Keywords: Optimized matter-wave lensing of quantum gases for precision atom sensors BEC, atom interferometry, atom chips, Optimal control, DKC

LIST OF FIGURES

INTRODUCTION

Material systems exhibiting quantum behaviour such as ultracold atomic ensembles have been used as unique tools for various metrology experiments, among which those aiming at testing the University of Free Fall (UFF). These systems are used as phase sensitive sensors probing forces exerted on neutral atoms by inertial, material or electromagnetic sources. The ultimate accuracy of the measurements depends dramatically on the initial conditions, i.e. on the position, velocity, and size of the input matter-wave. Any lack of knowledge or change in these initial properties inevitably leads to systematic effects or statistical errors harming the performance of the sensor.

An example of the degree of control required can be grasped if one considers making a test of the Universality of Free Fall (UFF) with two different atomic species, which motivates the present thesis work. The UFF also known as the weak equivalence principle assumes that the acceleration imparted to a body by a gravitational field is independent of the nature of this body, in particular of its mass. Thus, the difference of acceleration of the two dropping objects must be identical to zero. Any possible deviation from this principle can be quantified by the measurement

1 of the Eötvös coefficient h expressed as h = a 1 a 2 (a 1 + a 2 )/2 (1.1)
where a 1 and a 2 are respectively the acceleration of the freely falling particles 1 and 2. The measurement of h can therefore be used to quantify a possible violation of the UFF. Such tests were performed in the past decades by state-of-the-art experiments using material test masses [START_REF] Touboul | MICROSCOPE mission: first results of a space test of the equivalence principle[END_REF] to put bounds on a possible violation of the UFF at the Femto-level: |h| < 10 15 [START_REF] Will | The confrontation between general relativity and experiment[END_REF].

One of the famous earlier experimental verifications of this principle on a macroscopic scale, was performed by Galileo Galilei around 1590. Indeed, he is said to have dropped two spheres of different masses from the top of the leaning tower of Pisa to demonstrate that their time of descent is independent of their mass. Since then, various tests to check such principle in vacuum have been realized. One of the most famous experiments was carried out by NASA during the Apollo 15 moonwalk mission in 1971, when the astronaut David Scott tested this fundamental law of general relativity by dropping on the moon a feather and a hammer. The experiment was successful in demonstrating that the two objects reached the surface of the moon at the same time. More recently, in the last couple of decades, the idea to use quantum mechanics to verify the UFF principle with much higher accuracy was suggested. Increasing this accuracy requires, on the experimental side, high precision interferometry techniques, combined with microgravity conditions. For that purpose, Mach-Zehnder atomic interferometers are built in compact set-ups, with initial positions, center-of-mass velocities and atomic ensemble expansion rates defined at a high level of precision. A schematic illustration of such an interferometer is provided in Fig. (1.1). Ultra-cold atoms falling freely in vacuum are indeed proposed as promising candidates. In fact, the superposition of the waves can, in principle, be used for making such precision measurements in atomic-optical instruments such as matter-wave interferometers.

The versatility of the Mach-Zehnder-type interferomter has indeed led to its use in a wide where T is the time between the interferometer pulses known as the interrogation time; K ef f = k 2 k 1 is the effective wave-vector of two counter-propagating laser beams with frequencies w 1 and w 2 and a is the gravitational acceleration of one single component BEC. This phase shift can be caused by a change in the length of one of the interferometer arms for instance. The Raman p pulse is equivalent to the optical mirror of the classical interferometer for light, while the effect of the beam splitter is obtained by the p/2 pulses. A large momentum separation of the interferometer arms increases the accumulated phase shift and thus the sensitivity to g for a given interrogation time T. To increase the interferometer sensitivity, the wave function should be separated for a long period of time, referred to as the holding time. Long separation times are quite difficult to obtain with such set-up on earth since particles quickly fall by gravity. For this reason, such experimental set-ups are nowadays often realized in micro-gravity environments. Such precise experiments, in compact set-ups and manipulated under space conditions, require that the initial positions, center-of-mass velocities and the expansion rates of the atomic ensembles should be defined at a level better than 1 µm, 1 µm/s and 100 µm/s (35 pK in 3D), respectively [START_REF] Hartwig | Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer[END_REF].

To meet these stringent requirements, the energy of the atomic ensemble has to be drastically reduced (down to a sub-nK level) and its size must remain compact (not exceeding the distance of several mm after a few seconds of free expansion), clearly indicating the necessity of using Bose-Einstein Condensates (BECs).

Albert Einstein and Satyendra Nath Bose, in the year 1925, were the first to predict that at low temperature a macroscopic quantum transition appears, known as Bose-Einstein condensation.

A BEC is a state of matter of a dilute gas of bosons cooled to temperatures very close to absolute zero and obtained when the de Broglie wavelength l dB becomes of the same order of magnitude as the average distance d = n 1/3 between the atoms, where n is the density of the quantumdegenerate gas. This wavelength is expressed as

l dB = 2ph 2 mk B T ! 1/2 (1.3)
where h is the reduced Planck's constant, m the atomic mass, k B the Boltzmann constant, and T the temperature. Under such conditions, a large fraction of bosons occupies the lowest quantum state, at which point a macroscopic quantum transition becomes apparent, as shown in fig 1.2, where the transition to BEC occurs below a critical temperature T c denoted as

T c = ✓ N z(3) ◆ (1/3) hw k B (1.4)
where z is the Riemann zeta function and w = w x w y w z (1/3) is the average angular frequency in a harmonic trap.

In a major advance in modern physics. The observed condensate was formed by few thousand 87 Rb atoms, leading to the Nobel prize of Physics in 2001 [START_REF] Ketterle | Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser[END_REF]. After this experimental realization, finding out the statistical properties and the dynamical behavior of such a coherent matter-wave has become something of a considerable interest. Experimental realizations and theoretical formulations [START_REF] Pethick | Bose-Einstein condensation in dilute gases[END_REF] were set to tackle this topic.

BECs, as an input source for atom interferometry experiments, to check fundamental tests are thus considered as the best candidate to explore such topics. Such an initiative is considered by several metrology groups worldwide [START_REF] Dickerson | Multiaxis inertial sensing with long-time point source atom interferometry[END_REF][START_REF] Altin | Precision atomic gravimeter based on Bragg diffraction[END_REF][START_REF] Hardman | Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: a high precision, quantum sensor[END_REF][START_REF] Overstreet | Effective inertial frame in an atom interferometric test of the equivalence principle[END_REF][START_REF] Alauze | A trapped ultracold atom force sensor with a µm-scale spatial resolution[END_REF][START_REF] Karcher | Improving the accuracy of atom interferometers with ultracold sources[END_REF][START_REF] Plotkin-Swing | Three-path atom interferometry with large momentum separation[END_REF], in particular in the group of Prof. Ernst Maria Rasel in the University of Hannover. As shown in Fig. (1.3), different experimental set-ups have been established, in the last two decades, starting from zero-G flights [13], drop-towers [14], rockets [START_REF] Becker | Space-borne Bose-Einstein condensation for precision interferometry[END_REF] and recently from 2018, in the international space station (ISS) [START_REF] Aveline | Observation of Bose-Einstein condensates in an Earth-orbiting research lab[END_REF] within the cold atom laboratory (CAL) [START_REF] Aveline | Observation of Bose-Einstein condensates in an Earth-orbiting research lab[END_REF][17][START_REF] Elliott | NASA's Cold Atom Lab (CAL): system development and ground test status[END_REF][START_REF] Frye | The Bose-Einstein condensate and cold atom laboratory[END_REF]. Future projects are also planned using the Einstein elevator [20] designed by the Hanover Institute of Technology (HITec), where the whole experiment is inserted inside a gondola, with a high dropping rate that can reach 300 experiments per day. We focus, in our work, on the QUANTUS [START_REF] Van Zoest | Bose-Einstein condensation in microgravity[END_REF] and MAIUS [START_REF] Becker | Space-borne Bose-Einstein condensation for precision interferometry[END_REF] consortia as described later on, which reached important milestones in controlling quantum gases dynamics in micro-gravity conditions using atom chips [START_REF] Becker | Space-borne Bose-Einstein condensation for precision interferometry[END_REF][START_REF] Müntinga | Interferometry with Bose-Einstein condensates in microgravity[END_REF]. The Quantus-2 experiment [START_REF] Van Zoest | Bose-Einstein condensation in microgravity[END_REF] (QUANTen Gase Unter Schwerelosigkeit) is one of the main Bose-Einstein atom interferometry experiments conducted in micro-gravity in Germany. This Free-fall experiment takes place in the Bremen drop tower while the Maius [23] (Matter-Wave Interferometry in Micro-gravity) experiment was launched in a rocket in 2017 for a total duration of 6 minutes and led to the creation of the first BEC in space.

In this context, atom chip devices, as described later on in Section 3.2 of Chapter 3, are used as efficient transportable BEC machines with high repetition rates, allowing the necessary time to perform interferometry measurements. Just after the creation of the BEC, the proximity of the atoms to the chip surface is usually limiting the optical access and the time necessary to do the required interferometry measurement with high accuracy. The controlled transport of atoms is thus a key ingredient in such experimental platforms dedicated to quantum engineering. In the past, neutral atoms have been transported as thermal clouds [START_REF] Hänsel | Magnetic conveyor belt for transporting and merging trapped atom clouds[END_REF][START_REF] Pritchard | Transport of launched cold atoms with a laser guide and pulsed magnetic fields[END_REF][START_REF] Couvert | Optimal transport of ultracold atoms in the non-adiabatic regime[END_REF], condensates [START_REF] Hänsel | Bose-Einstein condensation on a microelectronic chip[END_REF], or individually [START_REF] Schrader | An optical conveyor belt for single neutral atoms[END_REF][START_REF] Kuhr | Coherence properties and quantum state transportation in an optical conveyor belt[END_REF], using magnetic traps or optical traps. When solving such a transport problem, it is tempting to first consider the most trivial solution: a slow adiabatic transport. Besides the fact that this adiabatic solution is far from optimal, it is usually not even possible to implement due to typical experimental constraints. Close to an atom chip surface, for example, fluctuations of the chip currents constitute an important source of heating for the atoms, which can lead ultimately to the destruction of the BEC. A nearly adiabatic, and therefore, slow transport is consequently unpractical in most cases. The transport of the BEC from the chip to the interferometer involves several successive steps, which are represented in Fig. (1.4). After the fast displacement of the initial quantum state, the BEC cloud is held in the final trapping potential for few milliseconds to detect any possible collective excitations. The final trap is then turned off and the condensate undergoes free expansion. Due to the subsequent rapid size growth, a Delta Kick Collimation (DKC) technique is used to reduce the expansion rate of the cloud. This is followed by a second expansion phase of the matter-wave for few seconds before entering the interferometer. Each of these steps needs to be optimized through the single control parameter of the created matter-wave, which is the temporal evolution of the magnetic field induced by an electric current.

The contribution of this thesis is not directly targeting a theoretical implementation to check the UFF principle since we only optimize the input quantum state of the atomic interferometer with one single component BEC. An extension of the present work can be grasped if one considers a mixture of condensates. 
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Scope of this thesis

The aim of this thesis is to calculate in the most accurate way the spatial and temporal evolution of the BEC during the successive phases of its manipulation between its creation near the surface of the atom chip, and the entrance of the interferometer, where the UFF test measurements will be performed. This manipulation has to be done while minimizing the size expansion of the BEC and its excitation. The parameters of the studies that we have performed are in the context of the micro-gravity interferometry experiments that were performed in the group of Hanover and their collaborators. Our study considers a BEC with a single component as a first step of these experiments. Below, a brief summary of the different chapters is given.

• Chapter 2 introduces the theoretical background used to study the steady state and the dynamical behavior of a BEC. The description of the evolution of the matter-wave is described by the Gross-Pitaevskii equation (GPE). To give an initial insight on the behavior of the treated matter-wave, analytical approximations are then derived. The different results obtained are based on the input of an actual experiment. The BEC is trapped and manipulated on the magnetic micro-trap generated by the atom chip. The impact of the configuration of the generated trap is thus described.

• Chapter 3 presents some actual applications of the different theories discussed in Chapter 2. The BEC is manipulated in micro-gravity under space conditions in different atominterferometry experiments in the group of Prof. Ernst Maria Rasel. Our theoretical contributions were implemented in the QUANTUS experiment, the free-falling apparatus in the Bremen Tour, additionally to the MAIUS experiment, launched in a sounding Rocket. The condensate is generated and displaced by changing a bias magnetic field. My contribution is within the challenge of the controlled transport of atoms. This can be done referring to some non-adiabatic protocols within classical descriptions. Some of them, such as Reverse-engineering and Short-cut-to adiabaticity (STA) protocols, have been used very recently [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Corgier | Engineered atomic states for precision interferometry[END_REF]. The major part of this work, and its originality rest on the development of the quantum description and the transport of the BEC. A comparison between the experimental data set and the theoretical outcomes are thus communicated.

• In chapter 4, we take our study to another extent. STA protocol, as a semi-classic method, ensures a control of the classical aspects of the manipulated condensate and thus limits the center of mass oscillations of the rapidly transported matter wave. Yet it does not provide any limitation of the arising size excitations. In this chapter, we introduce a different control scheme, the Optimal Control Theory (OCT) referring to the building of the external bias magnetic field. We refer to OCT to prepare the ground state at the end of this non-adiabatic transport. To emphasize the robustness of the outcome of this technique, we study the obtained final BEC's size oscillations at the end of the transport for different durations. The mathematical treatment of the optimal control procedure is detailed and the computational cost of this numerical algorithm to ensure a full convergence of the obtained results, is discussed, as well.

• The collimation of the previously expanded BEC is detailed in Chapter 5 using the Delta-Kick Collimation (DKC) method. An optimized sequence, ranging from the transport to the final expansion before applying the (p/2, p, p/2) laser sequence of the Mach-Zehnder interferometer, is elaborated to reduce the final expansion velocity of the cloud, while minimizing at the same time the average classical energy of the system during the transport phase to avoid undesirable transient excitations.

• A summary of the main achievements of our work is given in Chapter 6, along with a brief discussion on its future possible developments.

CHAPTER 2 THEORETICAL MODELS FOR BOSE-EINSTEIN CONDENSATE'SMANIPULA T I O N 2.1 Introduction

In this Chapter we focus on the required theoretical toolbox to study the behavior of the condensate. Some possible experimental applications are discussed later on in Chapter 3. BECs are studied here in 3 dimensions using the non-linear Schrödinger equation also known as the Gross-Pitaevskii equation (GPE) [START_REF] Pethick | Bose-Einstein condensation in dilute gases[END_REF]. A set of analytical approximations is, as well, derived and their validity discussed. The characteristics of the condensate are mainly governed by the amount of the two-body interaction between the bosonic particles, condensed at the lowest energy level of the trap. However, BECs, despite their diluteness, are highly impacted by the smallest amount of three-body interaction. Thus, a particular interest is then given to the effect of such collisions on the different theoretical models and hence on the behavior of the condensate. Numerical and analytical simulations are carried out to find the position and size of the matter-wave during a transport and for a long-time dilation lasting for several seconds. This Chapter is organized as follows: At first, we derive these theoretical models in order to address the problem for a fixed number of particles N. These numerical and analytical methods are detailed in the context of a typical evolution for experiments in micro-gravity. Later on, the time-dependent expansion of the condensate is studied. Therefore, a rescaled GPE approach [START_REF] Meister | Efficient description of Bose-Einstein condensates in time-dependent rotating traps[END_REF] aimed at describing the matter-wave enormous size growth is elaborated. Finally, we introduce the numerical methodology to follow in order to ensure the implementation of the aforementioned theoretical tools. We conclude by outlining the possible experimental realizations for these formulations and a list of the future projects, where these methods can play a major role in providing an initial insight into the condensate's behavior.

Gross-Pitaevskii equation (GPE)

In this section, the non-linear equations [START_REF] Pethick | Bose-Einstein condensation in dilute gases[END_REF] to describe the behavior of the BEC are presented.

The stationary and dynamical features of the system are then studied. The time-independent treatment aims to prepare the initial ground state of the cold coherent matter-wave. The temporal evolution of the system is further studied in the case of a transport.

The stationary GPE

Our goal is to describe theoretically the stationary state of the condensate. We consider that the condensed fraction consists mainly of 87 Rb alkali bosonic atoms. Yet this treatment is applicable for any bosonic species. In dilute gases, the inter-atomic interaction introduces a non-linearity to the system. The strength of the interaction between two particles depends on the separation distance and it plays a significant role when the condensed fraction is dense enough. For low energies, this effective interaction can be assimilated to a contact interaction. The strength of this collision is defined by the coupling constant g 2 denoted as

g 2 = 4ph 2 a s m . (2.1)
g 2 is proportional to the boson-boson scattering length a s . h is the reduced constant of Planck.

m represents the atomic mass. The type of the two-body interaction depends on the sign of a s .

Repulsive interactions are for a positive value of the scattering length. Attractive interactions are for a s < 0. For the second case, the condensed fraction includes a limited number of atoms since these attractive collisions push the coherent wave to its eventual collapse. BECs with high densities are, therefore, realized with positive scattering lengths.

In the Hartree-Fock approximation or the mean-field approach, the many-body system of N bosonic particles, at T = 0K, is represented by a macroscopic coherent wave function. We assume that this wave function is a product of all the single-particle wave functions leading to

y(r 1 , .., r i ..., r N )= N ∏ i=1 f i (r i ). (2.2)
y represents the macroscopic wave, and f is the single bosonic particle function which fulfills the following normalization condition R |f i (r)| 2 dr = 1. To deduce the non-linear second order time-independent differential equation (GPE), the main treatment is based on the Euler-Lagrange equations and the resulting 3D time-independent GPE is expressed as follows

µ y(r)= " h2 2m r 2 r + V(r)+g 2 N|y(r)| 2 # y(r), (2.3) 
where, µ denotes the chemical potential defined as the necessary fraction of energy required to add one particle to the atomic ensemble. The first term, on the right hand, represents the kinetic energy of the atomic ensemble, V(r) is the external trapping potential, and the non-linear term g 2 N|y(r)| 2 represents the inter-atomic interaction. The strength of the two-body interaction plays a significant role in defining the nature of the regime of the system under study.

Thomas-Fermi approximation

We now place ourselves in the case, where the inter-atomic interactions are strong enough to dominate the total energy profile of the BEC [START_REF] Pethick | Bose-Einstein condensation in dilute gases[END_REF]. In that sense, the kinetic energy can be neglected, and the stationary GPE can be approximated by

µ y(r)= h V(r)+g 2 N|y(r)| 2 i y(r).
(2.4) leading to the following density profile

|y(r)| 2 = µ V(r) g 2 N . (2.5)
For a time-dependent harmonic 3D trapping potential of the form

V(x, y, z, t)= m 2 ✓ ∑ h=x,y,z w 2 h (t)(h h 0 ) 2 ◆ . (2.6)
with, m the atomic mass, h the space coordinates (x, y, z), h 0 the minimum of the trap position, and w h the trap frequencies. The initial density profile |y(r)| 2 has the shape of an inverted parabola. After normalizing the wave function in Eq. (2.5) to the total number of particles N, the initial BEC radii derived in the Thomas-Fermi regime along the three spatial directions are given by [5]

R h (0)=a ✓ 15Na s a ◆ 1 5 w(0) w h (0) . (2.7) 
where w(0) is the average frequency expressed as w(0)= ✓ w x (0)w y (0)w z (0)

◆ 1 3
and a is the harmonic oscillator length a = q h mw . This approximation is very useful to have an initial analytical understanding and perception of the BEC distribution for the case of a system with a sizeable number of particles.

To illustrate the impact of the atom's number on the shape of the stationary state, we illustrate in Fig. (2.1) the integrated probability distribution P x (x), defined as

P x (x)= ZZ |y(x, y, z)| 2 dydz.
(2.8)

The represented results are obtained numerically after solving the time-independent GPE using the imaginary time propagation as described later on in Sec. the results of the GPE while the analytical Thomas-Fermi solution is represented by the solid blue line. As expected, the obtained solutions are in a good agreement except at the edge of the wave function. This agreement emphasizes the utility of this approximation when it comes to providing an initial analytical solution of the form of the condensate's initial stationary state. We will focus in the next sections on studying the dynamical behavior of the condensate generated after obtaining this initial stationary state.

Time-dependent GPE

The GPE described in the section above provides the stationary solution of the ground state.

In the experiment, after the condensation of the bosonic particles on the lowest energy level of the trapping potential, it may be interesting to know the temporal behavior of the matter-wave. Thus, to establish the time-dependent GPE, the wave function y(r, t) must satisfy the principle of the minimum action S. We skip in this thesis the different mathematical steps required to generate the time-dependent form of the nonlinear Schrödinger equation. For more details on the overview of this equation, see [START_REF] Pethick | Bose-Einstein condensation in dilute gases[END_REF]. Therefore, in the mean-field approximation, we end up with the following equation

ih ∂y(r, t) ∂t = " h2 2m r 2 r + V(r, t)+g 2 N|y(r, t)| 2 # y(r, t).
(2.9)

The three different contributions of Eq. (2.9) are the same as the one depicted above in Eq. (2.3).

The external effect defined by the trapping potential V(r, t) can be static or time-dependent. In that respect, We find that it is more convenient to adopt the time-dependent form to give the reader a general representation of the time-dependent GPE.

Frame displacement

Solving the time-dependent GPE expressed in the lab frame allows to adequately describe the condensate's temporal evolution. However, this treatment expressed in this frame does not meet our needs considering the associated high computational cost. To reduce the numerical cost [START_REF] Takagi | Quantum Dynamics and Non-Inertial Frames of Reference. I: Generality[END_REF][START_REF] Takagi | Quantum Dynamics and Non-Inertial Frames of References. II: Harmonic Oscillators[END_REF][START_REF] Takagi | Quantum dynamics and non-inertial frames of reference. III: Charged particle in time-dependent uniform electromagnetic field[END_REF], it is preferable to be located in a frame where the system is centered at each temporal step t. Two different choices can be made, either we place ourselves in the trapping potential frame or we impose a dynamical frame that follows the condensate's center of mass motion.

Trapping potential Frame

We present in this subsection, the necessary mathematical tools to derive the new time-dependent GPE expressed in the trapping potential frame. We conserve the same 3D harmonic trap- 

= " h2 2m r 2 R + ih ~ṙ 0 (t) • r R + V(R, t)+g 2 N|Φ(R, t)| 2 # Φ(R, t). (2.15)
This new equation describes the matter wave evolution expressed in the potential frame of reference, where V(R, t) denotes the new trapping potential. Numerically, it will be easier to solve Eq. (2.15) than Eq. (2.9) considering that the minimum of the new trapping potential V(R, t) remains fixed at the origin (X = Y = Z = 0) for any time t, unlike the minimum of the potential V(r, t). However, the price to pay is the appearance of the additional differential term ~ṙ 0 (t) • r R in Eq. (2.15). This term can be easily calculated to propagate the wave packet via additional splitting of the fractional evolution operator. In another perspective, this additional splitting can be avoided by applying a unitary transformation. A change of gauge reads

c(R, t)=exp ⇥ iK(t) • R ij(t) ⇤ Φ(R, t).
(2.16)

The time dependent vector K(t) and the phase j(t) in Eq. (2.25) describe respectively the time evolution of the first derivative of the position of the minimum of the trap and the accumulated kinetic energy resulting from moving the trap. These two quantities are expressed as 

K(t)= m h ~ṙ 0 (t) and j(t)= m 2h Z t 0 ṙ2 0 (t 0 ) dt 0 . ( 2 
ih ∂c(R, t) ∂t = " h2 2m r 2 R + V(R, t)+g 2 N|c(R, t)| 2 # c(R, t). (2.18)
This time, the resulting V(R, t) is expressed as follow

V(R, t)= m 2 ✓ ∑ h=x,y,z w 2 h (t) R 2 ◆ + m r0 (t) • R. (2.19)
In Eq. (2.18), the term proportional to r R disappears from the GPE in favor of the addition of a linear inertial term to the potential proportional to the acceleration of the minimum of the trap as derived in Eq. (2.19). It is obviously possible to reconstruct Ψ(r, t) once c(R, t) has been calculated. In other words, this approach consists of applying a simple spatial translation and multiplying the initial wave function with a phase associated with the kinetic energy generated by the trap displacement.

Center of mass (CM) Frame

One could also express the GPE in the condensate's center of mass (CM) frame to eliminate its translational motion. The 3D time dependent center of mass position is expressed as rcm (t)=x cm (t)ẽ x + y cm (t)ẽ y + z cm (t)ẽ z .

(2.20)

To start, for the sake of simplicity, we assume the same quadratic potential as in Eq. (2.6).

To accomplish our goal, the center of mass position rcm needs to be expelled from the ex- pression of the trapping potential and a new coordinate transformation must be applied. The new changes are summarized below

8 > > < > > :
R(t)= ~r rcm (t),

t = t.
(2.21)

Using the new coordinate system, the obtained differential terms from Eq. (2.9) are

r 2 r = r 2 R , (2.22) 
∂ ∂t = ∂ ∂t ~ṙ cm (t).r R . (2.23)
where ~ṙ cm , is the first derivative of the center of mass position with respect to the new time coordinate t. Inserting Eq. (2.22) and Eq. (2.23) in Eq. (2.9), we obtain

ih ∂f(R, t) ∂t = " h2 2m r 2 R + i h~ṙ cm r R + V(R, t)+g 2 N|f(R, t)| 2 # f(R, t). (2.24)
where f(R, t) and V(R, t) are respectively, the desired wave function and the quadratic trapping potential expressed in the BEC frame.

As laid out before in Sec. (2.3.1), Eq. (2.24) is numerically more budget-friendly than Eq. (2.9)

and ensures that the center of mass position steadfast at the origin R = 0. Instead of dealing numerically with the differential term i h~ṙ cm (t).r R by applying an additional splitting of the fractionated operator, it can also be omitted by applying a simple gauge transformation that reads

c(R, t)=exp[ i K(t). R ij(t)] f(R, t). (2.25)
where, the time dependent vector K(t) and phase j(t) in Eq. (2.25) are expressed as follows

8 > > < > > : K(t)= m h ṙcm (t) j(t)= m 2h R t 0 ṙ2 cm (t 0 )dt 0 .
(2.26)

Using these definitions, we can show that the wave function c(R, t) satisfies the following GPE

ih ∂c(R, t) ∂t = " h2 2m r 2 R + V(R, t)+g 2 N|c(R, t)| 2 # c(R, t). (2.27)
This aforementioned new GPE expression is constituted by the same terms as the standard GPE. The expression of the new trapping potential includes an additional term of the form

m r0 (t) • (R + r cm r 0 ) (2.28)
In Eq. (2.27), the additional splitting is avoided and the applied elementary operations help us in getting a linear term, which is easily solvable. The proportional term r R this time has disap-peared from the Eq. ( 2.24) in favor of the addition of a linear inertial term that is proportional to the acceleration of the center of mass instead of the acceleration of the minimum of the trap as defined in Eq. (2.28).

Scaling approach

We aim to provide an analytical method to describe the size evolution of the degenerate matterwave. The standard way to access such a behavior is to solve the GPE. In three-dimensional problems, numerical simulations are expensive, and the need to provide an analytical information on the solution becomes a must. The call-out to a more straightforward theoretical, analytical treatment would help to have a better initial insight into the size behavior of the condensate. In 1996, Castin and Dum [START_REF] Castin | Bose-Einstein condensates in time dependent traps[END_REF][START_REF] Castin | Bose-Einstein condensates in atomic gases: simple theoretical results[END_REF] and independently Y. Kagan, and colleagues [START_REF] Kagan | Evolution of a Bose gas in anisotropic timedependent traps[END_REF] presented a semi-classical analytical interpretation of the dynamics of the BEC. This approximated theory is considered as an efficient tool to describe the size change of the condensate within a short period of time.

We recall here that the stationary GPE, given by Eq.( 2.3) at t = 0 with a harmonic trapping potential is

µ y(r,0)= " h2 2m r 2 r + V(r,0)+g 2 N|y(r,0)| 2 # y(r,0). (2.29)
For large N, the adoption of the Thomas-Fermi approximation is well-founded. Therefore, the kinetic energy can be neglected, leading to the following expression for the initial density profile deduced from Eq. (2.3).

|y(r,0)| 2 = µ V(r,0) Ng 2 .
(2.30)

For t > 0 with a time-dependent harmonic trap, the Thomas-Fermi approximation does not hold valid since the trapping energy can be converted to a kinetic energy. Thus, the kinetic part cannot be omitted anymore. In line with this, the condensate will experience a dilatation, and the radius growth of the matter-wave is mathematically formulated as

R i (t)=l i (t)R i (0) for i = x, y, z (2.31) 
Where, l i is a non dimensional time-dependent parameter known as the scaling factor and R i (0)

is the initial radius of the condensate for i = x, y, z as defined above in Eq. (2.7). In that sense, to have an access to the size evolution of the BEC, only the evolution of the scaling parameters, along the three spatial directions, is needed.

To proceed, the cold coherent macroscopic matter-wave can be described as a classical gas, where the force exerted on each particle of this classical system is defined as

F(r, t)= r " Ṽ(r, t)+g 2 r cl (r, t) # . (2.32)
and r cl is the classical density given by r cl (t)= N V(t) . N is the number of particles, and V is the gas volume as a function of time. Thus, the classical density for a single particle (N = 1) is

r cl (t)= 1 l x (t)l y (t)l z (t) r cl (0). (2.33) 
where, r cl (0) is the initial classical density. Accordingly, the obtained second-order differential Newton's equation of motion for such a system is denotes as

m Ri (t)=F(R, t). (2.34) 
Solving Eq. (2.34), we end up having a set of second order differential equations describing the temporal evolution of the parameters l i

l 00 x + w 2 x (t)l x (t)= w 2 x (0) l 2 x (t)l y (t)l z (t) (2.35) l 00 y + w 2 y (t)l y (t)= w 2 y (0) l 2 y (t)l x (t)l z (t) (2.36) l 00 z + w 2 z (t)l z (t)= w 2 z (0) l 2 z (t)l x (t)l y (t) (2.37)
These so-called scaling equations do not account explicitly for the constant g 2 . Note the coupling between the space directions is accounted by the multiplication between the different scaling factors. Initially, the treated system is at rest thus l i (0)=1 and l 0 i (0)=0.

Variational Approach

The usual analytical treatment of the GPE is valid in the limit of highly interacting particles with N large enough to validate the TF approximation as detailed in Sec. (2.2.1) for the scaling theory.

The variational approach [START_REF] Perez-Garcia | Low energy excitations of a Bose-Einstein condensate: A time-dependent variational analysis[END_REF][START_REF] Perez-Garcia | Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations[END_REF][START_REF] Al-Jibbouri | Collective Excitations in Bose-Einstein Condensates[END_REF] provides a theory valid for the complete range of particles' numbers, from small to large number of atoms. Below, we detail the necessary mathematical steps needed to generate the associated scaling equations.

The Lagrangian density associated with the time-dependent GPE reads to

L(x, y, z, t)= ih 2 (Ψ ⇤ ∂ t Ψ Ψ∂ t Ψ ⇤ ) h2 2m |rΨ| 2 V|Ψ| 2 g 2 N 2 |Ψ| 4 .
(2.38)

The complex conjugate of the wave function y is assigned with an asterisk symbol. Here, we assume that V(r, t) is a harmonic trapping potential along the three space directions as defined before in Eq. (2.6).

The action S can be deduced from Eq. (2.38) since

S = Z L(x, y, z, t) dx dy dz dt. (2.39)
To deduce the behavior of the BEC, we need to find y(x, y, z, t) when the action S is an extremum.

Nevertheless, Eq. (2.39) is complex to solve; the alternative thus, is to introduce a trial function with a fixed shape and a set of time-dependent parameters that must be inserted later on in Eq. (2.38).

The time-dependent guess wave function is of the form [START_REF] Perez-Garcia | Low energy excitations of a Bose-Einstein condensate: A time-dependent variational analysis[END_REF][START_REF] Perez-Garcia | Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations[END_REF][START_REF] Al-Jibbouri | Collective Excitations in Bose-Einstein Condensates[END_REF] Ψ(x, y, z, t)= 1 (

p 3/4 ∏ h=x,y,z 2 6 6 4 exp ✓ h 2 2r 2 h (t) if h (t)h 2 ◆ q r h (t)

2.40)

where, h is the three dimensional space coordinates (x, y, z), f h (t) is the accumulated phase and r h (t) is proportional to the width of the Gaussian wave function.

The choice of a Gaussian initial trial function arises from the fact that the solution of the ground state of the time-independent Schrödinger equation for a single particle with harmonic trapping potential is a Gaussian like function. Inserting Eq. (2.40) in Eq. (2.38) and integrating over the space coordinates, we obtain the effective Lagrangian as follows

L ef f (t)= ZZZ L(x, y, z, t) dx dy dz. (2.41) leading to L ef f (t)= h 2 ∑ h r 2 h (t)f 0 h (t) h4 4m ∑ h 1 + 4r 4 h (t)f 2 h (t) r 2 h (t) m 4 ∑ h w 2 h (t)r 2 h (t) h2 a s N p 2pm ∏ h r h (t) . (2.42) 
As a result, we end up having

p 3 2 ∏ h=x,y,z r h (t)=N (2.43)
This equation shows the conservation of the number of particles N. Moreover, the center of mass of the condensate behaves as a classical particle since

ḧ + w 2 h (t) h = 0. (2.44)
Eq. (2.44) can not be affected by the interaction term since it does not depend on the number of particles N. Finally, we obtain a set of equations describing the evolution of the width of the condensate along with the three spatial directions (h = x, y, z). For that, we assume that the size growth of the condensate is given by r h (t) is proportional to its initial size r h (0) through the following relation

r h (t)=l h (t)r h (0). (2.45)
where the size of the initial Gaussian wave-function can be expressed as

r h (0)=a ✓ 2 p ◆ 1 10 ✓ Na s a ◆ 1 5 w(0) w h (0) . (2.46)
To avoid any confusion, we note here that r h (0) is different from R i (0).

The resulting set of equations describing the temporal evolution of the scaling factors l h , is

l 00 x + w 2 x (t)l x (t)= a x w 2 x (0) l 3 x (t) + w 2 x (0) l 2 x (t)l y (t)l z (t)
(2.47)

l 00 y + w 2 y (t)l y (t)= a y w 2 y (0) l 3 y (t) + w 2 y (0) l 2 y (t)l x (t)l z (t)
(2.48)

l 00 z + w 2 z (t)l z (t)= a z w 2 z (0) l 3 z (t) + w 2 z (0) l 2 z (t)l x (t)l y (t) (2.49)
The initial conditions are for l i (0)=1 and l 0 i (0)=0. The expression of a h is the following

a h = ⇣ p 2 ⌘ 2 5 ✓ a Na s ◆ 4 5 ✓ w h (0) w(0) ◆ 2 . (2.

50)

a h is a fixed value defined at t = 0, for h = x, y, z. The left-hand term of the obtained equations is, a Newton-like harmonic oscillator equation. The first term on the right hand describes the spreading of the wave packet, and the final term represents the impact of the non-linear interaction. For a = 0, the kinetic energy vanishes, and we end up having the previously derived scaling equations in the case of the scaling approach. If the shape of the actual solution is close enough to the initial trial function, the variational approach gives good results; if not, it fails to do so. In the case of a large number of particles (N = 10 5 ), the TF approximation is a better assumption than the solution of the system derived in the weak interaction regime. Additionally, even with this time-dependent harmonic trapping potential, the conversion of the energy seems to be impact-less on the nature of regime. To compare the outcome of these different approximations with the full quantum numerical simulations (GPE), we thus present in Fig. 

Generalized GPE

Three-body interaction

To generate and manipulate BECs, different cooling schemes are applied, starting from optical trapping to the use of atom chips. Maintaining the coherence of the condensate all along its manipulation is challenging, both technical and theoretical limitations are to be taken into account.

For example, manipulating the BEC close enough to the atom chip surface can be considered as a technical limit. In general, atom chips are considered as a noisy environment since the heating near to its vicinity is important. The fluctuating current in the wire may lead to the decoherence of the matter-wave and, therefore, its destruction. A fundamental limit can be, for example, associated with the impact of the change of the trapping frequency on the behavior of the BEC.

The firm compression of the trap usually introduces increased densities. High enough densities at low temperatures enhance inelastic collisions between the bosonic particles and introduce instability in the system and reduces the lifetime of the condensate. These inelastic collisions are always referred to as the 3-body interactions [START_REF] Al-Jibbouri | Collective Excitations in Bose-Einstein Condensates[END_REF][START_REF] Köhler | Three-body problem in a dilute Bose-Einstein condensate[END_REF], as shown in The impact of this collision increases with the compactness of the experimental set-up, and even the most minor contribution seems to threaten the stability of the BEC. The state-of-the-art of missions in space requires the use of small optical components. These high-precision devices can be implemented to build, for example, a gravimeter or a gyroscope. For that reason, treating the impact of the 3-body interaction becomes compulsory.

3-body interactions can lead to a spatial modulation instability [START_REF] Wamba | A variational approach to the modulational instability of a Bose-Einstein condensate in a parabolic trap[END_REF], and the condensed matter-wave can be fragmented. The impact of these inelastic collisions on the stability of the BEC was analyzed for condensates in 1D and different dimensions D [START_REF] Gammal | Stability analysis of the D-dimensional nonlinear Schrödinger equation with trap and two-and three-body interactions[END_REF][START_REF] Hai-Qin | Dynamics of Analytical Matter-Wave Solutions in Three-Dimensional Bose-Einstein Condensates with Two-and Three-Body Interactions[END_REF], trapped in optical lattices [START_REF] Leanhardt | Propagation of Bose-Einstein condensates in a magnetic waveguide[END_REF][START_REF] Wei | Effects of three-body interaction on dynamic and static structure factors of an optically-trapped Bose gas[END_REF][START_REF] Zhang | Band structure and stability of Bose-Einstein condensates in optical lattices with two-and three-atom interactions[END_REF], atom chips [START_REF] Zhang | Fundamental limit for integrated atom optics with Bose-Einstein condensates[END_REF], solitons [START_REF] Hua | Interferences and solitons in the Bose-Einstein condensates with two-and three-body interactions[END_REF], and even for the case of a two coupled BECs trapped in a double-well potential [START_REF] Ya | Stability and Chaos of Two Coupled Bose-Einstein Condensates with Three-Body Interaction[END_REF]. The associated variational approach and the logarithmic non-linear Schrödinger equation [START_REF] Bouharia | Stability of logarithmic Bose-Einstein condensate in harmonic trap[END_REF] were also studied.

GPE with 3-body interaction

The time-dependent non linear differential equation that takes into account the 3-body interaction is defined as follows:

ih ∂y(r, t) ∂t = " h2 2m r 2 r + V(r, t)+g 2 N|y(r, t)| 2 + g 3 N 2 |y(r, t)| 4 # y(r, t). (2.51)
The strength of such inter-atomic collision is usually weighted using the coupling constant g 3 .

Several experimental and theoretical groups worldwide have tried to estimate the numerical value of g 3 . The coupling constant g 3 of the 3-body collision has been recently theoretically estimated [START_REF] Köhler | Three-body problem in a dilute Bose-Einstein condensate[END_REF][START_REF] Bedaque | Three-body recombination in Bose gases with large scattering length[END_REF][START_REF] Braaten | Three-body recombination into deep bound states in a Bose gas with large scattering length[END_REF][START_REF] Braaten | Dilute Bose-Einstein condensate with large scattering length[END_REF][START_REF] Jack | Decoherence due to Three-Body loss and its effect on the state of a Bose-Einstein condensate[END_REF] for 87 Rb as |g 3 | ⇡ 10 26 10 27 cm 6 /s. Attractive 3-body interactions are for g 3 < 0 and repulsive collisions are for g 3 > 0. g 3 can be imaginary or real and depends on the scattering length a s . While the two-body interaction is a linear function of the atomic density, the contribution of the 3-body interaction is proportional to the square of the atomic density since n 2 (t)=|y(r, t)| 4 , as shown in Eq. (2.51). Therefore, even the smallest amount of this collision can highly impact the collective excitations of the BEC and thus, its lifetime.

The obtained stationary GPE is similar to the standard equation already derived above in Eq. ( 2.3) with a supplementary term describing the impact of the 3-body collisions as defined below in Eq. (2.52)

µ y(r)= " h2 2m r 2 r + V(r)+g 2 N|y(r)| 2 + g 3 N 2 |y(r)| 4 # y(r). (2.52)
where, µ the total chemical potential, additionally incorporates the contribution of the 3-body interaction. The normalization condition of this wave-function remains valid to the total number of particles N.

Variational Approach with 3-body interaction

In this case, the variational approach includes, in addition to the two-body interaction, the 3-body term that cannot be neglected. This supplementary interaction energy appears in many atom interferometry experiments with atom chips and arises from the configuration of the initial confining trap. To develop the associated scaling equations, the initial trial Gaussian function remains the same as in Eq. (2.40) and the trapping potential holds harmonic as defined in Eq. (2.6).

The Lagrangian density associated with the general GPE taking into account the 3-body collision reads to

L(x, y, z, t)= ih 2 (Ψ ⇤ ∂ t Ψ Ψ∂ t Ψ ⇤ ) h2 2m |rΨ| 2 V|Ψ| 2 g 2 N 2 |Ψ| 4 g 3 N 2 3 |Ψ| 6 .
(2.53)

The asterisk denotes the complex conjugate.

The expression of the effective Lagrangian remains the same as in Eq. (2.41) and the obtained solution is of the form

L ef f (t)= h 2 ∑ h r 2 h (t)f 0 h (t) h4 4m ∑ h 1 + 4r 4 h (t)f 2 h (t) r 2 h (t) m 4 ∑ h w 2 h (t)r 2 h (t) h2 a s N p 2pm ∏ h r h (t) g 3 N 2 9 p 3 ∏ h r 2 h (t)
.

(2.54)

The accumulated phase f h is proportional to r h since

f h (t)= m 2h r 0 h (t) r h (t) ! . (2.55)
and we obtain the following equation presenting the temporal evolution of the width of the Gaus-sian wave function r c (t),

r 00 c (t)+w 2 c (t) r c (t)= h2 m 2 r 3 c (t) + 2h 2 a s N p 2pm 2 r c (t) ∏ h r h (t) + 4g 3 N 2 9 p 3p 3 mr c (t) ∏ h r 2 h (t) . (2.56) Using r i (t)=l i (t)r i (0) with r i (0)=a (2/p) 1 10 (Na s /a) 1 5
w(0)/w i (0), the resulting second-order differential equations describing the size evolution of the condensate are described as follows

l 00 x + w 2 x (t)l x (t)= a x w 2 x (0) l 3 x (t) + w 2 x (0) l 2 x (t)l y (t)l z (t) + bw 2 x (0) l 3 x (t)l 2 y (t)l 2 z (t)
(2.57)

l 00 y + w 2 y (t)l y (t)= a y w 2 y (0) l 3 y (t) + w 2 y (0) l 2 y (t)l x (t)l z (t) + bw 2 y (0) l 2 x (t)l 3 y (t)l 2 z (t) (2.58) l 00 z + w 2 z (t)l z (t)= a z w 2 z (0) l 3 z (t) + w 2 z (0) l 2 z (t)l x (t)l y (t) + bw 2 z (0) l 2 x (t)l 2 y (t)l 3 z (t) (2.59) 
with the expression of/for a h remaining unchanged as in Eq. (2.50). The initial conditions of the system are the same, l i (0)=1 and l 0 i (0)=0. A new term expressing the 3-body interaction energy now appears and the impact of these collisions is defined explicitly through b. This coefficient is a spatially independent constant and includes explicitly the 3-body interaction constant

g 3 . b is denotes as b = (2/p) 1 5 9p 2 p 3 ✓ a Na s ◆ 8 5  2ma 2 h2 ! ✓ g 3 N 2 a 6 ◆ . (2.60) 
Note that (g 3 /a 6 ) has the dimension of energy. For 87 Rb, g 3 /h ' 4 ⇥ 10 26 cm 6 /s, leading to g 3 ' 4.2 ⇥ 10 72 J.m 6 and therefore to g 3 ' 4.4 ⇥ 10 7 a.u.

In Fig. (2.4), the impact of the three-body interaction on the behavior of the scaling parameters is illustrated. To highlight this effect, we thus decide to represent the results of the standard variational approach as shown by the solid black lines. The solid blue lines and the red filled circles represent, respectively, the 3-body effect on the solution of the variational approach and on the results of the full quantum numerical simulations. This additional energy increases the amplitude of the obtained results along the three spatial directions. A good agreement is noticed between the GPE and the variational approach with 3-body. This illustration is for the same transport, lasting for 150 ms. The actual parameters of such transport and the physical interpretation of the impact of the 3-body interaction on the dynamics of the system, are more discussed in details in Chapter 3.

Scale transformation

To perform over long baselines and thus, sensitive atom interferometry measurements, the macroscopic wave function experiences long, free evolution times. In such experiments, the time of flight is expected to be around several seconds, as a result, the expansion of the cloud should be reduced to be able to detect the atoms at the end of the interferometer. In this section, a particular attention is paid to the time-dependent dilation of the condensate. Thus, to throw light on the well-known equations used to deal with this problem, we aim to manipulate the BEC over large distances and long periods. To deal with this matter numerically in 3D for significant displacements than the characteristic size of the condensate turns out to be difficult since the expanded cold matter will rapidly have a large size. Thus, large grids are required, leading to highly expensive computations. Scale transformation [START_REF] Meister | Efficient description of Bose-Einstein condensates in time-dependent rotating traps[END_REF] is deemed as another sort of coordinate transformation. It is highly recommended to reduce this huge cost originating from the enormous grids used to process the 3D quantum dynamics of the condensate during the expansion phase. This grid adaptation is purely numerical but once it is implemented, a full description of the dynamics of the atomic sample throughout the interferometry experiment is therefore possible with applications to be discussed later on in Chapter 3.

To understand the nature of such a transformation, we give an insight into the methodology to follow [START_REF] Eckart | Non-equilibrium dynamics of trapped gases in controlled geometries[END_REF]. On a first step, this grid scaling demands to be located in the center of mass frame. This frame displacement is known as the affine transformation. In a second step, we apply a linear transformation to account for the inner dynamics of the condensate. The essential mathematical formulae used to establish these frame transformations are elaborated in the section below.

Affine Transformation

The affine transformation, as introduced above, consists of displacing the atoms in the center of mass frame. The detailed description and the necessary equations are clarified in the subsection (2.3.2). We remind the reader that the main goal from such coordinate manipulation is to reduce the expense of the numerical calculation given that the motion of the center of mass of the atomic cloud is considered steady at the origin (x = y = z = 0). We adopt here the same notations as before.

Linear transformation

At a second stage, we apply a linear transformation to account for the inner dynamics of the condensate. This manipulation considers applying a new coordinate transformation as defined below R = Λ(t 0 ) x and t = t 0 .

(2.61) (t 0 , Λ(t 0 )) are the new adapted coordinates. R is the old space coordinate that can be expressed as a function of the new coordinates x by the intermediate Λ(t 0 ) known as the adaptive matrix.

Λ(t 0 )= 0 B B B B @ l x (t 0 ) 00 0 l y (t 0 ) 0 00 l z (t 0 ) 1 C C C C A (2.62)
The scaling factors l i portray the evolution of the size of the BEC in the three spatial directions (x, y, z). The diagonal representation is only for the non-coupled directions. Any interaction between the different axes can be set out differently in the non-diagonal terms.

The affinely transformed wave function s(x, t 0 ), outlined on the new frame coordinates, is related to the condensate's macroscopic wave-function c(R, t) in Eq. (2.25), expressed in the center of mass frame by the following transformation,

c(R, t)= 1 p det Λ(t 0 ) e x T A(t 0 )x b(t 0 ) s(x, t 0 ). (2.63)
The scalar phase b(t 0 ), and the symmetric matrix A(t 0 ) introduced in this transformation depend on the adaptive matrix Λ(t 0 ) since

A(t 0 )= m 2 Λ T dΛ dt 0 , (2.64) b(t 0 )= Z t 0 0 µ p det Λ(t 0 ) dt 0 . (2.65)
µ is the initial chemical potential at t = 0s, and the symbol T denotes the transpose of the adaptive matrix Λ. We aim to solve the non-linear second order differential equation described in the center of mass frame as defined above in Eq. (2.27), but with the new form of the wavefunction as expressed in Eq. (2.63). Keeping with that, the spatial and temporal derivatives

( ∂ ∂t , 5 R , d d t 0 (det Λ))
needed to derive the GPE in the new coordinates can be expressed as 

∂ ∂t = ∂ ∂t 0 Λ 1 (t 0 ) ∂Λ ∂t 0 x T 5 x , (2.66) 5 R = Λ T (t 0 )5 x , (2.67) 
d d t 0 (det Λ)=det Λ • Tr Λ 1 d Λ d t 0 . ( 2 
ih ∂s ∂t 0 = h2 2m ⇥ Λ T 5 x ⇤ 2 s+ 1 p det Λ(t 0 ) ⇥ V(x, t 0 )+g 2 |s(x, t 0 )| 2 µ ⇤ s(x, t 0 ).
where, the new external trapping potential V(x, t 0 ) is now identified as

V(x, t 0 )= m 2 w 2 (0)(Λ(t 0 ) x + r cm r 0 ) 2 + (2.69)
2r cm w 2 (0)(Λ(t 0 ) x + r cm r 0 ).

Numerical implementation

In this section, our goal is to solve the aforementioned numerical equation GPE for a complex system with a large number N of interacting bosonic particles. We detail below some numerical tools, focusing on the split operator method [START_REF] Fleck | Time-dependent propagation of high energy laser beams through the atmosphere[END_REF][START_REF] Feit | Solution of the Schrödinger equation by a spectral method[END_REF][START_REF] Kosloff | A Fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics[END_REF] for the time-dependent dilatation of the system and on the imaginary time propagation to generate the initial ground state. These numerical implementations will give a quantitative description of the temporal evolution of the coherent wave function.

The imaginary time propagation, same as the split operator method, were at first generated to solve the Schrödinger equation. This equation symbolizes the quantum equivalent of the Newton's equation of motion and generates the stationary states of a single particle system. In 1933, the Nobel Prize of Physics was attributed to Erwin Schrödinger for this discovery. For a time-dependent scenario, this rigorous formula describes the changes over time of a single particle wave in response to an external time-dependent manipulation and provides the dynamical behavior of the system. The time-dependent equation in question, governing the wave function

y(r, t), is of the form ih ∂y(r, t) ∂t = " h2 2m r 2 r + V(r, t) # y(r, t). (2.70)
To understand the nature of such manipulation, we briefly detail in the following, the different applied numerical methods.

To start,in quantum mechanics, the evolution of an initial trial function can be reproduced using the evolution operator Û as follows

y(r, ∆t)= Û(∆t 0)y(r,0). (2.71) 
where, ∆t is the temporal increment. The expression of the evolution operator Û is denoted as Û(∆t 0)=e i ∆t Ĥ/h . Where, Ĥ is the Hamiltonian operator, decomposed into the external potential V and the kinetic operator T. V is expressed in the space coordinate whereas the operator T is in the momentum representation. In quantum mechanics, the position operator X and the momentum operator P are canonical conjugate quantities. On that account, their commutator, known as the canonical commutator, is expressed as follows [ X, P]=ih. As a result, the splitting technique will involve a decomposition in terms of these exponential operators with appropriate coefficients to approximate exp i ∆t Ĥ h . The first order split operator method consists on rewriting the evolution operator as

Û(∆t 0)=exp( i∆t V h ) exp( i∆t T h )+Θ(∆t 2 ). (2.72)
The associated error is proportional to ∆t 2 . Nevertheless, to increase the uncertainty, we adopt the second order split operator method. As such, the expression of the evolution operator can be written as

Û(∆t 0)=exp( i∆t V 2h ) exp( i∆t T h ) exp( i∆t V 2h
)+Θ(∆t 3 ).

(2.73)

Applying this operator successively, we ensure that we propagate the wave-function throughout all the dynamical sequence as represented in Fig. (2.5). The expression of the approximated evolution operator to the second order in Eq. (2.73) remains unchanged for the Schrödinger case or the GPE. Since at first, the split operator method was developed to ensure the numerical propagation of the wave function when solving the Schrödinger equation for a dynamical system, thus here for a many-body problem, the additional non-linear behavior of the matterwave can be added to the external trapping potential operator V since they are displayed in the same space representation. There is obviously a complication when it comes to applying these exponential operators to the initial wave function. For the kinetic energy operator, a transformation in momentum space is necessary to ensure that the application of exp( i∆t T h ) becomes a simple multiplication, whereas for the potential energy operator, no problem is caused since it is quantitatively described in the same coordinate system as the wave function. The change between these space and momentum representations is efficiently performed by the Fourier formalism and numerically processed using the Fast Fourier Transformation (FFT) algorithm. FFT and FFT-1 are the back and forward transformations operated to ensure the change from one representation to another. Eventually to summarize, the numerical propagation consists of alternating the split operator method and the Fast Fourier Transformation. The implementation of such numerical techniques becomes then straightforward.

V/2 V/2 V/2 V/2 V/2 T T T T V/2 ……………. V/2 V/2 1 st iteration 2 sd iteration k th iteration
On the other hand, to generate the ground state wave function, the imaginary time propagation serves as a powerful numerical tool to find the lowest energy eigenstate [START_REF] Kosloff | A direct relaxation method for calculating eigenfunctions and eigenvalues of the Schrödinger equation on a grid[END_REF][START_REF] Lehtovaara | Solution of time-independent Schrödinger equation by the imaginary time propagation method[END_REF][START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF] . We replace the temporal incremental step by an imaginary factor (t ! it). As a result, the argument of the evolution operator in Eq. (2.73) becomes real and any trial initial wave function under the action of the evolution operator converges asymptotically to the ground solution when t ! ∞.

To ensure the preparation of the appropriate ground state and also to propagate the wave function suitably with no numerical aberrations, a numerical criterion based on the energy diagram is commonly used. In this context, the total energy of the system at each step t can be defined as E(t)= < y(r, t)| Ĥ|y(r, t) > and to ensure the above mentioned conditions, the accuracy criterion can be established as

∆E E = |E(t + ∆t) E(t)| E(t + ∆t) < e. (2.74)
e is a small enough positive coefficient. The accuracy criterion from Eq. (2.74) depends on the temporal incremental step ∆t; in that sense, decreasing ∆t plays a major role on properly converging the numerical simulations.

Summary and perspectives

In conclusion, we derived and detailed in this Chapter the necessary analytical and numerical tools to describe the dynamical evolution of the condensate and to account for its size growth. In general, the non-analytical equations used to treat a quantum system ranging from a one-particle problem to a many-body system are respectively the Schrödinger and the Gross-Pitaevskii equations.

We derived a set of approximated analytical solutions to predict the behavior of the matterwave, taking into account the possible arising non-linearities. These non-linearities arise from two-body contact-type interaction or three-body collisions and the relative importance of these two components depends on the confinement imposed by the trapping potential. The approximated analytical tools deliver an initial insight of information on the possible evolution pattern of the system.

The numerical methodology to be followed to describe in a more 'exact' way the dynamics of the coherent matter wave is also detailed in this chapter. In order to reduce the computational cost of such long numerical simulations, this chapter also presents the way to introduce a moving reference frame, in which the translational dynamics of the wave function is treated numerically in an optimal way.

Nevertheless, for long times of flight, the rapid growth of the size of the condensate requires the use of large numerical grid sizes, and this simple shift of the computational reference frame is not sufficient. We have therefore implemented another class of coordinate transformation, which allows to scale the computational grids, based on the scaling approach which allows to follow the dynamics of the condensate size evolution numerically in an optimal way. These 'exact' numerical models with a moving and expanding reference frame can be applied to study any manipulation of the BEC on the ground or in space. Applications of these models using actual experimental parameters will be presented later on, in Chapter 3. Classical approaches based on the principle of reverse engineering and short-cut to adiabaticity (STA) [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Chen | Optimal trajectories for efficient atomic transport without final excitation[END_REF][START_REF] Lu | Fast transitionless expansions of Gaussian anharmonic traps for cold atoms: Bang-singular-bang control[END_REF][START_REF] Guéry-Odelin | Transport in a harmonic trap: Shortcuts to adiabaticity and robust protocols[END_REF][START_REF] Chen | Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity[END_REF] were in the first place proposed to implement a non-adiabatic transport with well-defined boundary conditions. These techniques allow the control of the center of mass oscillation at the end of the transport of the manipulated wave packet. In order to go further, the condensate transport dynamics is described in a quantum approach by calculating the time evolution of a 3D wave packet representing a large number of interacting atoms. To realistically consider these interactions, which occur within a non-harmonic trapping potential, a quantum approach is indeed mandatory. For this, we solve numerically the time-dependent Gross-Pitaevskii equation (GPE), as introduced before in Chapter 2, in a complete three-dimensional spatial processing. We present a practical application of the different theoretical models already communicated in Chapter 2, always in the context of the Quantus [START_REF] Van Zoest | Bose-Einstein condensation in microgravity[END_REF] and Maius [START_REF] Becker | Space-borne Bose-Einstein condensation for precision interferometry[END_REF] experiments.

The Chapter is organized as follows: We describe in the next Section the chip model used to transport the BEC. In what follows, the classical approach, based on the reverse engineering method used to transport the macroscopic coherent matter-wave, is briefly detailed. The different experimental vs. theoretical outcomes of the behavior of the condensate during the time of flight (TOF) are delivered. Finally, we study the different collective modes of the condensate. In conclusion, future potential theoretical methods are mentioned to prepare the BEC ground state at the end of the transport procedure.

Atom chip

The quest for a high precision measurement is extremely important for these experiments in microgravity since the ultimate goal is to perform fundamental tests of the foundations of physics, such as tests of the UFF. For such goals, the demands on the quality of the preparation of the atom sources are quite stringent. These transportable experimental setups in micro-gravity demand compact and robust structures. The trade between small-sized structures and high performance with low power consumption was, for decades, a problematic for scientists. Therefore, the use of standard bias setups seemed to be constraining and the need to generate a micro-fabricated device with low consumption was a must. and Z. The eigenaxis Z is parallel to z, which is the direction perpendicular to the chip. X and Y are two orthogonal directions in the plane of the chip. This setup creates a time-independent inhomogeneous magnetic field which is calculated using the Biot-Savart law. A Helmoltz coil is used to add a time-dependent homogeneous magnetic bias field B bias (t) to the time-independent inhomogeneous magnetic field created by the chip. In the weak-field approximation, the atoms experience in zero g, a trapping potential which can be expressed as

V(r, t)=m F g F µ B B(r, t), (3.1) 
where µ B is the Bohr magneton, g F and m F are the Landé factor and azimuthal quantum number of the atom, and B(r, t) is the total amplitude of the magnetic field. The asymmetry of the Z-shape leads to a small rotation of two eigenaxis with respect to the fixed X and Y axis in the plane containing the wires (see Fig. 3x3 square matrix of the second-order partial derivatives of the potential. This matrix

(H B ) i,j is ∝ ∂ 2 B ∂x i ∂x j for i, j = 1, 2, 3.
The diagonalization of the Hessian matrix allows to define two new eigen-coordinates x and y of the trap, rotated compared to the fixed X and Y coordinates [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF] by the angle q, see Fig. 

Reverse Engineering Technique

Our main goal is to transport the BEC far from the chip vicinity, from a certain initial position z 0 to a final position z f as shown in Fig. (3.3).

Since we wish to speed up the transport of a many-body system, assimilated to a classical particle following the trap trajectory, possible excitations of the matter-wave can be imparted during the dynamical sequence. Shortcut-to-adiabaticity (STA) [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Chen | Optimal trajectories for efficient atomic transport without final excitation[END_REF][START_REF] Lu | Fast transitionless expansions of Gaussian anharmonic traps for cold atoms: Bang-singular-bang control[END_REF][START_REF] Guéry-Odelin | Transport in a harmonic trap: Shortcuts to adiabaticity and robust protocols[END_REF][START_REF] Chen | Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity[END_REF] protocols were proposed to implement such a fast transport with well defined boundary conditions. 'turtle on wheels' represented by David Guéry-Odelin in his paper [START_REF] Guéry-Odelin | Shortcuts to adiabaticity: Concepts, methods, and applications[END_REF]. Indeed, in this metaphoric picture, the slow motion of the turtle describing the adiabatic manipulation of the matter-wave has been accelerated by the presence of the wheels.

Position z 0 z 0 z 0 z f z f z f
For such transport, the magnetic micro-trap is considered as a harmonic potential. The treatment is based on solving the classical Newton's equation of motion using the reverse engineering technique. The reverse engineering method allows us to control very well the center-of-mass motion of the condensate with respect to the position of the minimum of the trap. We want to start well centered at the minimum of the trap, with no velocity and no acceleration, and end up on the final position z f , also with no velocity and no acceleration. Six boundary conditions lead to a polynomial of order 5 for the condensate's center of mass motion. For more details, we refer the reader to check our previous paper [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Corgier | Engineered atomic states for precision interferometry[END_REF].

The obtained ramp, considering the condensate as a classical point, ensured an optimal fast transport of the matter-wave. Although the successful implementation of this classical consideration, treating the quantum aspect of the BEC cannot be omitted. An exact treatment would be to solve the Gross-Pitaevskii equation (GPE). This equation is non-analytical and accounts for the non-linearity of the system. We thus decide to take our study to another extent by implementing and solving numerically the GPE to describe the quantum behavior of the BEC for a transport designed by the STA ramp using different trap configurations starting from the harmonic one to a more realistic trap, where the non-harmonicities of the system are taken into account. The input ramp, from our previous work [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Corgier | Engineered atomic states for precision interferometry[END_REF], lasts for 75 ms and displaces the matter-wave for well-desired boundary conditions. We then held the condensate at the end of the transport for 150 ms. This latter is mainly to detect the final collective excitations.

To study and understand the quantum contribution of the 87 Rb condensate, the size temporal evolution is then communicated on the left panel of Fig. (3.5). The dynamical behavior of the BEC is calculated using different theoretical methods and for different trap configurations.

In that aspect, to provide the desired results from the full 3D numerical simulations (GPE), the standard deviation of the density distributions,

∆R 2 i =< R 2 i > < R i > 2
, is considered an essential and helpful tool to measure the changes over time of the condensate size. While, for the scaling approach, see Chapter 2, section (2.3.3), derived in the Thomas-Fermi regime, we proceed differently. It is possible to calculate the size motion of the condensate from the resulting scaling factors l i (t) for i =( x, y, z) and the BEC radius temporal evolution is conveniently

reformulated as R i (t)=l i (t) R TF i (0). R TF i (0)
is the initial Thomas-Fermi radius of the BEC, as mentioned above in Eq. (2.7). Additionally, connecting the width expressions generated by the different methods is necessary to ensure an appropriate comparison of our findings. We have shown in our previous work [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Corgier | Engineered atomic states for precision interferometry[END_REF] that the relationship between the sizes obtained from the GPE simulations (using the standard deviation) and the BEC's radius generated by the different semi-classical approximations is

∆R i = R TF i (t)/ p 7.
In Fig. ∆ z are introduced for the previously mentioned transport lasting for 75 ms, generated using the STA ramp followed by the holding for a hundred of ms. The displacement of the matter-wave is 1.2 mm. On the left panel, an oscillatory size behavior is marked along with the three spatial directions, with the highest amplitude of the order of 25 µm occurring along the shallowest direction

x. The compared solutions are generated by the GPE and the scaling approach. Considering a harmonic trapping potential, the findings of the scaling approach are illustrated by the blue solid curve and are in good agreement with the results of the full quantum numerical simulations marked by the empty black squares. The two transverse directions y and z exhibit a quasi-similar response to such manipulation since they present close enough frequency functions. The agreement between the outcome of these two methods proves that the classical ramp is efficient to ensure a long fast displacement of the condensate using atom chips. Thus, an exact treatment would be with a more realistic configuration of the potential which takes into account all the possible anharmonic contributions. With our findings, the function satisfying the expression of the trapping potential along the z normal direction to the atom chip is of the form of a cubic polynomial. Additionally, during the transport, the non-symmetry of the Z atom chip introduces a small rotation coupling the x and y axis around the normal z direction. To investigate if there is a gap in the behavior of the BEC arising from the non-harmonicities of the magnetic micro-trap, we thus illustrated on the same left panel the size evolution in the most complete case using the two previously mentioned methods. The outcome of the GPE is shown by the red circles and compared to the dashed green curves, the solution of the scaling approach.

The conclusion from these comparisons is that the different findings, independently from the trap configuration, are superimposed. In that regard, the purpose for this investigation, in this specific case, is answered and the non-harmonicities of the system can be neglected. Furthermore, these results emphasize the argument of using the scaling factors with a harmonic trapping configuration. Now, when it comes to accessing the quantum response of the cloud keeping with the same dynamical sequence, the averaged probability density along the three spatial directions is communicated on the right panel. For the normal direction to the chip, the presented results are with respect to the position of the minimum of the trap. These theoretical findings are generated by the non-linear Schrödinger equation with a non-harmonic trapping potential. The red spots mark the densest regions while the blue color is for the less populated areas. It is not surprising that a breathing of the condensate is observed. This observation marks the limitation of the classical model in controlling the wave part of the condensate. Over and above that, to detect if there is any final residual centre of mass oscillations, the expected BEC position along the three spatial directions is represented by the dashed orange lines. Along the z axis, during the holding phase, the condensate seems to slightly oscillate in the final trapping potential. The order of magnitude of these periodic oscillations is not exceeding a few µm. This final observation doesn't reject the validity of the classical ramp, instead, it emphasizes the success of the STA theory in providing a quasi-optimal transport with final neglected residual oscillations.

Experimental set-ups

In the recent past, atom interferometers have demonstrated their versatility and their sensitivity for the measurements of fundamental constants, local gravity, or inertial forces with applications in navigation and geophysics. Such experiments, as depicted before, are also conducted in microgravity environments. Our theoretical contributions were implemented in the Quantus-2 [START_REF] Van Zoest | Bose-Einstein condensation in microgravity[END_REF] experiment in the Bremen drop tower and the Maius-1 [23] consortia in sounding rockets. In the coming section, the two stated experiments are described.

The QUANTUS project

The QUANTUS [START_REF] Van Zoest | Bose-Einstein condensation in microgravity[END_REF] (QUANTen Gase Unter Schwerelosigkeit), project aims to implement and ent drops. This platform has demonstrated the feasibility of quantum optical experiments in a micro-gravity environment with degenerate quantum gases.

MAIUS project

The phase outcome of the matter-wave interferometer depends on the time spent by the atoms between the different interferometer's pulses. This so-called interrogation time T, as illustrated in Fig. (1.1), plays a significant role in the success of high precision measurements. Gravity limits the provided duration to manipulate atoms. Thus, building robust experimental set-ups with good performance under space conditions is considered an ultimate goal. Sounding Rockets give longer interrogation time T than set-ups on drop-towers, zero-G airplanes, or on the ground.

The challenge was to build a compact experiment adequate for such measurements, fitting in a rocket using high technology.

The Maius-1 [START_REF] Becker | Space-borne Bose-Einstein condensation for precision interferometry[END_REF] (Matter-Wave Interferometry in Micro-gravity) experiment, launched on the 23rd of January 2017 at 3:30 CET (Central European Time), on board a rocket from Esrange Space Center near Kiruna in northern Sweden, succeeded to generate the first 87 Rb BEC in space. The prosperous outcome of this mission, was partially by virtue of the use of compact Using such apparatus, the thermal and the condensed fractions of the matter are highly dense in space with respect to those collected tions and some experimental constraints, the ramp used during the flight was slightly different.

Thus, the results obtained initially were not taken into account during the mission. The transport was then for 50 ms. The prepared 87 Rb BEC displacement was 1mm, and the applied ramp was a sigmoidal function for a realistic anharmonic trapping potential. An overview of the first obtained results is detailed in [START_REF] Becker | Space-borne Bose-Einstein condensation for precision interferometry[END_REF].

Applications in the Quantus-2 experiment

The purpose of this section is to investigate if the different proposed theoretical toolboxes, pre- 

sented

a-detection camera

The absorption imaging technique [START_REF] Reinaudi | Strong saturation absorption imaging of dense clouds of ultracold atoms[END_REF] allows direct imaging of the density and momentum distribution of densely packed ultracold atoms. Thus, this method is capable of investigating experimentally the characteristics of such coherent matter-wave. CCD cameras are used to detect the BEC size growth during the dynamical sequence. To identify the mathematical representations of the BEC in the CCD camera frame, matrices are used to present the coordinate transformation from the lab frame, where the coherent matter wave is manipulated. In the experiment, the device used to trap the atoms is an atom chip with a Z-shape configuration. The asymmetry of this configuration introduces a small rotation of the trapping potential around the axis normal to the chip surface. This rotation is around the z axis, and it couples the (x, y) directions. The matrix A of the order 3x3 expressing such transformation from the vacuum chamber frame to the trap frame can be represented in the following form In a second step, the transformation that converts the system coordinates from the trap frame to the CCD camera frame incorporates two rotation matrices associated respectively to two detection systems. The spirit behind applying two detections from different angles, as illustrated in When performing two transformations one after another, the results are determined via matrix multiplication and the ultimate result leads to:

A = 2 
T i = D i • A for i = 1, 2 (3.5) 
Where, the index i refers the two detection systems 1 and 2. The vector T i T i T i represents (x 0 , y 0 ) and (x 00 , y 00 ), respectively for the two detection systems 1 and 2.

In the Quantus-2 experiment [START_REF] Van Zoest | Bose-Einstein condensation in microgravity[END_REF], the atoms are brought far from the chip in a duration of 150 ms. The atom to the Z-chip distance is around 1.46 mm, a value that is much larger than the size of the BEC. The generated ramp is provided using the reverse engineering method [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Chen | Optimal trajectories for efficient atomic transport without final excitation[END_REF][START_REF] Lu | Fast transitionless expansions of Gaussian anharmonic traps for cold atoms: Bang-singular-bang control[END_REF][START_REF] Guéry-Odelin | Transport in a harmonic trap: Shortcuts to adiabaticity and robust protocols[END_REF][START_REF] Chen | Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity[END_REF].

The atoms are then held in the final trap for a duration of 18.46 ms to detect, if they exist, the final non-accounted collective excitations or oscillations of the matter-wave. In a further step, the macroscopic matter-wave experiences long free-evolution times. This expansion aims to reduce the mean-field effects, and therefore, the boson-boson interaction is converted to kinetic energy.

This energy conversion dramatically increases the size of the BEC. The expansion lasts for 200 ms. Thus, we aim to address and investigate the detected BEC behavior during this time of flight (TOF). With our settings, at the end of the transport, the final trapping potential frequencies are 2p • (9.08, 27.88, 23.62) Hz and is rotated around the z axis by q = 10.6 . When dealing with small angles, in the context of our problem, a useful approximation can be to neglect the impact of this rotation. We also limit ourselves to the harmonic time-dependent trapping since the cubic term contribution is quite small. The rotation of the axes from the old frame to the CCD camera frame of reference can be ensured only by a simple multiplication of the lab coordinate of the system by the detection matrix D i .

The BEC size is measured experimentally using absorption imaging [START_REF] Reinaudi | Strong saturation absorption imaging of dense clouds of ultracold atoms[END_REF] for different expansion timelines (40, 80, 120, 160) ms, as portrayed later on in the different following figures. In this section, we discuss at first the theoretical schemes used to predict the coherent matter-wave size evolution and to be compared, in a second step, to the experimental findings. The size growth of the expanded BEC released from a confining trapping potential with the above-mentioned frequencies are obtained using the time-dependent GPE and the associated approximations: the scaling approach and the variational method (See Chapter 2 for more details). For long evolution times, the computational cost of the GPE is expensive and can go to several days running on calculation clusters. An alternative would be to consider using the rescaled GPE, where the matter-wave inner growth is accumulated differently (See Chapter 2). This numerical solution optimizes the necessary time to obtain fully converged calculations and it takes only a few minutes to deliver the ultimate result for an expanded matter-wave for a duration of a hundred ms.

For a practical reason of comparison between the theoretical findings and the experimental data, the calculation of the BEC width, expressed in the CCD camera frame of reference, must be related to the width of the condensate in the vacuum chamber as expressed in Eq. (3.5).

Since we consider two different detection systems, we present the different width expressions related to the matrices D 1 and D 2 .

For the first detection, the obtained widths are expressed as follows Where

∆x 0 2 ∆x 0 2 ∆x 0 2 = ∆z 2 , (3.6 
∆(R i R j )= < R i R j > < R i >< R j >.
The calculation of the average position of the condensate along the three spatial directions goes to zero since we consider that the BEC is well centered at the minimum of the trap. Thus, the terms < R i > for i = x, y, z disappear from the different width expressions for the two detection systems. The ⌥ sign, as stated above, is related to the two detected BEC generated by the reflection of the laser beam on the atom chip surface.

For the rest, since these two configurations produce the same outcome, we limit ourselves to presenting the behavior of one cloud.

In what follows, we present in the next figures the different obtained results of the expanded BEC radii during 200 ms of time of flight. We conserve the same color scheme for the two detection systems: the black and red colors represent respectively, the width variations along the

x and y directions. In Fig. (3.10), none of the delivered results agrees well with the experimental data. In fact, for long free expansion times T, the size of the atomic cloud evolves linearly as ∆R i = P i T/m. Where P i is the mean momentum dispersion along the direction i, ∆R i is the i spatial width, m is the atomic mass and T is the free expansion duration. This formula gives an idea about the size growth behavior of the atomic ensemble and helps to have a better assumption on the appropriate time T to choose before applying the delta kick.

The variational approach solutions, illustrated by the dashed lines are above the scaling ap- 
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x" -Variational approach y" -Variational approach x" -GPE standard y" -GPE standard proach results (solid lines). The difference between the obtained results arises from the supplementary intrinsic kinetic term accounted for in the variational method. The first full simulation of the dynamical sequence based on the GPE is represented by the dotted-dashed lines.

They give a slightly closer solution compared to the different approximations. An explanation of this disagreement would be related to the trap configuration. The strength of the confining trapping potential plays a role in the expansion rate slope. Increased expansion rates are usually for very confining traps coming from the interaction energy conversion. In this case, the three-body interaction must be included and since this term is proportional to the square of the total atomic density, we expect that it enhances the previously obtained results. In Fig. (3.11), the rescaled GPE taking into account the three-body (3B) interaction (see Chapter 2) gives the closest results to the experimental data, followed by the variational approach's solution. The scaling approach results, as mentioned above, can not be considered, with our settings, as a good approximation. we compare the different GPE results to the experimental data. The solid lines represent the standard GPE results. The solutions of the GPE with three-body interaction are marked by the dashed lines for the two detection systems. The impact of the three-body energy is thus emphasized. Nevertheless, the two first experimental points lie above the theoretical curves, for the two different methods. This difference decreases with longer expansion durations. Moreover, an imaging systematic effect can be identified due to the camera resolution limitation. This approximation affects the experimental data taken. To compensate for this limitation due to the resolution of the camera, a correction to the BEC width is then included in the form

R i,s (t)= q R 2 i (t)+s 2 for i = x, y
The attributed correction cannot be decided arbitrarily. The approximated value has been ex- Moreover, we examine the 1D expansion kinetic energy of the BEC after being released from the confining trapping potential and before applying the lens. In that regard, the equipartition principle allows us to evaluate and to determine the matter-wave 1D expansion kinetic energy E kin,R as presented in the table. (3.1). The 3D expansion kinetic energy is of the form

E kin =[ m 2 ✓ dR x dt ◆ 2 ]+[ m 2 
✓ dR y dt

◆ 2 ]+[ m 2 ✓ dR z dt ◆ 2 ] (3.10)
The changes of the detected BEC radii over time refer to the cloud expansion velocity. In that respect, we calculate the slope of the different curves of the BEC size evolution during the TOF and therefore deduce the expansion kinetic energy. The 1D form of this energy is

E kin,R = m 2 ✓ dR dt ◆ 2 (3.11)
where R can be the x 0 or y 0 for the first detection system or x 00 , y 00 for the other detection.

In the experiment (the results of the linear fit), we typically obtain a range of an expansion energies defined as (E kin,x 0 /(k B /2)=23 nK , E kin,y 0 /(k B /2)=16 nK) and (E kin,x 00 /(k B /2)= 12 nK , E kin,y 00 /(k B /2)=39 nK), respectively, along the x and y axis for the first and the second detection systems. Evaluating the obtained numerical values in the table. (3.1), the theories that do not include the three-body interaction are at relatively different kinetic energies. The kinetic energy range of the full numerical simulations (GPE) during the TOF with 3B interaction is where the BEC is expected. We associate the slight difference to the non-included error bars of the experimental measurements. We thus conclude and validate the effect of the 3B interaction on the behavior of the expanded BEC radii and the cloud expansion energy. Since the holding time affects the BEC's behavior during the free expansion, we pay, in the following section, particular attention to the holding timeline and thus, to the generated collective excitations.

b -Collectives modes

Trapped BECs, after being manipulated, present collective excitations. The behavior of the different collective excitation [START_REF] Jin | Collective excitations of a Bose-Einstein condensate in a dilute gas[END_REF][START_REF] Mewes | Collective excitations of a Bose-Einstein condensate in a magnetic trap[END_REF][START_REF] Stringari | Collective excitations of a trapped Bose-condensed gas[END_REF][START_REF] Marago | Observation of the scissors mode and evidence for superfluidity of a trapped Bose-Einstein condensed gas[END_REF][START_REF] Chevy | Transverse breathing mode of an elongated Bose-Einstein condensate[END_REF][START_REF] Fort | Collective excitations of a trapped Bose-Einstein condensate in the presence of a 1D optical lattice[END_REF][START_REF] Bismut | Collective excitations of a dipolar Bose-Einstein condensate[END_REF][START_REF] Straatsma | Collapse and revival of the monopole mode of a degenerate Bose gas in an isotropic harmonic trap[END_REF][START_REF] Asano | Collective Excitations in Bose-Fermi Mixtures[END_REF][START_REF] Diniz | Ground state and collective excitations of a dipolar Bose-Einstein condensate in a bubble trap[END_REF] of a dilute gas is described by the Bogoliubov theory. The first experimental observation of these low frequency modes was in 1996 [START_REF] Jin | Collective excitations of a Bose-Einstein condensate in a dilute gas[END_REF]. Since then, collective excitations have been studied experimentally for different trap configurations [START_REF] Mewes | Collective excitations of a Bose-Einstein condensate in a magnetic trap[END_REF][START_REF] Fort | Collective excitations of a trapped Bose-Einstein condensate in the presence of a 1D optical lattice[END_REF][START_REF] Bismut | Collective excitations of a dipolar Bose-Einstein condensate[END_REF][START_REF] Diniz | Ground state and collective excitations of a dipolar Bose-Einstein condensate in a bubble trap[END_REF]. We place ourselves in the Thomas-Fermi regime with a considerable number of condensed particles.

This regime is assimilated to the hydrodynamics of superfluids at zero temperature. Several lowfrequency modes exist. These different collective excitations are illustrated in Fig. (3.14) for a cylindrical symmetry. The Quadrupole Mode (QM) has in-phase and out-of-phase oscillations for the radial and axial TF radii. The Radial Quadrupole (RQ) presents out-phase oscillations of the radial TF radii. For the Breathing Mode (BM) [START_REF] Chevy | Transverse breathing mode of an elongated Bose-Einstein condensate[END_REF], the oscillations of the three TF radii are in phase. Last but not least, the Scissor Mode (SM) [START_REF] Marago | Observation of the scissors mode and evidence for superfluidity of a trapped Bose-Einstein condensed gas[END_REF] describes an oscillatory rotation of the condensate in response to a sudden rotation of the trap. This specific mode allows to have information about the nature of the trapped matter wave. It can be used as a detector to verify the presence of superfluidity [START_REF] Marago | Observation of the scissors mode and evidence for superfluidity of a trapped Bose-Einstein condensed gas[END_REF]. The analytical treatment [START_REF] Edwards | Collective excitations of atomic Bose-Einstein condensates[END_REF][START_REF] Martellucci | Bose-Einstein condensates and atom lasers[END_REF][START_REF] Van Bijnen | Collective excitation frequencies and stationary states of trapped dipolar Bose-Einstein condensates in the Thomas-Fermi regime[END_REF][START_REF] Tavares | Excitations in Bose-Einstein condensates: collective modes, quantum turbulence and matter wave statistics[END_REF][START_REF] Sternke | An ultracold high-flux source for matter-wave interferometry in microgravity[END_REF] to apply to find the different low-frequency modes is highlighted in the Thomas-Fermi regime, with a cylindrical symmetric trapping potential defined as follows

QM RQ BM SM

V(r)= 1 2 m(w 2 x x 2 + w 2 y y 2 + w 2 z z 2 ), (3.12) 
w y ' w z .

(3.13)

The equations for the different mode frequencies as shown by the following expressions 

w QM,BM = w 2 4 2 + 3 2 w 2 x w 2 ⌥
w RQ = p 2w. (3.15) 
Where w = p w y w z . Since the Scissor Mode (SM) is a result of the sudden rotation of the trapping potential, its description uses a theory different than the mathematical treatment of the rest of the collective modes [START_REF] Marago | Observation of the scissors mode and evidence for superfluidity of a trapped Bose-Einstein condensed gas[END_REF][START_REF] Guéry-Odelin | Scissors mode and superfluidity of a trapped Bose-Einstein condensed gas[END_REF]. This single-mode frequency is

w SM = ⇣ w 2 x + w 2 y ⌘ 1 2 . (3.16)
We remind the readers that we are limiting ourselves to the study of the (QM), (RQ), and (BM) collective modes. This approximation is made in view of the fact that we don't apply any sudden rotation of the trap in our treatment.

Usually, these systematic modes, as mentioned above, are highlighted in a cylindrical symmetric potential. With our settings, slight differences between the y and z frequencies are noticed. In that regard, the frequencies of the final trapping potential and the associated modes are assigned in with the Quadrupole Mode (QM).

In a further step, we aim to characterize the impact of a set of various holding periods on the expansion and thus on the size of the detected clouds. The applied operation begins with holding the condensate for a certain period of time, pursued by an expansion, and finally, a series of images of the BEC size is taken, respectively for the detection systems 1 and 2. The expansion duration was preserved as a constant for 80 ms. We vary the hold time from 0 ms to 300 ms. The output of such investigation is quantitatively presented in Fig. (3.16).

First, we consider comparing the findings of our theoretical treatments to the experimental data points, for detection 1 and 2 2 . It is clearly shown that the different aspect ratios R 0 x /R 0 y and R 00

x /R 00 y present an oscillatory quasi-periodic shape. The experimental points are marked by the full red circles. The scaling approach (solid red lines), variational approach (solid black lines), and the GPE (dashed blue lines) look similar and their solutions are quite close. On that account, we adopt later on the standard GPE solution as our reference when evaluating the rest of the theoretical methods. A non-agreement between the theoretical oscillations and the experimental data is, as expected, occurring for the two detection systems. The different obtained oscillation amplitudes are higher than the experimental amplitude. The physical interpretation of such results can be related, on the one hand, to not taking into account the impact of the three-body interaction and on the other hand, to not applying any damping to the system. The At first, since we emphasized in the above section the effect of the three-body interaction, we present in Fig. (3.17), a comparison of our findings obtained from the full numerical simulations GPE with (solid blue line) and without (solid black line) the 3-body interaction. A change in the behavior of the different oscillations is observed. The effect manifests itself not only as a change of the amplitude of the different oscillations but also as a phase shift. At second, we examine theoretically the impact of the damping on the obtained aspect ratios size oscillations for the detection systems 1 and 2. We give initially an overview of the methodology to follow to generate the expression of the damped widths calculated numerically by solving the GPE already taking into account the three-body interaction. We start from the initial nondamped widths R i (t) itself. In classical mechanics, the effect of the damped oscillator manifests as a general relaxation of the system. Thus, the amplitude of the oscillations decreases and the system yields finally to a stationary state. Mathematically, this decay is generated by a simple multiplication of the non-damped widths with a specific exponential incorporating the damping coefficients. The damped radii are therefore conveyed as follow R i is the time-average of the radius along the direction i. t damp is the damping duration. There is one intuitive way to find the appropriate duration consisting of testing with random choices. We analyzed the behavior of the damped radii. We succeeded to find an adequate damping duration for t damp = 300 ms as illustrated in Fig. (3.18). The non-damped radii are shown by the solid blue lines and the damping impact is presented by the solid orange lines for the two detection systems 1 and 2. The study carried confirms the reliability of the applied damping duration in the Quantus-2 experiment [START_REF] Deppner | Collective-mode enhanced matter-wave optics[END_REF]. In Fig. (3.18), a reasonable agreement between the experimental data and the theoretical outcome is found. The obtained theoretical findings are a result of the full numerical GPE simulations. This agreement demonstrates the validity of the damping effect on the BEC behavior. With these presented settings and through a delta-kick collimation stage, the Quantus-2 experiment succeeded to generate a condensate with the lowest expansion temperature, a new record, of the order of 38 +6 7 pK on a free-falling experiment. An overview of the recently obtained results is reported in reference [START_REF] Deppner | Collective-mode enhanced matter-wave optics[END_REF].

R i,damp (t)=R i +(R i (t) R i ) e ( t/
In order to justify the aforementioned damping duration, in Fig. (3.19), a parameters scan with different durations is illustrated for the two detection systems 1 and 2. The theoretical findings are, same as above, generated by the full numerical simulations (GPE). The filled red circles are the experimentally detected BEC's radii. The solid green lines represent the impact of the damping for t damp = 250 ms. The effect of a damping duration lasting for 300 ms on the behavior of the BEC's radii, is marked by the orange solid lines. And a final random choice, was with a longer duration of the order of 350 ms as shown by the dashed blue lines. 

Conclusion and Outlook

Since matter waves show interference patterns similar to those of light, matter-wave interferometers are nowadays used as sensitive sensors to check fundamental laws like the universality of free fall (UFF) for example. Different experiments in microgravity pursue the implementation of such sensors. We presented in this Chapter some of the experimental apparatuses where the theoretical models of Chapter 2 were applied.

Our primary focus was to present the different theoretical results compared to the experimental data, specifically for the Quantus-2 experiment. The reverse-engineering technique was briefly detailed, and the resulting BEC transport ramp presented. To depict the physical nature of the BEC in such an experiment, manipulated under microgravity conditions, the expansion rate of the cloud and the generated collective modes were considered as an essential piece of information. To compare our theoretical findings to the experiment outcome, we placed ourselves in the CCD camera frame of reference. Accordingly, the applied detection system to visualize the BEC along the different manipulations was then presented, and a 3D representation of the condensate was generated. The collective modes and the experimental observation of the condensate behavior during the expansion phase, after different holding durations, were then compared to our theoretical data. The impact of the three-body interaction and the damping to the system was emphasized. With the present trap configuration, the three-body collisions are highly present and impact the general behavior of the cloud.

In the next Chapter, we propose to check if it is possible to generate the ground state of the final trapping potential after a non-adiabatic displacement of the matter-wave. Such investigation aims to deliver an optimal ramp ensuring full control of the condensate center of mass oscillation and quantum control of the size dynamics. Our goal is to restrict the growth of the BEC and reduce the total necessary time before applying the laser pulses during the interferometry part.

The aim of OCT is to bring a dynamical system from one state to another, while minimizing a cost functional, such as the control time or the energy of the pulse used. The modern version of OCT is born with the Pontryagin's Maximum Principle (PMP) in the late 1950s [START_REF] Pontryagin | Mathematical theory of optimal processes[END_REF][START_REF] Lee | Foundations of optimal control theory tech[END_REF]. Originally applied to problems of space dynamics, OCT is nowadays a key tool to study a large spectrum of applications both in classical [START_REF] Kirk | Optimal control theory: an introduction[END_REF][START_REF] Bryson | Applied optimal control: optimization, estimation, and control[END_REF] and quantum physics [START_REF] Bonnard | Optimal control with applications in space and quantum dynamics[END_REF][START_REF]Introduction to quantum control and dynamics[END_REF][START_REF] Glaser | Training Schrödinger's cat: quantum optimal control[END_REF]. In the Pontryagin formulation, solving an optimal control problem is equivalent to finding extremal trajectories which are solutions of a generalized Hamiltonian system. These trajectories satisfy the maximization condition of the PMP as well as specific boundary conditions [START_REF] Kirk | Optimal control theory: an introduction[END_REF][START_REF] Bryson | Applied optimal control: optimization, estimation, and control[END_REF][START_REF] Bonnard | Optimal control with applications in space and quantum dynamics[END_REF]. The implementation of the PMP is far from being trivial and numerical control algorithms have been developed to approximate the optimal solution [START_REF] Krotov | Global methods in optimal control theory[END_REF]. Among others, we can mention the gradient [START_REF] Bryson | Applied optimal control: optimization, estimation, and control[END_REF][START_REF] Khaneja | Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms[END_REF] and the Krotov [START_REF] Krotov | Global methods in optimal control theory[END_REF]100] algorithms, which are nowadays standard tools in physics.

OCT has been applied with success to quantum systems since the 1980s in domains extending from molecular physics and nuclear magnetic resonance to quantum information science (see references [START_REF] Glaser | Training Schrödinger's cat: quantum optimal control[END_REF] and [101] for recent reviews, and references therein). The application of OCT to BEC dynamics has also been explored in different contexts. Using the Gross-Pitaevskii equation, the optimal coherent manipulation of an atomic BEC has been investigated in a series of studies (see references [102][103][104][105][106][107][108], to cite a few, and references therein). The transport of cold atoms has also been optimized for simple models in combination with invariant-based inverse methods [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Chen | Optimal trajectories for efficient atomic transport without final excitation[END_REF][START_REF] Lu | Fast transitionless expansions of Gaussian anharmonic traps for cold atoms: Bang-singular-bang control[END_REF][START_REF] Guéry-Odelin | Transport in a harmonic trap: Shortcuts to adiabaticity and robust protocols[END_REF][START_REF] Chen | Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity[END_REF]. It should be mentioned here that OCT and STA are usually compatible in the sense that an OCT methodology can be built on top of a basic STA frame of solutions [START_REF] Chen | Optimal trajectories for efficient atomic transport without final excitation[END_REF][109][110][111][112][113].

One can also note that recently, new methods have been tested successfully to bridge the gap between an ideal STA and a realistic experimental implementation for the optical transfer of a degenerate gas, demonstrating fast highly non-adiabatic transfer with almost no residual sloshing using corrected STA trajectories [114].

In this chapter, we discuss the application of OCT for the fast transport of BECs with atom chips while simultaneously controlling the quantum degrees of freedom of the problem to target the ground state of the final trap as the optimization result.

The chapter is organized as follows: We first introduce the desired transport that we wish to implement. The theoretical model and the attributed chosen cost functional used to develop the OCT are then detailed, which are followed by a comparison of our findings to the results of the STA technique applied in a similar context [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF]. Finally, we illustrate the impact of the OCT ramp duration on the internal degrees of freedom of the final BEC state. We conclude by discussing the limits of the methodology we have developed, and by mentioning potential experimental implementations.

In addition, the results discussed in this chapter are from the original, already published academic article [115]. This action has been taken into consideration of the copyright assignment, that allows the creator of the work to re-use their own publication. Sections (4.5), (4.6), and (4.7)

are represented in this chapter without any modification.

Transport description

Objective

We want to design a simple, fast and efficient ramp to transport the trapped bosonic atoms near the atom chip surface far away from its vicinity. This transport will contribute to a higher degree of control of the condensate dynamics, associated to a perturbation-free temporal evolution. We want to deal with the same transport represented in Chapter 3. In such a configuration already described in our previous study [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF], the minimum of the trap is at the origin in x and y, and it is located at a distance z 0 (t) from the chip surface. At t = 0, we have z 0 (0) ' 0.45 mm and at the end of the transport z 0 (t f ) ' We deal with a non-isotropic trap where y and z are strongly confining while for the weak axis

x, the magnetic trapping potential is shallow. A fast procedure which produces a non-excited state in the final trap in a short time compared to the adiabatic process is required and is a challenge by itself since this type of fast manipulation may introduce some excitation behaviors. 4.1: Matter-wave transport on an atom chip. The trap frequencies (in Hz) along the three spatial directions are given at t = 0 and at the end of the transport (t = t f ) for the initial and final positions of the minimum of the trap.

An adiabatic transport would require transport durations larger than 1 s since T adiab T c where,

T c = 2p min 0 6 t 6 t f ⇥ w x (t), w y (t), w z (t) ⇤ . (4.1)
Indeed, for a minimum frequency of 2p ⇥ 10 Hz, T c = 100 ms and T adiab 100 ms.

This transport is induced by a magnetic field created by a Z-shape atom chip wire, as presented in Chapter 3, in the presence of a time-varying homogeneous bias field generated by an external coil. Accordingly, the only control parameter is the time-variation of this magnetic field controlled by a single current of the coil.

Magnetic field distribution

The initial and final traps are defined by the initial and final values B i = 21.5 G and B f = 4.5 G of the bias magnetic field B bias (t). Since in experiments one can be limited by the switch on/off speed of the magnetic field we circumvent this problem by ensuring a smooth variation of B bias (t) at t = 0 and at t = t f . For this reason we have chosen to start from the results of our previous study

B bias (t)=B i + B f B i 0 @ 10 " u(t) u 0 u f u 0 # 3 15 " u(t) u 0 u f u 0 # 4 + 6 " u(t) u 0 u f u 0 # 5 1 A (4.2)
where u(t) is a continuous function of time, with u 0 = u(0) and u f = u(t f ). This definition imposes naturally the following boundary conditions for the bias magnetic field

B bias (0)=B i , B bias (t f )=B f , Ḃbias (0) 
=0, and Ḃbias (t f )=0,

Bbias (0)=0, Bbias (t f )=0. (4.3) 
where the dot symbol represents the total time derivative.

Note that a consequence of these boundary conditions imposed on B bias (t) is that similar relations hold for all trap parameters such as the trap position z 0 (t) and the trap frequencies in all directions w x (t), w y (t) and w z (t) leading to

z 0 (0)=z i , z 0 (t f )=z f , ż0 (0)=0, and ż0 (t 
f )=0, z0 (0)=0, z0 (t f )=0. (4.4) 
and to

w a (0)=w a (B i ), w a (t f )=w a (B f ), ẇa (0) 
=0, and ẇa (t f )=0,

ẅa (0)=0, ẅa (t f )=0, (4.5) 
for a 2 {x, y, z}.

The optimization procedure we have adopted is therefore using the dimensionless control function u(t), from which we can calculate the optimal bias magnetic field using Eq. (4.2).

An initial guess for u(t) must be introduced to initiate the optimization loop. The most trivial non-optimized function u(t) can be, for example, a linear slope such as

u(t)=t/t f . (4.6) 
With our settings, the STA ramp discussed in Chapter 3 can also be used as an initial pre- optimized guess since it has already shown good results when it comes to transporting cold matter-wave on an atom chip device as detailed before in our previous work [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Corgier | Engineered atomic states for precision interferometry[END_REF]. For such transport, the trap frequencies variation as a function of B bias and its dependency with the minimum of the trap position z 0 were delivered by the experimental group in Hannover, as shown by the red circles in Fig. three different trapping frequencies n x , n y and n z and for the position z 0 of the trap as a function of B bias . In this context, the obtained equation from such analytical fits for the trap position is

z 0 (B bias )= 1 + a 1 B bias + a 2 B 2 bias a 3 + a 4 B bias + a 5 B 2 bias + a 6 B 3 bias , (4.7) 
and for the trap frequencies along the three spatial directions are

n x (B bias )= c 1 + c 2 B bias + c 3 B 2 bias 1 + c 4 B bias + c 5 B 2 bias , (4.8 
)

n y (B bias )= d 1 + d 2 B bias + d 3 B 2 bias 1 + d 4 B bias + d 5 B 2 bias , (4.9) 
and

n z (B bias )= e 1 + e 2 B bias + e 3 B 2 bias 1 + e 4 B bias + e 5 B 2 bias , (4.10) 
where a i , c i , d i and e i are the associated coefficients respectively as listed in Tables. ( 4.2) and (4.3) below.

Such analytical fits make the implementation of a shortcut-to-adiabaticity protocol rather straightforward since with such expressions the determination of the transport ramp requires simply to solve a second order polynomial equation [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Corgier | Engineered atomic states for precision interferometry[END_REF]. They are also very convenient for the OCT since they allow for a fast and accurate calculation of the main trap parameters. In practice, to put in place such configuration, we take initially

u(t)= 5 ∑ n=1 a n (t/t f ) n 1 + 5 ∑ n=1 b n (t/t f ) n , (4.11) 
where the a n and b n parameters are listed in 

Theoretical concepts

Classical treatment

If we limit ourselves, in a first approximation, to the simplest case of a time-dependent harmonic trap, the center-of-mass of the condensate z A (t) in the direction normal to the surface follows the classical Newton's equations of motion v A (t)= żA (t) (4.12)

vA (t)= w 2 z (t) ⇥ z A (t) z 0 (t) ⇤ (4.13) 
where w z (t) denotes the frequency of the trapping potential along z and z A (t) denotes the position of the condensate at time t. Indeed, this simple classical evolution can be easily deduced from Ehrenfest's theorem.

STA protocols, as an efficient classical mathematical tool with well defined boundary conditions, were proposed, derived and implemented to target this transport. It allowed, in our previous work [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Corgier | Engineered atomic states for precision interferometry[END_REF] and as described in Chapter 3, to control very well the BEC's center of mass motion.

In this work, we propose in a first step, to put in place a classical optimal control theory to solve the same transport problem.

Quantum concept

A fully controlled and optimized manipulation to transport a macroscopic quantum matter-wave, calls out to a quantum theory. The classical methods, STA and/or classical OCT, allow for a large reduction of the time overhead necessary for the transport and control of the center of mass motion but suffer from some limitations since residual collective excitations of the condensate may still be observed.

Therefore, in a second step and in addition to this global translation of the BEC, we also account for the size dynamics of the condensate using a well-known semi-classical scaling approach [START_REF] Castin | Bose-Einstein condensates in time dependent traps[END_REF][START_REF] Kagan | Evolution of a Bose gas in anisotropic timedependent traps[END_REF] derived in the Thomas-Fermi regime [START_REF] Pethick | Bose-Einstein condensation in dilute gases[END_REF] of large bosonic atom numbers and within the harmonic approximation. We recall that the size of the BEC is defined by the three time-dependent radii R x (t), R y (t) and R z (t) of the paraboloid associated with the bosonic wave function, using

R x (t)=R x (0) l x (t) , (4.14) 
R y (t)=R y (0) l y (t) , (4.15) 
R z (t)=R z (0) l z (t) . (4.16) 
In Chapter 2, we have shown that the time-dependent scaling factors l x (t), l y (t) and l z (t), in the Thomas-Fermi regime [START_REF] Castin | Bose-Einstein condensates in time dependent traps[END_REF][START_REF] Kagan | Evolution of a Bose gas in anisotropic timedependent traps[END_REF], obey the three coupled second-order scaling differential Eqs. (2.35), (2.36) and (2.37). We recall in the following these equations

lx = w 2 x (0) l 2 x l y l z w 2 x (t) l x , (4.17) 
ly = w 2 y (0) l x l 2 y l z w 2 y (t) l y , (4.18) 
lz = w 2 z (0) l x l y l 2 z w 2 z (t) l z , (4.19) 
where w x (t) and w y (t) denote the frequencies of the trapping potential along x and y at time t.

The full behavior of the trapping frequencies as a function of the control parameter B bias follows a Padé fit along the three spatial directions has given by Eqs. [4.8-4.10].

The OCT technique being very powerful, we have decided to optimize a single control parameter, B bias (t), in order to control the final position of the BEC z A (t f ), its final speed v A (t f ), and its final size defined by the three final scaling factors l x (t f ), l y (t f ) and l z (t f ). We also control the final expansion rates given by lx (t f ), ly (t f ) and lz (t f ). Finally, since we want the harmonic approximation to hold during the entire transport, we also limit the time-dependent offset between the position of the center of mass of the BEC and the center of the trap |z A (t) z 0 (t)| as well as the time-dependent offset between their respective speeds |v A (t) ż0 (t)|. To be compatible with metrology applications with an integration over tens or hundreds of experimental cycles, as mentioned before, we want this transport to be realized quickly, i.e. in a duration of the order of the largest time scale associated with the trap, that is of the order of 100 ms with the present chip configuration.

Optimal control theory

As stated above, optimal control theory (OCT) is a mathematical concept derived to target a final state with well defined boundary conditions. This tool is based on the choice of a cost functional that must be iteratively maximized or minimized depending on the physical problem to deal with.

The physical parameters to optimize, as will be introduced later, are usually called state vectors.

An adjoint state is then deduced. Increasing the number of these states calls out to a more complicated problem with several equations to solve which give rise to heavy computations.

In the coming section, we introduce, in a first step, the basic equations obtained in our case the simple classical problem. Later, accounting for the quantum matter-wave behavior implies a higher degree of complexity with more equations to solve. The two problems require two different cost functionals and therefore a different set of mathematical treatment.

Classical OCT a -Cost functional

To implement such an optimal control scheme, we first introduce the "classical" point-wise translational energy of the condensate in the reference frame of the trap

E cl (t)= m 2 ⇣ w 2 z ⇥ z A z 0 ⇤ 2 + ⇥ v A ż0 ⇤ 2 ⌘ , (4.20) 
The first term in Eq. ( 4.20) represents the potential energy of the harmonic trap along the normal direction to the Z-chip. The second term is the kinetic energy associated to the difference of velocity of the center of mass of the condensate with respect to the position of the minimum of the trap during the transport procedure.

The goal we want to achieve is the minimization of a total cost functional C tot defined by the sum

C tot = C term + C run (4.21)
of a terminal cost

C term = l 1 E cl (t f ) (4.22)
and a running cost

C run = l 3 1 t f Z t f 0 E cl (t) dt ! . (4.23) 
The terminal cost was designed to insure a well centered BEC at the end of the transport at time t f with no final residual oscillation. It imposes the minimization of the total classical energy of the condensate at the end of the transport. The running cost is introduced in order to limit the transient excitation of the condensate in the moving harmonic trap. For the sake of simplicity, here we choose to give the same non-dimensional Lagrange multiplier l 1 to the two different classical contributions and we will later conserve the same running cost for both schemes (the classical and the quantum OCT). l 1 and l 3 are chosen to express the relative weights between the two terms of the total cost functional. Changing the values of these weights (The Lagrange multipliers) affects the progress of the optimization procedure by changing the path it takes during optimization. This can lead in practice to different final transport ramps, which will take into account the relative weight assigned to each of the terms of the cost functional.

b -Framework

We now reformulate our optimization problem in the framework of optimal control theory. We refer the interested reader to standard textbooks for details [START_REF] Kirk | Optimal control theory: an introduction[END_REF][START_REF] Bryson | Applied optimal control: optimization, estimation, and control[END_REF][START_REF] Bonnard | Optimal control with applications in space and quantum dynamics[END_REF][START_REF]Introduction to quantum control and dynamics[END_REF]. The state of the system is described by a state vector x, with

x 1 = z A (t) (4.24) 
x 2 = v A (t) (4.25) 
As suggested in Eqs. (4.12) and (4.13), the time evolution of all components of the state vector

x is governed by Newton's classical equation of motion controlled by u(t) through the time dependence of the trap position and frequencies. Once u(t) is chosen and for well defined initial conditions at t = 0, these equations are easily solved using a Runge-Kutta algorithm [116,117] or the Verlet method [118] (see Appendix A), for instance.

According to the Pontryagin maximum principle [START_REF] Pontryagin | Mathematical theory of optimal processes[END_REF][START_REF] Lee | Foundations of optimal control theory tech[END_REF], the extremal solutions of the problem, candidates to be optimal, satisfy the Hamiltonian equations

ẋi = ✓ ∂H p ∂p i ◆ and ṗi = ✓ ∂H p ∂x i ◆ , for i = 1, 2 (4.26) 
where i refers to the number of the state and p is the adjoint state vector and where the Pontryagin Hamiltonian of the system is defined by

H p (x x x, p p p, t, u)=p p p • ẋ ẋ ẋ l 3 E cl (t) t f ! , for i = 1, 2 (4.27) 
The resulting Pontryaguin Hamiltonian is of the form

H p = p 1 x 2 p 2 w 2 z (x 1 z 0 ) l 3 m 2 t f h w 2 z (x 1 z 0 ) 2 +(x 2 ż0 ) 2 i (4.28)
From Eq. (4.26), it can be easily shown that the dynamics of the adjoint state is governed by the following set of coupled first order differential equations

ṗ1 = w 2 z (t) " p 2 + l 3 m t f x 1 z 0 # , (4.29a) 
ṗ2 = p 1 + l 3 m t f x 2 ż0 . (4.29b) 
We can also rewrite these two first order differential equations in the form of second order differential equations written as

p1 ẇ2 z w 2 z ṗ1 + w 2 z p 1 2 l 3 w 2 z m t f x 2 ż0 = 0, (4.30a) 
p2 + w 2 z p 2 + 2 l 3 w 2 z m t f x 1 z 0 + l 3 m t f z0 = 0. (4.30b) 
In practice, we can solve any of the two previous equations as desired since they are not coupled.

The first seems easier to implement since it does not require to calculate the acceleration of the trap z0 , but it involves ṗ1 which prohibits a simple algorithm like Verlet and rather imposes a resolution for example by the Runge-Kutta algorithm. The second seems more complex to set up since it includes the acceleration of the trap z0 , however the Verlet's algorithm shows up to be a perfect candidate to solve such mathematical equations. With that in mind, we choose to stick with the Verlet method (see Appendix A) and to solve the equations Eq. (4.30b).

The initial conditions for these adjoint states are deduced from the formula below

p n (t f )= l 1 ✓ ∂E cl ∂x n ◆ t=t f , for n = 1, 2 (4.31) 
thus leading to the following boundary conditions at time

t = t f p 1 (t f )= l 1 m w 2 z (t f ) ⇥ z A (t f ) z 0 (t f ) ⇤ , (4.32a) 
p 2 (t f )= l 1 m żA (t f ) . (4.32b) 
The correction to be applied iteratively to the control field u(t) is written as

u(t) ! u(t)+du , (4.33) 
where

du = e ✓ ∂H P ∂u ◆ = e ✓ ∂H P ∂B ◆✓ ∂B ∂u ◆ . (4.34) 
e > 0 is a small arbitrary non-dimensional weight attributed to the field correction. The derivatives (∂B/∂u) and (∂H P /∂B) can be computed from Eqs. (4.2) and (4.27). We obtain

✓ ∂B ∂u ◆ = 30 (B f B i ) ⇥ (u(t) u(0))(u(t) u(t f )) ⇤ 2 (u(t f ) u(0)) 5 ! (4.35) 
and

✓ ∂H P ∂B ◆ = p 2 ⇥ (w 2 z ) 0 x 1 +(w 2 z z 0 ) 0 ⇤ + ml 3 t f (x 2 ż0 )(ż 0 ) 0 ml 3 2t f (x 1 z 0 ) ⇥ (w 2 z ) 0 (x 1 z 0 ) 2 w 2 z (z 0 ) 0 ⇤ . ( 4.36) 
Here the dot symbol is associated to the total time derivative and the prime symbol (') is for the derivation with respect to the magnetic field B, leading to

(w 2 z ) 0 = ∂w 2 z ∂B B=B(t) (4.37) (w 2 z z 0 ) 0 =(w 2 z ) 0 z 0 +(z 0 ) 0 w 2 z (4.38) (z 0 ) 0 = ∂z 0 ∂B B=B(t) (4.39) 
( ż0 ) 0 = Ḃ(t) ∂ 2 z 0 ∂B 2 B=B(t) . (4.40) 
We use a standard first-order gradient algorithm which is adapted to the control problem under study. The optimization procedure proceeds as follows:

1. First we fix the initial control ramp u(t) obtained by the STA procedure as detailed in Eq. (4.11). An arbitrarily linear ramp u(t)=t/t f can also do the job perfectly but it requires longer computation time to converge properly.

2. We then compute the magnetic field B bias (t) using Eq. (4.2) and we deduce the trap dynamics by calculating the trap motion z 0 (t) and the trap frequencies w x (t), w y (t) and w z (t)

from Eqs. (4.7)-(4.10).

3. Using the Verlet method [118], we then solve Eqs. (4.12) and (4.13) to simulate the condensate center of mass motion from the initial time t = 0 to the final time t = t f . 4. We calculate the adjoint state p(t f ) at the end of the transport using Eqs. (4.32) and we propagate p(t) backward in time until t = 0 using Eqs. (4.30a) and (4.30b).

5. Finally, we add a first order correction to the control ramp by replacing the control function

u(t) by [u(t)+du(t)],
where du(t) is calculated from Eqs. 

Quantum OCT a -Cost functional

We implement here the OCT simultaneously on Newton's classical equations of motion and on the so called 'scaling' equations of motion describing the size dynamics of the BEC. This quantum-OCT scheme will aim at imposing well-defined boundary conditions for the initial and final position and speed of the condensate and for the initial and final sizes of the condensate in the three spatial directions.

In addition to the "classical" energy of the condensate as represented in Eq. (4.20), we introduce the "quantum" energy associated with the 3D Thomas-Fermi wave function

E qu (t)= m 14 h w 2 x R 2 x + w 2 y R 2 y + w 2 z R 2 z i + m 14 h Ṙ 2 x + Ṙ 2 y + Ṙ 2 z i + 15g 2 N 28p R x R y R z , (4.41) 
where g 2 is the scattering amplitude as defined above in Eq. (2.1), a s is the s-wave scattering length of Rb-87 and N denotes the number of condensed atoms. The first term in Eq. (4.41)

describes the potential energy associated with the finite size of the condensate, the second term is the kinetic energy associated with the size dynamics, and the third and last term is the average mean-field interaction energy between the bosonic atoms. The numerical factors (1/14) and (15/28) seen in Eq. (4.41) come from the specific definition given in Eq. (4.16) of the size of the condensate using a Thomas-Fermi expression for the probability density.

The new aim to fulfill is the minimization of a total cost functional C tot , defined by the sum of a terminal cost

C term = l 1 E cl (t f )+l 2 E qu (t f ) (4.42)
and the same running cost C run as Eq. (4.23).

This new terminal cost insures the formation of the ground state of the trap at time t f by imposing the minimization of the total energy of the condensate at the end of the transport. Here we fix l 1 = 1 and the two other dimensionless parameters l 2 and l 3 are chosen to express the relative weights between the three terms of the new cost functional.

b -Framework

As aforementioned, we start by introducing the state vector x representing the physical parameters to optimize as follow

x 1 = z A (t), x 3 = l x (t), x 5 = l y (t), x 7 = l z (t) x 2 = v A (t), x 4 = lx (t), x 6 = ly (t), x 8 = lz (t) (4.43) 
As suggested by Eqs. (4.13) and (4.17), the time evolution of all components of the state vector

x is governed by a set of coupled first order differential equations controlled themselves by u(t). where i represents the state vector.

Runge

The Hamiltonian expression is thus more complicated and the obtained result reads

H P = p 1 x 2 + p 2 w 2 z (x 1 z 0 )+p 3 x 4 + p 4 w 2 x (0) x 2 3 x 5 x 7 w 2 x (t) x 3 ! + p 5 x 6 + p 6 w 2 y (0) x 3 x 2 5 x 7 w 2 y (t) x 5 ! + p 7 x 8 + p 8 w 2 z (0) x 3 x 5 x 2 7 w 2 z (t) x 7 ! l 3 2t f m w 2 z (x 1 z t ) 2 l 3 2t f m ⇥ x 2 żt ⇤ 2 . (4.45)
The temporal evolution of the adjoint state's first derivative is controlled by the following set of equations, according to Eq. (4.26) equations of motion describing the size dynamics of the condensate along the three space directions x, y and z as seen in Eqs. (4.17) to (4.19).

ṗ1 = w 2 z (t) " p 2 + l 3 m t f x 1 z 0 # (4.46a) ṗ2 = p 1 + l 3 m t f x 2 ż0 (4.46b) ṗ3 = p 4 " w 2 x (t)+ 2 w 2 x (0) x 3 3 x 5 x 7 # + p 6 " w 2 y (0) x 2 3 x 2 5 x 7 # + p 8 " w 2 z (0) x 2 3 x 5 x 2 7 # (4.46c 
The new transversality conditions for the adjoint state are defined by

p n (t f )= l 1 ✓ ∂E cl ∂x n ◆ t=t f l 2 ✓ ∂E qu ∂x n ◆ t=t f
, for n = 1, 2...8 (4.48)

Then, we end up having the hereinafter boundary conditions at time
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The control field correction for each iteration is defined by du, as mentioned above in Eq. (4.33).

Of course, we may choose a different small positive weight e when compared to the value used for the classical OCT control field u(t). This weight is customarily scheme dependent. The derivative (∂B/∂u) is still given by Eq. (4.35), but (∂H P /∂B) must be computed from the new Pontryagin Hamiltonian H p associated with the quantum OCT approach given by Eq. (4.44).

This leads to

✓ ∂H P ∂B ◆ = p 2 ⇥ (w 2 z ) 0 x 1 +(w 2 z z 0 ) 0 ⇤ p 4 (w 2 x ) 0 x 3 p 6 (w 2 y ) 0 x 5 p 8 (w 2 z ) 0 x 7 ml 3 2t f (x 1 z 0 ) ⇥ (w 2 z ) 0 (x 1 z 0 ) 2 w 2 z (z 0 ) 0 ⇤ + ml 3 t f (x 2 ż0 )( ż0 ) 0 . (4.50)
As indicated earlier, the total time derivative is asserted by the dot symbol and the prime symbol 

Convergence

Fig. (4.4) shows a typical example of convergence of this algorithm. The condensate, with a total atom number N = 10 5 , is assumed to be initially at rest in the ground state of the initial trap. The initial control ramp is the shortcut-to-adiabaticity solution (see Ref. [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF] for details). The weight parameters are l 1 = 1, l 2 = 5.10 5 and l 3 = 0.001. We have chosen in this example a large value for l 2 in order to impose a fast convergence for the control of the final size of the condensate.

In practice the correction parameter e has to be chosen small enough to insure the convergence of the optimization algorithm. Since the correction to the control ramp is introduced at first order only, decreasing the value of e beyond a reasonable limit does not improve the accuracy of the optimization procedure but it slows down the convergence. In the present example we have chosen e = 10 11 . 

< E cl >= 1 t f Z t f 0 E cl (t)dt (4.53)
Since the total cost functional given in Eq. (4.21) is characterized by a very large weight l 2 associated with the final quantum energy, we see that E qu (t f ) is very quickly minimized, in about 1,000 iterations. This limit of 1,000 iterations is emphasized in Fig. 

Comparison of different optimization procedures

In Fig. A first conclusion of this study is therefore that, if one is mainly interested in the control of 92 the average translational degree of freedom of the BEC, the STA approach, whose numerical implementation is much simpler than OCT, is sufficient.

t f t f (a) (b) (c) (f) (e) (d) 
It is in the size dynamics shown in panels (d), (e) and (f) that there is a striking difference between qu-OCT and the two other optimization methods. In terms of size dynamics, cl-OCT and STA give very similar results which consist in a persistent size excitation of the condensate after the transport. This result was already seen in Ref. [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Corgier | Engineered atomic states for precision interferometry[END_REF], where it was shown that it was mainly the first quadrupole mode Q 1 which was excited, thus explaining that the size oscillation along x, y and z is almost periodic and out-of-phase between ∆x and (∆y, ∆z) after the transport. The qu-OCT approach is able to suppress efficiently this quadrupole-mode excitation (see Fig. (3.14) for more details) and, at the end of the transport, the sizes ∆x, ∆y and ∆z remain constant.

We can therefore conclude that the introduction of a minimization goal for the quantum energy associated with the finite size dynamics of the condensate allows the qu-OCT transport ramp to prepare the true ground state of the final trap at t = t f . When the size dynamics is not accounted for, as in the STA and cl-OCT approaches, it is impossible to insure the preparation of the lowest energy state in the final trap using short transport ramps.

The optimized OCT transport ramps were obtained using a Thomas-Fermi approximation in On the other hand, for transport durations smaller than 140 ms larger transient excitations are obtained when using qu-OCT.

We could however verify that for all transport durations in the range 100 ms 6 t f 6 200 ms, the qu-OCT method is able to minimize very efficiently the residual size excitations after the transport, a goal which is not achievable with the STA or cl-OCT procedures. This can be seen in Fig. (4.8), which shows the residual oscillation amplitudes 

∆a res = 1 2 h Max t > t f ∆a Min t > t f ∆a i ( 4 

Conclusion

In conclusion, we engineered optimal control theory protocols allowing for the fast, excitationless transport of BECs over large distances compatible with a precision atom interferometric use [115]. The ramps presented in this work relied on a single-parameter (bias magnetic field) optimization to shift the trap minimum position of the atom chip, promising a straightforward experimental implementation.

The results of the OCT procedure relied on a scaling approach assuming harmonic trapping.

Real-life implementations on atom chips comes with anharmonic corrections, mainly cubic in the direction of the transport, that scale with the position offset between the atoms and the trap minimum during the transport and with an inherent rotation of the trap.

We demonstrated in this study, by solving 3D Gross-Pitaevskii equations for typical anharmonic and rotating chip traps, that the proposed OCT protocol does not compromise the target state solution even for very competitive ramp times of 150 ms. This also suggests a successful transfer to experiments. Moreover, we indicated by studying the impact of different transport durations, the methodology to follow in order to device the shortest ramps possible. Indeed, by quantifying the maximum offset induced by each ramp duration, every experimental implementation would be characterized by an anharmonicity range explored according to the specific trap configuration considered. This range determines, ultimately, the success of the ramp in reaching the ground state of the final trap.

By extension, we propose to push the manipulation of this matter-wave to account the deltakick collimation scheme applied in several atom interferometry experiments worldwide, to limit the condensate size growth during the time of flight in order to increase the atom interferometer read-out accuracy. This new objective will be described in details in the following chapter. In the present Chapter, a specific sequence is considered for such experiments to optimally manipulate the external degrees of freedom of the Bose-Einstein Condensate (BEC) after its creation. After the transport procedure, the atoms are held for a short period of time in the final trap before being released in a free expansion. The time of flight in such experiments is expected to be around several seconds and the expansion speed of the cloud should therefore be reduced to maximize the sensitivity of the interferometer. To lower the momentum spreading of the matter-wave, a solution is to use the Delta-Kick Collimation technique (DKC) [START_REF] Müntinga | Interferometry with Bose-Einstein condensates in microgravity[END_REF][START_REF] Deppner | Collective-mode enhanced matter-wave optics[END_REF][119][120][121]. If successful, this collimation can lead to significant improvements in the final expansion energy of the atomic ensemble and on its associated expansion temperature, thus resulting in higher accessible interferometry times necessary for high precision measurements.

In this Chapter the impact of this collimation technique applied in succession to the several previously detailed optimization procedures to provide an optimized dynamical BEC sequence for a micro-gravity application is discussed. The main target is to obtain the lowest expansion temperature of the condensate and to ensure a total preparation time scale shorter than 1 s.

The Chapter is organized as follows: We start with a presentation of the concept of the Delta-Kick Collimation (DKC). In a second step, we present the dynamical behavior of the BEC after being displaced with a new magnetic field ramp, using the different proposed optimisation methods. A comparison between the momentum distributions of the collimated widths of the initially expanded condensate is then presented. Finally, we design a new dynamical sequence to prepare a slowly expanding condensate. The introduced sequence is generated using Optimal Control Theory (OCT). The transport is the same as the one presented in Chapter 3, prepared by the reverse engineering method. We then study and discuss the impact of the new presented optimization scheme on the expansion rate of the cloud. We conclude by presenting an overview and a general perspective of this methodology.

Delta Kick-collimation

General Concept

After manipulating the BEC to optimally transport it far away from the chip vicinity and letting it freely expand for several ms, the atomic samples are subjected to a magnetic kick consisting in re-shining the magnetic trap for a brief duration as represented in Fig. (5.1). This manipulation aims to reduce the momentum dispersion of the cloud. This is often compared to the collimation effect of a lens in optics. The collimated wave-packet is then freely expanding with a lower expansion speed. A perfect collimating lens would, if it existed, prohibit any further size growth.

Using DKC, the atomic ensemble can be cooled down to the pK level in a short time of the order of few µs and no atom loss is observed since this scheme conserves the phase space density as shown in Fig. (5.1). This method was proposed for BECs in the late 90s by Ammann and In theory, the mathematical concepts used to describe this collimation were derived [120] using both classical and quantum mechanical considerations. The classical argument assumes that the atoms are initially trapped near the minimum of a harmonic trap U(x) with a frequency w. After a free expansion time T, a short pulse lasting for t p is shined and the new magnetic trap is referred to as a magnetic kick leading to a narrower the distribution of the momentum of the atomic ensemble. The lens efficiency depends on the choice of this pulse duration. An optimal lens is obtained for the pulse duration [120]

t p ' 1 p 2pw 2 T . ( 5.1) 
For long free expansion times T, the cloud expands linearly. In other words, the momentum of the expanding condensate is proportional to the size of the cloud according to P = mx/T, where

x refers to the position and m is the atomic mass. It is therefore advantageous to extend T as much as possible before applying the delta kick.

According to the quantum mechanical assumption, the atomic ensemble is represented by a macroscopic wave function y(r, t). The time evolution operator applied to the initial matter-wave allows to predict its dynamics. The magnetic kick is represented as a simple application of a kick operator Ûk . For more details on the overview of the mathematical concepts, see [120].

In this Chapter, we study the impact of the collimating lens on the expansion dynamics of the condensate.

Atomic collimation prescript

The manipulation of the BEC is briefly described in this section to give the reader an initial insight into the different dynamical steps. As mentioned above in Chapter 3, the presented displacements are generated with the same atom chip with a Z configuration. The classical delocalization of the cloud, relying on the initial conditions of the system, is ensured by the STA ramp (see Chapter 3) while, the other optimization ramps are prepared using the optimal control theory (see Chapter 4). The proposed study will be based on these layouts with a new magnetic field range. The bias field is varied between B i = 21.6 G and B f = 5.9 G. For the transport, we proceed with a shorter duration of the order of 75 ms instead of 150 ms. The reduction of the total duration of the displacement of the atoms is to ensure an easier comparison with the findings of our previous work based on STA [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Corgier | Engineered atomic states for precision interferometry[END_REF], presented in Chapter 3. The displacement is for a distance of 1.2 mm. The y and z axis are characterized by similar frequency evolutions, while the change over time of the frequency in the x direction is quite different and characterized by a

As a consequence, a transport for this duration (75 ms) and with these offsets can be applied without introducing important undesired final excitations of the condensate for interferometry experiments in micro-gravity. In addition, to detect any residual oscillations of the condensate that may be introduced by any of the previous ramps, we hold the atomic sample in the final trap for 31.4 ms. In Fig. (5.2), the end of the transport is marked by the black dotted vertical line.

The obtained centered results on the origin, as expected, picture the omission of the final global oscillation. In a further step, we aim to compare the efficiency of the atomic lens applied to the initially expanded condensate after being displaced using the different optimization procedures.

DKC application

We investigate the size growth of the BEC during a succession of dynamical steps to prepare an atomic gas with an expansion rate of a few pK. The five different steps during which the size dynamics of the condensate is computed are: 1) a rapid transport ramp lasting for 75 ms using the different optimization procedures (STA, cl-OCT, and qu-OCT) ; 2) an additional holding time of 31.4 ms ; 3) a free expansion lasting for 100 ms ; 4) a delta-kick-collimation [119,120] for a short duration of 4.96 ms ; and 5) Finally, a long free expansion time of 788.6 ms. This dynamical sequence is identical to the one published in Refs. [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Corgier | Engineered atomic states for precision interferometry[END_REF]. The collection of figures in this section focuses on the cloud size dynamics and do this by the use of the analytical semiclassical scaling approach, as detailed above in Chapter 2. In contrast, the qu-OCT approach allows for an optimal control of the size of the BEC at the end of the transport, where the condensate arrives at rest in the final trap, as illustrated in Fig. (5.5) during the holding period. The qu-OCT ramp seems to be less efficient for the preparation of a well-collimated BEC. Indeed, the ramp generated by the latter fails to control the size growth of the BEC along the shallowest direction x (solid blue line). This is mainly due to the fact that, at the end of the transport and holding, the BEC size along x is much smaller (about 9 µm) using qu-OCT compared to cl-OCT or STA (about 19 µm). As a consequence, after the holding, the residual atomic interactions are still large with qu-OCT, leading to a relatively fast expansion along x. It seems therefore preferable to use STA or cl-OCT since they show better results and ensure smaller expansion energies. The engineered quantum states with our settings, using the classical optimization procedures, can indeed be considered as very well collimated along the three spatial directions. It should be noticed that the nice collimation obtained in the two classical approaches is due to an appropriate choice of the holding time, leading to a quite dilute condensate almost at rest at the time associated with the first release.

These results would fall short if we were choosing a random different holding duration. In the coming section, we aim to use the OCT differently, to provide a whole optimized dynamical sequence (Transport, Holding, First Expansion, DKC, and Final Expansion) to optimize the final expansion energy of the condensate for a time scale shorter than 500 ms.

OCT for the Minimization of the Expansion Temperature

State of the art

Generating an optimal sequence operating in a short duration to ensure a slower final expansion of the BEC, is our main task. Essentially, we consider using OCT to design this optimal transport, holding and DKC sequence. This approach searches for the global minimum of a cost function J.

Our goal is to reduce the final expansion energy of the system while, at the same time, limiting the possible excitations of the system throughout the entire dynamical sequence. In order to carry out such manipulation, an initial input must be considered to initiate the optimization loop.

The most straightforward choice is to consider as an input the STA sequence used in Chapter 3, in view of the fact that it has proven its successful implementation in an actual experiment [START_REF] Deppner | Collective-mode enhanced matter-wave optics[END_REF]. In this input, the transport is achieved using an optimized chirped STA ramp. A relevant manner to introduce the chirp coefficients (a, b) is to define a temporal ramp function u(t) which controls the transport step. This function which has the dimension of a frequency is chosen as the polynomial

u(t)= " 1 + a (t/t f )+b (t/t f ) 2 1 + a + b # 2p t f ! (5.2)
where a is the linear chirp coefficient, and b represents the quadratic chirp parameter. Note that u(0)=0 and u(t f )=1. The initial set of adimensional coefficients (a, b) to be optimized is mentioned in Table . (5.1). The OCT procedure will automatically optimize these chirp parameters.

The position of the center of mass of the BEC is generated from this ramp function using

z a (t)=z i + (z f z i ) 12 p h 6 u(t)t 8 sin ⇣ u(t)t ⌘ + sin ⇣ 2 u(t)t ⌘i (5.3)
where z i and z f are, respectively, the initial and final positions of the minimum of the trap. Note that z a (0)=z i and z a (t f )=z f , and that ża (0)= ża (t f )=0. In this calculation, we use It is possible to minimize the excitations of the system when performing a fast transport by minimizing the position and velocity offsets. This can be seen in the expression of the classical energy of the system

z i = 0.
E cl (t)= 1 2 m h w 2 z (t)(z a z 0 ) 2 +(ż a ż0 ) 2 i (5.4)
where z 0 (t) denotes the position of the minimum of the trap. We assume that the atoms are at rest in the minimum of the trap along the directions x and y. In that sense, the main physics is occurring along the z axis. The minimization of excitations of the system will thus be controlled using the 1D classical energy along the z axis. The first term represents the potential energy in the harmonic trapping potential and the last contribution represents the kinetic energy of the system. We remind the reader that such transport is performed, experimentally, using atom chips in combination with external magnetic coils. The associated magnetic field ramp and the resulting analytical expression of z 0 (t) and of the time-dependent frequencies w x (t), w y (t) and w z (t) are thus obtained as in Chapter 4.

For further steps, we are interested in controlling the size growth of the atomic ensemble at the end of the sequence. Thus, we have to consider minimizing the final quantum kinetic energy of the condensate as well. This quantity is defined as

E qu (t end )= m 21 h R 2 x (0) l2 x (t end )+R 2 y (0) l2 y (t end )+R 2 z (0) l2 z (t end ) i (5.5)
where, R i (0) is the initial Thomas-Fermi radius along the direction i. The dot symbol represents the time derivative. The scaling factors l i (t) are generated from the scaling approach, as presented in Chapter 2. Here, we use t end = 0.5 s.

Based on these two energy criteria, the total cost function is written as

J = E qu (t end )+ e t f Z t f 0 E cl (t) dt , (5.6) 
e being an adimensional weight factor. In the present study we have chosen e = 5 ⇥ 10 4 .W e

have chosen e ⌧ 1 because our main goal is to control the final expansion energy. We analyse in the coming section, the outcome of the implementation of such an optimization procedure.

Optimized Expansion Energy

The result of this OCT approach is summarized in Table ( The temporal evolution of the size of the BEC along the three spatial directions, defined as the three Thomas-Fermi radii R x (t), R y (t) and R z (t), is shown in The upper panel (a) shows the result of the present OCT optimization. This panel shows that a very good collimation of the condensate is reached in 3D, since the size of the BEC does not increase significantly after the delta-kick. This is coherent with the very low 3D expansion temperature of 30 pK obtained.

The size dynamics obtained if we remove the chirp, i.e. if we impose a = b = 0 while keeping all other optimized parameters fixed, is shown in the middle panel (b). We see here that by removing the chirp, we loose the collimation along the weak axis x. This is consistent with a delta-kick designed for the strongest axis y and z which are characterized by quasi-identical trapping frequencies. We can conclude here that the OCT procedure has optimized the delta-kick duration to collimate the strong axis y and z, and that, for fixed transport and holding durations it is crucial to control accurately the transport ramp if one wants to collimate the weak axis x.

The comparison of panels (a) and (b) therefore shows that the chirp was optimized by the OCT algorithm in order to impose a very good collimation of the weak axis, without affecting the collimation along y and z. In the present un-chirped situation of panel (b), the final 3D expansion temperature obtained amounts to 2.8 nK. Compared to the optimized ramp, we therefore see an increase of about a factor 100 in the 3D expansion temperature when we remove the chirp which controls the shape of the transport ramp.

Finally, the size dynamics obtained if we remove both the chirp and the delta-kick is shown in the lower panel (c). Note that in this figure the scaling of the y-axis (Thomas-Fermi radii) is the same in the three panels (a), (b) and (c). We see here that by removing both the chirp and the delta-kick, we loose entirely the 3D collimation along the three axis x, y and z. This confirms that the OCT procedure has optimized the delta-kick duration in order to collimate the strong axis y and z. In the present situation of panel (c) with no-chirp and no-delta-kick, the final 3D expansion temperature obtained amounts to 6.2 nK, an increase by a factor 2 when compared to panel (b), and an increase by a factor 200 when compared to panel (a).

To give an idea about the ability to generate and manipulate the coherent matter-wave in an actual experiment for a metrology quest, we analyze in Table ( during the transport. These numbers remain relatively small, of the order of 100 nK, and are typically decreased by a factor of 2-3 when using a chirped transport ramp compared to an un-chirped transport ramp.

Thereby, we confirm that our optimal sequence can be employed experimentally. We should and we see from Table (5.2) that the optimal value obtained for the duration of the first expansion ∆t exp has reached the maximum limit imposed of 25 ms. If we relax this constraint and let the 1 st expansion time take values up to 35 ms, a new optimized ramp is obtained with an even lower final 3D expansion temperature of 14 pK and a holding time of 35.4 ms, but this is done at the cost of decreasing the delta-kick duration to 0.5 ms. We see here that lower 3D expansion temperatures can be obtained if the experimental setup allows for the implementation of very short delta-kicks. For instance, a final 3D expansion temperature of 3.5 pK is achievable with a first expansion time of 50 ms, a holding time of 36.8 ms and a delta-kick duration of 0.36 ms.

Finally, we want to emphasize the fact that the optimal sequence obtained and the associated final 3D expansion temperature depends on the weight factor e introduced in our choice of total cost function in Eq. (5.6). For instance, if we decrease the weight e associated with the average classical energy during the transport from 5 ⇥ 10 4 to 10 5 , the final 3D expansion temperature decreases to 17 pK (instead of 30 pK) at the cost of increasing the maximum transient position offset to 31.1 µm (instead of 18.3 µm).

Conclusion

In conclusion, we have presented in this Chapter the impact of using the delta kick collimation technique to control the size dynamics of the BEC. The three different optimization ramps discussed in the previous Chapter, namely STA, cl-OCT and qu-OCT, have been studied in this context. With the realistic chip parameters already used previously, we have deduced the better efficiency of the STA and cl-OCT treatments compared to the qu-OCT approach if one aims for a better collimation of the condensate in the final free expansion stage. We therefore chose the STA ramp as an initial input for the implementation of an iterative optimal control of this collimation by the computation of a cost functional. This functional ensures the minimization of the final expansion kinetic energy of the condensate, while minimizing at the same time the average classical energy of the system during the transport phase to avoid undesirable transient excitations.

This optimal control approach allowed us to engineer an optimized ramp that generates a BEC with a final 3D expansion energy in the range of 3 to 30 pK, depending on the duration of the first expansion stage. Such 3D expansion energies open new perspectives for atomic interferometry based on Bose-Einstein condensates in micro-gravity.
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(35 pK in 3D) [START_REF] Hartwig | Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer[END_REF]. In this thesis, the main objective was to optimize a single component BEC. As will be discussed below, future studies based on the developed techniques could be generalized to the case of a mixture of condensates.

We devoted Chapter 2 to the presentation of the theoretical background used in our work. The model that we have developed, aim to give a better understanding of the behavior of the classical and quantum degrees of freedom of the BEC. We have shown that it is possible to extend the use of the Gross-Pitaevskii equation (GPE) to account for the 3-body interaction generated by the confining traps. To make this model applicable to any other study with BECs, we have detailed a specific quantum treatment to describe the matter-wave size growth for long enough expansions.

Atom chip operation imposes some limit the possible manipulation of the quantum matterwaves. The decoherence of the condensate can be likely caused by the fluctuating current in the wires engraved on the chip. A classical ramp designed using a reverse-engineering technique was essential and the single control parameter was then the evolution of the magnetic field. The aim of Chapter 3 was to apply the different theoretical models detailed in Chapter 2 to study the behavior of the engineered 87 Rb BEC with the settings of the Quantus-2 experiment. We have found that the quantum study based on the GPE is in good agreement with the experimental findings in terms of the temporal evolution of the BEC size in 3D. This investigation has emphasized the strong effect of the 3-body interactions in the context of the Quantus-2 experimental project [START_REF] Van Zoest | Bose-Einstein condensation in microgravity[END_REF]. Each of these classical and quantum theories was required to evaluate and interpret the experimental data and address most of the potential questions.

Classical engineered trajectories fail to control the quantum degrees of freedom, i.e. the size evolution of the matter-wave. The quantum manifestation was endorsed by the collective breathing of the condensate. A more complex technique, relying on Optimal Control Theory (OCT), was then utilized to bring the system to the ground state after a fast robust transport. The optimized ramp was elaborated imposing a realistic smooth behavior of the involved magnetic fields. Sev-eral ramps were optimized to displace the condensate for different possible transport durations.

This work was published in Ref [[115]].

OCT as an efficient tool can be used to also engineer an optimized sequence to ensure a low expansion rate of the quantum matter-wave. In this case, the technique of Delta-Kick Collimation (DKC) [START_REF] Müntinga | Interferometry with Bose-Einstein condensates in microgravity[END_REF][START_REF] Deppner | Collective-mode enhanced matter-wave optics[END_REF][119][120][121] was required to reduce the momentum distribution of the condensate in 2 directions of expansion. Thanks to the successful experimental implementation of the classical ramp, it was then considered as the perfect input for generating the optimal new sequence. In the context of precision experiments, the repetition rate of the free-falling experiments is crucial to increase the amount of the collected data. We thus have suggested engineering an optimized sequence based on OCT with a shorter duration and meeting all the above-mentioned conditions.

Outlook

From the studies presented in this thesis, possible future investigations can be considered in order to go further in the manipulation of alkaline quantum states for quantum tests of the weak equivalence principle. This objective will require the use of a mixture of condensates with two components of distinct masses.

The results presented in this manuscript relate to an optimization procedure of a single component condensate. This was obtained via OCT for the ground state of the final magnetic trap [115]. The positive outcome of this study suggests a natural generalization to a dual-species transport case. For this latter, no analytic or intuitive solutions do exist. The STA approach generally fails since the two interacting species experience different potential frequencies due to their mass difference, and the interactions between species, which are sometimes very strong, further complicate the problem. A comparable OCT approach to the one adopted in this study, based on a pair of coupled mean-field equations, would allow finding the trap trajectories that Leur dynamique est traitée dans une approche quantique en calculant l'évolution temporelle d'un paquet d'ondes 3D représentant un grand nombre d'atomes en interaction. Pour prendre en compte de manière réaliste ces interactions, qui se produisent dans un potentiel de piégeage non harmonique, un traitement quantique est en effet obligatoire en résolvant numériquement l'équation de Gross-Pitaevskii (GPE) dépendant du temps en 3D. En phase d'expansion, la dynamique des condensats est décrite numériquement en utilisant des grilles réadaptées. Une application prévue pour l'expérience «Quantus» qui se déroule en micro-gravité dans la tour de Brême. De plus, différentes procédures semi-classiques ont été détaillées pour traiter le transport du condensat sur un dispositif à puce atomique. Les premiers calculs basée sur l'ingénierie inverse et du raccourci vers l'adiabaticité (STA) nous ont permis de prédire des conditions de transport réalistes pour préparer un nuage atomique optimisé pour l'interférométrie atomique, avec des vitesses d'expansion dans le domaine de sous-10 pK. Cependant, cette approche souffre de certaines limites en termes de contrôle de l'état final du système. Afin d'aller plus loin, un nouveau modèle utilisant la théorie du contrôle optimal (OCT) est détaillé et développé. Ces approches permettent de prédire les variations des paramètres de contrôle (champ magnétique temporel par exemple) à réaliser pour mieux maîtriser le transporter du condensat loin de la puce atomique. Cette méthode nous a permis de montrer qu'il était possible de préparer l'état fondamental du piège final lors d'un transport rapide. Dans une étape finale, on a utilisé cette technique pour optimiser le DKC et ainsi réduire la vitesse d'expansion finale du BEC jusqu'à 30 pK.

cooling and trapping of atoms, a multitude of cold-atom-based devices and sensors were realized. From time keeping to measurements of fundamental constants, these devices are pushing the boundaries of explored quantum phenomena. A very common technique put in practice in these experiments involves atom interferometry, where the wave nature of matter is predominant close to absolute zero temperatures. Atom interferometers reached a level of precision allowing to test fundamental principles and predictions at the heart of modern physics controversies such as Einsteins's weak equivalence principle, the detection of gravitational waves, or probing the quantum superposition principle at macroscopic scales. Going beyond stateof-the-art performance in these experiments requires long interferometer durations, of the order of several seconds, and optimized matterwave sources whose dynamics is extremely well controlled. The requirements imposed on atom sources for interferometry experiments of high precision are quite demanding. They require a preparation and modeling of collimated atomic ensembles expanding with velocities not larger than 100 µ/s (i.e. sub-nK equivalent expansion temperatures). Quantum engineered states of Bose-Einstein condensates of alkaline atoms fulfilling these unusual requirements in temperature, and therefore in observation times, will be studied theoretically. Atom chip devices are required to realize these types of experiments. A robust, excitation-less transport is proposed to displace the matterwave in order to avoid non-desired possible interaction between the BEC and the atom chip vicinity. In this doctoral project, a set of theoretical tools are presented to manipulate the conden-sates. Its dynamics is processed in a quantum approach by calculating the time evolution of a 3D wave packet representing a large number of interacting atoms. To realistically take into account these interactions, which occur within a non-harmonic trapping potential, a quantum processing is indeed mandatory by solving numerically the 3D time-dependent Gross-Pitaevskii (GPE) equation. A so-called "scaling" technique, which consists of re-adapting the grids is used to process the 3D quantum dynamics of condensates in expansion phase, which rapidly have large sizes. An application is planned for the "Quantus" experiment that takes place in micro -gravity in the Bremen Tower. Moreover, different semi-classical procedures were detailed to treat the coherent macroscopic matter-wave transport on atom chip device. Early calculations based on reverse engineering and short-cut-to adiabaticity (STA) allowed us to predict realistic transport conditions to prepare an atomic cloud optimized for atomic interferometry, with expansion velocities in the domain of sub-10 pk. However, this approach suffers from certain limitations in terms of control of the final state of the system. In order to go further, a new model using optimal control theory (OCT) is detailed and developed. These approaches allow us to predict the variations of the control parameters (time-dependent magnetic field for example) that have to be realized in order to transport in a perfectly controlled way the condensate far from the atomic chip. This method has allowed us to show that it was possible to prepare the ground state of the final trap during rapid transport. In a final step, this technique was used to optimize the Delta-kick collimation (DKC) in order to reduce the final expansion temperature of the condensate.
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Figure 1 . 1 :

 11 Figure 1.1: A schematic representation of a typical Mach-Zehnder interferometer used to measure the gravitational acceleration a. The matter-wave, on the left, is subjected to (p/2,p,p/2) laser pluses. The interrogation time T is the temporal separation between two successive pulses. The fringes of the interferometer are generated by the recombined matter-waves. The phase shift f between the different fringes is proportional to the acceleration of the atoms a. See text for more details.

Figure 1 . 2 :

 12 Figure 1.2: Schematic representation of the creation of a condensate (plot taken form [4]). The atoms are almost non-interacting at high temperature. Within the matter-wave duality and at low temperature, particles are considered as waves with De Broglie wavelength l dB . The BEC transition occurs at the critical temperature T c . Where the overlap of the matter-wave leads to the creation of condensed and thermal fracions. A pure macroscopic coherent matter-wave appears when T = 0.

( a )

 a Parabolic flight using a zero-G aircraft from the NASA Analog Missions. The Airbus 300 is designed for a scientific purpose, to test experiments in weightlessness. [13] (b) The drop Tower [14] in Bremen, Germany for short micro-gravity experiments. The drop tower base is a laboratory. Above it, stands a drop tube of 146 m height. (c) The team picture [24] of the MAIUS experiment before being launched onto the space from the Esrange Space Center. The flight was launched on 23 January 2017. (d) Engineered BEC using an atom chip and Bias magnetic field on the ISS [16] from the CAL experiment using atom interferometers. (e) Cold Atom Laboratory (CAL) [16-19] at the international space station (ISS) started in 2018 to generate and manipulate BEC in space. (f) The Einstein Elevator [20] in Hanover for about 4s experiments in micro-gravity. 300 experiments per day are possible.

Figure 1 . 3 :

 13 Figure 1.3: State-of-the art of novel experiments for ultra-cold matter on microgravity built by scientists for the last 25 years after the first experimental observation of the BEC, in 1995 [4].

Figure 1 . 4 :

 14 Figure 1.4: An illustration of the BEC size evolution during several successive steps before the entry to the atom interferometer. A transport of the matter-wave far from the atom chip is followed by a holding. At the end of the holding, the final condensate may present a spherical shape in a phase space diagram. A free expansion occurs for few milliseconds. The BEC is then collimated using the DKC technique and a reduction of its momentum distribution is thus illustrated in the subplot on the right below in a phase space diagram. The BEC size evolution is represented by the red solid line in the collimated case and by a blue solid line for the non optimized matter-wave.

Figure 2 . 1 :

 21 Figure 2.1: Impact of varying the number of particles N on the GPE solution of the initial wave function . On the left panel, the integrated probability distribution P x (x) of the ground state function for a different number of particles N is represented. On the right panel, an illustration of the obtained initial 1D cut of the probability distribution for a fixed number of particles N = 10 5 is shown. The solid blue line shows the outcome of the Thomas-Fermi approximation. The solution of the full numerical simulations (GPE) is marked by the dashed red line.

( 2 . 2 )Figure 2 . 2 :

 2222 Figure 2.2: Scaling parameters's evolution along the three spatial directions, during a transport for 150 ms. Solid black lines illustrate the results of the scaling (Castin and Dum) approximation. The solution of the full numerical simulations (GPE) are marked by the red filled circles. The analytical solutions of the variational approach are shown by the dashed blue lines .

FigFigure 2 . 3 :

 23 Figure 2.3: Impact of the 3-body interaction on the condensed fraction. The blue and orange colors are respectively the condensed and thermal fractions. The length of the presented rectangles illustrates the size of the trapping potential. a) The trapping potential is shallow. The condensed fraction is mainly composed of the two-body collision. b) Introduced losses due to the appearance of the 3-body interaction resulting from the firm trap configuration.

Figure 2 . 4 :

 24 Figure 2.4: Impact of the three-body interaction on the size evolution of the BEC. The different plots represent the dynamical of the scaling factors (width of the matter-wave) along the three space directions. The black solid lines represent the standard variational approach's outcome. The solid blue lines mark the impact of the 3-body interaction on the variational approach solution. The GPE incorporating the 3-body collision is illustrated by the filled red circles. The transport duration is for 150 ms. The treated condensate is a cigar shaped wave function. The confining direction is along the weak axis x.
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 25 Figure 2.5: Schematic representation of the numerical application of the evolution operator to propagate an initial trial function for K iterations.

  In this Chapter, quantum engineered states of BECs of alkaline atoms will be studied theoretically based on the models already detailed in Chapter 2 and directly compared to the outcome of novel experiments performed in the group of Prof. E. Rasel at the Institute of Quantum Optics (IQO) in Hanover, where ultracold atoms are treated as a source of high-precision quantum sensors in microgravity performed in the Quantus and Maius experiments. Optimized models of the atomic dynamics should allow, at a later stage, to take the experiments to the unprecedented level of control necessary to challenge current tests of fundamental laws of physics. The application of both analytical and numerical toolboxes to tackle these specific needs, in close exchange with experimentalists, was thus required.

Figure 3 . 1 :

 31 Figure 3.1: Z-shaped configuration of the micro-structured atom chip. Excerpt from the Diploma Thesis of Jan Rudolph [69]

Figure 3 . 2 :

 32 Figure 3.2: Pictorial representation of the three current carrying wires [AB], [BC] and [CD] of respective lengths 4L, L and 4L in the (XY) plane. The bias magnetic field points along Y. In the numerical calculation, the value L = 4 mm was chosen. The fixed axis of the chip are denoted by capital letters X, Y and Z while the eigenaxis of the trap are designated by lowercase letters x, y and z. These two axis systems are related to each other via rotation by a small angle q around the Z axis

  (3.2). The physical parameters governing the trap potential are the chip current intensity I w and the bias magnetic field B bias . For the present study, I w is fixed at 5 A and the control parameter for the implementation of the transport ramp is the time-dependent bias magnetic field B bias (t), which varies between B bias (0)=B i = 21.5 G at the initial time t = 0 and B bias (t f )=B f = 4.5 G at the end of the transport corresponding to t = t f .

Figure 3 . 3 :

 33 Figure 3.3: Schematic representation of the Matter-wave transport on an atom chip along the z direction normal to the chip. z 0 and z f are respectively the initial and final positions of the minimum of the trap for a transport with a duration t f .

Figure 3 . 4 :

 34 Figure 3.4: Metaphoric representation of the Shortcut to adiabaticity principle, by D. Guéry-Odelin [71]. This artistic representation is taken from the work of the artist A. Richmod.

Figure 3 . 5 :

 35 Figure 3.5: BEC size dynamics. Panels (a)-(c): standard deviations of the spatial density distributions for the three principal axes. The solid blue curve is the solution of the scaling approach, the empty black squares are obtained by solving the GPE in the case of a harmonic potential and the red circles correspond to the more realistic case of the anharmonic trapping potential. The dashed green line is the most complete case including anharmonicities and trap rotation during the transport. The right column shows the averaged probability densities along x (graph d), y (graph e), and z (graph f) calculated by solving the GPE for the anharmonic potential with trap rotation, revealing the collective oscillations connecting the three directions. The dark red regions are associated with density maxima and the dark blue regions correspond to low atomic densities. The last plot (f) is shifted with respect to the trap position z t . The dashed orange lines show the expected BEC position in the three directions as a function of time. The vertical dashed line marks the end of the transport (75 ms) and the beginning of the holding period.
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 36 Figure 3.6: The Quantus capsule [B] freely falling from the release Mech [D] in the Bremen drop tower [A], Germany. The used vacuum chamber is presented in [C]. For more details, we request the reader to see the following paper [21].

Figure 3 . 7 :

 37 Figure 3.7: Maius-1 apparatus [15]. Panel (a): Sounding rocket with a height of 11,94 m. Panel (b): Optical constitution of the payload. Panel (c): Zoom on the vacuum system needed to generate and manipulate the condensate. Panel (d): position of the atom chip with respect to the laser beams. The first detected BEC is shown in plot (e) with the obtained 1D density profile. Panel (f): Density distribution of the condensate after the Bragg scattering. For more details, see [15].
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 38 Figure 3.8: Timetable of the Maius-1 mission. A 6 minutes flight in micro-gravity to perform 110 experiments to initially generate and then manipulate the 87 Rb BEC.

  in Chapter 2 follow the outcome of the Quantus-2 experiment. The main general idea is to use this project as an example of real applications for experiments in micro-gravity. The set of the input parameters is specific for the Quantus-2 experiment. The study carried out discusses the behavior of the detected condensate during the time of flight (TOF) lasting for several hundreds of ms. Furthermore, the possible arising collective modes are illustrated. The conclusions from these comparisons are discussed and explanations of possible gaps between theory and practice are introduced.
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 39 Figure 3.9: The implemented Quantus-2 experiment[21] detection system to visualize the condensate. The first detection is described on the left panel. The associated coordinates system is (x 0 , y 0 ) The beam light is pointing at 45 around the z axis. The right plot represents the second detection. Two cloud images are observed on the 2D plane (x 00 , y 00 ). The incident beam at an angle of 52.5 , reflected on the atom chip surface, generates an artificial cloud (left) from the real cloud (right). This pictorial representation was produced by Christian Deppner.
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 39 Fig.(3.9), is to deliver a complete 3D picture of the BEC.
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 310 Figure 3.10: A comparison between the Quantus-2 [21] experimental and theoretical data of the radius of the condensate (µ µ µm) during 200 ms of a time of flight (TOF). The left and right panels illustrate the first and second detection results, respectively. The x direction is represented in black. The red color is attributed to the y direction. The dotted lines show the linear fit. The results of the scaling approach are represented with solid lines. The dashed lines illustrate the variational approach results. The dashed-dotted curves are the solution of the GPE simulations.

Figure 3 . 11 :

 311 Figure 3.11: BEC size dynamics during 200 ms time of flight (TOF) expanding from a confining trap with the frequencies 2p • (9.08, 27.88, 23.62) Hz. The full black and red circles represent the exact experimental data. The Left and right columns are, respectively, for the first and second detection. The dotted lines illustrate the expected linear fit. The solid curves show the scaling approach results. The variational approach with a three-body interaction solution is represented by the dashed lines. The dashed-dotted curves are obtained by solving the rescaled GPE including the three-body interaction.
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 312 Figure 3.12: Detected expanded BEC size in the Quantus-2 experiment. The theoretical linear fit is represented by the dotted lines. The solid lines show the rescaled GPE results. Rescaled GPE with three-body interaction results are shown as dashed lines. Red and black data are for x and y axis, for the two different detection systems.
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 313 Figure 3.13: Influence of the camera resolution correction on the applied theoretical model to describe the BEC size expansion. The different theories incorporate the three-body interaction. Experimental data are represented by the filled circles. Rescaled GPE with three-body interaction results are shown by the solid lines. The widths corrected by s = 40 µm are marked by the dashed data. The dotted lines represent the theoretical linear fit.
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 314 Figure 3.14: Schematic representation of the different low frequency modes. QM: quadrupole mode. RQ: Radial quadrupole. BM: Breathing Mode. SM: Scissor Mode.

2 :Figure 3 . 15 :

 2315 Fig. (3.15) illustrates in the left panel the BEC radii evolution along the three spatial directions. The dotted blue line in panel (a) shows the end of the transport, lasting for 150 ms. The QUANTUS II holding time is marked by the dotted red line and it lasts for 18.46 ms. The higher amplitude oscillations are along the shallower direction x. The different collective modes amplitude spectrum as a function of the oscillation frequencies are then portrayed in Fig. (3.15) in the right panel. We consider the Fourier Transform (FT) of the aspect ratio R x /R y . The different peaks illustrate the contributing modes. The most intuitive way to observe these different modes and enhance the frequency resolution is to hold the cloud before being released from the final trap for several seconds. For that reason, we carry such manipulation for 20 s to guarantee the clarity of the results obtained. From Eqs. (3.14), (3.15) and (3.16), we deduce that the trap frequencies (w x , w y , w z ) impact the frequency of the different collective modes. We thus highlight in Fig.(3.15) in panel (b), the different mode frequencies and their combinations. In order to present the resulting frequency spectrum with a better resolution, a zoom in scaled with ⇥0.217 was applied and the dominant mode, marked with the highest amplitude, is strongly associated
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 316 Figure 3.16: A comparison between the experimental outcome and the different theoretical approaches of the BEC's aspect ration after being held for a different holding durations ranging from 0 ms to 300 ms, followed by an expansion for 80 ms. The three-body interaction has not been taken into account. The left and right panels are respectively for detection 1 and 2. The holding time in the experiment is shown by the dotted black line. The filled red circles are the experimental data. The results of the scaling approach are illustrated by the red solid lines. Solid black lines represent the variational approach data. The solutions of the standard GPE are marked by the dashed blue lines. This comparison is for the undamped case.
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  without the 3-body interactions 64 thermal excitations and the anharmonicity of the actual trapping potential in the experiment imply the necessity to introduce such damping to the condensate oscillations.

Figure 3 . 17 :

 317 Figure 3.17: Impact of the three-body interaction on the BEC aspect ratio results after a time of flight (TOF) for 80 ms, scanned over a holding of 300 ms. Detection 1 and 2 outcomes, for the non-damped case, are portrayed respectively, in the left and right panels. Experimental data are shown by the red circles. The standard GPE results are represented by the solid black lines. The solid blue line shows the results of the GPE incorporating the three-body interaction. The dotted black line marks the QUANTUS II consortia [21] holding time.

Figure 3 . 18 :

 318 Figure 3.18: Full numerical simulations (GPE) results compared to the Quantus-2 [21] outcome. The left and right panels are respectively for detection 1 and 2. The filled red circles are the experimental data. The blue solid lines illustrate the GPE with three-body results. The impact of the damping on the GPE solutions is represented by the orange solid lines. The dotted black lines mark the experimental holding duration.
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 319 Figure 3.19: Same as Fig. (3.18). The left and right panels are respectively for the detection systems 1 and 2. The filled red circles are the experimental data. The damped radii are illustrated for a set of different damping durations: 250 ms (solid green lines), 300 ms (solid orange lines), and 350 ms (dashed blue lines).

  1.65 mm as mentioned above for respectively B i = 21.5 G and B f = 4.5 G for a fixed current intensity I w = 5A. The initial and final trapping frequencies for this transport, associated to B i and B f are given in the Table.

  (4.1) below.
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 41 Figure 4.1: Validation of the Padé approximants used for the analytical forms of the trap frequencies n x (B bias ), n y (B bias ) and n z (B bias ) in panels (a), (b) and (c), respectively. The exact values of the frequencies are shown as red circles and the numerical fits are shown as solid blue lines.

  (
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 42 Figure 4.2: The bias magnetic field B bias (in Gauss) evolution as a function of the position of the minimum of the trap z 0 (in meter). The red circles represent the exact experimental data. The blue solid curve is for the Padé fit.

3 :

 3 c i , d i and e i coefficients of the frequencies functions in Hz along the x, y and z directions in Eqs. (4.8), (4.9) and (4.10). The associated magnetic field B bias is expressed in Gauss.
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 43 Figure 4.3: Schematic representation of the standard implementation of the optimal control method.

( 52 )

 52 ') corresponds to the derivation with respect to the magnetic field B. Consequently, Eqs. (4.37)-(4.40) remain valid and the rest of the derivatives are as detailed below The optimization procedure remains unaltered. The Verlet algorithm is used to solve Eqs. (4.12)-(4.13) and (4.17)-(4.19) in order to design the condensate dynamics in the Thomas-Fermi regime all along the transport. The convergence is established by the minimization of the cost functional.

Figure 4 . 4 :

 44 Figure 4.4: Example of convergence of the different cost functionals as a function of the optimal control theory iteration number: (a) Final classical energy in nK, (b) Final quantum energy in nK, (c) Average classical energy in nK. See text for details.

  (4.4) with a vertical dashed red line. Once this convergence is reached, the final 3D size of the condensate adopts the size of the ground state of the final trap and the size dynamics of the BEC is frozen. This convergence was obtained at the cost of a transient degradation of the final classical energy, which reaches a maximum of about 20 nK after about 60 iterations, but the final classical energy is then minimized very quickly to reach a near-zero value in about 1000 iterations. It is only when this first stage of convergence is reached (iteration number > 1000) that the last cost functional, associated with a smaller weight l 3 , starts to decrease. One can note that the convergence of the average classical energy during the transport [in panel (c)] is rather slow since it requires more than 10 7 iterations before it starts to stabilize at values close to 30 nK. This value can be compared with the energy of the condensate in the initial trap, which is close to 120 nK, and with the energy of the condensate in the final trap, close to 10 nK. The transient excitation during the transport is therefore relatively limited.

( 4 . 5 )

 45 the Shortcut-To-Adiabaticity (STA) transport ramp obtained in Ref.[START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Corgier | Engineered atomic states for precision interferometry[END_REF] (dotted blue line) is compared with two results obtained with the present optimal control technique (OCT).The correction parameter is # = 10 10 . The dashed green line labeled as "cl-OCT" shows the result obtained for the weight factors l 1 = 1, l 2 = 0 and l 3 = 5.5 10 4 . The solid red line labeled as "qu-OCT" is for l 1 = 1, l 2 = 3.3 and l 3 = 5.5 10 4 . The difference between these two OCT results lies in the fact that qu-OCT takes into account the influence of the finite size of the BEC in the cost functional, while cl-OCT considers the BEC as a classical point-wise particle.The BEC model used for cl-OCT is therefore similar to the model used in STA and these two approaches can be compared directly. The optimized time variation of the bias magnetic field B bias (t) is shown as a function of time in the first panel (a). In Fig.(4.5), the maximum difference between the two generated magnetic field ramps is of the order of 4 G. The duration of the transport is t f = 150 ms, and all results are plotted from t = 0 to t = 250 ms i.e. up to 100 ms after the end of the transport. This time interval was chosen in order to detect the eventual presence of a residual excitation at the end of the transport. The position [z A (t) z 0 (t)] and velocity [v A (t) ż0 (t)] offsets are shown in panels (b) and (c). Finally, Panels (d), (e) and (f) present the condensate size dynamics ∆a(t) along the three coordinates a ⌘ x, y or z, where ∆a(t)=r a (t)/ p 7 represents the width (standard deviation) of the Thomas-Fermi condensate wave function in the directions a ⌘ x, y or z.We see in panels (b) and (c) that the three methods are very efficient for the control of the final average position and velocity of the BEC since the condensate is fully at rest in the center of the trap at the end of the transport and for all times t > t f = 150 ms. In addition, the transient position and velocity offsets during the transport reach similar values using these three different optimization methods. One can note in panels (b) and (c) that in terms of maximum transient offset in position and speed, from the two methods that we can compare directly, cl-OCT is a little better than STA (maximum offsets of 4.5 µm vs. 5.3 µm in position and 14 µm/ms vs. 22 µm/ms in speed) but this difference is not very significant in practice. The transient offsets of the qu-OCT approach are slightly larger than those of the cl-OCT method (with maximum offsets of 6.2 µm in position and 15 µm/ms in speed). Again this increase would be very benign in a practical implementation. Note finally that the three control fields B bias (t) shown in panel (a) are relatively similar, with a fast initial decrease during the first half of the ramp, before 75 ms, followed by a much slower decrease afterward.
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 45 Figure 4.5: Comparison of different optimization procedures. Shortcut-to-adiabaticity (STA): dotted blue line, classical optimal control (cl-OCT): dashed green line, quantum optimal control (qu-OCT): solid red line. (a) Bias magnetic field in Gauss as a function of time, (b) Position offset [z A (t) z 0 (t)] in µm as a function of time, (c) Velocity offset [v A (t) ż0 (t)] in µm/ms as a function of time, (d)-(f) Size dynamics of the condensate along the three coordinates x, y and z in µm as a function of time. The duration of the transport is t f = 150 ms. See text for details.
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 46 Figure 4.6: Condensate dynamics in the x, y and z directions using the cl-OCT ramp (upper line) and the qu-OCT ramp (lower line) shown in Figure 4.5. The transport duration is t f = 150 ms. The average atomic density, solution of the time-dependent Gross-Pitaevskii equation, is shown as a function of time and position: (a) and (d) P x (x, t), (b) and (e) P y (y, t), (c) and (f) P z (z, t). The black dashed lines show the expected center of mass trajectory. The dotted blue lines highlight the expected width dynamics according to the scaling approach. The dotted vertical white lines mark the time of the end of the transport. The total atom number is N = 10 5 . See text for details.
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 47 Figure 4.7: Influence of the transport duration t f on: (a) the average translational energy hE cl i of the condensate and (b) the maximum position offset |z A z 0 | during the transport. Shortcut-to-adiabaticity (STA): dotted blue line, classical optimal control (cl-OCT): dashed green line, quantum optimal control (qu-OCT): solid red line. The weight parameters l 1 , l 2 and l 3 are the same as those used in Fig. (4.5). See text for details.

  .[START_REF] Braaten | Three-body recombination into deep bound states in a Bose gas with large scattering length[END_REF] of the size of the condensate ∆a (standard deviation of the Thomas-Fermi condensate wave

Figure 4 . 8 :

 48 Figure 4.8: Residual oscillation amplitudes in the size dynamics after transport in the (a) x, (b) y and (c) z directions, as a function of the transport duration t f . Shortcut-toadiabaticity (STA): dotted blue line, classical optimal control (cl-OCT): dashed green line, quantum optimal control (qu-OCT): solid red line. The weight parameters l 1 , l 2 and l 3 are the same as those used in Fig. (4.5). See text for details.

  Transport methods using, on the one hand, the reverse engineering technique as discussed in Chapter 3 or on the other hand, using Optimal Control Theory (OCT) presented in Chapter 4, allow to prepare an atomic cloud optimized for atom interferometry set-ups. Such exquisite control features and robustness are crucial for the success of the novel implementation of atom interferometry experiments in space.

  Christensen [120] and has since then been applied worldwide in different atom interferometer experiments. Low 2D expansion energies of87 Rb ensembles of sub-50 pK was observed in 2015 by the Kasevich group in Stanford University[121] or recently state-of-the-art 3D expansions of 38 pK were realized in the ZARM drop tower by the Quantus collaboration[START_REF] Deppner | Collective-mode enhanced matter-wave optics[END_REF].
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 51 Figure 5.1: Schematic representation of the delta-kick-collimation (DKC) method. The upper panel A represents the phase space diagrams. a) The matter-wave is at rest. b) The expanded wave with a larger size is subjected to a magnetic kick. c) The collimated matter-wave is now along the coordinate axis with a lower momentum dispersion. The lower panel B shows the associated size growth of the BEC : The condensate is initially well localized at the minimum of the trap. It is then, freely expanding for a time T. Finally, the size of the cloud is almost frozen after the magnetic collimation.
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 53 Fig.(5.3) represents the size growth of the condensate along the three space directions for the sequence of 5 steps outlined above. The transport ramp is generated using the reverse engineering technique. The STA ramp displaces the atoms for 75 ms. The size evolution of the BEC along the weak axis x is illustrated by the solid blue line. The red dashed and orange dashdotted lines mark, respectively, the y and z solutions. The size growths of the cloud along the y and z directions show a similar behavior since the system is almost cylindrically symmetric.As expected, during the transport, some residual size oscillations are induced by the STA ramp. The residual size oscillations in y and z are small during the transport and holding, in comparison with the one from the shallowest x direction. The DKC duration 4.96 ms of Eq.(5.1) 
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 55 Figure 5.5: Same as Fig. (5.3) but for the qu-OCT optimization procedure.
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 56 . The three panels (a), (b) and (c) of this Figure show the size dynamics of the BEC in three different conditions.
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 56 Figure 5.6: Temporal variation of the BEC radii R x (t) (solid blue line), R y (t) (dotted red line) and R z (t) (dashed orange line). The end of the transport, the end of the holding and the DKC are marked by three dotted vertical grey lines. See text for more details.
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 1 Figure A.1: Schematic representation of the implementation of the Velocity Verlet algorithm.

  

  

  ∆y 00 2 = a 2 ∆x 2 + b 2 ∆y 2 + c 2 ∆z 2 + 2 ab∆xy + 2 ac∆xz + 2 bc∆yz.

							)
	∆y 0 2 ∆y 0 2 ∆y 0 2 =	1 2	h	∆x 2 + ∆y 2	i	∆xy.	(3.7)
	For the second detection, the equations are more complicated, as shown by the following
	expressions						
	∆x 00 2 ∆x 00 2 ∆x 00 2 = sin 2 (f)∆x 2 ⌥ cos 2 (f)∆z 2 ± 2 sin(f) cos(f)∆xz,	(3.8)
	∆y 00 2 ∆y 00 2						(3.9)

Table 3 .

 3 1D expansion energy E kin,R /(k B /2) for D 1 and D 2

		x 0	y 0	x 00	y 00
	linear Fit	23 nK	16 nK	12 nK	39 nK
	Scaling approach	16 nK	9 nK	5 nK	20 nK
	Variational Approach	17 nK	10 nK	5.4 nK	21 nK
	GPE standard	18 nK	10 nK	6 nK	22 nK
	VA + 3-body	24 nK	13 nK	9 nK	25 nK
	GPE + 3-body	30 nK	17 nK	14 nK	31 nK
	GPE + 3-body + s	27 nK	15 nK	11 nK	27 nK

1: Comparison between the numerical values of the 1D expansion kinetic energy E kin,R for the two detection systems D 1 and D 2 . The linear fit results represent the experimental E kin,R outcome.

The rest of the results are generated using the different theoretical tools.

  

Table .
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	(3.2) below.			
		x	y	z
	w h (Hz)	9.08	27.99	23.62
		QM	BM	RQ
	w (Hz)	14.23	51.75	36.29

Table 3 .
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  t damp ) .
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		2							2						
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		1.8		GPE + Three-Body				1.8			Experimental data		
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Table 4 .

 4 2: a i coefficients

	Trap position Padé fitting coefficients
	i	a i
	1	3438.3024026149
	2	9845931.7962212
	3	-324.77628413756
	4	3579976.0633322
	5	2716291195.8022
	6	9977569703972.7

of the Padé function fit of the trap position from Eq. (4.7) with

  z 0 in mm and B bias in Gauss.

		Frequencies Padé fitting coefficients	
	i	c i	d i	e i
	1	-3.235415612433322	1.145497962039232	-7.970297892446803
	2	44066.01938523528	38222.70652722783	62749.38379282442
	3	2160966.042275923	48130795.04510849	27574608.60288925
	4	1061.393148341674	-340.3847202500388	-408.0934118713957
	5	789909.0676078092	49526.64217501337	62621.56154844305

Table 4 .

 4 

Table 4 . 4 :

 44 Table. (4.4) below. The non-dimensional coefficients a n and b n needed to compute the initial u(t) function

		u(t) fitting coefficients
	n	a n	b n
	1	+0.647294626411382	-3.7090034373717900
	2	+14.598699025526160	+28.235594258123740
	3	-38.160590273484690	-63.635031460343390
	4	+30.105927759622800	+52.856995706701700
	5	-6.8793834770795850	-14.436607406114180

to reproduce the magnetic field distribution (See Eq. (4.2)) associated with the optimized STA ramp.

  

   117] or the Verlet method [118] remain unfailing to solve these type

	of mathematical problems.			
	Now, using Eqs. (4.26), the new Pontryagin Hamiltonian of the system is	
		!		
	H p (x x x, p p p, t, u)=p p p • ẋ ẋ ẋ l 3	E cl (t) t f	, for i = 1, 2...8	(4.44)

Table 5 .1: Initial values of the parameters optimized in the OCT procedure.

 5 [START_REF] Gammal | Stability analysis of the D-dimensional nonlinear Schrödinger equation with trap and two-and three-body interactions[END_REF] mm, z f = 1.55 mm and t f = 75 ms.

	Physical parameter	numerical value
	Chirp parameter a	-1.8337
	Chirp parameter b	+1.1000
	Holding time ∆t hold Duration of the 1 st expansion ∆t exp Duration of the DKC ∆t DKC	10 ms 10 ms 1 ms

Table 5 .2: Numerical values of the ramp parameters at the end of the optimization procedure.

 5 5.2), which gives the numerical values of the ramp parameters obtained at the end of the optimization procedure. Using this ramp, the final 3D expansion expansion temperature amounts to 30 pK.

	Physical parameter	numerical value
	Chirp parameter a	-1.6166
	Chirp parameter b	+0.9846
	Holding time ∆t hold Duration of the 1 st expansion ∆t exp Duration of the DKC ∆t DKC	33.8 ms 25 ms 0.67 ms

  5.3), the maximum position offset max |z A (t) z 0 (t)| and the maximum velocity offset max | żA (t) ż0 (t)| during the transport, i.e. for 0 6 t 6 t f = 75 ms. The numerical values obtained are relatively similar in all cases. They also indicate that the chirp slightly reduces the maximum position offset and slightly increases the maximum velocity offset when compared to non-chirped transport ramps. In Table(5.3), we also provide the average classical energy hE cl (t)i and the maximum classical energy max[E cl (t)]

Table 5 . 3 :

 53 Maximum position offset max |z A (t) z 0 (t)| (first row), maximum velocity offset max | żA (t) ż0 (t)| (second row), average classical energy hE cl (t)i (third row) and maximum classical energy max[E cl (t)] (fourth row) during the transport, i.e. for 0 6 t 6 t f = 75 ms

		Optimal Ramp	No chirp	No chirp nor DKC
	max |z A z 0 |	18.3 µm	26.0 µm	26.0 µm
	max | żA ż0 |	3.4 mm/s	2.4 mm/s	2.4 mm/s
	hE cl (t)i max[E cl (t)]	29.3 nK 105 nK	57.0 nK 278 nK	57.0 nK 278 nK
	T 3D	30 pK	2.8 nK	6.2 nK

for the three different cases shown in Fig. (5.6). The associated final 3D expansion tem- perature T 3D is also given in the last row. also

  emphasize that the optimized ramp parameters given in Table(5.2) were obtained within constrained limits, since we have been imposing

	1.9 6	a	6 1.5	(5.7a)
	0.9 6	b	6 1.2	(5.7b)
	0 6 ∆t hold 6 50 ms	(5.7c)
	0 6 ∆t exp 6 25 ms	(5.7d)
	0.2 ms 6 ∆t DKC 6 2 ms	(5.7e)

  Résumé: Depuis une dizaine d'années, le développement des techniques de refroidissement laser et de piégeage atomique a permis la réalisation d'une multitude de dispositifs et de capteurs basés sur les atomes froids. De la réalisation d'horloges atomiques très précises à la mesure des constantes fondamentales de la physique, ces dispositifs repoussent en permanence les limites des phénomènes quantiques explorés. Une technique très commune mise en pratique dans ces expériences implique l'interférométrie atomique, où la nature ondulatoire de la matière est prédominante proche de la température du zéro absolu. Les interféromètres atomiques atteignent un niveau de précision permettant de tester les principes et les prédictions fondamentales de la physique moderne, comme le principe d'équivalence faible de Einstein ou la détection des ondes gravitationnelles par exemple. Ces expériences nécessitent des durées longues pour les mesures interférométriques, de l'ordre de (ou supérieures à) quelques secondes, et des sources à ondes de matière optimisées, dont la dynamique est parfaitement contrôlée. Les exigences imposées aux sources atomiques pour ces expériences d'interférométrie de haute précision sont en effet très contraignantes. Elles nécessitent une préparation et une collimation contrôlée d'ensembles atomiques en expansion, avec des vitesses inférieures à 100 µ/s, ce qui correspond à des températures inférieures au nK. Nous nous attachons à développer, théoriquement, l'ingénierie quantique des états de condensats de Bose-Einstein d'atomes alcalins remplissant ces conditions inhabituelles de température. Pour réaliser ce type d'expériences, les puces atomiques sont ainsi nécessaires, ce qui introduit des problèmes du type interaction atome-surface. Pour s'assurer du bon déroulement de l'expérience, on doit transporter le condensat loin de la puce sans l'exciter.Dans ce projet doctoral, un ensemble d'outils théoriques est présenté pour manipuler ces condensats.

The incident beam pattern determines the number of the generated clouds. The light beam travels through the cloud then reflected on the atom chip surface producing another cloud. The second configuration is when the incident beam reaches at first the chip vicinity, reflects, and then propagates through the matter-wave.

with the ground-based experiment.

The achievement of the first BEC in space that scientists ever made conducted to further progress, and the MAIUS B project started to take place. MAIUS B consortia aim to generate 87 Rb and 41 K BECs, cooled to the nK temperature using magnetic traps generated by the atom chip. The needed laser wavelengths to manipulate the two species are 780 nm and 767 nm, respectively for 87 Rb and 41 K. These two bosonic atoms are considered ideal candidates to perform matter-wave dual-species interferometry experiments in space with a compact apparatus because of their coherence properties. Other mixtures have been studied by different groups like the two isotopes 87 Rb - 85 Rb or 87 Rb -133 Cs etc... MAIUS B mission accounts for two experiments, Maius-2 and Maius-3. Maius-2 aims to create the two species in space proceeded by Maius-3 mission to perform the dual-species interferometry measurement to verify the equivalence principle at a microscopic scale. For more details on the overview of the ground-based Maius-2 and 3 experiments, see Dr. Piest's thesis [START_REF] Piest | Bose-Einstein Condensation of 41 K and 87 Rb on an atom chip for sounding rocket missions[END_REF].

Theoretical implementations

Applications in the Maius-1 experiment

In this section, the discussed theoretical contributions are related to the MAIUS 1 mission. The dynamical sequence starts by a transport for a few hundred ms, followed by a holding of the transported matter-wave in the final trap to detect any center of mass oscillations or breathing of the wave-packet, pursued by an expansion for a few seconds. The reverse engineering method [START_REF] Corgier | Fast manipulation of Bose-Einstein condensates with an atom chip[END_REF][START_REF] Chen | Optimal trajectories for efficient atomic transport without final excitation[END_REF][START_REF] Lu | Fast transitionless expansions of Gaussian anharmonic traps for cold atoms: Bang-singular-bang control[END_REF][START_REF] Guéry-Odelin | Transport in a harmonic trap: Shortcuts to adiabaticity and robust protocols[END_REF][START_REF] Chen | Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity[END_REF], considering the realistic experimental conditions, was applied to derive the desired ramp to ensure an excitation-less transport of the trapped BEC far away from the chip surface.

The initially obtained ramp was a sinusoidal function, inserted later on in the numerical simulations to solve the GPE and deliver the size evolution of the condensate. Additionally, the BEC radius was calculated using the semi-classical scaling approach derived in the Thomas-Fermi regime as detailed before in Sec. (2.3.3), in Chapter 2. A comparison between the output of the two methods for a realistic anharmonic potential was then considered. Due to the rough condi-CHAPTER 4

OPTIMAL CONTROL THEORY OF THE TRANSPORT OF BOSE-EINSTEIN CONDENSATES WITH ATOM CHIPS

Introduction

In Chapter 3 , we have considered and implemented an approach based on Shortcut-To-Adiabaticity (STA) protocols to obtain analytic solutions for the transport of the Bose-Einstein-Condensate in an atom chip setup with realistic anharmonic and rotating trapping potentials. This approach based on the reverse engineering technique allows, as mentioned above, for a full control of the translational degrees of freedom of the BEC. It is, however, exciting several collective modes of the quantum gas, an effect which could eventually compromise the expected metrological gain if such a source is used without any precaution as an input of an atom interferometer. It is in this context that the use of optimal control theory (OCT) can reveal an unchallenged potential of targeting a given final state in timescales shorter than the trivial adiabatic manipulation, which is of no practical use in the metrology context since it is associated with poor cycling rates. a 3D harmonic trap. We have therefore verified, by solving the 3D mean-field time-dependent Gross-Pitaevskii equation described in Chapter 2 for the evolution of the time-dependent macroscopic condensate wave function y(x, y, z, t), that this control is robust when taking into account the anharmonicities and the rotation of the trap. The numerical method used for this calculation is described in Chapter 2. This result is illustrated in Fig. (4.6), showing the time evolution of the average atomic densities 

Influence of the Transport duration

What remains to be seen is the efficiency of these various optimization procedures for different transport durations. behavior deduced from the Newton's equation of motion. We thus remind the reader that the STA and the cl-OCT are two classical optimization methods and aim to control, at first, the final center of mass oscillations of the condensate and at second, the accumulated offset between the atoms and the position of the minimum of the trap during the transport, while the qu-OCT approach is more general and accounts for the quantum behavior of the matter-wave to generate the ground state of the final harmonic trap, as detailed in Chapter 4.

We see in Fig. (5.2) that the qu-OCT implies higher offset amplitudes of the order of 13 µm (dashed-dotted orange line) instead of 6 or 7 µm for the classical methods (respectively, solid blue and dashed red lines). The resulting offsets remain small (< 13 µm) during the entire process compared to the transport length (1.2 mm) for the different optimization procedures. was chosen to collimate the condensate in the y and z directions, and we see that the final release of the BEC leads to a slow expansion along this two directions. In the x direction, this final release consists of a small compression followed by the beginning of a slow expansion.

Therefore, globally, a slow expansion is noticed after the DKC step. 

CONCLUSION AND OUTLOOK

This chapter provides an overview of the various results obtained in the previous chapters. This summary also provides a starting point for discussing possible future research.

Summary

The objective of this thesis work was to present a classical and quantum theoretical study of the manipulation of an atomic cloud for atom interferometry purposes and to engineer optimized possible solutions to control the various degrees of freedom of a particular quantum state, a

Bose-Einstein Condensate (BEC). This was achieved by different optimization procedures.

In Chapter 1, the general context and a brief historical perspective on matter-wave interferometry were communicated in order to improve the performance of quantum tests of the Universality of Free Fall (UFF) by enhancing the estimated experimental outcome of the differential acceleration in a two-species atom interferometer [START_REF] Will | The confrontation between general relativity and experiment[END_REF]. This requires an optimization of the preparation of the input matter-wave. The ultimate goal is to push the limit of the estimated Eötvös ratio and go beyond 10 15 [122,123]. This is possible if the center of mass position, velocity and the expansion energy of the condensate are respectively controlled to 1 µm, 1 µm/s and 100 µm/s bring a quantum mixture to a target position in its ground state. Such a source would allow precision interferometric measurements such as equivalence principle tests. To endorse this investigation and check the robustness of such theory, a solution would require to develop and solve the Gross-Pitaevskii equation (GPE), with realistic experimental settings, for a mixture of BECs engineered and transported by the proposed OCT ramp.

Finally, the theoretical approaches and simulations presented in this manuscript provide a detailed insight into the manipulation of BECs in a micromagnetic trapping potential. The BEC optimization procedures could be of interest for several other fundamental applications in cold atom physics using atom interferometers, such as for the detection of gravitational waves, or for the measurements of fundamental constants for instance.

APPENDIX A THE VERLET METHOD

In 1791, the french mathematician and astronomer Delambre discovered and used for the first time this algorithm. Since then, this scheme has been rediscovered and re-used by several scientist worldwide, until recently in 1967 Verlet re-derived this method for a thermodynamics study. The method [118] was derived by Verlet to solve non analytically the law of motion of thousands of interacting particles in a Lennard-Jones potential. The main complexity consists of having a second-order differential equation that correlates the function to its second derivative and excludes any first-order derivative terms. This type of equation is quite frequent in the molecular dynamics field, where having access to the kinetic energy profile to check the total energy conservation is a must. The Verlet method often serves as the basis to calculate the time evolution of the first derivative, and on that account this deficiency cancels out. It uses a Taylor expansion approach. In that context, the result is a sum of terms expressed in terms of function's products at a single point.

In these circumstances, the second-order differential formula is as follow

where A[p] is a linear function of p which does not include any first derivative in p.

A.1 Standard Verlet algorithm

To generate the first derivative of p(t), we start by writing the Taylor expansion of p(t + h) and p(t h) to the 3 rd order

Using Eq. (A.1), the sum of equations (A.2a) and (A.2b) leads to

Eq. (A.3) provides the temporal evolution of the function p(t). We can clearly see that the first and second-order terms from the Taylor expansion cancel out, so that Eq. (A.3) does not include explicitly ṗ(t). A numerical implementation of Eq. (A.3) with given initial values is fast and easy.

This method is numerically stable and convenient, with a local error of order h 4 .

Note however that at the start of the Verlet iteration we need to know both p(0) and p(h) in order to calculate p(2h). At first sight, this could be a problem because the initial conditions are usually known only at the initial time t = 0. However, the acceleration p(0)=A[p(0)] is known, and a suitable approximation for p(t) at the first time step can be obtained using

We see that if one knows both the initial conditions p(0) and ṗ(0), the value p(h) is known at third order in h. This error of order h 3 applied only at the first time step is usually not considered a crucial issue.

Once Eq. (A.3) has been propagated, the evaluation of the first order derivative function ṗ(t) can be obtained from the finite difference ṗ(t)= p(t + h) p(t h) 2h (A.5) Under these conditions, the local error associated with Eq. (A.5) is of order h 2 rather than h 4 .

We can further push this theory and provide an equation for the first-order derivative function with a local error of higher order. To such an extent, we can use the velocity Verlet algorithm as described below in the next section.

A.2 Velocity Verlet algorithm

This numerical method incorporates explicitly the first derivative function. We use the following