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HS Hypersensitive region  

HSC Hematopoietic Stem Cell 

I 

iE Intronic Enhancer element 

Ig Immunoglobulin 

IgH Ig Heavy chain 

IgL Ig Light chain 

IKZF1 Ikaros Zinc finger protein 1  

IL Interleukin 

J 

J Junction 

K 

K Lysine 

KAT5 Lysine Acetyltransferase 5 

Kb Kilobase 

KO Knock Out 

L 

LEDGF Lens epithelium–derived growth 
factor 

LIG Ligase  

LPS Lipopolysaccharides 

LS Like Switch region 

LSR Locus Suicide Recombination 

LZ Light Zone 

M 

MARs Matrix Association Region 

MDC1 Mediator of DNA damage 
checkpoint 1 

MMEJ Microhomologies Mediated End 
Joining  

MMR Mismatch Repair 

MPP Multipotent Progenitor 

MRE11 Meiotic Recombination 11 
homolog   

MSH MutS Homolog 

MZ Marginal Zone  

N 

NBS1 Nijmegen Breakage Syndrome 1 

NE Novel Enhancer 

NES Nuclear Exporting Signal 

NHEJ Non-Homologous End Joining 

NF-κB Nuclear Factor Kappa B pathway 

NK Natural Killer  

NLS Nuclear Localization Signal 

P 

PARP 1 poly ADP-ribose polymerase I 

Pax-5 Paired box gene 5 
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PAXX XRCC4-like small protein 

PCR Polymerase Chain Reaction 

PCs Plasma cells 

PI3K phosphatidylinositol-3-kinase 

PKA Protein Kinase A 

PTIP Pax transactivation domain 
interacting protein 

Pol Polymerase enzyme 

PRDM1 PR domain zinc finger protein 1 

R 

Rif1 Rap1-interacting factor 1 

RPA Replication Associated Protein A 

RAG Recombination Activating-Genes 

RSS Recombination Signal Sequence  

S 

S Switch region 

S1P sphingosine 1-phosphate 

SCID Severe Combined 
Immunodeficiency  

SETD2 SET Domain Containing 2, 
Histone Lysine Methyltransferase 

SHM Somatic HyperMutation 

SLC Surrogate Light Chain 

SSA Single Strand Annealing  

SSB Single Strand Break 

ssDNA Single Strand DNA 

SHM Somatic Hypermutation 

SLO Secondary Lymphoid Organs 

SYK Spleen tyrosine kinase 

T 

T Thymine  

TAD Topologically Associating Domain 

TAM Tumor-Associated Macrophage 

TCR T Cell Receptor 

TdT Terminal deoxynucleotidyl 
Transferase 

TFH T Follicular Helper 

Th Helper T cells 

TGFβ Transforming Growth Factor β 

TLR Toll Like Receptor  

Tp53 Tumor protein 53 

U 

U Uracil 

UNG Uracil DNA Glycosylase 

V 

V Variability  

VH Variable regions of heavy chains  

VL Variable regions of light chains 

W 

WRN Werner Syndrome protein 

X 

XPF Xeroderma 
Pigmentosum complementation group F 

XRCC1 X-ray Repair Cross 
Complementing protein 1  

XRCC4 X-ray Repair Cross 
Complementing protein 4  

XLF XRCC4-like Factor (cernunnos) 

Y 

Y Tyrosine 

Z 

ZAP-70 Zeta-chain-associated protein 
kinase 70
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Abstract  

In normal B cells, Activation Induced-cytidine deaminase (AID) is the key enzyme for class 

switch recombination (CSR) and somatic hypermutation of (SHM) on the heavy chain (H) and 

the light chain (for SHM) of Immunoglobulin (Ig). AID is also implicated in another IgH 

rearrangement, the locus suicide recombination (LSR). LSR occurs in activated B cells and 

recombines the IgH locus between the switch µ (Sµ) region and the 3’regulatory region (3’RR) 

of IgH locus. LSR results in the complete deletion of the cluster of IgH constant genes. When 

LSR hits the active IgH locus, it induces the loss of BCR expression and the death of the 

concerned B cells. CSR and d LSR proceed by introduction of double strand breaks (DSB) 

followed by DNA repair and junction production. Chronic lymphocytic leukemia (CLL) is an 

indolent non-Hodgkin B cell lymphoma. CLL is characterized by the clonal expansion of tumor 

cells (CD5+, CD23+ and CD19+). Tumor cells weakly express a B cell receptor (BCR) on the 

surface, it is composed in the vast majority of cases of Immunoglobulins (Ig) IgM and IgD. CLL 

tumor cells are rarely switched, raising the question of abnormalities in the Ig gene 

recombination machinery in this B cell lymphoma. In our study, and based on the count of LSR 

junction we identified two groups of CLL patients. A group with High LSR junction count 

(LSRHigh) and a group with low LSR junction count (LSRLow) based on the mean count of LSR 

junctions obtained in healthy peripheral mononuclear blood cells (PBMC). Deep analysis of 

these groups of CLL patients showed that in LSRHigh CLLs cells, the accessibility of IgH locus 

could be increased in a MYC dependent manner resulting in shorter survival and implying an 

additional MYC driven AID independent mechanism of IgH recombination. Also, LSRHigh and 

Low CLLs appear to be characterized by different features certainly due to different CLL tumoral 

transformation mechanisms. We showed also similarity of LSR junctions between CLL LSRLow 

samples and healthy tonsils. We propose tumoral cells, in LSRLow CLL, emerge from B cell 

population, which is normally restricted to the compartment of B cell activation achievement.  

Key words High LSR count, low LSR count, CSR, MYC, CLL, prognosis, cell of origin. 
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Résumé  

Dans les lymphocytes B (LB) normaux, l’Activation Induced-cytidine Deaminase (AID) est 

l’enzyme clé des mécanismes de commutation de classe (CSR) et l’hyper-mutation somatique 

(SHM) des chaînes lourde (H) et légère (L) d’immunoglobuline (Ig). AID est impliquée dans un 

autre mécanisme de réarrangement du locus IgH, la recombinaison suicide du locus IgH 

(LSR). La LSR se produit dans les cellules B activées et recombine le locus IgH entre la région 

de commutation µ (Sµ pour switch µ) et la région régulatrice (3'RR) en 3’ du locus IgH. La LSR 

entraîne la suppression des gènes constants du locus IgH. Quand la LSR touche le locus IgH 

sur l’allèle productif, elle induit la perte d'expression du BCR et la mort des LB concernés. Les 

mécanismes de CSR et LSR nécessitent des cassures doubles brin (CDB) de l’ADN qui vont 

être réparées et générer la production de jonctions de recombinaison. La leucémie lymphoïde 

chronique (LLC) est un lymphome indolent non hodgkinien affectant les cellules B. la LLC est 

caractérisée par une prolifération clonale de cellules tumorales (CD5+, CD23+, CD19+). Les 

cellules tumorales expriment faiblement le BCR et l’Ig est majoritairement une IgM coexprimée 

avec l’IgD. Les cellules tumorales expriment rarement une Ig de classe commutée, ce qui pose 

la question sur une altération du processus permettant le réarrangement du locus IgH dans 

ces cellules cancéreuses. En utilisant le nombre de jonctions LSR détectées dans des 

prélèvements sanguins de patients atteints de LLC, nous avons identifié deux groupes 

distincts. Le premier groupe se présente avec un nombre augmenté de jonctions de LSR 

(LSRaugmentée), le second groupe, avec un nombre diminué de jonctions LSR, (LSRdiminuée) par 

rapport à la moyenne du compte de jonctions LSR d’échantillons de cellules mononuclées du 

sang périphérique (PBMC) de volontaires sains. L’analyse en détails de ces deux groupes a 

permis de montrer que dans les cellules du groupe LSRaugmentée l’accessibilité du locus IgH est 

augmentée, une prolifération accrue, la surexpression de MYC et des indicateurs de mauvais 

pronostic. Ces cellules apparaissent subies un mécanisme de recombinaison du locus IgH 

aboutissant à la LSR indépendant de l'AID mais dépendant de MYC. Par ailleurs, nos résultats 

montrent que les LLC LSRaugmentée et LSRdiminuée présentent des caractéristiques différentes et 

suggèrent des mécanismes de transformation tumorale distincts. Nous avons également 

montré la similitude des jonctions LSR des cellules de LLC LSRdiminuée et de cellules issues des 

amygdales de volontaires sains. Nous proposons que les cellules tumorales, dans la LLC 

LSRdiminuée, émergent de la population de cellules B qui est normalement limitée aux 

compartiments impliqués dans l'activation des cellules B. 

 

Mots clés LSR augmentée, LSR diminuée, CSR, MYC, LLC, pronostic, Cellule d’origine. 
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Chapter I: Immunity and normal B cell development 

A. Immune response 

The immune system is a complex network composed of cells, tissues and organs whose 

function is protection and defense the organism against the enormous number of pathogens 

that our organism encounters during life time and control of cellular deregulation potentially 

leading to tumoral transformation. Two different fundamental types of responses, linked 

between them, are known to compose our immunity: the innate and the adaptive immune 

responses which differ by their components, rapidity, specificity and potency (Marshall et al., 

2018). 

1. Innate immunity 

Innate immune response constitutes the first line of defense, non-specific (react in the same 

way to all pathogens) and the most rapid response (from minutes to hours after infection). It 

eliminates the high number of pathogens that we encounter on a daily basis. Genetically 

inherited, not acquired during the life, immune innate response does not generate memory 

immunity in contrast to the adaptive immunity.  

Innate immune response formed of four types of defensive lines: anatomic (skin and mucous 

membrane), physiologic (temperature, low pH, mucus and chemical mediators), endocytic and 

phagocytic cells (Macrophages, neutrophils and dendritic cells) and the inflammatory reaction 

(Marshall et al., 2018). 

Pathogens that are not eliminated and succeed to cross the first lines of defense (physical and 

chemical barriers), are targeted by an inflammatory reaction by soluble factors (complement 

system and inflammatory proteins) and by cellular factors.  

Complement system is defined as a biochemical cascade constituted of about 35 proteins 

present in the Blood. Complement contributes in pathogens detection, chemiotaxis of the 

phagocytic cells and pathogens lysis. Complement system activation can be accomplished via 

three principal pathways: the classical pathway by forming antigen-antibody complex, the 

alternative pathway, or the lectin pathway leading to opsonization of antigens (Ag) that facilitate 

the phagocytosis function, and induction of inflammatory reaction.  

Cells implicated in the innate immune response are numerous and each of them fight the 

pathogen in non-specific way.  These cells are represented in the (Figure 1) and their functions 

are mentioned in the text. The Dendritic cells (DC) are implicated as antigen presenting cells 

(APC) and play a role in phagocytosis. Mast cells implicated in allergic response by releasing 
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histamines, are important for wound healing producing cytokines that recruit Macrophages. In 

addition, the Granulocytes account for: the Neutrophils characterized by their phagocytosis 

function and are implicated in response to fungi and bacteria. Eosinophils defense against the 

parasites, bacteria and allergic reaction, and Basophils that react in the same way of Mast cells 

by producing histamines.  Other phagocytes cells also constitute a part of innate immunity, 

and they are sub-divided into two main cell types: Neutrophils short-lived cells (12-15µm) with 

half-life from 6-8 hours and characterized by their high motility to migrate to the infection site 

by chemotaxis. Neutrophils are granulocytes abundant in the blood. The second type is the 

Macrophages that are long-lived cells (20µm) with half-life about 30 days able to eliminate 

bacteria and other pathogens. 

The natural killer (NK) cells related to the responses Vis a Vis virus-infected cells and tumor 

cells. It eliminates pathogens dissemination by destroying the infected cells.  

Finally, the γδ T cells able to recognize a restrict number of pathogenic motifs in their native 

structure through their invariant T cell receptor (TCR) for antigen. These T cell population 

shares with other T cells common molecular characteristics (Rearranged TCR genes) are at 

the interface between innate and adaptive immunity.  

Failure in the innate response leads the initiation and the activation of the adaptive immunity.  

 

 

 

 

 

 

 

 

Figure 1: Innate and adaptive immunity: Implication different types of cells. 

Innate immunity is constituted of phagocytic cells such as granulocytes, macrophages and dendritic cells, in addition 

to mast cells, and complement proteins. Adaptive immunity is composed of B cells and T cells (CD4+, CD8+) that 

respond in a specific way to the antigens. γδT cells and Natural Killer cells are implicated in both innate and adaptive 

immunity (Dranoff, 2004). 
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2. Adaptive immunity 

Adaptive immunity constitutes the second line of defense after infection, it is not genetically 

determined and acquired during the life of each individual. Response generated Vis a Vis of 

pathogens is specific and is based on the differentiation between self-antigens and non-self-

antigens.  

Adaptive immune response is slower in generation of effectors able to kill or neutralize the 

antigen than innate response. Even this process takes more time it is more efficient, durable 

and generates an immune memory. Two adaptive immune responses are distinguished and 

well documented: the cellular immune response and the humoral immune response. Cellular 

immune response is characterized by the T cells (T from the thymus organ in which T cells 

continue their development) which, when they are activated, are able to kill and eliminate cells 

expressing at their surface non-self-antigen. Humoral immune response is ensured by B cells.  

The (B) name is attributed to these cells not referring to the bone marrow in which B cells 

develop in vertebrates but refers to the Bourse of Fabricius, organ in which these cells develop 

in birds. 

 In the continuing chapter, I will detail the mechanisms of development, activation and 

differentiation of B cells. I focus on human B cells because they constitute the center of interest 

in my thesis work. Moreover, it is important to mention that even the high similarities present 

with B cells from other species like mice, human B cells present inherent particularities.  

3. B cells  

B cells are key effectors of the humoral adaptive immune response. B cells are known as 

inflammatory regulators and effectors in the immune response by releasing antibodies and by 

presenting the antigen to activate T cells (Shang et al., 2020).  Functional and efficient B cells 

are able to produce antibodies (Ab), secreted form of immunoglobulin (Ig), with high specificity 

and diversity that recognize wide number of foreign antigens. This function was demonstrated 

for the first time in 1960 (Cooper et al., 1960). Production of functional B cells is accomplished 

through a sequential process of differentiation, development and maturation. B cells are as all 

blood cells produced from hematopoietic stem cell (HSC) (Figure 2).   
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Figure 2: Origin of blood cells.  

Hematopoietic stem cells give rise to all blood cells after differentiation into two progenitors. Lymphoid progenitors 
differentiate to the lymphatic cells like B lymphocytes, T lymphocytes and Naturel Killer cells. The myeloid 
progenitors can differentiate into the other subpopulations of blood cells like erythrocytes, granulocytes, etc…  

 

Early stages of B cell development, which give rise to naïve B cells, take place in the bone 

marrow and the fetal liver. This process starts in the bone marrow of embryo from 12 weeks 

of pregnancy and continues after during all the life of persons. Early B cell development is 

antigen independent, as during all the steps, B cells are not exposed to foreign antigens. It is 

a very organized mechanism, constituted of several steps and checkpoints allowing the 

production non-self-reactive B cells. Briefly, in the bone marrow, Common Lymphoid 

progenitor (CLP) give rise to Pro-B cells, then Pre-B cells and after the immature naïve B cells. 

These latter exiting the bone marrow, enter into transitional (T) state characterized by the 

presence of three subgroups T1, T2 and T3. T1 give rise to T2 then T3 B cells, which continue 

their development into naïve mature B cells. These cells join the secondary lymphoid organs 

(SLO) such as spleen and lymph nodes through peripheral blood circulation where they 

undergo late B cell development.  

In SLO, the majority of B cells are grouped into microstructure called follicles forming the 

follicular B cells (FO), these follicles are in contact with T cell rich zone, and surrounded 

Marginal Zone (MZ) enriched in macrophages and MZ B cells.  
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Late stages of B cell development, is an Ag-dependent phase, induced after interaction of 

naïve B cells with foreign antigens. Terminal maturation produces functional B cells: the 

plasma cells producing antibodies and the memory B cells. 

As expression of functional Ig is a prerequisite for the normal development of B cells and their 

functions in immune responses, the continuing chapter describes Igs, their coding genes, their 

structure and their functions. After, the stages of B cell development will be detailed.  

 

B. Immunoglobulins 

1. Organization and structure of Immunoglobulin Loci 

Antibodies, Ig in the secreted form, constitute the central effector of humoral immune response. 

Igs are glycoproteins are composed by the association of two identical Ig Light chains (IgL) 

encoding by the Kappa ( ) locus or the Lambda ( ) locus, and two identical Heavy chains 

(IgH) encoded by the IgH locus (Matsumoto, 2022). Disulfide bonds link IgH and IgL. Each 

light chain is composed of two domains, the variable (VL) and one constant domain (CL). In 

contrast, the heavy chain is composed of variable domain (VH) and three or four constant 

domains (CH1, CH2, CH3 and CH4) according to the immunoglobulin isotype. VH and VL form 

the variable fragment (Fv) a part of the fragment antigen-binding region (Fab) (formed from VL, 

VH, CL and CH1).  VH and VL both present three hypervariable complementarity-determining 

regions (CDR1, CDR2, and CDR3) permitting the recognizing and binding of wide number of 

Ag. Framework Regions with lower rate of variability called (FR1, FR2, FR3, and FR4) flank 

CDRs. CH1 of the IgH is linked by a hinge to the rest of the constant region CH2 CH3 or CH2 

CH3 CH4, which constitutes the crystallized fragment of Ig (Fc). The link between CH1 and CH2 

contribute to the Y form of immunoglobulins with the sulfhydryl linkages between the light and 

heavy chains  (Figure 3) (Schroeder and Cavacini, 2010).    
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Figure 3: Structure of immunoglobulin (IgG).  

Immunoglobulin is constituted of two light chains (IgL) (in green) and two heavy chains (IgH) (in orange). Variable 
(VL, VH) domain of Ig constitutes the site of antigen binding, it is formed by three complementarity-determining 
regions (CDRs) flanked by the Framework regions (FR). This part of Ig constitutes the variable fragment Fv of Fab. 
The constant (CL, CH) domains are implicated in the effector function of Ig. The hinge interspaces the CH1 exon 1 
to the constant region (Fc). The two parts Fab and Fc are determined by the digestion analysis of immunoglobulins 
by capsaicin.  

 

Immunoglobulins loci are located on three different chromosomes. 

1.1. Ig Kappa light chain (Igĸ) locus 

The chromosome 2q11.2 encodes human immunoglobulin Kappa light chain locus (Igĸ) 

(chromosome 6 in mouse) which is about 1820kb of length (“Immunoglobulin Kappa Chain - 

an overview | ScienceDirect Topics,”). Igĸ consists of 76 genes Vκ with only 52 functional 

genes, 5 genes constitute the Jĸ and one constant gene Cκ. Diversity segment (D) is not 

present in light chains (Figure 4A) (Townsend et al., 2016). Igĸ chain is more frequent and 

predominant in normal serum, in human ratio of κ/λ is 1.5 to 2 (60/40), this predominance also 

increased in mouse while κ chain is expressed 19-fold more than λ chain (95/5). 

Regulatory elements of Igκ locus  

In human, in 5’ of each functional V segment a promoter was detected containing the 

transcriptional initiating site implicated in the recruitment of the transcriptional machinery 

(Lenhard, Sandelin, & Carninci, 2012). Regulation of Ig gene expression in B cells is not 

achieved only due to the promoter activity but also due to the presence of enhancers and 

insulators.  

Igκ locus is characterized by the presence of three enhancers located differently on the locus 

and highly conserved in mammals.   
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Between the Jk-Ck we identify the intronic enhancer element (iEκ), an important factor for B 

cell development regulation, presenting a similarity with the Eµ presents on the IgH locus 

concerning the placement and the stage specific function. These conclusions were obtained 

from studies replacing the iEk by an Eµ in mice and resulting in early rearrangement of the κ 

locus during the Pro-B cells. Eµ, as described below, promotes the rearrangement on the IgH 

at this B cell stage.  iEκ was demonstrated to be important in the mechanism of demethylation 

of the DNA on one IgK allele and conducting the allelic exclusion (Inlay et al., 2002). 

 Another enhancer was also identified in mouse Igκ locus located on the 3’ of Ck called 3’Ek. 

3’Eκ activity is specific to B cells in which it regulates the somatic hypermutation (SHM) and 

then the maturation of Ig affinity (Odegard & Schatz, 2006). The 3’Eκ element is implicated in 

the allelic exclusion (Zhou, Xiang, Ding, & Garrard, 2012) and directs the nuclear positions of 

Igκ and IgH loci (Hewitt et al., 2008). Deletion of both iEk and 3’Ek abolishes the rearrangement 

of the Igκ locus (Inlay et al., 2002) suggesting an essential function of theses both elements in 

promoting the Igκ rearrangement.  

A third enhancer was discovered on the mouse Igκ locus and was characterized, called distal 

enhancer dEκ (Liu et al., 2002; Xiang and Garrad., 2008). dEk was shown to be implicated in 

the regulation of rearranged Igκ transcription (Zhou et al., 2010). Additional enhancer was 

identified called Hypersensitive Sequence (HS10) located 40 kb before the iEκ and seems 

indispensable for the high level of Igκ expression in plasma cells (Zhou et al., 2012). 

1.2. Ig light chain lambda (Igλ) locus 

The chromosome 22q11.2 encodes the human immunoglobulin Lambda light chain (Igλ) locus 

(Mikocziova et al., 2021) of 1050kb in length.  Igλ consist of 30 Variable genes (Vλ), 7 joining 

genes (Jλ) and 7 constant genes (Cλ). The J segments precede each constant genes and form 

JλCλ1 to JλCλ7.  It is important to mention here that only four constant genes of seven are 

functional (1-3 and 7) leading to four subtypes of Lambda light chain λ1, λ2, λ3 and λ7. The 

Cλ4, Cλ5  Cλ6 are considered as pseudogenes (Figure 4B) (Townsend et al., 2016). 

Cis regulatory elements of Igλ locus  

Two important transcriptional enhancers are identified on the Igλ locus, the Eλ3-1 and Eλ2-4 

characterized by their 90% of homology.  Eλ3-1 is located approximately 35Kb in the 3’ of Cλ3 

gene and the Eλ2-4 is distant approximately from 15.5 Kb to the 3’ of Cλ4 gene (Hagman et 

al., 1990). It was demonstrated that Eλ3-1 enhancer is implicated in the restriction of 

rearrangement mechanism in specific stage of B cell development in addition to his function in 

regulation of the recombination between Vλ and Jλ genes (Haque et al., 2013). Additionally, 

four hypersensitive regions from (HS1 to HS4) were shown to be located downstream of JCλ1.  
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HS1 was demonstrated to be important in Vλ-Jλ recombination and the regulation of 

rearrangement during specific stage rearrangement (Haque et al., 2013).  

 

 

 

 

 

 

 
 

 

Figure 4: Organization of human immunoglobulin light chains loci. 
 A. Igĸ is encoded by the chromosome 2q11.2 in human. From 5’ to 3’, it is composed of variable segment (Vk) 
Joining segments (Jk) and one constant gene (Ck). B. Igλ is encoded by the chromosome 22q11.2 in human, from 

5’ to 3’ it is composed of Variable segments (Vλ), 7 constant genes (Cλ1, Cλ7) preceded by 7 joining segments 
(Jλ1, Jλ7). Cλ4, Cλ5, Cλ6 are pseudogenes.  

 

1.3. Ig Heavy chain (IgH) locus 

Immunoglobulin heavy chain (IgH) is encoded by chromosome 14q32.33 in human 

(chromosome 6 in mouse) and is about 1250kb in length. The 5’ of the IgH locus is localized 

near to the telomere region of chromosome 14, this localization was demonstrated by studying 

translocations in leukemia and lymphomas (Lefranc et al., 2005). The constant segment is 

localized near the centromere region. IgH locus is composed from the 5’ (telomere region) to 

3’ (centromere region) of different principal segments: Variable (V), Diversity (D), Joining (J), 

and Constant (C). Organization of VDJ segments is similar between species (human, mouse) 

in contrast to the species dependency of the constant region (Birshtein, 2014). Variable (IgHV) 

segments containing >100 IgHV genes (38-46 functional genes), Diversity segments consist 

of approximately 27 IgHD genes, Joining segments IgHJ consist of 6 genes(For review (Khatri 

et al., 2021)). These segments are rearranged during the mechanism of V (D) J recombination 

in order to produce a functional immunoglobulin. The 5’ part of variable regionis called distal 

and the 3’ part is called proximal.  V (D) J recombination is detailed after in the continuity of 

this chapter.  

The constant segments (IgHC) formed of 11 IgHC genes, 9 of them are functional and encode 

for the different isotypes and subtypes of Immunoglobulins Cμ (IgM), Cδ (IgD), Cγ3 (IgG3), 

Cγ1 (IgG1), Cα1 (IgA1), Cγ2 (IgG2), Cγ4 (IgG4), Cε (IgE), Cα2 (IgA2) and two pseudogenes 

Cψγ and Cψε (“IMGT Repertoire (IG and TR) 1. Locus and genes,”).  
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In human, the IgH locus upon the evolution is submitted to different types of translocation and 

duplication resulting in the presence of two clusters of constant segments. Cluster 1 consists 

of Cμ, Cδ, Cγ3, Cγ1, Cψε and Cα1. The second cluster consists of Cψγ, Cγ2, Cγ4, Cε, and 

Cα2. Each constant gene is encoded by three exons (CH1, CH2, and CH3) for IgG, IgA and IgD 

isotypes and four exons (CH1, CH2, CH3, CH4) for IgE and IgM.  CH3 of (IgG, IgA and IgD) and 

CH4 of (IgE, IgM) contain a specific region (secretory exon) that can be conserved or eliminated 

by alternative splicing to determine the secreted form of each antibody. In addition to the 

secretory exon, there are two specific exons M1, M2 that encode the intracytoplasmic and 

transmembrane hinge and determine the membrane form of immunoglobulins (Lefranc et al., 

2009). Each CH gene is preceded by a highly repetitive region called switch region S (Sµ, Sγ, 

Sε and Sα) excepting the Cδ (IgD) which preceded in mice IgH locus by pseudo switch region 

ψδ. S regions are composed of repeated motifs of pentamers: GGGGT, GGGCT and GAGCT, 

with a variable length from 1 to 12 kb, targeted by the Activation Induced-cytidine Deaminase 

(AID) during CSR (Shinkura et al., 2003) (Figure 5). These S regions are preceded by 

promoters initiating the transcription (Iµ, Iγ, Iε and Iα) leading to the accessibility of the locus 

required for the locus recombination.  

1.4. Cis Regulatory elements of IgH locus 

The Regulation of IgH locus transcription and accessibility is regulated by different elements 

including cis regulatory elements. Two major cis-regulatory elements are identified on IgH 

Locus, the Eµ (5’ intronic enhancer), important to the V (D) J recombination mechanism and 

during early stages of B cell development, and the 3’Regulatory Region (3’RR). In addition, 

other elements present on the variable region: the promoter PDQ52 (in mice), and in the 5’ of 

the locus, 30kb from JH segments, DNaseI hypersensitive sites (5’HS1, 5’HS2, 5’HS3a and 

5’HS3b) shown to be implicated in the regulation of B cell development (Pawlitzky et al., 2006).  

The first discovered enhancer on IgH locus is the Eµ element.  Eµ is an intronic enhancer of 

1Kb and located between the junction segments (JH) and Switch µ region (Sµ). Eµ is composed 

of two Matrix Association Region (MAR) which flank the central core of Eµ (cEµ) (Figure 5 ) 

(Perlot and Alt, 2008). 

Human IgH locus due to the duplication of the constant part contains two 3’ regulatory regions, 

3’RR1 and 3’RR2, located downstream of Cα1 and Cα2 respectively. 3’RR1 and 3’RR2 are 

composed of super core enhancers segments hypersensitive (HS) to DNase I. Each 3’RR we 

can identify three HS regions so-called HS3, HS1.2 and HS4 respectively from 5’ to 3’ (L 

madisen et al., 1994). An inverted repeat sequence (IRIS) as well flanks HS1.2 (Sepulveda et 

al., 2005). Sequences with high homology with S regions containing a repeated sequence are 

detected in both 3’RR regions called like switch regions (LS). In the 3’RR2 we can identify from 
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(LS1-LS6) (Péron et al., 2012b) in contrast in 3’RR1( LS1-LS5) with small difference in the 

repartition (Figure 5). In mice, IgH locus is also characterized by the presence of three 

insulators in the 3’, HS5, HS6 and HS7 (Garrett et al., 2005). 

Recently, novel enhancers were also identified on IgH locus called (NEs). NE1 was shown to 

have a crucial function in controlling the chromatin conformation to promote the transcription 

of VH region, which is required during the mechanism of V (D) J recombination (Bhat et al., 

2022). The other NEs need to be characterized and studied. 

 

Figure 5: Organization of human immunoglobulin heavy chain locus.  

IgH locus is encoded by the chromosome 14q32.33 in human, 5’ is telomeric, 3’ is centromeric. Variable (V) 
segments are divided in distal (5’) and proximal (3’) regions represented in light green. Diversity (D) genes are in 
green and the Joining segments (JH) are in dark green. The enhancer Eµ, in red, is composed of core Eµ flanked 
by matrix association regions (MAR). Switch regions (Sµ, Sγ, Sα, Sε) precede each constant gene (Cµ, Cγ, Cα, Cε) 
respectively, except Cδ. Each constant gene is composed of 3 or 4 exons (CH1, CH2, CH3 or CH4) determining 
the Ig isotype. IgM has 4 exons. The secretory exon (S) after CH3 or CH4 allow the expression of the secreted form 
of immunoglobulin. Two membrane exons are present (M1, M2) in blue, in the constant gene and are responsible 
for the transmembrane from of Immunoglobulins. Human heavy chain locus presents a duplication of the constant 
region and of the 3’regulatory region (3’RR). 3’RR1 and 3’RR2 present some differences; in general, they are 
composed in human of 3 DNAse1 hypersensitive regions (HS3, HS1.2, and HS4) represented in dark orange. 
These HS are flanked by inverted repeat sequence (IRIS) represented in light orange arrows. In 3’RR1 we can 
detect 5 like switch regions (LS1, LS5) with small differences in the repartition of those present in the 3’RR2 (LS1,6).  

 

 

1.5. Functions of cis regulatory elements of IgH locus 

Due to the high similarity of IgH locus between human and mice, in the literature mice are used 

as model to decipher the function of the different elements of IgH locus. 

 

Functions of the 3’RR 

The activity of 3’RR is lineage and stage specific and is initiated in the pre-B cell stage 

contributing in the regulation of the pre-BCR expression (Guglielmi et al., 2003). During the V 

D J recombination it was shown that 3’RR is dispensable and the deletion of the whole 3’rr in 

mouse has no impact on the efficiency of th e rearrangement (Rouaud et al., 2012). In activated 

B cells, 3’RR contributes to the IgH locus transcription during Class Switch Recombination 
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(CSR) and SHM (For review (Saintamand et al., 2017)). The regulatory region in 3’ of the IgH 

locus is known to be the most important element regulating the  CSR (Saintamand et al., 2015). 

It was demonstrated in mouse that the lack of the totality of 3’RR on IgH locus conduct to 

severe deficiency in CSR in all immunoglobulin isotypes and abrogation in the SHM (Pinaud 

et al., 2011; Vincent-Fabert et al., 2010). Redundancy in the function of the different HS 

elements of 3’RR in mouse was shown. Deletion of the HS3b present normal CSR, proliferation 

and transcription (Bébin et al., 2010).   

The 3’RR is characterized by the presence of different binding sites of activator or repressor 

transcription factors acting in trans (For review (Pinaud et al., 2011)). As an example, in murine 

IgH locus, HS1.2 is activated by the binding of the OCT-2, OCA-B (transcription factors specific 

to B cell) to their oct domain located on HS1.2 which promotes cell activation and their inhibition 

highly affect the differentiation of B cells (Tang and Sharp, 1999). 

 Another binding site also present on HS1.2 is specific to NF-κB protein, which is characterized 

by two activities regarding the stage of development. Binding of NF-κB is repressor during the 

early stages of B cells development. In contrast, NF-κB has an activator activity during late 

stages of B cell development (Michaelson et al., 1996). HS1.2 is characterized by the presence 

of the lineage factor binding site for Pax-5. In resting B cells, Pax-5 binds on its site and 

interacts with NF-κB to repress HS1.2. In contrast, this activity is inverted in plasma cells which 

do not express Pax-5. NF-κB play an activator function of HS1.2 and leads to the synthesis of 

IgH (Neurath et al., 1994).   

In activated mature B cells, the 3’RR is enriched by epigenetic marks such as H3K27ac related 

to the activation of transcription, H3K4me2 and H3K4me1 implicated in the chromatin 

remodeling to the euchromatin form and the activation of transcription (Whyte et al., 2013). In 

contrast to the limited impact of 3’RR during the early stages of B cell development, in plasma 

cells the 3’RR has an important function in the physiologic activity of plasma cells in Ab 

secretion. It was shown that complete deletion of 3’RR in mouse affect importantly the secreted 

Abs (Vincent-Fabert et al., 2010). 

Functions of cEµ 

Eµ activity is specific of B cell lineage and is implicated during the early stages of B cell 

development especially in the pro-B cells (Inlay et al., 2006). The cEµ is characterized by the 

presence of different binding sites of activator and inhibitor transcription factors. In non-B cells 

Eµ is inactivated by the binding of the EZB protein. In contrast, in B cells,  activation of Eµ is 

correlated to the fixation of activator protein E2A protein on  its specific binding site on Eµ 

during the V (D) J mechanism (Romanow et al., 2000). Eµ maintains the stability of sequential 
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V (D) J recombination of heavy chain locus regulating the DNA accessibility to recombinase 

enzymes by the chromatin remodeling. Also, Eµ controls the V (D) J recombination of IgH prior 

those of IgL as shown by insertion of Eµ in the Kappa locus resulting in premature VκJκ 

recombination at the pre-B cell stage rather than in pro-B cell stage. 

Eµ is required for the IgH locus transcription activation and its deletion block the DH-JH 

recombination. Studies demonstrated that the transcription of Eµ and the promoter PDQ52 

earlier than the D-JH recombination, suggesting a function of Eµ in the activation of the 

germline transcription of DH and JH. This was demonstrated by the Eµ deletion of which has 

no effect on VH germline transcription (Afshar et al 2006., Bolland et al., 2007).  

V (D) J recombination requires contraction of the locus and loop formation in cis of loci of both 

heavy and light chains allow to bring the recombination acceptor and donor segments close 

each other. The distance between VH and DH is about 2.5MB. In mice, the cEµ is able to interact 

first with the promoter PDQ52 and then with the Intergenic Control Region 1 (IGCR1) located 

between the V and D segments, to regulate the sequential mechanism of V (D) J 

recombination. The first loop limits the accessibility of VH in the early Pro-B cell stage to allow 

only the DH-JH. Then a second loop formed between cEµ and IGCR1 allows the initiation of the 

V-DJH recombination and the recruitment of the RAG enzyme already recruited to the first loop 

(Guo et al., 2011). During the late stage of B cell development, it seems that Eµ is dispensable 

for CSR, it was shown that deletion of Eµ in mouse model does not affect the switch upon 

stimulation (Saintamand et al., 2017). In addition, the Eµ deletion did not affect the 

transcriptional enhancer epigenetic marks enrichment such as H3K4me3 on the IgH locus 

(Saintamand et al., 2017).  

In conclusion, all of these studies suggest that Eµ regulates the development of B cells, by its 

action on V (D) J rearrangements as well as by the expression of heavy chain of Ig, from the 

pro-B stage to the immature B stage (Marquet et al., 2014; Peng and Eckhardt, 2013). 

 

Functions of MARs element:  

The precise function of MARs is still not well defined. MARs are formed of small DNA 

sequences enriched by A/T or G/C.  It is about 200pb to 1Kb in length. Two types of MARs are 

defined, the constitutive and the facultative. The later one flanks the Eµ core. The constitutive 

MARs are permanently attached to the matrix, and the facultative MARs are attached in a 

reversible way in response to tissue specific nuclear factors and they are repressed in non-B 

cells. These MARs activate the transcription and increased the accessibility of the linked 

regions in B cells (Kim et al., 2017). MARs activation is due to the fixation of B cell regulator 
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factor (Bright)  that regulates the transcription of IgH locus in differentiated B cells (Lin et al., 

2007). MARs are also implicated in SHM of IgH locus and are not necessary to the V (D) J 

recombination (Marquet et al., 2014). 

 

 

2. Immunoglobulins Isotypes 

Antigen encounter conducts to the expression of different classes or isotypes of 

immunoglobulin (IgM, IgD, IgG, IgA and IgE). They are encoded from different constant genes 

of the IgH locus and present different biological functions, localization, molecular weight, half-

life time, structure. These isotypes can be present in transmembrane or secreted form except 

IgD, present only in the transmembrane form. IgD is expressed on immature and mature B cell 

surface with the co-expression with IgM. 

IgM constitute the first expressed Ig on B cells. During the B cell development in bone marrow 

µ chains are synthetized (IgM) to constitute the BCR. IgM are also the first antibodies produced 

during the primary immune response. IgM secretion in pentameric form allows to strongly 

activate the classical pathway of the complement. 

IgG are the major Ig present in the serum, divided into four subclasses IgG1, IgG2, IgG3 and 

IgG4 (IgG1, IgG2a, IgG2b, IgG3 in mice). IgG subclasses present some differences 

concerning the type of recognized Ag. For example, IgG1 interact with parasite and virus 

whereas IgG3 are mainly involved in reactions directed against bacteria through complement 

recruitment. IgG can reach the placenta and join the embryo blood. 

IgA are secreted in monomeric or dimeric, preponderantly, forms especially in the secretion 

mucosa, saliva or glands. IgA constitute the protective barrier against pathogens entry in 

surface with direct contact with the outside of the organisms (for review (Johansen et al., 2000). 

Pentameric structure of IgM or the dimeric of IgA is due to the presence of polypeptide chain 

(J) of 15kDa. 

Finally, IgE is produced after allergic reaction and parasites infection (Brezski and Georgiou, 

2016). During the hypersensitivity reaction, IgE ligate the allergic molecules and bind to FcεRI 

present on the surface of mast cells. This leads to the production of histamine by these cells 

(Galli and Tsai, 2012). 

Some of the characteristics of each isotype of immunoglobulins are summarized in the (Table 

1).  
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      Table 1: Characteristics of immunoglobulin isotypes. 

 

 

3. Production of functional immunoglobulins 

Immunoglobulin is a constituent of the BCR expressed on the surface of B cells and implicated 

in the signaling of survival, proliferation and differentiation of these cells. The Ig loci when in 

their germline conformation are nonfunctional and do not allow the expression of Ig and BCR. 

To produce a specific, functional and diversified BCR on the B cell surface, these loci occur 

several mechanisms during the different stages of B cell development. During the early stages, 

the mechanism of V (D) J recombination takes place in order to generate functional variable 

regions in the light and heavy chains. During the late stages of development, in SLO, two 

mechanisms occur, the SHM contributing to the affinity maturation and the CSR that diversifies 

the Ig isotypes (Figure 6). The molecular mechanism of V (D) J recombination, SHM and CSR 

is detailed after in this chapter.  
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Figure 6: Mechanisms of immunoglobulin loci rearrangement and mutation during B cell development.  

During early stages of B cell development in the bone marrow independently of antigen encounter, the V(D)J 
rearrangements (VHDJH and VLJL) take place to produce a functional Ig. After activation induced after Ag binding. 
During the late stages of B cell development in the SLO, the Ig loci undergo the SHM in the variable region (IgH 

and IgL) and CSR (IgH) in order to produce specific isotypes with high affinity against the antigen. 

  

3.1. Ig diversification:  Antigen Independent stage 

3.1.1. V (D) J Recombination 

V (D) J mechanism occurs in B cells during the early stage of development in bone marrow. V 

(D) J mechanism generate functional coding Ig loci allowing production of functional Ig with 

diversified repertoire allowing the recognition of wide number of Ag. More than three million 

specific functional antibodies are produced and constitute the arm of the immune system 

(Khatri et al., 2021).  

V (D) J recombination is a random mechanism assembling V, D (for IgH) and J segments. It is 

an ordered mechanism: it occurs on the IgH locus before the IgL locus. It occurs in sequential 

way with D-J recombination and then V to the recombined DJ genes (Schatz and Ji, 2011). 

During the DH-JH rearrangement, a random segment of D is assembled with one J exon. DH-

JH occurs on both alleles to optimize the choice of functional DJ production. The second step 

is the recombination between functional DH-JH and  the VH segments on one allele, the second 

allele is submitted to allelic exclusion (Jung et al., 2006).  

 To ensure this mechanism, studies demonstrate the presence of specific DNA segments 

highly conserved called Recombination Signal Sequences (RSS). RSS  define the specific site 
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of recombination (Khatri et al., 2021) (Figure 7). On the light chain the V J recombination occur in one 

step due to the absence of the D segments on these loci (Igκ, Igλ).  

 

Figure 7: Schema of V (D) J recombination mechanism. 

 V (D) J recombinations are sequential processes occurring first in the heavy chain locus between the diversity and 
the joining segments DH-JH and then between the variable and the already rearranged segments DJH. The 
recombination signal sequence (RSS) present in the 3’of the variable genes and 5’ of joining genes are represented 
in orange, RSS flanking the diversity segments are represented in blue. RSS are crucial in the mechanism of V (D) 

J recombination.  

 

3.1.2. Recombination Signal Sequences (RSS) 

RSS segments are present on the variable regions of the IgH and IgL loci. RSS are located 

immediately downstream (3’) to the V segments, upstream (5’) and downstream (3’) of D 

segments on the IgH locus, and upstream (5’) of J genes. RSS are composed from two highly 

conserved fragments, an heptamer (5’-CACAGTG-3’) and a nonamer (5’-ACAAAAACC-3’), 

spaced by a linker of 12 or 23 nucleotides (nt) (Figure 7). The heptamer is known to be 

essential for the recombination mechanism especially at the initiation steps. The first three 

nucleotides are the most highly conserved part compared to the rest of the sequence. The 

RSS organization with the nonamer, the linker and the heptamer, contributes to the sequential 

and ordered V (D) J recombination mechanism.  Recombination cannot occur between two 

RSS had the same nucleotide number in the spacer. The rule 12/23 is a crucial key for the 

initiation of the V (D) J mechanism. More precisely, in the IgH locus, the spacer in RSS of V 

and J regions is 23 nt in length, in contrast spacer of RSS in D segments is formed of 12nt. In 

kappa light chain, spacer of RSS at variable genes is constituted by 12 nt and 23nt in the J 

segments. This is inverted in the lambda light chain (Figure 8). Additionally, the Nonamer and 

heptamer orientation is not conserved in all the RSS of the locus, this orientation can be 

inverted according to the flanked region.   
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Figure 8: Organization of Recombination Signal Sequence (RSS) on Ig loci. 

 RSS are important structures for the initiation of the VDJ recombination. RSS consist of a conserved sequence of 
7 nucleotide (heptamer), and a sequence of 9 nucleotides (nonamer) interspaced by 12 or 23 nt.The V(D)J 
recombination respect the rule 12/23. RSS with a spacer of 23 nucleotide are represented in orange color and RSS 
with 12 nucleotides are in blue color.  

 

3.1.3. RAG1/2 proteins  

Recombination Activating-genes 1 and 2 (RAG1/2), are proteins specific of lymphoid tissue. 

RAG1 protein presents a core domain crucial for the recognition of the nonamer of RSS 

regions, the non-core domain is more implicated in the regulation function. In the literature, 

RAG1 is more established than RAG2. RAG2 is implicated in the activation of the RAG1 

facilitating its binding on the specific DNA site (Chi et al., 2020). RAG enzymes are specifically 

expressed during some stages of B cell development. Expression of these enzymes can be 

regulated by several factors implicated in the B cell lineage commitment i.e. E2A, IKaros, Pax-

5 and FOXO1 proteins. Factors regulating RAG expression in B cells are different from those 

regulating RAG expression in T cells (Chen et al., 2011). These proteins positively regulate 

RAG1/2 expression during the light chain rearrangement in early B cell development. In 

contrast,  these same factors negatively regulate RAG1 expression after functional Pre-BCR 

production (Timblin and Schlissel, 2013, p. 1).  

 

3.1.4. Steps of V (D) J recombination 

Generation of double strand breaks 

Heterotetrameric RAG1/2 recombinase enzyme, with the High Mobility Group Box proteins 

(HMGB1 or HMGB2), creates DNA single strand cleavage between the 5’ of the RSS heptamer 

and the flanked region. Both HMG1A and HMG1B are crucial to generate in vivo the DNA 
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break and they act as RAG2 cofactors (Vant gent et al., 1994). The production of a free 3’-

hydroxyl end, in the presence of Mg2+, induces a transesterification reaction leading to the 

formation of a DNA double strand break (DSB) harboring hairpin structure at the coding 

segments. The RSS end and the DNA segment located in between the targeted RSS are 

released. Accessory molecules are recruited and contribute to the formation of post cleavage 

complex and then process and repair double strand breaks (Figure 9) (For review (Chi et al., 

2020)).  At this point, single-stranded DNA-dependent 3’to 5’ATP dependent helicase complex 

(Ku70-ku80) and the phosphorylated DNA-PKcs recruit the Artemis to the DNA DSB site. 

Artemis processes the coding DNA end by through endonuclease activity to open the hairpin 

and generates incompatible overhangs (Goodarzi et al., 2006; Weterings et al., 2009). In 

addition, polymerases (Polμ, λ) and Terminal deoxynucleotidyl transferase (TdT) are recruited 

to the DNA ends. This recruitment requires the presence of Ku80. TdT adds nucleotides in a 

non-templated way, to the coding end region. TdT is expressed only in early stages of B cell 

development during V (D) J recombination of heavy and light chains of Ig.  

Repair of the DNA breaks 

Coding segment (hairpin) is repaired by the classical non-homologous end joining (NHEJ) DNA 

repair pathway. The first step of DNA repair by NHEJ is the recruitment of the Ku70/Ku80 of 

DNA-PKCs to the DNA ends. Ku complex provides DNA extremity protection from degradation 

and recruits the downstream molecules of the NHEJ pathway.  Ligation of processed ends is 

ensured by the ligase IV (LIGIV) and his cofactor XRCC4/XLF. During the V (D) J 

recombination, the coding joints are conserved on the chromosome, in contrast, segment 

between two recombined segments is excised as a signal region. Repair of the signal ends is 

directly ensured by the activity of LIGIV and XRCC4, which bind the blunt end (Figure 9) (Ma 

et al., 2002). 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348108/#bib8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348108/#bib31
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Figure 9: DNA repair during V (D) J recombination.  

The mechanism of VDJ recombination is divided into two steps: generation of DNA double strand breaks and DNA 
repair phase. The first step is initiated by the recruitment of RAG1/2 proteins and their cofactors to the RSS regions 
to generate the synapse, and results in the generation of double strand breaks. During the second step, the end of 
breaks is processed by TdT enzyme, exonuclease and endonuclease polymerase leading to the recruitment of 
NHEJ DNA repair pathway. At the end, a coding joint is generated in the variable segments and the signal joint is 

excised as an episomal DNA.    

 

Different points are known to regulate this mechanism, concerning the activity of RAG1/2, and 

the chromatin state (conformation, epigenetic marks). Pro-B cells are characterized by the 

accessibility of the IgH locus, by the abundance of H3K4me3 and H3K9ac, known as active 

forms of histone, on RSS region facilitating the binding of RAG enzyme making chromatin 

accessible to of V (D) J rearrangement. In contrast, binding of RAG to RSS can be negatively 

regulated by other epigenetic marks such as H4K20me3 and H3K9me3. These marks 

contribute to the heterochromatin structure, the inactive form of the chromatin (Kudithipudi et 

al., 2017). Additionally, cell cycle phases can regulate the V (D) J mechanism by regulating 

the level of RAG expression, more precisely the RAG1/2 are expressed only during G0-G1 cell 
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phases (Galloway et al., 2016). Furthermore, the regulatory elements present on the Ig loci 

contribute also to the regulation of the V D J mechanism (See section 1.5 Functions of cis 

regulatory element of the IgH locus). Briefly, these elements contribute to the loop formation 

on the locus during the V (D) J recombination.    

3.2. Ig diversification: antigen dependent phase  

Antigen encounter with naïve B cells induces their terminal maturation in the germinal center 

of SLO.  Two different mechanism occur, SHM and CSR, leading to the differentiation of B 

cells into memory B cells and plasma cells (antibody secreting cells). 

SHM proceed to the introduction of point mutations on the variable region of the IgH as well of 

the IgL. These mutations can result in affinity maturation of Ig. CSR leads to the diversification 

of Ig isotypes from IgM to IgG, IgA and IgE in specific response to the antigen. This mechanism 

occurs between the Sµ and one Sx (Switch region preceding the different CH). SHM and CSR 

depend on the activity of Activation induced cytidine deaminase (AID) the key mutator enzyme 

during the late B cell differentiation in adaptive immunity (Leeman-Neill et al., 2018).  

3.2.1. Activation induced cytidine deaminase (AID)  

 AID is a small protein about 198 amino acid (26kDa) encoded by AICDA gene located on the 

chromosome 12 in human (chromosome 6 in mouse). AID is a part of the APOBEC family 

(Apolipoprotein B RNA editing catalytic component), accounting for 12 proteins, known by their 

functions as RNA-editing enzymes, a subgroup of a zinc-dependent deaminase superfamily. 

Different domains characterize the AID protein: the nuclear localization signal (NLS) in the N-

terminal region, a catalytic domain (APOBEC-like) and the nuclear export signal (NES) in the 

C-terminal region. Due to the similarities with the APOBEC family, AID was first considered to 

target the RNA and to participate in RNA editing (For review (Hongo et al. 2002)). The absence 

of clear demonstration on this activity, in addition to several studies showing that AID targets 

specifically single strand DNA. Thus, AID is considered to target the DNA and not the RNA but 

till now this subject is still not definitely assumed. AID is implicated during SHM and CSR by 

his deaminase activity that deaminates and converts cytosine ‘C’ to uracil ‘U’ creating a 

mismatch U:G. This mismatch is recognized by the mechanism of base excision repair (BER) 

and mismatch repair (MMR) (Zan and Casali, 2013).  AID enzyme was detected in germinal 

centers in SLO, in in vitro stimulated cells (Muramatsu et al., 1999) and, at a lower level, during 

the central tolerance in bone marrow (Kuraoka et al ., 2011). Also, AID is aberrantly expressed 

in malignant cells such as breast cancer cells, leukemic cells in Chronic lymphocytic leukemia 

(CLL), in Diffuse Large B cell lymphoma (DLBCL). Additionally, AID is normally expressed in 

germline cells during spermatogenesis (Sschreck et al., 2006). In malignant cells, including 

CLL, in addition to the full length of the protein, AID mRNA can be alternatively spliced into 
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four mRNA variants contributing in the cell transformation (Albesiano et al., 2003, Oppezzo et 

al., 2003).  

Localization of AID in the cell compartment regulates its activity. AID protein is localized in the 

cytoplasm, upon cell activation, the importin-α-nuclear import, present in the cytoplasm 

interacts with the NLS domain of AID and contribute to its translocation into the nucleus. In the 

nucleus, AID targets the IgH locus during the SHM and CSR. At the end of its activity and to 

inhibit excess of activity, AID is then exported form the nucleus due to the interaction of the 

exportin CRM1 with the NES domain of AID (for review (Patenaude et al., 2010).  

Germline transcription is not sufficient for the induction of the mutagenic activity of AID on the 

Ig. Data demonstrated the capability of AID to interact with the replication protein A (RPA), 

able to bind and stabilize single strand of DNA (ssDNA) (Chaudhuri et al., 2004). In addition, 

phosphorylation of AID on (ser38) by the cyclic-AMP-dependent protein kinase A (PKA) is 

important for interaction with RPA (Vuong zt al., 2009). AID and RPA are recruited to the target 

sites after their transcription activation. Phosphorylated AID recruits the RPA to ssDNA to 

stabilized facilitating the deaminase activity of AID on the concerned motifs (RGYW).  

3.2.2. Somatic Hypermutation (SHM) 

 SHM occurs during the mechanism of B cell maturation upon the activity of AID on the variable 

region of IgH and IgL loci of Ig in specific motifs WWRCT characterized by their high mutability 

and low frequency of G. SHM mechanism is recently reviewed in (Tang et al., 2022). 

Incorporation of U in the DNA strand resulting from AID activity is abnormal and need to be 

eliminated. First, the cell replication machinery can ignore the U and read it as T resulting in 

transition dC>dT on the affected strand and dG>dA on the second strand or this abnormal 

uracil leads to the recruitment of two different mechanism: Base excision Repair (BER) and 

Mismatch repair (MMR). 

The principal mechanism known to eliminate uracil residue from DNA is Base Excision Repair 

(BER). BER is initiated by the Uracil-DNA glycosylases (UNG1) which excise the U resulting 

in an abasic site production (AP site). Apurinic site recruits the AP endonuclease 1 (APE1) that 

leads to 3’-OH formation in the terminus of DNA damage site and initiates the final step of BER 

by recruitment of polymerase B (polβ) that synthetizes a corrected base in the place of the 

damaged one and the ligase activity for nick sealing resulting in mutation insertion in the 

concerned strand. 

Additionally, generated mismatch activates the MMR mechanism. The U:G is recognized by 

the MutS homolog (MSH) heterodimer MSH2/MSH6 complex. MSH2/MSH6 recruits other 
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factors such as MLH1 and the post meiotic segregation 2 (PMS2). All together able to introduce 

a nick in the 5’ of the mismatch. So, Exonuclease 1 (EXO1) is recruited and eliminates bases 

of the segment containing the mismatch from the nick. Finally, the low fidelity polymerase 

eta(η) enzyme is recruited and synthetizes nucleotides and results in introduction of mutation 

especially in the residue A:T (Figure 10) (Chi et al., 2020). At the end of this mechanism, cells 

that express non self-reactive BCR with high affinity to exogenous antigens are selected to 

continue their differentiation into plasma cells producing specific and functional antibodies and 

memory B cells (LeBien and Tedder, 2008). Recently, it has been demonstrated that the DNA 

repair factor 5-hydroxymethylcytosine binding, ES cell specific (HMCES) is implicated in the 

protection of the DNA on the abasic site from deleterious deletion that can occur. This HMCES 

interacts and protects the break produced on the uracil site without any impact on the SHM 

implicated molecules and promotes production of functional antibodies (Wu et al., 2022). 

Figure 10 :  Schematic representation of DNA repair during SHM.  

AID activity result in uracil introduction in the DNA strand creating a mismatch U:G which will be repaired by three 
mechanisms. First, the machinery of cell replication ignores the U and read it as T resulting in transition from C to 
T on the affected strand and G to A in the complementary strand. Second, this abnormal uracil is removed by the 
UNG creating abasic site, which recruits the APE1. The endonuclease activity of APE1 lead to 3’OH generation of 
the damage site, Polβ is recruited to synthetize the corrected base (error free) or by error prone resulting in mutation 
insertion. Third the U:G is recognized by the MutS complex (MSH2/MSH6) creating a nick on the damage site, 
EXO1 is recruited to eliminate the base on the mismatch site then Polη synthetize the base in corrected way error 
free or by insertion of mutation (error prone) (Odegard and Schatz, 2006). 
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Frequency of introduced mutations resulting from AID activity in the variable region is 

represented in the (Figure 11).  

 

 

 

   

 

 

 

 

 

 

 

Figure 11: Somatic Hypermutation of Ig loci induced by AID. 
 Mutation frequency on the variable regions of IgH and IgL Loci induced by AID enzyme is represented by the light 
blue.  Mutation begin upstream of the transcription site and extend up to 2Kb from this site. P: promoter, L: leader. 
Figure adapted from (Peled et al., 2008).  

 

 

3.2.3. Class Switch Recombination (CSR) 

CSR is a mechanism of genetic DNA rearrangement occurring on the IgH locus, it not affects 

the V region (For review (Chi et al., 2020)). CSR occurs during the terminal maturation of B 

cells and allows effective humoral immune response. This mechanism leads to the 

diversification of the Ig isotypes by the substitution of the IgM expressed on naïve B cells by 

another class of Ig (IgG, IgA and IgE) in a specific response to the antigen (Xu et al., 2012). It 

occurs between two S regions, the Sµ region, known as donor region, and an acceptor region, 

Sγ, Sα, Sε. S regions are located upstream of a constant gene (Cµ, Cγ, Cα, Cε). CSR leads 

to the deletion of the DNA between the two implicated S regions. Cδ is not preceded by a S 

region but studies reveal that CSR to IgD may be possible due to the presence of pseudo-S 

region (Rouaud et al., 2014). CSR is AID dependent, recently it has been demonstrated that 

in the absence of AID, CSR mechanism can be detected even at low level (Dalloul et al., 

2021a). Initiation of CSR in the germinal centers of SLO requires several signals given by Ag 

encounter, cytokine production and interaction with the microenvironment cells. Activated B 
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cells produce signals inducing the germline transcription of the concerned S regions of the IgH 

locus. Germline transcription of S regions is absolutely required for CSR (Abarrategui and 

Krangel, 2009) since these transcripts permit the accessibility of the  S DNA segments (Sµ 

and Sx). 

Each transcription unit is constituted of a promotor (P) initiating the transcription via the RNA 

polymerase II enzyme, an intervening exon (Ix), the Switch (Sx) region and finally the (Cx) 

segment (Figure 12). 

Germline transcription of the Sµ-Cµ region is constitutive in B cells (SC li et al., 1994). In 

contrast, the transcription of the acceptor S region is controlled by signals produced in 

response to the cytokine participating in the B cell stimulation. In murine cells, the interaction 

between the Toll-like 4 (TLR4) expressed on B cells with the lipopolysaccharide (LPS) induce 

the CSR to IgG2 and IgG3. In human B cells, production of IL-4 by CD4+ T cells in addition to 

the CD40-L stimulates the transcription of Iγ1 and Iε lead to IgG1 and IgE production 

respectively. The transforming growth factor TGFβ induce the transcription of Iα unit and then 

IgA production (Stavnezer et al., 2008).  

 

 

 

 

 

 

 

 

 

Figure 12: Germinal transcripts on constant regions of IgH locus.  

Transcriptional unit of each constant gene is composed of one promoter (P), an intervening sequence (I), the switch 
region (S) and the constant exons (C). Cell stimulation leads to the germline transcription resulting in the production 
of primary germline transcript, which is submitted to splicing and polyadenylation to generate the mature non-coding 
transcript. Figure adapted from Chaudhuri and Alt., 2004. 

 

AID is induced by the interaction between the CD40L on the activated CD4+ T cell surface with 

CD40 receptor present on B cells, or after LPS interaction with the TLR4. AID is localized in 

the cytoplasmic compartment and, upon activation, AID is imported to the nuclear 

compartment as described before. S regions are crucial for the CSR, their deletion results in 

CSR deficiency (Luby et al., 2001, Kamlichi et al., 2004). In addition, the orientation of these 
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S regions also important for the CSR. Inversion in S region results in important decrease in the 

CSR mechanism (Kinoshita et al., 1998). 

Germline transcription of the S regions on the IgH locus generates neo-transcript RNA. This 

RNA strand hybridizes with the transcribed strand of the DNA matrix and generates hybrid 

RNA/DNA. In contrast, the opposite DNA strand, single stranded RPA coated, generates an 

R-loop. R-loop permits the single strand to be accessible to active PKA phosphorylated AID 

recruited by the RPA which stabilizes the single strand as described above (Pavri, 2017). S 

regions are rich in G motifs on the single strand and AID activity is facilitated by a G-quadruplex 

(G4) structure. G4 stabilize the formed R-loop. In addition to their presence on the single 

strand, G-quadruplex can be detected on the DNA strand present in the complex (RNA/DNA) 

(Figure 13). 

 

 

 

 

 

Figure 13: R-loop and G-quadruplex structures. 

 RNA polymerase II represented in blue synthetizes RNA in the switch region during germline transcription. Neo-
synthetized RNA hybridizes with the DNA strand, the opposite strand still in single from and is coated by RPA. R-
loop in green stabilized by the G-quadruplex in light orange generated in G rich region facilitates the activity of AID 
represented in orange in this region.  

 

 

Briefly, AID recruited from the cytoplasmic to the nuclear compartment, interacts with S region 

and deaminates cytosines (C) to a uracil (U) creating DNA mismatches U:G. U:G mismatches 

are operated by the BER and MMR leading to single strand DNA breaks SSB (Cheng et al., 

2009). Accumulation of SSB results in DSB generation on the two S regions (donor and 

acceptor). DSB generation on donor and acceptor segment leads to the excision of the DNA 

region located between them as an episome. It was shown that 3’RR constitute a major 

regulator of CSR mechanism thanks to its interaction with Eµ forming a loop on the IgH locus. 

In activated B, the 3’RR-Eµ loop is reinforced by a supplemental chromosome contraction 

allowing the rapprochement of the acceptor S region to 3’RR-Eµ-Sµ leading to the formation 

of Sµ-Sx synapsis (Wuerffel et al., 2007). 
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DNA ends are then ligated by NHEJ DNA repair pathway (Figure 14). Studies demonstrated 

that in case of the deficiency of this pathway, CSR still unexpectedly detected and repaired by 

the Alt-EJ pathway (Yan et al., 2007).   

Finally, CSR and SHM mechanisms generate a functional BCR, implicated in the principal 

function in B cells, the transduction of signals controlling the B cell fate, survival, proliferation 

and differentiation. Each B cell express a unique type of BCR. 

 

 

Figure 14: Schematic representation of CSR to IgG1.  

Cell stimulation with CD40L and IL-4 induces the germline transcription of Igγ1 transcriptional unit in addition to the 
Igµ transcript. AID is expressed after B cell stimulation and is recruited to the transcribed S regions. AID DNA 
lesions lead to the production of DNA double strand breaks in the concerned switch regions. Repair of DSBs by 
NHEJ generates a Sµ/Sγ1 junction and the constant part between the two S regions is excised as a circle eliminated 
after cell proliferation. Ligated segment is transcribed from promoter upstream of the variable region leading to the 

expression of IgG1 isotype.  

 

 



 
 
Israa Al Jamal | Ph.D. Thesis | University of Limoges, Lebanese University | 2022 58 
License CC BY-NC-ND 4.0 

3.2.4. Locus Suicide Recombination (LSR) 

Locus Suicide Recombination (LSR) is another genetic rearrangement detected on the IgH 

locus. It was detected for the first time in mouse. LSR  occurs between the Sµ (donor segment) 

and one of the LS regions (acceptor segment) of the 3’Regulatory Region (3’RR1 and 3’RR2 

in human) (Péron et al., 2012b). As detailed above, in the IgH locus organization, 3’RR is 

constituted of HS segments (HS1.2, HS3 and HS4) flanked by LS regions. LS are 

characterized by the presence of repeated sequences in tandem (Peron et al., 2012) and 

present high similarities with the Switch gamma 1 region (Sγ1). Presence of LS regions within 

the 3’RR is conserved among species, which potentially suggests an important physiologic 

function. Concerning the LSR mechanism and his detection, first, Peron et al. demonstrated in 

mouse the presence of germline transcription of the 3’RR (HS1.2, HS4). These transcripts 

were detected after stimulation of murine cells with LPS inducing CSR to Sγ1. Other studies 

showed that the 3’RR transcription is detected even in resting cells without any stimulation and 

can be sens and antisense transcription (Kaspryk et al., 2021). In addition, a mutation rate 

close to those of Sµ region was detected in these regions (0.42%) (Peron et al., 2012). 

Altogether, these observations suggest this region could be a new target of AID. This 

suggestion was confirmed when a mechanism of recombination was detected between the Sµ 

and 3’RR region, this mechanism called Locus Suicide Recombination (LSR) (Peron et al., 

2012). 

LSR leads to the excision of all genes encoding the immunoglobulin constant part as an 

episome (Figure 15). When this mechanism hits the functional allele, B cell loses the 

expression of IgH, Ig and BCR on their surface which lead to cell death by apoptosis since 

BCR was showed to be important in transduction of cell survival signals via his alpha beta 

domains (Maruyama et al., 2001) LSR can also occur on the non-functional allele, without 

compromising BCR expression on the cells. This idea is supported by the detection of LSR in 

human normal peripheral blood (Dalloul et al., 2019). LSR is suspected to occur in the germinal 

centers on the SLO, AID is expressed after cell activation in this organ. Detection of LSR in B 

cells of peripheral blood is due the exited cells from the SLO where the mechanism is occurred. 

The physiologic function of the LSR is still pending. The rates of LSR is lower than CSR rate 

in normal cells. Among the suggested functions, LSR can be the counterpart of the CSR 

mechanism controlling the homeostasis of B cells, targeting the tumoral cells, auto-reactive 

cells and/or cells with low affinity to the Ag. In another way, it can result as an accidental 

rearrangement during cell stimulation and activation of CSR.  

Concerning the molecular mechanism of the LSR, similarly to the CSR, it is initiated by the 

germline transcription of the LS segments in the 3’RR. Activation of AID and generation of 
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DNA double strand breaks in the LS are followed by DNA repair. Studies concerning the DNA 

repair during LSR mechanism in mouse suggested a greater involvement of the Alternative 

End Joining (Alt-EJ) DNA repair pathway than the NHEJ compared to CSR (Boutouil et al., 

2019a).  

As mentioned before CSR can be detected in cells deficient to AID, raising the question of LSR 

detection in AID KO condition? This question is tackled in the first part of my thesis work. on 

the other hand, the second part of my thesis work focusses on this part of LSR DNA repair in 

human in normal and pathological conditions. In order to improve the knowledge concerning 

this mechanism and to evaluate its function in human.   

Figure 15: Schematic representation of LSR mechanism.  
B Cells stimulated with CD40L and IL-4 undergo germline transcription of the like switch regions of the 3’regulatory 
region in addition to the Sµ. AID induced after B cell stimulation, is recruited to the transcribed regions and induces 
DNA lesions leading to the generation of DNA double strand breaks. DNA repair ligate Sµ to the concerned LS 
region in contrast the region located between Sµ and LS is excised as an extrachromosomal DNA circle.   
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C. B cell development, from the early stages to their 

terminal differentiation 

Development of B cells is characterized by the mechanisms allowing B cells to produce 

functional Ig and to become mature B cells. These latter which finally have to undergo terminal 

differentiation to turn into antibody producing cells (plasma cells) and memory B cells.  

1. Early stages of B cell development, an antigen independent phase 

Given the wealth of literature on the model and hierarchy of B cell development, available 

publications identify markers to classify the different populations during differentiation from the 

hematopoietic stem cell in the bone marrow (Chao et al., 2008).  

  

1.1. Hematopoietic Stem Cell (HSC) 

 HSC are pluripotent cells with a capacity of self-renewal which can differentiate into all blood 

cell types (HAWLEY et al., 2006). Flow cytometry studies of surface markers characterize the 

HSC as: CD45RA-, CD38-, CD90+, lin– and CD34+. This phenotype is used to isolate HSC 

population in bone marrow. Also these cells express the CXCR4, a receptor to CXCL12 ligand 

secreted by the stromal cells present in the microenvironment and contribute to the HSC 

retention in bone marrow (Baum et al., 1992; Mahony and Bertrand, 2019). HSC by 

differentiation give rise to multipotent progenitor cells MPP (Figure 16). 

 

1.2. Multipotent progenitor (MPP) 

MPP derives from the HSC and is characterized by the phenotype Lin- CD34+ CD38- CD90- 

IL7-Rα+ CD10- CD45RA-. MPP can differentiate into all mature cells of the blood. MPP is able 

to bind IL-7, secreted by the bone marrow stromal cells, due to the expression of IL-7 receptor. 

This binding induces signaling pathway initiating the differentiation into common lymphoid 

progenitor (CLP)(Melchers, 2015) (Figure 16).  

 

1.3. Common lymphoid progenitor (CLP) 

CLP give rise to T lymphocytes, NK and B lymphocytes. The different steps of B cells 

lymphopoiesis from the CLP are detailed thereafter.  Immunophenotyping of the CLP 

population as CD127+ CD38+ Lin- CD34+. Until this stage of development, the IgH and IgL loci 

are still in the germline conformation (Figure 16).  
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1.4. Early Pro-B: DH-JH recombination   

Early pro-B cells express the key transcription factor implicated in lineage commitment, the 

paired box gene 5 known as Pax-5 that encodes the B cell lineage specific activator protein 

(BSAP). Pax-5 activates the transcription of factors implicated in B cell specific lineage and 

represses the non-B lineage factors (for review (Cobaleda et al., 2007)). Pax-5 expression is 

regulated by the E12 and E47 proteins that regulate also RAG1/2 and EBF (kee et al., 2000).  

Expression of the RAG1/2 and TdT enzymes characterizes this stage. Recombination between 

D and J segments takes place on both allele of IgH locus in this population. In contrast, IgL 

loci are in the germline conformations. At this stage, cells do not express a BCR on the surface 

neither pre-BCR nevertheless pro-B cells express the alpha (α) and beta (β) BCR Subunits. 

Pro-B cells are characterized by the surface expression of CD34, CD38, CD10 and CD127 

and they are negative for the B cell lineage marker CD19 (Figure 16).   

 

1.5. Late Pro-B:  VH-DJH recombination 

At this stage RAG1/2 and the TdT are still expressed and the recombination of V segment 

occurs with the rearranged segment DJ on the IgH locus (VHDJH recombination). Pax-5 able 

to interact with the coding region of the VH and also interact with RAG1/2 to mediates VH to 

DJH recombination (Kishi et al., 2002).  IgL loci remain in the germline conformations. At this 

stage, Pro-B cells are characterized by the expression of CD45R (similar isoform to B220 

murine), class II of CMH, CD19, CD40, CD34 and CD10 (Figure 16).   

    

1.6. Large pre-B cells: pre-BCR expression  

Pro-B cells give rise to large pre-B cells CD38+ IgM+. The recombined µ chain is associated 

with the surrogate light chain constituted by VpreB and λ5. IgM with the two subunits Igα/β 

(CD79A, B) at this stage form the pre-BCR. Expression of pre-BCR represents a checkpoint 

in the development of B cell progenitors which results in the downregulation of RAG1/2 and 

TdT expression (For review (Fritz et al., 2015)).  

The functionality of the pre-BCR expressed on the cell surface is assessed in the interaction 

with galectin1 expressed by stromal cells of bone marrow (Elantak et al., 2012). Galectin1 able 

to bind to the VpreB and to induce cell signaling. Success in this signaling pathway indicates 

a functional pre-BCR and invites the rearrangement of the IgL loci. In contrast, failure in the 

signal transduction conducts to the arrest of the B cell development (Figure 17).  

At this stage, B cells are positive for CD45R, CMH class II, CD19 and CD40. In addition, loss 

of CD34 characterize this stage of development (Figure 16).  
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1.7. Small pre-B cells: VLJL recombination  

VLJL recombination takes place during this development stage, cells re-express the RAG1/2 

and TdT. Phenotype of these cells can be defined as CD45R+, CMH-II+, CD19+ and CD40+ in 

addition to the pre-BCR already expressed from the large pre-B cell stage. 

 

1.8. Immature B cells 

Immature B cells expressing a complete BCR (IgM) on the surface formed of rearranged IgH 

and IgL loci. Immature B cells still express the RAG1/2 and TdT leading to the second 

checkpoint (central tolerance). Central tolerance consists on negative selection for B cells 

expressing non-autoreactive BCR. BCR able to recognize the self-antigens presented in the 

bone marrow are eliminated by apoptosis; or reinter in a new phase of light chain 

rearrangement to produce a new BCR (Figure 17). 

Immature B cells express at the membrane CD45R, IgM, CD19, CD40 and class II of CMH. In 

these cells, IgD is expressed at the cell surface due the mechanism of alternative splicing of 

IgH RNA. IgD is detected at low levels on the membrane of these cells.  

Cells expressing non-autoreactive BCR are allowed to exit the bone marrow and join the 

peripheral blood and secondary lymphoid organs and tissues as transitional B cells. In the 

peripheral blood, we can detect several subpopulations of B cells that differ by the stage of 

differentiation and activation  (Leandro, 2013). 

 

Figure 16: Schematic representation of early stages of B cell development.  

This figure represents specific markers of B cells during the early stages of development. Immunoglobulin loci status 

and RAG1/2 and TdT expression are indicated. 
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Figure 17. Checkpoints during early B cell development. 

 In bone marrow (BM), expression of the pre-BCR in large B cell leads to the first checkpoint that tests the 
functionality of the heavy chain of Ig. Stromal cells of the BM produce the galectin1 which binds to the pre-BCR via 
α4β7 receptor and to the SLC formed of (λ5 VpreB). Signal is transduced when pre-BCR is functional allowing cells 
to continue their development. Absence of signal induces the arrest of B cell development. The second checkpoint 
takes place in immature B cells and auto-reactivity of BCR is assessed.  B cells are exposed to BM antigens, 
presence of signal indicates that the BCR is autoreactive and invites the cells to reenter in a novel round of light 
chain rearrangement, cells with negative signals are able to exit from the bone marrow to continue their 
development.  

 

2. Late and Ag dependent stage of B cell development 

 

2.1. Transitional B cells 

After exiting from bone marrow, transitional B cells, constitute the transitional state from 

immature to mature B cells. Transitional B cells can be detected first circulating in the 

peripheral blood and characterized by the co-expression of IgM, IgD, and the expression of 

CD10. Cells migrate to the lymph nodes, the spleen or to the mucosa associated lymphoid 

tissue (MALT) to continue their development in response to chemo-attraction signals produce 

by the sphingosine 1-phosphate (S1P). Transitional B cells are classified into different 

subpopulations and they represent 5-10% of all B cell subpopulations.  In human, three 

transitional B cell phases are detected before their commitment in follicular (FO) or marginal 

zone (MZ) B cells. The transitional T1, T2 and T3 B cell populations are reviewed in (Darwiche 

et al, 2018). T1 is detected in blood and spleen. High levels of T1 is observed in the systemic 

lupus erythematosus (SLE) disease after treatment by prolactin (Ledesma-Soto et al., 2012). 
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T2 state is present only in the spleen and will give rise to the mature naïve B cells (sims et al., 

2005). The third group of Transitional B cells T3 is not able to continue their development and 

represent the group of anergic or autoreactive B cells (Melchers et al., 2006). Passage from 

immature to the different transitional stages and then mature naïve B cells is characterized by 

the gradual loose of some markers such as CD5 and CD10 and upregulation of other such as 

CD21. Markers used to characterize and isolate these three subpopulations are represented 

in (Table 2) (Martin et al., 2016).  

 

Table 2: Markers of human transitional B cells. 

 

2.2. B1 Cells  

Two populations of mature B cells are described in human as well as in mouse, the B1 cells 

and the conventional B2 cells. B1 cells are implicated in the microbial defense and elimination 

of cell debris (housekeeping cells). They are found in the peripheral blood as well as in the 

umbilical cord blood.  In human, B1 represent (5 to 10% of B cells), phenotypically 

characterized by the expression of CD20+, CD27+, CD38low/int, CD43+ and CD5+/-. They are able 

to produce antibodies in a spontaneous way, IgM in the most of cases. This later characteristic 

is similar to mouse B1 cells (Griffin et al., 2011, Quach et al., 2016). Non-secreting B1 cells 

highly express the Pax-5 and they did not express the XBP1 and BLIMP1 which are 

characteristics for plasma cells (Tanaka et al., 2016). 

 

2.4. Marginal zone B cells  

In SLO, MZ B cells emerged from B2 B cell population are located in the spleen in the interface 

region between white and red pulp. MZ B cells share similar characteristics with B1 B cells. 

Low diversity of BCR is observed in MZ B cells and they are able to recognize microorganisms 

sharing common patterns (Pillai et al., 2005).  MZ B cells are known to be involved in T-

independent immune responses, and they are able to give rise rapidly to short-lived plasma 

cells (Balázs et al., 2002; Martin et al., 2001). Also, they are able to differentiate into long lived 

plasma cells in response to T-dependent stimulation. These antibody producing cells produce 

IgG or IgA isotypes with high affinity (MacLennan et al., 2003; Song and Cerny, 2003). Finally, 
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a suggested role for the MZ B cells is transporting antigens to the follicles rich in follicular B 

cells (FO) (Cinamon et al., 2008; Ferguson et al., 2004). 

 

2.4. Mature naïve B cells  

The co-expression of IgD in intermediated levels with IgM characterizes the naïve non-

switched B cells in addition to the expression of CD20, CD19, CD21 (CR2, known as a receptor 

of C3d molecules of the complement), CD29 (integrin beta-1), CD35, CD40 receptor of the 

(CD154 Known as CD40 ligand) and BAFFR.  

Antigen encounter with naïve B cells induces their activation resulting in proliferation, 

interaction with different types of immune cells and germinal center (GC) formation permitting 

to B cells to continue their development and maturation. Based on that, the first step after 

antigen encounter is GC generation in the SLO. 

 

2.3. Initiation of the germinal center (GC) 

SLO are characterized by a specific organization formed of follicles containing the follicular B 

cells and separated by inter-follicular region enriched by T lymphocytes, the limit between the 

T zone and B zone is named T/B border (Figure 18). Germinal centers are defined as transitory 

structures formed in the SLO after antigen B cell encounter. In GC, B cells continue their 

development, maturation and differentiation and to give rise an effective immune response 

(Huang, 2020).   

 

 

 

 

 

Figure 18: Organization of secondary lymphoid organs (SLO). 

 SLO are composed of follicles in which proliferation of T cell dependent Ag-activated B cells in presence of the 
follicular dendritic cells (FDC) allows the formation of germinal center structure (GC). Follicles are separated by the 
interfollicular zone. The limit between the T cell zone and B cell zone is called T/B border. 

 

Naïve follicular B cells present in the follicular region of SLO, are activated by the encounter 

of a soluble antigen drained by the lymphatic vessels or cortical sinuses or by antigen 

presenting cell (APC) like follicular dendritic cells (FDC) present in the follicle (Figure 19) or by 

macrophages.  
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Activation of B cells leads to the expression of CD86, CMH II, EBI2 (Epstein Barr virus induced 

G protein coupled receptor 2) at their surface, in addition the chemotactic receptor, CCR7. This 

latter attracts activated B cells to the inter-follicular bordering the T-cell zone where CCL19 

and CCL21, the ligands of CCR7, are expressed by the stromal cells (Link A et al 2007). CD4+ 

T lymphocytes are activated with the peptide presented via class II of CMH on dendritic cells 

which interacts with their TCR (Haberman et al., 2019). Migration of B cells to the border 

permits the interaction with CD4+ T cells (T-dependent response).    

B-T cell interaction at the border zone is crucial because signal resulted from antigen encounter 

in naïve B cells is not sufficient for fully B cell differentiation. Additional co-stimulatory signal is 

given by the interaction with CD4+ T cells. Co-localization of B cells and CD4+ T cells in the 

border zone and their interaction is facilitated by the interaction of highly expressed level of 

EBI2 on the membrane of B and T cells and its ligand oxysterol produced by the stromal cells 

(Gatto and Brink, 2013).  

At this stage, B cells can differentiate into short-lived plasma cells producing non-switched 

(IgM) antibodies with low affinity. These cells are produced short time after infection. B cells 

can also return in the center of the follicle to generate the germinal center. Cells returning to 

the center of follicle cannot be accomplished without regulation of the transcriptional level of 

some factors. B and T cells downregulate CCR7 and EBI2 and upregulate the B cell lymphoma 

(BCL6) (Pereira et al., 2009). BCL6 is an important regulating factor during B cell development 

in the SLO, it downregulates the expression of IRF4 and BLIMP1 implicated in the 

differentiation to plasma cells. In contrast, high expression of these two factors by plasma cells 

in turn downregulate BCL6 expression (Ochiai et al., 2013). 

Downregulation of EBI2 and CCR7 in CD4+ T cells allows them to return to the follicles where 

their differentiation goes on into T follicular helper cells (Tfh). Localization of B and T cells into 

the center of follicles is maintained through the expression of CXCR5R on B and Tfh cells 

(Stebegg et al., 2018). 

When B cells return to the follicle center they play the role of APC, presenting Ag peptides on 

class II of CMH to CD4+ T cells. This interaction permits to B cells to receive survival and 

differentiation signals. Activated B cells proliferate, while resting B cells migrate to the 

periphery of GC constituting the mantle zone where CD4+ T cells are detected at low levels 

(Nygren et al., 2014). The germinal center pass from the immature structure (pre-GC) to the 

mature structure constituted by two different compartments (light zone (LZ) and Dark zone 

(DZ)) with specific characteristics and cells. Architecture of germinal center is due to the 

chemokines produced by stromal cells in the GC. The dark zone (DZ) of GC is enriched by 

centroblasts which are CXCR4high CD83low, CD86 low, CD40low and BCL6high. Centroblasts are 

characterized by the loss of their membrane immunoglobulin expression and their high rate of 
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proliferation, and they are submitted to the SHM mechanism (Victora et al., 2010). Maintaining 

of centroblasts in the DZ is due to the presence of CXCL12 expressed by germinal center 

stromal cell of dark zone. CXCL12 is the ligand of CXCR4 highly expressed by centroblast 

cells (Stebegg et al., 2018). Centroblasts migrate from the DZ to the LZ under the effect of 

CXCL13 produced by the FDC. CXCL13 interacts with his receptor CXCR5 expressed on 

centrocytes, the characteristic B cells in LZ. Centrocytes are smaller than centroblasts, these 

cells downregulate the expression of CXCR4. Their phenotype is CXCR4low, CD83high, CD86 

high and they re-express an Ig at the cell surface. 

In LZ, in addition to the centrocytes, Tfh cells, FDC and regulatory T cells are found. Tfh has 

a crucial function in the mature GC generation by maintaining the production of IL-21 and IL-4 

cytokines and expressing CD40L leading to synapse formation with B cells (Victora et al., 

2012). FDC are implicated in the process consisting on the positive selection of B cells 

harboring BCR with high affinity due SHM occurred on Ig loci in DZ. This selection occurs via 

their interaction with FDC through the binding of the BCR to the Ag exposed at the FDC 

surface. BCR with high affinity are able to bind the antigen and cells are allowed to continue 

their differentiation. In addition, it has been demonstrated that B cells expressing a high Ag-

affinity BCR can also return to the DZ and be submitted to additional proliferation rounds and 

SHM process resulting in improvement of BCR affinity (Victora et al., 2012). 

In contrast, B cells exiting from the DZ with low affinity BCR are disable to present the Ag and 

are eliminated by apoptosis or enter in anergic state (Rajewsky, 1996). It was demonstrated 

that centrocytes cells are able to proliferate (Wang and Carter, 2005). Centrocytes re-express 

the CXCR4 at high levels and the decrease in their costimulatory signals permit to these cells 

to return to the DZ to proliferate (Schwickert et al., 2007).  

Positively selected cells in the LZ proceed to the CSR in order to diversify the immunoglobulin 

isotype from IgM to IgG, IgA, or IgE. Switched B cells differentiate into plasma cells or memory 

B cells. It was shown that positively selected cells with the higher affinity for Ag are conducted 

to differentiated into plasma cells. In contrast selected cells with lower affinity BCR are induced 

to give rise to the memory B cells as reviewed in (Palm and Henry, 2019) .  

Recently published study demonstrate that CSR mechanism occurs before the SHM (Roco et 

al., 2019), but we cannot precisely determine SHM and CSR are time ordered and this question 

is still in debate.  
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2.4. Memory B cells  

We can distinguish different memory B cell populations. Memory B cells can be produced after 

the encounter with the Ag in a T dependent way, via the interaction CD40L/CD40, outside of 

the GC, in the marginal zone of the spleen. The second population of memory B cells are 

produced during the GC reaction, in a T cell dependent activation with low level of 

CD40L/CD40 interaction producing high rate of memory B cell clonality compared to MZ 

memory B cells (Taylor et al., 2012). These cells carry the immune memory and the 

determinant function during the secondary immune response which is rapid and highly specific. 

The secondary infection induces these memory B cells to differentiate into plasma cells 

producing specific antibodies. Survival of memory B cells is controlled by the balance between 

pro and anti-apoptotic factors like PUMA and MCL-1 respectively. PUMA as important factor 

regulating the cell survival of activated B cells, in this context, Clybouw and colleagues  showed 

that loss of PUMA results in the accumulation of memory B cells and not plasma cells (Clybouw 

et al., 2011). In addition, MCL1 was showed to play an important function in plasma cells which 

contributes to the maintenance of their survival (Peperzak et al., 2013). 

 

2.5. Plasma cells 

Plasma cells are differentiated cells after Ag encounter capable to produce neutralizing 

antibodies raised against the Ag. Plasma cells can be detected in the bone marrow, and in 

peripheral tissues (lymph nodes and spleen) but not in blood. These cells are characterized by 

the loss of BCL6, Pax-5, CD19 and CD20. In contrast, this cell population emerged from B 

cells is expressing specific factors: PRDM1, XBP1, CD38, and CD138. BLIMP1 constitutes the 

key factor of plasma cell differentiation that encoded by the PRDM1 gene. BLIMP1 positively 

regulates XBP1 which not specific for plasma cells but expressed in secretory cells, required 

for plasma cell differentiation. In contrast, it negatively regulates Pax-5 implicated in the lineage 

B commitment (Kassambara et al., 2015).  



 
 
Israa Al Jamal | Ph.D. Thesis | University of Limoges, Lebanese University | 2022 69 
License CC BY-NC-ND 4.0 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: Schematic representation of late B cell development and germinal center.  

The antigen binding leads to the germinal center (GC) generation and activation of naïve B cells. GC is formed in 
the SLO, it is composed of two distinct regions: the dark zone (DZ) enriched with proliferating B cells where SHM 
mechanism takes place, and the light zone (LZ), in which B cells are selected on the basis of the affinity of the BCR. 
B Cells in the DZ called centroblasts are retained due the high expression of CXCL12 receptor on their surface. 
Negatively selected B cells are eliminated by apoptosis or invited to return to the dark zone to undergo another 
round of SHM to improve BCR affinity. Positively selected B cells undergo CSR to diversify the Ig isotype and then 
differentiate into long-lived plasma cells (antibody producing cell) and memory B cells.  

 

 

2.3. Regulatory B cells  

The concept of the presence of cells able to inhibit the immune response was described in 

1970 (Gerson and Kondo., 1970). B regs constitute a subpopulation of B cells known for their 

immunosuppressive functions (For review (Mauri et al 2012)). Production of a regulatory B 

lymphocytes results from the activation of a B cells via the CD40 receptor, the “toll like receptor” 

(TLR) and/or the BCR as well as CD80, CD86 and the cytokine receptors. They mainly target 

CD4+ T cells, CD8+ T cells and monocytes. B regs are divided into several subcategories 

(Mauri and Menon., 2015). 

B regs were identified in several pathologies such and autoimmunity, infections and cancers 

especially in humans (Mauri and Menon., 2017). B regs are characterized by different 

phenotypes some of them are identified by the expression of immunomodulatory factor the IL-

10 and their mode of action depend on IL-10. In contrast, other B cells are independent of Il-

10. It was demonstrated that transitional B cells T2 are enriched in cells able to suppress the 

T cell responses and produce IL-10 (Blair et al., 2010). Additionally, IL10+ regulatory B cells 
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are considered as antibody producing cells which can be differentiate into plasma cells, this 

finding was observed in human as in mouse (Maseda et al., 2012).  

 

2.6. BCR signaling  

BCR is a B cell lineage specific marker, composed of three domains the extracellular, the 

transmembrane and the intracellular regions. Monomeric BCR is constitute of an Ig associated 

with two subunits Igα/Igβ (CD79a, CD79b respectively). BCR activation and signal 

transduction is more related the oligomer structure of the BCR (Yang et al., 2016). Activated 

BCR via Ag induces a cascade of signals resulted in signal transmission from the BCR 

oligomer to the intracellular compartment to expose the ITAM domain. ITAM is phosphorylated 

by LYN, a protein of the SRC family proteins, associated to the Igα/Igβ of the BCR. LYN activity 

contributes to the recruitment of SYK which interacts with the BCR and generates a complex 

of BCR/SYK (Dal Porto et al., 2004). BCR/SYK complex leads to the activation by 

phosphorylation of different signaling pathway in B cells such as PLC-γ2, PI3K and MAPK 

pathways which are very well reviewed in (Wen et al., 2019). In activated B cells, CD19 is 

phosphorylated and contributes to the recruitment and the activation of PI3K pathway.  

Activation of these pathways result in the activation of transcription factors such as NFAT, ERK 

and NF-ĸB respectively (Figure 20). These transcription factors are then translocated to the 

nucleus to regulate the expression of genes implicated in cell survival, proliferation and 

differentiation (For review (Wen et al., 2019)).   

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Signaling pathway of B cell Receptor.  

Signal transduction initiates after antigen binding to the variable region of the BCR. Activation of the two subunits 
Igα and, Igβ. After that three kinases protein are activated:  SYK, LYN and BTK. The cascade of signaling is 
continued via the ERK, NFAT, and NFKB signaling pathway resulting in cell survival and proliferation. Figure 

adapted from ((Sedlaříková et al., 2020). 
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Chapter II: DSB DNA Repair pathways  

1. DNA and chromatin structure   

Deoxyribonucleic acid (DNA) is the material element, the genome, bearing the unique and 

specific genetic information responsible for determination of all the functions and the 

phenotype in living organisms. 

DNA is a double helix of a succession of nucleotides and organized as a polymer. The two 

strands of DNA are linked by hydrogen bonds between the bases. Four types of nucleotides 

(complex of sugar ‘ribose’ and phosphate) are present depending on the bases types, the 

deoxyadenosine (A), deoxycytidine (C), deoxguanine (G) and the deoxythymidine (T). DNA 

filament is wrapped with proteins in an organized structure called chromatin.  

Our complete genome is about 6*109 base pairs (bp), 2 meters in length in its unpacked form. 

In cellular nucleus (10µm), DNA is compacted at different scales. This compaction is a 

nonrandom process that relies on the presence of histones and RNA (2% of purified 

chromatin), each level of chromatin compaction presents an impact on genome functions.  

Nucleosomes constitute the smallest scale of DNA folding (11nm). Each nucleosome is 

constituted of a core of four histones organized within dimers (H3-H4) and (H2A-H2B) and 

DNA filament about 147 bp of length. Adjacent nucleosomes are linked by the histone1 (H1). 

Nucleosome organization plays important function in gene expression regulation by controlling 

the accessibility of the DNA during DNA repair, DNA replication and transcription. Epigenetic 

modifications in histones and DNA such as DNA methylation are known as posttranslational 

modifications also and play a crucial role in gene expression regulation. An example for the 

epigenetic modification is histone acetylation or methylation which indicate the active or 

inactive transcriptional states respectively. Epigenetic regulation is implicated in other 

functions such as the choice of DNA repair pathways after DNA lesions as reviewed in (Caron 

et al., 2021) and detailed in the paragraph 7.3 of this chapter.  

In larger scale of 10 kilobases (Kb), the genome has a spatial (3D) organization composed of 

Topologically Associating Domains (TADs) defined as self-interacting regions in the chromatin, 

formed of Ring-shaped complex of cohesion (Hansen et al., 2017). TAD extremities are 

composed of CTCF motifs able to interact among one another. Studies have demonstrated 

that these CTCF-CTCF interactions regulate the interactions between genes and their 

regulatory elements in the TAD, and the inhibition of such interactions was shown to lead to 

aberrant expression of genes (Wutz et al., 2017). The 3D organization of the genome plays an 

important role in the regulation of gene expression. 
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In the same scale of compaction, chromatin can be organized into two compartments, 

Euchromatin (A) and heterochromatin (B). The compartment A is normally enriched with active 

genes and DNA hypersensitive to the DNase1. In contrast, B compartment is enriched with 

more repressed genes (Lieberman-Aiden et al., 2009). The interactions in and with these two 

compartments varies and increases during the cell  differentiation (Dixon et al., 2015). Finally 

the chromosomes in the nucleus occupy specific and proper territories and this constitutes the 

large scale (100 mega base ‘Mb’ to 3000Mb) of genome compaction (Figure 21) (Cremer and 

Cremer, 2001).  

Figure 21: Schematic representation of Chromosome structure.  
Nucleosomes constitute the smallest scale of DNA folding (11 nm) composed of 147 bp pf DNA filament and core 

of histones. Functionally, nucleosomes regulate gene expression by regulating the accessibility of the DNA to the 
binding proteins implicated in replication or transcription. Topologically Associating Domains (TADs) constitute the 
intermediated scale of chromatin compaction with about 100 kilobases. TADs regulate the gene expression by 
regulating the interaction between enhancers and the promoters. Also, TAD can be organized into two 
compartments A and B characterized to be active and inactive compartments respectively. At the largest scale, 
chromosomes associate with other chromosomes to form the stereotyped chromosome territories inside the cell 
nucleus (Hansen et al 2017). 

 

 

2. DNA lesions agents  

Many factors can threaten the genome integrity with a rate of 103 to 106 damages in the cell 

per day as reviewed in (Yousefzadeh et al., 2021). Maintaining the integrity of the genome is 

vital for conserving its function throughout the years. The factors causing these DNA damages 

are subdivided into two groups, the endogenous and exogenous DNA lesions agents. The 

endogenous mechanisms are normal metabolic activity in the cell such as alkylation, 
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deamination or oxidative response, DNA replication, DNA transcription and telomere 

shortening. The DNA lesions introduced are spontaneous DNA lesions. Physiological 

programmed DNA lesions also occur during meiosis, immunoglobulin diversification and 

affinity maturation during B cell development V (D) J recombination, CSR and SHM. In 

contrast, exogenous DNA damaging agents can be chemical compounds, ultraviolet rays, 

ionization irradiation and tobacco products (Figure 22). These different agents can lead to 

several types of DNA lesions such as base modification for example during SHM, single strand 

DNA break (SSB), double strand breaks (DSBs) such as during V (D) J and CSR or simply 

deletion or insertion of some nucleotides. To repair these lesions and to maintain the integrity 

of our genome, in our cells, several different pathways are present and able to repair 

specifically the different types of DNA damages (Figure 22).  

 

Figure 22 :Factors inducing DNA lesions and the pathways of DNA repair.  

DNA damages can be caused by endogenous and exogenous factors leading to different types of DNA lesions. 
Each types of DNA lesions recruit the specific DNA repair pathway. 
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3. Pathological impact of DNA lesions 

Cells display several different DNA repair pathways in order to maintain the genome integrity 

and stability which is a challenge for the cell.  Cells are exposed to different DNA damage 

factors and differ by the rate of lesions occurred regarding their proliferative state. Dividing 

cells accumulate more DNA lesions and mutations than resting cells (Heddle, 1998). This 

difference result in difference in the response generated during the activation of the DNA repair 

pathways. Alteration in DNA repair pathways can result by failure in the DNA repair and in 

lesion accumulation which induce cells to enter into senescence cycle or apoptosis. On the 

other hand, cells which were not eliminated by apoptosis will be dangerous to the organism 

and lead to pathological generation resulting from alteration in the genome and mutation 

accumulation. In a random way, alteration in DNA repair can introduce DNA mutations in tumor 

suppressor genes or oncogenes, leading to lesions and mutation accumulation, and genome 

instability, which is considered as a hallmark of all types of cancers.   

DSB constitute the most deleterious damages in the cell. Failure in DSB repair leads to cell 

death through apoptosis but can also  affect genome integrity  through  chromosomal 

translocations and/or loss of genetic material, which are the two important causes of cancer 

development or lymphomagenesis (Alt et al., 2013), in addition to other pathologies like 

neurodegenerative disease (Rass et al., 2007). Genetic and inherited deficiency in DNA repair 

molecules is associated with different genetic disorder even they are rare but present the 

Fanconi anemia, Bloom Syndrome, Xeroderma pigmentosum and Ataxia telangiectasia 

syndrome as reviewed in (Machado and Menck, 1997). 

 In the literature, a large number of publications discuss the alterations of DNA repair and their 

impact in cancer and lymphoma development. This point will be detailed and discussed after 

in the chapter III talking about Hodgkin lymphoma and Non-Hodgkin lymphomas, the chronic 

lymphocytic leukemia.  
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4. DNA Damage Response (DDR) 

To maintain the genome integrity and stability cells react to the different DNA lesions through 

DNA Damage Response (DDR) which in turn activates DNA repair pathways. DDR is 

composed of the package of damage sensors that detect the presence of lesions, transducer 

kinases that transmit the signals to the effectors (Derks et al., 2014). Two principal complexes 

of sensors are documented, the MRN complex (MRE11-RAD50-NBS1) implicated in the 

recognition of DSBs and the 9-1-1 complex (RAD9-RAD1-HUS1) with the replication protein A 

(RPA) able to recognize single strand of DNA (SSDNA) and lesions generated during the 

replication stress. MRN complex recruits the ataxia telangiectasia-mutated (ATM) which is able 

of auto phosphorylation after the dissociation of the dimeric form of ATM. The 9-1-1 and RPA 

recruit the Rad3-related (ATR). ATR interacting protein (ATRIP) plays the role of linker 

between ATR and RPA (Ünsal-Kaçmaz and Sancar, 2004). Recruited ATM and ATR 

phosphorylate the histones H2AX (γH2AX) present in the proximity of the DNA damage. As in 

the continuity of the chapter I detail only the DSBs repair pathway, here I will tackle the DDR 

mediated by ATM. γH2AX plays a crucial function in the recruitment of the DNA damage 

chechpoint1 (MDC1).  

It is important to mention here that the chromatin state can influence the signaling of DDR, 

since heterochromatin (inactive and compacted form) is resistant to the procedure of H2AX 

phosphorylation and impacts the cascade of DDR pathway (For review (Sulli et al., 2012)). 

MDC1 implicated in the accumulation of the MRN complexes promotes the activation of ATM 

which is also activated by the 53 Binding protein 1 (53BP1). Activated ATM recruits and 

phosphorylates the checkpoint2 (CHK2). This phosphorylation leads to the activation of p53 

downstream in this signaling pathway. Due to the cellular outcomes, two possibilities are 

possible: highly damaged cells are eliminated by apoptosis, or, with the arrest of the cell cycle, 

the activation of the DSB repair pathway allows the DNA repair and cells undergo their survival 

and proliferation. In the case of unrepaired DNA, cells enter in a senescence cycle (Figure 23). 

Paulson et al 1998 demonstrated that the P53 absence permits cell to continue their cell cycle 

phases even in the presence of incorrect DNA repair (For review (Sulli et al., 2012)).  
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Figure 23: Signaling pathway of DNA Damage Response.  

Induction of DNA lesions by ionizing radiation or during the oncogene activation and DNA replication stress, recruits 
the molecules of the DDR. In the case of DSB, ATM is activated by the MRN complex adn by the 53BP1 leading to 
the activation by phosphorylation of MDC1 and CHK2. CHK2 in his turn phosphorylates the p53 protein. In the case 
of ssDNA, ATR is activated by the 9-1-1 complex and RPA. This activation leads to the phosphorylation of CHK1 
which in his turn activates the CDC25. At the end, activated p53 or CDC25 result in the arrest of cell cycle to activate 
the concerned DNA repair pathway, unrepaired DNA lead to the senescence of cells. Additionally, p53 can lead to 
the apoptosis of cells (Sulli et al., 2012). 

 

 

5. Double Strand Break DNA repair pathways  

Different DNA repair pathways are identified to repair DSBs, which are the most dangerous 

damages. We can identify the NHEJ, the Alt-EJ, the HR and the Single Strand Annealing 

(SSA). Theses pathways differ by the DNA ends that can be repaired, the molecules implicated 

and the structure of the junction generated after ligation. Choice of each of these pathways is 

regulated by several factors tackled later on in this chapter paragraph (choice of the DNA repair 

pathway).  

5.1. Non-Homologous End Joining DNA repair pathway (NHEJ) 

NHEJ and HR constitute the major DNA repair pathways of DBSs. NHEJ evolved in eukaryotes 

and prokaryotes to increase the possibility to repair the DSBs even in absence of sequence 

homology between DNA ends (Lieber, 2010a). It takes place in diploid organisms, haploid non-
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dividing organisms (Stinson et al., 2020). it’s the dominant DSB repair system in the G1 phase 

but can be activated along all cell cycle phases (Pannunzio et al., 2018). 

NHEJ is characterized by the multifunctionality of the enzymes, flexibility in the mechanism 

and the iterative function. Enzymes and molecules can act together in any order at the DNA 

ends to ensure the repair in an efficacy way of diverse DSB ends in eukaryotes and 

prokaryotes (Lieber, 2010b).  

In contrast to the high fidelity of HR, NHEJ is able to generate some insertion or deletion into 

the DNA (indels) (Stinson et al., 2020). However, the alteration in the junction generated by 

NHEJ is very limited which indicates this pathway participates in maintaining genome stability. 

NHEJ is a critical repair pathway not only for spontaneous DSBs generated in unattended way 

but also in the physiological ones generated during such V (D) J and CSR mechanisms. 

 

5.1.1. Mechanism of NHEJ  

The DNA end protection is a key regulator in the DNA repair by the NHEJ. It is ensured by the 

binding protein (53BP1) that inhibits the nucleolytic activity at the DNA ends. The activity of 

53BP1 requires the interaction with RAP1 interacting factor 1 homolog (Rif1) and p53 protien1-

Tudor interacting protein (PTIP) (Chapman et al., 2013, p. 1; Zhang et al., 2017). Recent 

studies demonstrate other molecules, the shieldin complex, downstream of 53BP1, Rif1 and 

PTIP, implicated in DNA ends protection to promote DNA repair by the NHEJ pathway. Shieldin 

complex  is composed of SHLD1 (c20orf196), SHLD2 ( FAM35A), SHLD3 (OTC-534A2.2) and 

Revertibility protein homologue (REV7) (Noordermeer et al., 2018). This complex was reported 

to localize with the DSB. Its activity is dependent of 53BP1 and RIF1. Analysis of SHLD2 

showed a similarity in function with RPA, able to bind the SSDNA. Deficiency in CSR and 

extensive resection were observed in the absence of the shieldin complex (Noordermeer et 

al., 2018). Protection of the DNA ends and the presence of 0-4bp of homology between DNA 

ends activate the NHEJ process which can include DNA end processing steps. Blunt and 

compatible DNA ends can be directly joined. In contrast, DSBs presenting incompatible DNA 

ends or modified nucleotides requires DNA end processing. 

NHEJ is initiated by symmetric fixation of the heterodimer Ku70-Ku80 proteins at the DNA 

ends, which forms a ring that protects the DNA ends from resection and is considered as the 

key player in the NHEJ pathway. Ku70-Ku80 stabilizes the DNA ends by limiting their mobility 

and keeping them close each other. Ku is the challenger of DNA ends binding molecules 

because they are characterized by high affinity to DNA ends (Ropars et al., 2011). Ku70 and 

Ku80 are very abundant in the cell generating competition between DNA DSB repair pathways 
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(For review (Zahid et al., 2021)). Fixation of the heterodimer Ku70-Ku80 on the DNA ends 

recruits the DNA-PKcs which binds approximately 10bp away from the DNA extremities (Figure 

24).  

Activity of DNA-PKcs is regulated through ATM-induced phosphorylation. Interaction of the 

DNA-PKcs with the Ku molecules activates the kinase activity implicated during the DNA repair 

(Dynan and Yoo, 1998). In addition, it has been shown that DNA-PKcs can be auto 

phosphorylated, which is important for the induction of the DNA end ligation (Uematsu et al., 

2007). Phospho-DNA-PKcs initiates phosphorylation and recruitment of Artemis eventually 

necessary for hairpin structure opening at DNA ends through its endonuclease activity, XRCC4 

and XLF (cernunnos) (Drouet et al., 2006).  

Another factor reported is the Werner syndrome protein (WRN) which interacts with 

XRCC4/LIGIV complex known as (X4L4)  by its exonuclease activity in DNA ends processing 

(Kusumoto et al., 2008).   

Finally, after DNA end processing, DNA ligation is initiated by LIGIV enzyme, the XRCC4 and 

its cofactor XLF which shares similarity with XRCC4 (Riballo et al., 2009). XRCC4 stimulates 

the LIGIV, activates the DNA ligation and along with XLF, facilitates the filling of the broken 

DNA ends by its interaction with the polymerase mu and lambda (pol λ, µ) (Akopiants et al., 

2009). A new factor implicated in the NHEJ DNA repair pathway identified is PAXX, which was 

detected to cooperate with XRCC4 (Ochi et al., 2015). This factor is activated in the case of 

XLF depletion, which then replaces its function (Liu et al., 2017). In the majority of cases, the 

junctions generated at the ligated ends by the NHEJ pathway are blunt (no insertion, no 

deletion) or with some indels.  
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Figure 24: Schematic representation of the NHEJ repair pathway. 

DNA end protection is ensured by the recruitment of 53BP1, Rif1 and the shieldin complex to the DNA ends. DSB 
is recognized by the heterodimer Ku70-Ku80 which form a ring on the DNA ends and leads to stabilize the DNA 
ends, Ku70-Ku80 recruits the DNA-PKcs. Phosphorylation of DNA-PKCS recruits the Artemis, WRN and Polµ, λ 
and then molecules implicated in the final step of DNA repair ligation XRCC4, XLF PAXX and the ligase IV enzyme 
to ligate the ends on the DSBs. 

 

5.1.2. Alteration of NHEJ 

Alteration of NHEJ activity and the defect of NHEJ components due to inherited mutations lead 

to pathologies development. 

In human, primary immunodeficiency  in Severe Combined Immunodeficiency (SCID) can 

result from Artemis deficiency (Moshous et al., 2001). These patients are also characterized 

by the increased levels of sensitivity to ionizing radiation (Michael Lieber pmc2011) and in 

addition they can develop other specific phenotype like stunting and microcephaly (Chinn Ik 

and Wt 2015).  

Ligase IV syndrome, is a very rare autosomal and recessive hereditary disease, till 2009 only 

28 cases reported, we can mention also a little number of patients were not reported and 

treated by the transplant of HSC. Patients with LIGIV deficiency are characterized by 

microcephaly, increased in the frequency of 7:14 translocations, immunodeficiency and 

sensitivity to ionizing radiation as reviewed in (Altmann and Gennery, 2016). These patients 

are able to develop other complications such as lymphoblastic leukemia. To more characterize 
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this syndrome, mouse models deficient for LIGIV were developed to reproduce the syndrome. 

Results showed symptoms very similar to human especially the mouse model evolved by Nijnik 

and Rucci (Altmann and Gennery, 2016; Nijnik et al., 2007; Rucci et al., 2010). In addition, in 

vitro human cell line of LIGIV patients showed increased sensitivity to irradiation (Altmann and 

Gennery, 2016). In mice, deficiency in the NHEJ molecules such as LIGIV in addition to p53 

defect (LIGIV-/P53-) leads to alteration in the neurogenesis and lymphomas development and 

results in the death of mice due to pro-B lymphomas (Frank et al., 2000).  In These mice, 

lymphomas develop in a RAG dependent manner and the translocation of MYC oncogene  to 

the IgH locus after the usage of the Alt-EJ DNA repair pathway (Nussenzweig and 

Nussenzweig, 2010). Alt-EJ leads to genome instability resulting from translocations or 

deletions in the chromosomes (Yu et al., 2020). 

XLF or cernunnos is a core factor of the NHEJ pathway. Patients with XLF deficiency, present 

lymphopenia with a moderate decrease in B and T cells. This phenotype was also observed in 

XLF-/- mouse model, with  an accumulation of subefficient rearranged population in the thymus 

during the TCR repertoire generation in addition to DSBs accumulation (Roch et al., 2019). 

In human, deficiency in the DNA-PKcs is characterized by classical SCID (van der Burg et al., 

2009). In mice, it was shown that deficiency in the DNA-PKcs leads to immunodeficiency 

disease. It is important to mention that the presence of DNA-PKcs mutant unable to auto 

phosphorylate and to phosphorylate substrates is lethal, thereby indicating that the activity of 

DNA-PKcs is more important than just its presence. In addition, Cells displaying inactive DNA-

PKcs are more sensitive to ionization and irradiation leading to neuronal cells apoptosis which 

indicate an additional function of DNA-PKcs in the cell (Jiang et al., 2015).  

 Ku80 is important protein during the NHEJ, it was shown that mouse model defective for Ku80 

(Ku80-/-) is characterized by high rate of genome aberrations and DNA translocations resulting 

from the non-controlled high mobility of the broken DNA ends and promotes cancer 

development. The mouse model with Ku80-/- and p53-/- develop cancer especially at the Pro-

B cell stage (Difilippantonio et al., 2000, p. 80).  

 

5.2. Alternative End Joining DNA repair pathway (Alt-EJ) 

Alternative End joining (Alt-EJ) is also known as microhomologies mediated End Joining 

(MMEJ) (Truong et al., 2013) and is considered as a back-up DSB DNA repair pathway (Iliakis 

et al., 2015). This process has been shown to be active in cells deficient for molecules 

implicated in NHEJ, for example deficiency of Ku and DNA ligase IV (Wang et al., 2006, p. 1). 
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It is characterized to be slower than NHEJ (Han and Yu, 2008) and with a low rate of efficiency 

(Encyclopedia of Cancer, 2018). This pathway is able to ligate the DNA ends thanks to the 

presence of microhomologies between the DNA sequences (from 2bp to 25bp in 

microhomology length). Alt-EJ is also described inserting some nucleotides at junction, in the 

most common cases,  more than 10 bp (Chang et al., 2017; Iliakis et al., 2015). 

The dependency of intermediate end resection of the Alt-EJ and usage of specific molecules 

different from those of NHEJ indicates a specific physiologic function of this DNA repair 

pathway in addition to its function (Sfeir and Symington, 2015). It has been  demonstrated that 

Alt-EJ is an active pathway even in the presence of NHEJ and HR (Truong et al., 2013), also 

during V (D) J recombination and CSR (Corneo et al., 2007). Alt-EJ due to the usage of small 

microhomologies and the capacity to insert new nucleotides at the break site is not able to 

restore the original sequence of DNA as HR do with the usage of long homologies.  

 

5.2.1. Mechanism of Alt-EJ 

Alt-EJ is a pathway dependent on DNA end resection, it is initiated by the activity of Poly ADP-

ribosylation protein (PARP1)  that contributes to detection and recognition of the DNA DSB 

and promotes the Alt-EJ DNA repair pathway (Robert et al., 2009).  

PARP1 then activates CtIP and the MRN complex which are required for resection of the DNA 

ends at the break sites to generate single stranded DNA (ssDNA), within 15pb to -100pb in 

length, on the 3’ extremity (Masani et al., 2016). Using the same strategy used in HR pathway, 

phosphorylated CtIP recruited at DNA ends stimulates the endonuclease activity of the MRN 

to accomplish the resection (Anand et al., 2016).  PARP1, MRN and CtIP cooperate with the 

Excision repair protein (ERCC1/XPF) to align and digest the tail at the DNA end to facilitate 

the recruitment of downstream proteins such as polymerase theta/Q/ϴ (Figure 25) (For review 

((Caracciolo et al., 2021)).  

Polymerase ϴ is a member of the polymerase A family, encoded by POLQ gene and implicated 

in replication and in DSB repair (Yousefzadeh and Wood, 2013). Studies of models 

characterized by polϴ mutations in addition to NHEJ protein mutations show undetectable 

activity of the Alt-EJ, these results denote the importance of polϴ in the Alt-EJ pathway (Chan 

et al., 2010). In addition, Polϴ is characterized by resulting in the insertion of more than 10 

nucleotides at DSB ends during the DNA repair (Seki et al., 2004). Polϴ protein is 

characterized by the presence of a specific domain able to bind and block RAD51 (Ceccaldi et 

al., 2015). Polϴ is known to promote synapsis formation and strand annealing. The final step 

is the DNA end ligation by Ligase I (LIGI) and Ligase III (LIGIII) and their cofactor the XRCC1. 
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LIGIII have a more prominent role compared to LIGI as shown by the decrease the Alt-EJ in 

case of LIGIII depletion whereas the depletion of LIGI does not affect the efficiency of this DNA 

repair pathway (Simsek et al., 2011).  

 A recent study, in cell lines with DNA repair reporter system showed that 5hmC binding, 

embryonic stem cell specific-protein (HMCES) specifically enables DNA DSB repair through 

Alt-EJ pathway using microhomology sequences during CSR  (Shukla et al., 2020).   

Alt-EJ pathway has been shown to be associated with translocations and DNA deletions 

leading to the generation of tumors, especially breast cancer and leukemias (Decottignies, 

2013), based on the detection of microhomologies usage in DNA repair which related with the 

Alt-EJ pathway (Stephens et al., 2009; Zhang and Rowley, 2006). In this sense, depletion of 

LIGIII in cell line showed decrease in the translocation frequency, In contrast, LIGI depletion 

did not show a decrease in the translocation rate (Simsek et al., 2011).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Figure 25: Schematic representation of the Alt-EJ mechanism.  

DSB sensing by PARP1 leads to the recruitment of CtIP and MRN which proceed to the DNA end Resection.  In 
the third step, tails are digested by cooperation with ERCC1 factor and gaps in the strand are then filled by the 
activity of Polϴ. Finally, DNA ends are ligated by the ligase III (LIGIII) and his cofactor the XRCC1 figure adapted 
from (Caracciolo et al., 2021).  
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5.2.2. Alteration of Alt-EJ 

Alt-EJ is associated with chromosomal translocation (Kabotyanski et al., 1998; Simsek et al., 

2011; Soulas-Sprauel et al., 2007) and genome instability (Caracciolo et al., 2021) it is 

particularly active in cases where NHEJ pathway is deficient (Kabotyanski et al., 1998, p. 4; 

Soulas-Sprauel et al., 2007) but can even be active in cells with proficient DSB DNA repair 

pathways (either HR or NHEJ). Data of several studies demonstrate that alteration in the levels 

of Alt-EJ and NHEJ molecules conduct to resistance to chemotherapy in leukemic cells (For 

review (Danielle Caracaloo et al 2021)). 

A Study evaluating the effect of PARP1 depletion on Alt-EJ process showed its important 

function in this pathway. Briefly, PARP1 depletion resulted in reduction in the level of 

microhomology sequence usage during DSB repair (Robert et al., 2009). 

LIGI and LIGIII have important and redundant function in Alt-EJ, in the condition of LIGIV 

depletion which abrogates the NHEJ pathway, this redundant function results in normal CSR 

levels even in the absence of one of these ligase (Masani et al., 2016).  

CSR junctions show shorter microhomology sequences, in the absence of XRRC1, suggesting 

its involvement in Alt-EJ (Saribasak et al., 2011). Involvement of XRCC1 seems not crucial to 

Alt-EJ as CH12F3 cell lines depleted for XRCC1, in a LIGIV inactivation context, present CSR 

achievement at a comparable level that in the case of LIGIV depletion only. Also, defect in 

HMCES an Alt-EJ component leads to a CSR defect (Shukla et al., 2020). 

Pol theta was shown to be upregulated in cells occurring CSR and SHM and its deletion results 

in 60% decrease in SHM levels (Zan et al., 2005). 

 

5.3. Homologous Recombination DNA repair pathway (HR)  

HR is active in the transient diploid stages of cell cycle from the DNA replication in the S phase 

cell cycle to the mitosis. HR constitutes the predominant DSB DNA repair pathway during the 

S and G2 cell cycle phases. It is characterized by using long homology between sequences of 

sister chromatids that serve as a template during the mechanism of repair. HR is known to 

repair DSB with a high fidelity and the minimum of incorporated errors (Thompson et al 2012). 

Thus, HR is the more conservative DSB DNA repair pathway illustrating its importance to be 

maintained at normal levels to maintain genome integrity, its alteration may lead to tumor cells 

generation.  
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5.3.1. Mechanism of HR  

HR initiation and activation are dependent on extensive DNA end resection (presynaptic stage) 

which is accomplished by the MRN complex and CtIP. The CtIP and MRN complex activates 

ATM and  activated ATM initiates a DDR signalization cascade and the recruitment of 

Exonuclease 1 (Exo1) implicated also in the DNA end resection (Tomimatsu et al., 2012, p. 1). 

MRN and ATM complex cooperate together and DNA resection is also done by the 

exonuclease activity from Mre11. Furthermore, Dna2 and BLM, characterized by their helicase 

activity, permit to ensure the long DNA strand resection (Nimonkar et al., 2011). The resection 

process generates long single strand 3’ extremity (about 100bp). In the following step, the 

generated single stranded DNA is coated by the Replication protein A (RPA). End resection 

and RPA coating active the ATR complex at the DNA damage site which phosphorylates the 

CHK1 protein (Rhind, 2009; Shiotani and Zou, 2009). Then the coating of the single strand 

(RPA) need to be displaced. This displacement is ensured by RAD51 recruited to the damage 

site by BRCA2/PABL2. BRCA2 is recruited by BRCA1 and the BRCA1-associated RING 

domain protein 1 (BARD1) essential for BRCA1 stabilization. this process leads to the final 

step of DNA repair which consists of searching for homology of the single strand in the near 

chromosome, normally the sister chromatid, and leads to D-loop formation (Figure 26) (For 

review (Sun et al., 2020)).  

The final step of the HR depends on the annealing strand. The Synthesis-dependent Strand 

Annealing (SDSA) results in non-crossover production and dissolves the D-Loop after short 

DNA synthesis. The Break Induced Replication (BIR) generates a replication fork from the D-

Loop and results in the loss of heterozygosity without crossover. The Double Strand Break 

Repair (DSBR) of the DNA ends of DSB can results in double Holiday junction generation 

(dHJ) inducing crossovers or repair without induced crossover through the BLM mediated 

mechanism (For review (Elbakry and Löbrich, 2021)). 

In somatic mammalian cells, production of crossover is rare and in the majority of cases, the 

DSBs are repaired by the dHJ and BLM mediated mechanisms (Plank et al., 2006).   



 
 
Israa Al Jamal | Ph.D. Thesis | University of Limoges, Lebanese University | 2022 86 
License CC BY-NC-ND 4.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 : Schematic representation of presynaptic step of HR pathway. 

DSB sensing and recognition is achieved by the MRN complex which recruits activated ATM, phosphorylates H2AX 
and all together cooperate to generate short resection converted to long resection by the EXO1 Dna2, BLM 
activities. At this stage recruitment of ATR, ATRIP, 9-1-1 and TopBP1 results in the phosphorylation of checkpoint 
proteins (DDR response).  Furthermore, BRCA2 is recruited to the damage by PALB2, and BRCA1-BARD1 with 
the Rad51. RAD51 contributes to the displacement of RPA with BRCA2, resulting in D-Loop formation with 
homology sequences repair the DSB, Shu complex is the equivalent of RAD51 and present in yeast (Sun et al., 
2020).  
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5.3.2. Alteration of HR 

It is a very well controlled mechanism due to its importance and his characteristic of high fidelity 

especially during cell replication in the S and G2 phases to maintain genome integrity. 

Alteration in the levels and molecules of HR mechanism can lead to cell death or can contribute 

to cancer development. Additionally, deficiency in HR molecules especially BRCA1/2, the most 

studied proteins, can be detected in diverse cancer types (Wen et al., 2022). Deficiency in HR 

pathway leads to the activation of the other DNA repair pathways such as NHEJ and Alt-EJ 

(Scully et al., 2019).  

In multiple myeloma, HR was showed to be detected at high levels due to the Ikaros Zinc 

Finger protein 1 (IKZF1) which has been demonstrated to play an important role in promoting 

the HR in this cancer by interacting with CtIP (Liu et al., 2022). 

 

5.4. Single Strand Annealing DNA repair pathway (SSA) 

Repair of resected DNA ends can occur by SSA in presence of intermediate DNA end resection 

in contrast to HR that requires long single strand extremity.  

Presence of repeated motif sequences on the DNA end in absence of donor sequence 

activates repair by SSA. Repeated sequences constitute the substrate to the SSA molecules. 

SSA is independent from the RAD51 activity (Deng et al 2014). DNA repair can be supported 

by SSA when RAD51 or BRCA1 are nonfunctional and RPA on the DNA end inhibits the 

microhomology interaction required for the Alt-EJ (Scully et al., 2019).   

As in HR, DNA ends are processed by nucleases and helicases such as WRN/BLM/Dna2 to 

generate 3’ single strand at DNA extremity. RPA coat the single strand which lead to the 

activation of RAD52 for RPA displacement and recruitment of the endonucleases like ERCC1 

and XPF. These latter form a complex to eliminate the single strand. RAD52 protein mediates 

the activity of the DNA end cleavage complex which gives the accessibility to synthetize and 

ligate the complementary sequence via LIGIII (Figure 27) (Motycka et al., 2004). 

SSA is considered as a mutagenic DNA DSB repair system because the repeated and the 

intervening sequences are partially eliminated during the cleavage step (Blasiak, 2021). 

Mutations introduced by SSA lead to cancer development as reviewed in (Blasiak, 2021). In 

2019, Scully et al demonstrated that SSA can be an error free repair pathway when its activity 

occurred in a blocked replication fork with DNA segment duplication. In this situation, usage of 

SSA allows the deletion of one segment copy (Scully et al., 2019).  
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Figure 27: Schematic representation of the SSA pathway.  
Generation of DSBs flanked by homologous repeats (orange boxes) activate the repair via SSA pathway. 
Recruitment of the RAD52 is the key in SSA, RAD52 cooperates with RPA by their nuclease and helicase activities 
to generate single stranded DNA which is cleaved by the ERCC1/XPF complex. Finally, DNA ends are ligated by 
the LIG3 (LIGIII) activity resulting in shorter DNA compared to the original sequence with loss of some region. 
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6. Junction structure after DNA ligation  

DNA end ligation generates a junction and DNA structure at the junction depends on the 

employed DSB repair pathway. Analysis of junction structure can reveal the usage of a 

particular DSB system rather the others (Figure 28).    

   

  

 

 

 

 

 

 

 

 

Figure 28 : Schematic representation of the junction structure generated by DSB repair.  
DSBs activate DNA repair pathways (NHEJ, A-EJ or HR) characterized by the size of homology in the resulting 
repair junction. NHEJ-produced junctions are in the majority blunt (with non-homology), the Alt-EJ system produces 
junctions with more homology usage (1-25bp) called µhomologies, and finally the HR generates junctions with long 
homology longer than 25bp.  

 

 

7. Choice of the DSB DNA repair pathway in the cell  

Choice of the DSB DNA repair pathway can be influenced by different factors: sequence and 

structure of the DNA ends, DNA end resection, which constitutes an important factor regulating 

the choice of DSB repair, the cell cycle phase and the chromatin marks at the DSB.  

The DSB inducing mechanism itself can also influence the DNA repair choice. For example, in 

normal situation V (D) J is restricted to be repaired by NHEJ. Even in the presence of HR or 

the Alt-EJ, even the predominance of molecules (G1 phase) of this repair pathway. In addition, 

the structure of at the coding DNA ends, hairpin structure, orient the NHEJ usage due to the 

requirement of Artemis.  

In some cases, alteration of the DSB inducing mechanism itself can affect the choice of DSB 

DNA repair pathway. For example, DSB during V (D) J mechanism can be repaired by 
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unconventional ways due to the mutation of the post cleavage complex which destabilizes this 

complex and promotes the DNA repair via HR and Alt-EJ. Also, when the RAG activity is not 

sufficient for the NHEJ activation, it leads to Alt-EJ activation and usage (For review (Deriano 

and Roth, 2013)). 

 

7.1. DNA end resection modulates the DSB repair pathway choice  

DNA end resection process define two major groups of DNA DSB repair, and it can be 

considered as an important factor regulating the choice of the DNA repair pathway. As detailed 

before, NHEJ pathway is independent of the end resection and implicates molecules that 

protect the DNA ends. In contrast, Alt-EJ, SSA and HR depend on DNA end resection from 

the intermediated stage to the extensive one respectively. This resection is accomplished by 

the presence of specific molecules. To orient the choice of DNA repair pathway, a real 

competition exists between these complexes allowing DNA end protection or resection (Figure 

29).  

First, 53BP1 recruited by the γH2AX to the DSB site, constitutes the major protein contributing 

to DNA end protection and stimulating the NHEJ DNA repair in DSB foci. In this context, 

deficiency in both 53BP1 and γH2AX in the presence of KAP1 protein leads to 

microhomologies ends formation and promotes DNA end resection (Tubbs et al., 2014). 

The predominance of Ku can be considered as a repressor of the Alt-EJ pathway during G0/G1 

cell cycle phases. In other words, the restriction of resection proteins expression in cells in the 

G0/G1 phases contributes to favoring NHEJ.   

Alt-EJ activity can be reduced by the BLM and EXO1 factors, which are related to the 

generation of long extension that promotes the HR pathway rather than Alt-EJ in the S/G2 cell 

cycle phases (Tomimatsu et al., 2014). 

DNA end protection can occur via the activity of some complexes downstream of 53BP1. 

Recently, the Shieldin complex, composed of MAD2L2/REV7 and the three shieldin 

components SHLD1, SHLD2, SHLD3, was identified. This complex is characterized to be 

active downstream of 53BP1-Rif1 and has been shown to cooperate and to protect the DNA 

ends to favor the NHEJ and limit the HR mechanism (de Krijger et al., 2021; Mirman and 

Lange, 2020; “Shieldin – the protector of DNA ends,” 2019). Shieldin complex binds the single 

stranded DNA and physically hinds more than 50bp of nucleotides thus inhibiting the access 

of other molecules to carry out end resection (Noordermeer et al., 2018).  
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Additionally, shieldin complex was identified to promote the recruitment of Asteroid homolog 1 

(ASTE1), acting downstream of shieldin complex in the NHEJ pathway. ASTE1 is 

characterized by its endonuclease activity that eliminates the single strand present on the 3’ 

extremity. Defect in CSR mechanism was detected in the absence of ASTE1 (Zhao et al., 

2021). 

Also, proximity of the DNA ends in DSB site constitutes another factor regulating and 

influencing the DNA repair pathway choice, since repair by NHEJ requires not distant DNA 

ends ensured by the activity of Ku70-Ku80 (Chang et al., 2017). 

On the other hand, absence of end resection complex actors leads to decrease in HR DNA 

repair and favors the NHEJ pathway (Liu and Kong, 2021) .  
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Figure 29: representation of how end resection influences the choice of DSB repair pathway choice.   
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7.2. Effect of the cell cycle phases on the DSB repair choice 

Cell cycle regulates the DNA repair choice by regulating the levels of expression of concerned 

molecules (Figure 30). HR activity is restricted to the S/G2 cell cycle phases, when 

homologous chromosomes are in proximity thereby facilitating the HR pathway. In contrast, in 

G1 phase and outside of S/G2, NHEJ constitutes the predominant DSB repair pathway in 

human cells even that 80% of ionized radiation can be repaired by NHEJ in the G2 phase 

(Zhao et al., 2017). 

Activity of HR is regulated during the cell cycle phases in response to several factors. CtIP, the 

implicated protein in DNA end resection, is predominant in the S/G2 phase I compared to G1 

phase (Yun and Hiom, 2009). On the other hand, BRCA1, BRCA2 and RAD51, proteins 

implicated in the HR pathway, are absent during the G0/G1 cell cycle due to the LIN37,  a 

transcriptional repressor factor of the DREAM family, which regulates their expression level 

(B.-R. Chen et al., 2021). In addition, ATM is able to promote the HR repair in S/G2 cell cycles 

due to the presence of a switch from ATM to ATR activity (For review (Shibata and Jeggo, 

2021)). 

In the S/G2 phases, the Cdk2 protein able to activate and to phosphorylate CtIP and BRCA1 

that favors the recruitment of HR  molecules rather than NHEJ by its capacity to eliminate the 

heterodimer Ku70-Ku80 from the DNA ends (Isono et al., 2017, p. 1; Yun and Hiom, 2009). 

 In addition, the competition between the initiating molecules of each DNA repair pathway (Ku 

in NHEJ and RAD51/52 in HR) regarding their abundance in the cell can also affect the choice.  

The modulator of retrovirus infection (MRI), considered as a DNA repair choice regulator, has 

the capability to interact with heterodimer Ku70-Ku80 and inhibits the NHEJ pathway to favor 

HR in the S and G2 cell cycle phases (Hung et al., 2018). In contrast, during the G1 phase this 

interaction favors the NHEJ pathway (Arnoult et al., 2017; Hung et al., 2018). Contradictory 

results obtained from the knockdown versus the deletion of the MRI gene indicated that the 

determination of the MRI function is still a problematic area (Wahsner et al., 2019). 

On the other hand, the polϴ enzyme implicated in the Alt-EJ DNA repair pathway is not 

detected during the G0/G1, in pro-B cells leading to the predominance of NHEJ pathway (Yu 

et al., 2020).  

Other studies showed that transition from one cycle phase to another phase with unrepaired 

DNA ends can activate the Alt-EJ depending on the presence of the Alt-EJ critical protein pol 

ϴ. B cells at the pro-B cell stage with a triple deficiency in P53/pol ϴ/XRCC4 are unable to 

pass from one cell cycle phase to another resulting in accumulation of cells in the G1 phase 
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with breaks in the chromosomes which eventually leads to lethality in the coming mitosis (Yu 

et al., 2020).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 30: Schematic representation of cell cycle effect on DNA repair choice.  

Cell cycle phases affect the choice of DSB DNA repair. DNA end protection molecules (53BP1, RIF1, REV7, 
shieldin) are predominant especially in the G1 phase lead to the predominance of the NHEJ in this phase. In 
contrast, molecules of end resection like BRCA1 PARP1 CtIP are predominant in the S and G2 phases and lead to 
the predominance of HR and Alt-EJ. Orientation of the choice between Alt-EJ and HR is conducted by BLM and 
EXO1 proteins predominance.  

 

7.3. Effect of chromatin state on DNA DSB repair pathway choice 

Chromatin structure plays an important role and strongly influences the orientation of the DSB 

repair pathway as well as in the signaling of DDR. It was shown that, the heterochromatin form 

is less sensitive to the H2AX phosphorylation which is limited to the periphery of 

heterochromatin. γH2AX is detected normally in the euchromatin structure (Figure 31). The 

reduction of the chromatin compaction levels by inhibiting the deacetylase enzyme (HDAC) of 

histones results in increase of DDR singling and then H2AX phosphorylation. Studies showed 

that DSBs in the heterochromatin (packed and inactive form of the chromatin) are mostly 

repaired by the HR pathway (Goodarzi et al., 2008; Sulli et al., 2012). 
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Figure 31: Schematic representation of the influence of the chromatin state and γH2AX and DDR.  

Euchromatin is sensitive to the phosphorylation of H2AX upon DDR. In contrast γH2AX is limited to the extremity 
of heterochromatin and affects the DDR and the DNA repair (Sulli et al., 2012). 

 

Additionally, epigenetic marks such as histone acetylation or methylation, influence DNA DSB 

repair system choice.  

The mono and demethylated form of H4K20 (H4K20me1/2) play an important role in the 

orientation of the DNA repair choice. 53BP1 is a protein playing an important role in the 

promotion of NHEJ as DSB DNA repair. 53BP1 presents a domain which is able to interact 

with the H4K20me2. H4K20me2 is a constitutive mark present in the genome formed from 

H4K20me1 by the activity of the methyltransferase KMT5 (Simonetta et al 2018). Addition of 

new histones during replication in the S phase results in the dilution of H4K20me2 which 

explains the efficiency recruitment of 53BP1 in the G1 in contrast to S and G2, the cell cycle 

phases characterized by the predominance of HR pathway. Binding of 53BP1 is also promoted 

by the H2AK15ub, ubiquitylation of H2AK is ensured by the RNF8 and RNF168 recruited to 

the damage site during the DDR by MDC1. 53BP1 binding and Rif1 cooperate to inhibit binding 

of resection such as CtIP, BRCA1, Dna2 and EXO1 promoting the end resection and then the 

NHEJ pathway (Figure 32 a) (For review (Fontana et al., 2018).   

Histones can also be in an acetylated form, acetylation occurs by two important enzymes, 

hMOF and KAT5. H4K16ac presence is associated to an active transcriptional state of the 

chromatin. Its function in influencing and orienting the DSB is not well established. A recent 

study demonstrated that in the S cell cycle phase, preexisting H4K16ac in the active form of 

chromatin (euchromatin) functions to increase the recruitment of HR to DSB sites (Horikoshi 

et al., 2019). H4K16ac promotes the HR response by stimulating the BRCA1 on the DSB site 

and, on the other hand, it inhibits the 53BP1 binding which in turn, inhibiting end protection, 

inhibits NHEJ pathway (Figure 32 b) (Tang et al., 2013).    
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Figure 32: Histone modification impact the DSB repair choice.  

A- During the G1 cell cycle methylation of the H4K20 promotes the recruitment of 53BP1 and then the actors of 
DNA end resection which favor the repair by NHEJ pathway. B- the chromatin in the S-G2 cell cycle is different with 
enrichment of H4K16ac that inhibit the 53BP1 and favor the recruitment of the actors implicated in DNA end 
resection favoring the HR pathway (Panier and Boulton, 2014).  

 

Additionally, Trimethylation of the lysine 36 in the histone 3 (H3K36me3) presents at the DSB 

site leads to RAD51 accumulation and then orients the repair of the DNA end by the HR 

pathway (Daugaard et al., 2012). H3K36me3 also known to enable recruitment of CtIP 

molecule via LEDGF reinforcing the HR response (Daugaard et al., 2012). Recently it was 

shown that a cross talk exists between H4K16ac and H3K36me3 and promotes the DNA repair 

to HR, H3K36me3 induced by the DNA damage promotes the interaction of LEDGF with KAT5 

which lead to the H4K16ac generation  (Figure 33)  (Li and Wang, 2017).  

  

 
 
 
 
 
 
 
 



 
 
Israa Al Jamal | Ph.D. Thesis | University of Limoges, Lebanese University | 2022 97 
License CC BY-NC-ND 4.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 33: A cross talk exist between H3K36me3 and H4k16ac.  

DNA damage induces the trimethylation of H3K36 by the SETD2 enzyme. This methylation recruits the LEDGF. 
LEDGF able to interact with KAT5 that acetylates the H4K16. Together, they promote HR repair by inhibiting of the 
DNA end resection (Li and Wang, 2017).  
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Chapter III: B Lymphomas  

B Lymphomas are divided into two major groups, the Hodgkin Lymphoma (HL) and Non-

Hodgkin Lymphomas (NHL). This latter represent majority of B cell cancers and about 3% of 

all cancers worldwide (Thandra et al., 2021). NHL include Chronic Lymphocytic Leukemia 

(CLL). NHL account also for follicular Lymphoma (FL), marginal zone Lymphoma (MZL), 

Burkitt’s Lymphoma (BL), hairy cell leukemia, etc... 

A. Chronic Lymphocytic Leukemia (CLL) 

1. Overview on CLL  

CLL is an incurable malignant blood disease, and known as the most common leukemia with 

an incidence of 4.9/100000 person per year using the lasted update of SEER (“Chronic 

Lymphocytic Leukemia - Cancer Stat Facts,” 2021). CLL represents in United States from 25% 

to 30%  of cancers (“Chronic Lymphocytic Leukemia - Cancer Stat Facts,” 2021) and very 

recurrent in western countries.  

CLL affects males more than females with a rate of 1.7/1. Most common in elderly persons 

with an age average of 72 year (70 years in men and 74 years in females). CLL is rare in 

person under the age 50 years (Molica, 2006), however CLL detection in younger population 

is increasing due to the raise in the routine blood testing (Mauro et al., 1999). Based on the 

World Health Organization ‘WHO’, CLL can be divided into three subtypes: typical CLL, 

prolymphocytic Leukemia ‘PL’ and 50% of cases are combined CLL/PL.  

CLL is characterized by the proliferation of mature clonal CD5+ malignant B cells and their 

accumulation in the bone marrow, peripheral blood and SLO such as lymph nodes and spleen. 

Clinical evolution of this pathology is very heterogeneous, it can be variable from months to 

decades. Some patients with CLL are asymptomatic, in contrast, other patients develop an 

alteration in their general health and need to be treated.  

 

2. Clinical and biological characteristics 

2.1. Diagnostic  

CLL patients in the majority of cases are asymptomatic and CLL is detected during routine blood testing, 

in contrast, some of patients can develop one or more symptoms (Figure 34). 
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Figure 34: Signs and symptoms of chronic Lymphocytic leukemia. 
 

To confirm the CLL diagnosis, different criteria are measured:  

-Blood cell count with hyperlymphocytosis ≥ 5000 B cells /µl and during three months at least.   

-Blood smear characterized by the presence of cytopenia. Morphological examination of the 

blood smear is an important step and shows small mature lymphocytes very close to the 

normal lymphocytes. These lymphocytes have nevertheless atypia, such as a less dense 

chromatin, arranged in large clumps and without a visible nucleolus. Gumprecht nuclear 

shadows or smudge cells, found as cell debris, are other characteristic morphologic features 

found in CLL (for review (Hallek and Al-Sawaf, 2021). 

-Immunophenotyping of cancer cells using a dedicated panel of markers brings out cells CD5+, 

CD23+, CD20+ and CD19+, FMC7- (Rawstron et al., 2018). Clonality of B cells can be 

confirmed by flow cytometry using antibody targeting the κ or λ light chain of Ig.  

CD5 marker is normally expressed on T cells and the rare B1 population of B cells in adult. It 

is important to mention that CD5 marker can be expressed in another lymphoma type such as 

mantle lymphoma.  CD23, a marker for activated B cells and it is characterized by the low 

affinity receptor for IgE. CD20 is found at lower level in CLL cells compared to the level of 

expression on normal B cells.  

 Presence of cytopenia induced by bone marrow infiltrate reinforce the CLL diagnosis even the 

count of B cell detected is lower than 5000 cells/µl. Absence of cytopenia with low number of 

B cells <5000 cells/µl is diagnosed as Monoclonal B-lymphocytosis (MBL). It was shown that 

MBL can develop into CLL with a rate of 1-2% per year (Rawstron et al., 2008). Other markers 

can be used in order to refine the diagnosis CLL such as CD79b, CD81, CD43, CD200, CD10, 

or ROR1 (Rawstron et al., 2018).  
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To facilitate the confirmation of CLL diagnosis, it was established a score system: Royal 

Marsden Hospital (Matutes score). According to this system 1 point is given to each marker 

CD5 and CD23 when they are positive. In contrast, 1 point is given to each of FMC7 and CD22 

when they are negative (Table 3). A total score ≥ 4 points define CLL disease, NHL is 

diagnosed with a score obtained from 0-3. 

Table 3: Matutes score in in CLL diagnosis. 

 

The National Cancer Institute-Working Group (NCI-WG) updated the Matutes score in CLL 

diagnosis. With this new updated CLL diagnosis, CLL is confirmed when blood count ≥5000 B 

cells/µl, co-expression of CD19, CD5, CD23 and low levels of CD79b and Igκ or Igλ.  

 

2.2. Prognostic   

Mutational status of IgHV genes 

CLL cells express low level of Ig on their membrane, in the vast majority of cases, Ig are IgM 

co-expressed with IgD. Based on the mutational status of the IgHV two groups of CLL are 

defined: the mutated and the unmutated IgHV CLL patients. This status obtained by 

comparison of the IgHV sequence of tumoral CLL B cell clone with the reference germline 

sequence. IgHV is considered mutated (M-IgHV) when the difference between the sequences 

is ≥ 2%. When the difference between the sequence is <2% IgHV is considered as unmutated 

(UM-IgHV). M-IgHV is associated with more favorable prognosis than UM-IgHV (Döhner et al., 

2000). 

ZAP-70 

ZAP-70 is an intracellular protein implicated in the signal transduction in T lymphocytes an NK 

cells after antigen encounter (Lanier et al., 1998). Expression of ZAP-70 in B cells of CLL 

patients was demonstrated by qPCR and its expression was associated to UM-IgHV and poor 

prognosis. But in routine, the flow cytometry constitutes the technique of reference used for 
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the assessment of ZAP-70 expression using a precise protocol as described in the paper from 

Rizzo (Rizzo et al., 2013). ZAP-70 promotes the transmission of signals in CLL cells resulted 

from antigen encounter  (Dürig et al., 2003, p. 70; Wiestner et al., 2003). The implication of 

ZAP-70 in the prognosis prediction is still controversial as studies did not correlate the level of 

ZAP-70 with the IgHV status (Morabito et al., 2015). The mechanism by which ZAP-70 

contributes to an aggressive disease is not clear, but recently, it was shown in primary cells 

low levels of ZAP-70 result in reducing MYC expression. Furthermore, ZAP-70 promotes cell 

survival in the absence of over BCR signaling. In addition, ZAP-70 was identified to constitute 

the link with the microenvironment of malignant B cells by regulating the recruitment and 

activation of T cells (J. Chen et al., 2021). All these data suggest that ZAP-70 is implicated in 

the regulation of tumor CLL cell survival,  the expression of MYC and also contributes to the 

regulation of the microenvironment of CLL cells (J. Chen et al., 2021).  

CD38 

 CD38 identified as an activation maker implicated in the differentiation of T cells (Reinherz et 

al., 1980). The expression of CD38 is not restricted to T cells, several studies have shown 

CD38 expression in non-hematopoietic cells such as endothelial cells, neurons, prostatic and 

pancreatic cells (Kato et al., 1995; Kramer et al., 1995, p. 38; Mizuguchi et al., 1995). CD38 is 

also expressed in the different subpopulations of B cells from the earliest stage CLP to mature 

B cells. The level of CD38 expression differs depending on the maturation and activation stage 

of cells (Howard et al., 1993). Studies showed the expression of CD38 on CLL cells and 

identified this positive marker expression as a prognosis indicator (Ibrahim et al., 2001, p. 38). 

Increased levels of CD38 is associated with aggressive disease in CLL. In contrast to ZAP-70, 

increased expression of CD38 is not correlated to the mutational status of IgHV in CLL patients 

(Ibrahim et al., 2001).  

 

Altogether, and based on these indicators, CLL patients are divided into two groups. A group 

with poor prognosis characterized by UM-IgHV status, high levels of ZAP-70 and CD38. The 

second group associated with more favorable prognosis characterized by the M-IgHV, low 

levels of ZAP-70 and CD38. 
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BCR signaling  

In CLL as well as in other B lymphomas, BCR plays an important role through the activation of 

survival and proliferation signaling pathways. BCR signaling was found increased in CLL cells 

with high levels of ZAP-70. Increased ZAP-70 and BCR signaling  are associated with poor 

prognosis (Chen et al., 2002, p. 7). In addition to the BCR signaling induced by autoantigens 

present in the microenvironment of CLL cells. It is also observed BCR autonomous signaling 

(Dühren-von Minden et al., 2012). BCR with UM-IgHV are polyreactive able to react with 

molecules present in the microenvironment of CLL such as myosin, vimentin or rheumatoid 

factors (Figure 35) (Hoogeboom et al., 2013). This signaling results in activation of proliferation 

and survival of tumoral cells. Inhibition of BCR signaling constitute a target for CLL treatment.  

30% of CLL patients are characterized by the expression of a restricted BCR repertoire with 

skewed IgHV repertoire, called as stereotyped BCR. These BCR is classified into subsets 

regarding the similarity in the amino acid sequence of CDR3 domain in VH. To define a 

stereotyped BCR an identity of 50% is required. About hundreds of subset are defined, but 

there is 19 subsets predominant and represent 10% of all BCR of CLL (Agathangelidis et al., 

2012). It was shown that subsets #1 and #2 are associated with the aggressive and poor 

prognosis of CLL patients. Subset #1 is characterized by the presence of poor prognosis 

indicators such as NOTCH1 mutation and autonomous signaling of BCR via cross-linking of 

IgM which induce cell survival and proliferation. Subset #2 also characterized by the presence 

of poor prognosis indicators of CLL such as high levels of MYC, UM-IgHV, SF3B1 mutation 

and autonomous signaling of BCR, in addition to the predominance of subsets #4,#6 and #8 

which also associated with poor outcomes in CLL patients (For review (Hacken et al., 2019). 

 
Figure 35: BCR signaling in CLL. 

 In CLL cells, BCR signaling can be activated by autonomous signal resulted from oligomer generation (A.) or by 
molecules produced by the microenvironment (B.) of CLL such as myosin, vimentin and rheumatoid factors. The 
affinity of the BCR is lower in UM-IgHV.(Burger and Chiorazzi, 2013).   
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Recurrent mutations 

The predominant mutated gene in CLL is the Splicing Factor 3B subunit1 (SF3B1) gene. Its 

mutation is detected in 10 % to 15 % of CLL patients (Wang et al., 2011, p. 3). Due to the 

importance in the splicing mechanism, mutations in SF3B1 lead to the alteration in splicing 

machinery.  SF3B1 mutation affects the telomere maintenance, the NOCH1 signaling pathway 

and alter the DDR (For review (Wan and Wu, 2013, p. 3).  

In addition to SF3B1 mutations, in CLL other mutations into the RNA splicing machinery are 

detected such as Exportin1 (XPO1). Recently, it was shown that mutation of XPO1 is detected 

in a cohort of CLL patients, and mutated XPO1 is associated with shorter time to the first 

treatment and poor prognosis.  

Presence of more than one mutated gene implicated in the RNA splicing machinery reveals 

that the RNA processing pathway is the most pathological pathway implicated during the 

development of CLL (Moia et al., 2020).  

The second predominant mutation detected in 10% of CLL is the mutation of Notch homolog 

1 (NOTCH1) gene (Puente et al., 2015). NOTCH1 is a heterodimeric, single-pass 

transmembrane receptor implicated in the transactivation of genes implicated in cell 

proliferation and survival as the proto-oncogene MYC. Frequently found mutation of NOTCH1 

consists on a frameshift deletion resulting in the alteration of the domain for the proteasomal 

cleavage of activated NOTCH1. This mutation leads to an increase in the NOTCH1 stability 

and results in continuous activity and MYC overexpression (Rosati et al., 2018).  

 A relationship was suggested between NOTCH1 mutation and trisomy 12 in CLL 

development, since 40% of CLL with NOTCH1 activating mutation present trisomy 12 (Del 

Giudice et al., 2012). Also, 80% of CLL patients with NOTCH1 mutations are characterized by 

UM-IgHV leading to the association with poor prognosis and increased risk in Richter 

transformation (For review (Bosch and Dalla-Favera, 2019).  

Protection of Telomere (POT1) protein is implicated in the maintenance of the telomeres and 

the protection of the chromosomes ends. POT1 is found mutated in 3 to 7% in CLL patients. 

POT1 mutations increase the aberrations of telomere structure and fusion of the chromosome 

ends favoring the evolution and progression of the disease. POT1 mutations is associated with 

aggressive clinical stage of CLL, the presence of POT1 mutations was found correlated with 

SF3B1 mutation and UM-IgHV (Ramsay et al., 2013).  
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Cytogenetic alterations  

Deletion 13q14 (del13q14) is detected in approximately 60% of CLL cases (Landau et al., 

2015); Its deletion constitutes the most frequent chromosomal abnormality in CLL. Del13q14 

is more frequent in mutated IgHV in comparison to UM-IgHV and is associated with more 

favorable prognosis and prolonged time of survival (Rossi et al., 2013). When the deletion 

affects the retinoblastoma gene (RB1) gene located on the longer arm of chromosome 13, it 

results in acceleration in the clinical courses of patients (Ouillette et al., 2011). 13q14 also 

contains genes coding for micro-RNA such as MIR15-A and MIR16-1 shown to be implicated 

in the regulation of expression of apoptosis and cell cycle regulating genes (Cimmino et al., 

2005). Longevity of CLL cells is due to the alteration in the pro-survival and pro-apoptotic 

factors of the family of B cell leukemia/lymphoma 2 (Bcl-2) and is considered as a hallmark of 

CLL (Packham and Stevenson, 2005). It was shown that the pro-survival factors such as Bcl-

2 and Mcl-1 are increased in CLL cells (Saxena et al., 2004). MIR15-A and MIR16-1 are 

negatively correlated to the anti-apoptotic factor Bcl-2 expression, deletion of these microRNA 

results in increased levels of Bcl-2. This activity is regulated in the posttranscriptional level of 

Bcl-2 (Cimmino et al., 2005). 

Deletion 11q22–q23 (del11q) is detected in 15% of CLL cases and constitutes the second 

common chromosomal abnormality in CLL (Döhner et al., 2000). In 25% of cases, this deletion 

affects ATM, a tumor suppressor gene encoding implicated in the DDR. Alterations of ATM are  

associated with poor prognosis (Shiloh and Ziv, 2013; Skowronska et al., 2012).    

Trisomy 12 constitutes the third chromosomal abnormality observed in CLL and is detected 

in 15% of CLL cases (Döhner et al., 2000). Combined trisomy 12 with NOTCH1 mutations 

decreases the survival of CLL patients (Del Giudice et al., 2012). Additionally, trisomy 12 

increases the Richter Syndrome (RS) transformation risk. 

Deletion 17p13 (del17p) is detected in 10% of patients with CLL (Döhner et al., 2000). This 

deletion affects normally the total p arm of the chromosome 17 and results in the deletion of 

the tumor suppressor gene TP53. Deletion of TP53 is observed in 80% of CLL cells with del17p 

(Zenz et al., 2008). Del17p is more frequently detected in UM-IGHV CLL patients than in 

patients with M-IGHV status.  

2p gain (2p+) : short arm gain of the chromosome 2 is detected in 15% of CLL patients and is  

recurrent in advanced stages of CLL with the evolution of the disease and probably promotes 

Richter transformation (Chapiro et al., 2010; Rinaldi et al., 2011). This chromosomal 

abnormality is also detected in other lymphomas such FL and DLBCL (Ferreira et al., 2008). 

This gain is variable and can be concern a part of 2p or the totality of 2p. It is associated with 
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the markers of poor prognosis such as del11q and UM-IgHV status. The XPO1 gene is 

localized on the 2p. XPO1 mutation is implicated in drug resistance during CLL patient 

treatment. In addition, 2p contains the loci of proto-oncogenes REL, BCL11A and MYCN. 

These three genes play a role in the resistance of CLL cells to treatment (Cosson et al., 2017; 

Kostopoulou et al., 2019; Miller et al., 2021).  

MYCN is a member of MYC family known to be amplified in CLL cells and associated with poor 

prognosis. MYCN was detected overexpressed in patients with 2p gain, this overexpression is 

related to short survival (Deambrogi et al., 2010).  

REL is a subunit of Nuclear Factor Kappa B (NFκB), it was shown that the subunit RELA of 

REL family is implicated in disease progression of CLL in vitro (Hewamana et al., 2008) which 

suggests that RELA can be used as a prognostic marker and it can be a therapeutic target in 

CLL (Hewamana et al., 2009). 

 

 2.3. Classification  

Binet and RAI staging are used to classify the CLL patients into different stages related to their 

time of survival, and clinical characteristics and their need to treatment (Table 4). This 

classification cannot predict the prognosis of patients while the majority of them are diagnosed 

at early stages (Shanafelt, 2009). Additionally, this classification does not include the status of 

some indicators of prognosis such as zeta chain-associated protein ZAP-70, CD38, the 

mutational status of IgHV and the chromosomal abnormalities. A third classification system 

was described the international prognostic index (CLL-IPI). This system includes five 

parameters of CLL patients the age, IgHV status, clinical stage, TP53 status (normal, mutation 

or del17p) and serum-β2 microglobulin. This system classifies CLL patients into four groups 

regarding their score. Group one with a score (0-1) characterized by low risk and longer 

treatment to first treatment (TTFT), the second (2-3) with an intermediate risk and TTFT, the 

third with a score (4-6) characterized by the high risk and short TTFT and the last group with 

poorer prognosis (7-10) with very high risk (International CLL-IPI working group, 2016). Score 

attributed for each parameter to predict the global score is represented in the (Table5).  
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Table 4: Characteristics of RAI and Binet classification.  

 

Table 5: International prognostic Index of CLL (CLL-IPI). 

 

 

2.4. Treatments of CLL 

Treatment is not required for all CLL patients, it is applicable to patients presenting symptoms 

and with advanced stage in RAI or Binet classification, some of the targets in CLL treatment 

are visualized in the (Figure 36). For several decades, the monotherapy using alkylating agent, 

the chlorambucil (low coast, low toxicity) was used first to treat CLL (“Chemotherapeutic 

options in chronic lymphocytic leukemia,” 1999).   

In addition, three analogues of purine are used to treat the CLL patients such as fludarabine 

that induces the p53 related gene, cladribine targeting the polβ and the pentostatin, which 
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inhibit the adenosine deaminase, and lead to the inhibition of DNA synthesis. The most 

beneficial of these three treatments is the fludarabine which is able to induce the high remission 

percentage compared to other types of treatment. The efficacity of the fludarabine cannot be 

observed if it applicated as a single treatment and need to be combined with other agents. 

Fludarabine was used combined with cyclophosphamide and the rituximab (monoclonal 

antibody to CD20), this combination is considered as the reference for CLL treatment (Hallek, 

2019). Another cytostatic agent was known to treat various type of cancers, the Bendamustine. 

Studies were done to test the efficacity of this agent on CLL cells and to compare it with other 

agent such as fludarabine+chlorambucil and the results showed more efficiency of 

Bendamustine suggesting that the it is a potential CLL treatment using single agent (For review 

(Hallek, 2019)).  

In addition to the cytostatic agents used to treat CLL, the development of biotechnology 

technics enables synthesis of monoclonal antibodies and the increase in the understanding of 

the CLL physiopathology and development, led the use of specific monoclonal antibodies 

targeting molecules implicated in the CLL development. CLL cells express the CD20, a calcium 

channel that doesn’t have natural ligand. Targeting the CD20 by a monoclonal antibody has 

emerged in 1998 to treat NHL including CLL. Three important anti-CD20 are known the 

ofatumumab, obinutuzumab and Rituximab which was the first monoclonal antibody described 

to target CD20. Another monoclonal antibody was developed to target the CD52 present on 

the surface of all lymphoid populations. Efficiency and function of each of these treatments is 

reviewed in (Hallek and Al-Sawaf, 2021).  

As the BCR signal is implicated in CLL cells development, it was developed molecules 

targeting this pathway. The most common molecules targeting the BCR signaling are:  

Fostamatinib, which targets the SYK. Inhibition of SYK decreases the activation and 

proliferation molecules in CLL cells such as CD69 and CD86, CD38, Ki67 respectively 

(Herman et al., 2013).  

Idelasib (CAL101), is used in a second line in CLL treatment in the cases with highly 

aggressive and progressive disease. This treatment is characterized by a long and durable 

response without increase in the toxicity on normal cells. It targets the PI3K and inhibits the 

phosphorylation of AKT and MAPK in B cells leading to their apoptosis (Khan et al., 2014).   

Ibrutinib (PCI-32765), which is an inhibitor of BTK downstream in the signaling pathway of 

BCR. Ibrutinib binds BTK leading to its inhibition in an irreversible way. This molecule is used 

as first line of treatment in aggressive form of CLL in combination with the inhibitor of SYK 

(Young and Staudt, 2014) or with the inhibitor of Bcl-2, the venetoclax (Jain et al., 2019).  
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Dasatinib, an inhibitor of LYN, was shown to have an activity even as a single agents in 

relapsed CLL patients (P. C. Amrein et al., 2011).  

As mentioned before, molecules targeting cell survival and proliferation were developed to 

increase the range of CLL treatment by inducing the death of cancer cells. Other strategies 

targeting the microenvironment cells had been developed to improve the immune system vis 

a vis of the CLL tumor cells. The CAR T cells treatment is based on the reinjection of patient 

autologous T cells modified by lentivirus to target CLL cells. These cells are able to target the 

CD19 expressed on tumor cells but also have an impact on normal B cells (Mancikova and 

Smida, 2021). In contrast, it was shown that CAR T cells targeting specifically the light chain 

Ig of the tumor cells present a minimal level on normal B cells, and this type of CAR T cell can 

be used as an alternative to CD19 CAR T cells (Ranganathan et al., 2021). 

 

 

 

 

 

 

 

Figure 36 : Schematic representation of the inhibitors and their targets in CLL treatment. 

Several inhibitors are used during the CLL treatment such as anti-CD20, the targeting of the pathways activated 
by the BCR such as BTK and PI3k inhibitors , and the inhibitors targeting the anti-apoptotic factor like BCL-2 
(Burger and O’Brien, 2018). 

 

 

3. Cell of origin in CLL  

Identification of the cell of origin, the original normal cell that transformed to malignant cell, is 

important point in understanding the emergence of the malignant disease. Determination of 

cell of origin permits the identification of the alteration events occurred during the 

transformation. Different B cell subpopulations were suggested over the years to be a putative 

for the origin cell of CLL. This was done based on the evolution of biological technics and the 

understanding of the mechanisms regulating differentiation of B cells (For review (Bosch and 

Dalla-Favera, 2019). Two hypotheses concerned the cell of origin in CLL are present.  
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First, CLL cells were suggested to be originate from HSC due to the presence of genetic 

methylation and epigenetic modification normally present in HSC and detected in 80 to 98% 

of CLL  B cell patients (Gahn et al., 1997). In 2011, it was again suggested the HSC is the 

origin of CLL after HSC xenografts in immunodeficient mice. These mice developed B cells 

expressing CD5 marker with a MBL/CLL phenotype (Kikushige et al., 2011). The HSC as CLL 

cell of origin hypothesis is still controversial and needs confirmation (Husby and Grønbæk, 

2017).  

Secondly, CLL B cells were suggested to derived from mature B cells due to the detection of 

Ig clonal rearrangements in addition to the expression of CD23, a B cell activation marker, of 

CD5, of weak levels of CD20 and of membrane Ig (Sabattini et al., 2010). Expression of CD5 

on CLL cells oriented the hypothesis to the B1 cells (expressing CD5 and implicated in the 

innate immunity) as the cell of origin in CLL. The two subsets of CLL patients regarding the 

mutational status of IgHV gene suggest that UM-IgHV is most probably derived from naïve B 

cells in the pre-GC formation. In contrast the M-IgHV status suggests the progression of these 

CLL cells from post-GC (Klein et al., 2001; Rosenwald et al., 2001).  

Finally, the origin of CLL cells is still a debate due to the heterogeneity observed in this disease 

and the hypothesis that CLL originates from HSC or mature B cells, also the second hypothesis 

that CLL originate from mature B cells (pre-GC, post-GC and GC independent (B1) cells) need 

to be confirmed. 

 

4. Evolution of CLL  

4.1. Clinical complications of CLL  

Several complications can be observed due to CLL. CLL patients are more vulnerable to 

opportunist infections, 10 to 20% of CLL patients are likely to develop auto-immune diseases 

due to the production of monoclonal antibodies by non-leukemic cells. This latter point is 

observed in 90% of cases. These antibodies target the blood cells resulting in anemia or 

thrombocytopenia (Dearden, 2008; Morrison, 2010; Visco et al., 2014). Additionally, CLL 

patients are able to develop solid cancers such as skin cancer, and rarely breast, lung and 

prostate cancers. Finally, CLL disease can be progress to Richter Syndrome (RS).  

RS is the transformation of CLL to an aggressive phenotype of lymphomas, especially to 

diffuse large B cell lymphoma DLBCL and rarely to Hodgkin lymphoma (HL). RS is observed 

in CLL patients with a rate of 3 et 10% (Parikh et al., 2014) . RS emerged from CLL shares 

histological similarities with DLBCL but still has distinct profile. The most common indicators 
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that increase the risk of Richter transformation is NOTCH1 mutation, TP53 deletion or 

alteration, UM-IgHV, abnormalities in c-MYC, increased expression level of CD38 as reviewed 

in (Jain and O’Brien, 2012).  

 

4.2. Microenvironmental factors  

The tumor microenvironment (TME) cells accounts for macrophages, T cells, FDC, 

mesenchymal Stroma Cells (MSC), and natural killer cells. TME ensures a protective niche for 

CLL cells and plays an important role influencing the survival of CLL cells by giving stimuli that 

activate cell survival and proliferation (Burger et al., 2009). These functions accomplished by 

molecules such as cytokines or chemokines produced by the microenvironment that interact 

with CLL cells via their specific receptors (Figure 37). In addition, direct contacts between CLL 

cells and MSC were observed via the adhesion molecules expressed on both MSC and CLL 

cells (Figure 38). Also, the crosstalk between MSC and CLL cells can be ensured by soluble 

factors or via the newly identified way represented by the extracellular vesicles (Dubois et al., 

2020). This TME constitutes a new theme for targeting the  CLL using different treatments 

(Figure 37) (For review (Svanberg et al., 2021).  Effector CD8+ T cells that control the tumor 

development by their effector function was showed to be decrease in CLL TME. Additionally, 

present CD8+ are characterized by exhaustion marks such as PD-1 inhibitory receptor 

expression, and these CD8+ present in LL blood are unable to generate a synapse with CLL 

cells (Roessner and Seiffert, 2020).  

 

 

 

 

 

 

 

 

 

Figure 37: Tumor microenvironment in CLL.  

Microenvironment of CLL is composed of different cell type such as T cells, natural killer cells, stromal cells, 
mesenchymal cells and macrophages. These cells contribute to the survival maintenance and proliferation of CLL 
by producing cytokines and chemokines. These cells constitute a target to treat CLL (Svanberg et al., 2021).  
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Figure 38: Crosstalk between CLL and MSC cells.  

MSC play an important role in the CLL microenvironment. Three types of crosstalk exist between the MSC and CLL 
cells via direct contact, soluble factors or via the extracellular vesicles. Figure adapted from (Dubois et al., 2020). 

 

 

4.3. AID in CLL  

In normal condition, in B lymphocytes, AID expression is restricted to activated B cells. In 

contrast, AID can be expressed in cancers including the CLL cells (McCarthy et al., 2003). It 

was shown that AID is expressed in a proliferative and activated,  and on-going CSR subset 

of CLL cells in correlation with the overexpression of survival and proliferative markers such 

as c-MYC, ki-67, Bcl-2 (Palacios et al., 2010).  

AID seems to play a role in the early stages of tumoral evolution since  CLL patients with AID 

expressing cells  are associated with poor prognosis and increased cytogenetic complications 

such as del11q and del17p (Gelmez et al., 2017, 2014). 

In CLL cells, as well as in normal B cells, AID can be detected in spliced variant forms, but 

only the full length of mRNA is expressed. These splice variants are deficient for CSR domain 

and can activate or inactivate the SHM. In CLL cells, four AID transcript variants were observed 

in high levels in contrast to normal B cells occurring normally the CSR and SHM. These 

variants are implicated in decrease in SHM and CSR but in the increase in the DSB generation. 

Also these variants were correlated with trisomy 12 as reviewed in (Oppezzo et al., 2021). Full 

length AID was reported to mutate in efficient way the V and S regions of the IgH locus in CLL 

cells. Detection of AID protein in UM-IgHV cell and the presence of switched IgG suggest that 

the function of AID in CSR and SHM is not linked in CLL cells. AID can mutate the switch 

regions without affection of the V region.  
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In addition to its mutational function, AID was reported to play a role in DNA demethylation 

during the generation of GC (Dominguez et al., 2015). A study was conducted to evaluate the 

DNA methylation induced by AID in CLL cells expressing or not AID. In these cells, a small 

difference in the global methylation profile was detected without determination for any specific 

implicated target or gene. This difference in DNA methylation did not affect the level of gene 

expression (Schubert et al., 2018). More studies are required to determine the impact of AID 

DNA methylation in CLL.  

 

4.4. DSBs repair alteration 

The Histone H2AX is phosphorylated on his serine 139 (γH2AX) in response to the presence 

of DSB. This γH2AX accumulates around the DSB forming foci and its labeling indicates the 

presence of DNA damages. These foci are responsible for the recruitment of proteins 

implicated in the repair pathway such as 53BP1. Accumulation of DNA lesions was shown to 

be increased in CLL comparing to healthy cells. This was demonstrated by increased 

immunofluorescence labeling of γH2AX in CLL compared to normal cells. In addition, γH2AX 

was observed increased in CLL compared to MBL indicating that the accumulation of DNA 

damages contributes to the disease evolution (Popp et al., 2019). 

A study was conducted in primary CLL cells to explore the DNA repair mechanism predominant 

in CLL cells and to determine if there is an alteration in DNA repair usage. This study was done 

using DNA repair reporter system via plasmids and showed that DSBs are mainly repaired by 

Alt-EJ pathway compared to NHEJ pathway after the analysis of repair junction structure in 

CLL cells. Assessment of the level of expression of the different molecules of each DNA repair 

pathway (Alt-EJ and NHEJ) by qPCR reveals that XRCC1, LIGIII and PARP-1 (Alt-EJ) 

molecules are highly expressed in CLL cells rather than NHEJ molecules compared to normal 

B cells  (Gassner et al., 2018).  

In cancer cells, alteration of DNA repair can influence the sensitivity to the treatment by 

increasing the cell resistance and can contribute to the disease evolution without any 

treatment. Concerning the treatment of CLL it was shown that inhibition of HR an NHEJ 

increases the cell sensitivity to the chlorambucil (L. Amrein et al., 2011).  

B. Hodgkin Lymphoma (HL) 

Hodgkin lymphoma  (HL) is a cancer of the lymphatic system, it represents 10% of all 

lymphomas types (Piris et al., 2020). HL is divided into two types, the classical Hodgkin 

lymphoma (CHL) which represents 95% of all HL and the nodular Lymphocytes Predominant 

Hodgkin Lymphoma (NLPHL) which accounts for 5% of HL (Cuceu et al., 2018b). CHL can be 
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divided into four subtypes: Nodular Sclerosis (NSHL), Mixed Cellularity (MCHL), Lymphocyte-

Depleted (LDHL), and Lymphocyte-Rich (LR-HL)  (Buettner et al., 2005). Two groups of age 

are more affected by HL then others. It is affect persons with 20-40 years and those with more 

than 75 years (“Hodgkin lymphoma,” 2018). 

Hodgkin lymphoma is a curable disease depending on the stage of diagnosis. The main cure 

used is chemotherapy combined or not with irradiation in adults patients (Rinaldi, 2018). 

All Hodgkin lymphomas types are characterized by the presence of a mononuclear and large 

multinucleated cell named Hodgkin and Reed Sternberg cells respectively (H/RS). H/RS are 

transformed cells characterized by their capacity to escape the apoptosis mechanisms 

(Benharroch et al., 1996). Presence of these cells are useful for the diagnosis of HL and to 

differentiated from non-Hodgkin lymphoma.  

Hodgkin and Reed Sternberg cells are non-abundant elements since they are representing 

only about 1% of all tumor mass making study of these cells and tumor characteristics difficult 

and allowing to require sensitive approaches to isolate and analyze tumoral cells. H/RS cells 

are present  in an inflammatory microenvironment which represent about 99% of the tumor 

mass and constituted from: B cells, eosinophils, T cells  macrophages, and plasma cells (Lee 

et al., 2003; Opinto et al., 2021). 

H/RS are clonal based on the V genes rearrangements studies as demonstrated by Küppers 

et al in 1998 (“Clonality and Germinal Centre B-cell Derivation of Hodgkin/Reed-Sternberg 

Cells in Hodgkin’s Disease - PubMed,”). Histological studies, detection of SHM and CSR 

mechanisms in the IgH locus of this cell type demonstrated that H/RS in the majority of cases 

derived from germinal center cells. In addition, more than 40% of H/RS cells are positive to 

Epstein Barr Virus ‘EBV’. This observation consolidates that H/RS derived from GC since EBV 

infect naïve B cells in the pre- GC step. EBV infection increases the risk to develop Hodgkin 

Lymphoma.  

H/RS express on their surface the marker of lymphoid cell activation CD30, and the CD15, 

known as a marker for myeloid/monocyte cells. In some cases, H/RS cells may be negative 

for the CD15 marker (“CD15 Antigen - an overview | ScienceDirect Topics,” n.d.). H/RS cells 

are negative for CD45, CD3 or CD247, CD14, CD20, and CD138 , the marker of plasma cells, 

(Buettner et al., 2005). These cell markers are used to select, isolate, and study H/RS cells. 

Characterization of H/RS markers allow the development of new treatment strategy in adults 

patients targeting the marker CD30 with an anti-CD30 antibody, the Brentuximab vedotin 

(Gravanis et al., 2016).  
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Several studies have demonstrated that H/RS cell centers are characterized by the presence 

of genetic instability like chromosomal instability, microsatellite instability, telomere dysfunction 

and altered DNA repair. Genome instability observed in HL results from the alteration of 

expression levels of TRF1, TRF2, Ku80 factors implicated in DSB DNA repair and genome 

stability (Cuceu et al., 2018a).  

 In addition, breakpoints are frequent in HL, and the Ig loci specifically in the IgH locus in H/RS 

cells. This latter breakpoint can result in deletion of  part of the constant region, alteration in 

class switch recombination with production of some immunoglobulin such as IgG4 and IgA in 

favors to others (Irsch et al., 2001).   

Although, Absence of BCR expression on the surface of H/RS cells suggests their apoptosis 

since BCR is responsible for cell survival signaling. In contrast, H/RS cells escape show to 

apoptosis due to the presence of crippled mutation.  Several mechanisms are reported to 

explain the absence of BCR and since LSR conduced to BCR loss in B cells, study of the LSR 

as a potential cause for the BCR loss represents an objective of our study. 
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Thesis objectives  

Locus suicide recombination is a genetic rearrangement in activated B cells (Péron et al., 

2012). LSR occurs between the Sµ and the 3’RR of the IgH locus leading to the excision of all 

constant genes, which conducts to the abrogation of IgH expression and loss of the BCR at 

the B cell surface. BCR plays a crucial role in the transmission of survival signals, its absence 

leads to the death of the B cells (Lam et al., 1997). Characterization of LSR and the 

determination of its biological function is an important subject to understand. My thesis work 

has interrogated whether LSR is implicated in normal B cell physiology and in pathological 

conditions of B cells.  

Tumoral B cells of Chronic Lymphocytic Leukemia (CLL) express Ig on their surface, which is, 

in the vast majority of cases, unswitched Ig (IgM) and this raises the question of Ig 

recombination process alteration in this B cell cancer. In the first objective of my thesis, we 

have examined the occurrence of LSR in CLL (Article 1). We detected LSR junctions in CLL 

patients and based on the LSR counts we distinguished two groups of CLL patients, one group 

with high count of LSR junctions (LSRHigh) and the other group with low count of LSR junctions 

(LSRLow). Clinical and molecular analysis of these two groups allowed us to conclude that high 

LSR count in CLL associated with poor prognosis and is induced by MYC independently of 

AID, these results constitute my first article (Al Jamal et al., 2022).    

In addition, analysis of LSR junctions in CLL patients showed difference junctions structure 

profile between the two groups with an alteration of the structure in the LSRLow group. This 

observation leads to the main objective of the second part of my thesis work questioning the 

alteration in DNA double strand break repair in CLLs with low LSR junction counts. An 

alternative explanation is LSR repair structure is an indicator of the cell origin of the CLL LSRLow 

condition. This is suggested by similarity in LSR repair with those observed in normal B cells 

from healthy tonsils. These results conduct to my second article (Article 2 in preparation). 

Additionally, I worked on Hodgkin lymphoma (HL). In HL, the tumoral cells called Reed 

Sternberg H/RS cells do not express a BCR on their membrane. So, we aimed to analyze if 

the LSR mechanism can contribute to the loss of BCR in HL samples and especially in sorted 

RS cells (Preliminary data). 
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Article I: Increased IgH locus suicide recombination in Chronic Lymphocytic 

Leukemia denotes MYC driven IgH rearrangements 

Our work in the first part of my thesis explores the IgH locus recombination mechanisms in 

chronic lymphocytic leukemia (CLL).  In normal condition, activated B cells express Activation 

Induced cytidine Deaminase (AID). AID introduces DNA lesions on IgH locus leading to the 

formation of double strand breaks (DSB). Junction of DNA ends and DNA repair result in CSR 

that allows immunoglobulin isotypes diversification. CSR is required for the B cell receptor 

(BCR) expression and immune responses. AID can also target the 3’RR of the IgH locus during 

the locus suicide recombination (LSR). LSR leads to the deletion of the constant region of IgH 

and conducts to cell death through loss of BCR expression.  

In CLL, an indolent non-Hodgkin B cell lymphoma, tumor B cells express BCR at low level. In 

the vast majority of cases IgM is the expressed Ig and class-switched CLLs are rare. This latter 

observation questions the alteration in IgH locus recombination machinery. First, we used DNA 

samples from 47 CLL patients and 9 or 5 healthy donors to count LSR and CSR events per 

sample. To do so, we amplified by nested PCR CSR and LSR junctions and we did high 

throughput sequencing and data were analyzed using a specific bioinformatics tool the 

CSReport.   

As expected CSR junction counts were lower in CLLs. In contrast, LSR junction counts were 

at comparable levels between healthy PBMC and patients. Thus, we defined two groups of 

CLLs: LSRLow CLLs and LSRHigh CLLs using the mean of LSR junction counts obtained in 

healthy PBMC as a cut off. 

We performed study of IgHV mutation status and we observed that LSRHigh CLLs were 

enriched in IgHV unmutated cases which is associated with poor prognosis in CLL. In accord 

with this result we observed that LSRHigh group is characterized by shorter time free survival 

without treatment as shown in the Kaplan Meyer curves of Treatment Free Survival (TFS). 

 We analyzed the diversity of LSR junctions using Shannon diversity index. We observed 

higher diversity of LSR junctions in LSRHigh group. This raised the question of an on-going 

process so, we determined the level of AID expression. Weak levels of AID transcripts were 

detected by qPCR analysis in both CLL groups. Moreover, low mutation rate of PIM1, an AID 

off target gene, was observed in LSRHigh CLLs. 

Altogether, these results suggest that LSR is an active process in LSRHigh CLL cells but in 

these cells, AID seems not to be induced. We also assessed cell proliferation in these two 

groups of CLL patients: we have measured the telomere length by specific qPCR on genomic 

DNA, and we observed shorter telomeres in LSRHigh group compared to LSRLow and healthy 
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PBMC reflecting an increased proliferation cycle. Moreover, shorter telomeres in LSRHigh CLLs 

were associated with increased MYC expression in LSRHigh group.  

As IgH recombination requires DNA accessibility though transcription, we analyzed IgH 

transcription. We found higher levels of non-coding and coding transcripts in LSRHigh when 

compared to LSRLow CLLs meaning that IgH locus DNA was accessible to the recombination 

machinery in these patients. 

As IgH locus recombination occurs physiologically in proliferating cells, we hypothesized that 

MYC overexpression in LSRHigh CLLs potentiates IgH recombination. This was examined on 

the murine lymphoma cell line, CH12F3, which able to undergo CSR and LSR after stimulation. 

CH12F3 subclones expressing or not AID in presence or not of MYC overexpression were 

showed that MYC overexpression tends to increase the LSR junctions count, even in presence 

or in absence of AID. 

Our results indicate that in LSRHigh CLLs cells, the accessibility of IgH locus could be increased 

in a MYC dependent manner resulting in shorter survival and implying an additional MYC 

driven AID independent mechanism of IgH recombination. Also, LSRHigh and Low CLLs appear 

to be characterized by different features certainly due to different CLL tumoral transformation 

mechanisms. 
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KEY POINT  

MYC high expression and increased accessibility of IgH locus could promote AID-independent 

IgH rearrangements in poor prognosis CLL patients. 

 

ABSTRACT 

 

Chronic lymphocytic leukemia (CLL) is an indolent non-Hodgkin lymphoma characterized by tumor 

B-cells that weakly express a B-cell receptor (BCR). Activation Induced-cytidine deaminase (AID) is 

required for Ig class switch recombination (CSR) and is implicated in Ig heavy chain (IgH) Locus Suicide 

Recombination (LSR) inducing BCR loss. The great majority of CLL B-cells have not-switched and express 

mu/delta Ig isotypes. This suggests abnormalities in Ig gene recombination in CLL. Studying both CSR 

and LSR, we found that CLL patients could be separated into two groups, LSRLow and LSRHigh, based on 

LSR counts. Although both groups express low levels of AID, the detection of LSRHigh tumor cells 

indicates an ongoing high rate LSR process.  However, these cells display low IGHV and PIM1 (an AID 

off-target) mutation rates. MYC overexpression, increased IgH locus accessibility and decreased 

telomere length were associated with shorter treatment free survival. In vitro experiments with the 

CH12F3 cell model indicated that MYC potentiated CSR and LSR and could drive some LSR in AID 

knocked out cells.  

Altogether, our results indicate that MYC could promote AID-independent IgH rearrangements 

in poor prognosis CLL patients.  
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INTRODUCTION 

In normal activated B-cells, Activation Induced-cytidine deaminase (AID) is the key enzyme for class 

switch recombination (CSR) and IGHV somatic hypermutation (SHM)1,2. It is also implicated in another 

IgH rearrangement, Locus Suicide Recombination (LSR). LSR recombines the IgH locus between the 

switch μ (Sμ) region and one 3'2 regulatory region (3'2RR) of the IgH locus.  This region contains 

enhancers (HS3, HS1.2, and HS4) and like-switch (LS) regions and controls IgH locus transcription 

necessary for IgH expression3. When LSR hits the active IgH locus, it induces the loss of BCR expression 

and B-cell death 4–6. 

Chronic lymphocytic leukemia (CLL) is an incurable indolent non-Hodgkin B-cell lymphoma of the 

elderly characterized by the expansion of malignant CD5+ B cells. CLL BCR is composed, in most cases, 

of the mu (µ) and delta (δ) immunoglobulin (Ig) isotypes (IgM+IgD+)7. Ig class-switched CLLs are rare8 

and were shown to express AID at higher levels9–12. However, class-switched CLLs are predominantly 

IGHV-unmutated10, an indication that the CSR and SHM functions of AID are uncoupled in these tumor 

cells. More broadly, increased AID expression in CLL is not only associated with unmutated IGHV genes 

but also with unfavorable cytogenetic aberrations and poor prognosis13. This raises the question of 

abnormalities in the Ig gene recombination machinery in this B-cell cancer. 

 

PATIENTS AND METHODS 

Detailed information on CLL patients and healthy samples, clinical correlations, DNA and RNA 

extractions, IgH recombination junction amplification and high throughput sequencing, qRT-PCR, 

telomere length assay, immunophenotyping, PIM1 targeted sequencing are detailed in Supplemental 

methods.  

All sequencing data has been deposited in the National Center for Biotechnology Information’s 

BioProject (PRJNA830327). 
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RESULTS AND DISCUSSION 

To investigate the IgH recombination machinery, we analyzed both CSR and LSR in DNA samples 

collected at CLL diagnosis from patients (N=47) with more than 98% blood tumor cell infiltration (Sup 

figure 1). Controls consisted of healthy volunteers (HV) (N=5 for CSR and N=9 for LSR). As expected in 

this IgM+ IgD+ B-cell cancer, CSR levels were much lower in CLL than in HV samples and no CLLs 

exhibited increased CSR counts (Figure 1A). Even if at low levels, LSR was found at comparable levels 

in both HV and CLL (Figure 1B), being undetectable in only 3/47 (6.3%) CLL patients. However, some 

patients had increased LSR counts when compared to HVs (Figure 1B). Distribution of LSR counts was 

bimodal with a valley at 27. That value being also the mean of LSR counts in HVs (Sup figure 2), we 

separated CLL patients into two groups called LSRHigh (12/47 patients = 26%), and LSRLow (35/47 patients 

= 74%) (Sup table 1). CSR counts were not significantly different in both groups (Figure 1C). According 

to the same methodology, a threshold of 800 CSR counts was selected to separate CLL patients into 

CSRLow and CSRHigh groups. As shown in supplementary table 2, LSRHigh status did not seem to be related 

to CSRHigh status. Consistently, the correlation between CSR count and LSR count was poor (correlation 

coefficient r=0.2, not shown). This indicates that increased LSR was poorly or not related to class-

switching in CLL. 

 

To further study LSRHigh CLLs, we analyzed LSR junction diversity in both groups and in HVs using the 

Shannon Index (Figure 1D).  This index was significantly higher in LSRHigh CLL samples than in LSRLow CLLs 

and HVs, indicating increased junction diversity.  However, LSRHigh samples exhibited a stronger 

homology to IGHV reference sequences (Figure 1E). With a threshold of 95% homology, 10/12 (83%) 

LSRHigh CLLs were not or only weakly mutated while 20/35 (57%) LSRLow CLLs were highly mutated 

(Fischer test, p=0.02). Consistently, we found that LSRHigh patients exhibited low rates of AID off-target 

PIM1 mutations (Figure 1F, p=0.01). When compared to centroblasts and naïve B-cells sorted from 

benign reactive tonsils, AID expression was at comparable levels in both LSRLow and LSRHigh CLL, being 

as low as in naïve B-cells (Figure 1G). Therefore, LSR was poorly or not related to AID expression level 

in these patients. 

 

Because diversity of LSR junctions in LSRHigh CLLs is evocative of an on-going process, we analyzed the 

expression of non-coding and coding transcripts of the constant part of IgH locus.  We found higher 

levels in LSRHigh when compared to LSRLow CLLs (Figure 2A and 2B), meaning that IgH locus DNA was 

accessible to the recombination machinery in these patients. As IgH locus recombination occurs 

physiologically in proliferating cells14, we measured the relative telomere length. While being 

homogeneous in HVs, with a mean of 2.14, telomere lengths were very heterogeneous in LSRLow 

patients, 13 (40%) had long or very long telomeres, indicating that the cells underwent a few 
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proliferation cycles. In contrast, all but one LSRHigh patient homogeneously exhibited telomeres that 

were shorter than HVs, reflecting an increased proliferation cycles (Figure 2C). Moreover, shorter 

telomeres in LSRHigh CLLs were associated with increased MYC expression (Figure 2D). Most likely 

reflecting increased proliferation and in agreement with the fact that decreased telomere length is a 

poor prognosis factor associated with genomic instability and TP53 mutations15, the Kaplan Meyer 

curves of  Treatment Free Survival (TFS) showed that TFS for LSRHigh CLLs was significantly shorter than 

for  LSRLow CLLs (≈14 months  compared to ≈71 months; P<0.001) (Figure 2E).  

 

To functionally evaluate the impact of MYC expression on IgH locus recombination, we used the 

murine B-cell lymphoma CH12F3 cell line and its AID knock-out (ko) counterpart stably transfected or 

not with a MYC overexpression vector and in vitro stimulated to undergo CSR and LSR. As shown in 

figure 2F and 2G for LSR, and in supplemental figure 4 for CSR, levels of both CSR and LSR were 

increased when MYC was overexpressed (AID+MYC+). In the absence of AID (AID-), CSR was 

undetectable while some LSR junctions could be found. When MYC was overexpressed (AID-MYC+), 

CSR remained undetectable but number of LSR junctions was increased. A contamination could be 

ruled out because the sequence of these LSR junctions was unique, some of them harboring sequence 

fragments of Sx region in between of Sµ and 3’2RR, which suggests that these LSR events were 

preceded by a sequential CSR event.  

 

These results show that MYC potentiated both CSR and LSR when AID was expressed.  Even if rare, LSR 

was possible in the absence of AID and was increased in the presence of MYC. Keeping in mind the 

recently reported residual CSR in the absence of AID16, the very unusual sequence of some LSR 

junctions with Sx insertion could also indicate that a CSR event is possible in the absence of AID.  

 

CLL is known to harbor DNA repair alterations and to accumulate DSB across the genome17–19. In our 

patients, AID was expressed at the same levels as in tonsil naïve B-cells. Therefore, we can hypothesize 

that, when AID is weakly or not expressed, high expression of MYC and increased proliferation in LSRhigh 

CLLs would favor random DNA breaks and inaccurate DSB repair, promoting in turn genetic instability. 

This MYC driven-AID independent IgH locus recombination would explain why IGHV and PIM1 

mutation rates were low in LSRHigh CLLs. Whether these MYC driven-IgH rearrangements occur in CLL 

proliferation centers of secondary lymphoid organs remains to be determined.  

 

Altogether, our results strongly indicate that in LSRHigh CLLs cells, the accessibility of IgH locus could 

be increased in a MYC dependent manner resulting in shorter survival and implying an additional MYC 

driven AID-independent mechanism of IgH recombination. 
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FIGURE LEGENDS 

Figure 1: LSR is detectable in CLL patients and suggests that   increased LSR rate is not related to AID. 

A. CSR junction counts analyzed by NGS and CSReport in CLL patients (N=47, 32986 junctions) are lower 

than in HV PBMCs (N=5, 10301 CSR junctions). B: LSR junctions were at comparable levels in both CLL 

samples (N=47, 1060 LSR junctions) and HV PBMCs (N=9, 239 LSR junctions). C. CSR counts were not 

significantly different in both LSRLow (N=35, 22247 junctions) and LSRHigh (N=11, 10739 junctions). D. 

Shannon diversity index indicates higher LSR junction diversity in LSRHigh CLL samples (N=11) than in 

LSRLow (N=35) CLLs and healthy PBMCs (N=9). E. Graph represents percentage of identity in IgHV 

segments: in LSRLow (N=34) low % of identity detected compared to the high homology of IgHV 

segments in LSRHigh (N=12) groups. The mean frequency of Somatic Hyper Mutation (SHM) in both 

groups of CLL is represented in the box. F. NGS of PIM1, AID off-target gene, and mutation 

frequency analysis show high level of mutation frequency in LSRLow (N=8) compared to healthy 

PBMCs (N=8) and LSRHigh (N=7). G. Quantification of AID transcripts, relative to CD19 transcripts, is low 

in LSRLow CLLs (N=7) and LSRHigh CLLs (N=6) compared to normal B-centroblasts (N=4) used as positive 

controls and comparable to AID transcript levels in sorted naïve B-cells (N=4) used as negative controls. 

Graphs represent mean ± SEM. Statistical analyses were performed using Unpaired T test ns: 

non-significant, *P<0, 05, **P<0.01, ***P<0.001 and ****P<0.0001.   

Figure 2: LSR in LSRHigh CLL patients may be an AID independent MYC driven IgH locus rearrangement. 

Quantification of IgH non-coding transcripts (Sµ, Sγ1, Sγ3, HS1.2 and HS4) (A) and coding transcripts 

(Cµ and surface IgM (sIgM)) (B) in CLL LSRLow (N=4 to 7) and LSRHigh (N=3 to 5) CLLs. LSRHigh exhibited 

high levels of IgH locus transcription in both productive and non-productive transcripts. C. Relative 

telomere length (RTL) measured by specific qRT-PCR relative to human beta globin gene (LSRLow, N=33; 

LSRHigh, N=12; healthy PBMCs, N=6). Telomere length was significantly shorter in LSRHigh compared to 

LSRLow and healthy PBMCs. D. MYC expression was higher in LSRHigh (N=6) compared to CLL LSRLow (N=7).  

E. Cumulative survival time (days) without treatment (TFS) for patients indicated shorter TFS in LSRHigh 

CLLs. F. Detection of LSR junctions in activated CH12F3 clones overexpressing or not MYC in the 

presence of AID (AID+, N=1 ; AID+ MYC+, N=3) suggested MYC tends to increase the LSR junction count. 

This was also observed in the absence of AID (G.), as LSR junctions, even if rare, were detectable in 

CH12F3 AID- clones (N=2) and their appeared to increase with the MYC overexpression (AID- MYC+, 

N=2). Graphs represent mean ± SEM. Statistical analyses were performed using Unpaired T test 

(A., B., C., D.,) or Chi2 test (E.) ns: non-significant, *P<0, 05, **P<0.01, and ***P<0.001. 
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FIGURES  
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SUPPLEMENTAL DATA 

 

METHODS 

Human materials and ethics  

The project was conducted according to the guidelines of the Declaration of Helsinki. CLL Peripheral 

Blood Mononuclear Cells (PBMCs) were from CRBioLim from Limoges Hospital, CHU Dupuytren 

(authorization: DC-2008-604, AC-2016-2758, and AC-2019-3418). Tonsils were obtained from children 

scheduled for elective tonsillectomy and were obtained from CRBioLim (authorization: DC-2008-604, 

AC-2018-3157). PBMCs from healthy volunteers (HV) were collected through the research project 

approved by CPP Sud Méditerranée I (N°. 2021-A00778-33). 

 

DNA extraction:  

PBMC DNA were extracted using phenol/chloroform method. CLL DNA were extracted using kit QiAmp 

DNA Blood (51104 Qiagen). 

 

Human CSR and LSR junction counts: 

Human CSR and LSR junctions were amplified as previously described1 and used to  prepare next 

generation sequencing (NGS) libraries (Ion Xpress™ Plus Fragment Library Kit, Life technologies, 

Thermofisher, 447269) sequenced with ion proton or S5 chip (Life Technologies). Results were collected 

in the FastQ format and then analyzed using CSReport 2. Shannon diversity index (𝐻) was used to 

estimate sample  diversity and was calculated considering the number of reads (𝑛𝑖) for each particular 

LSR junction and the total read number (𝑁) of LSR junctions:  𝐻 = − ∑ 𝑃𝑖 ln (𝑝𝑖)𝑠
𝑖=1   with 𝑝𝑖 =

𝑛𝑖

𝑁
 .The 

𝐻 value ranges from 0  when LSR junction diversity shrinks due to clonal dominance to high values for 

samples with higher diversity. 

 

CH12F3 CSR and LSR junction count: 

The murine CH12F3 cell line was transfected or not by MYC expression vector (pCDNA3-HA-HA-

humanC-MYC, Plasmid#74164, Addgene). Cells were cultured in RPMI 1640 with Ultra Glutamine, 10% 

FCS (Lonza), sodium pyruvate (Lonza), penicillin/ streptomycin (Lonza), nonessential amino acids 

(Lonza), and 2-ME. Cells were stimulated for CSR toward IgA for 72 hours with murine IL-4 (5 ng/ml; 

PeproTech), human TGF-1 (1 ng/ml; R&D Systems), and murine antiCD40 Ab (1µg/ml; eBioscience). 

CSR and LSR Junctions were amplified by nested PCR using specific primers (sup table 3) as described2. 
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IGHV sequence analysis: 

Amplification of V, D, and J rearranged genes was performed using the Biomed-2 strategy with FR1 and 

FR2 primers  and sequence analysis were performed as previously described 3.  

Flow cytometry analysis: 

Immunophenotyping was done on a Navios-flow cytometer from Beckman Coulter using the protocol 

for routine CLL diagnosis using: CD5-APC (Beckman coulter PN a60790, clone BL1a), CD19-ECD 

(Beckman coulter A07770, clone J3-119) and Anti-human Kappa light chain/Anti-Human Lambda light 

chains/RPE (Dako, FR481 X0935). Results were analyzed with Kaluza software version 2.1 (Beckman 

Coulter).   

RNA extraction, cDNA synthesis and quantitative real time PCR:  

Total RNA was isolated using TRIZOL reagent (TRIzol™ Reagent, 15596018) and reverse transcribed 

(Advantage RT-for-PCR kit Applied Biosystems™, Thermofisher 4368814/10400745). qRT-PCR was 

performed with the SYBR Green PCR mix (SensiFast hi ROX Syber Green BIO820025) for different 

targets of interest (Supplemental table 3) or with Taqman PCR mix (SensiFast Probe Hi-Rox kit 

BIO820025) and MYC probe (4331182 Hs00905030_m1, Thermofisher). Normal centroblasts and naïve 

B-cells were sorted as described4 from tonsils. 

Relative Telomere length assay (RTL):  

Twenty five nanograms of DNA extracted from PBMCs or HV were used in triplicate to assess the RTL 

by qPCR as described previously5. 

Mutation analysis of PIM1:  

We amplified the PIM1  exon 4 DNA segment with specific primers (Supplemental table 3) as this exon 

contains a base pair shown to be AID-targeted in the mouse model of CLL and in human CLL 6 using 

Phusion High fidelity Taq polymerase (Thermo Scientific, F-530XL) Productswere used to build libraries 

and were submitted to NGS as described above. For each library analysis was done by alignment of 

sequenced reads with the reference sequence NM_002648.4 using the Torrent Mapping Alignment 

Program (TMAP) for Ion Torrent Data and Super-maximal Exact Matching algorithm 7. The resulting 

BAM files were processed to generate per-base nucleotide count table files consisting of matrices with 

n lines × 4 columns (n is the length of the sequenced DNA) and the columns correspond to nucleotides 

(A, C, G, and T). The consensus sequence is the most frequently read nucleotide and corresponds to 

the sequence reference. Counts of mutated bases were calculated by addition of numbers of 

sequenced bases different from the nucleotide that was sequenced the most frequently. 

 

Statistical analysis: 

Graphs, histograms, curves, and statistical analysis were designed using graph pad 6-prism software.  
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SUPPLEMENTAL TABLES 

 

 

 

 

 

 

Supplemental table 1. Numbers of healthy volunteers and CLL patients tested and LSR junction counts 

and intervals (minimum-maximum) obtained for each group. Based on the mean of junction counts 

obtained in healthy PBMCs we divided the CLL cohort into two groups the first: LSRLow ≤27 junctions 

and LSRHigh > 27 junctions per sample. 

 

 

 

 

 

 

Supplemental table 2. Repartition of patients between the two groups of LSR (LSRLow and LSRHigh) and 

CSR (CSRLow, ≤800 CSR junctions per sample, and CSRHigh, >800 CSR junctions per sample). Statistical 

analysis was performed using Fisher's Exact Test *P<0.05. 
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Supplemental Table 3. Primers used in this study. 

 

SUPPLEMENTAL FIGURES 

 

 

 

 

 

 

 

 

 

Supplemental figure 1. Blood tumor infiltration in CLL groups indicated by the percentage of CD5+ 

CD19+ B cells gated on total CD19+ B cells. Statistical analysis was performed using the Unpaired T test, 

ns: no significant difference. 
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Supplemental figure 2. Distribution of LSR junction counts in CLL patients is bimodal with a valley at 

27. 

 

 

 

 

 

 

 

 

 

 

  Supplemental figure 3. Mean fluorescence intensity (MFI) of Ig kappa light chains (Igk) is indicative of 

the level of B-cell receptor (BCR) expression at the B-cell surface. IgK MFI appears comparable for 

CD5+CD19+ tumor cells from both CLL groups (LSRLow, N= 4 to 6; LSRHigh, N=6) and decreased compared 

to normal CD5-CD19+ B-cells. Statistical analysis was performed using Unpaired T test, ns: no significant 

difference.  
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Supplemental figure 4. CSR junction counts in CH12F3 cell line.  

CSR were detectable in AID+ clone as expected (AID+, N= 1). Overexpression of MYC in the presence of 

AID seemed to result in increased CSR junctions (AID+MYC+, N=3). No CSR junctions were detected in 

the absence of AID (AID-, N=1), even with MYC overexpression (AID-MYC+, N=3). 
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Article II: LSR as an indicator of cellular origin in CLL cases with superior 

outcomes? 

In the first part of my work, we amplified LSR junctions from PBMC from CLL patients. We 

divided the CLL cohort into two groups LSRHigh with >27 junctions per sample and LSRLow ≤ 27 

junctions per sample based on the cut off as the mean of LSR junctions obtained in healthy 

PBMC. These two groups exhibit different molecular characteristics and LSRLow group was 

associated with more favorable prognosis. Thanks to the CSReport software developed in our 

laboratory (Boyer et al., 2017), we analyzed LSR and CSR junction structures in these two 

groups of CLL patients as well as in healthy PBMC. 

LSR junction’s structure in LSRHigh CLL cells were comparable to that of LSR junctions from 

healthy PBMC B cells. LSR junctions were characterized by a decrease in the junctions with 

blunt or µhomology of 1-2bp in length in favor of junctions with microhomologies 3-6bp and 

insertions longer than 4bp compared to CSR junctions. In contrast, we observed differential 

junction structures in LSRLow group compared to LSRHigh CLL and healthy PBMC. LSR 

junctions exhibited more few microhomologies (1-2bp) and blunt structures at the detriment of 

junctions with long insertions (≥4bp). CSR junctions were comparable between patients and 

controls.  

As junction’s structure reflects the DNA repair machinery, our observation raised the question 

of an alteration in DNA repair pathway during LSR in LSRLow group. As shown previously in 

our laboratory (Boutouil et al., 2019), in murine B cells, LSR does not seem to depend of NHEJ 

pathway but rather seems to implicate the Alt-EJ pathway. LSR junction’s structure obtained 

in normal human B cells and in LSRHigh CLL group was coherent with the implication of Alt-EJ 

during LSR in human as suggested (Dalloul et al., 2019) and as described in mice. 

We tried to decipher whether differential DSB repair can account for our observation and in 

first intend we interrogated the recruitment of proteins implicated in DSB reparation but also 

the chromatin status at the IgH locus, looking for epigenetic marks known to orient the way of 

DSB repair. Chromatin immunoprecipitation (ChIP) on stimulated naïve B cells from peripheral 

blood from healthy donors with antibodies directed against different actors of DSB repair 

pathways showed significant recruitment for XRCC4 (NHEJ) to the donor and acceptor 

segments of CSR on IgH locus. In contrast, PARP-1 and PolꝊ (Alt-EJ) were significantly 

recruited to the donor/acceptor segments of LSR on IgH locus. Additionally, we performed 

analysis of the enrichment at the IgH segments of H4K20me1 epigenetic mark favoring NHEJ 

recruitment at the DSB and the H4K16ac known to rather inhibit the NHEJ. Results in healthy 

in vitro activated PBMC showed that H4K20me1 is more enriched on the CSR donor/acceptor 
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segments and H4K16ac was more enriched on LSR acceptor segments. Confirming that LSR 

repair in human as in mice is dependent of Alt-EJ pathway. Nevertheless, these results were 

not retrieved in CLLs who showed similar profile with enrichment of H4K20me1 on the whole 

of IgH locus which different from activated B cells and similar to resting B cells. In parallel, we 

did the quantification of transcripts of genes implicated in NHEJ and Alt-EJ in CLL PBMC cells 

and we did not detect difference between CLL LSRLow and CLL LSRHigh groups. 

Observation of IgH locus with H4K20me1 and H4K16ac chromatin status in CLL similar to that 

of resting B cells appears in concordance with the in vivo occurrence of LSR in activated B 

cells. These latter are found in germinal centers within the secondary organs. Also, in CLL, 

LSR has been certainly achieved in CLL proliferation centers in secondary lymphoid organs. 

Indeed, we performed the analysis of LSR junction’s structure from secondary lymphoid organs 

(healthy tonsils). LSR junction’s structure of LSRLow group was comparable to those obtained 

from healthy tonsils with a structural feature at the repair joint reminiscent to repair structure 

observed in the case of NHEJ employment. So, the recruitment of NHEJ to IgH locus in CD19+ 

B cells from tonsils was subsequently questioned. ChIP experiment on tonsils cells showed 

enriched recruitment of NHEJ actors on the LSR acceptor segments. 

Obtained results point on the similarity of LSR junctions between CLL LSRLow samples and 

healthy tonsils. We propose tumoral cells, in LSRLow CLL, emerge from B cell population which 

is normally restricted to the compartments of B cell activation achievement. This hypothesis 

raises questions on the cellular characteristics of the normal B cells undergoing LSR in normal 

condition and on the processes implicated in the persistence of this population with in-turn a 

tumoral phenotype in LSRLow CLL. 
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ABSTRACT 

Chronic Lymphocytic Leukemia (CLL) in an indolent and still incurable lymphoma. Tumor cells are CD5+ 

CD23+ CD19+ B cells. Locus Suicide Recombination (LSR) is a rare genetic rearrangement of IgH locus 

that can occur during the terminal maturation of B cells in addition to Class Switch Recombination 

(CSR) and Somatic hypermutation (SHM) upon B cell activation. We previously showed that CLL cells in 

a cohort of 47 patients are positive for LSR and we divided the CLL cohort into two groups LSRLow and 

LSRHigh based on the mean count of LSR junctions in healthy PBMC. LSRLow group is associated with 

superior outcome in CLL patients and present different molecular characteristics compared to LSRHigh.  

Further analysis performed on LSR junctions from LSRLow patients showed an abnormal formation of 

the LSR junctions characterized by microhomology. In addition, LSR junction’s structure profile was 

skewed toward those observed in cells from healthy tonsils. Overall, these findings suggest that CLL 

LSRLow cells with unique structural LSR features could be related to an as-yet-uncharacterized tonsil 

normal B cell subpopulation involved in LSR-induced B cell deletion. 

 

 

INTRODUCTION  

CLL is the clonal expansion of small CD19+ CD23+ CD5+ B cells (Caligaris-Cappio and Hamblin, 1999). 

Being still incurable, CLL evolution is highly variable, with an overall survival ranging from few years to 

decades (Kajüter et al., 2021). Normal counterpart of malignant CLL B cells remains undetermined and 

controversial (Scully et al., 2019). If CLL B cells are characterized by remarkable phenotype 

homogeneity and common gene expression profile, patients show a marked genetic heterogeneity 

allowing patient stratification (Rai/Binet staging systems). Among CLL genetic landscape specificity as 

important prognosis indicator, mutational status of the variable region (IgHV) on the immunoglobulin 
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(Ig) heavy-chain (IgH) locus is used to divide CLL cases into two groups with significantly disparate 

outcome and reflects the importance of the B cell receptor (BCR) (Döhner et al., 2000). Others major 

prognosis factors are chromosomal abnormalities such del17p, del11q, trisomy 12, isolated del13q or 

complex karyotype evidence the genomic instability in the CLL pathogenesis (Baliakas et al., 2019). In 

the vast majority of CLL cases, BCR at the tumor B cell surface is constituted by an IgM associated or 

not with the IgD and Ig-switched CLL is rare (Katayama et al., 2001). Surprisingly, AID, absolutely 

required for CSR in B cells, has been repeatedly detected in CLL B cells independently of the IgHV 

mutational status (Palacios et al., 2010). AID likely contributes to CLL evolution and seems to generate 

intraclonal diversity targeting IgH locus and non-Ig targets (off-targets)(Morande et al., 2021). LSR is 

another IgH rearrangement. LSR proceeds in activated B cells between the Sµ region and one of the 

like-switch (LS) repetitive regions, within one of the two 3' regulatory region (3'RR) of the IgH locus 

(Péron et al., 2012). LSR results in complete deletion of the cluster of IgH constant genes (from Cμ to 

Cα2) and when LSR hits the active IgH locus, it induces the loss of BCR expression and the death of the 

concerned B cell. Questioning the LSR occurrence in CLL, we highlighted that it could be represent an 

additional prognosis indicator and we assigned patient samples with low LSR frequency to a superior 

outcome compared to ones enriched for LSR junctions (Al Jamal et al., 2022). Going deeper in the 

molecular study of LSR junctions, obtained results suggest the LSR-on going activated B cells in tonsils 

from healthy controls can represent the normal counterpart of the LSRLow CLL cases. 

 

METHODS  

Human materials and ethics  

The project was conducted according to the guidelines of the Declaration of Helsinki. CLL Peripheral 

Blood Mononuclear Cells (PBMCs) were obtained from CRBioLim from Limoges Hospital, CHU 

Dupuytren (authorization: DC-2008-604, AC-2016-2758, and AC-2019-3418). Tonsils were obtained 

from children scheduled for elective tonsillectomy and were obtained from CRBioLim (authorization: 

DC-2008-604, AC-2018-3157). PBMCs from healthy volunteers (HV) were collected through the 

research project approved by CPP Sud Méditerranée I (N°. 2021-A00778-33). 

 
DNA extraction 

PBMC and tonsils DNA were extracted using phenol/chloroform method. CLL DNA were extracted 

using kit QiAmp DNA Blood (51104 Qiagen). 
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Amplification of Human Sµ/Sγ CSR junctions  

CSR junctions were amplified in triplicate using 200 ng of genomic DNA of extracted from fresh 

peripheral blood of Human Healthy donors, tonsils and peripheral blood of CLL patients. Amplification 

of target junctions was performed by nested PCR using two couples of primers and the Herculase II 

fusion DNA polymerase (Agilent 60067). For the first nested PCR we used these primers : Forward: 

Sµh1a: ACCAGGTAGTGGAGGGTGGTA and a Reverse consensus primer Reverse: IgGa cons 

GGTCACCACGCTGCTGAG that can amplify the four type of IgG (IgG1, IgG2, IgG3 and IgG4) with the 

following conditions: 98°C/30sec, 2cycles of 98°C/10sec, 64°C/30sec,68°C/4min, 3 cycles of 

98°C/10sec, 62°C/30sec,68°C/4min, 25 cycles of 98°C/10sec, 60°C/30sec, 68°C/4min and 68°C/5min. 

and The second nested PCR with these couple of primers was Forward: Sµh1b: 

(CAGGGAACTGGGGTATCAAG) and Reverse: IgGb cons: (CTTGACCAGGCAGCCCAG) with the following 

program: 98°C/30sec, 30 cycles of 98°C/10sec, 58°C/30sec, 68°C/4min, and 68°C/5min.  

Amplification of Human Sµ/3’RR LSR junctions 

LSR junctions were amplified in triplicate using 200 ng of genomic DNA extracted from peripheral blood 

of Human Healthy donors, tonsils and peripheral blood of C. Amplification of target junctions was 

performed by nested PCR using six couples of primers and the Herculase II fusion DNA polymerase 

(Agilent 60067). These primers amplify LSR junctions produced on HS1.2, HS4 and HS3. For the first 

nested PCR we used these primers: Eµh1 Forward: (AGGCTGACCGAAACTGAAAA) and 3’farhhs4 

Reverse (CAAGCGTCAAGGTGTGGAC) with the following program: 98°C/30sec, 2cycles of 98°C/10sec, 

64°C/30sec,68°C/4min, 3 cycles of 98°C/10sec, 62°C/30sec,68°C/4min, 25 cycles of 98°C/10sec, 

60°C/30sec, 68°C/4min and 68°C/5min. and the second nested PCR with the 2 primers Sµ1b Forward 

(CAGGGAACTGGGGTATCAAG) and Probe 3’hhs4 Reverse (GGACGCGGTTTGCTTTTAT) with the 

following program 98°C/30sec, 30 cycles of 98°C/10sec, 58°C/30sec, 68°C/4min, and 68°C/5min. 

High Throughput Sequencing (HTS) of CSR and LSR junctions 

 Triplicates Amplicons of LSR or CSR junctions from nested PCR were mixed. DNA is quantified by Qubit 

high sensitivity kit (Qubit® dsDNA HS Assay Kits nos. Q32851, Q32854) with the Qubit® Fluorometer 

machine. 100ng of DNA are used for library preparation with Ion Xpress™ Plus Fragment Library 

Kit (Thermo fisher, life technology, no. 4471269). DNA of each library were dosed by Qubit 

high sensitivity then diluted to 22ng/ml. Pool of all prepared barcoded libraries (5µl/library) 

sequenced with ion proton or S5 chip (1-96 samples/chip). Bio analyzer analysis chip 2100 

expert (11 samples/chip) verifies the Length of each prepared library fragment; from 250bp to 

300bp. Results are collects as Fastq format then proceeds to the bioinformatics analysis.  
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Primary B cell activation  

Naïve B cells are isolated from peripheral blood of Human Healthy donors after Ficoll gradient 

lymphocytes separation (CMSMSL01-01) using naïve B Cell Isolation kit II (no. 130-091-150). Naïve B 

cells were cultured in RPMI 1640 media, supplemented with Non-Essential Amino Acids (NEAA 1%), 

antibiotics: Streptomycin, penicillin (SP 1%), Ultra glutamine (1%), fetal bovine serum (FBS 10%), 

Sodium Pyruvate (1%). Cells were activated with 1µl (250ng/ml) of cross-linked CD40 ligand (Human 

CD40-Ligands Multimer kits 100µg, no. 130-098-775), 1.6µl/ml (200U/ml) of Interleukin 4 IL-4 (Human 

IL-4 premium grade 25µg, no.130-093-921). CD40-ligand, IL-4 Stimulate the class switch from IgM to 

IgG1 (ɤ1) and Locus Suicide Recombination (LSR) in vitro in human cells. These cells were stimulated 

for 96 hours. Cells are collected after stimulation for DNA and RNA studies. 

Chromatin immunoprecipitation ‘ChIP’  

Activated B Cells, tonsils cells and CLL cells were counted using cell counter (cellometer), diluted to 

2*10^6cells/ml. Cells were fixed by formaldehyd 37% (1% final concentration) 15’ at room 

temperature (RT) under agitation, glycine 2.125M (0.125M final concentration) 5’ at RT under 

agitation, washed with cold PBS(1X). Nucleus were isolated by cellular lysis buffer, then chromatin 

extraction by nuclear lysis buffer, chromatins were sonicated using ultrasound sonicator 10 series of 

10 pulses/ 4 second for each pulse, amplitude 80. Solutions used are represented in the (Supplemental 

table 1) (Legube et al., 2006). 

Chromatins were dosed by Nano drop, diluted 10 times incubated with 1ml of 50% A/G Proteins (A 

agarose no. P-1925-5ML, Roche, G sepharose, no. P-3296-5ML, Roche) over night at 4°C under agitation. 

After a series of washing, DNA is incubated 5 hours at 4°C under rock with 1µg of specific antibodies 

targeting different DNA repair pathway: Non-Homologous end joining (NHEJ), Alternative End Joining 

(Alt-EJ) and Homologous Recombination (HR) and epigenetic marks. Antibodies and their references 

are cited in the supplemental information (Supplemental table 2). After we incubated 1hour30’ at 4°C 

with 100µlof 50% A/G beads and washed 5 times by the wash buffer, suspend in TE (10.1, PH 8.1) 

incubated at 37°C, 15’ with 1µl of RNase cocktail (500U/ml, AM2286), and with SDS10% overnight at 

70°C, with proteinase 1 hour45’ at 65°C. DNA is extracted with the classic method of 

phenol/chloroform, eluted with 100 µl/H2O quality molecular biology. ChIP followed by qPCR on 

genomic DNA.  

Protease inhibitor cocktail were added to all Buffer used in this protocol (cOmpleteTM, Mini, EDTA-

free Protease inhibitor cocktail, no. 11836170001, Roche, Sigma Aldrich) and (cOmpleteTM, Protease 

Inhibitor Cocktail, no.11697498001, Roche, Sigma Aldrich). 
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RNA extraction and cDNA synthesis and real time PCR:  

Total RNA was isolated from cultured cells or cells from CLL samples using TRIZOL reagent (TRIzol™ 

Reagent, 15596018). To verify cell activation, we quantified the Activation Induced Cytidine Deaminase 

(AID) enzyme expression. Equal amount of cDNA was synthesized using the Advantage RT-for-PCR kit 

(Advantage RT-for-PCR kit Applied Biosystems™, Thermofisher 4368814/10400745) and mixed with 

the Power SYBR Green PCR master mix (SensiFast Hi ROX syber green BIO920025) using forward and 

reverse specific primers, or with SensiFast Probe Hi ROX kit BIO820025 using specific probes (LIG3: 

HS00242692-m1, LIG4: HS01866071-u1, Polϴ: HS00981375-m1, 53BP1: HS00996818-m1, Rif1: 

HS00871714-m1). qPCR on genomic DNA of ChIP experiments were done using the syber mix and 

primers of different targets (supplemental table 3). CD19 used as an internal control. 

Bioinformatics analysis 

To analyze repartition of junction structure and DNA repair of LSR and CSR after high throughput 

sequencing we used a software dedicated for class switch junction analysis named CSReport. 

Statistical analysis 

Graphs, histograms and statistical analysis are designed using graph pad 6 prism software.  

 

 

RESULTS AND DISCUSSION 

CLL LSRLow and CLL LSRHigh present distinct structure profiles of LSR junctions  

LSR product is a recombined IgH locus junction between a donor S region and the 3’RR as the 

recombination acceptor region. During the recombinational process, donor and acceptor sequences 

are targets of DNA lesions leading to DNA double strand breaks (DSB). Repair of DNA DSB is a highly 

ordered, robust and constitutive process in mammalian cells. Study of structure at the repair junction 

is common in studies of genetic rearrangement molecular mechanisms, especially to get information 

on DNA repair machinery. Repair structure analysis is based on identification of nucleotide insertion, 

expressed in length in base pairs (bp), between donor and acceptor DNA segments of the 

recombination. Junctions are also structurally defined by sequence homology between recombined 

sequences. Results shown in figure 1 were obtained from CLL PBMC and healthy volunteer PBMC. The 

LSRLow CLL group appears to differ from others samples in LSR structure profile. LSR junctions exhibited 

more few microhomologies (1-2bp) and blunt structures at the detriment of junctions with long 

insertions (≥4bp) (Figure 1A). These latter appear similar to structure profiles observed in normal B 

cells (Figure 1A). In contrast, no difference was observed between CSR structure profile between 

normal and pathological samples whatever the LSRLow or LSRHigh status (Figure 1B).   
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DSB are extremely harmful DNA lesions and inaccurate repair is directly implicated in chromosome 

translocations, fortunately this is a rare event thanks to the DNA damage response. Several pathways 

are solicited for DSB reparation. The two major ones are NHEJ (non-homologous end Joining) and 

homologous recombination (HR), but there is also the Alt-EJ (Alternative End-joining) pathway. NHEJ 

and Alt-EJ, due to their capacity to ligate DNA ends from independent molecular origins, are good 

candidate processes for DNA rearrangement. During CSR repair, the joining of DSB ends results mainly 

from the NHEJ (Soulas-Sprauel et al., 2007). We already observed in murine B cells that the repair 

structure of LSR differs from those of CSR (Boutouil et al., 2019). Also, in normal human B cells isolated 

from peripheral blood, repair signature for LSR is highly different from those of CSR (Figure 1A and 1B). 

Chromatin immunoprecipitation experiments on activated B cells from peripheral blood of healthy 

donors using antibodies raised against proteins specific to NHEJ (XRCC4) or Alt-EJ (PARP1 and POL) 

pathways showed that XRCC4, PARP-1 and POL are significantly recruited to Sµ region. Only XRCC4 is 

recruited to Sɤ1 while PARP1 and POL are recruited on HS1.2 and HS4 (Figure 1C). These results imply 

NHEJ and Alt-EJ usage during DSB repair at the IgH locus with a specific recruitment of the NHEJ at the 

CSR donor/acceptor DNA segments and the Alt-EJ at the LSR donor/acceptor segments. This could be 

explained by the chromatin context with the great enrichment of H4K20me1, known to promote NHEJ 

via the 53BP1 accumulation at DSB (Hartlerode et al., 2012) on CSR segment and the enrichment of 

H4K16ac, which is no favorable to promote NHEJ at the DSB (Horikoshi et al., 2019) on the 3’RR HS1.2 

and HS4 DNA (Figure1D). Activation of B cells was verified by quantification of AID transcripts in 

activated and resting B cells (Supplemental figure 1A). Absence of HR recruitment to the IgH locus was 

observed by negative recruitment of Rad52 (Supplemental figure 1B). 

 

LSRLow CLL exhibit different DNA repair during LSR compared to LSRHigh CLL and healthy PBMC? 

LSR junction’s structure profile observed in the LSRLow CLLs questions the DNA repair process employed 

in this condition. Observed junction structure profile reveals an increase in the frequency of blunt 

junctions and 1-2bp microhomology junctions. This profile is reminiscent of the usage of NHEJ. To 

evaluate whether an unbalanced DSB repair could explain the differential LSR junction structure 

observed in CLL we analyzed the expression levels of DSB response actors in both groups LSRHigh and 

LSRLow. qRT-PCR allowing quantification of transcripts coding for actors implicated in the protection of 

DSB DNA ends from resection and favoring NHEJ (53BP1, Rif1 and Rev7), NHEJ actors (LIGIV) and Alt-

EJ actors (PARP-1, POL and LIGIII) were performed. As shown in the figure 2A, we did not detected 

any significant difference on the transcription level for all tested transcripts of NHEJ implicated 

proteins between LSRHigh and LSRLow. Similarly, the level of Alt-EJ actors’ transcription as comparable in 

LSRLow and LSRHigh (Figure 2B). Results did not reveal differential expression for tested candidate genes 
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between CLL groups. Nevertheless, as LSR is normally occuring in activated B cell, PBMC DNA are not 

the more appropriate samples for our analysis.  

 

 

LSRLow and LSRHigh CLL PBMC appears as resting cells 

In the previous data no difference was observed at the transcription levels between the NHEJ and Alt-

EJ actors between LSRLow and LSRHigh. We analyzed the chromatin context on the IgH locus on PBMC 

from the two groups of CLL patients. ChIP experiments against the epigenetic marks H4K20me1 and 

H4K16ac were performed. qPCR on the Sµ (LSR donor segment) and HS1.2, HS4 (LSR acceptor 

segments) showed an enrichment of H4K20me1 on the whole IgH locus. H4K16ac was observed to be 

not recruited (Figure 2C). This profile was similar between LSRLow and LSRHigh cells and we do not 

observed difference in chromatin context at the IgH locus (Figure 2C). This is in accord with previous 

results of no difference between both groups on quantification of expression of Alt-EJ and NHEJ 

proteins. Furthermore, ChIP results on CLLs correlate with results from resting B cells isolated PBMC 

of healthy donors rather than with in vitro activated B cells.  The predominance of H4K20me1 

epigenetic mark enriched on the whole IgH locus including the 3’RR (Figure 2D) is retrieved on CLL 

PBMC as in healthy peripheral blood B cells.  This suggests that CLL PBMC are in a global resting state, 

LSR junctions are stigmata products of the recombination mechanism and LSR has been achieved in 

CLL proliferation centers in secondary lymphoid organs (Ghia et al., 2002).    

 

LSRLow CLL cells share similarities in LSR DSB repair with tonsil cells  

LSR, in CLL cells, may occur in secondary lymphoid organs as suggested above and this is consistent 

with the normal condition of LSR occurrence in activated B cells (Dalloul et al., 2019; Péron et al., 2012). 

To get insights in LSR in B cells from secondary lymphoid organs in physiological condition, we studied 

the LSR junction structure in normal B cells from tonsils from healthy volunteers. As shown in figure 

3A, LSR junction structure in normal cells from tonsils is comparable to those of CLL LSRLow cells with 

the decrease of junctions with insertions ≥4bp in favor of increase blunt junctions and junctions with 

1-2 bp microhomology. Repair junctions harboring blunt structure and structure with very short 

microhomology (1-2bp) is highly reminiscent of that seen in the case of NHEJ-employed DSB repair 

(Lieber, 2010), so, the recruitment of NHEJ to IgH locus in CD19+ B cells from tonsils was subsequently 

questioned. ChIP experiments using antibodies raised against XRCC4 and PARP-1 were performed as 

previously and a significant enrichment of XRCC4 was observed on Sµ, Sγ and Hs1.2 segments. PARP-1 

was observed to be not recruited to these segments. This is in accord with LSR junction structure 

observed in tonsils and collectively our results suggest that CLL LSRLow B cells share common LSR 

junction features with normal B cells from tonsils. Whereas, CLL LSRHigh samples share with healthy 
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PBMC same LSR junction structure profile. Indeed, LSR junctions amplified from secondary lymphoid 

organs (tonsils) reflect “on-going” LSR in activated B cells, the small number of LSR junctions detected 

in PBMC is certainly amplified from non-functional IgH allele (Dalloul et al., 2019) from circulating 

memory B cells in blood after their activation in secondary lymphoid organs. Data obtained here 

concerning LSR in normal PBMC and tonsils suggest LSR-deletion of B cell population in memory B cells 

compared to activated B cells. For instance, no data have been obtained concerning which B cell sub-

population is prone to LSR in vivo, thanks to our results we can suppose the targeted B cells harbor LSR 

with repair junctions enriched in blunt and with short microhomology junctions.  

Finally, if LSR regulates B cells homeostasis, it would not be surprising that LSR participates in 

the elimination of pathological B cells. There are many situations where it is necessary to exercise 

control of B cells, CLL is a condition in which B cell homeostasis dysregulation occurs. As observed in 

our manuscript, activated B cells in secondary lymphoid organs can represent the cell of origin of the 

LSRLow CLLs, anomalies participating in the emergence of this pathological condition remain to be 

determined. CLL LSRHigh B cells appear to be note related to activation on-going B cells and the normal 

B cell counterpart in this CLL sub-group seems to be differ from that of LSRLow CLL.  
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FIGURE LEGENDS 

Figure 1: CLL LSRLow and CLL LSRHigh present distinct structure profile of LSR junctions.  

Different structures of LSR and CSR junctions (insertions, blunt or µhomologies) are represented based 

on high throughput sequencing and analysis by CSReport software. A. Structure of LSR junctions in CLL 

groups and healthy PBMC (healthy PBMC N=9, 239 junctions; LSRLow N= 35, 703 junctions; LSRHigh N=12, 

703 junctions). No difference observed between healthy PBMC and LSRHigh group. In contrast, the LSR 

junction’s structure are significantly different in LSRLow group in comparison with both healthy or LSRHigh 

group. A decrease of junctions with insertions ≥4bp and the increase in blunt junctions and junctions 

with 1-2bp µhomology were observed. B. Structure of CSR junctions in CLL groups and healthy PBMC 

(healthy PBMC N=5, 10301junctions; LSRLow N=35, 22247 junctions; LSRHigh N=11, 10739 junctions). All 

CSR junctions in the different group are similar with no significant difference. C. Immunoprecipitation 

(ChIP) experiments were performed in naïve B cells isolated from peripheral blood of healthy donors 

and stimulated with IL-4 and CD40L for 96hours with antibodies raised against: XRCC4 (NHEJ DNA 

repair pathway molecule) and PARP-1, POLϴ (Alt-EJ DNA repair pathway molecules). D. ChIP of two 

epigenetic marks H4K20me1 and H4K16ac, using the same strategy on stimulated naïve B cells. qPCR 

were performed on the genomic DNA extracted after ChIP using specific primers for Sµg, Sµd(CSR/LSR 

donor segments), Sɤ1-3,Sɤ1-a(CSR acceptor segments), HS1.2, HS4(LSR acceptor segments) and 

Sγ3,CD19 (negative controls). This graph shows results of qPCR with fold enrichment method 

compared to mock condition (N=3 to 5). C. XRCC4, PARP-1 and POLϴ were significantly recruited to Sµ 

donor region, XRCC4 was more recruited to Sɤ1 than PARP-1 and POLϴ. On 3’RR (HS1.2, HS4) there 

was a significant recruitment of PARP-1, POLϴ and not XRCC4 compared to mock. No significant 

recruitment was observed on the negative controls. D. H4k20me1 was more enriched on Sµ region 

than on Sɤ1 and on 3’RR in contrast to H4K16ac which was more enriched on 3’RR than on Sµ and Sɤ1. 

No significant enrichment was detected on the negative controls. H4K20me1 was significantly enriched 

on CD19 as expected as it’s transcription activator marker. All these results suggest that DSBs of LSR 

are prone to be repaired by Alt-EJ rather than NHEJ in normal B cells. Graph designed with prism6 

graph pad with mean±SEM, statistical analysis using Chisq test (A and B) unpaired non-parametric T 

test (C and D), ns: no significant difference, * P<0.05, **P<0,001, ***P<0.001.  

Figure 2: LSR repair in LSRLow seems to be promoted by NHEJ. Quantitative RT-PCR were performed 

on cDNA obtained on total RNA extracted from LSRLow (N=9 to 11) and LSRHigh (N=4 to 10) CLL PBMC 

using different probes targeting actors of the NHEJ DNA repair pathway: 53BP1, Rif1, Rev7 and LLIGIV 

(A) and the Alt-EJ system: PARP-1, Polϴ and LIGIII (B). Results represented here are normalized to the 

CD19 transcripts level. No difference in the transcripts level was observed between the two groups. C. 

Analysis of chromatin epigenetic context of the IgH Locus in the CLL groups (LSRLow N=4, LSRHigh N=4) 
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was done to establish which DNA repair pathway is promoted, result showed significant enrichment 

of H4K20me1 on the Sµ and 3’RR region and no enrichment of H4K16ac in CLL LSRLow group and this 

group exhibits similar chromatin profile, concerning these particular marks, to resting B cells with. D. 

Chromatin context analysis in resting B cells (N=4) by ChIP experiments show a significant enrichment 

of H4K20me1 on the targeted regions of IgH locus. In contrast, H4K16ac was negative and not enriched 

on the IgH locus and CD19 (negative control) of resting B cells. Graphs are represented using the graph 

pad prism 6, statistical analysis was performed using the unpaired non-parametric T test, ns: no 

significance difference, *P<0.05.  

Figure 3: CLL LSRLow present LSR structure profile similar to LSR junctions detected in normal tonsils. 

A. LSR junction’s structure of healthy PBMC (N=9, 239 junctions), tonsils (N=24, 701 junctions) and 

LSRLow CLL (N=35, 357 junctions). A significant difference in the LSR junction structure was observed in 

LSRLow compared to healthy PBMC. In contrast this profile was similar to LSR junction structure in 

healthy tonsils with a decreased in junctions with insertions ≥4bp and the increase in blunt junctions 

and junctions with 1-2 µhomologies. B. Study of the DNA repair pathway of IgH locus in normal tonsils 

by chip experiments using XRCC4 and PARP-1 antibodies. Result shows significative recruitment of 

XRCC4 on Sµg (CSR/LSR donor segment), on Sγ1-a, Sγ1-3 (CSR acceptor segments) and Hs1.2 (LSR 

acceptor segment) PARP-1 is not recruited on all these segments. These results suggest that LSRLow CLL 

cells share similarities with tonsils cells. Graphs are represented using the graph pad prism6, statistical 

analysis was performed using Chisq test, ns: no significance difference, ****P<0.0001 (A) and unpaired 

non-parametric T test ns: no significance, *P<0.05, **P<0.01 (B). 
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SUPPLEMENTAL DATA 

Supplemental figure 1:  controls of the experiments. A. Validation of naive B cell activation by AID 

transcript quantification. After 96 hours of stimulation with IL-4 and CD40L, a significant increase in 

AID transcripts was observed in stimulated B cells compared to not stimulated B cells (J0). B. ChIP 

experiments on activated B cells using antibody raised against HR pathway (Rad52) (N=4). Rad52 is not 

recruited to any segment of IgH locus and allow to exclude the activity of HR in LSR and CSR. C. ChIP 

experiments on activated B cells targeting H3K9me3 epigenetic mark as negative control (transcription 

insulator) (N=4). Results of qPCR showed a no enrichment of H3K9me3 on the different segment of 

IgH locus. Graphs are represented using the graph pad prism6. Statistical analysis was performed using 

the unpaired non-parametric T test: ns: no significance, *P<0.05.  

SUPPLEMENTAL TABLES 

Supplemental table 1: Solutions used in ChIP experiment 
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Supplemental table 2: Antibodies used in ChIP experiments 

 

 

Supplemental table 3: Primers used in this study  
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Preliminary data of Hodgkin Lymphoma 

In my thesis work, I had the opportunity to participate to a project centered on the LSR 

mechanism as a potential cause of loss of BCR expression in Hodgkin lymphoma (HL) tumor 

cells.  

INTRODUCTION 

Hodgkin lymphoma  (HL) is a cancer of the lymphatic system, it represents 10% of all 

lymphomas types (Piris et al., 2020). Tumor cells in HL called H/RS are present with the 

CD15+, CD30+ phenotype and these cells represent 1-10% of the tumor mass. H/RS cells 

does not express a BCR on their surface. In H/RS cells, down regulation of B cell transcriptomic 

profile was observed (Küppers et al., 2012). These cells represent transformed B cells, lineage 

link was confirmed by the expression of Pax-5. H/RS cells were identified to carry crippled 

mutations in the light and heavy chains of Ig resulting in the absence of BCR expression on 

cell surface (Marafioti et al., 2000). Since LSR conducts to the loss of BCR in B cells. We 

raised the question of the LSR as an additional explanation for BCR loss in HL and especially 

in H/RS cells.  

METHODS 

Human materials  

The project was conducted according to the guidelines of the Declaration of Helsinki. HL 

patients were obtained from CRBioLim from Limoges Hospital, CHU Dupuytren. Tonsils were 

obtained from children scheduled for elective tonsillectomy and were obtained from CRBioLim 

(authorization: DC-2008-604, AC-2018-3157). 

H/RS and CD20+ Cell sorting  

Frozen HL samples were used to isolate H/RS and normal B cells using the same protocol and 

antibodies as described in (Reichel et al., 2017) and using ARIA II. 

DNA extraction  

DNA was extracted from HL samples cells and sorted H/RS, CD20+ B cells using the classical 

phenol/chloroform method. 

CSR and LSR junction’s sequencing 

200 ng of genomic DNA of HL samples or from sorted CD20+ and H/RS cells are used for 

amplification of CSR and LSR junctions by nested PCR as described in the article 1 and 2. 
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CSR and LSR junctions were sequenced by NGS (ion proton and S5) and analyzed using the 

CSReport software.   

Bioinformatics and statistical analysis  

Junction counts and structure were analyzed using the CSReport software. Graphs are 

represented using the graph pad prism6 and statistical analysis was preformed using the chi-

square or non-parametric T test.  

 

RESULTS  

HL samples exhibits LSR junctions.  

In the first step we looked on the LSR junction count per sample, the number of LSR junctions 

in HL samples was lower than in healthy tonsils and in CLL samples. We obtained 8 among 

11 patients negative for the LSR. The positive samples exhibit LSR junctions within the range 

of 1 to 108 junctions per sample.    

Analysis of LSR and CSR junction’s structure in the positive HL samples reveals a global profile 

different compared to healthy tonsils with a significant decrease of junctions with insertions 

≥4bp and junctions with 0-2bp of microhomology suggesting an alteration in the DNA repair in 

HL samples (Figure 39A). CSR junction’s structure was comparable in count and structure to 

those obtained in healthy tonsil cells (Figure 39B).  

Figure 39: Structure of LSR and CSR junctions in HL and healthy tonsils samples.  
A. LSR junctions amplified form HL samples (N=19, only 11 was positive with (193 junctions), and from tonsils 

samples (N =24, 701 junctions). A significant difference was observed in the structure of LSR junctions between 
HL and healthy tonsils. HL samples are enriched with junctions with small insertions more the tonsils samples are. 
B. CSR junctions amplified from HL samples (N=19, 76631 junctions) and healthy tonsils (N=14, 75951 junctions). 

No difference was observed in the structure of LSR junctions between HL and healthy tonsils. Graphs are 
represented with (mean±SEM). Statistical analysis was performed using Chisq test: ns: no significance difference, 
***P<0.001.  
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H/RS are defective to CSR 

As shown in the first part, HL samples carrying LSR junctions, this observation did not allow 

us to conclude on the implication of LSR in the loss of BCR since we amplified the LSR 

junctions from all cells of HL tumor samples. Indeed H/RS represent only 1-10% of the tumor 

mass, and we analyzed the LSR junctions and the CSR junctions on sorted B cells and H/RS 

cells. The cell sorting was based on the phenotypic differences between B cells present in the 

TME of HL (CD20+) and the H/RS (CD15+, CD30+). We isolated these two different 

populations from four DMSO cryopreserved cells from HL lymph nodes. 

As Ig of H/RS is enriched with chromosomal break points, we searched for abnormalities during 

IgH locus rearrangement, we amplified the CSR junctions in these sorted cells using equal 

amount of extracted DNA. CSR count analysis showed a significant decrease in the count in 

three of these four patients with a tendency to a decrease in the fourth patient (Table 6). 

Table 6: CSR junction counts in HL sorted cells. 

 Asterix indicate presence of significative difference between CD20+ and H/RS of HL samples.  

 

 

H/RS cells present alteration in CSR DNA repair machinery  

We continued our analysis on the structure of CSR junctions. As shown in the (Figure 40A), 

analysis of CSR junction between sorted CD20+ B cells and sorted H/RS cells from 4 HL 

samples reveals a skewed structure profile in H/RS cells but without statistically significance. 

In contrast, the detailed analysis on each single sample alone as shown in the (Figure 40B) 

highlights alteration in the structure in H/RS cells compared to CD20+. It is important to note 

that these latter retain the expected CSR structure profile.  
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Figure 40: CSR junction structure in HL sorted cells (CD20+ and H/RS cells).  
A. CSR junction structure of total obtained junctions. No significant difference was observed in the global analysis 
between H/RS cells and the CD20+ B cells. B. Analysis of CSR junctions in CD20+ B cells and H/RS cells for 

individual samples. We observed a heterogeneous alteration in the CSR junctions of H/RS compared to those of 
CD20+ B cells. Graphs are represented using graph pad prism 6 (mean±SEM). Statistical analysis was performed 
using the chisq test: ns: no significant difference, *P<0.05, ***P<0.001. 

 

DISCUSSION  

In these preliminary data, we observed that LSR is poorly amplified from HL samples since we 

detected it in 11 among 19 HL DNA whereas CSR is detected broadly in the same range of 

that in healthy samples. Global analysis showed LSR junctions in HL presented an altered 

structure profile while CSR junctions appeared structurally similar to those of healthy tonsils. 

As the bulk analysis cannot allow to differentiate LSR and CSR junctions from tumor cells and 

CD20+ B cells present in the TME, we performed the same methodology to sorted populations. 

Material obtained after cell sorting didn’t allow to amplify LSR junctions but was sufficient to 

detect CSR joints.  

We first noticed that H/RS exhibits low rate of CSR compared to CD20+ B cells. In addition, 

an alteration of structure of CSR junctions was observed in purified H/RS cells compared to 

CD20+ cells. These results suggest a DNA DSB repair alteration restricted to the H/RS cells.  

It remains to determine whether LSR structure is altered or not in H/RS cells. 

Finally, we are not able for the moment to definitively conclude whether LSR can cause the 

BCR loss in H/RS cells. Nevertheless, our results evidence a DNA repair default in H/RS which 
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can potentiates defect in IgH recombination and loss of the BCR in H/RS cells. To go further, 

additional HL samples are required to repeat CSR and LSR analysis in sorted H/RS cells and 

normal counterpart B cells. If results are confirmed, the DNA repair defect will remain to be 

elucidated. 
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Discussion and Future Perspectives  

The main theme of research in our laboratory is the fundamental research concerning the B 

cells and the mechanisms implicated in the lymphoproliferative diseases including the Ig 

rearrangement processes. In 2012, it was described a novel mechanism of Ig rearrangement, 

the locus suicide recombination, that occurs in B cells between the Sµ and the 3’RR of IgH 

locus conducting to the excision of all constant region and then promotes alteration in the BCR 

expression. LSR mechanism constitutes the main center of my thesis work.  

To sum up, during my thesis, I worked on the locus suicide recombination (LSR) mechanism 

in human B cells in pathological conditions, chronic lymphocytic leukemia (CLL) and Hodgkin 

lymphoma (HL), and also in B cells from healthy volunteers, peripheral blood and tonsils, 

secondary lymphoid organs. As well detailed in the result part, two main objectives were 

studied in order to improve the knowledge about LSR mechanism.  

CLL is an indolent and still incurable lymphoma, recurrent in western countries. CLL tumor 

cells are CD5+, CD23+, CD19+ and CD20+ (Caligaris-Cappio and Hamblin, 1999). CLL cells 

express Ig on their surface, an IgM co-expressed with IgD in the vast majority of cases (Klein 

et al., 2001). Presence of unswitched Ig on CLL cells raised the question of abnormalities in Ig 

rearrangement.  

First, we quantified CSR and LSR junctions from DNA extracted from peripheral blood of cohort 

of 47 CLL patients and from 9 healthy donors. CSR junction count in CLL was, as expected, 

less than in PBMC from healthy volunteers. CLL cells were positive for LSR junction, and in 

the first global view the LSR count was similar to healthy PBMC, but deeper analysis of the 

count allowed us to distinguish two groups of CLL patients called LSRHigh and LSRLow using 

the mean of LSR junction obtained in healthy PBMC as cut off. We continued our study in 

order to delineate the differences of these two groups and to establish if the count of LSR 

junctions can correlate with the prognosis of CLL patients. It is well documented that the 

mutational status of IgHV genes is related to the prognosis of patients. UM-IgHV, mutational 

status associated with aggressive disease, was found increased in the LSRHigh CLL patients of 

our cohort. In coherent way, LSRHigh group was associated with the shorter TFS. LSRHigh 

patients were enriched in B and C Binet stages reinforcing the association of LSRHigh with 

poorer prognosis (data not shown in the manuscript). Amplified LSR junctions can’t be derived 

from B cell normal counterpart as CLL samples are taken at the diagnosis with very high tumor 

infiltration. In peripheral blood, detection of LSR junctions has been assigned to the non-

functional IgH allele (Dalloul et al., 2019). Difference in the LSR count obtained between both 

groups isn’t consecutive to different in B cell richness (not shown) and results from LSR 
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amplification from CLL cells since tumoral infiltration in B cell population is higher than 98%. 

Additionally, we estimated the LSR junction diversity by Shannon index calculation, which is 

influenced by the diversity and the abundance of each LSR junction, and as mentioned in our 

results, LSRHigh group was more diversified than LSRLow. Increased count of LSR junctions 

raised the question of on-going process. As reviewed in (Oppezzo et al., 2021), AID can be 

expressed in proliferative subpopulation of CLL cells, accounting for around 1% of the CLL 

cells. Since LSR was described induced by AID (Péron et al., 2012a), we quantified the AID 

transcripts from cDNA extracted from PBMC of CLL patients. However, AID was similarly and 

at very weak levels in both groups compared to the positive controls, sorted centroblasts from 

tonsils, without difference with AID expression from sorted naïve B cells. Lack of detection of 

AID expression in CLL PBMC can be due to the very low frequency of CLL cells supposed to 

express AID. We cannot exclude AID-induced LSR in CLL samples is achieved abroad the 

peripheral blood compartment. In normal condition, AID is expressed in activated B cells in the 

secondary lymphoid organs. Analysis and quantification of AID from CLL cells from secondary 

lymphoid organs will be realized in the short-term perspectives of this project.  

Nevertheless, analysis of PIM1, an AID off target gene, reveals an increased mutation rate in 

the CLL LSRLow group. In contrast, the CLL LSRHigh group present normal low level of PIM1 

mutation suggesting absence of AID expression and an AID-independent LSR in LSRHigh CLL. 

To explore the AID activity in CLL patient’s additional works on the short and long terms of this 

project will be achieved. AID activity is not restricted to the CSR and LSR, AID is also required 

in generating the diversity of the variable region of IgH locus during the Somatic hypermutation. 

Analysis of the VDJ diversity to detect de novo mutations in CLL patients will allow to determine 

a reactivation of AID in samples. In addition, the analysis of other AID off target genes such as 

Mcl-1 which found mutated in aggressive CLL will be assessed (Morande et al., 2021).  

 

In parallel, because IgH recombination take place in proliferating cells, we examined the 

proliferation state of the cells by measuring the telomere length and quantifying MYC 

expression. Telomere length was shorter and associated with high levels of MYC expression 

in LSRHigh group indicating several rounds of cell divisions in the cells of this group. In addition, 

we tested the accessibility of IgH locus by quantifying the transcription levels of coding and 

non-coding transcripts which were detected at high levels in LSRHigh group indicating higher 

locus accessibility.  

High IgM levels expression has been assigned to poor prognosis CLL patients (Mazzarello et 

al., 2022). In this article, authors showed that CLL cells co-express IgM and IgD and that high 

level of IgM expression is associated with poor prognosis and excessive signaling of the BCR, 
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in contrast to patients with CLL cells expressing high levels of IgD. In our study, we compared, 

and found similar within CLL patients, the level of surface BCR. This was done by Igk labelling 

and fluorescence flow cytometry analysis. The IgM expression was assessed at the 

transcription level. In the continuing work, analysis of IgM expression at the protein level and 

its localization at the cell surface, and the BCR signaling by western blot and /or flow cytometry 

will be done. In our CLL cohort, these analyses are on-going using western blot analysis on 

proteins extracted from dry pellet of cells. In long term, during the recruitment of supplemental 

CLL patients in collaboration with the CHU of Limoges and the CRBioLim, we will proceed 

systematically to IgM expression at the CLL cell surface.  

Additionally, high IgM expression on the CLL cells suggests a defect in the CSR mechanism. 

It was shown in the literature that deletion in the switch region results in the resistance to CSR 

mechanism even in the presence of mutated variable region (Pham-Ledard et al., 2017). 

Detection of intra-Sµ deletions will be interesting since these cells of LSRHigh group express 

high level of IgM transcripts.  

Increased MYC expression, weak AID expression levels and accessible IgH locus questions 

the implication of MYC in the high LSR count independently of AID activity. Recently it was 

shown that CSR junctions can be detected even at low level in AID-/- conditions (Dalloul et al., 

2021b). We addressed this question in murine cell line CH12F3 known to undergo CSR and 

LSR upon stimulation. Clones of CH12F3 wt or AID KO were generated. These clones were 

transfected by vector overexpressing MYC and stimulated for 72 hours. High throughput 

sequencing of PCR amplified CSR and LSR junctions from these clones reveals increase in 

the count of LSR in condition of overexpression of MYC even in the AID wt of AID KO.  

Our results indicate that in LSRHigh CLLs cells, the high transcription of the IgH locus, probably 

increased in a MYC dependent manner results in an additional MYC driven AID independent 

mechanism of IgH recombination. 

 

Our data raise the question of the alteration of AID activity by MYC overexpression with a shift 

of AID action toward IgH recombination rather than its mutator activity on VDJ and non Ig target 

genes. This can be assessed on activated B cells from mouse model overexpressing MYC 

(kovalchuk J exp med 2000) invalidates or not for AID.  

In the future, simple quantification of MYC and telomere length measurement will be helpful to 

classify the CLL patients.   

LSRHigh and Low CLLs appear to be characterized by different features certainly due to different 

CLL tumoral transformation mechanisms. DNA double strand breaks generated during the 

CSR and LSR mechanisms seem repaired by distinct DNA DSB repair pathways. Three DSB 
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repair pathways are described the NHEJ, Alt-EJ and HR. It is well documented that during the 

CSR mechanism, DSB are repaired mainly by the NHEJ pathway, and in case of NHEJ defect, 

DSB are repaired, in a lesser efficiency, by Alt-EJ. Analysis of the junction structure gives 

information on the DSB repair system used. NHEJ is able to directly ligate ends (blunt 

junctions) or ends sharing small µhomologies (1-2 bp). Alt-EJ is defined to ligate ends 

harboring longer µhomologies than NHEJ and presents the capability to introduce insertions 

at the junctions. 

Based on the characteristic differences observed in LSR junctions between LSRHigh and LSRLow 

CLL groups, we analyzed the LSR and CSR junction’s structure to evaluate if it’s relevant of 

an alteration of the DNA repair. Indeed, LSRHigh group exhibits the same profile of LSR 

junctions compared to those obtained from PBMC of healthy donors. This repair profile reflects 

the usage of Alt-EJ, in coherence with previous data published in our lab on the DNA repair 

during LSR in murine cells (Boutouil et al., 2019b). ChIP experiments on in vitro activated B 

cells isolated from peripheral blood against DNA repair pathway actors showed expected 

results suggesting the employment of Alt-EJ pathway on the 3’RR of the IgH locus. To explore 

the difference in DNA repair recruitment on IgH locus, characterization of the chromatin context 

on the CSR and LSR donor segments was performed. Choices of the epigenetic marks studied 

in our manuscript was based on previous studies from the literature showing that methylation 

of the lysine 20 of H4 (H4K20me) promotes the recruitment of 53BP1 to the DSB break site, 

protects the DNA ends from resection and favors the repair via NHEJ pathway (Hartlerode et 

al., 2012). On the other hand, we choose the H4K16ac known to inhibit the 53BP1 recruitment 

and to favor DNA DSB repair pathways other than NHEJ (Horikoshi et al., 2019, p. 16). In 

accord with our previous results we observed H4K20me1 enrichment on the CSR donor and 

acceptor segments. H4k16ac in activated cells was enriched on the LSR donor and acceptor 

segments.  

Difference in the LSR junction’s structure observed in LSRLow group suggests employment of 

NHEJ in DNA repair step. This suggestion was difficult to confirm by qPCR quantification of 

NHEJ and Alt-EJ actors in the two groups of CLL groups. Results did not reveal differential 

expression for tested candidate genes between CLL groups. Nevertheless, as LSR is normally 

occurring in activated B cell, PBMC DNA are not the more appropriate samples for our 

analysis. 

Since LSR occurs in the secondary lymphoid organs we analyzed LSR junction’s structure in 

tonsils cells. We observed a difference in the LSR profile emerged from tonsils compared to 

PBMC cells, in normal conditions.  
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This profile was characterized by the decrease in the junctions with ≥4bp insertions and 

increase in blunt junctions or with 1-2bp microhomology. LSRLow exhibits the same profile as 

tonsils. The fact that same junction features are sharing by CLL LSRLow and cells from tonsils 

suggests CLL tumor cells can originate from B cells normally restricted to secondary lymphoid 

organs. This latter population appears to be associated with LSR employing a DSB repair step 

achieved presumably through NHEJ as confirmed by ChIP experiments against NHEJ and Alt-

EJ actors revealing the significant recruitment of NHEJ molecule on the whole of IgH locus 

including the 3’RR region.  

Indeed, we suggest that a subpopulation of B cell is deleted in tonsils before they emerge in 

the peripheral blood. This population is not yet characterized. I started the characterization of 

this subpopulation but due to the limit time of thesis all objectives are difficult to be enriched 

and this subject will be continued by the current PhD students.  

We planed to sort different B cell subpopulations from healthy tonsils accordingly to described 

specific phenotypes (Wohlford et al., 2018). The gating strategy represented in the (Figure 41). 

Figure 41: Gating strategy to isolate the different subpopulation of tonsils B cells. 

 

On sorted cells, RNA and DNA extraction will be done to analyze the transcriptomic as well as 

the LSR junction count and characteristics of each population. Detection of population with 

LSR junctions harboring enrichment in blunt junctions and junctions with little microhomology 

will be privileged for transcriptomic, epigenetic and DNA mutation analysis. Data obtained will 
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be compared to those of CLL LSRLow samples.  This will also assign the LSR mechanism to a 

physiological role in the homeostasis of B cells by eliminating pathological B cells.  
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Conclusions  

My thesis work has allowed us to use the LSR mechanism to differentiate CLL patients in two 

subtypes characterized by distinct outcomes and unrelated origins: LSRHigh and LSRLow. This 

work highlights the contribution of the knowledge in physiological mechanisms for a better 

understanding of pathological conditions. However, several questions remain to be elucidated. 

 In the first part, our findings of LSR indicate that high LSR count is associated with poor 

prognosis indicators. These CLL cells has entered in several rounds of proliferation with a high 

expression of MYC and an open and accessible IgH locus. We have hypothesized that 

overexpression of MYC, inducing high rate of mitosis in CLL cells, renders these cells more 

susceptible to DNA lesions during replication, transcription and/or due to reactive oxygen 

species. IgH locus, highly transcribed in CLL LSRHigh cells, may be prone to be targeted by 

DNA lesions and LSR recombination as a hazardous event. In confirmation of this hypothesis, 

we showed that high LSR count is detected after MYC overexpression and in absence of AID 

in activated murine B cell lymphoma line cells (CH12F3). Results of this work question the AID 

activity in CLL: 

1- Is AID activity restricted to secondary lymphoid organs and CLL proliferation centers? 

2- Can AID activities in IgH recombination, mutation of Ig and off-target genes be 

dissociated?  

3- Does MYC account for the orientation of AID activity towards recombination or 

mutation? 

4- We observed increases transcription of the entire constant part of the IgH locus, why 

we do not observe an increase in CSR junctions in CLL LSRHigh samples? 

5- Is LSR an event participating in the CLL pathogenesis or an unrelated consequence?  

 

In the second part, study of LSRLow CLL interrogated the DSB repair employed during LSR. 

Since, these patients harbor specific LSR junction structural profile, we searched for a DSB 

repair alteration in this condition. This led to observe LSRLow CLLs and cells from tonsils from 

healthy volunteers share the same LSR junction structure distribution and suggested LSRLow 

CLL cells can originate from tonsil B cells. 

 In addition, several questions are pending: 

1- Why our results on LSR DSB repair on in vivo activated human B cells are not 

concordant with results obtained after in vitro stimulation (Boutouil et al., 2019b; Dalloul 

et al., 2019)? 
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2- LSR-induced B cell population in tonsils, with blunt and with 1-2bp microhomology LSR 

junction enrichment, has to be identified to allow their characterization. 

3- What are the dysregulated mechanisms implicated in emergence of tumoral CLL 

LSRLow cells from their normal counterpart in tonsils. 

Finally, concerning the work of HL, if we are not able to confirm that LSR is an additional cause 

for the BCR loss on the surface of these tumor cells, we observed CSR defect in tumor cells. 

CSR can probably related to the alteration in the DSB repair in H/RS. Indeed, these latter can 

participate in abrogation of IgH expression and the absence of BCR at the H/RS cell 

membrane. 
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Abstract 

In normal B cells, Activation Induced-cytidine deaminase (AID) is the key enzyme for class switch recombination 
(CSR) and somatic hypermutation of (SHM) on the heavy chain (H) and the light chain (for SHM) of 
Immunoglobulin (Ig). AID is also implicated in another IgH rearrangement, the locus suicide recombination (LSR). 
LSR occurs in activated B cells and recombines the IgH locus between the switch µ (Sµ) region and the 
3’regulatory region (3’RR) of IgH locus. LSR results in the complete deletion of the cluster of IgH constant genes. 
When LSR hits the active IgH locus, it induces the loss of BCR expression and the death of the concerned B cells. 
CSR and d LSR proceed by introduction of double strand breaks (DSB) followed by DNA repair and junction 
production. Chronic lymphocytic leukemia (CLL) is an indolent non-Hodgkin B cell lymphoma. CLL is characterized 
by the clonal expansion of tumor cells (CD5+, CD23+ CD19+). Tumor cells weakly express a B cell receptor (BCR) 
on the surface, it is composed in the vast majority of cases of Immunoglobulins (Ig) IgM and IgD. CLL tumor cells 
are rarely switched, raising the question of abnormalities in the Ig gene recombination machinery in this B cell 
lymphoma. In our study, and based on the count of LSR junction we identified two groups of CLL patients. A 
group with High LSR junction count (LSRHigh) and a group with low LSR junction count (LSRLow) based on the mean 
count of LSR junctions obtained in healthy peripheral mononuclear blood cells (PBMC). Deep analysis of these 
groups of CLL patients showed that in LSRHigh CLLs cells, the accessibility of IgH locus could be increased in a MYC 
dependent manner resulting in shorter survival and implying an additional MYC driven AID independent 
mechanism of IgH recombination. Also, LSRHigh and Low CLLs appear to be characterized by different features 
certainly due to different CLL tumoral transformation mechanisms. We showed also similarity of LSR junctions 
between CLL LSRLow samples and healthy tonsils. We propose tumoral cells, in LSRLow CLL, emerge from B cell 
population which is normally restricted to the compartment of B cell activation achievement.  

Key words High LSR count, low LSR count, CSR, MYC, CLL, prognosis, cell of origin. 

Résumé 

Dans les lymphocytes B (LB) normaux, l’Activation Induced-cytidine Deaminase (AID) est l’enzyme clé des 
mécanismes de commutation de classe (CSR) et l’hyper-mutation somatique (SHM) des chaînes lourde (H) et 
légère (L) d’immunoglobuline (Ig). AID est impliquée dans un autre mécanisme de réarrangement du locus IgH, 
la recombinaison suicide du locus IgH (LSR). La LSR se produit dans les cellules B activées et recombine le locus 
IgH entre la région de commutation µ (Sµ pour switch µ) et la région régulatrice (3'RR) en 3’ du locus IgH. La LSR 
entraîne la suppression des gènes constants du locus IgH. Quand la LSR touche le locus IgH sur l’allèle productif, 
elle induit la perte d'expression du BCR et la mort des LB concernés. Les mécanismes de CSR et LSR nécessitent 
des cassures doubles brin (CDB) de l’ADN qui vont être réparées et générer la production de jonctions de 
recombinaison. La leucémie lymphoïde chronique (LLC) est un lymphome indolent non hodgkinien affectant les 
cellules B. la LLC est caractérisée par une prolifération clonale de cellules tumorales (CD5+, CD23+, CD19+). Les 
cellules tumorales expriment faiblement le BCR et l’Ig est majoritairement une IgM coexprimée avec l’IgD. Les 
cellules tumorales expriment rarement une Ig de classe commutée, ce qui pose la question sur une altération du 
processus permettant le réarrangement du locus IgH dans ces cellules cancéreuses. En utilisant le nombre de 
jonctions LSR détectées dans des prélèvements sanguins de patients atteints de LLC, nous avons identifié deux 
groupes distincts. Le premier groupe se présente avec un nombre augmenté de jonctions de LSR (LSRaugmentée), le 
second groupe, avec un nombre diminué de jonctions LSR, (LSRdiminuée) par rapport à la moyenne du compte de 
jonctions LSR d’échantillons de cellules mononuclées du sang périphérique (PBMC) de volontaires sains. 
L’analyse en détails de ces deux groupes a permis de montrer que dans les cellules du groupe LSRaugmentée 
l’accessibilité du locus IgH est augmentée, une prolifération accrue, la surexpression de MYC et des indicateurs 
de mauvais pronostic. Ces cellules apparaissent subies un mécanisme de recombinaison du locus IgH aboutissant 
à la LSR indépendant de l'AID mais dépendant de MYC. Par ailleurs, nos résultats montrent que les LLC LSRaugmentée 
et LSRdiminuée présentent des caractéristiques différentes et suggèrent des mécanismes de transformation 
tumorale distincts. Nous avons également montré la similitude des jonctions LSR des cellules de LLC LSRdiminuée et 
de cellules issues des amygdales de volontaires sains. Nous proposons que les cellules tumorales, dans la LLC 
LSRdiminuée, émergent de la population de cellules B qui est normalement limitée aux compartiments impliqués 
dans l'activation des cellules B. 

Mots clés LSR augmentée, LSR diminuée, CSR, MYC, LLC, pronostic, Cellule d’origine. 
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