0 on ∂Ω.
(1.1.5)

We are not interested in solving eq. (1.1.5) for just one given value of µ, but rather we are
interested in the solutions T (µ) for all possible locations µ = (µ1, µ2) of the conductivity
peak, say for all µ ∈ D = [0.4, 0.6]2. The parametrized problem amounts to finding the
manifold {T (µ), µ ∈ D}.

1.1.2 Weak forms and well-posedness

Model problem 1: the parametrized Helmholtz equation

We recall that the solution p(µ) exists and is unique provided that µ is not a so-called res-
onant wavenumber. A resonant wavenumber is a wavenumber µres such that the homoge-
neous Helmholtz equation (i.e., with source term S = 0) admits non-zero solutions. For
the 1-dimensional problem, these wavenumbers can be obtained analytically, namely they
are µres = π, 2π, 3π, 4π, . . . and the associated non-zero solutions are sin(πx), sin(2πx),
sin(2πx), sin(4πx), . . . .

The well-posedness for a non-resonant wavenumber can be obtained by invoking the Fred-
holm alternative (see [1, Chapter 4, §4.5]). To this end, introduce the Sobolev space
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H1
0 (]0, 1[) = {v ∈ H1(]0, 1[), v(0) = v(1) = 0}. Our PDE eq. (1.1.2) is equivalent to the

weak form: for given value of µ, find p(µ) ∈ H1
0 (]0, 1[) such that

∀p′ ∈ H1
0 (]0, 1[), a(p(µ), p′;µ) = f(p′), (1.1.6)

where a(·, ·;µ) : H1
0 (]0, 1[) × H1

0 (]0, 1[) → R is the continuous bilinear form and f :
H1

0 (]0, 1[)→ R is the continuous linear form given by

a(p, p′;µ) =

∫
]0,1[

(
dp

dx

dp′

dx
− µ2pp′

)
dx, f(p′) =

∫
]0,1[

Sp′dx. (1.1.7)

Recalling that ‖ d
dx
·‖L2(]0,1[) defines a norm onH1

0 (]0, 1[) (which is a direct consequence of
the Poincaré inequality, see [38, Appendix B, §3.7]), the bilinear form (p, p′) ∈ H1

0 (]0, 1[)×
H1

0 (]0, 1[) 7→
∫

Ω
dp
dx

dp′

dx
dx is clearly coercive. Next, we use the fact that the canon-

ical imbedding H1(]0, 1[) → L2(]0, 1[) is compact (this result is known as the Rel-
lich–Kondrachov theorem, [38, Appendix B, §3.3]). This shows that a(·, ·;µ) is weakly
coercive (i.e., it consists of a coercive part and a compact part) and so the Fredholm
alternative applies, thus establishing the existence and uniqueness of p(µ) for all µ /∈
{(n+ 1)π, n ∈ N}.

Model problem 2: the parametrized Laplace equation

We briefly recall that the solution T (µ) exists and is unique by the Lax-Milgram theorem
[38, Chapter 2, §2.1]. Denoting H1

0 (Ω) = {v ∈ H1(Ω), v|∂Ω = 0}, our parametrized
PDE eq. (1.1.5) is equivalent to the weak form: find T (µ) ∈ H1

0 (Ω), such that

∀T ′ ∈ H1
0 (Ω), a(T (µ), T ′;µ) = f(T ′), (1.1.8)

where a(·, ·;µ) : H1
0 (Ω)×H1

0 (Ω)→ R is the continuous bilinear form and f : H1
0 (Ω)→

R is the continuous linear form given by

a(T, T ′;µ) =

∫
Ω

κ(µ)∇T ·∇T ′dΩ, f(T ′) =

∫
Ω

ST ′dΩ. (1.1.9)

As already mentioned, ‖∇ · ‖L2(Ω) defines a norm on H1
0 (Ω). Thus, we can easily show

the following coercivity property

∀T ∈ H1
0 (Ω), a(T, T ;µ) > inf

x∈Ω
κ(x;µ) ‖∇T‖L2(Ω). (1.1.10)

In this context, the Lax-Milgram theorem provides existence and uniqueness of the solu-
tion T (µ) to the weak form eq. (1.1.8) and therefore to the PDE eq. (1.1.5).

1.1.3 High-fidelity approximation

In order to numerically solve the two parametrized problems, we first need to be able
to provide numerical approximations for the solutions. In this thesis, this will be done
by discretizing the weak form of the PDE using the finite element (FE) method. In this
section, we briefly show how this works.
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Model problem 1: the parametrized Helmholtz equation

The weak form eq. (1.1.6) is now discretized using the standard FE method. For this
purpose, letN > 1 and introduce a set ofN +2 uniformly distributed points {xi}16i6N+2

in [0, 1], that is xi = (i−1)h, where h = 1/(N +1). Note that x0 = 0 and xN+2 = 1. The
first order Lagrange finite element approximation space incorporating Dirichlet boundary
conditions is defined as

X0
h(]0, 1[) = {v ∈ C0([0, 1]), v|]xi,xi+1[ ∈ P1(]xi, xi+1[), 1 6 i 6 N + 1,

v(0) = v(1) = 0}.
(1.1.11)

Note that this FE approximation space is of dimension N . For given value of µ, our FE
approximation for p(µ) ∈ H1

0 (]0, 1[) is the Galerkin approximation ph(µ) ∈ X0
h(]0, 1[)

satisfying the discrete weak form

∀p′h ∈ X0
h(]0, 1[), a(ph(µ), p′h;µ) = f(p′h). (1.1.12)

We say that ph(µ) is a high-fidelity approximation, because the discretization error ‖ph(µ)−
p(µ)‖H1(]0,1[) can be made arbitrarily small by adequately refining the partition Th. Since
the exact PDE solution p(µ) is numerically unobtainable, we can forget about the exact
PDE and focus on the high-fidelity approximation ph(µ). For this reason, the high-fidelity
approximation is also called the truth approximation. Unfortunately, the existence and
uniqueness of the truth approximation cannot be straightforwardly established (noticing
that the fact that p(µ) exists and is unique by the Fredholm alternative is not a sufficient
condition). By the Banach-Nečas-Babuška theorem [38, Chapter 2, §2.1], the existence
and uniqueness of ph(µ) is equivalent to the existence of α(µ) > 0 such that the following
(discrete) inf-sup condition is satisfied

∀ph ∈ X0
h(]0, 1[), sup

p′h∈X
0
h(]0,1[)

a(ph, p
′
h;µ)

‖p′h‖H1
0 (]0,1[)

> α(µ)‖ph‖H1
0 (]0,1[), (1.1.13)

where ‖ · ‖H1
0 (]0,1[) denotes a norm on H1

0 (]0, 1[) (for instance the ‖ d
dx
· ‖L2(]0,1[) norm).

Model problem 2: the parametrized Laplace equation

As in the Helmholtz case, the weak form eq. (1.1.8) is discretized using the FE method
using a triangulation Th = {Te}16e6Nelt

of Ω intoNelt triangle elements. We again use the
first order Lagrange finite element approximation space incorporating Dirichlet boundary
conditions, which is defined in this case as

X0
h(Ω) = {v ∈ C0(Ω), ∀T ∈ Th, v|T ∈ P1(T ), γ0v = 0}. (1.1.14)

Finally, for given value of µ, our FE approximation is the Galerkin approximation Th(µ) ∈
X0
h((Ω)) satisfying the discrete weak form

∀T ′h ∈ X0
h(Ω), a(Th(µ), T ′h;µ) = f(T ′h). (1.1.15)
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Again, we can forget about the exact PDE solution T (µ) and focus on the high-fidelity
approximation Th(µ) also called the truth solution, since the two can be made indistin-
guishable by refining the triangulation. The truth solution exists an is unique thanks to the
conforming propertyX0

h(Ω) ⊂ H1
0 (Ω). Indeed, the coercivity property onH1

0 (Ω)×H1
0 (Ω)

directly implies a (discrete) coercivity property on X0
h(Ω)×X0

h(Ω).

1.1.4 Mathematical framework for parametrized PDEs

So far, we have reviewed the Helmholtz and Laplace equations in parametrized settings
and have shown their high-fidelity discretization using finite elements. We now present the
general mathematical framework that will be used throughout this thesis. Our Helmholtz
and Laplace problems must be thought of as specific instances in this general mathemati-
cal framework.

Variational setting

Let D ⊂ Rp be a compact set of parameters, where p is the number of independent
parameters. Let aex(·, ·;µ) : V ex × W ex → C and f ex(·;µ) : W ex → C be given µ-
dependent sesquilinear and linear forms and consider the parametrized PDE: find uex(µ) ∈
V ex such that

∀wex ∈ W ex, aex(uex(µ), wex;µ) = f ex(wex;µ). (1.1.16)

The spaces V ex andW ex are two infinite-dimensional Sobolev spaces such that the parame-
trized PDE is well-posed. For instance, V ex could verify H1

0 (Ω) ⊂ V ex ⊂ H1(Ω), where
Ω ⊂ Rd is the domain in which the PDE is solved and W ex could be the same space as
V ex (c.f. our two model problems).

Since the exact PDE solution uex(µ) is numerically unobtainable, our focus is on a given
high-fidelity approximation: find u(µ) ∈ V such that

∀w ∈ W, a(u(µ), w;µ) = f(w;µ), (1.1.17)

where a(·, ·;µ) : V ×W → C and f(·;µ) : W → C are given µ-dependent sesquilinear
and linear forms and V,W denote two Hilbert spaces, with finite dimension N .

The Hilbert space V is typically the FE trial space (where the FE approximation is sought),
while W is the FE test space. The spaces V,W may be thought of as conforming approxi-
mation spaces verifying V ⊂ V ex, W ⊂ W ex, in which case a(·, ·;µ) and f(·;µ) coincide
with aex(·, ·;µ) and f ex(·;µ) and the norm on V (resp. W ) is inherited from V ex (resp.
W ex). Yet we emphasize that the present is also fit to non-conforming approximation
spaces, in which case V,W must be equipped with adequate, usually mesh-dependent
norms. For instance, this situation occurs when using Discontinuous-Galerkin methods
[101].
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The dimension N can be chosen large enough so that the difference between the exact
PDE solution uex(µ) and the numerical approximation u(µ) is adequately small. Thus
our focus is on the high-fidelity solution u(µ) also called the truth solution and we forget
about the exact PDE solution.

Operator setting

We can re-write eq. (1.1.17) more simply in terms of operator and right-hand side. To this
end, let us introduce V ′, the topological dual of V which is the Hilbert space comprising
all linear forms ` : V → C. We denote V ′〈`, v〉V (or simply 〈`, v〉, when there is no
ambiguity) the duality bracket between v ∈ V and a member ` ∈ V ′ from the topological
dual. We adopt the convention that the duality bracket is linear with respect to the first and
anti-linear with respect to the second variable, that is 〈λ`, ηv〉 = λη〈`, v〉 for all λ, η ∈ C.

Let RV ∈ L(V, V ′) denote the inverse Riesz operator such that the our inner product on
V is

∀v1, v2 ∈ V, (v1, v2)V = 〈RV v1, v2〉. (1.1.18)

and the norm V denoted ‖ · ‖V verifies by ‖v‖2
V = (v, v)V = 〈RV v, v〉. The norm ‖ · ‖V ′

on the topological dual V ′ is given by

‖`‖V ′ = sup
v∈V

|〈`, v〉|
‖v‖V

=
(
〈`, R−1

V `〉
)1/2

. (1.1.19)

Of course, we can introduce similar objects in the case of the Hilbert space W . This
being set, it is clear from the Riesz representation theorem that there exists a unique linear
operator A(µ) ∈ L(V,W ′) such that

∀(u,w) ∈ V ×W, 〈A(µ)u,w〉 = a(u,w;µ). (1.1.20)

The parametrized linear form f(·;µ) : W → C on the right-hand side of eq. (1.1.17) can
be seen a µ-dependent member f(µ) of W ′, as

∀w ∈ W, 〈f(µ), w〉 = f(w;µ). (1.1.21)

With these new notations, eq. (1.1.17) can be equivalently re-expressed in operator form
as: find u(µ) ∈ V such that

A(µ)u(µ) = f(µ) in W ′. (1.1.22)

Well-posedness

The parametrized problem eq. (1.1.22) is well-posed if and only if A(µ) is a weakly
coercive operator satisfying the assumptions of the Banach-Nečas-Babuška theorem, i.e.,
for all v ∈ V

α(µ)‖v‖V 6 ‖A(µ)v‖W ′ 6 γ(µ)‖v‖V , (1.1.23)
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with the so-called (strictly positive) inf-sup constant,

α(µ) = inf
v∈V

sup
w∈W

|〈A(µ)v, w〉|
‖v‖V ‖w‖W

= inf
v∈V

‖A(µ)v‖W ′
‖v‖V

> 0, (1.1.24a)

and with the (bounded) continuity constant,

γ(µ) = sup
v∈V

sup
w∈W

|〈A(µ)v, w〉|
‖v‖V ‖w‖W

= sup
v∈V

‖A(µ)v‖W ′
‖v‖V

<∞. (1.1.24b)

Remark (Coercive case). We can easily show that coercivity implies inf-sup stability. For
this purpose, assume V = W and that A(µ) ∈ L(V, V ′) is coercive. Thus there exists
c(µ) > 0 such that the following coercivity property is satisfied

∀v ∈ V, |〈A(µ)v, v〉| > c(µ)‖v‖2
V . (1.1.25)

In this situation, we can bound the inf-sup constant from below using the coercivity con-
stant as follows

α(µ) = inf
v∈V

sup
v̂∈V

|〈A(µ)v, v̂〉|
‖v‖V ‖v̂‖V

> inf
v∈V

|〈A(µ)v, v〉|
‖v‖2

V

= c(µ) > 0. (1.1.26)

Under the assumptions of the Banach-Nečas-Babuška theorem, for any µ ∈ D the solution
u(µ) to eq. (1.1.22) exists and is unique. In this work, we are interested in the manifold
M = {u(µ), µ ∈ D}, comprised of all truth solutions under variation of the parameter.

1.2 The reduced basis method

1.2.1 Model order reduction and Kolmogorov width

Recalling that the truth solution u(µ) ∈ V for given value of the parameter µ ∈ D is
actually a function of the spatial variable x ∈ Ω, we can view u as the function (x, µ) 7→
u(x, µ) defined on Ω × D. Model order reduction techniques aim at constructing an
efficient approximation uN of u under the following separated form

uN(x, µ) =
N∑
n=1

βn(µ)ξn(x), (1.2.1)

for some functions β1, . . . , βN of the µ variable and some functions ξ1, . . . , ξN of the x
variable. Assuming that the N functions ξ1, . . . , ξN are linearly independent functions of
V ; which is a reasonable assumption; then VN = Span{ξ1, . . . , ξN} is a N -dimensional
subspace of V . In this context, uN given by eq. (1.2.1) is an approximation of u in the
subspace VN .

12
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Intuitively, the approximation error decreases as the subspace dimension N increases.
Model order reduction techniques are successful if the subspace dimension N does not
increase too rapidly with decreasing approximation error [3]. The Kolmogorov N -width
is the key notion in order to obtain a priori knowledge of the success of reduced order
models [97, Chapter 5].

Let VN ⊂ V be aN -dimensional subspace of V . We define the angle between the solution
manifold M = {u(µ), µ ∈ D} and the subspace VN as

d(M , VN) = sup
u∈M

inf
vN∈VN

‖u− vN‖V . (1.2.2)

In other words, when the angle between M and VN is ε, this means that any truth solution
u(µ) ∈M can be approximated by a member of VN with an error smaller than ε. Thus, the
smaller the angle between M and VN , the better truth solutions can be approximated using
members of VN . The KolmogorovN -width corresponds to the smallest angle between M
and any N -dimensional subspace, that is

dN(M , V ) = inf
VN⊂V, dim(VN )=N

d(M , VN). (1.2.3)

Thus, the Kolmogorov N -width is a theoretical lower bound for the approximation error
when approximating the truth solution u(µ) for any µ ∈ D using the subspace approxi-
mation eq. (1.2.1) [31].

Model order reduction techniques are particularly well suited for parametrized problems
with fast-decaying Kolmogorov N -width. Indeed, assuming a fast-decaying Kolmogorov
N -width, we can build a subspace with small dimension N in which the truth solu-
tions can be approximated with small approximation errors. It has been proved that the
Kolmogorov N -width decays exponentially fast for certain linear, coercive parametrized
problems [120, 18, 31], therefore model order reduction techniques are expected to per-
form very well on this type of problems. On the other hand, model order reduction tech-
niques are expected to be challenged on linear transport problems, for which the decay of
the Kolmogorov N -width has been proven to be rather slow [88, 48, 86].

1.2.2 Choice of subspace

We briefly review two popular model order reduction techniques for constructing the ap-
proximation subspace VN ⊂ V : the proper orthogonal decomposition (POD) method and
the Reduced basis (RB) method.

Proper orthogonal decomposition (POD)

Given a discrete set SM = {µ1, . . . , µM} ⊂ D of M distinct parameter points (with M >
N ), the N -dimensional POD approximation subspace is the solution to the following

13
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optimization problem

inf
ṼN⊂Span{u(µ), µ∈SM}, dim(ṼN )=N

√√√√ M∑
m=1

‖u(µm)− ΠṼN
u(µm)‖2

V , (1.2.4)

where ΠṼN
: V → ṼN denotes the orthogonal projection onto the subspace ṼN . We recall

that given u ∈ V the orthogonal projection ΠṼN
u of u onto ṼN is characterized by

∀ṽN ∈ ṼN , (ṽN ,ΠṼN
u− u)V = 0. (1.2.5)

In order to build a POD approximation subspace one must proceed in two steps:

1. compute the M truth solutions u(µ1), . . . , u(µM);

2. solve the optimization problem eq. (1.2.4).

The first step is known as the exploration phase, while the second consists in a compres-
sion phase, which retains only N 6 M basis functions from the subspace spanned by
the M truth solutions. For a more comprehensive review of the POD, we refer to the
dedicated book [69].

Reduced Basis methods

The Lagrange reduced basis approximation subspace [94, 71, 105] is simply the span of
some N truth solutions u(µ1), . . . , u(µN) at some distinct parameters µ(1), . . . , µN ∈ D;
that is,

VN = Span{u(µ1), . . . , u(µN)}. (1.2.6)

A variant is the Taylor reduced basis approximation subspace [94], which is the span of the
first derivatives of the truth solution u(µ) with respect to the parameter µ = (µ1, . . . , µp)

T

evaluated at some parameter value µ? ∈ D; that is the span of ∂u
∂µ`

(µ?), ` = 1, . . . , p.
Note that this subspace is at most p-dimensional, with p the number of independent
parameters. Another variant consists in combining the span of some N truth solutions
u(µ1), . . . , u(µN) at some distinct parameter points µ1, . . . , µN ∈ D, with their first
derivatives. One obtains the Hermite RB approximation subspace [62].

Discussion

Our goal in this thesis is to compute as few high-fidelity solutions as possible in order
to obtain the best computational savings. In this context, the POD is not well suited,
because the exploration phase requires computing a large numberM � N of high-fidelity
solutions, the cost of which can be computationally significant.

14
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Furthermore, we note that the use of Taylor or Hermite approximation subspaces incor-
porate information from the derivatives of u(µ) with respect to µ. In theory, this raises of
course the question of the existence of these derivatives. In practice, when these deriva-
tives exist, computing them requires solving for all ` = 1, . . . , p the following problem:
find v`(µ) = ∂u

∂µ`
(µ) ∈ V such that

A(µ)v`(µ) =
∂f

∂µ`
(µ)− ∂A

∂µ`
(µ)u(µ) in W ′. (1.2.7)

In terms of costs, solving eq. (1.2.7) is about as expensive as a high-fidelity solve. In
terms of implementation, this is not an easy task: new assembly routines must be coded
in order to assemble the derivatives of the operator and right-hand side.

For ease of implementation and thanks to its relative simplicity, we have chosen to work
exclusively with Lagrange reduced basis approximation subspaces of the form of eq. (1.2.6).

1.2.3 Choice of approximation

Now that a N -dimensional approximation subspace VN ⊂ V is at hand, we have to define
an efficient approximation uN(µ) of u(µ) under the separated form eq. (1.2.1). Indeed,
the optimal subspace approximation is given

u?N(µ) = argmin
vN∈VN

‖vN − u(µ)‖V . (1.2.8)

In general, the optimal reduced basis approximation u?N(µ) cannot be computed with-
out the knowledge of the truth solution u(µ). Indeed, u?N(µ) is given by the orthogonal
projection of u(µ) onto the subspace VN , i.e.,

∀vN ∈ VN , (vN , u
?
N(µ)− u(µ))V = 0. (1.2.9)

Thus computing u?N(µ) requires first computing u(µ) and then projecting it onto the sub-
space VN . This strategy is of course inefficient! In order to obtain efficient approxima-
tions, we must turn to sub-optimal approximations. We now review the Galerkin and
Least-squares approximations.

Remark. There is one special case where the optimal subspace approximation u?N(µ) can
actually be computed without the knowledge of u(µ): we shall see this in the upcoming
proposition 1.2.2.

Galerkin approximation

Let VN ⊂ V be a N -dimensional subspace. The so-called Galerkin RB approximation is
defined as follows [97].
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Definition 1 (Galerkin RB approximation). For all µ ∈ D the Galerkin RB approximation
is given by uN(µ) ∈ VN satisfying the weak form

∀vN ∈ VN , 〈A(µ)uN(µ), vN〉 = 〈f(µ), vN〉.

The existence and uniqueness of the Galerkin RB approximation cannot be proven in the
general Hilbert setting. However, it can be proven in the case V = W (which corresponds
to the situation where the high-fidelity approximation stems from a Galerkin projection)
and under the hypothesis that A(µ) ∈ L(V, V ′) is coercive.

Proposition 1.2.1 (Well-posedness of the Galerkin RB approximation). Assume thatW =
V and that A(µ) ∈ L(V, V ′) is coercive. Then the Galerkin RB approximation exists and
is unique.

Proof. By the Banach-Nečas-Babuška theorem, the Galerkin RB problem is well-posed
if and only if the stability constant defined by

αN(µ) = inf
vN∈VN

sup
v̂N∈VN

|〈A(µ)vN , v̂N〉|
‖vN‖V ‖v̂N‖V

(1.2.10)

is strictly positive. Choosing v̂N = vN as candidate supremizer in eq. (1.2.10) we get

αN(µ) > inf
vN∈VN

|〈A(µ)vN , vN〉|
‖vN‖2

V

Since A(µ) ∈ L(V, V ′) is coercive, there exists a coercivity constant c(µ) > 0 such that
the following coercivity property hold

∀v ∈ V, |〈A(µ)v, v〉| > c(µ)‖v‖2
V .

Using the subspace property VN ⊂ V , we conclude that αN(µ) > c(µ) and so αN(µ) > 0;
which concludes the proof.

We now consider the adjoint operatorA(µ)∗ ∈ L(W,V ′), defined by W ′〈A(µ)v, w〉W =V ′

〈A(µ)∗w, v〉V for all v ∈ V and for all w ∈ W . The following result is classical, showing
optimality of the Galerkin projection for self-adjoint operator and a specific choice for the
norm on V .

Proposition 1.2.2 (Optimality of the Galerkin projection in self-adjoint case). Assume
that W = V and that A(µ) ∈ L(V, V ′) is coercive and self-adjoint (i.e., A(µ) = A(µ)∗)
and consider the norm on V such that the inverse Riesz operator is given by

RV = A(µ).

Let VN ⊂ V be a N -dimensional RB approximation space. Then, the optimal RB approx-
imation u?N(µ) ∈ VN defined by (1.2.8) exists, is unique and is the given by the Galerkin
RB approximation.
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Proof. Recall the characterization (1.2.9) for the optimal RB approximation u?N(µ) ∈ VN ,

∀vN ∈ VN , 〈RV vN , u
?
N(µ)− u(µ)〉 = 0. (1.2.11)

Using RV = A(µ) = A(µ)∗ in yields

∀vN ∈ VN , 〈A(µ)u?N(µ), vN〉 = 〈A(µ)u(µ), vN〉. (1.2.12)

Recalling that 〈A(µ)u(µ), vN〉 = 〈f(µ), vN〉 we obtain that u?N(µ) ∈ VN is the Galerkin
RB approximation defined in definition 1. Existence and uniqueness is provided by propo-
sition 1.2.1.

Remark. Notice that RV = A(µ) means that the norm on V is in fact a µ-dependent
norm.

The Least-Squares approximation

As we have seen, the well-posedness of the Galerkin RB approximation can only be shown
in the situation V = W and A(µ) ∈ L(V, V ′) is coercive. The Least-squares RB approx-
imation is an alternative RB approximation for which well-posed can be proven in the
general case [97].

Definition 2 (Least-squares RB approximation). For all µ ∈ D the least-squares RB
approximation is given by uN(µ) ∈ VN solution to

uN(µ) = argmin
vN∈VN

‖A(µ)vN − f(µ)‖2
W ′ .

As its name suggests, the least-squares RB approximation minimizes the reduced basis
residual norm. Contrary to the optimal reduced basis approximation, the least-squares re-
duced basis approximation is always computable without knowledge of the truth solution
u(µ). It is further unconditionally well-posed, as shown by the following proposition.

Proposition 1.2.3 (Least-Squares Reduced Basis). The least-squares RB approximation
uN(µ) ∈ VN defined in definition 2 is the unique solution to the Petrov-Galerkin weak
formulation

∀wN ∈ R−1
W A(µ)VN , 〈A(µ)uN(µ), wN〉 = 〈f(µ), wN〉.

Or, equivalently, the unique solution to the Galerkin weak formulation

∀vN ∈ VN , 〈A(µ)∗R−1
W A(µ)uN(µ), vN〉 = 〈A(µ)∗R−1

W f(µ), vN〉.

Proof. Define J : VN → R, vN 7→ ‖A(µ)vN − f(µ)‖2
V . By direct differentiation, for all

hN ∈ VN there holds,

〈∇J (vN), hN〉 = 2<
{
〈R−1

W A(µ)vN , A(µ)hN〉 − 〈R−1
W A(µ)hN , f(µ)〉

}
.
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Thus, the optimality condition

∀hN ∈ VN , 〈∇J (uN(µ)), hN〉 = 0,

is equivalent to the Galerkin weak formulation

〈A(µ)∗R−1
W A(µ)uN(µ), vN〉 = 〈A(µ)∗R−1

W f(µ), vN〉 ∀vN ∈ VN .

Furthermore, the inf-sup constant of this Galerking weak formulation writes

αN(µ) = inf
vN∈VN

sup
wN∈R−1

W A(µ)VN

|〈A(µ)vN , wN〉|
‖vN‖V ‖wN‖W

= inf
vN∈VN

sup
v̂N∈VN

|〈A(µ)∗R−1
W A(µ)vN , v̂N〉|

‖vN‖V ‖v̂N‖V
.

(1.2.13)

Taking the candidate supremizer v̂N = vN , there holds

sup
v̂N∈VN

|〈A(µ)∗R−1
W A(µ)vN , v̂N〉|

‖vN‖V ‖v̂N‖V
>
|〈A(µ)∗R−1

W A(µ)vN , vN〉|
‖vN‖2

V

=
‖A(µ)vN‖2

W ′

‖vN‖2
V

.

Thus, exploiting VN ⊂ V , we get the following lower bound

αN(µ) > inf
vN∈VN

‖A(µ)vN‖2
W ′

‖vN‖2
V

> inf
v∈V

‖A(µ)v‖2
W ′

‖v‖2
V

= α(µ)2 > 0.

Thus the weak form is well-posed.

1.3 Efficiency of the reduced basis method

We now explain how the RB approximations can be efficiently computed. In this context,
the notion of affinely parametrized operator (or simply affine operator for brevity) is key
[123, 105].

1.3.1 Affine operators and right-hand sides

Definition 3 (Affine operator). The µ-parametrized operator A(µ) ∈ L(V,W ′) is affine
if there exists
• Qa functions θaq : D → C, 1 6 q 6 Qa at least bounded (i.e., θaq ∈ L∞(D),

1 6 q 6 Qa);
• Qa linear operators Aq ∈ L(V,W ′), 1 6 q 6 Qa;

such that

∀µ ∈ D, A(µ) =

Qa∑
q=1

θaq (µ)Aq.

18



CHAPTER 1. BASIC PRINCIPLES AND PROPERTIES

Let us illustrate the notion of affine operator with the our first model parametrized lin-
ear equation introduced in section 1.1. Namely, the operator stemming from the 1D
Helmholtz equation with Dirichlet conditions writes, with V = W = X0

h(]0, 1[),

∀(v, w) ∈ V ×W, 〈A(µ)v, w〉 =

∫
]0,1[

(
dw

dx

dw

dx
− µ2vw

)
dx. (1.3.1)

It is clearly affine with Qa = 2 terms. Indeed, a possible affine parametrization (not
unique) is θa1(µ) = 1, θa2(µ) = −µ2 and

∀(v, w) ∈ X × V,

{
〈A1v, w〉 =

∫
]0,1[

dv
dx

dw
dx

dx,

〈A2v, w〉 =
∫

]0,1[
vwdx.

(1.3.2)

The concept of affine parametrization [123] can also be defined for the right-hand-side.

Definition 4 (Affine right-hand-side). The µ-parametrized linear form f(µ) ∈ W ′ is
affine if there exists
• Qf functions θfq : D → C, 1 6 q 6 Qf at least bounded (i.e., θfq ∈ L∞(D),

1 6 q 6 Qf );
• Qf linear forms fq ∈ W ′, 1 6 q 6 Qf ;

such that

∀µ ∈ D, f(µ) =

Qa∑
q=1

θfq (µ)fq.

1.3.2 Computational strategy in the affine case

When the operator A(µ) ∈ L(V,W ′) and right-hand-side f(µ) ∈ W ′ are affine, a very
efficient computational strategy can be set up for the reduced basis method [84, 105, 54].
We detail this computational strategy in this section. For ease of implementation, we
introduce an algebraic setting.

Algebraic setting

Since dim(V ) = dim(W ) = N , we now introduce a basis {φVj }16j6N for V and
{φWi }16i6N for W . For all q = 1, . . . , Qa we define the matrix Aq ∈ CN×N , with
entries

[Aq]ij = 〈AqφVj , φWi 〉, 1 6 i, j 6 N (1.3.3)

Using the affine decomposition, the operator A(µ) ∈ L(V,W ′) is algebraically repre-
sented by the matrix A(µ) ∈ CN×N given by

A(µ) =

Qa∑
q=1

θaq (µ)Aq. (1.3.4)
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Similarly, for all q = 1, . . . , Qf we define the vector fq ∈ CN with entries

[fq]i = 〈fq, φWi 〉, 1 6 i 6 N . (1.3.5)

Using the affine decomposition [123], the right-hand side f(µ) ∈ W ′ is algebraically
represented by the vector f(µ) ∈ CN given by

f(µ) =

Qf∑
q=1

θfq (µ)fq. (1.3.6)

This being set, it is clear that u(µ) ∈ CN solution to the linear system A(µ)u(µ) = f(µ)
holds the coordinates of the truth solution u(µ) ∈ V in the {φVj }16j6N basis.

Let now VN ⊂ V denote a given reduced basis approximation space of dimension N and
{ξ1, . . . , ξN} denotes an orthonormal basis for VN . Here, orthonormality is considered in
the sense

〈RV ξi, ξj〉 = δij, 1 6 i, j 6 N (1.3.7)

with δij the Kronecker symbol (1 if i = j, 0 otherwise). Each reduced basis function ξj
(1 6 j 6 N ) can be decomposed in the basis {φVi }16i6N as

ξj =
N∑
i=1

Pijφ
V
i . (1.3.8)

The matrix P ∈ CN×N thus represents the reduced basis. This is a BV -orthogonal matrix
(i.e., P∗BV P = I), where BV ∈ CN×N is the hermitian positive definite matrix with
entries

[BV ]ij = 〈RV φ
V
j φ

V
i 〉, 1 6 i, j 6 N . (1.3.9)

We seek our reduced basis approximation uN(µ) ∈ VN as

uN(µ) =
N∑
j=1

xj(µ)ξj, (1.3.10)

where the coefficients x(µ) = (x1(µ), . . . ,xN(µ)) ∈ CN are the coordinates of the re-
duced basis approximation uN(µ) ∈ VN expressed in the basis {ξ1, . . . , ξN}. The co-
ordinates of the RB approximation uN(µ) ∈ VN in the {φVi }16i6N basis are given by
uN(µ) = Px(µ) ∈ CN .

Galerkin reduced basis approximation

We begin with the case where uN(µ) ∈ VN is the Galerkin RB approximation. Recalling
definition 1, that the Galerkin RB approximation uN(µ) ∈ VN satisfies the weak form:

〈A(µ)uN(µ), vN〉 = 〈f(µ), vN〉 ∀vN ∈ VN . (1.3.11)
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Equivalently, the coordinates x(µ) ∈ CN of the Galerkin RB approximation satisfy the
N ×N linear system

(P∗A(µ)P) x(µ) = P∗f(µ) (1.3.12)

Solving such a linear system can be achieved withO(N3) complexity using a direct solver.

However, assembling this linear system for a given value of µ requires assembling the
left-hand side matrix P∗A(µ)P as well as the right-hand side vector P∗f(µ), which has
a complexity dependent on N . Fortunately, this can be circumvented using an efficient
offline/online decoupling, as shown by the following proposition.

Proposition 1.3.1 (Galerkin efficient offline/online decoupling). If
• for all 1 6 q 6 Qa, the N ×N matrix P∗AqP; and
• for all 1 6 q 6 Qf , the N -dimensional vector P∗fq

are pre-computed (during the so-called ”offline phase”), then the linear system (1.3.12)
can be assembled for any value of µ with O(QaN2 + QfN) complexity (during the so-
called ”online phase”).

Proof. Using the affine decompositions, the left-hand-side of (1.3.12) writes

P∗A(µ)P =

Qa∑
q=1

θaq (µ) P∗AqP (1.3.13)

and the right-hand-side writes

P∗f(µ) =

Qf∑
q=1

θfq (µ) P∗fq . (1.3.14)

If the boxed quantities are pre-computed (using operations with complexity dependent of
N during the offline phase), the left-hand-side can be assembled inO(QaN2) complexity
and the right-hand-side in O(QfN) complexity.

Least-squares reduced basis approximation

We now turn to the case where find uN(µ) ∈ VN is the least-squares RB approximation.
Recalling proposition 1.2.3, uN(µ) ∈ VN satisfies the weak form:

〈A(µ)∗R−1
W A(µ)uN(µ), vN〉 = 〈A(µ)∗R−1

W f(µ), vN〉 ∀vN ∈ VN . (1.3.15)

Equivalently, the coordinates x(µ) ∈ CN of the least-squares RB approximation satisfy
the N ×N linear system(

P∗A(µ)∗B−1
W A(µ)P

)
x(µ) = P∗A(µ)∗B−1

W f(µ) (1.3.16)

21



CHAPTER 1. BASIC PRINCIPLES AND PROPERTIES

As in the Galerkin case, (1.3.16) can be solved with O(N3) complexity using a direct
solver. The following proposition shows that there exists an efficient offline/online strat-
egy for assembling this system.

Proposition 1.3.2 (Least-Squares efficient offline/online decoupling). If
• for all 1 6 p, q 6 Qa, the N ×N matrix P∗A∗pB

−1
W AqP ; and

• for all 1 6 q 6 Qf and for all 1 6 p 6 Qa, the N -dimensional vector P∗A∗pB
−1
W fq

are pre-computed (during the so-called ”offline phase”), then the linear system (1.3.16)
can be assembled for any value of µ with O((Qa)2N2 +QaQfN) complexity (during the
so-called ”online phase”).

Proof. Using the affine decompositions, the left-hand-side of (1.3.16) writes

P∗A(µ)∗B−1
W A(µ)P =

Qa∑
q=1

Qa∑
p=1

θaq (µ)θap(µ) P∗A∗pB
−1
W AqP . (1.3.17)

the right-hand-side writes

P∗A(µ)∗B−1
W f(µ) =

Qf∑
q=1

Qa∑
p=1

θap(µ)θfq (µ) P∗A∗pB
−1
W fq . (1.3.18)

if the boxed quantities are pre-computed (using operations with complexity dependent of
N during the offline phase), the left-hand-side can be assembled in O((Qa)2N2) com-
plexity and the right-hand-side in O(QaQfN) complexity.

Remark (Redundant terms). Remark the hermitian property:

P∗A∗pB
−1
W AqP =

(
P∗A∗qB

−1
W ApP

)∗
. (1.3.19)

Using this property, the number of boxed quantities to be computed offline regarding the
left-hand-side is not (Qa)2 but is reduced to Qa(Qa + 1)/2.

1.3.3 The non-affine case

When the operator A(µ) or right-hand side f(µ) is non-affine, the computationally effi-
cient strategy described in section 1.3.2 cannot be used. For the RB method to be efficient,
we need to replace the operator or the right-hand side by suitable affine approximation
Ã(µ) or f̃(µ) with which the computationally efficient strategy described in section 1.3.2
can be used [84]. A useful tool in this context is the Empirical Interpolation Method
(EIM), first introduced in Ref. [5].
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The Empirical Interpolation Method

The EIM is an efficient method for approximating a given function g : Ωspace×Dparam →
C in separated form. The first variable x ∈ Ωspace must be thought of as a spatial variable,
while µ ∈ Dparam must be thought of a parameter variable. The EIM constructs a set of
M interpolation points {xm}16m6M (also called the magic points), an interpolation matrix
B ∈ CM×M and EIM basis functions hm : Ωspace → C for 1 6 m 6 M . A separated
approximation can be defined as

∀(x, µ) ∈ Ωspace ×Dparam, g̃M(x;µ) =
M∑
m=1

ςm(µ)hm(x). (1.3.20)

with coefficients ς(µ) = (ς1(µ), . . . , ςM(µ))T solution to the M ×M linear system

Bς(µ) = φ(µ), (1.3.21)

with right-hand side φ(µ) = (g(x1;µ), . . . , g(xM ;µ))T . The procedure is detailed in
algorithm 1.1.

Algorithm 1.1: EIM algorithm
Input : g : Ωspace ×Dparam → C; discrete surrogate sets Ξspace ⊂ Ωspace and

Ξparam ⊂ Dparam, prescribed tolerance tol and number of iterations Mmax.
Output: Magic points {xm}16m6M , interpolation matrix B ∈ CM×M and EIM basis

functions hm : Ωspace → C for 1 6 m 6M

Compute µ1 = argmax
µ∈Ξparam

max
x∈Ξspace

|g(x;µ)|;

Compute x1 = argmax
x∈Ξspace

|g(x;µ1)|;

Set h1(·) = g(·;µ1)
g(x1;µ1)

;
Set ε1 = +∞, B11 = 1 and m = 1, ;
while m < Mmax and εm > tol do

Compute µm+1 = argmax
µ∈Ξparam

max
x∈Ξspace

|g(x;µ)− g̃m(x, µ)|;

Compute xm+1 = argmax
x∈Ξspace

|g(x;µm+1)− g̃m(x, µm+1)|;

Compute εm+1 = |g(xm+1;µm+1)− g̃m(xm+1, µm+1)|;
Set hm+1(·) = g(·;µm+1)−g̃m(·,µm+1)

g(xm+1;µm+1)−g̃m(xm+1,µm+1)
;

Set Bi,m+1 = hm+1(xi) for all 1 6 i 6 m+ 1;
m← m+ 1;

end

Let us recall the main properties of the EIM, which can be found in [5]:
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• the interpolation matrix B is lower triangular with a unity diagonal, thus the linear
system eq. (1.3.21) is always invertible;

• the EIM basis functions {hm(·)}16m6M span the same subspace as the {g(·;µm)}16m6M ,
where the µm’s are selected by algorithm 1.1;

• the following interpolation property holds: for all 1 6 m 6 M , g̃M(·;µm) =
g(·;µm).

Application to parametrized Laplace problem

Let us illustrate how the EIM can be used with our second model parametrized linear
equation introduced in section 1.1. Namely, the operator stemming from the 2D Laplace
equation with Dirichlet conditions writes, with V = W = X0

h(Ω),

∀(v, w) ∈ V ×W, 〈A(µ)v, w〉 =

∫
Ω

κ(x;µ)∇u(x) ·∇v(x)dx, (1.3.22)

where we recall that κ(·;µ) : Ω → R defined by eq. (1.1.4) is a Gaussian conductivity
centered on µ = (µ1, µ2)T . Applying the EIM to the conductivity yields a approximate
separated form

∀(x, µ) ∈ Ω×D, κ̃M(x, µ) =
M∑
m=1

ςm(µ)hm(x). (1.3.23)

Having constructed an approximation for the conductivity, we may now introduce the
approximate operator 〈Ã(µ)v, w〉 =

∫
Ω
κ̃M(x;µ)∇v(x) ·∇w(x)dx. The later is clearly

affine with M terms, since

Ã(µ) =
M∑
m=1

ςm(µ)Am, (1.3.24)

where for all (v, w) ∈ V × W , 〈Amv, w〉 =
∫

Ω
hm(x)∇v(x) · ∇w(x)dx. Intuitively,

Ã(µ) makes up a good approximation for A(µ) provided that κ̃M(·;µ) makes up a good
approximation for κ(·;µ). More rigorous error estimates can be found in Refs. [37, 64]

1.4 Numerical illustration

1.4.1 Model problem 1: Helmholtz

Algebraic setting

For the parametrized Helmholtz problem, we recall that V (= W ) corresponds to the
N -dimensional FE approximation X0

h(]0, 1[) defined by eq. (1.1.11). A basis for this FE
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approximation space is {wi}16i6N , where the wi’s are the so-called Lagrange ”nodal” (or
”hat”) basis functions, which are uniquely defined as the first order polynomials satisfying
wi(xj) = δij , with compact support [xi−1, xi+1].

The operator A(µ) ∈ L(V,W ′) can be represented in the FE basis as A(µ) = K− µ2M,
where Kij =

∫
]0,1[

dwj
dx

dwi
dx
dx and Mij =

∫
]0,1[

wiwjdxdx, 1 6 i, j 6 N . We can show by
explicit calculations that K,M are the N ×N defined by

K =
1

h


2 −1

−1
. . . . . .
. . . . . . −1
−1 2

 , M = h


2/3 1/6

1/6
. . . . . .
. . . . . . 1/6

1/6 2/3

 . (1.4.1)

Similarly, the right-hand side can be represented in the FE basis by f ∈ CN given by
fi =

∫
]0,1[

Swidx for all 1 6 i 6 N .

This being set, we recall that the coordinates u(µ) ∈ CN of the FE solution u(µ) ∈ V in
the FE basis can be obtained by solving the linear system A(µ)u(µ) = f . In this example,
we equip V and W with the same Riesz map (i.e., RV = RW ), represented in the FE basis
by the matrix BV = BW = K + µ2

avgM, where µavg = 0.5(µmin + µmax) the average
wavenumber.

Reduced basis approximation in algebraic form

Given N points µ(1), . . . , µ(N), we can build a Lagrange RB approximation subspace
VN = Span{u(µ(1)), . . . , u(µ(N))} as follows:

1. Compute the FE solutions u(µ(1)), . . . ,u(µ(N));

2. Orthonormalize these N solutions, for instance using a Gram-Schmidt procedure
[90, 13, 44] as

p1 = γ11u(µ(1)),

p2 = γ22u(µ(2)) + γ21p1,

...

pN = γNNu(µ(N)) +
N−1∑
n=1

γNipi

(1.4.2)

where the coefficients γni are chosen so that P = [p1| · · · |pN ] ∈ CN×N is BV -
orthonormal (that is P∗BV P = I) and Range(P) = Span{u(µ(1)), . . . ,u(µ(N))}.

We recall that P ∈ CN×N represents the reduced basis in the FE basis and that the RB
approximation uN(µ) ∈ VN is represented in the FE basis by uN(µ) = Px(µ) ∈ CN .
The coordinates x(µ) ∈ CN of the RB approximation in the reduced basis, solves either
the Galerkin linear system eq. (1.3.12) or the least-squares linear system eq. (1.3.16).
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Results

We consider a Gaussian source term S(x) = exp(− (x−0.5)2

0.01
) and a discretization with

N = 1000. For given value of N , we build the Lagrange RB approximation subspace
based on points µ(1), . . . , µ(N) uniformly distributed in [µmin, µmax] = [1, 15], i.e.,

µ(n) = µmin +
n− 1

N − 1
(µmax − µmin), n = 1, . . . , N. (1.4.3)

Given this Lagrange RB approximation subspace, we can efficiently compute the Galerkin
RB approximation uN(µ) for all µ ∈ Ξ ⊂ [µmin, µmax], where Ξ is a given finite set with
cardinality Card(Ξ) = 300. This requires solving Card(Ξ) linear systems of size N .
Since this is a toy problem, we can also compute the truth solution u(µ) for all µ ∈ Ξ.
This requires solving Card(Ξ) linear systems of size N (in a non-toy problem, N would
be very large and so these computations would lead to prohibitive costs). Thus, we are
able to compute the RB approximation error ‖u(µ)− uN(µ)‖V for all µ ∈ Ξ.

We have plotted the maximum error max
µ∈Ξ
‖u(µ) − uN(µ)‖V and the mean error defined

by

mean
µ∈Ξ
‖u(µ)− uN(µ)‖V =

1

Card(Ξ)

∑
µ∈Ξ

‖u(µ)− uN(µ)‖V (1.4.4)

for different RB sizes N = 2, . . . , 9. We have also plotted the maximum relative error
max
µ∈Ξ
‖u(µ)−uN(µ)‖V /‖u(µ)‖V as well as the mean relative error. The results are shown

on fig. 1.1.
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Figure 1.1: Maximum and mean error (left) and relative error (right) for Lagrange RB
approximation subspaces of dimension N = 2, . . . , 9.

We find that very few basis functions are sufficient for obtaining a very low RB approxi-
mation error. For example, N = 5 basis functions yield a mean relative error of O(10−5).
In this situation, the truth and RB solutions are visually indistinguishable. We also find
that the error stagnates after a threshold number of basis functions. Thus the RB of size

26



CHAPTER 1. BASIC PRINCIPLES AND PROPERTIES

N = 9 does not yield to any better results than the RB of size N = 8. At this stage, it is
worth recalling that the numerically unobtainable PDE solution uex(µ) satisfies

‖uN(µ)− uex(µ)‖V 6 ‖uN(µ)− u(µ)‖V + ‖u(µ)− uex(µ)‖V . (1.4.5)

In the light of eq. (1.4.5), it is relevant to decrease the RB error ‖uN(µ)−u(µ)‖V to about
the order of magnitude of the discretization error ‖u(µ)−uex(µ)‖V . However, there is no
need to further decrease the RB error as this will not improve the overall error on the PDE
solution ‖uN(µ)− uex(µ)‖V , as nicely illustrated in [25].

1.4.2 Model problem 2: Laplace

For the parametrized Laplace problem, we recall that V (= W ) corresponds to the N -
dimensional FE approximation X0

h(Ω) defined by eq. (1.1.14) with Ω =]0, 1[×]0, 1[.
Given the imbedding V ⊂ H1(Ω), the ‖ · ‖V norm is the usual H1(Ω) norm. Based on a
triangulation of the domain Ω, we obtainN = 3236 degrees of freedom. We consider the
source term

∀x = (x1, x2) ∈ Ω, S(x) = 20π2sin(2πx1)sin(4πx2). (1.4.6)

We consider the parameter space D = [0.4, 0.6] × [0.4, 0.6]. Figure 1.2 shows two truth
solutions u(µ) for µ = (0.6, 0.6) and µ = (0.6, 0.4). We notice that the truth solutions
exhibit a specific local behavior in the neighborhood of the conductivity peak at coordi-
nates (µ1, µ2). We further find that a change in the parameter µ does not only have a local
effect, but also affects the amplitude of the solution globally in Ω. Therefore this is an
interesting parametrized problem to solve.

(a) Solution at µ = (0.6, 0.6). (b) Solution at µ = (0.6, 0.4).

Figure 1.2: Truth solution u(µ) for two possible values of the parameter µ.

Affine approximation

As explained in section 1.3.3, the parametrized laplace operator A(µ) is non-affine. We
build an affine approximation Ã(µ) by applying the EIM to the parametrized conductivity
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function κ(·;µ) : Ω → R. We apply algorithm 1.1 with Ξspace made of 3436 points in
Ω and Ξparam consisting of a 33 × 33 grid covering parameter space D. The algorithm
requires M = 27 iteration to converge to the prescribed tolerance tol = 10−2.

5 10 15 20 25
10

−3

10
−2

10
−1

10
0

10
1

EIM iteration m

E
I
M

a
p
p
r
o
x
.
e
r
r
o
r
ǫ
m

Figure 1.3: Convergence curve of the EIM (algorithm 1.1) applied to the parametrized
conductivity defined by eq. (1.1.4).

For the sake of validation, we check that Ã(µ) is indeed a good approximation for A(µ)
by computing the error ‖u(µ) − ũ(µ)‖V , where u(µ) is the truth solution (which solves
A(µ)u(µ) = f ) and where ũ(µ) solves Ã(µ)ũ(µ) = f . Based on a (random) set Ξ ⊂ D
of cardinality 50, we have been able to compute:

max
µ∈Ξ

‖u(µ)− ũ(µ)‖V
‖u(µ)‖V

≈ 3.25× 10−4, mean
µ∈Ξ

‖u(µ)− ũ(µ)‖V
‖u(µ)‖V

≈ 1.62× 10−4.

(1.4.7)

We conclude that the non-affine Laplace operatorA(µ) can be safely replaced by its affine
approximation Ã(µ).

RB approximation

We build a Lagrange RB approximation subspace of dimension N = 12 based on points
µ(1), . . . , µ(N) randomly chosen in D (of course, such a random choice in D cannot be
optimal, we shall soon explain in chapter 2 how these points can be intelligently chosen).
These points are shown by the black stars on fig. 1.4. We consider the Galerkin RB
approximation uN(µ). Based on a (random) set Ξ′ ⊂ D of cardinality 100, we have been
able to compute:

max
µ∈Ξ′

‖u(µ)− uN(µ)‖V
‖u(µ)‖V

≈ 9.61× 10−3, mean
µ∈Ξ′

‖u(µ)− uN(µ)‖V
‖u(µ)‖V

≈ 1.85× 10−3.

(1.4.8)

Furthermore, we have plotted the relative error with respect to the parameter on fig. 1.4.
We observe, quite intuitively, that the error is largest at the points µ that are far from the
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µ(1), . . . , µ(N) (see for example the top right corner). Where the error is smallest (near
the µ(1), . . . , µ(N), for instance in the middle), the relative error reaches at best around
1× 10−4. This is consistent with eq. (1.4.7); indeed, the RB approximation uN(µ) cannot
be a better approximation to u(µ) than ũ(µ), since the RB solver stems from replacing
A(µ) by its affine approximation Ã(µ).
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Figure 1.4: Relative error µ ∈ Ξ′ 7→ ‖u(µ)−uN (µ)‖V
‖u(µ)‖V

(circles, with color indicating the
magnitude) and the N = 12 randomly chosen points µ(1), . . . , µ(N) used for the Lagrange
RB approximation (black stars).

1.5 Conclusions

In this chapter, we have presented a short review of the reduced basis method for parametrized
linear PDEs. Because the solution of a parametrized linear PDE is unobtainable in prac-
tice, our reference is a high-fidelity approximation (the so-called truth approximation),
typically obtained using the finite element method on a fine mesh. Thus, we have intro-
duced a mathematical framework with finite-dimensional Hilbert spaces, which are typi-
cally finite element approximation spaces with very large dimension – say N = O(1010)
in the most extreme cases.

In short, the reduced basis method consists in projecting the high-fidelity problem onto a
low-dimensional subspace and solving the projected problem, rather than the high-fidelity
one, thus enabling significant computational savings. Two possible projections (Galerkin
and Least-squares) have been presented and possible choices for the low-dimensional
subspace have been reported. In this thesis, only Lagrange reduced basis approximation
subspaces will be considered for ease of implementation and in view of obtaining the best
computational performance.
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In this chapter, we have presented the offline/online computational strategy in detail in the
case of affine operators and right-hand sides. We have reviewed the Empirical Interpola-
tion Method (EIM) for recovering affine approximations in the non-affine cases. Finally,
the reduced basis method was put in action on two purely academic model problems with
a relatively small number of degrees of freedom, i.e., N = O(103). The reduced basis
method is able to reduce the problem to less than a dozen unknowns, while maintaining a
very good level of accuracy. At this stage, the accuracy was evaluated by computing some
high-fidelity solutions and comparing them to the reduced basis approximations. How-
ever, when the problem is large-scale, the cost of computing many high-fidelity solutions
is intractable – which is precisely why one resorts to reduced basis methods! The next two
chapters will present some strategies to reliably evaluate the accuracy of a reduced basis
approximation in an a posteriori manner, that is, without having to compute the high-
fidelity solutions. The notion of a posteriori error estimation will also prove very useful
for optimally selecting the set of parameter samples at which the high-fidelity solutions
have to be computed when constructing a Lagrange reduced basis.
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Chapter 2
The classical a posteriori error estimation
approach

Summary. In this second chapter, we address the question of certification. Indeed, the
Reduced Basis Method is only relevant if one can assess the accuracy of the RB ap-
proximation. In order to maintain the best computational performance, it is key to be
able to bound the RB approximation error without having to compute the high-fidelity
solution. This is precisely the role of a posteriori error estimators. In this chapter, we
recall the classical error estimator consisting of the residual norm divided by the inf-sup
constant and show how it can be efficiently computed following an offline/online com-
putational strategy. Readers already familiar with this method can skip to section 2.2.4,
where we propose an original method for approximating the inf-sup constant without hav-
ing to solve any generalized eigenvalue problems. The classical approach is illustrated
on the parametrized Helmholtz model problem, while our approach is illustrated on the
parametrized Laplace problem.
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2.1 The need for a posteriori error estimation

2.1.1 The need for certification

A RB approximation uN(µ) ∈ VN ⊂ V is said to be certified with level of accuracy
εrb > 0 if it satisfies

∀µ ∈ D, ‖u(µ)− uN(µ)‖V < εrb. (2.1.1)

We emphasize that, following the classical RB approach [105, 98] the RB approximation
is certified with respect to a given truth approximation u(µ) in a finite approximation sub-
space V . Thus in this thesis, we forget about the numerically unobtainable PDE solution
uex(µ). This presupposes that the discretization error ‖u(µ) − uex(µ)‖V is ”adequately
small”, in practice, this can be checked using classical finite element a priori or a posteri-
ori estimates [122, 10, 20]. We mention that there exists completely different certification
approaches, for instance in [124, 125, 126, 130, 25] where the RB approximation is certi-
fied with respect to the exact PDE solution.

The notion of a posteriori error estimator is key for determining the level of accuracy of
a RB approximation.

Definition 5 (Error Estimator). For all µ ∈ D, let us denote u(µ) ∈ D the truth solution
and uN(µ) ∈ VN ⊂ V the RB approximation. An a posteriori error estimator is a function
∆N : D → R+ satisfying

1. the reliability property ∀µ ∈ D, ‖u(µ)− uN(µ)‖V 6 ∆N(µ);
2. the effectivity property ∀µ ∈ D, ∃c(µ) > 0, ‖u(µ)− uN(µ)‖V > c(µ)∆N(µ);
3. the a posteriori property, i.e., the function ∆N(µ) can be evaluated without having

to evaluate u(µ).

Notice that when an a posteriori error estimator ∆N : D → R+ is available, the RB
approximation is certified with a level of accuracy max

µ∈D
∆N(µ).

By definition, an a posteriori error estimator bounds the absolute error. In the next propo-
sition, we show how a bound on the absolute error can be translated into a bound on the
relative error.
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Proposition 2.1.1. Let ∆N : D → R+ be an a posteriori error estimator satisfying

∀µ ∈ D, ‖uN(µ)‖V > ∆N(µ).

Then, there holds

∀µ ∈ D, ‖u(µ)− uN(µ)‖V
‖u(µ)‖V

6
∆N(µ)

‖uN(µ)‖V

(
1− ∆N(µ)

‖uN(µ)‖V

)−1

Proof. By the triangular inequality and the reliability property, there holds for all µ ∈ D,

‖uN(µ)‖V 6 ‖u(µ)− uN(µ)‖V + ‖u(µ)‖V 6 ∆N(µ) + ‖u(µ)‖V . (2.1.2)

Thus ‖u(µ)‖V > ‖uN(µ)‖V −∆N(µ). Using ‖uN(µ)‖V −∆N(µ) > 0, we get

1

‖u(µ)‖V
6

1

‖uN(µ)‖V −∆N(µ)
. (2.1.3)

We obtain the desired result by again applying the reliability property, i.e.,

‖u(µ)− uN(µ)‖V
‖u(µ)‖V

6
∆N(µ)

‖uN(µ)‖V −∆N(µ)
=

∆N(µ)

‖uN(µ)‖V

(
1− ∆N(µ)

‖uN(µ)‖V

)−1

.

(2.1.4)

Remark that the assumption ‖uN(µ)‖V > ∆N(µ) is easy to check in practice since the
RB approximation uN(µ) is efficiently computable and ∆N(µ) is an a posteriori quantity.
Recalling the formula (1−X)−1 = 1 +X +X2 + . . . , we remark that

∆N(µ)

‖uN(µ)‖V

(
1− ∆N(µ)

‖uN(µ)‖V

)−1

=
∆N(µ)

‖uN(µ)‖V
+O

(
∆N(µ)2

‖uN(µ)‖2
V

)
(2.1.5)

When the quantity ∆N (µ)
‖uN (µ)‖V

is small, then the high order terms become negligible rela-

tively to the first order term. For instance, if the first order term is ∆N (µ)
‖uN (µ)‖V

= O(10−3),

then the second order term is ∆N (µ)2

‖uN (µ)‖2V
= O(10−6); that is three orders of magnitude

smaller than the first order term, therefore clearly negligible.

2.1.2 Greedy RB approach

An a posteriori error estimator ∆N : D → R+ is not only useful to assess the level of
accuracy of a given RB approximation; it can also be used to construct a certified RB
approximation with a prescribed level of accuracy εrb > 0 [105].
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Namely, we consider a Lagrange RB approximation subspace of dimension N = 1, V1 =
Span{u(µ(1))} where µ(1) ∈ D is randomly picked in D. The a posteriori error estimator
∆N : D → R+ is used in order to determine the current level of accuracy given by
εN = max

µ∈D
∆N(µ). If the computed εN is below the prescribed tolerance εrb, then we are

satisfied with current RB approximation. Otherwise, we identify the RB approximation
with largest approximation error uN(µ?) ∈ VN , where µ? is given by

µ? = argmax
µ∈D

∆N(µ). (2.1.6)

We then enrich the RB approximation subspace as VN+1 = VN ⊕ Span{u(µ?)} and re-
iterate this procedure until the prescribed tolerance is reached. The overall greedy proce-
dure is summarized by algorithm 2.1. The convergence of this algorithm is directly linked
to the decay of the Kolmogorov N -width of the solution manifold M = {u(µ), µ ∈ D},
as shown in Refs. [12, 18]. As shown in [30], the choice of the cardinality of the discrete
training set Ξ ⊂ D is intimately linked to the decay rate of the Kolmogorov width, in
practice and for simplicity we shall always consider a fine set with about 1000 points.

Algorithm 2.1: Greedy RB construction.
Input : Discrete training set Ξ ⊂ D, prescribed tolerance εrb > 0.
Output: Lagrange RB approximation space VN = Span{u(µ(1)), . . . , u(µ(N))}.
Pick arbitrarily µ(1) in Ξ;
Set ε1 = +∞, V0 = {0} and initialize N ← 1,;
while εN < εrb do

Compute u(µN);
Update RB approximation subspace VN = VN−1 ⊕ Span{u(µ(N))};
Find µN+1 = argmax

µ∈Ξ
∆N(µ);

εN+1 = max
µ∈Ξ

∆N(µ);

Update N ← N + 1;
end

For completeness, the appendix section B.2 of this manuscript provides some implemen-
tation details on which operations should be performed per iteration of algorithm 2.1.

2.2 Classical inf-sup based error estimates

2.2.1 Error bound

We start with the following theorem, which states that the residual and error norms are
equivalent norms.
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Theorem 1 (Residual and error norm equivalence). Let ṽ ∈ V . Then,

1

γ(µ)
‖A(µ)ṽ − f(µ)‖W ′ 6 ‖u(µ)− ṽ‖V 6

1

α(µ)
‖A(µ)ṽ − f(µ)‖W ′

with α(µ) and γ(µ) the inf-sup and continuity constants respectively, defined in (1.1.23).

Proof. This is direct by the Banach-Necas-Babuska assumptions. The inf-sup condition
yields,

‖A(µ)ṽ − f(µ)‖W ′ = ‖A(µ)(ṽ − u(µ))‖W ′ > α(µ)‖ṽ − u(µ)‖V ;

while the continuity assumption yields,

‖A(µ)ṽ − f(µ)‖W ′ = ‖A(µ)(ṽ − u(µ))‖W ′ 6 γ(µ)‖ṽ − u(µ)‖V .

By theorem 1, if the reduced basis residual A(µ)uN(µ) − f(µ) converges to 0 in ‖ ·
‖W ′ norm, then so does the reduced basis approximation error u(µ) − uN(µ) in ‖ · ‖V
norm. Furthermore, the function µ 7→ 1

α(µ)
‖A(µ)uN(µ) − f(µ)‖W ′ is an a posteriori

error estimator in the sense of definition 5. Indeed, it is reliable (upper bound for the
error) and a posteriori (it can be computed without knowledge of the truth solution u(µ)).
It remains to prove that it is effective. This is shown by the following proposition.

Proposition 2.2.1 (Effectivity of classical inf-sup based estimator). There holds,

1 6
1

α(µ)
‖A(µ)uN(µ)− f(µ)‖W ′
‖u(µ)− uN(µ)‖V

6
γ(µ)

α(µ)
.

Proof. The left inequality is a restatement of theorem 1. The right inequality is obtained
from

‖A(µ)uN(µ)− f(µ)‖W ′ = ‖A(µ)(uN(µ)− u(µ))‖W ′

6

(
sup
v∈V

‖A(µ)v‖W ′
‖v‖V

)
‖u(µ)− uN(µ)‖V

= γ(µ)‖u(µ)− uN(µ)‖V .

Typically, in resonant problems, the inf-sup constant may approach 0 near the resonant
values of µ. In this situation, the upper bound γ(µ)/α(µ) may be very large, therefore
the inf-sup based error bound provided by Theorem 1 tends to overestimate the error
by possibly many orders of magnitude. This effect is well-known in the reduced basis
community and effort is currently being made to circumvent this issue. Among the most
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recent approaches we cite the hierarchical approach in Ref. [51] and the randomized
approach in Ref. [113]. The natural-norm approach, originally introduced in the reduced
basis context in Ref. [110], has been used successfully used to resolve effectivity issues
[36]. This natural-norm approach will be explained in detail in chapter 3.

2.2.2 Efficient computation of the residual norm

We now explain how the reduced basis residual norm ‖A(µ)uN(µ) − f(µ)‖W ′ can be
efficiently computed using offline/online decoupling. We have the following result.

Proposition 2.2.2 (Residual norm efficient offline/online decoupling). If
• for all 1 6 p, q 6 Qa the N ×N matrix P∗ApB

−1
W AqP; and

• for all 1 6 q 6 Qf and for all 1 6 p 6 Qa the N -dimensional vector P∗ApB
−1
W fq;

• the Qf ×Qf matrix with coefficients f∗qB
−1
W fp for 1 6 q, p 6 Qf ;

are pre-computed (during the so-called ”offline phase”), then the reduced basis residual
norm can be computed for any value value of µ with O((Qa)2N2 + QaQfN + (Qf )2)
complexity (during the so-called ”online phase”).

Proof. Using the notations from Chapter 1, we observe that

‖A(µ)uN(µ)− f(µ)‖W ′ = ‖A(µ)Px(µ)− f(µ)‖B−1
W
. (2.2.1)

Developing the square yields

‖A(µ)uN(µ)− f(µ)‖2
W ′ = x(µ)∗P∗A(µ)∗B−1

W A(µ)Px(µ)

− 2<
{
x(µ)∗P∗A(µ)∗B−1

W f(µ)
}

+ f(µ)∗B−1
W f(µ).

(2.2.2)

An efficient offline/online decoupling for first two terms in (2.2.2) is provided by propo-
sition 1.3.2; while the last term can be expressed as

f(µ)∗B−1
W f(µ) =

Qf∑
p=1

Qf∑
q=1

θfq (µ)θfp (µ) f∗pB
−1
W fq . (2.2.3)

We observe that the boxed scalar quantities do not depend on the parameter µ, thus they
can be computed once and for all during the offline phase.

Remark that, when the Least-Squares RB approximation is used, then x(µ) ∈ CN solves
the linear system eq. (1.3.16). In this situation, the expression of the RB residual norm is
simplified to

‖A(µ)uN(µ)− f(µ)‖2
W ′ = x(µ)∗P∗A(µ)∗B−1

W A(µ)Px(µ)− f(µ)∗B−1
W f(µ). (2.2.4)
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Numerically robust formulas

Unfortunately, none of the formulas eq. (2.2.2) or eq. (2.2.4) are numerically robust for
computing the residual norm [22, 19, 28]. Indeed, the squared residual norm is necessarily
a positive quantity, yet it is obtained as the difference between two positive quantities.
This situation corresponds to computing r2 = (a− b)2 by the formula r2 = a2− 2ab+ b2.
Yet this formula is well known to be numerically unstable, especially in the situation
where a and b are very close. Namely, if a = b+O(ε) where ε denotes machine precision,
then the floating point representation of a2 − 2ab+ b2 is O(ε), whereas the floating point
representation of (a − b)2 is O(ε2). Thus the formula r2 = (a − b)2 is numerically more
robust than the formula r2 = a2 − 2ab+ b2.

There exist many ways to compute the residual in a robust manner [22, 19, 28]. Following
a QR algorithm or a Gram-Schmidt orthonormalization procedure [90, 13, 44], one can
compute the matrix Q ∈ CN×NQa and the upper triangular matrix R ∈ CNQa×NQa such
that

QR = [B−1
W A1p1| · · · |B−1

W AQap1| · · · |B−1
W A1pN | · · · |B−1

W AQapN ], (2.2.5)

and such that Q is an BW -orthogonal matrix in the sense Q∗BWQ = I. Let us further
introduce the matrix

Θ(µ) =



θa1(µ)
... 0

θaQa(µ)
. . .

θa1(µ)

0
...

θaQa(µ)


∈ CNQa×N . (2.2.6)

This being set, we have a new efficient offline/online decoupling for computing the re-
duced basis residual norm.

Proposition 2.2.3 (Robust residual norm efficient offline/online decoupling). If
• for all 1 6 q 6 Qf the NQa-dimensional vector Q∗fq; and
• for all 1 6 q, p 6 Qf the scalar quantity (B−1

W fk−QQ∗fk)
∗BW (B−1

W fq −QQ∗fq);
and
• the NQa ×NQa upper triangular matrix R;

are pre-computed (during the so-called ”offline phase”), then the reduced basis residual
norm can be computed for any value value of µ with O((Qa)2N2 + QaQfN + (Qf )2)
complexity (during the so-called ”online phase”).

Proof. It is clear that QRΘ(µ) = B−1
W A(µ)P. Using this information, the residual norm

is expressed as

‖A(µ)Px(µ)− f(µ)‖B−1
W

= ‖B−1
W A(µ)Px(µ)−B−1

W f(µ)‖BW
= ‖QRΘ(µ)x(µ)−B−1

W f(µ)‖BW .
(2.2.7)
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Recalling the Pythagorean theorem

∀v ∈ CN , ‖v‖2
BW

= ‖QQ∗BWv‖2
BW

+ ‖v −QQ∗BWv‖2
BW

, (2.2.8)

and applying it to v = QRΘ(µ)x(µ) − B−1
W f(µ) recalling that Q is RW -orthogonal

yields

‖A(µ)Px(µ)− f(µ)‖2
B−1
W

= ‖QRΘ(µ)x(µ)−QQ∗f(µ)‖2
BW

+ ‖B−1
W f(µ)−QQ∗f(µ)‖2

BW
.

(2.2.9)

Using the property ∀c ∈ CNQa , ‖Qc‖BW = ‖c‖2, where ‖ ·‖2 denotes the euclidian norm
on CNQa we get

‖A(µ)Px(µ)− f(µ)‖2
B−1
W

= ‖RΘ(µ)x(µ)−Q∗f(µ)‖2
2

+ ‖B−1
W f(µ)−QQ∗f(µ)‖2

BW
.

(2.2.10)

We now decompose each term using that f(µ) is affine with Qf terms. The first term to
the right of Eq. eq. (2.2.10) is

‖RΘ(µ)x(µ)−Q∗f(µ)‖2
2 =

∥∥∥∥∥∥RΘ(µ)x(µ)−
Qf∑
q=1

θfq (µ) Q∗fq

∥∥∥∥∥∥
2

2

(2.2.11)

The boxed quantities in Eq. (2.2.11) (namely, Qf vectors each of dimension NQa) do
not depend on the parameter µ, thus they can be computed once and for all during the
offline phase. Next, Eq. (2.2.11) can be evaluated online with O(N2(Qa)2 + NQfQa)
operations. The second term to the right of Eq. eq. (2.2.10) is

‖B−1
W f(µ)−QQ∗f(µ)‖2

BW

=

Qf∑
q=1

Qf∑
k=1

θfq (µ)θfk(µ) (B−1
W fk −QQ∗fk)

∗BW (B−1
W fq −QQ∗fq) . (2.2.12)

Again, the boxed quantities do not depend on the parameter µ, thus they can be computed
once and for all during the offline phase and so Eq. (2.2.12) can be evaluated online with
O((Qf )2) operations.

This alternative method for computing the residual norm is now robust. Indeed, looking at
Eq. (2.2.10), we have decomposed the squared residual norm as the sum of two positive
quantities. This situation corresponds to computing r2 = a2 + b2, which is a robust
formula, free from numerical instabilities.

Note that the online complexity is the same with the robust and the potentially numerically
unstable formulas. However, the offline effort is not the same. Indeed, computing the
matrices Q and R comes at the price of orthonormalizingNQa vectors, each of dimension
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N . In practice, a standard Gram-Schmidt orthonormalization procedure is not enough and
some re-iterations must be considered in order to ensure numerical orthogonality [19].
Alternatively, the rank revealing QR algorithm can be employed [28].

Finally, let us remark that the framework for the robust computation of the residual norm
can also be used to provide an alternative efficient offline/online decoupling for the Least-
Squares RB solution. Namely, the following proposition is an alternative to proposi-
tion 1.3.2.

Proposition 2.2.4 (Robust Least-Squares efficient offline/online decoupling). If
• for all 1 6 q 6 Qf the NQa-dimensional vector Q∗fq; and
• the NQa ×NQa upper triangular matrix R;

are pre-computed (during the so-called ”offline phase”), then the linear system (1.3.16)
can be assembled for any value of µ with O((Qa)2N2 +QaQfN) complexity (during the
so-called ”online phase”).

Proof. The left-hand side of the linear system (1.3.16) can be assembled using the formula

P∗A(µ)∗B−1
W A(µ)P = Θ(µ)∗R∗RΘ(µ), (2.2.13)

while the right-hand side can be assembled using

P∗A(µ)∗B−1
W f(µ) = Θ(µ)∗R∗Q∗f(µ)

=

Qf∑
q=1

θfq (µ)Θ(µ)∗R∗ Q∗fq .
(2.2.14)

Compared to proposition 1.3.2, the strategy provided by proposition 2.2.4 is numerically
more robust. Indeed, the formula eq. (2.2.13) assembles the left-hand side as M∗M with
M = RΘ(µ), thus the left-hand side is guaranteed to be hermitian. On the contrary,
the strategy of proposition 1.3.2 tries to recover the theoretically hermitian left-hand side
matrix using a sum of (Qa)2 non-hermitian matrices via the formula (1.3.13). Due to finite
numerical precision, this formula may yield a non-hermitian left-hand side.

2.2.3 Efficient computation of the inf-sup constant

Using the notations of Chapter 1, the inf-sup constant α(µ) defined by eq. (1.1.24a) is
algebraically expressed as

α(µ) =

(
inf

v∈CN \{0}

v∗A(µ)∗B−1
W A(µ)v

v∗BV v

)1/2

. (2.2.15)

39



CHAPTER 2. CLASSICAL ERROR ESTIMATION APPROACH

Introducing the hermitian matrices H(µ) = A(µ)∗B−1
W A(µ) and X = BV , the inf-sup

constant is equal to the square root of the smallest eigenvalue in the generalized eigenvalue
problem {

Find (λ,v) ∈ R× CN \ {0} such that
H(µ)v = λXv.

(G.E.P.)

Note that, given that H(µ) is hermitian and positive-definite, the eigenvalues of (G.E.P.)
are necessarily real and strictly positive. Thus, computing the discrete inf-sup constant
α(µ) for fixed parameter µ ∈ D requires a large-scale generalized eigenvalue problem
[97, Chapter 2, §2.4.6].

In practice, the generalized eigenvalue problem G.E.P. is preferably solved using iterative
methods such as inverse iteration or the Lanczos method [90]. For completeness, these
methods are recalled in appendix A. We observe that such eigensolvers are extremely
expensive, since obtaining the smallest eigenvalue requires about a dozen A(µ) solves
and as many adjoint solves. Thus, computing the smallest eigenvalue for all possible
values of µ in D is computationally unfeasible. In this context, we must turn to the
Successive Constraint Method (SCM), which is well suited for efficiently constructing
reliable lower bounds for the smallest eigenvalue without solving too many large-scale
eigenvalue problems [61, 60, 112]. We now review the SCM to explain how this works.

Affine framework

The SCM however only applies in the context of an affinely parametrized matrix H(µ),
in the sense

∀µ ∈ D, H(µ) =

Q∑
q=1

θq(µ)Hq, (2.2.16)

where {Hq}Qq=1 areN ×N parameter-independent hermitian matrices and {θq(·)}Qq=1 are
real-valued functions of µ ∈ D.

Note that, if our operator A(µ) ∈ L(V,W ′) is affine in the sense of definition 3, then the
parametrized matrix H(µ) is automatically affine with hermitian terms and real-valued
coefficients of µ ∈ D. Indeed, in this situation there holds

∀µ ∈ D, A(µ) =

Qa∑
q=1

θaq (µ)Aq, (2.2.17)

where {Aq}Q
a

q=1 areN×N parameter-independent complex matrices (not necessarily her-
mitian) and {θaq (·)}

Qa

q=1 are complex-valued functions of µ ∈ D. We can straightforwardly
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show, in the fashion of [55, §3.3.3], the following formula

H(µ) =

Qa∑
q=1

(
|θaq (µ)|2 −

q−1∑
k=1

(<{zkq} − ={zkq})−
Qa∑

k=q+1

(<{zkq}+ ={zkq})

)
A∗qX

−1Aq

+

Qa∑
q=1

Qa∑
k=q+1

(
<{zkq}(Ak + Aq)

∗X−1(Ak + Aq) + ={zkq}(Ak + iAq)
∗X−1(Ak + iAq)

)
where zqk = θak(µ)θaq (µ). Thus, the desired affine decomposition (2.2.16) is achieved with
at most Q = (Qa)2 terms. Remark that in the specific case where the functions {θaq (·)}

Qa

q=1

are real-valued, there holds ={zqk} = 0 for all q, k = 1, . . . , Qa, therefore the affine
decomposition (2.2.16) is achieved with only Q = Qa(Qa + 1)/2 terms.

Basic SCM

Denote λmin(µ) the smallest eigenvalue of (G.E.P.). The decomposition (2.2.16) is key to
the SCM. Indeed, the method relies on the following statement

λmin(µ) = inf
v∈CN \{0}

v∗H(µ)v

v∗Xv
= inf

v∈CN \{0}

Q∑
q=1

θq(µ)
v∗Hqv

v∗Xv
= inf

v∈CN \{0}
θ(µ)TR(v),

where we have introduced θ(µ) ≡ [θ1(µ) · · · θQ(µ)]T ∈ RQ and R : CN \ {0} → RQ as

R(v) ≡
[
v∗H1v
v∗Xv

· · · v
∗HQv

v∗Xv

]T
.

Introducing the set Y ≡ Range(R) ≡ {y ∈ RQ : ∃v ∈ CN \ {0}, y = R(v)}, one has

λmin(µ) = inf
y∈Y

θ(µ)Ty.

Thus, the smallest eigenvalue problem is brought to an optimization problem over the set
Y . A first idea to characterize the set Y is to introduce the bounding box

B ≡
Q∏
q=1

[
inf

v∈CN \{0}

v∗Hqv

v∗Xv
, sup
v∈CN \{0}

v∗Hqv

v∗Xv

]
⊂ RQ.

Clearly, Y ⊂ B but this inclusion is usually not sharp.

The basic principle of the successive constraints method is to further characterize the set
Y by using information from J ≥ 0 eigensolves [61]. Let us assume that the smallest
eigenvalues λmin(µ1), . . . , λmin(µJ) and associated generalized eigenvectors have been
computed. These J eigensolves at parameter points µ belonging to the finite set CJ =
{µ1, . . . , µJ} ⊂ D can be performed using the algorithms presented in Appendix A. For
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simplicity of notation, we shall now denote, for all j ∈ {1, . . . , J}, λj ≡ λmin(µj) and vj
the associated eigenvector. This information is used to further characterize the set Y .

Let y ∈ Y . By definition, there exists vy ∈ CN \ {0} such that y = R(vy). For all
j ∈ {1, . . . , J} there holds

θ(µj)
Ty =

v∗yH(µj)vy

v∗yXvy
≥ inf

v∈CN \{0}

v∗H(µj)v

v∗Xv
= λj.

This establishes the inclusion Y ⊂ YLB(CJ), where

YLB(CJ) ≡ {y ∈ B : θ(µj)
Ty ≥ λj, j = 1, . . . , J}. (2.2.18)

Thus, for all µ ∈ D, the quantity

λLB(µ;CJ) ≡ inf
y∈YLB(CJ )

θ(µ)Ty (2.2.19)

is a lower bound for λmin(µ). It turns out that the optimization problem (2.2.19) can be
put in the form of a linear program with Q variables, 2Q box constraints and J linear
constraints [61].

In order to assess the accuracy of the lower bound λLB(µ,CJ), it is common to also
compute an upper bound for λmin(µ). Clearly,

YUB(CJ) ≡ {R(vj), j = 1, . . . , J}, (2.2.20)

is a subset of Y . Thus, for all µ ∈ D, the quantity

λUB(µ;CJ) ≡ min
y∈YUB(CJ )

θ(µ)Ty (2.2.21)

will be an upper bound for λmin(µ). Solving this minimization problem is trivial, it can be
done by enumeration because YUB is finite. When the relative difference between lower
and upper bounds

εSCM(µ;CJ) ≡ λUB(µ;CJ)− λLB(µ;CJ)

λUB(µ;CJ)
(2.2.22)

is below some prescribed tolerance, then the lower bound λLB(µ;CJ) is considered to be
a good approximation of λmin(µ) from below. When this is not the case, the set CJ must
be enriched, which means that more eigensolves are needed. Clearly, the parameter point
µ ∈ D where εSCM(µ;CJ) is largest is a good candidate for the next eigensolve. This
greedy strategy to compute the lower bounds is summarized in algorithm 2.2.

Computational complexity. Let us discuss the computational complexity of the basic
SCM algorithm. The algorithm requires the solution of 2Q+J eigenvalue problems of size
N ×N for determining both the bounding box in the beginning and the smallest eigenpair
in each iteration. In practice, parameter space D is discretized by a finite training set
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Algorithm 2.2: Basic SCM algorithm

Compute for all q = 1, . . . , Q, σ−q = inf
v∈CN \{0}

v∗Hqv

v∗Xv
and σ+

q = sup
v∈CN \{0}

v∗Hqv

v∗Xv
;

Initialize J ← 0, εSCM =∞, C0 = ∅;
while J ≤ Jmax and εSCM > tol do

µJ+1 ← argmax
µ∈Ξ⊂D

εSCM(µ;CJ);

CJ+1 ← CJ ∪ {µJ+1};
Eigensolve for eigenpair (λJ+1,vJ+1);
εSCM ← max

µ∈D
εSCM(µ;CJ+1);

J ← J + 1;
end

Ξ ⊂ D, whose cardinality is usually |Ξ| = O(103). Computing lower bounds λLB(µ;CJ)
for all µ ∈ Ξ requires |Ξ| linear programs with Q variables and 2Q+ J constraints. Since
the upper bounds λUB(µ;CJ) for all µ ∈ Ξ are comparatively inexpensive to compute,
the cost of the maximization of µ 7→ εSCM(µ;CJ) over Ξ is essentially dominated by the
costs of the linear programs.

Beyond the basic SCM. In the original paper [61], the set Y is further characterized by
”positivity constraints”. Indeed, knowing that λmin(µ) > 0 (from the positive-definiteness
of H(µ)), it is clear that

∀µ ∈ D, ∀y ∈ Y , θ(µ)Ty > 0. (2.2.23)

Hence the idea is to replace the definition (2.2.18) of the set YLB(CJ) by

YLB(CJ) = {y ∈ B : θ(µj)
Ty ≥ λj, j = 1, . . . , J

and θ(µ′)Ty ≥ 0,∀µ′ ∈ D}.
(2.2.24)

When the setD is discretized by a finite set Ξ ⊂ D, this amounts to 2Q+J+|Ξ| constraints
in the linear program (2.2.19). This is of course unpractical when |Ξ| = O(103). To
reduce costs, one keeps only M+ ≥ 0 positivity constraints among the |Ξ|. When solving
the linear program (2.2.19) at parameter µ (that is, when computing λLB(µ;CJ)) a good
choice is to enforce positivity constraints locally around µ. Introducing the set PM+(µ; Ξ)
of the M+ points in Ξ closest to µ (with respect to the euclidian norm), this amounts to
replacing the |Ξ| positivity constraints θ(µ′)Ty ≥ 0,∀µ′ ∈ Ξ by the M+ local positivity
constraints θ(µ′)Ty ≥ 0,∀µ′ ∈ PM+(µ; Ξ). Thus, the number of constraints in the linear
program is reduced to 2Q+ J +M+.

The same idea can be used to replace the J constraints θ(µj)Ty ≥ λj, j = 1, . . . , J by the
Mλ ≤ J constraints θ(µ′)Ty ≥ λmin(µ′), ∀µ′ ∈ PMλ

(µ;CJ), where PMλ
(µ;CJ) is the
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set of the Mλ points in CJ closest to µ (again, with respect to the euclidian norm). This
reduces the number of constraints in the linear programs to 2Q+Mλ +M+.

Building on the original SCM paper [61], it is suggested in [27] to further replace the
M+ local positivity constraints by local ”monotony constraints”. At iteration J ≥ 1,
when solving the linear program (2.2.19) at parameter µ, one replaces the M+ local pos-
itivity constraints θ(µ′)Ty ≥ 0,∀µ′ ∈ PM+(µ; Ξ), by the M+ local monotony constraints
θ(µ′)Ty ≥ λLB(µ;CJ−1),∀µ′ ∈ PM+(µ; Ξ). This proves to significantly enhance the con-
vergence properties of the original SCM algorithm. Further improvements of the SCM can
be found in [112].

2.2.4 A heuristic approach

The function µ 7→ 1
αLB(µ)

‖A(µ)uN(µ)− f(µ)‖W ′ , where αLB(µ) is a lower bound of the
inf-sup stability constant obtained using the SCM is a rigorous a posteriori error estimator.
However, the SCM requires solving some large-scale eigenvalue problems of the form
eq. (G.E.P.). These eigensolves can represent significant computational costs even when
only a few of them are required.

In view of saving computational time and resources, we propose to replace the rigorous
a posteriori error estimator by the heuristic indicator µ 7→ 1

α̂(µ)
‖A(µ)uN(µ) − f(µ)‖W ′

where α̂(µ) is not a rigorous lower bound for the inf-sup constant. Our approach has the
benefit of not requiring any large-scale eigensolve.

We propose to build the function µ 7→ α̂(µ) by sampling, at the iterations N > 2 of the
Greedy algorithm, the quantity

α̂N =
‖A(µN)uN−1(µN)− f(µN)‖W ′
‖uN−1(µN)− u(µN)‖V

. (2.2.25)

This quantity can be computed efficiently, since the numerator is the residual norm (effi-
ciently computed by the offline/online strategy) and the denominator consists in the RB
approximation uN−1(µN) (again, efficiently computed by the offline/online strategy) and
u(µN) is readily available, since it is computed in the N th iteration of the Greedy algo-
rithm.

The quasi-constant case

Given the samples {α̂N}26N6Nmax , where Nmax denotes the number of iterations per-
formed by the Greedy algorithm, we can straightforwardly compute the mean α̂ and vari-
ance σ2 as

α̂ =
1

Nmax − 1

Nmax∑
N=2

α̂N , σ2 =
1

Nmax − 1

Nmax∑
N=2

(α̂N − α̂)2, (2.2.26)
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as well as the relative standard deviation CV = σ/α̂ (expressed in %). We provide the
following heuristic: if CV < 50%, then µ 7→ 1

α̂
‖A(µ)uN(µ) − f(µ)‖W ′ is a relevant

heuristic error indicator.

As we shall see in the numerical examples, this heuristic performs very well for certain
types of problems. However, if CV > 50%, one must resort to more advanced techniques.

Extension using interpolation

When CV > 50%, this means the distribution of the samples {α̂N}26N6Nmax is relatively
stretched. In this situation, we propose to build the function µ 7→ α̂(µ) by interpolating
the Nmax − 1 sampled points {α̂N}26N6Nmax . As in [74, 97], we rely on a radial basis
function (RBF) interpolation technique, interpolating the logarithm in order to be sure to
a obtain a positive µ 7→ α̂(µ) interpolant. The RBF interpolant is given by

log α̂(µ) = ω0 + ωTµ+
Nmax−1∑
j=1

cjφ(|µ− µj+1|), (2.2.27)

where φ is a radial basis function, typically φ(r) = e−r
2 and | · | denotes the euclidian

norm in Rp (recalling that µ ∈ D ⊂ Rp, with p denoting the number of parameters). We
require the unknown weighs (ω0, ω, c) ∈ R × Rp × RNmax−1 to satisfy the interpolation
property

log α̂(µN) = log α̂N , N = 2, . . . , Nmax, (2.2.28)

as well as the two conditions

Nmax−1∑
j=1

cj = 0,
Nmax−1∑
j=1

cjµ
j+1
` = 0, ` = 1, . . . , p. (2.2.29)

Clearly, eq. (2.2.28) and eq. (2.2.29) lead to the following linear systemΦ MT 1T

M 0 0
1 0 0

 c
ω
ω0

 =

α̂0
0

 , (2.2.30)

where Φij = Φ(|µi+1 − µj+1|) and M`,j = µj+1
` for 1 6 i, j 6 Nmax − 1 and 1 6 ` 6 p.

Here, we use the notations 1 = [1, . . . , 1] ∈ RNmax−1 and α̂ = [log α̂2, . . . , log α̂Nmax ].

Once the weighs (ω0, ω, c) ∈ R × Rp × RNmax−1 are obtained through solving the linear
system eq. (2.2.30), the RBF interpolant α̂(µ) can be computed very efficiently for any
value of µ ∈ D using the formula eq. (2.2.27).
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2.3 Numerical illustration

2.3.1 Model problem 1: Helmholtz

We come back to our Helmholtz model problem, introduced in chapter 1. We start by
applying the SCM, in order to obtain a cheap lower bound for the inf-sup constant µ 7→
α(µ). To this end, we apply algorithm 2.2 with a discrete set Ξ ⊂ D = [1, 15] made of
200 uniformly distributed points and with prescribed tolerance tol = 0.9. The large-scale
generalized eigenvalue problems G.E.P. are solved via the inverse Lanczos algorithm with
a prescribed tolerance of 10−7 (see Appendix A).
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Figure 2.1: The SCM (see algorithm 2.2) applied to the Helmholtz model problem.

The algorithm requires J = 33 iterations to terminate. The convergence curve is shown
on fig. 2.1a. We find that the SCM error does not decrease monotonically. Indeed, the
iterations 3, 11 and 20 are associated with an overshoot in the SCM error, this is due
to the discovery of the resonant wavenumbers 2π, 3π and 4π. The SCM error recovers
a monotonically decreasing behavior by iteration 20 and from there it decays at a con-
stant rate until the prescribed tolerance is reached. Figure 2.1b shows the number of
iterations in each call to the inverse Lanczos algorithm used to solve the large-scale gen-
eralized eigenvalue problem G.E.P.. In the worst cases (typically, in between two resonant
wavenumbers where eigenvalue crossings occur), the number of iterations can reach 40,
while in the more favorable cases the number of iterations is below 10. Figure 2.1b pro-
vides a measure of the computational costs associated to the SCM: namely, each inverse
Lanczos iteration requires solving one direct problem find x ∈ CN such that A(µ)x = y
and one adjoint problem find x ∈ CN such that A(µ)∗x = y (notice that the Helmholtz
problem is self-adjoint therefore A(µ) = A(µ)∗, see section 1.4). The overall number of
inverse Lanczos iterations performed throughout the J = 33 SCM iterations being 600,
we conclude that the computational costs associated to the SCM is significant and may
become prohibitive should N be very large (here N = 1000 is far from any industrial
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application).
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Figure 2.2: The SCM lower and upper bounds for the Helmholtz model problem. Dotted
vertical lines indicate the resonant wavenumbers π, 2π, 3π and 4π.

Fortunately, algorithm 2.2 only needs to be applied once. Then, we are able to compute,
for any µ ∈ D, cheap lower and upper bounds αLB(µ), αUB(µ) such that the inf-sup
constant α(µ) satisfies αLB(µ) 6 α(µ) 6 αUB(µ). Figure 2.2 shows the lower and
upper bounds for 300 uniformly distributed points. As expected, we find that the inf-sup
constant µ 7→ α(µ) approaches 0 near the theoretical resonant wavenumbers π, 2π, 3π
and 4π represented by the dotted vertical lines.

Now that we can cheaply evaluate µ 7→ αLB(µ), we can apply the Greedy RB algo-
rithm 2.1 with the error estimator ∆N : µ 7→ 1

αLB(µ)
‖A(µ)uN(µ) − f(µ)‖W ′ . Namely,

we prescribe a tolerance εrb = 2× 10−2 and use a discrete surrogate set Ξ ⊂ D made up
of 200 uniformly distributed points. The convergence curve of algorithm 2.1 shown on
fig. 2.3a exhibits the exponential decrease of the maximum (over Ξ) of our error estimator
with respect to the number of basis functions in the RB.

Now that a RB of size N = 5 is available, we can very efficiently evaluate the RB approx-
imation µ 7→ uN(µ) (in the numerical examples, we use the Galerkin RB approximation)
as well as the associated a posteriori error estimator µ 7→ ∆N(µ). For the sake of vali-
dation, we have computed the finite element solution u(µ) for 300 uniformly distributed
values of µ and have computed the actual error ‖u(µ)−uN(µ)‖V . We compare the actual
error to the a posteriori error estimator on fig. 2.3b. The a posteriori error estimator is
computed using the two different formulas, without (blue curve) and with stabilization
(green curve). The difference between the two formulas is clearly visible in the neigh-
borhood of µ = 8, where the stabilized formula is robust with respect to a very small
residual norm, while the non-stabilized formula stagnates and provides a poorer estimate.
Figure 2.3b illustrates theorem 1, since our a posteriori error estimator is indeed an upper
bound for the actual error. Proposition 2.2.1 is also nicely illustrated, as we find our a

47



CHAPTER 2. CLASSICAL ERROR ESTIMATION APPROACH

1 2 3 4 5
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

M
a
x
e
s
ti
m
a
te
d
e
r
r
o
r
ǫ
N

Greedy iteration N

(a) Maximum of the error esti-
mator over Ξ ⊂ D per Greedy
iteration.

2 4 6 8 10 12 14
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

µ

R
B

E
r
r
o
r

 

 

A posteriori

A posteriori Stab

actual error

(b) Error and a posteriori error estimators.

Figure 2.3: A RB of size N = 5 for the Helmholtz model problem.

posteriori error estimator to be quite pessimistic. Indeed, the actual error is almost always
overestimated by more than an order of magnitude. Furthermore, the amount of overes-
timation can be quite large, since we find it to reach 3 to 4 orders of magnitude near the
resonant wavenumbers.

2.3.2 Model problem 2: Laplace

We come back to our Laplace model problem, introduced in chapter 1. We start by build-
ing a reduced basis using the Greedy algorithm 2.1. However, having not applied the
SCM, we cannot cheaply evaluate any lower bound µ 7→ αLB(µ) for the inf-sup constant,
thus the a posteriori error estimator µ 7→ 1

αLB(µ)
‖A(µ)uN(µ)− f(µ)‖W ′ cannot be used.

Furthermore, the residual norm ‖A(µ)uN(µ) − f(µ)‖W ′ can not be efficiently evaluated
for any value of µ, because the efficient offline/online computational strategy outlined in
§2.2.2 cannot be set up, as A(µ) is non-affine. To circumvent this issue, we simply run the
Greedy algorithm 2.1 setting ∆N(µ) = ‖Ã(µ)uN(µ) − f(µ)‖W ′ . Note that this quantity
can be efficiently computed for any µ ∈ D following the efficient offline/online compu-
tational strategy of §2.2.2 since Ã(µ) is an affine approximation of A(µ). However, this
quantity is not a rigorous a posteriori error estimator in the sense of definition 5. The
convergence curve is shown fig. 2.4a and exhibits exponential decrease.

For the sake of validation, we compute the finite element solution u(µ) at 100 uniformly
distributed points. We can thus obtain the relative error ‖u(µ) − uN(µ)‖V /‖u(µ)‖V at
these 100 points, plotted on fig. 2.4b. We find the relative error to be at most around 10−3.
Figure 2.4b also shows the parameter points selected by the Greedy algorithm: namely,
they are located mostly in the corners and on the edges of the compact parameter set
D = [0.4, 0.6]2.

For large-scale problems, the brute-force strategy of computing those 100 finite element
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Figure 2.4: A RB of size N = 21 for the Laplace model problem.

solutions in order to obtain fig. 2.4b is time consumming and may even be computationally
prohibitive. We now illustrate how the heuristic strategy presented in section 2.2.4 can be
used to circumvent this. Namely, 20 residual/error ratio samples are available for free from
the N = 21 Greedy iterations. Following our heuristic, µ 7→ 1

α̂(µ)
‖Ã(µ)uN(µ)− f(µ)‖W ′

should be a relevant error indicator. Combined with proposition 2.1.1, we find that the a
posteriori quantity

∆̃rel
N (µ) =

‖Ã(µ)uN(µ)− f(µ)‖W ′
α̂(µ)‖uN(µ)‖

(
1− ‖Ã(µ)uN(µ)− f(µ)‖W ′

α̂(µ)‖uN(µ)‖

)−1

(2.3.1)

should be a relevant indicator for the relative error. Note that eq. (2.3.1) is efficiently
computable following the usual offline/online strategy. We provide evidence that our
heuristic is good by studying the effectivity index

eff(µ) = ∆̃rel
N (µ)

(
‖u(µ)− uN(µ)‖V
‖u(µ)‖V

)−1

, (2.3.2)

for the 100 values of µ uniformly distributed in D where we have computed the FE so-
lution. The constant α̂(µ) is obtained by either: (i) the quasi-constant method α̂(µ) = α̂
where α̂ ≈ 3.56 is the mean of the samples or (ii) by computing the radial basis function
interpolant of the samples. We note that the quasi-constant applies in this case, because
computing the relative standard deviation of the samples is well below 50% (we find
CV = 13.95%).

We plot the effectivity distributions on fig. 2.5, in the quasi-constant case (top) and the
RBF interpolant case (bottom). Note that an effectivity index of 1 means that the indicator
∆̃rel
N (µ) coincides with the relative error, an effectivity index < 1 (resp. > 1) means that

the indicator underestimates (resp. overestimates) the relative error. In both cases, we
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find the effectivities to be very close to 1, which confirms that our heuristic indicator is
relevant. We notice a slightly less stretch distribution with a slightly better concentration
of the effectivities near 1 using the RBF interpolant than using the quasi-constant method.
This shows that there is a benefit of resorting to a µ-dependent constant α̂(µ).
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Figure 2.5: The distribution {eff(µ) | µ ∈ Ξ}, where eff(·) is defined by eq. (2.3.2) and
Ξ ⊂ D denotes a uniformly distributed set of 100 parameter points. Top: in the quasi-
constant case. Bottom: with the radial basis function interpolant µ 7→ α̂(µ).
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Figure 2.6: The RBF interpolant (left) and exact inf-sup constant (right) at 100 parameter
points.

In order to check that our RBF interpolant µ 7→ α̂(µ) catches the true behavior of the
inf-sup constant µ 7→ α(µ), we have computed the inf-sup constant at the 100 consid-
ered parameter values using an inverse Lanczos algorithm. The comparison is plotted
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on fig. 2.6. We find the RBF interpolant to be a decent approximation for the inf-sup
constant, despite being extremely cheap to compute (contrary to the SCM, no large-scale
generalized eigenvalue problems are solved).

2.4 Conclusions

In this chapter, we have recalled the notion of a posteriori error estimator. The latter can
be used to assess the accuracy of a given reduced basis approximation with respect to
the high-fidelity solution. Furthermore it can also be used to greedily select the parameter
points at which the high-fidelity solutions should be computed in order to build an optimal
Lagrange reduced basis subspace.

The classical error estimator consists in the residual norm divided by the parameter-
dependent inf-sup constant. The offline/online computational strategy for efficiently com-
puting this error estimator has been presented in detail. We have shown two methods for
computing the residual norm: a default, potentially numerically unstable method and a
numerically robust stabilized method. The Successive Constraints Method (SCM) con-
structing practical lower bounds for the parameter-dependent inf-sup constant has been
reviewed. All these methods have been tested numerically on the parametrized Helmholtz
model problem. Results highlight the benefits of the stabilized method for computing the
residual norm. It is also found that the computational costs associated to SCM are very
significant – although the number of eigensolves is limited, each eigensolve still requires
solving numerous high-fidelity problems (i.e., as many as the number of iterations in the
eigensolver iterative process), the cost of which would be computationally prohibitive for
large-scale problems.

We have proposed an original heuristic alternative to the SCM. In opposition to the SCM,
the computational costs associated to our heuristic method are negligible, with no eigen-
solves required. The method performs well on the parametrized Laplace problem as
we have been able to reconstruct a very cheap, but still relevant, approximation for the
parameter-dependent inf-sup constant.
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Chapter 3
The natural-norm a posteriori error
estimation approach

Summary. In this chapter, we review the original concept of (primal) natural-norm
for parametrized linear equations and introduce the concept of dual natural-norm. The
natural-norms are used to derive residual-based a posteriori error bounds characterized
by a O(1) stability constant. We translate these error bounds into very effective practical
a posteriori error estimators for reduced basis approximations and show how they can
be efficiently computed following an offline/online strategy. We prove that our practical
dual natural-norm error estimator outperforms the classical inf-sup based error estimator
in the self-adjoint case. Our findings are illustrated on anisotropic Helmholtz equations
showing resonant behavior. Numerical results suggest that the proposed error estimator
is able to successfully catch the correct order of magnitude of the reduced basis approxi-
mation error, thus outperforming the classical inf-sup based error estimator even for non
self-adjoint problems.
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3.1 Natural-norm error bounds

3.1.1 Reminders

This chapter is concerned with the parametrized linear equation (1.1.22), repeated here
for convenience: find u(µ) ∈ V such that

A(µ)u(µ) = f(µ) in W ′, (3.1.1)

where A(µ) ∈ L(V,W ′) and f(µ) ∈ W ′ are the given µ-dependent linear operator and
right-hand side. We recall (see section 1.1.4) that the complex Hilbert spaces V and
W are finite dimensional with finite dimension N � 1. We further recall the notation
RV ∈ L(V, V ′) for the inverse Riesz operator verifying ‖v‖2 = 〈RV v, v〉 for all v ∈ V .
The aim of this chapter is to bound the error ‖u(µ)− uN(µ)‖V , where uN(µ) ∈ VN ⊂ V
denotes a RB approximation of u(µ).

3.1.2 Error bound using the primal natural-norm

The original natural-norm concept has been introduced in the context of parametrized
equations in Ref. [110]. In this work, we rename this original approach the primal
natural-norm approach for reasons that will soon become obvious.

The primal natural-norm approach relies on the (primal) supremizer operator T (µ) ∈
L(V,W ), defined by

T (µ) = R−1
W A(µ). (3.1.2)

We can show that this operator satisfies the following supremizer property

∀v ∈ V, |〈A(µ)v, T (µ)v〉|
‖T (µ)v‖W

= sup
w∈W

|〈A(µ)v, w〉|
‖w‖W

. (3.1.3)
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We can use this supremizer operator to define the so-called primal natural-norm, which
is a µ-dependent norm on V . We shall denote it |||·|||µ,V . We define it as

∀v ∈ V, |||v|||µ,V = ‖T (µ)v‖W , (3.1.4)

or equivalently, using the property on Riesz maps ‖ · ‖W ′ = ‖R−1
W · ‖W ,

∀v ∈ V, |||v|||µ,V = ‖A(µ)v‖W ′ = (〈A(µ)v,R−1
W A(µ)v〉)1/2. (3.1.5)

Recalling that A(µ) is a weakly coercive operator satisfying the Banach-Nečas-Babuška
assumptions, it is clear that the norm |||·|||µ,V is indeed a norm on V equivalent to the ‖ ·‖V
norm, with equivalence constants independent from the dimension N .

The original natural-norm concept consists in providing an error estimate not in the ‖ · ‖V
norm, but rather in the |||·|||µ,V norm. To start with, note that for all µ ∈ D, the solution
u(µ) ∈ V to A(µ)u(µ) = f(µ) satisfies, for all ṽ ∈ V

|||u(µ)− ṽ|||µ,V = ‖A(µ)(u(µ)− ṽ)‖W ′ = ‖A(µ)ṽ − f(µ)‖W ′ . (3.1.6)

Thus, the primal natural-norm of the error coincides with the residual norm. In practice
however, one is not satisfied with this result, because the natural-norm depends on µ. In
order to circumvent this, we fix a value µ ∈ D and provide an error estimate in the |||·|||µ,V
norm (which is no longer dependent on µ since µ is fixed). In this situation, one can prove
the following theorem.

Theorem 2. Let µ ∈ D. Define for all µ ∈ D the primal natural-norm constant

αµ(µ) = inf
v∈V

|||v|||µ,V
|||v|||µ,V

.

Then, for all µ ∈ D, the solution u(µ) ∈ V to (3.1.1) satisfies

∀ṽ ∈ V, |||u(µ)− ṽ|||µ,V 6
1

αµ(µ)
‖A(µ)ṽ − f(µ)‖W ′ ,

furthermore, the inequality is an equality for µ = µ and αµ(µ) = 1.

Again, the question of the sharpness of this bound is raised. A significant improvement
over the inf-sup-based error bound from Theorem 1 is that we now achieve equality at
least when µ = µ. The next proposition provides insight on the worst overestimation case
scenario.
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Proposition 3.1.1. Let µ ∈ D. Define for all µ ∈ D,

γµ(µ) = sup
v∈V

|||v|||µ,V
|||v|||µ,V

.

Then, for all µ ∈ D, the solution u(µ) ∈ V to (3.1.1) satisfies

∀ṽ ∈ V, 1 6
1

αµ(µ)
‖A(µ)ṽ − f(µ)‖W ′
|||u(µ)− ṽ|||µ,V

6
γµ(µ)

αµ(µ)
,

furthermore, γµ(µ) = αµ(µ) = 1.

This proposition reveals the potential benefits of the primal natural-norm approach. In-
deed, under basic regularity assumptions, the quantity γµ(µ)/αµ(µ), being equal to 1 for
µ = µ, will continue to beO(1) for values of µ in a neighborhood of µ. Thus, the amount
of overestimation of the primal natural-norm error bound provided by Theorem 1 will be
O(1) for values of µ adequately close to µ. Since µ is a fixed value, chosen by the user,
one can always consider a family of points {µk}16k6K and thus be able to estimate the
correct order of magnitude of the error for any µ ∈ D. Notice however that the primal
natural-norm approach still suffers from the problem of resonances.

Remark that the primal natural-norm error bound given by Theorem 2 does not bound
the error in the norm of our choice. Indeed, the theorem bounds the error in the primal
natural-norm |||·|||µ,V but not in the user-defined ‖ · ‖V norm. The dual natural-norm error
bound (see next section) circumvents this; since it bounds the error in the ‖ · ‖V norm
while maintaining a O(1) stability constant.

3.1.3 Error bound using the dual natural-norm

In order to go beyond the primal natural-norm approach, we need to introduce the adjoint
operator A(µ)∗ ∈ L(W,V ′), defined by W ′〈A(µ)v, w〉W =V ′ 〈A(µ)∗w, v〉V for all v ∈ V
and for all w ∈ W . We recall that the adjoint operator (or conjugate-transposed operator)
is automatically continuous since it satisfies ‖A(µ)∗w‖V ′ 6 γ(µ)‖w‖W for all w ∈ W ,
where γ(µ) is the continuity constant of A(µ) defined by Eq. (1.1.24b). Furthermore, the
adjoint is a weakly coercive operator, because A(µ) is a weakly coercive operator. Thus
the following stability condition is satisfied

β(µ) = inf
w∈W

sup
v∈V

|〈A(µ)∗w, v〉|
‖v‖V ‖w‖W

> 0. (3.1.7)

Notice that β(µ) = α(µ). However, we shall distinguish the stability constant α(µ) of
A(µ) and the stability constant β(µ) of A(µ)∗ for clarity.
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The dual natural norm

As in the case of the primal, we now introduce the dual supremizer operator Υ(µ) ∈
L(W,V ), defined by

Υ(µ) = R−1
V A(µ)∗. (3.1.8)

We can show that this operator satisfies the following supremizer property

∀w ∈ W, |〈A(µ)∗w,Υ(µ)w〉|
‖Υ(µ)w‖W

= sup
v∈V

|〈A(µ)∗w, v〉|
‖v‖V

.

We now use the dual supremizer operator to define a natural-norm on W , which shall be
denoted |||·|||µ,W . We define it as

∀w ∈ W, |||w|||µ,W = ‖Υ(µ)w‖V , (3.1.9)

or equivalently, using the property on Riesz maps ‖ · ‖V ′ = ‖R−1
V · ‖V ,

∀w ∈ W, |||w|||µ,W = ‖A(µ)∗w‖V ′ =
(
〈A(µ)∗w,R−1

V A(µ)∗w〉
)1/2

. (3.1.10)

It is clear form the weak coercivity ofA(µ)∗ that |||·|||µ,W is indeed a norm onW equivalent
to the ‖ · ‖W norm, with equivalence constants independent from the dimension N .

With this natural-norm onW , we can define a natural-norm on the dualW ′. The latter will
be called the dual natural-norm and be denoted |||·|||µ,W ′ . Namely, it is quite classically
defined as

∀` ∈ W ′, |||`|||µ,W ′ = sup
w∈W

|〈`, w〉|
|||w|||µ,W

. (3.1.11)

Thus defined, it is clear that |||·|||µ,W ′ is an equivalent norm to ‖·‖W ′ . The following propo-
sition gives us a more convenient formula for expressing the dual natural-norm norm.

Proposition 3.1.2. The |||·|||µ,W ′ norm defined by (3.1.11) is equivalently

∀` ∈ W ′, |||`|||µ,W ′ = ‖A(µ)−1`‖V =
(
〈RVA(µ)−1`, A(µ)−1`〉

)1/2
.

Proof. Let ` ∈ W ′ and w ∈ W . By the adjoint property, we have

〈`, w〉 = 〈`, A(µ)−∗A(µ)∗w〉 = 〈A(µ)−1`, A(µ)∗w〉.

Thus,

∀` ∈ W ′, |||`|||µ,W ′ = sup
w∈W

|〈`, w〉|
|||w|||µ,W

= sup
w∈W

〈A(µ)−1`, A(µ)∗w〉
‖A(µ)∗w‖V ′

= sup
φ∈V ′

〈A(µ)−1`, φ〉
‖φ‖V ′

= ‖A(µ)−1`‖V .

(3.1.12)
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We can show the following norm equivalence, leaving the proof to the reader.

Proposition 3.1.3. For all ` ∈ W ′, there holds,

β(µ)|||`|||µ,W ′ 6 ‖`‖W ′ 6 γ(µ)|||`|||µ,W ′ .

Error bound

We now arrive to our ultimate goal of deriving error estimates using the dual natural norm.
To start with, note that the error norm is exactly the dual natural-norm of the residual.
Indeed, for all µ ∈ D, the solution u(µ) ∈ V to (3.1.1) satisfies, for all ṽ ∈ V ,

‖u(µ)− ṽ‖V = |||A(µ)ṽ − f(µ)|||µ,W ′ . (3.1.13)

Notice the symmetry with Eq. (3.1.6), repeated here for convenience,

|||u(µ)− ṽ|||µ,V = ‖A(µ)ṽ − f‖W ′ . (3.1.14)

All is now set to derive the error estimate using the dual natural-norm.

Theorem 3. Let µ ∈ D. For all µ ∈ D, define

σµ(µ) = inf
v∈V

|||A(µ)v|||µ,W ′
‖v‖V

(
= inf

v∈V

‖A(µ)−1A(µ)v‖V
‖v‖V

)
.

Then, for all µ ∈ D the solution u(µ) ∈ V to (3.1.1) satisfies

∀ṽ ∈ V, ‖u(µ)− ṽ‖V 6
1

σµ(µ)
|||A(µ)ṽ − f(µ)|||µ,W ′ .

Furthermore, the inequality is an equality for µ = µ and σµ(µ) = 1.

Proof. Start by

|||A(µ)ṽ − f(µ)|||µ = ‖A(µ)−1(A(µ)ṽ − f(µ))‖V
= ‖A(µ)−1A(µ)(ṽ − u(µ))‖V

>

(
inf
v∈V

‖A(µ)−1A(µ)v‖V
‖v‖V

)
‖u(µ)− ṽ‖V .

It remains to justify that σµ(µ) = inf
v∈V

‖A(µ)−1A(µ)v‖V
‖v‖V

is indeed > 0. For this, we bound

from below by using the norm equivalence of Proposition 3.1.3,

σµ(µ) = inf
v∈V

‖A(µ)−1A(µ)v‖V
‖v‖V

>
1

γ(µ)
inf
v∈V

‖A(µ)v‖W ′
‖v‖V

=
α(µ)

γ(µ)
.
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This lower bound is > 0 because the inf-sup constant α(µ) is strictly positive.

To prove that the inequality is an equality when µ = µ, we simply observe that σµ(µ) = 1
and come back to Eq. (3.1.13).

Let us now give a result on the potential sharpness of this error bound.

Proposition 3.1.4. Let µ ∈ D. For all µ ∈ D, define

Σµ(µ) = sup
v∈V

|||A(µ)v|||µ,W ′
‖v‖V

(
= sup

v∈V

‖A(µ)−1A(µ)v‖V
‖v‖V

)
.

Then, for all µ ∈ D the solution u(µ) ∈ V to (3.1.1) satisfies

∀ṽ ∈ V, 1 6
1

σµ(µ)
|||A(µ)ṽ − f(µ)|||µ,W ′
‖u(µ)− ṽ‖V

6
Σµ(µ)

σµ(µ)
,

furthermore Σµ(µ) = σµ(µ) = 1

Let us comment on the upper bound Σµ(µ)/σµ(µ). This ratio can be interpreted as a
condition number. It isO(1) for values of µ such thatA(µ)−1 is a good left preconditioner
for A(µ). With this understanding, the fact that both inequalities are equalities when µ =
µ is due to the fact that A(µ)−1 is the ideal left preconditioner for A(µ). The sharpness
of the bound provided by Theorem 3 is thus intimately linked to the properties of A(µ)−1

as left preconditioner for A(µ). In this sense, the dual natural-norm approach is a left
preconditioning approach. Compared to existing left-preconditioning approaches in the
reduced basis context[129, 4], here the preconditioner is parameter-independent.

3.1.4 Re-interpretation of the primal natural-norm approach as a
right-preconditionning approach

We now re-interpret the primal natural-norm approach reviewed in Sec. 3.1.2 as a right
preconditioning approach. This shows the symmetry between the primal and dual natural-
norm approaches. Notice that the arguments used in this section strongly rely on the fact
that the Hilbert space V,W (and topological duals V ′,W ′) are finite dimensional.
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Proposition 3.1.5. Let µ ∈ D. For all µ ∈ D, the primal natural norm constant αµ(µ)
(defined in Theorem 2) can be equivalently defined as

αµ(µ) = inf
`w∈W ′

‖A(µ)A(µ)−1`w‖W ′
‖`w‖W ′

,

and the constant γµ(µ) (defined in Proposition 3.1.1) can be equivalently defined as

γµ(µ) = sup
`w∈W ′

‖A(µ)A(µ)−1`w‖W ′
‖`w‖W ′

.

Proof. Let `w ∈ W ′. Then there exists a unique solution v ∈ V to the problem A(µ)v =
`w. Thus,

inf
`w∈W ′

‖A(µ)A(µ)−1`w‖W ′
‖`w‖W ′

= inf
v∈V

‖A(µ)v‖W ′
‖A(µ)v‖W ′

= inf
v∈V

|||v|||µ,V
|||v|||µ,V

= αµ(µ).

We proceed analogously for γµ(µ), taking the supremum rather than infimum.

In the light of this Proposition, we can now re-interpret the ratio γµ(µ)/αµ(µ) of Proposi-
tion 3.1.1 as the condition number from preconditioning A(µ) to the right using A(µ)−1

as preconditioner.

3.2 Practical natural-norm a posteriori error estimators

We now explain how the error bounds can be translated into practical a posteriori error
estimators. The first concern is the derivation of practical (i.e., computable) lower bounds
for the µ-dependent stability constants (inf-sup and natural-norm constants) which repre-
sent a computational bottleneck.

The second concern is that error bounds based on the concept of natural-norm are only
expected to be sharp locally in the neighborhood of a so-called fixed anchor point µ ∈ D.
Therefore, in order to estimate the error globally over D, one must consider K local
natural-norms based on a discrete set of K anchor points CK = {µ1, . . . , µK} ⊂ D and
an indicator function IK : D → CK that maps each µ a unique ”best” anchor point
µ ∈ CK in a sense that shall be defined shortly.

3.2.1 Practical inf-sup based and primal natural-norm error estima-
tors

Practical lower bounds for the inf-sup constant µ ∈ D 7→ α(µ) can be directly obtained
using the Successive Constraints Method (SCM); e.g. see Refs. [61, 27, 112]. A variant –
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known as the natural-norm SCM; see Refs. [60, 26] – builds lower bounds for the inf-sup
constant based on the following result, first shown in Ref. [110].

Proposition 3.2.1. Let µ ∈ D. Then for all µ ∈ D the inf-sup constant α(µ) (defined in
(1.1.24a)) can be bounded from below as

α(µ) > α(µ)αµ(µ),

where αµ(µ) is the primal natural-norm constant (defined in Theorem 2).

Proof. This is clear from

α(µ) = inf
v∈V

|||v|||µ,V
‖v‖V

= inf
v∈V

|||v|||µ,V
‖v‖V

|||v|||µ,V
|||v|||µ,V

>

(
inf
v∈V

|||v|||µ,V
‖v‖V

)(
inf
v∈V

|||v|||µ,V
|||v|||µ,V

)
= α(µ)αµ(µ).

In fact, the practical interest of this Proposition is very limited, because in practice the
primal natural-norm constant is about as difficult to compute (or to approximate using
SCM) as the inf-sup constant. The true interest of Proposition 3.2.1 is to replace the
primal natural-norm constant by a more practical lower bound, provided by the following
Proposition.

Proposition 3.2.2. Let µ ∈ D. For all µ ∈ D define

αµ(µ) = inf
v∈V

<{〈A(µ)v,R−1
W A(µ)v〉}

|||v|||2µ,V
.

Then, for all µ ∈ D, αµ(µ) > αµ(µ). Furthermore αµ(µ) = 1.

Proof. Recalling that |||v|||µ,V = ‖A(µ)v‖W ′ = sup
w∈W

|〈A(µ)v,w〉|
‖w‖W

we get

αµ(µ) = inf
v∈V

|||v|||µ,V
|||v|||µ,V

= inf
v∈V

sup
w∈W

|〈A(µ)v, w〉|
|||v|||µ,V ‖w‖W

.

We may choose the candidate supremizer w = R−1
W A(µ)v, yielding

αµ(µ) > inf
v∈V

|〈A(µ)v,R−1
W A(µ)v〉|

|||v|||µ,V ‖R
−1
W A(µ)v‖W

= inf
v∈V

|〈A(µ)v,R−1
W A(µ)v〉|

|||v|||2µ,V
> αµ(µ),

where the last inequality simply stems from the fact that the modulus of a complex number
is always greater than its real part.
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Remark. Proposition 3.2.2 would provide a sharper lower bound had the real part been
replaced by the modulus in the definition of the constant αµ(µ). We choose to con-
sider the real part and not the modulus – thus accepting a less sharp lower bound –
for purely practical reasons. Namely, αµ(µ) can be computed as the smallest eigen-
value in the generalized hermitian eigenvalue problem: find (λ,w) ∈ R ×W such that
1
2

(A(µ)A(µ)−1RW +RWA(µ)∗A(µ)∗)w = λRWw in W . Justification for the form of
this generalized hermitian eigenvalue problem will be provided in the proof of Proposition
3.2.4.

As shown in Ref. [110], under some regularity assumption on µ 7→ A(µ), the lower bound
of Proposition 3.2.2 is second order accurate; in the sense

αµ(µ) = αµ(µ) +O(|µ− µ|2) as µ→ µ. (3.2.1)

Combining the results from Proposition 3.2.2 and Proposition 3.2.1, we obtain the prac-
tical lower bound for the inf-sup constant: α(µ) > α(µ)αµ(µ). Notice however that
αµ(µ) is not guaranteed to be positive (in opposition to αµ(µ), which is always > 0).
It can typically turn negative when µ is ”too distant” from µ in some sense. When this
is the case, our practical lower bound for the inf-sup constant becomes of no interest.
For this reason, we define the primal positivity coverage set associated to any anchor
point µ, as Dpr

µ = {µ ∈ D, αµ(µ) > 0}. In this context, a ”good” set of anchor points
CK = {µ1, . . . , µK} is such that ∪Kk=1D

pr

µk
= D and a possible associated indicator func-

tion IK maps each µ ∈ D to the anchor point µ ∈ CK such that the constant αµ(µ) is
largest, i.e., IK(µ) = argmax

16k6K
αµk(µ).

All is now set to define our practical primal inf-sup based a posteriori error estimator

∀ṽ ∈ V, ∆pr
K(ṽ;µ) =

1

α(µ)αµ(µ)
‖A(µ)ṽ − f(µ)‖W ′ , with µ = IK(µ). (3.2.2)

3.2.2 Practical error estimator based on dual natural-norm

In the same fashion, we now construct a practical error estimator based on the the dual
natural norm.

Proposition 3.2.3. Let µ ∈ D. For all µ ∈ D, define

σµ(µ) = inf
v∈V

<{〈A(µ)v,A(µ)−∗RV v〉}
‖v‖2

V

.

Then for all µ ∈ D, σµ(µ) 6 σµ(µ). Furthermore σµ(µ) = 1 and assuming µ 7→ A(µ) is
differentiable in the neighborhood of µ there holds

σµ(µ) = σµ(µ) +O(|µ− µ|2) as µ→ µ. (3.2.3)
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Proof. We start by the definition

σµ(µ) = inf
v∈V

‖A(µ)−1A(µ)v‖V
‖v‖V

= inf
v∈V

sup
`∈V ′

|〈`, A(µ)−1A(µ)v〉|
‖v‖V ‖`‖V ′

. (3.2.4)

Choose the candidate supremizer ` = RV v and use the fact that the modulus of a complex
number is always an upper bound for its real part.

In order to demontrate the second order accuracy, we can refer to same arguments in the
case of the primal, see Ref. [110]. We repeat the essential steps for completeness. Let us
start from the definition of σµ(µ) and proceed as follows

(σµ(µ))2 = inf
v∈V

‖A(µ)−1A(µ)v‖2
V

‖v‖2
V

= inf
v∈V

‖v + A(µ)−1(A(µ)− A(µ))v‖2
V

‖v‖2
V

. (3.2.5)

If µ 7→ A(µ) is differentiable in the neighborhood of µ, then ‖A(µ)−1(A(µ)−A(µ))v‖2
V /‖v‖2

V =
O(|µ− µ|2). In this situation, developing the square in Eq. (3.2.5) yields

(σµ(µ))2 = 1 + inf
v∈V

2<{〈RVA(µ)−1(A(µ)− A(µ))v, v〉}
‖v‖2

V

+O(|µ− µ|2)

= 1 + 2

(
inf
v∈V

<{〈RVA(µ)−1A(µ)v, v〉}
‖v‖2

V

− 1

)
+O(|µ− µ|2).

(3.2.6)

Thus, we have σµ(µ) = (1 + 2(σµ(µ)− 1) +O(|µ− µ|2))
1/2. We conclude by invoking

the the formula (1 + t)1/2 = 1 + 1
2
t+O(t2) for t = 2(σµ(µ)− 1), combined with the fact

that (σµ(µ)− 1) = O(|µ− µ|).

Notice that we have defined the lower bound σµ(µ) of σµ(µ) using a real part and not a
module, again for purely practical reasons (see Remark 3.2.1). Moreover, similar to its
primal counterpart αµ(µ), the constant σµ(µ) is not guaranteed to be positive, so we must
introduce the dual positivity coverage set associated to a given anchor point µ ∈ CK as
Ddu
µ = {µ ∈ D, σµ(µ) > 0}. Again, a ”good” set of anchor points CK = {µ1, . . . , µK}

is such that ∪Kk=1Ddu
µk

= D and a possible associated indicator function IK maps each
µ ∈ D to the anchor point µ ∈ CK such that the constant σµ(µ) is largest, i.e., IK(µ) =
argmax
16k6K

σµk(µ).

All is now set to define our practical dual natural-norm based a posteriori error estimator

∀ṽ ∈ V, ∆du
K (ṽ;µ) =

1

σµ(µ)
|||A(µ)ṽ − f(µ)|||µ,W ′ with µ = IK(µ). (3.2.7)
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3.2.3 The self-adjoint case

Proposition 3.2.4. In the self-adjoint case, (i.e., V = W andA(µ) = A(µ)∗), there holds,

∀µ ∈ D, αµ(µ) = σµ(µ),

where αµ(µ) is defined in Proposition 3.2.2 and σµ(µ) is defined in Proposition 3.2.3.

Proof. This is straightforward observing that αµ(µ) is equivalently given by

αµ(µ) = inf
w∈W

<{〈A(µ)A(µ)−1RWw,w〉}
‖w‖2

W

.

Thanks to the preliminary result given by Proposition 3.2.4, we can show that the dual
natural-norm error estimator necessarily outperforms the inf-sup based error estimator in
the self-adjoint case.

Theorem 4. Let CK = {µ1, . . . , µK} ⊂ D and consider the self-adjoint case. Denote

D+ =
K⋃
k=1

Dpr

µk

(
=

K⋃
k=1

Ddu
µk

)
.

Then, for all µ ∈ D+, the solution u(µ) ∈ V to (3.1.1) satisfies

∀ṽ ∈ V, ‖u(µ)− ṽ‖V 6 ∆du
K (ṽ;µ) 6 ∆pr

K(ṽ;µ),

with ∆du
K the dual natural-norm error estimator defined by (3.2.7) and ∆pr

K the inf-sup
based error estimator defined by (3.2.2).

Proof. Let µ ∈ D and denote µ = IK(µ) the associated anchor point. Theorem 3 states
that

‖u(µ)− ṽ‖V 6
1

σµ(µ)
‖A(µ)−1(A(µ)ṽ − f(µ))‖V .

From the inequality 1
σµ(µ)

6 1
σµ(µ)

, which stems from Proposition 3.2.3 combined to the
fact that σµ(µ) > 0, we obtain the first inequality announced in the theorem.

The second inequality is a consequence of the equivalence of the ‖A(µ)−1 · ‖V norm and
the ‖ · ‖W ′ norm, established in Proposition 3.1.3. Namely,

‖A(µ)−1(A(µ)ṽ − f(µ))‖V 6
1

β(µ)
‖A(µ)ṽ − f(µ)‖W ′ .

We have β(µ) = α(µ) from the self-adjoint hypothesis.
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3.3 Computational strategy

3.3.1 Offline/online strategy

In this section, we consider a Reduced Basis (RB) approximation space ṼN ⊂ V , with
small dimension N � N and a RB approximation ũN(µ) in this N -dimensional RB
subspace. The resulting RB approximation error can be bounded using our dual natural-
norm a posteriori error estimator (3.2.7) as

‖u(µ)− ũN(µ)‖V 6 ∆du
K (ũN(µ);µ). (3.3.1)

We now explain how ∆du
K (ũN(µ);µ) can be efficiently computed. There are two com-

ponents in our error estimator: a stability constant (namely, σµ(µ)) which we propose to
replace by a cheap SCM lower bound, and the dual natural-norm of the residual which
can be efficiently computed following an offline/online strategy.

The affine hypothesis

Following the Reduced Basis Method standard [54, 97] we require that the operator
A(µ) ∈ L(V,W ′) is affinely parametrized, that is, that there exist Q > 1 µ-independent
operators Aq ∈ L(V,W ′), 1 6 q 6 Q and complex valued functions ςq : D → C,
1 6 q 6 Q such that

∀µ ∈ D, A(µ) =

Q∑
q=1

ςq(µ)Aq. (3.3.2)

Similarly, we require the right-hand-side f(µ) ∈ W ′ to be affinely parametrized, that is,
that there exist Qf > 1 µ-independent linear forms fq ∈ W ′, 1 6 q 6 Qf and complex
valued functions ςfq : D → C, 1 6 q 6 Qf such that

∀µ ∈ D, f(µ) =

Qf∑
q=1

ςfq (µ)fq. (3.3.3)

Note that if the operator or right-hand side do not satisfy the affine assumption, the Em-
pirical Interpolation Method (EIM) can be employed to recover affinely parametrized ap-
proximations [5, 84].

Computing a lower bound for the dual natural norm constant

Let µ ∈ D be a given anchor point. We now explain how a lower bound for σµ(µ)
can be efficiently computed for any µ query. This is key to the success of the proposed
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method; otherwise our practical dual natural-norm error estimator would not be efficiently
computable. By definition, σµ(µ) is the smallest eigenvalue in the generalized hermitian
eigenvalue problem: find (λ, v) ∈ R× V such that

Hµ(µ)v = λRV v in V ′ (3.3.4)

with Hµ(µ) ∈ L(V, V ′) given by

∀µ ∈ D, Hµ(µ) =
1

2

(
A(µ)∗A(µ)−∗RV +RVA(µ)−1A(µ)

)
. (3.3.5)

Note thatHµ(µ) is self-adjoint, but that it is not necessarily positive definite. An approach
based on solving the generalized eigenvalue problem (3.3.4) for each µ query would lead
to prohibitive computational costs. We propose to use the SCM in order to compute cheap
lower and upper bounds for µ 7→ σµ(µ), using a computationally efficient offline/online
strategy. Clearly, using the affine representation (3.3.2) of A(µ), the Hµ(µ) operator
admits the following affine representation

Hµ(µ) =

Q∑
q=1

<{ςq(µ)}1

2

(
A∗qA(µ)−∗RV +RVA(µ)−1Aq

)
+

Q∑
q=1

={ςq(µ)}1

2

(
iA∗qA(µ)−∗RV − iRVA(µ)−1Aq

)
. (3.3.6)

Thus, we have Hµ(µ) =
∑2Q

q=1 θq(µ)Hµ,q where Hµ,q ∈ L(V, V ′), 1 6 q 6 2Q are
µ-independent self-adjoint operators and θq : D → R, 1 6 q 6 2Q are real-valued
functions. In this context, the SCM can be readily applied; e.g. see Refs. [61, 60, 112].

The dual natural-norm of the RB residual

Given an anchor point µ ∈ D, we explain how the dual natural-norm of the residual
|||A(µ)ũN(µ)− f(µ)|||µ,W ′ can be efficiently computed for all µ ∈ D. Let us assume the

following decomposition for ũN(µ) in the RB subspace ṼN := Span{ξ1, . . . , ξN} ⊂ V ,

ũN(µ) =
N∑
i=1

ci(µ)ξi. (3.3.7)

With the RB method, the coefficients ci(µ), 1 6 i 6 N can be obtained very efficiently
for any value of µ ∈ D by solving a N × N linear system [97, 54]. For all µ ∈ D, there
holds

|||A(µ)ũN(µ)− f(µ)|||2µ,W ′ = ‖A(µ)−1(A(µ)ũN(µ)− f(µ))‖2
V (3.3.8)
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Using the affine representations Eqs. (3.3.2) and (3.3.3) and the expression (3.3.7) for the
RB approximation, we get from developing the square

|||A(µ)ũN(µ)− f(µ)|||2µ,W ′ =
∑

16q,p6Qf

ςfq (µ)ςfp (µ)〈RVA(µ)−1fq, A(µ)−1fp〉∑
16i,j6N

∑
16q,p6Q

ci(µ)cj(µ)ςq(µ)ςp(µ)〈RVA(µ)−1Aqξi, A(µ)−1Apξj〉

−2
∑

16q6Q

∑
16p6Qf

∑
16i6N

<
{
ςq(µ)ςfp (µ)ci(µ)〈RVA(µ)−1Aqξi, A(µ)−1fp〉

}
.

(3.3.9)

Notice that none of the duality brackets depend on µ. Thus, these duality brackets can
be computed once during the so-called offline phase. For each query µ ∈ D (during the
so-called online phase), the pre-computed duality brackets can be used to compute the
dual natural-norm of the residual in O((Qf )2 + N2Q2 + NQQf ) complexity using the
formula (3.3.9).

Remark that during the offline phase, one must solveNQ+Qf problems of the form: find
y ∈ V such that A(µ)y = z. Namely, for z = Aqξi (1 6 i 6 N , 1 6 q 6 Q) and for
z = fq (1 6 q 6 Qf ). The number of problems to be solved is therefore K(NQ + Qf )
when a set CK of K anchor points is considered.

3.3.2 Procedure for selecting anchor points

We now present a strategy for constructing the set of anchor points CK = {µ1, . . . , µK} ⊂
D. Let us adopt a discrete setting, by introducing an adequately fine discrete surrogate
set Ξ ⊂ D. Clearly, if we want to be able to estimate the error globally, the set of anchor
points must be built in order that the following (discrete) coverage property holds

∀µ ∈ Ξ, ∃µ ∈ CK , σµ(µ) > %, (3.3.10)

or equivalently,
∀µ ∈ Ξ, max

µ∈CK
σµ(µ) > %, (3.3.11)

where % ∈ [0, 1[ is a prescribed threshold. Notice that with the strict inequalities, choosing
% = 0 will ensure that µ 7→ max

µ∈CK
σµ(µ) remains strictly positive over Ξ, which is the

minimum requirement to be able to estimate the error over Ξ. We leave the possibility of
considering % > 0 if one is interested in sharper error estimates.

The procedure that we propose consists in building a sequence {Ξk}k>1, with Ξ1 = Ξ that
will ultimately converge to ∅ as follows:

1. Pick arbitrarily µ1 in Ξ, set Ξ1 = Ξ, C0 = ∅ and k = 1;

2. Update the set of anchor points Ck = Ck−1 ∪ {µk};
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3. Update training set Ξk+1 ← Ξk \ {µ ∈ Ξk, σµk(µ) > %};

4. If Ξk+1 6= ∅, then find
µk+1 ← argmin

µ∈Ξk

max
µ∈Ck

σµ(µ), (3.3.12)

set k = k + 1 and go back to (ii). Else, terminate.

At each iteration k > 1 such that Ξk 6= ∅, we consider a new anchor point µk ∈ Ξk, and
construct the set Ξ+

k = {µ ∈ Ξk, σµk(µ) > %} (this can be done efficiently using SCM).
This set is guaranteed to be non-empty because it has at least one member: µk, using the
fact that σµk(µk) = 1 (see Proposition 3.2.3). Thus, the set Ξk+1 = Ξk \Ξ+

k is guaranteed
to be a strict subset of Ξk. This demonstrates that the sequence {Ξk}k>1 converges to
∅ in at most Card(Ξ) iterations and so the procedure terminates. Note that, in practice,
much less than Card(Ξ) iterations will be required for convergence as we shall see in the
numerical examples.

Furthermore, there is no difficulty in showing that at iteration k > 1, we have

Ξ = Ξk+1 ∪

(
k⋃

κ=1

Ξ+
κ

)
, Ξk+1 ∩

(
k⋃

κ=1

Ξ+
κ

)
= ∅, (3.3.13)

thus the procedure terminates at iteration K such that Ξ =
⋃K
κ=1 Ξ+

κ , which means that
the discrete coverage property holds.

3.4 Numerical results

3.4.1 Problem setting

Let Ω =]0, 1[×]0, 1[. The domain boundary is divided into a Dirichlet boundary ΓD =
]0, 1[×{0} and a Neumann boundary ΓN = ∂Ω\ΓD. Let f ∈ L2(Ω) and g ∈ H−1/2(ΓN).
We consider the 2D Helmholtz equation, parametrized by µ = (µ1, µ2) ∈ D: find
uex(·;µ) ∈ H1(Ω)−div

((
1 ν

0 µ1

)
∇uex(µ)

)
− µ2u

ex(µ) = f, in Ω,

uex(µ)|ΓD = 0, ∇uex(µ) · n|ΓN = g.

(3.4.1)

The parameter µ1 controls the anisotropy of the speed of sound, while the parameter µ2

corresponds to the squared wavenumber. The constant ν (not a parameter) also controls
the anisotropy of the speed of sound (isotropic speed of sound corresponds to ν = 0,
µ1 = 1). Notice that when ν = 0 the problem is self-adjoint and corresponds to the
benchmark proposed in Ref. [60] and addressed more recently in Ref. [113]. When
ν > 0, the problem is no longer self-adjoint.
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We use the Finite Element (FE) method to discretize the weak form of (3.4.1). We define
the Hilbert space V as the Lagrange P 1 approximation space, formed by globally contin-
uous, piece-wise first-order polynomial functions that vanish on the boundary ΓD. This
FE space being H1(Ω)-conforming, the norm on V is simply the usual ‖ · ‖H1(Ω) norm.
Using a triangulation of Ω, the dimension of this FE space is N = 3436. The FE approx-
imation u(µ) ∈ V is defined as the Galerkin projection of uex(µ) on V , which amounts to
considering the test space W = V .

We further define a RB approximation ũN(µ) as the Galerkin projection of u(µ) onto
the RB space, meaning ũN(µ) ∈ ṼN := Span{u(µ1),. . . , u(µN)}, where the parameters
µ1, . . . , µN are selected in a greedy way based on the ‖·‖W ′ norm of the residual, following
standard practice of the RB Method [54, 97]. Our goal will be able to estimate the RB
error ‖u(µ)− ũN(µ)‖V for µ ∈ D.

Remark that, without any a priori knowledge on the possible location of resonant param-
eters, finding a ”resonance-free” setD is not an easy task. In our numerical tests, we shall
consider D ⊂ D̃ = [0.8, 1.2] × [10, 50], as in Ref. [60]. We consider the two possible
values ν = 0 (self-adjoint case) and ν = 0.5 (non self-adjoint case). We can see the norm
of the FE solution for 2000 random points in D̃ on Figs. 1 and 2. We can visually see 4
resonance lines where the norm of the FE solution is maximal. Notice that the location of
resonance lines slightly differ between the self-adjoint and non self-adjoint cases.

Remark. As can be seen Figs. 1 and 2, there are some resonant parameter values in the
compact set D̃ = [0.8, 1.2] × [10, 50]. Denote Dres the set of resonant values in D̃ for
which the Banach-Nečas-Babuška assumptions are not satisfied. In this work, we choose
to address the problem as if we had no a priori knowledge of the existence of this setDres.
As we shall see, our method is constructive of a discrete surrogate set for the ”resonance-
free” set D ⊂ D̃ satisfying Dres ⊂ (D̃ \ D).

3.4.2 Self-adjoint case

The natural-norm constants

We test our anchor point selection procedure with % = 0 and a surrogate set Ξ ⊂ D̃
made of 2000 random points (uniformly distributed). The algorithm terminates with K =
6 anchor points. On Fig. 3.3, we have plotted the obtained SCM lower bounds µ 7→
exp(σLBµ (µ)) for each of the K = 6 selected anchor points µ ∈ CK . The reason for taking
the exp() is to obtain a better visualization, recalling that the lower bound for the dual
natural-norm constant can become negative.

A close comparison with Fig. 1 reveals that the dual natural-norm constant σµ(µ) is only
positive for values of µ such that µ and µ can be joined without crossing any resonance
lines. Interestingly, we have found K = 6, when K = 5 could have been expected from
Fig. 1. In fact, we have checked that the anchor point µ = (0.80, 49.9) is indispensable
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Figure 3.1: The norm of the FE solu-
tion, for 2000 random points in D in
self-adjoint case.
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Figure 3.2: The norm of the FE solution,
for 2000 random points inD in non self-
adjoint case.

in order to achieve the positivity coverage, because there is indeed a resonance line to
be crossed to reach this point starting from all previously selected anchor points. Let us
now analyze the computational effort. At each iteration k of the anchor point selection
procedure, a SCM algorithm is called in order to efficiently compute the lower bounds.
In our numerical experiments, we have set the prescribed SCM tolerance to tol = 0.9.
We have consigned in Table 1 the number of eigensolves of the generalized eigenvalue
problem (3.3.4) performed during each call to the SCM.

k 1 2 3 4 5 6
Eigensolves 15 1 8 3 11 7

Table 3.1: Number of times that the generalized eigenvalue problem (3.3.4) must be
solved at each iteration k of the anchor point selection procedure.

Comparing with Fig. 3.3, we find that the required number of eigensolves depends on the
size of the positivity coverage. Typically, if the positivity coverage is vaster, then more
eigensolves are needed.

Remark. We notice a sensibility to the sampling of the surrogate set Ξ ⊂ D̃. Namely,
a different sampling of the 2000 uniformly distributed random points in which the point
(0.80, 49.9) was absent led to K = 5. In this situation, we have not been able to find an
index k = 1, . . . , 5 such that σµk(µ) for µ = (0.80, 49.9) was > 0. This illustrates the
potential risks that the discrete positivity coverage property (3.3.11) is dependent on the
choice of surrogate set Ξ.
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Figure 3.3: Self adjoint case: The SCM lower bound for the dual natural-norm constants
µ 7→ exp(σLBµ (µ)) for the K = 6 successive values of µ determined by the anchor point
selection procedure.
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Error estimates

We now consider a reduced basis approximation ṼN of dimension N = 15. In order to
assess the performance of our error estimators, we solve both FE and RB problems for all
µ ∈ Ξ, where Ξ ⊂ D is a random set of cardinality 2000. We have re-sampled the random
points, thus this set Ξ is different from set the one used for selecting the anchor points.
On Fig. 3.4, we have plotted two effectivity distributions; namely

• the effectivity distribution of the practical inf-sup based error estimator, that is
{∆pr

K(ũN(µ);µ)/‖u(µ)− ũN(µ)‖V , µ ∈ Ξ} (top);

• the effectivity distribution of the practical dual natural-norm based error estimator,
that is {∆du

K (ũN(µ);µ)/‖u(µ)− ũN(µ)‖V , µ ∈ Ξ} (bottom);

we have further consigned the essential statistics of these two effectivity distributions in
Table 2.

1e−1 1 1e+1 1e+2 1e+3 1e+4 1e+5
0

100

200

Effect iv ity distr ibution: c lassical inf -sup based
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Figure 3.4: Self adjoint case: Effectivity distribution of the practical inf-sup based error
estimator (top) and of the practical dual natural-norm based error estimator (bottom),
obtained from 2000 random parameter samples in D.

Error estimator Max 85% quantile Median Mean
Inf-sup based 8.61× 104 1.32× 102 3.16× 101 1.99× 102

Dual natural-norm 1.11× 104 9.51 3.17 1.74× 101

Table 3.2: Effectivity statistics in self-adjoint case (based on the distribution shown on
Fig. 3.4).

We find the inf-sup based error estimator to overestimate the error by at least one order
of magnitude. On the contrary, the dual natural-norm based error estimator captures the
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correct order of magnitude of the error for 85% of the considered values of µ ∈ D.
For both error estimators, the amount of overestimation can become as large as 4 orders
of magnitude. However, this phenomenon only occurs very locally; namely near the
resonance lines. This is confirmed by Fig. 3.5, where we have plotted the effectivity in
the (µ1, µ2) plane, and where we find all maximum values of effectivity to be located in
the neighborhood of a resonant line. The tails of the distributions on Fig. 3.4 reflect the
small probability of a random parameter value to be located very close to a resonant line.
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Figure 3.5: Self adjoint case: The effectivity of the inf-sup (left) and dual natural-norm
(right) error estimators plotted as functions of µ = (µ1, µ2).

3.4.3 Non self-adjoint case

The natural-norm constants

We now address the non self-adjoint case. Recall that, in this case, there is a distinction be-
tween the primal natural-norm constant αµ(µ) and the dual natural-norm constant σµ(µ).
We highlight the differences between these two constants in Fig. 3.6. It is worth noticing
that the two coverage sets Dpr

µ = {µ ∈ D, αµ(µ) > 0} and Ddu
µ = {µ ∈ D, σµ(µ) > 0}

slightly differ.

We test our anchor point selection procedure with % = 0 and a surrogate set Ξ ⊂ D̃
made of 2000 random points (uniformly distributed). In order for the algorithm to ter-
minate, we had to slightly change the stopping criterion. Indeed, we found that stop-
ping at the iteration k such that Ξk = ∅ was irrelevant in this situation due to the pres-
ence of resonances. We relaxed this criterion by stopping at the iteration k such that
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Figure 3.6: Non self-adjoint case: Comparison between the primal (left) and dual natural-
norm (right) constants plotted as functions of µ = (µ1, µ2), with same anchor point µ =
(0.9, 35).

Card(Ξk) 6 d(1 − q)Card(Ξ)e, where q ∈]0, 1] is some fraction, Card(Ξ) the num-
ber of points in the initial surrogate parameter set and d·e denotes the ceiling operation.
Under this new criterion with q = 0.95, the algorithm converged in K = 15 iterations.
This means K = 15 anchor points are enough to obtain the discrete coverage property
over Ξ+ = Ξ \ Ξ−, where Ξ− denotes the set comprised of the 5% of parameter points
over which the discrete coverage property is not satisfied; i.e., for all µ ∈ Ξ−, for all
1 6 k 6 K, σµk(µ) 6 0. We have checked that the points in set Ξ− correspond to
points near the resonance lines. Thus, our method is constructive of the set Ξ+, which is
a discrete surrogate set for the a priori unknown ”resonance-free” set D.
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Figure 3.7: Convergence curve of anchor point selection procedure in the non self-adjoint
case.

Looking at the converge curve on Fig. 3.7, we further find that the K = 7 first iterations
already achieve 91.6% of the positivity coverage. The next iterations add small positivity
coverage patches near the resonance lines to achieve the desired 95% positivity coverage
property.
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Error Estimates

We consider a reduced basis of size N = 15. In order to assess the performance of our
dual natural-norm estimator, we solve both FE and RB problems for all µ ∈ Ξ, where
Ξ ⊂ D is a random set of cardinality 2000. We have re-sampled the random points, thus
this set Ξ is different from set the one used for selecting the anchor points. On Fig. 3.8,
we have plotted two effectivity distributions; namely

• the effectivity distribution of the exact inf-sup based error estimator, based on the
computation of the exact inf-sup constant α(µ), that is { 1

α(µ)
‖A(µ)ũN(µ)−f(µ)‖W ′/‖u(µ)−

ũN(µ)‖V , µ ∈ Ξ} (top);

• the effectivity distribution of the practical dual natural-norm based error estimator,
that is {∆du

K (ũN(µ);µ)/‖u(µ)− ũN(µ)‖V , µ ∈ Ξ} (bottom);

We find 114 points in Ξ for which the discrete positivity coverage property does not hold.
This corresponds to 5.7% of our points, slightly above the expected 5% and we have
checked these points are all located near the resonance lines. We remove these 114 points
from the initial Ξ set, and thus obtain a set of 1886 points for which our error estimator
can be computed. Notice at this stage that, estimating the error at these 114 using our dual
natural-norm error estimator is impossible with K = 15, but this would be possible by
consider more anchor points K > 15. Inspection of the two distributions reveals that the
exact inf-sup based estimator never provides the correct order of magnitude of the error,
while the dual natural-norm error estimator does for most parameter values.

On Fig. 3.9, we have plotted the effectivity in the (µ1, µ2) plane. For the inf-sup based
estimator, we find all maximum values of effectivity to be located in the neighborhood
of a resonant line (as in the self-adjoint case). However, for the dual natural-norm based
estimator, the maximum values are not always near a resonant line. Thus, the tail of
the distribution on Fig. 3.8 (below) where the effectivity is large, does not necessarily
correspond to parameter values located very near a resonance line.

In order to understand the origin of the tail of the distribution, we show on Fig. 3.10 the
two stability constants at play: the inf-sup constant µ 7→ α(µ) and the dual-natural norm
constant µ 7→ max

16k6K
σµk(µ). While the minimas of the inf-sup constant clearly mark the

resonance lines, this is not the case for the dual natural-norm constant. In fact, we find
that the values of µ for which the dual natural-norm constant is minimal correspond to the
values of µ for which the effectivities are maximal on Fig. 3.9 (right). This confirms the
relevance of effectivity bound from Proposition 3.1.4, which suggests that a small dual
natural-norm constant will deteriorate the effectivity. Of course, it is always possible to
obtain a O(1) dual natural-norm constant by adding more anchor points.
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Figure 3.8: Non self-adjoint case: Effectivity distribution of the exact inf-sup based error
estimator (top) and of the practical dual natural-norm based error estimator (bottom),
obtained from 1886 random parameter samples in D satisfying the positivity coverage
property.

3.5 Conclusions

In this chapter, we have developed both theoretical error bounds and practical a posteriori
error estimators for reduced basis approximations to parametrized linear equations based
on the concept of dual natural-norm. In comparison to the classical error bounds based
on the inf-sup stability constant, the dual natural-norm error bounds are associated with
a O(1) stability constant and are therefore very effective. Moreover, in opposition to the
primal natural-norm approach, one is free to choose the norm ‖ · ‖V in which the error
u(µ)−ũN(µ) should be measured, since the dual natural-norm is not a norm for measuring
the error, but rather a norm for measuring the residual.

We have shown a computational strategy for efficiently computing the proposed dual
natural-norm error estimator in the context of reduced basis approximations. This strat-
egy was successfully applied to a Helmholtz equation parametrized by the wavenumber
and anisotropy parameter. Numerical results show great potential, especially in the case
of challenging problems with resonant parameters. In this context, the proposed method
also provides a very practical way to determine a ”resonance-free” set of parameters D
out of a larger parameter set D̃ which contains resonant parameters at a priori unknown
locations.
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Figure 3.9: Non self adjoint case: The effectivity of the inf-sup (left) and dual natural-
norm (right) error estimators plotted as functions of µ = (µ1, µ2). Notice the logarithm
scale.
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Figure 3.10: Non self adjoint case: The inf-sup constant (left) and dual natural-norm
constant (right) as functions of µ = (µ1, µ2). Notice the logarithm scale.
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Chapter 4
The reduced basis method in the context of
multiple sources

Summary. This chapter is concerned with reduced basis approximations to parametrized
problems featuring multiple sources. We propose two strategies: a multiple RBs strategy
that consists in building distinct reduced basis approximation subspaces each one adapted
to a specific source term and a unique RB strategy that consists in building a unique re-
duced basis approximation subspace for all the sources. In both cases, a block formulation
is advantageously used in order to limit the overall number of problems to solve. We show
that the block framework and associated reduced basis strategies are very well adapted to
the class of parametrized problems with parametrized source, in which the traditionally µ-
dependent source further depends on an additional parameter ν. In this situation, the EIM
is used to incorporate the additional parameter ν in an approximate parametrized block
formulation. We illustrate our reduced basis approach on an academic Laplace problem.
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4.1 Introduction to parametrized problems with multiple
sources

As usual in this thesis, V and W denote two Hilbert spaces with finite dimension N , that
must be thought of as finite element approximation spaces of infinite dimensional Sobolev
spaces provided with the inherited norm respectively ‖ · ‖V and ‖ · ‖W together with the
scalar product (·, ·)V and (·, ·)W respectively.

4.1.1 The parametrized problem with ` independent sources

Let µ ∈ Dµ denote the parameter, with Dµ a compact set of Rpµ , pµ > 1. We con-
sider a µ-parametrized operator A(µ) ∈ L(V,W ′) satisfying the Banach-Nečas-Babuška
assumptions (we refer the reader to the mathematical framework introduced in chap-
ter 1, section 1.1.4). We further consider a familly of ` > 1 independent source terms
f1(µ), . . . , f`(µ) ∈ W ′. The parametrized problem with ` distinct µ-parametrized source
terms is the following: find ur(µ) ∈ V such that

A(µ)ur(µ) = fr(µ) in W ′, 1 6 r 6 `. (4.1.1)

Our objective is to build efficient subspace approximations to the ` solution manifolds
Mr = {ur(µ), µ ∈ Dµ} for r = 1, . . . , `. At this stage, it is worth recalling that the
problem (4.1.1) is linear. Consequently, the solution associated to any linear combination
of the sources

∑`
r=1 βrfr(µ) with coefficients β1, . . . , β` ∈ C can be straightforwardly

obtained as the linear combination of the solutions
∑`

r=1 βrur(µ) with the same coeffi-
cients. This property will be exploited in section 4.3.2 when a block formulation to the
problem (4.1.1) will be introduced.
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Model problem

As model problem, we consider the Laplace model problem (1.1.5) introduced in chap-
ter 1, thus V = W = X0

h(Ω), with Ω =]0, 1[2. We recall that the parameter µ is
two-dimensional (thus pµ = 2) and corresponds to the coordinates of the peak in the
conductivity. We further recall that Dµ = [0.4, 0.6]2. Rather than the right-hand side
f : w ∈ W 7→

∫
Ω
SwdΩ with non-parametrized source term S ∈ L2(Ω) given by

eq. (1.4.6), we are now interested in the solutions u1(µ), . . . , u4(µ) associated to the four
distinct µ-parametrized source terms fr(µ) : w ∈ W 7→

∫
Ω
Sr(x, µ)w(x)dx, 1 6 r 6 4,

with

S1(x;µ) = µ1exp

(
−(x1 − 0.25)2 + (x2 − 0.25)2)

0.02

)
,

S2(x;µ) = µ2exp

(
−(x1 − 0.25)2 + (x2 − 0.75)2)

0.02

)
,

S3(x;µ) = µ1exp

(
−(x1 − 0.75)2 + (x2 − 0.25)2)

0.02

)
,

S4(x;µ) = µ2exp

(
−(x1 − 0.75)2 + (x2 − 0.75)2)

0.02

)
.

(4.1.2)

Figure 4.1 provides a visualization of the truth solutions associated to the sources r =
1, 3, 4 for two possible values of the parameter µ. As we can see, each source is clearly
localized in its own corner of the domain.

Figure 4.1: Truth solutions ur(µ). First row: fixed µ = (0.6, 0.4). Second row: fixed
µ = (0.4, 0.4). In columns: r = 1, 3, 4.
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The truth solutions are affected by the parameter µ in two ways. First, the amplitude of the
solutions depends on µ (in detail: µ1 impacts the amplitude of the sources 1 and 3 while µ2

impacts the sources 2 and 4). Second, the conductivity peak at coordinates µ = (µ1, µ2)
provides a preferred direction of diffusion for the solution. This is particularly visible for
the sources localized near the conductivity peak, namely for the source r = 3 at µ =
(0.6, 0.4) (first row, second column on fig. 4.1) and for the source r = 1 at µ = (0.4, 0.4)
(second row, first column on fig. 4.1).

Real-world problem

The next chapter will provide a real-world parametrized problem featuring multiple in-
dependent sources. Indeed, in section 5.3, we will study an antenna array: the varying
parameter will be the frequency and we will be interested in computing the electric field
generated by each individual antenna across the frequency range of interest.

4.1.2 Outline of two reduced basis strategies

Let us now discuss the possible reduced basis strategies for efficiently solving a parame-
trized problem featuring multiple sources. This chapter presents two strategies: the mul-
tiple RBs strategy or the unique RB strategy.

The multiple RBs strategy

The ` source terms being independent, the solution ur(µ) associated to the source term
fr(µ) is potentially completely unrelated to the solution up(µ) associated to a different
source term fp(µ), p 6= r. In the extreme cases, these two solutions could even be or-
thogonal in the sense (ur(µ), up(µ))V = 0. In this situation, it seems preferable to build
` distinct reduced basis approximation subspaces, each dedicated to approximating the
solutions associated to a given source term.

We propose to build the ` RB approximation subspaces relying on a unique family of pa-
rameter points {µi}16i6N rather than on ` independently selected families {µ(r)

i }16i6N(r) ,
r = 1, . . . , `. This choice is motivated by the fact that solving a problem with ` right-
hand sides is more economical than solving ` problems with single right-hand sides. This
strategy of multiple RBs is presented in section 4.2.

The unique RB strategy

Despite the ` source terms being independent, two truth solutions ur(µ), up(µ) associated
to two distinct sources r 6= p might not be completely unrelated. In this situation, it
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seems interesting to build a unique RB approximation subspace for approximating the
truth solution ur(µ) for any parameter value µ ∈ Dµ and any source index r ∈ {1, . . . , `}.
This strategy of the unique RB is presented in section 4.3.

4.2 Multiple RBs strategy

4.2.1 Motivation

The multiple RBs strategy consists in constructing ` distinct reduced basis approximation
subspaces, say V (1), . . . , V (`), respectively of dimension N (1), . . . , N (`) and each dedi-
cated to approximating the solutions associated to a given source term.

A logical way to proceed is to build, for all 1 6 r 6 `, the RB approximation sub-
space V (r) ⊂ V by applying the greedy algorithm 2.1 to each parametrized problem
A(µ)ur(µ) = fr(µ). These ` calls to the greedy algorithm are completely independent
and could therefore be performed in parallel. In the end, one obtains ` distinct RB ap-
proximation subspaces under the form

V (r) = Span{ur(µ(r)
1 ), . . . , ur(µ

(r)

N(r))}, 1 6 r 6 `, (4.2.1)

where µ(r)
1 , . . . , µ

(r)

N(r) denote the N (r) parameter points greedily selected during the rth

greedy algorithm. Notice that for r 6= p, the set of parameter points selected during the
rth greedy algorithm is a priori different from the set of parameter points selected during
the pth greedy algorithm.

In the following, we propose an alternative strategy in which we choose a unique set of
parameter points µ1, . . . , µN (we shall soon explain how they are chosen) and build `
distinct RB approximation subspaces as

V
(r)
N = Span{ur(µ1), . . . , ur(µN)}, 1 6 r 6 `. (4.2.2)

The motivation for this choice is the following. It is computationally more advantageous
to compute the ` truth solutions ur(µn), 1 6 r 6 ` associated to a unique parameter point
µn than to solve ` truth solutions ur(µ

(r)
n ), 1 6 r 6 ` associated to ` distinct parameter

points µ(r)
n , 1 6 r 6 `. Indeed, under the paradigm of direct solvers, the former relies on

a single LU factorization of A(µn) which can be used to perform all ` forward-backward
triangular processes, while the latter requires ` factorizations to be performed (one for
each A(µrn), 1 6 r 6 `). Knowing that a LU factorization is computed in O(N 3)
operations and that a forward-backward triangular process requires O(N 2) operations
(see for instance [75, §3.10]), the first strategy is clearly more efficient. This remains true
under the paradigm of iterative solvers, where efficient block Krylov subspace recycling
strategies can be set up to efficiently solve multiple right-hand sides with considerable
speed-ups compared to successive calls to Krylov methods applied to single right-hand
sides [115, 103].
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4.2.2 Reduced basis approximation in a glance

Let ` distinct reduced basis approximation subspaces V (1)
N , . . . , V

(`)
N given by eq. (4.2.2).

We propose to build, for all 1 6 r 6 ` a reduced basis approximation ur,N(µ) ∈ V (r)
N of

the solution ur(µ) ∈ V to eq. (4.1.1), characterized by either the Galerkin projection (see
definition 1) or the least-squares approximation (see definition 2).

In the affine case, we have the following error estimate provided by theorem 1

‖ur(µ)− ur,N(µ)‖V 6
1

α(µ)
‖A(µ)ur,N(µ)− fr(µ)‖W ′ (4.2.3)

If A(µ) or fr(µ) are non-affine, they are replaced by affine approximations Ã(µ), f̃r(µ)
in the sense of definitions 3 and 4. Thus, both the reduced basis approximation ur,N(µ) ∈
V

(r)
N and the residual norm ‖Ã(µ)ur,N(µ)− f̃r(µ)‖W ′ can be efficiently computed follow-

ing the traditional offline/online strategy [123].

4.2.3 Greedy construction

The ` distinct reduced basis approximation subspaces V (1)
N , . . . , V

(`)
N are not built suc-

cessively one after the other, rather, they are built simultaneously. To this end, let us
introduce the reduced basis approximation error at some parameter value µ ∈ Dµ taking
into account the ` independent sources given by max

16r6`
‖ur(µ)− ur,N(µ)‖V .

In the light of the error estimate eq. (4.2.3), we define the error indicator

δN(µ) = max
16r6`

‖A(µ)ur,N(µ)− fr(µ)‖W ′ . (4.2.4)

We propose to drive the greedy iterations using this error indicator. Thus, at the N th iter-
ation, the ` truth solutions ur(µN), 1 6 r 6 ` are computed at the same parameter point
µN and the parameter point µN+1 to be considered in the next iteration is the maximizer
of the error indicator δN(µ) over all possible values of µ (in practice, over a surrogate set
with finite cardinality). The overall strategy is summarized by algorithm 4.1.

Heuristic approach

We briefly explain how the heuristic approach introduced in section 2.2.4 can be adapted
to the present situation.

At iteration N > 1 of algorithm 4.1, we propose to also retain the index rN+1 such that

rN+1 = argmax
16r6`

‖A(µN+1)ur,N(µN+1)− fr(µN+1)‖W ′ . (4.2.5)
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Algorithm 4.1: Residual-driven RB generation
Input : Discrete training set Ξ ⊂ Dµ, target tolerance εtarget and maximum reduced

basis size Nmax

Output: ` reduced basis approximation space V (1)
N , . . . , V

(`)
N

Pick arbitrarily µ1 in Ξ;
Set V (r)

0 = {0}, 1 6 r 6 `;
Initialize N ← 0;
while N ≤ Nmax and ε > εtarget do

Solve ur(µN) for all r = 1, . . . , ` using a single factorization of A(µN) under the
direct solver paradigm or an efficient block Krylov recycling strategy under the
iterative solver paradigm;

Update each reduced basis V (r)
N = V

(r)
N−1 ⊕ Span{ur(µN)}, 1 6 r 6 `;

µN+1 ← argmax
µ∈Ξ

δN(µ);

ε← max
µ∈Ξ

δN(µ);

N ← N + 1;
end

Thus, at iteration N > 2, we can compute the following residual/error sample

α̂N =
‖A(µN)ur?,N−1(µN)− fr?(µN)‖W ′
‖ur?,N−1(µN)− ur?(µN)‖V

, r? = rN . (4.2.6)

These samples can be used in the heuristic approach explained in section 2.2.4.

Remark. Note that the couple (µN+1, rN+1) is given by

(µN+1, rN+1) = argmax
(µ,r)∈Ξ×{1,...,`}

‖A(µ)ur,N(µ)− fr(µ)‖W ′ . (4.2.7)

Thus, the couple (µ, r) ∈ Dµ×{1, . . . , `} is viewed as an extended parameter upon which
the residual norm is maximized.

4.3 Unique RB strategy

4.3.1 A short review

Rather than ` distinct RB approximation subspaces each one adapted to a specific source
term, it is possible to build a unique RB fit for all sources. To the best of our knowledge,
the RB literature provides very few strategies for building a unique RB approximation
subspace fit to approximate the solution ur(µ) for any µ ∈ Dµ and any source index
r ∈ {1, . . . , `}.
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In [114], the authors propose to view (µ, r) ∈ Dµ × {1, . . . , `} as an extended parameter.
Under this approach, the greedy algorithm selects N extended parameter points (µ1, r1),
. . . , (µN , rN) and the RB approximation subspace is built as

VN = Span{ur1(µ1), . . . , urN (µN)}. (4.3.1)

An alternative that is proposed in [128] and that is also used in [114] consists in selecting
at each iteration n > 1 of the greedy algorithm a parameter point µn ∈ Dµ and a direction
vector zn ∈ R` (or C` if the problem is complex). Then, the RB approximation subspace
is built as

VN = Span

{∑̀
r=1

z1rur(µ1), . . . ,
∑̀
r=1

zNrur(µN)

}
, (4.3.2)

where for all 1 6 n 6 N we have denoted zn1, . . . , zn` the components of the direc-
tion vector zn ∈ R`. Compared to the reduced basis eq. (4.3.1), for which the nth re-
duced basis function is the truth solution associated to the source frn(µn), here the nth

reduced basis function is the truth solution associated to the linear combination of sources∑`
r=1 znrfr(µn).

4.3.2 The block formulation

Because linear combination of sources (and of solutions) are considered, it is useful to
introduceZ = R` (or C` in the complex case) and to define the µ-parametrized continuous
linear map F (µ) ∈ L(Z,W ′) as

∀z = (z1, . . . , z`) ∈ Z, F (µ)z =
∑̀
r=1

zrfr(µ). (4.3.3)

Observing that F (µ)êr = fr(µ) for 1 6 r 6 `, where êr denotes the vector of R` full of
zeros, except the rth entry which is equal to 1; we clearly have ur(µ) = U(µ)êr where
U(µ) ∈ L(Z, V ) is the solution to the following problem: find U(µ) ∈ L(Z, V ) such that

∀z ∈ Z, A(µ)U(µ)z = F (µ)z in W ′. (4.3.4)

In the following, the formulation eq. (4.3.4) will be called the block formulation.

Using the block notations, the RB approximation subspace defined by eq. (4.3.2) is equiv-
alently given by

VN = Span {U(µ1)z1, . . . , U(µN)zN} . (4.3.5)

We now propose to go beyond the state-of-the-art approach which can be found in [128,
114]. To this end, we introduce the richer RB approximation subspace defined by

VN = Span{U(µ1)z
(1)
1 , . . . , U(µ1)z

(d1)
1 , . . . , U(µI)z

(1)
I , . . . , U(µI)z

(dI)
I }, (4.3.6)
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where µ1, . . . , µI are greedily selected in Dµ and for 1 6 i 6 I , {z(j)
i , 1 6 j 6 di} are di

independent direction vectors in Z = C`. Notice that the dimension of VN is at most (in
practice, equal to) N =

∑I
i=1 di, therefore it is independent of `.

In other words, we propose to use di directions vectors per parameter point µi, i = 1 . . . , I ,
where the number of directions di will be adequately chosen. Indeed, since the num-
ber of sources ` may be quite large, it is not relevant to consider all possible directions
U(µ1)ê1,. . . ,U(µ1)ê`,. . . , U(µI)ê1, . . . , U(µI)ê` as this would lead to an approximation
subspace with unacceptably high dimension, as anticipated in [128]. It is worth men-
tioning that the idea of retaining only the most useful directions to obtain an acceptable
subspace dimension without compromising the quality approximation is widespread in the
reduced basis literature, especially in the context of time-dependent problems [50, 87, 33].

In the previous works [128] and [114], only one direction vector is allowed per parameter
point and thus the RB approximation subspace eq. (4.3.5) reaches a size N in N greedy
iterations. Here, the RB approximation subspace eq. (4.3.6) can reach a size N in a
number of greedy iterations I < N . Thus there is a hope to select fewer parameter points
µi at which problem solves are required. Of course, the number of right-hand sides per
required problem solve will be increased, but a computational advantage is still expected,
keeping in mind that it is more advantageous to solve multiple right-hand sides with the
same operator than to solve multiple distinct operators with single right-hand sides.

4.3.3 Block reduced basis approximations

Let us now define reduced basis approximations to the µ-parametrized block problem
eq. (4.3.4).

Given a N -dimensional approximation subspace VN ⊂ V , we propose to approximate
the block solution U(µ) ∈ L(Z, V ) by a block reduced basis approximation UN(µ) ∈
L(Z, VN) characterized by either

• the Galerkin problem (only in the situation where V = W )

∀z ∈ Z, ∀vN ∈ VN , 〈Ã(µ)UN(µ)z, vN〉 = 〈F̃ (µ)z, vN〉, (4.3.7)

• or the least-squares minimization problem

UN(µ) = argmin
ŨN∈L(Z,VN )

‖Ã(µ)ŨN − F̃ (µ)‖2
Z→W ′ , (4.3.8)

where the ‖ · ‖Z→W ′ norm classically denotes the norm on L(Z,W ′) given by

∀F ∈ L(Z,W ′), ‖F‖Z→W ′ = sup
z∈Z

‖Fz‖W ′
‖z‖Z

. (4.3.9)
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In eqs. (4.3.7) and (4.3.8), Ã(µ) (resp. F̃ (µ)) denotes an affine approximation of A(µ)
(resp. of F (µ)). Recalling definitions 3 and 4, this means

Ã(µ) =

Qa∑
q=1

θaq (µ)Aq, F̃ (µ) =

QF∑
q=1

θFq (µ)Fq, (4.3.10)

with µ-independent Aq ∈ L(V,W ′), 1 6 q 6 Qa and µ-independent Fq ∈ L(Z,W ′),
1 6 q 6 QF .

Error estimates

Proposition 4.3.1 (Block RB error estimate). Let VN ⊂ V be a reduced basis approxima-
tion space and UN(µ) ∈ L(Z, VN) be a reduced basis approximation of U(µ) ∈ L(Z, V ).
Let

δF (µ) = ‖F (µ)− F̃ (µ)‖Z→W ′ ,
δAN(µ) = ‖(A(µ)− Ã(µ))UN(µ)‖Z→V .

Then,

‖U(µ)− UN(µ)‖Z→V 6
1

α(µ)

(
‖Ã(µ)UN(µ)− F̃ (µ)‖Z→W ′ + δF (µ) + δAN(µ)

)
,

where α(µ) denotes the inf-sup constant.

Proof. This is straightforward from

A(µ)(U(µ)− UN(µ)) = F (µ)− A(µ)UN(µ)

=
(
F (µ)− F̃ (µ)

)
+
(
F̃ (µ)− Ã(µ)UN(µ)

)
+
(
Ã(µ)UN(µ)− A(µ)UN(µ)

)
.

(4.3.11)

One concludes by applying the triangular inequality and using the inf-sup condition.

In practice, the affine approximations are chosen accurate enough so that δF (µ) and δAN(µ)
are very small compared to the target accuracy and can therefore be neglected in the error
estimation. As already observed in [82], the affine approximation Ã(µ) must match the
operator A(µ) only on the RB approximation UN(µ). Thus, in order to obtain a small
δAN(µ), it is sufficient to guarantee that for all vN ∈ VN , Ã(µ)vN ≈ A(µ)vN and there is
no need to guarantee the stronger property v ∈ V , Ã(µ)v ≈ A(µ)v.

Let us define the residual operator R(µ) ∈ L(Z,Z ′) as

R(µ) =
(
Ã(µ)UN(µ)− F̃ (µ)

)∗
R−1
W

(
Ã(µ)UN(µ)− F̃ (µ)

)
, (4.3.12)
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where the asterisk denotes the adjoint. Recalling that Z = Z ′ = C`, we see that R(µ) is
a hermitian positive-definite operator, whose spectrum is therefore a set of ` real positive
numbers. Let us list the eigenvalues as λ1(µ) > λ2(µ) > · · · > λ`(µ) and associated
eigenvectors as z1(µ), . . . , z`(µ), with entries repeated with multiplicity. From the min-
max theorem, there holds

λ1(µ) = sup
z∈Z

‖Ã(µ)UN(µ)z − F̃ (µ)z‖2
W ′

‖z‖2
Z

= ‖Ã(µ)UN(µ)− F̃ (µ)‖2
Z→W ′ . (4.3.13)

Note that the eigenvector z1(µ) associated to the largest eigenvalue λ1(µ) is the only
possible direction considered in [128] and [114].

4.3.4 Greedy construction

Algorithm 4.2: Residual-driven RB generation
Input : Discrete training set Ξ ⊂ Dµ, target tolerance εtarget and maximum reduced

basis size Nmax

Output: Reduced basis approximation space VN

Pick arbitrarily µ1 in Ξ;
Set V0 = {0}, d1 = `, z(j)

1 = êj , 1 6 j 6 d1;
Initialize I ← 1, N ← 0;
while N + dI ≤ Nmax and ε > εtarget do

Compute U(µI)z
(j)
I for all 1 6 j 6 dI ;

Update reduced basis VN+dI = VN ⊕ Span{U(µI)z
(j)
I , 1 6 j 6 dI};

N ← N + dI ;
Compute eigenvalues λ1(µ) > · · · > λ`(µ) and associated eigenvectors
z1(µ), . . . , z`(µ) of the residual operator R(µ) for all µ ∈ Ξ;
µI+1 ← argmax

µ∈Ξ

√
λ1(µ);

ε←
√
λ1(µI+1);

Set dI+1 to be the largest integer i satisfying
√
λi(µI+1) >

√
λ1(µI+1)/100;

Set z(j)
I+1 = zj(µI+1) for 1 6 j 6 dI+1;

I ← I + 1;
end

To generate a reduced basis of the form eq. (4.3.6), we use the residual-driven greedy
algorithm summarized by algorithm 4.2. During the first iteration I = 1, the reduced
basis space VN is initialized to a dimension N = ` as VN = Span{U(µ1)êj, 1 6 j 6 `},
where µ1 is randomly selected in Dµ. The choice of the next parameter point µI+1 to
be considered is based on maximizing the residual µ 7→ ‖Ã(µ)UN(µ) − F̃ (µ)‖Z→W ′
over a training set Ξ covering Dµ. The choice of the directions z(j)

I+1, 1 6 j 6 dI+1
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to be considered is based on the eigenvectors associated to the largest eigenvalues of
the residual operator R(µI+1). These eigenvectors correspond to the directions z ∈ Z

in which the residual norm ‖Ã(µI+1)UN(µI+1)z − F̃ (µI+1)z‖W ′ is maximal. We only
choose to consider the leading directions, setting the number of eigenvectors dI+1 to be
considered as the largest integer i satisfying the criterion√

λi(µI+1) >

√
λ1(µI+1)

100
. (4.3.14)

We choose to formulate the criterion using the square roots of the eigenvalues, recall-
ing from eq. (4.3.13) that the residual norm coincides with the square root of the largest
eigenvalue.

Notice that the integer dI+1 can coincide with ` if the eigenvalues of the residual operator
do not exhibit fast decay. This would mean that there are no preferred directions and
the consequence would be that all directions are retained for the reduced basis. On the
contrary, if this integer is small, then only a small number of directions contribute to the
residual norm. In this situation, it is relevant to the require the next truth solves to be
performed in these directions.

Heuristic approach

We briefly explain how the heuristic approach introduced in section 2.2.4 can be adapted
to the present block situation.

At iteration I > 2, we compute

α̂I =
‖Ã(µI)UN(µI)z

(1)
I − F̃ (µI)z

(1)
I ‖W ′

‖U(µI)z
(1)
I − UN(µI)z

(1)
I ‖V

, (4.3.15)

which corresponds to the ratio of the residual norm over the error norm at the point µI and
in the direction z(1)

I (which is the leading direction of the residual). Computing α̂I is not
expensive, as the residual norm is efficiently computable in N -independent complexity
and the solution U(µI)z

(1)
1 ∈ V is computed anyway in this iteration of algorithm 4.2.

We build the constant α̂ as the mean of samples {α̂I}26I6Imax , where Imax denotes the
number of iterations performed by algorithm 4.2. We propose to estimate the error using
the heuristic

‖U(µ)− UN(µ)‖Z→V ≈
1

α̂
‖Ã(µ)UN(µ)− F̃ (µ)‖Z→W ′ . (4.3.16)

4.3.5 Offline/Online strategy and complexity analysis

In order to analyze the computational complexity, we adopt an algebraic setting using the
notations introduced in section 1.3.2. We have two bases at hand: {φVj }16j6N for V and
{φWi }16i6N for W .
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We recall that the operator A(µ) ∈ L(V,W ′) is represented by the N ×N matrix A(µ)
with entries 〈A(µ)φVj , φ

W
i 〉, 1 6 i, j 6 N . Similarly, the block right-hand side F (µ) ∈

L(Z,W ′) is represented by theN×`matrix F(µ) with entries 〈F (µ)êj, φ
W
i 〉, 1 6 i 6 N ,

1 6 j 6 `.

This being set, the solution U(µ) ∈ L(Z, V ) to the parametrized block problem eq. (4.3.4)
is represented by the N × ` matrix U(µ) satisfying

A(µ)U(µ) = F(µ). (4.3.17)

Note that U(µ) = [u1(µ)| · · · |u`(µ)] where the rth column ur(µ) ∈ CN holds the coor-
dinates of U(µ)êr in the {φVj }16j6N basis.

RB approximations

As usual in this thesis, the reduced basis is denoted VN = Span{ξ1, . . . , ξN}, where the
basis function ξ1, . . . , ξN are orthonormal in the sense (ξi, ξj)V = δij . Algebraically,
the reduced basis is represented by the N × N matrix P = [p1 | · · · |pN ], where the nth

column pn ∈ CN corresponds to the coordinates of the basis function ξn in the {φVj }16j6N
basis.

In this context, the reduced basis approximation UN(µ) ∈ L(Z, VN) defined by either
the Galerkin problem eq. (4.3.7) or the least-squares minimization problem eq. (4.3.8)
is represented by a N × ` matrix XN(µ) = [x1(µ) | · · · |x`(µ)], where the rth column
xr(µ) ∈ CN holds the coordinates of UN(µ)êr in the reduced basis {ξn}16n6N .

In detail, the solution XN(µ) ∈ CN×` to the Galerkin problem eq. (4.3.7) satisfies

P∗Ã(µ)PXN(µ) = P∗F̃(µ). (4.3.18)

An efficient offline/online decoupling can be achieved analogously to proposition 1.3.1.
Namely, if the matrices P∗AqP, 1 6 q 6 Qa (each of size N × N ) and the matrices
P∗Fq, 1 6 q 6 QF (each of size N × `) are pre-computed offline, then the linear system
(4.3.18) can be assembled for any value of µ with O(N2Qa +N`QF ) operations.

When the reduced basis approximation is defined by least-squares minimization problem
eq. (4.3.8), the solution XN(µ) ∈ CN×` satisfies

P∗Ã(µ)∗B−1
W Ã(µ)PXN(µ) = P∗Ã(µ)∗B−1

W F̃(µ). (4.3.19)

Again, an efficient offline/online decoupling can be achieved analogously to proposi-
tion 1.3.2. If the matrices P∗Aq

∗B−1
W ApP, 1 6 q, p 6 Qa (each of size N × N ) and

the matrices P∗Ap
∗B−1

W Fq, 1 6 p 6 Qa, 1 6 q 6 QF (each of size N × `) are pre-
computed offline, then the linear system (4.3.19) can be assembled for any value of µ
with O(N2(Qa)2 +N`QaQF ) operations.

Solving either (4.3.18) or (4.3.19) requires O(N3) to compute the LU factorization of
the N × N system matrix and O(`N2) for the ` forward-backward triangular processes
applied to each of the ` right-hand sides (see [75, §3.10]).
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Residual operator

The residual operatorR(µ) ∈ L(Z,Z ′) defined by eq. (4.3.12) is algebraically represented
by the `× ` residual matrix

R(µ) =
(
Ã(µ)PXN(µ)− F̃(µ)

)∗
B−1
W

(
Ã(µ)PXN(µ)− F̃(µ)

)
. (4.3.20)

An efficient offline/online decoupling can be achieved by adapting proposition 2.2.2.
If the matrices P∗Aq

∗B−1
W ApP, 1 6 q, p 6 Qa (each of size N × N ), the matrices

P∗Ap
∗B−1

W Fq, 1 6 p 6 Qa, 1 6 q 6 QF (each of sizeN×`) and the matrices Fp
∗B−1

W Fq,
1 6 p, q 6 QF (each of size `×`) are pre-computed offline, then the residual matrix R(µ)
can be assembled for any value value of µ with O(N2(Qa)2 + N`QaQF + `2(QF )2) op-
erations.

The eigenvalue decomposition of the residual matrix can be performed inO(`3) using for
instance the QR algorithm [90].

4.4 The parametrized problem with parametrized source

All the strategies presented in this chapter so far are concerned with the parametrized
problem with ` independent source terms eq. (4.1.1), which can alternatively be expressed
under the block form (4.3.4). In this section, we show that the proposed methods can also
be applied to a different class of problems, namely, to the class of parametrized problems
with parametrized source.

4.4.1 Problem formulation

In addition to the parameter µ ∈ Dµ, let us introduce a new parameter ν ∈ Dν where Dν
denotes a compact set Rpν , pν > 1. We now assume that the µ-parametrized right-hand
side f(µ) ∈ W ′ further depends on this parameter ν. Thus, we have to deal with a (µ, ν)-
parametrized right-hand side f(µ, ν) ∈ W ′. However, this additional parameter ν does
not affect the operator, which continues to depend only on µ. We are interested in the
solutions to the problem: find u(µ, ν) ∈ V such that

A(µ)u(µ, ν) = f(µ, ν) in W ′. (4.4.1)

We call this problem the parametrized problem with parametrized source.

Model problem

As model problem, let us again consider the Laplace model problem introduced in chap-
ter 1. Rather than the right-hand side f : w ∈ W 7→

∫
Ω
SwdΩ with non-parametrized
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source term S ∈ L2(Ω) given by eq. (1.4.6), we now set pν = 2,Dν = [10, 12]×[0.2, 0.4]
and consider the following (µ, ν)-parametrized source term

∀x ∈ Ω, S(x;µ, ν) = SG(x;µ, ν1)SC(x;µ, ν2), (4.4.2)

where SG is the Gaussian centered on µ = (µ1, µ2) defined by

SG(x;µ, ν1) = exp

(
−ν1

(x1 − µ1)2 + (x2 − µ2)2

0.01

)
, (4.4.3)

and where SC is the wave function defined by

SC(x;µ, ν2) = cos (ν2 (x1cosφ(µ) + x2sinφ(µ))) , (4.4.4)

with angle φ(µ) given by

cosφ(µ) =
µ1√
µ2

1 + µ2
2

, sinφ(µ) =
µ2√
µ2

1 + µ2
2

. (4.4.5)

Recalling that µ ∈ Dµ = [0.4, 0.6] × [0.4, 0.6], one always has
√
µ2

1 + µ2
2 > 0 thus the

formulas eq. (4.4.5) hold true for all µ ∈ Dµ. We draw attention to the fact that the
wave function eq. (4.4.3) can be viewed as SC(x;µ, ν2) = <{eiν2x·µ̂} where i denotes the
imaginary number, µ̂ = µ/

√
µ2

1 + µ2
2 is the normalized vector µ and · denotes the dot

product.

It is worth noting that the parameter ν1 affects the spreading of the Gaussian eq. (4.4.3),
while the parameter ν2 controls the frequency of the wave function eq. (4.4.4). The role
of the parameter µ is twofold: not only does it control the location of the peak of the
Gaussian, but it also defines the direction of the wave. Figure 4.2 gives an idea of the
variety of truth solutions which can be obtained with such a parametrized source.

Real-world problem

A real-world application (not dealt with in this thesis) can be found in the context of
acoustic or electromagnetic scattering applications. In this context, we want to solve the
scattering of an incident plane wave across a frequency band (hence the parameter µ is the
frequency as in chapters 5 and 6). The plane wave depends not only on the frequency µ,
but also on its direction (even on its polarization in the case of an electromagnetic plane
wave). Thus the additional parameter ν could represent the direction of the plane wave.
The goal would be to resolve the scattering for all frequencies and for all directions of the
incident plane waves, as is done in [39].
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Figure 4.2: Truth solutions u(µ, ν). First row: fixed µ = (0.6, 0.4), ν2 = 0.1 and three ν1

configurations ν1 = 10, 11, 12. Second row: fixed µ = (0.6, 0.4), ν2 = 0.4 and three ν1

configurations ν1 = 10, 11, 12. Third row: fixed ν = (11, 0.2) and three configurations
µ = (0.4, 0.6), (0.5, 0.5), (0.5, 0.6).

4.4.2 Block approximation

In this work, we restrict ourselves to (µ, ν)-parametrized right-hand sides f(µ, ν) ∈ W ′

given by

f(µ, ν) : w ∈ W 7→
∫

Ω

S(x;µ, ν)w(x)dx, (4.4.6)

where S(·;µ, ν) ∈ L2(Ω) is a (µ, ν)-parametrized function (for example eq. (4.4.2)). In
this situation, we claim that the parametrized problem with parametrized source eq. (4.4.1)
can be approximated by a parametrized problem with ` independent source terms eq. (4.1.1),
or equivalently by block problem (4.3.4). Thus, all the reduced basis strategies presented
in this chapter can be applied.

To prove our claim, we apply the EIM [5] to the ν-parametrized function S(·; ·, ν) of
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the (x, µ) variable in Ω × Dµ in order to represent it under an approximate linear way.
Denoting ` the number of EIM steps (see algorithm 1.1), we obtain a set of ` parameter
points {νr}16r6`, a set of ` interpolation points {(xr, µr)}16r6`, a ` × ` interpolation
matrix B and EIM basis functions defined on Ω × Dµ denoted hr, 1 6 r 6 `. The EIM
approximant writes

I`S(x;µ, ν) =
∑̀
r=1

z′r(ν)hr(x, µ), (4.4.7)

with coefficients z′(ν) = (z′1(ν), . . . , z′`(ν))T solution to the `× ` linear system Bz′(ν) =
φ(ν), with right-hand side φ(ν) = (S(x1;µ1, ν), . . . , S(x`;µ`, ν))T . Using the ` × `
change-of-basis matrix C and the change-of-basis relationship z′(ν) = Cz(ν), we can
easily obtain the coefficients z(ν) = (z1(ν), . . . , z`(ν))T such that the EIM approximant
is expressed in the so-called non-intrusive way [23] as

I`S(x;µ, ν) =
∑̀
r=1

zr(ν)S(x;µ, νr). (4.4.8)

Next, we set Z = R` (or Z = C` in a complex setting) and define the µ-parametrized
block right-hand side F (µ) ∈ L(Z,W ′) as

∀z = (z1, . . . , z`) ∈ Z, F (µ)z : w ∈ W 7→
∑̀
r=1

zr

∫
Ω

S(x;µ, νr)w(x)dx. (4.4.9)

Intuitively, if I`S(·;µ, ν) ≈ S(·;µ, ν), then F (µ)z(ν) ≈ f(µ, ν). In this situation, we also
have U(µ)z(ν) ≈ u(µ, ν) as a consequence of the Banach-Nečas-Babuška assumption.
Indeed, we have the following proposition.

Proposition 4.4.1 (Block approximation of the (µ, ν)-parametrized solution). Let
u(µ, ν) ∈ V denote the solution to the parametrized problem with parametrized source
(4.4.1) and U(µ) ∈ L(Z, V ) denote the solution to the parametrized block problem (4.3.4)
with block right-hand side given by eq. (4.4.9). Then, there holds

‖u(µ, ν)− U(µ)z(ν)‖V 6
1

α(µ)
‖f(µ, ν)− F (µ)z(ν)‖W ′ ,

where α(µ) denotes the inf-sup constant.

This shows that, if the EIM approximation is adequately good, then the parametrized
problem with parametrized source (4.4.1) can be well approximated by a parametrized
block problem.

4.4.3 Affine approximation of the block RHS

As seen in section 4.3.5, the affine approximation F̃ (µ) of the block right-hand side F (µ)
is key to the success of the offline/online computational strategy. We now give some
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insight on how this approximation can be obtained.

We propose to again apply the EIM [5], this time to the µ-parametrized function S(·;µ, ·)
of the (x, ν) variable in Ω × Dν . Let us denote M the number of EIM steps, Hm(·, ·),
1 6 m 6 M the EIM basis functions defined on Ω × Dν . The EIM constructs a set
of points {µm}16m6M , such that the subspace spanned by the M EIM basis functions
coincides with the subspace spanned by the S(·;µm, ·), 1 6 m 6 M . Thus the EIM
approximant writes

IMS(x;µ, ν) =
M∑
m=1

tm(µ)S(x;µm, ν). (4.4.10)

Recalling from section 4.4.2 that S ≈ I`S where I`S is given by eq. (4.4.8), we propose
to plug the approximation S(·;µm, ·) ≈ I`S(·;µm, ·) in eq. (4.4.10). This yields

S(x;µ, ν) ≈
∑̀
r=1

M∑
m=1

tm(µ)zr(ν)S(x;µm, ν
r). (4.4.11)

This being set, we define our approximation F̃ (µ) of the µ-parametrized block right-hand
side F (µ) defined by eq. (4.4.9) as

∀z = (z1, . . . , z`) ∈ Z,

F̃ (µ)z : w ∈ W 7→
M∑
m=1

tm(µ)
∑̀
r=1

zr

∫
Ω

S(x;µm, ν
r)w(x)dx. (4.4.12)

Observe that the quality of approximation in F̃ (µ)z(ν) ≈ f(µ, ν) is directly related to the
combination of both EIM approximation errors (in ν and in µ) through eq. (4.4.11).

Clearly, F̃ (µ) is clearly affine in the sense of eq. (4.3.10) with QF = M terms. Further-
more, the mth µ-independent term Fm ∈ L(Z,W ′) is given by

∀z = (z1, . . . , z`) ∈ Z, Fmz : w ∈ W 7→
∑̀
r=1

zr

∫
Ω

S(x;µm, ν
r)w(x)dx. (4.4.13)

Observing that Fmz : w ∈ W 7→
∑`

r=1 zrf(µm, ν
r), the µ-independent term Fm ∈

L(Z,W ′) can be easily assembled by assembling all the right-hand sides f(µm, ν
r), for

all 1 6 r 6 `. Hence the present approach is non-intrusive [23], as it does not involve any
other assembly routine than the assembly routine for the right-hand side.
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4.5 Numerical illustration

4.5.1 The parametrized problem with ` independent source terms

We consider the Laplace model problem with the ` = 4 source terms given by eq. (4.1.2).
The truth solutions plotted on fig. 4.1 confirm that ur(µ) is completely different from
up(µ), p 6= r. This motivates the choice of building ` distinct reduced basis approximation
subspaces following the multiple RBs approach explained in section 4.2.

We run the greedy algorithm 4.1 setting the target to 1 × 10−5. This takes N = 21
iterations. Overall, N` = 84 truth solutions are computed in the process, but thanks to
the use of a unique set of parameter points {µi}16n6N common to the ` RBs, the solver
A(µ)−1 is called only N = 21 times, each time to solve ` = 4 right-hand sides.

For validation, for each r = 1, . . . , ` we compute 200 truth solutions ur(µ) at random
points inDµ and determine the relative approximation error ‖ur(µ)−ur,N(µ)‖V /‖ur(µ)‖V .
This means that overall, 200 × 4 = 800 truth solutions are computed. The distributions
for r = 1, 2, 3 are shown on fig. 4.3.
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(c) Distribution r = 3.

Figure 4.3: Distributions of the relative error ‖ur(µ) − ur,N(µ)‖V /‖ur(µ)‖V , for 200
samples of µ.

The three distributions are much alike and confirm that the accuracy is relatively indepen-
dent from the choice of the source term (indexed by r). In the present example, we are
able to approximate the truth solution associated to any source with a relative error com-
prised between 0.1% and 0.01%. Furthermore, using our heuristic method based on the
samples α̂N (see eq. (4.2.6)), we are able to obtain the correct order of magnitude of the
relative error in a fully a posteriori manner, with effectivities very close to 1 (not shown
here).

4.5.2 The parametrized problem with parametrized source

We now turn to the Laplace model problem with (µ, ν)-parametrized source given by
eq. (4.4.2). Before reduced basis strategies can be applied, we must apply the EIM twice:
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a first EIM that views ν as the varying parameter to obtain the block approximation and
a second EIM that view µ as the varying parameter to obtain the affine approximation of
the block right-hand side as explained above.

Block & affine approximation of the RHS

In order to obtain the block approximation, we apply the EIM to the ν-parametrized func-
tion S(·; ·, ν) defined on Ω × Dµ given by eq. (4.4.2). For the EIM, we discretize the set
Ω×Dµ for the (x, µ) variable as follows:

• Ω =]0, 1[2 is discretized using an unstructured set of vertices Ξx ⊂ Ω with nx =
3436 points;

• Dµ = [0.4, 0.6]2 is discretized using a 8×8 uniform cartesian grid Ξµ ⊂ Dµ, whose
cardinality is nµ = 64.

Thus, Ω × Dµ is discretized using Ξx × Ξµ of cardinality nxnµ = 219, 904, each of
these nxnµ point being a 4-dimensional vector of the form (x1, x2, µ1, µ2). Next, the set
Dν = [10, 12]× [0.2, 0.4] for the ν variable is discretized using a 8× 8 uniform catesian
grid Ξν ⊂ Dν , whose cardinality is nν = 64.

We build the EIM approximant I`S(·; ·, ν) given by eq. (4.4.8). The EIM error ε` is
computed as

ε` = max
ν∈Ξν

max
(x,µ)∈Ξx×Ξµ

|S(x;µ, ν)− I`S(x;µ, ν)| . (4.5.1)

We show on fig. 4.4 the evolution of this quantity throughout the iterations of EIM. The
algorithm is stopped as soon as the prescribed tolerance tol = 5× 10−4 is reached on the
EIM error. As can be seen on fig. 4.4, this takes ` = 17 iterations.

Next, in order to obtain the affine approximation of the block right-hand side, we apply
the EIM to the µ-parametrized function S(·;µ, ·) defined on Ω×Dν given by eq. (4.4.2).
Applying the EIM requires discretized surrogates of Ω×Dν . We use the following:

• Ω =]0, 1[2 is discretized using the same unstructured set of vertices Ξx ⊂ Ω as the
one used to obtain the block approximation;

• Dν is discretized using the ` = 17 points {νr}16r6` selected in Ξν ⊂ Dµ by the
EIM applied to the ν-parameterized function S(·; ·, ν).

Thus, Ω × Dν is discretized using Ξx × {νr}16r6` of cardinality `nx = 58, 412, each
of these `nx point being a 4-dimensional vector of the form (x1, x2, ν1, ν2). As for the
µ variable, it is discretized using the 8 × 8 uniform cartesian grid Ξµ ⊂ Dµ already
introduced. The EIM approximation error is defined as

εM = max
µ∈Ξµ

max
(x,µ)∈Ξx×{νr}16r6`

|S(x;µ, ν)− IMS(x;µ, ν)| , (4.5.2)

where IMS is the EIM approximant defined by eq. (4.4.10). We show on fig. 4.4 the
evolution of this quantity throughout the iterations. The algorithm is stopped as soon as
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the prescribed tolerance tol = 5 × 10−4 is reached on the EIM error. As can be seen on
fig. 4.4, this takes M = 30 iterations. Compared to the first EIM applied to S(·; ·, ν), the
convergence is much slower. In fact, the convergence curve resembles that obtained for
the Gaussian conductivity alone (c.f. chapter 1, fig. 1.3).
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Figure 4.4: Convergence curves of the
EIM applied to S(·; ·, ν) (green curve)
and to S(·;µ, ·) (purple curve) to reach
the prescribed tolerance tol = 5× 10−4.
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Figure 4.5: Distribution of the
block+affine approximation error
(4.5.3) for 5000 random (µ, ν) samples
in Dµ ×Dν .

In order to assess the overall quality of approximation in eq. (4.4.11); we take into account
both the block approximation error (4.5.1) and the affine approximation error (4.5.2) by
defining for all (µ, ν) ∈ Dµ ×Dν the block+affine approximation error as

ε`,M(µ, ν) = max
x∈Ξx

|S(x;µ, ν)− I`,MS(x;µ, ν)| , (4.5.3)

where I`,MS is given by

I`,MS(x;µ, ν) =
∑̀
r=1

M∑
m=1

tm(µ)z′r(ν)S(x;µm, νr). (4.5.4)

We compute this block+affine approximation error for 5000 random (µ, ν) samples in
Dµ × Dν and plot the distribution on fig. 4.5. It is worth noting that the sample with the
maximum error has an error 5.1518× 10−4 which only slightly above the prescribed EIM
tolerance tol = 5× 10−4. This confirms that our choices of surrogate sets were adequate.

Construction of multiple RBs

To begin with, we apply the multiple RBs strategy by running algorithm 4.1 with a train
set Ξ ⊂ Dµ to a 33 × 33 uniform grid discretizing Dµ = [0.4, 0.6]2 with target tolerance
εtarget = 10−4. This constructs ` = 17 distinct RBs all of the same size N , based on a
unique set of selected parameter points {µn}16n6N . We recall that the rth RB is given
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by V (r)
N = Span{ur(µ1), . . . , ur(µN)}, c.f. eq. (4.2.2). In the present context, the truth

solution ur(µ) corresponds to the unique solution in V to A(µ)ur(µ) = fr(µ) where
the right-hand side is given by fr(µ) = f(µ, νr), where νr is the rth interpolation point
selected by the EIM applied to S(·; ·, ν).

For completeness, we recall that fr(µ) is not affine, but that it can be adequately approx-
imated by its affine approximation fr(µ) ≈ f̃r(µ) =

∑M
m=1 tm(µ)f(µm, ν

r), with the
coefficients {tm(µ)}16m6M provided by the EIM applied to S(·;µ, ·). Similarly, A(µ) is
non-affine, but it is replaced by an efficient affine approximation with Qa = 27 terms (we
refer the reader to the first chapter of this thesis, section 1.4.2).

We find that N = 19 is the required basis size for algorithm 4.1 to converge to the pre-
scribed tolerance, which means that the solver A(µ)−1 is called only 19 throughout al-
gorithm 4.1, with ` = 17 right-hand sides per solve. The convergence curve shown on
fig. 4.6 exhibits exponential decay.
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Figure 4.7: The actual RB approxima-
tion using the ` = 17 RBs of size N =
19 error for 200 samples of (µ, ν) ∈
Dµ ×Dν .

For validation purposes, we compute 200 truth solutions u(µ, ν) at some parameters (µ, ν)
randomly sampled inDµ×Dν . Thus, we are able to compute 200 samples of the actual er-
ror ‖u(µ, ν)−UN(µ)z(ν)‖V , where UN(µ) ∈ L(Z, VN) is the RB approximation defined
by

UN(µ) : z = (z1, . . . , z`) ∈ Z 7→
∑̀
r=1

zrur,N(µ). (4.5.5)

To compute UN(µ)z(ν), one proceeds as follows:

(i) for all 1 6 r 6 `, compute the RB approximation ur,N(µ) =
∑N

i=1 xri(µ)ξ
(r)
i ,

where V (r)
N = Span{ξ(r)

i , i = 1 . . . , N} denotes the rth reduced basis and where
the RB coefficients (xr1(µ), . . . ,xrN(µ)) ∈ CN are obtained by solving a N × N
linear system,
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(ii) perform the linear combination UN(µ)z(ν) =
∑`

r=1 zr(ν)ur,N(µ).

It is worth noting that (i) requires the resolution of ` linear systems of size N × N ,
which amounts to O(`N3) operations (i.e., the dominant cost here comes from having to
compute ` distinct LU factorizations). We further emphasize that because each ur,N(µ)
is a linear combination of N RB basis functions, the RB approximation UN(µ)z(ν) is in
fact a linear combination of N` = 323 RB basis functions.

We plot the distribution of error on fig. 4.7. This confirms that the achieved level of
absolute error is below 2 × 10−5. We shall further comment on this distribution of the
error when we will compare the multiple RBs strategy with the unique RB strategy.

Construction of a unique RB

We now test the unique RB stragy, by running algorithm 4.2 setting the train set Ξrb
µ to a

33 × 33 uniform grid discretizing Dµ = [0.4, 0.6]2 with target tolerance εtarget = 10−4.
We name this run the default init 100. We run a variant of algorithm 4.2 called default
init 1000, in which we change the usual criterion (4.3.14), setting the number of retained
directions to the maximum integer i such that

√
λi(µ?) >

√
λ1(µ?)/1000.

We ask whether it is relevant to consider all ` directions z(j)
1 = êj , j = 1, . . . , ` in the first

Greedy iteration. We propose a variant of algorithm 4.2 in which the initialization of the
reduced basis is revisited:

• for all µ ∈ Ξrb
µ , we consider the largest eigenvalue λ1(µ) of the operator R(µ) with

the zero reduced basis approximationUN(µ) = 0, this meansR(µ) = F̃ (µ)∗R−1
W F̃ (µ);

• we find µ? = argmax
µ∈Ξrb

µ

λ1(µ) and consider the full spectrum of R(µ?), denoted

λ1(µ?) > λ2(µ?) > · · · > λ`(µ
?);

• we next determine d1 using the criterion (4.3.14), i.e., d1 is the maximum integer i
such that

√
λi(µ?) >

√
λ1(µ?)/100. The d1 initial directions z(j)

1 , j = 1, . . . , d1

are set to be the d1 leading eigenvectors of R(µ?).

We name the run of this variant of algorithm 4.2 the adaptive init 100. We run another two
variants called adaptive init 10 and adaptive init 1000 respectively, in which we change
the usual criterion (4.3.14), setting the number of retained directions to the maximum
integer i such that

√
λi(µ?) >

√
λ1(µ?)/10 (resp.

√
λi(µ?) >

√
λ1(µ?)/1000). We use

this modified criterion for both the initialization phase and all the greedy iterations.

Finally, we run a last variant of algorithm 4.2, the adaptive init 1, which consists in setting
the number of directions to be considered in the initialization and at each greedy iteration
to 1, i.e. only the leading direction is considered. This corresponds to the original enrich-
ment strategy proposed in [128] and [114].
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Figure 4.9: The reduced basis size
throughout the greedy iterations.

Figure 4.8 shows the decrease of the maximum residual norm (which corresponds to
max
µ∈Ξrb

µ

√
λ1(µ), see section 4.3.3) throughout the greedy iterations and fig. 4.8 shows the

RB size with respect to the number of greedy iterations. Section 4.5.2 summarizes the
overall number of greedy iterations and final RB size for each of the runs.

For all runs, the maximum residual norm decays exponentially throughout the greedy
iterations, as shown on fig. 4.8. The default init 100 and default init 1000 variants exhibit
a much faster convergence than the adaptive init 1 variant. However, the price to pay for
this fast convergence is that the default init 100 and default init 1000 variants reach a much
larger RB size (N = 95 and N = 100) than the adaptive init 1 variant (N = 60). Clearly,
one has to make a compromise between the number of greedy iterations and the final size
of the RB. The adaptive init 10 variant provides an example of such a compromise: the
number of greedy iterations is I = 26 for a final RB size of N = 88.

Greedy iterations I Basis size N
Adaptive init 1 60 60
Adaptive init 10 26 88

Adaptive init 100 18 96
Default init 100 15 95

Adaptive init 1000 16 99
Default init 1000 15 100

Table 4.1: Number of greedy iterations and final basis size for different variants of the
greedy algorithm 4.2.

At this stage, it is worth recalling that the number of greedy iterations I corresponds to the
number of values of µ for which system solves with A(µ) are required (with potentially
multiple right-hand sides). When the problem is large-scale, system solves with A(µ)
represent very time and resource-consuming tasks. In this context, the use of multiple
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directions as in the Adaptive init 100, Default init 100, Adaptive init 1000 or Default init
1000 variants leads to best computational performance. Admittedly, these variants do not
yield RB approximation with smallest possible dimension. However, we argue that the
extra computational costs from having to handle a RB subspace of size N = 100 rather
than N = 60 are by far compensated by the much smaller number of problem solves.
Here, there are exactly four times less large-scale problems solves (I = 15 versus I = 60).
This suggests that the use of multiple directions has a great potential for significantly
reducing the computational costs of building a RB with the greedy algorithm 4.2.

When it comes to choosing between the adaptive or the default initialization, the present
results suggest better performance with the default initialization. Still, we believe that
the adaptive initialization can be favorable when the number of sources ` is large (say 30
or 40), as this would prevent the RB size from increasing too fast during the first greedy
iteration.

Validation

For the sake of validation, we compute 200 truth solutions u(µ, ν) at some parameters
(µ, ν) randomly samples in Dµ × Dν . Thus, we are able to compute 200 samples of the
actual error ‖u(µ, ν)−UN(µ)z(ν)‖V . Here, we choose to consider the RB approximations
UN(µ) from the two RBs generated during the default init 100 and adaptive init 1 runs
respectively. These two RBs are completely different: the former consists of N = 95
linear combinations of truth solutions computed at only I = 15 distinct values of µ (with
an average 6.333 linear combinations of truth solutions per value of µ), while the latter
consists of N = 60 linear combination of truth solutions computed at I = 60 distinct
values of µ (only one linear combination of truth solutions per value of µ).
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Figure 4.10: Distribution of the error for
200 samples, default init 100.
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Figure 4.11: Distribution of the error for
200 samples, adaptive init 1.

Figures 4.10 and 4.11, show the distributions of the actual error for the two RBs generated
during the default init 100 and adaptive init 1 runs.
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We find that the default init 100 yields slightly lower approximation errors. This is some-
what intuitive, since the RB constructed during this run is much larger than the RB con-
structed by the adaptive init 1 variant (95 versus 60 basis functions). Nonetheless, the
approximation properties offered by the RB of size N = 60 constructed by the adaptive
init 1 has comparable approximation properties, achieved with much fewer basis func-
tions. We understand that this is due to the fact that each of the N = 60 basis functions
are computed at a different value of the parameter µ.

Using the 200 truth solutions, we also compute the effectivity of our heuristic error indi-
cator, defined as

eff(µ, ν) =
‖Ã(µ)UN(µ)z(ν)− F̃ (µ)z(ν)‖W ′

α̂‖u(µ, ν)− UN(µ)z(ν)‖V
. (4.5.6)

The main statistics of the two effectivity distributions are consigned in table 4.2. Clearly,
the effectivity is always very close to 1, meaning that the heuristic error indicator never
under-, nor over-estimates the actual error too much. Note that for both runs, we have
obtained similar values for the stability factor: α̂ ≈ 3.834± 6.05% with the Adaptive init
1 variant and α̂ ≈ 3.43 ± 1.35% with the adaptive run. This confirms the robustness of
the heuristic error estimation method on the present example.

Min(eff) Mean(eff) Median(eff) Max(eff)
Adaptive init 1 0.58 0.84 0.85 1.08
Default init 100 0.15 0.92 9.46 1.16

Table 4.2: Main statistics of the effectivity distribution for 200 samples with two different
RBs generated by two variants of the greedy algorithm 4.2.

Comparison with the multiple RBs strategy

A close comparison between the error distributions figs. 4.10 and 4.11 obtained with the
unique RB approximation strategy and the error distribution fig. 4.7 obtained with the
multiple RBs approximation strategy reveals that the unique RB approximation strategy
is more accurate. At first sight, this could look like an error, since we have prescribed
εtarget = 10−4 in both algorithm 4.1 and algorithm 4.2. However, this is not an error, since
the criterion εtarget in algorithm 4.1 is set on max

(µ,r)∈Ξ×{1,...,`}
‖Ã(µ)ur,N(µ)− f̃r(µ)‖W ′ while

in algorithm 4.2 it is set on max
µ∈Ξ
‖Ã(µ)UN(µ)− F̃ (µ)‖Z→W ′ .

At this stage, it is worth recalling that

‖Ã(µ)UN(µ)− F̃ (µ)‖Z→W ′ = sup
z∈Z

‖Ã(µ)UN(µ)z − F̃ (µ)z‖W ′
‖z‖Z

. (4.5.7)
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Choosing z = êr as candidate supremizer and recalling that UN(µ)êr = ur,N(µ) and
F̃ (µ)êr = f̃r(µ), we find

‖Ã(µ)UN(µ)− F̃ (µ)‖Z→W ′ > max
16r6`

‖Ã(µ)ur,N(µ)− f̃r(µ)‖W ′ . (4.5.8)

This shows that the stopping criterion is strongest in in algorithm 4.2 than in algorithm 4.1
and so one should not be surprised to generate a RB approximation with better accuracy
than with algorithm 4.2.

In terms of the overall number of basis function computed for each RB strategy: algo-
rithm 4.1 has computed N` = 323 basis functions in 19 solver calls while algorithm 4.2
has computed 95 basis functions in 15 solver calls (considering the original Default init
100 variant). Clearly, the unique RB strategy is much more efficient than the multiple RBs
on this particular example: it is able to achieve a better accuracy with less reduced basis
functions computed in less solver calls.

4.6 Conclusions

In this chapter, we have presented the necessary adaptations of the reduced basis method
to µ-parametrized problems featuring multiple sources. When there is a finite number `
of source terms, we proposed two distinct strategies.

The multiple RBs strategy simultaneously constructs ` distinct reduced basis approxima-
tion subspaces each of dimension N using only N calls to the solver A(µ)−1. In terms
of computational performance, whatever the choice of paradigm for the solver (direct
or iterative), this is more advantageous than successively constructing ` reduced basis
approximation subspaces one after another. We have provided an illustration on an aca-
demic Laplace but refer to section 5.3 for a real-world application to antenna arrays and
extensive analysis of computational costs.

The unique RB strategy relies on a single approximation subspace. Building on the orig-
inal works [128] and [114], we have envisaged the possibility of enriching the reduced
basis with more than one basis function per greedy iteration. To this end, we have intro-
duced the residual operator which is a generalization of the notion of residual in the block
context. We did not restrict ourselves to the leading eigenvector of the residual operator,
but considered the d most dominant eigenvectors and have provided an empirical crite-
rion for selecting the number d of eigenvectors to be considered. Numerical illustration of
the proposed strategy has shown a reduction in the number of calls to the solver A(µ)−1

compared to the original strategy which uses only the leading eigenvector. For large-scale
problems, this could represent a significant advantage, given that evaluation of the solver
A(µ)−1 is usually the most time and resource-consuming task.

The methods presented in this chapter address the class of parametrized problems featur-
ing numerous but still a finite number of sources. The scope of this work has been ex-
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tended to the class of parametrized problem with an infinite number of sources parametrized
by an additional parameter ν. This was done by applying the EIM to approximate the
parametrized source using a finite number ` of sources. In this context, the number of
EIM terms determines the finite number of sources ` to be considered and for which the
RB strategies presented in this chapter can apply. A challenging academic example of this
methodology was provided as illustration.
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Chapter 5
Reduced basis method for frequency
sweeps with edge finite elements

Summary. This chapter is devoted to the reduced basis method applied to frequency-
parametrized Maxwell’s equations solved using edge finite elements. First we present the
governing equations and their high-fidelity discretization using Raviart-Thomas-Nédélec
edge finite elements. We briefly review the FETI-2LM method for solving the result-
ing complex, non-hermitian, linear system on parallel architectures using domain-decom-
position. Next, we apply the reduced basis method on two antenna problems of industrial
interest. On a horn antenna, we compare the certified reduced basis approach (with SCM)
to a heuristic strategy and show the superiority of the heuristic strategy. Finally, we show
some results on large-scale antenna array problem. We successfully use the multiple RBs
strategy from chapter 4 in order to efficiently solve the radiation patterns generated by
each antenna in the antenna array.
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5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1 Strong formulation and high-fidelity approximation

5.1.1 Governing equations

Let Ω ⊂ R3 be a bounded physical domain. For all time t in R, electromagnetic phenom-
ena are described using the four functions D, E, B, H of the (x, t) variable in Ω × R
and with values in R3 [24]. These functions are called electric induction, electric field,
magnetic induction and magnetic field respectively. They are related to the given charge
density ρ : Ω × R → R and the given current density J : Ω × R → R3 by the Maxwell
equations

− ∂D

∂t
+ curlH = J , (5.1.1a)

∂B

∂t
+ curlE = 0, (5.1.1b)

divD = ρ, (5.1.1c)
divB = 0. (5.1.1d)

called the Maxwell-Ampère, Maxwell-Faraday, Gauss electrical and Gauss magnetic laws,
respectively. The charge and current densities further satisfy the following conservation
law

∂ρ

∂t
+ divJ = 0. (5.1.2)

Engineering applications basically consist in acting on ρ and J in order to produce a
desired electromagnetic field. Typically, in antenna applications, the current density is
specifically tuned to generate a desired radiation distribution – the so-called antenna pat-
tern [76].

In free space, the following constitutive relations hold

D = ε0E, B = µ0H , (5.1.3)

with ε0 = 1
36π

10−9 (in F/m) and µ0 = 4π · 10−7 (in H/m) called respectively permittivity
and permeability of free space. In the absence of charge and currents (i.e., ρ = 0 and
J = 0), we deduce from the Maxwell equations and the constitutive relations that B and
E both satisfy the vectorial wave equation

− 1

c2
0

∂2U

∂t2
+ ∆U = 0, (5.1.4)

with ∆ denoting the vectorial Laplacian ∆ = grad div − curl curl and c0 = 1√
ε0µ0
≈

3 · 108 (in m/s) denoting the velocity of electromagnetic waves in free space.
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Time-harmonic Maxwell equations

Given that the Maxwell equations hold for all t ∈ R, one can apply the Fourier transform.
This amounts to considering electromagnetic fields of the form:

D(x, t) = <{D(x)eiωt}, E(x, t) = <{E(x)eiωt},
B(x, t) = <{B(x)eiωt}, H(x, t) = <{H(x)eiωt},

(5.1.5)

where the Fourier variable ω > 0 is called the angular frequency. The frequency is defined
by f = ω

2π
. In this work, we prefer to work with the wavenumber k = ω

c0
. In free space,

we can express the stationary Maxwell equations in terms of the complex-valued fields
E, H only, by eliminating the D, B fields using the constitutive relations (5.1.3). Thus,
in the absence of charges this yields:{

−ike+ curlh = j,

ikh+ curl e = 0.
(5.1.6)

where e =
√
ε0E, h =

√
µ0H and j =

√
µ0J are the re-normalized fields. Let L2(Ω)

denote the space composed of all complex-valued, square integrable functions defined on
Ω. Following [1, §2.2], we introduce the following Sobolev spaces

L2(Ω) =
(
L2(Ω)

)3
, (5.1.7)

H(curl,Ω) =
{
v ∈ L2(Ω), curlv ∈ L2(Ω)

}
. (5.1.8)

Clearly, from the governing equations eq. (5.1.6), for a source field j in L2(Ω) both e and
h are inH(curl,Ω). Applying the curl operator to the second equation and plugging into
the first, we eliminate the magnetic field and obtain the following equation for the electric
field:

curl curl e− k2e = −ikj. (5.1.9)

In this work, we consider more general constitutive relations than the free space relations
eq. (5.1.3). To this end, we introduce two tensor fields ε, ν : Ω → C3×3 respectively
corresponding to the relative permittivity and inverse relative permeability tensor fields.
We assume that they are hermitian and positive definite for all x ∈ Ω. Under this more
general setting, eq. (5.1.9) becomes

curl νcurl e− k2εe = −ikj. (5.1.10)

Boundary conditions

We consider the domain boundary to be split in two parts ∂Ω = ΓA ∪ ΓD as shown
on fig. 5.1. We impose that the part of the boundary ΓD is a perfect electric conductor,
which means that e × n̂ = 0 on ΓD where n̂ denotes the outgoing unitary normal. The
part of the boundary ΓA is purely artificial and only exists because the domain Ω must
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ΓA

ΓD

Ω

Figure 5.1: Schematic view of a computational domain with one radiating antenna.

be bounded for computational reasons. Indeed, the reality that we try to simulate is that
of an unbounded physical domain. We enforce a so-called absorbing (or non-reflective)
boundary condition on ΓA, which lets the electromagnetic waves propagate out of the
domain, as if the boundary did not exist. The development of such absorbing boundary
conditions is an active area of research [8, 41]. Here, we consider the following first-order
absorbing condition

ike× n̂ = n̂× (νcurl e× n̂). (5.1.11)

Thus the full set of equations that we wish to solve is given by
curl νcurl e− k2εe = −ikj in Ω,

e× n̂ = 0 on ΓD,

ike× n̂ = n̂× (νcurl e× n̂) on ΓA.

(5.1.12)

As shown in [1, §8.3.3], the natural function space of the electric field satisfying eq. (5.1.12)
is

H+
0,ΓD

(curl,Ω) = {v ∈H(curl,Ω) : v × n̂|ΓD = 0

and v × n̂|ΓA ∈ L
2
t (ΓA)},

(5.1.13)

where L2
t (ΓA) = {v ∈ L2(ΓA) : v · n̂ = 0} is the space of tangential square-integrable

functions defined on ΓA. It is endowed with the inner product

(v,w)H+
0,ΓD

(curl,Ω) =

∫
Ω

νcurlv · curlwdΩ + c1

∫
Ω

εv ·wdΩ

+ c2

∫
ΓA

(v × n̂) · (w × n̂)dΓ,
(5.1.14)

where c1, c2 > 0 are given constants. It is shown in Ref. [1, §8.3.3] that there exists a
unique solution e ∈H+

0,ΓD
(curl,Ω) satisfying eq. (5.1.12).

5.1.2 High-fidelity discretization

The weak-form associated to eq. (5.1.12) is discretized using H(curl,Ω)-conforming
finite elements known as the Raviart-Thomas-Nédélec finite elements [80, 78]. Let Th
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be a partition of Ω into tetrahedral elements. For each tetrahedron T ∈ Th, define the
zero-th local Raviart-Thomas-Nédélec space of complex-valued functions defined on T
as RTN 0(T ) = {v : x ∈ T 7→ α + β × x, α,β ∈ C3}. The global approximation
space is given by

RTN 0 = {v ∈H(curl,Ω), v|T ∈ RTN 0(T ), ∀T ∈ Th}. (5.1.15)

The dimension of theRTN 0 approximation space is finite and coincides with the number
of edges in the mesh Th. Indeed, we recall that a degree of freedom is associated to each
edge in the mesh [80]. Incorporation of the essential Dirichlet boundary condition yield
the following finite element approximation space

V RTN
h = {v ∈ RTN 0, v × n̂|ΓD = 0}, (5.1.16)

whose dimensionN coincides with the number of edges in the mesh Th that do not lie on
the part of the boundary ΓD. In the Galerkin context, the discretized weak form writes:
find eh ∈ V RTN

h such that

∀vh ∈ V RTN
h , a(eh,vh) = f(vh), (5.1.17)

where a : V RTN
h × V RTN

h → C is the continuous sesquilinear form defined by

a(eh,vh) =

∫
Ω

νcurl eh · curlvhdΩ− k2

∫
Ω

εeh · vhdΩ

+ ik

∫
ΓA

(eh × n̂) · (vh × n̂)dΓ
(5.1.18)

and f : V RTN
h → C is the continuous linear form defined by

f(vh) = −ik
∫

Ω

jh · vhdΩ, (5.1.19)

with jh = Πhj, where Πh denotes the interpolation operator [29].

Denoting {wi}16i6N a basis for the global Raviart-Thomas-Nédélec approximation space
incorporating the Dirichlet essential boundary condition (see [45, Chapter 3, §5.3]), we
introduce the matrix A ∈ CN×N and vector f ∈ CN with coefficients

Aij = a(wj,wi), fj = f(wj), 1 6 i, j 6 N . (5.1.20)

Thus, the solution to eq. (5.1.17) is given by eh =
∑N

i=1 uiwi where u ∈ CN solves the
large-scale linear system Au = f . The discrete inverse Riesz operator is given by the
hermitian, positive-definite matrix B ∈ CN×N given by

Bij = (wj,wi)H+
0,ΓD

(curl,Ω), 1 6 i, j 6 N . (5.1.21)
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5.1.3 Numerical solver: FETI-2LM

We now review the FETI-2LM domain decomposition method which is used to efficient
solve the large-scale linear system Au = f on multiple processors. The acronym FETI-
2LM stands for Finite Element Tearing and Interconnecting with two Lagrange multipli-
ers. A more detailed review of this method (and of FETI methods in general) can be found
in [102].

Consider a splitting of the domain Ω in two non-overlapping subdomains Ω = Ω(1)∪Ω(1),
as shown on fig. 5.2. Using the subscript i for the degrees of freedom located inside the

Figure 5.2: Splitting into two non-overlapping subdomains.

subdomains Ω(s), s = 1, 2 and the subscript b for the degrees of freedom located on the
interface ∂Ω(1) ∩ ∂Ω(2), the Au = f linear system can be rewritten asA

(1)
ii 0 A

(1)
ib

0 A
(2)
ii A

(2)
ib

A
(1)
bi A

(2)
bi A

(1)
bb + A

(2)
bb


u

(1)
i

u
(2)
i

ub

 =

 f
(1)
i

f
(2)
i

f
(1)
b + f

(2)
b

 . (5.1.22)

Under the domain decomposition paradigm, each processor s = 1, 2 assembles their own
local subdomain contributions:

A(s) =

[
A

(s)
ii A

(s)
ib

A
(s)
bi A

(s)
bb

]
, f (s) =

[
f

(s)
i

f
(s)
b

]
. (5.1.23)

In the FETI-2LM method, we consider given interface matrices K
(s)
bb , s = 1, 2 (for more

detail on how these interface matrices should be chosen, see [104]) and search for two
Lagrange multipliers λ(s)

b , s = 1, 2 defined on the interface. Each processor s = 1, 2 can
solve the following local problem[

A
(s)
ii A

(s)
ib

A
(s)
bi A

(s)
bb + K

(s)
bb

][
ũ

(s)
i

ũ
(s)
b

]
=

[
f

(s)
i

f
(s)
b + λ

(s)
b

]
. (5.1.24)
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The goal is to find proper Lagrange multipliers in such a way that the solution to the
local problem eq. (5.1.24) is indeed the subdomain restriction of the solution of the global
problem eq. (5.1.22). In other words, the goal is to satisfy{

ũ
(s)
i = u

(s)
i ,

ũ
(s)
b = ub,

s = 1, 2. (5.1.25)

We proceed in two steps to characterize the Lagrange multipliers.

1. Exploiting the last line of the global problem eq. (5.1.22) and the last line of the
local problem eq. (5.1.24), we obtain

A
(1)
bi

(
u

(1)
i − ũ

(1)
i

)
+ A

(2)
bi

(
u

(2)
i − ũ

(2)
i

)
+
(
A

(1)
bb + A

(2)
bb

)
ub

−
(
A

(1)
bb + K

(1)
bb

)
ũ

(1)
b −

(
A

(2)
bb + K

(2)
bb

)
ũ

(2)
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(2)
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(5.1.26)

Thus, if eq. (5.1.25) are satisfied, then

λ
(1)
b + λ

(2)
b −

(
K

(1)
bb + K

(2)
bb

)
ũ

(s)
b = 0, s = 1, 2. (5.1.27)

2. Next, using the Schur complement matrix S
(s)
bb = A

(s)
bb − A

(s)
bi

(
A

(s)
ii

)−1

A
(s)
ib , we

can eliminate the interior degrees of freedom ũ
(s)
i in eq. (5.1.24). Doing so, the

interface degrees of freedom can be expressed as

ũ
(s)
b =

(
S

(s)
bb + K

(s)
bb

)−1

λ
(s)
b +

(
S

(s)
bb + K

(s)
bb

)−1

c
(s)
b , (5.1.28)

with c
(s)
b = f

(s)
b −A

(s)
bi

(
A

(s)
ii

)−1

f
(s)
i .

Now all is set to fully characterize the Lagrange multipliers λ(s)
b , s = 1, 2. Indeed, by

plugging eq. (5.1.28) into eq. (5.1.27), we obtain the following interface equation

F

[
λ

(1)
b

λ
(2)
b

]
= d, (5.1.29)

with F and d the matrix and right-hand side defined as

F =

 I I−
(
K

(1)
bb + K

(2)
bb

)(
S

(2)
bb + K

(2)
bb

)−1

I−
(
K

(1)
bb + K

(2)
bb

)(
S

(1)
bb + K

(1)
bb

)−1

I

 ,
d =

(K
(1)
bb + K

(2)
bb

)(
S

(2)
bb + K

(2)
bb

)−1

c
(2)
b(

K
(1)
bb + K

(2)
bb

)(
S

(1)
bb + K

(1)
bb

)−1

c
(1)
b

 .
(5.1.30)
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The interface equation (5.1.29) is solved using a Krylov method, typically the ORTHODIR
method [127]. At each iteration of the Krylov method, a matrix-vector operator with F
is required. Note that F is not assembled in practice, since the matrix-vector operation
with F simply requires each processor to solve a local problem of the form eq. (5.1.24)
followed by a communication phase [102].

Consequently, each processor successively solves numerous local problems eq. (5.1.24)
throughout the Krylov method (i.e., as many as the number of iterations required for the
Krylov method to converge). In practice, a factorization of the local problem matrix is
computed once and for all, so that these successive solves can be made very efficient. A
sparse LU -factorization for the local problem matrix can be efficiently computed using
for instance the PARDISO routines [108]. The cost of such factorization is reasonable,
given that the size of the local problem matrix remains moderate.

5.2 The RBM for the frequency sweep problem

5.2.1 The frequency-parametrized problem

In this work, we wish to solve the discrete electric field eh ∈ V RTN
h solution to the finite

element problem (5.1.17) not just for one value of the wavenumber k, but for a given
range of values k ∈ [kmin, kmax]. We now introduce µ = k/Cadim our varying parameter,
where Cadim > 0 is a constant used to adimensionalize the problem.

Under this parametrized setting, the sesquilinear form defined by eq. (5.1.18) is in fact
µ-dependent, thus a(·, ·) = a(·, ·;µ). Moreover, the dependency in µ is trivially affine
with Qa = 3 and a possible parametrization is

a(·, ·;µ) = a1(·; ·)− µ2a2(·, ·) + iµa3(·, ·), (5.2.1)

where for all uh,vh ∈ V RTN
h ,

a1(uh,vh) =

∫
Ω

νcurluh · curlvhdΩ,

a2(uh,vh) = C2
adim

∫
Ω

εuh · vhdΩ,

a3(uh,vh) = Cadim

∫
ΓA

(uh × n̂) · (vh × n̂)dΓ.

(5.2.2)

As for the right-hand side, the dependency in µ is also straightforwardly affine with Qf =
1 and a possible parametrization is

f(·;µ) = iµf1(·), (5.2.3)
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where for all vh ∈ V RTN
h ,

f1(vh) = Cadim

∫
Ω

jh · vhdΩ. (5.2.4)

This being set, the frequency-parameterized discretized Maxwell equations read: find
eh(µ) ∈ V RTN

h such that

∀vh ∈ V RTN
h , a(eh(µ),vh;µ) = f(vh). (5.2.5)

Clearly, this formulation fits the framework proposed in section 1.1.4, with the correspon-
dance given by table 5.1.

Abstract setting Parametrized Maxwell
V V RTN

h

W V RTN
h

µ µ = k/Cadim

a(·, ·, µ) Equation (5.1.18)
f(µ) Equation (5.1.19)
u(µ) eh(µ)

Table 5.1: Correspondance between the parametrized Maxwell equations and the general
abstract setting of section 1.1.4.

5.2.2 Results on the Horn Antenna test case

Description of the the Horn Antenna test case

We consider a horn antenna and a substrate layer as shown on fig. 5.3 (we refer to [67]
for a review on horn antenna concepts). The problem is distributed on 2 processors, with
processor 1 handling 109, 435 local degrees of freedom (horn antenna subdomain) and
processor 2 handling 30, 265 local degrees of freedom (substrate subdomain). Notice that
the workload is not equally distributed on the 2 processors, which is non-optimal in terms
of computational performance but allows more flexibility in the design processes.

The frequency range of interest is 18 − 22GHz. The coefficient Cadim is tuned in such a
way that µ = k/Cadim varies in D = [1.8, 2.2], thus the frequency fHz (in Hz) is easily
recovered by the formula fHz = µ× 1010.

RB approximations

We want to build a RB approximation uN(µ) of u(µ) with a target accuracy of 5%, which
means

∀µ ∈ [µmin, µmax],
‖u(µ)− uN(µ)‖V
‖u(µ)‖V

< 5%. (5.2.6)
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Figure 5.3: Meshes of the horn antenna test case.

To this end, we propose a certified and a heuristic approach.

• the certified approach is based on applying the greedy algorithm 2.1 driven by the
indicator

∆rel
N (µ) =

∆abs
N (µ)

‖uN(µ)‖V

(
1− ∆abs

N (µ)

‖uN(µ)‖V

)−1

, (5.2.7)

where ∆abs
N (µ) = 1

αLB(µ)
‖A(µ)uN(µ) − f(µ)‖W ′ is a rigorous a posteriori error

estimator, with µ 7→ αLB(µ) denoting a fast-to-evaluate lower bound for the inf-
sup constant µ 7→ α(µ) obtained from applying the SCM algorithm 2.2. Note that
from proposition 2.1.1 eq. (5.2.7) is a rigorous upper bound for the RB relative
error, hence the name ”certified” for this approach.

• the heuristic approach consists in driving the greedy algorithm 2.1 using the indica-
tor

∆̃rel
N (µ) =

‖A(µ)uN(µ)− f(µ)‖W ′
α̂‖uN(µ)‖V

, (5.2.8)

where the constant α̂ is updated at each iteration of the greedy algorithm follow-
ing the heuristic method presented in section 2.2.4 (only the quasi-constant case is
considered).

For the SCM (only necessary for the certified approach), we use a discrete set Ξ ⊂ D =
[1.8, 2.2] made of 200 uniformly distributed points and a prescribed tolerance tol = 0.9.
The large-scale generalized eigenvalue problems G.E.P. are solved using the inverse Lanc-
zos algorithm with a prescribed tolerance of 10−4 (see Appendix A).

The SCM takes J = 15 iterations to converge to the prescribed tolerance. The conver-
gence curve shown on fig. 5.4a reveals that the error does not decrease until a threshold
number of 12 eigensolves. The 13th eigensolves makes the error drop by two orders of
magnitude. This is due to the fact the SCM error is defined as the maximum over all
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Figure 5.4: The SCM (see algorithm 2.2) applied to the Maxwell horn antenna problem.

possible values of µ of the relative difference between lower and upper bounds. The SCM
error stagnates during the first 12 iterations because a new eigensolve at some value µ
only improves the SCM bounds locally in the neighborhood of µ. It takes 13 iterations to
cover the full parameter interval [1.8, 2.2].

Figure 5.4b shows the number of iterations for each eigensolve. Most eigensolves require
a number of iterations comprised between 10 and 20 which, in terms of computational
costs, roughly corresponds to solving 20 to 40 high-fidelity problems.
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Figure 5.5: The SCM lower and upper bounds for the Maxwell horn antenna problem.

Figure 5.5 shows the lower and upper bounds obtained with the SCM. Looking at the
exact eigensolves (red circles), the exact inf-sup constant µ 7→ α(µ) seems to depend
very little on µ. This is precisely the reason why the heuristic approach will perform well.
We observe that the upper bounds better catch this ”almost constant” behavior than the
lower bounds. This is consistant with [112], in which the first order accuracy of the upper
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bounds is demonstrated.

Applying the greedy algorithm 2.1 with a 5% prescribed tolerance, the certified approach
yields a RB of size N = 9, while the heuristic yields a RB of size N = 6. In both
approaches, the Galerkin RB approximation is considered. For the sake of validation,
we have computed 80 truth solutions u(µ) at uniformly distributed values of µ. We use
these truth solutions to compute the actual relative error ‖u(µ)− uN(µ)‖V /‖u(µ)‖V and
compare the results with our a posteriori indicators ∆rel

N (µ) for the certified approach and
∆̃rel
N (µ) for the heuristic approach. The comparisons are shown on fig. 5.6.
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(a) Certified approach.
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Figure 5.6: Two RB approximations for the Maxwell horn antenna problem.

The certified approach provides a RB approximation with an accuracy below 0.7% using
N = 9 basis functions. It is therefore much more accurate than the prescribed 5%. The
reason is that the certified indicator ∆rel

N (µ) overestimates the actual relative error roughly
by a factor 10, as can be seen on fig. 5.6a. In opposition, the heuristic approach provides
a RB approximation with an accuracy close to the prescribed 5% using just N = 6 basis
functions. The heuristic indicator ∆̃rel

N (µ) only slightly overestimates the actual relative
error, as shown on fig. 5.6b. In terms of computational costs, the heuristic approach is
much preferable than the certified approach: not only are the heavy computational costs
associated to the SCM avoided, but also the final RB size is optimally small while still
satisfying the prescribed tolerance, thus avoiding unnecessary computationally expensive
truth solves.

Convergence analysis

We now run the greedy algorithm driven by the residual norm for 10 iterations. Fig-
ure 5.7a shows the residual norm µ 7→ ‖A(µ)uN(µ) − f(µ)‖W ′ for N = 1, . . . , 10. We
observe that adding basis functions to the reduced basis does not only impact the residual
norm locally in the neighborhood of the freshly computed frequency but globally over
the frequency band of interest. This is particularly visible on the curve N = 4. Here,
the freshly computed frequency is µ = 1.9. Of course, the decrease is significant in the
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neighborhood of µ = 1.9, but we see the residual norm decrease for all other frequencies.
This confirms the global approximation properties of the reduced basis. As shown on
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(b) Convergence curve of the
maximum residual norm with re-
spect to basis size.

Figure 5.7: Convergence of the RB method for the Maxwell horn antenna problem.

fig. 5.7, the maximum residual norm decreases exponentially with the reduced basis N .
This corroborates the exponential decay of the truth solution manifold {u(µ), µ ∈ D}.

We attract the attention of the reader that on fig. 5.7a the residual norm does not reach
machine precision at the locations of the resolved frequencies. Indeed, the residual norm
seems to stagnate somewhat around 10−5. This is because the truth solutions u(µ) do not
exactly satisfy the equation A(µ)u(µ) = f(µ). Indeed, the numerical solver FETI-2LM
produces solutions with a relative residual ‖A(µ)u(µ) − f(µ)‖2/‖f(µ)‖2 around 10−6.
The accuracy of the solver sets up a limit on the best possible accuracy that the reduced
basis approximation can reach.

5.3 Application to antenna arrays

We now study a 4 × 4 antenna array shown on fig. 5.8a. Such antenna arrays are used
for ”beamforming”, which includes for instance focusing the radiated signal in a given
angular direction or towards a given point in space (see the review papers [121, 14]).
or the book [52]). The problem consists of 16 antenna subdomains (see fig. 5.8b), each
associated to a source term. The 16 antennas are independent from each other, therefore
we are in the situation of a frequency-parametrized problem with ` = 16 distinct source
terms (see chapter 4). Notice that, although all 16 antennas are identical, no symmetry
plane can be found on the antenna array and thus simulation of the full array is required.

In terms of mesh, each antenna subdomain is meshes with of 373, 156 degrees of free-
dom, thus the overall number of degrees of freedom for the full array is roughly N ∼
6, 000, 000. The frequency range of interest is 8 − 12GHz. As for the horn antenna test
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(a) The 4 × 4 array comprised of 16 antenna subdomains (see
right).

(b) One antenna subdomain
(373, 156 degrees of freedom) .

case, the adimensionalization coefficient is tuned in such a way that the set of parame-
ters is D = [0.8, 1.2], therefore the frequency fHz (in Hz) can be easily recovered by the
formula fHz = µ× 1010.

5.3.1 RBM with a single right-hand side

In this numerical experiment, all antennas are turned on. This means that there is one
right-hand side with non-zero contributions from all subdomains (each sudomain being
associated to a radiating antenna). We run the greedy algorithm driven by the residual
norm in the euclidian norm µ 7→ ‖A(µ)uN(µ)−f(µ)‖2. The choice of the euclidian norm
consists in setting the discrete inverse Riesz operator matrix B to the identity matrix. We
have two motivations for this choice: (i) matrix-vector operations and system solves with
the identity matrix are relatively inexpensive compared to similar operations performed
with the ”mathematically rigorous” discrete inverse Riesz operator matrix B given by
eq. (5.1.21) and (ii) the FETI-2LM residual is also measured in the euclidian norm, which
makes it easier to prescribe a tolerance on the RB residual that is consistent with pre-
scribed tolerance on FETI-2LM iterations. Here, we guarantee that the FETI-2LM solver
produces truth solutions u(µ) with a relative residual ‖A(µ)u(µ)−f(µ)‖2/‖f(µ)‖2 below
10−3. Given that the euclidian norm of the right-hand side is roughly ‖f(µ)‖2 = O(10−2),
this means that ‖A(µ)u(µ) − f(µ)‖2 = O(10−5). In order to reach about the same level
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of accuracy with the RBM, we propose to set the prescribed tolerance in the RB greedy
algorithm to 2.5× 10−5.

The algorithm terminates with a RB of sizeN = 15. Using 16 CPUs (one per MPI process
associated to an antenna subdomain), the overall elapsed time was 1h45min. We note
that 92% of the elapsed time (1h36min) was spent on the FETI-2LM iterations and the
remaining 8% on other operations including sparse matrix-vector operations, dot products,
RB solves, etc.
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Figure 5.9: Convergence of the RB method for the Maxwell array antenna problem, with
only one activated antenna.

Figure 5.9a shows the residual norm throughout the iterations of the greedy algorithm and
fig. 5.9b confirms the exponential decrease of the maximum residual norm. The stagnation
of the RB residual around 10−5 is consistent with the prescribed tolerance set on the FETI-
2LM iterations. We observe that the RB of size N = 15 is associated with residual norms
across the full frequency band of interest of the same order magnitude than those obtained
using the FETI-2LM numerical solver. This illustrates the ability of the RBM to recover
very accurate solutions with minimal computational effort.

5.3.2 RBM with multiple right-hand sides

In such antenna application, we want to study the electric field generated by one illumi-
nated antenna while the other antennas are turned off and we want to perform this analysis
for each antenna. In other words, we are interested in the solutions associated to 16 dis-
tinct right-hand sides, the kth right-hand side being equal to 0 in all subdomains except in
the kth subdomain which corresponds to the illuminated antenna.

It takes about 390s (6min30) elapsed time to obtain the truth solution associated to one
right-hand side using FETI-2LM on 16 CPUs (here, we use one CPU per MPI process).
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This means that the computation of 16 truth solutions associated to 16 distinct sources
could take:

• either the same time but using significantly more computational resources (namely,
256 CPUs would be required),

• or much longer (namely, about 1h44min elapsed time) with the same workstation.

An alternative, is to combine FETI-2LM with a block Krylov recycling strategy for ef-
ficiently solving multiple right-hand sides [40, 117, 103]. In this context, the number of
arythmetic operations to be performed per FETI-2LM iteration increases with the number
of right-hand sides, thus it becomes relevant to use multiple CPUs per MPI process in or-
der to take the best advantage of the multi-threading possibilities offered by OpenMP. For
example, on 48 CPUs (3 CPUs per MPI process) the 16 truth solutions associated to the 16
distinct radiating sources is obtained in about 950s (15min50) with the same prescribed
tolerance 10−3 on the FETI-2LM iterations. This numerical experiment illustrates the use
of FETI-2LM with a block Krylov recycling represents a clear advantage over successive
calls to FETI-2LM with single right-hand side.

We simultaneously generate 16 RB approximation spaces by running the multi-source
greedy algorithm 4.1 (which corresponds to the multiple RBs strategy presented in chap-
ter 4). This algorithm takes the best advantage of the block Krylov recycling strategy.
We briefly recall from chapter 4 that algorithm 4.1 consists in a greedy algorithm driven
by the maximum residual norm over all 16 sources. Again, the euclidian norm is used
for enhanced performance and improved readability of the prescribed tolerances. Know-
ing from previous numerical experiment in the single source configuration that N = 15
should be a sufficient RB size, we let the algorithm run for N = 15 iterations.
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Figure 5.10: Convergence of the RB method for the Maxwell array antenna problem, with
16 distinct sources.
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Figure 5.10a shows the residuals associated to each source at the iteration N = 7 of the
multi-source greedy algorithm algorithm 4.1. Although they do not coincide, we find that
all residuals have roughly the same behavior with respect to µ. Hence, it makes sense
to select the next frequency to be computed by maximizing the residual over all sources
and over a discrete training set Ξ ⊂ D = [0.8, 1.2]. Here, based on the residuals plotted
on fig. 5.10a, the algorithm selects the frequency µ = 1.1636 to be computed in the 8th

iteration.

Figure 5.10b shows the maximum residual norm over all sources and all µ ∈ Ξ throughout
the greedy iterations. We find an exponential decrease which compares well with the
single-source case.

The elapsed time for simultaneously generating the 16 RB models of size N = 15 on 48
CPUs is 4h16min. Recalling that it took 1h45min on 16 CPUs to generate a RB model
for one single source, a single right-hand side strategy would have required 9h20 on 48
CPUs to construct these 16 RB models. Thus, we evaluate the multi-source strategy to
be more than twice faster than the strategy that consists in repeated calls to single-source
greedy algorithms.

5.4 Conclusions

In this chapter, we have successfully applied the reduced basis method to antenna appli-
cations in electromagnetism with frequency parameter. The underlying equations are the
Maxwell equations solved using edge finite elements and a FETI-2LM domain-decompo-
sition method. This problem fits the reduced basis framework with no particular difficulty,
because both operator and right-hand sides are naturally affine in the frequency.

We have shown through a numerical example with a horn antenna that the inf-sup stability
constant has minor dependency on the frequency. This is consistent with the fact that the
underlying equations admit no real resonant frequencies. In this context, the heuristic
method of approximating the inf-sup stability factor by a constant (i.e., independent from
the frequency) provides excellent results, with considerable speed-ups compared to the
traditional certified reduced basis method based on the construction of rigorous lower
bounds for the inf-sup stability constant using the SCM.

This chapter has also demonstrated the potential of the RBM for frequency sweeps with
large-scale problems featuring multiple sources. The computational costs of the offline
phase were limited thanks to the choice of the euclidian norm rather than theH+

0,ΓD
(curl,Ω)

norm and an efficient multiple right-hand side strategy using block Krylov recycling.
Thanks to the RBM, we have been able to reduce an antenna array problem with 6, 000, 000
unknowns and 16 sources to 16 RB models (one per source) each featuring only N = 15
unknowns, while maintaining a level of accuracy that is commensurate with that of the
high-fidelity numerical solver.
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Chapter 6
Reduced basis method for frequency
sweeps with the boundary element method

Summary. In this chapter, we explain how the RBM can be used to address frequency-
dependent problems in electromagnetic scattering. We consider electromagnetic scatter-
ing problems discretized with the boundary element method (BEM), which is well-known
to provide complex, non-hermitian and fully populated linear systems. Our first contri-
bution is the use of non-intrusive local affine approximations of the frequency-dependent
BEM operator, which enables the user to better control the computational complexity of
the offline phase. Our second contribution is the use of nested reduced basis approxima-
tion spaces rather than one global approximation space, in view of reducing the offline
costs of the RBM. Our strategy is illustrated using various numerical examples of both
academic and industrial interests.
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6.1 Strong formulation and high-fidelity approximation

6.1.1 The Stratton-Chu integral representation formulas

Recall from chapter 5 that, in the absence of charges, the (re-normalized) electric and
magnetic fields e, h satisfy the set of equations (5.1.6), repeated here for convenience{

−ike+ curlh = j,

ikh+ curl e = 0.
(6.1.1)

In the following, we consider no radiating sources, hence the source term j is set to
zero. We consider regular fields e, h satisfying (6.1.1) in some bounded interior domain
Ωi ⊂ R3 as well as in the associated (unbounded) exterior domain Ωe = R3 \ Ωi and
satisfying the following Silver-Muller radiation condition at infinity

lim
|x|→∞

|x|
∣∣∣∣e− h× x

|x|

∣∣∣∣ = 0, (6.1.2)

where | · | denotes the usual euclidian norm of R3.

Denote Γ = ∂Ωi the closed surface at the interface between the interior and exterior
domains and n̂ the exterior unit normal to Γ, as shown on figure 6.1. We define the
electric and magnetic surface currents on Γ as

jΓ = hi × n̂− he × n̂,
mΓ = ei × n̂− ee × n̂,

(6.1.3)

where hi and ei (resp. he and ee) denote the interior limits (resp. the exterior limits) of
the magnetic field h and electric field e.

We further introduce G(·, ·; k), the ingoing fundamental solution of the 3-dimensional
Helmholtz equation at wavenumber k,

G(x,y; k) =
e−ik|x−y|

4π|x− y|
, x 6= y. (6.1.4)
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Ωi

n̂Ωe

Γ

Figure 6.1: Schematic representation of the interior and exterior domains.

The stage is now set for the Stratton-Chu representation formulas [81, Theorem 5.5.1],

∀x /∈ Γ,

{
e(x) = −ikTkjΓ(x) + KkmΓ(x),

h(x) = ikTkmΓ(x) + KkjΓ(x),
(6.1.5)

with electric and magnetic potentials Tk and Kk respectively defined for all x /∈ Γ by

TkjΓ(x) =

∫
Γ

G(x,y; k)jΓ(y)dΓy

+
1

k2
gradx

∫
Γ

G(x,y; k)divΓ,y jΓ(y)dΓy,

(6.1.6a)

KkmΓ(x) =curlx

∫
Γ

G(x,y; k)mΓ(y)dΓy. (6.1.6b)

The Stratton-Chu representation formulas (6.1.5) have an exceptional consequence. Name-
ly, that the electric and magnetic fields e and h can be computed anywhere in the interior
domain Ωi or in the exterior domain Ωe, with just the knowledge of the electric and mag-
netic surface currents jΓ andmΓ defined on Γ.

6.1.2 Scattering by a perfect electric conductor

Let einc,hinc be given continuous incident fields. One can consider plane waves given by

∀x ∈ R3,

{
einc(x) = p̂eikd̂·x,

hinc(x) = (d̂× p̂)eikd̂·x,
(6.1.7)

where the unit vectors d̂, p̂ respectively denote the direction and polarization of the plane
wave. We recall that the polarization p̂ is always perpendicular to the direction d̂.

We look for the total electric and magnetic fields etot,htot in the exterior domain Ωe

under the following form etot = einc + e and htot = hinc + h where e,h denote the
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scattered fields. We consider the interior domain Ωi to be a perfect electric conductor
(PEC), hence the following boundary condition is satisfied on Γ

etote × n̂ = 0, (6.1.8a)

where we recall that ee denotes the exterior limit on Γ of the field e. Equivalently,

ee × n̂ = eince × n̂. (6.1.8b)

In the exterior domain Ωe, the scattered fields e,hmust further satisfy the governing equa-
tions eq. (6.1.1) with no source term (i.e., j = 0) as well as the Silver-Muller radiation
condition at infinity (6.1.2).

From the PEC nature of the interior domain, the total fields are zero inside the interior
domain. This is recovered by extending the scattered fields e,h to the interior domain Ωi

and imposing them to be equal to −einc,−hinc. In other words,{
h = −hinc,

e = −einc.
in Ωi. (6.1.9)

Exploiting the continuity of the incident field across Γ and the PEC boundary condition
(6.1.8b), we deduce the continuity of the tangential trace of the electric field across Γ. We
conclude that there are no magnetic surface currents on Γ, that ismΓ = 0. Thus, by virtue
of the Stratton-Chu formulas (6.1.5), the scattered fields e,h are represented by

∀x /∈ Γ,

{
e(x) = −ikTkjΓ(x),

h(x) = KkjΓ(x),
(6.1.10)

with

jΓ = −hinc × n̂− he × n̂ = −htot
e × n̂. (6.1.11)

Physically, the electric surface current jΓ therefore coincides with the exterior tangential
trace of the total magnetic field. In order to build a formulation in terms of the only
unknown jΓ, we study the limit of eq. (6.1.10) as x approaches the boundary Γ. In this
work, we do not go into the details of how this limit is obtained (see [17, §5], [7, §4.1]),
but we recall the main results. Let us introduce the interior tangential components trace
mapping

πiT : v ∈ C∞(Ωi) 7→ n̂× (v × n̂)|Γ. (6.1.12)

Here, C∞(Ωi) =
(
C∞(Ωi)

)3
is the space of infinitely differentiable vector fields defined

on the closure of the interior domain. We similarly introduce the exterior tangential com-
ponents trace mapping πeT : v ∈ C∞(Ωe) 7→ n̂× (v × n̂)|Γ.
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The Electric Field Integral Equation

The tangential components trace of the electric potential Tk is continuous across Γ. In-
deed, given a surface current jΓ defined on Γ, there holds

x ∈ Γ, πiTTkjΓ(x) = πeTTkjΓ(x) ≡ TjΓ(x), (6.1.13)

and the value of the tangential components trace is given by

x ∈ Γ, TjΓ(x) =

∫
Γ

G(x,y; k)jΓ(y)dΓy

+
1

k2
gradΓ,x

∫
Γ

G(x,y; k)divΓ,y jΓ(y)dΓy.

(6.1.14)

Applying either the interior or exterior tangential components trace (denoted πT ) to the
Stratton-Chu representation formula (6.1.10) for the electric field yields,

∀x ∈ Γ, −πTeinc(x) = −ikTjΓ(x). (6.1.15)

We recognize an integral equation satisfied by the electric surface current jΓ. This equa-
tion is know as the Electric Field Integral Equation (EFIE).

The Magnetic Field Integral Equation

In opposition to the electric potential Tk, the tangential components trace of the electric
potential Kk is discontinuous across Γ. Indeed, given the surface current mΓ defined on
Γ, there holds

x ∈ Γ,

{
πiTKkmΓ(x) = −1

2
n̂×mΓ(x) +KmΓ(x)

πeTKkmΓ(x) = 1
2
n̂×mΓ(x) +KmΓ(x),

(6.1.16)

where

x ∈ Γ, KmΓ(x) =

∫
Γ

∂

∂n̂y
G(x,y; k)×mΓ(y)dΓy. (6.1.17)

Applying the interior tangential components trace to the Stratton-Chu representation for-
mula (6.1.10) for the magnetic field yields another integral equation satisfied by the elec-
tric surface current jΓ, namely

∀x ∈ Γ, −πiTh(x) = −1

2
n̂× jΓ(x) +KjΓ(x). (6.1.18)
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Observing that

n̂× πiTh(x) = n̂× (n̂× (hi(x)× n̂))

= n̂× (hi(x)− (hi(x) · n̂)n̂)

= n̂× hi(x),

(6.1.19)

and recalling that hi, the interior limit of h, is equal to −hinc, we obtain, from taking the
left cross product by n̂ in (6.1.18), that,

∀x ∈ Γ, n̂× hinc(x) =
1

2
jΓ(x) + n̂×KjΓ(x). (6.1.20)

Note that we have used that n̂ × (n̂ × jΓ) = jΓ, which stems from the fact that jΓ is
a tangent field to Γ, recalling its definition (6.1.3). Equation (6.1.20) is known as the
Magnetic Field Integral Equation (MFIE).

The Combined Field Integral Equation

At this point, we have derived two different integral equations satisfied by the electric
surface current jΓ. A natural question that arises, which best solves the PEC scattering
problem? This is a classical discussion [81, 32], out of which we retain the following
points:

• Robustness. Both the EFIE and MFIE are ill-posed for some values of the wavenum-
ber k, corresponding to the interior resonant wavenumbers. For such wavenumbers
k, there exist spurious surface currents. This does not affect the electric and mag-
netic fields reconstructed using the Stratton-Chu representation formula when using
the EFIE, but it does when using the MFIE.

• Conditioning. Being a first-kind integral equation, the EFIE is prone to ill-conditioning
whereas the MFIE is a second-kind integral equation and has a better conditioning.

• Flexibility. The EFIE can be used to compute the electric surface currents open
surfaces Γ, but this is not the case for the MFIE, that requires Γ to be a closed
surface due to the explicit dependency in the outgoing normal.

A way to circumvent some of these issues, especially to obtain well-posed formulation for
any wavenumber k, is to combine the EFIE and MFIE into one Combined Field Integral
Equation (CFIE). That is,

CFIE = (1− c)EFIE + cMFIE, (6.1.21)

with a well-chosen value for c ∈]0, 1[. In this work, we choose the value c = 0.5.
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6.1.3 Discretization using the BEM

In order to numerically solve the electromagnetic scattering problem, we use the Bound-
ary Element Method (BEM) to discretize the weak forms associated to the EFIE and
MFIE. First, the surface Γ is meshed with triangles. We denote Th the set of all the tri-
angles in the mesh. Given a triangle E ∈ Th, the zero-th order local Raviart-Thomas
space of complex-valued functions defined on E is given by RT 0(E) = {v : x ∈ E 7→
α + βx | α ∈ C2, β ∈ C}, see [99]. Following the standard BEM [56, 16], we choose
as boundary element approximation space the global Raviart-Thomas space, given by

V RT
h = {v ∈H0

div(Γ) | v|E ∈ RT 0(E), ∀E ∈ Th}, (6.1.22)

where H0
div(Γ) = {v ∈ L2

t (Γ) | divΓ v ∈ L2(Γ)} with L2(Γ) the Sobolev space of
square-integrable complex-valued functions defined on Γ andL2

t (Γ) the classical Sobolev
space comprised of complex-valued functions v ∈ L2(Γ) = [L2(Γ)]3 that are tangential
to Γ, i.e., satisfying v · n̂ = 0. Note that the boundary element approximation space V RT

h

is finite dimensional; we denote N its dimension (equal to the number of triangles in the
mesh). We now seek high-fidelity approximations jΓ,h of jΓ in the approximation space
V RT

h .

The EFIE

Formally (without going into more technical details), we can multiply the EFIE eq. (6.1.15)
by any test function wh ∈ V RT

h , integrate over Γ and integrate by parts. This yields the
following discrete weak form: find jE

Γ,h ∈ V RT
h such that

∀wh ∈ V RT
h , 〈T hj

E
Γ,h,wh〉 = 〈bE

h ,wh〉 (6.1.23)

where the discrete EFIE operator T h is expressed as

∀vh,wh ∈ V RT
h , 〈T hvh,wh〉 = ik

∫
Γ

wh(x) ·
∫

Γ

G(x,y; k)vh(y)dΓydΓx

− i
k

∫
Γ

divΓ,xwh(x)

∫
Γ

G(x,y; k)divΓ,y vh(y)dΓydΓx,

(6.1.24)

and the right-hand side (RHS) is given by

∀wh ∈ V RT
h , 〈bE

h ,wh〉 =

∫
Γ

πTe
inc(x) ·wh(x)dΓx. (6.1.25)

The MFIE

Similarly, we can multiply the MFIE eq. (6.1.20) by any test function wh ∈ V RT
h and

integrate over Γ. This yields the following discrete weak form: find jM
Γ,h ∈ V RT

h such that

∀wh ∈ V RT
h , 〈

(
1

2
I +Kh

)
jM

Γ,h,wh〉 = 〈bM
h ,wh〉 (6.1.26)
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where the discrete the discrete MFIE operator 1
2
I +Kh is given by

∀vh,wh ∈ V RT
h , 〈

(
1

2
I +Kh

)
vh,wh〉 =

1

2

∫
Γ

wh(x) · vh(x)dΓx

+

∫
Γ

wh(x) ·
(
n̂(x)×

∫
Γ

∂

∂n̂(y)
G(x,y; k)× vh(y)dΓy

)
dΓx.

(6.1.27)

and RHS is given by

∀wh ∈ V RT
h , 〈bM

h ,wh〉 =

∫
Γ

n̂× hinc(x) ·wh(x)dΓx. (6.1.28)

The CFIE

This being set the discrete CFIE writes: find jC
Γ,h ∈ V RT

h such that

∀wh ∈ V RT
h , 〈Chj

C
Γ,h,wh〉 = 〈bC

h ,wh〉 (6.1.29)

with operator

Ch = (1− c)T h + c

(
1

2
I +Kh

)
(6.1.30)

and the associated right-hand side is given by bC
h = (1− c)bE

h + cbMh .

6.1.4 Numerical solvers

In matrix form, the discrete problem writes as a linear system of equations Au = f where
A ∈ CN×N is a fully-populated and non-hermitian matrix (except for the EFIE where the
matrix is actually hermitian). There exists essentially two kinds of numerical solvers for
solving such a linear system of equations:

• Direct solvers: These solvers rely on a LU -factorization of A, which takes O(N 3)
operations to compute. The computational costs increase rapidly with the problem
size N , thus the use of these solvers is prohibitive for large-scale problems. This
issue can be circumvented by computing a LU -factorization not of the matrix A,
but rather of a hierarchical matrix (H-matrix, see [6]) that approximates A.

• Iterative solvers: These solvers rely on successive matrix-vector operations with A
to build a Krylov subspace spanned by b,Ab,A2b,A3b . . . where b ∈ CN is a
starting vector. In traditional implementations, each matrix-vector operation with
A takes O(N 2) operations. Advanced techniques allow to reduce the complexity
of each matrix-vector operation toO(N logN ). Among these advanced techniques,
we cite the fast multipole method (FMM), introduced in [47] in the context of many
particle simulations, which progressively became a very popular method for solving
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BEM systems in both electromagnetism and acoustics [68, 85, 49]. We also cite the
adaptice cross-approximation (ACA) technique [65], which approximates whole
blocks of the system matrix using low-rank submatrices.

In this work, we use the code MAXWELL3D developed by DEMR (Electromagnetism
and radar department of ONERA). In this code, a parallel direct solver (which can run on
parallel machines) is available as well as an iterative solver based the multi-level FMM
(which can also run on parallel machines).

6.2 A non-intrusive RBM for frequency sweep analysis

6.2.1 Affine approximations for the frequency-parametrized prob-
lem

We consider an incident plane wave eq. (6.1.7) with fixed polarization p̂ and fixed direc-
tion d̂. We now view the wavenumber k as varying parameter, thus we set µ = k for
following our usual notation. In this parametrized context, the EFIE, MFIE and CFIE
discrete operators depend on µ, i.e., T h = T h(µ), Kh = Kh(µ) and Ch = Ch(µ); as
well as the associated right-hand sides, i.e., bE

h = bE
h (µ), bM

h = bM
h (µ) and bC

h = bC
h (µ).

For ease of presentation, we consider the CFIE, which is most general as it combines
both EFIE and MFIE. We denote A(µ)u(µ) = f(µ) the linear system to be solved for the
CFIE.

Inspection of Eqs. (6.1.24) and (6.1.27) reveals that the discrete EFIE and MFIE operators
are non-affine because the Green kernel couples the spatial variables to the wavenumber.
A well-known strategy consists in recovering affine approximations by applying the EIM
to the wavenumber-dependent kernel [39, 111]. One has to be cautious, because the EIM
cannot be applied directly to the Green kernel because of its singularity when |x−y| → 0.
The classical way to circumvent this is to split the Green kernel in two terms as

G(x,y;µ) =
eiµr − 1

4πr
+

1

4πr
, r = |x− y|. (6.2.1)

The first term depends on µ and is non-singular (we shall use the superscript ns for ”non-
singular” in the following), while the second term does not depend on µ and is singular.

In order to obtain an affine approximation for the EFIE, we successively apply the EIM
to the two non-singular functions gns

1 (r;µ) = iµ e
iµr−1
4πr

and gns
2 (r;µ) = −i

µ
eiµr−1

4πr
. For

ease of notation, we now use the notation ? = 1, 2. Recalling chapter 1, the EIM yields
M? ≥ 1 so-called EIM basis functions hg?1 , . . . , h

g?
M?

defined on [0, rmax], interpolation
points {rg?m }1≤m≤M? and a lower triangular interpolation matrix Bg? ∈ CM?×M? with
unity diagonal [5]. The EIM interpolant is given by

gns
? (r;µ) ≈ g̃ns

? (r;µ) =
M?∑
m=1

ςg?m (µ)hg?m (r), (6.2.2)
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with complex coefficients ςg?(µ) = (ςg?1 (µ), . . . , ςg?M?
(µ))T ∈ CM? solution to theM?×M?

linear system

Bg?ςg?(µ) = lg?(µ), (6.2.3)

where lg?(µ) = (gns
? (rg?1 ;µ), · · · , gns

? (rg?M?
;µ))T ∈ CM? . Replacing gns

? by its EIM ap-
proximation g̃ns

? for ? = 1, 2 in the expression of the EFIE operator Eq. (6.1.24) yields an
affine approximation T̃ h(µ) for the EFIE operator given by

〈T̃ h(µ)vh,wh〉 =

M1∑
m=1

ςg1m (µ)

∫
Γ

wh(x) ·
∫

Γ

hg1m (|x− y|)vh(y)dΓydΓx

+ iµ

∫
Γ

wh(x) ·
∫

Γ

1

4π|x− y|
vh(y)dΓydΓx

+

M2∑
m=1

ςg2m (µ)

∫
Γ

divΓ,xwh(x)

∫
Γ

hg2m (|x− y|)divΓ,y vh(y)dΓydΓx

− i

µ

∫
Γ

divΓ,xwh(x)

∫
Γ

1

4π|x− y|
divΓ,y vh(y)dΓydΓx.

(6.2.4)

Remarking that all the integrated terms are independent from the wavenumber; it is clear
that T̃ h(µ) is affine with (M1 + M2 + 2) terms. We can address the MFIE operator in a
similar way, by observing that

∂

∂n̂(y)
G(x,y;µ) = (ψns(|x− y|;µ) + ψs(|x− y|)) (y − x) · n(y)

|x− y|
, (6.2.5)

with ψns(·;µ) and ψs defined by

ψns(r;µ) = iµ
eiµr − 1

4πr
− eiµr − 1− iµr

4πr2
, ψs(r) = − 1

4πr2
. (6.2.6)

An affine approximation for the MFIE operator defined by Eq. (6.1.27) can be straightfor-
wardly obtained from applying a third EIM to the function gns

3 = ψns. With this strategy,
we obtain an affine approximation for the MFIE operator with M3 + 2 terms. Thus, we
obtain an affine approximation Ã(µ) for the µ-dependent CFIE system matrix A(µ) with
Qa = (M1 +M2 +M3 + 4) terms given by

Ã(µ) =

Qa∑
q=1

σq(µ)Aq (6.2.7)

with complex coefficients σ(µ) = (σ1(µ), . . . , σQa(µ)) ∈ CQa solution to the linear

131



CHAPTER 6. RBM FOR FREQUENCY SWEEPS WITH THE BEM

system Bσ(µ) = l(µ), where

B =



Bg1

1
Bg2

1
Bg3

1
1


, l(µ) =



lg1(µ)
iµ

lg2(µ)
−i
µ

lg3(µ)
1
1
2


. (6.2.8)

Notice that B ∈ CQa×Qa is lower triangular with unity diagonal. Remark also that the last
row of the system is associated to the mass term in the MFIE operator. At this stage, two
main issues arise:

• the wavenumber-independent operator terms Aq, 1 ≤ q ≤ Qa in the affine decom-
position Eq. (6.2.7) are non-standard integral operators (this is clear in Eq. (6.2.4)),
which implies that new dedicated assembly/matrix-vector product routines have to
be implemented in order to manipulate these non-standard integral operators. These
new routines are non-trivial, because special treatment is required to integrate the
singular kernel of some operator terms.

• the number of affine terms Qa can be quite large, which can compromise the effi-
ciency of the RB method, as reported in [39].

In the next section, we circumvent the first issue by proposing a non-intrusive approach.
We circumvent the second issue by constructing local – rather than global – affine approx-
imations.

6.2.2 Non-intrusive local affine approximations

In our method, a number of terms Q ≥ 2 is prescribed by the user. A non-intrusive local
affine approximation relies on J ≥ Q wavenumbers µ̂1 ≤ · · · ≤ µ̂J inside the range if
interest [µmin, µmax]. Upon these J wavenumbers, we construct the K = J −Q+ 1 sets

Tk = {µ̂k, . . . , µ̂k+Q−1}, k ∈ {1, . . . , K}, (6.2.9)

each of cardinality Q. We define the indicator function I : [µmin, µmax] → {1, . . . , K}
that maps each wavenumber µ to the index k such that Tk is the set of the Q points among
the µ̂j’s that are closest to µ.

This being set, we introduce for all k ∈ {1, . . . , K} the kth non-intrusive local affine
approximation as

∀µ ∈ [µmin, µmax], Ak(µ) =

Q∑
q=1

θkq (µ)A(µ̂k+q−1), (6.2.10)
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where the θkq ’s are wavenumber-dependent coefficients. As we shall see, Ak(µ) will only
be a good affine approximation for A(µ) locally for values of µ in the subdomain Dk =
I−1(k) = {µ | I(µ) = k}. In this section, we explain the construction process in detail.

The wavenumber-dependent coefficients

First, we explain how the wavenumber-dependent coefficients in Eq. (6.2.10) are defined
given J available wavenumbers µ̂1 ≤ · · · ≤ µ̂J . For this purpose, let µ ∈ [µmin, µmax] and
denote k = I(µ). Then θk(µ) = (θk1(µ), . . . , θkQ(µ))T ∈ CQ is defined by

θk(µ) = argmin
θ∈CQ

∥∥∥∥∥σ(µ)−
Q∑
q=1

θqσ(µ̂k+q−1)

∥∥∥∥∥
2

(6.2.11)

where ‖ · ‖2 denotes the euclidian norm in CQa . Equivalently, the wavenumber-dependent
coefficients satisfy

PTk [σ(µ)] =

Q∑
q=1

θkq (µ)σ(µ̂k+q−1), (6.2.12)

where PTk [·] denotes orthogonal projection from CQa onto the Q-dimensional subspace
ColSpan{σ(µ̂), µ̂ ∈ Tk}.

Construction using a localization procedure

We now provide an automatic procedure for selecting the wavenumbers µ̂1 ≤ · · · ≤
µ̂J . There are two phases: phase 1 selects Q + 1 wavenumbers using a classical greedy
strategy and phase 2 selects more wavenumbers following a locally adaptive strategy until
a prescribed tolerance is reached on the worst projection error.

Phase 1. The first phase consists in selecting a set of Q+1 wavenumbers using a classi-
cal greedy procedure driven by the projection error. Namely, at iteration J ≥ 1 a set CJ of
J wavenumbers is available. Thus, we can compute for all µ ∈ Ξ (where Ξ ⊂ [µmin, µmin]
is a discrete set) the vector σ(µ) and its orthogonal projection PCJ [σ(µ)] onto the J-
dimensional subspace ColSpan{σ(µ̂), µ̂ ∈ CJ}. We then enrich the set CJ by adding the
wavenumber µ̂? ∈ Ξ for which the projection error is maximal. We continue this greedy
selection procedure until Q+ 1 wavenumbers are selected. This procedure is summarized
by Alg. 6.1.

Phase 2. At the start of the second phase, Q + 1 wavenumbers are available from the
first phase. Thus, Eq. (6.2.9) defines two sets Tk, k = 1, 2. In this context, the indica-
tor function maps each µ to the integer k = I(µ) such that the projection of σ(µ) must
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Algorithm 6.1: Classical greedy (phase 1 of localization procedure)
Input : prescribed number of terms Q and a discrete set Ξ ⊂ [µmin, µmax]
Output: a set CJ = {µ̂j}1≤j≤J with J = Q+ 1.

Pick a random µ̂? ∈ Ξ ;
Set C1 = {µ̂?};
for J = 1, . . . Q do

Find µ̂? = argmax
µ∈Ξ

‖σ(µ)− PCJ [σ(µ)] ‖2 ;

Enrich CJ+1 = CJ ∪ {µ̂?} ;
end

be performed onto the Q-dimensional subspace ColSpan{σ(µ̂), µ̂ ∈ Tk}. Thus, for any
value of µ, the local projection error is given by ‖σ(µ) − PTk [σ(µ)] ‖2, with k = I(µ).
The locally adaptive strategy, summarized by Alg. 6.2, consists in selecting the wavenum-
bers that maximize the local projection error until a prescribed tolerance is reached on the
maximal local projection error.

Algorithm 6.2: Locally adaptive strategy (phase 2 of localization procedure)
Input : prescribed tolerance tol > 0, a set CJ = {µ̂j}1≤j≤J with J = Q+ 1 obtained by

Alg. 6.1
Output: enriched set CJ = {µ̂j}1≤j≤J

Set K = 2 and find µ? = argmax
µ∈Ξ

‖σ(µ)− PTk [σ(µ)] ‖2, where k = I(µ) ;

Compute ε = ‖σ(µ?)− PTk? [σ(µ?)] ‖2, where k? = I(µ?) ;
while ε > tol do

Enrich CJ+1 = CJ ∪ {µ̂?} ;
Update J ← J + 1 and K ← K + 1 ;
Find µ? = argmax

µ∈Ξ
‖σ(µ)− PTk [σ(µ)] ‖2, where k = I(µ) ;

Compute ε = ‖σ(µ?)− PTk? [σ(µ?)] ‖2, where k? = I(µ?) ;
end

Discussion

We have explained how local affine approximations in the form of Eq. (6.2.10) could be
constructed following an automatic procedure. At this point it is worth noticing that the
proposed construction only requires the ability to evaluate µ 7→ σ(µ), which, recalling Eq.
(6.2.8), exclusively relies on the knowledge of the functions gns

? , ? = 1, 2, 3 and associated
EIM interpolation matrices and interpolation points. Thus, the proposed construction is
completely independent from the discretization with N degrees of freedom.
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The rationale behind the proposed construction is the following [23]: at the end of Alg.
6.2, for any µ ∈ [µmin, µmax], the vector σ(µ) ∈ CQa can be approximated by its or-
thogonal projection PTk [σ(µ)] with k = I(µ) with an error smaller than the prescribed
tolerance tol. Replacing σ(µ) by PTk [σ(µ)] in the affine approximation for the CFIE op-
erator Ã(µ) given by Eq. (6.2.7) and recalling the expression Eq. (6.2.12) for PTk [σ(µ)],
we get

Ã(µ) =

Qa∑
q=1

σq(µ)Aq ≈
Qa∑
q=1

Q∑
p=1

θkp(µ)σq(µ̂k+p−1)Aq. (6.2.13)

Swapping the summations we obtain

Ã(µ) ≈
Q∑
p=1

θkp(µ)

Qa∑
q=1

σq(µ̂k+p−1)Aq =

Q∑
p=1

θkp(µ)Ã(µ̂k+p−1). (6.2.14)

Omitting the tilde in the RHS of Eq. (6.2.14) yields the non-intrusive local approximation
proposed in Eq. (6.2.10). The tilde can indeed be omitted, since Ã is – by design – a good
approximation for A. Ultimately, we obtain that A(µ) ≈

∑Q
p=1 θ

k
p(µ)A(µ̂k+p−1) which

corresponds to our initial non-intrusive local affine approximation statement Eq. (6.2.10).

6.2.3 Non-intrusive RB approximation

We propose a revisited version of the RBM, specifically tailored for non-intrusive local
affine approximations. As usual, a reduced basis is built using N solutions to the BEM
linear system A(µ)u(µ) = f(µ) at wavenumbers µ(1), . . . , µ(N) inside the range of in-
terest [µmin, µmax]. For convenience, let us index the wavenumbers in increasing order
µ(1) 6 · · · 6 µ(N). Rather than one global RB P ∈ CN×N spanning the N solutions, we
propose to build K nested RBs, in the sense that

Colspan(P1) ⊂ Colspan(P2) ⊂ · · · ⊂ Colspan(PK). (6.2.15)

For k > 1, let nk > 0 denote the number of wavenumbers among the N wavenumbers
µ(1), . . . , µ(N) which are in the kth subdomain Dk = {µ | I(µ) = k}. Thus, N = n1 +
· · · + nK . Notice that nk may be 0 if none of the wavenumbers µ(1), . . . , µ(N) is in the
subdomain Dk.

This being set, for k > 1 we propose to build Pk ∈ CN×(n1+···+nk) as the RB spanning
the n1 + · · · + nk solutions at the wavenumbers µ(1), . . . , µ(n1+···+nk). Notice that these
wavenumbers are in the union of the k first subdomains D1 ∪ · · · ∪ Dk. In particular for
k = K, the RB PK ∈ CN×N spans the N solutions at wavenumbers µ(1), . . . , µ(N).

Following standard practice of the RBM, the local RBs Pk are chosen BV -orthonormal
(i.e., P∗kBV Pk = I), where BV ∈ CN×N denotes the discretized inverse Riesz map.
Here, we consider BV to be the mass matrix with entries

∫
Γ
φj · φidΓ, 1 6 i, j 6 N ,
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where {φi}16i6N denotes the basis of our discrete approximation space V RT
h . This choice

amounts to measuring the members of V RT
h using the L2(Γ) norm.

For all µ ∈ [µmin, µmax] we define a local RB approximation uN(µ) ∈ CN as the solution
to the following least-squares optimization problem

uN(µ) = argmin
uN∈Colspan(Pk)

‖Ak(µ)uN − f̃(µ)‖2
B−1
W
, k = I(µ), (6.2.16)

where Ak(µ) is our non-intrusive local affine approximation given by Eq. (6.2.10) and
f̃(µ) is an affine approximation with Qf terms for f(µ), obtained by applying the EIM
to the plane wave Eq. (6.1.7). Here BW ∈ CN×N denotes the discretized inverse Riesz
operator on the test space (see chapter 1) and the ‖ · ‖B−1

W
norm is defined by ‖f‖B−1

W
=

(f∗B−1
W f)1/2 = ‖B−1

W f‖BW for all f ∈ CN . We recall that the discrete operators stem from
a Galerkin projection, consequently BW = BV is taken to be the mass matrix.

Clearly, the local RB approximation defined by Eq. (6.2.16) can be efficiently assembled
in no more1 thanO(N2Q2+NQQf ) and solved inO(N3) operations using a direct solver
following the usual offline/online strategy.

6.2.4 Greedy construction

Greedy RB generation frequency-sweep algorithm

The matrices Pk, 1 ≤ k ≤ K are built following the frequency-sweep procedure summa-
rized by Alg. 6.3.

At iteration k ≥ 1, the wavenumbers at which the BEM linear system A(µ)u(µ) = f(µ)
must be solved to serve as new basis functions are selected by successively maximizing
an error indicator µ 7→ δk(µ) over a discrete surrogate set covering Dk until a prescribed
tolerance is reached. Ideally, this error indicator should be a error estimator in the sense
of definition 5. For the sake of simplicity, we choose the residual norm (6.2.16) scaled by
a constant α̂, as explained in section 2.2.4. Thus our error indicator is given by

δk(µ) =
1

α̂

‖Ak(µ)uN(µ)− f̃(µ)‖B−1
W

‖uN(µ)‖BV
(6.2.17)

The advantage of this error indicator is that it can be efficiently computed following the
usual offline/online strategy, thus the maximum of µ 7→ δk(µ) over Dk can be efficiently
computed by evaluating δk(µ) for all µ in some discrete surrogate set covering Dk. Fur-
thermore, recalling chapter 2 this indicator is expected to provide a good estimation (al-
though not a rigorous bound) for the RB relative error ‖u(µ)− uN(µ)‖BV /‖u(µ)‖BV .

1the announced complexity corresponds to most computationally expensive scenario k = K, but the
complexity is smaller for k < K.
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Algorithm 6.3: Greedy RB generation frequency-sweep
Input : prescribed tolerance εrbrel > 0 and a discrete set Ξ ⊂ [µmin, µmax]
Output: Nested RBs Pk , 1 6 k 6 K.

Initialize P0 = [ ] and N = 0;
for k = 1, . . . , K do

Initialize Pk = Pk−1 and nk = 0;
Find µ? = argmax

µ∈Ξ∩Dk
δk(µ) ;

εrel ← δk(µ
?) ;

while εrel > tol do
Compute u(µ?) by solving the BEM;
BV -orthonormalize u(µ?) against the columns of Pk to obtain pnk+1 ;
Pk ← [Pk |pnk+1] and nk ← nk + 1 ;
Find µ? = argmax

µ∈Ξ∩Dk
δk(µ) ;

εrel ← δk(µ
?) ;

end
N ← N + nk;

end

Complexity analysis

We analyze the computational costs associated to algorithm 6.3 in terms of the two most
expensive tasks: system solves and matrix-vector products with the CFIE operator. The
number of system solves is of course N . The number of matrix-vector product can be
determined thanks to table 6.1. This table summarizes the matrix-vector product that
need to be computed in the first three iterations of the algorithm.

In the first iteration k = 1, each time a reduced basis function pi is computed (this happens
n1 times), the Q matrix-vector products A(µ̂1)pi, . . . , A(µ̂Q)pi need to be computed.
This means that n1Qmatrix-vector products are required in the first iteration k = 1. Next,
for k > 2, one starts to compute the block matrix product A(µ̂k+Q−1)Pk−1, where Pk−1 is
a block of n1+· · ·+nk−1 vectors. Then, each time a reduced basis function pi is computed
(this happens nk times), the Q matrix-vector products A(µ̂k)pi, . . . , A(µ̂k+Q−1)pi need
to be computed. Thus, the overall number of matrix operations is

• QN matrix-vector products;

• K − 1 block matrix-vector products with blocks of sizes n1, (n1 + n2), . . . , (n1 +
. . . , nK−1).
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A(µ̂1) A(µ̂2) A(µ̂3) ... A(µ̂Q) A(µ̂Q+1) A(µ̂Q+2)
p1 ? ? ? . . . ? � �
...

...
...

...
... | |

pn1 ? ? ? · · · ? � |
pn1+1 ? ? · · · ? ? |

...
...

...
...

... |
pn1+n2 ? ? · · · ? ? �

pn1+n2+1 ? · · · ? ? ?
...

...
...

...
...

pn1+n2+n3
? · · · ? ? ?

Table 6.1: Matrix vector products that need to be computed in the first three iterations
k = 1, 2, 3 of algorithm 6.3. Rows represent reduced basis functions pi and columns
correspond to operators A(µ̂j). The symbol ? on row pi and column A(µ̂j) indicates that
the matrix-vector product A(µ̂j)pi is computed. The sequence �−� on rows ranging from
pi to pi+` and column A(µ̂j) indicates that the block matrix- product A(µ̂j)[pi| . . . |pi+`]
is computed, where [pi| . . . |pi+`] is a block of ` vectors. Each color represents an iteration
of algorithm 6.3: k = 1 in red, k = 2 in blue and k = 3 in green.

A(µ̂1) A(µ̂2) A(µ̂3) ... A(µ̂Q) A(µ̂Q+1) A(µ̂Q+2)
p1 � � � . . . � � �
... | | | | | |

pn1 � | | · · · | | |
pn1+1 | | · · · | | |

... | | | | |
pn1+n2

� | · · · | | |
pn1+n2+1 | . . . | | |

... | | | |
pn1+n2+n3

� · · · � � �

Table 6.2: Matrix vector products that need to be computed with the monolithic construc-
tion in the case of K = 3 subdomains (using the notations from table 6.1).

6.2.5 Monolithic construction

In practice, the computational costs associated to the greedy construction of the RB can be
excessive. As we shall see in the numerical examples, the computational cost of the greedy
construction is dominated by theQmatrix-vector products required per basis function. We
analyze this situation as follows. At the kth iteration of the frequency sweep algorithm 6.3,
for all i ∈ {1, . . . , nk}, the ith iteration of the local greedy loop requires computing the
Q matrix-vector products A(µ̂k)pNk−1+i, . . . ,A(µ̂k+Q−1)pNk−1+i (here, we have denoted
Nk−1 = n1 + · · · + nk−1 for conciseness). Thus, if we look at the CFIE operator A(µ̂j)
with fixed index j ∈ {k, . . . , k+Q− 1}, the local greedy loop successively computes the
nk matrix vector products A(µ̂j)pNk−1+1, . . . ,A(µ̂j)pNk−1+nk .

138



CHAPTER 6. RBM FOR FREQUENCY SWEEPS WITH THE BEM

Rather than successively computing these nk matrix-vector products, a much better strat-
egy in terms of computational performance would be to directly compute the block matrix-
vector product A(µ̂j)[pNk−1+1| · · · |pNk−1+nk ]. Unfortunately, this is not possible because
the nk basis functions are not known in advance, as they are successively built one after
another following the greedy procedure.

This motivates an alternative construction which we choose to call the monolithic con-
struction and which is also sketched in [23]. The paradigm of the monolithic construction
is the following: the user pre-determines the number of CFIE solves and the values of
the wavenumber for which the CFIE is to be solved. We emphasize that this paradigm is
completely different from the paradigm of the greedy construction, where the user sets up
a desired level of accuracy and lets the algorithm choose how many wavenumbers and the
wavenumbers values at which to solve the CFIE. The advantage of the monolithic con-
struction is that, the basis functions being known in advance, the overall computational
performance can be enhanced with the use of block matrix-vector products.

Let N be the number of basis functions desired by the user and µ(1), . . . , µ(N) denote
the wavenumbers chosen by the user. Then, the monolithic construction consists in the
following:

1. successively solve the N BEM linear systems and determine (through a Gram-
Schmidt othonormalization procedure) the basis-functions p1, . . . ,pN ;

2. for all k = 1, . . . , K − 1, compute the block matrix-vector product A(µ̂k)Pk, with
block size n1 + · · ·+ nk;

3. for all q = 1, . . . , Q, compute the block matrix-vector products A(µ̂K+q−1)PK with
block size N .

This approach is summarized by table 6.2. Overall, the number of block matrix-vector
products is Q + K − 1, therefore independent from the size of the reduced basis N . The
block sizes in these block matrix-vector are however dependent on N , but as we shall
see in the numerical examples, this does not significantly deteriorate the performance.
Indeed, past an assembly phase (this is not necessarily a dense assembly of the matrix), it
is relatively cheap to compute a matrix-vector product with a large number of vectors.

6.3 Numerical illustrations

6.3.1 EFIE vs CFIE: tests on the unit sphere

We consider the EFIE and CFIE on the unit sphere Γ = {x ∈ R3, |x| = 1} and on the
frequency window 400− 600MHz.

To start with, we build non-intrusive local affine approximations for the EFIE and CFIE
operators. This is done by successively applying the EIM to each µ-dependent ker-
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nel. In this situation, the maximum distance between any two point on Γ is simply
rmax = 2. We use algorithm 1.1 with prescribed tolerance tolEIM = 10−5. The in-
terval [0, rmax] is discretized using 2000 uniformly distributed points while the interval
[µmin, µmax] ≈ [8.383, 12.575] is discretized using 1000 uniformly distributed points. We
obtain M1 = 10, M2 = 9 and M3 = 11. Thus the EFIE operator admits a traditional
affine decomposition of the form eq. (6.2.7) with Qa = 21 terms, while Qa = 34 for the
CFIE. We use our localization procedure algorithms 6.1 and 6.2 with prescribed number
of terms Q = 8 and tolerance tol = 10−2 and obtain a domain decomposition into K = 2
subdomains for both EFIE and CFIE operators.

For the right-hand side, we consider a direction d̂ = r̂(θ, φ) and a polarization d̂ =

φ̂(θ, φ) with fixed θ = π
2

and φ = π
4
, using the notations provided by fig. 6.2. For the

Figure 6.2: Conventions for the spherical coordinates.

plane wave eq. (6.1.7), we proceed as follows

eiµx·d̂ = eiµ|x| cos( x
|x| ,d̂). (6.3.1)

For general surface Γ, the functionx ∈ Γ 7→ |x| cos
(
x
|x| , d̂

)
takes values in [−Rmax, Rmax],

where Rmax = maxx∈Γ |x|. Thus, an affine approximation for the plane wave can be ob-
tained by applying the EIM to the function gRHS(R, µ) = eiµR defined on [−Rmax, Rmax]×
[µmin, µmax]. Notice thatRmax = 1 in the case of the unit sphere. Using algorithm 1.1 with
prescribed tolerance tolEIM = 10−5 and spatial and parameter intervals discretized with
1000 and 900 points respectively, we obtain an EIM approximant of gRHS with Qf = 10
terms.

After this preliminary work on the left and right-hand sides, we generate RB approxima-
tions. The truth BEM solutions are computed on a mesh withN = 6576 triangle elements
represented on fig. 6.3. Notice that the mesh did not come into play during the preliminary
work on the left and right-hand sides. We use the greedy frequency sweep algorithm 6.3
setting the prescribed tolerance to εrbrel = 5%. We obtain n1 = 3, n2 = 2 (thus N = 5) for
both EFIE and CFIE.

We validate our RB approximation by computing the BEM solutions u(µ) for 100 uni-
formly distributed points in [µmin, µmax] and checking the level of relative error ‖u(µ) −
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Figure 6.3: The unit sphere meshed with N = 6576 triangle elements.

uN(µ)‖BV /‖u(µ)‖BV . On figs. 6.4 and 6.5 we compare the exact relative error to our
heuristic indicator µ 7→ δk(µ) given by eq. (6.2.17).
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Figure 6.4: Relative error and indicator
w.r.t. frequency using the EFIE.
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Figure 6.5: Relative error and indicator
w.r.t. frequency using the CFIE.

Our heuristic indicator does not systematically coincide with the exact relative error in
the case of the EFIE. Indeed, we find our heuristic indicator unable to catch the strong
punctual discontinuities in the curve of the exact relative error (in red on fig. 6.4). The
reason for the jagged curve of the exact relative error in the case of the EFIE is to be
found in the presence of resonant frequencies where the inf-sup constant associated to the
EFIE operator is very small [81, 55]. Punctually, in the neighborhood of these resonant
frequencies, the exact relative error presents significant overshoots (reaching 17.9% at
434.7MHz, for instance). Unfortunately, our heuristic indicator fails to detect this and
provides estimations that are a too optimistic.

However, in the case of the CFIE we find the curve of the exact relative error to be quite
smooth and to coincide almost exactly with our heuristic indicator (see fig. 6.5). We
believe that is because the CFIE, in opposition to the EFIE, does not suffer from the
problem of resonances.

We conclude that, when it comes to construct RB approximations, the stable formulations
such as the CFIE are to be preferred over the potentially resonant formulations such as the
EFIE.

141



CHAPTER 6. RBM FOR FREQUENCY SWEEPS WITH THE BEM

6.3.2 Approximation of the CFIE operator on the geometry of a fighter
aircraft

We consider the CFIE on the geometry of a fighter aircraft shown on fig. 6.6. The size
of this aircraft is roughly 15m from nose to tail and about 8m wingspan. The surface
is meshed with N = 40, 005 triangular elements and the frequency window is 200 −
300MHz. Thus the rule of a thumb of 8 degrees of freedom per wavelength is satisfied.

Figure 6.6: Geometry of the fighter aircraft.

We explore the use of algorithms 6.1 and 6.2 to construct non-intrusive local approxima-
tion of the frequency-dependent CFIE operator A(µ). To this end, we first apply the EIM
to each µ-parametrized kernel, using rmax = 15.2 and prescribed tolerance tolEIM = 10−5.
We use 2000 uniformly distributed points for the spatial interval [0, rmax] and 1000 uni-
formly distributed points for the parameter interval [µmin, µmax] ≈ [4.191, 6.287]. We
obtain M1 = 16, M2 = 14 and M3 = 16. Thus the CFIE operator admits a traditional
affine decomposition of the form eq. (6.2.7) with Qa = 50 terms. We build non-intrusive
local affine approximations Ak(µ) under the form eq. (6.2.10) using our localization pro-
cedure setting the prescribed number of terms to Q = 6 and use various tolerances tol
ranging from 1.6 (which yields K = 2 subdomains) to 0.02 (which yields K = 9). We
evaluate the quality of the approximation A(µ) ≈ Ak(µ) by computing for some samples
of µ, the LHS approximation error given by

%k(µ) =
‖A(µ)v −Ak(µ)v‖B−1

W

‖v‖BV
, (6.3.2)

where v = u(µ) is the BEM system solution at the average frequency µ = 0.5(µmin +
µmax).

On fig. 6.7, we plot µ 7→ %k(µ) quantity for 50 uniform samples of µ for various pre-
scribed tolerances in the localization procedure algorithm 6.2. As expected, a smaller
prescribed tolerance yields a smaller LHS approximation error. Recalling that a new sub-
domain is created per iteration of algorithm 6.2, we find that each domain decomposition
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step contributes to decreasing the LHS approximation error. We find that the error de-
creases not only locally in the neighborhood of the point µ̂j that is added, but globally for
all values of µ in the interval. This is confirmed by fig. 6.8, where we plot the maximum
and median LHS approximation error with respect to the number of subdomains in the
domain decomposition. The convergence is exponential, with a constant rate for the me-
dian LHS approximation error. We notice that the convergence rate of the maximum LHS
approximation error is reduced after K = 5 subdomains.
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Figure 6.7: The LHS approximation error for various
prescribed tolerances in algorithm 6.2.
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Figure 6.8: Maximum (over µ) of
the LHS approximation error for
various number of subdomains.

6.3.3 RB approximations on the geometry of a fighter aircraft

To start with, we build non-intrusive local affine approximations Ak(µ) under the form
eq. (6.2.10) using our localization procedure setting the prescribed number of terms to
Q = 6 and tolerance tol = 0.1, which yields a domain decomposition of the frequency
window into K = 6 subdomains (see section 6.3.2). As right-hand side, we consider an
incident plane in the direction d̂(θ, φ) with θ = π/2 (which corresponds to the plane of
the wings) and φ = π/4 (using the spherical coordinates defined on fig. 6.2). The incident
plane wave is interpolated with Qf = 17 terms using EIM.

Greedy VS monolithic construction

To start with, we build a reduced basis using the greedy construction algorithm 6.3 setting
the prescribed tolerance to εrbrel = 2.1%. On 8 CPUs, this takes 16min25. We obtain
n1 = 6, n2 = 2, n3 = 2, n4 = 1, n5 = 2 and n6 = 2, thus N = 15. Figure 6.9 shows the
selected frequencies.

Next, we run the monolithic construction using the same N = 15 frequencies. On 8
CPUs, this takes 5min21. Figure 6.10 summarizes the elapsed for the main operations:
assembly of the right-hand side, matrix-vector operations with the CFIE operator, CFIE
solves, mass matrix-vector products and mass solves. The other operations essentially
consist in BLAS level 1 operations (i.e., dot products).
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Figure 6.9: Frequencies selected by the greedy frequency sweep algorithm 6.3 with pre-
scribed tolerance εrbrel = 2.1%.
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Figure 6.10: Elapsed times for the greedy and monolithic RB constructions for N = 15
reduced basis functions.

Clearly, the main difference between the greedy and monolithic construction is in the
elapsed time on CFIE matrix-vector products: 12min50 for the greedy versus 1min43 for
the monolithic construction. This is consistent with the number of CFIE matrix-vector
products: about QN +K − 1 = 95 for the former and Q+K − 1 = 11 for the latter.

Quality assessment

We validate our RB approximation by computing 41 truth solutions at 41 uniformly dis-
tributed frequencies. This takes 10min06 on 8 CPUs. Notice that this is faster than the
greedy construction (16min25), but about twice longer than the monolithic construction
(5min21).

Figure 6.11 shows the relative error µ 7→ ‖u(µ) − uN(µ)‖BV /‖u(µ)‖BV and heuristic
indicator µ 7→ δk(µ) given by eq. (6.2.17). We find the worst approximation error to
be 1.5%, which is slightly below the prescribed 2.1%. This confirms that the heuristic
indicator is successful. The frequencies with maximal error are located around 280MHz,
where no frequencies have been selected (see fig. 6.9). For further validation, we compare
on fig. 6.12 the monostatic Radar Cross Section (RCS) computed using the truth solution
u(µ) (black reference curve) or the RB approximation uN(µ) (magenta curve). Both
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Figure 6.11: Relative error and heuristic error indica-
tor for the greedy RB of size N = 15. Blue verti-
cal lines indicate subdomain boundaries, black verti-
cal lines indicate computed frequencies.
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Figure 6.12: Reference and RB
approximation of the Radar Cross
Section (RCS) for the greedy RB
of size N = 15.

curves are superimposed (even around the frequency 280MHz), which corroborates the
good approximation properties of the greedy RB.

Which N frequencies for the monolithic construction ?

Clearly, for the best performance, we want to use the monolithic approach rather than
the greedy approach. The logical question is which N frequencies should be used for
the monolithic construction? A good choice is of course to consider the N frequencies
selected by the greedy algorithm, but in practice, the greedy algorithm is too expensive due
to the cost of matrix-vector products, as shown on fig. 6.10. We consider two possibilities:

• consider N uniformly distributed frequencies,

• consider N frequencies adaptively selected by algorithm 6.4. This algorithm pro-
ceeds in two steps: first, select K − 1 frequencies lying slightly to the left of each
subdomain boundary. Then, select the next frequencies based on maximizing the
distance to all previously selected frequencies. This aims at reproducing a distribu-
tion of selected frequencies similar to what the greedy algorithm can produce (see
fig. 6.9).

We build two RBs of size N = 15 with uniformly distributed frequencies and with adap-
tively selected frequencies and assess the quality of each by computing the relative error.
As can be seen on fig. 6.13, the uniform distribution of frequencies leads to large over-
shoots in the relative error in the neighborhood of the boundary between D3,D4 (around
255MHz) and D5, D6 (around 270MHz), where the error exceeds 5%. These errors are
unacceptedly high. Indeed, we observe on fig. 6.15 that the RCS is deteriorated.

The RB using N = 15 frequencies by algorithm 6.4 does not suffer from this, as shown
on fig. 6.14. The error stays beneath 1.6% and we find on fig. 6.15 that this level of error
allows an accurate recovery of the RCS.
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Algorithm 6.4: Algorithm to select N wavenumbers for the monolithic construction.
Input : number of wavenumbers N , domain decomposition [µmin, µmax] = ∪Kk=1Dk,

with Dk = [µkmin, µ
k
max].

Output: a set SN = {µ(n)}1≤n≤N of N selected wavenumbers.

Set S0 = ∅;
for k = 1, . . . , K do

µ? = µkmax − 1
100

(µkmax − µkmin) ;
Enrich Sk = Sk−1 ∪ {µ̂?} ;

end
for n = K + 1, . . . , N do

µ? = argmax
µ∈[µmin,µmax]

min
µ′∈Sn
|µ− µ′| ;

Enrich Sn = Sn−1 ∪ {µ̂?} ;
end
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Figure 6.13: Relative error and heuristic er-
ror indicator for the RB with N = 15 uni-
form frequencies. Blue vertical lines indi-
cate subdomain boundaries, black vertical
lines indicate computed frequencies.

200 220 240 260 280 300
10

−4

10
−3

10
−2

10
−1

10
0

Frequency (in MHz)

re
la
ti
v
e
er
ro
r

Max / Mean re lat ive error ( in %)=1.6158/0.38399

 

 

Heuristic indicator

Exact relative error

Figure 6.14: Relative error and heuristic er-
ror indicator using N = 15 frequencies by
algorithm 6.4. Blue vertical lines indicate
subdomain boundaries, black vertical lines
indicate computed frequencies.

We conclude that algorithm 6.4 selects a better set of frequencies then the set of uniformly
distributed frequencies.

6.3.4 Broadband frequency-sweeps

We again consider the CFIE on the geometry of the fighter aircraft fig. 6.6 with 40, 005
degrees of freedom. We want to compute the RCS on the band 100− 400MHz. We have
seen in section 6.3.3 that a RB of size N = 15 was a good choice in order to recover a
precise approximation of the RCS on the band 200− 300MHz. Which is the best strategy
for broadband frequency-sweeps? We compare the following two strategies:
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Figure 6.15: Reference RCS and RB approximations using N = 15 uniformly distributed
or adaptively selected frequencies.

• strategy with multiple RBs: we build 3 distinct RBs: the first on 100−200MHz, the
second on 200− 300MHz and the third on 300− 400MHz;

• strategy with a unique RB: we build a unique RB for the full band 100− 400MHz.

Strategy with multiple RBs

For each band, we approximate the BEM operator using Q = 6 local terms and a pre-
scribed tolerance 10−1 in the localization procedure (which yields K = 6 subdomains).
We build RBs of size N = 15 using the monolithic construction with frequencies selected
by algorithm 6.4. The elapsed times for the construction of each RB are consigned in
table 6.3.

Band (Mhz) 100− 200 200− 300 300− 400 Total (i.e., 100− 400)
Elpased time (s) 680.63 321.79 275.26 1277.68

Table 6.3: Elapsed times for the construction of 3 RBs using monolithic construction with
N = 15.

We find that the construction time is about twice longer on the band 100 − 200MHz
than on the other two bands. This is due to the fact that we are using the matrix-vector
product accelerated with the FMM, which performs better when the mesh satisfies the ”8
wavelengths per element” rule of the thumb. The matrix-vector with FMM is especially
slow when the mesh is too refined, with occurs at the lower frequencies. Once the RBs
are constructed, computing the RCS values on 121 uniformly distributed frequencies in
the band 100 − 400MHz is inexpensive. For validation, we have computed the reference
RCS at these 121 frequency values in order to check that the RB approximations were
accurate (see fig. 6.16). It is worth noting that these 121 high-fidelity computations took
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2093 seconds. Thus, with no further optimization, the RB method provides a speed-up
factor of about 2.
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Figure 6.16: Reference RCS and RB approximations with the monolithic strategy with
N = 15 on the three bands: 100− 200, 200− 300 and 300− 400MHz.

We have checked that N = 15 for each band was the optimal choice: indeed, a RB with
N < 15 deteriorates the RCS and a RB with N > 15 means unnecessary computations.

Strategy with a unique RB

Since N = 15 reduced basis functions are needed per bandwidth of 100MHz, one would
be tempted to think that N = 45 basis functions would be needed for a bandwidth of
300MHz. If that were true, then the strategy of building a unique RB valid over a broad
band would bring no improvement over the strategy with multiple RBs. In fact, we are
able to build a unique RB over the broad band with much less thanN = 45 basis functions
and thus the strategy with a unique RB is potentially competitive. Intuitively, this is linked
to the fact that the basis functions from the band 100−200MHz are useful to approximate
the solutions on the rest of the band.

For the broadband 100−400MHz, we approximate the BEM operator using Q = 12 local
terms and a prescribed tolerance 10−1 in the localization procedure (which yields K = 12
subdomains). We start by building a RB of size N = 45. Since it provides an excellent
approximation of the RCS over the broadband, we build smaller RBs of decreasing sizes
N = 44, 43, 42, . . . until we find the optimally small RB, such that the RCS is captured
with good accuracy. Figure 6.17 shows the RCS computed with RBs of sizes N = 32, 30
and 28 and the comparison with the reference RCS.

The RCS computed with the RB of size N = 32 coincides with the reference RCS. The
RB of size N = 30 is in relatively good agreement with the reference, but the peak at
277MHz is not caught. With N = 28, the RB and reference RCS disagree not only at
277MHz but also at 240MHz. Clearly, RBs of size N < 32 are not able to properly
resolve the RCS.
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Figure 6.17: Reference RCS and RB approximations with the monolithic strategy with
N = 15 on the full band 100− 400MHz.

In terms of computational time, building the RB of size N = 32 takes 1805 seconds.
This is more than with the strategy with multiple RBs (1278 seconds), but still faster than
performing 121 high-fidelity computations (2093 seconds). However, we believe that the
strategy with a unique RB has great potential. Indeed, the number of CFIE solves and
matrix-vector products is smaller with the unique RB strategy than with the multiple RB
strategy. This is reflected on the elapsed times shown on fig. 6.18. Yet our current imple-
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Figure 6.18: Elapsed times for the strategy with a unique RB N = 32 and the strategy
with three RBs each of size N = 15.

mentation of the unique RB strategy spends about 30% of the elapsed time on non-critical
operations, more specifically on data transfer. In double precision, the storage of all the
necessary matrix-vector products A(µ̂j)pi (see table 6.2) requires 221MBytes in the case
N = 15 and 962MBytes in the case N = 32. Our code spends a significant amount of
time on reading data on the disk. We believe that this situation could be circumvented
by a more optimized implementation. Finally, the costs associated to operations with the
mass matrix seems to scale badly with N . The number of mass matrix-vector products
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explodes due to orthonormalization (here, we are using the stabilized method therefore
we orthonormalize not only the RB of size N but also the matrix Q with NQ columns,
see chapter 2), while the time elapsed on mass solves explodes because the block sizes
become large. This seems to be an incompressible cost of the proposed strategy with a
unique RB. A perspective to limit the block size would be to use localized, rather than
nested, reduced basis spaces with a maximum size N loc prescribed by the user [72].

6.4 Conclusions

In this chapter, we have proposed a non-intrusive reduced basis method for frequency-
sweep analysis with the BEM. The notion of non-intrusiveness is understood in the sense
of Casenave in [23], i.e., the BEM code is only called to perform matrix-vector opera-
tions and system solves with standard BEM operators such as the EFIE, MFIE and CFIE
that are introduced at the beginning of this chapter. In opposition to intrusive approaches
[39, 42, 111, 77, 89], the proposed approach does not rely on any non-standard BEM
operators and therefore it is not necessary to write new code for handling these, which
saves precious engineering time. This first originality of our work resides in the use of
non-intrusive local affine approximations, which rely on domain-decomposition of the
frequency window into subdomains and the approximation of the BEM operator per sub-
domain. We have proposed a construction essentially based on the EIM [5]. We empha-
size that our construction is completely mesh-free and therefore greatly differs (although
similar in purpose) from the matrix-DEIM type approaches [82, 15].

The second originality of our work is the use of nested reduced basis approximation
spaces. Thus, the size of the reduced basis increases with the frequency. In terms of
computational strategy, we have proposed two approaches: the greedy and monolithic ap-
proaches. The first automatically selects the frequencies to be computed and detects how
many frequencies have to be computed in order to reach a prescribed accuracy, the latter
is more efficient in terms of computational performance, but it requires the user to provide
the number and set of frequencies to be computed.

We conclude from numerical experiments that unconditionally stable formulations such as
the CFIE are to be preferred over formulations with resonant frequencies, because the RB
model is unable to detect the spurious modes. For the best computational performance,
we advocate the monolithic approach rather than the greedy approach.

Future work will be to find some heuristics for guiding the choice of the number of re-
duced basis functions that are needed for a given bandwidth and given radio-electric size
of the scattering object. This would enable the systematic use of the monolithic approach
with guaranteed accuracy of the reduced basis approximation. We further envisage the
construction of localized, rather than nested, reduced basis subspaces. This would cir-
cumvent the issue of the reduced basis size growing too rapidly with the frequency and
therefore allow a better control over the computational complexity.
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Chapter 7
Reduced basis method for aeroacoustic
liner optimization in a
discontinuous-Galerkin framework

Summary. This chapter is devoted to the application of the RBM for solving a parame-
trized problem in aeroacoustics. We want to solve the time-harmonic linearized Euler
equations with impedance boundary conditions using a discontinuous Galerkin scheme.
There are two varying parameters: the resistance and reactance, respectively the real and
imaginary parts of impedance. The final goal is to be able to efficiently find the optimal
impedance value, characterized by the best acoustic attenuation properties. The use of
the RBM in this context is illustrated on a 2D axi-symmetrical model problem as well
as on a 3D industrial aircraft engine nacelle problem. Significant speed-ups are obtained
compared to traditional simulation campaigns.
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7.1 Strong formulation and high-fidelity approximation

7.1.1 The time-harmonic linearized Euler equations

Let Ω ⊂ R3 be a bounded spatial domain. For all time t in R, fluid phenomena are
described using four functions: three functions ρ, e and p of the (x, t) variables in Ω ×
R and with values in R and one function v of the (x, t) variables in Ω × R and with
values in R3. These functions are called density, total energy, pressure and velocity field
respectively. These four functions are related through the following Euler equations

∂t


ρ
ρu
ρv
ρw
e

+ ∂x1


ρu

ρu2 + p
ρuv
ρuw

(e+ p)u

+ ∂x2


ρv
ρuv

ρv2 + p
ρvw

(e+ p)v

+ ∂x3


ρw
ρuw
ρvw

ρw2 + p
(e+ p)w

 = 0, (7.1.1)

where we have denoted v = (u, v, w)T the three velocity components andx = (x1, x2, x3)T

the three components of the spatial variable. The pressure is further related to density and
total energy by the perfect gas law

p = (γ − 1)

(
e− 1

2
ρ|v|2

)
, (7.1.2)

where |v| =
√
u2 + v2 + w2 denotes the euclidian norm of v and γ > 1 is the Laplace

constant.

Linearized Euler equations

In order to obtain the linearized Euler equations (LEEs) [58, 73, 53], the Euler equations
(7.1.1) are linearized around a given uniform steady flow. Only first-order perturbation
terms are taken into account. More precisely, denote (ρ0,v0, p0) the uniform steady flow
and (ρ1,v1, p1) the first-order dimensionless flow perturbation. Solution fields (ρ,v, p)
are sought under the form

ρ = ρ0 + ερ0ρ1 +O(ε2),

v = v0 + εc0v1 +O(ε2),

p = p0 + ερ0c
2
0p1 +O(ε2),

(7.1.3)
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with c0 =
√
γp0/ρ0 the speed of sound in the uniform steady flow, equal to around

340m/s in air at rest. We further assume that the perturbation is isentropic, that is p1 = ρ1.
Keeping only the first-order terms we find that the variable ϕ = (v1, p1)T satisfies [9]

∂tϕ+
3∑
i=1

Ai∂xiϕ = 0, (7.1.4)

with symmetric matrices

A1 =


u0 0 0 1
0 u0 0 0
0 0 u0 0
1 0 0 u0

 , A2 =


v0 0 0 0
0 v0 0 1
0 0 v0 0
0 1 0 v0

 , A3 =


w0 0 0 0
0 w0 0 0
0 0 w0 1
0 0 1 w0


(7.1.5)

Boundary conditions

Denote ∂Ω the boundary of Ω and n̂ : ∂Ω → R3 the outgoing unit normal. We denote
n̂ = (n1, n2, n3)T the three components of the unit normal. We now specify the boundary
conditions on ∂Ω. The boundary is split as into four parts

∂Ω = Γin ∪ Γout ∪ Γwall ∪ Γz, (7.1.6)

with a different boundary condition imposed on each part of the boundary, as shown on
fig. 7.1.

Γwall

Γz

Γin ΓoutSin Sout

Figure 7.1: Model geometry for the LEEs.

• Rigid wall boundary condition on Γwall: the fluid is not allowed to penetrate through
the boundary. Thus, the components of velocity tangential to Γwall must vanish [57],
i.e., v1 · n̂ = 0.

• Impedance boundary condition on Γz: this corresponds to an absorbing medium
(the acoustic liner), fully characterized by an acoustic impedance Z [70, 2]. This
boundary condition is expressed as p1 = Zv1 · n̂.

Remark. On the boundary Γz, the mean flow is assumed to satisfy the rigid wall boundary
condition v0 · n̂ = 0.
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In order to obtain proper in-flow and out-flow boundary conditions, the reflected waves
should be prevented from propagating back into the domain. In this work, we rely the
theory of characteristics [118, 43, 46, 119]. The flux on the boundary ∂Ω is first split
into incoming and outgoing waves using the hyperbolicity of the system. Indeed, the flux
matrix F =

∑3
i=1 A

ini (defined on the boundary ∂Ω) is real symmetric, thus there exists
an orthonormal matrix P such that F = PΛP T , where Λ is the diagonal matrix holding
the eigenvalues. We note that the sign of eigenvalues depends on the local mean flow
normal velocity v0 · n. We can split Λ = Λ+ + Λ−, where Λ+ (resp. Λ−) holds the
positive (resp. negative) eigenvalues. Similarly, the flux is split as F = F+ + F−, with
F± = PΛ±P T the flux of incoming (−) or outgoing (+) waves. This being set, we can
express the boundary conditions on Γin and Γout.

• In-flow boundary condition on Γin: on this boundary, a given fluid perturbation ϕin

defined on Γin is given. The in-flow boundary condition consists in suppressing the
outgoing waves and equaling the flux to the given incoming flux [57]. Mathemati-
cally, this corresponds to F−ϕ = F−ϕin.

• Out-flow boundary condition on Γout: this corresponds to an open boundary where
the fluid is free to flow outside of the domain. Such artificial non-reflecting bound-
ary condition is imposed in order to obtain a computationally bounded domain,
when the physical domain is in fact unbounded [116, 59]. The concern of such a
boundary condition is therefore purely numerical. Here, the outgoing waves are
kept while the incoming waves are suppressed [118, 43], which consists in the
boundary condition F−ϕ = 0 on Γout.

Time-harmonic regime

In this thesis, we further consider time-harmonic perturbation fields

p1(x, t) = <
{
p1(x)ejωt

}
, v1(x, t) = <

{
v1(x)ejωt

}
, (7.1.7)

thus the unknown functions are now the pressure perturbation amplitude p1 : Ω→ C and
the velocity perturbation amplitude v1 : Ω→ C3. We emphasize that these are complex-
values fields. Thus, the aeroacoustic problem is expressed as follows: find ϕ = (v1, p1)
solution to the time-harmonic LEEs

jωϕ+
∑3

i=1A
i∂xiϕ = 0 in Ω,

F−ϕ = F−ϕin on Γin,

p1 − Zv1 · n̂ = 0 on Γz,

v1 · n̂ = 0 on Γwall,

F−ϕ = 0 on Γout.

(7.1.8)

154



CHAPTER 7. RBM FOR AEROACOUSTIC LINER OPTIMIZATION

7.1.2 Discontinuous Galerkin scheme

In this section, we review the discontinuous Galerkin scheme that will be used to solve the
time-harmonic LEEs. The original method is presented in [35]. To start with, the physical
domain Ω is approximated by a computational domain Ωh, obtained by triangulation into
Nelt non-overlapping elements Th = {Te}16e6Nelt

Ω ≈ Ωh =

Nelt⋃
e=1

Te. (7.1.9)

We seek a high-fidelity approximation ϕh on the computational domain Ωh in the first-
order Lagrange approximation space

XDG
h = {ψh ∈ (L2(Ωh))

4 : ∀Te ∈ Th, ψh|Te ∈ (P1(Te))
4}. (7.1.10)

Local formulation

In order to discretize eq. (7.1.8), we consider an element Te ∈ Th and denote ϕeh = ϕh|Te .
Multiplying by a test function and integrating over the element gives∫

Te

jωϕeh ·ψe
hdΩ +

3∑
i=1

∫
Te

Ai∂xiϕ
e
h ·ψe

hdΩ = 0. (7.1.11)

In order to ensure the connection between elements, we need to impose flux conservation
across the interfaces between elements. This is done by adding a numerical flux term as
follows [35]∫

Te

jωϕeh ·ψe
hdΩ+

3∑
i=1

∫
Te

Ai∂xiϕ
e
h ·ψe

hdΩ+

∫
∂Te

F e(ϕ
e−
h ,ϕe+h ) ·ψe−

h dΓ = 0. (7.1.12)

Following the Discontinuous-Galerkin (DG) paradigm, discontinuities are allowed across
the interfaces between elements [101]; the numerical flux provides the link between the
interior and exterior traces, defined for x ∈ ∂Te asϕ

e−
h (x) = lim

y→x,y∈Te
ϕeh(y)

ϕe+h (x) = lim
y→x,y/∈Te

ϕeh(y).
(7.1.13)

The numerical flux depends on whether the element boundary ∂Te intersects or not with
the boundary ∂Ωh of the computational domain. If ∂Te∩∂Ωh 6= ∅, then the numerical flux
enforces the boundary conditions. For the part of the boundary that does not intersect with
the boundary, that is ∂Te \ (∂Te ∩ ∂Ωh), the numerical flux simply ensures the connection
between elements. Following [95], the fluxes are chosen as follows:
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• Interconnecting elements: an upwind numerical flux is used to interconnect the
elements, this corresponds to∫
∂Te\(∂Te∩∂Ωh)

F e(ϕ
e−
h ,ϕe+h ) ·ψe−

h dΓ =

∫
∂Te\(∂Te∩∂Ωh)

F−(ϕe+h −ϕ
e−
h ) ·ψe−

h dΓ,

(7.1.14a)
where we recall that F− = PΛ−P T is the flux of incoming waves.

• Rigid wall boundary condition: the numerical flux for the rigid wall boundary con-
dition on Γwall writes∫

∂Te∩Γwall

F e(ϕ
e−
h ,ϕe+h ) ·ψe−

h dΓ =

∫
∂Te∩Γwall

Mwallϕ
e−
h ·ψ

e−
h dΓ (7.1.14b)

where Mwall =

(
n̂⊗ n̂ −n̂
−n̂T 1

)
is a 4× 4 real matrix.

• Impedance boundary condition: the numerical flux for the impedance boundary
condition on Γz writes∫

∂Te∩Γz

F e(ϕ
e−
h ,ϕe+h ) ·ψe−

h dΓ =

∫
∂Te∩Γwall

Z − 1

Z + 1
Mβϕ

e−
h ·ψ

e−
h dΓ (7.1.14c)

where Mβ =

(
n̂⊗ n̂ n̂

−n̂T −1

)
is a 4× 4 real matrix.

• In-flow boundary condition: the numerical flux for the in-flow boundary condition
on Γin corresponds to an upwind numerical flux, interconnecting the interior trace
with the given in flow-perturbation ϕin, that is∫

∂Te∩Γin

F e(ϕ
e−
h ,ϕe+h ) ·ψe−

h dΓ =

∫
∂Te∩Γin

F−(ϕin −ϕe−h ) ·ψe−
h dΓ (7.1.14d)

• Out-flow boundary condition: the numerical flux for the out-flow boundary condi-
tion on Γout writes∫

∂Te∩Γout

F e(ϕ
e−
h ,ϕe+h ) ·ψe−

h dΓ =

∫
∂Te∩Γout

−F−ϕe−h ·ψ
e−
h dΓ (7.1.14e)

Global formulation

Using the local formulation eq. (7.1.12), valid over any element Te ∈ Th, a global DG
formulation can easily be obtained by summing over all elements in the triangulation Th.
Namely, the global formulation reads: find ϕh ∈ XDG

h such that

∀ψh ∈ XDG
h , a(ϕh,ψh) = f(ψh), (7.1.15)
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where a : XDG
h ×XDG

h → C is the continuous sesquilinear form defined by

a(ϕh,ψh) =
∑
Te∈Th

(∫
Te

jωϕeh ·ψe
hdΩ +

3∑
i=1

∫
Te

Ai∂xiϕ
e
h ·ψe

hdΩ

+

∫
∂Te\(∂Te∩∂Ωh)

F−(ϕe+h −ϕ
e−
h ) ·ψe−

h dΓ

+

∫
∂Te∩Γwall

Mwallϕ
e−
h ·ψ

e−
h dΓ

+

∫
∂Te∩Γz

Z − 1

Z + 1
Mβϕ

e−
h ·ψ

e−
h dΓ

+

∫
∂Te∩(Γin∪Γout)

−F−ϕe−h ·ψ
e−
h dΓ

)
,

(7.1.16)

and f : XDG
h → C is the continuous linear form defined by

f(ψh) =
∑
Te∈Th

∫
∂Te∩Γin

−F−ϕin ·ψe−
h dΓ. (7.1.17)

Denoting {wi}16i6N a basis for the first-order Lagrange approximation space XDG
h , we

may introduce the matrix A ∈ CN×N and vector f ∈ CN with coefficients

Aij = a(wj,wi), fj = f(wj), 1 6 i, j 6 N . (7.1.18)

Thus, the solution to eq. (7.1.15) is given by ϕh =
∑N

i=1 uiwi where u ∈ CN solves the
large-scale linear system Au = f . In our numerical simulations, we will use the FETI-
2LM domain decomposition method introduced in section 5.1.3 in order to efficiently
solve such large linear system on parallel architectures.

7.2 The RBM for liner optimization

7.2.1 The impedance-parametrized problem

In applied aeroacoustics, one solves the LEEs for pressure and velocity fields in order to
compute the energy density and acoustic intensity fields given by the formulas of Cantrell
& Hart [21], respectively

e =
p2

1

2ρ0c2
0

+
ρ0

2
|v1|2 + (v0 · v1)

p1

c2
0

,

i = p1v1 +
p2

1

ρ0c2
0

v0 + ρ0(v0 · v1)v1 +
p1

c2
0

(v0 · v1)v0.

(7.2.1)
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In this work, we wish to solve the discretized time-harmonic LEEs eq. (7.1.15) not just for
one impedance value, but for all possible values of impedance in a given set. The goal is
to be able to find the optimal impedance value Z? that maximizes the attenuation intensity
given by

C = 10log10

(∫
Sout

i · dS∫
Sin
i · dS

)
, (7.2.2)

where Sin, Sout are two control surfaces as shown on fig. 7.1. The optimal impedance
value Z? thus gives us the best absorbing properties [93].

In order to formulate the parametrized problem, let us introduce µ = (<(Z),=(Z))T as
our varying parameter, taking values in some compact set D ⊂ R2. Note that, rather
than one complex parameter, we treat two real parameters corresponding to the real and
imaginary parts of impedance. Under this parametrized setting, the sesquilinear form
defined by eq. (7.1.16) in fact depends on µ, thus a(·, ·) = a(·, ·;µ). Moreover, the
dependency in µ is trivially affine, since

a(·, ·;µ) = β(µ)a1(·; ·) + a2(·, ·), (7.2.3)

with β(µ) = (µ1+jµ2)−1
(µ1+jµ2)+1

the so-called reflection coefficient and a1 : XDG
h × XDG

h → C
defined by

a1(ϕh,ψh) =
∑
Te∈Th

∫
∂Te∩Γwall

Mzϕ
e−
h ·ψ

e−
h dΓ. (7.2.4)

This being set, the impedance-parametrized discretized LEEs read: find ϕh(µ) ∈ XDG
h

such that

∀ψh ∈ XDG
h , a(ϕh(µ),ψh;µ) = f(ψh). (7.2.5)

Clearly, this formulation fits the framework of section 1.1.4, with the correspondence
given by table 7.1.

Abstract setting Parametrized LEEs
V XDG

h

W XDG
h

µ µ = (<(Z),=(Z))
a(·, ·, µ) Equation (7.1.16)
f(µ) Equation (7.1.17)
u(µ) ϕh(µ)

Table 7.1: Correspondance between the parametrized LEEs and the general abstract set-
ting of section 1.1.4.
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Γrev

Γwall

Γwall
Γz

Γin
ΓoutSin

Sout

Figure 7.2: Geometry of the ALIAS test case

7.2.2 Results on the test case ALIAS

Description of the test case ALIAS

The test case ALIAS (Acoustic Liners for Air Conditioning Systems, see [93]) uses the
axi-symmetric 2D geometry depicted on fig. 7.2. An axi-symmetric revolution boundary
condition is enforced on the part of the border Γrev in order to simulate 3D flows on this
geometry [34].

The global number of degrees of freedom is N = 118 944. The problem is distributed
on 4 processors, with each processor handling a local number of degrees of freedom of
roughly 30 000. We have reported the local number of degrees of freedom per processor in
table 7.2. Notice that the sum of the local number of degrees of freedom is slightly larger

Process Number 1 2 3 4
Nb local DoFs 29 028 29 256 30 876 30 672

Table 7.2: Local number of degrees of freedom (DoFs) per processor for the test test
ALIAS.

than N . This is due to the redundancy of the degrees of freedom lying on the interface
between the subdomains, as explained in section 5.1.3.

The frequency is set to f = 1000Hz. On the in-flow, we impose a non-radial and 1st order
azimuthal acoustic duct mode (m,n) = (0, 1) [79, 100, 91, 92]. A visualization of the
truth pressure field at the impedance value Z = 0.5 + 5j is presented on fig. 7.3. Visually,
we see that the presence of the liner has little impact on the propagation of the acoustic
mode.

Two reduced basis approximation spaces

We consider impedance values Z such that <(Z) ∈ [−0.5, 5] ans =(Z) ∈ [−5, 5]. We
build two reduced basis approximation spaces, each of dimension N = 8: a ”Greedy RB”
approximation space, built using the Greedy algorithm 2.1 which automatically selects the
impedance values to be solved based on maximizing the residual-norm and a ”By hand
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Figure 7.3: Truth pressure field, Z = 0.5 + 5j.

RB” approximation space, for which we have manually selected the impedance values
to be solved. The solved impedance values for each RB are consigned in table 7.3. For
simplicity, we choose to measure the residuals in the euclidian norm denoted ‖ · ‖2.

Greedy RB <(Z) 1.000 0.500 0.500 0.500 0.500 0.500 0.500 0.500
=(Z) 0.250 −3.000 3.500 −0.833 1.062 −0.291 −1.645 1.875

By hand RB <(Z) 1.500 4.000 2.750 2.750 2.750 2.750 2.750 2.750
=(Z) 0.000 0.000 −4.000 −3.000 −2.000 2.000 3.000 4.000

Table 7.3: Two reduced basis approximation spaces for the test case ALIAS.

We find that the Greedy algorithm mostly selects impedance values with <(Z) = 0.5,
which coincides with the smallest admissible <(Z). We note that at the interface between
the rigid wall and impedance boundary conditions, the impedance value drops from in-
finite to finite: thus the impedance values <(Z) = 0.5 are associated with the largest
discontinuities.

Online, we compute the Least-Squares RB approximations for 4066 different values of
Z on a 38 × 107 grid. For all these values of Z, we compute the attenuation intensity
C = C(Z) given by eq. (7.2.2). We obtain the two attenuation intensity maps shown on
figs. 7.4 and 7.5. The two are essentially indistinguishable and allow quick identification
of the optimal impedance value, namely Z? = 0.5 + 0j.

At the 4066 different values of µ = (<(Z),=(Z)) computed online, we also compute our
heuristic indicator µ 7→ ‖A(µ)uN(µ)−f‖2/(α̂‖uN(µ)‖2), which is expected to provide a
good approximation for the RB relative error ‖u(µ)− uN(µ)‖2/‖u(µ)‖2 (see chapter 2).
We obtain the two estimated relative error maps shown on figs. 7.6 and 7.7. These two
estimated error maps are drastically different. The Greedy RB estimates a level of error
of roughly 0.2% over the set of impedance values (maximum 0.32%), with local improve-
ments in the neighborhood of the impedance values which have been solved for the re-
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Figure 7.4: Attenuation intensity map
using Greedy RB.

Figure 7.5: Attenuation intensity map
using By hand RB.

Figure 7.6: Estimated relative error map
using Greedy RB.

Figure 7.7: Estimated relative error map
using By hand RB.

duced basis. For the By hand RB, we estimate very low errors across the set of impedance
values, with maximum at the impedance values 0.5 6 <(Z) 6 1 and |=(Z)| < 3 where
the level of error is expected to be around 0.5% (maximum 0.59%). We insist that the two
maps figs. 7.6 and 7.7 represent the estimated relative errors and not the actual relative er-
rors. At this stage, we have no guarantee that the two coincide. The upcoming validation
phase will give us more insight on the predictive power of these estimated relative error
maps.

We show the truth pressure field at the optimal impedance value on fig. 7.8. In opposi-
tion to fig. 7.3, the presence of the acoustic liner strongly impacts the propagation of the
acoustic mode, as the pressure perturbation is almost vanished.
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Figure 7.8: Truth pressure field at optimal impedance value Z? = 0.5 + 0j.

Visually, our two RB approximations of the pressure field at the optimal impedance value
are essentially indistinguishable from the truth pressure field plotted on fig. 7.8. However,
none of our two RB approximations recover the truth pressure field exactly. We define
the RB approximation error in the pressure field as |pDG − pRB|, where pDG denotes the
truth pressure and pRB the RB approximation of pressure. We plot this quantity on fig. 7.9
(Greedy case) and fig. 7.10 (By Hand case).

Figure 7.9: RB approximation error in the pressure field at optimal impedance value
Z? = 0.5 + 0j using the Greedy RB.

We find that the choice of the RB (Greedy or By hand) strongly impacts the RB ap-
proximation error in the pressure field. The Greedy RB approximation error is smallest
upstream and downstream the liner, whereas it is largest in the vicinity of the liner. In
opposition, the By hand RB approximation error is largest downstream the liner and is
maximal at the junction between the outflow and axi-symmetrical boundary conditions.
Moreover, we find that the By hand RB approximation error is not as smooth as the Greedy
RB approximation error. We believe that the By Hand RB is less fit than the Greedy RB in
approximating the field at the optimal impedance value Z? = 0.5 + 0j, because the truth
solves performed by Greedy are at impedance values closer to Z? than the ones manually
selected for the By hand RB (see table 7.3).
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Figure 7.10: RB approximation error in the pressure field at optimal impedance value
Z? = 0.5 + 0j using By Hand RB.

7.2.3 Validation campaign on the test case ALIAS

For the sake of validation, we compute the truth solutions u(µ) at 500 randomly distributed
impedance values µ = (<(Z),=(Z)). This represents a significant computational effort
(elapsed time ≈ 45min on 4 processors). We compute the Greedy RB approximation
uN(µ) for the same values of µ, at negligible computational costs (elapsed time ≈ 2secs).
In terms of computational performance, computing the RB solution is three orders of
magnitude faster than computing the truth solution.

The effectivity index is defined as the ratio between the heuristic indicator and the relative
error, i.e.,

eff(µ) =
‖A(µ)uN(µ)− f‖2/(α̂‖uN(µ)‖2)

‖u(µ)− uN(µ)‖2/‖u(µ)‖2

. (7.2.6)

Figure 7.11 shows the effectivity index in the (<(Z),=(Z)) plane for the 500 values of
µ. The distribution of the effectivity index is shown on fig. 7.12. We find the effectivity
to be always greater than 1, which means that the heuristic indicator never underestimates
the relative error. The relative error is overestimated by a factor comprised between 1.5
and 4, thus the heuristic indicator always catches the correct order of magnitude. We
observe that the larger values of the effectivity index are located at impedance values Z
with =(Z) > 0. This suggests that the inf-sup constant µ 7→ α(µ) (of which α̂ is a rough
estimation) has a dependency in µ.

In view to catching this effect, we have tried to incorporate a dependency in µ in the
constant α̂ using radial basis function (RBF) interpolant as explained in section 2.2.4.
Unfortunately, the matrix system to be solved for RBF interpolant was found to be sin-
gular. The reason for the non-invertibility of the matrix system to be solved for the RBF
interpolant is the lack of information in the region <(Z) > 0.5. Indeed, the impedance
values selected by the Greedy algorithm at the iterations 2, . . . , N are all located on the
axis <(Z) = 0.5 (see table 7.3), therefore the behavior in the region <(Z) > 0.5 can only
be extrapolated and not interpolated.
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Figure 7.11: The effectivity index in the
(<(Z),=(Z)) plane.
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Figure 7.12: Distribution of the effectiv-
ity index.

7.3 The RBM applied to a 3D nacelle engine

7.3.1 Problem description

This application consists in optimizing the acoustic liners of an aircraft engine nacelle. We
specifically consider the noise generated by the fan, thus our focus is on the acoustic liners
mounted on the walls of the aircraft inlets (for a detailed description of liners mounted on
aircraft nacelles, see [11]).

Figure 7.13: Mesh of the inlet of an air-
craft engine nacelle.

Γout

Γin

Γwall

Γz

y

x

SoutSin

Figure 7.14: Schematic view showing
boundary conditions and control sur-
faces.

We use the 3D geometry shown on figs. 7.13 and 7.14. Notice that there are no symmetry
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planes in this geometry, because for design reasons the upper wall is slightly longer than
the lower wall on which the liners are mounted (see fig. 7.14). This asymmetrical feature
of aircraft inlets makes it necessary to perform the simulations in 3D. The frequency is
set to f = 587Hz, which corresponds to a frequency at which peak noise attenuation is
desired [63]. On the in-flow (inside the duct, where the fan is located see fig. 7.14), we
impose a non-radial, 4th order azimuthal acoustic duct mode (m,n) = (0, 4) [100, 92].

Taking into account the number of vertices in the mesh and a DG order p = 2, the overall
number of degrees of freedom is N = 7, 944, 600. For the best computational perfor-
mance, the problem is distributed on 1024 processors, with each processor handling about
∼ 7, 750 degrees of freedom. The accuracy of the FETI-2LM solver is set so that the truth
solution u(µ) satisfies the criterion ‖A(µ)u(µ) − f‖2/‖f‖2 < 10−5. In this situation,
the computation of a truth solution for a given impedance value µ takes about ∼ 4min,
thus only about a dozen impedance values can be solved in an hour. In this context, the
estimated cost of the attenuation intensity map for a 31 × 91 grid of impedance values is
188 hours – almost 8 days!

7.3.2 Reduced basis approach

We let the greedy algorithm run up to a RB of size N = 8, using a 25×25 grid in order to
discretize the parameter set D = [−0.5, 5]× [−5, 5]. The selected impedance values are
consigned in table 7.4. Similar to the ALIAS test case, we find that the greedy algorithm
mostly selects impedance values with <(Z) = 0.5. The convergence curve showing the
maximum residual norm throughout the greedy iterations is plotted on fig. 7.15. The decay
of the maximum residual norm is clearly exponential, which confirms that the present
reduced basis is relevant.

N <(Z) =(Z)
1 2.750 0.000
2 0.500 0.000
3 0.500 −2.916
4 0.500 −1.250
5 0.500 3.333
6 0.500 −0.833
7 0.500 0.833
8 0.500 −5.000

Table 7.4: Impedance values selected by
the greedy algorithm applied to the inlet
of the aircraft engine nacelle.
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Figure 7.15: Maximum residual norm
throughout the greedy algorithm applied
to the inlet of the aircraft engine nacelle.

Figure 7.16 provides more details on the convergence history, showing the residual plotted
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in the (<(Z),=(Z)) plane per greedy iteration. This confirms that the enrichment of the
RB with a truth solution u(µ?) does not only improve the quality of approximation locally
in the neighborhood of µ?, but rather it improves the quality of approximation globally
across parameter space. This is particularly spectacular upon adding the 5th truth solution
at µ? = (0.5, 3.333) to the RB, where we find the residual norm to drop even in the two
regions <(Z) > 4 and =(Z) < −4 which are very distant from µ?. Note that this is also
reflected in the convergence curve fig. 7.15, where the maximum residual norm drops
from 4.05× 10−3 at N = 4 to 9.14× 10−4 at N = 5.
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Figure 7.16: The RB residual norm in the (<(Z),=(Z)) plane for the aircraft engine
nacelle with RBs of size N = 1, . . . , 8.

Now that a RB of size N = 8 is at hand, we efficiently compute the attenuation inten-
sity map for a 31 × 91 grid of impedance values (see fig. 7.17) and identify the optimal
impedance Z? = 1.1 + 0.111j.

Figure 7.18 shows the pressure fields in the rigid case (i.e., this corresponds to the absence
of the liner, modeled by a rigid wall boundary condition) and in the presence of the optimal
liner with impedance Z?. Clearly, the liner is able to drastically reduce the amplitude of
the duct mode.

In terms of computational costs, the overall elapsed time is 38min on 1024 processors,
taking into a account the offline phase during which the RB is constructed (with N = 8
high-fidelity solves) and the online phase during which the RB solver is evaluated 2, 821
times on a 31 × 91 impedance grid and associated attenuation intensities are computed.
Note that, for the same budget (38min on 1024 processors), one would have been able to
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Figure 7.17: Attenuation intensity map for the aircraft engine nacelle, with greedy RB of
size N = 8.

Figure 7.18: Pressure fields: rigid (wall BC) versus optimally lined (impedance BC with
optimal impedance Z? = 1.1 + 0.111j)

evaluate only about ∼ 10 truth solutions and associated attenuation intensities! Thus, the
RBM provides a considerable speed-up.
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7.3.3 Validation campaign

In opposition to the ALIAS test case, the computation of 500 truth solutions at 500 sam-
pled impedance values is too computationally expensive (this would require about 2 days
on a supercomputer with 1024 processors). For validation, we choose to compute only
5 truth solutions at chosen impedance values. Namely, we choose to compute the truth
solutions at the optimal impedance value Z? = 1.1 + 0.111j as well as 4 neighboring
values. Table 7.5 shows the relative error between the truth and RB solution at these 5
impedance values, which is of the order of 0.06%. This takes into account the error on
both velocity and pressure fields integrated over the whole computational domain.

Z ‖u− uN‖/‖u‖ ‖AuN − f‖/(α̂‖uN‖) |C − CN |/|C|
1.1 + 0.111j 6.94× 10−4 7.31× 10−4 1.13× 10−4

0.8 + 0.333j 6.89× 10−4 7.31× 10−4 2.61× 10−4

0.8− 0.111j 7.82× 10−4 8.79× 10−4 1.70× 10−4

1.4 + 0.333j 5.42× 10−4 5.37× 10−4 1.21× 10−4

1.4− 0.111j 5.91× 10−4 6.07× 10−4 7.81× 10−5

Table 7.5: Relative error on the reconstructed solution, heuristic error indicator and rela-
tive error on the attenuation intensity for 5 impedance values using a RB of size N = 8.

The difference between the pressure fields pDG computed with the high-fidelity FETI-
2LM solver and pRB computed with the RB solver at the optimal impedance value is
plotted on fig. 7.19. We have checked that the maximum amplitude of the error field
|pDG− pRB| does not exceed 0.08% of the maximum amplitude of the truth pressure field
pDG (compare the scales of fig. 7.19 and fig. 7.18). In opposition to the ALIAS test case,
the error is not localized in the neighborhood of the liner as we find contributors to the
error all across the flow.

The second column of table 7.5 gives the estimated relative error using the heuristic error
indicator. During the greedy algorithm, 7 ratios between residual and error have been
sampled. Computing the mean and variation coefficient, we find α̂ = 0.08022 ± 24.9%.
Here, the situation is similar to the ALIAS test case (see section 7.2.3), where the RBF
interpolant cannot be computed because all the selected values of impedance have the
same real part, consequently the only available information is the mean value α̂. Still, we
find excellent agreement between the heuristic error indicator and the exact relative error
with effectivities very close to 1.

Finally, let us compare the truth attenuation intensity C(Z) (obtained by post-processing
the truth solution) to the RB attenuation intensity CN(Z) (obtained by post-processing
the RB approximation). The relative errors on the attenuation intensity at 5 impedance
values are given in table 7.5. We find relative errors of about 0.02%. Thus, the RB
attenuation intensity is very accurate, in fact, more accurate than the RB pressure and
velocity fields. We suggest that this may be due to the fact that the attenuation intensity,
as defined by eq. (7.2.2), is obtained by integrating the acoustic intensity field over the two
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Figure 7.19: Error |pDG − pRB| in the pressure field using a RB of size N = 8 at the
optimal impedance Z? = 1.1 + 0.111j.

control surfaces Sin and Sout (see fig. 7.14). As can be seen on fig. 7.19, the maximum
errors on the pressure field are not nearby these two control surfaces, thus the maximum
errors are ”invisible” (i.e., they are not taken into account) in the process of calculating
the attenuation intensity.

7.4 Conclusions

In this chapter, we have applied the RBM to the time-harmonic linearized Euler equations
with parametrized impedance boundary condition. Thanks to the RBM, we have been
able to obtain the acoustic pressure and velocity fields at a multitude of impedance values
at very low costs and with good accuracy. Thus, the attenuation intensity map could
be efficiently computed and the optimal impedance value could be rapidly and reliably
identified. Furthermore, the accuracy of the attenuation intensity was even better than that
of the reconstructed pressure and velocity fields due to integration over small parts of the
computational domain.

This strategy has been illustrated on the ALIAS model problem with roughly 100, 000
degrees of freedom and on the aircraft engine nacelle with about 8, 000, 000 degrees of
freedom. Both applications take advantage of massively parallel supercomputers. In this
context, the RBM proves to be very successful and enables significant speed-ups, yielding
the results of a simulation campaign of 8 days in less than an hour!
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The current implementation only deals with the time-harmonic linearized Euler equations,
which is quite restrictive when it comes to industrial applications (this model is only
relevant for the study of the noise generated by the fan, which is the application considered
in this chapter). A perspective (far beyond the scope of this thesis) would be to generalize
the RB approach to the non-linear, time-dependent Euler equations, in order to able to
study and optimize the jet noise in aircraft engine nacelles. A shorter term perspective
would be to incorporate the frequency as an additional parameter in the time-harmonic
LEEs, thus the parameter would be a 3-dimensional parameter and we would be able to
optimize the impedance for a frequency band, rather than for a fixed frequency. In this
perspective, the acoustic duct mode, which is frequency-dependent, would have to be
approximated using EIM in order to maintain the efficient offline/online decoupling of
the reduced basis method.
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Conclusions and perspectives

The purpose of this work

In computational electromagnetism, many applications require repeated numerical solu-
tions of the time-harmonic Maxwell’s equations over a frequency band. Similarly, in
computational aeroacoustics, the optimization of a liner requires repeated numerical solu-
tions of the time-harmonic linearized Euler equations for a vast set of impedance values.
In both fields, there is a great interest in numerical methods for rapidly and reliably com-
puting the solution of a PDE for multiple parameter queries.

Model order reduction techniques are particularly well suited for this purpose. In this
thesis, we specifically considered the reduced basis method, which approximates the PDE
solution at any parameter query using a linear combination of a small number of high-
fidelity solutions computed for a small set of well-chosen parameter values. We aimed at
defining the most efficient reduced basis strategies: (i) in terms of computational perfor-
mance and (ii) with guaranteed bounds on the reduced basis approximation error.

Our contributions

A heuristic error estimation strategy. The traditional error estimation approach relies
on lower bounds for the inf-sup stability constant. When the inf-sup stability constant
has minor or very smooth dependency on the parameter, we proposed to simply replace
the costly lower bounds for the inf-sup stability constant by an inexpensive quantity com-
puted during the greedy iterations using the ratios between residual and error. We have
shown throughout this thesis that this heuristic method provides excellent results for un-
conditionally stable time-harmonic problems.

Dual natural-norm error estimators. The traditional error estimator based on the inf-
sup stability constant is well-known to significantly overestimate the error when the inf-
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sup stability constant is very small, which typically occurs close to the resonant parame-
ters in close-to-degenerate problems. We introduced a dual-natural norm and derived dual
natural-norm error estimators characterized by a O(1) stability constant, thus very effec-
tive. We illustrated our approach on a Helmholtz problem exhibiting resonant behaviors
and significantly improved the traditional inf-sup-based error estimator.

The reduced basis method with multiple sources. In chapter 4, we discussed the adap-
tation of the reduced basis method for applications featuring multiple sources. We pro-
posed to enrich the reduced basis not with just one basis function, but rather with a block
of basis functions associated to the first eigenvectors of the residual operator. This strat-
egy could reduce the overall number of operator factorizations required for constructing
the reduced basis.

A non-intrusive reduced basis method for frequency-sweeps with surface integral
equations. In chapter 6, we presented an original reduced basis strategy for efficiently
solving scattering problems in the context of multiple frequency queries. Our contribution
includes the use of domain decomposition of the frequency window for mitigating the
overall costs of the reduced basis method. The proposed method is non-intrusive and thus
easily compatible with state-of-the-art methods such as the fast-multipole method. The
potential of our method is demonstrated on numerous numerical examples.

Industrial applications. This thesis provides real-world industrial applications of the
reduced basis method employed with various discretization techniques (edge finite ele-
ments, boundary elements and the discontinuous-Galerkin method). In our antenna and
aeroacoustic applications, we tackled problems featuring millions of degrees of freedom
using domain decomposition techniques in order to make the best use of parallel com-
putational resources. In our electromagnetic scattering application, we went far beyond
the academic example of the sphere, showing real-world examples on aircraft geome-
tries and with matrix-vector products accelerated with the state-of-the-art fast-multiple
method. Our results illustrate the benefit of the reduced basis method on large-scale con-
figurations.

Perspectives of this work

We now discuss the remaining open questions and outline future work from both theoret-
ical and algorithmic points of view.

Certifying the heuristic. We proposed to sample the ratios between residual and error
throughout the greedy iterations in order to build a heuristic error indicator. In some
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situations, this method proved to be relevant. So far, we have no a priori knowledge on
the potential success of this heuristic. It would be nice to find easy-to-verify hypotheses
under which the success of this method could be guaranteed.

Computational costs associated with stability constants. Rigorous certification of the
reduced basis approximation traditionally relies on the computation of lower bounds for
some parameter-dependent stability constants, i.e., either the inf-sup constant or the pri-
mal/dual natural-norm constant. As shown in this thesis, the systematic use of the SCM
for approximating these lower bounds is exceeding time and resource-consuming due to
repeated solutions of large-scale generalized eigenvalue problems. The hierarchical or
randomized error estimation approaches [51, 114], which do not rely on any stability con-
stants, could be further investigated to avoid the heavy computational costs associated
with the approximation of stability constants.

Localized reduced basis method for broadband applications. The use of localized
reduced basis approximation spaces is a logical next step to be able to address large band-
widths in our frequency-parametrized applications. Rather than constantly increasing the
basis size, which deteriorates both offline and online performances, the user would be
able to prescribe a desired maximal basis size [72]. We expect this strategy to be partic-
ularly efficient for frequency-parametrized surface integral equations. Indeed, this would
limit the number of right-hand sides per matrix-vector product, which is one of the main
bottlenecks due to the fully-populated nature of integral operators even when efficient
acceleration methods such as FMM are used.

More parameters and more sources. In real-world radar applications, the frequency
is usually not the only parameter that varies. The development of stealth technologies
for example typically requires to illuminate the scattering object with plane waves in all
possible directions. Using the ideas of chapter 4, future work will be to incorporate the
direction of the plane wave in a block formulation and to solve a frequency-parametrized
block problem. This would enable an efficient computation of the radar cross section over
a frequency band and for plane waves propagating in multiple directions. In our aeroa-
coustic applications, future work will consist in adding the frequency as an additional
parameter in order to be able to optimize the fan noise over a frequency band, rather than
at a fixed frequency.

Concluding remarks

Many applications in aeroacoustics and electromagnetism require the solutions of a linear
PDE for a vast set of parameter values. We have shown in this work that the reduced basis
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method is well suited for these complex industrial applications as it significantly reduces
computational times while maintaining a very high level of accuracy.

The contributions presented in this thesis extend the reduced basis method for linear
parametrized linear equations, with the potential to rapidly and reliably solve large-scale,
time-harmonic problems for multiple sources and with varying parameters for various
applications in the field of acoustic and electromagnetic wave propagation.
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Appendix A
Methods for solving large-scale
generalized eigenvalue problems

A.1 Context

In this appendix, we present some algorithms to solve the smallest eigenvalue in the gen-
eralized eigenvalue problem{

Find (λ,v) ∈ R× CN \ {0} such that
Hv = λXv,

(G.E.P.)

where H, X are hermitian matrices and X is positive definite. We focus on iterative
methods, which are of particular interest in the context of large-scale eigenvalue prob-
lems, since they only require the ability to perform system solves and/or matrix-vector
products with the matrices H, X.

Remark. In the situation where H = A∗B−1A (see Chapter 2), the matrix H should of
course never be assembled: each matrix-vector product u← Hv should consist in

1. computing the matrix-vector product u← Av;

2. solving the problem By = u for y;

3. and finally computing the matrix-vector product u← A∗y.

Similarly, to solve Hv = u for v, one should

1. solve the adjoint problem A∗v = u for v;

2. compute the matrix-vector product y← Bv;

3. and finally solve Av = y for v.
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A.2 Inverse iteration

The first method consists in a power iteration method with the inverse operator H−1. The
computational procedure is summarized by algorithm A.1. It converges to the smallest
eigenpair (λ(1),v(1)) unless the starting vector v0 ∈ CN verifies v∗0Xv(1) = 0, which
does not happen in practice when considering a random starting vector [90].

Let us rapidly discuss the computational complexity. At each iteration, there is one call to
the solver H−1 and two calls to the matrix-vector product with X (the product Xvk−1 and
the product Xwk that serve to form ‖wk‖X and to form Xvk required to compute εk+1).

Algorithm A.1: Generalized inverse iteration algorithm (adapted from [90], Chapter 4)
input : Starting vector v0 ∈ CN , tolerance tol and maximum number of iterations kmax

output: Approximate smallest eigenpair (λk,vk)

Initialize k ← 1, ε1 ←∞ ;
while k ≤ kmax and εk > tol do

Solve Hwk = Xvk−1 for wk;
vk ← wk/‖wk‖X;
λk ← v∗kXvk−1/‖wk‖X;
εk+1 ← ‖vk−1 − vk‖X;
k ← k + 1;

end

A.3 Lanczos method

The second method, the Lanczos method, relies on the construction of a Krylov subspace,
either

Km(H,v0) ≡ Span{v0,Hv0, . . . ,H
m−1v0}

for direct Lanczos, or Km(H−1,v0) for inverse Lanczos, m being the number of Lanczos
iterations and v0 ∈ CN some starting vector. This method converges to m eigenpairs
(λ(j),y(j)), j ∈ {1, . . . ,N}. In practice, the extreme eigenpairs (i.e., smallest and largest)
are first to converge [90].

The computational procedure of the direct Lanczos is summarized by algorithm A.2. The
output is an approximation for the smallest eigenvalue. If one is interested in comput-
ing an approximation of the associated generalized eigenvector v(1), with normalization
‖v(1)‖X = 1, one can proceed by computing the Ritz vector vk as

vk = Qks
(1)
k ,
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where Qk = [q1 q2 · · ·qk] ∈ CN×k and s
(1)
k ∈ Ck denotes the 1st column of the matrix

Sk. The matrix Qk holds the X-orthogonal basis (i.e., such that Q∗kXQk = I) of the
Krylov subspace Kk(H,u1), while s

(1)
k is the eigenvector of Tk associated to the smallest

Ritz value θ(1)
k , i.e., Tks

(1)
k = θ

(1)
k s

(1)
k , with normalization ‖s(1)

k ‖2 = 1. Thus defined,
vk → v(1) as k → ∞. One can also compute an approximation for the second smallest
eigenpair (λ(2),v(2)), by considering (θ

(2)
k ,Qks

(2)
k ), and so on.

Algorithm A.2: Generalized Lanczos algorithm (adapted from [90], Chapter 15)
input : Starting vector u1 ∈ CN , tolerance tol and maximum number of iterations kmax

output: Approximate smallest eigenvalue λk

Initialize p0 ← 0, k ← 1, ε1 ←∞;
r1 ← Xu1,;
β1 ←

√
r∗1u1;

while k ≤ kmax and εk > tol do
qk ← uk/βk;
uk ← Hqk − pk−1βk;
αk ← q∗kuk;
pk ← rk/βk;
rk+1 ← uk − pkαk;
Solve Xuk+1 = rk+1 for uk+1;
βk+1 ←

√
u∗k+1rk+1;

Diagonalize the tridiagonal matrix Tk =


α1 β2

β2 α2 β3

β3
. . . . . .
. . . . . . βk

βk αk

 in orthonormal

basis as Tk = SkΘkS
∗
k with Θk = diag(θ

(1)
k , . . . , θ

(k)
k ) ordered as

θ
(1)
k ≤ θ

(2)
k ≤ · · · ≤ θ

(k)
k ;

Update current smallest eigenvalue approximation λk ← θ
(1)
k ;

Update current error εk+1 ← βk+1|sk1|, where sk1 corresponds to the coefficient on
the 1st column, kth row of Sk ;
k ← k + 1;

end

Let us now turn to the inverse Lanczos procedure, summarized by algorithm A.3. There
are some minor, nonetheless significant, changes compared to the direct Lanczos. If one
is interested in computing an approximation of the smallest generalized eigenvector v(1),
one can compute the Ritz vector wk, as wk = Qks

(k)
k , where Qk = [q1 q2 · · ·qk] ∈ CN×k

and s
(k)
k ∈ Ck denotes the kth column of the matrix Sk. At this point, one must be

cautious because, being generated by an inverse Lanczos procedure, the matrix Qk now
holds a X−1-orthogonal basis (i.e., such that Q∗kX

−1Qk = I) of the Krylov subspace
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Algorithm A.3: Generalized inverse Lanczos algorithm (adapted from [90], Chapter 15)
input : Starting vector r1 ∈ CN , tolerance tol and maximum number of iterations kmax

output: Approximate smallest eigenvalue λk

Initialize p0 ← 0, k ← 1, ε1 ←∞, β1 ← 1 ;
u1 ← Xr1,;
τ ←

√
r∗1u1;

r1 ← r1/τ ;
u1 ← u1/τ ;
while k ≤ kmax and εk > tol do

qk ← uk/βk;
Solve Huk = qk for uk;
uk ← uk − pk−1βk;
αk ← q∗kuk;
pk ← rk/βk;
rk+1 ← uk − pkαk;
uk+1 ← Xrk+1;
βk+1 ←

√
u∗k+1rk+1;

Diagonalize the tridiagonal matrix Tk =


α1 β2

β2 α2 β3

β3
. . . . . .
. . . . . . βk

βk αk

 in orthonormal

basis as Tk = SkΘkS
∗
k with Θk = diag(θ

(1)
k , . . . , θ

(k)
k ) ordered as

θ
(1)
k ≤ θ

(2)
k ≤ · · · ≤ θ

(k)
k ;

Update current smallest eigenvalue approximation λk ← 1/θ
(k)
k ;

Update current error εk+1 ← βk+1|skk|, where skk corresponds to the coefficient on
the kth column, kth row of Sk ;
k ← k + 1;

end

Kk(H−1,u1). Thus, the Ritz vector wk is in fact an approximation of the generalized
eigenvector w, with normalization ‖w‖X−1 = 1, associated to the largest eigenvalue in

H−1w = λX−1w.

Let us introduce the new variable v = X−1w. The normalization ‖v‖X = 1 is straight-
forward from the normalization of w. Furthermore we can easily show that v is the
generalized eigenvector associated to the smallest eigenvalue in

Hv = λXv,

thus v = v(1). To conclude, one can approximate the generalized eigenvector v(1) by
the quantity vk = X−1wk = X−1Qks

(k)
k . This strategy can be extended to obtain an
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approximation for the second smallest eigenpair (λ(2),v(2)), by (1/θ
(k−1)
k ,X−1Qks

(k−1)
k ),

where s
(k−1)
k ∈ Ck denotes the (k − 1)th column of the matrix Sk, and so on.

Let us briefly discuss the computational complexity of both direct and inverse Lanczos
procedures. In the case of direct Lanczos, there is one call to the matrix-vector product
with H and one call to the solver X−1 per iteration, while in the case of inverse Lanczos
there is one call to the matrix-vector product with X and one call to the solver H−1 per
iteration. For both, there is one call to a symmetric tridiagonal eigensolver per iteration.
The latter operation can be made very efficient with dedicated algorithms, such as the
QR (or QL) algorithm [90] and is usually not a large-scale operation, as the symmetric
tridiagonal matrix involved is only of size k × k at iteration k and k remains relatively
small.

179



Appendix B
Implementation details

B.1 Four possible offline phases

The offline phase of the RBM depends on the choice of approximation (either Galerkin
or least-squares approximation, see chapter 1) and on the choice of numerical method for
computing the residual norm (either default or stabilized, see chapter 2).

Galerkin Least-squares
Default for all 1 6 q 6 Qa, the matrix

P∗AqP ∈ CN×N
for all 1 6 p, q 6 Qa, the matrix
P∗A∗

pB
−1
W AqP ∈ CN×N

for all 1 6 q 6 Qf , the vector
P∗fq ∈ CN

for all 1 6 q 6 Qf , 1 6 p 6 Qa,
the vector P∗A∗

pB
−1
W fq ∈ CN

for all 1 6 p, q 6 Qa, the matrix
P∗A∗

pB
−1
W AqP ∈ CN×N

for 1 6 q, p 6 Qf , the scalars
f∗qB

−1
W fp ∈ C

for all 1 6 q 6 Qf , 1 6 p 6 Qa,
the vector P∗A∗

pB
−1
W fq ∈ CN

for 1 6 q, p 6 Qf , the scalars
f∗qB

−1
W fp ∈ C

Stabilized for all 1 6 q 6 Qa, the matrix
P∗AqP ∈ CN×N

the upper triangular matrix R ∈
CNQa×NQa

for all 1 6 q 6 Qf , the vector
P∗fq ∈ CN

for all 1 6 q 6 Qf the vector
Q∗fq ∈ CNQa

the upper triangular matrix R ∈
CNQa×NQa

for all 1 6 q, p 6 Qf the scalar
(B−1

W fk − QQ∗fk)∗BW (B−1
W fq −

QQ∗fq) ∈ C
for all 1 6 q 6 Qf the vector
Q∗fq ∈ CNQa

for all 1 6 q, p 6 Qf the scalar
(B−1

W fk − QQ∗fk)∗BW (B−1
W fq −

QQ∗fq) ∈ C

Table B.1: Quantities to be computed during the offline phase in four case scenarios.
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Using the notations of chapters 1 and 2, table B.1 summarizes the quantities to be com-
puted during the offline phase with different choices of approximation and numerical
method for computing the residual norm. We observe that the least-squares approximation
is associated with less offline pre-computed quantities than the Galerkin approximation.

B.2 Reduced basis updates throughout the greedy itera-
tions

During the N th iteration of algorithm 2.1, a reduced basis with N − 1 basis functions
p1, . . . ,pN−1 is available and a N th basis function pN ∈ CN is to be added.

If a Galerkin projection is used, the matrices P∗AqP ∈ CN×N , 1 6 q 6 Qa have to
be computed, where P = [p1| · · · |pN ] ∈ CN×N denotes the reduced basis. In order to
compute these matrices, one observes that for 1 6 q 6 Qa,

P∗AqP =


p∗1Aqp1 · · · p∗1AqpN−1 p∗1AqpN

...
...

...
p∗N−1Aqp1 · · · p∗N−1AqpN−1 p∗N−1AqpN
p∗NAqp1 · · · p∗NAqpN−1 p∗NAqpN

 . (B.2.1)

The upper left block of size (N − 1) × (N − 1) is already available from the previous
greedy iteration, thus only the last row and last column have to be computed.

In order to compute the last column, one needs to perform the matrix-vector product
AqpN , followed by N dots products. We propose to store this matrix-vector product in
memory for future use. Thus, in order to compute the last row of P∗AqP, one does not
need to compute matrix-vector products Aqp1, . . . ,AqpN−1 because these are already
available in memory from the previous greedy iterations. In this way, the last row of
P∗AqP can be computed in just N − 1 dot products.

This strategy for computing the matrices P∗AqP ∈ CN×N , 1 6 q 6 Qa can be readily
extended to other quantities to be computed during the offline phase. For instance, in
order to compute the matrices P∗A∗pB

−1
W AqP ∈ CN×N for 1 6 q, p 6 Qa, p > q, one

observes that

P∗A∗pB
−1
W AqP =

p∗1A
∗
pB
−1
W Aqp1 · · · p∗1A

∗
pB
−1
W AqpN−1 p∗1A

∗
pB
−1
W AqpN

...
...

...
p∗N−1A

∗
pB
−1
W Aqp1 · · · p∗N−1A

∗
pB
−1
W AqpN−1 p∗N−1A

∗
pB
−1
W AqpN

p∗NA∗pB
−1
W Aqp1 · · · p∗NA∗pB

−1
W AqpN−1 p∗NA∗pB

−1
W AqpN

 . (B.2.2)

Again, the upper left block of size (N − 1) × (N − 1) is already available from the pre-
vious greedy iteration and does not need to be re-computed. Computing the last column
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requires the vector B−1
W AqpN (i.e., Riesz representer of the matrix vector product AqpN )

followed by N dot products with the vectors App1, . . . ,AppN (stored in memory and
therefore readily available). Computing the last row requires the vector B−1

W AppN (i.e.,
Riesz representer of the matrix vector product AppN ) followed by N − 1 dot products
with the vectors Aqp1, . . . ,AqpN−1 (stored in memory and therefore readily available).
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